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Abstract

Comprehend and model the human language is a problem of great importance

for the modern society. Network science was already proved as a useful tool for

this kind of study. In fact, many studies has been done in this direction, but

none of them performed a deep investigation of the human memory and mental

lexicon involving scripts. This thesis work propose a novel kind of network which

maintain all the features observed in language and semantic networks, but is built

in di�erent steps and without classical approaches. This network is also used as a

base to model a typicality score biased random walk model which performs good

in language production and topic identi�cation and can be seen as a prototype of

an automatic system for these kinds of tasks.

Comprendere e modellare il linguaggio umano è un problema di grande im-

portanza per la società moderna. La scienza delle reti è stata provata essere uno

strumento utile per questo tipo di studi. Infatti, sono stati fatti molti studi in

questa direzione, ma nessuno di questi esegue una profonda ricerca della memo-

ria umana e del lessico mentale coinvolgendo gli scripts. Questo lavoro di tesi

propone un nuovo tipo di rete che preserva tutte le caratteristiche osservate in

reti linguistiche e semantiche, ma è costruita in diversi passi e senza l'utilizzo di

metodi classici. Questa rete è stata anche utilizzata come base per modellare un

random walk in�uenzato dal punteggio di tipicalità che dà buoni risultati nella

produzione linguistica e nell'identi�cazione degli argomenti e che può essere visto

come prototipo di un sistema automatico per questi tipi di compiti.
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Chapter 1

Introduction

One of the main problems of contemporary society is the comprehension of natural

language. While informatics tried to elaborate formal languages with the aim to

model the human cognition's semantic structure, network science allowed to look

at the linguistic production, organization and recall in several di�erent ways.

This thesis work's main purpose is to provide mathematical models to ana-

lyze mental lexicon development and some of the processes needed to memorize

linguistic con�gurations tied to di�erent environments in which humans acts and

live. These everyday life situations are referred to as scripts and are modeled with

agents which extract the meaning from the above mentioned structures and con-

�gurations. In fact, these structures are the main cognitive database embodied in

the human brain.

There are many and important advantages derived from network science in

many di�erent �elds: for example, the comprehension of human brain connectivity

(Sporns, 2011), the classi�cation of psychological disorders (Cramer, Waldorp,

van der Maas, & Borsboom, 2010), the semantics representation in the human

brain (Huth, Nishimoto, Vu, & Gallant, 2012), the study of memory's semantic

organization (Gri�ths, Steyvers, & Firl, 2007; Steyvers & Tenenbaum, 2005) even

at an early stage in children (Hills, Maouene, Riordan, & Smith, 2010; Hills,

Maouene, Maouene, Sheya, & Smith, 2009) and the study of word associations

even between seemingly unrelated words (De Deyne, Navarro, Perfors, & Storms,
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CHAPTER 1. INTRODUCTION 4

2012).

Many models were proposed to study and represent this kind of word asso-

ciation: semantic knowledge networks (Collins & Loftus, 1975; Quillian, 1967),

networks of language (Lamb, 1970; MacKay, 1992), neural networks (Rosenblatt,

1958), propositional networks which are able to grasp the meanings of sentences

(Anderson, 2005).

Semantic networks seemed to be the best way to model how the human brain

works (Collins & Quillian, 1969; Quillian, 1967). Every word forming the mental

lexicon was connected with a set of suggestions (pointers) which form the connec-

tion with other terms in the memorized mental lexicon. Usually, many paths start

with a simple word association rule and end with a complex one. If a concept is

activated in the network, all of its relations are activated, too. This process is

called spreading activation (Collins & Loftus, 1975): at �rst only nearest neighbors

are activated, while going on with the process, even distant words are activated

because they are neighbors of neighbors.

This model was not enough because it does not contain any long range connec-

tion and it is not suitable to organize a mental lexicon for arti�cial intelligences.

Then a higher level structure was introduced: clusters of words directly con-

nected according to some rule. These structures are called frames (Charniak, 1972;

Minksy, 1975), schemata (Rumelhart & Ortony, 1977) or scripts (R. C. Schank

& Abelson, 1977).

Scripts contain human behavior description, together with inferences and deci-

sion processes present in the human brain from the age of �fteen months (Onishi,

Baillargeon, & Leslie, 2007). Because of the repetition of the experiences, infer-

ences are created based on the expected events. This process is very important

for the semantic and conceptual systems' development. But a main question re-

mains: is this the main growth dynamic of these systems, or there are some more

relevant?

Network science take into consideration every complex system as a set of in-
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terconnected elements and, as said before, brought advancements in several �elds:

economy and biology (Barabási et al., 2009), social science (Watts, 2004), psychol-

ogy, with the introduction of the term connectome (Sporns, 2010) which changed

the way of looking at the cognitive structures as a network (MacKay, 1992; Quil-

lian, 1967; Rosenblatt, 1958).

Several studies were performed using these concepts, but a deep investigation

which relate scripts and mental lexicon organization to model the whole system

as a network is needed and is the subject of this thesis.

Every chapter of this thesis, with the exception for the next one which gives

the needed network science formal background, is mainly divided in two parts: a

theoretical one and an experimental one.

The theoretical parts give an introduction on semantic networks and mental

lexicon development from the cognitive point of view, together with the state of

the art about network science applied to linguistics.

The experimental parts report the data acquired in two main experiments

performed at the University of Calabria: these experiments concern a creative

linguistic process about words association in a speci�c context. This collection of

words have been modeled as networks which have been analyzed and used as a

basis for experimental mathematical models presented in this thesis.



Chapter 2

Network Theory Background

2.1 Introduction

In mathematics, a network (or graph) is a representation of objects interconnected

with some relation. Leonard Euler introduced this mathematical framework in

1736 to solve the seven Konigsberg's bridges problem. Konigsberg (today known as

Kaliningrad) is split in four zones by the Pregel river. These zones were connected

by seven bridges (today two of those bridges are no more). The problem was telling

if it was possible to walk through the whole city crossing each bridge exactly one

time and arrive at the starting point of the walk. To solve the problem, Euler

represented the city as a graph: the four parts were pictured as points (nodes or

vertices) with seven segments (links or arcs) linking them in the same way the

bridges connected the four zones. With this graph, Euler proved the non existence

of the walk described in the problem.

During the last years, graphs acquired great importance in many research �elds

thanks to the advance in network science.

The approach of network science has spread out from its original domain of

application to social science (Watts, 2004) to a great variety of domains, such

as economy, biology and technology (Barabási et al., 2009). Psychological sci-

ences have used network approach to improve the understanding of the brain

"connectome" (Sporns, 2010), to diagnose mental disorders (Cramer et al., 2010),
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CHAPTER 2. NETWORK THEORY BACKGROUND 7

or to represent semantic memory (Steyvers & Tenenbaum, 2005), changing the

network-analogy meaning, usually used in the cognitive domain (MacKay, 1992;

Quillian, 1967; Rosenblatt, 1958). The power of network science methods has

already been proven by di�erent works in the cognitive domain, at the level of

human semantic knowledge, trying to investigate the connectivity of semantic net-

works (Steyvers & Tenenbaum, 2005), at the word learning and lexical retrieval in

the mental lexicon (Vitevitch, 2008), comparing networks in di�erent languages

(Arbesman, Strogatz, & Vitevitch, 2010a), o�ering a huge variety of statistical

and computational tools. These studies put in evidence many interesting features

of language-related networks, detecting large highly interconnected components

and many isolated islands, isolated words with no neighbors, small world fea-

tures (related to a short average path length and a high clustering coe�cient, as

showed for other systems in (Watts & Strogatz, 1998), degree distribution devi-

ating from a power law distribution (i Cancho, 2005), so di�erent from scale free

networks (Barabási & Albert, 1999). Though some of these studies dealt with

what a speaker/hearer knows about the form of the language entry (its phonol-

ogy), its structural complexity (morphology), its meaning (its semantic represen-

tation) and its combinatorial properties (its syntactic, categorical properties), a

deep investigation of cognitive organization that refers to scripts (R. Schank, 1982;

R. C. Schank & Abelson, 1977) through networks has never been done. The script

model, originally developed by R. C. Schank and Abelson (1977), stated that, for

the purposes of text comprehension (Bower, Black, & Turner, 1979; Cellar & Bar-

rett, 1987; Pollatsek, Ashby, & Clifton Jr, 2012), young and adult memory recall

(Light & Anderson, 1983), language comprehension (Gernsbacher, 1991; Zwaan

& Radvansky, 1998), memory organization (Anderson, 1983), methods of investi-

gation of cognitive processes (Abelson, 1981) and behavior (Graesser, Gordon, &

Sawyer, 1979), memory system in subjects with neurodegenerative diseases (Graf-

man et al., 1991), social behavior evaluation in interacting people (Abelson, 1976)

and other high-level processing tasks, mind retrieves information from long-term
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memory in the organized form of scripts or schemata (Allington, 2005).

2.2 De�nitions

De�nition 2.1. A graph G over N is de�ned as an ordered couple of sets G(N,L)

where N = {n1, n2, . . . , , nn} is the set of nodes, while L = {l1, l2, . . . , lm} is the

sets of the arcs. N can be �nite or in�nite and so will be the graph over it.

Every arc is represented by the couple of nodes which are its endpoints. These

nodes are connected by the arc. So the arc linking ni with nj can be written as

ninj or lij. An arc linking a node with itself is called loop.

De�nition 2.2. Two nodes are adjacent (or neighbors) if they are linked by an

arc. Two arcs are adjacent if they share an endpoint.

De�nition 2.3. Given a graph G(N,L), a path is a sequence of adjacent arcs.

A minimum path from ni to nj is a minimal path starting from a node ni and

arriving to a node nj. The minimum path is not unique.

De�nition 2.4. A graph G(N,L) is connected if ∀ ni, nj ∈ N , with i 6= j, exists

a path from ni to nj.

De�nition 2.5. A graph is complete if all of its nodes are adjacent.

De�nition 2.6. Given a graph G(N,L), the set N ′ ⊆ N and the set L′ ⊆ L. The

graph G′(N ′, L′) is a subgraph of G, while G is a supergraph of G′.

De�nition 2.7. The neighborhood of a node ni in a graph G is the subgraph over

the set of its neighbors, itself included, with all the links among them existing in

G.

De�nition 2.8. An arc lij is directed if it links ni with nj, but not the opposite.

Otherwise it is undirected.

De�nition 2.9. A graph is directed if at least one of its arcs is directed. If all of

its arcs are undirected, the graph is undirected, too.
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De�nition 2.10. A graph is weighted if every arc is given a non zero value

(weight).

In weighted graphs, it is possible to tell the di�erent importance of di�erent

arcs because of their weights. In unweighted graphs, instead, all the arcs have the

same importance and can be considered as weighted graphs with unitary weights.

2.3 Matrices

It is possible and useful to represent a graph with a matrix.

De�nition 2.11. Given an unweighted graph G(N,L), with |N | = n, its adja-

cency matrix A = {aij} is a n× n square matrix de�ned as:

aij =

 1 if lij ∈ L

0 otherwise

If the graph is undirected, then its adjacency matrix is symmetric: in fact

in an undirected graph if ni is connected to nj, then nj is connected to ni, so

aij = aji ∀ i, j = 1, 2, . . . , n. If there are no loops, the adjacency matrix diagonal

contains all zero entries: aii = 0 ∀i = 1, 2, . . . , n. The number of edges |L| = m

can be computed directly from A:

m =



n∑
i=1

n∑
j=1

aij if G is directed

1
2

n∑
i=1

n∑
j=1

aij if G is undirected

If the graph is weighted, the de�nition is slightly di�erent and the adjacency

matrix is usually called weights matrix or weighted adjacency matrix W = {wij},

de�ned as:

Wij

 wij if lij ∈ L

0 otherwise

where wij is the weight of the arc lij.
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Another useful matrix associated to a graph is the Laplacian matrix.

De�nition 2.12. Given a graph G(N,L) with |N | = n and adjacency matrix A,

its Laplacian matrix Λ = {Λij} de�ned as:

Λij


(

n∑
k=1

akj

)
− aij if i = j

−aij if i 6= j

The Laplacian matrix is useful if loops are not important: Λ does not change

if loops are added to the graph. If the graph is undirected and it has k connected

components (maximal connected subgraphs), 0 is an eigenvalue of Λ with algebraic

multiplicity equal to k. Thus, Λ can be written in diagonal blocks form: nodes

can be reordered to have k non zero squared blocks along the diagonal. In this

case, there are k eigenvectors, one for each connected component, with non zero

entries corresponding to the nodes belonging to the connected component and

zero elsewhere. So, building a n × k matrix with these eigenvectors, each row

represents a node and a direction of a k-dimensional space.

2.4 Measures

De�ning some measures is necessary to study a network, both qualitatively and

quantitatively. Measures can be local or global: the �rst characterize every node

or every arc, while the second one describe the network as a whole.

Degree

De�nition 2.13. In an undirected network with n nodes and adjacency matrix

A, the degree ki of the node ni is the number of edges starting from or arriving

to ni:

ki =
n∑
j=1

aij
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While the degree is a local measure, it is also possible to consider the average

degree as a global measure. The average degree of the network is the average of

the degrees:

k̄ =

n∑
i=1

ki

n

If the network is directed, it is needed to distinguish ingoing arcs from outgoing

ones: if an arc goes from ni to nj, then it is ingoing in nj and outgoing from ni.

Thus, it is possible to de�ne three di�erent degree measures for directed networks.

De�nition 2.14. In a directed network with n nodes and adjacency matrix A,

for the node ni are de�ned:

� indegree kini , the number of ingoing arcs;

� outdegree kouti , the number of outgoing arcs;

� total degree ktoti , the sum of indegree and outdegree.

kini =
n∑
j=1

aij

kouti =
n∑
j=1

aji

ktoti = kini + kouti

In a weighted network with weights matrixW the same formulas are still valid

if not the degree ki, but the strength si of the node ni is considered.

De�nition 2.15. In a weighted network the strength si of the node ni is de�ned

as the sum of the weights of the arcs starting from or arriving to ni.

For the directed and weighted case, the de�nition can be easily extended from

the non weighted case.
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Path length

The distance dij between two nodes ni, nj is computed as the length of the mini-

mum path between them. Even if the minimum path is not, its length is unique

by de�nition. If such a path does not exist, the distance is in�nite.

De�nition 2.16. The distance matrix Dij = {dij} of a given network is a matrix

with the distances of every pair of nodes as entries.

The matrix D has only zeros on the diagonal. If all the entries of D are �nite,

the network is connected. For a connected network is useful to de�ne the average

path length

De�nition 2.17. Given a connected network with n nodes and distance matrix

D, the average path length L is the average of every nodes pair distances:

L =

n∑
i=1

∑
j 6=i

dij

n(n− 1)
(2.1)

Given n nodes, the number of pairs is n(n − 1) if both ni, nj and nj, ni are

counted ∀ i 6= j. Thus, in a directed network, the maximum number of arcs is

n(n − 1), while in an undirected one is 1
2
n(n − 1). The denominator in (2.1) is

exactly the number of nodes pairs in the network. If the network is undirected

dij = dji ∀ i, j, so the distance is counted two times, but the two pairs (ni, nj and

nj, ni) are both counted in the denominator. So, the formula (2.1) is valid for

both directed and undirected networks.

The formula (2.1) is valid even for weighted networks, if the distance is gener-

alized as the minimum sum of the weights (normalized over the maximum weight

in the network) along the minimum path (in an unweighted network the weights

are unitary).
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Clustering

A node clustering coe�cient measures how much the node is well connected with

its neighbors.

De�nition 2.18. The clustering coe�cient Ci of the node ni is the fraction of

closed triangles over all the possible triangles, where the possible triangles are all

the triplets of nodes containing ni, and the closed ones are those in which all the

three nodes are connected with the other two.

In an undirected network with n nodes, if the node ni has degree ki, the number

of possible triangles containing ni is
(
ki
2

)
= ki!

2(ki−2)! = 1
2
ki(ki − 1). Given the

adjacency matrix A, for the same graph, to count the number of closed triangles

containing ni is enough to compute 1
2

∑
j 6=i

∑
l 6=(i,j)

aijailajl : every addend is 1 only if

all the three arcs exist and the sum is equal to (A3)ii, i.e. the i
th element of the

diagonal of A3. Thus, for an undirected, unweighted network:

Ci =
(A3)ii

ki(ki − 1)
, (2.2)

where A3 = AAA. By de�nition, Ci ∈ [0, 1] ∀ i.

The clustering de�nition changes in the case of a weighted network. Given wij

the weight of the arc from ni to nj and w̃ij =
wij

max
i,j

(wij)
, instead of the number of

triangles, it is better to consider the sum:

1

2

∑
j 6=i

∑
l 6=(i,j)

w̃
1/3
ij w̃

1/3
il w̃

1/3
jl =

1

2

(
A

1/3
)3
ii
, (2.3)

where A
1/3 =

(
a

1/3
ij

)
. Thus, for the node ni:

Ci =

(
A

1/3

)3
ii

ki(ki − 1)
(2.4)

Formula (2.4) holds for unweighted networks, too.
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In directed network the situation is more complicated, in fact for every triplet

of nodes, there are eight possible triangles. Chosen a node ni, the number of

bidirectional edges is:

k↔i =
∑
i 6=j

aijaji =
(
A2
)
ii

(2.5)

The clustering coe�cient of the node ni is, like before, the number of triangles

including ni over the number of possible triangles:

Ci =

1
2

∑
j 6=i

∑
l 6=(i,j)

(aij + aji) (ail + ali) (ajl + alj)

ktoti (ktoti − 1)− 2k↔i
=

(
A+ AT

)3
ii

2 [ktoti (ktoti − 1)− 2k↔i ]
, (2.6)

where 2k↔i is the number of false triangles counted in ktoti (ktoti − 1): only real

triangles are needed.

Formula (2.6) holds for undirected networks because: A = AT , ktoti = 2ki, and

k↔i = ki.

Taking into account formulas (2.4) and (2.6), for directed and weighted net-

works:

Ci =

[
A

1/3 +
(
AT
)1/3]3

ii

2 [ktoti (ktoti − 1)− 2k↔i ]
(2.7)

which is the same as the 2.6 when A is binary.

In the case of directed networks, the eight possible triangles for each triplet of

nodes including the node ni, can be classi�ed into four categories:

� cycle, where every node has both an ingoing and an outgoing arc;

� middleman, where a node di�erent from ni has only ingoing or only outgoing

arcs;

� in, where ni has only ingoing arcs;

� out, where ni has only outgoing arcs.

With this categorization, it is possible to de�ne a clustering coe�cient for every
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class of triangles:

Ccyc
i =

(A3)ii
kini k

out
i − k↔i

(2.8)

Cmid
i =

(
AATA

)
ii

kini k
out
i − k↔i

(2.9)

Cin
i =

(
ATA2

)
ii

kini (kini − 1)
(2.10)

Cout
i =

(
A2AT

)
ii

kouti (kouti − 1)
. (2.11)

These formulas hold for both directed and undirected networks. Their sum gives

the clustering coe�cient of the node ni.

For the clustering coe�cient is possible to de�ne a global measure, too: in a

network with n nodes the average clustering coe�cient C of the network is the

average of the clustering coe�cients of the nodes

C =

n∑
i=1

Ci

n
. (2.12)

Density

De�nition 2.19. Given an undirected network with n nodes and adjacency ma-

trix A, its density is the fraction of existing arcs over the maximum number of

arcs:

δ = 2

n∑
i=1

n∑
j=1

aij

n(n− 1)
. (2.13)

If the network is directed:

δ =

n∑
i=1

n∑
j=1

aij

n(n− 1)
. (2.14)

In the undirected case, the number of possible arcs is the half of the directed
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case: this is the reason why the 2 factor vanishes in the directed case.

E�ciency

The e�ciency is a measure which comes in two versions: global and local.

Global e�ciency tells how good is the information �ow is in a network. Usually

the assumption is that the communication among nodes is inversely proportional

to their distance.

De�nition 2.20. Given a network G with n nodes, and distance matrix D =

{dij}, its e�ciency E(G) is de�ned as:

E(G) =

n∑
i=1

n∑
i=1

1

dij

n(n− 1)
(2.15)

Obviously, like said before, if a path from a given node ni to another given

node nj does not exist, then dij = +∞. Consequently, in this case, it is safe to

assume 1
dij

= 0.

By de�nition, 0 ≤ E(G) ≤ 1 and E(G) = 1 if and only if every pair of nodes

is connected.

In the case of weighted networks, a normalization of formula (2.15) is enough:

the obtained e�ciency must be divided by the e�ciency of the complete graph

with the same nodes of G.

De�nition 2.21. Be Gideal the graph with the same nodes of G, but with all the

possible arcs, the global e�ciency (normalized and generalized) is given by:

Eglob(G) =
E(G)

E(Gideal)
. (2.16)

Chosen a node ni among the n nodes in the network G, its neighborhood has

ki+1 (or kini +kouti −k↔i +1 = ktoti −k↔i +1 for directed networks) nodes. Be Gideal
i

the neighborhood of ni completed with all the
ki(ki+1)

2
(or (ktoti −k↔i +1)(ktoti −k↔i )
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for directed networks) arcs, the local e�ciency of the network G is:

Eloc(G) =
1

n

n∑
i=1

E(Gi)

E(Gideal
i )

. (2.17)

Vulnerability

Knowing the de�nition of e�ciency given by formula (2.16), it is straightforward

to de�ne another measure: the vulnerability.

De�nition 2.22. Chosen a node ni in the network G, the vulnerability relative

to node ni measures the damage of the elimination of the node ni and is computed

according to the formula:

Vi =
Eglob(G)− Ei

glob(G)

Eglob(G)
, (2.18)

where Ei
glob(G) is the global e�ciency of the graph obtained from the elimination

of ni in G.

The global version of this measure, i.e. the network vulnerability is:

V = max
i=1,2,...,n

(Vi). (2.19)

Centrality

In network science, several measures of centrality exist, and each determines how

much a node is central in the network. The �rst and simplest idea of centrality,

proposed by Freeman (1978) was the degree centrality which classify the nodes

according their degree: higher the degree of a node, higher the number of its

neighbors, higher its importance in the communication in the network. It is

necessary to be normalized to be used in di�erent network with the same e�cacy:

it is normalized over the maximum possible degree.

De�nition 2.23. Given a network with n nodes, be ki the degree of the node ni,
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the degree centrality of the node ni is de�ned as:

CDEG
i =

ki
n− 1

. (2.20)

For directed networks, it is enough to substitute ki with k
tot
i .

The second centrality measure proposed by Freeman (1978), is the betweenness

centrality. A node is considered more or less central according to the number of

shortest paths passing through it.

De�nition 2.24. Be ljk the number of shortest paths between nodes nj and nk

in an undirected network with n nodes. Be ljk(i) the number of shortest paths

between nj and nk passing through ni. The betweenness centrality of the node ni

is:

CBET
i =

n∑
j=1
j 6=i

n∑
k=1
k 6=i,j

ljk(i)

jjk

n2−3n+2
2

, (2.21)

The denominator of (2.21) is equal to (
(
n
2

)
− 2(n− 1)), that is the maximum

number of shortest path for a node used as a normalizing factor. In a directed

network this number is doubled, so in the directed case:

CBET
i =

n∑
j=1
j 6=i

n∑
k=1
k 6=i,j

ljk(i)

jjk

n2 − 3n+ 2
. (2.22)

The third centrality measure proposed by Freeman (1978) is the closeness

centrality which measure how much a node is close to the others: a node is more

central if it is less distant from the others, that is if the sum of the distances from

the other nodes is low.

De�nition 2.25. Given a network with n nodes and distance matrix D = {dij},



CHAPTER 2. NETWORK THEORY BACKGROUND 19

the closeness centrality of the node ni is:

CCLO
i =

n− 1
n∑
j=1

dij

, (2.23)

where n− 1 is the minimum sum of the distances from the other nodes of ni.

This de�nition is like the inverse of the ratio which indicates how much the

sum of the distances is higher than the minimum possible. This de�nition holds

only if the network is connected.

Many other centrality measures exists, like the eigenvector centrality (Bonacich,

1991; Bonacich & Lloyd, 2001), the Katz centrality (Katz, 1953), the Bonacich

centrality (Bonacich, 1987), and the Hubbel centrality (Hubbell, 1965), but these

were not used in the rest of this thesis. The papers in which these measure were

presented are in the bibliography, if needed.

Hub and Authority

Hub and authority are two intertwined concepts: it is not possible to de�ne one

without the other. Hub and authority de�nition overlap in the case of undirected

networks. Both hubs and authorities are important nodes in a network, when the

communication among nodes matters: a hub is a node to which many nodes are

connected and a authority is a node connected to many other nodes. But this

is not enough, in fact this would be just a directed degree centrality. Thus, an

informal de�nition is: to a good hub are connected many good authorities and a

good authority is connected to many good hubs.

Kleinberg (1999), studying the World Wide Web network, proposed the HITS

(Hyperlink Induced Topic Search) algorithm to identify hubs and authorities. If

the network has n nodes, two vectors ~x = (x1, x2, . . . , xn) and ~y = (y1, y2, . . . , yn),

with
∑n

i=1 x
2
i = 1 and

∑n
i=1 y

2
i = 1 are needed. xi is the initial non negative score

as an authority for the node ni, while yi is the non negative score as a hub. Be
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N in
i the set of indexes of the nodes with an outgoing arc towards ni and N

out
i the

set of indexes of nodes with an ingoing arc from ni. Two operations are de�ned:

I :
∑
j∈N in

i

yi 7→ xi (2.24)

O :
∑

j∈Nout
i

xi 7→ yi. (2.25)

At every step of the algorithm, ~x is updated using (2.24) and ~y using (2.25).

Then, the two vectors are normalized to obtain
∑n

i=1 x
2
i = 1 and

∑n
i=1 yi = 1. At

some point, a �xed point, independent from the initial vectors, is reached and the

�nal ~x and ~y are computed. Higher the ith component of ~x (or ~y), better ni is as

authority (or hub). Thus, it is possible that a good hub is a good authority, too.

This algorithm shows a good convergence speed, but there is an algebraic

alternative ot obtain the authority and hub scores. A possible initial choice,

before the normalization, for ~x and ~y, is ~z with components all equal to 1. If A is

the adjacency matrix of the network, the two operations (2.24) and (2.25) can be

rewritten as:

I : AT~y 7→ ~x O : A~x 7→ ~y.

After k iterations, ~x =
(
ATA

)k−1
AT~z and ~y =

(
AAT

)k
~z. ~z is not orthogonal

to the principal eigenvector of the symmetric matrix AAT , then it converges, as

k increases, to the principal eigenvector of AAT , which is non negative. So the

vector ~y converges to the principal eigenvector of AAT . The same holds for ~x

which converges to the principal eigenvector of ATA.

Independently from the algorithm used to compute hub and authority scores

for the nodes of a network, a problem still remains: there are no �xed thresholds

to tell if a node is really a hub or an authority. This threshold needs to be careful

selected case by case, taking into consideration the number of nodes and arcs.

For undirected networks, a di�erent method is proposed by van den Heuvel,

Mandl, Stam, Kahn, and Pol (2010). The method, tested in a study on schizophre-
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nia, is based on characteristics a good hub should have:

� high degree (with direct connections, information �ow control is easier);

� high betweenness centrality (under the assumption that information prefer

to travel on shortest paths);

� low average distance (to be easily reached from other nodes);

� low clustering coe�cient (if two nodes in a triplet are not connected, they

have to communicate necessarily through the other node).

After the computation of the four measures a point is assigned to the 20% of the

nodes with:

� the higher degree,

� the higher betweenness centrality,

� the lower average shortest distance,

� the lower clustering coe�cient.

Every node with at least one point is considered a hub. This method seems valid

for brain networks, but a di�erent threshold could be needed for di�erent cases.

Page Rank

Page Rank (Page, Brin, Motwani, & Winograd, 1998) was introduced to measure

the importance of web pages giving a rank to every of them. This measure take

into consideration that the World Wide Web is a directed network, with the pages

as nodes and the hyperlinks as arcs. Let ni be a node, with Oi the set of nodes

with an outgoing arc pointing to ni and Ii the set of nodes with an incoming arc

from ni. Let c < 1 be a normalization factor and Ni = |Oi|. A rank for every

page, which depends on the rank of the other pages, is a simpli�ed de�nition of

Page Rank:

R(ni) = x
∑
nj∈Ii

R(nj)

Ni

(2.26)
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In formula 2.26, this concept is respected: a node has a high rank if many high

ranked nodes point to it. Thus, c < 1, because there are nodes without outgoing

arcs. Equation 2.26 is recursive, but convergent and its computation may start

from a ranking where every node has the same rank. If there are two nodes which

point towards each other and not to any other nodes, but with one node pointing

to one of them, during the computation, this loop will become a rank sink which

accumulate rank without distributing any of it. To solve this problem, a rank

source is introduced:

De�nition 2.26. Let S be a rank source, i. e. a vector of ranks for every node.

The Page Rank of the node ni is de�ned as

PR(ni) = c
∑
nj∈Ii

PR(nj)

Ni

+ cS (2.27)

with c maximized and ||PR||1 = 1.

An alternative formula, used for the models in this thesis, is:

PR(ni) =
1− d
N

+ d
∑
nj∈Ii

PR(nj)

koutj

(2.28)

where d is a damping factor set as 0.85 and N is the number of nodes in the

network. The damping factor d, in the original idea, represents the probability

that a user will continue to click on a hyperlink while browsing the web. So

1− d = 0.25 is the probability that the user stops browsing.

2.5 Communities

It is often important to identify di�erent groups of nodes in a network. Usually

these groups are called communities. A community is a subset of nodes which are

closer together in the network. Unfortunately, a de�nition of community does not

exist, but it is clear that the nodes in a community must have many connections

among them and few with the other nodes of the network.
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A good idea to try to identify a partition of the network (a subgraph division of

the network), dividing it in communities, is to de�ne a null model: a random graph

having the same structural properties of the original one. After establishing a null

model, a comparison with the original one is performed to highlight the network's

community structure.

First of all, the de�nition of random graph is needed. Its de�nition was given

by Erdös and Rényi (1959) as the �rst try to represent real networks. Be N =

{n0, n1, . . . , nn−1} as a set of nodes, and GN as the set of all graphs over N , we

need to transform GN in a probability space. Assume every possible arc to have a

probability p ∈ [0, 1] of being an arc of a selected graph G ∈ GN and a probability

q = 1 − p to not belong to G. Fixed G0 ∈ GN with m arcs, the probability of

the event {G0} is pmq(
n
2)−m: this is the probability to generate G0 among all the

possible graphs in GN . For every possible arc l, a probability space Ωl = {0l, 1l},

where Pl(1l) = p and Pl(0l) = q, is de�ned. The desired probability space is,

then, Ω =
∏

Ωl. Every element of Ω is a map ω which maps every arc l to the

values 0l or 1l. The probability measure P over Ω is the product of the probability

measures Pl.

De�nition 2.27. ω, as constructed above, is a random graph G over N with

connection probability p and arcs set L = {l|ω(l) = 1l}.

Random graph model is based on two parameters: the number of nodes n and

the connection probability p: every pair of nodes has the same probability p to

be connected, independently from the other pairs. The expected number of arcs

is pn(n−1)
2

and the average degree is p(n− 1).

The independent probability of every pair to be connected, make the random

graph a good null model: a community structure is not expected.

Many algorithm to �nd graph partitions exists, but it is necessary to establish

if the results are reliable. To do so, a quality function is needed. The most famous

one is the modularity (Newman & Girvan, 2004), based on the comparison between

the network density and the null model density.
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De�nition 2.28. Given a network G with n nodes, m arcs, and adjacency matrix

A, modularity is:

Q =
1

2m

n∑
i=1

n∑
j=1

(aij − Pij) δ (Ci, Cj) , (2.29)

where Pij is the expected number of arcs between ni and nj in the null model, Ci

and Cj are the community of ni and nj, respectively, and δ (Ci, Cj) = 1 if Ci = Cj, 0

otherwise.

Using Pij = 2m
n(n−1) ∀ i, j, i.e. choose a Erdös-Rény random graph as a null

model, is the easiest choice, but unfortunately almost every real network does not

have this kind of distribution. A better null model, because it re�ects more the

structure of the network, is the con�guration model (Van Der Hofstad, 2009). The

probability of a node ni with degree ki, to be connected with the node nj with

degree kj is pipj =
kikj
4m2 , where pi = ki

2m
is the probability of having an arc starting

from ni. So the expected result is Pij = 2mpipj =
kikj
2m

. Using this null model in

the de�nition (2.29):

Q =
1

2m

n∑
i=1

n∑
j=1

(
aij −

kikj
2m

)
δ (Ci, Cj) . (2.30)

De�ning nc as the number of communities, li as the number of arcs among the

nodes of the ith community, and di as the sum of the degrees of the nodes of the ith

community, and noticing that the only non zero addends are the ones regarding

the pairs of nodes in the same communities, the formula (2.30) can be rewritten

as:

Q =
nc∑
i=1

[
li
m
−
(
di

2m

)2
]
. (2.31)

The �rst ratio is the fraction of arcs which are in the community, while the second

one represents the expected fraction in a random graph with the same degree

distribution. According (2.31), a subgraph is a community if and only if its addend

in the formula is positive.
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To �nd a good community partition, i.e. a partition with a modularity value

as high as possible, there are many algorithms. The one which represents the

best compromise among execution time, memory usage, and good results is the

Louvain method (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008), which is a

greedy algorithm divided in two parts.

The initial step of the �rst part is considering every node in the network as

a community. Then, every node's neighborhood is considered: every neighbor of

ni is tested as a new member of Ci and the consequent modularity variation ∆Q

is recorded. If such a move, with the maximum positive ∆Q exists, the move is

done. When the modularity cannot be increased anymore, the �rst part of the

algorithm is halted.

The second part starts building a network in which the nodes are the found

communities linked together only if at least an arc between the two communities

exists. The arcs are weighted with the sum of the weights of the arcs between the

communities. Loops are introduced, weighted with the sum of the weights of the

arcs in the community.

The �rst part is repeated on the new network, with the modularity computed

on the original network, and so on, until no changes are made to the network.

The best part of this algorithm is the easy and fast computation of the variation

of the modularity when the node ni is moved into a community:

∆Q =

[
Σin + σi,in

2m
−
(

Σtot + σi
2m

)2
]
−

[
Σin

2m
−
(

Σtot

2m

)2

−
( σi

2m

)2]
, (2.32)

where Σin is the sum of the weights inside the community, Σtot is the sum of the

total strengths of the nodes of the community, σi is the total strength of the node

ni, σi,in is the sum of the weights of the arcs between ni and the nodes of the

community, m is the sum of the weights of all the arcs in the network.
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2.6 Small World and Scale Free

In many studies, real networks shown two peculiarities: often real world networks

are both scale free and small world.

Small World

A random network is a network in which every node is connected with another

one according to a �xed probability. The opposite of the random networks are the

regular ones: every node has the same degree and is topologically indistinguishable

from the others. While random graphs have a low clustering coe�cient and a low

average path length, regular graphs have high value for both measures.

Real networks are di�erent from both these kinds of graphs: they have no

completely chaotic structure (like random ones), and they do not show a perfectly

regular and ordered topology (like regular graphs). Real networks are, somehow,

in the middle of these two models. Small world networks have a low average path

length (like random graphs) and a high clustering coe�cient (like regular graphs):

these values favor both the network aggregation and its exploration.

In 1960s, the sociologist Milgram proved empirically that every person get

to know every other person, with an average of �ve intermediaries: this was

the experiment about the six degrees of separation. A group of people in the

Midwestern United States was randomly selected to send a package to a stranger

inhabitant of the Massachusetts. The addresses were unknown to the senders:

only the names were known. Thus, every sender had to send the package to

someone they knew and they believed to be an acquaintance of the target. Every

time a package was received, the rules were the same. Some scientists thought

about a hundred of passages were necessary, but an average of six were enough:

this really is a small world.

Watts and Strogatz Watts and Strogatz (1998) in 1998 focused on the small

world concept and formalized it. They started from a regular graph and applied

a rewiring procedure to it: every arc was rewired (moved from a pair of nodes to
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another one randomly selected) with a �xed probability p. If p = 0 the network

do not change after the procedure, while with p = 1 a random graph is obtained.

When 0 < p < 1 there is the possibility to obtain a small world network.

Two additional parameters are needed to fully formalize the small world char-

acteristics:

γ =
Creal

Crand
, (2.33)

λ =
Lreal

Lrand
, (2.34)

where Creal and Lreal are the clustering coe�cient and the average path length of

the network, respectively, while Crand and Lrand are the averages of same measures

for a population of rewired networks.

De�nition 2.29. A network is said to be small world if: γ � 1

λ ≈ 1
(2.35)

Sometimes the parameter σ = γ
λ
is used: if σ > 1 the network is small world.

This classi�cation can results in false positives when λ < 1.

A year later, Watts Watts (1999) speci�ed that a network, to be considered

small world needs to:

� have a number of nodes n� 1, because it is normal for the people of a small

town to know every each other, while a world is needed;

� be sparse, meaning that k̄ � n, because not every people know each other;

� be decentralized, i.e. there are no hubs and kmax � n, otherwise a person

who knows almost everyone else unrealistically shorten the paths;

� be very clustered, with many nodes sharing some of their neighbors.
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Scale Free

The degree distribution is a key characteristic of every network: it represents how

many nodes have a high or low degree. It is the probability distribution of the

number of nodes with degree k ∈ N∩ [kmin, kmax]. If the network has n nodes and

ηk ≤ is the number of nodes with degree k, the probability distribution is:

P (k) =
ηk
n

(2.36)

Usually three degree distribution are taken into consideration (Amaral, Scala,

Barthelemy, & Stanley, 2000): scale free, broad scale and single scale.

Scale free networks have a degree distribution following a power law:

P (k) = ck−α, (2.37)

which is a straight line when plotted in log-log scale.

(Barabási & Albert, 1999) proposed a growth model for networks which brings

to the creation of a scale free network: the preferential attachment. Starting with

a single node, at every time step a node is added and is linked with an arc to an

existing node proportionally to its degree. The probability of the new node to be

connected to the node ni is:

Π(i) =
ki∑
j kj

. (2.38)

In this model, riches get richer: a node prefers to attach itself to a node with

many connections and it is like these to be the older. As example of real world

networks following this rule, there are the social networks or the World Wide Web

network: someone new in a group of people try to become acquaintance with the

most popular people to have the possibility to know many people; likewise, a new

web page prefer to share links with a visited page to become much popular.

It is proved that a network resulting from a long enough simulation of this

growth model, is a scale free network with its degree distribution following a
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power law. The name scale free means that its law has the same form at every

scale: f(αx) = βf(x), with α, β ∈ R.

Broad scale networks are usually referred to as scale free network, because the

tail of their degree distribution follow a power law. The whole degree distribution,

instead, follow a truncated power law, i.e. a power law with an exponential cut:

P (k) = ae−
k
kc k−α, (2.39)

with a, α, kc ∈ R.

Single scale networks have a degree distribution with a very fast decay, like an

exponential law:

P (k) = ae−
k
kc . (2.40)



Chapter 3

Script Based Processes

3.1 Introduction

One of the main problems about semantic networks is the study of words associ-

ations chains to create an associative hierarchy.

When a connection between words is activated, the starting node is recorded

in memory. While the activation process continues, every time a word referring to

a starting node is reached, an intersection between the two nodes is formed. Then

a validation of the path which brought to this intersection is needed to check if

the syntax and context rules are respected.

The dynamic process which build semantic networks which brings chains of

words associations, from the cognitive viewpoint, is the focus of this study.

Collins and Loftus (1975) considered four basic assumptions in the semantic

network building creation process:

1. A concept activation spreads as it follow a path between nodes. The acti-

vation should be treated as a signal from a �xed source which dissipates as

it �ows;

2. When a concept is activated repeatedly, the activation starts from the be-

ginning of the path with the same pattern. Only one concept at a time can

be activated and only one connection at a time can be activated;

30
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3. The activation is a decreasing signal;

4. Every term activation and intersection brings to the path taken an activation

level and the path is considered as a whole only when the total amount of

activation level reaches a threshold.

Thus, this creation process is based on semantic similarity: if two words are

semantically similar, their connection is almost certain and their concepts are

linked. So, semantic connections derive from concepts ones.

What still is missing in the literature is a systematic study of these semantic

network's organization. To �ll this hole, in this thesis, complex networks have

been used as a base model.

Complex networks can be used as a theoretical and as a methodological tool

(Neal, 2012) and are useful to model linguistic structures (Solé, Corominas-Murtra,

Valverde, & Steels, 2005). Thus, complex networks are widely employed in several

linguistics sectors: word sense disambiguation (Mittal & Jain, 2015; Stevenson &

Wilks, 2003), text summarization (Polepalli Ramesh, Sethi, & Yu, 2015), Natural

Language Processing (Jurafsky & Martin, 2000), sentiment analysis (Pang & Lee,

2004), and as statistical physics methods (Krylov, 2014), too.

Linguistic networks can be classi�ed into two main categories: semantic and

super�cial (Costa et al., 2011). The former category highlight semantic relations

between terms (for example, synonymy and antonymy in dictionaries). The latter

includes words structure and position.

As said before, words associations are good to create semantic networks: in

fact, with this method a scale free and small world network can be obtained,

and usually linguistic networks shows these behaviors. For example, many fa-

mous networks, such as synonyms networks (de Jesus Holanda, Pisa, Kinouchi,

Martinez, & Ruiz, 2004; Makaruk & Owczarek, 2008; Motter, de Moura, Lai, &

Dasgupta, 2002; Steyvers & Tenenbaum, 2005; Strori, Bombaci, & Bingol, 2007),

English Wordnet (Sigman & Cecchi, 2002; Steyvers & Tenenbaum, 2005) and the

word-association networks (Da Fontoura Costa, 2004; Ferreira, Corso, Piuvezam,
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& Alves, 2006; Steyvers & Tenenbaum, 2005), are scale free and small world net-

works. Steyvers and Tenenbaum (2005) modeled lexicon development using a

preferential attachment algorithm Barabási and Albert (1999) which brings both

a scale free and small world network. It is obvious that a good model needs to

have the same properties of real world data networks (Gravino, Servedio, Bar-

rat, & Loreto, 2012; Nelson, McEvoy, & Schreiber, 2004; Steyvers & Tenenbaum,

2005).

These approaches still lack the comprehension of the intermediate level in

these networks, that is how every level in�uence the others: the topology may

a�ect the thinking process and vice versa(Barabási, 2011; Jasny, Zahn, Marshall,

& Cho, 2009; Watts, 2004). Recent studies about language data produced by

human subjects (Friederici & Gierhan, 2013) used network science for the data

analysis, but there are no experiments about the topology analysis of knowledge

based scripts and words associations.

Two experiments were performed in order to understand word production pro-

cesses based on scripts and words associations and establishing the semantic struc-

ture of a script as a base. The data produced by the subjects were transformed

into networks to study the relationship between lexicon organization in memory

and the production processes.

3.2 Experiment 1

Experiment 1, divided in two stages, was performed to gather data from students

to create the base for a memory system. In the �rst stage, 161 students (139

females and 22 males; mean age = 21.46 years, range = 21÷30 years) gener-

ated scripts as partial ful�llment of an Introductory course of Psychology, at the

University of Calabria. Their education age was 14,47 mean years of schooling.

Students achieved high scores on the 30-items vocabulary subtest from the WAIS

(Wechsler, 2008) (mean = 36.50).

The subjects had to generate 4 scripts based on 4 di�erent speci�ed situations
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among 39 (reported in table 6.1) with a minimum of 20 words per script. The

instructions given to the subjects were adapted from those used by Bower et al.

(1979). The words had to be produced as if the subjects were telling a story. No

time limit was given and the subject completed their task within a time range of

20÷60 minutes. The words could belong to the traditional grammatical categories.

The actions and nouns produced in the �rst stage, were selected to be given a

typicality score. Inconsistent entries were discarded. The number of actions to

be rated ranged from 20 to 30 for each script. Each subject rated 3 among the

scripts produced by the other subjects.

Following the method used by Smith and Graesser (1981), the typicality score

score ranged from 1 to 6: 1 if the action was de�nitely not pertinent to the script;

2 if the subject was fairly sure that the action was not pertinent to the script, 3 if

the subject was uncertain, but thought that the action was not pertinent to the

script; 4 if the subject was uncertain, but thought that the action was pertinent

to the script; 5 if the subject was fairly sure that the action was pertinent to

the script; 6 if the action was de�nitely pertinent to the script. Given the total

number of nouns, those with typicality score greater than 4.4 were considered

typical (with a mean of 5.31) while the other were considered atypical (with a

mean of 2.13).

Results

Every incorrect word (typos or non existent words) was discarded. Then, for each

script, the number of words belonging to each di�erent grammatical categories

was computed (see table 6.1 for details), together with the mean value of the

typicality score (see table 6.2 for details), divided per grammatical category.

Each script was di�erent both in the details with which the subjects told the

story about the di�erent situations and in the kind of story they told to build the

scripts.

An more accurate analysis was made on the words produced. The proportion
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AJ AD N V TOT
AJ 1 .38* .93** .87** .78**
AD .38* 1 .52** .53** .37*
N .93** .52** 1 .87** .83**
V .87** .53** .87** 1 .86**

TOT .78** .37* .83** .86** 1

Table 3.1: * Correlation was signi�cant at the .05 level, ** Correlation was signi�-
cant at the .01 level. Table legend: AJ stands for adjective, AD stands for adverb,
N stands for noun, V stands for verb and TOT is the statistic considering all the
terms. The table has been realized considering the Pearson product-moment cor-
relation coe�cient between the typicality score of the di�erent categories of terms
written by the students during the experiments.

of nouns over verbs generated were computed (see table 6.1 for details) and ranged

from 0.37 to 1.95. For each word, script and subject, the mean typicality score was

computed and for the whole group of subjects combined, too. The mean typicality

score for each subject shown low variability in every script: correlations between

the sets of typicality scores ranged from 0.37 to 0.93 as shown in table 3.1 and in

�gure 3.1. All the correlation coe�cients were positive and were signi�cant at

the 0.01 level, except the ones between adjectives and adverbs and between the

adjectives and all the terms which are signi�cant at the 0.05 level.

This experiment gave a mental representation of every day situations and

activities in the memory structure of the subjects. Indeed, some of the scripts were

more accessible to the subjects than others: some situations are more familiar to

the an average person respect to others. In fact, the positive correlations states

that when a grammatical category received a high mean typicality score in a

script, then the other categories had high scores, too. Even if the scale is discrete

and assumes only 6 values, it was enough to show the higher familiarity of some

scripts as it is easy to see from �gure 3.1.

The number of terms produced greatly varied from script to script and from

subject to subject. This number ranged from 30 to 210, with a mean value of

72 terms produced. The number of terms in each grammatical category gave an

outline of how these categories are organized in the subjects' memory: the verbs

category was the one with more words, while the adverbs category was the one
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Figure 3.1: Correlations between di�erent Grammatical Categories. Chart leg-
end: AJ stands for adjective, AD stands for adverb, N stands for noun, V stands
for verb and TOT is the statistic considering all the terms. This correlation ma-
trix was obtained computing the Pearson product-moment correlation coe�cient
between the typicality scores of the di�erent grammatical categories. Every cir-
cle, represented with a color, is one of the 39 di�erent scripts, analyzed in this
experiment.

with the lower number of words, without considering the conjunctions and the

determiners categories, is the adverbs category. Thus, from this experiment, is

evident that the subjects' lexicon, related to a script production task, is mainly

composed of nouns and verbs. These two categories shows the lower mean typi-

cality score, but this does not low their importance in the script: the low score is

due to the very high number of elements belonging to these categories.

3.3 Experiment 2

The same subjects participating in the �rst experiment, took part in the second

one. Experiment 2, divided in two stages, was performed to collect more data on
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subjects' semantic knowledge, by the introduction of superordinate and subordi-

nate categories, as well as synonyms of each of the terms previously produced.

In the �rst stage, divided in two parts as well, the data driven retrieval method

was used. This method is found in some memory recognition models with the

aim to retrieve related items as a semantic copy cue (Rabinowitz, Mandler, &

Patterson, 1977) and to allow the detection of familiarity (Atkinson & Juola, 1974)

or "intraitem elaboration" (Mandler & Johnson, 1980) in the subjects' memory. In

part A of the �rst stage, a booklet with the words produced in the �rst experiment

was given to each subject. Every subject had to write synonyms of every word

found in the booklet to expand the script's semantic space. Then, again, in part

B of the �rst stage, for each synonym they produced, the subjects had to write

other synonyms. In this second part of this stage, the use of an online dictionary

was allowed, when no synonyms were found, to further expand the script space.

In the second stage, the conceptually driven recall took part: each of the word

of the �rst experiment was embedded in a context as stimulus for replaced memory

for scripts. Another booklet, with the words produced in the �rst experiment and

in the �rst stage of this experiment, was given to each subject. Then, they were

asked to write down hyponyms and hypernyms for each term, if possible.

Results

The detailed results are shown in tables 6.3 and 6.4. In �gure 3.2 the synonyms

production step is shown. The average number of new terms, per script was 213 in

part A (with an increase of 336%) and 462 in part B (with an increase of 176%).

The total number of new terms was 4825 in part A (increase of 273%) and 7910

in part B (increase of 120%). Thus, search for synonyms increase rapidly the

number of terms in a mental lexicon, with the risk, although, of contaminating

the semantic area of the script. The synonyms found helped to organize subjects'

memory and gave a method to understand the contamination of the semantic

�eld, by analyzing the linking variability among them: the synonyms could be
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very similar or very dissimilar from the starting situation.
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Figure 3.2: Experiment 2, part A (top) and part B (bottom) synonyms production.
The histograms were realized counting the number of synonyms produced during
the second experiment and counting how many scripts had that number of new
terms. The binning was chosen to highlight the peaks and the outliers.

Discussion

The second experiment was about the search of higher level actions sequences

in the scripts. With this experiment, the analysis of the scripts' boundaries was

possible: it was

In the generation phase of the �rst experiment, normative data were gathered

on 39 routine activities. This word production gave an outline of the subjects'

memory system organization. To improve this picture, experiment 2 was designed

to segment the higher-level action sequences in a script. If the subjects could

change the words of the skeleton-like script, are there possible boundaries? At

what level of the script's boundaries, picking up synonyms after synonyms for

each word of the basic script, are there boundary locations? Starting from ex-

periment 1 results, a �rst measure of the typicality of the words (Verb, Noun)

was obtained, rated according to the 6-point recognition scale used by Smith and

Graesser (1981).

In literature, memory representation for scripts consists of a pointer to a script
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together with a set of typical action, a set of not so typical actions and a set of

atypical actions (Bower et al., 1979; Davidson & Hoe, 1993; Graesser et al., 1979;

Graesser, Woll, Kowalski, & Smith, 1980; Smith & Graesser, 1981). In these works,

the pointer links to a whole script which implicitly contains all the important

information. Thus, discriminate between present and absent atypical action is

easier than discriminate between present and absent typical ones(Bower et al.,

1979; R. C. Schank & Abelson, 1977). Moreover, these works conclude that recall

memory tasks perform better for atypical actions. The scripts, instead, usually

contain typical actions, but not the atypical ones. This has been found false in

preschool children (Hudson, 1988) who recognize atypical actions better, which

suggests a di�erent ways of memorizing script actions: in this way it is possible

to recognize atypical actions as isolated ones when compared to an homogeneous

background of typical ones (Bower et al., 1979).

Analyzing the data obtained in the experiment, some conclusions can be

drawn. The spreading activation dynamics caused the subjects to follow the

paths that made them remain in the boundaries of the script's semantic area,

or to continuously choose the paths which brought them outside of the script

to reach another one. The search for synonyms, corrupted the connections with

the starting script and the search for hyponyms and hypernyms almost destroyed

most of them, highlighting the borders among scripts. The di�erent connection

patterns involved in this experiment changed, in both a positive and negative

way, the script organization, giving information on both the global and meso level

of the lexicon and memory structure (Kintsch, 1998; Mannes & Kintsch, 1987;

R. Schank, 1982; R. C. Schank & Abelson, 1977).

3.4 Network Analysis of Semantic Data

The sample collection of 17.810 words, obtained from previous two experiments,

has been turned into networks. Starting with the script's initial situation as the

core node, every produced word of the �rst experiment is connected to it. Then,
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Figure 3.3: Representation of di�erent levels of memory: on the highest level there
is the semantic memory composed by cognitive structures; on the intermediate one
the concepts space with the relative grammatical category and a typicality score;
the lower plane consists of synonyms, hyponyms and hypernyms that widen the
memory space.

for every other stage of the second experiment, every synonym is connected with

the related term. At last the same thing was made for hyponyms and hypernyms.

The resulting network contained no loops and was considered as undirected and

unweighted. The network obtained was thought as a collection of words or con-

cepts, and formed a complex system made up of di�erent levels as shown in �gure

3.3.

The highest level is constituted by semantic memory, represented by cognitive

structures relating themselves to a part of memory for actions. These structures

are composed by big clusters of concepts and, depending on the experience during

one's life, they are interconnected and repeated. The middle level comprises single

concepts together with their typicality scores for every situation. The last level is

composed by synonyms, hyponyms and hypernyms. When information retrieval

is needed, a search in this three level space is performed using the links, formed

by experience, as a guide. Of course, depending on the starting point and the

situation, the paths followed are di�erent.

Networks' parameters, such as total number of nodes n, total number of edges

m, average degree k̄, clustering coe�cient C, e�ciency E, average path length

L, network diameter d, density δ, small-world parameters (λ, γ, σ), degree distri-
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bution P (k) considering the small-world and scale-free models have been used to

analyze the data obtained from the experiments. Other parameters such as K-

Nearest-Neighbor KNN and communities have been employed to understand the

organization of the single words and groups of words in the parameter space of

the students memory system. All these parameters have correspondent functional

implications in the students memory systems.

The number of nodes of the network represents the number of di�erent terms

which compose the subject's memory. It can be considered for a single script, for

a single subject or for the whole dataset, depending on which kind of information

one is interested in.

The number of edges and the density, give an idea on the connectivity among

the concepts. In fact, with more edges (and with a higher density), the network

exploration is easier and it is easier to navigate through di�erent scripts and

situations as well.

The average degree, i.e. the average number of connection for each node, tells

how far are the di�erent areas in the memory: if k̄ is low, areas which are very

di�erent, may be completely separated.

The clustering coe�cient of the network measures how much the concepts are

interconnected among themselves. So, even if there is a low number of concepts,

with a high average clustering coe�cient, it is possible to move easily among them.

A low density coupled with a high clustering coe�cient, is a good strategy to avoid

unnecessary and too long paths (which can comprehend general and misleading

terms) when searching the memory for information. Having a too low density

and a too high clustering coe�cient, by the way, is not always a good thing:

hubs, which are usually general terms, are important because the play as a bridge

between completely di�erent semantic areas.

The average path length is also a good measure of separation and de�nition

of the semantic areas. If it is too high, the areas are distant and well separated,

so it is di�cult to pass from one to another. On the other hand, if it is too low,
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the concepts may be too close and not well de�ned, so the concepts may result

confused and overlapping with a possibility of information loss.

The diameter of the network represents how much two di�erent areas can be

dissimilar and distant.

The global e�ciency allows to understand how much is easy to explore the

memory, passing from one concept to another. The e�ciency could be similar to

the Quillian's spreading of information (Collins & Loftus, 1975).

If the memory network is a small world network, it contains some long range

connections and strategic hubs to travel through di�erent areas, but it contains

even clusters of terms which de�ne better every concept. Thus, having a small

world behavior seems to be a good strategy to reduce the distance between dif-

ferent concepts without losing the de�nition of the concepts.

A scale free network has more low degree nodes than hubs. But usually, in

a growing scale free network, new nodes, tend to link to the hubs. When a new

term or a new concept is apprehended, generally it is connected to a preexisting

more general term or concept which results better de�ned. So, it is safe to assume

this growing behavior as a good one for a memory network.

K-Nearest-Neighbors measures how much the nodes are linked to nodes with

the same degree. So, in a memory network, it tells how much the polysemic terms

share meanings among them (hubs linked to hubs) and how much the terms of

a semantic area tend to specialize (low degree nodes connected to low degree

ones). After having computed the average degree of the neighbors for every node,

averaging this quantities over the nodes with the same degree, is a good method

to compute KNN(k).
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Figure 3.4: From left to right and from top to bottom, histograms of frequencies
of: number of nodes, number of arcs, average degree, e�ciency, average path
length and density of networks for the production of scripts in experiment 1. The
histograms have been created with an ad hoc developed Matlab code derived
by using the package Brain Connectivity Toolbox (Rubinov & Sporns, 2010),
(http://www.brain-connectivity-toolbox.net/).

3.5 Memory for Scripts

Experiment 1 Networks: Grammatical Categories Occurences

Script networks built from experiment 1 data shown a great variability in both

number of edges and nodes depending on the subjects. The average degree, by

construction, had values close to 2. The average clustering coe�cient was obvi-

ously zero since in this stage, all nodes but one had degree equal to 1, and it was

therefore impossible to form triangles. The e�ciency however, was inversely pro-

portional to the number of nodes n: in this stage, each starting node had distance

1 from the other n− 1 nodes and the other n− 1 nodes had distance 1 from the

starting one and distance 2 from the remaining n−2 nodes. The average shortest

path was equal to the average degree, while the diameter was obviously equal to

2. The density was inversely proportional to n. A schematic representation of the

results is shown in �gure 3.4.

Experiment 2 Networks, First Stage Part A: Synonyms

The networks built from data obtained in the �rst part of the �rst stage of the

second experiment, had a great structural variability. In any network there was an

increase in the number of nodes and in the number of edgesm. For all the networks
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2 ≤ k̄ < 3 and was directly proportional to the di�erence m − n. The average

clustering coe�cient was still very low, remaining even zero in some networks.

There was a decrease of the e�ciency in each network, because each new node

was not connected to all existing nodes. This results are shown in �gure 3.5.
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Figure 3.5: From left to right and from top to bottom, the histograms of the
frequencies of: number of nodes, number of arcs, average degree, average clustering
coe�cient, e�ciency, average path length, diameter and density of the networks of
Experiment 2, part A. The histograms have been created with an ad hoc developed
Matlab code derived by using the package Brain Connectivity Toolbox (Rubinov
& Sporns, 2010), (http://www.brain-connectivity-toolbox.net/).
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Figure 3.6: From left to right and from top to bottom, the histograms of the
frequencies of: number of nodes, number of arcs, average degree, average clustering
coe�cient, e�ciency, average path length, diameter and density of the networks of
Experiment 2, part B. The histograms have been created with an ad hoc developed
Matlab code derived by using the package Brain Connectivity Toolbox (Rubinov
& Sporns, 2010), (http://www.brain-connectivity-toolbox.net/).
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Experiment 2 Networks, First Stage Part B: Synonyms of

Synonyms

In this second part of the �rst stage of the second experiment, all the script

networks showed a considerable increase in both the number of nodes and edges,

with m > n holding for every network. Thus, for all networks, k̄ > 2. The average

clustering coe�cient remained always very low (in two networks continued to be

zero), but did not decrease, as well as the average shortest path length and average

diameter. Here, too, the density decreased. These results are shown in �gure 3.6.

Experiment 2 Networks, Second Stage: Hyponyms and Hy-

pernyms

In the last stage of the second experiment, nodes and edges increased in all net-

works, of course. Instead, average degree, average clustering coe�cient, e�ciency

and average path length of the networks did not follow the same trends. In fact,

some networks shown an increase in the values, while others did the opposite.

Even for the diameter a unique trend did not exist. There were networks in which

such a measure remained unchanged or increased slightly, while some networks

shown a decrease. Regarding the density, with the exception of two networks in

which there was an increase of the value, an overall decrease for this variable was

observed. In �gure 3.7 the results of the second stage of experiment 2 are shown.

Macro Level Analysis

Regarding the networks resulting from the union of the networks built from each

subject for the two experiments, a monotonic increase in number of nodes, num-

ber of arcs and clustering coe�cient was detected during the four steps, while the

density value decreased monotonically. The average degree decreased in experi-

ment 2, part A, and increased in the next steps. The e�ciency decreased until
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Figure 3.7: From left to right and from top to bottom, the histograms of the
frequencies of: number of nodes, number of arcs, average degree, average clustering
coe�cient, e�ciency, average path length, diameter and density for networks of the
second stage of experiment 2. The histograms have been created with an ad hoc
developed Matlab code derived by using the package Brain Connectivity Toolbox
(Rubinov & Sporns, 2010), (http://www.brain-connectivity-toolbox.net/).

Network n m k C E L d δ
Experiment1 1770 2750 3.10734 0.00072 0.27085 3.86783 6 0.00176
Experiment2,
part A

6595 9919 3.00773 0.05579 0.21648 4.84330 8 0.00046

Experiment2,
part B

14505 28784 3.96842 0.11070 0.19435 5.38687 11 0.00027

Experiment2,
last stage

17429 34680 3.97917 0.11750 0.19943 5.23480 11 0.00023

Table 3.2: Networks statistics for the networks resulting from the union of the net-
works built from each subject for the two experiments. Data have been obtained
by using Matlab routines derived from Brain Connectivity Toolbox (Rubinov &
Sporns, 2010), (http://www.brain-connectivity-toolbox.net/).
n = number of nodes, m = number of edges, k = average degree, C = aver-
age clustering coe�cient, E = global e�ciency, L = average path length, d =
diameter, δ = density.

experiment 2, part B, and increased in the last part. The average shortest path

length increased until experiment 2, part B, and decreased slightly in the last

part. The diameter instead increased until experiment 2, part B, and remained

unchanged at the end (see table 3.2). In �gure 3.8 four images drawn from the

networks resulting from the union of the networks of all the subjects, for the two

experiments carried out in this work.
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(a) Network resulting from the �rst experi-
ment.

(b) Network resulting from the second experi-
ment, part A.

(c) Network resulting from the second experi-
ment, part B.

(d) Network resulting from the second experi-
ment, last stage.

Figure 3.8: Networks resulting from the union of the networks of all the subjects,
for the di�erent steps of both experiments. Images of the networks was drawn
with Gephi 0.8.2 (gephi.github.io)
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Network Creal Crand Lreal Lrand γ λ σ
Experiment1 0.0007 0.0991 3.8678 3.2992 0.0073 1.1724 0.0062

Experiment2, part A 0.0558 0.0070 4.8433 4.6473 8.0239 1.0422 7.6993
Experiment2, part B 0.1107 0.0024 5.3869 5.0175 45.3787 1.0736 42.2669

Experiment2, last stage 0.1175 0.0024 5.2348 4.9212 48.1426 1.0637 45.2590

Table 3.3: Small world analysis of the four aggregated networks. Data have
been obtained by using Matlab routines derived from Brain Connectivity Toolbox
(Rubinov & Sporns, 2010), (http://www.brain-connectivity-toolbox.net/)

Small World and Scale Free

Small world analysis was performed on the four aggregated networks (table 3.3).

To perform this task, the four networks were rewired while preserving degree

distribution to create equivalent random networks. Average clustering coe�cient

C and average path length L were calculated for both real and random network.

Then the ratios between Creal and Crand and between Lreal and Lrand, γ and λ

were calculated as well as the ratio between γ and λ, named σ.

The �rst network does not show small-worldness: not just because of σ < 1 but

because of Creal � Crand and consequently γ < 1. The third and fourth networks

have a high value for σ: in this case they are small world networks because γ � 1

and λ ≈ 1. The second network also has σ > 1, γ � 1 and λ ≈ 1, but Creal seems

very small. In Watts (1999), an electric power grid with 4941 nodes (1654 less

than the network analyzed in this work) and Creal = 0.080 (not so far from the

value obtained here) is found, and it is considered a small world network. This

brings to the conclusion that the second network shows small world properties, too.

The cumulative degree distribution of every network was �tted with three laws:

truncated power law, power law and exponential law. The �ts were compared by

adjusted R2. The cumulative distribution was used to avoid �uctuation on the tail.

Starting from the second experiment, 30 networks were intercepted by a power

law, 7 networks by a truncated power law, and 2 by an exponential law. In part B

of the second experiment, the trend was reversed in only 15 networks, intercepted

by a power law, 22 by a truncated power law. Instead, only 2 two of the networks

behaviors were described by an exponential law. In networks of the last stage of
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Figure 3.9: Fitting curves for the degree distribution relating to the combined
network for experiment 1. The curves have been plotted on Cartesian axes on
the left, while on the right are plotted on a logarithmic scale. The power-law and
truncated power law are almost overlapped and R2

adj is in favor of the power law.
The exponential law was not appropriate to describe these data. The plots were
drawn by Matlab after having computed the best �t with its standard routine.

the second experiment, 23 of them were intercepted by a power law, 14 networks

by a truncated power law, while only 2 networks followed an exponential law.

The �nal network of 17,429 terms, resulting from the merging of all the networks

produced by the subjects was found to be connected, also in the initial stage

of experiment 1. The network resulting from the merging of experiment 1 and

experiment 2, part A, had a power law degree distribution (Clauset, Shalizi, &

Newman, 2009). Between experiment 2, part A, and Experiment 2, part B a

transition from scale free to broad scale behavior was detected. In this case, the

resulting network was described by a truncated power law (Sjöberg, Albrectsen,

& Hjältén, 2000). It has been proven that many biological data (Khanin & Wit,

2006), including the language (Arbesman, Strogatz, & Vitevitch, 2010b), instead

of following a power law, do follow a truncated power law. Small variation and the

fact that language is a complex system may in�uence this behavior. The �tting

curves for the four stages are shown in �gures 3.9, 3.10, 3.11, 3.12. The numerical

parameters are reported in table 3.4.

8 categories (adjective, adverb, conjunction, determiner, interjection, noun,

verb and preposition), taken from the dictionary of American English language,

contained in Wolfram Mathematica, were used to analyze the organizational struc-

ture of the resulting lexicon. Unfortunately, Mathematica dictionary does not
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Figure 3.10: Fitting curves for the degree distribution relating to the combined
network for experiment 2, part A. The power law and the truncated power law
were almost overlapped and R2

adj was in favor of the power law as in the previous
network. The plots were drawn by Matlab after having computed the best �t with
its standard routine.
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Figure 3.11: Fitting curves for the degree distribution relating to the combined
network for experiment 2, part B. The separation between the power law and the
truncated power law was clear, especially in the tail of the data distribution. The
plots were drawn by Matlab after having computed the best �t with its standard
routine.
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Figure 3.12: Fitting curves for the degree distribution relating to the combined
network for experiment 2, last stage. The truncated power law was the one �t-
ting the data the best. As in the previous networks the exponential law is not
appropriate to describe these data. The plots were drawn by Matlab after having
computed the best �t with its standard routine.
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Experiment 1 a kc b R2
adj

Truncated power law 0.9957 4811.4 -1.7397 0.9938
Power law 0.9955 /// -1.7400 0.9940

Exponential law 2.9970 0.9033 /// 0.9776
Experiment 2, part A a kc b R2

adj

Truncated power law 0.9900 3983.2 -1.3106 0.9975
Power law 0.9899 /// -1.3115 0.9975

Exponential law 1.9016 1.4480 /// 0.9470
Experiment 2, part B a kc b R2

adj

Truncated power law 1.0441 18.8741 -0.8115 0.9984
Power law 1.0269 /// -1.0536 0.9861

Exponential law 1.2380 2.9506 /// 0.9511
Experiment 2, last stage a kc b R2

adj

Truncated power law 1.0173 30.772 -0.9059 0.9970
Power law 1.0101 /// -1.0662 0.9903

Exponential law 1.2549 2.7672 /// 0.9336

Table 3.4: The table shows the values obtained with a Matlab package. Data have
been obtained by combining ad hoc scripts with the Matlab "cftool" package. The
�t were computed with a power law of the form P (k) = akb, a truncated power law
of the form P (k) = akbe−k/kc and an exponential law of the form P (k) = ae−k/kc .
The best �t was chosen comparing the R2

adj relative to the �ts.

include terms composed of more than one word. So, from the 17,429 words con-

tained in the �nal lexicon, the automatic classi�cation of only 7000 terms was

possible. The remaining words were classi�ed manually, using an online research

on di�erent dictionaries. After the classi�cation, �ts were performed category by

category. In experiment 1, categories such as conjunctions and propositions did

not have enough data, while in experiment 2, they seemed to follow a power law.

Neither determiners had enough data in experiment 1, but it seemed to follow

an exponential law in experiment 2, and a power law in the last two parts of

experiment 2. The category interjections showed a �uctuating behavior, following

a power law in experiment 1 and 2, part A, and an exponential law in part B and

in the last stage. In the whole lexicon, the category of nouns obeyed to a trun-

cated power law. The category of adverbs registered a power law in experiment

1 and a truncated power law in experiment 2. The last two categories, adjectives

and verbs, adopted the trend of the whole network. They presented a scale free

behavior in experiment 1 and 2, part A and a broad scale law in the last two steps
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Figure 3.13: From left to right and from top to bottom, distance distributions
for the networks of the two experiments. All the distribution shown a peak that
shifted to the right during the evolution of the network. The plots were drawn by
Matlab after having computed the the distances between each pair of nodes.

of the experiment.

Distance and Degree Correlations

To investigate deeply the semantic network built from the experiments, the dis-

tribution of the shortest paths lengths, clustering coe�cient as a function of the

degree and the K-Nearest-Neighbor were also analyzed. For all the four networks,

all the distance between nodes were computed, then their distributions were plot-

ted. As shown in �gure 3.13, the majority of nodes in the network from the �rst

experiment are placed at a distance of 4, while this peak shifts slightly to the right

with a short tail in the other networks. These networks average path length and

diameter resulted to be probably greater than an equivalent syntactic network

because of the lack of functional words which are very rare here (Liu, 2009).

The correlation between clustering coe�cient and the degree was investigated.

The average of the clustering coe�cient of every node with degree k was computed.
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Thus the function C(k) was analyzed for the four aggregated networks. This

function express the presence or absence of a hierarchical organization of the

network (Ravasz, Somera, Mongru, Oltvai, & Barabási, 2002). In �gure 3.14

is shown that the network from experiment 1 was not complex enough to show

this kind of characteristic. The three networks from the second experiment, on

the other hand, shown a good correlation, i. e. a strong hierarchical structure

among nodes: The second network clustering distribution was well �tted by a

power law, while the last two by a truncated power law. The way this networks

were built played a fundamental role in this result: the central node of every

script generated a star of terms and every one of them did the same in the next

step with the additional birth of links among them. Then while every node was

responsible for the birth of the nodes in the next step, it linked with other nodes

of the same experiment. This increased the clustering coe�cient while building

a hierarchical structure. Thus the memory system, seen as a growing structure,

evolves in a way that maintain this kind of structure to create useful paths when

a speci�c word needs to be retrieved. These paths belong to communities made of

low degree nodes connected to a local hub (Pastor-Satorras & Vespignani, 2004).

The hierarchical structure is needed to simplify and accelerate this kind of memory

processes.

K-Nearest-Neighbor KNN is a correlation measure that gives the assortativity

of a network, i. e. how much the nodes with low (high) degree are connected

among them. If this happens, the network is said assortative, if not it is dis-

assortative. A simpli�ed way to compute KNN(k) (Caldarelli, 2007) consists in

calculating the average degree of the neighbors of every node and then averaging

it over nodes with the same degree k. The behavior of the function tells every-

thing on the assortativity of the network: if it is directly proportional to k, the

network is assortative; if it is inversely proportional, the network is disassortative;

if the function is almost constant there is no correlation among nodes with the

same degree. The network of the �rst experiment shown a bipartition of KNN
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Figure 3.14: While the �rst network was not complex enough for this kind of anal-
ysis, the second clustering distribution averaged on the degrees C(k) followed a
power law and the last two a truncated power law. The networks from the experi-
ment 2 shown a correlation between clustering coe�cient and degree, highlighting
a hierarchical structure. The plots and the �ts were obtained by Matlab.

values: as it was expected, the low degree nodes were connected with the high

degree ones, and the data points in the plot were not a curve but two �at lines. It

was reasonable to say that this network was disassortative because the links were

almost between a high degree node and a low degree one. The network of the

experiment 2, part A was slightly disassortative 3.15. The third network plot was

almost constant, so there was no correlation among degrees when the network was

�lled up with the missing synonyms. This behavior was broken again in the last

network: the introduction of hyponyms and hypernyms specialized the network.

Stars of terms were linked to a node, increasing its degree while decreasing its

average neighborhood degree. Excluding these few nodes represented in the tail

of the distribution in 3.15, the rest of the plot was �at, so the correlation is not

very signi�cant, nor strong. Usually a semantic network does not show strong

correlation between KNN and the degree because of the lack of functional words
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like prepositions: functional words, in syntactic networks, are usually connected

to many low degree resulting in a disassortative network. While processing a

word retrieval task, it is unneeded to go through functional words, but is needed,

instead, to pass from a concept to another. Therefore there is no need for such a

network to be strongly disassortative.

From this kind of performance, it seemed that the construction of the network

did not follow a linear path, depending on the degree of the individual terms,

resulted by the process of word connections operated by students, between words

with di�erent degree. This could lead us to conclude that language networks were

di�erent from all other real networks, with a scale free and behavior. Instead,

having such discontinuities, this behavior can best be intercepted by a truncated

power law, which produced the typical displacements in the �tting of the growth

curve

3.6 Conclusions

These results highlighted how concepts are organized in memory and how memory

is organized for scripts, but also how they are retrieved.

From the analysis of the networks, meso and macro levels interaction was

evident (Borge-Holthoefer & Arenas, 2010).

From the analysis, it was also evident that data coming from the exploration

of semantic memory for script, related to the �rst experiment, were not complex

enough to be of interest for the present study, because the networks had very few

nodes (just 7 had more than 100) and they were star graphs. So, no network

parameters, but the number of nodes, were useful to draw conclusions on the

underlying cognitive processes. Some scripts had many nodes, because they were

very familiar for everyone (like "Go to a party" or "Go to the park"). They could

be expressed by very common words, actions and things. Other scripts presented

few nodes as they were unfamiliar situations for the majority of the subjects, such

as "Horse riding" or "Give private lessons", or also considered boring activity, like
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Figure 3.15: The �rst experiment resulted in a disassortative network: the high
degree nodes linked almost only to the low degree ones and vice versa. In the other
experiment, only the network from part A has shown a light correlation between
KNN and degree, resulting in a light disassortativity. The other two networks had
an almost �at distribution. Because of the hyponyms and hypernyms, the last
network distribution had some noise in the tail. The log-log plots were obtained
by Matlab.

"Clean the room".

On the second experiment, the complexity of the networks increased. Scripts

with a low number of synonyms shown a lower average clustering coe�cient, while

scripts with a high number of synonyms, decreased their density parameter. This

could mean that it could be possible to segment for each student, for each script,

the amount of terms at the micro level of the networks, turning the networks to

be as a dictionary for each student, which could be useful for second language

teaching applications.

After the merging of the networks, four graphs have been obtained, su�ciently

complex to show interesting results. The introduction of an online dictionary

to complete the task, expanded the opportunity to expand the semantic space.

In fact, part B of the second experiment collected the highest number of new
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nodes. This result was con�rmed by the increase of the average degree of the

related networks: every term had an average of one new term linked to it. Thus,

the distances among nodes did not become too high because of the synonyms:

they connected di�erent parts of the network, allowing them to be settled in the

same neighborhood. Synonyms increased the average clustering coe�cient while

preserving the average path length, resulting in a small world behavior: there were

no distant semantic areas, while the concepts remained well de�ned. As expected,

the e�ciency of the network was low. Even having a low average path length,

the density was close to zero. This happened because the memory system was

not based on shortest paths, but on logic associations: it had longer but more

typical or more atypical paths. The truncated power law shown that the new

terms tended to link themselves with high degree nodes, but also that the system

presented relatively few hubs. Keeping low as possible the number of hubs, as said

before, could be a good strategy to keep short distances and a high preference for

logic association paths instead of the generic geodesic ones. The memory system

shown sign of a hierarchal organization, as suggested by the clustering as function

of the degree. The memory grew collecting terms and concepts that were linked to

some preexistent ones, so every concept had a new starting point to increase the

data into this system, with relations like synonymy, hyponymy and hypernymy.

The lack of functional terms in this system, created neighborhoods of terms with

di�erent degrees. The terms here are not connected each other because they have

the same importance, but because of a semantic and conceptual relationship, and

this was clear in the K-Nearest-neighbors analysis.

At the micro level of the network, interesting dynamics of the degree and

clustering have been observed. The starting nodes, had a greater degree, while the

others have degree one or two. When hyponyms and hypernyms was introduced,

many nodes (in particular nouns) increased their degree, but the average degree

of the network remained almost the same. As the growth process went on, the

nodes forming the base of the script, increased their degree, creating of stable
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interrelated elements of the scripts in memory. Continuing the growth process,

the network did not increase its average degree: not every synonym had new

connections. This could mean that going far from the starting node, subjects

did not �nd connections, and the script organization became even less connected.

Only in the �nal part of the second experiment, the average degree of the network

increased locally, by connecting semantic areas until then separated. The �rst task

assigned caused the �rst connections to be inherent to the script, but synonyms

corrupted the semantic area acting as a bridge between two di�erent areas. The

clustering coe�cient followed exactly the behavior of the degree. In the �rst level,

stars of nodes connected very weakly to each other by nodes belonging to more

than one script, with a very low clustering coe�cient. Synonyms led to a strong

increasing for this parameter. Obviously, the great increasing of the number of

nodes decreased the density of the network, so the average clustering coe�cient

was just over 0.1. The network had not only an increasing of bridges, as di�erent

meanings of the same word, but also an even more increasing of the nodes sharing

synonyms. Thus, subjects chose the most pertinent meanings for each script. The

dimension of their vocabulary represented a limitation as well, both for the number

of nodes and the clustering: having a wider vocabulary allowed the subjects to

bridge these gaps and disregard the situation, widening the meanings of the chosen

terms.

When analyzing the meso level, the search for communities were thought to

produce good results, but the network topology caused the nodes belonging to

more scripts to rule the communities organizations, instead of the nodes belong-

ing to only one script. Groups of nodes belonging to several scripts joined in

communities, dragging along pieces of other scripts, thus creating heterogeneous

communities which were not suitable to be combined with the typicality scores.

The network's growth was not described by a power law because the subjects

did not follow a preferential attachment algorithm (Steyvers & Tenenbaum, 2005),

but realizing random connections, regardless of whether or not the node had a
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certain semantic centrality in the construction of the network. So, the semantic

network, representing the subjects' memory system, was built di�erently from

spreading activation model.

Compared to the model of (Collins & Loftus, 1975), this is an alternative model

(which shows chaotic dynamics (Bilotta & Pantano, 2010; Bilotta, Pantano, &

Stranges, 2007)) of processes that take place not only with spreading activation,

but through a construction, reconstruction of meaning and typicality, making

always new connections between di�erent semantic levels.



Chapter 4

Mental Lexicon and Language

Structures

4.1 Introduction

Network science is a very e�ective tool at human semantic knowledge level: se-

mantic networks are useful to investigate new words learning and words retrieval

in the mental lexicon (Steyvers & Tenenbaum, 2005; Vitevitch, 2008). It proved

to be useful as statistical and computational model even in the comparison of

di�erent languages semantic networks (Arbesman et al., 2010a). In all these stud-

ies, the component analysis highlighted the importance of both large and small

well connected components and the importance of the connections between them,

as well. In every semantic network, there is also the possibility to �nd some

isolated components, sometimes composed by a single node, which are not con-

nected to the rest of the network, representing a specialized knowledge area. But

the main large connected component always exhibits a broad scale (or scale free)

and a small world behavior (Barabási & Albert, 1999; i Cancho, 2005; Watts &

Strogatz, 1998). All of these works focused on morphology, phonology and seman-

tic or syntactic representation, but none of them used scripts (R. Schank, 1982;

R. C. Schank & Abelson, 1977) and network science together.

59
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The script model (R. C. Schank & Abelson, 1977) hypothesize that information

retrieval in the human mind is made from a long term memory (Allington, 2005).

This retrieval task is performed for memory recall (Light & Anderson, 1983), of

course, but also for language or text comprehension (Bower et al., 1979; Cellar

& Barrett, 1987; Gernsbacher, 1991; Pollatsek et al., 2012; Zwaan & Radvansky,

1998), or to interact with other people (Abelson, 1976).

The script implies a temporal dimension: the script is like a story told from

the beginning to the end. Thus, this model introduces some hidden rules and

inferences which raise its complexity Abelson (1981). But one of the aims of this

thesis is to represent all of these inferences with a semantic network based on

scripts, with all the arcs among the nodes to fully include all the hidden rules.

The network obtained in the experiments described in chapter 3 was used

side by side with the Free Association Norms (Nelson et al., 2004), gaining more

(directed) connections among terms in the same script.

To detect the relationship between word association and typicality score (script

cohesion) and between word association and network topology, random walks were

used.

Random walking (Pearson, 1905; Révész, 1990) was the simplest method to

model memory for scripts. Since classic random walk could be too simple as a

model, biased random walks, using Page Rank (Gri�ths et al., 2007) or typicality

score were utilized.

4.2 Modularity and Community Detection

The single script networks obtained in the experiments had a low clustering coef-

�cient, so none of the networks had a signi�cant community structure. With the

merging of these networks, new communities were formed from parts of di�erent

scripts which shared some meaning. These communities were made up of parts

from two or three di�erent scripts (only in two of them four scripts contributed

to the community). When all the fully evolved networks were joined, a strange
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result was obtained: with a modularity value of about 0.75, and a number of

communities between 32 and 37 (values averaged over several runs of Louvain

method (Blondel et al., 2008)), all the communities had not the majority of nodes

coming from a single script, but they were determined by nodes shared among

several scripts. Thus, in this model of mental lexicon, the memory was not guided

from the di�erent scripts but, the nodes used in several scripts acted as bridges

grouping together groups of words and connecting parts of di�erent scripts. Just

in case, several modi�cations of the resolution parameter in the Louvain algorithm

(Blondel et al., 2008) were made, to con�rm that the network has been observed

with the right resolution: the only e�ect was a smaller modularity value. So, the

communities and their composition were robust and signi�cant. All these results,

with the percentage nodes belonging to several networks are shown in 4.1.

Table 4.1: Modularity, number of communities and shared nodes results for the
�nal network.

Network Modularity Number of Communities shared nodes
Experiment 1 ∼ 0.63 17÷ 19 26%

Experiment 2 part A ∼ 0.75 37÷ 40 30%
Experiment 2, part B ∼ 0.75 31÷ 36 38%

Experiment 2, last stage ∼ 0.75 32÷ 37 35%

The detection of overlapping communities could �gure out if these networks

can constitute a benchmark for the various methods of community detection or if

the initial networks are not signi�cant modules.

4.3 Modeling

Free Association Norms

A network was built starting from the University of South Florida Free Association

Norms database (http://web.usf.edu/FreeAssociation/) (Nelson et al., 2004) to

strengthen the model of the semantic network built from the experiments. This

collection of terms, was built giving some cue words to subjects who had to answer
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Figure 4.1: Three joined script networks. The black nodes are shared by the three
networks and represent their shared cluster.
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with a response one, following the �rst association which came to their mind.

Every node in the network represented a di�erent word in the database. If the

node ni represent a cue term which has a response term represented by the node nj,

then a directed arc from ni to nj was inserted in the network, making it a directed

network. This network was also a weighted one: the strength of the arc going

from ni to nj, represented the fraction of subjects who answered with the term

represented by nj to the cue term represented by ni. Obviously, there are some

terms which appear only among response ones, so these nodes had only incoming

arcs, while the cue terms which were not found in the response ones had only

outgoing arcs. The �nal network, called N had 10617 nodes and 72176 weighted

and directed arcs. Thus N and R, the �nal network from the experiments, were

used in our model.

Random Walk Model

A random walk (Pearson, 1905) is a sequence of steps in which each step is taken

in a random direction among every possible one. A discrete random walk on a

network with adjacency matrix A = {Aij}(Révész, 1990), can be described as

follows: putting a random walker on a node ni of the network, it will walk to

another node, choosing randomly among one of the outgoing arcs of ni, reaching

one of its neighbors nj. Here, the random walk is used to represent the search for

terms useful to write down a script.

Calling kouti the outdegree and souti the outstrength of the node ni, and wl, l =

1, . . . , kouti the weights of the arcs outgoing from ni, the probability for the random

walker to choose the arc el with weight wl and reach the node nj is P (nj|ni) = wl

souti
.

This de�nition of probability holds perfectly for both N and R. N is directed

and weighted, so there is no possible misunderstanding on the meaning of souti and

w. For R, which is an undirected and unweighted network, ki = souti ∀i, because

an unweighted network can be seen as a weighted one with unitary weights, and

an undirected network is a directed one with the outdegree equal to the indegree
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for every node. Thus, for R, the same probability de�ned before can be written

as P (nj|ni) = 1
ki

In N , for a terminal node ni, holds k
out
i = 0 and is an attractor: once the

walker reach that node, it is trapped and has no more steps to take. After m

steps, a random walker covered a path C, with |C| ≤ m. This path C is a

subgraph of the whole network.

Let Cx
y (i) be the subgraph composed by the paths walked by x random walkers,

starting from the node ni performing y steps. By de�nition, C
x
y (r) is the semantic

�eld of node ni. So, it is possible to de�ne a semantic similarity:

De�nition 4.1. In a semantic network, two nodes ni and nj are semantically

similar if Cx
y (u) ∩ Cx

y (w) 6= ∅. The cardinality of the intersection measures how

much the nodes are semantically similar.

Random walk model, after several simulations on the network representing

subjects' mental lexicon, proved to be a valid model to describe the subjects

cognitive organization.

Neighborhoods

A Matlab code (neighborhood_FAN.m) was developed to extract the neighbor-

hood of a node in N , then the neighborhood of these neighbors, and �nally, the

neighbors of the latter. The input passed to the program, were: the weighted

adjacency matrix, the nodes' labels and grammatical category, the label of the

starting node. An additional function was added: for every level it is possible to

choose the neighborhood should be extracted as is, or if from the neighborhood

should be extracted only the nodes belonging to a �xed grammatical category,

with the possibility to choose nouns and verbs together.

The software's output consists of three pajek �les containing the subgraphs

corresponding to the three neighborhood levels.

In �gure 4.2, the three neighborhood levels for the word PLANET are shown.
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(a) First level of neighborhood. (b) Second level of neighborhood.

(c) Third level of neighborhood.

Figure 4.2: The 3 neighborhood levels for the word PLANET.
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In order to have a better view of these three levels of neighborhood, another

Matlab function (kettle.m) was developed. This code plots the label of the starting

node together with three subplots representing the labels of the neighbors at every

level (see �gure 4.3). With this code, a dynamic visualization of the neighborhoods

was developed. Even though the x axis has no meaning, being only necessary for a

more comprehensible view, the system visualizes the neighborhoods' growth. On

the y axis of the �rst subplot, the weight of the arc linking the starting node with

every neighbor is measured. At each step of the simulation, in the second subplot,

one neighbor for each of the nodes appeared in the �rst one is shown, with the

y axis measuring the sum of the weights of the arcs going from the nodes in the

previous subplot to the nodes in the second one. The third subplot follow the

second one, but it shows the neighbors of the nodes in the second subplot. The

number of nodes in the neighborhoods is usually increasing going from the �rst

to the third level, but many of the neighbors shows a little instrength value: the

visualization of these terms is poor because they result overlapped in the plot.

Another of visualization was implemented, following JTRACE (Strauss, Har-

ris, & Magnuson, 2007) idea: the cumulative strength of the arcs between the

word "PLANET" and the words belonging to its �rst neighborhood versus the

number of nodes in the third level neighborhood (�gure 4.4).

Semantic Fields Features

To analyze the features of the word's semantic �eld in the whole network, simu-

lations with a high number of random walkers, for a high number of time steps

and with several starting nodes were run (�gure 4.5). All these simulations gave

quantitative measurements on how the words are linked to various parts of the

network through di�erent paths with di�erent lengths, but gave no information

about semantic �elds organizational features or about subjects' mental lexicon

and cognitive processes.

For example, the semantic �eld C50
50(WATER) (�gure 4.6) was obtained col-
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Figure 4.3: Representation of the implemented system. From left to right, the
nouns in the �rst, the second and the third neighborhoods of the word "WATER".
The higher a word is, the higher is the strength of the path leading to it from
the word "WATER" ("POOL" in the �rst neighborhood, "COLD" in the second,
"BLUR" in the third one). The second and the third neighborhood are not entirely
visualized because of the high number of words with a low strength value: the
simulation was stopped after a few steps to allow a good visualization of this
example.
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Figure 4.5: 100 random walkers, travelling in the network for 300 steps. On the x
axis the steps are measured, while on the y axis the mean square distance from the
starting node. The paths the walkers took, can be divided into three big clusters,
according to the distance reached from the starting node.

Figure 4.6: C50
50(WATER) network (�rst panel), composed of 429 and 719 arcs,

with some signi�cant details (second, third and fourth panels).

lecting all the paths of the 50 walkers during 50 steps and weighting the arcs with

the number of times it was walked through and assigning the nuber of visits to

each node. This network had 429 nodes and 719 directed arcs, with k̄ = 1.767,

d = 37 and C = 0.081 (very low). The arcs with a high weight, were present in

both directions.

Several communities are found in this network (�gure 4.7).

In the presented model, the network extracted by the random walkers are not

deterministic (�gure 4.8), but are useful to statistically analyze the results.

The most visited nodes and the most traveled arcs belongs to the intersection.

Thus, a core of terms and relationships, exists for every term, independently on
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Figure 4.7: C50
50(WATER) communities. The largest community, in red, contains

the starting node: WATER.

Figure 4.8: In the �rst two panels, the network C50
50(WATER) extracted in two

di�erent runs. The �rs one has 429 nodes and 719 arcs, while the second 448
nodes and 779 arcs. In the third panel, their intersection, with 192 nodes and 201
arcs, is shown.
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the path chose by the walkers.

Analysis

Random walks allowed the extraction of a set of words reachable by a �xed number

of steps took in the network along the arcs. A deeper analysis highlighted the

presence of communities and subcommunities.

Simulation runs with a low number of random walkers gave interesting results,

from a cognitive perspective. As a matter of fact, increasing the number of steps

and decreasing the number of walkers, the extracted semantic �elds changed. It

was possible to change semantic �eld, just by tuning these two parameters. As

expected, the gradualism or organization concept, according to a Wittgensteinian

approach, was not realistic due to the possibility of the subjects to explore and

navigate di�erent semantic �elds, even with a script constraint.

They analysis of the experimental data of the network N brought light to

three main phenomena.

Words association with a slow gradualism (Wittgenstein hypothesis), was re-

jected. The data shown an easy transition between di�erent semantic �elds. Fur-

ther investigations are required, but gradualism appears to be valid only at a

narrow local scale.

The data structure extracted by the random walkers, was fractal-like, with

communities and subcommunities. This fractal structure provides cognitive mark-

ers like in the tip of the tongue phenomenon (Aitchison, 2012): when a needed

word is not found, the recall process continues to wander around a set of words

which recall the needed one.

During random walks runs, cognitive organization grows as a global structure,

changing semantic �elds during the evolution. The di�erent semantic �elds, form-

ing communities, bring forth a trace of a possible small world structure which

allows to easily access distant and di�erent areas in the network.
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4.4 Di�erent Random Walk Models

To better analyze the network obtained from experiments and from Free As-

sociation Norms database, three di�erent random walk models were developed.

Starting from the results of the previous simulation runs and on the results of the

analysis presented in chapter 3, in order to model organization, accessing and re-

trieval cognitive processes, di�erent starting nodes and di�erent networks (N and

R) were selected. As said before, random walk is a possible, simple and general

model to reproduce searching in human mental lexicon.

The three random walk models, vary only in the bias. An unbiased random

walk, is the one presented in subsection 4.3. A biased random walk, take into

consideration a measure (bias) to prefer a path instead of another. The di�erence

is that the probability to choose a speci�c node is not uniform on all the reachable

nodes, but it is proportional to the bias.

The three models are: Unbiased Random Walk (URW), Page Rank Biased

Random Walk (PRBRW), and Typicality Score Biased Random Walk (TSBRW).

URW was already de�ned before and is based on the network topology only.

Thus, selected a starting node, the process goes on selecting one node. Every time

a node is selected as the next one, the process can be seen as another instance of

a URW process starting from the newly selected node.

PRBRW is biased on Page Rank (Page et al., 1998), computed in advance for

every node of the networks. The basic behavior of the walker is the same: from a

starting node, the walker will move to one of its neighbors as the �rst step and so

on. The probability to choose a �xed node among the neighbors is the di�erence

from the previous model. This probability is no longer uniform but proportional to

the Page Rank of the neighbors: P (nj|ni) = PR(nj)/
∑

k PR(nk), where PR(nj)

is the Page Rank of the node nj and the sum runs over all the neighbors of the

node ni. Obviously, if the network is directed, the neighborhood of ni is considered

composed by the nodes with an incoming arc from ni.

TSBRW is similar to PRBRW, but the probability to choose the next node is
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proportional to the typicality score of the nodes collected during the experiment.

In this model, the walker should be able to distinguish the borders of a script in

the network during the simulation run. Additionally, when the walker steps on

a typical node of one of the scripts created during the experiment 1, the scripts

to which the node belongs to is recognized, and an inverse spreading algorithm

is started: every node in the script pointing to the node on which the walker is,

receive a fraction of its score and every one of them pass a fraction of their score

to every other node pointing to them. Every node which received an additional

score cannot receive additional scores anymore. In this way, the additional score

is inversely proportional to the distance from the current node. Thus, the random

walker recognize the boundaries of the scripts it is traveling through and tend to

choose nodes belonging to these scripts.

Simulation Runs

400 nodes were randomly selected for the simulations. Starting from every selected

node, 100 random walkers, for every one of the three models, run for 3000 steps.

For each of the 400 starting nodes, the squared distance from the starting node,

averaged over the 100 walkers, was computed. After a few hundred steps, the

average squared distance, stabilized around an equilibrium point. Thus 3000 steps

were too much, and were reduced to 500, while the number of starting nodes was

increased: all of the nodes were selected as a starting node.

Results

a. Results concerning the �rst computational model showed that, after a tran-

sition period of just about a hundred steps, the trajectories of the ran-

dom walkers settled down around a certain distance, with small oscillations.

Trends of distances in time were represented in �gure 4.9. Typical random

walkers behavior, colored in blue, was related to almost all the nodes. A

small number of green curves (FURTIVELY, HIGH RISK AREAS, HOUSE-
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Figure 4.9: Quadratic distances curves traveled by random walkers, averaged on
the number of walkers. The blue curves identi�ed the most typical behavior of
the random walkers. The x axis represented the time steps, while the y axis
represented the quadratic distance.

WIFE, LADYS MAID, PRIVATE AREAS, SEISMIC ZONES, RAISE THE

VOICE, WORKWOMAN), showed a remarkable speed of the random walk-

ers in leaving the initial node to reach a long distance from it. Black curves

(PAY , GOING TO THE ZOO), faintly visible at the bottom of the diagram,

represented the trajectories of random walkers who remained closest to the

starting node. The magenta curve (HORSE) showed the longest period of

transition, as it traveled along a huge number of hyponyms. In order to

understand degree-based network, paths were represented as tree diagrams

(See �gure 4.10). In this structure, each node was connected with its descen-

dants by bidirectional arcs, since the network was undirected. Branch lines

were nearly all regular, except in cases where a node, visited not less than

two steps before, is visited again. In this case, the arc was represented with

a coming back line (like from JACKET to DRESS in �gure 4.10). As said

before, the random walker starting from the node "HORSE" developed an

interesting tree-diagram in the space of the possible connections (See �gure

4.11), due to the large number of hyponyms, who constituted the majority
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Figure 4.10: Diagram of the �rst 100 steps of a random walk started from node
HOUSEWIFE. As it is possible to see, the node DRESS presents both outgoing
and coming back lines.

of its neighbors, which made di�cult for the system to leave the starting

node. Interestingly, while the other random walkers collected nouns and

verbs, random walkers started from the node PAY (�gure 4.12), collected a

huge number of adverbs in the �rst part of its path.

b. Page Rank system results produced trajectories with the same trends of �g-

ure 4.9. Also for this algorithm, simulation runs were stopped at 500 steps,

this number being considered useful to represent available paths inside the

network. The analysis on Page Rank simulations gave similar results (�g-

ure 4.13): a dense blue band of trajectories, mixed with each other, with

8 green trajectories that are at a greater distance without continuity. Sur-

prisingly these 8 trajectories di�ered from others found with degree-based

random walkers, even if they started from the same nodes. At the bottom

of �gure 4.13, the four trajectories in black, starting from the nodes BOOK,

GOING TO THE ZOO, PAY, TAKE A TRIP ON BICYCLE WITH MY

FRIENDS), presented trajectories whose length were lower than in the pre-

vious simulation. Page Rank tree-diagrams (�gures 4.14, 4.15, 4.16) showed

interesting patterns. In fact, if compared to the diagram of �gure 4.10, ob-
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Figure 4.11: The HORSE node presented many hyponyms with degree equal to
1. This allowed the walker to visit a collection of nodes very close to the starting
node.

tained by the degree-based simulation run, the random walker starting from

the node "HOUSEWIFE" (�gure 4.14), tough producing long trajectories,

returned back several times. This con�rmed that Page Rank based curves

reached shorter average quadratic distances than those with degree-based

simulation. The random walker starting from the node "PAY" produced

a short distance trajectory, (�gure 4.15) as well, whereas Page Rank sys-

tem browsed a higher portion of the network, and many nodes were visited

more than once. Page-rank-based random walk changes in the tree dia-

grams were much more evident (see for example �gure 4.16), with slower

and longer transients and a chain of words not strictly connected with one

semantic �eld, but with a huge number of highly page-ranked words. Loops

are also present in great number.

c. Results based on typicality scores random walking were qualitatively and

quantitatively di�erent from the �rst two runs (�gure 4.17). The aim was to

understand if a random walking that took into account the nodes individ-

ually visited, could collect the script-based organization, moving on related

nodes in the same script. 2327 trajectories, with high rate of returns to

the starting node, and very slow in leaving its neighbor, represented less
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Figure 4.12: Diagram of the random walker started from node PAY.
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Figure 4.13: Quadratic distances curves traveled by random walkers, averaged on
the number of walkers, with the algorithm based on Page Rank. The 8 curves in
green were separated from the rest of the sample, clearly showing a sudden and
oscillating trend. Instead, black curves on the bottom are related to paths that
were closest to the starting node.
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Figure 4.14: HOUSEWIFE tree-diagram based on Page Rank model presented a
more complex structure.
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Figure 4.15: Diagram of a walker started from node PAY with the algorithm based
on Page Rank.
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Figure 4.16: Diagram of a walker started from node HORSE following Page Rank
based algorithm.
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Figure 4.17: Quadratic distances curves traveled by random walkers, averaged on
the number of walkers, with the typicality scores based algorithm. The trajectory
organization was very di�erent, according to di�erent behaviors in this simulation
run.

than 15% of the total trajectories (green color). The other trajectories were

condensed in the blue band, with characteristic behavior very similar to the

previous two runs, with a rapid initial increase and then a short oscillating

goings-on. Diagrams presented loops and adherence to the scripts the initial

node belonged to. Figures 4.18, 4.19 and 4.20 showed the diagrams of three

di�erent simulations, with this last method. As it is possible to see compar-

ing �gure 4.12 with �gure 4.5 not only the method is important. In fact, the

networks explored were di�erent but the method to simulate word retrieval

was the same, but the results were completely di�erent. This brings to

the conclusion that the topology, the structure and the organization of the

mental lexicon is important in cognitive processes as well. For example, the

random walk method starting from a node recognized a certain subnetwork

in which terms were collected and, again, this subnetwork strongly depends

on the topology of the global network.
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Figure 4.18: Diagram of a 100 steps simulation of a random walker started from
the node HOUSEWIFE with the typicality and inverse spreading based algorithm.
In this case the walker struggled to stay on a script, because he found nodes that
acted as a bridge among the initial nodes of two di�erent scripts: The node were
connecting GO TO THE DISCO MUSIC and GO TO THE PARK.
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Figure 4.19: Diagram of a 100 steps simulation of a random walker started from
the node PAY, with the typicality and inverse spreading based algorithm. The
random walk found himself in an attractive area in which there was the verb
PRAISE; then it got out and entered that of the verb WALK. The random walk
remained over again on both verbs.
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Figure 4.20: Diagram of a 100 steps simulation of a random walker started from
the node HORSE, with the typicality and inverse spreading based algorithm. As
in the simulations with other algorithms, the initial node had many hypernyms,
but the random walker came out of that group, quickly getting away from the
initial node.
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The computational system

To be able to interactively simulate the developed random walk methods on lan-

guage networks a Matlab interface was created (�gure 4.21). The system allows

for multiple runs of simulation and for a collection of the data in a graph (�gure

4.22). In this display, nodes were represented as spheres of di�erent color. Red

and blue colors were used to represent the nodes of the two networks, while green

nodes were the nodes in common between the two networks. The 3D graphic had

nodes arranged on the radius of a circle, equal to the distance from the start-

ing node, having a height and an intensity of color, directly proportional to the

number of times they had been visited by the random walkers. The system also

allows to create text �les with a syntax well-suited for Mathematica, or Pajek �les.

The �rst drop-down menu allows the uploading of any kind of network, in Pajek

(a) (b)

Figure 4.21: A Matlab program has been developed for the interactive exploration
of a network using random walk. On the a), it is possible to see the interface of
the system, on b), the result of a simulation run.

format, or to choose from 4 presented networks. In particular, the Free Associa-

tion Norms network, consisting of about 10,000 nodes; the experiment network,

consisting of about 17,000 nodes; the two possible intersection networks between

previous two networks. The second drop-down menu allows to choose the node,

from which starting the simulation run. The third drop-down menu allows to se-

lect which grammatical category to be considered. The number of random walkers,
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the number of steps of the simulation, one of the developed models (Weight, Page

rank and Typicality based Random Walk) can also be de�ned at each run of the

simulation.

Figure 4.22: Graph for comparison of paths on di�erent networks with nodes in
common.

4.5 Conclusions

In this chapter methods to investigate semantic networks at an intermediate level

were presented. After the building of networks from experiments, using a ran-

dom walk approach neighborhoods were extracted and analyzed. A modularity

maximization algorithm to search for communities was applied, having a di�erent

result from what was expected. At the end 3 di�erent random walk based meth-

ods were proposed to explore the networks and analyze interaction among nodes

at the meso level.

At the meso level, the neighborhoods investigation and the analysis of the

nodes up to three levels of depth allowed to investigate a wider neighborhood for

each node. Being the average minimum path of the global network little more

than 5, with 3 steps, following all of the arcs, a distance was achieved which did
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not include the whole network, but an intermediate level of the network centered

on the selected node. Selecting the central node of a script the result will thus

be that speci�c script (up to its third level of growth) plus pieces of other scripts

dragged in by the synonyms in common, as predictable. When choosing a degree

1 node, as a hyponym or a hypernym, the result will be less than a script, given

the small amount of nodes recollected. The �rst neighborhood level consisted

in one single node, the second level included neighbors of the node (leaving out

neighbors of the neighbors). The third neighborhood level was more complex

in terms of dimension and portion of the explored network: most of the times

it only included one script. The analysis of the neighborhoods of the scripts

central nodes (instead of the initial ones) proved to be a more interesting method,

together with the analysis of the nodes belonging to di�erent scripts. As foreseen,

the neighborhoods signi�cantly changed depending on the node chosen as a start:

these changes included the number of nodes, the number of arcs and the number of

scripts explored. An empiric analysis on a selected sample of nodes demonstrated

that the number of nodes, arcs and visited scripts rose when choosing a higher

degree node or a higher clustering coe�cient one. Consequently, choosing nodes

belonging to more than one script and having a clustering coe�cient above the

average it was possible to obtain networks which are wider and included more

parts of di�erent scripts. Hence, presuming that the Mental Lexicon is consistent

with the model of the network created, this study suggests that, when dealing

with a speci�c term (such as a hyponym or a hypernym), people tend to stay

inside the neighborhood of that term. This neighborhood includes many semantic

areas, if the starting term has di�erent meanings or is used in di�erent contexts.

The various kinds of random walks used to navigate the network gave di�erent

results, but sharing some traits. The mean square distance covered by the walkers

was the measure taken into consideration. It was noticed that, in every proce-

dure, the walkers rapidly went away from the initial node and then stayed at a

certain oscillating distance. After around 100 steps, these average values started
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to oscillate around a value depending on the starting node, covering a wide range

of values. These characteristics are common to all the algorithms on which the

random walks were based.

The simulation using the classic random walk on a graph and the one using

pagerank values distribution of the nodes showed another common feature: the

existence of 8 nodes that, if chosen as starting point, pushed the walkers to greater

distances. This happened because pagerank was a centrality measure of the nodes,

based exclusively on the topology of the network, the same as the degree distribu-

tion of the nodes, at the base of classic random walks. All of these 8 nodes were

less central, had a higher mean distance from the other nodes and had degree 1

(as HOUSEWIFE, see �gure 4.13). On the contrary, nodes with a high centrality

or linked to many nodes with degree 1 (as HORSE, which had many hyponyms),

tended to keep the walker closer, trapping it inside the exploration of a great

amount of nodes. Once �nished the exploration, the walker's only alternative was

to return to the starting node, thus slowing down its wandering.

Unlike these two algorithms, the one based on typicality as a weight for the

network produced many trajectories which repeatedly and frequently returned on

the initial node. These attractor nodes showed a very high typicality score com-

pared to the other nodes close to them. The choice of the next node to be visited

was in�uenced by the neighbor nodes' typicality, thus giving the walker a very low

possibility to move away, instead, the curves arriving to average distances were

the ones inside neighborhood of nodes with high or average typicality: starting

the walk near the initial node of a script it is more probable to encounter nodes

with a similar level of typicality, giving the walker a wide range of possible paths.

The walkers moving farthermost were those starting from areas of the network

with low typicality. In these cases, the walker based its choices only on the degree

of the nodes until it arrived to areas with higher typicality, where it was forcedly

attracted and consequently blocked, especially when walking inside smaller areas

with a higher typicality than the neighborhood. Being impossible to make a thor-
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ough analysis with the algorithm based on typicality scoring in order to activate

a process of inverted spreading, analysis on various samples of nodes were real-

ized. These simulations provided interesting information for the evaluation of the

model. For most of the simulations started from non-peripheral nodes, few steps

were needed (around 50) for the walkers to meet a node and allow the inverted

spreading algorithm to recognize one or more scripts. In this way, the walkers

followed paths staying inside one script. When the walkers started from a border-

land between various scripts, (especially from nodes which were typical for many

scripts), the number of steps needed to recognize a unique script varied a lot in

the simulations, and the walker was not able to immediately settle in one area,

but wandered through di�erent scripts. Instead, when starting from a node which

was typical for only one script and also topologically central inside the subnet

composed by that script, the walker immediately settled in that networks, having

few possibilities to move away. At the moment the walkers recognized a script and

found themselves in a high typicality area of that particular network, the distance

from the initial node started to stabilize. The study also showed that the tem-

poral sequence of the typical actions of a script (such as: ENTER before EXIT)

was not followed and strongly depended on the starting node and the casualty

of the walk, even if limited by typicality: in this last model based on typicality,

the walker was attracted by very typical nodes which were located close to it and

separated by other very typical nodes. In conclusion, the last model among the

ones implemented, proved to be the best to simulate the ability of a subject to

identify the semantic area, the context and the topic of the term represented by

the selected starting node. All these methods, having the characteristic to explore

the meso level and the interaction among the terms, highlighting the bonds more

than the nodes of the network, gave us a knowledge on human mental lexicon

deeper than how it was before.
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Conclusions

The analysis of the networks built with the data collected during word production

experiments validate all the existing theoretical models and add something more.

In fact, word production modelled by this kind of network exhibits the same

behaviour supposed by spreading activation (Collins & Loftus, 1975), while the

process to build this network does not follow the spreading activation paradigm.

The network created con�rm all the other properties (small world, scale free, etc...)

observed on linguistics and semantic networks in literature. Thus, this model of

human mental lexicon development represents an alternative to the classical ones

and have the merit to show clearly, not only the micro and macro levels, but also

the meso level, which shows very important features about the processes behind

the language production and development.

While the classical random walk on a network is a naive and, maybe, the sim-

plest possible model of language production when a word collection is given, it

paved the way to another model: the typicality based random walk. When biased

by the typicality score of the terms in the network, the random walker gains a

great knowledge of the network's meaning. It reacts faster than the other models

analysed (unbiased and pagerank based) when it is asked to identify the main

topic or to choose the successive words according to the situation. This better be-

haviour of the model proposed is due to the switch of in�uence from topologically

central nodes to the semantically central ones derived by the introduction of the

88
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typicality as a score. Even if this model is still unre�ned, it gives a prototype for

an automatic language production process: the sentences created are not perfect

but the walker succeed to identify the right semantic area without exiting from

it.
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Appendix: Script tables and degree

distribution �ts

Table 6.1: Word generation for the 39 scripted activities. AJ=adjectives,
AD=Adverbs, Conj=Conjunctions, Det=Determiners, N=Nouns, V=Verbs. The
table reports the number of terms, belonging to each grammatical category, col-
lected during the �rst experiment, as well as the ratio between the number of
nouns and the number of verbs.

Script Name AJ AD Conj Det N V N/V

Go to the bookshop 33 14 1 0 76 95 0.8

Go to the airport 62 39 3 1 119 110 1.081818182

Go to the beach 22 16 0 0 68 79 0.860759494

Go to the shopping center 51 23 2 0 100 88 1.136363636

Go to the stadium 95 23 0 0 288 267 1.078651685

Go out with my dog 35 12 0 0 57 81 0.703703704

Go to ski 28 6 0 0 217 147 1.476190476

Make a constructive experience

abroad
122 41 1 0 177 268 0.660447761

Go to the hospital to visit a

friend with a broken arm
28 20 0 0 55 72 0.763888889

Go to an art exhibition 122 59 0 0 183 121 1.512396694

90
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Go to the disco 46 15 0 0 70 87 0.804597701

Go to the zoo 52 15 0 1 240 200 1.2

Go to the chemist's 18 11 0 0 43 61 0.704918033

Exit with my friends 21 13 0 0 5 124 0.403225806

Go to the library 60 10 0 0 252 212 1.188679245

Go to work 28 30 0 0 145 117 1.239316239

To cook 16 18 0 0 52 109 0.47706422

Go to a party 26 18 0 1 193 99 1.949494949

Go to the doctor 67 27 0 1 75 111 0.675675676

Go to the hairdresser's 88 21 0 0 223 251 0.888446215

Go to the museum 34 15 0 0 71 104 0.682692308

Go to the class 127 65 0 2 161 156 1.032051282

Give private lessons 50 9 0 0 61 84 0.726190476

Go to the beautician 106 41 0 1 165 150 1.1

Horse riding 15 6 0 0 28 75 0.373333333

Go to the gym 200 24 0 0 181 176 1.028409091

Go to a wedding party 109 44 0 0 194 303 0.640264026

Clean the room 70 59 3 0 89 127 0.700787402

Go to the perfumery 65 30 0 2 138 135 1.022222222

Go to the grocery 143 106 4 0 153 145 1.055172414

Go on a cruise 40 7 0 0 182 189 0.962962963

Go to the theater 70 43 1 1 117 205 0.570731707

Trip on a bicycle with friends 46 25 0 1 114 208 0.548076923

Go to the seaside 8 0 0 0 126 85 1.482352941

Go to the dentist 97 15 0 0 166 190 0.873684211

Go to the birthday party 52 15 0 0 49 129 0.379844961
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Go to the jeweler's shop 134 98 4 0 100 94 1.063829787

Go to the park 134 118 8 13 231 246 0.93902439

Go to the university 47 35 0 1 83 80 1.0375

TOTAL 2567 1186 27 25 5047 5580 0.9045

Table 6.2: Presentation of the mean scores on the typicality of items for ev-
ery script. AJ=adjectives, AD=Adverbs, Conj=Conjunctions, Det=Determiners,
N=Nouns, V=Verbs. Data have been obtained by averaging the sum of the typ-
icality score of all the term in each grammatical category for each script and
averaging over their number.

Script Name AJ AD Conj Det N V Total

Go to the bookshop 2.788 2.5 2 0 2.776 2.75 2.880

Go to the airport 3.226 3.667 3.333 6 2.866 2.964 2.892

Go to the beach 3.409 3.688 0 0 3.191 3.487 3.419

Go to the shopping center 2.804 3 1 0 2.72 2.693 2.363

Go to the stadium 3.105 2.348 0 0 2.774 2.801 2.725

Go out with my dog 2.543 2.667 0 0 2.544 2.506 2.577

Go to ski 3.714 4.667 0 0 3.714 3.571 3.722

Make a constructive experience

abroad
2.738 2.976 6 0 2.65 2.575 2.378

Go to the hospital to visit a

friend with a broken arm
3.179 3.15 0 0 2.891 2.903 2.488

Go to an art exhibition 2.828 3.339 0 0 2.596 2.843 2.517

Go to the disco 2.87 3.8 0 0 2.743 2.736 2.361

Go to the zoo 2.654 3.067 0 1 2.579 2.66 2.507

Go to the chemist's 4 3.636 0 0 3.721 3.738 3.187

Exit with my friends 3.286 3.692 0 0 3.16 3.185 3.206

Go to the library 3.197 2.1 0 0 2.709 2.822 2.549
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Go to work 2.536 2.567 0 0 2.596 2.615 2.518

To cook 3.438 3.611 0 0 3.654 3.541 3.494

Go to a party 3.5 3.333 0 4 3.021 3.242 2.889

Go to the doctor 2.851 2.889 0 3 2.84 2.874 2.726

Go to the hairdresser's 3.273 3.286 0 0 3.117 3.12 2.889

Go to the museum 3 3.533 0 0 3.113 3.096 2.864

Go to the class 3.039 2.892 0 1 3.068 3.128 3.194

Give private lessons 3.2 3.667 0 0 3.148 3.024 3.294

Go to the beautician 2.708 2.634 0 5 2.655 2.613 2.482

Horse riding 3.933 4.333 0 0 3.857 2.867 2.891

Go to the gym 2.743 3.542 0 0 2.785 2.773 2.791

Go to a wedding party 3.11 3.273 0 0 3.134 2.805 2.446

Clean the room 2.8 3.017 2.333 0 2.674 2.504 2.672

Go to the perfumery 3.369 3.433 0 3.5 3.246 3.267 2.769

Go to the grocery 2.105 2.142 1.25 0 2.072 2.097 2.078

Go on a cruise 3.05 2.857 0 0 2.863 2.857 2.680

Go to the theater 2.886 2.86 6 6 2.709 2.937 2.609

Trip on a bicycle with friends 2.457 2.44 0 1 2.539 2.356 2.386

Go to the seaside 3.875 0 0 0 3.317 3.024 3.342

Go to the dentist 3.01 3.733 0 0 3 3 2.798

Go to the birthday party 3 2.733 0 0 3 2.736 2.539

Go to the jeweler's shop 1.843 1.867 1.5 0 1.941 1.894 1.956

Go to the park 1.881 1.89 1.625 1.462 2.095 2.057 2.069

Go to the university 2.894 2.771 0 1 2.964 2.913 3.048

TOTAL 2.81 2.793 2.111 2.2 2.834 2.8183 2.819
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Table 6.3: Hyponym and hypernym generation results. AJ=adjectives,
AD=Adverbs, Conj=Conjunctions, Det=Determiners, N=Nouns, V=Verbs. The
table reports the number of terms, belonging to each grammatical category, col-
lected during the last part of the second experiment, as well as the ratio between
the number of nouns and the number of verbs.

Script Name AJ AD Conj Det N V N/V

Go to the bookshop 0 0 0 0 239 1 239

Go to the airport 2 1 0 0 38 10 3.8

Go to the beach 42 5 0 0 218 41 5.3171

Go to the shopping center 6 3 0 0 101 28 3.6071

Go to the stadium 48 3 1 1 572 169 3.3846

Go out with my dog 49 11 0 0 180 128 1.4063

Go to ski 6 1 0 0 49 26 1.8846

Make a constructive experience

abroad
8 1 0 0 76 35 2.1714

Go to the hospital to visit a

friend with a broken arm
4 1 0 0 52 39 1.3333

Go to an art exhibition 23 1 0 0 190 52 3.6538

Go to the disco 20 3 0 0 249 23 10.8261

Go to the zoo 216 41 2 0 741 725 1.0221

Go to the chemist's 7 0 0 0 31 10 3.1

Exit with my friends 1 1 0 0 32 260 0.1231

Go to the library 5 0 0 0 54 7 7.7143

Go to work 0 0 0 0 206 3 68.6667

To cook 2 0 0 0 58 24 2.4167

Go to a party 10 1 0 0 77 29 2.6552

Go to the doctor 1 0 0 0 33 7 4.7143

Go to the hairdresser's 2 1 0 0 54 3 18
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Go to the museum 4 0 0 0 55 7 7.8571

Go to the class 2 0 0 0 75 11 6.8182

Give private lessons 1 1 0 0 44 4 11

Go to the beautician 2 0 0 0 66 15 4.4

Horse riding 16 0 0 0 256 3 85.3333

Go to the gym 1 0 0 0 33 8 4.1250

Go to a wedding party 9 1 0 0 194 19 10.2105

Clean the room 3 0 0 0 20 2 10

Go to the perfumery 6 0 0 0 119 9 13.2222

Go to the grocery 18 4 0 0 47 24 1.9583

Go on a cruise 7 1 0 0 105 18 5.8333

Go to the theater 11 2 0 0 92 29 3.1724

Trip on a bicycle with friends 3 1 0 0 61 14 4.3571

Go to the seaside 14 0 0 0 113 50 2.26

Go to the dentist 9 1 0 0 65 15 4.3333

Go to the birthday party 3 0 0 0 65 12 5.4167

Go to the jeweler's shop 6 2 0 0 41 19 2.1579

Go to the park 17 1 0 0 124 33 3.7576

Go to the university 27 6 0 0 80 78 1.0256

TOTAL 611 94 3 1 4905 1990 2.465

Table 6.4: Synonym generation results. AJ=adjectives, AD=Adverbs,
Conj=Conjunctions, Det=Determiners, N=Nouns, V=Verbs. The table reports
the number of terms, belonging to each grammatical category, collected during
parts A and B of the second experiment, as well as the ratio between the number
of nouns and the number of verbs.

Script Name AJ AD Conj Det N V N/V

Go to the bookshop 38 17 1 0 106 119 0.8908
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Go to the airport 202 82 3 2 232 218 1.0642

Go to the beach 51 23 0 0 101 101 1

Go to the shopping center 169 76 3 0 340 260 1.3077

Go to the stadium 235 42 1 1 638 598 1.0669

Go out with my dog 89 23 0 0 161 176 0.9148

Go to ski 85 15 0 1 608 351 1.7322

Make a constructive experience

abroad
683 185 4 0 926 1589 0.5828

Go to the hospital to visit a

friend with a broken arm
150 66 3 0 285 287 0.993

Go to an art exhibition 178 79 0 0 295 187 1.5775

Go to the disco 59 18 0 0 75 102 0.7353

Go to the zoo 54 11 0 1 206 174 1.1839

Go to the chemist's 150 59 1 0 423 488 0.8668

Exit with my friends 17 8 0 0 39 246 0.1585

Go to the library 97 14 0 0 433 311 1.3923

Go to work 25 30 0 0 170 141 1.2057

To cook 36 59 2 1 75 262 0.2863

Go to a party 41 27 1 2 178 95 1.8737

Go to the doctor 150 26 0 1 136 221 0.6154

Go to the hairdresser's 108 25 0 1 286 292 0.9795

Go to the museum 91 45 1 0 199 311 0.6399

Go to the class 368 117 1 3 447 437 1.0229

Give private lessons 125 6 0 1 190 252 0.754

Go to the beautician 374 103 0 1 506 508 0.9961

Horse riding 44 6 1 0 38 148 0.2568
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Go to the gym 379 71 0 0 610 457 1.3348

Go to a wedding party 112 36 0 0 180 311 0.5788

Clean the room 236 158 6 1 334 435 0.7678

Go to the perfumery 67 28 0 2 73 163 0.4479

Go to the grocery 440 223 5 2 450 426 1.0563

Go on a cruise 182 12 1 0 494 590 0.8373

Go to the theater 354 205 3 0 510 815 0.6258

Trip on a bicycle with friends 111 42 0 2 195 450 0.4333

Go to the seaside 25 3 0 0 265 129 2.0543

Go to the dentist 165 13 0 0 270 266 1.015

Go to the birthday party 159 11 0 0 122 439 0.2779

Go to the jeweler's shop 456 212 4 2 313 310 1.0097

Go to the park 163 138 9 13 350 343 1.0204

Go to the university 94 34 0 1 143 166 0.8614

TOTAL 6562 2348 50 38 11402 13174 0.8655
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