
UNIVERSITÁ DEGLI STUDI DELLA CALABRIA

Dipartimento di Elettronica Informatica e Sistemistica

Corso di dottorato in

Ricerca Operativa

MAT/09

XXII CICLO

Coordinatore Prof. Lucio Grandinetti

Tesi di Dottorato

OMEGA

OUR MULTI ETHNIC GENETIC ALGORITHM

Carmine Cerrone

Il Relatore:

Prof. Manlio Gaudioso

ANNO ACCADEMICO 2008-2009



Table of Contents

Table of Contents i

Abstract iii

Introduction 1

1 Our Multi Ethnic Genetic Algorithm (OMEGA) 4

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Our Multi Ethnic Genetic Algorithm (OMEGA) . . . . . . . . . . . . 7

1.2.1 OMEGA Approach . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 OMEGA’s steps . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.3 Evolutionary Step Features . . . . . . . . . . . . . . . . . . . 12

1.3 Building Block and chromosome’s definition . . . . . . . . . . . . . . 13

1.3.1 GA and OMEGA chromosome observation . . . . . . . . . . . 14

1.3.2 Basic ideas about the chromosome . . . . . . . . . . . . . . . 17

1.3.3 OMEGA and Blocks . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Minimum Labeling Spanning Tree . . . . . . . . . . . . . . . . . . . . 21

1.4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.3 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.4 Computational Results . . . . . . . . . . . . . . . . . . . . . . 28

2 Monocromatic Set Partitioning 31

2.1 Problem Definition and Basic Notation . . . . . . . . . . . . . . . . . 31

2.2 Problem Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Mathematical Formulations . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Polynomial case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1 Solution’s Optimality . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Genetic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5.1 The Chromosome . . . . . . . . . . . . . . . . . . . . . . . . . 48

i



ii

2.5.2 The Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5.3 The Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5.4 The Splitting Population Function . . . . . . . . . . . . . . . 51

2.5.5 The Fitness Functions . . . . . . . . . . . . . . . . . . . . . . 51

2.5.6 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Bounded Degree Spanning Tree 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Problem definition and motivations . . . . . . . . . . . . . . . . . . . 57

3.3 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Relations among MBV, MDS and ML . . . . . . . . . . . . . . . . . 64

3.4.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.2 The problems are not equivalent . . . . . . . . . . . . . . . . . 64

3.4.3 Relations among the problems . . . . . . . . . . . . . . . . . . 69

3.5 OMEGA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Multi-Period Street Scheduling and Sweeping (MPS3) 76

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.1 Variant 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.2 Variant 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Variant 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.2 Variant 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.2 Schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4.3 Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.4 Breeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.5 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.6 Genetic Algorithm Summary . . . . . . . . . . . . . . . . . . . 98

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Bibliography 102



Abstract

Combinatorial optimization is a branch of optimization. Its domain is optimization

problems where the set of feasible solutions is discrete or can be reduced to a discrete

one, the goal being that of finding the best possible solution. Two fundamental

aims in optimization are finding algorithms characterized by both provably good

run times and provably good or even optimal solution quality. When no method

to find an optimal solution, under the given constraints (of time, space etc.) is

available, heuristic approaches are typically used. A metaheuristic is a heuristic

method for solving a very general class of computational problems by combining user-

given black-box procedures, usually heuristics themselves, in the hope of obtaining a

more efficient or more robust procedure. The genetic algorithms are one of the best

metaheuristic approaches to deal with optimization problems. They are a population-

based search technique that uses an ever changing neighborhood structure, based on

population evolution and genetic operators, to take into account different points in

the search space. The core of the thesis is to introduce a variant of the classic GA

approach, which is referred to as OMEGA (Multi Ethnic Genetic Algorithm). The

main feature of this new metaheuristic is the presence of different populations that

evolve simultaneously, and exchange genetic material with each other. We focus our

attention on four different optimization problems defined on graphs. Each one is
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proved to be NP-HARD. We analyze each problem from different points of view, and

for each one we define and implement both a genetic algorithm and our OMEGA.



Introduction

In the 1950s and the 1960s several computer scientists independently studied evolu-

tionary system starting from the idea that evolution could be used as an optimization

tool for engineering problems. The idea in all these systems was to let a population

of candidate solutions to a given problem, evolve using operators inspired by natural

genetic variation and natural selection. The approach was firstly introduced in 1954

in the work by Nils Aall Barricelli, who was with the Institute for Advanced Study in

Princeton, New Jersey. [27] [2]. This publication was not widely noticed. Neverthe-

less, computer simulation based on biological evolution became more common in the

early 1960s, and the methods were described in books by Fraser and Burnell [16, 17].

Genetic algorithms (GA) in particular became popular thanks to the work by John

Holland in the early 1970s, and particularly his book Adaptation in Natural and Ar-

tificial Systems (1975) [21] . His work originated from studies of cellular automata,

conducted by Holland and his students at the University of Michigan. Holland in-

troduced a formalized framework for predicting the quality of the next generation,

known as Holland’s Schema Theorem. In the last few years there has been widespread

interaction among researchers studying various evolutionary computation methods,

and it is quite hard to retrace the boundaries between GAs, evolution strategy, evo-

lution programming, and other evolutionary approaches have broken down to same

1
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extent. Nowadays researchers use the term ”genetic algorithm” to describe something

very far from Holland’s original concept. Among the most famous GA variants, the

Lemarcking evolution and the Memetic algorithms [12] play a crucial role. Grefen-

stette introduced the Lemarckian operator into Genetic algorithms [20]. This theory

introduces the concept of experience into the GAs, and suggest the use of a clever

crossover technique. Moscato and Norman introduced the term Memetic algorithm

to describe genetic algorithms in which local search plays a significant role [25]. There

are several variants to the basic GA model, and in most cases these variants are com-

bined to obtain the best solution to the specific problem. Another possible solution

is the rank-based selection. We cite this technique in particular because the implicit

splitting of the population in sub-populations and the concept of migration are largely

used and reinterpreted in this work.

Genetic Algorithms are the logical thread that unifies all the chapters of the

dissertation.

It is organized as follows. In chapter one we introduce the basic ideas of our multi

ethnic genetic approach (OMEGA) and state it formally. The main feature of this new

metaheuristic is the presence of different populations that evolve simultaneously, and

exchange genetic material with each other. The applications are reported in chapter

two three and four. In each of them a particular problem of graph optimization

is studied. All studied problems are defined on a graph, and in all the cases we

try to solve a combinatorial optimization problem via a GA. We introduce in the

second chapter a problem defined on labelled graph, in this case we introduce two

mathematical formulations and after a brief study of their complexity in general

and in particular cases, we introduce a GA, able to find a solution very near to the
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optimal one. In the third chapter we study a bounded degree spanning-tree problem,

we present a tree variant about the same problem, we introduce some results about

the relation between the problems, and we provide a branch and bound algorithm

able to find the optimal solution. In the last section we use a GA. In the last chapter

we focus our attention on a arch-routing problem on multigraph, for this problem we

introduce a mathematical formulation and a GA. In this work we apply a GAs to

three combinatorial optimization problems defined on a graph.



Chapter 1

Our Multi Ethnic Genetic
Algorithm (OMEGA)

1.1 Introduction

The genetic algorithm is one of the best approaches to solving optimization problems.

These algorithms are a population-based search technique that use an ever-changing

neighborhood structure, based on population evolution and genetic operators, to take

into account different points in the search space. Many techniques have been devel-

oped to escape from the local optimum when genetic algorithms fail to individuate

the global optimum. In any case it appears clear that the intrinsic evolution scheme

of genetic algorithms cannot be enforced to avoid the local optima without upsetting

the ”natural” evolution of the initial population.

In this work, in order to reduce the probability of remaining trapped in a local mini-

mum we keep the basic schema of GA. The main difference is that, starting from an

initial population, we produce, one by one, k different populations and we define k

different evolution environments in which we left the k populations to evolve indepen-

dently, Although an appropriate merging scheme, is embedded to guarantee possible

4
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interaction.

John Holland showed in the book Adaptation in Natural and Artificial Systems

(1975) [21], how the evolutionary process applied to solving a wide variety of problems.

Many authors have in fact drawn inspiration from nature to create a highly adaptive

optimization technique. In this work we take into account other characteristics of the

evolutionary process, in order to improve the performance and the flexibility of the

classic genetic algorithm; our approach uses the concept of Speciation to increase the

amount of the analyzed solutions.

To achieve this aim we modify three different components of a GA:

• The population.

• The fitness functions.

• The chromosome representation.

In an evolutive process the aim of each individual is reproduction. Obviously in

the world the resources are limited and for this reason, it isn’t possible that every

one of the individuals will be able to reproduce. In this way only the strongest ones

can achieve their goal of producing offspring for the next generation. These pro-

cesses from generation to generation have produced bodies perfectly adapted to their

environment. This brief description of the Darwinian principle of reproduction and

survival of the fittest is the basis of the current GA.
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An important observation is in order make. If the goal of each organism is the

same, why do we have many different species? There are two basic reasons: (i) There

are many streets which arrive at the same place; (ii) to survive you must adapt to

the environment. Usually in a GA approach we observe the evolution of a population

from a basic set of individuals to a set of relatives who are better adapted to the prob-

lem. This strategy does not take into account the option of producing from the same

species, different races. The idea at the basis of our approach is that, when ever many

different races are involved in the same evolutionary process, the genetic difference

between the populations can increase the quality of the results of all the process. In

other words using this technique we can try to escape from a local minimum solution,

creating new populations that evolve independently. The use of different variants of

the same fitness function, is adopted to guarantee that different populations do not

take the same evolutionary path.

The main idea of our technique consists of translating the concept of genetic iso-

lation and genetic convergence from a biologic context into an algorithmic approach.

This work introduces a modified GA approach that draws its inspiration from two

fundamental biological concepts: Speciation and Convergent Evolution.

Speciation is the evolutionary process by which new biological species arise. There

are four geographic modes of speciation in nature, based on the extent to which

speciating populations are isolated from one another.

Convergent evolution describes the acquisition of the same biological trait in un-

related populations. The wing is a classic example of convergent evolution in action.

Although their last common ancestor did not have wings, birds and bats are fitted
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with wings, similar in construction, due to the physical constraints imposed upon

wing shape.

Our main item is to design a genetic schema able to escape from a local minimum

solution. The concept of Convergent Evolution suggests to us that if we simply design

a multi-start genetic algorithm, there is a great probability of obtaining similar results

from any instances. On the other hand, the concept of Speciation tells us that if

a population is branched into two or more sub populations forced to adapt to new

environments, in a short period any population can probably evolve into a new species.

1.2 Our Multi Ethnic Genetic Algorithm (OMEGA)

A main issue regarding metaheuristic approaches in general and genetic algorithms in

particular is how to avoid to be trapped in local minima while exploring the largest

possible feasible region. This problem has particular relevance when the objective

function is characterized by a large number of local minima. In the next example we

show the function f1 = 5 ∗ sin(1
2
x) + ( 1

10
x)2 . If our objective is to find the minimum

of f1, our genetic algorithm can be trapped in any of the many minimal solutions.

-50 0 50

50

Figure 1.1: f1
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In these cases, in order to avoid to remain trapped in local minima, various tech-

niques can be applied:

• We can work on the crossover operators. Although all crossover operators are

designed to take potentially large steps, many analytical results show that the

crossover tends to make its largest jumps during the first few generations be-

cause it takes advantage of the diversity in the population.

• We can work on the mutation operators. But usually, in order to ensure the

convergence of this method, large steps are not desirable in this phase.

• We can use the multi-start technique, but the biological concept of convergent

evolution suggests that there is a concrete probability of creating many similar

populations. Moreover, a multi-start technique usually does not use information

from the previous iteration in the next population.

In the rest of this chapter we will describe our genetic approach and how it is

related to the above mentioned issues.

1.2.1 OMEGA Approach

OMEGA approach takes inspiration from the biological concept of genetic Isolation

and Speciation; moreover it leans on the building-block hypothesis (Holland, 1975;

Goldberg, 1989).

Using a classical genetic algorithm we create a population P0. After a sufficient

number of iterations (i), we have a population Pi containing descendants of the best

solutions found. In this population the rate of good features (blocks) is high (building-

block hypothesis) [15]. We consider this population a new biological species and we
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try to get the process of Speciation by splitting the population. The new populations

are immersed in different environments in order to minimize convergent evolution.

This ensures the formation of different species, compatible with each other in terms

of building-blocks. After a sufficient number of iterations, this process can be iterated,

creating and merging a random number of populations.

Consider for instance the following problem:

minf1 (1.2.1)

x ∈ < (1.2.2)

where f1 is the previously defined objective function.

By using a classical genetic algorithm, we could get stuck in a local minimum with

high probability.

Now let’s consider the above presented technique. We split the population P

derived from the classical genetic algorithm in P1 and P2. These two populations will

evolve indipendently, but for P2 we consider a different fitness function f2 = 5+( 1
10
x)2

as shown in figure 1.2.

-50 0 50

50

Figure 1.2: f2

After a short number of iterations, P2 could converge to solution x=0. By merging
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the two populations again, the new population P subject to function f1 can take

advantage of the building-blocks that led P2 to the solution 0 to expand its genetic

diversity and possibly improve the solution for the original problem.

1.2.2 OMEGA’s steps

In this section we present the basic scheme of our OMEGA approach. It is easy to

understand that all the concepts introduced in this approach can to be combined in

several ways. In the following we introduce a very easy pattern, useful to understand

the approach. In the other chapters of this dissertation we apply this algorithm

to different problems and in some cases we introduce different patterns to mix the

population.

Let G(x, P, f) be an evolutionary scheme, where x is the input instance, P is

a population of solutions and f is the fitness function. Let f0 be the main fitness

function of our problem, and let F = {f1, f2, . . . , fn} be a set of n fitness functions

related with f0.

Input: problem instance x. Output: a feasible solution of the given problem.

1. t = 0.

2. Creation Operation: Create Pt, the starting population for the problem.

3. Repeat until a given stopping criterion is satisfied:

(a) Execute G(x, Pt, f0) to obtain the evolved population P̂t.

(b) Split Operation: Split P̂t in P(t,1), . . . , P(t,k) populations

(c) For each population P(t,j)
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- Randomly select a fitness function fr ∈ F

- Execute G(x, P(t,j), fr) to obtain the evolved population P̂(t,j)

(d) Merge Operation: Merge populations P̂(t,1), P̂(t,2), . . . P̂(t,k) to obtain P(t+1).

(e) t := t+ 1

The basic version of the algorithm starts at time t = 0 from a unique population Pt

that evolves according to a given genetic scheme G and to the main fitness function f0.

After this evolutionary step, the obtained evolved population P̂t is split into k different

populations. Each obtained population evolves according to a given evolutionary

scheme and a fitness function fr randomly selected among those in the set F . The

evolved populations are merged into a unique population Pt+1 and the process is

iterated until a given stopping criterion is reached (see figure 1.3).

In the figure, lines S1,S2,S3,S4 represent respectively:

1. S1 : Evolutionary Step.

2. S2 : Split Operation.

3. S3 : Merge Operation.

4. S4 : Repeat until a given stopping criterion is satisfied.

The Split Operation takes as input a given population P and returns a set of k

populations (P1 . . . Pk). The k populations are obtained from P by partitioning it

into k sub-populations where k is a random value ranging from 2 to n. The size of

each Pi is chosen either equal to
⌈
|P |
k

⌉
or equal to

⌊
|P |
k

⌋
such that

∑k
i=1 |Pi| = |P |.

The Merge Operation takes as input a given set of populations Pi and returns a

unique population P =
⋃
i Pi.
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Figure 1.3: Block diagram of OMEGA’s Basic version

1.2.3 Evolutionary Step Features

When we speak about evolutionary steps, we refer to a sequence of j iterations of

a classical genetic algorithm. In particular G(x, P, f) is a genetic algorithm, where

x is the input instance, P is a population of solutions and f is the fitness function.

The population P is an input of the algorithm; after a fixed number of iterations, the

genetic algorithm evolves P into a new population P̂ .

In this metaheuristic structure we can use any genetic algorithm. However, to fully

exploit all the characteristics of the OMEGA it is important to pay particular atten-

tion to two main aspects.

1. The chromosome’s definition :

It is important to create a structure of chromosomes able to preserve the features
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of the solution after the crossover operation. In particular, in our metaheuristic

we introduce the Merge operator. This operator simulates the migration of

different ethnic groups (the populations P ) in the same environment. For this

reason we want a chromosome able to preserve the features of the solution,

although this solution is coupled to another of a different population.

2. The crossover’s definition :

The observations of the previous step imply the crossover’s importance. We

can assert that the crossover and the chromosome definition are two of the

most relevant items of a genetic algorithm and in particular these two aspects

are fundamental for the creation of a multi ethnic genetic algorithm.

1.3 Building Block and chromosome’s definition

The Genetic algorithms are relatively simple to implement, but their behavior is dif-

ficult to understand. In particular it isn’t easy understand why they often produce

high quality solutions. One hypothesis is that a genetic algorithm performs adapta-

tion by implicitly and efficiently implementing the building block hypothesis (BBH):

a description of an abstract adaptive mechanism that performs adaptation by re-

combining ”building blocks”. A description of this mechanism is given by (Goldberg

1989:41).

Anyway there are several results which contradict this hypothesis. The debate over

the building block hypothesis demonstrates that the issue of how GAs ”work” is cur-

rently far from settled. Nevertheless most solutions are designed taking into account

the building block hypothesis.
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1.3.1 GA and OMEGA chromosome observation

The main characteristic of OMEGA is the presence of different populations that evolve

together. This characteristics does not imply any difference between this approach

and a classic GA during the lifecycle of a population. On the other hand, when

elements of different species are mixed in a unique population, we have to take into

account this new situation. It is very important to create a strategy that ensures

compatibility between individuals of different populations.

For example if our problem is to look for a Hamiltonian cycle in the graph G(V,E)

(fig. 1.4) , we can use as a chromosome for the GA a {0, 1} vector associated with

the edges.

Figure 1.4: G(V,E)

In fig. 1.5 we have a population of four elements. The elements are very different

from each other. If we define a basic crossover function using the + operator we

can produce six different new chromosomes. Figs. 1.6,1.7,1.8,1.9 show four of these

solutions, where figs. 1.6,1.7 show two feasible solutions and figs. 1.8,1.9 show two
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A B C D E F G H I L

1 1 1 0 0 0 0 0 0 0

chromosome 1

A B C D E F G H I L

0 0 0 1 1 1 0 0 0 0

chromosome 2

A B C D E F G H I L

1 0 0 1 0 0 0 1 0 0

chromosome 3

A B C D E F G H I L

0 0 0 0 1 0 1 0 0 1

chromosome 4

lunedì 28 settembre 2009
Figure 1.5: chromosoms
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Figure 1.6: solution ch1 + ch2 Figure 1.7: solution ch3 + ch4

Figure 1.8: solution ch1 + ch4 Figure 1.9: solution ch2 + ch3
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unfeasible solutions. It is easy to understand that if we have a population of such

different elements it is very unlikely that we will produce feasible solutions.

For this reason if we have a GA that uses an unintelligent crossover it is necessary

to balance two aspects: (i) we need a population composed of different elements to

allow an evolution process and escape from the local minima; (ii) we need elements

that are not very far from each other, in order to produce a stable and convergent

search procedure.

These two aspects of a GA are very relevant when we define the structure of

the chromosome. When we define the chromosome for the OMEGA this problem

is accentuated. In a GA there is a single population and we can assume that the

difference between two elements isn’t very big. The reason is that the two elements

are evolved in the same population and are descendants of the same relatives. In an

OMEGA we can merge different populations and it is possible to have a crossover

between very different chromosomes.

To exploit this situation it is important to design a chromosome very accurately.

In the following a basic idea to design a chromosome for the OMEGA is shown, as

well as a possible application to the SpanningTree problem.

1.3.2 Basic ideas about the chromosome

The aim of the OMEGA chromosome is to improve the crossover compatibility be-

tween two individuals. A possible approach to achieve it is to define a structure that

automatically focuses attention on some characteristics of the chromosome and tries

to import it into the new generation. Using this approach the chromosome isn’t a rep-

resentation of a solution but a data set that contains information about the creation
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of new elements.

Figure 1.10: G(V,E)

It is easy to understand the idea by looking at an example. If our problem is to

look for a particular (for example a bounded degree) spanning tree of a graph G(V,E)

(e.g. the graph in fig. 1.10) , with |V | = k , we can use as chromosome C an integer

vector with size greater than (k − 1). Each element of the vector represents an edge

of G. We can have repetitions in C. Obviously C does not represent a spanning tree

of G but it is possible to produce it using an easy procedure. We can associate a

value to each edge that represents the number of occurrences that the edge has in C

(fig. 1.11) .

Now, we can use an algorithm such as Kruskal or Prim to compute the minimum

weight spanning tree of G. To obtain a feasible solution to our original problem.

Using this procedure the chromosome represents a suggestion for spanning tree

procedure. Obviously by mixing different populations with elements very far from

each other, we are sure that the ”suggestions” arriving from both the parents are

taken into account in the child.
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Figure 1.11: G(V,E) weighted graph

Figure 1.12: Spanning Tree
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1.3.3 OMEGA and Blocks

In the previous section, we introduced a possible definition of the OMEGA chro-

mosome. The structure is motivated by the necessity of improving the crossover

compatibility between chromosomes.

The aim of this section is to add to the previous approach another idea. Essentially

taking inspiration from the building block theory [21], we want to modify the chro-

mosome’s structure, in order to preserve substructure information after the crossover.

Our solution is to split the chromosome into sub-components, called blocks.

• Each block has a static or dynamic dimension, depending on the problem and

the approach.

• The crossover isn’t able to modify a block, it can just recombine parents’ blocks.

• The mutation is the only function able to modify a block, by adding or removing

elements, changing elements, or deleting from or adding to a chromosome’s

blocks.

In the figure 1.13 we can see three examples of OMEGA chromosomes. Each one

of the three examples is related to the figure 1.10 of the previous page. The meaning

for this chromosome is exactly the same one that we have used in the previous section.

In this last step, we want to introduce a partition of the chromosome into sub-

components.

Our intent is to create logical blocks able to describe little slices of a solution. In

our opinion there are three consequences to using this approach.

• If a block describes part of a good solution, there is some chance that its in-

troduction in another chromosome increases the fitness function, and for this
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reason we can have more copies of the same block in the population.

• Iteration by iteration we can obtain an automatic partition of the instance into

sub-problems, each one described by one or more blocks.

• The recombination of these blocks can increase the crossover’s compatibility

between elements, in particular if the elements are very different from each

other.

All the previous points are conjectures, but they represent an important part of

the intuition that led us to design this technique. In the last section of this chapter,

in order to better explain the OMEGA approach, we will apply the technique to a

well known problem, the Minimum Labeling Spanning Tree (MLST).
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Figure 1.13: OMEGA’s chromosome examples

1.4 Minimum Labeling Spanning Tree

Given a connected, undirected graph whose edges are colored (or labeled), the mini-

mum labeling spanning tree (MLST) problem seeks a spanning tree with the minimum

number of distinct colors (or labels). In this section we will use the OMEGA algo-

rithm to solve the MLST problem. We chosen this problem because it is easy to

understand and describe and because there are several papers that compare many
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optimization techniques. Our goal is not to produce the best metaheuristic for the

MLST but to compare our technique with other approaches.

1.4.1 Problem Definition

In the minimum labeling spanning tree (MLST) problem, we are given an undirected

labeled graph G = (V,E, L), where V is the set of nodes, E is the set of edges, and

L is the set of labels. We seek a spanning tree with the minimum number of distinct

labels. This problem was introduced by Chang and Leu [9], who proved its NP-

hardness by reducing it to a minimum cover problem. Since then, other researchers

have studied and presented other heuristics for the MLST. Some references on this

topic are [23, 7, 29, 11, 26, 6, 30]. In particular there are three works that introduce

Genetic Algorithms for MLST [29, 26, 30].

1.4.2 The Algorithm

The structure of the algorithm is exactly the same as the one introduced in the section

1.2.2. To describe OMEGA as applied to the MLST it is sufficient to introduce

the definition of the chromosome and explain how the crossover, the mutation and

splitting population function work, and finally, to show the set of fitness functions.

The Chromosome

The first step to describe the chromosome is the introduction of two parameters W
and H. They are used to describe the maximum dimensions of the chromosome. W
represents the width of the chromosome, in particular the maximum number of blocks.

H represents the height of the chromosome, corresponding to the maximum number
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of elements for each block. We can introduce some limitations to the dimension of

these parameters, W < |V | and H < |V |. However, in order to obtain an effective

procedure, it is preferable to set the parameters according to the input instance. In

the following experiments we used: W ← |V |
10

and H ← 3.

chromosome
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4
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lunedì 26 ottobre 2009

Figure 1.14: OMEGA’s chromosome structure

In figure 1.14 a chromosome composed of six blocks is presented. Each block has

a dimension between one and four. Now we need a procedure that takes as input a

chromosome and produces as output a spanning tree. In figure 2.6 such a procedure

is presented.

The algorithm builds the set Cost, associating with each label a negative integer

representing the occurrences of the label in the chromosome.

Using a Minimum Weight Spanning Tree procedure (MST) it is possible to build

the solution. The MST takes into account as cost for each edge e :Sol(L(e)) .

In the following we present an example that shows that it is possible to produce a

spanning tree using the input chromosome. Using as input the graph of figure 1.16,

G(V,E, L) , |V | = 7 ,

E = {(A, 0), (B, 0), (C, 1), (D, 2), (E, 2), (F, 1), (G, 2), (H, 0), (I, 1)} ,
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TreeCreator
INPUT: G(V,E,L) , chromosome c
OUTPUT: Sol ∈ E Sapnning tree of G

1: Cost← ∅
2: for all edge e ∈ c do
3: l← L(e)
4: if ∃ (l, i) ∈ Cost then {Case 1}
5: Cost← {(l, i− 1)} ∪ Cost \ {(l, i)}
6: else {Case 2}
7: Cost← {(l,−1)} ∪ Cost
8: end if
9: end for

10: Sol←MST (G(V,E, L,Cost))
11: return Sol

Figure 1.15: Spanning Tree Generator

L = {0, 1, 2} ,

and the chromosome

c = {{A,C, F}, {B,C}, {F,H}} of figure 1.17,

the procedure TreeCreator builds

Sol = {(A,−1), (B,−1), (C,−2), (D, 0), (E, 0), (F,−2), (G, 0), (H,−1), (I, 0)} .

In figure 1.19 the resulting graph is shown. Using a MST procedure, we are able to

produce the spanning tree of figure 1.20, using just two different labels.

The Crossover

The crossover is the easiest function of OMEGA’s architecture. Basically the function

takes as input two chromosomes c1, c2 and it produces as output the chromosome c3.

The procedure randomly selects 50% of the blocks of c1 and c2, and it inserts the

blocks into the new chromosome c3. In figure 1.21 a graphical example is shown.
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Figure 1.16: Input Graph
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Figure 1.17: chromosome Figure 1.18: Labels

Figure 1.19: MST Graph Figure 1.20: Spanning Tree
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Figure 1.21: Crossover

The Mutation

There are three different kind of mutation: MUT-ADD, MUT-DEL and MUT-CHANGE.

The mutation operator randomly runs one of these three; if it isn’t possible to use

MUT-ADD or MUT-DEL, MUT-CHANGE is used.

Respectively, the chances of selecting the operators are: 50%, 30%,20%.

• MUT-ADD randomly selects a block in the chromosome and if it isn’t full, it

adds another edge in the last position. The new edge is selected from the set of

edges near the connected structure, present in the same block.

• MUT-DEL randomly selects a block in the chromosome and if its dimension is

greater than one, it removes a random edge from the block.

• MUT-CHANGE randomly selects a block in the chromosome, randomly selects

an edge from the block, and replaces it with a new edge. The new edge is
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selected from the set of edges near the connected structure, present in the same

block.

The Splitting Population Function

The Splitting Population Function (SPF) is used to partition the original population

into k sub-populations. This procedure is totally random, and if h is the dimension

of the original population, it produces k new populations, each one of cardinality
h

k
.

The aim of this procedure is to move the chromosomes of a big population into k

different new populations.

The Fitness Functions

The fitness function is very easy to understand. It takes as input a chromosome c,

using the procedure 2.6 to produce a spanning tree SP that is composed of |V | − 1

edges of the original graph G(V,E, L). It produces a set C including all the labels

identified in SP , and the return value is equal to |C|. Now we want to identify other

fitness functions related to the first one. This step is very easy. The procedure builds

the function CT : L −→ R used to associate a numerical value to each label. The

new fitness function is: f :
∑
∀ l∈C CT (l). Obviously if for each label l ∈ L CT (l) = 1

we produce the original fitness function. When a new fitness function is randomly

generated, it produces a function CT that produces one for most of the labels in L,

but is able to produce a value greater than one for some labels.

Usually the procedure identifies some good solutions in the current population

and tries to forbid the selection of one or more used labels.
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1.4.3 Pseudocode

BASIC-GA
INPUT: G(V,E,L) and Population P and Fitness function ft
OUTPUT: Population P

1: Cost← ∅
2: for it iterations do
3: for all c in P les the best tree do
4: select randomly c1 ∈ P such that ft(c) > ft(c1)
5: P ← (P \ {c}) ∪ {crossover(c1, c)}
6: end for
7: for all c in P les the best one do
8: P ← (P \ {c}) ∪ {mutation(c)}
9: compute ft(c)

10: end for
11: end for
12: return P

Figure 1.22: Basic Genetic Algorithm

1.4.4 Computational Results

This is a preliminary version of this section. We compared the OMEGA’s results with

the results proposed in [7]. In fig.1.24 the first three columns show the parameters

characterizing the different scenarios (n, l and d) n: number of nodes of the graph, l:

total number of labels assigned to the graph, d: measure of density of the graph. The

remaining columns give the results of the MVCA heuristic, Variable Neighborhood

Search, Simulated Annealing, Reactive Tabu Search and the Pilot Method, respec-

tively. All the values are average values over 10 different instances. The instances set

is composed of 150 instances. In each row of the table in the figure we wrote in bold

face the best results obtained by the different tested procedures. We can see that our

approach OMEGA, except for one instance, is able to always find the best solution.
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OMEGA
INPUT: G(V,E,L)
OUTPUT: Sol ∈ E Sapnning tree of G

1: POP = {P0, P1, . . . P10} set of populations
2: |P0| = h
3: |P1| = |P2| = . . . = |P10| = 0
4: while Not End Conditions do
5: BASIC-GA(G,P0, f0)
6: if new best solution in P0 then
7: set new best solution
8: end if
9: SPF (P0) =⇒ |P0| ' |P1| ' . . . ' |P10| ' h

10
10: for all P ∈ POP do
11: BASIC-GA(G,P, frandom)
12: end for
13: P0 ⇐ P1 ∪ P2 ∪ . . . P10

14: P1 ⇐ P2 ⇐ . . .⇐ P10 ⇐ ∅
15: end while

Figure 1.23: OMEGA
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n l d MVCA VNS SA RTS PILOT OMEGA

20 20 0,8 2,6 2,4 2,4 2,4 2,4 2,4

20 20 0,5 3,5 3,2 3,1 3,1 3,2 3,1

20 20 0,2 7,1 6,9 6,7 6,7 6,7 6,7

30 30 0,8 2,8 2,8 2,8 2,8 2,8 2,8

30 30 0,5 3,7 3,7 3,7 3,7 3,7 3,7

30 30 0,2 8,0 7,8 7,4 7,4 7,5 7,4

40 40 0,8 2,9 2,9 2,9 2,9 2,9 2,9

40 40 0,5 3,9 3,9 3,9 4,0 3,7 3,7

40 40 0,2 8,6 8,3 7,4 7,9 7,7 7,4

50 50 0,8 3,0 3,0 3,0 3,0 3,0 3,0

50 50 0,5 3,9 3,9 3,9 4,0 3,7 4,1

50 50 0,2 9,2 9,1 8,7 8,8 8,6 8,6

100 100 0,8 3,3 3,1 4,0 3,4 3,0 3,0

100 100 0,5 5,1 5,0 5,2 5,1 4,7 4,6

100 100 0,2 11,0 10,7 10,7 10,9 10,3 10,1

martedì 27 ottobre 2009

Figure 1.24: OMEGA’s computational results



Chapter 2

Monocromatic Set Partitioning

2.1 Problem Definition and Basic Notation

In this chapter we focalize our attention on a new problem, the ”monochromatic

set partitioning” (MMP) problem. Given a graph G with labels (colors) associated

with the edges, a feasible solution for the MMP is a set of connected components

of G such that each component is composed exclusively of monochromatic edges.

We are looking for a feasible solution with the minimum number of monochromatic

components. In the following we prove that MMP is NP-hard and we provide some

mathematical formulations for this problem. Moreover we show a polynomial case

and in the last part of this chapter we present an OMEGA approach to the problem.

Let G = (V,E,C) be an undirected and edges labeled graph where V is the

vertex set, E the edge set and C a set of labels. A label C (i, j) ∈ C is associated

with each edge (i, j) ∈ E. A feasible solution for the MMP problem is a set of edges

SOL ⊆ E such that for each two adjacent edges (i, j), (j, k) ∈ SOL, we have that

C (i, j) = C (j, k) . The value of the objective function is equal to the number of

connected components in the sub-graph of G induced by the edges set SOL.

31
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Given a subset S ⊆ E of edges, the set C (S) =
⋃

(i,j)∈S C (i, j) is the corresponding

set of labels. The subgraph induced by a given label c ∈ C is denoted by Gc, i.e.

Gc = (V,Ec, c) with Ec = {(i, j) ∈ E : C (i, j) = c}. Similarly, we define Gc as the

subgraph of G without edges whose label is c, i.e Gc = (V,E \ Ec, C \ {c}). Let us

define Pc as the set of connected components in Gc, i.e. Pc = {P 1
c , . . . , P

r
c } where

P j
c , 1 ≤ j ≤ r, is a monochromatic component whose color is c. The set of edges

incident to a vertex i ∈ V is denoted by δ(i) = {j : (i, j) ∈ E}. If |C (δ(i))| = 1

(|C (δ(i))| = 2) then i is called a monochromatic (bi-chromatic) vertex. Given a set

of vertices X ⊆ V , we denote by G[X] = (X,E[X],C (E[X])) the subgraph of G

induced by X where E[X] = {(i, j) : i, j ∈ X}.

2.2 Problem Complexity

In this section we prove the addressed problem is NP-complete. Let us define the

decision version of our problem, namely, the Bounded Minimum Monocromatic Par-

titioning Problem (BMMP):

Bounded Minimum Monochromatic Partitioning Problem: Given an

undirected and edge labeled graph G = (V,E,C) and a positive integer k: is there a

monochromatic partitioning of G composed of less than or equal to k components, i.e.

|P(G)| ≤ k?

Theorem 2.2.1. The Bounded Monochromatic Partitioning Problem is NP-Complete.

Proof. We prove the theorem by reduction from the well known Minimum Set
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Covering Problem (MSC). Let S = {s1, s2, . . . , sp} be a set of p elements, F =

{F1, F2, . . . , Fq} be a family of q subsets of S, i.e. Fi ⊆ S, i = 1, 2, . . . , q, and k be

a positive integer. The decisional version of MSC consists in selecting no more than

k subsets in F that cover all the elements in S. We now define from the generic

instance of MSC a graph G = (V,E), a labeling function of the edges, and show

that there exists a covering of S with at most k subsets if and only if there exists a

monochromatic partitioning of G using at most k components.

S F
s1

s2

s3

s4

F1 = {s1, s2}
F2 = {s1, s3, s4}
F3 = {s2, s3}
F4 = {s3, s4}
F5 = {s5}

F1

(a) (b)

F2 F3 F4 F5

s1 s2 s3 s4 s5

F6

F6 = {s4, s5}
s5

Figure 2.1: (a) A generic instance of the Minimum Set Covering Problem, and, (b) the corre-
sponding instance of the Bounded Labeled Maximum Matching Problem.

Let us denote by S(Fi) = {sj ∈ S : sj ∈ Fi} the collection of elements of S covered

by Fi. For each subset Fi ∈ F and element sj ∈ S we define in G a corresponding

vertex Fi and sj, respectively. We define an edge in G between each vertex Fi and

the vertices sj ∈ S(Fi) with associated label i (Figure 2.1). This construction can be

accomplished in polynomial time.

Since G is bipartite and the color of edges incident to each vertex Fi is different,

it is easy to see that into any monochromatic partitioning P(G) = {P1, P2, . . . , Pk}
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of G, each component Pi either is a singleton {sj} or contains exactly one vertex Fh.

Each component Pi is univocally identified by a vertex, denoted by I(Pi), that is

equal to sj if Pi = {sj}, to Fh ∈ Pi otherwise.

Let C(S) = {Fi1 , Fi2 , . . . , Fik} be a covering of S with k size. We can define a

monochromatic partitioning with at most k components as follows. Let G′ be the

subgraph of G inducted by C(S). It is easy to see that in G′ to each element sj is

incident at least one edge, because C(S) is a cover of S. Here we distinguish two cases:

if there is only one edge incident to sj, for instance (Fih , sj) then put this element

into the same component of Fih . Otherwise, if there are more edges, select one of

them randomly and put sj into the corresponding component. At the end of process

at most k monochromatic components are produced.

On the contrary, let P(G) = {P1, P2, . . . , Pk} be a monochromatic partitioning of

G with k components. Since, by construction, there are no edges among the vertices

sj, each vertex sj either belongs to component Ph with I(Ph) = Fi or it is alone, i.e

Ph = {sj}. W.l.o.g. let {P1, P2, . . . , Pr} be the components composed by a single

vertex sj ∈ S and {Pr+1, . . . , Pk} be the sets of components containing a vertex

Fi ∈ F . The set of vertices
⋃k
h=r+1 I(Ph) cover all the elements in

⋃k
h=r+1 S(I(Ph)).

If this set includes all the elements in S then we found a covering of S whose size is

equal to k−r−1. Otherwise there are some components of {P1, . . . , Pr} which vertex

sj is not yet covered. For each of these vertices we select a vertex Fi adjacent to it.

In this way, the set of vertices Fi joined to
⋃k
h=r+1 S(I(Ph)) produces a covering of S

with size at most equal to k.
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2.3 Mathematical Formulations

In this section we introduce two formulations for the MMP problem. The main

difference between the two formulations is the technique used to obtain and count

the connected substructure. In the former we use a set of flow constraints, in the

latter we use the Miller-Tucker-Zemlin constraints [24].

The first mathematical model(M1 ) is modeled like a network flow problem. Given

the colored and undirected graph G = (V,E,C), we build a new oriented and colored

graph G′ = (V ′, E ′, C) derived from G such that V ′ = V ∪{s} and E ′ = {(i, j), (j, i) |
(i, j) ∈ E} ∪ {(s, i) | i ∈ V }, where s is a new source node connected to each

node in V . Since G′ is directed, we denote by δ+(i) and δ−(i) the forward and

backward star of node i in G′. To each node of i ∈ V ′ \ {s} is associated a request

di = −1 (destination node) wile to the source node s is associated an offer equal to

n, ds = n, in order to satisfy the requests of destination nodes. No capacity to the

edges inside the graph is associated. Notice that every time an edge of δ+(s) is used,

a new component of G is generated. Whereas our aim corresponds to minimizing the

number of connected component, we associate to each edge (s, i) ∈ δ+(s) a cost equal

to 1 if the flow crosses it and zero otherwise. For the remaining edges in E ′ the cost is

equal to zero. Minimizing the cost needed to satisfy the requests of destination nodes

means to minimize the number of used edges in δ+(s) and consequently the number

of connected components of G. In order to guarantee that all connected components

are monochromatic, we insert a constraint to ensure that in any solution all incident

edges to the same node i have the same label.

Let xij be a variable representing the flow along the edge (i, j) ∈ E ′, and let yi

be a binary variable associated with the edge (s, i) whose value is equal to 1 if (s, i)
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is used and 0 otherwise. Finally, let us define the boolean variable `i,c whose value is

equal to 1 if exist at least ane edge with label c incident to node i and 0 otherwise

(PLF )z = min
∑

i∈V ′\{s}

yi (2.3.1)

with constraints:

∑
(i,j)∈δ+(i)

xij −
∑

(k,i)∈δ−(i)

xki = di ∀i ∈ V ′ \ {s} (2.3.2)

Miyi ≥ xsi ∀i ∈ V ′ \ {s} (2.3.3)

Mc,i`i,c ≥
∑

(i,j)∈δ+(i):L(i,j)=c

xij ∀c ∈ L,∀i ∈ V ′ \ {s} (2.3.4)

Mc,i`i,c ≥
∑

(k,i)∈δ−(i):L(k,i)=c

xki ∀c ∈ L,∀i ∈ V ′ \ {s} (2.3.5)

∑
c∈L

`i,c ≤ 1 ∀v ∈ V (2.3.6)

xij ≥ 0 ∀(i, j) ∈ E ′ (2.3.7)

yi, `i,c ∈ {0, 1} ∀i ∈ V ′ (2.3.8)

Mi and Mc,i represent the size of the maximum monochromatic connected compo-

nent containing the node i in G and the size of the maximum connected component

whose color is c containing i respectively. Constraints (2.3.2) are the classical conser-

vation flow constraints. The constraints (2.3.3) guarantee that yi assume value equal

to 1 if the edge (s, i) is selected; the constraints (2.3.4) and (2.3.5) guarantee that

the variable `i,c assume value equal to 1 if at least one edge (k, i) whose label is c

is selected and zero otherwise. Finally, constraints (2.3.6) ensures that all the edges

incident to a node i have the same label.
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M2. The next mathematical formulation M2, is very compact, and very easy

to understand. This model selects the edges composing the solution. The boolean

variable xij is equal to one if and only if the model selects the edge (i, j). To count

the number of connected components present in the solution, in order to describe the

objective function an easy subtraction is used. Obviously if each connected component

included in the solution is acyclic the number of components is equal to n−∑
(i,j)∈E xij

where n = |V | (2.3.9). To ensure the subcycle elimination, the model uses the Miller-

Tucker-Zemlin family constraints [24]. We use an integer variable Ti associated with

each nodes i ∈ V . The model is able to selects the edge xij if and only if Ti > Tj

(2.3.14). Now to finish this model, it is just necessary to ensure that no edges with

different colors and incidents on the same vertex are selected at same time. We use

the variable `ik to guarantee this property. `ik is equal to one if the model selects an

edge, incident on i ∈ V of color k ∈ C (2.3.10) (2.3.11). Using the variable `ik it is

easy to apply a limitation on the number of used color for edge (2.3.13).

z = min (n−
∑

(i,j)∈E

xij) (2.3.9)
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with the constraints:

`ik ≥ xij ∀(i, j) ∈ E : k = L(i, j) (2.3.10)

`ik ≥ xji ∀(i, j) ∈ E : k = L(i, j) (2.3.11)∑
k∈C

`ik ≤ 1 ∀i ∈ V (2.3.12)∑
(i,j)∈E

xij ≤ 1 ∀i ∈ V (2.3.13)

n ∗ xij − (n− 1) ≤ Ti − Tj ∀(i, j) ∈ E (2.3.14)

xij ∈ {0, 1} ∀(i, j) ∈ E (2.3.15)

c(i, k) ∈ {0, 1} ∀i ∈ V, k ∈ C (2.3.16)

0 ≤ Ti < n ∀i ∈ V (2.3.17)

Figure 2.2: Input Graph.



39

Figure 2.3: M1 resulting Graph.

Figure 2.4: M1 Solution.
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Figure 2.5: M2 Solution.

2.4 Polynomial case

In this section we will study the relation between the complexity of our problem

(MMP) and the characteristics of the input instances. In particular we prove that is

possible solve MMP in polynomial time on acyclic graphs. Obviously each connected

component of an acyclic graph is a tree. The solution is created by combining the

optimal solution of each connected component, still optimal for the original instance.

For this reason in the following section we introduce a polynomial time algorithm

(TreeSolver) able to produce the optimal solution if the input graph is a tree.

Before describing the algorithm, we introduce some further definitions:

Input Graph G(V,E,C).

• Let F (v) be the set of nodes adjacent to v with degree equal to 1, i.e. F (v) =

{v′ ∈ V : (v, v′) ∈ E, δ(v′) = 1}

• Let F (v, c) be the set of nodes adjacent to v, by an edge of color c and degree
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equal to 1 F (v, c) = {v′ ∈ F (v) : C (v, v′) = c}

• Let F0 be the set of nodes having only adjacent node with degree equal to 1,

i.e. F0 = {v ∈ V : |F (v)| = |δ(v)|}

• Finally, let F1 be the set of nodes having one adjacent node with degree greater

than 1, the father of v that is denoted by R(v), and all the remaining adjacent

nodes with degree equal to one F1 = {v ∈ V : |F (v)|+ 1 = |δ(v)| > 1}

TreeSolver

The idea at base of this algorithm is that we can select, iteration after iteration,

edges surely included in an optimal solution. After a brief description of TreeSolverwe

present its pseudocode (2.6). Fixing a vertex randomly as root of this tree, we place

the vertices position sorted by level, accord to the distance to the root. In level n we

identify the leaves. Step by step, this algorithm selects a vertex at the level (n− 1),

and for this vertex selects a subset of incident edges X. It inserts all the edges of X

in the solution after it removes them from the input tree.

The first step of the procedure is to initialize the set Sol. In the second step start

the main loop, now iteration by iteration a vertex v ∈ F1 is selected. It identifies

c ∈ C, the color associated with the maximum number of edges in δ(v). Now we

identify two different cases.

• Case 1. There is a predominant color.
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SolveTree

1: Sol← ∅
2: while ∃v ∈ F1 do
3: c← arg max

l∈C
|F (v, l)|

4: p← R(v)
5: if |F (v, c)| > |F (v,C (v, p))| then {Case 1}
6: Sol← Sol ∪ {(v, v′) ∈ E : v′ ∈ F (v, c)}
7: V ← V \ (F (v) ∪ {v})
8: E ← E \ δ(v)
9: else {Case 2}

10: Sol← Sol ∪ {(v, v′) ∈ E : v′ ∈ F (v,C (v, p))}
11: V ← V \F (v)
12: E ← E\{(v, v′) ∈ E : v′ ∈ F (v)}
13: end if
14: end while
15: if ∃v ∈ F0 then
16: c← arg max

l∈L
|C(v, l)|

17: Sol← Sol ∪ {(v, v′) ∈ E : L(v, v′) = c}
18: end if
19: return Sol

Figure 2.6: TreeSolver



43

i.e.|F (v, c)| ≥ |F (v, l)| ∀ l ∈ C and |F (v, c)| > |F (v,C (v,R(v)))|. In this

case all the edges (v, v′) with v′ ∈ F (v, c) are introduced in Sol and v and the

nodes in F (v) are removed from the tree. In figure 2.7 the result of this step

is shown. There is exactly one predominant color (figure 2.7a). Consequently,

TreeSolver inserts in S the edges (v, v1), (v, v3) and (v, v4) and it removes the

nodes v, v1, v2, v3, v4, v5 from the tree (figure 2.7b).

(a) (b)

p

v

c2 c1 c2 c2 c1

c1

p

v1 v2 v3 v4 v5

Figure 2.7: Case 1 of while loop.

• Case 2. There is no predominant color.

In this case it selects the color equal to C (v,R(v)). All the edges (v, v′) with

v′ ∈ F (v, c) are introduced in Sol and the nodes in F (v) are removed from the

tree. In figure 2.8 the result of this step is shown. There are two predominant

colors, c1 and c2 (figure 2.7a), but since C (v, p) = c1 the color c1 is selected.

Consequently, TreeSolver inserts in S the edges (v, v2) and (v, v4) and it removes

the nodes v1, v2, v3, v4, v5 (figure 2.8b).

At the end of the while loop, F1 = ∅. Now F0 = ∅ means that we have removed
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(a) (b)
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Figure 2.8: Case 2 of while loop.

all the edges. Otherwise there is just a vertex v ∈ V0, in which case the algorithm

computes the predominant color in v and it inserts in S the corresponding edges.

2.4.1 Solution’s Optimality

Using the induction, we will proving the solution’s optimality. The first step is to

introduce a lemma. It will be used to ensure the termination of the algorithm:

Lemma 2.4.1. The node v is an internal node if and only if it isn’t a leaf.

After each iteration of TreeSolverthe number of internal nodes in the tree is decreased

by one or two units.

Proof Let v be the internal node selected at the generic iteration k of the al-

gorithm. If we are in Case 1, we remove v and all the leaf nodes connected to v

from the tree. In the resulting tree we have at least one internal node less, exactly

v (Figura 2.7a), but if |δ(R(v))| = 1 we have removed two internal nodes. If we are

instead in Case 2, the procedure removes all the leaf nodes connected to v from the

tree. Now v is a leaf, and we have just removed an internal node (Figura 2.8b)).
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(a) (b)

Figure 2.9: Base of the Induction

Theorem 2.4.2. Using a connected acyclic graph G(V,E,C), as input to the Tree-

Solveralgorithm, produces a set of monochromatic connected components of cardinality

equal to the optimal solution to the MMP problem.

Proof This proof is based on the induction method. The induction is defined on

the number of internal nodes in G. The base of the induction is defined below, it is

composed of two different cases.

1. Zero internal nodes

In this case we can have a graph composed by one node, or two nodes connected

by an edge (Figura 2.9a). In both cases the optimal solution is equal to one.

Step 15 of TreeSolver is able to find it.

2. One internal node (Figura 2.9b)

In this case the optimal solution is to select the most frequent color. Step 15 of

TreeSolver is able to find it.

Using the inductive hypothesis we can assume that TreeSolver is able to produce

the optimal solution in each graph with a number less than or equal to k of internal

nodes. Now we try to prove that TreeSolver found the optimal solution in a graph with
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Figure 2.10: Inductive step

k+1 internal nodes. Let v be the first node in G selected by TreeSolver(Figura 2.10a).

After the first iteration, using the lemma 2.4.1 we can say that in the resulting graph

G′, the number of internal nodes is decreased by one or two units. We can have two

cases:

C1 : v is present in the resulting graph (Figure 2.10b).

C2 : v isn’t present in the resulting graph (Figure 2.10c).

We can analyze the two cases C1 and C2 separately.

C1: Let Sol∗ be an optimal solution for the input graph G. We can write: |Sol∗| =
r + h − 1 where h is the number of components present in the optimal solution in

the sub-tree rooted in v, and r is the number of components present in the optimal

solution in the residual tree G′. Let S(G′) and S(Gv) be the solution computed by

the procedure respectively in residual tree G′ and in the sub-tree rooted in v. We

can define p = |S(G′)| and q = |S(Gv)|. Using the inductive hypothesis we can

say that p ≤ r and taking into account the greedy choice of the procedure we can

say that h ≤ q. Combining S(G′) and S(Gv) in a feasible solution of G we have

S(G) = S(G′) ∪ S(Gv) and obviously |S(G)| = pq − 1.



47

The −1 depends on the color incident on v. In both solutions the color incident in

v is the same and for this reason we can merge the two components including v in

S(G′) and S(Gv).

C2 is in turn divided in two sub-case C2-a and C2-b.

• There exists an optimal solution on G that don’t use the edge (p, v).

Using the inductive hypothesis and taking into account the greedy choice of the

procedure we can say that this procedure generates an optimal solution for the

input graph G.

• All the optimal solutions on G use the edge (p, v).

|Sol∗| = r + h − 1 , p = |S(G′)| and q = |S(Gv)|. Obviously h ≤ q and p ≤ r

but since the procedure doesn’t use the edge (p, v) then q < h. The solution

produced by the procedure is S(G) = S(G′) ∪ S(Gv) and |S(G)| = p + q <

r + h ⇒ p+ q ≤ r + h− 1.

2.5 Genetic Approach

In this section we use a genetic algorithm to produce an heuristic solution for the NP-

Hard instances of the problem. In particular we adapt the OMEGA (1) GA structure

to the MMP problem. This algorithm is very similar to the version proposed in the

first chapter moreover, the two problems are strictly related. Despite this similarity,

for this particular problem the structure of the chromosome and the mutation function

try to take advantage of the specific features of the problem.
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2.5.1 The Chromosome

There exist two main parameters used to describe the chromosome, W and H. They

are used to describe the maximum dimensions of the chromosome. W represents the

width of the chromosome, in particular the maximum number of blocks. H represents

the height of the chromosome, corresponding to the maximum number of elements

for each block. To obtain an effective procedure, it is preferable to set the parameters

according to the input instance. In the following experiments we have used: W ← |V |
10

and H ← 3.

chromosome

1

2

3

4

B1 B2 B2 B4 B5 B6

lunedì 26 ottobre 2009

Figure 2.11: MMP ’s chromosome structure

It is not the case that we choose H ← 3, in particular for the MMP problem

we prefer to use a low value for H. The reason is that the block represents, for

this problem, our choices for a specific vertex. In other words, the solution for this

problem is characterized by a sequence of vertices touched by just one color and a

sequence of key vertices touched by more than one color. The goal of this procedure

is to identify the vertices that use more the one color in the final solution. In figure

2.11 is presented a chromosome composed of six blocks. Each block has a dimension
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between one and four. Now we need an algorithm that takes a chromosome as input

and produces a spanning tree as output. In figure 2.12 is presented an algorithm able

to produce a spanning tree using a chromosome as input.

The algorithm builds the set Cost, associating to each edge a negative integer

representing the occurrences of the label in the chromosome. In addition, for all

the edges not presents in the chromosome, if they connect two vertices that are

monochromatic in the chromosome, or are monochromatic with a vertex that is not

present, it insert the edge as it is one time present in the chromosome.

After using a Minimum Weight Spanning Tree procedure (MST) it is possible to

build the solution. The MST takes into account as cost for each edge e :Sol(L(e)) .

TreeCreator
INPUT: G(V,E,L) , chromosome c
OUTPUT: Sol ∈ E Sapnning tree of G

1: Cost← ∅
2: for all edge e ∈ c do
3: if ∃ (e, i) ∈ Cost then {Case 1}
4: Cost← {(e, i− 1)} ∪ Cost \ {(e, i)}
5: else {Case 2}
6: Cost← {(e,−2)} ∪ Cost
7: end if
8: end for
9: while is possible add edge to Cost do

10: select (v1, v2) ∈ E such that ∀((v1, v), i) ∈ CostL((v1, v)) = l for any v ∈ V i < 0
11: if ∀((v2, v), i) ∈ CostL((v2, v)) = l for any v ∈ V i < 0 then
12: Cost← {((v1, v2),−1)} ∪ Cost
13: end if
14: if 6 ∃((v2, v), i) ∈ Cost for any v ∈ V i < 0 then
15: Cost← {((v1, v2),−1)} ∪ Cost
16: end if
17: end while
18: Sol←MST (G(V,E, L,Cost))
19: return Sol

Figure 2.12: Spanning Tree Generator
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2.5.2 The Crossover

The crossover is the easiest function of OMEGA’s architecture. Basically the function

takes as input two chromosomes c1, c2 and it produces as output the chromosome c3.

The procedure randomly selects 50% of the blocks of c1 and c2, and it inserts the

blocks into the new chromosome c3. In figure 2.13 is shown a graphical example.
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Figure 2.13: Crossover

2.5.3 The Mutation

There are three different kind of mutation MUT-ADD, MUT-DEL and MUT-CHANGE.

The mutation operator randomly runs one of these three, if isn’t possible to use MUT-

ADD or MUT-DEL it uses MUT-CHANGE.

Respectively the chances of selecting the operators are: 50%, 30%,20%.

• MUT-ADD randomly select a block in the chromosome and if it isn’t full, adds
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another edge in the last position. Let (v1, v2) be the first edge of the block; the

new edge is selected from the set of edges (v1, v) ∈ E.

• MUT-DEL randomly selects a block in the chromosome, and if its dimension is

greater than one, it removes a random edge from the block.

• MUT-CHANGE randomly selects a block in the chromosome, randomly selects

an edge from the block and replace it with a new edge. Let (v1, v2) be the first

edge of the block; the new edge is selected from the set of edges (v1, v) ∈ E.

2.5.4 The Splitting Population Function

The Splitting Population Function (SPF) is used to partition the original population

into k sub-populations. This procedure is totally random, and if h is the dimension

of the original population, it produces k new populations, each one with a dimension

equal to
h

k
. The aim of this procedure is to move the chromosomes present in a unique

big population, into k different new populations.

2.5.5 The Fitness Functions

The fitness function takes in input a chromosome c, using the procedure 2.12 produce

a spanning tree SP that is composed of |V |−1 edges of the original graph G(V,E, L).

For each non-monochromatic vertex, it selects the most frequent color and it removes

all the edges of different colors. The procedure returns the number of connected

components produced by this process. Now we want to identify other fitness functions

related to the first one. The technique is very easy. The procedure associates a

penalty cost to a defined color on a defined vertex. If the dominant color of this
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vertex is the forbidden color, an extra cost is added to the function. Usually the

procedure identifies some good solutions in the current population and tries to forbid

the selection of one or more used labels for particular vertices. The penalty cost is

usualy greater than 1 and less than 3.

2.5.6 Pseudocode

BASIC-GA
INPUT: G(V,E,L) and Population P and Fitness function ft
OUTPUT: Population P

1: Cost← ∅
2: for it iterations do
3: for all c in P les the best tree do
4: select randomly c1 ∈ P such that ft(c) > ft(c1)
5: P ← (P \ {c}) ∪ {crossover(c1, c)}
6: end for
7: for all c in P les the best one do
8: P ← (P \ {c}) ∪ {mutation(c)}
9: compute ft(c)

10: end for
11: end for
12: return P

Figure 2.14: Basic Genetic Algorithm

2.6 Results

This section presents a preliminary test phase on small instances (15 nodes, num-

ber of colors between 3 and 10 and graph density between 0.25 and 1). We solved

the problem to optimality by means of the CPLEX solver using both the Single

Commodity flow and the MTZ formulations and compared the obtained results with

our OMEGA algorithm. While the complexity of the Single Commodity formulation
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Instances Flusso MTZ Genetic
Value Time Value Time Value Time

15 25 3 1101 4 0,71 4 0,03 4 1,30417
15 25 3 1109 3 5.31 3 0,04 3 1,34739
15 25 3 1117 4 11.16 4 0,05 4 1,36868
15 25 3 1125 4 0,67 4 0,04 4 1,30625
15 25 3 1133 5 1.26 5 0,1 5 1,24156
15 25 10 1221 7 2,78 7 0,04 7 1,0552
15 25 10 1229 7 8.24 7 0,03 7 1,04701
15 25 10 1237 7 3.07 7 0,06 7 1,05988
15 25 10 1245 6 8.38 6 0,06 6 1,12753
15 25 10 1253 6 10.04 6 0,06 6 1,14058
15 1 3 1581 1 21.36 1 3,59 1 8,4705
15 1 3 1589 1 1.26 1 0,8 1 8,4547
15 1 3 1597 2 4320.14.24 1 2,95 1 8,51108
15 1 3 1605 2 4320.14.24 1 1,17 1 8,55474
15 1 3 1613 2 4320.14.24 1 2,23 1 8,45683
15 1 10 1701 2 2211.21.36 2 74,26 3 8,28533
15 1 10 1709 2 147,68 2 70,03 3 8,40188
15 1 10 1717 2 4320.43.12 2 71,91 2 8,45794
15 1 10 1725 2 4320.14.24 2 15,2 2 8,40143
15 1 10 1733 2 918.57.36 2 20,72 2 9,4352
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OMEGA
INPUT: G(V,E,L)
OUTPUT: Sol ∈ E Sapnning tree of G

1: POP = {P0, P1, . . . P10} set of populations
2: |P0| = h
3: |P1| = |P2| = . . . = |P10| = 0
4: while Not End Conditions do
5: BASIC-GA(G,P0, f0)
6: if new best solution in P0 then
7: set new best solution
8: end if
9: SPF (P0) =⇒ |P0| ' |P1| ' . . . ' |P10| ' h

10
10: for all P ∈ POP do
11: BASIC-GA(G,P, frandom)
12: end for
13: P0 ⇐ P1 ∪ P2 ∪ . . . P10

14: P1 ⇐ P2 ⇐ . . .⇐ P10 ⇐ ∅
15: end while

Figure 2.15: MMP OMEGA

grows significantly even on these small instances, the MTZ formulation has much bet-

ter performances. Our OMEGA approach reaches the optimal solution value in most

of the istances and differs at most of a value of 1 on the others, while still providing

fast computational times.



Chapter 3

Bounded Degree Spanning Tree

3.1 Introduction

In this chapter we focus our attention on telecommunication network problems, with

emphasis on optical networks. These networks require specific constraints to be mod-

eled in order to take into account their particular physical characteristics, such as

the propagation of the light in the optical fiber. In particular, in an optical network,

the wave division multiplexing technology allows to propagate different light beams

on the same optical fiber, as long as they use a different fixed wavelength. In this

kind of networks multicast technology permits to replicate the optical signal from

one source to many destination nodes by means of a network device (switch ) that

permits to replicate a signal, splitting light. Many applications, such as world wide

web browsing, video conferences etc., require such a technology for efficiency pur-

poses. Such application often require the individuation of connected sub-networks

such as the spanning trees (ST). There are several variants of the ST problem that

are useful to model problems arising in communication networks. For example, the

network may be required to connect a specified subset of nodes (Steiner Tree Problem

55
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[22]); if a measure is assigned with each link, one could be interested in looking for

homogeneous subgraphs of the network (Minimum Labelling Spanning Tree Problem

[9, 7]); in optical networks it is useful to connect the nodes in a way such that the

number of connections of each node is limited (Bounded Degree Spanning Tree) or

the number of connection of each node influence the objective function (Spanning

Tree with Minimum Number of Branch Nodes [18, 19]). In this chapter we focus our

attention on the spanning tree with Minimum number of Branch Vertices problem or

MBV and on two variants. In the optical networks the MBV problem is used to min-

imize the number of required light splitting device (switch). This is very important

both to minimize the costs and to preserve the quality of the signals. In the following

we illustrate the three problems: Given a connected graph G a vertex is said to be

branch if its degree is greater than 2. We consider three problems arising in the con-

text of optical networks: (i) finding a spanning tree of G with the minimum number

of branch vertices (ii) finding a spanning tree of G such that the degree sum of the

branch vertices is minimized. (iii) Let d the degree sum of the branch vertices let b

the number of branch vertices, finding a spanning tree of G such that (d− (2 ∗ b)) is

minimized. In this work for these NP-hard problems we analyze the relation between

each other, provide a single commodity flow formulation to solve the problems by

means of a solver and a genetic metaheuristic. We compare the solutions of the solver

with the solutions of the genetic metaheuristic and of other heuristics available in

literature [8].
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3.2 Problem definition and motivations

A vertex of a graph is a branch vertex if and only if its degree is greater than two, in

the fig 3.1 the vertices labeled B.

Figure 3.1: branch vertex example

Given a connected graph G. We can define the minimum branch vertices prob-

lem (MBV) as following.

(MBV): finding a spanning tree of G with the minimum number of branch vertices.

The light splitting device (switch), are hardware components used to propagate

light beams from a single source to two different destinations. In a real network the

number of this kind of devices is imitated, and for this reason is important to minimize

the number of used device to allow the maximum number of possible connections. The

nodes of the tree whose degree is greater than 2 are our branch nodes. Switches are
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located on such branch nodes of the tree.

Such a problem has been addressed in Gargano et al. [19] where the computational

complexity of the problem is studied and shown to be NP-complete on general graphs

and cubic graphs.

Moreover, we Introduce a related problem, that is more suitable to model real

costs of such location problem on optical networks.

The definition of the Minimum Degree Sum Problem (MDS) is:

(MDS): finding a spanning tree of G such that the degree sum of the branch vertices

is minimized.

This problem was introduced by Cerulli et al. in [8]. The reason of the introduction

of this new problem are motivated by the necessity of create a model closest to the

real problem defined on optical networks. Indeed, many devices can only duplicate

laser beams, and the effective number of devices to be located on a branch node,

in order to replicate lights, is directly related to the number of edges incident to the

node. In a branch vertices the number of optical switch needed to duplicate the signal

is strictly related to the degree of the vertex and in particular, if the degree of the

vertex v is equal to x, we need exactly x− 2 light splits Fig. 3.2.

Let a spanning tree T of a graph G we define sd(T ) of T as the sum of the degree

of the branch vertices. We define nb(T ) as the number of branch vertices of T . Now

we define the third problem introduced in the previous chapter as the identification

of the spanning tree ST of G that minimizes sd(T )−2∗nb(T ) (ML). The motivation

behind this objective function is that each branch vertex v of degree x requires exactly

x− 2 switches. This problem was well approached in the paper [28]. In this chapter
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two approximate algorithms are presented. In the general case a 2-OPT algorithm

is presented. In the following we prove that it is equivalent to look for the spanning

tree with the minimum number of leaves (ML); this one is a well known NP-HARD

problem.

Figure 3.2: switch example

3.3 Mathematical Formulation

Let us consider an undirected network G = (V,E), where N denotes the set of n

vertices and E the set of m edges. We consider the oriented version of the graph

where two oriented arcs (u, v) and (v, u) are associated to each edge (u, v) ∈ E. We

denote by E ′ this new set of edges. The set of variables for the model are the following:

- binary variable xe for each e ∈ E that assumes value equal to 1 if arc e is

selected and value equal to 0 otherwise;
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- binary variable yv for each v ∈ V that assumes value equal to 1 if vertex v is of

the branch type (that is its degree, as vertex of the tree, is greater than two),

and is equal to 0 otherwise.

We denote by A(v) the set of incident edges to vertex v and by δv its size, i.e.

δv = |A(v)|. Let us denote by A+(v) and A−(v), the set of edges in E ′ outgoing from

v and incoming into v, respectively. A spanning tree T of G can be found by sending

from a source vertex s ∈ V one unit of flow to every other vertex v ∈ V \ {s} of

the graph [1]. We introduce both the binary variable xuv for each (u, v) ∈ E ′ that

assumes value equal to 1 if edge (u, v) is selected and value equal to 0 otherwise and

the flow variable fuv for each (u, v) ∈ E ′ representing the flow going from vertex u to

vertex v.
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The single commodity flow formulation (SC) of MBV is then the following [8]:

min
∑
v∈V

yv (3.3.1)

s.t. :∑
(u,v)∈A−(v)

xuv = 1 ∀ v ∈ V \ {s} (3.3.2)

∑
(s,v)∈A+(s)

fsv −
∑

(v,s)∈A−(s)

fvs = n− 1 (3.3.3)

∑
(v,u)∈A+(v)

fvu −
∑

(u,v)∈A−(v)

fuv = −1 ∀ v ∈ V \ {s} (3.3.4)

xuv ≤ fuv ≤ (n− 1)xuv ∀ {u, v} ∈ E ′ (3.3.5)∑
(v,u)∈A+(v)

xvu +
∑

(u,v)∈A−(v)

xuv − 2 ≤ δvyv ∀ v ∈ V (3.3.6)

yv ∈ {0, 1} ∀ v ∈ V (3.3.7)

xuv ∈ {0, 1} ∀ (u, v) ∈ E ′ (3.3.8)

fuv ≥ 0 ∀ (u, v) ∈ E ′ (3.3.9)

The objective function (3.3.1) is the minimization of the total number of branch ver-

tices. Constraints (3.3.2) ensure that each vertex in the optimal spanning tree has

exactly one incoming edge. Equations (3.3.3) and (3.3.4) balance the flow at each

vertex and ensure the connectivity of any feasible solution. Constraints (3.3.17) are

coupling constraints linking the flow variable f with the binary variables x. The

coupling constraints (3.3.6) ensure each variable yv to be equal to 1, whenever v has

more than two adjacent edges belonging to the optimum spanning tree.

The mathematical formulation for MDS requires the additional integer decisional

variables counting the degree of the branch vertices of the solution:
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zv =

0, if v is not branch;

δT (v), otherwise.
(3.3.10)

The mathematical model for MDS requires to minimize the objective function

min
∑
v∈V

zv (3.3.11)

subject to constraints (3.3.2) - (3.3.9) and the additional constraints

∑
(u,v)∈A−(v)

xuv +
∑

(v,u)∈A+(v)

xvu − 2 + 2yv ≤ zv, ∀ v ∈ V (3.3.12)

Using the same mathematical model that define the MBV problem, we can model

the ML problem. It is important change the constraints 3.3.6 and modify the sense

of the variables y.

- binary variable yv for each v ∈ V that assumes value equal to 0 if its degree, as

vertex of the tree, is greater than one, and is equal to 1 otherwise.
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min
∑
v∈V

yv (3.3.13)

s.t. :∑
(u,v)∈A−(v)

xuv = 1 ∀ v ∈ V \ {s} (3.3.14)

∑
(s,v)∈A+(s)

fsv −
∑

(v,s)∈A−(s)

fvs = n− 1 (3.3.15)

∑
(v,u)∈A+(v)

fvu −
∑

(u,v)∈A−(v)

fuv = −1 ∀ v ∈ V \ {s} (3.3.16)

xuv ≤ fuv ≤ (n− 1)xuv ∀ {u, v} ∈ E ′ (3.3.17)∑
(v,u)∈A+(v)

xvu +
∑

(u,v)∈A−(v)

xuv − 1 ≥ 1− yv ∀ v ∈ V (3.3.18)

yv ∈ {0, 1} ∀ v ∈ V (3.3.19)

xuv ∈ {0, 1} ∀ (u, v) ∈ E ′ (3.3.20)

fuv ≥ 0 ∀ (u, v) ∈ E ′ (3.3.21)

The objective function (3.3.13) is the minimization of the total number of degree

one vertices. Constraints (3.3.14) ensure that each vertex in the optimal spanning

tree has exactly one incoming edge. Equations (3.3.3) and (3.3.16) balance the flow

at each vertex and ensure the connectivity of any feasible solution. Constraints (??)

are coupling constraints linking the flow variable f with the binary variables x. The

coupling constraints (3.3.18) ensure each variable yv to be equal to 1, whenever v has

less than two adjacent edges belonging to the optimum spanning tree.



64

3.4 Relations among MBV, MDS and ML

The three problems are strictly related and in many cases a optimal solution for one

of the three is optimal for one or both the other two problems. Our first intention is

prove that there are graphs, having optimal solution for one of the problems that is

not optimal for one or both the other two.

3.4.1 Notations

We define the following variables:

• Vi : subset of the main set of vertex V containing all nodes having degree

i. As a consequence, as the greatest degree of a node is n − 1, we have that∑n−1
i=0 |Vi| = |V |

• VB : subset of the main set of vertex V containing all nodes having degree

greater than 2, so VB =
⋃n−1
i=3 Vi. Given the above definition, we have that∑n−1

i=3 |Vi| = |VB|

• For each subset X of V, so that X ⊆ V , we define the function S(X) as the

sum of the degrees of the nodes belonging to the set X. From this definition we

can see that S(Vy) = y |Vy|, for 0 ≤ y ≤ n− 1, because all nodes in the subset

Vy have degree y. We will see that the cases y = 1 and y = 2 (the subsets of

nodes with degree 1 and 2 respectively) will have a particular importance.

3.4.2 The problems are not equivalent

Theorem 1. There is a subset of graphs whose optimal solution for MBV,MDS does

not coincide with the optimal solution for ML.
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Proof. In Figure 3.3 we can see an example of graph.

Figure 3.3: Example graph

For this graph we compute the optimal solution for tme MBV and MDS problems

Figure 3.4 and the solution for the ML problem Figure 3.5.

Figure 3.4: MBV MDS solution

The spanning tree ST1, optimal solution for the MBV and MDS is the same. In

this tree we identify 1 branch vertex, with degree equal to 5. In the spanning tree
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Figure 3.5: ML solution

ST2 solution for the ML we identify 2 branch vertices, with degree sum equal to 6.

Is easy to see that he number of required switch for ST1 is equal to 3 but the number

of switch required for ST2 is 2.

Theorem 2. There is a subset of graphs whose optimal solution for MBV does not

coincide with the optimal solution for MDS.

Figure 3.6: Example graph

Proof. Given the graph in figure 3.6, the spanning tree shown in picture 3.7

represents an optimal solution for the MBV problem, with value one. Anyway, it’s
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Figure 3.7: MBV optimal solution Figure 3.8: MBV, MDS optimal solution

not an optimal solution for MDS, that is 4 in this spanning tree. The optimal solution

for MDS is shown in picture 3.8 and its value is 3.

Theorem 3. There is a subset of graphs whose optimal solution for MDS does not

coincide with the optimal solution for MBV.

Proof. Given the graph in figure 3.9, the spanning tree shown in figure 3.10

represents an optimal solution for the MDS problem (6). Anyway, it’s not an optimal

solution for MBV (2). The optimal solution for MBV is shown in figure 3.11 and his

value is 1.
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Figure 3.9: Example graph

Figure 3.10: MDS optimal solution Figure 3.11: MBV,MDS optimal solution
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3.4.3 Relations among the problems

Property 1. S(V ) = 2 |V | − 2

Proof. As a n-nodes’ spanning tree has, as definition, exactly n − 1 edges, and

each edge weighs upon two nodes, the sum of the degrees of all the nodes is 2(n− 1).

So we have that:
S(V) = 2 |E ′| (From the spanning tree definition)

= 2(|V | − 1) (number of edges = number of nodes minus 1)

= 2 |V | − 2

Property 2. S(VB) = 2 |V | − 2− |V1| − 2 |V2|

Proof. We have that:

S(V) = S(V1) + S(V2) + S(VB) (Because V = V1

⋃
V2

⋃
VB)

= |V1|+ 2 |V2|+ S(VB) (Definitions)

Besides, from property 1:

S(VB) = 2 |V | − 2− |V1| − 2 |V2|
So we see that S(V ) = 2 |V |−2 is constant, while |V 1| and |V 2| change depending

on the morphology of the spanning tree: while they augment, S(VB) diminishes.

Property 3. |V1| = S(VB)− 2 |VB|+ 2

Proof.
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S(VB) = 2 |V | − 2− |V1| − 2 |V2| ( by Property 2)

|V1| = 2 |V | − 2− S(VB)− 2 |V2|
= 2(|V | − |V2|)− 2− S(VB)

= 2(|VB|+ |V1|)− 2− S(VB)

= 2 |VB|+ 2 |V1| − 2− S(VB)

= S(VB) + 2− 2 |VB|
This property shows how there is a strict relation between the degree of branch

nodes and the number of degree 1 nodes.

Property 4. S(VB) = |VB| − |V2| − 2 + |V |

Proof.

S(VB) = 2 |V | − 2− |V1| − 2 |V2| ( by Property 2)

= 2 |V | − 2− S(VB)− 2 + 2 |VB| − 2 |V2| (by Property 3)

2S(VB) = 2 |V | − 4 + 2 |VB| − 2 |V2|
S(VB) = |V | − 2 + |VB| − |V2|

This property shows the relation between the sum of the degree of branch nodes

and the cardinality of branch and grade 2 nodes.

Now using these theorems and the previous notation, we are able to give another

formulation of the objective function for all the analyzed problems.
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The objective function of the MBV problem is:

min |VB| (|V | = |V1|+ |V2|+ |VB|) (3.4.1)

min |V | − |V1| − |V2| (3.4.2)

(|V |) + min− |V1| − |V2| (3.4.3)

(|V |)−max |V1|+ |V2| (3.4.4)

The objective function of the MDS problem is:

minS(VB) ( by theorem 2 ) (3.4.5)

min 2 |V | − 2− |V1| − 2 |V2| (3.4.6)

(2 |V | − 2) + min− |V1| − 2 |V2| (3.4.7)

(2 |V | − 2)−max |V1|+ 2 |V2| (3.4.8)

The objective function of the ML problem is:

minS(VB − 2 |VB|) ( by theorem 3 ) (3.4.9)

min |V1| − 2 (3.4.10)

(−2) + min |V1| (3.4.11)

(−2)−max− |V1| (3.4.12)

Using the notation:

fo(α, β) = maxα |V1|+ β |V1| (3.4.13)

We are able to identify the optimization function to produce the optimal solution

for all the three problems.
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• MBV

fo(1, 1)

• MDS

fo(1, 2)

• MBV

fo(−1, 0)

3.5 OMEGA Algorithm

In this section we introduce a GA that can be used for all the variants of the optical

splits problem. The main characteristic of this problem that suggests us to use an

OMEGA algorithm is that all the three variants are strictly related and a good

solution for one of the variants is a good solution for the other two. In other words

we can use the tree different fitness functions (defined for the previously problems)

for the different populations of OMEGA.

The largest part one of the structures and solutions used in this section are iden-

tical to the standard OMEGA algorithm presented in the previous chapter.

The Chromosome

The crossover is exactly the same used in the previous chapter. Obviously there is a

big difference in the chromosome evaluation, because the MBV problem is not defined

on a colored graph. To produce a spanning tree from a chromosome we use a minimum

weight spanning tree algorithm. This algorithm counts the repetition of the colors
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associated to the edges. Now we use the same technique but to compute the weight

associated to each edge we count the repetitions of the edge in the chromosome.

The Crossover

Basically the function takes as input two chromosomes c1, c2 and produce as output

the chromosome c3. The procedure randomly selects 50% of the blocks of c1 and c2,

and inserts the blocks into the new chromosome c3.

The Mutation

There are three different kinds of mutation: MUT-ADD, MUT-DEL and MUT-

CHANGE. The mutation operator randomly runs one of these three, if it isn’t possible

to use MUT-ADD or MUT-DEL it uses MUT-CHANGE.

Respectively, the chances of selecting the operators are: 50%, 30%,20%. This three

operators are the most important difference between the previous OMEGA and this

algorithm. The characteristic is that each blocks represents a little connected com-

ponents of the input graph.

• MUT-ADD randomly selects a block in the chromosome and if it isn’t full, adds

another edge in the last position. The new edge is selected from the set of edges

near the connected structure, present in the same block.

• MUT-DEL randomly selects a block in the chromosome and if its dimension is

greater than one, it remove a random edge from the block.

• MUT-CHANGE randomly selects a block in the chromosome, randomly selects

an edge from the block, and replaces it with a new edge. The new edge is
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selected from the set of edges near the connected structure, present in the same

block.

The Fitness Functions

The fitness function used in this section depends on the specific problem that we try

to solve. If we count the number of vertices of degree one in the spanning tree V1 and

the number of vertices of degree two V2, we can define:

(MBV): MAX V1 + V2

(MDS): MAX V1 + 2 ∗ V2

(Minimum Leaves): MAX V1 + 2 ∗ V2

A generic problem is:

MAX α ∗ V1 + β ∗ V2

modifying this two parameters α and β we are able to produce different fitness func-

tions.
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Instances MBV MDS Genetic
MDS MBV

Value Time Value Time Value Time Value Time
istanza n=30 d=130 a=39 1.txt 4 0.02000 17 0.00001 17 13,86 5 7,00
istanza n=30 d=130 a=39 2.txt 2 0.03000 15 0.00001 16 7,34 2 5,30
istanza n=30 d=130 a=39 3.txt 3 0.02000 16 0.00001 16 7,49 3 8,40
istanza n=30 d=130 a=39 4.txt 4 0.01000 18 0.00001 19 8,32 5 5,36
istanza n=30 d=130 a=39 5.txt 5 0.07000 19 0.00001 19 9,11 5 5,30
istanza n=30 d=150 a=45 1.txt 3 0.03000 15 0.00001 17 6,96 3 7,81
istanza n=30 d=150 a=45 2.txt 2 0.08000 10 0.00001 12 6,42 2 0,03
istanza n=30 d=150 a=45 3.txt 2 0.04000 13 0.00001 13 7,16 2 3,68
istanza n=30 d=150 a=45 4.txt 2 0.02000 12 0.00001 12 7,01 3 5,25
istanza n=30 d=150 a=45 5.txt 2 0.28000 11 0.00001 12 7,12 2 5,81
istanza n=30 d=200 a=60 1.txt 1 0.19000 3 0.00001 3 7,57 1 5,64
istanza n=30 d=200 a=60 2.txt 1 0.10000 4 0.00001 5 6,95 1 11,07
istanza n=30 d=200 a=60 3.txt 1 0.26000 4 0.00001 4 0,00 1 0,16
istanza n=30 d=200 a=60 4.txt 1 0.43000 4 0.00001 4 7,08 1 6,91
istanza n=30 d=200 a=60 5.txt 1 1.16000 4 0.00001 4 0,00 2 0,05
istanza n=30 d=400 a=120 1.txt 0 0.09000 0 0.00001 0 0,00 0 0,02
istanza n=30 d=396 a=119 2.txt 0 0.05000 0 0.00001 0 0,00 0 0,02
istanza n=30 d=393 a=118 3.txt 0 0.07000 0 0.00001 0 0,00 0 0,03
istanza n=30 d=406 a=122 4.txt 0 0.11000 0 0.00001 0 0,00 0 0,02
istanza n=30 d=406 a=122 5.txt 0 0.07000 0 0.00001 0 0,00 0 0,02

3.6 Results

Previous table shows a set of preliminary results comparing the MBV and MDS

genetic algorithm, with the optimal solution produced by the CPLEX solver. We

used the mathematical model described in Section 3.3. These results point out the

effectiveness of the OMEGA technique, even if it still needs further optimizations.



Chapter 4

Multi-Period Street Scheduling
and Sweeping (MPS3)

4.1 Introduction

Consider a city which seeks to sweep a subset of its streets over two days, and even day

and an odd day, with a single street sweeper. The street sweeper is restricted, however,

in that he cannot sweep a side of a street if there are cars parked on that side. Because

the city requires parking to be available in certain areas, it has parking constraints

associated with each street, dictating parking availability and hence sweeping ability.

The city puts up signs to enforce these parking constraints. It is important to note

that the collection of these signs need not be unique to be feasible. For example, a

common parking constraint (and a central motivator for this problem) is the require-

ment that parking be available on at least one side of a street at all times. Assuming

both sides must be swept, on each day one side of this street must be available for

parking and the other side must be clear for sweeping. There are two feasible choices

for the enforcing signs: Sweep the left side of the street on even days and the right on

odd days (with parking available on the other side of the street), or sweep the right

on even days and the left on odd days.
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With the signs in place, we have the following key problem, which we call Variant

0: How does the city route the street sweeper while obeying the signs (and hence the

parking constraints) to minimize total distance traveled? It is important to note this

problem is not simply a Directed Rural Postman Problem1. For example, on streets

that must be swept but never have available parking, there is a choice of which day

to sweep each side of the street. In particular, both sides of the street could be swept

on the same day or different days. We define a schedule to assign a sweeping day,

even or odd, to each street-side that must be swept. Given a schedule, the city can

obtain an optimal sweeping route by solving the Directed Rural Postman Problem for

each day. Thus, the problem can be stated as: solve for the optimal schedule given

existing street signs.

We extend this problem to the following two extensions:

4.1.1 Variant 1

Suppose the city decides to redo all the parking signs for the entire city. How should

the city schedule the closing and non-closing of each side of each street and route the

street sweeper so that the length of the optimal sweeping path is minimized while

satisfying the parking constraints of each street?

It is clear that the relaxing of the schedule can only improve the objective. Con-

sider the following small city graph which all street sides must be swept and all streets

require available parking at all times:

Suppose the existing city schedule is to sweep (1, 2), (4, 2), (4, 3), and (3, 1) on

even days (Figure 4.2) and (2, 1), (2, 4), (3, 4), and (1, 3) on odd days (Figure 4.3).

1The Directed Rural Postman Problem can be stated as follows: Given a directed graph G =
(V,E), subset ER ⊆ E of required edges, and non-negative costs associated with each edge of G,
determine a closed path with minimum total cost traversing the links ER at least once.
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Figure 4.1: All streets must be swept and require available parking

Then, for even days, the optimal sweeping path that begins and ends at node 1 is

1→ 2→ 4→ 2→ 4→ 3→ 1. Similarly, the optimal sweeping path for odd days is

1→ 3→ 4→ 2→ 4→ 2→ 1. If each edge has a cost of 1, then the total deadhead

(non-productive travel) cost is 4.

Figure 4.2: Bolded edges are street-sides that must be swept on day 0
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Figure 4.3: Bolded edges are street-sides that must be swept on day 1

Day 1 2

Schedule



(1, 2)

(4, 2)

(4, 3)

(3, 1)



(1, 3)

(3, 4)

(2, 4)

(2, 1)

Solution



(1, 2)

(2, 4)

(4, 2)

(2, 4)

(4, 3)

(3, 1)



(1, 3)

(3, 4)

(4, 2)

(2, 4)

(4, 2)

(2, 1)

Sub Cost 6 6

Cost 12
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However, if the city exchanges (4, 2) and (2, 4), the schedule (1, 2), (2, 4), (4, 3), and

(3, 1) on even days (Figure 4.4) and (2, 1), (4, 2), (3, 4), and (1, 3) on odd days (Figure

4.5) results. The optimal solution is 1 → 2 → 4 → 3 → 1 and 1 → 3 → 4 → 2 → 1

for even and odd days, respectively, which results in a total deadhead cost of 0.

Figure 4.4: Bolded edges are street-sides that must be swept on day 0

Figure 4.5: Bolded edges are street-sides that must be swept on day 1
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Day 1 2

Solution



(1, 2)

(2, 4)

(4, 3)

(3, 1)



(1, 3)

(3, 4)

(4, 2)

(2, 1)

Schedule



(1, 2)

(2, 4)

(4, 3)

(3, 1)



(1, 3)

(3, 4)

(4, 2)

(2, 1)

Sub Cost 4 4

Cost 8

4.1.2 Variant 2

Suppose a city has an existing set of street signs. How can the city minimally change

these street signs to allow for a schedule with a maximum decrease in distance traveled

by the street sweeper?

This problem is a natural extension of Variant 1. There is a cost for changing a

street sign because it confuses those residents who are familiar with the existing one.

Thus, it could be desirable to achieve a significant fraction of the benefit of redoing

all the signs at a reduced cost of inconvenience. We note that Variant 2 will solve
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Variant 0 by simply assigning a sufficiently high penalty cost to changing a street

sign.

The rest of the work will be organized as follows: Section 2 will review the relevant

literature. In Section 3, we formulate the problem as an integer program. In Section 4,

we introduce our genetic algorithm. In section 5, we discuss the results of the genetic

algorithm and compare it to the CPLEX implementation of the integer program

formulation. Finally, we offer concluding remarks and directions for future research.

4.2 Literature Review

The generic street sweeping problem can be described at a Directed Rural Postman

Problem, for which Christofides et al. [10] give a heuristic and mathematical program-

ming formulation. Using their heuristic, the authors solved twenty-three instances

within 1.3% of optimality.

Bodin and Kursh [4], [5], describe a computer-assisted system for scheduling and

routing of multiple street sweepers. Their model, like ours, deals with urban settings

that involve one-way streets and parking constraints. The required edges are directed,

a subset of the entire considered graph, and not necessarily connected. Unlike our

work, Bodin and Kursh do not have multi-period parking constraints and instead they

regard parking constraints on a street as time-window constraints during a single

day. Their algorithm seeks to assign streets to sweepers and route the sweepers,

while obeying parking regulations, balancing workload, and minimizing deadhead.

The authors apply the algorithms to pilot studies in New York City and Washington,

D.C.

Eglese and Murdock [14] describe their street sweeping application in Lancashire
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County Council in England. Their work differs from [4] and [5] in that there are

no parking considerations to be made and streets can be regarded as bidirectional

because in rural areas street sweepers are allowed to traverse a street against traffic.

4.3 Problem Formulation

4.3.1 Variant 1

We represent the city as a directed graph G = (V,E) where E = {(i, j, k)|i, j ∈ V, k =

0, 1}. Each street is represented by exactly two edges representing the two sides of

the street that must be swept. They are either (i, j, 0) and (i, j, 1) if the street is a

1-way street from intersection i to intersection j, or (i, j, 0) and (j, i, 0) if the street is

a 2-way street. We assume that the directed graph G is strongly connected because

we are considering a city. It is logical to assume that one would be able to reach any

intersection in the city from any other intersection. Additionally, the street sweeper is

responsible for sweeping some subset of G determined ahead of time. Thus, for each

street (the associated pair of edges), we have the four possible states for an allowed

schedule:

1. Both sides never need to be swept. Travel along either side will result in dead-

heading.

2. One side does not need to be swept and the other does. Travel along the former

will result in deadheading, and the latter may be swept on either day.

3. Both sides need to be swept, but cannot be swept on the same day. This is the

situation where parking is required to be available on one side of the street at

all times.
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4. Both sides need to be swept. This allows for both streets to be swept on the

same day. This could occur if a street needs to be swept but there is no parking

to consider.

These states are determined ahead of time and are requirements for a feasible

schedule. If an edge (i, j, k) (and its associated pair) is subject to the constraint

given by state i (enumerated as above), we say that (i, j, k) ∈ Si. The problem

is to determine a feasible schedule that yields the Eulerian tour with the smallest

deadhead. We note that the orientation of the street signs is completely determined

by a schedule, and so we only concern ourselves with obtaining the optimal schedule.

We define:

1. α ∈ {0 =even day, 1 =odd day}.

2. M to be the number of vertices.

3. xαi,j,k as the number of times the solution traverses along edge (i, j, k) on day α.

4. uαi,j,k =

{
1 : (i, j, k) traversed on day α

0 : (i, j, k) otherwise.

5. cij as the cost from node i to node j.

6. rαi,j,k =

{
1 : (i, j, k) swept on day α

0 : (i, j, k) otherwise.

7. yαi =

{
1 : node i visited on day α

0 : otherwise.

The formulation is then as follows:

Minimize
∑
i,j,k,α

cijx
α
i,j,k (4.3.1)
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such that

∑
j,k

xα0,j,k ≥ 1 ∀ α (4.3.2)

∑
i,k

xαi,j,k =
∑
i,k

xαj,i,k ∀ j, α (4.3.3)

xαi,j,k ≥ rαi,j,k ∀ i, j, k, α (4.3.4)

xαi,j,k ≥ uαi,j,k ∀ i, j, k, α (4.3.5)

∑
j,k

xαi,j,k ≤Myαi ∀ i, j, k, α (4.3.6)

rαi,j,0 + rαj,i,0 = 1 ∀ i, j, α where (i, j, 0), (j, i, 0) ∈ S3 (4.3.7)

rαi,j,0 + rαi,j,1 = 1 ∀ i, j, α where (i, j, 0), (i, j, 1) ∈ S3 (4.3.8)

∑
α

rαi,j,k = 1 ∀ i, j, k, α where (i, j, k) ∈ S2 or S4 (4.3.9)

∑
i

yαi = 1 +
∑
i,j,k

uαi,j,k ∀ α (4.3.10)

vαj ≥ (vαi + 1)− (M − 1)(1− uαi,j,k) ∀ i, j, i 6= j, α (4.3.11)
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1 ≤ vαj ≤M − 1 ∀ 1 ≤ j ≤M,α (4.3.12)

∑
i,k

uαi,j,k ≤ 1 ∀ j, α (4.3.13)

0 ≤ rαi,j,k, u
α
i,j,k ≤ 1, 0 ≤ xαi,j,k ∀ i, j, k, α (4.3.14)

We are essentially solving the Rural Postman Problem over two days subject to

the pre-determined constraints while allowing freedom in the schedule. In (4.3.1) we

simply add the costs of travel on all days. Equations (4.3.2) require the street sweeper

to leave from the depot and (4.3.3) enforce flow balance on every node. Equations

(4.3.4) enforce coverage of a required edge. Equations (4.3.5) and (4.3.6) partially

force the binary behavior of uαi,j,k and yαi respectively (the objective function handles

the rest). Equations (4.3.7) and (4.3.8) require that exactly one side of the street

is swept each day when necessary and equations (4.3.9) require that if a street is to

be swept, it must be swept on exactly one day. (4.3.10) forces a Hamiltonian cycle.

Finally, equations (4.3.11), (4.3.12), and (4.3.13) are the traditional MTZ subtour

elimination constraints [24] required since the set of required arcs may no longer be

connected.

It is clear that this problem is NP-hard. If one generates a graph of one-way

streets with required edges that are not connected, the problem becomes a mild

generalization of the Directed Rural Chinese Postman Problem which is NP-hard.

Thus, we use a heuristic methodology to solve this problem.
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4.3.2 Variant 2

There are two formulations that incorporate the desire to restrict the number of street

reassignments, both very similar to the formulation of Variant 1. In the first, only

the objective function is changed:

Minimize
∑
i,j,k

cij(xi,j,k + yi,j,k) + C
∑

ri,j,kinitializedto0

ri,j,k (4.3.15)

The second term in equation (4.3.15) simply penalizes in proportion to the number

of street schedules changed. One can vary C until the number of changed schedules

and change in objective function above optimal is as desired. The second formulation

adds a hard constraint in the number of signs allowed to be switched:

∑
ri,j,kinitializedto0

ri,j,k ≤ n (4.3.16)

By varying the penalty weight in the former formulation and the number of allowed

changes in the latter formulation, one can generate a plot of the objective function

as a function of the penalty weight and number of allowed changes, respectively.

4.4 Genetic Algorithm

We employed a genetic algorithm heuristic to generate good solutions in a short

amount of time. It acts on a population of feasible schedules and uses a heuristic for

the Directed Chinese Postman Problem to return a tour whose length serves as the

fitness function. We describe each component of the genetic algorithm separately and

then summarize the heuristic at the end.
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4.4.1 Initialization

A potential problem is that the set of required edges that must be swept may be

relatively small when compared to the entire graph. For example, a city sweeper may

only be responsible for a small fraction of the city, but any algorithm would consider

each street in the city as a street that is possibly traversed. A genetic algorithm such

as ours will use a random mutation to investigate a solution that requires the traversal

of a particular random edge. However, this random edge may be very far away from

the required edges and is likely to be a poor choice. To remove these poor choices, we

first determine all required nodes, R = {ri}, which are nodes that are connected to at

least one required edge. For each required node, we calculate a shortest path to each

other required node. If there are multiple shortest paths we randomly choose one.

Any edge that is not on a chosen shortest path is removed from further consideration.

It is clear that this will not remove the optimal solution. Suppose a solution

contained an edge that is not on any shortest path. Call the immediately preceding

required node rα and the immediately following required node rβ. The shortest path

from rα to rβ does not contain the selected edge and the considered solution is not

optimal.

Furthermore, we perform the following operation:

1. Make a collection of all shortest paths from one required node to another;

2. Remove those shortest paths that contain a third required node;

3. Condense the remaining shortest paths into a single edge with length equal to

the length of the original path.

The purpose of this operation is to further prune the state space. Step 2 removes
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redundant shortest paths: if we have a shortest from r1 to r3 containing r2, then

this shortest path is made redundant by the paths from r1 to r2 and r2 to r3. Step

3 reduces the remaining paths from potentially many edges to a single one. The

purpose for this is that if the schedule selects one of the edges in a shortest path to

be required on a particular day, then the street sweeper must travel over that entire

shortest path on the same day. Collapsing each shortest path to a single edge reduces

the state space even further.

For example, Figure 4.6 is a graph of a portion of Washington D.C. The bolded

(required) streets are those that must be swept by the street sweeper over two days.

The required streets are strongly connected within the set of bold and dim streets, the

latter being the streets that the street sweeper is allowed, but not required, to travel

on. The state space considering the entire graph is prohibitively large. Applying the

above initialization yields the graph in Figure 4.7. The graph is considerably smaller,

usually by a factor of two, in the realistic cases of subsets of Washington D.C.

From now on, the graph G will refer to the pared down graph after applying the

above procedure.

4.4.2 Schedules

We call our chromosomes schedules, which is represented as a |E|/2-dimensional vec-

tor. Each component represents the state of one street which is a pair of edges and ex-

plicitly states, by the element ((u0
i,j,0, u

1
i,j,0), (u

0
j,i,0, u

1
j,i,0)) or ((u0

i,j,0, u
1
i,j,0), (u

0
i,j,1, u

1
i,j,1)),

when each edge must be traveled and when it does not have to (Recall that uαi,j,k is a

binary number indicating whether edge (i, j, k) requires travel on day α). We empha-

size that a schedule does not explicitly forbid traveling an un-required edge, merely

does not require it.
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Figure 4.6: Part of Washington D.C. before initialization
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Figure 4.7: Part of Washington D.C. after initialization
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Depending on what parking restrictions the component represents, the following

restrictions are imposed:

S1 : no restrictions are imposed. Either side may, or may not, be traversed.

S2 : u0
i,j,0+u1

i,j,0 = 1 on the required side. This forces the required side to be traversed

(and hence swept).

S3 : can, in fact, be represented as a binary element. 0, if the left side is swept on

even days and the right side on odd days, 1 if the left side is swept on odd days

and the right side on even days.

S4 : u0
i,j,0 + u1

i,j,0 = 1 and u0
j,i,0 + u1

j,i,0 = 1. Similar to S2, but both sides are forced

to be swept.

The streets are randomly assigned a component of the vector except that two-way

streets in S3 are placed at the top of the schedule and 1-way streets in S3 are placed

at the bottom of the schedule. 1-way streets in S3 are one way streets where each

side must be cleaned on different days. We place them at the end of the vector to

distinguish that changing which days the different sides are swept results in equivalent

schedules.

To reiterate, schedules induce non-unique daily Eulerian tours. A schedule will

assign a sweeping day to every required edge, but will only assign a sweeping day

to some not-required edges (possibly none). A schedule induces an optimal Eulerian

tour by solving the Directed Rural Postman Problem.
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4.4.3 Fitness

Given a schedule s, the next step is to construct an Eulerian tour and determine its

length. This problem is simply the Directed Rural Postman Problem, with is NP-

hard. Because the fitness of a schedule is called often, we employ a modification of

the following simple heuristic given by Christofides et al. (1986) [10]:

1. Construct a shortest spanning arborescence connecting the connected compo-

nents of required edges (see Edmonds, 1967 [13]).

2. Solve the transportation problem by adding arcs in a least-cost manner so that

the number of incoming arcs is equal to the number of outgoing arcs for each

node (see Beltrami and Bodin, 1974 [3]).

3. Construct an Eulerian tour on the resulting graph.

Our heuristic differs only in the first step, which constructs a spanning arbores-

cence in a greedy manner, rather than optimal. This is done for running time consid-

erations and was observed to not have significant impact in the quality of solution.

We define the fitness µ(s) to be the length of the obtained Euler tour.

4.4.4 Breeding

A naive breeding of schedules would be to simply swap components of the schedules

in a random fashion. However, one can see that the induced route of a schedule is very

sensitive to small changes in the schedule (see the example in section 1.1). Requiring

sweeping on an edge on an even day rather than an odd day could result in very large

detours being required to satisfy the other travel requirements of the schedule. As a

result, breeding two good schedules haphazardly will often destroy the good solution.
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To construct a good breeding algorithm, we note that all Eulerian tours can be

decomposed into cycles and thus can be defined by a set of cycles. A good Eulerian

tour will have good cycles and good cycles will induce a good Eulerian tour. Our

breeding method attempts to swap cycles between schedules.

A schedule does not have cycles itself, the Eulerian tour that it induces does.

However, as mentioned in the previous section, such an optimal tour is difficult to

find. We make the reasonable extension that a good schedule allows for good cycles.

Our breeding algorithm determines a cycle on a random day allowed by one schedule

and adjusts the second schedule to allow the same cycle on the same day.

A possible problem with cycle construction is the issue of feasibility. The con-

struction of a random cycle ignores this issue in its construction. Breeding of two

schedules, s1 and s2, denoted as β(s1, s2) is as follows:

1. Choose a random required edge in G. Call it (a0, a1) where a0, a1 ∈ V . Accord-

ing to the schedule s2, this edge is either scheduled for day 1 or day 2. Without

loss of generality, assume it is day 1. We initialize a list with (a0, a1) as the first

entry.

2. Let (at−1, at) be the edge added to the list in the previous step. Randomly

choose an edge (other than (at, at−1)) scheduled for day 1 that begins from

vertex at. If no such edge exists choose a random edge (other than (at, at−1))

regardless of schedule. If no such edge exists, choose edge (at, at−1). Add the

chosen edge to the end of the list and denote it as (at, at+1).

3. If at+1 = at′ where t′ ∈ 0, 1, 2, · · · t, continue to step 4. The sequence of edges

(at′ , at′+1), · · · (at−1, at), (at, at+1) defines a “cycle”. Otherwise, return to step 2.
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4. The schedule of s1 is adjusted to allow for the cycle obtained above. It is

important to note that if an edge from the list was scheduled for day 2 instead

of day 1 in s2, it is scheduled for day 2 instead of day 1 in s1.

We give the following small example where we restrict our attention to the small

portion of a larger graph as seen in Figure 4.8. Nodes 5 and 6 have other incident

edges (not shown) that connect them in some way to the rest of the graph, but nodes

1, 2, 3, and 4 have no incident edges other than those shown. For the small part

of the graph we are considering, we assume the parking restrictions are of type S3,

where both sides must be swept but only one side may be swept on each day. Figures

4.9 and 4.10 are possible schedules, where the bolded edges indicate what edges are

to be swept on day 0 (and hence the non-bold edges are to be swept on day 1).

Figure 4.8: Schedule 1

For clarity, assume that on day 0, the sweeper enters from node 6 and exits at

node 5 in schedule 1 and enters from node 5 and exits at node 6 in schedule 2. It

is clear that schedule 1 has significant deadhead, an induced tour is 6 → 1 → 4 →
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Figure 4.9: Schedule 1

Figure 4.10: Schedule 2
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3 → 2 → 1 → 2 → 3 → 4 → 1 → 5. Schedule 2 has no deadhead with an induced

tour of 5 → 1 → 4 → 3 → 2 → 1 → 6. To construct the child of schedules 1 and

2, β(s1, s2), we must construct a cycle in schedule 2 on day 0. Suppose that cycle

is 1 → 4 → 3 → 2 → 1. We adjust schedule 1 to allow that cycle in day 0 yielding

Figure 4.11. The result is set to be β(s1, s2). Thus, the good structure of schedule 2

is imparted on schedule 1.

Figure 4.11: Breeding of schedule 1 and schedule 2

4.4.5 Mutation

We have several mutation operators that act on schedules:

stableVertexMutation() One characteristic of “good” schedules is that for a given

day, a required node is balanced. That is, the number of required edges for that

day entering the required node is equal to the number of required edges for that

day exiting the required node. If a required node is not balanced, then it is
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clear that deadhead will occur. This mutation function seeks to balance non-

balanced required nodes by randomly choosing a required node with unbalanced

degree. If it is possible, the mutation changes the day assignment of of an edge

incident to the chosen node in a way decreases the difference between the in-

and out-degrees.

randomPathMutation() It is possible that a simple path, not necessarily a cycle,

is better on even day rather than on an odd day or vice versa. The breeding

process will likely not achieve this because it deals exclusively with cycles. This

mutation finds a random path of random length (between 2-5 edges long) on a

random day and then adjusts the schedule to allow the same path on the other

day.

randomChange(i) To achieve additional variation in our genetic algorithm, this

mutation randomly changes the edge-day assignment of i streets in the schedule.

The mutation of schedule s, m(s), calls stableVertexMutation() with 10% proba-

bility, randomPathMutation() with probability 20%, randomChange(2) with proba-

bility 20%, and randomChange(1) with probability 50%.

4.4.6 Genetic Algorithm Summary

We define the following notation:

- S = {si}i is set of feasible schedules

- k = size of population - input parameter

- h = number of “best” schedules (set to be about k/10)
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- Pt = population at generation t ∈ Z+, a vector with schedules as components and

|Pt| = K ∀ t

- Pt[i] = ith schedule of population Pt

- µ(Pt[i]) = fitness of Pt[i]

- β(Pt[i], Pt[i]) = child of Pt[i] and Pt[j]

- m(Pt[i]) = mutation of Pt[i]

- The end criterion is a fixed number of iterations without improvement

Our genetic algorithm is as follows:

1. Create a random population of k individuals

2. Sort the random population with respect to the fitness function (best at the

top)

3. Set the reordered population to be P0

4. While the end criteria is not satisfied: (indexed by t)

(a) For each k ≤ i ≤ h

i. Set Pt[i] = β(Pt[i], Pt[j]) where j is a random value in the range 1,

... (i − 1). This breeds schedule i, which is not in the top h, with a

random schedule better than it.

ii. If Pt[i] = Pt[j] (after the breeding of the previous step), mutate Pt[i]

by setting Pt[i] = m(Pt[i]). Having a duplicate schedule is undesirable

so, if it occurs, we change it.
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iii. Calculate the fitness µ(Pt[i])

(b) For each k ≤ i ≤ 2h

i. Compute the mutation of m(Pt[i])

ii. If µ(m(Pt[i])) < µ(Pt[i]) set (Pt[i]) = µ(m(Pt[i])). This mutates a

schedule and replaces it with the mutation if the mutation is better.

(c) Sort population with respect to the fitness function

(d) Set the reordered population to Pt+1

5. Return P final
t [1]

4.5 Results

In this section we show the computational results obtained by our genetic algorithm

applied to MPS3 problem. The input instances set is composed by 36 input graphs,

each one with a number of nodes equal to 100, and a number of edges in the range

between 400 and 1600. For each street we use two different edges representing both

sides; the average number of streets incident on each crossroad is between 4 (for

400-edges graphs) and 16 (for 1600-edges graphs).

The computational results obtained by the GA were compared to the optimal

solutions provided by the CPLEX solver. It can be easily noticed that the solution

values of the GA are consistently within a 2% at most from the optimum, except for a

single instance, and on bigger instances where the time limit is violated for CPLEX it

even provides better values. Computational times are always extremely competitive

for our GA, with a maximum solution time of 279 seconds.



101

Cplex GENETIC
Instance Bound SOL DIF LB TIME SOL DIF LB TIME % GAP
IST100 400 5 0 40596 47997 7401 181 48098 7502 22 1,365
IST100 400 4 1 40630 46916 6286 181 47017 6387 28 1,607
IST100 400 2 2 40565 46429 5864 181 46432 5867 26 0,051
IST100 400 15 0 40587 50092 9505 181 50194 9607 36 1,073
IST100 400 12 1 40595 50435 9840 181 50838 10243 29 4,096
IST100 400 10 2 40562 50181 9619 181 50189 9627 31 0,083
IST100 400 38 0 40598 54695 14097 7 54791 14193 74 0,681
IST100 400 32 1 40607 53370 12763 45 53374 12767 60 0,031
IST100 400 32 2 40590 55875 15285 182 55876 15286 110 0,007
IST100 400 97 0 40609 63559 22950 2 63564 22955 105 0,022
IST100 400 91 1 40627 59918 19291 4 59919 19292 98 0,005
IST100 400 95 2 40569 69216 28647 1 69317 28748 208 0,353
IST100 800 7 0 81202 87172 5970 181 87181 5979 35 0,151
IST100 800 5 1 81260 86843 5583 181 86842 5582 25 0,018
IST100 800 9 2 81234 87210 5976 181 87206 5972 34 0,067
IST100 800 12 0 81229 88040 6811 181 88130 6901 60 1,321
IST100 800 26 1 81167 89054 7887 181 88955 7788 47 1,255
IST100 800 22 2 81239 88635 7396 181 88742 7503 28 1,447
IST100 800 60 0 81157 93106 11949 181 93104 11947 110 0,017
IST100 800 60 1 81172 91981 10809 181 91983 10811 71 0,019
IST100 800 52 2 81180 91317 10137 181 91303 10123 77 0,138
IST100 800 193 0 81224 106134 24910 183 106134 24910 233 0,000
IST100 800 195 1 81201 104929 23728 182 104932 23731 277 0,013
IST100 800 193 2 81134 104493 23359 182 104493 23359 279 0,000
IST100 1600 14 0 162361 168207 5846 181 168209 5848 77 0,034
IST100 1600 18 1 162415 169071 6656 181 169067 6652 74 0,060
IST100 1600 15 2 162382 168723 6341 181 168717 6335 57 0,095
IST100 1600 37 0 162408 170670 8262 181 170554 8146 72 1,404
IST100 1600 36 1 162341 171205 8864 181 171095 8754 121 1,241
IST100 1600 48 2 162471 171884 9413 181 171885 9414 126 0,011
IST100 1600 125 0 162447 177013 14566 181 177011 14564 240 0,014
IST100 1600 100 1 162367 174064 11697 181 174051 11684 139 0,111
IST100 1600 118 2 162319 177223 14904 181 177216 14897 182 0,047
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[6] M Captivo, J Cĺımaco, and M Pascoal. A mixed integer linear formulation for

the minimum label spanning tree problem. Computers and Operations Research,

Jan 2009.

[7] R Cerulli, A Fink, M Gentili, and S Voß. Metaheuristics comparison for the

minimum labelling spanning tree problem. The next wave on computing, Jan

2005.

102



103

[8] R Cerulli, M Gentili, and A Iossa. Experimental comparison of algorithms for

bounded-degree spanning tree problems. Computational Optimization and Ap-

plications.

[9] R Chang and L Shing-Jiuan. The minimum labeling spanning trees. Information

Processing Letters, Jan 1997.

[10] N Christofides, V Campos, A Corberan, and E Mota. An algorithm for the

rural postman problem on a directed graph. Mathematical Programming Study,

26:155–166, 1986.

[11] S Consoli, J Moreno, and N Mladenović. Constructive heuristics for the minimum
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