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Abstract

In the context of my PhD I studied mostly problems that find their

location in the bioinformatics and bioengineering fields. The artificial

photosynthesis has been object of my research and problems like the

efficient sequestrations of CO2 and the optimization of the Nitrogen

consumption have been taken as target. Geobacter sulfurreducens, a

microorganism capable of employing biomasses to produce electrons,

has been studied as well. New algorithmic approaches have been

developed on both topics and new results obtained are currently un-

der consideration for “in vitro” and “in vivo” implementations. The

integration of the information coming from biological and medical re-

sources is a problem that I tackled as well; in this case, the resulting

software is currently embedded in the project Cytosolve@MIT. On a

parallel track, I also studied problems that are modeled in terms of

Cellular Automata, that are a computing environment that shows a

straight inspiration from natural phenomena.

http://cytosolve.mit.edu
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Chapter 1

Introduction

Advances and progress in the study of living systems intrigued the human being

since the very beginning of his era. Asking questions about our own origins and

our own functionality is a fundamental argument for reasoning beings. For these

reasons, studies in medicine and biology can be considered “privileged” as closest

to this aim. In fact, both biology and medicine brought those achievements with

highest impact on global population. Together with fundamental achievements in

these fields, it came along the highest level of system complexity ever observed.

What sorted out most of the knowledge in physics were Maxwell’s equations

back in 1861: through this set of partial differential equations many physical

phenomena became deterministically related all of a sudden, their connections

were clarified from the quantitative point of view. What is still missing in biology

is the equivalent of the Maxwell’s equations: we now have tons of papers about

inter-system interactions, but we have no clue about what is the law model that

explains all the reported characterizations from a quantitative point of view.

At present, there is the feeling in the scientific community that application of

computational tools to biology might be the key to sort this out.

Bioinformatics is a very young word: its first important use is back in the 80s

and is related to those pioneers who started interpreting functional contributes of

DNA sequences using computers. Nowadays, bioinformatics is a topic so wide that

many research areas have been determined in it. From Genomics to Proteomics,

and to Interactomics and Metabolomics and all of the *omics, each area is an

established research field on its own [1]. Computers became more and more

1



1. INTRODUCTION

important as system understanding began to grow: there are biological processes

that are too vast or too complex to be directly sorted out by a researcher - on

the other hand, we all know that there are tasks that are complex and time

consuming for a human being but are trivial for a computer (such as traversing a

big graph or checking the all of the probes in a microarray chip). The importance

of computer technology applied to biology became obvious already in the study of

gene regulatory networks: many cellular processes are triggered or can trigger a

gene expression through promoters, activators and repressors; just the map of the

regulatory regions of Escherichia coli promoters became a searchable database

back in 1991 [2].

In the context of computer technology applied to biology, a field that is par-

ticularly fertile is the Computational Systems Biology [3]; a field where systems

biology is explored with the aid of computer tools. There are no specific tools

defined a priori in that: from formal algorithms to statistical approaches, from

data-structures to visualizers, every computer framework that can bring our un-

derstanding further through modeling, is more than welcome. Modeling is the

key aspect of the Computational Systems Biology: obtaining a predictive model

that can quantitatively anticipate system evolution is considered a major finding.

The word “model” or “runnable pathway” wraps around all of the mathematical

frameworks whose evaluation can accomplish the quantitative prediction. As of

today, the Computational Systems Biology field is so fertile that there are big

groups of Conferences dedicated to that and many governments and big compa-

nies planned investments on that.

A parallel field that is very close to the latter is the Synthetic Biology: if Com-

putational Systems Biology moves from the study of biological systems to the

development of quantitative models, Synthetic Biology can move in the opposite

direction as well. Once a researcher has a computational model that reproduces

and predicts a given biological process in a reliable way, it is possible to “play”

with the manner instead of experimenting on the latter, i.e., computer simula-

tions can drive experiments. The cycle between “in vivo” and “in silico” biology

is and accredited asset in this research field [4]. Where synthetic biology is con-

cerned, it is worth mentioning the International Genetically Engineered Machine

competition (iGem): in this contest, undergraduate students from world-wide

2



1. INTRODUCTION

universities compete to compose build biological systems and operate them in

living cells, out of standard parts, i.e., biological components. Having a back-

ground in computer science, I want to mention two works in Synthetic Biology

that deeply grabbed my attention. The first is “Synthetic Gene Networks that

Count”: in this work, J.J.Collins and fellow-workers built a synthetic gene net-

work (operated in E.coli) that counts [5]; memorizing each observed presence of

a certain compound, the network remembers its exposition to the stimuli and

reacts when the counter reaches a given threshold number. If we agree that a

base component in computer science is the counter, then these researchers laid a

fundamental brick in Synthetic Biology. The Ron Weiss laboratory extended this

concept of programmable modules: if synthetic biology can provide the compo-

nents that can be composed into modules, then these modules (such as counters,

oscillators and switches), can be employed to compose Systems [6]. These are just

two examples in the field, that cannot be exhaustively detailed in this context.

More specifically, bioengineering is the field that aims to treat biology with

approaches that are typical of the engineering area: composing synthetic biology

modules onto systems as we compose electrical components onto electrical cir-

cuits and devices, is an approach that belongs to this category. Bioengineering

approaches have been widely adopted to boost yield, production and other out-

comes in many fields such as agriculture, bioremediation and medical therapies.

In the Bioengineering area, a fundamental role is played by metabolic engineering

[7]. The latter is the employment of above outlined technologies to achieve a func-

tional behavior (from cells, bacteria, etc) that is useful for human aims, through

an ad-hoc tuning of the biological system metabolism. Since cellular metabolism

is a very complex mechanism, its functional optimization is often mediated with

the need of ensuring cell survival and strength.

In the framework of bioengineering, some problems have to be tackled with pri-

ority: indeed, recently, a committee of the U.S. National Academy of Engineering

has detected fourteen “Grand Challenges for Engineering” [8], 14 areas awaiting

engineering solutions in the 21st century. Two of these “Grand Challenges for En-

gineering” can be tackled with metabolic engineering methods: “develop carbon

sequestration methods” and “manage the nitrogen cycle”. The growth in emis-

sions of carbon dioxide is a prime contributor to global warming; in fact, for the

3



1. INTRODUCTION

carbon dioxide (CO2) problem, the challenge is to develop effective and efficient

systems for capturing the CO2 and sequestering it safely away from the atmo-

sphere. The optimized management of the nitrogen cycle is crucial for all living

things. Indeed, nitrogen is an essential component of proteins and DNA/RNA.

The carbon metabolism is largely influenced by the enzyme concentrations [9];

changing the natural concentration is crucial to improve the CO2 uptake rate of a

plant. The atmospheric CO2 concentration has changed during the last 100 years

more than in the past 25 million years, due to large changes in Earth environ-

ment; it seems to be reasonable that the evolutionary process cannot re-optimize

the enzyme concentrations in this tight period. Even if in the bioinformatics and

bioengineering era we are able to work at the enzyme level, the exhaustive search

of the optimal enzyme concentrations involved in the photosynthetic metabolism,

taking into account only fixed increase and decrease steps, would require testing

more than 109 possible values. Although an in-vivo optimization is intractable,

we can effectively estimate in silico the optimal concentration of the enzymes of

this metabolic pathway [10]. For these reasons, the optimization of the photo-

synthesis has been object of my research. Chapter 3 is then focused on its study,

while Chapter 2 describes the algorithms that made this study possible.

An interesting problem in Synthetic Biology concerns the integration of model

information. The information coming from biomedical ontologies and runnable

pathways is expanding continuously: research communities keep this process up

and their advances are generally shared by means of dedicated resources pub-

lished on the web. In fact, runnable pathways are shared to provide a predictive

characterization of molecular processes, while biomedical ontologies detail a se-

mantic context to the majority of those pathways [11]. Recent advances in both

fields pave the way for a scalable information integration, based on aggregate

knowledge repositories [12; 13], but the lack of overall standard formats impedes

this progress. Having different objectives and different abstraction levels, most

of these resources “speak” different languages, even if they have large superpo-

sitions of contents among each others. As a matter of fact, there is still a large

chasm between today’s functionality and the true ability to use ontological data

to inform molecular pathways. Additionally, there is a lack of strategies for the

database and ontology integration of quantitative biological sources written in

4



1. INTRODUCTION

different standards (e.g., SBML [14] and CellML [15]). Chapter 4 is dedicated to

these questions and describes my contribution in this important problem. This

contribute can be considered particularly important in Synthetic Biology.

5



Chapter 2

New Optimization Algorithms

2.1 Introduction

This Chapter regards three optimization algorithms that have been object of re-

search. The first one is AMMISCA, an evolutionary strategy that introduces a

new crossover operator to find more reliable predictions in lava flow models based

on Cellular Automata. Second and third algorithms are PAO and PMO2: these

algorithms introduce the notion of migration in single- and multi-objective opti-

mization, respectively. All of the algorithms proposed have in the parallelism a

point of strength and all of them have been tested against a numbers of real-world

problems: AMMISCA has been validated with the SCIARA-R7 model, PAO and

PMO2 have been extensively stressed to assess the artificial photosynthesis, that

is the object of the Chapter 3; additionally, here is presented the application

of PMO2 to the Geobacter sulfurreducens, a highly-dimensional problem that is

here modeled for the first time as multi-objective problem.

6



2. NEW OPTIMIZATION ALGORITHMS

2.2 AMMISCA, Admissible Method for

Improved Genetic Search in Cellular

Automata Models

Genetic Algorithms (GAs) are widely used to incrementally reach admissible so-

lutions for hard problems such as parameter tuning in Cellular Automata (CA)

models. Here I present a genetic strategy, specifically developed for CA model

calibration, exploiting the circumstance that the considered CA parameters have

a physical meaning. The proposed approach has proved to be comparable and,

in some cases outperforming, if compared with the standard GA proposed by

Holland. As a further result, the goodness of the proposed genetic strategy opens

the door to genetic tuning algorithms lacking of a standard crossover operator.

In the field of risk assessment and hazard mitigation, event simulation and

predictor models have acquired a relevant position. In fact, through simulation

of reliable models, risks associated with such processes can be evaluated and

possibly contrastated.

Cellular Automata [16; 17] (CA) proved [18; 19; 20; 21] to be a valid choice

in simulating natural phenomena such as landslides, erosion processes, lava and

pyroclastic flows. They are parallel computing models, discrete in space and

time, whose dynamics is determined by the application of local rules of evolution

defining the CA transition function. In particular, above cited examples are

based on the Di Gregorio and Serra’s approach[22] for the modelling of spatially

extended dynamical systems. Models based on this approach generally depend

on many parameters, which must be provided with the highest possible accuracy

in order to obtain satisfactory results in simulating the considered phenomenon.

To do this, a parameter tuning phase through standard GA has been successfully

applied in previous works[23; 24; 25; 26].

Genetic Algorithms (GAs) [27; 28] are parallel, general-purpose, search algo-

rithms inspired by Genetics and Natural Selection. They simulate the evolution

of a population of candidate solutions of a specific search problem by favoring the

“survival” and the “recombination” of the best ones, in order to obtain better and

better solutions. This family of algorithms has acquired an important role in all

7



2. NEW OPTIMIZATION ALGORITHMS

those fields dealing with intrinsically-hard problem lacking of dedicated heuristics

or ad-hoc algorithms.

Here I present the definition of AMMISCA, a genetic strategy, and its appli-

cation to the parameter tuning of the SCIARA-R7 [29] CA model for lava flow

simulation and forecasting. Section 2.2.1 presents the SCIARA-R7 simulation

model and after that AMMISCA genetic strategy is detailed.

2.2.1 The SCIARA-R7 model

The physical behavior of lava flows can be partially described in terms of Navier-

Stokes equations. Analytical solutions of these differential equations are a hope-

less challenge, except for few simple, not realistic, cases. The complexity of the

problem resides both in the difficulty of managing irregular ground topography

and in complications of the equations, that must also be able to account for flows,

exhibiting a wide diversity in their fluid-dynamical behavior due to cooling pro-

cesses. An alternative approach to PDE numerical methods for Navier-Stokes [30]

(or more complex) equations is offered by Cellular Automata (CA). As outlined

above, CA are computational models assuming discrete space/time and easily im-

plementable on parallel architectures. CA SCIARA-R7 for lava flows is derived

from SCIARA [20] where the space is a plane, divided in hexagonal cells; each cell

is characterized by a state, that specifies the mean values of physical quantities

in the cell (e.g. substate altitude) and embodies a computing unit. This unit up-

dates synchronously the substate values according to a transition function on the

basis of substate values of the cell and its adjacent ones. The transition function

is applied by the sequential computation of “elementary processes”, that account

for the phenomenon features.

From a formal point of view SCIARA-R7 is stated by the septuple SCIARA-

R7 = 〈R,L,X, S, P, σ, γ〉, where

• R = {(x, y)|x, y ∈ N, 0 < x < lx, 0 < y < ly} is the set of identical

hexagonal cells identified by integer co-ordinates in the finite region where

the phenomenon evolves.

• L ∈ R specifies the lava source cells (i.e. craters).

8



2. NEW OPTIMIZATION ALGORITHMS

• X identifies the geometrical pattern of cells that influence the cell state

change. They are, respectively, the cell itself and its adjacent cells: X =

{(0, 0), (0, 1), (0,−1), (1, 0), (−1, 0), (−1, 1), (1,−1)}.

• S = QA × Qth × QT × QO
6 is the set of states; more in detail, QA is the

altitude of the cell, Qth is the thickness of lava inside the cell, QT is the

lava temperature and QO
6 rappresent lava outflows (6) from the central cell

towards the adjacent ones.

• P = {pclock, pTV , pTS, pchlV , pchlS, padher, pcool} is the set of global parameters,

in which:

– pclock is the time corresponding to a CA step

– pTV is the lava temperature at vent

– pTS is the lava solidification temperature

– pchlV is the characteristic length at the vent temperature

– pchlS is the characteristic length at the solidification temperature

– padher is the constant adherence of lava passing on a cell

– pcool is the cooling parameter

• σ : Q6+1 → Q is the deterministic state transition function, which is simul-

taneously applied to all cells of the CA.

• γ : Qth → N × Qth specifies the emitted lava from source cells at the CA

step t ∈ N.

In order to evaluate the goodness of simulations obtained with the detailed model,

I have adopted the evaluation function e2 =
√

R∩S
R∪S where R and S represent the

area covered by simulated and real lava flow, respectively; this evaluation function

is then used to compute the fitness associated to each simulation in the genetic

process.

9



2. NEW OPTIMIZATION ALGORITHMS

2.2.2 AMMISCA in detail

AMMISCA, the acronym of AdMissible Method for Improved genetic Search in

Cellular Automata, is a genetic strategy exploiting the circumstance that each

element of the set of parameter to be tuned (P ) has a physical meaning. For in-

stance, if parentA and parentB expresses the pchlV SCIARA-R7 parameter (which

represents a “threshold” for lava mobility) with values 15 and 25 meters respec-

tively, it can be erroneous to assign the next offspring to an improbable value of 50

meters (which is too distant from parent contributes). As anticipated above, the

main, characterizing, difference between a standard Holland GA and AMMISCA

regards the field which they have been designed for (Cf. Fig. 2.1). While the

standard GA is a general purpose optimizer, the second one has been designed

for the resolution of those problems in which parameters encoded in the individ-

ual have a physical correspondence. When this physical correspondence exists,

the algorithm takes advantage of it, thanks to the different crossover strategy

implemented, which strictly preserves previous obtained results.

The basic idea within the AMMISCA strategy is to go beyond the preservation

of promising schemes through a different crossover, based on arithmetic average:

while a one-point crossover (ONEPT ), using a randomly selected crosspoint, can

transform parent strings (e.g. AAAAA, BBBBB) into quite different strings (e.g.

AABBB, BBAAA), the new crossover calculates for each parameter the average

value between parent ones (as proposed in Linear crossover [31] method with

weight = 0.5), and assigns it to next generation allele. From two parents we get

only one offspring; moreover, this single individual might be too much specialized

and the average-driven recombination seems to converge too much rapidly. In

order to solve these problems, a sort of anti-dimidium is here introduced as well.

In AMMISCA, as in standard GAs, there is a range for each parameter encoded

in the individual, and two points inside the range rappresenting the value of the

parameter introduced by parents. If we shift from a linear range to a closed

one (Cf. Fig. 2.2), we obtain a circumference where minimum and maximum of

the range coincide and, while the average value is assigned to the first offspring

(i.e., PAi+1
= (PAi + PBi)/2) as the logical middle-point between parent values,

the anti-dimidium is calculated as the point diametrically opposite to it (i.e.,

10
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Figure 2.1: The tuning process: (1) select the part of the model that has to
be tuned: the parameter set in our case; (2) encode this parameter set in the
individual; (3) run the Genetic Algorithm in order to let admissible solutions
evolve and recombine, favoring better solutions: in our case the fitness is evaluated
through the function e2; (4) extract the parameter set that gave the most realistic
simulation; (5) adopt this set to complete the lava forecasting model.

PBi+1
= PAi+1

+ (Pmax + Pmin)/2).

An idea, subtended by the introduction of anti-dimidium, concerns the fol-

lowing problem: some couples of parameters in SCIARA are “antagonist”. This

means that similar results could be obtained increasing the value of the former

parameter and decreasing the value of the latter one. Hence, different clusters

of good values of parameters may exist. Then, AMMISCA always suggests an

“internal” (PAi+1
in Fig. 2.2) allele and an “external” (PBi+1

) one: the former

searches for a solution that is a specialization of the parents, while the latter

explores values out of the interval defined by parent values. Finally, in the con-

text of SCIARA clustered parameters, AMMISCA conveniently derives a new

offspring by composing “internal” and “external” alleles (Cf. last line of follow-

ing pseudo-code block, where alleles are exchanged with probability 0.5). Besides

the application of average for model calibration as described above, I present two

11
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(a) Linear range of a parame-
ter p.

(b) Closed range with values of
p exhibited by two individuals.

(c) Closed range with values of
p assigned to the offspring off
individuals in (b) according to
AMMISCA “average version”.

Figure 2.2: The shift from the linear range to the closed one along with average
and anti-dimidium definition.

further variants of the algorithm which consider different offspring calculations.

In particular, the first version uses the fitness associated to every parent in order

to weigh their contribution and thus is labeled as a “fitness weighted average”

(FWAVG); indeed, the more a parent is promising, the closer the allele will be to

it. The second variant chooses a random point inside the sub-interval delimited

by parents (denoted as RWAVG as suggested by Heuristic crossover in [32]). The

pure application of the versions detailed above could result too fitness-driven and

interfer with crossover function and research space inspection (the first variant,

fitness weighted average), or could take longer to solve easy problems (e.g. a max-

imum values search in a simple cusp by means of the second variant, randomly

weighted average). Then, the combination of internal ad external alleles permits

to embank this problem. In order to fix all of the details given up to now, it is

now presented a pseudo-code-block that states the AMMISCA crossover.

BEGIN: AMMISCA crossover function()

{
crossmode = get requested crossover type //one in {ONEPT, AVG, FWAVG, RWAVG}
for each (parameter p in P encoded in the individual)

PA = value of parameter p expressed by parentA. Same for PB .

PA
′ = value of parameter p that will be assigned to offspringA. Same for PB

′.

rangemin and rangemax are minimum and maximum value assignable to parameter p

if (crossmode==ONEPT) applyStandardCrossoverByHolland(PA,PB ,PA
′,PB

′);

else if (crossmode==AVG) PA
′ = (PA + PB)/2;

12
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else if (crossmode==FWAVG)

PA
′ = (PA ∗ fitnessA + PB ∗ fitnessB)/(fitnessA + fitnessB);

else if (crossmode==RWAVG) //uses only positive random numbers

PA
′ = (PA ∗ random1 + PB ∗ random2)/(random1 + random2);

if (PA
′ == (rangemin + rangemax)/2)

PB
′ = choose randomly, with same probability, between rangemin and rangemin

else PB
′ = PA

′+ half round of the range; //anti-dimidium

if (PB
′ > rangemax) PB

′ = PB
′ − rangemax + rangemin

if (crossmode 6= ONEPT ) swap PA
′ and PB

′ with proability 0.5; //alleles composition

} END;

In section 2.2.3 I briefly present the main results achieved by AMMISCA applied

to the calibration of the model SCIARA-R7.

2.2.3 AMMISCA Results

In order to validate the genetic strategy for a parameter tuning task, AMMISCA

is used for the calibration of SCIARA-R7 model applied to the Nicolosi lava flow

event which occurred at Mt Etna (Italy) in 2001.

Figure 2.3: The GA setup for the first class of tests of AMMISCA on SCIARA-R7.

Let consider different classes of tests: first, many seeds and few GA gener-

ations are used (50 seeds and 10 generations; Cf. Fig. 2.3 for setup details),

and subsequently the most promising seeds are adopted for further GA genera-

tion computation (i.e., most promising seed for 100 generations). In Table 2.1,

the first test as a result of about 21000 fitness function evaluations is presented,

13
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where the four adopted algorithms (single-point crossover and AMMISCA in its

three versions) are compared by means of the contribution of the best average

in the individual pool and the best individual. The most promising seed of each

algorithm is further executed for ninety more generations and Fig. 2.4 displays

both fitness trend and time comparison.

Generation Best average fitness Best individual

1 AVG ONEPT
2 AVG ONEPT
3 AVG FWAVG
4 ONEPT FWAVG
5 ONEPT FWAVG
6 ONEPT FWAVG
7 ONEPT FWAVG
8 ONEPT AVG
9 ONEPT AVG

10 ONEPT AVG

Table 2.1: First test set: generation-by-generation, for 10 generations, which
algorithm gives the best results, over 50 seeds evaluation for each algorithm.
ONEPT is one-point crossover; AVG is AMMISCA average version; FWAVG is
fitness weighted average version; RWAVG is randomly weighted average version.

As a result, the AMMISCA strategy proves to be valid and promising, being

able to outperform standard GA with single-point crossover, both in terms of

obtained fitness and execution times. Table 2.1 and Fig. 2.4 indicate that AM-

MISCA obtains the best individual in both test cases (10 and 100 GA iterations),

giving thus the most precise lava event simulation. Besides these results, AM-

MISCA chooses a set of individuals characterized by a high Pclock values leading

to faster computations and lower execution times; such Pclock values were not

taken into account by the Holland search strategy.

2.2.4 Conclusions and future developments

Results can certainly be considered encouraging for the AMMISCA genetic strat-

egy. Moreover, besides the fact that AMMISCA gives rise to the most precise

lava simulation, it is interesting to note that the algorithm achieves the best solu-
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(a) Fitness trend evolution of each algorithm
over 100 GA generations as emerged in second
test set: keep running the most promising (at
10th generation) seed for each algorithm for 90
generations more.

(b) Total time required by each algorithm over
the two test sets, remarking the fact that some
of them explored search zones ignored by oth-
ers, at least with respect to pclock parameter.

Figure 2.4: Second test set results and global time required by each algorithm to
complete the two tests.

tion (in terms of fitness and required time) without a standard crossover phase as

defined by Holland. Furthermore, these results route to ad-hoc tuning techniques

for CA models that are similar to the analyzed one, that are CA models where

the parameter set has a physical meaning.

AMMISCA can be more deeply inspected in the future, as an alternative to

a standard GA algorithm. The game plan for future work is to study the AM-

MISCA conduct in the calibration of SCIARA model for factitious lava events

[33] (the best simulation is considered as the real lava event). In fact, we can

better compare standard GAs and this family of algorithms with respect to an

artificial lava event so that theoretically the global optimum can be achieved

during calibration. To be more precise, the referring artificial simulation can be

either the simulated lava event obtained with Holland’s GA or the one obtained

with AMMISCA “average version” (respectively the first and the second simu-

lation whose fitness is rappresented in Fig. 2.4). Subsequently, the second step

in this validation plan would be to use AMMISCA family of algorithms to cali-

brate other macroscopic CA models, tuned with standard GA in the past, such as

SCIDDICA [18], PYR [21] and SCAVATU [19]. Eventually, through the analysis
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of AMMISCA behavior on cited models, it is possible to derive a study of fitness

landscape [33] and reach a more accurate idea of the AMMISCA convergence

process.

2.3 PAO: Parallel Optimization Algorithms

Another algorithm class has been designed in the context of this research is Par-

allel Optimization Algorithms (PAO), an optimization framework that exploits

coarse-grained parallelism to let a pool of solutions exchange promising candidates

in an archipelago fashion. Using evolutionary operators such as recombination,

mutation and selection, the framework completes with migration its approach

based on islands. Each island is a virtual place where a pool of solutions is

let evolve with a specific optimization algorithm; communications among islands

in terms of solutions evolved by potentially different algorithms are arranged

through a chosen archipelago topology. The island model outlines an optimiza-

tion environment in which different niches containing different populations are

evolved by different algorithms and periodically some candidate solutions migrate

into another niche to spread their building block. In this archipelago approach

different topologies choices can bring completely different overall solution, in-

troducing then another parameter that has to be chosen for each algorithm on

each island. The PAO framework actually encloses two optimization algorithms

(DE [34] and an enhanced version of CMA-ES[35]) and many archipelago topolo-

gies; its simplest topology configuration has been used to have a comprehensible

comparison with the other adopted strategies and to better understand the opti-

mization capabilities of this approach. The key difference between the enhanced

version (A-CMA-ES) and the original algorithm CMA-ES, is that in the manner

I introduced a set of cut-off criteria that drop unstable solutions; additionally,

A-CMA-ES ensures with a constraint, a lower bound, for each enzyme concen-

tration to be compatible with the smallest concentration observed in the natural

leaf. These algorithms have been employed in the optimization of C3 carbon

metabolism: their evaluation in this context is detailed in Chapter 3.
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2.3.1 PMO2: Parallel Multi-Objective Optimization

Moving beyond single optimization, another algorithm has been developed: Par-

allel Multi-Objective Optimization (PMO2) algorithm is an multi-objective op-

timization framework based on PAO that let a pool of non-dominated solutions

exchange promising candidate solutions, again, in an archipelago fashion. En-

capsulating the multi-objective optimization algorithms called NSGA-II[36] the

framework completes with migration its multi-objective approach. NSGA-II is

an elitist genetic strategy coupled with a fast non-dominated sorting procedure

and a density estimation of individuals using the crowding distance; its strategy

has been designed to assure an efficient approximation of the Pareto optimal set.

It is important to note that this algorithm is derivative-free and, in particular,

it does not make any assumption on the convexity or discontinuity of the Pareto

front. Again, an island is a virtual place where a pool of candidate solutions

(e.g., unfeasible, feasible and non-dominated solutions) is let evolve with a spe-

cific multi-objective optimization algorithm; communications among islands in

terms of solutions evolved by potentially different algorithms (or different setting

of the same optimization algorithm) are arranged through an archipelago topol-

ogy. The island model outlines a multi-objective optimization environment in

which different niches containing different populations (each population is a set

of candidate solutions) are evolved by different algorithms and periodically some

candidate solutions migrate increasing the diversity of target population.

2.3.2 PMO2 Results on Geobacter sulfurreducens

Here I present a test case in which the algorithm PMO2 is used to determine, in

Geobacter sulfurreducens, the trade-off for growth versus redox properties. In the

Geobacter context, I have gained the functional desiderata (that are fundamen-

tal for industrial processes) through the modeling of the problem in terms of a

constrained multi-objective problem: goals are the maximization of both biomass

and electron production.

The importance of the Geobacter sulfurreducens is well known; in fact, this

is a bacterium capable of using biomasses to produce electrons to be transferred

directly to an electrode; this species is a useful model for real optimization since its
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genome is completely sequenced and a model of its metabolic network is available.

Metabolic engineerings are surely possible. The bacterial biomass growth needs

to be related to the electron transfer rate: the Geobacteraceae is a family of

microorganisms known for their remarkable electron transfer capabilities which

allow them to be very effective in bioremediation of contaminated environments

and in harvesting electricity from waste organic matter. Bioengineering a mutant

strain in order to reach faster rates in electron transport yield is highly desirable

and could represent a breakthrough for massive application in biotech industry.

2.3.2.1 Maximizing Biomass and Electron Productions

Constraint-based modeling of metabolism has laid the foundation for the devel-

opment of computational algorithms which allow more efficient manipulations

of metabolic networks. One established approach, OptKnock, has already yield

good results in suggesting gene deletion strategies leading to the overproduction

of biochemicals of interest in E. Coli [37]. These increments are accomplished

by dropping some redundancy in the metabolic pathways in order to eliminate

reactions competing with those of interest.

Here I have optimized Geobacter sulfurreducens, modeled as an in-silico organ-

ism [38], by perturbing its 608 reaction fluxes with PMO2; additionally I ensured

the constraint that steady state solutions are preferred (i.e.: S ·x = 0, where S is

the stoichiometric matrix, x the perturbed flux vector and 0 is the null vector).

The optimization has been designed to move towards those solutions where two

crucial fluxes are maximized: Electron Production Flux and Biomass Production

Flux. Five non-dominated solutions (A − E) are reported in Fig. 2.5 as best

trade-offs. In particular, in my multi-objective constrained optimization, the so-

lution A presents a significant slope in the constraint violation reduction: 3.4 ·104

is roughly 1/26.47 when compared with the initial guess solution (that showed a

violation in the order of 106) and it keeps decreasing towards steady state solu-

tions. To my knowledge this is the first time that a multi-objective optimization

that faces both electron and biomass production is implemented for Geobacter

sulfurreducens. The PMO2 approach brought a set of Pareto-optimal solutions

such that: (i) an enhanced electron and biomass productions are achieved, (ii)
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Figure 2.5: Pareto Front of Geobacter sulfurreducens: maximization of biomass
production versus maximization of electron production. The units for the flux
values are mmol/gDW/h (DW = dry weight).

the contraint violation is minimized by the algorithm that rewards less violating

solutions, and (iii) all of the biological constraints highlighted by the Flux Bal-

ance Analysis pointed out by Cobra toolbox [39] on this pathway are intrinsically

enforced because they define the search space boundaries in my algorithm. An

important bound that worth mentioning is the ATP: the flux related to the latter

is kept fixed at 0.45 as highlighted in [38] as best value assessed.

2.3.2.2 Geobacter conclusion

I have applied the PMO2 algorithm to the Geobacter sulfurreducens in order

to stress its capabilities on a highly-dimensional problem (R608) in metabolic

engineering; with respect to that I have obtained a computational model that

maximizes the electron and biomass productions while preserving those bounds

that ensures a biological significance. To my knowledge this is the first time that

Geobacter sulfurreducens has been modeled as a multi-objective optimization
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Figure 2.6: Decision making strategies. Geometrical representation of the various
strategies on a bi-objective Pareto front.

problem where the search moves automatically towards steady-state solutions,

contextually with biological boundaries observance and functional optimization

(i.e.: biomass and electron productions).

2.3.3 Pareto Front Mining and Analysis

In addition to the success given by the practical application of the algorithm

to the Geobacter sulfurreducens test case, it seems important also to specify

more formal desiderata for a multi-objective optimization algorithm. Evaluation

of these metrics on a complex real-world application is among the objects of

Chapter 3.

It is worth noting that multi-objective optimization algorithms give as result

a set of non-dominated solutions, instead of a single optimum (or an individual

sub-optimal solution) as in single-objective optimization. In real world applica-

tions, it is useful to provide a strategy to select automatically the best trade-off

solution; when the set of Pareto optimal solutions is huge, a screening strategy is

mandatory. In literature, there are many trade-off selection strategies [40] typi-

cally based on the geometric notion of Pareto optimality, or heuristics based on

the experimental evidence.

A natural strategy is the one that selects the Pareto optimal solution that
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is closest to the ideal (Cf. Fig. 2.6) minimum of each objective. Let P a set of

non-dominated solutions. The closest-to-ideal point is defined as:

x ∈ P :6 ∃y ∈ P : d(y, Ip) < d(x, Ip)

where d : Rp → R is a distance metric and the ideal point is

Ip = {min f1(x), · · · ,min fp(x)}.

It is important to note that it is not required to know the real minimum for each

objective; it is possible to use as Ip the minimum achieved for each objective by

the algorithm, that is called Pareto Relative Minimum (PRM). Finally, the last

selection criterion is the shadow minimum selection; according to this strategy, p

points that achieves the lowest values on the k objectives considered are selected.

It is always useful to select these points, since it is possible to gain more infor-

mation on the best possible values achievable for each objective. The analysis of

multi-objective optimization algorithms requires the definition of ad-hoc metrics;

firstly, hypervolume indicator [41] is adopted. Let X = (x1, · · · , xk) ⊂ Rk a k-

dimensional decision vectors; the hypervolume function Vp : Rk → R provides the

volume enclosed by the union of polytopes p1, · · · , pi, · · · , pk, where pi is formed

by the intersections of the following hyperplanes arising from xi along with the

axes. In order to assess the quality of Pareto optimal sets obtained by different

algorithms, it is important to compare the non-dominated solutions obtained in

order to estimate which algorithm is able to cover effectively the front and which

solutions are globally Pareto optimal. According to these considerations, two

metrics are introduced; the global and relative Pareto coverage. Let PA = ∪mi=1Pi

where Pi is a Pareto front; PA is the Pareto Front defined by the union of m Pareto

frontiers. Let define the global Pareto coverage of the i− th front as follows:

Gp(Pi, PA) =
|x ∈ Pi

∧
x ∈ PA|

|PA|
(2.1)

Gp provides the percentage of Pareto optimal points of Pi belonging to PA; it

is important to note that this metric provides only a quantitative measure of

the performance of the algorithm, since it strongly rewards large Pareto front.
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The metric gives qualitative information if and only if the Pareto frontiers have

a similar dimension. Although it is important to understand the composition

of PA, it is important to estimate how many solutions of a Pareto front are not

dominated by solutions belonging to the other front considered; a solution v ∈ Pi
is called globally Pareto optimal if it belongs to PA. Let PA a global Pareto front,

the relative Pareto coverage is defined as follows:

Rp(Pi, PA) =
|x ∈ Pi

∧
x ∈ PA|

|Pi|
(2.2)

Rp measure the relative importance of the Pi front in PA. If Rp → 1, two aspects

are considered; the algorithm is able to find Rp × |Pi| globally Pareto optimal

solutions, or it has found Rp × |Pi| solutions in a region of the front not covered

by the other methods. However, it is worth noting that algorithms that are able to

generate large Pareto frontiers are important, especially in real world application,

where human experts do the decision among trade-off points. For this reason,

considering jointly the two metrics could effectively compare the quality of a

Pareto front.
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Chapter 3

Artificial Photosynthesis

3.1 The study of the C3 photosynthetic carbon

metabolism

I studied the C3 photosynthetic carbon metabolism presented in Fig. 3.1 center-

ing the investigation on the following four design principles.

(1) Optimization of the photosynthetic rate by modifying the partitioning of re-

sources between the different enzymes of the C3 photosynthetic carbon metabolism

using a constant amount of protein-nitrogen.

(2) Identify sensitive and less sensitive enzymes of the studied metabolism model.

(3) Maximize photosynthetic productivity rate through the choice of robust en-

zyme concentrations using a new precise definition of robustness.

(4) Modeling photosynthetic carbon metabolism as a multi-objective problem of

two competing biological selection pressures: light-saturated photosynthetic rate

versus total protein-nitrogen requirement.

The computational simulation of the carbon metabolism requires the defini-

tion of a set of linked ODEs to encode the relevant biochemical reactions; in my

research work, I considered the model proposed by [42]. The model takes into

account rate equations for each discrete step in photosynthetic metabolism, equa-

tions for conserved quantities (i.e. nitrogen concentration) and a set of ODEs

to describe the rate of concentration change in time for each metabolite. The

reactions introduced in the model were categorized into equilibrium and non-
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Figure 3.1: C3 photosynthetic carbon metabolism pathway.

equilibrium reactions; equilibrium reactions were inter-conversion between Glyc-

eraldehyde 3-P (GAP) and Dihydroxyacetone-P (DHAP) in stroma and cytosol,

xylulose-5-P (XuP5), Rib-5-P (Ri5P), ribulose-5-P (Ru5P) and Fru-6-P (F6P),

Glc-6-P (G6P), and Glc-1-P (G1P). All non-equilibrium reactions were assumed

to obey Michaelis-Menten kinetics, modified as necessary for the presence of in-

hibitors or activators (Cf. Appendix A1 for modeling details, and in particular

section A.1.1 for metabolite nomenclature).

Main results consist in the fact that, thanks to the designed methodology

PAO detailed in the Chapter 2, I have obtained an increase in photosynthetic

productivity of the 135% from 15.486 µmol m−2s−1 (i.e., value measured in

standard natural leaves) to 36.382 µmol m−2s−1, and improving the previous

best-found photosynthetic productivity value (27.261 µmol m−2s−1, 76% of en-

hancement). Optimized enzyme concentrations express a maximal local robust-

ness (100%) and a high global robustness (97.2%), satisfactory properties for a

possible “in vitro” manufacturing of the optimized pathway. Morris sensitivity
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analysis shows that 11 enzymes out of 23 are high sensitive enzymes, i.e., the

most influential enzymes of the carbon metabolism model. Finally, I have stud-

ied the C3 carbon metabolism as a trade-off between the maximization of the leaf

CO2 uptake rate and the minimization of the total protein-nitrogen concentra-

tion. This trade-off search has been carried out in six environmental scenarios:

three ci concentrations (referring to the estimate of CO2 concentration in the

atmosphere characteristic of 25 million years ago, nowadays and in 2100 a.C.)

and two triose-P (PGA, GAP, and DHAP): low and high export rates. Addi-

tionally, CO2 uptake and nitrogen consumption are evaluated with respect to the

robustness by means of a 3D Pareto-surface. Remarkably, the six Pareto frontiers

identify the highest photosynthetic productivity rates together with the fewest

protein-nitrogen usage.

3.2 Introduction

Recently, a committee of the U.S. National Academy of Engineering has detected

fourteen “Grand Challenges for Engineering” [8], 14 areas awaiting engineering

solutions in the 21st century. Two of these “Grand Challenges for Engineering”

have been treated in my research: “develop carbon sequestration methods” and

“manage the nitrogen cycle”. The growth in emissions of carbon dioxide is a prime

contributor to global warming, in practice, for carbon dioxide (CO2) problem the

challenge is to develop effective and efficient systems for capturing the CO2 and

sequestering it safely away from the atmosphere. The optimized management of

the nitrogen cycle is crucial by all living things, in fact, nitrogen is an essential

component of proteins and DNA/RNA. Indirectly, the maximization of the leaf

CO2 uptake rate and the minimization of the total protein-nitrogen concentration

here obtained go in the direction to improve CO2 capturing rate and to increase

nitrogen use efficiency of natural leaf. This result has been reached thanks to

specific optimization algorithms detailed in Chapter 2.

Numerous problems encountered in bioinformatics, systems biology and bio-

engineering can be modeled as optimization problems [43; 44] and, thus, lend

themselves to the application of effective heuristic search methods and derivative-

free global optimization algorithms [45]. The optimization task is conducted
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with respect to a single objective function or a set of competing, conflicting, and

non-commensurate objectives having nonlinear interdependence. It is necessary,

hence, the usage of proper heuristics and algorithms to optimize the objective

functions while satisfying several constraints.

Recently, multi-objective optimization has found important applications in a

growing number of fields, for example, molecular biology, chemical engineering

and biomedical engineering, and has shown to have significant benefits compared

to single-objective optimization, e.g., selection of single nucleotide polymorphisms

[46], protein structure prediction [47], and estimation of intracellular fluxes [48].

Here I have optimized the photosynthetic carbon metabolism in order to max-

imize the CO2 uptake rate, and investigated the Pareto frontiers in the carbon

metabolism in terms of photosynthetic rate versus protein-nitrogen. Using the

Morris method [49], it has been evaluated the impact of enzymes on the model

identifying the sensitive and insensitive enzymes. Moreover, is has been performed

a new robustness analysis detecting the robust and less robust enzymes in order

to keep a maximal leaf CO2 uptake rate. Finally, robustness has been connected

with multi-objective optimization. The overall framework adopted to analysis

photosynthetic carbon metabolism can be used to study large-scale metabolic

networks, in particular, and biomolecular systems, in general. Hopefully, the algo-

rithms and tools designed and introduced in this study, the derivative-free global

optimization algorithms, the multi-objective optimality analysis, the sensitivity

and robustness analysis, although general-purpose methods, could be effective in

explain key properties of many other biological systems as well.

The carbon metabolism is largely influenced by the enzyme concentrations [9];

changing the natural concentration is crucial to improve the CO2 uptake rate of a

plant. The atmospheric CO2 concentration has changed during the last 100 years

more than in the past 25 million years, due to large changes in Earth environ-

ment; it seems to be reasonable that the evolutionary process cannot re-optimize

the enzyme concentrations in this tight period. Even if in the bioinformatics and

bioengineering era we are able to work at the enzyme level, the exhaustive search

of the optimal enzyme concentrations involved in the photosynthetic metabolism,

taking into account only fixed increase and decrease steps, would require testing

more than 109 possible values. Although an in-vivo optimization is intractable,
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we can effectively estimate in silico the optimal concentration of the enzymes of

this metabolic pathway [10]. For this reason, I have designed ad-hoc algorithms

to optimize the enzyme concentrations in order to maximize the CO2 uptake rate.

The metabolism has been modeled as a system of ODEs, where the inputs are the

enzyme concentrations and the output is the CO2 uptake. Firstly, I maximized

the CO2 uptake rate using deterministic and stochastic optimization algorithms;

I found that the designed algorithms, Advanced CMA-ES algorithm and Parallel

Optimization Algorithms (i.e., A-CMA-ES and PAO, Cf. Chapter 2), are able

to increase the photosynthetic rate of 135%, that is, the new best-known opti-

mum. The Morris sensitivity analysis shows the complexity and non-linearity of

the pathway; in fact Morris method unravels the insensitive and sensitive enzymes

of the C3 photosynthetic carbon metabolism model. In order to estimate the ro-

bustness of the found solutions, they have been performed both global and local

robustness analysis using ad-hoc designed Monte-Carlo methods. According to

which aspect or part of the dynamical system is mutated, it is possible to define

four different types of robustness [50]: dynamical stability (mutation of initial

conditions), constraint robustness (mutation of constraint values), parametric ro-

bustness (mutation of parameter values) and structural stability (mutation of the

dynamical function). The designed robustness analysis is a parametric robust-

ness: robustness to change of parameter values.

Finally, using the designed multi-objective optimization framework, I have

discovered Pareto frontiers between two competing and conflicting objectives:

the CO2 uptake rate and the amount of protein-nitrogen. I maximized the CO2

uptake rate while minimizing the amount of used protein-nitrogen concentration.

Pareto-optimality, is used to explore the performance space of the C3 pathway.

Pareto-optimality conditions are those in which it is impossible to make a

function (target, goal, process, simulation) better off without necessarily mak-

ing some else function worse off. Multi-objective optimization problems (MOP)

tackle sets of competing, conflicting and non-commensurate objective functions

having (strong or weak) nonlinear interdependence. MOPs generally have a set

of solutions that are known as Pareto-optimal (Pareto-efficient, Pareto-surface,

Pareto-front); the Pareto front, hence, represents multiple-optimized candidate

solutions. The Pareto front is the solution set in which any attempt to improve
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one objective function of the point on the Pareto front must result in the degra-

dation of at least one other objective function.

3.3 The Designed Framework

In this section I outline the tools that have been adopted in the re-optimization

of the photosynthetic carbon metabolism pathway, apart from those algorithms

already detailed in Chapter 2, we have: sensitivity analysis, applied derivative-

free optimization algorithms, and robustness analysis.

3.3.1 The method of Morris

The sensitivity analysis (SA) concerns the study of how uncertainty in the output

of a model can be apportioned to different sources of uncertainty in the model

input. In particular, SA tries to identify the most influential parameters of a

given model; understanding which are the most important parameters of a model

could be extremely difficult since it is common to deal with non-linear, highly

noise and computational expensive models. It is important to remark the dif-

ferences between Robustness (RA) and SA; RA aims to evaluate which is the

probability of a system to remain in a reference state under perturbations, while,

SA perturbs a system in order to find which is the aspect that mainly affects its

behavior and to detect the dependencies among input parameters and between

input and output. SA answers the question “which enzymes are crucial for the

carbon metabolism?” In order to perform this analysis, it has been used the Morris

method, which is particularly suited when the number of uncertain parameters,

called factors, is high and the model could be expensive to compute. The Morris

method belongs to the class of the one-factor-a-time (OAT) methods [51]; OAT

means that a factor is perturbed in turn while keeping all other factors fixed at

their nominal value. In particular, the method varies one factor at time across

a certain number of levels selected in the space of the input factors; this grid-

like sampling makes the algorithm easily adaptable for discrete and continuous

variables. For each variation, a factor elementary effect is computed as follows:

ui = (Y (x1, x2, . . . , xi + ∆xi, . . . , xk)− Y (x1, x2, . . . , xi, . . . , xk))/∆xi where Y is
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the model, x1, x2, . . . , xi + ∆xi, . . . , xk is the perturbed parameters vector and

x1, x2, . . . , xi, . . . , xk is the nominal parameters vector. For each factor, at differ-

ent levels, various estimates of the elementary effect ui are performed. In order to

study the importance of the parameters, the mean µi and the standard deviation

σi are computed over the elementary effects ui of the i−th parameter. A high

value of µi denotes a high linear effect for a given factor, while a high value of

σi denotes either non-linear or non-additive behavior. The modulus version of

µ∗i has been preferred since it is better than µi in ranking factors in order of im-

portance; for each enzyme are evaluated five concentrations under consideration

as the nominal values of the concentrations, and successively, 20 factor levels are

perturbed 10 times. Since the bounds on variables are not clearly defined, lower

and upper bounds have been set at ±100% of the nominal value of each enzyme

concentrations.

3.3.2 Derivative-Free Optimization Algorithms

As said, one of the key points of this Chapter is the CO2 uptake optimization in

the context of the carbon metabolism pathway. The optimization of the photo-

synthetic productivity rate has been tackled using state-of-the-art derivative-free

optimization algorithms belonging to the classes of deterministic and stochastic

optimizers and a new optimization framework, Parallel Optimization Algorithms

(PAO). Stochastic algorithms taken into account are CMA-ES [35], Differential

Evolution [34] and the hybrid particle swarm optimizer PPSwarm [52]. The de-

terministic optimizers belong to three broad sub-classes; pattern search methods

are represented by the Hooke-Jeeves method [53], the Generalized Pattern Search

[54] and the Mesh Adaptive Direct Search [55]. Finally, two branch-and-bound

algorithms called Direct [56] and Multilevel Coordinate Search [57], together with

Implicit Filtering [58] a line-search method, have been employed.

The ODEs system input is a partitioning of the E = 23 enzymes involved

in the metabolic pathway; the output is an evaluation in terms of CO2 uptake,

predicting then, the photosynthetic/photo-respiratory properties of a leaf charac-

terized by such a partitioning. This means that, abstracting the concentration of

the enzymes in a vector x = [conc1, conc2, . . . , concE], the value f(x) is the CO2
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uptake coming from the solution of the ODEs system when the concentration x

is adopted. To solve the system of ODEs I used the ode15s MATLAB func-

tion as proposed in [42]; this ensures an acceptable accuracy with a moderated

computational cost.

In order to consider biologically meaningful concentrations, the algorithms

have to look for a partitioning of the enzymes, meaning that the total amount

of protein-nitrogen has to remain constant among all vectors x and equal to the

amount that characterizes the vector x0 corresponding to the enzyme concentra-

tions measured in the natural leaf [42] (the initial concentrations). The long run

comparison of the convergence processes of the algorithms reveals the presence of

many local optima in the solution space; for this reason the designed algorithm,

A-CMA-ES, introduces a set of cut-off criteria to CMA-ES and ensures with a

constraint, a lower bound, for each enzyme concentration to be compatible with

the smallest concentration observed in the natural leaf (vector x0). Parallel Op-

timization Algorithm (PAO), detailed in Chapter 2, has been employed for the

optimization. The PAO framework actually encloses two optimization algorithms

and many archipelago topologies but its simplest configuration has been used to

have a comprehensible comparison with the other adopted strategies and to better

understand the optimization capabilities of this approach. The adopted configu-

ration has two islands with 2 optimization algorithms, A-CMA-ES and DE, that

exchange candidate solutions every 200 generations with an all-to-all (broadcast)

migration scheme at a 0.5 probability rate. Even in its simplest configuration

this approach has shown enhanced optimization capabilities and an optimal con-

vergence. After this phase, the multi-objective optimization algorithm PMO2

(detailed in Chapter 2) has been used to tackle the problem relaxing the natu-

ral constraint about the fixed amount of protein-nitrogen. The goal is now to

optimize two conflicting objectives, that are, to maximize the CO2 uptake and

at the same time to minimize the total amount of protein-nitrogen needed for

that. Introducing then the function g(x) =
∑E

i=1
x[i]∗WM i

BKi
, where BKi are the

catalytic number or turnover number, and WMi the molecular weight of each

enzyme respectively, the problem is now defined as finding the leaf representing

the best trade-off when maximizing CO2 uptake rate, f(x), and at the same time

minimizing the total amount of protein-nitrogen, g(x). In other words, we are
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looking for the best resulting leaf in terms of CO2 uptake that uses the smallest

amount of protein-nitrogen to gain that result. Quantitative evaluation of points

obtained facing two competing and conflicting objectives is done using a Pareto

front approach: non-dominated points are those solutions that are not outper-

formed in both objectives by other points and then represent the Pareto-optimal

solutions.

3.3.3 Local and Global Robustness

The robustness is a dimensionless metric that assesses the yield of a given sys-

tem, it is the property of the system itself to undergo mutations remaining in a

reference state and continuing to perform its tasks in a reliable way. In biology,

robustness is generally regarded as a desirable feature. The ability of a system

to survive changes in the environment, and/or in the system itself, is one of the

main driving forces of evolution [59]. By inspecting the photosynthesis process, it

is extremely important to evaluate how the CO2 uptake rate changes due to per-

turbations in the enzyme concentrations; perturbations can be caused by many

factors, like bias in the synthesis process and changes in the ground elements.

For instance, by mutations of the promoter sequence or on the enzyme control

sites (effector binding sites) in the case of allosteric enzymes. It is then obvious

the importance of seeking concentrations that maximize the CO2 uptake rate

and maintain a quasi-ideal behavior in the presence of noise. In this research, let

Ω = {{pi}mi=1, {φi}ni=1} as a system with m parameters and n properties. Nominal

value (Nv) is the value of a property for a given parameter set. A trial τ is a

perturbed system generated by an α function, also called α-perturbation, such

that τ = α(Ω, σ). The α function applies a stochastic noise σ on the reference

system Ω; without loss of generality, the noise is defined by a random distribu-

tion. In order to simulate a statistically meaningful perturbation phenomenon,

an ensemble, T, of perturbed systems is generated. A trial τ ∈ T is considered

robust to a perturbation (mutation) of the stochastic noise σ for a given property

φ, if the following robustness condition is verified:

ρ(Ω, τ, φ, ε) =

{
1 if | φ(Ω)− φ(τ) |≤ ε

0 otherwise
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where Ω is the reference system and ε is a robustness threshold. The robust-

ness of a system Ω is the number of robust trials in T (with respect to the

property φ) over the total number of trials (| T |): this this measure is the

robustness of the system. Formally, a robustness function Γ is defined as follows:

Γ(Ω, T, φ, ε) =
P
τ∈T ρ(Ω,τ,φ,ε)

|T | The function Γ is a dimensionless quantity that as-

sesses the probability that the nominal value of a property changes at most ε

due to perturbations; high Γ values means high system robustness. Two kind of

robustness analysis has been performed; the global robustness analysis applies a

stochastic noise to each enzyme concentration; while, the local robustness analysis

applies the noise one enzyme at time (this evaluates the single robustness, that is,

the robustness of a single enzyme). In other words, while the global robustness

analysis studies global changes of the system, the local robustness analysis studies

the relative robustness of a single enzyme. The ensemble T has been generated

using a Monte-Carlo algorithm; a maximum perturbation of 10% is set from the

nominal value of each enzyme concentration, and the ensemble is generated as

5× 103 trial for the global robustness analysis and 200 trials for each enzyme for

the local robustness.

3.4 Experimental Results

3.4.1 Sensitivity Analysis

Sensitivity analysis perturbs a given system in order to discover which aspects

primary affect its behavior, to detect the dependencies among input parameters

and between input parameters and output functions. In Fig.3.2 are reported the

results of the Morris sensitivity analysis on the model of the carbon metabolism.

High mean values mean linear enzymatic response, while high standard deviation

values assess a non-linear (or non-additive) behavior or dependencies among en-

zymes. Inspecting Fig. 3.2 it is possible to detect three distinct clusters, a) eleven

high sensitive enzymes (i.e., enzymes with µ, σ > 1), b) five insensitive enzymes

(µ, σ < 0.1), and c) seven low sensitive enzymes (0.09 < µ ≤ 1). Hence, the eleven

high sensitive enzymes, Rubisco, PGA kinase, GAP dehydrogenase, FBP aldolase,

FBPase, SBP aldolase, SBPase, Phosphoribulose kinase, ADPGPP, Phosphogly-
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colate phosphatase, and GDC, are the most important enzymes in the studied

model of the carbon metabolism.

Six enzymes of the Calvin Cycle are known to be directly regulated by light

[60]; among these six are present two enzymes (PGA Kinase and GAP dehydro-

genase) responsible of energy-converting reactions, which are coupled to the light

reactions in the thylakoids. Rubisco, Phosphoribulose kinase, FBPase and, with

somewhat lower sensitivity values, FBPase as well are controlled (and activated)

by light [60].

This means that 5 out of 6 of the enzymes with the larger sensitivity values

(those with the largest standard deviation in Fig. 3.2) are controlled by light.

The sixth enzyme with largest sensitivity value is the SBP aldolase (third position

in sensitivity value). This enzyme is not light regulated but is responsible of

two different reactions of the Calvin Cycle: the aldolase controlled reactions

leading to the formation of SBP and FBP (SBP aldolase and FBP aldolase are

the same enzyme [61]). The fact that the same enzyme is responsible of two

reactions in the same cycle can explain its substantial sensitivity. The many

enzymes with large mean and standard deviation values reflect the complexity

of the pathway and the non-linear interactions occurring among enzymes. For

future improvements of the model it is mandatory to consider that some of the

Calvin Cycle enzymes (particularly - and not surprisingly - those with higher

sensitivity values) are allosteric enzymes. The use of Michaelis-Menten kinetics

is, in this case, an approximation of the real situation. Moreover, it is of relevance

to consider that the regulatory networks in which the Calvin Cycle enzymes are

involved, go far beyond the cycle itself. For instance, the impairment of the

photorespiratory enzymes (one of the aim to be achieved in order to increase

photosynthetic efficiency), could cause unexpected effects on the general efficiency

since photorespiration is proposed to be important for avoiding photoinhibition

of photosystem II, especially in C3 plants [62]. This implies that the variation in

enzyme concentration is unlikely to be completely free (or exclusively linked to

the total protein-nitrogen amount) as assumed in this model. The large variation

in sensitivity of the Calvin Cycle enzymes could be linked not only to the more

or less important function of the cycle itself, but also to the contemporaneous

involvement of some of these enzymes in other metabolic networks and then less
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Figure 3.2: Sensitive and Insensitive Enzymes. Morris sensitivity analysis of the
carbon metabolism model. For each enzyme, mean µ and standard deviation
σ of the CO2 uptake rate are reported on the x-axis and y-axis, respectively.
High mean values mean linear enzymatic response, while high standard deviation
values assess a non-linear behavior or dependencies among enzymes.

influenced by the Calvin Cycle selective pressures. On the contrary, enzymes with

high µ value of sensitivity analysis, see Fig. 3.2, are linked to the Calvin Cycle.

For instance, FBPase activity and even its mRNA expression is light regulated

and hence strictly linked to photosynthesis. In order to validate the results, it has

been executed a preliminary bioinformatics analysis with a BLAST [63] search

on the amino acid sequences (starting from Arabidopsis genome) of the Calvin

Cycle enzymes that had the most extreme sensitivity values. They have been

taken into account all of the e-values calculated by BLAST as search result. The

enzymes showing the highest sensitivity values, were also those with the lowest

e-values in BLAST hits (corresponding to the most similar sequences found in

the protein sequences database). A possible explanation of the result could be
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that the amino acid sequence variation in highly sensitive enzymes is low, even

in hits less related to the query sequence. Essentially, the e-value describes the

random background noise. The lower the e-value, or the closer it is to zero, the

more “significant” the match is (less different the sequences are). It is likely that

the protein sequence is so optimized that the sequence variation is low, even in

species scarcely related to the query sequence.

3.4.2 Maximal and Robust Photosynthetic Productivity

Initially, a larger family of optimization algorithms has been compared in CO2

uptake maximization at ci = 270 µmol mol−1 (reflecting the current CO2 at-

mospheric concentration of 360 parts per million, ppm) and by fixing the total

protein-nitrogen in the enzymes of carbon metabolism to 1 gm−2 of leaf area.

Here, 24000 objective function evaluations are allowed as in [42]; in Fig. 3.3,

I report the convergence process of the tested derivative-free optimization algo-

rithms. It is worth noting that the EA proposed in [42] is outperformed by eight

algorithms, the EA seems to stack into a local optimum after 104 objective func-

tion evaluations, while the designed algorithms, PAO and A-CMA-ES, achieve

enhanced CO2 uptake rates.

The most promising algorithms have been let continue the optimization pro-

cess until 105 objective function evaluations; my PAO and A-CMA-ES algorithms

found the best CO2 uptake and they outperform H-J [53] and Differential Evolu-

tion (DE). From an optimization point of view, PAO and A-CMA-ES seem to be

the most effective algorithms. The analysis of the PAO convergence shows that

the algorithm rapidly reaches its best solution, and it is not able to improve it

even if a large number of objective function evaluations is allowed. Surprisingly,

among the three pattern search algorithms considered (H-J, GPS [54], MADS

[55]), the simple H-J outperforms the other two claimed approaches. The data in

Table 3.1 show the concentrations of the enzymes for the original leaf (the second

column), for the optimized leaf as proposed by the evolutionary algorithm used in

[42] (the third column) and four best candidates obtained by PAO and A-CMA-

ES algorithms. The comparison among the robust optimized leaf (last column)

and the natural leaf (second column) can help to detect the relevant enzymes
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Figure 3.3: Convergence process of the derivative-free global optimization algo-
rithms. Searching of the optimal partitioning of resources among the enzymes of
carbon metabolism to maximize light-saturated photosynthetic rate (CO2 uptake)
at ci = 270 µmol mol−1 (reflecting the current CO2 atmospheric concentration).
State-of-the-art optimization algorithms have been adopted and compared (in the
legend from best to worst).

in order to maximize the light-saturated photosynthetic rate (see Fig. 3.4). In

fact, the robust optimized leaf brings coherent relative changes with respect to

the natural leaf for most of the enzymes.

In order to study the robustness of the proposed concentrations, both global

and local robustness analysis have been performed; the question is “how the

gained CO2 Uptake rate is preserved under enzyme perturbations?”; the results

are presented in Table 3.1. Two major aspects should be remarked; firstly, the

concentration that achieves the maximum CO2 uptake rate (36.495 µmol m−2s−1)

36



3. ARTIFICIAL PHOTOSYNTHESIS

Enzyme Name Initial Conc.
mg N m−1

(S. Robust-
ness %)

Conc.
mg N m−1

found in
[42] (S.
Robustness
%)

Opt. without
constraints,
Conc.
mg N m−1

found by A-
CMA-ES (S.
Robustness
%)

Opt. with
constraints,
Conc.
mg N m−1

found by A-
CMA-ES (S.
Robustness
%)

Opt. with
constraints,
Conc.
mg N m−1

found by A-
CMA-ES (S.
Robustness
%)

Optimal
and Ro-
bust Conc.
mg N m−1

found by
PAO (S.
Robustness
%)

Rubisco 517.00 (100) 795.00
(87.5)

861.93 (39) 840.60 (87) 857.05
(63.0)

860.226
(100.0)

PGA kinase 12.20 (100) 5.06 (100) 3.98 (0) 4.90 (100) 4.21 (100) 3.989 (100.0)
GAP dehydroge-
nase

68.80 (100) 75.00 (76.5) 63.55 (17) 71.62 (87.5) 63.71 (51.0) 64.483
(100.0)

FBP aldolase 6.42 (100) 11.70 (100) 9.29 (30.5) 10.38 (100) 10.77 (100) 9.050 (100.0)
FBPase 25.50 (100) 35.90 (100) 27.03 (0) 32.07 (100) 31.78 (100) 26.889

(100.0)
Transketolase 34.90(100) 18.40 (100) 16.98 (100) 19.46 (100) 15.93 (100) 8.247 (100.0)
SBP aldolase 6.21(100) 7.43 (100) 5.94 (0) 6.95 (100) 5.58 (100) 6.661 (100.0)
SBPase 1.29 (100) 4.90 (100) 4.31 (1) 5.03 (100) 4.26 (100) 4.397 (100.0)
Phosphoribulose
kinase

7.64 (100) 8.55 (100) 7.99 (22.5) 8.86 (100) 7.67 (100) 7.007 (100.0)

ADPGPP 0.49 (100) 4.88 (100) 1.22 (0) 2.45 (100) 4.75 (100) 0.721 (100.0)
Phosphoglycolate
phos.

85.20 (100) 1.42 (100) 0.00 (0) 0.85 (100) 0.02 (100) 0.325 (100.0)

Glycerate kinase 6.36 (100) 1.31 (100) 0.00 (100) 0.03 (100) 0.02 (100) 0.005 (100.0)
Glycolate oxidase 4.77 (100) 1.49 (100) 0.00 (100) 1.17 (100) 0.02 (100) 0.019 (100.0)
Ser glyoxylate
aminotrans.

17.30 (100) 3.03 (100) 0.00 (100) 0.14 (100) 0.02 (100) 0.027 (100.0)

Glycerate dehy-
drogenase

2.64 (100) 0.78 (100) 0.00 (100) 0.01(100) 0.02 (100) 0.003 (100.0)

Glu glyoxylate
aminotrans.

21.80 (100) 4.47 (100) 0.00 (100) 0.21(100) 0.02 (100) 0.00005
(100.0)

GDC 179.00 (100) 18.60 (100) 0.00 (100) 1.88(100) 0.02 (100) 0.00003
(100.0)

Cytosolic FBP al-
dolase

0.57 (100) 0.28 (100) 2.03 (0.5) 0.75 (100) 0.89 (100) 2.127 (100.0)

Cytosolic FBPase 2.24 (100) 1.44 (100) 5.27 (30.5) 2.05 (100) 2.50 (100) 5.554 (100.0)
UDP-Glc py-
rophosphorylase

0.07 (100) 0.07 (100) 0.50 (0) 0.56 (100) 0.70 (100) 0.531 (100.0)

Suc-P synthetase 0.20 (100) 0.15 (100) 0.03 (30.5) 0.09 (100) 0.03 (92.5) 0.034 (100.0)
Suc-P phos-
phatase

0.13 (100) 0.07 (100) 0.03 (0) 0.01(100) 0.02 (100) 0.031 (100.0)

F26BPase 0.02 (100) 0.01 (100) 0.00 (100) 0.03 (100) 0.02 (100) 0.0 (100.0)
CO2 Uptake
µmol

m2s

15.486 27.621 36.495 35.146 36.290 36.382

Local robust-
ness %

100 76.50 0 87.0 51.0 100

Global robust-
ness %

81.80 78.44 39.18 79.42 100.0 97.2

Table 3.1: Concentrations of the enzymes (Cf. Appendix 1 for nomenclature), and
Single Robustness (S. Robustness), CO2 Uptake, Local and Global Robustness
(in the last three rows). The second and third columns report the initial concen-
trations of enzymes used in the simulation, (initial leaf, or natural leaf), and the
optimized leaf as predicted by the evolutionary algorithm used in [42]. The last
four columns show the best candidate solutions obtained by the designed PAO
and A-CMA-ES algorithms. This set of candidate solutions has been obtained at
ci = 270 µmol mol−1 (reflecting the current CO2 atmospheric concentration).

is extremely sensitive, and its robustness values are all below the robustness of

the other solutions. In particular, by inspecting the local robustness analysis it

is possible to note that many enzyme concentrations are not robust, and many of

them lead to a completely unreliable pathway. By inspecting the results of local

robustness analysis, it is worth noting that the Rubisco and GAP dehydrogenase
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Figure 3.4: The ratio of the enzyme concentrations optimized by the PAO algo-
rithm (36.382 µmol m−2s−1) at a ci = 270 µmol mol−1 compared to the initial
concentrations (15.486 µmol m−2s−1).

are the less robust enzymes for four over six candidate solutions. Using the de-

signed optimization framework PAO I have obtained an increase in photosynthetic

productivity of the 135% from 15.486 µmol m−2s−1 to 36.382 µmol m−2s−1 (last

column), improving the previous best-found photosynthetic productivity value

(27.261 µmol m−2s−1). Moreover, this new set of enzyme concentrations has a

maximal local robustness (100%) and a high global robustness (97.2%). With re-

spect to the initial concentration of enzymes, increases in Rubisco, FBP aldolase,

SBPase, ADPGPP and a strong increases in Cytosolic FBP aldolase, Cytosolic

FBPase, UDP-Glc pyrophosphorylase were required to a large increase of CO2

uptake rate (see Fig. 3.4). Moreover, there are four enzymes, GAPDH, FBPase,

SBP aldolase, and Phosphoribulose kinase, approximately maintaining the same

values of the initial concentrations, while PGA kinase, Transketolase, Suc-P syn-

thetase and Suc-P phosphatase are under-expressed; the remaining enzymes are

switched off. The under- and over- expressed pattern of Fig. 3.4 is well de-

fined, the change of concentrations of the enzymes of carbon metabolism between

optimized leaf and natural leaf does not show ambiguities.
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As noted in [64; 65], SBPase is a very particular enzyme: approximately 10%

of increase in photosynthetic rate has been observed in transgenic plants over-

expressing SBPase enzyme. It is crucial, hence, to verify if further gains could be

obtained in transgenic plants if, in addition, Rubisco, FBP aldolase, ADPGPP,

Cytosolic FBP aldolase, Cytosolic FBPase, and UDP-Glc pyrophosphorylase were

over-expressed.

3.4.3 Multi-objective optimization of the carbon

metabolism: CO2 uptake vs. Protein-Nitrogen

Pareto Optimality is one of the most fruitful and powerful approach where op-

timization of conflicting objectives is concerned[66; 67]. The multi-objective for-

mulation of the re-design process poses a serious algorithmic challenge, since the

defined Pareto front is not easily analyzable; for this reason, a derivative-free

multi-objective optimization algorithm, PMO2, has been designed with the aim

of producing a good approximation of Pareto optimal concentrations. Here I

present the results of the analysis whose aim is the evaluation of the contextual

maximization of the CO2 uptake rate, while minimizing the actual amount of

total nitrogen contained in the enzymes.

The capability of reducing the amount of nitrogen necessary to fix CO2 in

biomass is an important goal for biotechnology. Large increases in the efficiency

of nitrogen usage, will be necessary to maintain or increase current food produc-

tion in a sustainable manner [68]. Intensive high-yield agriculture is dependent

on addition of fertilizers, especially industrially produced NH4 and NO3 [68].

Fig. 3.5 shows that the optimization may largely improve nitrogen usage in

photosynthesis without affecting CO2 uptake rate. Moving beyond the natural

operative area (area checked in green), I found leaf configurations that expose

a Pareto-optimality in the six conditions considered (three Ci atmosphere val-

ues and two triose-P export rates). The candidate highlighted as B represents a

leaf with a natural CO2 uptake ability, but employs 47% of the naturally needed

protein-nitrogen. The A2 candidate is interesting as well: it needs exactly 50%

of the naturally employed protein-nitrogen to gain up to 10% CO2 uptake capac-

ity, when compared to the natural leaf. The enzymes involved in concentration
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Figure 3.5: PMO2 results: multi-objective optimization of two conflicting biolog-
ical pressures; leaf CO2 uptake rate versus protein-nitrogen consumption.

variation are almost always the same: Rubisco provides nitrogen to increase the

concentration of other enzymes. A slight reduction in Rubisco corresponds poten-

tially to a large amount of protein nitrogen available for increasing concentration

of the other enzymes. As a matter of fact the high concentration of Rubisco in

the leaves was considered to have a possible function also as nitrogen reservoir

[69].

Fig. 3.6 shows the concentration of the enzymes in the B leaf with respect to

the natural concentrations. From a re-engineering point of view, the two leaves

are similar; in fact, each enzyme involved shows a growth/reduction in concen-

tration that is within the range 0.05x-2x ca. Despite this relatively small metric

distance and the equal uptake rate, the biochemical effort paid by the two leaf

designs is substantially different. SBPase and ADPGPP confirm their leading

role in the leaf engineering. These results show that re-engineering the nitro-
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Figure 3.6: Comparison among the Pareto-optimal re-engineering candidate B
(that uses a total concentration of Nitrogen equal to 99027 mg l−1) and the
natural leaf (whose total concentration of Nitrogen is 208333 mg l−1).

gen partitioning among well determined enzymes (individuated by the detailed

framework) can lead to theoretical leaves capable of reducing significantly the

general amount of nitrogen without affecting the potential biomass production.

It is interesting to observe that the enzymes of the photorespiration, a process

acting against the general photosynthetic yield, are not kept at zero as in other

models. Photorespiration has a major impact on carbon uptake, particularly un-

der high light, high temperatures, and CO2 or water deficits [70]. Nevertheless

although the functions of photorespiration remain controversial, it is widely ac-

cepted that this pathway influences a wide range of processes from bioenergetics,

photosystem II function, and carbon metabolism to nitrogen assimilation and

respiration. For instance photorespiration is a major source of H2O2 in photo-

synthetic cells. Through H2O2 production and pyridine nucleotide interactions,

photorespiration makes a key contribution to cellular redox homeostasis. Doing

so, it influences multiple signaling pathways, particularly those that govern plant

hormonal responses controlling growth, environmental and defense responses, and

programmed cell death [70].
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In summary, I modeled the C3 photosynthetic carbon metabolism in terms of

concurrent optimization of two conflicting biological strengths: maximization of

CO2 uptake and contextual minimization of the total protein-nitrogen employed

to gain that property (representative of the biochemical effort the leaf has to

devote to gain that CO2 uptake rate). I inspected the problem at three CO2

concentrations (Ci) in the atmosphere or stroma (25M years ago environment,

nowadays one, and the one predicted for the end of the century) and two triose-P

(PGA, GAP, and DHAP): low and high export rates. In this context, my anal-

ysis has detected Pareto-optimal configurations in the six Ci/triose-P conditions

studied. Among the others, two promising candidates for leaf re-engineering have

been further inspected and compared with the natural leaf enzyme configuration.

For the first time, it has been individuated a reasonably small set of key enzymes

whose targeted tuning gives rise to a robust maximization of the photosynthetic

rate, contextually with an efficient protein-nitrogen employment. It also interest-

ing to note that for increasing atmospheric CO2 it is possible to obtain a major

CO2 uptake rate with a minor protein-nitrogen concentration.

3.5 Discussion and Conclusions

Optimizing the CO2 uptake rate is a complex task, that has been tackled by ad-

hoc optimization algorithms, A-CMA-ES, PAO and PMO2; the found solution is

robust and assures a gained CO2 uptake rate of 135%. I used a multi-objective

optimization approach in order to maximize the CO2 uptake rate and minimizing

the protein-nitrogen concentration; the analysis of the Pareto front shows that,

for increasing CO2 atmospheric concentrations, it is possible to obtain an im-

proved CO2 uptake rate with a decreasing protein-nitrogen concentration. From

1850 to 2006, fossil fuel and cement derived CO2 emissions, released a cumulative

total of ∼ 330 petagrams of carbon (PgC) to the atmosphere. An approximately

additional 158 PgC came from land-use-change emissions, largely deforestation

and wood harvest [71]. The growth rate of global average atmospheric CO2 for

2000–2006 was 1.93 ppmy−1 (parts per million per year) [71]. Primary production

of world biomass, considering both marine and terrestrial sources, robustness an

estimated global net primary production of 104.9 petagrams of carbon per year

42



3. ARTIFICIAL PHOTOSYNTHESIS

[72], while Cellulose and Lignin, the most abundant organic resources in the

world, exhibit an annual turnover rate of 4 × 1010 tonnes, or 40 petagrams [73].

My results show that the potential increase in CO2 uptake obtainable by varying

enzyme concentration of the Calvin Cycle might increase the current CO2 up-

take by 135%, hence a quantity potentially capable to counteract CO2 emission

in atmosphere by human activities. Such an increase could be obtained partly

naturally by varying gene expression of the involved enzymes, or by selecting

individuals that could modify the expression hence increasing their Calvin Cycle

efficiency. This second mechanism would require a long time unless we consider

the hypothesis of artificially modifying of DNA involved in gene expression con-

trol. This last possibility would require careful evaluation of possible risks linked

to introduction in the environment of organisms capable of fast growth in a CO2

rich atmosphere. The increase in biomass productivity and CO2 uptake calcu-

lated by optimized enzyme partitioning might potentially counteract the current

increase in atmospheric CO2.

Photosynthesis and particularly the biochemical pathway of carbon fixation

(the Calvin Cycle) has been object of many studies (for a review see for instance

[74; 75; 76]) and some journals are directly entitled to this fundamental biolog-

ical process. In this research I have identified key enzymes to target in order

to maximize CO2 uptake rate and minimize the protein-nitrogen in C3 plants.

The designed methodology, including multi-objective optimization, unravelled

that Rubisco, Sedoheptulosebisphosphatase (SBPase), ADP-Glc pyrophosphory-

lase (ADPGPP) and Fru-1,6-bisphosphate (FBP) aldolase are the most influential

enzymes in carbon metabolism model where CO2 uptake maximization is con-

cerned. Interesting insights include the fact that the Rubisco enzyme participate

with a very high concentration; additionally, some of the photorespiratory en-

zymes that should be almost switched off to reach the best configurations known

[42] cannot be effectively switched off because they are involved in other processes

carried by C3 plants. The pathway enzymes that lead to sucrose and starch syn-

thesis were shown not to affect CO2 uptake rate if maintained at their natural

concentration levels. The importance of SBPase has already been pointed out by

antisense transgenic plants studies [76].
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3.5.1 Assessment of the quality of the results obtained

thought the multi-objective optimization

The optimization performed using the PMO2 algorithm provides a large set of

trade-off solutions (Cf. Appendix 1 for details on alternative solutions); in par-

ticular, 755 Pareto optimal concentrations have been found, that are the 1.83%

of the total enzymes partitions explored by the algorithm.

Algorithm Points Rp Gp Vp

PMO2 775 1.0 1.0 0.976
MOEA-D 137 0 0 0.376

Table 3.2: Pareto front analysis. For each algorithm, they are reported the num-
ber of Pareto Optimal points (non-dominated points), the relative Pareto coverage
indicator (Rp), the global Pareto coverage indicator (Gp), and the hypervolume
indicator (Vp).

In order to assess the quality of the Pareto frontiers (at present Ci value of

270 µmol mol−1 and maximal rate of triose-P (PGA, GAP, and DHAP) export

of 3 mmol L−1 s−1), I compare the results obtained by PMO2 and MOEA-D,

another state-of-the-art evolutionary multi-objective optimization algorithm [77].

The terms of comparison are the metrics detailed in Chapter 2: Pareto Optimal

points (non-dominated points), the relative Pareto coverage indicator (Rp), the

global Pareto coverage indicator (Gp), and the hypervolume indicator (Vp). The

results reported in Table 3.2 confirm the quality of the candidate solutions ob-

tained by PMO2. Successively, from the Pareto front, they have been selected

the shadow minima for each objective and the closest-to-ideal solutions; succes-

sively, they have been computed the global robustness of these concentrations.

Moreover, in addition to these solutions, they have been picked 50 Pareto optimal

points equally spaced on the Pareto front and their robustness have been esti-

mated. In table 3.3, it is possible to note that the three concentrations selected by

the automatic criterion are quite robust (Yield column), even if they greatly dif-

fers in terms of CO2 Uptake rate and nitrogen concentration; this experimental

evidence seems to confirm that trade-off concentrations represent robust path-

way configurations despite the changes in their uptake capability and nitrogen
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Selection CO2 Uptake Nitrogen Yield
Closest-to-ideal 21.213 1.270× 105 67
Max CO2 Uptake 39.968 2.641× 105 65
Min Nitrogen 5.7 3.845× 104 50
Max Yield 37.116 2.291× 105 82

Table 3.3: Pareto Front analysis. For each Pareto optimal solution, we report
the selection criterion, the CO2 uptake rate, the nitrogen amount and the yield
value.

required. However, by inspecting the Pareto front it is possible to find a new

enzyme partition that achieves a slightly worse uptake rate but a remarkable

increase in terms of robustness; from this analysis, it is clear that the yield is

another conflicting objective and, hence, an inherent trade-off emerges.

More in detail, to inspect the relation between CO2 uptake, Nitrogen con-

sumption and the inherent solution robustness, it has been assessed the fitness

landscape with respect to these three objectives. Figure 3.7 presents the results

of this analysis by means of a 3D Pareto-surface. Despite the rugged aspect of the

surface, that highlights how far from an ideal world and how real is the problem

we are tackling, it is clear that Pareto relative minima are highly unstable points,

while if we accept a slightly lower optimization in the functional objectives, we

can obtain a significantly more reliable solution.

Finally, looking at the concentrations of the closest-to-ideal solutions, some

more interesting results are observable; except for the GOA Oxidase, each algo-

rithm maintains a concentration close to the natural concentrations. Remarkable

increases are observable for GAP DH, GGAT, Cytolic FBP Aldolase, SPP and

F26BPase enzymes. At this point, it is possible to infer that these enzymes are

the best candidate for a trade-off performance leaf. Clearly, it is important to

remark that modest increment of other enzymes are plausible since they have a

higher molecular weight. It should be observed that even if some of the considered

enzymes fall to zero in main photosynthesis models in the optimized leaf, such a

low concentration could influence other important biochemical pathways. For in-

stance photorespiration-related enzymes as Glu Glyoxylate Aminotransferase and

GOA oxydase fall considerably in concentration at the optimized state. Photores-

piration is by far the fastest H2O2 -producing system in photosynthetic cells under
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Figure 3.7: Photosynthetic Pareto surface. Robustness vs CO2 uptake (x-axis)
and Nitrogen consumption (y-axis).

many conditions [78]. H2O2 is an important intracellular signal [70]. Moreover

the photorespiratory pathway metabolizes glycolate-2-P to Glycerate-3-P and is

considered important to avoid photoinhibition of photosystem II, particularly in

C3 plants [62]. Photorespiratory mutants of Arabidopsis with inactivation of

some of the enzymes of the photorespiratoy pathway did not show negative ef-

fects at high level of external CO2 but CO2 fixation rates declined drastically at

current atmospheric CO2 concentration [62]. This means that models based only

on the photosynthetic pathways leading to strong decrease in concentration of

the photorespiratory pathway enzymes, should take into consideration that this

pathway is necessary to the plant for aspects that have not been considered in

current models.

From a methodological point of view, I report that the optimization method-
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ologies in the systems biology framework is a thriving field of research. It has

two immediate and important benefits: the improved understanding of the pro-

cesses that shape the evolution of energy collecting engine at the molecular level

and the improved ability to use optimization methods to predict from molecular

data directions where experiments should go and drive the decision process in

biotechnology.

Finally, these can be considered as points of strength: 1) as far as I know it is

the first time that the overall framework, sensitivity, optimization and robustness,

is used for the study of biological pathways; 2) it is the first time that local and

global robustness analysis has been defined and used to study molecular entities,

and 3) for the first time, the C3 photosynthetic carbon metabolism has been

characterized by CO2 uptake rate versus protein-nitrogen Pareto frontiers which

I prove to be a meaningful and effective way to address this class of bioinformatics

and bioengineering problems.

The integration of optimization methods with bioinformatics is shaping at

growing pace our comprehension of biological processes Optimization methodolo-

gies provide an essential tool to capture a set of assumptions and to follow them

to their precise logical conclusions. They allow us to generate new hypotheses,

suggest experiments, and measure crucial parameters. If the scientific progress

relies on asking the right questions, the combination of optimization methods and

bioinformatics will suggest more insightful questions and answers than bioinfor-

matics techniques alone.

Explorations in Pareto front analysis suggest that its shape may reflect the

amount of epistasis (where the effects of one gene are modified by one or several

other genes) and pleiotropy (when a single mutation or gene affects multiple

distinct phenotypic traits) in the metabolic pathway, so that simpler independent

traits may generate simpler Pareto fronts. It is know that complexity and in

particular fitness traits such as energy balance, growth and survival, depend on

both the epistatic and pleiotropic structure of a metabolic pathway and therefore

strongly influences evolutionary predictions.
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Chapter 4

Biological and Medical Ontology

Reasoning

4.1 The OREMP Project

The information coming from biomedical ontologies and runnable pathways is

expanding continuously: research communities keep this process up and their

advances are generally shared by means of dedicated resources published on the

web. In fact, runnable pathways are shared to provide the characterization of

molecular processes, while biomedical ontologies detail a semantic context to the

majority of those pathways [11].

Recent advances in both fields pave the way for a scalable information inte-

gration based on aggregate knowledge repositories [12; 13], but the lack of overall

standard formats impedes this progress. Having different objectives and different

abstraction levels, most of these resources “speak” different languages.

Employing an extensible collection of interpreters, I propose a system that

abstracts the information from different resources and combines them together

into a common meta-format. Preserving the resource independence, the system

provides an alignment service that can be used for multiple purposes. Recent

examples are: 1) The new web application Cytosolve [79] uses an embedded ver-

sion of this system to provide congruous parallel simulation of multiple models;

2) Using the BioModels.net database[80], a searchable dictionary of equivalent
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molecular reaction paths is built. Finally, the enriched knowledge can be ex-

ported in OWL2 [81] and queried by semantically-enabled tools such as Protégé

[82]. In this approach, I see a valuable tool to integrate and reason information

originating from different sources, while preserving the independence of the model

curation process; additionally, information sharing, integration and discovery are

the primary features here provided.

4.2 Introduction

The information about molecular processes is expanding continuously and the

descriptions are shared in the form of computable pathways. Biomedical ontolo-

gies are being created to provide a semantic context for the molecular species and

reactions that they contain. Current advances in both topics suggest an informa-

tion integration cycle based on shared knowledge-bases, but because of different

languages (i.e., the data formats) spoken by the data sources and different ab-

straction levels, there is a lack of an overall frame capable of identifying overlaps

and duplications [11]. One can envision searchable biological resources, such as

the Gene Ontology [83], UniProt [84], ChEBI [85], KEGG [86], Reactome [87]

and BioPortal [88], defining the biological context of the pathways in a machine-

readable format. Substantial effort has been devoted to the creation of ontological

resources which are publicly available, but there are semantic obstacles that in-

hibit their combined use. On the other hand, it is desirable to inform databases of

runnable pathways, such as the BioModels.net collection, the CellML repository

[89] and even specialist repositories [90; 91; 92], with the information contained

in the curated molecular ontologies in a manner that can be used easily. Some

syntactic conversions are available among pathway data-formats [93; 94], and

the state of the art for adjudication of the discrepancies between two SBML [14]

models is SemanticSBML [95], which exploits machine-readable information and

the user input to create a merged SBML model. Unfortunately, in the context

of large-scale composite biological pathways, the merged-model approach is un-

desirable because it destroys the original component models and interrupts the

curation process. For more than two SBML files, the tool must be run repeatedly

with user-input, subjecting it to increasing human error, and suggesting that the
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order in which the models are aligned matters. An alternative approach based

on the use of ontologies discerns when and on which topics models are a relevant

part of the large-scale context. Where bio-ontologies are concerned, the state

of the art is represented by BioPortal which provides uniform access to most of

the biomedical ontologies through a single user-interface and advanced tools to

query over biomedical data resources. As a matter of fact, there is still a large

chasm between today’s functionality and the true ability to use ontological data

to inform molecular pathways. Additionally, there is a lack of strategies for the

database and ontology integration of quantitative biological sources written in

different standards (e.g., SBML and CellML [15]). What is described here is a

system that creates extended ontologies out of different biochemical information

sources and provides path duplication detection, sharing, integration, and knowl-

edge discovery over heterogeneous resources. This cross-format system, I called

OREMP (Ontology Reasoning Engine for Molecular Pathways) exports the ex-

tended ontologies in OWL2 format; the latter can be fed to Protege, where the

information can be then browsed and edited at different levels of abstraction.

This framework, that I developed at Massachusetts Institute of Technology,

is currently employed in the Cytosolve@MIT project [96; 97; 98].

4.3 System Architecture and Operational Work-

flow

Biological processes are largely modeled in terms of systems of ordinary differen-

tial equations (ODE); a forum of researchers, developers and end-users designed

an encoding for these ODE systems that is based on XML: after years of discus-

sions the result is the Systems Biology Markup Language (SBML) whose features

are outlined in [14]. A runnable pathway, or simply model, is a set of biochemical

species whose evolution in time is determined by the reactions they participate in.

These reactions, as well as the species, are specified in the SBML file: the manner

define by means of MathML [99] sections how species evolve. A bio-ontology is

just an ontology where is formally detailed how some life-science elements relate

to each others. The simplest example is the definition of a newly discovered
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molecule “A” that is believed to be of type “B”; this will be formalized as

A IsA B.

In order to step beyond simple syntactical translation, I designed a system

that merges the information from molecular pathways and curated biological

ontologies into extended ontologies using a specific meta-format.

Figure 4.1: System architecture: its components are integrated to work together
preserving a flexible and easily extensible architecture. Each module has different
versions used on the basis of job in progress (e.g., to parse an SBML file, it will
be dynamically chosen the SBML parser).

The system is composed of interchangeable and extensible components (Fig-

ure 4.1). The four components of the system are the following

• the data access facilities, meant to collect information about multiple path-

ways and existing biological databases;

• the parser module that can read different file formats and extracts informa-

tion from those sources;

• the core module where knowledge from different sources can be assembled

to later fill a coherent ontology;

• the logic module defines the conditions that identify when two biomolecular

elements are in conflict, with respect to external ontologies as well;

Effectively, the information (e.g., species, reactions and references to ontolo-

gies) coming from heterogeneous resources is abstracted into our internal meta-

format through these modular computational steps:
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1. The data access facility collects information about multiple pathways and

existing biological databases.

2. A parser module reads different file formats (i.e.: XML, RDF, SBML,

CellML, etc) and extracts relevant information.

3. The core module assembles the knowledge, parsed from different sources,

into a coherent ontology (based on our meta-format, cf. Table 4.1).

4. The logic module can annotate all of the species from a collection of reac-

tions and do automated comparisons, identification of common species, and

duplicate reactions.

It is worth noting that different versions of each module can in fact be used.

An internal algorithm chooses the proper component implementation according

to the current task (e.g., to read an SBML file, the system will invoke the SBML

parser from its extensible list of parser modules). In fact, while the operational

work-flow (1-4) is kept fixed, it is of note that different versions of each component

may be loaded by the system. A user-configurable algorithm chooses at run-time

the components that are required for the current job. This means that whenever a

new modeling standard is introduced, a new parser can be connected to OREMP

to interface with it as well. Similarly, different users can define different versions

of the core module, for example, according to their understanding about how

the knowledge coming from different pathways should be aggregated. This is of

particular interest in domain-specific applications: according to different curators,

different resources are more valuable than others and there are no gold-standards

universally accepted.

A key part of this approach is the designed meta-format; around the latter

the information is collated and merged together while preserving model identity.

This meta-format has been designed to embed the minimalistic and quantitative

MIRIAM-compliant [100] information derived from different pathways. Model

annotations are preserved and extended with supplemental quantitative data to

achieve a common description that can be represented as a single ontology. The

structure of this ontology is presented in Table 4.1.
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Entity has

Annotation type:STRING, uri:STRING, information:STRING.
Species name:STRING, internalId:STRING, initialValue:REAL,

inPathway:PATHWAY, hooks:SET OF ANNOTATIONS.
Kinetic internalId:STRING, kinetics:FORMULA,
reaction kineticParameters:SET OF PARAMETERS, inPathway:PATHWAY,

reactants:SET OF SPECIES, catalysts:SET OF SPECIES,
products:SET OF SPECIES, hooks:SET OF ANNOTATIONS.

Parameter name:STRING, value:REAL.
Pathway fullname:STRING, hooks:SET OF ANNOTATIONS.

Table 4.1: Main components of the minimalistic quantitative MIRIAM-compliant
ontology used to abstract heterogeneous resources associated with biomolecular
pathways. The format “attribute:REPRESENTATION” is used.

It is worth noting that, if we delete the link coming with the inPathway

attribute, all of the elements abstracted in the meta-format can be disconnected

from their original pathway and reasoned as if they all came from the same source.

On the other hand, after this aggregate reasoning is performed, each conflict can

be traced down to its source through the chain {Species|Kineticreaction} ↔
Annotation↔ Pathway. This tunable abstraction level comes very handy when

a pathway database has to be seen as a single source of information and its

redundancies have to be aligned. After interpreting different formats into the

internal representation (our meta-format), another computational step is taken:

6. The logic module computes N-order species set-set reachability of all the

reactions within the loaded and aligned models.

In empirical models, as said for model repositories, the detection of dupli-

cates is extremely important because (for instance) a duplicate reaction may lead

to erroneous results. The duplicates are revealed to the user, allowing individ-

uals to retain editorial power over their models. It also assists researchers in

understanding how the resulting models of their work fit into models produced

by others. The N-order reachability (duplicate reaction detection) among species

sets builds a reaction composition analysis by constructing a matrix which repre-

sents a directed graph. Each vertex is a set of species and each edge is a reaction,

which abstracts the overall species-set connectivity. This graph does not become

a multi-graph for each set of duplicate reactions (first-order duplicate) because

only one element is taken as a group representative. Through this reachability
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computation, a dictionary of potentially equivalent reaction compositions is built:

candidate paths of the same starting and ending sets of species, but involving al-

ternative intermediate paths. Fig. 4.2 presents a case where first-order (N=1,

R1 and R2) and N-order (R*) duplicate reaction paths overlap: the dashed arc

means that is traverses more species-set apart from X and Y.

Figure 4.2: First-order and N-order reaction overlaps

The last computational step is the following:

7. The extended ontology is exported in OWL2 [81] and can be queried and

edited by means of semantic tools such as Protégé [82].

From the implementation point of view, the main OREMP system function-

ality is written in Java, while the N-order reachability is implemented separately

in Python to exploit Psyco library [101]. Additional information can be obtained

using FACT++ [102] and query interface embedded in Protégé once the latter

has been fed with the ontology we export.

4.4 Three Real-World Applications

Our system has been tested in three real-world applications. (i) In a simple exam-

ple, we demonstrate the system’s power to detect a first order duplicate reaction

in the EGFR model [103] that has been factored up, but overlaps in one reac-

tion, and the difference in quantitative results. Next application (ii) consists in

the fact that Cytosolve, which is a new computational environment for parallel

simulation of multiple pathways, embeds a version of the OREMP system; there

it is assigned to the task of identification of common molecular species and du-

plicated reactions with minimal human intervention. Last application (iii) is the
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combined analysis of the entire BioModels.net curated collection (currently 240

molecular pathways); OREMP has presented an aggregated view of the collection

and brought to the identification of thousands of biological equivalent reaction

chains, contextually a dictionary of biological building blocks has been extracted.

4.4.1 EGFR model

The combined execution of two overlapping models without detecting reaction

duplication will produce an incorrect evolution of species concentrations in time.

This is a concrete, quantitative effect of incorrect ontology alignment. In this ex-

ample, part of a well-known EGFR (Epidermal Growth Factor Receptor) model

[103] has been factored into two pieces (pathway A in Fig. 4.3 and pathway B

in Fig. 4.4), containing a first order reaction pathway duplicate between the two

models. The two separate model pieces are put back together and simulated si-

multaneously using the Cytosolve web-application, taking advantage of OREMP

to inform the user about potential inconsistencies found among pathways. With-

out such consistency control, the evolution of the species concentration in time

can lead to unpredictable values.

Figure 4.3: EGFR Pathway A

Fig. 4.5 presents the right parallel simulation (model A, model B) executed

by Cytosolve, where our system was used to detect the conflict among the two

pathways (i.e., reaction v3), and the user decided to zero the v3 rate constants in

model B. Fig. 4.6 presents the same case, without accounting for the duplicated

v3 reaction. The resulting (EGF EGFR)2 − P and (EGF EGFR)2 − PLCg
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Figure 4.4: EGFR Pathway B

species concentration trends are different both in shape and magnitude, since the

reaction v3, present in both models, led to increased species production. Note

that this also triggers premature escalation of the PLCgP − l concentration. The

time needed by OREMP to perform this additional analysis is on the order of

milliseconds.

Figure 4.5: EGFR Pathway A combined with EGFR Pathway B

4.4.2 OREMP in Combining Pathways for Parallel Solu-

tion.

This system is embedded in the latest release of Cytosolve [79]. Its contribution

to the integration of runnable pathways is the detection of duplicated reactions
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Figure 4.6: EGFR Pathway A combined with EGFR Pathway B, without ac-
counting for the detection of the duplicate reaction

among different models. No matter the models chosen for simulation, once the

species are aligned, the system identifies duplication problems in the reaction-

models. From the user point of view this process is transparent: he/she receives a

warning message that details the duplicated reactions and is prompted to confirm

conflict elimination, and to resolve any differences in reaction kinetic rate con-

stants. What follows is the outline of the process that starts at Cytosolve@MIT

and moves from isolated pathways to their coherent parallel solution.

• Cytosolve, step 1: Multiple Simulation begins, Fig. 4.7

• Step 2: models BIOMD..1 and BIOMD..2 are selected, Fig. 4.8

• Step 3: OREMP points out the overlaps among the two models, Fig. 4.9

• Step 4: the user silences the reaction in conflict and re-uploads model 1,

Fig. 4.10

• Step 5: the simulation takes place and the results are visualized, Fig. 4.11

4.4.3 OREMP in Querying Large, Independent Sources

of Pathways.

The system has been tested against the entire Biomodels.net curated collection

[80] that contains about 240 molecular pathways. The result of the analysis is
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Figure 4.7: Cytosolve, step 1: Multiple Simulation begins

Figure 4.8: Cytosolve, step 2: models BIOMD..1 and BIOMD..2 are selected

an overall view of the database and a list of about 500 groups of overlapping

reactions. This analysis took 50 seconds on a single-core 2GHz Intel CPU. The

previously described knowledge-discovery-step involving N-order reachability has

been taken on these resources as well. For each species configuration in the

database, all alternative circuit paths have been computed. This took about 2

hours on a quad-core 2GHz AMD CPU and resulted in a dictionary of thousands

“biological equivalent” circuits (i.e., equivalent reaction compositions). More

precisely we have obtained:

• An ordered dictionary of pathway building blocks
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Figure 4.9: Cytosolve, step 3: OREMP points out the overlaps among the two
models

• The list of equivalent reactions overall used

• All of the potentially equivalent N-order reaction compositions

With this method the observed edge/vertex ratio for the BioModels.net curated

DB is 1.19, which is comparable to other biological pathway databases - Human-

Cyc DB [104] has a ratio of 1.01 and EcoCyc DB [105] one of 1.25 [106]. In

this manner, the pathway building block dictionary obtained from the BioMod-

els.net DB can be consulted to look up the alternative paths from one species-set

vertex to another. A basic example of pathway building blocks extracted from

the BioModels DB processing follows; this example includes only one species in

each species-set. In the context of another EGFR model [107] (i.e.: MAP ki-

nase cascade activated by surface and internalized EGF receptors), as detailed in

biomodel 19 in [103], the system detected that the EGF−EGFR∧2−GAP−Shc
species can directly become EGF − EGFR ∧ 2 − GAP − Shc∗ or, alterna-

tively, the former can first become EGF − EGFRi ∧ 2 − GAP − Shc, then

EGF −EGFRi∧2−GAP −Shc∗, and finally EGF −EGFR∧2−GAP −Shc∗.
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Figure 4.10: Cytosolve, step 4: the user silences reaction in conflict and re-uploads
the model

This is just one and very simple example of our N-order analysis and the complete

results about BioModels.net include a number of different species-sets in the order

of 103. Another interesting usage example consists in asking to the system all of

the possible pathways from two given species set: reading the ordered dictionary

of pathway building blocks, this task can be easily achieved.

4.5 Ontologies From Pathways: Practical Ad-

vantages

From a logic point of view, the system is constructed of three layers. The bot-

tom layer represents the original biochemical pathways, read in their primitive

format (such as SBML and CellML). The second layer abstracts (through the

work-flow 1-7 detailed above) the pathways into a minimalistic and quantitative

meta-format (sketched in Table 4.1) that includes all the MIRIAM components.

Annotations are preserved and extended with additional quantitative data to
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Figure 4.11: Cytosolve, step 5: the simulation takes place and the results are
visualized

achieve a common description that can be represented as a single ontology. It is

at this level that the extended ontology is primarily created. Entities and rela-

tions created in this manner are homogeneous in the ontological sense. This im-

plies that several pathway collections can be combined in an ontology repository

while maintaining a common semantic, meaning that the following advantages

are achieved:

Sharing. Despite disparate initial data formats, the biochemical information

described in each pathway is now homogeneously represented. This enables the

direct reuse of componets (such as species or reactions) coming from different

sources.
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Integration. The system ensures a consistent merging of the resources, au-

tomatically aligning the species and showing the end-user possible duplications

among reactions in the different pathways.

Knowledge discovery. Once the species alignment is done and duplicate reac-

tion have been detected, the N-order reachability step is taken: for each reaction

in each pathway the set of “alternative circuits” is computed. This means that

given an arbitrary number of pathways, the system will identify all of the alter-

native ways to traverse from state S0 to a state S1 (where the states are different

species configurations) within the overall set of reactions. In the last layer, all the

information gathered is exported in OWL2. In the context of the Cytosolve@MIT

project, I used the semantic tool, Protégé [82], to visually edit, compare, and final-

ize the biochemical information exported. Protégé query interface allows the user

to formulate “semantically-enabled” queries that were impractical when dealing

with previously heterogeneous, unaligned data repositories [108].

4.5.1 System Discussion

SemanticSBML [95] provides the state of the art tools to obtain a monolithic

merged model starting from different molecular pathways. Where Cytosolve is

concerned, one key component of its approach is the fact that it does not produce

a monolithic model. This preserves the curation process of independent models

and allows independent research laboratories to continue investigation and im-

provement of their own model without being forced to prematurely publish an

authoritative merged resource; the independent curation process is preserved by

maintaining the pathway identity, since the primitive element-pathway network

is not destroyed by integration. Basically, this approach is different from Seman-

ticSBML because it provides the user the opportunity to exploit his/her under-

standing to define a consistent method of knowledge integration across ontologies

Another point of strength is the fact that once the system has read all of the 240

models from BioModels.net curated collection and the pathway building block

dictionary is written (feeding step), the end-users can exploit this functionality

to accelerate their research by taking advantage of other modelers efforts simply
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by consulting this dictionary. By specifying the initial and ending set of species,

modelers can use the building block dictionary to gain ideas about how other peo-

ple investigated and modeled a similar problem and how cross-pathway reactions

could be composed to fit their needs. The experiment detailed in section 4.4.3

provided an interesting overview of the BioModels.net collection that brought also

the following achievement: from the prospective of those who curate collections

of biochemical pathways, this framework can be used to find inconsistencies and

redundancies within their repository since the system highlights common bricks

shared among multiple models.

4.6 Conclusions

This is the first time that the information coming from different biological data

sources has been aggregated into a single quantitative ontology. There, thanks

to the design of the meta-format detailed, both combining operations and detail-

revealing ones are allowed: OREMP application can combine several pathways,

merge and combine pathway repositories, or revert to the original pathways, and

inspect single-model details and query external repositories (such as UniProt and

GO) referenced in pathway element annotations. The system is independent of

the different file formats in which the pathways are written and contains an ex-

tensible collection of parser modules. I have selected OWL2 as export format for

the extended ontologies and have adopted Protégé as default “Data Warehouse”

for information storage, retrieval and reasoning. Despite its early stage, the sys-

tem has been successfully employed in challenging field applications. One of the

extensions to this work is an in-depth analysis on the additional constraints that

conservation of mass requirements imparts to the model-merging and duplication

detection problem. Secondly, Dewey Lab is now investigating ways to visualize

the complex ways in which duplicate reaction paths can exist between multiple

models [98].
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Conclusions

From an algorithmic point of view, my research brought three new algorithms:

AMMISCA [109], PAO [110] and PMO2 [111]. The first one has been adopted

on the tuning of an established Cellular Automata model (SCIARA [20; 29])

for the forecasting of lava flow paths. With respect to the original genetic al-

gorithm [28], AMMISCA has given rise to the most precise lava simulation, it

is interesting to note that the algorithm achieves the best solution (in terms of

fitness and required time) without a standard crossover phase as defined by Hol-

land. Additionally, it has been proved that new areas of the search space have

been inspected by the new algorithm. The algorithm PAO has been designed

for the optimization of a photosynthesis model: in this context the algorithm

outperformed those algorithm actually considered “the state of the art” in gen-

eral purpose optimization. Strength points of this algorithm are its distributed

approach based on islands and its capability of wrapping other algorithm; this

approach has exploited the concept of migration to combine solution building-

blocks coming from different optimization niches (islands). The algorithm PMO2

algorithm has been applied to the Geobacter sulfurreducens in order to stress its

capabilities in a highly-dimensional problem (R608); with respect to that I have

obtained a computational model that maximizes the electron and biomass pro-

ductions while preserving those bounds that ensures a biological significance. To

my knowledge this is the first time that Geobacter sulfurreducens is modeled as a

multi-objective optimization problem where the search moves automatically to-

wards steady state solutions, contextually with biological boundaries observance
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and functional optimization (i.e.: biomass and electron productions). Optimized

configurations of the Geobacter here obtained are currently under consideration

for “in vitro” and “in vivo” implementations. In fact, bioengineering a mutant

strain in order to reach faster rates in electron transport yield is highly desirable

and could represent a breakthrough for massive application in biotech industry.

The study of photosynthesis has been another main chapter in my research.

With respect to that the designed methodology I have obtained an increase in

photosynthetic productivity of the 135% from 15.486 µmol m−2s−1 (i.e., value

measured in standard natural leaves) to 36.382 µmol m−2s−1, and improving the

previous best-found photosynthetic productivity value [42] (27.261 µmol m−2s−1,

76% of enhancement). Optimized enzyme concentrations express a maximal local

robustness (100%) and a high global robustness (97.2%), satisfactory properties

for a possible “in vitro” manufacturing of the optimized pathway. Morris sensi-

tivity analysis shows that 11 enzymes out of 23 are high sensitive enzymes, i.e.,

the most influential enzymes of the carbon metabolism model. Successively, I

have studied the C3 carbon metabolism as a trade-off between the maximization

of the leaf CO2 uptake rate and the minimization of the total protein-nitrogen

concentration. This trade-off search has been carried out in six environmental

scenarios: three ci concentrations (referring to the estimate of CO2 concentra-

tion in the atmosphere characteristic of 25 million years ago, nowadays and in

2100 a.C.) and two triose-P (PGA, GAP, and DHAP): low and high export rates.

Additionally, CO2 uptake and nitrogen consumption are evaluated with respect

to the robustness by means of a 3D Pareto-surface. Remarkably, the six Pareto

frontiers identify the highest photosynthetic productivity rates together with the

fewest protein-nitrogen usage. Those leaf designs obtained in this study are cur-

rently under consideration for an “in vitro implementation” that would give rise

to a CO2 avid plant strain. The analysis of the results has shown that is possi-

ble to obtain a gain of the uptake rate while minimizing the amount of nitrogen

required; the yield analysis has shown a clear propensity of remaining in a ro-

bust state of the great majority of solutions. The preliminary biological analysis

of the proposed solutions provides interesting insights regarding the interactions

and the behavior of the computationally designed leaves; in particular, some bio-

logical hypothesis can be inferred from the obtained results that should be linked
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with the extended process of photosynthesis. The increasing CO2 concentration

requires biotechnological approaches to be tackled effectively; the aim of this part

of my research has been to redesign the natural tools such that the evolutionary

process can be speed up to tackle the environmental problems. Moreover, an effi-

cient and robust plant can be considered as an innovative source of green energy,

through its expected increasing of energy production due to the augmented abil-

ity of up-taking CO2. Plants designed with the methodology I presented could

truly improve life conditions Earth-wise: up-taking more and more CO2 means

counteracting what the industrial revolution brought in terms of negative con-

sequences in the last 40 years. Indeed, in this time-span the CO2 level moved

from 280 to 380 parts per million; evidence is mounting that carbon dioxide’s

heat-trapping power has already started to boost average global temperatures.

If carbon dioxide levels continue upward, further warming could have dire con-

sequences, resulting from rising sea levels, agriculture disruptions, and stronger

storms (e.g. hurricanes) striking more often. Say “stop burning fossil fuels” is

not reasonable, because they represent 85% world’s energy; then sequestration of

the CO2 in areas away from the atmosphere seems the only option, and in this

context, natural tools (i.e., bioengineered plants) that can be distributed world-

wide and can accomplish the uptake task efficiently can be considered a valid

solution. For these reasons, this research seems fundamental and with respect to

that, several competences are needed: in addition to biologists, several skills are

required and, as of today, bioengineers are computer scientists are likely to be

necessary as well to tackle the problem efficiently.

Another track in my research has been the semantic integration of information

coming from biomedical sources. Different laboratories, distributed world-wide,

are continuously testing and experimenting (in “wet laboratories”) new molecules

of interest for human beings or that are simply interesting from a biological point

of view. Pharmaceutical companies and research groups are the main characters

in this tale. It is worth noting that, just at the MIT, there are more than four

research groups interested in different aspects of the same molecule: the Epi-

dermal Growth Factor. It is obvious that different groups want to share their

information without telling “too much” to general competitors. This situation is

much more complicated when we move into the pharmaceutical business: com-

66



5. CONCLUSIONS

putational models used in the drug-design are considered extremely important.

In that context a single experiment at workbench has a cost in the order of the

thousands of dollars; considering these costs and the fact that each drug has to

be tested against the largest set of compounds to avoid negative effects, it is

obvious that whatever computational tool that can avoid an experiment and is

equally reliable, can represent a significant improvement in this context. For this

reason the modeling of biochemical pathways as sets of linked ODEs has been

a key trend in past years. Nowadays, biochemical pathways are truly available

for everyone, but there is still the lack of tools to integrate the knowledge they

represent. In this context the MIT started the Cytosolve project: by means of a

web-application, different researchers can connect world-wide to the same website

and perform a combined simulation where all their systems of ODEs are com-

bined and solved together. The “combining” step is transparent to the user and

does not rely on the creation of a monolithic model. This means that each re-

searcher holds his/her model identity and shares with others just “interfaces” to

get a combined simulation. Having several computational pathways to combine,

an important part of Cytosolve is the step in which the overlaps among models

are identified. In this context I developed the OREMP library [96; 97; 98], that

takes care of the model alignment task to ensure coherent distributed simula-

tion. Additionally, in OREMP, the information coming from different biological

data sources is aggregated into single quantitative ontologies. There, thanks to

a specific meta-format designed, both combining operations and detail-revealing

ones are allowed. OREMP application can combine several pathways, merge and

combine pathway repositories, or revert to the original pathways, and inspect

single-model details and query external repositories (such as UniProt[84] and

GO[83]) referenced in pathway element annotations. The system is independent

of the different file formats in which the pathways are written and contains an

extensible collection of parser modules. OWL2 has been chosen as export for-

mat for the extended ontologies and Protégé has been adopted as default “Data

Warehouse” for information storage, retrieval and reasoning. A main application

of OREMP can be the data-integration and data-retrieval in the biomedical area.

Feeding the system with new models published on a daily base, it is possible

to build aggregated ontologies in an iterative and incremental fashion. Adopting
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the system in a pharmaceutical firm would bring the integration of the knowledge

coming from public repositories into the proprietary information backbone owned

by the company. From the researcher/modeler point of view, OREMP could pro-

vide a semantic-aware environment in which the information would be obtained

from public repositories and aggregated into structured knowledge. This means

that a catalog of virtual pathway building-blocks would be available. This would

significantly accelerate research in the biomedical field by boosting the modeling

task and supporting knowledge sharing in this domain.

On a separate track, I studied the modeling of highway traffic in terms of

Cellular Automata. The model STRATUNA has been partially re-implemented,

paying attention to the coupling vehicle/driver. Main contribute on this subject

is the fact that the new model STRATUNA-β4 [112; 113] gave rise to traffic

forecastings whose precision varies from 88% to 99% when tested on data pro-

vided by ANAS Spa about the Italian highway A4. Additionally, I integrated a

cost system that takes as input the output produced by the model. This frame-

work connects then different highway designs to different congestion toll charges

through an established cost system.
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Appendix A: Artificial

Photosynthesis

A.1 Modeling, Supplementary Information

The computational simulation of the carbon metabolism requires the definition of

a set of linked ODEs; in my work, it is considered the model proposed by [42]. The

model takes into account rate equations for each discrete step in photosynthetic

metabolism, equations for conserved quantities (i.e., nitrogen concentration) and

a set of ODEs to describe the rate of concentration change in time for each

metabolite. The reactions introduced in the model were categorized into equilib-

rium and non-equilibrium reactions; equilibrium reactions were inter-conversion

between Glyceraldehyde 3-P (GAP) and Dihydroxyacetone-P (DHAP) in stroma

and cytosol, xylulose-5-P (XuP5), Rib-5-P (Ri5P), ribulose-5-P (Ru5P) and Fru-

6-P (F6P), Glc-6-P (G6P), and Glc-1-P (G1P). All non-equilibrium reactions

were assumed to obey Michaelis-Menten kinetics, modified as necessary for the

presence of inhibitors or activators. A general reversible reaction of the form

A+B ↔ C +D has been associated with the following rate equation:

v = Vm[A][B]− [C][D]

ke
M−1 (1)

where M is defined as follows:
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M = KmAKmB × (2)

×
(

1 +
[A]

KmA
+

[B]

KmB

+
[C]

KmC

+
[D]

KmD

+ (3)

+
[A][B]

KmAKmB

+
[C][D]

KmCKmD

)
(4)

following the standard kinetic equation for a reversible reaction with two sub-

strates and two products, where [A], [B], [C], [D] represent the metabolite con-

centrations and KmA, KmB, KmC , KmD are the Michaelis-Menten constants for

the metabolites A,B,C,D, while ke is the equilibrium constant of this reaction

and Vm the maximum rate of reaction. For a general non-reversible reaction

A+B → C +D, the generalized rate equation was:

v = Vm
[A][B]

([A] +KmA])([B]+KmB)

(5)

Contrariwise, the presence of a competitive inhibitor (E) changes the apparent

Michaelis-Menten constant of the corresponding substrate; in this case, a non-

reversible reaction A+B → C +D has the following reaction rate:

v = Vm
[A][B](

[A] +KmA

(
1 + [E]

Kl

))
([B] +KmB)

(6)

where Kl is the inhibition constant. These generic equations were used to describe

the enzyme catalyzed steps of the Calvin cycle, starch synthesis, triose-P export,

Suc synthesis and the PCOP. For the Rubisco enzyme, a different equation has

been adopted to correlate the rate of carboxylation and oxygenation to total

Rubisco concentration (Rt). The solution of this equation can be approximated

to:

vc = Wc min {1, [Rt]/[Et]} (7)
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where Wc is calculated as:

Wc =
VCmax|CO2|

|CO2|+KM11

(
1 + |O2|

KM12

) (8)

where VCmax represents the maximum rate of Rubisco carboxylation, KM11 the

Michaelis-Menten constant of CO2 and KM12 the Michaelis-Menten constant es-

timating O2. The model uses a large number of constants and parameters and

no consistent set of them are available for any specie of plant; in order to face

this problem, these parameters were picked from literature. The model assumed

that the total protein-nitrogen in the enzymes is 1 g m−2; the mass nitrogen in

each enzyme, in a 1 m2 leaf area, was computed based on the number of active

sites, catalytic rate per active site, molecular mass of each enzyme, and the ratios

between Vm of different enzymes. Mole of each protein is then calculated based

on the molecular mass and the mass of each protein, i.e., the total concentration

of the adenylate nucleotides ([CA]) in the chloroplast stroma (that is, the sum

of [ATP] and [ADP]) was assumed to remain constant. The Vm for each enzyme

was then calculated based on the amount of each enzyme and the volume of the

compartment that it occupies in 1 m2 leaf area. The total concentration of the

adenylate nucleotides ([CA]) in the chloroplast stroma, the sum of [ATP] and

[ADP], was assumed to remain constant. Similarly, the sum of [NADPH] and

[NADP] in the chloroplast stroma ([CN]) was assumed constant. The export of

PGA, GAP or DHAP from the chloroplast to the cytosol is associated with a

counterimport of the phosphate, mediated by a phosphate translocator. Conse-

quently, the total concentration of phosphate in the stroma ([CP]) is assumed

constant. Finally, a set of ODEs encodes the rates of changes in concentration

of the metabolite, that is represented by the difference between the rates of re-

actions generating the metabolites and the rates of the reactions consuming the

metabolites. It is clear that the volume of the chloroplast stroma can be different

from the cytosol one in a typical higher plant cell; in this scenario, it has been

assumed a 1 : 1 ratio in calculating the concentrations of the two compartments.

71



APPENDIX A: ARTIFICIAL PHOTOSYNTHESIS

A.1.1 Enzyme nomenclature reference

Here is reported the complete reference to each of the enzyme used, together with

abbreviations and unique EC number.

Rubisco ribulose bisphosphate carboxylase = EC 4.1.1.39 Calvin Cycle, Light regu-
lated

= Ribulose-1,5-bisphosphate carboxylase/oxygenase
PGA Kinase phosphoglycerate kinase = 3-Phosphoglycerate kinase EC 2.7.2.3 Calvin Cycle, Light regu-

lated
GAPDH Glyceraldehyde 3-phosphate dehydrogenase = GAP

dehydrogenase
EC 1.2.1.12 Calvin Cycle, Light regu-

lated
Phosphoribulose
kinase

Ribulose-5-phosphate kinase=PRK EC 2.7.1.19 Calvin Cycle, Light regu-
lated

FBP aldolase FBP Fructose 1,6bisphosphate aldolase EC 4.1.2.13 Calvin Cycle
FBPase FBP Fructose 1,6bisphosphate phosphatase EC 3.1.3.11 Calvin Cycle, Light regu-

lated
Transketolase Transketolase EC 2.2.1.1 Calvin Cycle
SBP aldolase Sedoheptulosebisphosphate aldolase EC 4.1.2.13

(see FBP
aldolase)

Calvin Cycle

SBPase Sedoheptulosebisphosphatase EC 3.1.3.37 Calvin Cycle, Light regu-
lated

ADPGPP ADP glucose pyrophosphorylase EC 2.7.7.27 Sucrose and Starch biosyn-
thesis

Cytosolic FBP
Aldolase

Fructose 1,6bisphosphate aldolase EC see the
chloroplast
isoform

Sucrose and Starch biosyn-
thesis

Cytosolic FBP Cytosolic FBP ase 6 Fructose 1,6bisphosphate phos-
phatase

EC see the
chloroplast
isoform

Sucrose and Starch biosyn-
thesis

UDP-Glc py-
rophosphorylase

UDPGP = UDP glucose pyrophosphorylasee the EC 2.7.7.9 Sucrose and Starch biosyn-
thesis

Suc-P synthetase SPS Sucrose phosphate synthetase EC 2.4.1.14 Sucrose and Starch biosyn-
thesis

Suc-P phos-
phatase

SPP Sucrose phosphate phosphatase EC 3.1.3.24 Sucrose and Starch biosyn-
thesis

F26BPase Fructose 2,6bisphosphatase EC 3.1.3.46 Sucrose and Starch biosyn-
thesis

Phosphoglycolate
phosphatase

PGCA phosphatase EC 3.1.3.18 Photorespiration

Glycerate kinase GCEA kinase EC 2.7.1.31 Photorespiration
Glycolate oxy-
dase

Glycollate GCA oxydase EC 1.1.1.79 Photorespiration

Ser Glyoxylate
aminotransferase

Glyoxylate:serine aminotransferase = GSAT EC 2.6.1.45 Photorespiration

Glycerate dehy-
drogenase

GCEA dehydrogenase EC 1.1.1.29 Photorespiration

Glu glyoxylate
aminotransferase

GGAT = Glutamate:Glyoxylate aminotransferase EC 2.6.1.44 Photorespiration

GDC Glycine decarboxylase = Gly decarboxylase EC 1.4.4.2 Photorespiration

Table 1: Enzyme abbreviations [114] used in the text or used in the tables or
figures are here listed.
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A.1.2 Alternative leaves

Many other leaf designs have been studied in addition to those detailed above;

here I report more about alernative solutions. Fig. 1 reports the changes in

the concentrations of Carbon-metabolism enzymes with respect to their natural

values when three alternative strategic leaf designs are considered. Maximal CO2

Uptake (Top plot), Minimal Nitrogen Consumption (Middle plot), and Closest-

to-ideal solution (Bottom plot). The maximal rate of triose-P (PGA, GAP, and

DHAP) export is kept fixed to the value of 1 mmol L−1 s−1 and the Ci has value

270 µmol mol−1 to reflect nowadays condition.
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Figure 1: Alternative leaf designs.

74



APPENDIX A: ARTIFICIAL PHOTOSYNTHESIS

In Fig. 2 are reported those leaves obtained when the optimization is carried

out in an alternative scenario: maximal rate of triose-P (PGA, GAP, and DHAP)

is 3 mmol L−1 s−1. Top plot shows the comparison among optimized enzyme con-

centrations at a Ci = 270 µmol mol−1 (i.e., nowadays concentration of CO2 in the

atmosphere) and the natural leaf. Middle plot reports, enzyme-wise, the changes

among the leaf optimized for 2100 a.C. environment (Ci = 490 µmol mol−1) and

the one optimized for nowadays conditions. Instead of future, bottom plot reports

the w.r.t. the leaf design optimized for Ci = 165 µmol mol−1 (i.e., concentration

estimated to be in place 25M years ago)
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Figure 2: Change in optimized enzyme concentrations with respect to differ-
ent atmospheric CO2. Maximal rate of triose-P (PGA, GAP, and DHAP) is
3 mmol L−1 s−1.
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Figure 3: Optimized leaf when Cytosolic FBP aldolase, Cytosolic FBPase and
UDPGP are kept at their natural value.

Fig. 3 reports the changes in the concentrations of Carbon-metabolism en-

zymes with respect to their natural values when three metabolites are kept con-

stant: Cytosolic FBP aldolase, Cytosolic FBPase, UDPGP. The maximal rate of

triose-P (PGA, GAP, and DHAP) export is kept fixed to 1 mmol L−1 s−1 and

the Ci has value 270 µmol mol−1, reflecting nowadays condition
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Fig. 4 reports those leaves optimized for the environment in place 25M years

ago: Minimal Nitrogen Consumption (Top plot) and Maximal CO2 Uptake (Bot-

tom plot) are compared to the natural leaf.
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Figure 4: Alternative leaves obtained when the maximal rate of triose-P (PGA,
GAP, and DHAP) export is kept fixed to the value of 1 mmol L−1 s−1 and the
Ci has value 165 µmol mol−1 to reflect 25M years ago environment.
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Fig. 5 reports those leaves optimized for the environment predicted for the

end of the century: the figure reports changes in the concentrations of Carbon-

metabolism enzymes with respect to their natural values when two alternative

strategic leaf designs are considered: Minimal Nitrogen Consumption (Top plot)

and Maximal CO2 Uptake (Bottom plot). The maximal rate of triose-P (PGA,

GAP, and DHAP) export is kept fixed to the value of 1 mmol L−1 s−1 and the

Ci has value 490 µmol mol−1.
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Figure 5: Alternative leaves obtained when the maximal rate of triose-P (PGA,
GAP, and DHAP) export is kept fixed to the value of 1 mmol L−1 s−1 and the
Ci has value 490 µmol mol−1 to reflect the 2100 a.C. environment.

Coming figures present how the system behaves when: only six enzymes are
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Figure 6: Optimization of CO2 uptake rate perturbing 6 enzymes only (Rubisco,
FBP aldolase, SBPase, ADPGPP, Phosphoglycolate phos., and GDC) while the
remaining 19 enzymes are maintaining to their initial concentrations. For the
6 enzymes we defined the following constraint: the concentration must be ≥
0.02 mg N m−1. Rubisco, FBP aldolase, SBPase, ADPGPP are overexpressed,
while Phosphoglycolate phos., and GDC are quasi switched off. This configuration
obtains CO2 uptake rate of 32.89 µ mol m−2 s−1, it wastes about 3.492 µ mol
m−2 s−1 of CO2 uptake rate but it uses only 6 enzymes.

varied from their natural concentration (Fig. 6), the Rubisco is kept fixed (Fig. 7),

or only six enzymes are varied and one of them - Rubisco - can change with bounds

of ±15% (Fig. 8).
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Figure 7: Optimization of CO2 uptake rate perturbing 24 enzymes while the
Rubisco is maintaining to its initial concentration. This configuration obtains
CO2 uptake rate of 22.26 µ mol m−2 s−1. This leaf points out the centrality of
Rubisco in the optimization process.
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Figure 8: Optimization of CO2 uptake rate perturbing 6 enzymes only (Rubisco,
FBP aldolase, SBPase, ADPGPP, Phosphoglycolate phos., and GDC) while the
remaining 19 enzymes are maintaining to their initial concentrations. In this
optimization the Rubisco is allowed to increase up to 15%; this constraint has
been inserted in order to have more feasible biotechnological results. FBP al-
dolase, SBPase, and ADPGPP are overexpressed, while Phosphoglycolate phos.
is switched off and GDC is close to its initial value. This configuration obtains
CO2 uptake rate of 25.246 µ mol m−2 s−1.
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Appendix B: Highway Traffic

B.1 A Cellular Automata model for highway

traffic simulations

Contextually with bioinformatics and bioengineering topics, I explored more engi-

neering problems as well. Highway traffic is one of them: its evolution is regulated

by parallel and acentric interactions among vehicles. In this Appendix is reported

STRATUNA, a model for highway traffic forecasting, together with a cost system,

directly fed by simulation data.

Cellular Automata are an established formal support for modelling traffic.

STRATUNA is a Cellular Automata model for simulating two/three lanes high-

way traffic. It is based on an extensive specification of the driver response to

the surrounding conditions. The model is deterministic with regard to driver

behavior, even if values of parameters ruling the reactivity level of the drivers

are assigned stochastically. Probability distribution functions were deduced by

field data and applied to vehicular flow generation (vehicle types, driver desired

speed, entrance-exit gates). A partial implementation of STRATUNA has been

performed and applied to Italian highway A4 from Venice to Trieste. Simulations

have been compared with available field data with results that may be consid-

ered positive. Fair results in flow forecasting lead to the implementation of an

established cost system in which simulation directly provides cost forecasting in

terms of congestion toll.
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B.2 Introduction

Cellular Automata (CA) are a computational paradigm for modelling high com-

plexity systems [115] which evolve mostly according to the local interactions of

their constituent parts (acentrism property). Intuitively a CA can be seen as a

d -dimensional space, partitioned into cells of uniform size, each embedding a com-

putational device, the elementary automaton (EA), whose output corresponds to

its state. Input for each EA is given by states of EA in neighboring cells, where

neighboring conditions are determined by a pattern invariant in the time and

equal for each cell. EA are in an arbitrary state at first (initial conditions),

subsequently CA evolves by changing simultaneously states to all of the EA at

equal discrete time steps, according to the EA transition function (parallelism

property).

CA were used for modelling highway traffic [116] because of acentric and

parallel characteristics of such a phenomenon. As a matter of fact, when highway

structural features are fixed and there are no external interferences out of the

vehicular interactions (normal conditions), the traffic evolution emerges by the

mutual influences among vehicles in driver sight range.

The main CA models of highway traffic [117; 118; 119; 120] may be considered

“simple” in terms of external stimuli to the driver and corresponding reactions,

but they are able to reproduce the basic three different phases of traffic flow

(i.e., free flow, wide moving jams and synchronized flow) by simulations to be

compared with data (usually collected automatically by stationary inductive loops

on highways).

STRATUNA (Simulation of highway TRAffic TUNed-up by cellular Automata),

is a new CA model for highway traffic with the aim of describing more accurately

driver surrounding conditions and responses. I referred to a previous CA model

[121; 122], that was enough satisfying in the past, but now it is dated for the

different technological situations (e.g., the classification of vehicles on the base

of pure acceleration, deceleration features is no more realistic). Reference data

for deducing STRATUNA parameters and for real-simulated event comparison

are the timed highway entrance-exit data, that are comprehensive of the vehicle

type.
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Next section outlines the STRATUNA model, while the transition function is

described in the third section. Implementation of the model is discussed together

with simulation results and comparison with real event in the fourth section. The

cost system is detailed in fifth section. Conclusions are reported at the end of

this appendix.

B.3 The STRATUNA general model

STRATUNA is based on a “macroscopic” extension of CA definition [115], involv-

ing “substates” and “external influences”. The set of “state values” is specified

by the Cartesian product of sets of “substate values”. Each substate represents

a cell feature and, in turn, a substate could be specified by sub-substates and so

on. Vehicular flows at tollgates and weather conditions are external influences,

generated by dataset or probabilistic functions according to field data and are

applied before the CA transition function.

Only one-way highway traffic is modelled by STRATUNA (complete highway

is obtained by a trivial duplication). One-dimension is sufficient, because a cell

is a highway segment, 5m long, whose specifications (substates) encloses width,

slope and curvature in addition to features of possible pairs vehicle-driver. The

STRATUNA time step, the driver minimum reaction time, may range from 0.5s

to 1s (CA clock).

An 8-tuple defines STRATUNA = 〈R,E,X, P, S, µ, γ, τ〉, where:

• R = {x|x ∈ N, 1 ≤ x ≤ n} is the set of n cells, forming the highway.

• E ⊂ R is the set of entrance-exit cells in R, where vehicles are generated

and annihilated.

• X = 〈−b,−b + 1, ..., 0, 1, ..., f〉 defines the EA neighboring, i.e the forward

(f) cells and backward (b) cells in the driver sight, when visibility is maxi-

mum (no cloud, sunlight etc.).

• P = {length, width, clock, lanes} is the set of global parameters, where

length is the cell length, width is the cell width, clock is the CA clock,
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lanes is the number of highway lanes (1, 2 .. from right to left), that

includes an additional lane 0, representing from time to time the entrance,

exit, emergency lane.

• S = Static × Dynamic × (V ehicle × Driver)lanes specifies the high level

EA substates, that are clustered in typologies, i.e statical and dynamical

features of highway segment corresponding to the cell, vehicle and driver

features (there are at most as many pairs vehicle-driver as lanes). Such

substates are detailed in the Table 2.

• µ : N×R→ Dynamic is the “weather evolution” function, that determines

Dynamic values for each step s ∈ N and each cell c ∈ R.

• γ : N×E → V ehicle×Driver is the vehicle-driver pair normal generation

function for each step s ∈ N and each cell c ∈ E.

• τ : Sb+1+f → S is the EA transition function. The visibility reduction to b′

backward cells and to f ′ forward cells involves that cells out of range will

be considered without information.

Substate Sub-substates hierarchy

Static CellNO, Slope, CurvatureRadius,
SurfaceType, SpeedLimit, Lane1SpeedLimit

Dynamic BackwardVisibility, ForwardVisibility, Temperature,
SurfaceWetness, WindDirection, WindSpeed

Vehicle Type, Length, MaxSpeed, MaxAccelerat., MaxDecelerat. ;
CurrentSpeed,CurrentAcceleration, Xposition, Yposition,
Indicator, StopLights, WarningSignal

Driver Origin, Destination, DesiredSpeed,
PerceptionLevel, Reactivity, Aggressiveness

Table 2: Substates and related sub-substates.
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B.4 The STRATUNA transition function

An overview of the transition function will be here given with the aim of exposing

the leading ideas and the adopted choices concerning STRATUNA, together with

a better specification of the mentioned substates and sub-substates.

A vehicle is specified by constant and variable (during all the simulation)

values of sub-substates. Constant properties are Type (motorcycle, car, bus /

lorries / vans, semitrailers / articulated), Length, MaxSpeed, MaxAcceleration,

MaxDeceleration. The main mechanism of the traffic evolution is related to the

determination of the new values of the variable sub-substates of V ehicle, i.e.,

Xposition and Y position (they individuate the cell co-ordinates x, y of the middle

point in the vehicle front) CurrentSpeed, CurrentAcceleration, Indicator (with

values: null, left, right, hazard lights) StopLights (on, off), WarningSignal (on,

off).

Note that the vehicle space location is not identified by a sequence of full

cells as in other CA models [116] , but it is more accurate because portions of

cell and positions between two lanes can be considered occupied. Indicator and

WarningSignal sub-substates in the simulation hold a larger role than indicator

and a generic warning signal in the real events. When a real driver wants to

change lane, not always he uses the indicator, but drivers around detect such

a manoeuvre from his behavior (e.g., a short beginning moving toward the new

lane before to decide overtaking). Of course simulation doesn’t account for these

particular situations, but this problem doesn’t exist, a driver in the simulation

communicates his intention to change lane always by the indicator. Sub-substate

WarningSignal is activated when driver wants to signal that he needs the lane

immediately ahead of his vehicle to be free. This situation corresponds in the real

word to different actions or their combination, e.g., sounding the horn, blinking

high-beam lights, reducing “roughly” the distance with vehicle ahead and so on.

Through such sub-substates, Indicator, StopLights, WarningSignal a commu-

nication protocol could be started between vehicles.

The single vehicle V moving involves two computations, i.e., the objective

determination of the future positions of vehicles “around V ” and the subjec-

tive V driver reaction. The former one is related to the objective situation and
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forecasts all the spectrum of possible motions of all the vehicles, that can poten-

tially interact with V , i.e., the vehicles in the same cells, where V extends more

the next vehicles ahead and behind such cells for each lane in the range of the

neighborhood.

In first instance, some Static and Dynamic sub-substates determine highway

conditions (e.g., highway surface slipperiness is computed by SurfaceType,

SurfaceWetness and Temperature); subsequently, they are related to the V ehicle

sub-substates in order to determine the temporary variable max speed that guar-

antees security with reference only to the conditions of highway segment repre-

sented by cell. It accounts for the vehicle stability, speed reduction by limited visi-

bility and speed limits in the lane, occupied by the vehicle. Ifmax speed is smaller

than DesiredSpeed, desired speed = max speed otherwise desired speed =

DesiredSpeed. Slope and surface slipperiness determine the temporary vari-

ablesmax acceleration andmax deceleration, correction to sub-substatesMax−
Acceleration and MaxDeceleration.

The next computation step determines “objectively” the “free zones” for V ,

i.e. all the zones in the different lanes, that cannot be occupied by the vehicles

around V , considering the range of the speed potential variations and the lane

change possibility, that is always signalled by Indicator. Note that the possible

deceleration is computed on the value of max deceleration in the case of active

StopLights, otherwise a smaller value is considered, because deceleration could

be only obtained by shift into a lower gear or by relaxing the accelerator.

The last computation step involves the driver subjectivity. First of all, the cell

number corresponding to vehicle position CellNO is compared with the cell num-

ber of Destination in order to evaluate if the exit is so close to force approaching

lane 1 (if in other lanes) or continuing in lane 1 slowing down opportunely to the

ramp speed limit.

The driver aims in the other cases to reach/maintain the desired speed; dif-

ferent options are perceived available, each one is constituted by actions (Fig. 9)

involving costs (e.g. the cost of the gap between the new value of CurrentSpeed

and the desired speed). The driver chooses the option, among all the possible

ones, with minimal sum of the costs.

All is based on a driver subjective perception and evaluation of an objec-
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tive situation by sub-substates PerceptionLevel, Reactivity, Aggressiveness.

PerceptionLevel concerns the perception of the free zones; their widths are re-

duced or (a little bit) increased by a percentage before to compute on their new

values the various possibilities to reach free zones in security conditions, consider-

ing the variable values of V ehicle sub-substates moremax speed, max acceleration

and max deceleration.

Reactivity is a collection of constants for determining costs by means of func-

tion of the same type expressed in Fig. 9. Examples are “remaining in a takeover

lane”, “staying far from desired speed”, “breaking significantly”, “starting a

takeover protocol”.

Aggressiveness forces the deadlocks, that could be generated by a cautious

PerceptionLevel, e.g. when the entrance manoeuvre is prohibited in a busy

highway, because free zones are very much reduced in the perception phase.

The stop condition increases at each step the Aggressiveness value, it implies a

proportional increase of the percentage value of PerceptionLevel from negative

values to positive ones until the free zone in a lane remains shorter than the dis-

tance between two consecutive vehicles, where the entrance could be performed.

Aggressiveness value comes back to zero when stop condition ends.

Figure 9: The function that connects the distance from front vehicle with a cost.
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B.5 STRATUNA implementation

At present, STRATUNA has been partially implemented in a simplified form in

order to perform a preliminary validation. The implemented model is the β4

version: STRATUNAβ4 = 〈R,E,X ′, P, S ′, γβ4, τβ4〉.
The function µ disappeared, because no weather evolution is considered, but

only constant average conditions. Therefore X ′ = 〈−r,−r + 1, ..., 0, 1, ..., r〉
substitutes X where r is a radius, accounting for the average visibility of an

average driver and Dynamic substate is no more considered. Indicator lacks

of hazard lights value, PerceptionLevel value is always 1, behavior involving

Aggressiveness was not implemented and Reactivity is considered only for “stay-

ing far from desired speed”.

The generation function γβ4, was tailored for the traffic of Italian highway

A4, characterized (in the area covered by data) by two lanes and twelve en-

trances/exits. Data are composed by around 1 milion of tolltickets, they are

related to 5 non-contiguous weeks and grouped in five categories, depending on

vehicle number of axles (it is reducible to our vehicle classification). Due to prob-

lems of time synchronization among tollgates, these datasets have to be considered

partial and incomplete. For these reasons, a data cleaning step was mandatory

for the following infrequent situations: (i) missed tickets: transits without en-

trance or starting time; (ii) transits across two or more days; (iii) transits that

end before they begin; (iv) vehicles too fast to be true: exceeding 200 km/h as

average speed. Afterwards, the average speed was related to the total flow for

each of the 34 days.

The result of this quantitative study is summarized in the following chart:

each day is rappresented as a dot; a shift over x-axis and y-axis is a variation

respectively of “total flow” and “average speed” from their averaged values over

all of the days (Fig. 10a).

DesiredSpeed distribution (Fig. 10b) according to the vehicle Type are easily

deduced by highway data in free flow conditions for vehicles covering short dis-

tance in highway. The probability to park in the rest and services areas is minimal

in short distance cases. Parking in the rest and services areas cannot be detected

by data and causes errors; they justify the slightly higher values of average speed
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(a) Daily flow and speed fluctuation from
the average

(b) Share and desired speed for each type of vehi-
cle in selected case of freeflow

Figure 10: Daily and selected data.

obtained in the simulated cases, in comparison to the same values of correspond-

ing real events. Finally a statistical sampling treatment was performed to select

meaningful subsets. After scaling flow values and vehicle generation rate, some

validation sets were designed. Each set provides a number of vehicles (each one

specified by the couple 〈Origin,Destination〉) and the average real speed (rS)

over all its vehicles and over all the event. Being 95% of real traffic, generated

vehicles are all cars. Validation sets concern conditions from freeflow to conges-

tion situation. In order to give a recapitulation of salient characteristics of the

implemented transition function, a pseudo-code block is here presented. It is

worth noting these remarks: (i) “return” ends the evolution of the single EA at

each evolution step; (ii) functions starting in lowercase are actions enqueued to be

performed in further steps; (iii) underlined functions represent the beginning of a

synchronized protocol (e.g., actions in consecutive steps of takeover-protocol are:

control a freezone on the left, light on the left indicator, start changing Y position,

and so on).

BEGIN: TransitionFunction()

FindNeighbours(); ComputeSpeedLimits();

ComputeTargetSpeed(); DefineFreeZones();

AssignTheCost PM WhereAFreeZoneIsReduced();

if(ManouvreInProgress())

continueTheManouvre(); return;
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if(myLane==0) //I’m on a ramp

if(IWantToGetIn())

if(TheRampEnded())

if(ICanEnter())

enter(); return;

else

if(IHaveSpaceProblemsForward())

slowDown(); return;

else followTheQueue(); return;

else //the ramp is not ended yet

if(IHaveSpaceProblemsForward())

followTheQueue(); return;

else keepConstantSpeed(); return;

else //I want to get out

if(TheRampEnded()) deleteVehicle(); return;

else

if(IHaveSpaceProblemsForward())

followTheQueue(); return;

else keepConstantSpeed(); return;

//end lane==0

else if(myLane==1)

if(MyDestinationIsNear()) slowDown();

if(MyDestinationIsHere()) goInLowerLane();

else //myLane==2 or more

if(ICanGoInLowerLane())

if(GoingInLowerLaneIsForcedOrConvenient())

goInLowerLane();

else //I cannot go in lower lane

if(MyDestinationIsNear())

slowDown(); goInLowerLane();

if(!IHaveSpaceProblemsForward()) //every lane

if(TakeoverIsPossibleAndMyDestinationIsFar())

if(TakeOverIsDesired()) takeover();

else followTheQueue();

else followTheQueue();

else //I have space problems forward

if(TheTakeoverIsForced()) takeover();
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return;

END;

B.5.1 Results of simulations with STRATUNA B4

Here I report five significant simulations for typical highway conditions: freeflow

(Fig. 11a), moderated-flow next to congestion (Fig. 11b and Fig. 11c) and locally

congested situations (Fig. 11d). In addition to rS (represented in figures as a

line) I consider step-by-step average simulated speed (sS, represented in figures

as fluctuating curves) and average simulated desired speed (sDS, represented in

figures as an invariant notch, Cf. Fig. 10b). Simulation conditions contemplate,

at the beginning, for all of the cases, an empty highway, fed at each entrance

with vehicles according to appropriate generation rate. Initially, average speed

is low, because generated vehicles start from null speed. After this very first

phase, sS increases since vehicles can tend to their DesiredSpeed value, until

the small number of vehicles in the highway permits free flow conditions (i.e.,

when simulation time < 500s). To provide a goodness measurement, simulations

reported are accompanied with two error quantification: e1 and e2. The first one

measures the average relative error (over all CA steps) between sS and rS; the

second one is the same as first but calculated after 500 seconds of simulated time

in order to skip the initial phases of model evolution.

In the freeflow case, sS matches rS during the whole simulation, remaining

slightly higher than field data, with very short oscillations (Fig. 11a). In the

moderated flow case (Fig. 11b), after the same initial phase, sS became definitely

lower than rS with moderate oscillations. Such a behavior is not correct, also if

its error rate is low: the cars in the simulation must be faster than corresponding

real cars, because they don’t waste time to park in the rest and services areas.

This problem depends clearly on the driver subjective evaluation, that came out

too much cautiously because the partial implementation of transition function

reduced the moving potentiality (reaction rigidity). A possible solution could be

a shorter time step, that is equivalent to a more rapid reactivity. The utilized

time steps have been 1s, the standard average reaction time of the average driver.

Simulation was repeated with time step 0.75s, obtaining a more realistic result
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(a) Freeflow: clock=1s; err1=1.29%;
err2=0.86%.

(b) Moderated flow: clock=1s; err1=4.87%;
err2=3.44%.

(c) Moderated flow (tuned reactivity value):
clock=0.75s; err1=6.47%; err2=5.83%.

(d) Locally congested situations. Lighter
(darker) curve: clock=1s; err1=14.79%
(17.27%); err2=13.94% (17.12%).

Figure 11: Average speed fluctuation in selected case study.

(Fig. 11c).

After this, two simulations, where the implementation performance is lower

than previous simulations, are reported in Fig. 11d. Both account for the same

particular real situation, when a largest vehicle flow occurs only from one en-

trance; both run on the same model specifications and feed function. sS became

quickly significantly higher than rS. This means that the reaction rigidity of the

driver was rewarded by a higher speed in this particular case because the entrance

filtering creates synchronization.

Classical patterns of highway traffic (moving jams and synchronized flow)

have been observed in the simulations of congested traffic, but the lack of data

collected automatically by stationary inductive loops (single vehicle data[116])

does not permit a serious comparison.
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B.6 Cost system for congestion toll

Theories on congestion pricing have been under research since the 1920’s and

there are numerous references in literature about methods to estimate the costs

for operating a car (fuel costs, maintenance, etc) in addition to the costs that

each individual traveler imposes on other travelers due to the fact that each car

increases the congestion of the highway. Road pricing has been implemented in

various countries worldwide in order to reduce the traffic congestion problems in

urban roads and highways. Here I propose an established cost system in which

the simulation model can guide to business advantages. Assuming all vehicles

are only cars, the principle of congestion pricing [123] provides a direct curve of

correlation between traffic volume and its costs. In fact, every motorist making a

trip introduces personal expenses in terms of private marginal costs, MC, (that

are operating car costs plus the value of time spent in the highway) and takes a

social cost (whose average will be denoted as AC). The difference between MC

and AC represents the cost that a driver induced on his road neighbors [124]: if

c is the hourly average generalized travel cost (as above, it is composed by car

operating costs plus value of travel time) and is supposed to be invariable, dist

is the covered distance (assumed to be 1 km in the second part of Eq. (9)), V (q)

is a function of the flow q and represents the speed of vehicles, then AC, with

respect to a certain flow value q, is given by:

AC(q) = c
dist

V (q)
=

c

V (q)
(9)

Thus the total cost T (q) of those vehicles is simply T (q) = qAC(q) = (qc)/V (q).

This means that for each new vehicle joining the flow q, we have the following

marginal cost for the community:

MC(q) =
d

dq
T (q) =

V (q)c− qc d
dq

(V (q))

V (q)2 = AC(q)− qc

V (q)2

d

dq
(V (q)) (10)

Assuming that MC increases much more rapidly than AC when congestion

begins (i.e. a flow q > q′), the difference between these two values is the considered
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money that motorists have to pay if we want to charge the cost they are imposing

to the society. This means that the “congestion toll” r is given by:

r = MC(q′)− AC(q′) =
qc

V (q)2

d

dq
(V (q)) (11)

This quantity could be equal to zero when there is no congestion (i.e. flow

q <= q′), increases when the flow increases and subsequently decreases when

V (q) increases. Now I introduce a model that is widely used and empirically

verified over several highway models to establish the correlation between the flow

and the speed of vehicles composing it: the Drake model [125]. Let q0 be the

maximum flow capacity (vehicles per hour per lane), V0 the corresponding speed

at maximum flow capacity and Vf the speed in free flow condition, then in the

framework of Drake model, q is given by:

q = V (q)
q0

V0

δ

√
δ ln(Vf/V (q)) (12)

The speed-flow relationship given by Eq. (12) where δ is a parameter equal to

2 [125], can be used inside Eqs. (9-11) to estimate the congestion toll when the

flow is higher than q′ and the Drake model is a good approximation. As a result

the congestion toll is given by:

r =
c

V (q)

ln(Vf )− ln(V (q))

ln(V (q))− ln(V0)
(13)

Assuming that European euro/km rates [126] are also valid for Italy, we can

take cost values reported in Table 3 as input and then derive the value of c =

1.08euro/km. Moreover, in order to resolve Eq. (13), values for V0 and Vf are

needed; while the value of speed at free flow can be considered as the one presented

in Fig. 10b (Vf = 122.8km/h), the inference of a proper value for V0 needs more

attention. The evaluation of a realistic V0 value is where our STRATUNA model

can help and, in fact, leads to cost forecasting through speed forecasting.

In fact, our model has the expressively needed for speed forecasting and has

exhibited a predicting reliability for different flow volumes even in its partially

implemented version (detailed above). Therefore, it can be used, together with
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euro/km euro/hour
Petrol 0.112844 0.31090068
Tires 0.00806588 0.0222226
Service labour costs 0.02184835 0.06019521
Replacement parts 0.01472219 0.04056164
Parking and tolls 0.01409571 0.03883562
Standing charges 0.21981479 0.60561986
Total 0.39139093 1.07833562

Table 3: Total of Standing Charges and Running Costs, Assuming 15000 km per
Year

the cost system object of this section, to foresee how different highway designs

influence the speed at maximum capacity. This enables a straightforward calcu-

lation of the corresponding income for the highway owners and for the society. I

now present the curves of AC and MC, as stated by Eqs. (9-10), with the aim

of fixing the cost system.

Figure 12: Cost of AC and MC in Relation to the Flow q.

Up to a traffic volume of about 680 cars per hour per lane, the private cost of

a motorist (MC) is, in fact, identical to the one that he imposes to others (AC).

This, presented in Fig. 12 as Q1, can be traced back to the free flow condition;

same tracing is possible from Q2 ad Q3 (Cf. Fig. 12) to moderated flow and traffic

jams. For quantity of cars q > q′ we have AC costs that increase more rapidly
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than MC: first linearly and then polynomially. This increasing cost, induced to

others with heavier flow, can be represented by Fig. 13: more cars means slower

speed, that means more breaking/accelerating, low gears usage, higher petrol

consumption and so on.

Figure 13: Speed-Flow Chart.

Now that the cost system has been satisfactory detailed, I propose in Fig. 14

the congestion toll (euro/km) evolution, in relation with the V0 value deduced by

our model.

Figure 14: Congestion Toll with respect to Traffic Flow.

Above results show clearly that, through a simulation model, the test of dif-
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Flow type Free flow Moderated flow Congestion
Corresponding min. flow 0 681 1101
Corresponding max. flow 680 1100 1260

Min. congestion toll +0.0 +0.0001 +0.0023
Max. congestion toll +0.0 +0.0023 +0.0339

Table 4: Congestion Toll and Different Traffic Flows. Flows are measured in cars
per hour per lane, while tolls are reported in euro per car per km.

ferent highway designs is possible and then, to each design, is linkable a simulated

V0 value, leading to the appropriate congestion toll. In other words, through the

simulation of different highway design, differentiated V0 values follow; then, the

optimal congestion cost is derivable from it by means of the reported congestion

toll system. As a result, I report in Table 4 the congestion toll that the price

system of the simulated and analyzed highway could implement in relation to free

flow, moderated flow and traffic jams.

B.7 Conclusions

These results of the reduced version β4 of the STRATUNA model are very en-

couraging, considering that discrepancies between statistics deduced by real data

and simulations are in part justified by unavoidable inaccuracies in the available

real data and by imprecision introduced by parking in the rest and services ar-

eas. This is an interesting starting point in order to implement the full model.

An important problem will be to tune some values of variables concerning the

driver subjective behavior to solve problems of congested situations. The imple-

mented model, used together with an established cost system, guides the inter-

esting problem of the appraisal of the right price for a toll ticket. Indeed, the

simulator shows the ability of associating to a simulated highway a value of aver-

age speed at maximum capacity. Thanks to this value, it is possible to establish

a congestion toll mechanism. This mechanism, widely used worldwide, gives to

motorists the perception of the costs they are imposing to other travelling and

non-travelling people. The CA approach demonstrates its validity and leads to

interesting emerging phenomena, both from the traffic forecasting and from an
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economical point of view; in the latter, STRATUNA gives a feedback that con-

nects different highway designs to different congestion toll charges through an

established cost system. Accessing to other types of data concerning highway

traffic would be important for the approach completeness.
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[120] Lárraga, M., del Rı́ob, J., lcaza L., A.: Cellular automata for one-lane

traffic flow modeling. Transportation Research Part C 13 (2005) 63–74 83

[121] Di Gregorio, S., Festa, D.C. In: Cellular Automata for Freeway Traffic.

Volume 5. (1981) 133–136 83

[122] Di Gregorio, S., Festa, D., Rongo, R., Spataro, W., Spezzano, G., Talia,

D. In: A microscopic freeway traffic simulator on a highly parallel system.

Volume 11 of Advances in Parallel Computing. (1996) 69–76 83

113

http://www.chem.qmul.ac.uk/iubmb/enzyme/
http://www.chem.qmul.ac.uk/iubmb/enzyme/


REFERENCES

[123] Pigou, A.: The Economics of Welfare. MacMillan, London (1920) 94

[124] Li, M.Z.F.: The role of speed-flow relationship in congestion pricing imple-

mentation with an application to singapore. Transportation Research Part

B: Methodological 36(8) (2002) 731 – 754 94

[125] Drake, J., Schofer, J., May, A.: A statistical analysis of speed-density

hypotheses. in vehicular traffic science. In Edie, L.C., Herman, R., Rothery,

R., eds.: Proceedings of the Third International Symposium on the Theory

of Traffic Flow, Elsevier Science Publishing Company (2006) 112–117 95

[126] Automobile Association Limited: Running costs for petrol cars Avail-

able at http://www.theaa.com/allaboutcars/advice/advice_rcosts_

petrol_table.jsp. 95

114

http://www.theaa.com/allaboutcars/advice/advice_rcosts_petrol_table.jsp
http://www.theaa.com/allaboutcars/advice/advice_rcosts_petrol_table.jsp

	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	2 New Optimization Algorithms
	2.1 Introduction
	2.2 AMMISCA, Admissible Method forImproved Genetic Search in CellularAutomata Models
	2.2.1 The SCIARA-R7 model
	2.2.2 AMMISCA in detail
	2.2.3 AMMISCA Results
	2.2.4 Conclusions and future developments

	2.3 PAO: Parallel Optimization Algorithms
	2.3.1 PMO2: Parallel Multi-Objective Optimization
	2.3.2 PMO2 Results on Geobacter sulfurreducens
	2.3.2.1 Maximizing Biomass and Electron Productions
	2.3.2.2 Geobacter conclusion

	2.3.3 Pareto Front Mining and Analysis


	3 Artificial Photosynthesis
	3.1 The study of the C3 photosynthetic carbon metabolism
	3.2 Introduction
	3.3 The Designed Framework
	3.3.1 The method of Morris
	3.3.2 Derivative-Free Optimization Algorithms
	3.3.3 Local and Global Robustness

	3.4 Experimental Results
	3.4.1 Sensitivity Analysis
	3.4.2 Maximal and Robust Photosynthetic Productivity
	3.4.3 Multi-objective optimization of the carbon metabolism: CO2 uptake vs. Protein-Nitrogen

	3.5 Discussion and Conclusions
	3.5.1 Assessment of the quality of the results obtained thought the multi-objective optimization


	4 Biological and Medical Ontology Reasoning
	4.1 The OREMP Project
	4.2 Introduction
	4.3 System Architecture and Operational Work-flow
	4.4 Three Real-World Applications
	4.4.1 EGFR model
	4.4.2 OREMP in Combining Pathways for Parallel Solution.
	4.4.3 OREMP in Querying Large, Independent Sources of Pathways.

	4.5 Ontologies From Pathways: Practical Advantages
	4.5.1 System Discussion

	4.6 Conclusions

	5 Conclusions
	Appendix A: Artificial Photosynthesis
	A.1 Modeling, Supplementary Information
	A.1.1 Enzyme nomenclature reference
	A.1.2 Alternative leaves


	Appendix B: Highway Traffic
	B.1 A Cellular Automata model for highway traffic simulations
	B.2 Introduction
	B.3 The STRATUNA general model

	B.4 The STRATUNA transition function
	B.5 STRATUNA implementation
	B.5.1 Results of simulations with STRATUNA B4

	B.6 Cost system for congestion toll
	B.7 Conclusions
	References


