


Ai miei genitori, Brunello e Lia



If the future isn't bright at least it's 
olorful

so burn the ship 
ome spring



Abstra
t

This thesis fo
uses on the physi
al 
onne
tion of large, �uid s
ales with small,

kineti
 wavelenghts and on the introdu
tion of 
ollisional e�e
ts in weakly-


ollisional plasmas.

In the �rst part, the Mo�att & Parker problem, namely the 
ollision of

two 
ounter-propagating Alfvéni
 wave pa
kets, has been revisited by means

of magnetohydrodynami
s (MHD), Hall MHD and hybrid kineti
 simula-

tions. The goal of this study was to extend the Mo�att & Parker problem

to the realm of kineti
 physi
s and show that, when introdu
ing more 
om-

plex physi
al ingredients, the dynami
s is quite di�erent with respe
t to the

pure ideal MHD 
ase. When the energy is transferred towards kineti
 s
ales

through nonlinear 
oupling me
hanisms, the distribution fun
tion is strongly

perturbed and departs from lo
al thermodynami
al equilibrium. The wave

pa
kets intera
tion has been also 
hara
terized in terms of strong and weak

turbulen
e, showing that features explained in terms of both kinds of turbu-

len
e theories 
oexist.

In the se
ond part, a spe
ial attention has been devoted to weakly 
olli-

sional plasma systems, in whi
h kineti
 e�e
ts and parti
le 
ollisions 
oexist

and 
ompete in shaping the parti
le velo
ity distribution. By means of nu-

meri
al simulations of relaxation towards equilibrium in presen
e of the full

Landau 
ollisional integral, it has been pointed out that 
ollisionality 
an be

e�e
tively enhan
ed by the presen
e of �ne velo
ity stru
tures in the parti
le

distribution fun
tion.

However, due to the high 
omputational 
ost of the Landau integral, sim-

pli�ed 
ollisional operators have been employed to simulate self-
onsistently

the dynami
s of weakly-
ollisional plasmas. In parti
ular, the Dougherty

operator has been employed in 1D�3V phase spa
e 
on�guration (1D in

physi
al spa
e, 3D in velo
ity spa
e) to address the role of ele
tron-ele
tron


ollisions in the nonlinear regime of ele
trostati
 waves propagation. Finally,

with the aim of simulating realisti
 physi
al 
onditions in experiments with

plasmas trapped in longitudinal ma
hines, numeri
al simulations in redu
ed

1D�1V phase spa
e have been run to reprodu
e the pro
ess of wave laun
hing

in real plasma devi
es.

The ultimate goal of this work was to support the idea that the 
om-

petition between kineti
 e�e
ts, whi
h tend to drive the system away from

equilibrium, and 
ollisions, whi
h work to thermalize the plasma, 
ould be the

physi
al ingredient underlying the me
hanism of parti
le heating in weakly


ollisional systems, su
h as the solar wind.



Sommario

Questa tesi riguarda l'analisi della 
onnessione delle s
ale �uide 
on le s
ale


ineti
he e la des
rizione degli e�etti 
ollisionali in un plasma debolmente


ollisionale.

Nella prima parte, il problema di Mo�att & Parker, riguardante la 
ol-

lisione di due pa

hetti d'onda Alfvéni
i, è stato rivisitato mediante simu-

lazioni magnetoidrodinami
he (MHD), Hall MHD e 
ineti
he. L'obiettivo è

di estendere l'analisi del problema a s
ale 
ineti
he e mostrare 
he, quan-

do si introdu
ono e�etti più 
omplessi (
ompressibilità, dispersione, e�etti


ineti
i), la dinami
a è molto diversa rispetto al 
aso MHD. Quando l'e-

nergia è trasferita a s
ale 
ineti
he mediante a

oppiamenti nonlineari, la

funzione di distribuzione protoni
a mostra strutture lontane dall'equilibrio

termodinami
o. L'interazione dei pa

hetti è inoltre 
aratterizzata in termi-

ni di turbolenza forte e debole, mostrando 
he, a valle dell'interazione dei

pa

hetti, 
oesistono 
aratteristi
he spiegabili attraverso entrambe le teorie

della turbolenza.

La se
onda parte ha riguardato inve
e la des
rizione di un plasma de-

bolmente 
ollisionale, 
aratterizzato dalla 
ompetizione di e�etti 
ineti
i e


ollisioni nel determinare l'evoluzione della funzione di distribuzione parti-


ellare. Attraverso simulazioni numeri
he di rilassamento verso l'equilibrio in

presenza dell'integrale 
ollisionale di Landau, è stato mostrato 
he la 
ollisio-

nalità può essere e�ettivamente intensi�
ata dalla presenza di forti gradienti

nello spazio delle velo
ità.

Tuttavia, per l'e

essivo 
osto 
omputazionale dell'integrale di Landau,

sono stati sviluppati al
uni operatori 
ollisionali sempli�
ati al �ne di simula-

re, in modo auto-
onsistente, la dinami
a dei plasmi debolmente 
ollisionali.

In parti
olare l'operatore di Dougherty è stato utilizzato nello spazio delle

fasi 1D�3V (una dimensione nello spazio �si
o, tre in velo
ità) per studiare

l'e�etto delle 
ollisioni elettrone-elettrone sulla propagazione di onde elet-

trostati
he nonlineari. In�ne, 
on lo s
opo di simulare le 
ondizioni �si
he

realisti
he ottenute negli esperimenti 
on plasmi intrappolati in ma

hine

longitudinali, sono state e�ettuate simulazioni numeri
he nello spazio delle

fasi ridotto 1D�1V 
he riprodu
ono il pro
esso di e

itazione di un'onda nelle

ma

hine a plasma.

Lo s
opo ultimo di questo lavoro era di supportare l'idea 
he la 
ompeti-

zione tra gli e�etti 
ineti
i, 
he tendono a guidare il sistema lontano dall'equi-

librio, e le 
ollisioni, 
he termalizzano il plasma, potrebbe essere l'ingrediente

�si
o alla base dei me

anismi di ris
aldamento delle parti
elle in un sistema

debolmente 
ollisionale, 
ome, ad esempio, il vento solare.
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Introdu
tion

The plasma represents one of the most 
aptivating and, at the same time,


ommon physi
al systems in the Universe. Sin
e the last Century, several

e�orts have been devoted to analyze plasmas in order to understand the

dynami
s of natural systems - su
h as the inner matter of the stars or the

solar wind - or for reprodu
ing the nu
lear fusion in laboratory devi
es for

engineering purposes.

Despite some studies re
ently fo
used on the presen
e of quantum e�e
ts,

plasmas are usually treated as 
lassi
al gases, 
omposed by a 
onsistent part

of ionized parti
les (ele
trons and ions). Within this framework, the parti-


les motion is a�e
ted by ele
tromagneti
 �elds through the Lorentz for
e,

but parti
les 
ontemporaneously modify ele
tromagneti
 �elds through the

sour
es terms (i.e. 
harges and 
urrents) of the Maxwell equations. This last

aspe
t, the so�
alled self-
onsisten
y, introdu
es a 
ertain degree of 
omplex-

ity in modeling plasmas. For example, the 
oupling of 
harged parti
les and

�elds allows the system to exhibit some 
olle
tive e�e
ts su
h as waves and

instabilities. Parti
les are also 
orrelated due to the presen
e of mi
ros
opi
al

intera
tion, i.e. 
ollisions, whi
h - as we will dis
uss in detail - 
ompli
ates

the analysis of the plasma dynami
s. Moreover, any plasma model shows the

presen
e of strong nonlinearities in the 
hara
teristi
 equations, thus leaving

the door open to a huge bran
h of nonlinear physi
s phenomena su
h as the

propagation and the intera
tion of nonlinear waves or the onset of turbulent

�ows. Ultimately, the presen
e of turbulen
e in plasmas draws a subtle line

that 
onne
ts the study of a per se di�
ult physi
al system like the plasma

with the turbulen
e, whi
h is one of the most histori
ally analyzed but still

not 
ompletely understood phenomenon.
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Introdu
tion

This huge physi
al 
omplexity redu
es the possibility of deriving analyti-


al results to few simple 
ases while, for a deeper 
omprehension, a numeri
al

approa
h is mandatory. In this perspe
tive, numerous methods have been

developed to study plasmas through a numeri
al approa
h, that allowed to

a
hieve signi�
ant improvements in understanding the system dynami
s. In

several 
ases, numeri
al simulations have predi
ted results later 
on�rmed

by means of laboratory experiments or through in-situ spa
e
raft measure-

ments, thus reinfor
ing the role of numeri
al simulations as valid tools to

lead s
ienti�
 dis
overies in plasma physi
s.

However, the physi
al 
omplexity is also re�e
ted in the numeri
al de-

s
ription of the system. Indeed, even though nonlinearities re
overed in the

equations 
an be taken into a

ount easier numeri
ally than analyti
ally, one

should also remember that the introdu
tion of nonlinearities - often asso
i-

ated with the energy transfer towards small s
ales - raises important numer-

i
al issues related to the adopted resolution and to the 
omputational 
ost

of numeri
al simulations.

From this point of view, it is important to review the methods usually

employed to model plasmas - within the �mean-�eld� assumption - by also

highlighting their 
omputational weight. The di�erent approa
hes 
orre-

spond to a des
ription whi
h is appropriate for a parti
ular range of s
ales

(frequen
ies and waveve
tors). At the lowest frequen
ies, ions and ele
trons

are lo
ked together by ele
trostati
 for
es and behave like an ele
tri
ally


ondu
ting �uid; this is the regime of the magnetohydrodynami
s (MHD).

Histori
ally the MHD represents one of the �rst attempts to model plasma

and assumes that i) plasma is a neutral 
ondu
ting �uid where 
ollisions

are su�
iently strong to maintain a lo
al thermodynami
al equilibrium, i.e

the parti
le velo
ity distribution fun
tion shape is 
lose to the equilibrium

Maxwellian, and ii) the �uid is 
oupled to the magneti
 �eld through the

indu
tion equation. This model is still widely adopted to analyze plasmas

at large s
ales. Several phenomenologies have been developed to study the

features of the MHD turbulen
e [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14℄ with

a parti
ular attention to appli
ations to the solar wind, that is a low-density,

high-temperature plasma whi
h �ows from the Sun in the heliosphere and

5
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is strongly turbulent. Several extension of the MHD approa
h have been

proposed to in
lude other physi
al ingredients whi
h o

ur at smaller s
ales

su
h as the Hall 
orre
tion (HMHD) [15, 16, 17℄. All these �uid models

have a similar 
omputational 
ost, that is proportional to N3
, being N the

number of gridpoints along ea
h spatial dire
tion. At somewhat higher fre-

quen
ies, ele
trons and ions 
an move relatively to ea
h other, behaving like

two separate and inter-penetrating �uids: this is the two-�uid regime, whose


omputational 
ost is also proportional to N3
.

However, solar wind in-situ measurements revealed mu
h 
omplex fea-

tures whi
h go beyond the �uid treatment. Indeed, on
e the energy is trans-

ferred by turbulen
e towards smaller s
ales near the ion inertial lengths,

kineti
 physi
s signatures are often observed [12, 18, 19, 20℄. Collisions are

in general weak and wave-parti
le intera
tions and turbulen
e me
hanisms

tend to modify the parti
le VDF shape, whi
h displays a strongly distorted

out-of-equilibrium pro�le 
hara
terized by the presen
e of non-Maxwellian

features (temperature anisotropies, beams, rings-like stru
tures et
. et
.)

[21, 22, 23, 24, 25℄. Numerous kineti
 models have been developed to under-

stand the dynami
s at su
h s
ales [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37℄.

Most of these models are 
ollisionless: 
ollisions are assumed to be far too

weak to produ
e any signi�
ant e�e
t on the plasma dynami
s and the plasma

obeys the Vlasov equation.

We will later 
ome ba
k to the role of 
ollisions in weakly 
ollisional

plasmas, sin
e this point deserves - in our opinion - a separate dis
ussion.

It is worth to highlight instead the 
omputational 
ost of the 
ollisionless

models. We would also point out that, histori
ally, two main families of nu-

meri
al approa
hes have been developed to integrate the Vlasov equation:

the Parti
le-In-Cell (PIC) [38, 39℄ and the Eulerian (HVM) [40, 41℄ algo-

rithms. The latter methods dire
tly integrate the Vlasov equation, while

the former solve the 
hara
teristi
s equations of the Vlasov equation for an

ensemble of quasi-parti
les. PIC methods have been widely adopted sin
e

their implementation is relatively straightforward and the requested memory

is not huge. However they su�er the presen
e of a statisti
al noise due to the

�nite number of quasi-parti
les. Indeed, it is ne
essary to �
ount� the quasi-

6
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parti
les in a dis
retized phase spa
e for evaluating moments of the distribu-

tion fun
tion on a spatial grid, thus introdu
ing the noise whi
h espe
ially

a�e
ts the dynami
s at small s
ales. On the other hand, Eulerian Vlasov


odes are noise-free but their implementation is more di�
ult and, sin
e the

full distribution fun
tion is evolved in phase spa
e, the memory requirements

are signi�
antly larger than for PIC. Re
ently di�erent methods have been

also proposed to investigate the plasma dynami
s [42, 43, 44, 45, 46, 47℄.

Fo
using on 
ollisionless Eulerian kineti
 approa
hes, going from large to

small s
ales, one initially �nds the hybrid kineti
 models, whi
h are su

ess-

fully adopted to model the range of s
ales around the proton inertial s
ale.

These models assume that protons are kineti
 and their Vlasov equation is

numeri
ally integrated; ele
trons are instead 
onsidered as a ba
kground �uid

that 
omes into play only in the Ohm's law for the ele
tri
 �eld. The 
om-

putational 
ost for solving the full six-dimensional phase spa
e (three dimen-

sions in physi
al spa
e, three dimensions in velo
ity spa
e) is about N6
, being

N the number of gridpoints along a generi
 phase spa
e dire
tion. This 
om-

putational 
ost 
urrently represents the present limit whi
h 
an be a
hieved

through modern HPC 
lusters and the resolution of su
h simulations is often

limited by the memory 
apa
ity. Then, when one approa
hes the ele
tron

s
ales, 
ollisionless fully kineti
 simulations, whi
h solve the Vlasov equation

for both spe
ies, are needed. The 
omputational 
ost of su
h simulations is

always about N6
and the required memory is only slightly bigger (a fa
tor 2)


ompared to the one of hybrid methods. However, des
ribing ele
trons s
ales

by maintaining a realisti
 mass ratio implies that these simulations should

have an enough high resolution and also a very small time step. Based on

these 
onsiderations, we may argue that only with the next generation of

HPC 
lusters these simulations will be a�ordable.

Let us dis
uss now the importan
e of 
ollisions and the 
ompli
ations that

this physi
al e�e
t introdu
es in the system des
ription. The 
ollisionless

assumption, often adopted for analyzing plasmas with high temperature and

low density, is justi�ed with the fa
t that the parti
les mean free path is


omparable with the plasma ma
ros
opi
 length s
ales [12℄. However, in

order to show that 
ollisions 
an be negle
ted, one usually assumes that

7



Introdu
tion

the shape of the parti
le VDF is 
lose to Maxwellian [22, 23, 24, 48℄. In

prin
iple, this 
ould be a problem for weakly-
ollisional turbulent media su
h

as the solar wind, where kineti
 physi
s strongly distort the parti
le VDFs

[21, 22, 23, 24, 25, 29, 30, 31, 33, 35, 41℄.

For su
h systems, where kineti
 e�e
ts 
ompete with the presen
e of 
olli-

sions whi
h tend to restore the thermal equilibrium, 
ollisional e�e
ts are usu-

ally introdu
ed through a �
ollisional operator� at the right-hand side of the

Vlasov equation. These operators often in
lude derivatives in velo
ity spa
e,

therefore the presen
e of strong gradients and non-Maxwellian features in the

velo
ity distribution fun
tion may enhan
e the e�e
ts of 
ollisions [49℄. We

would also highlight that 
ollisions are the unique me
hanism, from a ther-

modynami
 point of view, able to produ
e irreversible heating in a

ordan
e

to the H theorem and, hen
e, to dissipate energy. Therefore, to properly

des
ribe su
h s
enarios or to analyze laboratory plasmas, where 
ollisionality

is instead signi�
ant [50, 51℄, 
ollisions should be taken into a

ount in the

plasma des
ription. However, it is extremely di�
ult to handle 
ollisions:

the presen
e of velo
ity spa
e derivatives and multi-dimensional integrals in

the 
ollisional operators signi�
antly in
reases their 
omputational 
omplex-

ity [52, 53, 54, 55, 56℄. For example, by 
onsidering the Landau operator -

whi
h represents one of the most �natural� 
ollisional operators (it 
an be

derived by the Liouville theorem) and 
hoosing the full 3D�3V phase spa
e

(three dimensions in physi
al spa
e and three dimensions in velo
ity spa
e),

the 
omputational 
ost would be proportional to N9
(a three dimensional

integral must be 
omputed for ea
h point of the grid). Nowadays su
h sim-

ulations 
annot be a�orded and only approximated models (redu
ed phase

spa
e or simpli�ed operators) 
an be adopted [57, 58, 59, 60, 61, 62, 63, 64℄.

This thesis is 
omposed by two main parts whi
h respe
tively fo
us on

the 
onne
tion of large, �uid s
ales with small, kineti
 ones and on the intro-

du
tion of 
ollisional e�e
ts in plasmas. In Part I, the well-known problem

of the intera
tion of two 
olliding Alfvén wave pa
kets is revisited by means

of MHD, HMHD and hybrid kineti
 simulations. The aim of this part is

to extend the Mo�att & Parker problem to the realm of kineti
 physi
s and

exhibit that, when one introdu
es more 
omplex physi
al ingredients, the dy-

8
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nami
s be
omes quite di�erent with respe
t to the pure MHD treatment. It is

shown that when the energy is transferred towards kineti
 s
ales, the distribu-

tion fun
tion is strongly perturbed and exhibits an out-of-equilibrium shape.

Moreover the wave pa
kets intera
tion is investigated in terms of strong and

weak turbulen
e and it is found that features explained in terms of both kinds

of turbulen
e theory 
oexist. Then, in Part II, we fo
us on the study of 
ol-

lisions in plasmas. We �rst show, by modeling 
ollisions through the fully

nonlinear Landau operator, that the 
ollisionality is e�e
tively enhan
ed by

the presen
e of strong gradients in the parti
le distribution fun
tion. In fa
t,

�ne stru
tures are dissipated mu
h faster than other global quantities as tem-

perature anisotropies. Nonlinearities present in the 
ollisional operator are

also signi�
ant to give to 
ollisions the proper importan
e in terms of 
har-

a
teristi
 times asso
iated with the dissipation of su
h stru
tures. However,

sin
e the Landau operator is too demanding from a 
omputational 
ost point

of view, we des
ribe the dynami
s of weakly-
ollisional plasmas by means of

self-
onsistent 
ollisional simulation being 
ollisions modeled with simpli�ed


ollisional operators. In parti
ular, by retaining a three-dimensional velo
ity

spa
e, we model 
ollisions through the Dougherty operator [58, 59℄ and we

establish a su

essfully 
omparison with the Landau operator; this allows to

perform self-
onsistent simulations in the 1D�3V phase spa
e 
on
erning the

nonlinear regime of ele
trostati
 waves in presen
e of ele
tron-ele
tron 
olli-

sions. Finally, we restri
t to the 1D�1V phase spa
e and we des
ribe i) the

problem of the initial state re
urren
e in a weakly 
ollisional plasma, show-

ing that 
ollisions 
annot in general prevent numeri
al re
urren
e without

a�e
ting the physi
al solution; ii) the waves laun
hing me
hanism 
ommonly

adopted in laboratory plasmas, showing that se
ondary waves bran
h 
an be

generated at arbitrary phase speeds if the driver perturbs the distribution

fun
tion 
lose to su
h velo
ity. However 
ollisions qui
kly dissipate these

�u
tuations.
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Part I

The Parker-Mo�att problem as a


ase study from �uid to kineti


s
ales
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The Parker-Mo�att problem

In this �rst part of the thesis we revisit the well-known problem 
on-


erning the intera
tion of two A�véni
 wave pa
kets, already approa
hed by

Mo�att [5℄ and Parker [6℄ in the late Seventies. Our prin
ipal aim is to

extend the analysis from the ideal in
ompressible MHD treatment to more


omplex plasma s
enarios and, hen
e, to show that, when one moves be-

yond the MHD, numerous intriguing features are re
overed as the result of

the presen
e of other physi
al e�e
ts su
h as 
ompressibility, dispersion and

kineti
 physi
s.

One should also bear in mind that the intera
tion of oppositely prop-

agating large amplitude in
ompressible Alfvéni
 wave pa
kets represents a

familiar perspe
tive on the hydromagneti
 des
ription of astrophysi
al and

laboratory plasma turbulen
e [3, 4℄. Indeed, various nonlinear phenomenolo-

gies are built on this paradigm [7, 8, 9, 10, 11, 13, 65, 66, 67, 68, 69℄. The

relevan
e of this phenomenon is due to the fa
t that Alfvéni
 perturbations

represent the main 
omponent of �u
tuations in natural plasmas, as dire
tly

measured in the fast streams of solar wind [12, 70℄ and inferred in the solar


orona by remote sensing observations [71, 72, 73℄. Therefore the intera
tion

between oppositely propagating Alfvéni
 pa
kets 
an be 
onsidered as a sort

of �building blo
k� of nonlinear phenomena taking pla
e in in
ompressible

MHD turbulen
e. An essential feature is that large amplitude perturbations

in whi
h velo
ity u and magneti
 �eld b �u
tuations are Alfvéni
ally 
orre-

lated, i.e. either u = (cA/B0)b or u = −(cA/B0)b (where cA and B0 are uni-

form ba
kground Alfvén velo
ity and magneti
 �eld, respe
tively), are exa
t

stable solutions to the equations of in
ompressible magnetohydrodynami
s

(MHD) [1, 2℄. Hen
e, to indu
e nonlinear 
ouplings among the �u
tuations

and to ex
ite turbulen
e, it is ne
essary to simultaneously 
onsider magneti


�u
tuations b and velo
ity �u
tuations u that have an arbitrary sense of


orrelation. This may be a

omplished by superposing the two senses of 
or-

relation, in Alfvén units, u = +(cA/B0)b and u = −(cA/B0)b. One thread

emerging from this 
on
erns the analysis of 
olliding wave pa
kets to reveal

properties of the MHD turbulen
e spe
trum [4℄.

A di�erent emphasis was given by Mo�att [5℄ and Parker [6℄. Both of these

treatments analyzed the 
ollision of large amplitude in
ompressible, ideal
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Alfvén wave pa
kets noting that nonlinear intera
tion and mutual distortion

of the wave pa
kets are limited to the span of time during whi
h they spatially

overlap. BothMo�att and Parker argued that the pa
kets eventually separate

and propagate on
e again undisturbed without further intera
tions.

The present part of this thesis addresses two questions that arise when

trying to apply this physi
al insight to high temperature extraterrestrial plas-

mas su
h as the solar wind, where su
h large amplitude Alfvéni
 �u
tuations

are routinely observed [70℄, or solar 
orona, where the intera
tion of Alfvéni


wave pa
kets is thought to o

ur [71, 72℄. First, 
ompressibility, dispersion

and kineti
 plasma e�e
ts are likely to be important in spa
e appli
ations,

and we ask if these give rise to signi�
ant departures from the the Parker-

Mo�att s
enario. Se
ond, we ask whether the proposed separation of the

pa
kets after 
ollision is realized as envisioned, or if a wake of non-propagating

disturban
es might remain after very long times. We address these spe
i�


questions using a 
ompressible MHD model, a 
ompressible Hall MHD model

and two hybrid Vlasov models.

Beyond the assumption of in
ompressibility, we may anti
ipate genuinely


ompressible, dispersive and kineti
 e�e
ts that warrant examination in the

large amplitude wave pa
kets 
ollision problem. In the solar wind for exam-

ple, many intervals, espe
ially within 1 AU [74℄ or at high latitudes [75℄, are

highly Alfvéni
, but even within su
h intervals there are mixtures of Elsässer

amplitudes, small density variations, and a small parallel varian
e, as in the

well-quoted �5:4:1� varian
e ratio reported by [70℄. There have also been re-

ports of interplanetary magnetosoni
 wave pa
kets intera
tion [76℄, while the

great power-law in the interstellar medium [77℄ is asso
iated with ele
tron

density �u
tuations that may be either propagating or non-propagating [78℄.

Furthermore in plasmas su
h as the solar wind, at smaller s
ales near the ion

inertial s
ale, one expe
ts kineti
 properties [19℄ su
h as spe
tral steepening

[12℄, dispersive wave e�e
ts [18, 20, 79℄ of both Kineti
 Alfvén Wave and

whistler types, along with temperature anisotropy, beams and other distor-

tions of the proton velo
ity distribution fun
tion (VDF) [21, 29, 30, 33, 35℄.

These 
ompli
ations pla
e the problem of 
ollisions of Alfvén wave pa
kets

in a mu
h more 
omplex framework.
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In dealing with low Ma
h number quasi-in
ompressible �uid or MHD

models, either in numeri
al simulations [80, 81, 82℄, appli
ations [8, 71℄, or

in analyti
al theory [83, 84℄, one routinely deals with two signi�
ant prop-

erties: �rst, the dominant quadrati
 
ouplings are of the form k = p + q,

transferring energy into (or from) Fourier mode with wave-ve
tor k due to

nonlinear intera
tions with modes at wave-ve
tors p and q. One 
on
ludes

that in general (unless, e.g., all ex
ited wave ve
tors are 
o-linear) one ex-

pe
ts ex
itations to spread rapidly among many wave-ve
tors, a pro
ess that

over time 
an produ
e 
omplex mixing and turbulent �ows. Se
ond, in-


ompressible MHD nonlinear evolution pro
eeds as ∂z+i /∂t ∼ −z−j ∇jz
+
i and

∂z−i /∂t ∼ −z+j ∇jz
−
i in terms of Elsässer variables z±j = uj ± bj (jth 
ompo-

nents of velo
ity �eld uj and magneti
 �eld bj in Alfvén speed units), thus

allowing the immediate 
on
lusion that nonlinear 
ouplings vanish unless the

Elsässer �elds z+ and z− have nonzero overlap somewhere in spa
e.

A similar problem, namely, the intera
tion between non-lo
alized moder-

ate amplitude Alfvén waves at spatial s
ales 
omparable with the ion iner-

tial length, has been approa
hed within the weak turbulen
e framework [13℄

and gyro-kineti
 numeri
al simulations [69℄ as well as laboratory experiments

[85, 86, 87℄ have been performed. This approa
h, based on the assumption

of small-amplitude �u
tuations, des
ribes turbulen
e in terms of nonlinear


ouplings among waves, ea
h belonging to a well-de�ned propagating mode

and keeping its own properties, like the dispersion relation. The theory of

weak turbulen
e in plasmas have been widely studied within MHD [66, 68℄,

in
luding dispersive e�e
ts [16℄ and also for high-frequen
y waves [88, 89, 90℄.

Strong and weak turbulen
e theories 
an be 
onsidered somehow 
omplemen-

tary [67, 91℄, and there is a debate on the appli
ability of a "wave approa
h"

to des
ribe, for instan
e, turbulen
e in the solar wind [92, 93, 94, 95, 96, 97℄.

These properties not only provide motivation for the Alfvén wave pa
ket 
ol-

lision problem, but also enter into some of its 
omplexity as an elementary

intera
tion that generates turbulen
e.

The present part of this thesis is divided as follows. In Chapter 1 we

revisit the Parker-Mo�att problem by fo
using on some global ��uid�-like

diagnosti
s whi
h allow to identify whi
h features are introdu
ed moving
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beyond the ideal MHD treatment. The MHD evolution revisits the theoret-

i
al insights des
ribed by Mo�att, Parker, Krai
hnan, Chandrasekhar and

Elsässer in whi
h the oppositely propagating large amplitude wave pa
kets

intera
t for a �nite time, initiating turbulen
e. The extension to in
lude 
om-

pressive and kineti
 e�e
ts maintains the gross 
hara
teristi
s of the simpler


lassi
 formulation, but also reveals intriguing features. The physi
al e�e
ts

taken into a

ount in the more realisti
 simulations play a signi�
ant role.

After the wave pa
kets 
ollision, the 
omplexity of the stru
tures seems to

suggest that, probably, wave pa
kets may remain also 
onne
ted after their

intera
tion. Moreover, the 
omparison of four di�erent models whi
h evolve

the same initial 
ondition 
ontribute to the spirit of �Turbulen
e Dissipation

Challenge� that has been re
ently dis
ussed in the spa
e plasma 
ommunity

[98℄.

In Chapter 2 we fo
us on two features re
overed in the Eulerian Vlasov-

Maxwell simulation, whi
h is noise-free 
ompared to the PIC simulation.

We report eviden
es of the presen
e of non-Maxwellian signatures during

the wave pa
kets evolution and intera
tion. Regions 
hara
terized by strong

temperature anisotropies and nongyrotropies are re
overed and the proton

distribution fun
tion displays a beam along the dire
tion of the lo
al mag-

neti
 �eld, similar to some re
ent observations of the solar wind [76℄. More-

over, by analyzing the features of the turbulen
e produ
ed by the intera
tion

of two 
olliding Alfvéni
 wave pa
kets, we �nd that weak and strong tur-

bulen
e s
enarios seem to 
oexist. The wave-like approa
h, based on the

analysis of polarization and 
orrelations, still helps in the 
hara
terization of

some low-energy �u
tuations. However, several signatures of a strong turbu-

len
e regime are also re
overed. Blurred ω− k relations are found instead of

well-de�ned dispersion relations, along with a tenden
y to build up ω = 0

stru
tures, typi
al of a strong turbulen
e regime.
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Chapter 1

Revisiting a 
lassi
: the

Parker-Mo�att problem

In this Chapter we revisit the Parker-Mo�att problem by fo
using on some

global ��uid�-like diagnosti
s whi
h allow to identify the features introdu
ed

when departing from the ideal MHD treatment. In parti
ular, we des
ribe

how the s
enario is modi�ed by the presen
e of 
ompressible, dispersive and

kineti
 e�e
ts. During the wave pa
kets intera
tion, as pres
ribed by Parker

&Mo�att, nonlinear 
oupling pro
esses 
ause the magneti
 energy spe
tra to

evolve towards isotropy, while energy is transferred towards smaller spatial

s
ales. The new ingredients introdu
ed with the HMHD and kineti
 simu-

lations play a signi�
ant role and several quantities evolve di�erently with

respe
t to the MHD evolution. We also anti
ipate that the 
omplexity of

stru
tures produ
ed by nonlinear intera
tions in the HMHD and HVM 
ases

makes di�
ult to determine whether the wave pa
kets a
tually attain a full

separation after the 
ollision.

We also examine this basi
 problem by means of a hybrid Parti
le-in-

Cell simulation (HPIC), whi
h allows 
omparison of two di�erent numeri
al

approa
hes (HVM and HPIC), whi
h refer to the same physi
al model. We

may anti
ipate that, in the HPIC 
ase, the system dynami
s at small s
ales is

a�e
ted by the presen
e of parti
les thermal noise and only the large spatial

s
ales features are dis
retely re
overed during the evolution of the two wave
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pa
kets.

The stru
ture of the Chapter is the following. In Se
tion 1.1 the numeri
al

models we adopted for the analysis are des
ribed in detail, then in Se
tion 1.2

the simulations are analyzed. Finally, we summarize the results in Se
tion

1.3. Results shown here have been 
olle
ted in two s
ienti�
 papers re
ently

published in The Astrophysi
al Journal [14℄ and Journal of Plasma Physi
s

[99℄.

1.1 Models and Approa
h

For problems su
h as the one we fo
us here on, the system dimensionality

is 
ru
ial: in fa
t, a proper des
ription should 
onsider a three-dimensional

physi
al spa
e (i.e. three-dimensional wave ve
tors), where both parallel

and perpendi
ular 
as
ades are taken into a

ount [100, 101, 102℄. How-

ever, dynami
al range of the spatial s
ales (wave numbers) represented in

the model is equally important to 
apture nonlinear 
ouplings during the

wave pa
ket intera
tion. Furthermore, performing a kineti
 Eulerian hybrid

Vlasov-Maxwell simulation in a full 3D�3V phase spa
e retaining a good

spatial resolution is too demanding for the present High Performan
e Com-

puting 
apability. Given that several runs are required to 
omplete a study

su
h as the present one, a fully 3D approa
h would be prohibitive. There-

fore we restri
t to the 
ase of a 2.5D physi
al spa
e, where ve
torial �elds

are three-dimensional but their variations depend only on two spatial 
oor-

dinates (x and y). The HVM model has also a three dimensional velo
ity

spa
e grid. It is worth noting that 2.5D 
aptures the qualitative nature of

many pro
esses very well and it allows for a large system size, that, in turn,

ensures a large Reynolds number; however there might be some quantitative

di�eren
es for some pro
esses [103, 104, 105℄.

The �uid models 
onsidered here are MHD and Hall MHD, whose dimen-
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sionless equations are:

∂tρ+∇ · (ρu) = 0 (1.1)

∂tu+ (u · ∇)u = − β̃
2ρ
∇(ρT ) + 1

ρ
[(∇×B)×B] (1.2)

∂tB = ∇×
[

u×B− ǫ̃
ρ
(∇×B)×B

]

(1.3)

∂tT + (u · ∇)T + (γ − 1)T (∇ · u) = 0 (1.4)

In Eqs. (1.1)�(1.4) spatial 
oordinates x = (x, y) and time t are respe
tively

normalized to L̃ and t̃A = L̃/c̃A. The magneti
 �eld B = B0 + b is s
aled to

the typi
al magneti
 �eld B̃, while mass density ρ, �uid velo
ity u, tempera-

ture T and pressure p = ρT are s
aled to typi
al values ρ̃, c̃A = B̃/(4πρ̃)1/2,

T̃ and p̃ = 2κB ρ̃T̃ /mp (being κB the Boltzmann 
onstant and mp the proton

mass), respe
tively. Moreover, β̃ = p̃/(B̃2/8π) is a typi
al value for the ki-

neti
 to magneti
 pressure ratio; γ = 5/3 is the adiabati
 index and ǫ̃ = d̃p/L̃

(being d̃p = c̃A/Ω̃cp the proton skin depth) is the Hall parameter, whi
h is

set to zero in the pure MHD 
ase. Details about the numeri
al algorithm


an be found in [106, 107℄.

On the other hand, hybrid Vlasov-Maxwell simulations have been per-

formed by using two di�erent numeri
al 
odes: an Eulerian hybrid Vlasov-

Maxwell (HVM) 
ode [40℄ and a hybrid Parti
le-in-
ell (HPIC) 
ode [27℄.

For both 
ases protons are des
ribed by a kineti
 equation and ele
trons

are a Maxwellian, isothermal �uid. In the Vlasov model, an Eulerian rep-

resentation of the Vlasov equation for protons is numeri
ally integrated. In

PIC method, the distribution fun
tion is Monte-Carlo dis
retized and the

Newton-Lorentz equations are updated for the �ma
ro-parti
les�. Ele
tro-

magneti
 �elds, 
harge density and 
urrent density are 
omputed on a spatial

grid [38, 108℄.
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Dimensionless HVM equations are:

∂tf + v · ∇f+
1

ǫ̃
(E+ v ×B) · ∇vf = 0 (1.5)

E− me ǫ̃2

mp
∆E = −ue ×B− ǫ̃β̃

2n

(

∇Pe −
me

mp
∇ ·Π

)

+
me

mp

[

u×B+
ǫ̃

n
∇ · (n (uu− ueue))

]

(1.6)

∂B
∂t

= −∇×E ; ∇×B = j (1.7)

where f = f(x,v, t) is the proton distribution fun
tion. In Eqs. (1.5)�(1.7),

velo
ities v are s
aled to the Alfvén speed c̃A, while the proton number den-

sity n =
∫

f d3v, the proton bulk velo
ity u = n−1
∫

vf d3v and the proton

pressure tensor Πij = n−1
∫

(v−u)i (v−u)jf d3v, obtained as moments of the

distribution fun
tion, are normalized to ñ = ρ̃/mp, c̃A and p̃, respe
tively.

The ele
tri
 �eld E, the 
urrent density j = ∇×B and the ele
tron pressure

Pe are s
aled to Ẽ = (c̃AB̃)/c, j̃ = cB̃/(4πL̃) and p̃, respe
tively. More-

over, ele
tron inertia e�e
ts have been 
onsidered in Ohm's law to prevent

numeri
al instabilities (being me/mp = 0.01, where me is the ele
tron mass,

and ue = u− ǫ̃j/n), while no external resistivity η is introdu
ed. A detailed

des
ription of the HVM algorithm 
an be found in [40, 106, 107℄. On the

other hand, the hybrid PIC run has been performed using the P3D hybrid


ode [39℄ and all the numeri
al and physi
al parameters are the same as the

HVM run. The P3D 
ode has been extensively used for re
onne
tion and

turbulen
e (See, for example, Refs. [27, 109℄).

In both 
lasses of performed simulations (�uid and kineti
), the spatial

domain D(x, y) = [0, 8π] × [0, 2π] is dis
retized with (Nx, Ny) = (1024, 256)

in su
h a way that ∆x = ∆y and spatial boundary 
onditions are periodi
.

For the HVM run, the velo
ity spa
e is dis
retized with a uniform grid with

51 points in ea
h dire
tion, in the region vi = [−vmax, vmax] (being vmax =

2.5c̃A) and velo
ity domain boundary 
onditions assume f = 0 for |vi| >
vmax (i = x, y, z); while, in the HPIC 
ase, the number of parti
les per


ell is 400. Moreover βp = 2v2th,p/c̃
2
A = β̃/2 = 0.5 (i.e. vmax = 5vth,p),

ǫ̃ = d̃p/L̃ = 9.8 × 10−2
, kdp = ǫ̃−1 ≃ 10 and kde =

√

mp/me × ǫ̃−1 ≃ 100.
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Figure 1.1: (Color online) Contour plots of the initial perturbations. Left and right


olumns refer respe
tively to b and u. Top, 
entral and bottom rows indi
ate the

x, y and z 
omponents of the perturbations.

The ba
kground magneti
 �eld is mainly perpendi
ular to the x − y plane:

B0 = B0(sin θ, 0, cos θ), where θ = cos−1 [(B0 · ẑ) /B0] = 6◦ and B0 = |B0|.
In the initial 
onditions, ions are isotropi
 and homogeneous (Maxwellian

velo
ity distribution fun
tion in ea
h spatial point) for both kineti
 simu-

lations. Then, large amplitude magneti
 b and bulk velo
ity u perturba-

tions are introdu
ed. Density perturbations are not imposed, whi
h im-

plies nonzero total pressure �u
tuations. Initial perturbations 
onsist of two

Alfvéni
 wave pa
kets with opposite velo
ity-magneti
 �eld 
orrelation. The

pa
kets are separated along x and, sin
e B0,x 6= 0, they 
ounter-propagate.

The nominal time for the 
ollision, evaluated with respe
t to the 
enter of

ea
h wave pa
ket, is τ ≃ 58.9.

The magneti
 �eld perturbation b has been 
reated by initializing energy

in the �rst four wave-numbers in the y dire
tion while, due to the x spatial

lo
alization (enfor
ed by proje
tion), many wave-numbers along x are ex
ited

initially. Then, a small bz(x, y) 
omponent has been introdu
ed in su
h a

way that the transverse 
ondition, B0 · b = 0, is hold in ea
h domain point.
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Finally, the velo
ity �eld perturbation u is generated by imposing that u and

b are 
orrelated (anti-
orrelated) for the wave pa
ket whi
h moves against

(along) the magneti
 �eld B0x. The 
ontour plots of the initial 
ondition are

shown in Fig. 1.1, where left (right) 
olumn refers to b (u) perturbations.

The intensity of the perturbation is 〈b〉rms/B0 = 0.2, therefore the Ma
h

number isMs = 〈u〉rms/vth,p = 0.4. The intensity of �u
tuations with respe
t

to the in-plane �eld B0x is quite strong, with a value of about 2. It is worth

to note that the inverse of the intensity of the �u
tuations with respe
t to

the in-plane magneti
 �eld is related to the parameter τNL/τcoll, where τNL

is the 
hara
teristi
 nonlinear time and τcoll is the 
hara
teristi
 
ollision

time. If τNL/τcoll ≪ 1, several nonlinear times o

ur in a single 
ollision

and wave pa
kets 
an be signi�
antly perturbed by nonlinear e�e
ts. On

the other hand, if τNL/τcoll > 1, many 
ollisions are ne
essary to strongly

distort wave pa
kets. By evaluating τNL ≃ ∆/u (wave pa
ket width ∆,

perturbations amplitude u) and τcoll ≃ ∆/V (in-plane Alfvén propagation

speed V ≃ 0.1cA), it turns out that τNL/τcoll ≃ 0.5. Therefore our simulations

stand in a parameter range where nonlinear e�e
ts 
an be su
h important

that a strong turbulen
e s
enario may be present.

1.1.1 Dis
ussion of the Initial Conditions

The imposed initial perturbations 
orrespond to two large amplitude Alfvén

wave pa
kets in the sense that magneti
 and velo
ity perturbations are fully


orrelated in ea
h pa
ket, and the pa
kets are separated in spa
e. With zero

density variation, a weak in-plane uniform magneti
 �eld, and a relatively

strong out of plane uniform magneti
 �eld, this initial 
ondition is one for

whi
h the reasoning of Mo�att and Parker dis
ussed above would be appli-


able in the 
ontext of an in
ompressible model.

In addition, the initial data also exa
tly satisfy the transversality 
on-

dition B0 · b = 0, whi
h in linear 
ompressible MHD would 
orrespond to

the Alfvén eigenmode, if indeed the amplitude were in�nitesimal. Here the

amplitude is large, so small amplitude theory is unlikely to be relevant to

the nonlinear evolution. Furthermore, the 
ondition of the proper Alfvén
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Figure 1.2: (Color online) Contour plots of the out of plane 
omponent of the


urrent density jz(x, y) at several time instants t = 29.5 (a), t = τ = 58.9 (b),

t = 70.7 (
) and t = 98.2 (d). From left to right, ea
h 
olumn refers to the MHD,

HMHD, HVM and HPIC 
ases, respe
tively. For the HPIC simulation, jz(x, y) has
been smoothed in order to remove parti
le noise.

eigenmode obtained in large amplitude 
ompressible MHD theory, namely

B = |B| = const is not satis�ed by our initial perturbations [92℄. This

suggests that pressure and density �u
tuations may be generated during the

wave pa
kets evolution. Therefore, the initial data are nonlinear eigenmodes

of in
ompressible MHD, but not exa
t eigenmodes of 
ompressible MHD.

On the other hand we do not expe
t signi�
ant di�eren
es be
ause the ini-

tial B = |B| �u
tuations are not very large (less than 10%).

1.2 Numeri
al results: a dire
t 
omparison be-

tween di�erent models

In this Se
tion we fo
us on the des
ription of the results of the four di�erent

simulations (MHD, HMHD, HVM and HPIC) by fo
using on some ��uid�-

like diagnosti
s whi
h help to understand the system dynami
s and, also, to

highlight the di�eren
es between the adopted models.

Figure 1.2 reports a dire
t 
omparison between the simulations, showing

the 
ontour plots of the out-of-plane 
omponent of the 
urrent density jz =

(∇ × B) · ẑ. Verti
al 
olumns from left to right in Fig. 1.2 refer to MHD,

HMHD, HVM and HPIC simulations, respe
tively; while ea
h horizontal row

refers to a di�erent time instant: t = 29.5 (a), t = τ = 58.9 (b), t = 70.7 (
)
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and t = 98.2 (d).

In ea
h simulation the initially separated wave pa
kets 
ounter-propagate,

approa
h ea
h other [panels (a) of Fig. 1.2℄, and 
ollide at t = τ . During

the 
ollision [panels (b) of Fig. 1.2℄, jz intensi�es, and, sin
e the overlapping

wave pa
kets intera
t nonlinearly, the dynami
s produ
es small s
ales that


an be easily appre
iated by examining the width of the 
urrent stru
tures.

After the 
ollisions [panels (
) and (d) of Fig. 1.2℄, the wave pa
kets 
ontinue

their motion while displaying a signi�
antly perturbed shape. Indeed the jz


ontours indi
ate that 
urrent stru
tures are mu
h more 
omplex after that

the 
ollision o

urs. Moreover, their shape exhibits also a 
urvature whi
h

is not anti
ipated prior to the 
ollision and whi
h indi
ates the presen
e

of energy in modes with gradients along the y dire
tion, transverse to the

propagation.

Signi�
ant di�eren
es are re
overed in the MHD 
ase with respe
t to the

HMHD, HVM and HPIC runs. While the MHD evolution is symmetri
 with

respe
t to the 
enter of the x dire
tion, in the other 
ases this symmetry

is broken also before the wave pa
kets intera
tion due to the presen
e of

dispersive e�e
ts whi
h di�erentiate the propagation along and against B0x.

Moreover, during the wave pa
kets overlap [Fig. 1.2(b)℄, smaller s
ales stru
-

tures are formed in the HMHD and the HVM 
ases with respe
t to the pure

MHD evolution, while the HPIC run - despite it re
overs several signi�
ant

features of the wave pa
kets intera
tion - su�ers the presen
e of parti
les

thermal noise, whi
h has been arti�
ially smoothed out in Fig. 1.2. After

the 
ollision [Fig. 1.2 (
) and (d)℄, the di�eren
e between the MHD and the

other simulations be
omes stronger. In parti
ular, some vorti
al stru
tures

at the 
enter of the spatial domain are re
overed in the HMHD and HVM


ases, in 
ontrast to the pure MHD 
ase. Moreover, the Vlasov simulation

tends to produ
e smaller s
ales during the intera
tion sin
e very thin 
ur-

rent sheet stru
tures are formed. Furthermore, some se
ondary ripples are

re
overed, in the HVM simulation, in front of ea
h wave pa
ket. These se
-

ondary, low-amplitude ripples are not re
overed in the other simulations: in

fa
t, they 
annot be appre
iated in the HPIC run where the noise prevents

the formation of su
h stru
tures while, in the Hall simulation, they are only
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Figure 1.3: (Color online) Temporal evolution of the energy terms: ∆Ekin (bla
k),

∆Eth (red) and ∆EB (blue) for the MHD, HMHD, HVM and HPIC runs.

roughly visible. The nature of these low-amplitude ripples is 
ompatible with

a KAW-like a
tivity and will be dis
ussed in detail in the next 
hapter.

In order to 
ompare models and 
odes, we display, in Fig. 1.3, the tempo-

ral evolution of the energy variations ∆E. Bla
k, red and blue lines indi
ate

respe
tively the kineti
∆Ekin, thermal∆Eth and magneti
∆EB energy vari-

ations, while ea
h panel from (a) to (d) refers to the MHD, HMHD, HVM

and HPIC runs, respe
tively. The evolution of ∆Ekin and ∆EB is quite 
om-

parable in all the performed simulations and, in the temporal range where

wave pa
kets 
ollide, magneti
 and kineti
 energy is ex
hanged. On the other

hand, the evolution of the thermal energy ∆Eth di�ers in the HPIC 
ase 
om-

pared to the other simulations. Indeed, ∆Eth remains quite 
lose to zero for

all the simulations ex
ept for the HPIC run, where it grows almost linearly

for the presen
e of numeri
al noise. It is worth to note that, as the number

of parti
les in
reases, the evolution of ∆Eth would probably get 
loser to the

one obtained in the MHD, HMHD and HVM simulations.
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A point of 
omparison of our simulations with respe
t to the theoreti
al

ideas given by Mo�att and Parker is to examine the behavior of 
ross heli
ity.

Those theoreti
al treatments assume ideal non-dissipative 
onditions, so that

the total 
ross heli
ity is 
onserved and moreover the expe
tation is that

the separate wave pa
kets after the 
ollision have the same 
ross heli
ity

as prior to the intera
tion. Furthermore the initial and �nal states, in the

ideal treatment, have equipartition of �ow and magneti
 �eld energy, with

departures from equipartition possible during the intera
tion. To examine

these, Fig. 1.4 shows the temporal evolution of (a) the normalized residual

energy σr(t), and (b) the normalized 
ross-heli
ity σc(t) [12℄, respe
tively

de�ned as σr = (eu − eb)/(eu + eb) and σc = (e+ − e−)/(e+ + e−) , where

e± = 〈(z±)2〉/2, eu = 〈u2〉/2, eb = 〈b2〉/2 and z± = u ± b. In ea
h panel

of Fig. 1.4, bla
k, dashed blue, dashed green and red lines refer to MHD,

HMHD, HVM and HPIC 
ases, respe
tively.

Figure 1.4 (a) shows the evolution of the normalized residual energy σr,

whi
h is similar in all the simulations. In parti
ular σr ≃ 0 in the initial stage

of the simulations. Then, σr strongly os
illates during the wave pa
kets 
ol-

lisions, �rst to positive values indi
ating a positive 
orrelation of the Elsässer

�elds, then moving more strongly towards negative values of 
orrelation, and

returning to positive 
orrelation again prior to �nally approa
hing zero on
e

again. The σr os
illations are well 
orrelated with the os
illations of ∆EB

and ∆Ekin seen in Fig. 1.3.

Deeper insights are revealed by the evolution of the 
ross-heli
ity σc,

showed in Fig. 1.4 (b). Indeed, for ideal in
ompressible MHD, the 
ross

heli
ity remains 
onstant, and for this initial 
ondition, σc = 0. Here, σc

is well-preserved in the MHD run, despite this simulation is 
ompressible.

This means that the 
ompressible e�e
ts, introdu
ed here by the fa
t that

initial perturbations are not pressured balan
ed, are not strong enough to

break the σc invarian
e. On the other hand, for the remaining simulations

(HMHD, HVM and HPIC), σc is not preserved: i) it shows a jump around

t = τ = 58.9, due to the presen
e of kineti
 and dispersive e�e
ts, and ii)

there is an initial growth of σc followed by a relaxation phase. It seems also

signi�
ant to point out that, the initial growth of σc o

urs faster in the
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Figure 1.4: (Color online) Temporal evolution of the normalized residual energy

σr(t) (a), 
ross heli
ity σc(t) (b) and generalized 
ross heli
ity σg(t) (
). In ea
h

panel bla
k, blue, green and red lines indi
ate the MHD, HMHD, HVM and HPIC

simulations, respe
tively.

kineti
 
ases 
ompared to the HMHD one. This may re�e
t the fa
t that the

initial 
ondition evolves di�erently in the Hall MHD simulation 
ompared to

the kineti
 runs.

In order to understand the role of the Hall physi
s, we also 
omputed the

normalized generalized 
ross heli
ity σg = 2eg/(eu + eb), where eg = 0.5 〈u ·
b+ ǫ̃ω ·u/2〉, and ω = ∇×u, whi
h is an invariant of in
ompressible HMHD

[15, 17℄. Figure 1.4(
) displays the temporal evolution of σg(t) for the MHD

(bla
k), the HMHD (dashed blue), HVM (dashed green) and HPIC (red)

simulations. Note that the evolution of σg is trivial for the MHD simulation

where, sin
e ǫ̃ = 0, σg = σc. Moreover, it 
an be easily appre
iated that, for

the HMHD 
ase, σg is almost preserved and does not exhibit any signi�
ant

variation due to the 
ollision itself, even though it shows a slight in
rease

in the initial stages of the simulation followed by a de
ay towards σg = 0

[similar to the growth of σc re
overed in Fig. 1.4(b)℄. On the other hand

the two kineti
 
ases, whi
h exhibit a similar behavior, show a fast growth

of σg in the initial stage of the simulations followed by a de
ay phase [similar

to the growth of σc re
overed in Fig. 1.4(b)℄; then, during the 
ollision, σg

signi�
antly in
reases. We may explain the evolution of σc and σg as follows.

In the MHD run, 
ompressive e�e
ts 
ontained in the initial 
ondition as

well as 
ompressible a
tivity generated during the evolution are not strong

enough to break the invarian
e of σc (i.e. of σg). Instead, in the Hall MHD

simulation, the �rst break of the σc invarian
e observed in the initial stage of

the simulation 
annot be asso
iated with the Hall e�e
t sin
e also σg is not
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Figure 1.5: (Color online) Temporal evolution of 〈j2z 〉 for the MHD (bla
k), HMHD

(blue), HVM (green) and HPIC (red) simulations. For the HPIC simulation, 〈j2z 〉
has been smoothed in order to remove parti
le noise.

preserved in this temporal region and σc and σg have a similar evolution. On

the other hand, the jump re
overed in σc around t ≃ τ = 58.9 is signi�
antly

related to the Hall physi
s. In fa
t, sin
e σg does not exhibit a similar jump

at t ≃ τ , we argue that the physi
s whi
h produ
es the growth of σc is the

Hall physi
s (whi
h is taken into a

ount in the invarian
e of σg). Finally, the

produ
tion of both σc and σg re
overed in the kineti
 simulations 
annot be


ompletely asso
iated with the Hall e�e
t (whi
h, of 
ourse, is still present)

but kineti
 and 
ompressive e�e
ts may have an important role.

In order to explore the role of small s
ales into the dynami
s of 
olliding

wave pa
kets, we 
omputed the averaged mean squared 
urrent density 〈j2z 〉 as
a fun
tion of time. This quantity indi
ates the presen
e of small s
ale a
tivity

(su
h as produ
tion of small s
ale 
urrent sheets), and is reported in Figure

1.5 for all the simulations. As in the previous �gures, bla
k, blue dashed,

green dashed and red lines refer to the MHD, HMHD, HVM and HPIC 
ases,

respe
tively. All models show a peak of 〈j2z 〉(t) around the 
ollision time t ≃ τ

due to the 
ollision of wave pa
kets. After the 
ollision, some high-intensity


urrent a
tivity persists in all the simulations. The qualitative evolution

〈j2z 〉(t) is similar in ea
h simulation, however - after the 
ollision - bigger

values of 〈j2z 〉 are rea
hed in the MHD and HVM 
ases with respe
t to the
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HMHD and HPIC runs.

Other quantities that provide physi
al details about our simulations are

ǫρ = 〈δρ2〉 (
ompressibility) and the enstrophy ǫω = 〈ω2〉/2 (�uid vorti
ity ω).
Note that δρ = ρ−〈ρ〉. Figure 1.6 reports the temporal evolution of ǫρ (a) and

ǫω (b) for all the runs. Bla
k, blue dashed, green dashed and red lines indi
ate

respe
tively the MHD, HMHD, HVM and HPIC 
ases. The ǫρ evolution

shows that density �u
tuations peak around t ≃ 63.8 and t ≃ 83.4. The �rst

peak is due to the intera
tion between the two wave pa
kets. The se
ond

peak of density �u
tuations appears to be due to propagation of magnetosoni


�u
tuations generated by the initial strong 
ollision. On
e generated these

modes propagate a
ross the periodi
 box and provide an �e
ho� of the original


ollision. Moreover, from the initial stage of the simulations, ǫρ exhibits some

small modulations, whi
h are produ
ed by the absen
e of a pressure balan
e

in the initial 
ondition. In fa
t, as pa
kets start to evolve, low-amplitude

fast perturbations (
learly visible in the density 
ontour plots, not shown

here) propagate a
ross the box and 
ollide faster 
ompared to the �main�

wave pa
kets themselves. Moreover, by 
omparing the di�erent simulations,

one noti
es that, for t < 20, kineti
 and Hall runs tend to produ
e a similar

evolution of ǫρ, slightly bigger 
ompared to the MHD 
ase. Then, around

t ≃ 20, the HMHD run displays a stronger 
ompressibility with respe
t to

the kineti
 
ases. This di�eren
e is probably due to the presen
e of kineti


damping phenomena whi
h o

ur in the kineti
 
ases.

The enstrophy ǫω is displayed in Fig. 1.6(b). All the runs exhibit a simi-

lar evolution of ǫω up to the wave pa
ket 
ollisions. Then, after the 
ollision,

a signi�
ant level of ǫω is re
overed in all the simulations, thus indi
ating

that �ne s
ale stru
ture in the velo
ity, i.e., vorti
al stru
tures are produ
ed

during the 
ollisions, and these persist after the 
ollision. Moreover, MHD

and HMHD 
ases exhibit a quite similar level of ǫω, slightly bigger 
ompared

to the one re
overed in the HVM and HPIC 
ases, where probably kineti


damping does not allow the formation of strong vorti
al stru
tures at small

s
ales by transferring energy to the VDF [see. e.g., [110, 111℄℄. It is inter-

esting to note that the general pro�le of enstrophy and mean square 
urrent

follow similar trends in time. This 
an be expe
ted as the inertial range
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Figure 1.6: (Color online) Temporal evolution of ǫρ(t) (a) and ǫω(t) (b). In ea
h

panel, bla
k, blue, green and red lines indi
ate the MHD, HMHD, HVM and HPIC

simulations, respe
tively. For the HPIC simulation, ǫω(t) has been smoothed in

order to remove parti
le noise.

of turbulen
e typi
ally provides near-equipartition of velo
ity and magneti


�u
tuation energy, even in fairly simple 
on�gurations [112℄. However, when

examined in more detail, one often �nds, as here, that the magneti
 �u
tu-

ations are usually about a fa
tor of two more energeti
 in the inertial range

part of the spe
trum, as they are, for example in the solar wind [113℄. This

inequality is here re�e
ted in the fa
t that 〈j2z 〉 > 〈ω2/2〉.
It is interesting to 
ompare di�erent simulations also by looking at power

spe
tral densities (PSDs). Figures 1.7 show the magneti
 energy PSD in-

tegrated along ky Eb,y(kx) =
∑

ky
Eb(kx, ky) (left 
olumn) and along kx

Eb,x(ky) =
∑

kx
Eb(kx, ky) (right 
olumn); while ea
h row respe
tively refers

to t = 29.5 (top row), t = τ = 58.9 (
enter row) and t = 98.2 (bottom row).

The 
yan dashed line shows the k−5/3
slope for referen
e while, in ea
h panel,

bla
k, blue, dashed green and red lines indi
ate respe
tively MHD, HMHD,

HVM and HPIC simulations. Moreover, to 
ompare the two wave-number

dire
tions, gray lines in ea
h panel report the 
orresponding PSD obtained

from the MHD run, redu
ed in the other dire
tion [for example, in the top

row left panel, the gray line refers to Eb,x(ky) for the MHD simulation while

other 
urves in the same panel report Eb,y(kx)℄. It is interesting to note

that, at t = 29.5, all the simulations exhibit a steep spe
trum in Eb,y(kx),

related to the initial 
ondition whi
h requires involvement of a wide range of
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Figure 1.7: (Color online) Magneti
 energy PSDs Eb,y(kx) =
∑

ky
Eb(kx, ky) (left


olumn) and Eb,x(ky) =
∑

kx
Eb(kx, ky) (right 
olumn) at three time instants:

t = 29.5 (top), t = τ = 58.9 (middle) and t = 98.2 (bottom). In ea
h panel bla
k,

blue, green and red lines refer to the MHD, HMHD, HVM and HPIC simulations,

respe
tively; while 
yan lines show the −5/3 slope for referen
e. Moreover, to


ompare Eb,y(kx) and Eb,x(ky), the gray lines in ea
h panel refer only to the MHD

simulation and report Eb,x(ky) in the left 
olumn and Eb,y(kx) in the right 
olumn.

wave-numbers kx. Then, during the evolution, the spe
tra show a transfer

of energy towards small s
ales, at higher kx and at higher ky. In fa
t, mu
h

of the energy Eb,y(kx) is 
ontained, at t = τ , in a bump around k = 1. At

t = 88.4 the bump is less 
lear and the spe
trum Eb,y(kx) is quite well de-

veloped and the spe
tral slope, at s
ales larger than the ion inertial s
ale, is


lose to −5/3. A break in Eb,y(kx) 
an be also appre
iated around kdp ≃ 10.

Moreover, the di�eren
e in power between Eb,y(kx) and Eb,x(ky) - the lat-

ter being signi�
antly smaller than the former - tends to redu
e in the �nal

stages of the simulations, thus suggesting the presen
e of nonlinear 
ouplings

whi
h e�
iently transfer energy in both dire
tions of the waveve
tors spa
e

and, hen
e, 
ause spe
tra to be
ome more isotropi
.

29



Revisiting a 
lassi
: the Parker-Mo�att problem

1.3 Summary

To summarize, in this Chapter we 
ompared our numeri
al 
odes by analyzing

some global �uid-like diagnosti
s and we 
on
lude that the Mo�att-Parker

s
enario is quite well satis�ed by MHD. However, other intriguing features

are observed when one moves beyond the MHD treatment. Indeed, several

quantities (espe
ially the 
ross-heli
ity) indi
ates that the evolution is dif-

ferent when one introdu
es more 
omplex s
enarios and the 
omplexity of

the stru
tures produ
ed by nonlinear intera
tions in the HMHD and HVM

simulations makes it di�
ult to determine whether the wave pa
kets a
tually

attain a full separation after their 
ollision.

Moreover, during the wave pa
kets intera
tion, as pres
ribed by Parker

& Mo�att, nonlinear 
oupling pro
esses 
ause the magneti
 energy spe
tra

to evolve towards isotropy and energy is transferred towards smaller spatial

s
ales. After the wave pa
kets intera
tion magneti
 energy spe
tra exhibits

a �power law�-like pro�le, whose slope is 
lose to −5/3 at bigger s
ales, while

a spe
tral break is re
overed around kdp. In the next Chapter we will fo
us

on the nature of the intera
tion whi
h produ
es su
h spe
trum, trying to

des
ribe it in terms of wave-like a
tivity and strong turbulen
e.

The 
omparison between kineti
 
odes suggests that HVM and HPIC sim-

ulations display qualitatively similar features at large s
ales. However, when

one aims to analyze the dynami
s at small s
ales, HPIC simulations su�ers

from thermal parti
le noise. Indeed, magneti
 energy spe
tra di�er in the

HPIC 
ase as 
ompared to the HVM 
ase, sin
e, in the former 
ase, spe
tra

saturate at small s
ales due to the numeri
al noise, visible - in parti
ular - in

the 
ontour plots of jz . Based on these 
onsiderations, in the next Chapter

we will 
ontinue the analysis of the kineti
 features produ
ed in the Alfvén

wave pa
kets 
ollision, by fo
using only on the HVM simulation.
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Chapter 2

Kineti
 turbulen
e generated by

Alfvén wave 
ollisions

In this 
hapter we fo
us on two parti
ular aspe
ts of the HVM simulation

des
ribed previously. The former regards the produ
tion of kineti
 e�e
ts

during the evolution and the 
ollision of the two wave pa
kets [Se
tion 2.1℄,

while the latter 
on
erns the 
hara
terization of the wave pa
kets intera
tion

in terms of wave-like a
tivity and strong turbulen
e [Se
tion 2.2℄.

Indeed, several indi
ators of kineti
 e�e
ts (temperature anisotropies,

nongyrotropies or non-Maxwellian indexes) have been implemented. These

quantities indi
ate that the velo
ity distribution fun
tion exhibits out of equi-

librium features before the wave pa
kets intera
tion due to the fa
t that the

initial 
ondition is not an even solution of the HVM equation. Kineti
 e�e
ts

be
ome more intense during the intera
tion and a beam along the magneti


�eld dire
tion is also re
overed in the velo
ity distribution fun
tion similarly

to some re
ent solar wind observations [76℄.

We des
ribe also the wave pa
kets intera
tion as 
on
erns the presen
e of

weak or strong turbulen
e. It has been found that the presen
e of se
ondary

small amplitude ripples, whi
h are re
overed after the 
ollision at the front

of ea
h wave pa
ket, 
an be su

essfully explained in terms of a wave-like

a
tivity and are identi�ed as Kineti
 Alfvén Waves. However the general

pi
ture is more 
omplex and other signatures of a strong turbulen
e s
enario
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oexist with the presen
e of these �u
tuations. Indeed, after the 
ollision, the

magneti
 energy does not rigidly follow a standard wave dispersion relations,

but tends to spread over a wide band of the ω − k plane. Furthermore, a

large part of the energy is stored in the ω = 0 �
hannel�, thus indi
ating that

stationary stru
tures, typi
al of a strong turbulent s
enario, are produ
ed

during the intera
tion.

Finally, in Se
tion 2.3 we 
on
lude by summarizing our work. The results

shown here have been 
olle
ted in two s
ienti�
 papers: the �rst has been

re
ently published in Journal of Plasma Physi
s [99℄ while the se
ond is in

preparation [114℄.

2.1 Kineti
 features re
overed during the wave

pa
kets intera
tion

We begin the des
ription of kineti
 signatures present in the Vlasov simu-

lation by looking at the temperature anisotropy in the parti
le distribution

fun
tion. Fig. 2.1 reports the 
ontour plots of the temperature anisotropy

T⊥/T‖, where the parallel and perpendi
ular dire
tions are evaluated in

the lo
al magneti
 �eld frame (LBF), at four time instants: t = 29.5 (a),

t = τ = 58.9 (b), t = 70.7 (
) and t = 98.2 (d). Clearly, temperature

anisotropy is present even before the main wave pa
kets 
ollision [Fig. 2.1(a)℄,

due to the fa
t that the initial 
on�guration is not solution of the HVM equa-

tions and, hen
e, its dynami
al evolution leads to anisotropy produ
tion.

Moreover, a more 
areful analysis suggests that the left wave pa
ket tends to

produ
e regions where T⊥/T‖ < 1 
lose to the pa
ket itself (lo
alized around

x ≃ 9.5), while the right wave pa
ket (lo
alized around x = 15.7) is 
har-

a
terized by T⊥/T‖ > 1. The presen
e of di�erent temperature anisotropies

(T⊥/T‖ < 1 or T⊥/T‖ > 1) is related to the asymmetry with respe
t to the


enter of the x dire
tion. Indeed, the dynami
s of the wave pa
kets is di�er-

ent if they move parallel or anti-parallel to B0,x. This produ
es the di�erent

temperature anisotropy re
overed in the top panel of Fig. 2.1.

When the pa
kets 
ollide [Fig. 2.1 (b)℄, sheets 
hara
terized by a strong
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Figure 2.1: (Color online) Contour plots of the temperature anisotropy, for the

HVM run, evaluated in the LBF at four time instants: (a) t = 29.5, (b) t = τ =
58.9, (
) t = 70.7 and (d) t = 98.2.

temperature anisotropy (T⊥/T‖ > 1) are re
overed, spatially 
orrelated with

the 
urrent density stru
tures. Then, at t = 70.7 [Fig. 2.1 (
)℄, wave pa
kets

split again and a region, lo
alized at (x, y) ≃ (14.3, 1.0), where the temper-

ature anisotropy suddenly moves from values T⊥/T‖ < 1 towards T⊥/T‖ > 1

ones is present. We will show that this region also exhibits the presen
e of

strong departures from the equilibrium Maxwellian shape. At the �nal stage

33



Kineti
 turbulen
e generated by Alfvén wave 
ollisions

Figure 2.2: (Color online) Contour plots of the degree of temperature non-gyrotropy

Dng, for the HVM run, evaluated in the LBF at four time instants: (a) t = 29.5,
(b) t = τ = 58.9, (
) t = 70.7 and (d) t = 98.2.

of the simulation [Fig. 2.1 (d)℄, ea
h wave pa
ket 
ontinues traveling, a

om-

panied by a persistent level of temperature anisotropy, whi
h is, indeed, well


orrelated with the 
urrent stru
tures [See Fig. 1.2(d)℄.

It is interesting to point out that, beyond the presen
e of temperature

anisotropies, regions 
hara
terized by a nongyrotropy of the parti
le VDF are

also re
overed. Many methods have been proposed to evaluate the nongy-
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Figure 2.3: (Color online) Temporal evolution of ǫmax(t) for the HVM run.

rotropy [115, 116℄. Here we make use of the �nongyrotropy degree� Dng [115℄,

whi
h is proportional to the root-mean-square of the o�-diagonal elements

of the pressure tensor. Fig. 2.2 reports the 
ontour plots of nongyrotropy

degree Dng at four time instants: t = 29.5 (a), t = τ = 58.9 (b), t = 70.7 (
)

and t = 98.2 (d). As for the temperature anisotropy, the evolution of the two

wave pa
kets tends to produ
e nongyrotropy
 features even before the wave

pa
kets 
ollision [Fig. 2.2(a)℄. Then, during the 
ollision [Fig. 2.2(b)�(
)℄,

the nongyrotropy Dng be
omes more intense and it is also quite well 
orre-

lated with the 
urrent stru
tures [See 1.2(b)�(
)℄. At the �nal stage of the

simulation [Fig. 2.2(d)℄, ea
h wave pa
ket is 
onnoted by a level of nongy-

rotropy whi
h is quite bigger 
ompared to the value before the 
ollision. The

presen
e of nongyrotropi
 regions suggests that it is fundamental to retain a

full velo
ity spa
e where the VDF is let free to evolve and, eventually, distort.

It is worth to note that the approa
h based on gyro-averaged assumptions

la
ks the presen
e of su
h nongyrotropies.

To further support the idea that kineti
 e�e
ts are generated during the

intera
tion of the wave pa
kets, we 
omputed the L2
norm di�eren
e [30, 31,

35℄:

ǫ(x, y, t) =
1

n

√

∫

[f(x,v, t)− fM(x,v, t)]2 dv (2.1)

whi
h measures the displa
ements of the proton VDF f(x,v, t) with respe
t
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Figure 2.4: (Color online) (Left) Contour plots of ǫ(t), for the HVM run, at t =
70.7. (Right) Proton distribution fun
tions, in the spatial point (x∗, y∗) where

ǫ(x∗, y∗, t) = max(x,y) ǫ(x, y, t) at t = 70.7. The lo
al magneti
 �eld dire
tion is

indi
ated by a red line.

to the asso
iated Maxwellian distribution fun
tion fM(x,v, t), built in su
h

a way that density, bulk speed and total temperature of the two VDFs are

the same. Figure 2.3 reports the evolution of ǫmax(t) = maxD(x,y)
ǫ(x, y, t)

as a fun
tion of time. As for previous non-Maxwellian indi
ators, also ǫmax

moves away from zero in the early phases of the simulation due to the fa
t

that the initial 
ondition is not a Vlasov solution. After the initial jump,

ǫmax remains almost 
onstant up to the wave pa
kets intera
tion. During

the 
ollision, ǫmax grows and rea
hes its maximum at t = 70.7. Then it

de
reases and saturates at a value about two times bigger than the value

before the 
ollision, thus suggesting, again, that there is �net� produ
tion of

non-Maxwellian features during the wave pa
kets intera
tion.

The left panel of Figure 2.4 shows the 
ontour plot of ǫ(x, y, t) at the time

instant t = 70.7 (when ǫ rea
hes its maximum value). The ǫ 
ontours are 
or-

related with the 
urrent stru
tures and with the anisotropi
/nongyrotropi


regions. Moreover, a blob-like region where ǫ rea
hes its maximum is present.

This area is asso
iated with the region where the temperature anisotropy

moves from T⊥/T‖ < 1 to T⊥/T‖ > 1 [See Fig. 2.1(
)℄. In this area the VDF

strongly departs from the Maxwellian. The right panel of Fig. 2.4 shows the

three dimensional isosurfa
e plot of the VDF at t = 70.7 and in the spatial

point (x∗, y∗) where ǫ is maximum. A well-de�ned beam, parallel to the lo
al

magneti
 �eld dire
tion, is observed in the VDF of Fig. 2.4. The drift speed
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of the beam is about c̃A. The produ
tion of a beam due to the intera
tion

of two wave pa
kets has been also pointed out by He et al. in a re
ent paper

where solar wind in-situ observations are presented [76℄.

2.2 Turbulen
e features generated by Alfvén

wave pa
ket 
ollisions

In this se
tion we 
hara
terize the pa
kets intera
tion in terms of wave-like

a
tivity and strong turbulen
e. We remind the reader that i) the ratio be-

tween the nonlinear time τnl and the 
ollision 
hara
teristi
 time τcoll is about

1/2, this indi
ating that a strong turbulen
e s
enario may o

ur and ii) power

spe
tra resulting after the 
ollision have slopes ∼ −5/3, typi
al of a strong

turbulen
e situation [See Fig. 1.7℄, and a spe
tral break is re
overed around

kdp ≃ 10.

Here, we fo
us on the des
ription of two features re
overed after the


ollision: i) se
ondary ripples appear in front of ea
h wave pa
ket as small

amplitude �u
tuations propagating almost purely along x and ii) 
urrent

sheets tend to distort produ
ing some vorti
al stru
tures at the 
enter of the

spatial domain. Both features 
an be appre
iated in Figs. 1.2(
�d) (third


olumn) and in Fig. 2.5, that reports the shade surfa
e of jz(x, y, t). In

Fig. 2.5 The horizontal plane 
orresponds to the spatial 
oordinates x and

y, while the temporal evolution is given by the verti
al blue axis.

In order to understand the physi
al me
hanism driving the produ
tion

of these se
ondary low amplitude �u
tuations, we started from the eviden
e

that these ripples propagate mainly along x. Moreover, Fig. 2.6 (a) reports

the evolution of |B|(x, y0, t∗) (bla
k) and n(x, y0, t
∗) (red) as a fun
tion of x

in the region where these disturban
es are present x = [17.5, 21.6] and for

y = y0 = 1.2 and t = t∗ = 98.2: 
learly, density n �u
tuations are anti-


orrelated with the |B| �u
tuations, this being typi
al of Kineti
 Alfvén and

slow magnetosoni
 waves [79, 106, 107℄.

A se
ond aspe
t whi
h helps to dis
riminate about di�erent type of waves

is the polarization [106℄, whi
h 
an be evaluated through the hodogram of
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Figure 2.5: (Color online) Iso-surfa
es of the 
urrent density jz(x, y, t). Red, green
and blue axes 
orrespond to the x, y and temporal dire
tions, respe
tively.

two magneti
 �eld 
omponents, as explained in detail in Ref. [106℄. Figure

2.6 (b) reports the hodogram of δBz(x, y0, t
∗) as a fun
tion of δBy(x, y0, t

∗),

in the region x = [17.5, 21.6] and for y = y0 = 1.2 and t = t∗ = 98.2. The red

square in Fig. 2.6 (b) reports the initial x point x = 17.5. The hodogram

shows a 
lo
k-wise verse of rotation with in
reasing x. This verse of rotation

is 
ompatible only with KAW or fast magnetosoni
 �u
tuations, as 
om-

puted by means of a linear solver where the evaluated k‖ ≃ 1.73 = 0.17kdp

and k⊥ ≃ 16.2 = 1.59kdp have been utilized. Finally, by 
omputing the

propagation speed of these �u
tuations, we found that this velo
ity is 
om-

patible with the KAWs propagation speed. Therefore, based on these three

methods (
orrelations, polarization and propagation speed) we 
on
lude that

the small amplitude �u
tuations are 
ompatible with KAW-like �u
tuations.

The presen
e of these �u
tuations 
an be explained as follows: the inter-

a
tion of the two wave pa
kets transfers energy towards smaller s
ales and,
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Figure 2.6: (Color online) (a) Shape of |B| (bla
k) and n (red) as a fun
tion of x in

the region x = [17.5, 21.6] and for y = y0 = 1.2 and t = t∗ = 98.2. (b) Hodogram of

δBz(x, y0, t
∗) as a fun
tion of δBy(x, y0, t

∗) for x = [17.5, 21.6] and for y = y0 = 1.2
and t = t∗ = 98.2. The red square indi
ates the initial x point x = 17.5.

sin
e the initial disturban
es are mainly Alfvéni
, the energy is transferred

along the Alfvén waves bran
h, therefore produ
ing KAW �u
tuations.

The explanation of the system dynami
s just in terms of wave-like a
tivity

is restri
tive and the KAW small amplitude �u
tuations we des
ribed above

are just one pie
e of a mu
h more 
omplex s
enario. In fa
t, sin
e τnl/τcoll <

1, a strong turbulen
e regime may be rea
hed. In order to point out that the

pi
ture 
an be a
tually more 
omplex, we performed the following analysis.

First, we sele
ted two temporal windows of duration T ≃ 29.5, before (I)

and after (II) the wave pa
kets 
ollision. In both windows, the magneti


energy Eb(x, t) is quite stationary, this allowing us to implement a full spatio-

temporal Fourier transform of Eb(x, t) to get Eb(k, ω). Note the ω resolution

is quite high: in fa
t the ω mesh grid is about 2π/T ≃ 0.21, being this value

quite smaller than the ω resolution 
ommonly re
overed through spa
e
raft

measurements [93, 95, 96, 97℄. This last quantity gives information about

how the magneti
 energy is distributed in the three-dimensional spa
e k−ω.

Figure 2.7 reports the 
ontour plots of Eb,y(kx, ω) (left) and Eb,x(ky, ω) (right)

in region I (top) and II (bottom).

Before the intera
tion, the energy Eb,y(kx, ω) is re
overed mostly at rela-

tively larger s
ales and is distributed in two bran
hes of waves: the Alfvéni


waves bran
h (smaller phase speed) and the fast magnetosoni
 waves bran
h

39



Kineti
 turbulen
e generated by Alfvén wave 
ollisions

Figure 2.7: (Color online) Contour plots of the Logarithm of the magneti
 energy

spe
tra in the spe
tral spa
e. Left 
olumn displays Eb,y(kx, ω) = 〈Eb(k, ω)〉ky in

the plane kx − ω in the temporal region I (a) and II (
) while the right 
olumn

reports Eb,x(ky, ω) = 〈Eb(k, ω)〉kx in the plane ky − ω in the temporal region I (b)

and II (d).

(larger phase speed). It is worth noting that, sin
e the ba
kground mag-

neti
 �eld is quasi-perpendi
ular to the propagation plane, the Alfvén speed

is mu
h smaller 
ompared to the Fast magnetosoni
 phase speed, while the


oexisten
e of di�erent waves bran
hes before the main intera
tion of the two

wave pa
kets 
on�rms that our initial perturbations are not purely Alfvéni


eigenmode but also 
ontain some magnetosoni
 �u
tuations. Moreover, some

Bernstein �u
tuations are also present along the fast waves bran
h at high

frequen
ies. On the other hand, the energy Eb,x(ky, ω) is quite lo
alized

around ω = 0.

During the wave pa
kets 
ollision, the nonlinear 
ouplings transfer energy

towards small s
ales. The energy transfer 
an be easily appre
iated in the
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bottom panels of Fig. 2.7. Indeed, both Eb,y(kx, ω) (
) and Eb,x(ky, ω) (d)

exhibit a distribution of energy mu
h more populated at high wavenumbers

with respe
t to the energy distribution in the region I. The distribution of

energy is signi�
antly spread in the spe
tral spa
e and does not rigidly follow

dispersion relations: a 
one-like region is populated along the kx dire
tion,

while a wide blob is 
overed in the ky dire
tion. This suggests that the wave

pa
kets intera
tion 
annot be simply des
ribed in terms of weakly nonlinear


ouplings o

urring along the dispersion relation, but o�-dispersion 
ouplings

and strong turbulen
e a
tivity are also important. Note that the presen
e

of standard dispersion relations is weakened even after a single 
ollision: the

s
enario would be mu
h more 
omplex if wave pa
kets 
ould intera
t several

times or for a longer time period.

To better point out the fa
t that, during the wave pa
kets intera
tion,

o�-dispersion 
hannels are populated as a result of strong turbulen
e, Fig.

2.8 reports the pro�le of Eb,y(kx = k∗, ω) as a fun
tion of ω and at a given

kx = k∗ = 15.3 = 1.5kdp, while the inset of Fig. 2.8 reports Eb,x(ky = k∗, ω)

as a fun
tion of ω and at a given ky = k∗ = 15.3 = 1.5kdp. Fig. 2.8 essentially

represents a 
ut of Figs. 2.7 at a given wavenumber, indi
ated with a green

dashed line in Fig. 2.7. Red and bla
k lines in Fig. 2.8 refer to the temporal

windows before (I) and after (II) the wave pa
kets 
ollision, respe
tively. As

it 
an be easily appre
iated from Figs. 2.7(a�
), the range of ω has been

opportunely 
hosen to fo
us on Alfvéni
 �u
tuations.

Before the 
ollision (red line), the energy is 
onstrained in a relatively

narrow band whose width is about few ω0 ≃ 2π/T . Then, after the wave

pa
kets intera
tion (bla
k line), the energy is instead signi�
antly spread (the

populated frequen
y band width in
reases about a fa
tor 5). This 
on�rms

that the energy �ows towards smaller s
ales far from the weakly nonlinear


oupling predi
tion. Furthermore, the amplitude of Eb,y(kx = k∗, ω) in
reases

for all the frequen
ies range showed in Fig. 2.8, thus representing, again,

the produ
tion of small s
ales �u
tuations obtained during the wave pa
kets

intera
tion.

Finally, the energy asso
iated with stru
tures at ω = 0 signi�
antly in-


reases after the 
ollision; this suggests that turbulent stationary stru
tures
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Figure 2.8: (Color online) Plot of Eb,y(kx = k∗, ω), being k∗ = 15.3, as a fun
tion

of ω in the region I (bla
k) and II (red). The small inset plots Eb,x(ky = k∗, ω) as
a fun
tion of ω in the region II.

have been generated during the wave pa
kets intera
tion. A se
ond signature


on
erning the produ
tion of stationary �u
tuations 
an be also observed in

Fig. 2.7(
) and in the inset of Fig. 2.8, where the energy is peaked at ω ≃ 0,

similarly to some re
ent solar wind observations [97℄.

2.3 Summary

To summarize, we fo
used on the HVM simulation and we des
ribed the

presen
e of kineti
 e�e
ts and the 
hara
teristi
s of the turbulen
e generated

in the Alfvéni
 wave pa
ket 
ollisions. A 
ertain degree of non-Maxwellianity

is also re
overed before the intera
tion as a byprodu
t of the initial 
ondition

whi
h is not an exa
t HVM solution. However, several kineti
 e�e
ts indi-


ators suggest that kineti
 signatures are more intense during the 
ollision,

due to the nonlinear 
oupling me
hanisms whi
h populate smaller s
ales. We

also investigated the wave pa
kets intera
tion in terms of waves a
tivity and

strong turbulen
e. We found that the wave approa
h 
an be su

essfully
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applied to small amplitude �u
tuations identi�ed as KAWs, while a deeper


omprehension must also 
onsider the presen
e of strong turbulen
e features

su
h as the weakening and the broadening of the dispersion relations and the

produ
tion of quasi-stationary ω = 0 �u
tuations.
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Here we summarize the aim whi
h led us to 
onsider the problem of two


ounter-propagating A�véni
 wave pa
kets and the main results obtained.

We 
arried out a 
omparative study using di�erent plasma simulation meth-

ods to examine the dynami
al evolution that a

ompanies the intera
tion or

�
ollision� of two oppositely propagating wave pa
kets. In parti
ular, we de-

s
ribed the wave pa
kets intera
tion by means of MHD, Hall MHD and hybrid

kineti
 simulations of the same physi
al 
on�guration. Kineti
 simulations

have been performed with two di�erent 
odes: an Eulerian Vlasov-Maxwell


ode [40℄ and hybrid Parti
le-in-
ell 
ode [27℄. This preliminary examination

of the fate of the Mo�att and Parker 
onje
ture in the 
ontext of 
ompress-

ible as well as dispersive and kineti
 models has produ
ed a satisfa
tory, if

not 
omplete, pi
ture. The basi
 physi
s of large amplitude Alfvén waves


ollisions as envisioned by Mo�att and Parker [5, 6℄ is re
overed, however

several intriguing 
hara
teristi
s emerge as one move beyond the ideal MHD

treatment and the dynami
s be
omes more 
omplex.

In ea
h simulation, the intera
tions and the stru
tures produ
ed in the


ollision are su�
iently 
omplex that it is di�
ult to determine whether the

wave pa
kets a
tually attain a full separation after the 
ollision. Indeed,

we note that very 
omplex 
urrent and vorti
ity stru
tures are produ
ed at

small s
ales and these �u
tuations are indi
ative of a spread of energy in

the wave ve
tors plane, whi
h is almost perpendi
ular to B0. The energy

spe
tra evolve toward isotropy in this plane, although one would expe
t a

degree of spe
tral anisotropy to persist due to the presen
e of the weak in-

plane magneti
 �eld. Furthermore, to the extent that the intera
tion of the

pa
kets has a �nite lifetime, any su
h relaxation would be expe
ted to be
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in
omplete in a single intera
tion time.

In addition, we re
all that in the in
ompressible ideal MHD 
ase, the 
ross

heli
ity is 
onserved, so that after the 
ollision in that 
ase, the separated

wave pa
kets will ea
h 
ontain the same energy that was present in the initial

state. However, 
ross-heli
ity is not preserved in the Hall and kineti
 
ases

sin
e dispersive and kineti
 e�e
ts are at work in the simulations and a

signi�
ant variation is observed during the intera
tion.

Note that we also analyzed the same physi
al problem employing sev-

eral theoreti
al models and numeri
al models and su
h results are of interest

in the 
ontext of the Turbulent Dissipation Challenge [98℄. The HPIC and

HVM methods should des
ribe, approximately, the same physi
s (the hybrid

Vlasov treatment of 
ollisionless plasma dynami
s) and the 
omparison be-

tween the two 
odes is interesting from a methodologi
al perspe
tive. The

two kineti
 performed simulations are able to take into a

ount the dynam-

i
s whi
h o

urs at large spatial s
ales and their 
omparison is quite dis
rete

in this range of s
ales. However, the HPIC runs la
ks a

ura
y at smaller

spatial s
ales, thus indi
ating that the Eulerian approa
h better des
ribes

the dynami
s of the system at these s
ales. The 
omparison is expe
ted to

be
ome better if the number of parti
le per 
ell in the PIC simulation gets

bigger [28, 34℄.

Based on the last 
onsideration, we analyzed the produ
tion of kineti
 sig-

natures by fo
using only on the HVM simulation. Several kineti
 indi
ators

show that wave pa
kets tend to produ
e kineti
 e�e
ts su
h as temperature

anisotropies and nongyrotropies also before the main wave pa
kets inter-

a
tion. This is related to the fa
t that the initial 
ondition, 
onsisting of

quasi-Alfvéni
 wave pa
kets, is not a Vlasov equilibrium and it dynami
ally

leads to the produ
tion of kineti
 features. However, the analysis of kineti


e�e
ts before and after the main wave pa
kets 
ollision indi
ates that some

kineti
 features are enhan
ed by the 
ollision itself and ea
h wave pa
ket is

signi�
antly 
hara
terized by a strong degree of non-thermal signatures. The

presen
e of nongyrotropies suggests that des
riptions based on redu
ed ve-

lo
ity spa
e assumptions may partially fail the des
ription of su
h features.

During the wave pa
ket 
ollision, a beam in the velo
ity distribution fun
tion
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is observed to form along the dire
tion of the lo
al magneti
 �eld. This 
har-

a
teristi
 may 
onne
t our results with the general s
enario of wave pa
kets

observed in natural plasmas su
h as the solar wind [76℄.

Finally we 
hara
terized the intera
tion of two 
olliding Alfvéni
 wave

pa
kets by means of HVM simulation in terms of wave-like a
tivity and strong

turbulen
e signatures. Sin
e the ratio between the nonlinear time to the

overlapping time allows a quite strong turbulen
e s
enario, it is signi�
ant

to �gure out whi
h features of a wave-like approa
h resist to the strong

turbulent regime and, on the other hand, whi
h 
hara
teristi
s are lost. We

found that a wave-like analysis, based on polarization and 
orrelation, is still

useful to 
hara
terize the low-energy ripples re
overed in the 
urrent density


ontour plot whi
h are asso
iated with KAW like �u
tuations. However

signatures of strong turbulen
e are also re
overed. In parti
ular the energy

in the ω− k plane is spread after the wave pa
kets 
ollision and the presen
e

of dispersion relations is signi�
antly weakened. The energy 
ontained in the

ω = 0 �u
tuations also in
reases, thus suggesting the produ
tion of stationary

stru
tures asso
iated with 
urrent stru
tures.

The kineti
 models we implemented to des
ribe the problem of the two


olliding Alfvéni
 wave pa
kets negle
ts inter-parti
le 
ollisions. Within these

approa
hes, the parti
le velo
ity distribution fun
tion is free to explore the

full velo
ity spa
e and exhibits strongly distorted shapes [30, 33, 35℄. Here

we also gave expli
it eviden
e that evident non-Maxwellian signatures are

re
overed in the VDF as a result of the wave pa
kets intera
tion. However,

the presen
e of out-of-equilibrium VDF pro�les opens a fundamental ques-

tion: sin
e 
ollisionality expli
itly depends on gradients in velo
ity spa
e, 
an

su
h gradients (i.e. �ne stru
tures) lo
ally enhan
e the e�e
t of 
ollisions?

In other words, where strong gradients in velo
ity spa
e are re
overed, 
an


ollisions be negle
ted? The next part of the thesis will fo
us on addressing

the answers, whi
h - as we will see - are extremely di�
ult, to these ques-

tions; showing, in parti
ular, that 
ollisionality is e�e
tively enhan
ed when

one takes into a

ount the presen
e of �ne velo
ity stru
tures.
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Beyond the Vlasov approa
h:

how to introdu
e 
ollisions in a


ollisionless plasma
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In the previous part of this thesis we extended the problem of two 
olliding

Alfvéni
 wave pa
kets, previously investigated within a �uid approa
h, to

the 
ollisionless, kineti
 plasma physi
s framework, where the distribution

fun
tion is let free to explore the full velo
ity spa
e. We showed that, when

the typi
al s
ales of kineti
 pro
esses are rea
hed, the distribution fun
tion

be
omes strongly distorted as a 
onsequen
e of su
h me
hanisms. We propose

here to make a step forward into the 
omprehension of the plasma dynami
s

by taking into a

ount inter-parti
le 
ollisions.

The des
ription of 
ollisional e�e
ts in plasmas represents histori
ally a

huge s
ienti�
 topi
 in whi
h signi�
ant numeri
al and theoreti
al e�orts

have been made even in re
ent years. In a weakly 
ollisional plasma, su
h as

the solar wind, 
ollisions are usually 
onsidered far too weak to produ
e any

signi�
ant e�e
t on the plasma dynami
s [12℄. However, several observations

indi
ate that the solar wind is in
essantly heated during its travel through

the heliosphere. Indeed, the temperature de
ay along the radial distan
e

is mu
h slower than the predi
tions of adiabati
 models of the solar wind

expansion [117, 118, 119, 120℄. Hen
e, some lo
al heating me
hanisms play

a signi�
ant role to supply the energy needed to heat the plasma.

Numerous s
enarios have been proposed to understand the plasma heat-

ing (See [12℄ and referen
es therein). Among these pro
esses, turbulen
e

e�
iently 
ontributes to the lo
al heating of solar wind [119, 121, 122℄, sin
e

the energy transfer towards small s
ales - where dissipative pro
esses are

at work [123℄ - is more e�
ient as the �ow be
omes more turbulent. On

the other hand, a long-standing debate about whi
h dissipative pro
esses

are preferred by the plasma is still waiting for a 
lear and de�nitive answer.

Many of the proposed models are often based on the 
ollisionless assump-

tion, justi�ed be
ause the Spitzer-Harm 
ollisional time [124℄ is mu
h bigger

than other dynami
al times. However, some important 
aveats should be

expli
itly introdu
ed.

Firstly, any 
ollisionless me
hanism la
ks the ultimate part of the de-

s
ription of the heating pro
ess, that is the produ
tion of heat related to the

irreversible approa
h towards the thermal equilibrium (i.e. to the dissipation

of phase spa
e stru
tures). Several pro
esses (e.g. nonlinear waves) are in
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fa
t able to in
rease the parti
le temperature, evaluated as the se
ond or-

der moment of the parti
le distribution fun
tion. However, the free energy


ontained in the VDFs is not in general 
onverted into heat but it 
an be

also transformed in other forms of ordered energy (e.g. through mi
roinsta-

bilities) [125℄. On the other hand, 
ollisions are the unique me
hanism able

to degrade the information 
ontained in the VDFs free energy into heat by

approa
hing the thermal equilibrium, thus produ
ing heating in the standard

thermodynami
al sense. Se
ondly, the evaluation of the Spitzer-Harm 
olli-

sional time stri
tly assumes that the VDF shape is 
lose to the Maxwellian.

Sin
e this assumption does not often hold in the solar wind [21, 35℄, the

hypothesis on whi
h is based the 
ollisionless assumption may lo
ally fail.

Based on these last 
onsiderations, numerous studies have been re
ently 
on-

du
ted in order to take into a

ount 
ollisional e�e
ts in a weakly 
ollisional

plasma su
h as the solar wind [49, 62, 63, 126, 127, 128, 129, 130, 131℄.

In these 
onditions, kineti
 physi
s and 
ollisions are in 
ompetition be-

tween ea
h other: the former works to produ
e deformations of the parti
le

distribution fun
tion, while the latter - introdu
ed through a 
ollisional op-

erator at the right hand-sides of the Vlasov equation - tends to restore the

equilibrium Maxwellian. The evolution of the plasma is, therefore, the result

of the 
omplex 
ombination of these two e�e
ts. The 
hoi
e of the parti
ular


ollisional operator remains an open problem. Numerous derivations from

�rst prin
iples (e.g. Liouville equation) indi
ates that the most general 
olli-

sional operators for plasmas are the Lenard-Bales
u operator [54, 55℄ or the

Landau operator [52, 56℄. Both operators are nonlinear �Fokker-Plan
k�-like

operators whi
h involve velo
ity spa
e derivatives and three-dimensional in-

tegrals. The Landau operator introdu
es an upper 
ut-o� of the integrals at

the Debye length to avoid the divergen
e for large impa
t parameters, while

the Bales
u-Lenard operator solves this divergen
e in a more 
onsistent way

through the dispersion fun
tion. Therefore the Bales
u-Lenard operator is

more general 
ompared to the Landau operator from this point of view. How-

ever, we would remark that both operators are derived by assuming that the

plasma is not too far from the thermal equilibrium, hen
e both operators


ould la
k the des
ription of inter-parti
le 
ollisions in a strongly turbulent
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plasma. Moreover, the numeri
al approa
h of the Lenard-Bales
u operator is

mu
h more di�
ult than the one of the Landau operator. We also point out

that, as far as we know, an expli
it derivation of the Boltzmann operator for

plasmas starting by the Liouville equation does not still exist [132℄. However,

although the adoption of the Boltzmann operator for des
ribing 
ollisional

e�e
ts in plasmas is questionable from a theoreti
al perspe
tive, it still re-

mains a quite valid options sin
e Boltzmann and Fokker-Plan
k operators

are intrinsi
ally similar [52, 127℄.

In this perspe
tive, by modeling 
ollisions with the fully nonlinear Lan-

dau operator [52℄, we re
ently showed that �ne velo
ity spa
e stru
tures are

dissipated mu
h faster than global non-thermal features su
h as temperature

anisotropy [49℄. In other words, the 
ollisionality 
an be e�e
tively enhan
ed

by the presen
e of strong gradients in velo
ity spa
e and the presen
e of ve-

lo
ity spa
e �ne stru
tures may break the quasi-Maxwellian assumption on

whi
h the 
ollisionless approa
h is based. The entropy produ
tion due to the

relaxation of the VDF towards the equilibrium o

urs on several 
hara
ter-

isti
 times - mu
h smaller than the Spitzer-Harm 
hara
teristi
 time [124℄.

These 
hara
teristi
 times are asso
iated with the dissipation of parti
ular

velo
ity spa
e stru
tures and 
ould be 
omparable with other dynami
al

times (e.g. mi
roinstabilities growth rates). Therefore, 
ollisions 
ould be

an additional e�
ient ingredient to properly des
ribe the irreversible heating

observed in the solar wind. Sin
e the presen
e of su
h strong velo
ity spa
e

gradients tends to naturally enhan
e 
ollisionality, high-resolution measure-

ments of the parti
le VDF in the solar wind are 
ru
ial for a proper de-

s
ription of heating me
hanisms [133℄. Moreover, retaining nonlinearities in

the 
ollisional operators is also 
ru
ial. In fa
t, we 
ompared the 
ollisional

relaxation of an out-of-equilibrium VDF under the e�e
t of the fully nonlin-

ear Landau operator and of its linearized version. Results indi
ate that, if

one negle
ts nonlinearities, 
hara
teristi
 dissipation times are signi�
antly

larger than in the 
ase of the fully nonlinear operator. The dissipation of

su
h stru
tures gets, therefore, slower by linearizing the 
ollisional operator.

It is worth to remark that these results have been obtained in the 
ase of a

for
e-free homogeneous plasma, be
ause the simulations the Landau opera-
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tor are highly demanding; hen
e, they 
learly need to be 
on�rmed in the

self-
onsistent 
ase. However, our results, whi
h are highlighted in Chapter

1, are still signi�
ant to provide a step forward in the 
omprehension of a

tough problem as heating of the solar wind.

Sin
e the numeri
al implementation of both Landau and Bales
u-Lenard

operators is di�
ult from the 
omputational point of view (e.g. the 
ompu-

tational 
ost of the Landau operator in full phase spa
e is proportional to

N9
, being N the gridpoints number along ea
h dire
tion), several simpli�ed

operators have been previously employed. We may distinguish these simpler

operators in two 
lasses. The �rst type of operators - as the Bathanar-

Gross-Krook [57, 61℄ and the Dougherty operators [58, 59, 64, 129℄ - aims

to model 
ollisions in the realisti
 three-dimensional velo
ity spa
e but by

adopting a simpler stru
ture of the operator. On the other hand, the se
ond


lass of 
ollisional operators works in a redu
ed, one-dimensional velo
ity

spa
e assuming that the dynami
s mainly o

ur in one dire
tion. Although

this approa
h is �unphysi
al� (
ollisions naturally a
t in three dimensions),

these operators 
an satisfa
torily model 
ollisions in laboratory systems, su
h

as the long and thin plasma 
olumns 
ontained in Penning-Malmberg trap

devi
es [62, 63, 134, 135, 136℄, where the dynami
s evolves along only one

dire
tion.

In Chapter 2 we fo
us on the Dougherty operator. First, we 
ompare

the Dougherty operator with the Landau operator through a numeri
al in-

vestigation of the relaxation toward equilibrium of a spatially homogeneous

plasma in absen
e of �elds, in full three-dimensional geometry in velo
ity

spa
e. Even though the mathemati
al form of the two 
ollisional operators

is evidently di�erent, we found that the 
ollisional evolution of the relevant

moments of the parti
le distribution fun
tion (temperature and entropy) are

similar in the two 
ases, on
e an �ad ho
� time res
aling pro
edure has been

performed. This time res
aling results, in pra
ti
e, in dividing the 
ollisional

frequen
y in the Dougherty operator by a fa
tor α ≃ 3.55, whose value has

been determined empiri
ally from the numeri
al simulations. Then, sin
e the

Dougherty operator requires a signi�
antly lighter 
omputational e�ort with

respe
t to the 
omplete Landau integral, self-
onsistent plasma simulations
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in presen
e of 
ollisions 
an be a�orded, even in the multi-dimensional phase

spa
e geometry. We show results of self-
onsistent 
ollisional simulations of

a plasma 
omposed of kineti
 ele
trons and immobile protons, in a nonlinear

regime and in the 
ase of weak 
ollisionality. We fo
us, in parti
ular, on the


on
omitant role of 
ollisions and kineti
 e�e
ts for the 
ases of i) the linear

and nonlinear evolution of the bump-on-tail instability and ii) the ex
ita-

tion of the so-
alled Kineti
 Ele
trostati
 Ele
tron Nonlinear (KEEN) waves

[137, 138℄.

Then, in Chapter 3, we des
ribe the evolution of a weakly-
ollisional

plasma in the redu
ed 1D�1V phase spa
e by fo
using on two separate prob-

lems. First, we study the e�e
t of arti�
ial 
ollisions on the re
urren
e of

the initial states. Collisions are here modeled through the Lenard-Bernstein

operator [139℄. By de
omposing the linear Vlasov-Poisson system in the

Fourier-Hermite spa
e, the re
urren
e problem is investigated in the linear

regime of the damping of a Langmuir wave and of the onset of the bump-on-

tail instability. The analysis is then 
on�rmed and extended to the nonlinear

regime through a Eulerian 
ollisional Vlasov-Poisson 
ode. Despite being

routinely used, an arti�
ial 
ollisionality is not a viable way of preventing re-


urren
e in numeri
al simulations without 
ompromising the kineti
 nature

of the solution. Moreover, it is shown how numeri
al e�e
ts asso
iated to

the generation of �ne velo
ity s
ales, 
an modify the physi
al features of the

system evolution even in nonlinear regime. This means that �lamentation-

like phenomena, usually asso
iated with low amplitude �u
tuations 
ontexts,


an play a role even in nonlinear regime.

Finally, we analyze the method adopted in laboratory plasmas for trigger-

ing �u
tuations in both a 
ollisionless and weakly 
ollisional plasma. When

ex
iting Ele
tron A
ousti
 Waves, we �nd that a new bran
h of small am-

plitude, nonlinear and non dispersive waves is re
overed. The generation of

these waves is dis
ussed in detail as well as their existen
e in a weakly 
ol-

lisional plasma. Indeed, also for small 
ollisionality values, these se
ondary

waves are suddenly dissipated, while the main ele
tron-a
ousti
 waves bran
h

undergoes an exponential damping 
omparable with experimental observa-

tions.
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Chapter 1

Collisional relaxation of �ne

velo
ity stru
tures in plasmas

We dis
uss here the 
ollisional dissipation of non-Maxwellian features in

the parti
le velo
ity distribution fun
tion in a weakly 
ollisional plasma, by

means of Eulerian numeri
al simulations. Due to the nonlinear nature of

the Landau operator, the analyti
al treatment as well as the self-
onsistent

numeri
al simulations of the Landau operator in 6D phase spa
e are hard

goal to a
hieve yet. Thus, we de
ided to address the 
ollisional relaxation of

a spatially homogeneous for
e-free plasma and to model 
ollisions between

parti
les of the same spe
ies.

We show here how 
ollisionality e�e
ts are in
reased as the velo
ity dis-

tribution fun
tion exhibits strong gradients in velo
ity spa
e [Se
tion 1.1℄.

Indeed, �ne velo
ity stru
tures are dissipated mu
h faster 
ompared to global

quantities. Furthermore, the expli
it 
omparison of the e�e
ts of the nonlin-

ear Landau operator and its linearized version indi
ates that velo
ity stru
-

tures are smoothed out slowly if nonlinearities are negle
ted. This suggests

that taking expli
itly into a

ount nonlinearities in the 
ollisional operator

is 
ru
ial to give the proper importan
e to 
ollisional e�e
ts [Se
tion 1.2℄.

Results shown here have been awarded with the 2016 �V.C.A. Ferraro�

Prize of the Italian Physi
al So
iety and have been 
olle
ted in two s
ienti�


papers. The �rst paper has been re
ently published in Physi
al Review Letter
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[49℄, while the se
ond one is in press in Journal of Plasma Physi
s [140℄ as

an invited paper for the �V.C.A. Ferraro� Spe
ial Issue.

1.1 Collisional relaxation of �ne velo
ity stru
-

tures in plasmas

The dimensionless Landau equation for the parti
le distribution fun
tion

f(v) reads as follows:

∂f(v)

∂t
= π

(

3

2

)
3
2 ∂

∂vi

∫

d3v′ Uij(u)

[

f(v′)
∂f(v)

∂vj
− f(v)

∂f(v′)

∂v′j

]

, (1.1)

being f normalized su
h that

∫

d3vf(v) = n = 1 and Uij(u)

Uij(u) =
δiju

2 − uiuj

u3
, (1.2)

where u = v − v
′
, u = |u| and the Einstein notation is introdu
ed. In Eq.

(1.1), and from now on, time is s
aled to the inverse Spitzer-Harm frequen
y

ν−1
SH [124℄, being νSH ≃ 8× (0.714πne4 ln Λ)/(m0.5(3kBT )

3/2), and velo
ity to

the parti
le thermal speed vth =
√

kBT/m. Note that m, e, n and T are the

parti
le mass, 
harge, density and temperature, while kB is the Boltzmann


onstant and lnΛ is the Coulombian logarithm. Details about the numeri
al

solution of Eq. (1.1) 
an be found in Ref. [64℄.

We initially 
onsider the mutual e�e
t of a lo
al deformation of the par-

ti
le VDF (a plateau) and the global temperature anisotropy, by 
omparing

the evolution of two initial VDFs:

f1(v) = C1fM,T⊥
(vx)fM,T⊥

(vy)fp,T‖
(vz) , (1.3)

f2(v) = C1fM,T⊥
(vx)fM,T⊥

(vy)fM,T‖
(vz) , (1.4)

where C1 and C2 are normalization 
onstant. The total temperature T ,

where T = v2th in dimensionless units, is given by T = (T‖ + 2T⊥)/3 and

A = T⊥/T‖ = 2. Finally fM,Ti
is a generi
 Maxwellian with temperature Ti

54



Collisional relaxation of �ne velo
ity stru
tures in plasmas

Figure 1.1: (a) Time evolution of T⊥ and T‖ for the 
ase of f1(v) (bla
k-solid line)

and f2(v) (red-dashed line). (b) Time evolution of ∆S for the 
ase of f1(v) (bla
k-
solid line) and f2(v) (red-dashed line). The verti
al blue-dashed line in panels (a)�

(b) indi
ates the time instant t = τ1. (
) Distribution fun
tion f1(vx = vy = 0, vz)
as a fun
tion of vz at t = 0 (bla
k-solid line) and at t = τ1 (red-dashed line).

and [63, 129℄:

fp,T‖
(vz) = fM,T0(vz)−

fM,T0(vz)− fM,T0(V0)

1 + [(vz − V0)/∆Vp]np
(1.5)

where T0 = 1, V0 = 1.44, ∆Vp = 0.5 and np = 8. The fun
tion fp,T‖
(vz) is


onstru
ted in su
h a way to have a plateau of width∆Vp around v = V0, that

is f ′
p,T‖(vz) is about null in the interval V0 −∆Vp/2 <≃ vz <≃ 2V0 +∆Vp/2,

being exa
tly zero at vz = V0. Note that the plateau represents one of the

most 
ommon non-Maxwellian features generated by nonlinear wave-parti
le

intera
tions.

It is worth to note that f1(v) is a bi-Maxwellian fun
tion, while f2(v) is

Maxwellian in the perpendi
ular dire
tions with a plateau 
entered in vz = V0

in the parallel dire
tion. We also point out that f1(v) and f2(v) have the

same temperature (se
ond order moment) in ea
h dire
tion. Moreover, for

the fun
tion f1(v), we reset the small mean velo
ity (≃ 10−2
) produ
ed

by the presen
e of the plateau. The three-dimensional velo
ity domain is

dis
retized with Nvx = Nvy = 51 and Nvz = 1601 grid points. We point

out that the resolution along vz has been in
reased signi�
antly in order to

resolve the short velo
ity s
ales asso
iated with the plateau presen
e. Finally,

the distribution fun
tion is set equal to zero for |vj| > vmax = 6vth, being

j = x, y, z.

As shown in Fig. 1.1 (a), the time evolution of parallel and perpendi
ular
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Figure 1.2: (a) Dependen
e of fe on vz. (b) Time history of ∆S. Red dots in panel

(b) indi
ate the time instants t = τ1, t = τ1 + τ2, t = τ1 + τ2 + τ3.

temperatures of f1(v) (bla
k-solid line) and f2(v) (red-dashed line) is 
learly

the same. On the other hand, the evolution of the entropy variation ∆S =

S(t)−S(0) (S = −
∫

f ln fdxdv), reported in Fig. 1.1(b), displays signi�
ant

di�eren
es. In parti
ular, for f1(v) (bla
k-solid 
urve), the 
ase in whi
h

a plateau is present, ∆S saturates at a larger level than that re
overed for

f2(v) (red-dashed 
urve). In order to investigate the reasons of su
h di�erent

behavior of the entropy for f1(v) and f2(v), we performed a multi-exponential

�t [141℄ of ∆S for the two 
ases, with the following 
urve:

∆S(t) =

K
∑

i=1

∆Si

(

1− e−t/τi
)

, (1.6)

τi being the i�th 
hara
teristi
 time and K is evaluated through a re
ursive

pro
edure.

From this analysis, we found that, while for the 
ase of f2(v) [red-dashed


urve of Fig. 1.1(b)℄ ∆S shows an exponential growth with a single 
har-
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Figure 1.3: Distribution fun
tion f(vx = 0, vy = 0, vz) as a fun
tion of vz at t = τ1
(a), t = τ1 + τ2 (b) and t = τ1 + τ2 + τ3 (
). Red dashed lines in panels (a)�(
)

indi
ate the equilibrium Maxwellian �nally rea
hed in the simulation.

a
teristi
 time (τ ≃ 2ν−1
SH), for f1(v) [bla
k-solid 
urve of Fig. 1.1 (b)℄, i.

e. in the presen
e of a plateau, two di�erent 
hara
teristi
 times are re
ov-

ered: a fast 
hara
teristi
 time τ1 = 0.14ν−1
SH [indi
ated in Fig. 1.1(a)�(b)

by a verti
al blue-dashed line℄ in whi
h 25% of the total entropy growth is

a
hieved, and a slow 
hara
teristi
 time τ2 = 2.03ν−1
SH during whi
h the re-

maining 75% of the total entropy growth is observed. We argue that the

existen
e of the 
hara
teristi
 time τ1 is due to the presen
e of the plateau,

and in parti
ular it is asso
iated with the sharp velo
ity gradients in f1(v),

while τ2 is related to the initial temperature anisotropy. In fa
t, as it 
an be

seen in Fig. 1.1(
) where f1(vx = vy = 0, vz) is plotted as a fun
tion of vz

at t = 0 (bla
k-solid line) and at t = τ1 (red-dashed line), the initial plateau

is 
ompletely smoothed out by 
ollisional e�e
ts in a time 
lose to τ1, while

from Fig. 1.1(a) one realizes that at t ≃ τ1 the temperature anisotropy is

still present.

To further support the idea that the presen
e of sharp velo
ity gradients

in the parti
le VDF 
auses the entropy to grow over di�erent time s
ales,

we made an additional numeri
al experiment of 
ollisional relaxation, 
on-

sidering a di�erent initial 
ondition for Eq. (1.1). This new initial 
ondition

has been designed as follows. Firstly, we performed a 1D�1V Vlasov-Poisson

simulation (kineti
 ele
trons and motionless protons) with high numeri
al

resolution in the z− vz phase spa
e domain (Nz = 256, Nvz = 1601). In this

simulation, we externally for
ed the system, initially at equilibrium, through

a sinusoidal driver ele
tri
 �eld, in order to ex
ite a large amplitude ele
-
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tron a
ousti
 wave (EAW) [142℄, as it has been done numeri
ally in Refs.

[137, 143, 144℄ and in laboratory experiments with nonneutral plasmas in

Refs. [50, 145℄. As dis
ussed in these papers, the propagation of large am-

plitude EAWs is 
hara
terized by the generation of phase spa
e stru
tures of

the Bernstein-Green-Kruskal (BGK) type [146℄ in the ele
tron distribution

fun
tion fe(z, vz), asso
iated with trapped parti
le populations. Then, we

sele
ted the spatial point z0 in the numeri
al domain, where this BGK-like

phase spa
e stru
ture displays its maximum velo
ity width, and 
onsidered

the velo
ity pro�le f̂e(vz) = fe(z0, vz). In Fig. 1.2(a), we report the depen-

den
e of f̂e on vz; here, it 
an be appre
iated that f̂e is highly distorted due

to nonlinear wave-parti
le intera
tion pro
esses and displays the presen
e of

sharp velo
ity gradients (bumps, holes, spikes et
.). At this point, we evalu-

ated the se
ond order velo
ity moment of f̂e, that is the temperature Te, and

built up the three-dimensional VDF f(vx, vy, vz) = fM,Te
(vx)fM,Te

(vy)f̂e(vz).

We emphasize that this VDF has the same temperature in ea
h velo
ity di-

re
tion, but presents strong non-Maxwellian deformations along vz, as shown

in Fig. 1.2(a), whi
h make the system to be far from equilibrium. The time

history of∆S, obtained when using fe as initial 
ondition for Eq. (1.1), is pre-

sented in Fig. 1.2(b). As in the previous simulations, the three-dimensional

velo
ity domain in this 
ase is dis
retized by Nvx = Nvy = 51 and Nvz = 1601

gridpoints.

By analyzing the entropy growth through the same method of multi-

exponential �t dis
ussed previously, three 
hara
teristi
 times are re
overed

in this 
ase, whose values are reported below, together with the 
orresponding

per
entage of entropy variation:

• τ1 = 3.5 · 10−3ν−1
SH → ∆S1/∆Stot = 13%

• τ2 = 1.3 · 10−1ν−1
SH → ∆S2/∆Stot = 42%

• τ3 = 4.9 · 10−1ν−1
SH → ∆S3/∆Stot = 40%

Chara
teristi
 times τ1, τ2 and τ3 are indi
ated as red diamonds in Fig. 1.2(b).

In Fig. 1.3, we plot f as a fun
tion of vz for vx = vy = 0, at three di�erent

times t = τ1 (a), t = τ1 + τ2 (b) and t = τ1 + τ2 + τ3 (
): during the time
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Figure 1.4: Iso-surfa
e plot of the initial VDFs fsw(v) [(a)℄, f̃sw(v) [(b)℄ and f̂sw(v)
[(
)℄, respe
tively.

τ1, steep spikes visible in Fig. 1.2(a) are almost 
ompletely smoothed out;

at time τ1+ τ2 the remaining plateau region is signi�
antly rounded o�, only

a gentle shoulder being left; �nally, after a time τ1 + τ2 + τ3, the 
ollisional

return to equilibrium is 
ompleted for the most part (a small per
entage

≃ 5% of the total entropy growth is �nally re
overed for larger times and


orresponds to the �nal approa
h to the equilibrium Maxwellian, indi
ated

by red-dashed lines in the three panels of Fig. 1.3).

Compared to the 
ase shown in Fig. 1.1, here we re
overed an additional

extremely fast 
hara
teristi
 time (≃ 10−3ν−1
SH), asso
iated with the sharp ve-

lo
ity gradients of f along vz, while we did not dete
t the large 
hara
teristi


time (≃ 2ν−1
SH) asso
iated with the temperature anisotropy in the previous


ase.

Numeri
al experiments dis
ussed so far give a 
lear message: 
ollisional

dissipation of small velo
ity s
ales in the parti
le VDF o

urs over di�erent

time s
ales, inversely proportional to the sharpness of the velo
ity gradients

asso
iated with those s
ales. As we dis
ussed above, these 
hara
teristi


times 
an be signi�
antly smaller than the Spitzer-Harm 
ollisional time

[124℄, this meaning that the presen
e of velo
ity gradients in fa
t speeds

up the growth of the entropy of the system. These eviden
es suggest that

when the parti
le VDFs exhibit small velo
ity s
ale deformations, the quasi-

Maxwellian approximation, on whi
h the Spitzer-Harm 
ollisional evolution

is based, is no longer appropriate.
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In order to explore the impli
ations of our results to the general 
ase

of the solar wind plasma, we performed our analysis on a three-dimensional

proton VDF fsw(v), obtained from the hybrid Vlasov-Maxwell [40℄ numeri
al

simulations of solar wind de
aying turbulen
e des
ribed in detail in Refs.

[30, 31, 33, 35, 41℄. As shown in Fig. 1.4(a), where the three-dimensional

iso-surfa
e plot of fsw is reported, kineti
 e�e
ts along the 
as
ade make the

VDF depart from the spheri
al shape of Maxwellian equilibrium and resemble

a deformed potato. Then, having in mind to mimi
 low resolution VDF

measurements by a real spa
e
raft, we �tted fsw(v) with a tri-Maxwellian

fun
tion f̃sw(v) [Fig. 1.4(b)℄ and with a bi-Maxwellian fun
tion f̂sw(v) [Fig.

1.4(
)℄. In order to point out the loss of physi
al information 
aused by

not adequately resolving the sharp velo
ity gradients in the parti
le VDFs,

the fun
tions fsw, f̃sw and f̂sw are used as initial 
onditions in three new

simulations of Eq. (1.1), in whi
h the velo
ity domain is now dis
retized

by Nvx = Nvy = Nvz = 51 gridpoints, as in the simulations in Refs. [30,

31, 33, 35, 41℄. The results for the entropy growth of these new numeri
al

experiments are reported in Fig. 1.5, where we show the time evolution of∆S

for the VDFs fsw(v) (bla
k-solid line), f̃sw(v) (red-dashed line) and f̂sw(v)

(blue-dashed line), respe
tively.

As for the previous 
ases dis
ussed above, also here the time history of

∆S is evidently a�e
ted by the presen
e of �ne velo
ity s
ales and steep

Figure 1.5: Entropy growth for the initial VDFs fsw(v) (bla
k line), f̃sw(v) (red

line) and f̂sw(v) (blue line), respe
tively.
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gradients in the parti
le VDF. Any �tting pro
edure, whi
h smooths out the

�ne velo
ity stru
tures, redu
es the entropy growth: in fa
t, the simulation

with the fun
tion f̂sw(v) as initial 
ondition displays a 
ollisional entropy

growth about 20 times smaller than that re
overed for 
ase of the fun
tion

fsw(v). Moreover, through the multi-exponential �t analysis performed on

∆S for the simulation initialized with fsw, we found two 
hara
teristi
 times:

a fast one τ1 = 0.20ν−1
SH, in whi
h 26% of the total entropy growth is a
hieved,

and a slow one τ2 = 0.82ν−1
SH, during whi
h the remaining 74% of the total

entropy growth is observed. By analyzing VDF iso-surfa
e plots (not shown

here) at di�erent times in the simulation, we realized that after a time t = τ1


ollisions have dissipated most of the sharp velo
ity gradients whi
h were

initially present in the VDF. We point out that, sin
e the numeri
al resolution

for this simulation is about �fty times smaller than in the previous 
ase,

sharp velo
ity gradients [as those shown in Fig. 1.2 (a)℄ are not visible in the

parti
le VDF, even though it displays signi�
ant non-Maxwellian features

[see Fig. 1.4 (a)℄. Hen
e, the la
k of velo
ity resolution presumably does

not allow to re
over the extremely fast 
hara
teristi
 time (≃ 10−3ν−1
SH) in

the evolution of ∆S, observed for the simulation initialized with the velo
ity

pro�le in Fig. 1.2 (a).

1.2 Nonlinear and linearized 
ollisional opera-

tors

The se
ond aspe
t analyzed here 
on
erns the nonlinearities of 
ollisional

operators. As introdu
ed above, the Landau operator involves strong non-

linearities and, despite 
ollisional operators are quite often simpli�ed to their

linearized versions, it is signi�
ant to 
onsider nonlinearities. Indeed, a lin-

earized operator may hide or redu
e the importan
e of velo
ity spa
e gra-

dients. Therefore, we present a 
ase study where we fo
us on one of the

initial 
onditions des
ribed in the previous se
tion and we 
ompare its evolu-

tion, obtained through the fully nonlinear Landau operator and its linearized

version, in a for
e-free homogeneous plasma.
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Under these assumptions, we numeri
ally integrate the following dimen-

sionless 
ollisional evolution equations for the parti
le distribution fun
tion

f(v, t):

∂f(v, t)

∂t
= π

(

3

2

)
3

2 ∂

∂vi

∫

d3v′ Uij(u)

[

f(v′, t)
∂f(v, t)

∂vj
− f(v, t)

∂f(v′, t)

∂v′j

]

(1.7)

∂f(v, t)

∂t
= π

(

3

2

)
3

2 ∂

∂vi

∫

d3v′ Uij(u)

[

f0(v
′)
∂f(v, t)

∂vj
− f(v, t)

∂f0(v
′)

∂v′j

]

(1.8)

being f normalized su
h that

∫

d3vf(v) = n = 1 and Uij(u) the proje
tor

de�ned in Eq. (1.2). In Eqs. (1.7�1.8), and from now on, time is s
aled

to the inverse Spitzer-Harm frequen
y ν−1
SH [124℄ and velo
ity to the parti
le

thermal speed vth. Details about the numeri
al solution of Eqs. (1.7�1.8) 
an

be found in Refs. [49, 64℄. Moreover, in Eq. (1.8), f0 is the three-dimensional

Maxwellian distribution fun
tion asso
iated with the initial 
ondition of our

simulations f(v, t = 0) and built in su
h a way that density, bulk velo
ity

and temperature of the two distributions f(v, t = 0) and f0(v) are the same.

Clearly the two equations di�er be
ause Eq. (1.7) refers to the nonlinear

Landau operator, already adopted in Se
t. 1.1, while Eq. (1.8) evolves the

linearized Landau operator, obtained by linearizing the Fokker-Plan
k 
oe�-


ients of Eq. (1.7). Velo
ity domain dis
retization and boundary 
onditions

are the same as in the previous se
tion.

For the 
urrent simulations, we 
hose as initial 
ondition one of the initial


onditions adopted in the previous se
tion. In parti
ular, we sele
ted the one

obtained as a 
ut of a 1D�1V Vlasov-Poisson simulation where KEEN waves

are triggered. The shape of the 1V 
ut of the parti
le distribution fun
tion


an be appre
iated in Fig. 1.2(a). We remark that this VDF does not initially

exhibit any temperature anisotropy but it still shows strong non-Maxwellian

deformations along vz, due to the presen
e of trapped parti
les.

Figure 1.6 reports the temporal evolution of the entropy variation ∆S =

S(t)−S(0) (S = −
∫

f ln fd3v), whi
h gives information about the approa
h

towards equilibrium. Bla
k and red lines respe
tively refer to the 
ase of the

fully nonlinear Landau operator and the linearized operator. Sin
e the initial


ondition is the same for both operators, the total growth of entropy ∆S is
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the same in terms of absolute values. In the 
ase where nonlinearities are

taken into a

ount the entropy grows mu
h faster 
ompared to the linearized

operator 
ase. Indeed, in the 
ase of the full Landau operator, the total

entropy growth is rea
hed in about 1÷2ν−1
SH ; while, for the linearized Landau

operator, the entropy grows on 4÷ 5ν−1
SH .

To better point out how the dissipation of �ne velo
ity spa
e stru
tures

is a�e
ted by the presen
e of the nonlinearities, we performed the multi-

exponential �t of ∆S presented in the previous se
tion [49, 141℄. When


ollisions are modeled by means of the fully nonlinear Landau operator, we

already found that three 
hara
teristi
 times are re
overed:

• τnl1 = 3.5 · 10−3 ν−1
SH → ∆Snl

1 /∆Stot = 13%

• τnl2 = 1.3 · 10−1 ν−1
SH → ∆Snl

2 /∆Stot = 42%

• τnl3 = 4.9 · 10−1 ν−1
SH → ∆Snl

3 /∆Stot = 40%

As dis
ussed in the previous Se
tion, the presen
e of several 
hara
teristi


times is asso
iated with the dissipation of di�erent velo
ity spa
e stru
tures.

Fig. 1.7 reports f(vx = vy = 0, vz) as a fun
tion of vz at the time instants

Figure 1.6: (Color online) Time history of ∆S in the 
ase of the fully nonlinear

Landau operator (bla
k) and the linearized Landau operator (red). Blue diamonds

indi
ate the time instants t = τnl1 , t = τnl1 + τnl2 and t = τnl1 + τnl2 + τnl3 ; the green

triangles refer to t = τ lin1 , t = τ lin1 + τ lin2 and t = τ lin1 + τ lin2 + τ lin3 .
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Figure 1.7: Distribution fun
tion f(vx = 0, vy = 0, vz) as a fun
tion of vz, obtained
in the 
ase of the fully nonlinear Landau operator. Panels from (a) to (d) respe
-

tively display the time instants t = τnl1 (a), t = τnl1 + τnl2 (b), t = τnl1 + τnl2 + τnl3

(
) and t = tfin (d).

t = τnl1 (a), t = τnl1 + τnl2 (b), t = τnl1 + τnl2 + τnl3 (
) and t = tfin (d). These

time instants are displayed in Fig. 1.6 with blue diamonds.

The same analysis performed in the 
ase of the linearized Landau operator

(red line of Fig. 1.6) indi
ates that, as in the nonlinear operator 
ase, three


hara
teristi
 times are obtained. The values of these 
hara
teristi
 times

are, however, mu
h di�erent 
ompared to the ones previously re
overed:

• τ lin1 = 1.1 · 10−2 ν−1
SH → ∆Slin

1 /∆Stot = 11%

• τ lin2 = 2.7 · 10−1 ν−1
SH → ∆Slin

2 /∆Stot = 23%

• τ lin3 = 1.5 ν−1
SH → ∆Slin

3 /∆Stot = 63%

Moreover, when looking at the evolution of the distribution fun
tion, one


an easily �gure out that this is qualitatively similar to the 
ase of the fully

nonlinear operator. Fig. 1.8(a�d) reports f(vx = vy = 0, vz) as a fun
tion of

vz at the time instants t = τ lin1 (a), t = τ lin1 + τ lin2 (b), t = τ lin1 + τ lin2 + τ lin3

(
) and t = tfin (d). These time instants are displayed in Fig. 1.6 with

green triangles. As re
overed in the fully nonlinear operator 
ase, the initial
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spikes in the initial 
ondition are �attened after the time t = τ lin1 (a). Then,

at t = τ lin1 + τ lin2 (b), the plateau is rounded o�. Finally, after a time

t = τnl1 + τnl2 + τnl3 (
), the 
ollisional relaxation to equilibrium is almost


ompleted and a very small per
entage ≃ 3% of the total entropy growth is

�nally re
overed for larger times and 
orresponds to the �nal approa
h to

the equilibrium Maxwellian (d).

Sin
e several 
hara
teristi
 times are re
overed in both 
ases, we 
an

argue that fully nonlinear and linearized operators are both able to re
over

the 
hara
teristi
 that �ne velo
ity spa
e stru
tures are dissipated faster as

their s
ale gets �ner (e.g. as the velo
ity spa
e gradients be
ome stronger).

However, the speed at whi
h su
h stru
tures are smoothed out is signi�
antly

weakened if one negle
ts nonlinearities: ea
h 
hara
teristi
 times re
overed

in the 
ase of a linearized operator is signi�
antly bigger (about 2÷ 5 times)

than the 
orrespondent 
hara
teristi
 times re
overed with the fully nonlinear

operator. It is also worth mentioning that the amount of entropy produ
tion

due to di�erent velo
ity stru
tures also 
hanges by ignoring nonlinearities:

in the 
ase of the fully nonlinear Landau operator about 55% of the total

Figure 1.8: Distribution fun
tion f(vx = 0, vy = 0, vz) as a fun
tion of vz, obtained
in the 
ase of the linearized Landau operator. Panels from (a) to (d) respe
tively

display the time instants t = τ lin1 (a), t = τ lin1 + τ lin2 (b), t = τ lin1 + τ lin2 + τ lin3 (
)

and t = tfin (d).
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entropy is due to the dissipation of the initial spikes and to the rounding of

the su

essive plateau, while - in the linearized operator 
ase - only about the

30% of the total entropy is due to these two pro
esses. Hen
e a signi�
ant

di�eren
e between the two operators is re
overed and, bearing in mind to


ompare the 
ollisional 
hara
teristi
 times with other dynami
al times, it is

fundamental to properly attribute the importan
e of 
ollisions by taking into

a

ount the nonlinearities present in the 
ollisional integral.

1.3 Summary

To summarize, we here dis
ussed the role of the VDF �ne velo
ity stru
-

tures in enhan
ing the plasma 
ollisionality. In parti
ular, by means of Eule-

rian simulations of 
ollisional relaxation of a spatially homogeneous for
e-free

plasma, we have shown that the system entropy growth o

urs over several

time s
ales, whi
h gets smaller as VDF gradients be
ome steeper. We re-

ported 
lear eviden
es that these gradients are dissipated by 
ollisions in a

time mu
h shorter than that asso
iated with global non-Maxwellian features,

e.g. temperature anisotropies. This 
hara
teristi
 time may be 
omparable

or even smaller than the instability growth rates invoked to explain the SW

anisotropi
 VDFs [147, 148℄ or than the nonlinear dynami
s times, as re-


ently dis
ussed through a 
lassi
al treatment of 
ollisions [131℄. We �nally

pointed out how the la
ks of resolution in the VDFs measurements mask a

relevant part of physi
al information hidden in the sharp velo
ity gradients

of the non-Maxwellian VDFs, observed ubiquitous, for example, in the SW

[21, 25℄. Future spa
e missions, planned to in
rease both energy and angu-

lar resolutions of the VDFs measurements, will provide 
ru
ial insights for

the longstanding problems of plasma heating and parti
le energization in the

interplanetary medium.

Moreover, fo
using on the 
omparison of the full Landau operator and its

linearized version, we showed that both nonlinear and linearized 
ollisional

operators are able to dete
t the presen
e of several time s
ales asso
iated with

the 
ollisional dissipation of small velo
ity s
ales. This 
an be explained

by the fa
t that the linearized operators also involve derivatives while do
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not take into a

ount the �se
ond-order� gradients related to the Fokker-

Plan
k 
oe�
ients of the Landau operator, whi
h may in�uen
e the absolute

value of su
h times. For both evolutions, the re
overed 
hara
teristi
 times

are signi�
antly smaller than the Spitzer-Harm 
ollisional time [124℄, this

meaning that the presen
e of sharp velo
ity spa
e gradients speeds up the

entropy growth of the system. However, the importan
e of su
h 
hara
teristi


times is signi�
antly a�e
ted and, in general, weakened if nonlinearities are

ignored in the 
ollisional operator. In the 
ase of a linearized 
ollisional

operator, one obtains mu
h slower 
hara
teristi
 times with respe
t to the


ase where operator nonlinearities are taken into a

ount. Therefore, we


on
lude that the presen
e of nonlinearities in the 
ollisional operator should

be taken into a

ount, sin
e it may a�e
t the relevan
e of fast 
hara
teristi


times - asso
iated with the 
ollisional relaxation of �ne velo
ity stru
tures -

with respe
t to other dynami
al times [131, 147, 148℄.
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Chapter 2

Collisional e�e
ts des
ribed

through simpli�ed 
ollisional

operators: the Dougherty

operator

As des
ribed in the Introdu
tion of the 
urrent part of this thesis, self-


onsistent 
ollisional simulations where 
ollisions are modeled by the fully

nonlinear Landau operator 
annot be easily performed due to the 
ompu-

tational 
ost of the Landau integral. Therefore, simpli�ed 
ollisional oper-

ators are usually 
onsidered to model 
ollisionality. Here we fo
us on the

Dougherty operator, whi
h has been proposed by Dougherty in 1964 to de-

s
ribe 
ollisions among parti
les of the same spe
ies in 3D�3V physi
al sys-

tems [58, 59℄.

Even though the Dougherty operator has been set up in a phenomeno-

logi
al way, it satis�es the main properties of a good 
ollisional operator

[134, 135℄:

• it vanishes for any thermal equilibrium distribution fun
tion and it dis-

plays the Maxwellian distribution fun
tion as a long-time limit solution;

• it 
onserves parti
le number, momentum and energy;
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• it des
ribes the dominan
e of small-angle s
attering through a velo
ity-

spa
e di�usion term.

However, sin
e the Dougherty operator is expli
itly phenomenologi
al and it

has not been formally derived from the Landau 
ollisional operator, �rstly it


ould give rise to evolution times whi
h 
an be di�erent from those predi
ted

by the Landau operator by some numeri
al fa
tor and se
ondly it does not

des
ribe the velo
ity dependen
e of the di�usion 
oe�
ients in velo
ity spa
e.

Note that the Dougherty operator is signi�
antly less time demanding than

the full Landau 
ollisional integral. In fa
t, the 
omputational time tc for

1D�3V (1D in physi
al spa
e and 3D in velo
ity spa
e) Eulerian simulations

whi
h in
lude the full Landau operator s
ales as tc ∼ N7
(where N is the

number of gridpoints, assumed, for simpli
ity, to be the same for ea
h phase-

spa
e 
oordinate); for the Dougherty operator, the s
aling is tc ∼ N4
; this

signi�
ant redu
tion of tc allows to run numeri
al experiments of the self-


onsistent ele
trostati
 dynami
s of a 
ollisional plasma in 1D�3V geometry.

For this reason, in Se
tions 2.1 and 2.2, we try to fa
e the �rst problem by

analyzing the behavior of the Dougherty operator [58℄, as 
ompared to that

of the 
omplete Landau integral, through a numeri
al investigation of the

relaxation toward equilibrium of a spatially homogeneous plasma in absen
e

of �elds, in full three-dimensional geometry in velo
ity spa
e. To perform

this analysis, we des
ribe numeri
ally the return to equilibrium of several

non-Maxwellian velo
ity distributions, and 
ompare quantitatively the time

evolution of the velo
ity distribution itself and of temperature and entropy.

Interestingly enough, for the 
ases dis
ussed in this thesis, the system evolu-

tion obtained when 
ollisions are modeled through the Dougherty operator

results very similar to the 
ase where the full Landau integral is employed,

provided an �ad ho
� time res
aling is performed. This time res
aling results,

in pra
ti
e, in dividing the plasma parameter g in the Dougherty operator

by a fa
tor α ≃ 3.55, whose value has been determined empiri
ally from the

numeri
al simulations. We point out that, due to the 
omputational 
ost of

the numeri
al approximation of the Landau integral, this analysis 
ould not

be performed in situations of self-
onsistent plasma evolution, not even in

ele
trostati
 approximation.
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In Se
tion 2.3, on
e the relationship between the Landau and Dougherty

operators has been established, we employ the Dougherty operator to model

parti
le 
ollisions, res
aling the plasma parameter as dis
ussed above and

making the assumption that this pro
edure works to mimi
 the Landau in-

tegral also in self-
onsistent ele
trostati
 situations. We analyze two 
ases

of the ele
trostati
 dynami
s of a plasma 
omposed of kineti
 ele
trons and

immobile protons, in a nonlinear regime and in the 
ase of weak 
ollisionality.

We fo
us, in parti
ular, on the 
on
omitant role of 
ollisions and kineti
 ef-

fe
ts in shaping the parti
le distribution fun
tion, whi
h, in turn, determines

the plasma evolution. We performed our analysis in two spe
i�
 
ases: the

linear and nonlinear evolution of the bump-on-tail instability and the ex
i-

tation of KEEN waves [137, 138℄. We emphasize that our numeri
al results


an be relevant for laboratory plasma experiments, in whi
h 
ollisional e�e
ts

are weak but often not negligible. We point out also that our numeri
al sim-

ulations retain only ele
tron-ele
tron 
ollisions, negle
ting ele
tron-proton

intera
tions and ele
tron 
ollisions with heavy parti
les [56℄.

Results shown here have been 
olle
ted in two s
ienti�
 papers re
ently

published in Journal of Plasma Physi
s [64℄ and Physi
s of Plasmas [129℄.

2.1 Landau and Dougherty 
ollisional opera-

tors

We 
onsider here the 
ollisional relaxation of a plasma in presen
e of 
ollisions

among parti
les of the same spe
ies (ele
tron-ele
tron or ion-ion). We assume

that the plasma is spatially homogeneous and no �eld (self-
onsistent or

external) is present.

The expli
it form of the Landau operator, in dimensionless units, is the

following:

∂f

∂t

∣

∣

∣

∣

coll

=
g ln Λ

8π

∂

∂vi

∫

d3v′ Uij(u)

[

f(v′)
∂f(v)

∂vj
− f(v)

∂f(v′)

∂v′j

]

, (2.1)

f(v) being the parti
le distribution fun
tion, normalized su
h as

∫

d3v f(v) =
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n = 1, g = 1/nλ3
D the plasma parameter, ln Λ ≃ − ln g/3 the Coulombian

logarithm and Uij(u) the proje
tor

Uij(u) =
δiju

2 − uiuj

u3
, (2.2)

where u = v−v
′
and u = |u|. For brevity and 
larity, we avoided to expli
itly

indi
ate the time dependen
e of the distribution fun
tion f . Moreover, the

Einstein summation notation has been introdu
ed.

The dimensionless Dougherty operator is the following:

∂f

∂t

∣

∣

∣

∣

coll

=
g ln Λ

8π

n

T 3/2

∂

∂vj

[

T
∂f(v)

∂vj
+ (v − V )j f(v)

]

. (2.3)

where n =
∫

d3vf(v) = 1, V = 1/n
∫

d3v vf(v), T = 1/3n
∫

d3v(v −
V )2f(v) respe
tively the density, the mean velo
ity and the temperature

of the plasma.

In the previous equations, time is s
aled to the inverse plasma frequen
y

ωp, lengths to the Debye length λD and velo
ities to the thermal speed vth.

From now on, all physi
al quantities will be s
aled with these 
hara
teristi


parameters.

It is worth to remark that both operators exhibit a similar Fokker-Plan
k

stru
ture, weighted with di�erent 
oe�
ients, satisfy 
onservation of mass,

energy and momentum and obeys an H-theorem [58, 59, 149℄.

By looking at Eqs. (2.1)-(2.3), one 
an realize that the proje
tor Uij(u)

that 
ouples the velo
ity v, at whi
h the Landau 
ollisional operator is eval-

uated, and the integration variable v
′
is absent in the Dougherty operator.

This signi�
antly simpli�es the numeri
al solution, sin
e the velo
ity inte-

grals in the Dougherty operator (n, U and T ) 
an be evaluated on
e for ea
h

time step in the simulation. In the 
ase of spatially homogeneity, this re-

du
es the 
omputational 
ost from N6
(Landau operator) to N3

(Dougherty

operator); for the general non-homogeneous 
ase with three dimensions in

physi
al spa
e, the 
omputational 
ost de
reases from N9
(Landau operator)

to N6
(Dougherty operator).
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2.2 Relaxation toward equilibrium: a numeri-


al 
omparison

To begin this se
tion, we shortly dis
uss the numeri
al strategy adopted

to solve the 
ollisional time evolution equation for the parti
le distribution

fun
tion:

∂f

∂t
=

∂f

∂t

∣

∣

∣

∣

coll

, (2.4)

where ∂f/∂t|coll is given by Eq. (2.1) for the 
ase of the Landau operator and

by Eq. (2.3) for the Dougherty operator. We will refer to Eq. (2.4) as the

Landau or the Dougherty equation, depending on whi
h 
ollisional operator

is used in the right-hand side.

The velo
ity derivatives in both Landau and Dougherty operator are eval-

uated numeri
ally through a sixth-order 
entered �nite di�eren
e s
heme

[62, 63℄, while for the time derivative a �rst-order Eulerian s
heme has been

employed. The expli
it expressions of the s
hemes for the velo
ity derivatives

are the following:

∂f

∂vj

∣

∣

∣

∣

i

=
−fi−3 + 9fi−2 − 45fi−1 + 45fi+1 − 9fi+2 + fi+3

60∆vj
,(2.5)

∂2f

∂v2j

∣

∣

∣

∣

i

=
2fi−3 − 27fi−2 + 270fi−1 − 490fi + 270fi+1 − 27fi+2 + 2fi+3

180∆v2j
;(2.6)

i being a generi
 grid point along the velo
ity dire
tion j and ∆vj the mesh

size along the j-th velo
ity dire
tion.

In the numeri
al velo
ity domain, f is set equal to zero for |v| > vmax,

where vmax = 6vth,m along ea
h dire
tion, where vth,m = max {vth,‖, vth,⊥}.
The number of grid points used to dis
retize the velo
ity numeri
al domain

has been 
hosen su
h that the ratio∆vj/vth,j is almost 
onstant for j = x, y, z.

We typi
ally use 101 grid points in vz and 51 grid points in vx and vy.

The time step∆t is 
hosen in su
h a way to satisfy the Courant-Friedri
hs-

Levy 
ondition for the numeri
al stability of time expli
it �nite di�eren
e

s
hemes [150℄.

In the following Subse
tions, we will des
ribe the 
omparison between
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Landau and Dougherty operators in di�erent 
ases, i. e., initializing the 
om-

putation with di�erent initial parti
le velo
ity distributions. In Se
. 2.2.1 the

evolution of a bi-Maxwellian velo
ity distribution is dis
ussed. Then, in Se
.

2.2.2 we analyze the relaxation of velo
ity distributions with a plateau and

a beam along one velo
ity dire
tion. Finally, in Se
. 2.2.3, the evolution of a

more �distorted� velo
ity distribution, whi
h 
omes out from a self-
onsistent

1D�1V Vlasov-Poisson simulation of nonlinear wave-parti
le intera
tion, is

dis
ussed.

2.2.1 Bi-Maxwellian velo
ity distribution

We 
onsider the following bi-Maxwellian non-drifting velo
ity distribution:

f(vx, vy, vz) =
1

(2π)3/2 T⊥

√

T‖

exp

[

−
(

v2x
2T⊥

+
v2y
2T⊥

+
v2z
2T‖

)]

. (2.7)

Here, the subs
ript ‖ indi
ates the z dire
tion, while x and y are the

perpendi
ular (⊥) dire
tions. We de�ne the temperature anisotropy as A =

T⊥/T‖.

From the analyti
al point of view, by assuming that the distribution fun
-

tion remains a bi-Maxwellian during the pro
ess of 
ollisional relaxation, one


an integrate Eq. (2.4) in the 
ase of both Landau and Dougherty operators

to obtain the evolution equation for parallel and perpendi
ular temperatures.

In the 
ase of the Landau operator [151℄, one gets:

dT⊥

dt
= −ν

L

(

T⊥ − T‖

)

, (2.8)

dT‖

dt
= 2ν

L

(

T⊥ − T‖

)

; (2.9)

νT being a thermalization frequen
y given by:

ν
L
=

g ln Λ

8π3/2T
3/2
‖

−3 +
(

Ã+ 3
)

ϕ(Ã)

Ã2
, (2.10)
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Figure 2.1: (Color online) Time evolution of parallel and perpendi
ular tempera-

tures obtained from Eqs. (2.8)−(2.9) (bla
k solid lines) and Eqs. (2.12)−(2.13)
(red dashed lines). The initial anisotropy is A = 4 and the plasma parameter

g = 10−2
.

where Ã = A− 1 and

ϕ(x) =











tan−1(
√
x)/

√
x x > 0

1 x = 0

tanh−1(
√
−x)/

√
−x x < 0

(2.11)

It is worth noting that, in Eqs. (2.8)−(2.9), the total temperature T =

(2T⊥ + T‖)/3 remains 
onstant in time.

In the same way, for the 
ase of the Dougherty operator, one 
an easily

get:

dT⊥

dt
= −2ν

D

3

(

T⊥ − T‖

)

, (2.12)

dT‖

dt
= 2

2ν
D

3

(

T⊥ − T‖

)

; (2.13)

ν
D
being a thermalization frequen
y written as:

ν
D
=

g ln Λ

8π

n

T 3/2
. (2.14)

For the 
ase of the Dougherty operator an evolution equation for the entropy
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S = −
∫

d3vf ln f 
an be easily dedu
ed, and reads:

dS

dt
= nν

D

[

T
T⊥ + 2T‖

T⊥T‖

− 3

]

. (2.15)

Figure 2.1 shows the time evolution of parallel and perpendi
ular tem-

peratures obtained from Eqs. (2.8)−(2.9) (bla
k solid lines) and from Eqs.

(2.12)−(2.13) (red dashed lines). In this spe
i�
 
ase the initial anisotropy

is A = 4, while the value of the plasma parameter is g = 10−2
. In this plot,

time is normalized to the inverse Spitzer-Harm frequen
y [124℄ νSH , that is

the 
hara
teristi
 
ollisional frequen
y for relaxation pro
esses in plasmas,

and res
aled by a fa
tor α. The value of α is set equal to 1 in the 
ase

of the Landau operator, while in the 
ase of the Dougherty operator it is

determined numeri
ally in su
h a way to minimize the following fun
tion:

σ(α) =

√

1

tmax

∫ tmax

0

{

[

T
(L)

‖ (t)− T
(D)

‖ (αt)
]2

+
[

T
(L)

⊥ (t)− T
(D)

⊥ (αt)
]2
}

dt

(2.16)

where tmax is the time at whi
h the thermal equilibrium is established. This

pro
edure gives α = 3.55 for the Dougherty operator.

It is worth noting that res
aling the time by α = 3.55 in the 
ase of the

Dougherty operator 
orresponds to res
aling the thermalization frequen
y

ν
D
by 1/α; in other words, the 
ollisional e�e
t of the Dougherty operator is

made �slower� than it would be originally.

As it is 
lear from Fig. 2.1, when res
aling the time as explained above,

the evolution of perpendi
ular and parallel temperatures obtained through

the Landau equations (2.8)−(2.9) and the Dougherty equations (2.12)−(2.13)
looks 
losely similar for many Spitzer-Harm times. We have 
he
ked that the

value of the res
aling fa
tor α does not depend on the value of g.

The analyti
al predi
tions for the time evolution of T⊥ and T‖ provide

ex
ellent ben
hmarks to 
he
k the dire
t numeri
al solution of Eq. (2.4).

Therefore we solved numeri
ally Eq. (2.4) in the 
ase of the Landau opera-

tor and of the Dougherty operator, through the Eulerian algorithm shortly
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Figure 2.2: (Color online) (a) Time evolution of the parallel and perpendi
ular

temperatures for the Landau operator 
ase. The bla
k solid line represents the

time evolution of the moments equations [Eqs. (2.8)−(2.9)℄, while the red dots


orrespond to the time evolution of the temperatures obtained from the numeri-


al evolution of Eq. (2.4). (b) Time evolution of the parallel and perpendi
ular

temperatures for the Dougherty operator 
ase. The bla
k solid line represents the

time evolution of the moments equation [Eqs. (2.12)−(2.13)℄, while the red dots


orrespond to the time evolution of the temperatures obtained from the numeri
al

evolution of Eq. (2.4). (
) Time evolution of the entropy growth obtained from

Eq. (2.15) and from the numeri
al evolution of the Eq. (2.4) for the 
ase of the

Landau operator (red dots) and the Dougherty operator (blue dots), respe
tively.

presented previously. Then, we 
ompared the results of these simulations for

the evolution of T⊥ and T‖ with the theoreti
al solutions. In these dire
t

simulations the initial 
ondition for the velo
ity distribution is given by Eq.

(2.7) with A = 4 and the plasma parameter is g = 10−2
.

In Fig. 2.2 (a) the evolution of T⊥ and T‖ is reported for the 
ase in

whi
h the Landau operator is used in the right-hand side of Eq. (2.4). The

analyti
al 
urves from Eqs. (2.8)−(2.9) are indi
ated as bla
k solid lines,

while the results of the dire
t simulation as red stars. In the same way, Fig.

2.2 (b) shows the 
omparison between theory and numeri
al results for the


ase of the Dougherty operator. In both 
ases we get a very good agreement

between analyti
al and numeri
al results. Again, the time s
aling fa
tor is

α = 1, 3.55 for the 
ase of the Landau operator and of the Dougherty operator

respe
tively.

Finally, in Fig. 2.2 (
) we report the entropy growth obtained through the

dire
t simulation of Eq.(2.4), in the 
ase of the Landau operator (red stars),

of the Dougherty operator (blue stars). The bla
k solid line indi
ates the
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Figure 2.3: (Color online) Snapshot (iso-
ontour levels) of the distribution fun
tion

in the whole 3V spa
e at four di�erent times: α t1 νSH = 0.00 (a), α t2 νSH = 0.70
(b), α t3 νSH = 1.38 (
) and α t4 νSH = 4.13 (d).

analyti
al solution from the time evolution of S from Eq. (2.15). Here, we

point out that at time t ≃ 1.5ν−1
SH the Landau solution slightly departs from

the Dougherty solution even when time is res
aled by the fa
tor α = 3.55. A

better agreement has been re
overed for α = 3.35. It is worth noting that, in

both 
ases, the �nal temperature and the total entropy growth are in agree-

ment with the thermodynami
al predi
tion on the �nal temperature and on

the entropy variation between the initial 
ondition (three Maxwellian distri-

bution fun
tions with di�erent temperatures 
onsidered as isolated systems)

and the equilibrium distribution fun
tions at saturation (three Maxwellian

distribution fun
tions with the same temperature). This shows that the nu-

meri
ally produ
ed entropy variation is negligible with respe
t to the entropy

variation produ
ed by the 
ollisional terms.

Eulerian algorithms allow for a 
lean des
ription (almost noise-free) of the

velo
ity distribution. Figures 2.3 (a)-(d) show four snapshots of the velo
ity
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distribution at four di�erent times for a Dougherty simulation of Eq. (2.4)

with initial anisotropy A = 8 and g = 10−2
. The sequen
e of plots illustrates

how 
ollisions work to restore the spheri
al shape of the velo
ity distribution,

whi
h 
orresponds to the isotropi
 Maxwellian 
on�guration.

2.2.2 Plateau and Beam velo
ity distributions

In order to investigate whether the time res
aling pro
edure allows in gen-

eral to reprodu
e the 
ollisional Landau relaxation through the simpli�ed

Dougherty operator, in this Se
tion we follow numeri
ally the 
ollisional evo-

lution of velo
ity distributions with sharp gradients in one velo
ity dire
tion.

In parti
ular, we 
onsidered a velo
ity distribution with a plateau along vz

(fp) at t = 0 and a velo
ity distribution with a beam along vz (fb) at t = 0.

This kind of velo
ity distributions are usually generated by resonant wave-

parti
le intera
tion pro
esses and are very 
ommon features re
overed, for

example, in solar-wind spa
e
raft observations [21℄ and in laboratory plasma

experiments [143, 152℄.

For these new set of simulations the plasma parameter is g = 10−2
. The

expli
it expressions of the initial velo
ity distributions are:

fp(vz) = f0(vz)−
[

f0(vz)− f0(vp)
]

·
[

1 +

(

vz − vp
dvp

)mp
]−1

(2.17)

fb(vz) = f0(vz) +
nb√
2πTb

exp

[

−(vz − Vb)
2

2Tb

]

(2.18)

being f0(vz) = 1/
√
2π exp[−v2z/2], vp = 1.44, mp = 8, dvp = 0.5 and

nb = 0.17, Vb = 2.2 and Tb = 0.1.

Figure 2.4 (a)-(b) show the initial velo
ity distributions fp and fb, re-

spe
tively. Panels (
)-(d) in the same �gure display the time evolution of

S obtained through the Landau operator (bla
k solid line) and through the

Dougherty operator (red stars), for the initial 
onditions fp and fb respe
-

tively. The res
aling fa
tor is given the value α = 1, 3.55 for the Landau

operator and the Dougherty operator, respe
tively. We note that, for the

plateau initial 
ondition fp, the Landau solution and the Dougherty solu-
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Figure 2.4: (Color online) In the top row, the initial velo
ity distributions fun
tions

along vz are shown for the plateau 
ase [Eq. (2.17)℄ (a) and for the beam 
ase [Eq.

(2.18)℄ (b). In the bottom row, the entropy growth is presented for the Landau

operator (bla
k solid line) and for the Dougherty operator (red dashed line) for the

plateau 
ase (
) and for the beam 
ase (d).

tion almost superpose one on another, on
e time has been res
aled. A slight

dis
repan
y is re
overed for the 
ase of the beam initial 
ondition fb.

A better agreement between Landau solution and Dougherty solution 
an

be obtained slightly modifying the value of the s
aling parameter α (better


hoi
es would be α = 3.35 for the plateau initial 
ondition and α = 3.75 for

the beam initial 
ondition), whi
h, however, remains very 
lose to the value

α = 3.55 predi
ted from the analyti
al 
onsiderations in the previous se
tion.

2.2.3 Trapped parti
le distribution fun
tion

As a �nal 
ase, in this se
tion we 
ompare Landau and Dougherty operators

in the pro
ess of 
ollisional relaxation of a velo
ity distribution generated by

the pro
ess of parti
le trapping. The trapped parti
le distribution fun
tion
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Figure 2.5: (Color online) (a) Phase spa
e portrait of the distribution fun
tion

obtained through a self-
onsistent 1D�1V Vlasov-Poisson simulation at time tωp =
500 zoomed in the region x = [2, 18], v = [0, 4]. The red verti
al line indi
ates the

value of z at whi
h we get the velo
ity pro�le fv(vz), shown in panel (b). (
) Time

evolution of the entropy growth for the Landau operator 
ase (bla
k solid line) and

for the Dougherty operator 
ase (red dots).

is obtained by means of a 1D�1V self-
onsistent Vlasov-Poisson simulation

(with no 
ollisions) with kineti
 ele
trons and �xed protons. In this sim-

ulation, the initial plasma is spatially homogeneous, with Maxwellian dis-

tribution of velo
ities. The phase spa
e numeri
al domain is dis
retized by

256× 101 grid points in physi
al and velo
ity spa
e, respe
tively.

We laun
h into the plasma an external driver sinusoidal ele
tri
 �eld of

the form:

E
D
(z, t) = E0 g(t) sin[k(z − vφt)] (2.19)

where E0 = 0.2 ωpmvth/e (m and e being the ele
tron mass and 
harge,

respe
tively), k = 0.26λ−1
D , vφ = 1.42vth and

g(t) =























sin (πt/100) t < 50

1 50 ≤ t < 150

cos [π(t− 150)/100] 150 ≤ t < 200

0 t ≥ 200

(2.20)

This external �eld is turned o� on
e a population of trapped parti
les has

been 
reated. Figure 2.5 (a) shows the phase spa
e portrait of the ele
tron

distribution fun
tion fe(z, vz) at a �xed instant of time, after the driver has

been turned o�. Here, a vorti
al stru
ture, typi
al signature of the presen
e
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of trapped parti
les, is re
overed. At this point, we 
onsider the velo
ity

pro�le fv(vz) = fe(zm, vz), where zm (red verti
al line in the plot) is the

spatial point 
orresponding to the maximum velo
ity width of the trapping

region. The velo
ity pro�le fv(vz) is reported in Fig. 2.5 (b).

Therefore, we build a three-dimensional velo
ity distribution as follows:

f(vx, vy, vz) = C f
M
(vx, vy)fv(vz) (2.21)

where the 
onstant C is 
hosen su
h that

∫

f(vx, vy, vz) d
3v = n = 1 and

f
M
(vx, vy) = exp

(

−
v2x + v2y
2T

)

(2.22)

with

Uz =
1

n

∫

vzfv(vz) dvz (2.23)

T =
1

n

∫

(vz − Uz)
2fv(vz) dvz (2.24)

The three-dimensional velo
ity distribution f(vx, vy, vz) is used as initial


ondition for the dire
t simulations of Eq. (2.4), performed for both the

Landau and the Dougherty operator. Figure 2.5 (
) shows the evolution

of the entropy for the 
ase of the Landau operator (bla
k line) and of the

Dougherty operator (red dots). In this �gure, as in previous examples, time

has been s
aled by α = 1, 3.55 for the Landau operator and the Dougherty

operator, respe
tively. Even in this 
ase a slight dis
repan
y in the evolution

of S is re
overed, while a better agreement is found when the s
aling fa
tor

is given the value α = 3.75 for the Dougherty simulation.

Finally, in Fig. 2.6 (a)-(d), we dire
tly report the velo
ity distribution

f (evaluated at vx = vy = 0) versus vz at four di�erent times in the sim-

ulation. The bla
k line in ea
h plot represents the solution obtained when

the Landau operator is 
onsidered, while the red-dashed line 
orresponds to

the Dougherty solution. Here α = 1, 3.55 for the Landau operator and the

Dougherty operator, respe
tively.

81



Collisional e�e
ts des
ribed through the Dougherty operator

Figure 2.6: (Color online) Velo
ity distributions obtained from the numeri
al so-

lution of the Landau equation (bla
k solid line) and of the Dougherty equation

(red dashed line) at four di�erent times α t1 νSH = 0.03 (a), α t2 νSH = 0.34 (b),

α t3 νSH = 0.69 (
) and α t4 νSH = 1.38 (d).

It is worth noting that, during the relaxation pro
ess, the form of the

velo
ity distributions display di�erent details. In parti
ular the Dougherty

operator seems to be faster than the Landau operator, in smoothing the

velo
ity gradients. This is 
onsistent with the fa
t that, when slightly in-


reasing more and more the value of the res
aling fa
tor α for the Dougherty

simulation, the detailed evolutions of the velo
ity distributions approa
h ea
h

other more and more. The di�erent behavior of the two operators 
an be due

to the di�erent way they smooth and weight the gradients in velo
ity spa
e.

To summarize, for all velo
ity distributions 
onsidered in this work, the

value of the fa
tor α = 3.55 allows to almost superpose the results for the

time evolution of T⊥ and T‖ obtained in the 
ase of the Landau operator and

of the Dougherty operator. For the time evolution of the entropy, the two

operators exhibit slight di�eren
es, presumably due to the di�erent roles of
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the velo
ity gradients in the Landau and the Dougherty operator. However,

we point out that the maximum relative dis
repan
y for the time evolution

of entropy, in a one Spitzer-Harm time, is about 6%. Our results allow to


on
lude that the la
k of physi
al details that one relentlessly introdu
es

by approximating the Landau operator with the Dougherty operator 
an

be 
onsidered negligible 
ompared to the advantage of having a 
ollisional

operator, the Dougherty one, that 
an be easily used and implemented in

self-
onsistent Eulerian simulations and that reprodu
es satisfa
torily the

Landau 
ollisional thermalization, on
e an appropriate time res
aling has

been introdu
ed.

2.3 Nonlinear regime of ele
trostati
 waves in

presen
e of ele
tron-ele
tron 
ollisions

In this se
tion, we present the e�e
ts of in
luding ele
tron-ele
tron 
olli-

sions in self-
onsistent Eulerian simulations of ele
trostati
 wave propagation

in nonlinear regime. Based on the 
onsiderations of the previous se
tion,

ele
tron-ele
tron 
ollisions are modeled through the full three-dimensional

Dougherty 
ollisional operator; this allows the elimination of unphysi
al

byprodu
ts due to redu
ed dimensionality in velo
ity spa
e. The e�e
ts of

non-zero 
ollisionality are dis
ussed in the nonlinear regime of the symmetri


bump-on-tail instability and in the propagation of KEEN waves. For both


ases it is shown how 
ollisions work to destroy the phase-spa
e stru
tures


reated by parti
le trapping e�e
ts and to damp the wave amplitude, as the

system returns to the thermal equilibrium. In parti
ular, for the 
ase of the

KEEN waves, on
e 
ollisions have smoothed out the trapped parti
le popu-

lation whi
h sustains the KEEN �u
tuations, additional os
illations at the

Langmuir frequen
y are observed on the fundamental ele
tri
 �eld spe
tral


omponent, whose amplitude de
ays in time at the usual 
ollisionless linear

Landau damping rate.
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2.3.1 Mathemati
al and Numeri
al Approa
h

We 
onsider a plasma 
omposed by kineti
 ele
trons and motionless pro-

tons and analyze the dynami
s of this system in ele
trostati
 approxima-

tion. As dis
ussed earlier, we model ele
tron-ele
tron 
ollisions through the

Dougherty operator [58, 59, 135℄ and negle
t ele
tron-proton and proton-

proton 
ollisions, as their 
hara
teristi
 time is signi�
antly longer than that

for ele
tron-ele
tron intera
tions [56, 62, 63℄.

We 
onsider the following dimensionless Dougherty-Poisson (DP) equa-

tions, in 1D�3V phase spa
e 
on�guration:

∂f

∂t
+ vx

∂f

∂x
+

∂φ

∂x

∂f

∂vx
=

∂f

∂t

∣

∣

∣

∣

coll

(2.25)

− ∂2φ

∂x2
= 1−

∫

f d3v ; (2.26)

where f = f(x,v) is the ele
tron distribution fun
tion, φ = φ(x) = −dE/dx

is the ele
trostati
 potential (E is the ele
tri
 �eld) and ∂f/∂t|coll is the

Dougherty 
ollisional operator. Due to their inertia, the protons are 
onsid-

ered as a motionless neutralizing ba
kground of 
onstant density n0 = 1. In

previous equations, time is s
aled to the inverse ele
tron plasma frequen
y

ωpe, velo
ities to the initial ele
tron thermal speed vth,e; 
onsequently, lengths

are normalized by the ele
tron Debye length λDe = vth,e/ωpe and the ele
tri


�eld by ωpemvth,e/e (m and e being the ele
tron mass and 
harge, respe
-

tively). For the sake of simpli
ity, from now on, all quantities will be s
aled

using the 
hara
teristi
 parameters listed above.

The Dougherty 
ollisional operator [58, 59℄ has the following form:

∂f

∂t

∣

∣

∣

∣

coll

= ν(n, T )
∂

∂vj

[

T
∂f

∂vj
+ (v − V )j f

]

; (2.27)

here, ν(n, T ) is the 
ollision frequen
y:

ν(n, T ) = ν0
n

T 3/2
; ν0 =

g ln Λ

α8π
; (2.28)

where g = 1/nλ3
D,e is the plasma parameter, ln Λ ≃ − ln g/3 is the Coulom-
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bian logarithm, α = 3.55 is the s
aling fa
tor dis
ussed previously, and the

subs
ript j indi
ates the j-th ve
tor 
omponent. Moreover n =
∫

d3vf ,

Vj = 1/n
∫

d3v vjf , T = 1/3n
∫

d3v (v −V)2f are respe
tively plasma den-

sity, mean velo
ity and temperature. These last quantities obviously depend

on 
oordinate x, sin
e f = f(x,v). Einstein notation has been used in Eq.

(2.27).

We solve numeri
ally Eqs. (2.25)�(2.26) through a Eulerian 
ode based

on a �nite di�eren
e s
heme for the approximation of spatial and velo
ity

derivatives of f over the grid-points [40, 153, 154℄. Time evolution of the

distribution fun
tion is approximated by using the splitting s
heme proposed

by Filbet et al. [126℄ (see also Refs. [62, 63℄ for details about the numeri
al

algorithm). We employ periodi
 boundary 
onditions in physi
al spa
e and

f is set equal to zero for |vj | > vmax, where vmax = 6vth,e. Phase spa
e is

dis
retized with Nx = 128 grid points in the physi
al domain Dx = [0, L]

and Nvx ×Nvy ×Nvz points in the three-dimensional velo
ity domain (Nvx =

101, Nvy = Nvz = 51). Finally, the time step ∆t has been 
hosen in su
h

a way to satisfy Courant-Friedri
hs-Levy 
ondition [150℄ for the numeri
al

stability of time expli
it �nite di�eren
e s
hemes.

2.3.2 Numeri
al Results

We present and dis
uss the results of kineti
 Eulerian simulations in two

di�erent physi
al situations: the linear and nonlinear regime of the bump-

on-tail instability and the ex
itation and propagation of the KEEN waves.

Bump-on-tail instability

In this se
tion, we fo
us on the pro
ess of bump-on-tail instability [155, 156℄

in a 
ollisional plasma, in order to point out the role of 
ollisions on the

onset of the instability and on its nonlinear saturation. The initial ele
tron

distribution fun
tion 
onsidered for the numeri
al runs has the following

form:

f(vx, vy, vz, t = 0) = f0(vx)fM
(vy)fM

(vz) (2.29)
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Figure 2.7: (Color online) Velo
ity dependen
e of f0; the verti
al red-dashed line

indi
ates the wave phase speed.

where:

f0(vx) =
n1

(2πT1)1/2
exp

(

− v2x
2T1

)

+
n2

(2πT2)1/2
×

[

exp

(

−(vx − V0)
2

2T2

)

+ exp

(

−(vx + V0)
2

2T2

)

]

(2.30)

f
M
(vj) =

1

(2πT )1/2
exp

(

−
v2j
2T

)

; j = y, z (2.31)

with n1 = 0.97, n2 = 0.015 (n0 = n1 + 2n2 = 1), V0 = 4.0, T1 = 1.0 and

T2 = 0.2. Moreover, f
M
(vj=y,z) is a normalized Maxwellian with temperature

T = 1/n
∫

dvx(vx −Vx)
2f0(vx). In these 
onditions, the plasma initially does

not present any temperature anisotropy among the three velo
ity dire
tions.

Choosing an initial ele
tron velo
ity distribution that is symmetri
 in vx

guarantees an initial state with no net plasma 
urrents or magneti
 �elds

[156℄.

At t = 0, we perturb the system with a sinusoidal density perturbation of

amplitude A1 ≃ 5.6×10−4
; we set the length of the spatial domain L ≃ 22, in

su
h a way to ex
ite the most unstable wavenumber (the one with the largest

growth rate) k∗ = 2π/L ≃ 0.28, whose value has been predi
ted through a

linear Vlasov solver, whi
h 
omputes numeri
ally the roots of the ele
trostati


diele
tri
 fun
tion. This density perturbation produ
es (through Poisson

86



Collisional e�e
ts des
ribed through the Dougherty operator

Figure 2.8: (Color online) Time evolution of log |Ek1(t)/Ek1(0)|, for ν0 = 0.0 (a)

and ν0 = 2.17 × 10−3
(b); here, the red-dashed 
urves represent the theoreti
al

predi
tion for the instability growth rate γthI ≃ 7.46× 10−2
. In panel (
), the time

evolution of the entropy variation ∆S (in %) is reported for ν0 = 0.0 (bla
k-solid


urve) and ν0 = 2.17 × 10−3
(red-solid 
urve).

equation) an initial sinusoidal ele
tri
 �eld of amplitude E1 ≃ 2 × 10−3
.

Figure 2.7 shows f0 as a fun
tion of vx; here, the verti
al red-dashed line

represents the value of the wave phase speed vφ, whi
h 
learly falls in the

unstable region where df0/dvx|vφ > 0.

Figure 2.8 (a) displays the time evolution of the logarithm of the fun-

damental ele
tri
 �eld spe
tral 
omponent Ek1 (where k1 = k∗
), normalized

to its initial value (log |Ek1(t)/Ek1(0)|), for a 
ollisionless simulation. In the

early stage of the system evolution, a linear exponential growth of the wave

amplitude is observed with growth rate γobs
I = 7.29 × 10−2

; this value is in

good agreement with the theoreti
al expe
tation obtained through a numer-

i
al linear Vlasov solver γth
I = 7.46 × 10−2

(red-dashed line). Later in time,

nonlinear e�e
ts 
ome into play and arrest the exponential growth; in this

regime, the wave amplitude displays nearly periodi
 os
illations around an

almost 
onstant saturation level. These os
illations are driven by parti
le

trapping pro
esses [157, 158℄ and typi
al vorti
al stru
tures are generated in

the longitudinal (x− vx) phase spa
e, in the velo
ity range around vφ.

When 
ollisions are taken into a

ount, the system evolution 
an 
hange

signi�
antly. In Figure 2.8 (b), we show a 
ollisional simulation with ν0 ≃
2.17 × 10−3

. For su
h value of the 
ollision frequen
y, the linear growth of

the wave amplitude remains 
lose to exponential with a growth rate some-

what less than that for the 
ollisionless 
ase. This suggests that, in this
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Figure 2.9: x − vx 
ontour plot of the ele
tron distribution fun
tion (zoomed in

the velo
ity range ≃ vφ), evaluated at vy = vz = 0, for ν0 = 0.0 (top row) and

ν = 2.17 × 10−3
(bottom row), at the time instants t = τ1 = 80 (left 
olumn) and

t = τ2 = 320 (right 
olumn).

s
enario, the damping rate due to 
ollisions is lower than the growth rate

of the instability, thus showing that 
ollisions are too weak to prevent the

instability onset. However, the nonlinear saturation of the instability is evi-

dently a�e
ted by 
ollisions. In fa
t, from Figure 2.8 (b), one noti
es that the

saturation amplitude is de
reased with respe
t to the 
ollisionless 
ase and

that the ele
tri
 os
illations are signi�
antly damped after the saturation of

the instability, as 
ollisions work to smooth out the trapping stru
ture and

to drive the parti
le distribution towards the equilibrium Maxwellian shape.

Additional runs with larger values of ν0 (not presented here) show how also

the linear phase of the system evolution is modi�ed in the strong 
ollisional

regime and eventually the onset of the instability is 
ompletely prevented.

We evaluated also from the simulations the entropy S = −
∫

f ln f dx dv.
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Figure 2.10: (Color online) Semi-logarithmi
 plot of f(x0, vx, vy = 0, vz = 0) as

a fun
tion of vx at the time instant t = 1200, for ν0 = 0.0 (bla
k-solid line) and

ν0 = 2.17×10−3
(red-solid line); the bla
k-dashed 
urve indi
ates the 
orresponding

Maxwellian.

In Fig. 2.8 (
) we 
ompare the entropy growth,de�ned as ∆S = [S(t)−S(t =

0)]/S(t = 0), for the 
ollisionless 
ase (bla
k solid line) and for the weekly


ollisional 
ase with ν0 = 2.17× 10−3
(red solid line). Sin
e the 
ollisionless

Vlasov system is an iso-entropi
 system, the small entropy growth (≃ 0.15%)

re
overed in the 
ollisionless simulation is obviously due to numeri
al e�e
ts

(�lamentation). On the other hand, in the 
ollisional 
ase, the in
rease in

entropy (about 10 times larger than the unphysi
al entropy growth for the


ollisionless simulation) is mainly due to the e�e
t of 
ollisions whi
h drive

the system towards thermal equilibrium, a

ording to H theorem.

To 
on
lude this Se
tion, in Fig. 2.9 we show the x − vx 
ontour plots

(zoomed in the velo
ity range ≃ vφ) of the distribution fun
tion evaluated

at vy = vz = 0; the top/bottom row in this �gure 
orresponds to the 
ol-

lisionless/
ollisional 
ase. We plot the distribution fun
tion at two instants

of time in the simulations (τ1 = 80 and τ2 = 320), indi
ated by the ver-

ti
al solid-blue lines in Figs. 2.8 (a)�(b); τ1 
orresponds to the end of the

exponential growth phase of the wave amplitude, while τ2 is pi
ked in the

nonlinear regime of wave propagation. In the top row of Fig. 2.9 (
olli-

sionless 
ase), one re
ognizes (left panel) the vorti
al phase-spa
e stru
ture

at vx ≃ vφ ≃ 3.5, typi
al signature of parti
le trapping, whi
h is persistent
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in time (right panel). A similar phase-spa
e vortex (not shown here) is re-


overed at vx ≃ −3.5; the two 
ounter-propagating phase spa
e trapping

populations are asso
iated with the standing plasma wave laun
hed by the

initial density perturbation and ampli�ed by the bump-on-tail instability. In

the bottom row of the same �gure (
ollisional 
ase), at t = τ1 [Fig. 2.9 (
)℄,

the vortex has a smaller velo
ity width as 
ompared to the 
ollisionless simu-

lation; moreover, 
ollisions prevent the generation of �ne velo
ity s
ales and,

at t = τ2 [Fig. 2.9 (d)℄, the trapping stru
ture has been almost 
ompletely

smoothed out.

Figure 2.10 shows, in a semi-logarithmi
 plot, the dependen
e of the dis-

tribution fun
tion on vx (evaluated at a �xed spatial position x0, and at

vy = vz = 0) at the time instant t = 1200, for the 
ollisional simulation

(red-solid line) and the 
ollisionless one (bla
k-solid line). The point x0 
or-

responds to the spatial position where the phase spa
e vortex moving with

positive velo
ity has its maximum velo
ity width. In the 
ollisional 
ase,

thermal equilibrium has been almost restored by 
ollisions, while, in absen
e

of 
ollisions, the distribution fun
tion still displays many strong deviations

from the Maxwellian pro�le (represented by the bla
k-dashed 
urve). We

point out that the asymmetry of the velo
ity pro�le for the 
ollisionless sim-

ulation in Fig. 4 (bla
k-solid line) is due to the fa
t that at t = 1200 the two


ounter-propagating phase spa
e trapping vorti
es are not exa
tly aligned in

phase spa
e (i. e. their 
enters are not in the same spatial lo
ation).

Kineti
 ele
trostati
 ele
tron nonlinear waves

For the simulations of KEEN wave ex
itation [138, 137℄, we refer to a previous

work by Cheng et al. [159℄. A

ording to these authors, the box length

for this simulation is set L = 24.166. At t = 0 the plasma is spatially

homogeneous with density n0 = 1 and isotropi
 Maxwellian in velo
ities

with temperature T = 1. In order to produ
e the ex
itation of KEEN waves,

we drive the plasma through an external ele
tri
 �eld of the form [137℄:

E
D
(x, t) = E0 g(t) sin[k0(x− vφt)] , (2.32)
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Figure 2.11: (Color online) Time evolution of the �rst four ele
tri
 �eld spe
tral


omponents for the simulations with ν0 = 0.0 (a), ν0 = 3.23 × 10−4
(b) and

ν0 = 2.17 × 10−3
(
). The bla
k-dashed 
urves in panels (b) and (
) indi
ate the

theoreti
al Landau predi
tion γL ≃ 3.40 × 10−3
for Langmuir wave damping rate.

where E0 is the maximum driver amplitude, k0 = 2π/L = 0.26 is the funda-

mental wavenumber, vφ = 1.42 and

g(t) =























sin (πt/100) t < 50

1 50 ≤ t < 150

cos [π(t− 150)/100] 150 ≤ t < 200

0 t ≥ 200

. (2.33)

The external �eld is turned o� after a time at whi
h past experien
e

indi
ates that optimal trapping of parti
les is a
hieved (i.e., an appropriate

ratio of an ele
tron trapping period for the external drive). We performed

di�erent simulations by varying the value of the plasma parameter g, and


onsequently of ν0 (ν0 = 0.00, 3.23× 10−4, 2.17 × 10−3
), keeping �xed E0 =

0.05.

Figure 2.11 shows the evolution of the �rst four ele
tri
 �eld spe
tral


omponents (with wavenumbers k1 = k0, k2 = 2k0, k3 = 3k0 and k4 = 4k0),

for ν0 = 0.00 (a), ν0 = 3.23× 10−4
(b) and ν0 = 2.17× 10−3

(
) respe
tively.

In the 
ollisionless 
ase [Fig. 2.11 (a)℄, we re
over one of the typi
al

features of the KEEN waves [137, 138, 159℄. While the driver is turned on,

the energy inje
ted into the fundamental wavenumber 
omponent (bla
k line)

�ows also to the higher spe
tral 
omponents (red, blue and yellow solid lines).

After the driver has been turned o�, the resulting ele
tri
 signal is 
omposed
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Figure 2.12: (Color online) Spe
tral energy of the fundamental ele
tri
 �eld 
om-

ponent as a fun
tion of frequen
y, for the stronger 
ollisional 
ase with ν0 =
2.17 × 10−3

, 
omputed in the time intervals 0 ≤ t ≤ 180 (bla
k 
urve), and

400 ≤ t ≤ 1200 (red 
urve). The verti
al 
la
k-dashed 
urve indi
ates the value of

the Langmuir frequen
y of the fundamental wavenumber.

by many wavenumbers, in a stable ratio one with another, thus departing

signi�
antly from the purely sinusoidal spatial shape of the driver �eld.

Figures 2.11 (b)-(
) display the time evolution of the ele
tri
 �eld spe
tral


omponents in two di�erent 
ollisional plasmas, for ν0 = 3.23 × 10−4
and

ν0 = 2.17× 10−3
, respe
tively.

Beginning with the behavior while under the drive, on 
omparing the be-

havior to that without 
ollisions, the behavior seems quite straightforward.

For the weakly 
ollisional 
ase of Fig. 2.11 (b), in the initial phase of the

system evolution (i.e., up to t = 200), when the external driver is on, the ex-


itation of the spe
tral 
omponents does not seem to be signi�
antly a�e
ted

by 
ollisions i.e., the early parts of Figs. 2.11 (a) and 2.11 (b) look mu
h

alike. On the other hand the response of Fig. 2.11 (
) with strong 
ollisions

is mu
h weaker.

Turning now to the behavior after the drive has stopped, a signi�
ant

di�eren
e between the damping is apparent between the 
ases where the
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Figure 2.13: x − vx 
ontour plot of the ele
tron distribution fun
tion (zoomed in

the velo
ity range ≃ vφ), evaluated at vy = vz = 0, for simulations with ν0 =
0.0, 3.23 × 10−4, 2.17 × 10−3

(top, middle and bottom row, respe
tively) and at

di�erent times t = 200, 320, 400 (left, middle and right 
olumn, respe
tively).

damping is zero (Fig. 2.11 (a)), moderate (Fig. 2.11 (b)), and strong (Fig.

2.11 (
)). At the extremes, the 
ollisionless KEEN behavior of Fig. 2.11 (a)

with its strongly persistent harmoni
s is in striking 
ontrast to the highly


ollisional 
ase of Fig. 2.11 (
) where the fundamental is the only 
omponent

whi
h survives in the long time limit. For intermediate 
ollision frequen
y

(ν0 = 3.23× 10−4
) 
ase of Fig. 2.11 (b), in the time interval 200 ≤ t ≤ 550,

the higher harmoni
 ele
tri
 �eld 
omponents de
rease somewhat faster than

the fundamental (as one might expe
t) at roughly 
onstant rates, but then

there o

urs a fairly sudden and remarkable transition (for 500 ≤ t ≤ 600)

to a mu
h lower de
ay rate for the fundamental and an in
reased de
ay rate

for the higher (2, 3, 4) harmoni
s. Thus at late times only the fundamental


omponent survives.
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These late-time fundamental de
ay rates re
overed for the two 
ollisional


ases (Figs. 2.11 (b) and 2.11 (
)) seem almost independent of the 
ollision

frequen
y. Through a 
areful analysis of the time signals, we realized that

the os
illations on the fundamental wavenumber, observed for t > 600 in

Fig. 2.11 (b) and for t > 200 in Fig. 2.11 (
), o

ur at the Langmuir fre-

quen
y, whi
h is larger than the frequen
y of the KEEN waves ex
ited by the

driver. The dashed 
urves in Figs. 2.11 (b)-(
) represent the predi
tion for


ollisionless Landau damping rate [160℄, whi
h �ts 
learly well the numeri-


al results, for both the intermediate and strong 
ollisional 
ases. In order

to understand the origin of these Langmuir �u
tuations, we performed the

Fourier analysis of the ele
tri
 signal, in the time interval in whi
h the driver

is still on; this analysis revealed that the Langmuir frequen
y has been driven

by the driver itself, whi
h pumps energy at the KEEN frequen
y, with an

additional small amount of energy at the Langmuir frequen
y on the funda-

mental. The ex
itation of this additional Langmuir os
illation by the driver

is due to the fa
t that the external ele
tri
 �eld is turned on and o� quite

abruptly (with sharp time gradient in its amplitude). These abrupt ki
ks on

the plasma ex
ite Langmuir �u
tuations, sin
e they are proper modes of the

system. Presumably, a smoother ramping up and down of the driver �eld

(see Ref. [143℄) would have eliminated this additional Langmuir os
illation,

but it would have required a signi�
antly longer time for the driving pro
ess.

To substantiate the 
on
lusions above, in Fig. 2.12, we report the spe
-

tral energy of the fundamental 
omponent as a fun
tion of frequen
y, for the

stronger 
ollisional 
ase with ν0 = 2.17×10−3
, 
omputed in the time intervals

0 ≤ t ≤ 180 (bla
k 
urve), in whi
h the driver is still on, and 400 ≤ t ≤ 1200

(red 
urve), in whi
h the driver is o�. As it 
an be seen in this �gure, when

the driver is on, the main KEEN frequen
y peak is observed together with a

low energy peak at the Langmuir frequen
y (verti
al dot-dashed bla
k line in

the �gure); on the other hand, when the driver is o�, the KEEN �u
tuations

are killed by 
ollisions and only the Langmuir peak is visible. Finally, the

fa
t that these Langmuir os
illations de
ay at the 
ollisionless Landau damp-

ing rate suggests that 
ollisions, whi
h strongly a�e
t the evolution of the

KEEN �u
tuations, are negligible at higher Langmuir phase speeds, where
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the parti
le velo
ity distribution remains 
lose to a Maxwellian during the

simulation.

To 
on
lude this Se
tion, in Fig. 2.13 we show the 
ontour plots of the

ele
tron distribution fun
tion (evaluated at vy = vz = 0) in the longitudi-

nal (x − vx) phase spa
e, for simulations with ν0 = 0.0, 3.23 × 10−4, 2.17 ×
10−3

(top, middle and bottom row, respe
tively) and at di�erent times t =

200, 320, 400 (left, middle and right 
olumn, respe
tively). These 
ontour

plots 
learly show how the phase spa
e trapping stru
ture, whi
h is persis-

tent in the 
ollisionless simulation and sustain the KEEN �u
tuations, is

smoothed out by 
ollisions as fast as ν0 in
reases.

2.4 Summary

To summarize the results presented above, we performed a detailed 
ompar-

ison between the Landau operator [52℄ and the Dougherty operator [58℄ by

means of Eulerian kineti
 simulations of a homogeneous, �eld-free plasma in

a three-dimensional velo
ity spa
e.

As a �rst step, by looking at the 
ollisional relaxation pro
esses of a

bi-Maxwellian velo
ity distribution, we have realized that an "ad ho
" time

res
aling pro
edure allows to make the time evolution of parallel and perpen-

di
ular temperatures des
ribed by the Dougherty operator in Eqs. (2.12)�

(2.13) very 
lose to the one obtained when the full Landau integral is em-

ployed [Eqs. (2.8)−(2.9)℄, despite the profound mathemati
al di�eren
es be-

tween the two operators. Pushed by these surprising analyti
al �ndings, we

employed an Eulerian algorithm to simulate numeri
ally the return toward

equilibrium of several velo
ity distributions (bi-Maxwellian, beam distribu-

tion, plateau distribution et
.), for whi
h we veri�ed that the Dougherty-

Landau time res
aling fa
tor α is the same and does not 
hange with respe
t

to the analyti
al predi
tion obtained for the bi-Maxwellian 
ase.

We would like to point out that, sin
e the Dougherty operator does not

des
ribe the velo
ity dependen
e of the di�usion 
oe�
ients in velo
ity spa
e,

we 
annot assure that the time-s
aling fa
tor we determined does not 
hange

in situations where the distribution fun
tion is extremely distorted with re-
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spe
t to a Maxwellian one. Therefore, the detailed 
omparison between Lan-

dau and Dougherty 
ollisional operators in full self-
onsistent simulations will

be the subje
t of future works. However, sin
e the two 
ollisional operators

behave in a very similar way for about one Spitzer-Harm time, the Dougherty

operator 
an be employed in a wide range of kineti
 simulations to repla
e

the mu
h more 
omplex and 
omputationally demanding Landau operator.

One of these kind of 
ollisional self-
onsistent simulations have been de-

s
ribed in Se
t. 2.3, where the propagation of nonlinear ele
trostati
 waves in

a weakly 
ollisional plasmas has been analyzed. Ele
tron-ele
tron 
ollisions

have been modeled through the Dougherty 
ollisional operator for ele
tron-

ele
tron 
ollisions, in full three-dimensional geometry in velo
ity spa
e. We

des
ribed numeri
ally the onset and nonlinear saturation of the bump-on-

tail instability [155, 156℄ (in its symmetri
 form) and the ex
itation and

propagation of the so-
alled Kineti
 Ele
trostati
 Ele
tron Nonlinear waves

[137, 138, 159℄, in situations of intermediate range of plasma 
ollisionality.

In this way, we get rid of the restri
tive 
ollision-free assumption, keeping,

however, the system dynami
s far from the strong 
ollisional �uid regime,

where the plasma always remains at thermodynami
 equilibrium. In other

words, the physi
al regime of interest here is the one where kineti
 e�e
ts,

whi
h tend to drive the system far from the thermodynami
 equilibrium, and


ollisions, whi
h tend to restore the Maxwellian 
on�guration, 
ompete and


ombine themselves, shaping the parti
le distribution fun
tion in a 
omplex

way.

For the 
ase of the symmetri
 bump-on-tail instability, we noti
ed that

the onset of the instability (and the exponential growth of the wave ampli-

tude) is almost una�e
ted, for the value of 
ollision frequen
y 
hosen in our

simulations. On the other hand, the nonlinear saturation phase, in whi
h

the �u
tuations are maintained at almost 
onstant amplitude thanks to the

phase-spa
e deformation of f , is dramati
ally modi�ed by 
ollisions, whi
h

work to smooth out any departure of f from Maxwellian and damp the wave

amplitude.

Con
erning the simulations of the KEEN waves, we found that, in pres-

en
e of 
ollisions, the trapping phase spa
e stru
ture 
reated by the driver
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�eld is smoothed out. As a 
onsequen
e, the KEEN �u
tuations are dis-

sipated in time. In the 
ase of intermediate 
ollisionality, the fundamental

spe
tral 
omponent and its harmoni
s (we have shown the �rst four) survive

for a while after the driver is turned o�. We noti
ed that in the long time

limit the fundamental 
omponent displays a residual energy at the Lang-

muir frequen
y and its amplitude de
ays in time at a rate in good agreement

with the 
ollisionless damping rate predi
ted by Landau in Ref. [160℄. As

explained previously, this Langmuir �u
tuation has been triggered by the ex-

ternal �eld during the driving pro
ess. In the 
ase of stronger 
ollisionality,

again �u
tuations on the fundamental 
omponent appear at the Langmuir

frequen
y in the long time limit, while the higher spe
tral 
omponents at the

KEEN frequen
y are now very rapidly smoothed out by 
ollisions, right after

the driver has been turned o�. The fa
t that the late-time de
ay rate of the

fundamental is independent of the 
ollision frequen
y, being in agreement

with the 
ollisionless Landau damping rate, suggests that the wave dissipa-

tion due to 
ollisions is less e�
ient than the Landau damping pro
ess at high

Langmuir phase speeds, where the parti
le velo
ity distribution remains 
lose

to a Maxwellian. On the other hand, the presen
e of (even weak) 
ollisions

is 
riti
al for the survival of the KEEN �u
tuations, sin
e the smoothing of

the parti
le velo
ity distribution indu
ed by 
ollisions prevent the existen
e

of the KEEN mode itself.
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Chapter 3

Collisional e�e
ts des
ribed in a

redu
ed phase spa
e

So far, 
ollisions have been modeled in the realisti
 three-dimensional velo
-

ity spa
e. However, in this framework, high-resolution numeri
al simulations


annot be performed for 
omputational reasons. Therefore, another 
lass

of 
ollisional operators, whi
h assume a redu
ed phase spa
e dimensionality,

has been introdu
ed. Sin
e 
ollisions naturally work in a three-dimensional

velo
ity spa
e, this assumption is not appropriate from a basi
 point of view.

However, when 
ollisions a
t on longitudinal ele
trostati
 waves and the sys-

tem dynami
s o

urs preferentially in a unique dire
tion, one 
an quite well

des
ribe 
ollisional e�e
ts in a redu
ed one-dimensional velo
ity spa
e.

Here we restri
t to su
h 1D�1V phase spa
e and we analyze two di�erent

problems: the e�e
ts of 
ollisions on the problem of numeri
al re
urren
e

[Se
t. 3.1℄ and the des
ription of the waves laun
hing pro
ess in 
olumn of

plasma in both 
ollisionless and weakly 
ollisional 
ases [Se
. 3.2℄.

Results shown here have been 
olle
ted in one s
ienti�
 paper published

in Physi
s of Plasma [161℄, whi
h has been sele
ted as Featured Arti
le in

the February 2016 Issue of Physi
s of Plasmas, while a se
ond paper is still

in preparation [162℄.
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3.1 Collisional e�e
ts on the numeri
al re
ur-

ren
e

When the Vlasov-Poisson equations are studied by means of Eulerian numer-

i
al simulations, one en
ounters, for low amplitude �u
tuations, the prob-

lem of the initial state re
urren
e. As explained by Cheng et al. [163℄,

the re
urren
e phenomenon is intimately related to the presen
e of a free-

streaming term in the distribution fun
tion and to the �lamentation problem

[159, 163, 164, 165, 166, 167, 168℄. Sin
e the mesh-size of the velo
ity grid is

ne
essarily �nite, the initial state is periodi
ally re-
onstru
ted, and thus the

ele
tri
 �eld exhibits a fake re
urren
e of the initial state, whose period is

Trec = 2π/k∆v, k being the perturbation wavenumber and ∆v the numeri
al

grid mesh in velo
ity spa
e.

In this se
tion, the e�e
ts of 
ollisions on the phenomenon of the numer-

i
al re
urren
e are dis
ussed. Collisions are modeled through the Lenard-

Bernstein (LB) operator, �rstly proposed in 1958 by Lenard and Bernstein

[139℄ as a full three-dimensional velo
ity spa
e 
ollisional operator. The LB

operator is a linear Fokker-Plan
k 
ollisional operator whi
h belongs, as the

Dougherty one [58, 59℄, to the 
lass of �simpli�ed� 
ollisional operators and

both 
ollisional terms 
an be interpreted as adve
tion-di�usion operators in

the velo
ity spa
e.

Interestingly, the same e�e
t on the spe
trum indu
ed by LB 
ollisions

has been dis
ussed in Ref. [169℄ in the 
ontext of spe
tral deformation. This

is a te
hnique introdu
ed for the Vlasov-Poisson system in [170℄, where a non-

unitary transformation is applied to the linear operator, in su
h a way that its

eigenvalues with nonzero real part remain un
hanged, while the 
ontinuum

of neutral modes is damped. In analogy to the 
ase of LB operator, the

Landau damping is re
overed as a true eigenmode. Therefore, we suggest

that the LB operator might be interpreted as a spe
tral deformation to the


ollisionless Vlasov-Poisson system. However, the pre
ise identi�
ation of

the transformation whi
h is equivalent to the LB operator is left for future

work.

The aim of our analysis is to understand if re
ursive e�e
ts or any other
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numeri
al e�e
t asso
iated to limited velo
ity resolution of Eulerian 
al
u-

lations 
an be su

essfully removed by making use of a 
ollisional operator,

without in
reasing the number of gridpoints in the velo
ity domain (and with-

out altering the physi
al features of the system evolution). In 
ase of positive

response, this would be extremely useful espe
ially for multi-dimensional sim-

ulations, where the velo
ity resolution is limited for 
omputational reasons.

We show that, in general, the 
ollision frequen
y ν whi
h is suitable for

preventing re
urren
e in the linear regime is a fun
tion of the perturbation

wavenumber: as the wavenumber in
reases a stronger 
ollisionality is ne
es-

sary to avoid the onset of the numeri
al re
urren
e. Moreover, by fo
using

on the nonlinear Landau damping and in parti
ular on the formation of a

Bernstein-Greene-Kruskal (BGK) nonlinear wave [146, 157℄, we show that i)

the 
ollisionless 
ase is also slightly a�e
ted by re
urren
e and ii) 
ollisional

e�e
ts be
ome important when the dynami
s evolve to the nonlinear stage.

Therefore, it seems impossible to use the LB operator to avoid the nu-

meri
al re
urren
e and, simultaneously, preserve the phase spa
e stru
tures

developed as in the 
ollisionless 
ase. Of 
ourse, in the 
ase of higher velo
ity

resolution, for whi
h the re
urren
e time is signi�
antly larger than the 
har-

a
teristi
 time of the physi
al pro
ess of interest (Landau damping, onset of

instabilities, generation of nonlinear BGK stru
tures and so on), the use of

a 
ollisional operator opportunely tailored to eliminate numeri
al re
urren
e

does not a�e
t the reliability of the physi
al results for times smaller than

the re
urren
e time. However, let us remark that this 
ase is not the one of

interest in our analysis in whi
h we intentionally 
hoose to have re
urren
e

in the initial stage of the simulations, whi
h typi
ally 
annot a�ord a very

�ne resolution in velo
ity spa
e (espe
ially in multi-dimensions). Finally, by

exploring the re
urren
e e�e
t on the bump-on-tail instability [156℄, we show

that the re
urren
e a�e
ts both the linear exponential growth and the non-

linear saturation of the instability by produ
ing a fake growth in the ele
tri


�eld and that, as in the nonlinear Landau damping 
ase, 
ollisional e�e
ts are

not able to prevent the initial state re
urren
e without signi�
antly altering

the nonlinear stru
tures.

In summary, the purpose of this se
tion is twofold. First, we show how
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re
ursive e�e
t and �lamentation, whi
h are usually des
ribed in the 
ontext

of low amplitude �u
tuations, 
an also be problemati
 in nonlinear phenom-

ena, su
h as the saturation regime of the bump-on-tail instability. Se
ond,

we dis
uss a useful diagnosti
, in terms of expansion of the velo
ity spa
e into

Hermite fun
tions, that allows to better appre
iate the e�e
t of an arti�
ial


ollisional operator in phase spa
e.

Let us summarize the 
ontent of the se
tion. In Se
. 3.1.1 the theoreti
al

ba
kground of the problem is given and the numeri
al strategies adopted to

approa
h the solution are explained. Then, in Se
. 3.1.2, the re
urren
e

e�e
ts on the Landau damping phenomenon are des
ribed in both linear and

nonlinear regimes by transforming the Vlasov-Poisson system into Hermite-

Fourier 
oordinates and by means of Eulerian simulations. Moreover, we

investigate how 
ollisional e�e
ts prevent the re
urren
e problem but, at the

same time, smooth out the nonlinear plasma dynami
s features as the system

evolves to the nonlinear regime. Then, in Se
. 3.1.3 we analyze the initial

state re
urren
e problem and the 
ollisional e�e
ts for the 
ase of the bump-

on-tail instability.

3.1.1 Theoreti
al ba
kground and numeri
al models

Here we 
onsider a quasi-neutral and unmagnetized plasma 
omposed by

kineti
 ele
trons and immobile ba
kground ions. We assume that only ele
-

trostati
 intera
tions o

ur between parti
les, therefore the Maxwell system

redu
es to the Poisson equation. Furthermore, sin
e ele
tron-ion and ion-

ion 
ollision frequen
ies are mu
h smaller than the ele
tron-ele
tron one, we

take into a

ount only ele
tron-ele
tron 
ollisions [56℄. As introdu
ed above,

ele
tron-ele
tron 
ollisions are modeled through the LB 
ollisional operator

[139℄.

The normalized 
ollisional Vlasov-Poisson (VP) equations - where 
olli-

sions are modeled through the LB 
ollisional operator - in the 1D�1V (one

dimension in physi
al spa
e and one dimension in velo
ity spa
e) phase spa
e
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on�guration reads:

∂f

∂t
+ v

∂f

∂x
+

∂φ

∂x

∂f

∂v
=

∂f

∂t

∣

∣

∣

∣

coll

(3.1)

− ∂2φ

∂x2
= 1−

∫

f dv ; (3.2)

where f = f(x, v) is the ele
tron distribution fun
tion, φ(x) is the ele
tro-

stati
 potential, de�ned as E = −dφ/dx (E is the ele
tri
 �eld) and ∂f/∂t|coll
is the LB 
ollisional operator. Due to their inertia, the protons are 
onsidered

as a motionless neutralizing ba
kground of 
onstant density n0 = 1. In pre-

vious equations, time is s
aled to the inverse ele
tron plasma frequen
y ωpe,

velo
ities to the initial ele
tron thermal speed vth,e; 
onsequently, lengths are

normalized by the ele
tron Debye length λDe = vth,e/ωpe and the ele
tri
 �eld

by ωpemvth,e/e (m and e being the ele
tron mass and 
harge, respe
tively).

For the sake of simpli
ity, from now on, all quantities will be s
aled using

the 
hara
teristi
 parameters listed above.

The s
aled Lenard-Bernstein [139℄ 
ollision operator is:

∂f

∂t

∣

∣

∣

∣

coll

= ν
∂

∂v

[

∂f

∂v
+ vf

]

(3.3)

being ν the 
onstant 
ollisional frequen
y. The LB operator preserves global

mass. Moreover, if the distribution fun
tion has null average speed V = 0

and unitary temperature T = 1, being V = 1/n
∫

dvfv, n =
∫

dvf and

T = 1/n
∫

dv(v − V )2f respe
tively plasma mean velo
ity, density and tem-

perature, it 
onserves also momentum and energy.

In the following we analyze the equations system Eqs. (3.1)�(3.2) 
oupled

to Eq. (3.3). For the sake of simpli
ity, we refer to this system 
ompa
tly

as Eqs. (3.1)�(3.2). Two di�erent analyses have been performed on Eqs.

(3.1)�(3.2) and are brie�y explained in the following two subse
tions.

Fourier-Hermite de
omposition (Linear analysis)

A very 
onvenient way of studying the properties of the LB operator in the

linear regime is by employing an expansion of the linearized distribution fun
-
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tion into a Fourier-Hermite basis. Here, we use the so-
alled asymmetri
ally

weighted Hermite fun
tions [42, 44, 171℄:

Ψn(ξ) = (π2nn!)−1/2Hn(ξ)e
−ξ2

(3.4)

Ψn(ξ) = (2nn!)−1/2Hn(ξ), (3.5)

where Hn is the n-th Hermite polynomial, de�ned as

Hn(ξ) = (−1)neξ
2 dn

dξn

(

e−ξ2
)

, (3.6)

and ξ = v/
√
2. The basis in Eqs. (3.4)�(3.5) has the following properties:

∫ ∞

−∞

Ψn(ξ)Ψ
m(ξ)dξ = δn,m, (3.7)

vΨn(ξ) =
√
n+ 1Ψn+1(ξ) +

√
nΨn−1, (3.8)

dΨn(ξ)

dv
= −

√

(n+ 1)Ψn+1(ξ), (3.9)

δn,m being the Krone
ker delta. Eqs. (3.1)�(3.2) are linearized around an

homogeneous equilibrium that, when expanded in Hermite fun
tions, reads

f0(v) =
∑

n=0C
eq
n Ψn(ξ). Note that, for a Maxwellian equilibrium with zero

mean velo
ity, all 
oe�
ients Ceq
n are null for n > 0. The perturbed distri-

bution fun
tion f1(x, v) = f(x, v)− f0(v) is expanded as:

f1(x, v) =
∑

n,j

Cn,jΨn

(

v√
2

)

eikjx, (3.10)

with kj = 2πj/L, and L the domain length. By using the orthogonality of

the Fourier-Hermite basis, one obtains, for ea
h kj mode:

dCn,j

dt
+ ikj

(

√
n+ 1Cn+1,j +

√
nCn−1,j +

√
2n

k2
j

C0,jC
eq
n−1

)

+ nνCn,j = 0

(3.11)

Note that Ψn(ξ) is an eigenfun
tion of the LB operator of Eq. (3.3), with

eigenvalue nν, and thus the use of the res
aling fa
tor in the argument of
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the basis in Eqs. (3.4)�(3.5) allows to obtain a rather 
ompa
t formulation

(
ompare, for instan
e, with the formulation in [172℄). In parti
ular, the

linear equation (3.11) 
an be written in matrix form as:

d
−→
Cj

dt
= Aj

−→
Cj , (3.12)

where

−→
Cj is the ve
tor de�ned as (C0,j, C1,j, C2,j, . . .)

T
, and the matrix Aj is

de�ned as

Aj = −ikj



















0 1 0

1 +
√
2Ceq

0 /k2
j ν/ikj

√
2 0

2Ceq
1 /k2

j

√
2 2ν/ikj

√
3 0

√
6Ceq

2 /k2
j 0

√
3 3ν/ikj

√
4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.



















(3.13)

The 
ollisionality ν a�e
ts only the diagonal entries of the matrix. On
e

again, this is due to the fa
t that the Hermite basis is an eigenfun
tion of

the LB operator. Of 
ourse, when numeri
ally solving the linear problem in

Eq. (3.12), one has to trun
ate the matrix A, that is, one has to 
hoose the

maximum number NH of Hermite modes in the expansion of Eq. (3.10), by

setting Cn,j = 0 for any n > NH (other 
losures have been investigated, see,

e.g. [173, 174℄). This 
orresponds to de�ning the resolution in velo
ity spa
e.

It is pre
isely the inability to 
apture in
reasingly �ner s
ales in velo
ity spa
e

that gives rise to the phenomenon of re
urren
e in the numeri
al solutions of

Vlasov equation. This be
omes parti
ularly 
lear by looking at the re
urren
e

e�e
t within the framework of the Hermite basis expansion in velo
ity.

Eulerian Vlasov 
ode (nonlinear analysis)

The other approa
h 
onsists in the numeri
al solution of Eqs. (3.1)�(3.2)

through a Eulerian 
ode based on a �nite di�eren
e s
heme for the approx-

imation of spatial and velo
ity derivatives of f over the grid-points. Time

evolution of the distribution fun
tion is approximated through the splitting

s
heme �rst introdu
ed by Filbet et al. [126℄ [see Refs. [62, 63℄ for details
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Figure 3.1: (Color online) Temporal evolution of the Hermite 
oe�
ients |Cn|
(in logarithm s
ale) as a fun
tion of the Hermite mode n and the time t for the

ollisionless ν = 0 
ase.

about the numeri
al algorithm℄, whi
h is a generalization of the well-known

splitting s
heme dis
ussed by [163℄. We impose periodi
 boundary 
onditions

in physi
al spa
e and f is set equal to zero for |v| > vmax, where vmax = 6vth,e.

Phase spa
e is dis
retized with Nx grid points in the physi
al domain and

Nv points in the velo
ity domain. Finally, the time step ∆t has been 
hosen

in su
h a way to respe
t the Courant-Friedri
hs-Levy 
ondition [150℄ for the

numeri
al stability of time expli
it �nite di�eren
e s
hemes.

The plasma is initially in an equilibrium state and we perturb the sys-

tem through an os
illating density perturbation whi
h produ
es, through the

Poisson equation, a perturbative ele
tri
 �eld of amplitude δE.

3.1.2 Landau damping

In the present se
tion, re
urren
e e�e
ts and 
ollisional e�e
ts on this phe-

nomenon are des
ribed for the the 
ase of the Landau damping of a Langmuir

wave.

First, we study a 
ollisionless (ν = 0) linear Landau damping 
ase, for the

wavenumber k = k1 = 2π/L = 0.35 (being L = 18), by means of the Fourier-

Hermite de
omposition with NH = 800. The system is initially perturbed

through a spatially sinusoidal ele
tri
 �eld perturbation, whi
h translates,
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Figure 3.2: (Color online) Spe
trum of the matrix A for four in
reasing values of


ollisionality: ν = 5× 10−5, 1× 10−4, 2× 10−4, 5× 10−4
respe
tively in bla
k, red,

blue and gold dots. The bla
k squares represent the Landau roots.

in the Fourier-Hermite spa
e, to initialize the ve
tor

−→
Cj as (1, 0, 0, . . .)

T
(the

ele
tri
 �eld is proportional to C0).

Figure 3.1 shows the temporal evolution of the absolute value of the Her-

mite 
oe�
ients |Cn| in logarithm s
ale. Sin
e the �lamentation in velo
ity

spa
e naturally produ
es small velo
ity s
ales, Hermite 
oe�
ients of in
reas-

ingly higher modes are ex
ited. When the largest mode gets ex
ited, the trun-


ation of the series a
ts as a re�e
ting boundary (around time T ∼ 75), and

the perturbation travels ba
k towards lower modes. Around time T ∼ 150,

the ele
tri
 �eld damping is abruptly interrupted and a value 
lose to the

initial value is restored. Let us note that, although the ele
tri
 �eld will not

be a�e
ted until the re
urren
e time T ∼ 150, the distribution fun
tion is

spuriously altered from time T ∼ 75, that is when the perturbation re�e
ts

on the boundary.

As we mentioned earlier, the e�e
t of a non-null 
ollisionality in the

Vlasov-Poisson linear operator is to modify the spe
trum of eigenvalues. Lan-

dau damping is not anymore due to the phase-mixing of a 
ontinuous set of

neutral mode. Moreover, for a large enough value of ν, it appears as the least-

damped eigenvalue of the system. This is shown in Figure 3.2, where, for the

same value of k = k1 = 0.35, we show the spe
trum of the matrix A for four

in
reasing values of 
ollisionality: ν = 5× 10−5, 1× 10−4, 2× 10−4, 5× 10−4
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(respe
tively in bla
k, red, blue and gold dots). The damping rate γ and

the wave propagation frequen
y ω are respe
tively shown on the horizontal

and verti
al axes of Fig. 3.2. The values 
orresponding to the theoreti
al

Langmuir roots (γ = γL = −3.37 × 10−2
and ω = ±1.22), obtained through

the numeri
al evaluation of the Landau dispersion fun
tion roots, are shown

as bla
k squares. We emphasize that the spe
trum of the matrix A di�ers

from the spe
trum of the in�nite-dimensional Vlasov-Poisson-LB operator.

In fa
t, while for the latter the Landau root is a dis
rete eigenvalue in the

limit ν → 0, Figure 3.2 
learly shows that, in the presen
e of a �nite velo
ity

resolution, a small 
ollisionality a
ts to distort the dis
rete representation

of the Case-Van Kampen 
ontinuum. In other words, a su�
iently large


ollisionality value (depending on the velo
ity resolution) is needed in order

to re
over the Landau root as a dis
rete mode. Indeed, it is 
lear that, for

ν = 5 × 10−4
(gold points), the spe
trum exhibits two eigenvalues overlap-

ping with the proper Landau roots value and, therefore, the proper Landau

damping is restored.

In order to 
larify the behavior of the 
oe�
ients |Cn| in the 
ase where the

ollisionality restores the proper Landau damping (i.e. ν = 5×10−4

), we show

in Fig. 3.3 the temporal evolution of the Hermite 
oe�
ients |Cn|. Clearly

Figure 3.3: (Color online) Temporal evolution of the Hermite 
oe�
ients |Cn| as
a fun
tion of the Hermite mode n and the time t for the 
ollisional ν = 5 × 10−4


ase.
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Figure 3.4: (Color online) Temporal evolution of log |Ek|(t) with k = k1. The bla
k,
red and blue lines indi
ate respe
tively ν = 0, ν = 5× 10−5

and ν = 5× 10−4
. The

red and blue dashed lines show respe
tively the theoreti
al damping with Landau

damping γL and the instant time t = Trec.

the re�e
ting e�e
t dis
ussed for Fig. 3.1 has now 
ompletely vanished and

the ele
tri
 �eld damping does not show any re
urren
e. Sin
e the 
ollisional

operator damps the high Hermite modes or, in other words, sin
e 
ollisional

e�e
ts stop the produ
tion of small velo
ity s
ales, the velo
ity �lamentation

is not 
orre
tly 
aptured.

In order to 
omplete our analysis, we numeri
ally solve Eqs. (3.1)�(3.2)

through the �nite-di�eren
e numeri
al 
ode presented earlier, for di�erent

values of the 
ollisional frequen
y ν. We set the initial sinusoidal density

perturbation su
h that the perturbation ele
tri
 �eld amplitude is δE = 10−3
.

The phase spa
e is dis
retized with Nx = 64 and Nv = 101 points. Let us

remark that, with the parameters 
hoi
e just des
ribed, the re
urren
e time

is Trec = 2π/k∆v ≃ 150.

The time evolution of the logarithm of the absolute value of the �rst

Fourier 
omponent k = k1 of the ele
tri
 �eld log |Ek|(t) is shown in Fig.

3.4. The bla
k, red and blue lines 
orrespond respe
tively to the 
ollisionless


ase (ν = 0), intermediate 
ollisional 
ase (ν = 5 × 10−5
) and stronger


ollisional 
ase (ν = 5×10−4
). The last 
ase is the 
ase in whi
h the Landau

damping root is re
overed in the spe
trum shown in Fig. 3.2, thanks to the

e�e
t of 
ollisions. The red and blue dashed lines in Fig. 3.4 indi
ates the
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theoreti
al Landau damping rate γL = −3.37×10−2
and the re
urren
e time

t = Trec ≃ 150 respe
tively.

For the three 
ases, the ele
tri
 �eld spe
tral 
omponent evolution is

approximately the same for t < Trec and the ele
tri
 �eld is damped at

the proper Landau damping rate γL. Then, around t = Trec ≃ 150, the


ollisionless and the intermediate 
ollisional 
ases (bla
k and red solid lines of

Fig. 3.4) present a fake �jump� in the signal due to the initial state re
urren
e

problem. On the other hand, in the stronger 
ollisional 
ase ν = 5×10−4
(blue

solid line of Fig. 3.4), the re
urren
e e�e
t disappears and the unphysi
al

�jump� is 
ompletely suppressed by 
ollisional e�e
ts. It is worth to note

that, in this 
ase, the re
urren
e does not o

ur neither at times multiples of

the re
urren
e period.

Based on the results presented above, the in
lusion of a weakly 
ollisional

operator to prevent the numeri
al re
urren
e e�e
t might look 
onvenient;

however, the 
onsequen
es of in
luding 
ollisionality into the Vlasov-Poisson

system must be investigated with 
are.

Figure 3.5 shows the di�eren
e between the damping rate γM of the least

damped mode and the damping rate γL of the Landau root, as a fun
tion of

the 
ollisional rate ν, for three di�erent values of k = 0.35, 0.45, 0.55, (bla
k,

Figure 3.5: (Color online) The bla
k, red and blue lines show the di�eren
e between

the damping rate γM of the least damped mode and the damping rate γL of the

Landau root, as a fun
tion of the 
ollisional rate ν, for three di�erent values of

k = 0.35, 0.45, 0.55 respe
tively.
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Figure 3.6: (Color online) (a) Temporal evolution of log |Ek|(t) with k = k1 for

the 
ollisionless 
ase (bla
k line) and the 
ollisional ν = 5 × 10−4

ase (red line).

The blue dashed verti
al line indi
ates the re
urren
e period Trec. The distribution

fun
tion around the phase speed v = vφ at the �nal time instant f(x, v, t = tfin)
is shown in panels (b)�(
) for the 
ollisionless (b) and 
ollisional (
) 
ase.

red and blue line, respe
tively). As explained in Figure 3.2, for ν → 0,

and �xed velo
ity resolution, the Case-Van Kampen spe
trum [175, 176℄ is

re
overed (see Fig. 3.2), and γM → 0. The interse
tion between the red

dashed and the solid lines indi
ates the value of 
ollisionality that is required

to re
over the 
orre
t Landau damping as a dis
rete eigenmode. Moreover,

bearing in mind that both γM and γL are negative quantities, values above

the red-dashed line in the �gure indi
ate that the 
ollisional rate is not large

enough to re
over the Landau damping as the least damped eigenvalue, while

values below the red-dashed line indi
ate over-damping with respe
t to the

Landau damping. Figure 3.5 
learly indi
ates that there is not a single value

of 
ollisionality that would allow to re
over the 
orre
t Landau damping for

a spe
trum of several wavenumbers. Sin
e larger wavenumbers are subje
t

to stronger damping, they would require a larger 
ollisional rate.

Moreover, if the initial �eld amplitude is in
reased in order to explore the

nonlinear evolution of the Landau damping, the 
ollisionality, whi
h was able

of preventing re
urren
e in the linear simulation, be
omes strong enough to

smooth the nonlinear physi
al features of the Landau damping. In order to


larify this point, we perform a simulation with the same parameters of the

linear one explained above (see Fig. 3.4) and we in
rease δE = 10−1
. Figure

3.6 (a) shows the time evolution of log |Ek|(t) for k = k1 for the 
ollisionless


ase (bla
k solid line) and for the 
ollisional 
ase ν = 5 × 10−4
(red solid
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line). The blue dashed line in Fig. 3.6 indi
ates the re
urren
e period

Trec = 2π/k∆v ≃ 150. We remark that this spe
i�
 value of 
ollisional

frequen
y is the one whi
h prevents re
urren
e e�e
ts in the linear 
ase, still

preserving the 
orre
t value of Landau damping.

It is 
lear that, in the non-linear 
ollisionless 
ase, the Landau damping

is arrested by nonlinear e�e
ts (parti
le trapping) and, as a 
onsequen
e, the

ele
tri
 �eld starts os
illating around a nearly 
onstant saturation level. On

the other hand, in the 
ollisional 
ase, the physi
al s
enario 
hanges drasti-


ally and the ele
tri
 �eld amplitude displays evident 
ollisional damping.

In phase spa
e, nonlinear e�e
ts manifest as the generation of a vorti-


al trapping population, moving with velo
ity 
lose to the wave phase speed

(vφ ≃ 3.50). This is shown in Figs 3.6 (b)�(
) where the 
ontour plots of

the distribution fun
tion f(x, v) at time t = 400 for the 
ollisionless 
ase (b)

and for the 
ollisional 
ase (
) are reported. It is 
lear from the 
ompari-

son of panels (b) and (
) of Fig. 3.6 that 
ollisions prevent the generation

of the phase-spa
e trapping population, sin
e they work to smooth out any

deformation of the parti
le distribution fun
tion and to drive the system

toward thermal equilibrium. In other words, as soon as kineti
 e�e
ts pro-

du
e distortions (and, 
onsequently, sharp velo
ity gradients) of the parti
le

distribution, 
ollisional e�e
ts be
ome more intense to keep the velo
ity dis-

tribution 
lose to a Maxwellian. Therefore, it is quite 
lear that 
ollisional

e�e
ts are not able to prevent the re
urren
e problem without destroying the

plasma dynami
s 
hara
teristi
s.

In order to understand whether 
hanging the resolution in velo
ity spa
e

[165, 166℄ a�e
ts the physi
al features of the system, we performed additional

simulations in 
ollisionless regime, in
reasing the number of gridpoints in the

velo
ity domain: Nv = 101, 201, 401, 1001, 2001, 4001; Nv = 101 [indi
ated

with blue 
rosses in Figs. 3.7 (a�b)℄ 
orresponds to the 
ase depi
ted in Fig.

3.6.

We 
omputed the following quantities as �proxies� of numeri
al a

ura
y:

• The os
illation period Tosc of the wave, evaluated in the time interval

t ≥ Trec);
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• The time tmax where the ele
tri
 �eld envelope rea
hes its �rst maxi-

mum [≃ 100 in Fig. 3.6(a)℄;

• The os
illation period τ of the ele
tri
 �eld envelope, de�ned as the

average of the di�eren
e between two 
onse
utive maximum points in

the log |Ek|(t) evolution;

• The saturation ele
tri
 �eld Ek,sat at whi
h the ele
tri
 �eld spe
tral

power saturates.

The quantities Tosc and tmax (not shown here) do not depend on Nv, the

relative variations between the two extremes 
ases (Nv = 101 and Nv = 4001)

being always smaller than the 1%. On the other hand, in Fig. 3.7 we report

the dependen
e of Ek,sat (a) and τ (b) on Nv. Clearly, these two quantities

approa
h a saturation value (red-dashed line) as Nv in
reases. The relative

variations between the values obtained with Nv = 101 and the 
orresponding

saturation values (red dashed lines) are about the 4% for Ek,sat and 10% for

τ . We 
on
lude that even in the nonlinear 
ase shown in Fig. 3.6 the limited

resolution in the velo
ity domain slightly a�e
ts the physi
al evolution of

the system. However, as dis
ussed above, adding a 
ollisional operator to

eliminate these unphysi
al e�e
ts produ
es drasti
 
hanges in the kineti


aspe
ts of the dynami
s with respe
t to the 
ollisionless 
ase.

Figure 3.7: (Color online) The os
illation period of the ele
tri
 �eld envelope τ (a)

and the saturation ele
tri
 �eld Ek,sat (b) as a fun
tion of Nv. The blue 
rosses

indi
ate the Nv 
ase 
ase depi
ted in Fig. 3.6.
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3.1.3 Bump-on-tail instability

In the 
urrent se
tion the re
urren
e e�e
ts on the bump-on-tail instabil-

ity are des
ribed by performing a similar analysis to that performed in the

previous Se
tion. The initial distribution fun
tion is the following:

f0(v) =
n0

(2πT0)1/2
exp

(

− v2

2T0

)

+
nb

(2πTb)1/2
×

[

exp

(

−(v − Vb)
2

2Tb

)

+ exp

(

−(vx + Vb)
2

2Tb

)

]

(3.14)

The 
ore density and temperature are respe
tively n0 = 0.98 and T0 = 1,

while the bump density, mean velo
ity and temperature are nb = 0.01, Vb = 4

and Tb = 0.4 respe
tively. Is it 
lear that f0(v) represents a Maxwellian

distribution fun
tion to whi
h two bumps are superimposed at both positive

and negative side of the velo
ity domain. Moreover the velo
ity symmetry

in the velo
ity shape of f0(v) guarantees an initial null 
urrent. In Hermite

spa
e, the parity of f0(v) translates to having Ceq
n = 0 for all odd n.

First of all, as performed in Se
. 3.1.2, we study the 
ollisionless (ν = 0)

linear evolution of the bump-on-tail instability onset for k = k1 = 2π/L =

0.25 (being the plasma length L = 25) by perturbing initially the system

Figure 3.8: (Color online) Temporal evolution of the Hermite 
oe�
ients |Cn| as a
fun
tion of the Hermite mode n and the time t for the 
ollisionless ν = 0 
ase.
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through a spatially sinusoidal ele
tri
 �eld perturbation. Here the Hermite

modes number is NH = 400. Figure 3.8 shows the temporal evolution of the

absolute value of the Hermite 
oe�
ients |Cn|. Only the �rst 100 modes are

shown, to better appre
iate the re
urren
e on the low order modes. As in Fig.

3.1 for the Landau damping, the �lamentation 
reates small velo
ity s
ales

and, due to the trun
ation of the Hermite series - whi
h 
orresponds, in the

Eulerian 
ode, to the presen
e of a �nite velo
ity grid size - the boundary

re�e
ts ba
k the perturbation towards lower modes. The main di�eren
e

with respe
t to the Landau damping 
ase is that now there is an eigenmode

whose amplitude grows exponentially in time. The eigenmode has a 
ertain

stru
ture in Hermite spa
e, and is lo
alized between modes 5 and 10. On
e

the �lamentation boun
es ba
k be
ause of the trun
ation of the series, the

unstable eigenmode is perturbed, around time T ∼ 150. Therefore, in the

bump-on-tail 
ase, the re
urren
e is mu
h more evident as a fake perturbation

a
ting on the unstable eigenmode, rather than on the ele
tri
 �eld. In fa
t,

as we show in the following, the re
urren
e of the ele
tri
 �eld is more modest

than for the Landau damping 
ase.

In order to 
larify how the re
urren
e a
ts on the instability onset, we

perform some Eulerian simulations where the phase spa
e is dis
retized with

Nx = 128 point while Nv is variable in order to 
hange the re
urren
e pe-

riod: Nv = 101 (Trec ≃ 200), Nv = 201 (Trec ≃ 400) and Nv = 1001

(Trec ≃ 2000). We perturb the system through a sinusoidal density per-

turbation whose wavenumber is k = k1 = 0.25. The density perturbation

amplitude is δn = 2.51×10−6
whi
h 
orresponds to a perturbed ele
tri
 �eld

of amplitude δE = 10−5
. By evaluating the dispersion fun
tion roots of the

Vlasov equation we 
an 
al
ulate, for the spe
i�
 wavenumber, the linear

growth rate of the instability γth
I = 9.20 × 10−3

and the wave phase speed

vφ = 3.90.

Figures 3.9 (a)�(b) show respe
tively the temporal evolution of log |Ek|(t)
with k = k1 and the phase spa
e 
ontour plot at the �nal time of the simula-

tion t = tfin for the high resolution 
ase (Nv = 1001). Clearly the instability

is not a�e
ted by the re
urren
e and, in the linear stage, the �eld amplitude

grows up exponentially in a

ordan
e with the theoreti
al predi
tion [red
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Figure 3.9: (Color online) (a) Temporal evolution of log |Ek|(t) with k = k1 for

the 
ollisionless re
urren
e-free (Nv = 1001) 
ase. The red dashed line represents

the theoreti
al growth expe
tation exp(γthI t). (b) Contour plot of the distribution
fun
tion around the phase spa
e v = vφ at the �nal time instant f(x, v, t = tfin).

dashed line in Fig. 3.9 (a)℄. As nonlinear e�e
ts be
ome important, the �eld

saturates at a 
onstant value and in the phase spa
e, a BGK-like stru
ture

[146, 157℄ is formed [see Fig. 3.9(b)℄. The phase spa
e stru
ture is well-

lo
alized around the phase speed v = vφ and its width is quite in a

ordan
e

with the theoreti
al predi
tion.

In 
ontrast with the 
ase just shown, when the velo
ity resolution de-


reases, re
ursive e�e
ts o

ur. Panels of Figs. 3.10 show the results of two

simulations with resolution Nv = 101 (left 
olumn) and Nv = 201 (right


olumn). For ea
h 
olumn, the top panel [Figs. 3.10 (a)�(b)℄ des
ribes the

temporal evolution of log |Ek|(t), while the 
enter panel [Figs. 3.10 (
)�(d)℄

displays the quantity ∆Ek%, de�ned as the relative di�eren
e (expressed in
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Figure 3.10: (Color online) Re
urren
e e�e
ts on the bump-on-tail instability for

the Nv = 101 (left 
olumn) and Nv = 201 (right 
olumn) simulations. The top

panels (a)�(b) show the temporal evolution of log |Ek|(t) with k = k1 for the low-

resolution 
ase (bla
k line) and for the re
urren
e-free 
ase (red solid line), while

the red dashed line indi
ates the theoreti
al growth expe
tation exp(γthI t). The


entral panels (
)�(d) display the quantity ∆Ek% (bla
k line) and the re
urren
e

period t = Trec (blue dashed line). Finally the bottom panels (e)�(f) visualize the

distribution fun
tion 
ontour plot around the phase spa
e v = vφ at the �nal time

instant f(x, v, t = tfin).

per
entage) between |Ek|(t) at a given resolution and |Ek|(t) for the 
olli-

sionless re
urren
e-free 
ase. Finally, the bottom 
ontour plot [Figs. 3.10

(e)�(f)℄ exhibits the distribution fun
tion f(x, v, t = tfin) at the �nal time

and around the phase speed v = vφ. Let us remark that, in order to better

visualize the phase spa
e stru
tures in Fig. 3.10 (e)�(f), we performed an

interpolation of the distribution fun
tion over a more resolved grid without

altering the physi
al features of the phase spa
e stru
ture itself.
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Figure 3.11: (Color online) Temporal evolution (bla
k line) of log |Ek|(t) with

k = k1 for the 
ase Nv = 201 and with 
ollisional frequen
y ν = 1.5 × 10−6

(a), ν = 4.1 × 10−6
(b) and ν = 6.6 × 10−6

(
) respe
tively. In ea
h panel the

red solid line shows the evolution of log |Ek|(t) for the 
ollisionless re
urren
e-free
(Nv = 1001) 
ase while the red dashed line displays the theoreti
al linear instability

growth.

It is 
lear that the re
urren
e also manifests in the instability onset. By

fo
using on the linear stage of the instability growth, the ele
tri
 �eld am-

plitude seems to exponentially in
rease at a rate in a

ordan
e with the

theoreti
al expe
tations, represented with red dashed lines in Figs. 3.10 (a)�
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(b). Moreover, as introdu
ed above, in 
ontrast with the Landau damping


ase, the re
urren
e e�e
t does not strongly manifest as a fake jump around

the re
urren
e time t = Trec. However, by analyzing the temporal evolution

of ∆Ek% [see Figs. 3.10 (
)�(d)℄, an abrupt in
rease of ∆Ek% is observed

around the re
urren
e period, shown in Figs. 3.10 (
)�(d) with blue dashed

lines. This dis
ontinuity is due to re
ursive e�e
ts and it means that, after

the re
urren
e period, the ele
tri
 �eld evolution in the 
ase with a lower

resolution strongly departs from the re
urren
e-free 
ase (∆Ek% ≃ 100%).

Thus, although re
ursive e�e
ts 
annot be appre
iated in the linear stage of

the instability growth by looking dire
tly at Figs. 3.10 (a)�(b) (the s
ale is

logarithmi
 and a variation about the 100% 
annot be easily highlighted),

the �eld evolution is a
tually disturbed by re
urren
e.

Furthermore, re
urren
e phenomena a�e
t the nonlinear evolution of the

instability. E�e
tively, by fo
using on Fig. 3.10 (a)�(b), in the 
ase with-

out re
urren
e the ele
tri
 �eld power opportunely saturates at a 
onstant

value (red line) while, on the other hand in the 
ases with re
urren
e the

ele
tri
 �eld does not saturate and it 
ontinues to slowly in
rease. Finally,

by fo
using on the distribution fun
tion at the �nal time instant t = tfin [see

Figs. 3.10 (e)�(f)℄, in both 
ases a phase spa
e stru
ture is produ
ed around

the 
orre
t phase speed. By 
omparing these phase spa
e stru
tures with

the hole 
reated in the re
urren
e-free 
ase [Fig. 3.9 (b)℄, some di�eren
es


learly reveal. First, phase spa
e stru
tures obtained in the 
ases with re
ur-

ren
e are less resolved 
ompared to the one of the re
urren
e-free 
ase and

this is obviously related to the di�erent velo
ity grid size: e�e
tively, sin
e

the velo
ity grid size is smaller in the re
urren
e-free 
ase, �ner s
ales are

naturally 
reated 
ompared to the 
ases at lower resolution. Moreover, the

vortex width seems to be slightly wider in the Nv = 101 
ase [Fig. 3.10 (e)℄


ompared to both the 
ollisionless re
urren
e-free 
ase [Fig. 3.9 (b)℄ and to

the Nv = 201 
ase [Fig. 3.10 (f)℄. In other words, sin
e the ele
tri
 �eld does

not saturate in presen
e of re
ursive e�e
ts, the phase spa
e stru
ture tends

to in
rease its width.

The e�e
ts of the initial state re
urren
e on the bump-on-tail instability

represents a novel and quite unexpe
ted feature in the analysis of the re-
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ursive phenomena. Both linear and nonlinear stages of the instability are

a�e
ted by re
urren
e: the ele
tri
 �eld evolution departs from the evolution

in the 
ase without re
urren
e (Nv = 1001) around t = Trec. Furthermore the

nonlinear saturation, whi
h is properly retained in the 
ase at high resolution,

is interrupted by re
urren
e as the velo
ity grid size gets larger. Moreover,

due to the absen
e of the ele
tri
 �eld saturation, the distribution fun
tion

shows a vortex properly 
entered around the right phase speed but whose

width tends to be bigger 
ompared to the 
ase without re
urren
e. Finally,

although initial state re
urren
e phenomena are often related to linear phys-

i
al problems, here we have found some new and interesting re
urren
e e�e
t

features whi
h o

ur in the nonlinear regime.

In order to explore if a 
ollisionality des
ribed by the LB operator 
ould

represent a good way to prevent numeri
al re
urren
e in the 
ase of the

bump-on-tail instability, we fo
us on the Nv = 201 resolution 
ase ad we

perform several 
ollisional simulations by 
hanging the 
ollisional frequen
y

ν.

Figs. 3.11 (a)�(
) display, through bla
k lines, the temporal evolution of

log |Ek|(t) with k = k1 for the 
ases: ν = 1.5× 10−6
(a), ν = 4.1× 10−6

(b)

and ν = 6.6 × 10−6
(
). In ea
h panel of Fig. 3.11 red solid lines indi
ate

the evolution in the 
ollisionless 
ase without re
urren
e [the same shown

in Fig. 3.9 (a) and in Figs. 3.10 (a)�(b)℄ while the red dashed line shows

the theoreti
al expe
tation for the instability growth 
urve exp(γth
I t), being

γth
I = 9.2× 10−3

.

As expe
ted, 
ollisions inhibit the instability and tend to restore thermal

equilibrium. However in the 
ase ν = 1.5×10−6
[see Fig. 3.11 (a)℄, 
ollisions

weakly a�e
t the ele
tri
 �eld evolution whi
h, as in the 
ollisionless 
ase, do

not saturate and overtake the re
urren
e-free 
ase evolution [red line in Fig.

3.11 (a)℄.

As 
ollisional frequen
y in
reases, the ele
tri
 �eld evolution tends to be

dissipated. In the intermediate 
ase ν = 4.1 × 10−6
[see Fig. 3.11 (b)℄, the

ele
tri
 �eld rea
hes, at the end of the simulation, almost the same power of

the 
ollisionless 
ase without re
urren
e; however its evolution departs from

the referen
e red 
urve around t ≃ 600, where the re
urren
e-free 
ase [red
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line in Fig. 3.11 (b)℄ presents a stronger power level than the 
ollisional

Nv = 201 
ase [bla
k line in Fig. 3.11 (b)℄. On the other hand, in the 
ase

ν = 6.6 × 10−6
[see Fig. 3.11 (
)℄, a signi�
ant di�eren
e between the two

evolutions appears at even smaller time instants and 
ollisions 
learly a�e
t

the linear instability regime. In parti
ular, the linear growth rate in the


ollisional Nv = 201 
ase [bla
k line in Fig. 3.11 (
)℄ is signi�
antly smaller

than the 
ollisionless Nv = 1001 
ase [red line in Fig. 3.11 (
)℄. Moreover, as

in the 
ollisionless re
urren
e-free 
ase, at the �nal stages of the simulation

the ele
tri
 �eld spe
tral power exhibits an almost �at behavior at a lower

power value 
ompared to the 
ollisionless re
urren
e-free 
ase.

In order to point out how phase spa
e is a�e
ted by 
ollisions, Figs. 3.12

(a)�(
) show the 
ontour plots of the distribution fun
tion f(x, v, t = tfin) at

the �nal time instant t = tfin and zoomed around the phase speed v = vφ for

the 
ases: ν = 1.5× 10−6
(a), ν = 4.1× 10−6

(b) and ν = 6.6× 10−6
(
). As

in Fig. 3.10 (e)�(f), even in Fig. 3.12 (a)�(
) we performed an interpolation

of the distribution fun
tion over a more resolved grid. In all the three 
ases

shown in Fig. 3.12 (a)�(
) a phase spa
e stru
ture is observed around the

wave phase speed and its width redu
es as 
ollisional frequen
y in
reases.

Clearly as 
ollisions be
ome stronger, phase spa
e stru
tures are smoothed

out and present a smaller size.

We highlight that, as 
ollisional frequen
y gets bigger, the instability is af-

fe
ted by 
ollisions more intensely. Moreover, sin
e 
ollisions tend to restore

the equilibrium, they have been a
tive sin
e the initial stage of the simu-

lation (the initial distribution fun
tion is out of equilibrium). Furthermore

they remain a
tive until the equilibrium is re
overed and in
essantly work

to smooth out all the wave features (ele
tri
 �eld signal and phase spa
e

stru
tures). Therefore, at longer times (not shown here), the phase spa
e

stru
tures shown in Figs. 3.12 get smaller and disappear, while the ele
-

tri
 �eld signal shown in Figs. 3.11 is dissipated by 
ollisional e�e
ts. We


on
lude that, as in the nonlinear Landau damping 
ase, an arti�
ial 
olli-

sionality is not able to prevent the initial state re
urren
e in the bump-on-tail

instability onset. In parti
ular we found two di�erent s
enarios: 
ollisions are

so weak that re
urren
e is still a
tive or, on the other hand, they a�e
t both
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Figure 3.12: (Color online)The distribution fun
tion 
ontour plots around the phase

spa
e v = vφ at the �nal time instant f(x, v, t = tfin) for the 
ase Nv = 201 and

with 
ollisional frequen
y ν = 1.5×10−6
(a), ν = 4.1×10−6

(b) and ν = 6.6×10−6

(
).

re
urren
e e�e
ts and physi
al evolution of the system by deeply smoothing

the ele
tri
 �eld and the phase spa
e stru
ture.

3.1.4 Summary

In this se
tion we analyzed in detail the problem of the initial state re
ur-

ren
e in a weakly 
ollisional plasma, where ele
tron-ele
tron 
ollisions have

been modeled through the Lenard-Bernstein 
ollisional operator [139℄. We
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fo
used on two study 
ases: the Landau damping of a Langmuir wave and

the bump-on-tail instability onset. For both 
ases, the analysis in the linear

regime has been performed through the de
omposition of the linear Vlasov-

Poisson system into the Fourier-Hermite spa
e. In parti
ular, the expansion

of the distribution fun
tion in terms of Hermite fun
tions separates naturally

di�erent velo
ity s
ales and it allows to better des
ribe re
ursive e�e
ts and

appre
iate the role of the 
ollisional operator in phase spa
e. Moreover, the

analysis has been extended to the nonlinear regime through a 1D�1V Eu-

lerian 
ollisional Vlasov-Poisson 
ode, already tested and used in previous

works (see Refs. [62, 63℄).

Re
ently some authors (see Refs. [172, 177, 178℄ and referen
es therein)

pointed out that an opportune 
ollisionality 
an prevent the onset of re
ursive

e�e
ts and restore the 
orre
t Landau damping. This indi
ation suggested us

to investigate whether the in
lusion of an arti�
ial 
ollisionality 
ould be used

to prevent re
urren
e in numeri
al simulations without the loss of physi
al

details due to 
ollisional e�e
ts. However, we have shown that the 
ollisional

frequen
y ν whi
h is suitable for preventing numeri
al re
urren
e in the linear

regime depends on the perturbation wavenumber; furthermore, 
ollisional

e�e
ts be
ome important when the system evolves to the nonlinear regime

and, for the same value of 
ollisionality whi
h prevents re
ursive e�e
ts in the

linear stage, any nonlinear wave is strongly dissipated by 
ollisional e�e
ts.

Finally, we pointed out that numeri
al e�e
ts asso
iated to the generation

of �ne velo
ity s
ales 
an modify the physi
al features of the system evolution

even in nonlinear regime. This has been shown by fo
using on the nonlinear

Landau damping phenomenon and on the bump-on-tail instability both in

linear and nonlinear regime. Our results indi
ate that �lamentation-like and

re
ursive e�e
ts, often asso
iated with evolution in linear regime, 
an also

be important in the nonlinear 
ase. We also 
on
lude that the addition

of a 
ollisional operator, with the aim of preventing the re
urren
e of the

initial state and other numeri
al e�e
ts related to limited resolution in the

velo
ity domain, signi�
antly 
hanges the evolution of nonlinear waves and

the 
orresponding phase spa
e portrait.
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3.2 Se
ondary waves bran
h in an externally

for
ed plasma

In the present se
tion we des
ribe, by means of Eulerian Vlasov-Poisson

simulations, the method adopted for triggering waves in laboratory plasmas

devi
es, like, for example, Penning-Malmberg traps [50, 145, 182℄. Plasma

waves are usually laun
hed through an external ele
tri
 potential, lo
alized

in a parti
ular region of the plasma 
olumn. This driver os
illates in time

[φD ≃ sin(ωDt), being ωD the driver pulsation℄ and it is adiabati
ally turned

on and o� to sele
t the waves frequen
y [50, 145, 179, 180, 181, 182℄.

On the other hand, when the dynami
s of these systems is modeled by

means of numeri
al simulations, external drivers sele
t at the same time

pulsation and wavenumber [ED ≃ sin(kx − ωDt), where ωD/k = vφ,D℄. As

in experimental setups, these external drivers are also turned on and o�

adiabati
ally. This kind of drivers has been widely implemented to ex
ite

Trivelpie
e-Gould (TG) waves, EAWs [143, 144, 183, 184, 185℄ or KEEN

Waves [129, 137, 138, 159℄ as well as for the analysis of auto-resonan
e pro
ess

[186, 187℄.

The two types of drivers des
ribed above present di�erent features: in

experiments, the driver is spatially lo
alized while, in simulations, it usually

permeates all the 
omputational box. To resolve this dis
repan
y, we imple-

ment in a numeri
al simulation a more realisti
, lo
alized driver and analyze

the wave triggering pro
ess in detail. We 
onsider both the 
ases of a 
ollision-

less and a weakly 
ollisional plasma 
omposed of kineti
 ele
trons and a ba
k-

ground of motionless ions. Ele
tron-ele
tron 
ollisions are modeled through

the one-dimensional Dougherty operator [58, 59, 62, 63, 134, 135, 136℄. In

this framework, we study the ex
itation of linear Langmuir waves and non-

linear EAWs. By fo
using on the Langmuir waves 
ase, we des
ribe the basi


me
hanism whi
h sele
ts frequen
y and wavenumber of the waves. As we

will show in detail in the following, the driver �eld is 
omposed of a temporal

adiabati
 fun
tion, whi
h sele
ts the mode frequen
y through a resonan
e

pro
ess, and of a spatial lo
alization fun
tion ex
iting several spatial Fourier


omponents. This represents a novel features 
ompared to previous simu-
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lations (see Refs. [129, 137, 138, 144, 159, 184, 185℄) where only a �single�

wavenumber was ex
ited.

Then, we analyze the triggering pro
ess of EAWs, whi
h are undamped

a
ousti
-like waves, whose phase speed is about the ele
tron thermal speed

(vEAW
φ ≃ 1.31vth). It is worth to note that the standard Vlasov-Poisson lin-

ear theory based on a Maxwellian equilibrium distribution fun
tion predi
ts

that these �u
tuations are heavily damped. However, Holloway and Dorning

[142℄ showed that, when the equilibrium distribution fun
tion presents �at

regions with vanishing velo
ity derivative, undamped EAWs appear as non-

linear solutions of the Vlasov-Poisson system and exhibit Bernstein-Greene-

Kruskal modes-like 
hara
teristi
s [146℄. Let us also remark that nonlinear

modes whose phase speed is 
lose to the thermal speed has been predi
ted

for astrophysi
al plasmas [29, 188℄ and re
ently observed in solar wind data

[189, 190℄.

When we trigger EAWs in our simulations, surprisingly a new bran
h of

nonlinear and non-dispersive waves is observed in the 
ollisionless 
ase be-

yond the standard EAWs �u
tuations. The phase speed of these �u
tuations

is about ≃ 0.5vth (vEAW
φ /3) and they are generated by the lo
alized driver,

whi
h perturbs the VDF in several phase spa
e regions. Indeed, the VDF

exhibits a small bump around v ≃ 0.5vth as a result of the driver e�e
ts,

therefore a beam-like instability 
ould 
ause the onset of these modes.

Moreover we show that, also for small values of 
ollisionality, these se
-

ondary waves are not re
overed; this suggests that 
ollisions inhibit the for-

mation of small s
ale stru
tures in the VDF and, hen
e, the triggering of

se
ondary beam-modes. This is probably the reason why these �u
tuations

are not routinely observed in laboratory plasma experiments, where a low

level of 
ollisionality is always present. It is worth to point out that, despite

we analyzed a neutral plasma, the wave laun
hing me
hanism is quite general

and our 
onsiderations 
ould be easily extended to nonneutral plasmas.

The stru
ture of the se
tion is the following: in Se
. 3.2.1 we theoreti
ally

analyze the basi
 equations system and the a
tion of the lo
alized driver and

we brie�y des
ribe our numeri
al 
ode. Then, in Se
. 3.2.2, we fo
us on the

triggering of linear Langmuir waves and on the basi
 frequen
y resonan
e
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pro
ess. Then, in Se
. 3.2.3, we analyze the EAWs laun
hing pro
ess in both

a 
ollisionless [Se
. 3.2.3℄ and a weakly 
ollisional [Se
. 3.2.3℄ plasma.

3.2.1 Theoreti
al analysis

We 
onsider a plasma 
omposed of kineti
 ele
trons and motionless pro-

tons within the ele
trostati
 approximation. Ele
tron-ele
tron 
ollisions are

in
luded at the right-hand side of the Vlasov equation through the one-

dimensional Dougherty operator [58, 59, 134, 135℄. We solve the following

dimensionless Dougherty-Poisson (DP) equations, in 1D�1V phase spa
e 
on-

�guration:

∂f

∂t
+ v

∂f

∂x
+

∂ (φ+ φD)

∂x

∂f

∂v
=

∂f

∂t

∣

∣

∣

∣

coll

(3.15)

− ∂2φ

∂x2
= 1−

∫

f dv ; (3.16)

where f = f(x, v, t) is the ele
tron distribution fun
tion, φ = φ(x) =

−dE/dx is the ele
trostati
 potential (E is the ele
tri
 �eld), φD = φD(x)

is the external potential driver and ∂f/∂t|coll is the Dougherty 
ollisional

operator. Due to their inertia, protons are 
onsidered as a motionless neu-

tralizing ba
kground of 
onstant density n0 = 1. In previous equations, time

is s
aled to the inverse ele
tron plasma frequen
y ωpe, velo
ities to the ini-

tial ele
tron thermal speed vth,e; 
onsequently, lengths are normalized by the

ele
tron Debye length λDe = vth,e/ωpe and the ele
tri
 �eld by ωpemevth,e/e

(me and e being the ele
tron mass and 
harge, respe
tively). For the sake of

simpli
ity, from now on, all quantities will be s
aled using the 
hara
teristi


parameters listed above.

The Dougherty 
ollisional operator [58, 59℄ has the following form:

∂f

∂t

∣

∣

∣

∣

coll

= ν(n, T )
∂

∂v

[

T
∂f

∂v
+ (v − V ) f

]

; (3.17)
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here, ν(n, T ) is the 
ollisional frequen
y:

ν(n, T ) = ν0
n

T 3/2
; ν0 =

g ln Λ

8π
; (3.18)

where g = 1/nλ3
D is the plasma parameter, ln Λ ≃ − ln g/3 is the Coulombian

logarithm, subs
ript j indi
ates the j-th ve
tor 
omponent and n =
∫

dvf ,

V = 1/n
∫

dv vf , T = 1/3n
∫

dv (v − V )2f are respe
tively plasma density,

mean velo
ity and temperature. The Einstein 
onvention has been intro-

du
ed in Eq. (3.17).

The driver shape φD(x, t) is the following:

φD(x, t) = φ0 h(x)g(t) sin(ωDt) , (3.19)

being respe
tively

g(t) =

[

1 +

(

t− τ

∆τ

)ng
]−1

; h(x) =

[

1 +

(

x− x0

∆x0

)nh
]−1

(3.20)

the temporal g(t) and spatial h(x) adiabati
 fun
tions whi
h respe
tively

model the antenna �lo
ality� and the adiabati
 turning on and o� fun
tion of

the driver. Sin
e the ele
trostati
 potential is spatially lo
alized, the ele
tri


�eld be
omes spread in terms of spatial Fourier 
omponents. On the other

hand, the temporal fun
tion g(t) sele
ts the frequen
y ω of the plasma modes.

Indeed, the Fourier transform of g(t) is lo
alized around the driver frequen
y

ωD with a width 
omparable with 1/∆τ . Therefore, as the driver temporal

extension gets bigger, the driver frequen
y width be
omes smaller. In Eqs.

(3.20) x0 = L/2, ∆x0 = L/16 and nh = 16, while the values of τ , ∆τ and ng

will be given later in the next se
tion. Eqs. (3.15)�(3.16) are solved with the

same methods des
ribed in previous se
tion and in Refs. [62, 63℄. The phase

spa
e is here dis
retized with Nx = 256 gridpoints in the physi
al domain

Dx = [0, L] and Nv = 12001 gridpoints in the velo
ity domain.

In the following se
tions we des
ribe simulations results about Langmuir

waves (Se
. 3.2.2) and EAWs (Se
. 3.2.3). In both 
ases, the initial 
ondition

is a homogeneous Maxwellian without any density perturbation.
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3.2.2 Langmuir waves

Here we des
ribe the results of three di�erent simulations, whose parameters

are listed in Tab. 3.1. For all the simulations the driver is turned on for a

time interval ∆τ = 40 T , being T the wave period, while ED = 5× 10−6
.

SIM L k1 = k0 = 2π/L ωD ωD = ω(k)
A 26 0.242 1.098 YES, for k = k1
B 26 0.242 1.200 NO, for any k
C 200 0.031 YES, for k = k1

Table 3.1: Parameters of the Langmuir waves simulations.

In the �rst simulation (SIM A), the driver os
illates at a frequen
y ωD

whi
h is in resonan
e with the ω(k1) plasma mode frequen
y, being ω(k1)

evaluated with a linear numeri
al solver. Figure 3.13 shows the time evolution

of the �rst two ele
tri
 �eld Fourier 
omponents |Ek|(t) in bla
k solid (k = k1)

and red dashed (k = k2) lines. |Ek2|(t) is reported as an illustrative 
ase for

other non-fundamental Fourier 
omponents, whi
h exhibit similar behaviors

to |Ek2|(t). Yellow verti
al lines indi
ate the time instants t = τ1 and t = τ2,


orresponding to the times when the driver is set on and o�. For the sake of

simpli
ity let us analyze Fig. 3.13 by 
onsidering three time periods: t ≤ τ1

(I) , τ1 ≤ t ≤ τ2 (II) and t ≥ τ2 (III).

Figure 3.13: (Color online) Time evolution of |Ek|(t) for k = k1 (bla
k line) and

k = k2 (red line) relative to SIM A. The two yellow verti
al lines indi
ate the time

instants at whi
h the driver is turned on t = τ1 and o� t = τ2, while the blue

dashed line represents the theoreti
al exponential damping with damping rate γL.
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When the driver grows up adiabati
ally (I), several Fourier 
omponents

in
rease their powers and |Ek1|(t) overtakes the non-fundamental 
ompo-

nents. Then, while the driver is on (II), the di�eren
e between |Ek1 |(t) and
the other Fourier 
omponents be
omes stronger. The power of the fundamen-

tal 
omponent 
ontinues to in
rease and |Ek1|(t) exhibits a non-�at pro�le,

due to the fa
t that the plasma is responding to the external driver through

the Langmuir wave generation. The other 
omponents remain instead at

the power level due to the driver. When the driver is turned o� (III), only

|Ek1 |(t) survives and displays an exponential damping, whose 
oe�
ient is in

agreement with the Landau damping rate γL = −1.404 × 10−3
[blue dashed


urve in Fig. 3.13(a)℄.

In this 
ase (SIM A) the laun
hing me
hanism is quite 
lear: the external

ele
tri
 �eld drives several spatial Fourier 
omponents but, at the same time,

it temporally sele
ts the driving frequen
y. The driver pulsation is perfe
tly

resonant with the theoreti
al pulsation of the Langmuir wave ω(k) with k =

k1, therefore the plasma response o

urs at a pure Langmuir wave. Other

spatial 
omponents, whi
h 
ould be ex
ited by the driver spatial lo
alization,

are not e�e
tively triggered be
ause they are not resonant with the driver

[ω(kj) 6= ωD for j 6= 1℄.

The se
ond simulation (SIM B) has the same parameters as SIM A ex
ept

for the driver frequen
y whi
h is now ωD = 1.20 [ωD 6= ω(kj) for all the set

of kj℄. Figure 3.14(a) shows the time evolution of the �rst two ele
tri
 �eld

Fourier 
omponents |Ek|(t) in bla
k solid (k = k1) and red dashed (k = k2)

lines. The yellow verti
al lines indi
ate the instants t = τ1 and t = τ2,


orresponding to the times when the driver is set on and o�.

The evolution of non-fundamental 
omponents [
ompare the red 
urves of

Fig. 3.13 and 3.14(a)℄ is the same of the on-dispersion (SIM A) 
ase, being

in both simulations the k = k2 wavenumber not resonant with the driver

[ω(k2) ≃ 1.60℄. However, |Ek1|(t) does not in
rease while the driver is turned
on and it remains almost at the driver level. When the driver is turned o�, the

ele
tri
 �eld |Ek1|(t) is damped out at the 
orre
t Landau damping rate [blue

dashed line in Fig. 3.14 (a)℄. It is also signi�
ant to evaluate the os
illation

peaks of Ek for a given k. Fig. 3.14(b) reports |Ek1(ω)| shape as a fun
tion
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Figure 3.14: (Color online) (a) Time evolution of |Ek|(t) for k = k1 (bla
k line)

and k = k2 (red line) relative to SIM B. The two yellow verti
al lines indi
ate the

time instants at whi
h the driver is turned on t = τ1 and o� t = τ2, while the blue
dashed line represents the theoreti
al exponential damping with damping rate γL.
(b) Os
illation peak of the �rst Fourier 
omponent of the ele
tri
 �eld, given by

the pro�le of |Ek(ω)| as a fun
tion of ω. The peaks are evaluated after that the

driver has been set o�. The blue and red dashed lines represent respe
tively the

driver pulsation ωD and the �proper� Langmuir wave frequen
y ω(k1).

of ω, being |Ek1(ω)| the temporal Fourier transform of Ek(t) preformed in

the temporal range when the driver is turned o�. Clearly |Ek1(ω)| peaks at
the Langmuir mode frequen
y ω(k1). This indi
ates that, on
e the driver has

been set o�, the plasma ex
ites the Langmuir mode with frequen
y ω(k1),

thus resulting in a frequen
y shift from ωD to ω(k1).

To understand the results des
ribed above for SIM A and SIM B, we

numeri
ally evaluated, for ea
h set of parameters in Tab. A, the Fourier

transform of the temporal part of the driver g(t) sin(ωDt):

η(ω) =

∫ ∞

0

dte−iωt sinωDt

1 +
(

t−τ
∆τ

)ng
, (3.21)
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Figure 3.15: (Color online) Absolute value of η(ω) for the SIM A (a) and SIM B

(b). The red 
urves in both panel indi
ate the �proper� Langmuir frequen
y ω(k1).

whi
h gives information about the frequen
y window that ea
h wavenumber

feels during the driving pro
ess. Figures 3.15 (a)�(b) show the pro�le of

|η(ω)| as a fun
tion of ω for the on-dispersion (SIM A) 
ase (a) and for the

o�-dispersion (SIM B) 
ase (b). The red solid lines in Figs. 3.15 (a)�(b)

indi
ates the Langmuir modes frequen
y. In SIM A, the driver is resonant

with the mode frequen
y ω(k1) [see Fig. 3.15(a)℄, therefore this mode is

e�e
tively triggered by the driver. The other modes have pulsation ω(kj),

being j > 1, mu
h di�erent with respe
t to ωD (e.g. ω(k2) ≃ 1.60), therefore

they do not fall in the a

essible ω window for being ex
ited.

On the other hand, in the o�-dispersion (SIM B) 
ase, the driver is not

perfe
tly resonant with any Langmuir mode [see Fig. 3.15(b)℄. Therefore

the triggering of the k = k1 is less powerful than in the SIM A 
ase be
ause,

despite ω(k1) falls in a region where |η(ω)| is weak but not exa
tly null, the

130



Collisional e�e
ts des
ribed in a redu
ed phase spa
e

Figure 3.16: (Color online) (a) Time evolution of |Ek|(t) for k = k1 (bla
k line) and

k = k2 (red line) relative to SIM C. The two yellow verti
al lines indi
ate the time

instants at whi
h the driver is turned on t = τ1 and o� t = τ2. (b) Absolute value
of η(ω) for the same simulation. The red 
urves indi
ate the �proper� Langmuir

frequen
ies ω(k1) and ω(k2).

fundamental wavenumber re
eives a small amount of energy by the driver.

We also show the results of the third simulation (SIM C), where the

plasma length is mu
h bigger 
ompared to SIM A and SIM B and ω(k1) = ωD.

Fig. 3.16 (a) reports the temporal evolution of the �rst two ele
tri
 �eld

Fourier 
omponents |Ek|(t) in bla
k (k = k1) and red (k = k2) solid line. In


ontrast with previous 
ases [see Fig. 3.13 and Fig. 3.14(a)℄, here the se
ond

Fourier 
omponent, as well as other 
omponents not expli
itly shown in Fig.

3.16(a), are also ex
ited. This happens be
ause wavenumbers are smaller and


loser 
ompared to previous 
ases, therefore many Langmuir modes [See Fig.

3.16(b) whi
h displays ω(k1) and ω(k2) respe
tively in red and blue lines℄
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are resonant with the driver. These modes are moreover almost undamped

be
ause their wavenumbers are small, therefore, when the driver is turned

o�, |Ek|(t) is almost �at.

The three simulations des
ribed above let us understand that the lo
alized

driver sele
ts - through the adiabati
 temporal fun
tion g(t) - a frequen
y

window 
entered around ωD, whose width is 
omparable with 1/∆τ and

where the energy is non-uniformly pumped. The spatial lo
alizing fun
tion

Figure 3.17: (Color online) Time evolution of |Ek|(t): k = k1 (a), k = k2 (b) and

k = k3 (
) for the EAWs simulation. In ea
h panel the red dashed lines indi
ate

the temporal instants at whi
h the driver is turned on t = τ1 and o� t = τ2.
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h(x) produ
es instead the ex
itation of several wavenumbers. If any Lang-

muir mode frequen
y ω(k), being k one of the dis
rete wavenumbers that

the driver 
an ex
ite, is resonant with the driving frequen
y ωD, the mode is

de�nitively triggered.

3.2.3 Ele
tron-a
ousti
 waves

Here we move to the more 
omplex s
enario of EAWs. Indeed, 
ompared to

the Langmuir waves 
ase, we show that, sin
e the dispersion relation is of

the a
ousti
 type, nonlinear 
ouplings 
an easily o

ur and several harmoni
s

are generated along the dispersion relation. Sin
e the driver is strong enough

to trigger nonlinear waves (i.e. to modify the VDF), se
ondary beam-like

instabilities are also generated. Moreover, we investigate both the 
ase of


ollisionless and weakly 
ollisional plasmas.

Collisionless 
ase

Here we analyze the 
ollisionless 
ase by fo
using on a simulation where

the driver pulsation is ωD = 0.455 and L = 20. The �rst wavenumber

k1 = k0 = 2π/L (being L = 20 the plasma length) 
orresponds to a on-

dispersion EAWs (ωD/k1 = vEAW
φ = 1.45). Moreover, the driver is turned

Figure 3.18: (Color online) Os
illation peaks of the �rst three Fourier 
omponents

of the ele
tri
 �eld given by the pro�le of |Ek(vφ = ω/k)| as a fun
tion of the phase

speed vφ = ω/k: k = k1 (a), k = k2 (b) and k = k3 (
). The temporal Fourier

transform has been performed in the temporal range after that the driver has been

set o�. Red dashed lines indi
ate the �rst three phase speeds whi
h are triggered

by the driver.
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Figure 3.19: (Color online) Os
illation peaks, as showed in Fig. 3.18(a)�(d), of

the �rst three Fourier 
omponents of the ele
tri
 �eld represented in the k�ω plane

through single points. The two bla
k lines displays the line with phase speed

vφ,1 = vEAW
and vφ,3 = vEAW/3, while the red dashed horizontal line shows the

driver pulsation ω = ωD.

on for ∆τ = 5τtr, being τtr = 2π/
√
Ekk the nonlinear trapping time, while

ng = 10. The driver amplitude is ED = 5× 10−2
.

Figures 3.17 (a)�(
) show the temporal evolution of |Ek|(t) being k = k1

(a), k = k2 (b) and k = k3 (
). In ea
h panel of Fig. 3.17, |Ek|(t) rises up
for the driver e�e
t, whi
h is turned on between the two red verti
al dashed

lines t = τ1 and t = τ2, and, when the driver is turned o�, many ele
tri
 �eld

spe
tral 
omponents survive.

To understand how the plasma rea
ts to the driver �eld, we evaluated

the frequen
y os
illation peaks of Ek for a given k and in the range when

the driver is turned o� (t > τ2). Figures 3.18 (a)�(
) show |Ekj |(vφ,j) for

j = 1 (a), j = 2 (b) and j = 3 (
) as a fun
tion of vφ,j = ω/kj. Red

verti
al lines in Figs. 3.18 represent the �rst three phase speeds whi
h are

triggered by the driver. Indeed, sin
e the driver pulsates at ωD and ex
ites

several wavenumbers, several velo
ity values are ex
ited: vφ,j = vφ,D/j, being

vφ,D = ωD/k. In ea
h panel two peaks lo
ated at vEAW
φ = vφ,1 and vφ,3 =

vEAW
φ /3 are re
overed, therefore two straight lines with phase speeds vEAW

φ

and vEAW
φ /3 are populated in the k�ω plane, shown in Fig. 3.19.

It is interesting to point out how the �nal 
on�guration in the k�ω plane,
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Figure 3.20: (Color online) Panel (a) show the 
ontour plot of the distribution

fun
tion at the �nal time t = tfin = 17000 f(x, v, t = tfin) in the velo
ity range

v = [0, 2] while the panel (b) displays a spatial 
ut of the distribution fun
tion

f(x = x0, v, t = tfin) as a fun
tion of v. In both panels the red dashed lines

indi
ate the phase speed vφ,1 and vφ,3 - whi
h 
orrespond to os
illation peaks in

the ele
tri
 �eld - while the blue line shows the phase speed vφ,2 - whi
h is related

to a plateau due to the driver but not yet present in the os
illation peaks of the

ele
tri
 �eld.

shown in Fig. 3.19, is generated. For this reason, we performed the analysis

based on Ek(ω) at di�erent simulation stages. At the beginning, ea
h spatial


omponent os
illates with the driver (along the red dashed line in Fig. 3.19).

Then, while the driver is still turned on, the straight line of peaks at vEAW
φ

is generated. This pro
ess 
an be interpreted as a weakly nonlinear 
oupling

(or se
ondary harmoni
s generation) o

urring along the EAW bran
h [191℄.

Finally, when the driver is turned o�, the se
ondary peaks line at vEAW
φ /3

appears.

The dynami
s is extremely 
omplex and, in general, the ele
tri
 �eld does
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Figure 3.21: (Color online) Zoom of the distribution fun
tion 
ontour plot

f(x, v, t = tfin) in the velo
ity region v = [0.3, 0.7].

not os
illate just at the EAW phase speed but it exhibits several os
illation

peaks. To �gure out how the driver and the presen
e of these peaks model

the distribution fun
tion in phase spa
e, we show the 
ontour plot of the

distribution fun
tion f(x, v, t = tfin) in the velo
ity region v = [0.2, 2] in

Fig. 3.20 (a), while Fig. 3.20 (b) displays f(x = x0, v, t = tfin) as a fun
tion

of v being x0 = L/4 and tfin = 17000. Red dashed lines in Figs. 3.20 (a)�

(b) indi
ate v = vEAW
φ and v = vEAW

φ /3, while the dashed blue line shows

v = vEAW
φ /2.

The distribution fun
tion exhibits the expe
ted EAW BGK-hole, lo
alized

at the 
orre
t EAW phase velo
ity, whose width is in a

ordan
e with the

theoreti
al expe
tation [192℄. Therefore, as in previous works [144, 185℄, our

driver 
orre
tly triggers EAWs. However, other stru
tures are also generated

at lower velo
ities whi
h are not re
overed in previous simulation studies,

where the usual non-lo
alized has been employed. A �at plateau, whi
h

resembles the �o�-dispersion� like plateau obtained in Ref. [144, 185℄, is

observed at vEAW
φ /2. Moreover, a large �at top pro�le is re
overed around

v = 0 whose width is about∆vtop = 0.4. This 
ould be due to the fa
t that, at

small velo
ities, the driver thi
kens many ex
itable phase speeds (vφ ∝ 1/k)

and the presen
e of many phase speeds 
on
entrated in the same phase spa
e

region (i.e. many plateaus overlap in this region) may 
ause a �attening

pro
ess of the VDF. Furthermore a small BGK-like vortex is lo
alized at
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Figure 3.22: (Color online) Time evolution of |Ek|(t), being k = k1, for g = 10−7

(a), g = 3× 10−7
(b) and g = 10−6

(
). In ea
h panel the red dashed lines indi
ate

the temporal instants at whi
h the driver is turned on t = τ1 and o� t = τ2.

v = vEAW
φ /3 (See the zoom of the VDF around v = vEAW

φ /3 showed in Fig.

3.21). Phase spa
e stru
tures showed in Figs. 3.20 are signi�
antly di�erent.

The stru
tures 
onne
ted with ele
tri
 �eld os
illations (v = vEAW
φ , vEAW

φ /3)

show a BGK-like stru
ture, while the ones due to the driver whi
h instead

does not generate a plasma response are �at and homogeneous (v = vEAW
φ /2).

The novel feature of our simulations 
on
erns the presen
e of an unex-

pe
ted, se
ondary, straight line of frequen
y os
illation peaks in the k�ω plane

with phase speed vφ = vEAW
φ /3. These �u
tuations, whi
h are re
overed after

that the driver is turned o� and are related to a small BGK-like stru
ture in

phase spa
e, 
ould be generated by the driver through a beam-like instability.

Indeed, the VDF exhibits a a small bump around v = vEAW
φ /3 ≃ 0.5 due to

the driver nonlinearity even before the formation of the BGK-like stru
ture

at vEAW
φ /3. We suggest that this small bump may generate a beam-like in-

stability, whi
h gives rise in the nonlinear regime to a BGK-like vortex in the

distribution fun
tion. This bump is present only at v = vEAW
φ /3, therefore

the beam-like instability me
hanism due to the bump 
ould be in a

ordan
e

with the observation that suggests the presen
e of a se
ondary os
illation

peaks series only for vφ = vEAW
φ /3.

Collisional 
ase

In order to �gure out if, in a weakly 
ollisional plasma, the se
ondary wave

bran
h survives or is dissipated by 
ollisional e�e
ts, here we analyze some
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Figure 3.23: (Color online) Frequen
y os
illation peaks of |Ek|(t), being k = k1, for
g = 10−7

(bla
k), g = 3×10−7
(red) and g = 10−6

(blue) represented as a fun
tion

of the phase speed vφ. The green dashed line displays the EAWs phase speed

vφ,1 = vEAW
φ while the greem dotted line shows the phase speed vφ,3 = vEAW

φ /3.


ollisional simulations, where 
ollisions are modeled through the Dougherty

operator [See Eq. (3.17) in Se
. 3.2.1℄. We show that these se
ondary �u
tu-

ations are not re
overed when a small 
ollisionality is introdu
ed, while the

EAWs are damped in time. This last feature has been also observed in lab-

oratory experiments [50, 182℄ and it is qualitatively similar to the Zakharov

and Karpman (ZK) 
ollisional damping predi
ted in Ref. [193℄. The values of


ollisionality 
onsidered are in the range g = [10−7, 10−6], whi
h 
orresponds

to realisti
 situations in a Penning-Malmberg apparatus.

Figures 3.22 (a)�(
) show the temporal evolution of |Ek|(t) (k = k1), for

the 
ases g = 10−7
(a), g = 3 × 10−7

(b) and g = 10−6
(
). Red lines

indi
ate the time instants when the driver has been turned on (τ1) and o�

(τ2). For τ1 < t < τ2, the evolution in the three 
ases is quite similar

[
ompare also with Fig. 3.17 (a)℄. On the other hand, for t > τ2, |Ek1|(t)
exhibits an exponential damping, with damping rate proportional to the


ollisional frequen
y ν0 and other 
omponents (not shown here) display the

same qualitative behavior of |Ek1|(t). Damping rates for the 
ases g = 10−7
,

g = 3 × 10−7
and g = 10−6

are respe
tively γC = −2.75 × 10−5
, γC =

−7.24× 10−4
and γC = −2.27× 10−4

. These results systemati
ally di�ers by

the ZK predi
tion of 
ollisional damping by a fa
tor about 2 ÷ 3. However,

ZK results have been obtained by assuming that i) the VDF di�ers from

the Maxwellian only in the resonan
e region and ii) the phase speed is mu
h
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Figure 3.24: (Color online) Left, 
enter and right 
olumns display respe
tively the


ontour plots of the distribution fun
tion f(x, v, t) for the 
ases g = 10−7
(a),

g = 3× 10−7
(b) and g = 10−6

(
) at two time instant t = 10000 (top) and at the

time instant t = tfin = 17000 (bottom).

bigger than the thermal speed and both 
onditions are not satis�ed in our

simulations; this fa
t may explain the quantitative dis
repan
y between the

observed damping and the ZK predi
tion.

To �gure out whether the se
ondary frequen
y peaks o

ur also in the


ollisional 
ases, we evaluated Ek(vφ) for ea
h 
ase showed in Figs. 3.22(a)�

(
) in the time window when the driver is turned o�. Figure 3.23 shows

|Ek(vφ)| as a fun
tion of the phase speed vφ = ω/k for the 
ases g = 10−7

(bla
k), g = 3×10−7
(red) and g = 10−6

(blue). In ea
h 
ase |Ek(vφ)| exhibits
a well-de�ned single peak around the proper EAWs phase speed vφ,1 = vEAW

φ

[green dashed lines in Fig. 3.23℄; while the se
ond peak at vφ,3 = vEAW
φ /3

[green dotted lines in Fig. 3.23℄ is not present. Other spatial wavenumbers

(not shown here) exhibit the same behavior.

This 
hara
teristi
 is 
orroborated through the analysis of the distribution

fun
tion in phase spa
e. The top panels of Fig. 3.24 display the 
ontour plots

of the distribution fun
tion f(x, v, t = 10000) in the velo
ity spa
e region

v = [0.2, 2] for the 
ases g = 10−7
(aI), g = 3 × 10−7

(bI) and g = 10−6

(
I), while the bottom panels of Fig. 3.24 indi
ate f(x, v, t = tfin), being
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tfin = 17000 for the 
ases g = 10−7
(aII), g = 3 × 10−7

(bII) and g =

10−6
(
II). By 
omparing the �nal stages of the 
ollisionless and 
ollisional

simulations [
ompare Figs. 3.24 (aII)�(
II) with Fig. 3.20 (a)℄, it is easy to

establish that the 
ollisional 
ase do not show the small BGK-like stru
ture at

v = vEAW
φ /3. E�e
tively, in 
orresponden
e of the small BGK-like stru
ture

in Fig. 3.20(a)℄, in the 
ollisional 
ases only a small �at and homogeneous

area is present, this indi
ating that 
ollisions prevent the formation of the

se
ondary peaks of os
illations. Furthermore, 
omparing panels (I) and (II) of

Fig. 3.24, one noti
es that EAW holes tend to be smoothed out by 
ollisional

e�e
ts, bigger the 
ollisional frequen
y faster the smoothing due to 
ollisions.

3.2.4 Summary

In this se
tion, we fo
used on the wave laun
hing pro
ess whi
h is 
ommonly

adopted to trigger ele
trostati
 �u
tuations in laboratory plasmas. This pro-


ess, whi
h is based on a lo
alized external driver whi
h triggers plasma

waves, has been here des
ribed in detail by means of Eulerian kineti
 sim-

ulations. First, by fo
using on the triggering of linear Langmuir waves, the

basi
 resonan
e wave laun
hing me
hanism has been analyzed. It is found

that the driver non-uniformly pumps energy in a frequen
y window 
entered

around its pulsation, while, in prin
iple, several wavenumbers 
an be ex
ited.

Then, we analyzed the 
ase of EAWs. Beyond the ex
itation of EAWs, a

new bran
h of small amplitude, a
ousti
-type, nonlinear waves, whose phase

speed is vφ = vEAW
φ /3 ≃ 0.5, is re
overed. These �u
tuations may be gener-

ated as an e�e
t of a beam-like instability due to the presen
e of a small bump

in the 
ore of the distribution fun
tion, generated by the driver nonlinearity.

The existen
e of this se
ondary waves, in a weakly 
ollisional plasma has been

dis
ussed. Also for small values of 
ollisionality - 
omparable with the 
ol-

lisionality of realisti
 laboratory apparatus, these �u
tuations are suddenly

dissipated. The main EAW bran
h su�ers instead an exponential damping,

similar to the one observed in experiments.

We remark that our work has two main interesting points. Firstly, sin
e

the driver ex
ites several phase speeds, additional wave bran
hes 
an be ex-
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ited. This e�e
t is intimately related to the driver nonlinearity. When the

driver a
ts for enough time or its amplitude is su�
iently big, nonlinear ef-

fe
ts generate non-Maxwellian features in the parti
le VDF. On
e plateaus

or bumps are generated in the distribution fun
tion, other bran
hes of �u
-

tuations 
an be ex
ited a

ording to Refs. [142, 194℄. Se
ondly, 
ollisions

have an essential role into the dissipation of these se
ondary modes: even for

small values of the 
ollisional frequen
y these se
ondary �u
tuations are not

re
overed. The presen
e of 
ollisions in laboratory devi
es may be the reason

why these modes have not been yet observed in laboratory plasmas.
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We summarize here the main results showed in this part of the thesis whi
h

fo
used on the des
ription of 
ollisional e�e
ts in weakly 
ollisional plasmas.

We �rst showed, by modeling 
ollisions through the fully nonlinear Lan-

dau operator, that 
ollisionality 
an be signi�
ant also in a weakly 
ollisional

plasma. Indeed, strong velo
ity spa
e gradients, whi
h naturally develop in

the parti
le distribution fun
tion as an e�e
t of wave-parti
le intera
tions and

- in general - of turbulen
e 
as
ade, are dissipated mu
h faster than other

global non-Maxwellian features. These 
hara
teristi
 dissipation times 
an

be mu
h smaller than the Spitzer-Harm time. This suggests that, when the

parti
le distribution fun
tion exhibits �ne velo
ity spa
e stru
tures, 
ollisions


an be lo
ally enhan
ed and 
ould be 
omparable with other 
hara
teristi


dynami
al times.

However, as des
ribed in detail, the 
omputational 
ost of the Landau

operator is signi�
antly high and, nowadays, it is not possible to perform

self-
onsistent simulations where 
ollisions are modeled through this opera-

tor. Therefore, simpli�ed 
ollisional operators are routinely adopted. Here,

we initially modeled 
ollisions through the Dougherty operator in the full

three-dimensional velo
ity spa
e. We re
overed a quite good agreement be-

tween the Landau and the Dougherty operators in the relaxation of spatially

homogeneous for
e-free plasmas. Hen
e, we performed self-
onsistent ele
-

trostati
 simulations of a plasma 
omposed of kineti
 ele
trons and immobile

protons, in a nonlinear regime and in the 
ase of weak 
ollisionality. By fo-


using on the onset of the bump-on-tail instability and on the propagation of

KEEN waves, we des
ribed the 
ompetitive role of kineti
 pro
esses, whi
h

tend to modify the parti
le VDF, and 
ollisions, whi
h instead tend to restore
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the thermal equilibrium.

Then, we restri
ted to a redu
ed 1D�1V phase spa
e where we des
ribed

two di�erent phenomena. First, we analyzed the role of 
ollisions on the re-


urren
e of the initial state, by showing that the arti�
ial 
ollisionality 
annot

prevent re
urren
e without signi�
antly 
ompromise the kineti
 features of

the solution. Moreover, we pointed out that �lamentation-like phenomena,

usually asso
iated with linear �u
tuations, 
an play a role even in nonlinear

regime.

Finally, we des
ribed the method, usually adopted in laboratory plasmas

devi
es, for ex
iting waves. When triggering Ele
tron A
ousti
 Waves, a

new bran
h of small amplitude, nonlinear and non-dispersive waves has been

also re
overed beyond the main EAWs bran
h. These se
ondary �u
tuations

are generated by the external, nonlinear driver and tend to be qui
kly dis-

sipated when a small 
ollisionality - 
omparable with the one of laboratory

experiments - is 
onsidered.
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The full 
omprehension of the dynami
s of weakly 
ollisional plasmas su
h

as the solar wind is one of the intriguing 
hallenges for the spa
e plasmas s
i-

enti�
 
ommunity. The solar wind is a 
omplex, strongly turbulent medium

whose dynami
s involves several pro
esses at di�erent spatial and tempo-

ral s
ales. The energy is transferred along the spe
trum from large, inje
-

tion s
ales, where the dynami
s is modeled within a �uid approa
h, towards

smaller s
ales where a kineti
 approa
h is needed. Although kineti
 models

are often 
ollisionless, one should bear in mind that 
ollisions may have a

signi�
ant role for properly des
ribing dissipative irreversible pro
esses.

In this thesis we have initially examined the interplay of �uid and ki-

neti
 s
ales by revisiting the Mo�att & Parker problem by means of MHD,

Hall MHD and hybrid kineti
 numeri
al simulations. This problem, whi
h


on
erns the intera
tion of 
ounter-propagating Alfvéni
 wave pa
kets, was

investigated in the late Seventies in the ideal in
ompressible MHD 
ase and

it is 
onsidered the �building-blo
k� s
enario for triggering turbulen
e. Here,

by extending the des
ription to the realm of kineti
 plasmas, we showed that

the introdu
tion of dispersion and kineti
 physi
s makes the dynami
s mu
h

more 
omplex with respe
t to the MHD 
ase. Indeed, strong turbulen
e sig-

natures 
oexist with a waves-like a
tivity and it is di�
ult to determine if

wave pa
kets attain a full separation after their intera
tion, as predi
ted by

the Mo�att & Parker theory.

Our simulations 
on
erning the Mo�att & Parker problem suggest that,

on
e kineti
 s
ales are rea
hed, the parti
le distribution fun
tion is strongly

a�e
ted by wave-parti
le resonan
es and kineti
 turbulen
e and, as a natural


onsequen
e, its shape is signi�
antly perturbed. This feature is also re
ov-
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ered by means of other kinds of numeri
al simulations or through solar wind

in-situ measurements. The presen
e of these velo
ity spa
e distortions makes

us address a fundamental question, whi
h underlies the results showed in the

se
ond part of the thesis. Sin
e 
ollisional e�e
ts expli
itly depend on velo
ity

spa
e gradients, 
ould these �ne stru
tures lo
ally enhan
e the plasma 
olli-

sionality, despite it is usually 
onsidered far too weak to produ
e signi�
ant

e�e
ts?

We reported eviden
es that the 
ollisionality 
an be e�e
tively enhan
ed

also in a weakly 
ollisional plasmas. Indeed, by modeling 
ollisions through

the fully nonlinear Landau operator and fo
using on the 
ollisional relaxation

of a homogeneous for
e-free plasma, we showed that �ne velo
ity stru
tures

are dissipated mu
h faster (with 
hara
teristi
 times mu
h smaller than the

Spitzer-Harm time) than other global non-Maxwellian features. Therefore,

when the parti
le distribution fun
tion exhibits strong velo
ity spa
e gra-

dients, 
ollisions 
an be e�e
tively enhan
ed and 
ould be 
omparable with

other 
hara
teristi
 dynami
al times. The nonlinearities present in the math-

emati
al form of the Landau operator are also important to properly 
ompare


ollisional times with other dynami
al times.

Performing self-
onsistent simulation where 
ollisions are modeled with

the Landau operator is nowadays problemati
 for the Landau operator 
om-

putational 
ost. Hen
e, 
ollisions are usually taken into a

ount by means

of simpli�ed operators. We here modeled 
ollisions through the Dougherty

operator. We established a good 
omparison between the Landau and the

Dougherty operator in the 
ase of the 
ollisional relaxation of a spatially

homogeneous for
e-free plasma, this allowing to perform self-
onsistent 
olli-

sional simulations, in the 1D�3V 
on�guration, regarding the propagation of

nonlinear ele
trostati
 waves. Finally, restri
ting to the 1D�1V phase spa
e,

we analyzed two separate problems: the e�e
ts of 
ollisions on the phe-

nomenon of the re
urren
e of the initial states and the laun
hing problem,

namely the methods 
ommonly adopted in laboratory plasmas for triggering

waves.
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