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Abstract

This thesis focuses on the physical connection of large, fluid scales with small,
kinetic wavelenghts and on the introduction of collisional effects in weakly-
collisional plasmas.

In the first part, the Moffatt & Parker problem, namely the collision of
two counter-propagating Alfvénic wave packets, has been revisited by means
of magnetohydrodynamics (MHD), Hall MHD and hybrid kinetic simula-
tions. The goal of this study was to extend the Moffatt & Parker problem
to the realm of kinetic physics and show that, when introducing more com-
plex physical ingredients, the dynamics is quite different with respect to the
pure ideal MHD case. When the energy is transferred towards kinetic scales
through nonlinear coupling mechanisms, the distribution function is strongly
perturbed and departs from local thermodynamical equilibrium. The wave
packets interaction has been also characterized in terms of strong and weak
turbulence, showing that features explained in terms of both kinds of turbu-
lence theories coexist.

In the second part, a special attention has been devoted to weakly colli-
sional plasma systems, in which kinetic effects and particle collisions coexist
and compete in shaping the particle velocity distribution. By means of nu-
merical simulations of relaxation towards equilibrium in presence of the full
Landau collisional integral, it has been pointed out that collisionality can be
effectively enhanced by the presence of fine velocity structures in the particle
distribution function.

However, due to the high computational cost of the Landau integral, sim-
plified collisional operators have been employed to simulate self-consistently
the dynamics of weakly-collisional plasmas. In particular, the Dougherty
operator has been employed in 1D-3V phase space configuration (1D in
physical space, 3D in velocity space) to address the role of electron-electron
collisions in the nonlinear regime of electrostatic waves propagation. Finally,
with the aim of simulating realistic physical conditions in experiments with
plasmas trapped in longitudinal machines, numerical simulations in reduced
1D-1V phase space have been run to reproduce the process of wave launching
in real plasma devices.

The ultimate goal of this work was to support the idea that the com-
petition between kinetic effects, which tend to drive the system away from
equilibrium, and collisions, which work to thermalize the plasma, could be the
physical ingredient underlying the mechanism of particle heating in weakly
collisional systems, such as the solar wind.



Sommario

Questa tesi riguarda 1’analisi della connessione delle scale fluide con le scale
cinetiche e la descrizione degli effetti collisionali in un plasma debolmente
collisionale.

Nella prima parte, il problema di Moffatt & Parker, riguardante la col-
lisione di due pacchetti d’onda Alfvénici, é stato rivisitato mediante simu-
lazioni magnetoidrodinamiche (MHD), Hall MHD e cinetiche. L’obiettivo &
di estendere I’analisi del problema a scale cinetiche e mostrare che, quan-
do si introducono effetti pit complessi (compressibilita, dispersione, effetti
cinetici), la dinamica é molto diversa rispetto al caso MHD. Quando I’e-
nergia e trasferita a scale cinetiche mediante accoppiamenti nonlineari, la
funzione di distribuzione protonica mostra strutture lontane dall’equilibrio
termodinamico. L’interazione dei pacchetti é inoltre caratterizzata in termi-
ni di turbolenza forte e debole, mostrando che, a valle dell’interazione dei
pacchetti, coesistono caratteristiche spiegabili attraverso entrambe le teorie
della turbolenza.

La seconda parte ha riguardato invece la descrizione di un plasma de-
bolmente collisionale, caratterizzato dalla competizione di effetti cinetici e
collisioni nel determinare 1’evoluzione della funzione di distribuzione parti-
cellare. Attraverso simulazioni numeriche di rilassamento verso 1’equilibrio in
presenza dell’integrale collisionale di Landau, é stato mostrato che la collisio-
nalita puo essere effettivamente intensificata dalla presenza di forti gradienti
nello spazio delle velocita.

Tuttavia, per 'eccessivo costo computazionale dell’integrale di Landau,
sono stati sviluppati alcuni operatori collisionali semplificati al fine di simula-
re, in modo auto-consistente, la dinamica dei plasmi debolmente collisionali.
In particolare 'operatore di Dougherty é stato utilizzato nello spazio delle
fasi 1D-3V (una dimensione nello spazio fisico, tre in velocita) per studiare
I'effetto delle collisioni elettrone-elettrone sulla propagazione di onde elet-
trostatiche nonlineari. Infine, con lo scopo di simulare le condizioni fisiche
realistiche ottenute negli esperimenti con plasmi intrappolati in macchine
longitudinali, sono state effettuate simulazioni numeriche nello spazio delle
fasi ridotto 1.D—-1V che riproducono il processo di eccitazione di un’onda nelle
macchine a plasma.

Lo scopo ultimo di questo lavoro era di supportare 1'idea che la competi-
zione tra gli effetti cinetici, che tendono a guidare il sistema lontano dall’equi-
librio, e le collisioni, che termalizzano il plasma, potrebbe essere I'ingrediente
fisico alla base dei meccanismi di riscaldamento delle particelle in un sistema
debolmente collisionale, come, ad esempio, il vento solare.
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Introduction

The plasma represents one of the most captivating and, at the same time,
common physical systems in the Universe. Since the last Century, several
efforts have been devoted to analyze plasmas in order to understand the
dynamics of natural systems - such as the inner matter of the stars or the
solar wind - or for reproducing the nuclear fusion in laboratory devices for
engineering purposes.

Despite some studies recently focused on the presence of quantum effects,
plasmas are usually treated as classical gases, composed by a consistent part
of ionized particles (electrons and ions). Within this framework, the parti-
cles motion is affected by electromagnetic fields through the Lorentz force,
but particles contemporaneously modify electromagnetic fields through the
sources terms (i.e. charges and currents) of the Maxwell equations. This last
aspect, the so—called self-consistency, introduces a certain degree of complex-
ity in modeling plasmas. For example, the coupling of charged particles and
fields allows the system to exhibit some collective effects such as waves and
instabilities. Particles are also correlated due to the presence of microscopical
interaction, i.e. collisions, which - as we will discuss in detail - complicates
the analysis of the plasma dynamics. Moreover, any plasma model shows the
presence of strong nonlinearities in the characteristic equations, thus leaving
the door open to a huge branch of nonlinear physics phenomena such as the
propagation and the interaction of nonlinear waves or the onset of turbulent
flows. Ultimately, the presence of turbulence in plasmas draws a subtle line
that connects the study of a per se difficult physical system like the plasma
with the turbulence, which is one of the most historically analyzed but still

not completely understood phenomenon.
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This huge physical complexity reduces the possibility of deriving analyti-
cal results to few simple cases while, for a deeper comprehension, a numerical
approach is mandatory. In this perspective, numerous methods have been
developed to study plasmas through a numerical approach, that allowed to
achieve significant improvements in understanding the system dynamics. In
several cases, numerical simulations have predicted results later confirmed
by means of laboratory experiments or through in-situ spacecraft measure-
ments, thus reinforcing the role of numerical simulations as valid tools to
lead scientific discoveries in plasma physics.

However, the physical complexity is also reflected in the numerical de-
scription of the system. Indeed, even though nonlinearities recovered in the
equations can be taken into account easier numerically than analytically, one
should also remember that the introduction of nonlinearities - often associ-
ated with the energy transfer towards small scales - raises important numer-
ical issues related to the adopted resolution and to the computational cost
of numerical simulations.

From this point of view, it is important to review the methods usually
employed to model plasmas - within the “mean-field” assumption - by also
highlighting their computational weight. The different approaches corre-
spond to a description which is appropriate for a particular range of scales
(frequencies and wavevectors). At the lowest frequencies, ions and electrons
are locked together by electrostatic forces and behave like an electrically
conducting fluid; this is the regime of the magnetohydrodynamics (MHD).
Historically the MHD represents one of the first attempts to model plasma
and assumes that i) plasma is a neutral conducting fluid where collisions
are sufficiently strong to maintain a local thermodynamical equilibrium, i.e
the particle velocity distribution function shape is close to the equilibrium
Maxwellian, and ii) the fluid is coupled to the magnetic field through the
induction equation. This model is still widely adopted to analyze plasmas
at large scales. Several phenomenologies have been developed to study the
features of the MHD turbulence [1, 2, 3,4, 5, 6,7, 8,9, 10, 11, 12, 13, 14] with
a particular attention to applications to the solar wind, that is a low-density,

high-temperature plasma which flows from the Sun in the heliosphere and
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is strongly turbulent. Several extension of the MHD approach have been
proposed to include other physical ingredients which occur at smaller scales
such as the Hall correction (HMHD) [15, 16, 17]. All these fluid models
have a similar computational cost, that is proportional to N3, being N the
number of gridpoints along each spatial direction. At somewhat higher fre-
quencies, electrons and ions can move relatively to each other, behaving like
two separate and inter-penetrating fluids: this is the two-fluid regime, whose
computational cost is also proportional to N3.

However, solar wind in-situ measurements revealed much complex fea-
tures which go beyond the fluid treatment. Indeed, once the energy is trans-
ferred by turbulence towards smaller scales near the ion inertial lengths,
kinetic physics signatures are often observed [12, 18, 19, 20|. Collisions are
in general weak and wave-particle interactions and turbulence mechanisms
tend to modify the particle VDF shape, which displays a strongly distorted
out-of-equilibrium profile characterized by the presence of non-Maxwellian
features (temperature anisotropies, beams, rings-like structures etc. etc.)
[21, 22, 23, 24, 25]. Numerous kinetic models have been developed to under-
stand the dynamics at such scales [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37|.
Most of these models are collisionless: collisions are assumed to be far too
weak to produce any significant effect on the plasma dynamics and the plasma,
obeys the Vlasov equation.

We will later come back to the role of collisions in weakly collisional
plasmas, since this point deserves - in our opinion - a separate discussion.
It is worth to highlight instead the computational cost of the collisionless
models. We would also point out that, historically, two main families of nu-
merical approaches have been developed to integrate the Vlasov equation:
the Particle-In-Cell (PIC) [38, 39| and the Eulerian (HVM) [40, 41] algo-
rithms. The latter methods directly integrate the Vlasov equation, while
the former solve the characteristics equations of the Vlasov equation for an
ensemble of quasi-particles. PIC methods have been widely adopted since
their implementation is relatively straightforward and the requested memory
is not huge. However they suffer the presence of a statistical noise due to the

finite number of quasi-particles. Indeed, it is necessary to “count” the quasi-
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particles in a discretized phase space for evaluating moments of the distribu-
tion function on a spatial grid, thus introducing the noise which especially
affects the dynamics at small scales. On the other hand, Eulerian Vlasov
codes are noise-free but their implementation is more difficult and, since the
full distribution function is evolved in phase space, the memory requirements
are significantly larger than for PIC. Recently different methods have been
also proposed to investigate the plasma dynamics [42, 43, 44, 45, 46, 47|.

Focusing on collisionless Eulerian kinetic approaches, going from large to
small scales, one initially finds the hybrid kinetic models, which are success-
fully adopted to model the range of scales around the proton inertial scale.
These models assume that protons are kinetic and their Vlasov equation is
numerically integrated; electrons are instead considered as a background fluid
that comes into play only in the Ohm’s law for the electric field. The com-
putational cost for solving the full six-dimensional phase space (three dimen-
sions in physical space, three dimensions in velocity space) is about N, being
N the number of gridpoints along a generic phase space direction. This com-
putational cost currently represents the present limit which can be achieved
through modern HPC clusters and the resolution of such simulations is often
limited by the memory capacity. Then, when one approaches the electron
scales, collisionless fully kinetic simulations, which solve the Vlasov equation
for both species, are needed. The computational cost of such simulations is
always about N°® and the required memory is only slightly bigger (a factor 2)
compared to the one of hybrid methods. However, describing electrons scales
by maintaining a realistic mass ratio implies that these simulations should
have an enough high resolution and also a very small time step. Based on
these considerations, we may argue that only with the next generation of
HPC clusters these simulations will be affordable.

Let us discuss now the importance of collisions and the complications that
this physical effect introduces in the system description. The collisionless
assumption, often adopted for analyzing plasmas with high temperature and
low density, is justified with the fact that the particles mean free path is
comparable with the plasma macroscopic length scales [12]. However, in

order to show that collisions can be neglected, one usually assumes that
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the shape of the particle VDF is close to Maxwellian [22, 23, 24, 48|. In
principle, this could be a problem for weakly-collisional turbulent media such
as the solar wind, where kinetic physics strongly distort the particle VDFs
[21, 22, 23, 24, 25, 29, 30, 31, 33, 35, 41].

For such systems, where kinetic effects compete with the presence of colli-
sions which tend to restore the thermal equilibrium, collisional effects are usu-
ally introduced through a “collisional operator” at the right-hand side of the
Vlasov equation. These operators often include derivatives in velocity space,
therefore the presence of strong gradients and non-Maxwellian features in the
velocity distribution function may enhance the effects of collisions [49]. We
would also highlight that collisions are the unique mechanism, from a ther-
modynamic point of view, able to produce irreversible heating in accordance
to the H theorem and, hence, to dissipate energy. Therefore, to properly
describe such scenarios or to analyze laboratory plasmas, where collisionality
is instead significant [50, 51|, collisions should be taken into account in the
plasma description. However, it is extremely difficult to handle collisions:
the presence of velocity space derivatives and multi-dimensional integrals in
the collisional operators significantly increases their computational complex-
ity [52, 53, 54, 55, 56|. For example, by considering the Landau operator -
which represents one of the most “natural” collisional operators (it can be
derived by the Liouville theorem) and choosing the full 3D-3V phase space
(three dimensions in physical space and three dimensions in velocity space),
the computational cost would be proportional to N (a three dimensional
integral must be computed for each point of the grid). Nowadays such sim-
ulations cannot be afforded and only approximated models (reduced phase
space or simplified operators) can be adopted [57, 58, 59, 60, 61, 62, 63, 64].

This thesis is composed by two main parts which respectively focus on
the connection of large, fluid scales with small, kinetic ones and on the intro-
duction of collisional effects in plasmas. In Part I, the well-known problem
of the interaction of two colliding Alfvén wave packets is revisited by means
of MHD, HMHD and hybrid kinetic simulations. The aim of this part is
to extend the Moffatt & Parker problem to the realm of kinetic physics and

exhibit that, when one introduces more complex physical ingredients, the dy-
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namics becomes quite different with respect to the pure MHD treatment. It is
shown that when the energy is transferred towards kinetic scales, the distribu-
tion function is strongly perturbed and exhibits an out-of-equilibrium shape.
Moreover the wave packets interaction is investigated in terms of strong and
weak turbulence and it is found that features explained in terms of both kinds
of turbulence theory coexist. Then, in Part II, we focus on the study of col-
lisions in plasmas. We first show, by modeling collisions through the fully
nonlinear Landau operator, that the collisionality is effectively enhanced by
the presence of strong gradients in the particle distribution function. In fact,
fine structures are dissipated much faster than other global quantities as tem-
perature anisotropies. Nonlinearities present in the collisional operator are
also significant to give to collisions the proper importance in terms of char-
acteristic times associated with the dissipation of such structures. However,
since the Landau operator is too demanding from a computational cost point
of view, we describe the dynamics of weakly-collisional plasmas by means of
self-consistent collisional simulation being collisions modeled with simplified
collisional operators. In particular, by retaining a three-dimensional velocity
space, we model collisions through the Dougherty operator [58, 59] and we
establish a successfully comparison with the Landau operator; this allows to
perform self-consistent simulations in the 1D-3V phase space concerning the
nonlinear regime of electrostatic waves in presence of electron-electron colli-
sions. Finally, we restrict to the 1D—-1V phase space and we describe i) the
problem of the initial state recurrence in a weakly collisional plasma, show-
ing that collisions cannot in general prevent numerical recurrence without
affecting the physical solution; ii) the waves launching mechanism commonly
adopted in laboratory plasmas, showing that secondary waves branch can be
generated at arbitrary phase speeds if the driver perturbs the distribution
function close to such velocity. However collisions quickly dissipate these

fluctuations.



Part 1

The Parker-Moffatt problem as a
case study from fluid to kinetic

scales
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The Parker-Moffatt problem

In this first part of the thesis we revisit the well-known problem con-
cerning the interaction of two Aflvénic wave packets, already approached by
Moffatt [5] and Parker [6] in the late Seventies. Our principal aim is to
extend the analysis from the ideal incompressible MHD treatment to more
complex plasma scenarios and, hence, to show that, when one moves be-
yond the MHD, numerous intriguing features are recovered as the result of
the presence of other physical effects such as compressibility, dispersion and
kinetic physics.

One should also bear in mind that the interaction of oppositely prop-
agating large amplitude incompressible Alfvénic wave packets represents a
familiar perspective on the hydromagnetic description of astrophysical and
laboratory plasma turbulence [3, 4]. Indeed, various nonlinear phenomenolo-
gies are built on this paradigm |7, 8, 9, 10, 11, 13, 65, 66, 67, 68, 69]. The
relevance of this phenomenon is due to the fact that Alfvénic perturbations
represent the main component of fluctuations in natural plasmas, as directly
measured in the fast streams of solar wind [12, 70] and inferred in the solar
corona by remote sensing observations |71, 72, 73|. Therefore the interaction
between oppositely propagating Alfvénic packets can be considered as a sort
of “building block” of nonlinear phenomena taking place in incompressible
MHD turbulence. An essential feature is that large amplitude perturbations
in which velocity u and magnetic field b fluctuations are Alfvénically corre-
lated, i.e. either u = (ca/By)b or u = —(ca/By)b (where ¢4 and By are uni-
form background Alfvén velocity and magnetic field, respectively), are exact
stable solutions to the equations of incompressible magnetohydrodynamics
(MHD) [1, 2|. Hence, to induce nonlinear couplings among the fluctuations
and to excite turbulence, it is necessary to simultaneously consider magnetic
fluctuations b and velocity fluctuations u that have an arbitrary sense of
correlation. This may be accomplished by superposing the two senses of cor-
relation, in Alfvén units, u = +(ca/By)b and u = —(ca/By)b. One thread
emerging from this concerns the analysis of colliding wave packets to reveal
properties of the MHD turbulence spectrum [4].

A different emphasis was given by Moffatt [5] and Parker [6]. Both of these

treatments analyzed the collision of large amplitude incompressible, ideal
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The Parker-Moffatt problem

Alfvén wave packets noting that nonlinear interaction and mutual distortion
of the wave packets are limited to the span of time during which they spatially
overlap. Both Moffatt and Parker argued that the packets eventually separate
and propagate once again undisturbed without further interactions.

The present part of this thesis addresses two questions that arise when
trying to apply this physical insight to high temperature extraterrestrial plas-
mas such as the solar wind, where such large amplitude Alfvénic fluctuations
are routinely observed [70], or solar corona, where the interaction of Alfvénic
wave packets is thought to occur [71, 72]. First, compressibility, dispersion
and kinetic plasma effects are likely to be important in space applications,
and we ask if these give rise to significant departures from the the Parker-
Moffatt scenario. Second, we ask whether the proposed separation of the
packets after collision is realized as envisioned, or if a wake of non-propagating
disturbances might remain after very long times. We address these specific
questions using a compressible MHD model, a compressible Hall MHD model
and two hybrid Vlasov models.

Beyond the assumption of incompressibility, we may anticipate genuinely
compressible, dispersive and kinetic effects that warrant examination in the
large amplitude wave packets collision problem. In the solar wind for exam-
ple, many intervals, especially within 1 AU [74] or at high latitudes [75], are
highly Alfvénic, but even within such intervals there are mixtures of Elsésser
amplitudes, small density variations, and a small parallel variance, as in the
well-quoted “5:4:1” variance ratio reported by [70]. There have also been re-
ports of interplanetary magnetosonic wave packets interaction [76], while the
great power-law in the interstellar medium [77] is associated with electron
density fluctuations that may be either propagating or non-propagating [78|.
Furthermore in plasmas such as the solar wind, at smaller scales near the ion
inertial scale, one expects kinetic properties [19] such as spectral steepening
[12], dispersive wave effects [18, 20, 79| of both Kinetic Alfvén Wave and
whistler types, along with temperature anisotropy, beams and other distor-
tions of the proton velocity distribution function (VDF) [21, 29, 30, 33, 35|.
These complications place the problem of collisions of Alfvén wave packets

in a much more complex framework.
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In dealing with low Mach number quasi-incompressible fluid or MHD
models, either in numerical simulations [80, 81, 82|, applications [8, 71|, or
in analytical theory [83, 84|, one routinely deals with two significant prop-
erties: first, the dominant quadratic couplings are of the form k = p + q,
transferring energy into (or from) Fourier mode with wave-vector k due to
nonlinear interactions with modes at wave-vectors p and q. One concludes
that in general (unless, e.g., all excited wave vectors are co-linear) one ex-
pects excitations to spread rapidly among many wave-vectors, a process that
over time can produce complex mixing and turbulent flows. Second, in-
compressible MHD nonlinear evolution proceeds as dz;" /0t ~ —z; V;z and
0z, [0t ~ —zjvjz; in terms of Elsdsser variables z]j»E = u; £ b; (jth compo-
nents of velocity field u; and magnetic field b; in Alfvén speed units), thus
allowing the immediate conclusion that nonlinear couplings vanish unless the
Elsasser fields z* and z~ have nonzero overlap somewhere in space.

A similar problem, namely, the interaction between non-localized moder-
ate amplitude Alfvén waves at spatial scales comparable with the ion iner-
tial length, has been approached within the weak turbulence framework [13]
and gyro-kinetic numerical simulations [69] as well as laboratory experiments
[85, 86, 87] have been performed. This approach, based on the assumption
of small-amplitude fluctuations, describes turbulence in terms of nonlinear
couplings among waves, each belonging to a well-defined propagating mode
and keeping its own properties, like the dispersion relation. The theory of
weak turbulence in plasmas have been widely studied within MHD [66, 68|,
including dispersive effects [16] and also for high-frequency waves [88, 89, 90).
Strong and weak turbulence theories can be considered somehow complemen-
tary [67, 91], and there is a debate on the applicability of a "wave approach"
to describe, for instance, turbulence in the solar wind [92, 93, 94, 95, 96, 97|.
These properties not only provide motivation for the Alfvén wave packet col-
lision problem, but also enter into some of its complexity as an elementary
interaction that generates turbulence.

The present part of this thesis is divided as follows. In Chapter 1 we
revisit the Parker-Moffatt problem by focusing on some global “fluid”-like

diagnostics which allow to identify which features are introduced moving
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beyond the ideal MHD treatment. The MHD evolution revisits the theoret-
ical insights described by Moffatt, Parker, Kraichnan, Chandrasekhar and
Elsésser in which the oppositely propagating large amplitude wave packets
interact for a finite time, initiating turbulence. The extension to include com-
pressive and kinetic effects maintains the gross characteristics of the simpler
classic formulation, but also reveals intriguing features. The physical effects
taken into account in the more realistic simulations play a significant role.
After the wave packets collision, the complexity of the structures seems to
suggest that, probably, wave packets may remain also connected after their
interaction. Moreover, the comparison of four different models which evolve
the same initial condition contribute to the spirit of “Turbulence Dissipation
Challenge” that has been recently discussed in the space plasma community
[98].

In Chapter 2 we focus on two features recovered in the Eulerian Vlasov-
Maxwell simulation, which is noise-free compared to the PIC simulation.
We report, evidences of the presence of non-Maxwellian signatures during
the wave packets evolution and interaction. Regions characterized by strong
temperature anisotropies and nongyrotropies are recovered and the proton
distribution function displays a beam along the direction of the local mag-
netic field, similar to some recent observations of the solar wind [76]. More-
over, by analyzing the features of the turbulence produced by the interaction
of two colliding Alfvénic wave packets, we find that weak and strong tur-
bulence scenarios seem to coexist. The wave-like approach, based on the
analysis of polarization and correlations, still helps in the characterization of
some low-energy fluctuations. However, several signatures of a strong turbu-
lence regime are also recovered. Blurred w — k relations are found instead of
well-defined dispersion relations, along with a tendency to build up w = 0

structures, typical of a strong turbulence regime.
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Chapter 1

Revisiting a classic: the
Parker-Moffatt problem

In this Chapter we revisit the Parker-Moffatt problem by focusing on some
global “fluid”-like diagnostics which allow to identify the features introduced
when departing from the ideal MHD treatment. In particular, we describe
how the scenario is modified by the presence of compressible, dispersive and
kinetic effects. During the wave packets interaction, as prescribed by Parker
& Moffatt, nonlinear coupling processes cause the magnetic energy spectra to
evolve towards isotropy, while energy is transferred towards smaller spatial
scales. The new ingredients introduced with the HMHD and kinetic simu-
lations play a significant role and several quantities evolve differently with
respect to the MHD evolution. We also anticipate that the complexity of
structures produced by nonlinear interactions in the HMHD and HVM cases
makes difficult to determine whether the wave packets actually attain a full
separation after the collision.

We also examine this basic problem by means of a hybrid Particle-in-
Cell simulation (HPIC), which allows comparison of two different numerical
approaches (HVM and HPIC), which refer to the same physical model. We
may anticipate that, in the HPIC case, the system dynamics at small scales is
affected by the presence of particles thermal noise and only the large spatial

scales features are discretely recovered during the evolution of the two wave
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Revisiting a classic: the Parker-Moffatt problem

packets.

The structure of the Chapter is the following. In Section 1.1 the numerical
models we adopted for the analysis are described in detail, then in Section 1.2
the simulations are analyzed. Finally, we summarize the results in Section
1.3. Results shown here have been collected in two scientific papers recently
published in The Astrophysical Journal [14] and Journal of Plasma Physics
[99].

1.1 Models and Approach

For problems such as the one we focus here on, the system dimensionality
is crucial: in fact, a proper description should consider a three-dimensional
physical space (i.e. three-dimensional wave vectors), where both parallel
and perpendicular cascades are taken into account {100, 101, 102]. How-
ever, dynamical range of the spatial scales (wave numbers) represented in
the model is equally important to capture nonlinear couplings during the
wave packet interaction. Furthermore, performing a kinetic Eulerian hybrid
Vlasov-Maxwell simulation in a full 3D-3V phase space retaining a good
spatial resolution is too demanding for the present High Performance Com-
puting capability. Given that several runs are required to complete a study
such as the present one, a fully 3D approach would be prohibitive. There-
fore we restrict to the case of a 2.5D physical space, where vectorial fields
are three-dimensional but their variations depend only on two spatial coor-
dinates (z and y). The HVM model has also a three dimensional velocity
space grid. It is worth noting that 2.5D captures the qualitative nature of
many processes very well and it allows for a large system size, that, in turn,
ensures a large Reynolds number; however there might be some quantitative
differences for some processes [103, 104, 105].

The fluid models considered here are MHD and Hall MHD, whose dimen-
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sionless equations are:

Op+V-(pu)=0
O+ (u- V)u=—L2V(pT) + 1 [(V x B) x B]
9B =V x [uxB—%(VxB)xB
0T+ (u-V)T+(v—1DT(V-u)=0

In Egs. (1.1)—(1.4) spatial coordinates x = (x,y) and time ¢ are respectively
normalized to L and tg = f//éA. The magnetic field B = By + b is scaled to
the typical magnetic field B, while mass density p, fluid velocity u, tempera-
ture 7" and pressure p = pT" are scaled to typical values p, ¢4 = B/(4wp)'/2,
T and p = 2/@3,5T/mp (being kg the Boltzmann constant and m,, the proton
mass), respectively. Moreover, B = p/(B%/8) is a typical value for the ki-
netic to magnetic pressure ratio; v = 5/3 is the adiabatic index and € = Jp/i
(being Jp = Cy /Qcp the proton skin depth) is the Hall parameter, which is
set to zero in the pure MHD case. Details about the numerical algorithm
can be found in [106, 107].

On the other hand, hybrid Vlasov-Maxwell simulations have been per-
formed by using two different numerical codes: an Eulerian hybrid Vlasov-
Maxwell (HVM) code [40] and a hybrid Particle-in-cell (HPIC) code [27].
For both cases protons are described by a kinetic equation and electrons
are a Maxwellian, isothermal fluid. In the Vlasov model, an Eulerian rep-
resentation of the Vlasov equation for protons is numerically integrated. In
PIC method, the distribution function is Monte-Carlo discretized and the
Newton-Lorentz equations are updated for the “macro-particles”. Electro-
magnetic fields, charge density and current density are computed on a spatial
grid [38, 108].
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Dimensionless HVM equations are:

1
Of+v Vit Z(E+vxB) Vyf=0 (1.5)
E - mZ AR :—uexB—f(VPe—%vn)
mp 2n my,
—i—:—i {u x B+ %V - (n(uu — ueue))] (1.6)
B_-_VxE ; VxB=j (1.7)

where f = f(x,v,t) is the proton distribution function. In Eqs. (1.5)—(1.7),
velocities v are scaled to the Alfvén speed ¢4, while the proton number den-
sity n = [ f d®v, the proton bulk velocity u = n~! [ vfd*v and the proton
pressure tensor II;; = n~! [(v—u); (v—u);f d®v, obtained as moments of the
distribution function, are normalized to 7 = p/m,, ¢4 and p, respectively.
The electric field E, the current density j = V x B and the electron pressure
P, are scaled to E = (¢4B)/c, j = ¢B/(4wL) and p, respectively. More-
over, electron inertia effects have been considered in Ohm’s law to prevent
numerical instabilities (being m./m, = 0.01, where m, is the electron mass,
and ue = u — €j/n), while no external resistivity 7 is introduced. A detailed
description of the HVM algorithm can be found in [40, 106, 107]. On the
other hand, the hybrid PIC run has been performed using the P3D hybrid
code [39] and all the numerical and physical parameters are the same as the
HVM run. The P3D code has been extensively used for reconnection and
turbulence (See, for example, Refs. [27, 109]).

In both classes of performed simulations (fluid and kinetic), the spatial
domain D(z,y) = [0,87] x [0, 2] is discretized with (N,, N,) = (1024, 256)
in such a way that Ax = Ay and spatial boundary conditions are periodic.
For the HVM run, the velocity space is discretized with a uniform grid with
51 points in each direction, in the region v; = [—VUmaz, Umaz]| (beINg Vpar =
2.5¢4) and velocity domain boundary conditions assume f = 0 for |v;| >
Umae (I = x,y,2); while, in the HPIC case, the number of particles per
cell is 400. Moreover 8, = 203 /¢4 = /2 = 0.5 (i.e. VUpazr = 5Ump),
€ =d,/L =98x1072 kg = &' =~ 10 and kg, = \/m,/m. x & =~ 100.
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Figure 1.1: (Color online) Contour plots of the initial perturbations. Left and right
columns refer respectively to b and u. Top, central and bottom rows indicate the
x, y and z components of the perturbations.

The background magnetic field is mainly perpendicular to the z — y plane:
By = By(sin 6,0, cos ), where 0 = cos™ [(Bg - 2) /By] = 6° and By = |By|.

In the initial conditions, ions are isotropic and homogeneous (Maxwellian
velocity distribution function in each spatial point) for both kinetic simu-
lations. Then, large amplitude magnetic b and bulk velocity u perturba-
tions are introduced. Density perturbations are not imposed, which im-
plies nonzero total pressure fluctuations. Initial perturbations consist of two
Alfvénic wave packets with opposite velocity-magnetic field correlation. The
packets are separated along x and, since By, # 0, they counter-propagate.
The nominal time for the collision, evaluated with respect to the center of
each wave packet, is 7 ~ 58.9.

The magnetic field perturbation b has been created by initializing energy
in the first four wave-numbers in the y direction while, due to the = spatial
localization (enforced by projection), many wave-numbers along x are excited
initially. Then, a small b,(z,y) component has been introduced in such a

way that the transverse condition, By - b = 0, is hold in each domain point.
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Finally, the velocity field perturbation u is generated by imposing that u and
b are correlated (anti-correlated) for the wave packet which moves against
(along) the magnetic field By,. The contour plots of the initial condition are
shown in Fig. 1.1, where left (right) column refers to b (u) perturbations.
The intensity of the perturbation is (b),;,s/Bo = 0.2, therefore the Mach
number is My = (U),ms/Vinp = 0.4. The intensity of fluctuations with respect
to the in-plane field By, is quite strong, with a value of about 2. It is worth
to note that the inverse of the intensity of the fluctuations with respect to
the in-plane magnetic field is related to the parameter 7y, /Teon, Wwhere T
is the characteristic nonlinear time and 7., is the characteristic collision
time. If 7y /7.on < 1, several nonlinear times occur in a single collision
and wave packets can be significantly perturbed by nonlinear effects. On
the other hand, if 7y /7.y > 1, many collisions are necessary to strongly
distort wave packets. By evaluating 7y, ~ A/u (wave packet width A,
perturbations amplitude u) and 7.,; ~ A/V (in-plane Alfvén propagation
speed V' =~ 0.1cy), it turns out that 7y, /7o =~ 0.5. Therefore our simulations
stand in a parameter range where nonlinear effects can be such important

that a strong turbulence scenario may be present.

1.1.1 Discussion of the Initial Conditions

The imposed initial perturbations correspond to two large amplitude Alfvén
wave packets in the sense that magnetic and velocity perturbations are fully
correlated in each packet, and the packets are separated in space. With zero
density variation, a weak in-plane uniform magnetic field, and a relatively
strong out of plane uniform magnetic field, this initial condition is one for
which the reasoning of Moffatt and Parker discussed above would be appli-
cable in the context of an incompressible model.

In addition, the initial data also exactly satisfy the transversality con-
dition Bg - b = 0, which in linear compressible MHD would correspond to
the Alfvén eigenmode, if indeed the amplitude were infinitesimal. Here the
amplitude is large, so small amplitude theory is unlikely to be relevant to

the nonlinear evolution. Furthermore, the condition of the proper Alfvén
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Figure 1.2: (Color online) Contour plots of the out of plane component of the
current density j.(x,y) at several time instants ¢ = 29.5 (a), t = 7 = 58.9 (b),
t =70.7 (c) and t = 98.2 (d). From left to right, each column refers to the MHD,
HMHD, HVM and HPIC cases, respectively. For the HPIC simulation, j,(x,y) has
been smoothed in order to remove particle noise.

eigenmode obtained in large amplitude compressible MHD theory, namely
B = |B| = const is not satisfied by our initial perturbations [92]. This
suggests that pressure and density fluctuations may be generated during the
wave packets evolution. Therefore, the initial data are nonlinear eigenmodes
of incompressible MHD, but not exact eigenmodes of compressible MHD.
On the other hand we do not expect significant differences because the ini-

tial B = |B| fluctuations are not very large (less than 10%).

1.2 Numerical results: a direct comparison be-

tween different models

In this Section we focus on the description of the results of the four different
simulations (MHD, HMHD, HVM and HPIC) by focusing on some “fluid”-
like diagnostics which help to understand the system dynamics and, also, to
highlight the differences between the adopted models.

Figure 1.2 reports a direct comparison between the simulations, showing
the contour plots of the out-of-plane component of the current density j, =
(V x B) - z. Vertical columns from left to right in Fig. 1.2 refer to MHD,
HMHD, HVM and HPIC simulations, respectively; while each horizontal row
refers to a different time instant: ¢ = 29.5 (a), t =7 = 58.9 (b), t = 70.7 (c)
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and t = 98.2 (d).

In each simulation the initially separated wave packets counter-propagate,
approach each other [panels (a) of Fig. 1.2], and collide at t = 7. During
the collision [panels (b) of Fig. 1.2|, j, intensifies, and, since the overlapping
wave packets interact nonlinearly, the dynamics produces small scales that
can be easily appreciated by examining the width of the current structures.
After the collisions [panels (¢) and (d) of Fig. 1.2], the wave packets continue
their motion while displaying a significantly perturbed shape. Indeed the j.
contours indicate that current structures are much more complex after that
the collision occurs. Moreover, their shape exhibits also a curvature which
is not anticipated prior to the collision and which indicates the presence
of energy in modes with gradients along the y direction, transverse to the
propagation.

Significant differences are recovered in the MHD case with respect to the
HMHD, HVM and HPIC runs. While the MHD evolution is symmetric with
respect to the center of the x direction, in the other cases this symmetry
is broken also before the wave packets interaction due to the presence of
dispersive effects which differentiate the propagation along and against By,.
Moreover, during the wave packets overlap [Fig. 1.2(b)], smaller scales struc-
tures are formed in the HMHD and the HVM cases with respect to the pure
MHD evolution, while the HPIC run - despite it recovers several significant
features of the wave packets interaction - suffers the presence of particles
thermal noise, which has been artificially smoothed out in Fig. 1.2. After
the collision [Fig. 1.2 (c¢) and (d)], the difference between the MHD and the
other simulations becomes stronger. In particular, some vortical structures
at the center of the spatial domain are recovered in the HMHD and HVM
cases, in contrast to the pure MHD case. Moreover, the Vlasov simulation
tends to produce smaller scales during the interaction since very thin cur-
rent, sheet structures are formed. Furthermore, some secondary ripples are
recovered, in the HVM simulation, in front of each wave packet. These sec-
ondary, low-amplitude ripples are not recovered in the other simulations: in
fact, they cannot be appreciated in the HPIC run where the noise prevents

the formation of such structures while, in the Hall simulation, they are only
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Figure 1.3: (Color online) Temporal evolution of the energy terms: AFEjy;, (black),
AEy, (red) and AEp (blue) for the MHD, HMHD, HVM and HPIC runs.

roughly visible. The nature of these low-amplitude ripples is compatible with
a KAW-like activity and will be discussed in detail in the next chapter.

In order to compare models and codes, we display, in Fig. 1.3, the tempo-
ral evolution of the energy variations AE. Black, red and blue lines indicate
respectively the kinetic A E};,, thermal AEy, and magnetic AEg energy vari-
ations, while each panel from (a) to (d) refers to the MHD, HMHD, HVM
and HPIC runs, respectively. The evolution of AF};, and AFEg is quite com-
parable in all the performed simulations and, in the temporal range where
wave packets collide, magnetic and kinetic energy is exchanged. On the other
hand, the evolution of the thermal energy A Fy;, differs in the HPIC case com-
pared to the other simulations. Indeed, AFE};, remains quite close to zero for
all the simulations except for the HPIC run, where it grows almost linearly
for the presence of numerical noise. It is worth to note that, as the number
of particles increases, the evolution of AFE}, would probably get closer to the
one obtained in the MHD, HMHD and HVM simulations.
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A point of comparison of our simulations with respect to the theoretical
ideas given by Moffatt and Parker is to examine the behavior of cross helicity.
Those theoretical treatments assume ideal non-dissipative conditions, so that
the total cross helicity is conserved and moreover the expectation is that
the separate wave packets after the collision have the same cross helicity
as prior to the interaction. Furthermore the initial and final states, in the
ideal treatment, have equipartition of flow and magnetic field energy, with
departures from equipartition possible during the interaction. To examine
these, Fig. 1.4 shows the temporal evolution of (a) the normalized residual
energy o,(t), and (b) the normalized cross-helicity o.(t) [12], respectively
defined as o, = (e* — e?)/(e* + ¢€°) and 0. = (et —e7)/(e" +e7) , where
et = ((z5)%) /2, e* = (u?)/2, ¢® = (b?)/2 and z* = u £ b. In each panel
of Fig. 1.4, black, dashed blue, dashed green and red lines refer to MHD,
HMHD, HVM and HPIC cases, respectively.

Figure 1.4 (a) shows the evolution of the normalized residual energy o,
which is similar in all the simulations. In particular o, ~ 0 in the initial stage
of the simulations. Then, o, strongly oscillates during the wave packets col-
lisions, first to positive values indicating a positive correlation of the Elsésser
fields, then moving more strongly towards negative values of correlation, and
returning to positive correlation again prior to finally approaching zero once
again. The o, oscillations are well correlated with the oscillations of AEp
and AFE}y;, seen in Fig. 1.3.

Deeper insights are revealed by the evolution of the cross-helicity o,
showed in Fig. 1.4 (b). Indeed, for ideal incompressible MHD, the cross
helicity remains constant, and for this initial condition, . = 0. Here, o,
is well-preserved in the MHD run, despite this simulation is compressible.
This means that the compressible effects, introduced here by the fact that
initial perturbations are not pressured balanced, are not strong enough to
break the o, invariance. On the other hand, for the remaining simulations
(HMHD, HVM and HPIC), o, is not preserved: i) it shows a jump around
t = 7 = 58.9, due to the presence of kinetic and dispersive effects, and ii)
there is an initial growth of . followed by a relaxation phase. It seems also

significant to point out that, the initial growth of o. occurs faster in the
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Figure 1.4: (Color online) Temporal evolution of the normalized residual energy
or(t) (a), cross helicity o.(t) (b) and generalized cross helicity o,4(t) (c). In each
panel black, blue, green and red lines indicate the MHD, HMHD, HVM and HPIC
simulations, respectively.

kinetic cases compared to the HMHD one. This may reflect the fact that the
initial condition evolves differently in the Hall MHD simulation compared to
the kinetic runs.

In order to understand the role of the Hall physics, we also computed the
normalized generalized cross helicity o, = 2e9/(e* + €°), where ¢/ = 0.5 (u -
b+ éw-u/2), and w = V X u, which is an invariant of incompressible HMHD
[15, 17]. Figure 1.4(c) displays the temporal evolution of o (t) for the MHD
(black), the HMHD (dashed blue), HVM (dashed green) and HPIC (red)
simulations. Note that the evolution of o, is trivial for the MHD simulation
where, since € = 0, 0, = o.. Moreover, it can be easily appreciated that, for
the HMHD case, o, is almost preserved and does not exhibit any significant
variation due to the collision itself, even though it shows a slight increase
in the initial stages of the simulation followed by a decay towards o, = 0
[similar to the growth of o, recovered in Fig. 1.4(b)]. On the other hand
the two kinetic cases, which exhibit a similar behavior, show a fast growth
of o, in the initial stage of the simulations followed by a decay phase [similar
to the growth of o, recovered in Fig. 1.4(b)|; then, during the collision, o,
significantly increases. We may explain the evolution of 0. and o, as follows.
In the MHD run, compressive effects contained in the initial condition as
well as compressible activity generated during the evolution are not strong
enough to break the invariance of o, (i.e. of 0,). Instead, in the Hall MHD
simulation, the first break of the ¢. invariance observed in the initial stage of

the simulation cannot be associated with the Hall effect since also o, is not
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Figure 1.5: (Color online) Temporal evolution of (j2) for the MHD (black), HMHD
(blue), HVM (green) and HPIC (red) simulations. For the HPIC simulation, (52)
has been smoothed in order to remove particle noise.

preserved in this temporal region and o, and o, have a similar evolution. On
the other hand, the jump recovered in o, around ¢ ~ 7 = 58.9 is significantly
related to the Hall physics. In fact, since o, does not exhibit a similar jump
at t ~ 7, we argue that the physics which produces the growth of o, is the
Hall physics (which is taken into account in the invariance of ). Finally, the
production of both o, and o, recovered in the kinetic simulations cannot be
completely associated with the Hall effect (which, of course, is still present)
but kinetic and compressive effects may have an important role.

In order to explore the role of small scales into the dynamics of colliding
wave packets, we computed the averaged mean squared current density (j2) as
a function of time. This quantity indicates the presence of small scale activity
(such as production of small scale current sheets), and is reported in Figure
1.5 for all the simulations. As in the previous figures, black, blue dashed,
green dashed and red lines refer to the MHD, HMHD, HVM and HPIC cases,
respectively. All models show a peak of (;2)() around the collision time ¢ ~ 7
due to the collision of wave packets. After the collision, some high-intensity
current activity persists in all the simulations. The qualitative evolution
(42)(t) is similar in each simulation, however - after the collision - bigger
values of (j2) are reached in the MHD and HVM cases with respect to the

26



Revisiting a classic: the Parker-Moffatt problem

HMHD and HPIC runs.

Other quantities that provide physical details about our simulations are
€, = (0p?) (compressibility) and the enstrophy €, = (w?)/2 (fluid vorticity w).
Note that 6p = p—(p). Figure 1.6 reports the temporal evolution of ¢, (a) and
e, (b) for all the runs. Black, blue dashed, green dashed and red lines indicate
respectively the MHD, HMHD, HVM and HPIC cases. The ¢, evolution
shows that density fluctuations peak around t ~ 63.8 and ¢ ~ 83.4. The first
peak is due to the interaction between the two wave packets. The second
peak of density fluctuations appears to be due to propagation of magnetosonic
fluctuations generated by the initial strong collision. Once generated these
modes propagate across the periodic box and provide an “echo” of the original
collision. Moreover, from the initial stage of the simulations, €, exhibits some
small modulations, which are produced by the absence of a pressure balance
in the initial condition. In fact, as packets start to evolve, low-amplitude
fast perturbations (clearly visible in the density contour plots, not shown
here) propagate across the box and collide faster compared to the “main”
wave packets themselves. Moreover, by comparing the different simulations,
one notices that, for ¢ < 20, kinetic and Hall runs tend to produce a similar
evolution of ¢,, slightly bigger compared to the MHD case. Then, around
t ~ 20, the HMHD run displays a stronger compressibility with respect to
the kinetic cases. This difference is probably due to the presence of kinetic
damping phenomena which occur in the kinetic cases.

The enstrophy ¢, is displayed in Fig. 1.6(b). All the runs exhibit a simi-
lar evolution of ¢, up to the wave packet collisions. Then, after the collision,
a significant level of ¢, is recovered in all the simulations, thus indicating
that fine scale structure in the velocity, i.e., vortical structures are produced
during the collisions, and these persist after the collision. Moreover, MHD
and HMHD cases exhibit a quite similar level of €, slightly bigger compared
to the one recovered in the HVM and HPIC cases, where probably kinetic
damping does not allow the formation of strong vortical structures at small
scales by transferring energy to the VDF [see. e.g., [110, 111]]. Tt is inter-
esting to note that the general profile of enstrophy and mean square current

follow similar trends in time. This can be expected as the inertial range
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Figure 1.6: (Color online) Temporal evolution of €,(¢) (a) and €,(t) (b). In each
panel, black, blue, green and red lines indicate the MHD, HMHD, HVM and HPIC
simulations, respectively. For the HPIC simulation, €,(t) has been smoothed in
order to remove particle noise.

of turbulence typically provides near-equipartition of velocity and magnetic
fluctuation energy, even in fairly simple configurations [112]. However, when
examined in more detail, one often finds, as here, that the magnetic fluctu-
ations are usually about a factor of two more energetic in the inertial range
part of the spectrum, as they are, for example in the solar wind [113]. This
inequality is here reflected in the fact that (j2) > (w?/2).

It is interesting to compare different simulations also by looking at power
spectral densities (PSDs). Figures 1.7 show the magnetic energy PSD in-
tegrated along k, Eyy(k.) = >4 Ep(ks,ky) (left column) and along k,
By o(ky) = >4, Ev(ka, ky) (right column); while each row respectively refers
to t = 29.5 (top row), t = 7 = 58.9 (center row) and ¢ = 98.2 (bottom row).
The cyan dashed line shows the k=% slope for reference while, in each panel,
black, blue, dashed green and red lines indicate respectively MHD, HMHD,
HVM and HPIC simulations. Moreover, to compare the two wave-number
directions, gray lines in each panel report the corresponding PSD obtained
from the MHD run, reduced in the other direction [for example, in the top
row left panel, the gray line refers to E ,(k,) for the MHD simulation while
other curves in the same panel report E,,(k;)]. It is interesting to note
that, at ¢ = 29.5, all the simulations exhibit a steep spectrum in £, ,(k,),

related to the initial condition which requires involvement of a wide range of
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Figure 1.7: (Color online) Magnetic energy PSDs Ey ,,(k;) = Zky Ey(ks, ky) (left
column) and Ey.(k,) = >, FEp(ks, ky) (right column) at three time instants:
t =29.5 (top), t = 7 = 58.9 (middle) and ¢t = 98.2 (bottom). In each panel black,
blue, green and red lines refer to the MHD, HMHD, HVM and HPIC simulations,
respectively; while cyan lines show the —5/3 slope for reference. Moreover, to
compare Ey,(k,) and Ej »(ky), the gray lines in each panel refer only to the MHD
simulation and report E ;(ky) in the left column and Ej, (k) in the right column.

wave-numbers k,. Then, during the evolution, the spectra show a transfer
of energy towards small scales, at higher £, and at higher k. In fact, much
of the energy Ej,(k;) is contained, at ¢ = 7, in a bump around k = 1. At
t = 88.4 the bump is less clear and the spectrum £, ,(k,) is quite well de-
veloped and the spectral slope, at scales larger than the ion inertial scale, is
close to —5/3. A break in Ej,(k,) can be also appreciated around kg, ~ 10.
Moreover, the difference in power between E ,(k,) and Ej,(k,) - the lat-
ter being significantly smaller than the former - tends to reduce in the final
stages of the simulations, thus suggesting the presence of nonlinear couplings
which efficiently transfer energy in both directions of the wavevectors space

and, hence, cause spectra to become more isotropic.

29



Revisiting a classic: the Parker-Moffatt problem

1.3 Summary

To summarize, in this Chapter we compared our numerical codes by analyzing
some global fluid-like diagnostics and we conclude that the Moffatt-Parker
scenario is quite well satisfied by MHD. However, other intriguing features
are observed when one moves beyond the MHD treatment. Indeed, several
quantities (especially the cross-helicity) indicates that the evolution is dif-
ferent when one introduces more complex scenarios and the complexity of
the structures produced by nonlinear interactions in the HMHD and HVM
simulations makes it difficult to determine whether the wave packets actually
attain a full separation after their collision.

Moreover, during the wave packets interaction, as prescribed by Parker
& Moffatt, nonlinear coupling processes cause the magnetic energy spectra
to evolve towards isotropy and energy is transferred towards smaller spatial
scales. After the wave packets interaction magnetic energy spectra exhibits
a “power law”-like profile, whose slope is close to —5/3 at bigger scales, while
a spectral break is recovered around kg,. In the next Chapter we will focus
on the nature of the interaction which produces such spectrum, trying to
describe it in terms of wave-like activity and strong turbulence.

The comparison between kinetic codes suggests that HVM and HPIC sim-
ulations display qualitatively similar features at large scales. However, when
one aims to analyze the dynamics at small scales, HPIC simulations suffers
from thermal particle noise. Indeed, magnetic energy spectra differ in the
HPIC case as compared to the HVM case, since, in the former case, spectra
saturate at small scales due to the numerical noise, visible - in particular - in
the contour plots of j,. Based on these considerations, in the next Chapter
we will continue the analysis of the kinetic features produced in the Alfvén

wave packets collision, by focusing only on the HVM simulation.
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Chapter 2

Kinetic turbulence generated by

Alfvén wave collisions

In this chapter we focus on two particular aspects of the HVM simulation
described previously. The former regards the production of kinetic effects
during the evolution and the collision of the two wave packets [Section 2.1,
while the latter concerns the characterization of the wave packets interaction
in terms of wave-like activity and strong turbulence [Section 2.2].

Indeed, several indicators of kinetic effects (temperature anisotropies,
nongyrotropies or non-Maxwellian indexes) have been implemented. These
quantities indicate that the velocity distribution function exhibits out of equi-
librium features before the wave packets interaction due to the fact that the
initial condition is not an even solution of the HVM equation. Kinetic effects
become more intense during the interaction and a beam along the magnetic
field direction is also recovered in the velocity distribution function similarly
to some recent solar wind observations |76].

We describe also the wave packets interaction as concerns the presence of
weak or strong turbulence. It has been found that the presence of secondary
small amplitude ripples, which are recovered after the collision at the front
of each wave packet, can be successfully explained in terms of a wave-like
activity and are identified as Kinetic Alfvén Waves. However the general

picture is more complex and other signatures of a strong turbulence scenario
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coexist with the presence of these fluctuations. Indeed, after the collision, the
magnetic energy does not rigidly follow a standard wave dispersion relations,
but tends to spread over a wide band of the w — k plane. Furthermore, a
large part of the energy is stored in the w = 0 “channel”, thus indicating that
stationary structures, typical of a strong turbulent scenario, are produced
during the interaction.

Finally, in Section 2.3 we conclude by summarizing our work. The results
shown here have been collected in two scientific papers: the first has been
recently published in Journal of Plasma Physics [99] while the second is in
preparation [114].

2.1 Kinetic features recovered during the wave

packets interaction

We begin the description of kinetic signatures present in the Vlasov simu-
lation by looking at the temperature anisotropy in the particle distribution
function. Fig. 2.1 reports the contour plots of the temperature anisotropy
T\ /T, where the parallel and perpendicular directions are evaluated in
the local magnetic field frame (LBF), at four time instants: ¢ = 29.5 (a),
t =7 =589 (b), t = 70.7 (¢c) and t = 98.2 (d). Clearly, temperature
anisotropy is present even before the main wave packets collision [Fig. 2.1(a)],
due to the fact that the initial configuration is not solution of the HVM equa-
tions and, hence, its dynamical evolution leads to anisotropy production.
Moreover, a more careful analysis suggests that the left wave packet tends to
produce regions where 7', /T < 1 close to the packet itself (localized around
xr ~ 9.5), while the right wave packet (localized around = = 15.7) is char-
acterized by T /T > 1. The presence of different temperature anisotropies
(T /Ty < 1or T /T > 1) is related to the asymmetry with respect to the
center of the x direction. Indeed, the dynamics of the wave packets is differ-
ent if they move parallel or anti-parallel to By ,. This produces the different
temperature anisotropy recovered in the top panel of Fig. 2.1.

When the packets collide [Fig. 2.1 (b)], sheets characterized by a strong
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Figure 2.1: (Color online) Contour plots of the temperature anisotropy, for the
HVM run, evaluated in the LBF at four time instants: (a) t = 29.5, (b) t =7 =
58.9, (¢) t = 70.7 and (d) t = 98.2.

temperature anisotropy (7', /T} > 1) are recovered, spatially correlated with
the current density structures. Then, at ¢t = 70.7 [Fig. 2.1 (¢)|, wave packets
split again and a region, localized at (z,y) ~ (14.3,1.0), where the temper-
ature anisotropy suddenly moves from values 7' /T < 1 towards T /T} > 1
ones is present. We will show that this region also exhibits the presence of

strong departures from the equilibrium Maxwellian shape. At the final stage
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Figure 2.2: (Color online) Contour plots of the degree of temperature non-gyrotropy
D,,g, for the HVM run, evaluated in the LBF at four time instants: (a) ¢t = 29.5,
(b) t =7 =158.9, (¢) t =70.7 and (d) ¢t = 98.2.

of the simulation [Fig. 2.1 (d)], each wave packet continues traveling, accom-
panied by a persistent level of temperature anisotropy, which is, indeed, well
correlated with the current structures [See Fig. 1.2(d)].

It is interesting to point out that, beyond the presence of temperature
anisotropies, regions characterized by a nongyrotropy of the particle VDF are

also recovered. Many methods have been proposed to evaluate the nongy-
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Figure 2.3: (Color online) Temporal evolution of €4, () for the HVM run.

rotropy [115, 116]. Here we make use of the “nongyrotropy degree” D, [115],
which is proportional to the root-mean-square of the off-diagonal elements
of the pressure tensor. Fig. 2.2 reports the contour plots of nongyrotropy
degree D,,, at four time instants: ¢t = 29.5 (a), t = 7 =58.9 (b), t = 70.7 (c)
and ¢ = 98.2 (d). As for the temperature anisotropy, the evolution of the two
wave packets tends to produce nongyrotropyc features even before the wave
packets collision [Fig. 2.2(a)]. Then, during the collision [Fig. 2.2(b)—(c)],
the nongyrotropy D,, becomes more intense and it is also quite well corre-
lated with the current structures [See 1.2(b)—(c)|. At the final stage of the
simulation [Fig. 2.2(d)], each wave packet is connoted by a level of nongy-
rotropy which is quite bigger compared to the value before the collision. The
presence of nongyrotropic regions suggests that it is fundamental to retain a
full velocity space where the VDF is let free to evolve and, eventually, distort.
It is worth to note that the approach based on gyro-averaged assumptions
lacks the presence of such nongyrotropies.

To further support the idea that kinetic effects are generated during the
interaction of the wave packets, we computed the L? norm difference [30, 31,
35]:

1
which measures the displacements of the proton VDF f(x,v,t) with respect
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Figure 2.4: (Color online) (Left) Contour plots of €(t), for the HVM run, at ¢t =
70.7. (Right) Proton distribution functions, in the spatial point (z*,y*) where
e(r*,y*,t) = max(,y) e(w,y,t) at t = 70.7. The local magnetic field direction is
indicated by a red line.

to the associated Maxwellian distribution function fy;(x,v,t), built in such
a way that density, bulk speed and total temperature of the two VDFs are
the same. Figure 2.3 reports the evolution of €,.(t) = maxp,  e(z,y,1)
as a function of time. As for previous non-Maxwellian indicators, also €,,q.
moves away from zero in the early phases of the simulation due to the fact
that the initial condition is not a Vlasov solution. After the initial jump,
€maz Temains almost constant up to the wave packets interaction. During
the collision, €,,,, grows and reaches its maximum at ¢t = 70.7. Then it
decreases and saturates at a value about two times bigger than the value
before the collision, thus suggesting, again, that there is “net” production of
non-Maxwellian features during the wave packets interaction.

The left panel of Figure 2.4 shows the contour plot of €(x, y,t) at the time
instant t = 70.7 (when € reaches its maximum value). The e contours are cor-
related with the current structures and with the anisotropic/nongyrotropic
regions. Moreover, a blob-like region where € reaches its maximum is present.
This area is associated with the region where the temperature anisotropy
moves from 7' /T < 1 to T' /T > 1 [See Fig. 2.1(c)]. In this area the VDF
strongly departs from the Maxwellian. The right panel of Fig. 2.4 shows the
three dimensional isosurface plot of the VDF at ¢t = 70.7 and in the spatial
point (z*,y*) where € is maximum. A well-defined beam, parallel to the local
magnetic field direction, is observed in the VDF of Fig. 2.4. The drift speed
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of the beam is about ¢4. The production of a beam due to the interaction
of two wave packets has been also pointed out by He et al. in a recent paper

where solar wind in-situ observations are presented [76].

2.2 Turbulence features generated by Alfvén

wave packet collisions

In this section we characterize the packets interaction in terms of wave-like
activity and strong turbulence. We remind the reader that i) the ratio be-
tween the nonlinear time 7,; and the collision characteristic time 7,,; is about
1/2, this indicating that a strong turbulence scenario may occur and ii) power
spectra resulting after the collision have slopes ~ —5/3, typical of a strong
turbulence situation [See Fig. 1.7], and a spectral break is recovered around
kq, ~ 10.

Here, we focus on the description of two features recovered after the
collision: i) secondary ripples appear in front of each wave packet as small
amplitude fluctuations propagating almost purely along x and ii) current
sheets tend to distort producing some vortical structures at the center of the
spatial domain. Both features can be appreciated in Figs. 1.2(c—d) (third
column) and in Fig. 2.5, that reports the shade surface of j.(x,y,t). In
Fig. 2.5 The horizontal plane corresponds to the spatial coordinates x and
y, while the temporal evolution is given by the vertical blue axis.

In order to understand the physical mechanism driving the production
of these secondary low amplitude fluctuations, we started from the evidence
that these ripples propagate mainly along x. Moreover, Fig. 2.6 (a) reports
the evolution of |B|(z, yo,t*) (black) and n(x,yo,t*) (red) as a function of x
in the region where these disturbances are present z = [17.5,21.6] and for
y =1y = 1.2 and t = t* = 98.2: clearly, density n fluctuations are anti-
correlated with the |B| fluctuations, this being typical of Kinetic Alfvén and
slow magnetosonic waves |79, 106, 107].

A second aspect which helps to discriminate about different type of waves

is the polarization [106], which can be evaluated through the hodogram of
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Figure 2.5: (Color online) Iso-surfaces of the current density j.(x,y,t). Red, green
and blue axes correspond to the z, y and temporal directions, respectively.

two magnetic field components, as explained in detail in Ref. [106]. Figure
2.6 (b) reports the hodogram of 6 B,(x, yo,t*) as a function of B, (z, yo, t"),
in the region x = [17.5,21.6] and for y = yo = 1.2 and ¢t = ¢t* = 98.2. The red
square in Fig. 2.6 (b) reports the initial x point z = 17.5. The hodogram
shows a clock-wise verse of rotation with increasing z. This verse of rotation
is compatible only with KAW or fast magnetosonic fluctuations, as com-
puted by means of a linear solver where the evaluated k ~ 1.73 = 0.17kg,
and k; ~ 16.2 = 1.59k4, have been utilized. Finally, by computing the
propagation speed of these fluctuations, we found that this velocity is com-
patible with the KAWSs propagation speed. Therefore, based on these three
methods (correlations, polarization and propagation speed) we conclude that
the small amplitude fluctuations are compatible with KAW-like fluctuations.
The presence of these fluctuations can be explained as follows: the inter-

action of the two wave packets transfers energy towards smaller scales and,
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Figure 2.6: (Color online) (a) Shape of |B| (black) and n (red) as a function of z in
the region x = [17.5,21.6] and for y = yp = 1.2 and t = t* = 98.2. (b) Hodogram of
0B (x,yo,t*) as a function of 6By (x, yo,t*) for = [17.5,21.6] and for y = yp = 1.2
and t = t* = 98.2. The red square indicates the initial  point z = 17.5.

since the initial disturbances are mainly Alfvénic, the energy is transferred
along the Alfvén waves branch, therefore producing KAW fluctuations.

The explanation of the system dynamics just in terms of wave-like activity
is restrictive and the KAW small amplitude fluctuations we described above
are just one piece of a much more complex scenario. In fact, since 7,;/Teon <
1, a strong turbulence regime may be reached. In order to point out that the
picture can be actually more complex, we performed the following analysis.
First, we selected two temporal windows of duration 7' ~ 29.5, before (I)
and after (IT) the wave packets collision. In both windows, the magnetic
energy F,(x, 1) is quite stationary, this allowing us to implement a full spatio-
temporal Fourier transform of Ej,(x,t) to get Ej(k,w). Note the w resolution
is quite high: in fact the w mesh grid is about 27 /T ~ 0.21, being this value
quite smaller than the w resolution commonly recovered through spacecraft
measurements [93, 95, 96, 97|. This last quantity gives information about
how the magnetic energy is distributed in the three-dimensional space k —w.
Figure 2.7 reports the contour plots of Ej, ,(k,,w) (left) and Ep . (k,,w) (right)
in region I (top) and I (bottom).

Before the interaction, the energy £, ,(k,,w) is recovered mostly at rela-
tively larger scales and is distributed in two branches of waves: the Alfvénic

waves branch (smaller phase speed) and the fast magnetosonic waves branch
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Figure 2.7: (Color online) Contour plots of the Logarithm of the magnetic energy
spectra in the spectral space. Left column displays Ep (ks w) = (Ep(k,w))g, in
the plane k, — w in the temporal region I (a) and II (c) while the right column
reports Ep 5 (ky,w) = (Ep(k,w))k, in the plane k, —w in the temporal region I (b)
and IT (d).

(larger phase speed). It is worth noting that, since the background mag-
netic field is quasi-perpendicular to the propagation plane, the Alfvén speed
is much smaller compared to the Fast magnetosonic phase speed, while the
coexistence of different waves branches before the main interaction of the two
wave packets confirms that our initial perturbations are not purely Alfvénic
eigenmode but also contain some magnetosonic fluctuations. Moreover, some
Bernstein fluctuations are also present along the fast waves branch at high
frequencies. On the other hand, the energy Ej.(k,,w) is quite localized
around w = 0.

During the wave packets collision, the nonlinear couplings transfer energy

towards small scales. The energy transfer can be easily appreciated in the
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bottom panels of Fig. 2.7. Indeed, both E,,(k;,w) (c) and Ej ,(ky,w) (d)
exhibit a distribution of energy much more populated at high wavenumbers
with respect to the energy distribution in the region I. The distribution of
energy is significantly spread in the spectral space and does not rigidly follow
dispersion relations: a cone-like region is populated along the £, direction,
while a wide blob is covered in the k, direction. This suggests that the wave
packets interaction cannot be simply described in terms of weakly nonlinear
couplings occurring along the dispersion relation, but off-dispersion couplings
and strong turbulence activity are also important. Note that the presence
of standard dispersion relations is weakened even after a single collision: the
scenario would be much more complex if wave packets could interact several
times or for a longer time period.

To better point out the fact that, during the wave packets interaction,
off-dispersion channels are populated as a result of strong turbulence, Fig.
2.8 reports the profile of £, ,(k, = k*,w) as a function of w and at a given
ky = k* = 15.3 = 1.5k,,, while the inset of Fig. 2.8 reports Ep,(k, = k*,w)
as a function of w and at a given k, = k* = 15.3 = 1.5k,4,. Fig. 2.8 essentially
represents a cut of Figs. 2.7 at a given wavenumber, indicated with a green
dashed line in Fig. 2.7. Red and black lines in Fig. 2.8 refer to the temporal
windows before (I) and after (II) the wave packets collision, respectively. As
it can be easily appreciated from Figs. 2.7(a—c), the range of w has been
opportunely chosen to focus on Alfvénic fluctuations.

Before the collision (red line), the energy is constrained in a relatively
narrow band whose width is about few wy ~ 27 /T. Then, after the wave
packets interaction (black line), the energy is instead significantly spread (the
populated frequency band width increases about a factor 5). This confirms
that the energy flows towards smaller scales far from the weakly nonlinear
coupling prediction. Furthermore, the amplitude of £}, ,(k, = k*,w) increases
for all the frequencies range showed in Fig. 2.8, thus representing, again,
the production of small scales fluctuations obtained during the wave packets
interaction.

Finally, the energy associated with structures at w = 0 significantly in-

creases after the collision; this suggests that turbulent stationary structures
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Figure 2.8: (Color online) Plot of Ey,(k, = k*,w), being k* = 15.3, as a function
of w in the region I (black) and II (red). The small inset plots Ep (ky = k*,w) as
a function of w in the region II.

have been generated during the wave packets interaction. A second signature
concerning the production of stationary fluctuations can be also observed in
Fig. 2.7(c) and in the inset of Fig. 2.8, where the energy is peaked at w ~ 0,

similarly to some recent solar wind observations [97].

2.3 Summary

To summarize, we focused on the HVM simulation and we described the
presence of kinetic effects and the characteristics of the turbulence generated
in the Alfvénic wave packet collisions. A certain degree of non-Maxwellianity
is also recovered before the interaction as a byproduct of the initial condition
which is not an exact HVM solution. However, several kinetic effects indi-
cators suggest that kinetic signatures are more intense during the collision,
due to the nonlinear coupling mechanisms which populate smaller scales. We
also investigated the wave packets interaction in terms of waves activity and

strong turbulence. We found that the wave approach can be successfully
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applied to small amplitude fluctuations identified as KAWSs, while a deeper
comprehension must also consider the presence of strong turbulence features
such as the weakening and the broadening of the dispersion relations and the

production of quasi-stationary w = 0 fluctuations.
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Discussion

Here we summarize the aim which led us to consider the problem of two
counter-propagating Aflvénic wave packets and the main results obtained.
We carried out a comparative study using different plasma simulation meth-
ods to examine the dynamical evolution that accompanies the interaction or
“collision” of two oppositely propagating wave packets. In particular, we de-
scribed the wave packets interaction by means of MHD, Hall MHD and hybrid
kinetic simulations of the same physical configuration. Kinetic simulations
have been performed with two different codes: an Eulerian Vlasov-Maxwell
code [40] and hybrid Particle-in-cell code [27]|. This preliminary examination
of the fate of the Moffatt and Parker conjecture in the context of compress-
ible as well as dispersive and kinetic models has produced a satisfactory, if
not complete, picture. The basic physics of large amplitude Alfvén waves
collisions as envisioned by Moffatt and Parker [5, 6] is recovered, however
several intriguing characteristics emerge as one move beyond the ideal MHD
treatment and the dynamics becomes more complex.

In each simulation, the interactions and the structures produced in the
collision are sufficiently complex that it is difficult to determine whether the
wave packets actually attain a full separation after the collision. Indeed,
we note that very complex current and vorticity structures are produced at
small scales and these fluctuations are indicative of a spread of energy in
the wave vectors plane, which is almost perpendicular to Bg. The energy
spectra evolve toward isotropy in this plane, although one would expect a
degree of spectral anisotropy to persist due to the presence of the weak in-
plane magnetic field. Furthermore, to the extent that the interaction of the

packets has a finite lifetime, any such relaxation would be expected to be
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incomplete in a single interaction time.

In addition, we recall that in the incompressible ideal MHD case, the cross
helicity is conserved, so that after the collision in that case, the separated
wave packets will each contain the same energy that was present in the initial
state. However, cross-helicity is not preserved in the Hall and kinetic cases
since dispersive and kinetic effects are at work in the simulations and a
significant variation is observed during the interaction.

Note that we also analyzed the same physical problem employing sev-
eral theoretical models and numerical models and such results are of interest
in the context of the Turbulent Dissipation Challenge [98]. The HPIC and
HVM methods should describe, approximately, the same physics (the hybrid
Vlasov treatment of collisionless plasma dynamics) and the comparison be-
tween the two codes is interesting from a methodological perspective. The
two kinetic performed simulations are able to take into account the dynam-
ics which occurs at large spatial scales and their comparison is quite discrete
in this range of scales. However, the HPIC runs lacks accuracy at smaller
spatial scales, thus indicating that the Fulerian approach better describes
the dynamics of the system at these scales. The comparison is expected to
become better if the number of particle per cell in the PIC simulation gets
bigger [28, 34].

Based on the last consideration, we analyzed the production of kinetic sig-
natures by focusing only on the HVM simulation. Several kinetic indicators
show that wave packets tend to produce kinetic effects such as temperature
anisotropies and nongyrotropies also before the main wave packets inter-
action. This is related to the fact that the initial condition, consisting of
quasi-Alfvénic wave packets, is not a Vlasov equilibrium and it dynamically
leads to the production of kinetic features. However, the analysis of kinetic
effects before and after the main wave packets collision indicates that some
kinetic features are enhanced by the collision itself and each wave packet is
significantly characterized by a strong degree of non-thermal signatures. The
presence of nongyrotropies suggests that descriptions based on reduced ve-
locity space assumptions may partially fail the description of such features.

During the wave packet collision, a beam in the velocity distribution function
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is observed to form along the direction of the local magnetic field. This char-
acteristic may connect our results with the general scenario of wave packets
observed in natural plasmas such as the solar wind [76].

Finally we characterized the interaction of two colliding Alfvénic wave
packets by means of HVM simulation in terms of wave-like activity and strong
turbulence signatures. Since the ratio between the nonlinear time to the
overlapping time allows a quite strong turbulence scenario, it is significant
to figure out which features of a wave-like approach resist to the strong
turbulent regime and, on the other hand, which characteristics are lost. We
found that a wave-like analysis, based on polarization and correlation, is still
useful to characterize the low-energy ripples recovered in the current density
contour plot which are associated with KAW like fluctuations. However
signatures of strong turbulence are also recovered. In particular the energy
in the w — k plane is spread after the wave packets collision and the presence
of dispersion relations is significantly weakened. The energy contained in the
w = 0 fluctuations also increases, thus suggesting the production of stationary
structures associated with current structures.

The kinetic models we implemented to describe the problem of the two
colliding Alfvénic wave packets neglects inter-particle collisions. Within these
approaches, the particle velocity distribution function is free to explore the
full velocity space and exhibits strongly distorted shapes [30, 33, 35]. Here
we also gave explicit evidence that evident non-Maxwellian signatures are
recovered in the VDF as a result of the wave packets interaction. However,
the presence of out-of-equilibrium VDF profiles opens a fundamental ques-
tion: since collisionality explicitly depends on gradients in velocity space, can
such gradients (i.e. fine structures) locally enhance the effect of collisions?
In other words, where strong gradients in velocity space are recovered, can
collisions be neglected? The next part of the thesis will focus on addressing
the answers, which - as we will see - are extremely difficult, to these ques-
tions; showing, in particular, that collisionality is effectively enhanced when

one takes into account the presence of fine velocity structures.
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Part 11

Beyond the Vlasov approach:
how to introduce collisions in a

collisionless plasma
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Collisions in a collisionless plasma

In the previous part of this thesis we extended the problem of two colliding
Alfvénic wave packets, previously investigated within a fluid approach, to
the collisionless, kinetic plasma physics framework, where the distribution
function is let free to explore the full velocity space. We showed that, when
the typical scales of kinetic processes are reached, the distribution function
becomes strongly distorted as a consequence of such mechanisms. We propose
here to make a step forward into the comprehension of the plasma dynamics
by taking into account inter-particle collisions.

The description of collisional effects in plasmas represents historically a
huge scientific topic in which significant numerical and theoretical efforts
have been made even in recent years. In a weakly collisional plasma, such as
the solar wind, collisions are usually considered far too weak to produce any
significant effect on the plasma dynamics [12]. However, several observations
indicate that the solar wind is incessantly heated during its travel through
the heliosphere. Indeed, the temperature decay along the radial distance
is much slower than the predictions of adiabatic models of the solar wind
expansion [117, 118, 119, 120]. Hence, some local heating mechanisms play
a significant role to supply the energy needed to heat the plasma.

Numerous scenarios have been proposed to understand the plasma heat-
ing (See [12| and references therein). Among these processes, turbulence
efficiently contributes to the local heating of solar wind [119, 121, 122], since
the energy transfer towards small scales - where dissipative processes are
at work [123] - is more efficient as the flow becomes more turbulent. On
the other hand, a long-standing debate about which dissipative processes
are preferred by the plasma is still waiting for a clear and definitive answer.
Many of the proposed models are often based on the collisionless assump-
tion, justified because the Spitzer-Harm collisional time [124] is much bigger
than other dynamical times. However, some important caveats should be
explicitly introduced.

Firstly, any collisionless mechanism lacks the ultimate part of the de-
scription of the heating process, that is the production of heat related to the
irreversible approach towards the thermal equilibrium (i.e. to the dissipation

of phase space structures). Several processes (e.g. nonlinear waves) are in
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fact able to increase the particle temperature, evaluated as the second or-
der moment of the particle distribution function. However, the free energy
contained in the VDFs is not in general converted into heat but it can be
also transformed in other forms of ordered energy (e.g. through microinsta-
bilities) [125]. On the other hand, collisions are the unique mechanism able
to degrade the information contained in the VDFs free energy into heat by
approaching the thermal equilibrium, thus producing heating in the standard
thermodynamical sense. Secondly, the evaluation of the Spitzer-Harm colli-
sional time strictly assumes that the VDF shape is close to the Maxwellian.
Since this assumption does not often hold in the solar wind [21, 35|, the
hypothesis on which is based the collisionless assumption may locally fail.
Based on these last considerations, numerous studies have been recently con-
ducted in order to take into account collisional effects in a weakly collisional
plasma such as the solar wind [49, 62, 63, 126, 127, 128, 129, 130, 131].

In these conditions, kinetic physics and collisions are in competition be-
tween each other: the former works to produce deformations of the particle
distribution function, while the latter - introduced through a collisional op-
erator at the right hand-sides of the Vlasov equation - tends to restore the
equilibrium Maxwellian. The evolution of the plasma. is, therefore, the result
of the complex combination of these two effects. The choice of the particular
collisional operator remains an open problem. Numerous derivations from
first principles (e.g. Liouville equation) indicates that the most general colli-
sional operators for plasmas are the Lenard-Balescu operator [54, 55| or the
Landau operator [52, 56]. Both operators are nonlinear “Fokker-Planck”-like
operators which involve velocity space derivatives and three-dimensional in-
tegrals. The Landau operator introduces an upper cut-off of the integrals at
the Debye length to avoid the divergence for large impact parameters, while
the Balescu-Lenard operator solves this divergence in a more consistent way
through the dispersion function. Therefore the Balescu-Lenard operator is
more general compared to the Landau operator from this point of view. How-
ever, we would remark that both operators are derived by assuming that the
plasma is not too far from the thermal equilibrium, hence both operators

could lack the description of inter-particle collisions in a strongly turbulent
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plasma. Moreover, the numerical approach of the Lenard-Balescu operator is
much more difficult than the one of the Landau operator. We also point out
that, as far as we know, an explicit derivation of the Boltzmann operator for
plasmas starting by the Liouville equation does not still exist [132]. However,
although the adoption of the Boltzmann operator for describing collisional
effects in plasmas is questionable from a theoretical perspective, it still re-
mains a quite valid options since Boltzmann and Fokker-Planck operators
are intrinsically similar [52, 127].

In this perspective, by modeling collisions with the fully nonlinear Lan-
dau operator [52], we recently showed that fine velocity space structures are
dissipated much faster than global non-thermal features such as temperature
anisotropy [49]. In other words, the collisionality can be effectively enhanced
by the presence of strong gradients in velocity space and the presence of ve-
locity space fine structures may break the quasi-Maxwellian assumption on
which the collisionless approach is based. The entropy production due to the
relaxation of the VDF towards the equilibrium occurs on several character-
istic times - much smaller than the Spitzer-Harm characteristic time [124].
These characteristic times are associated with the dissipation of particular
velocity space structures and could be comparable with other dynamical
times (e.g. microinstabilities growth rates). Therefore, collisions could be
an additional efficient ingredient to properly describe the irreversible heating
observed in the solar wind. Since the presence of such strong velocity space
gradients tends to naturally enhance collisionality, high-resolution measure-
ments of the particle VDF in the solar wind are crucial for a proper de-
scription of heating mechanisms [133]. Moreover, retaining nonlinearities in
the collisional operators is also crucial. In fact, we compared the collisional
relaxation of an out-of-equilibrium VDF under the effect of the fully nonlin-
ear Landau operator and of its linearized version. Results indicate that, if
one neglects nonlinearities, characteristic dissipation times are significantly
larger than in the case of the fully nonlinear operator. The dissipation of
such structures gets, therefore, slower by linearizing the collisional operator.
It is worth to remark that these results have been obtained in the case of a

force-free homogeneous plasma, because the simulations the Landau opera-
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tor are highly demanding; hence, they clearly need to be confirmed in the
self-consistent case. However, our results, which are highlighted in Chapter
1, are still significant to provide a step forward in the comprehension of a
tough problem as heating of the solar wind.

Since the numerical implementation of both Landau and Balescu-Lenard
operators is difficult from the computational point of view (e.g. the compu-
tational cost of the Landau operator in full phase space is proportional to
N?, being N the gridpoints number along each direction), several simplified
operators have been previously employed. We may distinguish these simpler
operators in two classes. The first type of operators - as the Bathanar-
Gross-Krook [57, 61] and the Dougherty operators [58, 59, 64, 129] - aims
to model collisions in the realistic three-dimensional velocity space but by
adopting a simpler structure of the operator. On the other hand, the second
class of collisional operators works in a reduced, one-dimensional velocity
space assuming that the dynamics mainly occur in one direction. Although
this approach is “unphysical” (collisions naturally act in three dimensions),
these operators can satisfactorily model collisions in laboratory systems, such
as the long and thin plasma columns contained in Penning-Malmberg trap
devices [62, 63, 134, 135, 136|, where the dynamics evolves along only one
direction.

In Chapter 2 we focus on the Dougherty operator. First, we compare
the Dougherty operator with the Landau operator through a numerical in-
vestigation of the relaxation toward equilibrium of a spatially homogeneous
plasma in absence of fields, in full three-dimensional geometry in velocity
space. Even though the mathematical form of the two collisional operators
is evidently different, we found that the collisional evolution of the relevant
moments of the particle distribution function (temperature and entropy) are
similar in the two cases, once an “ad hoc” time rescaling procedure has been
performed. This time rescaling results, in practice, in dividing the collisional
frequency in the Dougherty operator by a factor o ~ 3.55, whose value has
been determined empirically from the numerical simulations. Then, since the
Dougherty operator requires a significantly lighter computational effort with

respect to the complete Landau integral, self-consistent plasma simulations
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in presence of collisions can be afforded, even in the multi-dimensional phase
space geometry. We show results of self-consistent collisional simulations of
a plasma composed of kinetic electrons and immobile protons, in a nonlinear
regime and in the case of weak collisionality. We focus, in particular, on the
concomitant role of collisions and kinetic effects for the cases of i) the linear
and nonlinear evolution of the bump-on-tail instability and ii) the excita-
tion of the so-called Kinetic Electrostatic Electron Nonlinear (KEEN) waves
[137, 138].

Then, in Chapter 3, we describe the evolution of a weakly-collisional
plasma in the reduced 1D-1V phase space by focusing on two separate prob-
lems. First, we study the effect of artificial collisions on the recurrence of
the initial states. Collisions are here modeled through the Lenard-Bernstein
operator [139]. By decomposing the linear Vlasov-Poisson system in the
Fourier-Hermite space, the recurrence problem is investigated in the linear
regime of the damping of a Langmuir wave and of the onset of the bump-on-
tail instability. The analysis is then confirmed and extended to the nonlinear
regime through a Eulerian collisional Vlasov-Poisson code. Despite being
routinely used, an artificial collisionality is not a viable way of preventing re-
currence in numerical simulations without compromising the kinetic nature
of the solution. Moreover, it is shown how numerical effects associated to
the generation of fine velocity scales, can modify the physical features of the
system evolution even in nonlinear regime. This means that filamentation-
like phenomena, usually associated with low amplitude fluctuations contexts,
can play a role even in nonlinear regime.

Finally, we analyze the method adopted in laboratory plasmas for trigger-
ing fluctuations in both a collisionless and weakly collisional plasma. When
exciting Electron Acoustic Waves, we find that a new branch of small am-
plitude, nonlinear and non dispersive waves is recovered. The generation of
these waves is discussed in detail as well as their existence in a weakly col-
lisional plasma. Indeed, also for small collisionality values, these secondary
waves are suddenly dissipated, while the main electron-acoustic waves branch
undergoes an exponential damping comparable with experimental observa-

tions.
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Chapter 1

Collisional relaxation of fine

velocity structures in plasmas

We discuss here the collisional dissipation of non-Maxwellian features in
the particle velocity distribution function in a weakly collisional plasma, by
means of Eulerian numerical simulations. Due to the nonlinear nature of
the Landau operator, the analytical treatment as well as the self-consistent
numerical simulations of the Landau operator in 6D phase space are hard
goal to achieve yet. Thus, we decided to address the collisional relaxation of
a spatially homogeneous force-free plasma and to model collisions between
particles of the same species.

We show here how collisionality effects are increased as the velocity dis-
tribution function exhibits strong gradients in velocity space [Section 1.1].
Indeed, fine velocity structures are dissipated much faster compared to global
quantities. Furthermore, the explicit comparison of the effects of the nonlin-
ear Landau operator and its linearized version indicates that velocity struc-
tures are smoothed out slowly if nonlinearities are neglected. This suggests
that taking explicitly into account nonlinearities in the collisional operator
is crucial to give the proper importance to collisional effects [Section 1.2].

Results shown here have been awarded with the 2016 “V.C.A. Ferraro”
Prize of the Italian Physical Society and have been collected in two scientific

papers. The first paper has been recently published in Physical Review Letter
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[49], while the second one is in press in Journal of Plasma Physics [140] as

an invited paper for the “V.C.A. Ferraro” Special Issue.

1.1 Collisional relaxation of fine velocity struc-

tures in plasmas

The dimensionless Landau equation for the particle distribution function

f(v) reads as follows:

8@(:7) =T (g)% 81 /d3v' Uij(u) [f(v')agf:) - f(’v)aggl;/) , (1.1

being f normalized such that [ d®vf(v) =n =1 and Uj;(u)

2
5iju — uiuj

where u = v — v/, u = |u| and the Einstein notation is introduced. In Eq.
(1.1), and from now on, time is scaled to the inverse Spitzer-Harm frequency
vy [124], being vsy ~ 8 x (0.7147ne* In A) /(m®?(3kpT)3/?), and velocity to
the particle thermal speed vy, = \/m. Note that m, e, n and T" are the
particle mass, charge, density and temperature, while kg is the Boltzmann
constant and In A is the Coulombian logarithm. Details about the numerical
solution of Eq. (1.1) can be found in Ref. [64].

We initially consider the mutual effect of a local deformation of the par-
ticle VDF (a plateau) and the global temperature anisotropy, by comparing

the evolution of two initial VDFs:

Lilv) = leM,TL(Uz)fM,TL(Uy)fpﬂ\ (v2) (1.3)
fo(v) = Cifur () fur, (vy) i (v2) (1.4)

where C7 and (5 are normalization constant. The total temperature T,
where 7" = v}, in dimensionless units, is given by T' = (T} + 27)/3 and
A =T, /T = 2. Finally fy 1, is a generic Maxwellian with temperature T;

54



Collisional relaxation of fine velocity structures in plasmas

(c) 0.030F
. 0.025F

N
o
T
/
5

oN » o
e =
\
L
as (
o o -
o 0 o
T
N
N
\
\
N
\
(Ve=V,
oo o o
oo o O
28 2 2
S a o o

Ty

Figure 1.1: (a) Time evolution of 7' and 7} for the case of f1(v) (black-solid line)
and fo(v) (red-dashed line). (b) Time evolution of AS for the case of fi(v) (black-
solid line) and fa(v) (red-dashed line). The vertical blue-dashed line in panels (a)—
(b) indicates the time instant ¢ = ;. (c) Distribution function fi(v; = vy =0, v;)
as a function of v, at ¢ = 0 (black-solid line) and at ¢ = 7y (red-dashed line).

and [63, 129]:

. fM,TO<UZ) - fM,To(VO>
1+ [(v: = Vo)/ AV ]

fp,T“ (v2) = fum(v2) (1.5)
where Ty = 1, Vo = 1.44, AV, = 0.5 and n, = 8. The function f, 7, (v.) is
constructed in such a way to have a plateau of width AV}, around v = Vj, that
is f, 7 (v2) is about null in the interval Vo — AV, /2 <>~ v, <= 2Vy + AV,/2,
being exactly zero at v, = V5. Note that the plateau represents one of the
most common non-Maxwellian features generated by nonlinear wave-particle
interactions.

It is worth to note that fi(v) is a bi-Maxwellian function, while fy(v) is
Maxwellian in the perpendicular directions with a plateau centered in v, = Vj
in the parallel direction. We also point out that fi(v) and fo(v) have the
same temperature (second order moment) in each direction. Moreover, for
the function fi(v), we reset the small mean velocity (~ 1072) produced
by the presence of the plateau. The three-dimensional velocity domain is
discretized with N,, = N, = 51 and N, = 1601 grid points. We point
out that the resolution along v, has been increased significantly in order to
resolve the short velocity scales associated with the plateau presence. Finally,
the distribution function is set equal to zero for |v;| > Ve = 6vy,, being
j=x,,z.

As shown in Fig. 1.1 (a), the time evolution of parallel and perpendicular
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Figure 1.2: (a) Dependence of f. on v,. (b) Time history of AS. Red dots in panel
(b) indicate the time instants t = 7y, t =7 + 7o, t =71 + T2 + 73.

temperatures of fi(v) (black-solid line) and fy(v) (red-dashed line) is clearly
the same. On the other hand, the evolution of the entropy variation AS =
S(t)—S(0) (S = — [ fln fdzdv), reported in Fig. 1.1(b), displays significant
differences. In particular, for fi(v) (black-solid curve), the case in which
a plateau is present, AS saturates at a larger level than that recovered for
f2(v) (red-dashed curve). In order to investigate the reasons of such different
behavior of the entropy for fi(v) and fs(v), we performed a multi-exponential
fit [141] of AS for the two cases, with the following curve:

AS(t) = AS; (1—e ") (1.6)

7; being the i—th characteristic time and K is evaluated through a recursive
procedure.

From this analysis, we found that, while for the case of fo(v) [red-dashed
curve of Fig. 1.1(b)] AS shows an exponential growth with a single char-
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Figure 1.3: Distribution function f(v, = 0,v, = 0,v;) as a function of v, at t =7
(a), t =71 + 72 (b) and ¢t = 71 + 72 + 73 (c). Red dashed lines in panels (a)—(c)
indicate the equilibrium Maxwellian finally reached in the simulation.

acteristic time (7 ~ 2vg}), for fi(v) [black-solid curve of Fig. 1.1 (b)], i.
e. in the presence of a plateau, two different characteristic times are recov-
ered: a fast characteristic time 7, = 0.14vg}, [indicated in Fig. 1.1(a)-(b)
by a vertical blue-dashed line] in which 25% of the total entropy growth is
achieved, and a slow characteristic time 7, = 2.03vg}, during which the re-
maining 75% of the total entropy growth is observed. We argue that the
existence of the characteristic time 7 is due to the presence of the plateau,
and in particular it is associated with the sharp velocity gradients in f;(v),
while 75 is related to the initial temperature anisotropy. In fact, as it can be
seen in Fig. 1.1(c) where f;(v, = v, = 0,v,) is plotted as a function of v,
at t = 0 (black-solid line) and at ¢ = 7y (red-dashed line), the initial plateau
is completely smoothed out by collisional effects in a time close to 7, while
from Fig. 1.1(a) one realizes that at ¢ ~ 7, the temperature anisotropy is
still present.

To further support the idea that the presence of sharp velocity gradients
in the particle VDF causes the entropy to grow over different time scales,
we made an additional numerical experiment of collisional relaxation, con-
sidering a different initial condition for Eq. (1.1). This new initial condition
has been designed as follows. Firstly, we performed a 1D-1V Vlasov-Poisson
simulation (kinetic electrons and motionless protons) with high numerical
resolution in the z — v, phase space domain (N, = 256, N,, = 1601). In this
simulation, we externally forced the system, initially at equilibrium, through

a sinusoidal driver electric field, in order to excite a large amplitude elec-
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tron acoustic wave (EAW) [142], as it has been done numerically in Refs.
[137, 143, 144] and in laboratory experiments with nonneutral plasmas in
Refs. [50, 145]. As discussed in these papers, the propagation of large am-
plitude EAWs is characterized by the generation of phase space structures of
the Bernstein-Green-Kruskal (BGK) type [146] in the electron distribution
function f.(z,v,), associated with trapped particle populations. Then, we
selected the spatial point zy in the numerical domain, where this BGK-like
phase space structure displays its maximum velocity width, and considered
the velocity profile f.(v.) = f.(z0,v.). In Fig. 1.2(a), we report the depen-
dence of fe on v,; here, it can be appreciated that fe is highly distorted due
to nonlinear wave-particle interaction processes and displays the presence of
sharp velocity gradients (bumps, holes, spikes etc.). At this point, we evalu-
ated the second order velocity moment of fe, that is the temperature 7, and
built up the three-dimensional VDF f(v,,vy,v.) = faur (va) fur (vy)fe(vz).
We emphasize that this VDF has the same temperature in each velocity di-
rection, but presents strong non-Maxwellian deformations along v, as shown
in Fig. 1.2(a), which make the system to be far from equilibrium. The time
history of AS, obtained when using f. as initial condition for Eq. (1.1), is pre-
sented in Fig. 1.2(b). As in the previous simulations, the three-dimensional
velocity domain in this case is discretized by N,, = N,, = 51 and N, = 1601
gridpoints.

By analyzing the entropy growth through the same method of multi-
exponential fit discussed previously, three characteristic times are recovered
in this case, whose values are reported below, together with the corresponding

percentage of entropy variation:
o 7 =3.5-10"%v5y — AS1/AS; = 13%
o 7 =13-10" vy — ASy/ASy = 42%
o 3 =4.9-10"1vgy — AS3/AS; = 40%

Characteristic times 71, 72 and 73 are indicated as red diamonds in Fig. 1.2(b).
In Fig. 1.3, we plot f as a function of v, for v, = v, = 0, at three different

times t = 7 (a), t =7 + 7 (b) and t = 74 + 75 + 73 (¢): during the time
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Figure 1.4: Iso-surface plot of the initial VDFs fy,(v) [(a)], few(V) [(b)] and feu (V)
[(c)], respectively.

71, steep spikes visible in Fig. 1.2(a) are almost completely smoothed out;
at time 71 + 7» the remaining plateau region is significantly rounded off, only
a gentle shoulder being left; finally, after a time 7 4+ 7 + 73, the collisional
return to equilibrium is completed for the most part (a small percentage
~ 5% of the total entropy growth is finally recovered for larger times and
corresponds to the final approach to the equilibrium Maxwellian, indicated
by red-dashed lines in the three panels of Fig. 1.3).

Compared to the case shown in Fig. 1.1, here we recovered an additional
extremely fast characteristic time (~ 1073v},), associated with the sharp ve-
locity gradients of f along v, while we did not detect the large characteristic
time (=~ 21/5_15) associated with the temperature anisotropy in the previous
case.

Numerical experiments discussed so far give a clear message: collisional
dissipation of small velocity scales in the particle VDF occurs over different
time scales, inversely proportional to the sharpness of the velocity gradients
associated with those scales. As we discussed above, these characteristic
times can be significantly smaller than the Spitzer-Harm collisional time
[124], this meaning that the presence of velocity gradients in fact speeds
up the growth of the entropy of the system. These evidences suggest that
when the particle VDFs exhibit small velocity scale deformations, the quasi-
Maxwellian approximation, on which the Spitzer-Harm collisional evolution

is based, is no longer appropriate.
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In order to explore the implications of our results to the general case
of the solar wind plasma, we performed our analysis on a three-dimensional
proton VDF f,,(v), obtained from the hybrid Vlasov-Maxwell [40] numerical
simulations of solar wind decaying turbulence described in detail in Refs.
[30, 31, 33, 35, 41|. As shown in Fig. 1.4(a), where the three-dimensional
iso-surface plot of fy,, is reported, kinetic effects along the cascade make the
VDF depart from the spherical shape of Maxwellian equilibrium and resemble
a deformed potato. Then, having in mind to mimic low resolution VDF
measurements by a real spacecraft, we fitted f,(v) with a tri-Maxwellian
function f,,(v) [Fig. 1.4(b)] and with a bi-Maxwellian function f,,(v) [Fig.
1.4(c)]. In order to point out the loss of physical information caused by
not adequately resolving the sharp velocity gradients in the particle VDFs,
the functions fy,, fsw and fsw are used as initial conditions in three new
simulations of Eq. (1.1), in which the velocity domain is now discretized
by N,, = N,, = N,, = 51 gridpoints, as in the simulations in Refs. [30,
31, 33, 35, 41|. The results for the entropy growth of these new numerical
experiments are reported in Fig. 1.5, where we show the time evolution of AS
for the VDFs fo,,(v) (black-solid line), f,(v) (red-dashed line) and fy,(v)
(blue-dashed line), respectively.

As for the previous cases discussed above, also here the time history of

AS is evidently affected by the presence of fine velocity scales and steep

Figure 1.5: Entropy growth for the initial VDFs fs,(v) (black line), fow(v) (red
line) and fg,(v) (blue line), respectively.
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gradients in the particle VDF. Any fitting procedure, which smooths out the
fine velocity structures, reduces the entropy growth: in fact, the simulation
with the function fsw(v) as initial condition displays a collisional entropy
growth about 20 times smaller than that recovered for case of the function
fsw(v). Moreover, through the multi-exponential fit analysis performed on
AS for the simulation initialized with f,,, we found two characteristic times:
a fast one 11 = O.QOygé, in which 26% of the total entropy growth is achieved,
and a slow one 7, = 0.821/511,, during which the remaining 74% of the total
entropy growth is observed. By analyzing VDF iso-surface plots (not shown
here) at different times in the simulation, we realized that after a time t = 7
collisions have dissipated most of the sharp velocity gradients which were
initially present in the VDF. We point out that, since the numerical resolution
for this simulation is about fifty times smaller than in the previous case,
sharp velocity gradients [as those shown in Fig. 1.2 (a)| are not visible in the
particle VDF, even though it displays significant non-Maxwellian features
[see Fig. 1.4 (a)]. Hence, the lack of velocity resolution presumably does
not allow to recover the extremely fast characteristic time (~ 1073vg},) in
the evolution of AS, observed for the simulation initialized with the velocity
profile in Fig. 1.2 (a).

1.2 Nonlinear and linearized collisional opera-

tors

The second aspect analyzed here concerns the nonlinearities of collisional
operators. As introduced above, the Landau operator involves strong non-
linearities and, despite collisional operators are quite often simplified to their
linearized versions, it is significant to consider nonlinearities. Indeed, a lin-
earized operator may hide or reduce the importance of velocity space gra-
dients. Therefore, we present a case study where we focus on one of the
initial conditions described in the previous section and we compare its evolu-
tion, obtained through the fully nonlinear Landau operator and its linearized

version, in a force-free homogeneous plasma.
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Under these assumptions, we numerically integrate the following dimen-

sionless collisional evolution equations for the particle distribution function

f(v,t):

0f(v.1) A S OINC) G RPN ) ()
w( ) [ vy )lf( ) f(.1) ] (1.7)

ot 2) Ov 0us o
0 : 4 : : I
fgl;a t) _ (g) i /d3UI Uij(u) lfo(v/)'];(iz;ﬂ - f(’U, t) J;O,l(),;v Y| (18)

being f normalized such that [d*vf(v) = n =1 and Uj;(u) the projector
defined in Eq. (1.2). In Egs. (1.7-1.8), and from now on, time is scaled
to the inverse Spitzer-Harm frequency vg}, [124] and velocity to the particle
thermal speed vy,. Details about the numerical solution of Egs. (1.7-1.8) can
be found in Refs. [49, 64|. Moreover, in Eq. (1.8), fo is the three-dimensional
Maxwellian distribution function associated with the initial condition of our
simulations f(v,t = 0) and built in such a way that density, bulk velocity
and temperature of the two distributions f(v,t = 0) and fy(v) are the same.
Clearly the two equations differ because Eq. (1.7) refers to the nonlinear
Landau operator, already adopted in Sect. 1.1, while Eq. (1.8) evolves the
linearized Landau operator, obtained by linearizing the Fokker-Planck coeffi-
cients of Eq. (1.7). Velocity domain discretization and boundary conditions
are the same as in the previous section.

For the current simulations, we chose as initial condition one of the initial
conditions adopted in the previous section. In particular, we selected the one
obtained as a cut of a 1D-1V Vlasov-Poisson simulation where KEEN waves
are triggered. The shape of the 1V cut of the particle distribution function
can be appreciated in Fig. 1.2(a). We remark that this VDF does not initially
exhibit any temperature anisotropy but it still shows strong non-Maxwellian
deformations along v,, due to the presence of trapped particles.

Figure 1.6 reports the temporal evolution of the entropy variation AS =
S(t)—S(0) (S =— [ fln fd®v), which gives information about the approach
towards equilibrium. Black and red lines respectively refer to the case of the
fully nonlinear Landau operator and the linearized operator. Since the initial

condition is the same for both operators, the total growth of entropy AS is
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the same in terms of absolute values. In the case where nonlinearities are
taken into account the entropy grows much faster compared to the linearized
operator case. Indeed, in the case of the full Landau operator, the total
entropy growth is reached in about 1+2V§é; while, for the linearized Landau
operator, the entropy grows on 4 + 51/511,.

To better point out how the dissipation of fine velocity space structures
is affected by the presence of the nonlinearities, we performed the multi-
exponential fit of AS presented in the previous section [49, 141]. When
collisions are modeled by means of the fully nonlinear Landau operator, we

already found that three characteristic times are recovered:
o 7' =35-103vgy — ASP/AS,,; = 13%
o T =13-10"  vgy — ASP/AS,,; = 42%
o 71 =4.9-10" vgy — ASH/ASy = 40%

As discussed in the previous Section, the presence of several characteristic
times is associated with the dissipation of different velocity space structures.

Fig. 1.7 reports f(v, = v, = 0,v,) as a function of v, at the time instants
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Figure 1.6: (Color online) Time history of AS in the case of the fully nonlinear
Landau operator (black) and the linearized Landau operator (red). Blue diamonds
indicate the time instants ¢t = 7, ¢ = 77! + 70 and ¢t = 70 + 70 + 7L the green
triangles refer to t = 7i" ¢ = 7lin 4 74" and t = 7" 4 7lin 4 Téin.
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Figure 1.7: Distribution function f(v, = 0,v, = 0, v;) as a function of v,, obtained
in the case of the fully nonlinear Landau operator. Panels from (a) to (d) respec-
tively display the time instants t = 7% (a), t = 7% + 7% (b), t = 7P 4 730 4 731
(c) and t =ty (d).

t=1"(a), t =7+ (b), t = 7 + 730 + 73" (¢) and t = t4;, (d). These
time instants are displayed in Fig. 1.6 with blue diamonds.

The same analysis performed in the case of the linearized Landau operator
(red line of Fig. 1.6) indicates that, as in the nonlinear operator case, three
characteristic times are obtained. The values of these characteristic times

are, however, much different compared to the ones previously recovered:
o Tin =11-10"2vg} — ASIM/AS, = 11%
o Tin =27-10" w5y — ASI"/AS, = 23%
o 7" =15 vey — ASE"JAS, = 63%

Moreover, when looking at the evolution of the distribution function, one
can easily figure out that this is qualitatively similar to the case of the fully
nonlinear operator. Fig. 1.8(a-d) reports f(v, = v, = 0,v,) as a function of
v, at the time instants t = 71" (a), t = 7/ + 74" (b), t = 7" + 7iin 4 7lin
(c) and t = tf, (d). These time instants are displayed in Fig. 1.6 with

green triangles. As recovered in the fully nonlinear operator case, the initial
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spikes in the initial condition are flattened after the time ¢ = 7/ (a). Then,
at t = 7™ 4 7lin (b), the plateau is rounded off. Finally, after a time
t =7+ 730 + 7 (c), the collisional relaxation to equilibrium is almost
completed and a very small percentage ~ 3% of the total entropy growth is
finally recovered for larger times and corresponds to the final approach to
the equilibrium Maxwellian (d).

Since several characteristic times are recovered in both cases, we can
argue that fully nonlinear and linearized operators are both able to recover
the characteristic that fine velocity space structures are dissipated faster as
their scale gets finer (e.g. as the velocity space gradients become stronger).
However, the speed at which such structures are smoothed out is significantly
weakened if one neglects nonlinearities: each characteristic times recovered
in the case of a linearized operator is significantly bigger (about 2+ 5 times)
than the correspondent characteristic times recovered with the fully nonlinear
operator. It is also worth mentioning that the amount of entropy production
due to different velocity structures also changes by ignoring nonlinearities:

in the case of the fully nonlinear Landau operator about 55% of the total
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Figure 1.8: Distribution function f(v, = 0,v, = 0, v;) as a function of v,, obtained
in the case of the linearized Landau operator. Panels from (a) to (d) respectively
display the time instants t = 74" (a), t = 7/ + 7" (b), t = 7lin 4 7lin 4 7lin (¢)
and ¢t = tfm (d)
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entropy is due to the dissipation of the initial spikes and to the rounding of
the successive plateau, while - in the linearized operator case - only about the
30% of the total entropy is due to these two processes. Hence a significant
difference between the two operators is recovered and, bearing in mind to
compare the collisional characteristic times with other dynamical times, it is
fundamental to properly attribute the importance of collisions by taking into

account the nonlinearities present in the collisional integral.

1.3 Summary

To summarize, we here discussed the role of the VDF fine velocity struc-
tures in enhancing the plasma collisionality. In particular, by means of Eule-
rian simulations of collisional relaxation of a spatially homogeneous force-free
plasma, we have shown that the system entropy growth occurs over several
time scales, which gets smaller as VDF' gradients become steeper. We re-
ported clear evidences that these gradients are dissipated by collisions in a
time much shorter than that associated with global non-Maxwellian features,
e.g. temperature anisotropies. This characteristic time may be comparable
or even smaller than the instability growth rates invoked to explain the SW
anisotropic VDFs [147, 148] or than the nonlinear dynamics times, as re-
cently discussed through a classical treatment of collisions [131]. We finally
pointed out how the lacks of resolution in the VDFs measurements mask a
relevant part of physical information hidden in the sharp velocity gradients
of the non-Maxwellian VDFSs, observed ubiquitous, for example, in the SW
[21, 25]. Future space missions, planned to increase both energy and angu-
lar resolutions of the VDFs measurements, will provide crucial insights for
the longstanding problems of plasma heating and particle energization in the
interplanetary medium.

Moreover, focusing on the comparison of the full Landau operator and its
linearized version, we showed that both nonlinear and linearized collisional
operators are able to detect the presence of several time scales associated with
the collisional dissipation of small velocity scales. This can be explained

by the fact that the linearized operators also involve derivatives while do
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not take into account the “second-order” gradients related to the Fokker-
Planck coefficients of the Landau operator, which may influence the absolute
value of such times. For both evolutions, the recovered characteristic times
are significantly smaller than the Spitzer-Harm collisional time [124], this
meaning that the presence of sharp velocity space gradients speeds up the
entropy growth of the system. However, the importance of such characteristic
times is significantly affected and, in general, weakened if nonlinearities are
ignored in the collisional operator. In the case of a linearized collisional
operator, one obtains much slower characteristic times with respect to the
case where operator nonlinearities are taken into account. Therefore, we
conclude that the presence of nonlinearities in the collisional operator should
be taken into account, since it may affect the relevance of fast characteristic
times - associated with the collisional relaxation of fine velocity structures -
with respect to other dynamical times [131, 147, 148|.
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Chapter 2

Collisional effects described
through simplified collisional
operators: the Dougherty

operator

As described in the Introduction of the current part of this thesis, self-
consistent collisional simulations where collisions are modeled by the fully
nonlinear Landau operator cannot be easily performed due to the compu-
tational cost of the Landau integral. Therefore, simplified collisional oper-
ators are usually considered to model collisionality. Here we focus on the
Dougherty operator, which has been proposed by Dougherty in 1964 to de-
scribe collisions among particles of the same species in 3D-3V physical sys-
tems [58, 59].

Even though the Dougherty operator has been set up in a phenomeno-
logical way, it satisfies the main properties of a good collisional operator
[134, 135]:

e it vanishes for any thermal equilibrium distribution function and it dis-

plays the Maxwellian distribution function as a long-time limit solution;

e it conserves particle number, momentum and energy;
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e it describes the dominance of small-angle scattering through a velocity-

space diffusion term.

However, since the Dougherty operator is explicitly phenomenological and it
has not been formally derived from the Landau collisional operator, firstly it
could give rise to evolution times which can be different from those predicted
by the Landau operator by some numerical factor and secondly it does not
describe the velocity dependence of the diffusion coefficients in velocity space.
Note that the Dougherty operator is significantly less time demanding than
the full Landau collisional integral. In fact, the computational time ¢. for
1D-3V (1D in physical space and 3D in velocity space) Eulerian simulations
which include the full Landau operator scales as t, ~ N7 (where N is the
number of gridpoints, assumed, for simplicity, to be the same for each phase-
space coordinate); for the Dougherty operator, the scaling is t. ~ N*; this
significant reduction of ¢. allows to run numerical experiments of the self-
consistent electrostatic dynamics of a collisional plasma in 1D-3V geometry.

For this reason, in Sections 2.1 and 2.2, we try to face the first problem by
analyzing the behavior of the Dougherty operator [58|, as compared to that
of the complete Landau integral, through a numerical investigation of the
relaxation toward equilibrium of a spatially homogeneous plasma in absence
of fields, in full three-dimensional geometry in velocity space. To perform
this analysis, we describe numerically the return to equilibrium of several
non-Maxwellian velocity distributions, and compare quantitatively the time
evolution of the velocity distribution itself and of temperature and entropy.
Interestingly enough, for the cases discussed in this thesis, the system evolu-
tion obtained when collisions are modeled through the Dougherty operator
results very similar to the case where the full Landau integral is employed,
provided an “ad hoc” time rescaling is performed. This time rescaling results,
in practice, in dividing the plasma parameter g in the Dougherty operator
by a factor o ~ 3.55, whose value has been determined empirically from the
numerical simulations. We point out that, due to the computational cost of
the numerical approximation of the Landau integral, this analysis could not
be performed in situations of self-consistent plasma evolution, not even in

electrostatic approximation.
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In Section 2.3, once the relationship between the Landau and Dougherty
operators has been established, we employ the Dougherty operator to model
particle collisions, rescaling the plasma parameter as discussed above and
making the assumption that this procedure works to mimic the Landau in-
tegral also in self-consistent electrostatic situations. We analyze two cases
of the electrostatic dynamics of a plasma composed of kinetic electrons and
immobile protons, in a nonlinear regime and in the case of weak collisionality.
We focus, in particular, on the concomitant role of collisions and kinetic ef-
fects in shaping the particle distribution function, which, in turn, determines
the plasma evolution. We performed our analysis in two specific cases: the
linear and nonlinear evolution of the bump-on-tail instability and the exci-
tation of KEEN waves [137, 138]. We emphasize that our numerical results
can be relevant for laboratory plasma experiments, in which collisional effects
are weak but often not negligible. We point out also that our numerical sim-
ulations retain only electron-electron collisions, neglecting electron-proton
interactions and electron collisions with heavy particles [56].

Results shown here have been collected in two scientific papers recently
published in Journal of Plasma Physics [64] and Physics of Plasmas [129].

2.1 Landau and Dougherty collisional opera-

tors

We consider here the collisional relaxation of a plasma in presence of collisions
among particles of the same species (electron-electron or ion-ion). We assume
that the plasma is spatially homogeneous and no field (self-consistent or
external) is present.

The explicit form of the Landau operator, in dimensionless units, is the

following:
off  _glmAO [ 5, ,Of(v) of (')
ot|,, 8t ou /d v Uij(a) {f('”) a0, f(v) o |’ (2.1)

f(v) being the particle distribution function, normalized such as [ d*v f(v) =
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n =1, g = 1/n)\3, the plasma parameter, In A ~ —1Ing/3 the Coulombian
logarithm and U;;(u) the projector

Uy (u) = R e (2.2)

where u = v—v" and u = |u|. For brevity and clarity, we avoided to explicitly
indicate the time dependence of the distribution function f. Moreover, the
Einstein summation notation has been introduced.
The dimensionless Dougherty operator is the following:
of _glnA n 0 of (v)

= T
315 coll 8 T3/2 8’Uj 8’0]‘

+@=V), flv)| . (2.3)

where n = [dPvf(v) = 1, V = 1/n[d* vf(v), T = 1/3n [ d*v(v —
V)2 f(v) respectively the density, the mean velocity and the temperature
of the plasma.

In the previous equations, time is scaled to the inverse plasma frequency
wp, lengths to the Debye length Ap and velocities to the thermal speed vy,.
From now on, all physical quantities will be scaled with these characteristic
parameters.

It is worth to remark that both operators exhibit a similar Fokker-Planck
structure, weighted with different coefficients, satisfy conservation of mass,
energy and momentum and obeys an H-theorem [58, 59, 149|.

By looking at Eqgs. (2.1)-(2.3), one can realize that the projector U;;(u)
that couples the velocity v, at which the Landau collisional operator is eval-
uated, and the integration variable v’ is absent in the Dougherty operator.
This significantly simplifies the numerical solution, since the velocity inte-
grals in the Dougherty operator (n, U and T') can be evaluated once for each
time step in the simulation. In the case of spatially homogeneity, this re-
duces the computational cost from N (Landau operator) to N3 (Dougherty
operator); for the general non-homogeneous case with three dimensions in
physical space, the computational cost decreases from N° (Landau operator)

to NY (Dougherty operator).
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2.2 Relaxation toward equilibrium: a numeri-

cal comparison

To begin this section, we shortly discuss the numerical strategy adopted
to solve the collisional time evolution equation for the particle distribution

function:
of _ of
ot ot '

coll

(2.4)

where 0f /0t is given by Eq. (2.1) for the case of the Landau operator and
by Eq. (2.3) for the Dougherty operator. We will refer to Eq. (2.4) as the
Landau or the Dougherty equation, depending on which collisional operator
is used in the right-hand side.

The velocity derivatives in both Landau and Dougherty operator are eval-
uated numerically through a sixth-order centered finite difference scheme
[62, 63], while for the time derivative a first-order Eulerian scheme has been
employed. The explicit expressions of the schemes for the velocity derivatives

are the following:

of _ —fis 9o —45fia 45 i1 — o + firs (2.5)

dvj |, 60Av;, '
82f _ 2fi—3 - 27fi—2 + 27sz—1 - 490f2 + 270fz+1 — 27fi+2 + 2fi+3 (2 6)
ovs |, 180Av? '

i being a generic grid point along the velocity direction j and Av; the mesh
size along the j-th velocity direction.

In the numerical velocity domain, f is set equal to zero for |v| > vy,
where vy, = 6V, along each direction, where vy, ,, = max {vth7||,vth7l}.
The number of grid points used to discretize the velocity numerical domain
has been chosen such that the ratio Av; /vy, ; is almost constant for j = z,y, z.
We typically use 101 grid points in v, and 51 grid points in v, and v,

The time step At is chosen in such a way to satisfy the Courant-Friedrichs-
Levy condition for the numerical stability of time explicit finite difference
schemes [150].

In the following Subsections, we will describe the comparison between
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Landau and Dougherty operators in different cases, i. e., initializing the com-
putation with different initial particle velocity distributions. In Sec. 2.2.1 the
evolution of a bi-Maxwellian velocity distribution is discussed. Then, in Sec.
2.2.2 we analyze the relaxation of velocity distributions with a plateau and
a beam along one velocity direction. Finally, in Sec. 2.2.3, the evolution of a
more “distorted” velocity distribution, which comes out from a self-consistent
1D-1V Vlasov-Poisson simulation of nonlinear wave-particle interaction, is

discussed.

2.2.1 Bi-Maxwellian velocity distribution

We consider the following bi-Maxwellian non-drifting velocity distribution:

! gL, v (2.7)
2n) 2T, T, oxXp 2T, ' 2T, ' 2T))]" ‘

f(vxavyaUZ) =

Here, the subscript || indicates the z direction, while z and y are the
perpendicular (L) directions. We define the temperature anisotropy as A =
/Ty,

From the analytical point of view, by assuming that the distribution func-
tion remains a bi-Maxwellian during the process of collisional relaxation, one
can integrate Eq. (2.4) in the case of both Landau and Dougherty operators
to obtain the evolution equation for parallel and perpendicular temperatures.

In the case of the Landau operator [151], one gets:

AT
d—tl = -V, (TL - TII) ) (2-8)
dT,

d—t” — 2, (T, - T)) ; (2.9)

vr being a thermalization frequency given by:

Cgma 3+ (A+3) ()
v, = s . , (2.10)
ST A
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Figure 2.1: (Color online) Time evolution of parallel and perpendicular tempera-
tures obtained from Egs. (2.8)—(2.9) (black solid lines) and Eqgs. (2.12)—(2.13)
(red dashed lines). The initial anisotropy is A = 4 and the plasma parameter
g=1072.

where A = A — 1 and

tan~!(\/z)/\/Tr >0
p(r) = 1 z=0 (2.11)

tanh ™' (v/—z)/v/—x <0

It is worth noting that, in Eqs. (2.8)—(2.9), the total temperature 7" =
(2T, 4 Tj)/3 remains constant in time.

In the same way, for the case of the Dougherty operator, one can easily

get:
dTJ_ 2v
=T -m) | (212
dTH 2v
N (2.13)

v, being a thermalization frequency written as:

glnA n
v, = —

o= - (2.14)

For the case of the Dougherty operator an evolution equation for the entropy
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S =— [d*fIn f can be easily deduced, and reads:

d T, + 27T

ao 2.15
dt T.T, (2.15)

Figure 2.1 shows the time evolution of parallel and perpendicular tem-
peratures obtained from Eqs. (2.8)—(2.9) (black solid lines) and from Egs.
(2.12)—(2.13) (red dashed lines). In this specific case the initial anisotropy
is A = 4, while the value of the plasma parameter is g = 1072, In this plot,
time is normalized to the inverse Spitzer-Harm frequency [124| vsy, that is
the characteristic collisional frequency for relaxation processes in plasmas,
and rescaled by a factor a. The value of « is set equal to 1 in the case
of the Landau operator, while in the case of the Dougherty operator it is

determined numerically in such a way to minimize the following function:

o(a) = \/ tmlm /0 e { [T”(“ (t) - T“(D)(ozt)] TP - T (at)]2} dt
(2.16)
where t,,,. is the time at which the thermal equilibrium is established. This
procedure gives o = 3.55 for the Dougherty operator.

It is worth noting that rescaling the time by a = 3.55 in the case of the
Dougherty operator corresponds to rescaling the thermalization frequency
v, by 1/a; in other words, the collisional effect of the Dougherty operator is
made “slower” than it would be originally.

As it is clear from Fig. 2.1, when rescaling the time as explained above,
the evolution of perpendicular and parallel temperatures obtained through
the Landau equations (2.8)—(2.9) and the Dougherty equations (2.12)—(2.13)
looks closely similar for many Spitzer-Harm times. We have checked that the
value of the rescaling factor a does not depend on the value of g.

The analytical predictions for the time evolution of T and Tj provide
excellent benchmarks to check the direct numerical solution of Eq. (2.4).
Therefore we solved numerically Eq. (2.4) in the case of the Landau opera-

tor and of the Dougherty operator, through the Eulerian algorithm shortly
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Figure 2.2: (Color online) (a) Time evolution of the parallel and perpendicular
temperatures for the Landau operator case. The black solid line represents the
time evolution of the moments equations [Eqgs. (2.8)—(2.9)], while the red dots
correspond to the time evolution of the temperatures obtained from the numeri-
cal evolution of Eq. (2.4). (b) Time evolution of the parallel and perpendicular
temperatures for the Dougherty operator case. The black solid line represents the
time evolution of the moments equation [Egs. (2.12)—(2.13)], while the red dots
correspond to the time evolution of the temperatures obtained from the numerical
evolution of Eq. (2.4). (c) Time evolution of the entropy growth obtained from
Eq. (2.15) and from the numerical evolution of the Eq. (2.4) for the case of the
Landau operator (red dots) and the Dougherty operator (blue dots), respectively.

presented previously. Then, we compared the results of these simulations for
the evolution of 7' and 7} with the theoretical solutions. In these direct
simulations the initial condition for the velocity distribution is given by Eq.
(2.7) with A = 4 and the plasma parameter is g = 1072,

In Fig. 2.2 (a) the evolution of 7', and Tj is reported for the case in
which the Landau operator is used in the right-hand side of Eq. (2.4). The
analytical curves from Eqs. (2.8)—(2.9) are indicated as black solid lines,
while the results of the direct simulation as red stars. In the same way, Fig.
2.2 (b) shows the comparison between theory and numerical results for the
case of the Dougherty operator. In both cases we get a very good agreement
between analytical and numerical results. Again, the time scaling factor is
a =1, 3.55 for the case of the Landau operator and of the Dougherty operator
respectively.

Finally, in Fig. 2.2 (¢) we report the entropy growth obtained through the
direct simulation of Eq.(2.4), in the case of the Landau operator (red stars),

of the Dougherty operator (blue stars). The black solid line indicates the
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Figure 2.3: (Color online) Snapshot (iso-contour levels) of the distribution function
in the whole 3V space at four different times: « t; vsg = 0.00 (a), a ty vgy = 0.70
(b), a t3 veg = 1.38 (¢) and « t4 vgy = 4.13 (d).

analytical solution from the time evolution of S from Eq. (2.15). Here, we
point out that at time t ~ 1.51/57[%1 the Landau solution slightly departs from
the Dougherty solution even when time is rescaled by the factor a = 3.55. A
better agreement has been recovered for a = 3.35. It is worth noting that, in
both cases, the final temperature and the total entropy growth are in agree-
ment with the thermodynamical prediction on the final temperature and on
the entropy variation between the initial condition (three Maxwellian distri-
bution functions with different temperatures considered as isolated systems)
and the equilibrium distribution functions at saturation (three Maxwellian
distribution functions with the same temperature). This shows that the nu-
merically produced entropy variation is negligible with respect to the entropy
variation produced by the collisional terms.

Eulerian algorithms allow for a clean description (almost noise-free) of the

velocity distribution. Figures 2.3 (a)-(d) show four snapshots of the velocity
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distribution at four different times for a Dougherty simulation of Eq. (2.4)
with initial anisotropy A = 8 and g = 10~2. The sequence of plots illustrates
how collisions work to restore the spherical shape of the velocity distribution,

which corresponds to the isotropic Maxwellian configuration.

2.2.2 Plateau and Beam velocity distributions

In order to investigate whether the time rescaling procedure allows in gen-
eral to reproduce the collisional Landau relaxation through the simplified
Dougherty operator, in this Section we follow numerically the collisional evo-
lution of velocity distributions with sharp gradients in one velocity direction.
In particular, we considered a velocity distribution with a plateau along v,
(fp) at t = 0 and a velocity distribution with a beam along v, (f;) at t = 0.
This kind of velocity distributions are usually generated by resonant wave-
particle interaction processes and are very common features recovered, for
example, in solar-wind spacecraft observations [21] and in laboratory plasma
experiments [143, 152].

For these new set of simulations the plasma parameter is g = 1072. The

explicit expressions of the initial velocity distributions are:

fo(v2) = fo(v2) = [fo(v2) = folv,)] - [1 + (vz — vp)mp} N (2.17)

dv,
(0. — Vb)Q]

2.18
o7, (2.18)

o) = foo) + e exp |-
being fo(v.) = 1/V21 exp[-v?/2], v, = 1.44, m, = 8, dv, = 0.5 and
ny =0.17, V, = 2.2 and T, = 0.1.

Figure 2.4 (a)-(b) show the initial velocity distributions f, and f;, re-
spectively. Panels (c)-(d) in the same figure display the time evolution of
S obtained through the Landau operator (black solid line) and through the
Dougherty operator (red stars), for the initial conditions f, and f, respec-
tively. The rescaling factor is given the value @ = 1,3.55 for the Landau
operator and the Dougherty operator, respectively. We note that, for the

plateau initial condition f,, the Landau solution and the Dougherty solu-
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Figure 2.4: (Color online) In the top row, the initial velocity distributions functions
along v, are shown for the plateau case [Eq. (2.17)] (a) and for the beam case [Eq.
(2.18)] (b). In the bottom row, the entropy growth is presented for the Landau
operator (black solid line) and for the Dougherty operator (red dashed line) for the
plateau case (c) and for the beam case (d).

tion almost superpose one on another, once time has been rescaled. A slight
discrepancy is recovered for the case of the beam initial condition f.

A better agreement between Landau solution and Dougherty solution can
be obtained slightly modifying the value of the scaling parameter « (better
choices would be a = 3.35 for the plateau initial condition and o = 3.75 for
the beam initial condition), which, however, remains very close to the value

«a = 3.55 predicted from the analytical considerations in the previous section.

2.2.3 Trapped particle distribution function

As a final case, in this section we compare Landau and Dougherty operators
in the process of collisional relaxation of a velocity distribution generated by

the process of particle trapping. The trapped particle distribution function
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Figure 2.5: (Color online) (a) Phase space portrait of the distribution function
obtained through a self-consistent 1.D-1V Vlasov-Poisson simulation at time tw, =
500 zoomed in the region x = [2,18], v = [0,4]. The red vertical line indicates the
value of z at which we get the velocity profile f,(v.), shown in panel (b). (c¢) Time
evolution of the entropy growth for the Landau operator case (black solid line) and
for the Dougherty operator case (red dots).

is obtained by means of a 1D-1V self-consistent Vlasov-Poisson simulation
(with no collisions) with kinetic electrons and fixed protons. In this sim-
ulation, the initial plasma is spatially homogeneous, with Maxwellian dis-
tribution of velocities. The phase space numerical domain is discretized by
256 x 101 grid points in physical and velocity space, respectively.
We launch into the plasma an external driver sinusoidal electric field of
the form:
E_(z,t) = Ey g(t)sin[k(z — vyt)] (2.19)

where Ey = 0.2 wymuy,/e (m and e being the electron mass and charge,

respectively), k = 0.26\}", vy = 1.42vy, and

sin (7t/100) t < 50
1 50 <t <150
cos [m(t — 150)/100] 150 <t < 200
0 ¢>200

g(t) = (2.20)

This external field is turned off once a population of trapped particles has
been created. Figure 2.5 (a) shows the phase space portrait of the electron
distribution function f.(z,v,) at a fixed instant of time, after the driver has

been turned off. Here, a vortical structure, typical signature of the presence
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of trapped particles, is recovered. At this point, we consider the velocity
profile f,(v.) = fe(zm,v.), where z,, (red vertical line in the plot) is the
spatial point corresponding to the maximum velocity width of the trapping
region. The velocity profile f,(v,) is reported in Fig. 2.5 (b).

Therefore, we build a three-dimensional velocity distribution as follows:

f(U:mUy, UZ) =C fM (Urvvy)va)Z) (2'21)

where the constant C' is chosen such that [ f(v,,vy,v,) d®v =n =1 and

2 2
e ) (2.22)
with
U, = %/vzfv(vz) dv, (2.23)
T = %/(vz —U.)%f,(v.) do, (2.24)

The three-dimensional velocity distribution f(v,,v,,v,) is used as initial
condition for the direct simulations of Eq. (2.4), performed for both the
Landau and the Dougherty operator. Figure 2.5 (c¢) shows the evolution
of the entropy for the case of the Landau operator (black line) and of the
Dougherty operator (red dots). In this figure, as in previous examples, time
has been scaled by a = 1,3.55 for the Landau operator and the Dougherty
operator, respectively. Even in this case a slight discrepancy in the evolution
of S is recovered, while a better agreement is found when the scaling factor
is given the value o = 3.75 for the Dougherty simulation.

Finally, in Fig. 2.6 (a)-(d), we directly report the velocity distribution
f (evaluated at v, = v, = 0) versus v, at four different times in the sim-
ulation. The black line in each plot represents the solution obtained when
the Landau operator is considered, while the red-dashed line corresponds to
the Dougherty solution. Here o« = 1,3.55 for the Landau operator and the

Dougherty operator, respectively.
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Figure 2.6: (Color online) Velocity distributions obtained from the numerical so-
lution of the Landau equation (black solid line) and of the Dougherty equation
(red dashed line) at four different times « t; vgy = 0.03 (), o to vsg = 0.34 (b),
a ty veg = 0.69 (¢) and « ty veg = 1.38 (d).

It is worth noting that, during the relaxation process, the form of the
velocity distributions display different details. In particular the Dougherty
operator seems to be faster than the Landau operator, in smoothing the
velocity gradients. This is consistent with the fact that, when slightly in-
creasing more and more the value of the rescaling factor o for the Dougherty
simulation, the detailed evolutions of the velocity distributions approach each
other more and more. The different behavior of the two operators can be due
to the different way they smooth and weight the gradients in velocity space.

To summarize, for all velocity distributions considered in this work, the
value of the factor a = 3.55 allows to almost superpose the results for the
time evolution of 7', and T obtained in the case of the Landau operator and
of the Dougherty operator. For the time evolution of the entropy, the two

operators exhibit slight differences, presumably due to the different roles of
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the velocity gradients in the Landau and the Dougherty operator. However,
we point out that the maximum relative discrepancy for the time evolution
of entropy, in a one Spitzer-Harm time, is about 6%. Our results allow to
conclude that the lack of physical details that one relentlessly introduces
by approximating the Landau operator with the Dougherty operator can
be considered negligible compared to the advantage of having a collisional
operator, the Dougherty one, that can be easily used and implemented in
self-consistent Eulerian simulations and that reproduces satisfactorily the
Landau collisional thermalization, once an appropriate time rescaling has

been introduced.

2.3 Nonlinear regime of electrostatic waves in

presence of electron-electron collisions

In this section, we present the effects of including electron-electron colli-
sions in self-consistent Eulerian simulations of electrostatic wave propagation
in nonlinear regime. Based on the considerations of the previous section,
electron-electron collisions are modeled through the full three-dimensional
Dougherty collisional operator; this allows the elimination of unphysical
byproducts due to reduced dimensionality in velocity space. The effects of
non-zero collisionality are discussed in the nonlinear regime of the symmetric
bump-on-tail instability and in the propagation of KEEN waves. For both
cases it is shown how collisions work to destroy the phase-space structures
created by particle trapping effects and to damp the wave amplitude, as the
system returns to the thermal equilibrium. In particular, for the case of the
KEEN waves, once collisions have smoothed out the trapped particle popu-
lation which sustains the KEEN fluctuations, additional oscillations at the
Langmuir frequency are observed on the fundamental electric field spectral
component, whose amplitude decays in time at the usual collisionless linear

Landau damping rate.
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2.3.1 Mathematical and Numerical Approach

We consider a plasma composed by kinetic electrons and motionless pro-
tons and analyze the dynamics of this system in electrostatic approxima-
tion. As discussed earlier, we model electron-electron collisions through the
Dougherty operator [58, 59, 135] and neglect electron-proton and proton-
proton collisions, as their characteristic time is significantly longer than that
for electron-electron interactions [56, 62, 63].

We consider the following dimensionless Dougherty-Poisson (DP) equa-

tions, in 1D-3V phase space configuration:

of af 99 of  of
ot or T arov, | ot (2:25)
&6 _ 3y -

where f = f(z,v) is the electron distribution function, ¢ = ¢(z) = —dE/dx
is the electrostatic potential (E is the electric field) and 0f/0t|,,, is the

Dougherty collisional operator. Due to their inertia, the protons are consid-

col

ered as a motionless neutralizing background of constant density ng = 1. In
previous equations, time is scaled to the inverse electron plasma frequency
wpe, velocities to the initial electron thermal speed vy, .; consequently, lengths
are normalized by the electron Debye length Ap. = vy, /wpe and the electric
field by wyemug /e (m and e being the electron mass and charge, respec-
tively). For the sake of simplicity, from now on, all quantities will be scaled
using the characteristic parameters listed above.
The Dougherty collisional operator [58, 59| has the following form:

aa—{ :y(n,T)i Ta—f+(v—V)jf ; (2.27)

coll

here, v(n,T) is the collision frequency:

n glnA

v(n,T) = W+ V0 = "o

(2.28)
where g = 1/nA}, , is the plasma parameter, In A ~ —Ing/3 is the Coulom-
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bian logarithm, o = 3.55 is the scaling factor discussed previously, and the
subscript j indicates the j-th vector component. Moreover n = [d*vf,
Vi =1/n [d® vjf, T =1/3n [ d®v (v — V)’ f are respectively plasma den-
sity, mean velocity and temperature. These last quantities obviously depend
on coordinate z, since f = f(x,v). Einstein notation has been used in Eq.
(2.27).

We solve numerically Eqs. (2.25)-(2.26) through a Eulerian code based
on a finite difference scheme for the approximation of spatial and velocity
derivatives of f over the grid-points [40, 153, 154]. Time evolution of the
distribution function is approximated by using the splitting scheme proposed
by Filbet et al. [126] (see also Refs. [62, 63] for details about the numerical
algorithm). We employ periodic boundary conditions in physical space and
f is set equal to zero for \vj\ > Umag, Where vy, = 6vy,.. Phase space is
discretized with N, = 128 grid points in the physical domain D, = [0, L]
and N,, x N,, X N,, points in the three-dimensional velocity domain (&N, =
101, N,, = N,, = 51). Finally, the time step At has been chosen in such
a way to satisfy Courant-Friedrichs-Levy condition [150] for the numerical

stability of time explicit finite difference schemes.

2.3.2 Numerical Results

We present and discuss the results of kinetic Eulerian simulations in two
different physical situations: the linear and nonlinear regime of the bump-

on-tail instability and the excitation and propagation of the KEEN waves.

Bump-on-tail instability

In this section, we focus on the process of bump-on-tail instability [155, 156]
in a collisional plasma, in order to point out the role of collisions on the
onset of the instability and on its nonlinear saturation. The initial electron
distribution function considered for the numerical runs has the following

form:

f(vbvy’UZ?t = O) = f0<vr>f1v1<vy>f1v1<vz> (2'29)
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Figure 2.7: (Color online) Velocity dependence of fy; the vertical red-dashed line
indicates the wave phase speed.

where:

fo(vz)zLeXp( v2)+( =

(27Ty) /2 _2—T1 27 T5) /2 X
(vp — V0)2 (Ve + %)2
Y e e—— 2.30
[exp ( 2T, + exp 5T, ( )
1 v]2. .
fM(Uj) = W €xXp T V) =Y, 2 (2.31)

with ny = 0.97, ny = 0.015 (ng = ny + 2ny = 1), Vo = 4.0, Ty = 1.0 and
T, = 0.2. Moreover, f,,(vj—, .) is a normalized Maxwellian with temperature
T =1/n [ dv.(vy; — Vi) fo(v,). In these conditions, the plasma initially does
not present any temperature anisotropy among the three velocity directions.
Choosing an initial electron velocity distribution that is symmetric in v,
guarantees an initial state with no net plasma currents or magnetic fields
[156].

At t = 0, we perturb the system with a sinusoidal density perturbation of
amplitude A; ~ 5.6 x 10~%; we set the length of the spatial domain L ~ 22, in
such a way to excite the most unstable wavenumber (the one with the largest
growth rate) k* = 27 /L ~ 0.28, whose value has been predicted through a
linear Vlasov solver, which computes numerically the roots of the electrostatic

dielectric function. This density perturbation produces (through Poisson
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Figure 2.8: (Color online) Time evolution of log |Ey, (t)/Ek, (0)|, for vy = 0.0 (a)
and vy = 2.17 x 1073 (b); here, the red-dashed curves represent the theoretical
prediction for the instability growth rate 44 ~ 7.46 x 1072. In panel (c), the time
evolution of the entropy variation AS (in %) is reported for vy = 0.0 (black-solid
curve) and vy = 2.17 x 1073 (red-solid curve).

equation) an initial sinusoidal electric field of amplitude F; ~ 2 x 1073
Figure 2.7 shows fy as a function of v,; here, the vertical red-dashed line
represents the value of the wave phase speed vg, which clearly falls in the
unstable region where dfy/ alvgc|vd> > 0.

Figure 2.8 (a) displays the time evolution of the logarithm of the fun-
damental electric field spectral component Ej, (where ky = k*), normalized
to its initial value (log|FE%, (t)/Ek, (0)]), for a collisionless simulation. In the
early stage of the system evolution, a linear exponential growth of the wave
amplitude is observed with growth rate 7% = 7.29 x 10~2; this value is in
good agreement with the theoretical expectation obtained through a numer-
ical linear Vlasov solver 4" = 7.46 x 1072 (red-dashed line). Later in time,
nonlinear effects come into play and arrest the exponential growth; in this
regime, the wave amplitude displays nearly periodic oscillations around an
almost constant saturation level. These oscillations are driven by particle
trapping processes [157, 158] and typical vortical structures are generated in
the longitudinal (z — v,) phase space, in the velocity range around v.

When collisions are taken into account, the system evolution can change
significantly. In Figure 2.8 (b), we show a collisional simulation with v, ~
2.17 x 1073, For such value of the collision frequency, the linear growth of
the wave amplitude remains close to exponential with a growth rate some-

what less than that for the collisionless case. This suggests that, in this
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Figure 2.9: & — v, contour plot of the electron distribution function (zoomed in
the velocity range ~ v,), evaluated at vy, = v, = 0, for vy = 0.0 (top row) and
v =2.17 x 1073 (bottom row), at the time instants ¢t = 7; = 80 (left column) and
t = 1 = 320 (right column).

scenario, the damping rate due to collisions is lower than the growth rate
of the instability, thus showing that collisions are too weak to prevent the
instability onset. However, the nonlinear saturation of the instability is evi-
dently affected by collisions. In fact, from Figure 2.8 (b), one notices that the
saturation amplitude is decreased with respect to the collisionless case and
that the electric oscillations are significantly damped after the saturation of
the instability, as collisions work to smooth out the trapping structure and
to drive the particle distribution towards the equilibrium Maxwellian shape.
Additional runs with larger values of vy (not presented here) show how also
the linear phase of the system evolution is modified in the strong collisional
regime and eventually the onset of the instability is completely prevented.

We evaluated also from the simulations the entropy S = — [ f1In f dz dv.
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Figure 2.10: (Color online) Semi-logarithmic plot of f(zg, vz, vy = 0,0, = 0) as
a function of v, at the time instant ¢ = 1200, for vy = 0.0 (black-solid line) and
vp = 2.17x1073 (red-solid line); the black-dashed curve indicates the corresponding
Maxwellian.

In Fig. 2.8 (c) we compare the entropy growth,defined as AS = [S(t)—S(t =
0)]/S(t = 0), for the collisionless case (black solid line) and for the weekly
collisional case with vy = 2.17 x 1073 (red solid line). Since the collisionless
Vlasov system is an iso-entropic system, the small entropy growth (~ 0.15%)
recovered in the collisionless simulation is obviously due to numerical effects
(filamentation). On the other hand, in the collisional case, the increase in
entropy (about 10 times larger than the unphysical entropy growth for the
collisionless simulation) is mainly due to the effect of collisions which drive
the system towards thermal equilibrium, according to H theorem.

To conclude this Section, in Fig. 2.9 we show the x — v, contour plots
(zoomed in the velocity range ~ v,) of the distribution function evaluated
at v, = v, = 0; the top/bottom row in this figure corresponds to the col-
lisionless/collisional case. We plot the distribution function at two instants
of time in the simulations (7, = 80 and 7o = 320), indicated by the ver-
tical solid-blue lines in Figs. 2.8 (a)—(b); 71 corresponds to the end of the
exponential growth phase of the wave amplitude, while 75 is picked in the
nonlinear regime of wave propagation. In the top row of Fig. 2.9 (colli-
sionless case), one recognizes (left panel) the vortical phase-space structure

at v, >~ vy ~ 3.5, typical signature of particle trapping, which is persistent
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in time (right panel). A similar phase-space vortex (not shown here) is re-
covered at v, ~ —3.5; the two counter-propagating phase space trapping
populations are associated with the standing plasma wave launched by the
initial density perturbation and amplified by the bump-on-tail instability. In
the bottom row of the same figure (collisional case), at ¢t = 7y [Fig. 2.9 (¢)],
the vortex has a smaller velocity width as compared to the collisionless simu-
lation; moreover, collisions prevent the generation of fine velocity scales and,
at t = 1 [Fig. 2.9 (d)], the trapping structure has been almost completely
smoothed out.

Figure 2.10 shows, in a semi-logarithmic plot, the dependence of the dis-
tribution function on v, (evaluated at a fixed spatial position xy, and at
v, = v, = 0) at the time instant ¢ = 1200, for the collisional simulation
(red-solid line) and the collisionless one (black-solid line). The point x, cor-
responds to the spatial position where the phase space vortex moving with
positive velocity has its maximum velocity width. In the collisional case,
thermal equilibrium has been almost restored by collisions, while, in absence
of collisions, the distribution function still displays many strong deviations
from the Maxwellian profile (represented by the black-dashed curve). We
point out that the asymmetry of the velocity profile for the collisionless sim-
ulation in Fig. 4 (black-solid line) is due to the fact that at ¢ = 1200 the two
counter-propagating phase space trapping vortices are not exactly aligned in

phase space (i. e. their centers are not in the same spatial location).

Kinetic electrostatic electron nonlinear waves

For the simulations of KEEN wave excitation [138, 137|, we refer to a previous
work by Cheng et al. [159]. According to these authors, the box length
for this simulation is set L = 24.166. At ¢t = 0 the plasma is spatially
homogeneous with density ny = 1 and isotropic Maxwellian in velocities
with temperature 7' = 1. In order to produce the excitation of KEEN waves,

we drive the plasma through an external electric field of the form [137]:

E_(z,t) = Ey g(t) sin[ko(z — vyt)] , (2.32)
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Figure 2.11: (Color online) Time evolution of the first four electric field spectral
components for the simulations with 19 = 0.0 (a), g = 3.23 x 107* (b) and
vp = 2.17 x 1073 (c). The black-dashed curves in panels (b) and (c) indicate the
theoretical Landau prediction vz, ~ 3.40 x 1072 for Langmuir wave damping rate.

where FEj is the maximum driver amplitude, kg = 27/L = 0.26 is the funda-

mental wavenumber, vy = 1.42 and

sin (7t/100) ¢ < 50
1 50< t<150
cos [m(t — 150)/100] 150 < ¢ < 200
0 ¢>200

g(t) = (2.33)

The external field is turned off after a time at which past experience
indicates that optimal trapping of particles is achieved (i.e., an appropriate
ratio of an electron trapping period for the external drive). We performed
different simulations by varying the value of the plasma parameter g, and
consequently of vy (19 = 0.00,3.23 x 1074,2.17 x 1073), keeping fixed Fy =
0.05.

Figure 2.11 shows the evolution of the first four electric field spectral
components (with wavenumbers ky = ko, ko = 2ko, k3 = 3ko and ky = 4ko),
for 15 = 0.00 (a), vp = 3.23 x 107 (b) and vy = 2.17 x 1073 (c) respectively.

In the collisionless case [Fig. 2.11 (a)|, we recover one of the typical
features of the KEEN waves [137, 138, 159]. While the driver is turned on,
the energy injected into the fundamental wavenumber component (black line)
flows also to the higher spectral components (red, blue and yellow solid lines).

After the driver has been turned off, the resulting electric signal is composed
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Figure 2.12: (Color online) Spectral energy of the fundamental electric field com-
ponent as a function of frequency, for the stronger collisional case with 1y =
2.17 x 1073, computed in the time intervals 0 < ¢ < 180 (black curve), and
400 <t <1200 (red curve). The vertical clack-dashed curve indicates the value of
the Langmuir frequency of the fundamental wavenumber.

by many wavenumbers, in a stable ratio one with another, thus departing
significantly from the purely sinusoidal spatial shape of the driver field.

Figures 2.11 (b)-(c) display the time evolution of the electric field spectral
components in two different collisional plasmas, for vy = 3.23 x 10~* and
Vo = 2.17 x 1073, respectively.

Beginning with the behavior while under the drive, on comparing the be-
havior to that without collisions, the behavior seems quite straightforward.
For the weakly collisional case of Fig. 2.11 (b), in the initial phase of the
system evolution (i.e., up to ¢ = 200), when the external driver is on, the ex-
citation of the spectral components does not seem to be significantly affected
by collisions i.e., the early parts of Figs. 2.11 (a) and 2.11 (b) look much
alike. On the other hand the response of Fig. 2.11 (¢) with strong collisions
is much weaker.

Turning now to the behavior after the drive has stopped, a significant

difference between the damping is apparent between the cases where the
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Figure 2.13: & — v, contour plot of the electron distribution function (zoomed in
the velocity range ~ vy), evaluated at v, = v, = 0, for simulations with vy =
0.0,3.23 x 1074,2.17 x 10~3 (top, middle and bottom row, respectively) and at
different times ¢ = 200, 320,400 (left, middle and right column, respectively).

damping is zero (Fig. 2.11 (a)), moderate (Fig. 2.11 (b)), and strong (Fig.
2.11 (c)). At the extremes, the collisionless KEEN behavior of Fig. 2.11 (a)
with its strongly persistent harmonics is in striking contrast to the highly
collisional case of Fig. 2.11 (c) where the fundamental is the only component
which survives in the long time limit. For intermediate collision frequency
(o = 3.23 x 107*) case of Fig. 2.11 (b), in the time interval 200 < ¢ < 550,
the higher harmonic electric field components decrease somewhat faster than
the fundamental (as one might expect) at roughly constant rates, but then
there occurs a fairly sudden and remarkable transition (for 500 < ¢ < 600)
to a much lower decay rate for the fundamental and an increased decay rate
for the higher (2, 3, 4) harmonics. Thus at late times only the fundamental

component survives.
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These late-time fundamental decay rates recovered for the two collisional
cases (Figs. 2.11 (b) and 2.11 (¢)) seem almost independent of the collision
frequency. Through a careful analysis of the time signals, we realized that
the oscillations on the fundamental wavenumber, observed for ¢ > 600 in
Fig. 2.11 (b) and for ¢ > 200 in Fig. 2.11 (c), occur at the Langmuir fre-
quency, which is larger than the frequency of the KEEN waves excited by the
driver. The dashed curves in Figs. 2.11 (b)-(c¢) represent the prediction for
collisionless Landau damping rate [160], which fits clearly well the numeri-
cal results, for both the intermediate and strong collisional cases. In order
to understand the origin of these Langmuir fluctuations, we performed the
Fourier analysis of the electric signal, in the time interval in which the driver
is still on; this analysis revealed that the Langmuir frequency has been driven
by the driver itself, which pumps energy at the KEEN frequency, with an
additional small amount of energy at the Langmuir frequency on the funda-
mental. The excitation of this additional Langmuir oscillation by the driver
is due to the fact that the external electric field is turned on and off quite
abruptly (with sharp time gradient in its amplitude). These abrupt kicks on
the plasma excite Langmuir fluctuations, since they are proper modes of the
system. Presumably, a smoother ramping up and down of the driver field
(see Ref. [143]|) would have eliminated this additional Langmuir oscillation,
but it would have required a significantly longer time for the driving process.

To substantiate the conclusions above, in Fig. 2.12, we report the spec-
tral energy of the fundamental component as a function of frequency, for the
stronger collisional case with 1y = 2.17x 1073, computed in the time intervals
0 <t < 180 (black curve), in which the driver is still on, and 400 < ¢ < 1200
(red curve), in which the driver is off. As it can be seen in this figure, when
the driver is on, the main KEEN frequency peak is observed together with a
low energy peak at the Langmuir frequency (vertical dot-dashed black line in
the figure); on the other hand, when the driver is off, the KEEN fluctuations
are killed by collisions and only the Langmuir peak is visible. Finally, the
fact that these Langmuir oscillations decay at the collisionless Landau damp-
ing rate suggests that collisions, which strongly affect the evolution of the

KEEN fluctuations, are negligible at higher Langmuir phase speeds, where
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the particle velocity distribution remains close to a Maxwellian during the
simulation.

To conclude this Section, in Fig. 2.13 we show the contour plots of the
electron distribution function (evaluated at v, = v, = 0) in the longitudi-
nal (r — v,) phase space, for simulations with vy = 0.0,3.23 x 107%,2.17 x
1073 (top, middle and bottom row, respectively) and at different times t =
200, 320,400 (left, middle and right column, respectively). These contour
plots clearly show how the phase space trapping structure, which is persis-
tent in the collisionless simulation and sustain the KEEN fluctuations, is

smoothed out by collisions as fast as 1 increases.

2.4 Summary

To summarize the results presented above, we performed a detailed compar-
ison between the Landau operator [52| and the Dougherty operator [58] by
means of Eulerian kinetic simulations of a homogeneous, field-free plasma in
a three-dimensional velocity space.

As a first step, by looking at the collisional relaxation processes of a
bi-Maxwellian velocity distribution, we have realized that an "ad hoc" time
rescaling procedure allows to make the time evolution of parallel and perpen-
dicular temperatures described by the Dougherty operator in Eqs. (2.12)—
(2.13) very close to the one obtained when the full Landau integral is em-
ployed [Eqs. (2.8)—(2.9)], despite the profound mathematical differences be-
tween the two operators. Pushed by these surprising analytical findings, we
employed an Fulerian algorithm to simulate numerically the return toward
equilibrium of several velocity distributions (bi-Maxwellian, beam distribu-
tion, plateau distribution etc.), for which we verified that the Dougherty-
Landau time rescaling factor « is the same and does not change with respect
to the analytical prediction obtained for the bi-Maxwellian case.

We would like to point out that, since the Dougherty operator does not
describe the velocity dependence of the diffusion coefficients in velocity space,
we cannot assure that the time-scaling factor we determined does not change

in situations where the distribution function is extremely distorted with re-
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spect to a Maxwellian one. Therefore, the detailed comparison between Lan-
dau and Dougherty collisional operators in full self-consistent simulations will
be the subject of future works. However, since the two collisional operators
behave in a very similar way for about one Spitzer-Harm time, the Dougherty
operator can be employed in a wide range of kinetic simulations to replace
the much more complex and computationally demanding Landau operator.

One of these kind of collisional self-consistent simulations have been de-
scribed in Sect. 2.3, where the propagation of nonlinear electrostatic waves in
a weakly collisional plasmas has been analyzed. Electron-electron collisions
have been modeled through the Dougherty collisional operator for electron-
electron collisions, in full three-dimensional geometry in velocity space. We
described numerically the onset and nonlinear saturation of the bump-on-
tail instability [155, 156] (in its symmetric form) and the excitation and
propagation of the so-called Kinetic Electrostatic Electron Nonlinear waves
[137, 138, 159, in situations of intermediate range of plasma collisionality.
In this way, we get rid of the restrictive collision-free assumption, keeping,
however, the system dynamics far from the strong collisional fluid regime,
where the plasma always remains at thermodynamic equilibrium. In other
words, the physical regime of interest here is the one where kinetic effects,
which tend to drive the system far from the thermodynamic equilibrium, and
collisions, which tend to restore the Maxwellian configuration, compete and
combine themselves, shaping the particle distribution function in a complex
way.

For the case of the symmetric bump-on-tail instability, we noticed that
the onset of the instability (and the exponential growth of the wave ampli-
tude) is almost unaffected, for the value of collision frequency chosen in our
simulations. On the other hand, the nonlinear saturation phase, in which
the fluctuations are maintained at almost constant amplitude thanks to the
phase-space deformation of f, is dramatically modified by collisions, which
work to smooth out any departure of f from Maxwellian and damp the wave
amplitude.

Concerning the simulations of the KEEN waves, we found that, in pres-

ence of collisions, the trapping phase space structure created by the driver
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field is smoothed out. As a consequence, the KEEN fluctuations are dis-
sipated in time. In the case of intermediate collisionality, the fundamental
spectral component and its harmonics (we have shown the first four) survive
for a while after the driver is turned off. We noticed that in the long time
limit the fundamental component displays a residual energy at the Lang-
muir frequency and its amplitude decays in time at a rate in good agreement,
with the collisionless damping rate predicted by Landau in Ref. [160]. As
explained previously, this Langmuir fluctuation has been triggered by the ex-
ternal field during the driving process. In the case of stronger collisionality,
again fluctuations on the fundamental component appear at the Langmuir
frequency in the long time limit, while the higher spectral components at the
KEEN frequency are now very rapidly smoothed out by collisions, right after
the driver has been turned off. The fact that the late-time decay rate of the
fundamental is independent of the collision frequency, being in agreement
with the collisionless Landau damping rate, suggests that the wave dissipa-
tion due to collisions is less efficient than the Landau damping process at high
Langmuir phase speeds, where the particle velocity distribution remains close
to a Maxwellian. On the other hand, the presence of (even weak) collisions
is critical for the survival of the KEEN fluctuations, since the smoothing of
the particle velocity distribution induced by collisions prevent the existence
of the KEEN mode itself.
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Chapter 3

Collisional effects described 1n a

reduced phase space

So far, collisions have been modeled in the realistic three-dimensional veloc-
ity space. However, in this framework, high-resolution numerical simulations
cannot be performed for computational reasons. Therefore, another class
of collisional operators, which assume a reduced phase space dimensionality,
has been introduced. Since collisions naturally work in a three-dimensional
velocity space, this assumption is not appropriate from a basic point of view.
However, when collisions act on longitudinal electrostatic waves and the sys-
tem dynamics occurs preferentially in a unique direction, one can quite well
describe collisional effects in a reduced one-dimensional velocity space.

Here we restrict to such 1.D—-1V phase space and we analyze two different
problems: the effects of collisions on the problem of numerical recurrence
[Sect. 3.1] and the description of the waves launching process in column of
plasma in both collisionless and weakly collisional cases [Sec. 3.2].

Results shown here have been collected in one scientific paper published
in Physics of Plasma [161], which has been selected as Featured Article in
the February 2016 Issue of Physics of Plasmas, while a second paper is still
in preparation [162].
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3.1 Collisional effects on the numerical recur-

rence

When the Vlasov-Poisson equations are studied by means of Eulerian numer-
ical simulations, one encounters, for low amplitude fluctuations, the prob-
lem of the initial state recurrence. As explained by Cheng et al. [163],
the recurrence phenomenon is intimately related to the presence of a free-
streaming term in the distribution function and to the filamentation problem
[159, 163, 164, 165, 166, 167, 168]. Since the mesh-size of the velocity grid is
necessarily finite, the initial state is periodically re-constructed, and thus the
electric field exhibits a fake recurrence of the initial state, whose period is
Trec = 2m/kAwv, k being the perturbation wavenumber and Av the numerical
grid mesh in velocity space.

In this section, the effects of collisions on the phenomenon of the numer-
ical recurrence are discussed. Collisions are modeled through the Lenard-
Bernstein (LB) operator, firstly proposed in 1958 by Lenard and Bernstein
[139] as a full three-dimensional velocity space collisional operator. The LB
operator is a linear Fokker-Planck collisional operator which belongs, as the
Dougherty one [58, 59|, to the class of “simplified” collisional operators and
both collisional terms can be interpreted as advection-diffusion operators in
the velocity space.

Interestingly, the same effect on the spectrum induced by LB collisions
has been discussed in Ref. [169] in the context of spectral deformation. This
is a technique introduced for the Vlasov-Poisson system in [170], where a non-
unitary transformation is applied to the linear operator, in such a way that its
eigenvalues with nonzero real part remain unchanged, while the continuum
of neutral modes is damped. In analogy to the case of LB operator, the
Landau damping is recovered as a true eigenmode. Therefore, we suggest
that the LB operator might be interpreted as a spectral deformation to the
collisionless Vlasov-Poisson system. However, the precise identification of
the transformation which is equivalent to the LB operator is left for future
work.

The aim of our analysis is to understand if recursive effects or any other
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numerical effect associated to limited velocity resolution of Eulerian calcu-
lations can be successfully removed by making use of a collisional operator,
without increasing the number of gridpoints in the velocity domain (and with-
out altering the physical features of the system evolution). In case of positive
response, this would be extremely useful especially for multi-dimensional sim-
ulations, where the velocity resolution is limited for computational reasons.
We show that, in general, the collision frequency v which is suitable for
preventing recurrence in the linear regime is a function of the perturbation
wavenumber: as the wavenumber increases a stronger collisionality is neces-
sary to avoid the onset of the numerical recurrence. Moreover, by focusing
on the nonlinear Landau damping and in particular on the formation of a
Bernstein-Greene-Kruskal (BGK) nonlinear wave [146, 157], we show that i)
the collisionless case is also slightly affected by recurrence and ii) collisional
effects become important when the dynamics evolve to the nonlinear stage.

Therefore, it seems impossible to use the LB operator to avoid the nu-
merical recurrence and, simultaneously, preserve the phase space structures
developed as in the collisionless case. Of course, in the case of higher velocity
resolution, for which the recurrence time is significantly larger than the char-
acteristic time of the physical process of interest (Landau damping, onset of
instabilities, generation of nonlinear BGK structures and so on), the use of
a collisional operator opportunely tailored to eliminate numerical recurrence
does not affect the reliability of the physical results for times smaller than
the recurrence time. However, let us remark that this case is not the one of
interest in our analysis in which we intentionally choose to have recurrence
in the initial stage of the simulations, which typically cannot afford a very
fine resolution in velocity space (especially in multi-dimensions). Finally, by
exploring the recurrence effect on the bump-on-tail instability [156], we show
that the recurrence affects both the linear exponential growth and the non-
linear saturation of the instability by producing a fake growth in the electric
field and that, as in the nonlinear Landau damping case, collisional effects are
not able to prevent the initial state recurrence without significantly altering
the nonlinear structures.

In summary, the purpose of this section is twofold. First, we show how
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recursive effect and filamentation, which are usually described in the context
of low amplitude fluctuations, can also be problematic in nonlinear phenom-
ena, such as the saturation regime of the bump-on-tail instability. Second,
we discuss a useful diagnostic, in terms of expansion of the velocity space into
Hermite functions, that allows to better appreciate the effect of an artificial
collisional operator in phase space.

Let us summarize the content of the section. In Sec. 3.1.1 the theoretical
background of the problem is given and the numerical strategies adopted to
approach the solution are explained. Then, in Sec. 3.1.2, the recurrence
effects on the Landau damping phenomenon are described in both linear and
nonlinear regimes by transforming the Vlasov-Poisson system into Hermite-
Fourier coordinates and by means of Eulerian simulations. Moreover, we
investigate how collisional effects prevent the recurrence problem but, at the
same time, smooth out the nonlinear plasma dynamics features as the system
evolves to the nonlinear regime. Then, in Sec. 3.1.3 we analyze the initial
state recurrence problem and the collisional effects for the case of the bump-

on-tail instability.

3.1.1 Theoretical background and numerical models

Here we consider a quasi-neutral and unmagnetized plasma composed by
kinetic electrons and immobile background ions. We assume that only elec-
trostatic interactions occur between particles, therefore the Maxwell system
reduces to the Poisson equation. Furthermore, since electron-ion and ion-
ion collision frequencies are much smaller than the electron-electron one, we
take into account only electron-electron collisions [56]. As introduced above,
electron-electron collisions are modeled through the LB collisional operator
[139].

The normalized collisional Vlasov-Poisson (VP) equations - where colli-
sions are modeled through the LB collisional operator - in the 1D-1V (one

dimension in physical space and one dimension in velocity space) phase space
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configuration reads:

of 8f dpof  of
ot v + dx dv Ot |,y (3.1)
0?¢

— 6:62_1_/de (3.2)

where f = f(x,v) is the electron distribution function, ¢(z) is the electro-
static potential, defined as E' = —d¢/dx (F is the electric field) and 0 f /0t

is the LB collisional operator. Due to their inertia, the protons are considered

coll

as a motionless neutralizing background of constant density ng = 1. In pre-
vious equations, time is scaled to the inverse electron plasma frequency w.,
velocities to the initial electron thermal speed vy, .; consequently, lengths are
normalized by the electron Debye length Ap. = vy, . /wye and the electric field
by wyemui, /e (m and e being the electron mass and charge, respectively).
For the sake of simplicity, from now on, all quantities will be scaled using
the characteristic parameters listed above.

The scaled Lenard-Bernstein [139] collision operator is:

{&f

+ f] (3.3)

Ec 31}

being v the constant collisional frequency. The LB operator preserves global
mass. Moreover, if the distribution function has null average speed V' = 0
and unitary temperature 7 = 1, being V = 1/n [dvfv, n = [dvf and
T =1/n [ dv(v—V)2f respectively plasma mean velocity, density and tem-
perature, it conserves also momentum and energy.

In the following we analyze the equations system Eqs. (3.1)—(3.2) coupled
to Eq. (3.3). For the sake of simplicity, we refer to this system compactly
as Egs. (3.1)—(3.2). Two different analyses have been performed on Egs.
(3.1)-(3.2) and are briefly explained in the following two subsections.

Fourier-Hermite decomposition (Linear analysis)

A very convenient way of studying the properties of the LB operator in the

linear regime is by employing an expansion of the linearized distribution func-
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tion into a Fourier-Hermite basis. Here, we use the so-called asymmetrically
weighted Hermite functions [42, 44, 171]:

U, (6) = (x2'n)) VH, (e (3.4)
V) = (2ml)V2H,(©), (3.5)

where H,, is the n-th Hermite polynomial, defined as

() = (-1 (). (3.6)

and & = v/+/2. The basis in Eqs. (3.4)-(3.5) has the following properties:

| w©umiede = b .7)
VU (€) = Vi E T 1 () + ViU, 1, (3.8)
e () 3.9)

dn.m being the Kronecker delta. Eqs. (3.1)-(3.2) are linearized around an
homogeneous equilibrium that, when expanded in Hermite functions, reads
fo(v) =3, CeiW,(£). Note that, for a Maxwellian equilibrium with zero
mean velocity, all coefficients C? are null for n > 0. The perturbed distri-

bution function f;(z,v) = f(z,v) — fo(v) is expanded as:

fiz,v) = ch,jxpn (%) et (3.10)

with k; = 27j/L, and L the domain length. By using the orthogonality of

the Fourier-Hermite basis, one obtains, for each k; mode:

dCp,; . V2 e
= 5 + lkj («/n + 1Cn+1,j + \/ﬁCnij + k—anO,j nq_1> + nnd,j =0
J

(3.11)
Note that U, (§) is an eigenfunction of the LB operator of Eq. (3.3), with

eigenvalue nv, and thus the use of the rescaling factor in the argument of
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the basis in Eqgs. (3.4)—(3.5) allows to obtain a rather compact formulation
(compare, for instance, with the formulation in [172]). In particular, the
linear equation (3.11) can be written in matrix form as:
%
dcC; —
d—t] — AjCj, (312)
— . . .

where C; is the vector defined as (Cy ;,Cy;,Caj,...)", and the matrix A; is
defined as

0 1 0
L+ V2657 /K2 v/ik; V2 0
A; = —ik; | 2079/k? V2 w/ik; V30 (3.13)

V6C5 k2 0 V3 3ufik; VA

The collisionality v affects only the diagonal entries of the matrix. Once
again, this is due to the fact that the Hermite basis is an eigenfunction of
the LB operator. Of course, when numerically solving the linear problem in
Eq. (3.12), one has to truncate the matrix A, that is, one has to choose the
maximum number Ny of Hermite modes in the expansion of Eq. (3.10), by
setting C, ; = 0 for any n > Ny (other closures have been investigated, see,
e.g. [173, 174]). This corresponds to defining the resolution in velocity space.
It is precisely the inability to capture increasingly finer scales in velocity space
that gives rise to the phenomenon of recurrence in the numerical solutions of
Vlasov equation. This becomes particularly clear by looking at the recurrence

effect within the framework of the Hermite basis expansion in velocity.

Eulerian Vlasov code (nonlinear analysis)

The other approach consists in the numerical solution of Eqs. (3.1)-(3.2)
through a Eulerian code based on a finite difference scheme for the approx-
imation of spatial and velocity derivatives of f over the grid-points. Time
evolution of the distribution function is approximated through the splitting
scheme first introduced by Filbet et al. [126] [see Refs. [62, 63] for details
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Figure 3.1: (Color online) Temporal evolution of the Hermite coefficients |C,,|
(in logarithm scale) as a function of the Hermite mode n and the time ¢ for the
collisionless v = 0 case.

about the numerical algorithm|, which is a generalization of the well-known
splitting scheme discussed by [163]. We impose periodic boundary conditions
in physical space and f is set equal to zero for [v| > Vg, Where vVye, = 6V, .
Phase space is discretized with N, grid points in the physical domain and
N, points in the velocity domain. Finally, the time step At has been chosen
in such a way to respect the Courant-Friedrichs-Levy condition [150] for the
numerical stability of time explicit finite difference schemes.

The plasma is initially in an equilibrium state and we perturb the sys-
tem through an oscillating density perturbation which produces, through the

Poisson equation, a perturbative electric field of amplitude J E.

3.1.2 Landau damping

In the present section, recurrence effects and collisional effects on this phe-
nomenon are described for the the case of the Landau damping of a Langmuir
wave.

First, we study a collisionless (v = 0) linear Landau damping case, for the
wavenumber k = k; = 27 /L = 0.35 (being L = 18), by means of the Fourier-
Hermite decomposition with Ny = 800. The system is initially perturbed

through a spatially sinusoidal electric field perturbation, which translates,
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Figure 3.2: (Color online) Spectrum of the matrix A for four increasing values of
collisionality: v =5 x 107°,1 x 107%,2 x 10~%,5 x 10~* respectively in black, red,
blue and gold dots. The black squares represent the Landau roots.

in the Fourier-Hermite space, to initialize the vector 5? as (1,0,0,...)7 (the
electric field is proportional to Cp).

Figure 3.1 shows the temporal evolution of the absolute value of the Her-
mite coefficients |C,| in logarithm scale. Since the filamentation in velocity
space naturally produces small velocity scales, Hermite coefficients of increas-
ingly higher modes are excited. When the largest mode gets excited, the trun-
cation of the series acts as a reflecting boundary (around time 7" ~ 75), and
the perturbation travels back towards lower modes. Around time T ~ 150,
the electric field damping is abruptly interrupted and a value close to the
initial value is restored. Let us note that, although the electric field will not
be affected until the recurrence time 7' ~ 150, the distribution function is
spuriously altered from time T" ~ 75, that is when the perturbation reflects
on the boundary.

As we mentioned earlier, the effect of a non-null collisionality in the
Vlasov-Poisson linear operator is to modify the spectrum of eigenvalues. Lan-
dau damping is not anymore due to the phase-mixing of a continuous set of
neutral mode. Moreover, for a large enough value of v, it appears as the least-
damped eigenvalue of the system. This is shown in Figure 3.2, where, for the
same value of £k = k1 = 0.35, we show the spectrum of the matrix A for four

increasing values of collisionality: v =5 x 107°,1 x 107%,2 x 1074,5 x 10~*
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(respectively in black, red, blue and gold dots). The damping rate v and
the wave propagation frequency w are respectively shown on the horizontal
and vertical axes of Fig. 3.2. The values corresponding to the theoretical
Langmuir roots (y = v, = —3.37 X 1072 and w = £1.22), obtained through
the numerical evaluation of the Landau dispersion function roots, are shown
as black squares. We emphasize that the spectrum of the matrix A differs
from the spectrum of the infinite-dimensional Vlasov-Poisson-L.B operator.
In fact, while for the latter the Landau root is a discrete eigenvalue in the
limit v — 0, Figure 3.2 clearly shows that, in the presence of a finite velocity
resolution, a small collisionality acts to distort the discrete representation
of the Case-Van Kampen continuum. In other words, a sufficiently large
collisionality value (depending on the velocity resolution) is needed in order
to recover the Landau root as a discrete mode. Indeed, it is clear that, for
v =5 x 107" (gold points), the spectrum exhibits two eigenvalues overlap-
ping with the proper Landau roots value and, therefore, the proper Landau
damping is restored.

In order to clarify the behavior of the coefficients |C),| in the case where the
collisionality restores the proper Landau damping (i.e. v = 5x107%), we show

in Fig. 3.3 the temporal evolution of the Hermite coefficients |C,,|. Clearly

log ,,C,|

0 200 400 600 800
n

Figure 3.3: (Color online) Temporal evolution of the Hermite coefficients |C,,| as
a function of the Hermite mode n and the time ¢ for the collisional v = 5 x 10~*
case.
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Figure 3.4: (Color online) Temporal evolution of log |Ey|(t) with & = k1. The black,
red and blue lines indicate respectively v =0, v = 5x 107° and v = 5 x 10~*. The
red and blue dashed lines show respectively the theoretical damping with Landau
damping ~;, and the instant time t = T}.qc.

the reflecting effect discussed for Fig. 3.1 has now completely vanished and
the electric field damping does not show any recurrence. Since the collisional
operator damps the high Hermite modes or, in other words, since collisional
effects stop the production of small velocity scales, the velocity filamentation
is not correctly captured.

In order to complete our analysis, we numerically solve Eqgs. (3.1)-(3.2)
through the finite-difference numerical code presented earlier, for different
values of the collisional frequency . We set the initial sinusoidal density
perturbation such that the perturbation electric field amplitude is E = 1073.
The phase space is discretized with N, = 64 and N, = 101 points. Let us
remark that, with the parameters choice just described, the recurrence time
is Tree = 27 /kAv ~ 150.

The time evolution of the logarithm of the absolute value of the first
Fourier component k = ki of the electric field log|Fk|(t) is shown in Fig.
3.4. The black, red and blue lines correspond respectively to the collisionless
5 x 107°

1). The last case is the case in which the Landau

case (v = 0), intermediate collisional case (v = ) and stronger
collisional case (v =5 x 10~
damping root is recovered in the spectrum shown in Fig. 3.2, thanks to the

effect of collisions. The red and blue dashed lines in Fig. 3.4 indicates the
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theoretical Landau damping rate v, = —3.37 x 1072 and the recurrence time
t = T}e. =~ 150 respectively.

For the three cases, the electric field spectral component evolution is
approximately the same for ¢t < T,.. and the electric field is damped at
the proper Landau damping rate ;. Then, around ¢t = T,.. ~ 150, the
collisionless and the intermediate collisional cases (black and red solid lines of
Fig. 3.4) present a fake “jump” in the signal due to the initial state recurrence
problem. On the other hand, in the stronger collisional case v = 5x10~* (blue
solid line of Fig. 3.4), the recurrence effect disappears and the unphysical
“jump” is completely suppressed by collisional effects. It is worth to note
that, in this case, the recurrence does not occur neither at times multiples of
the recurrence period.

Based on the results presented above, the inclusion of a weakly collisional
operator to prevent the numerical recurrence effect might look convenient;
however, the consequences of including collisionality into the Vlasov-Poisson
system must be investigated with care.

Figure 3.5 shows the difference between the damping rate ~,; of the least
damped mode and the damping rate v, of the Landau root, as a function of
the collisional rate v, for three different values of k£ = 0.35,0.45,0.55, (black,

I YL

107° 107 1077 1072
14

Figure 3.5: (Color online) The black, red and blue lines show the difference between
the damping rate s of the least damped mode and the damping rate vz of the
Landau root, as a function of the collisional rate v, for three different values of
k = 0.35,0.45,0.55 respectively.
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f(x,v,t=ty) — v=0.0 f(x,v,t=ty) — v=5x107"

log IE,I(t)

Figure 3.6: (Color online) (a) Temporal evolution of log |Ej|(t) with k = k; for
the collisionless case (black line) and the collisional v = 5 x 10~ case (red line).
The blue dashed vertical line indicates the recurrence period T;.... The distribution
function around the phase speed v = vy at the final time instant f(z,v,t = ts;p)
is shown in panels (b)—(c) for the collisionless (b) and collisional (c) case.

red and blue line, respectively). As explained in Figure 3.2, for v — 0,
and fixed velocity resolution, the Case-Van Kampen spectrum [175, 176] is
recovered (see Fig. 3.2), and vy, — 0. The intersection between the red
dashed and the solid lines indicates the value of collisionality that is required
to recover the correct Landau damping as a discrete eigenmode. Moreover,
bearing in mind that both v,; and ~; are negative quantities, values above
the red-dashed line in the figure indicate that the collisional rate is not large
enough to recover the Landau damping as the least damped eigenvalue, while
values below the red-dashed line indicate over-damping with respect to the
Landau damping. Figure 3.5 clearly indicates that there is not a single value
of collisionality that would allow to recover the correct Landau damping for
a spectrum of several wavenumbers. Since larger wavenumbers are subject
to stronger damping, they would require a larger collisional rate.

Moreover, if the initial field amplitude is increased in order to explore the
nonlinear evolution of the Landau damping, the collisionality, which was able
of preventing recurrence in the linear simulation, becomes strong enough to
smooth the nonlinear physical features of the Landau damping. In order to
clarify this point, we perform a simulation with the same parameters of the
linear one explained above (see Fig. 3.4) and we increase 0F = 10~!. Figure
3.6 (a) shows the time evolution of log | Ex|(t) for k = k; for the collisionless

case (black solid line) and for the collisional case v = 5 x 10™* (red solid
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line).  The blue dashed line in Fig. 3.6 indicates the recurrence period
Tree = 2m/kAv ~ 150. We remark that this specific value of collisional
frequency is the one which prevents recurrence effects in the linear case, still
preserving the correct value of Landau damping.

It is clear that, in the non-linear collisionless case, the Landau damping
is arrested by nonlinear effects (particle trapping) and, as a consequence, the
electric field starts oscillating around a nearly constant saturation level. On
the other hand, in the collisional case, the physical scenario changes drasti-
cally and the electric field amplitude displays evident collisional damping.

In phase space, nonlinear effects manifest as the generation of a vorti-
cal trapping population, moving with velocity close to the wave phase speed
(vy =~ 3.50). This is shown in Figs 3.6 (b)-(c) where the contour plots of
the distribution function f(x,v) at time ¢ = 400 for the collisionless case (b)
and for the collisional case (c) are reported. It is clear from the compari-
son of panels (b) and (c) of Fig. 3.6 that collisions prevent the generation
of the phase-space trapping population, since they work to smooth out any
deformation of the particle distribution function and to drive the system
toward thermal equilibrium. In other words, as soon as kinetic effects pro-
duce distortions (and, consequently, sharp velocity gradients) of the particle
distribution, collisional effects become more intense to keep the velocity dis-
tribution close to a Maxwellian. Therefore, it is quite clear that collisional
effects are not able to prevent the recurrence problem without destroying the
plasma dynamics characteristics.

In order to understand whether changing the resolution in velocity space
[165, 166] affects the physical features of the system, we performed additional
simulations in collisionless regime, increasing the number of gridpoints in the
velocity domain: N, = 101,201,401, 1001, 2001, 4001; N, = 101 [indicated
with blue crosses in Figs. 3.7 (a=b)] corresponds to the case depicted in Fig.
3.6.

We computed the following quantities as “proxies” of numerical accuracy:

e The oscillation period T,,. of the wave, evaluated in the time interval
t > Tree);
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e The time t,,,, where the electric field envelope reaches its first maxi-
mum [~ 100 in Fig. 3.6(a)];

e The oscillation period 7 of the electric field envelope, defined as the
average of the difference between two consecutive maximum points in
the log | Ex|(t) evolution;

e The saturation electric field Ej 4, at which the electric field spectral

power saturates.

The quantities T,s. and t,,,, (not shown here) do not depend on N, the
relative variations between the two extremes cases (N, = 101 and N, = 4001)
being always smaller than the 1%. On the other hand, in Fig. 3.7 we report
the dependence of Ej s+ (a) and 7 (b) on N,. Clearly, these two quantities
approach a saturation value (red-dashed line) as N, increases. The relative
variations between the values obtained with NV, = 101 and the corresponding
saturation values (red dashed lines) are about the 4% for Ej .+ and 10% for
7. We conclude that even in the nonlinear case shown in Fig. 3.6 the limited
resolution in the velocity domain slightly affects the physical evolution of
the system. However, as discussed above, adding a collisional operator to
eliminate these unphysical effects produces drastic changes in the kinetic

aspects of the dynamics with respect to the collisionless case.
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Figure 3.7: (Color online) The oscillation period of the electric field envelope 7 (a)
and the saturation electric field Ej 54+ (b) as a function of N,. The blue crosses
indicate the N, case case depicted in Fig. 3.6.
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3.1.3 Bump-on-tail instability

In the current section the recurrence effects on the bump-on-tail instabil-
ity are described by performing a similar analysis to that performed in the

previous Section. The initial distribution function is the following:

2
_ " L IR L
fov) = oy exp( 2T0) MRS

o (58 oy (L2 2180)

The core density and temperature are respectively ng = 0.98 and Ty = 1,

(3.14)

while the bump density, mean velocity and temperature are n, = 0.01, V,, =4
and T, = 0.4 respectively. Is it clear that fo(v) represents a Maxwellian
distribution function to which two bumps are superimposed at both positive
and negative side of the velocity domain. Moreover the velocity symmetry
in the velocity shape of fy(v) guarantees an initial null current. In Hermite
space, the parity of fo(v) translates to having C<? = 0 for all odd n.

First of all, as performed in Sec. 3.1.2, we study the collisionless (v = 0)
linear evolution of the bump-on-tail instability onset for k = k; = 27 /L =

0.25 (being the plasma length L = 25) by perturbing initially the system
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Figure 3.8: (Color online) Temporal evolution of the Hermite coefficients |C),| as a
function of the Hermite mode n and the time ¢ for the collisionless v = 0 case.
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through a spatially sinusoidal electric field perturbation. Here the Hermite
modes number is Ny = 400. Figure 3.8 shows the temporal evolution of the
absolute value of the Hermite coefficients |C,|. Only the first 100 modes are
shown, to better appreciate the recurrence on the low order modes. As in Fig.
3.1 for the Landau damping, the filamentation creates small velocity scales
and, due to the truncation of the Hermite series - which corresponds, in the
Eulerian code, to the presence of a finite velocity grid size - the boundary
reflects back the perturbation towards lower modes. The main difference
with respect to the Landau damping case is that now there is an eigenmode
whose amplitude grows exponentially in time. The eigenmode has a certain
structure in Hermite space, and is localized between modes 5 and 10. Once
the filamentation bounces back because of the truncation of the series, the
unstable eigenmode is perturbed, around time 7" ~ 150. Therefore, in the
bump-on-tail case, the recurrence is much more evident as a fake perturbation
acting on the unstable eigenmode, rather than on the electric field. In fact,
as we show in the following, the recurrence of the electric field is more modest
than for the Landau damping case.

In order to clarify how the recurrence acts on the instability onset, we
perform some Eulerian simulations where the phase space is discretized with
N, = 128 point while N, is variable in order to change the recurrence pe-
riod: N, = 101 (T =~ 200), N, = 201 (T. =~ 400) and N, = 1001
(Tree = 2000). We perturb the system through a sinusoidal density per-
turbation whose wavenumber is k& = k; = 0.25. The density perturbation
amplitude is dn = 2.51 x 107% which corresponds to a perturbed electric field
of amplitude 6 = 107°. By evaluating the dispersion function roots of the
Vlasov equation we can calculate, for the specific wavenumber, the linear
growth rate of the instability v/* = 9.20 x 10~ and the wave phase speed
vy = 3.90.

Figures 3.9 (a)—(b) show respectively the temporal evolution of log | E|(¢)
with k& = k; and the phase space contour plot at the final time of the simula-
tion t = t;, for the high resolution case (NN, = 1001). Clearly the instability
is not affected by the recurrence and, in the linear stage, the field amplitude

grows up exponentially in accordance with the theoretical prediction [red
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Figure 3.9: (Color online) (a) Temporal evolution of log |Ex|(t) with k = k; for
the collisionless recurrence-free (N, = 1001) case. The red dashed line represents
the theoretical growth expectation exp(y¥t). (b) Contour plot of the distribution
function around the phase space v = v, at the final time instant f(z,v,t = ty,).

dashed line in Fig. 3.9 (a)]. As nonlinear effects become important, the field
saturates at a constant value and in the phase space, a BGK-like structure
[146, 157] is formed [see Fig. 3.9(b)]. The phase space structure is well-
localized around the phase speed v = vy and its width is quite in accordance
with the theoretical prediction.

In contrast with the case just shown, when the velocity resolution de-
creases, recursive effects occur. Panels of Figs. 3.10 show the results of two
simulations with resolution N, = 101 (left column) and N, = 201 (right
column). For each column, the top panel [Figs. 3.10 (a)—(b)| describes the
temporal evolution of log | Ey|(t), while the center panel [Figs. 3.10 (c¢)—(d)]
displays the quantity AFEyy, defined as the relative difference (expressed in
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Figure 3.10: (Color online) Recurrence effects on the bump-on-tail instability for
the N, = 101 (left column) and N, = 201 (right column) simulations. The top
panels (a)—(b) show the temporal evolution of log |Ey|(t) with k = k; for the low-
resolution case (black line) and for the recurrence-free case (red solid line), while
the red dashed line indicates the theoretical growth expectation exp(’y}ht). The
central panels (c)—(d) display the quantity AFEye (black line) and the recurrence
period ¢ = Tye. (blue dashed line). Finally the bottom panels (e)—(f) visualize the
distribution function contour plot around the phase space v = vy at the final time
instant f(x,v,t = tyi,)-

percentage) between |Ex|(t) at a given resolution and |Ey|(t) for the colli-
sionless recurrence-free case. Finally, the bottom contour plot [Figs. 3.10
(e)—(f)] exhibits the distribution function f(z,v,t = ts;,) at the final time
and around the phase speed v = v4. Let us remark that, in order to better
visualize the phase space structures in Fig. 3.10 (e)—(f), we performed an
interpolation of the distribution function over a more resolved grid without

altering the physical features of the phase space structure itself.
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Figure 3.11: (Color online) Temporal evolution (black line) of log |Ey|(t) with
k = ki for the case N, = 201 and with collisional frequency v = 1.5 x 1076
(a), v = 4.1 x 107% (b) and v = 6.6 x 107% (c) respectively. In each panel the
red solid line shows the evolution of log |Ej|(t) for the collisionless recurrence-free
(N, = 1001) case while the red dashed line displays the theoretical linear instability
growth.

It is clear that the recurrence also manifests in the instability onset. By
focusing on the linear stage of the instability growth, the electric field am-
plitude seems to exponentially increase at a rate in accordance with the

theoretical expectations, represented with red dashed lines in Figs. 3.10 (a)-
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(b). Moreover, as introduced above, in contrast with the Landau damping
case, the recurrence effect does not strongly manifest as a fake jump around
the recurrence time t = 7,... However, by analyzing the temporal evolution
of AFEyy [see Figs. 3.10 (¢)—(d)], an abrupt increase of AFEjyy is observed
around the recurrence period, shown in Figs. 3.10 (c)—(d) with blue dashed
lines. This discontinuity is due to recursive effects and it means that, after
the recurrence period, the electric field evolution in the case with a lower
resolution strongly departs from the recurrence-free case (AEyy ~ 100%).
Thus, although recursive effects cannot be appreciated in the linear stage of
the instability growth by looking directly at Figs. 3.10 (a)—(b) (the scale is
logarithmic and a variation about the 100% cannot be easily highlighted),
the field evolution is actually disturbed by recurrence.

Furthermore, recurrence phenomena affect the nonlinear evolution of the
instability. Effectively, by focusing on Fig. 3.10 (a)-(b), in the case with-
out recurrence the electric field power opportunely saturates at a constant
value (red line) while, on the other hand in the cases with recurrence the
electric field does not saturate and it continues to slowly increase. Finally,
by focusing on the distribution function at the final time instant ¢ = ¢, [see
Figs. 3.10 (e)—(f)], in both cases a phase space structure is produced around
the correct phase speed. By comparing these phase space structures with
the hole created in the recurrence-free case [Fig. 3.9 (b)|, some differences
clearly reveal. First, phase space structures obtained in the cases with recur-
rence are less resolved compared to the one of the recurrence-free case and
this is obviously related to the different velocity grid size: effectively, since
the velocity grid size is smaller in the recurrence-free case, finer scales are
naturally created compared to the cases at lower resolution. Moreover, the
vortex width seems to be slightly wider in the N, = 101 case [Fig. 3.10 (e)]
compared to both the collisionless recurrence-free case [Fig. 3.9 (b)] and to
the N, = 201 case [Fig. 3.10 (f)]. In other words, since the electric field does
not saturate in presence of recursive effects, the phase space structure tends
to increase its width.

The effects of the initial state recurrence on the bump-on-tail instability

represents a novel and quite unexpected feature in the analysis of the re-
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cursive phenomena. Both linear and nonlinear stages of the instability are
affected by recurrence: the electric field evolution departs from the evolution
in the case without recurrence (N, = 1001) around ¢t = T,.... Furthermore the
nonlinear saturation, which is properly retained in the case at high resolution,
is interrupted by recurrence as the velocity grid size gets larger. Moreover,
due to the absence of the electric field saturation, the distribution function
shows a vortex properly centered around the right phase speed but whose
width tends to be bigger compared to the case without recurrence. Finally,
although initial state recurrence phenomena are often related to linear phys-
ical problems, here we have found some new and interesting recurrence effect
features which occur in the nonlinear regime.

In order to explore if a collisionality described by the LB operator could
represent a good way to prevent numerical recurrence in the case of the
bump-on-tail instability, we focus on the N, = 201 resolution case ad we
perform several collisional simulations by changing the collisional frequency
v.

Figs. 3.11 (a)—(c) display, through black lines, the temporal evolution of
log | Ey|(t) with k = k; for the cases: v = 1.5 x 107% (a), v = 4.1 x 107% (b)
and v = 6.6 x 107° (¢). In each panel of Fig. 3.11 red solid lines indicate
the evolution in the collisionless case without recurrence [the same shown
in Fig. 3.9 (a) and in Figs. 3.10 (a)—(b)] while the red dashed line shows
the theoretical expectation for the instability growth curve exp(+4"t), being
A =9.2 x 1073

As expected, collisions inhibit the instability and tend to restore thermal
equilibrium. However in the case v = 1.5 x 107% [see Fig. 3.11 (a)], collisions
weakly affect the electric field evolution which, as in the collisionless case, do
not saturate and overtake the recurrence-free case evolution [red line in Fig.
3.11 (a)].

As collisional frequency increases, the electric field evolution tends to be
dissipated. In the intermediate case v = 4.1 x 107% [see Fig. 3.11 (b)], the
electric field reaches, at the end of the simulation, almost the same power of
the collisionless case without recurrence; however its evolution departs from

the reference red curve around ¢ ~ 600, where the recurrence-free case [red
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line in Fig. 3.11 (b)| presents a stronger power level than the collisional
N, = 201 case [black line in Fig. 3.11 (b)]. On the other hand, in the case
v = 6.6 x 107¢ [see Fig. 3.11 (c)], a significant difference between the two
evolutions appears at even smaller time instants and collisions clearly affect
the linear instability regime. In particular, the linear growth rate in the
collisional N, = 201 case |black line in Fig. 3.11 (c)] is significantly smaller
than the collisionless N, = 1001 case [red line in Fig. 3.11 (c)|. Moreover, as
in the collisionless recurrence-free case, at the final stages of the simulation
the electric field spectral power exhibits an almost flat behavior at a lower
power value compared to the collisionless recurrence-free case.

In order to point out how phase space is affected by collisions, Figs. 3.12
(a)—(c) show the contour plots of the distribution function f(z,v,t = t;,) at
the final time instant ¢ = ¢4;, and zoomed around the phase speed v = v, for
the cases: v =1.5x 107% (a), v = 4.1 x 1075 (b) and v = 6.6 x 107¢ (¢). As
in Fig. 3.10 (e)—(f), even in Fig. 3.12 (a)—(c) we performed an interpolation
of the distribution function over a more resolved grid. In all the three cases
shown in Fig. 3.12 (a)—(c) a phase space structure is observed around the
wave phase speed and its width reduces as collisional frequency increases.
Clearly as collisions become stronger, phase space structures are smoothed
out and present a smaller size.

We highlight that, as collisional frequency gets bigger, the instability is af-
fected by collisions more intensely. Moreover, since collisions tend to restore
the equilibrium, they have been active since the initial stage of the simu-
lation (the initial distribution function is out of equilibrium). Furthermore
they remain active until the equilibrium is recovered and incessantly work
to smooth out all the wave features (electric field signal and phase space
structures). Therefore, at longer times (not shown here), the phase space
structures shown in Figs. 3.12 get smaller and disappear, while the elec-
tric field signal shown in Figs. 3.11 is dissipated by collisional effects. We
conclude that, as in the nonlinear Landau damping case, an artificial colli-
sionality is not able to prevent the initial state recurrence in the bump-on-tail
instability onset. In particular we found two different scenarios: collisions are

so weak that recurrence is still active or, on the other hand, they affect both
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Figure 3.12: (Color online)The distribution function contour plots around the phase
space v = Uy at the final time instant f(x,v,t = tg;,) for the case N, = 201 and
with collisional frequency v = 1.5x 1079 (a), v = 4.1 x 1075 (b) and v = 6.6 x 1076

(c).
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the electric field and the phase space structure.

3.1.4 Summary

In this section we analyzed in detail the problem of the initial state recur-
rence in a weakly collisional plasma, where electron-electron collisions have

been modeled through the Lenard-Bernstein collisional operator [139]. We
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focused on two study cases: the Landau damping of a Langmuir wave and
the bump-on-tail instability onset. For both cases, the analysis in the linear
regime has been performed through the decomposition of the linear Vlasov-
Poisson system into the Fourier-Hermite space. In particular, the expansion
of the distribution function in terms of Hermite functions separates naturally
different velocity scales and it allows to better describe recursive effects and
appreciate the role of the collisional operator in phase space. Moreover, the
analysis has been extended to the nonlinear regime through a 1D-1V Eu-
lerian collisional Vlasov-Poisson code, already tested and used in previous
works (see Refs. [62, 63]).

Recently some authors (see Refs. [172, 177, 178| and references therein)
pointed out that an opportune collisionality can prevent the onset of recursive
effects and restore the correct Landau damping. This indication suggested us
to investigate whether the inclusion of an artificial collisionality could be used
to prevent recurrence in numerical simulations without the loss of physical
details due to collisional effects. However, we have shown that the collisional
frequency v which is suitable for preventing numerical recurrence in the linear
regime depends on the perturbation wavenumber; furthermore, collisional
effects become important when the system evolves to the nonlinear regime
and, for the same value of collisionality which prevents recursive effects in the
linear stage, any nonlinear wave is strongly dissipated by collisional effects.

Finally, we pointed out that numerical effects associated to the generation
of fine velocity scales can modify the physical features of the system evolution
even in nonlinear regime. This has been shown by focusing on the nonlinear
Landau damping phenomenon and on the bump-on-tail instability both in
linear and nonlinear regime. Our results indicate that filamentation-like and
recursive effects, often associated with evolution in linear regime, can also
be important in the nonlinear case. We also conclude that the addition
of a collisional operator, with the aim of preventing the recurrence of the
initial state and other numerical effects related to limited resolution in the
velocity domain, significantly changes the evolution of nonlinear waves and

the corresponding phase space portrait.
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3.2 Secondary waves branch in an externally

forced plasma

In the present section we describe, by means of Eulerian Vlasov-Poisson
simulations, the method adopted for triggering waves in laboratory plasmas
devices, like, for example, Penning-Malmberg traps [50, 145, 182]. Plasma
waves are usually launched through an external electric potential, localized
in a particular region of the plasma column. This driver oscillates in time
[¢p =~ sin(wpt), being wp the driver pulsation| and it is adiabatically turned
on and off to select the waves frequency [50, 145, 179, 180, 181, 182].

On the other hand, when the dynamics of these systems is modeled by
means of numerical simulations, external drivers select at the same time
pulsation and wavenumber [Ep =~ sin(kz — wpt), where wp/k = vy p|. As
in experimental setups, these external drivers are also turned on and off
adiabatically. This kind of drivers has been widely implemented to excite
Trivelpiece-Gould (TG) waves, EAWs [143, 144, 183, 184, 185| or KEEN
Waves [129, 137, 138, 159] as well as for the analysis of auto-resonance process
[186, 187].

The two types of drivers described above present different features: in
experiments, the driver is spatially localized while, in simulations, it usually
permeates all the computational box. To resolve this discrepancy, we imple-
ment in a numerical simulation a more realistic, localized driver and analyze
the wave triggering process in detail. We consider both the cases of a collision-
less and a weakly collisional plasma composed of kinetic electrons and a back-
ground of motionless ions. Electron-electron collisions are modeled through
the one-dimensional Dougherty operator [58, 59, 62, 63, 134, 135, 136]. In
this framework, we study the excitation of linear Langmuir waves and non-
linear EAWs. By focusing on the Langmuir waves case, we describe the basic
mechanism which selects frequency and wavenumber of the waves. As we
will show in detail in the following, the driver field is composed of a temporal
adiabatic function, which selects the mode frequency through a resonance
process, and of a spatial localization function exciting several spatial Fourier

components. This represents a novel features compared to previous simu-
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lations (see Refs. [129, 137, 138, 144, 159, 184, 185]) where only a “single”
wavenumber was excited.

Then, we analyze the triggering process of EAWs, which are undamped
acoustic-like waves, whose phase speed is about the electron thermal speed
(vFAW ~ 1.31vy). It is worth to note that the standard Vlasov-Poisson lin-
ear theory based on a Maxwellian equilibrium distribution function predicts
that these fluctuations are heavily damped. However, Holloway and Dorning
[142| showed that, when the equilibrium distribution function presents flat
regions with vanishing velocity derivative, undamped EAWSs appear as non-
linear solutions of the Vlasov-Poisson system and exhibit Bernstein-Greene-
Kruskal modes-like characteristics [146]. Let us also remark that nonlinear
modes whose phase speed is close to the thermal speed has been predicted
for astrophysical plasmas [29, 188] and recently observed in solar wind data
[189, 190].

When we trigger EAWSs in our simulations, surprisingly a new branch of
nonlinear and non-dispersive waves is observed in the collisionless case be-
yond the standard EAWs fluctuations. The phase speed of these fluctuations
is about ~ 0.5vy, (vE4"/3) and they are generated by the localized driver,
which perturbs the VDF in several phase space regions. Indeed, the VDF
exhibits a small bump around v ~ 0.5vy, as a result of the driver effects,
therefore a beam-like instability could cause the onset of these modes.

Moreover we show that, also for small values of collisionality, these sec-
ondary waves are not recovered; this suggests that collisions inhibit the for-
mation of small scale structures in the VDF and, hence, the triggering of
secondary beam-modes. This is probably the reason why these fluctuations
are not routinely observed in laboratory plasma experiments, where a low
level of collisionality is always present. It is worth to point out that, despite
we analyzed a neutral plasma, the wave launching mechanism is quite general
and our considerations could be easily extended to nonneutral plasmas.

The structure of the section is the following: in Sec. 3.2.1 we theoretically
analyze the basic equations system and the action of the localized driver and
we briefly describe our numerical code. Then, in Sec. 3.2.2, we focus on the

triggering of linear Langmuir waves and on the basic frequency resonance
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process. Then, in Sec. 3.2.3, we analyze the EAWs launching process in both

a collisionless [Sec. 3.2.3] and a weakly collisional [Sec. 3.2.3] plasma.

3.2.1 Theoretical analysis

We consider a plasma composed of kinetic electrons and motionless pro-
tons within the electrostatic approximation. Electron-electron collisions are
included at the right-hand side of the Vlasov equation through the one-
dimensional Dougherty operator [58, 59, 134, 135]. We solve the following
dimensionless Dougherty-Poisson (DP) equations, in 1 D—1V phase space con-

figuration:

of of 0(¢+¢p)df Of
ot v oz + ox o ot coll

xXr
N / f v (3.16)

where f = f(x,v,t) is the electron distribution function, ¢ = ¢(z) =
—dFE/dx is the electrostatic potential (E is the electric field), ¢p = ¢p(z)
is the external potential driver and 0f/0t|,,, is the Dougherty collisional

(3.15)

operator. Due to their inertia, protons are considered as a motionless neu-
tralizing background of constant density nog = 1. In previous equations, time
is scaled to the inverse electron plasma frequency w,., velocities to the ini-
tial electron thermal speed vy, .; consequently, lengths are normalized by the
electron Debye length Ap. = vy, /wpe and the electric field by wpemevy, /e
(m. and e being the electron mass and charge, respectively). For the sake of
simplicity, from now on, all quantities will be scaled using the characteristic
parameters listed above.

The Dougherty collisional operator [58, 59| has the following form:

of

of
ot g

=v(n, T)% 0 +@w-=V)f|; (3.17)

coll
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here, v(n,T) is the collisional frequency:

n  ghhA
VOW,Vo— 87

v(n,T) = (3.18)

where g = 1/n)3, is the plasma parameter, In A ~ —In g/3 is the Coulombian
logarithm, subscript j indicates the j-th vector component and n = [dvf,
V=1/n[dvvf, T=1/3n[dv (v—V)?f are respectively plasma density,
mean velocity and temperature. The Einstein convention has been intro-
duced in Eq. (3.17).

The driver shape ¢p(x,t) is the following:

¢p(,1) = ¢o h(z)g(1) sin(wpt) , (3.19)

being respectively

g(t) = {1+ (tA_TT)ng}l; h(z) = [1+ (IA_:C:O)”} h (3.20)

the temporal ¢(t) and spatial h(z) adiabatic functions which respectively

model the antenna “locality” and the adiabatic turning on and off function of
the driver. Since the electrostatic potential is spatially localized, the electric
field becomes spread in terms of spatial Fourier components. On the other
hand, the temporal function g(t) selects the frequency w of the plasma modes.
Indeed, the Fourier transform of ¢(t) is localized around the driver frequency
wp with a width comparable with 1/A7. Therefore, as the driver temporal
extension gets bigger, the driver frequency width becomes smaller. In Eqgs.
(3.20) xp = L/2, Azg = L/16 and nj, = 16, while the values of 7, A7 and n,
will be given later in the next section. Eqgs. (3.15)—(3.16) are solved with the
same methods described in previous section and in Refs. [62, 63]. The phase
space is here discretized with N, = 256 gridpoints in the physical domain
D, =[0,L] and N, = 12001 gridpoints in the velocity domain.

In the following sections we describe simulations results about Langmuir
waves (Sec. 3.2.2) and EAWs (Sec. 3.2.3). In both cases, the initial condition

is a homogeneous Maxwellian without any density perturbation.
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3.2.2 Langmuir waves

Here we describe the results of three different simulations, whose parameters
are listed in Tab. 3.1. For all the simulations the driver is turned on for a

time interval A7 = 40 T', being T the wave period, while Ep =5 x 1076.

SIM| L |k=ky=27/L| wp wp = w(k)
A 26 0.242 1.098 | YES, for k = k;
B 26 0.242 1.200 | NO, for any k
C | 200 0.031 YES, for k =k,

Table 3.1: Parameters of the Langmuir waves simulations.

In the first simulation (SIM A), the driver oscillates at a frequency wp
which is in resonance with the w(k;) plasma mode frequency, being w(k;)
evaluated with a linear numerical solver. Figure 3.13 shows the time evolution
of the first two electric field Fourier components | E|(¢) in black solid (k = k1)
and red dashed (k = ky) lines. |E},|(t) is reported as an illustrative case for
other non-fundamental Fourier components, which exhibit similar behaviors
to | Ey,|(t). Yellow vertical lines indicate the time instants ¢ = 7 and t = 7,
corresponding to the times when the driver is set on and off. For the sake of
simplicity let us analyze Fig. 3.13 by considering three time periods: t < 7y
(I), n <t<m (II) and ¢t > 7 (III).

Figure 3.13: (Color online) Time evolution of |Ey|(¢) for k& = k; (black line) and
k = ko (red line) relative to SIM A. The two yellow vertical lines indicate the time
instants at which the driver is turned on ¢ = 71 and off ¢ = 7, while the blue
dashed line represents the theoretical exponential damping with damping rate ~r..
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When the driver grows up adiabatically (I), several Fourier components
increase their powers and |Fy,|(t) overtakes the non-fundamental compo-
nents. Then, while the driver is on (II), the difference between |Ej, |(t) and
the other Fourier components becomes stronger. The power of the fundamen-
tal component continues to increase and |Fy, |(t) exhibits a non-flat profile,
due to the fact that the plasma is responding to the external driver through
the Langmuir wave generation. The other components remain instead at
the power level due to the driver. When the driver is turned off (III), only
| Ey, | (t) survives and displays an exponential damping, whose coefficient is in
agreement with the Landau damping rate v, = —1.404 x 1073 [blue dashed
curve in Fig. 3.13(a)|.

In this case (SIM A) the launching mechanism is quite clear: the external
electric field drives several spatial Fourier components but, at the same time,
it temporally selects the driving frequency. The driver pulsation is perfectly
resonant with the theoretical pulsation of the Langmuir wave w(k) with k =
k1, therefore the plasma response occurs at a pure Langmuir wave. Other
spatial components, which could be excited by the driver spatial localization,
are not effectively triggered because they are not resonant with the driver
o(lky) # wp for j £ 1].

The second simulation (SIM B) has the same parameters as SIM A except
for the driver frequency which is now wp = 1.20 [wp # w(k;) for all the set
of k;]. Figure 3.14(a) shows the time evolution of the first two electric field
Fourier components |Fy|(¢) in black solid (k = k;) and red dashed (k = k)
lines. The yellow vertical lines indicate the instants t = 7 and t = 7,
corresponding to the times when the driver is set on and off.

The evolution of non-fundamental components [compare the red curves of
Fig. 3.13 and 3.14(a)| is the same of the on-dispersion (SIM A) case, being
in both simulations the £ = ks wavenumber not resonant with the driver
[w(ks) ~ 1.60]. However, |Ey,|(t) does not increase while the driver is turned
on and it remains almost at the driver level. When the driver is turned off, the
electric field | Ey, |(t) is damped out at the correct Landau damping rate [blue
dashed line in Fig. 3.14 (a)]. It is also significant to evaluate the oscillation

peaks of Ej, for a given k. Fig. 3.14(b) reports | Ey, (w)| shape as a function
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Figure 3.14: (Color online) (a) Time evolution of |Ej|(t) for kK = k1 (black line)
and k = ko (red line) relative to SIM B. The two yellow vertical lines indicate the
time instants at which the driver is turned on ¢t = 7 and off ¢t = 75, while the blue
dashed line represents the theoretical exponential damping with damping rate ~r,.
(b) Oscillation peak of the first Fourier component of the electric field, given by
the profile of |Eg(w)| as a function of w. The peaks are evaluated after that the
driver has been set off. The blue and red dashed lines represent respectively the
driver pulsation wp and the “proper” Langmuir wave frequency w(ky).

of w, being |Ej, (w)| the temporal Fourier transform of Ej(t) preformed in
the temporal range when the driver is turned off. Clearly |E}y, (w)| peaks at
the Langmuir mode frequency w(k). This indicates that, once the driver has
been set off, the plasma excites the Langmuir mode with frequency w(k;),
thus resulting in a frequency shift from wp to w(ky).

To understand the results described above for SIM A and SIM B, we
numerically evaluated, for each set of parameters in Tab. A, the Fourier

transform of the temporal part of the driver ¢(t)sin(wpt):

n(w) = / dte‘“”tismi e (3.21)
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Figure 3.15: (Color online) Absolute value of n(w) for the SIM A (a) and SIM B
(b). The red curves in both panel indicate the “proper” Langmuir frequency w(k;).

which gives information about the frequency window that each wavenumber
feels during the driving process. Figures 3.15 (a)-(b) show the profile of
In(w)| as a function of w for the on-dispersion (SIM A) case (a) and for the
off-dispersion (SIM B) case (b). The red solid lines in Figs. 3.15 (a)—(b)
indicates the Langmuir modes frequency. In SIM A, the driver is resonant
with the mode frequency w(k;) [see Fig. 3.15(a)|, therefore this mode is
effectively triggered by the driver. The other modes have pulsation w(k;),
being j > 1, much different with respect to wp (e.g. w(kq) =~ 1.60), therefore
they do not fall in the accessible w window for being excited.

On the other hand, in the off-dispersion (SIM B) case, the driver is not
perfectly resonant with any Langmuir mode [see Fig. 3.15(b)|. Therefore
the triggering of the & = k; is less powerful than in the SIM A case because,

despite w(ky) falls in a region where |n(w)| is weak but not exactly null, the
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Figure 3.16: (Color online) (a) Time evolution of | Ex|(t) for k = k; (black line) and
k = ko (red line) relative to SIM C. The two yellow vertical lines indicate the time
instants at which the driver is turned on ¢ = 7y and off t = 5. (b) Absolute value
of n(w) for the same simulation. The red curves indicate the “proper” Langmuir
frequencies w(ky) and w(ks).

fundamental wavenumber receives a small amount of energy by the driver.
We also show the results of the third simulation (SIM C), where the
plasma length is much bigger compared to SIM A and SIM B and w(k;) = wp.
Fig. 3.16 (a) reports the temporal evolution of the first two electric field
Fourier components |Ej|(t) in black (k = k1) and red (k = k3) solid line. In
contrast with previous cases [see Fig. 3.13 and Fig. 3.14(a)|, here the second
Fourier component, as well as other components not explicitly shown in Fig.
3.16(a), are also excited. This happens because wavenumbers are smaller and
closer compared to previous cases, therefore many Langmuir modes [See Fig.

3.16(b) which displays w(k;) and w(ky) respectively in red and blue lines|
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are resonant with the driver. These modes are moreover almost undamped
because their wavenumbers are small, therefore, when the driver is turned
off, | Ex|(t) is almost flat.

The three simulations described above let us understand that the localized
driver selects - through the adiabatic temporal function ¢(¢) - a frequency
window centered around wp, whose width is comparable with 1/A7 and

where the energy is non-uniformly pumped. The spatial localizing function

Figure 3.17: (Color online) Time evolution of |Ey|(t): k = k; (a), k = ko (b) and
k = ks (c) for the EAWs simulation. In each panel the red dashed lines indicate
the temporal instants at which the driver is turned on t = 7 and off ¢t = 7.
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h(z) produces instead the excitation of several wavenumbers. If any Lang-
muir mode frequency w(k), being k one of the discrete wavenumbers that
the driver can excite, is resonant with the driving frequency wp, the mode is

definitively triggered.

3.2.3 Electron-acoustic waves

Here we move to the more complex scenario of EAWSs. Indeed, compared to
the Langmuir waves case, we show that, since the dispersion relation is of
the acoustic type, nonlinear couplings can easily occur and several harmonics
are generated along the dispersion relation. Since the driver is strong enough
to trigger nonlinear waves (i.e. to modify the VDF), secondary beam-like
instabilities are also generated. Moreover, we investigate both the case of

collisionless and weakly collisional plasmas.

Collisionless case

Here we analyze the collisionless case by focusing on a simulation where
the driver pulsation is wp = 0.455 and L = 20. The first wavenumber
ki = ko = 2w/L (being L = 20 the plasma length) corresponds to a on-
dispersion EAWs (wp/k; = vf4" = 1.45). Moreover, the driver is turned
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Figure 3.18: (Color online) Oscillation peaks of the first three Fourier components
of the electric field given by the profile of |Ej(vy = w/k)| as a function of the phase
speed vy = w/k: k = k1 (a), k = ko (b) and k = k3 (c). The temporal Fourier
transform has been performed in the temporal range after that the driver has been
set off. Red dashed lines indicate the first three phase speeds which are triggered
by the driver.
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Figure 3.19: (Color online) Oscillation peaks, as showed in Fig. 3.18(a)-(d), of
the first three Fourier components of the electric field represented in the k—w plane

through single points. The two black lines displays the line with phase speed

Vp1 = vEAW and Vg3 = vFAW /3 while the red dashed horizontal line shows the

driver pulsation w = wp.

on for AT = 57, being 73, = 27/+/E}k the nonlinear trapping time, while
ng = 10. The driver amplitude is Ep =5 x 1072

Figures 3.17 (a)—(c) show the temporal evolution of |Ey|(t) being k = k;
(a), k = ko (b) and k = k3 (c). In each panel of Fig. 3.17, |Ey|(t) rises up
for the driver effect, which is turned on between the two red vertical dashed
lines t = 77 and t = 75, and, when the driver is turned off, many electric field
spectral components survive.

To understand how the plasma reacts to the driver field, we evaluated
the frequency oscillation peaks of Ej for a given k and in the range when
the driver is turned off (¢ > 7). Figures 3.18 (a)—(c) show |Ej,|(vy ;) for
j=1(),j7=2(b)and j = 3 (c) as a function of vy; = w/k;. Red
vertical lines in Figs. 3.18 represent the first three phase speeds which are
triggered by the driver. Indeed, since the driver pulsates at wp and excites

several wavenumbers, several velocity values are excited: vy ; = vy p/J, being

vy.p = wp/k. In each panel two peaks located at vaW = vy and vy3 =
vy AW /3 are recovered, therefore two straight lines with phase speeds v; 4"

and v 4" /3 are populated in the k—w plane, shown in Fig. 3.19.

It is interesting to point out how the final configuration in the k—w plane,
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Figure 3.20: (Color online) Panel (a) show the contour plot of the distribution
function at the final time t = t;,, = 17000 f(x,v,t = tf;,) in the velocity range
v = [0,2] while the panel (b) displays a spatial cut of the distribution function
f(x = xo,v,t = tg) as a function of v. In both panels the red dashed lines
indicate the phase speed vg1 and vg3 - which correspond to oscillation peaks in
the electric field - while the blue line shows the phase speed vg 2 - which is related
to a plateau due to the driver but not yet present in the oscillation peaks of the
electric field.

shown in Fig. 3.19, is generated. For this reason, we performed the analysis
based on Ej(w) at different simulation stages. At the beginning, each spatial
component oscillates with the driver (along the red dashed line in Fig. 3.19).
Then, while the driver is still turned on, the straight line of peaks at v*"
is generated. This process can be interpreted as a weakly nonlinear coupling
(or secondary harmonics generation) occurring along the EAW branch [191].
Finally, when the driver is turned off, the secondary peaks line at v;*" /3
appears.

The dynamics is extremely complex and, in general, the electric field does
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Figure 3.21: (Color online) Zoom of the distribution function contour plot
f(x,v,t = tgm) in the velocity region v = [0.3,0.7].

not oscillate just at the EAW phase speed but it exhibits several oscillation
peaks. To figure out how the driver and the presence of these peaks model
the distribution function in phase space, we show the contour plot of the
distribution function f(z,v,t = ts;,) in the velocity region v = [0.2,2] in
Fig. 3.20 (a), while Fig. 3.20 (b) displays f(z = x¢,v,t = t4;,) as a function
of v being o = L/4 and t;, = 17000. Red dashed lines in Figs. 3.20 (a)-
(b) indicate v = v and v = vf4" /3, while the dashed blue line shows
v = vaW /2.

The distribution function exhibits the expected EAW BGK-hole, localized
at the correct EAW phase velocity, whose width is in accordance with the
theoretical expectation [192]. Therefore, as in previous works [144, 185], our
driver correctly triggers EAWs. However, other structures are also generated
at lower velocities which are not recovered in previous simulation studies,
where the usual non-localized has been employed. A flat plateau, which
resembles the “off-dispersion” like plateau obtained in Ref. [144, 185|, is
observed at vaW/ 2. Moreover, a large flat top profile is recovered around
v = 0 whose width is about Awv,,, = 0.4. This could be due to the fact that, at
small velocities, the driver thickens many excitable phase speeds (vy o< 1/k)
and the presence of many phase speeds concentrated in the same phase space
region (i.e. many plateaus overlap in this region) may cause a flattening

process of the VDF. Furthermore a small BGK-like vortex is localized at
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Figure 3.22: (Color online) Time evolution of |Ey|(t), being k = ki, for g = 1077
(a), g =3x10"7 (b) and g = 107° (c). In each panel the red dashed lines indicate
the temporal instants at which the driver is turned on t = 7 and off ¢t = 7.

v =W /3 (See the zoom of the VDF around v = v*" /3 showed in Fig.
3.21). Phase space structures showed in Figs. 3.20 are significantly different.
The structures connected with electric field oscillations (v = vf4"W, vE4W /3)
show a BGK-like structure, while the ones due to the driver which instead
does not generate a plasma response are flat and homogeneous (v = vaW/Q).

The novel feature of our simulations concerns the presence of an unex-
pected, secondary, straight line of frequency oscillation peaks in the k-w plane
with phase speed vy = vaW /3. These fluctuations, which are recovered after
that the driver is turned off and are related to a small BGK-like structure in
phase space, could be generated by the driver through a beam-like instability.
Indeed, the VDF exhibits a a small bump around v = v 4" /3 ~ 0.5 due to
the driver nonlinearity even before the formation of the BGK-like structure
at v; 4" /3. We suggest that this small bump may generate a beam-like in-
stability, which gives rise in the nonlinear regime to a BGK-like vortex in the
distribution function. This bump is present only at v = v54" /3, therefore
the beam-like instability mechanism due to the bump could be in accordance
with the observation that suggests the presence of a secondary oscillation

peaks series only for v, = vaW/?).

Collisional case

In order to figure out if, in a weakly collisional plasma, the secondary wave

branch survives or is dissipated by collisional effects, here we analyze some
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Figure 3.23: (Color online) Frequency oscillation peaks of |Ey|(t), being k = ki, for
g = 1077 (black), g = 3x 1077 (red) and g = 1079 (blue) represented as a function

of the phase speed vs. The green dashed line displays the EAWs phase speed

Vg1 = vaW while the greem dotted line shows the phase speed vy 3 = vaW/&

collisional simulations, where collisions are modeled through the Dougherty
operator [See Eq. (3.17) in Sec. 3.2.1]. We show that these secondary fluctu-
ations are not recovered when a small collisionality is introduced, while the
EAWs are damped in time. This last feature has been also observed in lab-
oratory experiments [50, 182 and it is qualitatively similar to the Zakharov
and Karpman (ZK) collisional damping predicted in Ref. [193]. The values of
collisionality considered are in the range g = [10~7,107%], which corresponds
to realistic situations in a Penning-Malmberg apparatus.

Figures 3.22 (a)—(c) show the temporal evolution of |Ex|(t) (k = ki), for
the cases ¢ = 1077 (a), g = 3 x 1077 (b) and g = 107% (¢). Red lines
indicate the time instants when the driver has been turned on (71) and off
(12). For 11 < t < 7, the evolution in the three cases is quite similar
[compare also with Fig. 3.17 (a)]. On the other hand, for ¢t > 7, |E,|(t)
exhibits an exponential damping, with damping rate proportional to the
collisional frequency 1y and other components (not shown here) display the
same qualitative behavior of |Ey,|(t). Damping rates for the cases g = 1077,
g = 3x 107" and g = 107° are respectively 7o = —2.75 x 107°, v¢ =
—7.24 x107* and vo = —2.27 x 107%. These results systematically differs by
the ZK prediction of collisional damping by a factor about 2 - 3. However,
ZK results have been obtained by assuming that i) the VDF differs from

the Maxwellian only in the resonance region and ii) the phase speed is much
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t=10000

Figure 3.24: (Color online) Left, center and right columns display respectively the
contour plots of the distribution function f(z,v,t) for the cases ¢ = 1077 (a),
g=3x10"7 (b) and g = 1076 (c) at two time instant ¢ = 10000 (top) and at the
time instant ¢ = ¢f;, = 17000 (bottom).

bigger than the thermal speed and both conditions are not satisfied in our
simulations; this fact may explain the quantitative discrepancy between the
observed damping and the ZK prediction.

To figure out whether the secondary frequency peaks occur also in the
collisional cases, we evaluated Ej(v,) for each case showed in Figs. 3.22(a)-
(c) in the time window when the driver is turned off. Figure 3.23 shows
|Ey(vs)| as a function of the phase speed vy = w/k for the cases g = 1077
(black), g = 3x1077 (red) and g = 1079 (blue). In each case |Ej(v,)| exhibits
a well-defined single peak around the proper EAWs phase speed vy = vaW
[green dashed lines in Fig. 3.23|; while the second peak at vys = v54" /3
[green dotted lines in Fig. 3.23] is not present. Other spatial wavenumbers
(not shown here) exhibit the same behavior.

This characteristic is corroborated through the analysis of the distribution
function in phase space. The top panels of Fig. 3.24 display the contour plots
of the distribution function f(z,v,t = 10000) in the velocity space region
v = [0.2,2] for the cases g = 1077 (al), g = 3 x 1077 (bI) and g = 107
(cI), while the bottom panels of Fig. 3.24 indicate f(z,v,t = tg;,), being
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trim = 17000 for the cases g = 1077 (all), g = 3 x 1077 (bII) and g =
107% (cII). By comparing the final stages of the collisionless and collisional
simulations [compare Figs. 3.24 (all)—(cIT) with Fig. 3.20 (a)], it is easy to
establish that the collisional case do not show the small BGK-like structure at
v = v /3. Effectively, in correspondence of the small BGK-like structure
in Fig. 3.20(a)|, in the collisional cases only a small flat and homogeneous
area is present, this indicating that collisions prevent the formation of the
secondary peaks of oscillations. Furthermore, comparing panels (I) and (IT) of
Fig. 3.24, one notices that EAW holes tend to be smoothed out by collisional

effects, bigger the collisional frequency faster the smoothing due to collisions.

3.2.4 Summary

In this section, we focused on the wave launching process which is commonly
adopted to trigger electrostatic fluctuations in laboratory plasmas. This pro-
cess, which is based on a localized external driver which triggers plasma
waves, has been here described in detail by means of Eulerian kinetic sim-
ulations. First, by focusing on the triggering of linear Langmuir waves, the
basic resonance wave launching mechanism has been analyzed. It is found
that the driver non-uniformly pumps energy in a frequency window centered
around its pulsation, while, in principle, several wavenumbers can be excited.

Then, we analyzed the case of EAWs. Beyond the excitation of EAWs, a
new branch of small amplitude, acoustic-type, nonlinear waves, whose phase
speed is vy = v5" /3 ~ 0.5, is recovered. These fluctuations may be gener-
ated as an effect of a beam-like instability due to the presence of a small bump
in the core of the distribution function, generated by the driver nonlinearity.
The existence of this secondary waves, in a weakly collisional plasma has been
discussed. Also for small values of collisionality - comparable with the col-
lisionality of realistic laboratory apparatus, these fluctuations are suddenly
dissipated. The main EAW branch suffers instead an exponential damping,
similar to the one observed in experiments.

We remark that our work has two main interesting points. Firstly, since

the driver excites several phase speeds, additional wave branches can be ex-
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cited. This effect is intimately related to the driver nonlinearity. When the
driver acts for enough time or its amplitude is sufficiently big, nonlinear ef-
fects generate non-Maxwellian features in the particle VDF. Once plateaus
or bumps are generated in the distribution function, other branches of fluc-
tuations can be excited according to Refs. [142, 194]. Secondly, collisions
have an essential role into the dissipation of these secondary modes: even for
small values of the collisional frequency these secondary fluctuations are not
recovered. The presence of collisions in laboratory devices may be the reason

why these modes have not been yet observed in laboratory plasmas.
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We summarize here the main results showed in this part of the thesis which
focused on the description of collisional effects in weakly collisional plasmas.

We first showed, by modeling collisions through the fully nonlinear Lan-
dau operator, that collisionality can be significant also in a weakly collisional
plasma. Indeed, strong velocity space gradients, which naturally develop in
the particle distribution function as an effect of wave-particle interactions and
- in general - of turbulence cascade, are dissipated much faster than other
global non-Maxwellian features. These characteristic dissipation times can
be much smaller than the Spitzer-Harm time. This suggests that, when the
particle distribution function exhibits fine velocity space structures, collisions
can be locally enhanced and could be comparable with other characteristic
dynamical times.

However, as described in detail, the computational cost of the Landau
operator is significantly high and, nowadays, it is not possible to perform
self-consistent simulations where collisions are modeled through this opera-
tor. Therefore, simplified collisional operators are routinely adopted. Here,
we initially modeled collisions through the Dougherty operator in the full
three-dimensional velocity space. We recovered a quite good agreement be-
tween the Landau and the Dougherty operators in the relaxation of spatially
homogeneous force-free plasmas. Hence, we performed self-consistent elec-
trostatic simulations of a plasma composed of kinetic electrons and immobile
protons, in a nonlinear regime and in the case of weak collisionality. By fo-
cusing on the onset of the bump-on-tail instability and on the propagation of
KEEN waves, we described the competitive role of kinetic processes, which

tend to modify the particle VDF, and collisions, which instead tend to restore
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the thermal equilibrium.

Then, we restricted to a reduced 1D-1V phase space where we described
two different phenomena. First, we analyzed the role of collisions on the re-
currence of the initial state, by showing that the artificial collisionality cannot
prevent recurrence without significantly compromise the kinetic features of
the solution. Moreover, we pointed out that filamentation-like phenomena,
usually associated with linear fluctuations, can play a role even in nonlinear
regime.

Finally, we described the method, usually adopted in laboratory plasmas
devices, for exciting waves. When triggering Electron Acoustic Waves, a
new branch of small amplitude, nonlinear and non-dispersive waves has been
also recovered beyond the main EAWSs branch. These secondary fluctuations
are generated by the external, nonlinear driver and tend to be quickly dis-
sipated when a small collisionality - comparable with the one of laboratory

experiments - is considered.
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The full comprehension of the dynamics of weakly collisional plasmas such
as the solar wind is one of the intriguing challenges for the space plasmas sci-
entific community. The solar wind is a complex, strongly turbulent medium
whose dynamics involves several processes at different spatial and tempo-
ral scales. The energy is transferred along the spectrum from large, injec-
tion scales, where the dynamics is modeled within a fluid approach, towards
smaller scales where a kinetic approach is needed. Although kinetic models
are often collisionless, one should bear in mind that collisions may have a
significant role for properly describing dissipative irreversible processes.

In this thesis we have initially examined the interplay of fluid and ki-
netic scales by revisiting the Moffatt & Parker problem by means of MHD,
Hall MHD and hybrid kinetic numerical simulations. This problem, which
concerns the interaction of counter-propagating Alfvénic wave packets, was
investigated in the late Seventies in the ideal incompressible MHD case and
it is considered the “building-block” scenario for triggering turbulence. Here,
by extending the description to the realm of kinetic plasmas, we showed that
the introduction of dispersion and kinetic physics makes the dynamics much
more complex with respect to the MHD case. Indeed, strong turbulence sig-
natures coexist with a waves-like activity and it is difficult to determine if
wave packets attain a full separation after their interaction, as predicted by
the Moffatt & Parker theory.

Our simulations concerning the Moffatt & Parker problem suggest that,
once kinetic scales are reached, the particle distribution function is strongly
affected by wave-particle resonances and kinetic turbulence and, as a natural

consequence, its shape is significantly perturbed. This feature is also recov-
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ered by means of other kinds of numerical simulations or through solar wind
in-situ measurements. The presence of these velocity space distortions makes
us address a fundamental question, which underlies the results showed in the
second part of the thesis. Since collisional effects explicitly depend on velocity
space gradients, could these fine structures locally enhance the plasma colli-
sionality, despite it is usually considered far too weak to produce significant
effects?

We reported evidences that the collisionality can be effectively enhanced
also in a weakly collisional plasmas. Indeed, by modeling collisions through
the fully nonlinear Landau operator and focusing on the collisional relaxation
of a homogeneous force-free plasma, we showed that fine velocity structures
are dissipated much faster (with characteristic times much smaller than the
Spitzer-Harm time) than other global non-Maxwellian features. Therefore,
when the particle distribution function exhibits strong velocity space gra-
dients, collisions can be effectively enhanced and could be comparable with
other characteristic dynamical times. The nonlinearities present in the math-
ematical form of the Landau operator are also important to properly compare
collisional times with other dynamical times.

Performing self-consistent simulation where collisions are modeled with
the Landau operator is nowadays problematic for the Landau operator com-
putational cost. Hence, collisions are usually taken into account by means
of simplified operators. We here modeled collisions through the Dougherty
operator. We established a good comparison between the Landau and the
Dougherty operator in the case of the collisional relaxation of a spatially
homogeneous force-free plasma, this allowing to perform self-consistent colli-
sional simulations, in the 1D-3V configuration, regarding the propagation of
nonlinear electrostatic waves. Finally, restricting to the 1D-1V phase space,
we analyzed two separate problems: the effects of collisions on the phe-
nomenon of the recurrence of the initial states and the launching problem,
namely the methods commonly adopted in laboratory plasmas for triggering

waves.
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