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0 Introduzione (Italian)

Oggetto di studio della presente tesi sono le Enriques-Fano threefolds. Si definisce
Enriques-Fano threefold una varieta algebrica normale tridimensionale W, dotata di
un sistema lineare completo £ di divisori ampi di Cartier, tale che il generico elemento
S € L sia una superficie di Enriques e tale che W non sia un cono generalizzato su
S. 1l sistema lineare £ induce una mappa razionale ¢, : W --» PP, dove p e chiamato
genere dell’Enriques-Fano threefold W e si ha 2 < p < 17 (si vedano [36] and [40]).
Anche se impropriamente, gli elementi di £ sono detti sezioni iperpiane di W, e le
intersezioni di due elementi di £ sono dette curve sezioni di W. La classificazione
delle Enriques-Fano threefolds e ancora un problema aperto. Al fine di capire come
completarla, analizzeremo le Enriques-Fano threefolds gia note, adoperando anche un
approccio computazionale con 'ausilio del software Macaulay?2. Individueremo inoltre
la decomposizione isotropica semplice delle curve sezioni delle Enriques-Fano three-
folds conosciute. Infine riprenderemo un’idea incompleta di Castelnuovo, adattandola
al caso della Enriques-Fano threefold classica di genere 13.

Nello specifico, elencheremo in § [3| gli esempi noti di Enriques-Fano threefolds e
le loro proprieta. Ricordiamo che Fano ha trovato Enriques-Fano threefolds di genere
p=4,6,7,9,13 (si veda [23]), Bayle (e anche Sano, con un lavoro simile ma indipen-
dente) ha individuato esempi con 2 < p < 10 e p = 13 (si vedano [1] e [48]), Prokhorov
con p = 13,17 (si veda [46], §3]) e infine Knutsen-Lopez-Munoz con p = 9 (si veda [30),
§13]). Denoteremo gli esempi di questi autori, rispettivamente, con Wi, Wge, Wh e
Wi rar-

E noto che ogni Enriques-Fano threefold (W, £) ha singolaritd isolate canoniche (si
veda [6]). Diremo che due punti singolari distinti di W sono associati (o congiunti,
usando le parole di Fano) se ¢, : W < PP & un embedding e se la retta che li unisce
¢ contenuta in W. Chiameremo configurazione dei punti singolari di W il modo in
cui essi sono associati. In particolare, se ogni punto singolare e associato allo stesso
numero degli altri, diremo che i punti singolari di W sono simzli. Pitl in generale i punti
singolari di W sono detti simili se “si comportano tutti allo stesso modo”. Il concetto
di punti singolari associati e simili € importante nella costruzione degli esempi di Fano:
in § 4] daremo un’idea del perche. Tuttavia non forniremo troppi dettagli sul lavoro
di Fano: infatti esso probabilmente contiene altre imprecisioni nascoste oltre a quelle
individuate da Conte e Murre nel loro articolo [14]. Per questo motivo, esamineremo
in § |5 gli esempi razionali W§:6’7’9’13 trovati da Fano come immagini di sistemi lin-
eari su P?; usando tecniche di scoppiamenti, verificheremo che essi sono effettivamente
Enriques-Fano threefolds e che sono immerse in PP con otto punti quadrupli simili
aventi come cono tangente il cono sulla Veronese. Ritroveremo anche le configurazioni
usate da Fano, dando quindi giustificazione alle sue affermazioni.

Anche le Enriques-Fano threefolds W}, hanno otto punti quadrupli con cono tan-
gente il cono sulla Veronese. Sei di queste threefolds, di genere p = 6,7,8,9, 10, 13, sono
immerse in PP e verranno analizzate computazionalmente in § [} In particolare, mostr-



eremo che i punti singolari di W§§6’7’9’13 sono simili e che hanno le stesse configurazioni
di quelli di W£:6’7’9’13. Vedremo pure che, per p = 9,13, embedding di W} in PP
& proprio W2. Mostreremo infine le Enriques-Fano threefolds Whs' come immagini
di sistemi lineari su P? e troveremo che i loro otto punti quadrupli, nonostante siano
simili, hanno configurazioni che sono state escluse da Fano: cio suggerisce che in [23]

potrebbero esserci ulteriori problemi nascosti.

In §e § |8 esamineremo le Enriques-Fano threefolds W, ,,, W} e WA E noto
che W3, ,, e WA hanno singolarita canoniche non terminali, ma finora non c’erano
informazioni sulle loro molteplicita e sui coni tangenti. Con un’analisi computazionale,
mostreremo che W3, ,, e WA hanno quattro punti quadrupli, il cui cono tangente
¢ un cono sulla Veronese, e un punto sestuplo, il cui cono tangente ¢ un cono su una
superficie sestica riducibile nell’'unione di quattro piani e di una superficie quadrica. Ap-
profondiremo anche lo studio di W3, che ¢ stata solamente menzionata da Prokhorov.
Mostreremo che W2 ha quattro punti quadrupli, il cui cono tangente ¢ un cono sulla
Veronese, e un punto quintuplo, il cui cono € un cono sull’unione di cinque piani.
Quindi W, ,, ¢ W5='*'" hanno punti singolari non simili.

Sia H la classe di una curva sezione su una sezione iperpiana liscia S di una nota
Enriques-Fano threefold W. In § [9 descriveremo la decomposizione isotropica sem-
plice di H (si veda [9, Corollario 4.7] per maggiori dettagli) e individueremo il valore
¢(H) := min{E- H|E € NS(S), E* = 0, E > 0}. Ricordiamo che il valore ¢ e le decom-
posizioni isotropiche semplici permettono in genere di identificare le varie componenti
dello spazio dei moduli delle superfici di Enriques polarizzate. Dunque la nostra anal-

isi suggerisce a quali famiglie appartengono le sezioni iperpiane delle Enriques-Fano
threefolds.

Infine analizzeremo il sottosistema lineare £, C L delle sezioni iperpiane della
Enriques-Fano threefold W} che sono triple in un punto generico w € W2 (si veda
§ . Mostreremo che un generico elemento di questo sistema lineare ¢ birazionale ad
una superficie rigata ellittica, e che 'immagine di W;? tramite la mappa indotta da £, ¢
una superficie cubica di Del Pezzo A C P? con 4 nodi (si veda Theorem . Questo
risultato e interessante perché e legato ad una congettura di Castelnuovo enunciata in
[4, pp.187-188]: supponiamo di avere una threefold irriducibile liscia razionale W e un
sistema lineare r-dimensionale £ su W tale che il suo generico elemento sia una superfi-
cie liscia irriducibile S con genere geometrico nullo p,(S) = 0 e genere aritmetico nullo
pa(S) = 0. Cosa succede se imponiamo alle superfici di £ di avere un punto triplo in un
punto generico w € W7 Castelnuovo congettura che si debba ottenere un sottosistema
lineare (r — 10)-dimensionale L, tale che la generica superficie S, soddisfi una delle tre
seguenti proprieta: S, ¢ una superficie irriducibile con desingularizzazione irregolare
Se tale che py(Ss) = 0 € pa(Se) = —1; Se € riducibile in due superfici razionali che si
intersecano in una curva razionale; S, preserva gli stessi generi geometrico e aritmetico
di una generica S € L. Estenderemo le idee di Castelnuovo a threefolds normali con
singolarita isolate e con desingularizzazione regolare, quali le Enriques-Fano threefolds,
e troveremo che W23 e W} soddisfano la prima proprieta ipotizzata da Castelnuovo.



Lavoreremo nel campo C dei numeri complessi. Per le analisi computazionali lavor-
eremo in un campo finito (sceglieremo F,, := Z/nZ con n = 10000019). In Appendix [A]
descriveremo graficamente le configurazioni dei punti singolari di alcune Enriques-Fano
threefolds. In Appendix [B] collezioneremo i codici input usati in Macaulay2.

E in corso la stesura di piu articoli tratti dalla presente tesi di Dottorato: attual-
mente essi sono [38], [39], [40], [41].

0.1 Ringraziamenti

Ringrazio i miei tre supervisori per la loro disponibilita e per i loro suggerimenti,
fondamentali per la stesura di questa tesi di dottorato: in particolare Concettina Galati
per avermi spronato ad intraprendere la strada della ricerca e per avermi aiutato a
muovere i primi passi nel mondo della geometria algebrica; Ciro Ciliberto per avermi
proposto un argomento interessante e ricco di spunti per nuovi progetti, per essere stato
paziente nell’insegnarmi tecniche e concetti a me sconosciuti e per avermi reso partecipe
delle sue brillanti idee; Andreas Leopold Knutsen per 'interesse che ha sempre mostrato
verso il mio lavoro e per le stimolanti conversazioni durante il mio periodo all’estero
in Norvegia. Ringrazio poi la mia collega Martina Anelli con la quale ho condiviso le
gioie e i dolori del dottorato. Infine ringrazio chiunque mi sia stato accanto durante
questo percorso, soprattutto la mia famiglia, per avermi sostenuto moralmente anche
quando credevo di non farcela, e i miei amici, per aver creduto sempre in me.



1 Introduction

The research objects of this thesis are the Enriques-Fano threefolds. An Enriques-Fano
threefold is a normal threefold W endowed with a complete linear system £ of ample
Cartier divisors such that the general element S € £ is an Enriques surface and such
that W is not a generalized cone over S. The linear system L defines a rational map
¢ W --» PP where p is called the genus of W and it must be 2 < p < 17 (see [30]
and [46]). Though improperly, we will refer to the elements of L as hyperplane sections
of W and to the curve intersections of two elements of £ as curve sections of W. The
classification of Enriques-Fano threefolds is still an open problem. In order to under-
stand how to complete it, we will analyze known Enriques-Fano threefolds, also using
a computational approach thanks to the Macaulay?2 software. We will also identify
the simple isotropic decompositions of the curve sections of the known Enriques-Fano
threefolds. Finally we will take up an incomplete idea of Castelnuovo, applying it to
the case of the classical Enriques-Fano threefold of genus 13.

In particular, we will list the known Enriques-Fano threefolds and their properties
in §[3] We recall that Fano found examples of genus p = 4,6,7,9,13 (see [23]), Bayle
(and, in a similar and independent way, Sano) found examples with 2 < p < 10 and
p = 13 (see [I] and [48]), Prokhorov with p = 13,17 (see [40, §3]) and finally Knutsen-
Lopez-Munoz with p = 9 (see [36], §13]). We will denote the Enriques-Fano threefolds
of the above authors, respectively, by Wp, Whe, Wp, Wi, .

It is known that every Enriques-Fano threefold (W, £) has isolated canonical sin-
gularities (see [6]). We will say that two distinct singular points of W are associated
if ¢ : W — PP is an embedding and if the line joining them is contained in W.
The way in which the singular points of W are associated is called the configuration
of the singular points of W. In particular, if each singular point of W is associated
with the same number of the others, we will say that the singular points of W are
similar. More generally, the singular points of W are called similar if they all “behave
in the same way”. The notions of association and similarity of the singular points of an
Enriques-Fano threefold are important in Fano’s construction: we will explain why in
§ 4. However, we will not give too much details of the description of Fano’s work, since
it probably contains other hidden gaps in addition to those identified by Conte and
Murre in [I4]. For this reason, in § |5 we will examine the rational examples W}’ZG’?’Q’B
found by Fano as images of linear systems on P3; by using blow-ups techniques, we will
verify that they actually are Enriques-Fano threefolds and that they are embedded in
PP with eight similar quadruple points, whose tangent cone is a cone over a Veronese
surface. We will also find the configurations used by Fano, thus justifying his state-
ments.

The Enriques-Fano threefolds W} also have eight quadruple points, whose tangent
cone is a cone over a Veronese surface. Six of these ones (of genus p = 6,7,8,9, 10, 13)
are embedded in PP and we will computationally study them in §[6] In particular, we
will show that the singular points of W§§6’7’9’13 are similar and that they have the same



configurations of the ones of ngzﬁ’?’g’lg. Moreover, we will prove that, for p = 9, 13,

the embedding of W} in PP is the threefold W7. We will also show how to construct
the Enriques-Fano threefolds ng&lo as images of linear systems on P3. Finally we will
find that the eight quadruple points of Why 10 are similar but they have configurations
that were excluded by Fano: this suggests that there may be further hidden gaps in [23].

We will also examine the Enriques-Fano threefolds W5, ,,, W, WA (see § [7, §).
It is known that W} ,, and W37 have canonical non-terminal smgularltles but so far
there was no information about their multiplicities and tangent cones. With a com-
putational analysis, we will show that W3, ,, and WA have four quadruple points,
whose tangent cone is a cone over a Veronese surface, and one sextuple point, whose
tangent cone is a cone over the union of four planes and a quadric surface. We will also
deepen the study of W23, which was mentioned very briefly by Prokhorov. In particu-
lar, we will show that it has four quadruple points, whose tangent cone is a cone over
a Veronese surface, and a quintuple point, whose tangent cone is a cone over the union
of five planes. Anyhow, the threefolds W3-, ,/, W}f”” have non-similar singular points.

Let us denote by H the class of a curve section on a smooth hyperplane section
S € L of a known Enriques-Fano threefold (W, £). In § @ we will describe the simple
isotropic decomposition of H (see [, Corollary 4 7] for the existence) and the value
¢(H) := min{F - H|E € NS(S),E? = 0,E > 0}. We recall that the number ¢ and
the simple isotropic decompositions allow us to identify the various components of the
moduli space of the polarized Enriques surfaces. Thus our analysis suggests which
families the hyperplane sections of the Enriques-Fano threefolds belong to.

Finally we will analyze the sublinear system £, C L of the hyperplane sections of
the Enriques-Fano threefold W13 having a triple point at a general point w € W} (see
§ . We will show that a general element of this linear system is birational to an
elliptic ruled surface and that the image of W23 via the rational map defined by L, is a
cubic Del Pezzo surface A C P? with 4 nodes (see Theorem . This is interesting
because it is related to a Castelnuovo’s conjecture stated in [4, pp. 187-188]: let us
suppose we have a rational smooth irreducible threefold W and an r-dimensional linear
system £ on W such that the general element is a smooth irreducible surface S with
zero geometric genus p,(S) = 0 and zero arithmetic genus p,(S) = 0. What happens if
we force the surfaces of £ to have a triple point at a general point w € W7 Castelnuovo
thinks that we get an (r — 10)-dimensional sublinear system L, such that the general
surface S, satisfies one of the following three properties: it is an irreducible surface with
irreqular desingularization S, which has pg(S ) = 0 and pa(S,) = —1; it is reducible
in two rational surfaces intersecting along a rational curve; it has the same genera as
a general surface S € £. We will resume the ideas of Castelnuovo adapting them to
normal threefolds with isolated singularities and regular desingularization. Examples
of such threefolds are the Enriques-Fano threefolds. We will find that W} and WA
satisfy the first property conjectured by Castelnuovo.

We will work over the field C of the complex numbers. For the computational anal-



ysis we will work over a finite field (we will choose F,, := Z/nZ with n = 10000019).
In Appendix [A] we will graphically describe the configurations of the singular points of
some Enriques-Fano threefolds. In Appendix [Bl we will collect the input codes used in
Macaulay2.

Some papers taken from this PhD thesis are currently being written (see [38], [39],
[40], [41).

2 Terminology

In this section we gather the basic definitions and the standard conventions that we
will use afterwards. We recommend [27], [28], [29], [37] for more details. Let X be
a projective variety: we say that X is a curve, a surface or a threefold if dim X is
respectively equal to 1,2 or 3.

We recall that a variety is normal if the local ring at every point of the variety is
an integrally closed ring. A projective variety X C P" is said to be projectively nor-
mal (with respect to the given embedding) if its homogeneous coordinate ring S(X)
is integrally closed. It is known that X C P" is projectively normal if and only if
X is normal and for every k > 0 the natural map H°(P", Opr(k)) — H°(X,Ox(k))
is surjective. If the previous map is surjective for k = 1, we say that X is linearly
normal. A projective variety X C P" is said to be arithmetically Cohen-Macaulay if
its homogeneous coordinate ring S(X) is Cohen-Macaulay, which is equivalent to have
HY (P, Zxppr(k)) = 0 and H (X, Ox(k)) = 0 for all k£ > 0 and for all 0 < i < dim X
(see [21, Exercise 18.16.b]). If a projective variety X C P" is normal and arithmetically
Cohen-Macaulay, then it is projectively normal.

Let D be a Cartier divisor on a projective variety X. We will use the symbols ~
and = for the linear equivalence and the numerical equivalence, respectively. We will
denote by |Ox(D)], or simply by |D|, the complete linear system of divisors linearly
equivalent to D on X. Linear systems of dimension 1 are called pencils. We will say
that

(i) D is big if maxyen{dim ¢};,p|(X)} = dim X, where
Pimp| : X --» P(H°(X,Ox(mD))) is the rational map associated with [mD];

(ii) D is semi-ample if the linear system |mD| is base point free for some m > 0 and
so it defines a morphism ¢j,,p; : X — P(H*(X, Ox(mD)));

(iii) D is wvery ample if the linear system |D| is base point free and the associated
morphism is a closed embedding ¢|p| : X — P(H°(X,Ox(D)));

(iv) D is ample if mD is very ample for some m > 0.
Furthermore if dim X > 2

(v) D is said to be nef if D - C > 0 for all irreducible curves C' C X.

8



We have that “semi-ampleness” = “nefness”, and obviously that
“very-ampleness” = “ampleness” = “bigness” and “semi-ampleness”.
We recall now some known results which we will implicitly use in next sections.

Proposition 2.1. [37, p. 139] Let X be a normal projective variety and let D be a
Cartier divisor on X. Then D is big if and only if the rational map ¢p,p| : X --»
P(H°(X,Ox(mD))), defined by the linear system |mD|, is birational onto its image
for some m > 0.

Proposition 2.2. If f : Y — X is a birational morphism between two projective
varieties and if D is a big divisor on X, then f*D is a big divisor on Y.

Proof. Tt follows by the inequality h°(Y,Oy(f*D))) > h%(X,Ox(D)) and by [37,
Lemma 2.2.3]. O

Remark 2.3. [37, Example 1.4.4] Let f:Y — X be a proper mapping. If D is a nef
divisor on X, then f*D is a nef divisor on Y.

Proposition 2.4. [37, Example 1.4.5] Let | D| be a linear system on a projective variety
X with the property that | D] is base point free. Then D is nef.

Theorem of Zariski-Fujita. [37, Remark 2.1.32] Let |D| be a linear system on a
projective variety X with the property that the base locus is a finite set. Then D is
semiample.

We will denote by Kx the canonical divisor of a smooth projective variety X. The
numbers p,(X) := h%(X, Ox(Kx)) and P,(X) := h°(X,Ox(nKx)) are called respec-
tively the geometric genus and the n-th plurigenus of X, where n is a positive integer.
Another important number associated with a variety X is the arithmetic genus, de-
noted by p,(X) := (—=1)3mX(x(Ox)—1). We recall that the irregularity of a projective
variety X is the number ¢(X) := h'(X,Ox) and that X is called regular if ¢(X) = 0,
otherwise it is said to be irregular. If X is a singular projective variety, we say that X
has a regular (respectively irreqular) desingularization if for each resolution of singu-
larities f : X — X we have q()?) = 0 (respectively q()z) > 0). If p is a smooth point
of a projective variety X, we will denote the tangent space to X at p by the symbol
T,X; if p is a singular point of a projective variety X, we will denote the tangent cone
to X at p by the symbol TC, X.

Finally let us recall some fact and some notation about the blow-ups of threefolds.
We recommend [27, Chap 4, §6] and [32, Lemma 2.2.14] for more details. Let X be
a smooth threefold, let p € X be a point and let C' C X be a smooth curve. If
f:BL, X — X is the blow-up of X at p with exceptional divisor E, := f~!(p), then
we have E, = P?. If g : Bloc X — X is the blow-up of X along C' with exceptional
divisor E¢ := ¢ !(C), then E¢ is a P'-bundle over C' and it is identified with the
projectification P(N¢(x) of the normal bundle of C' in X. We recall that if C C X
is the complete intersection of two surfaces S, 5" C X, then Ngjx = Oc(S) @ Oc(S)
(see [I1, Example 10.2]). Let us see an example. Let [ be a line of P3 and let us take

9



n points ¢i, ..., ¢, on I. We have Myps = Op1(1) @ Op(1). Let X :=Bl,, |
the blow-up of P? at the points ¢i, ..., q, with exceptional divisors E; := bl 1(g), for
1 <i<n. If C C X denotes the strict transform of [ C P?, then C is the complete
intersection of the strict transforms of two hyperplane of P? containing qi, . .., g,. Thus
we have

NC|X2OC<H—iEi>@OC< ZE) Opi(1 — 1) ® Op (1 —n),
=1

where H denotes the pullback of the hyperplane class of P3.

3 Known Enriques-Fano threefolds

3.1 Preliminaries on Enriques-Fano threefolds

Let us recall that an Enriques surface is a smooth, irreducible surface S with zero
irregularity ¢(S) = 0 and non-trivial canonical divisor Kg such that 2Kg ~ 0.

Definition 3.1. A pair (W, £), or simply W, is called Enriques-Fano threefold if
(i) W is a normal threefold;

(ii) L 1isa complete linear system of ample Cartier divisors on W such that the general
element S € £ is an Enriques surface;

(iii) W is not a generalized cone over S, i.e., W is not obtained by contraction of the
negative section on the P-bundle P(Og & Og(S)) over S.

We define the genus and the degree of an Enriques-Fano threefold (W, L) to be
respectively the values p := - —|— 1 and deg(W) := S3, where S is a general element of
L. Hence deg(W) = 2p—2. The linear system L deﬁnes a rational map ¢, : W --» PP,
where dim £ = p > 2. Furthermore the genus p of an Enriques-Fano threefold (W, £)
is at most 17 and the bound is sharp (see [36] and [46]). Though improperly, we will
refer to the elements of £ as hyperplane sections of W and to the curve intersections
of two elements of L as curve sections of W.

Definition 3.2. Let W be a normal variety such that Ky is Q-Cartier and let f :
W — W be a resolution of the singularities, with irreducible exceptional divisors E;.
Since we have K = f* (Kw) + ) a;E; with a; € Q, we say that the singularities of
W are terminal if a; > 0 for all 7 and we say that they are canonical if a; > 0 for all 7.

It is known that any Enriques-Fano threefold (W, £) is singular with isolated sin-
gularities (see [14, Lemma 3.2]): moreover Ky is 2-Cartier and the singularities are
canonical (see [6]). Furthermore W has regular desingularization (see [10, Lemma 4.1]).

The classification of Enriques-Fano threefolds (W, £) is still an open problem, but

examples have been found by several authors. The first to deal with this problem was
Fano, who proposed in [23] an incomplete classification: he claimed that Enriques-Fano
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threefolds exist only for p = 4,6, 7,9, 13, but his arguments contain some gaps. Indeed,
Conte and Murre proved, under certain assumptions, results that Fano had only stated
(see [14]). However, Conte and Murre did not address the classification problem. Under
the assumption that the singularities of W are terminal cyclic quotients, Enriques-Fano
threefolds were classified by Bayle in [I] (and in a similar and independent way by Sano
in [48]). If W is an Enriques-Fano threefold found Bayle and Sano, then it has genus
2 < p <10 or p = 13; furthermore W is the quotient of a smooth Fano threefold X via
an involution o with 8 fixed points, and W itself has 8 quadruple points, whose tangent
cone is a cone over a Veronese surface. More generally, if an Enriques-Fano threefold
has terminal singularities, then it admits a Q-smoothing, i.e., it appears as central
fibre of a small deformation over the 1-parameter unit disk such that a general fibre
has only cyclic quotient terminal singularities (see [44, Main Theorem 2]). Hence every
Enriques-Fano threefold with only terminal singularities is a limit of someone discovered
by Bayle and Sano. Thus, to complete the classification, one has to consider the case of
non-terminal canonical singularities. Only a few examples of Enriques-Fano threefolds
with non-terminal canonical singularities are known: one of genus p = 9 found by
Knutsen, Lopez and Mufioz in [36, §13] and another one of genus p = 17 found by
Prokhorov in |46, §3]. Finally there is an Enriques-Fano threefold of genus p = 13,
which was mentioned very briefly by Prokhorov (see [46, Remark 3.3]).

3.2 List of known Enriques-Fano threefolds

We will list the known Enriques-Fano threefolds, we will talk about their properties
and we will give some notation. First we recall two definitions.

Definition 3.3. Let R be a 3-dimensional linear system of quadric sufaces of P3. Let
us suppose that R is sufficiently general, i.e. R is base point free and, if [ is a double
line for () € R, then @ is the unique quadric in R containing [. A Reye congruence
is a surface obtained as the set {I € G(1, 3)|l is contained in a pencil contained in R},
where G(1,3) denotes the Grassmannian variety of lines in P?.

Definition 3.4. A surface in P2 has ordinary singularities if it has at most the following
singularities: a curve v of double points (that are generically the transverse intersection
of two branches), with at most finitely many pinch points and with v having at most
finitely many triple points as singularities, with three independent tangent lines, which
are triple points also for the surface.

We will call F-EF 3-folds the Enriques-Fano threefolds found by Fano. They are:

(i) the Enriques-Fano threefold W5 C P% of genus p = 6 given by the image of P3 via
the linear system P of the septic surfaces with double points along three twisted
cubics having five points in common (see [23] §3]):

— this threefold is rational;

— the hyperplane sections of this threefold are Reye congruences (see also [13),
Proposition 3]);

— a general P € P has ordinary singularities;
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(ii) the Enriques-Fano threefold W1 C P7 of genus p = 7 given by the image of P3
via the linear system X’ of the sextic surfaces having double points along the six
edges of a tetrahedron and containing a plane cubic curve intersecting each edge
at one point (see [23, §4]):

— this threefold is rational;
— a general X € X has ordinary singularities;

(iii) the Enriques-Fano threefold W2 C P? of genus p = 9 given by the image of P?
by the linear system K of the septic surfaces having double points along the six
edges of two trihedra (see [23, §7]):

— this threefold is rational;
— a general K € K has ordinary singularities;

— the locus of pairs of trihedra, up to automorphisms of P3, has dimension
3 = 18 — 15: indeed the vertex of a trihedron moves in a P? and each one of
its three faces moves in a IP?; we observe that 3 is the number of moduli of
the Enriques-Fano threefolds of genus 9 contained in [1] and [48] (see
below);

(iv) the Enriques-Fano threefold W} C P!3 of genus p = 13 given by the image of P?
via the linear system & of the sextic surfaces having double points along the six
edges of a tetrahedron (see [23] §8]):

— this threefold is rational,;
— a general X € § has ordinary singularities;

— we will also refer to this threefold as the classical Enriques-Fano threefold;
and one “exceptional” case (see § to understand better):

(0) the famous Enriques threefold Wi C P4, which is a singular sextic hypersurface
whose hyperplane section is a sextic surface in P* with double points along the
six edges of a tetrahedron (see [23, §10]):

— it has equation

2182w3a (33 + 20 Yoy aimi + Y5 5y biwin)+

2.2 ,.2 2.2,.2 2.2,.2 2,22
+C175x5T5 + Cor x5Ty + C3T x5y + carixTy = 0,

where z, ..., r4 are the homogeneous coordinates of P*, and a;, b;; and ¢
are sufficiently general complex numbers;

— it has double points along six planes, which are given by the intersections
of four spaces P? two by two and which all pass through the same point;

— the general Enriques threefolds W have been proved to be non-rational by
Picco-Botta and Verra in [45];

— it is also contained in [I] and [48] (see below).
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Furthermore, as noted by Conte in [12, p. 225], there is also another “hidden” excep-
tional case:

(00) the threefold W3 given by a quadruple P? (see [23, §2]);

— it is worth mentioning it, because it is also contained in [I] and [48] (see ([I)
below).

In § 4| we will summarize Fano’s approach and Conte-Murre’s work. Furthermore
in § [5| we will describe the rational F-EF 3-folds in modern language via blow-up tech-
niques.

In order to classify Enriques-Fano threefolds, Bayle assumes the following fact.

Assumption (B). Let (W, £) be an Enriques-Fano threefold such that W is the quo-
tient X /o of a smooth Fano threefold X where o is an involution of X with finitely
many fixed points.

The number of fixed points of the involution o of Assumption B must be 8 (see [,
§4.1]). Moreover, the images of these 8 points of X, via the quotient map 7 : X — W,
are eight singular points of W whose tangent cone is a cone over a Veronese surface
(see [1, §3]). Bayle’s approach to the classification is as follows. By Assumption B, we
have that

(i) ba(X) + @ =1 (mod 2), where b;(X) := rank H;(X,R) is the i** Betti’s num-

ber of X (see [I], §4.2]);
(ii) deg X := (—Kx)? = 4p — 4 is divisible by 4 (see [1}, §4.3]).

In order to classify the Enriques-Fano threefolds W satisfying Assumption B, Bayle
considers all the smooth Fano threefolds, classified by Iskovskih in [30] and [31] and
by Mori and Mukai in [42], and he eliminates the ones that do not satisfy the above
two properties: though a Fano threefold has been erroneously omitted by Mori and
Mukai, this has no consequence for Bayle’s work, since the degree of this threefold is
not divisible by 4 (see [43]). By studying the remaining smooth Fano threefolds, Bayle
finds that only 14 of them have an involution with 8 fixed points: thus he finds fourteen
Enriques-Fano threefolds, by constructing the quotient map 7 : X — W as the map
defined by the sublinear system of | — Kx| given by the o-invariant elements. These
threefolds are also contained in [48], so we will refer to them as BS-EF 3-folds. They
are:

(I) the Enriques-Fano threefold W32 of genus p = 2 given by the quotient of a double
cover of a smooth quadric hypersurface of P* branched in an optic surface (see
[1, §6.1.6]):
— in this case ¢ : Wig --+ P? is a rational map;
— according to [I p. 23], these W34 depend on 25 moduli;

— these W34 can be also obtained as quotient of the complete intersection of
a quadric and quartic in P(15;2);
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— it is also found by Sano (see [48, Theorem 1.1 No.1]);
— Cheltsov conjectures that W3 is non-rational (see [8, Conjecture 19]);

(IT) the Enriques-Fano threefold W3¢ of genus p = 3 given by the quotient of the
complete intersection of three quadric hypersurfaces of P% (see [I, §6.1.5)):

— in this case ¢y : Wiy — P3 is a morphism and it is a quadruple cover of
P3;

— according to [I, p. 22], the number of moduli of W3 is 15;

— it is also found by Sano (see [48, Theorem 1.1 No.2]);

— Cheltsov conjectures that W3y is non-rational (|8, Conjecture 19]);
(III) the Enriques-Fano threefold WZS of genus p = 3 given by the quotient of the
blow-up of By along a curve given by the intersection of two elements of | — %K Byl

where By is the double cover of P3 branched in a smooth quartic surface (see [T,
§6.2.7)):

— in this case ¢, : W;S --» P? is a rational map of degree 2;

according to [I, p. 34], the number of moduli of W:;s is 15;

these W:; ¢ can also obtained as quotient of the blow-up of a smooth quartic
hypersurface of P(1%;2), along a smooth elliptic curve, which is cut out by
two hypersurfaces of degree one;

— it is also found by Sano (see [48, Theorem 1.1 No.3));

(IV) the Enriques-Fano threefold W3 of genus p = 4 given by the quotient of a
double cover of P! x P! x P! branched in a divisor of multidegree (2,2,2) (see
[T, §6.3.3)):

— in this case ¢ : Wag --» P* is a rational map birational onto the image,
which is the Enriques threefold Wi C P4;

— according to [1, p. 40], the number of moduli of W3 is 10;

— it is also found by Sano (see [48, Theorem 1.1 No.5]);

— it is non-rational (see [45]);

(V) the Enriques-Fano threefold Wz 5 of genus p = 4 given by the quotient of P! x S,
where S, is a double cover of P? branched in a quartic curve (see [T, §6.6.2]):

. . =4 . . o
— in this case ¢p : W g --+ P is a rational map and it is a double cover of
the image, which is a quadric cone;

— according to [I, p. 61], the number of moduli of W;lss is 4;
— it is also found by Sano (see [48, Theorem 1.1 No.4]);

— it is rational (see [7, Remark 7.3]);
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(VI) the Enriques-Fano threefold W3g of genus p = 5 given by the quotient of the
blow-up of a smooth intersection of two quadric hypersurfaces of P?, along the
elliptic curve given by the intersection of two hyperplane sections (see [1, §6.2.2]):

~ in this case ¢r : W3g — P° is a morphism birational onto its image, which
has two double planes;

— according to [I, p. 25], the number of moduli of these threefolds is 7;

— it is also found by Sano (see [48, Theorem 1.1 No.7]);

— it was accidentally not listed in [I, Theorem BJ;

— it is rational (see [, Remark 7.3]);

(VII) the Enriques-Fano threefold WSBS of genus p = 5 given by the quotient of a
double cover of P?, branched in a smooth quartic surface (see [I} §6.1.2]):

s —5 : . -
— in this case ¢z : Wz — P is a morphism and it is a double cover of the
image, which is a complete intersection of two quadrics;

— according to [I, p. 18], the number of moduli of these threefolds is 11;
— these W%S can be also obtained as quotient of a quartic hypersurface of
P(1%2);
— it is also found by Sano (see [48, Theorem 1.1 No.8]);
— it is rational (see [8, Theorem 1]);
(VIII) the Enriques-Fano threefold W8s of genus p = 6 given by the quotient of the
complete intersection of three divisors of bidegree (1, 1) on P? xP? (see [11, §6.2.4]):
— in this case ¢ : W5g < P° is an embedding;
— according to [I, p. 29], the number of moduli of these threefolds is 24;
— it is also found by Sano (see [48, Theorem 1.1 No.9]);
— it is rational (see [7, Corollary 7.2]);
(IX) the Enriques-Fano threefold W; ¢ of genus p = 7 given by the quotient of P! x S,
where Sy is a Del Pezzo surface of degree 4 in P* (see [1], §6.6.1]):
— in this case ¢, : W; ¢ — P7 is a morphism birational onto its image;
— according to [I, p. 59], the number of moduli of these threefolds is 2;
— it is also found by Sano (see [48, Theorem 1.1 No.10]);
— it is rational (see [7, Corollary 7.2]);
(X) the Enriques-Fano threefold Wjg of genus p = 7 given by the quotient of a
smooth divisor on P! x P! x P! x P! of multidegree (1,1,1,1) (see [1, §6.4.1]):
— in this case ¢ : Wjig < P7 is an embedding;

— according to [I, p. 46|, the number of moduli of these threefolds is 3;
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— it is also found by Sano (see [48, Theorem 1.1 No.11]);
— it is rational (see [T, Corollary 7.2]);
(XI) the Enriques-Fano threefold W5 of genus p = 8 given by the quotient of the

blow-up of the cone over a quadric surface Q C P? along the disjoint union of
the vertex and an elliptic curve on @ (see [II, §6.4.2]):

— in this case ¢ : Whg < P® is an embedding;

— according to [I, p. 51], the number of moduli of these threefolds is 2;

— Sano erroneously omits it (see [48, p. 378));

— it is rational (see [7, Corollary 7.2]);

(XII) the Enriques-Fano threefold W3g of genus p = 9 given by the quotient of the
intersection of two quadrics in P° (see [I], §6.1.4]):

~ in this case ¢z : W3g < P? is an embedding;

according to [I, p. 21], the number of moduli of these threefolds is 3;
it is also found by Sano (see [48, Theorem 1.1 No.12]);

it is rational (see [7, Corollary 7.2]);

XIII) the Enriques-Fano threefold W% of genus p = 10 given by the quotient of P! x S,
BS
where Sg is a smooth Del Pezzo surface of degree 6 in P° (see [I], §6.5.1]):
~ in this case ¢ : WL < P is an embedding;
— this threefold has no moduli (see [I], p. 56]);
— it is also found by Sano (see [48, Theorem 1.1 No.13));
— it is rational (see [7, Corollary 7.2]);
(XIV) the Enriques-Fano threefold W% of genus p = 13 given by the quotient of
P! x P! x P! (see [T} §6.3.2]):
— in this case ¢ : WEL < P is an embedding;
— this threefold has no moduli (see [I}, p. 37]);
— it is also found by Sano (see [48, Theorem 1.1 No.14]);
— it is rational (see [7, Corollary 7.2]);

Remark 3.5. Sano found another threefold (see |48, Theorem 1.1 No.6]) but Bayle
excluded it, by providing a more accurate analysis than Sano’s (see [1, §6.2.5]).

Remark 3.6. If (W, L) is one of Whe, Wike, Whe, Was, WL and WEL, then an
element S € L is very ample (see [I, Theorem A]).
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Remark 3.7. Since the rational F-EF 3-folds have eight quadruple points whose tan-
gent cone is a cone over a Veronese surface (see [23, p. 44]), then they have only
terminal singularities (see [47, Example 1.3]) and therefore they are limits of BS-EF
3-folds (see [44, Main Theorem 2]). In particular, by using Macaulay2, we will find
that W55”""® can be obtained exactly as W= (see Theorems .

In the paper of Knutsen-Lopez-Munoz, the following Enriques-Fano threefold is
discovered:

(XV) the Enriques-Fano threefold W3-, ,, C PY of genus p = 9 given by the image of
the F-EF 3-fold W}* C P via the rational map pg,) : P'® --» P?, which is the
projection of P? from the three-dimensional linear subspace P* & (E3) spanned
by a smooth irreducible elliptic quartic curve E3 C W2.

It is known that the Enriques-Fano threefold found by Knutsen-Lopez-Munoz (shortly
KLM-EF 3-fold) has canonical non-terminal singularities but so far there was no in-
formation about their multiplicities and tangent cones. We will analyze them in §
thanks to Macaulay2. The KLM-EF 3-fold is rational by construction.

Prokhorov constructed

(XVI) an Enriques-Fano threefold W}? of genus p = 13 given by the quotient of a
cone over a smooth Del Pezzo surface of degree 6, under an involution fixing five
points (see [46, Remark 3.3]);

(XVII) an Enriques-Fano threefold WA of genus p = 17 given by the quotient of a cone
over the octic Del Pezzo surface obtained by the anticanonical embedding of
P! x P!, under an involution fixing five points (see [46, Proposition 3.2]).

Thanks to Macaulay2, we will see that the above Enriques-Fano threefolds (shortly
P-EF 3-folds) are embedded in PP=1317 (see § . We will also find the tangent cones
at their singularities. The P-EF 3-folds are (at least) unirational by construction.

The rationality of the Enriques-Fano threefolds and the number of their moduli are
still open questions, which we will examine in future projects.

3.3 Normality and projective normality

Some authors define an Enriques-Fano threefold just as a threefold satisfying the fol-
lowing assumption (see for example [25, Definition 1.1] and [36] Definition 1.3]).

Assumption (*). Let W C PV be a non-degenerate threefold whose general hyper-
plane section S is an Enriques surface and such that W is not a cone over S.

If the pair (W, L := |Ow/(95)|) satisfies Assumption (*), it is enough to take its
normalization v : WY — W to obtain an Enriques-Fano threefold in the sense of
Definition [3.1 that is (W",v*L). Indeed an element of v*L is ample, since it is the
pullback of a very ample divisor of £ via the finite birational morphism v : W¥ — W
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(see [37, Theorem 1.2.13]). Moreover if (IW",v*L) were a (polarized) generalized cone,
WY would contain a 3-dimensional family of curves of degree 1 with respect to the
given polarization such that they all pass through a point: thus W C PY would be the
union of lines through a point, by contradicting Assumption (*).

An example of “Enriques-Fano threefold” in the sense of Assumption (*) is the
KLM-EF 3-fold W3;,, C P% instead of proving the normality of this threefold,
Knutsen-Lopez-Munoz study properties of its normalization (see [36, Proposition 13.1]).
We will see below that the KLM-EF 3-fold actually is (projectively) normal.

Also the rational F-EF 3-folds W£:6’7’9’13 C PP are “Enriques-Fano threefold” in
the sense of Assumption (*): indeed their normality is unproved, even if Fano assumed
normality at the beginning of his work (see Assumption F1 in §[4.2). The normality of
the non-rational F-EF 3-fold W} is unproved too; however it does not exactly satisfy
Assumption (*), since its hyperplane sections are not Enriques surfaces, but their min-
imal desingularization they are (see [16, p.275]). We will see below that the rational
F-EF 3-folds of genus 7, 9 and 13 actually are (projectively) normal.

Instead the BS-EF 3-folds and the P-EF 3-folds are normal by construction, since
they are quotient of normal threefolds under the action of a finite group defined by a
certain involution with a finite number of fixed points (see [19, Proposition 2.15]). In
particular, the BS-EF 3-folds with very ample hyperplane sections satisfy Assumption
(*) in the projective space in which they are embedded, while the eight BS-EF 3-folds
W§§2’3’4’5 and WB:S’ T are Enriques-Fano threefolds satisfying exactly the abstract
Definition Furthermore, as we will (computationally) see in § and § [8.3 the
P-EF 3-folds W2%="*'7 can be embedded in P? and they also satisfy Assumption (*).

Theorem 3.8. Let W C PV be a threefold satisfying Assumption (*). If S € PN~ is
linearly normal and if either N > 7 or N = 6 and S is not a Reye congruence, then
h*(Ow) = 0 and W C PV is projectively normal.

Proof. Since the case where N = 6 and S is a Reye congruence is excluded, we have
that S C P¥~! is projectively normal (see [24, Theorem 1.1]). Thus, by using the
arguments of [I5, Lemmas 1.5,1.6,1.7] (which are inspired by the ones of [20, pp. 10-
11]), we obtain that h'(Ow ) = 0 and that W C PV is projectively normal. O

Proposition 3.9. Let W C PV be a threefold satisfying Assumption (*). If W C PV
is linearly normal and h'(Oy/) = 0, then S C PV~! is linearly normal.

Proof. We have to show that h°(Og(1)) = h°(Opn-1(1)) = N. This follows by the

following exact sequence
0— Ow — Ow (1) = Os(1) = 0,

since h%(Ow) =1, h'(Ow) = 0 and h°(Ow (1)) = h°(Opn (1)) = N + 1 by hypothesis.
0
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Corollary 3.10. Let W C P¥ be a threefold satisfying Assumption (*). If W c P¥
is linearly normal and h'(Oy ) = 0, then W C P¥ is projectively normal (except when
N =6 and S is a Reye congruence).

Proof. See Theorem [3.8 and Proposition O

Proposition 3.11. Let W C P? be a threefold satisfying Assumption (*) such that p
is the genus of a curve section of W. Then W C PP and S C PP~ are linearly normal.

Proof. By Riemann-Roch on S we obtain h°(Og(1)) = p. From W C PP we have that
h°(Ow (1)) > p+ 1. On the other hand, from the following exact sequence

0— O — Ow(l) = Os(1) — 0
one gets h’(Ow (1)) < p + 1 and hence equality holds. O

Corollary 3.12. The following Enriques-Fano threefolds are projectively normal:

WIQ(LM C ]P,Q’ W§:779,13 C IP)p’ W§;7,879,10713 & IP)p’ W]];:13,17 C IP)p.
Proof. See Theorem [3.8 and Proposition [3.11] O

We cannot say the same for the F-EF 3-fold W3 C P°, since its hyperplane sections
are Reye congruences (see [I3, Proposition 3] and [23, §3]). As for the BS-EF 3-

fold Whe & PS, one can find with Macaulay2 that its hyperplane section S C P°
is not contained in quadric hypersurfaces of P® (see Code of Appendix : this
is equivalent to say that S C P5 is projectively normal (use Riemann-Roch and see
[24, Theorem 1.1]), thus we obtain that W5 C P° is projectively normal too (see
Theorem |3.8]).

4 Fano’s approach to the classification of Enriques-
Fano threefolds

4.1 Conte-Murre’s work

In order to explain Fano’s approach to the classification of Enriques-Fano threefolds,
we will first summarize the work of Conte and Murre. In their paper [14], they stud-
ied threefolds W satisfying the following assumption, which is a particular case of

Assumption (*) of §[3.3|
Assumption (CM1). Let W C PV be a non-degenerate threefold such that

(i) W is projectively normal;
(i) if h = PV~! is a general hyperplane then F':= W N h is an Enriques surface;

(iii) W is not a cone over F.
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By setting £ := |Ow/(F)| we observe that a threefold W satisfying Assumption
CM1 is an Enriques-Fano threefold, according to Definition [3.1} indeed the projective
normality of W implies its normality, and an element of £ is ample since it is very
ample. So W has isolated singular points P, ..., P, (see also [I4, Lemma 3.2]). The
genus p of such an Enriques-Fano threefold is equal to the genus of a general curve
section I' := W NhNA: indeed, since I is a smooth curve on an Enriques surface F', by

2
the adjunction formula we have p = %3 +1= F'TF +1= W + 1 =po(I") = py(I).
In particular we have N = p (see [14], Corollary 3.6]) and p > 5 (see [14, Remark 4.5]).

Conte and Murre also re-proved a result of the paper [20] of Godeaux, useful for the
arguments of Fano. Indeed they showed that on a threefold W satisfying Assumption
CML1 there exists a linear system |p| of Weil divisors ¢ such that: dim |p| = p—1; for a
general ¢ the hyperplane section ¢Nh is a canonically embedded curve; |¢| has no base
points except possibly at the singular points P, ..., P, of W; H' (¢, O,(n)) = 0,n > 0;
H?(p,0,(n)) = 0,n > 0; dim H? (p, O,) = 1 (see [14, Lemma 3.7]). We will refer to
|| as the Godeauz linear system of W and we will denote by Ay : W --» PP~1 the
rational map defined by |¢|.

Assumption (CM2). Let W be a threefold with isolated singularities P, ..., P, such

that, if 7 : W — W is the blow-up of W in the singular points, then W is smooth and
the exceptional divisors Ey := 7~ (P}),..., E, := 71 (P,) are smooth too.

Let us consider now a threefold W satisfying Assumptions CM1 and CM2. If F
and ¢ are respectively the strict transforms of a general hyperplane section of W and
of a general element of the Godeaux linear system of W, then we have

i=1 i=1

in Pic(W), where t;,7; € Z for all i = 1,... n (see [14, Lemma 3.12]).

Assumption (CM3). Let W be a threefold with isolated singularities P, ..., P, such
that all they “behave in the same way”: this means, for example, that if W satisfies
Assumptions CM1 and CM2 and if 1 < ¢ < j < n, then we have that ¢, = t; =t and
ri=r;=rin ; we have that p, (C;) = p, (C;), where C; :== ¢ N E;, etc.

It follows that if W is a threefold satisfying Assumptions CM1, CM2 and CM3, then
all the singular points P, ..., P, of W are base points of its Godeaux linear system ||
and furthermore we have that ¢, =¢ > 0 in (1)) (see [14, Lemma 4.2]).

Assumption (CM4). If W is a threefold satisfying Assumptions CM1, CM2 and
CM3 and if ¢ denotes the strict transform of a general element ¢ of its Godeaux linear
system, then the linear system || has no base points on W, the curves C; := ¢ N E;
are smooth and irreducible for all 1 < i < n, and ¢ is smooth.
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If W is a threefold satisfying Assumptions CM1, CM2, CM3, CM4 and if M is the
image of W via its Godeaux linear system, then we have the following diagram

Algl

We have all the elements to state the main theorem of Conte-Murre’s paper (see [14]
Theorem 7.2]), thanks to which they rigorously proved the assertions made by Fano in
[23, §1-2].

Theorem 4.1 (Fano-Conte-Murre Theorem). Let W be a threefold satisfying As-
sumptions CM1, CM2, CM3 and CM4. Then W C P? is an Enriques-Fano threefold
of genus p > 6 with n = 8 quadruple points P, ..., Ps, whose tangent cone is a cone
over a Veronese surface. Furthermore W carries a linear system |¢| of Weil divisors,
the general members of which are K3-surfaces. This system has dimension (p — 1), has
base points at the points P, ..., s and the associated rational map A, is birational
onto the image. Moreover, the points P, ..., Ps are rational double points on a gen-
eral p. Let M = A, (W) C PP~! be the image. Then M has degree 2p — 6 and has
K3-surfaces as general hyperplane sections (i.e., M is a Fano threefold in the classical
sense). Finally M contains 8 planes 7y, ..., s which are the “images” of the singular
points Py, ..., Ps of W, in the sense that 7, := \g(E;) for i =1,...,8.

Remark 4.2. Under the Assumptions CM1, CM2, CM3 and CM4, we have r; = r = 0
and t; =t = 1in (1)) (see [I4, Remark 3.14, Lemma 6.3, Corollary 6.5]); hence in Pic(W)
we have K = —¢ and oF = 20 + Zle E;. The last formula has an important role
in Fano’s work as we will explain in §

Remark 4.3. The Enriques-Fano threefolds satisfying Assumptions CM1, CM2, CM3
and CM4 have terminal singularities, since their tangent cone is a cone over a Veronese
surface (see [47, Example 1.3]). There is another way to prove it: by Assumption
CM2 we can see 7 : W — W as the resolution of the singularities Py, ..., P,, and
so we have K = m*Kw + > a;E;, where a; € Q. By fixing j € {1,...,n}, we
have K + E; = m* Ky + 3. a;E; + E; and by the adjunction formula we have
Kg, = (K + Bj) |, = (a; + 1)Ej|,. Moreover by [14, Corollary 3.15] we have that
Kg, = —(% +r;+ 1)E| E;, Where ZEJ is the strict transform of a general hyperplane

section of W through the point P;. Since f’]]E] ~ (F — Ej)|g; ~ —FEj|g,, then we have
(% +71; +1)Ej|p, = Kg; = (a; + 1) Ej|g,. Thus we obtain a; = % +r;=13>0.

Now we must recall a notion introduced by Fano in [23 p. 44] and subsequently
taken up by Conte and Murre in [14], Remarks 7.3 (iv)].

Definition 4.4. Two distinct singular points P; and P; of an Enriques-Fano threefold
W are said to be associated if the line joining them is contained in W.
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If W is a threefold satisfying Assumptions CM1, CM2, CM3 and CM4, and so we
are in the situation described by Theorem [{.1] then the only objects which are con-
tracted by A, are the lines (P, P;) provided these lines are contained in W (see [14]
Remarks 7.3 (ii)]). In this case P, and P; are associated and the planes m; and 7; have
a point in common, that is the contraction of the line (F;, P;) and which is a double
point for M. Conte and Murre also observed that, since the only base points of the
system |p| are the points P;, then a general ¢ does not contain a line of kind (7, FP;):
hence the general hyperplane section of M is a smooth K3-surface and M has at most
isolated singularities.

The singular points of a threefold W satisfying Assumption CM3 are called “similar”
by Conte and Murre. However their definition of “similar” takes on a changing meaning
in their paper. For this reason, we give the following definition, to which we will refer
for the results of this thesis.

Definition 4.5. The singular points P, ..., P, of an Enriques-Fano threefold W are
said to be similar if

(i) they have the same multiplicity;
(ii) they have the same tangent cone;

(iii) there is an m such that each P; is associated with exactly m other singular points.

4.2 Fano’s work

In order to classify the Enriques-Fano threefolds with p > 6, Fano used Theorem [4.1]
even if he stated it with many gaps and without a real proof. Anyway, let us explain
Fano’s idea, which is based on the following five assumptions.

Assumption (F1). W C PY=? is a normal threefold such that a general hyperplane
section F' := W N h is an Enriques surface, a general curve section I' := W N hN A is
a smooth curve of genus p and W is not a cone on F'.

The Assumption CM1 implies the Assumption F1, since the projective normality
implies the normalilty.

Assumption (F2). The linear system of the curve sections is complete on a hyperplane
section F' of W, i.e. the map H*(W, Ow (1)) — H°(F,Or(1)) is surjective.

Conte and Murre proved Assumption F2 as a consequence of Assumption CM1 (see
[14, Corollary 3.5]).

Assumption (F3). If p > 6 the Godeaux linear system |p| of W defines a rational
map A : W --» PP~! which is birational onto the image M.

Conte and Murre proved Assumption F3, under the Assumptions CM1, CM2, CM3
and CM4 (see [14], §5.24]). Fano showed that a threefold W satisfying Assumptions F1,
F2 and F3 has eight quadruple points, whose tangent cone is a cone over a Veronese
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surface (see |23, §2]). Conte and Murre observed that Fano’s arguments are inaccurate
(see [14], footnote (2) p.54]). However they found the same result of Fano, under the
Assumptions CM1, CM2, CM3 and CM4, as we have said by stating Theorem [4.1

Assumption (F4). Each of the planes 7, ..., 7 contained in M intersects the other
seven planes at most at distinct points (see also Figure [1).

YES

Fz’gure 1: If two planes m; and m; in M intersect a third plane my, for 1 <i < j < k <8, the situation on the left
is admitted by Assumption FJ, while the situation on the right is not.

Assumption (F5). Each singular point P,_; g of W is associated with the same
number 0 < m < 7 of the other singular points. The corresponding plane w; C M
intersects the corresponding m planes.

Conte and Murre observed that Assumption CM3 implies Assumption F5 (see [14,
Remarks 7.3 (iv)]).

Fano’s approach to the classification of Enriques-Fano threefolds of genus p > 6 is
essentially based on three steps:

(step 1) search for a Fano threefold M C PP~! containing 8 planes 7y, ..., 7g satisfying
Assumptions F4 ans F5;

(step 2) search for a p-dimensional linear system on M whose general element is an En-
riques surface f such that 2f ~ 2¢ + Z§:1 m;, where ¢ is a general hyperplane
section of M:;

Remark 4.6. The relation 2f ~ 2¢ + Zle m; in M corresponds to the relation
in Remark by setting f := A\g(F) and ¢ := \/(9).

(step 3) the image of the rational map defined by | f| is the desired Enriques-Fano threefold
W.

Remark 4.7. In simple words, Fano used a sort of inverse of Theorem [4.1] giving
importance to the similarity and the association of the singular points of W. By using
this method, Fano constructed the F-EF 3-folds of genus p > 6, whose search can be
summarized in the following way:

(i) p=6=m="T7= Py,..., Py must be associated as in Figure |21 of Appendix
= 3 F-EF 3-fold W§ C PY;
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(ii) p > 7= M is intersection of quadrics in PP~;

(iii) p=7=m=6= Pp,..., Py must be associated as in Figure [22| of Appendix
= 3 F-EF 3-fold W} C P7;

(iv) p > 7 = there are no three mutually associated points = m < 4;

(v) m =4 = Py,..., Py must be associated as in Figure 24| of Appendix [A|= p =
9 = 3 F-EF 3-fold W} C P?

(vi) m<3=m=3= P,,..., P must be associated as in Figure 26| of Appendix
= p =13 = 3 F-EF 3-fold W C P'3,

In [I4], §8] and [23] one can find the description of the Fano threefolds M associated
with the F-EF 3-folds of genus p > 6.

4.3 Exceptional cases and possible generalizations

Fano also found an Enriques-Fano threefold Wi C P* of genus p = 4, which behaves
differently from the F-EF 3-folds of genus p > 6. Indeed W} is a sextic hypersurface
of P* with six double planes, four triple lines and a quadruple point. Its hyperplane
section F' := W3 N h is a sextic surface of h = P? double along the six edges of a
tetrahedron and triple at its four vertices. So F' is not a (smooth) Enriques surface
as required by Assumption F1 (and CM1), but its minimal desingularization is (see
[16, p.275]). Furthermore in this case the Godeaux linear system |¢| defines a double
cover of P? (see [23] §10]). Hence W3 is a kind of exception in the analysis of Fano and
Conte-Murre.

We have already said that the rational F-EF 3-folds W£:6’7’9’13 are linked to the BS-
EF 3-folds W§§6’7’9’13 with very ample hyperplane sections (see Remark . We also
recall that the F-EF 3-fold W} is the birational image of the BS-EF 3-fold (W3g, £)
via the rational map ¢ : Wiy --» P* (see [I, §6.33]). This suggests that one could
obtain the BS-EF 3-folds with ample (but not very ample) hyperplane sections, by
using a weaker form of Assumption F1 (and CM1) and by resuming Fano-Conte-Murre
techniques: indeed another link between BS-EF 3-folds and F-EF 3-folds is given by
the hidden presence of the BS-EF 3-fold W34 in Fano’s paper (as we said in §[3.2](00)).
Re-examining the brilliant ideas of Fano with the techniques of Conte and Murre would
be very interesting, even if no one has yet shown interest in the problem.

However, one must be careful of hidden mistakes in reviewing Fano’s paper. For
example, the BS-EF 3-folds W54 and W% do not appear in the description of Fano (for
some strange reason), although they behave like the other BS-EF 3-folds Wg,? with
very ample hyperplane sections: they are projectively normal (see § and their eight
quadruple points are similar (see Remarks , . One of the reasons why they don’t
appear in Fano’s paper could be the fact they seem to be in contradiction with Re-
mark [4.7| (iv) (see Remark [6.13). It is a situation that should be understood better.
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Fano-Conte-Murre’s techniques might also be useful to include the P-EF 3-folds.
In these cases Assumption CM1 is satisfied (see § while Assumptions CM2 and
CM3 are not (see Remarks , , . So one should eventually weaken these
two assumptions. Anyhow, by weakening Assumptions CM2 and CM3 we could obtain
information on Enriques-Fano threefolds with non-terminal canonical singularities: in-
deed as we have seen in Remark [4.3] it seems that they have an important role for the
terminality of the singularities. Finally the nature of the KLM-EF 3-fold W}, ,, and
of the F-EF 3-fold W}, suggests that some Enriques-Fano 3-folds could be obtained via
projection techniques.

5 Modern analysis of the rational F-EF 3-folds

5.1 Abstract

We recall that Fano found five Enriques-Fano threefolds (see [23]): one of genus 4,
which is non-rational (see [45]) and four of genus p = 6,7,9,13, which are rational.
However, in his paper there are many hidden gaps, as Conte and Murre showed in [14]
and as we will see in Remarks [6.13] By using blow-ups techniques, we will verify
that the images of the following linear systems on P? actually are rational Enriques-
Fano threefolds with eight quadruple points, as Fano said: the linear system S of the
sextic surfaces double along the six edges of a tetrahedron; the linear system /C of the
septic surfaces double along the six edges of two trihedra; the linear system X of the
sextic surfaces double along the six edges of a tetrahedron and containing a plane cubic
curve intersecting each edge at one point; the linear system P of the septic surfaces
double along three twisted cubics having five points in common. We will start with
the classical case (see §[5.2), in order to have a model to refer to, and then we will
continue with the lesser known ones (see § -M . Furthermore we will find that
the singular points of the F-EF 3- folds Wp 20T are assomated in the way imposed

by Fano (see respectively Figures of Appendix E For some results we
will also use Macaulay?2.

5.2 F-EF 3-fold of genus 13
5.2.1 Construction of W}

Let us take a tetrahedron 7' C P? with vertices vy, v1, v, v3 as in Figure . Let f; be
the face of T opposite to the vertex v; and let us denote the edges of T' by l;; := fi N f;,
for 0 <i < j < 3. Let S be the linear system of the sextic surfaces of P* double along
the six edges of T. Up to a change of coordinates, we can consider in IP’[SO 51:52:55] the
tetrahedron T = {sgs18953 = 0} with faces f; = {s; = 0}, for 0 < i < 3. The linear
system § is defined by the zero locus of the following homogeneous polynomial

2.2.2 2.2 .2 2.2 .2 2.2 .2
A0S15555 + A1555555 + NaSgSTS5 + A3S55185 + SoS15253Q (S0, 51, S2, S3),

where A\, A1, A2, A3 € C and Q(sq, $1, S2, 53) = ZK] ¢ij5i5; 1s a quadratic form (see [27,
p.635)). Since dim H(P3, Ops(2)) = (*1?), then dim S = 13.
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Vg

Figure 2: Tetrahedron T C P3.

Remark 5.1. Let X be a general element of S. By looking locally at the equation of S,
then we obtain the following two assertions, for distinct indices i, j, k, h € {0,1,2,3}:

(i) X has triple points at the vertices of T" and TC,, X = f; U fr, U fi;

(ii) if p € l;; with p # vy and p # vy, then T'C,Y is the union of two variable planes
containing [/;;, depending on the choice of the point p and of the surface ¥, and
coinciding for finitely many points p.

Lemma 5.2. The rational map vs : P? -—-» P!3 defined by S is birational onto the
image.

Proof. Tt is sufficient to verify that the map defined by & on a general ¥ € S is
birational onto the image, and this actually happens because S|y contains a sublinear
system that defines a birational map. Indeed S contains a sublinear system S C S
whose fixed part is given by the tetrahedron T and such that S|y coincides with the
linear system on ¥ cut out by the quadric surfaces of P3. O

Remark 5.3. The proof of Lemma tells us that the linear system § is very ample
outside the tetrahedron T. So vs : P3 --» vs(P3) C P!? is an isomorphism outside 7.

Theorem 5.4. [23] §8] Let W}? be the image of the map vg : P? --» P!3. Then W}3
is an Enriques-Fano threefold of genus p = 13.

Proof. The idea of the proof is to blow-up P? along the base locus of §, until we obtain a
smooth rational threefold Y and a base point free linear system SonY. By Lemma
the new linear system S will define a birational morphism vg: Y = Wg C P8 To
obtain that W13 is an Enriques-Fano threefold, it will be sufficient to verify that the
general hyperplane section S is an Enriques surface and that W23 is not a cone on S
(see § Furthermore, to obtain the genus p = 13 of W2 we will compute the degree
of the threefold, which is 24 = 33 = deg W3 = 2p — 2 for & € 8. The proof is divided
into several steps, given by the Remarks[5.5]. . ., and the Theorem below.
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We blow-up first P? at the vertices of T, obtaining a smooth threefold Y’ and
a birational morphism b/’ : Y' — P? with exceptional divisors E; := (bl')~(v;), for
0 < i < 3. Let & be the strict transform of S and let us denote by H the pullback
on Y’ of the hyperplane class on P?. Then an element of &’ is linearly equivalent to
6H — 32?:0 E;. Let f; be the strict transform of the face f;, for 0 <1 < 3. We
denote by 7;; = E; N f; the line cut out by j‘; on E;, for 0 <@ < 75 < 3. We have
that 7,5 is a (—1)-curve on f; If ¥’ is the strict transform of a general ¥ € S, then
' N E; = U0y, for all 0 <4 < 3, and ¥’ is smooth at a general point of 7;; (see

J#i
Remark . The base locus of &’ is now given by the union of the strict transforms

l;j of the six edges of T' (along which a general ¥’ € S’ has double points) and the
12 lines ;; (see Remark . Let us blow-up the strict transforms of the edges of
T: we obtain a smooth threefold Y” and a birational morphism bl” : Y — Y’ with
exceptional divisors

(B1") 7 (lyy) = Fyy 2PN, 1y) 2 P(Op (1) @ Opi (—1)) = Fy,

for 0 < i < j < 3. This blow-up has no effect on f;, for 0 < i < 3, so, by abuse of
notation, we will use the same symbol to indicate its strict transform on Y.

Remark 5.5. Let EZ be the strict transform of E; and let us consider the curve
oy = Ep N Fj, where 4, j, k are distinct indices in {0,1,2,3} and i < j (see Figure .
Since ay;; is a (—1)-curve on Ej and it is a fibre on Fj;, then we have that Fé B =

2 _ 72 2 _
sl = —1and Ep - Fj = agylp; = 0.

Figure 3: Description of bl"\EO : Eg — Egy. The same happens on Ej, for 1 < k < 3.

Let 8" be the strict transform of S": an element of S” is linearly equivalent to
6H — 350 E; — 2 o<icj<s Fij, where H denotes the pullback bl"™*H, by abuse of
notation. The base locus of §” is given by the disjoint union of the strict transforms
Ji; of the 12 lines 7;;, for 4,5 € {0,1,2,3} and i # j (see Remark [.1)).
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Remark 5.6. Let [, be the linear equivalence class of the lines of E; = P?: then
Eilp, ~ —li (see [27, Chap 4, §6] and [32] Lemma 2.2.14]). Let Lj; be the strict
transform of [, via bl”|]§k : Ek — Ej. Since bl"*(Ey) = Ek, then Ek‘Ek ~ —L; and
B3 =1.

Remark 5.7. By construction we have that 37| = —1 and ”if]]f] = —1, fori,j €
{0,1,2,3} and i # j. We also have that 7;;|s,» = —1, where X" is the strict transform

on Y" of a general element > € S. Indeed, since these twelve curves are disjoint,

then (37N E)?|sr = S5 35w, for all 0 <4 < 3. On the other hand we have that
i

(X" N E;)?|yr = E2- 5" = —3 (see Remarks , . Thus (3;;)?|s» = —1, since the

curves 7;; behave in the same way.

Finally let us consider bl : Y — Y the blow-up of Y” along the twelve curves
Yij, for i,5 € {0,1,2,3} and i # j, with exceptional divisors I';; := bl""~*(5;;). We
denote by &; the strict transform of Ei, by F;; the strict transform of Fj; and by H the
pullback of H, for 0 <17 < 75 < 3.

Remark 5.8. We have that
Ty = PN, 1vr) = (05, (E) ® O5,,(f) = P(Op1 (—1) ® Opi (1)) = F,

and that T'}; = — deg(N5,,jy») = 2 (see [27, Chap 4, §6] and [32, Lemma 2.2.14]).

Remark 5.9. Let us take three distinct indices ¢, j,k € {0,1,2,3}: if j < k, then I';;
intersects Fj; along a P!, which is a fibre on I';; and a (—1)-curve on Fj;. Similarly
Fij Ty =0and T}, - Fiy = —1if k < j. We also observe that I';; intersects & along a
P! belonging to the other ruling of T;, so we have £2-T';; = 0. Furthermore we still have
I3 - & = —1, since bl : Y — Y has no effect on E;. For this reason we will denote
I';; N & by 7,5, by abuse of notation. Let us suppose now ¢ < j and let us consider
the strict transforms cy;; of the curves ay;; defined in Remark . Then we have that
Fii- &k = Qiyle, = —1 and &7 - Fiy = &3;|7, = —2. Finally we recall that a general
line of P? does not intersect the edges of T" and that a general plane of P? intersects
each one of them at one point. Hence we have that H*- F;; = 0 and F}; - H = —1.

Remark 5.10. By construction we have bl”’*(Ek) =& + Z%O Iy, for 0 < k < 3.
i+k

If Ly is the strict transform of Ly via bl"|¢, : & — Ek, then we have that —&le, ~
Ly + Z?;g ki ~ ALy — 2> o<icj<s aki; and EF = 4 (see Remark .

i ik
Remark 5.11. Let us fix four distinct indices i, j, k, h € {0,1,2,3} with i < j. By
[32, Lemma 2.2.14] we have that F}} = —deg(/\/:l;ﬂy,) = 2 (see also [27, Chap 4, §6]).
Since bl""*(Fj;) = Fij, then we still have 7 = 2.

Let 3 be the strict transform on Y of an element of S”: then

3 3
S~ GH - 36— Y 2F;— Y ATy

i=0 0<i<j<3 i,j=0
i#]
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Let us take the linear system S := |Oy(3)| on Y. It is base point free and it defines a
morphism vg : Y — P! birational onto the image W2 := vz(Y), which is a threefold

of degree deg W13 = 24. This follows by Lemma and by the fact that ©3 = 24:

indeed by Remarks 5.8 [5.9] we have
2167—[3—27Z<€k—8 S F —64ZF 3667 - (2 Y Fu)+

0<i<j<3 zi]#jo 0<i<j<3
—3(923: ) ( 3 E]>—3(923:g,§)~<423:nj)+3(4 3 ﬁ?j>.(6H+
1=0 0<i<j5<3 1=0 22]75:]0 0<i<j<3
3 3
(e Y m) (Y a)-s( X A) () -s(e 30 r) (Y8«
0<i<j<3 i=0 0<i<j<3 z,i];jo zééjo i=0
(X)X A)-s(3a) (¥ A) (1) -
i’iéézjo 0<i<j<3 0<i<j<3 i;éé:jo

—216—-27-4-4—8-6-2—64-12-240—3-9-2-4-3-(=2)+0+3-4-6-6- (—1)+
—3:4:3:6-2-(=1)+0—-3-16-3-12-(=1)—3-16-2-12-2-(=1)—6-3-2-4-4.3.2 =
= 216 — 432 — 96 — 1536 + 0 + 1296 — 432 4 432 + 0 + 1728 + 2304 — 3456 = 24.

Then we have the following diagram:

Y

Nz
bl bl’ Vs

Y > Y y P3 ---%C > Wi C P13,

Remark 5.12. Since bl” : Y — Y has no effect on the divisor f:, for 0 <1 < 3, we
continue to use the same notation to denote its strict transform. The eight divisors
&, &1, &, &, fo, fi, fa, f3 are contracted by vg 1Y — Wi C P to points of W}?’

Indeed, if Yis a general element of S then by construction we have $.5=0=X- fi
forall 0 <17 < 3.

Remark 5.13. The morphism vz : Y — W, C P! blows-down the twelve exceptional

divisors I';; to twelve curves of W}g. This follows by the fact that > I';j # 0 and

2. Iy = O for a general element > € & and for all i .7 €{0,1,2,3} with i # j. Indeed
by Remarks [5.8] [5.9] we obtain

22-I‘ij_2~<—38i'Fij— Z 2(-F$yrl])_4rz2]>_
0<z<y<3
ig¢{zy}, je{zy}
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=987 - Ty+ Y 6(&-Fuy Ti) +126 T+ > 6(& Fuy - Tij)+

0<zx<y<3 0<zx<y<3
i¢{z,y}, j€{z,y} i¢{zy}, je{zy}
+ ) AFLT)+ D 8(F THHRET+ Y 8(FuyTh)+16TY, =
0<zx<y<3 0<z<y<3 0<zx<y<3
iZ{z,y}, j€{=,y} i¢{z,y}, je{z,y} iZ{z,y}, j€{=,y}

=0+6-2-1+12-(-1)4+6-2-14+0+8-2-(—1)+12-(=1)+8-2-(—1)+16-2 = 0.

Remark 5.14. Let 4, j, k, h be four distinct indices in {0, 1,2, 3} such that i < j and
let 3 be a general element of S. By Remarks , we obtain

S2.Fij = S (6H-Fij—3E-Fij—3E-Fiy—2F — ATy Fij— ATy Fyj—AD i Fiy—AT ) JFig) =

= 36K - Fiy — 12H - Fi + 9E7 - Fij 4+ 68 - Fj + 128, - Tay - Fij + 128, - Ty - Fijt
+9E7 - Fij+6En - FA-12E, - Dpi Fij+12Ep Ty Fij —12H - F 46y, F 468y - Fy+AF, +

+80 ;i « Frs + 8Thj - Fiy 4 80ni - Fiy + 80 - Fio 4 1204 - & - Fij + 1205 - & - Fij+

+120; - En - Fij + 12005 - Ep - Fij + 8T - Fio + 8Tk - Fiy 4 8T - Fiy + 8L - Fit

ij
+16T ;- Fij+161% - Fiy+1615,- Fij+ 1605 - Fij = 0412—18—6+12412—18—6+12+12+
+12—-6—-64+8+04+0+04+0+124+124124124+04+0+04+0-16—-16—-16—-16 =4 > 0.
Thus the curve N Fi; is not contracted by the rational map defined by S BE

Theorem 5.15. Let S be a general hyperplane section of the threefold Wi c P'3.
Then S is an Enriques surface and W2 is not a cone over S.

Proof. A general hyperplane section S of W} is the image of a general element Yed

via the morphism vz : Y — Wi C P Let us take ¥ := bl”($) € 8”. Since
" Y — Y” has no effect on ¥”, then ¥ N I';; is still a (—1)-curve on 52, for all
i,j € {0,1,2,3} and i # j (see Remark . Since vgls : > — S is the blow-down
of these twelve (—1)-curves (see Remarks 15.12} [5.13] [5.14)), then S is the minimal
desingularization of the corresponding ¥ := bl’(bl”(bl"'(X))) € S (see [27, p.621]). Tt
is known that the minimal desingularization of a sextic surface ¥ € S is an Enriques
surface (see [16], p.275]). It remains to show that W} is not a cone over S. Since Y is
rational by construction, then W23 is rational too. If W} were a cone, then it would
be birational to S x P!, for a general hyperplane section S of W}3. Thus, S would be
unirational, which is a contradiction because S is an Enriques surface. O

By Theorem we have that W} C P! satisfies the Assumption (*) of § [3.3]
Let p be the genus of a curve section of W}3: by the adjunction formula we have that
24 = 2p—2. Then W} is an Enriques-Fano threefold of genus p = 13, since W} C P13
is (projectively) normal by Theorem and Proposition m

O

30



5.2.2 Singularities of W}

Proposition 5.16. The points P,y = vg(&;) and P, = Vg(f;-), 0 <i <3, are
quadruple points of W} whose tangent cone is a cone over a Veronese surface.

Proof. First we recall that vz(&;) and I/g(}:) actually are points of W23, for 0 <i <3
(see Remark . Let us consider the sublinear system (S — &) C S for a fixed
0 < k < 3. Tt corresponds to taking the hyperplane sections of W} C P!3 passing
through the point Pyy1. The linear system (S —&)|¢, coincides with |Og, (—&)|, which
is isomorphic to the linear system of the quartic plane curves on E Wlth nodes at the
three points Ej N lz] for 0 <i < j<3andi,j#k (see Remark|5.10). By applying a
quadratic transformation, we obtain the linear system of the conics, Whose image is the
Veronese surface. Let us consider now the hyperplane sections of W} C P!3 passing
through P/, for a fixed 0 < ¢ < 3. It corresponds to taking the sublinear system &;
of the sextic surfaces of S containing the face f;. The movable part of S; is given by
the quintic surfaces Q; of P? containing the three edges of T' contained in f; and with
double points along the other three edges of T". Such a surface @); cuts on f; a quintic
curve given by the three edges of T' contained in f; and a variable conic. Let us denote
by &; the strict transform on Y of §; and let Q; be the strict transform on Y of Q.
Then S;|7 = |07(Q:)] = [Op2(2)[, whose image is the Veronese surface. O

Since vs : P3 --» W} C P8 is an isomorphism outside 7' (see Remark [5.3)),
then Py, Py, P, Py, P, Py, P; and P, are the only singular points of W} (see Re-
marks [5.12} [5.13} [5.14). By recalling Definition |4.4| we have the following result.

Theorem 5.17. Each singular point of W}? is associated with at least m = 3 of the
other singular points.

Proof. We know that the twelve exceptional divisors of bl” : Y — Y” are mapped
by vg: Y — W} C P to curves of W} (see Remark [5.13). In particular they are
mapped to twelve lines joining the points Py, P, P35, Py, P/, Py, P;, P, as in Figure
of Appendix [A] Let us show it, by fixing two indices 4, j € {0, 1,2,3} with j # 7. Let
3 be a general element of S: by construction we have that YN I';; belongs to one
of the two rulings of I';; = Fy. Then S|, = P! and so vg(T;;) € Wi is a line. In
particular vz(I';;) joins the points P = vg(&;) and Pj,, = ug(f;-), since I';; N & # 0
and T;; N f; # 0. O
Remark 5.18. Thanks to a computational anaylisis with Macaulay2, we see that each
singular point of W} is associated with ezactly m = 3 of the other singular points, as

in Figure 26] of Appendix [A] This follows by Remark [6.16] since the embedding of the
BS-EF 3-fold W% in P'3 is the F-EF 3-fold W}? (see Theorem [6.17)).

5.3 F-EF 3-fold of genus 9
5.3.1 Construction of W},

We take two trihedra 7" and 7" in P as in Figure : the trihedron 7" with vertex v,
faces f; and edges l;; := f; N f; and the trihedron 7" with vertex v’, faces f; and edges
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iy == finf; for 1 <i < j < 3. Let us consider the linear system I of the septic
surfaces of P? double along the six edges of the two trihedra 7" and 7",

Figure 4: Trihedra T and T’ in P3.

Remark 5.19. A septic surface K € K contains the nine lines r;; := f; N f}, for
i,j € {1,2,3}. Assume the contrary: then, by Bezout’s Theorem, K Nr;; is given by
7 points. Furthermore, each line 7;; intersects two edges of T" contained in f; and two
edges of T" contained in f;. Hence r; is a line through four double points of K. We
obtain that K N r;; contains at least 8 points, counted with multiplicity, which is a
contradiction. Thus it must be r;; C K.

Proposition 5.20. The linear system K is defined by the zero locus of the following
homogeneous polynomial of degree seven

F(s0, 51, 52,53) = fifafaf1faf3(Aoso + Ais1 + Aasa + Agss)+

L P OMS2 12+ M f2 12 4 M2 I2) + frfafsOn f32 152 + XS 152 4+ Mo f12 132),

where Ag,...,Ag € C and where f; and f; denote, by abuse of notation, the linear
homogeneous polynomials defining, respectively, the faces f; and f/, for 1 <1 < 3. The
linear system KC therefore has dim /IC = 9.

Proof. Let F' € Clsg: s1: S2 : s3] be the homogeneous polynomial of degree 7 defining
a general element K of K. We recall that the intersection of an irreducible septic
surface of P? with a plane is a septic curve: in particular, K intersects each face f;
of T along the septic curve given by the two double edges contained in that face plus
the three lines 7;;, for 1 < j < 3. The same happens with the faces of 7. This
implies that it must be K N f; = {f]fafif2fi =0, fi = 0} = 20y, + 2l + 23:1 Tij
and K N fl = {fifofsfi2fi> =0, f/ = 0} = 2}, 4 21, + 233‘:1 r;i, for distinct indices
i,k,h € {1,2,3}. Then it must be

F(s0, 51,82, 83) = f196(S0, 51, 52, 53) + M f1 fofsfsfa,
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where \; € C and gg is a homogeneous polynomial of degree 6 such that

96(50; S1, S2, 83) = f295(507 S1, 52, 53) + Asf{fﬁféflfgv

where A5 € C and g5 is a homogeneous polynomial of degree 5 such that

95(S0, 51, S2, S3) = f394(50, 51, 52, S3) + )\6f{f£féf1f2a

where \g € C and g4 is a homogeneous polynomial of degree 4 such that

94(S0, 51, 82, 53) = f193(50, 51, 52, 83) + M fol f52,

where A7 € C and g3 is a homogeneous polynomial of degree 3 such that

93(50, S1, S2, 83) = f§93(50751, 82733) + )\Sf{ :?7

where \g € C and ¢, is a homogeneous polynomial of degree 2 such that
92(S0, 51, 52, 53) = f3(Xoso + A1s1 + Agsa 4+ Agss) + Xof1 fo,

where Ao, A1, A2, A3, Ag € C. So F has the expression of the statement. Since {K €
K|IK D fi} = {F = 0|\; = 0}, then codim ({K € K|K D f1},K) = 1. Let us see that
containing the six faces fi, fa, fs, fi, f5, f imposes independent conditions: there
exists a septic surface in K containing f; but not fo, that is {F = 0|\, = 0, A5 # 0};
there exists a septic surface in K containing f; and fy but not f3, that is {F = 0|\y =
A5 = 0, A # 0}; there exists a septic surface in I containing fi, fo and f3 but not f,
that is {F = 0| Ay = A5 = X\¢ = 0, A7 # 0} there exists a septic surface in K containing
f1, fa, fz and f] but not fj, that is {F = 0|\s = A5 = A\¢ = A7 = 0, Ag # 0} there exists
a septic surface in K containing fi, fa, f3, fi, and f5 but not fj, that is {F = 0|\, =
As = X¢ = A\ = Ag = 0, A\g # 0}. Thus we obtain codim({K € K|K D TUT'},K) = 6.
Furthermore each element of {K € C|K D T'UT"} is of the form T"UT" U w, where 7
is a general plane of P?. Thus we have dim{K € K|K D T UT'} = dim|Ops(1)| = 3
and finally dimK =346 = 9. O

Let us consider the points mentioned in Remark : they are gijr == l;; N1y =
lij Ny and g5y o= i Ny = B Ny for 4, 5, k € {1,2,3} with i < j. These points also
represent the intersection points between the faces of a trihedron and the edges of the
other trihedron. Indeed we have that gijx = li; N fi and g;;, = l;; N fi (see Figure [3)).

Remark 5.21. Let K be a general element of K. By looking locally at the equation
of K (see Proposition [5.20)), then we find that:

(i) K has triple points at the vertices of T'and 7" and TC, K = U?Zl fiand TCy K =
U?:l i
(ii) TCy, K = fi U f; and chéjk = fiU fj, fori, j,k € {1,2,3} with i < j;
(iii) if p € l;;, with p # v and p # g;;x, then T'C, K is the union of two variable planes
containing [;;, depending on the choice of the point p and of the surface K, and
coinciding for finitely many points p. Similarly if p € I};, with p # " and p # g,

then T'C), K is the union of two elements of |Zy ps(1)| that depend on the choice
of p and K and that can also coincide for finitely many points p;
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Fig’LH"@ 5: Description of faces of T. The same happens on T’ by taking v instead of v'; fl instead of f!; vy, instead
of Tik; l;j instead of ly;; q;5, instead of q;jk and qg].k instead of q;j-

(iv) K is smooth along r;, except at the points contained in the edges of the two
trihedra.

Lemma 5.22. The rational map v : P? —-s P? defined by K is birational onto the
image.

Proof. Tt is sufficient to prove that the map defined by K on a general K € K is
birational onto the image. This actually happens because K|x contains a sublinear
system that defines a birational map. Indeed K contains a sublinear system K C K
whose fixed part is given by the two trihedra T' and 7" and such that K|x coincides
with the linear system on K cut out by the planes of P3. O

Remark 5.23. The proof of Lemma tells us that the linear system K is very ample
outside the two trihedra T and T". So vk : P? --» y(P?) C PY is an isomorphism
outside T U T".

Theorem 5.24. [23, §7] The image of v : P? --» P? is an Enriques-Fano threefold
W2 of genus p = 9.
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Proof. We will prove the theorem by using the approaches of the proof of Theorem [5.4]
In particular the proof is divided into several steps, given by the Remark [5.25 the
Proposition [5.26, the Remarks |5.27]. . ., and the Theorem below.

We blow-up first the vertices of the trihedra and the 18 points ¢;;; and qgjk for
i,j,k € {1,2,3} and i < j. We obtain a smooth threefold Y’ and a birational morphism
bl : Y' — P? with exceptional divisors E := (bl')"!(v), E' := (bl')"*(v'), Eyi =
(0") " Maij), Efyp := (0I')""(q};;,). Let K’ be the strict transform of K and let us denote
by H the pullback on Y’ of the hyperplane class on P?. Then an element of K’ is
linearly equivalent to 7TH — 3F — 3E" — 2 Zf’] k=1(Eijr + Eijy.). Let fl and f’ be the

1<j
strict transforms of the faces f; and f/, for 1 < i < 3. We denote by o= EN fz
the line cut out by fZ on F and by 7/ :== E'N f’ the one cut out by f on E'. By
construction, the curves ~; and ~/ are (—1)-curves respectively on fl and f’ If K'is
the strict transform of a general K € K, then K'NE = U?:o ~vi and K'NE' = U?:o Vi
and K’ is smooth at a general point of ; and of ~/ (see Remark [5.21). We also consider
the lines \ijx 1= Eije 0 fo and Ny, = Ej N f, where 4, j, k € {1,2,3} with 7 < j and
h € {i,j}. They are (—1)-curves on the strict transforms of the faces containing them.
Furthermore we have that K' N Ejj, = Uj,_; ; Aijen and K' N Ejy = U,_; 5 Ay (see

Remark [5.21)). Let us consider the strict transforms lm l;] and 7;; of the lines [;;, lgj
and r;, for 4, j, k € {1,2,3} and i < j. Then the base locus of K’ is given by the union
of the six curves Tij, Zj (along which a general K’ € K" has double points), of the nine
curves 7y, of the six lines v;, 7/, and of the 36 lines Aijx n, Ay, (see Remark. Let
us blow-up Y’ along the strict transforms of the edges of the trihedra and of the nine
lines 7;;. We obtain a smooth threefold Y and a birational morphism bl"” : Y” — Y’

with exceptional divisors

(60") 1 15) = Fij = PN, ) = P(Op1 (—3) @ O (=3)) = o,

(bl//)*l(?J =: FZ’] = P(NIL\Y') >~ P(Op1 (—3) ® Opi(—3)) = Fy,
(B") 7 (7y) = Rij = P(Nyv) = P(Opi (=3) © Opi (=3)) = .

This blow-up has no effect on fi and ﬁ-’, for 1 <1 < 3, so, by abuse of notation, we use

the same symbols to indicate their strict transforms on Y”. Let us denote by E, E',

E;ji and E! Lk respectively the strict transforms of E, E', E;;;, and E

Remark 5.25. Let us take the curves a;; := Eﬂﬂj, o= E’ﬂFZ’], Qi 1= Eijk NEF;,
’Uk = Ez,gk N Fz]? Qijk,h = Ezgk N th, zjkh = Ez]k N Rkh, where i,j,k € {1, 2,3}

with @ < j and h € {i,j}. By construction, a;; and «j; are (—1)-curves respectively

. / /
on E and E'; Qg and «;jy , are (—1)-curves on Eljk (see Figure @), iy, and g, are

(—1)-curves on Ewk,

and aimh are fibres respectively on Ry and Ryy.

a;; and ayj;, are fibres on Fjj; a . and awk are fibres on FU, Qijk b

Let K" be the strict transform of K': an element of K" is linearly equivalent to
TH —3E — 35 —2 gt (Big + Ez/jk) 2> <icjos(Fij + Fj) — ZU  Rij, where,

1<j

by abuse of notation, H also denotes the pullback bl"* H.
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Figure 6: Description of bl 5.

ik : E”k — E”k

Proposition 5.26. A general element K” € K” is a smooth surface with zero arith-
metic genus p,(K”) = 0.

Proof. The smoothness of K" is shown in [27], p.620-621], since K" is the blow-up of a
surface K € K with ordinary singularities along its singular curves (see Definition
and Remark [5.21]). We have to compute the arithmetic genus p,(K"”) = x(Ox~)—1. By
Serre Duality, we have that p,(K") = x(Og»(Kk»)) — 1. By the adjunction formula,
we have the following exact sequence

0 — OY//(KY//) — OY!/(KY// + K”) — OK”<KK”> — O

Since Y” is a smooth rational threefold, then we have that h°(Y” Oy»(Kyn)) =
py(Y") = 0. By Serre Duality, we have that h'(Y”, Oy»(Kyn)) = B> (Y",Oyn) = 0
for i = 1,2, and h3(Y", Oyn(Kyn)) = h°(Y", Oyr) = 1. Hence x(Oyn(Kyn)) = —1 and

Pa(K") = X(Oyr(Kyn + K")) = x(Oyn(Kyn)) = 1 = x(Oyn(Ky» + K")).
Since the canonical divisor of Y is linearly equivalent to

—4H+2E+2E’+22 (Bigr+ Ej) + Y (Fy+ F) Jrz:RZJ

,7,k=1 1<i<5<3 3,7=1
1<j

(see [27, p.187]), then we have Ky» + K" ~ 3H — E — E' — > i<icj<s(Fij + F;). Let
us denote by fi; and f; respectively the fibre class of Fj; and Fj;. Then we have the
following two exact sequences

0= Oyu(3H —E —FE') = Oys(3H) = Op @ O — 0,
O — OY{/(KY//+K//> — OYN(?)H—E—E/) — @1§7j<j§3OFij (2fz])@1§z<j§3OFz/J (2fz/_7) — 07
and we obtain x(Oyn(Ky» + K")) = (*}*) =2 -6-3 = 0. O

36



By Remark we have that the base locus of K is given by the disjoint union of
the strict transforms ¥;, 7/, Aijin, )\;jk ,, of the 42 lines defined as above.

Remark 5.27. We observe that 77|z = 7; |f -1, 32|z = 7’2|f, =1, X?jk’h =

Eijr

By / —_— _ . .
Uk7h|fh -1, )\jk h|E, = Uk’h|f},1 = —1. Furthermore, by using similar arguments

to the ones in Remark we also have that 7;, 7, Xijkvh, BV

ijkn are (—1)-curves on the
strict transform K" of a general K’ € K.

Finally let us consider the blow-up of Y” along the above 42 curves, which is the
map bl"” ;Y — Y” with exceptional divisors T'; := bl""~1(%;), T} := bl"'~ 1( )y Nijen :=
oI (Niji)y Mg := DI~ 1(/\;]k n)- We denote by €, &', Eij, Eljy,
strict transform of E E Ewk, EZ 5; by Fi; the strict transform of Fj;; by R the

strict transform of R; by H the pullback of H, for i,j,k € {1,2,3} with i < j and
h e {i,j5}.
Remark 5.28. We have that

respectively, the

T; = PN, yv) 2 P(O5,(E) & O5,(f;)) = P(Opi (—1) © Oz (—1)) = Fy,

I} = P(N5y) = P(O5(E') @ O5(f])) = P(On (—1) & Opi (1)) = F,
Nsjin = P53, v) ZP(O5 (Eig) © O (fn) 2 P(Opi(—1) & Op (—1)) = T,
N = PNy o) = POy, (Ely) © Oy, () 2 P(Op (—1) @ Opi (—1)) = Fo.

Furthermore we have I} = —deg(N5,y») = 2, [P = —degNzyr) = 2, Ay =
—deg(N5 ,vr) = 2, APy = _deg(NXij,le”) = 2 (see [27, Chap 4, §6] and [32,
Lemma 2.2.14]).

Remark 5.29. Let us take i,j,k € {1,2,3} with ¢ < j and h € {i,5}. The divisor
Fi; intersects Ty, T';, Ayjrpn each along a P!, which is a ( 1)—curve on F;; and a fibre
on Iy, Ty, Agjrn. The same happens with F/; and T3, T, A, . Similarly we have
Awkh ’th = Aljkh 7Ekh = —1 and Amkh R,Qlk = Njkn R in = 0. Let us consider the

strict transforms &, &f;, Qujk, Oy, Qijkny Oy, Of the curves defined in Remark -
Then we have

2

I

ayle=FL-E=-1, ajlp, =& Fyj=-2,
~ 2
alle=F & =—1, ajls, =E% F;=-2,
52 T2 _ ~2 _ _
Qe Eije = ]:z'j &k = —1, XijklFE = gz‘jk - Fiy =2,
~ 2 / ~/2
20, = F2.& — _1 2 . F.—_9
ijk
az]k 5] i ijk ) zgk|-7:z] ijk ] )
Qiik,h|Eijr R g Eije = —1, aijk,h|th = gzgk Rk =
~/ _ 2 r ~/2 _
Xijk,n |, = Rien - ijk = -1, aijk,h|Rkh = gz]k Rin =

Finally we recall that a general line of P? does not intersect the edges of the trihedra and
the nine lines r;;, while a general plane of P? intersects each of these lines at one point.

Hence we have that H*- F;; = H*- Fj; = H*>“ Ry = 0and ;- H = F7-H = R H = —1.
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Remark 5.30. By construction we have that

bl”/*(E) — &4 Z | bl/”*(Eijk) = Eiji + Nijii + Nijijs

1<z<y<3

bl///* Z me, lm* E;k) Uk + Az]k it Aljk J?

1<z<y<3

where i, j,k € {1,2,3} and i < j. By abuse of notation, we denote & N T;, & N T,

Eijie NV Nijins iy, O Ajjy. s Tespectively, by Jij, i, )‘mk b )\Ukh, where h € {i,j}. Let
L, L', Liji, Li; be the strict transforms on Y of a general line respectively of E, E,
Eijk, EU x- By using similar arguments to the ones in Remark |5 n we obtain

3
Ele ~ —(L Z )~ —(AL =2 ) ),
t=1 0<z<y<3
g|g/N—£/—|—Z 4,6/—2 Z
0<z<y<3
Eijle, ~ —(Lijr + Nijki + Niging) ~ —(3Laj — 25ijk — Qjki — Qijk.j),
gz'/jk|5/w ~ ( ijk + )\Uk i + /\z]k]) (3‘ka - a;jk,i - a;jk,j)’

so we have £% =4, £% =4, £ =3 and £ = 3.

Remark 5.31. With similar arguments to the ones in Remark we have ]-"f; =
_deg</\/’l~ij|Y') = 6, ‘Fz/jg - _deg(N’Té]-IY’) = 6, Riz - _deg(N?kHY’) =6, for i,j,k €
{1,2,3} with ¢ < j.

Let K be the strict transform on Y of an element of ”: then

3
K ~TH - 38— 35'—22 Eget &) =2 S (Fy+F) - R+
i,7,k=1 1<i<5<3 i,j=1
i<j
3 3
—4 Z(FZ + F;) -3 Z (Aljk’ h+ Auk h)
i=1 6,5 k=1
i<j, h=i,j

Let us take the linear system K := |Oy(K)| on Y. It is base point free and it
defines a morphism v : Y — P? birational onto the image W9 = vg(Y'), which is a
threefold of degree deg W3 = 16. This follows by Lemma and by the fact that
K? = 16: indeed by Remarks [5.28] [5.29] [5.30] [5.31)) we have

= (TH)? — 2763 — 276" — 8 Z St ER) =8 > (FR4FD - ZR

i,5,k=1 1<i<j<3 i,j=1
1<j
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3
_642@3 +T7) =27 Z (A + An) — (3-49-2) Z H? - (Fy + Fij)+

i,5,k=1 1<i<y<3
1<j, h=1,j

3 3
—(3:9-2) Y EF;—(3-94)) E2Ii—(3-9-2) > E7F—(3-9-4)) E”Ti+
=1

1<i<j<3 i=1 1<i<j<3

(Y ) (X m)-ean( X ) (LR

i,5,k=1 1<i<j<3 i,5,k=1 4,j=1
1<j 1<j
3
342(25{@(2 > 341<Z‘€zlyzk> (Z ij)*
4,5,k=1 1<i<j<3 i,5,k=1 1,j=1
1<j 1<j
3 3
—(3-4-3) ( Z wk> ( Z Aiﬂ‘kvh) (3-4-3) ( Z 5@;) ( Z AQﬂah)*
i,7,k=1 i,7,k=1 i,j,k=1 i,7,k=1
1<J 1<j, h=1,j 1<j 1<j, h=1,j
+(34-7) > (FRAFR M- (3-4-3) Y (F-E+F-EN+
1<i<j<3 1<i<y<3

2( ) (2 w) -eaa( X ) (3 )

1<i<j<3 ”ZJ<<;]:1 1<i<j<3 ZJZ1<<;] 1
3
—(3-4-4) (1<;<3 2)- (Zr) (3-4-4) (1§§§3Jr;;>.<zf;>+
win( £ ) (5 ww)-wan( £ (5w
1<i<j<3 ijk=1 1<i<j<3 i k=1
1<j, h=1,j i<j,h=1,j
+(3-1-7)infj-ﬂ—(&yz)(i?@?j)-( i Eigh + i) +
ij=1 ij=1 19112]:1
~(3-1-3)( 23: R ( 23: Nigin + Ny ) = (3-16. 3)23:@3 E4T2. &)+
ij=1 ig, k=1 i=1
1<j, h=1,j
—(3.16.2)(23:r§).< $ }"”> (3-16- (Zg:F’Q) < S OF )
=1 1<i<5<3 i=1 1<i<5<3
oo X ) (X en)-eoea( X ) (3 &)
ij k=1 ij k=1 ij k=1 ij k=1
1<j, h=1,j 1<j 1<j, h=i,j 1<J
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~(3-9-2)( Z M) (X Fa) -

i,7,k=1 1<i<5<3 ,7,k=1 1<i<j<3
i<j, h=i,j 1<j, h=t,j
3 9- 1 ( Z Azgkh ijh> <ZR1J>
i,5,k=1 i,j=1
i<j, h=i,j
3
—(6-3-2-4)€ (Z@)(ZP) 6-32-08 (S F)-(T)+
1<i<j<3 1<i<j<3 i=1
3 3
~(6-2-1-3)( Z ) (S Ry) (X M)+
i,7,k=1 2,7=1 i,5,k=1
1<j 1<j, h=1,j
3
6213(2”,6) (Y= )(ZAw)
i,7,k=1 1,j=1 i,5,k=1
1<j 1<j, h=1,j
3
~(6-2-2-3)( Z ) (3 Fa) (D Auen)+
i,j,k=1 1<i<j<3 1,j,k=1
1<j 1<j, h=1,j
6 2-2- 3 ( Z z]k:) < Z H]) < Z Azgkh) =
,7,k=1 1<i<j<3 1,7,k=1
1<j 1<j, h=1,j

392(2

M) (2 Fo)

= 343—-108—-108—432—-288—54—T768—-1944+04-3244-0+324+0+4324-2164-432+4-216+
+0+0-504+108+108+216+216+0+0+0+0—189+ 108+ 108 +0+0+432+ 432+
+576+576+972+97249724972+486+486 — 864 — 864 — 648 — 648 — 1296 — 1296 = 16.

Then we have the following diagram:

lbl//l

yr Ly M ps e S W9 C P

It remains to show that the general hyperplane section of the threefold W3 is an
Enriques surface.

K-£E=K-&Ep=K-&

Remark 5.32. By construction we have K - £ = ik = 0, for

all i, 5,k € {1,2,3} with i < j.

Remark 5.33. Since bl : Y — Y” has no effect on the divisors ﬁ and ]7’ for 1 <
i < 3, we will continue to use the same notations to denote their strict transforms. By
construction we have K - fl = f = 0 for a general Kek.
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Remark 5.34. The morphism vg : Y — W7 C P? blows-down the 42 exceptional
divisors of bI” : Y — Y” and the nine divisors R to curves of W3. This follows by
the fact that K - Ty, K -T%, K - Aijgn, K - ALy p, KRy #0 and K2-T, = K2 T} =
K2 Agjon = K2 Ay, = K2Ry, = 0, for all 4, j, k € {1,2,3} with¢ < j and h € {i, j}.
Indeed by Remarks we have

K*T;=K-(-36-T; -2 > Fuy Ti—ATH) =98 -Ti46 Y & Fpy-Tit
1<z<y<3 1<z<y<3
ie{z,y} ic{z,y}

H128-T7+6 > Fo £ Ti+4 > FoTi+8 Y Fp T7+126-T7+

1<z<y<3 1<z<y<3 1<z<y<3
ie{z,y} ie{z,y} ic{z,y}
+8 Y Fuy T H16IY =0+46-2—-124+6+6+0-8-8—-12—-8—-8+16-2=0;
1<z<y<3
i€{z,y}

K?. Nijin = K - (—=2&jk - Nijen — 2Fij - Nijen — Rk - Nijrn — 3/\% ) = 45% Nijin+

+4gijk'f;;j'Aijk h+25ijk‘th‘Az‘jk h+65ijk'A?jk h+4ﬂj‘gijk'Aijk h+4f2- Awk h—|—6f;j Az]k nt
+2th gljk AZJk h+th AZ]k h+3th AUk h+682]k Awk h+6ﬁj A”k h+3th AZ_]k: h+9Al_]k h =
04442 644+0-6+24+0-3—6—6—3+18=0;

K* Ry, = K (7% Ri—2 Y EopRa—2 Y EiRu—RE=3 D> Agyri Rt

1<z<y<3 1<z<y<3 1<z<y<3
ie{z,y} ke{z,y} ic{z,y}

=3 ) N Rzk) =49H> Ry~ TH-RG+4 > E2 Rat2 Y oy Rip+

1<z<y<3 1<z<y<3 1<x<y<3
ke{z,y} ic{z,y} ic{z,y}
6 > EpRacheyeitd D ELRut2 D ERGAE Y i Ri Nyt
1<x<y<3 1<x<y<3 1<zx<y<3 1<x<y<3
ie{z,y} ke{z,y} ke{z,y} ke{zy}
—TH R +2 D Eap RE+2 D ELy R +3 Y Ry Ay + Rip+
1<z<y<3 1<z<y<3 1<z<y<3
ic{z,y} ke{z,y} ie{z,y}
+6 Z gxyk: : Axyk,z - Kk + 9 Z Awyk i’ ik +3 Z Aa:yk:,i : Rzzk_l'
1<x<y<3 1<z<y<3 1<x<y<3
ie{z,y} ie{z,y} ie{z,y}
+6 Z xyz yz k Rzk + 9 Z yz k Rzk + 3 Z A i,k Rzk’ -
1<z<y<3 1<z<y<3 1<z<y<3
ke{z,y} ke{z,y} ke{z,y}

=047-8-4+4+12-8-44+1247-4—-4404+6+12-184+0+12—-184+0=0;

similarly one can compute K2 -I" and K2 - A
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Remark 5.35. Let K be a general element of K. By Remarks , we have

K*F,=K- (77'1']:12—35'«7:12—25121']:12—25122'-7:12—25123'~7:12—2~7:122—3A121,1'~7:12+

_3A121,2'F12_3A122,1'f12_3A122,2'F12_3A123,1'f12_3A123,2'f12_4F1'f12_4r2'f12> =

= 49H? - Fig — 14H - FL + 98- Fio + 68 - F& + 128 - Fig - Ty +128% - Fiy - Tot
+AEL, - Flo + 4Ly - Fia +4ELs - Fio + 4€101 - Fiy + 4E190 - Fiy + 4193 - Fp+

+6E121-Fr2-MN1211+6E121- Fr2-A121 2 +6E120- Fr2:-Ny221+6E122- Fr2:-N122 2 +6E 123 Fr2-Ny2g 1+

+6E193 - Fiz - Mingo — 14F 7y - H + 6F ) - £+ AF], - Ero1 + AFty - Eron + AF ] - Eroz+
FAF T +INY, - Fro+90) o Fro+90 s 1 - Fro+90 5 5 Fro+9A 5 1 - Fro+9ATy5 5 Frot
+6A 1911 - Fiy + 61910 - Fry +6A1901 - Fiy + 6M 1909 - Fig +6M1231 - Fiy + 6A 1932 - Fipt+
-1-61\121,1'f12'5121+6A121,2'-7:12'51214-6/\122,1']:12'5122+6A122 2'f12'5122+6A123 1-Fio-Eroz+
+6A 1930 Fi2-E193+ 1617 Fio+ 1615 F1o+80 - Fiy+80o Fry+ 120 - Fio-E+12Ty- Fig-€ =
= 0414—18—6+124+12—8—-8—8—-4—4—4+46+64+6+6+6+6+14—6—4—4—4+
4+24—9-9-9-9—9—940+0+0+0+04+04+6+6-+6+6+64+6—16—16+0+0+12+12 = 8.

Similarly we obtain that K? - Fi; = K?- Fj; =8 > 0 for 0 < i < j < 3. Thus the

curves K N F;; and K N F!, are not contracted by the rational map defined by s
J i K

Remark 5.36. Let us fix a general element K € K and let us take S := y,C(K )
and K" := bl"'(K) € K”. Since bl : Y — Y” has no effect on K”, then K N T},
Kn I KN Niji s K N Ajjpp, are still (—1)-curves on I? for all 4, j, k € {1,2,3} with
i <j and h € {i,j} (see Remark (.27). By Remarks E ‘ we also have that
(KNRip)Z = RE - K = R - (TH — 23 1<achen,icfan) (Eak + Eby) — Rit) = —b.

1<z<y<3,ke{z,y}
Furthermore we have that R -z Agpri = 1 and Ry, -5 A ik =1 forl<a<b<3and

1<z<y<3withie {a,b} and k € {z,y} (use Remark 5.29). Thus we can see the
map Vgl : K — S as the blow-up of S at the six points y,C(K NTI;) and y,C(K NI,
at the nine points V}C(K N Ri) and at the four points I/]C(K N Aabki)s y,C(K NALix)
which are infinitely near to each V,E(IN( NRix) (see Remarks |5.23|7 |5.32|, |5.33|, |5.34|, |5.35[).
Then S is a smooth surface.

Remark 5.37. The surface T'U T" is the only sextic surface of P? which is singular
along the edges of the two trihedra. Let us consider the strict transforms T and T’ on
Y of the trihedra:

3

3
Tr3H-3E— > (265 +Ex)— Y. 2F;— > Ryt
i,7,k=1 1<i<5<3 2,7=1
i<j
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3
— Z 4F1 — Z (3Awk h+ Azgk h)
=1

i,j,k€{1,2,3}
i<j, h=i,j
T~ 3H =36 — > (Ej+2E[) — 22 - Y Riy+
i,5,k=1 hj=1
i<j
3
- Z 4F; - Z (AUk h + 3A'L]k h)
i=1 i.j,k€{1,2,3}
i<j, h=i,j

Let K be a general element of K. Then we have that

3
ON(T—FT’)‘I}N(GH— Z <2f;-j+2./—';-/j)—227€ij+

1<i<j<3 i,j=1

3
_ Z<4FZ -+ 4F;) — Z <4Aijk,h -+ 4A;jk,h)) ’f(
i=1 ij,ke{1,2,3}
i<j, h=i,j
Theorem 5.38. Let S be a general hyperplane section of the threefold W3 C P?.
Then S is an Enriques surface.

Proof. We recall that S is the image of a general element K € K via the birational
morphism vg : Y — W7 C PY. Furthermore S is smooth (see Remark . By
Propositionwe have that pg(lN() —q(K) = po(K) = 0. Let us consider the following
exact sequence

0 — Oy(— )—>Oy—>(’) — 0.

Since Y is a smooth rational threefold and K is a big and nef divisor on Y, by Serre
Duality and by the Kawamata-Viehweg vanishing theorem we have h'(Y, Oy (—K)) = 0
for i = 1,2, and so ¢(K) = h'(K,O%) = h'(Y,Oy) = 0. Thus we also obtain p,(K) =
0. It remains to prove that 2Kg ~ 0. Since

3

3
Ky = bl"" (Kyn) + Z(Fi + 1) + Z (Nijip + N ) ~ —4H + 26 + 28"+

i=1 ij k=1
1<j, h=1,j
3 3 3 3
+2 Z (Eijet+Eijp)+ Z (Ej+Hj)+Z Rij+z 3(T+T)+ Z 3(AijrptNijrp)
i jk=1 lei<j<3 ij=1 i=1 ijh=1
= i<j, h=i.j



Furthermore, by Remark [5.37, we have

3
2K ~ <T+T’+ Z 2R;; —|—Z2 +F' )+ Z 4(Aijk,h +A§jk,h)>|f( ~

3,7=1 i,5,k=1
i<j, h=i,j
3
( Z ZRU + Z it F/ Z 4(Aijk,h + Agjk,h)) ‘f{ -
4,7=1 i,j,k=1
i<j, h=i,j
3 3 3
= ( > 2<Rik+ > (Aabkl+Axyzk)) > 2T+ Y 2(Aijk7h+A;jk,h)) %
i,k=1 a,b,x,ye{1,2,3} i=1 i,J,k=1
a<b,:1:<y i<j7 h:ZJ
i€{a,b}, ke{z,y}
Finally, by Remark [5.36, we obtain 2Kg ~ (v5).(2K3) ~ 0. O

One can prove that W2 C PY is not a cone over a general hyperplane section, as

in the proof of Theorem So Wi C P satisfies the Assumption (*) of § [3.3]

Furthermore, if p is the genus of a curve section of W3, we have that 16 = 2p — 2 by

the adjunction formula. Then W3 is an Enriques-Fano threefold of genus p = 9, since
Wy C P is (projectively) normal by Theorem [3.8 and Proposition [3.11]

O

5.3.2 Singularities of W}

We recall that the eight divisors &, &', fvl, f;, f;,, f{, jZ, }?’) are contracted by vg : Y —
W3 C P? to points of W} (see Remarks [5.32} [5.33). Let us define

P = 1/,5(5’)7 P, (fl) 3 1= V,C(fz) 4= V/Q(fS)

Pl = vg(E), Py = vg(f]), Py = vi(fy), Ppo=vi(f3).

Lemma 5.39. The 18 divisors &, and &, are mapped by vg : Y — W3 C P? to the
six points Py, P3, Py, Py, Pj and P; of WF in the following way:

Py = vg(fi) = ve(€y), Plo = vg(f]) = ve(Ers),
for all i,r,s € {1,2,3} and r < s.

Proof. By Remark we have that vg () and vg(&];,) are points of W3 for all
i,7,k € {1,2,3} and i < j. Since fz NEL; # 0 foralli,r,s € {1,2,3} and r < s, then
the three divisors £/,; are mapped to the same point vi(fi) = Piy1. Similarly the three

divisors &, are mapped to the same point vg( f ) =P O]

Proposition 5.40. The points P, ..., Py, P|, ..., P, are eight quadruple points of W3
whose tangent cone is a cone over a Veronese surface.
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Proof. The analysis of the points P| and P; follows by Remark as in the proof
of Proposition [5.16] Let us fix now 1 < i < 3. Let us find the tangent cone to W3
at Piyi. Similarly one can study the tangent cone to Wj at P/, ;. The hyperplane

sections of W3 C PY passing through P,H correspond to the elements of K containing
fzUcﬁ'mU<5'131U<€'§3Z (see Lemma Let K; := K— fZ 12i —&13:— €33, be the sublinear

system of K defined by these elements Let us study ;| ilz =105 (= fi—Elai—El5i—E3) -
Let us consider the case 7 = 1. Since

3 3 3
firoy H=E,=) Eisj—=> Enj— >, Elg—Fis—Fia— Y Ry—201—Ty—Ta+
j=1 j=1

1<r<s<3 j=1

w

(201350 + Asggs) = Y (201gj0 + Aagja) = Y (Mg, + ALy ),

j=1 1<r<s<3

|
<.
I

we have that

3 3 3
Bl ~ (H N e FaeFae Y Ry > 2 - Y zAuﬂ) N
=1 j=1 j=1

1<r<s<3

Let £, be the pullback on ]71 of the linear equivalence class of the lines of the face f; =
P2. By abuse of notation, let us denote by ”?1, )\13171, )\13271, )\13371, )\12171, )\12271, )\123’1 the

(—1)-curves on f; given by Fl\fl, A131,1|f1, A132,1’f1, 7o A1z 1|J71 Ao 1|}?1 Aia3 1\}“1

Let us also consider the (—1)-curves on f; defined by €,51 := &/ |7 7 for 1 <r<s<3.
Then we have filz ~ L1 — > ooz — (L1 — 71 — Z L A1) — (L1 — 71 —
35 3 5 35 3 5%
2 i Mzgn) = (BL1 = D 2601 — 2o Mg — 2oy Aigga) = 271 — 2y 2Ausgn —
E?:l 2Migj1 = —4Ly + Z1§r<s§3 €51 Oimilarly fz|f ~ —4L; + Zl<r<s<3 €y fOT
i = 2,3. Thus we obtain K|z = [O7(4L; — >_ <, .<326,;)|, which is isomorphic to
the linear system of the quartic plane curves on f; with double points at the three points
¢ =1U,Nf for 1 <r < s <3. By applying a quadratic transformation, we obtain
that K[z = [Op2(2)], whose image is a Veronese surface V;. Furthermore we have
that ’EZL‘:LZ = |O<‘:;Sl(_ﬁ rsz)' = |O<€'; (2£{rsz 'rsz)| = P? for 1 Sr<s<3 (See
Remark [5.30). Since ;| ¢, 1s isomorphic to the linear system of the conics of E' . with

TSt
node at the point E._, ﬂl;], then its image is a conic C/,. Since V;UC},, UC] 5, UCh,. =

rSi*

P(TCp,,, W), then it must be Clyy, Clas, Chgi © Vi = P(TCp, ,WE). Therefore f; is
contracted by vg to the point P, which is a quadruple point whose tangent cone
tangent is a cone over a Veronese surface, and the divisors &}y, &15;, £54; are contracted
in three conics contained in the Veronese surface given by the exceptional divisor of
the minimal resolution of P;,;. O

We recall that v : P3 --» W2 C PY is an isomorphism outside T'U T" (see Re-
mark [5.23). Then P;, P, Ps, Py, P/, Py, P, and Pj are the only singular points of W}
(see Remarks [5.33] [5.34} [5.35). Furthermore vg : Y — W} is a desingularization of
W3 but it is not the minimal one: indeed the proof of Proposition says us that
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veg 1 Y — W3 is the blow-up of the minimal desingularization of W3 along curves
(conics) contained in the minimal resolutions of P, P3, Py, Py, Pj and Pj. Finally, by
recalling Definition 4.4, we have the following result.

Theorem 5.41. Each singular point of W} is associated with at least m = 4 of the
other singular points.

Proof. We know that the 42 exceptional divisors of bl : Y — Y” are mapped by
v Y — W) C P to curves of W) (see Remark [5.34). In particular they are mapped
to lines of W} (use similar arguments to the ones in the proof of Theorem . Since
I;NE#Oand I';N ﬁ # () for 1 < i < 3, we have that Pj is associated with P ;.
Similarly P; is associated with P/ ;. One can verify that the other 36 exceptional
divisors are mapped to nine lines in the following way:

(Pir1, Plyy) = (€l vie(Eing)) = vie(Nrgi ;) = vie(Anjii)

for 4,5,r,s,k,h € {1,2,3} and r < s and k < h. So P, P3, Py, Pj, P}, P, are
associated with each other as in Figure 24} It remains to show that P; = vg(€') is
associated with P/ = vg(€). Let us consider the line I,y := (v,v") C P? joining the
two vertices of the trihedra T" and T Let Z,Ur be its strict transform on Y. We obtain
that vg(lyw) = (P1, P) C W2, since Ly NE # 0, Ly NE # 0 and deg(vi(luy)) =
R N S N :

Remark 5.42. Thanks to a computational anaylisis with Macaulay2, we can say that
each singular point of W3 is associated with exactly m = 4 of the other singular points,
as in Figure 24 of Appendix [A] This follows by Remark since the embedding of
the BS-EF 3-fold W5 in P? is the F-EF 3-fold W3 (see Theorem [6.11]).

5.4 F-EF 3-fold of genus 7
5.4.1 Construction of W}

Let us take a tetrahedron 7" = U?:o fi € P? and let us denote by v; the vertex opposite
to the face f;, for 0 <14 < 3. Let [;; be the edge f; N f;, for 0 <1 < j < 3. Furthermore
let us fix a general plane m of P2. The plane 7 intersects each edge l;; of T at one
point, which is denoted by p;; := l;; Nm. In the plane 7 there is a 3-dimensional linear
system of cubic curves passing through the six points p;; (see [I7, §9.2.2]). Let us fix a
general element ¢ of this linear system (Figure [7): it is an elliptic smooth cubic plane
curve. Let us consider the linear system X of the sextic surfaces in P3 double along
the six edges of the tetrahedron 7" and containing the cubic plane curve §.

Proposition 5.43. The linear system X defined as above has dim X = 7.

Proof. The linear system & is a sublinear system of the linear system S of the sextic
surfaces double along the six edges of T'. In particular we have that S = |Z,2ps(6)| and
X = |Z,206p3(6)|, where 7 is the sextic reducible curve given by the union of the edges
of T. We also have that S cuts on ¢ a complete linear system |Os(D)|. Indeed we
recall that S contains a sublinear system whose fixed part is given by the tetrahedron
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Fz'gure 7: Cubic plane curve & in a general plane m intersecting each edge of the tetrahedron T at one point.

and whose movable part, given by the quadric surfaces of P3, cuts a complete linear
system on d. Hence we have the following exact sequence

0 — H(Z, 2053 (6)) — H(Z,2pp3(6)) — H°(O5(D)) — 0.

Let ¥ be a general element of S. The cubic plane curve § intersects ¥, outside the
base locus of S, in 3-6 —2 -6 = 6 points. Hence degD = 6. We recall that
dim H°(P3,Z,2p3(6)) = dimS + 1 = 14. Since degD = 6 > 2p,y(d) — 2 = 0, then
dim H'(6, Os5(D)) = 0 (see [29, Example 1.3.4]) and we have dim H°(§, O5(D)) = 6 by

Riemann-Roch. So the above exact seguence implies that
dim X = dim H*(P?, Z 2052 (6)) —1 =14 -6 —1=T.
O

Remark 5.44. Let vs : P? ——s P'3 be the rational map defined by the linear system
S of the sextic surfaces of P? singular along the edges of T', whose image is the F-EF
3-fold W}, Let W} be the image of P? via the rational map defined by the linear
system X. Then W/ is the projection of W13 from the linear subspace of P'* spanned
by the sextic elliptic curve vg(d).

Lemma 5.45. The rational map vy : P> -—» P7 defined by X is a birational map onto
the image.

Proof. Let X be a general element of X. The linear system X contains a sublinear
system X C X whose fixed part is given by T U 7 and such that X'|x coincides with
the linear system on X cut out by the planes of P3. Then we obtain the birationality
of the maps defined by X|x and by X. O
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Remark 5.46. The proof of Lemma tells us that the linear system X is very
ample outside the tetrahedron T and the plane 7. So vy : P? --» vx(P3) C P7 is an
isomorphism outside T"U 7.

The Proposition proves the existence of sextic surfaces of P? double along the
edges of the tetrahedron T (shortly, Enriques sectics) and containing a given cubic
plane curve §. However, a priori, these surfaces could have further singularities and
their desingularizations could be not Enriques surfaces. Let us study the surfaces of X.

Up to a change of coordinates, we can consider in IP’[SO 51:52:53] the tetrahedron T' =
{30313233 = 0} with faces f; = {sZ =0} for 0 <14 < 3. Let us fix the cubic plane curve
5 = {ZZ 0 Si = 0, 8750+ 5153 + 5153 + 515283 + 5353 + 5153 + 5253 = 0}, which intersects
the edges of T at one point each. Thanks to Macaulay2, we can construct the linear
system X of the sextic surfaces of IP3 which are singular along the edges of T" and which
contain the curve 8 (see Codeof Appendlx . Let us take X = {s2s?s2— 53515983 —
S0578283 — 250515353 + 535153 + 2535353 + s9s15353 + 2575555 — 250818283 = 0} € X. By
the computational analysis, we see that 2( has singular points only along the edges
of T In particular the tangent cone to X at a vertex of T"is given by the union of
the three faces of T' containing that vertex; the tangent cone to X at a point p € [;;,
with p # v, and p # vy, is the union of two planes containing [;;, where 1, j, k, h are
four distinct indices in {0,1,2,3}. Then X has ordinary singularities along the edges
of T' (see Definition and no further singularities. The same happens for a general
surface of X. Let D be the family of the cubic plane curves of P? intersecting the
edges of T at one point each. We have that D is an irreducible variety of dimension 6.
Then what is true for the special cubic plane curve § € D is also true for the general
cubic plane curve § € D. Therefore there exist Enriques sextics in P?, with ordinary
singularities along the edges of T" and no further singularities, that contain ¢. Let X
be such a general surface and let us take its minimal desingularization n : X¥ — X.
It follows that X" is an Enriques surface (see [16] p.275]). Furthermore let E be the
strict transform of 6 on X”. Then F is an elliptic curve such that £ - H = 3, where H
is the pullback of the general hyperplane section of X. If § moved in a linear system on
X, then E would move in an elliptic pencil on X”. Thus F should be 2-divisible (see
[2, Lemma 17.1]) and £ - H = 3 would be a contradiction. So § does not move in any
linear system on X and, with a compute of parameters, one can see that the general
Enriques sextic in P2 contains some cubic plane curve of D. These arguments prove
that the image of a general X € X via the rational map vy : P3 --» P7 is an Enriques
surface. Finally one can prove that Wi = vy (P?) C P7 is not a cone over a general
hyperplane section, as in the proof of Theorem |5.15] So W} C P7 satisfies Assumption

*) of § . Furthermore deg W} = 12 (see Code of Appendix [B|) and, if p is the
genus of a curve section of WY, we have that 12 = 2p — 2 by the adjunction formula.
Thus Wi C P7 is (projectively) normal (see Theorem and Proposition and
we obtain the following theorem.

Theorem 5.47. [23, §4] The image of P3 via the rational map defined by X is an
Enriques-Fano threefold W} C P7 of genus p = 7.

By Remark |5.44] the above theorem also follows by [10, Lemma 4.4, Lemma 4.6].
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5.4.2 Singularities of W7,

In order to describe the geometry and the singularities of W}, we will use the techniques
of the proof of Theorems [5.4] [5.24

Remark 5.48. Let X be a general element of X and let us take four distinct indices
i,7,k,h € {0,1,2,3}. As we said in §, we have that TC,,X = f; U fr U f;, and,
if p € I;; with p # v, and p # v, we have that TC,X is the union of two variable
planes m, x, 7, v € |Z;,;ps(1)| depending on the choice of p and of X and which can
also coincide. In particular if p = p;;, then one of the two planes of T'C},. X is tangent
to ¢ at p;; and we will denote this plane by ;.

Let us blow-up P? at the vertices of 7" and at the six points p;;, for 0 < i < j < 3. We
obtain a smooth threefold Y’ and a birational morphism bl’ : Y’ — P? with exceptional
divisors E; := (bl')"Y(v;), Eij := (b')"*(ps;). Let X’ be the strict transform of X and
let us denote by H the pullback on Y’ of the hyperplane class on P3. Then an element
of X’ is linearly equivalent to 6 H — 3ZZ 0 Bi =2 gcicj<s Bij. Let f; be the strict
transform of the face f; and let 7;; the strict transform of the plane m;; defined in
Remark , for 0 < i < j < 3. We denote by v := Ex N ]?] the line cut out by
ﬁ on Ej and by \;; := E;; Nm; the line cut out by 7;; on Ej;, for distinct indices
i,j,k € {0,1,2,3} with i < j. We have that v;; and \;; are (—1)-curves respectively
on fZ and 7;;. Let X’ be the strict transform of a general X € X. By Remark [5.48 we
have that X' N E}, = U@;g i for all 0 < k < 3.

Remark 5.49. We observe that X' N E;; = \;; U B, x, where f3;; x moves in the pencil

of the lines of F;; through the point E;; N lza and it depends on the choice of X, for all
0 <i < j <3 (see Remark [5.48)).

Let us take the strict transforms l:-j of the six edges of T" and the strict transform 5 of
the cubic plane curve §. The base locus of X’ is given by the union of the six curves Ej
(along which a general X’ € X has double points), of the curve g, of the twelve curves
7;; and the six curves \;; (see Remark . Let us blow-up the strict transforms
of the edges of T" and of the cubic plane curve 6. We obtain a smooth threefold
Y" and a birational morphism b/" : Y — Y with exceptional divisors (bl” )7H6) =:
Fs = IP(/\/%‘Y,) and (bl”)*l(l ) = F; = P(A/}ij‘y,) = P(Op1(—2) ® Op1(—2)) = Fy, for
0<i<j<3.

Remark 5.50. The divisor Fj is a smooth elliptic ruled surface, since it is a Pl-
bundle over the elliptic curve 6. We also have that deg(]\/'ay,) = 0. Indeed, since 0
is the complete intersection of the plane 7 and of a cubic surface passing through the
points p;;, then we have Ny, = O5(H — 37, <3 Eij) ® O5(3H — 3 ;<3 Eij) and
deg(/\/'ay,) =B3-6)+(9-6)=0.

Since bl” : Y" — Y’ has no effect on ﬁ, we will use the same symbols to indicate

its strict transforms on Y"; furthermore let us denote by E; and E;; respectively the
strict transforms of F; and E;;, for 0 <i < 5 < 3.
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Remark 5.51. Let us take the curves ay;; = EkﬂFU, Qi 1= Eij NEij, Oz; : E ;N Es,
for distinct indices 4, j, k € {0,1,2,3} with i < j (see Figure . We have that ay;; is a
(—=1)-curve on Ej and a fibre on Fyj; ay; is a (—1)-curve on Ej; and a fibre on Fjj; o,
is a (—1)-curve on Eij and a fibre on Fj.

Figure 8: Description of blm‘ﬁ:j : E'i]- — Eij.

Let X be the strict transform of X’ and let X" be an element of X”. Then

NGH 3ZE—2 Z EZ] 2 Z E] R

0<i<y<3 0<i<5<3

where, by abuse of notation, H denotes the pullback bl”*H. By Remark |5.48| we have
that the base locus of X" is given by the disjoint union of the strict transforms 7;; and
Aij of the 18 lines i, and \;;, for distinct indices i, j, k € {0,1,2,3} and i < j.

Remark 5.52. We have that 73,z = —1, Vil; = —1, 22 i3, = —1. Furthermore,
if X" is the strict transform of a general X e X', we also have that the twelve Vi
are (—1)-curves on X" for i,k € {0,1,2,3} and z' # k (see Remark [5.7). Finally
we want to show that the 6 curves >‘w are (—1)-curves on X” too. We observe that
XN EZJ = )\l] U 513 x», Where Bl] x is the strict transform of the curve of Remark [5.49|
which moves in a pencil and depends on X”. Since )\U and ﬁu X7 are dlSJOlnt we have
(i lxo+ By Plr = (X'NEPlr = B3-X" = Ey(Eyg-X") = By dig+ By B
Hence ( ”) ’X” = )\Z] EZ] = 7T2] E2 =—1.

ij

Finally let us consider bl" : Y — Y the blow-up of Y" along the above 18 curves,
with exceptional divisors I'y; := bl"”"'(3y,), Ay = bl"*(\;), for distinct indices
i,j,k €40,1,2,3} with ¢ < j. We denote by & and &;; respectively the strict transform
of El and Eij; by Fi; the strict transform of F;
‘H the pullback of H.

ij; by Fs the strict transform of Fj; by
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Remark 5.53. We have that
Ly = P(N’T’MY”) = P(O%z(ﬁk) D O%z(ﬁ)) = P(Opl(_l) D OPl(_l)) = o,

Ay = P(N5, ) 2 P(O5 (Eyj) ® O (7ij) 2 P(Op(—1) & Opi (—1)) = T,

Furthermore we have I'}; = — deg(N,,jy») = 2, and A}, = — deg(N5, yn) = 2 (see [27,
Chap 4, §6] and [32], Lemma 2.2.14]).

Remark 5.54. Let us take distinct indices i, j, k € {0,1,2,3} with i < j. The divisor
Fi; intersects I'y;, I'y;, A;j each along a P! which is a (—1)-curve on Fi; and a fibre on
Tki, Trj, Agj. Similarly we have A - F5 = —1 and Ay; - F§ = 0. Let us consider the
strict transforms ag;, ayj, of; of the curves defined in Remark Then we have

~2 2 _
akijlgk "T_.@] & = -1, «

o 2 . ~/2 _ 2 _
s =T G ==L ajle, = F5 &y = —1,

ij
Finally we recall that a general line of P? does not intersect the edges of T' and the

curve §; instead a general plane of P? intersects each edge of T' at one point and the
curve 0 at 3 points. Hence we have HQ-.EJ- =H?F5; =0, ]—"37—[ = —1land .7-"52-7-[ = —-3.

Remark 5.55. We recall that by construction we have bl (E}y) = &, + Z?;o Iy and

bi"* (E; ) & + N\yj, and, by abuse of notation, we denote & N T'y; and &] ﬂ A;; by

Vri and /\”, for distinct 4,4,k € {1,2,3} with ¢ < j. Let us denote by Ly; and L;;
respectively the strict transform on Y of a general line of Fj, and E;;. By using similar
arguments to the ones in Remark we obtain that & = 4 and &} = 2, since we
have

3
Exle, ~ —(Lr+ ) _Awi) ~ —(ALk —2 Y ay),

i=0 0<i<j<3
£k

%)

Remark 5.56. By using similar arguments to the ones in Remark we have F?. =
- deg(N:lelY/) =4, for0<i<j<3, and F} = — deg(NGy) = 0 (see Remark |5.50).

Let X be the strict transform on Y of an element of X”: then

3
X ~6H — Z35k—2 Yoogi—2 Y Fy—F- ) Au— Y. 3Ay

0<i<j<3 0<i<j<3 i,k=0 0<i<j<3
z;ék

Let us take the linear system X := |Oy(5(: )| on Y. It is base point free and it defines a
birational morphism vy : Y — W} C P7. Furthermore we have the following diagram:

lbll!/

yr My L ps s WL C P
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Remark 5.57. The divisors &; and the strict transforms f; on Y of the faces of T" are
contracted by vy : Y — WL C P to points of W}, for 0 <7 < 3, since X-& = X-f; =0
for a general X € X.

Remark 5.58. The 18 exceptional divisors of bI"’ : Y — Y and the six divisors &;;, for
0 <1,7 < 3, are contracted by the morphlsm vy Y — WF C P7 to curves of W{. This
follows by the fact that X. i, X. Aij, X. &i; # 0 and X2. 'y, = X2. N = X2. -&i;j =0
for distinct 7,7,k € {0,1,2,3} and ¢ < j (use Remarks [5.53] [.54] and calculations
similar to the ones in Remarks , .

Remark 5.59. Let us fix 0 <7 < j < 3 and let X be a general element of X. Since
X2 -Fij =3 >0and X2 -Fs = 6 > 0 (use Remarks|[5.54] and calculations similar to

the ones in Remarks . , then the curves X NFij and X N Fs are not contracted
by the rational map defined by X |-

We still define Pyq := v5(&;) and P/, == V/\;(f;), as in § . They are quadruple
points of W whose tangent cone is a cone over a Veronese surface. The proof is similar
to the one of Proposition [5.16] We recall that vy : P* --» W} C P is an isomorphism
outside T U 7 (see Remark [5.46). Then Py, Py, Ps, Py, P}, Py, Py and P} are the only
singular points of W} (see Remarks [5.57, [5.58] [5.59)).

Lemma 5.60. The six divisors &;;, with 0 < ¢ < j < 3, are mapped by vy 1 Y —
WL C P to lines of W/. In particular we have v3(&;;) < o Pli)

Proof. We know that the above 6 divisors are mapped by vz : Y — W} C P7 to curves
(see Remark . Let us show that these curves are lines. Let X be a general element
of X and let us consider the divisor &i; for a fixed pair of indices 0 < i < 7 < 3. We
Y|e, = Ok, ( Z]X)| =~ P! (see Remark [5.49), so v3(&;;) C WY is a line.
Since &; N fi # (Z) and &; N f] # 0, then v5(&;;) is the line joining the points P/, ; and
P! m

Jj+1-

By recalling Definition [£.4] we have the following result.

Theorem 5.61. Each of the eight points P, P, Ps, Py, P[, Pj, P, P, is associated
with m = 6 of the others, as in Figure 22] of Appendix [A]

Proof. The 12 divisors I'y;, for i,k € {0,1,2,3} and i # k, are mapped by vy : Y —
WEL C P7 to lines of W} joining the points Py, Py, P, Py, P, Py, P§, P; as in Figure
of Appendix [A| (see Remark and use arguments of the proof of Theorem .
We also recall that the six lines v5(&;;) joins the points P;, Py, Ps, P; two by two (see
Lemma [5.60). It remains to show that (Pi, Ps), (Pi, Ps), (Pi, Py), (P2, Ps), (Ps, Py),
(P3, Py) C W[ and that (P, P)), (P2, Py, (Ps, P), (Py, P;), & WE. This follows by a
computational analysis with Macaulay2 (see Code of Appendix . O
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5.5 F-EF 3-fold of genus 6
5.5.1 Construction of W}

Let us consider five general points qi, go, g3, q4, g5 in P3. We have the following result.

Theorem 5.62. There are three twisted cubics C, Cy and (3, three quadric surfaces
Qs, Q7 and Qg of P? and three lines 71, 75, and 75 such that Qg and Q7 are smooth and

CiNConCs={q,...¢s}, Qs NQ7r=C1Ury, QsNQs=CoUry, Q7 NQs=C3Urs,

where r; intersects C; at two points a, and a!, for 1 < i < 3. Furthermore, by
taking three distinct indices 4, j, k € {1,2,3} with ¢ < j, we have the following three
possibilities:

(i) Qs is smooth and the three lines r1, ro and 73 intersect pairwise at three distinct
points b;; := r; Nr; such that b;; =, N Cy, = r; N Cy, (see Figure @;

(ii) Qs is smooth and the three lines 71, 79, r3 intersect at a same point b; moreover,
up to renaming the points of r, N Cy and of C; N Cy N C3, we have that r, N C; =
r, N C; = aj, = qi, (see left side of Figure ;

(iii) Qg is a cone and the three lines ry, 5, 73 intersect at the vertex v of Qg; moreover,
up to renaming the points of r, N C} and of C; N Cy N C3, we have that v = ¢ =
a} =1, N C; =1, N C; (see right side of Figure [10)).

by bos

Figm’e 9: Description of the intersection points between the twisted cubics C1, C2, C3 and their chords r1, ra2, r3,
in the case (i) of Theorem We recall that C1 NCoNCs ={q1,...,q5}, even if it is not represented in the figure.

Proof. The proof is divided into 6 steps, given by the Lemmas [5.63] [5.64 [5.65] [5.66]
below.
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Figure 10: Description of the intersection points between the twisted cubics C1, Ca, C3 and their chords r1, ra2, r3, in
the case (ii) of Theorem (on the left) and in the case (ii) (on the right). We recall that C1NC2NCs = {q1,...,q5},
even if some of these points are not represented in the figure.

Lemma 5.63. There are three twisted cubics Cy, C5 and Cj passing through the
five general points ¢, ..., qs; and there are three quadric surfaces (g, ()7 and Qg and
three lines 71, 79, and 73 such that Qs and ()7 are smooth and Qs N Q7 = C7 U ry,

Qs NQs=CaUrs, Q7 NQg=C3Urs.

Proof. Let us consider the two-dimensional family C of the twisted cubics passing
through q1, ..., q5. Let us take a general twisted cubic C; € C and two smooth quadric
surfaces (Qg, Q7 containing C1, i.e. two general elements Qs, Q7 € |Zc,ps(2)| = P2. 1t is
known that there exists a line r; such that Qg N Q7 = Cy1 U7y (see [28, Example 1.11]).
Since Qg is a smooth quadric surface in P3, then a quadric section of Qg C P2 is linearly
equivalent to 2f; + 2f5, where f; and f, represent the two rulings of Qg and satisfy
the relations f2 = 0= f2 and f; - fo = 1. In particular, since Qg N Q7 ~ 2f; + 2[5, we
can suppose that r; ~ f; and Cy ~ f1 + 2f. We also have that |Og,(f1 + 2/f2)| = P°.
By the generality of ¢, ..., g5 we may assume that C} is the unique twisted cubic in
|O0gs(f1 + 2f2)| through ¢i,...,qs. Similarly let us take the unique twisted cubic Cy
through q1,...,¢5 in |Og,(2f1 + f2)|- So each smooth quadric surface passing through
qi,--.,qs5 contains exactly two twisted cubics passing through them: let C3 be the
other twisted cubic in Q7 through ¢i,...,¢s. Let us define A¢, := |Zg,ps(2)| = P* for
i =1,2,3. Since A¢, C |Zg, . q5yp2(2)| = P* for i = 1,2, 3, then dim A¢, NA¢, > 0. So
there exists a quadric surface Qs € Ac, NA¢, such that Cy C QsNQs and C5 C Q7NQs,
and there are two lines ro and 73 such Qg N Qs = CoUry and Q7 N Qg = C3Urs. [

Let us fix now three twisted cubics, three lines and three quadric surfaces as in

Lemma It must be r; & Qs, 2 ¢ Q7 and r3 & Q. Let us take 4,7,k € {1,2,3}
with k # i and ¢ < j. By construction we have r; - C; = 2, so we let {a},a}} :=r; N C;.
Furthemore r; - C), = 1, so we define a;, := r; N Cl.
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Lemma 5.64. The line 7; intersects the line r; for all 1 <7 < 7 < 3.

Proof. By construction we have that r; N7y # () and 7y Nr3 # (). Furthermore it must
be 1o N 73 # (. Indeed if Qg is a cone, then ry and r3 intersect at the vertex; if Qg is
smooth, then C5 and C5 are not linearly equivalent and r, and r3 belong to different
rulings. [l

By Lemma we have two possibilities: the three lines rq, ro and r3 intersect
pairwise at 3 distinct points {r1 Nry, 71 Nre,ro N3} or they intersect at a same point
(&1 N T2 N rs.

Lemma 5.65. Let Q C P be a quadric cone with vertex v. If C' is a twisted cubic
contained in @, then v € C.

Proof. Let us suppose that v € C. Let H be a general plane of P? such that v ¢ H
and let us take the projection map m, : P3 --» H = P? from the point v to the plane
H. Since v ¢ C, then 7,(C) is a cubic plane curve. Furthermore 7,(C) has to be
contained in m,(Q), which is a conic. So we have a contradiction. O

Lemma 5.66. Let us suppose that the three lines r1, 79 and r3 intersect pairwise at
3 distinct points and let us denote them by b;; :=r; Nr; for 1 < ¢ < j < 3. Then the
quadric surface Qg C P? is smooth and we have bij =71NCr=1r;NCyforall 1 <k <3
such that k # i and k # j.

Proof. Let us suppose that Qg is a cone with vertex v. Then ry, 73, Cy and C3 must
pass through v (see Lemma . In particular there exist a point in 7o N Cy, a
point in r3 N C3 and a point in {qi,...,q5}, for example aj, a4 and g5, such that
v =ay = aj = by = a9 = a3z = as3 = a3z = ¢5. Moreover, we have that r; N Qg =
(r1NQs)NQs = r1N(CaUry) = {ayz, bia}, since r1 C Qg. Similarly r1NQs = {ay3, b3},
since r; C Q7 (see Lemma . Since b1y # by by hypothesis, it must be bjs = a3
and b3 = aqe. This implies bjps = 1o N C3 = v and b;3 = r3 N Cy = v, which is a
contradiction. Hence Qg is a smooth quadric surface of P3. Finally we observe that
1N Qs = {big,a13} = {bi2, a1z}, 2 N Q7 = {b12,a01} = {ba3,a93} and r3 N Qs =
{b13, a31} = {bas, aza}. Since bya, big, bes are three distinct points by hypothesis, then
it must be b13 = a19 = ags, b1s = a13 = as3 and by = as; = agz;. O

Lemma 5.67. Let us suppose that the three lines r1, ro and r3 intersect at the same
point b. If Qg is smooth, then we obtain the assertion (ii) of Theorem [5.62}

Proof. Let i, j, k be three distinct indices in {1,2,3}. Since ry, C Qgyir3, we have that
T M Qi+j+3 = (Tk N Qk+i+3) N Qi+j+3 =17, N (Cz U ’I“Z*) = {(lk,;, b} (see Lemma .
Similarly we have that 7, N Q13 = {ak;, b}, since ry C Qpyjrs. So it must be
ap; = ag;. This implies that there are three points in {¢i,...,¢s}, namely ¢, ¢2, ¢s,
and there exist a point in 7, N Cy, for example ay, such that ay; = ay; = af = q. O

Lemma 5.68. Let us suppose that the three lines r1, ro and r3 intersect at the same
point b. If Qg is a cone, then we obtain the assertion (iii) of Theorem [5.62]
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Proof. If Q)g is a cone with vertex v, then v = o Nr3 = r1 Nry Nry3 = b. Since
Cy,C3 C Qs, thenv € ConNCy=C1NCyNCsy ={q,...,q5} (see Lemma . Thus
we have v = a19 = a13 = a91 = a93 = a3; = asp. Furthermore there exist a point in
each 1 N Cy, ro N Cy, 73N C3, for example af, aj, af, such that v =af =a) =aj. O

]

Let us see that by choosing sufficiently general objects, we can exclude the cases
(i) and (iii) of Theorem [5.62] Let us take the two-dimensional family C,, . 4, of the
twisted cubics of P? passing through the fixed points gy, ...,¢s. For all C' € C,,.
we define Ac = |Zops(2)| = P?, which is a plane in [y, .yps(2)] = P We recall
that, if we fix a general C' € C,, ., and if Q) € A¢ is general, then () is smooth and
consider the map p¢ : Ac = Cy, .4, Which sends a general ) € A to the other twisted
cubic C’ in () passing through ¢, ...,qs. This map is well defined and it has fibres
of dimension 0: indeed by Bezout’s Theorem we have that two quadric surfaces of P
intersecting along C'U C” have to coincide, since C'U (" is a curve of degree 6. Hence
e is a birational map. In other words, the correspondence C’ <+ @ is 1 : 1 between
an open set of Cy,, . 4 and an open set of A¢. Let us fir now a general Cy € Cyy . 4
and a general smooth quadric surface Q)¢ € Ag,. Then Cy = ¢, (Qs) € Cyy... g5 18
fixed too, since it is uniquely determined by Qs. Let us take another general Q7 € Ac,,
which is another smooth quadric surface of P3 containing C;. We may assume that
(27 is sufficiently general in order to have that (); intersects () along the union of C
and a line m not passing through ¢i,...,¢s;. Let us define C5 := ¢, (Q7) € Cyy.... 45
Then dimps Ac, N Ac, > 0 and, by Bezout’s theorem, if Qs € Ag, N Ag, then Qg is
unique. In particular (Jg is uniquely determined by C5 which is uniquely determined
by Q7. Let ry, r3 be the lines such that Qg N Qs = Co Ury and Q7 N Qg = C3 U r3.
Since {q1,...,q5} N1 = 0 by construction, we may suppose to fix three twisted cubics
C1, Cy, Cs, three lines 71, ry, r3 and three smooth quadric surfaces Qg, @7, Qs in P3
satisfying the property (i) of Theorem m

By the generality of Qs, Q7 € Ac, = P2, we may also assume that r; is a chord
of C; for i = 1,2, i.e. a} # af and ay, # af. Let us explain this. We recall that
C7 and Cy are the only twisted cubics in Qg through ¢q,...,q5. In particular, if
fi and f5 represent the two ruling of ()¢, then we have that C) ~g, fi + 2f2 and
Cy ~gs 2f1 + fo. For any choice of Ry € |Og,(f1)| and Ry € |Og,(f2)| we have that
RO (Zg,ucyps(2)) = h°(Zryucyps(2)) = 2. Furthermore, by the Hurwitz formula applied
to |Oc¢,(fi)| for i = 1,2, there exist only two lines R;1, Ri2 € |Og,(f:)| which are
tangent to C;. Let us consider the four lines L1y = |Zg, ,uc, (2)], L12 = |Tr, ouc, (2)],
Ly = |Zpy,005(2)], Loo = |y suc, (2)]. By the generality of Q7 € A, = P? and by us-
ing the fact the Qg is uniquely determined by ()7, we may assume that Q7 € L1 UL o
and Qs & Lo 1ULgs. So Q7NQe = C1Ury with 1y transverse to C and QsNQs = CaUrs
with ry transverse to Cy. Instead we cannot exclude the case where r3 is tangent to Cs,
ie. r3NCs = {a},as} with a} = aj. It would be interesting to study the above case,
but we will analyze the case in which r3 is a chord of (s, since it is the situation men-
tioned by Fano in order to describe his Enriques-Fano threefold of genus 6 (see [23, §3]).
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So let us fix now three twisted cubics C7, Cy, (3, three chords r1, ro, r3 and three
smooth quadric surfaces Qg, Q7, Qs satisfying (i) of Theorem [5.62] Let P be the linear
system of the septic surfaces of P* double along the three twisted cubics C}, Cy and
C3 passing through ¢1, g2, g3, g4, 5.

Remark 5.69. The surface Q1,3 is the unique quadric surface of P? containing
C;UC;Ur;Urj for all 1 <14 < j < 3. Indeed we have hO(ZCiquumuTj\W(Z)) =1, by
the smoothness of the three quadric surfaces and by following exact sequence

O — IQi+j+3|P3 (2) — ICiUCjUTiUlePS (2) — ICiUCjUTiUTj|Qi+j+3(2) — 0

Remark 5.70. An element P € P contains the lines rq, o, r3. Assume the contrary.
Let us fix three distinct indices i, 7, k € {1,2,3}. By Bezout’s Theorem, P Nr; is given
by 7 points. Furthermore r; is a line through four double points of P, i.e. 7, N Cj,
r; N Cy, a; and a] (see Figure[d). So we obtain that P Nr; contains at least 8 points,
counted with multiplicity, which is a contradiction. It must be r; C P.

Let gi+jt+s = gi+j+3(S0, S1, S2, 53) be the quadratic homogeneous polynomial defin-
ing the smooth quadric surface Q;4 ;43 C ]P)?So,-- for 1 <i<j<3.

.,53]

Lemma 5.71. The linear system P has equation gsg7fs + gegsf7 + g793f¢ = 0, where
fo € H°(P*, Zoyuips (3)), fr € HO(P?, Zeyueyps (3)) and fs € HY(P?, Zo,ucyps (3))-

Proof. Let F := F(sq, $1, S2, s3) be the homogeneous polynomial of degree 7 defining
a general element P of P in P?SOW_’SS]. We recall that the intersection of an irreducible
septic surface of P? with a quadric surface is a curve of degree 14. In particular, P
intersects each quadric surface ;4,13 along the curve of degree 14 given by the two
double twisted cubics C; and C; plus the two lines r; and r;, for 1 < ¢ < j < 3.
This implies that it must be P N Qi3 = {girks3gjrrrsfivies = 0, girjrz = 0} =
2C; +2C; +r; +rj for some f;y;i3 € HO(]P)?’aICiUC]-UP’?’ (3)), where 1 < k < 3 with k # i
and k # j. Then it must be F' = gghs + g79s fs, Wwhere hs is a homogeneous polynomial
of degree 5 such that hs = grhs+ gs f7, where hs is a homogeneous polynomial of degree
3 such that hs = gghy + fs, where h; is a homogeneous polynomial of degree 1. Thus
we have F' = gegrgshi + gegrfs + gegsfr + grgsfe. Since giyji3hy € HO(P, Zo,uc,p3(3))
for 1 <i < j <3, we obtain that F' has the expression of the statement. O

Lemma 5.72. Let us take 1 < i < j < 3. Then dim H°(P?, Z¢,uc,ps(3)) = 5 and a
general element of |Zc, e, ps(3)] =2 P* corresponds to a smooth irreducible surface.

Proof. Let us consider the following exact sequence
0— IQi+j+3\P3 (3) — IC’l-UCj|]P’3 (3) — ICiUCj|Qi+j+3 (3) — 0.

Since h'(Zq,,. .. (3)) = h'(Ops(1)) = 0, h'(Zg,,,,ps(3)) = h°(Ops(1)) = 4 and
" (ZeiucyQisyes(3)) = h%(Oq,,,.s) = 1, then we obtain h%(Ze,uc,ps(3)) = 5. Let Sy
be now a general element of |Z¢,uc,ps(3)]. We may assume that Q1.3 ¢ Sz and so
that S3 is irreducible, since C; U C; is not degenerate and the only quadric surface
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containing this curve is Q;1 43 (see Remark . We want to show that S3 is smooth.
First let us see that C; U Cj is the base scheme of |Z¢,uc,p3(3)]: we have to show that
hO<ICichU{$}|[p>3 (3)) = hO(ICiUCﬂP?’ (3)) —1=4fora pOiIlt WA Pg \ (CZ U Cj) This is
exactly what happens: indeed & Q;4;+3 (otherwise x € S, N Qiyjy3 = C; U C; for
S3 € |Zo,uc,utzyps(3)], which is a contradiction) and so we have the following exact
sequence

0= Zg,. ,a0iaps (3) = Zoue,uteps (3) = Zouc;|Qiy s (3) — 0

from which h0<IC’iUCjU{x}|P3(3)) = 4, since h1<IQi+j+3U{x}|]P>3<3)) = hl(I{x}‘]pd<1)) =0
and hO(IQ¢+j+3U{l’}|P3(3>> = hO(I{x}HPB(l)) = 3. Let p E (C’z U C]) \ {ql, c. ,q5}. If Sg
were singular at p, then S3 N Q443 = C; U C; would be singular at p, which is a
contradiction. Let p € {q1,...,q5}. If H is a plane such that ¢, & H for all 1 < h <5,
then Q113U H € |Zg,uc,ps(3)]. Since Qip ;43 U H is smooth at p, then the general
element of |Zg,uc,(ps(3)| is a cubic surface smooth at p. Thus S is smooth. O

Remark 5.73. There exists a septic surface in P containing ()¢ but not ()7;. By
Lemmas [5.71] it is sufficient to take a septic surface defined by the equation
9697 fs + gegsfr + grgsgeh = 0 with fs € HO(P?, Ze,u0,p3(3)) and h € HO(IP?, Ops(1))
and where f7 is a general (irreducible) element of H(P?, Zc, ey ps(3)). One can also
construct a septic surface in P containing Qg and 7 but not Qs. By Lemmas[5.71],
it is sufficient to take a septic surface with equation gggrfs + 969sg7h’ + g79396h =
0 where h,h' € H°(P? Ops(1)) and where fg is a general (irreducible) element of
HO(P?, Zeyucyps (3))-

A priori we have that dim P < 14, since the equation of P depends by 15 param-
eters which can be linearly dependent (see Lemmas |5.71} [5.72)). However we have the

following result.
Proposition 5.74. The linear system P defined as above has dim P = 6.

Proof. Let us consider the sublinear system of the septic surfaces of P containing Q;;+3
for 1 <1¢ < j < 3. The movable part of this linear system is isomorphic to the linear
system 7 of the quintic surfaces of P? containing the two twisted cubics C;, C; C Q;y 13,
containing the line r;, and with double points along the twisted cubic C}, where 1 <
k <3andk #iand k # j. We want to show that codim ({P € P|P D Qiyj4+3}, P) = 1.
In order to do it, let V' C H°(Ops(7)) and K C H°(Ops(5)) be the subspaces such that
P=P(V)and T =P(K). From

0 — Op3(5) = Ops(7) = Oq,,;.,(7) = 0,
we obtain
0 — H%(Ops(5)) = H%(Ops(7)) = H°(Oq,, (7)) = 0
U U U
0= K —= V = Vg,

We have to show that codim(K, V') = 1, which is equivalent to find dim V'|q,,,,, = 1.
This follows by the fact that dimP = 0, since Plg,,,., has only fixed part

— 0.

Qitj+3
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2C; +2C; +r;+r;. Then we have that codim ({P € P|P D Qi+j+3}, P) = 1 and, since
containing the three quadrics Qs, Q7 and Qs imposes independent conditions (see
Remark [5.73)), we also obtain codim({P € P|P D Qs,Q7,Qs},P) = 3. Furthermore
each element of {P € P|P D Qg, Q7,Qs} is of the form Q¢ U Q7 U Q7 U m, where 7 is
a general plane of P2. Thus we have dim{P € P|P D Qs, Q7, Qs} = dim |Ops(1)| = 3
and finally dimP =3+ 3 = 6. ]

Remark 5.75. Let us fix 1 < ¢ < j < 3 and let us consider the quadric surface
Qitj+3 C P3. Since Q;yj43 is smooth, then the tangent space to Q443 at the point
p € Qirj+3 is a plane of P3| which is spanned by the two lines of Q;;,3 intersecting
at p. Let us take the point p = ¢, for some 1 < h < 5. Since the twisted cubics
C; and C} are contained in @);4;4+3 and they pass through ¢, then the tangent plane
to Qitjt+3 at ¢, has to contain the tangent lines to C; and C; at g,. We recall that
Ci-C; = (fi+2f2)-(2f1+ f2) = 5, where f; and f5 represent the two rulings of Q3.
Since ¢y, ..., ¢s are distinct by construction, the intersection of C; and C; at each g
is transverse. Then we have T, C; # T;, C; and ty;; :== T}, Qivj+3 = (1, Ci, 1,,C;). In
particular we have that T,, Qs = (T3, C1,1,,C2) and T,,Q7 = (T,,C:1,T,,Cs). By the
generality of qi,...,¢s and by the generality of ()¢ and ()7, we may assume 7}, Qs N
T, Q7 = T;, Cy. Thus Ty, Cy, Ty, Cy and T, Cs are linearly independent.

Proposition 5.76. Let P be a general element of P and let us take 1 < h < 5 ad
three distinct indices 4, j, k € {1,2,3} with ¢ < j. Then we have that

(i) TCy, P = Ujcicjes T4, Qitj+s = Uicicjestnij and P has triple points at the five
points qi, . .., gs;

(i) if pe Cp with p € {q1,...,¢}, p & 7, N Cy, and p # b;;, then T'C, P is the union
of two variable planes 7, p and m, p containing 7,,Cy and depending on the choice
of the point p and of the surface P;

(iii) if p € rxNCy, then T'C, P = m,Um, p, where the plane m, := T,Qitx+3 = TQj+k+3
contains 7,Cy and 74, and where 7, p is a plane containing 7,C}; and depending
on the choice of p € {a},a}} and of P;

(iv) TCy, P = m;; Umy;, where the plane 7 := T,Qi 13 contains r; and Ty, Cy,
and where the plane 7; ; := T),(Q);,x+3 contains r; and Ty, Cy;

(v) if p € rp with p € rp,NCy, and p # rNr;, then T'C, P is a variable plane depending
on the choice of p and P.

Proof. We may assume that P has equation gsg7fs + ge69sf7 + g79sf¢ = 0 for a smooth
irreducible fs € H°(P?, Zc,uc,p3(3)), a smooth irreucible f; € HY(P?, Ze, ey ps(3)) and
a smooth irreducible fs € H°(P?, Zo,uc4p3(3)) (see Lemmas , . Let p be a
point of P and let us consider an open affine set U, = A* C P? containing p. By abuse
of notation, let us denote by F':= gs97fs + 9s9sf7 + g79s f¢ the polynomial of degree 7
defining P N U,. In order to compute the tangent cone to P at the point p, we have
to take the minimal degree homogeneous part of the Taylor series of F' at p. In the
following, if h is a polynomial, then h4(p) will denote the homogeneous part of degree
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d of the Taylor series of h at p. By using this notation, if p is a point of the quadric
Qi+jt+3, we have that T,Q;+ 13 = {gi+jr31(p) = 0}, for 1 <4 < j < 3. Let us study
TC,P case by case.

(i)

(i)

Let us take p € {q1,...,¢5}. Then TC,P has equation gs1(p)g71(p)fs1(p) +
96,1()98,1(P) f7,1(0)+97,1(P) 93,1 () fo,1 (p) = 0, where { fs1(p) = 0} = (T,,C>, T,C5),

{fr1(p) = 0} = (T,,C4,T,Cs), {fs:1(p) = 0} = (T,C1,T,C2) (see Remark [5.75)).
So we obtain TC,P = U, ;<3 TpQitj+3-

Let us take p € C such that p & {q1,...,¢5}, p & 1, N Cy, and p # b;; for distinct
indices 4, j,k € {1,2,3} with ¢ < j. Let us suppose k = 1. Then T'C,P has
equation ¢19e,1(p)gr,1(p) + cage1(p) f71(p) + c3g7.1(p) fo1(p) = 0, where c1, 2, c3
are constants (depending on the choice of p and P). Since {gs1(p)g71(p) = 0},
{96.1(p) fr.1(p) = 0} and {g71(p) fs1(p) = 0} are three reducible quadric surfaces
given by two planes containing the line 7,C', then T'C, P is singular along 7,,C
and so it is the union of two planes containing 7,,C;. Similarly for k£ = 2, 3.

Let us take p € 7, N O, for 1 < k < 3. Let us suppose k = 1. Then T'C,P has
equation ¢196,1(p)gr,1(p) + cage,1(p) f71(P) + cag7,1(p) fo1(p) = 0, where c1, 2, 3
are constants (depending on the choice of p and P) and where {g¢1(p) = 0} =
1,Qs D T,C1 Uy, {g71(p) = 0} = T,Q7 D T,Cy Uy, {fesi(p) = 0} D T,Ch
and {frs1(p) = 0} D T,Cy. In this case we also have T,Q¢ = T,(Q)7, otherwise it
would be 1 < dim7T,(Qs N Q7) < dim(7,Q N T,Q7) =1 and Qs N Q7 =11 UC}
would be smooth at p € r N (Y, which is a contradiction. Thus 7, P is the union
of the plane T,Q¢(= T'pQ)7), which contains 7,,Cy and ry, and a plane containing
T,Cy. Similarly for k& = 2, 3.

Let us take p € r;Nr;NCY, for three distinct indices ¢, 7,k € {1,2,3} and i < j. Let
us suppose i = 1, j = 2, k = 3. Then T'C,, P has equation g71(p)gs1(p) = 0, where
{g71(p) =0} =T,Q7 D T,C3Ury and {gs1(p) =0} D T,C5 Ury. Thus TC,P is
the union of 7,7 U T,Qs. Similarly by taking (7,7, k) € {(1,3,2),(2,3,1)}.

Let us take p € rp with p € r, N Cp and p # rpNr; for 1 < i,k < 3 and 7 # k.
Let us suppose k = 1. Then T'C, P has equation ¢;¢61(p) + c2971(p) = 0 where ¢;
and ¢y are constants depending on the choice of p and P. Similarly for k = 2, 3.

]

Lemma 5.77. The rational map vp : P? ——» P defined by P is birational onto the
image.

Proof. 1t is sufficient to prove that the map defined by P on a general P € P is
birational onto the image. This actually happens because P|p contains a sublinear
system that defines a birational map. Indeed P contains a sublinear system P C P
whose fixed part is given by Qg U Q7 U Qg and such that P|p coincides with the linear
system on P cut out by the planes of P3. O]

Remark 5.78. The proof of Lemma tells us that the linear system P is very
ample outside the three quadric surfaces Qg, Q7, Qs. So vp : P3 —-» vp(P?) C PV is an
isomorphism outside Qg U Q7 U Qs.

60



Theorem 5.79. [23, §3] The image of P? via the rational map defined by P is an
Enriques-Fano threefold W§E of genus p = 6.

Proof. We will prove the theorem by using the same techniques of the proof of The-
orems [5.4] [5.24] In particular the proof is divided into several steps, given by the

Remarks [5.80] [5.81] the Proposition [5.82 the Remarks [5.83]..., [5.92 and the Theo-
rem [5.93 below.

First we blow-up P? at the five points qi, ¢, g3, @4, g5, at the six points a}, ab,
as, af, ay, a4 and at the three points bya, by, bas. We obtain a smooth threefold Y’
and a birational morphism bl’ : Y' — P3? with exceptional divisors Ej := (bl') ™ (qs),
E;; = ()7 (bij), El == (') (a}), B = (W) a]), for 1 <h <5and 1 <i <
j < 3. Let P’ be the strict transform of P and let us denote by H the pullback on
Y’ of the hyperplane class on P3. Then an element of P’ is linearly equivalent to

H =35 0B =25 (Bl + EY) =23 ;i3 By Let bhij, Ty Tays Tjis Tigy be
the strict transforms of the planes defined in Remark and Proposition [5.76] for
1<h<band1<1i<j<3. Let us consider the following 27 lines on Y”:

L g L ~ L ~ /A "o on
’th'j = Eh N thij; >\ij,i = Eij N 7Tij,i7 )‘ij,j = Eij N 7T2'j,j7 )\Z = E,L N 7Ta;, >\z = Ez N Wa;/.

They are respectively (—1)-curves on tm], Tijis Tijjs Ta, and Ty, Let P’ be the strict
transform of a general P € P. By Proposition [5.76] (i) and (iv) we have that P'NE), =
Usicijes his and P/ 0 Ejj = Ayj; U Ay, forall I<h <5and 1 <i<j<3.

Remark 5.80. Let us fix 1 <7 < 3. We have that P'N Ej = A\, U 3 p and PN E} =
AU 5 i p, where the curve 3] p moves in the pencil of the lines of E} through the point

E! N C; and the curve i p moves in the pencil of the lines of £} through the point
E!’ N C;, and both lines depend on the choice of P (see Proposition m (iii)).

Let us take the strict transforms @ and 7; of the three twisted cubics and of their
chords, for 1 < < 3. The base locus of P’ is given by the union of the three curves
C; (along which a general P* € P’ has double points), of the three curves 7;, and
of the 27 curves vuij, Niji, Nijj, A;, A/ defined above (see Proposition . Let us
blow-up Y’ along the strict transforms of the three twisted cubics and of their chords.
We obtain a smooth threefold Y” and a birational morphism bl” : Y"” — Y’ with
exceptional divisors (b”)7Y(C}) = F, = = P(Ng,yr) = P(Opi(=3) & Opi(=3)) = Fo
and (bI")"H7;) == R; = PN pyr) = P(Op(—3) @ Opi(—3)) = Fp for 1 <4 < 3, since
Neyps =2 Op1 (5) @ Op1(5) (see [22, Proposition 6]). Let us denote by Ey, E’ E” and E
respectively the strict transforms of Ej, EI, EY, E;;, for 1 <h <5and 0 <i < j < 3
Remark 5.81. Let us consider the curves ay,; := Eh NE;, af = E' NE;, of EZ” NF;,
Qi 1= E’ N Fy, pi = E’ NR;, pf = E" N R, piji = E,] N Rz7 Pijj = EU N R; for
1<h< 5 and distinct indices ¢, j,k € {1 2,3} with ¢ < j. Each of these curves is a
fibre on the exceptional divisor of bl” : Y — Y’ which contains it, and is a (—1)-curve
on the strict transform of the exceptional divisor of bl : Y — P3 containing it.
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Let P” be the strict transform of P’. If P” is an element of P”, then

3
"~ TH — 32Eh—2ZE’+E” )—2 > EZJ—2ZF > R
i=1

1<i<j<3

where, by abuse of notation, H denotes the pullback bl"*H.

Proposition 5.82. A general element P’ € P” is a smooth surface with zero arith-
metic genus p,(P”) = 0.

Proof. The smoothness of P” is shown in [27, p.620-621], since P” is the blow-up of a
surface P € P with ordinary singularities along its singular curves (see Definition
and Proposition [5.76]). We have to compute p,(P”) = x(Oy»(Ky» + P")) (see proof of
Proposition [5.26)). Since

3 3

5 3
Kyn~—4H +23 By +2Y (Bi+E)+2 Y E;j+> F+Y R

h=1 =1 1<i<j<3 =1 =1

(see [27, p.187]), then Ky»+P" ~ 3H—3",_, E, —°2 | F}, by the adjunction formula.
By denoting the fibre class of F; by f; for i« = 1,2, 3, we have the following two exact
sequences:

5
0 - OY”(SH — Z Eh) — OY”(BH) — @?Lzlogh — 07
h=1

5
0— Oy//(Ky" + P”) — Oy//(?)H — Z Eh) — @?:10};'2. (4]8@) —0

h=1

So we obtain x(Oy«(Ky» + P")) = (5) =5 —3-5=0. u

By Proposition [5.76, we have that the base locus of P” is given by the disjoint
union of the strict transforms 4,5, Aiji, Aijj, A; and A of the 27 lines Y5, Aijwy Ajy AV
for1<h<band1<i<j<3.

Remark 5.83. We observe that 77| Gilg, = )\12” o= >\’2|E/ X’Q]Eu = -1
iJ ©j
Furthermore, by using similar arguments to the ones in Remark [5.7] 7 and Remark [5.52 (.52

we have that the 27 curves Jnij, Niji, Aijj» /\’ and X’ are (—1)-curves on the strict
transform P” of a general P’ € P’. Moreover P” contains other (—1)-curves that

depend on P” itself: they are the strict transforms B{ p and B/p of the curves defined
in Remark [£.80

Finally let us consider bl”’ : Y — Y the blow-up of Y along the above 27 curves,
with exceptional divisors Fth = bl (Aniz)y Niji = bl””l(}\/”l) A= bl’”’l(xl“)
A= b (), A7 = bl L (X)) for 1 < h <5 and 1 <i < j < 3. We denote by &,
&l & and &;; respectively the strict transform of E,, E!, E! and EU, by F; the strict
transform of Fj; by R; the strict transform of R;; by H the pullback of H.
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Remark 5.84. We have that

Fhij = P(N:?hij‘yﬂ) = ]P)(O’Wm (Eh) @ O’Yh (thij>> = P(OPl(_l) D Oﬂ“(_l» = o,

I

Aiji = P(inj,i‘yﬁ)
AUJ = P('N’LLHY”)
A = PN ) = B(O5(B) & O (7)) 2 P(Ops(~1) & Opa (1)

P(O5, (Ey) & 05, (Fijs)) = P(Opi(=1) @ Opi (1)) = T,

75

(Eyy) @ 05, (Fi35)) = P(Os1(—1) @ Op (—1)) = F,

5,7

12

P(O5

I

) FOJ
AY = PNy ) 2 P(O5, (B) © O, (Fur)) = P(Ops (1) © Opa (—1)) 2 F,
) =

Furthermore we have I'},; = —deg(N, ,jy») = 2, A}, = —deg(N5, yn) =2, A} =

- deg(/\fximyﬁ) =2, AP = — deg(N5yn) =2, AP = — deg(./\/'x,‘y,,) = 2 (see [27, Chap
4, 6] and [32, Lemma 2.2.14]).

Remark 5.85. Let us take 1 < h < 5 and distinct indices 4, j,k € {1,2,3} with
i < j. The divisor Fy intersects Iy, A}, A}, Aiji, Aij; each along a P! which is a
(—1)-curve on F; and a fibre on I'yg, A}, A}, Ajji, Ajjj, where 1 < s <t < 3 and
k € {s,t}. Similarly we have A? - R; = A/? - R, = A2, R, = A? .- R; = —1 and

Z]Z ij

A-RI=AN/-R?=A\;;;, R?= A2 -R; = 0. Let us consider the strict transforms ay;,

1J,J

Qiji, Oy O, Pijis Pijjyr Py, Py of the curves defined in Remark Then we have

&iiygh = F2E&, = —1, a? = F2 Eij = —1, aﬂgl{ = FFE =1, 54'21514/ = F2E = —
nil 7, = & Fi = =2, a?jkb'—k =& T =20 =EFi = —1, &’-'2|f2 =& F = -1,
ﬁ?.]’z Ri - SZ'RZ — _]., ﬁ?‘j,]‘ 5 R — _1 8/2 R Ri — 8,2/2'RZ' — _].

Finally we recall that a general line of P* does not intersect the three twisted cubics
O, Oy, Cs and their chords; instead a general plane of P? intersects each twisted cubic
at three points and each chord at one point. Hence we have H? - F; = H?>-R; = 0,
F?}-H=-3and R? - H=—1.

Remark 5.86. We recall that by construction we have bl”’*( ) = Ent 2 icicics Dnigs
bl ( ,]) =&+ Niji + Ny, bl”’*(E’) =&+ AL, bl”’*(E”) = &/ + A. By abuse of
notation, we denote &, Ny, £ N Ayj ., E NA; and &' N A} respectively by Ypj, )\m,
)‘ww )\’ X’ for 1 <h<b5and1l<i<j<3. Let Ly, Ly, L}, L] be respectively

the strict transform on Y of a general line of E}, E;;, E; and E” By using similar
arguments to the ones in Remark we obtain that £} = 4, &) = 3and £ = £/° = 2,

since we have (c:h|gh ~ —(Eh + Zl§i<j§3 f";hij) ~ _<4£h -2 Z?:l &hi), ijl1&; ™ _(ﬁij +
Niji i) ~ = BLij = 20k = Pigi = Pig)s Eiley ~ —(Li+ X)) ~ —(2L; — & — ;) and
Eller ~ —(L) + X)) ~ =L — af = 77).

Remark 5.87. By using similar arguments to the ones in Remark we have F7? =
— deg(Ng,y,) = 6 and R} = — deg(N5yr) =6 for 1 <i < 3.
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Let P be the strict transform on Y of an element of P”: then

5 3 3
PrTH-3Y & -2  (Ere -2 Y & - 2ZF > Rt
h=1 =1 =1

1<i<y<3

_4 Z FhZJ—SZ (AJ+A)) =3 > (A + Aijy).

el 1<i<j<3

Let us take the linear system P := |Oy(P)| on Y. It is base point free and it defines
a morphism v : Y — P® birational onto the image W} := v5(Y'), which is a threefold
of degree deg Wg = 10. It follows by Lemma and by the fact that P3 =10 (use
Remarks [5.84] [5.85 [5.86] [5.87 and calculations similar to the ones in § 5.2} [5.3). Then
we have the following diagram:

Y

U~
bl 24 vp

Y’ yY! y P3 - » WE c PS.

It remains to show that the general hyperplane section of the threefold W5 is an
Enriques surface.

Remark 5.88. Let @6, @7 and @8 be the strict transforms on Y of the quadric surfaces
Qs, @7, Qs. By construction we have P - &, = P-&;; = P - Qi1j13 = 0 for a general
PePandforalll<h<5and1<i<j<S3.

Remark 5.89. The 27 exceptional divisors of bl :' Y — Y the six divisors & and
&/, and the three divisors R; are contracted by the morphism vs : Y — WE C P° to
curves of W5. This follows by the fact that P. Lhij, P. Nijis P. Aijj, P. AL pP. A,
P-&,P-& P -R;#0and P*-Ty; = P2 Ayj; = P> A ; = P2- N, = P2. A/ =
152-5{ = ﬁ2~52-” = ]32~RZ- =0for1<h<band1<i<j<3 (use Remarks,
and calculations similar to the ones in Remarks , .

Remark 5.90. Let us fix 0 < i < 3 and let P be a general element of P. Since
P2.F, =10 > 0 (use Remarks and calculations similar to the ones in
Remarks , then the curve P N F; is not contracted by the rational map
defined by P|3.

Remark 5.91. Let us fix 1 < h < 5and 1 <7 < j < 3. Let us consider a general
clement P € P and let us take S := I/P(P) and P := bl"(P P) € P". Since bl" : Y — Y
has no effect on P”, then PN Lhij, PN Aiji, PN Aijj, PN AL PN A, PN E=Bip
and PN E" B;{fp are still (—1)-curves on P (see Remark [5.83). We also have that
(PNRy) Z=Ri P = —5 (use Remarks|5.85} [5.87)). Furthermore PNR; intersects the
four curves P NAL PN A, PN Nijis PN A4 at one point each, for 1 < s < ¢ <3 and
i € {s,t} (use Remark @ Thus we can see the map vz|5 : P — S as the blow-up of
S at the 21 points v5(P NI';), uﬁ(f’meg), Uﬁ(ﬁﬂ&-”), at the three points Vﬁ(ﬁﬂRi)
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and at the four points v (P N A}, ﬁ(lﬁ5 NAY), vs(P N Ay, I/ﬁ(ﬁ N Ag;) which are
infinitely near to each vz (P NR;) (see Remarks 5.78|, |5.88L |5.89|, |5.90[). Then S is a
smooth surface.

Remark 5.92. The surface Qg U Q7 U Qg is the only sextic surface of P? which is
singular along the three twisted cubic Cy, Cy, C3. Let us consider the strict transforms
Qe, Q7 and Qg on Y of these quadric surfaces. Then we have

5 3 3 3
Qo+ Qr+ Qs ~6H = 38— 26 +&)~ Y 38— 2F - 2R+
h=1 =1 =1 i=1

1<i<j<3

3
Z AThij — D AN HA]) = D 4(Ay + Aygy)-

= =1 1<i<j<3
1<1<]<3

If P is a general clement of P, then 0 ~ (Q¢ 4+ Q7 + Qs) 5~ (67—[ — S 2EL+EN)
Zizl 2F;— Zizl 2R;—4 Zlh<:1<% Lpij—4 ZZ V(AN =47 (N + Aij,j)) |5
<i<j<

Theorem 5.93. Let S be a general hyperplane section of the threefold W5 C PS.
Then S is an Enriques surface.

Proof. We recall that S is the image of a general element Pe 73, via the birational
5 Y — WE c P°. Furthermore S is smooth (see Remark [5.91)). By

morphism v
Proposition and by using the arguments of Theorem [5.93] we have that ¢(P) =
pg(P) = 0. It remains to prove that 2Kg ~ 0. Since by [27, p.187] we have that

5 3
Ky =b"" (Kyn)+ Y Thij+ > (A +A)+ D (Ajja+ i) ~

h=1 i=1 1<i<j<3
1<i<j<3
5 3 3 3
~—AH D 26+ Y 2EHEN D 265+ ) Fi+ Y Rt
h=1 i=1 1<i<y<3 i=1 i=1
+3 Z th] + 3 Z AI A// + 3 Z Alj ) + Az]]
1<i<yi<3

1<Z<j<3
then we obtain that 2K5 = 2(Ky + P)|s ~ (6H — S0 2F — 23 her s D)5
1<i<j<3
Furthermore, by Remark [5.92], we have

3

2K 5 ~ <Z (EI+E) +22Rl+ Z 2thy+z4 (N+AD+ 4(Aij,i+/\ij,j)>|ﬁ-

i=1 i=1 1<i<j<3
1<z<]<3

Finally, by Remarkp.91] we have 2Kg ~ (v5).(2Kp) ~ 0. O
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One can prove that W& C PP is not a cone over a general hyperplane section, as
in the proof of Theorem [5.15] So W§ C PS satisfies Assumption (*) of § and
we can obtain an Enriques-Fano threefold in the sense of Definition by taking its
normalization.

O

It would be interesting to verify with modern techniques if the general hyperplane
section of W5 C PS actually is a Reye congruence, as stated by Fano in [23, §3] (see
also [I3, Proposition 3]).

5.5.2 Singularities of W

We recall that the divisors &, &, &, &4, &s, @6, @7, @g are contracted by vz : Y —
Wp C P° to points of W§ (see Remark- Let us define Py, := v5(&,) for 1 <h <5

and Ps := v3 (QG) Pri=vs (Q7) Py = v5(Qs).

Remark 5.94. By Remark we have that v5(&;;) is a point of W for all 1 <i <
J < 3. In particular we have v5(&;;) = Vﬁ(©i+j+3), since @i+j+3 N&;; # (. Indeed one
can verify that @Z+]+3 M &;; is the strict transform of the line of E;; joining the points
E;;jN7r;and E;; Ny

Proposition 5.95. The eight points Py, ..., Py, defined as above, are quadruple points
of W§ whose tangent cone is a cone over a Veronese surface.

Proof. The analysis of the points Py, P», P3, P, and Ps follows by Remark [5.86] as in
the proof of Propositionﬂ Let us fix now three distinct indices i, j, k € {1,2, 3} with
1 < j. The hyperplane sections of W95 C PY passing through PZ+]+3 correspond to the
elements of P containing QZ+J+3 U&;; (see Remark [5.94)). Let 73” =P — QZ+J+3 Eij

be the sublinear system of P defined by these elements Let us study sz

’Qi+j+3

‘OQHHS(_QVHHS —&;j)|. If we consider the case (7, j) = (1,2), we have

Qs ~y 2H — Z&—Z +EN = Y &= > Fi— > Rt

t=1,2 1<r<s<3 t=1,2 t=1,2

5
- Z(ZFiﬂZ + 1—‘hlii + FhZS) - Z 2(A2 + Ag) - Z (Ars,r + Ars,s)a
h=1 t=1,2

1<r<s<3

and so
N 5
Qsla, ~a, <2H = 2L G ) (FAR) =D 2= Y 2AN; +Ag>> 3
1<r<s<3 t=1,2 h=1 t=1,2

Let Cg be the pullback on @6 of the linear equivalence class of the hyperplane sections
of Q. By abuse of notation, let us denote by Jp12, Aj, A/ the (—1)-curves on Qg
given by Inialg,, Atlg,: Aflg, for 1 < h < 5 and ¢ = 1,2. Let us also consider
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the (—1)-curves on Qg defined by €, = Eslg, for 1 < r < s < 3. Then we have

96’@6~N@6 26— 1<pescs Ers— (2C6 =30 Fmia— N, =N —ea3—€12) — (2C6— > n_y An12—
Ny = A — €13 — €12) = 2op_y 29mz — 2o (3 + ) = —2Cs + €12 = —2Cii08 + €55
Sinililar'ly for (Z,j) €{(1,3),(2,3)}. Thus' we ha've Pij|©i+j+3 = |Qéi+j+3(2Ci+j+3_2€ij)’,
which is the linear system of the quadric sections of ;4,43 with node at r; Nr;. It
is known that @Q;. ;43 is the image of P? via the rational map v : P? --» P? defined
by the linear system of the conics passing through two fixed points x; and z5. The
quadric sections of @Q;4,4+3 with node at 7; N7, correspond to the quartic plane curves
with node at the points z; and o and at a third fixed point x5 := ¢ ~*(r; N r;). By

=~ |Op2(2)|, whose image
Pijle,; = |0e,; (= Qirjys — &)l =
&, 1s isomorphic to the linear

applylng a quadratic transformation, we obtain that 731] \Q e

(N
|O¢,,(2Li; — 2a;5,)| = P? (see Remark |5.86]). ;i
system of the conics of F;; with node at the point F;; N C}, then its image is a conic
Cij' Since ‘/z‘j U Cij = P(TCpi+j+3Wg), then it must be Cij C V;'j = IP)(CTC'pﬂ_‘_d 6)
Therefore @i+j+3 is contracted by vz to the point P, 3, which is a quadruple point
whose tangent cone tangent is a cone over a Veronese surface, and the divisor &;; is
contracted in a conic contained in the Veronese surface given by the exceptional divisor
of the minimal resolution of P ; 3. O

We recall that vp : P? --» W& C PY is an isomorphism outside Qg U Q7 U Qg (see
Remark |5 - Then P, P,, P3, P,, P5, Ps, P; and Fx, are the only singular points of
WE (see Remarks [5.88] [5.89} [5.90). Furthermore v5 : Y — W} is a desingularization
of WE but it is not the minimal one: indeed the proof of Proposition says us that
vy Y — W} is the blow-up of the minimal desingularization of Wlfi along curves
(conics) contained in the minimal resolutions of Fs, P; and FPs. Finally, by recalling
Definition [.4], we have the following result.

Theorem 5.96. The eight points Py, P, P, Py, Ps, Ps, P;, Py are all associated with
each other, as in Figure 21] of Appendix [A]

Proof. Let us fix 1 <h <t <5and 1 <i < j < 3. Let us consider the line [, C P?
joining the points ¢, and ¢;. Let lht be its strict transform on Y. We obtam that
I/P(lht) = (P, P,y C W%, since I N En £ (), I N Es # () and deg(yp(lht)) =P -(H-
En—E— ZKK]Q Cpij— Zl<z<]<3 [';)? = 1. So P, is associated with P;. We recall now
that pij, Aiji, Aijj, A, A7 and R; are mapped by vz : Y — WP C PP to curves of W7},
(see Remark- In partlcular Lhijs AZ] i A,”, A, A are mapped to lines of W (use
similar arguments of proof of Theorem . We also have that v5(R;) = vzs(Aj) =
va(A!) = vs(Nij;) = vp(Agy) for 1 <'s < ‘ < 3 and i € {s,t} (see Remark [5.91).
Since I'y;; NE, # 0 and Ty N @i+]’+3 # 0, then (P, Py ji3) = v5(Lhij). So each Py,
is associated with each P ;3. Finally Fs, Pr and Py are mutually associated, since
1/75(7?,1> = <P6, P7>, 1/75(7?,2) = <P6, P8> VP(R?’) <P7, Pg) (see Remark- ]
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6 Computational analysis of the BS-EF 3-folds with
very ample hyperplane sections

6.1 Abstract

We recall that a fixed BS-EF 3-fold (W, £) is an Enriques-Fano threefold given by
the quotient 7 : X — X/o =: W of a smooth Fano threefold X under an involution
o : X — X with eight fixed points (see [I]). The quotient map m : X — W is defined
by the sublinear system of | — Kx| given by the o-invariant elements. The images of
the eight fixed points of o are eight quadruple points of W whose tangent cone is a
cone over a Veronese surface. We will computationally analyze the BS-EF 3-folds with
very ample hyperplane sections (see [I, Theorem A)). By calling configuration the way
in which the eight singular points are associated, we will find the following facts:

(i) the ideal of W5g C P is generated by cubics; the eight singular points of W54 C
IPS are similar and they have the same configuration of the ones of the F-EF 3-fold
W (see §[6.2); however, it is not yet known if the two threefolds W and W5
coincide;

(ii) the ideal of Wje C P7 is generated by quadrics and cubics; the eight singular
points of Wjs C P7 are similar and they have the same configuration of the
ones of the F-EF 3-fold W (see § [6.3)); however, it is not yet known if the two
threefolds WEg and WY coincide;

(iii) the ideal of W¢ C P® is generated by quadrics and cubics; the eight singular
points of W§¢ C P® are similar and they have a configuration that was excluded
by Fano in his paper [23]; the threefold W5 C P® can also be obtained as the
image of a certain linear system of septic surfaces of P? (see § ;

(iv) the ideal of W3s C P? is generated by quadrics; the embedding of W3g in P? is
the F-EF 3-fold W7 C PY (see §[6.5);

(v) the ideal of WL C P! is generated by quadrics and cubics; the eight singular
points of W% C P'? are similar and they have a configuration that was excluded
by Fano in his paper [23]; the threefold W% C P!° can also be obtained as the
image of a certain linear system of sextic surfaces of P? (see § ;

(vi) the ideal of W}% C P'3 is generated by quadrics; the embedding of W% in P'3
is the F-EF 3-fold W} C P'3 (see §[6.7).

6.2 BS-EF 3-fold (VIII) of genus 6

In the following we will often refer to the use of Macaulay2: see Code of Appendix[B]
for the computational techniques we will use. Let us study the BS-EF 3fold described
in [I, §6.2.4]. Let us consider the smooth Fano threefold X given by the intersection
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of three divisors of bidegree (1,1) in P? X Pf’yo:._,: 45 With equations
3 3

[xo:--x3]
Z Z CLZ‘jZEZ‘yj = 0, Z bz‘sz‘yj = 0, Z Z cijxiyj = 0

3 3
i=0 j=0 i=0 j=0 i=0 j=0
where a;; = aj;, bij = bji, ¢;j = ¢, for 4,5 € {0,1,2,3}. Let us take the involution
0 : X — X defined by the restriction on X of the following map

/

P3 x P3 g y P3 x P3

[To: @y @y xs] X [Yo:v1:y2:ys] — [Yo:y1:y2:ys) X [xo:xy g xg).

We have that ¢ has eight fixed points py, ps, ps, P4, P5, Pe, Pr and pg with coordinates
[To : @1 @ X9 1 @3] X [To @ 1 1 wo @ x3] such that

Z?:o Z?:o a;jz;x; =0

S o Yo bijmiz; =0

S g Yo CijTiz; = 0.
The quotient map 7 : X — X/o =: Wis is given by the restriction on X of the
morphism ¢ : P3 x P3 — P?ZO:W: 25 defined by the o’-invariant multihomogeneous poly-
nomials of multidegree (1,1). Thus we have ¢ : [xg: z1: @9 : 23] X [Yo : Y1 : Yo : y3] —
[Zo -+ Zy|, where Zy = zoyo, Z1 = T1y1, Z2 = TaYo, Z3 = T3Y3, L4 = ToY1 + T1Yo,
Z5 = xoYa+TaYo, Ze = ToYs+T3Yo, L1 = T1Y2+T2Y1, Zs = T1Y3+T3y1, Ly = Tays+T3Ya.
By using Macaulay2, one can find that the image of P3 x P? via ¢ is a 6-dimensional

algebraic variety Y of degree 10, whose ideal is generated by the following 10 poly-
nomials

271257 + Z4ZsZr + ZuZsZs — 22077 Zs + AZoZ1 Zg — 72 Zy,

270742 + ZsZgZq + AZo Ty Zs — Z2 0 + ZuZs Zg — 2207 Zo,

47, Zy 2+ Zs 7% + 2774 7 — Zs Ty Zg + 271 Zs Do — ZaZn Zg,

2737475 + 470 Zs Ly — 72 77 + Zs Zg s + ZaZisZg — 22075 2,

—AZ, 7375 + 273747 — ZsZ1 Zs + ZsZy + 271 ZsZog — ZaZis 2,

477374 + 27375 77 + 279 Zis D — T ZnBog — Zs ZsZog + Z4Z2,
47, Ly DigA L3 L2+ Do 2 — T D Zg+ 21 72, —4Zo T Zis+ L L2+ Zn 22 — T Zig Lo+ Zo 22,
L VAV AV AR AV AR AV A AVAY AR AV AN VAVAVAS AV A AV AVAY AR AVAS

We observe that W5¢ = p(X) = F{°N Hg, where Hg is the 6-dimensional projective
subspace of P? given by the intersection of the following three hyperplanes

{a0oZo+a1121+asZs+a33Z3+2a01 Zy+2a02 Z5+2a03 L6+ 2012 Z7+2a13 L +2a93 Z9 = 0},
{booZo+b11Z1 +baa Zo + b3z Zs 4 2boy Zy 4 2bog Zs + 2bog Zg + 2b19 Z7 + 2b13 Zg + 2bag Zg = 0},

{cooZo+ 1121+ caaZa+ 3323+ 2c01 Zy 4 2c09 Zs 4203 Zs + 21927+ 2013 L5+ 203 Z9 = 0}
Therefore we have m = ¢|x : X — Wiy = ¢(X) C Hg = P°.
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Remark 6.1. The threefold W4 is 3-extendable (see Definition . It would be
interesting to understand if this is sharp.

What follows has been proved for fixed values of a;;, b;; and ¢;;, in order to simplify
the computational analysis.

Example 6.2. Let us take

1 0 00 1 0 00 1 0 0 0
0 —7 00 0 —6 0 0 0 -1 0 0

@) ="to o 40 ®W={0 0 20| @W=|o 0 -7 0]
0 0 0 2 0 0 0 3 00 0 7

we obtain X = {xoyo — Tz1y1 + 422y + 2x3y3 = 0, Toyo — 621y1 + 222y + 3x3ys =
0, xoyo — T1y1 — Txoys + Tx3ys = 0}. Then the eight fixed points of o : X — X are

pr=[1:1:1:1x[1:1:1:1],pa[-1:1:1:1]x[-1:1:1:1],
ps=[1:—1:1:1x[1:=1:1:1], p4
ps=[1:1:=1:1]x[1:1:—1:1], pg
pr=[1:—1:=1:1x[1:=1:—-1:1], ps

[—1:—1:1:1]x[-1:=1:1:1],
[—1:1:—=1:1]x[-1:1:-1:1],
[—1:=1:—=1:1]x[-1:=1:-1:1].

Furthermore we have
H(; = {Z0—7Z1+4Z2—|—223 - 0, Z0—6Z1+2Z2+323 - 0, Zo—Zl—7ZQ+7Z3 - 0} -

={Zy—Z5=0,2,— Z3=0, Zy — Z3 = 0},
which is the P¢

[wo: -

Zi:w07i:07172737 Zj:wj—37j:4-7"'79'

we] embedded in ]P)![)ZO:---: o] via the morphism such that

By using Macaulay2, we find that the quotient map 7 : X — WS C Hg = PS

is given by the restriction on X of the morphism ¢’ : P3 x P3 — P?wo:._,:wd such
that [zo: @1 T2 :ys:ys:ys] = [wo: - :wg], where wg = x3ys, wi = Toy1 + 1Yo,

Wy = ToY2+T2Yo, W3 = ToY3+T3Yo, W4 = T1Y2+T2Y1, W5 = T1Y3+T3Y1, We = T2Y3+T3Y2.
Thanks to Macaulay2, we obtain that this BS-EF 3-fold W5 C P° has ideal generated
by the following 10 polynomials

2 2
—2Wowaws + WiW3Wy4 + WiweWs — 2Wew4Ws + dwyws — Wi Ws,

2 2
—2w0w1w3 + Wowswy + 4w0w5 — WyWs + Wi wowg — 2w0w4w6,
4wg 1t+2 2
—dwyws + wawj + 2wowiws — WrwaWs + 2WeWaWe — W1W4We,
—2w + dwiwy — wiwy + - —2
oW1W2 WoWy W3 Wy Wo2W3Ws W1W3Weg WoWsWe,
dwgwy + 2 S+2
—4dwyws WoW Wy — W3W4W5 + Wy + 2WowaWs — W1 WsWe,
—4wiwy + 2 +2 — - + :
oW1 WoWaW4y WoW3Ws W3W4We WrW5We U)l’UJG,

3 2 2 2 3 2 2 2
—4dwy + wowy + wowy — wawswe + wowg, —4wy + Wow;y + Wows — WaWzwe + WoWg,
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3 2 2 2 3 2 2 2
—4dwy + wow] + wows — WiW3ws + wows, —4wy + Wewi + Wow; — WiWaWys + Wowy.

Furthermore this threefold has the following eight singular points
P=n(p)=101:2:2:2:2:2:2], Bb=m(py)=[1:-2:-2:-2:2:2:2],
Py=n(ps)=1[1:-2:2:2:-2:-2:2], Pi=7(py) =1[1:2:-2:-2:-2:-2:2],
Ps=n(p))=[1:2:-2:2:-2:2: 2], Bg=n(p))=[1:-2:2:-2:-2:2:-2],
Pr=n(py)=[1:-2:-2:2:2:-2:=2], Bs=m(py) =[1:2:2:-2:2:-2:-2].

One can verify that all the lines joining the points P; and P}, for 1 <i < j < 8, are
contained in W5s. So we can say that each one of the eight singular points of W5 is
associated with all the other m = 7 points, as in Figure 21] of Appendix [A] This is the
same configuration of the singularities of the F-EF 3-fold W§.

6.3 BS-EF 3-fold (X) of genus 7

In the following we will often refer to the use of Macaulay2: see Code[B.2of Appendix [B]
for the computational techniques we will use. Let us study the BS-EF 3fold described
in [1, §6.4.1]. Let X be the smooth Fano threefold given by a divisor of type

E AijrTiyjzet; = 0
i+jtktl odd

in P! x P! x P! x P! with coordinates [zo: z1] X [yo: y1] X [20: 21] X [to:t1]. Let
us consider the involution o : X — X defined by the restriction on X of the map
o Pl x P! x P! x P! — P! x P! x P! x P! such that

[CL'O : .%'1] X [yo . yl] X [ZO . Zl] X [to . tl] — [l’o . —.Z'l] X [yo . —3/1] X [ZO . —Zl] X [to : _tl] .
The involution ¢ : X — X has the following eight fixed points

pr=[0:1x[0:1x[0:1]x[0:1], pi=[1:0x[1:0]x[1:0]x][1:0],

pr=00:1x[1:0]x[1:0]x[0:1], py=[1:0x[0:1]x[0:1]x[1:0],
p3=[1:0]x[1:0] x[0:1]x[0:1], py=[0:1]x[0:1] x[1:0]x[1:0],
pa=1[1:0x[0:1x[1:0x[0:1], p,=[0:1x[1:0]x[0:1]x][1:0].

The quotient map 7 : X — X/o =: W} is given by the restriction on X of the mor-

phism ¢ : P! x P! x P! x P! — IP’EUO:._:W], defined by the ¢’-invariant multihomogeneous

polynomials of multidegree (1, 1,1, 1). In particular we have
0w @] X [yo 1] X [20 1 21] X [to = t1] ¥ [wo @ wy s wg w3 wy ws : we : we]

where wy = z1y121t1, w1 = TYozoti, Wo = ToYozili, w3 = TiYozito, Wi = ToYoZolo,
ws = ToY121to, We = T1Y120t0, W7 = ToY12ot1-
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Remark 6.3. By ﬁxing (random) values for apoo1, @p010; @01005 A1000, 1110, @1101, A1011
and ag111, one can verify, with Macaulay2, that the ideal of the BS-EF 3-fold W} is
generated by the following 11 polynomials

WoWe — W3W7, W1W5 — W3W7, WoWy4 — W3WT,

a1110WoW5We + G1011WoW3W7 + Ap111WoWsW7 + Qoo10W3WsW7 + A1101 WoWeW7 +
2
1000 W3WeW7 + Go100W5WeW7 + Qo1 W3W?F,

A1000W1W4We + Q1011 W1 W3W7 + Gooo1 W1 WaW7 + Goo1oW3W4W7 + Q1101 W1 WeW7 +
2
1110W3WeW7 + Go100W4WeW7 + Qo111 W3WT,

2
G0010W3W4W5 + A1000W3W4We + A1110W3W5We + Ap100W4W5We + G1011W3W7 +
Qppo1 W3W4W7 + Qo111 W3WsW7 + Q1101 W3WeW?7,

Qo110 W2W4 W35 + Q1011 W2W3W7 + Gooo1 W2 WaW7 + G1000W3W4W7 + Qo111 W2WsW7 +
2
1110W3WsW7 + Go100W4W5W7 + A1101 W3W7,

1011 W1 W2W3 + Appo1 W1 W2W4 + G1000W1W3W4 + Goo1oW2W3W4 + Q1101 W1 W3WT +
2
Q0111 W2W3W7 + G1110W3W7 + Ag100W3W4W?7,

1011 WoW2W3 + Qo111 WoW2Ws + G1110WoW3Ws + Agp10W2W3Ws + Q1101 WoW3W7 +
2
Qo1 W2W3W7 + G1000W3W7 + Qo100 W3W5W7,

1011 WoW1W3 + A1101WoW1We + A1110WoW3We + A1000W1W3We + Q111 WoW3W7 +
2
Qo1 W1 W3W7 + Goo10W3W7 + Qo100 W3WeW?7,

1011 WoW1Wo + Q1101 WoW1W7 + Qo111 WoW2W7 + Aopo1 W1 W2W7 + A1110WoW3W7 +
2
A1000W1 W3W7 + Goo10W2W3W7 + Gp100W3WT-

Thus the ideal of W] is generated by quadrics and cubics. Since Wjg is projectively
normal in P7 (see § , then the ideal of its general hyperplane section S C PS is
generated by quadrics and cubics too. This is consistent with the fact that the ¢ of a
general hyperplane section of S is 3 < 4 (see [35, Theorem 1.1 (ii)]), as we will see in
the proof of Theorem [0.2]

Remark 6.4. Let us consider the eight singular points of W

p1)=[1:0:0:0:0:0:0:0], P/ =m(p;)=1[0:0:0:0:1:0:0:0],

(1) (
Po=m(p)=10:1:0:0:0:0:0:0], P,=m(p
(p3) =[0:0:1:0:0:0:0:0], Py=m(p)=[0:0:0:0:0:0:1:0],
Py=7(py)=100:0:0:1:0:0:0:0], P,=m(py)=[0:0:0:0:0:0:0:1].

Let [; ; be the line joining the singular points P; and P; with i, j € {1,2,3,4,1',2',3',4'}
and i # j. Then we have l1o = {w; = 0]i # 0,1}, 13 = {w; = 0]i # 0,2},
ha = {w = 0/i # 0,3}, Ly = {w;, = 0]i # 0,4}, Ly = {w;, = 0li # 0,5},
11,3/ = {w, = 0|Z # 0,6}, 11’4/ = {wl = O‘Z # 0,7}, 12’3 = {wz = 0|Z # 1,2},

)
)=[0:0:0:0:0:1:0:0],
)
)
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1274 = {wz = 0|Z 7é 1,3}, lg,ll = {wz = O‘Z 7é 1,4}, l272/ = {wl = 0‘2 7é
l273/ = {wz = O‘Z # 1,6}, 12’4/ = {wl = O‘Z # 1,7}, l3,4 = {wl = O"L #
13’1/ == {wl = 0|Z # 2,4}, l3’2/ = {wz == 0|Z §£ 2,5}, l373/ - {U)z == O‘Z §£
l374/ = {U)Z = O|Z 7é 2, 7}, l471/ = {wz = 0|Z 7& 3,4}, l472/ = {U)z = 0|Z 7£ 3,5},
l473/ = {U)Z = O|Z 75 3,6}, l474/ = {’LUZ = 0|Z 7é 3, 7}, l1/72/ = {wl = Oll 7é 4,5},
l1/,3/ = {’LUZ' = 0|2 7é 4,6}, l1/,4/ = {wi = 0|Z 7é 4, 7}, l2/73/ = {wi = O|Z 7& 5,6},
lyy = {w; = 0li # 5,7}, lyy = {w; = 0]i # 6,7}. By Remark we have that
W;S does not contain the lines [y 1/, ly9, l33 and Iy 4, while it contains the others.
So each one of the eight singular points of Wy is associated with m = 6 of the other
singular points, as in Figure 22 of Appendix [A]l This is the same configuration of the
singularities of the F-EF 3-fold W7}.

6.4 BS-EF 3-fold (XI) of genus 8

In the following we will often refer to the use of Macaulay2: see Code of Appendix[B]
for the computational techniques we will use. Let us study the BS-EF 3fold described
in [I, §6.4.2]. Let us take the hyperplane {z, = 0} C Pfxo:xlmm:m and two quadric

surfaces Q, R C {z, =0} = P respectively with equations

[zo:x1:ma:23]?
L 2 2 2 2 —0
Q(xo, x1, T2, T3) = ooy + q11T] + @225 + G33%5 + qo1T0T1 + GasTexs = 0,

— 2 2 2 2 -
R(ZL’Q, Ty, T2, 1‘3) = TooLy + 1124 + T'22Xy + 3323 + T01ToT1 + T93T9x3 = 0.

Let C := @Q N R be the elliptic quartic curve given by the complete intersection of the
above quadrics, and let Y be the quadric cone over @ with vertex v =[0:0:0:0: 1].
Obviously, Y has equation Q(zg, 71,22, 73) = 0 in P4 Let X := Bl,ycY be the
threefold obtained by blowing-up the point v and the curve C' and let us consider the
blow-up map bl : X — Y. We have that X is a smooth Fano threefold. Let us explain
this. Let us consider the blow-up map bl’ : Bl, o P* — P* with exceptional divisors
E, =bl'"}(v) and E¢c = bl'"1(C). By definition we have that X is the strict transform
of Y on Bl,ucP* and that bl = bl'|x. If H denotes the pullback of the hyperplane class
h of P4, then we have that X ~ 2H — 2F, — E¢. By the adjunction formula we have
that —Kx = —(Kpy, opt + X)|x ~ (3H — E, — E¢)|x. We want to show that —Kx is
ample. Let us consider the linear system C of the cubic hypersurfaces of P* containing
the curve C' and passing through the point v. Let us fix a general hyperplane h, passing
through v. We have that C contains a sublinear system C C C whose fixed part is given
by h, U {24 = 0}. Since the movable part of C is given by the hyperplanes of P*, then
we obtain the ampleness of C at least outside vUC'. So we have the ampleness of —Kx
at least outside F, N X and E¢ N X, since | — Kx| coincides with the restriction on
X of the strict transform of C. Furthermore the movable part of C also contains the
hyperplanes of P* through v, whose strict transforms are very ample on E,: indeed we
have |Op,(H — E,)| = |Og,(—E?)| = |Ops(1)| (see [27, Chap 4, §6]). Thus the ample-
ness of —Kx along E, N X follows by the fact that £, N X is a smooth quadric surface
in F, = P3. It remains to show the ampleness of —Kx along S’ := E- N X, which is a
Pl-bundle over C. Since C is the complete intersection of a hyperplane section and a
quadric section of Y, then S" = P(N¢jy) = P(Oc¢(hly) ® Oc(2h]y)). In particular we
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have that the class 5’| is the class of the tautological bundle on S’ (see [27), Chap 4,
§6]). Thus —E¢|s = —5'|g is ample on S, and so (—Kx)|s = (3H — E¢)|s is ample
too.

Let 0 : X — X be the morphism defined by the birational map o’ : ¥ --» Y s.t.

[To : @y o w3 y] —T— [w4T0 1 T4y : —X4Ty : —2473 2 R(wo, 11, 0, 73)] .
The map o : X — X is an involution of X with eight fixed points, which are the
preimages via bl : X — Y of the eight points p1, pe, p3, pa, D}, Py, Ps, P such that

{p17p/17p27p/2} - Y N {'TQ - 07 T3 = 07 IZ - R(I‘O,I’l,flfg,%g,) = 0}7

{p3, P53, pa, P4} =Y N {wo =0, 21 = 0, 1&2; + R(wo, 21, 29, 73) = 0}
The o’-invariant elements of C define the rational map ¢ : Y --» P? such that
[xo: 1wyl = [Zo: -+ : Zy|, where

— 2 _ 2
Zy = x3x0 + xoR(x0, 21, 02, 73),  Z1 = xjx1 + 1R (20, T1, X2, 73),
— 2 _ 2
Zg = XyT2 — l’zR(l’o,Q?l,Jfg, 513'3), Z3 = TyT3 — $3R($0,3§'1, Ta, 1’3),
— 2 _ 2 _ 2 _ 2 _ —
Z4 = T4Zy, Z5 = X427, Zﬁ = T4T35, Z7 = T4T3, Zg = T4To27, Zg = XT4T2X3.

We observe that ¢(Y) is contained in a hyperplane P?wo:m:ws} ~ Hy C P? with equation

Hg = {QOOZ4 -+ Q11Z5 + q2226 + Q3327 + q01Z8 + QQ3Z9 = O} The rational map @ defines
the quotient map 7 : X — X/o =: W5, thanks to the following commutative diagram

What follows has been proved for fixed values of ¢;; and 7,5, in order to simplify the
computational analysis.

Example 6.5. Let us take

Q(z0, 21,79, 73) = 75 — 27 — 23 + 22 and  R(zq, 21, To, 23) = 225 — 27 — 303 + 273,
Then ¢(Y') is contained in the hyperplane Hy = {Z4 — Z5 — Zs + Z;}, which we can
see as the image of the morphism i : P® < P? such that

[woz---:wg]%[wozwl:w2:w3:w4+w5—w6:w5:w6:w7:w8].

Thanks to Macaulay2, one can verify that we obtain a BS-EF 3-fold W54 C Hg = P®
whose ideal is generated by the following 11 polynomials

2 2 2
WsWe — Wg, WaWe — WaWsg, W3Ws — Wally, Wj + WiWs — WyWe — W7,
WiWye + W1 W5 — W1We — WoW7, WoWs — WiW7,

2 2 2 2 2 2
wi — wi — wi + w; — dwyws + 4wz + 4dwsws — 4wg,

Wowzwy — Wowwg + 4wswrwg — dwswrws,
wow W — wiwy — dwywews + 4wrw?,

2 2 2 2 2
wizwy — wiws + dwawg + 4dwsws — Swawy,
wowzwy — wiwg — 8wywsws + 4wgwewsg + 4wws.
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Then the ideal of W is generated by quadrics and cubics. Since W3 is projectively
normal in P® (see § , then the ideal of its general hyperplane section S C P is
generated by quadrics and cubics too. This is consistent with the fact that the ¢ of a
general hyperplane section of S is 3 < 4 (see [35, Theorem 1.1 (ii)]), as we will see in
the proof of Theorem [9.2

Remark 6.6. The BS-EF 3-fold W8 of Example has the following eight singular

points
)=[2:2:0:0:1:0:0:1:0],
)=[-2:-2:0:0:1:0:0:1:0],
Po=o(ps)=@([0:0:1:1:1])=1[0:0:2:2:0:1:1:0:1],

]
)
)=[2:-2:0:0:=1:0:0:1:0],
) =
)

Pi=¢ps)=9(0:0:=1:1:1))=[0:0:—-2:-2:0:1:1:0:1]

Pl =) =¢(-1:1:0:0:1]) =

Py=w(py) =¢(1:=1:0:0:1])=[-2:2:0:0:-1:0:0:1:0],
D=1

Pyi=p(p;)=¢(0:0:—-1:-1:1])=[0:0:2:-2:0:—-1:-1:0:1],
Pi=p(@)=¢(0:0:1:-1:1))=[0:0:-2:2:0:—-1:—-1:0:1].
Let [; ; be the line joining P; and P; for 4,5 € {1,2,3,4,1',2',3',4'} and ¢ # j, i. e.

lio = {wo = w1, wy = wr, w2 = w3 = w5 = we = wg = 0},

l13 = {’LU() = w1 = 2w4 = 2’11}7, Wy = W3 = 2w5 = 2’11)6 = 2w8},

l1g = {wo = w1 = 2wy = 2wy, —wy = —w3 = 2ws = 2wg = 2ws},
l11/ = {’LU() = 2w7, w1 = 2w4, W2 = W3 = W5 = Wg = W8 = 0},

lior = {wp = 2wy, w1 = 2wy, we = wy = ws = wg = wg = 0},

liy = {wy = w1 = 2wy = 2wy, we = —w3 = —ws = —2wg = 2wsg},
l14/ = {’wo = w1 = 2w4 = 211)7, —W2 = W3 = —2w5 = —2w6 = 2w8},
123 = {—’wo = —w1 = 2104 = QZU7, W2 = W3 = 2’[05 = 2w6 = 2w8},

124 = {—w() = —w1 = 2w4 = 2w7, —WwWy = —wW3 = 211}5 = 2w6 = 2w8},

lor = {—wo = 2wy, —w1 = 2wy, we = w3 = ws = we = wg = 0},
logr = {—wo = 2wy, —w = 2wy, wy = w3 = ws = wg = wg = 0},

l23/ = {*U]o = —w1 = 2’[1)4 = 2w7, w9 = —wW3z = *2’[1)5 = *211)6 = 2w8},
l24/ = {—wo = —w1 = 2’[1)4 = 2107, —W2 = W3 = —2’U)5 = —2’11}6 = 2w8},
I34 = {wo = w1 = wy = wy =0, wp = w3, w5 = W = ws},

l31/ = {’LU() = —w1 = —2’[1)4 = 2w7, W9 = W3 = 2w5 = 2w6 = 2w8},

l32r = {—wp = w1 = —2wy = 2wy, wy = w3 = 2wy = 2wg = 2ws},

lsy = {wo = w1 = wy = w7 =0, wy = 2ws, w3 = 2ws = 2wg},

l34/ = {’wo = W] = W4 = W7 = 0, Wy = 2w5 = 2w6, w3 = 2w8},

141/ = {’wo = —w1 = —2w4 = 2w7, —W2 = —wW3 = —2’(U5 = —2w6 = ng},
142/ = {—wo = w1 = —2w4 = 211}7, —W2 = —wW3 = 2w5 = 2w6 = 2w8},
l43/ = {’wo = W] = W4 = W7 = 0, —W2 = 2105 = 221]6, —w3 = 2UJ8},

l44/ = {wo = W1 = W4 = W7 = 0, —WwWo = 2w8, —Ww3 = 211}5 = 2w6},

Ly = {wo = —w1, wo = w3 = ws = wg = wg = 0, —wy = wr},

l1/3/ = {’wo = —w1 = —2w4 = 2’11}7, w9 = —wWs3 = —2’[1)5 = —2’[1)6 = ng},
lyrgy = {wy = —w1 = —2wy = 2w7, —we = wy = —2ws = —2wg = 2ws},
l2/3/ = {—w(] = w1 = —2w4 = 2’LU7, w9 = —wW3 = —2’[1)5 = —2’[1)6 = 2wg},
loy = {—wo = w1 = —2wy = 2wy, —we = wy = —2ws = —2wg = 2ws},
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l3/4/ = {wo = W] = Wq4 = Wy = 0, —WwW2 = W3, —W5 = —Wg = wg}. We have that WgS
does not contain the lines {1 1/, 1192/, lo.1/, loor, I35, [347, l43, l44, while it contains the
others. So each one of the eight singular points of W5 is associated with m = 5 of the
other singular points, as in Figure 23] of Appendix [A] Hence there exist three mutually
associated points (for example P;, P, and Ps). This case had been excluded by Fano
for p > 7, as we said in Remark (iv). So this suggests that in Fano’s paper there
are other gaps to be discovered.

Theorem 6.7. Let T be a trihedron with edges [y, 1, [ and vertex v as in Figure |11}
Let us choose a general point ¢; € [y, a general point ¢ € I, three distinct points
ar, as, a; € ly, a general point by € ry := (¢1, a,) and a general point by € 75 := (g2, ay).
Let us take a general conic C' through the points ¢, go, b1, bo, in the plane spanned by
the three points a,, ¢1, ¢o. Finally let us consider the lines s; := (g1, as), $2 := (¢, as),
t1 := (b1, ), ta := (by,a;) and the lines I} := (¢}, q2) and I} := (¢}, ¢1), where ¢} is a
general point on ¢; and ¢, a general point on t3. Then the BS-EF 3-fold W54 can be
obtained as the image of P? via the rational map vy : P? --» P® defined by the linear
system N of the septic surfaces of P? which are quadruple at the points ¢; and g,
triple at the vertex v and double along the lines ly, {1, lo, [}, I5, along the conic C' and
at the points ¢; := t; N s; and ¢y := ty N s9. Furthermore a general N € N contains
the lines ty, to, r1, 79, S1, So and eg := (q1, q2).

Figure 11: Base locus of the linear system N .

Proof. Let us project P® from the P* spanned by the singular points Py, P/, P, P, P}
of the BS-EF 3-fold W4 of Example (see Remark . By using Macaulay2, we

obtain the rational map
p:Pg ——-)IED3, [U)()I"' Zwlg] — [w2—2w8:w5—w6:w3—2w6:wo—w1+2w4—2w7].
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One can verify with Macaulay2 that the restriction p|ys : Wgg --» P? is birational.
Furthermore its inverse map is given by the rational map v : P3 --» W84 C P® defined
by the linear system A of the septic surfaces

(i) quadruple at ¢ =[1:0:—2:0] and g =[1:0:2:0];
(ii) triple at the vertex v =1[0:0:0: 1] of T' = {s1(250 + s2)(250 — s2) = 0};

(iii) double at the points ¢; = [1: —=2:—2:0] and ¢o = [1:2:2:0]; double along
the line If = {s3 = 250 +2s1 —s2 = 0} 2 ¢f = [1: —=2:—-2:0] and the line
I = {s3 = 259 — 281+ 2 = 0} 3 ¢4 = [1:2:2:0]; double along the edges
lo = {80 = S9 = 0}, ll = {51 = 250 + So = 0}, lg = {81 = 280 — SS9 = 0}, double
along the conic C' = {2s; + s3 = 453 — 53 — 25383 — 2s5 = 0} passing through ¢,
o, by=1[1:—-1:-2:2land by =[1:1:2:—=2];
(iv) containing the lines 71 = {2s1+53 = 2s9+52 = 0}, 70 = {251+ 53 = 2590 — 52 = 0},
S1 = {83 :280+82 :0}7 S9 = {83 :280—82 :0}7 tl = {281—282—83 =
280 + SS9 = 0}, tz = {251 — 252 — 83 = 28() — SS9 = 0}
[

It would be interesting to verify if (the desingularization of) a general N € N is
actually an Enriques surface.

6.5 BS-EF 3-fold (XII) of genus 9

In the following we will often refer to the use of Macaulay2: see Code[B.4]of Appendix [B]
for the computational techniques we will use. Let us study the BS-EF 3fold described
in[l, §6.1.4]. Let us take two quadric hypersurfaces of Pf’xo:xlm:y3:y4:y5], ie.

Q1 : s1(xo, 1, 22) +11(ys3,ya,y5) =0, Qo : s2(x0, 21, 22) + r2(y3, Y4, y5) = 0,

where s1, s9, 71, o are quadratic homogeneous forms:

/
si(zo, w1, m2) = Y amiry,  sa(ro,w,a2) = Y dfmixg,
1,j€{0,1,2} 1.j€{0,1,2}

riysynys) = Y bigyiyg rasunus) = Y by
i,je{3,4,5) i,je{3,4,5)

Let us consider the smooth Fano threefold X = ()1 N Q> and the involution o : X — X
defined by the restriction on X of the morphism ¢’ : P° — P° such that

[To: X1 @a Y3 Ys:ys| — [To: X1 Ta: —Ys: —Ys: —VYs).
The involution ¢ : X — X has eight fixed points py, pa, ps, ps, P, Ph, Ps, P} such that

{p1,p2, p3, 01} = XN {ys = ya = y5 = 0} and {p}, ph, ps, pi} = X N{zo = 1 = 25 = 0}.
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The quotient map 7 : X — X/o =: W}g is given by the restriction on X of the
morphism defined by the linear system of the o-invariant quadric hypersurfaces of P,
that is the morphism ¢ : P° — P[lzlo;“.;zn} such that

[To: 21 T2 Y3 ys:ys) — [x%:xf:x%:xoxl:a:oxg:xlxz:y§:yi:y§2y3y4:y3y5:y4y5].
By using Macaulay2, one can find that the image of P° via ¢ is a 5-dimensional algebraic
variety Fi® of degree 16, whose ideal is generated by the following 12 polynomials

Z9Zhvo — ZZh, ZaZvo — ZoZhy, ZsZo — ZroZhy, ZaZy — 23y, ZeZy — Ziy, ZeZn — Zg,

Z3Zy — ZoZs, ZhZy— ZsZs, Zoliy— ZyZs, Z1Zo — Zi, ZoZo — 23, ZoZy — Z3.
We observe that W3e = ¢(X) = FJ%N Hy, where Hy is the following 9-dimensional
projective subspace of P!

Hy = {apoZy + a1121 + anZs + (ap1 + a10) Zs + (age + a20)Zs + (a12 + a91) Zs+

+b33Z6 + baaZz + bss Zg + (bza + baz) Zg + (bss + bs3) Z10 + (bas + bsa) Z11 = 0,
aggZo + a1y Z1 + agZs + (agy + aye)Zs + (agy + abe) Za + (ay + ag;) Zs+
V3526 + Uiy Zr + V525 + (byy + by3) Zo + (a5 + bs3) Z1o + (bl + b5y) Z1a = 0}

Therefore we have m = ¢|x : X — Wig = ¢(X) C Hy = PY.
Remark 6.8. The threefold W3 is 2-extendable (see Definition . It would be

interesting to understand if this is sharp. We observe that W3g can be at most 3-
extendable by Theorem |9.2| and [10, Corollary 1.2].

/

What follows has been proved for fixed values of a;;, by, a;; and b;, in order to

simplify the computational analysis.

1 0 0 3 0 0
Example 6.9. If (a;;) = (0 =3 0] = (b};) and (b;;) = [0 =8 0] = (aj;), then
0 0 2 0 0 5

we obtain
pr=[1:1:1:0:0:0],p;[0:0:0:1:1:1]
pp=[-1:1:1:0:0:0],p4=1[0:0:0:—1:1:1]
p3=[1:-1:1:0:0:0],p5=1[0:0:0:1:—1:1]
pa=1[1:1:-1:0:0:0],p,=[0:0:0:1:1:-1].

Furthermore we have
Hy:={Zy—321+22,+3Zs—8Z7+5Zs =0, 3Zy—8Z1+5Zy+Zs—3Z7+2Zs =0} =
- {Zl - ZQ - 8Z6 + 21Z7 - 1328 = 0, Z[) - ZQ - 2126 + 55Z7 - 34Z8 - 0},

which is the IP’?wO:__ ] embedded in ]P)[lzlo:...; 7] via the morphism such that

1wy

ZO = w0—|—21w4—55w5+34w6, Zl = w0+8w4—21w5+13w6, Zi+2 = W;, 1= O, L9
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By using Macaulay?2, we find that the quotient map 7 : X — Wae C Hy = P? is given
by the restriction on X of the morphism ¢’ : P> — P? such that

[To @1 12 1 Y3t Ya Ys] [x% DEOT1  ToTy L TATa D YF s 1 Y5 ¢ Ysa : YsYs y4y5] .

In particular we obtain a BS-EF 3-fold W3¢ C P? whose ideal is generated by the
following 12 polynomials

WrwWg — W4W9, WsWg — WrWg, WgW7 — WgWg, WsWg — wg, WaWe — wg, WaWr — w%,
w? — w§ — 13wow, + 3dwows — 21wyws,
W1Wy — WoWs — 2111}321)4 + 5511}321)5 - 34w3w6,
Wl — WiWs + 8w2w4 — 21’LU21U5 + 13’LU21U6,
w3 — w3 — 21wowy — 168w + 55wows — 1155w2 — 3dwowe — 442w + 881w? + —545w3 + 1429w3,
WoWi — Waws,
U)(2] — UJ% + 81U0UJ4 - 21w0w5 + 13w0w6,

Then the ideal of this BS-EF 3-fold Wpg is generated by quadrics. Since W3g is
projectively normal in P (see § , then the ideal of its general hyperplane section
S C P® is generated by quadrics too. This is consistent with the fact that the ¢ of a
general hyperplane section of S is 4 (see [35, Theorem 1.1 (ii)]), as we will see in the
proof of Theorem [9.2]

Remark 6.10. The threefold W3g of Example has the following eight singular
points
Pi=n(p)=[1:1:1:1:0:0:0:0:0:0], P =n(py)=[0:0:0:0:1:1:1:1:1:1],
Po=m(pg)=[1:-1:-1:1:0:0:0:0:0:0], Py=m(py)=1[0:0:0:0:1:1:1:-1:-1:1],
Py=n(p3)=[1:—-1:1:-1:0:0:0:0:0:0], P=nm(ps)=[0:0:0:0:1:1:1:-1:1:-1],
Pi=n(py)=[1:1:-1:-1:0:0:0:0:0:0], Py=n(p))=[0:0:0:0:1:1:1:1:-1:-1].

Let [;; be the line joining P; and P; for 4,5 € {1,2,3,4,1',2",3',4'} and ¢ # j. i.e.
l1,2:{w0:w3, Wy = Wa, w4:w5:w6:w7:w8:w9:0}7
l1,3={wo=w2, w; = ws, w4:w5:w6:w7:w8:w9:0}7
l174:{w0:w1,w2:w3, w4:w5:w6:w7:w8:w9:0}7
11,1/={w0=w1:w2=w3> w4:w5:w6:w7:w8:w9}7

11,2/ = {wo =W = W2 = W3, Wqg = W5 = Ws = W9 = —W7 = —Wg = w9},
11,3' = {wo =W = W2 = W3, —Wg = —W5 = —Wg = W7 = —Wg = wg},
l1,4' = {wo =W =Wy =W3, Wy = —W5 = —Weg = —W7 = Wg = wg},

l2,3 = {wo = —W,Wy = —W3, Wg = W5 = Wg = W7 = Wg = W9 = 0},

loy = {wo = —wa, w1 = —w3, wy = ws = wg = Wy = W = wy = 0},

l2,1/ = {wo =W = W2 = W3, Wy = W5 = Wg = Wy = Wg = U)9},

12,2' = {wo = —W1 = —W2 = W3, Wg = W5 = W = —W7 = —Wg = wg},
l2,3' = {wo = W = W2 = W3, W4 = W5 = —Weg = W7 = —Wg = w9}7
l2,4/ = {wo =W = W2 =W3, W4 = —W5; = —Weg = —W7 = Wg = w9}7
ls.4 = {wo = —ws, w1 = —wsy, Wy = w5 = We = W7 = Wg = Wy = 0},

l3,1/ = {—wo =W = —W2 = W3, Wqg = W5 = Wg = Wy = Wg = w9}7

13,2' = {—wo =W = W2 = W3, Wy = W5 = Wg = —W7 = —Wg = wg},
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ls3 = {—wy = w1 = —wy = w3, —Wy = —W5 = —Wg = Wy = —Wsg = Wy},

lsg = {—wo = w1 = —ws = w3, —wy = —Ws5 = —We = —W7 = Wg = Wy},
14,1' = {—wo = ~W; = W2 = W3, Wy = W5 = Wg = Wy = Wg = w9}7

l4,2' = {—wo = W = W2 = W3, Wy = W5 = Wg = —W7 = —Wg = wg},
l4,3/ = {—wo = W) =Wy = W3, —Wq4 = —Wp = —Wg = W7 = —Wg = w9}7
l4,4/ = {—wo = W1 = W2 = W3, —Wg = —Ws = —Wg = —Wy = Wsg = w9}>
l1/,2/ = {’wo =w; =wy = w3 =0, wy = ws = ws = wy, Wy = ws},

11',3' = {wo =w; = wy; =wz =0, wy = ws = we = wy, Wy :wg},

l1/74/ = {w() = W] = W2 = W3 = 07 Wy = W5 = W = Wy, Wg = wg},

lyy ={wy=w =wy =w3 =0, —wy = —ws = —wg = Wy, Wg = —Wy},
lyy ={wy =wy =wy =ws =0, —wy = —ws = —wg = Ws, Wy = —Wy},
l3/,4/ = {’LUo =w =wy =w3 =0, —wy = —ws = —wg = Wy, Wy = —ws}-

It follows that Wgs contains the lines ly 1/, Lo, Lz, L, o, log, log, low, I3 1,
ls.or, I35, I3, o, lag, lag, ly4, but it does not contain the others. So each one of the
eight singular points of W3 is associated with m = 4 of the other singular points, as
in Figure [24] of Appendix [A] This is the same configuration of the singularities of the
Enriques-Fano threefold W3.

Theorem 6.11. The embedding of the BS-EF 3-fold W3¢ in PY is the F-EF 3-fold
Wo,
Proof. Let us project P? from the P° spanned by the singular points Py, Ps, Py, Py, P,

P; of the BS-EF 3-fold W34 of Example (see Remark [6.10). By using Macaulay?2,
we obtain the rational map p : P? --» P3 such that

[wo : -+ we| = [wo + wy + we + w3 1 —wy + W5 1 —wy + We : Wy + Wy + wWg + W) .

The restriction plyy —: Wpg --+ P? is a birational map (one can verify it with
Macaulay2), whose inverse map is the rational map v : P* --» W3 C P? defined
by the linear system K of the septic surfaces of P3 double along the six edges of the
two trihedra

T : (so — 2181 + 1352)s0(s0 — 5581 + 34s9) =0, T : (s2+ s3)(s1 + 83)s83 = 0,

and containing the nine lines given by the intersection of a face of T" and one of 77. [

6.6 BS-EF 3-fold (XIII) of genus 10

In the following we will often refer to the use of Macaulay2: see Code of Appendix B]
for the computational techniques we will use. Let us study the BS-EF 3fold described
in [I, §6.5.1). Let us consider the smooth Fano threefold X = P! x Sg, where Sq
is a smooth sextic Del Pezzo surface. We recall that Sg is the image of P? via the
rational map defined by the linear system of the plane cubic curves passing through
three fixed points aq, as, az in general position. Up to a change of coordinates, we can
consider a; = [1:0:0],aa =[0:1:0],a3 =1[0:0:1]. So we have the rational map
A P2 - P  such that

[uo:ut:us] - [xo:x1:T2:23:24:X5:T6

. . 2 . 2., ,2 . 2., .2 . 2,
[UO U UQ] — [U1U2 UL UG D UgUo  Ugly * Uyl * UgUT - U()UlUQ}
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and Sg = A (P?) C PS. Thanks to Macaulay2 (see also [17, Theorem 8.4.1]), we can say
that S has ideal generated by the following polynomials

2 2
X3Ts — Tg, Tals — Tylg, T1X5 — Tole, IT3T4 — To2lg, L1L4 — Tg,

2
Tolyg — T5xLg, Tor3 — X1Tg, Xol2 — T3Te, Lol — Tg-

Let us see now how the quadratic transformation g, 445 : P? --+ P? given by the
linear system of conics passing through the three fixed points a,as,as, defines an
involution of Sg. By the following diagram

[ug @ wy : ug)
| |
& I
- v

2 . 2. ,2 . 2.,2 . 2. 2 . 2.,2 . 2. 2. 2.
[u1u2 S ULUS T UpU2 - UQUY © UgUL - UoUT - uouluﬂ e [U0u2 S UIUG - UTU2 T UQUT - UTUS * UoUS - UOU1UQ] N

daj,ag,a3 |:1 1. 1i|

ug T ur " ou2

we obtain an involution ¢ of P% given by

/
[xozx1:x2:x3:x4:x5:$6]lt—>[w2:$4:x0:x5:$1:x3:x6].

The locus of t-fixed points of P® consists of two projective subspaces
F1:{!E0+$2=$1+$4=$3+I5:$6:0}2PQ,
Fy={wg— 29 =11 — x4 =23 — 15 = 0} X P>,
In particular we have F; N Sg = 0 and Fy N Sg = {d1, da, d3,ds}, where
dy=[1:1:1:1:1:1:1),do=1:—-1:1:—-1:—-1:-1:1],
dz3=1[-1:1:—-1:—-1:1:-1:1),dy=[-1:—-1:—-1:1:—=1:1:1].

Then oy := t|g, is an involution of Sg with four fixed points. We also consider the
involution of P! with two fixed points [0 : 1] and [1 : 0], that is the map oy : P — P*
such that [yo : y1] = [yo : —31]. Let us take the map o’ := (oy x t) : P! x P® — P! x PS
such that

o yoiyr] X xo:w i xe iz iy xy i xg) —— (Yo —wa] X [To i xy i ws Xy X

We have that o := 0’|y = (67 X 09) : X — X is an involution with eight fixed points

pr=0:1x[1:1:1:1:1:1:1

=

=
I

—

0l x[1:1:1:1:1:1:1],

pp=[0:1x[1:=1:1:=1:—-1:-1:1], py=[1:0]x[1:—=1:1:-1:—-1:-1:1],
p3=[0:1]x[-1:1:-1:—-1:1:-1:1], py=[1:0x[-1:1:-1:—-1:1:-1:1],
pr=[0:1]x[-1:—1:—-1:1:—-1:1:1], py=[1:0x[-1:—-1:—-1:1:-1:1:1].

The quotient map 7 : X — X/o =: W}% is given by the restriction on X of the
morphism ¢ : P! x P — P | defined by the o'-invariant multihomogeneous

[wo:+wio
polynomials of multidegree (2,1), i.e. @ : [yo:y1] X [xo: @1 :@o: X3 : Ty : x5 Tg| —
[wo = wy :wy w3z wy ws :we : Wyt Wg Wy wig] where wy = yaxs, wy = Y2 (T + Ta),
wy = yp (w1 + 1), wy = Y33 + 25), wa = Yiws, w5 = Yi(vo + 22), we = Y7 (T1 + T4),

wr = y%(m;)) + 555), wg = 1/03/1(130 - xz), W9 = y0y1(561 - 134), W10 = y0y1(363 - $5)-
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Remark 6.12. Thanks to Macaulay2, one can find that the BS-EF 3-fold W% has
ideal generated by the following 20 polynomials

wWrwg — 2W4We + WsW1p, WeWs — WsWg + 2W4W1,  2W4Ws — W79 + WeW1o,
W3wWg — 2w0w9 + w1W1o0, Wolg — W1 Wy + 2w0’wlo, 2IUQ”LU8 — W3wWg + WaW10,
W3We — Wa2W7, WoalWg — W3W7 — U)g + U)%O, wW1Weg — 2w0w7 — WsWy,
2wowe — wiwr — WeWip, W3Ws — WiW7, WaWs — 2WeW7 — Wy,
W1Ws — W3W7 — wg + U)%O, 2w0w5 — WaWry -+ WoW10, W3Wy4 — Wolry,
2’[1)21114 — W1W7 — WeWio, 2w1w4 — WaWry + WoW10, 4w0w4 — W3wry =+ wfo,
4wy — wyw? — wawE + wswewy — waw?,  4wd — wow? — wewi + wiwawz — wWews.

Then the ideal of W% is generated by quadrics and cubics. Since WY is projectively
normal in P (see § [3.3)), then the ideal of its general hyperplane section S C P is
generated by quadrics and cubics. This is consistent with the fact that the ¢ of a
general hyperplane section of S is 3 < 4 (see [35, Theorem 1.1 (ii)]), as we will see in
the proof of Theorem [0.2]

Remark 6.13. Let us consider the eight singular points of W2%. They are

P =n(p1)=100:0:0:0:1:2:2:2:0:0:0],

b
5)=1[1:-2:2:-2:0:0:0:0:0:0:0],
Pi=m(p))=1:-2:-2:2:0:0:0:0:0:0:0].
Let l; ; be the line joining P; and P, for 4,5 € {1,2,3,4,1',2". 3,4’} and i # j, i.e.
lig = {wy = w1 = wy = w3 =0, 2wy = ws, we = Wy, wg = wy = wig = 0},
lig ={wy = w1 = wy = w3 =0, 2wy = we, ws = Wy, wg = wy = wig = 0},
Ly ={wy = w1 = wy = w3 =0, 2wy = wy, ws = wg, wWg = wy = wig = 0},
hi = {2wo = w1 = we = w3, 2w = w5 = we = Wy, W = wy = wip = 0},

Ly = {—2wy = —w1 = wy = w3, 2wy = w5 = w = Wy, wg = wy = wig = 0},
l13/ = {—2’(1)0 = w1 = —w2 = w3, 211)4 = W5 = W = W7, W8 = W9 = W10 = O}
Ly = {2wy = —w1 = —wa = w3, 2wy = ws = we = Wy, wg = wy = wig = 0},

log = {wp = w1 = wp = w3 =0, —2wy = wy, —ws = we, wWg = W9 = wig = 0},
log = {wy = w1 = wy = w3 =0, —2wy = wg, —ws = Wy, wWg = wy = wip = 0},

larr = {2wp = w1 = we = w3, —2wy = —ws = wg = Wy, Wy = wyg = wyp = 0},
l221 = {—2’11)0 = —WwW1 = w2 = ws, —2’[1)4 = —W5 = W = W7, W8 = W9 = W10 = 0},
loy = {—2wp = w1 = —wz = w3, —2wy = —wW5 = we = Wy, W = wy = wig = 0},
l24/ = {ng = —WwW1 = —W2 = ws, —2w4 = —W5 = W = W7, W = W9 = W10 = 0},
lg4 = {w() = W1 = Wy = W3 = 0, —2’LU4 = W5, —Wg — W7, Wg = W9 =— W10 = 0},
l317 = {2wo = w1 = w2 = w3, —2w4 = w5 = —we = Wy, W = wy = wig = 0},
132/ = {—2’LUO = —WwW1] = w2 = wWs, —2w4 = W5 = —Wg = W7, W8 = W9 = W10 = 0},
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lzg = {—2wp = w1 = —w2 = w3, —2wy = w5 = —wWe = Wy, Wy = Wy = wig = 0},

134/ = {2w0 = —WwW1] = —WwWy = ws, —2w4 = W5 = —Wg = W7, Wg = W9 = W10 — 0},
lyr = {2wo = w1 = w2 = w3, 2wy = —wW5 = —we = Wy, W = wy = wig = 0},

142/ = {—21[)0 = —wW1 = w2 = wWs, 2’[1)4 = —W5; = —We = W7, W8 = W9 = W10 = 0},
Ly = {—2wo = w1 = —wz = w3, 2wy = —wW5 = —we = Wy, W = wy = wig = 0},
l44/ = {211}0 = —W1] = —WwWy = ws, 211}4 = —W5; = —We = W7, W8 = W9 = W10 = 0},

lirgr = {2wp = w1, we = w3, wy = w5 = W = w7 = wg = Wy = wig = 0},

lirgr = {2wo = w2, w1 = w3, wy = ws = we = Wy = W = Wy = wig = 0},

lirgr = {2wo = w3, w1 = w2, wy = ws = W = Wy = W = Wy = wig = 0},

lorgr = {—2wo = w3, —w1 = w2, Wy = W5 = We = w7 = wg = wg = wig = 0},

lorgy = {—2wp = w2, —w1 = w3, Wy = W5 = We = W7 = wg = wyg = wip = 0},

l3/4/ = {*2’[00 = Wi, W2 = W3, W4 = W5 = W = W7 = W8 = W9 = W10 = 0}

By Remark we have that WAL contains the lines Iy, li 3, l1.4, l11/, lo3, lo4,
loor, U3, lsgry Laoary Liror, Lvgry Liary Lo s, Ly, Ly o, while it does not contain the others.
So each one of the eight singular points of WA% is associated with m = 4 of the
other singular points, as in Figure [25 of Appendix [A] Hence there exist three mutually
associated points (for example P;, P, and P3). This case had been excluded by Fano
for p > 7, as we said in Remark (iv). So this suggests that in Fano’s paper there
are other gaps to be discovered.

Theorem 6.14. Let T C P? be a tetrahedron with faces f; and edges l;; := f; N f; for
0 <1i< j <3. Let v; be the vertex opposite to the face f;, for 0 < i < 3. Let 7 be a
plane through the vertex vy, which intersects the face f; along a line r;, for 1 <17 < 3,
and let us define the point ¢; := r; Nly; (see Figure . Then W};% can be obtained as
the image of P? via the rational map v : P? —-» P9 defined by the linear system M
of the sextic surfaces quadruple at the vertex vy, triple at the other three vertices vy,
V9, v3, and double along the three lines 71, ro, r3. Furthemore a general M € M also
contains the six edges of 7.

Proof. Let us project P1° from the P° spanned by the singular points P;, P, P3, Py,
P|, Py, P} of W (see Remark|[6.13)). By using Macaulay?2, we obtain the rational map

piPY s PP [wp:eee o wis] e [—2we + Wi+ we — w3 ws Wy : wig) -

Thanks to Macaulay2, we see that the restriction ply : Wy --+ P? is birational.
We can also compute its inverse map, which is given by the rational map v : P? --»
WAL C P19 such that [sg: s1: 82 : s3] > [wp: -+ : wig], where

wo = 818283+ 835583 — 578553 — 515553+ 575253 +257 5553 + 515555 — 575055+ 515555 — 515054,

2.2 2 2 2 2
W1 = 58715283 — 53515253 — SS15253,

wo = 3?33 - 3?3%33 + 3%3333 - 5353 + s‘lls% + S%SQS% + slsg’s% + 3%3% - 25%5% + s%szsg -
sls%sg + 28%8% - 25%5% — 31528§ — 25%5% + Slsg — 525§ + sg,

w3 = 50541153 — 2808%8%83 + 808383 — 2808%8% — 2505553 + sosg,
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Figure 12: Base locus of the linear system M.

wy = 535?53 - 3(2)3383 - S%S%S% - 5(2)5152$§ - s%s%s% - 8%818% + 5(2)525§ + s%s%,

we = 5152 + 5152 23132 25152 + 5152 + 52 + 515253 + 515253 — 515253 — 5353 — 5:1)’525§
515553 — 25353 + 525955 + 515255 + 25553 + 5355 — 50953,

wy = 808782 — 2505755 + 5085 — 250575253 — 2505552 + 505254,

wg = s%s?sz — s%s%s% — s%sls% + s%s% — 3(2)313333 + 8%8%83 - s%s%s% - 83828%,

wg = s — 33‘1{9% + 38%8% — 88— 23‘;’3%33 — 28%8%83 + 2513‘2133 + 28553 — 35783 — 2595952 —
2525352 — 2515553 + 5553 — 2578955 — 2815553 — 4s3s3 + 35753 + 2515085 + s354 + 25083 — 88,

wip = S08] — 2303132 + 505155 — 2505353 — 250515352 + 505153, 5257 — 2535753 + s2si —

2535252 — 2525252 + 5253,
By using Macaulay2, we can study the base locus of v. We find that v is the rational
map defined by the linear system of the sextic surfaces of P3

(1) Containing the six edges l23 = {81 = O, S9 — 83 = 0}, l13 = {83 = 0, S1 + So = O},
llg = {82 = 0,81 +83 = O}, l01 = {S() = 0,81 +82+83 = O}, l03 = {S[) =
0,81 — so + s3 = 0} and lpo = {sp = 0,51 + s9 — s3 = 0} of the tetrahedron T
with faces fo = {so = 0}, fi = {s1 + 52+ 83 =0}, fo = {s1 — s+ s3 = 0} and
fs={s1+ 52— 83 =0}

(ii) double along the three lines 11 = {sy = 0,594+ s3 = 0}, ro = {s3 = 0,81 — s2 = 0}
and 73 = {ss = 0,1 — s3 = 0} contained in the plane 7 = {s; — s5 — s3 = 0},
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and obviously double at the points ¢; ;=11 Nry =[0:0: =1:1], g2 :=1,Nry =
0:1:1:0],¢g3:=UNrsg=[0:1:0:1];

(iii) triple at the vertices vy =[0:0:1:1], v =1[0:1:—-1:0},v3=[0:1:0: —1];
(iv) and quadruple at the vertex vy =[1:0:0:0].
[l

It would be interesting to verify if (the desingularization of) a general M € M is
actually an Enriques surface.

6.7 BS-EF 3-fold (XIV) of genus 13

In the following we will often refer to the use of Macaulay2: see Code[B.6of Appendix [B]
for the computational techniques we will use. Let us study the BS-EF 3fold described
in [I, §6.3.2]. Let us consider the smooth Fano threefold X = P! x P! x P! and the
involution ¢ : X — X such that

[zt 1] X [yo : 1] X [20 + 21] > [wo : —21] X [yo : —yn] X [20 1 —24].
This involution has the following eight fixed points

pi=[0:1]x[1:0]x[1:0], pr=[1:0]x[0:1]x][0:1],

The o-invariant multihomogeneous polynomials of multidegree (2,2, 2) define the co-
ordinates of the quotient map 7 : X — X/o = Wi C P3| ie.

[0 = 1] X [yo 1 y1] X [20 @ 21]

Iw

[w02w1:w2:w3:w4:w5:wﬁ:w7:w8:w9:w10:w11:wm:wlg]

2,22 2,22 .2 2,22 2,22

where wo = Zgypzg, W1 = TYpci, W2 = TgYoY12021, W3 = TpYiZh, Wa = Tgyiai,

_ 2 _ 2 _ 2 _ 2 2,922

Ws = TopT1Ypc0%1, We = ToT1YoY1%y, Wr = ToT1YoY12], Ws = TpT1Y120%1, W9 = T1Yy<p,
2,22 2 2,22 2,22
W10 = TIYRT, W11 = T1YoY120%1, W12 = 1Y%y, W13 = TiY1%7-

Remark 6.15. Thanks to Macaulay2, we find that the Enriques-Fano threefold W%
has ideal generated by the following 42 polynomials

WipoWi2 — WoWi3, WrW12 — WeW13, W4Wi12 — W3Wi3, W1Wi2 — WoWss,
wfl — WoW13, WgW11 — WeW13, W7W11 — Ws5W13, WeW11 — W5W12,
WawWy11 — W13, W3Wi1 — Wiz, WaWi1 — WoWi3, WgWip9 — W5Wi3,
WeW10 — W5W11, WaW10 — W1W13, W3Wip — WoWi3z, WalWi0 — W1Wi1,
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WgWyg — WsW12, WrWg — Ws5W11, WiW9 — WolWi3, W3Wg — Woli2,
WrWg9 — WoW11, W1W9 — WoWio, w§ — W3Wi3, WrWg — Wal13,
WeWg — WalW12, WsWg — WoWi3, w% — WiWiz, WeW7 — WoWss,

WsWr — W1W11, W3W7 — Walg, WalW7 — W1Ws, w% — WoWi2,
WsWe — WoW11, WaWe — WaWg, WalWe — Wolg, WiWe — WoWr7,
w% — WoWi0, W4Ws —WiWg, W3W5 — WoWg, W5 — Wolr,
WiW3 — Wy, W5 — Woly.

Thus the ideal of W} is generated by quadrics. Since W% is projectively normal in

]P)13

(see § , then the ideal of its general hyperplane section S C P2 is generated

by quadrics too. This is consistent with the fact that the ¢ of a general hyperplane
section of S is 4 (see [35, Theorem 1.1 (ii)]), as we will see in the proof of Theorem 9.2]

Remark 6.16. The above threefold W% has the following eight singular points

P =7n(p)=100:0:0:0:1:0:0:0:0:0:0:0:0:0],

Py=m(py)=101:0:0:0:0:0:0:0:0:0:0:0:0:0],
Py=m(ps)=00:0:0:0:0:0:0:0:0:0:1:0:0:0],
Pi=m(py)=10:0:0:0:0:0:0:0:0:0:0:0:1:0],
P =7n(p;)=100:0:0:0:0:0:0:0:0:1:0:0:0:0],
Py=n(py)=10:0:0:0:0:0:0:0:0:0:0:0:0:1],
Py=n(ps)=100:0:0:1:0:0:0:0:0:0:0:0:0:0],
Pi=7(py))=100:1:0:0:0:0:0:0:0:0:0:0:0:0].

Let [; ; be the line joining P, and P; with 4,5 € {1,2,3,4,1',2',3',4’} and i # j. Then
we have lLQ = {U)Z = O|Z 7& 0,4}, l1’3 = {U)z = 0|Z 7é 4, 10}, l1’4 = {UJZ = 0|Z 7é 4, ]_2}7

l171/
ly
lo 1
loa
13’2/
l471/
Iy
Ly
I3 ar

11,4’7

= {U}Z = 0|l 7é 4,9}7 ll,gl = {w, = O|Z 7é 4, 13}, l173/ = {w, = O|l 7é 3,4}7
= {w; = 0)i # 1,4}, lys = {w; = 0)i # 0,10}, loy = {w; = 0|i # 0,12},
= {w; = 0i # 0,9}, loy = {w; = 0)i # 0,13}, Ly = {w; = 0i # 0,3},
= {w; = 0i # 0,1}, Iy = {w; = 0]i # 10,12}, Isy = {w; = 0i # 9,10},
= {U}Z = O|Z 7é 10,13}, l373/ = {UJZ = 0|Z 7é 3, 10}, l374/ = {U)z = 0|Z 7é ].,]_0}7
= {U)Z = Oll 7& 9712}, l472/ = {U}Z = O|Z 7é 12,13}7 l4’3/ = {w, = 0|Z 7£ 3, ]_3}7
= {w; = 0i # 1,12}, lyy = {w; = 0)i # 9,13}, lyy = {w; = 0fi # 3,9},
= {’LUZ' = 0‘2 7é 1,9}, l2/73/ = {wi = 0’i 7& 2,3}, l2/74/ = {wi = O’Z 7é 1,2},
= {w; = 0]i # 1,3}. By Remark [6.15] we see that W% contains the lines {; o/, Iy 3,
12’1/, lg’gl, l274/, l371/, 13,2/, 13,4/, l4’1/, l472/, l473/, while it does not contain the others.

So each one of the eight singular points of W4} is associated with m = 3 of the other
singular points, as in Figure 26] of Appendix [A] This is the same configuration of the
singularities of the F-EF 3-fold W;.

Theorem 6.17. The embedding of the BS-EF 3-fold W% in P'? is the F-EF 3-fold
Wi C P13

86



Proof. Let us project P'* from the P7 spanned by the eight singular points of Wi
(see Remark [6.16). So we obtain the rational map p : P® --» P® s.t. [wg @ -+« wyg] =
[wy : ws : wg : wy :wg : wiy]. Thanks to Macaylay2 we verify that the restriction map
plwis, : W% --» P° is birational onto the image, which is a quartic threefold T3 C P°

given by the complete intersection of two quadric hypersurfaces of ]P[ioi 1t ctsitasts]

Ql : t1t4 — t0t5 = O, QQ . t2t3 - t0t5 = 0.
Such a threefold Ty is birational to P? via the rational map
q: ]P)B - T?il C ]P)5, [So .81 89 83] — [5081 081892 1 8183 1 SpS2 - SpS3 - 5283],

defined by the linear system of the quadric surfaces passing through the four vertices
of the tetrahedron {sps;s283 = 0}. By using Macaulay2 we can take the inverse map
of ¢, which is ¢7' : Ty CP% —-» P3s.t. [tg: 1y 1 to:tz:ty: ts] > [tats : tols : tats @ tats).
So we can construct the birational map (¢~! o '0|W1§3s) c WEL, C PB ——» P st

[wo : -+ s wyg) — [wrws T wewyy : wrwyy @ wgwy] . Thanks to Macaulay2, we can com-

pute again its inverse map, which is given by v : P? —-» WL C PP s.t. [sg: 51 : 891 s3] —
o — o3 24242 22 222 _

[wo : -+ wyz], where wy = $087$283, W1 = S§S1S5, We = S§S1S9S3, W3 = S58783, Wy =

3 — 2.2 — 2 2 — 2 2 — 2 2 024242
50515283, W5 = 50515383, Wg = 505715253, Wy = 53515283, Wg = 53515253, W9 = 5755573,

Wip = S0S15583, Wi = sosls%sg, Wig = soslsgsg, Wiz = sgsgsg. We observe that v is the
rational map defined by the linear system S of the sextic surfaces of P* double along
the six edges of the tetrahedron {sys1s253 = 0}. O

7 Singularities of the KLM-EF 3-fold

7.1 Abstract

We recall that the KLM-EF 3-fold W}, ,, C P? is an Enriques-Fano threefold given by
the projection of the classical Enriques-Fano threefold W} C P'3 from the P? spanned
by a certain curve Ez C W} (see [36, §13]). We will computationally analyze the
KLM-EF 3-fold and we will find that its ideal in P is generated by quadrics and
cubics. We will also study the image of the eight quadruple points of W} via the
above projection map. We will find that they are five singular points of W3-, ,, such
that four of them are quadruple points, whose tangent cone is a cone over a Veronese
surface (see Proposition , and the last one is a sextuple point, whose tangent cone
is a cone over the union of four planes and a quadric surface (see Theorem . These
five points are so non-similar singular points of W, ,, and we will see that they have
the configuration in Figure 28| of Appendix [A]

7.2 Construction of the KLM-EF 3-fold (XV)

Let us see how to construct the KLM-EF 3-fold W3 ,,. First we consider the F-EF
3-fold W}, which is the image of P? via the rational map vs : P? --» P'3 defined by
the linear system S of the sextic surfaces double along the six edges of a tetrahedron
T. We need to recall some details. We will use the notations of §[5.2] Let 7" C P? be
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the tetrahedron of Figure , with faces f;, vertices v; and edges l;; = f; N fj = (vk, vn),
for distinct indices i, j, k, h € {0,1,2,3} with ¢ < j. In the following we will denote by
li; the edge f; N f; even if ¢ > j, by abuse of notation. Let us take the smooth rational
threefold Y obtained by blowing-up first the vertices of T', then the strict transforms of
the edges of T" and finally certain (twelve) disjoint curves (see proof of Theorem [5.4]).

We have that an element Y € S is isomorphic to a divisor ¥ on Y which is linearly
equivalent to 6H — 37 36 — >y 2Fi; — Yot j=0 4T;. Hence W = vg(Y) C P¥,
o i#]

where vg : Y — P is the morphism defined by the linear system S := |Oy (2)].
Proposition 7.1. Let 3 be a general element of S. Then we have that

QH—-Fie—Fin—Fjp—Fin—2Lkn—20 =20 =20 j; =i —Lpi—Tij—Thj—Tie—Tin—T . —jn) |5
~ 2(Fij + Tk +Thi + Uiy + Thyj)|s for distinet indices 4, j, k, h € {0,1,2,3}.

Proof. Let us take the reducible quadric surface Q;; := f;Uf; of P? given by the union of

two faces of T'. This surface contains doubly the common line /;; of the two faces, simply

the edges lix, lin, ljr and [, and does not contain the edge lx;,. Its strict transform Qvij

on Y is linearly equivalent to 2H —2&,—2&, — & —&;—2F;; — Fir—Fin—F ju —Fjn—3 ki —

3Fhi_3rkj_3th_QFkh_QFhk_QFij_QFji_Fik_Fih_ij_th~ We recall that gzi =0

for all . So we obtain that Kg = (Ky + i)‘i ~ (2H — X ocicics Fij — 2?,.];0 Lij)ls ~
i#£]

(Qij + Fij — Fion + 24 + 2T 0 + 205 + 2T + Dy + Do + Ty + i) |5 Since Qg ~ 0,
then we have Kf) + (.EJ +Fin—Lin—Thi — Fij — Fj,-) |§ ~ Q(Ej + 1w +1; —|—ij -f—th) ’f)
and so the expression of the statement. O]

Let us fixr now a general ¥ € § and its strict transform YonY. Let 4, 7, k, h be four
distinct indices in {0,1,2,3} with ¢ < j and k < h. The curve F;; N ¥ intersects each
of the four curves I'y; N i, TN i, 'y N 5 and I'njN S at one point (use Remark .
We recall that these four curves are contracted by vz : Y — Wi C P! to points
of ug(i) (see Remark [5.13). Let us define \;; := (Fi; U Ty UTp U Ty, UT;) N 3.
Then |Ox(2);;)] is an elliptic pencil on 3. Indeed |Og(2);;)] is isomorphic to the linear
system cut out on ¥ by the quadric surfaces of P containing the lines lig, lin, Lk, Lin (see
Proposition [7.1]), which is an elliptic pencil on ¥ (see [27, p. 634]). By Proposition
we also have that

3
Sl =0g(6H — > 2F; = > 4ATy)| = [Og(2M12 + 2X15 + 2X03)]-
0<i<j<3 i,§=0
1#]
The linear system S s defines the morphism vgls : > — P2, whose image S :=
vz(X) C P'? is a hyperplane section of Wj* C P'3. Hence there exists a hyperplane
H = P in P! such that S = W} N H. Let us define the curves E; := vz(Ai2),
E2 = I/S()\lg) E3 = I/S()\gg) Ei = VS(>\03) Eé = VS()\OQ) El = VS()\Ql) c S.
They are smooth 1rredu01ble elhptlc quartic curves such that E? = 0, E; - E! = 0,
Ei-Ej = E;-E = E - 1f0r1<z<j<3(useRemarksn.-
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If pigyy © P --» P? is the projection of P from the three-dimensional linear space
(Es) = P? spanned by Es, then W2, = py(WE) C P? is an Enriques-Fano
threefold of genus p =9 (see [36, §13]).

Remark 7.2. For the construction of W3-, ,,, we have fixed a general sextic 3 € S. The
hyperplane sections of W3-, ,, correspond to the hyperplane sections of W23 containing
Es5, which are images via vg of the sextic surfaces R of S which are tangent to X along
the two branches of Y intersecting at lp3. Then W}, ,, is the image of P? via the
rational map defined by the sublinear system R C S of these sextic surfaces R.

7.3 Computational analysis of the KLM-EF 3-fold

In the following we will often refer to the use of Macaulay2: see Code of Appendix B]
for the computational techniques we will use. Up to a change of coordinates, we can
take the tetrahedron T' := {sps15253 = 0} C P?SO:._,:sg] with faces f; := {s; = 0} and
edges l;; = {s;i = s; =0} for 0 <i < j < 3. Then S defines the rational map

vs i PP s W2 C P, [sg:s1:89:83] > [we - wg],

where Wy = 808?8283, w, = S%S%S%, Wo = 8(2)8%8283, W3 = S%S%S%, wy = 88818283, Wy =
S0S35283, We = S0Si8953, Wy = S5515383, Wy = S5515283, Wy = S28352, Wiy = S0515553,
Wi = 80815353, Wiy = 80818955, Wiz = Sisass. By Theorem the ideal of W} is
the one in Remark [6.15] Furthemore W}* has eight singular points Pi, Py, Py, Py, P,
P}, P}, P, with coordinates as in Remark and configuration as in Figure [26] of
Appendix [A] Let us take S = W N H, where H is a general hyperplane in P'3 not

passing through Py, Py, P, Py, P|, Py, P, P;, and so defined by
apWo + a1W1 + AW + A3W3 + A4 W4 + A5Ws5 + AsWe+

+arw; + agwsg + agwy + ajpwig + a1wi + apwis + agzwiz = 0,

where ag, a1, as, as, ag, a1g, a1z, a13 € C are not equal to zero. Let us consider ag = 1
and let X be the corresponding element of S such that vs(X) = S. The hyperplane
sections of W} containing vz(Fs3) correspond to the divisors on Y linearly equivalent

to 6H — 330 & — 3Fas — 3. 0<icj<s 2Fi; — S tj=04Ly;. Since
(4,4)#(2,3) i#j

(vg(Foz)) = {ws = we = wy = ws = Wy = Wwig = wi; = Wiz = wiz = 0} = P,

then we have (F3) = H N (vg(Fas)) = P? and so E5 = SN (E3), which is defined by
the equations

wo + awy + agws + asws + agwg = 0,
W5 = We = Wy = Wy = Wy = Wip = W11 = Wiz = w1z = 0,
Wiws3 + AW wy + aswawy + azwswy + aqwi = 0,
W3 + a wiwy + aswewy + azwswy + agwi = 0.
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Since Fj is the complete intersection of two quadric surfaces of (F3) = P3 it is a
quartic elliptic curve. By using Macaulay2 and by considering the following projection
map

P [wo.wl.wg.w3.w4.w5.wﬁ.w7.w8.w9.w10.w11.wlg.wlg]
|
| P(Eg) I
-
P? [wo + aqwi + aswe 4+ agws + a4Wy : Ws P We > Wy Wg : We & Wi = W11 : Wi : wlg]

9

9 _ 13
we can Compute WKLM - p<E3>(WF ) - ]P)[Zo:zl:2’2223224225226227228229]7

ated by the following 16 polynomials

which has ideal gener-

2
2628 T R5R9, R3RZQ T R2R9, Ry T R5RY, R4RT T R2R9, RIRT T R1R9, R2R7 — X128,
ZARe — R1R9, R2R¢ — R1R7, R4R5 — R1R8, R3Z5 — R1R7, R2R3 — Z1%4,

2129 + Q12123 + Q22124 + Q32224 + Qu2324 — 2027,
z%zQ + 1212429 + Q2222429 + agzZzg + a4zfz9 — 202879,
2329 + a12526 + Q2212320 + A3212429 + Q42529 — 202679,

2575 + A32328 — AoQ3222428 — 202528 + 2202728 — 52529 + (ag — a3 — ayas) 2329 +
+2a2asz12329 + a1(203 — a4) 212429 + (2010203 — A2a4) 292429 + 2010904232429 +
+a1202529 — a1G2202729,

2225+ a12izg — 202526 + aa2izy + (a4 — ajas)zizg — a32329 + a1a2a321 2329 — az(ag —
a3) 212429 + 203292429 + A2a304232429 + A3202529 — 2032027 %9-

Remark 7.3. The ideal of W} ,, is generated by quadrics and cubics. Since Wy ,,
is projectively normal in PY (see § , then the ideal of its general hyperplane section
Skry C P8 is generated by quadrics and cubics too. It is consistent with the fact that
the ¢ of a general hyperplane section of Sk is 3 < 4 (see [35, Theorem 1.1 (ii)]), as
we will see in the proof of Theorem [9.2]

Let us take the images of the eight quadruple points of W3, by denoting them, by
abuse of notation, in the following way

P = ppy(P)=10:0:0:0:0:1:0:0:0:0],
Py = pipyy(Py) =10:0:0:0:0:0:0:0:0:1],
Pyi= preg(P) = [0:0:0:0:0:0:1:0:0:0],
Py = pEy)(Py)=[0:0:0:0:0:0:0:0:1:0],
Ps = pigyy(P1) = peg)(P2) = pieyy(Ps) = pieyy(Py) =[1:0:0:0:0:0:0:0:0:0].

=}
=)}
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Proposition 7.4. If i = 1,2, 3,4, the tangent cone TCp, W}, to Wik, at the point
P; is a cone over a Veronese surface.

Proof. Each point P;, © = 1,2,3,4, can be viewed as the origin of the open affine set
Uity = {zj) # 0}, where j(1) =5, j(2) =9, j(3) = 6, j(4) = 8. The ideal of the
tangent cone T'Cp, (Wi, N Ujq)) is generated by the minimal degree homogeneous
parts of all the polynomials in the ideal of W}, ,, N Uj;). Thanks to Macaulay2, we
obtain the following tangent cones.

TCp, (Wi NUs) has ideal generated by
2 2 2
29, 24, 23, By T 2628, R2X7 T R1R8, 2226 — X187, Ry T R0R8, F1R2 T R0R7, X1 — F0%6
Hence TCp, W3, is a cone with vertex Py over a Veronese surface in the P° given
by {z; = 0|i = 3,4,5,9}.

TCp, (Wi NUg) has ideal generated by
2 2 )
75y %25 1y Z7 T Z628; Z4R77 T Z3Z8, 2476 T Z3R7, (4Zy — 2078, A4Z3Z4 — 2027, Q423 — 20%6-
Hence TCp, W3, is a cone with vertex P, over a Veronese surface in the P° given
by {z = 0Ji = 1,2,5,9}.

TCp, (W3- NUs) has ideal generated by
2 2 2
R8s 24, 22, By T 2529, R3RT — R1R9, 2325 — X127, A1%3 — 20%9, U1X1%3 — 2027, A12] — Z0%5-
Hence T'Cp,W3,, is a cone with vertex Py over a Veronese surface in the P® given
by {z; = 0|i = 2,4,6,8}.

TCp, (W3- NUg) has ideal generated by
2 2 2
R6s 23, 21, &7 T 2529, R4RT T R2R9, 2425 — Z2Z7, A3Zy — Z0R9, U3R2%4 — 2027, A325 — Z0%5-
Hence T'Cp, W3, is a cone with vertex P, over a Veronese surface in the P® given
by {z; =0|i =1, 3,6, 8}. [

Theorem 7.5. The tangent cone TCp, W, to Wi, at the point Ps is a cone over
a reducible sextic surface Mg C P7 C P?, which is given by the union of four planes 7,
Ty, 7, mh and a quadric surface Q C P2 C P7. In particular each one of the planes 7,
Ty, Ty, Th intersects the quadric surface @) respectively along a line Iy, Iy, I}, I}, where
[1 is disjoint from [}, and I is disjoint from 5. In the other cases the intersections of
two of these lines identify four points on ), which are ¢ := 1 Ny, 1o = 1L N1,
qi2 ‘= lll M lg, qr2 = lll N lé

Proof. The point Ps can be viewed as the origin of the open affine set Uy = {zy #
0}. The ideal of the tangent cone T'Cp, (Wi, N Up) is generated by the minimal
degree homogeneous parts of all the polynomials in the ideal of W3- ,, N Uy. By using
Macaulay?2 one can find that TCp, (W}-;,, N Up) has ideal generated by the following
polynomials

27, Z829, 2629, 2529, 2229, 2129, 2628, R528; 2328, X128, 2526, f4X6, 2226, f4%5, 23%5,

2923 — Z1%4.
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Figure 13: The reducible sextic surface Mg C P7 given by the union of four planes 1, 72, 7,
mh, and a quadric surface Q C P3  P7, which intersect as in the statement of Theorem .

Hence TCp, W3-, is a cone with vertex Ps over a surface Mg contained in the P7
given by {z; = 0|i = 0, 7}. The surface Mj is the union of four planes m, 7o, 7}, 7 and
a quadric surface (), where

m={z=0[i=0,1,2,56,7,8}, m:={z=0i=0,1,3,56,7,9},
7 ={%=0i=0,3,4,6,7,8,9}, 7 :={z=0[i=0,24,5738,9},
Q:={2%=0i=0,5,6,7,89} N {2223 — 2124 = 0}.

We give an idea of Mg in Figure [13] O]

Remark 7.6. The point P5 is a canonical non-terminal singularity of W3, (see
Remark [8.15)). This is consistent with [36, Proposition 12.1(b)].

Remark 7.7. Since P, P», P, Py, Ps are singular points of W7, ,,, let us see their
configuration. Let [; ; be the line joining the singular points F; and P; for 1 <7 < j <5.
Then we have [ 5 = {2, = 0]i # 5,9}, li3 = {2 = 0[i # 5,6}, l14 = {2z = 0]i # 5,8},
11,5 = {Zz = OlZ 7é 075}, 1273 = {Zi = O’Z 7é 6,9}, l274 = {Zl' = O’Z 7£ 8,9}, l275 = {Zi =
O’Z # 0,9}, 13,4 = {Zi = O‘Z # 6,8}, 13’5 = {Zi = 0|’l 7é 0,6}, l475 = {Zi = O|Z 7£ 0,8}
The lines l1’3, l1’4, l1’5, l2’3, l2’4, l2’5, l3’5, l4’5 are contained in WI%LM? while l174 and
lo5 are not. So the five singular points Py, P», P3, Py, P5 of W}, ,, are associated as
in Figure 28 of Appendix [A] Furthermore in Figure [I4] we can see how the projection
p(esy changes the configuration of the singularities of W in the configuration of the
singularities of W3-, ,,.
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Figure 14: Comparison between the configurations of the singularities of W}‘? and WIQ{LM'

8 Singularities of the P-EF 3-folds

8.1 Abstract

We recall that the P-EF 3-fold WL is an Enriques-Fano threefold given by the quotient
7 :V = V/t = W of a singular Fano threefold V' under an involution 7 : V. — V
with five fixed points (see [46, Proposition 3.2]). Similarly the P-EF 3-fold W}3, which
was mentioned very briefly by Prokhorov in [46, Remark 3.3] and which we will study
in more detail. We will computationally analyze both the P-EF 3-folds, by finding the
following facts:

(i) the P-EF 3-fold W}? can be embedded in P!? and its ideal is generated by
quadrics; the threefold W} C P! has five non-similar singular points such that
four of them are quadruple points, whose tangent cone is a cone over a Veronese
surface, and the last one is a quintuple point, whose tangent cone is a cone over

the union of five planes (see § ;

(ii) the P-EF 3-fold W1" can be embedded in P'7 and its ideal is generated by
quadrics; the threefold WAT C P'3 has five non-similar singular points such that
four of them are quadruple points, whose tangent cone is a cone over a Veronese
surface, and the last one is a sextuple point, whose tangent cone is a cone over
the union of four planes and a quadric surface (see § .

8.2 P-EF 3-fold (XVI) of genus 13

In the following we will often refer to the use of Macaulay2: see Code of Appendix B]
for the computational techniques we will use. Let us consider the linear system of the
plane cubic curves passing through three fixed points ay, as, az in general position.
Up to a change of coordinates, we may assume a; = [1 : 0: 0], aa = [0 : 1 : 0] and
a3z = [0:0: 1] in P[Zuo;ulzug}' The above linear system so defines the rational map
A P? -5 PS given by [ug : uy @ ug) — [udug : ugud @ udug @ ugud : uduy : ugud : uguqus),
whose image is a smooth sextic Del Pezzo surface Sg C P°. If bl : Bly, ay.05 P? — P2
denotes the blow-up of the plane at the three fixed points, then we have that Sg is

isomorphic to Bl,, 4,4, P? and that it is anticanonically embedded in P°. Let £ be the
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pullback of the line class on P? and let e; := bl~!(a;) be the exceptional divisors, for
1 <4 < 3; then we have the following commutative diagram

B a1,02,a3

Mat—e; —ep—eg| =N K|
bl

Let us consider IP’[ | as the hyperplane {yo = 0} C IP’[
TOIX1:X2:T31T4:T5:T6 TOIX1:X2:T31T4:T5:T6" y]
and let us take the cone V' over Sg with vertex v:=[0:0:0:0:0:0:0:1].

Remark 8.1. Since the ideal of Sg is generated by the following polynomials
2 2
L3Ts — Tgy, Loy — Tyle, L1T5 — LoLe, T3T4 — L2Tg, L1T4 — Tg,

2
Toly — 5T, Lor3 — L1xg, X1X2 — T3TLe, Lol — Tg,

in Clxg, x1, T2, 3, T4, Ts5, 6], then the ideal of V' is generated by the same polynomials
as polynomials in Clzg, z1, e, T3, T4, T5, T, Y]

Lemma 8.2. The variety V is a Gorenstein Fano threefold with canonical singularities.
Moreover, —Ky = 2M where M is the class of the hyperplane sections.

Proof. Since Sg C P9 is projectively normal (see [17, Theorem 8.3.4]), then V' is normal.
Let o : Bl, V — V be the blow-up of v with exceptional divisor £ = ¢~*(v). Then Bl, V/
is a P'-bundle over Sg and o contracts its negative section E to v. In particular we have
BlL,V =P (Os, ® Og,(—Ksg)) (see [29, V, Ex. 2.11.4]). Since the map o : Bl,V —
V C P7 is given by the tautological linear system |Ogy,1(1)], then Ogy, (1) ~ o*M.
A priori we have that Kg),y = 0*Ky + aF for a € Q. Since Kgy,y ~ Op,v(—2)
(see [A7, p. 349 (d)]) and Kpy,v - £ = —2(c*M) - E = 0, then a = 0 and Ky is a
Cartier divisor. Thus V' has a canonical singularity at the vertex v. Finally, since
0'*(—2M) ~ OBIQ,V(_2> ~ KBIUV = O'*Kv, we have that KV = —2M. ]

The quadratic transformation ga, e, @ P* -—+ P2, given by the linear system of

the conics passing through aq, as and as, defines an involution of the sextic Del Pezzo
Sg C PS. Indeed we have

. . \ 4 1.1 .1
[uo.ul.uQ]v {777}
i
1A PA
~ ~
2 . 2.,2 . 2. ,2 . 2. 2 . 2.,2 . 2. 2. 2.
[u1u2 S UIUS T UgU2 - UQUY © UgUl - UQUT - uoulug] — [’U,O’U,Q CUIUG * UTU2 T UQUT - UTUS T UQUS - UOU1U2]

and then we obtain the involution ' of Sg C P® given by
[To: Xy 1Ty g Xy T5: xg] —— [To Xy X0 T X0 X3 Tg) -
Let us take the involution of P7 defined by ¢ : P” — P” such that

[To:xy i Ty @y Xy 5 g Y] — [Xo 1Ty o x5 Ty Ty X6 —Y) .
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The locus of t-fixed points in P7 consists of two projective subspaces
Fy={zg+x9 =21 + 24 = 23 + 05 = 16 = 0} =P,

FQZ{I'(]_[L'Q:{[‘1—[L'4:x3_x5:yzo}gp3'

In particular we have that F; NV = {v} and F» NV = {vy, v, v3,v4}, where
vp:=[1:1:1:1:1:1:1:0], wyi=[1:—-1:1:-1:—-1:-1:1:0],

vg:=[-1:1:=-1:—-1:1:-1:1:0], wvy:=[-1:—1:—-1:1:—-1:1:1:0].
Thus t induces an involution 7 := t|, of V with five fixed points.

Theorem 8.3. The quotient of V' by the involution 7 is an Enriques-Fano threefold
of genus p = 13, which we will denote by W23.

Proof. Let Qy be the linear system that is cut out on V' by the linear system Q of the
quadric hypersurfaces of P7 of type

¢ (o + 2, 21 + T4, T3 + X5, ) + G2(T0 — X2, X1 — T4, T3 — X5,y) = 0,

where ¢; and g5 are quadratic homogeneus forms. By construction, we have that Qy is
base point free and each member of Qy is T-invariant. In particular a general member
S € Qy is smooth and does not contains any of v, vy, ve,v3,v4. Then the action of 7
on S is fixed point free. Moreover S is a K3 surface, since Qy C |2M| = | — Ky|. Let
7:V — WE = V/7 be the quotient morphism and let S := 7(S) = S/7. Then S is
a smooth Enriques surface. Since S = 7*S, we have 2p — 2 = §3 = 15% = 1(2M)? =
4 -degV = 24, whence p = 13. Furthermore W}? is normal, since it is the quotient of
the normal threefold V' under the action of a finite group defined by the involution 7
(see [19, Proposition 2.15]). Thus, by setting £ := |Oy13(S)|, we have that (W4, £)
is an Enriques-Fano threefold of genus 13. m

The linear system Q, introduced in the proof of Theorem defines a morphism
@« PT — P such that [zg: @y i@ @32y 25 :26:y] = [Zo: 2y i+ Zig: Zyo)
where Zy = 2%, Z) = 23 + 13, Zy = a3 + 23, Z3 = x3 + 22, Zy = (w9 + x2)7s,
Z5 = ($1+$4)ZL‘6, Z@ = (.CE3+.T5).CE6, Z7 = $01‘1+£L’2$’4, Zg = T9T3+ToTs5, Zg = T1X3+T475,
Zio = (xo — 22)y, Zu = (¥1 — 20)y, Z1o = (23 — x5)y, Z1z = y*, Zia = 2x0o,
Z15 = 2]71:64, Zlﬁ = 2:63135, Zl7 = 2423 + X175, Zlg = Xox3 + T2s, Zlg = 212 + Xox4.
Hence we have m = ¢|y : V. — W} C P, Furthermore the threefold W} is contained
in a 13-dimensional projective subspace of P!Y given by

Hiz = {Z14 =22y, Z15s =22, Zh¢ =22y, Z1r = Zs, Zis = Zs, Z19 = Zs}
(Remark [8.1). Thus the quotient map 7 : V — W} C Hyz = P is given by
[mo:xy w9 wg:ixy x5 we Yyl = 20 2110 219 0 213

where 2g = @2, 21 = ¥3+13, 20 = ¥3+23, 23 = 22+12, 24 = (To+12)T6, 25 = (T1+74) 6,

26 = (T3+25)T6, 27 = ToT1 +Toly, 28 = Takg+ToTs, 29 = T1T3+Tals, 210 = (To— T2)Y,
_ _ _ 9

211 = ($1 - :c4)y, 212 = (133 - x5)y, f13 =Y.
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Remark 8.4. By using Macaulay2 we find that the P-EF 3-fold W}? has ideal gener-
ated by the following 42 polynomials

2425 — 22026 — 2226 + 2570, 25 — 26 — ZeZr + 2528, 22025 + 2325 — 24%6 — 2629,

22 — 22 — 2627 + 2429, 2425 — 22026 — 2126 + 2428, —22025 — 2125 + 2426 + 2427,
22024 + 2374 — 2526 — 2628, 22024 + 2224 — 2526 — 2527, 426 — 23 — 22 + 2627,
25210 — 24211 T 220212, —Ze210 + 220211 — 24212, 220210 — 26211 T 25212,
22024 — 22526 + 22029, 22075 — 22426 + 22028, —224725 + 22026 + 22027,

22023 + 25 + 22 — 228 — 2627, 22020 + 22 — 22 — 2627, 22021 — 23+ 22 — 227,
23 + 220713 — 23213, 211712 + 24213 — 29213, 210212 — 25213 + 28213,
zaz10 — 25211 + 27212, 24+ 220213 — 22213, 210211 + 26213 — 27713,
—Z5210 T 29211 — 22212, —Z24210 T 28211 — 26212, 26210 T 23211 — 29212,
20+ 220213 — 21213, 29210 — 25211 + 26212, 28210 — 24211 + 21212,
27210 — 21211 T 24212, 23210 — 26211 T 28212, 22710 — 27211 + 25212,
—2425 + 22026 — 2326 + 2829, 22075 — ZoZs — 2426 + 212y, 22074 — Z5Z7 — 228 + 2129,
22024 — 2124 — Z5Z2¢ + 2728, —21%5 + 2426 + 2228 — %629,
22425 — 22026 — 2126 — 2276 + 2327, Zoz3 + zg — ZgZ7 — zg,

2123 + zi — ZgR7 — Zg, 2129 + ZZ + z% — Zg — 2627 — z?

Then the ideal of W} C P13 is generated by quadrics. Since W23 is projectively normal
in P'3 (see §[3.3), then the ideal of its general hyperplane section S C P2 is generated
by quadrics too. It is consistent with the fact that the ¢ of a general hyperplane section
of S'is 4 (see [35, Theorem 1.1 (ii)]), as we will prove in the proof of Theorem [9.2]

Remark 8.5. The P-EF 3-fold W}? has the following five singular points
P=n(v)=101:2:2:2:2:2:2:2:2:2:0:0:0:0],
Po=m(vy)=[1:2:2:2:2:-2:-2:-2:-2:2:0:0:0:0],
Py=m(vz)=[1:2:2:2:-2:2:-2:-2:2:-2:0:0:0:0],
Pi=m(vy)=[1:2:2:2:-2:-2:2:2:-2:-2:0:0:0:0],
P;=n(v)=1[0:0:0:0:0:0:0:0:0:0:0:0:0:1].
Let [; ; be the line joining the singular points P; and P; for 1 <7 < j < 5. Then

ho={220=21=20=123 =24 = 29, 25 = 26 = 27 = 28, 210 = 211 = 212 = 213 = 0},
lig={220 =21 =20 =23 = 25 = 28, 24 = 26 = 27 = 29, 210 = 211 = 212 = 213 = 0},

ha={220=21 =20 =123 =126 = 27, 24 = 25 = 28 = 29y, 210 = 211 = 212 = 213 = 0},
lhis={220 =21 =20 =23 =24 = 25 = 26 = 27 = 28 = 29, 210 = 211 = 212 = 0},

log ={220 =21 =2 =23 = —26 = —27, 24 = —25 = —28 = 29,210 = 211 = 212 = z13 = 0},
logy={220 =21 =20 =123 = —25 = —28, 24 = —2 = —27 = 29, 210 = 211 = 212 = 213 = 0},
log ={220=21=20=23 =24 = —25 = —26 = —27 = —28 = 29, 210 = 211 = 212 = 0},
l3a={220=21=20 =123 = —24 = —29, —25 = —26 = —27 = 28,210 = 211 = 212 = 213 = 0},
l3g={-220=—21=—20=—23=24=—25 =2 = 271 = —28 = 29,210 = 211 = 212 = 0},
lbs={20=—-2n=—2n=—2m=u=2=—2=—2 =2 =2,20 = 211 = 212 = 0}.

By Remark [8.4 we have that the lines Iy 5, la 5, I35, 45 are contained in W}E?, while
the lines ly 9, l13, l14, l23, l24, l34 are not. Hence the five singular points Py, P», P,
Py, Ps of W} are associated as in Figure 27 of Appendix [A]
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Proposition 8.6. If i = 1,2, 3,4, the tangent cone TCp WL to W} at the point P
is a cone over a Veronese surface.

Proof. Let us consider the following change of coordinates of P'3
20 = wo, 2 =w;+ 2wy, zj=w; +=1,...,9 7=10,...,13.

With respect to the new system of coordinates [wyg : - - : wi3] of P!, the point P
has coordinates [1:0:0:0:0:0:0:0:0:0:0:0:0:0] and, by Remark [8.4] the
Enriques-Fano threefold W} has ideal generated by

—Q'LU()UJQ + 2w0w4 + 4w0w5 + wyws — 4w0w6 — WolWg + 2w0w9 + W5Wg,
Gwows + wi — Gwows — w2 — 2wowy — wewyr + 2wewg + Wsws,
2wowsz — 2wowy + dwows + wiws — dwowe — WaWe — 2WoWg — Welg,
6wow, + w3 — 6wowg — W3 — 2wewr — Wewy + 2Wolg + W4Wy,
—2w0w1 + 4w0w4 + 2w0w5 + Waws — 4w0w6 — W W + 2w0w8 + WaWs,
—2w0w1 + 411)011)4 — 4’&00’[1}5 — wWiwWs + QU)()UJG + wawe + 2w0w7 + WaWr,
2wows + dwowy + wswy — 2wows — dwowg — WsWg — 2WoWs — WeWs,
2wows + dwowy + wowy — dwows — 2WoWe — WsWg — 2WoWy — WsWr,
—dwowy — w3 — dwows — wg + 2wowg + 2wowy + wewy,
2wowio + Wswig — 2wow — Wawi1 + 2Wowi2,

—2wowi9 — WeW1o + 2Wow11 — 2WoeWi2 — WaW12,
2wowip — 2wowr1 — Wewiy + 2wWowi2 + Wswia,
2wowy — dwows — dwowg — 2wswe + 2wowy,

—4w0w4 + 2w0w5 — 4’(1)011)6 — 2IU4?U6 + 2’(1)011)8,

—dwow, — dwows — 2waws + 2wowg + 2wowsy,
2wows + dwowy + w3 + dwows + wg — 10wqwe — 2w§ — 2Wow7 — WeWr,
2wowy + dwowy + wi — dwows — wE — 2wows — 2wowr — Wewry,
2wow; — dwewy — w3 + dwows + w2 — 2wows — 2wowr — Wewr,
w%g — W3Wi3, W11Wi2 + WaW13 — WoWi3, WipWi2 — WsW1i3 1 WWis,
2wowig + wawig — 2wowyy — Wswiy + 2wWowie + Wrws2,

W3 — Walis, WipWiy + WeW13 — Wrlys,

—2wowyp — Wswig + 2wowiy + Wowiy — 2wWowiz — Walia,
—2wowi9 — Wawig + 2wWowqy + WeWi1 — 2WeWi2 — WeWi2,
—2wowyp — WeWig + 2wowyy + w3wiy — 2wWowiz — Wewa,
wiy — wiwss,
2wowig + Wewig — 2wow — Wswiy + 2Wewi2 + WeW12,
2wowip + wewip — 2Woewi1 — Wawi + 2WoWi2 + WiW2,
2wowio + wrwig — 2wewry — wiw + 2wWoewi2 + Wawi,
2wowig + wawig — 2wWowyy — WeWi1 + 2Wowi2 + WeWia,
2wowig + wowig — 2wWowyy — Wrwiy + 2Wowi2 + Wswi2,
—2w0w3 - 2w0w4 — 2w0w5 — WaWs5 — W3Wg + 211)01118 + 211)0’(1)9 + WsWg,
—Q’U}ng — 2w0w4 — WaWs — 2’(00’[1)6 — WaWeg + 2w0w7 + 2w0w9 + WrWg,
2wow1 + 2wowy — 2Wows — 2Wewe — 2Wew7 — WsW7 — 2WeWs — WeWs + 2WoWy + WiwWy,
—2wWow, — WiWy — 2WeWs — 2WewWe — WsWe + 2wWowr + 2wowg + wrws,
—211)011]1 + 211)071)2 + 2?1)011)4 — 2’(1]011)5 — W1Ws + WaWeg + 2w0wg + wowg — 211)071)9 — WeWg,
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—2wowy — 2wows + 2wows + dwowas + dwows + 2waws — 6wewg — W1Wg — Wollg +
+2wowr + wawry,
2wows + 2wows + wows + dwows + wg — 2wowg — 2wowr; — wewy — dwowg — wg,
2wow; + 2wows + wiwsz + dwowy + wi — 2wews — 2woewr — wewy — dwows — wg,
2wow + 2wows + wiws + dwowy + w3 + dwows + wg — bwowe — wg — bwowr — wew7 — w%.

Furthermore P; can be viewed as the origin of the open affine set Uy = {wy # 0} in
]P)[lzio:---:wls]' The ideal of the tangent cone TCp, (W} N Up) is generated by the minimal
degree homogeneous parts of all the polynomials in the ideal of W3 N Uy. One can

find, with Macaulay2, that TCp, (W} N Up) has ideal generated by

—9wy + 8wy + 8wg — 4wy, —Ywsy + 8w; — dwg + 8wy, —9wsz — dw; + 8wy + 8wy,
—wy + 2wy + 2wy — wy, —Yws + 2wy — wg + 2wy, —Ywg — wy + 2wg + 2wy,
Wyp — W11 + Wiz,
9w11w12 + 2w7w13 + 2w8w13 — 10w9w13,

2w7w11 - 1Ow8w11 + 2’(09’[1)11 — 10107’(1)12 + 2w8w12 + 2’(09’[1)12,
6’LU7’LU11 — 6w8w11 — 18’LU92U11 + 6"LU7IU12 — 6"LUSIU12 + 18’LU92U12,

w2, + 4wrwiz — Swgwz — Swewsz,

9'LU%1 — 8'LU7U)13 + 4’(1]811)13 — 811]91013,

w? — 2wyws + w% — 2wrwg — 2wswg + wg.

Hence TCp, WE? is a cone with vertex at P; over a Veronese surface in the P° given by

{-911)1 + 8’[1)7 + 8’[1)8 - 411)9 = 0, —911)2 + 8w7 - 4w8 + 811)9 = 0,
—9w3 — 4wy + S8wg + 8wy = 0, —%wy + 2wy + 2wg — wyg = 0,
—9'LU5 -+ 2'LU7 — wg + 2?1)9 = 0, —9U)6 — Wy + 2w8 -+ 2'LU9 = 0, Wip — W11 + W2 = O}

Similar analysis for the points P, P; and P;. O]

Theorem 8.7. The tangent cone TCp, W} to WL at the point Ps is a cone over a
reducible quintic surface M5, which is given by the union of five planes 7y, 71, 7o, 73, 74,
such that the four planes my, mo, 73, m4 intersect the plane my along the four edges of a
quadrilateral. We give an idea of M5 in Figure

Proof. The point Ps can be viewed as the origin of the open affine set U3 = {2135 # 0}.
The ideal of the tangent cone T'Cp, (W} N Uy3) is generated by the minimal degree
homogeneous parts of all the polynomials in the ideal of WENU;3. By using Macaulay?2,
we find that TCp (W} N Uy3) has ideal generated by the following polynomials

26— 27, X5 — 28, 24— R9, Zo— 23, 21— 23, 2z — 23,
29210 — 28211t 27212, 28210 — 29211t 23212,  Z7Z10 — 23211t 29212,  Z3%10 — 27211t 28212,

2 2 2 2 2 2
28 — 29, 7 — 29, 23 — g, Zrkg — Z3%9, 2328 — R7Z9, Z3R%7 — Z8%9.

Hence TCp, W} is a cone with vertex at P5 over a surface Mj; contained in the P® given
by {z6 = 27, 25 = 28, 24 = 29, 20 = 23, 21 = 23, 2290 = z3}. This surface Mj is the union
of the following five planes:
o ‘= {Zl = O|i 75 10, 11},
™ 22{22’022122222322422522’6227:2’8229, 210 = 211 — 212, 21320},
mi={220 =21 =2 =23 =24= —25 = —26 = —27 = —28 = 29, 210 = 212 — 211, 213 = 0},
m3:={220 =21 =22 =23 = —24 = 25 = —26 = —47 = 28 = —29, 210 = —211 — 212, 213 = 0},
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Figure 15: The reducible quintic surface Ms C P® given by the union of five planes mg, 71,
o, T3, M4, which intersect as in the statement of Theorem .

my={220 =21 =20 =23 = —24 = —25 = 26 = 27 = —28 = —29, 210 = 211 + 212, 213 = 0}.

]

Remark 8.8. Prokhorov says that the P-EF 3-fold W}? has canonical singularities (see
[46, Remark 3.3]), but he does not actually go into detail and does not say whether
they are terminal or not. Since the singular points Py, P, P3, P, of W}? are terminal
(see Proposition [8.6{ and [47, Example 1.3]), it remains to understand if Pj is terminal
or not (see Theorem . We recall that if all the singularities of W}* were terminal,
then W} would be limit of the classical Enriques-Fano threefold W2 (see [44, Main
Theorem 2]). So if we showed that the simple isotropic decomposition of the curve
section H of W} on a smooth hyperplane section S is H ~ 2F; + 2Fy + 2FE3 + Kg
(and not H ~ 2F; + 2F5 + 2E3, which is the simple isotropic decomposition of the
curve section of W), we would obtain the non-terminality of Ps (see § |§| and proof of
Theorem for more details). For now, this is an open question.

Remark 8.9. Since W} is projectively normal in P'* (see § [3.3), then it satisfies
Assumption CM1 of §[dl By Remark[8.5]we have that it cannot verify Assumption CM3.
Let us see that W} does not even satisfy Assumption CM2. Let bl : Blp—; _5P!3 — P!3
be the blow-up of P'3 at the five singular points of W2 and let W be the strict transform
of W}3. Then W intersects the exceptional divisor bl (P5) along a surface isomorphic
to Ms, which has six singular points locally given by the intersection of three planes of
P4, such that two of them intersect the third along two lines and intersect each other at
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a point which is intersection of these two lines. Therefore W is not a desingularization
of W3, since there are six singular points infinitely near to Ps.

8.3 P-EF 3-fold (XVII) of genus 17

In the following we will often refer to the use of Macaulay2: see Code of Ap-
pendix [B] for the computational techniques we will use. Let us consider the anticanon-
ical embedding of P! x P! in P®, that is the morphism X : P! x P! — P® such that

_ . 2 2. 2 2,2 2. . 2. .22, 92 2,2
[uo : wr]X[vg : v1] = [ufo] : ufvovr 1 UTVG : wrUEUT W toLYT T U LYY T UGT © UGUQUL ¢ UGUG -

. R 1 1 . . . 8 .
The image P := A(P' xP') is an octic surface in P 00,100,251 02911501 2392, 0:92 192 2] WHICHY

we can consider as the hyperplane {x = 0} in P? Let V

[yO,OZyO,l:y0,2:y1,01y1,1:y1,2:y2,0:y2,1:y2,2:m] ’

be the cone over P with vertex v=1[0:0:0:0:0:0:0:0:0:1].

Remark 8.10. By using Macaulay2 we can see that the ideal of P is generated by the
following polynomials

y%@ — Y2,0Y2,2, Y12Y2,1 — Y11Y2.2,  Y11¥Y21 — Y1,0Y22,  Yo,2Y2,1 — Y0,1Y2,2,

Yo,1Y2,1 — Yo,0Y2,2,  Y12Y2,0 — Y1,0Y2,2,  Y1,1Y2,0 — Y1,0Y2,1,  Y0,2Y2,0 — Y0,0Y2,2,

Yo,1Y2,0 — Yo,0Y2,1, yig — Yo,2Y2,2, Y1,1Y1,2 — Yo,1Y2,2,  Y1,0Y1,2 — Yo0,0Y2,2,

yil — Yo,0Y2,2, Y1,0Y1,1 — Yo,0Y2,1, Yo,2Y1,1 — YoaY12,  Yo,1Y1,1 — Yo,0¥1,2;

y%,o — Y0,042,0,  Y0,2Y1,0 — Yo,0Y1,2,  Y0,1Y1,0 — Yo0,0Y1,1, y3,1 — Y0,0%0,2,
n (C[y()’o, yo,l, yo’g, yLo, y1717 yl,g, yg’g, y2’1, y272]. Then the ideal Of V 1S generated by the

same polynomials as polynomials in C[yo,oa Yo,1,Y0,25 Y1,0, Y1,1, Y1,2, Y2,0, Y2,1, Y2,2, IE]

Let us take the involution t of IP? defined by

[40,0:90,1:¥0,2,41,0:Y1,1:91,2:Y2,0:Y2,1:92,2]
(Yoot Y22 @] = [Yoo: —You i Yo2: —Yro: YLl —Yi2: Y20 —Yo1 Y22 —T].
The locus of t-fixed points in P? consists of two projective subspaces
Fy = {yo,o =Yo2 = Y11 = Y20 = Y22 = 0} = IP47
Fy={yo1 =y10="yY12 =121 =2 =0} =P".
We have that F; NV = {v} and Fo NV = {vg, Vo2, V20, V22}, Where
oo =11:0:0:0:0:0:0:0:0:0],002=[0:0:1:0:0:0:0:0:0:0],
Va0 =10:0:0:0:0:0:0:1:0:0],020=[0:0:0:0:0:0:0:0:0:1].

Then t defines an involution 7 :=t|y : V — V of V with five fixed points. The quotient
of V' via the involution 7 is an Enriques-Fano threefold of genus 17 (see [46, Proposition
3.2]). The quotient map 7 : V' — V/7 =: WL is defined by the restriction on V' of the
linear system Q of the quadric hypersurfaces of P? of type

Ch(yo,oa Yo,2,Y1,1, Y2,0, 1/2,2) + Q2(yo,1, Y1,0,Y1,2,Y2,1, I) =0,

where ¢; and ¢y are quadratic homogeneus forms. The linear system Q defines a
morphism ¢ : P — P2 such that [yog : - : Yoo : @] > [Zo: -+ : Zog], where
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Zp = yil, A ?Jg,Oa Zy = 93,27 Z3 = y%,O’ Zy = y%z, Zs = a?, Zs= ?Jg,p Z7 = yio’
Zg = yi% Zg = yg,l? Z10 = Yo%, Z11 = Y10%, L12 = Y12, Z13 = Y217,
Zia = YooY1,1, 15 = Yo2U1,1, Z16 = Y2,0Y1,1, L17 = Y2211,
Z18 = Y0,1Y1,0, 219 = Y0,1Y1,2, Z20 = Y1,0Y2,1, ZL21 = Y1,2Y2,1,
Z22 = Y0,0Y0.2, 223 = Y0,0Y2,0, L24a = Yo2Y2.2, L5 = Y2,0Y2,2,
Zog = Yo1Y2,1, Lo7 = Y0,0Y2,2, Zog = Yo,2Y2,0, Zog = Y1,0Y1,2-

Thus we have ™ = ¢y : V — WL C P?. By the expression of A\, we have that W} is
contained in a 17-dimensional projective subspace Hi7 of P?° given by

Hl? = {Z18 = Zl47 ZlQ = Z15> ZQO = Z167 Z21 = Zl?a Z22 = ZGa 223 = Z77
Z24 = 287 225 = Z97 Z26 = Zo, ZQ? = Z07 Z28 = ZO; Z29 = ZO}

see also Remark [8.10). Hence the quotient 7 : V — WA C Hy7 = P is defined by
P
[yo,o “Yo,1 Y02 Y10 Y11t Y12 Y20t Y201 - Y22 ¢ IE] = [2'0 B A TN AT 217]

.2 .2 .2 _ 2 .2 _ 2 a2 .2
where zy = Yias 21 = Yo,00 22 = Y2, 23 = Y20, 24 = Y20, 25 = X7, Z6 = Yo,10 27 = Yi,00
_ .2 ) _ _ _ _ _
28 = Y12, 29 = Y315 210 = Yo,17; 211 = Y1,0T, 212 = Y1,2%, 213 = Y21, 214 = Y0,0Y1,1,
215 = Y0,2Y1,1, 216 = Y2,0Y1,1, 217 = Y2,2Y1.1-

The P-EF 3-fold W17 has the following five singular points
P =7(v00)=100:1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0],
PQZTFUOQ):[OIOZ
Py =m(v20)=100:0:0:1:0:0:0:0:0:0:0:0:0:0:0:0:0:0],
Py =m(v22)=100:0:0:0:1:0:0:0:0:0:0:0:0:0:0:0:0:0],
Ps=7(v)=[0:0:0:0:0:1:0:0:0:0:0:0:0:0:0:0:0:0].

._
o
o
o
o
o
o
=
o
o
o
o
o
o
o

k=)

=)
(3]

Remark 8.11. Thanks to Macaulay2 we can see that the P-EF threefold WL has
ideal generated by the following 88 polynomials
215216 — 214717, R12216 — R11R17, R9R16 T X3%17, 8216 T R0%17, 26216 — <117,
Z4Z16 T R9R1T,  R2716 T R6R17,  R0R16 T ATR1T, 213215 T Z10%17,  R9%15 T 20417,
R8R15 T R2R1T,  RTR15 T R1R1T,  R4R15 T R8R1T,  R3R15 T RTR1T,  RA0R15 T R6RI1T
213214 — 210716, <12214 — 211715, 29Z14 — R7217, R8Z14 — Z6X17, R7214 — Z1%16,
26714 — R1%15, R4R14 T R0R17,  R3R14 T RTR16,  A2R14 T R6<15,  <0<14 — R1R17,
212213 — 25217, 211”13 — 25216, <8%13 T 212417, R7R13 T 11716, 26<13 — £11%15,
Z2Z13 — X12%15, R1%X13 — R11”14, <0<13 — 211717, <11%712 — 210713, <10%12 — Z5%15;
29Z12 — Z13%17, R7R12 T 2107165 46212 T 210715, <3%12 T Z13%16, <1212 — 210714,
20212 — Z10%17, R10%711 — R5214, 29211 — Z13%16, <8%Z11 — R10R17, <6211 — 210714,
24711 T R13%17,  A2711 — £10%15;  R0<11 T 10416, <9210 T 11717, <8210 — £12%15,
27210 T R11714, 24210 T 212217, #3210 T X11416, 20210 — <11%15, 2829 — wa
79 — Z%67 R6<9 T R14R17, RB5R9 T 2%3, RoZ9 — Z15417,  A1R9 T X14%16,
20”9 T R16R17,  RTR8 T R14R17,;  R6R8 Zi—), 548 — 2%2, <378 — R16%17,
2128 — Z14715, R0R8 — Z15%17, R6RT — Ziy R5%7 — Z%p R4RT — R16%17,
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R8T T R14%15, RORT T X14%16, R5%6 — Z%o, R4%6 — 215217,  R3%6 T <14%16,

20726 — <14%15, R0R5 T X10%13, X374 — 237 2224 — z§, 2124 — 214717,

20”4 — Z%% Z9R3 — R14%17, Z1R%3 — Z?, 20”3 — 2%6, Z1R9 — Zg,

20”2 — 2’%5, 20”21 — Z%4, Zg — Z214%17-

Thus the ideal of WL is generated by quadrics. Since W} is projectively normal in
P'7 (see §[3.3), then the ideal of its general hyperplane section S C P6 is generated by
quadrics too. It is consistent with the fact that the ¢ of a general hyperplane section
of S is 4 (see [35, Theorem 1.1 (ii)]), as we will see in the proof of Theorem [9.2]

Remark 8.12. Let [;; := {2z, = 0|i # 4, j} be the line joining the singular points P
and P; with 1 <i < j < 5. By Remark we have that the lines l15, los, I35, lis
are contained in WA, while the lines 1y 9, l1 3, l1.4, l2.3, l24, l34 are not. Hence the five
singular points Py, P, P, Py, Ps of WL are associated as in Figure 27 of Appendix .

Proposition 8.13. If i = 1,2,3,4, the tangent cone TCp, WL to WA at the point P,
is a cone over a Veronese surface.

Proof. Each point P;, i = 1,2,3,4, can be viewed as the origin of the open affine set
U; = {2 # 0}. The ideal of the tangent cone T'Cp, (WA N U;) is generated by the
minimal degree homogeneous parts of all the polynomials in the ideal of WA N U;. By
using Macaulay2 we obtain the following tangent cones.

TCPl (ng7 N Ul) has ideal generated by 217, 216, 215, 213, 212, 29, 28, 24, 23, 22, 20,
2102411 — 25%14, 26211 — <210%14, 27210 — #11%14, 2627 — 2%4, 2527 — 2:%17 2526 — Z%o-
Hence T'Cp, W}f is a cone with vertex P, over a Veronese surface in the P given

by {z; =0t =0,1,2,3,4,8,9,12,13, 15,16, 17}.

TCP2(W}>7 N Us,) has ideal generated by z17, 216, 214, 213, 211, 29, 27, 24, 23, 21, 20,
210”712 — 25715, 26412 T 210715, 8210 — <12<15, <658 — 2%5, 548 — Z%z; 2546 — Z%o-
Hence TCp, W} is a cone with vertex P, over a Veronese surface in the P° given

by {2z =0t =0,1,2,3,4,7,9,11,13,14, 16, 17}.

TCp,(WE NUs) has ideal generated by 217, 215, 214, 212, 2105 28, 26, 24, 22, 21, 20,
R11%13 — 25716, 27<13 — 2117165 <9711 — 213716, 2779 — 2%6, R529 — Z%{;; R5RT 2’%1-
Hence TCp,W} is a cone with vertex Py over a Veronese surface in the P° given

by {2z =0t =0,1,2,3,4,6,8,10,12,14,15,17}.

TCp,(WE NU,) has ideal generated by zi6, 215, 214, 211, 2105 27, 26, 23, 22, 21, 20,
R12%713 — R5R17, 28413 T R12417, R9R12 T R13R17, R8%9 2%7, <529 — 2%3; R5%8 — Z%Q’
Hence TCp, W} is a cone with vertex P, over a Veronese surface in the P° given

by {2z =0t =0,1,2,3,4,6,7,10,11, 14,15, 16}. O

Theorem 8.14. The tangent cone TCp WL to WA at the point Ps is a cone over
a reducible sextic surface Mg C P7 C P!, which is given by the union of four planes
7y, Ty, T, ™ and a quadric surface @ C P? C P7. In particular each one of the planes
1, Mo, T, Ty intersects the quadric @) respectively along a line Iy, 1y, 11,15, where [ is
disjoint from [} and [ is disjoint from [}. In the other cases the intersections of two of
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these lines identify four points on Q: ¢12 := LNy, g1 := LN, quo = 11Ny, qrv o =
N,

Proof. The point Ps can be viewed as the origin of the open affine set Us = {z5 # 0}.
The ideal of the tangent cone T'Cp (WA N Us) is generated by the minimal degree
homogeneous parts of all the polynomials in the ideal of W' NUs. By using Macaulay?2
we can find that TCp,(WJ" N Us) has ideal generated by the following polynomials

217, 165 215, 214, 29, 28, 27, 26, 20,

211212 — 210713,
22213, Z1713, 23712, R1712, 24711, 22211, R4%10, 23710, R3%4, R224, R1%4, 2R3, R1%3, R1%2.

Hence TCp, WL is a cone with vertex Ps over a surface Mg contained in the P7
given by {z; = 0|i = 0,5,6,7,8,9,14,15,16,17}. This surface Ms is the union of four
planes 7y, o, 7}, 5, and a quadric surface ), where

mo={z=0[i=0,1,3,4,56,7,8,9,11,13,14, 15,16, 17},

m = {z =0[i =0,2,3,4,5,6,7,8,9,12,13,14, 15,16, 17},

m={z=0[i=0,1,2,4,56,7,8,9,10,12, 14,15, 16, 17},

m={z=0[i=0,1,23,56,7,8,9,10,11,14, 15,16, 17},
Q:={z=0i=0,1,2,3,4,56,7,8,9,14,15,16, 17} N {z11212 — 210213 = O}..

We obtain the same situation described in Theorem and so a sextic surface Mg as
in Figure [13] O]

Remark 8.15. We recall that W} has canonical non-terminal singularities. Indeed
if it had terminal singularities, it would be limit of some BS-EF 3-fold and therefore
would have genus p with 2 < p < 10 or p = 13 (see [44, Main Theorem 2]). Since
the singular points Py, P, Ps, P, are terminal (see Proposition and [47, Example
1.3]), then Ps is a canonical non-terminal singularity.

Remark 8.16. Since W} is projectively normal in P'7 (§[3.3), then it satisfies Assump-
tion CM1 of §[d By Remark we have that it cannot verify Assumption CM3. Let
us show that WA does not even satisfy Assumption CM2. Let bl : Blp—; 5P!" — P7

be the blow-up of P17 at the five singular points of WA and let W be the strict trans-

form of WA, Then W intersects the exceptional divisor bl~!(Ps) along a surface which
is isomorphic to Mg and which has four singular points locally given by the intersection
of three planes of P, such that two of them intersect the third along two lines and
intersect each other at a point which is intersection of these two lines. Thus W is not
a desingularization of W3, since there are four singular points infinitely near to P;.

9 Simple isotropic decompositions of the curve sec-
tions of the Enriques-Fano threefolds

9.1 Abstract

Let (W, L) be an Enriques-Fano threefold and let us denote by H the class of a curve
section on a smooth hyperplane section S € L. It is known that there are 10 primitive
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effective isotropic divisors Ey, . .., Fyg such that H ~ agEy o+ a1 By +- - -+ a0 B0 +€Kg
where Ej 5 ~ %(El + -+ FEy) — By — By, e =0,1 and ag, ay, . . . a;o are nonnegative
integers (see [9, Corollary 4.7]). This expression is called simple isotropic decomposition
(simply, SID) of H. We will describe the SID of the curve sections of the known
Enriques-Fano threefolds (see Theorem . Generally the SID allow us to identify the
various components of the moduli space of the polarized Enriques surfaces. Thus our
analysis suggests which families the hyperplane sections of the Enriques-Fano threefolds
belong to.

9.2 Preliminaries on simple isotropic decompositions

We recall that any irreducible curve C' on an Enriques surface satisfies C* = 2p,(C') —
2 > —2, with equality occurring if and only if C' = P!. An Enriques surface is called
unnodal if it does not contain any smooth rational curve, otherwise it is called nodal.
We recall that the general Enriques surface is unnodal (see [18]). Let £ be the smooth
irreducible 10-dimensional moduli space parametrizing the Enriques surfaces and let
E,.6 be the moduli space of the pairs (5, H) such that [S] € £ and H € Pic(S) is an
ample divisor on S satisfying H? = 2g — 2 and ¢(H) = ¢, where

¢(H) :=min{E - H|E € NS(S), E* =0,F > 0}.

The spaces &, 4 are in general reducible. We refer to [9] and [33] for more details. Let
us consider now an Enriques-Fano threefold (W, L) of genus p. We will denote by H
the class of a curve section of W on a general (smooth) hyperplane section S. Hence
we have |H| = Ll|g (see [10, Lemma 4.1 (i)]). We set ¢ := ¢(H) and we recall that
$* < H? = 2p — 2 (see [16, Cor. 2.7.1]). We say that the rational map associated with
|H| is hyperelliptic if p = 2 or if it is of degree 2 onto a surface of degree p — 2 in PP~!;
we say that it is superelliptic if p = 2 or if it is of degree 2 onto a surface of degree
p—1in PP~! (see [16, p. 229]). We have the following results which we will use later:

(a) by [16, Proposition 4.5.1]
¢ =1 < |H| has 2 simple base points < ¢, is hyperelliptic on S;
(b) by [10, Lemma 4.1] and [16, Theorem 4.4.1]

¢ > 2 & |H| base point free < L base point free;

(c) by [10, Lemma 4.1 (i)] and [16, Theorems 4.4.1, 4.6.1] (since H ample)

¢ > 3 < ¢ is an isomorphism on S.

In the last case (c) we get that ¢.(W) C P? is a threefold whose general hyperplane
section is a smooth Enriques surface.

We recall now that a divisor £ on S is said to be isotropic if E* = 0 and E # 0,
and it is said to be primitive if it is non-divisible in Num(.S). On an unnodal Enriques
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p| ¢ | comp. SID p | ¢ | comp. SID
21 1] & By + Es 10 1] &oa 9E, + E;
31| &a 2F, + B, 10| 2] Ewp AE, + Fy + B
312 &s By + By, 10 3] & 2E, + By + E5 + Ey
411 & 3B, + E, 10 |3 &% 3(Ey + E,)
402 &y B, + Fy + By 10| 4| Eoa 2F 2+ Ey + B,
511 &a 4F) + B, 131 &, 12F, + E,
512 &4 2E) + 1, 1312 &9, 6E) + Ey 5
52| elh 2B + Ey) 13| 2| gdlt 23E; + E)
512 &7 | 2B + Ey) + K 13 2| €59 2(3E) + B») + Kg
61| & 5E) + B, 13 ]3| & 3E, + Ey+ Es + E4
62| o 2E, + Ey + F4 13| 3| €44 AFE, + 3B,
6|3 56,3 Ey+ FEy+ o 13| 4 51(§?4 2E, + 28, + B o
11| & 6E; + E 13 | 4 | nlt 2(E1 + Es + E3)
72| &5 3B, + By, 134 | E5 | 2B+ By + Ey) + K
72| &Y 3B, + 25, 13 | 4| &5 3B, + 2 5
T3 &z | EitEat+ B3+ By 17| 1] & 16E, + B
81| &a TE, + E, 17 2] &9, 8Ey + Ey 4
82| & | 3B +E+FEs 17 | 2| edlt 2AE, + E)
83| &ss 2F1 + E3+ Ep 17 ]2 51(52)7 2(4F) + Ey) + K
91 1| & 8K, + 17 | 3| Eirs 5E,+ E3+ Ey5
92| &j AE, + By, 17 | 4| &9, 3E, + 2B, + 2E;
912 557121)+ 2(2E1 + E») 17 | 4 81(?4) 3B, + 2B, + By
912 &R | 2B + B + Ks 17 | 4 | 40T 2(2E, + Ey,)
913 &Y | 2B+ B+ Eis 17 | 4| X0 22E, + F15) + Ky
913| &Y | 2B +2E + By 17 | 4 | 5T A(E) + E)
94| & 2(Ey + Ei) 17 | 4| &Y AEy + Ey) + Ks
94| &4 | 2(E1+ Eip)+ Ky 1715 | &1 |2E\+Es+ Ej+Es+ Eyp
Table 1: All irreducible components of £, 4 for 2 < p <10 and p = 13,17.

surface, any effective primitive isotropic divisor E is represented by an irreducible curve
of arithmetic genus one. By [9, Corollary 4.7] there are 10 primitive effective isotropic

divisors Eji, ..

., Elg such that E; - E; =1 for ¢ # j and such that

H ~ QOELQ —|— CL1E1 —|— s + G,loEl() —|— EKS (2)

where Ey o ~ %(El + -+ Ey) — By — Ey and ag, ay, ... ajp are nonnegative integers

with

either ag = 0 and #{i|i € {1,...,10},a; > 0} # 9,

{OI‘ aip = 0,
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and
{o, if H + Kg is not 2-divisible on Pic(S),
€ =

1, if H 4+ K is 2-divisible on Pic(.5).

We call a simple isotropic decomposition (SID) of H. We also recall that E; 5- Ey =
Ei9-FEy=2and Fy5-E; = 1fort=3,...,10. For later reference, we list in Table [I|all
the irreducible components of &, , for 2 < p < 10 and p = 13,17 (see [9, Appendix]).

Definition 9.1. A projective variety X C PV is said to be k-extendable if there exists
a projective variety V' C PNT* that is not a cone, such that X = VNPV (transversely)
and dimV = dim X + k.

The question of k-extendability of Enriques surfaces is still open. It is known that
if S C PV is a l-extendable Enriques surface, then h' (Tg(—1)) > 0 (see [10, proof of
Corollary 1.2]) and ¢(Og(1)) > 3 (see [16, Theorem 4.6.1]). Moreover, if S C PV is
an unnodal Enriques surface (i.e. not containing any smooth rational curve) which is
l-extendable, then (S, Og(1)) belongs to the following list: 51(§Z)+, 51(§2+, 51(;’3), El(ég,
Eoar &5{31), Er3 (see [10, Corollary 1.2]).

9.3 SID of the curve sections of the known EF-3folds

Let us describe the SID of the curve sections of the known Enriques-Fano threefolds.

Theorem 9.2. Let (W, £) be an Enriques-Fano threefold in the list (I)-(XVII) of §[3.2]
Let S € L be a general hyperplane section of W and let H be a general curve section
of Won S. Then H has the ¢ and the SID described in Table

Proof. Let us study the known Enriques-Fano threefolds case by case. If (W, L) is
a fixed Enriques-Fano threefold of genus p, we will denote each time by S a general
element of £, by H a general curve section of W on S satisfying H? = 2p — 2, and by
¢ the value ¢(H) defined in §[0.2]

W = Wis. The map ¢p : W --» P? is a rational map (see [I, §6.1.6]). Since
p =2 and ¢* < 2p — 2, then we have ¢ = 1. So the SID is H ~ E; + E5 (see
Table [1)).

W = W3. Since p = 3 and ¢? < 2p — 2, then we have 1 < ¢ < 2. The map
¢r : W — P3 is a morphism and a quadruple cover (see [I, §6.1.5]). This implies
¢ = 2, because if ¢ = 1 the map would be a double cover (see § (a)). Then
the SID is H ~ E; + E) 5 (see Table .

W = W%S. Since p = 3 and ¢ < 2p — 2, then we have 1 < ¢ < 2. The map
¢r : W --» P3 is a rational map and a double cover (see [I, §6.2.7]). We have
that ¢r|s is hyperelliptic, since it is of degree 2 onto a plane. This implies ¢ = 1
(see §[9.2] (a)) and the SID must be H ~ 2E; + E, (see Table [1]).
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Marking | EF 3-fold SID of H o(H) | (S,H) €
(1) Wie E,+ E, 1 &2
1 Wi, Er+ Ers 2 &3
111 W 2F, + F» 1 s
V) | Wgs, Wi E\+E, + E; 2 Ea
Vi W 3E, + Ey 1 Eun
V1 Wis 2B, + Eqp 2 el
VII W 2E, + E,) 2 | glh-
(VI | Wgs, WE E\+ Ey+ Ery 3 Eo.3
X Wi 3B, + Ei 2 el
X Wie, Wi Ei+FEy+ Es+ Ey 3 Ers
(X1) Wi, 2F; + E3 + Ey, 3 &3
X)) | Wi, W2 2(F; + E1o) 4 &5
X111 W, 2F, + By + B3 + B, 3 el
XIV) | Wi, WE | 2By + By + Bs) 4 | el
XV W2, 2F, + 2E, + Ej 3 et
X VI W3 2(E, + By + Es) 4 | &Sl
or 2(E; + By + E3) + Kg or £
XVII W A(Ey + ) 4 | EGDY

Table 2: SID of the curve section H of an Enriques-Fano threefold (W, L) on a general S € L.

W = Wgg. Since p = 4 and ¢? < 2p — 2, then we have 1 < ¢ < 2. The map

()

(V1)

¢r : W --» P* is a rational map birational onto the image (see [I}, §6.3.3]), which
is the Enriques threefold W3 of [23, §10]. Since S is mapped by ¢, to a general
sextic surface of P? double along the edges of a tetrahedron, then the SID is
H ~ Ey + E, + E; (see [9, §5]) and ¢ = 2 (see Table[I).

W = W;S. Since p = 4 and ¢ < 2p — 2, then we have 1 < ¢ < 2. The map
¢r : W --» P* is a rational map and a double cover over its image which is a
quadric cone (see [1 §6.6.2]). We have that ¢,|s is hyperelliptic, since it is of
degree 2 onto a quadric surface of P2. Then we have ¢ = 1 (see § (a)) and
the SID is H ~ 3E; + E (see Table [1)).

W = W3g. Since p = 5 and ¢* < 2p — 2, then we have 1 < ¢ < 2. The
map ¢, : W — P° is a morphism birational onto its image (see [I, §6.2.2]).
So we have that ¢ = 2 (see § 9.2 (b)). The SID is H ~ 2(E; + E») + Kg or
H ~ 2E, + E\5 or H ~ 2(E, + E») (see Table[l)). The case H ~ 2(E; + E,)
is excluded, otherwise the map ¢,|s would be superelliptic (see [16, Theorem
4.7.1]). Let us consider now a smooth intersection By := Q1 N Q2 of two quadric
hypersurfaces of P® and an elliptic curve e C By given by the intersection of two
hyperplane sections of By. In Bayle’s description, an Enriques-Fano threefold
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(V1I)

(VIT)

(X}

W of this type is given by the quotient 7 : X — X/o =: W of X := Bl, By,
that is the blow-up of B4 along the curve e, where ¢ is an involution of X with
eight fixed points. Let us denote the above blow-up by the map bl : X — By
and let E := bl~'(e) be the exceptional divisor. If h denotes the hyperplane
class of P°, then Kg, = (Kps + Q1)|g, = (—4h)|g, and Kp, = (Kg, + B4)|s, =
(Kg, + Q2]0,)|B, = (—2h)|p, by the adjunction formula. So we obtain —Ky =
—bl*K g, — (codim(e, B;)—1)E = 2bl*(h)— E (see [27, p.187]). Furthermore if S is
the K3-surface 75, then 7|{H ~ —Kx|[5 = (2b1*(h) — E)|5. Let us see that E|g
is not 2-divisible. We observe that S is isomorphic to the complete intersection
of three quadric hypersurfaces of P° and that E|z is a quartic elliptic curve C.
If F|z were 2-divisible, we would have a divisor D on S such that C' ~ 2D
and D? = 0. We observe that —D couldn’t be effective, otherwise —2D ~ —C
would be effective and this is a contradiction; so by Serre Duality we would have
h*(Og(D)) = 0. Furthermore by Riemann-Roch we would obtain

W(O5(D)) > W(O5(D)) ~ h(O5(D)) =2 > 0.

Thus D would be effective, elliptic (by the adjunction formula) and with degree
2, which is a contradiction. This implies that H is not numerically divisible by
2, so the only possible SID is H ~ 2E; + E} 5.

W = W5BS' Since p = 5 and ¢? < 2p — 2, then we have 1 < ¢ < 2. The map
¢r : W — P° is a morphism and it is a double cover of the image, which is the
complete intersection of two quadric hypersurfaces (see [Il, §6.1.2]). We observe
that ¢.|s is superelliptic, because it is of degree 2 onto a quartic surface of P%.
Hence we have ¢ = 2, because if ¢ = 1 the map would be hyperelliptic (see §
(a)). Then the SID is H ~ 2(E; + E») (see Table[l]), since H has to be 2-divisible
in Pic(S) (see [16, Theorem 4.7.1]).

W = WSg. Since p = 6 and ¢? < 2p — 2, then we have 1 < ¢ < 3. The map
¢ : W — PY is a morphism and an isomorphism to its image (see [I, §6.2.4]).
Therefore we have ¢ = 3, otherwise ¢|s would not be an isomorphism to its
image (see § (¢)). Then the SID is H ~ By + Ey + Ey5 (see Table [1). We
also recall that the F-EF threefold WP of [23] §3] is a limit of W5 (see [44, Main
Theorem 2]).

W = W;S. Since p = 7 and ¢? < 2p — 2, then we have 1 < ¢ < 3. The
map ¢, : W — P7 is a morphism, it is birational onto its image but it is not
an isomorphism onto its image, since there are points in the image with two
preimages (see [1, §6.6.1]). Let us explain this fact better. In Bayle’s description,
an Enriques-Fano threefold W of this type is given by the quotient 7 : X —
X/o=:W of X :=P! xSy, where Sy C P4 is a Del Pezzo surface of degree 4 and
o is an involution of X with eight fixed points. In his analysis, Bayle introduces
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a morphism ¢ : X — P7 such that we have the following commutative diagram

X*P1XS4

iy \

W—><p = ¢ (W) C P".

In particular a point € ¢(X) has two preimages in X, except in the case in
which x € p([0: 1] x Sy) U p([1:0] x Sy): in this case ¢~ !(z) is given by four
points of X. Since 7 : X — W has degree 2, then ¢21($) is given by one point
if 2 € ¢e(W)\ (p([0:1] xSy)Up([l:0] xS,)), otherwise it is given by two
points. This implies ¢ = 2 (see §[0.2] (b)). For the SID of H we have a priori two
possibilities, namely H ~ 3E; + Ey 5 and H ~ 3E; + 2E, (see Table .

Remark 9.3. In the case in which the SID is H ~ 3E) + E o, the surface S does
not contain elliptic cubic curves. Indeed we have that deg £y = F, - H = 2 and
deg 1o = E12 - H = 6. Furthermore let £ be an elliptic curve in S such that
it is not numerically equivalent to Ey, Ej o, 2E1, 2E, 5. By [34, Lemma 2.1] we
have that £-Ey >0, F-F19>0andsodegEl = E-H >3+1=4.

Remark 9.4. In the case in which the SID is H ~ 3FE; + 2FE>, the surface S
contains the following elliptic cubic curves: Fy and Ey ~ Fsy + Kg.

It is known that the surface S, is the image of P? via the rational map A defined
by the linear system of the plane cubic curves passing through five fixed points
ay, ag, as, a4, as in general position. In particular Sy = Bla, 4s.a5,04,05 P2, where
bl : Bla, ay.a5.00.0s P2 — P? is the blow-up of the plane at these five points. Let ¢
be the strict transform of a general line of P? and let us consider the exceptional
divisors e; := bl~'(a;) of bl : Sy — P?, for 1 < i < 5. Let us take the K3-surface
S := 7*S. Then we have that

TlsH ~ —Kx|g ~ (2p x Si+ P! x (=Kg,))|5 ~

~(@2px Sy+P x (3l —e1—ex—eg—es—e5))|g=

=2p X Sylg+P' x ({ —e5)|g+ Pt x (20 —e; —es — €3 — e4)|3.

By setting E; := P! x (£ — es)| s, Ey =P x (20— ¢; — 62 - 63 64)‘5 and
E;3 := p x Sy|g, we have T|SH ~ Ey + Ey + 2E5, where E1 = Ez = E3 =0,

E,-Ey =4and E,-E3 = E5-F5 = 2. Furthermore, by the adjunction formula, we
have that Kz = 0 and py(£;) = 1, for 1 <i < 3. Let us suppose that there exists
an elliptic cubic curve E on S and let us define E := 7~'(F). Since E-H = 3 on
S, then E-W|*§H =6on 9. Obviously, we have that E is not linearly equivalent to
E,, Ey, E5, because F, ~7r|gH = EQ-W|*§H =8 # 6 and E3'7T|*§H =4 # 6. Since
two elliptic curves on a K3 surface, which are not linearly equivalent, intersect at
least in two points, then E - 7r| *H >2+2+2-2 =8> 6, which is a contradiction.

Hence S does not contain elhptlc cubic curves and so, by Remarks[9.3] [0.4] the
SID is H ~ 3E1 -+ ELQ with ¢ = 2.
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W = Wks. Since p = 7 and ¢? < 2p — 2, then we have 1 < ¢ < 3. The
map ¢y : W < P7 is a morphism and it is an isomorphism onto its image
(see [I, §6.4.1]). This implies ¢ = 3 (see § (¢c)), which yields the SID
H ~ Ei + Ey + E3 + E; (see Table[l). See also [10, Lemma 4.6], where these
threefolds are obtained via a projection technique from . The F-EF three-
fold W of [23, §4] is a limit of W}g (see [44, Main Theorem 2]).

(XI) W = W3g. Since p = 8 and ¢* < 2p — 2, then we have 1 < ¢ < 3. The map
¢ : W — P? is a morphism and it is an isomorphism onto its image (see [I|
§6.4.2]). This implies ¢ = 3 (see § (c)), which yields H ~ 2E; + E3 + E) 5
(see Table [1]).

(XII) W = W3s. Since p = 9 and ¢? < 2p — 2, then we have 1 < ¢ < 4. The map
¢c : W < P? is a morphism and it is an isomorphism onto its image (see [T,
§6.1.4]), which is the F-EF 3-fold W3 of [23| §7] (see Theorem [6.11]). Therefore
one has 3 < ¢ < 4. In Bayle’s description, an Enriques-Fano threefold W of this
type is given by the quotient 7 : X — X/o =: W of the complete intersection
X of two quadric hypersurfaces of P°, where ¢ is an involution of X with eight
fixed points. This implies that H is numerically divisible by 2: indeed if S is
the K3-surface 7*S, then W‘%H ~ —Kx|g where —Kx is a quadric section of
X. So we have ¢ =4 and H ~ 2(E; + E15) or H ~ 2(E, + Ey5) + Kg (see
Table |1 . Furthermore Fano proves that these threefolds are represented on P3
by the linear system /C of the septic surfaces which are double ~along the edges of
two trihedra 7" and T". Let us use the notations of §|5.3, Let K be the divisor in
K such that I/K(K ) = S. There is only one cubic surface in P? which is singular
along the edges of the trihedron 77, that is 7" itself. So we have that

3
(3H — Z 2F Z Rij — Z4F/ Z (Aijen + 3A;jk,h>)‘l~{ ~ 0.
i=1 1,7=1 i,j,k€{1,2,3}
1<j, h=t,j

Then we have that H corresponds to the following divisor on K:

3 3
(TH— Y 2F;+F) ZRU Z4r+r' > B(Ageat ALz ~
1<i<i<3 1,j=1 i,5,k=1
1<j, h=i,j
3 3
~(AH - Y 2F; =) AT = Y 200z
1<i<j<3 i=1 i,5,k=1
i<j

This implies that H is 2-divisible and the only possible SID is H ~ 2(E} + E} o).

(XTI W = W}%. Since p = 10 and ¢* < 2p — 2, then we have 1 < ¢ < 4. The map
¢ : X = P% is a morphism and it is an isomorphism onto its image (see [I}
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(XTV)

§6.5.1]). Therefore one has 3 < ¢ < 4 (see §[9.2] (c)). The possible cases of the
SID of H are H ~ 2E,+ Es+ Es+ Ey, H ~ 3(Ey+ Ey) and H ~ 2E, 5+ E1 + E
(see Table . We recall that an Enriques-Fano threefold W of this type is given
by the quotient 7 : X — X/o =: W of X := P! x Sg, where Sy is a smooth
Del Pezzo surface of degree 6 in P% and ¢ is an involution of X with eight fixed
points. It is known that the surface S is the image of P? via the rational map
A defined by the linear system of the plane cubic curves passing through three
fixed points ay, ag, az in general position. In particular Sg 2 Bl 4, .45 P?, where
bl : Bly, ay.0s P2 — P? is the blow-up of the plane at these three points. Let ¢ be
the strict transform of a general line of P? and let us consider the exceptional
divisors e; = bl~Y(a;) of bl : Sg — P2, for 1 < i < 3. Let us take the K3-surface
S :=7*S. Then we have that

T[tH ~ —Kx|g~ (2p x S5 + P! x (=Kg,))|g =
=(2px Se+Px (30 —e1 —ea—e3)) g =
=2p X Slg + P! x (E—e1)|g+ P! x ({ = e2)|5 + P! x ({ = e3)[5

By setting B := p X S|z and E; := P! x (£ — ¢;)|5, for 2 < i < 4, we have
W]%H ~ 2E, + E5 + E5 + E,, where Ef =0and B;- E; =2, for 1 <i<j<4
Furthermore, by the adjunction formula, we have that Kz, = 0 and py(E;) = 1,
for 1 <1 < 4. We will now prove that the SID is H ~ 2F; + FEy + E3 + Ey. If
the SID were H ~ 3(F; + E3), then H would be 3-divisible and therefore also

m|gH. But this does not happen because 7|LH - E, = 8 is not divisible by 3.
Now suppose H ~ 2FE; 5+ E; + Ey. By setting E 5 = W]%Em, E, = 7r|’§E1
and Fy = W‘%EQ, we have By - By = Ei15- By = 4 and Ey - Ey = 2. Hence
ISR 7T|’§H = 8 and E; - W‘%H = Fy - 7T|§H = 10. Let D be any elliptic curve
on S such that D? = 0 and that is not linearly equivalent to Ey o, By, Ey: then
D - W’EH > 2.2+ 242 =28, since two elliptic curves on a K3 surface, which are
not linearly equivalent, intersect at least in two points. But if we took D = FEj,

we would obtain E - 7r|*§H = 6 < 8, which is a contradiction. Then it must be

W = W}k, Since p = 13 and ¢* < 2p — 2, then we have 1 < ¢ < 4. The map
¢ : W — P13 is a morphism and it is an isomorphism onto its image (see [I}
§6.3.2]), which is the F-EF 3-fold W} of [23, §8] (see Theorem [6.17). Therefore
one has 3 < ¢ < 4 (see §[9.2(c)). According to Bayle, an Enriques-Fano threefold
W of this type is given by the quotient 7 : X — X/o = W of X := P! x P! x P!
under an involution o of X with eight fixed points. So Bayle’s description im-
plies that H is numerically divisible by 2: indeed if S is the K3-surface 7*S, then
m|5H ~ —Kx|g ~ (2,2,2)|5. Furthermore Fano proves that these threefolds are
represented on P? by the linear system S of sextic surfaces singular along the
edges of a fixed tetrahedron 7. Fano’s description shows that H is 2-divisible
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(XV)

(XVI)

in Pic(9). Indeed, by using notations of § and by taking S the divisor in S

such that 7(X) = S, then we have that H corresponds to the following divisor on

N (6H = X gcicjes 2Fij — S 7i=04T)|5. So the only possible case is ¢ = 4 and
<i<j< oy

1]
H ~ 2(E; + E5 + Ej3) (see Table .

W = W}, These threefolds are obtained by projection of the threefolds in
from, say, the curve Ej (see [36, §13]). Then H ~ 2(E; + E3) + E5 and
¢ = 3. The general Enriques surface appears as a hyperplane section of these
threefolds.

W = W}, Since p = 13 and ¢* < 2p — 2, then we have 1 < ¢ < 4. Let us
consider a cone V C P7 over a smooth sextic Del Pezzo surface Sg contained in
a hyperplane PS of P”. An Enriques-Fano threefold W of this type is given by
the quotient 7 : V — V/7 = W of V C P" where 7 : V — V is an involution
fixing five points, one of which is the vertex v of the cone (see [46, Remark 3.3]).
In particular V' is a Gorenstein Fano threefold with canonical singularity at v
and with anticanonical divisor — Ky = 2M, where M is the class of hyperplane
sections (see Lemma . Furthermore the quotient map 7 : V' — W is defined
by the base point free sublinear system Q C [2M| = | — Ky/| of the 7-invariant
quadric sections of V' such that a general member S € Qis a smooth K3 surface
not containing the five 7-fixed points and on which the action of 7 is fixed point
free. So we have £ := |Ow(S)|, where S is the Enriques surface 7(S) = S/7.
Since S C P!? is l-extendable to W C P13 (see § [8.2) -, then 3 < ¢ < 4 (see
[16, Theorem 4.6.1]). We recall that the surface Sg is isomorphic to the blow-
up bl : Bly, .05 P2 — P? of the plane at three fixed points a1, as, a3 in general
position. Let £ be the strict transform of a general line of P? and let ¢; := bl (a;),
for 1 <i < 3. Since S is a K3 surface given by a particular quadric section of
V and Sg is a hyperplane section of V| we have a double cover f : S — Sz with
ramification locus Ry = f*(—Kg,) = f*(3¢ — e; — e2 — e3) and branch locus
By = —2Kg, = 60 — 2e; — 2e3 — 2e3. Furthermore, by setting E; = f*({ —¢;) for
1 <i <3, we have Mg~ f*"(—Kg;) = f*(30 —e1 — ey —e3) ~

~ f*(€—€1+€—€2+€—63) = f*(é—el) —|—f*(€—62) +f*<£—€3> =

— B+ Ey+E3= D, where D2 =12, F; - E; =2for 1 <i< j<3and E, = 0.
So E; is an elliptic curve for 1 <4 < 3. Since T|gH = (7*5)[5 ~ §|§ ~

~2M|g ~ 2D = 2(E; + E, + E3), then 7|5H is 2-divisible on the K3 surface S
and H is numerically 2-divisible on the Enriques surface S, i.e. H or H 4 K is 2-
divisible on S. Then we have only the following possibile SID: H ~ 2(FE,+ Es+E3)
or H ~ 2(Ey + Es + E3) + Kg (see Table [l] [[). In both cases, if we consider the
elliptic curves E; := 7*(E;) for 1 < i < 3, we have H := T|5H = 2By + Ey+ E),

WhereE’i-E-iSQforz%j and it is 0 for ¢ = 7.

Remark 9.5. We have that F; = EZ, for 1 <i < 3. Indeed, since 2(E1 + E2 +
Eg) N7T| HN2(E1+E2+E3) we have E1+E2+E3NE1+E2+E3 on the
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K3 surface S. Let us suppose E1 #* E for 1 < i< 3, s0 E - E; > 2. Then
4=F,-(Ey+Ey+E3)=E, - (E1 + By + E3) > 6, which is a contradiction.

It remains to understand which case really occurs. See § for some remarks.

(XVII) W = W} - see [46], §3]. By [10, Proposition 4.7 the SID is H ~ 4(E; + E5) and
6= 4.

O

9.4 Remarks concerning the SID of the curve sections of the
P-EF 3-fold (XVI) of genus 13

The determination of the SID of a general curve section of the P-EF 3-fold W13 remains
an open question. Let us see some results that may be useful in the future.

Theorem 9.6. Let S be a general hyperplane section of the P-EF 3-fold W}? and let
H be a general curve section of W} on S. Let 7 : S — S be the K3 double cover and
H:=7"H. Then 1 < Y (T5(— H)) < 2.

Proof. Let F} and F» be two half-fibres on the Enriques surface S such that Fy-Fy =1
and let be R ~ 2F + 2F, where F; := n*F;, for i = 1,2. Let us set

= h' (Og(H—2F)))+h' (Og(H—2F+Kg))+h'(Og(H—2F))+h* (Og(H—2F,+Kg))

and [ := h0(0§(4ﬁ1 +4F, — H)). By [10, Lemma 5.2] we have that

B < hO(Os(AF, +AFy — H)) + h%(Og(4F, + 4F, — H + Kg))+
+hHOs(H — 2F, — 2F)) + hY(Os(H — 2F, — 2F, + K))

and hl(Tg(—fI)) < o+ 3, with equality if @ = 0. Let us use now the same notations
of the case |D of the proof of Theorem . We have H ~ 2F, + 2F5 4+ 2F5. Let
E; .= n(E;) for 1 <i <3 and let us take F} = E} and F;, = FE5. Then we have that

= h'(O5(2E; + 2E3 + Kg)) + h' (O5(2Ey + 2E3)) + h' (O5(2E; + 2E3 + Kg))+

+hY(O5(2E, + 2F3)) = B (O5(2E, + 2E3)) + h'(Oz(2F, + 2E5)) = 0.

So we obtain the equality hl(’@v(—ﬁ)) = [ where § = hO(OE(Qﬁl + 2, — 2E3)). Let
us consider the following exact sequence

0 — O3(2F) +2F, — H) = Og(4F, + 4F, — H) — Op(2R — H) = 0

that is
0— O 2E3) — O5(2F, + 2B, — 2E3) — Ox(2R — H) — 0.

5(—
Since h%(Og(—2E3)) = 0, then 8 = h%(Oz(2R — H)) > ho((’) (2E) + 2, — 2E3)).
Since E; = E; = f*l - el) for 1 < i < 3 (see Remark [9.5)), then 2F, + 2F, —
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2153 =2 j*(ﬁ —e —e+ es3) is an effective divisor on S and in particular we have
hO(O5(2E, + 2E, — 2E3)) = 1. Moreover we have

B < h°(2E, + 2B, — 2E3) + h°(2E, + 2E, — 2F3 + Kg) + h'(2E3) + h'(2E; + Kg) =
— hO(2E, 4 2Fy — 2E3) + h'(2Es) =1+ 1 =2,
O

Remark 9.7. Let S be a general hyperplane section of the P-EF 3-fold W}? and
let H be a general curve section of Wp* on S. Let us use the same notations of
the case (XVI)) of the proof of Theorem . By setting H := 77\*§H , we have that

hl(r(—ﬁ[)) =h (Ts(=H))+h' (Ts(—H + Ks)) (see [10, (9)]). In our case it must be
A (T3(— 2B, —2E,—2F3)) = h' (Ts(—2E, — 2By — 2E3))+h! (Te(—2E, — 2E, — 25 + Kg)) .

Since a general (unnodal) element of 81(§Q+ is extendable to the classical Enriques-
Fano threefold, then by semicontinuity we have that k' (75(—2F; — 2Fy — 2E3)) > 1.
By Theorem [9.6) we obtain the following possibilities:
(1) hl (7;*( 2E1 — 2E2 — 2E3)) = land hl (7;*( 2E1 - 2E2 - 2E3 + K5)> = O hence
S would be an Enriques surface extendable to W} such that (S, H) € 513 4 ;

(i) h' (Ts(—=2E, — 2Ey — 2E3)) = 2 and h! (Tg(—2FE; — 2B, — 2E3 + KS)) = 0; hence

S is an Enriques surface extendable to W} such that (S, H) € 51(3{[4 ;

(iii) ' (Ts(—2E; — 2E; — 2E3)) = 1 and h! (Ts(—2E, — 2B, — 2F5 + KS)) = 1; hence

S is an Enriques surface extendable to W} such that (S, H) € 51%[4 51(;[4)_.

Remark 9.8. Ciliberto-Dedieu-Galati-Knutsen show that if S is an unnodal Enriques

surface such that (S, Og(1)) belongs to 51%2_, then h! (Ts(—1)) = 0 and so it is not
extendable (see [10, proof of Theorem 1]). Let S be a general hyperplane section of the
P-EF 3-fold W}? and let H be a general curve section of W}? on S. By Theorem

we have that (S, H) € 51£I4 or (S,H) € 8134 Since (S, H) is 1-extendable to W}

by construction, then it must be h' (Tg(—H)) > 0. Thus, if (S, H) belonged to 51%14 :
it should be S nodal, that is S should contain some smooth rational curve. Anyway,
let us use the same notations of the case (XVI|) of the proof of Theorem (9.2 - We

have that, in both cases (S, H) € 51?4 or (S, H) € 5134 , the K3 surface S = 7*S

contains smooth rational curves. For example S contains the (—2)-curves given by

f*(g — €1 — 62), f*(g — €1 — 63), f*(€ — €2 — 63), f*(el)v f*(e2)7 f*(e?))‘

10 On Enriques-Fano threefolds and a conjecture
of Castelnuovo

10.1 Abstract

Let £ be an r-dimensional linear system of surfaces on P? such that (the desingular-
ization of) the general element has zero geometric genus and zero arithmetic genus.
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What happens if we force the surfaces of £ to have a triple point at a general point of
P3? Castelnuovo conjectured in [4, pp. 187-188] that we get an (r — 10)-dimensional
sublinear system L, such that the general surface satisfies one of the following three
properties: it is an irreducible surface with irregular desingularization, with zero ge-
ometric genus and with arithmetic genus equal to —1; it is reducible in two rational
surfaces intersecting along a rational curve; it has the same genera as a general el-
ement of £. First we will apply the arguments of Castelnuovo to (rational) regular
smooth irreducible threefolds (see § [10.2)), and then to (rational) normal threefolds
with isolated singularities and regular desingularization (see § . In particular we
will analyze the sublinear system L, C L of the hyperplane sections of the classical
Enriques-Fano threefold (W23, £) having a triple point at a general point w € W} (see
§ [10.4). We will find that the general element of this linear system satisfies the first
property conjectured by Castelnuovo, since it is birational to an elliptic ruled surface.
Furthemore we will prove that the image of W} via the rational map defined by L,
is the Cayley cubic surface (see Theorem . Finally we will observe that also by
imposing a triple point at the general hyperplane section of the P-EF 3-fold W17, we
obtain a surface whose desingularization has ¢ =1, p, = 0 and p, = —1 (see § .

10.2 Castelnuovo’s conjecture for smooth threefolds

In [4, pp.187-188], Castelnuovo proposed some ideas about certain irreducible threefolds
and particular linear systems of surfaces on them. In order to explain these ideas, let
us start by talking about the link between the irregularity of a surface contained in a
threefold and the one of the threefold itself, which was studied in [5], §4].

Proposition 10.1. Let W be a smooth irreducible threefold endowed with an r-
dimensional linear system L, where » > 2, such that the general element is an irre-
ducible surface. If the divisors of £ are big and nef, then W has the same irregularity
of a general surface S € L.

Proof. Let S be a general element of £ and let us consider the following exact sequence

Since S is a big and nef divisor, then we have that h=%?(Oy(—S)) = 0 by the
Kawamata-Viehweg vanishing theorem and so we obtain ¢(W) = ¢(5). O

Remark 10.2. Let W be a smooth irreducible threefold and let £ be an r-dimensional
linear system on W such that » > 2 and such that the general element is a smooth
irreducible surface. Let us suppose that £ has base curves. We can consider the
appropriate blow-ups of W along these curves in order to obtain a birational morphism
bl : W — W such that the strict transform £ of £ has no base curves. Let S be an
element of £. Since £ could have base points outside the base curves, then S is a
(semi-ample and hence) nef divisor by the Zariski-Fujita theorem. Furthemore S is the
strict transform of an element S € £. If S is a big divisor, then S is big too.

Some consequences of Proposition are stated in [5], §6] for the three-dimensional
projective space W = P3. We will adapt them to any regular smooth irreducible
threefold.
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Proposition 10.3. Let W be a regular smooth irreducible threefold endowed with an
r-dimensional linear system £, where r > 3, such that the general element is a smooth
irreducible surface. If the intersection of two general surfaces of L, outside the base
locus, is an irreducible curve, then a general element S € L is a regular surface.

Proof. We may assume that the base locus of £ is empty or at worst a finite set.
Indeed, if this were not the case, we could continue the proof with the pair (W, L) of
Remark instead of the pair (W, £). This would be possible since a general S € £
is a smooth surface isomorphic to a general S € S and such that ¢(S) = ¢(S).

Let us fix now a general S € £, which is a nef divisor on W by the Zariski-Fujita
theorem. Let us suppose that S is an irregular surface. Let A C P" be the image
of the rational map ¢, : W --» P defined by £. Since r > 3 > 1 and S is an
irreducible surface by hypothesis, then dim A > 1. Since S is not a big divisor (see
Proposition , then dimA < 3. So A is a surface and the general fibre of ¢, is
a curve. Let S’ be another general element of £. The intersection curve S NS’ is
sent by ¢, to the intersection of two general hyperplane sections of A, that is a set of
d := deg A points of A. We observe that A cannot be a plane, since r > 3 > 2. Hence
we have that S NS’ is a reducible curve given by d > 2 fibres of ¢,. Since this is a
contradiction with the hypothesis, then S must be regular. O]

We recall that a one-dimensional linear system on a variety X is called pencil. In
the following we will extend the use of this term. Let S be a smooth surface and let
B be a smooth curve of genus b > 0. A surjective rational map f : S --» B with
connected fibres is called a pencil of genus b of curves on S. All the curves of such
a pencil are linearly equivalent if and only if 6 = 0. In this case we will refer to it
as rational pencil. If b > 0 we will talk about irrational pencil and, in this case, f is
a morphism (see [2, p.114]). In particular, an irrational pencil of genus one is called
elliptic pencil.

Definition 10.4. A congruence of curves of a threefold W is a two-dimensional ir-
reducible family V of curves contained in W such that through a general point of W
passes only one curve of the family.

Proposition 10.5. Let W be a regular smooth irreducible threefold endowed with
an re-dimensional linear system L,, where r, > 3, such that the general element is
an irregular smooth irreducible surface. Then two general elements S, and S, of L,
intersect each other (outside the base locus) along reducible curves. In particular
on a fixed S, the components of these curves are fibres of a pencil of genus b where
0 <b<q(S,). Furthermore, by varying the surface S,, these component curves give a
congruence V of curves of W.

Proof. We may assume that L, is base point free. Indeed if £, had base curves, then
we would take the pair (W, L,) as in Remark , where £, has no base curves. If
L, still had a finite set of base points, then we would consider the blow-ups necessary
to have a birational morphism bl : W — W such that the strict transform L, of
L, is base point free. Thus we continue the proof by denoting the pair (W, L,) by

(W, L,): this is possible since a general surface S, € L, is birational to a general
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surface S, € L, and they have same irregularity. Since the divisors of £, are not big
(see Proposition , then the image of the morphism ¢, : W — P defined by L,
is not a threefold. Moreover, since r, > 3 > 1 and the elements of £, are generically
irreducible, then ¢,(WW) is not even a curve. The image of W via ¢, is thus a surface
A and a general S, € L, is sent via ¢, to a curve I', which is a general hyperplane
section of A. Since S, is smooth, the morphism ¢,|s, : Se — [' factorizes via the
normalization n : B — I' of I', i.e. there exist a morphism v : S, — B such that
Ge|s, = n o 1. Furthermore the fibres of ¢ : S, — B are generically equal to the
ones of @els, : Se — I'. The curves on S, given by the intersection with another
general element of £, are reducible (see Proposition and they are fibres of the
map ¢a|s, : Se — [. We observe that 0 < b := p,(B) = p,(I') < ¢(S.), since we
have the injection H(QF) — H°(QY,). Finally, by varying the surface S,, we obtain
that the fibres of the morphism ¢, : W — A C P give a two dimensional family V
such that through a general point w € W passes only one curve of the family, that is

Oa ' (Be(w)). O

If we take W = P3 as in [5, §6], or more in general a rational smooth irreducible
threefold, instead of any regular smooth irreducible threefold, we obtain an additional
property. Let us see which one.

Remark 10.6. Let (W, L,) be a pair given by a threefold and a linear system satisfying
the hypothesis of Proposition [10.5] If W is rational, the congruence V of curves of W
is parametrized by a rational surface R. Let us explain why. Through a general
point w € W passes only one curve 7, € V (see Definition [10.4). If R is the surface
parametrizing the curves of V, let r,, be the point of R corresponding to the curve ~,,.
We have a dominant rational map W --+ R such that w + r,. Since W is rational,
then R is unirational, and so, as consequence of the Castelnuovo Rationality criterion,
R is rational.

Castelnuovo’s conjecture. Let us take a rational smooth irreducible threefold W
and an r-dimensional linear system £ on W such that a general S € L is a smooth
irreducible surface with zero geometric genus p,(S) = 0 and zero arithmetic genus
pa(S) = 0. Let L, be the sublinear system of £ given by the surfaces of £ having a
triple point at a general point w € W. Then the linear system £, has dimension r — 10
and one of the following conditions occurs:

(A) a general elementNS. € L, is an irreducible suﬂr/face which has irregular desingular-
ization S with ¢(S,) = 1, py(Ss) = 0 and p,(S,) = —1;

(B) the surfaces So € L, are reducible in the union S, = F, U M, of two rational
surfaces passing through the point w, where the surface M, changes by varying
S., the surface F, is fixed and F, N M, is a rational curve;

(C) the surfaces S, € L, have the same genera as a general S € L.

Let us suppose that case of Castelnuovo’s conjecture occurs. Let us consider
the blow-ups necessary to obtain a birational morphism bl : W — W such that the
strict transform S, of Se is a smooth irreducible surface and such that it moves in an
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r-dimensional base point free linear system, given by the strict transform L. of L.
If » > 13, then 7, := dim£, = r — 10 > 3 and we can apply Proposition to
the pair (W, L,). Thus the intersection of two general surfaces of L, is the union of
some elements of a congruence of curves of W. These curves are fibres of a pencil of
genus b on a general surface S, € L., where 0 < b < ¢(S, ) = 1. In particular, if ¢, :
W — P is the morphlsm defined by L,, we have that b := pg(I') where I' := De(S).

Furthermore A gb ( ) is a rational surface of P™ with general hyperplane section

' (see Remark [10.6} -

Remark 10.7. If case of Castelnuovo’s conjecture occurs, if »r > 13 and if I is an
elliptic curve, then A C P™ is a Del Pezzo surface (see [3, VI, Exercise (1)]). In this
case A C P" is represented on the projective plane P? by a linear system D of elliptic
curves with dimD < 9. Since the linear system L, is in birational correspondence with
the linear system D, we have dimD = dim L, = r — 10 < 9, which implies r < 19.

10.3 Castelnuovo’s conjecture for singular threefolds

We can adapt Castelnuovo’s conjecture, its consequences and preliminary results to
singular threefolds. Let us see which ones and how.

Let W be an irreducible threefold with isolated singularities and let £ be an r-
dimensional linear system on W, where r > 2, such that the general element S € L
is a smooth irreducible surface disjoint from the singular points of W. Let us take a
resolution f : W — W of the singularities of W. Since f is an isomorphism outside
the singular points of W, we have that the surface f~'(5) is isomorphic to S. Fur-
thermore f~1(S) moves in the linear system L = = f*L, which still has dim £ =
So we have a smooth irreducible threefold 1% endowed with an r-dimensional hnear
system L, where r > 2, such that the general element S € L is a smooth irreducible
surface. If in addition W is rational and py(S) = p,(S) = 0, then W is rational too
and pg(:S’\) = pa(S) = 0. Let w be a general point of W: since we may assume that
w is not a singular point of W, then w := f~(w) is still a point of W. Furthermore
if Lo is the sublinear system of £ given by the surfaces of £ having a triple point at
w € W, then L, := f*L, is the sublinear system of £ given by the surfaces of £ having
a triple point at w € W. Thus we can adapt Castelnuovo’s conjecture to a rational ir-
reducible threefold W with isolated singularities endowed with an r-dimensional linear
system £ whose general element is a smooth irreducible surface disjoint from the sin-
gular points of W, since we can birationally work with the pair (W L) defined as above.

In § we will apply the ideas of Castelnuovo to the classical Enriques-Fano
threefold (W23, L), found by Fano in [23] §8]. We recall that W1 is a rational three-
fold with eight singular points and £ is a linear system on W whose general element
is an Enriques surface, which is a smooth surface with zero geometric genus and zero
arithmetic genus and which is disjoint to the singular points of W, since it is a Cartier
divisor on W. We will see that case ((Al) of Castelnuovo’s conjecture occurs for (W2, L)
(see Theorem [10.25). From this it will follow that case of Castelnuovo’s conjecture
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also occurs for the P-EF 3-fold W} (see Corollary [10.26)). We observe that it actually
makes sense to ask ourselves about the link between Castelnuovo’s arguments and the
P-EF 3-folds, since the Remark also holds for a unirational variety.

Finally, for completeness, let us state the following results.

Theorem 10.8. Let W be an irreducible threefold with isolated singularities and let
L be an r-dimensional linear system on W, where r > 2, such that the general element
is a smooth irreducible surface disjoint from the singular points of W. If the elements
of £ are big and nef divisors, then a desingularization of W has same irregularity of a
general surface S € L.

Proof. Let us apply Proposition m to the pair (/W, E), constructed as above. O]

Theorem 10.9. Let W be an irreducible threefold with isolated singularities and let
L be an r-dimensional linear system on W, where r > 3, such that the general element
is a smooth irreducible surface disjoint from the singular points of W. If W has regular
desingularization and if the intersection of two general surfaces of £ (outside the base
locus) is an irreducible curve, then a general element S € L is a regular surface.

Proof. Let us apply Proposition to the pair (ﬁ/\, E), constructed as above. O

Theorem 10.10. Let W be an irreducible threefold with isolated singularities and
let £, be an ro-dimensional linear system on W, where r, > 3, such that the general
element is an irregular smooth irreducible surface disjoint from the singular points
of W. If W has regular desingularization, then two general elements S, and S, of
L, intersect each other (outside the base locus) along reducible curves. In particular
on a fixed S,, the components of these curves are fibres of a pencil of genus b with
0 <b < q(S,). Furthermore, by varying the surface S,, these component curves give a
congruence of curves of W.

Proof. Let us apply Proposition to the pair (/W, Z.), constructed as above. ]

10.4 Castelnuovo’s conjecture for the classical Enriques-Fano
threefold

Let us consider the classical Enriques-Fano threefold (W = W, £). We want to study
the sublinear system £, C L of the hyperplane sections of W with triple point at a
general point w € W.

We recall that W is the image of P? via the birational map vs : P? -——» W C P3|
defined by the linear system S of the sextic surfaces singular along the edges of a
tetrahedron 7' (we will use the notations of § . By definition, for each surface
S € L there is a unique sextic surface ¥ € S such that S = vg(X). Hence, if we take
a surface S, € L, C L, there must exist a unique sextic surface ¥, € & such that
Se = vs(X,). This surface ¥, is a particular surface of S, which has triple point at the
point p € P3 such that w = vs(p). We can so represent the linear system L, on W via
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the sublinear system S, C S on P? given by the sextic surfaces of P? double along the
six edges of the tetrahedron T and triple at the point p € P3, such that vs(p) = w.
Since w is a general point of W, we may consider p as a general point of P3. A priori
we have that ro := dimS, > dimS — 10 = 13 — 10 = 3 and the linear system S, defines
a rational map v, : P3 —-» P,

'Ejk s

(D loi) Nk '

Fz'gure 16: Construction of the line r; where i,j,k € {1,2,3} with j <k and j, k # 1.

Let us take the plane (p,ly;) generated by the point p and the edge ly;, for a fixed
index 1 <¢<3. If 1 <j <k <3 with j,k # 4, then the edges lo; and [j; are disjoint
lines of P?; so the plane (p,ly;) and the line l;, intersect at a point, outside ly,. Let r;
be the line joining this point and the point p, i.e. 7, := (p, (p, lo;) N ;i) as in Figure .

g

Figure 17: The position of the lines r1, 72,73 with respect to the tetrahedron T.

Proposition 10.11. Let S, be the linear system on P? given by the sextic surfaces
of P? double along the six edges of the tetrahedron 7" and triple at the general point
p € P3. The three lines 71, ry, 73 are contained in the base locus of S,.
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Proof. Assume the contrary. Let us take a surface ¥, € S, and let us fix 1 <7,7,k <3
with 7 < k and j,k # i. By Bezout’s Theorem, >, N r; is given by 6 points. Since
r; is a line of the plane (p,ly;), then it intersects the line ly; at a point. Thus r; is a
line joining the triple point p of ¥, and two particular double points of >,, each one
lying in one of the two opposite disjoint edges ly; and [;;, (see Figure . Then >, N1,
contains at least 3+2+42 = 7 points, counted with multiplicity. This is a contradiction,
SO 1; C Y. ]

Let us denote by A the two-dimensional linear system of the planes of P passing
through the point p. In a general plane o € A we can construct a cubic plane curve v,
with node at p and passing through the six points given by the intersection of o with
the six edges of the tetrahedron 7'. Let us denote these six points by A;; :== a N;; for
0<i<y <3

Lemma 10.12. In a general plane o C P? passing through the point p, there is a
unique cubic plane curve 7,, defined as above.

Proof. Let g be the linear system of the cubic plane curves on « passing through the
six points {4;;]0 <1 < j < 3} and having a node at p. If the six fixed points had been
general, we would have imposed % + Z?:1 1 =9 independent conditions. In our case
the points {A;;]0 < i < j < 3} are not in general position: indeed they are the vertices
of a complete quadrilateral whose edges are the intersection of the plane e with the four
faces of the tetrahedron T'. Hence dim g > (3;2) —9—1 = 0. We want to show that the
equality holds. In order to do it, we take the blow-up bl : @ — « of the plane « at the
points {A4;;]0 <i < j < 3} Up, by denoting the exceptional divisors by e;; = bl~*(A4;;)
and e, = bl (p), for 1 <i < j < 3. If we denote by ¢ the strict transform of a general
line of o, then the strict transform of a general v, € g is 7, ~ 3¢ — 2¢, — Zogi<j§3 €ij-
By the generality of the point p € P3, we may assume that the five points p, Ags,
Aqz, Aps, Ajg are in general position, since no three of them are collinear. So we can
consider_the unique irreducible conic § passing through p, Ap, A3, A3, Aiz, as in
Figure , which has strict transform § ~ 2¢ —e, —eg2 — €13 — €93 — €12. Since 7, -0 = 0,
then we have the following exact sequence

0— Oa(l — €p — €p1 — 623) — O&(%a) — Og — 0.

Obviously h(a, Oz(l — e, — eg1 — e23)) = 0, since the three points p, Ag;, Az are not
collinear, by the generality of the point p again. Hence h%(&, Oz(7,.)) < h°(05) =1
and dimg = h°(a, 03(3,)) — 1 = 0. O

Lemma 10.13. Let S, be the linear system on P? given by the sextic surfaces of P3
double along the six edges of the tetrahedron 7" and triple at the general point p € P3.
The rational map v, : P? --» P™ defined by S, contracts the cubic plane curves v,,
constructed as above.

Proof. By Bezout’s Theorem, a general element >, € S, intersects a cubic plane curve
Yo in 6 -3 = 18 points. Furthermore ¥, and 7, have in common, in the base locus of
S., the point p (which is a triple point for ¥, and a node for 7,) and the six points
{A;;]0 <i < j < 3} (which are nodes for ¥, and simple points for v,). Hence, outside
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Figure 18: The complete quadrilateral on a with vertices at the points {A;;]10 < i < j <3} and the conic § uniquely
determined by the points p, Ag2, A13, Aos, A12.

the base locus, we have that >, N7, is given by 6 -3 — Zle 2-1—-3-2 =0 points. So
Yo is contracted to a point by v, : P3 ——» P, O]

Remark 10.14. Thanks to a computational analysis via Macaulay2 one can see that
the general fibre of the rational map v, : P? --s P" defined by S, is a cubic plane

curve v, (see Code of Appendix).

Proposition 10.15. The cubic plane curves 7,, defined as above, give a congruence
Y of curves of P3.

Proof. The set of the cubic plane curves 7, is a 2-dimensional family V (see Lemma.
In particular V is birationally parametrized by the same projective plane P? parametriz-
ing the planes passing through p. It remains to show that, given a general point p’ € P3,
there is a unique curve of V passing through it. By Lemma and Remark
we have that the curves of V are the general fibres of the rational map v, : P3 ——» P’
defined by S,. Hence v, (vs(p')) is the unique curve of V passing through p'. ]

Corollary 10.16. Let S, be the linear system on P? given by the sextic surfaces of P
double along the six edges of the tetrahedron 7" and triple at the general point p € P3.
The image of P via the rational map v, : P? —-» P"* defined by S, is a surface A C P’e.

Proof. Let A be the image of P? via v,. By Lemma [10.13| and Remark [10.14] the
general fibre of v, is a cubic plane curve, so we have dimA =3 — 1 = 2. O

Let us now pay attention to a particular surface of P3. Let us consider the linear
system ¢ on P? given by the cubic plane curves passing through the six vertices of a
complete quadrilateral. The image of P? via the rational map defined by ¢ is a special
Del Pezzo surface of degree 3 and it is called Cayley cubic surface (see [17, §9.2.2]).
This surface has four singular points whose tangent cone is a quadric cone: we will
refer to these singularities as nodes. The four nodes of the Cayley cubic surface are
given by the image of the four edges of the fixed complete quadrilateral.
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Theorem 10.17. Let S, be the linear system on P? given by the sextic surfaces of P3
double along the six edges of the tetrahedron 7" and triple at the general point p € P3.
The image of P via the rational map v, : P? --» P™ defined by S, is a Cayley cubic
surface A C P3. Thus r, = 3.

Proof. Let us take a general element o € A, i.e. a general plane passing through
p. If we restrict the linear system S, to this plane, we obtain the linear system s
on « of the sextic plane curves with triple point at p and nodes at the six points
{A;;10 <i < j <3}. The plane o and a general fibre of v, intersect, outside the base
locus of S,, at a single point: indeed the general fibre of v, is a cubic plane curve 7.
contained in a plane o/ € A, where o/ # «; so we have that « intersects 7./, outside
the base locus of S,, at 1 -3 —1-2 = 1 point. Then the linear system s defines the
rational map ve|, : @ = P? --» P’ which is generically 1 : 1. In the following we
will see that, by applying three quadratic transformations, we obtain, from s, the lin-
ear system ¢ of the cubic plane curves passing through the six vertices of a complete
quadrilateral. Thus the image of a via v,|, is the image of P? via the rational map
defined by ¢, that is a Cayley cubic surface. By Corollary this is the image A of
P3 via v, : P2 -=» P™>. Hence r, = 3.

Let us recall that the four faces of the tetrahedron 7' intersect the plane « along
four lines: the line (Ag1, Ag2, Ao3) passing through Aoy, Aos, Aoz, the line (Agy, Ajo, Ass)
passing through Agy, Aie, A3, the line (Agg, Ajo, Aog) passing through Agg, A, Aos
and the line (Ags, A13, Ass) passing through Ags, Ay3, Asz. These four lines are the edges
of a complete quadrilateral @ 4 with six vertices at the points {A;;]0 <i < j < 3} (see
Figure . Hence s is the linear system of the sextic plane curves triple at p e double at
the six vertices of Q4. Let us consider the quadratic trasformation g, a,, 4,5 : P? --» P?

|
-

AOE

Fz'gure 19: The complete quadrilateral Q o4 on a with vertices at the points {A;;|0 <i < j < 3} and the lines between
the three base points of the quadratic transformation q, A, Aqs -

given by the linear system of the conics passing through the three points p, Aio, Ags.
Let Bas, Bis, Bo1, Boz be the images of the points Ass, Ay3, Ag1, Aga. We have that
each of the lines (p, A12), (p, Aos), and (Ajs, Ags) is contracted by gp 4,4, t0 @ point,
denoted respectively by Bgs, By and p’. Furthermore the four edges of the complete
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quadrilateral )4 are sent to the four edges of a new complete quadrilateral (Jp with
six vertices at the points {B;;|0 < i < j < 3}: in particular we have that

Qp,Alg,A03(<A017 A027 A03>) = <8017 BO27 BO3> ) qp,A12,A03(<A017 A127 A13>> = <8017 3127 Bl3> )

Qp,Alg,A03(<A027 A127 A23>) = <BO27 3127 B23> ) Qp,A12,A03(<A037 A137 A23>) = <8037 Bl?n B23> .

Then the linear system s of the sextic plane curves triple at the point p and double at
the six points {4;;]0 <14 < j < 3} is transformed in the linear system g5 of the quintic
plane curves double at p’, Bas, Bz, Bo1, B and passing through Bj, and Bys. Let us
consider the quadratic trasformation g, p,, y, : P2 --+ P? given by the linear system
of the conics passing through the three points p’, Bz, Boi. Let Ci3, Cha, Coz, Cos be
the images of the points Bz, B2, Bo2, Bos. We have that each of the lines (p/, Bas),
(p/, Bo), and (Bas, Bo1) is contracted by ¢, p,s.5, t0 @ point, denoted respectively by
Co1, Cog and p”. Furthermore the four edges of the complete quadrilateral ) are sent
to the four edges of a new complete quadrilateral ()¢ with six vertices at the points
{C;;]0 < i < j < 3}, in the following way:

qp’,323,301(<3017 Boz,Bo3>) = <0017 0027003>, qIJ’,st,Bo1(<BOD By, Bl3>) = <001, Cia, Cl3> )

qp/,Bzg,Bol(<B[)27 3127323» = (Co2, 0127023>, QZJ’,st,Bo1(<BOSa Bys, B23>) = <Co3, Cis, Cz3> .

Then the linear system g5 of the quintic plane curves double at p’, Bas, Bi3, Bo1, Bo2
and passing through Bis and Bys is transformed in the linear system q4 of the quartic
plane curves double at (3 and Cpyy and passing through p”, Caz, C1a, Co1, Cos. Let us
consider the quadratic trasformation gy c,,.cp, : P? --» P? given by the linear system
of the conics passing through the three points p”, Ci3, Cpo. Let Dos, Do Dy, D3 be
the images of the points Cas, C2, Cp1, Co3. We have that each of the lines (p”, Ci3),
(p", Co2), and (Ci3, Cye) are contracted by gy cy,.c0, t0 @ point, denoted respectively
with Dy, D13 and p”. Furthermore the four edges of the complete quadrilateral Q¢
are sent to the four edges of a new complete quadrilateral ()p with six vertices the
points {D;;|0 <i < j < 3}:

qp”,C13,C()2(<0017 C'02, Co3>) = <D01,D02, D03>, qp//,013,002(<001,0127013» = <D01,D12,D13>,

qp'/,013,002(<002, C'12, Cz:s)) = <D02,D12, D23>, qp//,013,002(<003,013,CQ3>) = (DOS,D13,D23>-

Then the linear system q4 of the quartic plane curves double at C'13 and Cyy and passing
through p”’, Ca3, C12, Co1, Cos is transformed in the linear system ¢ of the cubic plane
curves passing through {D;;|0 < i < j < 3}, which are the six vertices of a complete
quadrilateral Qp. O

Corollary 10.18. Let S, be the linear system on P? given by the sextic surfaces of P?
double along the six edges of the tetrahedron 7" and triple at the general point p € P3.
The only base curves of S, are the six edges of T" and the three lines rq, 7o, r3.

Proof. Let A be the image of P? via the rational map v,. Two of its general hyperplane
sections intersect each other at deg A = 3 points (see Theorem [10.17)). Let us consider
the preimages of these two curves: they are two elements ¥, and X, of S,, intersecting,
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outside the base locus of S,, along a nonic curve. Indeed the intersection of ¥, and
Y., outside the base locus of S,, is given by the union of deg A = 3 fibres of v,, which
are cubic plane curves (see Lemma and Remark [10.14). The base locus of S,
contains the six edges of T' and the three lines 71,75, 73 (see Proposition [10.11]). If
another curve existed in the base locus of S,, then Y, would intersect >, outside it,
along a curve of degree less than 9, and so deg A < 3, which is a contradiction. O]

By using the notations of the proof of Theorem [10.17, we have the following facts.

Proposition 10.19. Let S, be the linear system on P? given by the sextic surfaces
of P? double along the six edges of the tetrahedron 7" and triple at the general point
p € P3. Let A C P? be the Cayley cubic surface given by the image of the rational
map v, : P3 --» P3 defined by S,. Then the four nodes of A are given by the image
via v, of the four faces of the tetrahedron T

Proof. The faces of T intersect a general plane o € A along the four edges of the
complete quadrilateral ()4. The edges of ()4 are sent by s to the edges of (g, which
are mapped by g5 to the edges of Q¢, which are transformed by q4 in the edges of Qp,
which are finally sent by ¢ to the four singular points of A. [

Let us consider the lines s; := (p,v;) joining the point p € P? and the vertex v; of
the tetrahedron T, for 0 <i < 3.

Corollary 10.20. Let S, be the linear system on P? given by the sextic surfaces of
P3 double along the six edges of the tetrahedron T and triple at the general point
p € P2. Let A C P3 be the Cayley cubic surface given by the image of the rational
map v, : P3 --» P3 defined by S,. The four lines sg, s1, s2, 53 are sent via v, to the
four nodes of A.

Proof. By Bezout’s Theorem, a general sextic surface ¥, € S, intersects each of the
four lines at 6 points. We also observe that ¥, and each of these lines have in common,
in the base locus of S,, the point p and a vertex of T', which are triple points for >,.
Hence, outside the base locus, we have that ¥, N s; is given by 6 — 3 — 3 = 0 points,
for all 0 < ¢ < 3. So the four lines sq, s1, s9, s3 are contracted by v, to four points.
Let us fix now 0 <7 < 3. We have that s; intersects at a point the face of T" opposite
to the vertex v;. Hence the point to which the line s; is sent by v, is the same point
to which the opposite face to v; is sent by r,, that is one of the four nodes of A by

Proposition [10.19} O

Now we want to study the surfaces of the linear system S,.

Remark 10.21. Let us recall some facts about the surfaces of the linear system S,
by using notations of §[5.2] If we blow-up P? first at the vertices of 7 and then along
the (strict transforms of the) edges of T, we obtain a smooth threefold Y. Let ¥ be
the strict transform of a general element ¥ € S: it is a smooth surface, since it is the
blow-up of a surface ¥ € S with ordinary singularities along its singular curves (see
[27, pp.620-621]). Let us take the following exact sequence

0 = Oy (Kyn) = Oyn(Kyn + 5") = Osn(Ksu) = 0,
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where Ky + X" ~ 2H — 30 (E; — Y ic;e5 Fiy (see [27, p.187]). We have that
R=012(Y" Oyu(Kyn)) = 0 and h3(Y", Oy (Kyn)) = 1 by Serre Duality, since Y” is a
rational smooth threefold by construction; furthermore we have that h°(X", Osv(Kygr)) =
pg(Z”) = 0, h1<2//,02/1(K2H)) = hl(Z”, Og//) = q(Z”) = 0 and hQ(Z”,OgN(KZ//)) =
h%(X”, Osy) = 1 by Serre Duality and by Theorem [5.15] So we obtain h°(Y”, Oy (K3 +
¥)) = h%(X", Osn(Ksn)) = 0, i.e. there are no quadric surfaces of P containing the
edges of T. We also have that h'(Y”, Oy (KY + %)) = h'(X", Osn(Kxn)) = 0.

In our case, first we blow-up P? at the vertices of T', at the point p and at the six
points r; N lo;, 7 N Lk, for 4,5,k € {1,2,3} with j < k and j,k # . In this way we
obtain a smooth threefold X’ and a birational morphism b’ : X’ — P? with exceptional
divisors

Eh = bl/_l(Uh), Ep = bl,_l(p), E,: = bl/_l(’f’i N l()i), E;l = bl/_1<7’i N l]k)

where 0 < h < 3. Let us denote by 701-, Z;k and 7;, respectively, the strict transforms of
the lines ly;, I, and r;. Then we blow-up X' along these objects. We obtain a smooth
threefold X” and a birational morphism bl” : X” — X', with exceptional divisors

Foi = bl//_l(%i)a Fjr = bl”_l(Tjk)a R = bl”_l(?i)'

Furthermore let us denote by Eh, Ep, EZ’ , EZ” , respectively the strict transforms of Ej,
E,, E!, E!. We denote by H the pullback of a general plane of P* via the birational
morphism b’ o bl” : X" — P3. Then the strict transform X7 of an element ¥, € S,, via
the blow-ups bl’ o bl" : X" — P3| is

3 3 3 3
S.~6H —3E,— Y 3E;—Y 2E[—Y 2E/— Y  2F;-Y R
=1 =1 =1

=0 0<i<j<3

Remark 10.22. The anticanonical divisor of X" is linearly equivalent to the strict
transform of a quartic surface of P? with double points at the vertices of T' and at the
point p and containing the six edges of T" and the three lines r{,ry, 3, i.e.

3 3 3 3
Kxn~ —4H +2B,+2Y B+ Y 2E/+Y 2E/+ Y F;+Y R
=0 =1 i=1 i=1

0<i<j<3

(see [27, p.187]). Then we have Kxv + ) ~ 2H — E, — 30 E; — Y 2ie ;5 Fyj. Since
there are no quadric surfaces of P? containing the edges of T' (see Remark [10.21), there

are also no quadric surfaces of P? containing the edges of 7' and the point p. So we
obtain h°(X", Oxn(Kx» + X)) = 0.

Theorem 10.23. Let S, be the linear system on P? given by the sextic surfaces of P
double along the six edges of the tetrahedron 7" and triple at the general point p € P3.
The strict transform X7 on X” of a general element ¥, € S,, via the blow-ups above
described, is a smooth surface with p,(X7) =0, ¢(X7) = 1 and p,(2,) = —1.
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Proof. 1t is known that bl’ o bl” : X" — P3 solves the singularities of a general X, €
S. C S at the vertices of the tetrahedron 7" and along its edges. In order to obtain the
smoothness of the strict transform > on X" of ¥,, it remains to show that bl’ o bl” :
X" — P? also solves the triple point p of X,. By Bertini’s Theorem, it is sufficient
to prove that the linear system |X| is base point free on E,. We recall that E, is
the blow-up of the plane E, = P? at the three points E, N 71, E, N T2, E, N73. We
also recall that X, N E, = P(T'C,%,), where X, := bl"(3}) and where T'C,X, denotes
the tangent cone to >, at p. Thanks to a computational analysis via Macaulay2, we
find that P(T'C,%,) is a cubic plane curve passing through the points £, N7y, E, N 7o,
E,N73 (see Code of Appendix). In particular we have that || cuts on E, the
strict transform on £, of a linear system of cubic curves on E,, whose base points are
only the points E, N7y, E, N7y, E, N 73 (see Code of Appendix). Thus [27|| B,
is base point free and so X7 is smooth. By using the adjunction formula we have the
exact seguence

0 —) Oxu(Kxu) — OX”(KX” + Z,./) — OZ/./(KE/./) —) 0

Since X" is a smooth rational threefold, we have h'=%12( X" Oxn(Kxn)) = 0. Then we
obtain p, (X)) = h°(X), Oy (Kxy)) = h°( X", Oxn(Kxn+%))) = 0 (see Remark [10.22).
Furthermore we have that

q(30) = 1 (5, Osy) = h' (5], Osy(Kxy)) = b (X", Oxn(Kxr + 5)).

In order to verify that the last value is equal to 1, we observe that the strict transform
on X" of a quadric surface of P3 containing the edges of T is linearly equivalent to
2H — Z?:o Ei =3 oeic <3 Fij. By Remark [10.22) we have the following exact sequence

3
0_>OX”<KX”+Z/./)_>OX”(2H_ZEi_ Z Ej)_>OEp_>0-

=0 0<i<j<3

Since W'=Y X" Oxn(2H — Z?:o E; — > o<icj<s Fij)) = 0 (see Remark [10.21), then
(X", Oxn(Kxn + X7)) = h°(E,, Op,) = h°(P?, Op2) = 1. Finally, by Riemann-Roch
we have that p,(X)) = py(2)) — q(X)) = —1. O

Let us recall now some definitions. Let R be a smooth surface and I' a smooth,
irreducible curve. We say that R is a ruled surface over I' if there is a surjective
morphism f : R — T such that, for a general point x € ', we have that f~!(z) is
isomorphic to P!. Tt is equivalent to say that R is birational to I' x P! (see [3, Theorem
I11.4]). Furthermore we say that a smooth variety Z is uniruled if it is covered by a
family of rational curves. More precisely, Z is an uniruled variety if there is a variety
K with dim K = dim Z — 1 and there is a dominant rational map K x P! --s Z. Every
uniruled variety Z has Kodaira dimension x(Z) = —oo.

Theorem 10.24. Let S, be the linear system on P given by the sextic surfaces of
P3 double along the six edges of the tetrahedron T and triple at the general point
p € P3. The strict transform X7 of a general element ¥, € S,, via the blow-ups above
described, is an elliptic ruled surface.
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Proof. Let us take a general ¥, € S, and its image I' := v,(%,), which is a general
hyperplane section of the Cayley cubic surface A C P3. Since A has only isolated
singularities, then I' is a smooth elliptic cubic plane curve. Furthermore, Y, is union
of co! rational cubic plane curves, fibres of v,, given by the preimages of the co! points

of I' (see Lemma [10.13| and Remark [10.14]). So (ve o bl"” o bl') : ¥ — I' is an uniruled

surface. Since k(X)) = —oo, we have that 3 is an irrational elliptic ruled surface by
Enriques-Kodaira classification and by Theorem [10.23 O]

By construction, for a general surface S, € L, there exists a unique surface >, € S,
such that S, = 14(3,). So if we denote by ¢, : W --+ P? the rational map defined by
the linear system L,, we have the following commutative diagram

and we obtain the following result (see Theorems [10.17} [10.24]).

Theorem 10.25. Let (W23, L) be the classical Enriques-Fano threefold. Let £, C £
be the sublinear system of the hyperplane sections having a triple point at a general
point w € W3, Then

(i) a general S, € L, is birational to an elliptic ruled surface;
(i) the image of W} via the rational map defined by £, is a Cayley cubic surface.

We have thus proved that case of Castelnuovo’s conjecture occurs for the clas-
sical Enriques-Fano threefold and that the consequences stated in Remark are
verified.

10.5 Consequences for the P-EF 3-folds

It is known that all Enriques surfaces appear as the desingularization of some sextic
surface of P3 double along the six edges of a tetrahedron and triple at the four vertices
(see [16, p.275]). By using notations of previous sections, we can say that all Enriques
surfaces are birational to a surface ¥ € S and so to a hyperplane section of the clas-
sical Enriques-Fano threefold W3, If we consider an Enriques-Fano threefold (W, £)
of genus 13 < p < 17, we can say that a general hyperplane section of W is birational
to a hyperplane section of the classical Enriques-Fano threefold W3, In particular, a
general hyperplane section of W with triple point at a general point w € W is bira-
tional to a hyperplane section of the classical Enriques-Fano threefold W3 with triple
point at a point on it.
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Since the general hyperplane section of the P-EF 3-fold W} is a general Enriques
surface (see proof of [10, Proposition 4.7]), we obtain the following result by Theo-
rem [10.25)

Corollary 10.26. Let (WL, £) be the P-EF 3-fold of genus 17. Let £, be the linear
system of hyperplane sections of W}A" with a triple point at a general point w € W}.
Then a general element S, € L, is birational to an elliptic ruled surface.

It would be interesting to verify if the linear system L, on W3 has dimension
7 =17 —10 and if its image is still a Del Pezzo surface. Finally it would be interesting
to understand what happens on the P-EF 3-fold W23 of genus 13.

129



A Appendix: configurations of the singularities of
some known EF 3-folds

Let us suppose that each singular point P; of an Enriques-Fano threedold W C PP
is associated with 0 < m; < n — 1 of the other singular points, for 1 < i < n (see
Definition . If the singular points are similar (see Assumption CM3 in § ,
then we have that m; is constant, i.e. m; = m for all 1 <i < n. We can graphically
represent the way in which the singular points P, ..., P, of an Enriques-Fano threefold
are associated: if two singular points P; and P; are associated, we draw a segment
joining them, otherwise not. We will refer to the graph obtained by the union of all
these segments as the configuration of the singular points Py, ..., P,. Let us see two
example: if we have n = 4 singular points P;, P, P3, Py, such that P, is associated with
Py, P3, Py, and Pj is associated with P then we have a configuration as in the left of
Figure 20} if we have n = 3 singular points Py, P, P; mutually associated we have a
configuration as in the right of Figure [20]

P,
1 P,
P P, A
P, Py
Py
Figure 20: Two examples of configurations: on the left with (m1,ma,m3,ms) = (3,1,2,2) and on the right with

m; =m =2 for1<:<3.

In this Appendix we represent the configurations of the singular points of the known
Enriques-Fano threefolds (W, £) of genus p which are embedded in PP via the map
defined by L. By using the notations of § to indicate the known Enriques-Fano
threefolds, we have the following configurations:

(i) Figure |21 for the BS-EF 3fold W84 and the F-EF 3fold W2 (see [23 §3], Theo-
rem [5.96] Example [6.2));

(ii) Figure [22] for the BS-EF 3fold WZs and the F-EF 3fold W (see [23 §4], Theo-
rem [5.61] Remark [6.4);

(iii) Figure[23 for the BS-EF 3fold W (see Remark [6.6));

(iv) Figure [24] for the BS-EF 3fold Wjg and the F-EF 3fold W} (see [23, §7], Theo-
rem [5.41] Remark ;

(v) Figure [25|for the BS-EF 3fold W% (see Remark [6.13));

vi) Figure or the Bo- 0] and the - 0] see A , €o-
i) Fi 26| for the BS-EF 3fold Wé:fg d the F-EF 3fold W}?’ 23, §8], Th
rem [5.17, Remark [6.16));

(vii) Figure [27] for the P-EF 3folds W} and WL (see Remark [8.5| and Remark [3.12));
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(viil) Figure [28]for the KLM-EF 3fold W, ,, (see Remark [7.7).

Py P,

P P

Py

Figure 21: Configuration of the eight quadruple points of the Enriques-Fano threefolds Wg C PS and Wgs iﬁ—) 6,

with m = 7.

P P

Figm"e 22: Configuration of the eight quadruple points of the Enriques-Fano threefolds W;. C P7 and Wgs & P7,
with m = 6.
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Fz'gure 238: Configuration of the eight quadruple points of the Enriques-Fano threefold Wgs & P8, with m = 5.

Figure 24: Configuration of the eight quadruple points of the Enriques-Fano threefold W = dr(W2s) C PO, with
m = 4.

Py

Figure 25: Configuration of the eight quadruple points of the Enriques-Fano threefold W10 ‘2 P10 with m = 4.
BS
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Figure 26: Configuration of the eight quadruple points of the Enriques-Fano threefold W}ﬁ' = ¢£(W11£’9) C P13, with
m = 3.

Py Py

. 2 C g ; f v & g p 7 f q f l 3 s
} gure 2; O”ﬁ uration of the ﬁ e singular oints of the Enriques-Fano threefolds W P C I and W P - I
with (m] , M2, m3,m4,m5) = (1, ].7 1, 1,4)

P

Py Py

Figure 28:  Configuration of the five singular points of the Enriques-Fano threefold WIQ(LM c P9, with
(m1,m2,m3,ma,ms) = (3,3,3,3,4), obtained by the eight singular points of the classical Enriques-Fano threefold
W C P13,

F
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B Appendix: Macaulay2 codes

For the computational analysis via Macaulay2 we will work over a finite field (we
will choose F,, := Z/nZ with n = 10000019). We will essentially use the package
Cremona of Stagliano (see [49]) and in particular the following functions, commands
and methods:

e toMap, to construct the rational map defined by a linear system:;

e rationalMap, to construct rational maps between projective varieties;
e image, to compute the image of a rational map;

e degree, to compute the degree of a rational map;

e isBirational, to verify the birationality of a rational map;

e inverseMap, to compute the inverse of a birational map;

e ideal, to compute the base locus of a rational map.

For more information visit the website

http://www2.macaulay2.com/Macaulay2/doc/Macaulay2-
1.12/share/doc/Macaulay2/Cremona/html/

We will also use the function tangentCone, to compute the tangent cone to an affine
variety at the origin, and the following standard functions: associatedPrimes, to com-
pute the irreducible components of a variety; jacobian, to compute the Jacobian matrix
of the generators of an ideal; minors, to compute the ideal generated by the minors of
a certain order of a given matrix.

In the following we will collect the input codes used in Macaulay2 for this thesis.

Code B.1. Computational analysis of W (see §[6.2).

Macaulay2, version 1.11
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il : needsPackage "Cremona";

i2 : PP3xPP3 = ZZ/10000019[x_0,x_1,x_2,x_3]%*ZZ/10000019[y_0,y_1,y_2,y_3];

i3 : X = ideal{ x_0*y_0-T7*x_1*y_1+4xx_2%y_2+2%x_3%y_3,
X_0%y_0-6%x_1xy_1+2%x_2%y_2+3*x_3%y_3, x_0*y_0-x_1xy_1-T*x_2%y_2+7*x_3%y_3};

i4 : PP9 = ZZ/10000019[Z_0..Z_91;

i6 : phi = rationalMap map(PP3xPP3, PP9, matrix{{x_O*y_0, x_1xy_1, x_2xy_2, x_3*y_3, x_O*xy_1l+x_1%y_0O,
x_0*y_2+x_2%y_0, x_Oxy_3+x_3%y_0, x_1*y_2+x_2*y_1, x_1*y_3+x_3*xy_1, x_2%y_3+x_3%y_2}});

i6 : (dim(image phi) -1, degree(image phi)) == (6,10)

i7 : image phi == ideal{-2%Z_1*Z_5*Z_6+Z_4*Z_6%Z_T+Z_4*Z_b*Z_8-2%Z_0*Z_T*Z_8+4*Z_0*Z_1%Z_9-Z_4"2%Z_9,
—2%Z_2%7Z_A*Z_6+Z_5*Z_6*Z_T+4*Z_0O*Z_2%Z_8-Z_5"2*%Z_8+Z_4*Z_5*Z_9-2*Z_0*Z_T*Z_9,
—4xZ_1%7Z_2%7_6+Z_6%Z_T"2+2%Z_2%Z_4*7Z_8-7_5%7Z_T*Z_8+2%Z_1%7Z_5%7Z_9-7Z_4*Z_T*Z_9,
—2%Z_3%Z_4%7_b+4xZ_0%Z_3%Z_T-7Z_6"2%Z_T+Z_b*7Z_6%Z_8+Z_4*Z_6*Z_9-2%Z_0*Z_8*Z_9,
—4xZ_1%7Z_3%Z_b+2%7Z_3*Z_4*Z_T-Z_6%Z_T*Z_8+Z_5*Z_8"2+2%Z_1%7Z_6%7Z_9-7Z_4*Z_8*Z_9,
—4%Z_2%Z_3%Z_4+2%7_3%Z_b*Z_T+2%7Z_2%7_6%Z_8-Z_6*Z_T*Z_9-Z_5*Z_8*Z_9+7Z_4%Z_972,
—4xZ_1%Z_2%7Z_3+Z_3*Z_T"2+Z_2%7Z_872-Z_T*Z_8*Z_9+Z_1%*Z_972,
—4%Z_O*Z_2%Z_3+Z_3%Z_b"2+Z_2%Z_6"2-7Z_b*Z_6%Z_9+Z_0*Z_972,
—4xZ_0*Z_1*Z_3+Z_3*Z_4"2+Z_1*Z_6"2-7Z_4*Z_6%*Z_8+Z_0*Z_8"2,
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-4%Z_0*Z_1%Z_2+7_2%Z_4"2+7Z_1%Z_5"2-Z_4*Z_5*Z_T+Z_0*Z_T7"2}
i8 : phiX = ideal{Z_2-Z_3,Z_1-Z_3,Z_0-Z_3,
—2%Z_1%Z_b*Z_6+Z_4*7Z_6%Z_T+Z_4*Z_5*7Z_8-2%Z_0*Z_T*Z_8+4*Z_0*Z_1%Z_9-Z_4"2%Z_9,
—2%Z_2%Z_4%Z_6+Z_5*Z_6%Z_T+4*Z_0*Z_2%7Z_8-Z_b"2%Z_8+Z_4*Z_b*Z_9-2%xZ_0*Z_T*Z_9,
—4xZ_1%Z_2%Z_6+Z_6%Z_T " 2+2%Z_2%Z_4*7Z_8-7Z_bx*Z_T*Z_8+2*Z_1%7Z_bxZ_9-Z_4*Z_T*Z_9,
—2%Z_3%Z_4*Z_b+4*Z_0%Z_3%Z_T-Z_6"2%Z_T+Z_bxZ_6%Z_8+Z_4*Z_6%*Z_9-2xZ_0%*Z_8%*Z_9,
—4xZ_1%Z_3*Z_5+2%Z_3%Z_4*Z_T-Z_6%Z_T*Z_8+Z_bxZ_8"2+2%Z_1%7Z_6%Z_9-7Z_4%Z_8%*Z_9,
—4%7_2%7_3%Z_4+2%Z7_3*Z_b*Z_T+2*xZ_2%Z_6%Z_8-7Z_6%*Z_T*Z_9-Z_b*Z_8%Z_9+Z_4%xZ_972,
—4xZ_1%Z_2%Z_3+Z_3%Z_T"2+Z_2%Z_8"2-7Z_T*Z_8%Z_9+Z_1%Z_972,
-4%Z7_0*Z_2%Z_3+Z_3*Z_b"2+Z_2%Z_6"2-Z_b*Z_6%Z_9+Z_0%*Z_972,
—4xZ_0*Z_1%Z_3+Z_3%Z_4"2+Z_1%Z_6"2-7Z_4*Z_6%Z_8+Z_0%Z_8"2,
—4%Z_0*Z_1%Z_2+7Z_2*Z_4~2+Z_1%*Z_5"2-Z_4xZ_b*Z_T+Z_0*Z_7"2};
i9 : (dim oo -1, degree oo, oo == phi(X) ) == (3, 10, true)
i10 : H6 = ideal{Z_2-Z_3,Z_1-Z_3,Z_0-Z_3};
i11 : PP6 = ZZ/10000019[w_0..w_6];
i12 : inclusion = rationalMap map(PP6,PP9,matrix{{w_0,w_0,w_0,w_O,w_1,w_2,w_3,w_4,w_5,w_6}});
i13 : image oo == H6
i14 : pigreca = phi*(rationalMap map(PP9,PP6, sub(matrix inverseMap(inclusion||H6), PP9) ))
i15 : pigreca(X) == inclusion”*(phiX)
i16 : WB6 = ideal{-2*w_O0*w_2*w_3+w_1xw_3*w_4+w_1%w_2%w_5-2%w_O*w_4*w_b+4*yw_0"2*xw_6-w_1"2*%w_6,
=2%w_0*w_1xw_3+w_2*w_3*w_4+4*w_0"2xw_b-w_2 " 2xw_b+w_1*w_2*w_6-2*w_O0*w_4*w_6,
—4xyw_072%w_3+w_3*w_4"2+2*xw_0xw_1%w_5-w_2%w_4*xw_b5+2%w_0*w_2*w_6-w_1*w_4*w_6,
=2*xw_O0*w_1xw_2+4*w_0"2*xw_4-w_3"2%w_4+w_2*w_3*w_b+w_1*w_3*w_6-2*w_O0*w_b*w_6,
—4xy_072*%w_2+2xw_Oxw_1*w_4-w_3*w_4*w_b+w_2%w_b"2+2*w_Oxw_3*w_6-w_1*w_b*w_6,
=4xw_0"2%w_1+2*%w_0*w_2*w_4+2*w_O0*w_3*w_5-w_3*w_4*w_6-w_2*w_b*w_6+w_1*w_6"2,
—4xyw_0"3+w_0*w_4"2+w_0*w_5"2-w_4*w_b*xw_6+w_0*w_6"2, —-4xw_0"3+w_0*w_2"2+w_0*w_3"2-w_2*w_3*w_6+w_0*w_6"2,
—4%w_0"3+w_0*w_1"2+w_O0*w_3"2-w_1%w_3*w_b5+w_0%w_572, -4*w_0"3+w_0*w_1"2+w_0*w_2"2-w_1%w_2*w_4+w_0*w_4"2};
i17 : WB6 == pigreca(X)
i18 : (dim ooo -1, degree ooo) == (3, 10)
i19 : P1 = ideal{w_1-2*w_0,w_2-2*w_0,w_3-2*w_0,w_4-2*w_0,w_5-2%w_0,w_6-2*w_0};
i20 : P2 = ideal{w_1+2*w_0,w_2+2*w_0,w_3+2%w_0,w_4-2*w_0,w_5-2*w_0,w_6-2*w_0};
i21 : P3 = ideal{w_1+2*w_0,w_2-2*w_0,w_3-2%w_0,w_4+2*w_0,w_5+2*w_0,w_6-2*w_0};
i22 : P4 = ideal{w_1-2*w_0,w_2+2*w_0,w_3+2%w_0,w_4+2*w_0,w_5+2*w_0,w_6-2*w_0};
i23 : P5 = ideal{w_1-2*w_0,w_2+2%w_0,w_3-2*w_0,w_4+2*w_0,w_5-2*w_0,w_6+2%w_0};
i24 : P6 = ideal{w_1+2*w_0,w_2-2*w_0,w_3+2*w_0,w_4+2*w_0,w_5-2*w_0,w_6+2*w_0};
i25 : P7 = ideal{w_1+2*%w_0,w_2+2%w_0,w_3-2%w_0,w_4-2*w_0,w_5+2*w_0,w_6+2*%w_0};
i26 : P8 = ideal{w_1-2*w_0,w_2-2*w_0,w_3+2*w_0,w_4-2*w_0,w_5+2*w_0,w_6+2*w_0};
i27 : -- let us see if the lines 1ij joining the points Pi and Pj
-- are contained in the threefold WB6
112 = ideal{(toMap(saturate(P1%P2),1,1)) .matrix};
i28 : (112 + WB6 == 112) == true
i29 : 113 = ideal{(toMap(saturate(P1*P3),1,1)) .matrix};
i30 : (113 + WB6 == 113) == true
i31 : 114 = ideal{(toMap(saturate(P1*P4),1,1)) .matrix};
i32 : (114 + WB6 == 114) == true
i33 : 115 = ideal{(toMap(saturate(P1*P5),1,1)) .matrix};
i34 : (115 + WB6 == 115) == true
i35 : 116 = ideal{(toMap(saturate(P1*P6),1,1)) .matrix};
i36 : (116 + WB6 == 116) == true
i37 : 117 = ideal{(toMap(saturate(P1*P7),1,1)) .matrix};
i38 : (117 + WB6 == 117) == true
i39 : 118 = ideal{(toMap(saturate(P1%P8),1,1)) .matrix};
i40 : (118 + WB6 == 118) == true
i41 : -- etc...
-- let us now change the coordinates of PP6
-- in order to have P1 = [1:0...0]
PP6°=ZZ/10000019[z_0..z_6];
i42 : W’ = sub(WB6, {(gens PP6)_0 => (gens PP6’)_0,
(gens PP6)_1 => (gens PP6’)_1 + 2x(gens PP6’)_0, (gens PP6)_2 => (gens PP6’)_2 + 2%(gens PP6’)_0,
(gens PP6)_3 => (gens PP6’)_3 + 2x(gens PP6’)_0, (gens PP6)_4 => (gens PP6’)_4 + 2x(gens PP6°)_0,
(gens PP6)_5 => (gens PP6’)_5 + 2x(gens PP6’)_0, (gens PP6)_6 => (gens PP6’)_6 + 2x(gens PP6’)_0})
i43 : W’UO = sub(oo, {(gens PP6’)_0 => 1})
i44 : ConeP1 = sub(tangentCone oo, {(gens PP6’)_0 => (gens PP6)_0,
(gens PP6’)_1 => (gens PP6)_1 - 2%(gens PP6)_0, (gens PP6’)_2 => (gens PP6)_2 - 2x(gens PP6)_0,
(gens PP6’)_3 => (gens PP6)_3 - 2x(gens PP6)_0, (gens PP6’)_4 => (gens PP6)_4 - 2*(gens PP6)_0,
(gens PP6°)_5 => (gens PP6)_5 - 2*(gens PP6)_0, (gens PP6’)_6 => (gens PP6)_6 - 2*(gens PP6)_0})
i45 : degree oo ==
i46 : -- similarly for P2,P3,P4,P5,P6,P7,P8
-- we observe now that WB6 is not contained in a quadric hypersurface of PP6
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47

i48:
i49 :
i50 :

ib1

ib2
ib3 :

rationalMap toMap(WB6,2,1)

: —— let us also see that a general hyperplane section S is not

-- contained in a quadric hypersurface of PP5, where

-- 8 = ideal{random(1,PP6)}+WB6

-- for example:

S = ideal{w_0-w_1+72%w_2-13%w_3+4*w_4+8*w_5+35*%w_6}+WB6

PP5 = ZZ/10000019[t_0..t_5]

inc = rationalMap map(PP5,PP6,matrix{{t_0-72*t_1+13*t_2-4*t_3-8xt_4-35%t_5,t_0,t_1,t_2,t_3,t_4,t_5}})
image oo == ideal{S_0}

inc”*S

(dim oo -1, degree oo) == (2, 10)

toMap(000,2,1)

Code B.2. Computational analysis of W[y (see §[6.3).

Macaulay2, version 1.11
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

i1

i1l

i12 :

i13 :
i14 :

i15

i16 :
i17
i18 :
i19 :
i20 :
i21

i22

i23
i24 :

i25 :
: 113 = ideal{(toMap(saturate(P1%P3),1,1)) .matrix};
i27
i28 :
i29 :
i30 :
i31 :
i32 :
i33 :
i34 :
i35 :
i36 :
i37 :
i38 :

i26

i39 :
i40 :
i41
i42 :
i43 :
i44 :

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

: needsPackage "Cremona";
i2 :
i3 :
i4 :
i5 :
i6 :
i7
i8 :
i9
i10 :
: X =

PP1xPP1xPP1xPP1 =
a0001=1;
a0010=1;
a0100=1;
a1000=1;
all110=1;
al101=1;
al011=1;
a0111=1;
ideal{a0001*x_0*y_O*z_Oxt_1+a0010*x_Oxy_O0*z_1%t_0+a0100%x_O*y_1%z_0*t_0+al000*x_1xy_O0*z_O*t_0+
al110*x_1%y_1xz_1*t_O+allOlxx_1*y_1%z_Oxt_1+al0ll*x_1xy_O*z_1%t_1+a011l*x_O*y_1lxz_1xt_1};
phi = rationalMap map(PP1xPP1xPP1xPP1, ZZ/10000019[w_0..w_7], matrix(PP1xPP1xPP1xPP1,{{x_1xy_1*z_1*t_1,
x_1xy_Oxz_Oxt_1, x_O*xy_Oxz_1xt_1, x_1*y_Oxz_1xt_0, x_O*y_Oxz_0*t_O,
x_O*y_1*z_1xt_0, x_1xy_1*z_0*t_0, x_O*xy_1%z_0*t_1}}));
WB7 = phi(X);

27/10000019 [x_0,x_1]**ZZ/10000019 [y_0,y_1]**ZZ/10000019[z_0,z_1]**ZZ/10000019[t_0,t_1];

(dim oo -1, degree oo) == (3,12)
: PP7 = ring WB7;
P1 = ideal{w_1, w_2, w_3, w_4, w_5, w_6, w_T};
P2 = ideal{w_0, w_2, w_3, w_4, w_5, w_6, w_7};
P3 = ideal{w_0, w_1, w_3, w_4, w_5, w_6, w_7};
P4 = ideal{w_0, w_1, w_2, w_4, w_5, w_6, w_7};
P1’ = ideal{w_0, w_1, w_2, w_3, w_5, w_6, w_7};
P2’ = ideal{w_0, w_1, w_2, w_3, w_4, w_6, w_T7};
: P3’ = ideal{w_0, w_1, w_2, w_3, w_4, w_5, w_7};
P4’ = ideal{w_0, w_1, w_2, w_3, w_4, w_5, w_6};

-- let us see if the lines 1lij joining the points
-- are contained in the threefold WB7

112 = ideal{(toMap(saturate(P1*P2),1,1)) .matrix};
(112 + WB7 == 112) == true

Pi and Pj

(113 + WB7 == 113) == true

114 = ideal{(toMap(saturate(P1*P4),1,1)) .matrix};
(114 + WB7 == 114) == true

111’ = ideal{(toMap(saturate(P1*P1’),1,1)) .matrix};
(111’ + WB7 == 111’) == false

112’ = ideal{(toMap(saturate(P1*P2’),1,1)) .matrix};
(112’ + WB7 == 112’) == true

113’ = ideal{(toMap(saturate(P1*P3’),1,1)) .matrix};
(113’ + WB7 == 113’) == true

114’ = ideal{(toMap(saturate(P1*P4’),1,1)) .matrix};
(114’ + WB7 == 114’) == true

-- etc...

sub(WB7, {(gens PP7)_0=>1});

ConeP1 = tangentCone oo

degree oo ==

sub(WB7, {(gens PP7)_1=>11});

ConeP2 = tangentCone oo

degree oo ==

-- etc.. similarly for P3,P4,P5,P1’,P2’,P3’,P4’
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Code B.3. Computational analysis of W5 (see § [6.4).

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il : needsPackage "Cremona";

i2 : PP4 = ZZ/10000019[x_0..x_4];

i3 : Q = ideal{x_0"2-x_1"2 -x_2"2+x_3"2};

i4 : R = ideal{2*x_0"2-x_1"2-3*%x_2"2+2%x_3"2};

i5 : fixedconicl = ideal{x_2,x_3,x_4"2-R_0};

i6 : fixedconic2 = ideal{x_0,x_1,x_4"2+R_0};

i7 : four = associatedPrimes (fixedconici1+Q)

i8 : pl = four#0;

i9 : p2 = four#i;

110 : pl’ = four#2;

i1l : p2’ = four#3;

i12 : four’ = associatedPrimes (fixedconic2+Q)

i13 : p3 = four’#0;

i14 : p4 = four’#1;

i15 : p3’ = four’#2;
i16 : p4’ = four’#3;
i17 : PP9 = ZZ/10000019[z_0..z_9];

i18 : phi = rationalMap map(PP4,PP9,matrix{{x_4"2*x_O+x_O*R_0,x_4"2*x_1+x_1*R_0,x_4"2*x_2-x_2%R_0,
x_4"2%x_3-x_3%R_0,x_4*x_0"2,x_4%x_1"2,x_4*x_2"2,x_4*x_3"2,x_4*x_0*x_1,x_4*x_2*x_3}});

i19 : phiY = phi(Q);

i20 : H8 = ideal{phiY_O}

i21 : PP8 = ZZ/10000019([w_O,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8];

i22 : inclusion = rationalMap map(PP8,PP9, matrix(PP8,{{w_O,w_1,w_2,w_3,w_4+w_5-w_6,w_4,w_5,w_6,w_7,w_8}}));

i23 : H8 == image inclusion
i24 : WB8 = inclusion”™* phiY;
i26 : (dim oo -1, degree oo) == (3,14)

i26 : P1 = inclusion”* phi(pl)
i27 : P2 = inclusion”* phi(p2)
i28 : P3 = inclusion”* phi(p3)
i29 : P4 = inclusion”* phi(p4)
i30 : P1’ = inclusion”* phi(pl’)
i31 : P2’ = inclusion”™* phi(p2’)
i32 : P3’ = inclusion”* phi(p3’)
i33 : P4’ = inclusion”™* phi(p4’)
i34 : -- let us see if the lines 1ij joining the points Pi and Pj
-- are contained in the threefold WB8
112 = ideal{(toMap(saturate(P1%P2),1,1)) .matrix};
i36 : (112 + WB8 == 112) == true
i36 : 113 = ideal{(toMap(saturate(P1*P3),1,1)) .matrix};
i37 : (113 + WB8 == 113) == true
i38 : 114 = ideal{(toMap(saturate(P1*P4),1,1)) .matrix};
i39 : (114 + WB8 == 114) == true
i40 : 111’ = ideal{(toMap(saturate(P1%P1’),1,1)) .matrix};
i41 : (111’ + WB8 == 111’) == false
i42 : 112’ = ideal{(toMap(saturate(P1*P2’),1,1)) .matrix};
i43 : (112’ + WB8 == 112’) == false
i44 : 113’ = ideal{(toMap(saturate(P1*P3’),1,1)) .matrix};
i45 : (113’ + WB8 == 113’) == true
i46 : 114’ = ideal{(toMap(saturate(P1*P4’),1,1)) .matrix};
i47 : (114’ + WB8 == 114’) == true
i48 : -- etc...
projl = rationalMap toMap(P1,1,1);
i49 : projl’ = rationalMap toMap(proji(P1’),1,1);
iB0 : proj2 = rationalMap toMap(projl’(proj1(P2)),1,1);
i61 : proj3 = rationalMap toMap(proj2(projl’(proji(P3))),1,1);
i62 : proj3’ = rationalMap toMap(proj3(proj2(projl’(proj1(P3’)))),1,1);
ib3 : proj = projl*projl’*proj2*proj3*proj3’
i64 : isBirational(proj | WB8)
ib5 : PP3 = target proj;
i66 : septies = rationalMap map( PP3, PP8, matrix(inverseMap(proj|WB8)) )
i57 : image oo == WB8
ib8 : basel = associatedPrimes ideal septies
i59 : e0= baseL#0;
i60 : 11= baseL#1;
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i61 : 12= basel#2;

i62 : sl1= baseL#3;

i63 : s2= basel#4;

i64 : 12’= basel#5;

i65 : 11’= basel#6;

i66 : 10= baseL#7;

i67 : rl1= baseL#8;

i68 : tl1l= baselL#9;

i69 : r2= baselL#10;

i70 : t2= baseL#11;

i71 : C= baselL#12;

i72 : v = saturate(11+12+10);

i73 : ql = saturate(ll+ri+si+e0+12’)

i74 : q2 = saturate(12+r2+s2+e0+11’)

i75 : ar = saturate(r1+r2+10)

i76 : as = saturate(s1+s2+10)

i77 : at = saturate(t1+t2+10)

i78 : al = saturate(1l1+tl)

i79 : a2 = saturate(12+t2)

i80 : bl = saturate(ri+t1+C)

i81 : b2 = saturate(r2+t2+C)

i82 : cl1 = saturate(si+tl)

i83 : c2 = saturate(s2+t2)

i84 : ql1’ = saturate(l1’+tl)

i85 : q2’ = saturate(l2’+t2)

i86 : -- general septic surface of the linear system :
N = septies”* ideal{random(1,PP8)};

i87 : (dim oo -1, degree oo) == (2, 7)

i88 : -- N is double along 10,11,12,11°,12’,C
(minors(1,jacobian(N))+ 11 == 11) == true

i89 : (minors(1,jacobian(N))+ 12 == 12) == true

i90 : (minors(1,jacobian(N))+ 12’ == 12’) == true

i91 : (minors(1,jacobian(N))+ 11’ == 11’) == true

i92 : (minors(1,jacobian(N))+ 10 == 10) == true

i93 : (minors(1,jacobian(N))+ C == C) == true

i94 : -- N is triple at v
(minors (1, jacobian(jacobian(N)))+minors(1,jacobian(N))+ v == v) == true

i95 : -- N is quadruple at ql and g2
(minors(1,jacobian(jacobian(jacobian(N))))+minors(1,jacobian(jacobian(N)))+
minors(1,jacobian(N))+ ql == ql) == true

i96 : (minors(1,jacobian(jacobian(jacobian(N))))+minors(1,jacobian(jacobian(N)))+
minors (1, jacobian(N))+ q2 == g2) == true

Code B.4. Computational analysis of Wi (see § [6.5).

Macaulay2, version 1.11
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il : needsPackage "Cremona";

i2 : PP5 = ZZ/10000019[x_0, x_1, x_2, y_3, y_4, y_5];

i3 : sl = x_072-3*%x_1"2+2%x_272;

i4 : s2 3%x_072-8xx_1"2+b*xx_2"2;

i5 : r1 3*xy_372-8%y_472+bxy_572;

i6 : r2 = y_372-3%y_4"2+2%y_b572;

i7 : X = ideal{sl+rl, s2+r2};

i8 : (dim oo -1, degree oo) == (3,4)

i9 : PP11 = ZZ/10000019([Z_0..Z_11];

i10 : phi = rationalMap map(PP5, PP11, matrix(PP5,{{x_0"2, x_1"2, x_272, x_0*x_1,
x_0%x_2, x_1*x_2, y_372, y_472, y_5"2, y_3%y_4, y_3%y_5, y_4xy_5}}));

i1l : phi(X)

i12 : (dim oo -1, degree oo) == (3,16)

i13 : H9 = ideal{o000_0, ooo_1}

i14 : phi(X) + H9 == phi(X)

i15 : PP9 = ZZ/10000019[w_0..w_9];

i16 : inclusion = rationalMap map(PP9,PP11, matrix(PP9,{{w_0+21*w_4-55%w_5+34*w_6,
w_0+8*w_4-21*%w_5+13*w_6, w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8, w_9 }}));

i17 : image oo == H9

i18 : WB9 = inclusion™* (phi(X));

i19 : (dim oo -1, degree oo) == (3, 16)
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i20 :
. pigre
i23 :
i24 :
i25 :
i26 :
i27
i28 :
i29 :
i30 :
i31 :
i32 :
i33 :

i21

i34 :

i35

i37 :
i38 :
i39 :
i40 :
i41
i42 :
i43 :
i44 :
i45 :
i46 :
i47 :

i48 :
i49 :
i50 :
ib1 :
ib2 :
ib3 :
ib4 :
ibb :
ib6 :
ib7 :
ib8 :
i59 :
i60 :
i61 :
i62 :
i63 :
i64 :
i65 :
i66 :
i67 :
i68 :
i69 :
i70 :
i71
i72
i73 :
i74
i75 :

i76 :
i77
i78 :
i79 :
i80 :
i81 :
i82 :

i83 :
ig84

rationalMap map(PP11,PP9, sub(matrix inverseMap(inclusion||H9), PP11))

fixed

P1 =
P4 =
P2 =
P3 =
P1’

P4’ =
P2’ =
P3’ =

112 =

ca = phi* oo

Planex = associatedPrimes (X+ideal{x_0,x_1,x_2});
fixedPlaney = associatedPrimes (X+ideal{y_3,y_4,y_5});
inclusion”* phi(fixedPlaney#0) ;
inclusion”* phi(fixedPlaney#1) ;
inclusion”* phi(fixedPlaney#2);
inclusion”* phi(fixedPlaney#3) ;

= inclusion”* phi(fixedPlanex#0) ;

inclusion”* phi(fixedPlanex#1);

inclusion”* phi(fixedPlanex#2) ;

inclusion™* phi(fixedPlanex#3);

-- let us see if the lines 1lij joining the points Pi and Pj
-- are contained in the threefold WB9
ideal{(toMap(saturate(P1*P2),1,1)) .matrix};

(112 + WB9 == 112) == false

: 113 = ideal{(toMap(saturate(P1*P3),1,1)) .matrix};
i36 :

(113 + WB9 == 113) == false

114 = ideal{(toMap(saturate(P1*P4),1,1)) .matrix};
(114 + WB9 == 114) == false

= ideal{(toMap(saturate(P1*P1’),1,1)) .matrix};
(111 + WB9 == 111’) == true

= ideal{(toMap(saturate(P1%P2’),1,1)) .matrix};
(112’ + WB9 == 112’) == true

= ideal{(toMap(saturate(P1*%P3’),1,1)) .matrix};
(113’ + WB9 == 113’) == true

= ideal{(toMap(saturate(P1*P4’),1,1)) .matrix};

111°

112’

113’

toMap(P2,1,1);

toMap(proj1(P3),1,1);

toMap (proj2(proj1(P4)),1,1);

toMap (proj3(proj2(proj1(P2°))),1,1);

toMap (proj4(proj3(proj2(proj1(P3’)))),1,1);

toMap (proj5(proj4(proj3(proj2(proji(P4°))))),1,1);

proj = projl*proj2*proj3*proj4*proj5*proj6;

114’

(114’ + WB9 == 114’) == true
-- etc..

projl = rationalMap
proj2 = rationalMap
proj3 = rationalMap
proj4 = rationalMap
proj5 = rationalMap
proj6é = rationalMap
proj (WB9)

PP3 = ring oo;

isBirational( proj|WB9 )
cs = rationalMap map( PP3, PP9, matrix(inverseMap( proj|WB9 )));

comp = associatedPrimes(ideal septics)

ideal{(gens PP3)_1+(gens PP3)_3};
ideal{(gens PP3)_2+(gens PP3)_3};

septi

time image oo == WB9
13’ = comp#0;

127 = comp#1;

r2l = comp#2;

ril = comp#3;

r31 = comp#4;

11’ = comp#5;

r23 = comp#6;

r13 = comp#7;

r33 = comp#8;

r22 = comp#9;

r12 = comp#10;

r32 = comp#11;

11 = comp#12;

12 = comp#13;

13 = comp#14;

—-- trihedron T’

f1’ = ideal{(gens PP3)_3};
£f27 =

£3’ =

£f1°+£f2° == 13’
£1°+£3° == 12’
£2°+£3’ == 11’

v’= saturate(f1’+f2’+£3’)
-- trihedron T :

f1 =

ideal{(gens PP3)_0-55*(gens PP3)_1+34*(gens PP3)_2};
f2 = ideal{(gens PP3)_0 - 21x(gens PP3)_1 +13x(gens PP3)_2};
£3 = ideal{(gens PP3)_0};
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i85 : f1+f2 == 13

i86 : f1+f3 == 12

i87 : f2+f3 == 11

i88 : v = saturate(11+12+13)

i89 : ri11 == f1+f1’

i90 : ri12 == f1+f2’

i91 : r13 == f1+£3’

i92 : r21 == f2+f1°

i93 : r22 == f2+£f2’

i94 : r23 == f2+£3’

i95 : r31 == £3+f1’

i96 : r32 == f3+£f2’

i97 : r33 == f£3+£3°

i98 : -- general septic surface of the linear system :
K = septics™* ideal{random(1,PP9)};

i99 : (dim oo -1, degree oo) == (2,7)

i100 : -- K has double point along 11,12,13,11°,127,13’
(minors (1, jacobian(K))+11 == 11) == true

i101 : (minors(1,jacobian(K))+12 == 12) == true

i102 : (minors(1,jacobian(K))+13 == 13) == true

i103 : (minors(1,jacobian(K))+11’ == 11’) == true

i104 : (minors(1,jacobian(K))+12’ == 12’) == true
i105 : (minors(1,jacobian(K))+13’ == 13’) == true
1106 : -- K has triple point at v and v’

(minors(1, jacobian(jacobian(K)))+minors(1,jacobian(K))+v == v) == true
1107 : (minors(1,jacobian(jacobian(K)))+minors(1,jacobian(K))+v’ == v’) == true
i108 : -- remark

septics(f1) == P2
i109 : septics(f1’) == P2’
i110 : septics(f2) == P3
i111 : septics(f2’) == P3’
i112 : septics(£3) == P4
i113 : septics(£3’) == P4’

Code B.5. Computational analysis of W% (see § [6.6).

Macaulay2, version 1.11
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il : needsPackage "Cremona";
i2 : PP2=ZZ/10000019[u_0O,u_1,u_2];
i3 : PP6 = ZZ/10000019[x_0,x_1,x_2,x_3,x_4,x_5,x_6];
i4 : cubics3points = rationalMap map(PP2, PP6 , matrix{{u_1"2*u_2,

u_1*%u_2"2, u_0"2%u_2,u_0%u_2"2, u_0"2%u_1,u_0O*u_1"2, u_O*u_1xu_2}});
ib : S6 = image cubics3points
i6 : PP1 = ZZ/10000019[y_0,y_1]1;
i7 : PP1xPP6= PP1 *x PP6;
i8 : pr2 = rationalMap(PP1xPP6,PP6, matrix{{x_0,x_1,x_2,x_3,x_4,x_5,x_6}});
i9 : PP10 = ZZ/10000019[w_0..w_10];
i10 : phi = rationalMap map(PP1xPP6,PP10, matrix{{y_0"2*x_6,y_0"2*x_O+y_0"2*x_2,

y_072%x_1+y_072%x_4,y_0"2xx_3+y_0"2%x_5,y_172*x_6,y_1"2*x_0+y_1"2%x_2,

y_172%x_1+4y_172%x_4,y_1"2%x_3+y_1"2%x_5,y_O*y_1*x_0-y_O*y_1%x_2,

y_lxy_O%x_1-y_1xy_0*x_4,y_1xy_0%x_3-y_1xy_0%x_5}});
i1l : PP1xS6 = pr2~* S6;
i12 : WB10 = phi(PP1xS6);
i13 : (dim WB10 -1, degree WB10) == (3,18)
i14 : ideal{wB10_0,WB10_1,2*WB10_2,WB10_3,WB10_4,2*WB10_5,WB10_6,WB10_7,WB10_8,

2*xWB10_9,WB10_10,WB10_11,WB10_12,2*WB10_13,WB10_14,2*xWB10_15,2*xWB10_16,

4%WB10_17,4*WB10_18,4*WB10_19}
i15 : oo == WB10
i16 : P1 = ideal{w_O,w_1,w_2,w_3,w_5-2*w_4,w_6-2*w_4,w_7-2*w_4,w_8,w_9,w_10};
i17 : P2 = ideal{w_O,w_1,w_2,w_3,w_5-2*w_4,w_6+2*w_4,w_7+2%w_4,w_8,w_9,w_10};
i18 : P3 = ideal{w_O,w_1,w_2,w_3,w_b+2*w_4,w_6-2*w_4,w_7+2*w_4,w_8,w_9,w_10};
i19 : P4 = ideal{w_O,w_1,w_2,w_3,w_5+2*w_4,w_6+2*w_4,w_7-2%w_4,w_8,w_9,w_10};
i20 : P1’ = ideal{w_1-2*w_0O,w_2-2*w_O0,w_3-2*%w_O,w_4,w_5,w_6,w_7,w_8,w_9,w_10};
i21 : P2’ = ideal{w_1-2*w_0,w_2+2%w_0,w_3+2*w_O,w_4,w_5,w_6,w_7,w_8,w_9,w_10};
i22 : P3’ = ideal{w_1+2*w_O0,w_2-2%w_0O,w_3+2*w_O,w_4,w_5,w_6,w_7,w_8,w_9,w_10};
i23 : P4’ = ideal{w_1+2*w_O0,w_2+2*w_0,w_3-2*w_O,w_4,w_5,w_6,w_7,w_8,w_9,w_10};
i24 : -- let us see if the lines 1lij joining the points Pi and Pj
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-- are contained in the threefold WB10
112 = ideal{(toMap(saturate(P1%P2),1,1)) .matrix};
i25 : (112 + WB10 == 112) == true
i26 : 113 = ideal{(toMap(saturate(P1%P3),1,1)) .matrix};
i27 : (113 + WB10 == 113) == true
i28 : 114 = ideal{(toMap(saturate(P1%P4),1,1)) .matrix};
i29 : (114 + WB10 == 114) == true
i30 : 111’ = ideal{(toMap(saturate(P1*P1’),1,1)) .matrix};
i31 : (111’ + WB10 == 111’) == true
i32 : 112’ = ideal{(toMap(saturate(P1xP2’),1,1)) .matrix};
i33 : (112’ + WB10 == 112’) == false
i34 : 113’ = ideal{(toMap(saturate(P1%P3’),1,1)) .matrix};
i35 : (113’ + WB10 == 113’) == false
i36 : 114’ = ideal{(toMap(saturate(P1%P4’),1,1)) .matrix};
i37 : (114’ + WB10 == 114’) == false
i38 : -- etc...
projl = rationalMap toMap(P1,1,1);
i39 : proj2 = rationalMap toMap(proj1(P2),1,1);
i40 : proj3 = rationalMap toMap(proj2(proj1(P3)),1,1);
i41 : proj4 = rationalMap toMap(proj3(proj2(proj1(P4))),1,1);
i42 : projl’ = rationalMap toMap(proj4(proj3(proj2(proji(P1°)))),1,1);
i43 : proj2’ = rationalMap toMap(proji’(proj4(proj3(proj2(proj1(P2°))))),1,1);
i44 : proj3’ = rationalMap toMap(proj2’(projl’(proj4(proj3(proj2(proj1(P3°)))))),1,1);
i45 : proj = projl*proj2*proj3*projé*projl’*proj2’*proj3’
i46 : isBirational(proj | WB10)
i47 : PP3 = target proj;
i48 : sexties = rationalMap map( PP3, PP10, matrix(inverseMap (proj|WB10)) )
i49 : image oo == WB10
i50 : basel = associatedPrimes ideal sexties
ib1 : 123 = baseL#0
i52 : rl1 = basel#1
i63 : 112 = basel#2
ib4 : r3 = baselL#3
i65 : 113 = basel#4
ib6 : r2 = baseL#5

ib7 : 102 = baselL#6
i68 : 103 = baseL#7
ib9 : 101 = baselL#8
i60 : vl = baselL#9
i61 : v2 = baselL#10
i62 : v3 = baseL#11

i63 : fO =ideal{(gens PP3)_0};

i64 : f1 =ideal{(gens PP3)_1+(gens PP3)_2+(gens PP3)_3};

i65 : f2=ideal{(gens PP3)_1-(gens PP3)_2+(gens PP3)_3};

i66 : £3 =ideal{(gens PP3)_1+(gens PP3)_2-(gens PP3)_3};

i67 : plane = ideal{(gens PP3)_1-(gens PP3)_2-(gens PP3)_3};
i68 : 112 == f1+f2

i69 : 113 == f1+£f3

i70 : 123 == f2+f3
i71 : 101 == fO+f1
i72 : 102 == f0+f2

i73 : 103 == f0+£f3

i74 : rl1 == plane+fl

i75 : r2 == plane+f2

i76 : r3 == plane+f3

i77 : vO0 = f1+f2+f3+plane
i78 : vl == fO+f2+£f3

i79 : v2 == fO+f1+£3

i80 : v3 == fO+f1+f2

i81 : ql = saturate(101+rl)

i82 : q2 = saturate(102+r2)
i83 : g3 = saturate(103+r3)
i84 : -- general element of the linear system defining sexties :

M = sexties™* ideal{random(1,PP10)};
i85 : (dim oo -1, degree o0o0)

i86 : -- M has double points along rl,r2,r3 :
(minors(1,jacobian(M))+rl == rl) == true

i87 : (minors(1,jacobian(M))+r2 == r2) == true

i88 : (minors(1,jacobian(M))+r3 == r3) == true
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i89 :

i90 :
io1 :
i92 :

-- M has triple points at v1,v2,v3

(minors (1, jacobian(jacobian(M)))+minors(1,jacobian(M))+ vl == v1) == true
(minors(1, jacobian(jacobian(M)))+minors(1,jacobian(M))+ v2 == v2) == true
(minors (1, jacobian(jacobian(M)))+minors(1,jacobian(M))+ v3 == v3) == true

-- vO0 is a quadruple point of M :
(minors(1, jacobian(jacobian(jacobian(M))))+minors(1, jacobian(jacobian(M)))+
minors (1, jacobian(M))+ vO == v0) == true

Code B.6. Computational analysis of W% (see §

Macaulay2, version 1.11
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

i1 :
: PPix = ZZ/10000019[x_0,x_1];
i3
: PP1z = ZZ/10000019[z_0,z_1];
ib :
i6 :
i7 :

i2

i4

i8 :
i9
il10 :
: P1 = pigreca(ideal{x_1,y_0,z_0});
i12 :

i1l

i13

i20 :
i21 :
i22 :
i23 :
i24 :

i25

i34

i38
i40

i46

i48

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone
needsPackage "Cremona";

PPly = ZZ/10000019[y_0,y_11;

X = PPlx ** PPly ** PPlz;

use X;

pigreca = rationalMap map(X, ZZ/10000019[w_0..w_13], matrix{{x_0"2xy_0"2*z_0"2,
x_072xy_072%z_172, x_072xy_O*y_1xz_0*z_1, x_072xy_172%z_072, x_072xy_1"2xz_1"2,
x_0*x_1%xy_072%z_O0xz_1, x_O*x_1%y_O*y_1%z_072, x_Oxx_1xy_Oxy_1%z_172,
x_O*x_1xy_172%z_O*z_1, x_172%y_072*%z_072, x_172xy_072%z_172, x_1"2xy_O*y_1*xz_0*z_1,
x_172%y_1"2%z_0"2, x_1"2%y_1"2%z_1"2}1});

WB13 = image pigreca;

(dim oo -1, degree oo) == (3, 24)

PP13 = ring WB13;

P2 = pigreca(ideal{x_1,y_1,z_1});

: P3 = pigreca(ideal{x_0,y_1,z_0});
i14 :
i15 :
il6 :
i17
i18 :
i19 :

P4 = pigreca(ideal{x_0,y_0,z_1});

P1’ = pigreca(ideal{x_0,y_1,z_1});

P2’ = pigreca(ideal{x_0,y_0,z_0});

P3’ = pigreca(ideal{x_1,y_0,z_1});

P4’ = pigreca(ideal{x_1,y_1,z_0});

-- let us see if the lines 1ij joining the points Pi and Pj
-- are contained in the threefold WB13

112 = ideal{(toMap(saturate(P1*P2),1,1)) .matrix};
(112 + WB13 == 112) == false

113 = ideal{(toMap(saturate(P1*P3),1,1)) .matrix};
(113 + WB13 == 113) == false

114 = ideal{(toMap(saturate(P1*P4),1,1)) .matrix};
(114 + WB13 == 114) == false

: 111’ = ideal{(toMap(saturate(P1xP1’),1,1)) .matrix};
i26 :
i27
i28 :
i29 :
i30 :
i31 :
i32 :
i33 :

(111’ + WB13 == 111’) == false

112’ = ideal{(toMap(saturate(P1*P2’),1,1)) .matrix};
(112’ + WB13 == 112’) == true

113’ = ideal{(toMap(saturate(P1*P3’),1,1)) .matrix};
(113’ + WB13 == 113’) == true

114’ = ideal{(toMap(saturate(P1*P4’),1,1)) .matrix};
(114’ + WB13 == 114°) == true

-- etc..

projl = rationalMap toMap(P1,1,1);

: proj2 = rationalMap toMap(proji(P2),1,1);
i35 :
i36 :
i37
: proj6 = rationalMap toMap(proj5(proj4(proj3(proj2(proj1(P2’))))),1,1);

: proj7 = rationalMap toMap(proj6(proj5(proj4(proj3(proj2(proj1(P3°)))))),1,1);
i41 :
i42
i43 :
i44
i45 :
: PP5 = ring T4;
i47
: quadricsThroughVertices = rationalMap map(PP3, PP5, matrix{{(gens PP3)_O*(gens PP3)_1,

proj3 = rationalMap toMap(proj2(proj1(P3)),1,1);
proj4 = rationalMap toMap(proj3(proj2(proji1(P4))),1,1);
proj5 = rationalMap toMap(proj4(proj3(proj2(proji(P1’)))),1,1);

proj8 = rationalMap toMap(proj7(proj6(proj5(proj4(proj3(proj2(proj1(P4°))))))),1,1);
proj = projl*proj2*proj3*projé*proj5*proj6*proj7*projs8;

T4 = proj(WB13)

(dim oo -1, degree oo) == (3, 4)

isBirational ((proj|WB13) | |T4)

PP3 = ZZ/10000019[t_0..t_3];
(gens PP3)_1x(gens PP3)_2 ,(gens PP3)_1*(gens PP3)_3 ,(gens PP3)_O*(gens PP3)_2,

(gens PP3)_0Ox(gens PP3)_3, (gens PP3)_2%(gens PP3)_3}1});
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i49 :
: isBirational(quadricsThroughVertices||T4)
ib1 :
ib2 :
ib3 :
ib4 :
ibb :

i50

image oo == T4

mapP5toP3 = rationalMap map( PP5, PP3, sub(matrix(inverseMap(quadricsThroughVertices||T4)), PP5))
mapWB13toP3 = (proj*mapP5toP3) | WB13;

isBirational mapWB13toP3

sexties = rationalMap map( PP3, ring WB13, matrix(inverseMap(mapWB13toP3)))

image oo == WB13

Code B.7. Computational analysis of W} (see § . We will use Remark [5.44],
Theorem [6.17] and Remark [6.16]

Macaulay2, version 1.11
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

i1 :
i2

i3

i4 :
ib :
i6 :
i7 :
i8 :

i9

i1l

i12 :
i13 :

i14 :
i15 :
i16 :
i17 :
: g2’ = ideal{w_ O,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12};
i19 :
: g4’ = ideal{w_ O,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};
i21 :

i18

i20

i22 :
i23 :

i24 :
i25

i26

i28

i29 :
i30 :
i3l :

i32

i33 :
i34 :
i35 :
i36 :
i37 :

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone
needsPackage "Cremona";
PP3 = ZZ/10000019[s_0..s_3];

: -- edges of the trivial tetrahedon :

112 = ideal{(gens PP3)_1, (gens PP3)_2};
113 = ideal{(gens PP3)_1, (gens PP3)_3};
123 = ideal{(gens PP3)_2, (gens PP3)_3};
101 = ideal{(gens PP3)_0, (gens PP3)_1};
102 = ideal{(gens PP3)_0, (gens PP3)_2};
103 = ideal{(gens PP3)_0, (gens PP3)_3};

: PP13 = ZZ/10000019[w_0..w_13];
i10 :

sextiesSigma = rationalMap map(PP3,PP13, matrix{{s_O*s_1"3*s_2*s_3, s_0"2%s_1"2%s_2"2,
s_07"2%s_1"2xs_2%s_3, s_0"2%s_1"2xs_372, s_0"3%s_1xs_2*s_3, s_0%*s_1"2%xs_2"2%s_3,
s_Oxs_1"2%s_2%s_372, s_072%s_1%s_272%s_3, s_0"2%s_1xs_2%s_3"2, s_1"2%s_272%s_372,
s_Oxs_1%s_2"3%s_3, s_0%s_1%s_2"2%s_3"2, s_O*s_1%s_2%s_3"3, s_0"2%s_2"2xs_3"2}});

: —-- classical F-EF 3-fold

WF13 = image sextiesSigma;

(dim WF13 -1, degree WF13) == (3, 24)

-- singular points of WF13

-- (which is equal to the BS-EF 3-fold WB13)

ql = ideal{w_O,w_1,w_2,w_3,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};
q2 = ideal{w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};
q3 = ideal{w_O,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_11,w_12,w_13};
g4 = ideal{w_O,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_13};
ql’ ideal{w_O,w_1,w_2,w_3,w_5,w_4,w_6,w_7,w_8,w_10,w_11,w_12,w_13};

q3’ = ideal{w_O,w_1,w_2,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};

-- let us take a general plane of PP3

-- and the intersection points with the edges 1ij

-- plane = ideal{random(1,PP3)}

-- example:

plane = ideal{s_O+s_1+s_2+s_3};

PP2 = ZZ/10000019[x_0,x_1,x_2];

inclusion = rationalMap map(PP2,PP3, matrix{{-(gens PP2)_0-(gens PP2)_1-(gens PP2)_2,
(gens PP2)_0, (gens PP2)_1, (gens PP2)_2}})

image oo == plane

pO1l = saturate(plane+101) -- [0:0:-1:1]

: p02 = saturate(plane+102) -- [0:-1:0:1]
i27

p03 = saturate(plane+103) -- [0:-1:1:0]

: pl2 = saturate(plane+112) -- [-1:0:0:1]
p13 = saturate(plane+113) -- [-1:0:1:0]
p23 = saturate(plane+123) -- [-1:1:0:0]
a0l=inclusion”*p01; -- [0:-1:1]

: a02=inclusion”*p02; -- [-1:0:1]
a03=inclusion”*p03; -- [-1:1:0]
al2=inclusion”*p12; -- [0:0:1]
al3=inclusion”#*p13; -- [0:1:0]
a23=inclusion”*p23; -- [1:0:0]

-- in the above plane, let us take

-- a general cubic curve through the six points pij

-- rationalMap toMap(saturate(a01*a02*a03*al2xal3%a23),3,1);

-- cubicThrough6points = oo”*(ideal{random(1,ring(image 00))})

-- example:

cubicThrough6points = ideal{(gens PP2)_1"2x(gens PP2)_2+(gens PP2)_1x(gens PP2)_2"2+
(gens PP2)_0"2%(gens PP2)_2+(gens PP2)_0*(gens PP2)_272+(gens PP2)_0"2%(gens PP2)_1+
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-- 037 = ideal(x x + x X

i38 :
i39 :

-- 039 = ideal (s + s + s

i40 :
i41
i42 :
i43 :
i44 :
i45 :
i46 :

i47

i48 :
i49 :
ib0 :
ib1 :
ib2 :
ib3 :
ib4 :
ib5 :
ib6 :
iB7 :

ib8 :
ib9 :

i60 :
i6l :
i62 :

i6é3 :
i64 :
i65 :

i66

i67 :
i6é8 :

i69

i70 :
i71
i72 :
i73 :
i74 :
i75 :

i76

i81
i82

(gens PP2)_0x*(gens PP2)_1"2+(gens PP2)_0x*(gens PP2)_1x(gens PP2)_2}
2 2 2 2 2 2
+xXxx +xXxXxXXx +XXx +t+xXxXXx +XX)
01 01 02 012 12 02 12
(dim oo -1, degree oo, genus oo)==(1,3,1)
delta = inclusion(cubicThrough6points)
2 2 2 2 2
+s,ss +ss +ss +sss +ss +s8s
0 1 2 3 12 12 13 123 23 13
(dim oo -1, degree oo, genus oo)==(1,3,1)
(delta+101==p01) == true
(delta+102==p02) == true
(delta+103==p03) == true
(delta+112==p12) == true
(delta+113==p13) == true
(delta+123==p23) == true

: nudelta=sextiesSigma(delta)

(dim oo -1, degree oo, genus o0o)==(1,6,1)
(nudelta+ql == ql) == false
(nudelta+q2 == q2) == false
(nudelta+q3 == q3) == false

(nudelta+q4 == g4) == false
(nudelta+ql’ == ql1’) == false
(nudelta+q2’ == g2’) == false
(nudelta+q3’ == q3’) == false
(nudelta+q4’ == q4’) == false
spannudelta=ideal{nudelta_0,nudelta_1,nudelta_2,nudelta_3,nudelta_4,
nudelta_5,nudelta_6,nudelta_7}

(dim oo -1, degree o0o0)==(5,1)

-- let us construct the F-EF 3-fold WF7

-- as projection og WF13 from spannudelta

proj = rationalMap toMap(spannudelta,1,1)

WF7 = proj(WF13)

(dim oo -1, degree 00)==(3,12)

-- let us see the configuration of
-- the singular points of WF7:

P1 = proj(ql); -- [0: 0: 0: 0: 1:-1: 1: 1]
P2 = proj(q2); -- [ 0: 0: 0: 0: O: 0: 0: 1]
P3 = proj(q3); -- [ 1: 0: 0:-2: 0: 0: 4: 2]
P4 = proj(q4); -- [ 1: 0:-2: 0: 4: 0: 0: 2]
: P1? = proj(q1’); -- [ 1: 0: 0: 0: 0: 0: 0: 0]
P2’ = proj(q2’); -- [ 1: 2: 0:-2: 2:-2: 4: 4]
P3’ = proj(g3’); -- [ 0: 0: 0: 0: 1: 0: 0: O]
: P4’ = proj(g4’); -— [ 0: 0: 0: 0: 0: 0: 1: O]

linel2 = ideal{(toMap(saturate(P1%P2),1,1)) .matrix};
(linel2 + WF7 == linel2) == true
linel3 = ideal{(toMap(saturate(P1*P3),1,1)) .matrix};
(linel3 + WF7 == linel3) == true
linel4 = ideal{(toMap(saturate(P1%P4),1,1)) .matrix};
(linel4 + WF7 == linel4) == true

: line23 = ideal{(toMap(saturate(P2xP3),1,1)) .matrix};
i77
i78 :
i79 :
i80 :

(1ine23 + WF7 == line23) == true
line24 = ideal{(toMap(saturate(P2+P4),1,1)) .matrix};
(line24 + WF7 == line24) == true
line34 = ideal{(toMap(saturate(P3*P4),1,1)).matrix};
(line34 + WF7 == line34) == true

: linell’ = ideal{(toMap(saturate(P1*P1’),1,1)) .matrix};
i83 :
ig84 :
i85 :
i86 :
i87 :
ig8g :
i89 :
i90 :

(linell’ + WF7 == linell’) == false

line22’ = ideal{(toMap(saturate(P2*P2’),1,1)) .matrix};
(1ine22’ + WF7 == line22’) == false

line33’ = ideal{(toMap(saturate(P3*P3’),1,1)) .matrix};
(1ine33’ + WF7 == 1ine33’) == false

line44’ = ideal{(toMap(saturate(P4*P4’),1,1)).matrix};
(line44’ + WF7 == line44’) == false

-- let us take the rational map

-- defined by the linear system

-- of the sextics of PP3 double along the edges 1ij

-- and containing the curve delta

sextiesX = sextiesSigma*proj
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i91 : WF7 == image oo
i92 : -- base locus of sextiesX
baseX = associatedPrimes(ideal sextiesX)
i93 : baseX#0 == delta
i94 : baseX#1 == 113
i95 : baseX#2 == 112
i96 : baseX#3 == 101
i97 : baseX#4 == 123
i98 : baseX#5 == 102
i99 : baseX#6 == 103
i100 : PP7 = ring WF7
i101 : -- let us take a general element X of the
-- linear system of the sextics double
-- along the edges of a trivial tetrahedron
-- and containing the cubic curve delta:
-- X = sextiesX“*(ideal{random(1,PP7)})
-- for example let us take:
matrix sextiesX
i102 : X = ideal{2*o00_(0,0)+o00_(0,4)+00_(0,6)-00_(0,7)}

- 222 3 3 3 222 222 2 2 222 3
-- 0102 =3ideal(s s s -ssss -ssss -235sss +sss +25ss8s +ssss +25s8s8 -2ss8ss8)
- 012 0123 0123 0123 013 023 0123 123 0123
i103 : (dim oo -1, degree oo) == (2,6)

i104 : -- remark: its image via sextiesX is contains no

-- singular points of WF7
S = sextiesX(X);
i105 : (S+P1 == P1) == false
i106 : (S+P2 == P2) == false

i107 : (S+P3 == P3) == false

1108 : (8+P4 == P4) == false

i109 : (8+P1’ == P1’) == false

i110 : (8+P2’ == P2’) == false

i111 : (8+P3’ == P3’) == false

i112 : (8+P4’ == P4’) == false

i113 : -- as for a general Enriques sextic,

-- the tangent cone to X at a vertex of the tetrahedron
-- is the union of the three faces containing that vertex
PP3’ = 7ZZ/10000019[x_0..x_3];
i114 : ConevO = tangentCone(sub(X, {(gens PP3)_0 => 1 }))
i115 : degree oo ==
i116 : Conevl = tangentCone(sub(X, {(gens PP3)_1 => 1 }))
i117 : degree oo ==
i118 : Conev2 = tangentCone(sub(X, {(gens PP3)_2 => 1 }))
i119 : degree oo ==
i120 : Conev3 = tangentCone(sub(X, {(gens PP3)_3 => 1 }))
i121 : degree oo ==
i122 : -- the tangent cone to X at a point pij
-- it the union of two planes containing 1ij:
-- let us take a change of coordinates
-- in order to see pOl as the point [0:0:0:1]
sub(X, {(gens PP3)_0 => (gens PP3’)_0, (gens PP3)_1 => (gens PP3’)_1,
(gens PP3)_2 => (gens PP3’)_2-(gens PP3’)_3, (gens PP3)_3 => (gens PP3’)_3 });
i123 : sub(oo, {(gens PP3°)_3 => 1})
i124 : tangentCone oo
11256 : Conep0O1 = sub(oo, {(gens PP3’)_0 => (gens PP3)_0, (gens PP3’)_1 => (gens PP3)_1,
(gens PP3’)_2 => (gens PP3)_2+(gens PP3)_3, (gens PP3’)_3 => (gens PP3)_3 })
1126 : degree oo ==
i127 : -- let us take a change of coordinates
-- in order to see p02 as the point [0:0:0:1]
sub(X, {(gens PP3)_0 => (gens PP3’)_0, (gens PP3)_1 => (gens PP3’)_1-(gens PP3’)_3,
(gens PP3)_2 => (gens PP3’)_2, (gens PP3)_3 => (gens PP3’)_3 });
1128 : sub(oo, {(gens PP3°)_3 => 1})
i129 : tangentCone oo
i130 : Conep02 = sub(oo, {(gens PP3’)_0 => (gens PP3)_0, (gens PP3’)_1 => (gens PP3)_1+(gens PP3)_3,
(gens PP3’)_2 => (gens PP3)_2, (gens PP3’)_3 => (gens PP3)_3 })
1131 : degree oo ==
i132 : -- let us take a change of coordinates
-- in order to see p03 as the point [0:0:1:0]
sub(X, {(gens PP3)_0 => (gens PP3’)_0, (gens PP3)_1 => (gens PP3’)_1-(gens PP3’)_2,
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(gens PP3)_2 => (gens PP3’)_2, (gens PP3)_3 => (gens PP3’)_3 });
i133 : sub(oo, {(gens PP3’)_2 => 1})
i134 : tangentCone oo
i135 : Conep03 = sub(oo, {(gens PP3’)_0 => (gens PP3)_0, (gens PP3’)_1 => (gens PP3)_1+(gens PP3)_2,
(gens PP3’)_2 => (gens PP3)_2, (gens PP3’)_3 => (gens PP3)_3 })
1136 : degree oo ==
i137 : -- let us take a change of coordinates
-- in order to see pl12 as the point [0:0:0:1]
sub(X, {(gens PP3)_0 => (gens PP3’)_0-(gens PP3’)_3, (gens PP3)_1 => (gens PP3’)_1,
(gens PP3)_2 => (gens PP3’)_2, (gens PP3)_3 => (gens PP3’)_3 });
i138 : sub(oo, {(gens PP3’)_3 => 1})
i139 : tangentCone oo
i140 : Conepl2 = sub(oo, {(gens PP3’)_0 => (gens PP3)_O+(gens PP3)_3, (gens PP3’)_1 => (gens PP3)_1,
(gens PP3°)_2 => (gens PP3)_2, (gens PP3’)_3 => (gens PP3)_3 })
i141 : degree oo ==
i142 : -- let us take a change of coordinates
-- in order to see pl13 as the point [0:0:1:0]
sub(X, {(gens PP3)_0 => (gens PP3’)_0-(gens PP3’)_2, (gens PP3)_1 => (gens PP3’)_1,
(gens PP3)_2 => (gens PP3’)_2, (gens PP3)_3 => (gens PP3’)_3 });
1143 : sub(oo, {(gens PP3’)_2 => 1})
i144 : tangentCone oo
i145 : Conepl3 = sub(oo, {(gens PP3’)_0 => (gens PP3)_O+(gens PP3)_2, (gens PP3’)_1 => (gens PP3)_1,
(gens PP3’)_2 => (gens PP3)_2, (gens PP3’)_3 => (gens PP3)_3 })
i146 : degree oo ==
1147 : -- let us take a change of coordinates
-- in order to see p23 as the point [0:1:0:0]
sub(X, {(gens PP3)_0 => (gens PP3’)_0-(gens PP3’)_1, (gens PP3)_1 => (gens PP3’)_1,
(gens PP3)_2 => (gens PP3’)_2, (gens PP3)_3 => (gens PP3’)_3 });
1148 : sub(oo, {(gens PP3’)_1 => 1})
i149 : tangentCone oo
i150 : Conep23 = sub(oo, {(gens PP3’)_0 => (gens PP3)_O+(gens PP3)_1, (gens PP3’)_1 => (gens PP3)_1,
(gens PP3’)_2 => (gens PP3)_2, (gens PP3’)_3 => (gens PP3)_3 })
i151 : degree oo ==
i162 : -- let us see that the tangent cone to X
-- at a point of 1ij is a couple of planes
-- containing 1ij

-- let us take a point [x:0:0:y] of 112
-- since we have already studied
-- the points v0=[1:0:0:0] and v3=[1:0:0:0]
-- we can assume X and y not equal to zero
-- so let us consider the point [a:0:0:1]
-- with a not equal to zero
-- let us take a change of coordinates
-- in order to see [a:0:0:1] as the point [0:0:0:1]
A = ZZ/10000019[a];
i153 : R = A[s_0..s_3];
i154 : R’ = A[r_0..r_3];
i155 : newX = sub(X,R)
i156 : sub(newX, {(gens R)_O => (gens R’)_0+(gens A)_O*(gens R’)_3, (gens R)_1 => (gens R’)_1,
(gens R)_2 => (gens R’)_2, (gens R)_3 => (gens R’)_3 })
i157 : sub(oo, (gens R’)_3=>1)
1158 : sub(tangentCone oo, {(gens R’)_0 => (gens R)_O-(gens A)_O*(gens R)_3, (gens R’)_1 => (gens R)_1,
(gens R’)_2 => (gens R)_2, (gens R’)_3 => (gens R)_3 })
i159 : -- we obtain
-= 22 3 22
-- ideal(as + (-a -2a)ss +2as)
- 1 12 2
-- so the tangent cone to X at the point [a:0:0:1]
-- is the union of two planes containing 112

-- similarly for the points of 113,123,101,102,103

-- let us study the singular locus of X
-- in order to verify if X has other kinds of singularity
JX = jacobian(X)

1160 : singX = minors(1,JX)+X

1161 : compSingX = associatedPrimes singX

i162 : compSingX#0 == 101
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i163 : compSingX#1 == 102
i164 : compSingX#2 == 112
i165 : compSingX#3 == 123
1166 : compSingX#4 == 103
1167 : compSingX#5 == 113
i168 : -- compSingX#6 is the point [0:0:2:1]
-- compSingX#7 is the point [0:0:1:2]
x’ = compSingX#8 -- is a point of 101
i169 : x’’ = compSingX#9 -- is the point of 101
i170 : -- remark (in order to understand x’ and x’’):
sub(X, QQ[s_0..s_31)
i171 : minors(1,jacobian(oo))+oo
1172 : compSingX’ = associatedPrimes oo
i173 : (associatedPrimes(sub(compSingX’#6,PP3)))#0 == x’
i174 : (associatedPrimes(sub(compSingX’#6,PP3)))#1 == x’’
-- where compSingX’#6 is:
- 2 2
-- ideal (s , s , 28 + 3s s + 2s)
-- 1 0 2 23 3
i175 :
-- furthermore, if r = sqrt(2) we have that
-- compSingX#10 are the points [r:0:0:1] and [-r:0:0:1]
-- compSingX#11 are the points [r:0:1:0] and [-r:0:1:0]
-- compSingX#12 are the points [0:r:0:1] and [0:-r:0:1]
-- compSingX#13 is the point [1:1:0:0]
compSingX#14 == p23
i176 : -- compSingX#15 are the points [0:r:1:0] and [0:r:1:0]

-- hence X has just the singularities described above

Code B.8. Computational analysis of W3, ,, (see §

Macaulay2, version 1.11
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il : needsPackage "Cremona";
i2 : PP3 = ZZ/10000019[s_0..s_3];
i3 : PP13 = ZZ/10000019[w_0..w_13];
i4 : sexties = rationalMap map(PP3,PP13, matrix{{s_O*s_1"3*s_2*s_3, s_0"2*s_1"2%s_2"2,
s_072%s_1"2%s_2%s_3, s_0"2%s_1"2xs_372, s_0"3%s_1xs_2%s_3, s_0%s_1"2xs_2"2%s_3,
s_Oxs_1"2%s_2xs_372, s_0"2%s_1%s_2"2%s_3, s_0"2%s_1*s_2*s_3"2, s_1"2xs_2"2%s_3"2,
s_Oxs_1%s_2"3*%s_3, s_O*s_1%s_2"2%s_3"2, s_O0*s_1*s_2%s_3"3, s_0"2%s_2"2xs_3"2}});
i5 : WF13 = image sexties;
i6 : (dim WF13 -1, degree WF13) == (3, 24)
i7 : P1 = ideal{w_O,w_1,w_2,w_3,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};
i8 : P2 = ideal{w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};
i9 : P3 = ideal{w_O,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_11,w_12,w_13};
i10 : P4 = ideal{w_O,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_13};
i1l : P1’ = ideal{w_O,w_1,w_2,w_3,w_5,w_4,w_6,w_7,w_8,w_10,w_11,w_12,w_13};
i12 : P2’ = ideal{w_O,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12};
i13 : P3’ = ideal{w_O,w_1,w_2,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};
i14 : P4’ = ideal{w_O,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};
i16 : J = jacobian((map sexties).matrix);
i16 : JJ = jacobian(J);
i17 : JJ123 = sub(JJ,{(gens PP3)_2=> 0, (gens PP3)_3 =>0})
i18 : SPANnuF23 = ideal{w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};
i19 : -- H12 = ideal{random(1,PP13)};
-- for example
H12 = ideal{w_O+11*w_1+2%w_2+3%w_3+5*w_4+4*w_5+6*w_6-7*w_7-8*w_8-9%w_9+
10%w_10-11*w_11+12%w_12+13%w_13};
i20 : S = H12+WF13;
i21 : E3 = saturate(S+SPANnuF23)
i22 : (dim oo -1, degree oo, genus oo) == (1, 4, 1)
i23 : SPANE3 = ideal{E3_0,E3_1,E3_2,E3_3,E3_4,E3_5,E3_6,E3_7,E3_8,E3_0};
i24 : PP9 = ZZ/10000019[z_0..z_9];
i25 : projE3 = rationalMap map(PP13,PP9, matrix{{SPANE3_9,SPANE3_8,SPANE3_7,SPANE3_6,
SPANE3_5,SPANE3_4,SPANE3_3,SPANE3_2,SPANE3_1,SPANE3_0}})
i26 : KLM = projE3(WF13)
i27 : (dim oo -1, degree oo) == (3, 16)
i28 : isBirational((projE3|WF13) | |KLM)
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i29 :
: projE3(P4’)==projE3(P2)
i31 :
i32
i33 :
i34 :
i35 :
i36 :
i37 :
i38 :
i39 :
i40 :
i41 :
i42 :
i43 :
i44

i30

i45

ib1

ib8

i61

i72

i79

i85
ig6

i87 :
i88 :

: Conepl =
ib9 :
i60 :
: Conep2 =
i62 :
i63 :
i6d :
i65 :
i6é6 :
i67 :
i68 :
i69 :
i70 :
i71 :
: M6 = Conep5+ideal{(gens PP9)_0}
i73 :
i74
i75 :
i76 :
i77
i78 :
: linel = Q+planel;
i80 :
i81 :
i82 :
i83 :
i84 :

projE3(P1’)==projE3(P4’)

projE3(P2)==projE3(P3’)

pl = projE3(P1’)
p2 = projE3(P2’)
p3 = projE3(P3)
p4 = projE3(P4)
p5 = projE3(P1)

linel5 = ideal{(toMap(saturate(pi*p5),1,1)).
(linel5 + KLM == linelb) == true
line25 = ideal{(toMap(saturate(p2*p5),1,1)).
(line25 + KLM == line25) == true
line35 = ideal{(toMap(saturate(p3*p5),1,1)).
(1ine35 + KLM == 1ine35) == true
line45 = ideal{(toMap(saturate(p4*p5),1,1)).
(line45 + KLM == line45) == true

: linel2 = ideal{(toMap(saturate(pi*p2),1,1)).
i46 :
i47
i48 :
i49 :
i50 :
: line23 = ideal{(toMap(saturate(p2*p3),1,1)).
ib2 :
ib3 :
ib4 :
ib6 :
ib6 :
ib7

(line12 + KLM == linel2) == false
linel3 = ideal{(toMap(saturate(pl*p3),1,1)).
(1inel13 + KLM == linel3) == true
linel4 = ideal{(toMap(saturate(pl*p4),1,1)).
(linel4 + KLM == linel4d) == true

(1ine23 + KLM == 1line23) == true

line24 = ideal{(toMap(saturate(p2*p4),1,1)).
(1line24 + KLM == line24) == true

line34 = ideal{(toMap(saturate(p3*p4),1,1)).
(line34 + KLM == line34) == false

sub(KLM, {(gens PP9)_5=>1});

tangentCone oo

degree oo ==

sub(KLM, {(gens PP9)_9=>1});

tangentCone oo

degree oo == 4

sub(KLM, {(gens PP9)_6=>1});

Conep3 = tangentCone oo

degree oo ==

sub(KLM, {(gens PP9)_8=>1});

Conep4 = tangentCone oo

degree oo ==

sub(KLM, {(gens PP9)_0=>1});

Conepb5 = tangentCone oo

degree oo ==

irredCompM6 = associatedPrimes M6;

planel = irredCompM6#0
plane2 = irredComplM6#1
plane2’ = irredCompM6#2
planel’ = irredCompM6#3
Q = irredCompM6#4

linel’ = Q+planel’;

line2 = Q+plane2;

line2’ = Q+plane2’;
dim(linel+linel’)-1 == -1
dim(line2+line2’)- -1

: ql2 = saturate(linel+line2)

: q12’ = saturate(linel+line2’)
ql1’2 = saturate(linel’+line2)
ql’2’ = saturate(linel’+line2’)

matrix};
matrix};
matrix};
matrix};
matrix};
matrix};
matrix};
matrix};
matrix};

matrix};

Code B.9. Computational analysis of WE* (see § .

Macaulay2, version 1.11
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 :
i2 :
i3

needsPackage "Cremona";
needsPackage "Points";
PP2=2Z/10000019[u_0,u_1,u_2];
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i4 :
i5 :
i6 :
i7
i8 :
i9 :
i10 :
i1l :
i12 :

i13 :
il4 :
i15 :
il6 :
i17
: tau = rationalMap map(PP7,PP7, matrix{{x_2,x_4,x_0,x_5,x_1,x_3,x_6,-y}});
: F1 = ideal{(gens PP7)_0+(gens PP7)_2, (gens PP7)_1+(gens PP7)_4,

i18
i19

i20 :
: F2 = ideal{(gens PP7)_0-(gens PP7)_2, (gens PP7)_1-

i21

i22 :

i23

i32
i33 :

i34 :
i35 :

i36 :
i37 :

i38 :
i39 :
i40 :

i41 :
i42
i43 :

i44
i45 :
i46 :

i47
i48 :
i49 :
: P4 == pigreco(v4)
ib1 :
ib2 :
ib3 :
ib4 :
ib5 :

i50

al = ideal{u_1,u_2};
a2 = ideal{u_0,u_2};
a3 = ideal{u_O,u_1};

cubics3points = rationalMap toMap(saturate(al*a2+*a3),3,1);
DelPezzo6ic = image cubics3points;

(dim DelPezzo6ic -1, degree DelPezzo6ic)

PP6 = ring DelPezzo6ic;

PP7 = ZZ/10000019[x_0,x_1,x_2,x_3,x_4,x_5,x_6,y];
inclusion = rationalMap map(PP6,PP7, matrix{{(gens

PP6)_0, (gens PP6)_1,

(gens PP6)_2, (gens PP6)_3, (gens PP6)_4, (gens PP6)_5, (gens PP6)_6,0}1});

S6 = inclusion(DelPezzo6ic);
ideal{x_0,x_1,x_2,x_3,x_4,x_5,x_6};
numgens S6 == 10

vV =
(dim V -1, degree V) == (3, 6)

v =

(gens PP7)_3+(gens PP7)_5, (gens PP7)_6};
tau(F1) == F1

(gens PP7)_3-(gens PP7)_5, y};
tau(F2) == F2

: F2intV = associatedPrimes saturate(F2+V);
i24 :
i25 :
i26 :
i27
i28 :
i29 :
i30 :
i31 :

ideal{s6_1,56_2,56_3,56_4,56_5,56_6,56_7,56_8,S6_9};

(gens PP7)_4,

vl = F2intV#0;

v2 = F2intV#3;

v3 = F2intV#2;

v4 = F2intV#1;

vl == points matrix(PP7, {{1},{1},{1},{1},{1},{1},{1},{0}}H)

v2 == points matrix(PP7, {{1},{-1},{1},{-1},{-1},{-1},{1},{0}})
v3 == points matrix(PP7, {{-1},{1},{-1},{-1},{1},{-1},{1},{0}})
v4 == points matrix(PP7, {{-1},{-1},{-1},{1},{-1},{1},{1},{0}})

PP13 = ZZ/10000019[z_0..z_13];

pigreco = rationalMap map(PP7,PP13, matrix{{x_6"2,
(x_0+x_2)*x_6, (x_1+x_4)*x_6,
(x_0-x_2)*y, (x_1-x_4)*y, (x_3-x_5)*y, y 2}});
PP19 = ZZ/10000019[Z_0..Z_19]

phi =
x_3"2+x_5"2,

(x_0+x_2)*x_6, (x_1+x_4)*x_6,

x_072+x_2"2, x_1"2+x_4"2, x_372+x_572,

(x_3+x_5)*x_6, x_0*x_1+x_2*x_4, x_2%x_3+x_0%x_5, x_1*x_3+x_4*x_5,

rationalMap map(PP7,PP19,matrix{{x_6"2, x_0"2+x_2"2, x_1"2+x_4"2,
(x_3+x_B)*x_6, x_O0*x_1+x_2%x_4,

x_2%x_3+x_0*x_5, x_1*x_3+x_4*x_5, (x_0-x_2)*y, (x_1-x_4)*y, (x_3-x_B)*y, y 2,
2%x_0*x_2, 2%x_1*x_4, 2%x_3*x_5, x_4*x_3+x_1%x_5, x_O*x_3+x_2*x_5, x_1*x_2+x_0*x_4}});

phi (V)

phiV = sub(phi(V), {Z_14 => 2%Z_0,Z_15 => 2%Z_0,Z_16 => 2+Z_0, Z_19 => Z_6,

Z_18 => 7_5, Z_17 => Z_4})
PP13’ = ZZ/10000019[Z_0..Z_13];
ideal (submatrix(gens (sub(ooo, PP13’)), {6..47}))

WP13 = sub(oo, { (gens PP13’)_0 => (gens PP13)_0, (gens PP13’)_1 => (gens PP13)_1,

(gens
(gens
(gens
(gens
(dim

WP13

P1

PP13’)_2 => (gens PP13)_2, (gens PP13’)_3 =>
PP13’)_5 => (gens PP13)_5, (gens PP13’)_6 =>
PP13’)_8 => (gens PP13)_8, (gens PP13’)_9 =>
PP13’)_11 => (gens PP13)_11, (gens PP13’)_12
oo -1, degree oo) == (3, 24)

== pigreco(V)

(gens PP13)_3, (gens PP13’)_4 => (gens PP13)_4,
(gens PP13)_6, (gens PP13’)_7 => (gens PP13)_7,
(gens PP13)_9, (gens PP13’)_10 => (gens PP13)_10,

=> (gens PP13)_12, (gens PP13’)_13 => (gens PP13)_13

ideal{z_1 -2*z_0,z_2 -2*z_0,z_3 -2*z_0,z_4 -2*z_0,z_5 -2%z_0,

11,z_12,z_13};

-2*%z_0,z_4 +2%z_0,z_5 -2*xz_0,

11,z_12,z_13};

-2%z_0,z_4 +2*z_0,z_5 +2xz_0,

Z_6 -2%z_0,z_7 -2*z_0,z_8 -2%z_0,z_9 -2%z_0,z_10,z_11,z_12,z_13};
P2 = ideal{z_1 -2*z_0,z_2 -2*z_0,z_3 -2%z_0,z_4 -2*xz_0,z_5 +2*z_0,
z_6 +2*%z_0,z_7 +2*xz_0,z_8 +2*z_0,z_9 -2*z_0,z_10,z_

P3 = ideal{z_1 -2%z_0,z_2 -2%z_0,z_3
z_6 +2*%z_0,z_7 +2xz_0,z_8 -2*z_0,z_9 +2*xz_0,z_10,z_
P4 = ideal{z_1 -2*z_0,z_2 -2*z_0,z_3
z_6 -2%z_0,z_7 -2%xz_0,z_8 +2%z_0,z_9 +2*z_0,z_10,z_

P1 == pigreco(vl)
P2 == pigreco(v2)
P3 == pigreco(v3)

P5 = pigreco(v);

112 = ideal{(toMap(saturate(P1%P2),1,1)) .matrix};
(112 + WP13 == 112 ) == false

113 = ideal{(toMap(saturate(P1%P3),1,1)) .matrix};
(113 + WP13 == 113) == false
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ib6 :
ib7 :
ib8 :
ib9 :
i60 :
i61 :
: 124 = ideal{(toMap(saturate(P2%P4)
i63 :
i64 :
i65 :
i66 :
i67 :
i68 :
i69 :
i70 :
i71
i72

i62

i73 :
i74

i75 :
i76

i77
i78 :

i79
i80 :

i81 :
i82 :
i83 :

i84 :
i85 :
i86 :
i87 :
i88 :
i89 :
i90 :
i91 :
i92 :
i93 :

114 = ideal{(toMap(saturate(P1%P4)
(114 + WP13 == 114 ) == false

115 = ideal{(toMap(saturate(P1*P5)
(115 + WP13 == 115) == true

123 = idealq{(toMap(saturate(P2*P3)
(123 + WP13 == 123) == false

(124 + WP13 == 124) == false
125 = ideal{(toMap(saturate (P2*P5)
(125 + WP13 == 125) == true
134 = ideal{(toMap(saturate (P3*P4)
(134 + WP13 == 134) == false
135 = ideal{(toMap(saturate (P3*P5)
(135 + WP13 == 135) == true
145 = ideal{(toMap(saturate (P4*P5)
(145 + WP13 == 145) == true

,1,1)) .matrix};

,1,1)) .matrix};

,1,1)) .matrix};

,1,1)) .matrix};

,1,1)) .matrix};

,1,1)) .matrix};

,1,1)) .matrix};

,1,1)) .matrix};

W’ = sub(WP13, {(gens PP13)_0 => (gens PP13’)_0, (gens PP13)_1 => (gens PP13’)_1 + 2*(gens PP13’)_0,
(gens PP13)_2 => (gens PP13’)_2 + 2%(gens PP13’)_0, (gens PP13)_3 => (gens
(gens PP13)_4 => (gens PP13’)_4 + 2x(gens PP13’)_0, (gens PP13)_5 => (gens
(gens PP13)_6 => (gens PP13’)_6 + 2*(gens PP13’)_0, (gens PP13)_7 => (gens
(gens PP13)_8 => (gens PP13’)_8 + 2x(gens PP13’)_0, (gens PP13)_9 => (gens
(gens PP13)_10 => (gens PP13’)_10, (gens PP13)_11 => (gens PP13’)_11,
(gens PP13)_12 => (gens PP13’)_12, (gens PP13)_13 => (gens PP13’)_13});
W’U0 = sub(oo, {(gens PP13’)_0 => 1});
ConeP1 = sub(tangentCone oo, {(gens PP13’)_0 => (gens PP13)_0,

(gens PP13’)_1 => (gens PP13)_1 -
(gens PP13’)_3 => (gens PP13)_3 -
(gens PP13’)_5 => (gens PP13)_5 -
(gens PP13’)_7 => (gens PP13)_7 -
(gens PP13’)_9 => (gens PP13)_9 -

(gens PP13°)_10 => (gens PP13)_10, (gens PP13’)_11
(gens PP13’)_12 => (gens PP13)_12, (gens PP13’)_13

degree oo ==

2% (gens
2% (gens
2% (gens
2% (gens
2% (gens

PP13) _0,
PP13) _0,
PP13) _0,
PP13)_0,
PP13) _0,

(gens PP13’)_2 => (gens
(gens PP13’)_4 => (gens
(gens PP13’)_6 => (gens
(gens PP13’)_8 => (gens

=> (gens PP13)_11,
=> (gens PP13)_13 });

TCOW’UO = ideal{-9*Z_1+8*Z_T+8%Z_8-4%Z_9, -9*Z_2+8%Z_T-4xZ_8+8*Z_9,
—O%Z_3-4%Z_T+8*Z_8+8%Z_9, -9%Z_4+2x7Z_T+2%Z_8-7_9, -9*Z_b5+2%Z_T-7Z_8+2*Z_9,

—O%Z_6-Z_T+2%Z_8+2%Z_9, Z_10-Z_11+Z_12, 9*Z_12"2-(-4*Z_T+8%Z_8+8*Z_9)*Z_13,

O*%Z_11"2-(8*Z_7-4*Z_8+8*Z_9)*Z_13, 9*Z_11*Z_12+(2*Z_T7+2*Z_8-10%Z_9)*Z_13,
(2%Z_7-10%Z_8+2*Z_9)*Z_11+(-10%Z_T+2+Z_8+2*Z_9)*Z_12,
(B*Z_7-6%Z_8-18*Z_9)*Z_11+(6*Z_T7-6*Z_8+18*Z_9)*Z_12,
Z_T7"2- 2%Z_T*Z_8+7Z_8"2-2%7Z_T*Z_9-2%Z_8xZ_9+Z_9°2}

oo == tangentCone W’UO

sub(ooo, {(gens PP13’)_0 => (gens
(gens PP13’)_1 => (gens PP13)_1 -
(gens PP13’)_3 => (gens PP13)_3 -
(gens PP13’)_5 => (gens PP13)_5 -
(gens PP13°)_7 => (gens PP13)_7 -
(gens PP13’)_9 => (gens PP13)_9 -

(gens PP13°)_10 => (gens PP13)_10, (gens PP13’)_11
(gens PP13°)_12 => (gens PP13)_12, (gens PP13’)_13

oo == ConeP1

-- similarly with P2,P3,P4
sub(WP13, {(gens PP13)_13=>1});
ConeP5 = tangentCone oo;

degree oo ==

PP13) _0,
2% (gens
2x (gens
2% (gens
2% (gens
2% (gens

PP13)_0,
PP13)_0,
PP13)_0,
PP13)_0,
PP13)_0,

(gens PP13’)_2 => (gens
(gens PP13’)_4 => (gens
(gens PP13’)_6 => (gens
(gens PP13°)_8 => (gens

=> (gens PP13)_11,
=> (gens PP13)_13 })

TCOW’U13 = ideal{ z_6-z_7, z_5-z_8, z_4-z_9, z_2-z_3, z_1-z_3, 2*z_0-z_3,
z_9%z_10-z_8%z_11+z_T7*z_12, z_8%z_10-z_9*z_11+z_3*z_12,
z_T*z_10-z_3%z_11+z_9%z_12, z_3*z_10-z_7*z_11+z_8%*z_12,

z_872-2_972, z_T7*z_8-z_3*z_9, z_3*z_8-z_T7*z_9,
z_7°2-z_972, z_3%z_T7-z_8%z_9, z_372-z_972 }

ConeP5 == oo

M5 = ConePb+ideal{(gens PP13)_13}
(dim oo -1, degree oo) == (2, 5)
irredCompM5 = associatedPrimes M5;
planeO=irredCompM5#0
planel=irredCompMb#1
plane2=irredCompM5#2
plane3=irredCompM5#3
plane4=irredCompM5#4

(dim(planeO+planel)-1, degree (planeO+planel)) == (1,1)
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PP13°)_3
PP13°)_5
PP13’)_7
PP13°)_9

PP13)_2
PP13)_4
PP13)_6
PP13)_8

PP13)_2
PP13)_4
PP13)_6
PP13)_8

+

+
+
+

2% (gens
2* (gens
2% (gens
2x(gens

2% (gens
2% (gens
2% (gens
2% (gens

2% (gens
2* (gens
2% (gens
2x(gens

PP13°)_0,
PP13°)_0,
PP13’)_0,
PP13°)_0,

PP13) _0,
PP13) _0,
PP13) _0,
PP13)_0,

PP13)_0,
PP13)_0,
PP13)_0,
PP13)_0,



i94 : (dim(planeO+plane2)-1, degree (planeO+plane2)) == (1,1)
i95 : (dim(planeO+plane3)-1, degree (planeO+plane3)) == (1,1)
i96 : (dim(planeO+plane4)-1, degree (planeO+planed)) == (1,1)
i97 : (dim(planel+plane2)-1, degree (planel+plane2)) == (0,1)
i98 : (dim(planel+plane3)-1, degree (planel+plane3)) == (0,1)
i99 : (dim(planel+planed)-1, degree (planel+plane4)) == (0,1)
i100 : (dim(plane2+plane3)-1, degree (plane2+plane3)) == (0,1)
i101 : (dim(plane2+planed)-1, degree (plane2+plane4)) == (0,1)
1102 : (dim(plane3+plane4)-1, degree (plane3+plane4)) == (0,1)

Code B.10. Computational analysis of W} (see § .

Macaulay2, version 1.11
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il : needsPackage "Cremona";

i2 : PP1 = ZZ/10000019[u_O,u_1];

i3 : PP1’= ZZ/10000019[v_0,v_1];

i4 : P1P1 = PP1 *x PP1’;

i6 : PP9 = 7Z/10000019[y_{0,0},y_{0,1},y_{0,2},y_{1,0},y_{1,1},
y_{1,2},y_{2,0},y_{2,1},y_{2,2},x];

i6 : antiCanonicalEmbeddingP = rationalMap map(P1P1,PP9, matrix{{u_1"2xv_1"2,
u_172%v_Oxv_1,u_1"2%v_0"2,u_1*u_O*v_1"2,u_1%u_0*v_O0*v_1,u_1*u_O0*v_0"2,
u_0"2*v_1"2,u_0"2%v_0*v_1,u_0"2%v_0"2,0}});

i7 : P = image oo;

i8 : (dim P -1, degree P) == (2, 8)

i9 : v = ideal{y_{0,0},y_{0,1},y_{0,2},y_{1,0},y_{1,1},y_{1,2},y_{2,0},y_{2,1},y_{2,2}};

i10 : numgens P == 21

i1l : V = ideal{P_1,P_2,P_3,P_4,P_5,P_6,P_7,P_8,P_9,P_10,
P_11,P_12,P_13,P_14,P_15,P_16,P_17,P_18,P_19,P_20}

i12 : (dim V -1, degree V) == (3, 8)

i13 : v00 = ideal{y_{0,1},y_{0,2},y_{1,0},y_{1,1},y_{1,2},y_{2,0},y_{2,1},y_{2,2},x};

i14 : (dim oo -1, degree oo) == (0, 1)

i16 : v02 = ideal{y_{0,0},y_{0,1},y_{1,0},y_{1,1},y_{1,2},y_{2,0},y_{2,1},y_{2,2},x};

i16 : (dim oo -1, degree oo) == (0, 1)

i17 : v20 = ideal{y_{0,0},y_{0,1},y_{0,2},y_{1,0},y_{1,1},y_{1,2},y_{2,1},y_{2,2},x};

i18 : (dim oo -1, degree oo) == (0, 1)

i19 : v22 = ideal{y_{0,0},y_{0,1},y_{0,2},y_{1,0},y_{1,1},y_{1,2},y_{2,0},y_{2,1},x};

i20 : (dim oo -1, degree oo) == (0, 1)

i21 : PP29 = ZZ/10000019[Z_0..Z_29];

i22 : phi = rationalMap map(PP9, PP29, matrix(PP9, {{y_{1,1}"2, y_{0,0}"2, y_{0,2}"2, y_{2,0}"2,
y_{2,2}"2, x°2, y_{0,1}"2, y_{1,0}"2, y_{1,2}"2, y_{2,1}"2, y_{0,1}*x, y_{1,0}*x, y_{1,2}*x,
y_{2,1}*x, y_{0,0}*y_{1,1}, y_{0,2}*y_{1,1}, y_{2,0r*y_{1,1}, y_{2,2}*y_{1,1}, y_{0,1}*y_{1,0},
y_{0,1r*xy_{1,2}, y_{1,0}*y_{2,1}, y_{1,2}xy_{2,1}, y_{0,0}*y_{0,2}, y_{0,0}*y_{2,0}, y_{0,2}*xy_{2,2},
y_{2,0r*xy_{2,2}, y_{0,1}xy_{2,1}, y_{0,0}*y_{2,2}, y_{0,2}*y_{2,0}, y_{1,0r*xy_{1,2} }}1));

i23 : phi(V)

i24 : H17 = ideal{Z_18 - Z_14, Z_19 - Z_15, Z_20 - Z_16, Z_21 - Z_17, Z_.22 - Z_6, Z_23 - Z_7,
Z_24 - 7.8, Z_25 -272_9, Z.26 - Z_0, Z_27 - Z_0, Z_28 - Z_0, Z_29 - Z_0};

i25 : phi(V) + H17 == phi(V)

i26 : PP17=ZZ/10000019[z_0..z_17];

i27 : inclusion = rationalMap map(PP17, PP29, matrix(PP17, {{ z_0,z_1,z_2,z_3,z_4,2z_5,z_6,2_7,2_8,z_9,
z_10,z_11,z_12,z_13,z_14,z_15,z_16,z_17, z_14,z_15,z_16,z_17,2_6,z_7,2_8,z_9,2_0,z_0,z_0,z_0 }}));

i28 : image oo == H17

i29 : WP17 = inclusion”* (phi(V))

i30 : (dim oo -1, degree oo) == (3, 32)

i31 : pigreca = rationalMap map(PP9,PP17, matrix(PP9, {{y_{1,1}"2, y_{0,0}"2, y_{0,2}"2,
y_{2,0}"2, y_{2,2}"2, x"2, y_{0,1}"2, y_{1,0}"2, y_{1,2}"2, y_{2,1}"2, y_{0,1}*x, y_{1,0}*x,
y_{1,2k*x, y_{2,1}*x, y_{0,0}*y_{1,1}, y_{0,2}*y_{1,1}, y_{2,0}*y_{1,1}, y_{2,2}xy_{1,1} 3}));

i32 : pigreca(V) == WP17

i33 : P1 = pigreca(v00)

i34 : P2 = pigreca(v02)
i35 : P3 = pigreca(v20)
i36 : P4 = pigreca(v22)
i37 : P5 = pigreca(v)

i38 : 112 = ideal{(toMap(saturate(P1*P2),1,1)) .matrix};
i39 : (112 + WP17 == 112) == false
i40 : 113 = ideal{(toMap(saturate(P1*P3),1,1)) .matrix};
i41 : (113 + WP17 == 113) == false
i42 : 114 = ideal{(toMap(saturate(P1*P4),1,1)) .matrix};
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i43 : (114 + WP17 == 114) == false

i44 : 115 = ideal{(toMap(saturate(P1*P5),1,1)) .matrix};
i45 : (115 + WP17 == 115) == true

i46 : 123 = ideal{(toMap(saturate(P2%P3),1,1)).matrix};
i47 : (123 + WP17 == 123) == false

i48 : 124 = ideal{(toMap(saturate(P2%P4),1,1)) .matrix};
i49 : (124 + WP17 == 124) == false

i60 : 125 = ideal{(toMap(saturate(P2%P5),1,1)) .matrix};
i51 : (125 + WP17 == 125) == true

i52 : 134 = ideal{(toMap(saturate(P3*P4),1,1)) .matrix};
i53 : (134 + WP17 == 134) == false

i54 : 135 = ideal{(toMap(saturate(P3*P5),1,1)) .matrix};
i65 : (135 + WP17 == 135) == true

i56 : 145 = ideal{(toMap(saturate(P4*P5),1,1)) .matrix};
i57 : (145 + WP17 == 145) == true

i68 : sub(WP17, {(gens PP17)_1=>1});

ib9 : ConePl = tangentCone oo

i60 : degree oo ==

i61 : sub(WP17, {(gens PP17)_2=>1});

i62 : ConeP2 = tangentCone oo

i63 : degree oo ==

i64 : sub(WP17, {(gens PP17)_3=>1});

i65 : ConeP3 = tangentCone oo

i66 : degree oo ==

i67 : sub(WP17, {(gens PP17)_4=>1});

i68 : ConeP4 = tangentCone oo

i69 : degree oo ==

i70 : sub(WP17, {(gens PP17)_5=>1});

i71 : ConeP5 = tangentCone oo

i72 : degree oo ==

i73 : M6 = ConePb+ideal{(gens PP17)_5}

i74 : time irredCompM6é = associatedPrimes M6;

i75 : planel = irredCompM6#0

i76 : plane2 = irredCompM6#1

i77 : planel’ = irredCompM6#2

i78 : plane2’ = irredCompM6#3

i79 : Q = irredCompM6#4

i80 : linel = Q+planel;

i81 : linel’ = Q+planel’;

i82 : line2 = Q+plane2;

i83 : line2’ = Q+plane2’;

i84 : (dim(linel+linel’)-1) == -1

i85 : (dim(line2+line2’)-1) == -1

i86 : ql2 = saturate(linel+line2)

i87 : q12’ = saturate(linel+line2’)

i88 : q1’2 = saturate(linel’+line2)

i89 : q1’2’ = saturate(linel’+line2’)

Code B.11. Let S, be the linear system on IP* given by the sextic surfaces of P double
along the six edges of a tetrahedron T and triple at a general point p € P3. Let us
use the notation of § and in particular let us see the proof of Theorem [10.23 Let
Y. be a general element of S, and let 7 be a general plane of P3, that is a plane not
containing the point p. Thanks to Macaulay2, one can find that the tangent cone to
Y. at p is a cone with vertex p over a cubic plane curve on 7 passing through the three
points m Nry, m Nry and 7w N r3. In particular, by moving the surface ¥, € S,, these
cubic cones cut on 7 a linear system of cubic curves whose base locus is given exactly
by the three points 7w N7y, mNry and 7 Nr3. Before providing the Macaulay2 code, let
us explain the strategy to use:

having double

:83]

points along the six edges of the tetrahedron 7' := {sgsises3 = 0}, which has

(i) we consider the linear system S of the sextic surfaces of P?so;...-
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equation
3 2.2.2 2.2 2.2.2 3
loSosyS283 + 11555155 + lasys15253 + 13555755 + 1455515253+

—I—l5503f3333 + ~|—l6303f3233 + l753313353 + lgsgslsgs§+
19575553 + 11050515553 + 11150515553 + 11250515255 + l13508355 = 0;
we choose a point p € P? sufficiently general such that, setting it as a triple
point for the surfaces of §, imposes 10 linearly independent conditions to the
coefficients lo, . .., l13: in our example we choose p:=[1:1:1: —1];

we find the equation of S,: in our example we have
l10(83818283 — 25(2)515353 + 80818%83 + S%S%sg — 2505%52% + S%S%S%)—l—

2 2.2 2 2 2.2.2
+l11( 80818283+50515253+80818253 50818983 — 50818283+80818283+50515253 515253)+

+119(s25253 + 53515053 + 250555353 + 258515052 + 515555 + 50518255 )+

+li3(— 80818283+50818283+250818253 250515253 250518283+280313283+5052s3 s%s%s%

We see that a general fibre of the rational map defined by S, is a cubic plane
curve with node at p and intersecting each edge of T at a point. We also recall
that the base locus of S, is given by the union of the six edges of T" and by three
lines 71, 72, 73 intersecting at p (see Corollary [10.18));

we consider a change of coordinates of P3, with respect to which p has coordi-
nates [0:0:0:1]. By abuse of notation let us denote the new coordinates by
[sg @+ s3]. Let 34 be a general element of S,, obtained by fixing general values
for lyg,...,l13. The point p can be viewed as the origin of the open affine set
Up := {s3 # 0} and we can find the ideal of the tangent cone T'C,(Xs N Up): in
our example we obtain

(llo — 111 + 112 — llg)Sg -+ (—110 + 111 — llg + l13)8(2)$1 — l1380$% + l133?+

—(lyo =11 +lip —113) 8280+ (2010 — 111) 508152 — 11355 52 — 1105055 — 1105155 + 1055 = 0,

thus T'C,Y, is a cone with vertex p over a cubic plane curve on the plane 7 :=

{s3=0};

by moving ¥, € S,, i.e. by varying the coefficients [y, ..., l;13, the cubic cones
TC,Y, identify a linear system of cubic plane curves on m; we see that the base
locus of this linear system is given by the union of the three points r; N7, ro N,
rs N m: we verify this by studying the intersection of the four cubic curves given

by [lip:---:l3) €{[1:0:0:0,0:1:0:0],[0:0:1:0],[0:0:0:1]}.
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Macaulay2, version 1.11
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

PP3)_1}))==(0,
PP3)_2}))==(0,
PP3)_3}))==(0,
PP3)_23}))==(0,

il : needsPackage "Cremona";
i2 : PP3 = ZZ/10000019[s_0..s_3];
i3 : -- let us take a general point of PP3 with random coordinates:

-- for i to 3 list random(-5,10)

-- in our example we take p=[1: 1: 1: -1]

p = ideal{s_O+s_3,s_1+s_3,s_2+s_3}
i4 : -- let us take the linear system of the sextic surfaces of PP3

-- double along the six edges of the coordinate tetrahedron

R = ZZ/10000019[1_0..1_13][s_0..s_3];
i5 : use R
i6 : Sigma = ideal{l_O*s_O*s_1"3%s_2%s_3+1_1%s_0"2%s_1"2xs_2"2+1_2%s_0"2%s_1"2%s_2%xs_3+

1_3%s_072%s_172%s_372+1_4%s_0"3%s_1%s_2%s_3+1_b*s_0%s_1"2%s_2"2%s_3+1_6%s_0*s_1"2%s_2%s_3"2+

1_7*s_07"2%s_1xs_272%s_3+1_8%s_0"2%s_1%s_2%s_372+1_9%s_1"2%s_272%s_372+1_10%*s_0*s_1*xs_2"3*s_3+

1_11*s_O*s_1*s_2"2%s_3"2+1_12*s_O0*s_1*s_2%s_3"3+1_13*s_0"2%s_2"2%s_3"2};
i7 : -- for a fixed value of [1_0:..:1_13], we have that Sigma is a hypersurface of PP3

-- let us find the values for [1_0:..:1_13] in order to have p as triple point for Sigma

J = jacobian(Sigma) ;
i8 : JJ = jacobian(J);
i9 : triplelocus = minors(1l,J)+minors(1,JJ)+Sigma;
i10 : substitute(triplelocus, {s_0=>1, s_1=>1, s_2=>1, s_3=>-1})
i1l : -- we have the following 10 independent conditions

substitute(oo,{1_0 => 1_13})
i12 : substitute(oo,{1_1 => 1_12})
i13 : substitute(oo,{1_2 => 1_11})
i14 : substitute(oo,{1_3 => 1_10})
i15 : substitute(oo,{1_4 => 1_10-1_11+1_12-1_13})
i16 : substitute(oo,{1_5 => -1_11 + 2x1_12 - 2x1_13})
i17 : substitute(oo,{1_6 => -2*%1_10+1_11+2%1_13})
i18 : substitute(oo,{1_7 => -2%1_10+1_11+2%1_133})
i19 : substitute(oo,{1_8 => -1_11+2%1_12-2%1_13})
i20 : substitute(oo,{1_9 => 1_10-1_11+1_12-1_13})
i21 : -- thus we let:

substitute(Sigma,{1_0 => 1_13})
i22 : substitute(oo,{1_1 => 1_12})
i23 : substitute(oo,{1_2 => 1_11})
i24 : substitute(oo,{1_3 => 1_103})
i25 : substitute(oo,{1_4 => 1_10-1_11+1_12-1_13})
i26 : substitute(oo,{1_5 => -1_11 + 2%1_12 - 2%1_13})
i27 : substitute(oo,{1_6 => -2*%1_10+1_11+2%1_13})
i28 : substitute(oo,{1_7 => -2x1_10+1_11+2*1_13})
i29 : substitute(oo,{1_8 => -1_11+2%1_12-2%1_13})
i30 : substitute(oo,{1_9 => 1_10-1_11+1_12-1_13})
i31 : -- the linear system of the sextic surfaces of PP3

-- double along the edges of the coordinate tetrahedron

-- and triple at the point p has the following equation,

-- depending on the coefficients 1_10,1_11,1_12,1_13

SigmaTripleAtp = oo
i32 : -- let us find the rational map defined by SigmaTripleAtp

generatorl = substitute( SigmaTripleAtp, {1_10 =>1, 1_11=>0, 1_12=>0, 1_13=>01})
i33 : generator2 = substitute( SigmaTripleAtp, {1_10 =>0, 1_11=>1, 1_12=>0, 1_13=>0})
i34 : generator3 = substitute( SigmaTripleAtp, {1_10 =>0, 1_11=>0, 1_12=>1, 1_13=>03})
i35 : generator4 = substitute( SigmaTripleAtp, {1_10 =>0, 1_11=>0, 1_12=>0, 1_13=>1})
i36 : PP3’ = ZZ/10000019[x_0..x_3]
i37 : sexticsbullet = rationalMap map(PP3,PP3’,matrix{{sub(generatori_0,PP3),

sub(generator2_0,PP3) ,sub(generator3_0,PP3),sub(generator4_0,PP3)}});
i38 : CayleyCubic = image oo
i39 : (dim oo -1, degree oo) == (2, 3)
i40 : -- let us find the general fibre of sexticsbullet

gamma = sexticsbullet”*(sexticsbullet(ideal{random(1,PP3),random(1,PP3),random(1,PP3)}))
i41 : (dim oo -1, degree oo) == (1, 3)
i42 : alpha = ideal{gamma_O}
i43 : (dim oo -1, degree oo) == (2, 1)
i44 : (dim(gamma+ideal{(gens PP3)_0, (gens PP3)_1})-1, degree(gamma+ideal{(gens PP3)_0, (gens
i45 : (dim(gammat+ideal{(gens PP3)_0, (gens PP3)_2})-1, degree(gamma+ideal{(gens PP3)_0, (gens
i46 : (dim(gamma+ideal{(gens PP3)_0, (gens PP3)_3})-1, degree(gamma+ideal{(gens PP3)_0, (gens
i47 : (dim(gammat+ideal{(gens PP3)_1,(gens PP3)_2})-1, degree(gamma+ideal{(gens PP3)_1, (gens
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i48 :
i49 :
i50 :
ib1 :
ib2 :

ib3

ib4 :
ib5b :
ib6 :
ib7 :

ib8 :

i59 :

i60 :
i6l :
i62 :

i6é3 :
i64 :
i65 :
i66 :
i67 :

i68 :

i69 :

(dim(gamma+ideal{(gens PP3)_1, (gens PP3)_3})-1, degree(gamma+ideal{(gens PP3)_1, (gens PP3)_3}))==(0, 1)
(dim(gamma+ideal{(gens PP3)_2, (gens PP3)_3})-1, degree(gamma+ideal{(gens PP3)_2,(gens PP3)_3}))==(0, 1)
(alpha+p == p, gamma+p == p) == (true, true)

(p == saturate(gamma+minors(2, jacobian(gamma)))) == true

-- let us find the base locus of SigmaTripleAtp

associatedPrimes(ideal sexticsbullet)

: —— it is the union of the six edges of T, the point p

-- and the following three lines rl, r2, r3 intersecting at p

-- such that ri intersects the edges ideal{s_j,s_k}, ideal{s_0,s_i}

-- for i,j,k distinct indices in {1,2,3}

use PP3

rl = ideal{s_2+s_3,s_0-s_1}

r2 = ideal{s_1+s_3,s_0-s_2}

r3 = ideal{s_1-s_2,s_0+s_3}

-- let us find the tangent cone at the point p

-- to a general sextic surface of the linear system SigmaTripleAtp

newR = ZZ/10000019[1_10,1_11,1_12,1_13]1[s_0..s_3];

-- let us consider the change of coordinates thanks to which

-- the point p is the point [0:0:0:1]

-- (by abuse of notation ,let [s_0..s_3] be the new coordinates)

substitute(SigmaTripleAtp, newR)

sub(oo, {(gens newR)_0 =>(gens newR)_O-(gens newR)_3, (gens newR)_1=>(gens newR)_1-(gens newR)_3,

(gens newR)_2=>(gens newR)_2-(gens newR)_3, (gens newR)_3=>(gens newR)_3});

sub(oo, {(gens newR)_3 => 1})

TCp = tangentCone oo

-- TCp is a cone of vertex p over a cubic plane curve on the plane ideal{s_3}.

-- By moving the surfaces of the linear system, i.e. by varying the values 1_10,1_11,1_12,1_13,

-- we obtain a linear system of cubic plane curves on ideal{s_3} which has only three base points,

-- given by the intersection with the three lines rl1, r2, r3

c0 =sub(ideal{sub(TCp,{1_10=>1, 1_11=>0, 1_12=>0, 1_13=>0})},PP3)

cl =sub(ideal{sub(TCp,{1_10=>0, 1_11=>1, 1_12=>0, 1_13=>0})},PP3)

c2 =sub(ideal{sub(TCp,{1_10=>0, 1_11=>0, 1_12=>1, 1_13=>0})},PP3)

c3 =sub(ideal{sub(TCp,{1_10=>0, 1_11=>0, 1_12=>0, 1_13=>1})},PP3)

threepts = associatedPrimes(ideal{(gens PP3)_3}+cO+cl+c2+c3)

threepts#0 == ideal{(gens PP3)_3}+sub(rl, {(gens PP3)_0 =>(gens PP3)_0-(gens PP3)_3,
(gens PP3)_1=>(gens PP3)_1-(gens PP3)_3, (gens PP3)_2=>(gens PP3)_2-(gens PP3)_3,
(gens PP3)_3=>(gens PP3)_3})

threepts#1 == ideal{(gens PP3)_3}+sub(r2, {(gens PP3)_0 =>(gens PP3)_0-(gens PP3)_3,
(gens PP3)_1=>(gens PP3)_1-(gens PP3)_3, (gens PP3)_2=>(gens PP3)_2-(gens PP3)_3,
(gens PP3)_3=>(gens PP3)_3})

threepts#2 == ideal{(gens PP3)_3}+sub(r3, {(gens PP3)_0 =>(gens PP3)_0-(gens PP3)_3,
(gens PP3)_1=>(gens PP3)_1-(gens PP3)_3, (gens PP3)_2=>(gens PP3)_2-(gens PP3)_3,
(gens PP3)_3=>(gens PP3)_3})
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