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0 Introduzione (Italian)

Oggetto di studio della presente tesi sono le Enriques-Fano threefolds. Si definisce
Enriques-Fano threefold una varietà algebrica normale tridimensionale W , dotata di
un sistema lineare completo L di divisori ampi di Cartier, tale che il generico elemento
S ∈ L sia una superficie di Enriques e tale che W non sia un cono generalizzato su
S. Il sistema lineare L induce una mappa razionale φL : W 99K Pp, dove p è chiamato
genere dell’Enriques-Fano threefold W e si ha 2 ≤ p ≤ 17 (si vedano [36] and [46]).
Anche se impropriamente, gli elementi di L sono detti sezioni iperpiane di W , e le
intersezioni di due elementi di L sono dette curve sezioni di W . La classificazione
delle Enriques-Fano threefolds è ancora un problema aperto. Al fine di capire come
completarla, analizzeremo le Enriques-Fano threefolds già note, adoperando anche un
approccio computazionale con l’ausilio del software Macaulay2. Individueremo inoltre
la decomposizione isotropica semplice delle curve sezioni delle Enriques-Fano three-
folds conosciute. Infine riprenderemo un’idea incompleta di Castelnuovo, adattandola
al caso della Enriques-Fano threefold classica di genere 13.

Nello specifico, elencheremo in § 3 gli esempi noti di Enriques-Fano threefolds e
le loro proprietà. Ricordiamo che Fano ha trovato Enriques-Fano threefolds di genere
p = 4, 6, 7, 9, 13 (si veda [23]), Bayle (e anche Sano, con un lavoro simile ma indipen-
dente) ha individuato esempi con 2 ≤ p ≤ 10 e p = 13 (si vedano [1] e [48]), Prokhorov
con p = 13, 17 (si veda [46, §3]) e infine Knutsen-Lopez-Muñoz con p = 9 (si veda [36,
§13]). Denoteremo gli esempi di questi autori, rispettivamente, con W p

F , W p
BS, W p

P e
W p
KLM .

È noto che ogni Enriques-Fano threefold (W,L) ha singolarità isolate canoniche (si
veda [6]). Diremo che due punti singolari distinti di W sono associati (o congiunti,
usando le parole di Fano) se φL : W ↪−→ Pp è un embedding e se la retta che li unisce
è contenuta in W . Chiameremo configurazione dei punti singolari di W il modo in
cui essi sono associati. In particolare, se ogni punto singolare è associato allo stesso
numero degli altri, diremo che i punti singolari di W sono simili. Più in generale i punti
singolari di W sono detti simili se “si comportano tutti allo stesso modo”. Il concetto
di punti singolari associati e simili è importante nella costruzione degli esempi di Fano:
in § 4 daremo un’idea del perchè. Tuttavia non forniremo troppi dettagli sul lavoro
di Fano: infatti esso probabilmente contiene altre imprecisioni nascoste oltre a quelle
individuate da Conte e Murre nel loro articolo [14]. Per questo motivo, esamineremo
in § 5 gli esempi razionali W p=6,7,9,13

F trovati da Fano come immagini di sistemi lin-
eari su P3; usando tecniche di scoppiamenti, verificheremo che essi sono effettivamente
Enriques-Fano threefolds e che sono immerse in Pp con otto punti quadrupli simili
aventi come cono tangente il cono sulla Veronese. Ritroveremo anche le configurazioni
usate da Fano, dando quindi giustificazione alle sue affermazioni.

Anche le Enriques-Fano threefolds W p
BS hanno otto punti quadrupli con cono tan-

gente il cono sulla Veronese. Sei di queste threefolds, di genere p = 6, 7, 8, 9, 10, 13, sono
immerse in Pp e verranno analizzate computazionalmente in § 6. In particolare, mostr-
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eremo che i punti singolari di W p=6,7,9,13
BS sono simili e che hanno le stesse configurazioni

di quelli di W p=6,7,9,13
F . Vedremo pure che, per p = 9, 13, l’embedding di W p

BS in Pp
è proprio W p

F . Mostreremo infine le Enriques-Fano threefolds W p=8,10
BS come immagini

di sistemi lineari su P3 e troveremo che i loro otto punti quadrupli, nonostante siano
simili, hanno configurazioni che sono state escluse da Fano: ciò suggerisce che in [23]
potrebbero esserci ulteriori problemi nascosti.

In § 7 e § 8 esamineremo le Enriques-Fano threefolds W 9
KLM , W 13

P e W 17
P . È noto

che W 9
KLM e W 17

P hanno singolarità canoniche non terminali, ma finora non c’erano
informazioni sulle loro molteplicità e sui coni tangenti. Con un’analisi computazionale,
mostreremo che W 9

KLM e W 17
P hanno quattro punti quadrupli, il cui cono tangente

è un cono sulla Veronese, e un punto sestuplo, il cui cono tangente è un cono su una
superficie sestica riducibile nell’unione di quattro piani e di una superficie quadrica. Ap-
profondiremo anche lo studio di W 13

P , che è stata solamente menzionata da Prokhorov.
Mostreremo che W 13

P ha quattro punti quadrupli, il cui cono tangente è un cono sulla
Veronese, e un punto quintuplo, il cui cono è un cono sull’unione di cinque piani.
Quindi W 9

KLM e W p=13,17
P hanno punti singolari non simili.

Sia H la classe di una curva sezione su una sezione iperpiana liscia S di una nota
Enriques-Fano threefold W . In § 9 descriveremo la decomposizione isotropica sem-
plice di H (si veda [9, Corollario 4.7] per maggiori dettagli) e individueremo il valore
φ(H) := min{E ·H|E ∈ NS(S), E2 = 0, E > 0}. Ricordiamo che il valore φ e le decom-
posizioni isotropiche semplici permettono in genere di identificare le varie componenti
dello spazio dei moduli delle superfici di Enriques polarizzate. Dunque la nostra anal-
isi suggerisce a quali famiglie appartengono le sezioni iperpiane delle Enriques-Fano
threefolds.

Infine analizzeremo il sottosistema lineare L• ⊂ L delle sezioni iperpiane della
Enriques-Fano threefold W 13

F che sono triple in un punto generico w ∈ W 13
F (si veda

§ 10). Mostreremo che un generico elemento di questo sistema lineare è birazionale ad
una superficie rigata ellittica, e che l’immagine di W 13

F tramite la mappa indotta da L• è
una superficie cubica di Del Pezzo ∆ ⊂ P3 con 4 nodi (si veda Theorem 10.25). Questo
risultato è interessante perché è legato ad una congettura di Castelnuovo enunciata in
[4, pp.187-188]: supponiamo di avere una threefold irriducibile liscia razionale W e un
sistema lineare r-dimensionale L su W tale che il suo generico elemento sia una superfi-
cie liscia irriducibile S con genere geometrico nullo pg(S) = 0 e genere aritmetico nullo
pa(S) = 0. Cosa succede se imponiamo alle superfici di L di avere un punto triplo in un
punto generico w ∈ W? Castelnuovo congettura che si debba ottenere un sottosistema
lineare (r− 10)-dimensionale L• tale che la generica superficie S• soddisfi una delle tre
seguenti proprietà: S• è una superficie irriducibile con desingularizzazione irregolare
S̃• tale che pg(S̃•) = 0 e pa(S̃•) = −1; S• è riducibile in due superfici razionali che si
intersecano in una curva razionale; S• preserva gli stessi generi geometrico e aritmetico
di una generica S ∈ L. Estenderemo le idee di Castelnuovo a threefolds normali con
singolarità isolate e con desingularizzazione regolare, quali le Enriques-Fano threefolds,
e troveremo che W 13

F e W 17
P soddisfano la prima proprietà ipotizzata da Castelnuovo.
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Lavoreremo nel campo C dei numeri complessi. Per le analisi computazionali lavor-
eremo in un campo finito (sceglieremo Fn := Z/nZ con n = 10000019). In Appendix A
descriveremo graficamente le configurazioni dei punti singolari di alcune Enriques-Fano
threefolds. In Appendix B collezioneremo i codici input usati in Macaulay2.

È in corso la stesura di più articoli tratti dalla presente tesi di Dottorato: attual-
mente essi sono [38], [39], [40], [41].
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fondamentali per la stesura di questa tesi di dottorato: in particolare Concettina Galati
per avermi spronato ad intraprendere la strada della ricerca e per avermi aiutato a
muovere i primi passi nel mondo della geometria algebrica; Ciro Ciliberto per avermi
proposto un argomento interessante e ricco di spunti per nuovi progetti, per essere stato
paziente nell’insegnarmi tecniche e concetti a me sconosciuti e per avermi reso partecipe
delle sue brillanti idee; Andreas Leopold Knutsen per l’interesse che ha sempre mostrato
verso il mio lavoro e per le stimolanti conversazioni durante il mio periodo all’estero
in Norvegia. Ringrazio poi la mia collega Martina Anelli con la quale ho condiviso le
gioie e i dolori del dottorato. Infine ringrazio chiunque mi sia stato accanto durante
questo percorso, soprattutto la mia famiglia, per avermi sostenuto moralmente anche
quando credevo di non farcela, e i miei amici, per aver creduto sempre in me.
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1 Introduction

The research objects of this thesis are the Enriques-Fano threefolds. An Enriques-Fano
threefold is a normal threefold W endowed with a complete linear system L of ample
Cartier divisors such that the general element S ∈ L is an Enriques surface and such
that W is not a generalized cone over S. The linear system L defines a rational map
φL : W 99K Pp where p is called the genus of W and it must be 2 ≤ p ≤ 17 (see [36]
and [46]). Though improperly, we will refer to the elements of L as hyperplane sections
of W and to the curve intersections of two elements of L as curve sections of W . The
classification of Enriques-Fano threefolds is still an open problem. In order to under-
stand how to complete it, we will analyze known Enriques-Fano threefolds, also using
a computational approach thanks to the Macaulay2 software. We will also identify
the simple isotropic decompositions of the curve sections of the known Enriques-Fano
threefolds. Finally we will take up an incomplete idea of Castelnuovo, applying it to
the case of the classical Enriques-Fano threefold of genus 13.

In particular, we will list the known Enriques-Fano threefolds and their properties
in § 3. We recall that Fano found examples of genus p = 4, 6, 7, 9, 13 (see [23]), Bayle
(and, in a similar and independent way, Sano) found examples with 2 ≤ p ≤ 10 and
p = 13 (see [1] and [48]), Prokhorov with p = 13, 17 (see [46, §3]) and finally Knutsen-
Lopez-Muñoz with p = 9 (see [36, §13]). We will denote the Enriques-Fano threefolds
of the above authors, respectively, by W p

F , W p
BS, W p

P , W p
KLM .

It is known that every Enriques-Fano threefold (W,L) has isolated canonical sin-
gularities (see [6]). We will say that two distinct singular points of W are associated
if φL : W ↪−→ Pp is an embedding and if the line joining them is contained in W .
The way in which the singular points of W are associated is called the configuration
of the singular points of W . In particular, if each singular point of W is associated
with the same number of the others, we will say that the singular points of W are
similar. More generally, the singular points of W are called similar if they all “behave
in the same way”. The notions of association and similarity of the singular points of an
Enriques-Fano threefold are important in Fano’s construction: we will explain why in
§ 4. However, we will not give too much details of the description of Fano’s work, since
it probably contains other hidden gaps in addition to those identified by Conte and
Murre in [14]. For this reason, in § 5 we will examine the rational examples W p=6,7,9,13

F

found by Fano as images of linear systems on P3; by using blow-ups techniques, we will
verify that they actually are Enriques-Fano threefolds and that they are embedded in
Pp with eight similar quadruple points, whose tangent cone is a cone over a Veronese
surface. We will also find the configurations used by Fano, thus justifying his state-
ments.

The Enriques-Fano threefolds W p
BS also have eight quadruple points, whose tangent

cone is a cone over a Veronese surface. Six of these ones (of genus p = 6, 7, 8, 9, 10, 13)
are embedded in Pp and we will computationally study them in § 6. In particular, we
will show that the singular points of W p=6,7,9,13

BS are similar and that they have the same

6



configurations of the ones of W p=6,7,9,13
F . Moreover, we will prove that, for p = 9, 13,

the embedding of W p
BS in Pp is the threefold W p

F . We will also show how to construct
the Enriques-Fano threefolds W p=8,10

BS as images of linear systems on P3. Finally we will
find that the eight quadruple points of W p=8,10

BS are similar but they have configurations
that were excluded by Fano: this suggests that there may be further hidden gaps in [23].

We will also examine the Enriques-Fano threefolds W 9
KLM , W 13

P , W 17
P (see § 7, 8).

It is known that W 9
KLM and W 17

P have canonical non-terminal singularities, but so far
there was no information about their multiplicities and tangent cones. With a com-
putational analysis, we will show that W 9

KLM and W 17
P have four quadruple points,

whose tangent cone is a cone over a Veronese surface, and one sextuple point, whose
tangent cone is a cone over the union of four planes and a quadric surface. We will also
deepen the study of W 13

P , which was mentioned very briefly by Prokhorov. In particu-
lar, we will show that it has four quadruple points, whose tangent cone is a cone over
a Veronese surface, and a quintuple point, whose tangent cone is a cone over the union
of five planes. Anyhow, the threefolds W 9

KLM , W 13,17
P have non-similar singular points.

Let us denote by H the class of a curve section on a smooth hyperplane section
S ∈ L of a known Enriques-Fano threefold (W,L). In § 9 we will describe the simple
isotropic decomposition of H (see [9, Corollary 4.7] for the existence) and the value
φ(H) := min{E · H|E ∈ NS(S), E2 = 0, E > 0}. We recall that the number φ and
the simple isotropic decompositions allow us to identify the various components of the
moduli space of the polarized Enriques surfaces. Thus our analysis suggests which
families the hyperplane sections of the Enriques-Fano threefolds belong to.

Finally we will analyze the sublinear system L• ⊂ L of the hyperplane sections of
the Enriques-Fano threefold W 13

F having a triple point at a general point w ∈ W 13
F (see

§ 10). We will show that a general element of this linear system is birational to an
elliptic ruled surface and that the image of W 13

F via the rational map defined by L• is a
cubic Del Pezzo surface ∆ ⊂ P3 with 4 nodes (see Theorem 10.25). This is interesting
because it is related to a Castelnuovo’s conjecture stated in [4, pp. 187-188]: let us
suppose we have a rational smooth irreducible threefold W and an r-dimensional linear
system L on W such that the general element is a smooth irreducible surface S with
zero geometric genus pg(S) = 0 and zero arithmetic genus pa(S) = 0. What happens if
we force the surfaces of L to have a triple point at a general point w ∈ W? Castelnuovo
thinks that we get an (r − 10)-dimensional sublinear system L• such that the general
surface S• satisfies one of the following three properties: it is an irreducible surface with
irregular desingularization S̃• which has pg(S̃•) = 0 and pa(S̃•) = −1; it is reducible
in two rational surfaces intersecting along a rational curve; it has the same genera as
a general surface S ∈ L. We will resume the ideas of Castelnuovo adapting them to
normal threefolds with isolated singularities and regular desingularization. Examples
of such threefolds are the Enriques-Fano threefolds. We will find that W 13

F and W 17
P

satisfy the first property conjectured by Castelnuovo.

We will work over the field C of the complex numbers. For the computational anal-
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ysis we will work over a finite field (we will choose Fn := Z/nZ with n = 10000019).
In Appendix A we will graphically describe the configurations of the singular points of
some Enriques-Fano threefolds. In Appendix B we will collect the input codes used in
Macaulay2.

Some papers taken from this PhD thesis are currently being written (see [38], [39],
[40], [41]).

2 Terminology

In this section we gather the basic definitions and the standard conventions that we
will use afterwards. We recommend [27], [28], [29], [37] for more details. Let X be
a projective variety: we say that X is a curve, a surface or a threefold if dimX is
respectively equal to 1, 2 or 3.

We recall that a variety is normal if the local ring at every point of the variety is
an integrally closed ring. A projective variety X ⊂ Pr is said to be projectively nor-
mal (with respect to the given embedding) if its homogeneous coordinate ring S(X)
is integrally closed. It is known that X ⊂ Pr is projectively normal if and only if
X is normal and for every k > 0 the natural map H0(Pr,OPr(k)) → H0(X,OX(k))
is surjective. If the previous map is surjective for k = 1, we say that X is linearly
normal. A projective variety X ⊂ Pr is said to be arithmetically Cohen-Macaulay if
its homogeneous coordinate ring S(X) is Cohen-Macaulay, which is equivalent to have
H1(Pr, IX|Pr(k)) = 0 and H i(X,OX(k)) = 0 for all k > 0 and for all 0 < i < dimX
(see [21, Exercise 18.16.b]). If a projective variety X ⊂ Pr is normal and arithmetically
Cohen-Macaulay, then it is projectively normal.

Let D be a Cartier divisor on a projective variety X. We will use the symbols ∼
and ≡ for the linear equivalence and the numerical equivalence, respectively. We will
denote by |OX(D)|, or simply by |D|, the complete linear system of divisors linearly
equivalent to D on X. Linear systems of dimension 1 are called pencils. We will say
that

(i) D is big if maxm∈N{dimφ|mD|(X)} = dimX, where
φ|mD| : X 99K P(H0(X,OX(mD))) is the rational map associated with |mD|;

(ii) D is semi-ample if the linear system |mD| is base point free for some m > 0 and
so it defines a morphism φ|mD| : X → P(H0(X,OX(mD)));

(iii) D is very ample if the linear system |D| is base point free and the associated
morphism is a closed embedding φ|D| : X ↪→ P(H0(X,OX(D)));

(iv) D is ample if mD is very ample for some m > 0.

Furthermore if dimX ≥ 2

(v) D is said to be nef if D · C ≥ 0 for all irreducible curves C ⊂ X.
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We have that “semi-ampleness” ⇒ “nefness”, and obviously that

“very-ampleness” ⇒ “ampleness” ⇒ “bigness” and “semi-ampleness”.

We recall now some known results which we will implicitly use in next sections.

Proposition 2.1. [37, p. 139] Let X be a normal projective variety and let D be a
Cartier divisor on X. Then D is big if and only if the rational map φ|mD| : X 99K
P(H0(X,OX(mD))), defined by the linear system |mD|, is birational onto its image
for some m > 0.

Proposition 2.2. If f : Y → X is a birational morphism between two projective
varieties and if D is a big divisor on X, then f ∗D is a big divisor on Y .

Proof. It follows by the inequality h0(Y,OY (f ∗D))) ≥ h0(X,OX(D)) and by [37,
Lemma 2.2.3].

Remark 2.3. [37, Example 1.4.4] Let f : Y → X be a proper mapping. If D is a nef
divisor on X, then f ∗D is a nef divisor on Y .

Proposition 2.4. [37, Example 1.4.5] Let |D| be a linear system on a projective variety
X with the property that |D| is base point free. Then D is nef.

Theorem of Zariski-Fujita. [37, Remark 2.1.32] Let |D| be a linear system on a
projective variety X with the property that the base locus is a finite set. Then D is
semiample.

We will denote by KX the canonical divisor of a smooth projective variety X. The
numbers pg(X) := h0(X,OX(KX)) and Pn(X) := h0(X,OX(nKX)) are called respec-
tively the geometric genus and the n-th plurigenus of X, where n is a positive integer.
Another important number associated with a variety X is the arithmetic genus, de-
noted by pa(X) := (−1)dimX(χ(OX)−1). We recall that the irregularity of a projective
variety X is the number q(X) := h1(X,OX) and that X is called regular if q(X) = 0,
otherwise it is said to be irregular. If X is a singular projective variety, we say that X
has a regular (respectively irregular) desingularization if for each resolution of singu-

larities f : X̃ → X we have q(X̃) = 0 (respectively q(X̃) > 0). If p is a smooth point
of a projective variety X, we will denote the tangent space to X at p by the symbol
TpX; if p is a singular point of a projective variety X, we will denote the tangent cone
to X at p by the symbol TCpX.

Finally let us recall some fact and some notation about the blow-ups of threefolds.
We recommend [27, Chap 4, §6] and [32, Lemma 2.2.14] for more details. Let X be
a smooth threefold, let p ∈ X be a point and let C ⊂ X be a smooth curve. If
f : BlpX → X is the blow-up of X at p with exceptional divisor Ep := f−1(p), then
we have Ep ∼= P2. If g : BlC X → X is the blow-up of X along C with exceptional
divisor EC := g−1(C), then EC is a P1-bundle over C and it is identified with the
projectification P(NC|X) of the normal bundle of C in X. We recall that if C ⊂ X
is the complete intersection of two surfaces S, S ′ ⊂ X, then NC|X ∼= OC(S) ⊕ OC(S ′)
(see [11, Example 10.2]). Let us see an example. Let l be a line of P3 and let us take
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n points q1, . . . , qn on l. We have Nl|P3
∼= OP1(1)⊕OP1(1). Let X := Blq1,...,qn → P3 be

the blow-up of P3 at the points q1, . . . , qn with exceptional divisors Ei := bl−1(qi), for
1 ≤ i ≤ n. If C ⊂ X denotes the strict transform of l ⊂ P3, then C is the complete
intersection of the strict transforms of two hyperplane of P3 containing q1, . . . , qn. Thus
we have

NC|X ∼= OC
(
H −

n∑
i=1

Ei

)
⊕OC

(
H −

n∑
i=1

Ei

)
∼= OP1(1− n)⊕OP1(1− n),

where H denotes the pullback of the hyperplane class of P3.

3 Known Enriques-Fano threefolds

3.1 Preliminaries on Enriques-Fano threefolds

Let us recall that an Enriques surface is a smooth, irreducible surface S with zero
irregularity q(S) = 0 and non-trivial canonical divisor KS such that 2KS ∼ 0.

Definition 3.1. A pair (W,L), or simply W , is called Enriques-Fano threefold if

(i) W is a normal threefold;

(ii) L is a complete linear system of ample Cartier divisors on W such that the general
element S ∈ L is an Enriques surface;

(iii) W is not a generalized cone over S, i.e., W is not obtained by contraction of the
negative section on the P1-bundle P(OS ⊕OS(S)) over S.

We define the genus and the degree of an Enriques-Fano threefold (W,L) to be
respectively the values p := S3

2
+ 1 and deg(W ) := S3, where S is a general element of

L. Hence deg(W ) = 2p−2. The linear system L defines a rational map φL : W 99K Pp,
where dimL = p ≥ 2. Furthermore the genus p of an Enriques-Fano threefold (W,L)
is at most 17 and the bound is sharp (see [36] and [46]). Though improperly, we will
refer to the elements of L as hyperplane sections of W and to the curve intersections
of two elements of L as curve sections of W .

Definition 3.2. Let W be a normal variety such that KW is Q-Cartier and let f :
W̃ → W be a resolution of the singularities, with irreducible exceptional divisors Ei.
Since we have KW̃ = f ∗ (KW ) +

∑
aiEi with ai ∈ Q, we say that the singularities of

W are terminal if ai > 0 for all i and we say that they are canonical if ai ≥ 0 for all i.

It is known that any Enriques-Fano threefold (W,L) is singular with isolated sin-
gularities (see [14, Lemma 3.2]): moreover KW is 2-Cartier and the singularities are
canonical (see [6]). Furthermore W has regular desingularization (see [10, Lemma 4.1]).

The classification of Enriques-Fano threefolds (W,L) is still an open problem, but
examples have been found by several authors. The first to deal with this problem was
Fano, who proposed in [23] an incomplete classification: he claimed that Enriques-Fano
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threefolds exist only for p = 4, 6, 7, 9, 13, but his arguments contain some gaps. Indeed,
Conte and Murre proved, under certain assumptions, results that Fano had only stated
(see [14]). However, Conte and Murre did not address the classification problem. Under
the assumption that the singularities of W are terminal cyclic quotients, Enriques-Fano
threefolds were classified by Bayle in [1] (and in a similar and independent way by Sano
in [48]). If W is an Enriques-Fano threefold found Bayle and Sano, then it has genus
2 ≤ p ≤ 10 or p = 13; furthermore W is the quotient of a smooth Fano threefold X via
an involution σ with 8 fixed points, and W itself has 8 quadruple points, whose tangent
cone is a cone over a Veronese surface. More generally, if an Enriques-Fano threefold
has terminal singularities, then it admits a Q-smoothing, i.e., it appears as central
fibre of a small deformation over the 1-parameter unit disk such that a general fibre
has only cyclic quotient terminal singularities (see [44, Main Theorem 2]). Hence every
Enriques-Fano threefold with only terminal singularities is a limit of someone discovered
by Bayle and Sano. Thus, to complete the classification, one has to consider the case of
non-terminal canonical singularities. Only a few examples of Enriques-Fano threefolds
with non-terminal canonical singularities are known: one of genus p = 9 found by
Knutsen, Lopez and Muñoz in [36, §13] and another one of genus p = 17 found by
Prokhorov in [46, §3]. Finally there is an Enriques-Fano threefold of genus p = 13,
which was mentioned very briefly by Prokhorov (see [46, Remark 3.3]).

3.2 List of known Enriques-Fano threefolds

We will list the known Enriques-Fano threefolds, we will talk about their properties
and we will give some notation. First we recall two definitions.

Definition 3.3. Let R be a 3-dimensional linear system of quadric sufaces of P3. Let
us suppose that R is sufficiently general, i.e. R is base point free and, if l is a double
line for Q ∈ R, then Q is the unique quadric in R containing l. A Reye congruence
is a surface obtained as the set {l ∈ G(1, 3)|l is contained in a pencil contained in R},
where G(1, 3) denotes the Grassmannian variety of lines in P3.

Definition 3.4. A surface in P3 has ordinary singularities if it has at most the following
singularities: a curve γ of double points (that are generically the transverse intersection
of two branches), with at most finitely many pinch points and with γ having at most
finitely many triple points as singularities, with three independent tangent lines, which
are triple points also for the surface.

We will call F-EF 3-folds the Enriques-Fano threefolds found by Fano. They are:

(i) the Enriques-Fano threefold W 6
F ⊂ P6 of genus p = 6 given by the image of P3 via

the linear system P of the septic surfaces with double points along three twisted
cubics having five points in common (see [23, §3]):

– this threefold is rational ;

– the hyperplane sections of this threefold are Reye congruences (see also [13,
Proposition 3]);

– a general P ∈ P has ordinary singularities;
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(ii) the Enriques-Fano threefold W 7
F ⊂ P7 of genus p = 7 given by the image of P3

via the linear system X of the sextic surfaces having double points along the six
edges of a tetrahedron and containing a plane cubic curve intersecting each edge
at one point (see [23, §4]):

– this threefold is rational ;

– a general X ∈ X has ordinary singularities;

(iii) the Enriques-Fano threefold W 9
F ⊂ P9 of genus p = 9 given by the image of P3

by the linear system K of the septic surfaces having double points along the six
edges of two trihedra (see [23, §7]):

– this threefold is rational ;

– a general K ∈ K has ordinary singularities;

– the locus of pairs of trihedra, up to automorphisms of P3, has dimension
3 = 18− 15: indeed the vertex of a trihedron moves in a P3 and each one of
its three faces moves in a P2; we observe that 3 is the number of moduli of
the Enriques-Fano threefolds of genus 9 contained in [1] and [48] (see (XII)
below);

(iv) the Enriques-Fano threefold W 13
F ⊂ P13 of genus p = 13 given by the image of P3

via the linear system S of the sextic surfaces having double points along the six
edges of a tetrahedron (see [23, §8]):

– this threefold is rational ;

– a general Σ ∈ S has ordinary singularities;

– we will also refer to this threefold as the classical Enriques-Fano threefold ;

and one “exceptional” case (see § 4.3 to understand better):

(0) the famous Enriques threefold W 4
F ⊂ P4, which is a singular sextic hypersurface

whose hyperplane section is a sextic surface in P3 with double points along the
six edges of a tetrahedron (see [23, §10]):

– it has equation

x1x2x3x4(x2
0 + x0

∑4
i=1 aixi +

∑4
i,j=1 bijxixj)+

+c1x
2
2x

2
3x

2
4 + c2x

2
1x

2
3x

2
4 + c3x

2
1x

2
2x

2
4 + c4x

2
1x

2
2x

2
3 = 0,

where x0, . . . , x4 are the homogeneous coordinates of P4, and ai, bij and ci
are sufficiently general complex numbers;

– it has double points along six planes, which are given by the intersections
of four spaces P3 two by two and which all pass through the same point;

– the general Enriques threefolds W 4
F have been proved to be non-rational by

Picco-Botta and Verra in [45];

– it is also contained in [1] and [48] (see (IV) below).
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Furthermore, as noted by Conte in [12, p. 225], there is also another “hidden” excep-
tional case:

(00) the threefold W 3
F given by a quadruple P3 (see [23, §2]);

– it is worth mentioning it, because it is also contained in [1] and [48] (see (II)
below).

In § 4 we will summarize Fano’s approach and Conte-Murre’s work. Furthermore
in § 5 we will describe the rational F-EF 3-folds in modern language via blow-up tech-
niques.

In order to classify Enriques-Fano threefolds, Bayle assumes the following fact.

Assumption (B). Let (W,L) be an Enriques-Fano threefold such that W is the quo-
tient X/σ of a smooth Fano threefold X where σ is an involution of X with finitely
many fixed points.

The number of fixed points of the involution σ of Assumption B must be 8 (see [1,
§4.1]). Moreover, the images of these 8 points of X, via the quotient map π : X → W ,
are eight singular points of W whose tangent cone is a cone over a Veronese surface
(see [1, §3]). Bayle’s approach to the classification is as follows. By Assumption B, we
have that

(i) b2(X) + b3(X)
2
≡ 1 (mod 2), where bi(X) := rankHi(X,R) is the ith Betti’s num-

ber of X (see [1, §4.2]);

(ii) degX := (−KX)3 = 4p− 4 is divisible by 4 (see [1, §4.3]).

In order to classify the Enriques-Fano threefolds W satisfying Assumption B, Bayle
considers all the smooth Fano threefolds, classified by Iskovskih in [30] and [31] and
by Mori and Mukai in [42], and he eliminates the ones that do not satisfy the above
two properties: though a Fano threefold has been erroneously omitted by Mori and
Mukai, this has no consequence for Bayle’s work, since the degree of this threefold is
not divisible by 4 (see [43]). By studying the remaining smooth Fano threefolds, Bayle
finds that only 14 of them have an involution with 8 fixed points: thus he finds fourteen
Enriques-Fano threefolds, by constructing the quotient map π : X → W as the map
defined by the sublinear system of | − KX | given by the σ-invariant elements. These
threefolds are also contained in [48], so we will refer to them as BS-EF 3-folds. They
are:

(I) the Enriques-Fano threefold W 2
BS of genus p = 2 given by the quotient of a double

cover of a smooth quadric hypersurface of P4 branched in an optic surface (see
[1, §6.1.6]):

– in this case φL : W 2
BS 99K P2 is a rational map;

– according to [1, p. 23], these W 2
BS depend on 25 moduli;

– these W 2
BS can be also obtained as quotient of the complete intersection of

a quadric and quartic in P(15; 2);
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– it is also found by Sano (see [48, Theorem 1.1 No.1]);

– Cheltsov conjectures that W 2
BS is non-rational (see [8, Conjecture 19]);

(II) the Enriques-Fano threefold W 3
BS of genus p = 3 given by the quotient of the

complete intersection of three quadric hypersurfaces of P6 (see [1, §6.1.5]):

– in this case φL : W 3
BS → P3 is a morphism and it is a quadruple cover of

P3;

– according to [1, p. 22], the number of moduli of W 3
BS is 15;

– it is also found by Sano (see [48, Theorem 1.1 No.2]);

– Cheltsov conjectures that W 3
BS is non-rational ([8, Conjecture 19]);

(III) the Enriques-Fano threefold W
3

BS of genus p = 3 given by the quotient of the
blow-up of B2 along a curve given by the intersection of two elements of |− 1

2
KB2|,

where B2 is the double cover of P3 branched in a smooth quartic surface (see [1,
§6.2.7]):

– in this case φL : W
3

BS 99K P3 is a rational map of degree 2;

– according to [1, p. 34], the number of moduli of W
3

BS is 15;

– these W
3

BS can also obtained as quotient of the blow-up of a smooth quartic
hypersurface of P(14; 2), along a smooth elliptic curve, which is cut out by
two hypersurfaces of degree one;

– it is also found by Sano (see [48, Theorem 1.1 No.3]);

(IV) the Enriques-Fano threefold W 4
BS of genus p = 4 given by the quotient of a

double cover of P1 × P1 × P1 branched in a divisor of multidegree (2, 2, 2) (see
[1, §6.3.3]):

– in this case φL : W 4
BS 99K P4 is a rational map birational onto the image,

which is the Enriques threefold W 4
F ⊂ P4;

– according to [1, p. 40], the number of moduli of W 4
BS is 10;

– it is also found by Sano (see [48, Theorem 1.1 No.5]);

– it is non-rational (see [45]);

(V) the Enriques-Fano threefold W
4

BS of genus p = 4 given by the quotient of P1×S2

where S2 is a double cover of P2 branched in a quartic curve (see [1, §6.6.2]):

– in this case φL : W
4

BS 99K P4 is a rational map and it is a double cover of
the image, which is a quadric cone;

– according to [1, p. 61], the number of moduli of W
4

BS is 4;

– it is also found by Sano (see [48, Theorem 1.1 No.4]);

– it is rational (see [7, Remark 7.3]);

14



(VI) the Enriques-Fano threefold W 5
BS of genus p = 5 given by the quotient of the

blow-up of a smooth intersection of two quadric hypersurfaces of P5, along the
elliptic curve given by the intersection of two hyperplane sections (see [1, §6.2.2]):

– in this case φL : W 5
BS → P5 is a morphism birational onto its image, which

has two double planes;

– according to [1, p. 25], the number of moduli of these threefolds is 7;

– it is also found by Sano (see [48, Theorem 1.1 No.7]);

– it was accidentally not listed in [1, Theorem B];

– it is rational (see [7, Remark 7.3]);

(VII) the Enriques-Fano threefold W
5

BS of genus p = 5 given by the quotient of a
double cover of P3, branched in a smooth quartic surface (see [1, §6.1.2]):

– in this case φL : W
5

BS → P5 is a morphism and it is a double cover of the
image, which is a complete intersection of two quadrics;

– according to [1, p. 18], the number of moduli of these threefolds is 11;

– these W
5

BS can be also obtained as quotient of a quartic hypersurface of
P(14; 2);

– it is also found by Sano (see [48, Theorem 1.1 No.8]);

– it is rational (see [8, Theorem 1]);

(VIII) the Enriques-Fano threefold W 6
BS of genus p = 6 given by the quotient of the

complete intersection of three divisors of bidegree (1, 1) on P3×P3 (see [1, §6.2.4]):

– in this case φL : W 6
BS ↪→ P6 is an embedding;

– according to [1, p. 29], the number of moduli of these threefolds is 24;

– it is also found by Sano (see [48, Theorem 1.1 No.9]);

– it is rational (see [7, Corollary 7.2]);

(IX) the Enriques-Fano threefold W
7

BS of genus p = 7 given by the quotient of P1×S4,
where S4 is a Del Pezzo surface of degree 4 in P4 (see [1, §6.6.1]):

– in this case φL : W
7

BS → P7 is a morphism birational onto its image;

– according to [1, p. 59], the number of moduli of these threefolds is 2;

– it is also found by Sano (see [48, Theorem 1.1 No.10]);

– it is rational (see [7, Corollary 7.2]);

(X) the Enriques-Fano threefold W 7
BS of genus p = 7 given by the quotient of a

smooth divisor on P1 × P1 × P1 × P1 of multidegree (1, 1, 1, 1) (see [1, §6.4.1]):

– in this case φL : W 7
BS ↪→ P7 is an embedding;

– according to [1, p. 46], the number of moduli of these threefolds is 3;
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– it is also found by Sano (see [48, Theorem 1.1 No.11]);

– it is rational (see [7, Corollary 7.2]);

(XI) the Enriques-Fano threefold W 8
BS of genus p = 8 given by the quotient of the

blow-up of the cone over a quadric surface Q ⊂ P3 along the disjoint union of
the vertex and an elliptic curve on Q (see [1, §6.4.2]):

– in this case φL : W 8
BS ↪→ P8 is an embedding;

– according to [1, p. 51], the number of moduli of these threefolds is 2;

– Sano erroneously omits it (see [48, p. 378]);

– it is rational (see [7, Corollary 7.2]);

(XII) the Enriques-Fano threefold W 9
BS of genus p = 9 given by the quotient of the

intersection of two quadrics in P5 (see [1, §6.1.4]):

– in this case φL : W 9
BS ↪→ P9 is an embedding;

– according to [1, p. 21], the number of moduli of these threefolds is 3;

– it is also found by Sano (see [48, Theorem 1.1 No.12]);

– it is rational (see [7, Corollary 7.2]);

(XIII) the Enriques-Fano threefold W 10
BS of genus p = 10 given by the quotient of P1×S6,

where S6 is a smooth Del Pezzo surface of degree 6 in P6 (see [1, §6.5.1]):

– in this case φL : W 10
BS ↪→ P10 is an embedding;

– this threefold has no moduli (see [1, p. 56]);

– it is also found by Sano (see [48, Theorem 1.1 No.13]);

– it is rational (see [7, Corollary 7.2]);

(XIV) the Enriques-Fano threefold W 13
BS of genus p = 13 given by the quotient of

P1 × P1 × P1 (see [1, §6.3.2]):

– in this case φL : W 13
BS ↪→ P13 is an embedding;

– this threefold has no moduli (see [1, p. 37]);

– it is also found by Sano (see [48, Theorem 1.1 No.14]);

– it is rational (see [7, Corollary 7.2]);

Remark 3.5. Sano found another threefold (see [48, Theorem 1.1 No.6]) but Bayle
excluded it, by providing a more accurate analysis than Sano’s (see [1, §6.2.5]).

Remark 3.6. If (W,L) is one of W 6
BS, W 7

BS, W 8
BS, W 9

BS, W 10
BS and W 13

BS, then an
element S ∈ L is very ample (see [1, Theorem A]).
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Remark 3.7. Since the rational F-EF 3-folds have eight quadruple points whose tan-
gent cone is a cone over a Veronese surface (see [23, p. 44]), then they have only
terminal singularities (see [47, Example 1.3]) and therefore they are limits of BS-EF
3-folds (see [44, Main Theorem 2]). In particular, by using Macaulay2, we will find
that W p=9,13

BS can be obtained exactly as W p=9,13
F (see Theorems 6.11, 6.17).

In the paper of Knutsen-Lopez-Muñoz, the following Enriques-Fano threefold is
discovered:

(XV) the Enriques-Fano threefold W 9
KLM ⊂ P9 of genus p = 9 given by the image of

the F-EF 3-fold W 13
F ⊂ P13 via the rational map ρ〈E3〉 : P13 99K P9, which is the

projection of P13 from the three-dimensional linear subspace P3 ∼= 〈E3〉 spanned
by a smooth irreducible elliptic quartic curve E3 ⊂ W 13

F .

It is known that the Enriques-Fano threefold found by Knutsen-Lopez-Muñoz (shortly
KLM-EF 3-fold) has canonical non-terminal singularities but so far there was no in-
formation about their multiplicities and tangent cones. We will analyze them in § 7
thanks to Macaulay2. The KLM-EF 3-fold is rational by construction.

Prokhorov constructed

(XVI) an Enriques-Fano threefold W 13
P of genus p = 13 given by the quotient of a

cone over a smooth Del Pezzo surface of degree 6, under an involution fixing five
points (see [46, Remark 3.3]);

(XVII) an Enriques-Fano threefold W 17
P of genus p = 17 given by the quotient of a cone

over the octic Del Pezzo surface obtained by the anticanonical embedding of
P1 × P1, under an involution fixing five points (see [46, Proposition 3.2]).

Thanks to Macaulay2, we will see that the above Enriques-Fano threefolds (shortly
P-EF 3-folds) are embedded in Pp=13,17 (see § 8). We will also find the tangent cones
at their singularities. The P-EF 3-folds are (at least) unirational by construction.

The rationality of the Enriques-Fano threefolds and the number of their moduli are
still open questions, which we will examine in future projects.

3.3 Normality and projective normality

Some authors define an Enriques-Fano threefold just as a threefold satisfying the fol-
lowing assumption (see for example [25, Definition 1.1] and [36, Definition 1.3]).

Assumption (*). Let W ⊂ PN be a non-degenerate threefold whose general hyper-
plane section S is an Enriques surface and such that W is not a cone over S.

If the pair (W,L := |OW (S)|) satisfies Assumption (*), it is enough to take its
normalization ν : W ν → W to obtain an Enriques-Fano threefold in the sense of
Definition 3.1, that is (W ν , ν∗L). Indeed an element of ν∗L is ample, since it is the
pullback of a very ample divisor of L via the finite birational morphism ν : W ν → W

17



(see [37, Theorem 1.2.13]). Moreover if (W ν , ν∗L) were a (polarized) generalized cone,
W ν would contain a 3-dimensional family of curves of degree 1 with respect to the
given polarization such that they all pass through a point: thus W ⊂ PN would be the
union of lines through a point, by contradicting Assumption (*).

An example of “Enriques-Fano threefold” in the sense of Assumption (*) is the
KLM-EF 3-fold W 9

KLM ⊂ P9: instead of proving the normality of this threefold,
Knutsen-Lopez-Muñoz study properties of its normalization (see [36, Proposition 13.1]).
We will see below that the KLM-EF 3-fold actually is (projectively) normal.

Also the rational F-EF 3-folds W p=6,7,9,13
F ⊂ Pp are “Enriques-Fano threefold” in

the sense of Assumption (*): indeed their normality is unproved, even if Fano assumed
normality at the beginning of his work (see Assumption F1 in § 4.2). The normality of
the non-rational F-EF 3-fold W 4

F is unproved too; however it does not exactly satisfy
Assumption (*), since its hyperplane sections are not Enriques surfaces, but their min-
imal desingularization they are (see [16, p.275]). We will see below that the rational
F-EF 3-folds of genus 7, 9 and 13 actually are (projectively) normal.

Instead the BS-EF 3-folds and the P-EF 3-folds are normal by construction, since
they are quotient of normal threefolds under the action of a finite group defined by a
certain involution with a finite number of fixed points (see [19, Proposition 2.15]). In
particular, the BS-EF 3-folds with very ample hyperplane sections satisfy Assumption
(*) in the projective space in which they are embedded, while the eight BS-EF 3-folds

W p=2,3,4,5
BS and W

p=3,4,5,7

BS are Enriques-Fano threefolds satisfying exactly the abstract
Definition 3.1. Furthermore, as we will (computationally) see in § 8.2 and § 8.3, the
P-EF 3-folds W p=13,17

P can be embedded in Pp and they also satisfy Assumption (*).

Theorem 3.8. Let W ⊂ PN be a threefold satisfying Assumption (*). If S ⊂ PN−1 is
linearly normal and if either N ≥ 7 or N = 6 and S is not a Reye congruence, then
h1(OW ) = 0 and W ⊂ PN is projectively normal.

Proof. Since the case where N = 6 and S is a Reye congruence is excluded, we have
that S ⊂ PN−1 is projectively normal (see [24, Theorem 1.1]). Thus, by using the
arguments of [15, Lemmas 1.5,1.6,1.7] (which are inspired by the ones of [20, pp. 10-
11]), we obtain that h1(OW ) = 0 and that W ⊂ PN is projectively normal.

Proposition 3.9. Let W ⊂ PN be a threefold satisfying Assumption (*). If W ⊂ PN
is linearly normal and h1(OW ) = 0, then S ⊂ PN−1 is linearly normal.

Proof. We have to show that h0(OS(1)) = h0(OPN−1(1)) = N . This follows by the
following exact sequence

0→ OW → OW (1)→ OS(1)→ 0,

since h0(OW ) = 1, h1(OW ) = 0 and h0(OW (1)) = h0(OPN (1)) = N + 1 by hypothesis.
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Corollary 3.10. Let W ⊂ PN be a threefold satisfying Assumption (*). If W ⊂ PN
is linearly normal and h1(OW ) = 0, then W ⊂ PN is projectively normal (except when
N = 6 and S is a Reye congruence).

Proof. See Theorem 3.8 and Proposition 3.9

Proposition 3.11. Let W ⊂ Pp be a threefold satisfying Assumption (*) such that p
is the genus of a curve section of W . Then W ⊂ Pp and S ⊂ Pp−1 are linearly normal.

Proof. By Riemann-Roch on S we obtain h0(OS(1)) = p. From W ⊂ Pp we have that
h0(OW (1)) ≥ p+ 1. On the other hand, from the following exact sequence

0→ OW → OW (1)→ OS(1)→ 0

one gets h0(OW (1)) ≤ p+ 1 and hence equality holds.

Corollary 3.12. The following Enriques-Fano threefolds are projectively normal:

W 9
KLM ⊂ P9, W p=7,9,13

F ⊂ Pp, W p=7,8,9,10,13
BS

φL
↪−→ Pp, W p=13,17

P ⊂ Pp.

Proof. See Theorem 3.8 and Proposition 3.11.

We cannot say the same for the F-EF 3-fold W 6
F ⊂ P6, since its hyperplane sections

are Reye congruences (see [13, Proposition 3] and [23, §3]). As for the BS-EF 3-

fold W 6
BS

φL
↪−→ P6, one can find with Macaulay2 that its hyperplane section S ⊂ P5

is not contained in quadric hypersurfaces of P5 (see Code B.1 of Appendix B): this
is equivalent to say that S ⊂ P5 is projectively normal (use Riemann-Roch and see
[24, Theorem 1.1]), thus we obtain that W 6

BS ⊂ P6 is projectively normal too (see
Theorem 3.8).

4 Fano’s approach to the classification of Enriques-

Fano threefolds

4.1 Conte-Murre’s work

In order to explain Fano’s approach to the classification of Enriques-Fano threefolds,
we will first summarize the work of Conte and Murre. In their paper [14], they stud-
ied threefolds W satisfying the following assumption, which is a particular case of
Assumption (*) of § 3.3.

Assumption (CM1). Let W ⊂ PN be a non-degenerate threefold such that

(i) W is projectively normal;

(ii) if h ∼= PN−1 is a general hyperplane then F := W ∩ h is an Enriques surface;

(iii) W is not a cone over F .
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By setting L := |OW (F )| we observe that a threefold W satisfying Assumption
CM1 is an Enriques-Fano threefold, according to Definition 3.1: indeed the projective
normality of W implies its normality, and an element of L is ample since it is very
ample. So W has isolated singular points P1, . . . , Pn (see also [14, Lemma 3.2]). The
genus p of such an Enriques-Fano threefold is equal to the genus of a general curve
section Γ := W ∩h∩h′: indeed, since Γ is a smooth curve on an Enriques surface F , by

the adjunction formula we have p = F 3

2
+ 1 =

Γ2
|F
2

+ 1 = 2pa(Γ)−2
2

+ 1 = pa(Γ) = pg(Γ).
In particular we have N = p (see [14, Corollary 3.6]) and p > 5 (see [14, Remark 4.5]).

Conte and Murre also re-proved a result of the paper [26] of Godeaux, useful for the
arguments of Fano. Indeed they showed that on a threefold W satisfying Assumption
CM1 there exists a linear system |ϕ| of Weil divisors ϕ such that: dim |ϕ| = p−1; for a
general ϕ the hyperplane section ϕ∩h is a canonically embedded curve; |ϕ| has no base
points except possibly at the singular points P1, . . . , Pn of W ; H1 (ϕ,Oϕ(n)) = 0, n ≥ 0;
H2 (ϕ,Oϕ(n)) = 0, n > 0; dimH2 (ϕ,Oϕ) = 1 (see [14, Lemma 3.7]). We will refer to
|ϕ| as the Godeaux linear system of W and we will denote by λ|ϕ| : W 99K Pp−1 the
rational map defined by |ϕ|.

Assumption (CM2). Let W be a threefold with isolated singularities P1, . . . , Pn such

that, if π : W̃ → W is the blow-up of W in the singular points, then W̃ is smooth and
the exceptional divisors E1 := π−1 (P1) , . . . , En := π−1 (Pn) are smooth too.

Let us consider now a threefold W satisfying Assumptions CM1 and CM2. If F̃
and ϕ̃ are respectively the strict transforms of a general hyperplane section of W and
of a general element of the Godeaux linear system of W , then we have

2F̃ = 2ϕ̃+
n∑
i=1

tiEi and KW̃ = −ϕ̃+
n∑
i=1

riEi (1)

in Pic(W̃ ), where ti, ri ∈ Z for all i = 1, . . . , n (see [14, Lemma 3.12]).

Assumption (CM3). Let W be a threefold with isolated singularities P1, . . . , Pn such
that all they “behave in the same way”: this means, for example, that if W satisfies
Assumptions CM1 and CM2 and if 1 ≤ i < j ≤ n, then we have that ti = tj = t and
ri = rj = r in (1); we have that pa (Ci) = pa (Cj), where Ci := ϕ̃ ∩ Ei, etc.

It follows that if W is a threefold satisfying Assumptions CM1, CM2 and CM3, then
all the singular points P1, . . . , Pn of W are base points of its Godeaux linear system |ϕ|
and furthermore we have that ti = t > 0 in (1) (see [14, Lemma 4.2]).

Assumption (CM4). If W is a threefold satisfying Assumptions CM1, CM2 and
CM3 and if ϕ̃ denotes the strict transform of a general element ϕ of its Godeaux linear
system, then the linear system |ϕ̃| has no base points on W̃ , the curves Ci := ϕ̃ ∩ Ei
are smooth and irreducible for all 1 ≤ i ≤ n, and ϕ̃ is smooth.

20



If W is a threefold satisfying Assumptions CM1, CM2, CM3, CM4 and if M is the
image of W via its Godeaux linear system, then we have the following diagram

W̃

Pp ⊃ W M ⊂ Pp−1.

π
λ|ϕ̃|

λ|ϕ|

We have all the elements to state the main theorem of Conte-Murre’s paper (see [14,
Theorem 7.2]), thanks to which they rigorously proved the assertions made by Fano in
[23, §1-2].

Theorem 4.1 (Fano-Conte-Murre Theorem). Let W be a threefold satisfying As-
sumptions CM1, CM2, CM3 and CM4. Then W ⊂ Pp is an Enriques-Fano threefold
of genus p ≥ 6 with n = 8 quadruple points P1, . . . , P8, whose tangent cone is a cone
over a Veronese surface. Furthermore W carries a linear system |ϕ| of Weil divisors,
the general members of which are K3-surfaces. This system has dimension (p− 1), has
base points at the points P1, . . . , P8 and the associated rational map λ|ϕ| is birational
onto the image. Moreover, the points P1, . . . , P8 are rational double points on a gen-
eral ϕ. Let M = λ|ϕ|(W ) ⊂ Pp−1 be the image. Then M has degree 2p − 6 and has
K3-surfaces as general hyperplane sections (i.e., M is a Fano threefold in the classical
sense). Finally M contains 8 planes π1, . . . , π8 which are the “images” of the singular
points P1, . . . , P8 of W , in the sense that πi := λ|ϕ̃|(Ei) for i = 1, . . . , 8.

Remark 4.2. Under the Assumptions CM1, CM2, CM3 and CM4, we have ri = r = 0
and ti = t = 1 in (1) (see [14, Remark 3.14, Lemma 6.3, Corollary 6.5]); hence in Pic(W̃ )

we have KW̃ = −ϕ̃ and 2F̃ = 2ϕ̃ +
∑8

i=1Ei. The last formula has an important role
in Fano’s work as we will explain in § 4.2.

Remark 4.3. The Enriques-Fano threefolds satisfying Assumptions CM1, CM2, CM3
and CM4 have terminal singularities, since their tangent cone is a cone over a Veronese
surface (see [47, Example 1.3]). There is another way to prove it: by Assumption

CM2 we can see π : W̃ → W as the resolution of the singularities P1, . . . , Pn, and
so we have KW̃ = π∗KW +

∑n
i=1 aiEi, where ai ∈ Q. By fixing j ∈ {1, . . . , n}, we

have KW̃ + Ej = π∗KW +
∑n

i=1 aiEi + Ej and by the adjunction formula we have
KEj =

(
KW̃ + Ej

)
|Ej = (aj + 1)Ej|Ej . Moreover by [14, Corollary 3.15] we have that

KEj ≡ −(
tj
2

+ rj + 1)F̃j|Ej , where F̃j is the strict transform of a general hyperplane

section of W through the point Pj. Since F̃j|Ej ∼ (F̃ −Ej)|Ej ∼ −Ej|Ej , then we have

(
tj
2

+ rj + 1)Ej|Ej ≡ KEj = (aj + 1)Ej|Ej . Thus we obtain aj =
tj
2

+ rj = 1
2
> 0.

Now we must recall a notion introduced by Fano in [23, p. 44] and subsequently
taken up by Conte and Murre in [14, Remarks 7.3 (iv)].

Definition 4.4. Two distinct singular points Pi and Pj of an Enriques-Fano threefold
W are said to be associated if the line joining them is contained in W .
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If W is a threefold satisfying Assumptions CM1, CM2, CM3 and CM4, and so we
are in the situation described by Theorem 4.1, then the only objects which are con-
tracted by λ|ϕ| are the lines 〈Pi, Pj〉 provided these lines are contained in W (see [14,
Remarks 7.3 (ii)]). In this case Pi and Pj are associated and the planes πi and πj have
a point in common, that is the contraction of the line 〈Pi, Pj〉 and which is a double
point for M . Conte and Murre also observed that, since the only base points of the
system |ϕ| are the points Pi, then a general ϕ does not contain a line of kind 〈Pi, Pj〉:
hence the general hyperplane section of M is a smooth K3-surface and M has at most
isolated singularities.

The singular points of a threefoldW satisfying Assumption CM3 are called “similar”
by Conte and Murre. However their definition of “similar” takes on a changing meaning
in their paper. For this reason, we give the following definition, to which we will refer
for the results of this thesis.

Definition 4.5. The singular points P1, . . . , Pn of an Enriques-Fano threefold W are
said to be similar if

(i) they have the same multiplicity;

(ii) they have the same tangent cone;

(iii) there is an m such that each Pi is associated with exactly m other singular points.

4.2 Fano’s work

In order to classify the Enriques-Fano threefolds with p ≥ 6, Fano used Theorem 4.1,
even if he stated it with many gaps and without a real proof. Anyway, let us explain
Fano’s idea, which is based on the following five assumptions.

Assumption (F1). W ⊂ PN=p is a normal threefold such that a general hyperplane
section F := W ∩ h is an Enriques surface, a general curve section Γ := W ∩ h ∩ h′ is
a smooth curve of genus p and W is not a cone on F .

The Assumption CM1 implies the Assumption F1, since the projective normality
implies the normalilty.

Assumption (F2). The linear system of the curve sections is complete on a hyperplane
section F of W , i.e. the map H0(W,OW (1))→ H0(F,OF (1)) is surjective.

Conte and Murre proved Assumption F2 as a consequence of Assumption CM1 (see
[14, Corollary 3.5]).

Assumption (F3). If p ≥ 6 the Godeaux linear system |ϕ| of W defines a rational
map λ : W 99K Pp−1 which is birational onto the image M .

Conte and Murre proved Assumption F3, under the Assumptions CM1, CM2, CM3
and CM4 (see [14, §5.24]). Fano showed that a threefold W satisfying Assumptions F1,
F2 and F3 has eight quadruple points, whose tangent cone is a cone over a Veronese

22



surface (see [23, §2]). Conte and Murre observed that Fano’s arguments are inaccurate
(see [14, footnote (2) p.54]). However they found the same result of Fano, under the
Assumptions CM1, CM2, CM3 and CM4, as we have said by stating Theorem 4.1.

Assumption (F4). Each of the planes π1, . . . , π8 contained in M intersects the other
seven planes at most at distinct points (see also Figure 1).

Figure 1: If two planes πi and πj in M intersect a third plane πk, for 1 ≤ i < j < k ≤ 8, the situation on the left
is admitted by Assumption F4, while the situation on the right is not.

Assumption (F5). Each singular point Pi=1,...,8 of W is associated with the same
number 0 ≤ m ≤ 7 of the other singular points. The corresponding plane πi ⊂ M
intersects the corresponding m planes.

Conte and Murre observed that Assumption CM3 implies Assumption F5 (see [14,
Remarks 7.3 (iv)]).

Fano’s approach to the classification of Enriques-Fano threefolds of genus p ≥ 6 is
essentially based on three steps:

(step 1) search for a Fano threefold M ⊂ Pp−1 containing 8 planes π1, . . . , π8 satisfying
Assumptions F4 ans F5;

(step 2) search for a p-dimensional linear system on M whose general element is an En-
riques surface f such that 2f ∼ 2φ +

∑8
i=1 πi, where φ is a general hyperplane

section of M ;

Remark 4.6. The relation 2f ∼ 2φ+
∑8

i=1 πi in M corresponds to the relation

in Remark 4.2, by setting f := λ|ϕ̃|(F̃ ) and φ := λ|ϕ̃|(ϕ̃).

(step 3) the image of the rational map defined by |f | is the desired Enriques-Fano threefold
W .

Remark 4.7. In simple words, Fano used a sort of inverse of Theorem 4.1, giving
importance to the similarity and the association of the singular points of W . By using
this method, Fano constructed the F-EF 3-folds of genus p ≥ 6, whose search can be
summarized in the following way:

(i) p = 6⇒ m = 7⇒ P1, . . . , P8 must be associated as in Figure 21 of Appendix A
⇒ ∃ F-EF 3-fold W 6

F ⊂ P6;
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(ii) p ≥ 7⇒M is intersection of quadrics in Pp−1;

(iii) p = 7⇒ m = 6⇒ P1, . . . , P8 must be associated as in Figure 22 of Appendix A
⇒ ∃ F-EF 3-fold W 7

F ⊂ P7;

(iv) p > 7⇒ there are no three mutually associated points ⇒ m ≤ 4;

(v) m = 4 ⇒ P1, . . . , P8 must be associated as in Figure 24 of Appendix A ⇒ p =
9⇒ ∃ F-EF 3-fold W 9

F ⊂ P9;

(vi) m ≤ 3⇒ m = 3⇒ P1, . . . , P8 must be associated as in Figure 26 of Appendix A
⇒ p = 13⇒ ∃ F-EF 3-fold W 13

F ⊂ P13.

In [14, §8] and [23] one can find the description of the Fano threefolds M associated
with the F-EF 3-folds of genus p ≥ 6.

4.3 Exceptional cases and possible generalizations

Fano also found an Enriques-Fano threefold W 4
F ⊂ P4 of genus p = 4, which behaves

differently from the F-EF 3-folds of genus p ≥ 6. Indeed W 4
F is a sextic hypersurface

of P4 with six double planes, four triple lines and a quadruple point. Its hyperplane
section F := W 4

F ∩ h is a sextic surface of h ∼= P3 double along the six edges of a
tetrahedron and triple at its four vertices. So F is not a (smooth) Enriques surface
as required by Assumption F1 (and CM1), but its minimal desingularization is (see
[16, p.275]). Furthermore in this case the Godeaux linear system |ϕ| defines a double
cover of P3 (see [23, §10]). Hence W 4

F is a kind of exception in the analysis of Fano and
Conte-Murre.

We have already said that the rational F-EF 3-folds W p=6,7,9,13
F are linked to the BS-

EF 3-folds W p=6,7,9,13
BS with very ample hyperplane sections (see Remark 3.7). We also

recall that the F-EF 3-fold W 4
F is the birational image of the BS-EF 3-fold (W 4

BS,L)
via the rational map φL : W 4

BS 99K P4 (see [1, §6.33]). This suggests that one could
obtain the BS-EF 3-folds with ample (but not very ample) hyperplane sections, by
using a weaker form of Assumption F1 (and CM1) and by resuming Fano-Conte-Murre
techniques: indeed another link between BS-EF 3-folds and F-EF 3-folds is given by
the hidden presence of the BS-EF 3-fold W 3

BS in Fano’s paper (as we said in § 3.2 (00)).
Re-examining the brilliant ideas of Fano with the techniques of Conte and Murre would
be very interesting, even if no one has yet shown interest in the problem.

However, one must be careful of hidden mistakes in reviewing Fano’s paper. For
example, the BS-EF 3-folds W 8

BS and W 10
BS do not appear in the description of Fano (for

some strange reason), although they behave like the other BS-EF 3-folds W p>6
BS with

very ample hyperplane sections: they are projectively normal (see § 3.3) and their eight
quadruple points are similar (see Remarks 6.6, 6.13). One of the reasons why they don’t
appear in Fano’s paper could be the fact they seem to be in contradiction with Re-
mark 4.7 (iv) (see Remark 6.6, 6.13). It is a situation that should be understood better.
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Fano-Conte-Murre’s techniques might also be useful to include the P-EF 3-folds.
In these cases Assumption CM1 is satisfied (see § 3.3) while Assumptions CM2 and
CM3 are not (see Remarks 8.5, 8.12, 8.9, 8.16). So one should eventually weaken these
two assumptions. Anyhow, by weakening Assumptions CM2 and CM3 we could obtain
information on Enriques-Fano threefolds with non-terminal canonical singularities: in-
deed as we have seen in Remark 4.3, it seems that they have an important role for the
terminality of the singularities. Finally the nature of the KLM-EF 3-fold W 9

KLM and
of the F-EF 3-fold W 7

F suggests that some Enriques-Fano 3-folds could be obtained via
projection techniques.

5 Modern analysis of the rational F-EF 3-folds

5.1 Abstract

We recall that Fano found five Enriques-Fano threefolds (see [23]): one of genus 4,
which is non-rational (see [45]) and four of genus p = 6, 7, 9, 13, which are rational.
However, in his paper there are many hidden gaps, as Conte and Murre showed in [14]
and as we will see in Remarks 6.6, 6.13. By using blow-ups techniques, we will verify
that the images of the following linear systems on P3 actually are rational Enriques-
Fano threefolds with eight quadruple points, as Fano said: the linear system S of the
sextic surfaces double along the six edges of a tetrahedron; the linear system K of the
septic surfaces double along the six edges of two trihedra; the linear system X of the
sextic surfaces double along the six edges of a tetrahedron and containing a plane cubic
curve intersecting each edge at one point; the linear system P of the septic surfaces
double along three twisted cubics having five points in common. We will start with
the classical case (see § 5.2), in order to have a model to refer to, and then we will
continue with the lesser known ones (see § 5.3, 5.4, 5.5). Furthermore we will find that
the singular points of the F-EF 3-folds W p=6,7,9,13

F are associated in the way imposed
by Fano (see respectively Figures 21, 22, 24, 26 of Appendix A). For some results we
will also use Macaulay2.

5.2 F-EF 3-fold of genus 13

5.2.1 Construction of W 13
F

Let us take a tetrahedron T ⊂ P3 with vertices v0, v1, v2, v3 as in Figure 2. Let fi be
the face of T opposite to the vertex vi and let us denote the edges of T by lij := fi∩fj,
for 0 ≤ i < j ≤ 3. Let S be the linear system of the sextic surfaces of P3 double along
the six edges of T . Up to a change of coordinates, we can consider in P3

[s0:s1:s2:s3] the

tetrahedron T = {s0s1s2s3 = 0} with faces fi = {si = 0}, for 0 ≤ i ≤ 3. The linear
system S is defined by the zero locus of the following homogeneous polynomial

λ0s
2
1s

2
2s

2
3 + λ1s

2
0s

2
2s

2
3 + λ2s

2
0s

2
1s

2
3 + λ3s

2
0s

2
1s

2
2 + s0s1s2s3Q(s0, s1, s2, s3),

where λ0, λ1, λ2, λ3 ∈ C and Q(s0, s1, s2, s3) =
∑

i≤j qijsisj is a quadratic form (see [27,

p.635]). Since dimH0(P3,OP3(2)) =
(

3+2
2

)
, then dimS = 13.
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Figure 2: Tetrahedron T ⊂ P3.

Remark 5.1. Let Σ be a general element of S. By looking locally at the equation of S,
then we obtain the following two assertions, for distinct indices i, j, k, h ∈ {0, 1, 2, 3}:

(i) Σ has triple points at the vertices of T and TCviΣ = fj ∪ fk ∪ fh;

(ii) if p ∈ lij with p 6= vk and p 6= vh, then TCpΣ is the union of two variable planes
containing lij, depending on the choice of the point p and of the surface Σ, and
coinciding for finitely many points p.

Lemma 5.2. The rational map νS : P3 99K P13 defined by S is birational onto the
image.

Proof. It is sufficient to verify that the map defined by S on a general Σ ∈ S is
birational onto the image, and this actually happens because S|Σ contains a sublinear
system that defines a birational map. Indeed S contains a sublinear system S ⊂ S
whose fixed part is given by the tetrahedron T and such that S|Σ coincides with the
linear system on Σ cut out by the quadric surfaces of P3.

Remark 5.3. The proof of Lemma 5.2 tells us that the linear system S is very ample
outside the tetrahedron T . So νS : P3 99K νS(P3) ⊂ P13 is an isomorphism outside T .

Theorem 5.4. [23, §8] Let W 13
F be the image of the map νS : P3 99K P13. Then W 13

F

is an Enriques-Fano threefold of genus p = 13.

Proof. The idea of the proof is to blow-up P3 along the base locus of S, until we obtain a
smooth rational threefold Y and a base point free linear system S̃ on Y . By Lemma 5.2,
the new linear system S̃ will define a birational morphism νS̃ : Y → W 13

F ⊂ P13. To
obtain that W 13

F is an Enriques-Fano threefold, it will be sufficient to verify that the
general hyperplane section S is an Enriques surface and that W 13

F is not a cone on S
(see § 3.3). Furthermore, to obtain the genus p = 13 of W 13

F we will compute the degree

of the threefold, which is 24 = Σ̃3 = degW 13
F = 2p− 2 for Σ̃ ∈ S̃. The proof is divided

into several steps, given by the Remarks 5.5,. . . , 5.14 and the Theorem 5.15 below.
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We blow-up first P3 at the vertices of T , obtaining a smooth threefold Y ′ and
a birational morphism bl′ : Y ′ → P3 with exceptional divisors Ei := (bl′)−1(vi), for
0 ≤ i ≤ 3. Let S ′ be the strict transform of S and let us denote by H the pullback
on Y ′ of the hyperplane class on P3. Then an element of S ′ is linearly equivalent to
6H − 3

∑3
i=0Ei. Let f̃i be the strict transform of the face fi, for 0 ≤ i ≤ 3. We

denote by γij := Ei ∩ f̃j the line cut out by f̃j on Ei, for 0 ≤ i < j ≤ 3. We have

that γij is a (−1)-curve on f̃j. If Σ′ is the strict transform of a general Σ ∈ S, then
Σ′ ∩ Ei =

⋃3
j=0
j 6=i

γij, for all 0 ≤ i ≤ 3, and Σ′ is smooth at a general point of γij (see

Remark 5.1). The base locus of S ′ is now given by the union of the strict transforms

l̃ij of the six edges of T (along which a general Σ′ ∈ S ′ has double points) and the
12 lines γij (see Remark 5.1). Let us blow-up the strict transforms of the edges of
T : we obtain a smooth threefold Y ′′ and a birational morphism bl′′ : Y ′′ → Y ′ with
exceptional divisors

(bl′′)−1(l̃ij) =: Fij ∼= P(Nl̃ij |Y ′)
∼= P(OP1(−1)⊕OP1(−1)) ∼= F0,

for 0 ≤ i < j ≤ 3. This blow-up has no effect on f̃i, for 0 ≤ i ≤ 3, so, by abuse of
notation, we will use the same symbol to indicate its strict transform on Y ′′.

Remark 5.5. Let Ẽi be the strict transform of Ei and let us consider the curve
αkij := Ẽk ∩Fij, where i, j, k are distinct indices in {0, 1, 2, 3} and i < j (see Figure 3).

Since αkij is a (−1)-curve on Ẽk and it is a fibre on Fij, then we have that F 2
ij · Ẽk =

α2
kij|Ẽk = −1 and Ẽ2

k · Fij = α2
kij|Fij = 0.

Figure 3: Description of bl′′|
Ẽ0

: Ẽ0 → E0. The same happens on Ẽk, for 1 ≤ k ≤ 3.

Let S ′′ be the strict transform of S ′: an element of S ′′ is linearly equivalent to
6H − 3

∑3
i=0 Ẽi − 2

∑
0≤i<j≤3 Fij, where H denotes the pullback bl′′∗H, by abuse of

notation. The base locus of S ′′ is given by the disjoint union of the strict transforms
γ̃ij of the 12 lines γij, for i, j ∈ {0, 1, 2, 3} and i 6= j (see Remark 5.1).
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Remark 5.6. Let lk be the linear equivalence class of the lines of Ek ∼= P2: then
Ek|Ek ∼ −lk (see [27, Chap 4, §6] and [32, Lemma 2.2.14]). Let Lk be the strict

transform of lk via bl′′|Ẽk : Ẽk → Ek. Since bl′′∗(Ek) = Ẽk, then Ẽk|Ẽk ∼ −Lk and

Ẽ3
k = 1.

Remark 5.7. By construction we have that γ̃2
ij|Ẽi = −1 and γ̃2

ij|f̃j = −1, for i, j ∈
{0, 1, 2, 3} and i 6= j. We also have that γ̃ij|Σ′′ = −1, where Σ′′ is the strict transform
on Y ′′ of a general element Σ ∈ S. Indeed, since these twelve curves are disjoint,
then (Σ′′ ∩ Ẽi)2|Σ′′ =

∑3
j=0
j 6=i

γ̃2
ij|Σ′′ , for all 0 ≤ i ≤ 3. On the other hand we have that

(Σ′′ ∩ Ẽi)2|Σ′′ = Ẽ2
i · Σ′′ = −3 (see Remarks 5.5, 5.6). Thus (γ̃ij)

2|Σ′′ = −1, since the
curves γ̃ij behave in the same way.

Finally let us consider bl′′′ : Y → Y ′′ the blow-up of Y ′′ along the twelve curves
γ̃ij, for i, j ∈ {0, 1, 2, 3} and i 6= j, with exceptional divisors Γij := bl′′′−1(γ̃ij). We

denote by Ei the strict transform of Ẽi, by Fij the strict transform of Fij and by H the
pullback of H, for 0 ≤ i < j ≤ 3.

Remark 5.8. We have that

Γij = P(Nγ̃ij |Y ′′) ∼= P(Oγ̃ij(Ei)⊕Oγ̃ij(f̃j)) ∼= P(OP1(−1)⊕OP1(−1)) ∼= F0

and that Γ3
ij = − deg(Nγ̃ij |Y ′′) = 2 (see [27, Chap 4, §6] and [32, Lemma 2.2.14]).

Remark 5.9. Let us take three distinct indices i, j, k ∈ {0, 1, 2, 3}: if j < k, then Γij
intersects Fjk along a P1, which is a fibre on Γij and a (−1)-curve on Fjk. Similarly
F2
kj · Γij = 0 and Γ2

ij · Fkj = −1 if k < j. We also observe that Γij intersects Ei along a
P1 belonging to the other ruling of Γi, so we have E2

i ·Γij = 0. Furthermore we still have

Γ2
ij · Ei = −1, since bl′′′ : Y → Y ′′ has no effect on Ẽi. For this reason we will denote

Γij ∩ Ei by γ̃ij, by abuse of notation. Let us suppose now i < j and let us consider
the strict transforms α̃kij of the curves αkij defined in Remark 5.5. Then we have that
F2
ij · Ek = α̃2

kij|Ek = −1 and E2
k · Fij = α̃2

kij|Fij = −2. Finally we recall that a general
line of P3 does not intersect the edges of T and that a general plane of P3 intersects
each one of them at one point. Hence we have that H2 · Fij = 0 and F2

ij · H = −1.

Remark 5.10. By construction we have bl′′′∗(Ẽk) = Ek +
∑3

i=0
i 6=k

Γki, for 0 ≤ k ≤ 3.

If Lk is the strict transform of Lk via bl′′′|Ek : Ek → Ẽk, then we have that −Ek|Ek ∼
Lk +

∑3
i=0
i 6=k

γ̃ki ∼ 4Lk − 2
∑

0≤i<j≤3
i,j 6=k

α̃kij and E3
k = 4 (see Remark 5.6).

Remark 5.11. Let us fix four distinct indices i, j, k, h ∈ {0, 1, 2, 3} with i < j. By
[32, Lemma 2.2.14] we have that F 3

ij = − deg(Nl̃ij |Y ′) = 2 (see also [27, Chap 4, §6]).

Since bl′′′∗(Fij) = Fij, then we still have F3
ij = 2.

Let Σ̃ be the strict transform on Y of an element of S ′′: then

Σ̃ ∼ 6H−
3∑
i=0

3Ek −
∑

0≤i<j≤3

2Fij −
3∑

i,j=0
i 6=j

4Γij.
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Let us take the linear system S̃ := |OY (Σ̃)| on Y . It is base point free and it defines a
morphism νS̃ : Y → P13 birational onto the image W 13

F := νS̃(Y ), which is a threefold

of degree degW 13
F = 24. This follows by Lemma 5.2 and by the fact that Σ̃3 = 24:

indeed by Remarks 5.8, 5.9, 5.10 5.11 we have

Σ̃3 = 216H3 − 27
3∑
i=0

E3
k − 8

∑
0≤i<j≤3

F3
ij − 64

3∑
i,j=0
i 6=j

Γ3
ij − 3(36H2) ·

(
2
∑

0≤i<j≤3

Fij
)

+

−3
(

9
3∑
i=0

E2
k

)
·
(

2
∑

0≤i<j≤3

Fij
)
− 3
(

9
3∑
i=0

E2
k

)
·
(

4
3∑

i,j=0
i 6=j

Γij

)
+ 3
(

4
∑

0≤i<j≤3

F2
ij

)
· (6H)+

−3
(

4
∑

0≤i<j≤3

F2
ij

)
·
(

3
3∑
i=0

Ek
)
−3
(

4
∑

0≤i<j≤3

F2
ij

)
·
(

4
3∑

i,j=0
i 6=j

Γij

)
−3
(

16
3∑

i,j=0
i 6=j

Γ2
ij

)
·
(

3
3∑
i=0

Ek
)

+

−3
(

16
3∑

i,j=0
i 6=j

Γ2
ij

)
·
(

2
∑

0≤i<j≤3

Fij
)
− 6
(

3
3∑
i=0

Ek
)
·
(

2
∑

0≤i<j≤3

Fij
)
·
(

4
3∑

i,j=0
i 6=j

Γij

)
=

= 216− 27 · 4 · 4− 8 · 6 · 2− 64 · 12 · 2 + 0− 3 · 9 · 2 · 4 · 3 · (−2) + 0 + 3 · 4 · 6 · 6 · (−1)+

−3 · 4 · 3 · 6 · 2 · (−1) + 0− 3 · 16 · 3 · 12 · (−1)− 3 · 16 · 2 · 12 · 2 · (−1)− 6 · 3 · 2 · 4 · 4 · 3 · 2 =

= 216− 432− 96− 1536 + 0 + 1296− 432 + 432 + 0 + 1728 + 2304− 3456 = 24.

Then we have the following diagram:

Y

Y ′′ Y ′ P3 W 13
F ⊂ P13.

bl′′′
νS̃

bl′′ bl′ νS

Remark 5.12. Since bl′′′ : Y → Y ′′ has no effect on the divisor f̃i, for 0 ≤ i ≤ 3, we
continue to use the same notation to denote its strict transform. The eight divisors
E0, E1, E2, E3, f̃0, f̃1, f̃2, f̃3 are contracted by νS̃ : Y → W 13

F ⊂ P13 to points of W 13
F .

Indeed, if Σ̃ is a general element of S̃, then by construction we have Σ̃ · Ei = 0 = Σ̃ · f̃i
for all 0 ≤ i ≤ 3.

Remark 5.13. The morphism νS̃ : Y → W 13
F ⊂ P13 blows-down the twelve exceptional

divisors Γij to twelve curves of W 13
F . This follows by the fact that Σ̃ · Γij 6= 0 and

Σ̃2 ·Γij = 0 for a general element Σ̃ ∈ S̃ and for all i, j ∈ {0, 1, 2, 3} with i 6= j. Indeed
by Remarks 5.8, 5.9 we obtain

Σ̃2 · Γij = Σ̃ ·
(
− 3Ei · Γij −

∑
0≤x<y≤3

i 6∈{x,y}, j∈{x,y}

2(Fxy · Γij)− 4Γ2
ij

)
=
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= 9E2
i · Γij +

∑
0≤x<y≤3

i 6∈{x,y}, j∈{x,y}

6(Ei · Fxy · Γij) + 12Ei · Γ2
ij +

∑
0≤x<y≤3

i 6∈{x,y}, j∈{x,y}

6(Ei · Fxy · Γij)+

+
∑

0≤x<y≤3
i 6∈{x,y}, j∈{x,y}

4(F2
xy·Γij)+

∑
0≤x<y≤3

i 6∈{x,y}, j∈{x,y}

8(Fxy·Γ2
ij)+12Ei·Γ2

ij+
∑

0≤x<y≤3
i 6∈{x,y}, j∈{x,y}

8(Fxy·Γ2
ij)+16Γ3

ij =

= 0 + 6 · 2 · 1 + 12 · (−1) + 6 · 2 · 1 + 0 + 8 · 2 · (−1) + 12 · (−1) + 8 · 2 · (−1) + 16 · 2 = 0.

Remark 5.14. Let i, j, k, h be four distinct indices in {0, 1, 2, 3} such that i < j and

let Σ̃ be a general element of S̃. By Remarks 5.9, 5.11 we obtain

Σ̃2·Fij = Σ̃·(6H·Fij−3Ek·Fij−3Eh·Fij−2F2
ij−4Γki·Fij−4Γkj·Fij−4Γhi·Fij−4Γhj·Fij) =

= 36H2 · Fij − 12H · F2
ij + 9E2

k · Fij + 6Ek · F2
ij + 12Ek · Γki · Fij + 12Ek · Γkj · Fij+

+9E2
h ·Fij+6Eh ·F2

ij+12Eh ·Γhi ·Fij+12Eh ·Γhj ·Fij−12H·F2
ij+6Ek ·F2

ij+6Eh ·F2
ij+4F3

ij+

+8Γki · F2
ij + 8Γkj · F2

ij + 8Γhi · F2
ij + 8Γhj · F2

ij + 12Γki · Ek · Fij + 12Γkj · Ek · Fij+

+12Γhi · Eh · Fij + 12Γhj · Eh · Fij + 8Γki · F2
ij + 8Γkj · F2

ij + 8Γhi · F2
ij + 8Γhj · F2

ij+

+16Γ2
ki·Fij+16Γ2

kj ·Fij+16Γ2
hi·Fij+16Γ2

hj ·Fij = 0+12−18−6+12+12−18−6+12+12+

+12−6−6+8+0+0+0+0+12+12+12+12+0+0+0+0−16−16−16−16 = 4 > 0.

Thus the curve Σ̃ ∩ Fij is not contracted by the rational map defined by S̃|Σ̃.

Theorem 5.15. Let S be a general hyperplane section of the threefold W 13
F ⊂ P13.

Then S is an Enriques surface and W 13
F is not a cone over S.

Proof. A general hyperplane section S of W 13
F is the image of a general element Σ̃ ∈ S̃

via the morphism νS̃ : Y → W 13
F ⊂ P13. Let us take Σ′′ := bl′′′(Σ̃) ∈ S ′′. Since

bl′′′ : Y → Y ′′ has no effect on Σ′′, then Σ̃ ∩ Γij is still a (−1)-curve on Σ̃, for all

i, j ∈ {0, 1, 2, 3} and i 6= j (see Remark 5.7). Since νS̃ |Σ̃ : Σ̃ → S is the blow-down
of these twelve (−1)-curves (see Remarks 5.3, 5.12, 5.13, 5.14), then S is the minimal

desingularization of the corresponding Σ := bl′(bl′′(bl′′′(Σ̃))) ∈ S (see [27, p.621]). It
is known that the minimal desingularization of a sextic surface Σ ∈ S is an Enriques
surface (see [16, p.275]). It remains to show that W 13

F is not a cone over S. Since Y is
rational by construction, then W 13

F is rational too. If W 13
F were a cone, then it would

be birational to S × P1, for a general hyperplane section S of W 13
F . Thus, S would be

unirational, which is a contradiction because S is an Enriques surface.

By Theorem 5.15 we have that W 13
F ⊂ P13 satisfies the Assumption (*) of § 3.3.

Let p be the genus of a curve section of W 13
F : by the adjunction formula we have that

24 = 2p−2. Then W 13
F is an Enriques-Fano threefold of genus p = 13, since W 13

F ⊂ P13

is (projectively) normal by Theorem 3.8 and Proposition 3.11.
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5.2.2 Singularities of W 13
F

Proposition 5.16. The points Pi+1 := νS̃(Ei) and P ′i+1 := νS̃(f̃i), 0 ≤ i ≤ 3, are
quadruple points of W 13

F whose tangent cone is a cone over a Veronese surface.

Proof. First we recall that νS̃(Ei) and νS̃(f̃i) actually are points of W 13
F , for 0 ≤ i ≤ 3

(see Remark 5.12). Let us consider the sublinear system (S − Ek) ⊂ S̃ for a fixed
0 ≤ k ≤ 3. It corresponds to taking the hyperplane sections of W 13

F ⊂ P13 passing
through the point Pk+1. The linear system (S−Ek)|Ek coincides with |OEk(−Ek)|, which
is isomorphic to the linear system of the quartic plane curves on Ek with nodes at the
three points Ek ∩ l̃ij for 0 ≤ i < j ≤ 3 and i, j 6= k (see Remark 5.10). By applying a
quadratic transformation, we obtain the linear system of the conics, whose image is the
Veronese surface. Let us consider now the hyperplane sections of W 13

F ⊂ P13 passing
through P ′i+1, for a fixed 0 ≤ i ≤ 3. It corresponds to taking the sublinear system Si
of the sextic surfaces of S containing the face fi. The movable part of Si is given by
the quintic surfaces Qi of P3 containing the three edges of T contained in fi and with
double points along the other three edges of T . Such a surface Qi cuts on fi a quintic
curve given by the three edges of T contained in fi and a variable conic. Let us denote
by S̃i the strict transform on Y of Si and let Q̃i be the strict transform on Y of Qi.
Then S̃i|f̃i

∼= |Of̃i(Q̃i)| ∼= |OP2(2)|, whose image is the Veronese surface.

Since νS : P3 99K W 13
F ⊂ P13 is an isomorphism outside T (see Remark 5.3),

then P1, P2, P3, P4, P ′1, P ′2, P ′3 and P ′4 are the only singular points of W 13
F (see Re-

marks 5.12, 5.13, 5.14). By recalling Definition 4.4 we have the following result.

Theorem 5.17. Each singular point of W 13
F is associated with at least m = 3 of the

other singular points.

Proof. We know that the twelve exceptional divisors of bl′′′ : Y → Y ′′ are mapped
by νS̃ : Y → W 13

F ⊂ P13 to curves of W 13
F (see Remark 5.13). In particular they are

mapped to twelve lines joining the points P1, P2, P3, P4, P ′1, P ′2, P ′3, P ′4 as in Figure 26
of Appendix A. Let us show it, by fixing two indices i, j ∈ {0, 1, 2, 3} with j 6= i. Let

Σ̃ be a general element of S̃: by construction we have that Σ̃ ∩ Γij belongs to one

of the two rulings of Γij ∼= F0. Then S̃|Γij ∼= P1 and so νS̃(Γij) ⊂ W 13
F is a line. In

particular νS̃(Γij) joins the points Pi+1 = νS̃(Ei) and P ′j+1 = νS̃(f̃j), since Γij ∩ Ei 6= ∅
and Γij ∩ f̃j 6= ∅.

Remark 5.18. Thanks to a computational anaylisis with Macaulay2, we see that each
singular point of W 13

F is associated with exactly m = 3 of the other singular points, as
in Figure 26 of Appendix A. This follows by Remark 6.16, since the embedding of the
BS-EF 3-fold W 13

BS in P13 is the F-EF 3-fold W 13
F (see Theorem 6.17).

5.3 F-EF 3-fold of genus 9

5.3.1 Construction of W 9
F

We take two trihedra T and T ′ in P3 as in Figure 4: the trihedron T with vertex v,
faces fi and edges lij := fi ∩ fj and the trihedron T ′ with vertex v′, faces f ′i and edges
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l′ij := f ′i ∩ f ′j, for 1 ≤ i < j ≤ 3. Let us consider the linear system K of the septic
surfaces of P3 double along the six edges of the two trihedra T and T ′.

Figure 4: Trihedra T and T ′ in P3.

Remark 5.19. A septic surface K ∈ K contains the nine lines rij := fi ∩ f ′j, for
i, j ∈ {1, 2, 3}. Assume the contrary: then, by Bezout’s Theorem, K ∩ rij is given by
7 points. Furthermore, each line rij intersects two edges of T contained in fi and two
edges of T ′ contained in f ′j. Hence rij is a line through four double points of K. We
obtain that K ∩ rij contains at least 8 points, counted with multiplicity, which is a
contradiction. Thus it must be rij ⊂ K.

Proposition 5.20. The linear system K is defined by the zero locus of the following
homogeneous polynomial of degree seven

F (s0, s1, s2, s3) = f1f2f3f
′
1f
′
2f
′
3(λ0s0 + λ1s1 + λ2s2 + λ3s3)+

+f ′1f
′
2f
′
3(λ4f

2
3 f

2
2 + λ5f

2
1 f

2
3 + λ6f

2
1 f

2
2 ) + f1f2f3(λ7f

′
3

2
f ′2

2
+ λ8f

′
1

2
f ′3

2
+ λ9f

′
1

2
f ′2

2
),

where λ0, . . . , λ9 ∈ C and where fi and f ′i denote, by abuse of notation, the linear
homogeneous polynomials defining, respectively, the faces fi and f ′i , for 1 ≤ i ≤ 3. The
linear system K therefore has dimK = 9.

Proof. Let F ∈ C [s0 : s1 : s2 : s3] be the homogeneous polynomial of degree 7 defining
a general element K of K. We recall that the intersection of an irreducible septic
surface of P3 with a plane is a septic curve: in particular, K intersects each face fi
of T along the septic curve given by the two double edges contained in that face plus
the three lines rij, for 1 ≤ j ≤ 3. The same happens with the faces of T ′. This
implies that it must be K ∩ fi = {f ′1f ′2f ′3f 2

kf
2
h = 0, fi = 0} = 2lik + 2lih +

∑3
j=1 rij

and K ∩ f ′i = {f1f2f3f
′
k

2f ′h
2 = 0, f ′i = 0} = 2l′ik + 2l′ih +

∑3
j=1 rji, for distinct indices

i, k, h ∈ {1, 2, 3}. Then it must be

F (s0, s1, s2, s3) = f1g6(s0, s1, s2, s3) + λ4f
′
1f
′
2f
′
3f

2
3 f

2
2 ,
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where λ4 ∈ C and g6 is a homogeneous polynomial of degree 6 such that

g6(s0, s1, s2, s3) = f2g5(s0, s1, s2, s3) + λ5f
′
1f
′
2f
′
3f1f

2
3 ,

where λ5 ∈ C and g5 is a homogeneous polynomial of degree 5 such that

g5(s0, s1, s2, s3) = f3g4(s0, s1, s2, s3) + λ6f
′
1f
′
2f
′
3f1f2,

where λ6 ∈ C and g4 is a homogeneous polynomial of degree 4 such that

g4(s0, s1, s2, s3) = f ′1g3(s0, s1, s2, s3) + λ7f
′2
2 f
′2
3 ,

where λ7 ∈ C and g3 is a homogeneous polynomial of degree 3 such that

g3(s0, s1, s2, s3) = f ′2g3(s0, s1, s2, s3) + λ8f
′
1f
′2
3 ,

where λ8 ∈ C and g2 is a homogeneous polynomial of degree 2 such that

g2(s0, s1, s2, s3) = f ′3(λ0s0 + λ1s1 + λ2s2 + λ3s3) + λ9f
′
1f
′
2,

where λ0, λ1, λ2, λ3, λ9 ∈ C. So F has the expression of the statement. Since {K ∈
K|K ⊃ f1} = {F = 0|λ4 = 0}, then codim ({K ∈ K|K ⊃ f1},K) = 1. Let us see that
containing the six faces f1, f2, f3, f ′1, f ′2, f ′3 imposes independent conditions: there
exists a septic surface in K containing f1 but not f2, that is {F = 0|λ4 = 0, λ5 6= 0};
there exists a septic surface in K containing f1 and f2 but not f3, that is {F = 0|λ4 =
λ5 = 0, λ6 6= 0}; there exists a septic surface in K containing f1, f2 and f3 but not f ′1,
that is {F = 0|λ4 = λ5 = λ6 = 0, λ7 6= 0} there exists a septic surface in K containing
f1, f2, f3 and f ′1 but not f ′2, that is {F = 0|λ4 = λ5 = λ6 = λ7 = 0, λ8 6= 0} there exists
a septic surface in K containing f1, f2, f3, f ′1, and f ′2 but not f ′3, that is {F = 0|λ4 =
λ5 = λ6 = λ7 = λ8 = 0, λ9 6= 0}. Thus we obtain codim({K ∈ K|K ⊃ T ∪ T ′},K) = 6.
Furthermore each element of {K ∈ K|K ⊃ T ∪ T ′} is of the form T ∪ T ′ ∪ π, where π
is a general plane of P3. Thus we have dim{K ∈ K|K ⊃ T ∪ T ′} = dim |OP3(1)| = 3
and finally dimK = 3 + 6 = 9.

Let us consider the points mentioned in Remark 5.19: they are qijk := lij ∩ rik =
lij ∩ rjk and q′ijk := l′ij ∩ rki = l′ij ∩ rkj for i, j, k ∈ {1, 2, 3} with i < j. These points also
represent the intersection points between the faces of a trihedron and the edges of the
other trihedron. Indeed we have that qijk = lij ∩ f ′k and q′ijk = l′ij ∩ fk (see Figure 5).

Remark 5.21. Let K be a general element of K. By looking locally at the equation
of K (see Proposition 5.20), then we find that:

(i) K has triple points at the vertices of T and T ′ and TCvK =
⋃3
i=1 fi and TCv′K =⋃3

i=1 f
′
i ;

(ii) TCqijkK = fi ∪ fj and TCq′ijk = f ′i ∪ f ′j, for i, j, k ∈ {1, 2, 3} with i < j;

(iii) if p ∈ lij, with p 6= v and p 6= qijk, then TCpK is the union of two variable planes
containing lij, depending on the choice of the point p and of the surface K, and
coinciding for finitely many points p. Similarly if p ∈ l′ij, with p 6= v′ and p 6= q′ijk,
then TCpK is the union of two elements of |Il′ij |P3(1)| that depend on the choice
of p and K and that can also coincide for finitely many points p;
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Figure 5: Description of faces of T . The same happens on T ′ by taking v instead of v′; f ′i instead of f ′i ; rki instead
of rik; l′ij instead of lij ; qijk instead of q′ijk and q′ijk instead of qijk.

(iv) K is smooth along rik, except at the points contained in the edges of the two
trihedra.

Lemma 5.22. The rational map νK : P3 99K P9 defined by K is birational onto the
image.

Proof. It is sufficient to prove that the map defined by K on a general K ∈ K is
birational onto the image. This actually happens because K|K contains a sublinear
system that defines a birational map. Indeed K contains a sublinear system K ⊂ K
whose fixed part is given by the two trihedra T and T ′ and such that K|K coincides
with the linear system on K cut out by the planes of P3.

Remark 5.23. The proof of Lemma 5.22 tells us that the linear system K is very ample
outside the two trihedra T and T ′. So νK : P3 99K νK(P3) ⊂ P9 is an isomorphism
outside T ∪ T ′.

Theorem 5.24. [23, §7] The image of νK : P3 99K P9 is an Enriques-Fano threefold
W 9
F of genus p = 9.
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Proof. We will prove the theorem by using the approaches of the proof of Theorem 5.4.
In particular the proof is divided into several steps, given by the Remark 5.25, the
Proposition 5.26, the Remarks 5.27,. . . , 5.37 and the Theorem 5.38 below.

We blow-up first the vertices of the trihedra and the 18 points qijk and q′ijk for
i, j, k ∈ {1, 2, 3} and i < j. We obtain a smooth threefold Y ′ and a birational morphism
bl′ : Y ′ → P3 with exceptional divisors E := (bl′)−1(v), E ′ := (bl′)−1(v′), Eijk :=
(bl′)−1(qijk), E

′
ijk := (bl′)−1(q′ijk). Let K′ be the strict transform of K and let us denote

by H the pullback on Y ′ of the hyperplane class on P3. Then an element of K′ is
linearly equivalent to 7H − 3E − 3E ′ − 2

∑3
i,j,k=1
i<j

(Eijk + E ′ijk). Let f̃i and f̃ ′i be the

strict transforms of the faces fi and f ′i , for 1 ≤ i ≤ 3. We denote by γi := E ∩ f̃i
the line cut out by f̃i on E and by γ′i := E ′ ∩ f̃ ′i the one cut out by f̃ ′i on E ′. By

construction, the curves γi and γ′i are (−1)-curves respectively on f̃i and f̃ ′i . If K ′ is
the strict transform of a general K ∈ K, then K ′ ∩E =

⋃3
i=0 γi and K ′ ∩E ′ =

⋃3
i=0 γ

′
i

and K ′ is smooth at a general point of γi and of γ′i (see Remark 5.21). We also consider

the lines λijk,h := Eijk∩ f̃h and λ′ijk,h := E ′ijk∩ f̃ ′h, where i, j, k ∈ {1, 2, 3} with i < j and
h ∈ {i, j}. They are (−1)-curves on the strict transforms of the faces containing them.
Furthermore we have that K ′ ∩ Eijk =

⋃
h=i,j λijk,h and K ′ ∩ E ′ijk =

⋃
h=i,j λ

′
ijk,h (see

Remark 5.21). Let us consider the strict transforms l̃ij, l̃
′
ij and r̃ij of the lines lij, l

′
ij

and rik, for i, j, k ∈ {1, 2, 3} and i < j. Then the base locus of K′ is given by the union

of the six curves l̃ij, l̃
′
ij (along which a general K ′ ∈ K′ has double points), of the nine

curves r̃ik, of the six lines γi, γ
′
i, and of the 36 lines λijk,h, λ

′
ijk,h (see Remark 5.21). Let

us blow-up Y ′ along the strict transforms of the edges of the trihedra and of the nine
lines rij. We obtain a smooth threefold Y ′′ and a birational morphism bl′′ : Y ′′ → Y ′

with exceptional divisors

(bl′′)−1(l̃ij) =: Fij ∼= P(Nl̃ij |Y ′)
∼= P(OP1(−3)⊕OP1(−3)) ∼= F0,

(bl′′)−1(l̃′ij) =: F ′ij
∼= P(Nl̃′ij |Y ′)

∼= P(OP1(−3)⊕OP1(−3)) ∼= F0,

(bl′′)−1(r̃ij) =: Rij
∼= P(Nr̃ij |Y ′) ∼= P(OP1(−3)⊕OP1(−3)) ∼= F0.

This blow-up has no effect on f̃i and f̃ ′i , for 1 ≤ i ≤ 3, so, by abuse of notation, we use

the same symbols to indicate their strict transforms on Y ′′. Let us denote by Ẽ, Ẽ ′,
Ẽijk and Ẽ ′ijk respectively the strict transforms of E, E ′, Eijk and E ′ijk.

Remark 5.25. Let us take the curves αij := Ẽ∩Fij, α′ij := Ẽ ′∩F ′ij, αijk := Ẽijk∩Fij,
α′ijk := Ẽ ′ijk ∩ F ′ij, αijk,h := Ẽijk ∩ Rhk, α

′
ijk,h := Ẽijk ∩ Rkh, where i, j, k ∈ {1, 2, 3}

with i < j and h ∈ {i, j}. By construction, αij and α′ij are (−1)-curves respectively

on Ẽ and Ẽ ′; αijk and αijk,h are (−1)-curves on Ẽijk (see Figure 6); α′ijk and α′ijk,h are

(−1)-curves on Ẽ ′ijk; αij and αijk are fibres on Fij; α
′
ij and α′ijk are fibres on F ′ij; αijk,h

and α′ijk,h are fibres respectively on Rhk and Rkh.

Let K′′ be the strict transform of K′: an element of K′′ is linearly equivalent to
7H − 3Ẽ − 3Ẽ ′ − 2

∑3
i,j,k=1
i<j

(Ẽijk + Ẽ ′ijk) − 2
∑

1≤i<j≤3(Fij + F ′ij) −
∑3

i,j=1Rij, where,

by abuse of notation, H also denotes the pullback bl′′∗H.
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Figure 6: Description of bl′′′|
Ẽijk

: Ẽijk → Eijk.

Proposition 5.26. A general element K ′′ ∈ K′′ is a smooth surface with zero arith-
metic genus pa(K

′′) = 0.

Proof. The smoothness of K ′′ is shown in [27, p.620-621], since K ′′ is the blow-up of a
surface K ∈ K with ordinary singularities along its singular curves (see Definition 3.4
and Remark 5.21). We have to compute the arithmetic genus pa(K

′′) = χ(OK′′)−1. By
Serre Duality, we have that pa(K

′′) = χ(OK′′(KK′′)) − 1. By the adjunction formula,
we have the following exact sequence

0→ OY ′′(KY ′′)→ OY ′′(KY ′′ +K ′′)→ OK′′(KK′′)→ 0.

Since Y ′′ is a smooth rational threefold, then we have that h0(Y ′′,OY ′′(KY ′′)) =
pg(Y

′′) = 0. By Serre Duality, we have that hi(Y ′′,OY ′′(KY ′′)) = h3−i(Y ′′,OY ′′) = 0
for i = 1, 2, and h3(Y ′′,OY ′′(KY ′′)) = h0(Y ′′,OY ′′) = 1. Hence χ(OY ′′(KY ′′)) = −1 and

pa(K
′′) = χ(OY ′′(KY ′′ +K ′′))− χ(OY ′′(KY ′′))− 1 = χ(OY ′′(KY ′′ +K ′′)).

Since the canonical divisor of Y ′′ is linearly equivalent to

−4H + 2Ẽ + 2Ẽ ′ + 2
3∑

i,j,k=1
i<j

(Ẽijk + Ẽ ′ijk) +
∑

1≤i<j≤3

(Fij + F ′ij) +
3∑

i,j=1

Rij

(see [27, p.187]), then we have KY ′′ + K ′′ ∼ 3H − Ẽ − Ẽ ′ −
∑

1≤i<j≤3(Fij + F ′ij). Let
us denote by fij and f ′ij respectively the fibre class of Fij and F ′ij. Then we have the
following two exact sequences

0→ OY ′′(3H − Ẽ − Ẽ ′)→ OY ′′(3H)→ OẼ ⊕OẼ′ → 0,

0→ OY ′′(KY ′′+K
′′)→ OY ′′(3H−Ẽ−Ẽ ′)→ ⊕1≤i<j≤3OFij(2fij)⊕1≤i<j≤3OF ′ij(2f

′
ij)→ 0,

and we obtain χ(OY ′′(KY ′′ +K ′′)) =
(

3+3
3

)
− 2− 6 · 3 = 0.
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By Remark 5.21 we have that the base locus of K′′ is given by the disjoint union of
the strict transforms γ̃i, γ̃

′
i, λ̃ijk,h, λ̃

′
ijk,h of the 42 lines defined as above.

Remark 5.27. We observe that γ̃2
i |Ẽ = γ̃2

i |f̃i = −1, γ̃′2i |Ẽ′ = γ̃′2i |f̃ ′i = −1, λ̃2
ijk,h|Ẽijk =

λ̃2
ijk,h|f̃h = −1, λ̃′2ijk,h|Ẽ′ijk = λ̃2

ijk,h|f̃ ′h = −1. Furthermore, by using similar arguments

to the ones in Remark 5.7 we also have that γ̃i, γ̃
′
i, λ̃ijk,h, λ̃

′
ijk,h are (−1)-curves on the

strict transform K ′′ of a general K ′ ∈ K′.

Finally let us consider the blow-up of Y ′′ along the above 42 curves, which is the
map bl′′′ : Y → Y ′′ with exceptional divisors Γi := bl′′′−1(γ̃i), Γ′i := bl′′′−1(γ̃′i), Λijk,h :=

bl′′′−1(λ̃ijk,h), Λ′ijk,h := bl′′′−1(λ̃′ijk,h). We denote by E , E ′, Eijk, E ′ijk, respectively, the

strict transform of Ẽ, Ẽ ′, Ẽijk, Ẽ
′
ijk; by Fij the strict transform of Fij; by Rik the

strict transform of Rik; by H the pullback of H, for i, j, k ∈ {1, 2, 3} with i < j and
h ∈ {i, j}.

Remark 5.28. We have that

Γi = P(Nγ̃i|Y ′′) ∼= P(Oγ̃i(Ẽ)⊕Oγ̃i(f̃i)) ∼= P(OP1(−1)⊕OP1(−1)) ∼= F0,

Γ′i = P(Nγ̃′i|Y ′′) ∼= P(Oγ̃′i(Ẽ
′)⊕Oγ̃′i(f̃

′
i))
∼= P(OP1(−1)⊕OP1(−1)) ∼= F0,

Λijk,h = P(Nλ̃ijk,h|Y ′′)
∼= P(Oλ̃ijk,h(Ẽijk)⊕Oλ̃ijk,h(f̃h)) ∼= P(OP1(−1)⊕OP1(−1)) ∼= F0,

Λ′ijk,h = P(Nλ̃′ijk,h|Y ′′)
∼= P(Oλ̃′ijk,h(Ẽ ′ijk)⊕Oλ̃′ijk,h(f̃ ′h))

∼= P(OP1(−1)⊕OP1(−1)) ∼= F0.

Furthermore we have Γ3
i = − deg(Nγ̃i|Y ′′) = 2, Γ′3i = − deg(Nγ̃′i|Y ′′) = 2, Λ3

ijk,h =
− deg(Nλ̃ijk,h|Y ′′) = 2, Λ′3ijk,h = − deg(Nλ̃′ijk,h|Y ′′) = 2 (see [27, Chap 4, §6] and [32,

Lemma 2.2.14]).

Remark 5.29. Let us take i, j, k ∈ {1, 2, 3} with i < j and h ∈ {i, j}. The divisor
Fij intersects Γi, Γj, Λijk,h each along a P1, which is a (−1)-curve on Fij and a fibre
on Γi, Γj, Λijk,h. The same happens with F ′ij and Γ′i, Γ′j, Λ′ijk,h. Similarly we have
Λ2
ijk,h · Rhk = Λ′2ijk,h · Rkh = −1 and Λijk,h · R2

hk = Λ′ijk,h · R2
kh = 0. Let us consider the

strict transforms α̃ij, α̃
′
ij, α̃ijk, α̃

′
ijk, α̃ijk,h, α̃

′
ijk,h of the curves defined in Remark 5.25.

Then we have
α̃2
ij|E = F2

ij · E = −1, α̃2
ij|Fij = E2 · Fij = −2,

α̃′2ij|E ′ = F ′ij
2 · E ′ = −1, α̃′2ij|Fij = E ′2 · F ′ij = −2,

α̃2
ijk|Eijk = F2

ij · Eijk = −1, α̃2
ijk|F2

ij
= E2

ijk · Fij = −2,

α̃′2ijk|E ′ijk = F2
ij · E ′ijk = −1, α̃′2ijk|Fij = E ′2ijk · Fij = −2,

α̃2
ijk,h|Eijk = R2

hk · Eijk = −1, α̃2
ijk,h|Rhk = E2

ijk · Rhk = −1,

α̃′2ijk,h|E ′ijk = R2
kh · E ′ijk = −1, α̃′2ijk,h|Rkh = E ′2ijk · Rkh = −1.

Finally we recall that a general line of P3 does not intersect the edges of the trihedra and
the nine lines rij, while a general plane of P3 intersects each of these lines at one point.
Hence we have thatH2·Fij = H2·F ′ij = H2·Rik = 0 and F2

ij ·H = F ′2ij ·H = R2
ik·H = −1.
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Remark 5.30. By construction we have that

bl′′′
∗
(Ẽ) = E +

∑
1≤x<y≤3

Γxy, bl′′′
∗
(Eijk) = Eijk + Λijk,i + Λijk,j,

bl′′′
∗
(Ẽ ′) = E ′ +

∑
1≤x<y≤3

Γ′xy, bl′′′
∗
(E ′ijk) = E ′ijk + Λ′ijk,i + Λ′ijk,j,

where i, j, k ∈ {1, 2, 3} and i < j. By abuse of notation, we denote E ∩ Γij, E ′ ∩ Γ′ij,

Eijk ∩ Λijk,h, E ′ijk ∩ Λ′ijk,h, respectively, by γ̃ij, γ̃
′
ij, λ̃ijk,h, λ̃

′
ijk,h, where h ∈ {i, j}. Let

L, L′, Lijk, L′ijk be the strict transforms on Y of a general line respectively of E, E ′,
Eijk, E

′
ijk. By using similar arguments to the ones in Remark 5.10 we obtain

E|E ∼ −(L+
3∑
t=1

γ̃i) ∼ −(4L − 2
∑

0≤x<y≤3

α̃xy),

E ′|E ′ ∼ −(L′ +
3∑
t=1

γ̃′i) ∼ −(4L′ − 2
∑

0≤x<y≤3

α̃′xy),

Eijk|Eijk ∼ −(Lijk + λ̃ijk,i + λ̃ijk,j) ∼ −(3Lijk − 2α̃ijk − α̃ijk,i − α̃ijk,j),

E ′ijk|E ′ijk ∼ −(L′ijk + λ̃′ijk,i + λ̃′ijk,j) ∼ −(3L′ijk − 2α̃′ijk − α̃′ijk,i − α̃′ijk,j),

so we have E3 = 4, E ′3 = 4, E3
ijk = 3 and E ′3ijk = 3.

Remark 5.31. With similar arguments to the ones in Remark 5.11, we have F3
ij =

− deg(Nl̃ij |Y ′) = 6, F ′3ij = − deg(Nl̃′ij |Y ′) = 6, R3
ki = − deg(Nr̃ki|Y ′) = 6, for i, j, k ∈

{1, 2, 3} with i < j.

Let K̃ be the strict transform on Y of an element of K′′: then

K̃ ∼ 7H− 3E − 3E ′ − 2
3∑

i,j,k=1
i<j

(Eijk + E ′ijk)− 2
∑

1≤i<j≤3

(Fij + F ′ij)−
3∑

i,j=1

Rij+

−4
3∑
i=1

(Γi + Γ′i)− 3
3∑

i,j,k=1
i<j, h=i,j

(Λijk,h + Λ′ijk,h).

Let us take the linear system K̃ := |OY (K̃)| on Y . It is base point free and it
defines a morphism νK̃ : Y → P9 birational onto the image W 9

F := νK̃(Y ), which is a
threefold of degree degW 9

F = 16. This follows by Lemma 5.22 and by the fact that

K̃3 = 16: indeed by Remarks 5.28, 5.29, 5.30, 5.31) we have

K̃3 = (7H)3 − 27E3 − 27E ′3 − 8
3∑

i,j,k=1
i<j

(E3
ijk + E ′3ijk)− 8

∑
1≤i<j≤3

(F3
ij + F ′3ij )−

3∑
i,j=1

R3
ij+

38



−64
3∑
i=1

(Γ3
i + Γ′3i )− 27

3∑
i,j,k=1
i<j, h=i,j

(Λ3
ijk,h + Λ′3ijk,h)− (3 · 49 · 2)

∑
1≤i<j≤3

H2 · (Fij + F ′ij)+

−(3·9·2)
∑

1≤i<j≤3

E2 ·Fij−(3·9·4)
3∑
i=1

E2 ·Γi−(3·9·2)
∑

1≤i<j≤3

E ′2 ·F ′ij−(3·9·4)
3∑
i=1

E ′2 ·Γ′i+

−(3 · 4 · 2)
( 3∑
i,j,k=1
i<j

E2
ijk

)
·
( ∑

1≤i<j≤3

Fij
)
− (3 · 4 · 1)

( 3∑
i,j,k=1
i<j

E2
ijk

)
·
( 3∑
i,j=1

Rij

)
+

−(3 · 4 · 2)
( 3∑
i,j,k=1
i<j

E ′2ijk
)
·
( ∑

1≤i<j≤3

F ′ij
)
− (3 · 4 · 1)

( 3∑
i,j,k=1
i<j

E ′2ijk
)
·
( 3∑
i,j=1

Rij

)
+

−(3 · 4 · 3)
( 3∑
i,j,k=1
i<j

E2
ijk

)
·
( 3∑

i,j,k=1
i<j, h=i,j

Λijk,h

)
− (3 · 4 · 3)

( 3∑
i,j,k=1
i<j

E ′2ijk
)
·
( 3∑

i,j,k=1
i<j, h=i,j

Λ′ijk,h

)
+

+(3 · 4 · 7)
∑

1≤i<j≤3

(F2
ij + F ′2ij ) · H − (3 · 4 · 3)

∑
1≤i<j≤3

(F2
ij · E + F ′2ij · E ′)+

−(3 · 4 · 2)
( ∑

1≤i<j≤3

F2
ij

)
·
( 3∑
i,j,k=1
i<j

Eijk
)
− (3 · 4 · 2)

( ∑
1≤i<j≤3

F ′2ij
)
·
( 3∑
i,j,k=1
i<j

E ′ijk
)

+

−(3 · 4 · 4)
( ∑

1≤i<j≤3

F2
ij

)
·
( 3∑
i=1

Γi

)
− (3 · 4 · 4)

( ∑
1≤i<j≤3

F ′2ij
)
·
( 3∑
i=1

Γ′i

)
+

−(3 · 4 · 3)
( ∑

1≤i<j≤3

F2
ij

)
·
( 3∑

i,j,k=1
i<j, h=i,j

Λijk,h

)
− (3 · 4 · 3)

( ∑
1≤i<j≤3

F ′2ij
)
·
( 3∑

i,j,k=1
i<j, h=i,j

Λ′ijk,h

)
+

+(3 · 1 · 7)
3∑

i,j=1

R2
ij · H − (3 · 1 · 2)

( 3∑
i,j=1

R2
ij

)
·
( 3∑
i,j,k=1
i<j

Eijk + E ′ijk
)

+

−(3 · 1 · 3)
( 3∑
i,j=1

R2
ij

)
·
( 3∑

i,j,k=1
i<j, h=i,j

Λijk,h + Λ′ijk,h

)
− (3 · 16 · 3)

3∑
i=1

(Γ2
i · E + Γ′2i · E ′)+

−(3 · 16 · 2)
( 3∑
i=1

Γ2
i

)
·
( ∑

1≤i<j≤3

Fij
)
− (3 · 16 · 2)

( 3∑
i=1

Γ′2i

)
·
( ∑

1≤i<j≤3

F ′ij
)

+

−(3 · 9 · 2)
( 3∑

i,j,k=1
i<j, h=i,j

Λ2
ijk,h

)
·
( 3∑
i,j,k=1
i<j

Eijk
)
− (3 · 9 · 2)

( 3∑
i,j,k=1
i<j, h=i,j

Λ′2ijk,h

)
·
( 3∑
i,j,k=1
i<j

E ′ijk
)

+
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−(3 · 9 · 2)
( 3∑

i,j,k=1
i<j, h=i,j

Λ2
ijk,h

)
·
( ∑

1≤i<j≤3

Fij
)
− (3 · 9 · 2)

( 3∑
i,j,k=1
i<j, h=i,j

Λ′2ijk,h

)
·
( ∑

1≤i<j≤3

F ′ij
)

+

−(3 · 9 · 1)
( 3∑

i,j,k=1
i<j, h=i,j

Λ2
ijk,h + Λ′2ijk,h

)
·
( 3∑
i,j=1

Rij

)
+

−(6 · 3 · 2 · 4)E ·
( ∑

1≤i<j≤3

Fij
)
·
( 3∑
i=1

Γi

)
− (6 · 3 · 2 · 4)E ′ ·

( ∑
1≤i<j≤3

F ′ij
)
·
( 3∑
i=1

Γ′i

)
+

−(6 · 2 · 1 · 3)
( 3∑
i,j,k=1
i<j

Eijk
)
·
( 3∑
i,j=1

Rij

)
·
( 3∑

i,j,k=1
i<j, h=i,j

Λijk,h

)
+

−(6 · 2 · 1 · 3)
( 3∑
i,j,k=1
i<j

E ′ijk
)
·
( 3∑
i,j=1

Rij

)
·
( 3∑

i,j,k=1
i<j, h=i,j

Λ′ijk,h

)
+

−(6 · 2 · 2 · 3)
( 3∑
i,j,k=1
i<j

Eijk
)
·
( ∑

1≤i<j≤3

Fij
)
·
( 3∑

i,j,k=1
i<j, h=i,j

Λijk,h

)
+

−(6 · 2 · 2 · 3)
( 3∑
i,j,k=1
i<j

E ′ijk
)
·
( ∑

1≤i<j≤3

F ′ij
)
·
( 3∑

i,j,k=1
i<j, h=i,j

Λ′ijk,h

)
=

= 343−108−108−432−288−54−768−1944+0+324+0+324+0+432+216+432+216+

+0+0−504+108+108+216+216+0+0+0+0−189+108+108+0+0+432+432+

+576+576+972+972+972+972+486+486−864−864−648−648−1296−1296 = 16.

Then we have the following diagram:

Y

Y ′′ Y ′ P3 W 9
F ⊂ P9.

bl′′′
νK̃

bl′′ bl′ νK

It remains to show that the general hyperplane section of the threefold W 9
F is an

Enriques surface.

Remark 5.32. By construction we have K̃ · E = K̃ · E = K̃ · Eijk = K̃ · E ′ijk = 0, for
all i, j, k ∈ {1, 2, 3} with i < j.

Remark 5.33. Since bl′′′ : Y → Y ′′ has no effect on the divisors f̃i and f̃ ′i for 1 ≤
i ≤ 3, we will continue to use the same notations to denote their strict transforms. By
construction we have K̃ · f̃i = K̃ · f̃ ′i = 0 for a general K̃ ∈ K̃.
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Remark 5.34. The morphism νK̃ : Y → W 9
F ⊂ P9 blows-down the 42 exceptional

divisors of bl′′′ : Y → Y ′′ and the nine divisors Rik to curves of W 9
F . This follows by

the fact that K̃ · Γi, K̃ · Γ′i, K̃ · Λijk,h, K̃ · Λ′ijk,h, K̃ · Rik 6= 0 and K̃2 · Γi = K̃2 · Γ′i =

K̃2 ·Λijk,h = K̃2 ·Λ′ijk,h = K̃2 ·Rik = 0, for all i, j, k ∈ {1, 2, 3} with i < j and h ∈ {i, j}.
Indeed by Remarks 5.28, 5.29 we have

K̃2 · Γi = K̃ · (−3E · Γi − 2
∑

1≤x<y≤3
i∈{x,y}

Fxy · Γi − 4Γ2
i ) = 9E2 · Γi + 6

∑
1≤x<y≤3
i∈{x,y}

E · Fxy · Γi+

+12E · Γ2
i + 6

∑
1≤x<y≤3
i∈{x,y}

Fxy · E · Γi + 4
∑

1≤x<y≤3
i∈{x,y}

F2
xy · Γi + 8

∑
1≤x<y≤3
i∈{x,y}

Fxy · Γ2
i + 12E · Γ2

i+

+8
∑

1≤x<y≤3
i∈{x,y}

Fxy · Γ2
i + 16Γ3

i = 0 + 6 · 2− 12 + 6 + 6 + 0− 8− 8− 12− 8− 8 + 16 · 2 = 0;

K̃2 · Λijk,h = K̃ · (−2Eijk · Λijk,h − 2Fij · Λijk,h −Rhk · Λijk,h − 3Λ2
ijk,h) = 4E2

ijk · Λijk,h+

+4Eijk·Fij·Λijk,h+2Eijk·Rhk·Λijk,h+6Eijk·Λ2
ijk,h+4Fij·Eijk·Λijk,h+4F2

ij·Λijk,h+6Fij·Λ2
ijk,h+

+2Rhk·Eijk·Λijk,h+R2
hk·Λijk,h+3Rhk·Λ2

ijk,h+6Eijk·Λ2
ijk,h+6Fij·Λ2

ijk,h+3Rhk·Λ2
ijk,h+9Λ3

ijk,h =

= 0 + 4 + 2− 6 + 4 + 0− 6 + 2 + 0− 3− 6− 6− 3 + 18 = 0;

K̃2·Rik = K̃·
(

7H·Rik−2
∑

1≤x<y≤3
i∈{x,y}

Exyk·Rik−2
∑

1≤x<y≤3
k∈{x,y}

E ′xyi·Rik−R2
ik−3

∑
1≤x<y≤3
i∈{x,y}

Λxyk,i·Rik+

−3
∑

1≤x<y≤3
k∈{x,y}

Λ′xyi,k ·Rik

)
= 49H2·Rik−7H·R2

ik+4
∑

1≤x<y≤3
i∈{x,y}

E2
xyk ·Rik+2

∑
1≤x<y≤3
i∈{x,y}

Exyk ·R2
ik+

+6
∑

1≤x<y≤3
i∈{x,y}

Exyk·Rik·Λxyk,i+4
∑

1≤x<y≤3
k∈{x,y}

E ′2xyi·Rik+2
∑

1≤x<y≤3
k∈{x,y}

E ′xyi·R2
ik+6

∑
1≤x<y≤3
k∈{x,y}

E ′xyi·Rik·Λ′xyi,k+

−7H · R2
ik + 2

∑
1≤x<y≤3
i∈{x,y}

Exyk · R2
ik + 2

∑
1≤x<y≤3
k∈{x,y}

E ′xyi · R2
ik + 3

∑
1≤x<y≤3
i∈{x,y}

R2
ik · Λxyk,i +R3

ik+

+6
∑

1≤x<y≤3
i∈{x,y}

Exyk · Λxyk,i · Rik + 9
∑

1≤x<y≤3
i∈{x,y}

Λ2
xyk,i · Rik + 3

∑
1≤x<y≤3
i∈{x,y}

Λxyk,i · R2
ik+

+6
∑

1≤x<y≤3
k∈{x,y}

E ′xyi · Λ′xyi,k · Rik + 9
∑

1≤x<y≤3
k∈{x,y}

Λ′2xyi,k · Rik + 3
∑

1≤x<y≤3
k∈{x,y}

Λ′xyi,k · R2
ik =

= 0 + 7− 8− 4 + 12− 8− 4 + 12 + 7− 4− 4 + 0 + 6 + 12− 18 + 0 + 12− 18 + 0 = 0;

similarly one can compute K̃2 · Γ′i and K̃2 · Λ′ijk,h.
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Remark 5.35. Let K̃ be a general element of K̃. By Remarks 5.29, 5.31 we have

K̃2·F12 = K̃ ·
(

7H·F12−3E ·F12−2E121·F12−2E122·F12−2E123·F12−2F2
12−3Λ121,1·F12+

−3Λ121,2·F12−3Λ122,1·F12−3Λ122,2·F12−3Λ123,1·F12−3Λ123,2·F12−4Γ1·F12−4Γ2·F12

)
=

= 49H2 · F12 − 14H · F2
12 + 9E2 · F12 + 6E · F2

12 + 12E · F12 · Γ1 + 12E2 · F12 · Γ2+

+4E2
121 · F12 + 4E2

122 · F12 + 4E2
123 · F12 + 4E121 · F2

12 + 4E122 · F2
12 + 4E123 · F2

12+

+6E121·F12·Λ121,1+6E121·F12·Λ121,2+6E122·F12·Λ122,1+6E122·F12·Λ122,2+6E123·F12·Λ123,1+

+6E123 · F12 · Λ123,2 − 14F2
12 · H + 6F2

12 · E + 4F2
12 · E121 + 4F2

12 · E122 + 4F2
12 · E123+

+4F3
12+9Λ2

121,1 ·F12+9Λ2
121,2 ·F12+9Λ2

122,1 ·F12+9Λ2
122,2 ·F12+9Λ2

123,1 ·F12+9Λ2
123,2 ·F12+

+6Λ121,1 · F2
12 + 6Λ121,2 · F2

12 + 6Λ122,1 · F2
12 + 6Λ122,2 · F2

12 + 6Λ123,1 · F2
12 + 6Λ123,2 · F2

12+

+6Λ121,1·F12·E121+6Λ121,2·F12·E121+6Λ122,1·F12·E122+6Λ122,2·F12·E122+6Λ123,1·F12·E123+

+6Λ123,2·F12·E123+16Γ2
1·F12+16Γ2

2·F12+8Γ1·F2
12+8Γ2·F2

12+12Γ1·F12·E+12Γ2·F12·E =

= 0+14−18−6+12+12−8−8−8−4−4−4+6+6+6+6+6+6+14−6−4−4−4+

+24−9−9−9−9−9−9+0+0+0+0+0+0+6+6+6+6+6+6−16−16+0+0+12+12 = 8.

Similarly we obtain that K̃2 · Fij = K̃2 · F ′ij = 8 > 0 for 0 ≤ i < j ≤ 3. Thus the

curves K̃ ∩ Fij and K̃ ∩ F ′ij are not contracted by the rational map defined by K̃|K̃ .

Remark 5.36. Let us fix a general element K̃ ∈ K̃ and let us take S := νK̃(K̃)

and K ′′ := bl′′′(K̃) ∈ K′′. Since bl′′′ : Y → Y ′′ has no effect on K ′′, then K̃ ∩ Γi,

K̃ ∩ Γ′i, K̃ ∩ Λijk,h, K̃ ∩ Λ′ijk,h are still (−1)-curves on K̃, for all i, j, k ∈ {1, 2, 3} with
i < j and h ∈ {i, j} (see Remark 5.27). By Remarks 5.29, 5.31, we also have that

(K̃ ∩ Rik)|2K̃ = R2
ik · K̃ = R2

ik · (7H − 2
∑

1≤a<b≤3, i∈{a,b}
1≤x<y≤3, k∈{x,y}

(Eabk + E ′xyi) − Rik) = −5.

Furthermore we have that Rik ·K̃ Λabk,i = 1 and Rik ·K̃ Λ′xyi,k = 1 for 1 ≤ a < b ≤ 3 and
1 ≤ x < y ≤ 3 with i ∈ {a, b} and k ∈ {x, y} (use Remark 5.29). Thus we can see the

map νK̃|K̃ : K̃ → S as the blow-up of S at the six points νK̃(K̃ ∩ Γi) and νK̃(K̃ ∩ Γ′i),

at the nine points νK̃(K̃ ∩ Rik) and at the four points νK̃(K̃ ∩ Λabk,i), νK̃(K̃ ∩ Λ′xyi,k)

which are infinitely near to each νK̃(K̃∩Rik) (see Remarks 5.23, 5.32, 5.33, 5.34, 5.35).
Then S is a smooth surface.

Remark 5.37. The surface T ∪ T ′ is the only sextic surface of P3 which is singular
along the edges of the two trihedra. Let us consider the strict transforms T̃ and T̃ ′ on
Y of the trihedra:

T̃ ∼ 3H− 3E −
3∑

i,j,k=1
i<j

(2Eijk + E ′ijk)−
∑

1≤i<j≤3

2Fij −
3∑

i,j=1

Rij+
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−
3∑
i=1

4Γi −
∑

i,j,k∈{1,2,3}
i<j, h=i,j

(3Λijk,h + Λ′ijk,h),

T̃ ′ ∼ 3H− 3E ′ −
3∑

i,j,k=1
i<j

(Eijk + 2E ′ijk)−
3∑
i=1

2F ′ij −
3∑

i,j=1

Rij+

−
3∑
i=1

4Γ′i −
∑

i,j,k∈{1,2,3}
i<j, h=i,j

(Λijk,h + 3Λ′ijk,h).

Let K̃ be a general element of K̃. Then we have that

0 ∼ (T̃ + T̃ ′)|K̃ ∼
(

6H−
∑

1≤i<j≤3

(2Fij + 2F ′ij)−
3∑

i,j=1

2Rij+

−
3∑
i=1

(4Γi + 4Γ′i)−
∑

i,j,k∈{1,2,3}
i<j, h=i,j

(4Λijk,h + 4Λ′ijk,h)
)
|K̃ .

Theorem 5.38. Let S be a general hyperplane section of the threefold W 9
F ⊂ P9.

Then S is an Enriques surface.

Proof. We recall that S is the image of a general element K̃ ∈ K̃ via the birational
morphism νK̃ : Y → W 9

F ⊂ P9. Furthermore S is smooth (see Remark 5.36). By

Proposition 5.26 we have that pg(K̃)−q(K̃) = pa(K̃) = 0. Let us consider the following
exact sequence

0→ OY (−K̃)→ OY → OK̃ → 0.

Since Y is a smooth rational threefold and K̃ is a big and nef divisor on Y , by Serre
Duality and by the Kawamata-Viehweg vanishing theorem we have hi(Y,OY (−K̃)) = 0

for i = 1, 2, and so q(K̃) = h1(K̃,OK̃) = h1(Y,OY ) = 0. Thus we also obtain pg(K̃) =
0. It remains to prove that 2KS ∼ 0. Since

KY = bl′′′
∗
(KY ′′) +

3∑
i=1

(Γi + Γ′i) +
3∑

i,j,k=1
i<j, h=i,j

(Λijk,h + Λ′ijk,h) ∼ −4H + 2E + 2E ′+

+2
3∑

i,j,k=1
i<j

(Eijk+E ′ijk)+
∑

lei<j≤3

(Fij+F ′ij)+
3∑

i,j=1

Rij+
3∑
i=1

3(Γi+Γ′i)+
3∑

i,j,k=1
i<j, h=i,j

3(Λijk,h+Λ′ijk,h)

(see [27, p.187]), then, by the adjunction formula, we obtain that

2KK̃ = 2(KY + K̃)|K̃ ∼
(

6H−
∑

1≤j≤3

2(Fij + F ′ij)−
3∑
i=1

2(Γi + Γ′i)
)
|K̃ .

43



Furthermore, by Remark 5.37, we have

2KK̃ ∼
(
T̃ + T̃ ′ +

3∑
i,j=1

2Rij +
3∑
i=1

2(Γi + Γ′i) +
3∑

i,j,k=1
i<j, h=i,j

4(Λijk,h + Λ′ijk,h)
)
|K̃ ∼

∼
( 3∑
i,j=1

2Rij +
3∑
i=1

2(Γi + Γ′i) +
3∑

i,j,k=1
i<j, h=i,j

4(Λijk,h + Λ′ijk,h)
)
|K̃ =

=

( 3∑
i,k=1

2
(
Rik+

∑
a,b,x,y∈{1,2,3}
a<b, x<y

i∈{a,b}, k∈{x,y}

(Λabk,i+Λ′xyi,k)
)

+
3∑
i=1

2(Γi+Γ′i)+
3∑

i,j,k=1
i<j, h=i,j

2(Λijk,h+Λ′ijk,h)

)
|K̃ .

Finally, by Remark 5.36, we obtain 2KS ∼ (νS̃)∗(2KK̃) ∼ 0.

One can prove that W 9
F ⊂ P9 is not a cone over a general hyperplane section, as

in the proof of Theorem 5.15. So W 9
F ⊂ P9 satisfies the Assumption (*) of § 3.3.

Furthermore, if p is the genus of a curve section of W 9
F , we have that 16 = 2p − 2 by

the adjunction formula. Then W 9
F is an Enriques-Fano threefold of genus p = 9, since

W 9
F ⊂ P9 is (projectively) normal by Theorem 3.8 and Proposition 3.11.

5.3.2 Singularities of W 9
F

We recall that the eight divisors E , E ′, f̃1, f̃2, f̃3, f̃ ′1, f̃ ′2, f̃ ′3 are contracted by νK̃ : Y →
W 9
F ⊂ P9 to points of W 9

F (see Remarks 5.32, 5.33). Let us define

P1 := νK̃(E ′), P2 := νK̃(f̃1), P3 := νK̃(f̃2), P4 := νK̃(f̃3),

P ′1 := νK̃(E), P ′2 := νK̃(f̃ ′1), P ′3 := νK̃(f̃ ′2), P ′4 := νK̃(f̃ ′3).

Lemma 5.39. The 18 divisors Eijk and E ′ijk are mapped by νK̃ : Y → W 9
F ⊂ P9 to the

six points P2, P3, P4, P ′2, P ′3 and P ′4 of W 9
F in the following way:

Pi+1 = νK̃(f̃i) = νK̃(E ′rsi), P ′i+1 = νK̃(f̃ ′i) = νK̃(Ersi),

for all i, r, s ∈ {1, 2, 3} and r < s.

Proof. By Remark 5.32 we have that νK̃(Eijk) and νK̃(E ′ijk) are points of W 9
F for all

i, j, k ∈ {1, 2, 3} and i < j. Since f̃i ∩ E ′rsi 6= ∅ for all i, r, s ∈ {1, 2, 3} and r < s, then

the three divisors E ′rsi are mapped to the same point νK̃(f̃i) = Pi+1. Similarly the three

divisors Ersi are mapped to the same point νK̃(f̃ ′i) = P ′i+1.

Proposition 5.40. The points P1, . . . , P4, P
′
1, . . . , P

′
4 are eight quadruple points of W 9

F

whose tangent cone is a cone over a Veronese surface.
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Proof. The analysis of the points P ′1 and P1 follows by Remark 5.30 as in the proof
of Proposition 5.16. Let us fix now 1 ≤ i ≤ 3. Let us find the tangent cone to W 9

F

at Pi+1. Similarly one can study the tangent cone to W 9
F at P ′i+1. The hyperplane

sections of W 9
F ⊂ P9 passing through Pi+1 correspond to the elements of K̃ containing

f̃i∪E ′12i∪E ′13i∪E ′23i (see Lemma 5.39). Let K̃i := K̃−f̃i−E ′12i−E ′13i−E ′23i be the sublinear

system of K̃ defined by these elements. Let us study K̃i|f̃i = |Of̃i(−f̃i−E
′
12i−E ′13i−E ′23i)|.

Let us consider the case i = 1. Since

f̃1 ∼Y H−Ev−
3∑
j=1

E13j−
3∑
j=1

E12j−
∑

1≤r<s≤3

E ′rs1−F13−F12−
3∑
j=1

R1j−2Γ1−Γ2−Γ3+

−
3∑
j=1

(2Λ13j,1 + Λ13j,3)−
3∑
j=1

(2Λ12j,1 + Λ12j,2)−
∑

1≤r<s≤3

(Λ′rs1,r + Λ′rs1,s),

we have that

f̃1|f̃1 ∼f̃1

(
H−

∑
1≤r<s≤3

E ′rs1 −F13 −F12 −
3∑
j=1

R1j − 2Γ1 −
3∑
j=1

2Λ13j,1 −
3∑
j=1

2Λ12j,1

)
|f̃1 .

Let L1 be the pullback on f̃1 of the linear equivalence class of the lines of the face f1
∼=

P2. By abuse of notation, let us denote by γ̃1, λ̃131,1, λ̃132,1, λ̃133,1, λ̃121,1, λ̃122,1, λ̃123,1 the

(−1)-curves on f̃1 given by Γ1|f̃1 , Λ131,1|f̃1 , Λ132,1|f̃1 , Λ133,1|f̃1 , Λ121,1|f̃1 , Λ122,1|f̃1 , Λ123,1|f̃1 .
Let us also consider the (−1)-curves on f̃1 defined by εrs1 := E ′rs1|f̃1 for 1 ≤ r < s ≤ 3.

Then we have f̃1|f̃1 ∼ L1 −
∑

1≤r<s≤3 ε
′
rs1 − (L1 − γ̃1 −

∑3
j=1 λ̃13j,1) − (L1 − γ̃1 −∑3

j=1 λ̃12j,1)− (3L1−
∑

1≤r<s3 2ε′rs1−
∑3

j=1 λ̃13j,1−
∑3

j=1 λ̃12j,1)− 2γ̃1−
∑3

j=1 2λ̃13j,1−∑3
j=1 2λ̃12j,1 = −4L1 +

∑
1≤r<s≤3 ε

′
rs1. Similarly f̃i|f̃i ∼ −4Li +

∑
1≤r<s≤3 ε

′
rsi, for

i = 2, 3. Thus we obtain K̃i|f̃i = |Of̃i(4Li −
∑

1≤r<s≤3 2ε′rsi)|, which is isomorphic to
the linear system of the quartic plane curves on fi with double points at the three points
q′rsi = l′rs ∩ fi for 1 ≤ r < s ≤ 3. By applying a quadratic transformation, we obtain

that K̃i|f̃i
∼= |OP2(2)|, whose image is a Veronese surface Vi. Furthermore we have

that K̃i|E ′rsi = |OE ′rsi(−f̃i − E
′
rsi)| = |OE ′rsi(2L

′
rsi − 2α̃′rsi)| ∼= P2 for 1 ≤ r < s ≤ 3 (see

Remark 5.30). Since K̃i|E ′rsi is isomorphic to the linear system of the conics of E ′rsi with

node at the point E ′rsi∩ l̃′ij, then its image is a conic C ′rsi. Since Vi∪C ′12i∪C ′13i∪C ′23i =

P(TCPi+1
W 9
F ), then it must be C ′12i, C

′
13i, C

′
23i ⊂ Vi = P(TCPi+1

W 9
F ). Therefore f̃i is

contracted by νK̃ to the point Pi+1, which is a quadruple point whose tangent cone
tangent is a cone over a Veronese surface, and the divisors E ′12i, E ′13i, E ′23i are contracted
in three conics contained in the Veronese surface given by the exceptional divisor of
the minimal resolution of Pi+1.

We recall that νK : P3 99K W 9
F ⊂ P9 is an isomorphism outside T ∪ T ′ (see Re-

mark 5.23). Then P1, P2, P3, P4, P ′1, P ′2, P ′3 and P ′4 are the only singular points of W 9
F

(see Remarks 5.33, 5.34, 5.35). Furthermore νK̃ : Y → W 9
F is a desingularization of

W 9
F but it is not the minimal one: indeed the proof of Proposition 5.40 says us that
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νK̃ : Y → W 9
F is the blow-up of the minimal desingularization of W 9

F along curves
(conics) contained in the minimal resolutions of P2, P3, P4, P ′2, P ′3 and P ′4. Finally, by
recalling Definition 4.4, we have the following result.

Theorem 5.41. Each singular point of W 9
F is associated with at least m = 4 of the

other singular points.

Proof. We know that the 42 exceptional divisors of bl′′′ : Y → Y ′′ are mapped by
νK̃ : Y → W 9

F ⊂ P9 to curves of W 9
F (see Remark 5.34). In particular they are mapped

to lines of W 9
F (use similar arguments to the ones in the proof of Theorem 5.17). Since

Γi ∩ E 6= ∅ and Γi ∩ f̃i 6= ∅ for 1 ≤ i ≤ 3, we have that P ′1 is associated with Pi+1.
Similarly P1 is associated with P ′i+1. One can verify that the other 36 exceptional
divisors are mapped to nine lines in the following way:〈

Pi+1, P
′
j+1

〉
=
〈
νK̃(E ′rsi), νK̃(Ekhj)

〉
= νK̃(Λ′rsi,j) = νK̃(Λkhj,i)

for i, j, r, s, k, h ∈ {1, 2, 3} and r < s and k < h. So P2, P3, P4, P ′2, P ′3, P ′4 are
associated with each other as in Figure 24. It remains to show that P1 = νK̃(E ′) is
associated with P ′1 = νK̃(E). Let us consider the line lvv′ := 〈v, v′〉 ⊂ P3 joining the

two vertices of the trihedra T and T ′. Let l̃vv′ be its strict transform on Y . We obtain
that νK̃(l̃vv′) = 〈P1, P

′
1〉 ⊂ W 9

F , since l̃vv′ ∩ E 6= ∅, l̃vv′ ∩ E ′ 6= ∅ and deg(νK̃(l̃vv′)) =

K̃ · (H− E − E ′ −
∑3

i=1 Γi −
∑3

i=1 Γ′i)
2 = 1.

Remark 5.42. Thanks to a computational anaylisis with Macaulay2, we can say that
each singular point of W 9

F is associated with exactly m = 4 of the other singular points,
as in Figure 24 of Appendix A. This follows by Remark 6.10 since the embedding of
the BS-EF 3-fold W 9

BS in P9 is the F-EF 3-fold W 9
F (see Theorem 6.11).

5.4 F-EF 3-fold of genus 7

5.4.1 Construction of W 7
F

Let us take a tetrahedron T =
⋃3
i=0 fi ⊂ P3 and let us denote by vi the vertex opposite

to the face fi, for 0 ≤ i ≤ 3. Let lij be the edge fi∩ fj, for 0 ≤ i < j ≤ 3. Furthermore
let us fix a general plane π of P3. The plane π intersects each edge lij of T at one
point, which is denoted by pij := lij ∩ π. In the plane π there is a 3-dimensional linear
system of cubic curves passing through the six points pij (see [17, §9.2.2]). Let us fix a
general element δ of this linear system (Figure 7): it is an elliptic smooth cubic plane
curve. Let us consider the linear system X of the sextic surfaces in P3 double along
the six edges of the tetrahedron T and containing the cubic plane curve δ.

Proposition 5.43. The linear system X defined as above has dimX = 7.

Proof. The linear system X is a sublinear system of the linear system S of the sextic
surfaces double along the six edges of T . In particular we have that S = |Iγ2|P3(6)| and
X = |Iγ2∪δ|P3(6)|, where γ is the sextic reducible curve given by the union of the edges
of T . We also have that S cuts on δ a complete linear system |Oδ(D)|. Indeed we
recall that S contains a sublinear system whose fixed part is given by the tetrahedron
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Figure 7: Cubic plane curve δ in a general plane π intersecting each edge of the tetrahedron T at one point.

and whose movable part, given by the quadric surfaces of P3, cuts a complete linear
system on δ. Hence we have the following exact sequence

0→ H0(Iγ2∪δ|P3(6))→ H0(Iγ2|P3(6))→ H0(Oδ(D))→ 0.

Let Σ be a general element of S. The cubic plane curve δ intersects Σ, outside the
base locus of S, in 3 · 6 − 2 · 6 = 6 points. Hence degD = 6. We recall that
dimH0(P3, Iγ2|P3(6)) = dimS + 1 = 14. Since degD = 6 > 2pg(δ) − 2 = 0, then
dimH1(δ,Oδ(D)) = 0 (see [29, Example 1.3.4]) and we have dimH0(δ,Oδ(D)) = 6 by
Riemann-Roch. So the above exact seguence implies that

dimX = dimH0(P3, Iγ2∪δ|P3(6))− 1 = 14− 6− 1 = 7.

Remark 5.44. Let νS : P3 99K P13 be the rational map defined by the linear system
S of the sextic surfaces of P3 singular along the edges of T , whose image is the F-EF
3-fold W 13

F . Let W 7
F be the image of P3 via the rational map defined by the linear

system X . Then W 7
F is the projection of W 13

F from the linear subspace of P13 spanned
by the sextic elliptic curve νS(δ).

Lemma 5.45. The rational map νX : P3 99K P7 defined by X is a birational map onto
the image.

Proof. Let X be a general element of X . The linear system X contains a sublinear
system X ⊂ X whose fixed part is given by T ∪ π and such that X|X coincides with
the linear system on X cut out by the planes of P3. Then we obtain the birationality
of the maps defined by X|X and by X .
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Remark 5.46. The proof of Lemma 5.45 tells us that the linear system X is very
ample outside the tetrahedron T and the plane π. So νX : P3 99K νX (P3) ⊂ P7 is an
isomorphism outside T ∪ π.

The Proposition 5.43 proves the existence of sextic surfaces of P3 double along the
edges of the tetrahedron T (shortly, Enriques sextics) and containing a given cubic
plane curve δ. However, a priori, these surfaces could have further singularities and
their desingularizations could be not Enriques surfaces. Let us study the surfaces of X .

Up to a change of coordinates, we can consider in P3
[s0:s1:s2:s3] the tetrahedron T =

{s0s1s2s3 = 0} with faces fi = {si = 0} for 0 ≤ i ≤ 3. Let us fix the cubic plane curve

δ̂ := {
∑3

i=0 si = 0, s2
1s2 + s1s

2
2 + s2

1s3 + s1s2s3 + s2
2s3 + s1s

2
3 + s2s

2
3 = 0}, which intersects

the edges of T at one point each. Thanks to Macaulay2, we can construct the linear
system X̂ of the sextic surfaces of P3 which are singular along the edges of T and which
contain the curve δ̂ (see Code B.7 of Appendix B). Let us take X̂ := {s2

0s
2
1s

2
2−s3

0s1s2s3−
s0s

3
1s2s3 − 2s0s1s

3
2s3 + s2

0s
2
1s

2
3 + 2s2

0s
2
2s

2
3 + s0s1s

2
2s

2
3 + 2s2

1s
2
2s

2
3 − 2s0s1s2s

3
3 = 0} ∈ X̂ . By

the computational analysis, we see that X̂ has singular points only along the edges
of T . In particular the tangent cone to X̂ at a vertex of T is given by the union of
the three faces of T containing that vertex; the tangent cone to X̂ at a point p ∈ lij,
with p 6= vk and p 6= vh, is the union of two planes containing lij, where i, j, k, h are

four distinct indices in {0, 1, 2, 3}. Then X̂ has ordinary singularities along the edges
of T (see Definition 3.4) and no further singularities. The same happens for a general

surface of X̂ . Let D be the family of the cubic plane curves of P3 intersecting the
edges of T at one point each. We have that D is an irreducible variety of dimension 6.
Then what is true for the special cubic plane curve δ̂ ∈ D is also true for the general
cubic plane curve δ ∈ D. Therefore there exist Enriques sextics in P3, with ordinary
singularities along the edges of T and no further singularities, that contain δ. Let X
be such a general surface and let us take its minimal desingularization n : Xν → X.
It follows that Xν is an Enriques surface (see [16, p.275]). Furthermore let E be the
strict transform of δ on Xν . Then E is an elliptic curve such that E ·H = 3, where H
is the pullback of the general hyperplane section of X. If δ moved in a linear system on
X, then E would move in an elliptic pencil on Xν . Thus E should be 2-divisible (see
[2, Lemma 17.1]) and E ·H = 3 would be a contradiction. So δ does not move in any
linear system on X and, with a compute of parameters, one can see that the general
Enriques sextic in P3 contains some cubic plane curve of D. These arguments prove
that the image of a general X ∈ X via the rational map νX : P3 99K P7 is an Enriques
surface. Finally one can prove that W 7

F = νX (P3) ⊂ P7 is not a cone over a general
hyperplane section, as in the proof of Theorem 5.15. So W 7

F ⊂ P7 satisfies Assumption
(*) of § 3.3. Furthermore degW 7

F = 12 (see Code B.7 of Appendix B) and, if p is the
genus of a curve section of W 7

F , we have that 12 = 2p − 2 by the adjunction formula.
Thus W 7

F ⊂ P7 is (projectively) normal (see Theorem 3.8 and Proposition 3.11) and
we obtain the following theorem.

Theorem 5.47. [23, §4] The image of P3 via the rational map defined by X is an
Enriques-Fano threefold W 7

F ⊂ P7 of genus p = 7.

By Remark 5.44, the above theorem also follows by [10, Lemma 4.4, Lemma 4.6].
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5.4.2 Singularities of W 7
F

In order to describe the geometry and the singularities of W 7
F , we will use the techniques

of the proof of Theorems 5.4, 5.24.

Remark 5.48. Let X be a general element of X and let us take four distinct indices
i, j, k, h ∈ {0, 1, 2, 3}. As we said in § 5.4.1, we have that TCviX = fj ∪ fk ∪ fh and,
if p ∈ lij with p 6= vk and p 6= vh, we have that TCpX is the union of two variable
planes πp,X , π

′
p,X ∈ |Ilij |P3(1)| depending on the choice of p and of X and which can

also coincide. In particular if p = pij, then one of the two planes of TCpijX is tangent
to δ at pij and we will denote this plane by πij.

Let us blow-up P3 at the vertices of T and at the six points pij, for 0 ≤ i < j ≤ 3. We
obtain a smooth threefold Y ′ and a birational morphism bl′ : Y ′ → P3 with exceptional
divisors Ei := (bl′)−1(vi), Eij := (bl′)−1(pij). Let X ′ be the strict transform of X and
let us denote by H the pullback on Y ′ of the hyperplane class on P3. Then an element
of X ′ is linearly equivalent to 6H − 3

∑3
i=0 Ei − 2

∑
0≤i<j≤3Eij. Let f̃i be the strict

transform of the face fi and let π̃ij the strict transform of the plane πij defined in

Remark 5.48, for 0 ≤ i < j ≤ 3. We denote by γki := Ek ∩ f̃j the line cut out by

f̃i on Ek and by λij := Eij ∩ π̃ij the line cut out by π̃ij on Eij, for distinct indices
i, j, k ∈ {0, 1, 2, 3} with i < j. We have that γki and λij are (−1)-curves respectively

on f̃i and π̃ij. Let X ′ be the strict transform of a general X ∈ X . By Remark 5.48 we
have that X ′ ∩ Ek =

⋃3
i=0
i 6=k

γki for all 0 ≤ k ≤ 3.

Remark 5.49. We observe that X ′∩Eij = λij ∪βij,X , where βij,X moves in the pencil

of the lines of Eij through the point Eij ∩ l̃ij and it depends on the choice of X, for all
0 ≤ i < j ≤ 3 (see Remark 5.48).

Let us take the strict transforms l̃ij of the six edges of T and the strict transform δ̃ of

the cubic plane curve δ. The base locus of X ′ is given by the union of the six curves l̃ij
(along which a general X ′ ∈ X ’ has double points), of the curve δ̃, of the twelve curves
γij and the six curves λij (see Remark 5.48). Let us blow-up the strict transforms
of the edges of T and of the cubic plane curve δ. We obtain a smooth threefold
Y ′′ and a birational morphism bl′′ : Y ′′ → Y ′ with exceptional divisors (bl′′)−1(δ̃) =:

Fδ ∼= P(Nδ̃|Y ′) and (bl′′)−1(l̃ij) =: Fij ∼= P(Nl̃ij |Y ′)
∼= P(OP1(−2) ⊕ OP1(−2)) ∼= F0, for

0 ≤ i < j ≤ 3.

Remark 5.50. The divisor Fδ is a smooth elliptic ruled surface, since it is a P1-
bundle over the elliptic curve δ̃. We also have that deg(Nδ̃|Y ′) = 0. Indeed, since δ
is the complete intersection of the plane π and of a cubic surface passing through the
points pij, then we have Nδ̃|Y ′ ∼= Oδ̃(H −

∑
0≤i<j≤3Eij)⊕Oδ̃(3H −

∑
0≤i<j≤3Eij) and

deg(Nδ̃|Y ′) = (3− 6) + (9− 6) = 0.

Since bl′′ : Y ′′ → Y ′ has no effect on f̃i, we will use the same symbols to indicate
its strict transforms on Y ′′; furthermore let us denote by Ẽi and Ẽij respectively the
strict transforms of Ei and Eij, for 0 ≤ i < j ≤ 3.

49



Remark 5.51. Let us take the curves αkij := Ẽk∩Fij, αij := Ẽij ∩Fij, α′ij := Ẽij ∩Fδ,
for distinct indices i, j, k ∈ {0, 1, 2, 3} with i < j (see Figure 8). We have that αkij is a

(−1)-curve on Ẽk and a fibre on Fij; αij is a (−1)-curve on Ẽij and a fibre on Fij; α
′
ij

is a (−1)-curve on Ẽij and a fibre on Fδ.

Figure 8: Description of bl′′′|
Ẽij

: Ẽij → Eij .

Let X ′′ be the strict transform of X ′ and let X ′′ be an element of X ′′. Then

X ′′ ∼ 6H − 3
3∑
i=0

Ẽi − 2
∑

0≤i<j≤3

Eij − 2
∑

0≤i<j≤3

Fij − Fδ,

where, by abuse of notation, H denotes the pullback bl′′∗H. By Remark 5.48, we have
that the base locus of X ′′ is given by the disjoint union of the strict transforms γ̃ki and
λ̃ij of the 18 lines γki and λij, for distinct indices i, j, k ∈ {0, 1, 2, 3} and i < j.

Remark 5.52. We have that γ̃2
ki|Ẽk = −1, γ̃2

ki|f̃i = −1, λ̃2
ij|Ẽij = −1. Furthermore,

if X ′′ is the strict transform of a general X ′ ∈ X ′, we also have that the twelve γ̃ki
are (−1)-curves on X ′′ for i, k ∈ {0, 1, 2, 3} and i 6= k (see Remark 5.7). Finally

we want to show that the 6 curves λ̃ij are (−1)-curves on X ′′ too. We observe that

X ′′∩ Ẽij = λ̃ij∪ β̃ij,X′′ , where β̃ij,X′′ is the strict transform of the curve of Remark 5.49,

which moves in a pencil and depends on X ′′. Since λ̃ij and β̃ij,X′′ are disjoint, we have

(λ̃ij)
2|X′′+(β̃ij,X′′)

2|X′′ = (X ′′∩Ẽij)2|X′′ = Ẽ2
ij ·X ′′ = Ẽij ·(Ẽij ·X ′′) = Ẽij ·λ̃ij+Ẽij ·β̃ij,X′′ .

Hence (λ̃ij)
2|X′′ = λ̃ij · Ẽij = π̃ij · Ẽ2

ij = −1.

Finally let us consider bl′′′ : Y → Y ′′ the blow-up of Y ′′ along the above 18 curves,
with exceptional divisors Γki := bl′′′−1(γ̃ki), Λij := bl′′′−1(λ̃ij), for distinct indices
i, j, k ∈ {0, 1, 2, 3} with i < j. We denote by Ei and Eij respectively the strict transform

of Ẽi and Ẽij; by Fij the strict transform of Fij; by Fδ the strict transform of Fδ; by
H the pullback of H.
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Remark 5.53. We have that

Γki = P(Nγ̃ki|Y ′′) ∼= P(Oγ̃ki(Ẽk)⊕Oγ̃ki(f̃i)) ∼= P(OP1(−1)⊕OP1(−1)) ∼= F0,

Λij = P(Nλ̃ij |Y ′′)
∼= P(Oλ̃ij(Ẽij)⊕Oλ̃ij(π̃ij))

∼= P(OP1(−1)⊕OP1(−1)) ∼= F0.

Furthermore we have Γ3
ki = − deg(Nγ̃ki|Y ′′) = 2, and Λ3

ij = − deg(Nλ̃ij |Y ′′) = 2 (see [27,

Chap 4, §6] and [32, Lemma 2.2.14]).

Remark 5.54. Let us take distinct indices i, j, k ∈ {0, 1, 2, 3} with i < j. The divisor
Fij intersects Γki, Γkj, Λij each along a P1 which is a (−1)-curve on Fij and a fibre on
Γki, Γkj, Λij. Similarly we have Λ2

ij · Fδ = −1 and Λij · F2
δ = 0. Let us consider the

strict transforms α̃kij, α̃ij, α̃
′
ij of the curves defined in Remark 5.51. Then we have

α̃2
kij|Ek = F2

ij · Ek = −1, α̃2
ij|Eij = Fij2 · Eij = −1, α̃′2ij|E ′ij = F2

δ · Eij = −1,

α̃2
kij|Fij = E2

k · Fij = −2, α̃2
ij|Fij = E2

ij · Fij = −1, α̃2
ij|F2

δ
= E2

ij · Fδ = −1.

Finally we recall that a general line of P3 does not intersect the edges of T and the
curve δ; instead a general plane of P3 intersects each edge of T at one point and the
curve δ at 3 points. Hence we haveH2 ·Fij = H2 ·Fδ = 0, F2

ij ·H = −1 and F2
δ ·H = −3.

Remark 5.55. We recall that by construction we have bl′′′∗(Ek) = Ek +
∑3

t=0
t6=k

Γkt and

bl′′′∗(Eij) = Eij + Λij, and, by abuse of notation, we denote Ek ∩ Γki and Eij ∩ Λij by

γ̃ki and λ̃ij, for distinct i, j, k ∈ {1, 2, 3} with i < j. Let us denote by Lki and Lij
respectively the strict transform on Y of a general line of Ek and Eij. By using similar
arguments to the ones in Remark 5.30 we obtain that E3

k = 4 and E3
ij = 2, since we

have

Ek|Ek ∼ −(Lk +
3∑
i=0
i 6=k

γ̃ki) ∼ −(4Lk − 2
∑

0≤i<j≤3

α̃ij),

Eij|Eij ∼ −(Lij + λ̃ij) ∼ −(2Lij − α̃ij − α̃′ij).

Remark 5.56. By using similar arguments to the ones in Remark 5.11 we have F3
ij =

− deg(Nl̃ij |Y ′) = 4, for 0 ≤ i < j ≤ 3, and F3
δ = − deg(Nδ̃|Y ′) = 0 (see Remark 5.50).

Let X̃ be the strict transform on Y of an element of X ′′: then

X̃ ∼ 6H−
3∑

k=0

3Ek − 2
∑

0≤i<j≤3

Eij − 2
∑

0≤i<j≤3

Fij −Fδ −
3∑

i,k=0
i 6=k

4Γki −
∑

0≤i<j≤3

3Λij.

Let us take the linear system X̃ := |OY (X̃)| on Y . It is base point free and it defines a
birational morphism νX̃ : Y → W 7

F ⊂ P7. Furthermore we have the following diagram:

Y

Y ′′ Y ′ P3 W 7
F ⊂ P7.

bl′′′
νX̃

bl′′ bl′ νX
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Remark 5.57. The divisors Ei and the strict transforms f̃i on Y of the faces of T are
contracted by νX̃ : Y → W 7

F ⊂ P7 to points of W 7
F , for 0 ≤ i ≤ 3, since X̃ ·Ei = X̃ ·f̃i = 0

for a general X̃ ∈ X̃ .

Remark 5.58. The 18 exceptional divisors of bl′′′ : Y → Y ′′ and the six divisors Eij, for
0 ≤ i, j ≤ 3, are contracted by the morphism νX̃ : Y → W 7

F ⊂ P7 to curves of W 7
F . This

follows by the fact that X̃ ·Γki, X̃ ·Λij, X̃ · Eij 6= 0 and X̃2 ·Γki = X̃2 ·Λij = X̃2 · Eij = 0
for distinct i, j, k ∈ {0, 1, 2, 3} and i < j (use Remarks 5.53, 5.54 and calculations
similar to the ones in Remarks 5.13, 5.34).

Remark 5.59. Let us fix 0 ≤ i < j ≤ 3 and let X̃ be a general element of X̃ . Since
X̃2 ·Fij = 3 > 0 and X̃2 ·Fδ = 6 > 0 (use Remarks 5.54, 5.56 and calculations similar to

the ones in Remarks 5.14, 5.35), then the curves X̃∩Fij and X̃∩Fδ are not contracted

by the rational map defined by X̃ |X̃ .

We still define Pi+1 := νX̃ (Ei) and P ′i+1 := νX̃ (f̃i), as in § 5.2. They are quadruple
points of W 7

F whose tangent cone is a cone over a Veronese surface. The proof is similar
to the one of Proposition 5.16. We recall that νX : P3 99K W 7

F ⊂ P7 is an isomorphism
outside T ∪ π (see Remark 5.46). Then P1, P2, P3, P4, P ′1, P ′2, P ′3 and P ′4 are the only
singular points of W 7

F (see Remarks 5.57, 5.58, 5.59).

Lemma 5.60. The six divisors Eij, with 0 ≤ i < j ≤ 3, are mapped by νX̃ : Y →
W 7
F ⊂ P7 to lines of W 7

F . In particular we have νX̃ (Eij) =
〈
P ′i+1, P

′
j+1

〉
.

Proof. We know that the above 6 divisors are mapped by νX̃ : Y → W 7
F ⊂ P7 to curves

(see Remark 5.58). Let us show that these curves are lines. Let X̃ be a general element

of X̃ and let us consider the divisor Eij for a fixed pair of indices 0 ≤ i < j ≤ 3. We

observe that X̃ |Eij ∼= |OEij(β̃ij,X̃)| ∼= P1 (see Remark 5.49), so νX̃ (Eij) ⊂ W 7
F is a line.

Since Eij ∩ f̃i 6= ∅ and Eij ∩ f̃j 6= ∅, then νX̃ (Eij) is the line joining the points P ′i+1 and
P ′j+1.

By recalling Definition 4.4 we have the following result.

Theorem 5.61. Each of the eight points P1, P2, P3, P4, P ′1, P ′2, P ′3, P ′4 is associated
with m = 6 of the others, as in Figure 22 of Appendix A.

Proof. The 12 divisors Γki, for i, k ∈ {0, 1, 2, 3} and i 6= k, are mapped by νX̃ : Y →
W 7
F ⊂ P7 to lines of W 7

F joining the points P1, P2, P3, P4, P ′1, P ′2, P ′3, P ′4 as in Figure 26
of Appendix A (see Remark 5.58 and use arguments of the proof of Theorem 5.17).
We also recall that the six lines νX̃ (Eij) joins the points P ′1, P ′2, P ′3, P ′4 two by two (see
Lemma 5.60). It remains to show that 〈P1, P2〉, 〈P1, P3〉, 〈P1, P4〉, 〈P2, P3〉, 〈P2, P4〉,
〈P3, P4〉 ⊂ W 7

F and that 〈P1, P
′
1〉, 〈P2, P

′
2〉, 〈P3, P

′
3〉, 〈P4, P

′
4〉 , 6⊂ W 7

F . This follows by a
computational analysis with Macaulay2 (see Code B.7 of Appendix B).
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5.5 F-EF 3-fold of genus 6

5.5.1 Construction of W 6
F

Let us consider five general points q1, q2, q3, q4, q5 in P3. We have the following result.

Theorem 5.62. There are three twisted cubics C1, C2 and C3, three quadric surfaces
Q6, Q7 and Q8 of P3 and three lines r1, r2, and r3 such that Q6 and Q7 are smooth and

C1 ∩C2 ∩C3 = {q1, . . . q5}, Q6 ∩Q7 = C1 ∪ r1, Q6 ∩Q8 = C2 ∪ r2, Q7 ∩Q8 = C3 ∪ r3,

where ri intersects Ci at two points a′i and a′′i , for 1 ≤ i ≤ 3. Furthermore, by
taking three distinct indices i, j, k ∈ {1, 2, 3} with i < j, we have the following three
possibilities:

(i) Q8 is smooth and the three lines r1, r2 and r3 intersect pairwise at three distinct
points bij := ri ∩ rj such that bij = ri ∩ Ck = rj ∩ Ck (see Figure 9);

(ii) Q8 is smooth and the three lines r1, r2, r3 intersect at a same point b; moreover,
up to renaming the points of rk ∩Ck and of C1 ∩C2 ∩C3, we have that rk ∩Ci =
rk ∩ Cj = a′′k = qk (see left side of Figure 10);

(iii) Q8 is a cone and the three lines r1, r2, r3 intersect at the vertex v of Q8; moreover,
up to renaming the points of rk ∩Ck and of C1 ∩C2 ∩C3, we have that v = q1 =
a′′k = rk ∩ Ci = rk ∩ Cj (see right side of Figure 10).

Figure 9: Description of the intersection points between the twisted cubics C1, C2, C3 and their chords r1, r2, r3,
in the case (i) of Theorem 5.62. We recall that C1 ∩C2 ∩C3 = {q1, . . . , q5}, even if it is not represented in the figure.

Proof. The proof is divided into 6 steps, given by the Lemmas 5.63, 5.64, 5.65, 5.66,
5.67, 5.68 below.
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Figure 10: Description of the intersection points between the twisted cubics C1, C2, C3 and their chords r1, r2, r3, in
the case (ii) of Theorem 5.62 (on the left) and in the case (iii) (on the right). We recall that C1∩C2∩C3 = {q1, . . . , q5},
even if some of these points are not represented in the figure.

Lemma 5.63. There are three twisted cubics C1, C2 and C3 passing through the
five general points q1, . . . , q5 and there are three quadric surfaces Q6, Q7 and Q8 and
three lines r1, r2, and r3 such that Q6 and Q7 are smooth and Q6 ∩ Q7 = C1 ∪ r1,
Q6 ∩Q8 = C2 ∪ r2, Q7 ∩Q8 = C3 ∪ r3.

Proof. Let us consider the two-dimensional family C of the twisted cubics passing
through q1, . . . , q5. Let us take a general twisted cubic C1 ∈ C and two smooth quadric
surfaces Q6, Q7 containing C1, i.e. two general elements Q6, Q7 ∈ |IC1|P3(2)| ∼= P2. It is
known that there exists a line r1 such that Q6 ∩Q7 = C1 ∪ r1 (see [28, Example 1.11]).
Since Q6 is a smooth quadric surface in P3, then a quadric section of Q6 ⊂ P3 is linearly
equivalent to 2f1 + 2f2, where f1 and f2 represent the two rulings of Q6 and satisfy
the relations f 2

1 = 0 = f 2
2 and f1 · f2 = 1. In particular, since Q6 ∩Q7 ∼ 2f1 + 2f2, we

can suppose that r1 ∼ f1 and C1 ∼ f1 + 2f2. We also have that |OQ6(f1 + 2f2)| ∼= P5.
By the generality of q1, . . . , q5 we may assume that C1 is the unique twisted cubic in
|OQ6(f1 + 2f2)| through q1, . . . , q5. Similarly let us take the unique twisted cubic C2

through q1, . . . , q5 in |OQ6(2f1 + f2)|. So each smooth quadric surface passing through
q1, . . . , q5 contains exactly two twisted cubics passing through them: let C3 be the
other twisted cubic in Q7 through q1, . . . , q5. Let us define ΛCi := |ICi|P3(2)| ∼= P2 for
i = 1, 2, 3. Since ΛCi ⊂ |I{q1,...,q5}|P3(2)| ∼= P4 for i = 1, 2, 3, then dim ΛC2 ∩ΛC3 ≥ 0. So
there exists a quadric surface Q8 ∈ ΛC2∩ΛC3 such that C2 ⊂ Q6∩Q8 and C3 ⊂ Q7∩Q8,
and there are two lines r2 and r3 such Q6 ∩Q8 = C2 ∪ r2 and Q7 ∩Q8 = C3 ∪ r3.

Let us fix now three twisted cubics, three lines and three quadric surfaces as in
Lemma 5.63. It must be r1 6⊂ Q8, r2 6⊂ Q7 and r3 6⊂ Q6. Let us take i, j, k ∈ {1, 2, 3}
with k 6= i and i < j. By construction we have ri ·Ci = 2, so we let {a′i, a′′i } := ri ∩Ci.
Furthemore ri · Ck = 1, so we define aik := ri ∩ Ck.
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Lemma 5.64. The line ri intersects the line rj for all 1 ≤ i < j ≤ 3.

Proof. By construction we have that r1 ∩ r2 6= ∅ and r1 ∩ r3 6= ∅. Furthermore it must
be r2 ∩ r3 6= ∅. Indeed if Q8 is a cone, then r2 and r3 intersect at the vertex; if Q8 is
smooth, then C2 and C3 are not linearly equivalent and r2 and r3 belong to different
rulings.

By Lemma 5.64 we have two possibilities: the three lines r1, r2 and r3 intersect
pairwise at 3 distinct points {r1 ∩ r2, r1 ∩ r2, r2 ∩ r3} or they intersect at a same point
r1 ∩ r2 ∩ r3.

Lemma 5.65. Let Q ⊂ P3 be a quadric cone with vertex v. If C is a twisted cubic
contained in Q, then v ∈ C.

Proof. Let us suppose that v 6∈ C. Let H be a general plane of P3 such that v 6∈ H
and let us take the projection map πv : P3 99K H ∼= P2 from the point v to the plane
H. Since v 6∈ C, then πv(C) is a cubic plane curve. Furthermore πv(C) has to be
contained in πv(Q), which is a conic. So we have a contradiction.

Lemma 5.66. Let us suppose that the three lines r1, r2 and r3 intersect pairwise at
3 distinct points and let us denote them by bij := ri ∩ rj for 1 ≤ i < j ≤ 3. Then the
quadric surface Q8 ⊂ P3 is smooth and we have bij = ri∩Ck = rj∩Ck for all 1 ≤ k ≤ 3
such that k 6= i and k 6= j.

Proof. Let us suppose that Q8 is a cone with vertex v. Then r2, r3, C2 and C3 must
pass through v (see Lemma 5.65). In particular there exist a point in r2 ∩ C2, a
point in r3 ∩ C3 and a point in {q1, . . . , q5}, for example a′′2, a′′3 and q5, such that
v = a′′2 = a′′3 = b23 = a21 = a31 = a23 = a32 = q5. Moreover, we have that r1 ∩ Q8 =
(r1∩Q6)∩Q8 = r1∩(C2∪r2) = {a12, b12}, since r1 ⊂ Q6. Similarly r1∩Q8 = {a13, b13},
since r1 ⊂ Q7 (see Lemma 5.63). Since b12 6= b13 by hypothesis, it must be b12 = a13

and b13 = a12. This implies b12 = r2 ∩ C3 = v and b13 = r3 ∩ C2 = v, which is a
contradiction. Hence Q8 is a smooth quadric surface of P3. Finally we observe that
r1 ∩ Q8 = {b13, a13} = {b12, a12}, r2 ∩ Q7 = {b12, a21} = {b23, a23} and r3 ∩ Q6 =
{b13, a31} = {b23, a32}. Since b12, b13, b23 are three distinct points by hypothesis, then
it must be b13 = a12 = a32, b12 = a13 = a23 and b23 = a21 = a31.

Lemma 5.67. Let us suppose that the three lines r1, r2 and r3 intersect at the same
point b. If Q8 is smooth, then we obtain the assertion (ii) of Theorem 5.62.

Proof. Let i, j, k be three distinct indices in {1, 2, 3}. Since rk ⊂ Qk+i+3, we have that
rk ∩ Qi+j+3 = (rk ∩ Qk+i+3) ∩ Qi+j+3 = rk ∩ (Ci ∪ ri) = {aki, b} (see Lemma 5.63).
Similarly we have that rk ∩ Qi+j+3 = {akj, b}, since rk ⊂ Qk+j+3. So it must be
aki = akj. This implies that there are three points in {q1, . . . , q5}, namely q1, q2, q3,
and there exist a point in rk ∩ Ck, for example a′′k, such that aki = akj = a′′k = qk.

Lemma 5.68. Let us suppose that the three lines r1, r2 and r3 intersect at the same
point b. If Q8 is a cone, then we obtain the assertion (iii) of Theorem 5.62.
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Proof. If Q8 is a cone with vertex v, then v = r2 ∩ r3 = r1 ∩ r2 ∩ r3 = b. Since
C2, C3 ⊂ Q8, then v ∈ C2 ∩ C3 = C1 ∩ C2 ∩ C3 = {q1, . . . , q5} (see Lemma 5.65). Thus
we have v = a12 = a13 = a21 = a23 = a31 = a32. Furthermore there exist a point in
each r1 ∩ C1, r2 ∩ C2, r3 ∩ C3, for example a′′1, a′′2, a′′3, such that v = a′′1 = a′′2 = a′′3.

Let us see that by choosing sufficiently general objects, we can exclude the cases
(ii) and (iii) of Theorem 5.62. Let us take the two-dimensional family Cq1,...,q5 of the
twisted cubics of P3 passing through the fixed points q1, . . . , q5. For all C ∈ Cq1,...,q5
we define ΛC := |IC|P3(2)| ∼= P2, which is a plane in |I{q1,...,q5}|P3(2)| ∼= P4. We recall
that, if we fix a general C ∈ Cq1,...,q5 and if Q ∈ ΛC is general, then Q is smooth and
contains exactly two twisted cubics C,C ′ ∈ Cq1,...,q5 (see proof of Lemma 5.63). We can
consider the map ϕC : ΛC → Cq1,...,q5 which sends a general Q ∈ ΛC to the other twisted
cubic C ′ in Q passing through q1, . . . , q5. This map is well defined and it has fibres
of dimension 0: indeed by Bezout’s Theorem we have that two quadric surfaces of P3

intersecting along C ∪ C ′ have to coincide, since C ∪ C ′ is a curve of degree 6. Hence
ϕC is a birational map. In other words, the correspondence C ′ ↔ Q is 1 : 1 between
an open set of Cq1,...,q5 and an open set of ΛC . Let us fix now a general C1 ∈ Cq1,...,q5
and a general smooth quadric surface Q6 ∈ ΛC1 . Then C2 := ϕC1(Q6) ∈ Cq1,...,q5 is
fixed too, since it is uniquely determined by Q6. Let us take another general Q7 ∈ ΛC1 ,
which is another smooth quadric surface of P3 containing C1. We may assume that
Q7 is sufficiently general in order to have that Q7 intersects Q6 along the union of C1

and a line r1 not passing through q1, . . . , q5. Let us define C3 := ϕC1(Q7) ∈ Cq1,...,q5 .
Then dimP4 ΛC2 ∩ ΛC3 ≥ 0 and, by Bezout’s theorem, if Q8 ∈ ΛC2 ∩ ΛC3 then Q8 is
unique. In particular Q8 is uniquely determined by C3 which is uniquely determined
by Q7. Let r2, r3 be the lines such that Q6 ∩ Q8 = C2 ∪ r2 and Q7 ∩ Q8 = C3 ∪ r3.
Since {q1, . . . , q5}∩ r1 = ∅ by construction, we may suppose to fix three twisted cubics
C1, C2, C3, three lines r1, r2, r3 and three smooth quadric surfaces Q6, Q7, Q8 in P3

satisfying the property (i) of Theorem 5.62.

By the generality of Q6, Q7 ∈ ΛC1
∼= P2, we may also assume that ri is a chord

of Ci for i = 1, 2, i.e. a′1 6= a′′1 and a′2 6= a′′2. Let us explain this. We recall that
C1 and C2 are the only twisted cubics in Q6 through q1, . . . , q5. In particular, if
f1 and f2 represent the two ruling of Q6, then we have that C1 ∼Q6 f1 + 2f2 and
C2 ∼Q6 2f1 + f2. For any choice of R1 ∈ |OQ6(f1)| and R2 ∈ |OQ6(f2)| we have that
h0(IR1∪C1|P3(2)) = h0(IR2∪C2|P3(2)) = 2. Furthermore, by the Hurwitz formula applied
to |OCi(fi)| for i = 1, 2, there exist only two lines Ri,1, Ri,2 ∈ |OQ6(fi)| which are
tangent to Ci. Let us consider the four lines L1,1 = |IR1,1∪C1(2)|, L1,2 = |IR1,2∪C1(2)|,
L2,1 = |IR2,1∪C2(2)|, L2,2 = |IR2,2∪C2(2)|. By the generality of Q7 ∈ ΛC1

∼= P2 and by us-
ing the fact the Q8 is uniquely determined by Q7, we may assume that Q7 6∈ L1,1∪L1,2

and Q8 6∈ L2,1∪L2,2. So Q7∩Q6 = C1∪r1 with r1 transverse to C1 and Q8∩Q6 = C2∪r2

with r2 transverse to C2. Instead we cannot exclude the case where r3 is tangent to C3,
i.e. r3 ∩ C3 = {a′3, a′′3} with a′3 = a′′3. It would be interesting to study the above case,
but we will analyze the case in which r3 is a chord of C3, since it is the situation men-
tioned by Fano in order to describe his Enriques-Fano threefold of genus 6 (see [23, §3]).
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So let us fix now three twisted cubics C1, C2, C3, three chords r1, r2, r3 and three
smooth quadric surfaces Q6, Q7, Q8 satisfying (i) of Theorem 5.62. Let P be the linear
system of the septic surfaces of P3 double along the three twisted cubics C1, C2 and
C3 passing through q1, q2, q3, q4, q5.

Remark 5.69. The surface Qi+j+3 is the unique quadric surface of P3 containing
Ci ∪ Cj ∪ ri ∪ rj for all 1 ≤ i < j ≤ 3. Indeed we have h0(ICi∪Cj∪ri∪rj |P3(2)) = 1, by
the smoothness of the three quadric surfaces and by following exact sequence

0→ IQi+j+3|P3(2)→ ICi∪Cj∪ri∪rj |P3(2)→ ICi∪Cj∪ri∪rj |Qi+j+3
(2)→ 0.

Remark 5.70. An element P ∈ P contains the lines r1, r2, r3. Assume the contrary.
Let us fix three distinct indices i, j, k ∈ {1, 2, 3}. By Bezout’s Theorem, P ∩ ri is given
by 7 points. Furthermore ri is a line through four double points of P , i.e. ri ∩ Cj,
ri ∩ Ck, a′i and a′′i (see Figure 9). So we obtain that P ∩ ri contains at least 8 points,
counted with multiplicity, which is a contradiction. It must be ri ⊂ P .

Let gi+j+3 := gi+j+3(s0, s1, s2, s3) be the quadratic homogeneous polynomial defin-
ing the smooth quadric surface Qi+j+3 ⊂ P3

[s0,...,s3] for 1 ≤ i < j ≤ 3.

Lemma 5.71. The linear system P has equation g6g7f8 + g6g8f7 + g7g8f6 = 0, where
f6 ∈ H0(P3, IC1∪C2|P3(3)), f7 ∈ H0(P3, IC1∪C3|P3(3)) and f8 ∈ H0(P3, IC2∪C3|P3(3)).

Proof. Let F := F (s0, s1, s2, s3) be the homogeneous polynomial of degree 7 defining
a general element P of P in P3

[s0,...,s3]. We recall that the intersection of an irreducible

septic surface of P3 with a quadric surface is a curve of degree 14. In particular, P
intersects each quadric surface Qi+j+3 along the curve of degree 14 given by the two
double twisted cubics Ci and Cj plus the two lines ri and rj, for 1 ≤ i < j ≤ 3.
This implies that it must be P ∩ Qi+j+3 = {gi+k+3gj+k+3fi+j+3 = 0, gi+j+3 = 0} =
2Ci + 2Cj + ri + rj for some fi+j+3 ∈ H0(P3, ICi∪Cj |P3(3)), where 1 ≤ k ≤ 3 with k 6= i
and k 6= j. Then it must be F = g6h5 + g7g8f6, where h5 is a homogeneous polynomial
of degree 5 such that h5 = g7h3 +g8f7, where h3 is a homogeneous polynomial of degree
3 such that h3 = g8h1 + f8, where h1 is a homogeneous polynomial of degree 1. Thus
we have F = g6g7g8h1 + g6g7f8 + g6g8f7 + g7g8f6. Since gi+j+3h1 ∈ H0(P3, ICi∪Cj |P3(3))
for 1 ≤ i < j ≤ 3, we obtain that F has the expression of the statement.

Lemma 5.72. Let us take 1 ≤ i < j ≤ 3. Then dimH0(P3, ICi∪Cj |P3(3)) = 5 and a
general element of |ICi∪Cj |P3(3)| ∼= P4 corresponds to a smooth irreducible surface.

Proof. Let us consider the following exact sequence

0→ IQi+j+3|P3(3)→ ICi∪Cj |P3(3)→ ICi∪Cj |Qi+j+3
(3)→ 0.

Since h1(IQi+j+3|P3
(3)) = h1(OP3(1)) = 0, h0(IQi+j+3|P3(3)) = h0(OP3(1)) = 4 and

h0(ICi∪Cj |Qi+j+3
(3)) = h0(OQi+j+3

) = 1, then we obtain h0(ICi∪Cj |P3(3)) = 5. Let S3

be now a general element of |ICi∪Cj |P3(3)|. We may assume that Qi+j+3 6⊂ S3 and so
that S3 is irreducible, since Ci ∪ Cj is not degenerate and the only quadric surface

57



containing this curve is Qi+j+3 (see Remark 5.69). We want to show that S3 is smooth.
First let us see that Ci ∪ Cj is the base scheme of |ICi∪Cj |P3(3)|: we have to show that
h0(ICi∪Cj∪{x}|P3(3)) = h0(ICi∪Cj |P3(3)) − 1 = 4 for a point x ∈ P3 \ (Ci ∪ Cj). This is
exactly what happens: indeed x 6∈ Qi+j+3 (otherwise x ∈ S ′3 ∩ Qi+j+3 = Ci ∪ Cj for
S ′3 ∈ |ICi∪Cj∪{x}|P3(3)|, which is a contradiction) and so we have the following exact
sequence

0→ IQi+j+3∪{x}|P3(3)→ ICi∪Cj∪{x}|P3(3)→ ICi∪Cj |Qi+j+3
(3)→ 0

from which h0(ICi∪Cj∪{x}|P3(3)) = 4, since h1(IQi+j+3∪{x}|P3(3)) = h1(I{x}|P3(1)) = 0
and h0(IQi+j+3∪{x}|P3(3)) = h0(I{x}|P3(1)) = 3. Let p ∈ (Ci ∪ Cj) \ {q1, . . . , q5}. If S3

were singular at p, then S3 ∩ Qi+j+3 = Ci ∪ Cj would be singular at p, which is a
contradiction. Let p ∈ {q1, . . . , q5}. If H is a plane such that qh 6∈ H for all 1 ≤ h ≤ 5,
then Qi+j+3 ∪ H ∈ |ICi∪Cj |P3(3)|. Since Qi+j+3 ∪ H is smooth at p, then the general
element of |ICi∪Cj |P3(3)| is a cubic surface smooth at p. Thus S3 is smooth.

Remark 5.73. There exists a septic surface in P containing Q6 but not Q7. By
Lemmas 5.71, 5.72 it is sufficient to take a septic surface defined by the equation
g6g7f8 + g6g8f7 + g7g8g6h = 0 with f8 ∈ H0(P3, IC2∪C3|P3(3)) and h ∈ H0(P3,OP3(1))
and where f7 is a general (irreducible) element of H0(P3, IC1∪C3|P3(3)). One can also
construct a septic surface in P containing Q6 and Q7 but not Q8. By Lemmas 5.71, 5.72
it is sufficient to take a septic surface with equation g6g7f8 + g6g8g7h

′ + g7g8g6h =
0 where h, h′ ∈ H0(P3,OP3(1)) and where f8 is a general (irreducible) element of
H0(P3, IC2∪C3|P3(3)).

A priori we have that dimP ≤ 14, since the equation of P depends by 15 param-
eters which can be linearly dependent (see Lemmas 5.71, 5.72). However we have the
following result.

Proposition 5.74. The linear system P defined as above has dimP = 6.

Proof. Let us consider the sublinear system of the septic surfaces of P containingQi+j+3

for 1 ≤ i < j ≤ 3. The movable part of this linear system is isomorphic to the linear
system T of the quintic surfaces of P3 containing the two twisted cubics Ci, Cj ⊂ Qi+j+3,
containing the line rk, and with double points along the twisted cubic Ck, where 1 ≤
k ≤ 3 and k 6= i and k 6= j. We want to show that codim ({P ∈ P|P ⊃ Qi+j+3},P) = 1.
In order to do it, let V ⊂ H0(OP3(7)) and K ⊂ H0(OP3(5)) be the subspaces such that
P = P(V ) and T = P(K). From

0→ OP3(5)→ OP3(7)→ OQi+j+3
(7)→ 0,

we obtain
0→ H0(OP3(5))→ H0(OP3(7))→ H0(OQi+j+3

(7))→ 0

∪ ∪ ∪
0→ K → V → V |Qi+j+3

→ 0.

We have to show that codim(K,V ) = 1, which is equivalent to find dimV |Qi+j+3
= 1.

This follows by the fact that dimP|Qi+j+3
= 0, since P|Qi+j+3

has only fixed part
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2Ci + 2Cj + ri + rj. Then we have that codim ({P ∈ P|P ⊃ Qi+j+3},P) = 1 and, since
containing the three quadrics Q6, Q7 and Q8 imposes independent conditions (see
Remark 5.73), we also obtain codim({P ∈ P|P ⊃ Q6, Q7, Q8},P) = 3. Furthermore
each element of {P ∈ P|P ⊃ Q6, Q7, Q8} is of the form Q6 ∪ Q7 ∪ Q7 ∪ π, where π is
a general plane of P3. Thus we have dim{P ∈ P|P ⊃ Q6, Q7, Q8} = dim |OP3(1)| = 3
and finally dimP = 3 + 3 = 6.

Remark 5.75. Let us fix 1 ≤ i < j ≤ 3 and let us consider the quadric surface
Qi+j+3 ⊂ P3. Since Qi+j+3 is smooth, then the tangent space to Qi+j+3 at the point
p ∈ Qi+j+3 is a plane of P3, which is spanned by the two lines of Qi+j+3 intersecting
at p. Let us take the point p = qh for some 1 ≤ h ≤ 5. Since the twisted cubics
Ci and Cj are contained in Qi+j+3 and they pass through qh, then the tangent plane
to Qi+j+3 at qh has to contain the tangent lines to Ci and Cj at qh. We recall that
Ci ·Cj = (f1 +2f2) · (2f1 +f2) = 5, where f1 and f2 represent the two rulings of Qi+j+3.
Since q1, . . . , q5 are distinct by construction, the intersection of Ci and Cj at each qh
is transverse. Then we have TqhCi 6= TqhCj and thij := TqhQi+j+3 = 〈TqhCi, TqhCj〉. In
particular we have that TqhQ6 = 〈TqhC1, TqhC2〉 and TqhQ7 = 〈TqhC1, TqhC3〉. By the
generality of q1, . . . , q5 and by the generality of Q6 and Q7, we may assume TqhQ6 ∩
TqhQ7 = TqhC1. Thus TqhC1, TqhC2 and TqhC3 are linearly independent.

Proposition 5.76. Let P be a general element of P and let us take 1 ≤ h ≤ 5 ad
three distinct indices i, j, k ∈ {1, 2, 3} with i < j. Then we have that

(i) TCqhP =
⋃

1≤i<j≤3 TqhQi+j+3 =
⋃

1≤i<j≤3 thij and P has triple points at the five
points q1, . . . , q5;

(ii) if p ∈ Ck with p 6∈ {q1, . . . , q5}, p 6∈ rk ∩ Ck and p 6= bij, then TCpP is the union
of two variable planes πp,P and π′p,P containing TpCk and depending on the choice
of the point p and of the surface P ;

(iii) if p ∈ rk∩Ck, then TCpP = πp∪πp,P , where the plane πp := TpQi+k+3 = TpQj+k+3

contains TpCk and rk, and where πp,P is a plane containing TpCk and depending
on the choice of p ∈ {a′k, a′′k} and of P ;

(iv) TCbijP = πij,i ∪ πij,j, where the plane πij,i := TpQi+k+3 contains ri and TbijCk,
and where the plane πij,j := TpQj+k+3 contains rj and TbijCk;

(v) if p ∈ rk with p 6∈ rk∩Ck and p 6= rk∩ri, then TCpP is a variable plane depending
on the choice of p and P .

Proof. We may assume that P has equation g6g7f8 + g6g8f7 + g7g8f6 = 0 for a smooth
irreducible f6 ∈ H0(P3, IC1∪C2|P3(3)), a smooth irreucible f7 ∈ H0(P3, IC1∪C3|P3(3)) and
a smooth irreducible f8 ∈ H0(P3, IC2∪C3|P3(3)) (see Lemmas 5.71, 5.72). Let p be a
point of P and let us consider an open affine set Up ∼= A3 ⊂ P3 containing p. By abuse
of notation, let us denote by F := g6g7f8 + g6g8f7 + g7g8f6 the polynomial of degree 7
defining P ∩ Up. In order to compute the tangent cone to P at the point p, we have
to take the minimal degree homogeneous part of the Taylor series of F at p. In the
following, if h is a polynomial, then hd(p) will denote the homogeneous part of degree
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d of the Taylor series of h at p. By using this notation, if p is a point of the quadric
Qi+j+3, we have that TpQi+j+3 = {gi+j+3,1(p) = 0}, for 1 ≤ i < j ≤ 3. Let us study
TCpP case by case.

(i) Let us take p ∈ {q1, . . . , q5}. Then TCpP has equation g6,1(p)g7,1(p)f8,1(p) +
g6,1(p)g8,1(p)f7,1(p)+g7,1(p)g8,1(p)f6,1(p) = 0, where {f8,1(p) = 0} = 〈TpC2, TpC3〉,
{f7,1(p) = 0} = 〈TpC1, TpC3〉, {f6,1(p) = 0} = 〈TpC1, TpC2〉 (see Remark 5.75).
So we obtain TCpP =

⋃
1≤i<j≤3 TpQi+j+3.

(ii) Let us take p ∈ Ck such that p 6∈ {q1, . . . , q5}, p 6∈ rk ∩Ck and p 6= bij for distinct
indices i, j, k ∈ {1, 2, 3} with i < j. Let us suppose k = 1. Then TCpP has
equation c1g6,1(p)g7,1(p) + c2g6,1(p)f7,1(p) + c3g7,1(p)f6,1(p) = 0, where c1, c2, c3

are constants (depending on the choice of p and P ). Since {g6,1(p)g7,1(p) = 0},
{g6,1(p)f7,1(p) = 0} and {g7,1(p)f6,1(p) = 0} are three reducible quadric surfaces
given by two planes containing the line TpC1, then TCpP is singular along TpC1

and so it is the union of two planes containing TpC1. Similarly for k = 2, 3.

(iii) Let us take p ∈ rk ∩ Ck for 1 ≤ k ≤ 3. Let us suppose k = 1. Then TCpP has
equation c1g6,1(p)g7,1(p) + c2g6,1(p)f7,1(p) + c3g7,1(p)f6,1(p) = 0, where c1, c2, c3

are constants (depending on the choice of p and P ) and where {g6,1(p) = 0} =
TpQ6 ⊃ TpC1 ∪ r1, {g7,1(p) = 0} = TpQ7 ⊃ TpC1 ∪ r1, {f68,1(p) = 0} ⊃ TpC1

and {f78,1(p) = 0} ⊃ TpC1. In this case we also have TpQ6 = TpQ7, otherwise it
would be 1 ≤ dimTp(Q6 ∩Q7) ≤ dim(TpQ6 ∩ TpQ7) = 1 and Q6 ∩Q7 = r1 ∪ C1

would be smooth at p ∈ r1 ∩C1, which is a contradiction. Thus TpP is the union
of the plane TpQ6(= TpQ7), which contains TpC1 and r1, and a plane containing
TpC1. Similarly for k = 2, 3.

(iv) Let us take p ∈ ri∩rj∩Ck for three distinct indices i, j, k ∈ {1, 2, 3} and i < j. Let
us suppose i = 1, j = 2, k = 3. Then TCpP has equation g7,1(p)g8,1(p) = 0, where
{g7,1(p) = 0} = TpQ7 ⊃ TpC3 ∪ r1 and {g8,1(p) = 0} ⊃ TpC3 ∪ r2. Thus TCpP is
the union of TpQ7 ∪ TpQ8. Similarly by taking (i, j, k) ∈ {(1, 3, 2), (2, 3, 1)}.

(v) Let us take p ∈ rk with p 6∈ rk ∩ Ck and p 6= rk ∩ ri for 1 ≤ i, k ≤ 3 and i 6= k.
Let us suppose k = 1. Then TCpP has equation c1g6,1(p)+ c2g7,1(p) = 0 where c1

and c2 are constants depending on the choice of p and P . Similarly for k = 2, 3.

Lemma 5.77. The rational map νP : P3 99K P6 defined by P is birational onto the
image.

Proof. It is sufficient to prove that the map defined by P on a general P ∈ P is
birational onto the image. This actually happens because P|P contains a sublinear
system that defines a birational map. Indeed P contains a sublinear system P ⊂ P
whose fixed part is given by Q6 ∪Q7 ∪Q8 and such that P|P coincides with the linear
system on P cut out by the planes of P3.

Remark 5.78. The proof of Lemma 5.77 tells us that the linear system P is very
ample outside the three quadric surfaces Q6, Q7, Q8. So νP : P3 99K νP(P3) ⊂ P6 is an
isomorphism outside Q6 ∪Q7 ∪Q8.
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Theorem 5.79. [23, §3] The image of P3 via the rational map defined by P is an
Enriques-Fano threefold W 6

F of genus p = 6.

Proof. We will prove the theorem by using the same techniques of the proof of The-
orems 5.4, 5.24. In particular the proof is divided into several steps, given by the
Remarks 5.80, 5.81, the Proposition 5.82, the Remarks 5.83,. . . , 5.92 and the Theo-
rem 5.93 below.

First we blow-up P3 at the five points q1, q2, q3, q4, q5, at the six points a′1, a′2,
a′3, a′′1, a′′2, a′′3 and at the three points b12, b13, b23. We obtain a smooth threefold Y ′

and a birational morphism bl′ : Y ′ → P3 with exceptional divisors Eh := (bl′)−1(qh),
Eij = (bl′)−1(bij), E

′
i := (bl′)−1(a′i), E

′′
i := (bl′)−1(a′′i ), for 1 ≤ h ≤ 5 and 1 ≤ i <

j ≤ 3. Let P ′ be the strict transform of P and let us denote by H the pullback on
Y ′ of the hyperplane class on P3. Then an element of P ′ is linearly equivalent to
7H − 3

∑5
h=0Ei − 2

∑3
i=1(E ′i + E ′′i ) − 2

∑
1≤i<j≤3Eij. Let t̃hij, π̃a′i , π̃a′′i , π̃ij,i, π̃ij,j be

the strict transforms of the planes defined in Remark 5.75 and Proposition 5.76, for
1 ≤ h ≤ 5 and 1 ≤ i < j ≤ 3. Let us consider the following 27 lines on Y ′:

γhij := Eh ∩ t̃hij, λij,i := Eij ∩ π̃ij,i, λij,j := Eij ∩ π̃ij,j, λ′i = E ′i ∩ πa′i , λ
′′
i = E ′′i ∩ πa′′i .

They are respectively (−1)-curves on t̃hij, π̃ij,i, π̃ij,j, π̃a′i and π̃a′′i . Let P ′ be the strict
transform of a general P ∈ P . By Proposition 5.76 (i) and (iv) we have that P ′∩Eh =⋃
≤i<j≤3 γhij and P ′ ∩ Eij = λij,i ∪ λij,j, for all 1 ≤ h ≤ 5 and 1 ≤ i < j ≤ 3.

Remark 5.80. Let us fix 1 ≤ i ≤ 3. We have that P ′ ∩ E ′i = λ′i ∪ β′i,P and P ′ ∩ E ′′i =
λ′′i ∪ β′′i,P , where the curve β′i,P moves in the pencil of the lines of E ′i through the point

E ′i ∩ C̃i and the curve β′′i,P moves in the pencil of the lines of E ′′i through the point

E ′′i ∩ C̃i, and both lines depend on the choice of P (see Proposition 5.76 (iii)).

Let us take the strict transforms C̃i and r̃i of the three twisted cubics and of their
chords, for 1 ≤ i ≤ 3. The base locus of P ′ is given by the union of the three curves
C̃i (along which a general P ′ ∈ P ′ has double points), of the three curves r̃i, and
of the 27 curves γhij, λij,i, λij,j, λ

′
i, λ

′′
i defined above (see Proposition 5.76). Let us

blow-up Y ′ along the strict transforms of the three twisted cubics and of their chords.
We obtain a smooth threefold Y ′′ and a birational morphism bl′′ : Y ′′ → Y ′ with
exceptional divisors (bl′′)−1(C̃i) := Fi ∼= P(NC̃i|Y ′)

∼= P(OP1(−3) ⊕ OP1(−3)) ∼= F0

and (bl′′)−1(r̃i) := Ri
∼= P(Nr̃i|Y ′) ∼= P(OP1(−3) ⊕ OP1(−3)) ∼= F0 for 1 ≤ i ≤ 3, since

NCi|P3
∼= OP1(5)⊕OP1(5) (see [22, Proposition 6]). Let us denote by Ẽh, Ẽ

′
i, Ẽ

′′
i and Ẽij

respectively the strict transforms of Eh, E
′
i, E

′′
i , Eij, for 1 ≤ h ≤ 5 and 0 ≤ i < j ≤ 3.

Remark 5.81. Let us consider the curves αhi := Ẽh∩Fi, α′i := Ẽ ′i ∩Fi, α′′i := Ẽ ′′i ∩Fi,
αijk := Ẽij ∩ Fk, ρ′i := Ẽ ′i ∩ Ri, ρ

′′
i := Ẽ ′′i ∩ Ri, ρij,i := Ẽij ∩ Ri, ρij,j := Ẽij ∩ Rj for

1 ≤ h ≤ 5 and distinct indices i, j, k ∈ {1, 2, 3} with i < j. Each of these curves is a
fibre on the exceptional divisor of bl′′ : Y ′′ → Y ′ which contains it, and is a (−1)-curve
on the strict transform of the exceptional divisor of bl : Y ′ → P3 containing it.
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Let P ′′ be the strict transform of P ′. If P ′′ is an element of P ′′, then

P ′′ ∼ 7H − 3
5∑

h=1

Ẽh − 2
3∑
i=1

(Ẽ ′i + Ẽ ′′i )− 2
∑

1≤i<j≤3

Ẽij − 2
3∑
i=1

Fi −
3∑
i=1

Ri,

where, by abuse of notation, H denotes the pullback bl′′∗H.

Proposition 5.82. A general element P ′′ ∈ P ′′ is a smooth surface with zero arith-
metic genus pa(P

′′) = 0.

Proof. The smoothness of P ′′ is shown in [27, p.620-621], since P ′′ is the blow-up of a
surface P ∈ P with ordinary singularities along its singular curves (see Definition 3.4
and Proposition 5.76). We have to compute pa(P

′′) = χ(OY ′′(KY ′′ +P ′′)) (see proof of
Proposition 5.26). Since

KY ′′ ∼ −4H + 2
5∑

h=1

Ẽh + 2
3∑
i=1

(Ẽ ′i + Ẽ ′′i ) + 2
∑

1≤i<j≤3

Ẽij +
3∑
i=1

Fi +
3∑
i=1

Ri

(see [27, p.187]), then KY ′′+P
′′ ∼ 3H−

∑5
h=1 Ẽh−

∑3
i=1 Fi, by the adjunction formula.

By denoting the fibre class of Fi by fi for i = 1, 2, 3, we have the following two exact
sequences:

0→ OY ′′(3H −
5∑

h=1

Ẽh)→ OY ′′(3H)→ ⊕5
h=1OẼh → 0,

0→ OY ′′(KY ′′ + P ′′)→ OY ′′(3H −
5∑

h=1

Ẽh)→ ⊕3
i=1OFi(4fi)→ 0.

So we obtain χ(OY ′′(KY ′′ + P ′′)) =
(

6
3

)
− 5− 3 · 5 = 0.

By Proposition 5.76, we have that the base locus of P ′′ is given by the disjoint
union of the strict transforms γ̃hij, λ̃ij,i, λ̃ij,j, λ̃

′
i and λ̃′′i of the 27 lines γhij, λij,x, λ

′
i, λ

′′
i

for 1 ≤ h ≤ 5 and 1 ≤ i < j ≤ 3.

Remark 5.83. We observe that γ̃2
hij|Ẽh = λ̃2

ij,i|Ẽij = λ̃2
ij,j|Ẽij = λ̃′2i |Ẽ′i = λ̃′′2i |Ẽ′′i = −1.

Furthermore, by using similar arguments to the ones in Remark 5.7 and Remark 5.52,
we have that the 27 curves γ̃hij, λ̃ij,i, λ̃ij,j, λ̃

′
i and λ̃′′i are (−1)-curves on the strict

transform P ′′ of a general P ′ ∈ P ′. Moreover P ′′ contains other (−1)-curves that

depend on P ′′ itself: they are the strict transforms β̃′i,P and β̃′′i,P of the curves defined
in Remark 5.80.

Finally let us consider bl′′′ : Y → Y ′′ the blow-up of Y ′′ along the above 27 curves,
with exceptional divisors Γhij := bl′′′−1(γ̃hij), Λij,i := bl′′′−1(λ̃ij,i), Λij,j := bl′′′−1(λ̃ij,j),

Λ′i := bl′′′−1(λ̃′i), Λ′′i := bl′′′−1(λ̃′′i ) for 1 ≤ h ≤ 5 and 1 ≤ i < j ≤ 3. We denote by Eh,
E ′i , E ′′i and Eij respectively the strict transform of Ẽh, Ẽ

′
i, Ẽ

′′
i and Ẽij; by Fi the strict

transform of Fi; by Ri the strict transform of Ri; by H the pullback of H.
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Remark 5.84. We have that

Γhij = P(Nγ̃hij |Y ′′) ∼= P(Oγ̃hij(Ẽh)⊕Oγ̃hij(t̃hij)) ∼= P(OP1(−1)⊕OP1(−1)) ∼= F0,

Λij,i = P(Nλ̃ij,i|Y ′′)
∼= P(Oλ̃ij,i(Ẽij)⊕Oλ̃ij,i(π̃ij,i))

∼= P(OP1(−1)⊕OP1(−1)) ∼= F0,

Λij,j = P(Nλ̃ij,j |Y ′′)
∼= P(Oλ̃ij,j(Ẽij)⊕Oλ̃ij,j(π̃ij,j))

∼= P(OP1(−1)⊕OP1(−1)) ∼= F0,

Λ′i = P(Nλ̃′i|Y ′′)
∼= P(Oλ̃′i(Ẽ

′
i)⊕Oλ̃′i(π̃a′i))

∼= P(OP1(−1)⊕OP1(−1)) ∼= F0,

Λ′′i = P(Nλ̃′′i |Y ′′)
∼= P(Oλ̃′′i (Ẽ ′′i )⊕Oλ̃′′i (π̃a′′i )) ∼= P(OP1(−1)⊕OP1(−1)) ∼= F0,

Furthermore we have Γ3
hij = − deg(Nγ̃hij |Y ′′) = 2, Λ3

ij,i = − deg(Nλ̃ij,i|Y ′′) = 2, Λ3
ij,j =

− deg(Nλ̃ij,j |Y ′′) = 2, Λ′3i = − deg(Nλ̃′i|Y ′′) = 2, Λ′′3i = − deg(Nλ̃′′i |Y ′′) = 2 (see [27, Chap

4, §6] and [32, Lemma 2.2.14]).

Remark 5.85. Let us take 1 ≤ h ≤ 5 and distinct indices i, j, k ∈ {1, 2, 3} with
i < j. The divisor Fk intersects Γhst, Λ′k, Λ′′k, Λij,i, Λij,j each along a P1 which is a
(−1)-curve on Fi and a fibre on Γhst, Λ′k, Λ′′k, Λij,i, Λij,j, where 1 ≤ s < t ≤ 3 and
k ∈ {s, t}. Similarly we have Λ′2i · Ri = Λ′′2i · Ri = Λ2

ij,i · Ri = Λ2
ij,j · Rj = −1 and

Λ′i ·R2
i = Λ′′i ·R2

i = Λij,i ·R2
i = Λ2

ij,j ·Rj = 0. Let us consider the strict transforms α̃hi,
α̃ijk, α̃

′
i, α̃

′′
i , ρ̃ij,i, ρ̃ij,j, ρ̃

′
i, ρ̃
′′
i of the curves defined in Remark 5.81. Then we have

α̃2
hi|Eh = F2

i ·Eh = −1, α̃2
ijk|Eij = Fk2·Eij = −1, α̃′2i |E ′i = F2

i ·E ′i = −1, α̃′′2i |E ′′i = F2
i ·E ′′i = −1,

α̃2
hi|Fi = E2

h·Fi = −2, α̃2
ijk|Fk = E2

ij·Fk = −2, α̃′2i |F2
i

= E ′2i ·Fi = −1, α̃′′2i |F2
i

= E ′′2i ·Fi = −1,

ρ̃2
ij,i|Eij = Ri

2·Eij = −1, ρ̃2
ij,j|Eij = Rj

2·Eij = −1, ρ̃′2i |E ′i = R2
i ·E ′i = −1, ρ̃′′2i |E ′′i = R2

i ·E ′′i = −1,

ρ̃2
ij,i|Ri = E2

ij·Ri = −1, ρ̃2
ij,j|Rj = E2

ij·Rj = −1, ρ̃′2i |Ri = E ′2i ·Ri = −1, ρ̃′′2i |Ri = E ′′2i ·Ri = −1.

Finally we recall that a general line of P3 does not intersect the three twisted cubics
C1, C2, C3 and their chords; instead a general plane of P3 intersects each twisted cubic
at three points and each chord at one point. Hence we have H2 · Fi = H2 · Ri = 0,
F2
i · H = −3 and R2

i · H = −1.

Remark 5.86. We recall that by construction we have bl′′′∗(Ẽh) = Eh+
∑

1≤i<j≤3 Γhij,

bl′′′∗(Ẽij) = Eij + Λij,i + Λij,j, bl
′′′∗(Ẽ ′i) = E ′i + Λ′i, bl

′′′∗(Ẽ ′′i ) = E ′′i + Λ′′i . By abuse of

notation, we denote Eh ∩ Γhij, Eij ∩Λij,x, E ′i ∩Λ′i and E ′′i ∩Λ′′i respectively by γ̃hij, λ̃ij,i,

λ̃ij,j, λ̃
′
i, λ̃

′′
i for 1 ≤ h ≤ 5 and 1 ≤ i < j ≤ 3. Let Lh, Lij, L′i, L′′i be respectively

the strict transform on Y of a general line of Eh, Eij, E
′
i and E ′′i . By using similar

arguments to the ones in Remark 5.30 we obtain that E3
h = 4, E3

ij = 3 and E ′3i = E ′′3i = 2,

since we have Eh|Eh ∼ −(Lh +
∑

1≤i<j≤3 γ̃hij) ∼ −(4Lh − 2
∑3

i=1 α̃hi), Eij|Eij ∼ −(Lij +

λ̃ij,i + λ̃ij,j) ∼ −(3Lij − 2α̃ijk − ρ̃ij,i − ρ̃ij,j), E ′i|E ′i ∼ −(L′i + λ̃′i) ∼ −(2L′i − α̃′i − ρ̃′i) and

E ′′i |E ′′i ∼ −(L′′i + λ̃′′i ) ∼ −(2L′′i − α̃′′i − ρ̃′′i ).

Remark 5.87. By using similar arguments to the ones in Remark 5.11 we have F3
i =

− deg(NC̃i|Y ′) = 6 and R3
i = − deg(Nr̃i|Y ′) = 6 for 1 ≤ i ≤ 3.
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Let P̃ be the strict transform on Y of an element of P ′′: then

P ∼ 7H− 3
5∑

h=1

Eh − 2
3∑
i=1

(E ′i + E ′′i )− 2
∑

1≤i<j≤3

Eij − 2
3∑
i=1

Fi −
3∑
i=1

Ri+

−4
5∑

h=1
1≤i<j≤3

Γhij − 3
3∑
i=1

(Λ′i + Λ′′i )− 3
∑

1≤i<j≤3

(Λij,i + Λij,j).

Let us take the linear system P̃ := |OY (P̃ )| on Y . It is base point free and it defines
a morphism νP̃ : Y → P6 birational onto the image W 6

F := νP̃(Y ), which is a threefold

of degree degW 6
F = 10. It follows by Lemma 5.77 and by the fact that P̃ 3 = 10 (use

Remarks 5.84, 5.85, 5.86, 5.87 and calculations similar to the ones in § 5.2, 5.3). Then
we have the following diagram:

Y

Y ′′ Y ′ P3 W 6
F ⊂ P6.

bl′′′
νP̃

bl′′ bl′ νP

It remains to show that the general hyperplane section of the threefold W 6
F is an

Enriques surface.

Remark 5.88. Let Q̃6, Q̃7 and Q̃8 be the strict transforms on Y of the quadric surfaces
Q6, Q7, Q8. By construction we have P̃ · Eh = P̃ · Eij = P̃ · Q̃i+j+3 = 0 for a general

P̃ ∈ P̃ and for all 1 ≤ h ≤ 5 and 1 ≤ i < j ≤ 3.

Remark 5.89. The 27 exceptional divisors of bl′′′ : Y → Y ′′, the six divisors Ei and
E ′i , and the three divisors Ri are contracted by the morphism νP̃ : Y → W 6

F ⊂ P6 to

curves of W 6
F . This follows by the fact that P̃ · Γhij, P̃ · Λij,i, P̃ · Λij,j, P̃ · Λ′i, P̃ · Λ′′i ,

P̃ · E ′i , P̃ · E ′′i , P̃ · Ri 6= 0 and P̃ 2 · Γhij = P̃ 2 · Λij,i = P̃ 2 · Λij,j = P̃ 2 · Λ′i = P̃ 2 · Λ′′i =

P̃ 2 · E ′i = P̃ 2 · E ′′i = P̃ 2 ·Ri = 0 for 1 ≤ h ≤ 5 and 1 ≤ i < j ≤ 3 (use Remarks 5.84, 5.85
and calculations similar to the ones in Remarks 5.13, 5.34).

Remark 5.90. Let us fix 0 ≤ i ≤ 3 and let P̃ be a general element of P̃ . Since
P̃ 2 · Fi = 10 > 0 (use Remarks 5.85, 5.87 and calculations similar to the ones in

Remarks 5.14, 5.35), then the curve P̃ ∩ Fi is not contracted by the rational map

defined by P̃|P̃ .

Remark 5.91. Let us fix 1 ≤ h ≤ 5 and 1 ≤ i < j ≤ 3. Let us consider a general
element P̃ ∈ P̃ and let us take S := νP̃(P̃ ) and P ′′ := bl′′′(P̃ ) ∈ P ′′. Since bl′′′ : Y → Y ′′

has no effect on P ′′, then P̃ ∩ Γhij, P̃ ∩ Λij,i, P̃ ∩ Λij,j, P̃ ∩ Λ′i, P̃ ∩ Λ′′i , P̃ ∩ E ′i ∼= β̃′i,P
and P̃ ∩ E ′′i ∼= β̃′′i,P are still (−1)-curves on P̃ (see Remark 5.83). We also have that

(P̃ ∩Ri)|2P̃ = R2
i · P̃ = −5 (use Remarks 5.85, 5.87). Furthermore P̃ ∩Ri intersects the

four curves P̃ ∩Λ′i, P̃ ∩Λ′′i , P̃ ∩Λij,i, P̃ ∩Λst,i at one point each, for 1 ≤ s < t ≤ 3 and

i ∈ {s, t} (use Remark 5.85). Thus we can see the map νP̃ |P̃ : P̃ → S as the blow-up of

S at the 21 points νP̃(P̃ ∩Γhij), νP̃(P̃ ∩E ′i), νP̃(P̃ ∩E ′′i ), at the three points νP̃(P̃ ∩Ri)
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and at the four points νP̃(P̃ ∩ Λ′i), νP̃(P̃ ∩ Λ′′i ), νP̃(P̃ ∩ Λij,i), νP̃(P̃ ∩ Λst,i) which are

infinitely near to each νP̃(P̃ ∩ Ri) (see Remarks 5.78, 5.88, 5.89, 5.90). Then S is a
smooth surface.

Remark 5.92. The surface Q6 ∪ Q7 ∪ Q8 is the only sextic surface of P3 which is
singular along the three twisted cubic C1, C2, C3. Let us consider the strict transforms
Q̃6, Q̃7 and Q̃8 on Y of these quadric surfaces. Then we have

Q̃6 + Q̃7 + Q̃8 ∼ 6H−
5∑

h=1

3Eh −
3∑
i=1

2(E ′i + E ′′i )−
∑

1≤i<j≤3

3Eij −
3∑
i=1

2Fi −
3∑
i=1

2Ri+

−
5∑

h=1
1≤i<j≤3

4Γhij −
3∑
i=1

4(Λ′i + Λ′′i )−
∑

1≤i<j≤3

4(Λij,i + Λij,j).

If P̃ is a general element of P̃ , then 0 ∼ (Q̃6 + Q̃7 + Q̃8)|P̃ ∼
(

6H−
∑3

i=1 2(E ′i + E ′′i )−∑3
i=1 2Fi−

∑3
i=1 2Ri−4

∑
h=1,...,5
1≤i<j≤3

Γhij−4
∑3

i=1(Λ′i+Λ′′i )−4
∑

1≤i<j≤3(Λij,i+Λij,j)
)
|P̃ .

Theorem 5.93. Let S be a general hyperplane section of the threefold W 6
F ⊂ P6.

Then S is an Enriques surface.

Proof. We recall that S is the image of a general element P̃ ∈ P̃ , via the birational
morphism νP̃ : Y → W 6

F ⊂ P6. Furthermore S is smooth (see Remark 5.91). By

Proposition 5.82 and by using the arguments of Theorem 5.93, we have that q(P̃ ) =

pg(P̃ ) = 0. It remains to prove that 2KS ∼ 0. Since by [27, p.187] we have that

KY = bl′′′
∗
(KY ′′) +

5∑
h=1

1≤i<j≤3

Γhij +
3∑
i=1

(Λ′i + Λ′′i ) +
∑

1≤i<j≤3

(Λij,i + Λij,j) ∼

∼ −4H +
5∑

h=1

2Eh +
3∑
i=1

2(E ′i + E ′′i ) +
∑

1≤i<j≤3

2Eij +
3∑
i=1

Fi +
3∑
i=1

Ri+

+3
5∑

h=1
1≤i<j≤3

Γhij + 3
3∑
i=1

(Λ′i + Λ′′i ) + 3
∑

1≤i<j≤3

(Λij,i + Λij,j),

then we obtain that 2KP̃ = 2(KY + P̃ )|P̃ ∼ (6H −
∑3

i=1 2Fi − 2
∑

h=1,...,5
1≤i<j≤3

Γhij)|P̃ .

Furthermore, by Remark 5.92, we have

2KP̃ ∼
( 3∑
i=1

2(E ′i+E ′′i )+
3∑
i=1

2Ri+
5∑

h=1
1≤i<j≤3

2Γhij+
3∑
i=1

4(Λ′i+Λ′′i )+
∑

1≤i<j≤3

4(Λij,i+Λij,j)
)
|P̃ .

Finally, by Remark5.91, we have 2KS ∼ (νP̃)∗(2KP̃ ) ∼ 0.
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One can prove that W 6
F ⊂ P6 is not a cone over a general hyperplane section, as

in the proof of Theorem 5.15. So W 6
F ⊂ P6 satisfies Assumption (*) of § 3.3 and

we can obtain an Enriques-Fano threefold in the sense of Definition 3.1 by taking its
normalization.

It would be interesting to verify with modern techniques if the general hyperplane
section of W 6

F ⊂ P6 actually is a Reye congruence, as stated by Fano in [23, §3] (see
also [13, Proposition 3]).

5.5.2 Singularities of W 6
F

We recall that the divisors E1, E2, E3, E4, E5, Q̃6, Q̃7, Q̃8 are contracted by νP̃ : Y →
W 6
F ⊂ P6 to points of W 6

F (see Remark 5.88). Let us define Ph := νP̃(Eh) for 1 ≤ h ≤ 5

and P6 := νP̃(Q̃6), P7 := νP̃(Q̃7), P8 := νP̃(Q̃8).

Remark 5.94. By Remark 5.88 we have that νP̃(Eij) is a point of W 6
F for all 1 ≤ i <

j ≤ 3. In particular we have νP̃(Eij) = νP̃(Q̃i+j+3), since Q̃i+j+3 ∩ Eij 6= ∅. Indeed one

can verify that Q̃i+j+3 ∩ Eij is the strict transform of the line of Eij joining the points
Eij ∩ r̃i and Eij ∩ r̃j.

Proposition 5.95. The eight points P1, . . . , P8, defined as above, are quadruple points
of W 6

F whose tangent cone is a cone over a Veronese surface.

Proof. The analysis of the points P1, P2, P3, P4 and P5 follows by Remark 5.86, as in
the proof of Proposition 5.16. Let us fix now three distinct indices i, j, k ∈ {1, 2, 3} with
i < j. The hyperplane sections of W 6

F ⊂ P6 passing through Pi+j+3 correspond to the

elements of P̃ containing Q̃i+j+3 ∪ Eij (see Remark 5.94). Let P̃ij := P̃ − Q̃i+j+3 − Eij
be the sublinear system of P̃ defined by these elements. Let us study P̃ij|Q̃i+j+3

=

|OQ̃i+j+3
(−Q̃i+j+3 − Eij)|. If we consider the case (i, j) = (1, 2), we have

Q̃6 ∼Y 2H−
5∑

h=1

Eh −
∑
t=1,2

(E ′t + E ′′t )−
∑

1≤r<s≤3

Ers −
∑
t=1,2

Ft −
∑
t=1,2

Rt+

−
5∑

h=1

(2Γh12 + Γh13 + Γh23)−
∑
t=1,2

2(Λ′t + Λ′′t )−
∑

1≤r<s≤3

(Λrs,r + Λrs,s),

and so

Q̃6|Q̃6
∼Q̃6

(
2H−

∑
1≤r<s≤3

Ers −
∑
t=1,2

(Ft +Rt)−
5∑

h=1

2Γh12 −
∑
t=1,2

2(Λ′t + Λ′′t )

)
|Q̃6
.

Let C6 be the pullback on Q̃6 of the linear equivalence class of the hyperplane sections
of Q6. By abuse of notation, let us denote by γ̃h12, λ̃′t, λ̃

′′
t the (−1)-curves on Q̃6

given by Γh12|Q̃6
, Λ′t|Q̃6

, Λ′′t |Q̃6
for 1 ≤ h ≤ 5 and t = 1, 2. Let us also consider
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the (−1)-curves on Q̃6 defined by εrs := E ′rs|Q̃6
for 1 ≤ r < s ≤ 3. Then we have

Q̃6|Q̃6
∼Q̃6

2C6−
∑

1≤r<s≤3 εrs−(2C6−
∑5

h=1 γ̃h12−λ̃′1−λ̃′′1−ε23−ε12)−(2C6−
∑5

h=1 γ̃h12−
λ̃′2 − λ̃′′2 − ε13 − ε12) −

∑5
h=1 2γ̃h12 −

∑
t=1,2(γ̃′t + γ̃′′t ) = −2C6 + ε12 = −2Ci+j+3 + εij.

Similarly for (i, j) ∈ {(1, 3), (2, 3)}. Thus we have P̃ij|Q̃i+j+3
= |OQ̃i+j+3

(2Ci+j+3−2εij)|,
which is the linear system of the quadric sections of Qi+j+3 with node at ri ∩ rj. It
is known that Qi+j+3 is the image of P2 via the rational map ψ : P2 99K P3 defined
by the linear system of the conics passing through two fixed points x1 and x2. The
quadric sections of Qi+j+3 with node at ri ∩ rj correspond to the quartic plane curves
with node at the points x1 and x2 and at a third fixed point x3 := ψ−1(ri ∩ rj). By

applying a quadratic transformation, we obtain that P̃ij|Q̃i+j+3

∼= |OP2(2)|, whose image

is a Veronese surface Vij. Furthermore we have that P̃ij|Eij = |OEij(−Q̃i+j+3 − Eij)| =
|OEij(2Lij − 2α̃ijk)| ∼= P2 (see Remark 5.86). Since P̃ij|Eij is isomorphic to the linear

system of the conics of Eij with node at the point Eij ∩ C̃k, then its image is a conic
Cij. Since Vij ∪ Cij = P(TCPi+j+3

W 6
F ), then it must be Cij ⊂ Vij = P(TCPi+j+3

W 6
F ).

Therefore Q̃i+j+3 is contracted by νP̃ to the point Pi+j+3, which is a quadruple point
whose tangent cone tangent is a cone over a Veronese surface, and the divisor Eij is
contracted in a conic contained in the Veronese surface given by the exceptional divisor
of the minimal resolution of Pi+j+3.

We recall that νP : P3 99K W 6
F ⊂ P6 is an isomorphism outside Q6 ∪ Q7 ∪ Q8 (see

Remark 5.78). Then P1, P2, P3, P4, P5, P6, P7 and P8, are the only singular points of
W 6
F (see Remarks 5.88, 5.89, 5.90). Furthermore νP̃ : Y → W 6

F is a desingularization
of W 6

F but it is not the minimal one: indeed the proof of Proposition 5.95 says us that
νP̃ : Y → W 6

F is the blow-up of the minimal desingularization of W 6
F along curves

(conics) contained in the minimal resolutions of P6, P7 and P8. Finally, by recalling
Definition 4.4, we have the following result.

Theorem 5.96. The eight points P1, P2, P3, P4, P5, P6, P7, P8 are all associated with
each other, as in Figure 21 of Appendix A.

Proof. Let us fix 1 ≤ h < t ≤ 5 and 1 ≤ i < j ≤ 3. Let us consider the line lht ⊂ P3

joining the points qh and qt. Let l̃ht be its strict transform on Y . We obtain that
νP̃(l̃ht) = 〈Ph, Pt〉 ⊂ W 6

F , since l̃ht ∩ Eh 6= ∅, l̃ht ∩ Et 6= ∅ and deg(νP̃(l̃ht)) = P̃ · (H −
Eh−Et−

∑
1≤i<j≤3 Γhij−

∑
1≤i<j≤3 Γtij)

2 = 1. So Ph is associated with Pt. We recall now

that Γhij, Λij,i, Λij,j, Λ′i, Λ′′i and Ri are mapped by νP̃ : Y → W 6
F ⊂ P6 to curves of W 6

F

(see Remark 5.89). In particular Γhij, Λij,i, Λij,j, Λ′i, Λ′′i are mapped to lines of W 6
F (use

similar arguments of proof of Theorem 5.17). We also have that νP̃(Ri) = νP̃(Λ′i) =
νP̃(Λ′′i ) = νP̃(Λij,i) = νP̃(Λst,i) for 1 ≤ s < t ≤ 3 and i ∈ {s, t} (see Remark 5.91).

Since Γhij ∩ Eh 6= ∅ and Γhij ∩ Q̃i+j+3 6= ∅, then 〈Ph, Pi+j+3〉 = νP̃(Γhij). So each Ph
is associated with each Pi+j+3. Finally P6, P7 and P8 are mutually associated, since
νP̃(R1) = 〈P6, P7〉, νP̃(R2) = 〈P6, P8〉, νP̃(R3) = 〈P7, P8〉 (see Remark 5.94).
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6 Computational analysis of the BS-EF 3-folds with

very ample hyperplane sections

6.1 Abstract

We recall that a fixed BS-EF 3-fold (W,L) is an Enriques-Fano threefold given by
the quotient π : X → X/σ =: W of a smooth Fano threefold X under an involution
σ : X → X with eight fixed points (see [1]). The quotient map π : X → W is defined
by the sublinear system of | −KX | given by the σ-invariant elements. The images of
the eight fixed points of σ are eight quadruple points of W whose tangent cone is a
cone over a Veronese surface. We will computationally analyze the BS-EF 3-folds with
very ample hyperplane sections (see [1, Theorem A]). By calling configuration the way
in which the eight singular points are associated, we will find the following facts:

(i) the ideal of W 6
BS ⊂ P6 is generated by cubics; the eight singular points of W 6

BS ⊂
P6 are similar and they have the same configuration of the ones of the F-EF 3-fold
W 6
F (see § 6.2); however, it is not yet known if the two threefolds W 6

BS and W 6
F

coincide;

(ii) the ideal of W 7
BS ⊂ P7 is generated by quadrics and cubics; the eight singular

points of W 7
BS ⊂ P7 are similar and they have the same configuration of the

ones of the F-EF 3-fold W 7
F (see § 6.3); however, it is not yet known if the two

threefolds W 7
BS and W 7

F coincide;

(iii) the ideal of W 8
BS ⊂ P8 is generated by quadrics and cubics; the eight singular

points of W 8
BS ⊂ P8 are similar and they have a configuration that was excluded

by Fano in his paper [23]; the threefold W 8
BS ⊂ P8 can also be obtained as the

image of a certain linear system of septic surfaces of P3 (see § 6.4);

(iv) the ideal of W 9
BS ⊂ P9 is generated by quadrics; the embedding of W 9

BS in P9 is
the F-EF 3-fold W 9

F ⊂ P9 (see § 6.5);

(v) the ideal of W 10
BS ⊂ P10 is generated by quadrics and cubics; the eight singular

points of W 10
BS ⊂ P10 are similar and they have a configuration that was excluded

by Fano in his paper [23]; the threefold W 10
BS ⊂ P10 can also be obtained as the

image of a certain linear system of sextic surfaces of P3 (see § 6.6);

(vi) the ideal of W 13
BS ⊂ P13 is generated by quadrics; the embedding of W 13

BS in P13

is the F-EF 3-fold W 13
F ⊂ P13 (see § 6.7).

6.2 BS-EF 3-fold (VIII) of genus 6

In the following we will often refer to the use of Macaulay2: see Code B.1 of Appendix B
for the computational techniques we will use. Let us study the BS-EF 3fold described
in [1, §6.2.4]. Let us consider the smooth Fano threefold X given by the intersection
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of three divisors of bidegree (1, 1) in P3
[x0:···:x3] × P3

[y0:···:y3] with equations

3∑
i=0

3∑
j=0

aijxiyj = 0,
3∑
i=0

3∑
j=0

bijxiyj = 0,
3∑
i=0

3∑
j=0

cijxiyj = 0

where aij = aji, bij = bji, cij = cji, for i, j ∈ {0, 1, 2, 3}. Let us take the involution
σ : X → X defined by the restriction on X of the following map

P3 × P3 P3 × P3

[x0 : x1 : x2 : x3]× [y0 : y1 : y2 : y3] [y0 : y1 : y2 : y3]× [x0 : x1 : x2 : x3] .

σ′

We have that σ has eight fixed points p1, p2, p3, p4, p5, p6, p7 and p8 with coordinates
[x0 : x1 : x2 : x3]× [x0 : x1 : x2 : x3] such that

∑3
i=0

∑3
j=0 aijxixj = 0∑3

i=0

∑3
j=0 bijxixj = 0∑3

i=0

∑3
j=0 cijxixj = 0.

The quotient map π : X → X/σ =: W 6
BS is given by the restriction on X of the

morphism ϕ : P3× P3 → P9
[Z0:···:Z9] defined by the σ′-invariant multihomogeneous poly-

nomials of multidegree (1, 1). Thus we have ϕ : [x0 : x1 : x2 : x3] × [y0 : y1 : y2 : y3] 7→
[Z0 : · · · : Z9] , where Z0 = x0y0, Z1 = x1y1, Z2 = x2y2, Z3 = x3y3, Z4 = x0y1 + x1y0,
Z5 = x0y2+x2y0, Z6 = x0y3+x3y0, Z7 = x1y2+x2y1, Z8 = x1y3+x3y1, Z9 = x2y3+x3y2.
By using Macaulay2, one can find that the image of P3 × P3 via ϕ is a 6-dimensional
algebraic variety F 10

6 of degree 10, whose ideal is generated by the following 10 poly-
nomials

−2Z1Z5Z6 + Z4Z6Z7 + Z4Z5Z8 − 2Z0Z7Z8 + 4Z0Z1Z9 − Z2
4Z9,

−2Z2Z4Z6 + Z5Z6Z7 + 4Z0Z2Z8 − Z2
5Z8 + Z4Z5Z9 − 2Z0Z7Z9,

−4Z1Z2Z6 + Z6Z
2
7 + 2Z2Z4Z8 − Z5Z7Z8 + 2Z1Z5Z9 − Z4Z7Z9,

−2Z3Z4Z5 + 4Z0Z3Z7 − Z2
6Z7 + Z5Z6Z8 + Z4Z6Z9 − 2Z0Z8Z9,

−4Z1Z3Z5 + 2Z3Z4Z7 − Z6Z7Z8 + Z5Z
2
8 + 2Z1Z6Z9 − Z4Z8Z9,

−4Z2Z3Z4 + 2Z3Z5Z7 + 2Z2Z6Z8 − Z6Z7Z9 − Z5Z8Z9 + Z4Z
2
9 ,

−4Z1Z2Z3+Z3Z
2
7 +Z2Z

2
8−Z7Z8Z9+Z1Z

2
9 , −4Z0Z2Z3+Z3Z

2
5 +Z2Z

2
6−Z5Z6Z9+Z0Z

2
9 ,

−4Z0Z1Z3+Z3Z
2
4 +Z1Z

2
6−Z4Z6Z8+Z0Z

2
8 , −4Z0Z1Z2+Z2Z

2
4 +Z1Z

2
5−Z4Z5Z7+Z0Z

2
7 .

We observe that W 6
BS = ϕ(X) = F 10

6 ∩H6, where H6 is the 6-dimensional projective
subspace of P9 given by the intersection of the following three hyperplanes

{a00Z0+a11Z1+a22Z2+a33Z3+2a01Z4+2a02Z5+2a03Z6+2a12Z7+2a13Z8+2a23Z9 = 0},

{b00Z0 +b11Z1 +b22Z2 +b33Z3 +2b01Z4 +2b02Z5 +2b03Z6 +2b12Z7 +2b13Z8 +2b23Z9 = 0},
{c00Z0 +c11Z1 +c22Z2 +c33Z3 +2c01Z4 +2c02Z5 +2c03Z6 +2c12Z7 +2c13Z8 +2c23Z9 = 0}.
Therefore we have π = ϕ|X : X → W 6

BS = ϕ(X) ⊂ H6
∼= P6.
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Remark 6.1. The threefold W 6
BS is 3-extendable (see Definition 9.1). It would be

interesting to understand if this is sharp.

What follows has been proved for fixed values of aij, bij and cij, in order to simplify
the computational analysis.

Example 6.2. Let us take

(aij) =


1 0 0 0
0 −7 0 0
0 0 4 0
0 0 0 2

 , (bij) =


1 0 0 0
0 −6 0 0
0 0 2 0
0 0 0 3

 , (cij) =


1 0 0 0
0 −1 0 0
0 0 −7 0
0 0 0 7

 ,

we obtain X = {x0y0 − 7x1y1 + 4x2y2 + 2x3y3 = 0, x0y0 − 6x1y1 + 2x2y2 + 3x3y3 =
0, x0y0 − x1y1 − 7x2y2 + 7x3y3 = 0}. Then the eight fixed points of σ : X → X are

p1 = [1 : 1 : 1 : 1]× [1 : 1 : 1 : 1] , p2 [−1 : 1 : 1 : 1]× [−1 : 1 : 1 : 1] ,

p3 = [1 : −1 : 1 : 1]× [1 : −1 : 1 : 1] , p4 = [−1 : −1 : 1 : 1]× [−1 : −1 : 1 : 1] ,

p5 = [1 : 1 : −1 : 1]× [1 : 1 : −1 : 1] , p6 = [−1 : 1 : −1 : 1]× [−1 : 1 : −1 : 1] ,

p7 = [1 : −1 : −1 : 1]× [1 : −1 : −1 : 1] , p8 = [−1 : −1 : −1 : 1]× [−1 : −1 : −1 : 1] .

Furthermore we have

H6 := {Z0−7Z1 +4Z2 +2Z3 = 0, Z0−6Z1 +2Z2 +3Z3 = 0, Z0−Z1−7Z2 +7Z3 = 0} =

= {Z2 − Z3 = 0, Z1 − Z3 = 0, Z0 − Z3 = 0},

which is the P6
[w0:···:w6] embedded in P9

[Z0:···:Z9] via the morphism such that

Zi = w0, i = 0, 1, 2, 3, Zj = wj−3, j = 4, . . . , 9.

By using Macaulay2, we find that the quotient map π : X → W 6
BS ⊂ H6

∼= P6

is given by the restriction on X of the morphism ϕ′ : P3 × P3 → P6
[w0:···:w6] such

that [x0 : x1 : x2 : y3 : y4 : y5] 7→ [w0 : · · · : w6], where w0 = x3y3, w1 = x0y1 + x1y0,
w2 = x0y2+x2y0, w3 = x0y3+x3y0, w4 = x1y2+x2y1, w5 = x1y3+x3y1, w6 = x2y3+x3y2.
Thanks to Macaulay2, we obtain that this BS-EF 3-fold W 6

BS ⊂ P6 has ideal generated
by the following 10 polynomials

−2w0w2w3 + w1w3w4 + w1w2w5 − 2w0w4w5 + 4w2
0w6 − w2

1w6,

−2w0w1w3 + w2w3w4 + 4w2
0w5 − w2

2w5 + w1w2w6 − 2w0w4w6,

−4w2
0w3 + w3w

2
4 + 2w0w1w5 − w2w4w5 + 2w0w2w6 − w1w4w6,

−2w0w1w2 + 4w2
0w4 − w2

3w4 + w2w3w5 + w1w3w6 − 2w0w5w6,

−4w2
0w2 + 2w0w1w4 − w3w4w5 + w2w

2
5 + 2w0w3w6 − w1w5w6,

−4w2
0w1 + 2w0w2w4 + 2w0w3w5 − w3w4w6 − w2w5w6 + w1w

2
6,

−4w3
0 + w0w

2
4 + w0w

2
5 − w4w5w6 + w0w

2
6, −4w3

0 + w0w
2
2 + w0w

2
3 − w2w3w6 + w0w

2
6,
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−4w3
0 + w0w

2
1 + w0w

2
3 − w1w3w5 + w0w

2
5, −4w3

0 + w0w
2
1 + w0w

2
2 − w1w2w4 + w0w

2
4.

Furthermore this threefold has the following eight singular points

P1 = π(p1) = [1 : 2 : 2 : 2 : 2 : 2 : 2] , P2 = π(p2) = [1 : −2 : −2 : −2 : 2 : 2 : 2] ,

P3 = π(p3) = [1 : −2 : 2 : 2 : −2 : −2 : 2] , P4 = π(p4) = [1 : 2 : −2 : −2 : −2 : −2 : 2] ,

P5 = π(p′1) = [1 : 2 : −2 : 2 : −2 : 2 : −2] , P6 = π(p′2) = [1 : −2 : 2 : −2 : −2 : 2 : −2] ,

P7 = π(p′3) = [1 : −2 : −2 : 2 : 2 : −2 : −2] , P8 = π(p′4) = [1 : 2 : 2 : −2 : 2 : −2 : −2] .

One can verify that all the lines joining the points Pi and Pj, for 1 ≤ i < j ≤ 8, are
contained in W 6

BS. So we can say that each one of the eight singular points of W 6
BS is

associated with all the other m = 7 points, as in Figure 21 of Appendix A. This is the
same configuration of the singularities of the F-EF 3-fold W 6

F .

6.3 BS-EF 3-fold (X) of genus 7

In the following we will often refer to the use of Macaulay2: see Code B.2 of Appendix B
for the computational techniques we will use. Let us study the BS-EF 3fold described
in [1, §6.4.1]. Let X be the smooth Fano threefold given by a divisor of type∑

i+j+k+l odd

aijklxiyjzktl = 0

in P1 × P1 × P1 × P1 with coordinates [x0 : x1] × [y0 : y1] × [z0 : z1] × [t0 : t1]. Let
us consider the involution σ : X → X defined by the restriction on X of the map
σ′ : P1 × P1 × P1 × P1 → P1 × P1 × P1 × P1 such that

[x0 : x1]× [y0 : y1]× [z0 : z1]× [t0 : t1] 7→ [x0 : −x1]× [y0 : −y1]× [z0 : −z1]× [t0 : −t1] .

The involution σ : X → X has the following eight fixed points

p1 = [0 : 1]× [0 : 1]× [0 : 1]× [0 : 1] , p′1 = [1 : 0]× [1 : 0]× [1 : 0]× [1 : 0] ,

p2 = [0 : 1]× [1 : 0]× [1 : 0]× [0 : 1] , p′2 = [1 : 0]× [0 : 1]× [0 : 1]× [1 : 0] ,

p3 = [1 : 0]× [1 : 0]× [0 : 1]× [0 : 1] , p′3 = [0 : 1]× [0 : 1]× [1 : 0]× [1 : 0] ,

p4 = [1 : 0]× [0 : 1]× [1 : 0]× [0 : 1] , p′4 = [0 : 1]× [1 : 0]× [0 : 1]× [1 : 0] .

The quotient map π : X → X/σ =: W 7
BS is given by the restriction on X of the mor-

phism ϕ : P1×P1×P1×P1 → P7
[w0:···:w7], defined by the σ′-invariant multihomogeneous

polynomials of multidegree (1, 1, 1, 1). In particular we have

ϕ : [x0 : x1]× [y0 : y1]× [z0 : z1]× [t0 : t1] 7→ [w0 : w1 : w2 : w3 : w4 : w5 : w6 : w7]

where w0 = x1y1z1t1, w1 = x1y0z0t1, w2 = x0y0z1t1, w3 = x1y0z1t0, w4 = x0y0z0t0,
w5 = x0y1z1t0, w6 = x1y1z0t0, w7 = x0y1z0t1.
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Remark 6.3. By fixing (random) values for a0001, a0010, a0100, a1000, a1110, a1101, a1011

and a0111, one can verify, with Macaulay2, that the ideal of the BS-EF 3-fold W 7
BS is

generated by the following 11 polynomials

w2w6 − w3w7, w1w5 − w3w7, w0w4 − w3w7,

a1110w0w5w6 + a1011w0w3w7 + a0111w0w5w7 + a0010w3w5w7 + a1101w0w6w7 +
a1000w3w6w7 + a0100w5w6w7 + a0001w3w

2
7,

a1000w1w4w6 + a1011w1w3w7 + a0001w1w4w7 + a0010w3w4w7 + a1101w1w6w7 +
a1110w3w6w7 + a0100w4w6w7 + a0111w3w

2
7,

a0010w3w4w5 + a1000w3w4w6 + a1110w3w5w6 + a0100w4w5w6 + a1011w
2
3w7 +

a0001w3w4w7 + a0111w3w5w7 + a1101w3w6w7,

a0010w2w4w5 + a1011w2w3w7 + a0001w2w4w7 + a1000w3w4w7 + a0111w2w5w7 +
a1110w3w5w7 + a0100w4w5w7 + a1101w3w

2
7,

a1011w1w2w3 + a0001w1w2w4 + a1000w1w3w4 + a0010w2w3w4 + a1101w1w3w7 +
a0111w2w3w7 + a1110w

2
3w7 + a0100w3w4w7,

a1011w0w2w3 + a0111w0w2w5 + a1110w0w3w5 + a0010w2w3w5 + a1101w0w3w7 +
a0001w2w3w7 + a1000w

2
3w7 + a0100w3w5w7,

a1011w0w1w3 + a1101w0w1w6 + a1110w0w3w6 + a1000w1w3w6 + a0111w0w3w7 +
a0001w1w3w7 + a0010w

2
3w7 + a0100w3w6w7,

a1011w0w1w2 + a1101w0w1w7 + a0111w0w2w7 + a0001w1w2w7 + a1110w0w3w7 +
a1000w1w3w7 + a0010w2w3w7 + a0100w3w

2
7.

Thus the ideal of W 7
BS is generated by quadrics and cubics. Since W 7

BS is projectively
normal in P7 (see § 3.3), then the ideal of its general hyperplane section S ⊂ P6 is
generated by quadrics and cubics too. This is consistent with the fact that the φ of a
general hyperplane section of S is 3 < 4 (see [35, Theorem 1.1 (ii)]), as we will see in
the proof of Theorem 9.2.

Remark 6.4. Let us consider the eight singular points of W 7
BS

P1 = π(p1) = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0] , P ′1 = π(p′1) = [0 : 0 : 0 : 0 : 1 : 0 : 0 : 0] ,

P2 = π(p2) = [0 : 1 : 0 : 0 : 0 : 0 : 0 : 0] , P ′2 = π(p′2) = [0 : 0 : 0 : 0 : 0 : 1 : 0 : 0] ,

P3 = π(p3) = [0 : 0 : 1 : 0 : 0 : 0 : 0 : 0] , P ′3 = π(p′3) = [0 : 0 : 0 : 0 : 0 : 0 : 1 : 0] ,

P4 = π(p4) = [0 : 0 : 0 : 1 : 0 : 0 : 0 : 0] , P ′4 = π(p′4) = [0 : 0 : 0 : 0 : 0 : 0 : 0 : 1] .

Let li,j be the line joining the singular points Pi and Pj with i, j ∈ {1, 2, 3, 4, 1′, 2′, 3′, 4′}
and i 6= j. Then we have l1,2 = {wi = 0|i 6= 0, 1}, l1,3 = {wi = 0|i 6= 0, 2},
l1,4 = {wi = 0|i 6= 0, 3}, l1,1′ = {wi = 0|i 6= 0, 4}, l1,2′ = {wi = 0|i 6= 0, 5},
l1,3′ = {wi = 0|i 6= 0, 6}, l1,4′ = {wi = 0|i 6= 0, 7}, l2,3 = {wi = 0|i 6= 1, 2},
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l2,4 = {wi = 0|i 6= 1, 3}, l2,1′ = {wi = 0|i 6= 1, 4}, l2,2′ = {wi = 0|i 6= 1, 5},
l2,3′ = {wi = 0|i 6= 1, 6}, l2,4′ = {wi = 0|i 6= 1, 7}, l3,4 = {wi = 0|i 6= 2, 3},
l3,1′ = {wi = 0|i 6= 2, 4}, l3,2′ = {wi = 0|i 6= 2, 5}, l3,3′ = {wi = 0|i 6= 2, 6},
l3,4′ = {wi = 0|i 6= 2, 7}, l4,1′ = {wi = 0|i 6= 3, 4}, l4,2′ = {wi = 0|i 6= 3, 5},
l4,3′ = {wi = 0|i 6= 3, 6}, l4,4′ = {wi = 0|i 6= 3, 7}, l1′,2′ = {wi = 0|i 6= 4, 5},
l1′,3′ = {wi = 0|i 6= 4, 6}, l1′,4′ = {wi = 0|i 6= 4, 7}, l2′,3′ = {wi = 0|i 6= 5, 6},
l2′,4′ = {wi = 0|i 6= 5, 7}, l3′,4′ = {wi = 0|i 6= 6, 7}. By Remark 6.3 we have that
W 7
BS does not contain the lines l1,1′ , l2,2′ , l3,3′ and l4,4′ , while it contains the others.

So each one of the eight singular points of W 7
BS is associated with m = 6 of the other

singular points, as in Figure 22 of Appendix A. This is the same configuration of the
singularities of the F-EF 3-fold W 7

F .

6.4 BS-EF 3-fold (XI) of genus 8

In the following we will often refer to the use of Macaulay2: see Code B.3 of Appendix B
for the computational techniques we will use. Let us study the BS-EF 3fold described
in [1, §6.4.2]. Let us take the hyperplane {x4 = 0} ⊂ P4

[x0:x1:x2:x3:x4] and two quadric

surfaces Q,R ⊂ {x4 = 0} ∼= P3
[x0:x1:x2:x3], respectively with equations

Q(x0, x1, x2, x3) := q00x
2
0 + q11x

2
1 + q22x

2
2 + q33x

2
3 + q01x0x1 + q23x2x3 = 0,

R(x0, x1, x2, x3) := r00x
2
0 + r11x

2
1 + r22x

2
2 + r33x

2
3 + r01x0x1 + r23x2x3 = 0.

Let C := Q ∩R be the elliptic quartic curve given by the complete intersection of the
above quadrics, and let Y be the quadric cone over Q with vertex v = [0 : 0 : 0 : 0 : 1].
Obviously, Y has equation Q(x0, x1, x2, x3) = 0 in P4. Let X := Blv∪C Y be the
threefold obtained by blowing-up the point v and the curve C and let us consider the
blow-up map bl : X → Y . We have that X is a smooth Fano threefold. Let us explain
this. Let us consider the blow-up map bl′ : Blv∪C P4 → P4 with exceptional divisors
Ev = bl′−1(v) and EC = bl′−1(C). By definition we have that X is the strict transform
of Y on Blv∪C P4 and that bl = bl′|X . If H denotes the pullback of the hyperplane class
h of P4, then we have that X ∼ 2H − 2Ev − EC . By the adjunction formula we have
that −KX = −(KBlv∪C P4 +X)|X ∼ (3H −Ev −EC)|X . We want to show that −KX is
ample. Let us consider the linear system C of the cubic hypersurfaces of P4 containing
the curve C and passing through the point v. Let us fix a general hyperplane hv passing
through v. We have that C contains a sublinear system C ⊂ C whose fixed part is given
by hv ∪ {x4 = 0}. Since the movable part of C is given by the hyperplanes of P4, then
we obtain the ampleness of C at least outside v∪C. So we have the ampleness of −KX

at least outside Ev ∩ X and EC ∩ X, since | − KX | coincides with the restriction on
X of the strict transform of C. Furthermore the movable part of C also contains the
hyperplanes of P4 through v, whose strict transforms are very ample on Ev: indeed we
have |OEv(H −Ev)| = |OEv(−E2

v)| ∼= |OP3(1)| (see [27, Chap 4, §6]). Thus the ample-
ness of −KX along Ev ∩X follows by the fact that Ev ∩X is a smooth quadric surface
in Ev ∼= P3. It remains to show the ampleness of −KX along S ′ := EC ∩X, which is a
P1-bundle over C. Since C is the complete intersection of a hyperplane section and a
quadric section of Y , then S ′ = P(NC|Y ) ∼= P(OC(h|Y )⊕OC(2h|Y )). In particular we
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have that the class S ′|S′ is the class of the tautological bundle on S ′ (see [27, Chap 4,
§6]). Thus −EC |S′ = −S ′|S′ is ample on S ′, and so (−KX)|S′ = (3H −EC)|S′ is ample
too.

Let σ : X → X be the morphism defined by the birational map σ′ : Y 99K Y s.t.

[x0 : x1 : x2 : x3 : x4] [x4x0 : x4x1 : −x4x2 : −x4x3 : R(x0, x1, x2, x3)] .σ′

The map σ : X → X is an involution of X with eight fixed points, which are the
preimages via bl : X → Y of the eight points p1, p2, p3, p4, p′1, p′2, p′3, p′4 such that

{p1, p
′
1, p2, p

′
2} = Y ∩ {x2 = 0, x3 = 0, x2

4 −R(x0, x1, x2, x3) = 0},

{p3, p
′
3, p4, p

′
4} = Y ∩ {x0 = 0, x1 = 0, x2

4 +R(x0, x1, x2, x3) = 0}.
The σ′-invariant elements of C define the rational map ϕ : Y 99K P9 such that
[x0 : · · · : x4] 7→ [Z0 : · · · : Z9], where

Z0 = x2
4x0 + x0R(x0, x1, x2, x3), Z1 = x2

4x1 + x1R(x0, x1, x2, x3),
Z2 = x2

4x2 − x2R(x0, x1, x2, x3), Z3 = x2
4x3 − x3R(x0, x1, x2, x3),

Z4 = x4x
2
0, Z5 = x4x

2
1, Z6 = x4x

2
2, Z7 = x4x

2
3, Z8 = x4x0x1, Z9 = x4x2x3.

We observe that ϕ(Y ) is contained in a hyperplane P8
[w0:···:w8]

∼= H8 ⊂ P9 with equation

H8 := {q00Z4 + q11Z5 + q22Z6 + q33Z7 + q01Z8 + q23Z9 = 0}. The rational map ϕ defines
the quotient map π : X → X/σ =: W 8

BS, thanks to the following commutative diagram

X

Y ϕ(Y ) = π(X) = W 8
BS ⊂ H8

∼= P8.

bl
π

ϕ

What follows has been proved for fixed values of qij and rij, in order to simplify the
computational analysis.

Example 6.5. Let us take

Q(x0, x1, x2, x3) = x2
0 − x2

1 − x2
2 + x2

3 and R(x0, x1, x2, x3) = 2x2
0 − x2

1 − 3x2
2 + 2x2

3.

Then ϕ(Y ) is contained in the hyperplane H8 = {Z4 − Z5 − Z6 + Z7}, which we can
see as the image of the morphism i : P8 ↪→ P9 such that

[w0 : · · · : w8] [w0 : w1 : w2 : w3 : w4 + w5 − w6 : w5 : w6 : w7 : w8] .i

Thanks to Macaulay2, one can verify that we obtain a BS-EF 3-fold W 8
BS ⊂ H8

∼= P8

whose ideal is generated by the following 11 polynomials

w5w6 − w2
8, w2w6 − w3w8, w3w5 − w2w8, w2

4 + w4w5 − w4w6 − w2
7,

w1w4 + w1w5 − w1w6 − w0w7, w0w4 − w1w7,
w2

0 − w2
1 − w2

2 + w2
3 − 4w4w5 + 4w2

5 + 4w4w6 − 4w2
8,

w2w3w7 − w0w1w8 + 4w4w7w8 − 4w5w7w8,
w0w1w6 − w2

3w7 − 4w4w6w7 + 4w7w
2
8,

w2
3w4 − w2

1w6 + 4w4w
2
6 + 4w6w

2
7 − 8w4w

2
8,

w2w3w4 − w2
1w8 − 8w4w5w8 + 4w4w6w8 + 4w2

7w8.
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Then the ideal of W 8
BS is generated by quadrics and cubics. Since W 8

BS is projectively
normal in P8 (see § 3.3), then the ideal of its general hyperplane section S ⊂ P7 is
generated by quadrics and cubics too. This is consistent with the fact that the φ of a
general hyperplane section of S is 3 < 4 (see [35, Theorem 1.1 (ii)]), as we will see in
the proof of Theorem 9.2.

Remark 6.6. The BS-EF 3-fold W 8
BS of Example 6.5 has the following eight singular

points
P1 = ϕ(p1) = ϕ([1 : 1 : 0 : 0 : 1]) = [2 : 2 : 0 : 0 : 1 : 0 : 0 : 1 : 0] ,

P2 = ϕ(p2) = ϕ([−1 : −1 : 0 : 0 : 1]) = [−2 : −2 : 0 : 0 : 1 : 0 : 0 : 1 : 0] ,

P3 = ϕ(p3) = ϕ([0 : 0 : 1 : 1 : 1]) = [0 : 0 : 2 : 2 : 0 : 1 : 1 : 0 : 1] ,

P4 = ϕ(p4) = ϕ([0 : 0 : −1 : 1 : 1]) = [0 : 0 : −2 : −2 : 0 : 1 : 1 : 0 : 1] ,

P ′1 = ϕ(p′1) = ϕ([−1 : 1 : 0 : 0 : 1]) = [2 : −2 : 0 : 0 : −1 : 0 : 0 : 1 : 0] ,

P ′2 = ϕ(p′2) = ϕ([1 : −1 : 0 : 0 : 1]) = [−2 : 2 : 0 : 0 : −1 : 0 : 0 : 1 : 0] ,

P ′3 = ϕ(p′3) = ϕ([0 : 0 : −1 : −1 : 1]) = [0 : 0 : 2 : −2 : 0 : −1 : −1 : 0 : 1] ,

P ′4 = ϕ(p′4) = ϕ([0 : 0 : 1 : −1 : 1]) = [0 : 0 : −2 : 2 : 0 : −1 : −1 : 0 : 1] .

Let li,j be the line joining Pi and Pj for i, j ∈ {1, 2, 3, 4, 1′, 2′, 3′, 4′} and i 6= j, i. e.
l12 = {w0 = w1, w4 = w7, w2 = w3 = w5 = w6 = w8 = 0},
l13 = {w0 = w1 = 2w4 = 2w7, w2 = w3 = 2w5 = 2w6 = 2w8},
l14 = {w0 = w1 = 2w4 = 2w7, −w2 = −w3 = 2w5 = 2w6 = 2w8},
l11′ = {w0 = 2w7, w1 = 2w4, w2 = w3 = w5 = w6 = w8 = 0},
l12′ = {w0 = 2w4, w1 = 2w7, w2 = w3 = w5 = w6 = w8 = 0},
l13′ = {w0 = w1 = 2w4 = 2w7, w2 = −w3 = −w5 = −2w6 = 2w8},
l14′ = {w0 = w1 = 2w4 = 2w7, −w2 = w3 = −2w5 = −2w6 = 2w8},
l23 = {−w0 = −w1 = 2w4 = 2w7, w2 = w3 = 2w5 = 2w6 = 2w8},
l24 = {−w0 = −w1 = 2w4 = 2w7, −w2 = −w3 = 2w5 = 2w6 = 2w8},
l21′ = {−w0 = 2w4, −w1 = 2w7, w2 = w3 = w5 = w6 = w8 = 0},
l22′ = {−w0 = 2w7, −w1 = 2w4, w2 = w3 = w5 = w6 = w8 = 0},
l23′ = {−w0 = −w1 = 2w4 = 2w7, w2 = −w3 = −2w5 = −2w6 = 2w8},
l24′ = {−w0 = −w1 = 2w4 = 2w7, −w2 = w3 = −2w5 = −2w6 = 2w8},
l34 = {w0 = w1 = w4 = w7 = 0, w2 = w3, w5 = w6 = w8},
l31′ = {w0 = −w1 = −2w4 = 2w7, w2 = w3 = 2w5 = 2w6 = 2w8},
l32′ = {−w0 = w1 = −2w4 = 2w7, w2 = w3 = 2w5 = 2w6 = 2w8},
l33′ = {w0 = w1 = w4 = w7 = 0, w2 = 2w8, w3 = 2w5 = 2w6},
l34′ = {w0 = w1 = w4 = w7 = 0, w2 = 2w5 = 2w6, w3 = 2w8},
l41′ = {w0 = −w1 = −2w4 = 2w7, −w2 = −w3 = −2w5 = −2w6 = 2w8},
l42′ = {−w0 = w1 = −2w4 = 2w7, −w2 = −w3 = 2w5 = 2w6 = 2w8},
l43′ = {w0 = w1 = w4 = w7 = 0, −w2 = 2w5 = 2w6, −w3 = 2w8},
l44′ = {w0 = w1 = w4 = w7 = 0, −w2 = 2w8, −w3 = 2w5 = 2w6},
l1′2′ = {w0 = −w1, w2 = w3 = w5 = w6 = w8 = 0, −w4 = w7},
l1′3′ = {w0 = −w1 = −2w4 = 2w7, w2 = −w3 = −2w5 = −2w6 = 2w8},
l1′4′ = {w0 = −w1 = −2w4 = 2w7, −w2 = w3 = −2w5 = −2w6 = 2w8},
l2′3′ = {−w0 = w1 = −2w4 = 2w7, w2 = −w3 = −2w5 = −2w6 = 2w8},
l2′4′ = {−w0 = w1 = −2w4 = 2w7, −w2 = w3 = −2w5 = −2w6 = 2w8},
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l3′4′ = {w0 = w1 = w4 = w7 = 0, −w2 = w3, −w5 = −w6 = w8}. We have that W 8
BS

does not contain the lines l1,1′ , l1,2′ , l2,1′ , l2,2′ , l3,3′ , l3,4′ , l4,3′ , l4,4′ , while it contains the
others. So each one of the eight singular points of W 8

BS is associated with m = 5 of the
other singular points, as in Figure 23 of Appendix A. Hence there exist three mutually
associated points (for example P1, P2 and P3). This case had been excluded by Fano
for p > 7, as we said in Remark 4.7 (iv). So this suggests that in Fano’s paper there
are other gaps to be discovered.

Theorem 6.7. Let T be a trihedron with edges l0, l1, l2 and vertex v as in Figure 11.
Let us choose a general point q1 ∈ l1, a general point q2 ∈ l2, three distinct points
ar, as, at ∈ l0, a general point b1 ∈ r1 := 〈q1, ar〉 and a general point b2 ∈ r2 := 〈q2, ar〉.
Let us take a general conic C through the points q1, q2, b1, b2, in the plane spanned by
the three points ar, q1, q2. Finally let us consider the lines s1 := 〈q1, as〉, s2 := 〈q2, as〉,
t1 := 〈b1, at〉, t2 := 〈b2, at〉 and the lines l′1 := 〈q′1, q2〉 and l′2 := 〈q′2, q1〉, where q′1 is a
general point on t1 and q′2 a general point on t2. Then the BS-EF 3-fold W 8

BS can be
obtained as the image of P3 via the rational map νN : P3 99K P8 defined by the linear
system N of the septic surfaces of P3 which are quadruple at the points q1 and q2,
triple at the vertex v and double along the lines l0, l1, l2, l′1, l′2, along the conic C and
at the points c1 := t1 ∩ s1 and c2 := t2 ∩ s2. Furthermore a general N ∈ N contains
the lines t1, t2, r1, r2, s1, s2 and e0 := 〈q1, q2〉.

Figure 11: Base locus of the linear system N .

Proof. Let us project P8 from the P4 spanned by the singular points P1, P ′1, P2, P3, P ′3
of the BS-EF 3-fold W 8

BS of Example 6.5 (see Remark 6.6). By using Macaulay2, we
obtain the rational map

ρ : P8 99K P3, [w0 : · · · : w13] 7→ [w2 − 2w8 : w5 − w6 : w3 − 2w6 : w0 − w1 + 2w4 − 2w7] .
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One can verify with Macaulay2 that the restriction ρ|W 8
BS

: W 8
BS 99K P3 is birational.

Furthermore its inverse map is given by the rational map ν : P3 99K W 8
BS ⊂ P8 defined

by the linear system N of the septic surfaces

(i) quadruple at q1 = [1 : 0 : −2 : 0] and q2 = [1 : 0 : 2 : 0];

(ii) triple at the vertex v = [0 : 0 : 0 : 1] of T = {s1(2s0 + s2)(2s0 − s2) = 0};

(iii) double at the points c1 = [1 : −2 : −2 : 0] and c2 = [1 : 2 : 2 : 0]; double along
the line l′1 = {s3 = 2s0 + 2s1 − s2 = 0} 3 q′1 = [1 : −2 : −2 : 0] and the line
l′2 = {s3 = 2s0 − 2s1 + s2 = 0} 3 q′2 = [1 : 2 : 2 : 0]; double along the edges
l0 = {s0 = s2 = 0}, l1 = {s1 = 2s0 + s2 = 0}, l2 = {s1 = 2s0 − s2 = 0}; double
along the conic C = {2s1 + s3 = 4s2

0 − s2
2 − 2s2s3 − 2s2

3 = 0} passing through q1,
q2, b1 = [1 : −1 : −2 : 2] and b2 = [1 : 1 : 2 : −2];

(iv) containing the lines r1 = {2s1+s3 = 2s0+s2 = 0}, r2 = {2s1+s3 = 2s0−s2 = 0},
s1 = {s3 = 2s0 + s2 = 0}, s2 = {s3 = 2s0 − s2 = 0}, t1 = {2s1 − 2s2 − s3 =
2s0 + s2 = 0}, t2 = {2s1 − 2s2 − s3 = 2s0 − s2 = 0}.

It would be interesting to verify if (the desingularization of) a general N ∈ N is
actually an Enriques surface.

6.5 BS-EF 3-fold (XII) of genus 9

In the following we will often refer to the use of Macaulay2: see Code B.4 of Appendix B
for the computational techniques we will use. Let us study the BS-EF 3fold described
in[1, §6.1.4]. Let us take two quadric hypersurfaces of P5

[x0:x1:x2:y3:y4:y5], i.e.

Q1 : s1(x0, x1, x2) + r1(y3, y4, y5) = 0, Q2 : s2(x0, x1, x2) + r2(y3, y4, y5) = 0,

where s1, s2, r1, r2 are quadratic homogeneous forms:

s1(x0, x1, x2) =
∑

i,j∈{0,1,2}

ai,jxixj, s2(x0, x1, x2) =
∑

i,j∈{0,1,2}

a′i,jxixj,

r1(y3, y4, y5) =
∑

i,j∈{3,4,5}

bi,jyiyj, r2(y3, y4, y5) =
∑

i,j∈{3,4,5}

b′i,jyiyj.

Let us consider the smooth Fano threefold X = Q1∩Q2 and the involution σ : X → X
defined by the restriction on X of the morphism σ′ : P5 → P5 such that

[x0 : x1 : x2 : y3 : y4 : y5] [x0 : x1 : x2 : −y3 : −y4 : −y5] .

The involution σ : X → X has eight fixed points p1, p2, p3, p4, p′1, p′2, p′3, p′4 such that

{p1, p2, p3, p4} = X∩{y3 = y4 = y5 = 0} and {p′1, p′2, p′3, p′4} = X∩{x0 = x1 = x2 = 0}.
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The quotient map π : X → X/σ =: W 9
BS is given by the restriction on X of the

morphism defined by the linear system of the σ-invariant quadric hypersurfaces of P5,
that is the morphism ϕ : P5 → P11

[Z0:···:Z11] such that

[x0 : x1 : x2 : y3 : y4 : y5] 7→
[
x2

0 : x2
1 : x2

2 : x0x1 : x0x2 : x1x2 : y2
3 : y2

4 : y2
5 : y3y4 : y3y5 : y4y5

]
.

By using Macaulay2, one can find that the image of P5 via ϕ is a 5-dimensional algebraic
variety F 16

5 of degree 16, whose ideal is generated by the following 12 polynomials

Z9Z10 − Z6Z11, Z7Z10 − Z9Z11, Z8Z9 − Z10Z11, Z7Z8 − Z2
11, Z6Z8 − Z2

10, Z6Z7 − Z2
9 ,

Z3Z4 − Z0Z5, Z1Z4 − Z3Z5, Z2Z3 − Z4Z5, Z1Z2 − Z2
5 , Z0Z2 − Z2

4 , Z0Z1 − Z2
3 .

We observe that W 9
BS = ϕ(X) = F 16

5 ∩ H9, where H9 is the following 9-dimensional
projective subspace of P11

H9 := {a00Z0 + a11Z1 + a22Z2 + (a01 + a10)Z3 + (a02 + a20)Z4 + (a12 + a21)Z5+

+b33Z6 + b44Z7 + b55Z8 + (b34 + b43)Z9 + (b35 + b53)Z10 + (b45 + b54)Z11 = 0,

a′00Z0 + a′11Z1 + a′22Z2 + (a′01 + a′10)Z3 + (a′02 + a′20)Z4 + (a′12 + a′21)Z5+

+b′33Z6 + b′44Z7 + b′55Z8 + (b′34 + b′43)Z9 + (a′35 + b′53)Z10 + (b′45 + b′54)Z11 = 0}.

Therefore we have π = ϕ|X : X → W 9
BS = ϕ(X) ⊂ H9

∼= P9.

Remark 6.8. The threefold W 9
BS is 2-extendable (see Definition 9.1). It would be

interesting to understand if this is sharp. We observe that W 9
BS can be at most 3-

extendable by Theorem 9.2 and [10, Corollary 1.2].

What follows has been proved for fixed values of aij, bij, a
′
ij and b′ij, in order to

simplify the computational analysis.

Example 6.9. If (aij) =

1 0 0
0 −3 0
0 0 2

 = (b′ij) and (bij) =

3 0 0
0 −8 0
0 0 5

 = (a′ij), then

we obtain
p1 = [1 : 1 : 1 : 0 : 0 : 0] , p′1 [0 : 0 : 0 : 1 : 1 : 1]

p2 = [−1 : 1 : 1 : 0 : 0 : 0] , p′2 = [0 : 0 : 0 : −1 : 1 : 1]

p3 = [1 : −1 : 1 : 0 : 0 : 0] , p′3 = [0 : 0 : 0 : 1 : −1 : 1]

p4 = [1 : 1 : −1 : 0 : 0 : 0] , p′4 = [0 : 0 : 0 : 1 : 1 : −1] .

Furthermore we have

H9 := {Z0−3Z1 +2Z2 +3Z6−8Z7 +5Z8 = 0, 3Z0−8Z1 +5Z2 +Z6−3Z7 +2Z8 = 0} =

= {Z1 − Z2 − 8Z6 + 21Z7 − 13Z8 = 0, Z0 − Z2 − 21Z6 + 55Z7 − 34Z8 = 0},

which is the P9
[w0:···:w9] embedded in P11

[Z0:···:Z11] via the morphism such that

Z0 = w0 +21w4−55w5 +34w6, Z1 = w0 +8w4−21w5 +13w6, Zi+2 = wi, i = 0, . . . 9.
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By using Macaulay2, we find that the quotient map π : X → W 9
BS ⊂ H9

∼= P9 is given
by the restriction on X of the morphism ϕ′ : P5 → P9 such that

[x0 : x1 : x2 : y3 : y4 : y5] 7→
[
x2

2 : x0x1 : x0x2 : x1x2 : y2
3 : y2

4 : y2
5 : y3y4 : y3y5 : y4y5

]
.

In particular we obtain a BS-EF 3-fold W 9
BS ⊂ P9 whose ideal is generated by the

following 12 polynomials

w7w8 − w4w9, w5w8 − w7w9, w6w7 − w8w9, w5w6 − w2
9, w4w6 − w2

8, w4w5 − w2
7,

w2
2 − w2

3 − 13w0w4 + 34w0w5 − 21w0w6,
w1w2 − w0w3 − 21w3w4 + 55w3w5 − 34w3w6,
w0w2 − w1w3 + 8w2w4 − 21w2w5 + 13w2w6,

w2
1−w2

3−21w0w4−168w2
4 +55w0w5−1155w2

5−34w0w6−442w2
6 +881w2

7 +−545w2
8 +1429w2

9,

w0w1 − w2w3,
w2

0 − w2
3 + 8w0w4 − 21w0w5 + 13w0w6,

Then the ideal of this BS-EF 3-fold W 9
BS is generated by quadrics. Since W 9

BS is
projectively normal in P9 (see § 3.3), then the ideal of its general hyperplane section
S ⊂ P8 is generated by quadrics too. This is consistent with the fact that the φ of a
general hyperplane section of S is 4 (see [35, Theorem 1.1 (ii)]), as we will see in the
proof of Theorem 9.2.

Remark 6.10. The threefold W 9
BS of Example 6.9 has the following eight singular

points

P1 = π(p1) = [1 : 1 : 1 : 1 : 0 : 0 : 0 : 0 : 0 : 0] , P ′1 = π(p′1) = [0 : 0 : 0 : 0 : 1 : 1 : 1 : 1 : 1 : 1] ,

P2 = π(p2) = [1 : −1 : −1 : 1 : 0 : 0 : 0 : 0 : 0 : 0] , P ′2 = π(p′2) = [0 : 0 : 0 : 0 : 1 : 1 : 1 : −1 : −1 : 1] ,

P3 = π(p3) = [1 : −1 : 1 : −1 : 0 : 0 : 0 : 0 : 0 : 0] , P ′3 = π(p′3) = [0 : 0 : 0 : 0 : 1 : 1 : 1 : −1 : 1 : −1] ,

P4 = π(p4) = [1 : 1 : −1 : −1 : 0 : 0 : 0 : 0 : 0 : 0] , P ′4 = π(p′4) = [0 : 0 : 0 : 0 : 1 : 1 : 1 : 1 : −1 : −1] .

Let li,j be the line joining Pi and Pj for i, j ∈ {1, 2, 3, 4, 1′, 2′, 3′, 4′} and i 6= j. i.e.
l1,2 = {w0 = w3, w1 = w2, w4 = w5 = w6 = w7 = w8 = w9 = 0},
l1,3 = {w0 = w2, w1 = w3, w4 = w5 = w6 = w7 = w8 = w9 = 0},
l1,4 = {w0 = w1, w2 = w3, w4 = w5 = w6 = w7 = w8 = w9 = 0},
l1,1′ = {w0 = w1 = w2 = w3, w4 = w5 = w6 = w7 = w8 = w9},
l1,2′ = {w0 = w1 = w2 = w3, w4 = w5 = w6 = w9 = −w7 = −w8 = w9},
l1,3′ = {w0 = w1 = w2 = w3, −w4 = −w5 = −w6 = w7 = −w8 = w9},
l1,4′ = {w0 = w1 = w2 = w3, −w4 = −w5 = −w6 = −w7 = w8 = w9},
l2,3 = {w0 = −w1, w2 = −w3, w4 = w5 = w6 = w7 = w8 = w9 = 0},
l2,4 = {w0 = −w2, w1 = −w3, w4 = w5 = w6 = w7 = w8 = w9 = 0},
l2,1′ = {w0 = −w1 = −w2 = w3, w4 = w5 = w6 = w7 = w8 = w9},
l2,2′ = {w0 = −w1 = −w2 = w3, w4 = w5 = w6 = −w7 = −w8 = w9},
l2,3′ = {w0 = −w1 = −w2 = w3, −w4 = −w5 = −w6 = w7 = −w8 = w9},
l2,4′ = {w0 = −w1 = −w2 = w3, −w4 = −w5 = −w6 = −w7 = w8 = w9},
l3,4 = {w0 = −w3, w1 = −w2, w4 = w5 = w6 = w7 = w8 = w9 = 0},
l3,1′ = {−w0 = w1 = −w2 = w3, w4 = w5 = w6 = w7 = w8 = w9},
l3,2′ = {−w0 = w1 = −w2 = w3, w4 = w5 = w6 = −w7 = −w8 = w9},
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l3,3′ = {−w0 = w1 = −w2 = w3, −w4 = −w5 = −w6 = w7 = −w8 = w9},
l3,4′ = {−w0 = w1 = −w2 = w3, −w4 = −w5 = −w6 = −w7 = w8 = w9},
l4,1′ = {−w0 = −w1 = w2 = w3, w4 = w5 = w6 = w7 = w8 = w9},
l4,2′ = {−w0 = −w1 = w2 = w3, w4 = w5 = w6 = −w7 = −w8 = w9},
l4,3′ = {−w0 = −w1 = w2 = w3, −w4 = −w5 = −w6 = w7 = −w8 = w9},
l4,4′ = {−w0 = −w1 = w2 = w3, −w4 = −w5 = −w6 = −w7 = w8 = w9},
l1′,2′ = {w0 = w1 = w2 = w3 = 0, w4 = w5 = w6 = w9, w7 = w8},
l1′,3′ = {w0 = w1 = w2 = w3 = 0, w4 = w5 = w6 = w8, w7 = w9},
l1′,4′ = {w0 = w1 = w2 = w3 = 0, w4 = w5 = w6 = w7, w8 = w9},
l2′,3′ = {w0 = w1 = w2 = w3 = 0, −w4 = −w5 = −w6 = w7, w8 = −w9},
l2′,4′ = {w0 = w1 = w2 = w3 = 0, −w4 = −w5 = −w6 = w8, w7 = −w9},
l3′,4′ = {w0 = w1 = w2 = w3 = 0, −w4 = −w5 = −w6 = w9, w7 = −w8}.
It follows that W 9

BS contains the lines l1,1′ , l1,2′ , l1,3′ , l1,4′ , l2,1′ , l2,3′ , l2,3′ , l2,4′ , l3,1′ ,
l3,2′ , l3,3′ , l3,4′ , l4,1′ , l4,3′ , l4,3′ , l4,4′ , but it does not contain the others. So each one of the
eight singular points of W 9

BS is associated with m = 4 of the other singular points, as
in Figure 24 of Appendix A. This is the same configuration of the singularities of the
Enriques-Fano threefold W 9

F .

Theorem 6.11. The embedding of the BS-EF 3-fold W 9
BS in P9 is the F-EF 3-fold

W 9
F .

Proof. Let us project P9 from the P5 spanned by the singular points P2, P3, P4, P ′2, P ′3,
P ′4 of the BS-EF 3-fold W 9

BS of Example 6.9 (see Remark 6.10). By using Macaulay2,
we obtain the rational map ρ : P9 99K P3 such that

[w0 : · · · : w9] 7→ [w0 + w1 + w2 + w3 : −w4 + w5 : −w4 + w6 : w4 + w7 + w8 + w9] .

The restriction ρ|W 9
BS

: W 9
BS 99K P3 is a birational map (one can verify it with

Macaulay2), whose inverse map is the rational map ν : P3 99K W 9
BS ⊂ P9 defined

by the linear system K of the septic surfaces of P3 double along the six edges of the
two trihedra

T : (s0 − 21s1 + 13s2)s0(s0 − 55s1 + 34s2) = 0, T ′ : (s2 + s3)(s1 + s3)s3 = 0,

and containing the nine lines given by the intersection of a face of T and one of T ′.

6.6 BS-EF 3-fold (XIII) of genus 10

In the following we will often refer to the use of Macaulay2: see Code B.5 of Appendix B
for the computational techniques we will use. Let us study the BS-EF 3fold described
in [1, §6.5.1]. Let us consider the smooth Fano threefold X = P1 × S6, where S6

is a smooth sextic Del Pezzo surface. We recall that S6 is the image of P2 via the
rational map defined by the linear system of the plane cubic curves passing through
three fixed points a1, a2, a3 in general position. Up to a change of coordinates, we can
consider a1 = [1 : 0 : 0], a2 = [0 : 1 : 0], a3 = [0 : 0 : 1]. So we have the rational map
λ : P2

[u0:u1:u2] 99K P6
[x0:x1:x2:x3:x4:x5:x6] such that

[u0 : u1 : u2] 7→
[
u2

1u2 : u1u
2
2 : u2

0u2 : u0u
2
2 : u2

0u1 : u0u
2
1 : u0u1u2

]
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and S6 = λ (P2) ⊂ P6. Thanks to Macaulay2 (see also [17, Theorem 8.4.1]), we can say
that S6 has ideal generated by the following polynomials

x3x5 − x2
6, x2x5 − x4x6, x1x5 − x0x6, x3x4 − x2x6, x1x4 − x2

6,

x0x4 − x5x6, x0x3 − x1x6, x0x2 − x3x6, x0x2 − x2
6.

Let us see now how the quadratic transformation qa1,a2,a3 : P2 99K P2, given by the
linear system of conics passing through the three fixed points a1, a2, a3, defines an
involution of S6. By the following diagram

[u0 : u1 : u2]
[

1
u0

: 1
u1

: 1
u2

]
[
u21u2 : u1u

2
2 : u20u2 : u0u

2
2 : u20u1 : u0u

2
1 : u0u1u2

] [
u20u2 : u1u

2
0 : u21u2 : u0u

2
1 : u1u

2
2 : u0u

2
2 : u0u1u2

]
,

qa1,a2,a3

λ λ

we obtain an involution t of P6 given by

[x0 : x1 : x2 : x3 : x4 : x5 : x6] [x2 : x4 : x0 : x5 : x1 : x3 : x6] .t′

The locus of t-fixed points of P6 consists of two projective subspaces

F1 = {x0 + x2 = x1 + x4 = x3 + x5 = x6 = 0} ∼= P2,

F2 = {x0 − x2 = x1 − x4 = x3 − x5 = 0} ∼= P3.

In particular we have F1 ∩ S6 = ∅ and F2 ∩ S6 = {d1, d2, d3, d4}, where

d1 = [1 : 1 : 1 : 1 : 1 : 1 : 1] , d2 = [1 : −1 : 1 : −1 : −1 : −1 : 1] ,

d3 = [−1 : 1 : −1 : −1 : 1 : −1 : 1] , d4 = [−1 : −1 : −1 : 1 : −1 : 1 : 1] .

Then σ2 := t|S6 is an involution of S6 with four fixed points. We also consider the
involution of P1 with two fixed points [0 : 1] and [1 : 0], that is the map σ1 : P1 → P1

such that [y0 : y1] 7→ [y0 : −y1]. Let us take the map σ′ := (σ1× t) : P1×P6 → P1×P6

such that

σ′ : [y0 : y1]× [x0 : x1 : x2 : x3 : x4 : x5 : x6] [y0 : −y1]× [x2 : x4 : x0 : x5 : x1 : x3 : x6] .

We have that σ := σ′|X = (σ1 × σ2) : X → X is an involution with eight fixed points

p1 = [0 : 1]× [1 : 1 : 1 : 1 : 1 : 1 : 1] , p′1 = [1 : 0]× [1 : 1 : 1 : 1 : 1 : 1 : 1] ,

p2 = [0 : 1]×[1 : −1 : 1 : −1 : −1 : −1 : 1] , p′2 = [1 : 0]×[1 : −1 : 1 : −1 : −1 : −1 : 1] ,

p3 = [0 : 1]×[−1 : 1 : −1 : −1 : 1 : −1 : 1] , p′3 = [1 : 0]×[−1 : 1 : −1 : −1 : 1 : −1 : 1] ,

p4 = [0 : 1]×[−1 : −1 : −1 : 1 : −1 : 1 : 1] , p′4 = [1 : 0]×[−1 : −1 : −1 : 1 : −1 : 1 : 1] .

The quotient map π : X → X/σ =: W 10
BS is given by the restriction on X of the

morphism ϕ : P1 × P6 → P10
[w0:···:w10] defined by the σ′-invariant multihomogeneous

polynomials of multidegree (2, 1), i.e. ϕ : [y0 : y1] × [x0 : x1 : x2 : x3 : x4 : x5 : x6] 7→
[w0 : w1 : w2 : w3 : w4 : w5 : w6 : w7 : w8 : w9 : w10] where w0 = y2

0x6, w1 = y2
0(x0 + x2),

w2 = y2
0(x1 + x4), w3 = y2

0(x3 + x5), w4 = y2
1x6, w5 = y2

1(x0 + x2), w6 = y2
1(x1 + x4),

w7 = y2
1(x3 + x5), w8 = y0y1(x0 − x2), w9 = y0y1(x1 − x4), w10 = y0y1(x3 − x5).
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Remark 6.12. Thanks to Macaulay2, one can find that the BS-EF 3-fold W 10
BS has

ideal generated by the following 20 polynomials

w7w8 − 2w4w9 + w5w10, w6w8 − w5w9 + 2w4w10, 2w4w8 − w7w9 + w6w10,
w3w8 − 2w0w9 + w1w10, w2w8 − w1w9 + 2w0w10, 2w0w8 − w3w9 + w2w10,

w3w6 − w2w7, w2w6 − w3w7 − w2
9 + w2

10, w1w6 − 2w0w7 − w8w9,
2w0w6 − w1w7 − w8w10, w3w5 − w1w7, w2w5 − 2w0w7 − w8w9,
w1w5 − w3w7 − w2

8 + w2
10, 2w0w5 − w2w7 + w9w10, w3w4 − w0w7,

2w2w4 − w1w7 − w8w10, 2w1w4 − w2w7 + w9w10, 4w0w4 − w3w7 + w2
10,

4w3
4 − w4w

2
5 − w4w

2
6 + w5w6w7 − w4w

2
7, 4w3

0 − w0w
2
1 − w0w

2
2 + w1w2w3 − w0w

2
3.

Then the ideal of W 10
BS is generated by quadrics and cubics. Since W 10

BS is projectively
normal in P10 (see § 3.3), then the ideal of its general hyperplane section S ⊂ P9 is
generated by quadrics and cubics. This is consistent with the fact that the φ of a
general hyperplane section of S is 3 < 4 (see [35, Theorem 1.1 (ii)]), as we will see in
the proof of Theorem 9.2.

Remark 6.13. Let us consider the eight singular points of W 10
BS. They are

P1 = π(p1) = [0 : 0 : 0 : 0 : 1 : 2 : 2 : 2 : 0 : 0 : 0] ,

P2 = π(p2) = [0 : 0 : 0 : 0 : 1 : 2 : −2 : −2 : 0 : 0 : 0] ,

P3 = π(p3) = [0 : 0 : 0 : 0 : 1 : −2 : 2 : −2 : 0 : 0 : 0] ,

P4 = π(p4) = [0 : 0 : 0 : 0 : 1 : −2 : −2 : 2 : 0 : 0 : 0] ,

P ′1 = π(p′1) = [1 : 2 : 2 : 2 : 0 : 0 : 0 : 0 : 0 : 0 : 0] ,

P ′2 = π(p′2) = [1 : 2 : −2 : −2 : 0 : 0 : 0 : 0 : 0 : 0 : 0] ,

P ′3 = π(p′3) = [1 : −2 : 2 : −2 : 0 : 0 : 0 : 0 : 0 : 0 : 0] ,

P ′4 = π(p′4) = [1 : −2 : −2 : 2 : 0 : 0 : 0 : 0 : 0 : 0 : 0] .

Let li,j be the line joining Pi and Pj for i, j ∈ {1, 2, 3, 4, 1′, 2′, 3′, 4′} and i 6= j, i.e.
l12 = {w0 = w1 = w2 = w3 = 0, 2w4 = w5, w6 = w7, w8 = w9 = w10 = 0},
l13 = {w0 = w1 = w2 = w3 = 0, 2w4 = w6, w5 = w7, w8 = w9 = w10 = 0},
l14 = {w0 = w1 = w2 = w3 = 0, 2w4 = w7, w5 = w6, w8 = w9 = w10 = 0},
l11′ = {2w0 = w1 = w2 = w3, 2w4 = w5 = w6 = w7, w8 = w9 = w10 = 0},
l12′ = {−2w0 = −w1 = w2 = w3, 2w4 = w5 = w6 = w7, w8 = w9 = w10 = 0},
l13′ = {−2w0 = w1 = −w2 = w3, 2w4 = w5 = w6 = w7, w8 = w9 = w10 = 0}
l14′ = {2w0 = −w1 = −w2 = w3, 2w4 = w5 = w6 = w7, w8 = w9 = w10 = 0},
l23 = {w0 = w1 = w2 = w3 = 0, −2w4 = w7,−w5 = w6, w8 = w9 = w10 = 0},
l24 = {w0 = w1 = w2 = w3 = 0, −2w4 = w6,−w5 = w7, w8 = w9 = w10 = 0},
l21′ = {2w0 = w1 = w2 = w3, −2w4 = −w5 = w6 = w7, w8 = w9 = w10 = 0},
l22′ = {−2w0 = −w1 = w2 = w3, −2w4 = −w5 = w6 = w7, w8 = w9 = w10 = 0},
l23′ = {−2w0 = w1 = −w2 = w3, −2w4 = −w5 = w6 = w7, w8 = w9 = w10 = 0},
l24′ = {2w0 = −w1 = −w2 = w3, −2w4 = −w5 = w6 = w7, w8 = w9 = w10 = 0},
l34 = {w0 = w1 = w2 = w3 = 0, −2w4 = w5, −w6 = w7, w8 = w9 = w10 = 0},
l31′ = {2w0 = w1 = w2 = w3, −2w4 = w5 = −w6 = w7, w8 = w9 = w10 = 0},
l32′ = {−2w0 = −w1 = w2 = w3, −2w4 = w5 = −w6 = w7, w8 = w9 = w10 = 0},
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l33′ = {−2w0 = w1 = −w2 = w3, −2w4 = w5 = −w6 = w7, w8 = w9 = w10 = 0},
l34′ = {2w0 = −w1 = −w2 = w3, −2w4 = w5 = −w6 = w7, w8 = w9 = w10 = 0},
l41′ = {2w0 = w1 = w2 = w3, 2w4 = −w5 = −w6 = w7, w8 = w9 = w10 = 0},
l42′ = {−2w0 = −w1 = w2 = w3, 2w4 = −w5 = −w6 = w7, w8 = w9 = w10 = 0},
l43′ = {−2w0 = w1 = −w2 = w3, 2w4 = −w5 = −w6 = w7, w8 = w9 = w10 = 0},
l44′ = {2w0 = −w1 = −w2 = w3, 2w4 = −w5 = −w6 = w7, w8 = w9 = w10 = 0},
l1′2′ = {2w0 = w1, w2 = w3, w4 = w5 = w6 = w7 = w8 = w9 = w10 = 0},
l1′3′ = {2w0 = w2, w1 = w3, w4 = w5 = w6 = w7 = w8 = w9 = w10 = 0},
l1′4′ = {2w0 = w3, w1 = w2, w4 = w5 = w6 = w7 = w8 = w9 = w10 = 0},
l2′3′ = {−2w0 = w3, −w1 = w2, w4 = w5 = w6 = w7 = w8 = w9 = w10 = 0},
l2′4′ = {−2w0 = w2, −w1 = w3, w4 = w5 = w6 = w7 = w8 = w9 = w10 = 0},
l3′4′ = {−2w0 = w1, −w2 = w3, w4 = w5 = w6 = w7 = w8 = w9 = w10 = 0}.
By Remark 6.12 we have that W 10

BS contains the lines l1,2, l1,3, l1,4, l1,1′ , l2,3, l2,4,
l2,2′ , l3,4, l3,3′ , l4,4′ , l1′,2′ , l1′,3′ , l1′,4′ , l2′,3′ , l2′,4′ , l3′,4′ , while it does not contain the others.
So each one of the eight singular points of W 10

BS is associated with m = 4 of the
other singular points, as in Figure 25 of Appendix A. Hence there exist three mutually
associated points (for example P1, P2 and P3). This case had been excluded by Fano
for p > 7, as we said in Remark 4.7 (iv). So this suggests that in Fano’s paper there
are other gaps to be discovered.

Theorem 6.14. Let T ⊂ P3 be a tetrahedron with faces fi and edges lij := fi ∩ fj for
0 ≤ i < j ≤ 3. Let vi be the vertex opposite to the face fi, for 0 ≤ i ≤ 3. Let π be a
plane through the vertex v0, which intersects the face fi along a line ri, for 1 ≤ i ≤ 3,
and let us define the point qi := ri ∩ l0i (see Figure 12). Then W 10

BS can be obtained as
the image of P3 via the rational map νM : P3 99K P10 defined by the linear system M
of the sextic surfaces quadruple at the vertex v0, triple at the other three vertices v1,
v2, v3, and double along the three lines r1, r2, r3. Furthemore a general M ∈ M also
contains the six edges of T .

Proof. Let us project P10 from the P6 spanned by the singular points P1, P2, P3, P4,
P ′1, P ′2, P ′3 of W 10

BS (see Remark 6.13). By using Macaulay2, we obtain the rational map

ρ : P10 99K P3, [w0 : · · · : w13] 7→ [−2w0 + w1 + w2 − w3 : w8 : w9 : w10] .

Thanks to Macaulay2, we see that the restriction ρ|W 10
BS

: W 10
BS 99K P3 is birational.

We can also compute its inverse map, which is given by the rational map ν : P3 99K
W 10
BS ⊂ P10, such that [s0 : s1 : s2 : s3] 7→ [w0 : · · · : w10] , where

w0 = s4
1s2s3+s

3
1s

2
2s3−s2

1s
3
2s3−s1s

4
2s3+s

3
1s2s

2
3+2s2

1s
2
2s

2
3+s1s

3
2s

2
3−s2

1s2s
3
3+s1s

2
2s

3
3−s1s2s

4
3,

w1 = s2
0s

2
1s2s3 − s2

0s1s
2
2s3 − s2

0s1s2s
2
3,

w2 = s5
1s3 − s3

1s
2
2s3 + s2

1s
3
2s3 − s5

2s3 + s4
1s

2
3 + s3

1s2s
2
3 + s1s

3
2s

2
3 + s4

2s
2
3 − 2s3

1s
3
3 + s2

1s2s
3
3 −

s1s
2
2s

3
3 + 2s3

2s
3
3 − 2s2

1s
4
3 − s1s2s

4
3 − 2s2

2s
4
3 + s1s

5
3 − s2s

5
3 + s6

3,

w3 = s0s
4
1s3 − 2s0s

2
1s

2
2s3 + s0s

4
2s3 − 2s0s

2
1s

3
3 − 2s0s

2
2s

3
3 + s0s

5
3,
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Figure 12: Base locus of the linear system M.
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0s
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1s
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0s
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3 + s2

0s
4
3.

By using Macaulay2, we can study the base locus of ν. We find that ν is the rational
map defined by the linear system of the sextic surfaces of P3

(i) containing the six edges l23 = {s1 = 0, s2 − s3 = 0}, l13 = {s3 = 0, s1 + s2 = 0},
l12 = {s2 = 0, s1 + s3 = 0}, l01 = {s0 = 0, s1 + s2 + s3 = 0}, l03 = {s0 =
0, s1 − s2 + s3 = 0} and l02 = {s0 = 0, s1 + s2 − s3 = 0} of the tetrahedron T
with faces f0 = {s0 = 0}, f1 = {s1 + s2 + s3 = 0}, f2 = {s1 − s2 + s3 = 0} and
f3 = {s1 + s2 − s3 = 0};

(ii) double along the three lines r1 = {s1 = 0, s2 + s3 = 0}, r2 = {s3 = 0, s1− s2 = 0}
and r3 = {s2 = 0, s1 − s3 = 0} contained in the plane π = {s1 − s2 − s3 = 0},

84



and obviously double at the points q1 := l′1 ∩ r1 = [0 : 0 : −1 : 1], q2 := l′2 ∩ r2 =
[0 : 1 : 1 : 0], q3 := l′3 ∩ r3 = [0 : 1 : 0 : 1] ;

(iii) triple at the vertices v1 = [0 : 0 : 1 : 1], v2 = [0 : 1 : −1 : 0], v3 = [0 : 1 : 0 : −1];

(iv) and quadruple at the vertex v0 = [1 : 0 : 0 : 0] .

It would be interesting to verify if (the desingularization of) a general M ∈ M is
actually an Enriques surface.

6.7 BS-EF 3-fold (XIV) of genus 13

In the following we will often refer to the use of Macaulay2: see Code B.6 of Appendix B
for the computational techniques we will use. Let us study the BS-EF 3fold described
in [1, §6.3.2]. Let us consider the smooth Fano threefold X = P1 × P1 × P1 and the
involution σ : X → X such that

[x0 : x1]× [y0 : y1]× [z0 : z1] 7→ [x0 : −x1]× [y0 : −y1]× [z0 : −z1] .

This involution has the following eight fixed points

p′1 = [0 : 1]× [1 : 0]× [1 : 0] , p1 = [1 : 0]× [0 : 1]× [0 : 1] ,

p′2 = [0 : 1]× [0 : 1]× [0 : 1] , p2 = [1 : 0]× [1 : 0]× [1 : 0] ,

p3 = [0 : 1]× [1 : 0]× [0 : 1] , p′3 = [1 : 0]× [0 : 1]× [1 : 0] ,

p4 = [0 : 1]× [0 : 1]× [1 : 0] , p′4 = [1 : 0]× [1 : 0]× [0 : 1] .

The σ-invariant multihomogeneous polynomials of multidegree (2, 2, 2) define the co-
ordinates of the quotient map π : X → X/σ =: W 13

BS ⊂ P13, i.e.

[x0 : x1]× [y0 : y1]× [z0 : z1]

[w0 : w1 : w2 : w3 : w4 : w5 : w6 : w7 : w8 : w9 : w10 : w11 : w12 : w13]

π

where w0 = x2
0y

2
0z

2
0 , w1 = x2

0y
2
0z

2
1 , w2 = x2

0y0y1z0z1, w3 = x2
0y

2
1z

2
0 , w4 = x2

0y
2
1z

2
1 ,

w5 = x0x1y
2
0z0z1, w6 = x0x1y0y1z

2
0 , w7 = x0x1y0y1z

2
1 , w8 = x0x1y

2
1z0z1, w9 = x2

1y
2
0z

2
0 ,

w10 = x2
1y

2
0z

2
1 , w11 = x2

1y0y1z0z1, w12 = x2
1y

2
1z

2
0 , w13 = x2

1y
2
1z

2
1 .

Remark 6.15. Thanks to Macaulay2, we find that the Enriques-Fano threefold W 13
BS

has ideal generated by the following 42 polynomials

w10w12 − w9w13, w7w12 − w6w13, w4w12 − w3w13, w1w12 − w0w13,
w2

11 − w9w13, w8w11 − w6w13, w7w11 − w5w13, w6w11 − w5w12,
w4w11 − w2w13, w3w11 − w2w12, w2w11 − w0w13, w8w10 − w5w13,
w6w10 − w5w11, w4w10 − w1w13, w3w10 − w0w13, w2w10 − w1w11,
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w8w9 − w5w12, w7w9 − w5w11, w4w9 − w0w13, w3w9 − w0w12,
w2w9 − w0w11, w1w9 − w0w10, w2

8 − w3w13, w7w8 − w2w13,
w6w8 − w2w12, w5w8 − w0w13, w2

7 − w1w13, w6w7 − w0w13,
w5w7 − w1w11, w3w7 − w2w8, w2w7 − w1w8, w2

6 − w0w12,
w5w6 − w0w11, w4w6 − w2w8, w2w6 − w0w8, w1w6 − w0w7,
w2

5 − w0w10, w4w5 − w1w8, w3w5 − w0w8, w2w5 − w0w7,
w1w3 − w0w4, w2

2 − w0w4.

Thus the ideal of W 13
BS is generated by quadrics. Since W 13

BS is projectively normal in
P13 (see § 3.3), then the ideal of its general hyperplane section S ⊂ P12 is generated
by quadrics too. This is consistent with the fact that the φ of a general hyperplane
section of S is 4 (see [35, Theorem 1.1 (ii)]), as we will see in the proof of Theorem 9.2.

Remark 6.16. The above threefold W 13
BS has the following eight singular points

P1 = π(p1) = [0 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0] ,

P2 = π(p2) = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0] ,

P3 = π(p3) = [0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0] ,

P4 = π(p4) = [0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0] ,

P ′1 = π(p′1) = [0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0] ,

P ′2 = π(p′2) = [0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1] ,

P ′3 = π(p′3) = [0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0] ,

P ′4 = π(p′4) = [0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0] .

Let li,j be the line joining Pi and Pj with i, j ∈ {1, 2, 3, 4, 1′, 2′, 3′, 4′} and i 6= j. Then
we have l1,2 = {wi = 0|i 6= 0, 4}, l1,3 = {wi = 0|i 6= 4, 10}, l1,4 = {wi = 0|i 6= 4, 12},
l1,1′ = {wi = 0|i 6= 4, 9}, l1,2′ = {wi = 0|i 6= 4, 13}, l1,3′ = {wi = 0|i 6= 3, 4},
l1,4′ = {wi = 0|i 6= 1, 4}, l2,3 = {wi = 0|i 6= 0, 10}, l2,4 = {wi = 0|i 6= 0, 12},
l2,1′ = {wi = 0|i 6= 0, 9}, l2,2′ = {wi = 0|i 6= 0, 13}, l2,3′ = {wi = 0|i 6= 0, 3},
l2,4′ = {wi = 0|i 6= 0, 1}, l3,4 = {wi = 0|i 6= 10, 12}, l3,1′ = {wi = 0|i 6= 9, 10},
l3,2′ = {wi = 0|i 6= 10, 13}, l3,3′ = {wi = 0|i 6= 3, 10}, l3,4′ = {wi = 0|i 6= 1, 10},
l4,1′ = {wi = 0|i 6= 9, 12}, l4,2′ = {wi = 0|i 6= 12, 13}, l4,3′ = {wi = 0|i 6= 3, 13},
l4,4′ = {wi = 0|i 6= 1, 12}, l1′,2′ = {wi = 0|i 6= 9, 13}, l1′,3′ = {wi = 0|i 6= 3, 9},
l1′,4′ = {wi = 0|i 6= 1, 9}, l2′,3′ = {wi = 0|i 6= 2, 3}, l2′,4′ = {wi = 0|i 6= 1, 2},
l3′,4′ = {wi = 0|i 6= 1, 3}. By Remark 6.15 we see that W 13

BS contains the lines l1,2′ , l1,3′ ,
l1,4′ , l2,1′ , l2,3′ , l2,4′ , l3,1′ , l3,2′ , l3,4′ , l4,1′ , l4,2′ , l4,3′ , while it does not contain the others.
So each one of the eight singular points of W 13

BS is associated with m = 3 of the other
singular points, as in Figure 26 of Appendix A. This is the same configuration of the
singularities of the F-EF 3-fold W 13

F .

Theorem 6.17. The embedding of the BS-EF 3-fold W 13
BS in P13 is the F-EF 3-fold

W 13
F ⊂ P13
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Proof. Let us project P13 from the P7 spanned by the eight singular points of W 13
BS

(see Remark 6.16). So we obtain the rational map ρ : P13 99K P5 s.t. [w0 : · · · : w13] 7→
[w2 : w5 : w6 : w7 : w8 : w11] . Thanks to Macaylay2 we verify that the restriction map
ρ|W 13

BS
: W 13

BS 99K P5 is birational onto the image, which is a quartic threefold T 4
3 ⊂ P5

given by the complete intersection of two quadric hypersurfaces of P5
[t0:t1:t2:t3:t4:t5]

Q1 : t1t4 − t0t5 = 0, Q2 : t2t3 − t0t5 = 0.

Such a threefold T 4
3 is birational to P3 via the rational map

q : P3 99K T 4
3 ⊂ P5, [s0 : s1 : s2 : s3] 7→ [s0s1 : s1s2 : s1s3 : s0s2 : s0s3 : s2s3] ,

defined by the linear system of the quadric surfaces passing through the four vertices
of the tetrahedron {s0s1s2s3 = 0}. By using Macaulay2 we can take the inverse map
of q, which is q−1 : T 4

3 ⊂ P5 99K P3 s.t. [t0 : t1 : t2 : t3 : t4 : t5] 7→ [t3t4 : t0t5 : t3t5 : t4t5] .
So we can construct the birational map (q−1 ◦ ρ|W 13

BS
) : W 13

BS ⊂ P13 99K P3 s. t.
[w0 : · · · : w13] 7→ [w7w8 : w2w11 : w7w11 : w8w11] . Thanks to Macaulay2, we can com-
pute again its inverse map, which is given by ν : P3 99K W 13

BS ⊂ P13 s.t. [s0 : s1 : s2 : s3] 7→
[w0 : · · · : w13] , where w0 = s0s

3
1s2s3, w1 = s2

0s
2
1s

2
2, w2 = s2

0s
2
1s2s3, w3 = s2

0s
2
1s

2
3, w4 =

s3
0s1s2s3, w5 = s0s

2
1s

2
2s3, w6 = s0s

2
1s2s

2
3, w7 = s2

0s1s
2
2s3, w8 = s2

0s1s2s
2
3, w9 = s2

1s
2
2s

2
3,

w10 = s0s1s
3
2s3, w11 = s0s1s

2
2s

2
3, w12 = s0s1s2s

3
3, w13 = s2

0s
2
2s

2
3. We observe that ν is the

rational map defined by the linear system S of the sextic surfaces of P3 double along
the six edges of the tetrahedron {s0s1s2s3 = 0}.

7 Singularities of the KLM-EF 3-fold

7.1 Abstract

We recall that the KLM-EF 3-fold W 9
KLM ⊂ P9 is an Enriques-Fano threefold given by

the projection of the classical Enriques-Fano threefold W 13
F ⊂ P13 from the P3 spanned

by a certain curve E3 ⊂ W 13
F (see [36, §13]). We will computationally analyze the

KLM-EF 3-fold and we will find that its ideal in P9 is generated by quadrics and
cubics. We will also study the image of the eight quadruple points of W 13

F via the
above projection map. We will find that they are five singular points of W 9

KLM such
that four of them are quadruple points, whose tangent cone is a cone over a Veronese
surface (see Proposition 7.4), and the last one is a sextuple point, whose tangent cone
is a cone over the union of four planes and a quadric surface (see Theorem 7.5). These
five points are so non-similar singular points of W 9

KLM and we will see that they have
the configuration in Figure 28 of Appendix A.

7.2 Construction of the KLM-EF 3-fold (XV)

Let us see how to construct the KLM-EF 3-fold W 9
KLM . First we consider the F-EF

3-fold W 13
F , which is the image of P3 via the rational map νS : P3 99K P13 defined by

the linear system S of the sextic surfaces double along the six edges of a tetrahedron
T . We need to recall some details. We will use the notations of § 5.2. Let T ⊂ P3 be
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the tetrahedron of Figure 2, with faces fi, vertices vi and edges lij = fi ∩ fj = 〈vk, vh〉,
for distinct indices i, j, k, h ∈ {0, 1, 2, 3} with i < j. In the following we will denote by
lij the edge fi ∩ fj even if i > j, by abuse of notation. Let us take the smooth rational
threefold Y obtained by blowing-up first the vertices of T , then the strict transforms of
the edges of T and finally certain (twelve) disjoint curves (see proof of Theorem 5.4).

We have that an element Σ ∈ S is isomorphic to a divisor Σ̃ on Y which is linearly
equivalent to 6H−

∑3
i=0 3Ek−

∑
0≤i<j≤3 2Fij−

∑2
i,j=0
i 6=j

4Γij. Hence W 13
F = νS̃(Y ) ⊂ P13,

where νS̃ : Y → P13 is the morphism defined by the linear system S̃ := |OY (Σ̃)|.

Proposition 7.1. Let Σ̃ be a general element of S̃. Then we have that

(2H−Fik−Fih−Fjk−Fjh−2Γkh−2Γhk−2Γij−2Γji−Γki−Γhi−Γkj−Γhj−Γik−Γih−Γjk−Γjh)|Σ̃

∼ 2(Fij + Γki + Γhi + Γkj + Γhj)|Σ̃ for distinct indices i, j, k, h ∈ {0, 1, 2, 3}.

Proof. Let us take the reducible quadric surface Qij := fi∪fj of P3 given by the union of
two faces of T . This surface contains doubly the common line lij of the two faces, simply

the edges lik, lih, ljk and ljh and does not contain the edge lkh. Its strict transform Q̃ij

on Y is linearly equivalent to 2H−2Ek−2Eh−Ei−Ej−2Fij−Fik−Fih−Fjk−Fjh−3Γki−
3Γhi−3Γkj−3Γhj−2Γkh−2Γhk−2Γij−2Γji−Γik−Γih−Γjk−Γjh. We recall that Ei·Σ̃ = 0

for all i. So we obtain that KΣ̃ = (KY + Σ̃)|Σ̃ ∼ (2H−
∑

0≤i<j≤3Fij −
∑3

i,j=0
i 6=j

Γij)|Σ̃ ∼

(Q̃ij +Fij −Fkh + 2Γki + 2Γhi + 2Γkj + 2Γhj + Γkh + Γhk + Γij + Γji)|Σ̃. Since Qij|Σ̃ ∼ 0,
then we have KΣ̃ +(Fij+Fkh−Γkh−Γhk−Γij−Γji)|Σ̃ ∼ 2(Fij+Γki+Γhi+Γkj+Γhj)|Σ̃
and so the expression of the statement.

Let us fix now a general Σ ∈ S and its strict transform Σ̃ on Y . Let i, j, k, h be four
distinct indices in {0, 1, 2, 3} with i < j and k < h. The curve Fij ∩ Σ̃ intersects each

of the four curves Γki ∩ Σ̃, Γhi ∩ Σ̃, Γkj ∩ Σ̃ and Γhj ∩ Σ̃ at one point (use Remark 5.9).
We recall that these four curves are contracted by νS̃ : Y → W 13

F ⊂ P13 to points

of νS̃(Σ̃) (see Remark 5.13). Let us define λij := (Fij ∪ Γki ∪ Γhi ∪ Γkj ∪ Γhj) ∩ Σ̃.

Then |OΣ̃(2λij)| is an elliptic pencil on Σ̃. Indeed |OΣ̃(2λij)| is isomorphic to the linear
system cut out on Σ by the quadric surfaces of P3 containing the lines lik, lih, ljk, ljh (see
Proposition 7.1), which is an elliptic pencil on Σ (see [27, p. 634]). By Proposition 7.1
we also have that

S̃|Σ̃ = |OΣ̃(6H−
∑

0≤i<j≤3

2Fij −
3∑

i,j=0
i 6=j

4Γij)| = |OΣ̃(2λ12 + 2λ13 + 2λ23)|.

The linear system S̃|Σ̃ defines the morphism νS̃ |Σ̃ : Σ̃ → P12, whose image S :=

νS̃(Σ̃) ⊂ P12 is a hyperplane section of W 13
F ⊂ P13. Hence there exists a hyperplane

H ∼= P12 in P13 such that S = W 13
F ∩ H. Let us define the curves E1 := νS̃(λ12),

E2 := νS̃(λ13), E3 := νS̃(λ23), E ′1 := νS̃(λ03), E ′2 := νS̃(λ02), E ′3 := νS̃(λ01) ⊂ S.
They are smooth irreducible elliptic quartic curves such that E2

i = 0, Ei · E ′i = 0,
Ei · Ej = Ei · E ′j = E ′i · Ej = 1 for 1 ≤ i < j ≤ 3 (use Remarks 5.9, 5.11, 5.14).
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If ρ〈E3〉 : P13 99K P9 is the projection of P13 from the three-dimensional linear space
〈E3〉 ∼= P3 spanned by E3, then W 9

KLM := ρ〈E3〉(W
13
F ) ⊂ P9 is an Enriques-Fano

threefold of genus p = 9 (see [36, §13]).

Remark 7.2. For the construction of W 9
KLM , we have fixed a general sextic Σ ∈ S. The

hyperplane sections of W 9
KLM correspond to the hyperplane sections of W 13

F containing
E3, which are images via νS of the sextic surfaces R of S which are tangent to Σ along
the two branches of Σ intersecting at l23. Then W 9

KLM is the image of P3 via the
rational map defined by the sublinear system R ⊂ S of these sextic surfaces R.

7.3 Computational analysis of the KLM-EF 3-fold

In the following we will often refer to the use of Macaulay2: see Code B.8 of Appendix B
for the computational techniques we will use. Up to a change of coordinates, we can
take the tetrahedron T := {s0s1s2s3 = 0} ⊂ P3

[s0:···:s3] with faces fi := {si = 0} and

edges lij = {si = sj = 0} for 0 ≤ i < j ≤ 3. Then S defines the rational map

νS : P3 99K W 13
F ⊂ P13, [s0 : s1 : s2 : s3] 7→ [w0 : · · · : w13] ,

where w0 = s0s
3
1s2s3, w1 = s2

0s
2
1s

2
2, w2 = s2

0s
2
1s2s3, w3 = s2

0s
2
1s

2
3, w4 = s3

0s1s2s3, w5 =
s0s

2
1s

2
2s3, w6 = s0s

2
1s2s

2
3, w7 = s2

0s1s
2
2s3, w8 = s2

0s1s2s
2
3, w9 = s2

1s
2
2s

2
3, w10 = s0s1s

3
2s3,

w11 = s0s1s
2
2s

2
3, w12 = s0s1s2s

3
3, w13 = s2

0s
2
2s

2
3. By Theorem 6.17 the ideal of W 13

F is
the one in Remark 6.15. Furthemore W 13

F has eight singular points P1, P2, P3, P4, P ′1,
P ′2, P ′3, P ′4 with coordinates as in Remark 6.16 and configuration as in Figure 26 of
Appendix A. Let us take S = W 13

F ∩ H, where H is a general hyperplane in P13 not
passing through P1, P2, P3, P4, P ′1, P ′2, P ′3, P ′4, and so defined by

a0w0 + a1w1 + a2w2 + a3w3 + a4w4 + a5w5 + a6w6+

+a7w7 + a8w8 + a9w9 + a10w10 + a11w11 + a12w12 + a13w13 = 0,

where a0, a1, a3, a4, a9, a10, a12, a13 ∈ C are not equal to zero. Let us consider a0 = 1
and let Σ be the corresponding element of S such that νS(Σ) = S. The hyperplane
sections of W 13

F containing νS̃(F23) correspond to the divisors on Y linearly equivalent

to 6H− 3
∑3

i=0 Ei − 3F23 −
∑

0≤i<j≤3
(i,j) 6=(2,3)

2Fij −
∑3

i,j=0
i 6=j

4Γij. Since

〈
νS̃(F23)

〉
= {w5 = w6 = w7 = w8 = w9 = w10 = w11 = w12 = w13 = 0} ∼= P4,

then we have 〈E3〉 = H ∩
〈
νS̃(F23)

〉 ∼= P3 and so E3 = S ∩ 〈E3〉, which is defined by
the equations

w0 + a1w1 + a2w2 + a3w3 + a4w4 = 0,
w5 = w6 = w7 = w8 = w9 = w10 = w11 = w12 = w13 = 0,

w1w3 + a1w1w4 + a2w2w4 + a3w3w4 + a4w
2
4 = 0,

w2
2 + a1w1w4 + a2w2w4 + a3w3w4 + a4w

2
4 = 0.
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Since E3 is the complete intersection of two quadric surfaces of 〈E3〉 ∼= P3, it is a
quartic elliptic curve. By using Macaulay2 and by considering the following projection
map

P13 [w0 : w1 : w2 : w3 : w4 : w5 : w6 : w7 : w8 : w9 : w10 : w11 : w12 : w13]

P9 [w0 + a1w1 + a2w2 + a3w3 + a4w4 : w5 : w6 : w7 : w8 : w9 : w10 : w11 : w12 : w13]

ρ〈E3〉

we can compute W 9
KLM = ρ〈E3〉(W

13
F ) ⊂ P9

[z0:z1:z2:z3:z4:z5:z6:z7:z8:z9], which has ideal gener-
ated by the following 16 polynomials

z6z8 − z5z9, z3z8 − z2z9, z2
7 − z5z9, z4z7 − z2z9, z3z7 − z1z9, z2z7 − z1z8,

z4z6 − z1z9, z2z6 − z1z7, z4z5 − z1z8, z3z5 − z1z7, z2z3 − z1z4,

z1z2 + a1z1z3 + a2z1z4 + a3z2z4 + a4z3z4 − z0z7,

z2
2z9 + a1z1z4z9 + a2z2z4z9 + a3z

2
4z8 + a4z

2
4z9 − z0z8z9,

z2
1z9 + a1z

2
3z6 + a2z1z3z9 + a3z1z4z9 + a4z

2
3z9 − z0z6z9,

z2
2z5 + a3z

2
2z8 − a2a3z2z4z8 − z0z5z8 + a2z0z7z8 − a2

1z
2
1z9 + (a4 − a2

2 − a1a3)z2
2z9 +

+2a2
1a2z1z3z9 + a1(2a2

2 − a4)z1z4z9 + (2a1a2a3 − a2a4)z2z4z9 + 2a1a2a4z3z4z9 +
+a1z0z5z9 − a1a2z0z7z9,

z2
1z5 + a1z

2
1z6 − z0z5z6 + a2z

2
1z7 + (a4 − a1a2)z2

1z9 − a2
3z

2
2z9 + a1a2a3z1z3z9 − a3(a4 −

a2
2)z1z4z9 + a2a

2
3z2z4z9 + a2a3a4z3z4z9 + a3z0z5z9 − a2a3z0z7z9.

Remark 7.3. The ideal of W 9
KLM is generated by quadrics and cubics. Since W 9

KLM

is projectively normal in P9 (see § 3.3), then the ideal of its general hyperplane section
SKLM ⊂ P8 is generated by quadrics and cubics too. It is consistent with the fact that
the φ of a general hyperplane section of SKLM is 3 < 4 (see [35, Theorem 1.1 (ii)]), as
we will see in the proof of Theorem 9.2.

Let us take the images of the eight quadruple points of W 13
F , by denoting them, by

abuse of notation, in the following way

P1 := ρ〈E3〉(P
′
1) = [0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0] ,

P2 := ρ〈E3〉(P
′
2) = [0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1] ,

P3 := ρ〈E3〉(P3) = [0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0] ,

P4 := ρ〈E3〉(P4) = [0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0] ,

P5 := ρ〈E3〉(P1) = ρ〈E3〉(P2) = ρ〈E3〉(P
′
3) = ρ〈E3〉(P

′
4) = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0] .
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Proposition 7.4. If i = 1, 2, 3, 4, the tangent cone TCPiW
9
KLM to W 9

KLM at the point
Pi is a cone over a Veronese surface.

Proof. Each point Pi, i = 1, 2, 3, 4, can be viewed as the origin of the open affine set
Uj(i) = {zj(i) 6= 0}, where j(1) = 5, j(2) = 9, j(3) = 6, j(4) = 8. The ideal of the
tangent cone TCPi(W

9
KLM ∩ Uj(i)) is generated by the minimal degree homogeneous

parts of all the polynomials in the ideal of W 9
KLM ∩ Uj(i). Thanks to Macaulay2, we

obtain the following tangent cones.

TCP1(W
9
KLM ∩ U5) has ideal generated by

z9, z4, z3, z
2
7 − z6z8, z2z7 − z1z8, z2z6 − z1z7, z

2
2 − z0z8, z1z2 − z0z7, z

2
1 − z0z6

Hence TCP1W
9
KLM is a cone with vertex P1 over a Veronese surface in the P5 given

by {zi = 0|i = 3, 4, 5, 9}.

TCP2(W
9
KLM ∩ U9) has ideal generated by

z5, z2, z1, z
2
7 − z6z8, z4z7− z3z8, z4z6− z3z7, a4z

2
4 − z0z8, a4z3z4− z0z7, a4z

2
3 − z0z6.

Hence TCP2W
9
KLM is a cone with vertex P2 over a Veronese surface in the P5 given

by {zi = 0|i = 1, 2, 5, 9}.

TCP3(W
9
KLM ∩ U6) has ideal generated by

z8, z4, z2, z
2
7 − z5z9, z3z7− z1z9, z3z5− z1z7, a1z

2
3 − z0z9, a1z1z3− z0z7, a1z

2
1 − z0z5.

Hence TCP3W
9
KLM is a cone with vertex P3 over a Veronese surface in the P5 given

by {zi = 0|i = 2, 4, 6, 8}.

TCP4(W
9
KLM ∩ U8) has ideal generated by

z6, z3, z1, z
2
7 − z5z9, z4z7− z2z9, z4z5− z2z7, a3z

2
4 − z0z9, a3z2z4− z0z7, a3z

2
2 − z0z5.

Hence TCP4W
9
KLM is a cone with vertex P4 over a Veronese surface in the P5 given

by {zi = 0|i = 1, 3, 6, 8}.

Theorem 7.5. The tangent cone TCP5W
9
KLM to W 9

KLM at the point P5 is a cone over
a reducible sextic surface M6 ⊂ P7 ⊂ P9, which is given by the union of four planes π1,
π2, π′1, π′2 and a quadric surface Q ⊂ P3 ⊂ P7. In particular each one of the planes π1,
π2, π′1, π′2 intersects the quadric surface Q respectively along a line l1, l2, l′1, l′2, where
l1 is disjoint from l′1, and l2 is disjoint from l′2. In the other cases the intersections of
two of these lines identify four points on Q, which are q1,2 := l1 ∩ l2, q1,2′ := l1 ∩ l′2,
q1′,2 := l′1 ∩ l2, q1′,2′ := l′1 ∩ l′2.

Proof. The point P5 can be viewed as the origin of the open affine set U0 = {z0 6=
0}. The ideal of the tangent cone TCP5(W

9
KLM ∩ U0) is generated by the minimal

degree homogeneous parts of all the polynomials in the ideal of W 9
KLM ∩ U0. By using

Macaulay2 one can find that TCP5(W
9
KLM ∩ U0) has ideal generated by the following

polynomials

z7, z8z9, z6z9, z5z9, z2z9, z1z9, z6z8, z5z8, z3z8, z1z8, z5z6, z4z6, z2z6, z4z5, z3z5,

z2z3 − z1z4.
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Figure 13: The reducible sextic surface M6 ⊂ P7 given by the union of four planes π1, π2, π′1,
π′2 and a quadric surface Q ⊂ P3 ⊂ P7, which intersect as in the statement of Theorem 7.5.

Hence TCP5W
9
KLM is a cone with vertex P5 over a surface M6 contained in the P7

given by {zi = 0|i = 0, 7}. The surface M6 is the union of four planes π1, π2, π
′
1, π

′
2 and

a quadric surface Q, where

π1 := {zi = 0|i = 0, 1, 2, 5, 6, 7, 8}, π2 := {zi = 0|i = 0, 1, 3, 5, 6, 7, 9},
π′1 := {zi = 0|i = 0, 3, 4, 6, 7, 8, 9}, π′2 := {zi = 0|i = 0, 2, 4, 5, 7, 8, 9},

Q := {zi = 0|i = 0, 5, 6, 7, 8, 9} ∩ {z2z3 − z1z4 = 0}.

We give an idea of M6 in Figure 13.

Remark 7.6. The point P5 is a canonical non-terminal singularity of W 9
KLM (see

Remark 8.15). This is consistent with [36, Proposition 12.1(b)].

Remark 7.7. Since P1, P2, P3, P4, P5 are singular points of W 9
KLM , let us see their

configuration. Let li,j be the line joining the singular points Pi and Pj for 1 ≤ i < j ≤ 5.
Then we have l1,2 = {zi = 0|i 6= 5, 9}, l1,3 = {zi = 0|i 6= 5, 6}, l1,4 = {zi = 0|i 6= 5, 8},
l1,5 = {zi = 0|i 6= 0, 5}, l2,3 = {zi = 0|i 6= 6, 9}, l2,4 = {zi = 0|i 6= 8, 9}, l2,5 = {zi =
0|i 6= 0, 9}, l3,4 = {zi = 0|i 6= 6, 8}, l3,5 = {zi = 0|i 6= 0, 6}, l4,5 = {zi = 0|i 6= 0, 8}.
The lines l1,3, l1,4, l1,5, l2,3, l2,4, l2,5, l3,5, l4,5 are contained in W 9

KLM , while l1,4 and
l2,3 are not. So the five singular points P1, P2, P3, P4, P5 of W 9

KLM are associated as
in Figure 28 of Appendix A. Furthermore in Figure 14 we can see how the projection
ρ〈E3〉 changes the configuration of the singularities of W 13

F in the configuration of the
singularities of W 9

KLM .
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Figure 14: Comparison between the configurations of the singularities of W 13
F and W 9

KLM .

8 Singularities of the P-EF 3-folds

8.1 Abstract

We recall that the P-EF 3-fold W 17
P is an Enriques-Fano threefold given by the quotient

π : V → V/τ =: W of a singular Fano threefold V under an involution τ : V → V
with five fixed points (see [46, Proposition 3.2]). Similarly the P-EF 3-fold W 13

P , which
was mentioned very briefly by Prokhorov in [46, Remark 3.3] and which we will study
in more detail. We will computationally analyze both the P-EF 3-folds, by finding the
following facts:

(i) the P-EF 3-fold W 13
P can be embedded in P13 and its ideal is generated by

quadrics; the threefold W 13
P ⊂ P13 has five non-similar singular points such that

four of them are quadruple points, whose tangent cone is a cone over a Veronese
surface, and the last one is a quintuple point, whose tangent cone is a cone over
the union of five planes (see § 8.2);

(ii) the P-EF 3-fold W 17
P can be embedded in P17 and its ideal is generated by

quadrics; the threefold W 17
P ⊂ P13 has five non-similar singular points such that

four of them are quadruple points, whose tangent cone is a cone over a Veronese
surface, and the last one is a sextuple point, whose tangent cone is a cone over
the union of four planes and a quadric surface (see § 8.3).

8.2 P-EF 3-fold (XVI) of genus 13

In the following we will often refer to the use of Macaulay2: see Code B.9 of Appendix B
for the computational techniques we will use. Let us consider the linear system of the
plane cubic curves passing through three fixed points a1, a2, a3 in general position.
Up to a change of coordinates, we may assume a1 = [1 : 0 : 0], a2 = [0 : 1 : 0] and
a3 = [0 : 0 : 1] in P2

[u0:u1:u2]. The above linear system so defines the rational map

λ : P2 99K P6 given by [u0 : u1 : u2] 7→ [u2
1u2 : u1u

2
2 : u2

0u2 : u0u
2
2 : u2

0u1 : u0u
2
1 : u0u1u2] ,

whose image is a smooth sextic Del Pezzo surface S6 ⊂ P6. If bl : Bla1,a2,a3 P2 → P2

denotes the blow-up of the plane at the three fixed points, then we have that S6 is
isomorphic to Bla1,a2,a3 P2 and that it is anticanonically embedded in P6. Let ` be the
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pullback of the line class on P2 and let ei := bl−1(ai) be the exceptional divisors, for
1 ≤ i ≤ 3; then we have the following commutative diagram

Bla1,a2,a3 P2

P2 S6 ⊂ P6.

bl ∼=

λ̃|3`−e1−e2−e3|=λ̃|−KS6 |

λ

Let us consider P6
[x0:x1:x2:x3:x4:x5:x6] as the hyperplane {y0 = 0} ⊂ P7

[x0:x1:x2:x3:x4:x5:x6:y]

and let us take the cone V over S6 with vertex v := [0 : 0 : 0 : 0 : 0 : 0 : 0 : 1].

Remark 8.1. Since the ideal of S6 is generated by the following polynomials

x3x5 − x2
6, x2x5 − x4x6, x1x5 − x0x6, x3x4 − x2x6, x1x4 − x2

6,

x0x4 − x5x6, x0x3 − x1x6, x1x2 − x3x6, x0x2 − x2
6,

in C[x0, x1, x2, x3, x4, x5, x6], then the ideal of V is generated by the same polynomials
as polynomials in C[x0, x1, x2, x3, x4, x5, x6, y].

Lemma 8.2. The variety V is a Gorenstein Fano threefold with canonical singularities.
Moreover, −KV = 2M where M is the class of the hyperplane sections.

Proof. Since S6 ⊂ P6 is projectively normal (see [17, Theorem 8.3.4]), then V is normal.
Let σ : Blv V → V be the blow-up of v with exceptional divisor E = σ−1(v). Then Blv V
is a P1-bundle over S6 and σ contracts its negative section E to v. In particular we have
Blv V = P (OS6 ⊕OS6(−KS6)) (see [29, V, Ex. 2.11.4]). Since the map σ : Blv V →
V ⊂ P7 is given by the tautological linear system |OBlv V (1)|, then OBlv V (1) ∼ σ∗M .
A priori we have that KBlv V = σ∗KV + aE for a ∈ Q. Since KBlv V ∼ OBlv V (−2)
(see [47, p. 349 (d)]) and KBlv V · E = −2(σ∗M) · E = 0, then a = 0 and KV is a
Cartier divisor. Thus V has a canonical singularity at the vertex v. Finally, since
σ∗(−2M) ∼ OBlv V (−2) ∼ KBlv V = σ∗KV , we have that KV = −2M .

The quadratic transformation qa1,a2,a3 : P2 99K P2, given by the linear system of
the conics passing through a1, a2 and a3, defines an involution of the sextic Del Pezzo
S6 ⊂ P6. Indeed we have

[u0 : u1 : u2]
[

1
u0

: 1
u1

: 1
u2

]
[
u21u2 : u1u

2
2 : u20u2 : u0u

2
2 : u20u1 : u0u

2
1 : u0u1u2

] [
u20u2 : u1u

2
0 : u21u2 : u0u

2
1 : u1u

2
2 : u0u

2
2 : u0u1u2

]
q

λ λ

and then we obtain the involution t′ of S6 ⊂ P6 given by

[x0 : x1 : x2 : x3 : x4 : x5 : x6] [x2 : x4 : x0 : x5 : x1 : x3 : x6] .t′

Let us take the involution of P7 defined by t : P7 → P7 such that

[x0 : x1 : x2 : x3 : x4 : x5 : x6 : y] [x2 : x4 : x0 : x5 : x1 : x3 : x6 : −y] .
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The locus of t-fixed points in P7 consists of two projective subspaces

F1 = {x0 + x2 = x1 + x4 = x3 + x5 = x6 = 0} ∼= P3,

F2 = {x0 − x2 = x1 − x4 = x3 − x5 = y = 0} ∼= P3.

In particular we have that F1 ∩ V = {v} and F2 ∩ V = {v1, v2, v3, v4}, where

v1 := [1 : 1 : 1 : 1 : 1 : 1 : 1 : 0] , v2 := [1 : −1 : 1 : −1 : −1 : −1 : 1 : 0] ,

v3 := [−1 : 1 : −1 : −1 : 1 : −1 : 1 : 0] , v4 := [−1 : −1 : −1 : 1 : −1 : 1 : 1 : 0] .

Thus t induces an involution τ := t|V of V with five fixed points.

Theorem 8.3. The quotient of V by the involution τ is an Enriques-Fano threefold
of genus p = 13, which we will denote by W 13

P .

Proof. Let QV be the linear system that is cut out on V by the linear system Q of the
quadric hypersurfaces of P7 of type

q1(x0 + x2, x1 + x4, x3 + x5, x6) + q2(x0 − x2, x1 − x4, x3 − x5, y) = 0,

where q1 and q2 are quadratic homogeneus forms. By construction, we have that QV is
base point free and each member of QV is τ -invariant. In particular a general member
S̃ ∈ QV is smooth and does not contains any of v, v1, v2, v3, v4. Then the action of τ
on S̃ is fixed point free. Moreover S̃ is a K3 surface, since QV ⊂ |2M | = | −KV |. Let

π : V → W 13
P := V/τ be the quotient morphism and let S := π(S̃) = S̃/τ . Then S is

a smooth Enriques surface. Since S̃ = π∗S, we have 2p − 2 = S3 = 1
2
S̃3 = 1

2
(2M)3 =

4 · deg V = 24, whence p = 13. Furthermore W 13
P is normal, since it is the quotient of

the normal threefold V under the action of a finite group defined by the involution τ
(see [19, Proposition 2.15]). Thus, by setting L := |OW 13

P
(S)|, we have that (W 13

P ,L)
is an Enriques-Fano threefold of genus 13.

The linear system Q, introduced in the proof of Theorem 8.3, defines a morphism
ϕ : P7 → P19 such that [x0 : x1 : x2 : x3 : x4 : x5 : x6 : y] 7→ [Z0 : Z1 : · · · : Z18 : Z19]
where Z0 = x2

6, Z1 = x2
0 + x2

2, Z2 = x2
1 + x2

4, Z3 = x2
3 + x2

5, Z4 = (x0 + x2)x6,
Z5 = (x1+x4)x6, Z6 = (x3+x5)x6, Z7 = x0x1+x2x4, Z8 = x2x3+x0x5, Z9 = x1x3+x4x5,
Z10 = (x0 − x2)y, Z11 = (x1 − x4)y, Z12 = (x3 − x5)y, Z13 = y2, Z14 = 2x0x2,
Z15 = 2x1x4, Z16 = 2x3x5, Z17 = x4x3 + x1x5, Z18 = x0x3 + x2x5, Z19 = x1x2 + x0x4.
Hence we have π = ϕ|V : V → W 13

P ⊂ P19. Furthermore the threefold W 13
P is contained

in a 13-dimensional projective subspace of P19 given by

H13 := {Z14 = 2Z0, Z15 = 2Z0, Z16 = 2Z0, Z17 = Z4, Z18 = Z5, Z19 = Z6}

(Remark 8.1). Thus the quotient map π : V → W 13
P ⊂ H13

∼= P13 is given by

[x0 : x1 : x2 : x3 : x4 : x5 : x6 : y] 7→ [z0 : z1 : · · · : z12 : z13]

where z0 = x2
6, z1 = x2

0+x2
2, z2 = x2

1+x2
4, z3 = x2

3+x2
5, z4 = (x0+x2)x6, z5 = (x1+x4)x6,

z6 = (x3 +x5)x6, z7 = x0x1 +x2x4, z8 = x2x3 +x0x5, z9 = x1x3 +x4x5, z10 = (x0−x2)y,
z11 = (x1 − x4)y, z12 = (x3 − x5)y, z13 = y2.

95



Remark 8.4. By using Macaulay2 we find that the P-EF 3-fold W 13
P has ideal gener-

ated by the following 42 polynomials

z4z5 − 2z0z6 − z2z6 + z5z9, z2
5 − z2

6 − z6z7 + z5z8, 2z0z5 + z3z5 − z4z6 − z6z9,
z2

4 − z2
6 − z6z7 + z4z9, z4z5 − 2z0z6 − z1z6 + z4z8, −2z0z5 − z1z5 + z4z6 + z4z7,

2z0z4 + z3z4 − z5z6 − z6z8, 2z0z4 + z2z4 − z5z6 − z5z7, 4z2
0 − z2

4 − z2
5 + z6z7,

z5z10 − z4z11 + 2z0z12, −z6z10 + 2z0z11 − z4z12, 2z0z10 − z6z11 + z5z12,
2z0z4 − 2z5z6 + 2z0z9, 2z0z5 − 2z4z6 + 2z0z8, −2z4z5 + 2z0z6 + 2z0z7,

2z0z3 + z2
4 + z2

5 − 2z2
6 − z6z7, 2z0z2 + z2

4 − z2
5 − z6z7, 2z0z1 − z2

4 + z2
5 − z6z7,

z2
12 + 2z0z13 − z3z13, z11z12 + z4z13 − z9z13, z10z12 − z5z13 + z8z13,
z4z10 − z5z11 + z7z12, z2

11 + 2z0z13 − z2z13, z10z11 + z6z13 − z7z13,
−z5z10 + z9z11 − z2z12, −z4z10 + z8z11 − z6z12, −z6z10 + z3z11 − z9z12,

z2
10 + 2z0z13 − z1z13, z9z10 − z5z11 + z6z12, z8z10 − z4z11 + z1z12,
z7z10 − z1z11 + z4z12, z3z10 − z6z11 + z8z12, z2z10 − z7z11 + z5z12,

−z4z5 + 2z0z6 − z3z6 + z8z9, 2z0z5 − z2z5 − z4z6 + z7z9, 2z0z4 − z5z7 − z6z8 + z1z9,
2z0z4 − z1z4 − z5z6 + z7z8, −z1z5 + z4z6 + z2z8 − z6z9,

2z4z5 − 2z0z6 − z1z6 − z2z6 + z3z7, z2z3 + z2
5 − z6z7 − z2

9 ,
z1z3 + z2

4 − z6z7 − z2
8 , z1z2 + z2

4 + z2
5 − z2

6 − z6z7 − z2
7 .

Then the ideal of W 13
P ⊂ P13 is generated by quadrics. Since W 13

P is projectively normal
in P13 (see § 3.3), then the ideal of its general hyperplane section S ⊂ P12 is generated
by quadrics too. It is consistent with the fact that the φ of a general hyperplane section
of S is 4 (see [35, Theorem 1.1 (ii)]), as we will prove in the proof of Theorem 9.2.

Remark 8.5. The P-EF 3-fold W 13
P has the following five singular points

P1 = π(v1) = [1 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 0 : 0 : 0 : 0] ,

P2 = π(v2) = [1 : 2 : 2 : 2 : 2 : −2 : −2 : −2 : −2 : 2 : 0 : 0 : 0 : 0] ,

P3 = π(v3) = [1 : 2 : 2 : 2 : −2 : 2 : −2 : −2 : 2 : −2 : 0 : 0 : 0 : 0] ,

P4 = π(v4) = [1 : 2 : 2 : 2 : −2 : −2 : 2 : 2 : −2 : −2 : 0 : 0 : 0 : 0] ,

P5 = π(v) = [0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1] .

Let li,j be the line joining the singular points Pi and Pj for 1 ≤ i < j ≤ 5. Then

l1,2 = {2z0 = z1 = z2 = z3 = z4 = z9, z5 = z6 = z7 = z8, z10 = z11 = z12 = z13 = 0},
l1,3 = {2z0 = z1 = z2 = z3 = z5 = z8, z4 = z6 = z7 = z9, z10 = z11 = z12 = z13 = 0},
l1,4 = {2z0 = z1 = z2 = z3 = z6 = z7, z4 = z5 = z8 = z9, z10 = z11 = z12 = z13 = 0},
l1,5 = {2z0 = z1 = z2 = z3 = z4 = z5 = z6 = z7 = z8 = z9, z10 = z11 = z12 = 0},

l2,3 = {2z0 = z1 = z2 = z3 = −z6 = −z7, z4 = −z5 = −z8 = z9, z10 = z11 = z12 = z13 = 0},
l2,4 = {2z0 = z1 = z2 = z3 = −z5 = −z8, z4 = −z6 = −z7 = z9, z10 = z11 = z12 = z13 = 0},
l2,5 = {2z0 = z1 = z2 = z3 = z4 = −z5 = −z6 = −z7 = −z8 = z9, z10 = z11 = z12 = 0},

l3,4 = {2z0 = z1 = z2 = z3 = −z4 = −z9, −z5 = −z6 = −z7 = z8, z10 = z11 = z12 = z13 = 0},
l3,5 = {−2z0 = −z1 = −z2 = −z3 = z4 = −z5 = z6 = z7 = −z8 = z9, z10 = z11 = z12 = 0},
l4,5 = {−2z0 = −z1 = −z2 = −z3 = z4 = z5 = −z6 = −z7 = z8 = z9, z10 = z11 = z12 = 0}.

By Remark 8.4 we have that the lines l1,5, l2,5, l3,5, l4,5 are contained in W 13
P , while

the lines l1,2, l1,3, l1,4, l2,3, l2,4, l3,4 are not. Hence the five singular points P1, P2, P3,
P4, P5 of W 13

P are associated as in Figure 27 of Appendix A.
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Proposition 8.6. If i = 1, 2, 3, 4, the tangent cone TCPiW
13
P to W 13

P at the point Pi
is a cone over a Veronese surface.

Proof. Let us consider the following change of coordinates of P13

z0 = w0, zi = wi + 2w0, zj = wj, i = 1, . . . , 9, j = 10, . . . , 13.

With respect to the new system of coordinates [w0 : · · · : w13] of P13, the point P1

has coordinates [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0] and, by Remark 8.4, the
Enriques-Fano threefold W 13

P has ideal generated by

−2w0w2 + 2w0w4 + 4w0w5 + w4w5 − 4w0w6 − w2w6 + 2w0w9 + w5w9,
6w0w5 + w2

5 − 6w0w6 − w2
6 − 2w0w7 − w6w7 + 2w0w8 + w5w8,

2w0w3 − 2w0w4 + 4w0w5 + w3w5 − 4w0w6 − w4w6 − 2w0w9 − w6w9,
6w0w4 + w2

4 − 6w0w6 − w2
6 − 2w0w7 − w6w7 + 2w0w9 + w4w9,

−2w0w1 + 4w0w4 + 2w0w5 + w4w5 − 4w0w6 − w1w6 + 2w0w8 + w4w8,
−2w0w1 + 4w0w4 − 4w0w5 − w1w5 + 2w0w6 + w4w6 + 2w0w7 + w4w7,
2w0w3 + 4w0w4 + w3w4 − 2w0w5 − 4w0w6 − w5w6 − 2w0w8 − w6w8,
2w0w2 + 4w0w4 + w2w4 − 4w0w5 − 2w0w6 − w5w6 − 2w0w7 − w5w7,

−4w0w4 − w2
4 − 4w0w5 − w2

5 + 2w0w6 + 2w0w7 + w6w7,
2w0w10 + w5w10 − 2w0w11 − w4w11 + 2w0w12,
−2w0w10 − w6w10 + 2w0w11 − 2w0w12 − w4w12,
2w0w10 − 2w0w11 − w6w11 + 2w0w12 + w5w12,
2w0w4 − 4w0w5 − 4w0w6 − 2w5w6 + 2w0w9,
−4w0w4 + 2w0w5 − 4w0w6 − 2w4w6 + 2w0w8,
−4w0w4 − 4w0w5 − 2w4w5 + 2w0w6 + 2w0w7,

2w0w3 + 4w0w4 + w2
4 + 4w0w5 + w2

5 − 10w0w6 − 2w2
6 − 2w0w7 − w6w7,

2w0w2 + 4w0w4 + w2
4 − 4w0w5 − w2

5 − 2w0w6 − 2w0w7 − w6w7,
2w0w1 − 4w0w4 − w2

4 + 4w0w5 + w2
5 − 2w0w6 − 2w0w7 − w6w7,

w2
12 − w3w13, w11w12 + w4w13 − w9w13, w10w12 − w5w13 + w8w13,

2w0w10 + w4w10 − 2w0w11 − w5w11 + 2w0w12 + w7w12,
w2

11 − w2w13, w10w11 + w6w13 − w7w13,
−2w0w10 − w5w10 + 2w0w11 + w9w11 − 2w0w12 − w2w12,
−2w0w10 − w4w10 + 2w0w11 + w8w11 − 2w0w12 − w6w12,
−2w0w10 − w6w10 + 2w0w11 + w3w11 − 2w0w12 − w9w12,

w2
10 − w1w13,

2w0w10 + w9w10 − 2w0w11 − w5w11 + 2w0w12 + w6w12,
2w0w10 + w8w10 − 2w0w11 − w4w11 + 2w0w12 + w1w12,
2w0w10 + w7w10 − 2w0w11 − w1w11 + 2w0w12 + w4w12,
2w0w10 + w3w10 − 2w0w11 − w6w11 + 2w0w12 + w8w12,
2w0w10 + w2w10 − 2w0w11 − w7w11 + 2w0w12 + w5w12,

−2w0w3 − 2w0w4 − 2w0w5 − w4w5 − w3w6 + 2w0w8 + 2w0w9 + w8w9,
−2w0w2 − 2w0w4 − w2w5 − 2w0w6 − w4w6 + 2w0w7 + 2w0w9 + w7w9,

2w0w1 + 2w0w4 − 2w0w5 − 2w0w6 − 2w0w7 − w5w7 − 2w0w8 − w6w8 + 2w0w9 + w1w9,
−2w0w1 − w1w4 − 2w0w5 − 2w0w6 − w5w6 + 2w0w7 + 2w0w8 + w7w8,

−2w0w1 + 2w0w2 + 2w0w4 − 2w0w5 − w1w5 + w4w6 + 2w0w8 + w2w8 − 2w0w9 − w6w9,
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−2w0w1 − 2w0w2 + 2w0w3 + 4w0w4 + 4w0w5 + 2w4w5 − 6w0w6 − w1w6 − w2w6 +
+2w0w7 + w3w7,

2w0w2 + 2w0w3 + w2w3 + 4w0w5 + w2
5 − 2w0w6 − 2w0w7 − w6w7 − 4w0w9 − w2

9,
2w0w1 + 2w0w3 + w1w3 + 4w0w4 + w2

4 − 2w0w6 − 2w0w7 − w6w7 − 4w0w8 − w2
8,

2w0w1 + 2w0w2 +w1w2 + 4w0w4 +w2
4 + 4w0w5 +w2

5−6w0w6−w2
6−6w0w7−w6w7−w2

7.

Furthermore P1 can be viewed as the origin of the open affine set U0 = {w0 6= 0} in
P13

[w0:···:w13]. The ideal of the tangent cone TCP1(W
13
P ∩U0) is generated by the minimal

degree homogeneous parts of all the polynomials in the ideal of W 13
P ∩ U0. One can

find, with Macaulay2, that TCP1(W
13
P ∩ U0) has ideal generated by

−9w1 + 8w7 + 8w8 − 4w9, −9w2 + 8w7 − 4w8 + 8w9, −9w3 − 4w7 + 8w8 + 8w9,
−9w4 + 2w7 + 2w8 − w9, −9w5 + 2w7 − w8 + 2w9, −9w6 − w7 + 2w8 + 2w9,

w10 − w11 + w12,
9w11w12 + 2w7w13 + 2w8w13 − 10w9w13,

2w7w11 − 10w8w11 + 2w9w11 − 10w7w12 + 2w8w12 + 2w9w12,
6w7w11 − 6w8w11 − 18w9w11 + 6w7w12 − 6w8w12 + 18w9w12,

9w2
12 + 4w7w13 − 8w8w13 − 8w9w13,

9w2
11 − 8w7w13 + 4w8w13 − 8w9w13,

w2
7 − 2w7w8 + w2

8 − 2w7w9 − 2w8w9 + w2
9.

Hence TCP1W
13
P is a cone with vertex at P1 over a Veronese surface in the P5 given by

{−9w1 + 8w7 + 8w8 − 4w9 = 0, −9w2 + 8w7 − 4w8 + 8w9 = 0,
−9w3 − 4w7 + 8w8 + 8w9 = 0, −9w4 + 2w7 + 2w8 − w9 = 0,

−9w5 + 2w7 − w8 + 2w9 = 0, −9w6 − w7 + 2w8 + 2w9 = 0, w10 − w11 + w12 = 0}.

Similar analysis for the points P2, P3 and P4.

Theorem 8.7. The tangent cone TCP5W
13
P to W 13

P at the point P5 is a cone over a
reducible quintic surface M5, which is given by the union of five planes π0, π1, π2, π3, π4,
such that the four planes π1, π2, π3, π4 intersect the plane π0 along the four edges of a
quadrilateral. We give an idea of M5 in Figure 15.

Proof. The point P5 can be viewed as the origin of the open affine set U13 = {z13 6= 0}.
The ideal of the tangent cone TCP5(W

13
P ∩ U13) is generated by the minimal degree

homogeneous parts of all the polynomials in the ideal ofW 13
P ∩U13. By using Macaulay2,

we find that TCP5(W
13
P ∩ U13) has ideal generated by the following polynomials

z6 − z7, z5 − z8, z4 − z9, z2 − z3, z1 − z3, 2z0 − z3,
z9z10−z8z11 +z7z12, z8z10−z9z11 +z3z12, z7z10−z3z11 +z9z12, z3z10−z7z11 +z8z12,

z2
8 − z2

9 , z2
7 − z2

9 , z2
3 − z2

9 , z7z8 − z3z9, z3z8 − z7z9, z3z7 − z8z9.

Hence TCP5W
13
P is a cone with vertex at P5 over a surface M5 contained in the P6 given

by {z6 = z7, z5 = z8, z4 = z9, z2 = z3, z1 = z3, 2z0 = z3}. This surface M5 is the union
of the following five planes:

π0 := {zi = 0|i 6= 10, 11},
π1 := {2z0 = z1 = z2 = z3 = z4 = z5 = z6 = z7 = z8 = z9, z10 = z11 − z12, z13 = 0},

π2 := {2z0 = z1 = z2 = z3 = z4 = −z5 = −z6 = −z7 = −z8 = z9, z10 = z12 − z11, z13 = 0},
π3 := {2z0 = z1 = z2 = z3 = −z4 = z5 = −z6 = −z7 = z8 = −z9, z10 = −z11 − z12, z13 = 0},
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Figure 15: The reducible quintic surface M5 ⊂ P6 given by the union of five planes π0, π1,
π2, π3, π4, which intersect as in the statement of Theorem 8.7.

π4 := {2z0 = z1 = z2 = z3 = −z4 = −z5 = z6 = z7 = −z8 = −z9, z10 = z11 + z12, z13 = 0}.

Remark 8.8. Prokhorov says that the P-EF 3-fold W 13
P has canonical singularities (see

[46, Remark 3.3]), but he does not actually go into detail and does not say whether
they are terminal or not. Since the singular points P1, P2, P3, P4 of W 13

P are terminal
(see Proposition 8.6 and [47, Example 1.3]), it remains to understand if P5 is terminal
or not (see Theorem 8.7). We recall that if all the singularities of W 13

P were terminal,
then W 13

P would be limit of the classical Enriques-Fano threefold W 13
F (see [44, Main

Theorem 2]). So if we showed that the simple isotropic decomposition of the curve
section H of W 13

P on a smooth hyperplane section S is H ∼ 2E1 + 2E2 + 2E3 + KS

(and not H ∼ 2E1 + 2E2 + 2E3, which is the simple isotropic decomposition of the
curve section of W 13

F ), we would obtain the non-terminality of P5 (see § 9 and proof of
Theorem 9.2 for more details). For now, this is an open question.

Remark 8.9. Since W 13
P is projectively normal in P13 (see § 3.3), then it satisfies

Assumption CM1 of § 4. By Remark 8.5 we have that it cannot verify Assumption CM3.
Let us see that W 13

P does not even satisfy Assumption CM2. Let bl : BlPi=1,...5 P13 → P13

be the blow-up of P13 at the five singular points ofW 13
P and let W̃ be the strict transform

of W 13
P . Then W̃ intersects the exceptional divisor bl−1(P5) along a surface isomorphic

to M5, which has six singular points locally given by the intersection of three planes of
P4, such that two of them intersect the third along two lines and intersect each other at
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a point which is intersection of these two lines. Therefore W̃ is not a desingularization
of W 13

P , since there are six singular points infinitely near to P5.

8.3 P-EF 3-fold (XVII) of genus 17

In the following we will often refer to the use of Macaulay2: see Code B.10 of Ap-
pendix B for the computational techniques we will use. Let us consider the anticanon-
ical embedding of P1 × P1 in P8, that is the morphism λ : P1 × P1 → P8 such that

[u0 : u1]×[v0 : v1] 7→
[
u2

1v
2
1 : u2

1v0v1 : u2
1v

2
0 : u1u0v

2
1 : u1u0v0v1 : u1u0v

2
0 : u2

0v
2
1 : u2

0v0v1 : u2
0v

2
0

]
.

The image P := λ(P1×P1) is an octic surface in P8
[y0,0:y0,1:y0,2,y1,0:y1,1:y1,2:y2,0:y2,1:y2,2], which

we can consider as the hyperplane {x = 0} in P9
[y0,0:y0,1:y0,2:y1,0:y1,1:y1,2:y2,0:y2,1:y2,2:x]. Let V

be the cone over P with vertex v = [0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1].

Remark 8.10. By using Macaulay2 we can see that the ideal of P is generated by the
following polynomials

y2
2,1 − y2,0y2,2, y1,2y2,1 − y1,1y2,2, y1,1y2,1 − y1,0y2,2, y0,2y2,1 − y0,1y2,2,
y0,1y2,1 − y0,0y2,2, y1,2y2,0 − y1,0y2,2, y1,1y2,0 − y1,0y2,1, y0,2y2,0 − y0,0y2,2,
y0,1y2,0 − y0,0y2,1, y2

1,2 − y0,2y2,2, y1,1y1,2 − y0,1y2,2, y1,0y1,2 − y0,0y2,2,
y2

1,1 − y0,0y2,2, y1,0y1,1 − y0,0y2,1, y0,2y1,1 − y0,1y1,2, y0,1y1,1 − y0,0y1,2,
y2

1,0 − y0,0y2,0, y0,2y1,0 − y0,0y1,2, y0,1y1,0 − y0,0y1,1, y2
0,1 − y0,0y0,2,

in C[y0,0, y0,1, y0,2, y1,0, y1,1, y1,2, y2,0, y2,1, y2,2]. Then the ideal of V is generated by the
same polynomials as polynomials in C[y0,0, y0,1, y0,2, y1,0, y1,1, y1,2, y2,0, y2,1, y2,2, x].

Let us take the involution t of P9
[y0,0:y0,1:y0,2,y1,0:y1,1:y1,2:y2,0:y2,1:y2,2] defined by

[y0,0 : · · · : y2,2 : x] 7→ [y0,0 : −y0,1 : y0,2 : −y1,0 : y1,1 : −y1,2 : y2,0 : −y2,1 : y2,2 : −x] .

The locus of t-fixed points in P9 consists of two projective subspaces

F1 = {y0,0 = y0,2 = y1,1 = y2,0 = y2,2 = 0} ∼= P4,

F2 = {y0,1 = y1,0 = y1,2 = y2,1 = x = 0} ∼= P4.

We have that F1 ∩ V = {v} and F2 ∩ V = {v0,0, v0,2, v2,0, v2,2}, where

v0,0 = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0] , v0,2 = [0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0] ,

v2,0 = [0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0] , v2,2 = [0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1] .

Then t defines an involution τ := t|V : V → V of V with five fixed points. The quotient
of V via the involution τ is an Enriques-Fano threefold of genus 17 (see [46, Proposition
3.2]). The quotient map π : V → V/τ =: W 17

P is defined by the restriction on V of the
linear system Q of the quadric hypersurfaces of P9 of type

q1(y0,0, y0,2, y1,1, y2,0, y2,2) + q2(y0,1, y1,0, y1,2, y2,1, x) = 0,

where q1 and q2 are quadratic homogeneus forms. The linear system Q defines a
morphism ϕ : P9 → P29 such that [y0,0 : · · · : y2,2 : x] 7→ [Z0 : · · · : Z29] , where
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Z0 = y2
1,1, Z1 = y2

0,0, Z2 = y2
0,2, Z3 = y2

2,0, Z4 = y2
2,2, Z5 = x2, Z6 = y2

0,1, Z7 = y2
1,0,

Z8 = y2
1,2, Z9 = y2

2,1, Z10 = y0,1x, Z11 = y1,0x, Z12 = y1,2x, Z13 = y2,1x,
Z14 = y0,0y1,1, Z15 = y0,2y1,1, Z16 = y2,0y1,1, Z17 = y2,2y1,1,
Z18 = y0,1y1,0, Z19 = y0,1y1,2, Z20 = y1,0y2,1, Z21 = y1,2y2,1,
Z22 = y0,0y0,2, Z23 = y0,0y2,0, Z24 = y0,2y2,2, Z25 = y2,0y2,2,
Z26 = y0,1y2,1, Z27 = y0,0y2,2, Z28 = y0,2y2,0, Z29 = y1,0y1,2.

Thus we have π = ϕ|V : V → W 17
P ⊂ P29. By the expression of λ, we have that W 17

P is
contained in a 17-dimensional projective subspace H17 of P29 given by

H17 := {Z18 = Z14, Z19 = Z15, Z20 = Z16, Z21 = Z17, Z22 = Z6, Z23 = Z7,
Z24 = Z8, Z25 = Z9, Z26 = Z0, Z27 = Z0, Z28 = Z0, Z29 = Z0}

(see also Remark 8.10). Hence the quotient π : V → W 17
P ⊂ H17

∼= P17 is defined by

[y0,0 : y0,1 : y0,2 : y1,0 : y1,1 : y1,2 : y2,0 : y2,1 : y2,2 : x] 7→ [z0 : z1 : · · · : z16 : z17]

where z0 = y2
1,1, z1 = y2

0,0, z2 = y2
0,2, z3 = y2

2,0, z4 = y2
2,2, z5 = x2, z6 = y2

0,1, z7 = y2
1,0,

z8 = y2
1,2, z9 = y2

2,1, z10 = y0,1x, z11 = y1,0x, z12 = y1,2x, z13 = y2,1x, z14 = y0,0y1,1,
z15 = y0,2y1,1, z16 = y2,0y1,1, z17 = y2,2y1,1.

The P-EF 3-fold W 17
P has the following five singular points

P1 = π(v0,0) = [0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0] ,

P2 = π(v0,2) = [0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0] ,

P3 = π(v2,0) = [0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0] ,

P4 = π(v2,2) = [0 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0] ,

P5 = π(v) = [0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0] .

Remark 8.11. Thanks to Macaulay2 we can see that the P-EF threefold W 17
P has

ideal generated by the following 88 polynomials
z15z16 − z14z17, z12z16 − z11z17, z9z16 − z3z17, z8z16 − z0z17, z6z16 − z1z17,
z4z16 − z9z17, z2z16 − z6z17, z0z16 − z7z17, z13z15 − z10z17, z9z15 − z0z17,
z8z15 − z2z17, z7z15 − z1z17, z4z15 − z8z17, z3z15 − z7z17, z0z15 − z6z17,
z13z14 − z10z16, z12z14 − z11z15, z9z14 − z7z17, z8z14 − z6z17, z7z14 − z1z16,
z6z14 − z1z15, z4z14 − z0z17, z3z14 − z7z16, z2z14 − z6z15, z0z14 − z1z17,
z12z13 − z5z17, z11z13 − z5z16, z8z13 − z12z17, z7z13 − z11z16, z6z13 − z11z15,
z2z13 − z12z15, z1z13 − z11z14, z0z13 − z11z17, z11z12 − z10z13, z10z12 − z5z15,
z9z12 − z13z17, z7z12 − z10z16, z6z12 − z10z15, z3z12 − z13z16, z1z12 − z10z14,
z0z12 − z10z17, z10z11 − z5z14, z9z11 − z13z16, z8z11 − z10z17, z6z11 − z10z14,
z4z11 − z13z17, z2z11 − z10z15, z0z11 − z10z16, z9z10 − z11z17, z8z10 − z12z15,
z7z10 − z11z14, z4z10 − z12z17, z3z10 − z11z16, z0z10 − z11z15, z8z9 − z2

17,
z7z9 − z2

16, z6z9 − z14z17, z5z9 − z2
13, z2z9 − z15z17, z1z9 − z14z16,

z0z9 − z16z17, z7z8 − z14z17, z6z8 − z2
15, z5z8 − z2

12, z3z8 − z16z17,
z1z8 − z14z15, z0z8 − z15z17, z6z7 − z2

14, z5z7 − z2
11, z4z7 − z16z17,
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z2z7 − z14z15, z0z7 − z14z16, z5z6 − z2
10, z4z6 − z15z17, z3z6 − z14z16,

z0z6 − z14z15, z0z5 − z10z13, z3z4 − z2
9 , z2z4 − z2

8 , z1z4 − z14z17,
z0z4 − z2

17, z2z3 − z14z17, z1z3 − z2
7 , z0z3 − z2

16, z1z2 − z2
6 ,

z0z2 − z2
15, z0z1 − z2

14, z2
0 − z14z17.

Thus the ideal of W 17
P is generated by quadrics. Since W 17

P is projectively normal in
P17 (see § 3.3), then the ideal of its general hyperplane section S ⊂ P16 is generated by
quadrics too. It is consistent with the fact that the φ of a general hyperplane section
of S is 4 (see [35, Theorem 1.1 (ii)]), as we will see in the proof of Theorem 9.2.

Remark 8.12. Let li,j := {zk = 0|i 6= i, j} be the line joining the singular points Pi
and Pj with 1 ≤ i < j ≤ 5. By Remark 8.11 we have that the lines l1,5, l2,5, l3,5, l4,5
are contained in W 17

P , while the lines l1,2, l1,3, l1,4, l2,3, l2,4, l3,4 are not. Hence the five
singular points P1, P2, P3, P4, P5 of W 17

P are associated as in Figure 27 of Appendix A.

Proposition 8.13. If i = 1, 2, 3, 4, the tangent cone TCPiW
17
P to W 17

P at the point Pi
is a cone over a Veronese surface.

Proof. Each point Pi, i = 1, 2, 3, 4, can be viewed as the origin of the open affine set
Ui = {zi 6= 0}. The ideal of the tangent cone TCPi(W

17
P ∩ Ui) is generated by the

minimal degree homogeneous parts of all the polynomials in the ideal of W 17
P ∩Ui. By

using Macaulay2 we obtain the following tangent cones.

TCP1(W
17
P ∩ U1) has ideal generated by z17, z16, z15, z13, z12, z9, z8, z4, z3, z2, z0,

z10z11 − z5z14, z6z11 − z10z14, z7z10 − z11z14, z6z7 − z2
14, z5z7 − z2

11, z5z6 − z2
10.

Hence TCP1W
17
P is a cone with vertex P1 over a Veronese surface in the P5 given

by {zi = 0|i = 0, 1, 2, 3, 4, 8, 9, 12, 13, 15, 16, 17}.

TCP2(W
17
P ∩ U2) has ideal generated by z17, z16, z14, z13, z11, z9, z7, z4, z3, z1, z0,

z10z12 − z5z15, z6z12 − z10z15, z8z10 − z12z15, z6z8 − z2
15, z5z8 − z2

12, z5z6 − z2
10.

Hence TCP2W
17
P is a cone with vertex P2 over a Veronese surface in the P5 given

by {zi = 0|i = 0, 1, 2, 3, 4, 7, 9, 11, 13, 14, 16, 17}.

TCP3(W
17
P ∩ U3) has ideal generated by z17, z15, z14, z12, z10, z8, z6, z4, z2, z1, z0,

z11z13 − z5z16, z7z13 − z11z16, z9z11 − z13z16, z7z9 − z2
16, z5z9 − z2

13, z5z7 − z2
11.

Hence TCP3W
17
P is a cone with vertex P3 over a Veronese surface in the P5 given

by {zi = 0|i = 0, 1, 2, 3, 4, 6, 8, 10, 12, 14, 15, 17}.

TCP4(W
17
P ∩ U4) has ideal generated by z16, z15, z14, z11, z10, z7, z6, z3, z2, z1, z0,

z12z13 − z5z17, z8z13 − z12z17, z9z12 − z13z17, z8z9 − z2
17, z5z9 − z2

13, z5z8 − z2
12.

Hence TCP4W
17
P is a cone with vertex P4 over a Veronese surface in the P5 given

by {zi = 0|i = 0, 1, 2, 3, 4, 6, 7, 10, 11, 14, 15, 16}.

Theorem 8.14. The tangent cone TCP5W
17
P to W 17

P at the point P5 is a cone over
a reducible sextic surface M6 ⊂ P7 ⊂ P17, which is given by the union of four planes
π1, π2, π

′
1, π

′
2 and a quadric surface Q ⊂ P3 ⊂ P7. In particular each one of the planes

π1, π2, π
′
1, π

′
2 intersects the quadric Q respectively along a line l1, l2, l

′
1, l
′
2, where l1 is

disjoint from l′1 and l2 is disjoint from l′2. In the other cases the intersections of two of
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these lines identify four points on Q: q1,2 := l1∩ l2, q1,2′ := l1∩ l′2, q1′,2 := l′1∩ l2, q1′,2′ :=
l′1 ∩ l′2.

Proof. The point P5 can be viewed as the origin of the open affine set U5 = {z5 6= 0}.
The ideal of the tangent cone TCP5(W

17
P ∩ U5) is generated by the minimal degree

homogeneous parts of all the polynomials in the ideal of W 17
P ∩U5. By using Macaulay2

we can find that TCP5(W
17
P ∩ U5) has ideal generated by the following polynomials

z17, z16, z15, z14, z9, z8, z7, z6, z0,

z11z12 − z10z13,

z2z13, z1z13, z3z12, z1z12, z4z11, z2z11, z4z10, z3z10, z3z4, z2z4, z1z4, z2z3, z1z3, z1z2.

Hence TCP5W
17
P is a cone with vertex P5 over a surface M6 contained in the P7

given by {zi = 0|i = 0, 5, 6, 7, 8, 9, 14, 15, 16, 17}. This surface M6 is the union of four
planes π1, π2, π

′
1, π

′
2 and a quadric surface Q, where

π1 := {zi = 0|i = 0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17},
π2 := {zi = 0|i = 0, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17},
π′1 := {zi = 0|i = 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17},
π′2 := {zi = 0|i = 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17},

Q := {zi = 0|i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 16, 17} ∩ {z11z12 − z10z13 = 0}.

We obtain the same situation described in Theorem 7.5 and so a sextic surface M6 as
in Figure 13.

Remark 8.15. We recall that W 17
P has canonical non-terminal singularities. Indeed

if it had terminal singularities, it would be limit of some BS-EF 3-fold and therefore
would have genus p with 2 ≤ p ≤ 10 or p = 13 (see [44, Main Theorem 2]). Since
the singular points P1, P2, P3, P4 are terminal (see Proposition 8.13 and [47, Example
1.3]), then P5 is a canonical non-terminal singularity.

Remark 8.16. Since W 17
P is projectively normal in P17 (§ 3.3), then it satisfies Assump-

tion CM1 of § 4. By Remark 8.12 we have that it cannot verify Assumption CM3. Let
us show that W 17

P does not even satisfy Assumption CM2. Let bl : BlPi=1,...5 P17 → P17

be the blow-up of P17 at the five singular points of W 17
P and let W̃ be the strict trans-

form of W 17
P . Then W̃ intersects the exceptional divisor bl−1(P5) along a surface which

is isomorphic to M6 and which has four singular points locally given by the intersection
of three planes of P4, such that two of them intersect the third along two lines and
intersect each other at a point which is intersection of these two lines. Thus W̃ is not
a desingularization of W 17

P , since there are four singular points infinitely near to P5.

9 Simple isotropic decompositions of the curve sec-

tions of the Enriques-Fano threefolds

9.1 Abstract

Let (W,L) be an Enriques-Fano threefold and let us denote by H the class of a curve
section on a smooth hyperplane section S ∈ L. It is known that there are 10 primitive
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effective isotropic divisors E1, . . . , E10 such that H ∼ a0E1,2 +a1E1 + · · ·+a10E10 +εKS

where E1,2 ∼ 1
3
(E1 + · · · + E10) − E1 − E2, ε = 0, 1 and a0, a1, . . . a10 are nonnegative

integers (see [9, Corollary 4.7]). This expression is called simple isotropic decomposition
(simply, SID) of H. We will describe the SID of the curve sections of the known
Enriques-Fano threefolds (see Theorem 9.2). Generally the SID allow us to identify the
various components of the moduli space of the polarized Enriques surfaces. Thus our
analysis suggests which families the hyperplane sections of the Enriques-Fano threefolds
belong to.

9.2 Preliminaries on simple isotropic decompositions

We recall that any irreducible curve C on an Enriques surface satisfies C2 = 2pa(C)−
2 ≥ −2, with equality occurring if and only if C ∼= P1. An Enriques surface is called
unnodal if it does not contain any smooth rational curve, otherwise it is called nodal.
We recall that the general Enriques surface is unnodal (see [18]). Let E be the smooth
irreducible 10-dimensional moduli space parametrizing the Enriques surfaces and let
Eg,φ be the moduli space of the pairs (S,H) such that [S] ∈ E and H ∈ Pic(S) is an
ample divisor on S satisfying H2 = 2g − 2 and φ(H) = φ, where

φ(H) := min{E ·H|E ∈ NS(S), E2 = 0, E > 0}.

The spaces Eg,φ are in general reducible. We refer to [9] and [33] for more details. Let
us consider now an Enriques-Fano threefold (W,L) of genus p. We will denote by H
the class of a curve section of W on a general (smooth) hyperplane section S. Hence
we have |H| = L|S (see [10, Lemma 4.1 (i)]). We set φ := φ(H) and we recall that
φ2 ≤ H2 = 2p− 2 (see [16, Cor. 2.7.1]). We say that the rational map associated with
|H| is hyperelliptic if p = 2 or if it is of degree 2 onto a surface of degree p− 2 in Pp−1;
we say that it is superelliptic if p = 2 or if it is of degree 2 onto a surface of degree
p− 1 in Pp−1 (see [16, p. 229]). We have the following results which we will use later:

(a) by [16, Proposition 4.5.1]

φ = 1⇔ |H| has 2 simple base points ⇔ φL is hyperelliptic on S;

(b) by [10, Lemma 4.1] and [16, Theorem 4.4.1]

φ ≥ 2⇔ |H| base point free ⇔ L base point free;

(c) by [10, Lemma 4.1 (i)] and [16, Theorems 4.4.1, 4.6.1] (since H ample)

φ ≥ 3⇔ φL is an isomorphism on S.

In the last case (c) we get that φL(W ) ⊂ Pp is a threefold whose general hyperplane
section is a smooth Enriques surface.

We recall now that a divisor E on S is said to be isotropic if E2 = 0 and E 6≡ 0,
and it is said to be primitive if it is non-divisible in Num(S). On an unnodal Enriques
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p φ comp. SID p φ comp. SID
2 1 E2,1 E1 + E2 10 1 E10,1 9E1 + E2

3 1 E3,1 2E1 + E2 10 2 E10,2 4E1 + E2 + E3

3 2 E3,2 E1 + E1,2 10 3 E (I)
10,3 2E1 + E2 + E3 + E4

4 1 E4,1 3E1 + E2 10 3 E (II)
10,3 3(E1 + E2)

4 2 E4,2 E1 + E2 + E3 10 4 E10,4 2E1,2 + E1 + E2

5 1 E5,1 4E1 + E2 13 1 E13,1 12E1 + E2

5 2 E (I)
5,2 2E1 + E1,2 13 2 E (I)

13,2 6E1 + E1,2

5 2 E (II)+
5,2 2(E1 + E2) 13 2 E (II)+

13,2 2(3E1 + E2)

5 2 E (II)−
5,2 2(E1 + E2) +KS 13 2 E (II)−

13,2 2(3E1 + E2) +KS

6 1 E6,1 5E1 + E2 13 3 E (I)
13,3 3E1 + E2 + E3 + E4

6 2 E6,2 2E1 + E2 + E3 13 3 E (II)
13,3 4E1 + 3E2

6 3 E6,3 E1 + E2 + E1,2 13 4 E (I)
13,4 2E1 + 2E2 + E1,2

7 1 E7,1 6E1 + E2 13 4 E (II)+
13,4 2(E1 + E2 + E3)

7 2 E (I)
7,2 3E1 + E1,2 13 4 E (II)−

13,4 2(E1 + E2 + E3) +KS

7 2 E (II)
7,2 3E1 + 2E2 13 4 E (III)

13,4 3E1 + 2E1,2

7 3 E7,3 E1 + E2 + E3 + E4 17 1 E17,1 16E1 + E2

8 1 E8,1 7E1 + E2 17 2 E (I)
17,2 8E1 + E1,2

8 2 E8,2 3E1 + E2 + E3 17 2 E (II)+
17,2 2(4E1 + E2)

8 3 E8,3 2E1 + E3 + E1,2 17 2 E (II)−
17,2 2(4E1 + E2) +KS

9 1 E9,1 8E1 + E2 17 3 E17,3 5E1 + E3 + E1,2

9 2 E (I)
9,2 4E1 + E1,2 17 4 E (I)

17,4 3E1 + 2E2 + 2E3

9 2 E (II)+
9,2 2(2E1 + E2) 17 4 E (II)

17,4 3E1 + 2E2 + E1,2

9 2 E (II)−
9,2 2(2E1 + E2) +KS 17 4 E (III)+

17,4 2(2E1 + E1,2)

9 3 E (I)
9,3 2E1 + E2 + E1,2 17 4 E (III)−

17,4 2(2E1 + E1,2) +KS

9 3 E (II)
9,3 2E1 + 2E2 + E3 17 4 E (IV )+

17,4 4(E1 + E2)

9 4 E+
9,4 2(E1 + E1,2) 17 4 E (IV )−

17,4 4(E1 + E2) +KS

9 4 E−9,4 2(E1 + E1,2) +KS 17 5 E17,5 2E1 + E3 + E4 + E5 + E1,2

Table 1: All irreducible components of Ep,φ for 2 ≤ p ≤ 10 and p = 13, 17.

surface, any effective primitive isotropic divisor E is represented by an irreducible curve
of arithmetic genus one. By [9, Corollary 4.7] there are 10 primitive effective isotropic
divisors E1, . . . , E10 such that Ei · Ej = 1 for i 6= j and such that

H ∼ a0E1,2 + a1E1 + · · ·+ a10E10 + εKS (2)

where E1,2 ∼ 1
3
(E1 + · · · + E10) − E1 − E2 and a0, a1, . . . a10 are nonnegative integers

with {
either a0 = 0 and #{i|i ∈ {1, . . . , 10}, ai > 0} 6= 9,

or a10 = 0,
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and

ε =

{
0, if H +KS is not 2-divisible on Pic(S),

1, if H +KS is 2-divisible on Pic(S).

We call (2) a simple isotropic decomposition (SID) of H. We also recall that E1,2 ·E1 =
E1,2 ·E2 = 2 and E1,2 ·Ei = 1 for i = 3, . . . , 10. For later reference, we list in Table 1 all
the irreducible components of Ep,φ for 2 ≤ p ≤ 10 and p = 13, 17 (see [9, Appendix]).

Definition 9.1. A projective variety X ⊂ PN is said to be k-extendable if there exists
a projective variety V ⊂ PN+k, that is not a cone, such that X = V ∩PN (transversely)
and dimV = dimX + k.

The question of k-extendability of Enriques surfaces is still open. It is known that
if S ⊂ PN is a 1-extendable Enriques surface, then h1 (TS(−1)) > 0 (see [10, proof of
Corollary 1.2]) and φ(OS(1)) ≥ 3 (see [16, Theorem 4.6.1]). Moreover, if S ⊂ PN is
an unnodal Enriques surface (i.e. not containing any smooth rational curve) which is

1-extendable, then (S,OS(1)) belongs to the following list: E (IV )+

17,4 , E (II)+

13,4 , E (II)
13,3 , E (II)

10,3 ,

E+
9,4, E (II)

9,3 , E7,3 (see [10, Corollary 1.2]).

9.3 SID of the curve sections of the known EF-3folds

Let us describe the SID of the curve sections of the known Enriques-Fano threefolds.

Theorem 9.2. Let (W,L) be an Enriques-Fano threefold in the list (I)-(XVII) of § 3.2.
Let S ∈ L be a general hyperplane section of W and let H be a general curve section
of W on S. Then H has the φ and the SID described in Table 2.

Proof. Let us study the known Enriques-Fano threefolds case by case. If (W,L) is
a fixed Enriques-Fano threefold of genus p, we will denote each time by S a general
element of L, by H a general curve section of W on S satisfying H2 = 2p− 2, and by
φ the value φ(H) defined in § 9.2.

(I) W = W 2
BS. The map φL : W 99K P2 is a rational map (see [1, §6.1.6]). Since

p = 2 and φ2 ≤ 2p − 2, then we have φ = 1. So the SID is H ∼ E1 + E2 (see
Table 1).

(II) W = W 3
BS. Since p = 3 and φ2 ≤ 2p − 2, then we have 1 ≤ φ ≤ 2. The map

φL : W → P3 is a morphism and a quadruple cover (see [1, §6.1.5]). This implies
φ = 2, because if φ = 1 the map would be a double cover (see § 9.2 (a)). Then
the SID is H ∼ E1 + E1,2 (see Table 1).

(III) W = W
3

BS. Since p = 3 and φ2 ≤ 2p − 2, then we have 1 ≤ φ ≤ 2. The map
φL : W 99K P3 is a rational map and a double cover (see [1, §6.2.7]). We have
that φL|S is hyperelliptic, since it is of degree 2 onto a plane. This implies φ = 1
(see § 9.2 (a)) and the SID must be H ∼ 2E1 + E2 (see Table 1).
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Marking EF 3-fold SID of H φ(H) (S,H) ∈
(I) W 2

BS E1 + E2 1 E2,1

(II) W 3
BS E1 + E1,2 2 E3,2

(III) W
3

BS 2E1 + E2 1 E3,1

(IV) W 4
BS, W 4

F E1 + E2 + E3 2 E4,2

(V) W
4

BS 3E1 + E2 1 E4,1

(VI) W 5
BS 2E1 + E1,2 2 E (I)

5,2

(VII) W
5

BS 2(E1 + E2) 2 E (II)−
5,2

(VIII) W 6
BS, W 6

F E1 + E2 + E1,2 3 E6,3

(IX) W
7

BS 3E1 + E1,2 2 E (I)
7,2

(X) W 7
BS, W 7

F E1 + E2 + E3 + E4 3 E7,3

(XI) W 8
BS 2E1 + E3 + E1,2 3 E8,3

(XII) W 9
BS, W 9

F 2(E1 + E1,2) 4 E+
9,4

(XIII) W 10
BS 2E1 + E2 + E3 + E4 3 E (I)

10,3

(XIV) W 13
BS, W 13

F 2(E1 + E2 + E3) 4 E (II)+
13,4

(XV) W 9
KLM 2E1 + 2E2 + E3 3 E (II)

9,3

(XVI) W 13
P 2(E1 + E2 + E3) 4 E (II)+

13,4

or 2(E1 + E2 + E3) +KS or E (II)−
13,4

(XVII) W 17
P 4(E1 + E2) 4 E (IV )+

17,4

Table 2: SID of the curve section H of an Enriques-Fano threefold (W,L) on a general S ∈ L.

(IV) W = W 4
BS. Since p = 4 and φ2 ≤ 2p − 2, then we have 1 ≤ φ ≤ 2. The map

φL : W 99K P4 is a rational map birational onto the image (see [1, §6.3.3]), which
is the Enriques threefold W 4

F of [23, §10]. Since S is mapped by φL to a general
sextic surface of P3 double along the edges of a tetrahedron, then the SID is
H ∼ E1 + E2 + E3 (see [9, §5]) and φ = 2 (see Table 1).

(V) W = W
4

BS. Since p = 4 and φ2 ≤ 2p − 2, then we have 1 ≤ φ ≤ 2. The map
φL : W 99K P4 is a rational map and a double cover over its image which is a
quadric cone (see [1, §6.6.2]). We have that φL|S is hyperelliptic, since it is of
degree 2 onto a quadric surface of P3. Then we have φ = 1 (see § 9.2 (a)) and
the SID is H ∼ 3E1 + E2 (see Table 1).

(VI) W = W 5
BS. Since p = 5 and φ2 ≤ 2p − 2, then we have 1 ≤ φ ≤ 2. The

map φL : W → P5 is a morphism birational onto its image (see [1, §6.2.2]).
So we have that φ = 2 (see § 9.2 (b)). The SID is H ∼ 2(E1 + E2) + KS or
H ∼ 2E1 + E1,2 or H ∼ 2(E1 + E2) (see Table 1). The case H ∼ 2(E1 + E2)
is excluded, otherwise the map φL|S would be superelliptic (see [16, Theorem
4.7.1]). Let us consider now a smooth intersection B4 := Q1 ∩Q2 of two quadric
hypersurfaces of P5 and an elliptic curve e ⊂ B4 given by the intersection of two
hyperplane sections of B4. In Bayle’s description, an Enriques-Fano threefold
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W of this type is given by the quotient π : X → X/σ =: W of X := BleB4,
that is the blow-up of B4 along the curve e, where σ is an involution of X with
eight fixed points. Let us denote the above blow-up by the map bl : X → B4

and let E := bl−1(e) be the exceptional divisor. If h denotes the hyperplane
class of P5, then KQ1 = (KP5 + Q1)|Q1 = (−4h)|Q1 and KB4 = (KQ1 + B4)|B4 =
(KQ1 + Q2|Q1)|B4 = (−2h)|B4 by the adjunction formula. So we obtain −KX =

−bl∗KB4−(codim(e, B4)−1)E = 2bl∗(h)−E (see [27, p.187]). Furthermore if S̃ is
the K3-surface π∗S, then π|∗

S̃
H ∼ −KX |S̃ =

(
2bl∗(h)−E

)
|S̃. Let us see that E|S̃

is not 2-divisible. We observe that S̃ is isomorphic to the complete intersection
of three quadric hypersurfaces of P5 and that E|S̃ is a quartic elliptic curve C.

If E|S̃ were 2-divisible, we would have a divisor D on S̃ such that C ∼ 2D
and D2 = 0. We observe that −D couldn’t be effective, otherwise −2D ∼ −C
would be effective and this is a contradiction; so by Serre Duality we would have
h2(OS̃(D)) = 0. Furthermore by Riemann-Roch we would obtain

h0(OS̃(D)) ≥ h0(OS̃(D))− h1(OS̃(D)) = 2 > 0.

Thus D would be effective, elliptic (by the adjunction formula) and with degree
2, which is a contradiction. This implies that H is not numerically divisible by
2, so the only possible SID is H ∼ 2E1 + E1,2.

(VII) W = W
5

BS. Since p = 5 and φ2 ≤ 2p − 2, then we have 1 ≤ φ ≤ 2. The map
φL : W → P5 is a morphism and it is a double cover of the image, which is the
complete intersection of two quadric hypersurfaces (see [1, §6.1.2]). We observe
that φL|S is superelliptic, because it is of degree 2 onto a quartic surface of P4.
Hence we have φ = 2, because if φ = 1 the map would be hyperelliptic (see § 9.2
(a)). Then the SID is H ∼ 2(E1 +E2) (see Table 1), since H has to be 2-divisible
in Pic(S) (see [16, Theorem 4.7.1]).

(VIII) W = W 6
BS. Since p = 6 and φ2 ≤ 2p − 2, then we have 1 ≤ φ ≤ 3. The map

φL : W ↪→ P6 is a morphism and an isomorphism to its image (see [1, §6.2.4]).
Therefore we have φ = 3, otherwise φL|S would not be an isomorphism to its
image (see § 9.2 (c)). Then the SID is H ∼ E1 + E2 + E1,2 (see Table 1). We
also recall that the F-EF threefold W 6

F of [23, §3] is a limit of W 6
BS (see [44, Main

Theorem 2]).

(IX) W = W
7

BS. Since p = 7 and φ2 ≤ 2p − 2, then we have 1 ≤ φ ≤ 3. The
map φL : W → P7 is a morphism, it is birational onto its image but it is not
an isomorphism onto its image, since there are points in the image with two
preimages (see [1, §6.6.1]). Let us explain this fact better. In Bayle’s description,
an Enriques-Fano threefold W of this type is given by the quotient π : X →
X/σ =: W of X := P1×S4, where S4 ⊂ P4 is a Del Pezzo surface of degree 4 and
σ is an involution of X with eight fixed points. In his analysis, Bayle introduces
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a morphism ϕ : X → P7 such that we have the following commutative diagram

X = P1 × S4

W ϕ(X) = φL(W ) ⊂ P7.

π
ϕ

φL

In particular a point x ∈ ϕ(X) has two preimages in X, except in the case in
which x ∈ ϕ([0 : 1] × S4) ∪ ϕ([1 : 0] × S4): in this case ϕ−1(x) is given by four
points of X. Since π : X → W has degree 2, then φ−1

L (x) is given by one point
if x ∈ φL(W ) \ (ϕ([0 : 1]× S4) ∪ ϕ([1 : 0]× S4)), otherwise it is given by two
points. This implies φ = 2 (see § 9.2 (b)). For the SID of H we have a priori two
possibilities, namely H ∼ 3E1 + E1,2 and H ∼ 3E1 + 2E2 (see Table 1).

Remark 9.3. In the case in which the SID is H ∼ 3E1 +E1,2, the surface S does
not contain elliptic cubic curves. Indeed we have that degE1 = E1 ·H = 2 and
degE1,2 = E1,2 · H = 6. Furthermore let E be an elliptic curve in S such that
it is not numerically equivalent to E1, E1,2, 2E1, 2E1,2. By [34, Lemma 2.1] we
have that E · E1 > 0, E · E1,2 > 0 and so degE = E ·H ≥ 3 + 1 = 4.

Remark 9.4. In the case in which the SID is H ∼ 3E1 + 2E2, the surface S
contains the following elliptic cubic curves: E2 and E2 ∼ E2 +KS.

It is known that the surface S4 is the image of P2 via the rational map λ defined
by the linear system of the plane cubic curves passing through five fixed points
a1, a2, a3, a4, a5 in general position. In particular S4

∼= Bla1,a2,a3,a4,a5 P2, where
bl : Bla1,a2,a3,a4,a5 P2 → P2 is the blow-up of the plane at these five points. Let `
be the strict transform of a general line of P2 and let us consider the exceptional
divisors ei := bl−1(ai) of bl : S4 → P2, for 1 ≤ i ≤ 5. Let us take the K3-surface

S̃ := π∗S. Then we have that

π|∗
S̃
H ∼ −KX |S̃ ∼ (2p× S4 + P1 × (−KS4))|S̃ ∼

∼ (2p× S4 + P1 × (3`− e1 − e2 − e3 − e4 − e5)) |S̃ =

= 2p× S4|S̃ + P1 × (`− e5)|S̃ + P1 × (2`− e1 − e2 − e3 − e4)|S̃.
By setting E1 := P1 × (` − e5)|S̃, E2 := P1 × (2` − e1 − e2 − e3 − e4)|S̃ and

E3 := p × S4|S̃, we have π|∗
S̃
H ∼ E1 + E2 + 2E3, where E

2

1 = E
2

2 = E
2

3 = 0,

E1 ·E2 = 4 and E1 ·E3 = E2 ·E3 = 2. Furthermore, by the adjunction formula, we
have that KEi

= 0 and pg(Ei) = 1, for 1 ≤ i ≤ 3. Let us suppose that there exists

an elliptic cubic curve E on S and let us define E := π−1(E). Since E ·H = 3 on

S, then E ·π|∗
S̃
H = 6 on S̃. Obviously, we have that E is not linearly equivalent to

E1, E2, E3, because E1 ·π|∗S̃H = E2 ·π|∗S̃H = 8 6= 6 and E3 ·π|∗S̃H = 4 6= 6. Since
two elliptic curves on a K3 surface, which are not linearly equivalent, intersect at
least in two points, then E ·π|∗

S̃
H ≥ 2+2+2 ·2 = 8 > 6, which is a contradiction.

Hence S does not contain elliptic cubic curves and so, by Remarks 9.3, 9.4, the
SID is H ∼ 3E1 + E1,2 with φ = 2.
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(X) W = W 7
BS. Since p = 7 and φ2 ≤ 2p − 2, then we have 1 ≤ φ ≤ 3. The

map φL : W ↪→ P7 is a morphism and it is an isomorphism onto its image
(see [1, §6.4.1]). This implies φ = 3 (see § 9.2 (c)), which yields the SID
H ∼ E1 + E2 + E3 + E4 (see Table 1). See also [10, Lemma 4.6], where these
threefolds are obtained via a projection technique from (XIV). The F-EF three-
fold W 7

F of [23, §4] is a limit of W 7
BS (see [44, Main Theorem 2]).

(XI) W = W 8
BS. Since p = 8 and φ2 ≤ 2p − 2, then we have 1 ≤ φ ≤ 3. The map

φL : W ↪→ P8 is a morphism and it is an isomorphism onto its image (see [1,
§6.4.2]). This implies φ = 3 (see § 9.2 (c)), which yields H ∼ 2E1 + E3 + E1,2

(see Table 1).

(XII) W = W 9
BS. Since p = 9 and φ2 ≤ 2p − 2, then we have 1 ≤ φ ≤ 4. The map

φL : W ↪→ P9 is a morphism and it is an isomorphism onto its image (see [1,
§6.1.4]), which is the F-EF 3-fold W 9

F of [23, §7] (see Theorem 6.11). Therefore
one has 3 ≤ φ ≤ 4. In Bayle’s description, an Enriques-Fano threefold W of this
type is given by the quotient π : X → X/σ =: W of the complete intersection
X of two quadric hypersurfaces of P5, where σ is an involution of X with eight
fixed points. This implies that H is numerically divisible by 2: indeed if S̃ is
the K3-surface π∗S, then π|∗

S̃
H ∼ −KX |S̃ where −KX is a quadric section of

X. So we have φ = 4 and H ∼ 2(E1 + E1,2) or H ∼ 2(E1 + E1,2) + KS (see
Table 1). Furthermore Fano proves that these threefolds are represented on P3

by the linear system K of the septic surfaces which are double along the edges of
two trihedra T and T ′. Let us use the notations of § 5.3. Let K̃ be the divisor in
K̃ such that νK̃(K̃) = S. There is only one cubic surface in P3 which is singular
along the edges of the trihedron T ′, that is T ′ itself. So we have that

(3H−
3∑
i=1

2F ′ij −
3∑

i,j=1

Rij −
3∑
i=1

4Γ′i −
∑

i,j,k∈{1,2,3}
i<j, h=i,j

(Λijk,h + 3Λ′ijk,h))|K̃ ∼ 0.

Then we have that H corresponds to the following divisor on K̃:

(7H−
∑

1≤i<j≤3

2(Fij+F ′ij)−
3∑

i,j=1

Rij−
3∑
i=1

4(Γi+Γ′i)−
3∑

i,j,k=1
i<j, h=i,j

3(Λijk,h+Λ′ijk,h))|K̃ ∼

∼ (4H−
∑

1≤i<j≤3

2Fij −
3∑
i=1

4Γi −
3∑

i,j,k=1
i<j

2Λijk,i)|K̃ .

This implies that H is 2-divisible and the only possible SID is H ∼ 2(E1 +E1,2).

(XIII) W = W 10
BS. Since p = 10 and φ2 ≤ 2p − 2, then we have 1 ≤ φ ≤ 4. The map

φL : X ↪→ P10 is a morphism and it is an isomorphism onto its image (see [1,
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§6.5.1]). Therefore one has 3 ≤ φ ≤ 4 (see § 9.2 (c)). The possible cases of the
SID of H are H ∼ 2E1 +E2 +E3 +E4, H ∼ 3(E1 +E2) and H ∼ 2E1,2 +E1 +E2

(see Table 1). We recall that an Enriques-Fano threefold W of this type is given
by the quotient π : X → X/σ =: W of X := P1 × S6, where S6 is a smooth
Del Pezzo surface of degree 6 in P6 and σ is an involution of X with eight fixed
points. It is known that the surface S6 is the image of P2 via the rational map
λ defined by the linear system of the plane cubic curves passing through three
fixed points a1, a2, a3 in general position. In particular S6

∼= Bla1,a2,a3 P2, where
bl : Bla1,a2,a3 P2 → P2 is the blow-up of the plane at these three points. Let ` be
the strict transform of a general line of P2 and let us consider the exceptional
divisors ei = bl−1(ai) of bl : S6 → P2, for 1 ≤ i ≤ 3. Let us take the K3-surface

S̃ := π∗S. Then we have that

π|∗
S̃
H ∼ −KX |S̃ ∼ (2p× S6 + P1 × (−KS6))|S̃ =

= (2p× S6 + P1 × (3`− e1 − e2 − e3)) |S̃ =

= 2p× S6|S̃ + P1 × (`− e1)|S̃ + P1 × (`− e2)|S̃ + P1 × (`− e3)|S̃.

By setting E1 := p × S6|S̃ and Ei := P1 × (` − ei)|S̃, for 2 ≤ i ≤ 4, we have

π|∗
S̃
H ∼ 2E1 + E2 + E3 + E4, where E

2

i = 0 and Ei · Ej = 2, for 1 ≤ i < j ≤ 4.

Furthermore, by the adjunction formula, we have that KEi
= 0 and pg(Ei) = 1,

for 1 ≤ i ≤ 4. We will now prove that the SID is H ∼ 2E1 + E2 + E3 + E4. If
the SID were H ∼ 3(E1 + E2), then H would be 3-divisible and therefore also
π|∗
S̃
H. But this does not happen because π|∗

S̃
H · E2 = 8 is not divisible by 3.

Now suppose H ∼ 2E1,2 + E1 + E2. By setting Ẽ1,2 := π|∗
S̃
E1,2, Ẽ1 := π|∗

S̃
E1

and Ẽ2 := π|∗
S̃
E2, we have Ẽ1,2 · Ẽ1 = Ẽ1,2 · Ẽ2 = 4 and Ẽ1 · Ẽ2 = 2. Hence

Ẽ1,2 · π|∗S̃H = 8 and Ẽ1 · π|∗S̃H = Ẽ2 · π|∗S̃H = 10. Let D be any elliptic curve

on S such that D2 = 0 and that is not linearly equivalent to Ẽ1,2, Ẽ1, Ẽ2: then
D · π|∗

S̃
H ≥ 2 · 2 + 2 + 2 = 8, since two elliptic curves on a K3 surface, which are

not linearly equivalent, intersect at least in two points. But if we took D = E1,
we would obtain E1 · π|∗S̃H = 6 < 8, which is a contradiction. Then it must be
H ∼ 2E1 + E2 + E3 + E4 with φ = 3.

(XIV) W = W 13
BS. Since p = 13 and φ2 ≤ 2p − 2, then we have 1 ≤ φ ≤ 4. The map

φL : W ↪→ P13 is a morphism and it is an isomorphism onto its image (see [1,
§6.3.2]), which is the F-EF 3-fold W 13

F of [23, §8] (see Theorem 6.17). Therefore
one has 3 ≤ φ ≤ 4 (see § 9.2 (c)). According to Bayle, an Enriques-Fano threefold
W of this type is given by the quotient π : X → X/σ =: W of X := P1×P1×P1

under an involution σ of X with eight fixed points. So Bayle’s description im-
plies that H is numerically divisible by 2: indeed if S̃ is the K3-surface π∗S, then
π|∗
S̃
H ∼ −KX |S̃ ∼ (2, 2, 2)|S̃. Furthermore Fano proves that these threefolds are

represented on P3 by the linear system S of sextic surfaces singular along the
edges of a fixed tetrahedron T . Fano’s description shows that H is 2-divisible
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in Pic(S). Indeed, by using notations of § 5.2 and by taking Σ̃ the divisor in S̃
such that ν̃(Σ̃) = S, then we have that H corresponds to the following divisor on

Σ̃: (6H−
∑

0≤i<j≤3 2Fij −
∑2

i,j=0
i 6=j

4Γij)|Σ̃. So the only possible case is φ = 4 and

H ∼ 2(E1 + E2 + E3) (see Table 1).

(XV) W = W 9
KLM . These threefolds are obtained by projection of the threefolds in

(XIV) from, say, the curve E3 (see [36, §13]). Then H ∼ 2(E1 + E2) + E3 and
φ = 3. The general Enriques surface appears as a hyperplane section of these
threefolds.

(XVI) W = W 13
P . Since p = 13 and φ2 ≤ 2p − 2, then we have 1 ≤ φ ≤ 4. Let us

consider a cone V ⊂ P7 over a smooth sextic Del Pezzo surface S6 contained in
a hyperplane P6 of P7. An Enriques-Fano threefold W of this type is given by
the quotient π : V → V/τ =: W of V ⊂ P7 where τ : V → V is an involution
fixing five points, one of which is the vertex v of the cone (see [46, Remark 3.3]).
In particular V is a Gorenstein Fano threefold with canonical singularity at v
and with anticanonical divisor −KV = 2M , where M is the class of hyperplane
sections (see Lemma 8.2). Furthermore the quotient map π : V → W is defined
by the base point free sublinear system Q ⊂ |2M | = | −KV | of the τ -invariant

quadric sections of V such that a general member S̃ ∈ Q is a smooth K3 surface
not containing the five τ -fixed points and on which the action of τ is fixed point
free. So we have L := |OW (S)|, where S is the Enriques surface π(S̃) = S̃/τ .
Since S ⊂ P12 is 1-extendable to W ⊂ P13 (see § 8.2), then 3 ≤ φ ≤ 4 (see
[16, Theorem 4.6.1]). We recall that the surface S6 is isomorphic to the blow-
up bl : Bla1,a2,a3 P2 → P2 of the plane at three fixed points a1, a2, a3 in general
position. Let ` be the strict transform of a general line of P2 and let ei := bl−1(ai),

for 1 ≤ i ≤ 3. Since S̃ is a K3 surface given by a particular quadric section of
V and S6 is a hyperplane section of V , we have a double cover f : S̃ → S6 with
ramification locus Rf = f ∗(−KS6) = f ∗(3` − e1 − e2 − e3) and branch locus
Bf = −2KS6 = 6`− 2e1− 2e2− 2e3. Furthermore, by setting Ei := f ∗(`− ei) for
1 ≤ i ≤ 3, we have M |S̃ ∼ f ∗(−KS6) = f ∗(3`− e1 − e2 − e3) ∼
∼ f ∗(`− e1 + `− e2 + `− e3) = f ∗(`− e1) + f ∗(`− e2) + f ∗(`− e3) =

= E1 +E2 +E3 =: D, where D2 = 12, Ei ·Ej = 2 for 1 ≤ i < j ≤ 3 and E
2

i = 0.

So Ei is an elliptic curve for 1 ≤ i ≤ 3. Since π|∗
S̃
H = (π∗S)|S̃ ∼ S̃|S̃ ∼

∼ 2M |S̃ ∼ 2D = 2(E1 + E2 + E3), then π|∗
S̃
H is 2-divisible on the K3 surface S̃

and H is numerically 2-divisible on the Enriques surface S, i.e. H or H+KS is 2-
divisible on S. Then we have only the following possibile SID:H ∼ 2(E1+E2+E3)
or H ∼ 2(E1 + E2 + E3) + KS (see Table 1). In both cases, if we consider the

elliptic curves Ẽi := π∗(Ei) for 1 ≤ i ≤ 3, we have H̃ := π|∗
S̃
H = 2(Ẽ1 + Ẽ2 + Ẽ3),

where Ẽi · Ẽj is 2 for i 6= j and it is 0 for i = j.

Remark 9.5. We have that Ei = Ẽi, for 1 ≤ i ≤ 3. Indeed, since 2(Ẽ1 + Ẽ2 +

Ẽ3) ∼ π|∗
S̃
H ∼ 2(E1 + E2 + E3), we have Ẽ1 + Ẽ2 + Ẽ3 ∼ E1 + E2 + E3 on the
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K3 surface S̃. Let us suppose E1 6= Ẽi for 1 ≤ i ≤ 3, so E1 · Ẽi ≥ 2. Then
4 = E1 · (E1 + E2 + E3) = E1 · (Ẽ1 + Ẽ2 + Ẽ3) ≥ 6, which is a contradiction.

It remains to understand which case really occurs. See § 9.4 for some remarks.

(XVII) W = W 17
P - see [46, §3]. By [10, Proposition 4.7] the SID is H ∼ 4(E1 +E2) and

φ = 4.

9.4 Remarks concerning the SID of the curve sections of the
P-EF 3-fold (XVI) of genus 13

The determination of the SID of a general curve section of the P-EF 3-fold W 13
P remains

an open question. Let us see some results that may be useful in the future.

Theorem 9.6. Let S be a general hyperplane section of the P-EF 3-fold W 13
P and let

H be a general curve section of W 13
P on S. Let π : S̃ → S be the K3 double cover and

H̃ := π∗H. Then 1 ≤ h1(TS̃(−H̃)) ≤ 2.

Proof. Let F1 and F2 be two half-fibres on the Enriques surface S such that F1 ·F2 = 1
and let be R̃ ∼ 2F̃1 + 2F̃2 where F̃i := π∗Fi, for i = 1, 2. Let us set

α := h1(OS(H−2F1))+h1(OS(H−2F1+KS))+h1(OS(H−2F2))+h1(OS(H−2F2+KS))

and β := h0(OR̃(4F̃1 + 4F̃2 − H̃)). By [10, Lemma 5.2] we have that

β ≤ h0(OS(4F1 + 4F2 −H)) + h0(OS(4F1 + 4F2 −H +KS))+
+h1(OS(H − 2F1 − 2F2)) + h1(OS(H − 2F1 − 2F2 +KS))

and h1(TS̃(−H̃)) ≤ α + β, with equality if α = 0. Let us use now the same notations

of the case (XVI) of the proof of Theorem 9.2. We have H̃ ∼ 2Ẽ1 + 2Ẽ2 + 2Ẽ3. Let

Ei := π(Ẽi) for 1 ≤ i ≤ 3 and let us take F1 = E1 and F2 = E2. Then we have that

α = h1(OS(2E2 + 2E3 +KS)) + h1(OS(2E2 + 2E3)) + h1(OS(2E1 + 2E3 +KS))+

+h1(OS(2E1 + 2E3)) = h1(OS̃(2Ẽ2 + 2Ẽ3)) + h1(OS̃(2Ẽ1 + 2Ẽ3)) = 0.

So we obtain the equality h1(TS̃(−H̃)) = β where β = h0(OR̃(2Ẽ1 + 2Ẽ2 − 2Ẽ3)). Let
us consider the following exact sequence

0→ OS̃(2F̃1 + 2F̃2 − H̃)→ OS̃(4F̃1 + 4F̃2 − H̃)→ OR̃(2R̃− H̃)→ 0

that is
0→ OS̃(−2Ẽ3)→ OS̃(2Ẽ1 + 2Ẽ2 − 2Ẽ3)→ OR̃(2R̃− H̃)→ 0.

Since h0(OS̃(−2Ẽ3)) = 0, then β = h0(OR̃(2R̃ − H̃)) ≥ h0(OS̃(2Ẽ1 + 2Ẽ2 − 2Ẽ3)).

Since Ẽi = Ei = f ∗(` − ei) for 1 ≤ i ≤ 3 (see Remark 9.5), then 2Ẽ1 + 2Ẽ2 −
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2Ẽ3 = 2f ∗(` − e1 − e2 + e3) is an effective divisor on S̃ and in particular we have

h0(OS̃(2Ẽ1 + 2Ẽ2 − 2Ẽ3)) = 1. Moreover we have

β ≤ h0(2E1 + 2E2 − 2E3) + h0(2E1 + 2E2 − 2E3 +KS) + h1(2E3) + h1(2E3 +KS) =

= h0(2Ẽ1 + 2Ẽ2 − 2Ẽ3) + h1(2Ẽ3) = 1 + 1 = 2.

Remark 9.7. Let S be a general hyperplane section of the P-EF 3-fold W 13
P and

let H be a general curve section of W 13
P on S. Let us use the same notations of

the case (XVI) of the proof of Theorem 9.2. By setting H̃ := π|∗
S̃
H, we have that

h1(TS̃(−H̃)) = h1 (TS(−H)) +h1 (TS(−H +KS)) (see [10, (9)]). In our case it must be

h1(TS̃(−2Ẽ1−2Ẽ2−2Ẽ3)) = h1 (TS(−2E1 − 2E2 − 2E3))+h1 (TS(−2E1 − 2E2 − 2E3 +KS)) .

Since a general (unnodal) element of E (II)+

13,4 is extendable to the classical Enriques-
Fano threefold, then by semicontinuity we have that h1 (TS(−2E1 − 2E2 − 2E3)) ≥ 1.
By Theorem 9.6 we obtain the following possibilities:

(i) h1 (TS(−2E1 − 2E2 − 2E3)) = 1 and h1 (TS(−2E1 − 2E2 − 2E3 +KS)) = 0; hence

S would be an Enriques surface extendable to W 13
P such that (S,H) ∈ E (II)+

13,4 ;

(ii) h1 (TS(−2E1 − 2E2 − 2E3)) = 2 and h1 (TS(−2E1 − 2E2 − 2E3 +KS)) = 0; hence

S is an Enriques surface extendable to W 13
P such that (S,H) ∈ E (II)+

13,4 ;

(iii) h1 (TS(−2E1 − 2E2 − 2E3)) = 1 and h1 (TS(−2E1 − 2E2 − 2E3 +KS)) = 1; hence

S is an Enriques surface extendable to W 13
P such that (S,H) ∈ E (II)+

13,4 or E (II)−

13,4 .

Remark 9.8. Ciliberto-Dedieu-Galati-Knutsen show that if S is an unnodal Enriques

surface such that (S,OS(1)) belongs to E (II)−

13,4 , then h1 (TS(−1)) = 0 and so it is not
extendable (see [10, proof of Theorem 1]). Let S be a general hyperplane section of the
P-EF 3-fold W 13

P and let H be a general curve section of W 13
P on S. By Theorem 9.2

we have that (S,H) ∈ E (II)+

13,4 or (S,H) ∈ E (II)−

13,4 . Since (S,H) is 1-extendable to W 13
P

by construction, then it must be h1 (TS(−H)) > 0. Thus, if (S,H) belonged to E (II)−

13,4 ,
it should be S nodal, that is S should contain some smooth rational curve. Anyway,
let us use the same notations of the case (XVI) of the proof of Theorem 9.2. We

have that, in both cases (S,H) ∈ E (II)+

13,4 or (S,H) ∈ E (II)−

13,4 , the K3 surface S̃ = π∗S

contains smooth rational curves. For example S̃ contains the (−2)-curves given by
f ∗(`− e1 − e2), f ∗(`− e1 − e3), f ∗(`− e2 − e3), f ∗(e1), f ∗(e2), f ∗(e3).

10 On Enriques-Fano threefolds and a conjecture

of Castelnuovo

10.1 Abstract

Let L be an r-dimensional linear system of surfaces on P3 such that (the desingular-
ization of) the general element has zero geometric genus and zero arithmetic genus.
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What happens if we force the surfaces of L to have a triple point at a general point of
P3? Castelnuovo conjectured in [4, pp. 187-188] that we get an (r − 10)-dimensional
sublinear system L• such that the general surface satisfies one of the following three
properties: it is an irreducible surface with irregular desingularization, with zero ge-
ometric genus and with arithmetic genus equal to −1; it is reducible in two rational
surfaces intersecting along a rational curve; it has the same genera as a general el-
ement of L. First we will apply the arguments of Castelnuovo to (rational) regular
smooth irreducible threefolds (see § 10.2), and then to (rational) normal threefolds
with isolated singularities and regular desingularization (see § 10.3). In particular we
will analyze the sublinear system L• ⊂ L of the hyperplane sections of the classical
Enriques-Fano threefold (W 13

F ,L) having a triple point at a general point w ∈ W 13
F (see

§ 10.4). We will find that the general element of this linear system satisfies the first
property conjectured by Castelnuovo, since it is birational to an elliptic ruled surface.
Furthemore we will prove that the image of W 13

F via the rational map defined by L•
is the Cayley cubic surface (see Theorem 10.25). Finally we will observe that also by
imposing a triple point at the general hyperplane section of the P-EF 3-fold W 17

P , we
obtain a surface whose desingularization has q = 1, pg = 0 and pa = −1 (see § 10.5).

10.2 Castelnuovo’s conjecture for smooth threefolds

In [4, pp.187-188], Castelnuovo proposed some ideas about certain irreducible threefolds
and particular linear systems of surfaces on them. In order to explain these ideas, let
us start by talking about the link between the irregularity of a surface contained in a
threefold and the one of the threefold itself, which was studied in [5, §4].

Proposition 10.1. Let W be a smooth irreducible threefold endowed with an r-
dimensional linear system L, where r ≥ 2, such that the general element is an irre-
ducible surface. If the divisors of L are big and nef, then W has the same irregularity
of a general surface S ∈ L.

Proof. Let S be a general element of L and let us consider the following exact sequence

0→ OW (−S)→ OW → OS → 0.

Since S is a big and nef divisor, then we have that hi=1,2(OW (−S)) = 0 by the
Kawamata-Viehweg vanishing theorem and so we obtain q(W ) = q(S).

Remark 10.2. Let W be a smooth irreducible threefold and let L be an r-dimensional
linear system on W such that r ≥ 2 and such that the general element is a smooth
irreducible surface. Let us suppose that L has base curves. We can consider the
appropriate blow-ups of W along these curves in order to obtain a birational morphism
bl : W → W such that the strict transform L of L has no base curves. Let S be an
element of L. Since L could have base points outside the base curves, then S is a
(semi-ample and hence) nef divisor by the Zariski-Fujita theorem. Furthemore S is the
strict transform of an element S ∈ L. If S is a big divisor, then S is big too.

Some consequences of Proposition 10.1 are stated in [5, §6] for the three-dimensional
projective space W = P3. We will adapt them to any regular smooth irreducible
threefold.
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Proposition 10.3. Let W be a regular smooth irreducible threefold endowed with an
r-dimensional linear system L, where r ≥ 3, such that the general element is a smooth
irreducible surface. If the intersection of two general surfaces of L, outside the base
locus, is an irreducible curve, then a general element S ∈ L is a regular surface.

Proof. We may assume that the base locus of L is empty or at worst a finite set.
Indeed, if this were not the case, we could continue the proof with the pair (W,L) of
Remark 10.2 instead of the pair (W,L). This would be possible since a general S ∈ L
is a smooth surface isomorphic to a general S ∈ S and such that q(S) = q(S).

Let us fix now a general S ∈ L, which is a nef divisor on W by the Zariski-Fujita
theorem. Let us suppose that S is an irregular surface. Let ∆ ⊆ Pr be the image
of the rational map φL : W 99K Pr defined by L. Since r ≥ 3 > 1 and S is an
irreducible surface by hypothesis, then dim ∆ > 1. Since S is not a big divisor (see
Proposition 10.1), then dim ∆ < 3. So ∆ is a surface and the general fibre of φL is
a curve. Let S ′ be another general element of L. The intersection curve S ∩ S ′ is
sent by φL to the intersection of two general hyperplane sections of ∆, that is a set of
d := deg ∆ points of ∆. We observe that ∆ cannot be a plane, since r ≥ 3 > 2. Hence
we have that S ∩ S ′ is a reducible curve given by d ≥ 2 fibres of φL. Since this is a
contradiction with the hypothesis, then S must be regular.

We recall that a one-dimensional linear system on a variety X is called pencil. In
the following we will extend the use of this term. Let S be a smooth surface and let
B be a smooth curve of genus b ≥ 0. A surjective rational map f : S 99K B with
connected fibres is called a pencil of genus b of curves on S. All the curves of such
a pencil are linearly equivalent if and only if b = 0. In this case we will refer to it
as rational pencil. If b > 0 we will talk about irrational pencil and, in this case, f is
a morphism (see [2, p.114]). In particular, an irrational pencil of genus one is called
elliptic pencil.

Definition 10.4. A congruence of curves of a threefold W is a two-dimensional ir-
reducible family V of curves contained in W such that through a general point of W
passes only one curve of the family.

Proposition 10.5. Let W be a regular smooth irreducible threefold endowed with
an r•-dimensional linear system L•, where r• ≥ 3, such that the general element is
an irregular smooth irreducible surface. Then two general elements S• and S ′• of L•
intersect each other (outside the base locus) along reducible curves. In particular
on a fixed S• the components of these curves are fibres of a pencil of genus b where
0 ≤ b ≤ q(S•). Furthermore, by varying the surface S•, these component curves give a
congruence V of curves of W .

Proof. We may assume that L• is base point free. Indeed if L• had base curves, then
we would take the pair (W,L•) as in Remark 10.2, where L• has no base curves. If
L• still had a finite set of base points, then we would consider the blow-ups necessary
to have a birational morphism b̃l : W̃ → W such that the strict transform L̃• of
L• is base point free. Thus we continue the proof by denoting the pair (W̃ , L̃•) by

(W,L•): this is possible since a general surface S̃• ∈ L̃• is birational to a general
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surface S• ∈ L• and they have same irregularity. Since the divisors of L• are not big
(see Proposition 10.1), then the image of the morphism φ• : W → Pr• defined by L•
is not a threefold. Moreover, since r• ≥ 3 > 1 and the elements of L• are generically
irreducible, then φ•(W ) is not even a curve. The image of W via φ• is thus a surface
∆ and a general S• ∈ L• is sent via φ• to a curve Γ, which is a general hyperplane
section of ∆. Since S• is smooth, the morphism φ•|S• : S• → Γ factorizes via the
normalization n : B → Γ of Γ, i.e. there exist a morphism ψ : S• → B such that
φ•|S• = n ◦ ψ. Furthermore the fibres of ψ : S• → B are generically equal to the
ones of φ•|S• : S• → Γ. The curves on S• given by the intersection with another
general element of L• are reducible (see Proposition 10.3) and they are fibres of the
map φ•|S• : S• → Γ. We observe that 0 ≤ b := pg(B) = pg(Γ) ≤ q(S•), since we
have the injection H0(Ω1

Γ) ↪→ H0(Ω1
S•). Finally, by varying the surface S•, we obtain

that the fibres of the morphism φ• : W → ∆ ⊂ Pr• give a two dimensional family V
such that through a general point w ∈ W passes only one curve of the family, that is
φ−1
• (φ•(w)).

If we take W = P3 as in [5, §6], or more in general a rational smooth irreducible
threefold, instead of any regular smooth irreducible threefold, we obtain an additional
property. Let us see which one.

Remark 10.6. Let (W,L•) be a pair given by a threefold and a linear system satisfying
the hypothesis of Proposition 10.5. If W is rational, the congruence V of curves of W
is parametrized by a rational surface R. Let us explain why. Through a general
point w ∈ W passes only one curve γw ∈ V (see Definition 10.4). If R is the surface
parametrizing the curves of V , let rw be the point of R corresponding to the curve γw.
We have a dominant rational map W 99K R such that w 7→ rw. Since W is rational,
then R is unirational, and so, as consequence of the Castelnuovo Rationality criterion,
R is rational.

Castelnuovo’s conjecture. Let us take a rational smooth irreducible threefold W
and an r-dimensional linear system L on W such that a general S ∈ L is a smooth
irreducible surface with zero geometric genus pg(S) = 0 and zero arithmetic genus
pa(S) = 0. Let L• be the sublinear system of L given by the surfaces of L having a
triple point at a general point w ∈ W . Then the linear system L• has dimension r−10
and one of the following conditions occurs:

(A) a general element S• ∈ L• is an irreducible surface which has irregular desingular-

ization S̃ with q(S̃•) = 1, pg(S̃•) = 0 and pa(S̃•) = −1;

(B) the surfaces S• ∈ L• are reducible in the union S• = F• ∪ M• of two rational
surfaces passing through the point w, where the surface M• changes by varying
S•, the surface F• is fixed and F• ∩M• is a rational curve;

(C) the surfaces S• ∈ L• have the same genera as a general S ∈ L.

Let us suppose that case (A) of Castelnuovo’s conjecture occurs. Let us consider

the blow-ups necessary to obtain a birational morphism bl : W̃ → W such that the
strict transform S̃• of S• is a smooth irreducible surface and such that it moves in an
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r-dimensional base point free linear system, given by the strict transform L̃• of L•.
If r ≥ 13, then r• := dimL• = r − 10 ≥ 3 and we can apply Proposition 10.5 to
the pair (W̃ , L̃•). Thus the intersection of two general surfaces of L̃• is the union of

some elements of a congruence of curves of W̃ . These curves are fibres of a pencil of
genus b on a general surface S̃• ∈ L̃•, where 0 ≤ b ≤ q(S̃•) = 1. In particular, if φ̃• :

W̃ → Pr• is the morphism defined by L̃•, we have that b := pg(Γ) where Γ := φ̃•(S•).

Furthermore ∆ := φ̃•(W̃ ) is a rational surface of Pr• with general hyperplane section
Γ (see Remark 10.6).

Remark 10.7. If case (A) of Castelnuovo’s conjecture occurs, if r ≥ 13 and if Γ is an
elliptic curve, then ∆ ⊂ Pr• is a Del Pezzo surface (see [3, VI, Exercise (1)]). In this
case ∆ ⊂ Pr• is represented on the projective plane P2 by a linear system D of elliptic
curves with dimD ≤ 9. Since the linear system L• is in birational correspondence with
the linear system D, we have dimD = dimL• = r − 10 ≤ 9, which implies r ≤ 19.

10.3 Castelnuovo’s conjecture for singular threefolds

We can adapt Castelnuovo’s conjecture, its consequences and preliminary results to
singular threefolds. Let us see which ones and how.

Let W be an irreducible threefold with isolated singularities and let L be an r-
dimensional linear system on W , where r ≥ 2, such that the general element S ∈ L
is a smooth irreducible surface disjoint from the singular points of W . Let us take a
resolution f : Ŵ → W of the singularities of W . Since f is an isomorphism outside
the singular points of W , we have that the surface f−1(S) is isomorphic to S. Fur-

thermore f−1(S) moves in the linear system L̂ := f ∗L, which still has dim L̂ = r.

So we have a smooth irreducible threefold Ŵ endowed with an r-dimensional linear
system L̂, where r ≥ 2, such that the general element Ŝ ∈ L̂ is a smooth irreducible
surface. If in addition W is rational and pg(S) = pa(S) = 0, then Ŵ is rational too

and pg(Ŝ) = pa(Ŝ) = 0. Let w be a general point of W : since we may assume that

w is not a singular point of W , then ŵ := f−1(w) is still a point of Ŵ . Furthermore
if L• is the sublinear system of L given by the surfaces of L having a triple point at
w ∈ W , then L̂• := f ∗L• is the sublinear system of L̂ given by the surfaces of L̂ having
a triple point at ŵ ∈ Ŵ . Thus we can adapt Castelnuovo’s conjecture to a rational ir-
reducible threefold W with isolated singularities endowed with an r-dimensional linear
system L whose general element is a smooth irreducible surface disjoint from the sin-
gular points of W , since we can birationally work with the pair (Ŵ , L̂) defined as above.

In § 10.4 we will apply the ideas of Castelnuovo to the classical Enriques-Fano
threefold (W 13

F ,L), found by Fano in [23, §8]. We recall that W 13
F is a rational three-

fold with eight singular points and L is a linear system on W whose general element
is an Enriques surface, which is a smooth surface with zero geometric genus and zero
arithmetic genus and which is disjoint to the singular points of W , since it is a Cartier
divisor on W . We will see that case (A) of Castelnuovo’s conjecture occurs for (W 13

F ,L)
(see Theorem 10.25). From this it will follow that case (A) of Castelnuovo’s conjecture
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also occurs for the P-EF 3-fold W 17
P (see Corollary 10.26). We observe that it actually

makes sense to ask ourselves about the link between Castelnuovo’s arguments and the
P-EF 3-folds, since the Remark 10.6 also holds for a unirational variety.

Finally, for completeness, let us state the following results.

Theorem 10.8. Let W be an irreducible threefold with isolated singularities and let
L be an r-dimensional linear system on W , where r ≥ 2, such that the general element
is a smooth irreducible surface disjoint from the singular points of W . If the elements
of L are big and nef divisors, then a desingularization of W has same irregularity of a
general surface S ∈ L.

Proof. Let us apply Proposition 10.1 to the pair (Ŵ , L̂), constructed as above.

Theorem 10.9. Let W be an irreducible threefold with isolated singularities and let
L be an r-dimensional linear system on W , where r ≥ 3, such that the general element
is a smooth irreducible surface disjoint from the singular points of W . If W has regular
desingularization and if the intersection of two general surfaces of L (outside the base
locus) is an irreducible curve, then a general element S ∈ L is a regular surface.

Proof. Let us apply Proposition 10.3 to the pair (Ŵ , L̂), constructed as above.

Theorem 10.10. Let W be an irreducible threefold with isolated singularities and
let L• be an r•-dimensional linear system on W , where r• ≥ 3, such that the general
element is an irregular smooth irreducible surface disjoint from the singular points
of W . If W has regular desingularization, then two general elements S• and S ′• of
L• intersect each other (outside the base locus) along reducible curves. In particular
on a fixed S•, the components of these curves are fibres of a pencil of genus b with
0 ≤ b ≤ q(S•). Furthermore, by varying the surface S•, these component curves give a
congruence of curves of W .

Proof. Let us apply Proposition 10.5 to the pair (Ŵ , L̂•), constructed as above.

10.4 Castelnuovo’s conjecture for the classical Enriques-Fano
threefold

Let us consider the classical Enriques-Fano threefold (W = W 13
F ,L). We want to study

the sublinear system L• ⊂ L of the hyperplane sections of W with triple point at a
general point w ∈ W .

We recall that W is the image of P3 via the birational map νS : P3 99K W ⊂ P13,
defined by the linear system S of the sextic surfaces singular along the edges of a
tetrahedron T (we will use the notations of § 5.2). By definition, for each surface
S ∈ L there is a unique sextic surface Σ ∈ S such that S = νS(Σ). Hence, if we take
a surface S• ∈ L• ⊂ L, there must exist a unique sextic surface Σ• ∈ S such that
S• = νS(Σ•). This surface Σ• is a particular surface of S, which has triple point at the
point p ∈ P3 such that w = νS(p). We can so represent the linear system L• on W via
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the sublinear system S• ⊂ S on P3 given by the sextic surfaces of P3 double along the
six edges of the tetrahedron T and triple at the point p ∈ P3, such that νS(p) = w.
Since w is a general point of W , we may consider p as a general point of P3. A priori
we have that r• := dimS• ≥ dimS −10 = 13−10 = 3 and the linear system S• defines
a rational map ν• : P3 99K Pr• .

Figure 16: Construction of the line ri where i, j, k ∈ {1, 2, 3} with j < k and j, k 6= i.

Let us take the plane 〈p, l0i〉 generated by the point p and the edge l0i, for a fixed
index 1 ≤ i ≤ 3. If 1 ≤ j < k ≤ 3 with j, k 6= i, then the edges l0i and ljk are disjoint
lines of P3; so the plane 〈p, l0i〉 and the line ljk intersect at a point, outside l0i. Let ri
be the line joining this point and the point p, i.e. ri := 〈p, 〈p, l0i〉 ∩ ljk〉 as in Figure 16.

Figure 17: The position of the lines r1, r2, r3 with respect to the tetrahedron T .

Proposition 10.11. Let S• be the linear system on P3 given by the sextic surfaces
of P3 double along the six edges of the tetrahedron T and triple at the general point
p ∈ P3. The three lines r1, r2, r3 are contained in the base locus of S•.
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Proof. Assume the contrary. Let us take a surface Σ• ∈ S• and let us fix 1 ≤ i, j, k ≤ 3
with j < k and j, k 6= i. By Bezout’s Theorem, Σ• ∩ ri is given by 6 points. Since
ri is a line of the plane 〈p, l0i〉, then it intersects the line l0i at a point. Thus ri is a
line joining the triple point p of Σ• and two particular double points of Σ•, each one
lying in one of the two opposite disjoint edges l0i and ljk (see Figure 17). Then Σ• ∩ ri
contains at least 3+2+2 = 7 points, counted with multiplicity. This is a contradiction,
so ri ⊂ Σ•.

Let us denote by A the two-dimensional linear system of the planes of P3 passing
through the point p. In a general plane α ∈ A we can construct a cubic plane curve γα
with node at p and passing through the six points given by the intersection of α with
the six edges of the tetrahedron T . Let us denote these six points by Aij := α ∩ lij for
0 ≤ i < j ≤ 3.

Lemma 10.12. In a general plane α ⊂ P3 passing through the point p, there is a
unique cubic plane curve γα, defined as above.

Proof. Let g be the linear system of the cubic plane curves on α passing through the
six points {Aij|0 ≤ i < j ≤ 3} and having a node at p. If the six fixed points had been
general, we would have imposed 2·3

2
+
∑6

i=1 1 = 9 independent conditions. In our case
the points {Aij|0 ≤ i < j ≤ 3} are not in general position: indeed they are the vertices
of a complete quadrilateral whose edges are the intersection of the plane α with the four
faces of the tetrahedron T . Hence dim g ≥

(
3+2

2

)
−9−1 = 0. We want to show that the

equality holds. In order to do it, we take the blow-up bl : α̃→ α of the plane α at the
points {Aij|0 ≤ i < j ≤ 3} ∪ p, by denoting the exceptional divisors by eij = bl−1(Aij)
and ep = bl−1(p), for 1 ≤ i < j ≤ 3. If we denote by ` the strict transform of a general
line of α, then the strict transform of a general γα ∈ g is γ̃α ∼ 3`− 2ep−

∑
0≤i<j≤3 eij.

By the generality of the point p ∈ P3, we may assume that the five points p, A02,
A13, A03, A12 are in general position, since no three of them are collinear. So we can
consider the unique irreducible conic δ passing through p, A02, A13, A03, A12, as in
Figure 18, which has strict transform δ̃ ∼ 2`−ep−e02−e13−e03−e12. Since γ̃α · δ̃ = 0,
then we have the following exact sequence

0→ Oα̃(l − ep − e01 − e23)→ Oα̃(γ̃α)→ Oδ̃ → 0.

Obviously h0(α̃,Oα̃(l − ep − e01 − e23)) = 0, since the three points p,A01, A23 are not
collinear, by the generality of the point p again. Hence h0(α̃,Oα̃(γ̃α)) ≤ h0(Oδ̃) = 1
and dim g = h0(α̃,Oα̃(γ̃α))− 1 = 0.

Lemma 10.13. Let S• be the linear system on P3 given by the sextic surfaces of P3

double along the six edges of the tetrahedron T and triple at the general point p ∈ P3.
The rational map ν• : P3 99K Pr• defined by S• contracts the cubic plane curves γα,
constructed as above.

Proof. By Bezout’s Theorem, a general element Σ• ∈ S• intersects a cubic plane curve
γα in 6 · 3 = 18 points. Furthermore Σ• and γα have in common, in the base locus of
S•, the point p (which is a triple point for Σ• and a node for γα) and the six points
{Aij|0 ≤ i < j ≤ 3} (which are nodes for Σ• and simple points for γα). Hence, outside
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Figure 18: The complete quadrilateral on α with vertices at the points {Aij |0 ≤ i < j ≤ 3} and the conic δ uniquely
determined by the points p,A02, A13, A03, A12.

the base locus, we have that Σ• ∩ γα is given by 6 · 3−
∑6

i=1 2 · 1− 3 · 2 = 0 points. So
γα is contracted to a point by ν• : P3 99K Pr• .

Remark 10.14. Thanks to a computational analysis via Macaulay2 one can see that
the general fibre of the rational map ν• : P3 99K Pr• defined by S• is a cubic plane
curve γα (see Code B.11 of Appendix).

Proposition 10.15. The cubic plane curves γα, defined as above, give a congruence
V of curves of P3.

Proof. The set of the cubic plane curves γα is a 2-dimensional family V (see Lemma 10.12).
In particular V is birationally parametrized by the same projective plane P2 parametriz-
ing the planes passing through p. It remains to show that, given a general point p′ ∈ P3,
there is a unique curve of V passing through it. By Lemma 10.13 and Remark 10.14
we have that the curves of V are the general fibres of the rational map ν• : P3 99K Pr•
defined by S•. Hence ν−1

• (ν•(p
′)) is the unique curve of V passing through p′.

Corollary 10.16. Let S• be the linear system on P3 given by the sextic surfaces of P3

double along the six edges of the tetrahedron T and triple at the general point p ∈ P3.
The image of P3 via the rational map ν• : P3 99K Pr• defined by S• is a surface ∆ ⊂ Pr• .

Proof. Let ∆ be the image of P3 via ν•. By Lemma 10.13 and Remark 10.14, the
general fibre of ν• is a cubic plane curve, so we have dim ∆ = 3− 1 = 2.

Let us now pay attention to a particular surface of P3. Let us consider the linear
system c on P2 given by the cubic plane curves passing through the six vertices of a
complete quadrilateral. The image of P2 via the rational map defined by c is a special
Del Pezzo surface of degree 3 and it is called Cayley cubic surface (see [17, §9.2.2]).
This surface has four singular points whose tangent cone is a quadric cone: we will
refer to these singularities as nodes. The four nodes of the Cayley cubic surface are
given by the image of the four edges of the fixed complete quadrilateral.
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Theorem 10.17. Let S• be the linear system on P3 given by the sextic surfaces of P3

double along the six edges of the tetrahedron T and triple at the general point p ∈ P3.
The image of P3 via the rational map ν• : P3 99K Pr• defined by S• is a Cayley cubic
surface ∆ ⊂ P3. Thus r• = 3.

Proof. Let us take a general element α ∈ A, i.e. a general plane passing through
p. If we restrict the linear system S• to this plane, we obtain the linear system s
on α of the sextic plane curves with triple point at p and nodes at the six points
{Aij|0 ≤ i < j ≤ 3}. The plane α and a general fibre of ν• intersect, outside the base
locus of S•, at a single point: indeed the general fibre of ν• is a cubic plane curve γα′
contained in a plane α′ ∈ A, where α′ 6= α; so we have that α intersects γα′ , outside
the base locus of S•, at 1 · 3 − 1 · 2 = 1 point. Then the linear system s defines the
rational map ν•|α : α ∼= P2 99K Pr• which is generically 1 : 1. In the following we
will see that, by applying three quadratic transformations, we obtain, from s, the lin-
ear system c of the cubic plane curves passing through the six vertices of a complete
quadrilateral. Thus the image of α via ν•|α is the image of P2 via the rational map
defined by c, that is a Cayley cubic surface. By Corollary 10.16, this is the image ∆ of
P3 via ν• : P3 99K Pr• . Hence r• = 3.

Let us recall that the four faces of the tetrahedron T intersect the plane α along
four lines: the line 〈A01, A02, A03〉 passing through A01, A02, A03, the line 〈A01, A12, A13〉
passing through A01, A12, A13, the line 〈A02, A12, A23〉 passing through A02, A12, A23

and the line 〈A03, A13, A23〉 passing through A03, A13, A23. These four lines are the edges
of a complete quadrilateral QA with six vertices at the points {Aij|0 ≤ i < j ≤ 3} (see
Figure 19). Hence s is the linear system of the sextic plane curves triple at p e double at
the six vertices of QA. Let us consider the quadratic trasformation qp,A12,A03 : P2 99K P2

Figure 19: The complete quadrilateral QA on α with vertices at the points {Aij |0 ≤ i < j ≤ 3} and the lines between
the three base points of the quadratic transformation qp,A12,A03 .

given by the linear system of the conics passing through the three points p,A12, A03.
Let B23, B13, B01, B02 be the images of the points A23, A13, A01, A02. We have that
each of the lines 〈p,A12〉, 〈p,A03〉, and 〈A12, A03〉 is contracted by qp,A12,A03 to a point,
denoted respectively by B03, B12 and p′. Furthermore the four edges of the complete
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quadrilateral QA are sent to the four edges of a new complete quadrilateral QB with
six vertices at the points {Bij|0 ≤ i < j ≤ 3}: in particular we have that

qp,A12,A03(〈A01, A02, A03〉) = 〈B01, B02, B03〉 , qp,A12,A03(〈A01, A12, A13〉) = 〈B01, B12, B13〉 ,

qp,A12,A03(〈A02, A12, A23〉) = 〈B02, B12, B23〉 , qp,A12,A03(〈A03, A13, A23〉) = 〈B03, B13, B23〉 .

Then the linear system s of the sextic plane curves triple at the point p and double at
the six points {Aij|0 ≤ i < j ≤ 3} is transformed in the linear system q5 of the quintic
plane curves double at p′, B23, B13, B01, B02 and passing through B12 and B03. Let us
consider the quadratic trasformation qp′,B23,B01 : P2 99K P2 given by the linear system
of the conics passing through the three points p′, B23, B01. Let C13, C12, C02, C03 be
the images of the points B13, B12, B02, B03. We have that each of the lines 〈p′, B23〉,
〈p′, B01〉, and 〈B23, B01〉 is contracted by qp′,B23,B01 to a point, denoted respectively by
C01, C23 and p′′. Furthermore the four edges of the complete quadrilateral QB are sent
to the four edges of a new complete quadrilateral QC with six vertices at the points
{Cij|0 ≤ i < j ≤ 3}, in the following way:

qp′,B23,B01(〈B01, B02, B03〉) = 〈C01, C02, C03〉 , qp′,B23,B01(〈B01, B12, B13〉) = 〈C01, C12, C13〉 ,

qp′,B23,B01(〈B02, B12, B23〉) = 〈C02, C12, C23〉 , qp′,B23,B01(〈B03, B13, B23〉) = 〈C03, C13, C23〉 .

Then the linear system q5 of the quintic plane curves double at p′, B23, B13, B01, B02

and passing through B12 and B03 is transformed in the linear system q4 of the quartic
plane curves double at C13 and C02 and passing through p′′, C23, C12, C01, C03. Let us
consider the quadratic trasformation qp′′,C13,C02 : P2 99K P2 given by the linear system
of the conics passing through the three points p′′, C13, C02. Let D23, D12 D01, D03 be
the images of the points C23, C12, C01, C03. We have that each of the lines 〈p′′, C13〉,
〈p′′, C02〉, and 〈C13, C02〉 are contracted by qp′′,C13,C02 to a point, denoted respectively
with D02, D13 and p′′′. Furthermore the four edges of the complete quadrilateral QC

are sent to the four edges of a new complete quadrilateral QD with six vertices the
points {Dij|0 ≤ i < j ≤ 3}:

qp′′,C13,C02(〈C01, C02, C03〉) = 〈D01, D02, D03〉 , qp′′,C13,C02(〈C01, C12, C13〉) = 〈D01, D12, D13〉 ,

qp′′,C13,C02(〈C02, C12, C23〉) = 〈D02, D12, D23〉 , qp′′,C13,C02(〈C03, C13, C23〉) = 〈D03, D13, D23〉 .

Then the linear system q4 of the quartic plane curves double at C13 and C02 and passing
through p′′′, C23, C12, C01, C03 is transformed in the linear system c of the cubic plane
curves passing through {Dij|0 ≤ i < j ≤ 3}, which are the six vertices of a complete
quadrilateral QD.

Corollary 10.18. Let S• be the linear system on P3 given by the sextic surfaces of P3

double along the six edges of the tetrahedron T and triple at the general point p ∈ P3.
The only base curves of S• are the six edges of T and the three lines r1, r2, r3.

Proof. Let ∆ be the image of P3 via the rational map ν•. Two of its general hyperplane
sections intersect each other at deg ∆ = 3 points (see Theorem 10.17). Let us consider
the preimages of these two curves: they are two elements Σ• and Σ′• of S•, intersecting,
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outside the base locus of S•, along a nonic curve. Indeed the intersection of Σ• and
Σ′•, outside the base locus of S•, is given by the union of deg ∆ = 3 fibres of ν•, which
are cubic plane curves (see Lemma 10.13 and Remark 10.14). The base locus of S•
contains the six edges of T and the three lines r1, r2, r3 (see Proposition 10.11). If
another curve existed in the base locus of S•, then Σ• would intersect Σ′•, outside it,
along a curve of degree less than 9, and so deg ∆ < 3, which is a contradiction.

By using the notations of the proof of Theorem 10.17, we have the following facts.

Proposition 10.19. Let S• be the linear system on P3 given by the sextic surfaces
of P3 double along the six edges of the tetrahedron T and triple at the general point
p ∈ P3. Let ∆ ⊂ P3 be the Cayley cubic surface given by the image of the rational
map ν• : P3 99K P3 defined by S•. Then the four nodes of ∆ are given by the image
via ν• of the four faces of the tetrahedron T .

Proof. The faces of T intersect a general plane α ∈ A along the four edges of the
complete quadrilateral QA. The edges of QA are sent by s to the edges of QB, which
are mapped by q5 to the edges of QC , which are transformed by q4 in the edges of QD,
which are finally sent by c to the four singular points of ∆.

Let us consider the lines si := 〈p, vi〉 joining the point p ∈ P3 and the vertex vi of
the tetrahedron T , for 0 ≤ i ≤ 3.

Corollary 10.20. Let S• be the linear system on P3 given by the sextic surfaces of
P3 double along the six edges of the tetrahedron T and triple at the general point
p ∈ P3. Let ∆ ⊂ P3 be the Cayley cubic surface given by the image of the rational
map ν• : P3 99K P3 defined by S•. The four lines s0, s1, s2, s3 are sent via ν• to the
four nodes of ∆.

Proof. By Bezout’s Theorem, a general sextic surface Σ• ∈ S• intersects each of the
four lines at 6 points. We also observe that Σ• and each of these lines have in common,
in the base locus of S•, the point p and a vertex of T , which are triple points for Σ•.
Hence, outside the base locus, we have that Σ• ∩ si is given by 6 − 3 − 3 = 0 points,
for all 0 ≤ i ≤ 3. So the four lines s0, s1, s2, s3 are contracted by ν• to four points.
Let us fix now 0 ≤ i ≤ 3. We have that si intersects at a point the face of T opposite
to the vertex vi. Hence the point to which the line si is sent by ν• is the same point
to which the opposite face to vi is sent by ν•, that is one of the four nodes of ∆ by
Proposition 10.19.

Now we want to study the surfaces of the linear system S•.

Remark 10.21. Let us recall some facts about the surfaces of the linear system S,
by using notations of § 5.2. If we blow-up P3 first at the vertices of T and then along
the (strict transforms of the) edges of T , we obtain a smooth threefold Y ′′. Let Σ′′ be
the strict transform of a general element Σ ∈ S: it is a smooth surface, since it is the
blow-up of a surface Σ ∈ S with ordinary singularities along its singular curves (see
[27, pp.620-621]). Let us take the following exact sequence

0→ OY ′′(KY ′′)→ OY ′′(KY ′′ + Σ′′)→ OΣ′′(KΣ′′)→ 0,
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where KY ′′ + Σ′′ ∼ 2H −
∑3

i=0 Ẽi −
∑

0≤i<j≤3 Fij (see [27, p.187]). We have that

hi=0,1,2(Y ′′,OY ′′(KY ′′)) = 0 and h3(Y ′′,OY ′′(KY ′′)) = 1 by Serre Duality, since Y ′′ is a
rational smooth threefold by construction; furthermore we have that h0(Σ′′,OΣ′′(KΣ′′)) =
pg(Σ

′′) = 0, h1(Σ′′,OΣ′′(KΣ′′)) = h1(Σ′′,OΣ′′) = q(Σ′′) = 0 and h2(Σ′′,OΣ′′(KΣ′′)) =
h0(Σ′′,OΣ′′) = 1 by Serre Duality and by Theorem 5.15. So we obtain h0(Y ′′,OY ′′(K ′′Y +
Σ′′)) = h0(Σ′′,OΣ′′(KΣ′′)) = 0, i.e. there are no quadric surfaces of P3 containing the
edges of T . We also have that h1(Y ′′,OY ′′(K ′′Y + Σ′′)) = h1(Σ′′,OΣ′′(KΣ′′)) = 0.

In our case, first we blow-up P3 at the vertices of T , at the point p and at the six
points ri ∩ l0i, ri ∩ ljk, for i, j, k ∈ {1, 2, 3} with j < k and j, k 6= i. In this way we
obtain a smooth threefold X ′ and a birational morphism bl′ : X ′ → P3 with exceptional
divisors

Eh = bl′−1(vh), Ep = bl′−1(p), E ′i = bl′−1(ri ∩ l0i), E ′′i = bl′−1(ri ∩ ljk).

where 0 ≤ h ≤ 3. Let us denote by l̃0i, l̃jk and r̃i, respectively, the strict transforms of
the lines l0i, ljk and ri. Then we blow-up X ′ along these objects. We obtain a smooth
threefold X ′′ and a birational morphism bl′′ : X ′′ → X ′, with exceptional divisors

F0i = bl′′−1(l̃0i), Fjk = bl′′−1(l̃jk), Ri = bl′′−1(r̃i).

Furthermore let us denote by Ẽh, Ẽp, Ẽ
′
i, Ẽ

′′
i , respectively the strict transforms of Eh,

Ep, E
′
i, E

′′
i . We denote by H the pullback of a general plane of P3 via the birational

morphism bl′ ◦ bl′′ : X ′′ → P3. Then the strict transform Σ′′• of an element Σ• ∈ S•, via
the blow-ups bl′ ◦ bl′′ : X ′′ → P3, is

Σ′′• ∼ 6H − 3Ẽp −
3∑
i=0

3Ẽi −
3∑
i=1

2Ẽ ′i −
3∑
i=1

2Ẽ ′′i −
∑

0≤i<j≤3

2Fij −
3∑
i=1

Ri.

Remark 10.22. The anticanonical divisor of X ′′ is linearly equivalent to the strict
transform of a quartic surface of P3 with double points at the vertices of T and at the
point p and containing the six edges of T and the three lines r1, r2, r3, i.e.

KX′′ ∼ −4H + 2Ẽp + 2
3∑
i=0

Ẽi +
3∑
i=1

2Ẽ ′i +
3∑
i=1

2Ẽ ′′i +
∑

0≤i<j≤3

Fij +
3∑
i=1

Ri

(see [27, p.187]). Then we have KX′′ + Σ′′• ∼ 2H − Ẽp−
∑3

i=0 Ẽi−
∑

0≤i<j≤3 Fij. Since

there are no quadric surfaces of P3 containing the edges of T (see Remark 10.21), there
are also no quadric surfaces of P3 containing the edges of T and the point p. So we
obtain h0(X ′′,OX′′(KX′′ + Σ′′•)) = 0.

Theorem 10.23. Let S• be the linear system on P3 given by the sextic surfaces of P3

double along the six edges of the tetrahedron T and triple at the general point p ∈ P3.
The strict transform Σ′′• on X ′′ of a general element Σ• ∈ S•, via the blow-ups above
described, is a smooth surface with pg(Σ

′′
•) = 0, q(Σ′′•) = 1 and pa(Σ

′′
•) = −1.
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Proof. It is known that bl′ ◦ bl′′ : X ′′ → P3 solves the singularities of a general Σ• ∈
S• ⊂ S at the vertices of the tetrahedron T and along its edges. In order to obtain the
smoothness of the strict transform Σ′′• on X ′′ of Σ•, it remains to show that bl′ ◦ bl′′ :
X ′′ → P3 also solves the triple point p of Σ•. By Bertini’s Theorem, it is sufficient
to prove that the linear system |Σ′′•| is base point free on Ẽp. We recall that Ẽp is
the blow-up of the plane Ep ∼= P2 at the three points Ep ∩ r̃1, Ep ∩ r̃2, Ep ∩ r̃3. We
also recall that Σ′• ∩ Ep = P(TCpΣ•), where Σ′• := bl′′(Σ′′•) and where TCpΣ• denotes
the tangent cone to Σ• at p. Thanks to a computational analysis via Macaulay2, we
find that P(TCpΣ•) is a cubic plane curve passing through the points Ep ∩ r̃1, Ep ∩ r̃2,

Ep ∩ r̃3 (see Code B.11 of Appendix). In particular we have that |Σ′′•| cuts on Ẽp the

strict transform on Ẽp of a linear system of cubic curves on Ep, whose base points are
only the points Ep ∩ r̃1, Ep ∩ r̃2, Ep ∩ r̃3 (see Code B.11 of Appendix). Thus |Σ′′•||Ẽp
is base point free and so Σ′′• is smooth. By using the adjunction formula we have the
exact seguence

0→ OX′′(KX′′)→ OX′′(KX′′ + Σ′′•)→ OΣ′′• (KΣ′′• )→ 0.

Since X ′′ is a smooth rational threefold, we have hi=0,1,2(X ′′,OX′′(KX′′)) = 0. Then we
obtain pg(Σ

′′
•) = h0(Σ′′•,OΣ′′• (KΣ′′• )) = h0(X ′′,OX′′(KX′′+Σ′′•)) = 0 (see Remark 10.22).

Furthermore we have that

q(Σ′′•) = h1(Σ′′•,OΣ′′• ) = h1(Σ′′•,OΣ′′• (KΣ′′• )) = h1(X ′′,OX′′(KX′′ + Σ′′•)).

In order to verify that the last value is equal to 1, we observe that the strict transform
on X ′′ of a quadric surface of P3 containing the edges of T is linearly equivalent to
2H −

∑3
i=0 Ẽi −

∑
0≤i<j≤3 Fij. By Remark 10.22 we have the following exact sequence

0→ OX′′(KX′′ + Σ′′•)→ OX′′(2H −
3∑
i=0

Ẽi −
∑

0≤i<j≤3

Fij)→ OEp → 0.

Since hi=0,1(X ′′,OX′′(2H −
∑3

i=0 Ẽi −
∑

0≤i<j≤3 Fij)) = 0 (see Remark 10.21), then

h1(X ′′,OX′′(KX′′ + Σ′′•)) = h0(Ep,OEp) = h0(P2,OP2) = 1. Finally, by Riemann-Roch
we have that pa(Σ

′′
•) = pg(Σ

′′
•)− q(Σ′′•) = −1.

Let us recall now some definitions. Let R be a smooth surface and Γ a smooth,
irreducible curve. We say that R is a ruled surface over Γ if there is a surjective
morphism f : R → Γ such that, for a general point x ∈ Γ, we have that f−1(x) is
isomorphic to P1. It is equivalent to say that R is birational to Γ×P1 (see [3, Theorem
III.4]). Furthermore we say that a smooth variety Z is uniruled if it is covered by a
family of rational curves. More precisely, Z is an uniruled variety if there is a variety
K with dimK = dimZ−1 and there is a dominant rational map K×P1 99K Z. Every
uniruled variety Z has Kodaira dimension κ(Z) = −∞.

Theorem 10.24. Let S• be the linear system on P3 given by the sextic surfaces of
P3 double along the six edges of the tetrahedron T and triple at the general point
p ∈ P3. The strict transform Σ′′• of a general element Σ• ∈ S•, via the blow-ups above
described, is an elliptic ruled surface.
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Proof. Let us take a general Σ• ∈ S• and its image Γ := ν•(Σ•), which is a general
hyperplane section of the Cayley cubic surface ∆ ⊂ P3. Since ∆ has only isolated
singularities, then Γ is a smooth elliptic cubic plane curve. Furthermore, Σ• is union
of∞1 rational cubic plane curves, fibres of ν•, given by the preimages of the∞1 points
of Γ (see Lemma 10.13 and Remark 10.14). So (ν• ◦ bl′′ ◦ bl′) : Σ′′• → Γ is an uniruled
surface. Since κ(Σ′′•) = −∞, we have that Σ′′• is an irrational elliptic ruled surface by
Enriques-Kodaira classification and by Theorem 10.23.

By construction, for a general surface S• ∈ L• there exists a unique surface Σ• ∈ S•
such that S• = ν•(Σ•). So if we denote by φ• : W 99K P3 the rational map defined by
the linear system L•, we have the following commutative diagram

P3

W ∆ ⊂ P3

P13

ν
ν•

φL

φ•

and we obtain the following result (see Theorems 10.17, 10.24).

Theorem 10.25. Let (W 13
F ,L) be the classical Enriques-Fano threefold. Let L• ⊂ L

be the sublinear system of the hyperplane sections having a triple point at a general
point w ∈ W 13

F . Then

(i) a general S• ∈ L• is birational to an elliptic ruled surface;

(ii) the image of W 13
F via the rational map defined by L• is a Cayley cubic surface.

We have thus proved that case (A) of Castelnuovo’s conjecture occurs for the clas-
sical Enriques-Fano threefold and that the consequences stated in Remark 10.7 are
verified.

10.5 Consequences for the P-EF 3-folds

It is known that all Enriques surfaces appear as the desingularization of some sextic
surface of P3 double along the six edges of a tetrahedron and triple at the four vertices
(see [16, p.275]). By using notations of previous sections, we can say that all Enriques
surfaces are birational to a surface Σ ∈ S and so to a hyperplane section of the clas-
sical Enriques-Fano threefold W 13

F . If we consider an Enriques-Fano threefold (W,L)
of genus 13 ≤ p ≤ 17, we can say that a general hyperplane section of W is birational
to a hyperplane section of the classical Enriques-Fano threefold W 13

F . In particular, a
general hyperplane section of W with triple point at a general point w ∈ W is bira-
tional to a hyperplane section of the classical Enriques-Fano threefold W 13

F with triple
point at a point on it.
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Since the general hyperplane section of the P-EF 3-fold W 17
P is a general Enriques

surface (see proof of [10, Proposition 4.7]), we obtain the following result by Theo-
rem 10.25.

Corollary 10.26. Let (W 17
P ,L) be the P-EF 3-fold of genus 17. Let L• be the linear

system of hyperplane sections of W 17
P with a triple point at a general point w ∈ W 17

P .
Then a general element S• ∈ L• is birational to an elliptic ruled surface.

It would be interesting to verify if the linear system L• on W 17
P has dimension

7 = 17− 10 and if its image is still a Del Pezzo surface. Finally it would be interesting
to understand what happens on the P-EF 3-fold W 13

P of genus 13.
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A Appendix: configurations of the singularities of

some known EF 3-folds

Let us suppose that each singular point Pi of an Enriques-Fano threedold W ⊂ Pp
is associated with 0 ≤ mi ≤ n − 1 of the other singular points, for 1 ≤ i ≤ n (see
Definition 4.4). If the singular points are similar (see Assumption CM3 in § 4.1),
then we have that mi is constant, i.e. mi = m for all 1 ≤ i ≤ n. We can graphically
represent the way in which the singular points P1, . . . , Pn of an Enriques-Fano threefold
are associated: if two singular points Pi and Pj are associated, we draw a segment
joining them, otherwise not. We will refer to the graph obtained by the union of all
these segments as the configuration of the singular points P1, . . . , Pn. Let us see two
example: if we have n = 4 singular points P1, P2, P3, P4, such that P1 is associated with
P2, P3, P4, and P3 is associated with P4 then we have a configuration as in the left of
Figure 20; if we have n = 3 singular points P1, P2, P3 mutually associated we have a
configuration as in the right of Figure 20.

Figure 20: Two examples of configurations: on the left with (m1,m2,m3,m4) = (3, 1, 2, 2) and on the right with
mi = m = 2 for 1 ≤ i ≤ 3.

In this Appendix we represent the configurations of the singular points of the known
Enriques-Fano threefolds (W,L) of genus p which are embedded in Pp via the map
defined by L. By using the notations of § 3.2 to indicate the known Enriques-Fano
threefolds, we have the following configurations:

(i) Figure 21 for the BS-EF 3fold W 6
BS and the F-EF 3fold W 6

F (see [23, §3], Theo-
rem 5.96, Example 6.2);

(ii) Figure 22 for the BS-EF 3fold W 7
BS and the F-EF 3fold W 7

F (see [23, §4], Theo-
rem 5.61, Remark 6.4);

(iii) Figure 23 for the BS-EF 3fold W 8
BS (see Remark 6.6);

(iv) Figure 24 for the BS-EF 3fold W 9
BS and the F-EF 3fold W 9

F (see [23, §7], Theo-
rem 5.41, Remark 6.10);

(v) Figure 25 for the BS-EF 3fold W 10
BS (see Remark 6.13);

(vi) Figure 26 for the BS-EF 3fold W 13
BS and the F-EF 3fold W 13

F (see [23, §8], Theo-
rem 5.17, Remark 6.16);

(vii) Figure 27 for the P-EF 3folds W 13
P and W 17

P (see Remark 8.5 and Remark 8.12);
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(viii) Figure 28 for the KLM-EF 3fold W 9
KLM (see Remark 7.7).

Figure 21: Configuration of the eight quadruple points of the Enriques-Fano threefolds W 6
F ⊂ P6 and W 6

BS

φL
↪−−→ P6,

with m = 7.

Figure 22: Configuration of the eight quadruple points of the Enriques-Fano threefolds W 7
F ⊂ P7 and W 7

BS

φL
↪−−→ P7,

with m = 6.
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Figure 23: Configuration of the eight quadruple points of the Enriques-Fano threefold W 8
BS

φL
↪−−→ P8, with m = 5.

Figure 24: Configuration of the eight quadruple points of the Enriques-Fano threefold W 9
F = φL(W 9

BS) ⊂ P9, with
m = 4.

Figure 25: Configuration of the eight quadruple points of the Enriques-Fano threefold W 10
BS

φL
↪−−→ P10, with m = 4.
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Figure 26: Configuration of the eight quadruple points of the Enriques-Fano threefold W 13
F = φL(W 13

BS) ⊂ P13, with
m = 3.

Figure 27: Configuration of the five singular points of the Enriques-Fano threefolds W 13
P ⊂ P13 and W 17

P ⊂ P17,
with (m1,m2,m3,m4,m5) = (1, 1, 1, 1, 4).

Figure 28: Configuration of the five singular points of the Enriques-Fano threefold W 9
KLM ⊂ P9, with

(m1,m2,m3,m4,m5) = (3, 3, 3, 3, 4), obtained by the eight singular points of the classical Enriques-Fano threefold
W 13
F ⊂ P13.
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B Appendix: Macaulay2 codes

For the computational analysis via Macaulay2 we will work over a finite field (we
will choose Fn := Z/nZ with n = 10000019). We will essentially use the package
Cremona of Staglianò (see [49]) and in particular the following functions, commands
and methods:

• toMap, to construct the rational map defined by a linear system;

• rationalMap, to construct rational maps between projective varieties;

• image, to compute the image of a rational map;

• degree, to compute the degree of a rational map;

• isBirational, to verify the birationality of a rational map;

• inverseMap, to compute the inverse of a birational map;

• ideal, to compute the base locus of a rational map.

For more information visit the website

http://www2.macaulay2.com/Macaulay2/doc/Macaulay2-
1.12/share/doc/Macaulay2/Cremona/html/

We will also use the function tangentCone, to compute the tangent cone to an affine
variety at the origin, and the following standard functions: associatedPrimes, to com-
pute the irreducible components of a variety; jacobian, to compute the Jacobian matrix
of the generators of an ideal; minors, to compute the ideal generated by the minors of
a certain order of a given matrix.

In the following we will collect the input codes used in Macaulay2 for this thesis.

Code B.1. Computational analysis of W 6
BS (see § 6.2).

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Cremona";

i2 : PP3xPP3 = ZZ/10000019[x_0,x_1,x_2,x_3]**ZZ/10000019[y_0,y_1,y_2,y_3];

i3 : X = ideal{ x_0*y_0-7*x_1*y_1+4*x_2*y_2+2*x_3*y_3,

x_0*y_0-6*x_1*y_1+2*x_2*y_2+3*x_3*y_3, x_0*y_0-x_1*y_1-7*x_2*y_2+7*x_3*y_3};

i4 : PP9 = ZZ/10000019[Z_0..Z_9];

i5 : phi = rationalMap map(PP3xPP3, PP9, matrix{{x_0*y_0, x_1*y_1, x_2*y_2, x_3*y_3, x_0*y_1+x_1*y_0,

x_0*y_2+x_2*y_0, x_0*y_3+x_3*y_0, x_1*y_2+x_2*y_1, x_1*y_3+x_3*y_1, x_2*y_3+x_3*y_2}});

i6 : (dim(image phi) -1, degree(image phi)) == (6,10)

i7 : image phi == ideal{-2*Z_1*Z_5*Z_6+Z_4*Z_6*Z_7+Z_4*Z_5*Z_8-2*Z_0*Z_7*Z_8+4*Z_0*Z_1*Z_9-Z_4^2*Z_9,

-2*Z_2*Z_4*Z_6+Z_5*Z_6*Z_7+4*Z_0*Z_2*Z_8-Z_5^2*Z_8+Z_4*Z_5*Z_9-2*Z_0*Z_7*Z_9,

-4*Z_1*Z_2*Z_6+Z_6*Z_7^2+2*Z_2*Z_4*Z_8-Z_5*Z_7*Z_8+2*Z_1*Z_5*Z_9-Z_4*Z_7*Z_9,

-2*Z_3*Z_4*Z_5+4*Z_0*Z_3*Z_7-Z_6^2*Z_7+Z_5*Z_6*Z_8+Z_4*Z_6*Z_9-2*Z_0*Z_8*Z_9,

-4*Z_1*Z_3*Z_5+2*Z_3*Z_4*Z_7-Z_6*Z_7*Z_8+Z_5*Z_8^2+2*Z_1*Z_6*Z_9-Z_4*Z_8*Z_9,

-4*Z_2*Z_3*Z_4+2*Z_3*Z_5*Z_7+2*Z_2*Z_6*Z_8-Z_6*Z_7*Z_9-Z_5*Z_8*Z_9+Z_4*Z_9^2,

-4*Z_1*Z_2*Z_3+Z_3*Z_7^2+Z_2*Z_8^2-Z_7*Z_8*Z_9+Z_1*Z_9^2,

-4*Z_0*Z_2*Z_3+Z_3*Z_5^2+Z_2*Z_6^2-Z_5*Z_6*Z_9+Z_0*Z_9^2,

-4*Z_0*Z_1*Z_3+Z_3*Z_4^2+Z_1*Z_6^2-Z_4*Z_6*Z_8+Z_0*Z_8^2,
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-4*Z_0*Z_1*Z_2+Z_2*Z_4^2+Z_1*Z_5^2-Z_4*Z_5*Z_7+Z_0*Z_7^2}

i8 : phiX = ideal{Z_2-Z_3,Z_1-Z_3,Z_0-Z_3,

-2*Z_1*Z_5*Z_6+Z_4*Z_6*Z_7+Z_4*Z_5*Z_8-2*Z_0*Z_7*Z_8+4*Z_0*Z_1*Z_9-Z_4^2*Z_9,

-2*Z_2*Z_4*Z_6+Z_5*Z_6*Z_7+4*Z_0*Z_2*Z_8-Z_5^2*Z_8+Z_4*Z_5*Z_9-2*Z_0*Z_7*Z_9,

-4*Z_1*Z_2*Z_6+Z_6*Z_7^2+2*Z_2*Z_4*Z_8-Z_5*Z_7*Z_8+2*Z_1*Z_5*Z_9-Z_4*Z_7*Z_9,

-2*Z_3*Z_4*Z_5+4*Z_0*Z_3*Z_7-Z_6^2*Z_7+Z_5*Z_6*Z_8+Z_4*Z_6*Z_9-2*Z_0*Z_8*Z_9,

-4*Z_1*Z_3*Z_5+2*Z_3*Z_4*Z_7-Z_6*Z_7*Z_8+Z_5*Z_8^2+2*Z_1*Z_6*Z_9-Z_4*Z_8*Z_9,

-4*Z_2*Z_3*Z_4+2*Z_3*Z_5*Z_7+2*Z_2*Z_6*Z_8-Z_6*Z_7*Z_9-Z_5*Z_8*Z_9+Z_4*Z_9^2,

-4*Z_1*Z_2*Z_3+Z_3*Z_7^2+Z_2*Z_8^2-Z_7*Z_8*Z_9+Z_1*Z_9^2,

-4*Z_0*Z_2*Z_3+Z_3*Z_5^2+Z_2*Z_6^2-Z_5*Z_6*Z_9+Z_0*Z_9^2,

-4*Z_0*Z_1*Z_3+Z_3*Z_4^2+Z_1*Z_6^2-Z_4*Z_6*Z_8+Z_0*Z_8^2,

-4*Z_0*Z_1*Z_2+Z_2*Z_4^2+Z_1*Z_5^2-Z_4*Z_5*Z_7+Z_0*Z_7^2};

i9 : (dim oo -1, degree oo, oo == phi(X) ) == (3, 10, true)

i10 : H6 = ideal{Z_2-Z_3,Z_1-Z_3,Z_0-Z_3};

i11 : PP6 = ZZ/10000019[w_0..w_6];

i12 : inclusion = rationalMap map(PP6,PP9,matrix{{w_0,w_0,w_0,w_0,w_1,w_2,w_3,w_4,w_5,w_6}});

i13 : image oo == H6

i14 : pigreca = phi*(rationalMap map(PP9,PP6, sub(matrix inverseMap(inclusion||H6), PP9) ))

i15 : pigreca(X) == inclusion^*(phiX)

i16 : WB6 = ideal{-2*w_0*w_2*w_3+w_1*w_3*w_4+w_1*w_2*w_5-2*w_0*w_4*w_5+4*w_0^2*w_6-w_1^2*w_6,

-2*w_0*w_1*w_3+w_2*w_3*w_4+4*w_0^2*w_5-w_2^2*w_5+w_1*w_2*w_6-2*w_0*w_4*w_6,

-4*w_0^2*w_3+w_3*w_4^2+2*w_0*w_1*w_5-w_2*w_4*w_5+2*w_0*w_2*w_6-w_1*w_4*w_6,

-2*w_0*w_1*w_2+4*w_0^2*w_4-w_3^2*w_4+w_2*w_3*w_5+w_1*w_3*w_6-2*w_0*w_5*w_6,

-4*w_0^2*w_2+2*w_0*w_1*w_4-w_3*w_4*w_5+w_2*w_5^2+2*w_0*w_3*w_6-w_1*w_5*w_6,

-4*w_0^2*w_1+2*w_0*w_2*w_4+2*w_0*w_3*w_5-w_3*w_4*w_6-w_2*w_5*w_6+w_1*w_6^2,

-4*w_0^3+w_0*w_4^2+w_0*w_5^2-w_4*w_5*w_6+w_0*w_6^2, -4*w_0^3+w_0*w_2^2+w_0*w_3^2-w_2*w_3*w_6+w_0*w_6^2,

-4*w_0^3+w_0*w_1^2+w_0*w_3^2-w_1*w_3*w_5+w_0*w_5^2, -4*w_0^3+w_0*w_1^2+w_0*w_2^2-w_1*w_2*w_4+w_0*w_4^2};

i17 : WB6 == pigreca(X)

i18 : (dim ooo -1, degree ooo) == (3, 10)

i19 : P1 = ideal{w_1-2*w_0,w_2-2*w_0,w_3-2*w_0,w_4-2*w_0,w_5-2*w_0,w_6-2*w_0};

i20 : P2 = ideal{w_1+2*w_0,w_2+2*w_0,w_3+2*w_0,w_4-2*w_0,w_5-2*w_0,w_6-2*w_0};

i21 : P3 = ideal{w_1+2*w_0,w_2-2*w_0,w_3-2*w_0,w_4+2*w_0,w_5+2*w_0,w_6-2*w_0};

i22 : P4 = ideal{w_1-2*w_0,w_2+2*w_0,w_3+2*w_0,w_4+2*w_0,w_5+2*w_0,w_6-2*w_0};

i23 : P5 = ideal{w_1-2*w_0,w_2+2*w_0,w_3-2*w_0,w_4+2*w_0,w_5-2*w_0,w_6+2*w_0};

i24 : P6 = ideal{w_1+2*w_0,w_2-2*w_0,w_3+2*w_0,w_4+2*w_0,w_5-2*w_0,w_6+2*w_0};

i25 : P7 = ideal{w_1+2*w_0,w_2+2*w_0,w_3-2*w_0,w_4-2*w_0,w_5+2*w_0,w_6+2*w_0};

i26 : P8 = ideal{w_1-2*w_0,w_2-2*w_0,w_3+2*w_0,w_4-2*w_0,w_5+2*w_0,w_6+2*w_0};

i27 : -- let us see if the lines lij joining the points Pi and Pj

-- are contained in the threefold WB6

l12 = ideal{(toMap(saturate(P1*P2),1,1)).matrix};

i28 : (l12 + WB6 == l12) == true

i29 : l13 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};

i30 : (l13 + WB6 == l13) == true

i31 : l14 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};

i32 : (l14 + WB6 == l14) == true

i33 : l15 = ideal{(toMap(saturate(P1*P5),1,1)).matrix};

i34 : (l15 + WB6 == l15) == true

i35 : l16 = ideal{(toMap(saturate(P1*P6),1,1)).matrix};

i36 : (l16 + WB6 == l16) == true

i37 : l17 = ideal{(toMap(saturate(P1*P7),1,1)).matrix};

i38 : (l17 + WB6 == l17) == true

i39 : l18 = ideal{(toMap(saturate(P1*P8),1,1)).matrix};

i40 : (l18 + WB6 == l18) == true

i41 : -- etc...

-- let us now change the coordinates of PP6

-- in order to have P1 = [1:0...0]

PP6’=ZZ/10000019[z_0..z_6];

i42 : W’ = sub(WB6, {(gens PP6)_0 => (gens PP6’)_0,

(gens PP6)_1 => (gens PP6’)_1 + 2*(gens PP6’)_0, (gens PP6)_2 => (gens PP6’)_2 + 2*(gens PP6’)_0,

(gens PP6)_3 => (gens PP6’)_3 + 2*(gens PP6’)_0, (gens PP6)_4 => (gens PP6’)_4 + 2*(gens PP6’)_0,

(gens PP6)_5 => (gens PP6’)_5 + 2*(gens PP6’)_0, (gens PP6)_6 => (gens PP6’)_6 + 2*(gens PP6’)_0})

i43 : W’U0 = sub(oo, {(gens PP6’)_0 => 1})

i44 : ConeP1 = sub(tangentCone oo, {(gens PP6’)_0 => (gens PP6)_0,

(gens PP6’)_1 => (gens PP6)_1 - 2*(gens PP6)_0, (gens PP6’)_2 => (gens PP6)_2 - 2*(gens PP6)_0,

(gens PP6’)_3 => (gens PP6)_3 - 2*(gens PP6)_0, (gens PP6’)_4 => (gens PP6)_4 - 2*(gens PP6)_0,

(gens PP6’)_5 => (gens PP6)_5 - 2*(gens PP6)_0, (gens PP6’)_6 => (gens PP6)_6 - 2*(gens PP6)_0})

i45 : degree oo == 4

i46 : -- similarly for P2,P3,P4,P5,P6,P7,P8

-- we observe now that WB6 is not contained in a quadric hypersurface of PP6
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rationalMap toMap(WB6,2,1)

i47 : -- let us also see that a general hyperplane section S is not

-- contained in a quadric hypersurface of PP5, where

-- S = ideal{random(1,PP6)}+WB6

-- for example:

S = ideal{w_0-w_1+72*w_2-13*w_3+4*w_4+8*w_5+35*w_6}+WB6

i48: PP5 = ZZ/10000019[t_0..t_5]

i49 : inc = rationalMap map(PP5,PP6,matrix{{t_0-72*t_1+13*t_2-4*t_3-8*t_4-35*t_5,t_0,t_1,t_2,t_3,t_4,t_5}})

i50 : image oo == ideal{S_0}

i51 : inc^*S

i52 : (dim oo -1, degree oo) == (2, 10)

i53 : toMap(ooo,2,1)

Code B.2. Computational analysis of W 7
BS (see § 6.3).

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Cremona";

i2 : PP1xPP1xPP1xPP1 = ZZ/10000019[x_0,x_1]**ZZ/10000019[y_0,y_1]**ZZ/10000019[z_0,z_1]**ZZ/10000019[t_0,t_1];

i3 : a0001=1;

i4 : a0010=1;

i5 : a0100=1;

i6 : a1000=1;

i7 : a1110=1;

i8 : a1101=1;

i9 : a1011=1;

i10 : a0111=1;

i11 : X = ideal{a0001*x_0*y_0*z_0*t_1+a0010*x_0*y_0*z_1*t_0+a0100*x_0*y_1*z_0*t_0+a1000*x_1*y_0*z_0*t_0+

a1110*x_1*y_1*z_1*t_0+a1101*x_1*y_1*z_0*t_1+a1011*x_1*y_0*z_1*t_1+a0111*x_0*y_1*z_1*t_1};

i12 : phi = rationalMap map(PP1xPP1xPP1xPP1, ZZ/10000019[w_0..w_7], matrix(PP1xPP1xPP1xPP1,{{x_1*y_1*z_1*t_1,

x_1*y_0*z_0*t_1, x_0*y_0*z_1*t_1, x_1*y_0*z_1*t_0, x_0*y_0*z_0*t_0,

x_0*y_1*z_1*t_0, x_1*y_1*z_0*t_0, x_0*y_1*z_0*t_1}}));

i13 : WB7 = phi(X);

i14 : (dim oo -1, degree oo) == (3,12)

i15 : PP7 = ring WB7;

i16 : P1 = ideal{w_1, w_2, w_3, w_4, w_5, w_6, w_7};

i17 : P2 = ideal{w_0, w_2, w_3, w_4, w_5, w_6, w_7};

i18 : P3 = ideal{w_0, w_1, w_3, w_4, w_5, w_6, w_7};

i19 : P4 = ideal{w_0, w_1, w_2, w_4, w_5, w_6, w_7};

i20 : P1’ = ideal{w_0, w_1, w_2, w_3, w_5, w_6, w_7};

i21 : P2’ = ideal{w_0, w_1, w_2, w_3, w_4, w_6, w_7};

i22 : P3’ = ideal{w_0, w_1, w_2, w_3, w_4, w_5, w_7};

i23 : P4’ = ideal{w_0, w_1, w_2, w_3, w_4, w_5, w_6};

i24 : -- let us see if the lines lij joining the points Pi and Pj

-- are contained in the threefold WB7

l12 = ideal{(toMap(saturate(P1*P2),1,1)).matrix};

i25 : (l12 + WB7 == l12) == true

i26 : l13 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};

i27 : (l13 + WB7 == l13) == true

i28 : l14 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};

i29 : (l14 + WB7 == l14) == true

i30 : l11’ = ideal{(toMap(saturate(P1*P1’),1,1)).matrix};

i31 : (l11’ + WB7 == l11’) == false

i32 : l12’ = ideal{(toMap(saturate(P1*P2’),1,1)).matrix};

i33 : (l12’ + WB7 == l12’) == true

i34 : l13’ = ideal{(toMap(saturate(P1*P3’),1,1)).matrix};

i35 : (l13’ + WB7 == l13’) == true

i36 : l14’ = ideal{(toMap(saturate(P1*P4’),1,1)).matrix};

i37 : (l14’ + WB7 == l14’) == true

i38 : -- etc...

sub(WB7, {(gens PP7)_0=>1});

i39 : ConeP1 = tangentCone oo

i40 : degree oo == 4

i41 : sub(WB7, {(gens PP7)_1=>1});

i42 : ConeP2 = tangentCone oo

i43 : degree oo == 4

i44 : -- etc.. similarly for P3,P4,P5,P1’,P2’,P3’,P4’
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Code B.3. Computational analysis of W 8
BS (see § 6.4).

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Cremona";

i2 : PP4 = ZZ/10000019[x_0..x_4];

i3 : Q = ideal{x_0^2-x_1^2 -x_2^2+x_3^2};

i4 : R = ideal{2*x_0^2-x_1^2-3*x_2^2+2*x_3^2};

i5 : fixedconic1 = ideal{x_2,x_3,x_4^2-R_0};

i6 : fixedconic2 = ideal{x_0,x_1,x_4^2+R_0};

i7 : four = associatedPrimes (fixedconic1+Q)

i8 : p1 = four#0;

i9 : p2 = four#1;

i10 : p1’ = four#2;

i11 : p2’ = four#3;

i12 : four’ = associatedPrimes (fixedconic2+Q)

i13 : p3 = four’#0;

i14 : p4 = four’#1;

i15 : p3’ = four’#2;

i16 : p4’ = four’#3;

i17 : PP9 = ZZ/10000019[z_0..z_9];

i18 : phi = rationalMap map(PP4,PP9,matrix{{x_4^2*x_0+x_0*R_0,x_4^2*x_1+x_1*R_0,x_4^2*x_2-x_2*R_0,

x_4^2*x_3-x_3*R_0,x_4*x_0^2,x_4*x_1^2,x_4*x_2^2,x_4*x_3^2,x_4*x_0*x_1,x_4*x_2*x_3}});

i19 : phiY = phi(Q);

i20 : H8 = ideal{phiY_0}

i21 : PP8 = ZZ/10000019[w_0,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8];

i22 : inclusion = rationalMap map(PP8,PP9, matrix(PP8,{{w_0,w_1,w_2,w_3,w_4+w_5-w_6,w_4,w_5,w_6,w_7,w_8}}));

i23 : H8 == image inclusion

i24 : WB8 = inclusion^* phiY;

i25 : (dim oo -1, degree oo) == (3,14)

i26 : P1 = inclusion^* phi(p1)

i27 : P2 = inclusion^* phi(p2)

i28 : P3 = inclusion^* phi(p3)

i29 : P4 = inclusion^* phi(p4)

i30 : P1’ = inclusion^* phi(p1’)

i31 : P2’ = inclusion^* phi(p2’)

i32 : P3’ = inclusion^* phi(p3’)

i33 : P4’ = inclusion^* phi(p4’)

i34 : -- let us see if the lines lij joining the points Pi and Pj

-- are contained in the threefold WB8

l12 = ideal{(toMap(saturate(P1*P2),1,1)).matrix};

i35 : (l12 + WB8 == l12) == true

i36 : l13 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};

i37 : (l13 + WB8 == l13) == true

i38 : l14 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};

i39 : (l14 + WB8 == l14) == true

i40 : l11’ = ideal{(toMap(saturate(P1*P1’),1,1)).matrix};

i41 : (l11’ + WB8 == l11’) == false

i42 : l12’ = ideal{(toMap(saturate(P1*P2’),1,1)).matrix};

i43 : (l12’ + WB8 == l12’) == false

i44 : l13’ = ideal{(toMap(saturate(P1*P3’),1,1)).matrix};

i45 : (l13’ + WB8 == l13’) == true

i46 : l14’ = ideal{(toMap(saturate(P1*P4’),1,1)).matrix};

i47 : (l14’ + WB8 == l14’) == true

i48 : -- etc...

proj1 = rationalMap toMap(P1,1,1);

i49 : proj1’ = rationalMap toMap(proj1(P1’),1,1);

i50 : proj2 = rationalMap toMap(proj1’(proj1(P2)),1,1);

i51 : proj3 = rationalMap toMap(proj2(proj1’(proj1(P3))),1,1);

i52 : proj3’ = rationalMap toMap(proj3(proj2(proj1’(proj1(P3’)))),1,1);

i53 : proj = proj1*proj1’*proj2*proj3*proj3’

i54 : isBirational(proj | WB8)

i55 : PP3 = target proj;

i56 : septies = rationalMap map( PP3, PP8, matrix(inverseMap(proj|WB8)) )

i57 : image oo == WB8

i58 : baseL = associatedPrimes ideal septies

i59 : e0= baseL#0;

i60 : l1= baseL#1;
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i61 : l2= baseL#2;

i62 : s1= baseL#3;

i63 : s2= baseL#4;

i64 : l2’= baseL#5;

i65 : l1’= baseL#6;

i66 : l0= baseL#7;

i67 : r1= baseL#8;

i68 : t1= baseL#9;

i69 : r2= baseL#10;

i70 : t2= baseL#11;

i71 : C= baseL#12;

i72 : v = saturate(l1+l2+l0);

i73 : q1 = saturate(l1+r1+s1+e0+l2’)

i74 : q2 = saturate(l2+r2+s2+e0+l1’)

i75 : ar = saturate(r1+r2+l0)

i76 : as = saturate(s1+s2+l0)

i77 : at = saturate(t1+t2+l0)

i78 : a1 = saturate(l1+t1)

i79 : a2 = saturate(l2+t2)

i80 : b1 = saturate(r1+t1+C)

i81 : b2 = saturate(r2+t2+C)

i82 : c1 = saturate(s1+t1)

i83 : c2 = saturate(s2+t2)

i84 : q1’ = saturate(l1’+t1)

i85 : q2’ = saturate(l2’+t2)

i86 : -- general septic surface of the linear system :

N = septies^* ideal{random(1,PP8)};

i87 : (dim oo -1, degree oo) == (2, 7)

i88 : -- N is double along l0,l1,l2,l1’,l2’,C

(minors(1,jacobian(N))+ l1 == l1) == true

i89 : (minors(1,jacobian(N))+ l2 == l2) == true

i90 : (minors(1,jacobian(N))+ l2’ == l2’) == true

i91 : (minors(1,jacobian(N))+ l1’ == l1’) == true

i92 : (minors(1,jacobian(N))+ l0 == l0) == true

i93 : (minors(1,jacobian(N))+ C == C) == true

i94 : -- N is triple at v

(minors(1,jacobian(jacobian(N)))+minors(1,jacobian(N))+ v == v) == true

i95 : -- N is quadruple at q1 and q2

(minors(1,jacobian(jacobian(jacobian(N))))+minors(1,jacobian(jacobian(N)))+

minors(1,jacobian(N))+ q1 == q1) == true

i96 : (minors(1,jacobian(jacobian(jacobian(N))))+minors(1,jacobian(jacobian(N)))+

minors(1,jacobian(N))+ q2 == q2) == true

Code B.4. Computational analysis of W 9
BS (see § 6.5).

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Cremona";

i2 : PP5 = ZZ/10000019[x_0, x_1, x_2, y_3, y_4, y_5];

i3 : s1 = x_0^2-3*x_1^2+2*x_2^2;

i4 : s2 = 3*x_0^2-8*x_1^2+5*x_2^2;

i5 : r1 = 3*y_3^2-8*y_4^2+5*y_5^2;

i6 : r2 = y_3^2-3*y_4^2+2*y_5^2;

i7 : X = ideal{s1+r1, s2+r2};

i8 : (dim oo -1, degree oo) == (3,4)

i9 : PP11 = ZZ/10000019[Z_0..Z_11];

i10 : phi = rationalMap map(PP5, PP11, matrix(PP5,{{x_0^2, x_1^2, x_2^2, x_0*x_1,

x_0*x_2, x_1*x_2, y_3^2, y_4^2, y_5^2, y_3*y_4, y_3*y_5, y_4*y_5}}));

i11 : phi(X)

i12 : (dim oo -1, degree oo) == (3,16)

i13 : H9 = ideal{ooo_0, ooo_1}

i14 : phi(X) + H9 == phi(X)

i15 : PP9 = ZZ/10000019[w_0..w_9];

i16 : inclusion = rationalMap map(PP9,PP11, matrix(PP9,{{w_0+21*w_4-55*w_5+34*w_6,

w_0+8*w_4-21*w_5+13*w_6, w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8, w_9 }}));

i17 : image oo == H9

i18 : WB9 = inclusion^* (phi(X));

i19 : (dim oo -1, degree oo) == (3, 16)
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i20 : rationalMap map(PP11,PP9, sub(matrix inverseMap(inclusion||H9), PP11))

i21 : pigreca = phi* oo

i23 : fixedPlanex = associatedPrimes (X+ideal{x_0,x_1,x_2});

i24 : fixedPlaney = associatedPrimes (X+ideal{y_3,y_4,y_5});

i25 : P1 = inclusion^* phi(fixedPlaney#0);

i26 : P4 = inclusion^* phi(fixedPlaney#1);

i27 : P2 = inclusion^* phi(fixedPlaney#2);

i28 : P3 = inclusion^* phi(fixedPlaney#3);

i29 : P1’ = inclusion^* phi(fixedPlanex#0);

i30 : P4’ = inclusion^* phi(fixedPlanex#1);

i31 : P2’ = inclusion^* phi(fixedPlanex#2);

i32 : P3’ = inclusion^* phi(fixedPlanex#3);

i33 : -- let us see if the lines lij joining the points Pi and Pj

-- are contained in the threefold WB9

l12 = ideal{(toMap(saturate(P1*P2),1,1)).matrix};

i34 : (l12 + WB9 == l12) == false

i35 : l13 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};

i36 : (l13 + WB9 == l13) == false

i37 : l14 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};

i38 : (l14 + WB9 == l14) == false

i39 : l11’ = ideal{(toMap(saturate(P1*P1’),1,1)).matrix};

i40 : (l11’ + WB9 == l11’) == true

i41 : l12’ = ideal{(toMap(saturate(P1*P2’),1,1)).matrix};

i42 : (l12’ + WB9 == l12’) == true

i43 : l13’ = ideal{(toMap(saturate(P1*P3’),1,1)).matrix};

i44 : (l13’ + WB9 == l13’) == true

i45 : l14’ = ideal{(toMap(saturate(P1*P4’),1,1)).matrix};

i46 : (l14’ + WB9 == l14’) == true

i47 : -- etc..

proj1 = rationalMap toMap(P2,1,1);

i48 : proj2 = rationalMap toMap(proj1(P3),1,1);

i49 : proj3 = rationalMap toMap(proj2(proj1(P4)),1,1);

i50 : proj4 = rationalMap toMap(proj3(proj2(proj1(P2’))),1,1);

i51 : proj5 = rationalMap toMap(proj4(proj3(proj2(proj1(P3’)))),1,1);

i52 : proj6 = rationalMap toMap(proj5(proj4(proj3(proj2(proj1(P4’))))),1,1);

i53 : proj = proj1*proj2*proj3*proj4*proj5*proj6;

i54 : proj(WB9)

i55 : PP3 = ring oo;

i56 : isBirational( proj|WB9 )

i57 : septics = rationalMap map( PP3, PP9, matrix(inverseMap( proj|WB9 )));

i58 : time image oo == WB9

i59 : comp = associatedPrimes(ideal septics)

i60 : l3’ = comp#0;

i61 : l2’ = comp#1;

i62 : r21 = comp#2;

i63 : r11 = comp#3;

i64 : r31 = comp#4;

i65 : l1’ = comp#5;

i66 : r23 = comp#6;

i67 : r13 = comp#7;

i68 : r33 = comp#8;

i69 : r22 = comp#9;

i70 : r12 = comp#10;

i71 : r32 = comp#11;

i72 : l1 = comp#12;

i73 : l2 = comp#13;

i74 : l3 = comp#14;

i75 : -- trihedron T’ :

f1’ = ideal{(gens PP3)_3};

i76 : f2’ = ideal{(gens PP3)_1+(gens PP3)_3};

i77 : f3’ = ideal{(gens PP3)_2+(gens PP3)_3};

i78 : f1’+f2’ == l3’

i79 : f1’+f3’ == l2’

i80 : f2’+f3’ == l1’

i81 : v’= saturate(f1’+f2’+f3’)

i82 : -- trihedron T :

f1 = ideal{(gens PP3)_0-55*(gens PP3)_1+34*(gens PP3)_2};

i83 : f2 = ideal{(gens PP3)_0 - 21*(gens PP3)_1 +13*(gens PP3)_2};

i84 : f3 = ideal{(gens PP3)_0};
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i85 : f1+f2 == l3

i86 : f1+f3 == l2

i87 : f2+f3 == l1

i88 : v = saturate(l1+l2+l3)

i89 : r11 == f1+f1’

i90 : r12 == f1+f2’

i91 : r13 == f1+f3’

i92 : r21 == f2+f1’

i93 : r22 == f2+f2’

i94 : r23 == f2+f3’

i95 : r31 == f3+f1’

i96 : r32 == f3+f2’

i97 : r33 == f3+f3’

i98 : -- general septic surface of the linear system :

K = septics^* ideal{random(1,PP9)};

i99 : (dim oo -1, degree oo) == (2,7)

i100 : -- K has double point along l1,l2,l3,l1’,l2’,l3’ :

(minors(1,jacobian(K))+l1 == l1) == true

i101 : (minors(1,jacobian(K))+l2 == l2) == true

i102 : (minors(1,jacobian(K))+l3 == l3) == true

i103 : (minors(1,jacobian(K))+l1’ == l1’) == true

i104 : (minors(1,jacobian(K))+l2’ == l2’) == true

i105 : (minors(1,jacobian(K))+l3’ == l3’) == true

i106 : -- K has triple point at v and v’ :

(minors(1,jacobian(jacobian(K)))+minors(1,jacobian(K))+v == v) == true

i107 : (minors(1,jacobian(jacobian(K)))+minors(1,jacobian(K))+v’ == v’) == true

i108 : -- remark

septics(f1) == P2

i109 : septics(f1’) == P2’

i110 : septics(f2) == P3

i111 : septics(f2’) == P3’

i112 : septics(f3) == P4

i113 : septics(f3’) == P4’

Code B.5. Computational analysis of W 10
BS (see § 6.6).

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Cremona";

i2 : PP2=ZZ/10000019[u_0,u_1,u_2];

i3 : PP6 = ZZ/10000019[x_0,x_1,x_2,x_3,x_4,x_5,x_6];

i4 : cubics3points = rationalMap map(PP2, PP6 , matrix{{u_1^2*u_2,

u_1*u_2^2, u_0^2*u_2,u_0*u_2^2, u_0^2*u_1,u_0*u_1^2, u_0*u_1*u_2}});

i5 : S6 = image cubics3points

i6 : PP1 = ZZ/10000019[y_0,y_1];

i7 : PP1xPP6= PP1 ** PP6;

i8 : pr2 = rationalMap(PP1xPP6,PP6, matrix{{x_0,x_1,x_2,x_3,x_4,x_5,x_6}});

i9 : PP10 = ZZ/10000019[w_0..w_10];

i10 : phi = rationalMap map(PP1xPP6,PP10, matrix{{y_0^2*x_6,y_0^2*x_0+y_0^2*x_2,

y_0^2*x_1+y_0^2*x_4,y_0^2*x_3+y_0^2*x_5,y_1^2*x_6,y_1^2*x_0+y_1^2*x_2,

y_1^2*x_1+y_1^2*x_4,y_1^2*x_3+y_1^2*x_5,y_0*y_1*x_0-y_0*y_1*x_2,

y_1*y_0*x_1-y_1*y_0*x_4,y_1*y_0*x_3-y_1*y_0*x_5}});

i11 : PP1xS6 = pr2^* S6;

i12 : WB10 = phi(PP1xS6);

i13 : (dim WB10 -1, degree WB10) == (3,18)

i14 : ideal{WB10_0,WB10_1,2*WB10_2,WB10_3,WB10_4,2*WB10_5,WB10_6,WB10_7,WB10_8,

2*WB10_9,WB10_10,WB10_11,WB10_12,2*WB10_13,WB10_14,2*WB10_15,2*WB10_16,

4*WB10_17,4*WB10_18,4*WB10_19}

i15 : oo == WB10

i16 : P1 = ideal{w_0,w_1,w_2,w_3,w_5-2*w_4,w_6-2*w_4,w_7-2*w_4,w_8,w_9,w_10};

i17 : P2 = ideal{w_0,w_1,w_2,w_3,w_5-2*w_4,w_6+2*w_4,w_7+2*w_4,w_8,w_9,w_10};

i18 : P3 = ideal{w_0,w_1,w_2,w_3,w_5+2*w_4,w_6-2*w_4,w_7+2*w_4,w_8,w_9,w_10};

i19 : P4 = ideal{w_0,w_1,w_2,w_3,w_5+2*w_4,w_6+2*w_4,w_7-2*w_4,w_8,w_9,w_10};

i20 : P1’ = ideal{w_1-2*w_0,w_2-2*w_0,w_3-2*w_0,w_4,w_5,w_6,w_7,w_8,w_9,w_10};

i21 : P2’ = ideal{w_1-2*w_0,w_2+2*w_0,w_3+2*w_0,w_4,w_5,w_6,w_7,w_8,w_9,w_10};

i22 : P3’ = ideal{w_1+2*w_0,w_2-2*w_0,w_3+2*w_0,w_4,w_5,w_6,w_7,w_8,w_9,w_10};

i23 : P4’ = ideal{w_1+2*w_0,w_2+2*w_0,w_3-2*w_0,w_4,w_5,w_6,w_7,w_8,w_9,w_10};

i24 : -- let us see if the lines lij joining the points Pi and Pj
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-- are contained in the threefold WB10

l12 = ideal{(toMap(saturate(P1*P2),1,1)).matrix};

i25 : (l12 + WB10 == l12) == true

i26 : l13 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};

i27 : (l13 + WB10 == l13) == true

i28 : l14 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};

i29 : (l14 + WB10 == l14) == true

i30 : l11’ = ideal{(toMap(saturate(P1*P1’),1,1)).matrix};

i31 : (l11’ + WB10 == l11’) == true

i32 : l12’ = ideal{(toMap(saturate(P1*P2’),1,1)).matrix};

i33 : (l12’ + WB10 == l12’) == false

i34 : l13’ = ideal{(toMap(saturate(P1*P3’),1,1)).matrix};

i35 : (l13’ + WB10 == l13’) == false

i36 : l14’ = ideal{(toMap(saturate(P1*P4’),1,1)).matrix};

i37 : (l14’ + WB10 == l14’) == false

i38 : -- etc...

proj1 = rationalMap toMap(P1,1,1);

i39 : proj2 = rationalMap toMap(proj1(P2),1,1);

i40 : proj3 = rationalMap toMap(proj2(proj1(P3)),1,1);

i41 : proj4 = rationalMap toMap(proj3(proj2(proj1(P4))),1,1);

i42 : proj1’ = rationalMap toMap(proj4(proj3(proj2(proj1(P1’)))),1,1);

i43 : proj2’ = rationalMap toMap(proj1’(proj4(proj3(proj2(proj1(P2’))))),1,1);

i44 : proj3’ = rationalMap toMap(proj2’(proj1’(proj4(proj3(proj2(proj1(P3’)))))),1,1);

i45 : proj = proj1*proj2*proj3*proj4*proj1’*proj2’*proj3’

i46 : isBirational(proj | WB10)

i47 : PP3 = target proj;

i48 : sexties = rationalMap map( PP3, PP10, matrix(inverseMap(proj|WB10)) )

i49 : image oo == WB10

i50 : baseL = associatedPrimes ideal sexties

i51 : l23 = baseL#0

i52 : r1 = baseL#1

i53 : l12 = baseL#2

i54 : r3 = baseL#3

i55 : l13 = baseL#4

i56 : r2 = baseL#5

i57 : l02 = baseL#6

i58 : l03 = baseL#7

i59 : l01 = baseL#8

i60 : v1 = baseL#9

i61 : v2 = baseL#10

i62 : v3 = baseL#11

i63 : f0 =ideal{(gens PP3)_0};

i64 : f1 =ideal{(gens PP3)_1+(gens PP3)_2+(gens PP3)_3};

i65 : f2=ideal{(gens PP3)_1-(gens PP3)_2+(gens PP3)_3};

i66 : f3 =ideal{(gens PP3)_1+(gens PP3)_2-(gens PP3)_3};

i67 : plane = ideal{(gens PP3)_1-(gens PP3)_2-(gens PP3)_3};

i68 : l12 == f1+f2

i69 : l13 == f1+f3

i70 : l23 == f2+f3

i71 : l01 == f0+f1

i72 : l02 == f0+f2

i73 : l03 == f0+f3

i74 : r1 == plane+f1

i75 : r2 == plane+f2

i76 : r3 == plane+f3

i77 : v0 = f1+f2+f3+plane

i78 : v1 == f0+f2+f3

i79 : v2 == f0+f1+f3

i80 : v3 == f0+f1+f2

i81 : q1 = saturate(l01+r1)

i82 : q2 = saturate(l02+r2)

i83 : q3 = saturate(l03+r3)

i84 : -- general element of the linear system defining sexties :

M = sexties^* ideal{random(1,PP10)};

i85 : (dim oo -1, degree oo)

i86 : -- M has double points along r1,r2,r3 :

(minors(1,jacobian(M))+r1 == r1) == true

i87 : (minors(1,jacobian(M))+r2 == r2) == true

i88 : (minors(1,jacobian(M))+r3 == r3) == true
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i89 : -- M has triple points at v1,v2,v3 :

(minors(1,jacobian(jacobian(M)))+minors(1,jacobian(M))+ v1 == v1) == true

i90 : (minors(1,jacobian(jacobian(M)))+minors(1,jacobian(M))+ v2 == v2) == true

i91 : (minors(1,jacobian(jacobian(M)))+minors(1,jacobian(M))+ v3 == v3) == true

i92 : -- v0 is a quadruple point of M :

(minors(1,jacobian(jacobian(jacobian(M))))+minors(1,jacobian(jacobian(M)))+

minors(1,jacobian(M))+ v0 == v0) == true

Code B.6. Computational analysis of W 13
BS (see § 6.7).

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Cremona";

i2 : PP1x = ZZ/10000019[x_0,x_1];

i3 : PP1y = ZZ/10000019[y_0,y_1];

i4 : PP1z = ZZ/10000019[z_0,z_1];

i5 : X = PP1x ** PP1y ** PP1z;

i6 : use X;

i7 : pigreca = rationalMap map(X, ZZ/10000019[w_0..w_13], matrix{{x_0^2*y_0^2*z_0^2,

x_0^2*y_0^2*z_1^2, x_0^2*y_0*y_1*z_0*z_1, x_0^2*y_1^2*z_0^2, x_0^2*y_1^2*z_1^2,

x_0*x_1*y_0^2*z_0*z_1, x_0*x_1*y_0*y_1*z_0^2, x_0*x_1*y_0*y_1*z_1^2,

x_0*x_1*y_1^2*z_0*z_1, x_1^2*y_0^2*z_0^2, x_1^2*y_0^2*z_1^2, x_1^2*y_0*y_1*z_0*z_1,

x_1^2*y_1^2*z_0^2, x_1^2*y_1^2*z_1^2}});

i8 : WB13 = image pigreca;

i9 : (dim oo -1, degree oo) == (3, 24)

i10 : PP13 = ring WB13;

i11 : P1 = pigreca(ideal{x_1,y_0,z_0});

i12 : P2 = pigreca(ideal{x_1,y_1,z_1});

i13 : P3 = pigreca(ideal{x_0,y_1,z_0});

i14 : P4 = pigreca(ideal{x_0,y_0,z_1});

i15 : P1’ = pigreca(ideal{x_0,y_1,z_1});

i16 : P2’ = pigreca(ideal{x_0,y_0,z_0});

i17 : P3’ = pigreca(ideal{x_1,y_0,z_1});

i18 : P4’ = pigreca(ideal{x_1,y_1,z_0});

i19 : -- let us see if the lines lij joining the points Pi and Pj

-- are contained in the threefold WB13

l12 = ideal{(toMap(saturate(P1*P2),1,1)).matrix};

i20 : (l12 + WB13 == l12) == false

i21 : l13 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};

i22 : (l13 + WB13 == l13) == false

i23 : l14 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};

i24 : (l14 + WB13 == l14) == false

i25 : l11’ = ideal{(toMap(saturate(P1*P1’),1,1)).matrix};

i26 : (l11’ + WB13 == l11’) == false

i27 : l12’ = ideal{(toMap(saturate(P1*P2’),1,1)).matrix};

i28 : (l12’ + WB13 == l12’) == true

i29 : l13’ = ideal{(toMap(saturate(P1*P3’),1,1)).matrix};

i30 : (l13’ + WB13 == l13’) == true

i31 : l14’ = ideal{(toMap(saturate(P1*P4’),1,1)).matrix};

i32 : (l14’ + WB13 == l14’) == true

i33 : -- etc..

proj1 = rationalMap toMap(P1,1,1);

i34 : proj2 = rationalMap toMap(proj1(P2),1,1);

i35 : proj3 = rationalMap toMap(proj2(proj1(P3)),1,1);

i36 : proj4 = rationalMap toMap(proj3(proj2(proj1(P4))),1,1);

i37 : proj5 = rationalMap toMap(proj4(proj3(proj2(proj1(P1’)))),1,1);

i38 : proj6 = rationalMap toMap(proj5(proj4(proj3(proj2(proj1(P2’))))),1,1);

i40 : proj7 = rationalMap toMap(proj6(proj5(proj4(proj3(proj2(proj1(P3’)))))),1,1);

i41 : proj8 = rationalMap toMap(proj7(proj6(proj5(proj4(proj3(proj2(proj1(P4’))))))),1,1);

i42 : proj = proj1*proj2*proj3*proj4*proj5*proj6*proj7*proj8;

i43 : T4 = proj(WB13)

i44 : (dim oo -1, degree oo) == (3, 4)

i45 : isBirational((proj|WB13)||T4)

i46 : PP5 = ring T4;

i47 : PP3 = ZZ/10000019[t_0..t_3];

i48 : quadricsThroughVertices = rationalMap map(PP3, PP5, matrix{{(gens PP3)_0*(gens PP3)_1,

(gens PP3)_1*(gens PP3)_2 ,(gens PP3)_1*(gens PP3)_3 ,(gens PP3)_0*(gens PP3)_2,

(gens PP3)_0*(gens PP3)_3, (gens PP3)_2*(gens PP3)_3}});
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i49 : image oo == T4

i50 : isBirational(quadricsThroughVertices||T4)

i51 : mapP5toP3 = rationalMap map( PP5, PP3, sub(matrix(inverseMap(quadricsThroughVertices||T4)), PP5))

i52 : mapWB13toP3 = (proj*mapP5toP3) | WB13;

i53 : isBirational mapWB13toP3

i54 : sexties = rationalMap map( PP3, ring WB13, matrix(inverseMap(mapWB13toP3)))

i55 : image oo == WB13

Code B.7. Computational analysis of W 7
F (see § 5.4). We will use Remark 5.44,

Theorem 6.17 and Remark 6.16.

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Cremona";

i2 : PP3 = ZZ/10000019[s_0..s_3];

i3 : -- edges of the trivial tetrahedon :

l12 = ideal{(gens PP3)_1, (gens PP3)_2};

i4 : l13 = ideal{(gens PP3)_1, (gens PP3)_3};

i5 : l23 = ideal{(gens PP3)_2, (gens PP3)_3};

i6 : l01 = ideal{(gens PP3)_0, (gens PP3)_1};

i7 : l02 = ideal{(gens PP3)_0, (gens PP3)_2};

i8 : l03 = ideal{(gens PP3)_0, (gens PP3)_3};

i9 : PP13 = ZZ/10000019[w_0..w_13];

i10 : sextiesSigma = rationalMap map(PP3,PP13, matrix{{s_0*s_1^3*s_2*s_3, s_0^2*s_1^2*s_2^2,

s_0^2*s_1^2*s_2*s_3, s_0^2*s_1^2*s_3^2, s_0^3*s_1*s_2*s_3, s_0*s_1^2*s_2^2*s_3,

s_0*s_1^2*s_2*s_3^2, s_0^2*s_1*s_2^2*s_3, s_0^2*s_1*s_2*s_3^2, s_1^2*s_2^2*s_3^2,

s_0*s_1*s_2^3*s_3, s_0*s_1*s_2^2*s_3^2, s_0*s_1*s_2*s_3^3, s_0^2*s_2^2*s_3^2}});

i11 : -- classical F-EF 3-fold

WF13 = image sextiesSigma;

i12 : (dim WF13 -1, degree WF13) == (3, 24)

i13 : -- singular points of WF13

-- (which is equal to the BS-EF 3-fold WB13) :

q1 = ideal{w_0,w_1,w_2,w_3,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};

i14 : q2 = ideal{w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};

i15 : q3 = ideal{w_0,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_11,w_12,w_13};

i16 : q4 = ideal{w_0,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_13};

i17 : q1’ = ideal{w_0,w_1,w_2,w_3,w_5,w_4,w_6,w_7,w_8,w_10,w_11,w_12,w_13};

i18 : q2’ = ideal{w_0,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12};

i19 : q3’ = ideal{w_0,w_1,w_2,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};

i20 : q4’ = ideal{w_0,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};

i21 : -- let us take a general plane of PP3

-- and the intersection points with the edges lij

-- plane = ideal{random(1,PP3)}

-- example:

plane = ideal{s_0+s_1+s_2+s_3};

i22 : PP2 = ZZ/10000019[x_0,x_1,x_2];

i23 : inclusion = rationalMap map(PP2,PP3, matrix{{-(gens PP2)_0-(gens PP2)_1-(gens PP2)_2,

(gens PP2)_0, (gens PP2)_1, (gens PP2)_2}})

i24 : image oo == plane

i25 : p01 = saturate(plane+l01) -- [0:0:-1:1]

i26 : p02 = saturate(plane+l02) -- [0:-1:0:1]

i27 : p03 = saturate(plane+l03) -- [0:-1:1:0]

i28 : p12 = saturate(plane+l12) -- [-1:0:0:1]

i29 : p13 = saturate(plane+l13) -- [-1:0:1:0]

i30 : p23 = saturate(plane+l23) -- [-1:1:0:0]

i31 : a01=inclusion^*p01; -- [0:-1:1]

i32 : a02=inclusion^*p02; -- [-1:0:1]

i33 : a03=inclusion^*p03; -- [-1:1:0]

i34 : a12=inclusion^*p12; -- [0:0:1]

i35 : a13=inclusion^*p13; -- [0:1:0]

i36 : a23=inclusion^*p23; -- [1:0:0]

i37 : -- in the above plane, let us take

-- a general cubic curve through the six points pij

-- rationalMap toMap(saturate(a01*a02*a03*a12*a13*a23),3,1);

-- cubicThrough6points = oo^*(ideal{random(1,ring(image oo))})

-- example:

cubicThrough6points = ideal{(gens PP2)_1^2*(gens PP2)_2+(gens PP2)_1*(gens PP2)_2^2+

(gens PP2)_0^2*(gens PP2)_2+(gens PP2)_0*(gens PP2)_2^2+(gens PP2)_0^2*(gens PP2)_1+
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(gens PP2)_0*(gens PP2)_1^2+(gens PP2)_0*(gens PP2)_1*(gens PP2)_2}

-- 2 2 2 2 2 2

-- o37 = ideal(x x + x x + x x + x x x + x x + x x + x x )

-- 0 1 0 1 0 2 0 1 2 1 2 0 2 1 2

i38 : (dim oo -1, degree oo, genus oo)==(1,3,1)

i39 : delta = inclusion(cubicThrough6points)

-- 2 2 2 2 2 2

-- o39 = ideal (s + s + s + s , s s + s s + s s + s s s + s s + s s + s s )

-- 0 1 2 3 1 2 1 2 1 3 1 2 3 2 3 1 3 2 3

i40 : (dim oo -1, degree oo, genus oo)==(1,3,1)

i41 : (delta+l01==p01) == true

i42 : (delta+l02==p02) == true

i43 : (delta+l03==p03) == true

i44 : (delta+l12==p12) == true

i45 : (delta+l13==p13) == true

i46 : (delta+l23==p23) == true

i47 : nudelta=sextiesSigma(delta)

i48 : (dim oo -1, degree oo, genus oo)==(1,6,1)

i49 : (nudelta+q1 == q1) == false

i50 : (nudelta+q2 == q2) == false

i51 : (nudelta+q3 == q3) == false

i52 : (nudelta+q4 == q4) == false

i53 : (nudelta+q1’ == q1’) == false

i54 : (nudelta+q2’ == q2’) == false

i55 : (nudelta+q3’ == q3’) == false

i56 : (nudelta+q4’ == q4’) == false

i57 : spannudelta=ideal{nudelta_0,nudelta_1,nudelta_2,nudelta_3,nudelta_4,

nudelta_5,nudelta_6,nudelta_7}

i58 : (dim oo -1, degree oo)==(5,1)

i59 : -- let us construct the F-EF 3-fold WF7

-- as projection og WF13 from spannudelta

proj = rationalMap toMap(spannudelta,1,1)

i60 : WF7 = proj(WF13)

i61 : (dim oo -1, degree oo)==(3,12)

i62 : -- let us see the configuration of

-- the singular points of WF7:

P1 = proj(q1); -- [ 0: 0: 0: 0: 1:-1: 1: 1]

i63 : P2 = proj(q2); -- [ 0: 0: 0: 0: 0: 0: 0: 1]

i64 : P3 = proj(q3); -- [ 1: 0: 0:-2: 0: 0: 4: 2]

i65 : P4 = proj(q4); -- [ 1: 0:-2: 0: 4: 0: 0: 2]

i66 : P1’ = proj(q1’); -- [ 1: 0: 0: 0: 0: 0: 0: 0]

i67 : P2’ = proj(q2’); -- [ 1: 2: 0:-2: 2:-2: 4: 4]

i68 : P3’ = proj(q3’); -- [ 0: 0: 0: 0: 1: 0: 0: 0]

i69 : P4’ = proj(q4’); -- [ 0: 0: 0: 0: 0: 0: 1: 0]

i70 : line12 = ideal{(toMap(saturate(P1*P2),1,1)).matrix};

i71 : (line12 + WF7 == line12) == true

i72 : line13 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};

i73 : (line13 + WF7 == line13) == true

i74 : line14 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};

i75 : (line14 + WF7 == line14) == true

i76 : line23 = ideal{(toMap(saturate(P2*P3),1,1)).matrix};

i77 : (line23 + WF7 == line23) == true

i78 : line24 = ideal{(toMap(saturate(P2*P4),1,1)).matrix};

i79 : (line24 + WF7 == line24) == true

i80 : line34 = ideal{(toMap(saturate(P3*P4),1,1)).matrix};

i81 : (line34 + WF7 == line34) == true

i82 : line11’ = ideal{(toMap(saturate(P1*P1’),1,1)).matrix};

i83 : (line11’ + WF7 == line11’) == false

i84 : line22’ = ideal{(toMap(saturate(P2*P2’),1,1)).matrix};

i85 : (line22’ + WF7 == line22’) == false

i86 : line33’ = ideal{(toMap(saturate(P3*P3’),1,1)).matrix};

i87 : (line33’ + WF7 == line33’) == false

i88 : line44’ = ideal{(toMap(saturate(P4*P4’),1,1)).matrix};

i89 : (line44’ + WF7 == line44’) == false

i90 : -- let us take the rational map

-- defined by the linear system

-- of the sextics of PP3 double along the edges lij

-- and containing the curve delta

sextiesX = sextiesSigma*proj

144



i91 : WF7 == image oo

i92 : -- base locus of sextiesX

baseX = associatedPrimes(ideal sextiesX)

i93 : baseX#0 == delta

i94 : baseX#1 == l13

i95 : baseX#2 == l12

i96 : baseX#3 == l01

i97 : baseX#4 == l23

i98 : baseX#5 == l02

i99 : baseX#6 == l03

i100 : PP7 = ring WF7

i101 : -- let us take a general element X of the

-- linear system of the sextics double

-- along the edges of a trivial tetrahedron

-- and containing the cubic curve delta:

-- X = sextiesX^*(ideal{random(1,PP7)})

-- for example let us take:

matrix sextiesX

i102 : X = ideal{2*oo_(0,0)+oo_(0,4)+oo_(0,6)-oo_(0,7)}

-- 2 2 2 3 3 3 2 2 2 2 2 2 2 2 2 2 2 3

-- o102 = ideal(s s s - s s s s - s s s s - 2s s s s + s s s + 2s s s + s s s s + 2s s s - 2s s s s )

-- 0 1 2 0 1 2 3 0 1 2 3 0 1 2 3 0 1 3 0 2 3 0 1 2 3 1 2 3 0 1 2 3

i103 : (dim oo -1, degree oo) == (2,6)

i104 : -- remark: its image via sextiesX is contains no

-- singular points of WF7

S = sextiesX(X);

i105 : (S+P1 == P1) == false

i106 : (S+P2 == P2) == false

i107 : (S+P3 == P3) == false

i108 : (S+P4 == P4) == false

i109 : (S+P1’ == P1’) == false

i110 : (S+P2’ == P2’) == false

i111 : (S+P3’ == P3’) == false

i112 : (S+P4’ == P4’) == false

i113 : -- as for a general Enriques sextic,

-- the tangent cone to X at a vertex of the tetrahedron

-- is the union of the three faces containing that vertex

PP3’ = ZZ/10000019[x_0..x_3];

i114 : Conev0 = tangentCone(sub(X, {(gens PP3)_0 => 1 }))

i115 : degree oo == 3

i116 : Conev1 = tangentCone(sub(X, {(gens PP3)_1 => 1 }))

i117 : degree oo == 3

i118 : Conev2 = tangentCone(sub(X, {(gens PP3)_2 => 1 }))

i119 : degree oo == 3

i120 : Conev3 = tangentCone(sub(X, {(gens PP3)_3 => 1 }))

i121 : degree oo == 3

i122 : -- the tangent cone to X at a point pij

-- it the union of two planes containing lij:

-- let us take a change of coordinates

-- in order to see p01 as the point [0:0:0:1]

sub(X, {(gens PP3)_0 => (gens PP3’)_0, (gens PP3)_1 => (gens PP3’)_1,

(gens PP3)_2 => (gens PP3’)_2-(gens PP3’)_3, (gens PP3)_3 => (gens PP3’)_3 });

i123 : sub(oo, {(gens PP3’)_3 => 1})

i124 : tangentCone oo

i125 : Conep01 = sub(oo, {(gens PP3’)_0 => (gens PP3)_0, (gens PP3’)_1 => (gens PP3)_1,

(gens PP3’)_2 => (gens PP3)_2+(gens PP3)_3, (gens PP3’)_3 => (gens PP3)_3 })

i126 : degree oo == 2

i127 : -- let us take a change of coordinates

-- in order to see p02 as the point [0:0:0:1]

sub(X, {(gens PP3)_0 => (gens PP3’)_0, (gens PP3)_1 => (gens PP3’)_1-(gens PP3’)_3,

(gens PP3)_2 => (gens PP3’)_2, (gens PP3)_3 => (gens PP3’)_3 });

i128 : sub(oo, {(gens PP3’)_3 => 1})

i129 : tangentCone oo

i130 : Conep02 = sub(oo, {(gens PP3’)_0 => (gens PP3)_0, (gens PP3’)_1 => (gens PP3)_1+(gens PP3)_3,

(gens PP3’)_2 => (gens PP3)_2, (gens PP3’)_3 => (gens PP3)_3 })

i131 : degree oo == 2

i132 : -- let us take a change of coordinates

-- in order to see p03 as the point [0:0:1:0]

sub(X, {(gens PP3)_0 => (gens PP3’)_0, (gens PP3)_1 => (gens PP3’)_1-(gens PP3’)_2,
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(gens PP3)_2 => (gens PP3’)_2, (gens PP3)_3 => (gens PP3’)_3 });

i133 : sub(oo, {(gens PP3’)_2 => 1})

i134 : tangentCone oo

i135 : Conep03 = sub(oo, {(gens PP3’)_0 => (gens PP3)_0, (gens PP3’)_1 => (gens PP3)_1+(gens PP3)_2,

(gens PP3’)_2 => (gens PP3)_2, (gens PP3’)_3 => (gens PP3)_3 })

i136 : degree oo == 2

i137 : -- let us take a change of coordinates

-- in order to see p12 as the point [0:0:0:1]

sub(X, {(gens PP3)_0 => (gens PP3’)_0-(gens PP3’)_3, (gens PP3)_1 => (gens PP3’)_1,

(gens PP3)_2 => (gens PP3’)_2, (gens PP3)_3 => (gens PP3’)_3 });

i138 : sub(oo, {(gens PP3’)_3 => 1})

i139 : tangentCone oo

i140 : Conep12 = sub(oo, {(gens PP3’)_0 => (gens PP3)_0+(gens PP3)_3, (gens PP3’)_1 => (gens PP3)_1,

(gens PP3’)_2 => (gens PP3)_2, (gens PP3’)_3 => (gens PP3)_3 })

i141 : degree oo == 2

i142 : -- let us take a change of coordinates

-- in order to see p13 as the point [0:0:1:0]

sub(X, {(gens PP3)_0 => (gens PP3’)_0-(gens PP3’)_2, (gens PP3)_1 => (gens PP3’)_1,

(gens PP3)_2 => (gens PP3’)_2, (gens PP3)_3 => (gens PP3’)_3 });

i143 : sub(oo, {(gens PP3’)_2 => 1})

i144 : tangentCone oo

i145 : Conep13 = sub(oo, {(gens PP3’)_0 => (gens PP3)_0+(gens PP3)_2, (gens PP3’)_1 => (gens PP3)_1,

(gens PP3’)_2 => (gens PP3)_2, (gens PP3’)_3 => (gens PP3)_3 })

i146 : degree oo == 2

i147 : -- let us take a change of coordinates

-- in order to see p23 as the point [0:1:0:0]

sub(X, {(gens PP3)_0 => (gens PP3’)_0-(gens PP3’)_1, (gens PP3)_1 => (gens PP3’)_1,

(gens PP3)_2 => (gens PP3’)_2, (gens PP3)_3 => (gens PP3’)_3 });

i148 : sub(oo, {(gens PP3’)_1 => 1})

i149 : tangentCone oo

i150 : Conep23 = sub(oo, {(gens PP3’)_0 => (gens PP3)_0+(gens PP3)_1, (gens PP3’)_1 => (gens PP3)_1,

(gens PP3’)_2 => (gens PP3)_2, (gens PP3’)_3 => (gens PP3)_3 })

i151 : degree oo == 2

i152 : -- let us see that the tangent cone to X

-- at a point of lij is a couple of planes

-- containing lij

-- let us take a point [x:0:0:y] of l12

-- since we have already studied

-- the points v0=[1:0:0:0] and v3=[1:0:0:0]

-- we can assume x and y not equal to zero

-- so let us consider the point [a:0:0:1]

-- with a not equal to zero

-- let us take a change of coordinates

-- in order to see [a:0:0:1] as the point [0:0:0:1]

A = ZZ/10000019[a];

i153 : R = A[s_0..s_3];

i154 : R’ = A[r_0..r_3];

i155 : newX = sub(X,R)

i156 : sub(newX, {(gens R)_0 => (gens R’)_0+(gens A)_0*(gens R’)_3, (gens R)_1 => (gens R’)_1,

(gens R)_2 => (gens R’)_2, (gens R)_3 => (gens R’)_3 })

i157 : sub(oo,(gens R’)_3=>1)

i158 : sub(tangentCone oo, {(gens R’)_0 => (gens R)_0-(gens A)_0*(gens R)_3, (gens R’)_1 => (gens R)_1,

(gens R’)_2 => (gens R)_2, (gens R’)_3 => (gens R)_3 })

i159 : -- we obtain

-- 2 2 3 2 2

-- ideal(a s + (- a - 2a)s s + 2a s )

-- 1 1 2 2

-- so the tangent cone to X at the point [a:0:0:1]

-- is the union of two planes containing l12

-- similarly for the points of l13,l23,l01,l02,l03

-- let us study the singular locus of X

-- in order to verify if X has other kinds of singularity

JX = jacobian(X)

i160 : singX = minors(1,JX)+X

i161 : compSingX = associatedPrimes singX

i162 : compSingX#0 == l01
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i163 : compSingX#1 == l02

i164 : compSingX#2 == l12

i165 : compSingX#3 == l23

i166 : compSingX#4 == l03

i167 : compSingX#5 == l13

i168 : -- compSingX#6 is the point [0:0:2:1]

-- compSingX#7 is the point [0:0:1:2]

x’ = compSingX#8 -- is a point of l01

i169 : x’’ = compSingX#9 -- is the point of l01

i170 : -- remark (in order to understand x’ and x’’):

sub(X, QQ[s_0..s_3])

i171 : minors(1,jacobian(oo))+oo

i172 : compSingX’ = associatedPrimes oo

i173 : (associatedPrimes(sub(compSingX’#6,PP3)))#0 == x’

i174 : (associatedPrimes(sub(compSingX’#6,PP3)))#1 == x’’

-- where compSingX’#6 is:

-- 2 2

-- ideal (s , s , 2s + 3s s + 2s )

-- 1 0 2 2 3 3

i175 :

-- furthermore, if r = sqrt(2) we have that

-- compSingX#10 are the points [r:0:0:1] and [-r:0:0:1]

-- compSingX#11 are the points [r:0:1:0] and [-r:0:1:0]

-- compSingX#12 are the points [0:r:0:1] and [0:-r:0:1]

-- compSingX#13 is the point [1:1:0:0]

compSingX#14 == p23

i176 : -- compSingX#15 are the points [0:r:1:0] and [0:r:1:0]

-- hence X has just the singularities described above

Code B.8. Computational analysis of W 9
KLM (see § 7.3).

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Cremona";

i2 : PP3 = ZZ/10000019[s_0..s_3];

i3 : PP13 = ZZ/10000019[w_0..w_13];

i4 : sexties = rationalMap map(PP3,PP13, matrix{{s_0*s_1^3*s_2*s_3, s_0^2*s_1^2*s_2^2,

s_0^2*s_1^2*s_2*s_3, s_0^2*s_1^2*s_3^2, s_0^3*s_1*s_2*s_3, s_0*s_1^2*s_2^2*s_3,

s_0*s_1^2*s_2*s_3^2, s_0^2*s_1*s_2^2*s_3, s_0^2*s_1*s_2*s_3^2, s_1^2*s_2^2*s_3^2,

s_0*s_1*s_2^3*s_3, s_0*s_1*s_2^2*s_3^2, s_0*s_1*s_2*s_3^3, s_0^2*s_2^2*s_3^2}});

i5 : WF13 = image sexties;

i6 : (dim WF13 -1, degree WF13) == (3, 24)

i7 : P1 = ideal{w_0,w_1,w_2,w_3,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};

i8 : P2 = ideal{w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};

i9 : P3 = ideal{w_0,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_11,w_12,w_13};

i10 : P4 = ideal{w_0,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_13};

i11 : P1’ = ideal{w_0,w_1,w_2,w_3,w_5,w_4,w_6,w_7,w_8,w_10,w_11,w_12,w_13};

i12 : P2’ = ideal{w_0,w_1,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12};

i13 : P3’ = ideal{w_0,w_1,w_2,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};

i14 : P4’ = ideal{w_0,w_2,w_3,w_4,w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};

i15 : J = jacobian((map sexties).matrix);

i16 : JJ = jacobian(J);

i17 : JJl23 = sub(JJ,{(gens PP3)_2=> 0, (gens PP3)_3 =>0})

i18 : SPANnuF23 = ideal{w_5,w_6,w_7,w_8,w_9,w_10,w_11,w_12,w_13};

i19 : -- H12 = ideal{random(1,PP13)};

-- for example

H12 = ideal{w_0+11*w_1+2*w_2+3*w_3+5*w_4+4*w_5+6*w_6-7*w_7-8*w_8-9*w_9+

10*w_10-11*w_11+12*w_12+13*w_13};

i20 : S = H12+WF13;

i21 : E3 = saturate(S+SPANnuF23)

i22 : (dim oo -1, degree oo, genus oo) == (1, 4, 1)

i23 : SPANE3 = ideal{E3_0,E3_1,E3_2,E3_3,E3_4,E3_5,E3_6,E3_7,E3_8,E3_9};

i24 : PP9 = ZZ/10000019[z_0..z_9];

i25 : projE3 = rationalMap map(PP13,PP9, matrix{{SPANE3_9,SPANE3_8,SPANE3_7,SPANE3_6,

SPANE3_5,SPANE3_4,SPANE3_3,SPANE3_2,SPANE3_1,SPANE3_0}})

i26 : KLM = projE3(WF13)

i27 : (dim oo -1, degree oo) == (3, 16)

i28 : isBirational((projE3|WF13)||KLM)
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i29 : projE3(P1’)==projE3(P4’)

i30 : projE3(P4’)==projE3(P2)

i31 : projE3(P2)==projE3(P3’)

i32 : p1 = projE3(P1’)

i33 : p2 = projE3(P2’)

i34 : p3 = projE3(P3)

i35 : p4 = projE3(P4)

i36 : p5 = projE3(P1)

i37 : line15 = ideal{(toMap(saturate(p1*p5),1,1)).matrix};

i38 : (line15 + KLM == line15) == true

i39 : line25 = ideal{(toMap(saturate(p2*p5),1,1)).matrix};

i40 : (line25 + KLM == line25) == true

i41 : line35 = ideal{(toMap(saturate(p3*p5),1,1)).matrix};

i42 : (line35 + KLM == line35) == true

i43 : line45 = ideal{(toMap(saturate(p4*p5),1,1)).matrix};

i44 : (line45 + KLM == line45) == true

i45 : line12 = ideal{(toMap(saturate(p1*p2),1,1)).matrix};

i46 : (line12 + KLM == line12) == false

i47 : line13 = ideal{(toMap(saturate(p1*p3),1,1)).matrix};

i48 : (line13 + KLM == line13) == true

i49 : line14 = ideal{(toMap(saturate(p1*p4),1,1)).matrix};

i50 : (line14 + KLM == line14) == true

i51 : line23 = ideal{(toMap(saturate(p2*p3),1,1)).matrix};

i52 : (line23 + KLM == line23) == true

i53 : line24 = ideal{(toMap(saturate(p2*p4),1,1)).matrix};

i54 : (line24 + KLM == line24) == true

i55 : line34 = ideal{(toMap(saturate(p3*p4),1,1)).matrix};

i56 : (line34 + KLM == line34) == false

i57 : sub(KLM, {(gens PP9)_5=>1});

i58 : Conep1 = tangentCone oo

i59 : degree oo == 4

i60 : sub(KLM, {(gens PP9)_9=>1});

i61 : Conep2 = tangentCone oo

i62 : degree oo == 4

i63 : sub(KLM, {(gens PP9)_6=>1});

i64 : Conep3 = tangentCone oo

i65 : degree oo == 4

i66 : sub(KLM, {(gens PP9)_8=>1});

i67 : Conep4 = tangentCone oo

i68 : degree oo == 4

i69 : sub(KLM, {(gens PP9)_0=>1});

i70 : Conep5 = tangentCone oo

i71 : degree oo == 6

i72 : M6 = Conep5+ideal{(gens PP9)_0}

i73 : irredCompM6 = associatedPrimes M6;

i74 : plane1 = irredCompM6#0

i75 : plane2 = irredCompM6#1

i76 : plane2’ = irredCompM6#2

i77 : plane1’ = irredCompM6#3

i78 : Q = irredCompM6#4

i79 : line1 = Q+plane1;

i80 : line1’ = Q+plane1’;

i81 : line2 = Q+plane2;

i82 : line2’ = Q+plane2’;

i83 : dim(line1+line1’)-1 == -1

i84 : dim(line2+line2’)-1 == -1

i85 : q12 = saturate(line1+line2)

i86 : q12’ = saturate(line1+line2’)

i87 : q1’2 = saturate(line1’+line2)

i88 : q1’2’ = saturate(line1’+line2’)

Code B.9. Computational analysis of W 13
P (see § 8.2).

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Cremona";

i2 : needsPackage "Points";

i3 : PP2=ZZ/10000019[u_0,u_1,u_2];
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i4 : a1 = ideal{u_1,u_2};

i5 : a2 = ideal{u_0,u_2};

i6 : a3 = ideal{u_0,u_1};

i7 : cubics3points = rationalMap toMap(saturate(a1*a2*a3),3,1);

i8 : DelPezzo6ic = image cubics3points;

i9 : (dim DelPezzo6ic -1, degree DelPezzo6ic)

i10 : PP6 = ring DelPezzo6ic;

i11 : PP7 = ZZ/10000019[x_0,x_1,x_2,x_3,x_4,x_5,x_6,y];

i12 : inclusion = rationalMap map(PP6,PP7, matrix{{(gens PP6)_0,(gens PP6)_1,

(gens PP6)_2,(gens PP6)_3,(gens PP6)_4,(gens PP6)_5,(gens PP6)_6,0}});

i13 : S6 = inclusion(DelPezzo6ic);

i14 : v = ideal{x_0,x_1,x_2,x_3,x_4,x_5,x_6};

i15 : numgens S6 == 10

i16 : V = ideal{S6_1,S6_2,S6_3,S6_4,S6_5,S6_6,S6_7,S6_8,S6_9};

i17 : (dim V -1, degree V) == (3, 6)

i18 : tau = rationalMap map(PP7,PP7, matrix{{x_2,x_4,x_0,x_5,x_1,x_3,x_6,-y}});

i19 : F1 = ideal{(gens PP7)_0+(gens PP7)_2, (gens PP7)_1+(gens PP7)_4,

(gens PP7)_3+(gens PP7)_5, (gens PP7)_6};

i20 : tau(F1) == F1

i21 : F2 = ideal{(gens PP7)_0-(gens PP7)_2, (gens PP7)_1-(gens PP7)_4,

(gens PP7)_3-(gens PP7)_5, y};

i22 : tau(F2) == F2

i23 : F2intV = associatedPrimes saturate(F2+V);

i24 : v1 = F2intV#0;

i25 : v2 = F2intV#3;

i26 : v3 = F2intV#2;

i27 : v4 = F2intV#1;

i28 : v1 == points matrix(PP7, {{1},{1},{1},{1},{1},{1},{1},{0}})

i29 : v2 == points matrix(PP7, {{1},{-1},{1},{-1},{-1},{-1},{1},{0}})

i30 : v3 == points matrix(PP7, {{-1},{1},{-1},{-1},{1},{-1},{1},{0}})

i31 : v4 == points matrix(PP7, {{-1},{-1},{-1},{1},{-1},{1},{1},{0}})

i32 : PP13 = ZZ/10000019[z_0..z_13];

i33 : pigreco = rationalMap map(PP7,PP13, matrix{{x_6^2, x_0^2+x_2^2, x_1^2+x_4^2, x_3^2+x_5^2,

(x_0+x_2)*x_6, (x_1+x_4)*x_6, (x_3+x_5)*x_6, x_0*x_1+x_2*x_4, x_2*x_3+x_0*x_5, x_1*x_3+x_4*x_5,

(x_0-x_2)*y, (x_1-x_4)*y, (x_3-x_5)*y, y^2}});

i34 : PP19 = ZZ/10000019[Z_0..Z_19]

i35 : phi = rationalMap map(PP7,PP19,matrix{{x_6^2, x_0^2+x_2^2, x_1^2+x_4^2,

x_3^2+x_5^2, (x_0+x_2)*x_6, (x_1+x_4)*x_6, (x_3+x_5)*x_6, x_0*x_1+x_2*x_4,

x_2*x_3+x_0*x_5, x_1*x_3+x_4*x_5, (x_0-x_2)*y, (x_1-x_4)*y, (x_3-x_5)*y, y^2,

2*x_0*x_2, 2*x_1*x_4, 2*x_3*x_5, x_4*x_3+x_1*x_5, x_0*x_3+x_2*x_5, x_1*x_2+x_0*x_4}});

i36 : phi(V)

i37 : phiV = sub(phi(V), {Z_14 => 2*Z_0,Z_15 => 2*Z_0,Z_16 => 2*Z_0, Z_19 => Z_6,

Z_18 => Z_5, Z_17 => Z_4})

i38 : PP13’ = ZZ/10000019[Z_0..Z_13];

i39 : ideal(submatrix(gens (sub(ooo, PP13’)), {6..47}))

i40 : WP13 = sub(oo, { (gens PP13’)_0 => (gens PP13)_0, (gens PP13’)_1 => (gens PP13)_1,

(gens PP13’)_2 => (gens PP13)_2, (gens PP13’)_3 => (gens PP13)_3, (gens PP13’)_4 => (gens PP13)_4,

(gens PP13’)_5 => (gens PP13)_5, (gens PP13’)_6 => (gens PP13)_6, (gens PP13’)_7 => (gens PP13)_7,

(gens PP13’)_8 => (gens PP13)_8, (gens PP13’)_9 => (gens PP13)_9, (gens PP13’)_10 => (gens PP13)_10,

(gens PP13’)_11 => (gens PP13)_11, (gens PP13’)_12 => (gens PP13)_12, (gens PP13’)_13 => (gens PP13)_13 })

i41 : (dim oo -1, degree oo) == (3, 24)

i42 : WP13 == pigreco(V)

i43 : P1 = ideal{z_1 -2*z_0,z_2 -2*z_0,z_3 -2*z_0,z_4 -2*z_0,z_5 -2*z_0,

z_6 -2*z_0,z_7 -2*z_0,z_8 -2*z_0,z_9 -2*z_0,z_10,z_11,z_12,z_13};

i44 : P2 = ideal{z_1 -2*z_0,z_2 -2*z_0,z_3 -2*z_0,z_4 -2*z_0,z_5 +2*z_0,

z_6 +2*z_0,z_7 +2*z_0,z_8 +2*z_0,z_9 -2*z_0,z_10,z_11,z_12,z_13};

i45 : P3 = ideal{z_1 -2*z_0,z_2 -2*z_0,z_3 -2*z_0,z_4 +2*z_0,z_5 -2*z_0,

z_6 +2*z_0,z_7 +2*z_0,z_8 -2*z_0,z_9 +2*z_0,z_10,z_11,z_12,z_13};

i46 : P4 = ideal{z_1 -2*z_0,z_2 -2*z_0,z_3 -2*z_0,z_4 +2*z_0,z_5 +2*z_0,

z_6 -2*z_0,z_7 -2*z_0,z_8 +2*z_0,z_9 +2*z_0,z_10,z_11,z_12,z_13};

i47 : P1 == pigreco(v1)

i48 : P2 == pigreco(v2)

i49 : P3 == pigreco(v3)

i50 : P4 == pigreco(v4)

i51 : P5 = pigreco(v);

i52 : l12 = ideal{(toMap(saturate(P1*P2),1,1)).matrix};

i53 : (l12 + WP13 == l12 ) == false

i54 : l13 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};

i55 : (l13 + WP13 == l13) == false
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i56 : l14 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};

i57 : (l14 + WP13 == l14 ) == false

i58 : l15 = ideal{(toMap(saturate(P1*P5),1,1)).matrix};

i59 : (l15 + WP13 == l15) == true

i60 : l23 = ideal{(toMap(saturate(P2*P3),1,1)).matrix};

i61 : (l23 + WP13 == l23) == false

i62 : l24 = ideal{(toMap(saturate(P2*P4),1,1)).matrix};

i63 : (l24 + WP13 == l24) == false

i64 : l25 = ideal{(toMap(saturate(P2*P5),1,1)).matrix};

i65 : (l25 + WP13 == l25) == true

i66 : l34 = ideal{(toMap(saturate(P3*P4),1,1)).matrix};

i67 : (l34 + WP13 == l34) == false

i68 : l35 = ideal{(toMap(saturate(P3*P5),1,1)).matrix};

i69 : (l35 + WP13 == l35) == true

i70 : l45 = ideal{(toMap(saturate(P4*P5),1,1)).matrix};

i71 : (l45 + WP13 == l45) == true

i72 : W’ = sub(WP13, {(gens PP13)_0 => (gens PP13’)_0, (gens PP13)_1 => (gens PP13’)_1 + 2*(gens PP13’)_0,

(gens PP13)_2 => (gens PP13’)_2 + 2*(gens PP13’)_0, (gens PP13)_3 => (gens PP13’)_3 + 2*(gens PP13’)_0,

(gens PP13)_4 => (gens PP13’)_4 + 2*(gens PP13’)_0, (gens PP13)_5 => (gens PP13’)_5 + 2*(gens PP13’)_0,

(gens PP13)_6 => (gens PP13’)_6 + 2*(gens PP13’)_0, (gens PP13)_7 => (gens PP13’)_7 + 2*(gens PP13’)_0,

(gens PP13)_8 => (gens PP13’)_8 + 2*(gens PP13’)_0, (gens PP13)_9 => (gens PP13’)_9 + 2*(gens PP13’)_0,

(gens PP13)_10 => (gens PP13’)_10, (gens PP13)_11 => (gens PP13’)_11,

(gens PP13)_12 => (gens PP13’)_12, (gens PP13)_13 => (gens PP13’)_13});

i73 : W’U0 = sub(oo, {(gens PP13’)_0 => 1});

i74 : ConeP1 = sub(tangentCone oo, {(gens PP13’)_0 => (gens PP13)_0,

(gens PP13’)_1 => (gens PP13)_1 - 2*(gens PP13)_0, (gens PP13’)_2 => (gens PP13)_2 - 2*(gens PP13)_0,

(gens PP13’)_3 => (gens PP13)_3 - 2*(gens PP13)_0, (gens PP13’)_4 => (gens PP13)_4 - 2*(gens PP13)_0,

(gens PP13’)_5 => (gens PP13)_5 - 2*(gens PP13)_0, (gens PP13’)_6 => (gens PP13)_6 - 2*(gens PP13)_0,

(gens PP13’)_7 => (gens PP13)_7 - 2*(gens PP13)_0, (gens PP13’)_8 => (gens PP13)_8 - 2*(gens PP13)_0,

(gens PP13’)_9 => (gens PP13)_9 - 2*(gens PP13)_0,

(gens PP13’)_10 => (gens PP13)_10, (gens PP13’)_11 => (gens PP13)_11,

(gens PP13’)_12 => (gens PP13)_12, (gens PP13’)_13 => (gens PP13)_13 });

i75 : degree oo == 4

i76 : TC0W’U0 = ideal{-9*Z_1+8*Z_7+8*Z_8-4*Z_9, -9*Z_2+8*Z_7-4*Z_8+8*Z_9,

-9*Z_3-4*Z_7+8*Z_8+8*Z_9, -9*Z_4+2*Z_7+2*Z_8-Z_9, -9*Z_5+2*Z_7-Z_8+2*Z_9,

-9*Z_6-Z_7+2*Z_8+2*Z_9, Z_10-Z_11+Z_12, 9*Z_12^2-(-4*Z_7+8*Z_8+8*Z_9)*Z_13,

9*Z_11^2-(8*Z_7-4*Z_8+8*Z_9)*Z_13, 9*Z_11*Z_12+(2*Z_7+2*Z_8-10*Z_9)*Z_13,

(2*Z_7-10*Z_8+2*Z_9)*Z_11+(-10*Z_7+2*Z_8+2*Z_9)*Z_12,

(6*Z_7-6*Z_8-18*Z_9)*Z_11+(6*Z_7-6*Z_8+18*Z_9)*Z_12,

Z_7^2- 2*Z_7*Z_8+Z_8^2-2*Z_7*Z_9-2*Z_8*Z_9+Z_9^2}

i77 : oo == tangentCone W’U0

i78 : sub(ooo, {(gens PP13’)_0 => (gens PP13)_0,

(gens PP13’)_1 => (gens PP13)_1 - 2*(gens PP13)_0, (gens PP13’)_2 => (gens PP13)_2 - 2*(gens PP13)_0,

(gens PP13’)_3 => (gens PP13)_3 - 2*(gens PP13)_0, (gens PP13’)_4 => (gens PP13)_4 - 2*(gens PP13)_0,

(gens PP13’)_5 => (gens PP13)_5 - 2*(gens PP13)_0, (gens PP13’)_6 => (gens PP13)_6 - 2*(gens PP13)_0,

(gens PP13’)_7 => (gens PP13)_7 - 2*(gens PP13)_0, (gens PP13’)_8 => (gens PP13)_8 - 2*(gens PP13)_0,

(gens PP13’)_9 => (gens PP13)_9 - 2*(gens PP13)_0,

(gens PP13’)_10 => (gens PP13)_10, (gens PP13’)_11 => (gens PP13)_11,

(gens PP13’)_12 => (gens PP13)_12, (gens PP13’)_13 => (gens PP13)_13 })

i79 : oo == ConeP1

i80 : -- similarly with P2,P3,P4

sub(WP13, {(gens PP13)_13=>1});

i81 : ConeP5 = tangentCone oo;

i82 : degree oo == 5

i83 : TC0W’U13 = ideal{ z_6-z_7, z_5-z_8, z_4-z_9, z_2-z_3, z_1-z_3, 2*z_0-z_3,

z_9*z_10-z_8*z_11+z_7*z_12, z_8*z_10-z_9*z_11+z_3*z_12,

z_7*z_10-z_3*z_11+z_9*z_12, z_3*z_10-z_7*z_11+z_8*z_12,

z_8^2-z_9^2, z_7*z_8-z_3*z_9, z_3*z_8-z_7*z_9,

z_7^2-z_9^2, z_3*z_7-z_8*z_9, z_3^2-z_9^2 }

i84 : ConeP5 == oo

i85 : M5 = ConeP5+ideal{(gens PP13)_13}

i86 : (dim oo -1, degree oo) == (2, 5)

i87 : irredCompM5 = associatedPrimes M5;

i88 : plane0=irredCompM5#0

i89 : plane1=irredCompM5#1

i90 : plane2=irredCompM5#2

i91 : plane3=irredCompM5#3

i92 : plane4=irredCompM5#4

i93 : (dim(plane0+plane1)-1, degree (plane0+plane1)) == (1,1)
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i94 : (dim(plane0+plane2)-1, degree (plane0+plane2)) == (1,1)

i95 : (dim(plane0+plane3)-1, degree (plane0+plane3)) == (1,1)

i96 : (dim(plane0+plane4)-1, degree (plane0+plane4)) == (1,1)

i97 : (dim(plane1+plane2)-1, degree (plane1+plane2)) == (0,1)

i98 : (dim(plane1+plane3)-1, degree (plane1+plane3)) == (0,1)

i99 : (dim(plane1+plane4)-1, degree (plane1+plane4)) == (0,1)

i100 : (dim(plane2+plane3)-1, degree (plane2+plane3)) == (0,1)

i101 : (dim(plane2+plane4)-1, degree (plane2+plane4)) == (0,1)

i102 : (dim(plane3+plane4)-1, degree (plane3+plane4)) == (0,1)

Code B.10. Computational analysis of W 17
P (see § 8.3).

Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Cremona";

i2 : PP1 = ZZ/10000019[u_0,u_1];

i3 : PP1’= ZZ/10000019[v_0,v_1];

i4 : P1P1 = PP1 ** PP1’;

i5 : PP9 = ZZ/10000019[y_{0,0},y_{0,1},y_{0,2},y_{1,0},y_{1,1},

y_{1,2},y_{2,0},y_{2,1},y_{2,2},x];

i6 : antiCanonicalEmbeddingP = rationalMap map(P1P1,PP9, matrix{{u_1^2*v_1^2,

u_1^2*v_0*v_1,u_1^2*v_0^2,u_1*u_0*v_1^2,u_1*u_0*v_0*v_1,u_1*u_0*v_0^2,

u_0^2*v_1^2,u_0^2*v_0*v_1,u_0^2*v_0^2,0}});

i7 : P = image oo;

i8 : (dim P -1, degree P) == (2, 8)

i9 : v = ideal{y_{0,0},y_{0,1},y_{0,2},y_{1,0},y_{1,1},y_{1,2},y_{2,0},y_{2,1},y_{2,2}};

i10 : numgens P == 21

i11 : V = ideal{P_1,P_2,P_3,P_4,P_5,P_6,P_7,P_8,P_9,P_10,

P_11,P_12,P_13,P_14,P_15,P_16,P_17,P_18,P_19,P_20}

i12 : (dim V -1, degree V) == (3, 8)

i13 : v00 = ideal{y_{0,1},y_{0,2},y_{1,0},y_{1,1},y_{1,2},y_{2,0},y_{2,1},y_{2,2},x};

i14 : (dim oo -1, degree oo) == (0, 1)

i15 : v02 = ideal{y_{0,0},y_{0,1},y_{1,0},y_{1,1},y_{1,2},y_{2,0},y_{2,1},y_{2,2},x};

i16 : (dim oo -1, degree oo) == (0, 1)

i17 : v20 = ideal{y_{0,0},y_{0,1},y_{0,2},y_{1,0},y_{1,1},y_{1,2},y_{2,1},y_{2,2},x};

i18 : (dim oo -1, degree oo) == (0, 1)

i19 : v22 = ideal{y_{0,0},y_{0,1},y_{0,2},y_{1,0},y_{1,1},y_{1,2},y_{2,0},y_{2,1},x};

i20 : (dim oo -1, degree oo) == (0, 1)

i21 : PP29 = ZZ/10000019[Z_0..Z_29];

i22 : phi = rationalMap map(PP9, PP29, matrix(PP9, {{y_{1,1}^2, y_{0,0}^2, y_{0,2}^2, y_{2,0}^2,

y_{2,2}^2, x^2, y_{0,1}^2, y_{1,0}^2, y_{1,2}^2, y_{2,1}^2, y_{0,1}*x, y_{1,0}*x, y_{1,2}*x,

y_{2,1}*x, y_{0,0}*y_{1,1}, y_{0,2}*y_{1,1}, y_{2,0}*y_{1,1}, y_{2,2}*y_{1,1}, y_{0,1}*y_{1,0},

y_{0,1}*y_{1,2}, y_{1,0}*y_{2,1}, y_{1,2}*y_{2,1}, y_{0,0}*y_{0,2}, y_{0,0}*y_{2,0}, y_{0,2}*y_{2,2},

y_{2,0}*y_{2,2}, y_{0,1}*y_{2,1}, y_{0,0}*y_{2,2}, y_{0,2}*y_{2,0}, y_{1,0}*y_{1,2} }}));

i23 : phi(V)

i24 : H17 = ideal{Z_18 - Z_14, Z_19 - Z_15, Z_20 - Z_16, Z_21 - Z_17, Z_22 - Z_6, Z_23 - Z_7,

Z_24 - Z_8, Z_25 - Z_9, Z_26 - Z_0, Z_27 - Z_0, Z_28 - Z_0, Z_29 - Z_0};

i25 : phi(V) + H17 == phi(V)

i26 : PP17=ZZ/10000019[z_0..z_17];

i27 : inclusion = rationalMap map(PP17, PP29, matrix(PP17, {{ z_0,z_1,z_2,z_3,z_4,z_5,z_6,z_7,z_8,z_9,

z_10,z_11,z_12,z_13,z_14,z_15,z_16,z_17, z_14,z_15,z_16,z_17,z_6,z_7,z_8,z_9,z_0,z_0,z_0,z_0 }}));

i28 : image oo == H17

i29 : WP17 = inclusion^* (phi(V))

i30 : (dim oo -1, degree oo) == (3, 32)

i31 : pigreca = rationalMap map(PP9,PP17, matrix(PP9, {{y_{1,1}^2, y_{0,0}^2, y_{0,2}^2,

y_{2,0}^2, y_{2,2}^2, x^2, y_{0,1}^2, y_{1,0}^2, y_{1,2}^2, y_{2,1}^2, y_{0,1}*x, y_{1,0}*x,

y_{1,2}*x, y_{2,1}*x, y_{0,0}*y_{1,1}, y_{0,2}*y_{1,1}, y_{2,0}*y_{1,1}, y_{2,2}*y_{1,1} }}));

i32 : pigreca(V) == WP17

i33 : P1 = pigreca(v00)

i34 : P2 = pigreca(v02)

i35 : P3 = pigreca(v20)

i36 : P4 = pigreca(v22)

i37 : P5 = pigreca(v)

i38 : l12 = ideal{(toMap(saturate(P1*P2),1,1)).matrix};

i39 : (l12 + WP17 == l12) == false

i40 : l13 = ideal{(toMap(saturate(P1*P3),1,1)).matrix};

i41 : (l13 + WP17 == l13) == false

i42 : l14 = ideal{(toMap(saturate(P1*P4),1,1)).matrix};
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i43 : (l14 + WP17 == l14) == false

i44 : l15 = ideal{(toMap(saturate(P1*P5),1,1)).matrix};

i45 : (l15 + WP17 == l15) == true

i46 : l23 = ideal{(toMap(saturate(P2*P3),1,1)).matrix};

i47 : (l23 + WP17 == l23) == false

i48 : l24 = ideal{(toMap(saturate(P2*P4),1,1)).matrix};

i49 : (l24 + WP17 == l24) == false

i50 : l25 = ideal{(toMap(saturate(P2*P5),1,1)).matrix};

i51 : (l25 + WP17 == l25) == true

i52 : l34 = ideal{(toMap(saturate(P3*P4),1,1)).matrix};

i53 : (l34 + WP17 == l34) == false

i54 : l35 = ideal{(toMap(saturate(P3*P5),1,1)).matrix};

i55 : (l35 + WP17 == l35) == true

i56 : l45 = ideal{(toMap(saturate(P4*P5),1,1)).matrix};

i57 : (l45 + WP17 == l45) == true

i58 : sub(WP17, {(gens PP17)_1=>1});

i59 : ConeP1 = tangentCone oo

i60 : degree oo == 4

i61 : sub(WP17, {(gens PP17)_2=>1});

i62 : ConeP2 = tangentCone oo

i63 : degree oo == 4

i64 : sub(WP17, {(gens PP17)_3=>1});

i65 : ConeP3 = tangentCone oo

i66 : degree oo == 4

i67 : sub(WP17, {(gens PP17)_4=>1});

i68 : ConeP4 = tangentCone oo

i69 : degree oo == 4

i70 : sub(WP17, {(gens PP17)_5=>1});

i71 : ConeP5 = tangentCone oo

i72 : degree oo == 6

i73 : M6 = ConeP5+ideal{(gens PP17)_5}

i74 : time irredCompM6 = associatedPrimes M6;

i75 : plane1 = irredCompM6#0

i76 : plane2 = irredCompM6#1

i77 : plane1’ = irredCompM6#2

i78 : plane2’ = irredCompM6#3

i79 : Q = irredCompM6#4

i80 : line1 = Q+plane1;

i81 : line1’ = Q+plane1’;

i82 : line2 = Q+plane2;

i83 : line2’ = Q+plane2’;

i84 : (dim(line1+line1’)-1) == -1

i85 : (dim(line2+line2’)-1) == -1

i86 : q12 = saturate(line1+line2)

i87 : q12’ = saturate(line1+line2’)

i88 : q1’2 = saturate(line1’+line2)

i89 : q1’2’ = saturate(line1’+line2’)

Code B.11. Let S• be the linear system on P3 given by the sextic surfaces of P3 double
along the six edges of a tetrahedron T and triple at a general point p ∈ P3. Let us
use the notation of § 10.4 and in particular let us see the proof of Theorem 10.23. Let
Σ• be a general element of S• and let π be a general plane of P3, that is a plane not
containing the point p. Thanks to Macaulay2, one can find that the tangent cone to
Σ• at p is a cone with vertex p over a cubic plane curve on π passing through the three
points π ∩ r1, π ∩ r3 and π ∩ r3. In particular, by moving the surface Σ• ∈ S•, these
cubic cones cut on π a linear system of cubic curves whose base locus is given exactly
by the three points π ∩ r1, π ∩ r3 and π ∩ r3. Before providing the Macaulay2 code, let
us explain the strategy to use:

(i) we consider the linear system S of the sextic surfaces of P3
[s0:···:s3] having double

points along the six edges of the tetrahedron T := {s0s1s2s3 = 0}, which has
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equation

l0s0s
3
1s2s3 + l1s

2
0s

2
1s

2
2 + l2s

2
0s

2
1s2s3 + l3s

2
0s

2
1s

2
3 + l4s

3
0s1s2s3+

+l5s0s
2
1s

2
2s3 + +l6s0s

2
1s2s

2
3 + l7s

2
0s1s

2
2s3 + l8s

2
0s1s2s

2
3+

+l9s
2
1s

2
2s

2
3 + l10s0s1s

3
2s3 + l11s0s1s

2
2s

2
3 + l12s0s1s2s

3
3 + l13s

2
0s

2
2s

2
3 = 0;

(ii) we choose a point p ∈ P3 sufficiently general such that, setting it as a triple
point for the surfaces of S, imposes 10 linearly independent conditions to the
coefficients l0, . . . , l13: in our example we choose p := [1 : 1 : 1 : −1];

(iii) we find the equation of S•: in our example we have

l10(s
3
0s1s2s3 − 2s2

0s1s
2
2s3 + s0s1s

3
2s3 + s2

0s
2
1s

2
3 − 2s0s

2
1s2s

2
3 + s2

1s
2
2s

2
3)+

+l11(−s3
0s1s2s3+s

2
0s

2
1s2s3+s

2
0s1s

2
2s3−s0s

2
1s

2
2s3−s2

0s1s2s
2
3+s0s

2
1s2s

2
3+s0s1s

2
2s

2
3−s2

1s
2
2s

2
3)+

+l12(s
2
0s

2
1s

2
2 + s3

0s1s2s3 + 2s0s
2
1s

2
2s3 + 2s2

0s1s2s
2
3 + s2

1s
2
2s

2
3 + s0s1s2s

3
3)+

+l13(−s3
0s1s2s3+s0s

3
1s2s3+2s2

0s1s
2
2s3−2s0s

2
1s

2
2s3−2s2

0s1s2s
2
3+2s0s

2
1s2s

2
3+s

2
0s

2
2s

2
3−s2

1s
2
2s

2
3) = 0.

We see that a general fibre of the rational map defined by S• is a cubic plane
curve with node at p and intersecting each edge of T at a point. We also recall
that the base locus of S• is given by the union of the six edges of T and by three
lines r1, r2, r3 intersecting at p (see Corollary 10.18);

(iv) we consider a change of coordinates of P3, with respect to which p has coordi-
nates [0 : 0 : 0 : 1]. By abuse of notation let us denote the new coordinates by
[s0 : · · · : s3]. Let Σ• be a general element of S•, obtained by fixing general values
for l10, . . . , l13. The point p can be viewed as the origin of the open affine set
U0 := {s3 6= 0} and we can find the ideal of the tangent cone TCp(Σ• ∩ U0): in
our example we obtain

(l10 − l11 + l12 − l13)s3
0 + (−l10 + l11 − l12 + l13)s2

0s1 − l13s0s
2
1 + l13s

3
1+

−(l10− l11 + l12− l13)s2
0s2 +(2l10− l11)s0s1s2− l13s

2
1s2− l10s0s

2
2− l10s1s

2
2 + l10s

3
2 = 0,

thus TCpΣ• is a cone with vertex p over a cubic plane curve on the plane π :=
{s3 = 0};

(v) by moving Σ• ∈ S•, i.e. by varying the coefficients l10, . . . , l13, the cubic cones
TCpΣ• identify a linear system of cubic plane curves on π; we see that the base
locus of this linear system is given by the union of the three points r1 ∩π, r2 ∩π,
r3 ∩ π: we verify this by studying the intersection of the four cubic curves given
by [l10 : · · · : l13] ∈ {[1 : 0 : 0 : 0] , [0 : 1 : 0 : 0] , [0 : 0 : 1 : 0] , [0 : 0 : 0 : 1]}.
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Macaulay2, version 1.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : needsPackage "Cremona";

i2 : PP3 = ZZ/10000019[s_0..s_3];

i3 : -- let us take a general point of PP3 with random coordinates:

-- for i to 3 list random(-5,10)

-- in our example we take p=[1: 1: 1: -1]

p = ideal{s_0+s_3,s_1+s_3,s_2+s_3}

i4 : -- let us take the linear system of the sextic surfaces of PP3

-- double along the six edges of the coordinate tetrahedron

R = ZZ/10000019[l_0..l_13][s_0..s_3];

i5 : use R

i6 : Sigma = ideal{l_0*s_0*s_1^3*s_2*s_3+l_1*s_0^2*s_1^2*s_2^2+l_2*s_0^2*s_1^2*s_2*s_3+

l_3*s_0^2*s_1^2*s_3^2+l_4*s_0^3*s_1*s_2*s_3+l_5*s_0*s_1^2*s_2^2*s_3+l_6*s_0*s_1^2*s_2*s_3^2+

l_7*s_0^2*s_1*s_2^2*s_3+l_8*s_0^2*s_1*s_2*s_3^2+l_9*s_1^2*s_2^2*s_3^2+l_10*s_0*s_1*s_2^3*s_3+

l_11*s_0*s_1*s_2^2*s_3^2+l_12*s_0*s_1*s_2*s_3^3+l_13*s_0^2*s_2^2*s_3^2};

i7 : -- for a fixed value of [l_0:..:l_13], we have that Sigma is a hypersurface of PP3

-- let us find the values for [l_0:..:l_13] in order to have p as triple point for Sigma

J = jacobian(Sigma);

i8 : JJ = jacobian(J);

i9 : triplelocus = minors(1,J)+minors(1,JJ)+Sigma;

i10 : substitute(triplelocus, {s_0=>1, s_1=>1, s_2=>1, s_3=>-1})

i11 : -- we have the following 10 independent conditions

substitute(oo,{l_0 => l_13})

i12 : substitute(oo,{l_1 => l_12})

i13 : substitute(oo,{l_2 => l_11})

i14 : substitute(oo,{l_3 => l_10})

i15 : substitute(oo,{l_4 => l_10-l_11+l_12-l_13})

i16 : substitute(oo,{l_5 => -l_11 + 2*l_12 - 2*l_13})

i17 : substitute(oo,{l_6 => -2*l_10+l_11+2*l_13})

i18 : substitute(oo,{l_7 => -2*l_10+l_11+2*l_13})

i19 : substitute(oo,{l_8 => -l_11+2*l_12-2*l_13})

i20 : substitute(oo,{l_9 => l_10-l_11+l_12-l_13})

i21 : -- thus we let:

substitute(Sigma,{l_0 => l_13})

i22 : substitute(oo,{l_1 => l_12})

i23 : substitute(oo,{l_2 => l_11})

i24 : substitute(oo,{l_3 => l_10})

i25 : substitute(oo,{l_4 => l_10-l_11+l_12-l_13})

i26 : substitute(oo,{l_5 => -l_11 + 2*l_12 - 2*l_13})

i27 : substitute(oo,{l_6 => -2*l_10+l_11+2*l_13})

i28 : substitute(oo,{l_7 => -2*l_10+l_11+2*l_13})

i29 : substitute(oo,{l_8 => -l_11+2*l_12-2*l_13})

i30 : substitute(oo,{l_9 => l_10-l_11+l_12-l_13})

i31 : -- the linear system of the sextic surfaces of PP3

-- double along the edges of the coordinate tetrahedron

-- and triple at the point p has the following equation,

-- depending on the coefficients l_10,l_11,l_12,l_13

SigmaTripleAtp = oo

i32 : -- let us find the rational map defined by SigmaTripleAtp

generator1 = substitute( SigmaTripleAtp, {l_10 =>1, l_11=>0, l_12=>0, l_13=>0})

i33 : generator2 = substitute( SigmaTripleAtp, {l_10 =>0, l_11=>1, l_12=>0, l_13=>0})

i34 : generator3 = substitute( SigmaTripleAtp, {l_10 =>0, l_11=>0, l_12=>1, l_13=>0})

i35 : generator4 = substitute( SigmaTripleAtp, {l_10 =>0, l_11=>0, l_12=>0, l_13=>1})

i36 : PP3’ = ZZ/10000019[x_0..x_3]

i37 : sexticsbullet = rationalMap map(PP3,PP3’,matrix{{sub(generator1_0,PP3),

sub(generator2_0,PP3),sub(generator3_0,PP3),sub(generator4_0,PP3)}});

i38 : CayleyCubic = image oo

i39 : (dim oo -1, degree oo) == (2, 3)

i40 : -- let us find the general fibre of sexticsbullet

gamma = sexticsbullet^*(sexticsbullet(ideal{random(1,PP3),random(1,PP3),random(1,PP3)}))

i41 : (dim oo -1, degree oo) == (1, 3)

i42 : alpha = ideal{gamma_0}

i43 : (dim oo -1, degree oo) == (2, 1)

i44 : (dim(gamma+ideal{(gens PP3)_0,(gens PP3)_1})-1, degree(gamma+ideal{(gens PP3)_0,(gens PP3)_1}))==(0, 1)

i45 : (dim(gamma+ideal{(gens PP3)_0,(gens PP3)_2})-1, degree(gamma+ideal{(gens PP3)_0,(gens PP3)_2}))==(0, 1)

i46 : (dim(gamma+ideal{(gens PP3)_0,(gens PP3)_3})-1, degree(gamma+ideal{(gens PP3)_0,(gens PP3)_3}))==(0, 1)

i47 : (dim(gamma+ideal{(gens PP3)_1,(gens PP3)_2})-1, degree(gamma+ideal{(gens PP3)_1,(gens PP3)_2}))==(0, 1)
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i48 : (dim(gamma+ideal{(gens PP3)_1,(gens PP3)_3})-1, degree(gamma+ideal{(gens PP3)_1,(gens PP3)_3}))==(0, 1)

i49 : (dim(gamma+ideal{(gens PP3)_2,(gens PP3)_3})-1, degree(gamma+ideal{(gens PP3)_2,(gens PP3)_3}))==(0, 1)

i50 : (alpha+p == p, gamma+p == p) == (true, true)

i51 : (p == saturate(gamma+minors(2,jacobian(gamma)))) == true

i52 : -- let us find the base locus of SigmaTripleAtp

associatedPrimes(ideal sexticsbullet)

i53 : -- it is the union of the six edges of T, the point p

-- and the following three lines r1, r2, r3 intersecting at p

-- such that ri intersects the edges ideal{s_j,s_k}, ideal{s_0,s_i}

-- for i,j,k distinct indices in {1,2,3}

use PP3

i54 : r1 = ideal{s_2+s_3,s_0-s_1}

i55 : r2 = ideal{s_1+s_3,s_0-s_2}

i56 : r3 = ideal{s_1-s_2,s_0+s_3}

i57 : -- let us find the tangent cone at the point p

-- to a general sextic surface of the linear system SigmaTripleAtp

newR = ZZ/10000019[l_10,l_11,l_12,l_13][s_0..s_3];

i58 : -- let us consider the change of coordinates thanks to which

-- the point p is the point [0:0:0:1]

-- (by abuse of notation ,let [s_0..s_3] be the new coordinates)

substitute(SigmaTripleAtp, newR)

i59 : sub(oo, {(gens newR)_0 =>(gens newR)_0-(gens newR)_3, (gens newR)_1=>(gens newR)_1-(gens newR)_3,

(gens newR)_2=>(gens newR)_2-(gens newR)_3, (gens newR)_3=>(gens newR)_3});

i60 : sub(oo, {(gens newR)_3 => 1})

i61 : TCp = tangentCone oo

i62 : -- TCp is a cone of vertex p over a cubic plane curve on the plane ideal{s_3}.

-- By moving the surfaces of the linear system, i.e. by varying the values l_10,l_11,l_12,l_13,

-- we obtain a linear system of cubic plane curves on ideal{s_3} which has only three base points,

-- given by the intersection with the three lines r1, r2, r3

c0 =sub(ideal{sub(TCp,{l_10=>1, l_11=>0, l_12=>0, l_13=>0})},PP3)

i63 : c1 =sub(ideal{sub(TCp,{l_10=>0, l_11=>1, l_12=>0, l_13=>0})},PP3)

i64 : c2 =sub(ideal{sub(TCp,{l_10=>0, l_11=>0, l_12=>1, l_13=>0})},PP3)

i65 : c3 =sub(ideal{sub(TCp,{l_10=>0, l_11=>0, l_12=>0, l_13=>1})},PP3)

i66 : threepts = associatedPrimes(ideal{(gens PP3)_3}+c0+c1+c2+c3)

i67 : threepts#0 == ideal{(gens PP3)_3}+sub(r1, {(gens PP3)_0 =>(gens PP3)_0-(gens PP3)_3,

(gens PP3)_1=>(gens PP3)_1-(gens PP3)_3, (gens PP3)_2=>(gens PP3)_2-(gens PP3)_3,

(gens PP3)_3=>(gens PP3)_3})

i68 : threepts#1 == ideal{(gens PP3)_3}+sub(r2, {(gens PP3)_0 =>(gens PP3)_0-(gens PP3)_3,

(gens PP3)_1=>(gens PP3)_1-(gens PP3)_3, (gens PP3)_2=>(gens PP3)_2-(gens PP3)_3,

(gens PP3)_3=>(gens PP3)_3})

i69 : threepts#2 == ideal{(gens PP3)_3}+sub(r3, {(gens PP3)_0 =>(gens PP3)_0-(gens PP3)_3,

(gens PP3)_1=>(gens PP3)_1-(gens PP3)_3, (gens PP3)_2=>(gens PP3)_2-(gens PP3)_3,

(gens PP3)_3=>(gens PP3)_3})
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[49] G. Staglianò, A Macaulay2 package for computations with rational maps, The
Journal of Software for Algebra and Geometry, 8, (2018).

159


	Introduzione (Italian)
	Ringraziamenti

	Introduction
	Terminology
	Known Enriques-Fano threefolds
	Preliminaries on Enriques-Fano threefolds
	List of known Enriques-Fano threefolds
	Normality and projective normality

	Fano's approach to the classification of Enriques-Fano threefolds
	Conte-Murre's work
	Fano's work
	Exceptional cases and possible generalizations

	Modern analysis of the rational F-EF 3-folds
	Abstract
	F-EF 3-fold of genus 13
	Construction of WF13
	Singularities of WF13

	F-EF 3-fold of genus 9
	Construction of WF9
	Singularities of WF9

	F-EF 3-fold of genus 7
	Construction of WF7
	Singularities of WF7

	F-EF 3-fold of genus 6
	Construction of WF6
	Singularities of WF6


	Computational analysis of the BS-EF 3-folds with very ample hyperplane sections
	Abstract
	BS-EF 3-fold (VIII) of genus 6
	BS-EF 3-fold (X) of genus 7 
	BS-EF 3-fold (XI) of genus 8
	BS-EF 3-fold (XII) of genus 9
	BS-EF 3-fold (XIII) of genus 10
	BS-EF 3-fold (XIV) of genus 13

	Singularities of the KLM-EF 3-fold
	Abstract
	Construction of the KLM-EF 3-fold (XV)
	Computational analysis of the KLM-EF 3-fold

	Singularities of the P-EF 3-folds
	Abstract
	P-EF 3-fold (XVI) of genus 13
	P-EF 3-fold (XVII) of genus 17

	Simple isotropic decompositions of the curve sections of the Enriques-Fano threefolds
	Abstract
	Preliminaries on simple isotropic decompositions
	SID of the curve sections of the known EF-3folds
	Remarks concerning the SID of the curve sections of the P-EF 3-fold (XVI) of genus 13

	On Enriques-Fano threefolds and a conjecture of Castelnuovo
	Abstract
	Castelnuovo's conjecture for smooth threefolds
	Castelnuovo's conjecture for singular threefolds
	Castelnuovo's conjecture for the classical Enriques-Fano threefold
	Consequences for the P-EF 3-folds

	Appendix: configurations of the singularities of some known EF 3-folds
	Appendix: Macaulay2 codes
	References

		2021-05-17T15:08:49+0200
	GALATI CONCETTINA




