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Abstract 

 
 
 
 
 
 
 
 
Over the past decade, scientific and industrial communities have shared 
their expertise to improve mechanical and structural design favoring the 
exploration and development of new technologies, materials and ad-
vanced modeling methods with the aim to design structures with the 
highest structural performances. The most promising materials used in 
many advanced engineering applications are fiber- or particle-rein-
forced composite materials. Specifically, materials with periodically or 
randomly distributed inclusions embedded in a soft matrix offer excel-
lent mechanical properties with respect to traditional materials (for in-
stance, the capability to undergo large deformations). Recent applica-
tions of these innovative materials are advanced reinforced materials in 
the tire industry, nanostructured materials, high-performance structural 
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components, advanced additive manufactured materials in the form of 
bio-inspired, functional or metamaterials, artificial muscles, tunable vi-
bration dampers, magnetic actuators, energy-harvesting devices when 
these materials exhibit magneto- or electro-mechanical properties. To-
day the scientific community recognizes that, to develop new advanced 
materials capable of satisfying increasingly restrictive criteria, it is vital 
fully understanding the relationship between the macroscopic behavior 
of a material, and its microstructure. Composite materials are charac-
terized by complex microstructures and they are commonly subjected 
also to complex loadings, therefore their macroscopic response can be 
evaluated by adopting advanced strategies of micro-macro bridging, 
such as numerical homogenization and multiscale techniques. The aim 
of this thesis is to provide theoretical and numerical methods able to 
model the mechanical response of heterogeneous materials (fiber- or 
particle-reinforced composite materials) in a large deformation context 
predicting the failure in terms of loss of stability considering also the 
interaction between microfractures and contact. In the past literature, 
several theories have been proposed on this topic, but they are preva-
lently limited to the analysis of microscopic and macroscopic instabili-
ties for not damaged microstructures, whereas the problem of interac-
tion between different microscopic failure modes in composite materi-
als subjected to large deformations in a multiscale context still has not 
been investigated in-depth and it represents the main aspect of novelty 
of the present thesis. 
The thesis starts with a literature review on the previously announced 
topic. Then, the basic hypotheses of the numerical homogenization 
strategy are given together with a review of the most recurring mul-
tiscale strategies in the modeling of the behavior of advanced composite 
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materials following a classification based on the type of coupling be-
tween the microscopic and the macroscopic levels. In addition, a theo-
retical non-linear analysis of the homogenized response of periodic 
composite solids subjected to macroscopically uniform strains is given 
by including the effects of instabilities occurring at microscopic levels 
and the interaction between microfractures and buckling instabilities. 
Subsequently, the numerical results obtained were reported and dis-
cussed. 
Firstly, the interaction between microfractures and buckling instabili-
ties in unidirectional fiber-reinforced composite materials was investi-
gated by means of the nonlinear homogenization theory. In such mate-
rials, the investigated interaction may lead to a strong decrease in the 
compressive strength of the composite material because buckling 
causes a large increase in energy release rate at the tips of preexisting 
cracks favoring crack propagation or interface debonding. Thus, mi-
crocracked composite materials characterized by hyperelastic constitu-
ents and subjected to macrostrain-driven loading paths were firstly in-
vestigated giving a theoretical formulation of instability and bifurcation 
phenomena. A quasi-static finite-strain continuum rate approach in a 
variational setting has been developed including contact and frictionless 
sliding effects. It worth noting that, the above developments show that 
non-standard self-contact terms must be included in the analysis for an 
accurate prediction of microscopic failure; these terms are usually ne-
glected when contact is modelled in the framework of cohesive inter-
face constitutive laws. The influence of the above-mentioned non-
standard contributions on the instability and bifurcation critical loads in 
defected fiber-reinforced composites can be estimated in light of the 
results which will be presented in this thesis. Thus, the role of non-
standard crack self-contact rate contributions to the stability and non-
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bifurcation conditions was pointed out by means of comparisons with 
simplified formulations and it was clearly shown that these contribu-
tions have a notable role in an accurate prediction of the real failure 
behavior of the composite solid. 
Secondly, two multiscale modeling strategies have been adopted to an-
alyze the microstructural instability in locally periodic fiber-reinforced 
composite materials subjected to general loading conditions in a large 
deformation context. The first strategy is a semiconcurrent multiscale 
method consisting in the derivation of the macroscopic constitutive re-
sponse of the composite structure together with a microscopic stability 
analysis through a two-way computational homogenization scheme. 
The second approach is a novel hybrid hierarchical/concurrent mul-
tiscale approach able to combine the advantages inherent in the use of 
hierarchical and concurrent approaches and based on a two-level do-
main decomposition; such a method allows to replace the computation-
ally onerous procedure of extracting the homogenized constitutive law 
for each time step through solving a BVP in each Gauss point by means 
of a macro-stress/macro-strain database obtained in a pre-processed 
step. The viability and accuracy of the proposed multiscale approaches 
in the context of the microscopic stability analysis in defected compo-
site materials have been appropriately evaluated through comparisons 
with reference direct numerical simulations, by which the ability of the 
second approach in capturing the exact critical load factor and the 
boundary layer effects has been highlighted. 
Finally, the novel hybrid multiscale strategy has been implemented also 
to predict the mechanical behavior of nacre-like composite material in 
a large deformation context with the purpose to design a human body 
protective bio-inspired material. Therefore, varying the main micro-
structural geometrical parameters (platelets aspect ratio and stiff-phase 
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volume fraction), a comprehensive parametric analysis was performed 
analyzing the penetration resistance and flexibility by means of an in-
dentation test and a three-point bending test, respectively. A material 
performance metric, incorporating the performance requirements of 
penetration resistance and flexibility in one parameter and called pro-
tecto-flexibility, was defined to investigate the role of microstructural 
parameters in an integrated measure. The results have been revealed 
that advantageous microstructured configurations can be used for the 
design and further optimization of the nacre-like composite material. 
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Nell’ultimo decennio, le comunità scientifiche e industriali hanno con-
giunto le loro competenze con il fine di migliorare la progettazione 
strutturale e meccanica favorendo così la ricerca e lo sviluppo di nuove 
tecnologie, nuovi materiali e metodi di modellazione avanzati con 
l’obiettivo di progettare strutture all’avanguardia dal punto di vista pre-
stazionale. I materiali più utilizzati nelle recenti applicazioni avanzate 
dell’ingegneria sono i materiali compositi rinforzati con fibre o parti-
celle. Nello specifico, i materiali con inclusioni distribuite in modo pe-
riodico o in modo casuale e immerse in una matrice soffice, offrono 
eccezionali proprietà meccaniche rispetto ai materiali tradizionali, 
come ad esempio la capacità di poter subire grandi deformazioni.  
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Le recenti applicazioni ingegneristiche vedono l’applicazione di tali 
materiali avanzati sotto forma di materiali nanostrutturati, componenti 
strutturali ad alte prestazioni, materiali funzionali o metamateriali, mu-
scoli artificiali e smorzatori di vibrazioni sintonizzabili. 
Oggi la comunità scientifica riconosce che, per sviluppare nuovi mate-
riali avanzati in grado di soddisfare criteri prestazionali sempre più re-
strittivi, è di vitale importanza comprendere appieno la relazione tra il 
comportamento macroscopico dei materiali e la loro microstruttura in-
terna. I materiali compositi sono generalmente caratterizzati da micro-
strutture complesse, pertanto la loro risposta meccanica macroscopica 
può essere colta adottando strategie avanzate di “bridging micro-ma-
cro”, come le tecniche di omogeneizzazione numerica e le tecniche 
multiscala. 
La finalità del presente lavoro di tesi è quella di fornire dei modelli nu-
merici atti a riprodurre la risposta meccanica di materiali eterogenei 
soggetti a deformazioni finite (nello specifico materiali compositi rin-
forzati con fibre o particelle) prevedendo il carico critico di collasso 
degli stessi in termini di perdita di stabilità e valutando inoltre l’in-
fluenza delle microfratture in presenza di contatto. Nella letteratura del 
passato sono stati riportati diversi studi sulle tematiche di interesse della 
presente tesi, tuttavia questi erano prevalentemente mirati all’analisi di 
instabilità microscopiche e macroscopiche in assenza di danneggia-
mento, mentre il problema dell’interazione tra le diverse modalità di 
danneggiamento microscopico in materiali compositi soggetti a defor-
mazioni finite in un contesto di modellazione multiscala non risulta es-
sere ancora studiato in modo approfondito e l’intento di colmare tale 
carenza rappresenta l’aspetto di novità del presente lavoro di tesi. 
La tesi inizia con la ricostruzione dello stato dell’arte dei temi sopra 
evidenziati. Successivamente, si sono evidenziate le ipotesi alla base 
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della teoria dell’omogeneizzazione numerica unitamente a una panora-
mica sulle strategie multiscala più ricorrenti nella modellazione del 
comportamento dei materiali compositi avanzati seguendo una classifi-
cazione basata sulla tipologia di accoppiamento tra le diverse scale di 
osservazione (microscopica e macroscopica). Inoltre, è stata sviluppata 
un’analisi teorica non lineare della risposta omogeneizzata dei solidi 
compositi con microstruttura periodica e soggetti a stati di deforma-
zione macroscopici uniformi includendo gli effetti delle instabilità che 
si verificano sia a livello macroscopico che a livello microscopico e gli 
effetti dell’instabilità microscopiche in presenza di contatto. Successi-
vamente, si sono riportati i risultati analitici e numerici ottenuti. 
In primo luogo si è studiata l’interazione tra le microfratture e le insta-
bilità per buckling in materiali compositi rinforzati unidirezionalmente 
con fibre continue. In tali materiali, l’interazione tra le sopracitate 
forme di danneggiamento può  provocare un forte aumento del tasso di 
rilascio di energia agli apici delle microfratture esistenti favorendo così 
la propagazione degli stessi o lo scollamento di interfaccia (debonding). 
Pertanto, si è sviluppata una formulazione teorica sui fenomeni di in-
stabilità a biforcazione nei materiali compositi danneggiati, caratteriz-
zati da componenti microstrutturali di tipo iperelastico e sottoposti a 
percorsi di carico guidati nelle deformazioni macroscopiche. Un ap-
proccio al continuo incrementale quasi-statico in deformazione finite in 
forma variazionale si è implementato includendo i fenomeni di contatto 
unilaterale e gli effetti degli scorrimenti in assenza di attrito. Dagli svi-
luppi teorici si è evinto che, per un’accurata previsione del collasso mi-
croscopico, è fondamentale includere i termini non-standard indotti dal 
contatto unilatero, i quali in genere, risultano essere trascurati adottando 
leggi di interfacce coesive per la modellazione del contatto tra le facce 
delle fratture in deformazioni finite.  
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L’influenza dei suddetti contributi sui carichi critici di instabilità e bi-
forcazione in materiali compositi fibrorinforzati soggetti a danneggia-
mento può essere stimata alla luce dei risultati che verranno presentati 
nella presente tesi. Dunque, mediante confronti con formulazioni sem-
plificate, è stato indagato il ruolo dei contributi incrementali non-stan-
dard agenti sulle facce delle fratture sottoposte a fenomeni di autocon-
tatto e, da questo, si è chiaramente evinto che tali contributi, per i ma-
teriali compositi esaminati, svolgono un ruolo determinante nella pre-
visione del carico critico di instabilità. 
In secondo luogo, sono stati implementati due metodi multiscala per 
analizzare i fenomeni di instabilità microstrutturale in materiali compo-
siti fibrorinforzati localmente periodici soggetti a condizioni di carico 
generali nell’ipotesi di deformazioni finite. Il primo metodo è un me-
todo semiconcorrente attraverso il quale la risposta costitutiva macro-
scopica del materiale composito è derivata, unitamente ad un’analisi di 
stabilità microscopica, sfruttando una strategia di omogeneizzazione 
computazionale a due vie in cui il passaggio di informazioni avviene 
dalla scala microscopica a quella macroscopica e viceversa. 
Il secondo metodo è un nuovo approccio multiscala ibrido che combina 
i vantaggi insiti nell’utilizzo dei modelli gerarchici e concorrenti, basato 
su uno schema di decomposizione del dominio a due livelli. Tale me-
todo permette di sostituire l’onerosa procedura computazionale di estra-
zione della legge costitutiva per ogni passo di carico attraverso la riso-
luzione di n BVP (con n pari al numero di punti di Gauss) mediante un 
database macro-tensione/macro-deformazione elaborato in fase di pre-
processing. L’applicabilità e l’accuratezza degli approcci multiscala 
proposti nel contesto dell’analisi di stabilità in materiali compositi dan-
neggiati sono state opportunamente valutate attraverso confronti con si-
mulazioni numeriche dirette di riferimento, grazie alle quali si è evinto 
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che il secondo metodo risulta essere più accurato nel cogliere agevol-
mente gli effetti di bordo e nel determinare il fattore di carico critico di 
instabilità. 
Infine, l’innovativa strategia multiscala ibrida si è inoltre implementata, 
al fine di predire il comportamento meccanico di materiali compositi 
con una microstruttura ispirata alla madreperla in un contesto di defor-
mazioni finite e di consentire la progettazione di un’efficiente architet-
tura materiale per la protezione del corpo umano. Pertanto, è stata con-
dotta un’ampia analisi parametrica al variare dei principali parametri 
microstrutturali (frazione di volume e proporzioni delle piastrine di rin-
forzo) analizzando la resistenza alla penetrazione e la flessibilità, rispet-
tivamente mediante un test alla penetrazione e un test a flessione su tre 
punti. È stata definita una nuova metrica del materiale che incorpora i 
requisiti prestazionali di resistenza alla penetrazione e flessibilità, chia-
mata “protecto-flexibility”, al fine di valutare il ruolo dei parametri mi-
crostrutturali investigati. Dai risultati ottenuti si è evinto che, tramite 
una modellazione multiscala ibrida, è possibile fornire configurazioni 
microstrutturali ottimizzate consentendo quindi di progettare materiali 
compositi ispirati alla madreperla con elevate prestazioni meccaniche. 
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T  Cauchy stress tensor 
eC  Crack eccentricity 

J ′  Determinant of the 2D deformation gradient tensor 

 

( )c iΓ
u  

Displacement jump at the deformed crack contact inter-
face at a contact point pair ( ),l u

C
X X  

k  Equivalent 2D bulk modulus 
V∂  External RVE boundary in the deformed configuration 

( )iV∂  External RVE boundary in the undeformed configura-
tion 

RT  First Piola-Kirchhoff stress tensor 
( ),RC X F  Fourth-order tensor of nominal moduli 

( )1 2,R ,  w wF  Functional associated to the non-bifurcation condition 

( )1
#H V  Hilbert space of order one of vector valued functions 

periodic over V 
cL  Initial crack length 

fH  Initial fiber thickness 
mH  Initial matrix thickness 
( )K τ  Kinetic energy of the RVE at time τ  

t  Loading parameter 
( ),tx X  Microscopic deformation field 
( ),tF X  Microscopic deformation gradient tensor 

Λ  
Minimum eigenvalue associated to the stability func-
tional 
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( )1 2,IR ,  w wF  Modified functional associated to the non-bifurcation 
condition 

( )I ,S wF  Modified stability functional 

( )u l
R Rr r  

Nominal contact reaction on the upper (lower) crack 
surface 

  ( )( )
c

R iΓ
T X  Nominal stress tensor jump at the undeformed crack 

contact interface 
Rt  Nominal traction vector 

( )u l
R Rσ σ  

Normal component of the nominal contact reaction on 
the upper (lower) crack surface 

 

( )
c

nu
Γ

 X  
Normal displacement rate jump at the deformed crack 
contact interface at a contact point pair ( ),l u

C
X X  

 

( )
c

nw
Γ

 X  
Normal fluctuation rate jump at the deformed crack 
contact interface at a contact point pair ( ),l u

C
X X  

( )in  Outward normal at ( )iV∈∂X  

( ) ( )( )u lt tn n  
Outward normal of the deformed upper (lower) contact 
surface 

( ) ( )( )u l
i in n  Outward normal of the undeformed upper (lower) crack 

contact surface 

( ),l u

C
X X  Pair of crack surface points in contact in the deformed 

configuration 
( ) ( )

,l u

C i
X X  Pair of crack surface points in contact in the unde-

formed configuration 
( ),tw X  Periodic fluctuation field 

x  
Position vector of a material point in the deformed con-
figuration 

X  
Position vector of a material point in the undeformed 
configuration 

( )u lX X  Position vector of a material point of the upper (lower) 
crack surface in the undeformed configuration 

CB
ct  

Primary bifurcation load level of the Completely 
Bonded rate problem 

CF
ct  

Primary bifurcation load level of the Completely Free 
rate problem 
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IM
ct  

Primary bifurcation load level of the crack contact In-
terface Model 

NC
ct  

Primary bifurcation load level without crack contact 
contributions 

cEt  Primary eigenstate loading level 
cSt  Primary instability load level 
CF
cSt  

Primary instability load level of the Completely Free 
rate problem 

F
cSt  Primary instability load level of the Free rate problem 

*( )A , F F  Set of admissible fluctuation rates 
( )m fµ µ  Shear modulus of the matrix (fiber) at zero strain 

( )iB  Solid part of the undeformed volume occupied by the 
RVE 

( )S , wF  Stability functional 
W  Strain energy density for plane strain deformations 
dS  Surface elements in the deformed configuration 

( )idS  Surface elements in the undeformed configuration 

( )( ) ( )
u l
i idS dS  Surface elements of the upper (lower) crack contact 

surface in the deformed configuration 
r  True contact reaction 
σ  True normal contact reaction 

( ) ( )( )u l
i iΓ Γ  Undeformed lower (upper) crack surface 

( ) ( )( )l u
c i c iΓ Γ  Undeformed lower (upper) crack surface undergoing 

self-contact 
L  Unit cell initial length 

( )iU  Unit cell volume in the undeformed configuration 
δ u  Virtual displacement 

( )rate cLδ Γ  Virtual work of the contact reaction rate acting on the 
deformed contact interface 

( )( )rate c iLδ Γ  Virtual work of the contact reaction rate acting on the 
undeformed contact interface 
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Introduction 
 
 
 
 
 
 
 
 
 
 
Scientific and industrial societies have pooled their expertise over the 
past decades and have worked together to improve materials and struc-
tures design. This collaboration has culminated in the exploration and 
development of new materials, new technologies, and advanced mod-
eling methods with the aim to design structures with the highest struc-
tural performances. Certainly, the most significant impact has been the 
development of new simulation methods. This marked evolution can be 
explained highlighting that computational potentiality has increased 
dramatically over the past few years; as a matter of fact both industrial 
and scientific communities are conscious that designing new complex 
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structures and systems that simultaneously need to meet restrictive se-
curity, mechanical and, in some instances, economical constraints can 
only be accomplished by numerical simulations. Even though signifi-
cant progress has been made in simulating different phenomena, more 
developments are still needed. This is particularly true for the compu-
tational techniques and algorithms used to investigate the behavior of 
materials with a heterogeneous microstructure (see for instance Fig. 1) 
and subjected to complex loading conditions.  
This heterogeneity has a substantial impact on the macroscopic behav-
ior of multi-phase materials, in fact, several phenomena arising at the 
macroscopic level derive from the mechanics and physics of the micro-
structure. The characteristic size of such materials is typically the scale 
of the microstructural heterogeneities and defects, in fact, nowadays, 
the intrinsic role of the observation scales in mechanics of heterogene-
ous materials is, at this point, well known.  Since it has become clear 
over time that even smaller scales can have a pronounced effect on the 
macro-level, it is becoming crucial the understanding the mechanical 
response of the materials at the micro-scale. 
In order to model the behavior of materials, two distinct methods can 
be followed: phenomenological and micromechanical approaches. 
In the first one, through the definition of continuous constitutive rela-
tions commonly based of phenomenological assumptions, the material 
characterization is accomplished. The second approach, instead, is 
based on the strategy to consider information from the microstructure 
exclusively. 
It is clear that the underlying microstructural character cannot be trivi-
ally separated from the macroscopic governing equations and, in this 
way, multi-scale approaches, which incorporate smaller and larger 
sizes, have arisen recently.  
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Although homogenization of heterogeneous materials was one of the 
first multi-scale mechanical methods, it was initially developed for elas-
tic problems, in which the small scale in the computational process can 
often be excluded. But, for more complex nonlinear problems, this is 
obviously not viable.  
Since several problems necessitate a multiscale explicit solution, re-
quiring iterative solution processes at each scale with high computa-
tional costs, the main focus of this thesis is to develop heuristic ad-
vanced computational strategies to study from a numerical point of 
view the nonlinear phenomena (such as microfractures, contact and in-
stabilities) in heterogeneous materials. 

Nonlinearities in heterogeneous materials 

The analysis of the interaction between microstructural phenomena and 
macroscopic behavior not only makes it possible to model accurately 
the behavior of multi-phase structures, but it also offers a method for 

 

Fig.1 Microstructure examples in wood, concrete and composite laminate.  
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designing material microstructures exhibiting a macroscopic behavior 
with prearranged characteristics. In micro-applications, the microstruc-
ture, in relation to the component size, is no longer negligible, resulting 
in a so-called size effect. Advanced forming operations often require a 
product to undergo complex loading paths that can produce microstruc-
tural evolutions and resulting in various microstructural responses. 
From an economic point of view, it is hardly feasible to conduct 
straightforward experimental measurements on a variety of product 
specimens for different sizes and loading paths, with different phase 
geometrical properties (volume fraction and aspect ratio). Conse-
quently, modeling approaches that provide a better understanding of 
micro-macro and structure-property relationships in multi-phase mate-
rials are clearly needed. Regardless of the type of material (metal, pol-
ymer, natural, composite), for several reasons the homogeneity hypoth-
esis could be a too restrictive assumption; as a matter of fact, diving 
into the material microstructures of advanced composites, different fea-
tures can be observed such as: voids, micro-cracks and inclusions, 
which can interact in a complex manner and have a significant impact 
on overall material properties and performance. 
For instance, in the past few years, materials reinforced with particles, 
platelets of fibers have been increasingly investigated to meet the in-
creasing demands of a wide range of composite materials used in many 
fields of engineering [1–7]. Today, these materials find application in 
the form of advanced composites (for instance advanced metal, ceramic 
or polymer matrix composites), bio-inspired materials (for instance 
staggered bone-, tooth- or nacre-like composites) and metamaterials 
(piezoelectric polymers, shape memory alloys, electro-active or mag-
neto-active polymers). The enhanced mechanical properties and the ad-
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ditional functionalities of such materials are provided by the strong in-
teraction between a weak material, usually known as matrix, and a 
stiffer material, usually known as reinforcement. 
Ideally, the models adopted to simulate the behavior of advanced com-
posite materials should be accurate and relatively simple, so that they 
can be implemented in standard finite element packages to solve inter-
esting structural issues. For two reasons, the development of accurate 
modeling strategies represents a significant challenge: firstly, the com-
mon constitutive models adopted to model advanced composite materi-
als are nonlinear; secondly, due to the finite geometry changes caused 
by loadings, there is the additional complication of the evolution of the 
microstructure. 
This context motivates the significance to carry out theoretical studies 
focused on the finite strain behavior of such materials with special at-
tention to the prediction of the onset of microscopic failure mechanisms 
by investigating their macroscopic (homogenized) behavior. As a mat-
ter of fact, the study of these failure mechanisms, is a challenging task 
requiring the use of sophisticated techniques able to avoid a direct mod-
eling of all microstructural details, a procedure which is unpractical due 
to the required large computational effort. Among the variegated failure 
mechanisms affecting composite materials subjected to large defor-
mations, loss of composite integrity (fracture, delamination and dam-
age, see for instance Fig. 2) and local buckling or loss of microscopic 
stability are the most common ones. 
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In the former case, different approaches can be adopted in order to ac-
count for microstructural evolution associated with crack propagation 
within each constituent or at their interfaces. These approaches, mainly 
proposed within the context of small deformations but also generaliza-
ble to large deformations with relatively simplicity, frequently adopt 
first-order homogenization (see, for instance, [8–13]) and/or multi-
scale schemes (e.g. [14–19]) often assuming a periodic microstructural 
scheme and requiring the development of specialized numerical proce-
dures essentially based on the finite element method. Generally speak-
ing the homogenization approaches can be adopted only when the as-
sumptions of periodicity and scale separation are reasonably satisfied, 

 

Fig.2 Examples of failure mechanisms affecting composite materials at dif-
ferent scale of observation. 
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whereas multiscale schemes (such as the semiconcurrent, concurrent or 
asymptotic expansion ones), overcome these limitations and are able to 
accurately represent microstructural evolution due to coalescence of 
micro-cracks and to material and/or geometrical nonlinearities. 
In the latter case, for undefected composite materials several theoretical 
and numerical studies on the occurrence of instabilities at the scale of 
the microstructure have been performed in the literature, in order to de-
termine the influence of these phenomena on the nonlinear macroscopic 
response of the composite solid [20–28]. Generally speaking instability 
phenomena in composite materials must be investigated at different 
length scales (see, for instance, [20–24,26]) and both geometrical and 
constitutive nonlinearities must be incorporated in the analysis (see, for 
instance, [25,29]). 
After the pioneering study of [20] devoted to layered composites, the 
connections between microscopic and macroscopic instabilities for hy-
perelastic materials with a periodic microstructure were rigorously in-
vestigated in [21], where it was shown that global or long wavelength 
instabilities lead to the loss of strong ellipticity condition for the unit 
cell homogenized moduli tensor, a situation corresponding to macro-
scopic instability. Following the above mentioned works, microscopic 
and macroscopic instabilities and their interrelationships under plane-
strain condition in hyperelastic layered and particle-reinforced periodic 
composites have been widely investigated (see, for instance, 
[24,26,27]) by using the Bloch-Floquet technique also in conjunction 
with the finite element method when analytical solutions are not viable 
(as in the case of complex 2D particle composites, cellular microstruc-
tures, 3D fiber composites). The above investigations have pointed out 
that while the onset of the macroscopic instabilities, characterized by 
wavelengths significantly larger than the microstructure characteristic 
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size, can be predicted by the loss of ellipticity analysis requiring simply 
the evaluation of the one-cell homogenized tensor of elastic moduli, the 
prediction of local instability modes with a finite wavelength is a more 
difficult task due to the theoretically infinite nature of the analysis do-
main and requires sophisticated techniques such as Bloch wave stability 
calculations or direct finite element discretization of the unit cell assem-
bly. In this case, the macroscopic constitutive stability measures can be 
adopted in order to obtain conservative prediction of the microscopic 
stability region [25]. 
Since the above studies were prevalently limited to the analysis of mi-
croscopic and macroscopic instabilities for undefected microstructures, 
the problem of interaction between different microscopic failure modes 
in composite materials subjected to large deformations remains essen-
tially open, although it may have a detrimental effect on the overall fail-
ure response of composite materials. This because a detailed continuum 
analysis of composite solids taking into account the coupling between 
different failure mechanisms in these materials requires a huge compu-
tational effort since a very fine numerical model (usually implemented 
in a finite element approach) must be adopted in order to accurately 
describe the different sources of nonlinearity (for instance related to 
damage, constitutive and geometrical effects). In some recent studies 
the influence of microscopic fracture processes eventually involving 
self-contact between crack surfaces on the nonlinear homogenized be-
havior of composite solids, have been analyzed pointing out some in-
teresting features characterizing the coupled effects of fracture and in-
stability failure mechanisms. Specifically, the relation between inter-
granular decohesion and macroscopic instabilities has been studied in 
granular materials with elastic grains by using a two-scale computa-
tional homogenization approach in [30], a general analysis of instability 



Introduction  9 

and bifurcation phenomena have been carried out by [31] by also for-
mulating upper and lower bounds to primary instability and bifurcation 
loads, for periodic elastic composites with micro-cracks in unilateral 
self-contact finitely strained along macroscopic loading paths, whereas 
special classes of instability and bifurcation behaviors have been deter-
mined in [32]. One of the distinctive features occurring in microfrac-
tured composite solids with respect to the undefected case is that mi-
croscopic primary instabilities may not coincide with primary bifurca-
tions owing to nonlinearities introduced in the analysis by crack surface 
self-contact incremental loadings ([31,32]). Moreover, the relations be-
tween microstructural instability mechanisms and macroscopic insta-
bilities have been studied in [33] for microcracked composites under-
going contact along crack surfaces, by also determining the structure 
and properties of the resulting macroscopic constitutive response. 
For unidirectional fiber-reinforced or layered composites prevalently 
loaded in compression along the fiber direction, failure initiated by fiber 
microbuckling can be considered one of the most prevalent failure 
mode [34–36] and may promote the initiation and propagation of cracks 
or interface debonding at the microstructural level, a phenomenon sim-
ilar to delamination buckling or buckling induced debonding in compo-
site laminates or structural elements strengthened using composite lay-
ers (see, for instance [37] and [38], respectively).  
Recently, new composite materials have been examined in depth pro-
moting new developments by virtue of their enhanced mechanical prop-
erties and additional functionalities provided by the strong interaction 
between a weak material known as matrix and a stiffer material (known 
as reinforcement). Among these, composite materials inspired by bio-
logical structures, such as bone and nacre materials [39], are currently 
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the focus of extensive research devoting significant effort to obtain op-
timized structural constituents. For instance, a nacre-like composite is 
usually composed of 95% of high aspect ratio stiff material (in the form 
of platelets, also referred to as inclusions) and of 5% of soft material in 
a staggered structure with a brick-and-mortar arrangement, and it ex-
hibits exceptional toughness and strength under tension in the direction 
parallel to the longitudinal platelet axis but results weak in the trans-
verse direction [40,41]. Several authors reported that the mechanical 
properties of nacre-like microstructures are mostly characterized by the 
interaction between the platelets and that the enhanced mechanical per-
formances are provided by several mechanisms acting on distinct length 
scales [42]. Consequently, understanding the platelet's interaction and 
the mechanical properties of the bonding interfaces between soft and 
stiff phases is necessary to elucidate the microstructure-property rela-
tions. This understanding will enable design of materials with enhanced 
mechanical properties – including stiffness, toughness, ductility or im-
pact and penetration resistance – through tailored choices of constituent 
materials and geometrical arrangements. For instance, the sliding re-
sistance of platelets can be increased actuating an interlocking mecha-
nism by changing the waviness of the platelet surfaces [42].  The capa-
bility of producing microstructures with a high geometrical complexity 
– provided by the recent development in the additive manufacturing 
(AM) or 3D printing –  opened new ways for mechanical characteriza-
tion of bio-inspired composites at different length scales [43]. For in-
stance, a fracture response was analyzed on a biomaterial composite 
with a bone-like microstructure [44], the performance of a nacre-like 
composite panel was investigated in terms of deformation and energy 
dissipation [45], a design strategy of isotropic two-dimensional struc-
tural composites consisting of stiff and soft constituents arranged in 
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square, triangular, and quasicrystal lattices was defined [46], a structure 
created by mimicking fish armor was experimentally tested to reveal its 
ability to provide protection against penetration while preserving flexi-
bility [47], the overall strength of bio-inspired staggered composites 
was investigated by employing a micromechanical analysis and by ex-
perimental tests on 3D printed composite materials [48], the failure 
mechanisms of bio-inspired composites subjected to nonaligned load-
ings was investigated using analytical models and experimental tests 
[49]. Generally speaking, composite materials, owing to their intrinsic 
heterogeneities, are commonly afflicted by several nonlinear phenom-
ena especially when they are used in high-performance applications in-
volving a microstructural evolution due to loss of composite integrity 
(coalescence of micro-cracks, delamination, interface debonding, etc. 
[50,51]) or to geometrical and/or material nonlinearities induced by 
large deformations (micro-buckling, ovalization, alternate void expan-
sion [52–55]). Recent studies reported the influence of nonlinear phe-
nomena on the macroscopic response in undamaged hyperelastic mate-
rial models [56–62], and the role of interactions between different mi-
croscopic failure modes (fracture and instability) [63–67].  
In the next paragraph, the previous attempts to model the effective be-
havior of heterogeneous materials (for instance, fiber- or particle-rein-
forced composite) are briefly enumerated to provide an overview of 
available methods. 

Overview on homogenization and multiscale modeling 

The biggest task of multiscale modeling consists of deducing the rela-
tionships that bridge diverse length scales. Generally, multiscale strate-
gies have the goal to predict macroscopic properties of heterogeneous 
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materials by taking into account the geometrical and physical details of 
the microstructure requiring hence an adequate description of the mi-
croconstituent phases and of the relative interfaces at the microscale. 
A variety of approaches have been suggested in the literature to bridge 
the scales: homogenization methods represent certainly one of the larg-
est classes of bridging scale methods. The term “homogenization” was 
coined in 1976 by an American mathematician: Ivo Babuška in its work 
[68] in which the homogenization has been defined as “an approach 
which studies the macroscopic behavior of a medium by its microscopic 
properties”. Early advances in homogenization field were taken a long 
time ago when the curiosity in the heterogeneous material microme-
chanics became more prominent. 
Preliminary theories date back to the nineteenth century, when the rule 
of mixtures was first adopted by Voigt (1887) [69] and followed by 
Sachs (1928) [70] typically for composite systems; later the Reuss esti-
mate (1929) [71] and the Taylor model (1938) [72] were derived typi-
cally for polycrystals. Growing interest in composite materials was the 
main motivation for greater advances in homogenization. 
The earliest known contribution probably was the work of Eshelby 
(1957) [73], in which the elastic solution is given for an ellipsoidal re-
gion in an infinite medium having elastic constants different from those 
of the rest of the material. These first steps led to the foundation of a 
new field by Hill (1965) [74] called “continuum micromechanics”, that 
since then, it has been greatly extended and that still have had a marked 
influence today; as a matter of fact,  the use of continuum mechanics at 
the level of heterogeneities to deduce macroscopic constitutive relations 
was one of the essential characteristics of the micromechanical methods 
available at that time.  
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The second half of the twentieth century (1950-1980), with the pioneer-
ing works done by Kröner [75], Hashin and Shtrikman [76], Hill [77], 
Mori and Tanaka [78], Willis [79] and Babuška [80], was distinguished 
by significant progress in the homogenization and multiscale modeling 
applied at heterogeneous elastic solids  
In this period, a few authors took first steps towards extending the al-
ready developed elastic homogenization theories and variational prin-
ciples into the nonlinear regime [74,81,82], whereas in the 1980s and 
1990s many more papers on these fields appeared, treating subjects as 
elastoplasticity, viscoelasticity and nonlinear elasticity (for instance the 
works done by Nemat-Nasser and Obata [83], Ponte Castañeda [84], 
Suquet [85], Willis [86], Nemat-Nasser and Hori [87], Zaoui and Mas-
son [88] and others). 
The developments in numerical homogenization were fundamental to 
the growth of homogenization engineering applications; in this context, 
the contribute of  Sanchez-Palencia in [89] acted as an inspiration for 
researchers in computational mechanics. 
Artola and Duvaut [90] and Suquet [91] dedicated themselves to the 
research of homogenization theory within the context of heterogeneous 
and composite materials mechanics which prompted different engineer-
ing applications of numerical simulation performance. 
When the common ground has been reached between engineering and 
mathematical homogenization, the homogenization process, supported 
by computationally advanced solution methods, has started to dominate 
in the computational mechanic field; thus, the homogenization ap-
proach has become a common tool for characterizing the mechanical 
properties of heterogeneous materials with (periodic or random) micro-
structures and it is now recognized as one of the robust theoretical back-
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ground for the numerical homogenization. At the end of the 20th cen-
tury, the steady increase in the computational power available has con-
tributed to developing the mathematical discipline called “Multi-scale 
Mechanics”. Since then, several milestones have been made, and in the 
(near) future, even more, can be predicted. Multiscale modeling of non-
linear behavior of heterogeneous materials is a so large field that it is 
almost impossible to give a complete outline of all the methods devel-
oped in the past; therefore ,a brief overview will be provided here, with 
particular emphasis on the different classifications that can be identified 
in the framework of multiscale methods. From a methodological per-
spective, it is possible to identify different categories of multiscale 
methods [92–95], closely linked to the location and the geometry of the 
heterogeneous scale. The first category concerns problems with isolated 
details such as crack and defects, that need to be treated with high ac-
curacy and resolution. That form of problem is also often referred to as 
“multiple scales” rather than multiscale because the problem of the fine 
scale is confined to a small part of the global domain. The second cate-
gory concerns problems in which the macroscopic response is extracted 
considering a large part of the domain, revealing self-similarity across 
the scales.  
Another common classification is based on type of coupling between 
the microscale and macroscale problems and identifies multiscale meth-
ods in three different subcategories: hierarchical, semi-concurrent and 
concurrent methods. 
In hierarchical methods, during the micro-to-macro transition step, the 
information is transferred from lower to higher scales establishing a 
“one-way” bottom-up coupling between the microscopic and macro-
scopic problems. Such strategy is efficient computationally and in de-
termining the macroscopic behavior of heterogeneous materials in 
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terms of stiffness and strength, but shows a limited capability in the 
prediction of nonlinear phenomena. However, they have been applied 
to investigate a wide range of problems, such as multiphase flow in po-
rous media [96,97], pullout tests and damage in nanocomposites [98], 
heat affected zone in welded connection [99], fracture in crystalline sol-
ids [100].  
In semiconcurrent multiscale methods the information is transferred 
from lower to higher scales and vice versa, establishing a “two-way” 
coupling performed on the fly during the simulation. Such methods are 
useful when dealing with microscopic nonlinear phenomena due to 
evolving defects whose spatial configuration is not known a priori. The 
classical semiconcurrent model is called FE2 method [101] that was in-
itially developed for intact materials and then extended to material fail-
ure problems [102–106]. The main idea of such approach is to link a 
microscopic boundary value problem (BPV), defined on an RVE, at 
each quadrature point (Gauss point) of the macroscopic domain. The 
macroscopic strain provides the boundary data given in input at the mi-
croscopic problem (macro-to-micro transition or localization step). 
Once the set of all BVPs is solved, the results are passed back in output 
to the macroscopic problem in terms of overall stress field and tangent 
operator (micro-to-macro transition or homogenization step). The steps 
are carried out within an incremental-iterative nested solution scheme 
defining a weak coupling between the scales, and it is worth noting that 
the microscopic problems are decoupled to each other leading to a lower 
computational effort only in presence of an effective core processor par-
allelization implemented in the solver procedure. Other semiconcurrent 
approaches have been proposed in the literature to overcome the de-
pendence of the macroscopic problem solution on the RVE size in the 
case of overall mechanical behaviors exhibiting softening or, generally, 
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in the case of not completely satisfying the scale separation assumption, 
for instance in the case of localization of deformation. One of them is a 
coupled-volume method, proposed in [107] and [108], that is developed 
attaching the BVP at each macroelement of the macroscopic problem, 
rather than to each Gauss point.  
In concurrent multiscale methods the information is transferred from 
the coarse scale to the fine scale and vice versa in the same macroscopic 
domain leading to a “two-way” strong coupling. In other words, this 
approach abandons the concept of scale transition adopting the concept 
of scale embedding, according to which different scales coexist in the 
macroscopic model and they are coupled usually at the common inter-
faces by enforcing the compatibility conditions. Such methods can be 
regarded as falling within the class of the so-called domain decomposi-
tion methods (DDM), since the numerical model describing the compo-
site structure is decomposed into critical domain characterized by a fine 
discretization and into non critical domains characterized by a coarse 
discretization, which are simultaneously solved. Such multiscale mod-
els are widely adopted to modeling fracture [109,110], for instance in 
[111] is proposed  a concurrent coupling scheme with application to 
dynamic brittle fracture, in [112]  has been proposed to simulate com-
plex crack growth patterns in thin-walled structures. A concurrent mul-
tiscale method is proposed also in [113] to study matrix/inter-phase 
fracture and fiber sliding in brittle ceramics and in [114] to overcome 
the existing limitations on homogenization in the presence of strain lo-
calization in masonry structures, proposing an adaptive zooming-in cri-
terion in a multilevel domain. 
While hierarchical and semiconcurrent multiscale approaches fail to 
fulfill separation of length scales in the case of fracture, on the contrary 
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concurrent approaches are most suitable to model material failure as the 
fine scale is directly inserted into the macroscopic model. 
In Section 2, more information and computational detailed will be given 
about the multiscale approaches used in the numerical simulations re-
ported in Sections 4. Particularly, a special attention is given to the cou-
pled-volume multiscale approach and to a novel hybrid hierar-
chical/concurrent multiscale approach proposed to analyze the nonlin-
ear behavior of composite materials reinforced with continuous or dis-
continuous fibers. 

Scope and outline 

Today is widely accepted by the scientific community that it is vital to 
fully understand the relationship between the material's macroscopic 
behavior and its microstructure in order to develop new advanced ma-
terials capable of satisfying restrictive criteria. The mechanical behav-
ior of the heterogeneous materials subjected to complex loadings 
strongly dependents on their microstructure and the mechanical charac-
terization is only possible by formulating and developing new micro-
macro strategies. Within this framework, computational homogeniza-
tion and multiscale strategies can be adopted to address this challenge. 
The main scope of this thesis is to develop a numerical framework able 
to model the mechanical response of heterogeneous materials at finite 
strains (fiber- or particle-reinforced composite materials) and predict 
the failure in terms of loss of stability evaluating also the interaction 
with other forms of nonlinearities, such as microfracture and contact, in 
a multiscale framework. To the best authors’ knowledge, this issue has 
not been investigated previously in the past literature, and thus repre-
sents the main aspect of novelty of the present thesis. For this purpose, 
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the thesis started with an introduction giving a global overview of the 
state-of-art on the present topic.  
In Chapter 1 the basic hypotheses of the numerical homogenization 
strategy are discussed together with the formulation of the microstruc-
tural boundary value problem and the coupling between the micro and 
macrolevel at finite strains based on the averaging theorems. In addi-
tion, some remarks on the admissible kinematical boundary conditions 
are given. 
Chapter 2 is devoted to a review of multiscale approaches for advanced 
composite materials following a classification based on the type of cou-
pling between the microscopic and the macroscopic levels. 
Chapter 3 is concerned with a theoretical non-linear analysis of the ho-
mogenized response of damaged composite solids with periodic micro-
structure subjected to macroscopically uniform strain, by including the 
effects of instabilities and contact occurring at microscopic level. The 
theory, formulated for incrementally linear materials, provides an orig-
inal closed-form representation of homogenized material response 
which puts in evidence the competing effects of local constitutive re-
sponse and of microstructural heterogeneity. These analytical develop-
ments provide a basis to investigate the effectiveness of the continuum 
rate formulation of the microscopic equilibrium problem the prediction 
of microscopic instability phenomena considering also the interaction 
between buckling instabilities and fracture in unidirectional fiber rein-
forced composites. In such materials, since buckling causes a large in-
crease in energy release rate at the tips of preexisting cracks favoring 
crack propagation or interface debonding, the investigated interaction 
may lead to a strong decrease in the compressive strength of the com-
posite material.  
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Thus, the theoretical formulation of instability and bifurcation phenom-
ena for microcracked composite materials characterized by hyperelastic 
constituents and subjected to a macrostrain driven loading path has been 
firstly considered. A quasi-static finite-strain continuum rate approach 
in a variational setting was developed by using cohesive models adopt-
ing interface traction-separation laws formulated including contact and 
frictional sliding effects in cases where significant normal compression 
acts on the interface. When such interface constitutive laws are adopted 
to model contact between crack faces in a large deformation context, 
non-standard self-contact terms must be included in the analysis and 
their influence on the instability and bifurcation critical loads can be 
estimated in light of the results which will be presented in this thesis. 
Thus, the role of non-standard crack self-contact rate contributions to 
the stability and non-bifurcation conditions was pointed out by means 
of comparisons with simplified formulations which do not adopt a full 
finite deformation approach to model contact phenomena occurring 
along crack surfaces. In order to study the compressive failure problem 
of a periodic elastic fiber reinforced composite material with sufficient 
generality, an extensive set of numerical applications has been carried 
out including different geometrical configurations for a composite mi-
crostructure driven along macroscopic uniaxial paths (Section 3.4.2) 
and macroscopic biaxial paths (Section 3.4.3) and containing mi-
crocracks within the matrix or at the fiber/matrix interface.  
In Chapter 4, two different multiscale modeling approaches have been 
adopted firstly to analyze the microstructural instability-induced failure 
in locally periodic fiber-reinforced composite materials subjected to 
general loading conditions in a large deformation context. The first ap-
proach is a semiconcurrent multiscale strategy consisting in the “on-
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the-fly” derivation of the macroscopic constitutive response of the com-
posite structure together with its microscopic stability properties 
through a two-way computational homogenization scheme. The second 
approach is a novel hybrid hierarchical/concurrent multiscale approach 
relying on a two-level domain decomposition scheme used in conjunc-
tion with a nonlinear homogenization scheme performed at the prepro-
cessing stage. The main idea of the proposed hybrid multiscale ap-
proach is to combine the advantages of hierarchical and concurrent ap-
proaches using a numerical strategy that is able to replace the typical 
procedure of extracting the homogenized constitutive law for each time 
step solving a BVP in each Gauss point with a macro-stress/macro-
strain database obtained in a pre-processing step. Both multiscale ap-
proaches have been appropriately validated through comparisons with 
reference direct numerical simulations, by which the capability of the 
hybrid approach in capturing the exact stability critical load factor and 
the boundary layer effects has been demonstrated. Secondly, the novel 
hybrid multiscale strategy was proposed also to predict the mechanical 
behavior of nacre-like composite material in a large deformation con-
text with the purpose of identifying the best compromise between pen-
etration resistance and flexibility to design a body protective bio-in-
spired material architecture. Therefore, a comprehensive parametric 
analysis with respect to the main microstructural geometrical parame-
ters (platelets aspect ratio and stiff-phase volume fraction), governing 
the macroscopic behavior of bio-inspired nacre-like composite was per-
formed. To this end, a material performance metric, called protecto-
flexibility, incorporating the performance requirements of penetration 
resistance and flexibility in one parameter, was analyzed to investigate 
the role of microstructural parameters in this integrated measure. Thus, 
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advantageous microstructured configurations that can be used for de-
sign and further optimization of the nacre-like composite material. Fi-
nally, some concluding remarks are given, together with some future 
perspectives of this work. 
 
 





 

1 
 

Finite-strain numerical 
homogenization 

In this chapter the basic hypotheses of finite-strain numerical homoge-
nization strategies are discussed together with the formulation of the 
microstructural boundary value problem and the coupling between the 
micro and macrolevel at finite strains based on the averaging theorems. 
In addition, some remarks on the admissible kinematical boundary con-
ditions are given. 
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1.1 Basic Hypotheses 

Numerical homogenization is a technique based on the derivation of the 
macroscopic constitutive response of heterogeneous materials from the 
local microstructure representative of the entire solid continua, by 
means of the solution of a microstructural boundary value problem 
(BPV). Generally speaking, the numerical homogenization procedure 
consists of four steps: (i) definition of a representative volume element 
(called RVE) or a repeated unit cell (called RUC) for which, the me-
chanical behavior of each microstructural constituent is assumed to be 
known; (ii) definition of the microscopic boundary conditions extracted 
from the macroscopic variables, given as input, and their assignment on 
the boundaries of the RVE (transition from macro to micro); (iii) ex-
tracting the output variables from the solution of the boundary value 
problem (BVP) associated to the RVE (transition from micro to macro); 
(iv) obtaining the homogenized response in terms of relation between 
input and output macroscopic variables. It is worth noting that, since 
the macroscopic constitutive response is obtained from the solution of 
the microscopic BVP, no explicit assumptions are required on the con-
stitutive response at the macroscale; and that also the macroscopic con-
stitutive tangent operator could be derived from the microscopic tangent 
operator in different manners (for instance, static condensation or linear 
perturbation methods). The homogenized microstructure could be con-
stituted by different phases characterized by arbitrary nonlinear consti-
tutive models, as a matter of fact, if the microstructural constituents are 
mechanically formulated in a nonlinear framework, the computational 
homogenization can be formulated at finite strains in a simple way. The 
procedure of the first-order computational homogenization scheme 
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starts from the assumptions that the solid media can be considered mac-
roscopically homogeneous and microscopically heterogeneous (for in-
stance, microstructures characterized by the presence of inclusions, 
grains, porous or interfaces) for which a representative volume element 
is identifiable; and that it is possible to distinguish different length 
scales in a generic solid media as explained in the following. 

1.1.1 Concept of a representative volume element 

A representative volume element is a model of the microstructured solid 
for which is required the response of the related homogenized contin-
uum, hence the choice of the RVE strongly influences the accuracy of 
the homogenized heterogeneous material response. Different RVE def-
initions can be found in the literature, for instance: 

• The RVE is “the smallest material volume element of the compo-
site for which the usual spatially constant overall modulus macro-
scopic constitutive representation is a sufficiently accurate model 
to represent mean constitutive response”, [115]. 

• The RVE size “should be large enough with respect to the individ-
ual grain size in order to define overall quantities such as stresses 
and strains, but it should be small enough in order not to hide mac-
roscopic heterogeneity”, [116]. 

• The RVE is a microscopic sample that fulfills all the following re-
quirements: “an increase in its size does not lead to considerable 
differences in the homogenized properties, the microscopic sample 
is large enough so that the homogenized properties are independent 
of the microstructural randomness, and its size is much smaller than 
the macroscopic dimension”, [117]. 
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• The RVE is “a sample that is structurally entirely typical of the 
whole mixture on average, and contains a sufficient number of in-
clusions for the apparent overall moduli to be effectively independ-
ent of the surface values of traction and displacement, so long as 
these values are macroscopically uniform”, [118]. 

• The RVE is a material sample that “includes the most dominant 
features that have first-order influence on the overall properties of 
interest and, at the same time, yields the simplest model. This can 
only be done through a coordinated sequence of microscopic 
(small-scale) and macroscopic (continuum-scale) observation, ex-
perimentation, and analysis”, [119]. 

• The RVE size can be defined as the “minimum size of a micro-
structural cell that fulfills the requirement of statistical homogene-
ity. As such, it is a lower bound: larger microstructural cells behave 
similarly while smaller microstructural cells do not”, [120]. 

From these definitions appears that the RVE can be defined in two sig-
nificantly different ways. The first one sees the RVE described as a stat-
ically representative sample of the macro homogeneity; the second one, 
instead, sees the RVE identified as the smallest microstructural material 

 

Fig. 1.1 Geometric representation of solid microstructures adopted in micro-
mechanical analyses: statistically representative sample characterized by a 
RVE (a) and periodic samples characterized by a RUC (b). 
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volume element that represents the overall macroscopic properties in an 
accurate manner. The latter definition leads to RVE sizes smaller than 
the statistical definition described above, and the minimum RVE size is 
strictly influenced by the macroscopic loading path, type of material 
behavior and difference in the properties of heterogeneities. These def-
initions involve the concepts of periodicity and statistical homogeneity 
based on the concepts of RVE and RUC. 

1.1.2 Remarks on RVE and RUC 

As discussed in [121] and illustrated in Fig. 1.1, homogenization 
analyses are typically performed employing the concept of RVE, 
characterizing heterogeneous materials with statistically or 
macroscopically homogeneous microstructures at an opportune scale, 
or employing the concept of RUC, characterizing periodic 
heterogeneous materials which are composed by repeating unit cells 
assembled together into an infinite array. Specifically, the RVE-based 
homogenization analyses are developed on the coincidence of the 
homogenized response obtained by imposing homogeneous traction 
boundary conditions and linear displacement boundary conditions; 
while the RUC-based homogenization analyses are developed on the 
combination of periodic displacement boundary conditions and 
antiperiodic traction boundary conditions. In the literature [122–129], 
the concepts of RVE and RUC are often confused and used with the 
same meaning, but several works were published on the comparison of 
the complete set of homogenized elastic moduli extracted by means of 
RVE-based and RUC-based homogenization procedure highlighting 
that, in general, homogenized elastic moduli of an heterogeneous RVE 
under homogeneous displacement and traction boundary conditions 
approach to the homogenized elastic moduli of the same RVE under 
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periodic boundary conditions from above and below, respectively, with 
increasing number of heterogeneities (inclusions or porosities) with a 
convergence depending on the heterogeneities moduli contrast and the 
employed approach. This concept will be further investigated in section 
1.3 analyzing the most common admissible kinematical boundary 
conditions employed to perform classical homogenization analyses. 

1.1.3 Principle of scale separation 

The statement for which the homogenization methods involve the 
search for a homogenized macroscopic description of any phenomenon 
incorporates the concept of scale separation, since a macroscopic de-
scription has significance if the phenomenon of interest varies only at 
the microscale. This concept that is crucial, and that it makes possible 
to look into homogenized descriptions of heterogeneous materials, can 
be summarized in two requirements: 

 

Fig. 1.2 Schematic representation of the scale separation concept 
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I. The first, involving the medium, is based on the definition of a 
characteristic length Lmicro, which is only permitted if the mate-
rial has a representative volume element LRVE. 

II. The second, involving the phenomenon, is based on the concept 
that a quantity associated with the phenomenon must exhibit a 
characteristic length Lmacro larger than LRVE. 

Specifically, with reference to Fig. 1.2 to identify the concept of RVE, 
three length scales are necessary: one is the macroscopic scale (or mac-
roscale), denoted by 𝐿𝐿macro, which corresponds to the characteristic size 
of the considered solid, described as a continuum; the second is the mi-
croscopic scale (or microscale), denoted by 𝐿𝐿micro, which corresponds to 
the smallest microconstituent (microelement) whose properties and 
shape are supposed to have a direct influence on the overall response of 
the continuum infinitesimal material neighborhood; the third scale, de-
noted by 𝐿𝐿RVE, is an intermediate scale (also referred to as mesoscopic 
scale or mesoscale), which corresponds to the size of the RVE. These 
three scales are related to each other thought the following inequalities: 

 micro RVE macroL L L    (1.1) 

Definitively, it worth to highlight that the concept of scale separation is 
the sine qua non condition for a global description and that the property 
of homogenizability only has a meaning for the combination of the ma-
terial and the phenomenon together. 

1.2 Problem setting at finite strain 

In the classical continuum mechanics theory, the stress at a material 
point is dependent by the history of the deformation gradient tensor at 



30  Chapter 2 

that point, thus exist a tensor-valued functional ζ  such that the first 
Piola-Kirchhoff stress tensor, at any instant t, is given by: 

 ( , ) ( ( , ))R t tξ=T X F X   (1.2) 

where ( , )tF X  defines the history of the deformation gradient tensor: 

 ( , ) ( , )t t≡ +∇F X I u X   (1.3) 

with ∇  the reference (or material) gradient operator, u  the displace-
ment field, and I  the second-order identity tensor. 
Phenomenological theories are particularly effective because they often 
offer a simple mathematical form defined through ordinary differential 
equations to characterize the mechanical behavior of materials, while 
for the so-called multiscale constitutive models such theories are re-
placed by the assumption that F  and RT , at an arbitrary material point 
X , are the volume average of the deformation gradient and first Piola-
Kirchhoff stress fields over a microscopic cell (RVE), respectively. As 
shown in Fig. 1.3, a macroscopic material continuum occupying the 

 

Fig. 1.3 Schematic representation of a random heterogeneous material. 
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volume 3
( )  iV ⊂ ℜ  with boundary ( )iV∂  (the overbar refers to the mac-

roscopic scale) can be considered in the undeformed configuration (in-
dicated with subscript (i)) in the Cartesian coordinate system 1 2-X X . 
According to the principle of scale separation, this material continuum, 
which is generally regarded as a manifold of material points with posi-
tion vectors X , is now supposed to consist of a manifold of RVEs cen-
tered at X ; the domain of any representative volume element, in the 
undeformed (or reference) configuration is denoted by ( )iV , and a local 
reference Cartesian coordinate system 1 2-X X  is introduced to locate the 
material points inside the RVE at the microscopic level. The domain of 
each RVE associated with the infinitesimal neighborhood of X  is as-
sumed to consist of a solid part ( )

s
iV  and a void part ( )iH : 

 ( ) ( ) ( )
s

i i iV V H= ∪ .  (1.4) 

The void part may consist of pores and cracks, which could be subjected 
to self-contact phenomena with or without friction. However, for sake 
of simplicity, RVEs with void parts not intersecting the external bound-
ary ( )iV∂  were considered. Homogenized constitutive models at finite 
strains have been adopted by several authors (for instance [130–132]) 
developing a geometrically nonlinear extension of the infinitesimal 
strain theory in the analysis of heterogeneous solids at fine strains. The 
aim of this paragraph is to establish a variational framework of large- 
(or finite-) strain multiscale solid constitutive models by means of a 
kinematical formulation. The essential framework follows the below 
essentials: 
i) the volume averaging relation linking the macro and the micro de-

formation gradients; 
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ii) a set of admissible displacements belonging to a subspace of the 
minimally constrained space of fluctuations compatible with the 
strain averaging relations; 

iii) the RVE equilibrium problem (written in strong form or by means 
of the principle of virtual work); 

iv) the volume averaging relation linking the macro and the micro 
stresses; 

v) the Hill-Mandel principle of Macro-Homogeneity establishing the 
energy consistency between the different scales. 

In the following the main consequences of the above essentials are dis-
cussed in detail. 

1.2.1 Volume averaging on the deformation gradient and RVE 
kinematics 

The starting point of the classical micromechanical theory of heteroge-
neous materials at finite strain is the deformation gradient tensor F  at 
a point X  of the macroscopic continuum is the unweighted volume av-
erage of the microscopic deformation gradient F  over the RVE asso-
ciated with X : 

 
( )

( )
( )

1( , ) ( , )
| |

i

i
i V

t t dV
V

= ∫F X F X   (1.5) 

where ( )| |iV  is the volume of the RVE in the undeformed configuration 
and, as shown in Fig. 1.3, X  denotes the position of a material point 
inside the RVE with respect to the local frame 1 2-X X . The microscopic 
deformation gradient tensor must fulfill the following compatibility 
equation: 

 ( , ) ( , )Xt t≡ +∇F X I u X   (1.6) 
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where ( , )tu X  denotes the microscopic displacement field of the RVE 
and X∇  represents the gradient operator in the material description 
which in the following text is expressed as ∇  for sake of notation sim-
plicity. It should be noted that Eq. (1.5) is not valid in presence of voids 
because the microscopic displacement and strain fields are not defined 
over the void subdomain ( )iH ; a rigorous general definition of the mac-
roscopic strain is: 

 
( )( )

( ) ( ) ( )
( ) ( )

1 1( , ) ( , ) ( , )
| | | |

ii
s

i i i
i i HV

t t dV t dS
V V ∂

= − ⊗∫ ∫F X F X x X n    (1.7) 

where ( )in  denotes the outer unit normal vector at ( )iH∈∂X . By apply-
ing the divergence theorem to Eq. (1.5), the macroscopic gradient de-
formation field can be expressed in terms of the boundary displacement: 
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x X n    (1.8) 

where ( )in  denotes the outer unit normal vector at ( )iV∈∂X . The rela-
tion (1.8) naturally defines a constraint on the possible displacement 
fields of the RVE, i.e. only fields that satisfy Eqs. (1.5) and (1.6) can be 
admissible. Formally, a microscopic displacement field ( , )tu X   is kin-
ematically admissible if: 

 ( , ) ,t ξ∈u X   (1.9) 

where, taking into account Eq. (1.8), the set of kinematically admissible 
microscopic displacements ξ  can be defined exclusively in terms of the 
RVE boundary displacements: 
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( )

1
( ) ( ) ( ) ( )( )  ( ( , ) )

i

i i i i

V

H V dS V tξ
∂

  ≡ ∈ ⊗ = − 
  

∫v v n F X I .  (1.10) 

where 1
( )( )iH V  denotes the usual Sobolev space of vector valued func-

tions. Definition (1.10) does not change in presence of voids. Without 
loss of generality, the microscopic displacement field ( , )tu X  can be 
expressed as a sum of: 

I. a displacement ( ( , ) )t −F X I X  that varies linearly with X  (i.e. lin-
ear displacement representing a homogeneous deformation); 

II. a nonhomogeneous deformation ( , )tw X  also referred to as fluctu-
ation field; 

 ( , ) ( ( , ) ) ( , )
I II

t t t= −
 

u X F X I X + w X .  (1.11) 

Note that in stating Eq. (1.11) the fluctuation field can be defined as: 

 ( , ) ( , ) ( ( , ) )t t t= − −w X u X F X I X .  (1.12) 

Evaluating the divergence of the fluctuation field the following expres-
sion is obtained: 

 
constant respect to 

( , ) ( , ) [( ( , ) )]

( , ) ( ( , ) )

( , ) ( ( , ) )

t t t

t t

t t

∇ = ∇ −∇ −

= ∇ − − ∇

= ∇ − −





X

w X u X F X I X

u X F X I X
I

u X F X I

 . (1.13) 

 Substitution of expression (1.3) into (1.13) gives: 

 ( , ) ( , ) ( , )t t t∇ = − − +w X F X I F X I   (1.14) 

Accordingly, the macroscopic strain field can be expressed as the sum 
of a homogeneous deformation gradient and a displacement gradient 
fluctuation field ( , )t∇w X :  
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 ( , ) ( , ) ( , )t t t= +∇F X F X w X  . (1.15) 

where the homogeneous contribution coincides with the macroscopic 
deformation gradient. 
From Eq. (1.13) the gradient of the microscopic displacement field can 
be written as: 

 ( , ) ( , ) ( ( , ) )t t t∇ = ∇ + −u X w X F X I   (1.16) 

and substituting Eq. (1.16) in (1.8) is obtained that: 
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+ ∇∫F X w X

  (1.17) 

and this equality is satisfied when the second term of Eq. (1.18) results 
equal to 0: 
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∫
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F X F X w X

0

  (1.18) 

leading to the following constraint written in terms of RVE boundary 
displacement: 

 
( )

( ) ( )( , )
i

i i

V

t dS
∂

⊗ =∫ w X n 0   (1.19) 

Formally, a microscopic fluctuation field ( , )tw X  is kinematically ad-
missible if: 
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 ( , ) ,t ζ∈w X   (1.20) 

where: 

 
( )

1
( ) ( ) ( )

( )

1( ) |  
| |

i

i i i
i V

H V dS
V

ζ
∂

  ≡ ∈ ⊗ = 
  

∫v v n 0   (1.21) 

is the vector space of kinematically admissible displacement fluctua-
tions of the RVE. From the above definition, it follows that, alterna-
tively to Eq. (1.10), the set of kinematically admissible microscopic dis-
placements ξ  can be defined as: 

 { }( , ) ( , ) ( ( , ) ) ( , ) | ( , )t t t t tξ ζ≡ = + − ∈u X u X F X I X + w X w X  (1.22) 

Then for a given macroscopic displacement ( , )tu X , and a given mac-
roscopic deformation gradient ( , )tF X  , the set ξ  represents a transla-
tion of the space ζ . 

1.2.1.1 Spaces of displacement rates 

In general, is allowed impose further constraints upon the RVE kine-
matics, and such constraints leads to different classes of macroscopic 
constitutive models and will define the actual set *ξ  of kinematically 
admissible displacement of the RVE, which according to Eq. (1.9), 
must satisfy: 

 *ξ ξ⊂   (1.23) 

Now another basic assumption of the theory is introduced, requiring 
that any further constraints imposed on the RVE kinematics be such that 
the set of kinematically admissible displacement fluctuations *ζ  is a 
subspace of ζ : 

 *ζ ζ⊂   (1.24) 
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 Consequently, the actual set of kinematically admissible microscopic 
displacement is given by: 

 { }* ( ) | *ξ ζ ξ≡ = + − ∈ ⊂u u F I X + w w . (1.25) 

Thus, the set *ξ  and the associated space of virtual kinematically ad-
missible displacements of the RVE ϖ  play together a fundamental role 
in the variational characterization of the RVE equilibrium problem. The 
space ϖ  can be defined as: 

 { }1 2 1 2| , *ϖ ξ≡ − ∈v v v vη = .  (1.26) 

In view of Eq. (1.25) and the fact that *ζ  is a vector space, it follows 
from Eq. (1.26)  that: 

 *ϖ ζ= .  (1.27) 

Further, the same consideration can be applied to the rate form of the 
microscopic displacement field: 

 = + 

 u u FX + w   (1.28) 

establishing that any set of kinematically admissible fluctuation rate 
satisfies: 
 ϖ∈w   (1.29) 

In brief, as a consequence of the assumption that *ζ  is a subspace of 
ζ , the functional spaces of kinematically admissible displacement 
fluctuations together with the fluctuations rate and the functional space 
of virtual displacements coincide. 

1.2.2 RVE equilibrium problem 

In order to derive the equilibrium equations of the RVE and to impose 
the equilibrium condition at each instant t of the deformation history, 
the stress field is identified with the first Piola-Kirchhoff stress tensor: 
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 ( , )R R t=T T X .  (1.30) 

Since the surface forces are usually much greater than the body forces, 
due to large surface to volume ratio in micromechanics (according to 
the principle of scale separation), the assumption of zero body forces 
appears to be realistic in most practical cases. Thus, assuming that body 
forces are negligible and that the RVE is subjected to an external trac-
tion field ( , )R R t=t t X on its external boundary ( )iV∂ , the principle of 
virtual work establishes that the RVE is in equilibrium if and only if the 
following variational equation holds at each t: 

 
( ) ( )

( ) ( )( , ) : ( , )  ,
i i

R i R i

V V

t dV t dS ϖ
∂

∇ = ⋅ ∀ ∈∫ ∫T X t Xη η η   (1.31) 

where η  is the set of virtual displacements, acting as test function in a 
variational setting, and ϖ  is an appropriate space of virtual displace-
ment of the RVE, coinciding with *ζ . To take into account the contri-
bution from the voids parts of the RVE it is convenient to rewrite Eq. 
(1.31) in the following form: 

 ( ) ( )

( )

( ) ( )

( )

( , ) : ( , )

+ ( , )  ,

s s
i i

v
i

R i R i

V V

R i

H

t dV t dS

t dS ϖ

∂

∂

∇ = ⋅

⋅ ∀ ∈

∫ ∫

∫

T X t X

r X

η η 

η η
  (1.32) 

where the internal traction field ( , )R tr X is defined as the reference trac-
tion exerted upon the solid part of ( )iV  across the solid–void interface 

( )iV∂  and ( , )R tt X  is the first Piola-Kirchhoff traction vector on the ex-
ternal boundary of the RVE.  
For sufficiently regular field ( , )R tT X , the variational formulation re-
ported in Eq. (1.32) can written in the following equivalent strong for-
mulation: 
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 

( )

( ) ( )

( ) ( )

( , )
( , ) ( , )   
( , )

R i

R i R i

R i i

Div t V
t t V
t H

 = ∀ ∈


⋅ = ∀ ∈∂
 ⋅ = ∀ ∈∂

T X 0              X
T X n t X X
T X n 0           X

  (1.33) 

where ( )in is the outer unit normal vector to the relative RVE boundary 
(external or internal) and 

 ( )( , )R it ⋅T X n  represents the jump of the trac-
tion vector across the internal solid-void interface ( )iH∂ or across the 
crack interfaces. 

1.2.3 Stress averaging relations 

Analogously to Eq. (1.5), it follows that the macroscopic first Piola-
Kirchhoff stress tensor ( , )R tT X  associated with X  is the unweighted 
volume average of the microscopic first Piola-Kirchhoff stress tensor 

( , )R tT X : 

 
( )

( )
( )

1( , ) ( , )
| |

i

R R i
i V

t t dV
V

= ∫T X T X   (1.34) 

Eq. (1.34) is valid strictly in a generalized sense because the micro-
scopic stress field cannot be defined over the void subdomain ( )iH ; thus 
it can be replaced with: 

 
( )

( )
( )

1( , ) ( , )
| | s

i

s
R R i

i V

t t dV
V

= ∫T X T X . (1.35) 

Considering the following general relation [133], in which S represents 
a sufficiently regular tensor fields, v is a vector field and n is the out-
ward unit normal to the boundary ∂Ω  of Ω :  

 ( ) ( ) ( )T dV dA div dV
Ω ∂Ω Ω

∇ = ⋅ ⊗ − ⊗∫ ∫ ∫S v S n v S v ,  (1.36) 
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and considering also that ∇ =X I , the macroscopic stress can be alter-
natively expressed in terms of RVE boundary tractions as follow: 
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  (1.37) 

Then, introducing the strong form of the equilibrium problem (1.33), 
the following expression for the homogenized first Piola-Kirchhoff 
stress tensor in term of RVE boundary tractions is obtained: 
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  (1.38) 

It is worth noting that the average stress must be independent of the 
origin of the local coordinate system, therefore Eq. (1.38) it is meaning-
ful only if the prescribed surface tractions are self-equilibrated. 

1.2.4 Energy averaging relations (Hill-Mandel principle) 

In the homogenized constitutive theories a fundamental concept is de-
picted by the Hill-Mendel principle of Macro-Homogeneity [134] 



42  Chapter 2 

which, based on physical arguments, it establishes that the power of the 
macroscopic stress must be equal to the volume average of the power 
of the microscopic stress over the RVE. Thus, in a large strain setting, 
it requires that the following identity is satisfies at any state of the RVE 
and for any kinematically admissible microscopic deformation gradient 
rate field ( , )t



F X :  

 
( )

( )
( )

1( , ) : ( , ) ( , ) : ( , )
| |

i

R R i
i V

t t t t dV
V

= ∫




T X F X T X F X  . (1.39) 

It worth noting that ( , )t


F X  is said to be kinematically admissible only 
if: 

 ( , ) ( , ) ( , ) ( , );  ( , )t t t t t ϖ= ∇ = +∇ ∈


   

F X u X F X w X w X   (1.40) 

where ϖ is the space of kinematically admissible RVE displacement 
rates reported in Eq.(1.26) coinciding with the space of kinematically 
admissible displacement fluctuation and virtual displacements of the 
RVE. 

1.2.4.1 Variational statement of the Hill-Mandel principle 

By introduction the definition of the microscopic deformation gradient 
rate reported in Eq. (1.40) in the right-hand side of the Hill-Mandel 
principle reported in Eq. (1.39), the variational statement of the princi-
ple of macro-homogeneity can be extrapolated: 
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  (1.41) 

Hence, the principle is satisfied if and only if: 

 
( )

( ): 0  
i

R i

V

dV ϖ∇ = ∀ ∈∫  T w w    (1.42) 

In view of the variational form of the equilibrium problem (1.31) fol-
lows that: 
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Thus, the above variational equation holds if and only if: 
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( )( , ) 0
i

R i

V

t dS
∂

⋅ =∫ t X w   (1.44) 

In brief, it means that the Hill-Mandel principle of macrohomogeneity 
holds if and only if the virtual work of the external surface traction of 
the RVE vanish. The Eq. (1.44) indicates that the principle of Hill – 
Mandel is analogous to the assumption that the external surface traction 
of the RVE vanish is purely reactive, as a response to the kinematical 
constraints imposed on the RVE and cannot be enforced separately. 
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1.3 Admissible kinematical boundary conditions 

The unknown dependent variable of the microscopic equilibrium prob-
lem was stated in Section 1.2.1 as the displacement fluctuation field 

( , )tw X . The admissible kinematical boundary conditions must be for-
mulated in order to solve the equilibrium problem and thus to evaluate 
the displacement fluctuation field.  Such kinematical boundary condi-
tions must satisfy the kinematical restraints, reported in Eq. (1.19), and 
the restraint given by the Hill-Mandel principle, reported in Eq. (1.42).  
In the literature there are three different sets of boundary conditions sat-
isfying the previous reported restraints: 

I. Linear displacement boundary conditions; 
II. Periodic fluctuation boundary conditions; 

III. Uniform traction boundary conditions. 

1.3.1 Linear displacement boundary conditions 

This set of kinematical boundary conditions is derived by assuming that 
the RVE boundary displacements are linear in X , as follow: 

 ( , ) ( ( , ) )t t= −u X F X I X .  (1.45) 

Substituting the Eq. (1.45) in Eq. (1.12), this restraint makes the dis-
placements fluctuations field null at the boundary of the RVE: 

 ( )( , ) it V= ∀ ∈∂w X 0  X   (1.46) 

This boundary condition implies zero body forces and it fully prescribes 
the displacement of the boundary of the RVE leaving yet undetermined 
the microstructural fluctuations inside the volume. 
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1.3.2 Periodic fluctuation boundary conditions 

This set of kinematical boundary conditions is one of the most used in 
the field of the homogenization theories thanks to its exceptional ability 
to reproduce the behavior in materials characterized by microstructures 
with periodic pattern due to the fact that the resulting homogenized 
properties converge faster to their real values as the RVE size increases. 
It worth noting that the periodic fluctuation boundary conditions can be 
applied even if the microstructure is not perfectly periodic. 
As for the linear displacement boundary condition, the periodic bound-
ary condition implies zero body forces. Assuming that the microstruc-
ture is periodic, it leads to consistent displacements of opposing bound-
ary; in particular, as can be seen in Fig. 1.4  this condition establishes a 
split of the boundary limits in a positive part ( )iV +∂  and in a negative part 

( )iV −∂ : 

 ( ) ( )1 ( )2 ( )1 ( )2i i i i iV V V V V+ + − −∂ = ∂ ∪∂ ∪∂ ∪∂ ;  (1.47) 

 

Fig. 1.4 Boundaries of the RVE in the Periodic fluctuation boundary condition 
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The corresponding outward unit vectors +n  and −n , respectively nor-
mal to ( )iV +∂  and ( )iV −∂ , present the following relation: 

 − += −n n   (1.48) 

Definitively, the periodic boundary condition on ( )iV∂ is given as fol-
low: 

 ( , ) ( , ) ( ( , ) )( )t t t+ − + −− = − −u X u X F X I X X   (1.49) 

Imposing the Eq. (1.49) at the boundary of the RVE, this condition leads 
to an anti-periodic traction field and to a periodic fluctuation field as 
expressed in the following: 

 ( , ) ( , )R Rt t+ −= −t X t X  , (1.50) 

 ( , ) ( , )R Rt t+ −=w X w X  . (1.51) 

In the same way that the Linear boundary condition, this condition sat-
isfies both Equations (1.19) and (1.44). 

1.3.3 Uniform traction boundary conditions 

This set of kinematical boundary conditions is based on the so-called 
minimal kinematical admissible constraint that satisfies the compatibil-
ity between the macroscopic deformation gradient and the microscale 
displacement: 

 
( )

( ) ( )( , )
i

i i

V

t dS
∂

⊗ =∫ w X n 0   (1.52) 
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In brief, it leads to impose a uniform traction field on the RVE bound-
aries, and it also possible to demonstrate that this constraint leads to 
uniform traction on the RVE coinciding with the traction of the average 
stress, as follow:  

 ( ) ( )( , ) ( , ) ( , )RR i R it t t= ⋅ = ⋅t X T X n T X n  (1.53) 

It worth noting that, the traction boundary condition (1.53) is not im-
posed a priori, thus the uniform traction condition is a consequence of 
the choice of kinematically admissible fluctuations space. As for the 
linear and periodic boundary condition models, the uniform traction 
boundary condition implies zero body force. 

1.3.4 Remarks on the boundary conditions 

The boundary conditions previously reported can be sorted starting by 
the less restrictive that is the uniform traction boundary condition, fol-
lowed by the periodic boundary condition and ended with the linear 

 

Fig. 1.5 Convergence of the homogenized properties to the effective values 
with increasing RVE size for different types of BCs. 
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boundary displacement conditions.  It is also worth noting that some 
authors have been demonstrated that, imposing periodic boundary con-
dition the results converge faster to the theoretical or effective solution 
[135]. In brief, as is generically sketched in Fig. 1.5, it means that using 
the same RVE size, periodic boundary condition leads to the closest 
result to the effective value.  
 
 
 
 
. 
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2 
 

Finite-strain Multiscale 
Methods 

 
In the last century, between 1950 and 1990, micromechanics models 
began to emerge in engineering and science because of the advent of 
new composite materials technology and nanotechnology. Specifically, 
the increasing use of these new technologies in the form of microfibers 
and nanotubes has made necessary to deepen the studies in microme-
chanics field focusing the attention on the understanding of the relations 
between microscopic and macroscopic scales. Expanding the classical 
micromechanical concept with the micro–macro bridging concept it 
possible to define a new methodology called multiscale modeling. This 
modeling strategy of materials, that can be treated as an extension of 
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classical micro-macro modeling, has introduced new tools to overcome 
the difficulties observed dealing with phenomena not well understood 
and newly observed in new heterogeneous materials and nanomaterials. 
 

2.1 Overview of multiscale methods 

The overall structural behavior of composite materials is strongly influ-
enced by several nonlinear phenomena, which take place at the micro-
scopic scale: for instance, microscopic instabilities and contact interac-
tion between crack faces, leading to a highly macroscopic nonlinear re-
sponse. As a consequence, a rigorous investigation of the mechanical 
behavior in composite materials subjected to such microstructural non-
linearities, in terms of microcracks and microinstabilities, should re-
quire a numerical model able to completely describe all its microscopic 
details. On the other hand, a fully microscopic model is not appropriate 
in practice due to the high computational effort, and thus advanced 
models, such as multiscale methods, are needed to predict failure in 
composite materials subjected to nonlinear phenomena with a good ac-
curacy and with contained computational effort. Generally speaking, 
two main subcategories of multiscale approaches can be recognized to 
study the mechanical behavior of heterogeneous materials [136].  
The first class contains problems involving local defects or singulari-
ties, such as dislocations, cracks, shocks, and boundary layers, for 
which a macroscopic model is sufficient for most of the physical do-
main, and a fine-scale model is only needed in the neighborhood of the 
singularities or heterogeneities. The second class of problems is that for 
which a microscopic model is needed everywhere either as a comple-
ment to or as a replacement of the macroscopic model, for example a 
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mechanical system for which a macroscopic constitutive phenomeno-
logical law is missing. Thus, multiscale methods are usually classified 
as hierarchical, concurrent or semi-concurrent. 
Hierarchical methods are most widely used and computationally the 
most efficient. In these methods, the different scales are linked together 
in a hierarchical manner (using, for instance, volume averaging of field 
variables) implying that distinct scales are coupled and considered in 
the same domain. For linear responses, this class of methods is ex-
tremely effective since homogenized quantities can be easily computed 
by virtue of the robust theory of linear homogenization, sometimes 
without requiring numerical microscopic models. On the other hand, for 
strongly nonlinear problems, hierarchical models become less effective, 
especially if the fine-scale response is path-dependent. It is worth not-
ing that in the case of failure events, standard hierarchical models are 
no longer valid. 
Concurrent methods are characterized by the presence of a fine-scale 
model embedded into the coarse-scale model, which is directly and 
strongly coupled to it, such that the microscale scale model communi-
cates directly with the macro scale model though some coupling proce-
dure. In order to restore the continuity conditions between the two sub-
models, both compatibility and momentum balance are enforced across 
the interface. Such models are effective when the subdomain where a 
higher-order description is required, is small compared to the whole do-
main. 
Semiconcurrent methods are considered as a variation of concurrent 
coupling methods, in which the micro and macro models run together 
and communicate with each other simultaneously but a real linking be-
tween the micromodels does not exist.  
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From the coupling point of view, it worth noting that in hierarchical 
methods the information is passed from the microscale to the mac-
roscale and not vice versa; whereas passage of information in a double-
way is permitted in the case of semiconcurrent methods. Concurrent 
methods are instead classified as interface coupling methods because 
the coupling happens along an interface shared between the region with 
distinct length scales.  
In the following more detail on the main multiscale strategies is given. 

2.1.1 Hierarchical methods 

In hierarchical multiscale methods, a macroscopic constitutive model is 
assumed with parameters determined by fitting the data obtained as the 
result of the boundary value problem of a microscopic sample whose 
microstructure is explicitly modeled, as illustrated in Fig. 2.1. In the 
literature, these numerical homogenization techniques are particularly 
useful for modeling composite materials since they enable the develop-
ment of the so-called micromechanically informed constitutive models 
that can be used in structural computations. Due to the assumption on 
the type of macroscopic constitutive law, these methods are not suitable 
for handling nonlinear problems with evolving microstructures; on the 

 

Fig. 2.1 Schematic representation of the hierarchical multiscale approach. 
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other hand, these methods are attractive for large-scale computations, 
since finite element computations at the microscale are performed a pri-
ori.  
In hierarchical models (also referred to as sequential models), the fol-
lowing steps have to be performed: 
i. identification of a representative volume element (RVE) or a repeat-

ing unit cell (RUC), for random or periodic structures, respectively, 
whose individual constituents are assumed to be completely known, 
with their constitutive properties; 

ii. formulation of the microscopic boundary conditions to be applied to 
the RVE; 

iii. computation of the output macroscopic variables from the results of 
the microscopic boundary value problem associated with the RVE 
(micro-to-macro transition or homogenization); 

iv. determination of the numerical constitutive law, relating each other 
the input and output macroscopic variables. 

Since during the micro-to-macro transition step the information is 
passed from lower to higher scales, a “one-way” bottom-up coupling is 
established between the microscopic and macroscopic scales. As a con-
sequence, such methods are efficient in determining the macroscopic 
behavior of composites in terms of stiffness and strength, but have a 
limited predictive capability for problems involving damage phenom-
ena. 
Many studies have been addressed to the macroscopic constitutive be-
havior of composite materials with microscopic defects (see, for in-
stance, [137–140]). In many works, the damage configuration is fixed, 
since for a pure micromechanical model, the evolution of damage con-
figuration cannot be predicted  
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More recently, a nonlinear micromechanical model incorporating con-
tact effects and based on homogenization techniques, interface models 
and fracture mechanics concepts has been proposed in [141,142], where 
the damage configuration is not assumed a priori, but driven by a frac-
ture criterion. By using this hierarchical model, accurate nonlinear mac-
roscopic constitutive laws are obtained, taking into account the evolu-
tion of the microstructural configuration associated with crack growth 
and contact phenomena at the microscale. 

2.1.2 Semiconcurrent methods 

When dealing with microscopic nonlinear phenomena a “two-way” 
coupling between micro- and macrovariables is required, i.e. the ho-
mogenized properties have to be updated during the microstructural 
evolution. In semiconcurrent multiscale methods, also referred to as 
computational homogenization methods, the macroscopic constitutive 
response of a heterogeneous material is determined “on the fly” during 
simulation; these methods have been widely used to predict the me-
chanical behavior of microstructured materials, due to their flexibility. 
The most important approaches are those proposed by Guedes and 
Kikuchi [143], Miehe et al. [144], Feyel and Chaboche [145], Kouz-
netsova et al. [146]. 
In section 2.1.2.1 a special attention is devoted to the large class of ap-
proaches inspired by the multilevel finite element (FE2) method intro-
duced by Feyel and Chaboche [29]. This method has been proved to be 
very efficient in such cases, also for only locally periodic composites. 
The key idea of such approaches is to associate a microscopic boundary 
value problem to each integration point of the macroscopic boundary 
value problem, after discretizing the underlying microstructure. The 
macroscopic strain provides the boundary data for each microscopic 
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problem (macro-to-micro transition or localization step). The set of all 
microscale problems is then solved and the results are passed back to 
the macroscopic problem in terms of overall stress field and tangent 
operator (micro-to-macro transition or homogenization step). Localiza-
tion and homogenization steps are carried out within an incremental-
iterative nested solution scheme; thus, the two-scale coupling remains 
of a weak type. An advantage of semiconcurrent methods over hierar-
chical methods is that a framework for storing the macroscopic consti-
tutive response is not needed.  
In the original formulation of the method, based on a classical first-or-
der homogenization, the large spatial gradients in macroscopic fields 
cannot be resolved due to supposed validity of the principle of scale 
separation, therefore they are not suited for studying strain localization 
phenomena which commonly affect the macroscopic behavior of com-
posites; moreover, softening behaviors cannot be properly analyzed be-
cause of the mesh dependence at the macroscopic scale due to the ill-
posedness of the macroscopic boundary value problem, as shown in 
[120]. 
In order to overcome such limitations, other homogenization paradigms 
have been proposed in the literature, such as the higher-order computa-
tional homogenization schemes and the coupled volume multiscale 
method in sections 2.1.2.2 and 2.1.2.3, respectively. 
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2.1.2.1 Multilevel finite element method (FE2) 

The FE2 method has been introduced by Feyel in [145] and consists in 
describing the mechanical behavior of heterogeneous structures. After 
choosing two relevant mechanical scales (referred to as microscale and 
macroscale), the FE2 method can be adopted, based on three main in-
gredients: 
i. The identification of a representative volume element (RVE); 
ii. A localization rule able to obtain the local solution inside the RVE, 

for any given macroscopic strain; 
iii. A homogenization rule giving the macroscopic stress tensor, starting 

from the micromechanical stress state. 
In this setting, macroscopic phenomenological relationships are not re-
quired, even in the case of nonlinear behaviors; indeed, the macroscopic 
response arises directly from the calculation at the microscopic level.  
The FE2 method is applied by means of a nested solution scheme 
sketched in Fig. 2.2; for each step of the macroscopic incremental iter-
ative procedure, and for each macroscopic integration point, the macro-
scopic strain F  (gradient deformation tensor) is computed based on the 
current (iterative) macroscopic displacement field. Then, F  is passed 

 

Fig. 2.2 Schematic representation of the (FE2) semiconcurrent multiscale ap-
proach. 
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to the microscopic level, and used to define the boundary conditions to 
be applied to the RVE attached to the respective macroscopic integra-
tion point. After solving every RVE problem, the macroscopic stress 
tensor RT  (first Piola-Kirchhoff stress tensor) is obtained in a post-pro-
cessing step. Thus, the macroscopic equilibrium can be evaluated, and 
the next iterations are performed until equilibrium is achieved; after 
this, the calculations can be continued for the next load increment.  
The multilevel finite element method is intrinsically parallel; indeed, all 
RVE calculations for one macroscopic iteration can be performed sim-
ultaneously without any exchange of information between them. Thus, 
even if this method is computationally costly, the use of parallel pro-
cessors for the RVE analyses would significantly reduce the total cal-
culation time. 

2.1.2.2 High-order computational homogenization 

In this section the second-order computational scheme, proposed by 
Kouznetsova et al. [146] to extend the classical computational tech-
niques, is illustrated. This technique adopts not only the macrostrain 
tensor (as in first-order schemes) but also its gradient to prescribe the 
essential boundary conditions on the representative volume element of 
the given microstructure, leading to a second-order continuum macro-
scopic model.  
For each step of the macroscopic incremental-iterative procedure, and 
for each macroscopic integration point, the macroscopic deformation 
gradient tensor and its gradient are computed based on the current (it-
erative) macroscopic displacement field. Then, these macroscopic 
quantities are passed to the microscopic level, and used to define the 
boundary conditions to be applied to the RVE attached to the respective 
macroscopic integration point. After solving every RVE problem, the 
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macroscopic stress tensor and the higher-order stress tensor are ob-
tained. Thus, the macroscopic internal nodal forces can be computed, 
the higher-order equilibrium can be evaluated, and the next iterations 
are performed until equilibrium is achieved; after this, the calculations 
can be continued for the next load increment.  
The inclusion of strain gradients and higher-order stresses automati-
cally results in the introduction of a length scale parameter in the mac-
roscopic response; this allows to overcome the dependence on the mac-
roscopic discretization, but does not solve the RVE size dependence in 
the case of softening behaviors, as shown in [147]. 

2.1.2.3 Coupled-volume multiscale method 

A different approach has been proposed by Gitman et al. [147], referred 
to as coupled volume multiscale method, able to resolve simultaneously 
the macroscale discretization sensitivity and the RVE size dependence. 
The main feature of this method is that an RVE is not linked to an infi-
nitely small macroscopic material point, but associated with a macro-
element whose size is equals the RVE size.  
The coupled volume approach abandons the principle of scale separa-
tion and a model parameter (the RVE size) is linked to a numerical pa-
rameter (the mesh size); since this approach does not rely upon the ex-
istence of an RVE, it can also be used in the presence of softening be-
haviors.  By linking the mesh size to the RVE size, the macroscopic 
mesh dependence is balanced by different constitutive behaviors arising 
from different RVE sizes; as a consequence, the macroscopic response 
shows neither macroscopic mesh dependency nor RVE size depend-
ency. An implementation example of such method is reported in Sec-
tion 4.3.1. 
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2.1.3 Concurrent methods 

The main feature of concurrent multiscale methods consists in embed-
ding a microscopic model into the macroscopic one, leading to a strong 
coupling between different length scales, as sketched in Fig. 2.3; thus 
two main issues must be addressed in practical application of these 
methods, i.e. (i) suitable handling the coupling be-tween the fine-scale 
and the coarse-scale models, and (ii) finding efficient strategies for add-
ing adaptivity during the fine-scale additions to the principal model, in 
order to reduce the computational costs.  
Several concurrent methods have been proposed, based on different the-
oretical approaches and numerical strategies. According to the length 
scales involved in the considered physical problem, different choices 
can be made about the nature of the fine-scale models: on one hand, the 
microscopic model can be a discrete (molecular or atomistic) model, as 
in the macroscopic-atomistic-ab initio dynamics (MAAD) approach 
[148], the quasi-continuum (QC) method [149], the atomistic-to-con-
tinuum (AtC) coupling technique [150], and the bridging domain 
method [151]; on the other hand, the fine-scale model can be described 
as a continuum [152–154].  

 

Fig. 2.3 Schematic representation of the concurrent multiscale approach. 
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Concurrent multiscale methods can be regarded as falling within the 
class of domain decomposition methods (DDMs), since the numerical 
model describing the composite structure is decomposed into a fine- 
and coarse-scale sub-models, which are simultaneously solved, thus es-
tablishing a strong “two-way” coupling between different resolutions. 
In classical domain decomposition methods, the computational domain 
is divided into smaller subdomains to be simultaneously solved, and a 
computational strategy is required to make sure that the solutions on 
different subdomains match each other. Most of concurrent multiscale 
methods can be classified in overlapping and non-overlapping methods.  
In most multiscale models, two or more continuum models are strongly 
coupled to each other, allowing to perform accurate simulations at the 
microscopic scale within the so-called zone of interest, which is usually 
adaptively updated during calculations. A heterogeneous multiscale 
model consisting of several subdomains describing the material at dif-
ferent length scales is considered. Mesoscale models, characterized by 
a nonlinear material behavior, are only used in those zones of the struc-
ture in which damage or instabilities takes place; on the contrary, un-
damaged regions of the structure are simulated at the macroscale as-
suming a linear elastic material behavior characterized by effective ma-
terial parameters. Such an approach combines the advantages of both 
scales, i.e. the numerical efficiency of macroscale models and the accu-
racy of microscale models.  Moreover, concurrent multiscale methods 
are able to deal with boundary layer effects in a natural way, by replac-
ing the coarse-scale model with a fine-scale one where periodicity con-
ditions are no longer valid, as in the vicinity of free edges or applied 
loads or constraints.  
The critical aspect of the concurrent multiscale methods is denoted by 
the connection between critical and the noncritical domains. Hence, to 
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connect subdomains with nonmatching finite element discretization, 
two alternative methods are commonly adopted. 
The first one is based on the enforcing the displacement compatibility 
in a strong sense, i.e. 

 ( ) ( )   c V V− = ∀ ∈Γ = ∩0u X u X X  (2.1) 

where ( )u X  and ( )u X  are the displacements of the subdomains V  
and V , respectively, and cΓ  represents the common interfaces (bound-
ary in 2D cases) between the noncritical and critical subdomains in the 
undeformed configuration.  
The second one is based on the enforcing the coupling condition (2.1) 
in an average sense; this strategy represents a weak coupling approach, 
realized by the mortar method [155]. The compatibility equation is im-
posed by means of an integral constraint on the common interfaces: 

 ( ( ) ( )) 0    
c

cdS with V V
Γ

− = Γ = ∩∫ u X u X   (2.2) 

allowing pointwise interpenetration or separation between the con-
strained interfaces. 
 
 





 

 

3 
 

Theoretical and numerical 
microscopic stability analyses in 

damaged fiber reinforced composite 
by using homogenization techniques  

The present chapter deals with the macroscopic compressive failure of 
periodic elastic fiber reinforced composites related to local buckling in-
stabilities promoted by matrix or fiber/matrix micro-cracks under uni-
lateral self-contact. The theoretical modeling of instability and bifurca-
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tion phenomena for a microcracked composite material is firstly exam-
ined by considering a continuum homogenization approach and a rate 
formulation. The effects of non-standard rate contributions owing to the 
full finite deformation formulation adopted to model crack self-contact 
and depending on both the contact pressure and the deformation gradi-
ent rate are highlighted, by determining their influence on macroscopic 
critical loads at the onset of instability and bifurcation and on corre-
sponding deformation modes. Numerical applications carried out by 
means of a coupled FE approach are reported in Section 3.4.2 with ref-
erence to macroscopic uniaxial loading paths and in Section 3.4.3 with 
reference to macroscopic biaxial loading paths. In detail, comprehen-
sive parametric analysis with respect to the main microstructural geo-
metrical parameters governing the failure behavior of the composite 
solid is carried out. Generally speaking, the numerical applications re-
ported in Section 3.4 shown the notable influence of the above non-
standard contributions on both critical loads and deformation modes: if 
they are not included in the analysis as in simplified crack contact in-
terface formulations, a large underestimation of the real failure load of 
the microcracked composite is obtained. 

3.1 Theoretical formulation of the nonlinear 
homogenization problem 

The equilibrium problem of the microstructure, consisting of periodic 
fiber reinforcements embedded in a microcracked matrix, is formulated 
with reference to the representative volume element (RVE) shown in 
Fig. 3.1. The homogenized composite solid occupies the volume ( )iV  
and the initial position vector of a generic macroscopic point is referred 
to as X . The RVE associated with the generic macroscopic point is 
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assumed to occupy a volume ( )iV  in the initial configuration and to con-
tain preexisting cracks whose upper and lower surface are denoted as 

( )
u
iΓ  and ( )

l
iΓ  (the superscript u and l are respectively referred to upper 

and lower surface, while the subscript (i) is referred to initial configu-
ration). To account for bifurcation and instability phenomena (see, for 
instance, [21]), the RVE may be composed by an a-priori unknown as-
sembly of unit cells or by a single unit cell of the periodic material. Each 
point in the undeformed RVE configuration is identified with its posi-
tion vector X  and the nonlinear deformation of the microstructure is 
denoted by ( )x X , mapping points X  of the initial configuration ( )iV  
onto points x  of the actual configuration V. The displacement field and 
the deformation gradient at X  are respectively defined as 

( ) ( )= −u X x X X  and ( ) ( ) /= ∂ ∂F X x X X ; the solid phases of the 

 

Fig. 3.1 Homogenized solid of a microcracked fiber-reinforced composite ma-
terial (to the left) and corresponding undeformed and deformed RVE config-
urations (to the right) attached to a generic material point. 
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RVE follow a rate independent, incrementally linear constitutive law 
that can be written in following form: 

 ( ),R
R  =   T C X F F   (3.1) 

in which RT  is the rate of the first Piola-Kirchhoff stress tensor, F  is 
the rate of the deformation gradient and RC is the corresponding fourth-
order tensor of nominal moduli satisfying the major symmetry condi-
tion (i.e. R R

ijkl klijC C= ). Every loading process, assuming that it produces 
a unique response called principal equilibrium path, can be para-
metrized in terms of a time-like parameter 0t ≥ monotonically increas-
ing with the evolution of the loading process starting from 0t =  in the 
undeformed configuration. Since t describes the quasi-static defor-
mation path of the composite solid, the rates of field quantities are con-
sidered to be the derivative with respect it.  
For a hyperelastic material, whose constitutive behavior can be de-
scribed in terms of strain energy-density function ( ),W X F , the nom-
inal stress tensor (second-order tensor) and the nominal moduli tensor 
(fourth-order tensor) can be defined as: 

 ( ) ( ) ( )2, ,
,  ,R

RW W
= =

∂ ∂
∂ ∂ ∂
X F X F

T C X F
F F F

  (3.2) 

whose components are respectively ( ) , /R ij ijT = W F∂ ∂X F  and 
( )2 , /R

ijkl ij klC = W F F∂ ∂ ∂X F . The macroscopic deformation gradient F  
and the first Piola-Kirchhoff stress tensor RT , which define the micro-
to-macro coupling, can be expressed as: 

 
( ) ( )

( ) ( )

( )

( )

( )
( )

( )

1

1
i

i

i (i)
i V

R R (i)
i V

t ,t dS
V

t ,t dS
V

∂

∂

⊗

⊗

=

=

∫

∫

F x X n

T t X X
  (3.3) 
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where ( )R R i=t T n  is the first Piola-Kirchhoff traction vector, ⊗  denotes 
the tensor product and ( )in  denotes the outward normal at ( )iV∈∂X . In 
a macrostrain driven loading regime, the microscopic deformation field 
can be written as a function of the macro-deformation gradient as fol-
low:  

 ( ) ( ) ( ),t t ,t=x X F X + w X   (3.4) 

where ( )tF X  is a linear displacement contribution and ( ),tw X  repre-
sents the fluctuation field. The application of (3.3) to the boundary of 
the RVE leads to the following integral constraint which provides the 
set of kinematically admissible displacement fluctuations: 

 
( )

( )

i

i (i)

V

dS
∂

⊗ =∫ 0w n ,  (3.5) 

which can be satisfied imposing periodic fluctuation field in accordance 
with the periodic nature of the composite microstructure: 

 ( ) ( )-, ,  on  (i)t t V= ∂+w X w X  . (3.6) 

Consequently, periodic deformations and antiperiodic tractions are im-
posed on the boundary of the RVE: 

( ) ( ) ( )
( )( ) ( )

, , ( )
 on  

, = ( , ) 
(i)

R i R i

t t t
V

t t

− −

−

 − − ∂
−

+ +

+

x X x X = F X X

T n X T n X  (3.7) 

where the superscripts + and – denote pairs of opposite RVE boundary 
points.   
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The RVE equilibrium boundary value problem at a given macro-defor-
mation gradient is defined by the following equations (see [63,64] for 
details):  

( )
( )

( )
( )

( )

( ) ( ) ( )

( )

( ) (

( ) ( , )           in  

, = ( , )         on  V

( ( , ), ) 0           
0                                        on  
( ( , ), ) = 0

R i

R i R i i

l u u

u u
R i

u l u u
R

u
R i i

Div t t B

t t

h t t
t
t h t t

dS

σ
σ

−

+∇ =

− ∂

+ ≥
≤ Γ

+

0 
+

T F w X

T n X T n X

X u X

X u X

T n ( )) ( ) ( )

( ) ( )

/ / ,

                                     on  

u l l l u
R i i

C
l l l l

R i R C i

dS dS dS

σ










 + = ∀

 = Γ

 

0    T n X X

T n n

 (3.8) 

where ( )iB is the solid part of the RVE reference volume ( )V i . Eqs. (3.8) 
are assumed to be satisfied along a sequence of equilibrium solutions 
for the RVE generated by macroscopic loading path ( )tF  starting from 

( )V i  and referred to as the “principal solution path” when a unique so-
lution for each value of the loading parameter t  is obtained. 
 
 

 

Fig. 3.2 Undeformed and deformed configurations of a unit cell: main param-
eters characterizing crack surfaces self-contact at a contact point pair 
( , )u l

CX X . 
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Specifically, the frictionless unilateral contact conditions: 

 ( )
( )

( )

( ( , ), ) 0           
0                                        on  
( ( , ), ) = 0

l u u

u u
R i

u l u u
R

h t t
t
t h t t

σ
σ

 + ≥
 ≤ Γ
 +

X u X

X u X
  (3.9) 

expressed in terms of points uX  of the upper crack surface ( )
u
iΓ , con-

sists respectively of the impenetrability and mechanical unilateral con-
ditions. As shown in Fig. 3.2 and in more detail in Fig. 3.3, these con-
ditions 0uh =  and 0lh =  describe the deformed upper and lower crack 
surfaces, denoted by uΓ  and lΓ , while ( )

u u u
R R iσ = T n n is the normal 

nominal contact reaction on the upper crack surface, with ( )
u u

R Ri =T n r  
and un  respectively representing the nominal contact reaction and the 
deformed outward normal. Within a finite deformation framework, the 
normal nominal contact reactions on the lower an upper crack contact 
surfaces are different, i.e. u l

R Rσ σ≠ , whereas the corresponding normal 
true contact reactions are coincident, i.e. u lσ σ σ= = . 

 

Fig. 3.3 Undeformed and deformed configurations of the crack surfaces, high-
lighting the pair of crack surface points ( , )l u

CX X  and the main associated 
parameters. 
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The following equation, reported in (3.8) :  

 ( )( ) ( ) ( ) ( )/ / ,u u l l l u
R i i R i i

C
dS dS dS dS+ = ∀0    T n T n X X   (3.10) 

expresses the balance of linear momentum across the contact interface 
in the actual deformed configuration CΓ  in terms of nominal contact 
reactions for each pair of crack surface points ( , )l u

CX X  in contact in 
the actual deformed configuration defined as follows: 

 ( ) { }( ) ( ), , | ( ) ( ) ,l u l l u u l u
C i C i

C
= ∈Γ ∈ΓX X X X x X = x X   (3.11) 

where ( )
l
C iΓ  and ( )

u
C iΓ  represent portions of the lower and upper crack 

surfaces in contact in the actual deformed configuration. It imposes that 
the sum of the true contact reactions ( )u u u t=r T n  and ( )l l l t=r T n  act-
ing on the opposite crack surfaces (see Fig. 3.2) vanishes: 

 ( ) ( )   on  u u l l
Ct t+ = Γ0T n T n , (3.12) 

where T is the Cauchy stress tensor. In terms of true contact reactions 
the equation 

 ( ) ( )  on  l l l l
R i R C iσ= ΓT n n   (3.13) 

corresponding to the frictionless condition for the lower contact crack 
surface ( )

l
C iΓ , can be equivalently written as l l lσ=r n . As a conse-

quence, the following relation between the nominal normal contact re-
action and the true one acting on the upper and lower crack surfaces can 
be obtained: 

 ( )( ) ( )/ / ,    ,u l l u l u
R i R i

C
dS dS dS dSσ σ σ= = ∀ X X  (3.14) 

where ( )/ l
idS dS  can be expressed by using Nanson’s formula (similarly 

for ( )/ u
idS dS )  as ( ) ( )/ l u u T u u

i idS dS J −= ⋅F n n with J denoting the determi-
nant of the deformation gradient. 
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3.1.1 Rate equilibrium boundary value problem (BVP) 

In order to perform the uniqueness and stability analyses along the prin-
cipal equilibrium path, the RVE quasi-static rate equilibrium solution 
associated with a superimposed macroscopic deformation gradient rate 
F , must be determined. The rate equations governing the rate equilib-

rium solution of the microstructure can be derived from Eqs. (8) by 
means of asymptotic expansions at a generic time t (see [63] for addi-
tional details) and can be defined in terms of the fluctuation rate solu-
tion 



Fw . In particular, Eqs. (3.8)3 lead to the following rate conditions: 

 

 

  ( )

( ) 0

( ) 0  

 = 0  ( ) = 0    0,   ,

C

C

C

n

u
R n

u u u l u
R R n R

C

u

u

if  u and

σ

σ σ σ

Γ

Γ

Γ

 ≤
 =


≤ ∀





  

X

X

X X X
 (3.15)

 

 
where ( )nu X  denotes the projection of the displacement rate along the 
normal to the deformed lower crack surface ln , 
 

( ) ( ) ( )
C

l u
n n nu u u

Γ
= −  X X X  is its jump at a contact point pair 

( , )u l
CX X .  

By virtue of Eq. (3.4), the normal displacement rate jump can be ex-
pressed as a function of the normal fluctuation field rate: 

 
    ( )( ) ( )   .

C C

l u l
n nu w -

Γ Γ
 = −  


  X X n F X X  (3.16) 

The response of the microstructure to the superimposed macroscopic 
deformation gradient rate can be obtained finding the fluctuation rate 
solution: 

( )
 

 

* 1
# ( ) ( )

   0 0
( )  on 

0 0
C

C

u
n R l u

c i c iu
n R

u if
A , H V  

u if

σ

σ
Γ

Γ

∪

 = < ∈ = ∈ Γ Γ 
≤ =  





 



w F F w | (3.17) 



72  Chapter 3 

such that *( )A ,δ∀ ∈ 

w F F  the following inequality is satisfied:  

 

( ) ( )

( )

( )

( ) ( )

( )
( )

( )
0 

i

l u
c i c i

R
(i)

B

i
R R i

i

dV

dS dS dS
dS dS

δ

−σ σ δ
Γ ∪Γ

∇ ∇ +

  − + ≥     

∫

∫







  


  


FC X, F + w w - wF

n n w - w

[ ]

 (3.18) 

where *( )A , F F  denotes the set of admissible fluctuation rates depend-
ing on both the current equilibrium solution associated to F  and the 
superimposed macrodeformation gradient rate F , 1( )H V#  denotes the 
usual Hilbert space of order one of vector valued functions periodic 
over V, ∇  denotes the gradient operator with respect to X, the summa-
tion over all the contact crack surface pairs included in the RVE is in-
tended for crack surface integrals involving Γc(i)u and Γc(i)l and the vol-
ume integral is intended to be performed over the solid part B(i) of the 
RVE reference volume V(i). As a matter of fact extracting the strong 
form from the above weak inequality, in addition to the rate equilibrium 
condition of the microstructure and to the rate counterpart of Eq.(3.7)2, 
it leads to the following crack contact interface rate conditions for every 
contact point pairs ( , )l u

CX X :  

 ( )
 

( ) ( ) ( ) ( )

/ / / / / /

 

0   0   0
C

u l u l
i i i iu l u u l l

R R R R

u l u l u l u l u l u l
R R R

l l l l l
R R R R

dS dS dS dS
dS dS dS dS

and u if   

σ σ

σ

σ σ σ
Γ

    
+ + + =    

    


− =


= ≤ = =



 

 

  


    n

r r n n 0

r r n n n

r n

, (3.19) 

where Rr  is the nominal contact reaction rate, defined as ( )R R i

r = T n , the 
first and second equations represent the rate counterpart of Eqs. (3.8)6 
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and (3.8)7, whereas the last two are similar to those arising for unilateral 
contact problems in linear elastostatics. 
It is worth noting that when friction phenomena between crack faces 
must be accounted in the model, additional non-linearities arise in the 
formulation of the homogenization problem. As a matter of fact, the 
homogenized rate constitutive law becomes a general nonlinear func-
tion instead of a homogeneous of degree one function with respect to 
the macroscopic deformation gradient rate and additional sources of 
non-symmetry in the variational inequality characterizing the rate equi-
librium problem must be considered. 
The above theoretical results can be also used for generic non-periodic 
RVEs including an arbitrary distribution of heterogeneities and mi-
crocracks, for which linear deformations boundary conditions can be 
applied in place of the periodic ones. 
Moreover Eqs. (3.8)4, leads to the rate equilibrium conditions at the 
crack contact interface CΓ : 

( )
( ) ( )

( ) ( )

( )

                       
  ,

                                 on   

u l
i iu l

R R

l u
u l C
i iu u l l
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dS dS
dS dS

dS dS
dS dS
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
+ +

 ∀    + + =       
 − = Γ
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 

 

 

r r
X X

n n

r n n

, (3.20) 

where ( )R R i

r = T n  is the nominal contact reaction rate and the rates of 
the referential to actual area element ratio and for the rate of contact 
surface normal (for both the upper and the lower crack surfaces) can be 
obtained by using Nanson’s formula respectively as: 

 ( ) ( )( ) ( )
( ) ,  ,i i T T
i n

R

dS dS J L
dS dS

σ
σ

− 
= − = − − 

 






F n n n L 1 n , (3.21) 
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where x= ∇ L u  is the spatial gradient (namely with respect to x) of the 
displacement rate, also called the velocity gradient, and nL = Ln n . 

3.2 Nonlinear effect arising at the crack contact interface 

As a prelude to derive the non-bifurcation condition of the rate response 
and of the infinitesimal stability condition, the following contact sur-
face integral is examined representing the virtual work of the contact 
reaction rate acting on the present contact interface in a virtual displace-
ment *( , )Aδ ∈ u F F : 

 ( )
( ) ( )

( ) ( )+
l u

c i c i

l l u u
rate c R i R iL dS dSδ δ δ

Γ Γ

   Γ =    ∫ ∫   
 r u r u  (3.22) 

As it will be shown in the sequel an accurate evaluation of this contact 
surface integral contribution, including non-standard rate contributions 
arising from a full finite deformation formulation, is essential to obtain 
an effective prediction of the critical load levels associated with an an-
gular bifurcation and a primary instability. Using Eq. (3.20)1 the contact 
surface integral becomes 
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( )

( )

( ) ( ) ( )
( )
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c i

u
c i

l l l
rate c R i

l l u
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dS dS dS dS dS
dS dS dS dS

δ δ

σ σ δ
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Γ
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     

∫

∫
 







r u

n r n u
. (3.23) 

In order to substitute uδ u  with lδ u  has been made use of Eq. (3.15)2 
leading to the following contact surface integral: 
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Moreover taking into account for the frictionless contact model (see Eq. 
(3.20)2), the contact reaction rate can be written as R R Rσ σ=  r n+ n  and 
this leads to: 
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where it has been considered that:  

( ) ( ) ( )
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l u
i i i

l u
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dS dS dS dS dS dS
dS dS dS dS dS dS
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Eq. (3.25) shows that the work done by the nominal contact reaction 
through the virtual displacement consists in both the contribution of the 
tangential component of the nominal contact reaction rate Rσ n (since 

 

Fig. 3.4 Tangential term related to the rate of the crack surface normal. 
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0=n n ), sketched in Fig. 3.4, and of that related to the different varia-
tion of the reference to actual surface element ratio ( ) /u

idS dS  between 
the lower and upper crack contact surfaces, sketched in Fig. 3.5. 
For the sake of brevity in what follows these two contributions will be 
referred to as tangential contribution and crack surface deformation 
contribution, respectively. When an interface formulation is adopted to 
model crack surface self-contact by using a generalized cohesive mod-
els with interface traction-separation laws including contact effects aris-
ing when normal compression acts on the interface (see [30,156], for 
instance), the following assumption on crack interface traction continu-
ity for pairs of points coincident in the initial undeformed configuration 
is usually introduced 

 ( )
( )

( ) =
c i

l l u
iR R RΓ

= 

 

X + 0T n r r , (3.26) 

where ( )
( )

( ) - ( ) 
C i

l u
Γ

= 

 

f X f X f X  denotes the jump across the unde-

formed contact interface in the enclosed field for an initially coincident 
points pair ( )( , )l u

C iX X  defined as: 

 { }( ) ( ) ( )( , ) , |l u l l u u l u
C i C i C i= ∈Γ ∈ΓX X X X X = X . (3.27) 

 

Fig. 3.5 Relative crack surface deformation term. 
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Eq. (3.26) allows to formulate an interface constitutive law relating the  
nominal contact reaction vector Rr  to the interface separation 

 

( )C iΓ
u  

determined with respect to initially coincident points pair, thus it is 
uniquely defined and can be referred to both the upper and the lower 
crack surface (the former being equal in magnitude and opposite in di-
rection to the latter and vice versa). Using the nominal traction continu-
ity condition (3.26) in rate form, the corresponding virtual work of the 
contact reaction rate acting on the undeformed contact interface 

( )( )rate c iLδ Γ  can be written as: 

 ( )  

( )

( )( )

( )
( )( ) ( )

c i
ll
c ic i

c i

l l l
R i

l l
rate Rc i i dSL dS δδ δ σ

Γ
Γ

Γ
Γ

=Γ = ∫∫  




 

  nr u u  (3.28) 

It is worth noting that the modified virtual work of the contact reaction 
rate expressed by (3.28) has a similar structure of those valid for a fixed 
obstacle problem for which a potential is admitted (see [157]). 
Comparison between Eqs. (3.25) and (3.28) points out the presence of 
non-standard crack contact interface terms coherent with the full finite 
deformation formulation, which are neglected when an interface con-
stitutive law according to Eq. (3.26) is adopted.  
Specifically, the crack surface deformation contribution, i.e. the second 
surface integral at the right hand side of Eq. (3.25), vanishes owing to 
the assumed equivalence between the contact reaction pressure on the 
upper crack surface and that acting on the lower one for initially coin-
cident points pairs ( )( , )l u

C iX X , being in turn a direct consequence of 
the traction continuity condition (3.26). Moreover, the above assump-
tion leads to introduce in the virtual work the displacement jump across 
the undeformed contact interface in place of that evaluated with refer-
ence to the deformed one. 
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Note that the simplified contact reaction rate virtual work (3.28) be-
comes equivalent to its full finite deformation version (3.25), when the 
following equation holds along the deformation process 

 ( ) ( )          ( , )
l u
i i u l

C
dS dS t and
dS dS

= ∀ ∀ X X  (3.29) 

a situation occurring, for instance, when the tangential displacement 
rate jump at the crack contact interface is always null during the defor-
mation process, implying that every points pair ( , )l u

CX X  in contact in 
the actual deformed configuration of the crack interface correspond to 
an initially coincident points pair ( )( , )l u

C iX X . However in this case the 
virtual work of the contact reaction rate becomes globally zero coher-
ently with the contact reaction continuity equation (3.26) which is rig-
orously valid for a material discontinuity interface without displace-
ment jumps across this discontinuity. As a consequence of (3.29) we 
have also that  σRl=σRu=σ dS/dS(i) where dS(i)l= dS(i)u =dS(i). 
 

3.3 Stability and bifurcation analyses: full finite 
deformation and interface formulation 

As shown in [31,33] the stability criterion of the current equilibrium 
configuration V(t) can be obtained by considering a small perturbation 
of the current equilibrium position for a fixed macroscopic deformation 
gradient ( =F 0 ) due to perturbation forces applied starting from the 
time t. For small value of the time-like parameter τ ≥ 0 describing the 
evolution of the system (with τ =0 corresponding to the time t), after 
the use of the energy balance and consideration of the equilibrium con-



Finite-strain multiscale methods 79 

dition in V(t)  and of the antiperiodicity condition for the surface trac-
tions, the second order expansion of the work done by the perturbation 
forces ( )0,perL τ  can be written as: 

 ( ) ( )
( ) ( ) ( )

2

( ) ( )0, ...
2l ui c i c i

per R i R i

B

L dV dS Kττ τ
 Γ ∪Γ

 
 = − + +
 
 
∫ ∫   

 
 T F r u  (3.30) 

where ( )0,perL τ  denotes the work done by the perturbation forces, the 
expression in the round bracket is the second order approximation of 
the difference between the internal deformation work  and the work 
done by the antiperiodic surface tractions tR and by the nominal contact 
reaction rR during the perturbed motion, ( )K τ  is the kinetic energy of 
the RVE at time τ and the perturbed motion is defined in terms of the 
displacement field u(x,τ) compatible with self-contact conditions and 
with the periodicity boundary conditions for any τ and such that 
u(x,τ=0) corresponds to the current equilibrium solution. Owing to the 
assumptions on the perturbed motion, the displacement rate corre-
sponding to the rate of a fluctuation field ( ) ( )= u x w x  must belong to 

*( )A , F F = 0 .  
Using the same arguments that leaded to Eq. (3.25) for the contact sur-
face integral contribution, we obtain the following expression for the 
functional defined by the round bracket at the left hand side of (3.30) 
(called the stability functional): 
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w C X, w w n wF F

. (3.31) 
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The positivity condition of (3.31) for all ( ) ( )*A ,≠ ∈ 

w x 0 F F = 0  en-

sures the static stability of the considered equilibrium since implies that 

the external environment must provide additional energy in order to 

perturb the examined equilibrium configuration. A primary instability 

is detected at the critical loading parameter cSt , when the minimum ei-

genvalue associated to the above stability functional first vanishes 

 ( )
( )

( )
( ) ( )

min /
i

i

B
*A ,

S , dV
∈

  Λ = ∇ ∇ 
  

∫




  


w x F F =0
w w wF .  (3.32) 

The corresponding deformation mode for which the stability functional 
vanishes has been called the instability mode and the associated non-
bifurcation criterion of the principal equilibrium path (see [31] for a 
proof) can be expressed by the following positivity condition for the 
functional ( )1 2,R ,  w wF  which must be satisfied for every pair of ad-
missible fields (1) (2) ( )*A ,≠ ∈ 

 w w F F : 
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C X, w w w wF

n w
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 (3.33) 

where it has been considered that 
 

c

l l u l l l l
R R R nwσ σ σ

Γ
∆ = ∆ − ∆   n w n w   

owing to Eq. (3.15)2, the  superscripts (1) and (2) denote two possible 
solutions ( ) ( )i i= +





  Fu FX w  (i=1,2) of the rate problem (3.17) resulting 
from ( )tF , (1) (2)∆ = ∆ −   w u = u u  denote their difference and similarly 
for other quantities associated with the two solutions.  
Note that the stability condition can be obtained by requiring that the 
trivial solution =w 0  is unique for homogeneous macroscopic loading 
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( )tF =0, namely pairing (2) =w 0  supposed as a known solution, with 
a generic admissible fluctuation field rate (1) = w w . This implies that 
for homogeneous loading stability implies uniqueness, although the 
first state for which the stability functional becomes positive-semidefi-
nite on a stable path is ordinarily not a primary bifurcation state (“ei-
genstate”) admitting nontrivial rate solutions (“eigenmodes”), because 
the deformation sensitive loading mechanism arising due to crack self-
contact does not admit a potential.  
Accordingly cE cSt t≥  where tcE is the eigenstate loading level, with the 
equality holding in the case of self-adjoint contact data for which the 
solution of the variational inequality 

  ( )[ ] *, 0   ( )S , A ,δ δ≥ ∀ ∈




   w w w - w w F F = 0F , (3.34) 

arising when the minimum eigenvalue of the stability functional first 
vanishes, is at the same time the solution of the variational inequality 
(3.17) specialized to the case of F = 0  (see [31] for additional details). 
In the general case of non-homogeneous loading (0) ≠F 0 , owing to con-
tact nonlinearities, the stability condition excluding possible eigenstate 
does not ensure uniqueness since an eigenstate does not correspond to 
a primary bifurcation state; on the other hand as shown in [31] the non-
bifurcation condition (3.33) implies stability.  
In order to circumvent non-linearities arising from crack self-contact, 
incrementally linear comparison problems can be adopted as shown in 
[31], with lower bound predictions for the loading levels at the onset of 
instability and bifurcation obtained using the incremental comparison 
problem corresponding to free to penetrate rate conditions on the zone 
of loose contact or over the whole crack contact interface (namely 

(0)
C

nw
Γ

 

 

  arbitrary on Γc where σ=0 or on the whole Γc ), whereas up-
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per bound predictions can be obtained with reference to the linear com-
parison rate problem corresponding to bonding in the normal direction 
on the zones of loose contact or over the whole crack contact interface  
(namely (0) =

C
n 0w

Γ
 

 

  along Γc where σ=0 or on the whole Γc).  

The latter kind of comparison solids, referred to as completely free and 
completely bonded rate problems, can be useful in the case of effective 
contact, where σ<0 ∀x ∈ Γc. For instance, for the lower bounds cases 
we have that , F F

cS cS cS ct t t t≤ ≤  or that CF
cS cS ct t t≤ ≤  where F

cSt  and CF
cSt  rep-

resents the critical load level of the free and completely free rate com-
parison problems, respectively.  
Finally, it is worth noting that the same considerations done in the case 
of homogeneous loading can be done also for non-homogenous loading 
conditions ( )t ≠F 0 in the case of effective contact. As a matter of fact,  
in this case nonlinearities arising from the unilateral impenetrability rate 
condition disappear, and the primary eigenstate corresponds to a pri-
mary bifurcation, namely tcE=tc with tc denoting the primary bifurcation 
load factor. According to the interface formulation the last crack contact 
surface integral vanishes and the modified stability functional ( )IS , wF  
becomes: 
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whereas the corresponding functional associated to the non-bifurcation 
condition assumes the following expression: 
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. (3.36) 
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Note that when the contact reaction continuity equation (3.26) is as-
sumed rigorously valid, also the crack contact interface integrals in 
(3.35) and (3.36) vanish. The influence of the above mentioned contact 
interface integral contributions occurring in the stability and non-bifur-
cation functionals will be analyzed in Section 3.4.2 and in Section 3.4.3 
with reference to practical applications involving fiber-reinforced com-
posite materials. 

3.4 Numerical applications on unidirectional fiber 
reinforced composite materials 

The previously developed theory is here applied to analyze the stability 
and bifurcation behavior of a 2D microcracked layered solid represent-
ing the unit cell of a periodic unidirectional fiber-reinforced composite 
material containing a matrix or fiber/matrix interface crack aligned with 
the fiber direction, shown in Fig. 3.6. Each microconstituent of the lay-
ered solid is assumed to obey the hyperelastic constitutive law. The in-
itial thickness of the fiber layer is denoted with Hf, L denotes the unit 

 

Fig. 3.6 Periodic microgeometrical arrangement of the analyzed unit cell con-
taining a matrix crack ( 0%eC =  and 50%eC = ) or a matrix-fiber interface 
debonding ( 100%eC = ). 
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cell initial length, Lc the initial crack length, e its eccentricity with re-
spect to the unit cell half height and plane strain conditions are assumed 
in the X1-X2 plane where X1 is the direction aligned with the fiber direc-
tion. The hyperelastic material used to model the microconstituents is 
the neo-Hookean one and the corresponding strain energy density for 
plane strain deformations is of the following form: 

 [ ] ( )22 2ln 1        , 1,2
2 2

kW F F J Jαβ αβ
µ µ α β−′ ′= − − + − =  (3.37)

 
where J’ is the determinant of the 2D deformation gradient tensor 
whose components are Faβ, μ is the shear modulus of the solid at zero 
strain and the parameter k, playing the role of an equivalent 2D bulk 
modulus, governs its compressibility. 
Numerical results devoted to a parametric analysis of the main micro-
structural geometrical parameters will be carried out with reference to 
the above described defected fiber-reinforced microstructure. The ob-
jective of these results is to analyze the influence of the main micro-
structural parameters on the uniaxial and biaxial compressive failure 
behavior of the examined fiber-reinforced composite material, by also 
pointing out the importance of a full finite deformation formulation of 
crack self-contact contact nonlinearities in order to obtain an accurate 
prediction of instability and bifurcation phenomena. 
It is worth noting that a composite microgeometry associated to a peri-
odic repetition of matrix microcracks or interface debonding is an ideal 
model useful from the engineering’s point of view to capture the main 
features of the complex nonlinear behavior of real microstructured de-
fected solids; such microgeometries are frequently used to develop mi-
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cromechanical models within the homogenization theory, able to ex-
plain various failure mechanisms characterizing composite materials 
(to this end see, for instance, [10, 11, 12, 13, 28, 34, 35, 36]). 

3.4.1 Variational problems 

In order to obtain the critical load levels and related mode shapes a one-
way coupled total Lagrangian finite element (FE) formulation is 
adopted. Firstly, the RVE principal solution path is computed and then 
the associated eigenvalue boundary value problems providing the bifur-
cation and the instability load levels are sequentially solved. Plane 
strain Lagrange quadratic elements are adopted for all the examined 
boundary value problems and an augmented Lagrangian method is used 
to model contact between crack faces. The principal equilibrium solu-
tion driven by the macroscopic loading process ( )tF  is determined for 
discrete values of the loading parameter in the range max0 t t≤ ≤  by 
adopting a step size equal to 3t −∆ =10 . A parametric solver with a con-
tinuation strategy is adopted and the computations have been carried 
out by means of the commercial software COMSOL Multiphysics 
[158]. The contact surface integral contributions arising from crack 
self-contact studied in section 4, have been accounted in the numerical 
analysis by introducing additional boundary contributions to the weak 
formulation of the problem, while the nonlinear contact constraint rate 
conditions have been accounted in the analysis by means of an extrusion 
coupling variable approach and using a rate-dependent penalty ap-
proach.  
In the case of macroscopic loading paths involving effective contact the 
weak inequalities associated to (3.17) and (3.31) reduces to variational 
equalities and the impenetrability rate condition becomes an equality 
constraint with the set of admissible fluctuation rates specializing to 
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 nF F = 0 w | ; in this case a primary 
eigenstate corresponds to a primary bifurcation, namely tcE = tc. The 
critical loads for primary bifurcation and instability ct = S

ct  are deter-
mined as the load parameters for which the lowest eigenvalue Λ of the 
relevant eigenvalue weak problem first vanishes. In order to evaluate 
the influence of nonlinear contributions arising from crack self-contact 
in the examined case of effective contact, the following eigenvalue var-
iational problems associated to both the full finite deformation and sim-
plified approaches have been discretized *
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n w , (3.38) 

giving the primary bifurcation and instability critical load levels for a 
full finite deformation formulation of crack self-contact (i.e. using func-
tionals (3.31) and (3.33)) which turn out to be coincident since the con-
tact surface terms are self-adjoint for the examined loading path (see 
[32], for instance); 
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C X, w w w wF

n w , (3.39) 

giving the approximation of Eq. (3.39) in the case of an interface for-
mulation kind (i.e. using functionals (3.35) and (3.36) where only tan-
gential contribution and no crack surface deformation contribution); 
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giving the additional approximation corresponding to the case in which 
no crack contact interface contributions are considered according to the 
contact reaction continuity equation across the undeformed contact in-
terface.  
It should be noted that Eq. (3.39) characterizes a primary eigenstate, 
which in general does not corresponds to a primary instability, since for 
the interface formulation contact data are not self-adjoint in contrast to 
the case of the full finite deformation approach. As a matter of fact a 
primary instability state, preceding a primary bifurcation one, is char-
acterized by the following variational eigenvalue problem arising from 
(3.35) *

1 ( )A ,δ∀ ∈ 

w F F = 0 : 
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3.4.2 Uniaxial loadings  

A parametric analysis has been performed to evaluate the sensitivity of 
the primary instability and bifurcation critical load factor and of its as-
sociated critical modes with respect to the variation of the crack length, 
fiber thickness and crack eccentricity.  
The fiber thicknesses considered in the analysis are Hf =0.05H, Hf 

=0.1H and Hf =0.2H; the investigated relative crack length LC/L ranges 
from 0 to 0.9 with an increment of 0.1 and the analyzed relative crack 



88  Chapter 3 

eccentricity percentage Ce = e/(H/2-Hf/2)x100 ranges from 0% to 100% 
with and increment of 25%. The case where Ce is equal to 100% corre-
sponds to the case of a fiber/matrix interface crack, whereas for the re-
maining values a matrix crack is obtained. The unit cell L/H ratio is 
assumed equal to 3.  
The typical mesh adopted for the examined unit cell involves 57,084 
degrees of freedom and 3400 quadratic Lagrangian quadrilateral ele-
ments and is of a structured type. Uniaxial compression test was per-
formed using the following macroscopic loading path along the X1 di-
rection: 1 1 2 2 3 3( ) (1 )F t t= − ⊗ + ⊗ + ⊗e e e e e e . 
Note that, since macroscopic rigid body rotations are absent, the scalar 
parameter t characterizing the macroscopic loading path corresponds to 
the principal Biot strain in the fiber direction with the minus sign.  

 

Fig. 3.7 Critical load levels and related mode shapes for the completely 
bonded comparison rate problem. 
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Fig. 3.8 Critical load parameters and mode shape behavior as a function of 
LC/L for Ce = 100% and Hf  = 0.05H. 

 

Fig. 3.9 Critical load parameters and mode shape behavior as a function of 
LC/L for Ce = 100% and Hf  = 0.1H. 
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In the numerical calculations the following hypotheses for the material 
properties of the microconstituents have been done: κ/µ=10, µf /µm= 20, 
µm =807 N/mm2. The behavior of the unit cell along the examined uni-
axial macro-deformation path is analyzed in the sequel by determining 
the critical load levels corresponding to the full finite deformation for-
mulation (referred to as “Exact”), to the interface type of formulation 
where only tangential contributions are included in the analysis (re-
ferred to as “Interface model” with the corresponding critical load lev-
els denoted as tcIM ) and to the case in which no crack contact interface 
contributions are considered (referred to as “No contributions” with the 
corresponding critical load levels denoted as tcNC ). 
 

 

Fig. 3.10 Critical load parameters and mode shape behavior as a function of 
LC /L for Ce = 100% and Hf  = 0.2H. 
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Fig. 3.12 Critical load parameters and mode shape behavior as a function of 
LC/L for Ce = 75% and Hf = 0.5H.  

 

Fig. 3.11 Critical load parameters and mode shape behavior as a function of 
LC/L for Ce = 75% and Hf = 0.1H.  
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Specifically, in the case of the full finite deformation formulation and 
no crack contact interface contributions the determined critical load lev-
els tc and tcNC refer to both primary instability and bifurcation states 
(which are coincident), while in the case of the interface model the com-
puted critical load levels tcIM are referred to primary bifurcation states. 
The equivalence between the primary instability and bifurcation critical 
load levels, occurring in the former case, have been verified by means 
of FE calculations, within errors related to the finite element discretiza-
tion. In the latter case, numerical computations not shown here for the 
sake of brevity, have pointed out that the largest relative differences  
 

 

Fig. 3.13 Critical load parameters and mode shape behavior as a function of 
LC/L for Ce = 75% and Hf = 0.2H.  
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Fig. 3.14 Critical load parameters and mode shape behavior as a function of 
LC/L for Ce = 50% and Hf = 0.05H.  

 

Fig. 3.15 Critical load parameters and mode shape behavior as a function of 
LC/L for Ce = 50% and Hf = 0.1H.  
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between primary bifurcation and instability load levels are within 
5.96% (occurring for Lc/L=0.9, Hf =0.05H and Ce=0%). 
Moreover, in order to obtain upper and lower bounds to the above crit-
ical load levels, useful to check the accuracy of the results and to model 
limit behaviors (i.e. Lc/L approaching to zero), the critical load levels 
of the completely bonded (tcCB) and free (tcCF) comparison rate prob-
lems have been also computed. The above classes of critical load levels 
are investigated in order to determine the influence of crack interface 
self-contact phenomena on the compressive failure of the examined mi-
crostructured solid due to instability and bifurcation. The critical values 
of the load level for the completely bonded rate problem are shown in 
Fig. 3.7 together with the color surface plots of the critical mode shapes. 
As the relative fiber thickness ratio increases the critical load level de-
creases whereas the wavelength of the critical mode shape increases  

 

Fig. 3.16 Critical load parameters and mode shape behavior as a function of 
LC/L for Ce = 50% and Hf = 0.2H.  
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Fig. 3.17 Critical load parameters and mode shape behavior as a function of 
LC/L for Ce = 25% and Hf = 0.05H. 

 

Fig. 3.18 Critical load parameters and mode shape behavior as a function of 
LC/L for Ce = 25% and Hf = 0.1H.  
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with a strong influence on the critical load level magnitude found when 
Hf/H is greater than 0.1. In Figs 3.8-3.22, the critical load levels for the 
different examined crack contact interface formulations have been plot-
ted as a function of the relative crack length LC/L for the analyzed crack 
eccentricity and fiber thickness ratios together with the critical mode 
shapes referred to LC/L = 0.9. 
Generally speaking, it is possible to note that the differences between 
the critical load levels corresponding to the exact and the simplified 
formulations (interface model and no crack contributions) increase with 
the increment of the relative crack length LC/L: this implies that the role 
of crack contact interface contributions becomes more important as 
LC/L increases. The above differences vanish as LC/L approaches zero, 
namely for an undefected composite microstructure for which all the  
 

 

Fig. 3.19 Critical load parameters and mode shape behavior as a function of 
LC/L for Ce = 25% and Hf = 0.2H.  
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Fig. 3.20 Critical load parameters and mode shape behavior as a function of 
LC/L for Ce = 0% and Hf = 0.05H.  

 

Fig. 3.21 Critical load parameters and mode shape behavior as a function of 
LC/L for Ce = 0% and Hf = 0.1H. 
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critical load levels become coincident with those associated with the 
completely bonded comparison problem.  
The largest percentage relative difference between the exact and sim-
plified formulations (tc-tcNC/IM)/tc×100 is equal to 35.80% for the inter-
face model (attained when Lc/L=0.9,  Hf =0.05H and Ce=50%) and to 
58.90% for the formulation without crack contact contributions (at-
tained when Lc/L=0.9, Hf =0.05H and Ce=0%). This highlights the 
strong role of crack contact interface contributions and the importance 
of adopting a full finite deformation formulation rather than simplified 
ones. The results globally evidence that the higher critical load levels 
are obtained for Hf =0.05H and that both the two simplified formula-
tions give conservative predictions of primary instability and bifurca-
tion load levels (i.e. tcNC< tcIM< tc). Furthermore, it should be noted that 

 

Fig. 3.22 Critical load parameters and mode shape behavior as a function of 
LC/L for Ce = 0% and Hf = 0.2H. 
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the model without crack contact interface contributions yields the low-
est critical load levels with the exception of the case Hf =0.05H and 
Ce=100% (Fig. 3.8), in which the completely free to penetrate estimate 
becomes the most conservative one. As expected in all the examined 
cases tcCF ≤ tc ≤ tcCB; moreover except for Ce equal to 100% and 75%, 
where the critical load factor tcCF  show a more variegated behavior and 
may be the most conservative one (for Ce=100% and Hf =0.05H), the 
hierarchy of critical load levels satisfies the following inequalities: tcNC 

< tcIM < tcCF ≤ tc ≤ tcCB . Owing to the symmetry of the loading and of 
the microstructure, entailing the ineffectiveness of the displacement rate 
jump contact constraint, for the case with Ce=0% (see Figs.3.20-3.22) 
the exact and the free-to-penetrate curves are coincident, while, for the 
cases with Ce=25% and Ce=50% (see Figs.3.14-3.19), are very close. 
The microstructural arrangement with Hf =0.05H shows a moderate in-
fluence of the critical load level tc with respect to the relative crack 
length with less deviation from the bonded case whose critical load lev-
els are independent on the relative crack length. Overall for Ce ≤ 50%, 
the change in crack eccentricity does not result in any important change 
of the critical load factors, while Ce >50% the results are more influ-
enced by this parameter. In addition, it can be noted for Lc/L > 0.6 the 
critical load factors show a sharp decline. Such behavior, more evident 
for high values of the relative fiber thickness (Hf =0.1H and Hf =0.2H), 
is related to the increase of the critical mode shape wavelength which 
show a trend from local to global. 
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3.4.3 Biaxial loadings 

The theory developed in section 3.3 is here applied to analyze the sta-
bility and bifurcation behavior of a 2D microcracked layered solid rep-
resenting the unit cell of a periodic unidirectional fiber-reinforced com-
posite material containing a matrix or fiber/matrix interface crack 
aligned with the fiber direction. Firstly, the biaxial path for which the 
nominal contact pressure vanishes, called decompression limit path, is 
obtained by means of an analytical solution, then general parametric 
analyses are carried out by varying fiber thickness and microcrack po-
sition with respect to fiber/matrix interface, and different radial macro-
scopic biaxial loading paths are investigated to identify two-dimen-
sional stability and uniqueness domains in the principal macrostrain 
space. 

3.4.3.1 Analytical results 

The previously developed theory is here applied to analyze the stability 
and bifurcation behavior of a 2D microcracked layered solid represent-
ing the unit cell of a periodic unidirectional fiber-reinforced composite 
material containing a matrix or fiber/matrix interface crack aligned with 
the fiber direction. The layered solids is subjected to a general biaxial 
macrodeformation loading path along the axes of orthotropy, namely 
shearing in the direction parallel 12F  or normal 21F  to the lamination 
direction is zero, and each constituent is assumed to obey the hypere-
lastic constitutive law (3.37).  
For the examined biaxial macroscopic loading paths, the principal so-
lution, due to the homogeneous properties of each layer, is character-
ized by constant stresses and strains within each layer; moreover, the 
fiber and matrix layers, together with crack surfaces, remain flat up to 
the onset of the first instability or bifurcation state. This implies that the 
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finite elasticity principal path solution is not affected by the presence of 
the crack. Along the principal path the macroscopic and local defor-
mation gradient tensors can be related by using geometric considera-
tions according to the following expressions: 

 
( )
11 1111

22 2222 1

f m

f m

F F F
F F Fξ ξ

 = =
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+ − =
, (3.42) 

where /fH Hξ =  and the remaining local deformation gradient tensor 
components are identically zero. Obtaining 22

mF  as a function of 22
fF  

through Eq. (3.42)2, the relation between 22
fF  and the nonzero compo-

nents of F  can be obtained by using the traction continuity condition 
across the fiber/matrix interface 

 
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Γ
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that the first Piola-Kirchhoff stress tensor components can be calculated 
as /ijR ijT = W F∂ ∂ , gives: 
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where  
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i

W F J J F
F
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Assuming that /k µ α=  and that f mµ βµ= , the principal solution path 
remains completely defined by the following six material and loading 
data: ξ , mµ , α , β , 22F , 11F . For given values of α  and β ,  10α =  
and 20β = , it is possible to obtain a simple expression for 22

fF  as a 
function of F  when 2222 0f m

RRT T= = , namely when the nominal contact 
pressure vanishes and the condition of effective contact is lost, the cor-
responding macroscopic deformation path being denoted as decompres-
sion path.  The above expression is: 
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implying that when the macroscopic deformation is compressive along 
the lamination direction ( 11 1F < ) the corresponding macroscopic defor-
mation in the normal direction must be tensile ( 22 1F > ). Eqs. (3.44) and 
(3.45) gives analytical expressions for the contact pressure and for the 
decompression limit path, respectively, as a function of the underlying 
principal path solution. 
It is worth noting that for the examined biaxial macrodeformation load-
ing path, the stability and bifurcation analyses can be carried out by 
computing the jump across the crack contact interface with reference to 
either the undeformed or the deformed interface configurations, since 
initially coincident points pair coincide to actual contact point pairs, i.e. 

( ) ( )
( )C C i

f f
Γ Γ

=   

   

X X . Moreover it is possible to prove that due to 
homogeneity of the deformation within each micro-constituents, the 
tangential and the crack surface deformation contributions of Eq. (3.25) 
leading to the contact surface integral contributions of the stability and 
non-bifurcation functionals, are the same. Adopting an updated Lagran-
gian formulation with the current configuration taken as a reference (see 
[159] or additional details), the contact surface integral contributions 
introduced in Eq. (3.25) can be written as:  
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where the subscript F=I denotes evaluation in the current configura-
tion. Using Eqs. (3.21)1 in an updated Lagrangian version and (3.21)2 
we have that  
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where ei is the base vector pointing in the direction of the i-th coordinate 
system axis. Therefore, the tangential and the crack surface deformation 
contributions can be rewritten as: 
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Integration by parts of (3.48)1 and taking into account that 
 2 1u uδ  van-

ish at both ends of CΓ  and that σ is constant, show that 
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consequently when δ u = u  we obtain that in Eq. (3.31) the tangential 
contribution becomes equal to the crack surface deformation one. Anal-
ogously Eq. (3.49) and integration by parts of (3.48)2 when δ δ u = u  
show that the contact data become self-adjoint, namely the following 
expression holds: 
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Consequently, as pointed out in section 3, for the examined composite 
microstructure and macroscopic loading path, a primary instability state 
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coincides with a primary eigenstate. On the other hand, in the case of 
the interface formulation in which only the first term of Eq. (3.46) is 
included in the analysis, contact data are not self-adjoint and loss of 
stability does not leads to a primary eigenstate. Note that along the de-
compression limit principal path both the nominal contact pressure rate 
and the interface displacement rate jump are identically zero and bifur-
cation occurs at a primary eigenstate also in presence of a nonhomoge-
neous loading path. 
 

3.4.3.2 Numerical results 

The purpose of these results is to obtain an accurate prediction of insta-
bility and bifurcation phenomena investigating the effects of the above-
mentioned self-contact nonlinearities in the specific case of biaxial 
loading regime and for different microstructural arrangements. A total 
Lagrangian finite element formulation is adopted to obtain the principal 
solution path of the analyzed unit cell in coupling with the accompany-
ing nonlinear eigenmode boundary value problems giving the bifurca-
tion and the instability critical load factors. The commercial software 
[158] has been used to obtain the sequence of quasi-static equilibrium 
solutions in terms of discrete values of the loading parameter t  and by 
adopting a step size equal to 3t −∆ =10 . 
The boundary value and eigenvalue problems are discretized by means 
of a displacement-type finite element (FE) approximation using plane 
strain Lagrange quadratic elements and an augmented Lagrangian 
method is adopted to model contact between crack surfaces along the 
principal solution path. Boundary weak contributions has been intro-
duced in the FE model to account for the contact surface integral con-
tributions discussed in Section 3.2, whereas a rate-dependent penalty 
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technique in conjunction with an extrusion coupling variable map has 
been adopted to impose unilateral contact constraint rate conditions.  
The critical loads for bifurcation and instability have been determined 
as the parameters associated with the lowest zero eigenvalue of the cor-
responding eigenvalue weak problems (see [160] and the references 
cited therein, for additional details about the formulation of these eigen-
value problems). Since the examined biaxial loading paths are compres-
sive along the fiber direction and involve effective contact, the nonlin-
ear eigenvalue weak problems have been solved only for the decom-
pression limit path for which the contact pressure vanishes and the im-
penetrability rate condition must be imposed as an inequality constraint. 
In this case, the nonlinear eigenvalue problem is solved by adopting an 
iterative solution strategy consisting in the repeated running of the lin-
ear eigenvalue solver by updating the eigenvalue linearization point to 
the last eigenvalue found. The iteration cycle is stopped when the point-
wise estimated error on the normal displacement rate jump is less than 

 

Fig. 3.23 Periodic microgeometrical arrangement of the analyzed unit cell 
containing a matrix crack ( 0%eC =  and 50%eC = ) or a matrix-fiber inter-
face debonding ( 100%eC = ) with a length equal to 0.6L. 
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a fixed relative tolerance (
 

310n Cw L−≤ ). On the other hand, for ef-
fective contact, for which the impenetrability rate condition becomes an 
equality constraint, linear eigenvalue weak problems have been solved. 
The results of the numerical applications are presented in Figs. 3.24-
3.31 and Tabs. 3.1-3.6 depicting the onset-of-failure surfaces of de-
fected periodic fiber-reinforced composites subjected to macroscopic 
biaxial loadings together with the associated critical load parameters 
and modes. The sensitivity with respect to the adopted formulation (full 
finite approach versus simplified ones), of the primary instability and 
bifurcation critical load factors and of its associated critical modes, is 
analyzed for different microgeometrical arrangements obtained by var-
ying crack length, fiber thickness and crack eccentricity. The microcon-
stituents are assumed to be characterized by the following material pa-
rameters: / 10k µ = , / 20f mµ µ = , 2807 /m N mmµ = . With reference to 
Fig. 3.23 the fiber thicknesses considered in the analysis are 

0.05fH H= and 0.1fH H= ; the investigated relative crack length 
/CL L  is equal to 0.6 in the analyses shown in Figs. 3.24-3.31, whereas 

it ranges from 0 to 0.9 with an increment of 0.3 in Tabs. 3.1-3.6; the 
following values for the relative crack eccentricity percentage, defined 
as ( )/ / 2 / 2 100e fC e H H= − × , have been considered: 0%, 50% and 
100%.  
The adopted unit cell ratio /L H  is equal to 3 and the used mesh is of 
a structured type and involves 3630 quadratic Lagrangian quadrilateral 
elements. The critical curves identifying the limit of the two-dimen-
sional stability and uniqueness domains are obtained by determining the 
critical load levels ct , IM

ct  and NC
ct  respectively corresponding to: (i) full 

finite deformation formulation (referred to as “Exact” in the following 
and associated with conditions (19) and (21)), (ii) interface model for-
mulation with no tangential contribution (“Interface model”, associated 
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with conditions (23) and (24)), (iii) formulation with no crack contact 
interface contributions (“No contributions”, associated to conditions 
(25) and (26)). Note that for the interface model formulation, contrarily 
to the other ones, primary instability does not coincide with primary 
bifurcation; therefore the associated critical load level IM

ct  refers 
uniquely to primary bifurcation, although FE calculations have pointed 
out that the relative differences between the corresponding critical load 
levels are generally low. In addition, in order to model the limit behav-
ior of the solid, upper and lower bounds to the above critical load levels, 
denoted as CB

ct  and CF
ct  have been also computed by means of com-

pletely bonded (“Bonded”) and completely free (“Free”) comparison 
rate problems. The composite microstructure has been subjected to ra-
dial macroscopic biaxial loading paths in the principal macrostrain 
space with a macrodeformation gradient tensor expressed as:  

 1 1 2 2 3 3( ) (1 cos ) (1 sen )F t t tϕ ϕ= − ⋅ ⊗ + − ⋅ ⊗ + ⊗e e e e e e . (3.51) 

where ϕ  defines the ratio between the principal values i -1λ  of the mac-
roscopic Biot strain tensor, iλ  being the macroscopic principal stretch 
ratio in the iX  direction. Negative angles correspond to a biaxial regime 
with compression in 1X  direction and traction in 2X  one, whereas pos-
itive angles correspond to a biaxial compression regime in both direc-
tions ( 0ϕ =  corresponding to a uniaxial compression along the fiber 
direction). The macroscopic onset-of-failure curves calculated here are 
found for radial paths characterized by 40 70ϕ− ° ≤ ≤ + ° ; as a matter of 
fact for 70ϕ > + °  very high values of critical load levels (more than 
0.35) are obtained associated with large compression levels in the 2X  

direction ( 2 1   0.33λ − < − ) for which different sources of failure would 
have already occurred (damage and/or crushing in the matrix, for in-
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stance). Moreover for 40ϕ < − °  radial paths intersect the decompres-
sion curve and both the exact and simplified crack contact interface for-
mulations become equivalent since the contributions arising from con-
tact vanish. The decompression limit curve, which does not correspond 
to a radial path, has been analytically obtained by substituting the com-
ponents of the macroscopic deformation gradient (3.51) into Eq. (3.45)
. The microstructural stability and uniqueness domains for the exam-
ined biaxial loading conditions has been presented by using a polar type 
representation together with the color surface plots of the critical mode 
shapes. In the plots, the radius corresponds to the opposite of the prin-
cipal value of the macroscopic Biot strain tensor along 1X  (i.e.  cost ϕ
), the angle ϕ  is expressed in degrees and the decompression limit curve 
is displayed by using a thick dashed line. It is worth noting that, as ex-
pected, when the radial paths approaches to the decompression limit 
curve, the critical load levels of the simplified contact formulations con-
verge to the exact one (i.e. IM NC

c c ct t t= = ).  
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Due to the absence of the contact constraint conditions, the completely 
free comparison problem does not show the same behavior. Note that 
the curves of the critical values associated with the completely free 
problem and the exact formulation coincide for 0%eC =  while the 

 

Fig. 3.24 Polar plot of the critical macroscopic strain along the 1X  direction t 
cosϕ  versus the load path angle ϕ and mode shape behavior for / 0.6CL L =
, 0.1fH H= and 100%eC = . 
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curves move away as the crack eccentricity increases. Generally speak-
ing the critical curves related to the exact, completely free and bonded 
formulations are scarcely influenced by the macroscopic loading in the 

2X  direction, especially for radial paths with tensile transverse strain (
0ϕ < ° ), with the values of the critical loading level increasing as ϕ  

 

Fig. 3.25 Polar plot of the critical macroscopic strain along the 1X  direction t 
cosϕ  versus the load path angle ϕ and mode shape behavior for / 0.6CL L =
, 0.1fH H= and 50%eC = . 
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increases. On the contrary the macroscopic load component in the X2 

direction shows a remarkable influence on the critical load levels of the 
simplified formulations, with a stabilizing effect for ϕ <0° (transverse 
tensile regime), and an instabilizing one for ϕ  > 0° (transverse com-
pression regime). Both the examined simplified crack contact interface 

 

Fig. 3.26 Polar plot of the critical macroscopic strain along the 1X  direction t 
cosϕ  versus the load path angle ϕ and mode shape behavior for / 0.6CL L =
, 0.1fH H= and 0%eC = . 
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formulations give conservative estimates for the critical load levels with 
an increasing underestimation as crack eccentricity decreases. The larg-
est underestimation, measured as ( ) / 100NC

c c ct t t− × , is equal to 83% 
and occurs for the simplified formulation with neglected crack contact 
contributions at 70ϕ = °  with 0.1fH H=  or 0.05fH H=  and 0%eC =
.The typical critical mode shapes for the exact formulation are shown 
in Figs. 3.24-3.26 and Figs. 3.28-3.30 and, for the decompression limit 
path, the behavior of the normal displacement rate jump satisfying the 
unilateral rate contact constraint is represented in Fig. 3.27 and Fig. 3.31 
for all the examined crack eccentricities. For 0.1fH H=  a change in 
critical mode shape from antisymmetrical to symmetrical as ϕ  in-
creases for Ce equal to 0% and 50% (the change occurring for 70ϕ = °
and 20ϕ = ° , respectively) is shown, whereas it remains always anti-
symmetrical for eC  equal to 100%. On the other hand, for 0.05fH H=  
critical mode shapes remain always symmetrical. As can be seen from 
Fig. 3.28 for the case with / 0.6CL L = , 0.05fH H=  and 100%eC =  

 

Fig. 3.27 Critical load levels, critical mode shapes and normal displacement 
rate jump at the crack contact interface for / 0.6CL L = , 0.1fH H=  and Ce 

equal to 0%, 50% and 100%. 
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the Interface Model curve shows a sharp decline for 70ϕ = °  owing to 
a change in the critical mode shape wavelength from local to global. It 
is worth noting that, when 0%eC =  (see Fig. 3.26 and Fig. 3.30), the 
symmetry of the loading and of the microstructure implies a zero dis-
placement rate jump and, as a consequence, the curves corresponding 

 

Fig. 3.28 Polar plot of the critical macroscopic strain along the 1X  direction t 
cosϕ  versus the load path angle ϕ and mode shape behavior for / 0.6CL L =
, 0.05fH H= and 100%eC = . 
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to the Exact and the Free formulations are coincident. The obtained sta-
bility and uniqueness domains show that, as expected, in all the exam-
ined cases the following inequalities are fulfilled CF CB

c c ct t t≤ ≤ , that the 
highest critical load levels occur for 0.05fH H=  and that both the two 
simplified formulations give conservative predictions of primary insta-
bility and bifurcation load levels (i.e. NC IM

c c ct t t< < ).  

 

Fig. 3.29 Polar plot of the critical macroscopic strain along the 1X  direction t 
cosϕ  versus the load path angle ϕ and mode shape behavior for / 0.6CL L =
, 0.05fH H= and 50%eC = . 
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As proved in section 4, additional calculations have confirmed that the 
critical load levels obtained by using only the tangential terms are the 
same of those obtained by using only the crack surface deformation 
terms. Moreover, the results also show that for 50%eC ≤  the change in 
crack eccentricity does not result in any important change of the critical 

 

Fig. 3.30 Polar plot of the critical macroscopic strain along the 1X  direction t 
cosϕ  versus the load path angle ϕ and mode shape behavior for / 0.6CL L =
, 0.05fH H= and 0%eC = . 
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curves, while for 50%eC >  the obtained critical load factors are 
stronger influenced by this parameter. Along the decompression limit 
loading path, owing to the absence of contact pressure, both the simpli-
fied and the exact formulations provide the same critical load levels and 
mode shapes as shown in Figs. 3.24-3.26 and Figs. 3.28-3.30. Compar-
isons between different critical curves clearly show that as the relative 
fiber thickness ratio decreases the critical load level increases leading 
to a decrease of the wavelength of the critical mode shape that strongly 
influences the critical load level magnitude. In addition to the results 
shown in the polar plots, in order to better evaluate the crack length 
influence on the critical load factors, further parametric analyses are 
carried out for 20ϕ = ± ° , varying /CL L  from 0 to 0.9 with an increment 
of 0.3 and the obtained critical load factors (presented in Tabs. 1-3) 
have been divided by the critical load factors corresponding to the upper 
bound CB

ct . 
 

 

Fig. 3.31 Critical load levels, critical mode shapes and normal displacement 
rate jump at the crack contact interface for / 0.6CL L = , 0.05fH H=  and 
Ce equal to 0%, 50% and 100%. 
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Tab. 3.1 Critical load parameters normalized with respect to CB
ct  for different 

/CL L  values (Ce = 0%, 20ϕ = + ° ). 

C
e =

 0
%

 

Dimensionless critical load factors 
Hf Lc/L ct  IM

ct  NC
ct  CF

ct  

0.
05

H
 tcCB 0.12237 0.12237 0.12237 0.12237 

0.3 0.99959 0.90184 0.54983 0.99959 

0.6 0.99925 0.76345 0.45543 0.99925 

0.9 0.96556 0.52686 0.31601 0.96556 

0.
1H

 

tcCB 0.12103 0.12103 0.12103 0.12103 

0.3 0.84308 0.68017 0.48133 0.84308 

0.6 0.77207 0.57266 0.39512 0.77207 

0.9 0.62653 0.40713 0.26609 0.62653 

 

Tab. 3.2 Critical load parameters normalized with respect to CB
ct  for different 

/CL L  values (Ce = 0%, 20ϕ = − ° ). 

C
e =

 0
%

 

Dimensionless critical load factors 
Hf Lc/L ct  IM

ct  NC
ct  CF

ct  

0.
05

H
 tcCB 0.12033 0.12033 0.12033 0.12033 

0.3 0.99968 0.99948 0.86349 0.99968 

0.6 0.99941 0.92652 0.73691 0.99941 

0.9 0.99911 0.69410 0.52302 0.99911 

0.
1H

 

tcCB 0.11949 0.11949 0.11949 0.11949 

0.3 0.83451 0.76070 0.67148 0.83451 

0.6 0.75513 0.66277 0.56899 0.75513 

0.9 0.60635 0.50176 0.41203 0.60635 
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Tab. 3.3 Critical load parameters normalized with respect to CB
ct  for different 

/CL L  values (Ce = 50%, 20ϕ = + ° ). 

C
e =

 5
0%

 

Dimensionless critical load factors 
Hf Lc/L ct  IM

ct  NC
ct  CF

ct  

0.
05

H
 tcCB 0.12237 0.12237 0.12237 0.12237 

0.3 0.99245 0.87356 0.54356 0.97632 

0.6 0.98851 0.77781 0.46379 0.96817 

0.9 0.98561 0.56570 0.32194 0.96088 

0.
1H

 

tcCB 0.12103 0.12103 0.12103 0.12103 

0.3 0.83791 0.66984 0.47617 0.81619 

0.6 0.78656 0.58184 0.40039 0.74536 

0.9 0.66785 0.43546 0.28373 0.63273 

 

Tab. 3.4 Critical load parameters normalized with respect to CB
ct  for different 

/CL L  values (Ce = 50%, 20ϕ = − ° ). 

C
e =

 5
0%

 

Dimensionless critical load factors 
Hf Lc/L ct  IM

ct  NC
ct  CF

ct  

0.
05

H
 tcCB 0.12033 0.12033 0.12033 0.12033 

0.3 0.99308 0.98868 0.83842 0.97738 

0.6 0.98911 0.93233 0.74804 0.96916 

0.9 0.96570 0.73849 0.55664 0.91878 

0.
1H

 

tcCB 0.11949 0.11949 0.11949 0.11949 

0.3 0.82602 0.74993 0.66102 0.80626 

0.6 0.76751 0.67282 0.57672 0.72927 

0.9 0.64355 0.53347 0.43805 0.61159 
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Tab. 3.5 Critical load parameters normalized with respect to CB
ct  for different 

/CL L  values (Ce = 100%, 20ϕ = + ° ). 
C

e =
 1

00
%

 

Dimensionless critical load factors 
Hf Lc/L ct  IM

ct  NC
ct  CF

ct  

0.
05

H
 tcCB 0.12237 0.12237 0.12237 0.12237 

0.3 0.95471 0.86669 0.67902 0.67307 

0.6 0.94360 0.85279 0.61415 0.64681 

0.9 0.94051 0.84908 0.50496 0.63995 

0.
1H

 

tcCB 0.12103 0.12103 0.12103 0.12103 

0.3 0.91774 0.76969 0.57069 0.73949 

0.6 0.89978 0.71415 0.50652 0.66676 

0.9 0.85744 0.63536 0.43045 0.65198 

 

Tab. 3.6 Critical load parameters normalized with respect to CB
ct  for different 

/CL L  values (Ce = 100%, 20ϕ = − ° ). 

C
e =

 1
00

%
 

Dimensionless critical load factors 
Hf Lc/L ct  IM

ct  NC
ct  CF

ct  

0.
05

H
 tcCB 0.12033 0.12033 0.12033 0.12033 

0.3 0.94422 0.90460 0.84646 0.67044 

0.6 0.93246 0.89119 0.83269 0.64366 

0.9 0.92900 0.88736 0.82213 0.63696 

0.
1H

 

tcCB 0.11949 0.11949 0.11949 0.11949 

0.3 0.90385 0.83795 0.75375 0.73326 

0.6 0.88441 0.80003 0.70166 0.66050 

0.9 0.83898 0.73609 0.62760 0.64538 
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From the results in tables, it is possible to note that the critical load 
levels obtained by means of simplified formulations in which a biaxial 
compression regime in both directions is considered ( 20ϕ = + ° ), give 
the largest underestimation of exact critical load factors (equal to 73% 
and attained when 20ϕ = + ° , 0.1fH H= , / 0.9CL L =  and 0%eC = ). 
The microstructural arrangement with 0.05fH H=  shows that the ex-
act critical load level ct  is scarcely influenced by the relative crack 
length, as a matter of fact a less deviation from the bonded case, whose 
critical load levels are independent of the relative crack length, is shown 
especially in the case of 0%eC =  where ct  turns out to be coincident 
with CB

ct . Finally the above results show that the influence of crack con-
tact interface contributions becomes more significant as /CL L  in-
creases and eC  decreases, thus highlighting the strong role of crack con-
tact interface contributions and the importance of adopting a full finite 
deformation formulation rather than simplified ones for an actual pre-
diction of the failure behavior of a defected composite solid. 
 



 

4 
 

Multiscale analysis of composite 
materials at finite deformations 

In this chapter two different multiscale modeling approaches are pre-
sented for the analysis of the macroscopic behavior of composite mate-
rials subjected to general loading conditions involving large defor-
mations. Both multiscale approaches have been suitably validated 
through comparisons with reference direct numerical simulations, by 
which the ability of the proposed multiscale approaches to determine 
the macroscopic behavior in complex microstructured composite mate-
rials has been demonstrated.  
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Section 4.1 deals with the theoretical background of the nonlinear ho-
mogenization problem in periodic composite materials subjected to 
large deformation, focusing in Section 4.1.2 on the theoretical formula-
tion of the microscopic stability condition.  In Section 4.2 a description 
of the modeling techniques employed is given focusing the attention on 
the couple-volume element methods in Section 4.2.1 and on the novel 
hybrid proposed multiscale approach in Section 4.2.2. Then from the 
numerical results point of view, Section 4.3 is devoted to the numerical 
applications for the microscopic stability analysis in continuously and 
discontinuously reinforced composite materials, whereas Section 4.4 is 
devoted to the investigation of the mechanical behavior of bioinspired 
composite materials in terms of flexibility and penetration resistance. 

4.1 Theoretical formulation of microscopic stability for 
periodic composite solids 

The theoretical formulation of the nonlinear homogenization problem 
reported in Section Fig. 4.1 is here applied in absence of pre-existing 
crack with reference to the perfectly periodic heterogeneous solids sub-
jected to general loading conditions involving large deformations in the 
context of the multiscale problems. 
A perfectly periodic microstructured solid described by a unit cell at-
tached to a generic material point X  of the corresponding homogenized 
solid, as depicted in Fig. 4.1. The deformation of the considered micro-
structure is defined by the nonlinear mapping ( ) ( ): iV V→x X , relating 
points X  of the initial microstructural configuration ( )iV  to points x  of 
the current one, V . The deformation gradient at the material point X  
is ( ) ( )= ∂ ∂F X x X X , whereas the corresponding displacement field is 

( ) ( )= −u X x X X .  
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4.1.1 Nonlinear homogenization problem: micro-macro 
coupling and macroscopic response 

Each microstructural constituent is characterized by a rate independent 
material model, whose constitutive response at a microscopic point X  
is described by an incrementally linear constitutive law: 

 ( , )[ ]R
R = T C X F F , (4.1) 

relating the rate of deformation gradient tensor, F , to the rate of the 
first Piola-Kirchhoff stress tensor, RT , via the nominal tangent moduli 
tensor RC . Moreover, in the case of hyperelastic micro-constituents, the 
nominal stress tensor and the corresponding moduli tensor can be de-
fined, respectively, as the first and second derivatives of the strain en-

 

Fig. 4.1 Homogenized solid and the corresponding unit cell in undeformed 
and deformed configurations attached to a generic material point X . 
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ergy density function ( , )W X F  with respect to F .  As commonly as-
sumed in the context of first-order homogenization schemes, the ho-
mogenized constitutive response of the considered microstructure relies 
on an equilibrium state which neglects body forces, resulting in a diver-
gence-free local stress field RT  in ( )iV . 
In agreement with what reported in Section 3, the following expressions 
for the macroscopic nominal stress tensor RT  and the macroscopic de-
formation gradient tensor F  are introduced:  

 
( ) ( )

( ) ( ) ( )
( ) ( )

1 1( )  ,   ( )  
i i

R R i i i
i iV V

dS dS
V V∂ ∂

= ⊗ = ⊗∫ ∫T t X X F x X n , (4.2) 

with ⊗  denoting the tensor product, whereas Rt  and ( )in  are the trac-
tion field and the outward normal, respectively, both evaluated at points 
X  belonging to the external boundary ( )iV∂  of the unit cell. The micro-
scopic deformation ( )x X  can be additively split into a linear part, FX
, corresponding to a homogeneous deformation, and a correction part, 

( )w X , usually named as fluctuation field, being associated with non-
homogeneous deformations as follow:  

 ( ) ( )= +x X F X w X  . (4.3) 

By applying Eq. (4.2)2, the following integral constraint turns to be re-
quired for the fluctuation field: 

 
( )

( ) ( )( )  
i

i i

V

dS
∂

⊗ =∫ 0w X n . (4.4) 

According to the periodic nature of the composite microstructure, the 
constraint (4.4) can be satisfied by enforcing periodic fluctuations: 

 ( ) ( )+ −=w X w X   (4.5) 
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 leading to periodic deformation and antiperiodic tractions on the unit 
cell boundary, i.e. 

( )
( ) ( ) ( ( ) )( ),

  on 
( ) ( ),

i
R R

V
+ − + −

+ −

 − = − − ∂
= −

u X u X F X I X X
t X t X

, (4.6) 

where ( ),+ −X X  is the couple of points belonging to the opposite sides 
of the unit cell boundary, denoted as ( )iV +∂  and ( )iV −∂  with outwards nor-
mal unit vectors + −= −n n  at two associated points ( )iV+ +∈∂X  and 

( )iV− −∈∂X , respectively, obtained by two translations parallel to the di-
rections of the periodicity vectors spanning the undeformed unit cell 

( )iV . The incremental homogenized response of the given microstruc-
ture is determined considering a quasi-static loading path ( )tF  starting 
from its undeformed configuration ( )iV , where 0t ≥  represents a load 
parameter increasing monotonically with increasing prescribed macro-
scopic load and the given microstructure in the current configuration 
occupies the region V . The associated equilibrium solution at the given 
macro-deformation gradient can be obtained by solving the following 
variational problem defined over the unit cell: 

 
( )

1
( ) ( )#( , )  0,   ( )

i

R i i

V

dV H Vδ δ+∇ ⋅∇ = ∀ ∈∫ T X F w w w , (4.7) 

where 1
( #)( )iH V  is the Sobolev space of vector valued functions which 

are periodic over the unit cell ( )iV , the subscript #  appended to a region 
denoting the assumed periodicity properties on its boundary. It is worth 
noting that arbitrary rigid body motions can be prevented by introduc-
ing additional constraints on the unknown fluctuation field. The equi-
librium state obtained via the Euler-Lagrange equations associated with 
the variational formulation (4.7) is characterized by anti-periodic trac-
tions on the external boundary ( )iV∂ . Moreover, if uniqueness of the 
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equilibrium solution is assumed for each value of the loading parame-
ter, the macroscopic loading path ( )tF  is named as principal solution 
path.  
The incremental homogenized response of the microstructure can be 
derived after solving the following incremental equilibrium problem 
defined over the same unit cell subjected to an incremental change in 
the macroscopic deformation gradient, denoted as ( )tF : 

 
( )

1
( ) ( #)( , )[ ]  0,   ( )

i

R
i i

V

dV H Vδ δ+∇ ⋅∇ = ∀ ∈∫ 

  C X F F w w w , (4.8) 

where w  is the unknown incremental fluctuation field induced by ( )tF
, and RC  denotes the nominal moduli tensor, whose spatial distribution 
inside the unit cell is obtained after solving the microscopic problem 
(4.7). Additional displacement constraints are introduced into the vari-
ational problem (4.8) in order to exclude arbitrary incremental rigid 
body motions. The incremental equilibrium state obtained via the Euler-
Lagrange equations associated with Eq. (4.8) is characterized by anti-
periodic incremental tractions on ( )iV∂  and vanishing incremental trac-
tions on ( )iH∂ . After solving the incremental problem (4.8) for the mi-
crostructure, its homogenized constitutive response is writable as 

( )[ ]R
R = T C F F , where the homogenized tangent moduli tensor ( )RC F  

can be expressed by the following relation, obtained by exploiting the 
fundamental identity R R= T T  (see [161] for details about its derivation): 

 
( )

( )
( )

1( ) ( , )[ ] 
i

R R kl kl
ijkl ijmn mn mn i

i V

C C I w dV
V

= +∇∫ F X F , (4.9) 

where kl
w  is the incremental fluctuation field induced by unit compo-

nents of the incremental macroscopic deformation gradient kl=F I  
(with kl

mn mn klI δ δ= ). 
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It is important to recall here that Eq. (4.9), obtained via the unit cell-
based homogenization, is strictly valid only if the microstructural equi-
librium configuration is incrementally stable, otherwise the homoge-
nized constitutive response must be computed considering a larger rep-
resentative volume element (RVE), made of a possibly infinite number 
of unit cells, in order to capture all possible unstable deformation pat-
terns. 

4.1.2 Microscopic stability conditions 

In the case of hyperelastic micro-constituents with nonconvex strain en-
ergy function ( )W F , the homogenized strain energy function ( )W F  
can be obtain by solving the following minimization problem: 

 ( )1
)

)
#(

(

( )
( ) ( )

1( ) inf min ,  
N

i N
i

iNk N H k V i k V

W W dV
k V∈ ∈

    = +∇  
    

∫w
F X F w , (4.10) 

defined over all possible ensembles of [0, ]N Nk k=  unit cells, with 
{2,3}N =  and k  an arbitrary integer. 

In the presence of eventual micro-buckling mechanisms, the solution of 
the minimization problem (4.10) allows to determine the size of the rep-
resentative volume element associated with the fluctuation field captur-
ing the minimizing buckling mode. However, the direct application of 
Eq. (4.10) may require a huge computational effort, connected to the 
need of investigating a full space at the microscopic scale. Therefore, a 
one-cell homogenization is preferable for numerical applications, ob-
tained by taking 1k =  in Eq. (4.10). In general, such a homogenization 
problem provides only an upper bound for the macroscopic strain en-
ergy, denoted as ( )1W F , which becomes coinciding with the actual 
value ( )W F  only in the absence of micro-instabilities. 
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It can be shown that the region of validity for one-cell homogenization, 
i.e. the region of the macro-strain space for which ( ) ( )1W W=F F , can 
be found in a rigorous manner by means of a microstructural stability 
analysis. For a given RVE subjected to a prescribed macro-deformation 
F , such a microstructural stability condition relies on the positive def-
initeness of the following stability functional, written in a full Lagran-
gian setting: 

 
( )

( )( , ) ( , )[ ( )] ( ) 
N

i

R
i

k V

S dV= +∇ ∇ ⋅∇∫  F w C X F w w X w X , (4.11) 

for all incremental fluctuations w  satisfying the periodicity conditions 
on the RVE boundaries, with the additional constraint ( )∇ ≠ 0w X . It 
follows that the critical load parameter ct  associated with the primary 
instability is detected when the minimum eigenvalue of ( , )S F w , taken 
over all admissible incremental fluctuations periodic on the ensemble 
of Nk   unit cells, first vanishes, namely: 

 ( ) ( )( )

)

#
1

( )

(

( ) ( )

inf min 0
 N

i

N
i

c
c

k N H k V i

k V

S t ,
t

dV∈ ∈

  
    Λ = =  

∇ ⋅∇  
    

∫



 

w

wF
w w

. (4.12) 

At this load, the initially stable and unique principal solution loses its 
uniqueness due to the existence of eigenmodes (i.e. non-trivial incre-
mental periodic solutions to the homogeneous incremental equilibrium 
problem). Therefore, the microscopic stability region, defined as 

| ( ( )) 0t tΛ >F  and characterized by an identical deformation for all the 
unit cells inside the considered RVE, necessarily coincides with the re-
gion of validity for one-cell homogenization. 
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Finally, it is worth recalling that a classical macroscopic stability anal-
ysis, based on the strong ellipticity condition for the homogenized mod-
uli tensor, although being less computationally expensive in practical 
numerical applications, is not accurate in general, providing a non-con-
servative estimation of the primary microscopic instability load in the 
occurrence of instability modes of local kind (see [162–169] for addi-
tional details). 

4.2 Description of the proposed multiscale approaches 

In this section, in order to delineate which class of multiscale approach 
is more effective in the determination of the macroscopic behavior of 
advanced composite materials (fiber reinforced and nacre-like compo-
sites) in a large deformation context, more information about the com-
putational implementation of the proposed multiscale approaches are 
given. Specifically, a semiconcurrent model called coupled-volume ap-
proach has been adopted to evaluate the microscopic instability critical 
load factor in composite materials reinforced with long fibers; later, a 
novel hybrid multiscale model has been proposed, firstly, to evaluate 
the microscopic instability in composite materials with staggered mi-
crostructure, secondly, to investigate the mechanical behavior of bio-
inspired nacre-like composite materials in terms of flexibility and pen-
etration resistance. 

4.2.1 Coupled-volume multiscale approach (semiconcurrent) 

Generally speaking, the concept behind the semiconcurrent models can 
be summarized in 4 steps:  
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(i) macrodomain computation: the heterogeneous material is de-
scribed as homogeneous with effective properties without the ne-
cessity to assume constitutive assumptions: 

(ii) downscaling: once the macroscopic domain is discretized, at every 
Gauss point (integration or quadrature point) is linked a micro-
scopic boundary value problem and the information about the mac-
roscopic gradient deformation field (input) is transferred into the 
microscopic domain in terms of displacement boundary conditions; 

(iii) microdomain computation: at the microscopic level, each micro-
constituent of the heterogeneous material is described by a consti-
tutive assumption allowing to solve the n boundary value problems 
linked to the n Gauss points in different manners (FEM, Voronoi 
cell FEM, Fast Fourier Transforms etc.) 

(iv) upscaling: the homogenization procedure is performed on the mi-
croscopic level for each iteration needed to the solver to achieve 
the macroscopic convergence in terms of macroscopic stress tensor 
and macroscopic tangent moduli tensor, which results in the ho-
mogenized relations that has to transferred to the macroscopic 
level. 
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The proposed semiconcurrent multiscale approach for the microstruc-
tural stability analysis of locally periodic composite materials relies on 
a coupled-volume multiscale model [170] according to which two 
nested equilibrium problems are solved at the same time (as sketched 
in Fig. 4.2). The approach leaves the concept that a finite microscopic 
cell size should be linked to an infinitely small macroscopic material 
point and adopting the concept that the macroscopic and the micro-
scopic mesh sizes are uniquely linked following the rule that the mac-
roscopic element size is equal to the microscopic cell size. This semi-
concurrent approach is able to solve the mechanical problem associated 
to the macroscopic model in absence of an explicitly defined macro-
scopic constitutive law, and it is also effective to investigate the behav-
ior of materials subjected to strong nonlinearities for which the RVE 
cannot be found. Based on the information given above, about the sem-
iconcurrent multiscale modeling strategy, the implementation of the 
coupled-volume multiscale approach may be described by the steps 
which has been graphically summarized in Fig. 4.3.The resulting two-

 

Fig. 4.2 Schematic of a coupled-volume multiscale approach belonging to the 
class of semiconcurrent models. 
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scale equilibrium problem, written in an incremental form, reads as fol-
lows: 

find 1
) ( ) ( #

1
( )( ), ( )i i iH V H V V∈ ∈ ×

u w  such that: 

( ) ( ) ( )

( )

1
( ) ( ) ( ) ( )

( )

Coarse-scale problem

   ( )

[ ]  0                           

Fine-scale problem

i i i

i

R i i R i i

V V V

R
i

V

dV dV dS H V

dV

δ δ δ δ

δ δ

∂

⋅∇ = ⋅ + ⋅ ∀ ∈

+∇ ⋅∇ = ∀

∫ ∫ ∫

∫







   



  



T u f u t u u

C F w w )#
1

(( )iH V∈w
, (4.13) 

where 1
( )( )iH V  is the Sobolev space of vector valued functions defined 

on ( )iV  and satisfying the homogeneous displacement-type conditions 
on its boundary, whereas 1

( ) ( #)( )i iH V V× is the Sobolev space of vector 
valued functions defined over the Cartesian product ( ) ( )#i iV V×  and sat-
isfying the periodic fluctuation conditions over the unit cell boundaries. 
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Fig. 4.3 Multiscale scheme implementation for the coupled volume multiscale 
method. 
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Moreover, f  and R
t  denotes respectively the body and surface incre-

mental forces externally applied on the macroscopic body. 
The two-scale incremental equilibrium problem (4.13) turns to be two-
way coupled. Indeed, the unit cell problem is driven by the incremental 
macroscopic deformation gradient F . Once the boundary value prob-
lem is solved for the unit cell, the rate of the macroscopic first Piola-
Kirchhoff stress R

T  is computed via the first of Eqs.(3.3) The infor-
mation transfer between the two scales is sketched in Fig. 4.3. It is worth 
noting that the choice of using the deformation gradient F  (together 
with its work-conjugate stress measure RT ) rather than the Green-La-
grange strain (2)E  (and its work-conjugate stress measure (2)T ) to drive 
the homogenization process is convenient for prescribing the periodic 
boundary conditions (BCs) on the RVE. 

4.2.2 Hybrid hierarchical/concurrent multiscale approach 

The key idea of the proposed hybrid hierarchical/concurrent multiscale 
approach is to combine a hierarchical and a concurrent approach over-

 

Fig. 4.4 Schematic of the hybrid hierarchical/concurrent multiscale approach. 
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coming the limitation given by semiconcurrent approaches in the cap-
turing of boundary layer effects, localization of deformation, coales-
cence of microcracks and other kind of nonlinearities. As shown in Fig. 
4.4, the hybrid multiscale method can be implemented taking advantage 
from a concurrent approach identifying the so-called critical domains 
in which is employed an explicit modeling of the microstructure (fine 
scale domain) and the associated nonlinear phenomena (material, geo-
metrical, damage, friction, etc.), and taking advantage from a hierar-
chical approach implementing, in the remaining domain, an homoge-
nized constitutive law in the form of nonlinear microscopically-based 
database. Usually, the critical domains are characterized by a micro-
structural evolution or some other notable geometrical or material non-
linearities which requires a numerical model able to describe all its mi-
croscopic phenomena leading to a more considerable computational ef-
fort; as a matter of fact, the identification of the regions where the fine 
scale is required and regions where it is not is the most important step. 
Contrary to the coupled-volume multiscale approach in which each 
RVE linked at the macroelement is solved (as boundary value problem 
BVP) for each time step of the macroscale problem, in the hybrid mul-
tiscale approach this step has been now replaced with the application of 
a microscopically-based nonlinear database extracted in a prepro-
cessing step. Thus, as explained in Section 4.2.2.1 the macroscopic 
stress and the macroscopic tangent moduli tensor are stored in a nonlin-
ear database in the form of unstructured point cloud and they are trans-
ferred in the macroscopic model by using an interpolation method. 
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Fig. 4.5 Multiscale scheme implementation for the hybrid hierarchical/con-
current multiscale method. 



Multiscale failure analysis of composite materials 137 

The procedure adopted to implement the hybrid multiscale approach 
can be summarized in the following steps and has been graphically sum-
marized in Fig. 4.5: 
(i) macrodomain computation: the heterogeneous material is split in 

two subdomains: critical and noncritical. In the critical subdomains 
every heterogeneity is modeled explicitly together with the nonlin-
ear phenomena acting at the microscopic scale and assuming as 
known their constitutive properties. In the noncritical subdomains 
there is not the necessity to assume constitutive assumptions be-
cause this information will be extracted from a nonlinear micro-
scopically-based database. 

(ii) Downscaling: once the macroscopic subdomains are discretized, 
compatibility and momentum balance are imposed on the common 
interface between critical and noncritical subdomains and then, a 
representative volume element is identified to evaluate the homog-
enized behavior of the noncritical subdomains. 

(iii) microdomain computation and database extraction: at the micro-
scopic level, each microconstituent of the representative volume 
element is described by a constitutive law. The RVE is analyzed to 
create a numerical data point in the macroscopic deformation space 
parametrized by using spherical coordinates and spaced by radial 
strain paths; the macroscopic stresses are evaluated for every time 
step and stored in a database matching the information on strains 
with information on stresses and tangent moduli. 

(iv) upscaling: the extracted database is then incorporated in noncritical 
subdomains of the macroscopic model. During the procedure of 
solving the macroscopic problem, the microscopically-based data-
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base is interrogated to extract the information in terms of macro-
scopic stress tensor and macroscopic tangent moduli tensor until 
the macroscopic convergence is reached. 

More information about the step (iii) are given in the following section.  

4.2.2.1 Microscopically-based database extraction 

The microscopically-based database represents a constitutive equation 
that receives in input a macroscopic strain tensor and gives in output a 
macroscopic stress tensor. Three alternative strategies can be adopted 
to extract the database: 
i) the first one is based on the macroscopic First-Piola Kirchhoff ten-

sor RT  defined as a function of the macroscopic gradient defor-
mation tensor F : 

 ( )( )R R t=T T F .  (4.14) 

This strategy leads to a simple definition of the RVE boundary con-
ditions (as reported in Section 1.3), but in a planar setting, F  is a 
tensor whose components are: 11F , 12F , 21F  and 22F ; for this rea-
son, a numerical data point database, based on the macroscopic gra-
dient tensor, must be parametrized on a four-dimensional space 
leading to an high computationally effort and leading also to the 
adoption of complex interpolation methods; 

ii) the second one is based on the macroscopic Second-Piola Kirch-
hoff tensor (2)T  defined as a function of its conjugate strain so-
called Green-Lagrange strain tensor (2)E : 

 ( )(2) (2) (2) ( )t=T T E .  (4.15) 
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This strategy leads to a complex definition of the RVE boundary 
conditions which are classically written in terms of the macro-
scopic gradient deformation tensor. In a planar setting, (2)E is a 
symmetric tensor whose component are: 11E , 12 21E E= , 22E  and, as 
a consequence, a numerical data point based on the macroscopic 
Green-Lagrange strain tensor can be parametrized on a three-di-
mensional space leading to a lower computational effort compared 
to the first strategy. However, the complexity involved in the im-
position of boundary conditions makes this strategy unsuitable. 

iii) the third strategy is based on the space of the macroscopic right 
stretch tensor U  defined as a function of a restricted First-Piola 
Kirchhoff stress tensor '

RT  leading to the extraction of the so-called 
reduced database: 

 ( )' ' ( )R R t=T T U .  (4.16) 

This strategy is able to take the advantages of the first two proposed 
strategies, overcoming their complexities, by exploiting the objec-
tivity property of the macroscopic strain energy function W   and 
stating that the constitutive properties of the homogenized material 
are not influenced by the rotational part of the macroscopic defor-
mation. This statement is based on the following relation [98]: 

 ( ) ( )    OrthW W += ∀ ∈QF F Q  , (4.17) 

where W  is defined as: 

 ( )
( )( )

1 ,
ii V

W = W dV
V ∫ X F  (4.18) 
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and Q  is an arbitrary proper orthogonal tensor. Eq. (4.17) is a di-
rect consequence of the assumed objectivity of W and leads to the 
following form of the constitutive law: 

 ( ) ( )R'=RT F RT U  , (4.19) 

where '
RT  is the restriction of ( )RT F  to positive-definite symmetric 

tensors (Psym), U  is the macroscopic right stretch tensor involved 
with the polar decomposition F = RU  and R  is the macroscopic 
rotation tensor. Since the response function ( )RT F  is completely 
determined by its restriction to positive-definite symmetric tensors, 
during the database creation phase we can assume that =R I  and 

=F U  in order to determine the restricted response function 
( )R'T U . Definitely, in a planar setting, U  is a symmetric tensor 

whose component are: 11U , 12 21U U= , 22U  and, as a consequence, 
the reduced database can be parametrized on a three-dimensional 
space by using spherical coordinates . 

 
The third strategy represents the most suitable for a greater computa-
tional savings. As shown in Fig. 4.6, the three-dimensional strain space, 
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defined by  the axis 11U , 12U  and 22U , is scanned fixing the radial di-
rection (by varying θ  from 0° to 180° and ϕ  from 0° to 360°) and in-
crementing the time-like parameter t. The macroscopic right stretch ten-
sor given as input at the RVE boundary value problem is defined by the 
following matrix:  

 
1 cos sin cos 0

( ) cos 1 sin sin 0
0 0 1

t t
t t t

ϕ θ θ
θ ϕ θ

+ 
 = + 
  

U  . (4.20) 

Each point corresponding to the restricted macroscopic first Piola-
Kirchhoff stress is evaluated in a time step t of the imposed radial load-
ing path. The reduced database representing the nonlinear homogenized 

 

Fig. 4.6  A 11U - 12U - 22U  strain space parametrized by spherical coordinates 
and leading to radial loading paths. 
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constitutive law can be hence extracted by imposing an appropriate 
number of radial loading paths and time step ( t∆ ). The database ex-
traction procedure was implemented via a MATLAB script integrated 
with the finite element code COMSOL Multiphysics 5.4 by means of a 
parametric sweep able to swept θ  and ϕ   through a prefixed range of 
values. Since the variational formulation of the adopted numerical en-
vironment is written in terms of the second Piola-Kirchhoff stress, 

(2) 1
R

−=T F T . and the Green-Lagrange strain, ( ) / 2T −E = F F I , before 
linking the reduced database to the noncritical subdomains, a database 
transformation step is needed. For this reason, the previously discussed 
reduced database must be transformed using the following relations: 

 ( )21
2= −E U I  , (4.21) 

 (2) 1
R'−=T U T  , (4.22) 

leading to a work-conjugated stress/strain database function of E  and 
(2)T , as shown in Fig. 4.7. It worth noting that the obtained macroscopic 

 

Fig. 4.7 Example of reduced database transformation. 
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stress will be also used to compute the tangent constitutive matrix by 
using the following relation:  

 
(2)

(2) ∂
=

∂
TC
E

, (4.23) 

where (2) /∂ ∂T E  is a fourth-order tensor whose component are 
(2) (2) / hkijhk ijC T E∂ ∂= . The transformed database is implemented by means 

of an external material routine and a linear interpolation function is 
adopted to interpolate the macro-stress/macro-strain database that is 
loaded in the model as unstructured file data in which the values of the 
function are matched in a discrete generic point cloud. 

4.3 Numerical microscopic stability analysis 

The above described multiscale approaches are here adopted in order to 
compute sequentially the principal solution path for the macroscopic 
models and the minimum eigenvalue of the microscopic structural sta-
bility functional, respectively, with the aim to perform the microscopic 
stability analysis of microstructured solids as described in Section 4.2. 
The multiscale strategies have been applied to differently arranged fi-
ber-reinforced composite materials subjected to quasi-static and mono-
tonically increasing macroscopic loads, in order to investigate their ef-
fectiveness in terms of both numerical accuracy and computational ef-
ficiency. Three numerical examples have been considered, the first one 
, reported in Section 4.3.1, being solved by means of the semi-concur-
rent multiscale approach described in Section 4.2.1 and the latter two, 
in Section 4.3.2, being analyzed via the novel hybrid hierarchical/con-
current multiscale strategy described in Section 4.2.2. 
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4.3.1 Application of the semi-concurrent multiscale approach 

The first multiscale application considers a composite material rein-
forced with continuous fibers arranged according to a unidirectional 
pattern. The associated layered microstructure is made of two sequen-
tially repeated homogeneous layers, the thinner one representing the re-
inforcement and the other standing for the matrix, and it is characterized 
by the periodic unit cell sketched in Fig. 4.8. Moreover, the material 
interface between the two bulk phases is assumed to be perfect, mean-
ing that no displacement discontinuity is allowed to occur. The consti-
tutive law associated to the microscopic constituents is the neo-
Hookean one and the corresponding strain energy density for plane 
strain deformations is of the following form: 

 [ ] ( )22 2ln 1   , 1,2
2 2

kW F F J Jαβ αβ
µ µ α β−′ ′= − − + − =   (4.24) 

where J’ is the determinant of the 2D deformation gradient tensor 
whose components are Faβ, μ is the shear modulus of the solid at zero 
strain and the parameter k plays the role of an equivalent 2D bulk mod-

 

Fig. 4.8 Microgeometrical arrangement of periodic RVE corresponding to a 
unidirectional fiber reinforced composite material. The gray area represents 
the soft material (matrix) and the gray area represent the stiff material (fiber). 
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ulus governing the material compressibility. The dimensions of the con-
sidered unit cell in the 1X  and 2X  directions (in the reference configu-
ration), denoted as L and H, are chosen such that their ratio L H  is 
equal to 3 and L is equal to 30 µm, whereas the thickness of the fiber 
(i.e. the reinforcement layer), indicated with Hf, is set as 0.025H , as-
sociated with a fiber volume fraction of 2.5%. The dimension of the 
macroscopic model in the 1X  and 2X  directions are 240 μmL =  and 

40 μmH = , respectively. The relative stiffness ratio f mµ µ  between 
fiber and matrix is assumed to be equal to 200, with 807 MPamµ = , 
being the shear modulus at zero strain of the matrix material. The bulk 
modulus is defined by k and is assumed to be equal to 10 µ  for both 
materials. 
As shown in Fig. 4.9, the coupled-volume multiscale approach has been 
implemented to model a cantilever composite beam reinforced with 
continuous fibers and subjected to concentrated vertical force at the free 
end of the beam leading to a macroscopic displacement t refu  with 

 1 μmrefu = . A convergence analysis, reported in Fig. 4.10, to the RVE 
size has been incorporated in the numerical procedure to assess the local 

 

Fig. 4.9 A cantilever composite beam reinforced with continuous fibers and 
subjected to concentrated vertical force at the free end of the beam leading to 
a macroscopic displacement reftu . 
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nature of the instability mode and, as a consequence, to verify the cor-
respondence between the repeated unit cell (RUC) and the representa-
tive volume element (RVE).  
The microscopic instability critical load factor has been firstly evalu-
ated by means of a graphical extrapolation on a force-displacement 
curve and, successively, by means of a rigorous microscopic stability 
analysis following the theoretical development reported in Section 4.1. 
To evaluate the accuracy and the effectiveness of the adopted multiscale 
model, the obtained results have been compared with the stability anal-
ysis performed on a direct numerical model based on the explicit dis-
cretization of the heterogeneities of the composite microstructure. In 
Fig. 4.11 the macroscopic multiscale model (MNS) is reported together 
with their linked microscopic representative volume elements (32 
RVEs) giving also more information about the mesh discretization and 
number of degrees of freedom involved (DOFs). Specifically, the 
adopted mesh of the macroscopic model involves 32 bilinear rectangu-
lar macroelements and 90 degrees of freedom, while the microscopic 
RVEs involves 2,160 bilinear rectangular elements and 4,592 degrees 
of freedom. In the figure is shown also the deformed configuration at 
the onset of microscopic instability induced by critical load factor MNS

ct  

 

Fig. 4.10 Convergence analysis to the RVE size incorporated in the numerical 
procedure. 
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and leading to a macroscopic vertical displacement  ( )MNS MNS
c c refu t t u= . 

In Fig. 4.12 the explicit model of the direct numerical simulation (DNS) 
is reported giving information about the number of degrees of freedom 
and showing the deformed configuration at the onset of the microscopic 
instability induced by critical load factor DNS

ct  and leading to a macro-
scopic vertical displacement  ( )DNS DNS

c c refu t t u= . Specifically, the 
adopted mesh involves 69,880 bilinear rectangular elements and 
443,026 degrees of freedom. 

 

Fig. 4.11 Multiscale numerical simulations (MNS) on a cantilever beam at the 
onset of microscopic instability corresponding to the critical load factor MNS

ct  

 

Fig. 4.12 Direct numerical simulations (DNS) on a cantilever beam at the on-
set of microscopic instability corresponding to the critical load factor DNS

ct . 
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It is worth noting that both analyses predict the same cell (i.e. the upper 
left one) as the critical cell undergoing local instability. 
The graphic extrapolation of the critical load factors based on both the 
numerical models are reported in Fig. 4.13, in which on the left side 
(Fig. 4.13a) the results of a multiscale numerical simulation (MNS) are 
shown, while on the right side (Fig. 4.13b) the results of a direct numer-
ical simulation (DNS) are shown. The force-displacement curve was 
obtained by plotting on the x-axis the local vertical displacement v  at 
the fiber-matrix interface of the most compressed unit cell involved by 
local instability, normalized with respect to the height of the unit cell H 
( /v H ) and by plotting on the y-axis the macroscopic vertical displace-
ment ( )u t  normalized with respect to the macroscopic model length L
( ( ) /u t L ). With reference to Fig. 4.13a, the normalized critical load 
factor obtained by using the semiconcurrent multiscale method is equal 
to ( ) / 0.164MNS

cu t L =  leading to a critical load factor 39.8MNS
ct = ; while 

 

Fig. 4.13 Comparison between the graphical extrapolation of the instability 
critical load factor of a cantilever beam obtained by using a multiscale numer-
ical simulation a) and a direct numerical simulation b). 
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with reference to Fig. 4.13b, the normalized critical load factor obtained 
by using an explicit discretization of the heterogeneous microstructure 
is equal to ( ) / 0.168DNS

cu t L =  leading to an instability critical load fac-
tor 40.3MNS

ct = . Comparing the results in terms of percent variance that 
is defined by the following relation: 

 

Fig. 4.14 Normalized minimum eigenvalue plotted as a function of the time-
like parameter t giving the critical load factor extracted by means of a rigorous 
microscopic instability analysis on a cantilever beam. 
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MNS DNS

DNS% %c c

c

t te
t

−
= ,  (4.25) 

a relative percentage error equal to -1.24% is obtained. It confirms a 
good numerical accuracy of the adopted multiscale approach. Subse-
quently, as shown in Fig. 4.14,  the critical load factors have been eval-
uated also by performing a microscopic stability analysis, comparing 
also the related mode shapes. The figure clearly shows that, with refer-
ence to the direct numerical analysis (blue line), a global instability 
mode is related to low value of the load, highlighting the competition 
between global and local instability modes at increasing load factor. On 
the contrary, with reference to a multiscale numerical simulation based 
on the semiconcurrent multiscale approach (red line), the same behavior 
is not captured since this set of semiconcurrent approaches is not able 
to evaluate boundary layer effect given by external constraints. In addi-
tion, as can see in the zoom of the below side of the figure, it worth 
noting that the minimum eigenvalue tends to zero without attaining this 
value, due to the presence of imperfections, and a linear extrapolation 
technique has been adopted to obtain this estimation. Specifically, re-
spectively for the semiconcurrent multiscale numerical simulation and 
the direct numerical simulation, the following critical load factors have 
been estimated MNS 40ct =  and DNS 40.7ct = . To summarize, resulting a 
relative percentage error less than 2% ( % 1.72%e = − ), both the methods 
highlight a good prediction of the critical load factor in the case of mi-
croscopic instability, but the same accuracy is not exhibited in the pre-
diction of the instability mode shapes because of the difficulty of the 
semiconcurrent multiscale approaches to account for boundary layer ef-
fects. 
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4.3.2 Application of the hybrid multiscale approach 

The two following multiscale applications considers a composite mate-
rial reinforced with discontinuous fibers arranged according to a stag-
gered pattern. The associated microstructure, characterized by the peri-
odic unit cell sketched in Fig. 4.15, is made of two materials, the stiffer 
one representing the reinforcements in the form of elongated particles 
or short fibers and the softer one standing for the matrix. The constitu-
tive law characterizing the mechanical behavior of the microconstituent 
is the same of the first application reported in Section 4.3.1, see 
Eq.(4.24), together with the associated material parameters. The dimen-
sions of the considered unit cell in the 1X  and 2X  directions are de-
noted respectively by ( ) ( )100 2 /f f fH L H L V= ⋅ ⋅ ⋅ ⋅  and 400 μmL = , 
whereas the length of the short fibers is indicated with Lf  = 0.7L and the 
thickness is denoted by Hf = Lf / 50, associated with a fiber volume frac-
tion of 12%. The dimensions of the macroscopic model in the 1X  and 

2X  directions are 6400 μmL =  and 915 μmH = , respectively. The 
relative stiffness ratio f mµ µ  between fiber and matrix is assumed to 

 

Fig. 4.15 Microgeometrical arrangement of periodic RVE corresponding to a 
discontinuously fiber reinforced composite material with a staggered pattern. 
The gray area represents the soft material (matrix) and the gray area represent 
the stiff material (short fibers). 
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be equal to 20, with 807 MPamµ = , being the shear modulus at zero 
strain of the matrix material. The matrix bulk modulus is defined by 

2m mk µ=   and the fiber bulk modulus is defined by 10f fk µ= . 
In the first application, reported in Fig. 4.16, the novel hybrid multiscale 
approach has been implemented to model a simply supported beam re-
inforced with staggered discontinuous fibers and subjected to a distrib-
uted load on the whole elongation of the beam equal to ref t P  with 

7
ref 1 N/m .P e=   

As in the previous application of Section 4.3.1, the microscopic insta-
bility critical load factor has been firstly evaluated by means of a graph-
ical extrapolation on a force-displacement curve and, successively, by 
means of a rigorous microscopic stability analysis comparing then both 
the results with a direct numerical simulation.  
The macroscopic multiscale model (MNS) is reported in Fig. 4.25 to-
gether with the number of degrees of freedom contained in the model: 
80,564. In the figure is shown also the deformed configuration at the 
onset of microscopic instability induced by a macroscopic distributed 
load  .MNS

refct P In Fig. 4.26 the explicit model (DNS) is reported in the 
deformed configuration at the onset of the microscopic instability that 
is induced by a macroscopic distributed load  .DNS

refct P  As expected, by 

 

Fig. 4.16 A simply support composite beam reinforced with staggered discon-
tinuous fibers and subjected to a distributed load reftP . 
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using an explicit discretization of the microstructure a considerably 
high number of degrees of freedom is involved: 1,134,136 leading to 
unpracticable computational cost.  
The critical load factors are firstly determined by means a graphic ex-
trapolation performed on the force-displacement curves. Fig. 4.19 illus-
trates the graphic extrapolations performed respectively on the mul-
tiscale model, Fig. 4.19a, and on the direct model, Fig. 4.19b. On the x-
axis is plotted the displacement * meanv v v= −  normalized with respect to 
the height of the unit cell H ( */v H ) , whereas on the y-axis is plotted 

 

Fig. 4.17 Multiscale numerical simulations (MNS) on a simply supported 
beam at the onset of microscopic instability corresponding to the critical load 
factor MNS

ct . 

 

Fig. 4.18 Direct numerical simulations (DNS) on a simply supported beam at 
the onset of microscopic instability corresponding to the critical load factor 

DNS
ct . 



154  Chapter 4 

the load factor t; where v represents the vertical displacement the fiber-
matrix interface of the most compressed unit cell involved by local in-
stability and meanv  represents the mean of the vertical displacement in 
the midsection of the beam.  
With reference to Fig. 4.19a, the critical load factor obtained by using 
the hybrid multiscale method is equal to MNS 2.26ct = ; while with refer-
ence to Fig. 4.19b, the critical load factor obtained by using an explicit 
discretization of the heterogeneous microstructure is equal to 

DNS 2.25ct = , leading to a relative percentage error equal to % 0.44%.e =  
The good agreement between MNS and DNS results confirms the good 
accuracy of the hybrid multiscale method proposed in the determination 
of the local instability critical load factor in discontinuously reinforced 
composite materials subjected to large deformations. To investigate 
deeply the accuracy of the proposed multiscale method the critical load 
factors have been evaluated also by performing a rigorous microscopic 

 

Fig. 4.19 Comparison between the graphical extrapolation of the instability 
critical load factor of a simply supported beam obtained by using a multiscale 
numerical simulation a) and a direct numerical simulation b). 
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stability analysis, reported in Fig. 4.20, comparing also the related crit-
ical mode shapes.  
From this figure it can be seen that, contrarily to the first application, 
with reference to both the direct numerical analysis (blue line) and the 

 

Fig. 4.20 Normalized minimum eigenvalue plotted as a function of the time-
like parameter t giving the critical load factor extracted by means of a rigorous 
microscopic instability analysis on a simply supported beam. 
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multiscale numerical analysis (red line) a global instability mode is ob-
tained at low value of the load, highlighting in the both cases the com-
petition between global and local instability modes at increasing load 
factor and the good agreement between the shape of the global critical 
modes. 
In this application, also, it worth noting that the obtained local mode 
shapes are perfectly coincident and that the minimum eigenvalues tend 
to zero without attaining this value, due to the presence of imperfec-
tions. Thus, a linear extrapolation technique has been adopted obtaining 
the following critical load factor estimations: MNS 2.275ct =  and 

DNS 2.265ct = . With a relative percentage error equal to % 0.44%e = , 
both the investigated methods highlight a very good prediction of the 
critical load factor in the case of microscopic instability and a very good 
prediction of the critical instability mode shape, showing a more pro-
nounced accuracy in the capturing of the local instability mode than the 
global ones. These results demonstrate that the proposed hybrid mul-
tiscale method, contrarily to the semiconcurrent method, is able to ac-
count for boundary layer effects leading to more accurate results.  
In the second application, reported in Fig. 4.21, to further investigate 
the accuracy of the proposed multiscale approach under different load-
ing conditions, the hybrid strategy has been implemented to model a 
clamped plate reinforced with staggered discontinuous fibers and sub-
jected to a concentrated load acting on the top boundary in correspond-
ence of the midsection of the plate. The dimension of the considered 
unit cell in 1X  and 2X  directions are denoted as 

( ) ( )100 2 /f f fL L H L V= ⋅ ⋅ ⋅ ⋅  and 400μmH = , where 0.7fL L=  repre-
sents the length of the short fibers, / 50f fH L=  represent the thickness 
of the fibers, whereas 7%fV =  represents the volume fraction of the 
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stiffer phase. The dimensions of the macroscopic model in the 1X  and 
2X  directions are 1680 μmL =  and 2400 μmH = , respectively 

The relative stiffness ratio f mµ µ  between fiber and matrix is assumed 
to be equal to 10, with 807 MPamµ = , being the shear modulus at zero 
strain of the matrix material. The bulk modulus is defined by k and is 
assumed to be equal to 10 µ  for both materials. 
It worth noting that, if a material consisting of a thin stiff layer and a 
softer substrate is subjected to a sufficiently large compressive load, a 
buckling or wrinkling surface instability can occur, as shown in [172]. 
Because of the interest in the microscopic instability of the short fibers 
embedded in a soft matrix, to avoid this type of instability, a thin stiffer 
layer has been inserted on the top of the plate. The thickness of the layer 
is equal to / 2fH  and the material is characterized by linear elastic con-
stitutive response with elastic modulus equal to 200GPa and 0υ = . 

 

Fig. 4.21 A clamped plate composite beam reinforced with staggered discon-
tinuous fibers and subjected to a concentrated load reftP  acting in the middle 
of the plate. 
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The deformed configurations corresponding to the onset of microscopic 
instability obtained by means of a multiscale numerical simulation 
(MNS) and by means of a direct numerical simulation (DNS) are re-
spectively reported in Fig. 4.22 and Fig. 4.23. Also in this application, 

 

Fig. 4.22 Multiscale numerical simulation (MNS) on a clamped plate at the 
onset of microscopic instability corresponding to the critical load factor .MNS

ct  

 

Fig. 4.23 Direct numerical simulation (DNS) on a clamped plate at the onset 
of microscopic instability corresponding to the critical load factor DNS

ct . 
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it is clearly highlighted that the adopted hybrid multiscale approach 
leads to a model with a lower number of DOFs and, as a consequence, 
it leads to a lower computational effort. Specifically, the multiscale 

 

Fig. 4.24 Normalized minimum eigenvalue plotted as a function of the time-
like parameter t giving the critical load factors extracted by means of a rigor-
ous microscopic instability analysis on a clamped plate. 
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model is characterized by 105,818 DOFs, whereas the explicit model is 
characterized by more than 8 times the number of multiscale DOFs. 
The microscopic instability critical load factors, reported in Fig. 4.24, 
have been evaluated by means a microscopic stability analysis compar-
ing also the related critical mode shapes for low and high values of the 
load. The following results are obtained respectively by using a mul-
tiscale numerical simulation (MSN), MNS 2.976ct = , and a direct numer-
ical simulation (DNS), DNS 2.982ct = , leading to a relative percentage er-
ror equal to % 0.2%e = . Also in this application, the critical mode 
shapes, obtained by means of a MSN and a DNS, are perfectly coinci-
dent, thus, it demonstrates again the good accuracy of the proposed hy-
brid multiscale method in the prediction of the local and global mode 
shapes. 
Definitely, the obtained results are in good agreement with that obtained 
above in the first hybrid multiscale application, leading to the consider-
ation that the proposed hybrid multiscale approach has been shown 
more effective than the semiconcurrent approach for obtaining accurate 
prediction of the critical load levels associated to microscopic instabil-
ities and the related critical mode shapes, being able to account for ef-
fectively the boundary layer effect and, as a consequence, the competi-
tion between global and local critical mode shapes during the loading 
phase. 
 
 
 
 
 
 
 



Multiscale failure analysis of composite materials 161 

4.4 Investigation of the mechanical behavior of bio-
inspired nacre-like composite materials  

A numerical investigation of the mechanical behavior of staggered 
composites characterized by a bio-inspired nacre-like microstructure in 
a large deformation context is here performed. The bio-inspired mate-
rials, combining stiff and soft constituents at different length scales, ex-
hibit superior mechanical properties in comparison with conventional 
materials, for instance, the capacity to withstand significant stress and 
deformation providing high load-carrying capacity and stiffness. These 
results are focused on the prediction of both penetration resistance and 
flexibility of the composite material. To this end, the previously devel-
oped hybrid hierarchical/concurrent multiscale method has been here 
employed, being able to perform several parametric nonlinear analyses 
with very high numerical accuracy and low computational cost. In de-
tail, several results, giving more information about the influence of the 
main microstructural parameters on the macroscopic mechanical be-
havior, were obtained deducing how the main geometrical parameters 
(i.e. platelets aspect ratio and volume fraction) of inclusions can be ma-
nipulated to enhance the overall protecto-flexibility of bio-inspired na-
cre-like composites.  

4.4.1 Theoretical background of the RVE problem 

To describe the finite deformation of a continuous body, we introduce 
the position vectors X and x, corresponding to the reference (unde-
formed) and deformed configuration, respectively. Each point of the 
undeformed configuration at the time t, has position x given by 

( ),t=x x X . The relation between X and x is defined by 
( ) ( ),t ,t= +x X u X X in which  is the displacement vector field ( ),tu X
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and the deformation gradient tensor is defined as ( ) ( ) /,t = ∂ ∂F X x X X
. Then, the Jacobian detJ ≡ F defines the volume change of the body 
with respect the reference configuration. The constitutive behavior of a 
hyperelastic material can be described in terms of an objective strain 
energy-density function and hence, the first Piola-Kirchhoff 
stress tensor can be defined as  

 ( ),
R

W∂
=

∂F
X F

T   (4.26) 

The corresponding Cauchy stress tensor and second Piola-Kirchhoff 
stress tensor are related to the first Piola-Kirchhoff stress tensor via 

1 TJ −=σ PF and (2) 1
R

−= FT T , respectively. For a neo-Hookean material, 
the strain energy function is given as 

   (4.27) 

where µ  is the shear modulus of the material, 1 ( )I tr= C is the first in-
variant of the right Cauchy-Green deformation tensor T=C F F ,  is 
the first Lamé parameter that is related to the bulk modulus k (modulus 
of compressibility) and to the shear modulus. Considering deformation 
applied quasi-statically and the absence of body forces, the equation of 
motion can be written in the undeformed configuration as 

 RDiv = 0T . (4.28) 

Then, the homogenization problem for a heterogeneous solid, whose 
periodic microstructure consists of stiff rectangular platelets separated 
by thin layers of soft material (bio-inspired nacre-like composite mate-
rial) is formulated in the following. The microstructural equilibrium 
problem is here formulated in terms of the deformation gradient F and 
of its conjugate stress measure TR because is convenient in defining the 

( ),W X F

( ) ( ) [ ]2
1

1 1( ) 3 ln ln( )
2 2

W I J Jµ µ λ= − − +F

λ
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essential boundary conditions (BCs) on the unit cell. With reference to 
Fig. 4.25 the volume of the homogenized solid denoted by ( )iV  in the 
undeformed reference configuration is enclosed by the surface , on 
which the first Piola–Kirchhoff traction vector Rt  acts (note that the 
subscript (i) is referred to variables in the initial configuration). The 
RVE is assumed to be associated with an infinitesimal neighborhood of 
a generic macroscopic material point X . Each microstructural constit-
uent is characterized by an incrementally linear relationship between 
the first Piola-Kirchhoff stress rate tensor RT  and the deformation gra-
dient rate tensor F  as follow: ( ),  =   

R
RT C X F F  in which ( ),RC X F  

is the fourth-order tensor of nominal moduli satisfying the major sym-
metry condition ( R R

ijhk hkijC C= ). This constitutive law is representative 
of a large class of rate-independent materials (including hyperelastic 

( )iV∂

 

Fig. 4.25 2D Representation of the homogenized solid of a staggered compo-
site material (on the left) and of its corresponding undeformed and deformed 
RVE configurations (on the right) attached to a generic macroscopic material 
point in the X1-X2 plane 
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ones), and every loading process can be parametrized in terms of a time-
like parameter t ≥ 0 monotonically increasing (t = 0 in the undeformed 
configuration).The rates of field quantities are evaluated as the deriva-
tives with respect the parameter t that describes the quasi-static defor-
mation path of the composite solid. The micro- and macro-scales can 
be coupled by the common relations that define the macroscopic first 
Piola-Kirchhoff stress tensor  and the macroscopic deformation gra-
dient F  as a function of boundary data of the traction field Rt  and of 
the deformation field , respectively: 

 
( ) ( )

( ) ( )

( )

( )

( )

( )
( )

1

1
i

i

R R (i)
i V

i (i)
i V

t ,t dS
V

t ,t dS
V

∂

∂

⊗

⊗

=

=

∫

∫

T t X X

F x X n
, (4.29) 

in which ⊗  denotes the tensor product,  the outward normal at 

( )iV∈∂X  and ( )R R i=t T n  the nominal traction vector. In a macrostrain-
driven loading regime it is assumed that the microscopic deformation 
field can be additively split into a linear part and a fluctuating part: 

 ( ) ( ) ( ),t t ,t=x X F X + w X  (4.30) 

where ( )tF X  is a linear displacement contribution and ( ),tw X  is the 
fluctuation field. Inserting the definition of the microscopic defor-
mation field into the definition of the macroscopic deformation field, it 
provides an integral constraint that a microscopic displacement fluctu-
ation field should satisfy to be kinematically admissible: 

 
( )

( )

i

i (i)

V

dS
∂

⊗ =∫ 0w n . (4.31) 

Then the macro-micro transition is achieved by imposing the appropri-
ate boundary condition on the RVE displacement fluctuation field. 

RT

( ),tx X

( )in
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Hence, in accordance with the periodic nature of the staggered compo-
site microstructure, periodic boundary displacement fluctuations can be 
imposed on the boundaries (i)V∂  of the RVE satisfying the previously 
mentioned integral constraint: 

 ( ) ( )-, ,  on  (i)t t V= ∂+w X w X  (4.32) 

where the superscripts + and – denote pairs of opposite RVE boundary 

points. The imposed periodicity conditions are written as 

 ( )( ) ( ), = ( , )  on   R i R i (i)t t V−− ∂+T n X T n X  (4.33) 

  (4.34) 

representing antiperiodic traction (4.33) and periodic deformation 

(4.34) imposed on the boundary of the RVE. Finally, the equilibrium 

boundary value problem at given macrodeformation gradient is gov-

erned by the following equations: 

 ( )
( )

( ) ( ) ( )

 in  

, = ( , )  on  V
R i

R i R i i

Div V

t t−

=
 − ∂

0 
 +

T

T n X T n X
. (4.35) 

Solving this boundary value problem, the macroscopic constitutive 
quantities that are essential to proceed with the stress-strain database 
determination can then be extracted by applying appropriate volume 
averages (4.29). 
 

( ) ( )-, ,  on  (i)t t V= ∂+w X w X
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4.4.2 Numerical applications 

The multiscale analysis technique described in Section 4.2.2 is here ap-
plied to analyze the penetration resistance and the flexibility of bio-in-
spired composites with nacre-like microstructure. The periodic unit cell 
shown in Fig. 4.26 describes the investigated representative volume el-
ement, containing hard platelets connected by soft matrix materials and 
arranged in an overlapping brick-and-mortar pattern. 
The thickness of the matrix interphase is denoted with Hi, H and L de-
note the height and the length of the unit cell respectively, Hp and Lp 

denote the height and the length of platelets. With reference to [48], 
since linear elastic model can provide adequate approximation for ma-
terial behavior for small strains (typically not exceeding 5%), the stiff 
platelets are modeled as linear elastic material with elastic modulus Ep 
= 1.8 GPa and Poisson’s ratio υ  = 0.42, while the soft interphase is 
modeled as nearly incompressible neo-Hookean material with initial 
shear modulus μi = 0.21 MPa (a bulk modulus equal to 1000μi  is 
adopted to simulate the incompressibility condition). The length of the 

 

Fig. 4.26 2D Periodic microgeometrical arrangement of bio-inspired nacre-
like composite. The white and gray areas represent the hard inclusions (plate-
lets) and the soft interphase (matrix) respectively. 
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platelets is Lp = 20 mm, the amount of hard inclusions in a unit cell is 
defined by: 

 ( )
( )( )

p p
f

p i p i

L H
v

L H H H
=

+ +
 (4.36) 

and the platelets aspect ratio is defined by: 

 w = p

p

L
H

. (4.37)  

Multiscale parametric analyses were performed to analyze the influence 
of the platelets volume fraction and the platelets aspect ratio on the flex-
ibility and on the penetration resistance by varying the main microstruc-
tural geometrical parameters (vf and w) with reference to the above de-
scribed microstructure. The flexibility was investigated employing a 
three-point bending test on beams composed by a 14x4 unit cell assem-
bly (column × row), as shown in Fig. 4.27a in which the real micro-
structure is introduced only in correspondence of the vertical concen-
trated load where the local effects are more intense. The penetration 
resistance was investigated employing an indentation test on a rectan-
gular sample composed by a 6×4 unit cell assembly using a spherical 
indenter with radius equal to L/4, as shown in Fig. 4.27b.  
Numerical simulations were performed using the finite element code 
COMSOL Multiphysics 5.4 considering a 2D system in plane-strain 
conditions applying displacement-controlled loadings in a quasi-static 
regime. The typical mesh adopted for the examined unit cell is of a 
structured type and involves quadratic Lagrangian quadrilateral ele-
ments. The contact condition between the indenter and the sample was 
modeled by a penalty method which is rather simple and robust, based 
on inserting a stiff spring bed, active only in compression, between the 
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contacting boundaries. First of all, validation and mesh convergence 
tests of the multiscale model were reported comparing numerical results 
obtained by means of a multiscale numerical simulation (MNS) with 
numerical results obtained by means of a direct numerical simulation 
(DNS) in which the composite microstructure is explicitly modeled. As 
shown in Fig. 4.28a and Fig. 4.28b both the multiscale models give a 
slightly stiffer response (with respect to the DNS simulations) and a 
higher influence of the degrees of freedom on the response is observed 
for the indentation test simulations. Anyway, for both the examined 
tests, no more than 20,000 degrees of freedom are needed for the mul-
tiscale approach to obtain a response in good agreement with the direct 
model results, thus saving between 50 and 60% of computational effort 
required for a full-scale direct numerical analysis.  

 

 

Fig. 4.27 Schematic of the geometric multiscale models adopted to simulate 
numerically the three-point bending test (a) and the indentation test (b). 
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Fig. 4.28  Normalized bending load vs. bending angle (a) and normalized in-
dentation load vs. normalized indentation depth (b) with different mesh size 
using direct  (DNS) and multiscale (MNS) numerical simulations. 
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4.4.2.1 Numerical investigation of the flexibility property 

With reference to the three-point bending test, the dependence of the 
normalized bending load on the bending angle for nacre-like composite 
structures with inclusions volume fraction ranging from 0.5 to 0.9 with 
increments of 0.1, and platelets aspect ratio ranging from 6 to 10 with 
increments of 2, is shown in Fig. 4.29. The normalized bending load is 
defined as 

 
i ot p

s

tH H z
FL

µ
Μ =   (4.38) 

where Ls is the distance between the supports, Htot is the total height of 
the beam and z is the out-of-plane depth, while the bending angle is 
defined as: 

 2
tot

atan
L
δα  =  

 
  (4.39) 

where δ is the vertical displacement in the middle of the beam and Ltot 
is the total length of the beam. The flexibility decreases with an increase 
in volume fraction, as well as with an increase in aspect ratio. Nacre-
like microstructures with volume fraction equal to 0.9 (green lines) re-
sults in a more pronounced decrease of flexibility leading, for instance, 
to values of the normalized load approximately doubled with respect to 
arrangements with volume fraction equal to 0.8 (fuchsia lines), at fixed 
inclusions aspect ratio. 
The composite flexibility is further investigated by plotting the relative 
bending stiffness as function of aspect ratio in Fig. 4.30a and volume 
fraction in Fig. 4.30b. The relative bending stiffness represents a non-
dimensional bending stiffness taken as the tangent bending stiffness of 
the composite beam divided by the tangent bending stiffness of the 
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Fig. 4.29 Normalized bending load vs. bending angle (a) and normalized in-
dentation load vs. normalized indentation depth (b) with different mesh size 
using direct (DNS) and multiscale (MNS) numerical simulations. 
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homogeneous beam (vf = 0). Since the relative bending stiffness 
changes with bending angle, the initial tangent stiffness (measured at α 
= 1°) and the finite tangent stiffness (α = 15°) were plotted. The initial 
stiffness is presented by filled symbols, while the finite stiffness is de-
noted by hollow symbols. The results show that both initial and finite 
stiffness increase with an increase in both aspect ratio and volume frac-
tion. In particular, an almost linear dependence on the aspect ratio at 
fixed volume fraction (Fig. 4.30a), and a superlinear dependence on the 
volume fraction at fixed aspect ratio (Fig. 4.30b) are reported. In other 
words, the investigated microstructure shows a more pronounced stiff-
ening effect with increasing volume fraction, especially for the finite 
stiffness values. On the contrary, as shown in Fig. 4.30a, the aspect ratio 
has a small effect on the bending stiffness (especially for the initial val-
ues), which becomes negligible for low volume fractions (vf ranging 
between 0.5 and 0.6). Furthermore, the difference between the finite 
and initial bending stiffness increases for increasing values of both vol-
ume fraction and aspect ratio, and becomes negligible for low volume 
fractions regardless the considered aspect ratio, meaning that the bend-
ing behavior of the given microstructure is nearly linear in these cases 
(see Fig. 4.30b). 
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Fig. 4.30 Relative bending stiffness vs. platelets aspect ratio a) and platelets 
volume fraction b). The solid and hollow symbols are for initial and finite 
relative bending stiffness, respectively. 
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4.4.2.2 Numerical investigation of the penetration resistance 
property 

The dependence of the normalized indentation load on the normalized 
indentation depth with an inclusions volume fraction ranging from 0.5 
to 0.9 with increments of 0.1, and a platelets aspect ratio ranging from 
6 to 10 with increments of 2 is shown in Fig. 4.31. The normalized in-
dentation load is defined as  

 
i totH

P
z

F
µ

=   (4.40) 

which is plotted as function of the normalized indentation depth: 

 
totH

δ
∆ =   (4.41) 

where δ is the vertical displacement at the top of the midsection, coin-
ciding with the central point of the contact area with the indenter. The 
indentation load levels increase with an increase in inclusions volume 
fraction, while the aspect ratio provides a slight influence on the inden-
tation load levels. The penetration stiffness increases with increasing 
indentation depth, as will be shown in more detail next. High volume 
fractions and low aspect ratios offer the greatest penetration resistance, 
with the exception of the case with vf = 0.9 (green line), which shows 
the highest penetration resistance offered with w = 10 for levels of the 
normalized indentation depth greater than 0.12. The influence of the 
inclusions volume fraction and aspect ratio on the material resistance 
against indentation is further analyzed by plotting the relative penetra-
tion stiffness as function of these parameters in Fig. 4.32. The relative 
penetration stiffness is defined here as the tangent penetration stiffness 
of the composite sample normalized to the tangent penetration stiffness 
of the homogeneous sample (vf = 0).  
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Fig. 4.31 Normalized indentation load vs. normalized indentation depth con-
sidering an vf ranging from 0.5 to 0.9 with increments of 0.1, and w ranging 
from 6 to 10 with increments of 2. 
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Since the relative penetration stiffness changes with depth indentation, 
the initial tangent stiffness is measured at Δ = 0.01 and the finite tangent 
stiffness is measured at when the tangent stiffness approaches a limit 
constant value (this occurs generally for the last value of Δ before con-
vergence problems appear). 
As in the previous analyzed case, both initial and finite penetration stiff-
ness increase with increasing volume fraction. Moreover, the finite pen-
etration stiffness is much higher than the initial value reflecting the 
highly nonlinear behavior due to a combination of geometrical and ma-
terial nonlinearity, mostly for high values of volume fraction (see Fig. 
4.32c and Fig. 4.32d). The aspect ratio provides a relatively small in-
fluence on both the initial and the final penetration stiffness. In detail, 
the finite penetration stiffness increases with increasing aspect ratio for 
volume fraction values ranging from 0.5 to 0.7, while decreases for vol-
ume fraction equal to 0.8 and 0.9. Consistent with the previous obser-
vation, Fig. 4.32d shows that merely for the cases with vf = 0.8 and 0.9 
the maximum value of finite relative penetration stiffness is given by 
the highest value of aspect ratio (w = 10). 
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Fig. 4.32 Relative penetration stiffness vs. platelets aspect ratio: a) initial and 
c) finite values. Relative penetration stiffness vs. platelets volume fraction: b) 
initial and d) finite values. 
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Fig. 4.33 Relative bending stiffness vs. relative penetration stiffness: a) initial 
and b) finite values. 
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4.4.2.3 Numerical investigation of the combined protecto-
flexibility property 

To better investigate the flexibility and the penetration stiffness in a 
coupled manner, the relative bending stiffness was plotted as function 
of the relative penetration stiffness in Fig. 4.33a and Fig. 4.33b, show-
ing that an increase in penetration protection is accompanied by an in-
crease in bending stiffness (decrease in flexibility) except for the finite 
relative bending stiffness with vf  < 0.8.  
In particular, with vf  = 0.5 and 0.6, the finite relative bending stiffness 
can be varied without affecting the finite relative penetration stiffness, 
which is however negligible with respect to higher volume fractions 
(see black and red points of Fig.13b).  Fig. 4.33 clearly shows that the 
volume fraction strongly influences the penetration stiffness (both ini-
tial and finite values) while slightly affecting the bending stiffness, es-
pecially for higher values of vf. Moreover, it can be seen that the aspect 
ratio influences scarcely the initial penetration stiffness (see Fig.13a) 
while influencing moderately both the finite penetration and bending 
stiffness, except with vf < 0.7, for which no significant influence is re-
ported (see Fig. 4.33b). These figures also show that the penetration 
resistance can be tailored as a function of the flexibility properties by 
opportunely varying the examined microstructural geometrical param-
eters. In particular, Fig. 4.33b shows that different combinations of vf 
and w may lead to the similar values of the desired finite flexibility and 
penetration resistance. In particular, once the desired finite relative 
bending stiffness is assigned to the nacre-like material, the volume frac-
tion and the platelets aspect ratio can be optimized such that the desired 
relative penetration stiffness is reached. For instance, after choosing a 
finite relative bending stiffness of about 100, a finite relative penetra-
tion stiffness ranging between 3,500 and 4,500 can be achieved either 
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for vf = 0.8 and w > 10 or for vf = 0.9 and w < 6. Then, the contrasting 
combination of penetration protection and flexibility, called protecto-
flexibility, was taken as the ratio P BC CΩ =  between the normalized 
indentation stiffness PC  and the normalized bending stiffness BC . The 
influence of the microstructural geometry of the composite on Ω is 
shown in Fig. 4.34, in which Ω is plotted as function of aspect ratio (a,b) 
and volume fraction (c,d). This figure clearly shows that the protecto-
flexibility increases with increasing volume fraction and decreasing as-
pect ratio except for the cases with vf = 0.9 and w = 8, 10, shown in Fig. 
4.34d, where Ω is lower compared to the cases with vf = 0.8 and w = 8, 
10. Note that the finite protecto-flexibility is very sensitive to changes 
in volume fraction and aspect ratio, on the contrary, the initial protecto-
flexibility does not change significantly with a change in volume frac-
tion or aspect ratio. We can observe that volume fractions of 0.8 and 
0.9 are optimal to achieve the best combinations of flexibility and pen-
etration resistance. Considering the initial protecto-flexibility, we can 
see that, for each fixed aspect ratio, the highest value is obtained for vf 
= 0.9 as shown in Fig. 4.34a; on the other hand, at finite deformations, 
the highest value, of about 40, is obtained for vf = 0.9 and w = 6. For 
this value of aspect ratio, the general trend is that increasing value of 
the volume fraction are associated with increasing value of the protecto-
flexibility. Such a trend is not reported for higher aspect ratios, i.e. w = 
8 and 10, where the optimal value of the volume fraction to achieve the 
highest protecto-flexibility is vf = 0.8. Finally, it is worth noting that the 
finite protecto-flexibility is more important, being in general two orders 
of magnitude greater than the initial one. This means than the protecto-
flexibility properties appear in the considered staggered nacre-like ma-
terial only at large deformation, essentially due to the delayed activation 
of the penetration stiffness. 
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Fig. 4.34 Normalized indentation-to-bending stiffness ratio (protecto-flexibil-
ity) vs. platelets aspect ratio: a) initial and c) finite values. Protecto-flexibility 
vs. platelets volume fraction: b) initial and d) finite values. 





 

Conclusions 

 
In this thesis the nonlinear macroscopic mechanical response of ad-
vanced composite materials has been investigated by using nonlinear 
homogenization techniques and advanced computational multiscale 
models. Such advanced modelling techniques constitute an effective 
tool to model materials with complex microstructures, providing a link 
between the macroscopic behavior and the underlying microstructural 
phenomena, accounting for different types of nonlinearity, such as large 
deformation, fracture, contact, instability, etc. The basis of the homog-
enization techniques at finite strain has been discussed together with a 
classification (based on the type of coupling between the different 
scales) of the principal multiscale models proposed in the past literature. 
The main goal of this thesis is to provide theoretical and numerical 
methods capable to model the mechanical response of heterogeneous 
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materials (fiber- or particle-reinforced composites) in a large defor-
mation context predicting the failure in terms of loss of stability con-
sidering also the interaction between microfractures and contact. A the-
oretical study has been developed to obtain the nonlinear homogenized 
response of periodic composite solids, by including also the effects of 
instabilities occurring at the microscopic level and the interaction be-
tween microfractures and buckling instabilities. Subsequently, based on 
the previous theoretical development, a first numerical study has been 
performed to investigate the interaction between microfractures and 
buckling instabilities in unidirectional fiber-reinforced composite ma-
terials. A second numerical study, performed by using advanced mul-
tiscale computational strategies, has been then conducted to analyze the 
microstructural instability in locally periodic composite materials rein-
forced with continuous or discontinuous fibers and subjected to general 
loading conditions at finite strain. For this purpose, a novel hybrid mul-
tiscale approach has been also proposed with the aim to overcome the 
limitations observed in semiconcurrent approaches. It has been proved 
that such a method is really effective to evaluate the microscopic insta-
bility in composite materials affected by boundary layer effects, and 
ultimately it could be used in a productive way to the optimal design of 
complex microstructured composite materials. 
In the first part of the thesis, with reference to Section 3, an original 
investigation of the macroscopic failure behavior of periodic elastic fi-
ber reinforced composites, as a consequence of the interactions between 
microscopic fiber buckling instabilities and matrix or fiber/matrix in-
terface microcracks, was presented in a compressive large deformation 
context. The effects of unilateral self-contact at the crack contact inter-
face occurring due to compression, have been also included in the anal-
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ysis. As reported in Section 3.4, the investigated failure mode is of cen-
tral importance for an accurate prediction of the load carrying capacity 
of unidirectional fiber-reinforced or layered composites loaded preva-
lently in compression along the fiber direction, since the interaction be-
tween buckling instabilities and fractures may lead to a strong decrease 
in the compressive strength of the composite material with a premature 
failure of the composite solid often associated to crack propagation phe-
nomena. 
In order to perform an accurate analysis of the above-mentioned failure 
behavior, a rigorous full finite deformation continuum formulation of 
the composite microstructure has been proposed able to account for the 
interaction between local fiber buckling and matrix or fiber/matrix in-
terface microcracks by modeling unilateral self-contact along crack sur-
faces. The adopted formulation made it possible to highlight the pres-
ence of non-standard rate contributions arising from crack self-contact 
interface mechanisms that have proved to play a fundamental role in 
order to obtain a realistic prediction of the macroscopic critical load of 
the composite solid. To this end, the first part of the thesis is devoted to 
the theoretical formulation of instability and bifurcation phenomena for 
microcracked composite materials subjected to a macrostrain driven 
loading path. The theory adopts a quasistatic finite strain continuum rate 
approach and a variational setting. In addition, the role of non-standard 
crack contact interface rate contributions in the framework of the sta-
bility and non-bifurcation analysis of the composite material is investi-
gated, by examining the virtual work of the contact reaction rate acting 
on the contact interface.  
Novel analytical developments have shown that the contributions to the 
virtual work of the contact reaction rate and, consequently, to the sta-
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bility and non-bifurcation functionals, arising from a full finite defor-
mation formulation of crack self-contact mechanisms consist of two 
contact surface integral terms: namely a tangential term related to the 
tangential component of the nominal contact reaction rate and a crack 
surface deformation term associated with the different variation of the 
reference to actual surface element ratio between the lower and upper 
crack contact surfaces.  
Original comparisons with simplified formulations which do not adopt 
a full finite deformation approach to model contact phenomena occur-
ring along crack surfaces and based on a cohesive interface type of ap-
proach are given in Section 3.4.2 and Section 3.4.3. Specifically, as-
suming the nominal traction continuity condition with reference to the 
undeformed crack contact interface, as usually done in order to formu-
late a cohesive interface constitutive law relating the nominal contact 
reaction vector to the interface separation, leads to neglect the surface 
integral related to the crack surface deformation term in the virtual work 
of the contact reaction rate and to formulate the tangential one with ref-
erence to the jump across the undeformed contact interface of the virtual 
displacement.  
Moreover, it is shown that when nominal contact reaction continuity 
condition is assumed rigorously valid, as for a material discontinuity 
interface without displacement jumps, also the tangential term vanishes 
and the virtual work of the contact reaction rate becomes globally zero. 
According to the two above mentioned simplified formulations, namely 
the interface model and the model without crack contact interface con-
tributions, the corresponding modified stability and non-bifurcation 
conditions have been formulated as a way to determine the related pri-
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mary instability and bifurcation critical load levels, which can be con-
sidered approximations of the exact ones associated to the full finite 
deformation crack contact model.  
First of all, as reported in 3.4.2, the influence of the above mentioned 
contact interface integral contributions occurring in the stability and 
non-bifurcation functionals have been analyzed by means of novel nu-
merical results developed with reference to a practical application in-
volving the uniaxial compressive failure of a fiber-reinforced composite 
material containing a matrix or a fiber/matrix microcrack aligned with 
the fiber direction. Hyperelastic material models have been adopted to 
model both the microconstituents and a nonlinear FE model of the com-
posite material has been developed by solving in a coupled way the 
global and the rate eigenvalue boundary value problems providing the 
bifurcation and the instability load levels both for the exact and the sim-
plified formulations. An extensive set of numerical results has been ob-
tained with reference to the above application model, including differ-
ent geometrical configurations for the defected microstructure. To this 
end the sensitivity of the primary instability and bifurcation critical load 
factor and of its associated critical modes with respect to the variation 
of the crack length, fiber thickness and crack eccentricity, has been 
evaluated. Limit behaviors of the defected microstructures, also useful 
to check the accuracy of the results, have been examined by calculating 
the critical load levels of the completely bonded and free comparison 
rate problems, giving upper and lower bounds to the exact critical load 
level, respectively. The main conclusion obtained for the uniaxial case 
is that non-standard contributions arising from a full finite deformation 
formulation of crack interface contact have a notable influence on crit-
ical loads and deformation modes, since, if they are not included in the 
analysis (as in simplified crack contact interface formulations), a large 
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underestimation of the real failure load of the microcracked composite 
was found with an increasing underestimation as crack eccentricity de-
creases and relative crack length increases; this highlights the im-
portance of adopting a full finite deformation formulation of crack self-
contact contact nonlinearities, rather than simplified ones, in order to 
obtain an accurate prediction of instability and bifurcation phenomena. 
Subsequently, further analytical development and parametrical anal-
yses have been reported in Section 3.4.3 with reference to a biaxial 
loading condition. With reference to hyperelastic microconstituents, an-
alytical results for the determination of the so-called decompression 
limit path (where the nominal contact pressure vanishes) have been re-
ported in Section 3.4.3.1. Then, in Section 3.4.3.2, general parametric 
analyses have been developed including various load conditions and 
different microgeometrical arrangements to investigate the influence of 
the above-mentioned non-standard contributions in a biaxial loading 
condition. Firstly, with reference to biaxial radial loading paths in the 
principal macrostrain space, the critical curves identifying the limit of 
the two-dimensional stability and uniqueness domain for the composite 
microstructure have been determined for different crack eccentricity ra-
tios. Secondly, in order to better evaluate the crack length influence on 
the critical load factors, further parametric analyses have been carried 
out for two different radial paths ( 20ϕ = ± ° ). In addition, the limit be-
haviors of the composite microstructure have been determined using 
appropriate comparison rate problems. 
The obtained critical curves and deformation modes in biaxial loading 
regime show that they are strongly influenced by the nonlinear contri-
butions arising from crack interface self-contact mechanisms. As a mat-
ter of fact, considering simplified crack contact interface formulations, 
a large underestimation of the real failure load of the microcracked 
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composite was found with an increasing underestimation as crack ec-
centricity decreases and relative crack length increases. Specifically, 
the largest percentage relative difference between the critical load lev-
els corresponding to the exact and the simplified formulations is equal 
to 73% obtained for the formulation neglecting all crack self-contact 
contributions; this highlights that a realistic prediction of the macro-
scopic critical load of defected composite materials subjected to biaxial 
loading requires a full finite deformation formulation of crack self-con-
tact nonlinearities. 
In the second part of the thesis, the failure behavior of periodic elastic 
fiber reinforced composites has been further investigated by means of 
different multiscale strategies. 
Specifically, with reference to Section 4 two multiscale modeling strat-
egies have been adopted to analyze the microstructural instability in lo-
cally periodic fiber-reinforced composite materials subjected to general 
loading conditions in a large deformation context.  
The first adopted strategy is a semi-concurrent multiscale method con-
sisting in the derivation of the macroscopic constitutive response of the 
composite structure together with a microscopic stability analysis 
through a two-way computational homogenization scheme.  
The second approach is a novel hybrid hierarchical/concurrent mul-
tiscale approach able to combine the advantages inherent in the use of 
hierarchical and concurrent approaches and based on a two-level do-
main decomposition. The aim of the proposed technique is to adopt a 
hierarchical multiscale approach in domains in which the assumption 
of scale separation is satisfied (homogenized domains), combined with 
a concurrent approach in domains in which, due to strain or stress lo-
calization phenomena, this condition is no longer satisfied (fine-scale 



190  Conclusions 

domains). In detail, fine-scale domains are characterized by a micro-
structural description that requires a numerical model able to com-
pletely describe all its microscopic details and may contain heterogene-
ities, singularities or/and defects. Homogenized domains, instead, use 
information obtained by an RVE at the fine scale to describe the me-
chanical behavior of the homogenized material characterizing coarse-
scale domains; specifically, a microscopically informed macroscopic 
constitutive relation in the form of macro-stress/macro-strain database 
previously extracted, in conjunction with an interpolation method, has 
been implemented in a finite element model. The viability and accuracy 
of the proposed multiscale approaches in the context of the microscopic 
stability analysis in defected composite materials have been appropri-
ately evaluated through comparisons with reference direct numerical 
simulations. 
As a first numerical application, the proposed semi-concurrent mul-
tiscale approach has been used to predict local instabilities in a cantile-
ver composite beam reinforced with continuous fibers and an estima-
tion of the instability critical load has been initially obtained by using a 
load-displacement curve. The numerical accuracy of the multiscale ap-
proach has been assessed by the comparison with a direct numerical 
simulation, based on a fully meshed model. The error on the estimated 
critical load between the two analyses is of about 1%, mainly due to 
both macroscopic gradients in stresses and strains and boundary layer 
effects. Then, the critical load factor has been also estimated by rigorous 
microscopic stability analysis. The good numerical accuracy of the 
semi-concurrent method is confirmed by a small error on the critical 
load, less than 2%. Interestingly, with reference to the direct numerical 
analysis, the competition between global and local modes has been 
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highlighted; on the contrary, with reference to the semiconcurrent mul-
tiscale approach, the same behavior is not captured since this category 
of semiconcurrent approaches is not capable to evaluate boundary layer 
effect given by external constraints In addition, the predicted local 
mode is not coincident with the reference one, due to the fact that 
boundary layer effects are not accounted for. 
As second numerical application, the novel hybrid multiscale approach 
has been applied to composite materials reinforced with staggered dis-
continuous fibers. The first case concerns the bending problem for a 
simply supported composite beam and the numerical accuracy of the 
multiscale approach has been assessed by the comparison with a direct 
numerical simulation. A very small error on the estimated critical load 
between the two analyses is found, less than 0.5%. The critical load 
factor has been also estimated by a rigorous microscopic stability anal-
ysis. In this case, the competition between global and local modes is 
captured by both direct and multiscale analyses and the very good nu-
merical accuracy of the concurrent method is confirmed by the very 
small error on the extrapolated critical load, of about 0.5%. Moreover, 
the predicted local mode is perfectly coincident with the reference one, 
due to the fact that boundary layer effects are accounted for. The last 
case, concerns a clamped composite plate under a concentrated load and 
the great numerical accuracy of the hybrid method is confirmed by the 
very small error on the critical load, of about 0.2%. Moreover, also in 
this case, the predicted local mode is perfectly coincident with the ref-
erence one. In conclusions, suitable comparisons with direct numerical 
simulations have shown that the hybrid multiscale approach is more ac-
curate in obtaining both critical load levels and related microscopic in-
stability modes, thanks to its capability of capturing both macroscopic 
gradients in stresses and strains and boundary layer effects. 
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With reference to Section 4.4, the present thesis ends with an investiga-
tion of the mechanical behavior of nacre-like composite materials in a 
large deformation context by using the previously mentioned hybrid 
multiscale approach overcoming a computationally expensive full-scale 
modeling. Motivated by the need to design a body protective bio-in-
spired material architecture, we examine two competing properties, i.e. 
penetration resistance and flexibility. Mimicking nacre’s hierarchical 
brick-and-mortar structure in 3D printed microstructured composite 
materials is an efficient approach to achieve structural materials with 
high mechanical performances, but the task to determine the macro-
scopic response of microstructured materials taking into account their 
microscopic nonlinear mechanical behavior usually requires a rigorous 
description of all microstructural details leading to impracticable com-
putational efforts. A comprehensive parametric analysis with respect to 
platelets aspect ratio and volume fraction, representing the main geo-
metrical parameters governing the macroscopic behavior of the bio-in-
spired nacre-like composite material, is performed analyzing its flexi-
bility and penetration resistance. Initially, validation and mesh conver-
gence tests of the multiscale model were reported comparing the nu-
merical results obtained by using multiscale and direct numerical sim-
ulations and it was deduced that using a multiscale model an amount of 
computational effort between 50 and 60% is saved with respect to a 
full-scale numerical model. Then, the flexibility is investigated by 
means of a three-point bending test on beams, in which the real micro-
structure is introduced in correspondence of the vertical concentrated 
load. In particular, both the initial and the finite tangent stiffness are 
computed as functions of aspect ratio and volume fraction. The results 
show that flexibility decreases with an increase in both volume fraction 
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and aspect ratio. In detail, the investigated microstructure shows a pro-
nounced stiffening effect for larger values of the volume fraction, espe-
cially for the finite stiffness. On the contrary, the bending stiffness (es-
pecially the initial one) is only slightly influenced by the aspect ratio, 
especially for lower volume fractions (vf  ranging between 0.5 and 0.6). 
Moreover, the bending stiffening effect associated with the occurrence 
of large deformations increases for increasing values of both volume 
fraction and aspect ratio, and becomes negligible for low volume frac-
tions regardless the considered aspect ratio; in fact, in this case, the 
bending response of the given microstructure remains almost linear. 
Next, the penetration resistance was investigated by employing an in-
dentation test on a rectangular sample using a spherical indenter and 
modeling the contact between the indenter and the sample. The results 
show that the indentation load levels increase with an increase in the 
stiff phase volume fraction, while the aspect ratio provides a small in-
fluence on the indentation load levels. The penetration stiffness in-
creases with increasing indentation depth, and high volume fractions 
and low aspect ratio offer the greatest penetration resistance, with the 
exception of the greatest tested volume fraction (vf = 0.9), for which the 
highest penetration resistance is reached for the highest tested aspect 
ratio (w = 10). The influence of the stiff phase volume fraction and the 
platelets aspect ratio on the material resistance against indentation is 
further analyzed by plotting the initial and the finite tangent penetration 
stiffness as functions of these parameters. The finite penetration stiff-
ness is higher than the initial value, reflecting the nonlinear behavior 
due to a combination of geometrical and material nonlinearity, mostly 
for high values of volume fraction. Both initial and finite penetration 
stiffness increases with an increase in volume fraction, with stiffness 
increase more prominent in the range of high-volume fractions. On the 
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other hand, the aspect ratio provides only a relatively small influence 
on the penetration stiffness, with a negligible influence on the initial 
values. 
Next, from the comparison between the relative bending stiffness and 
relative penetration stiffness, it can be observed that the volume fraction 
strongly influences the penetration stiffness (mainly the finite value), 
while it slightly influences the bending stiffness. Moreover, generally 
speaking, an increase in penetration protection is accompanied by an 
increase in bending stiffness. In particular, with volume fraction values 
up to 0.6, the finite relative bending stiffness can be varied without af-
fecting the finite relative penetration stiffness, which is however negli-
gible with respect to that achieved with higher volume fractions.  
These results demonstrate that the penetration resistance can be tailored 
as a function of the flexibility by opportunely varying inclusions vol-
ume fraction and/or aspect ratio. 
Finally, the performance requirements of penetration resistance and 
flexibility are incorporated in a single parameter, called protecto-flexi-
bility, which was evaluated for different values of aspect ratio and vol-
ume fraction, to investigate the role of the main microstructural param-
eters in this integrated measure. It is worth noting that the protecto-flex-
ibility is very sensitive to changes in volume fraction and aspect ratio, 
on the contrary, the initial protecto-flexibility does not change signifi-
cantly with a change in volume fraction or aspect ratio. The numerical 
results have shown that the finite protecto-flexibility is more important, 
since, generally speaking, it is two orders of magnitude greater than the 
initial one. This is essentially due to the delayed activation of the pene-
tration stiffness, associated with the occurrence of large deformations. 
Generally speaking, the best combinations of flexibility and penetration 
resistance are obtained with high volume fractions (equal or greater 
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than 0.8), regardless of the considered aspect ratio. However, for very 
high aspect ratios (starting from w = 8) and for volume fraction values 
greater than 0.8, a further increase in the volume fraction inevitably 
leads to a reduction of the protecto-flexibility. This counter-intuitive re-
sult demonstrates that, in the presence of highly elongated platelets, a 
limited range of variation for the volume fraction (around the value of 
0.8 for the specific staggered microstructure) guarantees the optimal 
coupled protection/flexibility behavior. 
The reported findings can provide guidelines to enhance mechanical 
properties of bio-inspired nacre-like composite materials manipulating 
the main microstructural geometry parameters. Specifically, a careful 
selection of volume fraction and aspect ratio can provide optimized de-
signs to grant protection against penetration while preserving flexibil-
ity. It is worth also noting that the hybrid multiscale techniques devel-
oped in this thesis are reliable and can be effectively used to conduct 
further research on the optimization of microstructural configurations 
in advanced composite structures subjected to different form of nonlin-
earities.
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