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Abstract 

A large-scale system is defined as one that supports multiple, simultaneous users who access the 

core functionality through some network. Nowadays, enormous amount of data is continually 

generated at unprecedented and ever-increasing scales. Large-scale data sets are collected and 

studied in numerous domains, from engineering sciences to social networks, commerce, 

bimolecular research, and security. Big Data is a term applied to data sets whose size or type is 

beyond the ability of traditional relational databases to capture, manage, and process with 

acceptable latency. Usually, Big Data has one or more of the characteristics including high volume, 

high velocity, or high variety. Big Data challenges include capturing data, data storage, data 

analysis, search, sharing, transfer, visualization, querying, updating, information privacy and data 

source. Generally, Big Data comes from sensors, devices, video or audio, networks, log files, 

transactional applications, web, and social media, in a very large-scale. Big Data is impossible to 

analyze by using traditional central methods and therefore, new distributed models and algorithms 

are needed to process the data. 

In this thesis, we focus on optimization algorithms for Big Data application. We review some of 

the recent machine learning, convex and non-convex, heuristic and stochastic optimization 

techniques and available tools applied to Big Data. We also propose a new distributed and 

decentralized stochastic algorithm for Big Data analytics. Our proposed algorithm is fully 

distributed to decide large-scale networks and data sets. The proposed method is scalable to any 

network configuration, is near real-time (in each iteration, a solution is provided although it might 

not be the optimum one) and more critical, robust to any missing data or communication failures. 

We evaluate the proposed method by a practical example and simulations on cognitive radio 

networks. Simulation results confirmed that the proposed method is efficient in terms of accuracy 

and robustness.  

We assume that the distributed data-sources should be capable of processing their data and 

communicate with neighbor sources to find the network objective as an optimal decision. Some 

challenges are introduced by new technologies such as 5G or high-speed wireless data transfer, 

including imperfect communications that damage the data. We propose an optimal algorithm that 

uses optimal weighting to combine the shared data coming from neighbors. This optimal weight 

improves the performance of the decision-making algorithm in terms of error and convergence 

rate. We evaluate the performance of the proposed algorithm mathematically and introduce the 

step-sized conditions that guaranteed the convergence of the proposed algorithm. We use computer 

simulations to evaluate the network error. We prove that in a network diagram with ten data-

sources, the network performance of the proposed algorithm outperforms some of the known 

optimal solutions such as Metropolis and adaptive combination. 

Keywords: Optimization, Big Data, Large-Scale, Distributed, Optimal Weight.
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1.1 Introduction 

In this chapter, we introduce the basics of optimization and its application on large-scale systems. 

We further present a description of Big Data, its history, definition and the relation with 

optimization techniques. 

1.2 Basics of Optimization 

A large-scale system is defined as one that supports multiple, simultaneous users who access the 

core functionality through some network. The term “Optimization” comes from the same root as 

“optimal,” which means best. When optimizing something, we are “making it best.” Mathematical 

Optimization is a branch of applied mathematics, which is useful in many different fields. The 

fundamental optimization problem consists of the objective function  f x , which we are trying to 

maximize or minimize and variables 
1 2 3,  ,  x x x , which are the things we can control. They are 

abbreviated 
nx  to refer to individuals or to refer to them as a group. The general mathematical 

formulation of an optimization problem is presented as follows [1]:  

 

 

 

      Min

. .  0,

       0.

x
f x

s t h x

g x





 

(1-1) 

Where x  is a vector, including the n  decision variables,  .f  is the objective function of the 

optimization problem. It maps values of the decision vector x  to a real value representing the 

desirability of this solution to the decision-maker. Typically, the objective function represents a 

cost in minimizing problems or a benefit in maximizing ones.  .h  Also,  .g  are vector-valued 

functions of the decision vector x . They define m  equality and l  inequality constraints.  

Let's consider the general optimization formulation and suppose that  .f  and  .g  are 

continuously differentiable and convex,  .h  is affine. Furthermore, we assume that a constraint 

qualification holds. For example, we may require that  .g  be affine (linearity constraint 

qualification). Another standard constraint qualification requires linear independence of the 

gradients of active inequality constraint and equality constraints [1].  

We can define the Lagrangian function for the optimization problem as follows [1]: 
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     

 

 

 

0,

                            0,

                            0,

                            0,

                      0.

T T

x x x

T

f x h x g x

h x

g x

g x

 





     









 

(1-2) 

Where   is the gradient operator, ,     are the Lagrange multipliers and constraint qualifications 

are needed for ensuring that KKT (Karush-Kuhn-Tucker) conditions.  

1.3 Big Data Analytics 

Big Data is a term applied to data sets whose size or type is beyond the ability of traditional 

relational databases to capture, manage, and process with acceptable latency. Usually, Big Data 

has one or more of the characteristics, including high volume, high velocity, or high variety, also 

named 3-Vs. Nowadays, more V words are mentioned as characteristics of Big Data including 

value, veracity, viscosity, virality, and visualization, [2], as depicted in Figure 1-1.  

 

 

Figure 1-1 characteristics of Big Data including value, veracity, viscosity, virality, and visualization  

 

Big Data challenges include capturing data, data storage, data analysis, search, sharing, transfer, 

visualization, querying, updating, information privacy, and data source. Current usage of the term 

Main 
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Big Data

Volume

Velocity

VarietyValue
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Big Data tends to refer to the use of predictive analytics, user behavior analytics, or specific other 

advanced data analytics methods that extract value from data, and seldom to a particular size of 

data set. Data sets overgrow, in part because they are increasingly gathered by cheap and numerous 

information-sensing Internet of things devices such as mobile devices, aerial (remote sensing), 

software logs, cameras, microphones, radio-frequency identification (RFID) readers and wireless 

sensor networks or sensors on a production line and communications in a social network [2]. 

Relational database management systems, desktop statistics, and software packages used to 

visualize data often have difficulty handling Big Data [2]. The work may require "massively 

parallel software running on tens, hundreds, or even thousands of servers." Big Data philosophy 

encompasses unstructured, semi-structured, and structured data; however, the main focus is on 

unstructured data [3]. The characteristics of 5 Vs on Big Data is depicted in Figure 1-2 and 

explained as follows: 

Volume: The quantity of generated and stored data. The size of the data determines the value and 

potential insight, and whether it can be considered as Big Data or not. 

Variety: The type and nature of the data. This helps people who analyze it to effectively use the 

resulting insight. Big Data draws from text, images, audio, video; plus it completes missing pieces 

through data fusion. 

Velocity: The speed at which the data is generated and processed to meet the demands and 

challenges that lie in the path of growth and development. Big Data is often available in real-time. 

Compared to small data, Big Data is produced more continually. Two kinds of velocity related to 

Big Data are the frequency of generation and the frequency of handling, recording, and publishing. 

Veracity: Refers to the data quality and the data value. The data quality of captured data can vary 

greatly, affecting the accurate analysis. 

Value: The utility that can be extracted from the data. 

https://en.wikipedia.org/wiki/Predictive_analytics
https://en.wikipedia.org/wiki/User_behavior_analytics
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Mobile_device
https://en.wikipedia.org/wiki/Remote_sensing
https://en.wikipedia.org/wiki/Digital_camera
https://en.wikipedia.org/wiki/Radio-frequency_identification
https://en.wikipedia.org/wiki/Wireless_sensor_networks
https://en.wikipedia.org/wiki/Wireless_sensor_networks
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Data_quality
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Figure 1-2 The characteristics of Big Data from variety, volume, velocity, value, and veracity 

 

Big Data comes from sensors, devices, video or audio, networks, log files, transactional 

applications, web, and social media, in a very large-scale [2]. Currently, more than 2.7 zeta bytes 

of data exist in the digital universe; Twitter processes over 70 million tweets and business 

transactions on the Internet will reach 450 billion per day by the year 2020. By 2020, the amount 

of data just in China is expected to reach 8.6 zeta bytes. It is estimated that by 2020, there will be 

more than 30 billion connected devices.  

Big Data requires new forms of processing for insight discovery and enhanced decision making in 

which optimization may play a critical role. It is a known fact that enormous potential value is 

hidden in Big Data, and meaningful application of it will change human society, dramatically. Big 
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Data enables tremendous potential in terms of business value in a variety of fields such as health-

care, biology, transportation, advertising, energy management, and financial services. A few years 

ago, Big Data was very new. However, we are facing new generations of Big Data. For instance, 

recently, multimedia Big Data is introduced that is a type of datasets, in which the data has more 

media types and higher volume than the typical Big Data [4]. Multimedia Big Data analysis 

requires more sophisticated algorithms and much more computing resources compared with 

existing Big Data systems [4]. 

Big Data could be viewed from different aspects. Some researchers are focused on the application 

of Big Data in a specific field. Big Data has applications in the new generation of mobile cellular 

systems, including 4.9G and 5G, Smart Grid, or even intelligent transportation systems (ITS) [3-

8]. Researchers also develop tools and frameworks that could be used for Big Data analytics 

(BDA). In continue, we provide a short brief on Big Data analytics tools.  

1.3.1 Big Data History 

Big Data repositories have existed in many forms, often built by corporations with a particular 

need. Commercial vendors historically offered parallel database management systems for Big Data 

beginning in the 1990s. For many years, WinterCorp published the most significant database 

report. Teradata Corporation, in 1984, marketed the parallel processing DBC 1012 system. 

Teradata systems were the first to store and analyze one terabyte of data in 1992. Hard disk drives 

were 2.5 GB in 1991, so the definition of Big Data continuously evolves according to Kryder's 

Law. Teradata installed the first petabyte class RDBMS based system in 2007. As of 2017, there 

are a few dozen petabyte class Teradata relational databases installed, the largest of which exceeds 

50 PB. Systems up until 2008 were 100% structured relational data. Since then, Teradata has added 

unstructured data types, including XML, JSON, and Avro. 

In 2000, Seisint Inc. (now LexisNexis Risk Solutions) developed a C++-based distributed platform 

for data processing and querying known as the HPCC Systems platform. This system 

automatically partitions, distributes, stores, and delivers structured, semi-structured, and 

unstructured data across multiple commodity servers. Users can write data processing pipelines 

and queries in a declarative dataflow programming language called ECL. Data analysts working 

in ECL are not required to define data schemas upfront and can instead focus on the particular 

problem at hand, reshaping data in the best possible manner as they develop the solution.  

In 2004, LexisNexis acquired Seisint Inc. and its high-speed parallel processing platform and 

successfully utilized this platform to integrate the data systems of Choicepoint Inc. when they 

https://en.wikipedia.org/wiki/Teradata
https://en.wikipedia.org/wiki/DBC_1012
https://en.wikipedia.org/wiki/LexisNexis_Risk_Solutions
https://en.wikipedia.org/wiki/HPCC_Systems
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acquired that company in 2008. In 2011, the HPCC systems platform was open-sourced under the 

Apache v2.0 License. 

CERN and other physics experiments have collected Big Data sets for many decades, usually 

analyzed via high-performance computing (supercomputers) rather than the commodity map-

reduce architectures traditionally meant by the current "Big Data" movement [9]. 

In 2004, Google published a paper on a process called MapReduce. The MapReduce concept 

provides a parallel processing model, and an associated implementation was released to process 

vast amounts of data. With MapReduce, queries are split and distributed across parallel nodes and 

processed in parallel (the Map step). The results are then gathered and delivered (the Reduce step). 

The framework was very successful, so others wanted to replicate the algorithm. Therefore, 

an implementation of the MapReduce framework was adopted by an Apache open-source project 

named Hadoop. Apache Spark was developed in 2012 in response to limitations in the MapReduce 

paradigm, as it adds the ability to set up many operations (not just map followed by reducing). 

Big Data analytics for manufacturing applications is marketed as a "5C architecture" (connection, 

conversion, cyber, cognition, and configuration). Factory work and Cyber-physical systems may 

have an extended "6C system": 

 Connection (sensor and networks) 

 Cloud (computing and data on demand) 

 Cyber (model and memory) 

 Content/context (meaning and correlation) 

 Community (sharing and collaboration) 

 Customization (personalization and value) 

Techniques for analyzing data, such as A/B testing, machine learning, and natural languages 

processing Big Data technologies, like business intelligence, cloud computing and databases 

visualization, such as charts, graphs and other displays of the data multidimensional Big Data can 

also be represented as data cubes or, mathematically, tensors. Array Database Systems have set 

out to provide storage and high-level query support on this data type [9].  

1.4 Big Data and Optimization 

Big Data is impossible to analyze by using traditional central methods [8], and therefore, 

distributed processing with parallelization is needed. Data analytics often must be performed in 

https://en.wikipedia.org/wiki/CERN
https://en.wikipedia.org/wiki/High_performance_computing
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/Implementation
https://en.wikipedia.org/wiki/Apache_Hadoop
https://en.wikipedia.org/wiki/Apache_Spark
https://en.wikipedia.org/wiki/Marketing
https://en.wikipedia.org/wiki/Cyber-physical_system
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/A/B_testing
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Business_intelligence
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/w/index.php?title=Data_cubes&action=edit&redlink=1
https://en.wikipedia.org/wiki/Tensor
https://en.wikipedia.org/wiki/Array_DBMS
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real-time or near real-time. Gaining an answer to the analysis demands on almost real-time is 

almost preferred to a precise decision but in a timely manner. Optimization algorithms for Big 

Data aim to reduce the computational, storage, and communications challenges [8]. The data and 

parameter sizes of Big Data optimization problems are too large to process locally, and since the 

Big Data models are inexact, optimization algorithms no longer need to find the high accuracy 

solutions. It means that, unlike usual optimization problems that try to provide an exact model and 

precise solution, Big Data analytics expects to reach an insight or decision even if it is not the 

accurate answer to the problem [8]. 

In a straightforward explanation, Big Data optimization methods try to partition the data so that it 

is feasible to process, mostly in a centralized manner. Although many research articles are 

published in this era, there is still a big gap between practice and theory, especially considering 

the needs for scalability, robustness, and characteristics of Big Data. It seems that distributed 

optimization algorithms are a promising solution to fill this gap, although there still is a long road 

to go. In the next chapter, we review the recent advances in Big Data optimization and address the 

research articles related to Big Data optimization.  

 

1.5 Thesis objectives  

Large scale datasets can not be processed using traditional methods and algorithms. The 

researchers and companies have introduced new tools and techniques for the analysis of such large 

scale data sets.  

In this thesis, our goal is to present new approaches to be used in large scale dataset processing, 

including Big Data, which is more focused on applicable mathematical aspects rather than tools. 

We propose a distributed optimization algorithm, including consensus and diffusion adaptation. 

We also consider some new practical issues in future data analysis that is using next-generation 

mobile networks. We model the effect of communication failure in distributed optimization 

algorithms that we earlier proposed for Big Data analytics. In general, we have tried to answer the 

following questions in this research.  

- What is the definition and characteristics of Big Data? 

- What tools and frameworks are already used for Big Data analytics? 

- What is the relationship between mathematical optimization techniques and Big Data 

analytics? 
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- Is it possible to propose new algorithms for Big Data analytics that are scalable, perform 

near real-time, and achieve near-optimal solutions?  

- What are the effects of new technologies, such as next-generation mobile networks (5G) 

on Big Data analytics? 

We also liked to review and contribute to classical distributed optimization algorithms for Big 

Data analytics, which was not successful during this research period.  

To answer the above questions, we have performed a review on state of the art and recent articles 

followed by modeling the Big Data analytics as a mathematical optimization problem. We further 

propose a diffusion-based algorithm with a gradient-based iterative solution that satisfies 

scalability, real-time, and decentralized needs. We also mathematically model the effect of 

imperfect communication for next-generation mobile networks used in Big Data concept and 

propose an adaptive weighting approach to overcome the issue. We provide some examples in 

different scenarios, including cognitive radio and the Internet of things, to explain the proposed 

methods more clearly.  

 

1.6 Thesis Organization 

In chapter 2 of this thesis, we review some of the recent and relevant optimization algorithms used 

for Big Data analysis, including machine learning algorithms, classic optimization algorithms, and 

heuristic and evolutionary optimization algorithms. We also review some of the most useful tools 

in Big Data analysis and categorize them into several tables.  

In chapter 3, we show that distributed algorithms are a solution to the decentralized nature of Big 

Data algorithms. We present the basics of stochastic distributed decision-making algorithms and 

propose a fully distributed one that is based on diffusion adaptation. The proposed algorithm uses 

the collaboration of neighbor nodes to make a global decision while the sources make local 

decisions. We evaluate the proposed algorithm on cognitive radio networks in which secondary 

users use energy detector sensors to sense the environment. With some computer simulations, we 

show that the proposed algorithms perform well, are scalable and robust to communication 

failures.  

In chapter 4, we consider some practical issues, including the effect of imperfect communications 

on distributed analysis algorithms. We model this effect as an optimization problem and solve the 

problem to gain the optimal weights that each node assigns to the information received from 
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neighbor nodes. We compare the proposed optimal weighing algorithm with some of the earlier 

methods. Evaluation results confirm that the proposed method performs well in terms of error and 

convergence rate.  
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2 Chapter 2 
Where Big Data meets optimization 
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2.1 Introduction 

In this section, we provide an overview of optimization methods used for Big Data Analytics 

(BDA) like first-order methods, randomization, heuristic, evolutionary, and convex algorithms. 

Big Data is a common topic, and many researchers in various fields of study, including convex 

optimization and machine learning, have contributed to the literature. The essential ingredient for 

every smart and intelligent system is data. More energetic systems acquire more data to make an 

efficient decision that leads to large-scale data sets. This data could be generated from many 

sensors in smartphones, physical sensors attached to cyber-physical systems, many objects in the 

Internet of Things (IoT) platforms and smart cities. This data may further be transferred to a center 

using new technologies such as 5G. Therefore, data gathering is the first challenge of Big Data 

Era. Other problems may include data storage and data processing. Many types of research are 

focused on the adaptation of existing technologies or inventing new ones to store Big Data. 

However, many researchers believe that the main challenge is still finding efficient and optimal 

solutions to process the data in the appropriate time by considering the Big Data challenges [3-4].  

Nowadays, new generations of Big Data, such as multimedia Big Data, are introduced [4]. In this 

new generation, data has more media types and higher volume than the typical Big Data. As a 

result, there is an increasing demand to develop new models and tools to analyze large-scale 

complex networks in-which the optimization plays a vital role [4]. Such optimized analysis models 

and algorithms should be designed so that there is no need for a central authority, but a 

decentralized architecture is required, and it applies to any network structure. 

2.2 Big Data Tools 

Data analytics involves various tools such as those from text analytics, business intelligence, data 

visualization, and statistical analysis. The tools used for Big Data analytics have a long story, and 

it is not possible to explain them all in a few lines. However, it is possible to highlight some 

important ones.  

Hadoop and MapReduce are the most common tools for Big Data analytics [2]. Hadoop was 

initially developed by Cloudera while Google created the MapReduce. Hadoop provides a 

distributed file system and provides the required storage facilities in the form of Hadoop 

distributed file system (HDFS). MapReduce prepares the process of data by dividing it into a 

manageable size and distributing it to different nodes for analysis. Hadoop and MapReduce require 
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a cluster of computers for BDA. Most of the other available tools are built upon the features of 

Hadoop and MapReduce [2]. 

Hadoop and MapReduce are free. Besides these free tools, many companies have developed their 

frameworks. Microsoft provides a suite of Big Data services named Azure. Azure Data Lake 

provides all the capabilities for the interactive handling of Big Data and includes services like 

HBase, and Storm for integration with Hadoop. IBM provides business analytics and optimization 

solutions for Big Data analytics. IBM BigInsights is a Hadoop-based tool for enterprise 

requirements, and IBM Streams is a platform for real-time analytic processing. SAND Analytic 

Platform is an analytic database platform that has the capability for massively parallel processing. 

SAP offers analytical platforms for business intelligence and data warehousing [10].  

SAS Supports cloud-based analytics while the SAS data integration studio provides support for 

Hadoop. Tableau, with its rich visualization features and ease of use capabilities, enables non-

expert users to explore and exploit enterprise data. Pentaho is another tool that proposes rich 

visualization and analytics capabilities. Oracle provides Big Data and cloud services through 

Oracle Big Data cloud service, Oracle Big Data SQL cloud service, Oracle database cloud service, 

and Oracle database Exadata cloud service [10].  

Oracle advanced analytics includes Oracle data miner, Oracle R advanced analytics for Hadoop 

and Oracle Big Data discovery, along with connectors and interfaces for SQL and R [11]. Besides 

these tools as platforms, some tools are also available for database and data processing. The 

categorization of some known tools used for Big Data analytics is presented in Table 1.  

 

For data storing, we may also categorize the tools based on the storage method, including column, 

document, graph, and key-value, as presented in Table 2. 



 
22 Chapter 2, Big Data optimization 

 

2.3 Big Data optimization  

In this section, we assume that massive amounts of data already exists (without considering the 

source) and review recent advances and state of the art, including convex, non-convex, heuristic, 

evolutionary, Game-theory and machine learning-based methods. 

2.3.1 Machine Learning for Big Data Analytics 

In the literature, machine learning plays an essential role in Big Data analytics (BDA). In continue, 

we first review the general application of machine learning for BDA. Traditional machine learning 

approaches developed based on this assumption; the data set will entirely fit into memory that no 

longer holds in the Big Data context. This broken assumption, together with the Big Data 

characteristics, create obstacles to use traditional techniques [3].  

The two main categories of learning tasks are: supervised and unsupervised. In supervised 

learning, inputs and desired outputs (labels) are known, and the system learns to map inputs to 

outputs. In unsupervised learning, desired outputs are not known, and the system itself discovers 

the structure within the data. Examples of supervised learning include classification and 

regression. In classification, the outputs take discrete values while in regression, the outputs are 

continuous. Some well-known classification algorithms are a k-nearest neighbor, logistic 

regression, and support vector machine (SVM). On the other hand, some of the famous regression 

includes support vector regression (SVR), linear regression, and polynomial regression. Some 

algorithms, such as neural networks can be used for both classification and regression [3].  

Unsupervised learning includes clustering objects that are grouped based on similarity criteria. 

Predictive analytics use past data to predict the future; numerous algorithms including SVR, neural 

networks, and Naive Bayes [3]. 
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In the machine learning context, the data size can be defined either vertically or horizontally. The 

vertical definition deals with the number of records in a dataset, while the horizontal definition 

considers the number of features or attributes data contains. Volume is relative to the type of data: 

a smaller number of very complex data points may be regarded as equivalent to a larger quantity 

of simple data [3]. One of the main challenges encountered in computations with Big Data comes 

from the simple principle that scale or volume adds computational complexity. Consequently, as 

the scale becomes large, even simple operations become costly.  

For example, the standard SVM algorithm has a training time complexity  3O n  and a space 

complexity of  2O n , where n  is the number of training samples. Therefore, increasing the size n

, the SVM algorithm may become computationally infeasible on enormous datasets [3].  

The time complexity of maximum likelihood-based algorithms, including principal component 

analysis, logistic regression, locally weighted linear regression and Gaussian discriminative 

analysis, is  2 3O nm m  where n  are the number of samples and m  the number of features. For all 

these algorithms, the time needed to perform the computations will increase exponentially with 

increasing data size and may even render the algorithms unusable for enormous datasets. 

Therefore, the computational complexity of algorithms is another reason why existing machine 

learning and data analysis algorithms can not necessarily be used for Big Data analytics.   

On the other hand, some existing machine learning algorithms are inherently parallel and can be 

adapted to the MapReduce paradigm, whereas others are difficult to take advantage of large 

numbers of computing nodes (parallel computing) [3]. In summary, traditional methods should be 

revised by considering new constraints.  

When it comes to performance, optimization plays a pivotal role. Based on different perspectives 

available of Big Data, it is evident that the optimization can be applied to a variety of fields 

including database, query, search engine or processing. In [7] authors study Big Data-based self-

optimization networking in next-generation mobile networks. Their goal is to maximize the 

network efficiency and increase the quality of services provided to microcell and femtocell users, 

considering the limited resources. They use Big Data techniques to decide to adjust network 

parameters in a distributed intelligence manner.  

Authors in [8] propose distributed optimization storage and statistical system model-based. In [12], 

the authors propose an optimization algorithm based on the spatial and temporal data compression 

for wireless sensor networks in the underground tunnel environment. They introduce spatial and 

temporal correlation functions for data compression and data recovery. In [13], the authors study 
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means of integrating Big Data analytics with network optimization to improve the user quality of 

experience. They propose a framework of Big Data-driven mobile network optimization.  

Authors in [14] explain how functions can serve to model the various data structures used to 

represent large data sets. They present details of four functions modeling tabular data, graph 

structures, cached, and split data. In [15], the authors present an optimization framework based on 

the Fireworks algorithm for Big Data optimization problems. Their proposed structure is composed 

of a single objective Fireworks algorithm and a multi-objective Fireworks algorithm to solve the 

significant optimization of signals problem “Big-OPT.”  

In [16] the query optimization process for performance up-gradation of cloud transactions and 

compare different strategies used in the optimization domain of distributed cloud databases are 

addressed. Authors in [17] propose an optimization algorithm for the massive data communication 

between the weather research and forecasting model and coupler version 7 in the Chinese Academy 

of Sciences-Earth System Model (CAS-ESM). Their optimization strategy is to transmit data from 

a small packet into a larger packet. 

Recently, deep learning has absorbed the widespread adoption of enterprises to gain greater insight 

from the analytics. Although artificial intelligence (AI) was first conceived in the late 1950s, the 

recent jump into learning methods such as deep learning is fueled by the latest advancements in 

hardware industries. The combination of deep learning and Big Data appears in many research 

topics. For instance, in natural language processing techniques, the typed text requires lots of data 

to produce the best results possible (currently around 4% error). Different accents (in spoken 

language processing) are also needed. Similarly, we may consider the IoT applications. For 

instance, in the oil industry, we have several sensors taking measurements of critical factors in 

each pipeline. This rich sequential data stream (Big Data) is significant for deep learning [18].  

A recent exciting topic in this area includes parallel and distributed network training for Big Data. 

In [19] authors study deep neural networks (DNN) as is used in image recognition, object 

detection, classification and tracking, and speech and language processing applications. They try 

to argue the training cost in computation and time and describe how to enable parallel deep neural 

network training on the IBM Blue Gene/Q (BG/Q) computer system. They explore DNN training 

using the second-order optimization algorithm [19].  

Authors in [20] investigate the problem of the compute-intensive process of training proposes to 

use variants of the stochastic gradient descent (SGD) algorithm as a solution. In summary, they 

present optimization techniques to improve the performance of the data-parallel synchronous SGD 

algorithm using the Torch framework. This area is almost new, and many quality research articles 

are expected to be published in the near future.  



 
25 Optimization for Big Data 

In another perspective, we may categorize the Big Data optimization algorithms into two 

categorize, namely classic and heuristic algorithms. Classic algorithms include convex, dual 

descent, alternating direction method of multipliers (ADMM), while heuristic algorithms include 

some evolutionary algorithms. Next, we will review some recent developments of the classic 

optimization algorithms that are designed for Big Data applications.  

2.3.2 Classic Optimization for Big Data Analytics 

One of the reasonable efforts goes back to 2014, where Cevher and et al. in [21] study the convex 

optimization for Big Data. Convex optimization is applicable for Big Data, where the data and 

parameter sizes of optimization problems are too large to process locally. The fundamentals of Big 

Data convex optimization could be presented as follows: 

      : : N

x
Min F x f x g x x    (2-1) 

Where f  and g  are convex functions. In general, three types of algorithms are used for Big Data 

convex optimization, namely First-order methods, Randomization, and Parallel computation.  

First-order methods obtain low or medium accuracy numerical solutions by using only first-order 

information from the objective, such as gradient estimates. These methods feature nearly 

dimension-independent convergence rates, they are theoretically robust to the approximations, and 

they typically rely on computational primitives that are ideal for distributed and parallel 

computation. Randomization techniques particularly stand out among others to enhance the 

scalability of first-order methods since their expected behavior is controllable. Key ideas include 

random. Partial updates of optimization variables, replacing the deterministic gradient and 

proximal calculations with cheap statistical estimators, and speeding up basic linear algebra 

routines via randomization [21]. 

It is possible to further augment first-order methods with approximations for increasing levels of 

scalability, from idealized synchronous parallel algorithms with centralized communications to 

enormously scalable asynchronous algorithms with decentralized communications. These 

algorithms are called parallel and distributed computation. The three concepts above complement 

each other to offer scalability benefits for Big Data optimization [21]. 

Not every problem in Big Data is convex [46-47]. In [22], a randomized primal distributed 

algorithm for partitioned non-convex problems is proposed. In this method, a network of N  nodes 

is modeled as an undirected communication graph with an edge  ,i j  that indicates the edge 
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between node i  and node j . These nodes can exchange information, and the cost function is 

separable. They try to split the effective cost into a smooth part (by modeling local objectives) and 

non-smooth one being a regularization term or constraint. They shape the problem is presented in 

equation (2-2) [22]. 

    
1

min
i

N

i N i i
x

i

f x g x


  
(2-2) 

Where the node i  knows only the functions 
if  and 

ig . The problem is called partitioned due to 

the structure of the functions 
if  and  

ig . In equation (2-2) the 
iN  shows the set of neighbor nodes 

to the node i  (connected nodes in the graph with edges). A sample visualization of the problem 

and the partitioned mechanisms 4N   depicted in Figure 2-1. 
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x1

x2
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Figure 2-1 Partitioned optimization problem over a path graph of N=4 nodes for the randomized primal distributed algorithm 

for partitioned Big Data  

 

In [23], authors consider the same problem and propose a distributed partitioned optimization via 

asynchronous dual decomposition. Similar to [22], they assume that the dimension of the decision 

variable depends on the network size, and cost function and constraints have a sparsity structure 

related to the communication graph.  

In [24-25] authors consider Big Data optimization by using block communications. In [24], multi-

agent large-scale optimization problems is studied wherein the cost function is composed of a 

smooth possibly non-convex utility and a difference of convex regularize. Authors assume that the 
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dimension of the optimization variables is so large that optimizing and transmitting the entire set 

of variables could cause un-affordable computation and communication overhead. The considered 

optimization problem can be written as follows [24].  

     

 

1 1

1. . , ,

, 1, ,

N B

i l l
x

i l

T
T T

B

l l

Min U x f x r x

S t x x x

x k l B

 

 

   

   

 

 

(2-3) 

Where x  is the vector of the optimization variables, partitioned in B  a block, whole l
th block is 

denoted by 
lx  and 

if  is a smooth possibly non-convex cost function of agent i  and 
lr  is a difference 

of convex function commonly known by all the agents and 
lk  is a closed convex set. The term 

lr  

usually plays the role of regulation. In [25] the problem is the same as [24] while the solution 

provided is based on an iterative algorithm called BLOCK-SONATA. Their evaluation results 

show that as the number of blocks increases, the performance improves.  

Alternating direction method of multipliers (ADMM) is a distributed optimization method 

proposed in 2011. The methods ingredients are rather old and belong to the 60s and 70s. However, 

it is proven to show outstanding performance in different applications. In [26] authors propose a 

multi-block ADMM for Big Data optimization in modern communication networks. They consider 

a convex separable problem with a canonical form, as presented in equation (2-4).   

     
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Min f x f x f x

S t A x A x c

x X i


  

  

  

 

(2-4) 

For the solution of ADMM based optimization methods in [26], one of the situations presented in 

Figure 2-1, occurs. The convergent of solutions for of ADMM based optimization methods is 

presented in Figure 2-2. 



 
28 Chapter 2, Big Data optimization 

Normal ADMM Solution

Gauss-Deidel Type Direct 

Extention

Jacobian Type Direct 

Extension

ADMM with Gaussian Back 

Substitution
Proximal Jacobian ADMMVariable Splitting ADMM

2-Block ADMM

N-Block ADMM

Convergent as 2-

block ADMM Global Convergent
Global Convergent 

with rate O(1/k)

No Guaranteed 

Convergent

 

Figure 2-2 Relationships among ADMM based algorithms for Big Data optimization 

 

In [27], parallel coordinate descent methods for Big Data optimization is proposed. The authors 

show that randomized (block) coordinate descent methods can be accelerated by parallelization 

when applied to the problem of minimizing the sum of a partially separable smooth convex 

function and a simple separable convex function. In their proposed method, when no degree of 

separability is present, there may be no speedup; in the best case, when the problem is separable, 

the speedup is equal to the number of processors.  

In [28], the authors use the sub-gradient method for dual decomposition and propose an accelerated 

distributed optimization for the reconstruction of big sensory data. They show that the proposed 

approach converges in order  2
1O

t
. They use compressive sensing for sensory data. Another 

compressive sensing based optimization algorithms utilize the previous step information to update 

the intermediate variables while their proposed accelerated method it makes use of more past 

information by preserving more past information rather than only the last step. Therefore, the 

convergence speed is accelerated from  1O
t

 to  2
1O

t
. 

Stochastic optimization for Big Data is studied in [29]. Authors propose a data-driven stochastic 

robust optimization named (DDSRO) for optimization under uncertainty leveraging labeled multi-

class uncertainty data. They use machine learning methods, including the Dirichlet process mixture 

model and maximum likelihood estimation for uncertainty modeling. Their proposed algorithm is 

a two-stage stochastic programming approach to optimize the expected objective across different 

data classes followed by robust adaptive optimization as the inherent problem to ensure the 
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robustness of the solution. Their optimization problem is presented in equation (2-5) as follows 

[29].  

 
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(2-5) 

where   is an uncertain scenario that influences the uncertainty set and   is the set of scenarios. 

The parameter x  is the first stage decision made before the uncertainty u  is realized, while y  in 

the second stage decision, T
c x  and T

b y  are objective functions,  Ax d  and    Wy h Tx Mu   are 

modeled constraints [29]. 

Low-rank modeling plays an essential role in signal processing and machine learning, with 

applications on Big Data analytics. Many high-dimensional data and interactions can be modeled 

as approximately in a low-dimensional subspace or manifold, possibly with additional structures 

applicable both in convex and non-convex approaches. Convex relaxations such as nuclear norm 

minimization often lead to statistically optimal procedures for estimating low-rank matrices, where 

first-order methods are developed to address the computational challenges. There is emerging 

evidence that correctly designed non-convex procedures, such as projected gradient descent, often 

provide globally optimal solutions with a much lower computational cost in many problems. In 

[30] authors' survey article gives a unified overview of these recent advances in low-rank matrix 

estimation from incomplete measurements. Attention is paid to rigorous characterization of the 

performance of these algorithms and to problems where the low-rank matrix has additional 

structural properties that require new algorithmic designs and theoretical analysis. Authors in [45] 

present an algorithmic framework for Big Data optimization, called the block Successive Upper 

Bound Minimization (BSUM). Their proposed BSUM includes methods such as the Block 

Coordinate Descent (BCD), the Convex Concave Procedure (CCCP), the Block Coordinate 

Proximal gradient (BCPG), the Nonnegative Matrix Factorization (NMF) and the Expectation-

Maximization (EM). 
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2.3.3 Heuristic and Evolutionary Optimization for Big Data 

There has been a growing interest in algorithms that are based on the principle of evolution [31-

37]. A commonly accepted term refers to such techniques as evolutionary computation (EC) 

methods. The best-known algorithms in this class include genetic algorithms and evolutionary 

programming. Heuristic algorithms are designed to solve a problem in a faster and more efficient 

fashion than traditional methods by sacrificing optimality, accuracy, precision, or completeness 

for speed. Heuristic algorithms frequently used to solve NP-complete problems. Heuristic 

algorithms can produce a solution individually or be used to provide a good baseline and are 

supplemented with optimization algorithms. Heuristic algorithms are most often employed when 

approximate answers are satisfactory and exact solutions are necessarily computationally 

expensive. Here, we will review the research works from the heuristic and evolutionary 

optimizations algorithms that are focused on Big Data.  

In [31], the authors focus on modeling and optimization of features selection in Big Data. They 

present a system architecture that selects features by using an artificial bee colony followed by a 

Kalman filter used in the Hadoop ecosystem for removal of noise. They also propose a complete 

four-tier architecture that aggregates the data, eliminate unnecessary data, and analyze the data by 

the Hadoop-based artificial bee colony algorithm. In [32], the authors study the differential 

evolution framework for Big Data optimization. They assume that a real-time Big Data problem 

is not known in advance. Therefore, they propose a general differential evolution framework in 

which the most suitable differential evolution algorithm for a problem on hand is adaptively 

configured. A local search is also employed to increase the exploitation capability of their proposed 

algorithm.  

 In [33] authors claim that multi-objective evolutionary algorithms (MOEAs) suffer from some 

difficulties when solving Big Data optimization problems with thousands of variables and propose 

a meta-heuristic firefly algorithm (FA) to solve the problem. In [34] an adaptive mutation operator 

is introduced to enhance the performance of the standard non-dominated sorting genetic algorithm, 

the third generation also called NSGA-III algorithm to overcome the high computational costs of 

solving Big Data optimization problems via traditional multi-objective evolutionary algorithms. 

jMetalSP [35] combines the multi-objective optimization features of the jMetal framework with 

the streaming facilities of the Apache Spark cluster computing system as software platforms to 

solve dynamic multi-objective Big Data optimization problems. 

Genetic Optimization for Big Data analysis is presented in [36]. Authors in [36] consider opinion 

mining from unstructured textual documents and propose a method focused on minimum 
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preliminary requirements about the knowledge of the analyzed language. Their proposed method 

is built on artificial intelligence consisting of support vector machines classifier, Big Data analysis, 

and genetic algorithm optimization. To make available optimization for Big Data, they propose 

GA operators, which significantly accelerate conversion to accurate solutions.  

In [37], authors try to study the known issues of evolutionary algorithms including scalability when 

dealing with Big Data problems. They propose a different framework that integrates a cooperative 

co-evolution method. They use the collaborative co-evolution method to split the big problem into 

subproblems to increase the efficiency of the solving process. The sub-problems are then solved 

using various heterogeneous memetic algorithms. Their proposed different framework adaptively 

assigns different operators, parameter values and a local search algorithm to efficiently explore 

and exploit the search space of the given problem instance. 

 

Conclusion 

Every day, massive amounts of data are collected by sensors, log files, networks, and smart 

devices, forming enormous volume, velocity, and variety. The data with one or more than of these 

characteristics is called Big Data. Processing Big Data enables smart decisions and insight. 

However, it is impossible to analyze the traditional central methods. Optimization algorithms for 

Big Data aim to reduce the computational, storage, and communications challenges. In this section, 

we provided an overview of optimization methods used for Big Data Analytics (BDA) like first-

order methods, randomization, heuristic, evolutionary, and convex algorithms. 

In summary, optimization algorithms used for Big Data analytics should perform in a distributed 

manner. They split the workload and process each part using parallel computing methods. The 

recent significant algorithms used for Big Data analytics include primal-dual, ADMM, 

randomized, and stochastic methods. All these methods require iterative solutions to decide on Big 

Data analytics.
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3.1 Introduction 

Data processing can be performed in a centralized or distributed manner [38]. Analysis of large 

data sets and Big Data seems infeasible by using central processing and storage units [48]. 

Considering the streaming data sources, learning must often be performed in real-time or near real-

time [38]. Although centralized processing methods usually provide the optimal decision, 

considering the challenges faced by data storage in the cloud or any distributed file system [39], 

decentralized methods are still preferred [40]. Therefore, there is an urgent need for scalable 

methods, capable of efficient data processing, considering the storage, query, and communication 

challenges. In some cases, privacy and security concerns are critical and prevent accessing the full 

data. In these cases, only partial data or processed output (decision) might be transferred through 

communication interfaces. 

As depicted in Figure 3-1, the characteristics of Big Data require an optimization algorithm that is 

scalable, compatible with missing values of data (robust), performs near real-time and is applicable 

in distributed platforms such as the cloud. These challenges are not adequately answered by 

traditional optimization methods, and the ultimate purpose of any modified or new optimization 

algorithm in the Big Data era is to reduce the computational, storage, and communications 

bottlenecks. One of the open issues faced by the data community is how to scale up analytic 

algorithms. To address this issue, we introduce a fully distributed stochastic optimization 

algorithm for decision making over large-scale data sets. We describe the proposed model 

mathematically. Our method is scalable to any network or data size, works based on the 

cooperation of neighbor processing/storage units, and it is adaptive to any dynamic behavior of 

processing/storage units. Experimental results on cognitive networks confirm that the proposed 

method performs well, proven to be distributed, scalable and robust to missing data and 

communication failures.  
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Figure 3-1 Different Characteristics of optimization algorithms for Big Data analytics 

 

3.1.1 System Model 

From the data point of view, there are two different approaches namely, centralized and distributed 

[38]. In centralized techniques, the data is transferred to a center for further processing/storage, 

whereas in a distributed manner, the data is exchanged and processed within the network locally. 

Transmitting the data to a center may cause network congestion and waste of communication and 

power resources. Any malfunction in the center causes network breakdown. Besides, the center 

requires high computation power to process the large volume of collected data. In comparison, in 

a distributed approach, the computational network load is divided between processing/storage 

units using cooperation and no centralized infrastructure is required.  

The following notations are used throughout this chapter. Matrices are represented by upper case 

and vectors by lower case letters. Boldface fonts are reserved for random variables, and regular 

fonts are used for deterministic quantities. Superscript  .
T

 denotes transposition for real-valued 

vectors and matrices while  
*

.  denotes conjugate transposition for complex-valued vectors and 

matrices. The symbol  .E  is the expectation operator,  .Tr  represents the trace of its matrix 

argument. 
MI  Represents the identity matrix of order M . 
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We consider a network consisting of N  processing/storage units, also called “ node” from now-

on. The nodes are assumed to be distributed, each capable of processing and storing the limited 

size of data (at-least during the processing) and may or may not be involved in initial data 

generation. We assume that neighbor units can communicate with each other by using direct 

connection interfaces. Node l  is said to be a neighbor of the node k  if they can communicate and 

cooperate. We denote the set of all neighbors of the node k  by 
kN .  

In this model, we assume that the nodes are generating or receiving continuous data with Big Data 

characteristics. It is impossible to transfer and process the data in a centralized manner because of 

the challenges faced by communication, security, time, and storage. The objective of the nodes in 

the network is to decide in a fully distributed manner. In other words, the solution is an estimate 

of an unknown parameter vector o  in a distributed way through stochastic optimization. At every 

time instant (iteration), i , each node k observes a scalar random process  k id  and a random vector 

process ,k iu  which is related to o   via the linear regression model presented as follows [42]: 

   0

,k k i ki i d u v  (3-1) 

The regression data  ,k iu  is zero mean, independent and identically distributed (i.i.d.) in time and 

independent over space with covariance matrices *

, , , 0u k k i k iR    E u u . The noise  k iv  is zero mean, 

i.i.d. in time and independent over space with variances 2

,v k . The ,k iu  and the noise  k iv  are 

mutually independent. The network will try to estimate o  by searching for the minimized global 

cost function, as presented below. 

   
2
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1

N
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k k i

k

J i 


 E d u  
(3-2) 

The most critical issue to solve an optimization problem in a distributed manner is to be able to 

separate the cost function among processing units. Each processing/storage unit should be able to 

act on its own while cooperating with neighbor nodes. Moreover, we assume that the cost function 

is separable among all processing units as follows. 

   
1

N
glob

k

k

J J 


  
(3-3) 

 kJ   is the cost function of k processing/storage units defined as follows: 

   
2

,k k k iJ i  E d u  (3-4) 
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 The cost function  kJ   can further be written in another form, as presented follows.  

 
,

2

u k

o

k kR
J mmse      (3-5) 

where 
2

x

 denotes the weighted square quantity as *x x  for any semi-definite matrix 0   

*

, , , 0u k k i k iR    E u u  and 
kmmse  is an additional MMSE term that is independent of  . 

Therefore, we have: 

     
,

2

u l

global o

k lR
l k

J J mmse   


     (3-6) 

 The optimum value  o  that appears in the quadratic parts is not known. It should also be 

mentioned that the weighting matrices ,u lR  are not available in general, and only those from the 

neighbors can be assumed to be available. Therefore, we may conclude: 

       
,

2

\k
u l

dist o

k k l N k R
J J   


    (3-7) 

Please note that the term 
lmmse  is ignored since it is independent of   and has no effects in finding 

the optimal value o . The covariance matrices ,u lR  are not available in practice. Usually, 

processing/storage units can only observe realizations ,l iu  of data arising from distributions whose 

covariance matrix is unknown 
  ,

.
u l

R  One way to address this issue is to replace each of the 

weighted norms by a scaled multiple of the form as presented as follows: 

,

2 2

, ,
u l

o o

l kR
b       (3-8) 

where ,l kb  is a non-negative coefficient? Each node k approximates the moment ,u lR  from its 

neighbors by multiples of the identity matrix. This Approximation is reasonable because using the 

Rayleigh-Ritz characterization of eigenvalues, it holds that: 

   
,

2 2 2

min , max ,
u l

o o o

u l u lR
R R             (3-9) 

 Therefore, we may conclude that:  

     

2

,\k

dist o

k k l kl N k
J J b   


    (3-10) 
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This new cost function at node k  relies only on available information from neighbor nodes. Now, 

each k  can apply a steepest-descent iteration to minimize the cost function as presented as follows: 

 

     

*

, , 1

, , 1 , , , 1 , , 1\k

dist

k i k i k k

o

k i k i k du k u k k i k l k k il N k

J

r R b

 

  



  

    

    

ω ω

ω ω ω ω

 
(3-11) 

Where   denotes the gradient vector. The step size parameters 
k  can be constant or variant. 

Fixed step size allows the algorithms to work continuously, while various step sizes that decay to 

zero causes the algorithms to stop after a while. Adaptive implementation of can be obtained by 

replacing covariance matrices by instantaneous approximations as presented: 

  *

, ,

*

, , ,

du k k k i

u k k i k i

r i

R





d u

u u
 

(3-12) 

Finally, by some substitution of equations, we may conclude that: 

      *

, , 1 , , , 1 , , 1\k

o

k i k i k k i k k i k i k l k k il N k
i b    

    ω ω u d u ω ω  (3-13) 

The last correction term still depends on the unknown o . Choosing different approximations  o   

leads to different strategies, such as consensus [42].  

3.2 Proposed Method 

Here, we first present the proposed method by its mathematical model and discuss the 

computational complexity of the presented method. In the proposed method, we apply diffusion 

adaptation [43] and by defining an intermediate variable,  , we have:  

  

   
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(3-14) 

The unknown term o  is still shown in the equation. Considering ,l i  as a substitute for o  we 

have: 

  

   
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(3-15) 
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It should be noted that in previous methods, , 1l iω  is usually substituted as o . Defining 
,l ka  as a 

weighting coefficient as presented and 
k  , we may conclude that: 

 
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, \
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The equation (3-17) could also be written in another form as presented as (3-19) where ,l kc  are the 

entries of the right-stochastic matrix C , satisfying (3-18): 

, ,0, , 0l k N N l k kc c if l N   C1 1  (3-18) 

 

  *

, , 1 , , , , 1

, , , 1

k

k

k i k i k l k l i l l i l i

l N

k i l k l i

l N

c i

a

 



 







  







ω u d u ω

ω
 

(3-19) 

 

3.2.1 Computational Complexity 

Considering n , the average number of neighbor nodes in each iteration and assuming that total I  

iterations are needed for the convergence and having N  processing/storage units in the network, 

the computational complexity is presented in Table 1. Comparing with convex optimization and 

considering semidefinite programming (SDP) or Second Order Cone Programming (SOCP) the 

complexity is non-linearly related to the number of data generator/processor/storage units, at-least 

by 2( )o N [41]. 
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3.3 Evaluation Results 

In this part, we evaluate the proposed algorithm using a practical example. In this application, we 

define an optimization problem and assess the performance in terms of accuracy and robustness.   

3.3.1 Cognitive Networks 

One practical example of Big Data may be found in wireless sensor networks where the sensors 

generate a massive amount of data in a non-stop manner [44]. In wireless networks, it is shown 

that only a partial spectrum is used by the users [44]. Therefore, the cognitive systems are proposed 

as a solution and to improve the spectrum usage efficiency. Such systems include two types of 

users namely, primary and secondary. The primary users are the owner of the spectrum, and 

secondary users should continuously scene the spectrum (called spectrum sensing). When they 

find the unused band of spectrum for a while, use it based on the network predefined policy. Now, 

assume that the sensors should sense the data (level of energy available in the working frequency 

domain) and send their observations to a center. Besides the security, power consumption and data 

processing issues, the latency introduced in transferring data is not acceptable. This might be a 

straightforward application of the proposed method to make a decision continuously with high 

accuracy and reliability against any communication failure [44]. A simple diagram of a distributed 

spectrum sensing procedure is presented in Figure 3-2.  
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Figure 3-2 Instruction of performed tasks in distributed spectrum sensing 

 

As presented in Figure 3-3, first, each sensor needs to measure the energy level and cooperate with 

other neighbors to make a distributed decision with local information. We consider a sample 

network consisting of 15 sensors (secondary users). 

 

Figure 3-3 Performance of the distributed spectrum sensing when the communication link is ideal 

 

We consider two scenarios; in the first scenario, we assume that the communication link between 

sensors (neighbors) is ideal. In this case, each sensor sends the data to its neighbors and makes a 

decision accordingly. The simulation results are presented in Figure 3-3. As illustrated in Figure 

3-3, the first decision of each sensor is different. It is because each sensor has only access to its 

Measurement of Energy Level by each of sensors

Cooperation with neighbor sensors and sharing the
measurements

Making a decision based on proposed method

Updating the information and decision base on new 
measurement and neighbor’s decision
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local information. The challenges forced by communication, security, processing power and more 

critical time of the decision, make it impossible to gather the information in a center and process 

them simultaneously. We assume that information is transferred only to neighbors, and nodes 

perform the proposed optimization algorithm. After a few iterations, the whole network (each 

node) can reach a correct decision while each has only processed local information. This 

simulation shows how the continuously generated a large amount of data that is impossible to 

transfer and process in any of the nodes is processed in a fully distributed manner.  

 

Figure 3-4 Performance of the distributed spectrum sensing when the communication link fails with the probability of 0.4 

In the second scenario, we consider a more practical example. We assume that the communication 

between neighbor sensors is imperfect, meaning that we evaluate the proposed method when some 

data is missing. In this scenario, we try to assess the robustness of the proposed algorithm. We set 

the probability of communication failure to 0.4. It means that in each time instant (iteration), the 

likelihood of successful transmission is 0.6, and with a 40% chance, the transmitted data is missing. 

The result is presented in Figure 3-4.  

As simulation results indicate, the proposed stochastic optimization method finds the global 

optimum while only local information is exchanged through the network. The convergence of this 

network means that, although sensors only process their cost function, the information diffuses to 

the network. Considering the communication link imperfection, the method is robust against 

missing data. It should be mentioned that the algorithm is capable of being used in all networks 

with arbitrary size. The simulation is performed with Matlab and part of the simulation code is 

presented in the Appendix.  



 
42 Chapter 3, Evaluation Results 

3.3.2 Conclusion 

In this chapter, we presented a fully distributed method to decide large-scale networks and data 

sets. The proposed method is scalable to any network configuration, is near real-time (in each 

iteration, a solution is achieved although this solution is not precise) and more critical, robust to 

any missing data or communication failures. We evaluated the proposed method by a practical 

example and simulations on cognitive networks. Simulation results confirmed that the proposed 

method is efficient in terms of accuracy and robustness. Here, we evaluated the proposed algorithm 

with a simple application of cognitive sensor networks.  
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4.1 Introduction 

The nature of decentralized large-scale data-sources requires distributed algorithms. In previous 

chapter, we proposed an algorithm in which it is assumed that the data-sources are capable of 

processing their data and collaborating with neighbor sources. We assumed that the network 

objective is to make an optimal decision while the data is processed in a distributed manner. New 

technologies, such as the next generation of wireless communication and 5G [7, 52], introduce 

practical issues, including imperfect communication that needs to be addressed in the context of 

Big Data.  

In this chapter, we propose an optimal algorithm that uses optimal weighting to combine the 

resource of neighbors. We model the effect of imperfect communication on an optimization 

problem and find the solution by applying the proposed algorithm. We evaluate the performance 

of the developed algorithm by using both mathematical methods and computer simulations. We 

introduce the conditions in which the convergence of the proposed algorithm is guaranteed and 

prove that the network error decreases considerably compared with some of the known modern 

methods. 

We assume that each source is capable of communicating and processing a limited amount of data. 

An enormous amount of sensing devices collect or generate sensory data over time for a wide 

range of applications witch results in Big Data [51]. One example of such networks could be found 

in smart-city or Internet of things (IoT) concept in-which sensory data is transmitted to Edges or 

clouds. The network needs to make a decision in near real-time and broadcast the decision to 

network actuators as depicted in Figure 4-1.  

It is not practical to use centralized solutions because of Big Data characteristics in large-scale 

networks. The recently distributed algorithms, usually focus on the performance, neglecting the 

practical issues. For instance, trying to decide on the minimum time, using load-balancing 

algorithms is mandatory; because of the dynamic characteristics of data-sources in volume, 

processing capabilities, and so forth. One of the critical features in distributed algorithms is 

collaboration; meaning that the data-sources are capable of sharing their initial decision and part 

of their data with some of the neighbor sources. This property is the key to reach a global decision 

over the network, while the data is processed in a fully distributed manner. Until now, the 

communication link between the data-sources is considered ideal, meaning that the effect of 

communication link on the data transfer is neglected. However, new wireless communication 

technologies such as 5G and the next generations of wireless communication are considered as 
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promising solutions to form the communication infrastructure of large-scale networks. These 

wireless links introduce noise, path-loss, multi-path and fading that damage the data.  

Here, we focus on fully distributed data-analytics algorithms and add a practical constraint to the 

optimization problem. We assume that the communication between data-sources is non-ideal. We 

model the effect of this non-ideal channel on data and consider an optimization problem and find 

the solution by using a distributed decision-making algorithm with optimal weighting.  

 

Figure 4-1 Sample diagram of the sensory network in-which the data is transferred to cloud/Edge data-sources that can 

communicate. The network should make a decision or insight from such Big Data in a distributed manner. 

 

The following properties are assumed for data sources:   

    • Data-sources rely only on their local information and observations.  

    • Data-sources can exchange some limited information to near neighbors.  

    • The network is dynamic, and the algorithms should be robust to the changes in the network 

topology.  

    • Sources are capable of computing limited information  
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Considering the mentioned challenges, researchers are trying to find optimized distributed 

decision-making algorithms. In such algorithms, it is assumed that the decentralized data from a 

variety of sources could be utilized to make an optimized decision for the network while all the 

contributors benefit. The main idea of this solution lies behind several assumptions, listed in the 

following.   

    • All data-sources can make an initial decision by themselves (can process a limited amount of 

data).  

    • All data sources are capable of sharing their own decisions and part of their data (for example, 

in a vehicular network, the sensory data) with some neighbors in the network.  

    • The decision-making objective is accepted among all the data-sources. Each source is capable 

of making its own decision only by using its gathered data while contributes to the network’s 

global decision.  

Finding the optimal solution, which guarantees the best convergence rate, convergence area, and 

minimum cost, is still an open issue. In this section, we try to improve the performance of the 

existing algorithms by proposing optimal weight design over the Internet of things applications 

that regularly face some practical challenges, including imperfect communication channels. 

4.1.1 System Model 

In this section, we present the system model At first we define the variable sets and notation 

followed by the mathematical representation of distributed decision-making model.  

4.1.1.1 Notation 

The following notations are used throughout this paper. Matrices are represented by upper case 

and vectors by lower case letters. Boldface fonts are reserved for random variables, and regular 

fonts are used for deterministic quantities. Superscript  .
T

 denotes transposition for real-valued 

vectors and matrices while  
*

.  Denotes conjugate transposition for complex-valued vectors and 

matrices. The symbol  .E  is the expectation operator,  .Tr  represents the trace of its matrix 

argument. MI  Represents the identity matrix of order M . The .diag  operator shows a diagonal 

matrix and  .vec  the operator creates a vector from a matrix.  .bvec  the operator first takes the 
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blocks of a matrix and make a vector from this block by serializing the data.   shows the 

Kronecker product and b  represents the block-Kronecker product [53]. 

We consider a network consisting of N  decentralized data-sources, each capable of processing a 

limited amount of data and communicate with its neighbors. The set of all neighbors of a source 

k  is denoted by kN . The sources are generating or accumulating data with some of Big Data 

properties. The objective of the network is to decide in a fully distributed manner. Mathematically 

speaking, the solution is to find an unknown vector o , as a distributed estimation, that is 

performed by using iterative techniques. In such techniques, at each time instant (iteration) i , 

sources have access to the following two types of data: a scalar random process  kd i  and a vector 

random process 
,k iu  both related to o  where s  kv i  is data gathering noise [54].  

0

( , )( ) ( )k k i kd i u v i   (4-1) 

In equation (4-1) it is assumed that the:   

    •  ,k iu  is zero-mean, independent, and identically distributed (i.i.d.) in time and independent 

over space.  

    • the covariance matrices are shown with *

, , , 0u k k i k iR E u u    .  

    • The noise  kv i  is zero-mean, i.i.d. in time and independent over space with variances 2

,v k   

    • The ,k iu  and the noise  kv i  are mutually independent.  

 As an example, consider an IoT network consisting of many devices that transfer their sensory 

data to near edge or clouds as depicted in Figure 4-1. Therefore, the data-sources have access to 

instant observations divided as scalar or vector random processes. The objective could be a 

decision on choosing the optimal power flow or path suggestion. The data is produced with high 

volume, velocity, and variety, and it is not possible to make a network decision (global decision) 

in near real-time. 

4.1.2 Optimal-Weight Distributed Algorithms 

In general, we try to solve the equation (4-2) in an optimized manner. To find the optimal 

weighting matrix, we assume that the    , , ,l k l k l ka i I i  where ,l k  are positive fixed combination 
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weights that data-source k  assigns to thl  Neighbor. The  ,l kI i . Pretenses the network 

communication topology and is equal to 1 when the two data-sources collaborate (communicate) 

and 0 otherwise. Some of the known optimal weighting algorithms in the literature are Metropolis 

[55], as presented in equation (4-3) and Laplacian adaptive methods [56] as given in equation (4-

4). 

  
*

( , ) , , , , 1
,k

k i l k l i k k k i k il N k i
a u d i u    

    (4-2) 
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Although these methods are modified to take into account different network topologies, they still 

are not the optimal solution for the networks with imperfect communication among sources. In 

what follows, we first present the effect of imperfect communication in damaging the data and 

then describe the propose optimal weighting algorithm.  

4.1.3 Effect of Imperfect Communication 

We assume that the ,lk i  is the estimate of received data on data-source k , sent from the source l  

over the imperfect wireless channel (for instance using 5G [52]) in which the communication 

channel affects the data by ,l kh as follow: 
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   
, , , ,

,

t

lk i l k l k lk i

l k

P
h i v

r




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(4-5) 

 where tP  is the power of the transmitted signal and , ,l k k lr r  is the distance between the source l  

and k .   is the path-loss component and 
 

,lk iv


 is the additive zero-mean noise vector with  
,

2

lk iv MI


  

as its covariance matrix. The channel coefficients are space-independent and time-variant circular 

Gaussian random variables with zero-mean and 
,

2 1
l kh  . The noise vector,   ,lk iv


 is also zero-

mean and i.i.d in time. The channeling effect (
,l kh ) could be neglected only when the signal is 

stronger than a pre-defined threshold, 
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Considering the channel effect, the  
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  Is defined. The data transmission is defined 

as successful when   o

lk lki   meaning that the  
2

,lk l kh i v .  

While the channel coefficients,  lkh i  are circular Gaussian random variables, the  
2

lkh i  follows 

exponential distribution with 1  . Therefore, the probability of successful transmission could be 

modeled as follows: 

   ,
2

, ,
l kv

l k r lk l kp P h i v e


     (4-6) 

This demonstrates that increasing the distance between data-sources while the transmission power 

is constant, the chance of successful data transmission decreases.  

We assume that network topology is dynamic, meaning that the neighbors may vary during the 

iterations. Therefore, ,k i kN N  is defined as a subset of neighbors to data-source k  at the iteration 

index i . Therefore, the main calculation formula in equation (4-2) could be re-written as follows:  
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4.2 Proposed Optimal Weight Design 

 The weights, in general, could be presented as equation (4-8).  
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where 
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It is straightforward to prove that 1
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Proof: 

Defining 
1i i i iB My ω ω  we have: 

2 2 *

1i i i i




   
       

   
 

E ω E ω E y y  
(4-10) 

Where 0   is the arbitrary weighting matrix and *

i iB B   . Since, 1iω   and iR  are statistically 

independent, we have: 

2 2

1 1i i
 

   
 
 
 

 
   

   
    

 E

E ω E ω  

(4-11) 

 

2 2

1i i Tr Y




   
       

   
 

E ω E ω  
(4-12) 

where: 
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 

*

*

2 2

,1 ,1 , ,

,

,

,

,..., .

i i

i i

T

v u v N u N

B B

Y y y

Y A MGMA

G diag R R 

    

  





 E

E
 

(4-13) 

Assuming X , U and V as NM NM  matrices, we have: 

     Tvec U V V U vec    

     Tvec X vec X vec   

 

(4-14) 

Defining  vec    and  vec     we have F    where F  is definable. Therefore, we have: 

2 2

1

T

i i F 
 

  
 

E ω E ω  (4-15) 

where   is substituted by  ,  Tvec Y   and *T

i iF B B E . 

Finally, it is proven that 1

2 2

1

0

i

i
T j

i F
j

F
 

 



  
  E ω E ω . 

The optimization problem is to find the weighting matrix that minimized the network error. Since 

we do not have access to the exact error; we try to minimize the upper-bound of the network error 

[49,50]. Therefore, the value   is defined as equation (4-16):  

 

    1

2

2 *

1

0

1
lim

1 1
lim lim

MN

i
MN

i bvec Ii

i
j T j

i i uF bvec Ii i
j

N

Tr B A MPMA R B
N N

 

 




 





    

E

ω E

  

(4-16) 

where:  

 

    

 
 

*

, ,

* *

1, 1 ,

* *

1, 1, , ,

1

,...,

,...,

,...,

i

T

b

o

k i k i

i i N i N

i i i N i N i

M N M

M

B B

F B B

G col i i

R diag

M diag I I

A A I



 

 

 

 

E

ω ω

u v u v

u u u u

 

(4-17) 



 
52 Chapter 4, Proposed Optimal Weight Design 

It is also proven that when B  is steady, 
 1

2

1

1
lim 0i

MNF bvec Ii N



ω  [49]. Therefore, we have:  

  *

0

1
lim

i
j T j

i i u
i

j

Tr B A MPMA R B
N






    E   
(4-18) 

 

Defining  * ‍ j

j

X X  as the nuclear norm of X  we have: 

    

    
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  

* *

*

* *

* **

2*

*

2* 2

,

   (1)

   (2)

   (3)

i
j T j j T j

i i u i i u

ii
j T j j T j
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Tr c I Tr

Tr c I Tr
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

   

   

  
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(4-19) 

Substituting the values, we have:  

   
2

2

0 0

lim ‍‍
i i

jT

i i v
i

j j

c
Tr E A MPMA R I MR

N
 


 

         
(4-20) 

Considering equation (4-20), the optimization problem is defined as follows:  

 
,

,

min

. .     1 1,     0

0         

T

i i v
A

l k

l k k

Tr E A MPMA R

s t A a

a if l N
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 

 

 

(4-21) 

It is easily shown that:  

 

           2 22 2 2

, , , , , , ,

1

‍‍
k

T

i i v

N

l k l v l u l l k l k l k v lk

k l N

Tr E A MPMA R

E a i Tr R E g i h i v Tr R


 
 

    

       


 

(4-22) 

We also know that the columns of iA  are independent and A  is LF, therefore:  
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 

           2 22 2 2

, , , , , , ,
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N
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k l N

Tr E A MPMA R

E a i Tr R E g i h i v Tr R


 
 

    

       
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(4-23) 

 

   2 2 2 2

, , , , ,l k l k l k l k l kE a i E I i p          (4-24) 

The optimization problem could now be simplified as the equation (4-25).  
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(4-25) 

 where:  

   
2 2 2

, , , ,l k l k l k l kg E g i h i v  
  

 (4-26) 

Applying KKT conditions and Lagrangian we have:  
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
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


   

(4-27) 

  , ,l k l kE I i p     and finally, the optimal weights are presented in equation (4-28).  

 
,

2

,

,2

,
,

,

0,

k i

l k

k i

m k
l k

m N

ifl N

a i

otherwise














 



    

(4-28) 

 

where 2

,l k  is defined as equation (4-29):  
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(4-29) 
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However, we have assumed that the 2

,v l  and 
,u lR , 

2

,l kg  and  2

,v lk


  are pre-known which is not 

practical, and the instant estimates are used instead. 

 

4.2.1 Convergence Analysis 

In this section, we analyze the convergence of the proposed algorithm. At first, some parameters 

need to be defined. 
i  is defined as network error vector and we have   1

T T

i i i iA I MR A MG      

where 
iG  

iR  and M  are intermediate matrices defined as follows:  
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* *

1, 1 ,

* *

1, 1, , ,

1

Δ ,...,

Δ ,...,
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o

k i k i

i i N i N

i i i N i N i

M N M

M

G col u v i u v i

R diag u u u u

M diag I I

A A I

  

 

 







 

    

(4-30) 

By defining the  T

i iB A I MR   and T

i iy A MG  the error vector may be presented as 

1i i i iB My     in which 
iB  controls the dynamic error vector. To prove the convergence we need 

to prove that the    1i iE BE    where    Δ T

iB E B A I MR    [57]. 

Considering    1i iE BE   , if  lim 0i
i

E 


  the convergence is proven. This requires that the B  

is steady. To have steady B , its spectral radius needs to satisfy   1B  .  

In general, it is not possible to prove   1B  , however, the ,k iu  and ,k iv  values are independent 

and ,k iv  is zero-mean, therefore, 0T

iE A MG    . We also know that A  is an LF matrix and therefore, 

its spectral efficiency,   1A  . A  is also symmetric and therefore, all its elements are real values 

and therefore,    max 1A A   . 

Therefore, if we can find the conditions in which   1B   the convergence is guaranteed. On the 

other hand, considering the above-mentioned conditions on LF,   1B   holds that the 

   B I MR   . In [58], it is proven that if the step-sizes, k  chosen so that the 

 max ,

2
0 1, 2,...,k

u k

for k N
R




    is satisfied, the    B I MR    is guaranteed. Therefore, 
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choosing the step-sizes according to 
 max ,

2
0 1, 2,...,k

u k

for k N
R




   and considering the LF 

matrix of network, the convergence is guaranteed. 
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4.2.2 Evaluation Results 

In this section, we evaluate the performance of the proposed optimal distributed decision-making 

algorithm, and we compare the weighting strategy with Metropolis and Laplacian combination 

methods. For simulations we use Matlab and part of the simulation codes are presented in 

Appendix.  

We consider a network with ten decentralized data-sources, 10N   as depicted in Figure 4-2 The 

diagram of the network used for evaluation with 10 decentralized data-sources. We set maximum 

step-size to 0.005, the number of iterations to 50 and we average the results over 10 realizations. 

In the same network topology, we compare the proposed optimal weighting, Metropolis method 

[55] and also optimal weighting proposed in [56]. Figure 4-3 Normalized network error versus the 

number of iterations for the proposed method, Metropolis [55] and optimal combination method 

[56] presents the normalized network error versus the number of iterations for the proposed 

method, Metropolis [55] and optimal combination method [56]. As can be seen in figure 4-3 the 

performance of the proposed method shows considerable improvements. It is also shown that the 

optimal weighting does not reach the theoretical error bound in a limited number of iterations. 

 

Figure 4-2 The diagram of the network used for evaluation with 10 decentralized data-sources 
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Figure 4-3 Normalized network error versus the number of iterations for the proposed method, Metropolis [55] and optimal 

combination method [56] 

 

4.3 Conclusion 

The nature of decentralized large-scale data-sources requires distributed algorithms. Distributed 

algorithms are more robust and secure in compared with centralized solutions, while they introduce 

new challenges such as communication failures. Distributed data-sources should be capable of 

processing their data and communicate with neighbor sources to find the network objective as an 

optimal decision. This process needs to be made in a distributed manner, with no need to 

implement a centralized system center and to have access only to local information. Some 

challenges are introduced by new technologies such as 5G or high-speed wireless data transfer, 

including imperfect communications that damage the data. In this chapter, we proposed an optimal 

algorithm, that uses optimal weighting to combine the shared data coming from neighbors. This 

optimal weight improves the performance of the decision-making algorithm in terms of error and 

convergence rate. We defined an optimization problem and proposed an optimization weighting 

algorithm to find a solution to the optimization problem. We evaluated the performance of the 

proposed algorithm mathematically and introduced the step-sized conditions that guaranteed the 
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convergence of the proposed algorithm. We also used computer simulations to assess the network 

error. We proved that in a network diagram with 10 data-sources, the network performance of the 

proposed algorithm outperforms some of the known optimal solutions such as Metropolis and 

adaptive combination. 
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5 Chapter 5 
Conclusion and Future works 
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5.1 Summary and Conclusion 

In chapter 1, we introduced the basics of what is going to be presented in this thesis, including the 

introduction to optimization, the definition of Big Data, its importance and history, and also the 

general relation of Big Data and optimization techniques.  

In chapter 2 of this thesis, we reviewed some of the recent and relevant optimization algorithms 

used for Big Data analysis, including machine learning algorithms, classic optimization 

algorithms, and heuristic and evolutionary optimization algorithms. We also reviewed some of the 

most useful tools in Big Data analysis.  

In chapter 3, we showed that distributed algorithms are a promising solution to the decentralized 

nature of Big Data algorithms. We presented the basics of stochastic distributed decision-making 

algorithms and proposed a fully distributed one that was based on diffusion adaptation. The 

proposed algorithm used the collaboration of neighbor nodes to make a global decision while the 

sources make local decisions. We evaluated the proposed algorithm on cognitive radio networks 

in which secondary users use energy detector sensors to sense the environment. We showed that 

the proposed algorithms perform well, is scalable and robust to communication failures.  

In chapter 4, we considered some practical issues including the effect of imperfect communications 

on distributed analysis algorithms. We modeled this effect as an optimization problem and solved 

the problem to gain the optimal weights that each node assigns to the information received from 

neighbor nodes. We compared the proposed optimal weighing algorithm with some of the earlier 

methods. Evaluation results confirmed that the proposed method performs well in terms of error 

and convergence rate. We also presented mathematical analysis on the convergence of the 

proposed algorithm.  

5.2 Future Works 

In this thesis, we only considered practical issues in distributed optimization algorithms that are 

imperfect communication links. We assumed the cost function of the whole network (the decision 

that the whole network is going to make) is separable among all nodes (data-sources). These 

assumptions are usual in the literature. However, if we need to decide Big Data in almost near real-

time, we need to consider some other issues including the computational capability of each source 

and data transfer delays. For instance, assume that some sources have stronger computational 
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resources. The total decision time depends on the weakest source. Therefore, local balancing 

techniques are required to optimize the algorithms in practical scenarios.   
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6.1 Simulation Codes 

Here we present some part of our simulation codes. This research is continuing; therefore, the main 

components of simulation codes that might be used for future works are protected.  

[Spectrum Sensing on Cognitive Radio Using Consensus] 

[Part 1: Generate data for the cognitive network] 

clear all; 

close all; 

clc; 

u=1000;%time bandwidth factor 

N=2*u;%samples 

a=2;%path loss exponent 

C=2;%constant losses 

Crs=15; %Number of cognitive radio users 

PdAnd=0; 

%----------Pfa------------% 

Pf=0.01:0.01:1; 

Pfa=Pf.^2; 

%---------signal-----% 

t=1:N; 

s1 = cos(pi*t); 

stem(t,s1) 

s1power=var(s1); 

%-------- SNR ----------% 

% Snrdb=-15:1:15; 

Snrdb=15; 

Snreal=power(10,Snrdb/10);%Linear Snr 

 

% while Snrdb<15% 

  lamda=ones(1,100); 
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for i=1:length(Pfa) 

lamda(i)=gammaincinv(1-Pfa(i),u)*2; %theshold 

% lamdadB=10*log10(lamda); 

%--------Local spectrum sensing---------% 

d=ones(1,10); 

for j=1:Crs %for each node 

detect=0; 

d(j)=7+1.1*rand(); %random distanse 

PL=C*(d(j)^-a); %path loss 

for sim=1:10%Monte Carlo Simulation for 100 noise realisation 

%-------------AWGN channel--------------------% 

noise = randn(1,N); %Noise production with zero mean and s^2 var 

noise_power = mean(noise.^2); %noise average power 

amp = sqrt(noise.^2*Snreal); 

s1=amp.*s1./abs(s1); 

% SNRdB_Sample=10*log10(s1.^2./(noise.^2)); 

Rec_signal=s1+noise;%received signal 

localSNR=ones(1,10); 

localSNR(j)=mean(abs(s1).^2)*PL/noise_power;%local snr 

pdth=cell(10,100); 

pdth{1,100}=1:100; 

pdth{10,10}='string'; 

Pdth(j,i)=marcumq(sqrt(2*localSNR(j)),sqrt(lamda(i )),u);%Pd for j node 

%Computation of Test statistic for energy detection 

Sum=abs(Rec_signal).^2*PL; 

Test=ones(1,10); 

Test(j,sim)=sum(Sum) 

if (Test(j,sim)>lamda(i)) 

detect=detect+1; 

end 
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end %END Monte Carlo 

Pdsim=ones(1,10); 

Pdsim(j)=detect/sim; %Pd of simulation for the j-th CRuser 

end 

PdAND=ones(1,100); 

PdAND(i)=prod(Pdsim); 

PdOR=ones(1,100); 

PdOR(i)=1-prod(1-Pdsim); 

end 

PdAND5=(Pdth(5,:)).^5; 

Pmd5=1-PdAND5; 

PdANDth=(Pdth(Crs,:)).^Crs; 

PmdANDth=1-PdANDth; %Probability of miss detection 

Pmdsim=1-PdAND; 

[part 2: consensus strategy] 

clc        % clear command window 

clear all  % clear all variables 

close all  % close all figures 

h = 2; % h=2 for complex data 

N = 2; % number of cognitive users 

M = 3; % number of taps per user (defines collaboration) 

Num_iter = 75;   % number of iterations per trial 

Num_trial = 300;  % number of trials 

mu_max = 0.00001; % uniform step size across the network 

mu = mu_max*ones(N,1); % uniform step-sizes 

A = [0.2 0.8; 0.8 0.2];  

p =(1/N)*ones(N,1);      % Perron eigenvector 

% set the power level for each random quantity 

sigma_u2 = 0.5/mu_max; 

sigma_v2 = 0.05*ones(N,1); 
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RU = sigma_u2*ones(M,N); 

sqRU = sqrt(sigma_u2)*ones(M,N); 

% generate wo 

wo = randn(M,1)+1j*randn(M,1); 

wo = wo / norm(wo,2); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Generating the signal and noise powers 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

if h == 1 

   wo = randn(M,1);  % real data 

   wo = wo / norm(wo,2); 

else 

   wo = randn(M,1)+1j*randn(M,1); % complex data 

   wo = wo / norm(wo,2); 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Running the experiments to generate the learning curves 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

MSD_av_CON    = zeros(1,Num_iter);   % average MSD curve for the consensus network. 

MSD_agent_CON = zeros(N,Num_iter);   % each row contains the MSD curve for the corresponding cognitive users in the 

consensus network 

wb = waitbar(0,'Simulating...Please wait'); 

for L=1:Num_trial % iterating over experiments 

    % consensus initialization 

    psi_CON = zeros(M,N);       % psi column vectors for all cognitive users in the consensus network 

    w_CON   = zeros(M,N);       % iterate column vectors for all cognitive users in the consensus network 

    tilde_w_CON  = zeros(M,N);  % error column vectors for all cognitive users in the consensus network 

    for i=1:Num_iter  % iterating over time 

       waitbar(((L-1)*Num_iter+i)/(Num_iter*Num_trial),wb); 

       for k=1:N % consensus 
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           psi_CON(:,k) = zeros(M,1); 

           for l=1:N 

              psi_CON(:,k) = psi_CON(:,k) + A(l,k)*w_CON(:,l); % consensus (consultation step) 

           end 

       end  

       for k=1:N % generate data for each cognitive users at time i 

          if h==1 % real data  

            uk = randn(1,M)*diag(sqRU(:,k)); % Gaussian row regression vector  

            dk = uk*wo + randn*sqrt(sigma_v2(k)); 

          else 

            uk = complexrandn(1,M)*diag(sqRU(:,k)); % Gaussian row regression vector  

            dk = uk*wo + complexrandn(1,1)*sqrt(sigma_v2(k)); 

          end 

          w_CON(:,k)  = psi_CON(:,k) + (2/h)*mu(k)*uk'*(dk - uk*w_CON(:,k));   % consensus (adaptation step) 

       end 

       for k=1:N  

           w(:,k) = zeros(M,1); 

           tilde_w_CON(:,k) = wo - w_CON(:,k); % consensus 

           MSD_agent_CON(k,i) = MSD_agent_CON(k,i) + (norm(tilde_w_CON(:,k),2))^2;         

       end        

   end 

end 

% consensus network learning curve 

MSD_agent_CON = MSD_agent_CON/Num_trial; % each row contains the MSD evolution of the corresponding cognitive user 

MSD_av_CON = sum(MSD_agent_CON)/N;       % average MSD evolution of the network 

MSD_av_db_CON = 10*log10(MSD_av_CON);    % dB 
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[Optimal Weightning] 

[Part 1: network Generation] 

function [Adjacency,Laplacian,Algebraic_Connectivity,Degree_Vector,Coordinates] = 

generate_topology(Num_nodes,Type,Parameter) 

N = Num_nodes;  % Number of nodes. 

A = zeros(N,N); % Adjacency matrix. 

L = zeros(N,N); % Laplacian matrix. 

if Type == 1 

    r = Parameter;  % Nodes within this radius from each other are declared to be neighbors. 

else 

    p = Parameter;  % Nodes k and l are declated neighbors according to a binomial distribution with probability p. 

end 

% We first generate N random (x,y) coordinates in the square region [0,1.2]x[0,1.2] 

x_coordinates = rand(1,N) + 0.1; 

y_coordinates = rand(1,N) + 0.1; 

Coordinates = [x_coordinates' y_coordinates']; 

if Type == 1 % distance criterion 

  for k=1:N 

    for l=1:N 

        d = sqrt((x_coordinates(1,k)-x_coordinates(1,l))^2 + (y_coordinates(1,k)-y_coordinates(1,l))^2); 

        if d <= r 

            A(k,l) = 1; % set entry in adjacency matrix to one if nodes k and l should be neighbors. 

        end 

    end 

  end 

end 

if Type == 2 % binomial criterion 

  for k=1:N 

      A(k,k) = 1; % a node is always connected to itself in this construction 

    for l=k+1:N 
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        b = rand; % generate a uniform random variable in the interval [0,1] 

        if b <= p % if b falls within the interval [0,p], then we connect the nodes (emulating a binomial variable with prob. p) 

          A(k,l) = 1; % set entry in adjacency matrix to one if nodes k and l should be neighbors. 

          A(l,k) = 1;  

        end 

    end 

  end 

end 

 

Adjacency = A; % adjacency matrix. 

% We determine the number of neighbors of each node from the adjacency matrix 

num_nb = zeros(N,1); 

for k=1:N 

    num_nb(k) = sum(A(k,:)); 

end 

Degree_Vector = num_nb;  % vector of degrees for the various nodes 

for k=1:N 

    L(k,k) = max(0, sum(A(k,:))-1); % set diagonal entry to zero if degree-1 for node k is negative. 

    for l=k+1:N 

        L(k,l) = -1*A(k,l); 

        L(l,k) = -1*A(l,k); 

    end 

end 

sigma = svd(L); % vector of singular values of L. 

Laplacian = L; %Laplacian matrix 

Algebraic_Connectivity = sigma(N-1); % algebraic connectivity 

if sigma(N-1) < 1e-4 % checking if second smallest singular value is positive (sufficiently away from zero). 

    return % network is not connection; returns to calling the function again to try a new network construction. 

End 

function plot_topology(Adjacency,Coordinates,Color) 
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A = Adjacency;      % adjacency matrix 

N = max(size(A));   % number of agents 

x_coordinates = Coordinates(:,1);  

y_coordinates = Coordinates(:,2); 

figure 

hold on 

for k=1:N 

  for l=1:N 

    if A(k,l)>0 

      plot([x_coordinates(k),x_coordinates(l)],[y_coordinates(k),y_coordinates(l)],'b-','LineWidth',1.5); 

    end 

  end 

end 

for k=1:N 

 if Color(k) == 0 

     plot(x_coordinates(k),y_coordinates(k),'o','MarkerEdgeColor','b','MarkerFaceColor','y','MarkerSize',10); 

 else 

   if Color(k) == 1  

      plot(x_coordinates(k),y_coordinates(k),'o','MarkerEdgeColor','b','MarkerFaceColor','r','MarkerSize',10); 

   else % green 

      plot(x_coordinates(k),y_coordinates(k),'o','MarkerEdgeColor','b','MarkerFaceColor','g','MarkerSize',10); 

   end 

 end 

end 

axis([0,1.2,0,1.2]); 

axis square 

grid 

for k=1:N 

  text(x_coordinates(k)+0.03,y_coordinates(k)+0.03,num2str(k),'Fontsize',7); 

end   
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[policy rules] 

Only parts of the code is presented.  

 

 


