
UNIVERSITA’ DELLA CALABRIA

Dipartimento di Mathematica e Informatica

Dottorato di Ricerca in

Mathematica e Informatica

CICLO

XXXII

Distributed Optimization Over Large-Scale Systems for Big Data Analytics

Coordinatore: Ch.mo Prof. N. Leone

Firma _____________________________

Supervisore/Tutor:

Dottorando: Dott./ssa (Reza Shahbazian)

Abstract

A large-scale system is defined as one that supports multiple, simultaneous users who access the

core functionality through some network. Nowadays, enormous amount of data is continually

generated at unprecedented and ever-increasing scales. Large-scale data sets are collected and

studied in numerous domains, from engineering sciences to social networks, commerce,

bimolecular research, and security. Big Data is a term applied to data sets whose size or type is

beyond the ability of traditional relational databases to capture, manage, and process with

acceptable latency. Usually, Big Data has one or more of the characteristics including high volume,

high velocity, or high variety. Big Data challenges include capturing data, data storage, data

analysis, search, sharing, transfer, visualization, querying, updating, information privacy and data

source. Generally, Big Data comes from sensors, devices, video or audio, networks, log files,

transactional applications, web, and social media, in a very large-scale. Big Data is impossible to

analyze by using traditional central methods and therefore, new distributed models and algorithms

are needed to process the data.

In this thesis, we focus on optimization algorithms for Big Data application. We review some of

the recent machine learning, convex and non-convex, heuristic and stochastic optimization

techniques and available tools applied to Big Data. We also propose a new distributed and

decentralized stochastic algorithm for Big Data analytics. Our proposed algorithm is fully

distributed to decide large-scale networks and data sets. The proposed method is scalable to any

network configuration, is near real-time (in each iteration, a solution is provided although it might

not be the optimum one) and more critical, robust to any missing data or communication failures.

We evaluate the proposed method by a practical example and simulations on cognitive radio

networks. Simulation results confirmed that the proposed method is efficient in terms of accuracy

and robustness.

We assume that the distributed data-sources should be capable of processing their data and

communicate with neighbor sources to find the network objective as an optimal decision. Some

challenges are introduced by new technologies such as 5G or high-speed wireless data transfer,

including imperfect communications that damage the data. We propose an optimal algorithm that

uses optimal weighting to combine the shared data coming from neighbors. This optimal weight

improves the performance of the decision-making algorithm in terms of error and convergence

rate. We evaluate the performance of the proposed algorithm mathematically and introduce the

step-sized conditions that guaranteed the convergence of the proposed algorithm. We use computer

simulations to evaluate the network error. We prove that in a network diagram with ten data-

sources, the network performance of the proposed algorithm outperforms some of the known

optimal solutions such as Metropolis and adaptive combination.

Keywords: Optimization, Big Data, Large-Scale, Distributed, Optimal Weight.

https://en.wikipedia.org/wiki/Automatic_identification_and_data_capture
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Data_analysis
https://en.wikipedia.org/wiki/Data_analysis
https://en.wikipedia.org/wiki/Data_sharing
https://en.wikipedia.org/wiki/Data_transmission
https://en.wikipedia.org/wiki/Data_visualization
https://en.wikipedia.org/wiki/Query_language
https://en.wikipedia.org/wiki/Information_privacy

Acknowledgments

My deepest gratitude goes to my advisers, Prof. Lucio Grandinetti, and Prof. Francesca Guerriero,

for their continuous support and inspiration throughout my Ph.D. Program. Without their guidance

and constructive advice, this thesis would never be created.

I would also like to express my sincere appreciation to my lovely wife, Leili who helped me

throughout this thesis.

Preface & Contributions of the Author

The research presented in this dissertation was carried out at the Department of Mathematics and

Computer Science, the University of Calabria from Sept. 2016 to Sept. 2019. This dissertation is

the result of my work and created under the supervision of Prof. Lucio Grandinetti, and Prof.

Francesca Guerriero from the Unical. The research has led to one journal, several conference

publications and one book chapter.

The related contributions are listed below:

• Journal Papers

1. Reza Shahbazian and Francesco Guerriero, “Optimized Distributed Large-Scale

Analytics Over Decentralized Data Sources with Imperfect Communication”, Accepted,

Journal of Supercomputing (2020) doi:10.1007/s11227-019-03129-5.

• Conference Papers

2. Reza Shahbazian, Lucio Grandinetti, Francesca Guerriero. "A New Distributed and

Decentralized Stochastic Optimization Algorithm with Applications in Big Data

Analytics." In International Conference on Machine Learning, Optimization, and Data

Science, pp. 77-91. Springer, Cham, 2018.

3. Reza Shahbazian, Francesca Guerriero. “where optimization meets Big Data: A survey”

HPC 2018, advances in parallel computing Series, Volume 34: Future Trends of HPC in a

Disruptive Scenario, pp. 22-33, 2019. DOI:10.3233/APC190004

4. Reza Shahbazian, Francesca Guerriero. “Optimal Weight Design for Decentralized

Consensus-based Large-Scale Data Analytics over Internet of Things.” In International

Congress on High-Performance Computing and Big Data Analysis (TopHPC), pp. 279-

288. Springer, Cham, 2019.

• Book Chapter

5. Reza Shahbazian, Francesca Guerriero, and Seyed Ali Ghorashi. "Cooperative Ranging-

Based Detection and Localization: Centralized and Distributed Optimization

Methods." Cooperative Localization and Navigation: Theory, Research, and

Practice (2019): 301.

Contents

1 Chapter 1 ... 9

1.1 Introduction .. 10

1.2 Basics of Optimization ... 10

1.3 Big Data Analytics ... 11

1.3.1 Big Data History ... 14

1.4 Big Data and Optimization ... 15

1.5 Thesis objectives .. 16

1.6 Thesis Organization.. 17

2 Chapter 2 ... 19

2.1 Introduction .. 20

2.2 Big Data Tools ... 20

2.3 Big Data optimization .. 22

2.3.1 Machine Learning for Big Data Analytics .. 22

2.3.2 Classic Optimization for Big Data Analytics.. 25

2.3.3 Heuristic and Evolutionary Optimization for Big Data .. 30

3 Chapter 3 ... 32

3.1 Introduction .. 33

3.1.1 System Model ... 34

3.2 Proposed Method.. 37

3.2.1 Computational Complexity ... 38

3.3 Evaluation Results .. 39

3.3.1 Cognitive Networks .. 39

3.3.2 Conclusion .. 42

4 Chapter 4 ... 43

4.1 Introduction .. 44

4.1.1 System Model ... 46

4.1.2 Optimal-Weight Distributed Algorithms .. 47

4.1.3 Effect of Imperfect Communication ... 48

4.2 Proposed Optimal Weight Design .. 50

4.2.1 Convergence Analysis .. 54

4.2.2 Evaluation Results .. 56

4.3 Conclusion .. 57

5 Chapter 5 ... 59

5.1 Summary and Conclusion .. 60

5.2 Future Works .. 60

6 Appendix ... 68

6.1 Simulation Codes ... 69

References …………………………………………………………………………………….64

List of Figures

Figure 1-1 characteristics of Big Data including value, veracity, viscosity, virality, and

visualization .. 11

Figure 1-2 The characteristics of Big Data from variety, volume, velocity, value, and veracity . 13

Figure 2-1 Partitioned optimization problem over a path graph of N=4 nodes for the randomized

primal distributed algorithm for partitioned Big Data .. 26

Figure 2-2 Relationships among ADMM based algorithms for Big Data optimization 28

Figure 3-1 Different Characteristics of optimization algorithms for Big Data analytics 34

Figure 3-2 Instruction of performed tasks in distributed spectrum sensing.................................. 40

Figure 3-3 Performance of the distributed spectrum sensing when the communication link is ideal

... 40

Figure 3-4 Performance of the distributed spectrum sensing when the communication link fails

with the probability of 0.4 ... 41

Figure 4-1 Sample diagram of the sensory network in-which the data is transferred to cloud/Edge

data-sources that can communicate. The network should make a decision or insight from such Big

Data in a distributed manner. .. 45

Figure 4-2 The diagram of the network used for evaluation with 10 decentralized data-sources 56

Figure 4-3 Normalized network error versus the number of iterations for proposed method,

Metropolis [55] and optimal combination method [56] .. 57

List of Acronyms

BDA Big Data Analytics

KKT Karush-Kuhn-Tucker

RFID Radio-Frequency Identification

WSN Wireless Sensor Network

HDFS Hadoop Distributed File System

SDP Semidefinite Programming

SOCP Second-Order Cone Programming

ADMM Alternating Direction Method of Multipliers

ITS Intelligent Transportation Systems

BSUM Block successive Upper-Bound Minimization

BCD Block Coordinate Descent

CCCP Convex Concave Procedure

BCPG Block Coordinate Proximal gradient

NMF Nonnegative Matrix Factorization

EM Expectation Maximization

https://en.wikipedia.org/wiki/Radio-frequency_identification

9 Optimization for Big Data

1 Chapter 1
Introduction

10 Chapter 1, Introduction

1.1 Introduction

In this chapter, we introduce the basics of optimization and its application on large-scale systems.

We further present a description of Big Data, its history, definition and the relation with

optimization techniques.

1.2 Basics of Optimization

A large-scale system is defined as one that supports multiple, simultaneous users who access the

core functionality through some network. The term “Optimization” comes from the same root as

“optimal,” which means best. When optimizing something, we are “making it best.” Mathematical

Optimization is a branch of applied mathematics, which is useful in many different fields. The

fundamental optimization problem consists of the objective function  f x , which we are trying to

maximize or minimize and variables
1 2 3, , x x x , which are the things we can control. They are

abbreviated
nx to refer to individuals or to refer to them as a group. The general mathematical

formulation of an optimization problem is presented as follows [1]:

 

 

 

 Min

. . 0,

 0.

x
f x

s t h x

g x





(1-1)

Where x is a vector, including the n decision variables,  .f is the objective function of the

optimization problem. It maps values of the decision vector x to a real value representing the

desirability of this solution to the decision-maker. Typically, the objective function represents a

cost in minimizing problems or a benefit in maximizing ones.  .h Also,  .g are vector-valued

functions of the decision vector x . They define m equality and l inequality constraints.

Let's consider the general optimization formulation and suppose that  .f and  .g are

continuously differentiable and convex,  .h is affine. Furthermore, we assume that a constraint

qualification holds. For example, we may require that  .g be affine (linearity constraint

qualification). Another standard constraint qualification requires linear independence of the

gradients of active inequality constraint and equality constraints [1].

We can define the Lagrangian function for the optimization problem as follows [1]:

11 Optimization for Big Data

     

 

 

 

0,

 0,

 0,

 0,

 0.

T T

x x x

T

f x h x g x

h x

g x

g x

 





     









(1-2)

Where  is the gradient operator, ,   are the Lagrange multipliers and constraint qualifications

are needed for ensuring that KKT (Karush-Kuhn-Tucker) conditions.

1.3 Big Data Analytics

Big Data is a term applied to data sets whose size or type is beyond the ability of traditional

relational databases to capture, manage, and process with acceptable latency. Usually, Big Data

has one or more of the characteristics, including high volume, high velocity, or high variety, also

named 3-Vs. Nowadays, more V words are mentioned as characteristics of Big Data including

value, veracity, viscosity, virality, and visualization, [2], as depicted in Figure 1-1.

Figure 1-1 characteristics of Big Data including value, veracity, viscosity, virality, and visualization

Big Data challenges include capturing data, data storage, data analysis, search, sharing, transfer,

visualization, querying, updating, information privacy, and data source. Current usage of the term

Main
Characterestics of

Big Data

Volume

Velocity

VarietyValue

Veracity

https://en.wikipedia.org/wiki/Automatic_identification_and_data_capture
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Data_analysis
https://en.wikipedia.org/wiki/Data_sharing
https://en.wikipedia.org/wiki/Data_transmission
https://en.wikipedia.org/wiki/Data_visualization
https://en.wikipedia.org/wiki/Query_language
https://en.wikipedia.org/wiki/Information_privacy

12 Chapter 1, Big Data Analytics

Big Data tends to refer to the use of predictive analytics, user behavior analytics, or specific other

advanced data analytics methods that extract value from data, and seldom to a particular size of

data set. Data sets overgrow, in part because they are increasingly gathered by cheap and numerous

information-sensing Internet of things devices such as mobile devices, aerial (remote sensing),

software logs, cameras, microphones, radio-frequency identification (RFID) readers and wireless

sensor networks or sensors on a production line and communications in a social network [2].

Relational database management systems, desktop statistics, and software packages used to

visualize data often have difficulty handling Big Data [2]. The work may require "massively

parallel software running on tens, hundreds, or even thousands of servers." Big Data philosophy

encompasses unstructured, semi-structured, and structured data; however, the main focus is on

unstructured data [3]. The characteristics of 5 Vs on Big Data is depicted in Figure 1-2 and

explained as follows:

Volume: The quantity of generated and stored data. The size of the data determines the value and

potential insight, and whether it can be considered as Big Data or not.

Variety: The type and nature of the data. This helps people who analyze it to effectively use the

resulting insight. Big Data draws from text, images, audio, video; plus it completes missing pieces

through data fusion.

Velocity: The speed at which the data is generated and processed to meet the demands and

challenges that lie in the path of growth and development. Big Data is often available in real-time.

Compared to small data, Big Data is produced more continually. Two kinds of velocity related to

Big Data are the frequency of generation and the frequency of handling, recording, and publishing.

Veracity: Refers to the data quality and the data value. The data quality of captured data can vary

greatly, affecting the accurate analysis.

Value: The utility that can be extracted from the data.

https://en.wikipedia.org/wiki/Predictive_analytics
https://en.wikipedia.org/wiki/User_behavior_analytics
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Mobile_device
https://en.wikipedia.org/wiki/Remote_sensing
https://en.wikipedia.org/wiki/Digital_camera
https://en.wikipedia.org/wiki/Radio-frequency_identification
https://en.wikipedia.org/wiki/Wireless_sensor_networks
https://en.wikipedia.org/wiki/Wireless_sensor_networks
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Data_quality

13 Optimization for Big Data

Figure 1-2 The characteristics of Big Data from variety, volume, velocity, value, and veracity

Big Data comes from sensors, devices, video or audio, networks, log files, transactional

applications, web, and social media, in a very large-scale [2]. Currently, more than 2.7 zeta bytes

of data exist in the digital universe; Twitter processes over 70 million tweets and business

transactions on the Internet will reach 450 billion per day by the year 2020. By 2020, the amount

of data just in China is expected to reach 8.6 zeta bytes. It is estimated that by 2020, there will be

more than 30 billion connected devices.

Big Data requires new forms of processing for insight discovery and enhanced decision making in

which optimization may play a critical role. It is a known fact that enormous potential value is

hidden in Big Data, and meaningful application of it will change human society, dramatically. Big

Big Data
Charctristics

Variety

Structured

• The data can be
stored in table
with rows and
columns

Semi-Structured

• Does not reside in
tables but is
convertible into
structured data.

Unstructured

• difficult to store in
database including
text, images,
video, voice and ...

Multi Structured

• A mix of all above
such as operating
system logs

Volume

Records Per Area

Transactions

Table

Velocity

Batch

• Running the query
in a scheduled and
sequential way

Real-Time

• No delay in the
timeliness of
information
provided

Interactive

• Require frequent
user interaction

Streaming

• The insight into
the data is
required as it
arrives

Value

Statistical

Events

Correlation

Hypothetical

Veracity

Trustworthiness

Authenticity

Accountability

Availability

14 Chapter 1, Big Data Analytics

Data enables tremendous potential in terms of business value in a variety of fields such as health-

care, biology, transportation, advertising, energy management, and financial services. A few years

ago, Big Data was very new. However, we are facing new generations of Big Data. For instance,

recently, multimedia Big Data is introduced that is a type of datasets, in which the data has more

media types and higher volume than the typical Big Data [4]. Multimedia Big Data analysis

requires more sophisticated algorithms and much more computing resources compared with

existing Big Data systems [4].

Big Data could be viewed from different aspects. Some researchers are focused on the application

of Big Data in a specific field. Big Data has applications in the new generation of mobile cellular

systems, including 4.9G and 5G, Smart Grid, or even intelligent transportation systems (ITS) [3-

8]. Researchers also develop tools and frameworks that could be used for Big Data analytics

(BDA). In continue, we provide a short brief on Big Data analytics tools.

1.3.1 Big Data History

Big Data repositories have existed in many forms, often built by corporations with a particular

need. Commercial vendors historically offered parallel database management systems for Big Data

beginning in the 1990s. For many years, WinterCorp published the most significant database

report. Teradata Corporation, in 1984, marketed the parallel processing DBC 1012 system.

Teradata systems were the first to store and analyze one terabyte of data in 1992. Hard disk drives

were 2.5 GB in 1991, so the definition of Big Data continuously evolves according to Kryder's

Law. Teradata installed the first petabyte class RDBMS based system in 2007. As of 2017, there

are a few dozen petabyte class Teradata relational databases installed, the largest of which exceeds

50 PB. Systems up until 2008 were 100% structured relational data. Since then, Teradata has added

unstructured data types, including XML, JSON, and Avro.

In 2000, Seisint Inc. (now LexisNexis Risk Solutions) developed a C++-based distributed platform

for data processing and querying known as the HPCC Systems platform. This system

automatically partitions, distributes, stores, and delivers structured, semi-structured, and

unstructured data across multiple commodity servers. Users can write data processing pipelines

and queries in a declarative dataflow programming language called ECL. Data analysts working

in ECL are not required to define data schemas upfront and can instead focus on the particular

problem at hand, reshaping data in the best possible manner as they develop the solution.

In 2004, LexisNexis acquired Seisint Inc. and its high-speed parallel processing platform and

successfully utilized this platform to integrate the data systems of Choicepoint Inc. when they

https://en.wikipedia.org/wiki/Teradata
https://en.wikipedia.org/wiki/DBC_1012
https://en.wikipedia.org/wiki/LexisNexis_Risk_Solutions
https://en.wikipedia.org/wiki/HPCC_Systems

15 Optimization for Big Data

acquired that company in 2008. In 2011, the HPCC systems platform was open-sourced under the

Apache v2.0 License.

CERN and other physics experiments have collected Big Data sets for many decades, usually

analyzed via high-performance computing (supercomputers) rather than the commodity map-

reduce architectures traditionally meant by the current "Big Data" movement [9].

In 2004, Google published a paper on a process called MapReduce. The MapReduce concept

provides a parallel processing model, and an associated implementation was released to process

vast amounts of data. With MapReduce, queries are split and distributed across parallel nodes and

processed in parallel (the Map step). The results are then gathered and delivered (the Reduce step).

The framework was very successful, so others wanted to replicate the algorithm. Therefore,

an implementation of the MapReduce framework was adopted by an Apache open-source project

named Hadoop. Apache Spark was developed in 2012 in response to limitations in the MapReduce

paradigm, as it adds the ability to set up many operations (not just map followed by reducing).

Big Data analytics for manufacturing applications is marketed as a "5C architecture" (connection,

conversion, cyber, cognition, and configuration). Factory work and Cyber-physical systems may

have an extended "6C system":

 Connection (sensor and networks)

 Cloud (computing and data on demand)

 Cyber (model and memory)

 Content/context (meaning and correlation)

 Community (sharing and collaboration)

 Customization (personalization and value)

Techniques for analyzing data, such as A/B testing, machine learning, and natural languages

processing Big Data technologies, like business intelligence, cloud computing and databases

visualization, such as charts, graphs and other displays of the data multidimensional Big Data can

also be represented as data cubes or, mathematically, tensors. Array Database Systems have set

out to provide storage and high-level query support on this data type [9].

1.4 Big Data and Optimization

Big Data is impossible to analyze by using traditional central methods [8], and therefore,

distributed processing with parallelization is needed. Data analytics often must be performed in

https://en.wikipedia.org/wiki/CERN
https://en.wikipedia.org/wiki/High_performance_computing
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/Implementation
https://en.wikipedia.org/wiki/Apache_Hadoop
https://en.wikipedia.org/wiki/Apache_Spark
https://en.wikipedia.org/wiki/Marketing
https://en.wikipedia.org/wiki/Cyber-physical_system
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/A/B_testing
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Business_intelligence
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/w/index.php?title=Data_cubes&action=edit&redlink=1
https://en.wikipedia.org/wiki/Tensor
https://en.wikipedia.org/wiki/Array_DBMS

16 Chapter 1, Thesis objectives

real-time or near real-time. Gaining an answer to the analysis demands on almost real-time is

almost preferred to a precise decision but in a timely manner. Optimization algorithms for Big

Data aim to reduce the computational, storage, and communications challenges [8]. The data and

parameter sizes of Big Data optimization problems are too large to process locally, and since the

Big Data models are inexact, optimization algorithms no longer need to find the high accuracy

solutions. It means that, unlike usual optimization problems that try to provide an exact model and

precise solution, Big Data analytics expects to reach an insight or decision even if it is not the

accurate answer to the problem [8].

In a straightforward explanation, Big Data optimization methods try to partition the data so that it

is feasible to process, mostly in a centralized manner. Although many research articles are

published in this era, there is still a big gap between practice and theory, especially considering

the needs for scalability, robustness, and characteristics of Big Data. It seems that distributed

optimization algorithms are a promising solution to fill this gap, although there still is a long road

to go. In the next chapter, we review the recent advances in Big Data optimization and address the

research articles related to Big Data optimization.

1.5 Thesis objectives

Large scale datasets can not be processed using traditional methods and algorithms. The

researchers and companies have introduced new tools and techniques for the analysis of such large

scale data sets.

In this thesis, our goal is to present new approaches to be used in large scale dataset processing,

including Big Data, which is more focused on applicable mathematical aspects rather than tools.

We propose a distributed optimization algorithm, including consensus and diffusion adaptation.

We also consider some new practical issues in future data analysis that is using next-generation

mobile networks. We model the effect of communication failure in distributed optimization

algorithms that we earlier proposed for Big Data analytics. In general, we have tried to answer the

following questions in this research.

- What is the definition and characteristics of Big Data?

- What tools and frameworks are already used for Big Data analytics?

- What is the relationship between mathematical optimization techniques and Big Data

analytics?

17 Optimization for Big Data

- Is it possible to propose new algorithms for Big Data analytics that are scalable, perform

near real-time, and achieve near-optimal solutions?

- What are the effects of new technologies, such as next-generation mobile networks (5G)

on Big Data analytics?

We also liked to review and contribute to classical distributed optimization algorithms for Big

Data analytics, which was not successful during this research period.

To answer the above questions, we have performed a review on state of the art and recent articles

followed by modeling the Big Data analytics as a mathematical optimization problem. We further

propose a diffusion-based algorithm with a gradient-based iterative solution that satisfies

scalability, real-time, and decentralized needs. We also mathematically model the effect of

imperfect communication for next-generation mobile networks used in Big Data concept and

propose an adaptive weighting approach to overcome the issue. We provide some examples in

different scenarios, including cognitive radio and the Internet of things, to explain the proposed

methods more clearly.

1.6 Thesis Organization

In chapter 2 of this thesis, we review some of the recent and relevant optimization algorithms used

for Big Data analysis, including machine learning algorithms, classic optimization algorithms, and

heuristic and evolutionary optimization algorithms. We also review some of the most useful tools

in Big Data analysis and categorize them into several tables.

In chapter 3, we show that distributed algorithms are a solution to the decentralized nature of Big

Data algorithms. We present the basics of stochastic distributed decision-making algorithms and

propose a fully distributed one that is based on diffusion adaptation. The proposed algorithm uses

the collaboration of neighbor nodes to make a global decision while the sources make local

decisions. We evaluate the proposed algorithm on cognitive radio networks in which secondary

users use energy detector sensors to sense the environment. With some computer simulations, we

show that the proposed algorithms perform well, are scalable and robust to communication

failures.

In chapter 4, we consider some practical issues, including the effect of imperfect communications

on distributed analysis algorithms. We model this effect as an optimization problem and solve the

problem to gain the optimal weights that each node assigns to the information received from

18 Chapter 1, Thesis Organization

neighbor nodes. We compare the proposed optimal weighing algorithm with some of the earlier

methods. Evaluation results confirm that the proposed method performs well in terms of error and

convergence rate.

19 Optimization for Big Data

2 Chapter 2
Where Big Data meets optimization

20 Chapter 2, Introduction

2.1 Introduction

In this section, we provide an overview of optimization methods used for Big Data Analytics

(BDA) like first-order methods, randomization, heuristic, evolutionary, and convex algorithms.

Big Data is a common topic, and many researchers in various fields of study, including convex

optimization and machine learning, have contributed to the literature. The essential ingredient for

every smart and intelligent system is data. More energetic systems acquire more data to make an

efficient decision that leads to large-scale data sets. This data could be generated from many

sensors in smartphones, physical sensors attached to cyber-physical systems, many objects in the

Internet of Things (IoT) platforms and smart cities. This data may further be transferred to a center

using new technologies such as 5G. Therefore, data gathering is the first challenge of Big Data

Era. Other problems may include data storage and data processing. Many types of research are

focused on the adaptation of existing technologies or inventing new ones to store Big Data.

However, many researchers believe that the main challenge is still finding efficient and optimal

solutions to process the data in the appropriate time by considering the Big Data challenges [3-4].

Nowadays, new generations of Big Data, such as multimedia Big Data, are introduced [4]. In this

new generation, data has more media types and higher volume than the typical Big Data. As a

result, there is an increasing demand to develop new models and tools to analyze large-scale

complex networks in-which the optimization plays a vital role [4]. Such optimized analysis models

and algorithms should be designed so that there is no need for a central authority, but a

decentralized architecture is required, and it applies to any network structure.

2.2 Big Data Tools

Data analytics involves various tools such as those from text analytics, business intelligence, data

visualization, and statistical analysis. The tools used for Big Data analytics have a long story, and

it is not possible to explain them all in a few lines. However, it is possible to highlight some

important ones.

Hadoop and MapReduce are the most common tools for Big Data analytics [2]. Hadoop was

initially developed by Cloudera while Google created the MapReduce. Hadoop provides a

distributed file system and provides the required storage facilities in the form of Hadoop

distributed file system (HDFS). MapReduce prepares the process of data by dividing it into a

manageable size and distributing it to different nodes for analysis. Hadoop and MapReduce require

21 Optimization for Big Data

a cluster of computers for BDA. Most of the other available tools are built upon the features of

Hadoop and MapReduce [2].

Hadoop and MapReduce are free. Besides these free tools, many companies have developed their

frameworks. Microsoft provides a suite of Big Data services named Azure. Azure Data Lake

provides all the capabilities for the interactive handling of Big Data and includes services like

HBase, and Storm for integration with Hadoop. IBM provides business analytics and optimization

solutions for Big Data analytics. IBM BigInsights is a Hadoop-based tool for enterprise

requirements, and IBM Streams is a platform for real-time analytic processing. SAND Analytic

Platform is an analytic database platform that has the capability for massively parallel processing.

SAP offers analytical platforms for business intelligence and data warehousing [10].

SAS Supports cloud-based analytics while the SAS data integration studio provides support for

Hadoop. Tableau, with its rich visualization features and ease of use capabilities, enables non-

expert users to explore and exploit enterprise data. Pentaho is another tool that proposes rich

visualization and analytics capabilities. Oracle provides Big Data and cloud services through

Oracle Big Data cloud service, Oracle Big Data SQL cloud service, Oracle database cloud service,

and Oracle database Exadata cloud service [10].

Oracle advanced analytics includes Oracle data miner, Oracle R advanced analytics for Hadoop

and Oracle Big Data discovery, along with connectors and interfaces for SQL and R [11]. Besides

these tools as platforms, some tools are also available for database and data processing. The

categorization of some known tools used for Big Data analytics is presented in Table 1.

For data storing, we may also categorize the tools based on the storage method, including column,

document, graph, and key-value, as presented in Table 2.

22 Chapter 2, Big Data optimization

2.3 Big Data optimization

In this section, we assume that massive amounts of data already exists (without considering the

source) and review recent advances and state of the art, including convex, non-convex, heuristic,

evolutionary, Game-theory and machine learning-based methods.

2.3.1 Machine Learning for Big Data Analytics

In the literature, machine learning plays an essential role in Big Data analytics (BDA). In continue,

we first review the general application of machine learning for BDA. Traditional machine learning

approaches developed based on this assumption; the data set will entirely fit into memory that no

longer holds in the Big Data context. This broken assumption, together with the Big Data

characteristics, create obstacles to use traditional techniques [3].

The two main categories of learning tasks are: supervised and unsupervised. In supervised

learning, inputs and desired outputs (labels) are known, and the system learns to map inputs to

outputs. In unsupervised learning, desired outputs are not known, and the system itself discovers

the structure within the data. Examples of supervised learning include classification and

regression. In classification, the outputs take discrete values while in regression, the outputs are

continuous. Some well-known classification algorithms are a k-nearest neighbor, logistic

regression, and support vector machine (SVM). On the other hand, some of the famous regression

includes support vector regression (SVR), linear regression, and polynomial regression. Some

algorithms, such as neural networks can be used for both classification and regression [3].

Unsupervised learning includes clustering objects that are grouped based on similarity criteria.

Predictive analytics use past data to predict the future; numerous algorithms including SVR, neural

networks, and Naive Bayes [3].

23 Optimization for Big Data

In the machine learning context, the data size can be defined either vertically or horizontally. The

vertical definition deals with the number of records in a dataset, while the horizontal definition

considers the number of features or attributes data contains. Volume is relative to the type of data:

a smaller number of very complex data points may be regarded as equivalent to a larger quantity

of simple data [3]. One of the main challenges encountered in computations with Big Data comes

from the simple principle that scale or volume adds computational complexity. Consequently, as

the scale becomes large, even simple operations become costly.

For example, the standard SVM algorithm has a training time complexity  3O n and a space

complexity of  2O n , where n is the number of training samples. Therefore, increasing the size n

, the SVM algorithm may become computationally infeasible on enormous datasets [3].

The time complexity of maximum likelihood-based algorithms, including principal component

analysis, logistic regression, locally weighted linear regression and Gaussian discriminative

analysis, is  2 3O nm m where n are the number of samples and m the number of features. For all

these algorithms, the time needed to perform the computations will increase exponentially with

increasing data size and may even render the algorithms unusable for enormous datasets.

Therefore, the computational complexity of algorithms is another reason why existing machine

learning and data analysis algorithms can not necessarily be used for Big Data analytics.

On the other hand, some existing machine learning algorithms are inherently parallel and can be

adapted to the MapReduce paradigm, whereas others are difficult to take advantage of large

numbers of computing nodes (parallel computing) [3]. In summary, traditional methods should be

revised by considering new constraints.

When it comes to performance, optimization plays a pivotal role. Based on different perspectives

available of Big Data, it is evident that the optimization can be applied to a variety of fields

including database, query, search engine or processing. In [7] authors study Big Data-based self-

optimization networking in next-generation mobile networks. Their goal is to maximize the

network efficiency and increase the quality of services provided to microcell and femtocell users,

considering the limited resources. They use Big Data techniques to decide to adjust network

parameters in a distributed intelligence manner.

Authors in [8] propose distributed optimization storage and statistical system model-based. In [12],

the authors propose an optimization algorithm based on the spatial and temporal data compression

for wireless sensor networks in the underground tunnel environment. They introduce spatial and

temporal correlation functions for data compression and data recovery. In [13], the authors study

24 Chapter 2, Big Data optimization

means of integrating Big Data analytics with network optimization to improve the user quality of

experience. They propose a framework of Big Data-driven mobile network optimization.

Authors in [14] explain how functions can serve to model the various data structures used to

represent large data sets. They present details of four functions modeling tabular data, graph

structures, cached, and split data. In [15], the authors present an optimization framework based on

the Fireworks algorithm for Big Data optimization problems. Their proposed structure is composed

of a single objective Fireworks algorithm and a multi-objective Fireworks algorithm to solve the

significant optimization of signals problem “Big-OPT.”

In [16] the query optimization process for performance up-gradation of cloud transactions and

compare different strategies used in the optimization domain of distributed cloud databases are

addressed. Authors in [17] propose an optimization algorithm for the massive data communication

between the weather research and forecasting model and coupler version 7 in the Chinese Academy

of Sciences-Earth System Model (CAS-ESM). Their optimization strategy is to transmit data from

a small packet into a larger packet.

Recently, deep learning has absorbed the widespread adoption of enterprises to gain greater insight

from the analytics. Although artificial intelligence (AI) was first conceived in the late 1950s, the

recent jump into learning methods such as deep learning is fueled by the latest advancements in

hardware industries. The combination of deep learning and Big Data appears in many research

topics. For instance, in natural language processing techniques, the typed text requires lots of data

to produce the best results possible (currently around 4% error). Different accents (in spoken

language processing) are also needed. Similarly, we may consider the IoT applications. For

instance, in the oil industry, we have several sensors taking measurements of critical factors in

each pipeline. This rich sequential data stream (Big Data) is significant for deep learning [18].

A recent exciting topic in this area includes parallel and distributed network training for Big Data.

In [19] authors study deep neural networks (DNN) as is used in image recognition, object

detection, classification and tracking, and speech and language processing applications. They try

to argue the training cost in computation and time and describe how to enable parallel deep neural

network training on the IBM Blue Gene/Q (BG/Q) computer system. They explore DNN training

using the second-order optimization algorithm [19].

Authors in [20] investigate the problem of the compute-intensive process of training proposes to

use variants of the stochastic gradient descent (SGD) algorithm as a solution. In summary, they

present optimization techniques to improve the performance of the data-parallel synchronous SGD

algorithm using the Torch framework. This area is almost new, and many quality research articles

are expected to be published in the near future.

25 Optimization for Big Data

In another perspective, we may categorize the Big Data optimization algorithms into two

categorize, namely classic and heuristic algorithms. Classic algorithms include convex, dual

descent, alternating direction method of multipliers (ADMM), while heuristic algorithms include

some evolutionary algorithms. Next, we will review some recent developments of the classic

optimization algorithms that are designed for Big Data applications.

2.3.2 Classic Optimization for Big Data Analytics

One of the reasonable efforts goes back to 2014, where Cevher and et al. in [21] study the convex

optimization for Big Data. Convex optimization is applicable for Big Data, where the data and

parameter sizes of optimization problems are too large to process locally. The fundamentals of Big

Data convex optimization could be presented as follows:

      : : N

x
Min F x f x g x x   (2-1)

Where f and g are convex functions. In general, three types of algorithms are used for Big Data

convex optimization, namely First-order methods, Randomization, and Parallel computation.

First-order methods obtain low or medium accuracy numerical solutions by using only first-order

information from the objective, such as gradient estimates. These methods feature nearly

dimension-independent convergence rates, they are theoretically robust to the approximations, and

they typically rely on computational primitives that are ideal for distributed and parallel

computation. Randomization techniques particularly stand out among others to enhance the

scalability of first-order methods since their expected behavior is controllable. Key ideas include

random. Partial updates of optimization variables, replacing the deterministic gradient and

proximal calculations with cheap statistical estimators, and speeding up basic linear algebra

routines via randomization [21].

It is possible to further augment first-order methods with approximations for increasing levels of

scalability, from idealized synchronous parallel algorithms with centralized communications to

enormously scalable asynchronous algorithms with decentralized communications. These

algorithms are called parallel and distributed computation. The three concepts above complement

each other to offer scalability benefits for Big Data optimization [21].

Not every problem in Big Data is convex [46-47]. In [22], a randomized primal distributed

algorithm for partitioned non-convex problems is proposed. In this method, a network of N nodes

is modeled as an undirected communication graph with an edge  ,i j that indicates the edge

26 Chapter 2, Big Data optimization

between node i and node j . These nodes can exchange information, and the cost function is

separable. They try to split the effective cost into a smooth part (by modeling local objectives) and

non-smooth one being a regularization term or constraint. They shape the problem is presented in

equation (2-2) [22].

    
1

min
i

N

i N i i
x

i

f x g x



(2-2)

Where the node i knows only the functions
if and

ig . The problem is called partitioned due to

the structure of the functions
if and

ig . In equation (2-2) the
iN shows the set of neighbor nodes

to the node i (connected nodes in the graph with edges). A sample visualization of the problem

and the partitioned mechanisms 4N  depicted in Figure 2-1.

f1 f2 f3 f4

x1

x2

x3

x4

Figure 2-1 Partitioned optimization problem over a path graph of N=4 nodes for the randomized primal distributed algorithm

for partitioned Big Data

In [23], authors consider the same problem and propose a distributed partitioned optimization via

asynchronous dual decomposition. Similar to [22], they assume that the dimension of the decision

variable depends on the network size, and cost function and constraints have a sparsity structure

related to the communication graph.

In [24-25] authors consider Big Data optimization by using block communications. In [24], multi-

agent large-scale optimization problems is studied wherein the cost function is composed of a

smooth possibly non-convex utility and a difference of convex regularize. Authors assume that the

27 Optimization for Big Data

dimension of the optimization variables is so large that optimizing and transmitting the entire set

of variables could cause un-affordable computation and communication overhead. The considered

optimization problem can be written as follows [24].

     

 

1 1

1. . , ,

, 1, ,

N B

i l l
x

i l

T
T T

B

l l

Min U x f x r x

S t x x x

x k l B

 

 

   

   

 

(2-3)

Where x is the vector of the optimization variables, partitioned in B a block, whole l
th block is

denoted by
lx and

if is a smooth possibly non-convex cost function of agent i and
lr is a difference

of convex function commonly known by all the agents and
lk is a closed convex set. The term

lr

usually plays the role of regulation. In [25] the problem is the same as [24] while the solution

provided is based on an iterative algorithm called BLOCK-SONATA. Their evaluation results

show that as the number of blocks increases, the performance improves.

Alternating direction method of multipliers (ADMM) is a distributed optimization method

proposed in 2011. The methods ingredients are rather old and belong to the 60s and 70s. However,

it is proven to show outstanding performance in different applications. In [26] authors propose a

multi-block ADMM for Big Data optimization in modern communication networks. They consider

a convex separable problem with a canonical form, as presented in equation (2-4).

     
1 2

1
, ,

1

1 1

,

. . ,

, 1, , N

N

i N
x x x

N N

i i

Min f x f x f x

S t A x A x c

x X i


  

  

  

(2-4)

For the solution of ADMM based optimization methods in [26], one of the situations presented in

Figure 2-1, occurs. The convergent of solutions for of ADMM based optimization methods is

presented in Figure 2-2.

28 Chapter 2, Big Data optimization

Normal ADMM Solution

Gauss-Deidel Type Direct

Extention

Jacobian Type Direct

Extension

ADMM with Gaussian Back

Substitution
Proximal Jacobian ADMMVariable Splitting ADMM

2-Block ADMM

N-Block ADMM

Convergent as 2-

block ADMM Global Convergent
Global Convergent

with rate O(1/k)

No Guaranteed

Convergent

Figure 2-2 Relationships among ADMM based algorithms for Big Data optimization

In [27], parallel coordinate descent methods for Big Data optimization is proposed. The authors

show that randomized (block) coordinate descent methods can be accelerated by parallelization

when applied to the problem of minimizing the sum of a partially separable smooth convex

function and a simple separable convex function. In their proposed method, when no degree of

separability is present, there may be no speedup; in the best case, when the problem is separable,

the speedup is equal to the number of processors.

In [28], the authors use the sub-gradient method for dual decomposition and propose an accelerated

distributed optimization for the reconstruction of big sensory data. They show that the proposed

approach converges in order  2
1O

t
. They use compressive sensing for sensory data. Another

compressive sensing based optimization algorithms utilize the previous step information to update

the intermediate variables while their proposed accelerated method it makes use of more past

information by preserving more past information rather than only the last step. Therefore, the

convergence speed is accelerated from  1O
t

 to  2
1O

t
.

Stochastic optimization for Big Data is studied in [29]. Authors propose a data-driven stochastic

robust optimization named (DDSRO) for optimization under uncertainty leveraging labeled multi-

class uncertainty data. They use machine learning methods, including the Dirichlet process mixture

model and maximum likelihood estimation for uncertainty modeling. Their proposed algorithm is

a two-stage stochastic programming approach to optimize the expected objective across different

data classes followed by robust adaptive optimization as the inherent problem to ensure the

29 Optimization for Big Data

robustness of the solution. Their optimization problem is presented in equation (2-5) as follows

[29].

 

 

3

,

min

. .

max min

. . ,

T

x

T

yu U

n

C

S t

C

S t

R



 

 













   



 
 
 

     
 
  

c x E x

Ax d

x b y

Wy h Tx Mu

y

(2-5)

where  is an uncertain scenario that influences the uncertainty set and  is the set of scenarios.

The parameter x is the first stage decision made before the uncertainty u is realized, while y in

the second stage decision, T
c x and T

b y are objective functions, Ax d and    Wy h Tx Mu are

modeled constraints [29].

Low-rank modeling plays an essential role in signal processing and machine learning, with

applications on Big Data analytics. Many high-dimensional data and interactions can be modeled

as approximately in a low-dimensional subspace or manifold, possibly with additional structures

applicable both in convex and non-convex approaches. Convex relaxations such as nuclear norm

minimization often lead to statistically optimal procedures for estimating low-rank matrices, where

first-order methods are developed to address the computational challenges. There is emerging

evidence that correctly designed non-convex procedures, such as projected gradient descent, often

provide globally optimal solutions with a much lower computational cost in many problems. In

[30] authors' survey article gives a unified overview of these recent advances in low-rank matrix

estimation from incomplete measurements. Attention is paid to rigorous characterization of the

performance of these algorithms and to problems where the low-rank matrix has additional

structural properties that require new algorithmic designs and theoretical analysis. Authors in [45]

present an algorithmic framework for Big Data optimization, called the block Successive Upper

Bound Minimization (BSUM). Their proposed BSUM includes methods such as the Block

Coordinate Descent (BCD), the Convex Concave Procedure (CCCP), the Block Coordinate

Proximal gradient (BCPG), the Nonnegative Matrix Factorization (NMF) and the Expectation-

Maximization (EM).

30 Chapter 2, Big Data optimization

2.3.3 Heuristic and Evolutionary Optimization for Big Data

There has been a growing interest in algorithms that are based on the principle of evolution [31-

37]. A commonly accepted term refers to such techniques as evolutionary computation (EC)

methods. The best-known algorithms in this class include genetic algorithms and evolutionary

programming. Heuristic algorithms are designed to solve a problem in a faster and more efficient

fashion than traditional methods by sacrificing optimality, accuracy, precision, or completeness

for speed. Heuristic algorithms frequently used to solve NP-complete problems. Heuristic

algorithms can produce a solution individually or be used to provide a good baseline and are

supplemented with optimization algorithms. Heuristic algorithms are most often employed when

approximate answers are satisfactory and exact solutions are necessarily computationally

expensive. Here, we will review the research works from the heuristic and evolutionary

optimizations algorithms that are focused on Big Data.

In [31], the authors focus on modeling and optimization of features selection in Big Data. They

present a system architecture that selects features by using an artificial bee colony followed by a

Kalman filter used in the Hadoop ecosystem for removal of noise. They also propose a complete

four-tier architecture that aggregates the data, eliminate unnecessary data, and analyze the data by

the Hadoop-based artificial bee colony algorithm. In [32], the authors study the differential

evolution framework for Big Data optimization. They assume that a real-time Big Data problem

is not known in advance. Therefore, they propose a general differential evolution framework in

which the most suitable differential evolution algorithm for a problem on hand is adaptively

configured. A local search is also employed to increase the exploitation capability of their proposed

algorithm.

 In [33] authors claim that multi-objective evolutionary algorithms (MOEAs) suffer from some

difficulties when solving Big Data optimization problems with thousands of variables and propose

a meta-heuristic firefly algorithm (FA) to solve the problem. In [34] an adaptive mutation operator

is introduced to enhance the performance of the standard non-dominated sorting genetic algorithm,

the third generation also called NSGA-III algorithm to overcome the high computational costs of

solving Big Data optimization problems via traditional multi-objective evolutionary algorithms.

jMetalSP [35] combines the multi-objective optimization features of the jMetal framework with

the streaming facilities of the Apache Spark cluster computing system as software platforms to

solve dynamic multi-objective Big Data optimization problems.

Genetic Optimization for Big Data analysis is presented in [36]. Authors in [36] consider opinion

mining from unstructured textual documents and propose a method focused on minimum

31 Optimization for Big Data

preliminary requirements about the knowledge of the analyzed language. Their proposed method

is built on artificial intelligence consisting of support vector machines classifier, Big Data analysis,

and genetic algorithm optimization. To make available optimization for Big Data, they propose

GA operators, which significantly accelerate conversion to accurate solutions.

In [37], authors try to study the known issues of evolutionary algorithms including scalability when

dealing with Big Data problems. They propose a different framework that integrates a cooperative

co-evolution method. They use the collaborative co-evolution method to split the big problem into

subproblems to increase the efficiency of the solving process. The sub-problems are then solved

using various heterogeneous memetic algorithms. Their proposed different framework adaptively

assigns different operators, parameter values and a local search algorithm to efficiently explore

and exploit the search space of the given problem instance.

Conclusion

Every day, massive amounts of data are collected by sensors, log files, networks, and smart

devices, forming enormous volume, velocity, and variety. The data with one or more than of these

characteristics is called Big Data. Processing Big Data enables smart decisions and insight.

However, it is impossible to analyze the traditional central methods. Optimization algorithms for

Big Data aim to reduce the computational, storage, and communications challenges. In this section,

we provided an overview of optimization methods used for Big Data Analytics (BDA) like first-

order methods, randomization, heuristic, evolutionary, and convex algorithms.

In summary, optimization algorithms used for Big Data analytics should perform in a distributed

manner. They split the workload and process each part using parallel computing methods. The

recent significant algorithms used for Big Data analytics include primal-dual, ADMM,

randomized, and stochastic methods. All these methods require iterative solutions to decide on Big

Data analytics.

3 Chapter 3
A new Distributed Stochastic Algorithm for

decision making over large-scale datasets

33 Optimization for Big Data

3.1 Introduction

Data processing can be performed in a centralized or distributed manner [38]. Analysis of large

data sets and Big Data seems infeasible by using central processing and storage units [48].

Considering the streaming data sources, learning must often be performed in real-time or near real-

time [38]. Although centralized processing methods usually provide the optimal decision,

considering the challenges faced by data storage in the cloud or any distributed file system [39],

decentralized methods are still preferred [40]. Therefore, there is an urgent need for scalable

methods, capable of efficient data processing, considering the storage, query, and communication

challenges. In some cases, privacy and security concerns are critical and prevent accessing the full

data. In these cases, only partial data or processed output (decision) might be transferred through

communication interfaces.

As depicted in Figure 3-1, the characteristics of Big Data require an optimization algorithm that is

scalable, compatible with missing values of data (robust), performs near real-time and is applicable

in distributed platforms such as the cloud. These challenges are not adequately answered by

traditional optimization methods, and the ultimate purpose of any modified or new optimization

algorithm in the Big Data era is to reduce the computational, storage, and communications

bottlenecks. One of the open issues faced by the data community is how to scale up analytic

algorithms. To address this issue, we introduce a fully distributed stochastic optimization

algorithm for decision making over large-scale data sets. We describe the proposed model

mathematically. Our method is scalable to any network or data size, works based on the

cooperation of neighbor processing/storage units, and it is adaptive to any dynamic behavior of

processing/storage units. Experimental results on cognitive networks confirm that the proposed

method performs well, proven to be distributed, scalable and robust to missing data and

communication failures.

34 Chapter 3, Introduction

Figure 3-1 Different Characteristics of optimization algorithms for Big Data analytics

3.1.1 System Model

From the data point of view, there are two different approaches namely, centralized and distributed

[38]. In centralized techniques, the data is transferred to a center for further processing/storage,

whereas in a distributed manner, the data is exchanged and processed within the network locally.

Transmitting the data to a center may cause network congestion and waste of communication and

power resources. Any malfunction in the center causes network breakdown. Besides, the center

requires high computation power to process the large volume of collected data. In comparison, in

a distributed approach, the computational network load is divided between processing/storage

units using cooperation and no centralized infrastructure is required.

The following notations are used throughout this chapter. Matrices are represented by upper case

and vectors by lower case letters. Boldface fonts are reserved for random variables, and regular

fonts are used for deterministic quantities. Superscript  .
T

 denotes transposition for real-valued

vectors and matrices while  
*

. denotes conjugate transposition for complex-valued vectors and

matrices. The symbol  .E is the expectation operator,  .Tr represents the trace of its matrix

argument.
MI Represents the identity matrix of order M .

Characteristics of
Optimization

Algorithms for Big
Data Analytics

Scalable to
network size

Robust to
communicati
on failures or
missing data

Near
RealTime
decision
making

Distributed

Time
Adaptive

Decentralize
d processing

35 Optimization for Big Data

We consider a network consisting of N processing/storage units, also called “ node” from now-

on. The nodes are assumed to be distributed, each capable of processing and storing the limited

size of data (at-least during the processing) and may or may not be involved in initial data

generation. We assume that neighbor units can communicate with each other by using direct

connection interfaces. Node l is said to be a neighbor of the node k if they can communicate and

cooperate. We denote the set of all neighbors of the node k by
kN .

In this model, we assume that the nodes are generating or receiving continuous data with Big Data

characteristics. It is impossible to transfer and process the data in a centralized manner because of

the challenges faced by communication, security, time, and storage. The objective of the nodes in

the network is to decide in a fully distributed manner. In other words, the solution is an estimate

of an unknown parameter vector o in a distributed way through stochastic optimization. At every

time instant (iteration), i , each node k observes a scalar random process  k id and a random vector

process ,k iu which is related to o via the linear regression model presented as follows [42]:

   0

,k k i ki i d u v (3-1)

The regression data  ,k iu is zero mean, independent and identically distributed (i.i.d.) in time and

independent over space with covariance matrices *

, , , 0u k k i k iR    E u u . The noise  k iv is zero mean,

i.i.d. in time and independent over space with variances 2

,v k . The ,k iu and the noise  k iv are

mutually independent. The network will try to estimate o by searching for the minimized global

cost function, as presented below.

   
2

,

1

N
glob

k k i

k

J i 


 E d u
(3-2)

The most critical issue to solve an optimization problem in a distributed manner is to be able to

separate the cost function among processing units. Each processing/storage unit should be able to

act on its own while cooperating with neighbor nodes. Moreover, we assume that the cost function

is separable among all processing units as follows.

   
1

N
glob

k

k

J J 



(3-3)

 kJ  is the cost function of k processing/storage units defined as follows:

   
2

,k k k iJ i  E d u (3-4)

36 Chapter 3, Introduction

 The cost function  kJ  can further be written in another form, as presented follows.

 
,

2

u k

o

k kR
J mmse     (3-5)

where
2

x

 denotes the weighted square quantity as *x x for any semi-definite matrix 0 

*

, , , 0u k k i k iR    E u u and
kmmse is an additional MMSE term that is independent of  .

Therefore, we have:

     
,

2

u l

global o

k lR
l k

J J mmse   


    (3-6)

 The optimum value o that appears in the quadratic parts is not known. It should also be

mentioned that the weighting matrices ,u lR are not available in general, and only those from the

neighbors can be assumed to be available. Therefore, we may conclude:

       
,

2

\k
u l

dist o

k k l N k R
J J   


   (3-7)

Please note that the term
lmmse is ignored since it is independent of  and has no effects in finding

the optimal value o . The covariance matrices ,u lR are not available in practice. Usually,

processing/storage units can only observe realizations ,l iu of data arising from distributions whose

covariance matrix is unknown
  ,

.
u l

R One way to address this issue is to replace each of the

weighted norms by a scaled multiple of the form as presented as follows:

,

2 2

, ,
u l

o o

l kR
b      (3-8)

where ,l kb is a non-negative coefficient? Each node k approximates the moment ,u lR from its

neighbors by multiples of the identity matrix. This Approximation is reasonable because using the

Rayleigh-Ritz characterization of eigenvalues, it holds that:

   
,

2 2 2

min , max ,
u l

o o o

u l u lR
R R            (3-9)

 Therefore, we may conclude that:

     

2

,\k

dist o

k k l kl N k
J J b   


   (3-10)

37 Optimization for Big Data

This new cost function at node k relies only on available information from neighbor nodes. Now,

each k can apply a steepest-descent iteration to minimize the cost function as presented as follows:

 

     

*

, , 1

, , 1 , , , 1 , , 1\k

dist

k i k i k k

o

k i k i k du k u k k i k l k k il N k

J

r R b

 

  



  

    

    

ω ω

ω ω ω ω

(3-11)

Where  denotes the gradient vector. The step size parameters
k can be constant or variant.

Fixed step size allows the algorithms to work continuously, while various step sizes that decay to

zero causes the algorithms to stop after a while. Adaptive implementation of can be obtained by

replacing covariance matrices by instantaneous approximations as presented:

  *

, ,

*

, , ,

du k k k i

u k k i k i

r i

R





d u

u u

(3-12)

Finally, by some substitution of equations, we may conclude that:

      *

, , 1 , , , 1 , , 1\k

o

k i k i k k i k k i k i k l k k il N k
i b    

    ω ω u d u ω ω (3-13)

The last correction term still depends on the unknown o . Choosing different approximations o

leads to different strategies, such as consensus [42].

3.2 Proposed Method

Here, we first present the proposed method by its mathematical model and discuss the

computational complexity of the presented method. In the proposed method, we apply diffusion

adaptation [43] and by defining an intermediate variable,  , we have:

  

   

*

, , 1 , , , 1

, , , , 1\k

k i k i k k i k k i k i

o

k i k i k l k k il N k

i

b

 

  

 



  

  

ω u d u ω

ω ω

(3-14)

The unknown term o is still shown in the equation. Considering ,l i as a substitute for o we

have:

  

   

*

, , 1 , , , 1

, , , , ,\k

k i k i k k i k k i k i

k i k i k l k k i l il N k

i

b

 

   

 



  

  

ω u d u ω

ω

(3-15)

38 Chapter 3, Proposed Method

It should be noted that in previous methods, , 1l iω is usually substituted as o . Defining
,l ka as a

weighting coefficient as presented and
k , we may conclude that:

 

 

,\

, , ,

1 ,

, \

0,

k
k j kj N k

l k k l k k

b l k

a b l N k

otherwise






  



 





(3-16)

   2

1 1

,k k

i i

i i 
 

 

    

  *

, , 1 , , , 1

, , , 1

k

k i k i k k i k k i k i

k i l k l i

l N

i

a

 



 





  

 

ω u d u ω

ω

(3-17)

The equation (3-17) could also be written in another form as presented as (3-19) where ,l kc are the

entries of the right-stochastic matrix C , satisfying (3-18):

, ,0, , 0l k N N l k kc c if l N   C1 1 (3-18)

  *

, , 1 , , , , 1

, , , 1

k

k

k i k i k l k l i l l i l i

l N

k i l k l i

l N

c i

a

 



 







  







ω u d u ω

ω

(3-19)

3.2.1 Computational Complexity

Considering n , the average number of neighbor nodes in each iteration and assuming that total I

iterations are needed for the convergence and having N processing/storage units in the network,

the computational complexity is presented in Table 1. Comparing with convex optimization and

considering semidefinite programming (SDP) or Second Order Cone Programming (SOCP) the

complexity is non-linearly related to the number of data generator/processor/storage units, at-least

by 2()o N [41].

39 Optimization for Big Data

3.3 Evaluation Results

In this part, we evaluate the proposed algorithm using a practical example. In this application, we

define an optimization problem and assess the performance in terms of accuracy and robustness.

3.3.1 Cognitive Networks

One practical example of Big Data may be found in wireless sensor networks where the sensors

generate a massive amount of data in a non-stop manner [44]. In wireless networks, it is shown

that only a partial spectrum is used by the users [44]. Therefore, the cognitive systems are proposed

as a solution and to improve the spectrum usage efficiency. Such systems include two types of

users namely, primary and secondary. The primary users are the owner of the spectrum, and

secondary users should continuously scene the spectrum (called spectrum sensing). When they

find the unused band of spectrum for a while, use it based on the network predefined policy. Now,

assume that the sensors should sense the data (level of energy available in the working frequency

domain) and send their observations to a center. Besides the security, power consumption and data

processing issues, the latency introduced in transferring data is not acceptable. This might be a

straightforward application of the proposed method to make a decision continuously with high

accuracy and reliability against any communication failure [44]. A simple diagram of a distributed

spectrum sensing procedure is presented in Figure 3-2.

40 Chapter 3, Evaluation Results

Figure 3-2 Instruction of performed tasks in distributed spectrum sensing

As presented in Figure 3-3, first, each sensor needs to measure the energy level and cooperate with

other neighbors to make a distributed decision with local information. We consider a sample

network consisting of 15 sensors (secondary users).

Figure 3-3 Performance of the distributed spectrum sensing when the communication link is ideal

We consider two scenarios; in the first scenario, we assume that the communication link between

sensors (neighbors) is ideal. In this case, each sensor sends the data to its neighbors and makes a

decision accordingly. The simulation results are presented in Figure 3-3. As illustrated in Figure

3-3, the first decision of each sensor is different. It is because each sensor has only access to its

Measurement of Energy Level by each of sensors

Cooperation with neighbor sensors and sharing the
measurements

Making a decision based on proposed method

Updating the information and decision base on new
measurement and neighbor’s decision

41 Optimization for Big Data

local information. The challenges forced by communication, security, processing power and more

critical time of the decision, make it impossible to gather the information in a center and process

them simultaneously. We assume that information is transferred only to neighbors, and nodes

perform the proposed optimization algorithm. After a few iterations, the whole network (each

node) can reach a correct decision while each has only processed local information. This

simulation shows how the continuously generated a large amount of data that is impossible to

transfer and process in any of the nodes is processed in a fully distributed manner.

Figure 3-4 Performance of the distributed spectrum sensing when the communication link fails with the probability of 0.4

In the second scenario, we consider a more practical example. We assume that the communication

between neighbor sensors is imperfect, meaning that we evaluate the proposed method when some

data is missing. In this scenario, we try to assess the robustness of the proposed algorithm. We set

the probability of communication failure to 0.4. It means that in each time instant (iteration), the

likelihood of successful transmission is 0.6, and with a 40% chance, the transmitted data is missing.

The result is presented in Figure 3-4.

As simulation results indicate, the proposed stochastic optimization method finds the global

optimum while only local information is exchanged through the network. The convergence of this

network means that, although sensors only process their cost function, the information diffuses to

the network. Considering the communication link imperfection, the method is robust against

missing data. It should be mentioned that the algorithm is capable of being used in all networks

with arbitrary size. The simulation is performed with Matlab and part of the simulation code is

presented in the Appendix.

42 Chapter 3, Evaluation Results

3.3.2 Conclusion

In this chapter, we presented a fully distributed method to decide large-scale networks and data

sets. The proposed method is scalable to any network configuration, is near real-time (in each

iteration, a solution is achieved although this solution is not precise) and more critical, robust to

any missing data or communication failures. We evaluated the proposed method by a practical

example and simulations on cognitive networks. Simulation results confirmed that the proposed

method is efficient in terms of accuracy and robustness. Here, we evaluated the proposed algorithm

with a simple application of cognitive sensor networks.

43 Optimization for Big Data

4 Chapter 4
Optimal Weight Design Algorithm for

decision making over large-scale data sources

44 Chapter 4, Introduction

4.1 Introduction

The nature of decentralized large-scale data-sources requires distributed algorithms. In previous

chapter, we proposed an algorithm in which it is assumed that the data-sources are capable of

processing their data and collaborating with neighbor sources. We assumed that the network

objective is to make an optimal decision while the data is processed in a distributed manner. New

technologies, such as the next generation of wireless communication and 5G [7, 52], introduce

practical issues, including imperfect communication that needs to be addressed in the context of

Big Data.

In this chapter, we propose an optimal algorithm that uses optimal weighting to combine the

resource of neighbors. We model the effect of imperfect communication on an optimization

problem and find the solution by applying the proposed algorithm. We evaluate the performance

of the developed algorithm by using both mathematical methods and computer simulations. We

introduce the conditions in which the convergence of the proposed algorithm is guaranteed and

prove that the network error decreases considerably compared with some of the known modern

methods.

We assume that each source is capable of communicating and processing a limited amount of data.

An enormous amount of sensing devices collect or generate sensory data over time for a wide

range of applications witch results in Big Data [51]. One example of such networks could be found

in smart-city or Internet of things (IoT) concept in-which sensory data is transmitted to Edges or

clouds. The network needs to make a decision in near real-time and broadcast the decision to

network actuators as depicted in Figure 4-1.

It is not practical to use centralized solutions because of Big Data characteristics in large-scale

networks. The recently distributed algorithms, usually focus on the performance, neglecting the

practical issues. For instance, trying to decide on the minimum time, using load-balancing

algorithms is mandatory; because of the dynamic characteristics of data-sources in volume,

processing capabilities, and so forth. One of the critical features in distributed algorithms is

collaboration; meaning that the data-sources are capable of sharing their initial decision and part

of their data with some of the neighbor sources. This property is the key to reach a global decision

over the network, while the data is processed in a fully distributed manner. Until now, the

communication link between the data-sources is considered ideal, meaning that the effect of

communication link on the data transfer is neglected. However, new wireless communication

technologies such as 5G and the next generations of wireless communication are considered as

45 Optimization for Big Data

promising solutions to form the communication infrastructure of large-scale networks. These

wireless links introduce noise, path-loss, multi-path and fading that damage the data.

Here, we focus on fully distributed data-analytics algorithms and add a practical constraint to the

optimization problem. We assume that the communication between data-sources is non-ideal. We

model the effect of this non-ideal channel on data and consider an optimization problem and find

the solution by using a distributed decision-making algorithm with optimal weighting.

Figure 4-1 Sample diagram of the sensory network in-which the data is transferred to cloud/Edge data-sources that can

communicate. The network should make a decision or insight from such Big Data in a distributed manner.

The following properties are assumed for data sources:

 • Data-sources rely only on their local information and observations.

 • Data-sources can exchange some limited information to near neighbors.

 • The network is dynamic, and the algorithms should be robust to the changes in the network

topology.

 • Sources are capable of computing limited information

46 Chapter 4, Introduction

Considering the mentioned challenges, researchers are trying to find optimized distributed

decision-making algorithms. In such algorithms, it is assumed that the decentralized data from a

variety of sources could be utilized to make an optimized decision for the network while all the

contributors benefit. The main idea of this solution lies behind several assumptions, listed in the

following.

 • All data-sources can make an initial decision by themselves (can process a limited amount of

data).

 • All data sources are capable of sharing their own decisions and part of their data (for example,

in a vehicular network, the sensory data) with some neighbors in the network.

 • The decision-making objective is accepted among all the data-sources. Each source is capable

of making its own decision only by using its gathered data while contributes to the network’s

global decision.

Finding the optimal solution, which guarantees the best convergence rate, convergence area, and

minimum cost, is still an open issue. In this section, we try to improve the performance of the

existing algorithms by proposing optimal weight design over the Internet of things applications

that regularly face some practical challenges, including imperfect communication channels.

4.1.1 System Model

In this section, we present the system model At first we define the variable sets and notation

followed by the mathematical representation of distributed decision-making model.

4.1.1.1 Notation

The following notations are used throughout this paper. Matrices are represented by upper case

and vectors by lower case letters. Boldface fonts are reserved for random variables, and regular

fonts are used for deterministic quantities. Superscript  .
T

 denotes transposition for real-valued

vectors and matrices while  
*

. Denotes conjugate transposition for complex-valued vectors and

matrices. The symbol  .E is the expectation operator,  .Tr represents the trace of its matrix

argument. MI Represents the identity matrix of order M . The .diag operator shows a diagonal

matrix and  .vec the operator creates a vector from a matrix.  .bvec the operator first takes the

47 Optimization for Big Data

blocks of a matrix and make a vector from this block by serializing the data.  shows the

Kronecker product and b represents the block-Kronecker product [53].

We consider a network consisting of N decentralized data-sources, each capable of processing a

limited amount of data and communicate with its neighbors. The set of all neighbors of a source

k is denoted by kN . The sources are generating or accumulating data with some of Big Data

properties. The objective of the network is to decide in a fully distributed manner. Mathematically

speaking, the solution is to find an unknown vector o , as a distributed estimation, that is

performed by using iterative techniques. In such techniques, at each time instant (iteration) i ,

sources have access to the following two types of data: a scalar random process  kd i and a vector

random process
,k iu both related to o where s  kv i is data gathering noise [54].

0

(,)() ()k k i kd i u v i  (4-1)

In equation (4-1) it is assumed that the:

 •  ,k iu is zero-mean, independent, and identically distributed (i.i.d.) in time and independent

over space.

 • the covariance matrices are shown with *

, , , 0u k k i k iR E u u    .

 • The noise  kv i is zero-mean, i.i.d. in time and independent over space with variances 2

,v k

 • The ,k iu and the noise  kv i are mutually independent.

 As an example, consider an IoT network consisting of many devices that transfer their sensory

data to near edge or clouds as depicted in Figure 4-1. Therefore, the data-sources have access to

instant observations divided as scalar or vector random processes. The objective could be a

decision on choosing the optimal power flow or path suggestion. The data is produced with high

volume, velocity, and variety, and it is not possible to make a network decision (global decision)

in near real-time.

4.1.2 Optimal-Weight Distributed Algorithms

In general, we try to solve the equation (4-2) in an optimized manner. To find the optimal

weighting matrix, we assume that the    , , ,l k l k l ka i I i where ,l k are positive fixed combination

48 Chapter 4, Introduction

weights that data-source k assigns to thl Neighbor. The  ,l kI i . Pretenses the network

communication topology and is equal to 1 when the two data-sources collaborate (communicate)

and 0 otherwise. Some of the known optimal weighting algorithms in the literature are Metropolis

[55], as presented in equation (4-3) and Laplacian adaptive methods [56] as given in equation (4-

4).

  
*

(,) , , , , 1
,k

k i l k l i k k k i k il N k i
a u d i u    

   (4-2)

 

 
 

   
,

,

, ,

, ,\

1
\

max ,

1 ,

0,

k i

k i

k i l i

l k l kl N k

if l N k
N N

a i a i if l k

otherwise









  







(4-3)

 

  
 

   
,

,

,

, ,\

1
\

max , 1,2,...,

1 ,

0,

k i

k i

k i

l k l kl N k

if l N k
N k N

a i a i if l k

otherwise









  







(4-4)

Although these methods are modified to take into account different network topologies, they still

are not the optimal solution for the networks with imperfect communication among sources. In

what follows, we first present the effect of imperfect communication in damaging the data and

then describe the propose optimal weighting algorithm.

4.1.3 Effect of Imperfect Communication

We assume that the ,lk i is the estimate of received data on data-source k , sent from the source l

over the imperfect wireless channel (for instance using 5G [52]) in which the communication

channel affects the data by ,l kh as follow:

49 Optimization for Big Data

   
, , , ,

,

t

lk i l k l k lk i

l k

P
h i v

r




  

(4-5)

 where tP is the power of the transmitted signal and , ,l k k lr r is the distance between the source l

and k .  is the path-loss component and
 

,lk iv


 is the additive zero-mean noise vector with  
,

2

lk iv MI




as its covariance matrix. The channel coefficients are space-independent and time-variant circular

Gaussian random variables with zero-mean and
,

2 1
l kh  . The noise vector,   ,lk iv


 is also zero-

mean and i.i.d in time. The channeling effect (
,l kh) could be neglected only when the signal is

stronger than a pre-defined threshold,
 

,

0

2
Δ

lk i

t
lk

v o

P

r
 




 .

Considering the channel effect, the  
 
 

,

2

2

,lk i

lk t

lk

v l k

h i P
i

r
 




 Is defined. The data transmission is defined

as successful when   o

lk lki  meaning that the  
2

,lk l kh i v .

While the channel coefficients,  lkh i are circular Gaussian random variables, the  
2

lkh i follows

exponential distribution with 1  . Therefore, the probability of successful transmission could be

modeled as follows:

   ,
2

, ,
l kv

l k r lk l kp P h i v e


   (4-6)

This demonstrates that increasing the distance between data-sources while the transmission power

is constant, the chance of successful data transmission decreases.

We assume that network topology is dynamic, meaning that the neighbors may vary during the

iterations. Therefore, ,k i kN N is defined as a subset of neighbors to data-source k at the iteration

index i . Therefore, the main calculation formula in equation (4-2) could be re-written as follows:

       
,

*

, , 1 , , , 1 , , 1\k i

o

k i k i k k i k k i k i k l k k il N k
u d i u b i        

     (4-7)

50 Chapter 4, Proposed Optimal Weight Design

4.2 Proposed Optimal Weight Design

 The weights, in general, could be presented as equation (4-8).

 

   

   
,

, , ,

, ,\

, \

1 ,

0,

k i

l k l k k i

l k l kl N k

I i if l N k

a i a i if l k

otherwise








  





(4-8)

where
, 1l k

l N




 , , 1
i

l k

l N k


 

 . To find the optimal weight, we need to find the combination that

minimizes the network error. As long as the iA satisfies
 

 
,

,

\

1
k i

l k

l N k

a i


 we have:

         
, ,

, , , ,

1

1
lim 1

k i k i

i

i l k l k l k l k
i

l N j l N

A a i I i a i I i
i

  

 
   

  
  E E

(4-9)

It is straightforward to prove that 1

2 2

0

‍i

i
T j

i F
j

E E F 
   



     where the  Is the error vector.

Proof:

Defining
1i i i iB My ω ω we have:

2 2 *

1i i i i




   
       

   
 

E ω E ω E y y
(4-10)

Where 0 is the arbitrary weighting matrix and *

i iB B   . Since, 1iω and iR are statistically

independent, we have:

2 2

1 1i i
 

   
 
 
 

 
   

   
    

 E

E ω E ω

(4-11)

2 2

1i i Tr Y




   
       

   
 

E ω E ω
(4-12)

where:

51 Optimization for Big Data

 

*

*

2 2

,1 ,1 , ,

,

,

,

,..., .

i i

i i

T

v u v N u N

B B

Y y y

Y A MGMA

G diag R R 

    

  





 E

E

(4-13)

Assuming X , U and V as NM NM matrices, we have:

     Tvec U V V U vec  

     Tvec X vec X vec 

(4-14)

Defining  vec   and  vec    we have F   where F is definable. Therefore, we have:

2 2

1

T

i i F 
 

  
 

E ω E ω (4-15)

where  is substituted by  ,  Tvec Y  and *T

i iF B B E .

Finally, it is proven that 1

2 2

1

0

i

i
T j

i F
j

F
 

 



  
  E ω E ω .

The optimization problem is to find the weighting matrix that minimized the network error. Since

we do not have access to the exact error; we try to minimize the upper-bound of the network error

[49,50]. Therefore, the value  is defined as equation (4-16):

 

    1

2

2 *

1

0

1
lim

1 1
lim lim

MN

i
MN

i bvec Ii

i
j T j

i i uF bvec Ii i
j

N

Tr B A MPMA R B
N N

 

 




 





    

E

ω E

(4-16)

where:

 

    

 
 

*

, ,

* *

1, 1 ,

* *

1, 1, , ,

1

,...,

,...,

,...,

i

T

b

o

k i k i

i i N i N

i i i N i N i

M N M

M

B B

F B B

G col i i

R diag

M diag I I

A A I



 

 

 

 

E

ω ω

u v u v

u u u u

(4-17)

52 Chapter 4, Proposed Optimal Weight Design

It is also proven that when B is steady,
 1

2

1

1
lim 0i

MNF bvec Ii N



ω [49]. Therefore, we have:

  *

0

1
lim

i
j T j

i i u
i

j

Tr B A MPMA R B
N






    E
(4-18)

Defining  * ‍ j

j

X X as the nuclear norm of X we have:

    

    

    

  

* *

*

* *

* **

2*

*

2* 2

,

 (1)

 (2)

 (3)

i
j T j j T j

i i u i i u

ii
j T j j T j

i i u i i u

iii
jj T j T

i i u i i u

iv
jj T j

i i u b

Tr

Tr

Tr Tr

Tr c Tr


  

  

  

 

      

      

      

    

    

       

2* 2

,

2* 2

 (4)

 (5)

 (6)

T

i i u

v
jj T j T

i i u i i ub

vi
jj T j T

i i u i i u

Tr c I Tr

Tr c I Tr





   

   

  

      

      

(4-19)

Substituting the values, we have:

   
2

2

0 0

lim ‍‍
i i

jT

i i v
i

j j

c
Tr E A MPMA R I MR

N
 


 

       
(4-20)

Considering equation (4-20), the optimization problem is defined as follows:

 
,

,

min

. . 1 1, 0

0

T

i i v
A

l k

l k k

Tr E A MPMA R

s t A a

a if l N

   

 

 

(4-21)

It is easily shown that:

 

           2 22 2 2

, , , , , , ,

1

‍‍
k

T

i i v

N

l k l v l u l l k l k l k v lk

k l N

Tr E A MPMA R

E a i Tr R E g i h i v Tr R


 
 

    

       


(4-22)

We also know that the columns of iA are independent and A is LF, therefore:

53 Optimization for Big Data

 

           2 22 2 2

, , , , , , ,

1

‍‍
k

T

i i v

N

l k l v l u l l k l k l k v lk

k l N

Tr E A MPMA R

E a i Tr R E g i h i v Tr R


 
 

    

       


(4-23)

   2 2 2 2

, , , , ,l k l k l k l k l kE a i E I i p         (4-24)

The optimization problem could now be simplified as the equation (4-25).

     
,

22 2 2

, , , , , ,

, , , ,

min ‍

. . 0, 1 ‍‍ ‍‍‍ 0‍‍‍‍ ‍,

l k
k

k

l k l k l v l u l l k v lk

l N

l k l k l k l k k

l N

p Tr R g Tr R

s t p if l N




  

  







 





(4-25)

 where:

   
2 2 2

, , , ,l k l k l k l kg E g i h i v  
  

 (4-26)

Applying KKT conditions and Lagrangian we have:

2

, ,

2

, ,
, ,

,

0,

k

l k l k

k

m k m k
l k l k

m N

p
if l N

pp

otherwise














 





(4-27)

  , ,l k l kE I i p    and finally, the optimal weights are presented in equation (4-28).

 
,

2

,

,2

,
,

,

0,

k i

l k

k i

m k
l k

m N

ifl N

a i

otherwise














 





(4-28)

where 2

,l k is defined as equation (4-29):

     

 

2 22 2

, , , ,2

, 2 2

, ,

, \

,

l v l u l l k v lk k

l k

k v k u k

Tr R M g if l N k

Tr R if l k


  


 

  
 



(4-29)

54 Chapter 4, Proposed Optimal Weight Design

However, we have assumed that the 2

,v l and
,u lR ,

2

,l kg and  2

,v lk


 are pre-known which is not

practical, and the instant estimates are used instead.

4.2.1 Convergence Analysis

In this section, we analyze the convergence of the proposed algorithm. At first, some parameters

need to be defined.
i is defined as network error vector and we have   1

T T

i i i iA I MR A MG    

where
iG

iR and M are intermediate matrices defined as follows:

    

 
 

, ,

* *

1, 1 ,

* *

1, 1, , ,

1

Δ ,...,

Δ ,...,

Δ ,...,

o

k i k i

i i N i N

i i i N i N i

M N M

M

G col u v i u v i

R diag u u u u

M diag I I

A A I

  

 

 







 

(4-30)

By defining the  T

i iB A I MR  and T

i iy A MG the error vector may be presented as

1i i i iB My    in which
iB controls the dynamic error vector. To prove the convergence we need

to prove that the    1i iE BE   where    Δ T

iB E B A I MR   [57].

Considering    1i iE BE   , if  lim 0i
i

E 


 the convergence is proven. This requires that the B

is steady. To have steady B , its spectral radius needs to satisfy   1B  .

In general, it is not possible to prove   1B  , however, the ,k iu and ,k iv values are independent

and ,k iv is zero-mean, therefore, 0T

iE A MG    . We also know that A is an LF matrix and therefore,

its spectral efficiency,   1A  . A is also symmetric and therefore, all its elements are real values

and therefore,    max 1A A   .

Therefore, if we can find the conditions in which   1B  the convergence is guaranteed. On the

other hand, considering the above-mentioned conditions on LF,   1B  holds that the

   B I MR   . In [58], it is proven that if the step-sizes, k chosen so that the

 max ,

2
0 1, 2,...,k

u k

for k N
R




   is satisfied, the    B I MR   is guaranteed. Therefore,

55 Optimization for Big Data

choosing the step-sizes according to
 max ,

2
0 1, 2,...,k

u k

for k N
R




   and considering the LF

matrix of network, the convergence is guaranteed.

56 Chapter 4, Proposed Optimal Weight Design

4.2.2 Evaluation Results

In this section, we evaluate the performance of the proposed optimal distributed decision-making

algorithm, and we compare the weighting strategy with Metropolis and Laplacian combination

methods. For simulations we use Matlab and part of the simulation codes are presented in

Appendix.

We consider a network with ten decentralized data-sources, 10N  as depicted in Figure 4-2 The

diagram of the network used for evaluation with 10 decentralized data-sources. We set maximum

step-size to 0.005, the number of iterations to 50 and we average the results over 10 realizations.

In the same network topology, we compare the proposed optimal weighting, Metropolis method

[55] and also optimal weighting proposed in [56]. Figure 4-3 Normalized network error versus the

number of iterations for the proposed method, Metropolis [55] and optimal combination method

[56] presents the normalized network error versus the number of iterations for the proposed

method, Metropolis [55] and optimal combination method [56]. As can be seen in figure 4-3 the

performance of the proposed method shows considerable improvements. It is also shown that the

optimal weighting does not reach the theoretical error bound in a limited number of iterations.

Figure 4-2 The diagram of the network used for evaluation with 10 decentralized data-sources

57 Optimization for Big Data

Figure 4-3 Normalized network error versus the number of iterations for the proposed method, Metropolis [55] and optimal

combination method [56]

4.3 Conclusion

The nature of decentralized large-scale data-sources requires distributed algorithms. Distributed

algorithms are more robust and secure in compared with centralized solutions, while they introduce

new challenges such as communication failures. Distributed data-sources should be capable of

processing their data and communicate with neighbor sources to find the network objective as an

optimal decision. This process needs to be made in a distributed manner, with no need to

implement a centralized system center and to have access only to local information. Some

challenges are introduced by new technologies such as 5G or high-speed wireless data transfer,

including imperfect communications that damage the data. In this chapter, we proposed an optimal

algorithm, that uses optimal weighting to combine the shared data coming from neighbors. This

optimal weight improves the performance of the decision-making algorithm in terms of error and

convergence rate. We defined an optimization problem and proposed an optimization weighting

algorithm to find a solution to the optimization problem. We evaluated the performance of the

proposed algorithm mathematically and introduced the step-sized conditions that guaranteed the

58 Chapter 4, Conclusion

convergence of the proposed algorithm. We also used computer simulations to assess the network

error. We proved that in a network diagram with 10 data-sources, the network performance of the

proposed algorithm outperforms some of the known optimal solutions such as Metropolis and

adaptive combination.

59 Optimization for Big Data

5 Chapter 5
Conclusion and Future works

60 Chapter 5, Summary and Conclusion

5.1 Summary and Conclusion

In chapter 1, we introduced the basics of what is going to be presented in this thesis, including the

introduction to optimization, the definition of Big Data, its importance and history, and also the

general relation of Big Data and optimization techniques.

In chapter 2 of this thesis, we reviewed some of the recent and relevant optimization algorithms

used for Big Data analysis, including machine learning algorithms, classic optimization

algorithms, and heuristic and evolutionary optimization algorithms. We also reviewed some of the

most useful tools in Big Data analysis.

In chapter 3, we showed that distributed algorithms are a promising solution to the decentralized

nature of Big Data algorithms. We presented the basics of stochastic distributed decision-making

algorithms and proposed a fully distributed one that was based on diffusion adaptation. The

proposed algorithm used the collaboration of neighbor nodes to make a global decision while the

sources make local decisions. We evaluated the proposed algorithm on cognitive radio networks

in which secondary users use energy detector sensors to sense the environment. We showed that

the proposed algorithms perform well, is scalable and robust to communication failures.

In chapter 4, we considered some practical issues including the effect of imperfect communications

on distributed analysis algorithms. We modeled this effect as an optimization problem and solved

the problem to gain the optimal weights that each node assigns to the information received from

neighbor nodes. We compared the proposed optimal weighing algorithm with some of the earlier

methods. Evaluation results confirmed that the proposed method performs well in terms of error

and convergence rate. We also presented mathematical analysis on the convergence of the

proposed algorithm.

5.2 Future Works

In this thesis, we only considered practical issues in distributed optimization algorithms that are

imperfect communication links. We assumed the cost function of the whole network (the decision

that the whole network is going to make) is separable among all nodes (data-sources). These

assumptions are usual in the literature. However, if we need to decide Big Data in almost near real-

time, we need to consider some other issues including the computational capability of each source

and data transfer delays. For instance, assume that some sources have stronger computational

61 Optimization for Big Data

resources. The total decision time depends on the weakest source. Therefore, local balancing

techniques are required to optimize the algorithms in practical scenarios.

References

[1] Aragón, Francisco J., Miguel A. Goberna, Marco A. López, and Margarita ML

Rodríguez. Nonlinear optimization. Springer International Publishing, 2019.

[2] Furht, Borko, and Flavio Villanustre. Big data technologies and applications. Berlin, Germany:

Springer, 2016.

[3] A. L’heureux, K. Grolinger, H.F. Elyamany, M.A. Capretz: Machine learning with Big Data:

Challenges and Approaches, IEEE Access, 5(5) 2017, 777-97.

 [4] Stefanos Vrochidis, Benoit Huet, Edward Y Chang, and Yiannis Kompatsiaris. Big Data

Analytics for Large-scale Multimedia Search. Wiley Online Library, 2019.

[5] K. Wang, Y. Wang, X. Hu, Y. Sun, D.J. Deng, A. Vinel, Y. Zhang: Wireless Big Data

computing in smart grid, IEEE Wireless Communications, 24(2) 2017, 58-64.

[6] Zhu, Li, Fei Richard Yu, Yige Wang, Bin Ning, and Tao Tang. "Big data analytics in intelligent

transportation systems: A survey." IEEE Transactions on Intelligent Transportation Systems 20,

no. 1 (2018): 383-398.

[7] A.M. Somarin, M. Barari, H. Zarrabi: Big Data Based Self-Optimization Networking in Next

Generation Mobile Networks, Wireless Personal Communications, 101(3) 2018, 1499-1518.

[8] Z. Gui-Xia, Z. Cheng-Jing, W. Xiao-Yan: Research of Distributed Data Optimization Storage

and Statistical Method in the Environment of Big Data, In International Conference on Smart Grid

and Electrical Automation (ICSGEA), IEEE, May 2017, 612-617.

[9] Barnes, Trevor J. "Big data, little history." Dialogues in Human Geography 3, no. 3 (2013):

297-302.

[10] Power, Daniel J. "Using ‘Big Data’for analytics and decision support." Journal of Decision

Systems 23, no. 2 (2014): 222-228.

[11] Plunkett, Tom, Brian Macdonald, Bruce Nelson, Mark Hornick, Helen Sun, Khader

Mohiuddin, Debra Harding et al. Oracle big data handbook. McGraw-Hill Osborne Media, 2013.

[12] Bin He and Yonggang Li, "Big Data Reduction and Optimization in Sensor Monitoring

Network," Journal of Applied Mathematics, vol. 2014, Article ID 294591, 8 pages,

2014. https://doi.org/10.1155/2014/294591.

[13] Zheng, Kan, Zhe Yang, Kuan Zhang, Periklis Chatzimisios, Kan Yang, and Wei Xiang. "Big

data-driven optimization for mobile networks toward 5G." IEEE network 30, no. 1 (2016): 44-51.

https://doi.org/10.1155/2014/294591

63 Optimization for Big Data

[14] Thiry, Laurent, Heng Zhao, and Michel Hassenforder. "Categories for (Big) Data models and

optimization." Journal of Big Data 5, no. 1 (2018): 21.

[15] El Majdouli, Mohamed Amine, Ismail Rbouh, Saad Bougrine, Bouazza El Benani, and

Abdelhakim Ameur El Imrani. "Fireworks algorithm framework for Big Data

optimization." Memetic Computing 8, no. 4 (2016): 333-347.

[16] Mateen, Ahmed, and Kashif Ali. "Optimization strategies through big-data migration in

distributed cloud databases." In 2017 IEEE International Conference on Power, Control, Signals

and Instrumentation Engineering (ICPCSI), pp. 96-99. IEEE, 2017.

[17] Wang, Yuzhu, Huiqun Hao, Junqiang Zhang, Jinrong Jiang, Juanxiong He, and Yan Ma.

"Performance optimization and evaluation for parallel processing of big data in earth system

models." Cluster Computing (2017): 1-11.

[18] Kusiak, Andrew. "Smart manufacturing must embrace big data." Nature 544, no. 7648

(2017): 23-25.

[19] Chung, I-Hsin, Tara N. Sainath, Bhuvana Ramabhadran, Michael Picheny, John Gunnels,

Vernon Austel, Upendra Chauhari, and Brian Kingsbury. "Parallel deep neural network training

for big data on blue gene/q." IEEE Transactions on Parallel and Distributed Systems 28, no. 6

(2016): 1703-1714.

[20] Sreedhar, Dheeraj, Vaibhav Saxena, Yogish Sabharwal, Ashish Verma, and Sameer Kumar.

"Efficient Training of Convolutional Neural Nets on Large Distributed Systems." In 2018 IEEE

International Conference on Cluster Computing (CLUSTER), pp. 392-401. IEEE, 2018.

[21] Cevher, Volkan, Stephen Becker, and Mark Schmidt. "Convex optimization for big data:

Scalable, randomized, and parallel algorithms for big data analytics." IEEE Signal Processing

Magazine 31, no. 5 (2014): 32-43.

[22] Notarnicola, Ivano, and Giuseppe Notarstefano. "A randomized primal distributed algorithm

for partitioned and big-data non-convex optimization." In 2016 IEEE 55th Conference on Decision

and Control (CDC), pp. 153-158. IEEE, 2016.

[23] Notarnicola, Ivano, Ruggero Carli, and Giuseppe Notarstefano. "Distributed partitioned big-

data optimization via asynchronous dual decomposition." IEEE Transactions on Control of

Network Systems 5, no. 4 (2017): 1910-1919.

[24] Notarnicola, Ivano, Ying Sun, Gesualdo Scutari, and Giuseppe Notarstefano. "Distributed

big-data optimization via block communications." In 2017 IEEE 7th International Workshop on

Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 1-5. IEEE, 2017.

[25] Notarnicola, Ivano, Ying Sun, Gesualdo Scutari, and Giuseppe Notarstefano. "Distributed

big-data optimization via block-iterative convexification and averaging." In 2017 IEEE 56th

Annual Conference on Decision and Control (CDC), pp. 2281-2288. IEEE, 2017.

[26] Liu, Lanchao, and Zhu Han. "Multi-block ADMM for big data optimization in modern

communication networks." arXiv preprint arXiv:1504.01809 (2015).

[27] Richtárik, Peter, and Martin Takáč. "Parallel coordinate descent methods for big data

optimization." Mathematical Programming 156, no. 1-2 (2016): 433-484.

[28] Chen, Siguang, Kun Wang, Chuanxin Zhao, Haijun Zhang, and Yanfei Sun. "Accelerated

distributed optimization design for reconstruction of big sensory data." IEEE Internet of Things

Journal 4, no. 5 (2017): 1716-1725.

[29] Ning, Chao, and Fengqi You. "Data-driven stochastic robust optimization: General

computational framework and algorithm leveraging machine learning for optimization under

uncertainty in the big data era." Computers & Chemical Engineering 111 (2018): 115-133.

[30] Chi, Yuejie. "Low-Rank Matrix Completion [Lecture Notes]." IEEE Signal Processing

Magazine 35, no. 5 (2018): 178-181.

[31] Ahmad, Awais, Murad Khan, Anand Paul, Sadia Din, M. Mazhar Rathore, Gwanggil Jeon,

and Gyu Sang Choi. "Toward modeling and optimization of features selection in Big Data based

social Internet of Things." Future Generation Computer Systems 82 (2018): 715-726.

[32] Elsayed, Saber, and Ruhul Sarker. "Differential evolution framework for big data

optimization." Memetic Computing 8, no. 1 (2016): 17-33.

[33] Zheng, Zijie, Lingyang Song, Zhu Han, Geoffrey Ye Li, and H. Vincent Poor. "Game Theory

for Big Data Processing: Multileader Multifollower Game-Based ADMM." IEEE Transactions on

Signal Processing 66, no. 15 (2018): 3933-3945.

[34] Yi, Jiao-Hong, Suash Deb, Junyu Dong, Amir H. Alavi, and Gai-Ge Wang. "An improved

NSGA-III Algorithm with adaptive mutation operator for big data optimization problems." Future

Generation Computer Systems 88 (2018): 571-585.

65 Optimization for Big Data

[35] Barba-González, Cristóbal, José García-Nieto, Antonio J. Nebro, José A. Cordero, Juan J.

Durillo, Ismael Navas-Delgado, and José F. Aldana-Montes. "jMetalSP: a framework for dynamic

multi-objective big data optimization." Applied Soft Computing 69 (2018): 737-748.

[36] Povoda, Lukas, Radim Burget, Malay Kishore Dutta, and Namita Sengar. "Genetic

optimization of big data sentiment analysis." In 2017 4th International Conference on Signal

Processing and Integrated Networks (SPIN), pp. 141-144. IEEE, 2017.

[37] Sabar, Nasser R., Jemal Abawajy, and John Yearwood. "Heterogeneous cooperative co-

evolution memetic differential evolution algorithm for big data optimization problems." IEEE

Transactions on Evolutionary Computation 21, no. 2 (2016): 315-327.

[38] Slavakis, Konstantinos, Georgios B. Giannakis, and Gonzalo Mateos. "Modeling and

optimization for big data analytics:(statistical) learning tools for our era of data deluge." IEEE

Signal Processing Magazine 31, no. 5 (2014): 18-31.

[39] Patel, Aditya B., Manashvi Birla, and Ushma Nair. "Addressing big data problem using

Hadoop and Map Reduce." In 2012 Nirma University International Conference on Engineering

(NUiCONE), pp. 1-5. IEEE, 2012.

[40] Li, Chaojie, Xinghuo Yu, Tingwen Huang, and Xing He. "Distributed optimal consensus over

resource allocation network and its application to dynamical economic dispatch." IEEE

transactions on neural networks and learning systems 29, no. 6 (2017): 2407-2418.

[41] Kim, Sunyoung, and Masakazu Kojima. "Exact solutions of some nonconvex quadratic

optimization problems via SDP and SOCP relaxations." Computational Optimization and

Applications 26, no. 2 (2003): 143-154.

[42] Sayed, Ali H. Fundamentals of adaptive filtering. John Wiley & Sons, 2003.

[43] Sayed, Ali H. "Diffusion adaptation over networks." In Academic Press Library in Signal

Processing, vol. 3, pp. 323-453. Elsevier, 2014.

[44] Qiu, Robert, and Michael Wicks. Cognitive networked sensing and big data. Springer New

York, 2014.

[45] Hong, Mingyi, Meisam Razaviyayn, Zhi-Quan Luo, and Jong-Shi Pang. "A unified

algorithmic framework for block-structured optimization involving big data: With applications in

machine learning and signal processing." IEEE Signal Processing Magazine 33, no. 1 (2015): 57-

77.

[46] Facchinei, Francisco, Gesualdo Scutari, and Simone Sagratella. "Parallel selective algorithms

for nonconvex big data optimization." IEEE Transactions on Signal Processing 63, no. 7 (2015):

1874-1889. [47] Daneshmand, Amir, Francisco Facchinei, Vyacheslav Kungurtsev, and Gesualdo

Scutari. "Hybrid random/deterministic parallel algorithms for convex and nonconvex big data

optimization." IEEE Transactions on Signal Processing 63, no. 15 (2015): 3914-3929.

[48] Scott, Steven L., Alexander W. Blocker, Fernando V. Bonassi, Hugh A. Chipman, Edward I.

George, and Robert E. McCulloch. "Bayes and big data: The consensus Monte Carlo

algorithm." International Journal of Management Science and Engineering Management 11, no. 2

(2016): 78-88.

[49] Sayed, Ali H. "Adaptation, learning, and optimization over networks." Foundations and

Trends® in Machine Learning 7, no. 4-5 (2014): 311-801.

[50] Boyd, Stephen, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. "Distributed

optimization and statistical learning via the alternating direction method of

multipliers." Foundations and Trends® in Machine learning 3, no. 1 (2011): 1-122.

[51] Mohammadi, Mehdi, Ala Al-Fuqaha, Sameh Sorour, and Mohsen Guizani. "Deep learning

for IoT big data and streaming analytics: A survey." IEEE Communications Surveys &

Tutorials 20, no. 4 (2018): 2923-2960.

[52] Zhang, Ning, Peng Yang, Ju Ren, Dajiang Chen, Li Yu, and Xuemin Shen. "Synergy of big

data and 5g wireless networks: opportunities, approaches, and challenges." IEEE Wireless

Communications 25, no. 1 (2018): 12-18.

[53] Koning, Ruud H., Heinz Neudecker, and Tom Wansbeek. "Block Kronecker products and the

vecb operator." Linear algebra and its applications 149 (1991): 165-184.

[54] Cattivelli, Federico S., and Ali H. Sayed. "Diffusion LMS strategies for distributed

estimation." IEEE Transactions on Signal Processing 58, no. 3 (2009): 1035-1048.

[55] Fernandez-Bes, Jesus, Jerónimo Arenas-García, and Ali H. Sayed. "Adjustment of

combination weights over adaptive diffusion networks." In 2014 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pp. 6409-6413. IEEE, 2014.

[56] Wei, Jieqiang, Alexander Johansson, Henrik Sandberg, Karl H. Johansson, and Jie Chen.

"Optimal weight allocation of dynamic distribution networks and positive semi-definiteness of

signed Laplacians." arXiv preprint arXiv:1803.05640 (2018).

67 Optimization for Big Data

[57] Cassano, Lucas, Kun Yuan, and Ali H. Sayed. "Distributed value-function learning with linear

convergence rates." In 2019 18th European Control Conference (ECC), pp. 505-511. IEEE, 2019.

[58] Chen, Jie, Cédric Richard, and Ali H. Sayed. "Diffusion LMS over multitask networks." IEEE

Transactions on Signal Processing 63, no. 11 (2015): 2733-2748.

6 Appendix

69 Optimization for Big Data

6.1 Simulation Codes

Here we present some part of our simulation codes. This research is continuing; therefore, the main

components of simulation codes that might be used for future works are protected.

[Spectrum Sensing on Cognitive Radio Using Consensus]

[Part 1: Generate data for the cognitive network]

clear all;

close all;

clc;

u=1000;%time bandwidth factor

N=2*u;%samples

a=2;%path loss exponent

C=2;%constant losses

Crs=15; %Number of cognitive radio users

PdAnd=0;

%----------Pfa------------%

Pf=0.01:0.01:1;

Pfa=Pf.^2;

%---------signal-----%

t=1:N;

s1 = cos(pi*t);

stem(t,s1)

s1power=var(s1);

%-------- SNR ----------%

% Snrdb=-15:1:15;

Snrdb=15;

Snreal=power(10,Snrdb/10);%Linear Snr

% while Snrdb<15%

 lamda=ones(1,100);

70 Appendix, Simulation Codes

for i=1:length(Pfa)

lamda(i)=gammaincinv(1-Pfa(i),u)*2; %theshold

% lamdadB=10*log10(lamda);

%--------Local spectrum sensing---------%

d=ones(1,10);

for j=1:Crs %for each node

detect=0;

d(j)=7+1.1*rand(); %random distanse

PL=C*(d(j)^-a); %path loss

for sim=1:10%Monte Carlo Simulation for 100 noise realisation

%-------------AWGN channel--------------------%

noise = randn(1,N); %Noise production with zero mean and s^2 var

noise_power = mean(noise.^2); %noise average power

amp = sqrt(noise.^2*Snreal);

s1=amp.*s1./abs(s1);

% SNRdB_Sample=10*log10(s1.^2./(noise.^2));

Rec_signal=s1+noise;%received signal

localSNR=ones(1,10);

localSNR(j)=mean(abs(s1).^2)*PL/noise_power;%local snr

pdth=cell(10,100);

pdth{1,100}=1:100;

pdth{10,10}='string';

Pdth(j,i)=marcumq(sqrt(2*localSNR(j)),sqrt(lamda(i)),u);%Pd for j node

%Computation of Test statistic for energy detection

Sum=abs(Rec_signal).^2*PL;

Test=ones(1,10);

Test(j,sim)=sum(Sum)

if (Test(j,sim)>lamda(i))

detect=detect+1;

end

71 Optimization for Big Data

end %END Monte Carlo

Pdsim=ones(1,10);

Pdsim(j)=detect/sim; %Pd of simulation for the j-th CRuser

end

PdAND=ones(1,100);

PdAND(i)=prod(Pdsim);

PdOR=ones(1,100);

PdOR(i)=1-prod(1-Pdsim);

end

PdAND5=(Pdth(5,:)).^5;

Pmd5=1-PdAND5;

PdANDth=(Pdth(Crs,:)).^Crs;

PmdANDth=1-PdANDth; %Probability of miss detection

Pmdsim=1-PdAND;

[part 2: consensus strategy]

clc % clear command window

clear all % clear all variables

close all % close all figures

h = 2; % h=2 for complex data

N = 2; % number of cognitive users

M = 3; % number of taps per user (defines collaboration)

Num_iter = 75; % number of iterations per trial

Num_trial = 300; % number of trials

mu_max = 0.00001; % uniform step size across the network

mu = mu_max*ones(N,1); % uniform step-sizes

A = [0.2 0.8; 0.8 0.2];

p =(1/N)*ones(N,1); % Perron eigenvector

% set the power level for each random quantity

sigma_u2 = 0.5/mu_max;

sigma_v2 = 0.05*ones(N,1);

72 Appendix, Simulation Codes

RU = sigma_u2*ones(M,N);

sqRU = sqrt(sigma_u2)*ones(M,N);

% generate wo

wo = randn(M,1)+1j*randn(M,1);

wo = wo / norm(wo,2);

%%

% Generating the signal and noise powers

%%

if h == 1

 wo = randn(M,1); % real data

 wo = wo / norm(wo,2);

else

 wo = randn(M,1)+1j*randn(M,1); % complex data

 wo = wo / norm(wo,2);

end

%%%

% Running the experiments to generate the learning curves

%%%

MSD_av_CON = zeros(1,Num_iter); % average MSD curve for the consensus network.

MSD_agent_CON = zeros(N,Num_iter); % each row contains the MSD curve for the corresponding cognitive users in the

consensus network

wb = waitbar(0,'Simulating...Please wait');

for L=1:Num_trial % iterating over experiments

 % consensus initialization

 psi_CON = zeros(M,N); % psi column vectors for all cognitive users in the consensus network

 w_CON = zeros(M,N); % iterate column vectors for all cognitive users in the consensus network

 tilde_w_CON = zeros(M,N); % error column vectors for all cognitive users in the consensus network

 for i=1:Num_iter % iterating over time

 waitbar(((L-1)*Num_iter+i)/(Num_iter*Num_trial),wb);

 for k=1:N % consensus

73 Optimization for Big Data

 psi_CON(:,k) = zeros(M,1);

 for l=1:N

 psi_CON(:,k) = psi_CON(:,k) + A(l,k)*w_CON(:,l); % consensus (consultation step)

 end

 end

 for k=1:N % generate data for each cognitive users at time i

 if h==1 % real data

 uk = randn(1,M)*diag(sqRU(:,k)); % Gaussian row regression vector

 dk = uk*wo + randn*sqrt(sigma_v2(k));

 else

 uk = complexrandn(1,M)*diag(sqRU(:,k)); % Gaussian row regression vector

 dk = uk*wo + complexrandn(1,1)*sqrt(sigma_v2(k));

 end

 w_CON(:,k) = psi_CON(:,k) + (2/h)*mu(k)*uk'*(dk - uk*w_CON(:,k)); % consensus (adaptation step)

 end

 for k=1:N

 w(:,k) = zeros(M,1);

 tilde_w_CON(:,k) = wo - w_CON(:,k); % consensus

 MSD_agent_CON(k,i) = MSD_agent_CON(k,i) + (norm(tilde_w_CON(:,k),2))^2;

 end

 end

end

% consensus network learning curve

MSD_agent_CON = MSD_agent_CON/Num_trial; % each row contains the MSD evolution of the corresponding cognitive user

MSD_av_CON = sum(MSD_agent_CON)/N; % average MSD evolution of the network

MSD_av_db_CON = 10*log10(MSD_av_CON); % dB

74 Appendix, Simulation Codes

[Optimal Weightning]

[Part 1: network Generation]

function [Adjacency,Laplacian,Algebraic_Connectivity,Degree_Vector,Coordinates] =

generate_topology(Num_nodes,Type,Parameter)

N = Num_nodes; % Number of nodes.

A = zeros(N,N); % Adjacency matrix.

L = zeros(N,N); % Laplacian matrix.

if Type == 1

 r = Parameter; % Nodes within this radius from each other are declared to be neighbors.

else

 p = Parameter; % Nodes k and l are declated neighbors according to a binomial distribution with probability p.

end

% We first generate N random (x,y) coordinates in the square region [0,1.2]x[0,1.2]

x_coordinates = rand(1,N) + 0.1;

y_coordinates = rand(1,N) + 0.1;

Coordinates = [x_coordinates' y_coordinates'];

if Type == 1 % distance criterion

 for k=1:N

 for l=1:N

 d = sqrt((x_coordinates(1,k)-x_coordinates(1,l))^2 + (y_coordinates(1,k)-y_coordinates(1,l))^2);

 if d <= r

 A(k,l) = 1; % set entry in adjacency matrix to one if nodes k and l should be neighbors.

 end

 end

 end

end

if Type == 2 % binomial criterion

 for k=1:N

 A(k,k) = 1; % a node is always connected to itself in this construction

 for l=k+1:N

75 Optimization for Big Data

 b = rand; % generate a uniform random variable in the interval [0,1]

 if b <= p % if b falls within the interval [0,p], then we connect the nodes (emulating a binomial variable with prob. p)

 A(k,l) = 1; % set entry in adjacency matrix to one if nodes k and l should be neighbors.

 A(l,k) = 1;

 end

 end

 end

end

Adjacency = A; % adjacency matrix.

% We determine the number of neighbors of each node from the adjacency matrix

num_nb = zeros(N,1);

for k=1:N

 num_nb(k) = sum(A(k,:));

end

Degree_Vector = num_nb; % vector of degrees for the various nodes

for k=1:N

 L(k,k) = max(0, sum(A(k,:))-1); % set diagonal entry to zero if degree-1 for node k is negative.

 for l=k+1:N

 L(k,l) = -1*A(k,l);

 L(l,k) = -1*A(l,k);

 end

end

sigma = svd(L); % vector of singular values of L.

Laplacian = L; %Laplacian matrix

Algebraic_Connectivity = sigma(N-1); % algebraic connectivity

if sigma(N-1) < 1e-4 % checking if second smallest singular value is positive (sufficiently away from zero).

 return % network is not connection; returns to calling the function again to try a new network construction.

End

function plot_topology(Adjacency,Coordinates,Color)

76 Appendix, Simulation Codes

A = Adjacency; % adjacency matrix

N = max(size(A)); % number of agents

x_coordinates = Coordinates(:,1);

y_coordinates = Coordinates(:,2);

figure

hold on

for k=1:N

 for l=1:N

 if A(k,l)>0

 plot([x_coordinates(k),x_coordinates(l)],[y_coordinates(k),y_coordinates(l)],'b-','LineWidth',1.5);

 end

 end

end

for k=1:N

 if Color(k) == 0

 plot(x_coordinates(k),y_coordinates(k),'o','MarkerEdgeColor','b','MarkerFaceColor','y','MarkerSize',10);

 else

 if Color(k) == 1

 plot(x_coordinates(k),y_coordinates(k),'o','MarkerEdgeColor','b','MarkerFaceColor','r','MarkerSize',10);

 else % green

 plot(x_coordinates(k),y_coordinates(k),'o','MarkerEdgeColor','b','MarkerFaceColor','g','MarkerSize',10);

 end

 end

end

axis([0,1.2,0,1.2]);

axis square

grid

for k=1:N

 text(x_coordinates(k)+0.03,y_coordinates(k)+0.03,num2str(k),'Fontsize',7);

end

77 Optimization for Big Data

[policy rules]

Only parts of the code is presented.

