
UNIVERSITÀ DELLA CALABRIA

Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica

Dottorato di Ricerca in

INFORMATION AND COMMUNICATION TECHNOLOGIES

Con il contributo di (Ente finanziatore)

POR Calabria FSE/FESR 2014 – 2020

CICLO XXXV

Distributed Big Social Data Analysis:

Advanced Techniques and Execution Strategies

Settore Scientifico Disciplinare: ING-INF/05 Sistemi di elaborazione delle informazioni

Coordinatore:

Supervisore/Tutor: Ch.mo Prof. Paolo Trunfio

Dottorando: Dott. Riccardo Cantini

Firma ___ _____

Firma ______ ______

Ch.mo Prof. Fabrizio Marozzo

Firma ____ _____

Ch.mo Prof. Giancarlo Fortino

Firma ___ ____

“La borsa di dottorato è stata cofinanziata con risorse del Programma Operativo Regionale Calabria

FSE/FESR 2014 – 2020 (CCI 2014IT16M2OP006)”

Contents

1 Introduction 1
1.1 Main issues and challenges . 3

1.2 Structure of the Thesis . 6

1.3 Publications . 7

2 Learning political polarization on social media using neural networks 9
2.1 Background and related work . 11

2.2 Proposed methodology: IOM-NN 14

2.2.1 Collection of posts . 15

2.2.2 Classification of posts 17

2.2.3 Polarization of users . 22

2.3 Case studies . 24

2.3.1 2018 Italian general election 25

2.3.2 2016 US presidential election 29

2.4 Conclusions . 32

3 Analyzing voter behavior on social media: the case of the 2020 US
presidential election 34
3.1 Analysis workflow . 36

3.2 Results and discussion . 39

3.2.1 Data description . 39

i

Contents ii

3.2.2 Topic discovery . 43

3.2.3 Temporal analysis . 46

3.2.4 Polarization analysis . 47

3.2.5 Emotion analysis . 50

3.3 Conclusions . 52

4 Analyzing political polarization by deleting bot spamming 53
4.1 Social bot detection techniques 55

4.2 Proposed methodology: TIMBRE 57

4.2.1 Post collection . 58

4.2.2 Post classification and weighting 59

4.2.3 User polarization and classification 61

4.2.4 Bot influence analysis 63

4.3 Results and discussion . 64

4.3.1 Polarization analysis and election forecasting 67

4.3.2 Bot influence on election-related discussion 70

4.4 Conclusions . 74

5 Influence maximization in politically polarized networks: a bio-inspired
approach 76
5.1 Information diffusion models . 78

5.1.1 Spread function properties 80

5.2 Related work . 81

5.2.1 Comparison . 85

5.3 Proposed algorithm: WABC . 86

5.3.1 Artificial Bee Colony . 86

5.3.2 Weighted Artificial Bee Colony 89

5.4 Experimental evaluation . 92

5.4.1 Graph properties . 94

5.4.2 Parameter sensitive analysis 95

5.4.3 WABC vs. ABC . 97

5.4.4 WABC vs ranking-proxy models 100

Contents iii

5.4.5 Diffusion strategies of politically-polarized information . . 101

5.5 Conclusions . 103

6 Hashtag recommendation on social media platforms: a BERT-based
translation approach 104
6.1 Embedding techniques . 106

6.2 Related work . 109

6.2.1 Comparison . 111

6.3 Proposed model: HASHET . 112

6.3.1 Semantic mapping model creation and training 113

6.3.2 Hashtags recommendation by latent space inspection and

semantic expansion . 118

6.3.3 Why a translation approach? Exploit locality in the hash-

tag embedding space . 122

6.4 Performance evaluation . 123

6.4.1 The 2016 US presidential election 125

6.4.2 COVID-19 pandemic . 134

6.4.3 Assign topics using hashtag recommendation 138

6.5 Conclusions . 141

7 Using machine learning for task scheduling in data-intensive parallel
workflows 142
7.1 Background . 144

7.2 Related work . 146

7.2.1 Comparison . 149

7.3 Proposed methodology: IIWM 150

7.3.1 Execution monitoring and dataset creation 150

7.3.2 Prediction model training 153

7.3.3 Workflow scheduling . 157

7.4 Results and discussion . 162

7.4.1 Synthetic workflows . 163

7.4.2 Real case study . 170

Contents iv

7.5 Conclusions . 172

8 Enhance data partitioning in HPC applications: a machine learning
approach to block size estimation 174
8.1 Related work . 176

8.2 Proposed methodology . 179

8.2.1 Execution environment analysis 180

8.2.2 Log analysis to extract training data 180

8.2.3 Classification model training 182

8.3 Block size estimation in dislib applications 184

8.4 Experimental evaluation . 185

8.4.1 Single-node experiments 186

8.4.2 Multi-node experiments 194

8.5 Conclusions . 197

9 Conclusions and final remarks 198

List of Figures 205

List of Tables 208

References 229

Chapter 1
Introduction

In recent years, social media analysis is arousing great interest in various sci-

entific fields, such as computational politics, sociology, linguistics, and computer

science. Indeed, social media have now become part of our daily lives, leading

to the generation of huge amounts of opinion-rich multi-modal data, effectively

exploitable to investigate human dynamics and behaviors [1]. Such data, com-

monly referred to as Big Social Data [2], are intrinsically suited to a vast set of

applications, aimed at understanding how information spreads within a network,

analyzing user opinions, emotions, and political alignment, extracting user trajec-

tories and identifying the main topics underlying social media conversation, just

to name a few [1, 3–6].

This thesis mainly focuses on the analysis of politically-polarized Big Social

Data, produced online during election campaigns and referenda, with the aim of

outlining a detailed profile of social users, investigating their interests, opinions,

and feelings, and shaping their perception of real-world facts and events. For this

purpose, we developed and evaluated innovative methodologies and algorithms,

discussed in depth in the next chapters, for the effective extraction of the valuable

information hidden in such data, thus providing an effective data-driven approach

to a thorough understanding of political phenomena.

Specifically, we designed effective solutions to investigate the political leaning

of social users, taking into account several important aspects [1], such as the im-

1

2

pact of social bots on political discussion and their influence on legitimate users,

as well as the importance of time-related aspects in determining the voting in-

tention of social media users [7]. We also studied the relationships between user

polarization and the sentiment expressed in referring to the different candidates,

by modeling political support across a broad spectrum of emotions [8]. Moreover,

we combined information diffusion and influence maximization with political po-

larization analysis, to identify the main influencers for the different factions and

derive the main information diffusion strategies adopted during the political cam-

paign [3]. Finally, to achieve a rich representation of social media conversation,

we worked on topic detection and tracking techniques, aimed at identifying the

main topics underlying the online discussion, following their evolution over time,

and characterizing them from the viewpoint of political polarization [6, 8]. A fur-

ther research area that this thesis has focused on is hashtag recommendation, with

the aim of supporting Big Social Data analysis techniques, not only in the polit-

ical sphere. Specifically, advanced natural language processing techniques have

been exploited to determine the appropriate hashtags for a given post, leading to

a double advantage: on the one hand, users are supported in choosing a hashtag

in line with both the semantics of the text and the latest trends; on the other hand,

hashtag-based techniques can benefit from a greater amount of representative and

high-quality data [9].

Besides the development of innovative methodologies and algorithms for the

analysis of Big Social Data, this thesis focuses on the design and implemen-

tation of novel techniques aimed at enabling their efficient execution in high-

performance distributed environments. Indeed, while Big Data analysis offers

great opportunities in numerous fields of application, from politics to economics

and social sciences, their volume and speed continually challenge today’s storage,

processing, and analysis capabilities. Therefore, state-of-the-art tools for analyz-

ing and learning from Big Data on scalable computers, including the main parallel

programming paradigms (e.g., MapReduce, workflow, BSP, message passing, and

SQL-like), and the most used systems for Big Data analysis (e.g., Apache Spark,

Hadoop, and Storm) are expected to be constantly improved to effectively tackle

1.1 Main issues and challenges 3

Big Data issues [10]. Starting from the above considerations, our research activity

focused on the study of ad-hoc techniques and strategies aimed at enhancing the

execution of data-intensive high-parallel applications. Specifically, we worked on:

iq workflow task scheduling, to maximize the trade-off between task-parallelism

and memory usage, by minimizing the risk of data spilling-to-disk [11]; iiq data

partitioning, to estimate a suitable size for data blocks so as to speed-up parallel

data-intensive applications and increase scalability and throughput [12].

1.1 Main issues and challenges

Every day millions of people use social media platforms, generating vast

amounts of high-speed and heterogeneous data, which are by their very nature

highly dynamic, noisy, and often polluted with harmful content. Therefore, ex-

tracting high-quality information from them is not an easy task, and there exist

several issues and challenges that had to be faced during the realization of this

thesis.

Platform biases. A first issue lies in different possible platform biases that can

lead to the analysis of an unrepresentative data sample, whose statistical signifi-

cance should always be investigated as a fundamental, preliminary step. As an ex-

ample, when analyzing politically-polarized data, users’ representativeness should

be assessed by understanding to what extent they can be considered voters in the

political event under consideration, evaluating how they are distributed in terms

of gender, age, culture, and social status. Another source of bias is related to

technical aspects such as platform policies about data availability and restrictions

imposed in some areas of the world.

Language barrier. This issue arises when an analysis methodology is tied by

design to a specific language, which makes it unable to handle posts written in

different languages and not applicable in multilingual contexts. This may limit

its generalizability since social media platforms are widespread all over the world

1.1 Main issues and challenges 4

and the behavior of social users varies across different cultures and geographies.

Due to this, language-agnostic approaches are often preferred, as well as the use

of multilingual language representation models such as the Google Multilingual

Universal Sentence Encoder [13, 14], which embeds text from 16 languages into

a single semantic space, and the Multilingual BERT [15, 16], which covers 104

spoken languages from around the world.

Misclassification. Many techniques follow a supervised or semi-supervised ap-

proach, which implies a step in which social media posts are assigned a label or a

score. As an example, they can be associated with a political party, an emotion, or

a sentiment score. However, social media data are generally noisy, due to the use

of slang terms and expressions, and often unbalanced, due to the overrepresenta-

tion of certain groups or classes. In such a setting, the risk of misclassification

can be high [17]. As an example, an imbalance may be present in the number

of posts in favor of the different candidates or parties published by social users

during an election campaign, which can cause the learning process to be biased

toward the most represented classes. Therefore, data balancing techniques should

be used, like randomized sampling, and only high-confidence annotations should

be accepted to ensure the final results’ quality.

Reliability. As stated above, the quality of the final results heavily depends on

the reliability of the data involved in the analysis process. Unfortunately, social

media data are easily manipulated through spamming activities, misinformation

campaigns, and the spread of fake and malicious content. In such a scenario,

getting reliable and impartial data, discerning them from rumors, constructed re-

ports, and fake news is not an easy task. Recent studies have shown that social

bots are among the factors that most undermine the reliability of online news [18].

These are algorithmically-driven entities that try to emulate human behavior and

automatically produce content on social media, to alter the popularity of users

and influence discussions of any kind, including political issues. This malicious

publishing activity can lower the quality of data extracted from social media, thus

leading to the drawing of misleading conclusions [7].

1.1 Main issues and challenges 5

Dynamicity. Big data extracted from user interactions on social media platforms

are highly dynamic, causing the patterns of interest to change rapidly over time.

Due to this, time-related aspects are key to a correct understanding of the ex-

tracted information. As an example, trending topics evolve through time, and the

voting intentions of social users can fluctuate during an election campaign. This

dynamicity reflects in the continuous evolution of hashtags over time, linking so-

cial media content to new topics or events that catalyze the attention of the online

conversation. This makes the choice of a suitable hashtag not always easy for

social users, which hinders those methodologies that exploit hashtags as the main

source of information. This issue can be mitigated through hashtag recommenda-

tion models, which can be used to generate consistent hashtags, thus enhancing

the data processed by hashtag-based techniques [9].

Resource-intensive computation. In the age of the Internet of Things and so-

cial media platforms, the ability to generate and gather data is increasing con-

stantly and dramatically, which poses a series of challenges to the current solu-

tions aimed at processing, storing, and analyzing Big Data. Due to this, current

frameworks are expected to be constantly improved to tackle Big Data issues,

allowing the effective extraction of useful knowledge on high-performance com-

puting (HPC) systems, Clouds, and multi-clusters, through parallel and distributed

algorithms and frameworks in several application domains [10]. Furthermore, the

novel Exascale systems pose new requirements for addressing architectures com-

posed of a huge number of cores. In particular, in the near future, existing frame-

works will have to address a wide range of issues related to energy consumption,

scheduling, data distribution and access, communication, and synchronization,

to enable the scalable implementation of real-world Big Data analysis applica-

tions [19].

1.2 Structure of the Thesis 6

1.2 Structure of the Thesis

The remainder of this thesis is organized as follows.

• Chapter 2 presents IOM-NN (Iterative Opinion Mining using Neural Networks) [1],

a semi-supervised methodology that leverages an iterative approach based on

feed-forward neural networks to estimate the political polarization of public

opinion on social media platforms during a political event of interest, such as an

election or referendum.

• Chapter 3 presents an extension of IOM-NN which combines political polariza-

tion with other techniques, such as emotion analysis and topic discovery, with

the aim of outlining an accurate representation of the 2020 US presidential elec-

tion through a unified analysis workflow [8].

• Chapter 4 deals with data dynamicity and reliability by presenting TIMBRE

(Time-aware opInion Mining via Bot REmoval) [7], an opinion mining method-

ology that estimates the voting intentions of users through a hashtag-based clas-

sification process, enhanced by considering time-related information and by fil-

tering out content published by social bots.

• Chapter 5 presents WABC (Weighted Artificial Bee Colony) [3], a bio-inspired

influence maximization algorithm aimed at identifying the main influencers in

a politically-polarized network, deriving also the main information diffusion

strategies leveraged by each faction during the political campaign.

• Chapter 6 presents a novel translation-based hashtag recommendation model,

namely HASHET (HAshtag recommendation using Sentence-to-Hashtag Em-

bedding Translation) [9], that relies on the semantic mapping between the em-

bedded representation of a post and the latent representation of its hashtags.

The recommendation process of HASHET relies on the concept of locality in

the hashtag embedding space, which considers both its underlying topic-based

clustering structure and the learned relationships among hashtags.

• Chapter 7 presents IIWM (Intelligent In-memory Workflow Manager) [11], a

methodology that optimizes the execution of data-intensive workflows on par-

allel machines by balancing task parallelism and memory usage to minimize

1.3 Publications 7

data spilling. IIWM uses machine learning to predict task memory occupancy

and execution time and leverages these predictions to determine an effective

schedule using a heuristic solution to the bin backing problem.

• Chapter 8 presents a novel methodology that leverages a machine learning-

based approach to determine a suitable estimate of data block size for hybrid

partitioning, thus optimizing the execution of data-parallel applications on large-

scale high-performance infrastructures (e.g., the MareNostrum supercomputer)

by requiring minimal resources and domain knowledge [12].

• Chapter 9 summarizes the research context and highlights the key findings of

this thesis, summarizing the main contributions through the lens of all the ad-

dressed issues and research challenges. Finally, future research lines are out-

lined, which concludes the thesis.

1.3 Publications

Papers in journals

• R. Cantini, F. Marozzo, G. Bruno, P. Trunfio. “Learning sentence-to-hashtags

semantic mapping for hashtag recommendation on microblogs”. In: ACM Trans-

actions on Knowledge Discovery from Data, vol. 16.2, pp. 1-26, 2022.

• L. Belcastro, R. Cantini, F. Marozzo, A. Orsino, D. Talia, P. Trunfio. “Program-

ming Big Data Analysis: Principles and Solutions”. In: Journal of Big Data,

vol. 9, n. 4, 2022.

• R. Cantini, F. Marozzo, D. Talia, P. Trunfio. “Analyzing Political Polarization

on Social Media by Deleting Bot Spamming”. In: Big Data and Cognitive

Computing, vol. 1, n. 6, 2022.

• L. Belcastro, F. Branda, R. Cantini, F. Marozzo, D. Talia, P. Trunfio. “Ana-

lyzing voter behavior on social media during the 2020 US presidential election

campaign”. In: Social Network Analysis and Mining, 2022.

• L. Belcastro, R. Cantini, F. Marozzo. “Knowledge Discovery From Large

Amounts Of Social Media Data”. In: Applied Sciences, vol. 12, n. 3, 2022.

1.3 Publications 8

• R. Cantini, F. Marozzo, A. Orsino, D. Talia, P. Trunfio. “Exploiting Machine

Learning For Improving In-memory Execution of Data-intensive Workflows on

Parallel Machines”. In: Future Internet, vol. 13, n. 5, 2021.

• R. Cantini, F. Marozzo, S. Mazza, D. Talia, P. Trunfio. “A Weighted Artificial

Bee Colony Algorithm for Influence Maximization”. In: Online Social Net-

works and Media, vol. 26, pp. 100167, 2021.

• L. Belcastro, R. Cantini, F. Marozzo, D. Talia, P. Trunfio. “Learning Political

Polarization on Social Media using Neural Networks”. In: IEEE Access, vol. 8,

n. 1, pp. 47177-47187, 2020.

Papers in conference proceedings

• R. Cantini, F. Marozzo. “Topic Detection and Tracking in Social Media Plat-

forms”. In: EAI International Conference on Pervasive knowledge and collec-

tive intelligence on Web and Social Media (PerSoM), November 2022.

• R. Cantini, F. Marozzo, A. Orsino, M. Passarelli, P. Trunfio. “A visual tool

for reducing returns in e-commerce platforms”. In: 6th International Research

and Technologies for Society and Industry Innovation for a smart world (IEEE

RTSI), pp. 474-479, September 2021.

• L. Belcastro, R. Cantini, F. Marozzo, D. Talia, P. Trunfio. “Discovering Po-

litical Polarization on Social Media: A Case Study”. In: 15th International

Conference on Semantics, Knowledge, and Grids (SKG), Guangzhou, China,

pp. 182-189, September 2019.

Other publications

• Riccardo Cantini, Fabrizio Marozzo, Alessio Orsino, Domenico Talia, Paolo

Trunfio, Rosa M. Badia, Jorge Ejarque, Fernando Vázquez. “Block size esti-

mation for data partitioning in HPC applications using machine learning tech-

niques”. In: arXiv preprint arXiv:2211.10819, 2022. Under submission.

Chapter 2
Learning political polarization on
social media using neural networks

Computational Politics is a research area that involves a set of techniques

aimed at analyzing users’ behavior during a political event of interest, informing

political strategy and decision-making, and engaging with citizens and stakehold-

ers. It is an interdisciplinary field that spans computer science, political science,

and communication, which provides a more data-driven and quantitative approach

to understanding and studying political phenomena. Its main applications include

the use of machine learning to forecast election results and discover patterns in

political behavior, natural language processing to analyze political discourse and

track public opinion, network analysis to study the structure of political organiza-

tions and the pattern of information diffusion, and the development of interactive

platforms for political decision-making and engagement [1, 7, 8, 20, 21].

This chapter presents IOM-NN (Iterative Opinion Mining using Neural Net-

works) [1], a methodology that we designed for measuring the polarization of

social media users during election campaigns characterized by the competition of

political factions or parties, with the final aim to estimate the outcome of the po-

litical event under consideration. This makes IOM-NN a suitable tool to support,

enhance or even replace opinion polls, since it can capture the opinion of a larger

number of people more quickly and at a lower cost, by providing relevant insights

9

10

useful to understand the dynamics of the election campaign. This methodology

follows a semi-supervised iterative approach based on feed-forward neural net-

works for analyzing the posts published by social media users. Starting from a

limited set of classification rules, created from a small subset of hashtags that are

notoriously in favor of specific factions, IOM-NN iteratively generates new clas-

sification rules following a high-confidence pseudo-labeling process. Such rules

allow determining the political leaning of a post based on the words/hashtags it

contains. This information is then used to determine the polarization of social me-

dia users towards a faction, finally estimating the outcome of the political event.

The methodology has been assessed on two case studies analyzing the polariza-

tion of a large number of Twitter users during the 2018 Italian general election

and the 2016 US presidential election. The achieved results are very close to

the real ones, which reveals the high accuracy and effectiveness of the proposed

approach. Moreover, our approach has been compared to the most relevant tech-

niques used in the literature (i.e., NLP-based sentiment analysis [22], adaptive

sentiment analysis [23], emoji-based polarization [24], hashtag-based polariza-

tion [25]), achieving the best accuracy in estimating the polarization of social

media users and forecasting the winning candidate in both binary and multi-class

settings, in which two or more opposing candidates or factions are present.

During the design of IOM-NN, we dealt with some of the issues highlighted

in Section 1.1. Firstly, our technique follows a language-agnostic approach, as

it uses a hashtag-based bag-of-words representation. Thanks to this, language

barrier issues can be overcome, by classifying social posts according to their po-

litical leaning, regardless of the language used to write them. Posts are classified

through a strictly conservative process, in which a high threshold on the polariza-

tion probability is used for minimizing the risk of misclassification. In addition,

random sampling is used to address data imbalance, avoiding the learning process

to be biased toward the most represented candidates and factions. Furthermore,

the statistical significance of the collected data has been evaluated for assessing

the representativeness of users, by understanding whether they can be considered

voters in the political event under analysis.

2.1 Background and related work 11

The remainder of the chapter is organized as follows. Section 2.1 reviews

existing literature on computational politics, discussing more in-depth the main

techniques for analyzing political polarization and predicting election outcomes.

Section 2.2 describes the IOM-NN methodology. Section 2.3 presents the case

studies. Finally, Section 2.4 concludes the chapter.

2.1 Background and related work

According to a recent survey [26], existing literature on computational politics

can be categorized into five classes, as discussed in the following.

Community and user modeling. This class of works focuses on modeling the

behavior of social media users from both an individual and collective viewpoint.

Many works in this category are related to the analysis of homophily, i.e., the

connection of groups of users driven by common interests, which leads to the

formation of community structures of like-minded people [27–29]. Other works

focus on modeling the political affiliation of social users, exploiting community

information for predicting the results of a political event [1, 30, 31].

Information flow. These works investigate how information flows within the

network. Most of them analyze the misinformation spread, trying to detect fake

news thus limiting its distortion effects on public opinion [32–34]. Other works in

this category are also aimed at identifying echo chambers, i.e., situations in which

the repetition and sharing of information cause the strengthening of an opinion

inside a community [35–37].

Political discourse. Works in this category model online discussion from differ-

ent points of view, taking into account demographic aspects, community structure,

and information diffusion patterns. Many works are aimed at extracting the main

topics of discussion through topic modeling [38, 39], or identifying political crisis

[40]. Opinion mining techniques can be also exploited for identifying the opinion

2.1 Background and related work 12

or mood of social media users about those topics, as users’ interactions on social

media can affect their political engagement [41–43].

Election campaigns. Research contributions in this class are aimed at measur-

ing the engagement of the online audience, enabling large-scale opinion polls and

the management of the political campaign. In fact, social media provide an ef-

fective platform for engaging users in political discussion, which is often used

by politicians during political campaigns [44, 45]. Moreover, the analysis of the

political engagement of social users can accurately forecast the final results of the

political event under analysis [1, 46].

System design. Works in this category propose a full system design of compu-

tation politics systems. As an example, Cambre et al. [47] propose a system

design that can help to break the echo chamber effect, moderating the online po-

litical discussion, while Dade et al. [48] discuss the relationship between political

processes, urban environments, and situated technologies.

Focusing on those techniques aimed at estimating political consensus and pre-

dicting election outcomes, the following taxonomy can be individuated [17, 49].

Volume-based. These techniques basically count the number of mentions (e.g.,

posts, likes, retweets) related to a candidate/party for predicting the election re-

sults. In many cases, such techniques analyze social media data for predicting the

outcome of an election. For example, Gaurav et al. [50] proposed a technique

based on moving average aggregate probability, which infers the results of an

election by counting how many times a candidate’s name is mentioned in tweets.

Tumasjan et al. [51] used micro-blogging data for understanding how people ex-

press their political orientation, showing a high closeness between the volume of

tweets mentioning a party and the election results. Burnap et al. [52] analyzed

the volume of mentions for calculating an overall score for each party.

2.1 Background and related work 13

Network-based. These techniques analyze the social network structure, which

is often visualized through graphs or sociograms, to analyze the dynamics of pub-

lic opinion. Relationships and interactions between social media users can pro-

vide useful insights for estimating the standing of political events or identifying

the opinion leaders on a social media platform [53]. As an example, some studies

have demonstrated a relationship between the centrality of political candidates on

social networks and their electoral consensus [54, 55].

Sentiment- and opinion-based. These techniques are more advanced than those

based on volume, as they consider the opinion of social users and their collective

sentiment towards political candidates or parties. In particular, such techniques

rely on natural language processing (NLP) and text mining algorithms for ana-

lyzing social media posts, extracting the semantic content and the hierarchical

structure of the text.

Text mining-based techniques discover the sentiment of a text by consider-

ing only the words it contains without analyzing its structure. For example, El

Alaoui et al. [23] proposed an adaptive sentiment analysis approach that generates

dictionaries from tweets classified as positive/negative for the different factions.

Such dictionaries are then used to calculate a score for each faction. Marozzo

and Bessi [25] proposed a methodology that exploits the keywords contained in

tweets for calculating the polarization of social media users and news sites during

political campaigns. Chin et al. [24] exploited the emojis contained in a post to

determine its sentiment (i.e., positive or negative). Other studies exploited ma-

chine learning techniques for discovering the political orientation of users, such

as the Naive Bayes algorithm [56], or logistic regression [57].

NLP-based works go beyond the mere syntactic context of the text, explor-

ing its semantics with the final aim of understanding its meaning and sentiment.

Oikonomou et al. [22] used Textblob1, a Python library for natural language

processing, to predict the outcome of the US presidential election in three states

of interest (i.e., Florida, Ohio and North Carolina). Wong et al. exploited [58]

1https://textblob.readthedocs.io/en/dev/

2.2 Proposed methodology: IOM-NN 14

SentiStrength2, a lexicon-based sentiment analysis tool, for modeling the political

behaviors of users by analyzing tweets and retweets. Alashri et al. [59] analyzed

Facebook posts about the 2016 US presidential election with CoreNLP3 [60], one

of the most popular tools for natural language processing, to examine the dy-

namics between candidate posts and comments they received on Facebook and

calculate a score for each political candidate for measuring his/her credibility on

a given issue. Singh et al. [61] carried out a comparison among four machine and

deep learning algorithms (i.e., TextBlob, Naive Bayes, SVM, and BERT [15])

for sentiment analysis. The authors used the 2020 US presidential election as a

case study, finding that the use of BERT, a transformer-based language represen-

tation model, leads to the best results. This is in line with the recent tendency in

many fields of NLP to leverage huge pre-trained language representation models

for a specific downstream task, via transfer learning. These models are often also

fine-tuned, to readapt pre-trained features to work better with task-specific data.

2.2 Proposed methodology: IOM-NN

IOM-NN is a semi-supervised methodology that relies on neural networks to

perform an iterative process aimed at estimating the polarization of public opinion

during a political event characterized by the rivalry of different factions.

Collection of

posts

Classification of
posts

Classified

posts

Collected

posts Polarization of

users

Classified

users

Classified

posts

Figure 2.1: Main steps of IOM-NN.

2http://sentistrength.wlv.ac.uk/
3https://stanfordnlp.github.io/CoreNLP/

2.2 Proposed methodology: IOM-NN 15

As shown in Figure 2.1, the proposed methodology consists of three main steps:

1. Collection of posts: posts are collected by using a set of keywords related

to the selected political event (see Section 2.2.1).

2. Classification of posts: the collected posts are classified in a semi-supervised

way, through an incremental procedure implemented by a feed-forward neu-

ral network (see Section 2.2.2).

3. Polarization of users: the classified posts are analyzed for determining the

political polarization of users towards a faction, finally estimating the out-

come of the political event (see Section 2.2.3).

For each step, a formal description and practical examples are provided in the

following sections. For the sake of clarity, Table 2.1 reports the meaning of the

main symbols used to describe the different steps.

Symbol Meaning

E Political event
F “ t f1, f2, ..., fnu Factions
K “ Kcontext Y K

À

F Context keywords and positive faction keywords
K

À

F “ K
À

f 1 Y ...Y K
À

f n Positive keywords grouped by factions
P All the posts in input
Ci Classified posts at the i-th iteration
Ni Not classified posts at the i-th iteration
Mi Classification model generated at the i-th iteration
C Classified posts
U Polarized users
S Faction score

Table 2.1: Meaning of the most important symbols used in this chapter.

2.2.1 Collection of posts

A political event E is characterized by the rivalry of different factions, repre-

sented as the set F “ t f1, f2, . . . , fnu. Examples of political events and relative

factions are iq municipal election, in which a faction supports a mayor candidate;

2.2 Proposed methodology: IOM-NN 16

iiq parliament election, in which a faction supports a party; iiiq presidential elec-

tion, in which a faction supports a presidential candidate. The posts are collected

by using a set K of keywords that people commonly use to refer to the political

event E on social media. The selection of such keywords usually requires a small

amount of domain knowledge, as they can be manually selected among the trend-

ing hashtags related to E, or automatically generated through specific patterns,

like “#vote + candidate”, often used for labeling politically polarized posts. The

keywords in K can be divided into two groups:

• Context keywords, Kcontext , i.e., generic keywords that can be associated to

E without referring to any specific faction in F .

• Positive faction keywords, K
À

F “ K
À

f 1 Y ...Y K
À

f n , where K
À

f i contains the

keywords used for supporting fi P F .

The keywords in K are given as input to public APIs provided by social media

platforms, to collect posts containing one or more keywords. Posts are not col-

lected in real-time, but downloaded at a given time after their publication (e.g., 24

hours). In this way, we are able to get some statistics related to the popularity of

a post (e.g., number of shares, number of likes). Since data collection is usually a

continuous process, new keywords can be discovered and integrated into K during

the collection procedure. It is important to highlight that obtaining a representa-

tive collection of posts depends on two factors: iq the quality and the number of

keywords used; iiq the amount of data that can be downloaded from social media.

Regarding the latter factor, attributable to platform biases, it is increasingly dif-

ficult to obtain complete data from social media platforms due to the restrictions

introduced for protecting the privacy of users.

Collected posts undergo the following preprocessing operations: i) the text

of each post is lowercased and accented characters are normalized; ii) words

are stemmed to reduce morphological variation (e.g., votes or voted ÝÑ vot); iii)

URLs, mentions, and stop-words are removed; iv) frequent bigrams are identified

(e.g., Donald Trump ÝÑ Donald_Trump); v) all the posts written in a language

other than those spoken in the countries hosting the event E are filtered out.

2.2 Proposed methodology: IOM-NN 17

The output of this step is a collection of posts P to be labeled according to

their political leaning in the next one. Figure 2.2 shows an example of how posts

are collected using keywords about the 2016 US presidential election. Some of

these keywords are generic (e.g., #election2016), and others are used to support a

specific candidate (e.g., #voteblue for Clinton and #maga for Trump).

user1: "Vote Hillary to save
America #VoteBlue"

...

KClinton: {#voteblue, ...}

user2: "This is My President!!
#MAGA"

...

KTrump: {#maga, ...}

user3: "Who do you think won
tonight's debate? #election2016"

...

KContext: {#election2016, ...}

Figure 2.2: Example of how the collection of posts step works.

As stated in Section 1.1, the statistical significance of the collected data should

always be evaluated before starting the analysis. In this case, we used a wide range

of information obtained from statistical reports or directly extracted from users’

metadata to study their age, gender, and geographical distribution. The aim is to

assess users’ representativeness by understanding whether they can be considered

voters of the analyzed political event (more details in Sections 2.3.1 and 2.3.2).

2.2.2 Classification of posts

During this step, the posts in the set P are classified in favor of a faction using a

semi-supervised approach. Firstly, they are labeled based on the keywords in K
À

F ,

which represent the initial knowledge that must be given to the algorithm to start

the process. Specifically, posts containing keywords related to exactly one faction

are polarized toward that faction, while the remaining ones are labeled as neutral.

This set of high-confidence labeled data is then gradually expanded through an

iterative classification process, during which the model tries to assign a label to

neutral posts by exploiting the knowledge acquired at the previous iterations.

2.2 Proposed methodology: IOM-NN 18

ALGORITHM 1: Classification of the posts.

Input : Set of posts P, set of positive faction keyword K
À

F , threshold th,
minimum increment ε , maximum number of iterations maxiters

Output: Classified posts C
1 C0 Ð H;

2 M0 Ð textualModel.buildpK
À

F q;
3 for p P P do
4 vb Ð classi f ypM0, pq;
5 if sumpvbq “ 1 then
6 f Ð argmaxpvq;
7 C0 Ð C0 Y xp, f y;

8 C Ð C0;
9 N0 Ð PzC0;

10 for i “ 1; i ă“ maxiters; i ` ` do
11 Ci Ð H;
12 Mi Ð neuralNetwork.trainpCq; // C “ C0 Y . . .YCi´1

13 for p P Ni´1 do
14 vp Ð classi f ypMi, pq;
15 if maxpvpq ą th then
16 f Ð argmaxpvq;
17 Ci Ð Ci Y xp, f y;

18 C Ð C YCi;
19 Ni Ð Ni´1zCi;

20 if |Ci|

|Ni´1|
ă ε _

|Ci|

|Ni´1|
ą 1 ´ ε then

21 break

22 return C

Algorithm 1 shows the pseudo-code used for post-classification, which is divided

into two main parts, described below.

In the first part (lines 1-9), the algorithm performs the initial iteration (iteration

0). Here, it initializes an empty set C0 for storing the classified posts and builds

a classification model M0 based on the positive faction keywords in K
À

F (lines 1-

2). The algorithm iterates (lines 3-7) on each post p in P classifying it using M0,

which produces a vector vb (line 4) such that vbris is 1 if p contains a keyword from

K
À

f i , 0 otherwise. Afterward, if p is in favor of a single faction f (lines 5-6), the

classified post (i.e., a pair xp, f y) is added to C0 (line 7). At the end of iteration 0,

2.2 Proposed methodology: IOM-NN 19

the set of posts classified through K
À

F is assigned to C (line 8), which will be used,

in the subsequent iterations, to store all posts that the model was able to annotate

with high confidence up to that point, according to its current knowledge. The set

of unclassified posts (N0) is obtained as the difference between P and C0 (line 9).

The second part (lines 10-21) iteratively generates new classification rules for

expanding the set of labeled posts, performing at most maxiters iterations. Specif-

ically, at the i-th iteration, the following operations are performed:

- It initializes a set Ci to store the classified posts at i-th iteration (line 11).

- It builds a classification model Mi by training a neural network using the

classified posts at previous iterations, stored in C “ C0 Y . . .YCi´1 (lines

12). The training set is balanced using a random under-sampling approach

to avoid a learning process biased towards the majority classes.

- For each unclassified post at the previous iteration Ni´1 (line 13), the algo-

rithm classifies p using Mi, which produces a vector of softmax probabilities

vp (line 14), where vpris is the probability that p supports fi. If the maxi-

mum value of vp is greater than the given threshold th, the post is assigned

to the most likely faction f and added to Ci (lines 15-17).

- The set of classified posts Ci is added to C, and the remaining unclassified

posts Ni are obtained as difference between Ni´1 and Ci (lines 18-19).

- If the ratio between the size of Ci and Ni´1 is lower than ε or greater than

1 ´ ε (i.e., convergence is reached), or the maximum number of iterations

is exceeded, the algorithm stops iterating and returns the dictionary C, con-

taining all the posts classified at the various iterations (lines 20-22).

The neural networks used in our methodology were implemented using the

framework Keras4 with TensorFlow5 as the back-end engine. These networks are

multilayer perceptrons with one hidden layer that includes 2/3 of the input neu-

rons and a ReLU activation. The choice of using a single hidden layer simplifies
4https://keras.io/
5https://www.tensorflow.org/

2.2 Proposed methodology: IOM-NN 20

the learning process with respect to a deeper network, also limiting the risk of

overfitting. In addition, we used a dropout layer after the fully-connected one,

with a dropout rate fixed at 5%, as a regularization mechanism. Finally, the output

layer has a number of neurons equal to that of the considered candidates/factions,

and a softmax activation to distribute the probability of a post being assigned to

them. The training phase has been carried out using early stopping callbacks to

prevent overfitting, accuracy as the main metric, a batch size of 32, the categorical

cross-entropy loss function, and the optimization algorithm ADAM [62]. In ad-

dition, since the parameters of the neural network are randomly initialized, IOM-

NN repeats the post-classification phase with a new random seed for nseeds times,

in order to get more stable results, by reducing the risk of getting stuck in local

minima. Figure 2.3 shows a graphic representation of how the post-classification

algorithm discussed above works, starting from a set of input posts P and - for

example purposes - converging in three iterations.

Posts	(P)

Iter.	0 M0
Not class. posts

it.0 (N0)

Iter.	1 M1
Not class. posts

it.1 (N1)

Iter.	2 M2
Not class. posts

it.2 (N2)

Class. posts

it.2 (C2)

Output

Input

Class. posts

it.1	(C1)

Class. posts

it.0 (C0)

Class. posts

it.0 (C0)

Class. posts

it.1	(C1)

Class. posts

it.2 (C2)

Not class. posts

it.2 (N2)

Figure 2.3: Representation of the classification of posts algorithm.

2.2 Proposed methodology: IOM-NN 21

At iteration 0, the classification model M0 is created using the faction key-

words K
À

F . This model is used to classify P, which generates two subsets for clas-

sified (C0) and unclassified posts (N0) respectively. At iteration 1, a new model

M1 is trained on C0 and is used to label the unclassified posts from the previous

iteration (N0). The classification process splits N0 into two new subsets: C1 for

high-confidence classified posts and N1 for unclassified ones. Similarly, at itera-

tion 2 the model M2 is trained using C0 YC1, generating the sets C2 and N2. Gen-

eralizing, at the i ´ th iteration, the model Mi is trained using C “ C0 Y . . .YCi´1,

which is used to label posts in Ni´1. Classified posts at this point are added to the

current knowledge (C “ C YCi), which will be used in the next iteration to train

Mi`1 and label Ni. The process iterates until the ratio between the size of Ci and

the size of Ni´1 is lower than ε or greater than 1 ´ ε , i.e., convergence is reached.

In the end, two sets will be available: the whole set of classified posts C, and the

remaining posts (in Figure 2.3, N2), which are classified as neutrals.

It is worth noting that, due to the incremental nature of the annotation process,

IOM-NN is not tied to a specific set of initial faction keywords and does not re-

quire an in-depth knowledge of the political event under consideration. In fact,

even starting from a small but representative set of faction keywords, IOM-NN

is able to iteratively discover new political-oriented topics of discussion and infer

new classification rules. This implies good robustness and generalizability of our

methodology. Moreover, the discovered knowledge increases monotonically iter-

ation by iteration, as posts once classified above the minimum confidence thresh-

old, are added into C permanently. Although this approach ensures the conver-

gence of the algorithm, it entails the risk of confirmation bias, a typical problem

of many semi-supervised schemes. In particular, incorrectly classified posts in the

first iterations could negatively impact the entire learning process. However, the

effects of this issue are alleviated by the use of a high-confidence threshold and by

the re-initialization of the neural network weights between successive iterations,

which regularizes its convergence direction, leading to more robust results with

respect to iterative fine-tuning.

2.2 Proposed methodology: IOM-NN 22

2.2.3 Polarization of users

This step aims to analyze the set of previously classified posts to determine

users’ polarization toward a faction. Algorithm 2 shows the pseudo-code used in

this step, which takes as input a collection of classified posts C (i.e., the output

of Algorithm 1), a filtering function f ilter and its parameters par f , and a polar-

ization function polarize and its parameters parp. The output is composed of a

collection of classified users U and a faction score S containing the overall polar-

ization percentages for each faction.

ALGORITHM 2: Prediction of user polarization.
Input : Classified posts C, filtering function f ilter, filtering function parameters

par f , polarization function polarize, polarization function parameters
parp.

Output: Classified users U , faction score S
1 CU Ð aggregateByUserpCq;
2 U Ð H;
3 S Ð H;
4 for xu,Puy P CU do
5 if f ilterpxu,Puy, par f q then
6 vu

s Ð polarizepPu, parpq;
7 U Ð U Y xu,vu

s y;

8 for xu,vu
s y P U do

9 S Ð S ` vu
s ;

10 S Ð S{sumpSq;
11 return U,S

As a first step, the classified posts are aggregated by user to produce a dictio-

nary (CU), which contains the list of classified posts Pu for each user u (line 1).

Two empty variables are initialized for storing the output (lines 2-3). On each pair

xu,Puy of CU , the algorithm performs the following operations (lines 4-7):

- It filters out all the pairs that do not match the criteria defined by the f ilter

function (line 5). For example, users who published a number of posts

below a given threshold are skipped.

- Using the classified posts Pu, it computes vu
s a vector containing the score of

2.2 Proposed methodology: IOM-NN 23

user u for each faction (line 6). The score vector is calculated by using the

function polarize.

- It adds the pair xu,vu
s y to U (line 7).

Then, the algorithm calculates the overall faction score S as the normalized

sum of the user vector scores vu
s (lines 8-10). Finally, the two outputs are returned

(line 11). The filter and polarize functions that we used in the experimental eval-

uation (see Section 2.3), were configured as follows.

• filter: a user u is considered only if he/she fulfills the following criteria: iq

u posted at least minPosts on the political event of interest; iiq there exists

a faction f for which u has published more than 2/3 of his/her posts. This

last condition entails that more than half of the posts published by u were

devoted to his/her preferred faction.

• polarize: for each user u, the vector score vu
s contains, in position f (i.e., the

preferred faction), the percentage of posts written in favor of it, 0 otherwise.

Figure 2.4 shows how the user polarization step is performed on a set of seven

example posts, published by four different users and classified by Algorithm 1.

2 0 2/2 0

0 1 0 1/1

0 2

2/2 02 0

2 1

Clinton Trump
Overall contribution
for each candidate

(cellwise sum)
Final estimates
(normalization)

0 2/2} Clinton Trump

2/3 1/3
Clinton Trump

Clinton Trump

Figure 2.4: Representation of the user polarization algorithm.

For each user, the posts in favor of Clinton and Trump are counted, discarding

those users who have published less than two tweets. Then, the polarization vector

for each user is computed containing the percentage of posts published in favor

of his/her preferred faction. Lastly, the final score vector S is determined, which

contains the overall polarization percentages for the two candidates.

2.3 Case studies 24

2.3 Case studies

In this section, we describe and analyze two case studies: the 2018 Italian gen-

eral election and the 2016 US presidential election. In both case studies, for each

faction fi we defined three sets of keywords K
À

f i , K
Á

f i and K⃝
f i that are respectively

positive, negative, and neutral keywords for faction fi. For example, for the Movi-

mento 5 Stelle (M5S) faction in the 2018 Italian general election, K
À

M5S contains

keywords used to clearly support M5S party (e.g., #iovotoM5S), K
Á

M5S contains

keywords to speak negatively about M5S (e.g., #maiM5S), K⃝
M5S contains neutral

keywords for M5S (e.g., m5s or movimento5stelle).

As described in Section 2.2, IOM-NN exploits only positive faction keywords

(K
À

fi) for classifying posts and then for determining the polarization of users. For

evaluating the accuracy of IOM-NN, we carried out an extensive comparison with

the most relevant techniques used in the literature:

1. NLP-based sentiment analysis [22][59]. For each post, we used CoreNLP

for calculating a sentiment score that ranges from 0 (very negative) to 4

(very positive). The neutral keywords (K⃝
f i) are then used for grouping

posts and calculating an overall score for each faction.

2. Adaptive sentiment analysis [23]. Starting from the positive and negative

keywords of each faction (K
À

f i and K
Á

f i), this technique generates two word-

polarity dictionaries, which are built from a set of posts containing such

positive and negative keywords. Finally, a score for each faction is returned.

3. Emoji-based polarization [24]. This technique groups the posts of each

faction by using keywords (K⃝
f i), then classifies their sentiment by using

emojis and returns a score for each faction.

4. Hashtag-based polarization [25]. The posts are classified as in favor of a

given faction based on the positive faction keywords (K
À

f i). Then the posts

are aggregated by user and the polarization of each user is computed, from

which the overall faction scores are determined.

2.3 Case studies 25

To allow a direct comparison with the real percentages, the results obtained by

the different techniques have been normalized with respect to the sum of the real

ones.

2.3.1 2018 Italian general election

Here we discuss the case study carried out to analyze the polarization of a

large number of Twitter users during the 2018 Italian general election. Italians

voted to elect 630 deputies and 315 senators of the XVIII legislature. The results

decreed the center-right coalition as the most voted, with about 37% of votes,

while the most voted list was the Movimento 5 Stelle, which received over 32%

of votes. The electorate was composed of 50,782,650 voters for the Chamber of

Deputies and 46,663,202 for the Senate6, with a turnout of about 73%, the lowest

in Italian republican history. The analysis we carried out focused on the four most

successful political factions, in decreasing order of consensus: M5S (Movimento

5 Stelle), PD (Partito Democratico), LEGA, FI (Forza Italia). In the following,

we show how the classification model has been trained, discussing also the main

achieved results.

Models training and iteration-level results

IOM-NN was leveraged to classify 60,782 tweets posted by 21,883 users from

February 1, 2018 to March 3, 2018 (i.e., the day before the election). We assessed

the statistical significance of the data involved in the analysis as follows.

• All the tweets under analysis have been written in Italian, which means they

have the lang field set to it (Italian). With very few exceptions, the Italian

language is used only by Italian people who reside in Italy or abroad7.

• 92% of the users who set a location in their profile specified a region in

Italy. Moreover, there is a strong correlation between the number of users

6http://www.interno.gov.it/it/notizie/elezioni-2018-come-vota-corpo-elettorale-tessera-
elettorale (in Italian)

7https://en.wikipedia.org/wiki/Italian_language

2.3 Case studies 26

that can be assigned to a region and the number of people actually living in

that region according to official statistics (the Pearson correlation coefficient

R is equal to 0.8, significant for p ´ value ă 0.01).

• About 98% of the Italian social media users are adults and equally divided

by gender (51.2 females and 48.8 males)8.

We used the following positive faction keywords for analyzing the collected data:

• K
À

M5S={#iovotom5s,#m5salgoverno,#dimaiopresidente}

• K
À

PD={#sceglipd,#iovotopd,#pdvinci}

• K
À

LEGA={#4marzovotolega,#iovotolega,#salvinipremier}

• K
À

FI ={#berlusconipresidente,#votoforzaitalia, #4marzovotoforzaitalia}

The threshold th and the minimum increment ε have been set to 0.9 and 5%

respectively. In our test, the post-classification algorithm terminated in 4 iterations

by annotating 23,997 tweets, which represents about 39.5% of the total. Table 2.2

shows the obtained results at each iteration by specifying the number of classified

and unclassified tweets, the ratio |Ci|

|Ni´1|
and the accuracy of the neural network.

Iteration Tweet
input

Classified
(Ci)

Not classified
(Ni)

Perc. of
class. tweets

|Ci|
|Ni´1|

Accuracy

0 60,782 3,072 57,710 5.1% 5.1% -
1 57,710 14,676 43,034 24.1% 25.4% 0.916
2 43,034 4,677 38,357 7.7% 10.9% 0.990
3 38,357 1,572 36,785 2.6% 4.1% 0.992

Total 60,782 23,997 36,785 39.5% - -

Table 2.2: Partial results for each iteration achieved by IOM-NN (2018 Italian
general election).

8https://wearesocial.com/it/digital-2019-italia

2.3 Case studies 27

Polarization of users and final results

The algorithm described in Section 2.2.3 has been used for analyzing the users

who have written the 23,997 classified tweets so as to determine their polarization

degree towards the considered factions. The main achieved results are summa-

rized in Table 2.3.

Tweets Users M5S% PD% LEGA% FI% LogAcc MAPE MAE

Real percentages - - 32.68 18.72 17.37 14.01 - -
Averages of opinion polls - «1,000 28.10 22.80 13.40 16.40 0.81 0.19 3.74
IOM-NN 23,997 9,942 31.64 19.89 18.45 12.80 0.94 0.06 1.13
NLP-based sent. analysis 25,299 - 20.84 30.69 13.26 17.99 0.63 0.38 7.98
Adaptive sent. analysis 53,488 - 21.67 18.28 21.30 21.53 0.73 0.28 5.72
Emoji-based polarization 234 - 32.25 13.76 23.20 13.57 0.84 0.16 2.92
Hashtag-based polarization 3,053 1,589 21.03 28.78 6.70 26.28 0.39 0.60 11.16

Table 2.3: Obtained percentages and accuracy evaluation (2018 Italian general
election).

The first three rows show a comparison between the official results, the aver-

age of the latest polls, and the percentages obtained by IOM-NN. We evaluated the

accuracy through different statistical indexes, comparing the obtained results with

the latest opinion polls published before the elections. Considering the four most

supported parties, our methodology obtained the following approval percentages:

M5S 31.64%, PD 19.89%, LEGA 18.45%, and FI 12.80%. These results are ex-

tremely close to the real ones (i.e., M5S 32.68%, PD 18.72%, LEGA 17.37%,

FI 14.01%), even more than the average of polls. The obtained results are also

characterized by a quite good log accuracy ratio (LogAcc), as well as a negligible

value of mean percentage and absolute errors (MAPE and MAE). In particular, we

achieved a mean average error of 1.13 percentage points and a log accuracy ratio

very close to 1, while opinion polls achieved an MAE of 3.74 percentage points

and a LogAcc of 0.81. This confirms the ability of the proposed methodology to

correctly detect the political polarization of public opinion, correctly forecasting

election results. For the sake of completeness, Figure 2.5 shows an infographic

about the comparison of the real percentages, opinions polls, and obtained results.

2.3 Case studies 28

50,782,650 ≈1,0009,942 23,997

M5S PD LEGA FORZAITALIA

C
on

se
ns

us
 p

er
ce

nt
ag

e

0

10

20

30

40

Real percentages IOM-NN Average Polls

Figure 2.5: Comparison among real percentages, opinions polls, and IOM-NN
results (2018 Italian general election).

Table 2.3 also presents the results obtained by the other techniques in the liter-

ature (rows 4-7). These techniques have been configured with the positive faction

hashtags used by IOM-NN (see K
À

M5S, K
À

PD, K
À

LEGA and K
À

FI) and the following

negative and neutral faction keywords:

• K
Á

M5S={#nom5stelle, #rimborsopolim5s, #maim5s},

K⃝
M5S={m5s, movimento5stelle, dimaio}

• K
Á

PD={#nonvotopd, #maipd, #bastapd},

K⃝
PD={pd, partitodemocratico, renzi}

• K
Á

LEGA={#maiconsalvini, #iononvotolega},

K⃝
LEGA={lega, salvini, leganord}

• K
Á

FI ={#maipiuberlusconi, #stopberlusconi},

K⃝
FI= {forzaitalia, berlusconi}

Compared to such techniques, IOM-NN turned out to be the most accurate

in estimating the voting percentages, outperforming the competitors in terms of

achieved LogAcc, MAPE, and MAE. Specifically, we found out what follows.

2.3 Case studies 29

Compared to emoji- and hashtag-based techniques, IOM-NN was able to clas-

sify a much greater number of tweets and users, which ensures greater statistical

representativeness of data and robustness of results. In particular, emoji-based

techniques are strictly tied to the presence of emojis, which imposes a huge limit

on the data considered in the analysis process. A similar issue affects hashtag-

based methods, which can only analyze posts containing keywords from a prede-

fined set. IOM-NN, due to its semi-supervised incremental nature, can leverage all

the annotations from an initial set of keywords to gradually expand its knowledge

by labeling new data iteratively, finally converging to a better solution.

Compared to sentiment analysis techniques (i.e., NLP-based and adaptive sen-

timent analysis), IOM-NN was able to achieve better results as it is not volume-

based. Our methodology, in fact, is not influenced by users who published a large

number of posts, as the overall polarization percentages are not directly computed

from them. Instead, like opinion-based techniques, IOM-NN leverages all posts

published by a user to estimate his/her degree of political polarization, i.e. his/her

normalized contribution to the final percentages. Finally, the overall polarization

percentages for each faction are obtained from all these contributions.

2.3.2 2016 US presidential election

After the presentation of the Italian use case, here we discuss the analysis

we carried out on the 2016 US presidential election, which was characterized by

the rivalry between Hillary Clinton and Donald Trump. The analysis has been

performed on data collected for ten US Swing States: Colorado, Florida, Iowa,

Michigan, Ohio, New Hampshire, North Carolina, Pennsylvania, Virginia, and

Wisconsin. Swing states are those characterized by greater political uncertainty,

in which neither major political party holds a lock on the outcome of presidential

elections. These states are considered of strategic importance, as their votes have

a high probability of being the deciding factor in a presidential election. For each

state, data have been collected through the standard Search Twitter API, which

allows for collecting tweets published in a given area or place. Overall about 2.5

million tweets, posted by 521,291 users, have been collected from October 10,

2.3 Case studies 30

2016, to November 7, 2016 (i.e., the day before the election). From such data, we

filtered out all the tweets posted by users with a not defined or inconsistent location

or with a location that does not belong to any of the considered states. Filtered

data (818,403 tweets posted by 141,959 users) were statistically representative

since:

• All the tweets under analysis had the lang field set to en (English).

• For each state, we calculated a strong linear correlation between the number

of analyzed users and the number of people actually living in that state that

belong to the voting-eligible population, according to official statistics (we

obtained a linear correlation R “ 0.95, significant for p ă 0.01).

• About 94% of the social media users in the USA are adults (at least 18

years old) and almost equally divided by gender (42.7% females and 57.3%

males)9.

The following keywords have been used in our experiments:

• K
À

Clinton={#voteHillary, #imwithher, #strongertogether, #hillary2016},

K
Á

Clinton={#neverhillary, #lockherup},

K⃝
Clinton={clinton, hillary, democrats, dems}

• K
À

Trump={#voteTrump, #maga, #americafirst, #wakeupamerica},

K
Á

Trump={#nevertrump, #dumpfortrump} ,

K⃝
Trump={trump, donald, republicans, gop}

Table 2.4 shows the results obtained using IOM-NN in comparison with the

real voting percentages, the main opinion polls, and the other related techniques.

For each state in the table, we reported the results obtained by the two candidates,

where “C” stands for Clinton and “T” for Trump. In addition, when the winning

candidate is correctly identified, the percentage is written in bold.

9https://www.statista.com/statistics/376128/facebook-global-user-age-distribution/

2.3 Case studies 31

Real
percentages

Average of
opinion polls IOM-NN NLP-based

sent. analysis
Adaptive

sent. analysis
Emoji-based
polarization

Hashtag-based
polarizationState C T C T C T C T C T C T C T

Colorado 48.2 43.3 43.3 40.4 53.3 38.2 49.1 42.4 45.4 46.1 52.1 39.4 49.9 41.7
Florida 47.8 49.0 46.4 46.6 49.9 46.9 46.1 50.7 49.3 47.5 49.3 47.5 48.4 48.4
Iowa 41.7 51.1 41.3 44.3 44.6 48.2 49.5 43.3 47.0 45.8 46.9 45.9 42.0 50.8
Michigan 47.3 47.5 45.4 42.0 43.5 51.4 49.8 45.0 47.5 47.3 48.2 46.6 38.1 56.7
New Hamp. 47.0 46.6 43.3 42.7 49.0 44.6 48.2 45.4 45.6 48.0 44.0 49.6 45.5 48.1
North Car. 46.2 49.8 46.4 46.4 47.8 48.2 50.6 45.4 49.2 46.8 48.7 47.3 40.7 55.3
Ohio 43.6 51.7 42.3 45.8 46.9 48.4 51.3 44.0 48.4 46.9 50.9 44.4 42.6 52.7
Pennsylvania 47.9 48.6 46.2 44.3 54.9 41.6 50.3 46.2 48.1 48.4 54.4 42.1 50.2 46.3
Virginia 49.8 44.4 47.3 42.3 53.2 41.0 49.0 45.2 46.3 47.9 48.2 46.0 45.1 49.1
Wisconsin 46.5 47.2 46.8 40.3 45.8 47.9 48.5 45.2 47.4 46.3 49.8 43.9 40.8 52.9

Correctly pred. - 6/10 8/10 4/10 1/10 2/10 6/10
Tweets - - 718,425 775,277 818,403 23,937 409,146
Users - «10,000 125,891 - - - 78,430
Mean LogAcc - 0.97 0.93 0.93 0.95 0.93 0.93
Mean MAPE - 0.03 0.07 0.07 0.05 0.07 0.07
Mean MAE - 1.57 3.19 3.21 2.37 3.48 3.25

Table 2.4: Obtained percentages and accuracy evaluation on the 2016 US presi-
dential election dataset.

Firstly, IOM-NN was able to correctly identify the winning candidate in 8

out of 10 cases, outperforming the opinion polls that correctly classifies 6 out of

10 states. This result is also represented in Figure 2.6, in which the Democratic

Donkey symbolizes the party of Hillary Clinton, while the Republican Elephant

that of Donald Trump.

Real

IOM-NN

Opinion polls

North
Carolina

New
Hampshire

VirginiaIowa OhioFloridaColorado Pennsylvania WisconsinMichigan

Figure 2.6: Comparison among the real winning candidate and that identified by
IOM-NN and opinions polls.

Also in comparison with the other techniques, IOM-NN turned out to be the

most accurate in predicting the winning candidate. In particular, emoji- and

hashtag-based techniques classified a much smaller amount of tweets and cor-

rectly identified the winning candidate in 6 and 3 cases respectively. Moreover,

the results of the adaptive sentiment analysis were very poor, with only one cor-

2.4 Conclusions 32

rect prediction, while the NLP-based technique produced correct predictions in 4

out of 10 cases. It is worth noting that, compared to IOM-NN, some techniques

(i.e., adaptive sentiment analysis and opinion polls) achieved slightly better re-

sults in terms of log accuracy ratio, MAPE, and MAE, because their predictions

are quite balanced by assigning almost the same score to the two candidates in

the different states. However, as for the adaptive sentiment analysis, this behavior

may be a symptom of higher model uncertainty, which leads to lower forecasting

accuracy. In general, it is better to correctly forecast the winning candidate, even

with a gap greater than the real one, than to shorten the distances by reversing

the predicted polarity, which can be a crucial issue while analyzing these kinds of

states characterized by a high degree of uncertainty.

2.4 Conclusions

This chapter discussed IOM-NN, a semi-supervised methodology that lever-

ages an iterative approach based on feed-forward neural networks to estimate the

political polarization of public opinion on social media platforms during a politi-

cal event of interest. We evaluated its effectiveness in two case studies analyzing

the polarization of a large number of Twitter users during the 2018 Italian general

election and the 2016 US presidential election. It produced quite good estimates,

very close to the real voting percentages, outperforming the opinion polls and the

most relevant techniques used in the literature in terms of forecasting accuracy.

Our methodology can therefore be seen as a suitable alternative to empower

or even replace traditional opinion polls, by providing relevant insights useful to

understand the dynamics of the election campaign. Indeed, it can capture the

opinion of a larger number of people more quickly and at a lower cost, also for

topics perceived as embarrassing or offensive, for which people are reluctant to

declare their true opinion during the polls. An open-source implementation of

IOM-NN is available on Github10.

10https://github.com/SCAlabUnical/IOM-NN

https://github.com/SCAlabUnical/IOM-NN

2.4 Conclusions 33

In future work, we can adapt our methodology to process real-time data, also

coming from different sources (e.g, e-commerce and news sites blogs). More-

over, its effectiveness can also be evaluated in different scenarios, other than the

political one, such as assessing the reputation of companies and analyzing prod-

uct adoption. In fact, IOM-NN can be easily generalized to different use cases,

as it is not tied to any specific application domain, and only relies on the repre-

sentativeness of the analyzed posts. Furthermore, we can integrate it with other

techniques, introducing new steps to improve the quality of the achieved results

and the understanding of the analyzed political phenomena. As an example, a

hashtag recommendation model can be used for enriching the information content

of the analyzed data, since keyword-based approaches like IOM-NN are strongly

dependent on the availability of consistent hashtags in social media posts [9]. In

the next chapter, we will show how IOM-NN can be integrated with emotion

analysis, topic discovery, and temporal analysis, with the final aim of outlining an

accurate representation of a political event from different points of view, through

a unified analysis workflow.

Chapter 3
Analyzing voter behavior on social
media: the case of the 2020 US
presidential election

In the previous chapter, we presented IOM-NN (Iterative Opinion Mining us-

ing Neural Networks), a semi-supervised methodology that leverages an iterative

approach based on feed-forward neural networks to estimate the political polar-

ization of public opinion on social media platforms during a political event of

interest. In this chapter, we show how IOM-NN can be integrated with other

techniques to go beyond opinion mining with the ultimate goal of broadening the

understanding of the analyzed political phenomenon, outlining an accurate repre-

sentation from different viewpoints through a unified analysis workflow. We de-

signed such workflow in [8], by jointly applying topic discovery, opinion mining,

and emotion analysis techniques on social data related to the 2020 US presidential

election, characterized by the rivalry between Donald Trump and Joe Biden.

We extracted the main discussion topics characterizing the 2020 US election

campaign by leveraging the unsupervised approach proposed in [9], which relies

on the density-based clustering of the latent representation of trending hashtags.

Afterward, we studied the weekly evolution of the detected topics, which is useful

to understand how online discussion evolves over time.

34

35

We also leveraged IOM-NN to understand which candidate or party public

opinion is most in favor of in the weeks preceding the election day. Differently

from the use cases presented in the previous chapter, here we analyzed real-time

data produced on Twitter during the 2020 US election campaign, correctly deter-

mining Joe Biden’s lead over Donald Trump before election day. The achieved

results, publicly available through our university web portal1, represent a remark-

able step forward with respect to previous works present in the literature. In fact,

to the best of our knowledge, experimental evaluations are carried out ex-post, i.e.,

after the end of the considered event, while in our case we have given proof of the

real-time effectiveness of IOM-NN, which leads to the possibility of using it to

empower or even replace traditional opinion polls. The polarization analysis was

further extended by focusing on the main swing states, i.e., those states charac-

terized by a high uncertainty about the winning candidate and for this reason by

marked strategic importance. The obtained results confirm the great effectiveness

of our approach, which outperformed the average of the latest opinion polls by

correctly identifying the leading candidate in 10 out of 11 swing states. Further-

more, the polarization information achieved by IOM-NN was also leveraged to

investigate the temporal dynamics of social media conversation, with the aim of

studying how users’ publishing behavior is related to their political leaning, and

how it reflected the occurrence of external events like debates or rallies.

Finally, we analyzed the relationship between the emotional sphere of Twitter

users and their political alignment. In particular, we exploited sentiment analy-

sis and text mining techniques for extracting the sentiment of social users. Then,

we combined this information with the polarization achieved by IOM-NN to in-

vestigate how users express their preferences on social media, by modeling their

political leaning with respect to a broad spectrum of emotions. Specifically, they

can praise, as in the case of pro-Trump users, their favorite candidate with positive

content that shows emotions like joy and confidence. Alternatively, they may tend

to discredit the opposing candidate, as in the case of pro-Biden users, by produc-

ing negative online content characterized by emotions like anger and sadness.
1https://www2.unical.it/portale/portaltemplates/view/view.cfm?103993 (text

in Italian)

https://www2.unical.it/portale/portaltemplates/view/view.cfm?103993

3.1 Analysis workflow 36

The remainder of the chapter is organized as follows. Section 3.1 describes

the different techniques combined in the proposed analysis workflow. Section 3.2

presents the use case, providing an in-depth discussion of the achieved results.

Finally, Section 3.3 concludes the chapter.

3.1 Analysis workflow

The workflow we designed, shown in Figure 3.1, combines several techniques,

with the aim of outlining an accurate representation of the analyzed political event

from different perspectives, including users’ publishing behavior, discussion top-

ics, political alignment, and its relationships with the emotional sphere.

Collection of

posts

Classification of
posts

Classified

posts

Collected

posts Polarization of

users

Classified

users

Emotion

analysis

Topic

discovery

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70
-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

Temporal
analysis

Figure 3.1: A graphic representation of the analysis workflow.

This workflow extends the one shown in the previous chapter (see Figure 2.1)

by adding to IOM-NN three additional steps for the analysis of discussion topics,

temporal dynamics, and user emotions, from a political perspective. In particular,

its first three steps jointly constitute the IOM-NN methodology:

• Collection of posts: data are gathered from social media by using a set of

keywords related to the considered political event.

3.1 Analysis workflow 37

• Classification of posts: the collected posts are classified in favor of a faction

according to the detected political support.

• Polarization of users: the classified posts are analyzed for determining the

polarization of users towards a faction.

The other steps, instead, make up the proposed extension and are presented in

the following.

Topic discovery. In this step, the posts collected by IOM-NN (see Section 2.2.1)

are used to identify the main politically-related discussion topics underlying the

2020 US election campaign on social media, by following the unsupervised ap-

proach we proposed in [9]. As a first step, a Word2Vec model is trained on the

entire corpus of tweets, to get the latent representation of hashtags and words in a

150-dimensional embedding space. We selected the dimensionality of this space

by conducting several experiments, finding out the smallest size for which a clear

clustering structure emerged, i.e. the best trade-off between complexity and rep-

resentativeness. Subsequently, all hashtags are embedded in this 150-dimensional

space, whose dimensionality is then reduced by using the t-distributed stochastic

neighbor embedding (t-SNE) technique, initialized through principal component

analysis (PCA), to obtain a 2D projection of that space. Moreover, in order to

reduce noise, all hashtags with a frequency lower than a given threshold are fil-

tered out. Dimensionality reduction and noise filtering reduction bring a twofold

benefit, making both the identification of the clustering structure within the em-

bedding space and its visualization easier. Finally, the OPTICS algorithm is used

for extracting the clustering structure originating from the topic-based separation

of hashtags, induced by the projection of their semantic distribution. We have

chosen this clustering algorithm due to its ability to discover clusters with arbi-

trary shapes at a selected density level, chosen against a reachability distance plot,

which is useful to deal with hierarchical topic structures. We also experimented

with the use of the HDBSCAN algorithm to deal with multi-density scenarios,

analyzing micro-topics at different density levels.

3.1 Analysis workflow 38

Temporal analysis. In this step we leverage the posts classified by IOM-NN

according to the detected political support (see Section 2.2.2), for investigating

the relationship between users’ publishing behavior and their political alignment.

Specifically, temporal dynamics of social media conversation are analyzed, study-

ing how online content is produced by the supporters of both candidates, and how

this reflects the occurrence of external events such as debates and rallies.

Emotion analysis. In this step, we exploited the user classified by IOM-NN ac-

cording to their political polarization (see Section 2.2.3), with the aim of modeling

political support from an emotional viewpoint. In particular, we combined user

polarization with the overall sentiment and emotions they expressed while talking

about the two candidates. In order to extract the sentiment from online published

content, we exploited SentiStrength [63], computing a positive Sc`ppq and neg-

ative Sc´ppq sentiment score, both ranging between 1 (neutral) and 5 (strongly

positive/negative). Then, the overall sentiment score Scppq of a polarized post was

obtained as follows: Scppq “ Sc`ppq ´ Sc´ppq. For detecting the emotions ex-

pressed by social users, instead, we used NRC-EmoLex [64], a publicly available

emotion lexicon that has proven its performance in several sentiment and emotion

classification tasks [65–67]. Specifically, NRC contains more than 14 thousand

English terms labeled by the expressed polarity (i.e., positive or negative) and

the eight basic emotion categories of Plutchik [68] (i.e., joy, trust, anticipation,

sadness, surprise, disgust, fear, and anger). Through the joint use of the politi-

cal leaning of users, provided by IOM-NN, and the extraction of sentiment and

emotions from the contents they publish, it is possible to understand how users, in

favor of a given faction, refer to the different candidates. Specifically, it is possible

to investigate whether they follow a positive approach, supporting their preferred

candidate, or proceed by discrediting the opposing candidate, showing a negative

emotional profile.

3.2 Results and discussion 39

3.2 Results and discussion

In this section, we provide an accurate description of the results coming from

the analysis of the 2020 US presidential campaign, characterized by a strong ri-

valry between Joe Biden and Donald Trump. In particular, we analyzed election-

related tweets with the aim of outlining a precise representation of this political

event from different points of view, in terms of users’ publishing behavior, senti-

ment, political alignment, and discussion topics. For this purpose, we combined

several techniques in an analysis workflow, whose steps are accurately described

in Section 3.1 and whose results are reported in the following sections.

3.2.1 Data description

The data used to perform the experimental evaluation comes from a public

repository that contains a real-time collection of tweets related to the 2020 US

presidential election from December 2019 to June 2021 [69]. From such reposi-

tory we considered only the tweets published close to the election event (from 1

September to 31 October 2020), i.e., about 160 million of which 18 million are

tweets (11%), 110 million are retweets (69%), and 32 million are replies (20%),

posted by about 29 million users. Only 22% of filtered data contain hashtags (e.g.,

#trump2020, #bidenharris2020), useful to understand the arguments used in fa-

vor of the different candidates. In particular, the percentage of tweets published

with at least one hashtag related to Trump (i.e., #trump, #trump2020, and #maga)

and Biden (i.e., #bidenharris2020, #biden) is about 31% and 11%, respectively.

However, 7% of tweets contain at least one negative hashtag about Trump (i.e.,

#trumpknew, #pedotrump, #trumphascovid, #trumptaxreturns), whereas only

1% of tweets contain a negative hashtag for Biden (i.e., #crooked joebiden). In

order to ensure the representativeness of the collected posts, we analyzed users’

account information, filtering out content posted by users that show anomalous

publishing activity or inconsistent profile information. This step allows for mit-

igating the negative effects caused by the presence of content published by new

sites and social bots, which can introduce a heavy bias in social media data [7].

3.2 Results and discussion 40

We further analyzed the publishing behavior of the users in the filtered dataset

of election-related tweets by determining the Complementary Cumulative Density

Function (CCDF) of shared tweets per user. Specifically, given the random vari-

able X representing the number of shared tweets, it is determined by the frequency

of users publishing a number of posts greater than x, i.e. the probability PpX ą xq.

The scatter plot in log-scale shown in Figure 3.2, reveals a highly skewed distribu-

tion, which is a common pattern in social media platforms, with few active users

posting a huge amount of posts and many users posting infrequently or not at all,

the so-called social lurkers.

10−4

10−3

10−2

10−1

100

100 101 102 103

x

P
(X
>

x
)

104

Figure 3.2: Complementary Cumulative Density Function (CCDF) of published
tweets per user.

Statistical significance analysis

As discussed in the previous chapters, the assessment of statistical significance

is a crucial step, especially when analyzing data coming from social media plat-

forms. Here we investigated user representativeness to understand to what extent

they can be considered voters of the political event under analysis.

Firstly, from tweets metadata we extracted aggregate information on the used

language of social media users, discovering that most tweets have the lang field

3.2 Results and discussion 41

set to English (about 90%), whereas the remaining 10% is “undefined” or set to

different languages. Secondly, we compared the number of Twitter users in our

dataset, grouped by state, with the number of adult citizens actually living in that

state, belonging to the voting-eligible population (VEP)2. Specifically, users were

associated with states via Twitter metadata, by analyzing the location field present

in each tweet, which indicates the location defined by the user in his/her Twitter

account (e.g., Austin, TX). It is worth noting that, from the textual analysis of

this field, it is not always easy to extract a meaningful city/state, as many users

either left the field blank, or did not provide precise information (e.g. “USA”), or

specified fictitious or non-existent locations (e.g. “the moon” or “NY, Italy”). We

measured the strength of the relationship between analyzed users and the voting-

eligible population through the Pearson correlation coefficient, finding a value

R “ 0.97, significant for p ă 0.01. This relationship can also be easily seen in Fig-

ure 3.3, which depicts an interpolation of the related scatter plot, with a goodness-

of-fit R2 “ 0.93. Notice that outlier states were not considered in this step in order

to achieve meaningful results, by excluding data of different magnitudes.

0

2,500,000

5,000,000

7,500,000

10,000,000

0 2,000 4,000 6,000 8,000
Users

V
E

P

Figure 3.3: Linear interpolation: analyzed users vs. voting-eligible population
grouped by US states.

2http://www.electproject.org/2020g

3.2 Results and discussion 42

In addition, we explored the age and gender distribution of analyzed users,

finding out that about 94% of them are adults (at least 18 years old)3 and al-

most equally divided by gender (22% females and 25% males)4. Among all the

available tweets, we selected those published by users located in the 11 main

swing states (i.e., Arizona, Florida, Georgia, Michigan, Minnesota, Nevada, New

Hampshire, North Carolina, Pennsylvania, Texas, and Wisconsin). We analyzed

only these states as they are characterized by a marked political uncertainty and

their outcomes have a high probability of being a decisive factor in the electoral

event. We made these data, used in all the subsequent analysis steps, publicly

available on Github5. Table 3.1 reports a comparison between the users we were

able to capture for each swing state and the voting-eligible population.

State #Users #VEP

Arizona 5,692 5,189,000
Florida 16,921 15,551,739
Georgia 5,841 7,383,562
Michigan 8,411 7,550,147
Minnesota 4,596 4,118,462
Nevada 1,156 2,153,915
New Hampshire 1,610 1,079,434
North Carolina 7,245 7,759,051
Pennsylvania 7,040 9,781,976
Texas 19,119 18,784,280
Wisconsin 3,898 4,368,530

Table 3.1: Number of Twitter users vs. voting-eligible population grouped by
swing states.

In conclusion, the high correlation between the number of analyzed users per

state and the VEP leads to a significant set of social media data, effectively ex-

ploitable to determine the polarization of public opinion and extract useful insights

on the analyzed political phenomenon. However, despite the representativeness of

the considered posts, the results achieved by the analysis of the online conversa-

3https://www.statista.com/statistics/265647/share-of-us-internet-users-who-use-twitter-by-
age-group/

4https://www.statista.com/statistics/265643/share-of-us-internet-users-who-use-twitter-by-
gender/

5https://github.com/SCAlabUnical/USA2020

https://github.com/SCAlabUnical/USA2020

3.2 Results and discussion 43

tion can be influenced by platform biases. Specifically, there may exist usage

biases due to the distribution of users in terms of gender, age, culture, and so-

cial status, as well as technical biases related to data availability and restrictions

imposed in some areas of the world.

3.2.2 Topic discovery

In this step, we identified the main politically-related discussion topics char-

acterizing the 2020 US election campaign following the approach proposed in [9]

and described in Section 3.1. Achieved results are shown in Figure 3.4, where 6

clusters are clearly visible, each one related to a different topic of discussion, as

discussed in the following.

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70
-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

Cluster#4Cluster#3Cluster#2Cluster#1

Cluster#5 Cluster#6 Noise

Figure 3.4: Unsupervised detection of the main topics underlying the online dis-
cussion.

3.2 Results and discussion 44

The first topic is focused on the criticisms leveled at Donald Trump regarding

the management of the health emergency in the United States caused by the Covid-

19 pandemic. The second one is related to town hall meetings, covering different

topics against Trump like discrimination, veterans, and climate crisis (e.g., he

referred to climate change as a “hoax”, and to veterans as “human scum”). The

third one is a general topic about the presidential election. The fourth topic is

related to the accusations of corruption and wrongdoing in regard to China and

Ukraine leveled against Hunter Biden, i.e., the son of the democratic candidate Joe

Biden. The fifth topic focuses on the nomination of the conservative Amy Coney

Barrett for a seat on the Supreme Court as successor to the liberal Associate Justice

Ruth Bader Ginsburg. Finally, the last topic is related to the online discussion of

Trump’s supporters, characterized by notorious hashtags like #maga and #kag.

Discovered topics are summarized in Table 3.2 by reporting their corresponding

top hashtags.

Cluster ID Topic Top hashtags

#1
Bad management of
Covid-19 emergency

#trumpknew, #trumpvirus, #covid, #trumpisaloser,
#trumpisanationaldisgrace, #trumpliedpeopledied

#2
Town hall meetings;
sub-topics: climate crisis,
veterans, discrimination

#cnntownhall, #climatecrisis, #greennewdeal,
#respectveterans, #hererightmatters, #stoptrumpsterror

#3
Encouraging people
to vote

#election2020, #voteearly, #vote2020, #votebymail,
#voteready, #electionday

#4
Accusations against
Hunter Biden

#hunterbiden, #bidencrimefamily, #burisma, #ukraine,
#hunterbidenemails, #china

#5
US Supreme Court;
nomination of Amy
Coney Barrett

#scotus, #amyconeybarrett, #filltheseat, #supremecourt,
#riprbg, #scotushearings

#6 Support for Trump
#maga, #votetrump2020, #maga2020, #kag,
#voteredtosaveamerica2020, #trumppence2020

Table 3.2: Brief description of the identified topics.

Once the major discussion topics were detected, we analyzed their overall

impact on the online conversation related to the US election. Specifically, we cal-

culated the volume of each hashtag-based topic by determining the percentage of

tweets that contain hashtags belonging to the corresponding cluster. Considering

3.2 Results and discussion 45

our overall observation period, the most relevant topic is about Covid-19 pan-

demic and it specifically refers to Trump’s mismanagement of the health emer-

gency. Other topics are related to the presidential election in general or arise from

the publishing activity of Trump’s supporters. Also, Biden’s supporters signifi-

cantly contributed to the online discussion, by leveraging anti-Trump sub-topics

that have emerged from several town hall meetings, about discrimination, veter-

ans, and the position of the Republican candidate about the climate crisis.

To get a deeper understanding of the impact of the extracted topic on social

media conversation, we analyzed also their evolution in the eight weeks included

in our observation period, as shown in Figure 3.5.

Vo
lu

m
e

of
 t

w
ee

ts

0

100,000

200,000

300,000

400,000

Week

1 2 3 4 5 6 7 8

Topic
#1: Bad management 
of Covid-19 emergency

Topic
#2: Town hall
meetings

Topic
#3: Encouraging
people to vote

Topic
#4: Accusations
against Hunter Biden

Topic
#5: US Supreme
Court  

Topic
#6: Support  
for Trump

Figure 3.5: Weekly volume of tweets related to the detected topics from 1
September to 31 October 2020.

We found out that, in the early weeks, the online conversation focused on the

relationship between Trump and Covid-19 pandemic. In addition, the discussion

about the US Supreme Court showed a slight increase close to the nomination,

announced by Donald Trump, of Judge Amy Coney Barrett as Associate Justice

of the US Supreme Court to fill the vacancy left by the death of Ruth Bader Gins-

burg. In the following weeks, the focus of the online conversation shifted to var-

3.2 Results and discussion 46

ious topics related to the approach of election day and the importance of voting.

We also observed an increase in the volume of tweets concerning the accusations

leveled against Joe Biden’s son (i.e., Hunter Biden), a topic discussed mostly by

the Democratic candidate’s detractors. Finally, other topics regarding the support

voters expressed towards Trump and their criticisms leveled against him linked to

town hall meetings showed an almost constant impact on the online conversation.

3.2.3 Temporal analysis

In this step we investigated the temporal dynamics of social media conversa-

tion, in order to analyze users’ publishing behavior, studying how it is related to

the detected polarity and how it reflected the occurrence of external events (e.g.,

debates or rallies). However, as described by the repository owners, there may be

gaps in the dataset due to several issues. Firstly, the data collection step was highly

contingent upon the stability of the network and hardware. Secondly, Twitter sig-

nificantly limits the number of tweets that can be rehydrated. Finally, tweets may

no longer be available as users have been removed, banned, or suspended [69].

Date

N
um

be
r o

f t
w

ee
ts

Figure 3.6: Time series of polarized tweets published from 1 September to 31
October 2020.

3.2 Results and discussion 47

Figure 3.6 shows the timeline of polarized tweets volume annotated with the

four main political debates occurring during the election campaign, i.e., between 1

September and 31 October. The first observation period (from 1 to 28 September)

exhibits significantly different communication dynamics prior to the first debate.

Interestingly, this image shows intense activity spikes of Biden’s supporters, as a

likely consequence of President Trump’s actions:

• 10 September: President Trump has attacked Democratic Vice Presidential

candidate Kamala Harris.

• 15 September: despite being banned by state authorities from holding ral-

lies, President Trump still decided to hold one in Nevada.

• 18 September: President Trump blamed blue states for the high number of

US Covid-19 fatalities.

• 28 September: during a rally in Pennsylvania, Trump called Biden “a dis-

honest politician and a puppet in the hands of the radical left”.

The second and third observation windows (from 30 September to 31 October)

show typical weekly cycles of social media chatter, with no particular explosion or

shock-related spike from external events, except for the Vice Presidential debate

(6 October) and the second Presidential debate (13 October).

3.2.4 Polarization analysis

In this step, we used IOM-NN to understand which candidate or party pub-

lic opinion is most in favor of. As introduced at the beginning of this chapter, a

remarkable result was obtained by analyzing real-time data collected during the

two weeks before election day. Specifically, IOM-NN was able to determine Joe

Biden’s lead over Donald Trump, also correctly predicting the winning candidate

in different US states, including Georgia, where a Democratic candidate had not

won since 1992 with the election of Bill Clinton. This result, publicly available

3.2 Results and discussion 48

through our university web portal6, represents a step forward with respect to tech-

niques in the literature, including our previous work, as it gives clear proof of the

real-time effectiveness of IOM-NN. For what concerns the polarization analysis

we carried out on the main swing states, we compared the estimates produced by

IOM-NN with the average values of the latest opinion polls before the election7.

Achieved results are reported in Table 3.3, in which the two candidates (i.e., Joe

Biden and Donald Trump) are indicated with “B” and “T”, respectively, and the

winning candidate is written in bold when it is correctly identified. The results of

the comparison are also summarized in Figure 3.7.

Real
percentages Opinion polls IOM-NN

State B T B T B T

Arizona 49.4 49.1 48.0 45.8 50.2 48.3
Florida 47.9 51.2 48.7 46.0 48.0 51.1
Georgia 49.5 49.2 47.6 47.4 52.7 46.0
Michigan 50.6 47.8 49.9 44.4 55.4 43.0
Minnesota 52.4 45.3 51.6 41.8 55.1 42.6
Nevada 50.1 47.7 49.4 44.4 49.8 48.0
New Hampshire 52.7 45.4 53.4 42.4 50.9 47.3
North Carolina 48.6 49.9 47.8 47.5 56.6 41.9
Pennsylvania 50.0 48.8 49.4 45.7 55.7 43.1
Texas 46.5 52.1 47.5 48.8 46.1 52.5
Wisconsin 49.4 48.8 52.0 42.8 56.3 41.9

Correctly classified - 9/11 10/11
Tweets - - 670,451
Users - « 11,000 57,116
Avg. Acc - 0.82 0.91

Table 3.3: Comparison between voting percentages estimated by IOM-NN and
the latest opinion polls.

Figure 3.7 shows that the estimates achieved by IOM-NN, related to the voting

intentions of social media users, are more in line with the actual behaviors of

voters with respect to the opinion polls, thus giving a clue to the final result in 10

out of 11 swing states with an average accuracy of 91%.

6https://www2.unical.it/portale/portaltemplates/view/view.cfm?103993 (text
in Italian)

7https://www.270towin.com/2020-polls-biden-trump/

https://www2.unical.it/portale/portaltemplates/view/view.cfm?103993
https://www.270towin.com/2020-polls-biden-trump/

3.2 Results and discussion 49

Figure 3.7: Comparison between IOM-NN and the latest opinion polls in identi-
fying the winning candidate.

Using this metric we penalize the inversions of polarity which can be a cru-

cial issue while analyzing these kinds of states characterized by a high degree of

uncertainty. Notice that, for what concerns North Carolina, neither the estimates

achieved by IOM-NN nor the opinion polls were in line with the actual outcome

in this state. This is a common situation, as the results achieved by the polls and

IOM-NN must be understood as an estimate of the ongoing polarization of public

opinion in the weeks preceding the election day, not always in accordance with

the actual behavior of voters. Moreover, a noteworthy advantage of IOM-NN with

respect to traditional opinion polls is the ability to capture the opinion of a larger

number of people more quickly and at a lower cost, even in relation to topics per-

ceived as embarrassing or sensitive, on which people tend to discuss and express

their opinions on social networks more freely than they do during polls. This

makes IOM-NN a valid tool to support, enhance or even replace opinion polls,

by providing relevant insights useful to understand the dynamics of the election

campaign.

3.2 Results and discussion 50

3.2.5 Emotion analysis

The goal of this last step is to model the political orientation of Twitter users

from an emotional point of view. For this purpose, we first used SentiStrength for

discovering the existing relationships between the political polarization of users

and the sentiment expressed in referring to the two presidential candidates (pos-

itive and negative). Then, we extended this analysis with respect to a broader

spectrum of emotions, including anger, anticipation, disgust, fear, joy, sadness,

surprise, and trust. In this way, we achieved a full emotional profile of pro-Trump

and pro-Biden users, in relation to the subject of their posts and their political po-

larization, previously discovered by IOM-NN. From the achieved results, shown

in Figure 3.8 and 3.9, emerges that, on average, the tweets produced by Trump’s

supporters are significantly more positive than those produced by Biden’s support-

ers, which devote a significant number of negative tweets to their opponent.

N
um

be
r

of
 tw

ee
ts

0

10,000

20,000

30,000

40,000

Sentiment score

-4 -3 -2 -1 0 1 2 3 4

Talking about Biden
Talking about Trump

AngerAnger

AnticipationAnticipation

DisgustDisgust

FearFear

JoyJoy

SadnessSadness

SurpriseSurprise

TrustTrust

AngerAnger

AnticipationAnticipation

DisgustDisgust

FearFear

JoyJoy

SadnessSadness

SurpriseSurprise

TrustTrust

Figure 3.8: Distribution of sentiments and emotions of pro-Trump tweets.

3.2 Results and discussion 51
N

um
b

er
 o

f t
w

ee
ts

0

30,000

60,000

90,000

120,000

Sentiment score

-4 -3 -2 -1 0 1 2 3 4

Talking about Biden
Talking about Trump

AngerAnger

AnticipationAnticipation

DisgustDisgust

FearFear

JoyJoy

SadnessSadness

SurpriseSurprise

TrustTrust

AngerAnger

AnticipationAnticipation

DisgustDisgust

FearFear

JoyJoy

SadnessSadness

SurpriseSurprise

TrustTrust

Figure 3.9: Distribution of sentiments and emotions of pro-Biden tweets.

For what concerns the detected emotions, Trump’s supporters express joy and

confidence about Trump, while fear about Biden’s election. Biden’s supporters,

instead, show trust and anticipation in having Biden as the future president of the

United States, with a more marked presence of negative emotions about Trump,

like anger, disgust and sadness. Table 3.4 presents the results achieved on some

example tweets included in the analysis.

Tweet About Sentiment Emotion

“#realDonaldTrump If anyone can do it, you can.
Best President ever! #AmericaFirst #MAGA2020” Trump Positive Trust

“#realDonaldTrump You are a racist and a loser.
#TrumpIsALoser #RacistTrump” Trump Negative Disgust

Table 3.4: A sample of tweets showing different emotions.

3.3 Conclusions 52

3.3 Conclusions

This chapter presented an in-depth analysis of the posts published on Twitter

during the 2020 US election campaign, in which different techniques for topic

discovery, opinion mining, and emotion analysis are combined in a unified analy-

sis workflow, which extends IOM-NN with the final aim of outlining an accurate

representation of the political event from different viewpoints. In particular, we

extracted the main discussion topics following a clustering-based approach, mon-

itoring their weekly impact on the online conversation. We also leveraged IOM-

NN to estimate the political polarization of Twitter users, both in real-time and by

focusing on the main swing states. We investigated the temporal dynamics of the

online discussion, combining it with the polarization information coming from

IOM-NN, in order to study how users’ publishing behavior reflected election-

related external events. Finally, we exploited sentiment analysis and text mining

techniques to discover the relationship between user polarization, determined by

IOM-NN, and the sentiment expressed in referring to the different candidates, thus

modeling the political support of Twitter users from an emotional viewpoint.

Experimental evaluation shows that in the early weeks the online conversa-

tion focused on the relationship between Trump and the Covid-19 pandemic and

on the nomination of Judge Amy Coney Barrett as Associate Justice of the US

Supreme Court. In the following weeks, instead, the focus shifted to other top-

ics including the accusations leveled at Hunter Biden and the criticism against

Trump linked to his position about the climate crisis and veterans. Regarding the

political polarization of public opinion, IOM-NN was able to achieve meaningful

estimates of the voting intentions of social media users, which makes it a valid al-

ternative to go beyond traditional opinion polls. Finally, as for the analysis of the

emotional state of social users, we found out that the tweets produced by Trump’s

supporters are significantly more positive than those produced by Biden ones. In

particular, i) Trump’s supporters express joy and confidence about Trump, while

fear about Biden’s election; ii) Biden’s supporters show trust and anticipation in

having Biden as the future president of the United States, with a more marked

presence of negative emotions about Trump, like anger, disgust, and sadness.

Chapter 4
Analyzing political polarization by
deleting bot spamming

In the previous chapters, we have shown how data from social networks are

a powerful tool for analyzing political phenomena from a wide range of perspec-

tives. However, as stated in Section 1.1, the effectiveness of Big Social Data

analysis techniques heavily depends on the reliability of the data gathered from

social media. Unfortunately, these data are easily manipulated through spam-

ming activities, misinformation campaigns, and the spread of fake and malicious

content. In such a scenario, getting reliable and impartial data, discerning them

from rumors, constructed reports, and fake news can be a quite challenging task.

Recent studies have shown that social bots are among the factors that most under-

mine the reliability of online news. These are algorithmically-driven entities that

appear as legitimate users by imitating human behavior, with the aim of altering

the popularity of users and influencing discussions of any kind, including political

issues [18]. Another issue that we highlighted in Section 1.1 concerns the high

dynamicity of social media data, which causes the patterns of interest to change

rapidly over time. Due to this, time-related aspects are key to a correct under-

standing of the extracted information. Regarding the political field, for example,

the voting intentions of social users can fluctuate during an election campaign,

independently or in response to external events.

53

54

Starting from the above considerations, this chapter presents TIMBRE (Time-

aware opInion Mining via Bot REmoval) [7], a methodology that we specially de-

signed to address these issues, aimed at measuring the polarization of social users

during an election event, estimating its final outcome. This methodology follows

a keyword-based approach to detect the political polarization of users, also con-

sidering time-related aspects. Specifically, for each classified post, it computes

an importance weight that represents its relevance to the voting intentions of the

user who published it. The idea behind this temporally-aware polarization pro-

cess is that preferences expressed by social users closer to election day are more

likely to reflect their true voting intentions. Another key aspect of TIMBRE is the

bot removal step, aimed at avoiding the distortion effect introduced by the pres-

ence of automatically-generated data. Specifically, our methodology filters out

the data produced by social bots, identifying them through the use of the Botome-

ter [70] framework. Therefore, by jointly exploiting a bot detection system and a

temporally-aware polarization technique, TIMBRE is able to accurately detect the

real voting intentions on social media platforms, capturing only the polarization

of legitimate users that belong to the voting-eligible population. To the best of our

knowledge, this work is one of the few in the literature that focuses on the study of

the joint influence of bots and temporal aspects in the analysis of electoral results.

To test the effectiveness of TIMBRE we applied it to a real-world case study

that analyzes the polarization of a large number of Twitter users during the 2016

US presidential elections, which was characterized by the rivalry between Hillary

Clinton and Donald Trump. This use case is particularly interesting since it was

characterized by a marked use of Twitter to foster political debate along with a sig-

nificant activity by social bots, which would have strongly influenced voter deci-

sions [18, 71, 72]. As an example, in [18] authors analyzed the pervasive presence

and activity of social bots involved in social media conversation related to the 2016

US presidential election. They found out that about 400,000 bots were engaged in

the political discussion, responsible for roughly 3.8 million tweets. Our analysis

focused in particular on the analysis of the main US Swing States, characterized

by great political uncertainty. We evaluated the benefits brought by the temporal

4.1 Social bot detection techniques 55

weighting and bot removal steps, through an ablation analysis, finding that both

are crucial in getting a correct estimate of users’ voting intentions. As a last step,

we studied how the presence of social bots may have affected political discussion

around the 2016 US presidential election, focusing on two main aspects. On the

one hand, we analyzed the publishing behavior of both real users and social bots,

along with the differences between human and artificial political support. On the

other hand, we exploited a competitive diffusion model to estimate the degree of

influence of social bots on legitimate users.

The remainder of the chapter is organized as follows. Section 4.1 reviews

the main social bot detection techniques present in the literature. Section 4.2

describes the proposed methodology. Section 4.3 presents the case study and

obtained results. Finally, Section 4.4 concludes the chapter.

4.1 Social bot detection techniques

The last few years have been characterized by a marked growth of social media

legitimate use and manipulation, fostering democratic conversation about socio-

political issues [18] and, at the same time, a large spread of misinformation. This

phenomenon has made social platforms one of the most used sources of informa-

tion, exposing users to risks caused by the lack of veracity of the news. Moreover,

political online discussion is often strongly polarized, leading to the formation of

echo chambers that provide selective exposure to news sources, thus biasing the

opinion of users. This effect sometimes is amplified by the priority policies of the

main social media platforms, which tend to favor engaging rather than trustworthy

posts [73]. In such a setting, distinguishing trustworthy and unbiased news from

rumors and fake news may be difficult. In this regard, social bots, also known

as sybil accounts, pose one of the most serious threats to the reliability of online

available content. They can be defined as algorithmically-driven entities that au-

tomatically produce content and interact with humans on social media, trying to

emulate and alter their behavior. In a political scenario, bots can be used illicitly

to artificially increase the support for a candidate, influencing the outcome of the

4.1 Social bot detection techniques 56

election. Campaigns of this type are usually called astroturf or Twitter bombs.

Many efforts were made by the research community towards developing social

bot detection and classification systems, especially on Twitter, one of the most

used microblogging platforms. According to [74], state-of-the-art techniques can

be categorized into three classes, as discussed in the following.

Graph-based detection. Methods in this category exploit a graph-based rep-

resentation of a social network to understand the relationships between edges or

links across accounts, using this information for detecting bot activity. As de-

scribed in [75], there are three main graph-based approaches aimed at detect-

ing social bots and malicious accounts: iq trust propagation that quantifies the

strength of the relationship among users; iiq graph clustering groups similar users

according to their characteristics. iiiq graph analysis that relies on several metrics

and properties of the social graph, like degree distribution and centrality mea-

sures. SybilWalk [76] is a sybil detection method that exploits a random walk-

based method on an undirected social graph. It proceeds by assigning a score to

users in the social graph, which is then used to classify them as legitimate users or

sybils. Mehrotra et al. [77] proposed a supervised method for fake followers de-

tection based on several centrality measures and the Random Forest classification

algorithm.

Crowdsourcing. This class of methods leverages human detection to identify

social bot behaviors, seeking patterns across profile information or shared con-

tent. As an example, DARPA held a Twitter bot challenge competition [78] in

which teams were asked to identify influential bots that supported pro-vaccination

discussions on Twitter. A common use of human annotation in bot detection in-

volves the generation of annotated datasets, which can be then used by supervised

techniques. In [79] four annotators were employed for the classification of Twit-

ter profiles as humans or bots, starting from a wide range of features such as the

number of tweets or favorites. Similarly, in [80] ten volunteers were tasked with

labeling 2000 random accounts, in order to build a ground truth dataset.

4.2 Proposed methodology: TIMBRE 57

Machine learning. These methods are based on machine learning algorithms

and statistical techniques for social bot detection. Kantepe et al. [81] proposed

a supervised approach that relies on an extensive process of feature extraction.

In particular, they used Apache Spark for data collection, categorizing features

into three types, i.e. user, tweet, and periodic features. Afterward, users were

labeled as humans or bots through a gradient-boosting classifier. Devis et al. [70]

proposed Botometer (formerly BotOrNot), a classification system that leverages

more than one thousand features to evaluate the extent to which a Twitter account

exhibits similarity to the known characteristics of social bots. Specifically, such

features are extracted from available metadata, shared content, and interaction pat-

terns. Ersahin et al. [82] presented a supervised method for fake account detection

on Twitter which leverages a naive Bayes classifier and an entropy minimization

discretization technique. Cai et al. [83] proposed a behavior-enhanced deep learn-

ing model (BeDM) for social bot detection. In particular, they jointly exploited a

convolutional neural network and a long short-term memory network to capture

temporal patterns in user behavior.

4.2 Proposed methodology: TIMBRE

TIMBRE is a temporally-aware methodology that exploits a keyword-based

classification for determining the political polarization of social media users and

the Botometer framework to distinguish legitimate users (i.e., voters) from social

bots. Its final aim is to forecast the election results by discerning the political lean-

ing of legitimate users, analyzing also how the presence of social bots may have

affected politically-related online discussion, potentially altering public opinion.

Given a political event E, a set of the factions F , and a set the keywords K

associated to E, the proposed methodology consists of four main steps:

1. Post collection: posts are collected by using the set of keywords K related

to the political event E.

4.2 Proposed methodology: TIMBRE 58

2. Post classification and weighting: for each post we determine its political

orientation, neutral or in favor of a specific faction f P F , and a weight wu
p

indicating the importance of the post p in estimating the voting intentions

of the user u who published it.

3. User polarization and classification: starting from classified posts and re-

lated weights, we determine the political leaning of each user in our dataset,

classifying it as a real user or a social bot. This information is then used to

forecast the outcome of the event E.

4. Bot influence analysis: during this step we analyze information production

patterns, estimating also the degree of influence of social bots on real users.

Figure 4.1 shows a graphical representation of the main steps of TIMBRE

introduced above, which will be discussed in detail in the following sections.

Post collection

Post classification

and weighting

Classified
posts

Collected

posts User polarization

and classification

Classified
users

Bot influence analysis

time

Figure 4.1: Main steps of TIMBRE.

4.2.1 Post collection

A political event E is characterized by the rivalry of different parties or fac-

tions F “ t f1, f2, ..., fnu. Following the same approach we used in [1], posts are

4.2 Proposed methodology: TIMBRE 59

collected by using the keywords that people commonly use to refer to the political

event E on social media. Such keywords K are divided into two classes:

- Kneutral , which contains generic keywords that can be associated with E

without referring to any specific faction in F .

- KF “ K f 1 Y ...Y K f n, where K f i contains the keywords used for supporting

the faction fi P F .

The keywords in K are given as input to public APIs provided by social media

platforms, which permit collecting posts containing one or more keywords. More-

over, since data collection is usually a continuous process, new keywords can be

discovered and integrated into K during the collection procedure. The collected

posts are pre-processed before the analysis as follows:

• Hashtags are normalized removing non-alphanumerical characters and trans-

forming them to lowercase. This way we can avoid differences between

different versions of the same hashtag, e.g., #voteTrump, #vote_trump, or

#votetrump! becomes #votetrump.

• Data representativeness is further improved by filtering out all the posts

having a language different from the one spoken in the nation hosting the

considered political event.

As the proposed method relies on a hashtag-based analysis without exploiting

other textual information, no further preprocessing like stopwords removal or

lemmatization is needed. The output of this step is a collection of posts P related

to the event E.

4.2.2 Post classification and weighting

In this step, we assign each post included in P to a specific faction in F by an-

alyzing the keywords it contains. Moreover, we determine a weight wu
p indicating

the importance of the post p in estimating the voting intentions of the user u who

published it. The intuition behind this is that more recent posts are more suited

4.2 Proposed methodology: TIMBRE 60

for deriving useful information about the voting intentions of a user. In fact, the

polarization of users can vary over time as they can influence each other or be

influenced by external events, such as political debates or scandals. Algorithm 3

shows the pseudo-code of the classification procedure, whose output S consists

of a set of triple containing the post p, the faction fp associated with it, and its

importance weight wu
p.

ALGORITHM 3: Post classification and weighting
Input : Set of posts P, set of faction keyword KF , decay rate λ

Output: Set of Classified posts S
1 S Ð H;
2 /* Given the post p, vF is a binary vector containing a 1 in

position f P F, if p contains a keyword in KF (i.e.,
Kp X KF ‰ H) */

3 for p P P do
4 vF Ð r s; // the vector of candidate factions to which the

post p can be assigned.
5 for f P F do
6 if Kp X KF ‰ H then
7 vF r f s Ð 1;

8 /* The post p is assigned to the faction fp P F if it
contains only keywords in favor of that faction (i.e.,
sumpvFq “ 1) */

9 if sumpvFq “ 1 then
10 fp Ð argmaxpvFq; // the faction to which the post p is

assigned.
11 u Ð p.user; // the user who wrote the post p.
12 d Ð p.day; // the day in which p was written.
13 Pu Ð t p̄ P P | p̄.user “ uu; // the set of posts written by u.
14 du

max Ð maxp̄.dayPu; // the day user u published his/her last
post.

15 δp Ð du
max ´ d; // the distance between du

max and d measured
in days.

16 wu
p Ð e´λδp ; // the importance weight assigned to p.

17 S Ð S Y xp, fp,wu
py;

18 return S

4.2 Proposed methodology: TIMBRE 61

As shown by the classification algorithm, a post p is assigned to a faction f

only if it contains keywords that are exclusively in favor of that faction; other-

wise, p is classified as neutral. This is a very strict and conservative partisanship

assignment, which leads to a small but high-confidence annotated dataset, likely

less prone to misclassification than automatic machine-learning techniques. As

regards the importance weight wu
p, it is computed as follows. Given a user u P U

and the set of his/her posts Pu, we determine du
max as the day the user u published

his/her last post p P Pu before the end of E. Given a post p published by user u

the day d, and δp “ du
max ´ d, we define the importance weight as wu

p “ e´λδp .

This weight undergoes exponential decay according to a constant λ (decay rate):

larger values of this constant make the quantity vanish much more rapidly.

4.2.3 User polarization and classification

Starting from the set S containing classified and weighted posts, we use a

one-vs-all strategy to determine the political leaning of each user in our dataset.

Specifically, given the set of opposing factions F and a user u P U , let Pu be the

set containing all of his/her posts, and Pu
f Ď Pu the subset containing only post

published by u classified as in favor of f . For each faction f , we determine the

support of u towards f as:

su
f “ 2 ˆ

ř

pPPu
f

wu
p

ř

pPPu
wu

p
´ 1

As the above formula is normalized in the interval r´1,1s, positive values of

su
f means that user u tends to be polarized towards the faction f , and the polariza-

tion becomes stronger as su
f approaches the value of 1. Negative values, instead,

suggest a polarization towards the set of all the remaining factions. Therefore,

given a threshold th, political partisanship f u of u is determined as follows:

- f u Ð argmaxpsu
f q, if maxpsu

f q ě th

- f u Ð neutral otherwise

4.2 Proposed methodology: TIMBRE 62

Besides determining user partisanship, we also exploited the Botometer frame-

work for the automatic classification of social media users into real or fake ac-

counts, related to potential electors and automatic entities respectively. Given a

user u Botometer determines a real-valued score s P r0,1s which measures the

likelihood that user u is a social bot. According to prior studies [18, 70], we se-

lected a threshold value for l equal to 0.5, for the classification process. At the

end of the entire procedure, two dictionaries B and R are obtained, related to bots

and real users respectively, composed by xu, f uy key-value pairs.

ALGORITHM 4: User polarization and classification
Input : Set S of triples xp, fp,wu

py, set of users U , threshold th, set of factions
F “ t f1, f2, ..., fnu, function bot_score : U Ñ r0,1s from Botometer
which computes the likelihood l for the user u

Output: Dictionary B of polarized bots, dictionary R of polarized real users
1 W Ð H;
2 for xp, fp,wu

py P S do
3 /* Compute the sum of the importance weights of posts

grouped by the corresponding faction fp and user u. */
4 W r fp,us Ð W r fp,us ` wu

p;

5 B Ð H;
6 R Ð H;
7 for u P U do
8 for f P F do
9 su

f Ð 2 ˆ
W r f ,us

ř

f 1PF W r f 1,us
´ 1; // polarization of user u toward f

10 if maxpsu
f q ě th then

11 f u Ð argmaxpsu
f q;

12 else
13 f u Ð neutral;

14 if bot_scorepuq ě 0.5 then
15 B Ð B Y xu, f uy;

16 else
17 R Ð R Y xu, f uy;

18 return B, R

Once the user polarization and classification step is completed, the outcome

of the political event E can be determined starting from the R set, containing the

4.2 Proposed methodology: TIMBRE 63

polarity of legitimate users. Let R f be the subset of R containing all legitimate

users polarized in favor of f ; the final consensus c f for each faction f P F is

determined as follows:

c f “
|R f |

ř

f PF
|R f |

4.2.4 Bot influence analysis

During this step, we analyze how the presence of social media bots may affect

political discussion around the event E under analysis. After having built the set P

of classified posts and the sets R and B, which specify the political leaning of bots

and real users, the proposed methodology analyzes them by exploiting different

algorithms and techniques, focusing on the following aspects.

• Information production patterns. During this step, the publishing behavior

of both real users and social bots is analyzed, focusing on the differences

between human and artificial political support.

• Influence spread. This step is aimed at estimating the degree of influence

of social bots, clustered according to their partisanship, on real social users.

To achieve that, TIMBRE builds a graph based on repost relationships, an-

alyzing the spread of influence through a competitive version of the Lin-

ear Threshold diffusion model. Specifically, we adapted the Separated-

Threshold Model for Competing Technologies [84] to our purposes, as de-

scribed below.

First of all, we built the repost graph G “ pV,Eq, a directed graph where V Ď

B Y R is the set of bots and real users involved in repost relationships and E is the

set of edges pu,vq where v reposted u, with u,v P V . For each edge pu,vq P E we

assigned a unique real-valued weight wu,v corresponding to the impact of node u

on v, computed as follows. Let Nu,v be the number of times node v reposted u and

Nu the number of total reposts made by v; the weight of the edge pu,vq is defined

as: wu,v “
Nu,v
Nu

, with wu,v P p0,1s. Therefore, a node u has a high influence on v if

v shows a high tendency in reposting u’s posts more than the others.

4.3 Results and discussion 64

Once the network is built, given the set F “ t f1, f2, ..., fnu of factions involved

in the political event E, and the set of polarized bots B Ď V , we partitioned this set

in n disjoint subsets B1,B2, ...,Bn, such as B f contains only social bots polarized

towards the faction f . For remaining users (i.e., neutral bots and real users P R Ď

V), a threshold value θ u
f for each faction is selected, picked uniformly at random

in the interval r0,1s, representing the resistance of user u to be influenced in favor

of the faction f . At the step t, for each faction f P F , let It´1
f be the set of nodes

influenced by faction f . During this step, a neutral node v becomes polarized

towards f if
ř

uPIt´1
f

wu,v ě θ v
f , which means that the influence exercised on v in

favor of f is higher than its resistance to that faction. If for the node v more than

one threshold is exceeded during step t, then this node will be polarized in favor of

the faction that exercises the highest influence. This process ends when all neutral

nodes become influenced, returning n disjoint sets, containing the users (both real

and bot) polarized towards one of the factions and an additional set containing

unpolarized nodes.

4.3 Results and discussion

In the following, we discuss a case study related to the 2016 US presidential

election characterized by the rivalry between Hillary Clinton and Donald Trump.

Our analysis focused on 10 US Swing States: Colorado, Florida, Iowa, Michigan,

Ohio, New Hampshire, North Carolina, Pennsylvania, Virginia, and Wisconsin.

These states are deemed of significant strategic importance because of their con-

siderable political unpredictability. Therefore, manipulating information and am-

plifying propaganda in those states, thus influencing the political leaning of social

users, can have significant effects on the election outcome.

As explained in Section 4.2.1, posts were collected using a set of neutral key-

words and two sets of faction keywords, one for each candidate. An extract of

these sets is shown in the following:

• KNeutral={#election2016, #uselection, #earlyvote, #ivoted, . . .}

4.3 Results and discussion 65

• KHillary={#voteblue, #imwithher, #nevertrump, #strongertogether, . . .}

• KTrump={#votetrump, #maga, #neverhillary, #podestaemails, . . .}

We analyzed about 4.7 million posts posted by 1.5 million users, finding a

non-negligible impact of social bots on political discussion. As shown in Table

4.1, states like Colorado, Iowa, and Ohio, are characterized by a high rate of bot

posts, from 20.6% to 24.6%. Furthermore, 7% of total user accounts have been

identified as social bots, which produced about 15% of the total posts related to the

2016 US presidential election coming from the analyzed swing states. This last

result is in line with [18], which found a percentage of posts published by bots

equal to 20%, albeit using a different sample of tweets and analysis methodology.

State #Users %Bots #Posts %Bot Posts

Colorado 20,029 9.57% 45,197 22.15%
Florida 368,593 2.73% 604,482 13.89%
Iowa 63,264 6.82% 162,567 20.52%
Michigan 122,141 2.40% 444,321 19.79%
New Hampshire 13,920 9.39% 30,523 20.58%
North Carolina 283,419 12.88% 1,108,556 12.77%
Ohio 88,896 6.11% 293,150 24.55%
Pennsylvania 278,255 8.89% 978,913 11.45%
Virginia 250,622 7.63% 955,821 12.65%
Wisconsin 33,446 2.30% 72,197 19.60%

Total 1,522,585 7.03% 4,695,727 14.52%

Table 4.1: Bot incidence in posts and users collected by state

Collected data are representative of the analyzed event as:

• All the posts under analysis have the lang field set to en (i.e. English).

• About 94% of the social media users in the USA are adults and almost

equally divided by gender (42.7% females and 57.3% males).

• For each state, we measured the correlation between collected users and the

voting-eligible population (VEP). We observed a strong linear correlation,

with a Pearson coefficient r “ 0.86, which improved after removing bots

reaching 0.89. Both results are significant at p ă .01.

4.3 Results and discussion 66

The high correlation and statistical significance achieved in this exploratory

step, indicate that collected users can most likely be considered voters in the re-

lated swing state. Moreover, a significant improvement in the goodness-of-fit

due to the removal of bots suggests a higher concentration of bot-driven cam-

paigns in some states, which may amplify election-related online content, likely

for illicit purposes. Figure 4.2 summarizes these results by showing a linear in-

terpolation, along with the goodness-of-fit measured through the determination

coefficient (R2).

(a) All users

(b) Bots excluded

Figure 4.2: Linear interpolation: analyzed users vs. voting-eligible population.

In the next sections, we analyze the polarization of users during the 2016 US

presidential election campaign, also investigating how the presence of bots may

have affected the political discussion on Twitter.

4.3 Results and discussion 67

4.3.1 Polarization analysis and election forecasting

In this step, we exploited Algorithm 3 and 4, described in Section 4.2.2 and

4.2.3, for determining the political orientation of the collected posts and the corre-

sponding users. Furthermore, posts are assigned an importance weight and users

are classified as real accounts or social bots. The decay rate λ and the threshold

th have been set to 0.3 and 0.7 respectively. Table 4.2, shows how the support

detected for the different factions is distributed among real users and bots. Specif-

ically, with pro-x bots, we indicate Twitter accounts classified as bots, which have

mainly published tweets in favor of candidate x.

Polarization #Users %Bots #Posts %Bot Posts

Pro-Trump 94,124 26.70% 194,428 17.86%
Pro-Clinton 78,900 10.00% 128,154 8.27%

Table 4.2: Supporting posts and users per candidate

We found a greater presence of pro-Trump bots, which had a more marked

impact on the online discussion, producing almost 18% of the contents classified

as in favor of Trump. This suggests a greater use of social bots supporting the

Trump political positioning, compared to the other faction, which however shows

a quite high volume of bot-generated content, in line with work [18].

Once posts and users were classified according to their political polarization

and social bot were detected using Botometer, we determined the outcome of the

2016 US election as explained in Section 4.2.3. The achieved results are summa-

rized in Table 4.3, which shows a comparison among the real voting percentages,

the average values of the latest opinion polls before the election, and the results

obtained by using TIMBRE. The winning candidate is written in bold when it is

correctly identified.

Compared to the latest opinion polls, which gave a correct forecast for only 6

out of 10 swing states, the proposed methodology was able to correctly identify

the winning candidate in 8 out of 10 states, confirming its ability to accurately

determine the polarization of social media users. TIMBRE outperformed the latest

opinion polls even in terms of average absolute error, improving it from 1.2 to

4.3 Results and discussion 68

State Real Polls TIMBRE
Clinton Trump Clinton Trump Clinton Trump

Colorado 48.2 43.3 43.3 40.4 47.7 43.8
Florida 47.8 49.0 46.4 46.6 48.1 48.7
Iowa 41.7 51.1 41.3 44.3 34.1 58.7
Michigan 47.3 47.5 45.4 42.0 41.7 53.1
New Hampshire 47.0 46.6 43.3 42.7 56.8 36.9
North Carolina 46.2 49.8 46.4 46.4 44.7 51.2
Ohio 43.6 51.7 42.3 45.8 43.9 51.4
Pennsylvania 47.9 48.6 46.2 44.3 51.5 45.0
Virginia 49.8 44.4 47.3 42.3 49.9 44.3
Wisconsin 46.5 47.2 46.8 40.3 52.0 41.7

Correctly classified - 6/10 8/10
Posts - - 277,181
Users - « 10,000 140,003
Avg. accuracy - 0.6 0.8
Avg. absolute error - 1.2 0.9

Table 4.3: Voting percentages estimates of the 2016 US presidential election.

0.9. We computed this metric only focusing on wrong predictions by using the

following formula:

avg. absolute error “
1
|F |

ÿ

f PF

1
|S|

ÿ

sPS

wpsq ˚ |real f ,s ´ pred f ,s|

where F and S are the set of considered factions and states, real f ,s and pred f ,s

are the real and predicted voting percentages related to the faction f in the state s,

and wpsq is a binary function which outputs 1 if the predicted polarity is wrong,

0 otherwise (i.e. the winning candidate is correctly identified). Using this metric

we both penalized the absolute error in terms of percentage points and the inver-

sions predicted polarity, which can be a crucial issue while analyzing these states,

characterized by a high degree of uncertainty. Another noteworthy advantage is

related to the number of polarized users, which is much larger than that of the peo-

ple interviewed, making the proposed approach a viable alternative to traditional

opinion polls.

4.3 Results and discussion 69

Ablation analysis

We further extended our experimental evaluation by performing an ablation

analysis, aimed at analyzing the benefits brought by each of the two key steps in-

troduced by the proposed methodology, i.e. temporal weighting and bot removal.

State Real Polls Baseline Bot
removal

Temporal
weighting TIMBRE

Colorado C C T C T C
Florida T T C C T T
Iowa T T T T T T
Michigan T C T T T T
New Hampshire C C C C C C
North Carolina T Tie T T T T
Ohio T T T T T T
Pennsylvania T C C C C C
Virginia C C C C C C
Wisconsin T C C C C C

Correctly classified - 6/10 6/10 7/10 7/10 8/10

Table 4.4: Ablation analysis of the contribution brought by each step of TIMBRE
in terms of election forecasting accuracy.

The achieved results are reported in Table 4.4, where “C” and “T” stand for

Clinton and Trump respectively. What emerges is that both the temporal weight-

ing of posts and bot removal steps are crucial to get a correct estimate of users’

voting intentions. In particular, the baseline version of our methodology, which

does not leverage either the removal of bots or the temporal weighing of posts,

achieved the same accuracy as the latest polls, correctly identifying the winning

candidate in 6 out of 10 states. By adding the bot removal step, the resulting

methodology was able to correctly predict the final outcome in Colorado, increas-

ing its accuracy to 7 out of 10 states correctly classified. Similarly, by only adding

the time-based weighting mechanism, we observed an increase in forecasting ac-

curacy, with a correct prediction for the state of Florida. Finally, TIMBRE was

able to maintain the benefits coming from both steps, combining them and cor-

rectly determining the winning candidate in 8 out of 10 states. Furthermore, it

is worth noting that the results for Pennsylvania and Wisconsin, incorrectly pre-

dicted by TIMBRE, were not correctly predicted even by opinion polls.

4.3 Results and discussion 70

4.3.2 Bot influence on election-related discussion

In this section, we analyze how the presence of social bots may have affected

the political online discussion around the 2016 US presidential election. Specifi-

cally, we first analyzed the publishing behavior of both real users and social bots

focusing on the patterns of information production. Then, we studied the main

differences in supporting the two candidates between human-driven and artificial

accounts. Finally, we estimated the degree of influence of social bots on legitimate

users using a competitive information diffusion model.

Information production patterns

In order to extract the publishing behavior of social media users involved in

the political discussion, we used the information about their political orientation

coming from the user polarization step, computing a publishing model for each

candidate. In particular, such models are represented by the complementary cu-

mulative distribution function (CCDF) of the number of posts published by users

supporting Clinton and Trump respectively. We computed two different models,

one that considers all accounts and another that excludes bot accounts, only re-

taining legitimate users based on the user classification previously performed.

Obtained results are shown in Figure 4.3, which provides a log-log scale scat-

ter plot for each publishing model. By analyzing the publishing behavior of all

polarized users (both real and fake accounts), shown in Figure 4.3(a), we ob-

served a greater publication tendency of pro-Trump accounts, which appear to

be far more prolific than pro-Clinton ones. However, the role of polarized bots

behind this phenomenon should be investigated: for this purpose Figure 4.3(b)

shows the publishing behavior of legitimate users only. By excluding the bots

from the CCDF, we observed a narrowing of the distance between the curves re-

lating to pro-Trump and pro-Clinton users. Therefore the polarity does not seem

to be a deciding factor affecting the volume of posts published by legitimate users.

Hence, it can be deduced that the differences emerging in Figure 4.3(a) are due to

an amplifying effect caused by social bots, which agrees with the higher activity

of pro-Trump bots detected in the previous sections.

4.3 Results and discussion 71

(a) All users

(b) Bots excluded

Figure 4.3: CCDF of published posts for real and bot users classified by supported
faction

For completeness, in Table 4.5 we provide the description of the most prolific

real accounts in our dataset, according to the detected polarity. In particular, for

each candidate, we selected the user labeled as real by Botometer that published

the highest number of posts, i.e. the rightmost point in Figure 4.3(b). Despite

the high number of published posts, Botometer gave the two accounts a BotScore

score far below 0.5, which suggests that they are truly managed by prominent

users or news sites, but not by automatic entities.

4.3 Results and discussion 72

Polarity Screen name Bot score
(Botometer) #Posts Example post

Pro-Trump @TheJonFerns 0.18 3650
“Not even Hillary Clinton’s campaign
chief believes her. #podestamails”

Pro-Clinton @Kaliburger 0.16 4004
“Think we should always have a
woman as President. #imwithher”

Table 4.5: Most prolific real accounts supporting each candidate.

Influence spread

This last step is aimed at estimating the degree of influence of social bots on

legitimate users, following the approach described in Section 4.2.4. For this pur-

pose, we built a graph G based on repost relationships, characterized by 437,854

nodes and almost 1.5 million edges. From this graph, we removed self-loops,

duplicated edges, and isolated nodes. Afterward, we analyzed the spread of in-

fluence by adapting the Separated-Threshold Model for Competing Technologies

(see Section 4.2.4) to our case study, characterized by the rivalry of two candi-

dates. Due to this, the diffusion process starts from two distinct seed sets contain-

ing respectively the bots polarized for the Democratic and the Republican party.

When convergence is reached, we end up with a list of influenced nodes labeled

with the related political polarization. We conducted 20 simulations varying the

initial assignment of the random threshold for each faction, which represents the

resistance of the users in the network to be influenced by social bots supporting

that faction. Starting from the output of the diffusion process, we computed the

following quantities:

• The expected spread for each candidate, determined as the average number

of influenced nodes across the 20 simulations by pro-Trump and pro-Clinton

nodes.

• The set of influenceable nodes, obtained through the voting technique. In

particular, all the nodes activated at least once during the different simula-

tions were assigned to the faction that influenced them the greatest number

of times.

4.3 Results and discussion 73

The final results obtained after the different simulations of the diffusion pro-

cess are shown in Table 4.6. Both the expected number of influenced nodes and the

total number of influenceable nodes confirmed the greatest activity of pro-Trump

bots, which had a more marked impact on social media conversation compared to

pro-Clinton ones. In particular, the expected number of nodes influenced by the

seed set of pro-Trump bots was 12.4 times greater, while the number of influence-

able nodes was 7.8 times greater.

Expected number of
influenced nodes

Total number of
influenceable nodes

Pro-Trump bots 31,629 (2.4%) 99,833 (7.5%)
Pro-Clinton bots 2,547 (0.2%) 12,775 (1.0%)

Table 4.6: Obtained results after 20 simulations of the diffusion process.

Pro-Trump real users Pro-Trump botsPro-Clinton real users Pro-Clinton bots

Figure 4.4: Visualization of the diffusion process on the complete repost graph.

4.4 Conclusions 74

These results are summarized by the graph shown in Figure 4.4, whose nodes

are colored according to their polarity and characteristics. In particular, the polar-

ized bots belonging to pro-Trump and pro-Clinton seed sets are colored in dark

red and dark blue, influenceable nodes assigned to Trump are represented in light

red, those assigned to Clinton in light blue, and neutral nodes in gray.

Finally, in Figure 4.5, we reduced the initial graph by 90% while keeping the

top-k nodes with the highest degree (right graph). In this way we maintained

almost unchanged the polarity-based clustering structure that emerged in the total

graph, achieving a neater representation of the results of the diffusion process.

Pro-Trump real users Pro-Trump botsPro-Clinton real users Pro-Clinton bots

Figure 4.5: Visualization of the diffusion process on the sampled repost graph.

4.4 Conclusions

This chapter presented TIMBRE (Time-aware opInion Mining via Bot RE-

moval), a methodology we proposed with the aim of discovering the political

polarization of social media users during election campaigns, coping with the

presence of social bots, and the temporal oscillation of users’ political polariza-

4.4 Conclusions 75

tion. Our methodology exploits a keyword-based classification to determine the

political orientation of social media posts and users. It is also temporally aware,

as it considers time-related aspects in deciding how much a post can be helpful

to determine the voting intentions of the user who published it. Moreover, it rec-

ognizes and filters out data produced by social media bots, which participate in

online discussions to amplify propaganda and alter public opinion.

In order to assess the effectiveness of TIMBRE, it was applied to a real-world

case study related to the 2016 US presidential election. By leveraging Twitter

metadata, we focused only on posts coming from 10 US Swing States, in partic-

ular: Colorado, Florida, Iowa, Michigan, Ohio, New Hampshire, North Carolina,

Pennsylvania, Virginia, and Wisconsin. The achieved results showed the effec-

tiveness of the proposed approach, along with the benefits brought on forecasting

accuracy by its two key steps, i.e. temporal weighting and bot removal. Specifi-

cally, our methodology was able to correctly identify the winning candidate in 8

states out of 10, with an average absolute error of 0.9 percentage points, outper-

forming the latest opinion polls, which identified the winner in 6 out of 10 cases,

with an average error of 1.2 points.

As a final step, we investigated how the presence of social bots may have

affected political discussion around the 2016 US presidential election. In partic-

ular, we first analyzed the publishing behavior of both real users and social bots

focusing on the patterns of information production. Then, we studied the main

differences in supporting the two main candidates between human-driven and ar-

tificial accounts. Furthermore, we estimated the degree of influence of social bots

on legitimate users finding out that in the analyzed scenario bots had a marked

impact on social media conversation, showing a significant activity and influence

on legitimate users. In conclusion, it is worth noticing that the obtained results are

based on a politically neutral research analysis that produced accurate estimates,

which are in accordance with related work. In addition, although our analysis

discovered a high presence of social bots that may have affected online political

discussion, it is impossible to know who was running those bots, as they can also

be exploited for provocative campaigns or as part of an information war.

Chapter 5
Influence maximization in politically
polarized networks: a bio-inspired
approach

Social media platforms are increasingly used to convey advertising campaigns

for products or services, as well as to foster democratic debate on various is-

sues, including political ones. As far as the political context is concerned, these

platforms are gaining increasing success among prominent politicians of various

parties around the world, who exploit various strategies to try to win the favor of

public opinion on social networks, thus gaining an electoral advantage. An effec-

tive way to run a good social media campaign, such as one aimed at increasing

support for a candidate or a political party, is to identify an appropriate subset of

highly-followed users, investing resources in making them exploit their popularity

in order to influence the preferences of a large number of voters who interact on

the social network. However, finding such a set of users can be challenging, lead-

ing to the need for tailored techniques in the field of influence maximization [85].

Initially proposed as a stochastic optimization problem in [86], it formally con-

sists in identifying a set of k users that maximize the spread of influence in a

social network, by analyzing the network structure, user interconnections, and

user-specific features such as demographic properties [87]. Influence maximiza-

76

77

tion is an NP-Hard problem, with two sources of hardness: iq the complexity of

computing the spread, i.e. the number of influenced users; iiq the combinatorial

nature of identifying the best solution, that maximizes the influence, among all

possible combinations.

This chapter presents WABC (Weighted Artificial Bee Colony), a bio-inspired

influence maximization technique that we designed for identifying a subset of

users that maximizes the spread of influence in politically-polarized networks.

Specifically, our analysis is aimed at identifying the main influencers of the dif-

ferent factions involved in a political event of interest, also deriving the main in-

formation diffusion strategies of each faction during the political campaign. Our

work borrows ideas from the Artificial Bee Colony (ABC) [88] a swarm intelli-

gence algorithm that was applied to the influence maximization task by Sankar

et al. [89]. In WABC, we introduce an effective weighted approach to fitness

evaluation, which can be considered as the resolution of a reachability problem

centered on the paths of maximum probability. By following this approach we

addressed the influence overlap problem of classical influence ranking-proxy al-

gorithms, avoiding the negative effects caused by influence redundancy during

the maximization process. Moreover, our algorithm is less sensitive to parameter

tuning in comparison to related work, as it dynamically sets the depth at which

to explore the graph, focusing more on the most promising paths. All of these

factors contribute to making WABC able to produce an accurate estimate of the

total spread for the final seed set, which is key to achieving a reliable estimate of

the number of users that will actually be influenced.

To evaluate the effectiveness of the proposed algorithm in identifying the top

influencers in a politically-polarized network, we applied it to a case study that an-

alyzes the online discussion on Twitter during the Constitutional Referendum held

in Italy in 2016. This analysis was aimed at identifying the main influencers of the

yes and no factions and deriving the main information diffusion strategies lever-

aged by each faction during the political campaign. Specifically, we classified the

identified influencers according to their profile (journalistic page, political activist,

popular or normal user) to better determine the type of political campaign. Then,

5.1 Information diffusion models 78

we measured their influence strength by following a simulation-based approach.

We also compared the obtained results with both the standard ABC algorithm

and other related state-of-art techniques in terms of computing time, evaluated

spread, and relative error on the expected spread. Our algorithm turned out to be

more time-consuming than its classical version (ABC), but much more accurate

in determining the expected spread, with an up to 24% decrease in the relative

estimation error. Furthermore, it outperformed ranking-proxy techniques based

on classical centrality measures like PageRank, with an up to 40% improvement.

The remainder of the chapter is organized as follows. Section 5.1 describes

the most used information diffusion models. Section 5.2 discusses the related

work. Section 5.3 describes the proposed algorithm. Section 5.4 presents the

experimental evaluation. Finally, Section 5.5 concludes the chapter.

5.1 Information diffusion models

Interactions among users of a social network can be represented as a directed

graph G “ pV,Eq, where V is the set of users in the network and E represents the

relationship among them as edges directed from one user to another. The influence

exercised by a user on the other members of the network is modeled as a function

p : E Ñ r0,1s that associates a weight to each relationship pu,vq P E. Given a user

node u P V , we define with Ninpuq and Noutpuq the sets of users v P V for which

there exists a relationship pv,uq P E and pu,vq P E respectively.

In a diffusion model, nodes can be partitioned according to their current state:

influenced (i.e., nodes that have been activated during the diffusion process), ac-

tive (i.e., nodes that can propagate influence and activate others), and idle (i.e.,

nodes that have not yet been activated). The diffusion process starts from a small

set of active nodes, called seed set S Ď V . Therefore, each node of the seed set

can iteratively influence its out-neighbors and the process generally stops when

there are no new active users. Diffusion models can be divided into two classes:

iq progressive models, which do not allow a user to become idle once activated;

iiq non-progressive, in which deactivation is allowed at any time.

5.1 Information diffusion models 79

The most used diffusion models in the literature are progressive, since the

growth of the active set is monotonic, which ensures the termination of the prop-

agation process in a finite number of steps when the number of users is finite.

The main models in this category, described in the following, are the Independent

Cascade and the Linear Threshold.

Independent Cascade. The independent Cascade model (IC) first described

by Kempe et al. [90], is characterized by the independence of activation among

nodes. Given the input network graph G “ pV,Eq an initial set of active nodes, i.e.

the seed set S, is chosen. Therefore, the IC model generates the active sets At for

each step t ě 1 following randomized diffusion dynamics, with A0 “ S. Specifi-

cally at step t, for each inactive node v R At´1, each node u P Ninpvq activated at

the previous step attempts to activate v through a Bernoulli trial with a probability

of success equal to ppu,vq. If the test is successful, the node v is added to the

active set of the current iteration.

Linear Threshold Model. Similar to IC, the Linear Threshold model (LT) [90],

takes the network graph G “ pV,Eq and the initial seed set S0 as input. The prob-

ability on the in-edges is normalized so that
ř

uPNinpvq ppu,vq ď 1,@v P V . There-

fore, LT generates the active sets At for each step t ě 1, according to the following

mechanism. Initially, each node v P V independently selects a threshold θv by

sampling a uniform distribution in the interval [0.1]. At step t, for each inactive

node v P V , if the sum of the weights of the active in-neighbors reaches the thresh-

old θv, i.e.
ř

uPNinpvqXAt´1
ppu,vq ě θv, then v is activated and is included in the

active set At . Intuitively, threshold θv models the likelihood with which v is in-

fluenced by its active neighborhood: a high threshold value represents a greater

resistance to the influence in the propagation process. The random choice of the

threshold reflects the lack of information on users’ tendency to be influenced and

is the only source of non-determinism in the model.

5.1 Information diffusion models 80

The aforementioned propagation models need techniques for establishing the

influence probability and therefore the weights to be assigned to the edges of the

network. A widely used practice is weighted cascade (WC), where the probability

of influence ppu,vq is defined as 1
|Ninpvq|

, where |Ninpvq| is the in-degree of v. The

main idea behind this weighting scheme is that an important node (i.e., a public

figure) is more likely to influence a user that tends to express interest only for its

contents, assuming that edges are oriented according to a relationship of interest.

Recent studies also proposed the estimation of the influence probabilities starting

from logs. As an example, authors in [91] framed the acquisition of influence

weights from existing logs as a likelihood maximization problem.

5.1.1 Spread function properties

Independent Cascade and Linear Threshold are progressive models that share

two important properties in terms of influence spread, that is the function σ , which

estimates the expected number of users who will be active at the end of the infor-

mation diffusion process. For both models the spread function is:

1. monotonic, the inclusion of a new node v in the active set S can not lead to

a decrement of the spread function: σpS Y vq ě σpSq,@v P V,S Ď V .

2. submodular, the marginal gain obtained by adding a new node v to a set S

is at least equal to the marginal gain obtained by adding the same element

to a superset T of S: σpS Y vq ´ σpSq ě σpT Y vq ´ σpT q, @v P V,S Ď T .

When used within an influence maximization algorithm, a spread function satisfy-

ing these two properties ensure the convergence on a ε-approximated solution of a

greedy hill-climbing procedure, which selects at each iteration the most promising

node in terms of influence spread.

Theorem [92]. For a non-negative, monotone submodular function σ , let S be

a set of size k obtained by selecting elements one at a time, each time choosing

the element that provides the largest marginal increase of σ . Let also S˚ be the

optimal set that maximizes the value of σ over all k-element sets.

Then σpSq ě p1 ´ 1
e q ¨ σpS˚q ùñ S provides a ε-approximation, with ε “ 1 ´ 1

e

5.2 Related work 81

5.2 Related work

Despite the theoretical bound discussed above, the influence maximization

task remains hard to solve. In fact, besides the complexity related to the max-

imization of the spread σ , which derives from the combinatorial nature of the

problem, another crucial point is the calculation of σ with respect to the addition

of a node v in the active set, which is a #P-hard counting problem. For this rea-

son, different resolution techniques have been developed, which can be grouped

as discussed in the following, according to the approach used in the evaluation of

the spread function [93].

Simulation-based. The key idea of this approach is to perform a series of Monte

Carlo simulations for evaluating the spread function for a given seed set. Consid-

ering the IC model, given a graph G, this approach consists in considering an

initial seed set S and removing the edges with probability 1 ´ ppu,vq. This way a

set of instances can be generated and the spread can be estimated on these sampled

instances. The advantage of such models is their generality, as this process can

be applied to any information propagation model, and also the bound provided by

the greedy algorithm is preserved. However, the main problem here is the com-

putational efficiency related to the large number of simulations needed to obtain

a good estimate. Kempe et al. [90] extended the greedy algorithm using simula-

tions for evaluating the marginal gain for a given node added to the active set. In

particular, a seed set S is built by considering the most promising nodes with re-

spect to their marginal gain on the spread function, estimated after r simulations,

as the average cardinality of the active set. The number of simulations is a cru-

cial parameter in such a mechanism, which affects computational complexity. For

this reason, several methods have been proposed aimed at reducing r. The CELF

technique [94] aims to estimate an upper bound of the marginal gain determined

by adding a node to the current seed set. This avoids the evaluation of some nodes

whose influence is considered insignificant, thus exploiting the submodularity of

the spread function and a power law assumption on the degree distribution of the

network graph. Another technique used to reduce the complexity of this kind

5.2 Related work 82

of approach is the Community-based greedy algorithm (CGA) [95]. This tech-

nique is based on the divide-and-conquer paradigm for reducing the complexity

of the Monte Carlo simulations by partitioning the graph according to a commu-

nity structure and evaluating the spread only within communities.

Proxy-based. The main idea behind this class of algorithms is to define proxy

models such as PageRank or shortest path, for approximating the spread function

σ . Therefore, its main advantage is the reduced complexity of the proxy model,

but there are no guarantees of optimality. Proxy-based algorithms can be divided

into influence ranking proxy and diffusion model reduction proxy.

i) Influence Ranking Proxy are models that provide a rank to each user in the

graph G in order to estimate a metric for their influence rate and subsequently gen-

erate the seed set directly from that ranking. There are different approaches based

on a ranking that can be directly derived from the graph, such as degree, PageR-

ank, and other centrality measures. However, these techniques are usually not

very suitable to solve the problem of influence maximization, as the ranking de-

fined on users often does not take into account any overlap of influence; two users

with a high ranking could influence an almost identical set of users, providing an

incorrect solution to the problem. To deal with this issue, the DegreeDiscount

technique [96] has been proposed, which introduces a penalty on σ for a given

node v proportional to the overlap of influence with the other nodes in the active

set. Finally, the IRIE [97] algorithm, based on the Independent Cascade model,

integrates the advantages of influence ranking (IR) and influence estimation (IE)

methods for influence maximization.

ii) Diffusion model reduction proxy tries to reduce the complexity in com-

puting the spread σ following two main approaches: i) reducing the stochastic

propagation model in a deterministic one; ii) estimating the influence from a local

subgraph. The Shortest-Path Model (SPM) [98] considers the shortest path be-

tween two nodes in the activation process. In the MIA/PMIA [99] algorithm, for

each pair of nodes pu,vq, u can influence v only along the maximum influence path

(MIP), defined on a tree where unpromising paths are pruned using a threshold.

5.2 Related work 83

The LDAG algorithm [99] restricts the influence to acyclic graphs, by building a

DAG for a node v, exploiting the Dijkstra algorithm for the shortest-path length.

Goyal et al. [100] proposed the Sim-Path algorithm, where the influence of a set

of nodes, propagated through the LT model, is calculated by enumerating all the

simple paths starting from each node within the set. However, as this is a #P-Hard

problem, the SimPath limits this enumeration to a restricted neighborhood, cutting

those paths with a probability lower than a threshold. Lee et al. [101] proposed

a fast greedy approximation algorithm for influence maximization that relies on

the 2-hop influence spread. It is based on the interesting observation that an item

is generally diffused within a very small number of hops in a social network, and

node influence gradually dissipates beyond two hops.

Sketch-based. The goal of sketch-based methods is to preserve the theoreti-

cal bounds provided by simulation-based methods while providing computational

efficiency. In order to avoid the repetition of several Monte Carlo simulations,

these techniques compute many deterministic sketches which can be viewed as

many possible worlds, and aggregate the achieved results of each sketch, which

capture the overall diffusion process. One of the most famous algorithms is New-

GreIC [96], which extends the Independent Cascade model by building a given

number of sketches via graph sampling, to evaluate the marginal gain of each

node. Borges et al. [102] discovered that it is not necessary to estimate the in-

fluence using sketches generated starting from the entire graph. They developed

the reverse reachable sketch approach, a technique in which the influence of each

seed set S is estimated by selecting a random subset of nodes and analyzing which

of these can be reached. By creating multiple random RRs on different nodes, if a

node u has a great impact on the other nodes, then it will have a high probability

of appearing within these RR sets. Similarly, if a seed set S covers a maximum

number of RR sets, it is likely to be the optimal seed set. Borges et al. [102] pro-

posed the RIS algorithm, which generates random RRs until the total number of

edges examined during the generation process does not reach a threshold.

5.2 Related work 84

Context-aware. The common factor which characterizes all the aforementioned

algorithms, categorized in taxonomy [93], is that the influence propagation pro-

cess is often modeled in an unrealistic way, never referring to a specific context.

For this reason, other influence maximization algorithms have been proposed in

the literature, for dealing with several tasks in specific contexts. In topic-aware

influence maximization (TAIM) the IM problem is extended considering what are

the topics to be propagated. TAIM introduces the topics to exploit the interests

of users interacting in social networks while computing the spread. TAIM mod-

els are TIC (Topic-aware Independent Cascade) and TLT (Topic-aware Linear

Threshold) [103]. The standard IM algorithm does not take the time dimension

into account. Such an assumption could be unreasonable in some cases, time-

aware diffusion models introduce the concept of step as a temporal measure and

restrict the process of diffusion within these steps. Chen et al. [104] proposed

IC-M the model, where for each edge between the nodes u and v, a meeting prob-

ability ppu,vq is defined, and the IM problem consists in identifying the optimal

seed set capable of activating the greatest number of nodes in at the most τ steps.

Kim et al. [105] proposed the CT-IC model, based on the concept of continuous

time, by defining an activation delay of the nodes and a delay distribution.

Data-driven. The main goal of data-driven approaches is to exploit propagation

traces available in historical data for learning how influence flows in the network,

and thus estimating the expected spread of influence. As an example, Goyal et

al. [106] proposed a data-driven approach based on the credit distribution model,

which can learn different levels of influenceability of users, also taking into ac-

count the temporal aspects. Data-driven approaches are more flexible and able to

adapt to different networks and application scenarios, compared to models that

randomly assign influence probabilities, which may lead to large errors in spread

prediction. However, they require more computational resources and a large num-

ber of propagation traces representative of user interactions.

5.2 Related work 85

5.2.1 Comparison

The Weighted Artificial Bee Colony (WABC) described in this chapter effec-

tively exploits a weighted bio-inspired approach to deal with the influence max-

imization task. It can be classified as an influence ranking-proxy algorithm and

it is characterized by several changes and improvements with respect to previous

related work. Primarily, our algorithm exploits a more effective way of evaluating

fitness, which can be considered as the resolution of a reachability problem, where

the maximum probability path is considered among all possible ones connecting

two distinct nodes. This feature leads to two main benefits:

• The total spread can be accurately estimated. It is a crucial result for an

influence maximization task, as it measures the expected number of influ-

enced users, without providing incorrect assessments.

• The influence overlap problem is addressed. This is a common issue of

classical influence ranking-proxy algorithms, which can lead to negative

effects caused by influence redundancy during the maximization process.

Moreover, WABC is less sensitive to parameter tuning in comparison to related

approaches, as it does not use a fixed a-priori depth at which to explore the graph.

In particular, it exploits a threshold on the influence probability, dynamically fo-

cusing more on the most promising paths. Furthermore, we combined information

diffusion and influence maximization with a political polarization analysis and a

user classification process, to identify the main influencers and derive the main

information diffusion strategies in a scenario characterized by multiple opposing

factions. In particular, we leveraged WABC to identify the top influencers in a

politically-polarized network, classifying them according to their profile (jour-

nalistic page, political activist, popular or normal user) to determine the type of

political campaign. Finally, we measured their influence strength by following a

simulation-based approach.

5.3 Proposed algorithm: WABC 86

5.3 Proposed algorithm: WABC

In recent years, nature has been a great source of inspiration for the devel-

opment of different algorithms aimed at solving many real-world optimization

problems [107]. These bio-inspired techniques are related to Swarm Intelligence

(SI), a particular field of Artificial Intelligence (AI) based on observing the behav-

ior of social animals such as ants and bees. Swarm Intelligence can be defined as

the collective behavior of decentralized and self-organized systems, in which the

interaction among components causes the emergence of complex behavior.

5.3.1 Artificial Bee Colony

Among the various swarm intelligence algorithms in the literature, Artificial

Bee Colony (ABC) is one of the most studied and applied. It is a meta-heuristic al-

gorithm, introduced in 2005 by Derviş Karaboğa [88] and applied to the influence

maximization task by Sankar et al. [89], inspired by the food supply model of bee

colonies. It consists of three main components: food sources, employed bees, and

unemployed bees. In the colony system, the quality of a food resource depends on

several factors, like the distance from the hive, the amount of food, and the ease

of extraction. Each resource is assigned to a bee, whose task is to store the infor-

mation related to that resource. The main objective of such a model is the search

for a source rich in nectar and the abandonment of a poor source. Employed bees

collect nectar from a flower and bring it to the hive, carrying details about the

source of food and sharing this information with other bees. Unemployed bees

are those bees that are not currently picking up nectar from any flower and can be

divided into two types: scout bees whose job is to search for new nearby sources

of food; onlooker bees which wait for choosing a food source based on informa-

tion brought to the hive by employed bees, then selecting the most promising one.

This exchange of information takes place in the hive through a particular tech-

nique called waggle dance [108]. It consists in a specific physical movement of

bees, whose duration is proportional to the goodness of the food source.

5.3 Proposed algorithm: WABC 87

The ABC algorithm can be adapted to explore a social network for identifying

a subset of nodes with maximum influence, based on the waggle dance mech-

anism. Each node of the social network is considered a source of food. The

employed bees, used to identify the opinion leaders of the network, are initially

assigned on the basis of a ranking vector. Scout bees are used for exploring the

neighborhood of employed bees for obtaining better solutions, while onlooker

bees are used to indicate influenced nodes. For the sake of clarity, Table 5.1 re-

ports the meaning of the main symbols used throughout this chapter.

Symbol Meaning

V Set of graph nodes
E Set of graph edges
S Seed set
At Set of active nodes at time t
EB Set of employed bees eb
SB Set of scout bees sb
f itx Fitness value of the node x
Fptq Global fitness value at time t
ppx,uq Probability of the path between x and u
σpSq Expected spread, i.e. an estimate defined by the algorithm starting from S
σ̃pSq Evaluated spread, i.e. an estimate defined via simulation starting from S
ω Convergence distance
θ Cutting threshold
Nx Set of all neighbors of the node x
Nin

x Set of in-neighbors of the node x
Nout

x Set of out-neighbors of the node x
Nd

x Set of distinct nodes reachable from x in d steps

Table 5.1: Meaning of the most important symbols used in this chapter.

Algorithm 5 shows the pseudo-code of the ABC algorithm. The input is com-

posed of: a graph G “ pV,Eq, a ranking vector R, with |R| “ |V |, and an integer k

representing the seed set size. The produced output is twofold, and consists of:

• a set of nodes S with S Ă V and |S| “ k, which maximizes the spread (i.e.,

the number of influenced users);

• the expected spread σpSq.

5.3 Proposed algorithm: WABC 88

ALGORITHM 5: Artificial Bee Colony (ABC)
Input : Graph G “ pV,Eq, a ranking vector R, an integer k
Output: Seed set S, Expected spread σpSq

1 EB Ð top-k nodes ordered by ranking
2 SB Ð H

3 for eb P EB do
4 SB Ð SB YNout

eb

5 FitEB Ð H

6 for eb P EB do
7 f iteb Ð evalFitnessptebu,Gq

8 FitEB Ð FitEB Y f iteb

9 /* Local optimum search */
10 while not convergence reached do
11 SB Ð orderByRankingpSBq

12 for sb P SB do
13 f itsb Ð evalFitnessptsbu Y EB,Gq

14 if D eb | f itsb ě f iteb then
15 EB Ð EB z targminebFitEBu Y tsbu

16 SB Ð H

17 for eb P EB do
18 SB Ð SB YNout

eb

19 /* Estimate global optimum */
20 S Ð EB
21 for s P S do
22 σpSq Ð σpSq ` f its

23 return S,σpSq

The algorithm starts by defining two sets:

• The set of employed bees EB Ă V is initialized with the best k nodes of the

input ranking vector R, identifying the initial seed set (line 1).

• The set of scout bees SB Ă V is initialized with an empty set and filled by

joining the out-neighborhood Nout
eb of each employed bee (lines 2-4).

Then the vector FitEB is obtained evaluating the fitness function, for each em-

ployed bee in EB (lines 5-8), whose goal is to iteratively determine local optima

during the diffusion process. To that end, the algorithm starts an iterative phase

5.3 Proposed algorithm: WABC 89

(lines 10-18), performing at each iteration the following operations:

• The set of scout bees SB is ordered by ranking value (line 11).

• For each scout bee in descending order of ranking the fitness f itsb is evalu-

ated (lines 12-13).

• If f itsb exceeds the fitness value of one of the scout bees then the roles are

exchanged (lines 14-15).

This phase is repeated until the evaluation of the whole set SB. The set of scout

bees is therefore repopulated with the out-neighborhood of the new employed bees

(lines 16-18) and the process iterates until a termination criterion is reached. Once

this criterion is reached the final seed set S is filled with the employed bees eb in

EB (line 20). The expected spread σpSq is evaluated by summing up the fitness

f its of each seed s P S (rows 21-22). Finally, the algorithm returns the final seed

set S and the expected spread σpSq (line 23).

5.3.2 Weighted Artificial Bee Colony

Weighted Artificial Bee Colony (WABC) is the extension of the classical ABC

algorithm [89] we designed in [3]. The main advantages are related to how the

fitness function is calculated. Specifically, in ABC the fitness evaluation is based

on a difference between sets. The input is composed of the graph G “ pV,Eq,

a distance d, and the set of nodes X with respect to which fitness is evaluated.

For each node x P X , the coveredx set is filled with each node u P V reachable

by x in d steps, i.e. the dout–neighborhood of x (Nd
x), where d is generally equal

to one (lines 3-4). Therefore, each node x P X evaluates its fitness (f itx) as the

difference between its own coveredx set and the coveredz for each node z P X with

z ‰ x. In other words, it finds how many nodes it can reach in d steps that are not

reachable from any other node (lines 6-10). Finally, the global fitness value f itX
is obtained by summing up f itx@x and returned (lines 11-12). This pseudo-code

of this procedure is shown by Algorithm 6.

5.3 Proposed algorithm: WABC 90

ALGORITHM 6: ABC fitness evaluation
Input : Graph G “ pV,Eq, a distance d, a set of nodes X
Output: Fitness value f itX

1 covered Ð H

2 /* For each x P X store each node u P V reachable by x in d
steps, i.e., the dout-neighborhood of x (Nd

x) */
3 for x P X do
4 coveredx Ð Nd

x Ă X

5 /* Each node evaluates its fitness as the number of unique
nodes that compose its dout-neighborhood Nd

x */
6 for x P X do
7 f itx Ð 0
8 for u P coveredx do
9 if !D z P X |u P coveredz then

10 f itx Ð f itx ` 1

11 f itX Ð
ř

xPX f itx
12 return f itX

Differently, in WABC (see Algorithm 7), each node evaluates the weighted

sum with respect to the unique nodes it can activate. Similarly, the input is com-

posed of: the graph G “ pV,Eq, a threshold θ , and the set of nodes X . For each

employed node x P X , the coveredx set is filled with the pair xu, ppx,uqy for each

node u covered by x, where ppx,uq represents the maximum influence probability

of x on u. The evaluation of the fitness can be considered as the resolution of a

reachability problem where the maximum probability path is considered among

all the paths P P Pathspu,vq, connecting x and u. However, we must note that con-

sidering all the possible influence paths between an employed bee and the other

nodes is often computationally infeasible. For this reason, the algorithm takes as

input positive threshold P ℜ,θ ě 0, which defines the minimum probability of

influence, i.e., a cutting value for those paths having a negligible activation prob-

ability. Therefore, given this threshold, each employed x determines the set of

nodes reachable along a path of total probability at least equal to θ , where the

probability of a path P from x to u, i.e. ppx,uq, is given by the product of the

weights associated to each edge pi, jq P P (line 3-6).

5.3 Proposed algorithm: WABC 91

At this point, the fitness value f itx for each x P X is computed. Specifically, for

each pair xu, ppx,uqy P coveredx, f itx is incremented of ppx,uq if x has the highest

influence on the node u, i.e. there not exists another node z such that ppz,uq ą

ppx,uq. So, when two nodes reach the same target, only the most influential will

increase its fitness by a value of ppx,uq (lines 8-12). Finally, the global fitness

value f itX is obtained by summing up all the obtained f itx and returned (lines

13-14).

ALGORITHM 7: WABC fitness evaluation
Input : Graph G “ pV,Eq, a threshold θ , a set of nodes X
Output: Fitness value f itX

1 covered Ð H

2 /* Find the best activation path for each pair x x P X ,u P V y */
3 for x P X do
4 for u P V do
5 ppx,uq Ð maxPPPathspx,uq

ś

pi, jqPP ppi, jq
6 coveredx Ð coveredx Y xu, ppx,uq | ppx,uq ě θy

7 /* The employed bee with the highest influence probability
increases its fitness */

8 for x P X do
9 f itx Ð 0

10 for xu, ppx,uqy P coveredx do
11 if !pDxu, ppz,uq z,u P Xy P coveredz | ppz,uq ą ppx,uqq then
12 f itx Ð f itx ` ppx,uq

13 f itX Ð
ř

xPX f itx
14 return f itX

The described fitness function introduces two main improvements with respect

to the classical ABC approach. Firstly, the weighted activation, with a strength

equal to the influence probability, leads to a more accurate estimate of the final

spread, compared to the classical binary activation used in ABC, also addressing

the influence overlap issue. Moreover, the algorithm dynamically focuses more

on the most promising paths, leading to more effective and efficient exploration

of the social graph compared to ABC, which considers the neighborhood of each

employer node within a fixed small number of hops, often equal to one.

5.4 Experimental evaluation 92

5.4 Experimental evaluation

In this section, we evaluate the performances of the proposed algorithm, by ap-

plying it to a politically-polarized case study involving real-world data and com-

plex influencing behaviors, related to the 2016 Italian constitutional referendum.

On 4th December 2016, Italian voters were asked whether they approve a consti-

tutional law that amends the Italian Constitution to reform the composition and

powers of the Parliament of Italy, as well as the division of powers between the

State, regions, and administrative entities1. The main supporter of the referendum

(i.e., in favor of yes) was the Democratic Party (in Italian Partito Democratico or

PD) and its leader, also Italian prime minister, Matteo Renzi. On the other side,

in favor of no were the main opposition parties (e.g., Movimento 5 Stelle, Forza

Italia) and several citizen committees. The referendum saw a high voter turnout

(approximately 65% of voters) and a majority of the votes opposed to the reform

(i.e., voting no), which exceeded 59% of the expressed preferences. A political

effect of the referendum’s result was the resignation of the Italian prime minister.

The political event under analysis E is a two-faction event F “ tyes,nou. In

order to investigate the information diffusion processes involved in the political

campaign of both factions, also identifying the main influencers, we build two

polarity-based subgraphs, Gyes and Gno. The subgraphs generation process is

based on: iq the identification of retweet relationships among users and iiq the

binary classification of tweets based on a set of faction keywords. As a first step,

we collected the main keywords K used as hashtags in tweets related to E. Such

keywords have been grouped as follows:

• Kneutral “ t#referendumcostituzionale, #siono, #referendum, #4dicembre,

#riformacostituzionale, #referendum4dicembreu

• Kyes “ t#bastaunsi, #iovotosi, #leragionidelsi, #italiachedicesi, #iodicosi, u

• Kno “ t#iovotono, #iodicono, #bastaunno, #famiglieperilno, #ragionidelnou

1http://www.interno.gov.it/it/italiani-voto-referendum-costituzionale

5.4 Experimental evaluation 93

Based on these keywords, we collected 338,592 tweets posted from 23rd Oc-

tober (5 weeks before the voting day) to 3rd December 2016 (one day before).

Collected tweets were pre-processed as described in the previous chapters, and

classified as follows: if a tweet t contains only keywords that are in favor of a

specific faction f P F , then t is classified as in favor of f ; otherwise, t is classified

as neutral. For instance, Table 5.2 shows some examples of tweets we collected

with their classification (translated in English for the Reader’s convenience).

Text Keywords Class

Why it is important to be well informed
on #referendumcostituzionale.

#referendumcostituzionale neutral

#IoVotoNO: all the reasons to vote
against this reform. #iovotono no

For a stronger Italy in Europe!
#iovotosi #referendum #democrazia

#iovotosi, #referendum,
#democrazia yes

Table 5.2: Examples of tweets about the Italian constitutional referendum.

Starting from the set of classified tweets, we generated two subgraphs Gyes

and Gno, relating to the users who supported the yes and no faction, respectively.

Specifically, the graph Gyes = (V , E) was obtained as follows:

• The set of nodes V is represented by users who have at least published a

tweet or a retweet classified in favor of yes.

• The set of direct edges E is determined using the retweet relationship. Par-

ticularly, there is an edge pu1,u2q from user u1 to user u2 if there exists at

least one tweet classified in favor of yes posted by u1 and retweeted by u2.

• The influence weight is established by using a weighted cascade criterion.

In particular, the probability of influence ppu,vq associated to the edge pu,vq

is defined as 1
|Nin

v |
, where |Nin

v | is the in-degree of v, i.e., the number of

retweets published by user v.

The generation process for the Gno graph is analogous. Once having extracted

the Gyes and Gno graphs, we determined the leading influencers and the main

information diffusion strategies of the yes and no factions.

5.4 Experimental evaluation 94

5.4.1 Graph properties

The yes graph Gyes has 117,000 nodes and 270,000 edges, with a density of

1.95 ¨ 10´5, while the no graph Gno has 130,000 nodes and 440,000 edges, with

a density of 2.72 ¨ 10´5. The observed low densities are related to an accentuated

sparsity of the graphs, induced by the presence of many isolated nodes (i.e., users

publishing tweets that have not caught the attention of any user). For this reason,

the analysis we carried out only focused, for both graphs, on the Giant Component

(GC), i.e. their largest connected component. Figure 5.1 shows the GC subgraph

for the yes and no factions, whose main properties are reported in Table 5.3.

(a) Giant component of graph of yes (GCyes). (b) Giant component of graph of no (GCno).

Figure 5.1: Representation of the giant component of the two graphs.

Feature GCyes GCno

Num. of nodes 72,225 78,899
Num. of edges 269,218 437,608
Diameter 18 18
Average in-degree 3.98 5.67
Clustering coefficient 0.05 0.06
Average path length 5.92 5.28

Table 5.3: Giant components properties of the two graphs

5.4 Experimental evaluation 95

Table 5.4 shows the top-5 most influential nodes computed through the PageR-

ank scoring strategy [109]. The underlying assumption of this algorithm is that

more important users are likely to receive more links from others.

Pos. Gyes Gno

1 bastaunsi Mov5Stelle
2 matteorenzi matteosalvimini
3 davidefaraone marionecomix
4 fanpage beppe_grillo
5 repubblicait bastaunsi

Table 5.4: Top-5 most influential nodes calculated using PageRank

5.4.2 Parameter sensitive analysis

Here we investigate the effect of different parameters on WABC performance.

The algorithm requires as input the network graph G “ pV,Eq, an integer k which

represents the seed set cardinality, a threshold θ on the minimum path probability,

a real number ω which controls convergence, and a diffusion model. In our case

study, we used the following parameters: ω “ 2 ¨ 10´2, k “ 10, and Weighted

Cascade as a diffusion model. As with the hyperparameter optimization of many

algorithms, we set the threshold θ by performing several experiments, varying

its value within a given range. This process follows a grid search approach and

requires the optimization of a score function, f pθ q, derived as described below.

We analyzed the behavior of the algorithm varying θ with respect to the ex-

pected spread given by the algorithm (σθ pSq), an estimate of the real spread

achieved through 20,000 simulations (σ̃θ pSq), and the overall execution time (Tθ).

These different metrics are jointly modeled in the following score function:

f pθ q “ Errrelpθ q ` Timerelpθ q `Covrelpθ q

with Θ “ tθ1, ...,θnu the set of all considered thresholds.

5.4 Experimental evaluation 96

The above formula takes three factors into account:

• The relative error of the expected spread with respect to its estimate achieved

by simulating the diffusion process starting from the k seeds identified by

the algorithm:

Errrelpθ q “
|σθ pSq´σ̃θ pSq|

σ̃θ pSq

• The relative execution time, i.e. the ratio between the overall execution

time with the current threshold θ and the maximum time taken by the other

instances executed with different values of θ :

Timerelpθ q “ T θ

maxθPΘT θ

• The percentage decrement between the number of covered nodes with the

current threshold and the maximum number of nodes covered with different

values of θ :

Covrelpθ q “ p1 ´
σ̃θ pSq

maxθPΘσ̃θ pSq
q

We estimated the optimal value of the threshold as:

θ̂ “ argminθPΘ f pθ q

Figure 5.2 shows the trend of f pθ q (in blue) varying θ for yes and no graphs,

in which threshold values are sorted in descending order. For decreasing values of

θ , the relative error of the expected spread (in green) decreases, while the overall

execution time (in red) increases. Thus, through the minimization of f pθ q, we

can find a suitable value for θ , reached at θ̂ “ 8 ¨ 10´2 for both graphs, which

provides a good trade-off between accuracy and complexity. Subsequently, this

configuration can be used to investigate interesting aspects of the obtained results,

such as comparing the members of the final seed set with the major activists and

journalistic pages affiliated with the corresponding faction.

5.4 Experimental evaluation 97

Errrel(θ)
Timerel(θ)
Covrel(θ)
f(θ)

Va
lu
e

0

0,25

0,5

0,75

1

1,25

θ
0,5 0,1 0,08 0,05 0,02 0,01

(a) Graph of yes (Gyes).

Errrel(θ)
Timerel(θ)
Covrel(θ)
f(θ)

Va
lu
e

0

0,25

0,5

0,75

1

1,25

θ
0,5 0,1 0,08 0,05 0,02 9×10−3

(b) Graph of no (Gno).

Figure 5.2: Trend of the f pθ q score function and its components.

5.4.3 WABC vs. ABC

In this section, we investigate the main advantages of the WABC algorithm

with respect to its original version (ABC), by varying the cardinality of the seed

set k. Our analysis focuses on evaluating: iq the execution time; iiq the evaluated

spread σ̃pSq, i.e., the estimate of the real spread achieved via simulation; and iiiq

the expected spread σpSq, i.e., the estimate given by the algorithm. The computing

system used for the experimental evaluation is a cluster node equipped with 4

CPUs (AMD 6376), each one with 16 cores of 2.3GHz, and 256 GB of memory.

Figure 5.3 shows the execution time for the two algorithms by varying the

value of k. The ABC algorithm provides better performance thanks to the greater

simplicity in computing the fitness function that analyzes only the neighbors of the

seeds at a fixed distance. Besides this factor, greater simplicity emerges in terms

of convergence, as ABC generally converges after a single iteration. Figure 5.4

shows the number of influenced nodes, estimated by simulating the information

diffusion process, starting from the seed set identified by the two algorithms. In

this case, WABC achieved similar results with respect to ABC, finding sets of

seeds that allow reaching almost the same number of nodes in all the considered

configurations. The average in-degree of the subgraph induced by the set of influ-

5.4 Experimental evaluation 98

enced users for Gyes and Gno graphs is equal to 3.86 and 6.15 respectively. These

values highlight the tendency of users, especially in the Gno graph, to retweet con-

tent from different sources. This results in a small number of exclusive retweet

relationships with individual users, with a dilution of influence probability.

ABC
WABC

Ti
m

e
(s

ec
.)

0

500

1000

1500

2000

k
5 10 15 20 25

(a) Graph of yes (Gyes).

ABC
WABC

Ti
m

e
(s

ec
.)

0

500

1000

1500

2000

k
5 10 15 20 25

(b) Graph of no (Gno).

Figure 5.3: Comparison between WABC and ABC in terms of execution time.

ABC
WABC

E
va

lu
at

ed
 s

pr
ea

d

0

5000

10000

15000

20000

25000

k
5 10 15 20 25

(a) Graph of yes (Gyes).

ABC
WABC

E
va

lu
at

ed
 s

pr
ea

d

0

5000

10000

15000

20000

25000

k
5 10 15 20 25

(b) Graph of no (Gno).

Figure 5.4: Comparison between WABC and ABC in terms of evaluated spread.

5.4 Experimental evaluation 99

A third aspect to analyze concerns the quality of the expected spread. The

majority of ranking-proxy models, such as Degree, PageRank, Rank, and IRIE

are unable to provide an estimate of the expected spread, highlighting the need

for identifying appropriate solutions for this issue. The ABC algorithm provides

an estimate of the spread, returning the number of unique nodes reachable in one

hop, starting from the identified seed set. Figure 5.5 shows a comparison between

WABC and ABC in terms of relative error on the expected spread. Specifically,

for each cardinality k of the seed set, the error was computed by comparing the

expected spread σkpSq given by the algorithm with the evaluated spread σ̃kpSq, an

estimate of the real value achieved through 20,000 simulations. It can be clearly

observed that the WABC algorithm provides more accurate spread estimates com-

pared to ABC, with an up to 24% decrease in the relative estimation error.

ABC
WABC

R
el

at
iv

e
er

ro
r

on
 e

xp
ec

te
d

sp
re

ad

0

0.1

0.2

0.3

0.4

0.5

0.6

k
5 10 15 20 25

(a) Graph of yes (Gyes).

ABC
WABC

R
el

at
iv

e
er

ro
r

on
 e

xp
ec

te
d

sp
re

ad

0

0.1

0.2

0.3

0.4

0.5

0.6

k
5 10 15 20 25

(b) Graph of no (Gno).

Figure 5.5: Comparison between WABC and ABC in terms of relative estimation
error on the expected spread.

Summing up, the two algorithms achieved quite similar results in terms of

the number of influenced users. WABC showed to be more time-consuming as

it exploits a more sophisticated approach for fitness evaluation. However, it was

able to obtain much more precise estimates of the expected spread, which is a

crucial aspect that makes our algorithm more suitable for use in real contexts.

5.4 Experimental evaluation 100

5.4.4 WABC vs ranking-proxy models

To better assess the effectiveness of WABC, we carried out a comparison, in

terms of evaluated spread, with the most relevant ranking-proxy models used in

the literature:

• Degree: uses the out-degree of each node as the seed set selection criterion.

• PageRank: uses the pagerank [109] of each node, evaluated on the reversed

graph, as the seed set selection criterion.

• Rank: uses the rank, proposed in [89] of each node as the seed set selection

criterion.

• DIRIE: is a distributed version of the IRIE algorithm [97].

Figure 5.6 shows the results obtained by WABC in comparison with these

ranking-proxy techniques by varying k.

WABC
DIRIE
Rank
PageRank
Degree

E
va

lu
at

ed
 s

pr
ea

d

0

5000

10000

15000

20000

25000

k
5 10 15 20 25

(a) Graph of yes (Gyes).

WABC
DIRIE
Rank
PageRank
Degree

E
va

lu
at

ed
 s

pr
ea

d

0

5000

10000

15000

20000

25000

k
5 10 15 20 25

(b) Graph of no (Gno).

Figure 5.6: Comparison between WABC and the most relevant state-of-art
ranking-proxy techniques in terms of evaluated spread.

5.4 Experimental evaluation 101

Compared to the aforementioned techniques, WABC turned out to be the most

effective, providing the best solution in almost any configuration. In particular,

WABC outperformed ranking-proxy techniques based on simple classical central-

ity measures, i.e. PageRank, Rank, and Degree, with an up to 40% improvement

over the latter. Compared to DIRIE, which is based on the Independent Cascade

model and exploits a more complex algorithm, WABC achieved quite similar re-

sults, with a slight improvement for low values of k, i.e., small seed sets. In

addition, a noteworthy advantage of WABC compared to both DIRIE and all the

other state-of-the-art approaches is the ability to give an accurate estimate of the

spread at the end of the influence propagation process.

5.4.5 Diffusion strategies of politically-polarized information

Starting from the seed set determined by WABC, we classified each influencer

according to its profile, in order to investigate the information diffusion strategies

followed by each faction. Moreover, we simulated the diffusion process to visu-

alize their estimated influence within the analyzed politically-polarized network.

As a first step, we compared the two seed sets generated by WABC and ABC to

measure the degree of overlap and their political-based coherence.

Gyes Gno

ABC WABC ABC WABC

lucatelese serracchiani dukana2 dukana2
bastaunsi fnicodemo beppe_grillo beppe_grillo
ArsenaleKappa TwitterItalia matteosalvinimi matteosalvinimi
antonio_bordin matteorenzi marionecomix comitatono
GiorgiaMeloni pdnetwork figprov ale_dibattista
nonleggerlo ArsenaleKappa antonio_bordin antonio_bordin
matteorenzi repubblicait tuseivitaearia luigidimaio
TwitterItalia Tgcom24 ArsenaleKappa ArsenaleKappa
tuseivitaearia tuseivitaearia arsenaletv Mov5Stelle
molumbe bastaunsi ComitatoDelNo GiorgiaMeloni

overlap: 50% overlap: 50%

Table 5.5: Comparison between the seed sets identified by WABC and ABC.

5.4 Experimental evaluation 102

As shown in Table 5.5, the two algorithms produced quite different results,

with a seed set overlap equal to 50% for both graphs. It is also worth noticing that

the results generated by WABC are more accurate from the point of view of polit-

ical polarization. As an example, the seed set related to the yes faction determined

by ABC contains leading politicians, like Giorgia Meloni, that were notoriously

against the referendum objectives. On the contrary, by analyzing the seed set pro-

duced by WABC, a correct correspondence emerges between the members of each

seed sets and his/her actual political leaning.

Afterward, we divided influencers identified by WABC into four categories,

news pages (information or satire), political activist, popular user and normal

user, finding out the composition shown in Table 5.6.

news pages political activist popular user normal user

Gyes 50% 20% 20% 10%
Gno 20% 60% 10% 10%

Table 5.6: Classification of the influencers for Gyes and Gno graphs.

By observing this categorization, we can determine the type of political cam-

paign adopted by the two factions during the political campaign:

• The no faction saw a greater effort from leading politicians, such as Matteo

Salvini, Alessandro Di Battista, Luigi Di Maio, Beppe Grillo, and Giorgia

Meloni, actively opposing the constitutional referendum on social media

platforms.

• The yes faction, instead, saw Matteo Renzi as the main leader, along with

news pages such as La Repubblica and Tgcom24, which confirms the com-

munication strategy of yes faction, centralized on the head of government.

Lastly, Figure 5.7 shows the results of a simulation executed starting from the

seed set identified for the two graphs. By coloring each node according to the

seed node (influencer) that determined its activation, we can see that the afore-

mentioned political activists and news page can activate a remarkable portion of

the politically-polarized networks analyzed in this case study.

5.5 Conclusions 103

(a) Graph of yes (Gyes). (b) Graph of no (Gno).

Figure 5.7: Simulation of the influence diffusion process starting from the seed
set identified for the two graphs.

5.5 Conclusions

This chapter presented Weighted Artificial Bee Colony (WABC), a bio-inspired

influence maximization algorithm that introduces an improved weighted approach

to fitness evaluation. It has been applied to a real case study related to the Constitu-

tional Referendum held in Italy in 2016, to analyze the propagation of information

in a real-world politically-polarized network. In particular, we identified the main

influencers for the yes and no factions, deriving also the main information dif-

fusion strategies of each faction during the political campaign. Experimental re-

sults confirmed the effectiveness of the proposed algorithm, which outperformed

ranking-proxy techniques based on standard centrality measures, i.e., PageRank,

Rank, and Degree. Compared to DIRIE, WABC achieved quite similar results,

with a slight improvement in identifying small seed sets. In addition, compared to

the classical ABC, it proved to be more time-consuming but much more accurate,

with an up to 24% improvement in the accuracy of spread estimation.

As a future work, the relationship between the diffusion of influence and polit-

ical polarization can be further investigated, analyzing how the tendency of users

to polarize in favor of a faction affects the dynamics of information diffusion and

vice versa, and identifying patterns in the evolution of the political leaning of users

interacting on social media.

Chapter 6
Hashtag recommendation on social
media platforms: a BERT-based
translation approach

In the previous chapters, we provided an accurate description of a wide range

of hashtag-based methodologies that we designed to extract high-quality informa-

tion from politically-polarized Big Social Data, with the aim of modeling users’

behavior, opinion, emotions, and interactions, thus providing a data-driven ap-

proach to understanding and studying political phenomena. Due to the hashtag-

based approach they follow, these methodologies are strongly conditioned by the

availability of representative hashtags in the online content published by social

users. Unfortunately, because of the high dynamicity of social media conversa-

tion, choosing up-to-date and appropriate hashtags for a post is not always easy

for users, and therefore posts are often published without hashtags or with hash-

tags not well defined [110]. To mitigate this issue, as highlighted in Section 1.1,

hashtag recommendation models can be effectively used to generate consistent

hashtags for a given social media post, leading to a double advantage: on the one

hand, users are supported in choosing a hashtag in line with both the semantics

of the text and the latest trends; on the other hand, hashtag-based techniques can

benefit from a greater amount of representative and high-quality data.

104

105

This chapter presents HASHET (HAshtag recommendation using Sentence-to-

Hashtag Embedding Translation) [9], a methodology that we designed with the

aim of suggesting a relevant set of hashtags for a given post. HASHET is based

on two independent latent spaces for embedding the text of a post and the hash-

tags it contains. A mapping process based on a multilayer perceptron is then used

for learning a translation from the semantic features of the text to the latent repre-

sentation of its hashtags. Specifically, the semantic space of sentences is obtained

by using a pre-trained sentence embedding model, such as the Google Univer-

sal Sentence Encoder (GUSE) [13], or the Bidirectional Encoder Representations

from Transformers(BERT) [15], which are very effective in capturing semantic

and syntactic features of microblog texts. Differently, the latent space of hashtags

comes from the training of a Word2Vec model [111] based on a Continuous Bag

of Words (CBOW) architecture, aimed at discovering contextual relationships be-

tween words and hashtags.

Similarly to neural attention-based models present in the literature, HASHET

exploits a semantic representation of a microblog generated by a transformer-

based encoder. The key difference is in how it uses this representation to rec-

ommend hashtags. Neural-based solutions frame the recommendation task as a

multi-class classification problem [112–114], using a softmax activation and min-

imizing a cross-entropy loss. Differently, in HASHET, we translate the latent rep-

resentation of a post into a target vector lying in the hashtags embedding space.

Then, the top-k nearest hashtags in this space are found and the resulting set is

enriched using semantic expansion, a process based on semantic similarity in the

hashtags embedding space. The obtained output is composed of semantically sim-

ilar hashtags, reflecting the semantic relationships learned among hashtags and

the underlying topic-based clustering structure. This inspection process thus ex-

ploits the concept of locality in the hashtags embedding space, which introduces

a marked improvement in predicting hashtags with respect to other techniques.

The effectiveness of HASHET has been investigated in two real-world case

studies related to the 2016 US presidential election and the COVID-19 pandemic.

We evaluated the performance of two language representation models for sentence

6.1 Embedding techniques 106

embedding and tested different search strategies for semantic expansion, finding

out that the combined use of BERT and a global expansion strategy leads to the

best recommendation results, with an average F-score up to 0.82 and a recom-

mendation hit rate of up to 0.92. We also compared HASHET to the most relevant

techniques used in the literature (generative models, unsupervised models, and

attention-based supervised models) by achieving an up to 15% improvement in

F-score for the hashtag recommendation task. For usability and reproducibility

purposes, an open-source version of HASHET is available on Github1.

The remainder of the chapter is organized as follows. Section 6.1 presents the

embedding techniques used in the proposed model, discussing its application in

multilingual contexts. Section 6.2 discusses related work on hashtag recommen-

dation. Section 6.3 describes the HASHET model. Section 6.4 presents the case

studies. Finally, Section 6.5 concludes the chapter.

6.1 Embedding techniques

The HASHET model is based on a translation between two independent em-

bedding spaces: iq the semantic space of sentences; iiq the latent space of hashtags.

For what concerns the first embedding space (Semb) we compared two of the most

used state-of-art solutions for sentence encoding, published by Google, described

in the following.

Google Universal Sentence Encoder (GUSE) [13]. It consists of a deep sen-

tence embedding model with two available implementations: one makes use of the

transformer architecture [115], while the other is formulated as a deep averaging

network (DAN) [116]. In this work, the first solution was chosen for generat-

ing the latent representation of a given sentence. It is pre-trained on a variety of

web sources and Stanford Natural Language Inference (SNLI) corpus [117]. The

encoding model is designed by using multi-task learning, according to which a

single encoder is used for multiple downstream tasks, which are: a Skip-Thought-

1https://github.com/scalabunical/HASHET

https://github.com/scalabunical/HASHET

6.1 Embedding techniques 107

like unsupervised task [118], a conversational input-response task [119], and a

classification task for supervised learning. The latest transformer-based large ver-

sion available on Tensorflow-Hub2 has been used. Starting from a lowercase PTB

tokenized string, it computes context-aware representations of the input words,

taking into account both their ordering and identity. These representations are

then converted to a single 512-dimensional sentence encoding vector, computed

as their element-wise sum.

Bidirectional Encoder Representations from Transformers (BERT) [15]. It

is based on a multi-layer bidirectional Transformer [115], pre-trained on two un-

supervised tasks, Masked Language Modeling (MLM) and Next Sentence Pre-

diction (NSP), using a large cross-domain corpus. Unlike OpenAI GPT [120],

which uses a unidirectional (left-to-right) language model or ELMo [121], which

uses a shallow concatenation of independently trained left-to-right and right-to-

left language models, BERT is deeply bidirectional. In fact, the use of the MLM

objective enables the representation to fuse the left and right contexts, allowing the

pre-training of a deep bidirectional language representation model. BERT outper-

formed many task-specific architectures, advancing the state of the art in a wide

range of Natural Language Processing tasks, such as textual entailment, text clas-

sification, and question answering. In this work, we used the bert-base-uncased

implementation from Huggingface3, characterized by 12 Transformer blocks, a

hidden dimensionality of 768, 12 attention heads and 110M parameters. We also

experimented with both the average pooling of the last hidden states and the hid-

den representation of the CLS token as the raw sentence embedding to be fed to

our translation head, responsible for the mapping of this condensed representation

in the hashtag embedding space.

2https://tfhub.dev/google/universal-sentence-encoder-large/5
3https://huggingface.co/bert-base-uncased

https://tfhub.dev/google/universal-sentence-encoder-large/5
https://huggingface.co/bert-base-uncased

6.1 Embedding techniques 108

The second embedding space (Wemb) comes from the training of a Word2Vec

model [111] based on a Continuous Bag of Words (CBOW) approach, aimed at

learning a dense vector representation of the words in a given set of documents.

The embedding process is based on semantic and syntactic similarity and both

statistical and co-occurrence relationships with other words. Word2Vec is one

of the most popular techniques to train a word embedding model using shallow

neural networks. The training of such a model leads to the definition of a mul-

tidimensional latent space that reflects the semantic distribution of the words in

the corpus. Words are represented uniquely as latent vectors and will be close to

each other if recognized as semantically similar, through notions such as cosine

similarity. There are two approaches to obtaining an embedding with Word2Vec:

• Continuous Bag-of-Words (CBOW): given a fixed number of context words,

this model tries to predict the word related to this context by distributing the

probability on all the input terms with a single softmax output layer.

• Skip-Gram: starting from an input word, this model tries to predict the con-

text, generating many probability distributions in the softmax output layer

for how many context words are considered.

Since the HASHET model relies on the semantic mapping between the two

aforementioned embedding spaces, it can be applied in the presence of social me-

dia posts in different languages as well as multilingual posts, which is a desirable

property, as microblogging platforms are widespread across different cultures and

geographies, as stated in Section 1.1. In particular, the latent space of hashtags

Wemb is language-agnostic, as it comes from a CBOW Word2Vec model trained

from scratch on the given corpus of posts. For what concerns the pre-trained

language representation models used for sentence embedding in the Semb space,

both present a multi-lingual version. the Google Multilingual Universal Sentence

Encoder embeds text from 16 languages into a single semantic space, while the

Multilingual BERT covers 104 spoken languages from around the world [14, 16].

6.2 Related work 109

6.2 Related work

In recent years, Natural Language Processing (NLP) has been attracting in-

creasing interest from the scientific community. With the fast growth of microblog

services, several NLP techniques have been developed to learn the representation

of microblog posts and recommend pertinent hashtags. Existing techniques can

be grouped into three main categories, described in the following.

Generative models. Godin et al. [110] proposed a method for suggesting the

top hashtags for a given post. They exploited Latent Dirichlet Allocation for find-

ing out the underlying topic distribution, used for recommending general hashtags.

Gong et al. [114] proposed a generative model for recommending hashtags in mul-

timodal microblog posts that combines textual and visual information. In [122]

authors proposed a supervised topic model-based solution for hashtag recommen-

dation on Twitter (TOMOHA). They treated hashtags as labels of topics, devel-

oping a supervised topic model for discovering relationships among words, hash-

tags, and topics of tweets. Then, by inferring the probability that a hashtag will be

contained in a new tweet, the k most probable ones are recommended.

Unsupervised models. Pang et al. [123] investigated methods from the perspec-

tive of similarity diffusion, proposing a clustering-based method that exploits sim-

ilarity cascades (SCs). SCs are a series of sub-graphs generated by truncating a

similarity graph with a set of thresholds, where maximal cliques are used to cap-

ture topics. Topics are then identified through a process of similarity diffusion.

In [124] authors proposed a hashtag recommendation methodology based on the

embedded representation of Twitter microblog posts. They performed the follow-

ing steps: i) a given tweet is represented as the weighted average of its word em-

beddings; ii) latent representations of tweets are clustered according to their syn-

tactic and semantic similarity using a density-based approach; iii) top-k hashtags

are found by computing the similarity between the entered tweet and the centroids

of the obtained clusters. Huang et al. [125] proposed a high utility pattern cluster-

ing (HUPC) framework over microblog streams. Starting from a group of repre-

6.2 Related work 110

sentative patterns from the microblogging stream, patterns that perform better in

describing topics are grouped into clusters. In this way, the proposed framework

can detect coherent and new emerging topics simultaneously. Otsuka et al. [126]

proposed a hashtag recommendation system for Twitter data streams, based on a

novel ranking scheme, called Hashtag Frequency-Inverse Hashtag Ubiquity (HF-

IHU), which is a variation of TF-IDF that considers hashtag relevancy and mi-

croblog data sparseness.

Attention-based supervised models. In recent years, attention-based models

proved to be very effective in a wide range of NLP tasks including summariza-

tion of sentences [127], or text entailment [128]. The basic idea behind the at-

tention mechanism is to allow the model to focus on the relevant parts of the

input sequence as needed. This goal is accomplished by determining a weight

for each position that indicates the amount of attention that should be paid to it

[129, 130]. The first contribution came from [129], in which an attention-based

neural machine translation (NMT) approach was leveraged to jointly translate and

align words. This model differs from a standard encoder-decoder model, as the

input sentence is encoded into a sequence of vectors, weighted through the atten-

tion mechanism in order to generate the translation. In [131] authors proposed

a novel co-attention model for Visual Question Answering (VQA) that jointly

reasons about image and question attention. Feng et al. [132] proposed a context-

attention-based Long Short-Term Memory network (CA-LSTM) for modeling a

sequence of microblogging posts and classifying the related sentiment. Many ef-

forts have been also made in the hashtag recommendation field. As an example,

Gong et al. [114] proposed a novel architecture based on convolutional neural net-

works enhanced with an attention mechanism for incorporating the trigger words.

The authors formulated the hashtag recommendation task as a multi-class classi-

fication problem. They adopted an attention mechanism to scan input microblogs

and select trigger words, which are combined with the whole microblog to per-

form the recommendation task. Li et al. [113] used an attention-based neural net-

work to learn the representation of a microblog post. Specifically, they proposed

6.2 Related work 111

a novel Topical Co-Attention Network (TCAN) that models content attention and

topic attention simultaneously. Finally, in [133] authors compared the perfor-

mances of various deep learning architectures, such as recurrent neural networks

or transformer-based architectures. They evaluated various state-of-art Zero-Shot

Learning methods like a Convex combination of Semantic Embedding (ConSE),

the Embarrassingly Simple ZSL model (ESZSL), and a Deep Embedding Model

for ZSL (DEM-ZSL), based on a joint embedding space in which either tweets or

hashtags are represented.

6.2.1 Comparison

The HASHET model, described in this chapter, effectively exploits the state-

of-art techniques and recent deep learning architectures for natural language pro-

cessing, such as embedding models and transformer networks, but follows a dif-

ferent approach. In particular, neural-based solutions frame the hashtag recom-

mendation task as a multi-class classification problem [112–114], using a soft-

max activation and minimizing a cross-entropy loss. Differently, in HASHET, we

reformulated the hashtag recommendation task as a sentence-to-hashtag transla-

tion, by learning a mapping from the embedded representation of a sentence to

the latent representation of its hashtags. Moreover, these hashtags are jointly rep-

resented by a single vector, called target, which can be seen as a summarizing

concept about them.

Since semantically similar hashtags lie close together in the embedding space,

the recommendation process performed by HASHET exploits a concept of locality

that relies on the semantic relationships within this space and its underlying topic-

based clustering structure. On the contrary, the aforementioned neural models do

not consider this structure, thus diluting the output probability among all possible

hashtags, through a plain softmax activation. Therefore, being fully aware of the

latent space structure, which reflects the semantic distribution of the hashtags in

the corpus, HASHET can produce more reliable recommendations consisting of

semantically similar hashtags, by leveraging the learned relationships among them

and the semantic mapping of the input post into this space.

6.3 Proposed model: HASHET 112

Moreover, recent works often rely on the construction of a common multi-

modal embedding space in which data from multiple modalities (e.g., sentences

and hashtags) could be projected. By inspecting this space, relative distances can

be measured in order to find the most relevant matching sentence-hashtag pairs.

As an example, Kumar et al. [133] proposed a Zero-Shot Learning (ZSL) archi-

tecture based on a joint embedding model, where hashtags are projected in the

embedding space of the sentences through an end-to-end learning process. Dif-

ferently, in HASHET, instead of relying on a single multi-modal joint embedding

space, we used two independent embedding spaces, i.e., the semantic space where

sentences are embedded, and the latent space of hashtags. Then, we learned a

translation between them through semantic mapping based on a multilayer per-

ceptron. We also inverted the direction of the projection with respect to the most

recent deep embedding models, by learning a semantic mapping from the latent

representation of a sentence to the embedding space of its hashtags.

Finally, we introduced two different strategies for semantic expansion, a pro-

cess that allows the enrichment of the set of recommended hashtags, based on

semantic similarity in the hashtag embedding space.

6.3 Proposed model: HASHET

The HASHET model is based on the embedded representation of a post in the

semantic space Semb and its projection in the latent space of its hashtags Wemb.

The projection is performed by learning a translation between these independent

spaces, through semantic mapping based on a multilayer perceptron.

Set of posts (P) Semantic mapping model
creation and training

Set of recommended
hashtags

Wemb

HASHET model (M)

{#,#,...,#}Semb

Latent space inspection
and semantic expansion

Figure 6.1: Execution flow of HASHET.

6.3 Proposed model: HASHET 113

As shown in Figure 6.1, the execution flow of HASHET consists of two main

steps:

1. Semantic mapping model creation and training.

2. Latent space inspection and semantic expansion.

A formal description of each step is provided in the following sections. For

the Reader’s convenience, Table 6.1 reports the meaning of the main symbols used

throughout the sections.

Symbol Meaning

P Corpus of posts.
E The pre-trained encoder model (GUSE or BERT) exploited for sentence embedding.
Semb Sentence embedding space. Dimensionality is 512 for GUSE and 768 for BERT.
W2V The words/hashtags embedding model, based on CBOW Word2Vec.
Wemb 150-dimensional latent space of word embedding.
MLP The mapper Semb Ñ Wemb, based on a Multi-layer Perceptron.
SM The semantic mapping model, obtained by stacking the mapper on top of the encoder.
M The HASHET model, defined as xW2V,SMy.
Sembppq Embedded representation of a post p in Semb.
Wembpwq 150-dimensional representation of a word w in Wemb.
Hppq Set of the hashtags of the post p.
targetppq Arithmetic mean of all the Wembphq,@ h P Hppq.
h˚ppq Projection of Sembppq in the latent space Wemb. It is the output of SM given p as input.
Nkphq Ordered set of k nearest hashtags of h in Wemb.
T k,nppq Set of top-k recommended hashtags for a post p expanded according to the factor n.

Table 6.1: Meaning of the main symbols used throughout the chapter.

6.3.1 Semantic mapping model creation and training

HASHET is based on the hidden relationships between the sentences and

words/hashtags embedding spaces, Semb and Wemb, learned by a semantic map-

ping process based on a multilayer perceptron. The main workflow of this step is

shown in Figure 6.2 and described by Algorithm 8. The input of this step is com-

posed of the set of posts P and the selected encoder E exploited for computing a

representation of a given post p P P within the space Semb. We tested two differ-

ent pre-trained models for sentence embedding, described in Section 6.1, namely

GUSE and BERT. The output is the HASHET model M.

6.3 Proposed model: HASHET 114

Semantic mapping
model creation

E + MLP

End-to-end fine tuning
of the entire model

Unfreeze the encoder E

Semantic mapping model training

Training of the mapper
using feature extraction

Freeze the encoder E

Selection of the pre-trained sentence encoder E

Training of the W2V model
for word embedding

150-dimensional latent space Wemb

MLP mapper initialization

nhidden=2, acthidden="ReLU",
actout="Linear"

Google Universal Sentence Encoder
512-dimensional latent space Semb

Targets generation

Arithmetic mean of
 hashtags embeddings

BERT_base
768-dimensional latent space Semb

Figure 6.2: Training of the W2V model for word embedding and target genera-
tion. Creation of the semantic mapping model (encoder (E) + mapper (MLP)) and
two-step training: training of the mapper using feature extraction and fine-tuning
of the entire model.

The first step of the process (line 1) is to clean up data in order to prepare the

corpus P for the embedding process. In particular, the input posts are modified and

filtered by using a function preprocess_datapPq, which performs the following

operations:

• Posts with no hashtags are removed.

• Posts are cleaned using regular expressions for standardizing the text encod-

ing into UTF-8, solving the problems related to the presence of characters

of different encodings, and filtering out URLs.

• The text of each post is normalized by transforming it to lowercase and

replacing accented characters with regular ones.

• Words are lemmatized and stemmed for reducing morphological variation.

• Stopwords are removed from the text by using preset lists.

• Bigrams are found in the corpus for better-capturing semantics using the

Phrases module of the Gensim library (San Francisco Ñ San_Francisco).

6.3 Proposed model: HASHET 115

ALGORITHM 8: Semantic mapping model creation and training.
Input : Set of posts P, selected encoder E
Output: HASHET model M

1 P Ð preprocess_datapPq;
2 /* Word2Vec training and target vectors generation */
3 W2V Ð Word2Vec.trainpPq;
4 targets Ð H;
5 for p P P do
6 targetppq Ð H;
7 for h P Hppq do
8 Wembphq Ð W2V.embedphq;
9 targetppq Ð targetppq `Wembphq;

10 targets Ð targets Y
targetppq

|Hppq|
;

11 /* Semantic mapping model creation */
12 E Ð init_ f rom_pretrainedpq;
13 MLP Ð init_ f rom_scratchpnhidden “ 2, acthidden “ “ReLU”, actout “ “Linear”q;
14 SM Ð stackpE,MLPq;
15 /* Training of the MLP mapper using feature extraction */
16 SM.E. f reezepq;
17 opt Ð ADAMplearning_rate “ 1e´3q;
18 SM.trainpx “ P, y “ targets, loss “ “cosine_distance”, optimizer “ optq;
19 /* End-to-end fine-tuning of the entire model */
20 SM.E.un f reezepq;
21 opt Ð ADAMplearning_rate “ 3e´5q;
22 SM.trainpx “ P, y “ targets, loss “ “cosine_distance”, optimizer “ optq;
23 M – xW2V,SMy;
24 return M

Afterward, a Word2Vec model is trained on the pre-processed corpus P fol-

lowing the Continuous Bag-of-Words (CBOW) approach (line 3). Given a certain

word w of the corpus, the W2V model outputs a 150-dimensional vector Wembpwq,

which is a latent representation of the input word in the latent space Wemb. In

this way, Word2Vec is exploited to capture the semantic relationships between

hashtags and words, and hashtags themselves. As semantically similar hashtags

are used in similar contexts, lying close together in the latent space, this induced

clustering structure is exploited by HASHET for increasing its recommendation

abilities. After the training of the Word2Vec model, the target vectors for the se-

6.3 Proposed model: HASHET 116

mantic mapping phase are generated with respect to the embedding learned by the

W2V model in the Wemb space (lines 4-10). Specifically, an empty list targets is

initialized (line 4) and filled with the target vector of each post p of P. Given the

current post p and the set of its hashtags Hppq, the latent representation of each

hashtag hp in Hppq, Wembphpq is computed (line 8). Then, the target vector for p,

targetppq, is obtained as the arithmetic mean of all Wembphpq and added to the list

(lines 9-10). It can be seen as a summarizing concept about the hashtags in Hppq,

and can be written as follows:

targetppq “
1

|Hp|
ÿ

hpPHp

Wembphpq (6.1)

HASHET is based on the translation between sentences and words/hashtags

domain, i.e. the mapping between the latent representation of the entire post in

the semantic space Semb and its hashtags condensed in the corresponding target

vector embedded in Wemb. Therefore, a crucial point of the model is the projec-

tion of the embedded sentences lying in Semb into the words/hashtags latent space

Wemb. Specifically, this mapping of the semantic vectors is learned using a seman-

tic mapping model SM, composed by stacking two main blocks: the pre-trained

sentence encoder E and the mapper MLP (line 14). The encoder E is initialized by

loading its pre-trained weights (line 12), while the MLP mapper is created from

scratch (line 13), by initializing a multi-layer perceptron with two hidden layers.

In particular, Hp1q “ 350 and Hp2q “ 250 are the number of neurons in the first and

the second hidden layer, while the output layer has 150 neurons, as it determines a

150-dimensional vector lying in Wemb. For what concerns the activation functions

we used the Rectified Linear Unit (ReLU), defined as ReLUpxq “ x` “ maxp0,xq,

in the two hidden layers and a linear activation (lin), defined as the identity func-

tion, for the output layer. The ReLU activation was used to introduce non-linearity

in the mapping process; this choice was driven also by its interesting properties,

such as sparse activation, scale invariance, and efficiency.

6.3 Proposed model: HASHET 117

Given a post p P P, its semantic representation Sembppq is computed by the first

block of the SM model, i.e. the encoder E, obtaining a σ -dimensional semantic

representation vector, where σ is the dimensionality of the sentence embedding

space Semb. Then, this latent representation of the input post p is fed to the MLP

mapper, which outputs a 150-dimensional embedding vector lying in Wemb. The

mapping process is driven by a cosine distance loss aiming at minimizing the

angle between the projection into Wemb of the semantic vector Sembppq and the

condensed representation of its hashtags, targetppq P Wemb. The loss L can be

derived as follows:

hp1q

j “ ReLU

˜

σ
ÿ

i“1

wp1q

i j si ` bp1q

j

¸

, j “ 1, ...,Hp1q, Sembppq “ s1...sσ (6.2)

hp2q

j “ ReLU

¨

˝

Hp1q
ÿ

i“1

wp2q

i j hp1q

i ` bp2q

j

˛

‚, j “ 1, ...,Hp2q (6.3)

out j “ lin

¨

˝

Hp2q
ÿ

i“1

wpoutq
i j hp2q

i ` bpoutq
j

˛

‚, j “ 1, ...,150 (6.4)

LpSembppq, targetppqq “ cosine_distanceptargetppq,outq (6.5)

where:

• hp1q and hp2q are the outputs of the first and the second hidden layer, while

out is the result of the output layer, which determines the 150-dimensional

predicted vector.

• W p1q P R|Semb|ˆHp1q

, W p2q P RHp1qˆHp2q

, W poutq P RHp2qˆ150 are the weights

to be learned in the first and the second FC-layer, and the output linear layer

respectively.

6.3 Proposed model: HASHET 118

The training of the SM model, implemented in Python using the high-level

framework Keras4 with TensorFlow5 back-end, is divided in two steps:

1. Training of the mapper using feature extraction. In this step, we used trans-

fer learning for training the SM model, by freezing the encoder E (line 16),

which means that its weights will not be changed during training. This way,

only the mapper MLP, composed of the top layers of SM, will be trained

with the pairs xSembppq, targetppqy @p P P (line 18), while the encoder E is

used as a feature extractor for computing Sembppq for a given p. We used the

ADAM optimizer [62], initialized with the default learning rate 1e´3 (line

17).

2. End-to-end fine tuning of the entire model. After the mapper was trained

to convergence, we incrementally adapted the pre-trained features of the

encoder E to our translation task. This was achieved by fine-tuning the

entire SM model on the pairs xp, targetppqy @p P P (line 22), after having

unfreezed the encoder E (line 20). In this step, we used a very low learning

rate of 3e´5 (line 21), as we only want to readapt the pre-trained features to

work with our task and therefore large weight updates are not desirable at

this stage, which also lowers the risk of overfitting.

At the end of the described process, the algorithm returns the HASHET model

M, defined as the pair xW2V,SMy (lines 23-24), used for the recommendation

step.

6.3.2 Hashtags recommendation by latent space inspection and
semantic expansion

In this step, the HASHET model, defined as the pair xW2V,SMy, is used for

recommending a consistent set of hashtags for a given post p. The different steps

involved in this process are shown in Figure 6.3 and described by Algorithm 9.

4https://keras.io/
5https://www.tensorflow.org/

https://keras.io/
https://www.tensorflow.org/

6.3 Proposed model: HASHET 119

Semantic mapping model prediction

Sentence embedding

Semb(p) = E(p)

Input post p
Generate translation

h*(p) = MLP(Semb(p))

Hashtag recommendation

Latent space inspection
using semantic expansion

Semantic mapping Semb --> Wemb

Local n-nhe
semantic expansion

Global n-nhe
semantic expansion

Selection of the
expansion strategy

Encoder E Mapper MLP

Figure 6.3: Hashtag recommendation for a given post p, composed of two steps:
iq Semantic mapping of p exploiting the SM model to obtain the target vector
h˚ppq; iiq latent space inspection using a selected semantic expansion strategy.

The input is composed of: the post p, the HASHET model M, the number of

hashtags to recommend k, the expansion factor n, and the expansion strategy nhe.

The output is the set of recommended hashtags T k,nppq for input post p.

ALGORITHM 9: Hashtag recommendation by latent space inspection.
Input : post p, HASHET model M – xW2V,SMy, ranked output limit k,

expansion factor n, expansion strategy nhe
Output: set of recommended hashtags T k,nppq for input post p

1 h˚ppq Ð M.SM.predictppq;
2 T k,nppq Ð H;
3 if nhe is local then
4 Nkph˚ppqq Ð M.W2V.nearest_hashtagsph˚ppq,kq;
5 T k,nppq Ð Nkph˚ppqq;
6 for h P Nkph˚ppqq do
7 Nnphq Ð M.W2V.nearest_hashtagsph,nq;
8 T k,nppq Ð T k,nppq Y Nnphq z T k,nppq X Nnphq;

9 else if nhe is global then
10 Nk`nph˚ppqq Ð M.W2V.nearest_hashtagsph˚ppq,k ` nq;
11 T k,nppq Ð Nk`nppq;

12 return T k,nppq

Given the input post p, the target vector h˚ppq is obtained by using the seman-

tic mapping model SM. In particular, when the predict function is called (line 1),

the encoder block E of SM is exploited for computing the sentence embedding

6.3 Proposed model: HASHET 120

Sembppq of the input post p P P, which is then translated into the corresponding

150-dimensional target vector h˚ppq P Wemb using the mapper block MLP. After

the mapping, an empty set T k,nppq is initialized (line 2), which will be filled with

the recommended hashtags according to the selected expansion strategy (lines 3-

11). In particular, if the Local strategy is used (line 3), the set Nkph˚ppqq is com-

puted as the top-k nearest neighbors of h˚ppq (line 4) and is assigned to T k,nppq

(line 5). Then, the set T k,nppq is filled with the nearest hashtags of each hashtag in

Nkph˚ppqq, removing duplicates (lines 7-8). If instead the Global strategy is cho-

sen (line 9), the set Nk`nph˚ppqq is computed as the top-(k+n) nearest neighbors of

h˚ppq (line 10) and is assigned to T k,nppq (lines 11). Finally, the algorithm returns

the expanded set of vectors T k,nppq, which contains the hashtags recommended

by the HASHET model.

Since there are many semantically related hashtags that are almost interchange-

able, as they share the same meaning (i.e., #trumptrain and #maga or #imwithher

and #votehillary), a semantic expansion based on the n-nearest hashtags (n-nhe)

has been introduced, in order to capture semantic equivalences and maximize the

match with the target hashtags. In particular, two different strategies have been

proposed:

• Local n-nearest hashtag expansion. Given the expansion factor n, the set

Nkph˚ppqq is extended with the top-n nearest neighbors of each hashtag it

contains.

• Global n-nearest hashtag expansion. Given the expansion factor n, the set

Nkph˚ppqq is extended by considering the top-(k+n) neighbors of h˚ppq,

obtaining the extended set Nk`nph˚ppqq.

Therefore, the two strategies are aimed at expanding the set Nkph˚ppqq com-

posed of the k-nearest neighbors of the vector h˚ppq ordered by likelihood, which

is defined as the cosine similarity with respect to h˚ppq. The local approach can be

considered a sort of 2-hop decentralized process, where the distance is measured

locally with respect to each hashtag in the non-expanded set. Thus we obtain the

n-nearest hashtags for each neighbor of h˚ppq, where n is the expansion factor.

6.3 Proposed model: HASHET 121

Differently, when the global strategy is used, the nearest neighbor search process

is extended by n steps maintaining the same center (h˚ppq). From this derives the

adjective global, as every new hashtag vector is included according to its distance

from h˚ppq, obtaining its pk+nq-nearest hashtags in the embedding space Wemb.

(a) local n-nhe (b) global n-nhe

Figure 6.4: Local vs. global n-nhe expansion example (k=2 and n=1).

Figure 6.4 shows an example of how the two strategies work, with k=2 and

n=1. The process starts from the 150-dimensional vector h˚ppq, obtained as the

output of the mapping, represented by the blue point. Then, the two nearest neigh-

bors of h˚ppq are found obtaining the non-expanded set Nkph˚ppqq, containing the

points highlighted in green, within the green circle. Starting from this set, the two

strategies allow the inclusion of semantically related hashtags as described above,

expanding by a factor n=1. These additive hashtags are represented by the points

highlighted in yellow, within the yellow circles. The final set will be composed

of the points located within the green and yellow circles. The resulting enriched

set of vectors, referred to as T k,nppq, is the output of HASHET and contains the

suggested hashtags. By following this approach, the output set will be composed

of semantically similar hashtags reflecting the semantic relationships learned in

Wemb and the underlying topic-based clustering structure.

6.3 Proposed model: HASHET 122

6.3.3 Why a translation approach? Exploit locality in the hash-
tag embedding space

In this section, we discuss the main reasons behind the translation approach

followed by HASHET. Specifically, the choice of modeling the problem as a

translation task is mainly related to how we modeled our target variable, a sin-

gle 150-dimensional mean-pooled vector. This choice is based on the following

assumptions:

Assumption p1q. Tweets are short and a single tweet is very likely to talk about

a few topics (generally one). The same assumption can be found in [134],

where authors proposed Twitter-LDA, a topic model specifically designed for

Twitter that treats tweets as single-topic.

Assumption p2q. We assume that the hashtags embedding space is well-formed

and the semantic relationships are well expressed inside it, which leads to the

emergence of a topic-based clustering structure. In such a space, different hash-

tags which share semantic context will be highly clustered and will belong to

the same topic.

Following the two assumptions above, instead of framing our problem as a

multi-label classification, we used a translation-based approach, modeling our tar-

get variable using a fixed-length representation. This choice is a good trade-off

between efficiency and loss of information, since:

• Using a fixed-length representation (i.e., 150 in our case) is much more

efficient with respect to the use of multi-label classification. In fact, as

the number of possible hashtags gets larger, the size of the output layer

increases together with the number of weights to be learned which leads to

a higher cost for the training step.

• The loss of information caused by the use of this kind of representation is

acceptable considering the above assumptions. In fact, according to p1q, a

given tweet is very likely to talk about a few related topics or even just one,

6.4 Performance evaluation 123

so the hashtags it contains will share semantic context. Moreover, according

to p2q, the latent representations of these hashtags result highly clustered in

the embedding space, and taking their mean as a summarization will result

in a vector lying in the same region.

At recommendation time, the system leverages the semantic distribution of

latent hashtags relying on iq the learned relationships between the target vector

and the candidate hashtags, and iiq the underlying topic-based clustering struc-

ture. Neither of these two factors, condensed in the concept of locality introduced

by HASHET, is taken into account by neural methodologies that perform a multi-

label classification. In addition, the recommendation abilities of HASHET are

slightly improved by the semantic expansion process, further mitigating the nega-

tive effects of summarization.

6.4 Performance evaluation

In this section, we present the experiments carried out using the HASHET

model on two different case studies. The first one concerns the 2016 US presi-

dential election, characterized by the rivalry between Hillary Clinton and Donald

Trump, while the second is related to the COVID-19 pandemic. In particular, for

each case study, we present the following analysis:

• An in-depth analysis of the word embedding space for highlighting the

topic-based clustering structure induced by the hashtag distribution.

• An evaluation of performance varying the pre-trained encoder model (GUSE

vs. BERT) and the semantic expansion strategy (local vs. global n-nearest

hashtags expansion).

• An extensive comparison with the most relevant state-of-art techniques, in-

cluding generative models, unsupervised models, and attention-based su-

pervised models.

Moreover, we investigated the ability of the HASHET model in discovering

the main topic of a given tweet, starting from the set of recommended hashtags.

6.4 Performance evaluation 124

For evaluating the performance of the proposed model we used three different

rank-based metrics: precision (P@k,n), recall (R@k,n), and F1-score (F@k,n).

Given a post p and the set of its hashtags Hppq (i.e., the target hashtags), the

model outputs the set of recommended hashtags T k,nppq, where k is set equal

to |Hppq| and n is the expansion factor. We define a function relpti, pq for the

ith recommended hashtag ti P T k,nppq such that relpti, pq “ 1 if ti P Hppq so it is

relevant for that post, relpti, pq “ 0 otherwise. Using this definition, the metrics

can be written as follows:

P@k,nppq “
1

|T k,nppq|

|T k,nppq|
ÿ

i“1

relpti, pq (6.6)

it is the fraction of successfully recommended hashtags among those suggested

by the model.

R@k,nppq “
1

|Hppq|

|T k,nppq|
ÿ

i“1

relpti, pq (6.7)

it is the hit rate of the model, or rather the fraction of target hashtags that have

been successfully recommended.

F@k,nppq “
2 ˆ P@k,nppq ˆ R@k,nppq

P@k,nppq ` R@k,nppq
(6.8)

it is the harmonic mean of precision and recall weighted by a β factor (i.e.,

Fβ , β “ 1). Furthermore, in our experiments, all tweets are grouped into five

subsets, in relation to |Hppq| (we impose the cardinality k of the non-expanded set

Nkph˚ppqq equal to |Hppq|) and scores are shown in relation to the increment of

n. When n is equal to zero, no expansion is performed on neighbors, so T k,nppq is

equal to Nkph˚ppqq.

6.4 Performance evaluation 125

6.4.1 The 2016 US presidential election

In this section, we present the analysis carried out using HASHET on a cor-

pus of about 2.5 million tweets, posted by 521,291 users regarding the 2016 US

elections, published from October 10, 2016 to November 7, 2016. Our analysis

focused on data collected for ten US swing states, i.e., Colorado, Florida, Iowa,

Michigan, Ohio, New Hampshire, North Carolina, Pennsylvania, Virginia, and

Wisconsin. As already discussed in the previous chapters, swing states are char-

acterized by high political uncertainty, so they have been chosen in this analysis to

capture a balanced corpus of posts with respect to the main topics of discussion,

related to the support for the two candidates Hillary Clinton and Donald Trump.

The words/hashtags embedding space Wemb was obtained by training a CBOW

Word2Vec model on the overall corpus, while the semantic mapping model SM

has been trained on a subset of 13,050 tweets published in New Hampshire: 9,787

of them have been used for learning the semantic mapping, while the remain-

ing 3,263 make up the test set. We grouped test tweets in five classes accord-

ing to the number of hashtags (from 1 up to 5) removing those containing more

than 5 hashtags (115 tweets) for reducing noise. The obtained test set was com-

posed of 1637, 780, 439, 202, and 90 tweets, with 1,2,3,4, and 5 hashtags respec-

tively (3,148 in total). The average number of hashtags per tweet is equal to 2

(weighted avg. “ 1.83), in line with Twitter guidelines which recommend using

no more than 2 hashtags per tweet as best practice6.

Word embedding space analysis

A peculiar characteristic of microblogging posts on Twitter is that of asso-

ciating the most common hashtags to a topic. So the hashtag projection of the

semantic space of the word embeddings is expected to be highly clustered around

the main discussion topics. In the following, we show a series of representations

of the latent space Wemb obtained by training the Word2Vec CBOW model, by

following the same process for topic discovery presented in Section 3.1.

6https://help.twitter.com/en/using-twitter/how-to-use-hashtags

https://help.twitter.com/en/using-twitter/how-to-use-hashtags

6.4 Performance evaluation 126

Since the 150-dimensional latent space Wemb can not be directly plotted, we

firstly performed a dimensionality reduction using t-distributed stochastic neigh-

bor embedding [135], initialized through principal component analysis (PCA +

t-SNE), to obtain a 2D representation of Wemb. Then, in order to identify dense

groups of hashtags, we retained only the hashtags among the totality of latent

representations, filtering out those with a frequency lower than 20. The resulting

2-dimensional latent space counts almost 5,000 hashtag points. Then, the OPTICS

cut clustering algorithm [136] has been used to identify density-based clustering

structures in this space and the results are shown in Figure 6.5.

-80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80
Column 0

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70
Column 1

(a) Density Estimation Overlay (b) OPTICS Cut Clustering

Figure 6.5: OPTICS density-based cut-clustering structure of most frequent hash-
tags in the 2-dimensional representation of Wemb obtained through PCA + t-SNE.

The cut-clustering algorithm was able to detect, consistently with the density

estimation overlay (Figure 6.5(a)), two macro-clusters related to hashtags used for

supporting the two major candidates Hillary Clinton and Donald Trump (Figure

6.5(b)). These clusters can be seen as the two macro-topics underlying the entire

corpus. This topic-based separation of hashtags induced by the projection of their

latent semantic distribution can be seen better in Figure 6.6. The proposed scatter

plot shows the 2-dimensional latent representation of the top three most frequent

hashtags for the two candidates and their nearest neighbors.

6.4 Performance evaluation 127

The considered hashtags are:

• Trump (yellow): #maga, #trumptrain, #draintheswamp

• Clinton (red): #imwithher, #nevertrump, #strongertogether

100 50 0 50 100

100

50

0

50

100

#trumppence16

#trump2016 #neverhillary

#maga3x

#votetrump

#crookedhillary

#maga

#trumppence2016

#trumppence
#makeamericagreatagain

#americafirst

#tcot

#hillaryforprison

#trumptrain

#lockherup

#votetrumppence16

#hillaryindictment

#wakeupamerica #riggedsystem

#corrupthillary

#draintheswamp

#voteblue

#uniteblue

#hillary2016

#dumptrump
#vote

#election2016

#imwithher

#donthecon

#votehillary

#hillyes #msnbc

#hrc

#stoptrump

#nevertrump

#clintonkaine

#lovetrumpshate

#gotv

#clintonkaine2016

#imwither

#madampresident #strongertogether

#maga
#trumptrain
#draintheswamp
#imwithher
#nevertrump
#strongertogether

Figure 6.6: Top 3 most frequent hashtags per candidate with their nearest neigh-
bors.

The plot shows clearly the separation of hashtags according to their political

polarization, which reflects the underlying topic structure identified by the clus-

tering algorithm.

Encoding models and expansion strategies comparison

In this section we evaluated the use of different encoding models (GUSE vs.

BERT) and semantic expansion strategies (local vs. global), showing the effects

on the rank-based metrics. Figure 6.7 shows the benefits coming from the com-

bined use of the BERT encoder and the global strategy, in terms of weighted

precision, recall and F-score. Weighted averages are determined with respect to

the scores achieved with different values of k (ranging from 1 to 5) and shown in

relation to the increment of n (ranging from 0 (i.e., no expansion) to 5).

6.4 Performance evaluation 128

HASHET(BERT)+global n-nhe
HASHET(BERT)+local n-nhe
HASHET(GUSE)+global n-nhe
HASHET(GUSE)+local n-nhe

A
vg

. P
@

k,
n

0

0.2

0.4

0.6

0.8

1

Expansion factor (n)
0 1 2 3 4 5

(a) Weighted precision

HASHET(BERT)+global n-nhe
HASHET(BERT)+local n-nhe
HASHET(GUSE)+global n-nhe
HASHET(GUSE)+local n-nhe

A
vg

. R
@

k,
n

0

0.2

0.4

0.6

0.8

1

Expansion factor (n)
0 1 2 3 4 5

(b) Weighted recall

HASHET(BERT)+global n-nhe
HASHET(BERT)+local n-nhe
HASHET(GUSE)+global n-nhe
HASHET(GUSE)+local n-nhe

A
vg

. F
@

k,
n

0

0.2

0.4

0.6

0.8

1

Expansion factor (n)
0 1 2 3 4 5

(c) Weighted F-score

Figure 6.7: Comparison of the two encoders (GUSE vs. BERT) and the two
expansion strategies (global vs. local), in terms of precision, recall, and F-score,
weighted on k (number of target hashtags), varying n (expansion factor).

We can observe that, for both semantic expansion strategies, the use of BERT

leads to better recommendation results, which means that it can better grasp, com-

pared to GUSE, the semantic aspects of a given tweet, producing more represen-

tative embeddings. On the other hand, for both encoders, the global expansion

performs better than the local approach. This behavior is due to the higher im-

portance given to the translation h˚ppq, which allows the global strategy to better

6.4 Performance evaluation 129

exploit semantic relationships in the words/hashtags embedding space, by inspect-

ing it with respect to a fixed center (h˚ppq). Differently, the local approach can

lose this kind of information, focusing on the neighborhood of the top-k hash-

tags belonging to the non-expanded set Nkph˚ppqq. On the basis of these results,

we selected the BERT encoder and the semantic expansion strategy as the best

configuration to be used in the following experiments.

Afterward, we analyzed the effects of global semantic expansion on the per-

formance of HASHET in terms of R@k,n, which measures the recommendation

hit rate of the model (Figure 6.8(a)). Firstly, we observed that the recommendation

hit rate depends on the number of target hashtags (k), and decreases for increas-

ing values of k. This is a common behavior among rank-based recommendation

systems, where the difficulty in recommending (or retrieving) a group of items

increases as the cardinality of the target set gets larger. Moreover, the plot shows

how the expansion mechanism allows the model to recommend a more rich set

of hashtags, by including additional ones that share semantic context with those

contained in the non-expanded set. This aspect can be seen better in Figure 6.8(b),

where we show an example of a recommendation for a given tweet with two target

hashtags: #imwithher and #nevertrump. The first target hashtag (#imwithher) is

found among the top-k hashtag initially recommended, while the second (#nev-

ertrump) is obtained through semantic expansion with n “ 1.

k=1 hashtags
k=2 hashtags
k=3 hashtags
k=4 hashtags
k=5 hashtags

R
@

k,
n

0

0.2

0.4

0.6

0.8

1

Expansion factor (n)
0 1 2 3 4 5

(a) Hit rate for different values of k

Initial set of recommended hashtags (k=2): #imwithher, #voteblue

Hashtags added using semantic expansion (n=1): #nevertrump

“I am so very enthusiastic to vote for @HillaryClinton
on Tuesday. Can't wait! #imwithher #nevertrump”

(b) Recommendation example (k=2, n=1)

Figure 6.8: Effects of semantic expansion on hit rate for different values of k,
jointly using BERT and global n-nhe, with a recommendation example (k=2, n=1).

6.4 Performance evaluation 130

Comparison to other methods

In order to evaluate the accuracy of HASHET, in both recommending a con-

sistent set of hashtags and detecting the correct hashtag-based polarization of a

given post, we carried out an extensive comparison with the most relevant tech-

niques used in the literature:

• Generative models:

– LDA-GIBBS [110]. This method exploits the Latent Dirichlet Alloca-

tion and Gibbs sampling for finding out the underlying topic distribu-

tion, used for recommending general hashtags.

• Unsupervised models:

– DBSCAN [124]. This method is based on the embedded representa-

tion of Twitter microblog posts and performs the following steps: i)

a given post is represented as the weighted average of its word em-

beddings; ii) latent representations of posts are clustered according to

their syntactic and semantic similarity using a density-based approach;

iii) top-k hashtags are found by computing the similarity between the

entered post and the centroids of the obtained clusters.

– HF-IHU [126]. The authors proposed a hashtag recommendation sys-

tem for Twitter data streams based on a novel ranking scheme, the

Hashtag Frequency-Inverse Hashtag Ubiquity (HFIHU). It consists of

a variation of TF-IDF that considers hashtag relevancy and microblog

data sparseness.

• Supervised models:

– TCAN [113]. This method exploits an attention-based neural network

to learn the representation of a microblog post. Specifically, the au-

thors proposed a novel Topical Co-Attention Network (TCAN) that

models content-based and topic-based attention simultaneously.

6.4 Performance evaluation 131

– GGA-BLSTM. It consists in a degenerate version of the aforemen-

tioned TCAN model, which takes into account only the content in

the attention mechanism. It can be seen as a standard Bi-directional

LSTM model enhanced with global general attention [130].

– BERT-Classifier. It consists of a fully fine-tuned BERT classifier ob-

tained by stacking a softmax layer on top of the BERT-base trans-

former encoder. Since we are coping with an extremely sparse input,

whereby only a few hashtags than those possible (on average two) are

actually present in a single tweet, we have configured the model as

follows. It was trained using the cross-entropy loss and each target

vector has been normalized by scaling it with a factor 1{h, where h

is the number of hashtags in the related post. This solution, already

used in other works ([112, 137]), led to better performances for such a

sparse input. We experimentally evaluated this aspect by testing BERT

with a classical per-hashtag sigmoid output and a binary logistic loss,

obtaining a significant performance degradation.

Figure 6.9 shows the results obtained by HASHET in comparison with the

other related techniques for the hashtag recommendation task, in terms of weighted

precision (P@k,n), recall (R@k,n) and F-score (F@k,n). Weighted averages are

determined with respect to the scores achieved by each technique with different

values of k (ranging from 1 to 5) and shown in relation to the increment of n,

ranging from 0 (no expansion) to 5. As explained in Section 6.4.1, we imposed

the cardinality k of the non-expanded set Nkph˚ppqq equal to |Hppq|, that is the

number of target hashtags, while n is the expansion factor. When n is equal to

zero, any expansion is performed on neighbors, so T k,nppq is equal to Nkph˚ppqq.

We used the global n-nhe strategy for semantic expansion in HASHET, adapting

this expansion strategy to the other techniques. In general, given k equal to |Hppq|

and n ě 0, every model outputs the top-(k+n) hashtags.

6.4 Performance evaluation 132

HASHET
BERT-Classifier
TCAN
GGA-BLSTM
DBSCAN
LDA-GIBBS
HF-IHU

A
vg

. P
@

k,
n

0

0.2

0.4

0.6

0.8

1

Expansion factor (n)
0 1 2 3 4 5

(a) Weighted precision

HASHET
BERT-Classifier
TCAN
GGA-BLSTM
DBSCAN
LDA-GIBBS
HF-IHU

A
vg

. R
@

k,
n

0

0.2

0.4

0.6

0.8

1

Expansion factor (n)
0 1 2 3 4 5

(b) Weighted recall

HASHET
BERT-Classifier
TCAN
GGA-BLSTM
DBSCAN
LDA-GIBBS
HF-IHU

A
vg

. F
@

k,
n

0

0.2

0.4

0.6

0.8

1

Expansion factor (n)
0 1 2 3 4 5

(c) Weighted F-score

Figure 6.9: Comparison with the most relevant related works, in terms of pre-
cision, recall, and F-score, weighted on k (number of target hashtags), varying n
(expansion factor).

Compared to the aforementioned techniques, HASHET turned out to be the

most accurate in recommending the target hashtags, outperforming all state-of-

the-art models in all configurations, in terms of precision, recall, and F-score.

6.4 Performance evaluation 133

Specifically, during the evaluation, we found out what follows. By considering

the comparison with methods based on HF-IHU, DBSCAN, and LDA-Gibbs, we

observed that HF-IHU performs worse than the others. This indicates that the

clustering structure of tweet embeddings learned by the unsupervised approach

as well as the topic structure identified by the generative model, capture more

semantic information than the simple frequency-based scoring technique, leading

to more representative suggested hashtags.

In comparing these more traditional techniques (i.e., HF-IHU, DBSCAN, and

LDA) to the attention-based models based on neural networks, we observed a

significant improvement in recommendation accuracy. The main reason behind

the higher performance of neural models is the ability to learn an accurate la-

tent representation of the microblog, rich in semantic information, also exploiting

the attention mechanism. In particular, the comparison between GGA-BLSTM

and TCAN shows that topic information is useful in learning this kind of repre-

sentation. For this reason, the topical co-attention model achieved slightly better

performance with respect to the GGA-BLSTM, by jointly modeling content at-

tention and topic attention simultaneously. Furthermore, we noticed that the fine-

tuned BERT classifier achieved even more accurate results, in line with the most

recent improvements due to transfer learning with pre-trained language models in

a broad set of NLP tasks [15].

Moreover, it is clear to observe that our model outperformed both traditional

and attention-based models. Similarly to neural models, we exploited a seman-

tic representation of the microblog, generated in our case by a transformer-based

deep sentence embedding model. The key difference is in how this representation

is used to recommend hashtags. In neural models, a softmax layer is generally

used to output a probability distribution over all candidate hashtags. Then, top-

k hashtags ordered by decreasing probability are recommended. Differently, in

HASHET, starting from the latent representation of a post in Semb the target vec-

tor h˚ppq in the hashtag space Wemb is predicted using the neural-based semantic

mapping. Then, the top-k nearest hashtags of h˚ppq are found and enriched us-

ing semantic expansion, obtaining an output set composed of semantically similar

6.4 Performance evaluation 134

hashtags. This kind of inspection process, centered in h˚ppq, exploits a concept of

locality in Wemb that relies on the semantic relationships learned among hashtags

and the underlying topic-based clustering structure.

It is also worth noting that HASHET is less dependent on tuning and param-

eters with respect to the majority of other techniques. The LDA-Gibbs model

and the topical co-attention network are sensitive to the number of topics and the

number of topical words for each topic. These two parameters control, in the two

models respectively, the topic discovery process and the topic-based information

used in the attention mechanism. A wrong setting of these parameters could lead

to the identification of a poorly representative topic structure or the introduction of

noise in topical information. Another parameter-sensitive technique is the density-

based clustering of the embedded representation of training tweets. This model

uses the DBSCAN algorithm that is highly dependent on minpts and ε parameters.

A wrong estimate of minpts or ε could lead to the identification of an unrepre-

sentative clustering structure, which hinders the recommendation performances

of the model.

6.4.2 COVID-19 pandemic

After the presentation of the 2016 US presidential election, here we discuss the

application of HASHET to a corpus of 704,867 tweets regarding the COVID-19

pandemic [138], published from December 23 to December 27, 2020.

As in the first case study, the words/hashtags embedding space Wemb was ob-

tained by training the CBOW Word2Vec model on the overall corpus, while the se-

mantic mapping model SM has been trained on a subset of 24,903 tweets: 18,678

of them have been used for learning the semantic mapping, while the remain-

ing 6,225 tweets have been used as the test set. Covid-related tweets have been

grouped into five classes according to the number of hashtags (from 1 up to 5)

removing those containing more than 5 hashtags (196 tweets) for reducing noise.

The obtained test set was composed of 3011, 1591, 764, 375, and 288 tweets,

with 1,2,3,4 and 5 hashtags respectively (6,029 in total) and an average number of

hashtags per tweet equal to 2 (weighted avg. “ 1,89).

6.4 Performance evaluation 135

Following the same approach for topic discovery described in the previous

case study (see Section 6.4.1), we analyzed the topic-based separation of latent

hashtags in the Wemb space. We extracted a well-formed clustering structure, com-

posed of 13 hashtag-based topics, as shown in Figure 6.10. In addition, Table 6.2

shows the top-5 most frequent hashtags for each cluster.

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80
Column 0

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80
Column 1

Trump vs. covid19

Brexit

Covid19 in Canada

UK lockdown

USA anti-vaccine protests

Global covid19 pandemic

Pro-vaccination

Smartworking

Sport

Christmas holidays

Contagion-prevention rules

Entertainment

Noise

Covid19 in Australia

Figure 6.10: OPTICS density-based cut-clustering structure in the 2-dimensional
representation of Wemb obtained through PCA + t-SNE.

Topic Top-5 most frequent hashtags

Global covid19 pandemic #covid19, #coronavirus, #covid_19, #coronaviruspandemic, #travel
USA anti-vaccine protests #losangeles, #california, #protests, #2019ncov, #florida
Christmas holidays #christmas, #merrychristmas, #christmas2020, #covidchristmas, #christmaseve
Entertainment #wonderwoman1984, #ww84, #starwars, #lightsforlouis,#happybdaylouistomlinson
Contagion-prevention rules #wearamask, #stayhome, #staysafe, #socialdistancing, #washyourhands
Smartworking #workfromhome, #jobs, #business, #wfh, #remotejobs
Pro-vaccination #vaccine, #covidvaccine, #healthcare, #covid_19, #sarscov2, #frontlineheroes
UK lockdown #covid19uk, #tier4, #coronavirusuk, #londonlockdown, #uklockdown
Covid19 in Canada #canada, #cdnpoli, #onpoli, #bcpoli, #ontariolockdown
Sport #browns, #nba, #nfl, #football, #rockets
Trump vs. covid19 #trump, #trumpvirus, #republicans, #foxnews, #dopeydon
Brexit #brexit, #brexitdeal, #wearenotgoingaway, #borishasfailedthenation, #boristheliar
Covid19 in Australia #7news, #sydney, #covid19aus, #covid19vic, #gladyscluster

Table 6.2: Top-5 most frequent hashtags per topic.

6.4 Performance evaluation 136

As for the first case study, we analyzed the performance of HASHET varying

the pre-trained encoder model (GUSE vs. BERT) and the semantic expansion

strategy (local vs. global n-nhe). The results, shown in Figure 6.11, confirm the

benefits coming from the combined use of BERT and global semantic expansion.

HASHET(BERT)+global n-nhe
HASHET(BERT)+local n-nhe
HASHET(GUSE)+global n-nhe
HASHET(GUSE)+local n-nhe

A
vg

. P
@

k,
n

0

0,2

0,4

0,6

0,8

1

Expansion factor (n)
0 1 2 3 4 5

(a) Weighted precision

HASHET(BERT)+global n-nhe
HASHET(BERT)+local n-nhe
HASHET(GUSE)+global n-nhe
HASHET(GUSE)+local n-nhe

A
vg

. R
@

k,
n

0

0,2

0,4

0,6

0,8

1

Expansion factor (n)
0 1 2 3 4 5

(b) Weighted recall

HASHET(BERT)+global n-nhe
HASHET(BERT)+local n-nhe
HASHET(GUSE)+global n-nhe
HASHET(GUSE)+local n-nhe

A
vg

. F
@

k,
n

0

0,2

0,4

0,6

0,8

1

Expansion factor (n)
0 1 2 3 4 5

(c) Weighted F-score

Figure 6.11: Comparison of the two encoders (GUSE vs. BERT) and the two
expansion strategies (global vs. local), in terms of precision, recall, and F-score,
weighted on k (number of target hashtags), varying n (expansion factor).

6.4 Performance evaluation 137

Also in this case study, our model outperformed the most relevant related tech-

niques described in Section 6.4.1, achieving the best recommendation results in

all configurations, as shown in Figure 6.12.

HASHET
BERT-Classifier
TCAN
GGA-BLSTM
DBSCAN
LDA-GIBBS
HF-IHU

A
vg

. P
@

k,
n

0

0,2

0,4

0,6

0,8

1

Expansion factor (n)
0 1 2 3 4 5

(a) Weighted precision

HASHET
BERT-Classifier
TCAN
GGA-BLSTM
DBSCAN
LDA-GIBBS
HF-IHU

A
vg

. R
@

k,
n

0

0,2

0,4

0,6

0,8

1

Expansion factor (n)
0 1 2 3 4 5

(b) Weighted recall

HASHET
BERT-Classifier
TCAN
GGA-BLSTM
DBSCAN
LDA-GIBBS
HF-IHU

A
vg

. F
@

k,
n

0

0,2

0,4

0,6

0,8

1

Expansion factor (n)
0 1 2 3 4 5

(c) Weighted F-score

Figure 6.12: Comparison with the most relevant related works, in terms of pre-
cision, recall, and F-score, weighted on k (number of target hashtags), varying n
(expansion factor).

6.4 Performance evaluation 138

By analyzing the experimental results, we observed that even if the perfor-

mances achieved by the different techniques are characterized by trends similar to

the previous case study, this case is intrinsically more difficult than the first one.

The main reason behind this difference is the presence of a larger set of discus-

sion topics, which leads to a more variegate set of hashtags. In such a scenario,

the topic-based techniques, like LDA and TCAN, performed slightly better, al-

beit in proportion to the greater difficulty, thanks to the presence of richer topic

information and their ability to effectively exploit it. The HASHET model also

benefited from this aspect, as it exploits locality in the hashtag embedding space,

which presents a well-formed topic-based clustering structure.

Compared to the other related techniques, HASHET turned out to be the

most effective model for the hashtag recommendation task, outperforming either

traditional techniques or neural-base models based on different types of atten-

tion mechanisms, such as topical co-attention, general global attention, or self-

attention. These promising results fully confirm those achieved in the first case

study and the effectiveness of HASHET, even in the presence of a variegated set

of discussion topics, ranging from covid19 and vaccination to sport, entertain-

ment, and socio-political issues like Brexit.

6.4.3 Assign topics using hashtag recommendation

In the previous sections, we showed how the semantic distribution of hashtags

in the corpus generates a topic-based clustering structure in the hashtag embed-

ding space Wemb used by HASHET. Through this hashtag-based approach, the

main topics underlying the analyzed corpus can be extracted, isolating densely-

connected groups of latent hashtags. In this section, we investigate how the se-

mantic mapping performed by the HASHET model can be leveraged to assign a

topic to a given input tweet, assuming it is mono-topic and related to one of the

topics that emerged in Wemb. Given C “ c1, . . . ,cn the set of hashtag-based clus-

ters, each of which represents a topic, the discussion topic for a given post p is

determined as follows. First, the recommendation model is exploited to get a set

of k hashtags suitable for that post.

6.4 Performance evaluation 139

Afterward, p can be classified in three ways:

• Assignable, if recommended hashtags belong to one cluster only.

• Ambiguous, if recommended hashtags belong to two or more clusters.

• Neutral, if recommended hashtags do not belong to any cluster.

Then, if p was labeled as assignable, it is assigned to the topic related to its

corresponding cluster. Otherwise, if p is labeled as neutral, i.e. none of the rec-

ommended hashtags belongs to one of the clusters in C, semantic expansion is

used to recommend n additional hashtags and re-classify the post. This process

is repeated until the post p is classified - either as ambiguous or assignable - or a

maximum number of steps is reached. In this case, it is finally classified as neu-

tral. It is worth noticing that posts classified as ambiguous are not assigned to any

specific topic, as we only focus here on mono-topic posts.

For testing purposes, we analyzed the corpus of tweets related to both the

aforementioned case studies, characterized by discussion topics related to politics

(US election, Clinton vs. Trump) and the COVID-19 pandemic, as described in

the previous sections. Specifically, we determined the actual topic of each con-

sidered post, starting from its set of hashtags (Hppq). This topic, i.e. the assigned

cluster, is expected to be equal to the classification computed with respect to the

recommended hashtags for that tweet (T k,nppq); otherwise, the topic assignment is

incorrect. This is an undesired situation, especially when dealing with politically-

polarized data, as the post may be considered in favor of the opposite candidate.

In addition, as an incorrect classification implies the assignment to a topic differ-

ent from the real one, ambiguous and neutral posts - for which a topic could not

be found - are considered separately.

We evaluated the effectiveness of using the recommendation abilities of the

HASHET model for the topic assignment task through a comparison with the

aforementioned related techniques. Comparing the HF-IHU, LDA-Gibbs, and

DBSCAN-based models, the first achieved very poor results, with the lowest

amount of correctly classified tweets and a large amount of incorrect and neutral

6.4 Performance evaluation 140

tweets, while the LDA-Gibbs and the DBSCAN-based models achieved better re-

sults, similar to each other, showing their ability in detecting an underlying topic

and clustering structure respectively.

The attention-based neural models (GGA-BLSTM, TCAN, BERT-Classifier)

achieved higher performances, thanks to the ability to learn a representative em-

bedding of the analyzed microblogs, capturing a lot of semantic information. In

particular, TCAN showed slightly better performances with respect to the GGA-

BLSTM, exploiting the topical information within the co-attention mechanism.

Moreover, the BERT-Classifier outperformed both TCAN and GGA-BLSTM mod-

els, thanks to a better understanding of the semantic content of a given tweet,

which confirms the effectiveness of transfer learning from language representa-

tion models.

Finally, HASHET outperformed all the other recommendation models in the

topic assignment task, achieving both the highest percentage of correct and the

lowest amount of incorrect classifications. These results, detailed in Figure 6.13,

confirm the ability of our model to determine a highly representative set of hash-

tags, which is beneficial both for the recommendation itself and for a wide range

of alternative applications, such as the topic assignment - presented in this sec-

tion - or the enrichment of social data analyzed by hashtag-based methodologies,

discussed in Section 1.1.

HASHET
BERT-Classifier
TCAN
GGA-BLSTM
DBSCAN
LDA-GIBBS
HF-IHU

P
er
ce
nt
ag
e

0

20

40

60

80

100

Classification

Correct Incorrect Neutral Ambiguous

(a) USA 2016: polarization discovery

HASHET
BERT-Classifier
TCAN
GGA-BLSTM
DBSCAN
LDA-GIBBS
HF-IHU

P
er
ce
nt
ag
e

0

20

40

60

80

100

Classification

Correct Incorrect Neutral Ambiguous

(b) COVID19: topic discovery

Figure 6.13: Comparison with the most relevant related work in detecting the
hashtag-based topic of discussion.

6.5 Conclusions 141

6.5 Conclusions

This chapter described HASHET, a hashtag recommendation model aimed at

suggesting a proper set of hashtags for social media posts by leveraging a trans-

lation approach. Specifically, it exploits a semantic mapping process to model

the hidden relationships that link a given post to the latent representation of its

hashtags, learning how to map the embedded representation of a post into a vector

lying in the hashtag space. Starting from this vector, the set of hashtags to be

recommended is found using k-nearest neighbor search and semantic expansion.

Therefore, unlike other state-of-the-art models based on deep learning architec-

tures, HASHET is fully aware of the semantic distribution of hashtags in the em-

bedding space. Due to this, the recommendation process relies on the concept of

locality in this space that takes into account both the learned relationships among

hashtags and its underlying topic-based clustering structure.

We assessed the effectiveness of HASHET through an extensive experimen-

tal evaluation focused on two real-world case studies related to the 2016 United

States presidential election and the COVID-19 pandemic. In particular, we ex-

perimented with the use of two language models for sentence embedding and

two different semantic expansion strategies, finding out that the combined use of

BERT and global nearest-hashtag expansion leads to the best recommendation re-

sults, with a hit-rate up to 0.92. HASHET also outperformed the main hashtag

recommendation techniques present in the literature (i.e., generative models, un-

supervised models, and attention-based supervised models), with an up to 15%

improvement in F-score. Finally, We analyzed the applicability of HASHET in

multilingual contexts, discussing also how its recommendation abilities can be ef-

fectively leveraged for the topic assignment task, by achieving a 9% improvement

compared to the other techniques.

In future work, we can adapt HASHET to work in real-time scenarios, to deal

with the continuous evolution of hashtags in microblogging platforms. Moreover,

we can investigate ways to tailor the recommendation process to specific tasks

such as recommending personalized hashtags, based on user characteristics, or

recommending hashtags aimed at maximizing post popularity.

Chapter 7
Using machine learning for task
scheduling in data-intensive parallel
workflows

The applications of Big Data are countless, ranging from politics to eco-

nomics, finance, healthcare, security, and social sciences. In particular, as shown

in the previous chapters, the analysis of politically-polarized Big Social Data from

different perspectives allows for achieving a thorough understanding of users’ be-

havior, opinion, emotions, and interactions, thus providing a data-driven approach

to understanding and studying political phenomena. However, as highlighted in

Section 1.1, despite the great opportunities offered by the analysis of Big Data,

their volume and speed continually challenge today’s storage, processing, and

analysis capabilities. Therefore, state-of-the-art tools for analyzing and learning

from Big Data on scalable computers, including the main parallel programming

paradigms (e.g., MapReduce, workflow, BSP, message passing, and SQL-like),

and the most used systems for Big Data analysis (e.g., Apache Spark, Hadoop,

and Storm) are expected to be constantly improved to effectively tackle Big Data

issues [10].

142

143

Motivated by the above considerations, our research also focused on the study

of ad-hoc techniques and strategies aimed at supporting the scalable implementa-

tion of real-world Big Data analysis applications, generally represented as data-

intensive high-parallel workflows, in distributed environments and high-performance

infrastructures. Our efforts in this direction led to the production of two interesting

research results, in the following fields:

• Workflow task scheduling: in [11] we proposed IIWM (Intelligent In-memory

Workflow Manager), a methodology aimed at maximizing the trade-off be-

tween task-parallelism and memory usage, by minimizing the risk of data

spilling-to-disk. It relies on a machine learning strategy for predicting mem-

ory occupancy and execution time of workflow tasks and leverages these

predictions to determine an effective task schedule. The effectiveness of the

machine learning-based predictor and the scheduling strategy were demon-

strated experimentally using as a testbed, Spark, a high-performance Big

Data processing framework that exploits in-memory computing to speed up

the execution of large-scale applications.

• Data partitioning: in [12] we designed a machine learning-based approach

to determine an effective data partitioning, which is crucial to speed-up par-

allel data-intensive applications and increase scalability. We framed the data

partitioning task as a block size estimation problem, maximizing the trade-

off between the degree of parallelism and the communication/synchroniza-

tion overhead. This research will be discussed in the next chapter, which ac-

curately describes the design of our solution and the main results achieved

in different execution environments by using several real-world datasets.

The rest of this chapter will be devoted to the first of the research results men-

tioned above and is organized as follows. Section 7.1 introduces the main concepts

and definitions related to the addressed problem. Section 7.2 discusses the main

works in the literature aimed at improving the performance of data-intensive ap-

plications. Section 7.3 describes the proposed methodology. Section 7.4 presents

and discusses the experimental results. Finally, Section 7.5 concludes the paper.

7.1 Background 144

7.1 Background

A data-intensive workflow is the description of a process that usually involves

a set of computational steps implementing complex scientific functions, such as

data acquisition, transformation, analysis, storage, and visualization [139]. They

can be defined as follows.

Definition [140]. A workflow W can be represented using a DAG, described by

a set of tasks T “ tt1, t2, . . . , tnu (i.e., vertices) and dependencies among them

A Ď pT ˆ Tq “ ta1, . . . ,amu: ai “ pti, t jq, ti P T, t j P T (i.e., directed edges).

Specifically, data dependencies (i.e., all the input data of a task have already

been made available) have to be considered rather than control dependencies

(i.e., all predecessors of a task must be terminated before it can be executed),

as we refer to data-intensive workflows.

Parallel processing is often vital to reduce execution time when complex data-

intensive workflows must be run efficiently, and at the same time, in-memory pro-

cessing can bring important benefits to accelerate execution. It can be achieved

by concurrently executing independent tasks by trying to make use of all comput-

ing nodes, even if, in many cases, it is necessary to execute multiple tasks on the

same computing node [141]. For example, this occurs when the number of tasks is

greater than the number of available nodes, or because multiple tasks use a dataset

located on the same node. These scenarios are prone to memory saturation and

moving data to disk may result in higher execution times, which leads to the need

for a scheduling strategy able to cope with this issue [142, 143].

In most cases, distributed processing systems use a-priori policies for handling

task execution and data management. For example, in the MapReduce program-

ming model used by Hadoop, mappers write intermediate results after each com-

putation so performing disk-based processing with partial use of memory [144]

through the exploitation of the Hadoop Distributed File System (HDFS). On the

other hand, Apache Spark1, which is the state-of-the-art data analysis framework

for large-scale data processing exploiting in-memory computing, relies on a Di-

1https://spark.apache.org/

https://spark.apache.org/

7.1 Background 145

rected Acyclic Graph (DAG) paradigm and is based on: iq an abstraction for data

collections which enables parallel execution and fault-tolerance, named Resilient

Distributed Datasets (RDDs) [145]; iiq a DAG engine, that manages the execution

of jobs, stages, and tasks. Besides, it provides different storage levels for data

caching and persistence, while performing in-memory computing with partial use

of the disk. The Spark in-memory approach is generally more efficient, but a

time overhead may be caused by spilling data from memory to disk when mem-

ory usage exceeds a given threshold [146]. This overhead can be significantly

reduced if the memory occupancy of a task is known in advance, to avoid running

in parallel two or more tasks that cumulatively exceed the available memory, thus

causing data spilling. For this reason, memory is considered a key factor for the

performance and stability of Spark jobs and Out-of-Memory (OOM) errors are

often hard to fix. Recent efforts have been oriented towards developing prediction

models for the performance estimation of Big Data applications, although most

of the approaches rely on analytical models and only a few recent studies have

investigated the use of supervised machine learning models [147–149].

Starting from the above considerations, we designed the Intelligent In-memory

Workflow Manager, namely IIWM, which provides an effective way of scheduling

a workflow that minimizes the probability of memory saturation while maximiz-

ing in-memory computing, which leads to an increase in application performance

and throughput. Workflow scheduling can be defined as follows.

Definition [150]. Given a set of q computing resources R “ tr1, . . . ,rqu, work-

flow scheduling can be defined as the mapping T Ñ R from each task t P T to

a resource r P R, so as to meet a set of specified constraints Z.

Workflow scheduling techniques are often aimed at optimizing several factors,

including makespan and overall cost that in turn depend on data transfer and com-

pute cost [150]. In this study, we applied multi-objective optimization by jointly

minimizing execution time and memory saturation. This is achieved by using a

scheduling strategy that exploits a regression model aimed at predicting the be-

havior of a given workflow, in terms of resource demand and execution time (see

7.2 Related work 146

Section 7.3). For the Reader’s convenience, Table 7.1 shows the meaning of the

main symbols used in the paper.

Symbol Meaning

T “ tt1, t2, . . . , tnu Set of tasks.
A Ď pTˆTq “ ta1, . . . ,amu Dependencies. ai “ pti, t jq, ti P T, t j P T.
dt Description of the dataset processed by task t.
W “ pT,Aq Workflow.
Ninptq “ tt 1 P T | pt 1, tq P Au In-neighbourhood of task t.
Noutptq “ tt 1 P T | pt, t 1q P Au Out-neighbourhood of task t.
M Regression prediction model.
S “ xs1, . . . ,sky List of stages. si Ď T | ptx ∥ tyq@tx, ty P si.
C Maximum amount of available memory (capacity).
Cs “ C ´

ř

tPs
M.predict_mempt,dtq Residual capacity of a stage s.

Table 7.1: Meaning of the main symbols used throughout this chapter.

7.2 Related work

Recent studies have shown the effectiveness of machine learning in supporting

code optimization, parallelism mapping, task scheduling, and processor resource

allocation [149]. Moreover, predicting running times and memory footprint is

important for estimating the cost of execution and better managing resources at

runtime [151]. For instance, in-memory data processing frameworks like Spark

can benefit from informed co-location of tasks [149]. In fact, if too many appli-

cations or tasks are assigned to a computing node, such that the memory used on

the host exceeds the available one, memory paging to disk (i.e., swapping), data

spilling to disk in Spark, or OOM errors can occur with consequential drops of

performance.

Our work focuses on improving the performance of a Spark application us-

ing machine learning-based techniques. The challenge is to effectively schedule

tasks in a data-intensive workflow for improving resource usage and application

performance, by inferring the resource demand of each task, in terms of memory

occupancy and time. State-of-the-art techniques aimed at improving the perfor-

7.2 Related work 147

mance of data-intensive applications can be divided into two main categories:

analytical-based and machine learning-based. For each category, the main pro-

posed solutions and their differences with respect to our technique are discussed.

Analytical-based These techniques use information collected at runtime and

statistics to tune a Spark application, improving its performance as follows:

• Choosing the serialization strategy for caching RDDs in RAM, based on

previous statistics collected on different working sets, such as memory foot-

print, CPU usage, RDDs size, serialization costs, etc. [152, 153].

• Dynamically adapting resources to data storage, using a feedback-based

mechanism with real-time monitoring of application memory usage [154].

• Scheduling jobs by dynamically adjusting concurrency through a feedback-

based strategy. Taking into account memory usage via garbage collection,

network I/O, and Spark RDDs lineage information, it is possible to choose

the number of tasks to assign to an executor [155, 156].

The aforementioned works improve the in-memory computing of Spark, by

exploiting static or dynamic techniques that can inform the choice of configura-

tion parameters. However, no prediction models are employed and this may lead

to unpredicted behaviors. IIWM, instead, uses a prediction regression model to

estimate a set of information about a running Spark application, exploiting it to

optimize in-memory execution. Moreover, unlike real-time adapting strategies,

which use a feedback-based mechanism by continuously monitoring the execu-

tion, the IIWM model is trained offline, achieving fast and accurate predictions

while used for inferring the resource demand of each task in a given workflow.

Machine learning-based. These techniques are based on the development of

learning models for predicting the performance (mainly memory occupancy and

execution time) of a large set of different applications in several scenarios, on

the basis of prior knowledge. This enables the adoption of a performance-centric

7.2 Related work 148

approach [147], which can be beneficial for the execution of data-intensive appli-

cations, especially in the context of HPC systems.

Several techniques use collaborative filtering to identify how well an applica-

tion will run on a computing node. For instance, Quasar [147] uses classification

techniques based on collaborative filtering to determine the characteristics of the

running application in allocating resources and assigning tasks. When submitted,

a new application is shortly profiled and the collected information is combined

with the classification engine, based on previous workloads, to support a greedy

scheduling policy that improves throughput. Application is monitored throughout

the execution to adjust resource allocation and assignment if required, using a sin-

gle model for the estimation. Adapting this technique to Spark can help to assign

tasks to computing nodes within the memory constraints and avoid exceeding the

capacity, thus causing the spilling of data to disk. Another approach based on

collaborative filtering has been proposed by Llull et al. [148]. In this case, the

task co-location problem is modeled as a cooperative game and a game-theoretic

framework, namely Cooper, is proposed for improving resource usage. The algo-

rithm builds pairwise coalitions as stable marriages to assign an additional task to

a host based on its available memory, and the Spark default scheduler is adopted to

assign tasks. In particular, a predictor receives performance information collected

offline and estimates which co-runner is better, in order to find stable co-locations.

Moving away from collaborative filtering, Marco et al. [149] present a mixture-

of-experts approach to model the memory behavior of Spark applications. It is

based on a set of memory models (i.e., linear regression, exponential regression,

Napierian logarithmic regression) trained on a wide variety of applications. At

runtime, an expert selector based on k-nearest neighbor (kNN) is used to choose

the model that best describes memory behavior, in order to determine which tasks

can be assigned to the same host for improving throughput. The memory mod-

els and expert selector are trained offline on different working sets, recording the

memory used by a Spark executor through the Linux command “/proc”. Finally,

the scheduler uses the selected model to determine how much memory is required

for an incoming application, for improving server usage and system throughput.

7.2 Related work 149

7.2.1 Comparison

Similarly to machine learning-based techniques, IIWM exploits a prediction

model trained on execution logs of previous workflows. However, it differs in two

main novel aspects:

• It only uses high-level workflow features, without requiring any runtime

information as done in [147] and [149], in order to avoid the overhead that

could be not negligible for complex applications.

• It provides an algorithm for effectively scheduling a workflow in scenarios

with limited computing resources.

As far as we know, no similar approaches in literature can be directly com-

pared to IIWM in terms of goals and requirements. In fact, differently from IIWM,

Quasar [147] and Cooper [148] can be seen as resource-efficient cluster manage-

ment systems, aimed at optimizing QoS constraints and resource usage. With

respect to the most related work, presented in [149], IIWM presents the following

remarkable differences.

• It focuses on data-intensive workflows while in reference [149] general

workloads are addressed.

• It uses high-level information for describing an application (e.g. task and

dataset features), already available before the execution. Differently, in ref-

erence [149], low-level system features are exploited such as cache miss

rate and the number of blocks sent, collected by running the application on

a small portion (100 MB) of the input data.

• It proposes a more general approach since the solution proposed in [149]

is only suitable for applications whose memory usage is a function of the

input size.

7.3 Proposed methodology: IIWM 150

7.3 Proposed methodology: IIWM

IIWM is based on three main steps, outlined below and described in the fol-

lowing sections:

1. Execution monitoring and dataset creation: starting from a given set of

workflows, a dataset is generated by monitoring the memory usage and ex-

ecution time of each task, specifying how it is designed, and giving concise

information about the input.

2. Prediction model training: from the dataset of executions, a regression

model is trained in order to fit the distribution of memory occupancy and

execution time, according to the features that represent the different tasks

of a workflow.

3. Workflow scheduling: taking into account the predicted memory occupancy

and execution time of each task, provided by the trained model, and the

available memory of the computing node, tasks are scheduled using an in-

formed strategy. In this way, a controlled degree of parallelism can be en-

sured, while minimizing the risk of memory saturation.

7.3.1 Execution monitoring and dataset creation

The first step in IIWM consists of monitoring the execution of different tasks

on several input datasets with variable characteristics, in order to build a dataset

for training the regression model. The proposed solution was specifically designed

for supporting the efficient execution of data analysis tasks, which are used in a

wide range of data-intensive workflows. Specifically, it focuses on three classes of

data mining tasks: classification tasks for supervised learning, clustering tasks for

unsupervised learning, and association rules discovery. Using Spark as a testbed,

the following data mining algorithms from the MLlib2 library have been used:

2https://spark.apache.org/mllib/

https://spark.apache.org/mllib/

7.3 Proposed methodology: IIWM 151

Decision Tree, Naive Bayes, and Support Vector Machines (SVM) for classifica-

tion tasks; K-Means and Gaussian Mixture Models (GMM) for clustering tasks;

FPGrowth for association rules tasks.

Execution monitoring within the Spark unified memory model

As far as execution monitoring is concerned, a brief overview of the Spark

unified memory model is required. In order to avoid OOM errors, Spark uses

up to 90% of the heap memory, which is divided into three categories: reserved

memory (300 MB), used to store Spark internal objects; user memory (40% of

heap memory), used to store data structures and RDDs computed during transfor-

mations and actions; spark memory (60% of heap memory), divided in execution

and storage. The former refers to that used for computation during the shuffle,

join, sort, and aggregation processes, while the latter is used for caching RDDs. It

is worth noting that, when no execution memory is used, storage can acquire all

the available memory and vice versa. However, storage may not evict execution

due to complexities in implementation, while stored data blocks are evicted from

main memory according to a Least Recently Used (LRU) strategy.

The occupancy of storage memory relies on the persistence operations per-

formed natively by the algorithms. Table 7.2 shows some examples of data caching

implemented in the aforementioned MLlib algorithms. In particular, the cache()

call corresponds to persist(StorageLevel.MEMORY_AND_DISK), where MEM-

ORY_AND_DISK is the default storage level.

According to the Spark unified memory model, the execution monitoring was

made via the Spark REST APIs, which expose executor-level performance met-

rics, collected in a JSON file, including peak occupancy for both execution and

storage memory along with execution time.

Dataset creation

Using the aforementioned Spark APIs, we monitored the execution of several

MLlib algorithms on different input datasets, covering the main data mining tasks,

i.e. classification, clustering, and association rules. The goal of this process is

7.3 Proposed methodology: IIWM 152

MLlib algorithm Persist call

K-Means
//Compute squared norms and cache them

norms.cache()

DecisionTree
//Cache input RDD for speed-up during multiple passes

BaggedPoint.convertToBaggedRDD(treeInput,...).cache()

GMM instances.cache() . . . data.map(_.asBreeze).cache()

FPGrowth items.cache()

SVM IstanceBlock.blokifyWithMaxMemUsage(...).cache()

Table 7.2: Examples of persist calls in MLlib algorithms.

the creation of a dataset for the regression model training, which contains the

following information:

• The description of the task, such as its class (e.g., classification, clustering,

etc.), type (fitting or predicting task), and algorithm (e.g., SVM, K-Means,

etc.).

• The description of the input dataset in terms of the number of rows, columns,

categorical columns, and overall dataset size.

• Peak memory usage (both execution and storage) and execution time, which

represent the three target variables to be predicted by the regressor. In or-

der to obtain more significant data, the metrics were aggregated on median

values by performing ten executions per task.

Starting from 20 available datasets, we divided them into two partitions used

for training and testing respectively. Afterward, an oversampling procedure was

performed, aimed at increasing the number of datasets contained in both parti-

tions. This procedure generates new synthetic datasets, starting from the original

one, by sampling several subsets of its rows and columns. It is worth noticing that

using a random sampling approach within this procedure can lead to unexpected

behaviors. Specifically, if sampling dataset rows following a uniform distribution

is usually not problematic, the same does not apply for columns, i.e. features. In

this case, a wrong sampling may badly affect algorithm convergence, introducing

7.3 Proposed methodology: IIWM 153

noise into the dataset used to build the regression model. To address this issue we

used a more sophisticated strategy to sample datasets along columns. In particular,

based on the specific task the dataset is used for, we proceeded as follows:

• For datasets used in classification or regression tasks we considered only

the k highest scoring features based on:

– analysis of variance (F-value) for integer labels (classification prob-

lems);

– correlation-based univariate linear regression test for real labels (re-

gression problems).

• For clustering datasets we used a correlation-based test to maintain the k

features with the smallest probability to be correlated with the others.

• For association rules discovery datasets no feature selection is required, as

the number of columns refers to the average number of items in the different

transactions.

The described procedure has been applied separately on the training and test

partitions, so as to avoid the introduction of bias into the evaluation process.

Specifically, the number of datasets in the training and test partitions has increased

from 15 to 260 and from 5 to 86 respectively. Subsequently, we fed these datasets

to the MLlib algorithms, obtaining two final datasets of 1309 and 309 monitored

executions, used for training and testing the regressor, respectively.

7.3.2 Prediction model training

Once the training and test datasets with memory and time information were

built, a regression model can be trained with the goal of estimating peak memory

occupancy and turnaround time of a task in a given workflow. As a preliminary

step, we analyzed the correlation between the features of the training data and each

target variable, using the Spearman index. We obtained the following positive

correlations: a value of 0.30 between storage memory and the input dataset size,

7.3 Proposed methodology: IIWM 154

0.46 between execution memory and the task class, and 0.21 between execution

time and the number of columns. These results can be seen in detail in Figure 7.1.
Ta

sk
Na

m
e

Ta
sk

Ty
pe

Ta
sk

Cl
as

s
Ro

ws
Co

lu
m

ns
Ca

te
go

ric
al

Co
lu

m
ns

Si
ze

Pe
ak

St
or

ag
eM

em
or

y

TaskName
TaskType

TaskClass
Rows

Columns
CategoricalColumns

Size
PeakStorageMemory 0.5

0.0

0.5

1.0

(a) Storage memory
Ta

sk
Na

m
e

Ta
sk

Ty
pe

Ta
sk

Cl
as

s
Ro

ws
Co

lu
m

ns
Ca

te
go

ric
al

Co
lu

m
ns

Si
ze

Pe
ak

Ex
ec

ut
io

nM
em

or
y

TaskName
TaskType

TaskClass
Rows

Columns
CategoricalColumns

Size
PeakExecutionMemory 0.5

0.0

0.5

1.0

(b) Execution memory

Ta
sk

Na
m

e
Ta

sk
Ty

pe
Ta

sk
Cl

as
s

Ro
ws

Co
lu

m
ns

Ca
te

go
ric

al
Co

lu
m

ns
Si

ze
Du

ra
tio

n

TaskName
TaskType

TaskClass
Rows

Columns
CategoricalColumns

Size
Duration

0.5

0.0

0.5

1.0

(c) Duration

Figure 7.1: Correlation of target variables with the other features.

Afterward, we moved to the training of the regression model. Due to its com-

plexity, the regression problem can not be faced with a simple linear regressor

or its regularized variants (e.g. Ridge, Lasso, or ElasticNet), but a more robust

model is necessary. We experimentally evaluated this aspect by testing the fore-

casting abilities of these linear models achieving poor results. For this reason, an

ensemble learning model has been used in order to fit the nonlinear distribution of

features. Specifically, the stacking technique (meta-learning) [157] has been used

7.3 Proposed methodology: IIWM 155

by developing a two-layer model in which a set of regressors are trained on the

input dataset and a Decision Tree is fitted on their predictions. The first layer con-

sists of three tree-based regressors, able to grasp different aspects of input data: a

Gradient Boosting, an AdaBoost and an Extra Trees regressor. The second layer

exploits a single Decision Tree regressor, which predicts the final value starting

from the concatenation of the outputs from the first layer. The described ensemble

model has been set with the hyper-parameters shown in Table 7.3.

Hyper-parameter Value

n_estimators 500
learning_rate 0.01

max_depth 7
loss least squares

Table 7.3: Hyper-parameters.

Among 20 trained models, initialized with different random states, we selected

the best one by maximizing the following objective function:

O “ R̄2
´ MAE

whose goal is to choose the model that best explains the variance of data, while

minimizing the forecasting error. This function jointly considers the adjusted de-

termination coefficient (R̄2), which guarantees robustness with respect to the ad-

dition of useless variables to the model compared to the classical R2 score, and

the mean absolute error (MAE), normalized with respect to the maximum.

The described model has been developed in Python3 using the scikit-learn3

library and evaluated against the test set of 309 unseen executions obtained as

described in Section 7.3.1. Thanks to the combination of different models, the

ensemble technique showed to be very well suited for this task, leading to good

robustness against outliers and high regression accuracy. Achieved results are

shown by Figure 7.2, in which ground truth and regression estimates are respec-

tively depicted in yellow and blue.

3https://scikit-learn.org/stable/

https://scikit-learn.org/stable/

7.3 Proposed methodology: IIWM 156

0 50 100 150 200 250 300
Index of sample

0

1000

2000

3000

4000

Pe
ak

St
or

ag
eM

em
or

y

Regression estimates
Ground truth

(A) Storage memory

0 50 100 150 200 250 300
Index of sample

0

1000

2000

3000

4000

5000

6000

Pe
ak

Ex
ec

ut
io

nM
em

or
y

Regression estimates
Ground truth

(B) Execution memory

0 50 100 150 200 250 300
Index of sample

0

20,000

40,000

60,000

80,000

100,000

120,000

Du
ra

tio
n

Regression estimates
Ground truth

(C) Duration

Figure 7.2: Meta-learner regression estimates for the different target variables.

These results are detailed in Table 7.4, which shows the evaluation metrics for

each target variable. In particular, MAE and RMSE are represented in megabytes

for storage and execution memory, and in milliseconds for the duration.

RMSE MAE Adjusted R2 Pearson
Correlation

Storage Memory 108.23 26.66 0.96 0.98
Execution Memory 312.60 26.30 0.91 0.95

Duration 4443.17 2003.70 0.95 0.98

Table 7.4: Evaluation metrics on the test set.

7.3 Proposed methodology: IIWM 157

7.3.3 Workflow scheduling

The prediction model described in Section 7.3.2 can be exploited to forecast

the amount of memory that will be needed to execute a given task on a target com-

puting node and its duration, based on the task features listed in Section 7.3.1.

These predictions are then used within the scheduling strategy described in the

following, whose goal is to avoid swapping to disk due to memory saturation

in order to improve application performance and makespan through better use

of in-memory computing. The results discussed below refer to a static scheduling

problem, as the scheduling plan is generated before the execution. In typical static

scheduling, the workflow system has to predict the execution load of each task ac-

curately, using heuristic-based methods [158]. Likewise, in the proposed method

the execution load of each task of a given workflow is predicted by the model

trained on past executions. Moreover, we investigated how workflow tasks can

be scheduled and run on a single computing node, but this approach can be eas-

ily generalized to a multi-node scenario. For example, a data-intensive workflow

can be decomposed into multiple sub-workflows to be run on different computing

nodes according to their features and data locality. Each sub-workflow is sched-

uled locally to the assigned node using the proposed strategy.

In IIWM, we modeled the scheduling problem as an offline Bin Packing (BP).

This is a well-known problem, widely used for resource and task management

or scheduling, such as load balancing in mobile cloud computing architectures

[159], energy-efficient execution of data-intensive applications in clouds [160],

DAGs real-time scheduling in heterogeneous clusters [161] and task scheduling in

multiprocessor environments [162]. Its classical formulation is as follows [163].

Let n be the number of items, w j the weight of the j-th item and c the capacity of

each bin: the goal is to assign each item to a bin without exceeding the capacity c

and minimize the number of used bins. The problem is NP-complete and a lot of

effort went into finding fast algorithms with near-optimal solutions.

7.3 Proposed methodology: IIWM 158

We adapted the classical problem to our purposes as follows:

• An item is a task to be executed.

• A bin identifies a stage, i.e. a set of tasks that can be run in parallel.

• The capacity of a bin is the maximum amount C of available memory in a

computing node. When assigning a task to a stage s P S, its residual avail-

able memory will be indicated with Cs.

• The weight of an item is the memory occupancy estimated by the prediction

model. In the case of the Spark testbed, it will be the maximum of the exe-

cution and storage memory, in order to model a peak in the unified memory.

For what concerns the estimated execution time, it is used for selecting the

stage to be assigned when memory constraints hold for multiple stages.

With respect to the classical BP problem, two changes were introduced:

• All workflow tasks have to be executed, so the capacity of a stage may still

be exceeded if a task takes up more memory than the available one.

• The assignment of a task t to a stage s is subjected to dependency con-

straints. Hence, if a dependency exists between ti and t j, then the stage of ti
has to be executed before the one of t j.

To solve the BP problem, modeled as described above, thus producing the final

scheduling plan, we used the First Fit Decreasing algorithm, a greedy procedure

that assigns tasks sorted in non-increasing order of weight. However, the intro-

duction of dependency constraints in the assignment process may cause the under-

usage of certain stages. To cope with this issue, we introduced a further step of

consolidation, aimed at reducing the number of stages by merging together stages

without dependencies according to the available memory. The overall procedure

for task scheduling implemented by IIWM is described by Algorithm 10. In par-

ticular, given a data-intensive workflow W, described as a DAG by its tasks and

dependencies, and the prediction model M as input, a scheduling plan is generated

in two steps: iq building of the stages and task assignment; iiq stage consolidation.

7.3 Proposed methodology: IIWM 159

ALGORITHM 10: IIWM SCHEDULER
Input: Workflow W “ pT,Aq, Prediction model M
Output: A list of stages S

1 S Ð H

2 Q Ð xt : |Ninptq|, @t P Ty

3 Pmem Ð xt : M.predict_mempt,dtq, @t P Ty // Memory prediction
4 Ptime Ð xt : M.predict_timept,dtq, @t P Ty // Time prediction
5 T Ð sort_decreasingpT,Pmemq

6 while T ‰ H do
7 T f ree Ð tt P T | Qrts ““ 0u

8 t Ð get_ f irstpT f reeq

9 memt Ð Pmemrts
10 Ssel Ð tsi P S | memt ď Csi and E pt 1, tqn P A,n ą 0,@t 1 P si Y si`1 Y ¨¨ ¨ Y sk}
11 if Ssel ‰ H then
12 duration Ð xs : maxt1PsPtimert 1s,@s P Ssely

13 increase Ð xs : maxtPtimerts,durationrssu ´ durationrss,@s P Ssely

14 s Ð argmins1PSsel increase
15 Cs Ð Cs ´ memt

16 s Ð s Y ttu

17 else
18 s Ð H

19 s Ð s Y ttu
20 Cs Ð Cs ´ memt

21 S Ð SY tsu

22 Qrt 1s “ Qrt 1s ´ 1, @t 1 P Noutptq
23 T Ð Tzttu

24 // Consolidation step
25 Smov Ð ts P S | |Noutptq|““ 0, @t P su

26 if Smov ‰ H then
27 for si P Smov do
28 for s j P S | j ą i do
29 memsiYs j Ð

ř

tPsiYs j

Pmemrts

30 if memsiYs j ď C then
31 s j Ð si Y s j

32 S Ð Szsi

33 break

34 return S

7.3 Proposed methodology: IIWM 160

The algorithm is divided into two main parts: in the first part (lines 1-23), the

stages are built by iteratively assigning each task according to the estimates of

the prediction model; in the second part (lines 25-34), a consolidation process is

performed, trying to minimize the number of stages.

The first part (lines 1-23) starts with the initialization of an empty list of stages

S, which will be filled according to a dictionary Q that stores the in-degree of each

task in the DAG, which is used for identifying the free tasks which can be sched-

uled. The prediction model M is exploited to estimate the memory occupancy and

execution time of each task in T, according to their dataset description (lines 3-4).

The dictionary Pmem, which collects the predicted memory occupancies, is then

used to sort tasks according to the First Fit Decreasing strategy (line 5). At each

iteration, tasks that can be scheduled (i.e., assigned to a stage) are collected in the

T f ree set. In particular, they are identified by a zero in-degree, as their execution

does not depend on others (line 7). By virtue of the acyclicity of the DAG-based

workflow representation, there will always exist a task t P T with a zero in-degree

not yet scheduled, unless set T is empty. Afterward, the task with the highest

memory occupancy is selected from T f ree in order to be scheduled (line 8). At

this point, a list of candidate stages (Ssel) for the selected task is identified accord-

ing to the peak memory occupancy forecasted by the prediction model M (lines

9-10). In particular, a stage si belongs to Ssel if it satisfies the following conditions:

• The residual capacity Csi of the selected stage si is not exceeded by the

addition of the task t.

• There not exists a dependency between t and any task t 1 belonging to si

and every subsequent stage (si`1 Y ¨¨ ¨ Y sk), where a dependency pt 1, tqn is

identified by a path of length n ą 0.

If there exist one or more candidate stages Ssel (line 11), the best one is chosen

based on the minimum marginal increase. Specifically, for each of these stages,

the expected increase of the execution time is estimated (lines 12-13), assigning

the task t to the stage s with the lowest value (lines 14-16). Otherwise (line 17), a

newly created stage is allocated for t and added to the list S (lines 18-21). Once

7.3 Proposed methodology: IIWM 161

the task t is assigned to the stage s, the residual capacity Cs is updated (lines 15,

20). Then, the residual in-degree for every task in the out-neighborhood of t (line

22) is decremented by updating the dictionary Q, so as to allow the assignment of

these tasks in the next iterations. Finally, the assigned task t is removed from the

set of workflow nodes T (line 23).

The second part of the algorithm (lines 25-34) performs a consolidation step

with the goal of reducing the number of allocated stages by merging some of

them if possible, with a consequential improvement in the global throughput. The

stages involved in the consolidation step, namely the movable stages (Smov), are

those containing tasks with a zero out-degree (line 25). This means that no task

in such stages blocks the execution of another one, so they can be moved forward

and merged with subsequent stages if the available capacity C is not exceeded.

For each movable stage si (line 27), another stage s j from S is searched among the

subsequent ones, such that its residual capacity is enough to enable the merging

with si (lines 28-30). The merging between si and s j is performed by assigning to

s j each task of si (line 31), finally removing si from S (line 32). In the end, the

list of stages S built by the scheduler is returned as output. Given this scheduling

plan, the obtained stages will be executed in sequential order, while all the tasks

in a stage will run concurrently.

Compared to a blind strategy where the maximum parallelism is achieved by

running in parallel all the tasks not subjected to dependencies, which will be re-

ferred to as Full-Parallel in our experiments, IIWM can reduce both delays of

parallelization (εp), due to context switch and process synchronization, and swap-

ping/spilling to disk (εs), due to I/O operations. Delay εp is always present in

all scheduling strategies when two or more tasks are run concurrently, while εs is

present only when a memory saturation event occurs. Given ε “ εp ` εs, IIWM

mainly reduces εs, which is the main factor behind the drop in performance in

terms of execution time, due to the slowness in accessing secondary storage.

7.4 Results and discussion 162

As far as the Spark framework is concerned, the proposed strategy is effective

for making the most of the default storage level, i.e. MEMORY_AND_DISK: at

each internal call of the cache() method, data is saved in memory as long as this

resource is available, using disk otherwise. In this respect, IIWM can reduce the

actual persistence of data on disk by better exploiting in-memory computing.

Finally, to further facilitate understanding, Figure 7.3 graphically summarizes

the main execution flow of the IIWM scheduler described in this section.

IIWM scheduler

Scheduled
stages

Prediction model

Workflow

Scheduling

s2

s1

s3

s4

Consolidation

s2

s1

s3

s4

Final schedule

merge
(s4, s2)

merge
(s3, s1)

Figure 7.3: Execution flow of the IIWM scheduler. Given a workflow and a
prediction model as input, a scheduling plan is generated in two steps: iq building
of the stages and task assignment; iiq stage consolidation.

7.4 Results and discussion

This section presents an experimental evaluation of the proposed system, spe-

cially designed to optimize the in-memory execution of data-intensive workflows.

We experimentally assessed the effectiveness of IIWM using Apache Spark 3.0.1

as a testbed. In particular, we generated two synthetic workflows for analyzing

different scenarios, by assessing also the benefits coming from the use of IIWM

using a real data mining workflow as a case study.

In order to provide significant results, each experiment was executed ten times

and the average metrics with standard deviations are reported. In particular, for

each experiment, we evaluated the accuracy of the regression model in predicting

memory occupancy and execution time.

7.4 Results and discussion 163

We evaluated the ability of IIWM to improve application performance taking

into account two different aspects:

• Execution time: let m1 and m2 be the makespan for two different execu-

tions. If m2 ă m1 we can compute the improvement on makespan (mimp)

and application performance (pimp) as follows:

mimp “
m1 ´ m2

m1
ˆ 100% pimp “

m1

m2

• Disk usage: we used the on-disk usage metric, which measures the amount

of disk usage, jointly considering the volume and the duration of disk writes.

Formally, given a sequence of disk writes w1, ...,wk let τ
1

i , τ
2

i P T be the start

and end time of the wi write respectively. Let also W : T Ñ R be a function

representing the number of megabytes written to disk over time T. We

define on-disk usage as:

on-disk usage “

k
ÿ

i“1

1
τ

2

i ´ τ
1

i

ż

τ
2

i

τ
1

i

W pτqdτ

Specifically, for each workflow we reported: iq a comparison between Full-

Parallel and IIWM in terms of disk usage over time; iiq a detailed description of

the scheduling plan generated by both strategies; iiiq the average improvement

on makespan and application performance with IIWM; ivq statistics about the use

of disk, such as the time spent for I/O operations and the on-disk usage metric;

vq the execution of the workflow by varying the amount of available memory, in

order to show the benefits of the proposed scheduler in different limited memory

scenarios.

7.4.1 Synthetic workflows

We first evaluated our approach against two complex synthetic data analy-

sis workflows, where the Full-Parallel approach showed its limitations due to a

high degree of parallelism. The dependencies in these workflows should be un-

7.4 Results and discussion 164

derstood as execution constraints. For instance, clustering has to be performed

before classification for adding labels to an unlabelled dataset, or a classification

task is performed after the discovery of association rules for user classification

purposes.

The first test has been carried out on a synthetic workflow with 42 nodes.

Table 7.5 provides a detailed description of each task in the workflow, while their

dependencies are shown in Figure 7.4.

Node Task
Name

Task
Type

Task
Class Rows Columns Categorical

Columns
Dataset

size (MB)

t0 NaiveBayes Estimator Classification 2939059 18 4 198.93904
t1 FPGrowth Estimator AssociationRules 494156 180 180 417.01007
t2 NaiveBayes Estimator Classification 5000000 27 0 321.86484
t3 K-Means Estimator Clustering 1000000 104 0 247.95723
t4 DecisionTree Estimator Classification 4000000 53 0 505.45
t5 DecisionTree Estimator Classification 4000000 27 0 257.4918
t6 DecisionTree Estimator Classification 5000000 129 0 1542.5775
t7 K-Means Estimator Clustering 2000000 53 0 252.72397
t8 NaiveBayes Estimator Classification 2000000 104 0 495.9038
t9 NaiveBayes Estimator Classification 1000000 129 0 307.56625
t10 SVM Estimator Classification 2000000 53 0 252.72397
t11 K-Means Estimator Clustering 2049280 9 2 122.02598
t12 GMM Estimator Clustering 2458285 28 0 145.00838
t13 K-Means Estimator Clustering 9169 5812 1 101.88691
t14 SVM Estimator Classification 2000000 27 0 128.74657
t15 K-Means Estimator Clustering 3000000 104 0 743.87286
t16 SVM Estimator Classification 3000000 53 0 379.08823
t17 SVM Estimator Classification 14410 1921 0 127.3811
t18 K-Means Estimator Clustering 5000000 53 0 631.8128
t19 K-Means Estimator Clustering 5000000 104 0 1239.7812
t20 K-Means Estimator Clustering 2000000 78 0 371.93442
t21 SVM Estimator Classification 3000000 104 0 743.87286
t22 K-Means Estimator Clustering 2939059 18 4 198.93904
t23 SVM Estimator Classification 19213 1442 0 123.28475
t24 DecisionTree Estimator Classification 3000000 129 0 922.6897
t25 K-Means Estimator Clustering 1959372 26 4 189.5505
t26 DecisionTree Estimator Classification 4898431 18 4 331.56735
t27 NaiveBayes Estimator Classification 4898431 18 4 331.56735
t28 K-Means Estimator Clustering 2939059 34 4 334.91486
t29 K-Means Estimator Clustering 4898431 18 4 331.56735
t30 K-Means Estimator Clustering 1966628 42 0 170.48729
t31 NaiveBayes Estimator Classification 1959372 18 4 132.62437
t32 K-Means Estimator Clustering 3000000 78 0 557.9056
t33 DecisionTree Estimator Classification 3000000 53 0 379.08823
t34 DecisionTree Estimator Classification 14410 2401 0 159.71497
t35 K-Means Estimator Clustering 2939059 42 4 386.53033
t36 DecisionTree Estimator Classification 2939059 34 4 334.91486
t37 DecisionTree Estimator Classification 4000000 129 0 1230.2445
t38 NaiveBayes Estimator Classification 1000000 53 0 126.36286
t39 GMM Estimator Clustering 1000000 53 0 126.36286
t40 DecisionTree Estimator Classification 2939059 18 4 198.93904
t41 K-Means Estimator Clustering 4898431 18 4 331.56735

Table 7.5: Task and dataset descriptions
(workflow 1).

t0

t1 t2 t3

t4 t5 t6 t7t8 t9t10

t11 t12 t13 t14

t15 t16t17 t18 t19 t20 t21

t22 t23 t24 t25 t26 t27 t28

t29 t30 t31 t32 t33 t34

t35 t36 t37

t38 t39

t40

t41

Figure 7.4: Task dependencies
(workflow 1).

The first step involves predicting the memory occupancy and execution time of

each task of the workflow. In this case, the regression model was able to accurately

estimate the peaks on storage and execution memory, and the duration. Achieved

results are shown in Table 7.6.

7.4 Results and discussion 165

RMSE MAE Adjusted R2 Pearson
Correlation

Storage Memory 246.63 95.6 0.96 0.98
Execution Memory 4.7 1.6 0.99 0.99

Duration 20354.38 7877.72 0.80 0.91

Table 7.6: Performance evaluation of the prediction model.

We first considered a configuration characterized by 14 GB available for run-

ning the workflow, which will be used up to 60% due to the Spark unified memory

model. Table 7.7 shows an execution example with IIWM, focusing on its main

steps: iq the scheduling of tasks based on their decreasing memory weight; iiq

the allocation of a new stage; iiiq the use of the estimated execution time while

computing the marginal increase.

Iteration State Stages

It. 0
T0

f ree “ tt0u

Create s0 and assign t0
Unlock {t1, t2, t3}

s0 “ tt0u

It. 1
T1

f ree “ tt1, t3, t2u

Create s1 and assign t1
Unlock {t4}

s0 “ tt0u, s1 “ tt1u

It. 2
T2

f ree “ tt3, t4, t2u

Create s2 and assign t3
Unlock {t7, t8, t9, t10}

s0 “ tt0u, s1 “ tt1u,
s2 “ tt3u

It. 3
T3

f ree “ tt7, t4, t10, t2, t8, t9u

Create s3 and assign t7
s0 “ tt0u, s1 “ tt1u,
s2 “ tt3u , s3 “ tt7u

It. 4

T4
f ree “ tt4, t10, t2, t8, t9u

Ssel “ ts2,s3u

increase “ t0,0u

Assign t4 to s2

s0 “ tt0u, s1 “ tt1u,
s2 “ tt3, t4u, s3 “ tt7u

.

It. 17

T17
f ree “ tt17, t23, t8, t9u

Ssel “ ts6,s7u

increase “ t12496.363,0u

Assign t17 to s7
Unlock {t25}

s0 “ tt0u, s1 “ tt1, t2u,
s2 “ tt3, t4, t5u,
s3 “ tt7, t10, t6u,

s4 “ tt12, t11u, s5 “ tt15, t18u,
s6 “ tt19, t22u, s7 “ tt24, t16, t17u

.

Table 7.7: Example of execution of algorithm 10 at iteration level.

7.4 Results and discussion 166

The role of estimated time, used to compute the marginal increase, can be

clearly observed in iteration 17, where task t17 is assigned to stage s7, which

presents a marginal increase equal to zero. This is the best choice compared to

the other candidate stage (s6), whose execution time would be increased by 12496

milliseconds by the assignment of t17, with a degradation of the overall makespan.

At the end of the process, a consolidation step is exploited for optimizing through-

put and execution time, by merging two stages with zero out-degree with some

tailing stages, so as to avoid the sequential execution of the two stages in favor of

a parallel one.

Figure 7.5 shows disk occupancy throughout the execution. As a consequence

of memory saturation, the execution of Full-Parallel resulted in a huge amount of

disk writes, while IIWM achieved a null disk usage since no swapping occurred

thanks to intelligent task scheduling. Thus, this translates into better use of in-

memory computing.

0 2 3 5 7 8 10 12 13 15 17 18 20 22 23 25 27
Elapsed time (min)

0

100

200

300

Di
sk

 u
sa

ge
 (G

B)

Full-Parallel
IIWM

Figure 7.5: Disk usage over time for Full-Parallel and IIWM.

These results can be clearly seen also in Table 7.8, which shows the scheduling

plan produced by the IIWM scheduler, together with some statistics about execu-

tion times and the use of the disk. In particular, given the curves representing

disk writes over time shown in Figure 7.5, on-disk usage graphically represents

the sum, for each disk write, of the ratio between the area under the curve iden-

tified by a write and its duration. Compared to the Full-Parallel strategy, IIWM

achieved better execution times and an improvement in application performance,

with a boost of 1.45x (pimp) and a 31.15% reduction in time (mimp) on average.

7.4 Results and discussion 167

Strategy Task-scheduling plan Number
of stages Time (min.) Peak disk

usage (MB)
Writes

duration (min.)
On-disk

usage (MB)

Full-Parallel

(t0), (t1 ∥ t2 ∥ t3),
(t4 ∥ t5 ∥ t6 ∥ t7 ∥ t8 ∥ t9 ∥ t10),

(t11 ∥ t12 ∥ t13 ∥ t14),
(t15 ∥ t16 ∥ t17 ∥ t18 ∥ t19 ∥ t20 ∥ t21),
(t22 ∥ t23 ∥ t24 ∥ t25 ∥ t26 ∥ t27 ∥ t28),
(t29 ∥ t30 ∥ t31 ∥ t32 ∥ t33 ∥ t34 ∥ t41),

(t35 ∥ t36 ∥ t37), (t38 ∥ t39), (t40)

10 31.52 ˘ 0.6 356106.601 11.56 126867.065

IIWM

(t0), (t1 ∥ t2), (t3 ∥ t4 ∥ t5),
(t7 ∥ t10 ∥ t6 ∥ t8 ∥ t9),

(t12 ∥ t11 ∥ t13), (t15 ∥ t18), (t19 ∥ t22 ∥ t23),
(t24 ∥ t16 ∥ t17 ∥ t29), (t25 ∥ t41), (t30 ∥ t20),

(t35 ∥ t21 ∥ t14), (t28 ∥ t26 ∥ t27),
(t33 ∥ t32 ∥ t34 ∥ t31), (t37 ∥ t36),

(t39 ∥ t38), (t40)

16 21.70 ˘ 0.63 0 0 0

Table 7.8: Scheduling plan and statistics about execution times and disk usage
with 14 GB of RAM.

With different sizes of available memory, the Full-Parallel approach showed

higher and higher execution times and disk writes as memory decreased, while

IIWM was able to adapt the execution to available resources as shown in Figure

7.6, finding a good trade-off between the maximization of the parallelism and the

minimization of the memory saturation probability. At the extremes, with unlim-

ited available memory, or at least greater than that required to run the workflow,

IIWM will perform as a full concurrent strategy, producing the same scheduling

of Full-Parallel.

14 22 30
Memory size (GB)

0

50

100

150

200

250

300

350

Av
er

ag
e

pe
ak

 d
isk

 u
sa

ge
 (G

B) Full-Parallel
IIWM

(a) Average peak disk usage

14 22 30
Memory size (GB)

20

22

24

26

28

30

32

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

in
) Full-Parallel

IIWM

(b) Average execution time

Figure 7.6: Average peak disk usage and execution time, varying the size of
available memory.

7.4 Results and discussion 168

The second synthetic workflow consists of the 27 tasks described by Table 7.9

and their dependencies, shown in Figure 7.7. This scenario is characterized by

highly heavy tasks and very low resources, where the execution of a single task

can exceed the available memory. In particular, task T18 has an estimated peak

memory occupancy higher than Spark’s available unified memory of 5413.8 MB

(i.e., corresponding to a heap size of 9.5 GB): this will bring the IIWM scheduling

algorithm to allocate the task to a new stage, but memory will be saturated anyway.

Node Task
Name

Task
Type

Task
Class Rows Columns Categorical

Columns
Dataset

size (MB)

t0 K-Means Estimator Clustering 3918745 34 4 446.54932
t1 DecisionTree Estimator Classification 4000000 27 0 257.4918
t2 GMM Estimator Clustering 2458285 28 0 145.008
t3 DecisionTree Estimator Classification 3000000 53 0 379.08823
t4 DecisionTree Estimator Classification 4000000 129 0 1230.24
t5 DecisionTree Estimator Classification 3918745 18 4 265.2537
t6 DecisionTree Estimator Classification 4898431 42 3 648.887
t7 DecisionTree Estimator Classification 2939059 42 4 386.53033
t8 K-Means Estimator Clustering 2458285 56 0 278.75266
t9 GMM Estimator Clustering 3000000 53 0 379.08823
t10 SVM Estimator Classification 4000000 53 0 505.45
t11 K-Means Estimator Clustering 2939059 42 4 386.53033
t12 SVM Estimator Classification 2000000 53 0 252.72397
t13 K-Means Estimator Clustering 1639424 9 2 93.6976
t14 NaiveBayes Estimator Classification 260924 3 0 10.3273
t15 K-Means Estimator Clustering 2000000 78 0 371.93442
t16 DecisionTree Estimator Classification 3918745 26 4 379.1089
t17 DecisionTree Estimator Classification 3918745 34 4 446.54932
t18 FPGrowth Estimator AssociationRules 823593 180 180 697.0
t19 DecisionTree Estimator Classification 2939059 26 4 284.33032
t20 SVM Estimator Classification 5000000 27 0 321.86484
t21 FPGrowth Estimator AssociationRules 164719 180 180 139.871
t22 GMM Estimator Clustering 3000000 27 0 193.119
t23 K-Means Estimator Clustering 4898431 26 4 473.88403
t24 DecisionTree Estimator Classification 2000000 104 0 495.9038
t25 K-Means Estimator Clustering 2458285 69 0 344.6047
t26 FPGrowth Estimator AssociationRules 494156 180 180 417.01007

Table 7.9: Task and dataset descriptions
(workflow 2).

t0

t1 t2t3 t4

t5 t6 t7 t8t9 t10 t11 t12

t13 t14 t15 t16t17 t18 t19 t20

t21

t22 t23 t24t25

t26

Figure 7.7: Task dependencies
(workflow 2).

In such a situation, data spilling to disk cannot be avoided, but IIWM tries to

minimize the number of bytes written and the duration of I/O operations. Even in

this scenario, the prediction model achieved very accurate results, shown in Table

7.10, confirming its forecasting abilities.

RMSE MAE Adjusted R2 Pearson
Correlation

Storage Memory 213.81 78.92 0.98 0.99
Execution Memory 29.86 11.56 0.98 0.99

Duration 20086.80 9925.13 0.82 0.94

Table 7.10: Performance evaluation of the prediction model.

7.4 Results and discussion 169

Figure 7.8 shows disk occupancy during the execution. As we can see, even

IIWM cannot avoid data spilling, even though its disk usage was much lower

considering peak value and writes duration compared to Full-Parallel.

0 2 3 5 7 8 10 12 13 15 17 18 20 22 23 25
Elapsed time (min)

0

5

10

15

20

25

Di
sk

 u
sa

ge
 (G

B)

(a) Disk usage of Full-Parallel

0 2 3 5 7 8 10 12 13 15 17 18 20
Elapsed time (min)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Di
sk

 u
sa

ge
 (G

B)

(b) Disk usage of IIWM

Figure 7.8: Disk usage over time for Full-Parallel and IIWM.

Strategy Task-scheduling plan Number
of stages Time (min.) Peak disk

usage (MB)
Writes

duration (min.)
On-disk

usage (MB)

Full-Parallel

(t0), (t1 ∥ t2 ∥ t3 ∥ t4),
(t5 ∥ t6 ∥ t7 ∥ t8 ∥ t9 ∥ t10 ∥ t11 ∥ t12),

(t13 ∥ t14 ∥ t15 ∥ t16 ∥ t17 ∥ t18 ∥ t19 ∥ t20),
(t21), (t22 ∥ t23 ∥ t24 ∥ t25), (t26)

7 29.42 ˘ 1.88 27095.837 20.6 10593.79

IIWM

(t0), (t4 ∥ t2), (t11 ∥ t7), (t8 ∥ t3),
(t15 ∥ t10 ∥ t9 ∥ t16), (t18),

(t17 ∥ t1 ∥ t12), (t6 ∥ t5), (t14),
(t13 ∥ t20 ∥ t19), (t21),

(t23 ∥ t24), (t25), (t22), (t26)

15 22.68 ˘ 1.65 304.5 3.6 60.82

Table 7.11: Scheduling plan and statistics about execution times and disk usage
with 9.5 GB of RAM.

Finally, Table 7.11 shows the statistics about disk usage and execution times.

Again, IIWM achieved better results with a boost in performance of almost 1.30x

(pimp) with respect to a Full-Parallel strategy and a 23% reduction in time (mimp)

on average. An interesting aspect that emerges from the behavior of the IIWM

scheduler, in the task-scheduling plan, is the similarity with priority-based schedul-

ing in assigning tasks based on decreasing weights. In fact, tasks characterized by

low memory occupancy may be assigned to tailing stages even if they are close to

the root (e.g., in Full-Parallel, t1 is executed in the second stage, while in IIWM it

is executed in the seventh one). Hence, in a dynamic scheduling scenario where

7.4 Results and discussion 170

tasks can be added at runtime, IIWM may suffer from the starvation problem, as

such tasks may experiment an indefinite delay as far as new tasks with a higher

memory weight are provided to the scheduler. Nevertheless, in the proposed work

we dealt with a static scheduling problem, where all tasks are known in advance

and the task set is not modifiable at runtime.

7.4.2 Real case study

In order to assess the performance of the proposed approach against a real

case study, we used a data mining workflow that implements a model selection

strategy for the classification of an unlabelled dataset [164]. Figure 7.9 shows a

representation of the workflow designed by the visual language VL4Cloud.

Filter [m]

PS: dataset

dataset fDataset

FUnlab [m]

dataset sDataset

Train Shuffler STrain

Partitioner

dataset

TrainPart [n]

ClAlgo [1][n]

PS: dataset

model

Model [1][n]

ClAlgo [2][n]

PS: dataset

model

Model [2][n]

ClAlgo [k][n]

PS: dataset

model

Model [k][n]

ModelSelector

Test

BestModel

bestModel

Predictor [m]

PS: dataset

ClassDataset[m]
UnLab [m]

dataset

dataset

Figure 7.9: Ensemble learning workflow.

A training set is divided into n partitions and k classification algorithms are

fitted on each partition for generating k ˆ n classification models. The k ˆ n fitted

models are evaluated by a model selector on a test set to choose the best model.

Afterward, the n predictors use the best model to generate n classified datasets.

The following k classification algorithms provided by the MLlib library were

used: Decision Tree with C4.5 algorithm, Support Vector Machines (SVM), and

Naive Bayes. The training set, test set and unlabelled dataset provided as input

for the workflow have been generated from the Physical Unclonable Functions

7.4 Results and discussion 171

(PUFs) [165] simulation through a n-fold-cross strategy. In this scenario, IIWM

can be used to optimize the data processing phase regarding the execution of the

k ˆ n classification algorithms (estimators first, transformers then) concurrently.

The other phases, such as data acquisition and partitioning, are out of our interest.

The red box in Figure 7.9 shows the tasks of the workflow that will be analyzed.

Figure 7.10 shows disk occupancy over time with 14 GB of RAM. Even in

this case, IIWM avoided disk writes, while Full-Parallel registered a high level of

disk usage. In particular, during the training phase, the parallel execution of the

k ˆ n models (with k “ 3 and n “ 5) saturates memory with 15 concurrent tasks

and generates disk writes up to 124 GB.

0 2 3 5 7 8 10
Elapsed time (min)

0

25

50

75

100

125

Di
sk

 u
sa

ge
 (G

B)

Full-Parallel
IIWM

Figure 7.10: Disk usage over time for Full-Parallel and IIWM.

The results are detailed in Table 7.12, which shows a boost in execution time of

almost 1.66x (pimp) and a 40% time reduction (mimp) with respect to Full-Parallel.

Strategy Task-scheduling plan Number
of stages Time (min.) Peak disk

usage (MB)
Writes

duration (min.)
On-disk

usage (MB)

Full-Parallel

(t0 ∥ t2 ∥ t4 ∥ t6 ∥ t8 ∥ t10 ∥ t12 ∥ t14 ∥
t16 ∥ t18 ∥ t20 ∥ t22 ∥ t24 ∥ t26 ∥ t28),

(t1 ∥ t3 ∥ t5 ∥ t7 ∥ t9 ∥ t11 ∥ t13 ∥ t15 ∥
t17 ∥ t19 ∥ t21 ∥ t23 ∥ t25 ∥ t27 ∥ t29)

2 11.42 ˘ 0.27 124731 9.6 54443

IIWM

(t10 ∥ t12 ∥ t14 ∥ t16 ∥ t20 ∥ t22 ∥ t24 ∥ t26 ∥ t28),
(t18 ∥ t0 ∥ t2 ∥ t4 ∥ t6 ∥ t8 ∥ t11 ∥ t13 ∥
t15 ∥ t17 ∥ t21 ∥ t23 ∥ t25 ∥ t27 ∥ t29),

(t19 ∥ t1 ∥ t3 ∥ t5 ∥ t7 ∥ t9)

3 6.88 ˘ 0.1 0 0 0

Table 7.12: Scheduling plan and statistics about execution times and disk usage
with 14 GB of RAM.

7.5 Conclusions 172

The general trends varying the number of available resources are also con-

firmed with respect to the previous examples, as shown in Figure 7.11.

14 18 22
Memory size (GB)

0

20

40

60

80

100

120

Av
er

ag
e

pe
ak

 d
isk

 u
sa

ge
 (G

B) Full-Parallel
IIWM

(a) Disk usage

14 18 22
Memory size (GB)

7

8

9

10

11

12

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

in
) Full-Parallel

IIWM

(b) Average execution time

Figure 7.11: Average peak disk usage and execution time, varying the size of
available memory.

7.5 Conclusions

Currently, data-intensive workflows are widely used in several application do-

mains, such as bioinformatics, astronomy, and engineering. This chapter intro-

duced IIWM, a methodology aimed at optimizing the in-memory execution of

data-intensive workflows on high-performance computing systems. Experimental

results, achieved by using Apache Spark as a testbed, suggested that by jointly

leveraging a machine learning model for performance estimation and a suitable

scheduling strategy, the execution of data-intensive workflows can be significantly

improved with respect to state-of-the-art blind strategies. In particular, the main

benefits of the IIWM resulted when it was applied to workflows having a high

level of parallelism. In this case, a significant reduction of memory saturation was

obtained. Therefore, it can be used effectively when multiple tasks have to be

executed on the same computing node, for example when they need to be run on

multiple immovable datasets located on a single node or due to other hardware

constraints. In these cases, an uninformed scheduling strategy will likely exceed

the available memory, causing disk writes and, therefore, a drop in performance.

The proposed approach was also shown to be a very suitable solution in scenarios

7.5 Conclusions 173

characterized by a limited amount of memory reserved for execution, thus finding

possible applications in data-intensive IoT workflows, where data processing is

performed on constrained devices located at the network edge.

In future work, additional aspects of the performance estimation will be in-

vestigated. For example, IIWM can be extended also to consider other common

stages in workflows besides data analysis (e.g., data acquisition, integration, and

reduction), and additional information about tasks, input data, and hardware plat-

form features.

Chapter 8
Enhance data partitioning in HPC
applications: a machine learning
approach to block size estimation

The extensive use of HPC infrastructures and frameworks for running data-

intensive applications has led to a growing interest in data partitioning techniques

and strategies. Indeed, finding an effective partitioning is crucial to speed-up par-

allel data-intensive applications and increase scalability.

Data partitioning refers to splitting a dataset into small and fixed-size units,

called blocks or chunks, to enable efficient data-parallel processing and storing

in distributed-memory-based systems. Several issues related to data partitioning

must be addressed to reduce execution times and ensure the good scalability of

applications. For example, when a dataset is mapped on a set of nodes of a par-

allel/distributed computing system, two critical problems arise, i.e. piq the choice

of the destination node for a given block, and piiq the selection of an appropriate

block size. The first problem has been addressed in several studies [166–168],

in which scheduling algorithms have been proposed to minimize the movement

of data at run-time. The second problem, less studied in the literature, requires

to take a decision before the application is running as it strongly depends on the

features of the input dataset, the algorithm, and the execution environment.

174

175

The block size can heavily affect the trade-off between single-node efficiency

and parallelism in data-intensive applications. Specifically, a larger size reduces

parallelism (fewer blocks) but makes tasks larger. Although this can lead to an

overhead reduction, it must be ensured that the block size does not exceed the

memory available on the individual nodes, so as to avoid memory saturation. On

the other hand, a smaller size leads to finer exploitation of parallelism, while

introducing a larger overhead due to communication, synchronization, and task

management, which can negatively impact performance. Typically, block size es-

timation is not an easy task for programmers. In fact, they usually proceed by

following a trial and error approach, only supported by simple heuristics and do-

main knowledge (i.e., the awareness of the behavior of the algorithm in a given

distributed environment). As a result, this tuning process is often time-consuming

and resource-intensive, especially when large datasets and complex hardware in-

frastructures are used.

This chapter describes a novel methodology we specially designed to address

this issue, aimed at determining a good estimate for data block size in High-

Performance Computing (HPC) applications, quickly and requiring few resources

and domain knowledge [12]. The presented methodology relies on machine learn-

ing techniques and follows a supervised approach, by leveraging a cascade of tree-

based classifiers to determine the most suitable value for the block size, given an

execution to be performed. The model is trained on a log of past executions, repre-

sented by a set of descriptive features, including algorithm and dataset character-

istics, performed in a specific execution environment. Consequently, predictions

are applicable to systems having the same infrastructure features, which makes

our methodology effectively usable on large-scale homogeneous HPC systems.

The effectiveness of our methodology was assessed through an extensive ex-

perimental evaluation, using as a testbed dislib, a distributed computing library

that provides a wide range of machine learning algorithms. The experiments were

performed on different execution environments, including MareNostrum 4 super-

computer (MN4) [169], located at the Barcelona Supercomputing Center (BSC),

and involved several real-world datasets. The achieved results show the ability

8.1 Related work 176

of the proposed methodology to efficiently predict a suitable value for the block

size, thus supporting programmers in determining the correct data partitioning

(on both rows and columns), which enables the efficient execution of data-parallel

applications in high-performance environments.

The remainder of this chapter is organized as follows. Section 8.1 discusses

the main methods for data partitioning present in the literature. Section 8.2 de-

scribes the proposed methodology. Section 8.3 describes the use case and testbed.

Section 8.4 presents the experimental evaluation and the achieved results. Finally,

Section 8.5 concludes the paper.

8.1 Related work

In high-performance computing, data partitioning is key to speed-up parallel

data-intensive applications and increase scalability. In this section, we describe

the main methods proposed in the literature and used in HPC infrastructures.

The data partitioning problem is generally addressed by using three main al-

ternative techniques: horizontal, vertical, and hybrid partitioning [170].

• Horizontal partitioning. This technique, also called sharding, divides the

rows of the dataset into disjoint subsets so that each subset has the same

number of columns as the whole dataset. This approach is used in many

state-of-the-art frameworks for big data processing, such as Hadoop and

Spark [171, 172].

• Vertical partitioning. In this approach, the columns of the dataset are di-

vided into subsets, usually based on the columns on which data querying is

more frequently performed, or a heuristic approach [173, 174].

• Hybrid partitioning. It combines the horizontal and vertical approaches, by

aggregating data according to how it is used by the target application and/or

system [175, 176]. It is also called functional partitioning.

8.1 Related work 177

Among all described strategies, horizontal partitioning is the one that is mostly

used in big data applications and HPC systems, while the other two strategies are

less used and therefore explored in the literature. Specifically, the horizontal par-

titioning can be further categorized into hash-, range-, and random- based. The

hash-based approach divides records into subsets by hashing the record key and

then mapping the hash value of the key to a partition. A common method to do

this mapping is using a round-robin algorithm, which guarantees a balanced parti-

tioning among nodes and partitions of equivalent size. In hash-based partitioning

records having the same key value must have the same hash value, and conse-

quently, they will be mapped to the same partition. The range-based partitioning

approach, instead, partitions a dataset according to a given range and distributes

records having the keys within the same range on the same node. In distributed

environments, how to set this range is often challenging, especially when dealing

with large-scale data analysis. Finally, the random-based partitioning approach

divides the records randomly into subsets using a random number generator to de-

termine where to distribute each record, producing approximately subsets of equal

size. As an example, Salloum et al. proposed the Random Sample Partition (RSP)

data model to support distributed big data analysis [177]. In particular, this model

represents a big dataset as a set of non-overlapping blocks, where each block is

a random sample of the whole dataset. In addition, Wei et al. [178] proposed

a two-stage algorithm to generate RSP data blocks from the Hadoop Distributed

File System (HDFS). A drawback of random-based approaches is that they do

not consider the correlation between records, which instead can be leveraged to

avoid unnecessary computations. As an example, in [179] the authors designed a

context-based multi-dimensional partitioning technique that relies on data corre-

lation to determine how records should be split.

Main approaches for data partitioning can be further categorized into static or

dynamic [180]. Static approaches use a fixed-size when a block is selected, often

defined in MB, and the partitioning is computed before starting the execution.

As an example, data in HDFS is divided into fixed-size blocks, obtained from

horizontal partitioning. Particularly, a typical block size is 128 MB, which means

8.1 Related work 178

that if we have a 1 GB file, it will be partitioned into 8 blocks, each one of 128 MB.

Similarly, in Spark the HDFS blocks need to be loaded into an in-memory data

structure, called Resilient Distributed Dataset (RDD) [145], which can be then

partitioned using either the aforementioned strategies, such as hash and range, or

a custom partitioning. Specifically, Spark runs a single task for every partition of

an RDD, up to 2 ´ 3x times the number of cores in the cluster. Hence, a heuristic

can be derived that determines the number of partitions as a small multiple of the

total number of available cores. On the contrary, in the dynamic approaches, the

dimension and shape of the blocks in which to partition the dataset are not chosen

a priori, but at runtime. As an example, several dynamic strategies can be found

in [180], specially designed for graph data partitioning. Both approaches present

some issues. Static approaches define a priori how data should be partitioned,

without taking into account any dataset characteristic or algorithm feature. On

the other hand, dynamic approaches support adaptation to the actual workload at

runtime, but they can introduce significant overhead in dynamically adjusting data

partitioning.

To overcome these issues, in [12] we proposed a hybrid and static data par-

titioning approach, able to determine how to adequately partition the dataset be-

fore the execution, thus avoiding the overhead introduced by dynamic approaches,

while also taking into account dataset and algorithm characteristics and infrastruc-

ture features. Specifically, we determine the best size of data blocks by using a

supervised machine learning technique, focusing on the estimation of two quan-

tities, i.e. the number of partitions in which to divide dataset rows and columns.

This allows for determining a suitable partitioning in order to make the most of

the computational resources of the execution environment, thus improving the

performance and scalability of the application.

8.2 Proposed methodology 179

8.2 Proposed methodology

Our methodology addresses the problem of data partitioning by finding a suit-

able estimate of data block size, allowing an effective hybrid partitioning of a

given dataset. In particular, we formulated the block size estimation task as fol-

lows. Let d be a dataset composed of n rows and m columns, and a the algorithm

to be run on the execution environment e. We must determine the best number

of rows and column partitions ppr, pcq, from which to derive the best block size

S “ pn{pr,m{pcq that minimizes the execution time of algorithm a.

In our solution, the optimal partitioning is estimated through a classification-

based approach. Particularly, the target classes are represented by the two discrete

variables to be predicted, i.e. pr and pc, which range from 1 (i.e., a single par-

tition) to a maximum number of partitions, usually defined as a small multiple

of the total number of cores available. We selected this kind of approach as it

results to be more stable compared to a regression-based one, in which the block

size is directly predicted by identifying the number of elements of each block.

In fact, the main problem of the regression-based approach is that its output is

generally unconstrained, which may lead to a set of blocks with a non-uniform

size. The classification-based approach, instead, is less affected by this problem,

as it selects the number of partitions against a finite number of possible values.

However, the ability to generalize heavily depends on the representativeness of

the training data, which implies that the produced estimates are reliable for HPC

systems having similar infrastructure features and datasets whose size is of the

same order of magnitude as those seen during training.

In the following, we provide a detailed description of the three main steps that

make up the proposed methodology, i.e. iq the analysis of the execution environ-

ment, iiq the analysis of execution logs from which to extract training data, and iiiq

the training of the machine learning model for block size estimation. For the sake

of completeness, Figure 8.1 shows the main execution flow of our methodology.

8.2 Proposed methodology 180

Execution environment
analysis

Log analysis to extract
training data

Classification
model training

train extract

Frameworks
and libraries

Hardware
Infrastructure

Execution
log history

Training
data

Training
data

Block size
estimation model

Figure 8.1: Execution flow of the proposed methodology for block size estima-
tion.

8.2.1 Execution environment analysis

Given a distributed environment in which data analysis applications can be

run, the proposed methodology aims to enable their efficient execution by identi-

fying a proper size for data blocks. This can help programmers to make the most

of all the computing and storage resources that are available in the environment,

as they can efficiently obtain a suitable estimate for the block size, without the

need for heavy tuning processes or domain knowledge. As a preliminary step, the

execution environment must be carefully analyzed. Generally, it is characterized

by a set of software features, such as the available frameworks and libraries, and

infrastructure features, such as the number of nodes, cores per node, available

memory, and disk space.

8.2.2 Log analysis to extract training data

The proposed methodology leverages a log of past executions to extract the

patterns that link a specific execution to the best block size, by training a super-

vised machine learning model. However, in order to learn effective patterns, raw

logs must be adequately processed to extract an appropriate set of training data.

The log L consists of a collection of executions, performed by both standard users

and domain experts, in which a single execution is described by the characteris-

tics of the dataset (d), the algorithm (a), the execution environment (e), the applied

partitioning along rows (pr) and columns (pc), the overall execution time (t), and

other measurements such as main memory/disk usage. Formally, an execution in

L is represented by the tuple xd,a,e, pr, pc, ty.

8.2 Proposed methodology 181

In order to generate the training dataset D, all executions in L are grouped by

the triple xd,a,ey. In this way, we can observe how, given a fixed configuration,

execution time is affected by different block sizes. Afterward, for each group, the

best partitioning (p˚
r , p˚

c) that led to the minimum execution time is found and the

tuple xd,a,e, p˚
r , p˚

c y is added to D. At the end of the process, the dataset D will

contain the best partitioning found for each triple xd,a,ey, specifically:

• Features related to algorithm a, dataset d (dimension in MB, number of

rows, etc.), and execution environment e (number of cores, number of nodes,

etc.).

• The optimal partitioning pp˚
r , p˚

c q, i.e. the target variable.

Table 8.1 shows an example of an excerpt of D obtained from the training data

extraction step.

Algorithm Dataset
rows

Dataset
columns

Dataset
size (GB)

Infrastructure features Best partitioning

nodes # cores RAM p˚
r p˚

c

K-means 500,000 1000 2.39 4 64 256 32 4
RF 1000 500,000 2.92 4 64 256 32 8

SVM 10,000 10,000 1.1 4 64 256 16 16

Table 8.1: Excerpt of the training set extracted by the log of executions.

Although many frameworks provide accurate instrumentation tools for col-

lecting a wide range of information, effectively exploitable for application perfor-

mance monitoring, it is not always possible to have a representative log. To face

this issue, training data can be generated and/or enriched by arranging a set of ex-

ecutions, with the aim of finding the block size that optimizes execution time for

the considered configurations. This process is characterized by several degrees of

freedom, as different algorithms (a) must be taken into account, as well as a wide

range of input data (d) and infrastructure features of the execution environment

(e), which leads to the need for an efficient search strategy. For this purpose, a

grid search technique can be leveraged, in which several triples xd,a,ey are gener-

ated and annotated with the best block size found during the search. Specifically,

for each triple, the following operations are performed.

8.2 Proposed methodology 182

• Given ncores the number of available cores, a k ˆ k grid G is built, with

k “ logspncoresq, where s is a search step such that logspncoresq is an integer

number. The step s (set to 2 by default) can be used to control the trade-

off between the cost of the grid search and the representativeness of the

generated training samples.

• Each element gi, j in the grid G, with i and j ranging from 1 to k, is de-

termined as the time of executing algorithm a on the dataset d within the

environment e, by splitting d using the ppr = si, pc = s jq partitioning. This

means that the rows and columns of d will be divided into si and s j blocks,

respectively. The execution time in the case of failures (e.g., out-of-memory

errors) is set to 8.

• By exploring the grid, the best partitioning pp˚
r , p˚

c q for the triple xd,a,ey

can be found, which leads to the minimum execution time. Formally, it is

computed as the pair pp˚
r , p˚

c q “ psi˚,s j˚q, where pi˚, j˚q “ argmin
i, j

G. Finally

the triple xd,a,ey is labeled with pp˚
r , p˚

c q and added to the training dataset

D.

This approach for training data generation via execution monitoring borrows

ideas from the work described in the previous chapter, in which we proposed a

machine learning-based approach to improving the in-memory execution of data-

intensive workflows on parallel machines [11].

8.2.3 Classification model training

Given the dataset D obtained in the previous step, a classification model is

trained to learn the patterns that relate the execution features/parameters and the

best partitioning pp˚
r , p˚

c q. Thus, the output of this step is a classification model

capable of estimating the optimal number of partitions in which to split the rows

and the columns of a given dataset, based on its characteristics, the algorithm

to be run, and the underlying execution environment. Since the target variable

to be predicted, i.e. the best partitioning pp˚
r , p˚

c q, is two-dimensional, we used a

8.2 Proposed methodology 183

multi-output classification model based on a cascade of two different decision tree

classifiers. The two classifiers, namely DTr and DTc, are used to predict the best

number of rows and column blocks, respectively. In addition, as the two target

variables are likely to be dependent on each other, we used a chained model to

condition the DTc predictions on the output of DTr, as shown in Figure 8.2.

DTcDTr pr pc

Input

 instance

Best partitioning

(pr*, pc*)

Block size

(r*, c*) = (n/pr*, m/pc*)

Figure 8.2: Chained multi-output classification model.

We followed this order in chaining the two decision tree models since parti-

tioning along the rows is generally more relevant. The training step is performed

as follows:

1. We train the first decision tree DTr with the training instances of D to learn

the patterns underlying the number of blocks p˚
r in which to partition dataset

rows.

2. The second decision tree DTc is trained with the training instances concate-

nated with the output of DTr, with respect to the second target variable p˚
c ,

to learn the number of blocks in which to partition dataset columns.

Afterward, the corresponding value of the block size can be determined as

pr˚,c˚q “ pn{p˚
r ,m{p˚

c q, where n and m are the rows and columns of the consid-

ered dataset. For the sake of clarity, we report a simple example of computing

the block size for a given input instance. Let n “ 51,200 and m “ 256 be the

number of dataset rows and columns, respectively. Suppose that the result of the

prediction is pp˚
r , p˚

c q “ p4,16q. Then the optimal block size can be computed as:

pr˚,c˚
q “ pn{p˚

r ,m{p˚
c q “ p12800,16q

8.3 Block size estimation in dislib applications 184

8.3 Block size estimation in dislib applications

The proposed methodology can be applied to a wide range of frameworks

for distributed data processing. Indeed, the majority of these systems, such as

Hadoop [171], Spark [172], DMCF [181] and PyCOMPSs [182], leverage a data-

parallel approach that involves a data partitioning step for distributing the dataset

across a set of working nodes [10]. Consequently, our methodology can bring

huge benefits, by suggesting an adequate partitioning that allows to effectively

run distributed applications, reducing overhead while ensuring a good level of

parallelism and throughput. Among the main frameworks and libraries of inter-

est for distributed data processing, we selected as a testbed PyCOMPSs, focusing

on dislib [183], a distributed computing library built on top of it that provides

distributed machine learning algorithms. The early implementation, based on Py-

COMPSs and dislib, is publicly available on Github1.

PyCOMPSs [182, 184] is a task-based programming model that enables the

parallel execution of sequential Python code in distributed computing platforms.

By means of Python decorators, the developer identifies the function/methods to

be considered tasks. PyCOMPSs also offers a small API for synchronization.

It is based on a runtime able to identify the data dependencies that exist among

tasks building a data dependency graph. The task graph exposes the possible

task concurrency that is exploited by the runtime, which manages the execution

of the tasks in distributed infrastructures, scheduling them and performing all the

necessary data transfers.

The Distributed Computing Library (dislib) [183], implemented on top of Py-

COMPSs, provides various distributed algorithms for several machine learning

tasks, including classification, clustering, and dimensionality reduction. Dislib is

inspired by scikit-learn and NumPy, and it comes with two primary programming

interfaces: an API to manage data in a distributed way and an estimator-based

interface to work with different machine learning models.

1https://github.com/eflows4hpc/dislib-block-size-estimation

8.4 Experimental evaluation 185

Its main data structure is the distributed array (ds ´ array) which enables it

to distribute the datasets in multiple nodes of a distributed infrastructure. A ds-

array is a matrix divided into blocks, which can be a NumPy array or a SciPy CSR

(Compressed Sparse Row) matrix, depending on the kind of data used to create the

ds-array. Dislib provides an API similar to NumPy to work with ds-arrays, but ds-

arrays are stored remotely, allowing to store much more data than regular NumPy

arrays. All operations on ds-arrays are internally parallelized with PyCOMPSs.

The typical workflow in dislib consists of the following steps: iq reading input

data into a ds-array; iiq creating an estimator object; iiiq fitting the estimator with

the input data; ivq getting information from the model’s estimator or applying the

model to new data. At each step, the level of parallelism is driven by the number

of blocks of the ds-arrays that are operated, which in turn is controlled by the ds-

array’s block size, which defines the number of rows and columns of each block.

Choosing the right size of a block-array can be a quite challenging task: small

blocks allow for higher parallelism as the computation is divided into more tasks.

However, handling a large number of blocks can generate overhead that can nega-

tively impact performance. Thus, the optimal block size will allow the full utiliza-

tion of the available resources without adding too much overhead. In addition to

this, block size also affects the amount of data that tasks load into memory. This

means that block size should never be bigger than the amount of available memory

per processor. Summing up, the choice of the optimal block size is often difficult

but essential for exploiting the full potential of dislib, hence the possibility of

effectively applying the proposed methodology.

8.4 Experimental evaluation

This section presents the extensive experimental evaluation we carried out to

assess the effectiveness of the proposed methodology by using PyCOMPSs as the

execution framework and the machine learning library dislib built on top of it.

8.4 Experimental evaluation 186

In particular, we analyzed the impact on the execution time of the partitioning

suggested by our methodology, performing several experiments on two distinct

execution environments, i.e. a cluster node and the MareNostrum 4 supercom-

puter, in order to evaluate the methodology in a single-node and a multi-node

scenario.

For what concerns the evaluation metrics, we used makespan ratio to measure

the improvement in speed of execution brought by the predicted block size, with

respect to other possible partitions. Specifically, given an algorithm a to be run

in a distributed environment e, let t˚ and tother be the execution times achieved by

using the predicted block size and a different one, respectively. We compute the

makespan ratio as follows:

makespan ratio “
tother

t˚

In addition, we measured the percentage makespan reduction, i.e. the per-

centage amount of execution time saved by running a given algorithm with the

predicted block size, with respect to a different one. Formally:

makespan reduction “
tother ´ t˚

tother

8.4.1 Single-node experiments

This first experimental evaluation was carried out on a cluster node equipped

with an AMD processor, 64 cores, and 256 GB of RAM. The used log contains

several executions performed on different datasets using a wide range of machine

learning algorithms provided by dislib for classification and clustering, including

Support Vector Machine (SVM), Random Forest (RF), Gaussian Mixture Model

(GMM) and K-means. In the following sections, we describe the results achieved

in the single-node scenario, by evaluating the benefits brought by the estimated

block size with the use of both real-world and synthetic test datasets.

8.4 Experimental evaluation 187

Real-world datasets

The effectiveness of our methodology in suggesting a suitable block size value

was evaluated on two real-world datasets used for clustering and classification:

• HEPMASS [185]: it is a high-energy physics dataset containing signatures

of exotic particles, learned from Monte Carlo simulations of the collisions

that produce them. The dataset contains 7 million training samples with

27 features that can be separated into two clusters, i.e. particle-producing

collisions and background sources.

• MNIST [186]: it is a multi-class dataset used for image classification and

pattern recognition, containing gray-scale images of handwritten digits, from

0 to 9, labeled with the represented number. In particular, the dataset con-

tains 60 thousand training images in a 28 ˆ 28 format, which can be repre-

sented by vectors of 784 features.

Since both test datasets are characterized by a big number of rows against a

relatively small number of columns, the model predicted in both cases a block

size that partitions both datasets only horizontally, that is just one block for the

columns containing all features. For this reason, the number of blocks generated

by creating the distributed arrays is equal to the number of partitions along rows.

The results achieved by running K-means and Random Forest on HEPMASS and

MNIST datasets are summarized in table 8.2. Specifically, the time t˚ achieved by

running the two algorithms using the predicted block size was compared against

the best, worst, and average times achieved by using all other possible partition-

ings, calculated using progressive powers of 2 from 2 to 256, i.e. 4x times the total

number of cores available. Moreover, Figure 8.3 shows the measured execution

time by using different gradations of red, where a greater intensity corresponds to

a higher duration. In the proposed plots, the time obtained by using the predicted

partitioning is marked by a cyan circle, while the best one is marked by a green

star.

8.4 Experimental evaluation 188

1 2 4 8 16 32 64 128 256
Number of blocks

0

20

40

60

Ex
ec

ut
io

n
tim

e
(s

ec
.)

(a) K-means, HEPMASS dataset.

1 2 4 8 16 32 64 128 256
Number of blocks

0

10

20

30

40

50

Ex
ec

ut
io

n
tim

e
(s

ec
.)

(b) Random Forest, MNIST dataset.

Figure 8.3: Execution times achieved by K-means and Random Forest executed
on two real-world datasets.

Algorithm
Dataset
name

Dataset
rows

Dataset
columns Metric Best Average Worst

K-means HEPMASS 7,000,000 27
Makespan ratio 0.96 1.48 2.53

Makespan reduction ´3.80% 32.6% 60.5%

Random
Forest

MNIST 60,000 784
Makespan ratio 1.00 1.27 1.65

Makespan reduction 0% 21.32% 39.51%

Table 8.2: Makespan ratio and percentage makespan reduction measured by run-
ning K-means and Random Forest algorithms on the HEPMASS and MNIST
datasets.

By observing Figure 8.3(a), it can be noticed that the optimal number of blocks

that led to the best execution time for the K-means algorithm was 16, while the

model suggested partitioning rows in 32 blocks. However, the time measured by

using the predicted block size, i.e t˚, is the second best time, and the difference

with the best one is negligible (« 1 second). By comparing t˚ with the aver-

age execution time, the predicted block size led to a 1.48 makespan ratio, with

a percentage reduction of makespan equal to 32.6%. The worst execution time

was observed in the case in which 256 blocks were used. This is caused by the

excessively small size of the blocks, which causes the generation of a too large

number of blocks and tasks. In fact, such a degree of parallelism produces too

much overhead that results in a degradation of application performance. A similar

execution time was measured when just one block was used, i.e. no partitioning is

performed. This is the opposite case, in which parallelism is not exploited at all.

8.4 Experimental evaluation 189

By comparing t˚ with the worst execution time, we measured a makespan ratio

of 2.53 and a makespan reduction of 60.5%, which confirms how the block size

suggested by the model allows determining a proper partitioning, which leads to

a quite good trade-off between the degree of parallelism and the introduced over-

head. The quality of the partitioning suggested by our model is further confirmed

by the execution of Random Forest on the MNIST dataset (Figure 8.3(b)). In

this case, the model predicts exactly the best possible partitioning, i.e. 16 blocks

along rows. Also in this case, the worst values were measured at the extremes,

where the level of parallelism is either zero (1 block) or too high (256 blocks).

Furthermore, we measured a makespan ratio of 1.27 and 1.65 and a makespan im-

provement of 21.32% and 39.51%, compared to the average and worst execution

times, respectively.

Synthetic datasets

With the aim of further exploring the effectiveness of our methodology, the

estimates provided by the model were evaluated against a set of synthetic test

datasets, which is useful to observe how the algorithms behave in some specific

cases. For this purpose, we generated a series of multiclass test datasets, by al-

locating one or more normally-distributed clusters of points to each class. Par-

ticularly, we used both isotropic and anisotropic Gaussian blobs. In addition,

the obtained samples were augmented with random noise and redundant features,

generated as a linear combination of the original ones.

Starting from a set of synthetic test datasets of varying shapes, generated fol-

lowing the aforementioned process, we measured the performance improvement

achievable with the use of our methodology, relative to the execution of K-means

and Random Forest algorithms. Specifically, for each test dataset, we compared

the time t˚, achieved by using the predicted block size, against the best, worst, and

average times obtained from all other possible partitionings. The different parti-

tionings for this comparison were calculated using progressive powers of 2 from

2 to 64 for both the number of row and column blocks, which leads to 36 possible

configurations. Furthermore, each test execution was repeated 10 times, taking

8.4 Experimental evaluation 190

the median value, in order to get a robust measure of execution time, preventing

the evaluation process from being biased by noisy measures. Achieved results, in

terms of makespan ratio and percentage makespan reduction, averaged on all test

datasets, are summarized in Table 8.3 and discussed in the following.

Metric Best Average Worst

Makespan ratio 0.99 1.25 2.11
Makespan reduction (%) ´0.79% 24.71% 55.06%

Table 8.3: Average values of makespan ratio and percentage makespan reduction
obtained from executing K-means and Random Forest algorithms on the synthetic
test datasets.

By comparing t˚ with the best time measured by trying all possible partition-

ings, it can be noticed that the data partitioning suggested by the learning algo-

rithm is almost always the best one, i.e. it guarantees an execution time very close

to the shortest obtainable time. In particular, we measured a very little difference

compared to the best execution time, with a makespan ratio almost equal to 1, and

a negligible increase of execution time less than 0.8%. Regarding the compari-

son with the average time, we obtained a good performance improvement, with a

percentage reduction of makespan equal to 24.71% and a makespan ratio equal to

1.25. These results show how the choice of an unsuitable block size may lead to

a degradation of performance, which can be avoided with the aid of the proposed

methodology. We further stressed this aspect by comparing t˚ with the worst ex-

ecution time, achieving a remarkable percentage reduction of makespan equal to

55% and a makespan ratio equal to 2.11. Measured values confirm the ability of

our methodology in supporting the execution of machine learning algorithms in

parallel and distributed environments.

As a last step, to make more detailed and clear the benefits brought by the

use of our methodology, Figure 8.4 and 8.5 show the results achieved with K-

means and Random Forest in three possible cases, in which the number of rows

and columns can be equal or very imbalanced.

8.4 Experimental evaluation 191

Specifically, a synthetic test dataset for each case was generated as follows:

• n ąą m: 500,000 rows, 1000 columns.

• n ăă m: 1000 rows, 500,000 columns.

• n « m: 10,000 rows, 10,000 columns.

2 4 8 16 32 64

2
4

8
16

32
64

65.7 66.5 63.2 66.8 69.4 70.6

51.5 51.5 52.9 55.7 59.0 57.3

46.8 45.3 48.6 49.5 53.5 51.9

45.4 44.6 45.5 47.7 51.8 52.8

45.2 45.1 45.8 46.8 49.3 48.0

45.0 47.5 46.5 51.3 53.6 53.0
45

50

55

60

65

70

(a) K-means, n ąą m.

2 4 8 16 32 64

2
4

8
16

32
64

62.5 64.1 63.5 63.5 63.0 63.5

51.8 51.3 51.1 52.7 52.0 53.8

45.6 45.5 46.0 47.3 46.4 48.8

42.7 41.3 42.1 42.9 43.8 44.0

44.1 44.4 44.3 44.9 45.7 48.4

46.5 46.3 46.1 45.2 45.4 45.4
45

50

55

60

(b) K-means, n ăă m.

2 4 8 16 32 64

2
4

8
16

32
64

11.3 11.5 11.5 11.6 11.7 12.6

9.5 9.8 9.7 9.9 10.0 10.3

8.9 9.1 9.1 9.3 9.6 9.7

9.5 9.2 9.4 9.0 9.4 9.5

10.4 9.7 9.0 9.9 10.1 11.0

11.3 11.2 12.1 11.7 12.3 13.3
9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

(c) K-means, n « m.

Figure 8.4: Execution times achieved by running K-means on datasets of both
balanced and imbalanced shape. The x and y axis show the number of blocks along
rows and columns. The time obtained with the predicted block size is marked by
the cyan circle, while the best one by the green star.

8.4 Experimental evaluation 192

2 4 8 16 32 64

2
4

8
16

32
64

151.3 150.6 155.0 148.8 152.3 149.7

144.6 147.9 144.8 158.4 146.2 154.5

146.0 155.6 156.9 153.3 155.3 146.9

154.1 145.6 148.5 143.6 153.0 145.9

142.9 140.8 144.7 143.9 146.2 146.9

144.2 145.2 153.0 150.3 153.6 153.2 142

144

146

148

150

152

154

156

158

(a) Random Forest, n ąą m.

2 4 8 16 32 64

2
4

8
16

32
64

445.4 448.6 452.4 447.6 451.9 451.3

445.8 444.7 443.4 446.6 443.5 443.8

441.9 441.4 441.9 439.5 437.3 439.7

435.9 438.7 434.0 430.3 427.9 427.3

426.9 426.2 427.0 433.1 444.8 432.3

434.9 432.9 440.4 441.8 434.9 438.2
430

435

440

445

450

(b) Random Forest, n ăă m.

2 4 8 16 32 64

2
4

8
16

32
64

180.0 175.0 176.5 188.0 180.7 178.7

166.8 170.6 178.9 168.7 177.1 172.9

166.4 179.9 164.1 166.0 168.1 166.0

165.4 164.7 165.5 163.7 166.4 164.4

165.7 164.3 170.1 165.1 169.0 168.7

167.7 172.2 171.5 174.8 171.2 175.8
165

170

175

180

185

(c) Random Forest, n « m.

Figure 8.5: Execution times achieved by running Random Forest on datasets
of both balanced and imbalanced shape. The x and y axis show the number of
blocks along rows and columns. The time obtained with the predicted block size
is marked by the cyan circle, while the best one by the green star.

Even in this case, we compared execution times achieved by using the pre-

dicted partitioning and all other possible partitionings, set using progressive pow-

ers of 2 from 2 to 64 for both the number of row and column blocks.

By observing Figure 8.4, we can see that, even in the presence of a high imbal-

ance, the algorithm always suggests a block size value very close or equal to the

best one, thus allowing an efficient execution of the K-means algorithm. Partic-

ularly, the time obtained by using the predicted block size is marked by the cyan

circle, while the best one is marked by the green star. Moreover, the heatmap is

8.4 Experimental evaluation 193

useful to show how the variation of the block size affects the execution time in all

the considered configurations. In particular, we used different gradations of red,

where a greater intensity corresponds to a higher execution time, which in turn

implies the choice of an unsuitable block size.

We observed that the time t˚ obtained by using the predicted block size leads

to the second best time in the first two cases, and to the best time for the last

one. The mean percentage difference between t˚ and the best time is almost equal

to 1%, which shows how the partitioning predicted by the model is a very good

estimate of the optimal one. Moreover, by comparing t˚ with the average and

worst times, we measured an average makespan ratio of 1.17 and 1.53 and an

average percentage improvement of makespan equal to 14.27% and 34.44%.

The good results achieved with K-means are confirmed by the experiments

performed on Random Forest, shown in Figure 8.5. In this case, t˚ resulted in

the best execution time in two cases out of three (i.e., the first and the third),

and the third best time in the remaining case (i.e., the second). In particular,

we measured a negligible difference of 0.56% between t˚ and the best execution

time. Moreover, by comparing t˚ with the average and worst times we observed a

makespan ratio of 1.03 and 1.10 and a percentage makespan reduction of 3.74%

and 9.44%. All the described results, achieved by K-means and Random Forest,

are summarized in Table 8.4.

Algorithm Metric Best Average Worst

K-means
Makespan ratio 0.99 1.17 1.53
Makespan reduction (%) ´1.03% 14.27% 34.44%

Random
Forest

Makespan ratio 0.99 1.03 1.10
Makespan reduction (%) ´0.56% 3.74% 9.44%

Table 8.4: Average makespan ratio and percentage makespan reduction measured
by running K-means and Random Forest on datasets of both balanced and imbal-
anced shape.

8.4 Experimental evaluation 194

8.4.2 Multi-node experiments

We further investigated the effectiveness of our solution in a distributed execu-

tion environment. Specifically, we leveraged the MareNostrum 4 supercomputer

(MN4) [169], located at the Barcelona Supercomputing Center. Its current peak

performance is 11.15 Petaflops and it is composed of 3456 nodes, each of which

has two Intel®Xeon Platinum 8160 (24 cores at 2,1 GHz each) and 96 GB of main

memory. It has also 100 GB Intel®Omni-Path Full-Fat Tree Interconnection, and

14 PB of shared disk storage managed by the Global Parallel File System [187].

In this experimental evaluation, we focused on the execution of the Principal

Component Analysis (PCA) algorithm. It is a dimensionality reduction algorithm,

whose aim is to compute a meaningful low-dimensional representation of the in-

put data by projecting each sample onto only the first few principal components.

The log used for the extraction of the training data was enriched using several

real-world datasets, listed in the following, which belong to different fields, rang-

ing from medicine to particle physics.

• Diabetes: medical data, used for predicting whether or not a patient has

diabetes, based on diagnostic measurements.

• Cleveland: medical data, used for predicting the heart disease risk based on

clinical measurements.

• Banknote: high-resolution images, used for evaluating if a banknote is au-

thentic or forgery.

• Superconductors [188]: superconductors data, used for predicting the criti-

cal temperature.

• Accelerometer [189]: accelerometer data, used for predicting motor fail-

ures.

• 1ubq.bck.10.crd, 1ubq.bck.1.crd, 1ubq.heavy.1.crd: particle physics datasets,

containing up to 1 million atom trajectories described by a varying number

of features and obtained from GROMACS simulations [190].

8.4 Experimental evaluation 195

For the experimental evaluation, we used three test datasets containing biomolec-

ular simulation data, specifically information about atom trajectories in a mdrcd2

format. These datasets are described in Table 8.5.

Dataset name # atoms # rows # columns

Traj_medium 6912 60,000 20,736
Traj_large 19,848 100,000 59,544
Traj_xlarge 31,632 100,000 94,896

Table 8.5: Test datasets used to evaluate the benefits brought by the proposed
methodology on the execution of the PCA algorithm on the MN4 supercomputer.

For the execution of our experiments, we employed 16 nodes of the MN4

supercomputer, with 96 GB of RAM per node. In addition, the number of used

cores per task with the large and extra-large datasets was set to 24 due to the heavy

computation and their big memory size, while for the medium dataset, we used 8

cores per task.

Unlike the experiments shown in section 8.4.1, we did not consider the large

set of all possible partitionings, as the huge size of test datasets could have led to

an excessively expensive process, due to time-consuming and resource-intensive

computation. In this case, instead, we compared the time achieved by using the

predicted partitioning (p˚
r , p˚

c) against the best partitioning that was individuated

by domain experts (p̂r, p̂c), by following a trial and error approach. The obtained

results are shown in Table 8.6.

Dataset Predicted partitioning Manual partitioning

p˚
r p˚

c Time (s) p̂r p̂c Time (s)

Traj_medium 4 16 270 6 21 484
Traj_large 8 40 1123 14 36 1096
Traj_xlarge 8 48 1770 14 48 1825

Table 8.6: Results obtained in MareNostrum 4 using model predictions and do-
main expert estimates.

2Amber trajectory format, https://ambermd.org/FileFormats.php

8.4 Experimental evaluation 196

By comparing the time achieved by using the block size predicted by the

model with that estimated by the domain experts, we achieved quite good re-

sults, with an average value of makespan ratio and makespan percentage reduc-

tion equal to 1.27 and 14.92%, respectively. In addition, as reported in Table 8.6,

it can be seen that the data partitioning suggested by the model is the best one

in two out of three test cases, resulting in the shortest execution time. Moreover,

it is worth noticing that in the remaining case, corresponding to the Traj_large

dataset, the relative difference between the two execution times is quite small

(« 2%). The prediction is indeed reasonably good, as it can be calculated quickly

without involving any trial and error approach and requiring a quite small amount

of resources and domain knowledge.

For the sake of completeness, in Figure 8.6 we provide the execution times

measured by executing the PCA algorithm on the Traj_medium dataset with all

possible partitionings, computed using progressive powers of 2 from 2 to 64, lead-

ing to a maximum number of blocks and tasks equal to 642.

2 4 8 16 32 64

2
4

8
16

32
64

314 350 279 236 773 3146

303 338 261 270 743 3176

292 334 289 282 809 3117

296 348 311 428 787 3668

307 374 412 562 887 3194

323 448 525 580 1576 3433 500

1000

1500

2000

2500

3000

3500

Figure 8.6: Execution times achieved in MareNostrum 4 by running PCA on the
Traj_medium dataset. The x and y axis show the number of blocks along rows and
columns. The time obtained with the predicted block size is marked by the cyan
circle, while the best one by the green star.

8.5 Conclusions 197

The plot shows that the partition predicted by the model is the third best possi-

ble. Nevertheless, while not leading to the minimum execution time, the estimate

is still an excellent approximation, obtainable in a very efficient way, and effec-

tively exploitable to allow the efficient execution of PCA. Finally, we compared

the time obtained by using the predicted partitioning with the average and worst

times shown in Figure 8.6. Specifically, we measured a makespan ratio equal to

3.54 and 13.59 and a percentage reduction of makespan of 71.75% and 92.64%

compared to the average and worst times. All of these results further confirm how

crucial it is to choose a suitable partitioning for running data-intensive applica-

tions in high-performance distributed environments.

8.5 Conclusions

Data-intensive applications are widespread in several domains, such as bioin-

formatics, high-energy physics, and the modeling of natural phenomena. In such

applications, an effective strategy for data partitioning is crucial to enable their ef-

ficient execution in distributed HPC environments. This chapter described a novel

methodology, aimed at determining a good estimate for data block size quickly

and requiring few resources and domain knowledge. Our methodology was eval-

uated on the dislib library of PyCOMPSs, considering different execution envi-

ronments, including the MareNostrum 4 supercomputer, and different real-world

datasets. Experimental results show how the proposed machine learning solution

can lead to a significant improvement in application performance and a reduction

in execution time. In future work, we plan to improve our methodology to make

it even more generic and usable. In particular, we will extend it to support the

choice of other parameters required to configure a distributed environment, such

as the number of nodes and the RAM to be assigned to each node. Finally, to

further validate the proposed methodology, it can be applied to frameworks and

libraries other than PyCOMPSs and dislib, since it can be exploited in any case

data partitioning is essential to improve application performance and scalability.

Chapter 9
Conclusions and final remarks

Social media platforms are now became part of everyday life, allowing the

interconnection of people around the world in large discussion groups relating to

several topics, including important socio-political issues. Therefore, social media

have become a valuable source of information-rich multi-modal data, effectively

exploitable in several application fields, ranging from computational politics to

sociology, linguistics, economics, finance, and computer science.

This thesis mainly focused on the analysis of politically-polarized data, with

the aim of outlining a detailed profile of social users, investigating their interests,

opinions, and feelings, and shaping their perception of real-world facts and events.

During our research activity, we developed several innovative methodologies, de-

scribed throughout this thesis, demonstrating how the analysis of these data can

provide an effective data-driven approach to a thorough understanding of political

phenomena, such as elections and referenda. Specifically, we designed effective

solutions to investigate the political leaning of social users, also studying the re-

lationships between user polarization and the sentiment expressed in referring to

the different candidates, by modeling political support across a broad spectrum

of emotions. Moreover, we combined information diffusion and influence maxi-

mization with political polarization analysis, to identify the main influencers for

the different factions and derive the main information diffusion strategies adopted

during the political campaign. Furthermore, to achieve a rich representation of

198

Conclusions and final remarks 199

social media conversation, we worked on the extraction of the main topics under-

lying the online discussion, following their evolution over time, and characterizing

them from a political perspective.

During the development of such methodologies, we addressed several issues

and challenges intrinsically related to Big Social Data. In particular, we dealt

with the statistical significance of election-related data, in which different kinds

of biases may be present, due to the distribution of users in terms of gender, age,

culture, and social status, as well as technical biases related to data availability

policies. We addressed issues related to data reliability, dealing with the presence

of social bots, whose aim is to manipulate and pollute online published content for

altering the popularity of users. Specifically, we showed that by filtering out the

spamming activity of social bots, it is possible to achieve a more reliable estimate

of the true voting intentions of legitimate users. We coped with the high dynam-

icity of information extracted from social media, which continuously varies over

time. In particular, we developed effective solutions that are aware of temporal

aspects, such as the evolution of discussion topics through time and the fluctua-

tion of voting intentions of social users during election campaigns. We addressed

language barrier issues, by both developing language-agnostic models and ex-

ploiting the most recent multilingual transformer-based language representation

models. These models were also leveraged to support hashtag-based Big Social

Data analysis techniques, through the design of recommendation methodologies

able to suggest high-quality hashtags, in line with both the semantics of posts

and the latest trends. The last challenge addressed in this thesis concerned the

resource-intensive computation involved in analyzing Social Big Data. Indeed,

due to their high volume and speed, these data continually challenge today’s stor-

age, processing, and analysis capabilities. In this regard, our research focused on

the study of ad-hoc techniques and strategies aimed at enhancing the execution of

data-intensive high-parallel applications. Specifically, we designed novel machine

learning-based solutions to enhance workflow scheduling and data partitioning in

distributed and high-performance environments.

Conclusions and final remarks 200

As regards the main future directions of the research presented in this the-

sis, we mention the investigation of more sophisticated time-adaptive models for

Big Social Data analysis, the development of opinion mining models able to ef-

fectively learn from scarcely supervised datasets, and the design of distributed

strategies to learn from Big Social Data at the network edge, thus ensuring low

latency, privacy preservation, and scalability.

List of Figures

2.1 Main steps of IOM-NN. 14

2.2 Example of how the collection of posts step works. 17

2.3 Representation of the classification of posts algorithm. 20

2.4 Representation of the user polarization algorithm. 23

2.5 Comparison among real percentages, opinions polls, and IOM-

NN results (2018 Italian general election). 28

2.6 Comparison among the real winning candidate and that identified

by IOM-NN and opinions polls. 31

3.1 A graphic representation of the analysis workflow. 36

3.2 Complementary Cumulative Density Function (CCDF) of pub-

lished tweets per user. 40

3.3 Linear interpolation: analyzed users vs. voting-eligible popula-

tion grouped by US states. 41

3.4 Unsupervised detection of the main topics underlying the online

discussion. 43

3.5 Weekly volume of tweets related to the detected topics from 1

September to 31 October 2020. 45

3.6 Time series of polarized tweets published from 1 September to 31

October 2020. 46

201

List of Figures 202

3.7 Comparison between IOM-NN and the latest opinion polls in iden-

tifying the winning candidate. 49

3.8 Distribution of sentiments and emotions of pro-Trump tweets. . . 50

3.9 Distribution of sentiments and emotions of pro-Biden tweets. . . . 51

4.1 Main steps of TIMBRE. 58

4.2 Linear interpolation: analyzed users vs. voting-eligible population. 66

4.3 CCDF of published posts for real and bot users classified by sup-

ported faction . 71

4.4 Visualization of the diffusion process on the complete repost graph. 73

4.5 Visualization of the diffusion process on the sampled repost graph. 74

5.1 Representation of the giant component of the two graphs. 94

5.2 Trend of the f pθ q score function and its components. 97

5.3 Comparison between WABC and ABC in terms of execution time. 98

5.4 Comparison between WABC and ABC in terms of evaluated spread. 98

5.5 Comparison between WABC and ABC in terms of relative esti-

mation error on the expected spread. 99

5.6 Comparison between WABC and the most relevant state-of-art

ranking-proxy techniques in terms of evaluated spread. 100

5.7 Simulation of the influence diffusion process starting from the

seed set identified for the two graphs. 103

6.1 Execution flow of HASHET. 112

6.2 Training of the W2V model for word embedding and target gen-

eration. Creation of the semantic mapping model (encoder (E)

+ mapper (MLP)) and two-step training: training of the mapper

using feature extraction and fine-tuning of the entire model. 114

6.3 Hashtag recommendation for a given post p, composed of two

steps: iq Semantic mapping of p exploiting the SM model to ob-

tain the target vector h˚ppq; iiq latent space inspection using a

selected semantic expansion strategy. 119

6.4 Local vs. global n-nhe expansion example (k=2 and n=1). 121

List of Figures 203

6.5 OPTICS density-based cut-clustering structure of most frequent

hashtags in the 2-dimensional representation of Wemb obtained

through PCA + t-SNE. 126

6.6 Top 3 most frequent hashtags per candidate with their nearest

neighbors. 127

6.7 Comparison of the two encoders (GUSE vs. BERT) and the two

expansion strategies (global vs. local), in terms of precision, re-

call, and F-score, weighted on k (number of target hashtags), vary-

ing n (expansion factor). 128

6.8 Effects of semantic expansion on hit rate for different values of

k, jointly using BERT and global n-nhe, with a recommendation

example (k=2, n=1). 129

6.9 Comparison with the most relevant related works, in terms of pre-

cision, recall, and F-score, weighted on k (number of target hash-

tags), varying n (expansion factor). 132

6.10 OPTICS density-based cut-clustering structure in the 2-dimensional

representation of Wemb obtained through PCA + t-SNE. 135

6.11 Comparison of the two encoders (GUSE vs. BERT) and the two

expansion strategies (global vs. local), in terms of precision, re-

call, and F-score, weighted on k (number of target hashtags), vary-

ing n (expansion factor). 136

6.12 Comparison with the most relevant related works, in terms of pre-

cision, recall, and F-score, weighted on k (number of target hash-

tags), varying n (expansion factor). 137

6.13 Comparison with the most relevant related work in detecting the

hashtag-based topic of discussion. 140

7.1 Correlation of target variables with the other features. 154

7.2 Meta-learner regression estimates for the different target variables. 156

List of Figures 204

7.3 Execution flow of the IIWM scheduler. Given a workflow and a

prediction model as input, a scheduling plan is generated in two

steps: iq building of the stages and task assignment; iiq stage con-

solidation. 162

7.4 Task dependencies (workflow 1). 164

7.5 Disk usage over time for Full-Parallel and IIWM. 166

7.6 Average peak disk usage and execution time, varying the size of

available memory. 167

7.7 Task dependencies (workflow 2). 168

7.8 Disk usage over time for Full-Parallel and IIWM. 169

7.9 Ensemble learning workflow. 170

7.10 Disk usage over time for Full-Parallel and IIWM. 171

7.11 Average peak disk usage and execution time, varying the size of

available memory. 172

8.1 Execution flow of the proposed methodology for block size esti-

mation. 180

8.2 Chained multi-output classification model. 183

8.3 Execution times achieved by K-means and Random Forest exe-

cuted on two real-world datasets. 188

8.4 Execution times achieved by running K-means on datasets of both

balanced and imbalanced shape. The x and y axis show the num-

ber of blocks along rows and columns. The time obtained with the

predicted block size is marked by the cyan circle, while the best

one by the green star. 191

8.5 Execution times achieved by running Random Forest on datasets

of both balanced and imbalanced shape. The x and y axis show

the number of blocks along rows and columns. The time obtained

with the predicted block size is marked by the cyan circle, while

the best one by the green star. 192

List of Figures 205

8.6 Execution times achieved in MareNostrum 4 by running PCA on

the Traj_medium dataset. The x and y axis show the number of

blocks along rows and columns. The time obtained with the pre-

dicted block size is marked by the cyan circle, while the best one

by the green star. 196

List of Tables

2.1 Meaning of the most important symbols used in this chapter. . . . 15

2.2 Partial results for each iteration achieved by IOM-NN (2018 Ital-

ian general election). 26

2.3 Obtained percentages and accuracy evaluation (2018 Italian gen-

eral election). 27

2.4 Obtained percentages and accuracy evaluation on the 2016 US

presidential election dataset. 31

3.1 Number of Twitter users vs. voting-eligible population grouped

by swing states. 42

3.2 Brief description of the identified topics. 44

3.3 Comparison between voting percentages estimated by IOM-NN

and the latest opinion polls. 48

3.4 A sample of tweets showing different emotions. 51

4.1 Bot incidence in posts and users collected by state 65

4.2 Supporting posts and users per candidate 67

4.3 Voting percentages estimates of the 2016 US presidential election. 68

4.4 Ablation analysis of the contribution brought by each step of TIM-

BRE in terms of election forecasting accuracy. 69

4.5 Most prolific real accounts supporting each candidate. 72

4.6 Obtained results after 20 simulations of the diffusion process. . . . 73

206

List of Tables 207

5.1 Meaning of the most important symbols used in this chapter. . . . 87

5.2 Examples of tweets about the Italian constitutional referendum. . . 93

5.3 Giant components properties of the two graphs 94

5.4 Top-5 most influential nodes calculated using PageRank 95

5.5 Comparison between the seed sets identified by WABC and ABC. 101

5.6 Classification of the influencers for Gyes and Gno graphs. 102

6.1 Meaning of the main symbols used throughout the chapter. 113

6.2 Top-5 most frequent hashtags per topic. 135

7.1 Meaning of the main symbols used throughout this chapter. 146

7.2 Examples of persist calls in MLlib algorithms. 152

7.3 Hyper-parameters. 155

7.4 Evaluation metrics on the test set. 156

7.5 Task and dataset descriptions (workflow 1). 164

7.6 Performance evaluation of the prediction model. 165

7.7 Example of execution of algorithm 10 at iteration level. 165

7.8 Scheduling plan and statistics about execution times and disk us-

age with 14 GB of RAM. 167

7.9 Task and dataset descriptions (workflow 2). 168

7.10 Performance evaluation of the prediction model. 168

7.11 Scheduling plan and statistics about execution times and disk us-

age with 9.5 GB of RAM. 169

7.12 Scheduling plan and statistics about execution times and disk us-

age with 14 GB of RAM. 171

8.1 Excerpt of the training set extracted by the log of executions. . . . 181

8.2 Makespan ratio and percentage makespan reduction measured by

running K-means and Random Forest algorithms on the HEP-

MASS and MNIST datasets. 188

8.3 Average values of makespan ratio and percentage makespan re-

duction obtained from executing K-means and Random Forest al-

gorithms on the synthetic test datasets. 190

List of Tables 208

8.4 Average makespan ratio and percentage makespan reduction mea-

sured by running K-means and Random Forest on datasets of both

balanced and imbalanced shape. 193

8.5 Test datasets used to evaluate the benefits brought by the proposed

methodology on the execution of the PCA algorithm on the MN4

supercomputer. 195

8.6 Results obtained in MareNostrum 4 using model predictions and

domain expert estimates. 195

References

[1] Loris Belcastro et al. “Learning Political Polarization on Social Media

Using Neural Networks”. In: IEEE Access 8 (2020), pp. 47177–47187.

[2] Ekaterina Olshannikova et al. “Conceptualizing Big Social Data”. In: Jour-

nal of Big Data 4.1 (2017), p. 3.

[3] Riccardo Cantini et al. “A Weighted Artificial Bee Colony Algorithm

for Influence Maximization”. In: Online Social Networks and Media 26

(2021), p. 100167.

[4] Massimo Stella, Valerio Restocchi, and Simon De Deyne. “# Lockdown:

Network-enhanced Emotional Profiling in the Time of Covid-19”. In: Big

Data and Cognitive Computing 4.2 (2020), p. 14.

[5] Loris Belcastro, Fabrizio Marozzo, and Emanuele Perrella. “Automatic

Detection of User Trajectories from Social Media Posts”. In: Expert Sys-

tems with Applications 186 (2021), p. 115733.

[6] Riccardo Cantini and Fabrizio Marozzo. “Topic Detection and Tracking in

Social Media Platforms”. In: EAI International Conference on Pervasive

knowledge and collective intelligence on Web and Social Media. 2022.

[7] Riccardo Cantini et al. “Analyzing Political Polarization on Social Media

by Deleting Bot Spamming”. In: Big Data and Cognitive Computing 6.1

(2022). ISSN: 2504-2289.

209

References 210

[8] Loris Belcastro et al. “Analyzing voter behavior on social media during

the 2020 US presidential election campaign”. In: Social Network Analysis

and Mining 12.1 (2022), pp. 1–16.

[9] Riccardo Cantini et al. “Learning Sentence-to-Hashtags Semantic Map-

ping for Hashtag Recommendation on Microblogs”. In: ACM Transac-

tions on Knowledge Discovery from Data 16.2 (2022), pp. 1–26.

[10] Loris Belcastro et al. “Programming big data analysis: principles and so-

lutions”. In: Journal of Big Data 9.1 (2022), pp. 1–50.

[11] Riccardo Cantini et al. “Exploiting Machine Learning For Improving In-

memory Execution of Data-intensive Workflows on Parallel Machines”.

In: Future Internet 13.5 (2021).

[12] Riccardo Cantini et al. “Block size estimation for data partitioning in HPC

applications using machine learning techniques”. In: arXiv preprint arXiv:

2211.10819 (2022).

[13] Daniel Cer et al. “Universal Sentence Encoder”. In: arXiv preprint arXiv:

1803.11175 (2018).

[14] Yinfei Yang et al. “Multilingual universal sentence encoder for semantic

retrieval”. In: arXiv preprint arXiv:1907.04307 (2019).

[15] Jacob Devlin et al. “Bert: Pre-training of Deep Bidirectional Transform-

ers for Language Understanding”. In: arXiv preprint arXiv:1810.04805

(2018).

[16] Telmo Pires, Eva Schlinger, and Dan Garrette. “How multilingual is mul-

tilingual bert?” In: arXiv preprint arXiv:1906.01502 (2019).

[17] Muhammad Bilal et al. “Predicting elections: Social media data and tech-

niques”. In: 2019 international conference on engineering and emerging

technologies (ICEET). IEEE. 2019, pp. 1–6.

[18] Alessandro Bessi and Emilio Ferrara. “Social Bots Distort the 2016 US

Presidential Election Online Discussion”. In: First Monday 21.11 (2016).

References 211

[19] Domenico Talia. “A view of programming scalable data analysis: from

clouds to exascale”. In: Journal of Cloud Computing 8.1 (2019), pp. 1–

16.

[20] L. Belcastro et al. “Discovering Political Polarization on Social Media:

A Case Study”. In: 2019 15th International Conference on Semantics,

Knowledge and Grids (SKG). Sept. 2019, pp. 182–189.

[21] Stefan Spettel and Dimitrios Vagianos. “Twitter Analyzer—How to Use

Semantic Analysis to Retrieve an Atmospheric Image around Political

Topics in Twitter”. In: Big Data and Cognitive Computing 3.3 (2019),

p. 38.

[22] Lazaros Oikonomou and Christos Tjortjis. “A Method for Predicting the

Winner of the USA Presidential Elections using Data extracted from Twit-

ter”. In: 2018 South-Eastern European Design Automation, Computer En-

gineering, Computer Networks and Society Media Conference. IEEE. 2018,

pp. 1–8.

[23] Imane El Alaoui et al. “A Novel Adaptable Approach for Sentiment Anal-

ysis on Big Social Data”. In: Journal of Big Data 5.1 (2018), p. 12.

[24] Delenn Chin, Anna Zappone, and Jessica Zhao. “Analyzing Twitter sen-

timent of the 2016 presidential candidates”. In: American Journal Of Sci-

ence and Research 1 (Jan. 2016), pp. 128–137.

[25] Fabrizio Marozzo and Alessandro Bessi. “Analyzing Polarization of So-

cial Media Users and News Sites during Political Campaigns”. In: Social

Network Analysis and Mining 8.1 (2018), p. 1.

[26] Ehsan Ul Haq et al. “A survey on computational politics”. In: IEEE Access

8 (2020), pp. 197379–197406.

[27] Catherine Grevet, Loren G Terveen, and Eric Gilbert. “Managing politi-

cal differences in social media”. In: Proceedings of the 17th ACM confer-

ence on Computer supported cooperative work & social computing. 2014,

pp. 1400–1408.

References 212

[28] Marco Toledo Bastos, Cornelius Puschmann, and Rodrigo Travitzki. “Tweet-

ing across hashtags: overlapping users and the importance of language,

topics, and politics”. In: Proceedings of the 24th ACM conference on hy-

pertext and social media. 2013, pp. 164–168.

[29] Ophélie Fraisier et al. “Uncovering like-minded political communities on

twitter”. In: Proceedings of the ACM SIGIR International Conference on

Theory of Information Retrieval. 2017, pp. 261–264.

[30] Shu-I Chiu and Kuo-Wei Hsu. “Predicting political tendency of posts on

facebook”. In: Proceedings of the 2018 7th International Conference on

Software and Computer Applications. 2018, pp. 110–114.

[31] Hiroki Takikawa and Kikuko Nagayoshi. “Political polarization in social

media: Analysis of the “Twitter political field” in Japan”. In: 2017 IEEE

International Conference on Big Data (Big Data). IEEE. 2017, pp. 3143–

3150.

[32] Jooyeon Kim et al. “Leveraging the crowd to detect and reduce the spread

of fake news and misinformation”. In: Proceedings of the eleventh ACM

international conference on web search and data mining. 2018, pp. 324–

332.

[33] Giovanni Luca Ciampaglia et al. “Computational fact checking from knowl-

edge networks”. In: PloS one 10.6 (2015), e0128193.

[34] Zoltan Gyongyi, Hector Garcia-Molina, and Jan Pedersen. “Combating

web spam with trustrank”. In: Proceedings of the 30th international con-

ference on very large data bases (VLDB). 2004.

[35] Kiran Garimella et al. “Political discourse on social media: Echo cham-

bers, gatekeepers, and the price of bipartisanship”. In: Proceedings of the

2018 World Wide Web Conference. 2018, pp. 913–922.

[36] Jisun An, Daniele Quercia, and Jon Crowcroft. “Fragmented social media:

a look into selective exposure to political news”. In: Proceedings of the

22nd international conference on world wide web. 2013, pp. 51–52.

References 213

[37] Kai Shu, H Russell Bernard, and Huan Liu. “Studying fake news via net-

work analysis: detection and mitigation”. In: Emerging Research Chal-

lenges and Opportunities in Computational Social Network Analysis and

Mining. Springer, 2019, pp. 43–65.

[38] Derek Greene and James P Cross. “Unveiling the political agenda of the

european parliament plenary: A topical analysis”. In: Proceedings of the

ACM web science conference. 2015, pp. 1–10.

[39] Amine Trabelsi and Osmar R Zaiane. “Phaitv: A phrase author interaction

topic viewpoint model for the summarization of reasons expressed by po-

larized stances”. In: Proceedings of the International AAAI Conference on

Web and Social Media. Vol. 13. 2019, pp. 482–492.

[40] Yaser Keneshloo et al. “Detecting and forecasting domestic political crises:

A graph-based approach”. In: Proceedings of the 2014 ACM conference

on Web science. 2014, pp. 192–196.

[41] Christian Pieter Hoffmann and Christoph Lutz. “Spiral of silence 2.0: Po-

litical self-censorship among young Facebook users”. In: Proceedings of

the 8th international conference on social media & society. 2017, pp. 1–

12.

[42] Hosein Azarbonyad et al. “Words are malleable: Computing semantic

shifts in political and media discourse”. In: Proceedings of the 2017 ACM

on Conference on Information and Knowledge Management. 2017, pp. 1509–

1518.

[43] Corrado Monti et al. “Modelling political disaffection from Twitter data”.

In: Proceedings of the second international workshop on issues of senti-

ment discovery and opinion mining. 2013, pp. 1–9.

[44] Volker Wulf et al. “Fighting against the wall: Social media use by political

activists in a Palestinian village”. In: Proceedings of the SIGCHI Confer-

ence on Human Factors in Computing Systems. 2013, pp. 1979–1988.

References 214

[45] Sounman Hong and Daniel Nadler. “Social media and political voices of

organized interest groups: a descriptive analysis”. In: Proceedings of the

16th Annual International Conference on Digital Government Research.

2015, pp. 210–216.

[46] Pedro Saleiro, Luis Gomes, and Carlos Soares. “Sentiment aggregate func-

tions for political opinion polling using microblog streams”. In: Proceed-

ings of the Ninth International C* Conference on Computer Science &

Software Engineering. 2016, pp. 44–50.

[47] Julia Cambre, Scott R Klemmer, and Chinmay Kulkarni. “Escaping the

echo chamber: ideologically and geographically diverse discussions about

politics”. In: Proceedings of the 2017 CHI Conference Extended Abstracts

on Human Factors in Computing Systems. 2017, pp. 2423–2428.

[48] Martyn Dade-Robertson et al. “The political sensorium”. In: Proceedings

of the 4th Media Architecture Biennale Conference: Participation. 2012,

pp. 47–50.

[49] Kokil Jaidka et al. “Predicting elections from social media: a three-country,

three-method comparative study”. In: Asian Journal of Communication

29.3 (2019), pp. 252–273.

[50] Manish Gaurav et al. “Leveraging candidate popularity on Twitter to pre-

dict election outcome”. In: Proceedings of the 7th workshop on social

network mining and analysis. 2013, pp. 1–8.

[51] Andranik Tumasjan et al. “Predicting elections with twitter: What 140

characters reveal about political sentiment”. In: Proceedings of the Inter-

national AAAI Conference on Web and Social Media. Vol. 4. 1. 2010.

[52] Pete Burnap et al. “140 Characters to Victory?: Using Twitter to Predict

the UK 2015 General Election”. In: Electoral Studies 41 (2016), pp. 230–

233.

[53] Freimut Bodendorf and Carolin Kaiser. “Detecting opinion leaders and

trends in online social networks”. In: Proceedings of the 2nd ACM work-

shop on Social web search and mining. 2009, pp. 65–68.

References 215

[54] Emilie M Hafner-Burton and Alexander H Montgomery. “Centrality in

politics: How networks confer power”. In: (2010).

[55] Patrick R Miller et al. “Talking politics on Facebook: Network centrality

and political discussion practices in social media”. In: Political Research

Quarterly 68.2 (2015), pp. 377–391.

[56] Muhammed K Olorunnimbe and Herna L Viktor. “Tweets as a Vote: Ex-

ploring Political Sentiments on Twitter for Opinion Mining”. In: Inter-

national Symposium on Methodologies for Intelligent Systems. Springer.

2015, pp. 180–185.

[57] Alexandre Bovet, Flaviano Morone, and Hernán A Makse. “Predicting

election trends with Twitter: Hillary Clinton versus Donald Trump”. In:

arXiv. org (2016).

[58] Felix Ming Fai Wong et al. “Quantifying Political Leaning from Tweets,

Retweets, and Retweeters”. In: IEEE Transactions on Knowledge and

Data Engineering 28.8 (2016), pp. 2158–2172.

[59] Saud Alashri et al. “An Analysis of Sentiments on Facebook during the

2016 US Presidential Election”. In: 2016 IEEE/ACM International Con-

ference on Advances in Social Networks Analysis and Mining (ASONAM).

IEEE. 2016, pp. 795–802.

[60] Christopher D Manning et al. “The Stanford CoreNLP natural language

processing toolkit”. In: Proceedings of 52nd annual meeting of the associ-

ation for computational linguistics: system demonstrations. 2014, pp. 55–

60.

[61] Aditya Singh et al. “Predicting Elections Results using Social Media Ac-

tivity A Case Study: USA Presidential Election 2020”. In: 2021 7th Inter-

national Conference on Advanced Computing and Communication Sys-

tems (ICACCS). Vol. 1. 2021, pp. 314–319.

[62] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic opti-

mization”. In: arXiv preprint arXiv:1412.6980 (2014).

References 216

[63] Mike Thelwall. “The Heart and soul of the web? Sentiment strength detec-

tion in the social web with SentiStrength”. In: Cyberemotions. Springer,

2017, pp. 119–134.

[64] Saif M Mohammad and Peter D Turney. “Crowdsourcing a word–emotion

association lexicon”. In: Computational intelligence 29.3 (2013), pp. 436–

465.

[65] Svetlana Kiritchenko, Xiaodan Zhu, and Saif M Mohammad. “Sentiment

analysis of short informal texts”. In: Journal of Artificial Intelligence Re-

search 50 (2014), pp. 723–762.

[66] Saif Mohammad. “Portable features for classifying emotional text”. In:

Proceedings of the 2012 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Tech-

nologies. 2012, pp. 587–591.

[67] Preslav Nakov et al. “Developing a successful SemEval task in sentiment

analysis of Twitter and other social media texts”. In: Language Resources

and Evaluation 50.1 (2016), pp. 35–65.

[68] Robert Plutchik. “The nature of emotions: Human emotions have deep

evolutionary roots, a fact that may explain their complexity and provide

tools for clinical practice”. In: American scientist 89.4 (2001), pp. 344–

350.

[69] Emily Chen, Ashok Deb, and Emilio Ferrara. “# Election2020: the first

public Twitter dataset on the 2020 US Presidential election”. In: Journal

of Computational Social Science (2021), pp. 1–18.

[70] Clayton Allen Davis et al. “Botornot: A system to Evaluate Social Bots”.

In: Proceedings of the 25th International Conference Companion on World

Wide Web. International World Wide Web Conferences Steering Commit-

tee. 2016, pp. 273–274.

[71] Hunt Allcott and Matthew Gentzkow. “Social Media and Fake News in

the 2016 Election”. In: Journal of Economic Perspectives 31.2 (2017),

pp. 211–36.

References 217

[72] Zhiwei Jin et al. “Detection and Analysis of 2016 US Presidential Elec-

tion Related Rumors on Twitter”. In: International Conference on Social

Computing, Behavioral-cultural Modeling and Prediction and Behavior

Representation in Modeling and Simulation. Springer. 2017, pp. 14–24.

[73] Chengcheng Shao et al. “The Spread of Fake News by Social Bots”. In:

CoRR abs/1707.07592 (2017).

[74] Eiman Alothali et al. “Detecting Social Bots on Twitter: A Literature Re-

view”. In: 2018 International Conference on Innovations in Information

Technology (IIT). 2018, pp. 175–180.

[75] Kayode Sakariyah Adewole et al. “Malicious Accounts: Dark of the Social

Networks”. In: Journal of Network and Computer Applications 79 (2017),

pp. 41–67.

[76] Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. “Random Walk

Based Fake Account Detection in Online Social Networks”. In: 2017 47th

Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN). 2017, pp. 273–284.

[77] Ashish Mehrotra, Mallidi Sarreddy, and Sanjay Singh. “Detection of Fake

Twitter Followers Using Graph Centrality Measures”. In: 2016 2nd Inter-

national Conference on Contemporary Computing and Informatics (IC3I).

IEEE. 2016, pp. 499–504.

[78] Venkatramanan S Subrahmanian et al. “The DARPA Twitter Bot Chal-

lenge”. In: Computer 49.6 (2016), pp. 38–46.

[79] Zafar Gilani, Ekaterina Kochmar, and Jon Crowcroft. “Classification of

Twitter Accounts into Automated Agents and Human Users”. In: Pro-

ceedings of the 2017 IEEE/ACM International Conference on Advances

in Social Networks Analysis and Mining. 2017, pp. 489–496.

[80] Abdulrahman Alarifi, Mansour Alsaleh, and AbdulMalik Al-Salman. “Twit-

ter Turing Test: Identifying Social Machines”. In: Information Sciences

372 (2016), pp. 332–346.

References 218

[81] Mücahit Kantepe and Murat Can Ganiz. “Preprocessing Framework for

Twitter Bot Detection”. In: 2017 International Conference on Computer

Science and Engineering. IEEE. 2017, pp. 630–634.

[82] Buket Erşahin et al. “Twitter Fake Account Detection”. In: 2017 Interna-

tional Conference on Computer Science and Engineering (UBMK). IEEE.

2017, pp. 388–392.

[83] Chiyu Cai, Linjing Li, and Daniel Zengi. “Behavior Enhanced Deep Bot

Detection in Social Media”. In: 2017 IEEE International Conference on

Intelligence and Security Informatics (ISI). IEEE. 2017, pp. 128–130.

[84] Allan Borodin, Yuval Filmus, and Joel Oren. “Threshold Models for Com-

petitive Influence in Social Networks”. In: International Workshop on In-

ternet and Network Economics. Springer. 2010, pp. 539–550.

[85] Suman Banerjee, Mamata Jenamani, and Dilip Kumar Pratihar. “A sur-

vey on influence maximization in a social network”. In: Knowledge and

Information Systems (2020), pp. 1–39.

[86] Pedro Domingos and Matt Richardson. “Mining the network value of cus-

tomers”. In: Proceedings of the seventh ACM SIGKDD international con-

ference on Knowledge discovery and data mining. 2001, pp. 57–66.

[87] A.-A. Stoica and A. Chaintreau. “Fairness in social influence maximiza-

tion”. In: 2019, pp. 569–574.

[88] Dervis Karaboga. An idea based on honey bee swarm for numerical opti-

mization. Tech. rep. Technical report-tr06, Erciyes university, engineering

faculty, computer engineering department, 2005.

[89] C Prem Sankar, S Asharaf, and K Satheesh Kumar. “Learning from bees:

An approach for influence maximization on viral campaigns”. In: PloS

one 11.12 (2016).

References 219

[90] David Kempe, Jon Kleinberg, and Éva Tardos. “Maximizing the spread

of influence through a social network”. In: Proceedings of the ninth ACM

SIGKDD international conference on Knowledge discovery and data min-

ing. 2003, pp. 137–146.

[91] Kazumi Saito, Ryohei Nakano, and Masahiro Kimura. “Prediction of in-

formation diffusion probabilities for independent cascade model”. In: In-

ternational conference on knowledge-based and intelligent information

and engineering systems. Springer. 2008, pp. 67–75.

[92] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. “An

analysis of approximations for maximizing submodular set functions—I”.

In: Mathematical programming 14.1 (1978), pp. 265–294.

[93] Yuchen Li et al. “Influence maximization on social graphs: A survey”. In:

IEEE Transactions on Knowledge and Data Engineering 30.10 (2018),

pp. 1852–1872.

[94] Jure Leskovec et al. “Cost-effective outbreak detection in networks”. In:

Proceedings of the 13th ACM SIGKDD international conference on Knowl-

edge discovery and data mining. 2007, pp. 420–429.

[95] Arastoo Bozorgi et al. “Community-based influence maximization in so-

cial networks under a competitive linear threshold model”. In: Knowledge-

Based Systems 134 (2017), pp. 149–158.

[96] Wei Chen, Yajun Wang, and Siyu Yang. “Efficient influence maximiza-

tion in social networks”. In: Proceedings of the 15th ACM SIGKDD in-

ternational conference on Knowledge discovery and data mining. 2009,

pp. 199–208.

[97] Kyomin Jung, Wooram Heo, and Wei Chen. “Irie: Scalable and robust

influence maximization in social networks”. In: 2012 IEEE 12th Interna-

tional Conference on Data Mining. IEEE. 2012, pp. 918–923.

[98] Masahiro Kimura and Kazumi Saito. “Tractable models for information

diffusion in social networks”. In: European conference on principles of

data mining and knowledge discovery. Springer. 2006, pp. 259–271.

References 220

[99] Wei Chen, Yifei Yuan, and Li Zhang. “Scalable influence maximization in

social networks under the linear threshold model”. In: 2010 IEEE inter-

national conference on data mining. IEEE. 2010, pp. 88–97.

[100] Amit Goyal, Wei Lu, and Laks VS Lakshmanan. “Simpath: An efficient

algorithm for influence maximization under the linear threshold model”.

In: 2011 IEEE 11th international conference on data mining. IEEE. 2011,

pp. 211–220.

[101] Jong-Ryul Lee and Chin-Wan Chung. “A fast approximation for influence

maximization in large social networks”. In: Proceedings of the 23rd inter-

national conference on World Wide Web. 2014, pp. 1157–1162.

[102] Christian Borgs et al. “Maximizing social influence in nearly optimal time”.

In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on Dis-

crete algorithms. SIAM. 2014, pp. 946–957.

[103] Nicola Barbieri, Francesco Bonchi, and Giuseppe Manco. “Topic-aware

social influence propagation models”. In: Knowledge and information sys-

tems 37.3 (2013), pp. 555–584.

[104] Wei Chen, Wei Lu, and Ning Zhang. “Time-critical influence maximiza-

tion in social networks with time-delayed diffusion process”. In: Twenty-

Sixth AAAI Conference on Artificial Intelligence. 2012.

[105] Jinha Kim, Wonyeol Lee, and Hwanjo Yu. “CT-IC: Continuously activated

and time-restricted independent cascade model for viral marketing”. In:

Knowledge-Based Systems 62 (2014), pp. 57–68.

[106] Amit Goyal, Francesco Bonchi, and Laks VS Lakshmanan. “A data-based

approach to social influence maximization”. In: arXiv preprint arXiv:1109.

6886 (2011).

[107] Michalis Mavrovouniotis, Changhe Li, and Shengxiang Yang. “A survey

of swarm intelligence for dynamic optimization: Algorithms and applica-

tions”. In: Swarm and Evolutionary Computation 33 (2017), pp. 1–17.

References 221

[108] Joe R Riley et al. “The flight paths of honeybees recruited by the waggle

dance”. In: Nature 435.7039 (2005), pp. 205–207.

[109] Sergey Brin and Lawrence Page. “The anatomy of a large-scale hypertex-

tual web search engine”. In: Computer networks and ISDN systems 30.1-7

(1998), pp. 107–117.

[110] Fréderic Godin et al. “Using topic models for twitter hashtag recommen-

dation”. In: Proceedings of the 22nd International Conference on World

Wide Web. ACM. 2013, pp. 593–596.

[111] Tomas Mikolov et al. “Efficient estimation of word representations in vec-

tor space”. In: arXiv preprint arXiv:1301.3781 (2013).

[112] Dhruv Mahajan et al. “Exploring the limits of weakly supervised pretrain-

ing”. In: Proceedings of the European Conference on Computer Vision

(ECCV). 2018, pp. 181–196.

[113] Yang Li et al. “Topical Co-Attention Networks for hashtag recommenda-

tion on microblogs”. In: Neurocomputing 331 (2019), pp. 356–365.

[114] Yeyun Gong, Qi Zhang, and Xuanjing Huang. “Hashtag recommenda-

tion for multimodal microblog posts”. In: Neurocomputing 272 (2018),

pp. 170–177.

[115] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural

information processing systems. 2017, pp. 5998–6008.

[116] Mohit Iyyer et al. “Deep unordered composition rivals syntactic methods

for text classification”. In: Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and the 7th International Joint

Conference on Natural Language Processing (Volume 1: Long Papers).

2015, pp. 1681–1691.

[117] Samuel R. Bowman et al. “A large annotated corpus for learning natural

language inference”. In: Proceedings of the 2015 Conference on Empiri-

cal Methods in Natural Language Processing (EMNLP). Association for

Computational Linguistics, 2015.

References 222

[118] Ryan Kiros et al. “Skip-Thought Vectors”. In: Proceedings of the 28th In-

ternational Conference on Neural Information Processing Systems - Vol-

ume 2. NIPS’15. Montreal, Canada, 2015, pp. 3294–3302.

[119] Matthew L. Henderson et al. “Efficient Natural Language Response Sug-

gestion for Smart Reply”. In: CoRR abs/1705.00652 (2017). arXiv: 1705.

00652.

[120] Alec Radford et al. “Improving language understanding with unsuper-

vised learning”. In: (2018).

[121] Matthew E Peters et al. “Deep contextualized word representations”. In:

arXiv preprint arXiv:1802.05365 (2018).

[122] Jieying She and Lei Chen. “Tomoha: Topic model-based hashtag recom-

mendation on twitter”. In: Proceedings of the 23rd International Confer-

ence on World Wide Web. ACM. 2014, pp. 371–372.

[123] Junbiao Pang et al. “Unsupervised web topic detection using a ranked

clustering-like pattern across similarity cascades”. In: IEEE Transactions

on Multimedia 17.6 (2015), pp. 843–853.

[124] Nada Ben-Lhachemi and El Habib Nfaoui. “Using tweets embeddings for

hashtag recommendation in Twitter”. In: Procedia Computer Science 127

(2018), pp. 7–15.

[125] Jiajia Huang, Min Peng, and Hua Wang. “Topic detection from large scale

of microblog stream with high utility pattern clustering”. In: Proceedings

of the 8th Workshop on Ph. D. Workshop in Information and Knowledge

Management. ACM. 2015, pp. 3–10.

[126] Eriko Otsuka, Scott A Wallace, and David Chiu. “A hashtag recommenda-

tion system for twitter data streams”. In: Computational social networks

3.1 (2016), p. 3.

[127] Alexander M Rush, Sumit Chopra, and Jason Weston. “A neural atten-

tion model for abstractive sentence summarization”. In: arXiv preprint

arXiv:1509.00685 (2015).

https://arxiv.org/abs/1705.00652
https://arxiv.org/abs/1705.00652

References 223

[128] Tim Rocktäschel et al. “Reasoning about entailment with neural atten-

tion”. In: arXiv preprint arXiv:1509.06664 (2015).

[129] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural ma-

chine translation by jointly learning to align and translate”. In: arXiv preprint

arXiv:1409.0473 (2014).

[130] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. “Effec-

tive approaches to attention-based neural machine translation”. In: arXiv

preprint arXiv:1508.04025 (2015).

[131] Jiasen Lu et al. “Hierarchical question-image co-attention for visual ques-

tion answering”. In: Advances in neural information processing systems.

2016, pp. 289–297.

[132] Shi Feng et al. “Attention based hierarchical LSTM network for context-

aware microblog sentiment classification”. In: World Wide Web 22.1 (2019),

pp. 59–81.

[133] Abhay Kumar et al. “From Fully Supervised to Zero Shot Settings for

Twitter Hashtag Recommendation”. In: arXiv preprint arXiv:1906.04914

(2019).

[134] Wayne Xin Zhao et al. “Comparing twitter and traditional media using

topic models”. In: European conference on information retrieval. Springer.

2011, pp. 338–349.

[135] Laurens van der Maaten and Geoffrey Hinton. “Visualizing data using t-

SNE”. In: Journal of machine learning research 9.Nov (2008), pp. 2579–

2605.

[136] Mihael Ankerst et al. “OPTICS: ordering points to identify the clustering

structure”. In: ACM Sigmod record 28.2 (1999), pp. 49–60.

[137] Armand Joulin et al. “Learning visual features from large weakly su-

pervised data”. In: European Conference on Computer Vision. Springer.

2016, pp. 67–84.

References 224

[138] Rabindra Lamsal. Coronavirus (COVID-19) Tweets Dataset. 2020. URL:

https://dx.doi.org/10.21227/781w-ef42.

[139] Domenico Talia, Paolo Trunfio, and Fabrizio Marozzo. Data Analysis in

the Cloud. Elsevier, Oct. 2015.

[140] D. Talia. “Workflow Systems for Science: Concepts and Tools”. In: Inter-

national Scholarly Research Notices 2013 (2013), pp. 1–15.

[141] Georges Da Costa et al. “Exascale machines require new programming

paradigms and runtimes”. In: Supercomputing Frontiers and Innovations

2.2 (2015), pp. 6–27.

[142] Min Li et al. “SparkBench: A Comprehensive Benchmarking Suite for in

Memory Data Analytic Platform Spark”. In: Proceedings of the 12th ACM

International Conference on Computing Frontiers. CF ’15. Ischia, Italy:

Association for Computing Machinery, 2015. ISBN: 9781450333580.

[143] Daniel CM De Oliveira, Ji Liu, and Esther Pacitti. “Data-intensive work-

flow management: for clouds and data-intensive and scalable computing

environments”. In: Synthesis Lectures on Data Management 14.4 (2019),

pp. 1–179.

[144] A. Verma, A. H. Mansuri, and N. Jain. “Big data management processing

with Hadoop MapReduce and spark technology: A comparison”. In: 2016

Symposium on Colossal Data Analysis and Networking (CDAN). 2016,

pp. 1–4.

[145] Matei Zaharia et al. “Resilient distributed datasets: A tFault-Tolerantu ab-

straction for tIn-Memoryu cluster computing”. In: 9th USENIX Sympo-

sium on Networked Systems Design and Implementation (NSDI 12). 2012,

pp. 15–28.

[146] Yassir Samadi, Mostapha Zbakh, and Claude Tadonki. “Performance com-

parison between Hadoop and Spark frameworks using HiBench bench-

marks”. In: Concurrency and Computation: Practice and Experience 30.12

(2018), e4367.

https://dx.doi.org/10.21227/781w-ef42

References 225

[147] Christina Delimitrou and Christos Kozyrakis. “Quasar: Resource-Efficient

and QoS-Aware Cluster Management”. In: Proceedings of the 19th In-

ternational Conference on Architectural Support for Programming Lan-

guages and Operating Systems. ASPLOS ’14. Salt Lake City, Utah, USA:

Association for Computing Machinery, 2014, pp. 127–144.

[148] Q. Llull et al. “Cooper: Task Colocation with Cooperative Games”. In:

2017 IEEE International Symposium on High Performance Computer Ar-

chitecture (HPCA). 2017, pp. 421–432.

[149] Vicent Sanz Marco et al. “Improving Spark Application Throughput via

Memory Aware Task Co-Location: A Mixture of Experts Approach”. In:

Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference. Mid-

dleware ’17. Las Vegas, Nevada: Association for Computing Machinery,

2017, pp. 95–108. ISBN: 9781450347204.

[150] L. F. Bittencourt, E. R. M. Madeira, and N. L. S. Da Fonseca. “Schedul-

ing in hybrid clouds”. In: IEEE Communications Magazine 50.9 (2012),

pp. 42–47.

[151] A. Maros et al. “Machine Learning for Performance Prediction of Spark

Cloud Applications”. In: 2019 IEEE 12th International Conference on

Cloud Computing (CLOUD). 2019, pp. 99–106.

[152] Y. Zhao, F. Hu, and H. Chen. “An adaptive tuning strategy on spark based

on in-memory computation characteristics”. In: 2016 18th International

Conference on Advanced Communication Technology. 2016, pp. 484–488.

[153] Di Chen et al. “An adaptive memory tuning strategy with high perfor-

mance for Spark”. In: International Journal of Big Data Intelligence 4.4

(2017), pp. 276–286.

[154] P. Xuan et al. “Dynamic Management of In-Memory Storage for Effi-

ciently Integrating Compute-and Data-Intensive Computing on HPC Sys-

tems”. In: 2017 17th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (CCGRID). 2017, pp. 549–558.

References 226

[155] Zhuo Tang et al. “Dynamic memory-aware scheduling in spark comput-

ing environment”. In: Journal of Parallel and Distributed Computing 141

(2020), pp. 10–22. ISSN: 0743-7315.

[156] J. Bae et al. “Jointly optimizing task granularity and concurrency for in-

memory mapreduce frameworks”. In: 2017 IEEE International Confer-

ence on Big Data (Big Data). 2017, pp. 130–140.

[157] David H Wolpert. “Stacked generalization”. In: Neural networks 5.2 (1992),

pp. 241–259.

[158] Ji Liu et al. “A Survey of Data-Intensive Scientific Workflow Manage-

ment”. In: Journal of Grid Computing 13.4 (Dec. 2015), pp. 457–493.

[159] P Herbert Raj, P Ravi Kumar, and P Jelciana. “Load Balancing in Mobile

Cloud Computing using Bin Packing’s First Fit Decreasing Method”. In:

International Conference on Computational Intelligence in Information

System. Springer. 2018, pp. 97–106.

[160] Thar Baker et al. “Cloud-SEnergy: A bin-packing based multi-cloud ser-

vice broker for energy efficient composition and execution of data-intensive

applications”. In: Sustainable Computing: informatics and systems 19 (2018),

pp. 242–252.

[161] Georgios L Stavrinides and Helen D Karatza. “Scheduling real-time DAGs

in heterogeneous clusters by combining imprecise computations and bin

packing techniques for the exploitation of schedule holes”. In: Future

Generation Computer Systems 28.7 (2012), pp. 977–988.

[162] Edward G Coffman Jr, Michael R Garey, and David S Johnson. “An ap-

plication of bin-packing to multiprocessor scheduling”. In: SIAM Journal

on Computing 7.1 (1978), pp. 1–17.

[163] Yoga Jaideep Darapuneni. “A Survey of Classical and Recent Results in

Bin Packing Problem”. In: UNLV Theses, Dissertations, Professional Pa-

pers, and Capstones (2012).

References 227

[164] Fabrizio Marozzo et al. “A data-aware scheduling strategy for workflow

execution in clouds”. In: Concurrency and Computation: Practice and

Experience 29.24 (2017), e4229.

[165] A. O. Aseeri, Y. Zhuang, and M. S. Alkatheiri. “A Machine Learning-

Based Security Vulnerability Study on XOR PUFs for Resource-Constraint

Internet of Things”. In: 2018 IEEE International Congress on Internet of

Things (ICIOT). 2018, pp. 49–56.

[166] Benjamin Carver et al. “Wukong: A scalable and locality-enhanced frame-

work for serverless parallel computing”. In: Proceedings of the 11th ACM

Symposium on Cloud Computing. 2020, pp. 1–15.

[167] Fabrizio Marozzo et al. “A Data-aware Scheduling Strategy for Workflow

Execution in Clouds”. In: Concurrency and Computation: Practice and

Experience 29.24 (2017).

[168] Salvatore Giampà et al. “A data-aware scheduling strategy for executing

large-scale distributed workflows”. In: IEEE Access 9 (2021), pp. 47354–

47364.

[169] Barcelona Supercomputing Center (BSC). MareNostrum IV Technical In-

formation. 2018. URL: https://www.bsc.es/marenostrum/marenostrum/

technical-information.

[170] Mohammad Sultan Mahmud et al. “A survey of data partitioning and sam-

pling methods to support big data analysis”. In: Big Data Mining and An-

alytics 3.2 (2020), pp. 85–101.

[171] Apache Hadoop. URL: https://hadoop.apache.org/.

[172] Apache Spark. URL: https://spark.apache.org/.

[173] Sergio Ramirez-Gallego et al. “Fast-mRMR: Fast minimum redundancy

maximum relevance algorithm for high-dimensional big data”. In: Inter-

national Journal of Intelligent Systems 32.2 (2017), pp. 134–152.

[174] Raul-Jose Palma-Mendoza et al. “Distributed correlation-based feature se-

lection in spark”. In: Information Sciences 496 (2019), pp. 287–299.

https://www.bsc.es/marenostrum/marenostrum/technical-information
https://www.bsc.es/marenostrum/marenostrum/technical-information
https://hadoop.apache.org/
https://spark.apache.org/

References 228

[175] Mohammed Al-Kateb et al. “Hybrid Row-Column Partitioning in Tera-

data”. In: Proc. VLDB Endow. 9.13 (Sept. 2016), pp. 1353–1364. ISSN:

2150-8097.

[176] Geomar A. Schreiner et al. “A Hybrid Partitioning Strategy for NewSQL

Databases: The VoltDB Case”. In: iiWAS2019. Munich, Germany: Asso-

ciation for Computing Machinery, 2019, pp. 353–360.

[177] Salman Salloum, Joshua Zhexue Huang, and Yulin He. “Random sample

partition: a distributed data model for big data analysis”. In: IEEE Trans-

actions on Industrial Informatics 15.11 (2019), pp. 5846–5854.

[178] Chenghao Wei et al. “A two-stage data processing algorithm to generate

random sample partitions for big data analysis”. In: International Confer-

ence on Cloud Computing. Springer. 2018, pp. 347–364.

[179] Sara Migliorini et al. “CoPart: a context-based partitioning technique for

big data”. In: Journal of Big Data 8.1 (2021), pp. 1–28.

[180] Massimiliano Bertolucci et al. “Static and dynamic big data partitioning

on apache spark”. In: Parallel Computing: On the Road to Exascale. IOS

Press, 2016, pp. 489–498.

[181] Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio. “Scalable script-

based data analysis workflows on clouds”. In: Proceedings of the 8th

workshop on workflows in support of large-scale science. 2013, pp. 124–

133.

[182] Enric Tejedor et al. “PyCOMPSs”. In: International Journal of High Per-

formance Computing Applications 31.1 (Jan. 2017), pp. 66–82.

[183] Javier Álvarez Cid-Fuentes et al. “dislib: Large Scale High Performance

Machine Learning in Python”. In: Proceedings of the 15th International

Conference on eScience. 2019, pp. 96–105.

[184] Francesc Lordan and et al. “ServiceSs: An Interoperable Programming

Framework for the Cloud”. In: Journal of Grid Computing 12.1 (2014),

pp. 67–91.

References 229

[185] Pierre Baldi et al. “Parameterized machine learning for high-energy physics”.

In: arXiv preprint arXiv:1601.07913 (2016).

[186] Yann LeCun et al. “Gradient-based learning applied to document recogni-

tion”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[187] Frank Schmuck and Roger Haskin. “tGPFSu: A tShared-Disku File Sys-

tem for Large Computing Clusters”. In: Conference on File and Storage

Technologies (FAST 02). 2002.

[188] Kam Hamidieh. “A data-driven statistical model for predicting the critical

temperature of a superconductor”. In: Computational Materials Science

154 (2018), pp. 346–354.

[189] Gustavo Scalabrini Sampaio et al. “Prediction of Motor Failure Time Us-

ing An Artificial Neural Network”. In: Sensors 19.19 (Oct. 2019), p. 4342.

[190] Mark James Abraham et al. “GROMACS: High performance molecular

simulations through multi-level parallelism from laptops to supercomput-

ers”. In: SoftwareX 1-2 (2015), pp. 19–25. ISSN: 2352-7110.

	frontespizio_tesi_POR
	PhD_thesis_Riccardo_Cantini
	Introduction
	Main issues and challenges
	Structure of the Thesis
	Publications

	Learning political polarization on social media using neural networks
	Background and related work
	Proposed methodology: IOM-NN
	Collection of posts
	Classification of posts
	Polarization of users

	Case studies
	2018 Italian general election
	2016 US presidential election

	Conclusions

	Analyzing voter behavior on social media: the case of the 2020 US presidential election
	Analysis workflow
	Results and discussion
	Data description
	Topic discovery
	Temporal analysis
	Polarization analysis
	Emotion analysis

	Conclusions

	Analyzing political polarization by deleting bot spamming
	Social bot detection techniques
	Proposed methodology: TIMBRE
	Post collection
	Post classification and weighting
	User polarization and classification
	Bot influence analysis

	Results and discussion
	Polarization analysis and election forecasting
	Bot influence on election-related discussion

	Conclusions

	Influence maximization in politically polarized networks: a bio-inspired approach
	Information diffusion models
	Spread function properties

	Related work
	Comparison

	Proposed algorithm: WABC
	Artificial Bee Colony
	Weighted Artificial Bee Colony

	Experimental evaluation
	Graph properties
	Parameter sensitive analysis
	WABC vs. ABC
	WABC vs ranking-proxy models
	Diffusion strategies of politically-polarized information

	Conclusions

	Hashtag recommendation on social media platforms: a BERT-based translation approach
	Embedding techniques
	Related work
	Comparison

	Proposed model: HASHET
	Semantic mapping model creation and training
	Hashtags recommendation by latent space inspection and semantic expansion
	Why a translation approach? Exploit locality in the hashtag embedding space

	Performance evaluation
	The 2016 US presidential election
	COVID-19 pandemic
	Assign topics using hashtag recommendation

	Conclusions

	Using machine learning for task scheduling in data-intensive parallel workflows
	Background
	Related work
	Comparison

	Proposed methodology: IIWM
	Execution monitoring and dataset creation
	Prediction model training
	Workflow scheduling

	Results and discussion
	Synthetic workflows
	Real case study

	Conclusions

	Enhance data partitioning in HPC applications: a machine learning approach to block size estimation
	Related work
	Proposed methodology
	Execution environment analysis
	Log analysis to extract training data
	Classification model training

	Block size estimation in dislib applications
	Experimental evaluation
	Single-node experiments
	Multi-node experiments

	Conclusions

	Conclusions and final remarks
	List of Figures
	List of Tables
	References

