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Abstract:
The thesis is in the area of mathematical optimization with application to
Machine Learning. The focus is on Feature Selection (FS) in the framework of
binary classification via Support Vector Machine paradigm. We concentrate
on the use of sparse optimization techniques, which are widely considered as
the election tool for tackling FS. We study the problem both in terms of single
and multi-objective optimization.
We propose first a novel Mixed-Integer Nonlinear Programming (MINLP)
model for sparse optimization based on the polyhedral k-norm. We introduce
a new way to take into account the k-norm for sparse optimization by setting
a model based on fractional programming (FP). Then we address the contin-
uous relaxation of the problem, which is reformulated via a DC (Difference of
Convex) decomposition.
On the other hand, designing supervised learning systems, in general, is a
multi-objective problem. It requires finding appropriate trade-offs between
several objectives, for example, between the number of misclassified training
data (minimizing the squared error) and the number of nonzero elements sep-
arating the hyperplane (minimizing the number of nonzero elements). When
we deal with multi-objective optimization problems, the optimization prob-
lem has yet to have a single solution that represents the best solution for all
objectives simultaneously. Consequently, there is not a single solution but a
set of solutions, known as the Pareto-optimal solutions.
We overview the SVM models and the related Feature Selection in terms
of multi-objective optimization. Our multi-objective approach considers two
simultaneous objectives: minimizing the squared error and minimizing the
number of nonzero elements of the normal vector of the separator hyperplane.
In this thesis, we propose a multi-objective model for sparse optimization.
Our primary purpose is to demonstrate the advantages of considering SVM
models as multi-objective optimization problems. In multi-objective cases, we
can obtain a set of Pareto optimal solutions instead of one in single-objective
cases.
Therefore, our main contribution in this thesis is of two levels: first, we pro-
pose a new model for sparse optimization based on the polyhedral k-norm for
SVM classification, and second, use multi-objective optimization to consider
this new model. The results of several numerical experiments on some clas-
sification datasets are reported. We used all the datasets for single-objective
and multi-objective models.
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1

Introduction

Machine learning is concerned with developing computer techniques and algo-
rithms that can learn [1]. Machine learning algorithms can essentially be di-
vided into Supervised learning, Semi-supervised learning, Unsupervised learn-
ing and Data clustering [2], [3].
All learning algorithms perform model selection and parameter estimation
based on one or multiple criteria; in such a framework numerical optimiza-
tion plays a significant role [4]. In this thesis we focus on Classification, a
supervised learning area based on the separation of sets in finite-dimensional
spaces (the Feature ones) by means of appropriate separation surfaces. The
most popular approach to classification is the Support Vector Machine (SVM)
model, where one looks for a hyperplane separating two given sample sets [5].
Optimization methods that seek sparsity of solutions have recently received
considerable attention [6], [7], [8], mainly motivated by the need of tackling
Feature Selection problems, defined as ”the search for a subset of the original
measurements features that provide an optimal tradeoff between probability
error and cost of classification” [9]. The Feature selection methods are dis-
cussed in [10], [11].
In this thesis, we tackle Feature Selection (FS) in the general setting of sparse
optimization, where one is faced to the problem [12]:

Minimize
x∈Rn

f(x) + ‖x‖0 (1.1)

where f : Rn → R and ‖.‖0 is the l0 pseudo-norm, which counts the number of
nonzero components of any vector. Sometimes sparsity of the solution, instead
of acting on the objective function, is enforced by introducing a constraint on
the l0 pseudo-norm of the solution, thus defining a cardinality-constrained
problem [13], [14], [15], [16].
In many applications, the l0 pseudo-norm in (1.1) is replaced by the l1-norm,
which is definitely more tractable from the computational point of view, yet
ensuring sparsity, to a certain extent [17].
In the seminal paper [18], a class of polyhedral norms (the k -norms), inter-
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mediate between ‖.‖1 and ‖.‖∞, is introduced to obtain sparse approximation
solutions to systems of linear equations. Some other norms have been used
in different applications [19], [20], [21], [22], [23]. The use of other norms to
recover sparsity is described in [24]. In more recent years the use of k -norms
has received much attention and has led to several proposals for dealing with
l0 pseudo-norm cardinality constrained problem [25], [26], [27], [28]. In this
thesis, we use a new way to take into account the k-norm for sparse optimiza-
tion.
An alternative way to deal with Feature selection is the multi-objective ap-
proach discussed in [29]. Multi-objective optimization is a basic process in
many fields of science, including mathematics, economics, management, and
engineering applications [30]. In most real situations, the decision-maker needs
to make tradeoffs between disparate and conflicting design objectives rather
than a single one. Having conflicting objectives means that it is not possible
to find a feasible solution where all the objectives could reach their individual
optimal, but one must find the most satisfactory compromise between the
objectives. These compromise solutions, in which none of the objective func-
tions can be improved in value without impairing at least one of the others,
are often referred to as Pareto optimal or Pareto efficient [31]. The set of all
objective function values at the Pareto and weak Pareto solutions is said to
be the Pareto front (or efficient set) of the multi-objective optimization prob-
lem (MOP) in the objective value space [32]. In general, solving a MOP is
associated with the construction of the Pareto frontier. The problem of find-
ing the whole solution set of a MOP is important in applications [33]. Many
methods have been proposed to find the Pareto front of the multi-objective
optimization problems (See [34], [35], [36], [37], [38], [39], [40]).
In this thesis, we have specifically emphasized the application of sparse opti-
mization in Feature Selection for SVM classification. We propose a novel model
for sparse optimization based on the polyhedral k-norm. Also, to demonstrate
the advantages of considering SVM classification models as multi-objective op-
timization problems, we propose some multi-objective reformulation of these
models. In these cases, a set of Pareto optimal solutions is obtained instead
of one in the single-objective cases.
Therefore, our main contribution in this thesis is of two levels: first, propose a
new model for sparse optimization based on the polyhedral k-norm for SVM
classification, and second, use multi-objective optimization to consider this
new model.
The rest of the thesis is organized as follows. Chapter 2 contains some basic
concepts and notations about Feature Selection, Binary Classification and the
Support Vector Machine. Chapter 3 contains Sparse Optimization via some
norms. In Chapter 4, some basic concepts and notations of Multi-Objective
Optimization Problems (MOPs) are given. Our approach to sparse optimiza-
tion via k-norms is presented in Chapter 5, together with a discussion on
possible relaxation and algorithmic treatment, and then a reformulation of
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the feature selection model in the form of MOPs is given. Also, the results of
some numerical experiments on benchmark datasets are in Chapter 5.





2

Feature Selection

In machine learning, providing a pre-process to get better outcomes is nec-
essary. Vast data are collected to train our model and help it learn better.
However, generally, the dataset consists of irrelevant data, noisy data and
some part of useful data [43]. During machine learning model development,
maybe only a few variables in the dataset contribute to model construction,
and the remaining features are either redundant or irrelevant. Therefore, it is
necessary to identify and select the most appropriate features from the data
and remove irrelevant or unimportant ones. This process helps Feature Selec-
tion, which is one of the basic concepts of machine learning [44].
In this chapter, the basic concepts of Feature Selection are explained, and
then some important and basic models are reviewed.

2.1 Feature Selection Definition

A feature is a characteristic that affects or is useful for a problem, and the
selection of essential features for the model is known as Feature Selection. Fea-
ture Selection is the process of manually or automatically selecting a subset
of the most consistent, non-redundant, and relevant features from the origi-
nal feature set by removing redundant, irrelevant, or noisy features for use in
model building.
Some of the main benefits of performing Feature Selection include the follow-
ing [80] [41]:

� Simpler models: Simple models are easy to explain. Models that are too
complex and inexplicable are not valuable. Feature Selection helps simplify
the model so researchers can easily interpret it.

� A more accurate or precise subset of features can reduce the time required
to train a model. Feature Selection can reduce training time.

� Overfitting reduction: The accuracy of the estimates obtained for a given
simulation can be increased by reducing the variance.
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Figure 2.1 can help us see how choosing the best features can help the model
perform better by reducing the model input variables and getting rid of noise
in the data [46], [41].
As another example, we want to build a model that automatically decides

Fig. 2.1. Feature Selection (Selecting the best features helps the model to perform
well) [41].

which old cars should be scrapped. For this purpose, we have a data set
that includes the car Model, Year of manufacture, Owner’s name and Miles.
Consider a table that contains information about these old cars (Figure 2.2).
The model has to decide which cars should be scrapped [47], [41].
We understand that the model, year and miles are critical in determining

Fig. 2.2. Dataset of old cars [41].

whether the car should be scrapped, but the owner’s name cannot be the
deciding factor. Furthermore, this extra information can confuse the algorithm
in finding patterns between features. Therefore, we can remove this column
and select the rest of the features (columns) for the model building (Figure
2.3) [41].

2.1.1 Structure of the Learning System

In terms of label availability, feature selection methods can be classified as
follows [48], [42]:



2.1 Feature Selection Definition 7

Fig. 2.3. Dropping columns for feature selection [41].

� Supervised,
� Unsupervised, and
� Semi-supervised methods.

And, in terms of different selection strategies, Feature Selection can be cate-
gorized as follows [49], [42]:

� Filter,
� Wrapper, and
� Embedded model.

Figure 2.4 shows the classification of Feature Selection methods.
Supervised Feature Selection: Supervised Feature Selection techniques

Fig. 2.4. Feature Selection Categories [42].

can be used for the labelled dataset and are usually used for classification
tasks. The availability of class labels allows supervised Feature Selection al-
gorithms to select distinctive features to effectively distinguish samples from
different classes. A general framework of supervised Feature Selection is shown
in Figure 2.5. Features are first generated from the training data and then in-
stead of using all the data to train the supervised learning model, supervised
Feature Selection first selects a subset of the features and then combines the
data with the selected features. The final selected features and the label in-
formation are used to train a classifier, which can be used for the prediction
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[59], [42].
Unsupervised Feature Selection: Unsupervised Feature Selection tech-

Fig. 2.5. A General Framework of Supervised Feature Selection [42].

niques can be used for the unlabeled dataset and are usually used for clustering
tasks. A general framework of unsupervised Feature Selection is described in
Figure 2.6. This framework is very similar to supervised Feature Selection,
but here no label information is involved in the Feature Selection and model
learning steps. Unsupervised Feature Selection relies on alternative criteria
without label information to define feature relevance during the Feature Se-
lection phase. One commonly used method is to seek cluster indicators through
clustering algorithms and then transform the unsupervised Feature Selection
into a supervised framework. [51], [42], [52].
Semi-supervised Feature Selection: When a small portion of the data is

Fig. 2.6. A General Framework of Unsupervised Feature Selection [42].

labeled, Semi-supervised Feature Selection is usually used. When given such
data, there may be better choices than selecting a supervised or unsupervised
feature. Supervised Feature Selection may fail to select relevant features be-
cause the number of labeled data may need to be increased to represent the
feature distribution. On the other hand, Unsupervised Feature Selection does
not use any labeled data, while the labeled data can provide some discrim-
inating information to select relevant features. Selecting a Semi-supervised
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feature, which uses labeled and unlabeled data, is a better choice for handling
partially labeled data. The general framework of Semi-supervised Feature Se-
lection is the same as Supervised Feature Selection, except that, in this case,
the data is partially labeled. Many existing semi-supervised Feature Selec-
tion algorithms are based on constructing the similarity matrix and selecting
the features that best fit the similarity matrix. In constructing the similarity
matrix, labeled and unlabeled data are used. Label data can provide discrim-
inative information to select relevant features, while unlabeled data provide
complementary information [52], [42].
Filter Models: In Filter Method, features are selected based on statistical
measures. The filter method does not depend on the learning algorithm and
selects features as a pre-processing step. This method filters out the model’s
irrelevant features and extra columns by using different measures. For filter
models, features are selected based on the characteristics of the data with-
out utilizing learning algorithms. A filtering algorithm usually consists of two
steps. In the first step, features are ranked based on specific criteria. In the
second step, features with the highest rankings are chosen [53], [42].
Wrapper Models: In the Wrapper algorithm, Feature Selection is done by
treating it as a search problem where different combinations are constructed
and evaluated and also compared with other combinations. This algorithm
is trained iteratively using a subset of features. In the filter approach, the
optimal feature subset depends on the specific biases and heuristics of the
learning algorithms. Based on this assumption, wrapper models use a specific
learning algorithm to evaluate the quality of the selected features. A general
framework of the wrapper model is shown in Figure 2.7 [54], [55], [42].
Embedded Models: Embedded methods combine the advantages of both

Fig. 2.7. A General Framework of Wrapper Model [42].

filter and wrapper methods by considering feature interactions and low compu-
tational costs. These methods have fast processing similar to the filter method,
but they are more accurate than the filter method. Embedded models are a
trade-off between the filter and wrapper methods by embedding the Feature
Selection into the model construction. Thus, embedded models take advantage
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of both filter and wrapper models: (1) they are less computationally intensive
than wrapper methods because these models do not need to run the learning
models several times to evaluate the features, and (2) they include the inter-
action with the learning model. These methods are iterative and also evaluate
each iteration and find the important features in a particular iteration [56],
[42].

2.1.2 How to choose a Feature Selection Method?

How to choose a Feature Selection Method? In machine learning, it is es-
sential to determine which feature selection method works appropriately for
the model. The more the data types of the variables are known, the easier
it will be to choose the appropriate statistical criteria for Feature Selection.
Therefore, the types of input and output variables must be identified first. In
machine learning, variables are of mainly two types [57], [58], [59], [42]:

� Numerical Variables: Variables with continuous values such as integer, and
float.

� Categorical Variables: Variables with categorical values such as Boolean,
ordinal, and nominals.

2.2 Basic Concepts and Notations

This section presents some basic concepts and notations that make more acces-
sible the understanding of this thesis. We start by giving a brief description
of the classification problem (especially binary classification) in supervised
learning. We then focus on a specific task: support vector machine in feature
selection.

2.2.1 Classification Problem

We consider a classification problem which is formulated in the following way:
Suppose that there is a set of objects, perhaps infinite (observations, patterns,
Etc.), which can be classified into two classes of data (that is, assigned to two
sets). We want to define an algorithm that, with the minimum error, will clas-
sify objects from the entire set [60].
In this thesis, we have focused on binary classification, but there are also
methods for classifying more than two classes. Classification problems with
more than two class labels are known as multi-class classification. Each en-
tity is assigned to one class without overlap, and each sample can only be
labelled as one class. For example, consider a classification using extracted
features that includes a set of images of three types of fruits (oranges, ap-
ples, or pears). Each image is one sample labelled as one of the three possible



2.2 Basic Concepts and Notations 11

classes. This assumption makes in multi-class classification that each sample
is assigned to one and only one label (for example, one sample cannot be both
a pear and an apple).
In a classification, objects are represented by vectors in the vector space V.
Although SVMs can be used on any arbitrary vector spaces, the vector space
V is simply space Rn. In this space, vector x is a set of n real numbers xi

(components of the vector) x = (x1, . . . , xn) [61].
In the rest of this thesis, all of the concepts are used in the terms of binary
classification.

Definition 2.1. (Training Set) [62], [63] A sample of objects with known
class labels is called a training set and is written as:

(x1, y1) , . . . , (xm, ym) (2.1)

where yi ∈ {±1} is the class label of vector xi, and m is the size of the training
set.

Definition 2.2. (Decision Function) [62], [63] A classification algorithm
(classifier) is represented with a decision function as follows:

f : Rn → {±1} (2.2)

such that f(x) = +1 if the classifier assigns x to the first class, and f(x) = −1
if the classifier assigns x to the second class.

2.2.2 Equation of a Hyperplane

In Rn space the following equation defines a (n−1)-dimensional set of vectors
called hyperplane:

wx+ b =

n∑
i=1

wixi + b = 0 (2.3)

That is, for a given nonzero vector w = (w1, . . . , wn) ∈ Rn and a scalar b ∈ R,
the set of all vectors x = (x1, . . . , xn) ∈ Rn satisfying equation (2.3) forms a
hyperplane.
In the rest of this thesis, we will denote a hyperplane by letter π or by π(w; b).
The term ”hyperplane” means that the dimensions of the plane are one size
smaller than the dimensions of the entire space Rn. For example, a point is
a hyperplane in R; a line is a hyperplane in R2 (Figure 2.8); a plane is a
hyperplane in R3; a three-dimensional space is a hyperplane in R4, and so on
[62], [63], [64].

Vector w is called the normal vector of the hyperplane, and b is called
the intercept of the hyperplane π(w; b). The normal vector defines the ori-
entation of the hyperplane in space, while the ratio between normal vector
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Fig. 2.8. Hyperplane π in two-dimensional space (R2) is a line. [63].

and intercept of the hyperplane (‖w‖ and b) defines the distance between the
hyperplane and the origin of space (The norm adopted here is the Euclidean
one). The normal vector w is perpendicular to all vectors parallel to the hy-
perplane [62], [63], [64].

Definition 2.3. (Half-Spaces) [62], [63] Hyperplane π divides coordinate
space Rn into two parts located sidewise of the hyperplane, called positive and
negative half-spaces. The positive half-space is pointed by the normal vector of
the hyperplane. For any vector x in positive half-space we have wx + b > 0,
while for any vector x in negative half-space we have wx+ b < 0 (See Figure
2.9).

Fig. 2.9. Negative and positive half-spaces are defined by hyperplane π [63].

2.2.3 How w and b define the position of the hyperplane?

(1.) The origin of space is in the positive half-space of the hyperplane π(w, b)
if b > 0, and in the negative half-space if b < 0. If b = 0 then the hyperplane
passes through the origin (See Figure 2.10 (a)).
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(2.) We can move the hyperplane parallel to itself in the direction from the
origin by increasing the absolute value | b | of the intercept. And also we can
move the hyperplane towards the origin by decreasing | b | (See Figure 2.10
(a)).
(3.) We can move the hyperplane in a circle around the origin by changing
the normal vector w in a way that preserves its norm (the radius of the circle

is
| b |
‖w‖ ) (Figure 2.10 (b)).

(4.) We can move the hyperplane parallel to itself from the origin by reducing
the length of the normal vector w in a way that preserves its direction. We
can move the hyperplane towards the origin by increasing the length of the
normal vector w in a way that preserves its direction (Figure 2.10 (c)). Thus,
a hyperplane can be moved parallel to itself not only by changing intercept b,
but also by scaling normal vector w [62], [63].

Fig. 2.10. Understanding the meaning of hyperplane parameters w and b [63].

2.2.4 Hyperplane for Separating two Classes of Data

Hyperplane π(w, b), separates two classes (sets) of vectors (C1 (Class 1) and
C2 (Class 2)) if either [62], [63], [64], [65]:

wx+ b > 0, ∀x ∈ C1

wx+ b < 0, ∀x ∈ C2

(2.4)

or
wx+ b < 0, ∀x ∈ C1

wx+ b > 0, ∀x ∈ C2

(2.5)

Definition 2.4. (Linearly Separable) [62], [63], [64], [65] Two classes
(sets) of data are called linearly separable if there exists at least one hyper-
plane that separates them. If hyperplane π(w, b) separates classes C1 and C2
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according to (2.4) or (2.5) the following decision function gives us a classifier
that correctly classifies all vectors from two classes C1 and C2:

f (x) = sgn {wx+ b} =

{
+1, if wx+ b ≥ 0
−1, if wx+ b < 0

Definition 2.5. (Distance Between Vector and Hyperplane) [62], [63]
The distance d(x;π) between vector x and hyperplane π(w, b) can be calculated
according to the following equation:

d(x;π) =
wx+ b

‖w‖ (2.6)

In equation (2.6):
d(x;π) > 0 when x is in positive half-space,
d(x;π) < 0 when x is in negative half-space, and
d(x;π) = 0 when x is placed on the hyperplane π.
In equation (2.6) for the distance, if ‖w‖ = 1, then is simply d(x;π) = wx+ b.
Also, it follows from equation (2.6) that the distance between the origin of

space and hyperplane π is equal to
b

‖w‖ . This fact allows us to make several

useful observations regarding the position and orientation of the hyperplane
in space, and how parameters b and w affect them [62], [63], [64], [65].
The margin of two separating classes C1 and C2 by hyperplane π is denoted
by m(π,C1, C2) and is defined as the distance between π and class C1, plus
the distance between π and class C2 (see Figure 2.11 (a)) [62], [63], [64], [65]:

m(π,C1, C2) = d(π;C1) + d(π;C2) (2.7)

The distance between hyperplane π and a set of vectors C is defined as the
minimum distance between π and vectors from C:

d(π;C) = minx∈C |d(x;π)| (2.8)

In this definition the absolute value of the signed distance d(x;π) defined by
equation (2.6) are using.
Equivalently, the margin can be defined as the distance between classes C1

and C2 measured along the normal vector w (see Figure 2.11 (b)). If Cw
1 is

the set containing projections of all vectors from C1 onto the line parallel to
vector w, and Cw

2 is the set containing similar projections of all vectors from
C2, then the margin of two separating classes is defined as follows [62], [63],
[64], [65]:

m(π,C1, C2) = d(Cw
1 ;Cw

2 ), (2.9)

where
d(Cw

1 ;Cw
2 ) = minx1∈Cw

1 ,x2∈Cw
2
d(x1;x2) (2.10)
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Fig. 2.11. (a) Margin of hyperplane π is the distance from π to the first class (minus
symbol) plus the distance from π to the second class (plus symbol). (b) Equivalently,
it can be defined as the distance between two classes measured along the normal
vector w of the hyperplane [63].

2.2.5 Hyperplane for Separating Two Classes of Data

It is clear that for two linearly separable classes of data, there always exists
an infinite number of hyperplanes (with differently oriented w and different
b) that separate them. However, the critical question is which of these hyper-
planes is better and should be used to define a classifier? (see Figure 2.12)
[62], [63]

Fig. 2.12. Many hyperplanes can be fit to classify two sets of data, but which one
is the best? [63].

We need to find a linear classifier that achieves maximum separation,
but only one of many linear classifiers (hyperplanes) that separates the two
data sets achieves maximum separation. The Support Vector Machine (SVM)
chooses one of the hyperplanes with the maximum margin. We need the hy-
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perplane with the maximum margin because if we use a hyperplane to classify,
it might end up closer to one set of data than others, and we do not want this
to happen [66], [67].
Suppose that there are two classes of linearly separable training vectors, the
support vector machine defined on such a training set is a classifier where
π = wx + b is the equation of the hyperplane that separates two classes by
the maximum margin and is equidistant from both classes (see Figure 2.13)
[62], [63], [64], [65], [66].
Parameters w, b of the SVM hyperplane can be found as a solution to the

Fig. 2.13. Maximum margin hyperplane for two linearly separable classes: d =
d(π;C1) = d(π;C2) is maximized [63].

following optimization problem [62], [63]:

Minimize
w,b

1

2
‖w‖2

subject to

wx+ b ≥ 1, ∀x ∈ C1

wx+ b ≤ −1, ∀x ∈ C2

(2.11)

where C1 and C2 are two classes of training data. In problem (2.11), parameter
b is the optimization variables, but it is not present in the objective function.
The optimization problem (2.11) has a quadratic objective function and linear
constraints. Thus it is a quadratic programming problem. The properties of
quadratic programming problems are well known, and there are very efficient
algorithms for solving these types of problems [62], [63], [64], [65], [66].
The objective function of problem (2.11) is strictly convex (since the matrix of
its second-order derivatives -the Hessian- is positive definite), and the feasible
region defined by linear inequalities is also convex. Therefore, this problem
will have a unique solution (global minimum) (w∗, b∗).
The feasible region defined by the constraints of problem (2.11) will be empty,
and the problem will have no feasible solution: If two classes are not linearly
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separable and also if the training set contains only one class.
Also, an important question arises: Why can we find the hyperplane parame-
ters with the maximum margin by solving the problem (2.11)? To answer this
question, this problem can be transformed into an equivalent problem that
has a clearer geometric interpretation.
First, minimizing 1

2‖w‖2 is equivalent to minimizing ‖w‖, which in turn is
equivalent to maximizing 1

‖w‖ , so we can rewrite problem (2.11) as following

problem [62], [63], [64], [65], [66]:

Maximize
w,b

1

‖w‖
subject to

wx+ b ≥ 1, ∀x ∈ C1

wx+ b ≤ −1, ∀x ∈ C2

(2.12)

Second, we can divide constraints of problem (2.12) by a positive number ‖w‖
[62], [63], [64], [65], [66]:

Maximize
w,b

1

‖w‖
subject to

wx+ b

‖w‖ ≥ 1

‖w‖ , ∀x ∈ C1

wx+ b

‖w‖ ≤ −1

‖w‖ , ∀x ∈ C2

(2.13)

On the other hand, according to equation (2.6), wx+b
‖w‖ is the distance (d(x;π))

between hyperplane π(w; b) and point x , and with introducing new variable
q = 1

‖w‖ , the following problem, which is equivalent to the problem (2.11), is

obtained [62], [63], [64], [65], [66]:

Maximize
w,b

q

subject to

d(x;π) ≥ q, ∀x ∈ C1

d(x;π) ≤ −q, ∀x ∈ C2

(2.14)

That is, it finds the parameters w and b so that maximize the margin m = 2q
between π , C1 and C2 .
The connection between parameters w, b and q can be shown geometrically
as follows:
Suppose that draw a spherical hull of radius q = 1

‖w‖ around each training

point x. Consider some feasible hyperplane π(w; b). According to the con-
straints of problem (2.14), this hyperplane must separate our points together
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with their hulls (see Figure 2.14 (a)). Now suppose that we want to increase q
twofold. Since q is a function of ‖w‖, we have to decrease ‖w‖ twofold. If we
divide vector w by two, we move our hyperplane parallel to itself further from
the origin. However, if we divide by two vectors w and intercept b, we do not
move the hyperplane. This way, downscaling w and b, we increase the radius
of the hulls while keeping hyperplane π in the same position and orientation,
until at least one hull touches it (see Figure 2.14 (b)) [62], [63], [64], [65], [66].
If we have space to move parallel to itself away from the hull that touches it,
we can do it by changing b only, and letting the hulls grow further. At some
point, our hulls will reach the maximum size q achievable for hyperplanes with
normal vectors collinear to w (see Figure 2.14 (c)). If we have space for the
hulls to grow further, we can change the orientation of π by changing compo-
nents of vector w, while keeping ‖w‖ equal to the current value of 1

q . Doing
so and adjusting b, we keep π feasible and increase q until we arrive at the
optimal configuration (see Figure 2.14 (d)) [62], [63], [64], [65], [66].
Therefore, the aim of a support vector machine (SVM) is to orient this hy-

Fig. 2.14. Finding maximum margin hyperplane: geometrical insight [63].

perplane in such a way that it has as far as possible distance from the closest
members of both classes (maximum margin) while being equally distant from
both classes (see Figure 2.15 ) [62], [63], [64], [65], [66].

2.2.6 Binary Classification for Data that is not Fully Linearly
Separable

In order for the SVM method to be applied to data that is not fully linearly
separable, the constraints of problem (2.11) are slightly reduced (relaxed) to
allow for misclassified points. This is done by introducing a positive slack
variable ξi, i = 1, . . . , L in problem (2.11) [62], [63], [64], [65], [66]:



2.2 Basic Concepts and Notations 19

Fig. 2.15. Hyperplane with maximum margin for two linearly separable classes [62],
[63].

wxi + b ≥ +1− ξi, ∀xi ∈ C1

wxi + b ≤ −1− ξi, ∀xi ∈ C2

ξi ≥ 0, ∀i
(2.15)

Which can be combined into:

yi(wxi + b)− 1 + ξi ≥ 0, where ξi ≥ 0, ∀i (2.16)

In this soft margin SVM, a penalty is applied to the data points on the incor-
rect side of the margin boundary. The value of this penalty increases with the
distance from the margin boundary. Since soft margin SVM aims to reduce the
number of misclassifications, an appropriate way is the following optimization
problem [62], [63], [64], [65], [66]:

Minimize
w,b

1

2
‖w‖2 + C

L∑
i=1

ξi

subject to

yi(wxi + b)− 1 + ξi ≥ 0, ∀i
ξi ≥ 0, ∀i

(2.17)

Where parameter C controls the trade-off between the slack variable penalty
and the size of the margin [62], [63], [64], [65], [66].

2.2.7 The Effect of Parameter C

Positive constant parameter C in the objective function of the Soft margin
SVM problem (2.17) should be adjusted by the user. This parameter balances



20 2 Feature Selection

Fig. 2.16. Hyperplane through two non-linearly separable classes [62], [63].

two goals: maximizing the margin and minimizing the number of misclassi-
fication (errors value) on the training data. These goals may be conflicting
since margin expansion may increase the error value (see Figure 2.17) [62],
[63], [64], [65], [66].
We can choose to favour one goal over another by changing parameter C. This

Fig. 2.17. The values of slack variables ξi showed for training points of Class 2
(Negative symbol). Optimal hyperplane π is defined by wx+ b = 0, π1 is defined by
wx + b = 1, and π2 is defined by wx + b = −1. The margin is the region between
hyperplane π1 and π2. Expanding the margin may increase the overall error. It
should also be noted that points located in the margin will always have π > 0, even
when they are correctly classified by the hyperplane [63].

is illustrated in Figure 2.18. In this figure, four separating hyperplanes and
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their margins are shown, which were obtained for the same training data set
using increasing values of the parameter C. Circled are points with non-zero
error terms ξi. These points lie either on the hyperplane’s wrong side or in
the margin. When parameter C is chosen very small, the sum of error terms
becomes negligible in the objective function of the problem (2.17), so the goal
of optimization is to maximize the margin. In this case, the margin can be
large enough to contain all points. At another extreme, when parameter C
is chosen very large, the sum of error terms dominates the margin term in
the objective function of the problem (2.17). So the goal of optimization is to
minimize the sum of error terms. In this case, the margin can be so small that
it does not contain any points. However, it should be noted in Figure 2.18
that despite the difference in the value of parameter C and the size of the
margin, all four hyperplanes shown are fairly similar, and they all correctly
classify the same training data points [62], [63], [64], [65], [66], [68].

Fig. 2.18. Optimal separating hyperplanes and their margins obtained for the same
training set by using different values of parameter C [63].

2.2.8 Binary Classification

In this thesis we consider the classification task in the basic form of binary
classification. In binary classification we have the representation of two classes
of individuals in the form of two finite sets A and B ⊂ Rn , such that A∩B = ∅,
and we want to classify an input vector x ∈ Rn as a member of the class
represented by A or that by B. The training set for binary classification is
defined as follows [69]:
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T = {(xi, yi) : xi ∈ Rn , yi ∈ {±1} and i = 1, . . . ,m} (2.18)

with the two sets A and B labelled by +1 and −1, respectively. The functional
dependency f : Rn → {±1}, which determines the class membership of a given
vector x , assumes the following form [69], [70], [71]:

f (x) =

{
+1, if x ∈ A
−1, if x ∈ B

Assume that the two finite point sets A and B in Rn consist of m and k points
respectively. They are associated to the matrices A ∈ Rm×n and B ∈ Rk×n ,
where each point of a set is represented as a row of the corresponding matrix.
In the classic SVM method we want to construct a separating hyperplane:

P =
{
x : x ∈ Rn , xTw = γ

}
(2.19)

with normal w ∈ Rn and distance [69]:

| γ |
‖w‖2 (2.20)

to the origin. The separating plane P determines two open halfspaces:

� P1 =
{
x : x ∈ Rn , xTw > γ

}
it is intended to contain most of the points

belonging to A.
� P2 =

{
x : x ∈ Rn , xTw < γ

}
it is intended to contain most of the points

belonging to B.
Therefore, letting e be a vector of ones of appropriate dimension, we want to
satisfy the following inequalities:

Aw > eγ, Bw < eγ (2.21)

to the possible extent. The problem can be equivalently put in the form.

Aw ≥ eγ + e, Bw ≤ eγ − e (2.22)

Conditions (2.21) and (2.22) are satisfied if and only if the convex hulls of A
and B are disjoint (the two sets are linearly separable) [69].
Application of Feature Selection to SVM, as we will see next, amounts to
suppressing as many of the components of w as possible.

2.2.9 Support Vector Machine and Feature Selection

In real-world classification problems based on supervised learning, the infor-
mation available are the vectors ai’s and bl’s (the rows of A and B, respec-
tively) defining the (labelled) training set. [72], [73]. The standard formulation
of SVM is the following, where variables yi and zl represent the classification
error associated to the points of A and B, respectively:
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Min C

(
m1∑
i=1

yi +

m2∑
l=1

zl

)
+ ‖w‖22

subject to

− aTi w + γ + 1 ≤ yi, i = 1, . . . ,m1

bTl w − γ + 1 ≤ zl, l = 1, . . . ,m2

yi, zl ≥ 0.

(2.23)

Positive parameter C defines the trade-off between the objectives of minimiz-
ing the classification error and maximizing the separation margin.
By replacing l2 with l1 in model (2.23), we will have the following model:

Min C

(
m1∑
i=1

yi +

m2∑
l=1

zl

)
+ ‖w‖1

subject to

− aTi w + γ + 1 ≤ yi, i = 1, . . . ,m1

bTl w − γ + 1 ≤ zl, l = 1, . . . ,m2

yi, zl ≥ 0.

(2.24)

Feature selection is primarily performed to select informative features [69],
and has become one of the most important issues in the field of machine
learning [74].

Referring to the above model, the goal is to construct a separating plane
that gives good performance on the training set while using a minimum num-
ber of problem features. This objective can be pursued by a looking for a
normal w to the separating hyperplane characterized by the smallest possible
number of non-zero components. This can be achieved by adding a sparsity
enforcing term to the objective function [69], [74].
As we will see next, a companion model aimed at suppressing as many ele-
ments of w as possible, known as LASSO approach, is obtained by replacing
l2-norm with the l1 [69], [73].
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Sparse Optimization

In this chapter, we will first define the several types of norms and then in-
vestigate the sparsity optimization problems through norms. In particular, we
will focus on l0-pseudo-norm and polyhedral k-norm.

3.1 Lp Norm

In this section, the definition of different norms is discussed.

Definition 3.1. (Norm of a Vector) [75] Given a vector space V , a norm
is a function ‖.‖ : V → R+ that assigns a non-negative real value (length) to
each vector in V , and has the following properties [75]:
1. ‖x‖ ≥ 0.
2. ‖x‖ = 0 if and only if x = 0. This means that the norm of a non-zero
vector is non-zero.
3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖. This means the norm of a vector sum does not exceed
the sum of the norms of its parts (the triangle inequity).
4. ‖αx‖ = |α| ‖x‖. This means scaling a vector scales its norm by the same
amount.

A vector space with a norm is called a normed vector space. The norm of a
vector w is denoted as ‖w‖. For all vectors x and y, for all scalars α ∈ R, a
normed vector space satisfies the conditions 1-4 to conform to a reasonable
notion of length.
The Lp norm of x ∈ Rn is defined by [75]:

‖x‖p = (|x1|p + |x2|p + . . .+ |xn|p) 1
p (3.1)

For p = 0 in relation (3.1), ‖x‖0 is defined as follows [75]:

‖x‖0 = lim
p→0

(|x1|p + |x2|p + . . .+ |xn|p) (3.2)
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This actually is the number of non-zero entries of the vector x. The l0-Pseudo-
norm of the vector x, ‖x‖0, is also called the support or the cardinality of x.
For any vector x ∈ Rn, we define its pseudo-norm l0(x) by:

l0(x) = ‖x‖0 = number of nonzero components of x. (3.3)

The function pseudo-norm l0 : Rn → {0, 1, . . . , n}, satisfies 3 out of 4 axioms
of a norm (Definition 3.1) [75]:

� We have: ‖x‖0 ≥ 0. .
� We have: ‖x‖0 = 0 if and only if x = 0.
� We have: ‖x+ y‖0 ≤ ‖x‖0 + ‖y‖0.
� But 0-homogeneity holds true: ‖αx‖0 = ‖x‖0, ∀α �= 0.

3.2 Sparsity Inducing Lp Norms

The purpose of the sparse SVM method is to control the number of non-
zero components of the normal vector to the separating hyperplane while
maintaining satisfactory classification accuracy [14]. Therefore, the following
two objectives should be minimized [69]:

� The number of misclassified training data;
� The number of nonzero elements of vector w (The normal vector of the

separating hyperplane).

We consider sparse optimization problem of the following form [76]:

Minimize
w∈Rn

f(w) +Ω(w)

subject to

w ∈ S

(3.4)

where f : Rn → R is a convex differentiable function and Ω : Rn → R is a
sparsity inducing Lp norm [76].

3.2.1 Sparsity Through l1-Norm

One of the norms that induce sparsity is the l1-norm. In the sense that some
coefficients of the normal vector of the separating hyperplane (vector w),
depending on the strength of the norm, will be equal to zero. In this case,
problem (3.4) becomes the following problem [76], [77], [78]:

Minimize
w∈Rn

f(w) + ‖w‖1
subject to

w ∈ S

(3.5)
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3.2.2 Sparsity Through l0-Pseudo-Norm

The problem of minimizing the l0-pseudo-norm of the decision variables vec-
tor, subject to a number of constraints, has become of great importance.
For example in machine learning, l0(x)-pseudo-norm minimization is used for
feature selection, minimization of training error and ensuring sparsity in so-
lutions.
In this case, problem (3.4) becomes the following problem [74]:

Minimize
w∈Rn

f(w) + ‖w‖0
subject to

w ∈ S

(3.6)

Minimization of the l0-pseudo-norm provides a natural way of directly ad-
dressing the feature selection and pattern classification objectives in a single
optimization. However, this is achieved at the cost of having to solve a very
difficult optimization problem which will not necessarily generalize well. This
combinatorial optimization problem is NP-Hard [79].

Definition 3.2. (NP-Hardness) A class of computational problems for which
every given yes-solution can be verified as a solution in polynomial time by a
deterministic Turing machine (or solvable by a nondeterministic Turing ma-
chine in polynomial time), are called NP problems. If an algorithm for solving
a problem can be translated into an algorithm for solving any NP problem
(nondeterministic polynomial time), then the problem is NP-hard. Problems
that are NP-hard need not be NP elements. Indeed, they may not even be
decidable [79], [80], [81].

It is shown in [79] that problem (3.6) with l0-pseudo-norm, is an NP-hard

problem. It cannot even be approximated within 2log
1−ε(n), for all ε > 0 unless

NP ⊂ DTIME(npolylog(n)) where DTIME(x) is the class of deterministic
algorithms ending in O(x) steps. It means that under rather general assump-
tions, there is no polynomial time algorithm that can approximate the value
of the objective function at optimum N0 within less than N0(2

log1−ε(n)) for
all ε > 0. Therefore, the minimization of the problem (3.6) is hopeless, and
very specific approximations must be defined by well-motivated discussions
and experiments [79], [80].
The simplest approach to make the problem (3.6) tractable, can be that of
replacing the l0-pseudo-norm, which is a non-convex discontinuous function,
by the l1-norm, thus obtaining the following linear programming problem [74],
[73]:
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Minimize
w,y∈Rn

f(w) +

n∑
i=1

yi

subject to

w ∈ S

− y ≤ w ≤ y

(3.7)

This problem can be solved effectively even when its dimensions are very large.
Also, under appropriate assumptions in the polyhedral set P , it can be proved
that by solving the problem (3.7), the solution (3.6) can be obtained (see, e.g.,
[74], [82]). But these assumptions may not be satisfied in many cases. Some
experiments concerning machine learning problems and reported in [74] show
that a concave optimization based approach performs better than that based
on the employment of the l1-norm.
In order to show the underlying idea of the concave approach, the objective
function of problem (3.6) is rewritten as follows [74]:

‖w‖0 =

n∑
i=1

s(|wi|) (3.8)

where s : R → R is the step function such that s(t) = 1 for t > 0 and s(t) = 0
for t ≤ 0. The nonlinear approach experimented in [74], [73] was originally
proposed in [82], and is based on the idea of replacing the discontinuous step
function by a continuously differentiable concave function v(t) = 1 − e−αt,
with α > 0, thus obtaining a problem of the following form [74]:

Minimize
w,y∈Rn

f(w) +

n∑
i=1

(1− e−αyi)

subject to

w ∈ S

− y ≤ w ≤ y

(3.9)

The replacement of problem (3.6) by the smooth concave problem (3.9) is
well-motivated (see [74], [83]) both from a theoretical and a computational
point of view:

� For sufficiently large values of the parameter α there exists a solution for
problem (3.9) which provides a solution of the original problem (3.6), and
in this sense the approximating problem (3.9) is equivalent to the given
nonsmooth problem (3.6);

� The Frank-Wolfe algorithm [74], [84] with unitary step-size is guaranteed
to converge to a vertex stationary point of the problem (3.9) in a finite
number of iterations (this convergence result was proved for a general class
of concave programming problems); The algorithm thus requires solving a
finite sequence of linear programs to compute a fixed point of the problem
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(3.9), and this may be quite advantageous from a computational point of
view.

A similar concave optimization-based approach has been proposed in [74],
[85], where the main idea is to use the logarithm function instead of the step
function, and this leads to the following smooth-concave problem:

Minimize
w,y∈Rn

f(w) +

n∑
i=1

ln(ε+ yi)

subject to

w ∈ S

− y ≤ w ≤ y

(3.10)

with 0 < ε ≤ 1. Formula (3.10) derives from the fact that, due to the form of
the logarithmic function, it is better to increase one variable yi while making
another variable zero instead of making a compromise between both variables.
And this can facilitate the calculation of a sparse solution [74], [85], and sim-
ilarly to [74], the Frank-Wolfe algorithm [84] with unitary step-size has been
applied to solve (3.10), and good computational results have been obtained.

3.3 Feature Selection in SVM with l0-Pseudo-Norm

We tackle Feature Selection in SVM as a special case of sparse optimization
by stating the following problem [14], [74]:

Min C

(
m1∑
i=1

yi +

m2∑
l=1

zl

)
+ ‖w‖0

subject to

− aTi w + γ + 1 ≤ yi, i = 1, . . . ,m1

bTl w − γ + 1 ≤ zl, l = 1, . . . ,m2

yi, zl ≥ 0

(3.11)

where ‖.‖0 is the l0-pseudo-norm, which counts the number of nonzero com-
ponents of any vector. This problem is equivalent to the following parametric
program [69]:
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Min C

(
m1∑
i=1

yi +

m2∑
l=1

zl

)
+

n∑
i=1

s (vi)

subject to

− aTi w + γ + 1 ≤ yi, i = 1, . . . ,m1

bTl w − γ + 1 ≤ zl, l = 1, . . . ,m2

− v ≤ w ≤ v

y, z ≥ 0

(3.12)

Where s : R → R is the step function such that s (t) = 1 for t > 0 and
s (t) = 0 for t ≤ 0 (see also equation 3.8). This is the fundamental feature
selection problem in the general setting of sparse optimization, as defined in
[86].
A simplification of the models (3.11) and (3.12) can be obtained by replacing
the l0-pseudo-norm with the l1-norm, thus obtaining:

Min C

(
m1∑
i=1

yi +

m2∑
l=1

zl

)
+ eT v

subject to

− aTi w + γ + 1 ≤ yi, i = 1, . . . ,m1

bTl w − γ + 1 ≤ zl, l = 1, . . . ,m2

− v ≤ w ≤ v

y, z ≥ 0

(3.13)

It has been demonstrated that model (3.13) exhibits in practice good sparsity
properties of the solution.

3.4 Feature Selection in SVM by using the k-Norm

We consider, in a general setting, the following sparse optimization problem:

Minimize
x∈Rn

f(x) + ‖x‖0
subject to

x ∈ P,

(3.14)

where we assume that f : Rn → R is convex and f (x) ≥ 0 for all x ∈ Rn, as
it is the case when f is the error function in the SVM model. We introduce
now the k-norm.

A class of polyhedral norms (the k-norms), is introduced to obtain sparse
approximation solutions to systems of linear equations. In more recent years
the use of k-norms has received much attention and has led to several proposals
for dealing with l0-pseudo-norm cardinality constrained problem [14].
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Definition 3.3. . (k-norm). [14]. The k-norm is defined as the sum of k
largest components (in modulus) of the vector X:

‖x‖[k] =| xi1 | + | xi2 | + . . .+ | xik |
where | xi1 |≥| xi2 |≥ . . . ≥| xin | (3.15)

The k-norm is polyhedral, it is intermediate between ‖.‖1 and ‖.‖∞, and
the following properties hold [14]:

� ‖x‖∞ = ‖x‖[1] ≤ . . . ≤ ‖x‖[k] ≤ . . . ≤ ‖x‖[n] = ‖x‖1.
� ‖x‖0 ≤ k ⇒ ‖x‖1 − ‖x‖[s] = 0, k ≤ s ≤ n.

The k-norm enjoys the fundamental property linking ‖.‖[k] to ‖.‖0, 1 ≤
k ≤ n [14]:

‖x‖0 ≤ k ⇔ ‖x‖1 − ‖x‖[k] = 0. (3.16)

which allows replacing any constraint of the type ‖x‖0 ≤ k with a differ-
ence of norms, that is a DC constraint.

Definition 3.4. . (Subgradient). [87]. We say a vector g ∈ Rn is a subgra-
dient of f (x) ≥ 0 at x ∈ domf if for all z ∈ domf :

f(z) ≥ f(x) + gT (z − x) (3.17)

If f is convex and differentiable, then its gradient at x is a subgradient.

But a subgradient can exist even when f is not differentiable at x, as illus-
trated in figure 3.1. The same example shows that there can be more than
one subgradient of a function f at point x.
There are several ways to interpret a subgradient. A vector g is a subgradient
of f at x if the affine function (of z) f(x)+gT (z−x) is a global underestimator
of f . Geometrically, g is a subgradient of f at x if (g,−1) supports epif at
(x, f(x)), as illustrated in figure 3.2.

Definition 3.5. . (Subdifferentiable). [87]. A function f is called subdiffer-
entiable at x if there exists at least one subgradient at x. The set of subgradients
of f at point x is called the subdifferential of f at x, and is denoted ∂f(x). A
function f is called subdifferentiable if it is subdifferentiable at all x ∈ domf .

We recall some differential properties of the k-norm.In particular, given
any x ∈ Rn, and denoting by J[k] (x̄) = {j1, . . . , jk} the index set of k largest

absolute-value components of x̄, a subgradient g[k] ∈ ∂‖x̄‖[k] can be obtained
as [14], [88]:

g
[k]
j =

⎧⎨⎩
1, if j ∈ J[k] (x̄) and x̄j ≥ 0
−1, if j ∈ J[k] (x̄) and x̄j < 0
0, otherwise

(3.18)
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Fig. 3.1. At x1, the convex function f is differentiable, and g1 (which is the deriva-
tive of f at x1) is the unique subgradient at x1. At the point x2, f is not differentiable.
At this point, f has many subgradients: two subgradients, g2 and g3, are shown [87].

Fig. 3.2. A vector g ∈ Rn is a subgradient of f at x if and only if (g,−1) defines a
supporting hyperplane to epif at (x, f(x)). [87].

Note that the subdifferential ∂‖.‖[k] is a singleton (i.e., the vector k-norm is
differentiable) any time the set J[k] (.) is uniquely defined [14].
To tackle problem (3.14), in [14] and from the other observation (see [89],
[90]):

‖x‖[k] = Maximize
y∈ψk

yTx (3.19)

where ψk is the subdifferential of ∂‖.‖[k] at point 0:
ψk =

{
y ∈ Rn|y = u− v, 0 ≤ u, v ≤ e, (u+ v)T e = k

}
(3.20)

with e being the vector of n ones. Then in [14], formulated the following
problem:

Minimize
x,u,v,z

f(x) + z

subject to

eT (u+ v) = z

(u− v)Tx ≥ ‖x‖1
0 ≤ u, v ≤ e, x ∈ Rn,

(3.21)

And then, by eliminating the scalar variable z, problem (3.21) reformulate to
the following problem [14]:
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Minimize
x,u,v,z

f(x) + eT (u+ v)

subject to

(u− v)Tx ≥ ‖x‖1
0 ≤ u, v ≤ e, x ∈ Rn,

(3.22)

By penalizing the nonlinear non-convex constraint of problem (3.22) through
the scalar penalty parameter σ > 0 [14]:

Minimize
x,u,v,z

f(x) + eT (u+ v) + σ(‖x‖1 − (u− v)Tx)

subject to

0 ≤ u, v ≤ e, x ∈ Rn,

(3.23)

It is shown in [14] that the objective function of problem (3.22) can be con-
verted into the DC (Difference of two Convex functions) decomposition form.
In [14], the l0-SVM problem (SVM0) is also proposed as follows:
At first, they considered the SVM model with l1-norm in the form of the
following problem [14]:

Min C

(
m1∑
i=1

yi +

m2∑
l=1

zl

)
+ ‖w‖1

subject to

− aTi w + γ + 1 ≤ yi, i = 1, . . . ,m1

bTl w − γ + 1 ≤ zl, l = 1, . . . ,m2

yi, zl ≥ 0.

(3.24)

Then by letting [14]:

w = w+ − w−, w+, w− ≥ 0, (3.25)

and indicating by e the vector of ones of dimension n, the above problem can
be rewritten in a Linear Programming form as follows [14]:

Min C

(
m1∑
i=1

yi +

m2∑
l=1

zl

)
+ eT (w+ + w−)

subject to

− aTi (w
+ − w−) + γ + 1 ≤ yi, i = 1, . . . ,m1

bTl (w
+ − w−)− γ + 1 ≤ zl, l = 1, . . . ,m2

yi, zl ≥ 0, w+, w− ≥ 0.

(3.26)

Of course, problem (3.26) is an equivalent formulation of the SVM problem
(3.24) [14].
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In the sequel in [14] they set the sparse optimization approach through k-norm
for feature selection in the SVM model and obtained the SVM0 problem as
follows:

Min C

(
m1∑
i=1

yi +

m2∑
l=1

zl

)
+ eT (u+ v)

subject to

(u− v)T (w+ − w−) ≥ eT (w+ + w−)

− aTi (w
+ − w−) + γ + 1 ≤ yi, i = 1, . . . ,m1

bTl (w
+ − w−)− γ + 1 ≤ zl, l = 1, . . . ,m2

yi, zl ≥ 0, w+, w− ≥ 0.

0 ≤ u, v ≤ e.

(3.27)

By penalizing the nonlinear constraint of the problem (3.27), the following
problem is obtained [14]:

Min C

(
m1∑
i=1

yi +

m2∑
l=1

zl

)
+ eT (u+ v) + σ(eT (w+ + w−)− (u− v)T (w+ − w−))

subject to

− aTi (w
+ − w−) + γ + 1 ≤ yi, i = 1, . . . ,m1

bTl (w
+ − w−)− γ + 1 ≤ zl, l = 1, . . . ,m2

yi, zl ≥ 0, w+, w− ≥ 0.

0 ≤ u, v ≤ e.
(3.28)
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Multi-Objective Optimization Problems

In this chapter, we will first introduce some basic concepts in the field of multi-
objective optimization problems, and then we will present some methods for
solving multi-objective optimization problems. The topics of this chapter are
completely taken from the [35] article.

4.1 Introduction

Optimization is a basic process in many fields of science, including mathe-
matics, economics, management and engineering applications. In most of the
real situations, decisions have to be made taking into account two or more
conflicting objectives, rather than a single one. Having conflicting objectives
means that it is not possible to find a feasible solution where all the objectives
could reach their individual optimal but one must find the most satisfactory
compromise between the objectives. These compromise solutions, in which
none of the objective functions can be improved in value without impairing
at least one of the others, are often referred to as Pareto optimal or Pareto ef-
ficient. The set of all objective function values at the Pareto and weak Pareto
solutions is said to be the Pareto front (or efficient set) of the multi-objective
optimization problem (MOP) in the objective value space [102]. In general,
solving a MOP is associated with the construction of the Pareto frontier. Sev-
eral MOP techniques have been developed to obtain the Pareto front. In the
following we will refer to some of them.
The most widely used method for MOP is the weighted sum method. The
method transforms a MOP into a single objective optimization problem by
multiplying each objective function by a weighting factor and summing up all
contributors. Initial work on the weighted sum method can be found in Zadeh
[119]. Koski [112], [113] applied the weighted sum method to structural opti-
mization. The ε -constraint method first appeared in [110] and is discussed in
detail in Changkong and Haimes [95]. It is based on a scalarization where one
of the objective functions is minimized while all the other objective functions
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are bounded from above by means of additional constraints. Huang and Yang
[109] extend the result of [93] to nonconvex problems. They use the hybrid
scalarization.
Das [100] and Das and Dennis [98], [99] present the normal boundary inter-
section (NBI) method. In this method, suboptimizations are performed on
normal lines to the utopia hyperplane that is defined and bounded by all an-
chor points. The method can also determine Pareto optimal solutions in non-
convex regions (see also [135]). Messac and Mattson [125] and Mattson and
Messac [126] used physical programming for generating Pareto fronts (see also
[122]). They also developed the normal constraint method [124], which gen-
erates uniformly distributed solutions along the Pareto front without missing
any Pareto front regions.
As previously mentioned, the problem of finding the whole solution set of a
MOP is important in applications. (see [91], [92], [94], [96], [97], [104], [105],
[106], [107], [108], [111], [115], [116], [117], [118], [120], [123], [127], [128], [129],
[130], [131], [133], [134], [135], [137], [138], [139], [141], [142]). Also from the
large amount of relevant publications in MOP, we mention just four books,
namely [97], [102], [136], [144] in which most of the theoretical and practical
issues concerning MOP are comprehensively treated.

4.2 Basic concepts and notations

A multi-objective optimization problem in which at least two or more objec-
tives are conflicting is given as follows:

Minimize f(x) = (f1(x), . . . , fp(x))

subject to

x ∈ X

(4.1)

Where X ⊆ �n, and the objective functions fk : �n → �, k = 1, . . . , p, are
continuous. The image of the feasible set X under the objective function map-
ping f is denoted as Y = f(X).
Assuming that at least two objective functions are conflicting in (4.1) then no
single x ∈ X would generally minimize every fk simultaneously. Therefore,
it is necessary to introduce a new notion of optimality or Pareto efficiency,
which is useful in the multi-objective framework.

Definition 4.1. (Dominance Vector). [102] The vector f(x1) dominates an-
other vector f(x2) and we say x1 dominates x2 (denoted as x1 ≺ x2), if and
only if fk(x

1) ≤ fk(x
2) for all k = 1, · · · , p and fi(x

1) < fi(x
2) for at least

one i ∈ {1, · · · , p}.
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Definition 4.2. (Pareto Optimality.) [102] A feasible solution x̂ ∈ X is called
efficient or Pareto optimal to MOP (4.1) if there is no other x ∈ X such that
f(x)≺ f(x̂). If x̂ is efficient, f(x̂) is called a nondominated point. The set of
all efficient solutions x̂ ∈ X is denoted XE and called the efficient set. The
set of all nondominated points ŷ = f(x̂) ∈ Y , where x̂ ∈ XE, is denoted YN

and called the nondominated set.

Definition 4.3. (Weakly Pareto Optimality.) [102] A feasible solution x̂ ∈ X
is called weakly efficient or weakly Pareto optimal to MOP (4.1) if there is no
x ∈ X such that f(x) < f(x̂), i.e. there is no x ∈ X such that fk(x) < fk(x̂)
for all k = 1, · · · , p. If x̂ is weakly efficient, the point f(x̂) is then called weakly
nondominated. The weakly efficient and nondominated sets are denoted as
XwE and YwN , respectively.

Definition 4.4. (Strictly Pareto Optimality.) [102] A feasible solution x̂ ∈ X
is called strictly efficient or strictly Pareto optimal to MOP (4.1) if there is
no x ∈ X, x �= x̂ such that fk(x) ≤ fk(x̂) for all k = 1, · · · , p. The set of all
strictly efficient points is denoted as XsE.

Definition 4.5. (Pareto filter.) [121] For set I ⊂ X, the Pareto filter of set
I is defined as Pareto (I) = {x| x ∈ I, �y ∈ I, f (y) ≺ f (x)}.
Definition 4.6. (Ideal point.) [102] The point yI = (yI1 , . . . , y

I
p) in which yIk =

minx∈X fk(x), k = 1, · · · , p, (Suppose that there are finite optimal solutions
for these problems) is called the ideal point of MOP (4.1).

Definition 4.7. (Properly efficient.) [102] A point x ∈ X is said to be a
properly efficient solution of the MOP (4.1) in Geoffrions’s sense, if it is
efficient and if there exists a scalar M > 0 such that, for all i, 1 ≤ i ≤ p, and
each x̂ ∈ X satisfying fi(x̂) < fi(x) , there exists at least one j, 1 ≤ j ≤ p,
such that fj(x̂) > fj(x) and

(fi(x)− fi(x̂))/(fj(x̂)− fj(x)) ≤ M. (4.2)

The set of all properly efficient solutions is denoted by XpE .

4.3 Some Methods for Solving Multi-objective
Optimization Problems

In this section, we review some of the methods for solving multi-objective
optimization problems.
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4.3.1 ε-Constraint Method

In ε-constraint method we substitute the multi-objective optimization prob-
lem (4.1) by the ε-constraint problem [35]:

Minimize fk(x)

subject to

x ∈ X

fj(x) ≤ εj , j = 1, . . . , p, j �= k.

(4.3)

where ε ∈ �p−1.
Theorem 4.1. [102]. 1- Let x∗ be an optimal solution of (4.3) for some k.
Then x∗ is weakly efficient.
2- Let x∗ be a unique optimal solution of (4.3) for some k. Then x∗ ∈ XsE

(and therefore x∗ ∈ XE).
3- The feasible solution x∗ is efficient if and only if there exists an ε̂ ∈ �p−1

such that x∗ is an optimal solution of (4.3) for all k = 1, . . . , p.

4.3.2 Modification of ε-Constraint Method

Consider a multi-objective optimization problem such as (4.1) in which p ≥ 2.
To solve this problem, we use the two-phase algorithm that described below.
Phase I:
First, we solve the following single-objective optimization problems for k =
1, . . . , p:

Minimize fk(x)

subject to

x ∈ X

(4.4)

Suppose that there are finite optimal solutions for these problems. Let
x∗
1, x

∗
2, . . . , x

∗
p be the optimal solutions of these problems, respectively. Now

we define the restricted region as follows, for k = 1, . . . , p:{
x ∈ X : fk(x

∗
k) ≤ fk(x) ≤ ( max

i=1,...,p;i �=k
{fk(x∗

i )})
}
, (4.5)

Phase II:
Step 1: (Determine the steps length). For arbitrary values nk ∈ ℵ, we deter-
mine the steps length Δxk as follows, for k = 1, . . . , p:

Δxk =
(maxi=1,...,p;i �=k{fk(x∗

i )})− fk(x
∗
k)

nk
, (4.6)

Step 2: (Create the sets). Then, for k = 1, . . . , p; k �= j, we define the set
δk as follows:
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δk =
{
δlkk | δlkk = (maxi=1,...,p;i �=k{fk(x∗

i )})− lkΔxk; lk = 0, 1, . . . , nk

}
,

(4.7)
Step 3: (Solve the single-objective problems). In each stage, for any arbi-

trary j ∈ {1, . . . , p} we will solve the following single-objective optimization
problems for δlkk ∈ δk and lk = 0, 1, . . . , nk [35]:

Minimize fj(x)

subject to

fk(x) ≤ δlkk , k = 1, . . . , p; k �= j

x ∈ X

(4.8)

Step 4: (Approximation of Pareto frontier). For a more accurate approxi-
mation of the Pareto frontier, suppose that for any j ∈ {1, . . . , p} we will solve
the problem (4.8) for δlkk ∈ δk and lk = 0, 1, . . . , nk. In addition, suppose that
Uj be the set of all optimal solutions obtained by solving problem (4.8) for

δlkk ∈ δk and lk = 0, 1, . . . , nk. In this case, we will consider Pareto
(⋃p

j=1 Uj

)
as an approximation of the Pareto frontier.
Suppose that x∗ is an optimal solution of (4.8), then from Theorem 4.1 it is
clear that: 1- x∗ is a weakly efficient solution of MOP (4.1), and 2- Let x∗

be a unique optimal solution of (4.8), then x∗ is a strictly efficient solution
of MOP (4.1) (and therefore is an efficient solution of MOP (4.1)). Therefore
this method can give the approximation of Pareto frontier.

To illustrate this approach, we consider the bi-objective optimization prob-
lem case. Let x∗

1 be the optimal solution of problem:

Minimize f1(x)

subject to

x ∈ X

(4.9)

and x∗
2 be the optimal solution of problem:

Minimize f2(x)

subject to

x ∈ X

(4.10)

As it is seen below in Figure 4.1, by considering the lines that pass through
points f1(x

∗
1) and f1(x

∗
2) (or, the lines that pass through points f2(x

∗
2) and

f2(x
∗
1)), the feasible region of this problem will be restricted.
For an arbitrary n ∈ ℵ, steps length Δx1 and Δx2 are determined as

follows:

Δxk =
f1(x

∗
2)− f1(x

∗
1)

n
, Δx2 =

f2(x
∗
1)− f2(x

∗
2)

n
, (4.11)
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Fig. 4.1. Decision space and restricted region [35].

Then we will solve the optimization problems (P1) [35]:

Minimize f2(x)

subject to

f1(x) ≤ δl11
x ∈ X

(4.12)

and (P2):
Minimize f1(x)

subject to

f2(x) ≤ δl22
x ∈ X

(4.13)

for all x ∈ X and l1, l2 = 0, 1, . . . , n. The step lengths and the Pareto points
generated (Solid circle for problem (P1) and circle for problem (P2)), are
shown in Figure 4.2 (a). The approximation of Pareto frontier is shown in
Figure 4.2 (b).

Fig. 4.2. (a) Step lengths and the Pareto points generated, (b) The approximation
of Pareto frontier [35].

Theorem 4.2. [35] The feasible solution x ∈ X is efficient for the multi-
objective optimization problem (4.1) if and only if there exists steps length
Δxk, k = 1, . . . , p such that x is an optimal solution of (4.8) for all k = 1, . . . , p.
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Remark 4.1. [35] We can normalize the objective functions so that all
objective functions have a minimum at zero and a maximum at 1. If the ob-
jective function is unbounded or does not attain its maximum, a user-defined
upper-bound can be imposed. In optimization problems with two objective
functions, the normalization is done by dividing each objective function by
its maximum function value when the other objective functions are at their
individual minimum. Suppose that fN

k are normalized objective functions fk
for k = 1, . . . , p. In this case we determine the steps length ΔNormalizexk for
k = 1, . . . , p, k �= j as follows:

ΔNormalizexk =
1

nk
(4.14)

where nk ∈ N . Then, for k = 1, . . . , p; k �= j, we can define the set
δNormalize
k as follows:

δNormalize
k =

{
δlkk | δlkk = 1− lk

1

nk
; lk = 0, 1, . . . , nk

}
, (4.15)





5

A New Sparse Algorithm with Application in
SVM Feature Selection

This chapter introduces new Feature Selection approach based on the use of
k-norm in Sparse Optimization. Then we will present new and some of the
previous models in the form of multi-objective optimization problems. Some
numerical experiments will be presented to compare the results of different
models in single objective and multi-objective form.

5.1 A new approach to Feature Selection

This section introduces a new Feature Selection approach based on the use of
k-norm in Sparse Optimization (see [14]). Then a relaxation for the model is
provided. Finally, some differential properties and some algorithms for solving
the proposed nonlinear model are introduced.

5.1.1 New Feature Selection by using the k-norm

We consider, in a general setting, the following sparse optimization problem:

Minimize
x∈Rn

f(x) + ‖x‖0
subject to

x ∈ P,

(5.1)

where we assume that f : Rn → R is convex and f (x) ≥ 0 for all x ∈ Rn, as
it is the case when f is the error function in the SVM model. We introduce
now the k-norm.

Definition 5.1. . (k-norm). [14]. The k-norm is defined as the sum of k
largest components (in modulus) of the vector X:

‖x‖[k] =| xi1 | + | xi2 | + . . .+ | xik |
where | xi1 |≥| xi2 |≥ . . . ≥| xin | (5.2)
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The k-norm is polyhedral, it is intermediate between ‖.‖1 and ‖.‖∞ and enjoys
the fundamental property linking ‖.‖[k] to ‖.‖0, 1 ≤ k ≤ n:

‖x‖0 ≤ k ⇔ ‖x‖1 − ‖x‖[k] = 0. (5.3)

The property above is used to define the following Mixed Integer Nonlinear
Programming (MINLP) formulation of problem (5.1), where we have intro-
duced the set of binary variables yk, k = 1, . . . , n.

Minimize
x∈Rn

f(x)−
n∑

k=1

yk

subject to

‖x‖[k] ≥ ‖x‖1yk, k = 1, . . . , n

x ∈ P,

yk ∈ {0, 1} , k = 1, . . . , n.

(5.4)

Note that, at the optimum of (5.4), the following hold:

yk =

{
0, if ‖x‖[k] < ‖x‖1
1, if ‖x‖[k] = ‖x‖1, (5.5)

thus, taking into account (5.3), yk = 1 if ‖x‖0 ≤ k. Summing up we have:

n∑
k=1

yk = n− ‖x‖0 + 1 ⇒ ‖x‖0 = n−
n∑

k=1

yk + 1, (5.6)

from which we obtain that maximization of

n∑
k=1

yk implies minimization of

‖x‖0.

5.1.2 Relaxation of New Feature Selection Model

We can relax the integrality constraint on yk in problem (5.4) by setting yk ∈
[0, 1] for k = 1, . . . , n. We observe that at the optimum of the relaxed problem
all constraints ‖x‖[k] ≥ ‖x‖1yk are satisfied by equality, which implies that

for variables yk it is yk =
‖x‖[k]
‖x‖1 and, consequently, they can be eliminated,

obtaining:

Minimize
x∈Rn

f(x)− 1

‖x‖1
n∑

k=1

‖x‖[k]

subject to

x ∈ P

(5.7)
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From now on, we will consider problem (5.7) as our main problem and call it
”Our Model” or ”BM-SVM”. We rewrite it in following fractional program-
ming form:

Minimize
x∈Rn

f (x) ‖x‖1 −
∑n

k=1 ‖x‖[k]
‖x‖1

subject to

x ∈ P

(5.8)

5.1.3 Some Differential Properties and Some Algorithms for
Solving the Proposed Nonlinear Model

Problem above can be tackled via Dinkelbach’s method [145], which consist
in solving the scalar nonlinear equation F (p) = 0 where:

F (p) = Min
x∈P⊂Rn

f(x)‖x‖1 −
n∑

k=1

‖x‖[k] − p‖x‖1︸ ︷︷ ︸
fp(x)

.
(5.9)

Remark 5.1. Calculation of F (p) amounts to solving an optimization prob-
lem in DC (Difference of Convex) form. Observe, in fact, that function
f(x)‖x‖1 is convex, being the product of two convex and non-negative func-

tions. Thus function fp(x) can be put in DC form fp(x) = f
(1)
p (x) − f

(2)
p (x)

by letting: ⎧⎪⎨⎪⎩
f
(1)
p (x) = f(x)‖x‖1,
f
(2)
p (x) =

n∑
k=1

‖x‖[k] + p‖x‖1, (5.10)

if p ≥ 0, and: ⎧⎪⎨⎪⎩
f
(1)
p (x) = f(x)‖x‖1 − p‖x‖1,
f
(2)
p (x) =

n∑
k=1

‖x‖[k], (5.11)

if p < 0.
Remark 5.2. Function fp(x) is nonsmooth. Thus the machinery provided by
the literature on optimization of nonsmooth DC functions can be fruitfully
adopted to tackle (5.9) (see [12], [13] and the references therein). We recall
some differential properties of the k-norm. In particular, given any x ∈ Rn,
and denoting by J[k] (x̄) = {j1, . . . , jk} the index set of k largest absolute-

value components of x̄, a subgradient g[k] ∈ ∂‖x̄‖[k] can be obtained as [14],
[88]:

g
[k]
j =

⎧⎨⎩
1, if j ∈ J[k] (x̄) and x̄j ≥ 0
−1, if j ∈ J[k] (x̄) and x̄j < 0
0, otherwise

(5.12)
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Note that the subdifferential ∂‖.‖[k] is a singleton (i.e., the vector k-norm is
differentiable) any time the set J[k] (.) is uniquely defined.
In the next section, we will present the previous models in the form of multi-
objective optimization problems.

5.2 Reformulation of Feature Selection Problems into
Multi-Objective Optimization Form

The MOP reformulations of the l1 model (2.24) and l2 model (2.23) in chapter
2 (section (2.2)), are as follows, respectively:

Min

m1∑
i=1

yi +

m2∑
l=1

zl

Min ‖w‖1
subject to

− aTi w + γ + 1 ≤ yi, i = 1, . . . ,m1

bTl w − γ + 1 ≤ zl, l = 1, . . . ,m2

yi, zl ≥ 0

(5.13)

Min

m1∑
i=1

yi +

m2∑
l=1

zl

Min ‖w‖22
subject to

− aTi w + γ + 1 ≤ yi, i = 1, . . . ,m1

bTl w − γ + 1 ≤ zl, l = 1, . . . ,m2

yi, zl ≥ 0

(5.14)

Our FS model, formulated according to problem (5.7) in section 5.1 is refor-
mulated as the following MOP:

Min

m1∑
i=1

yi +

m2∑
l=1

zl

Min − 1

‖x‖1
n∑

k=1

‖x‖[k]

subject to

− aTi w + γ + 1 ≤ yi, i = 1, . . . ,m1

bTl w − γ + 1 ≤ zl, l = 1, . . . ,m2

yi, zl ≥ 0

(5.15)
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And SVM0 model formulated according to problem (3.28) in Chapter 4 (sec-
tion 3.4) reformulate as the following MOP:

Min C

(
m1∑
i=1

yi +

m2∑
l=1

zl

)
Min eT (u+ v) + σ(eT (w+ + w−)− (u− v)T (w+ − w−))

subject to

− aTi (w
+ − w−) + γ + 1 ≤ yi, i = 1, . . . ,m1

bTl (w
+ − w−)− γ + 1 ≤ zl, l = 1, . . . ,m2

yi, zl ≥ 0, w+, w− ≥ 0.

0 ≤ u, v ≤ e.

(5.16)

To solve these multi-objective optimization problems, we can use a mod-
ified algorithm based on the ε-constraint method which was introduced in
Chapter 4 (Section 4.3). The methods presented in [146] and [147] can be
used as well.

5.3 Numerical Experiments

In this section, some numerical experiments are presented to compare the re-
sults of different models. We will take the results of single-objective problems
and the results of MOP reformulations for some of the numerical experiments.
To solve the test problems, we used the Global Solve solver of the global opti-
mization package in MAPLE v.18.01. The algorithms in the Global Optimiza-
tion toolbox are global search methods, which in this method systematically
search the entire feasible region for a global extremum (see [148]).

Test Problem 1. (Single objective testing). The following two sets
are given:

A = {(1, 4, 1), (1.5, 6, 1), (3.5, 5, 1)} , B = {(2, 6, 3), (3, 5, 2), (6, 3, 1.7)}
In this example, the number of samples is 6 and the number of features is
3. We have set C = 10. All models provide the correct separator of the sets
(the error of all models is equal to zero). But l1 and l2 return a vector w
where components are all nonzero, whereas the vector w returned by our
sparse optimization method has just one nonzero component. The results of
this example are depicted in Table 5.1 and Fig. 5.1.

Test Problem 2. (Single objective and multi-objective testing).
In this example, the number of samples is 14, and the number of features is
3. Suppose that we have the following two sets:
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Table 5.1. The results of Test problem 1 for C = 10.

Method w1 w2 w3 ‖w‖1 Error Correctness

Our Model 0 0 -2.8571 2.8571 0 % 100.00
l1 Model -0.0764 0.1911 -2.0383 2.3058 0 % 100.00
l2 Model -0.0764 0.1911 -2.0383 2.3058 0 % 100.00

Fig. 5.1. The Result of Separator Hyperplanes for Test Problem 1, (C = 10).

A = {[2, 5, 1], [1.7, 4, 1.5], [3, 5.5, 1.6], [2.5, 5.3, 1.3],
[1.5, 1.5, 0.8], [2.5, 3.5, 1.4], [2.8, 4, 1.2]}

B = {[3.2, 6, 2], [3.5, 5.8, 2.4], [5, 4.1, 1.9], [4, 6.5, 3],
[3.8, 8, 2], [6, 6, 2], [4.2, 6.1, 1.8]}

We have set C = 10. All single objective models provide the correct sepa-
rator of the sets (the error of all models is equal to zero). But l1 and l2 return
a vector w where components are all nonzero, whereas the vector w returned
by BM −SVM (Our Model) and SVM0 methods has just one nonzero com-
ponent. The results of this example for single objective models are depicted
in Table 5.2 and Figure 5.2.

Now we used this dataset for MOP models. The Algorithm introduced in
Chapter 4 (section 4.3) has been used to solve these MOPs. Here we have
set d = 100. Out of 100 Pareto solutions that were obtained for each MOP,



5.3 Numerical Experiments 49

Fig. 5.2. The result of Separator Hyperplanes in single objective models for Test
problem 2, (C = 10).

Table 5.2. The results of Test problem 2 for C = 10.

Method w1 w2 w3 ‖w‖1 Error Correctness

Our Model 0.00 0.00 -9.9998 9.9998 0 % 100.00
SVM0 Model 0.00 0.00 -10.00 10.00 0 % 100.00
l1 Model -0.7500 -0.5000 -4.0000 5.2500 0 % 100.00
l2 Model -1.8265 -1.6276 -1.9541 5.4082 0 % 100.00

we have considered 6 Pareto solutions for more consideration. In Figures 5.3-
5.6, we have considered a suitable viewing angle for each specific sample (6
Pareto solutions) to have a better view of the separating hyperplanes, for
MOP models. Also, in tables 5.3-5.7, the results obtained for the same Pareto
optimal solutions are displayed.
In Table 5.3 for the l1 multi-objective model, the value of ‖w‖1 gradually
decreases in the solutions, while the error value increases.

For example, in the first and second Pareto solutions with an error value
equal to zero, a smaller value for the ‖w‖1 has been achieved compared to the
results of the single-objective l1 problem, presented in Table 5.2. For example,
in the sixth optimal solution, the value of one of the components of the vector
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Table 5.3. The results of l1 MOP model for the dataset of Test problem 2.

w1 w2 w3 ‖w‖1 Error Correctness

l -0.7400 -0.4933 -3.9470 5.1803 0.00 % 100.00
2 -0.7048 -0.4699 -3.7590 4.9337 0.00 % 100.00
3 -0.4405 -0.2937 -2.3494 3.0834 0.8253 % 92.86
4 -0.8068 -0.1502 -1.0164 1.9734 1.3569 % 85.72
5 -0.7739 -0.3108 -0.0254 1.1101 2.9710 % 64.29
6 -0.7405 -0.2462 0.00 0.9867 3.4612 % 50.00

w is equal to zero, but the error has increased.

Fig. 5.3. Some results of Separator Hyperplanes in l1 MOP model for Test problem
2.

In Table 5.4 for the l2 multi-objective model, the value of ‖w‖1 gradu-
ally decreases in the solutions, while the error value increases. For example,
in the first and second Pareto solutions with an error value equal to zero, a
smaller value for the ‖w‖1 has been achieved compared to the results of the
single-objective l2 problem, presented in Table 5.2. Also, in different Pareto
solutions, none of the components of the vector w become zero.

In Table 5.5 for the BM −SVM multi-objective model, in the first Pareto
solution with an error value equal to zero, a smaller value for the ‖w‖1 has
been achieve but all components of the vector w are non-zero. In the second
Pareto solution with an error value equal to zero, two components of the vec-
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Table 5.4. The results of l2 MOP model for the dataset of Test problem 2.

w1 w2 w3 ‖w‖1 Error Correctness

l -1.0146 -0.7756 -3.5230 5.3132 0.00 % 100.00
2 -1.7660 -1.5736 -1.8893 5.2289 0.00 % 100.00
3 -1.0196 -0.9085 -1.0908 3.0189 0.9055 % 92.86
4 -0.9476 -0.7882 -0.9616 2.6974 1.0317 % 85.72
5 -0.7108 -0.4092 -0.7411 1.8611 1.6263 % 78.57
6 -0.6313 -0.3030 -0.3473 1.2816 2.7562 % 57.14

Fig. 5.4. Some results of Separator Hyperplanes in l2 MOP model for Test problem
2.

tor w are non-zero. For the other Pareto solutions, a smaller value for the
‖w‖1 has been achieve and has just one nonzero component.

Table 5.5. The results of BM −SVM MOP model for the dataset of Test problem
2.

w1 w2 w3 ‖w‖1 Error Correctness

l -0.7500 -0.5000 -4.0000 5.2500 0.00 % 100.00
2 -0.0460 0.00 -9.7375 9.7835 0.00 % 100.00
3 0.00 0.00 -8.5929 8.5929 0.00 % 100.00
4 -6.5340 0.00 0.00 6.5340 0.7374 % 92.86
5 0.00 0.00 -5.00 5.00 1.4748 % 85.71
6 0.00 0.00 -4.00 4.00 1.60 % 78.57
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Fig. 5.5. Some results of Separator Hyperplanes in BM − SVM MOP model for
Test problem 2.

For SVM0 multi-objective model, as shown in Figure 5.6 and Table 5.6, in
the first Pareto solution with an error value equal to zero, a smaller value for
the ‖w‖1 has been achieve but all components of the vector w are non-zero. In
the second Pareto solution with an error value equal to zero, two components
of the vector w are non-zero. For the other Pareto solutions, a smaller value
for the ‖w‖1 has been achieve and has just one nonzero component.

Table 5.6. The results of SVM0 MOP model for the dataset of Test problem 2.

w1 w2 w3 ‖w‖1 Error Correctness

l -0.7500 -0.5000 -4.0000 5.2500 0.00 % 100.00
2 -5.00 0.00 -2.5000 7.5000 0.00 % 100.00
3 0.00 0.00 -9.8603 9.8603 0.00 % 100.00
4 0.00 0.00 -7.2591 7.2591 0.5481 % 92.86
5 -6.5625 0.00 0.00 6.5625 1.2386 % 92.86
6 0.00 0.00 -5.00 5.00 2.1090 % 78.57

All Pareto optimal solutions (in the functions space of Error (Vertical
axis) an l1 norm (Horizontal axis)) obtained from multi-objective models
(BM − SVM , SVM0, l1, l2) are shown in Figure 5.7.
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Fig. 5.6. Some results of Separator Hyperplanes in SVM0 MOP model for Test
problem 2.

Fig. 5.7. Pareto optimal solutions obtained from multi-objective models (BM −
SVM , SVM0, l1, l2 models) for the dataset of Test problem 2.
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Test Problem 3. (Single objective and multi-objective testing).
In this example, the number of samples is 6, and the number of features is 4.
Suppose that we have the following two sets:

A = {[1.5, 4.2, 1, 2], [1.9, 4.6, 1.5, 1.5], [1.8, 4.5, 1.6, 1.9]}

B = {[2.2, 6, 3, 2.1], [2.6, 5, 2, 2.3], [4, 4.7, 1.7, 2.5]}
We have set C = 10, and in this test problem also all models provide the

correct separator of the sets. Models l1 and l2 return a vector w where com-
ponents are all nonzero, but the vector w returned by our method has just
one nonzero component. The results of this test problem is shown in Table
5.11.

Table 5.7. The results of Single Objective Models for Test problem 3 for C = 10.

Method w1 w2 w3 w4 ‖w‖1 Error Correctness

Our Model -6.8067 0 0 0 6.8067 0 % 100.00
l1 Model -1.9444 -0.0001 -0.8333 -0.2778 3.0556 0 % 100.00
l2 Model -1.3223 -0.8264 -0.6612 -0.6612 3.4711 0 % 100.00

Now we used the dataset of Test problem 3 for MOP models. We have
used the algorithm introduced in chapter 4 (section 4.3) to solve these MOPs,
and in this algorithm, we have set d = 100. Out of 100 Pareto solutions that
were obtained for each model we have considered only 2 Pareto solutions that
seemed interesting for more consideration that are displayed in Tables 5.8, 5.9
and 5.10.
For the l1 MOP model, as shown in Table 5.8, for the first Pareto solution
with an error value equal to zero we have obtained a smaller value for ‖w‖1,
compared to the results of the l1 single-objective model presented in Table
5.11. For the second Pareto solution, we have obtained a solution where one
of the components of w is equal to zero, but the error value is non-zero.
For the l2 MOP model, as shown in Table 5.9, for the first Pareto solution

Table 5.8. The results of 2 Pareto solutions of l1 MOP model for the dataset of
Test problem 3.

w1 w2 w3 w4 ‖w‖1 Error Correctness

l -1.9444 0 -0.8332 -0.2778 3.0554 0 % 100.00
2 -1.3665 0 -0.7177 -0.8557 2.9399 0.2774 % 83.33

with an error value equal to zero a smaller value for ‖w‖1 is obtained, com-
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pared to the results of the l2 single-objective model presented in Table 5.11.
For the second Pareto solution we have obtained smallest value for ‖w‖1, but
the error value is non-zero.

Table 5.9. The results of 2 Pareto solutions of l2 MOP model for the dataset of
Test problem 3.

w1 w2 w3 w4 ‖w‖1 Error Correctness

l -1.7026 -0.7570 -0.0447 -0.6037 3.1080 0 % 100.00
2 -1.1240 -0.7025 -0.5619 -0.5620 2.9504 0.3000 % 83.33

For our MOP model, as shown in Table 5.10, the first Pareto solution
is similar to the solution that was obtained in the single-objective model in
which the vector w returned only one nonzero component. For the second
Pareto solution also three components of vector w are equal to zero while
‖w‖1 has decreased but the error value is non-zero.
.

Table 5.10. The results of 2 Pareto solutions of Our MOP model for the dataset
of Test problem 3.

w1 w2 w3 w4 ‖w‖1 Error Correctness

l -9.2254 0 0 0 9.2254 0 % 100.00
2 -5.7389 0 0 0 5.7389 0.2800 % 83.33

Test Problem 4. (Single objective and multi-objective testing).
In this example, the number of samples is 12, and the number of features is
4. Suppose that we have the following two sets:

A = {[1.5, 4.2, 1, 2], [1.9, 4.6, 1.5, 1.5], [1.8, 4.5, 1.6, 1.9],
[1.5, 4.3, 1.2, 1.8], [1.2, 4.5, 1.6, 1.6], [1.7, 4.5, 1.4, 2]}

B = {[2.2, 6, 3, 2.1], [2.6, 5, 2, 2.3], [4, 4.7, 1.7, 2.5],
[3.2, 4.5, 2.1, 2.3], [3.5, 5.3, 2.5, 3.1], [2.1, 5.6, 2.5, 3.2]}

We have set C = 10. All single objective models provide the correct sepa-
rator of the sets (the error of all models is equal to zero). But l1 and l2 return
a vector w where components are all nonzero, whereas the vector w returned
by BM − SVM and SVM0 methods has just one nonzero component. The
results of this example for single objective models are depicted in Table 5.11.
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Table 5.11. The results of Single Objective Models for Test problem 4 for C = 10.

Method w1 w2 w3 w4 ‖w‖1 Error Correctness

Our Model -10.00 0.00 0.00 0.00 10.00 0.00 % 100.00
SVM0 Model -10.00 0.00 0.00 0.00 10.00 0.00 % 100.00
l1 Model -1.7886 -0.4878 -0.3252 -0.4878 3.0894 0 % 100.00
l2 Model -1.3223 -0.8264 -0.6612 -0.6612 3.4711 0 % 100.00

Pareto optimal solutions obtained from four multi-objective models (BM−
SVM , SVM0 and l1, l2 models) are shown in Figure 5.8. In this figure, the
horizontal axis represents the value of l1 norm of vector w, and the vertical
axis represents the error level in each Pareto optimal solutions.
Out of the 100 Pareto optimal solutions obtained for each MOP model, we
have considered only 3 Pareto optimal solutions that seemed more interesting
for further consideration. The results are displayed in Tables 5.12-5.15.

Fig. 5.8. Pareto optimal solutions obtained from multi-objective models for the
dataset of Test problem 4.
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For the l1 MOP model, as shown in Table 5.12, for all pareto solutions
with non-zero error value, one components of vector w equal to zero. For the
l2 MOP model, as shown in Table 5.13, for all pareto solution which are con-
sidered, all components of the vector w are non-zero.

Table 5.12. The results of some Pareto solutions of l1 multi-objective model for
the dataset of Test problem 4.

w1 w2 w3 w4 ‖w‖1 Error Correctness

l -0.7279 0.00 -0.9160 -0.4826 2.1265 1.0984 % 66.67
2 -0.6897 0.00 -0.8314 -0.2927 1.8138 1.8273 % 58.33
3 -0.8121 0.00 -0.7514 0.00 1.5636 2.5273 % 50.00

Table 5.13. The results of some Pareto solutions of l2 multi-objective model for
the dataset of Test problem 4.

w1 w2 w3 w4 ‖w‖1 Error Correctness

l -0.9504 0.3632 -0.5770 -0.5682 2.4588 0.60 % 83.33
2 -0.6877 0.4267 -0.6012 -0.4909 2.2065 1.20 % 66.66
3 -0.5831 0.3852 -0.5331 0.4354 1.9368 1.80 % 58.33

For BM − SVM MOP model, as shown in Table 5.14, for all pareto solu-
tion which is considered, three components of vector w is equal to zero, and
in each solutions smaller value for ‖w‖1 has been achieve but the errors are
not equal to zero.

Table 5.14. The results of some Pareto solutions of BM − SVM multi-objective
model for the dataset of Test problem 4.

w1 w2 w3 w4 ‖w‖1 Error Correctness

l 0.00 0.00 -4.8920 0.00 4.8920 3.4020 % 75.00
2 0.00 0.00 -2.2222 0.00 2.2222 7.6788 % 66.67
3 0.00 0.00 -5.3441 0.00 5.3441 18.3710 % 58.33

For SVM0 MOPmodel, as shown in Table 5.15, for the first Pareto solution
which are considered, two components of vector w is equal to zero and for the
odder Pareto solutions, three components of vector w is equal to zero but the
error value is non-zero.
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Table 5.15. The results of some Pareto solutions of SVM0 multi-objective model
for the dataset of Test problem 4.

w1 w2 w3 w4 ‖w‖1 Error Correctness

l -1.6949 -2.0339 0.00 0.00 3.7288 0.00 % 100.00
2 -7.2008 0.00 0.00 0.00 7.2008 0.5598 % 91.67
3 0.00 0.00 -4.6410 0.00 4.6410 1.6795 % 83.33

Test Problem 5. (Single objective and multi-objective testing).
In this example, the number of samples is 8, and the number of features is 5.
Suppose that we have the following two sets:

A = {[2.3, 3.5, 1, 2.7, 1], [2.8, 3.6, 1.5, 2.5, 1.1],
[2, 4.9, 1.6, 2.4, 1.2], [2.5, 3.9, 1.8, 2, 1.3]}

B = {[3.1, 5.6, 3, 3.1, 2], [3.6, 4.6, 2, 3.3, 2.1],
[4, 5, 1.7, 2.9, 2.2], [3.2, 4.2, 2.3, 2.5, 2.4]}

We have set C = 10. All single objective models provide the correct sepa-
rator of the sets (the error of all models is equal to zero). But l1 and l2 return
a vector w where components are all nonzero, whereas the vector w returned
by BM − SVM and SVM0 methods has just one nonzero component. The
results of this example for single objective models are depicted in Table 5.16.

Table 5.16. The results of Single Objective Models for Test problem 5 for C = 10.

Method w1 w2 w3 w4 w5 ‖w‖1 Error Correctness

Our Model 0.00 0.00 0.00 0.00 -8.3334 8.3334 0.00 % 100.00
SVM0 Model 0.00 0.00 0.00 0.00 -10.00 10.00 0.00 % 100.00
l1 Model -0.1892 -0.0946 -0.2270 -0.4541 -1.3623 2.3273 0.00 % 100.00
l2 Model -0.6114 -0.2620 -0.4367 -0.4367 -0.9607 2.7074 0.00 % 100.00

Pareto optimal solutions obtained from multi-objective models (BM −
SVM , SVM0 and l1, l2 models) are shown in Figure 5.9. In this figure, the
horizontal axis represents the value of l1 norm of vector w, and the vertical
axis represents the error level in each Pareto optimal solutions.
Out of the 100 Pareto optimal solutions obtained for each MOP model, we
have considered only 3 Pareto optimal solutions that seemed more interesting
for further consideration. The results are shows in Tables 5.17-5.20.

For the l1 MOP model, as shown in Table 5.17, for first Pareto solution
with a non-zero of error, one components of vector w equal to zero. For second
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Fig. 5.9. Pareto optimal solutions obtained from multi-objective models for the
dataset of Test problem 5.

Pareto solution we have obtained the smallest value for ‖w‖1, where one of
the components of w equal to zero, and the error value is non-zero and for
third Pareto solution with one component equal to zero in the vector w, the
value of l1 norm of vector w has decreased.

Table 5.17. The results of some Pareto solutions of l1 multi-objective model for
the dataset of Test problem 5.

w1 w2 w3 w4 w5 ‖w‖1 Error Correctness

l -0.6347 -0.2952 -0.0858 0.00 -1.1541 2.1699 0.2064 % 75.00
2 -0.6302 -0.2470 0.00 -0.0039 -1.1801 2.0612 0.4369 % 62.50
3 -0.3035 0.0437 0.00 0.00 -1.3887 1.7359 1.0963 % 50.00

For the l2 MOP model, as shown in Table 5.18, for all Pareto solution none
of the components of the vector w is equal to zero.
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Table 5.18. The results of some Pareto solutions of l2 multi-objective model for
the dataset of Test problem 5.

w1 w2 w3 w4 w5 ‖w‖1 Error Correctness

l -0.2549 -0.1032 -0.2135 -0.7962 -1.2810 2.6489 0.00 % 100.00
2 -0.2120 -0.0556 0.3538 -0.6104 -1.2298 2.4616 0.00 % 100.00
3 -0.5363 -0.2690 -0.3751 -0.3867 -0.8051 2.3721 0.2774 % 87.50

For BM − SVM MOP model, as shown in Table 5.19, for the first and
second Pareto solutions which is considered, four components of vector w
is equal to zero while the error values are zero. For the third Pareto solu-
tion which is considered from our MOP model, four components of vector w
is equal to zero while the correctness of the model has been reduced to % 87.5.

Table 5.19. The results of some Pareto solutions of BM − SVM multi-objective
model for the dataset of Test problem 5.

w1 w2 w3 w4 w5 ‖w‖1 Error Correctness

l 0.00 0.00 0.00 0.00 -7.1575 7.1575 0.00 % 100.00
2 -6.7742 0.00 0.00 0.00 0.00 6.7742 0.00 % 100.00
3 0.00 0.00 0.00 0.00 -4.0209 4.0209 0.8613 % 87.50

For SVM0 MOP model, as shown in Table 5.15, for the first Pareto so-
lution which is considered, four components of vector w is equal to zero and
error value is equal to zero, for the second and third Pareto solutions, four
components of vector w is equal to zero while the error value is non-zero.

Table 5.20. The results of some Pareto solutions of SVM0 multi-objective model
for the dataset of Test problem 5.

w1 w2 w3 w4 w5 ‖w‖1 Error Correctness

l 0.00 0.00 0.00 0.00 -9.9147 9.9147 0.00 % 100.00
2 -3.5484 0.00 0.00 0.00 0.00 3.5484 0.9355 % 87.50
3 0.00 0.00 0.00 0.00 -2.50 2.50 1.9528 % 75.00

Test Problem 6. (Single objective testing for Benchmark Prob-
lems). We have performed our experiments on a group of five datasets
adopted as benchmarks for the feature selection method described in [12].
These datasets are available at (https://www.csie.ntu.edu.tw/ cjlin/libsvmtool
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s/datasets/). They are listed in Table 5.21, where m is the number of samples
and n is the number of features.
A standard tenfold cross-validation has been performed in datasets. The

Table 5.21. Description of the datasets.

Datasets Names m n

Breast Cancer (BC) 683 10

HEART 270 13

Ionosphere (IONO) 351 34

Liver disorders (LIVER) 345 5

Sonar, Mines vs. Rocks (SONAR) 208 60

results are in Tables 5.22, 5.23 and 5.24, where the Average Training Correct-
ness (ATC) column is expressed as the average percentage of samples correctly
classified.
Columns ‖w‖1 report the average l1 norm of w. Finally, columns “%ft(0)”–
“%ft(−8)” report the average percentage of components of w whose mod-
ulus is greater than or equal to 100–10−8, respectively. Note that, assum-
ing, conventionally, to be equal to “zero”, any component wj of w such that
wj < 10−8, the percentage of zero-components is (100 −%ft(−8)). Two dif-
ferent values of parameter C have been adopted for all datasets, C = 1 and
10.

Table 5.22. The results of l1 model for two values of C.

Dataset ‖w‖1 ATC Error %ft(0) %ft(−2) %ft(−4) %ft(−6) %ft(−8)
C = 1

BC 1.34 %94.34 38.82 0.00 86.00 90.00 90.00 100.00
HEART 3.77 %68.27 80.31 0.77 84.62 99.23 100.00 100.00
IONO 18.11 %80.63 65.08 16.76 84.12 92.06 95.59 97.06
LIVER 0.22 %54.68 69.81 0.00 80.00 100.00 100.00 100.00
SONAR 21.57 %56.42 87.20 13.33 61.67 63.33 91.66 96.67

C = 10

BC 1.38 %94.43 38.76 0.00 88.00 89.00 89.00 99.00
HEART 4.10 %69.92 79.39 1.54 86.15 100.00 100.00 100.00
IONO 35.64 %84.33 56.46 44.71 94.71 96.18 96.47 97.06
LIVER 0.23 %62.58 60.46 0.00 80.00 100.00 100.00 100.00
SONAR 152.38 %88.33 22.97 54.67 83.50 90.83 95.83 98.33

As shown in column %ft(−8) of Tables 5.22, 5.23 and 5.24, our model
resets the number of more components of the w vector equal to zero in all
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Table 5.23. The results of l2 model for two values of C.

Dataset ‖w‖1 ATC Error %ft(0) %ft(−2) %ft(−4) %ft(−6) %ft(−8)
C = 1

BC 1.34 %94.34 38.93 0.00 86.00 90.00 90.00 100.00
HEART 3.73 %68.72 78.63 0.00 85.38 100.00 100.00 100.00
IONO 15.83 %75.42 73.09 8.53 96.47 97.06 97.06 97.06
LIVER 0.23 %53.68 79.81 0.00 80.00 100.00 100.00 100.00
SONAR 24.99 %45.33 73.01 10.67 95.00 100.00 100.00 100.00

C = 10

BC 1.39 %94.43 38.82 0.00 89.00 90.00 90.00 100.00
HEART 4.11 %69.75 77.03 1.54 86.15 100.00 100.00 100.00
IONO 32.51 %84.87 56.78 37.65 96.76 97.06 97.06 97.06
LIVER 0.23 %61.27 60.86 0.00 80.00 100.00 100.00 100.00
SONAR 62.90 %71.85 41.04 48.33 100.00 100.00 100.00 100.00

Table 5.24. The results of our model for two values of C.

Dataset ‖w‖1 ATC Error %ft(0) %ft(−2) %ft(−4) %ft(−6) %ft(−8)
C = 1

BC 1.18 %96.16 34.76 0.00 64.00 64.00 64.00 64.00
HEART 3.07 %70.77 74.50 4.69 58.85 58.85 58.85 58.85
IONO 21.39 %88.23 51.33 15.29 55.46 56.80 56.80 56.80
LIVER 0.15 %67.54 64.48 0.00 60.00 70.00 70.00 70.00
SONAR 28.47 %93.88 11.27 5.00 45.00 46.67 48.33 48.33

C = 10

BC 1.25 %96.46 32.17 0.00 64.00 64.00 64.00 64.00
HEART 3.12 %72.59 73.31 4.78 58.85 58.85 58.85 58.85
IONO 23.16 %89.27 50.99 15.48 55.46 56.82 56.82 56.82
LIVER 0.14 %68.52 59.45 0.00 60.00 70.00 70.00 70.00
SONAR 29.53 %95.24 10.86 5.27 45.55 46.67 48.42 48.42

datasets. Also, our model results in a smaller error value compared to the l1
and l2 methods. In comparison, the correctness of our model classification is
better for the whole datasets. For c = 10, the value of ‖w‖1 in our model
results in a smaller value in all datasets.
In the next two test problem, our goal is to demonstrate the benefits of con-
sidering the model as a multi-objective optimization problem. In this case, we
can obtain a set of Pareto optimal solutions instead of one optimal solution.
We consider the l1, l2 and our model as two-objective optimization problems
described in Section 5.2.
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5.4 Conclusion

In this chapter, we emphasized the application of sparse optimization in Fea-
ture Selection for Support Vector Machine classification. We have proposed
a new model for sparse optimization based on the polyhedral k-norm. Due
to the advantages of using multi-objective optimization models instead of
single-objective models, some multi-objective reformulation of Support Vec-
tor Machine classification was proposed. The results of some test problems
on classification datasets are reported for both single-objective and multi-
objective models.
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