
1

Dipartimento di Ingegneria Informatica, Modellistica,
Elettronica e Sistemistica

Dottorato di Ricerca in

Information and Communication Technologies

CICLO

XXXV

ENSEMBLE OF DEEP LEARNING
PREDICTION MODELS FOR DATA

ANALYTICS

Coordinatore: Ch.mo Prof. Giancarlo Fortino
Firma

Supervisore: Ch.mo Prof. Gianluigi Folino
Firma

Dottorando: Dott. Paolo Zicari
irma

2

To my parents for their love and their advice in every moment of my life.
Ai miei genitori, per il loro amore e la loro dedizione e per essere un

riferimento costante nella mia vita.

To my sister and my brothers with their families for their indispensable
support.

A mia sorella e ai miei fratelli insieme alle loro famiglie, per essere sempre
presenti e di aiuto nella mia vita.

To my son, with the hope of leaving him a better world.
A mio figlio Bruno, a�nchè possa crescere sereno e nella rettitudine,

sperando di contribuire a costruire un mondo migliore per lui e per tutte le
nuove generazioni.

3

Acknowledgements

I would like to express my sincere gratitude to my advisor Prof. Gianluigi
Folino for the continuous support of my Ph.D study, leading my research
with patience, motivation, and knowledge.

Besides my advisor, I would like to thank Luigi Pontieri and Massimo
Guarascio, two talented and learned researchers at ICAR CNR, who helped
my PhD work with their experience, thus creating with me and my advisor
a small enterprising research team.

I would like to thank the ICAR CNR and the University of Calabria for
supporting me in my research activities.

4

Abstract

The abundance of available unstructured or raw text requires the automatic
extraction of information for di↵erent tasks. One of the most relevant, Text
Classification, extracts this information by assigning informative labels to
raw texts from a pre-defined set.

Deep Learning (DL) o↵ers challenging solutions to the automatic text
classification problem. Despite the great potentialities of DL-based text
classifiers, current solutions are exposed to a number of challenging issues
that frequently occur in scenarios where text categorization is used in real-
life applications. First of all, a large number of labelled data are usually
necessary to train a deep model adequately, while labelling texts is time-
consuming, expensive, and very often requires specific knowledge. Moreover,
configuring the structure and hyper-parameters of a Deep Neural Network
(DNN) architecture is a di�cult task, which entails long and careful design
and tuning activities to make the DNN perform well. Typical scenarios are
characterized by the fact that classes are often imbalanced. These issues en-
tail a high risk of eventually obtaining a DNN-based classifier that overfits
the training data and relies on non-general, biased and unreliable classifi-
cation patterns. On the other hand, the black-box nature of a DNN model
does not allow for easy reasoning on which features of a data instance drove
the model to its classification decision.

The work in this thesis, starting from the general problem of text classifica-
tion, focuses on some challenging aspects associated with using an ensemble
of deep learning methods to classify raw texts.

More in detail, this work focuses on the analysis, exploration, study and
test of algorithms and learning models to be employed in the proposal of
novel techniques of Ensemble Deep Learning (EDL) aimed at performing
classification and explanation tasks and on the research of semi-supervised
strategies based on pseudo-labelling for improving classifier prediction per-
formances in case of scarcity of labelled data.

To this aim, this thesis proposes a complete framework based on the
paradigm of ensembles of deep learning algorithms. The proposed frame-
work is designed to furnish a valid instrument for exploring, validating and
testing the proposed novel deep ensemble techniques contextualised in real-
life applications, covering the entire classification process, including pre-
processing, learning model building, explanation of the results, self-training
for scarce labelled data, human-in-the-loop validating and model refining.

Even though the methods proposed in this work could be used in any
field of interest, the problem of extracting information from the raw text
was specialised for two specific application contexts: automatic customer

5

support ticket classification and the problem of fake detection.
The first application scenario deals with the necessity of the Customer

Care Department of most companies to answer their customer requests ap-
plied as tickets through several common channels like email, short message
texts, social posts, etc. Ticket classification is necessary for automatic an-
swer generation and routing to the specific human operator.

Limiting the spread of misinformation, related to the high growth of social
media dissemination and sharing of information, has raised the issue of dis-
tinguishing true news from fakes, with the challenging problem of processing
long texts like news for fake detection. For this reason, the second scenario
deals with the critical problem of discerning fake news from the vast amount
of information circulating on the Web.

In these research areas, the ensemble paradigm has been adopted only
recently; thus, discovering the possible advantages when applying this tech-
nique is challenging.

Experimental tests conducted on real data collected by two Customer
Relationship Management (CRM) systems have proven the framework’s ef-
fectiveness in di↵erent ticket categorisation tasks and the practical value
of their associated explanations. In addition, experiments conducted on
two fake news datasets have proven the e↵ectiveness of the proposed semi-
supervised self-training ensemble-based strategy for improving performances
when a few labelled data are available.

6

Abstract (Italian version)

Il forte impulso riscontrato negli ultimi anni allo sviluppo del mondo del
web e dei social media ha portato ad un’ingente crescita della di↵usione
di documenti in formato testuale. L’ingente mole di dati non strutturati
quotidianamente prodotta ha portato alla necessità di introdurre sistemi
automatici di estrazione dell’informazione. La classificazione di testi, uno
dei principali task relativi all’elaborazione dei linguaggi naturali (Natural
Language Processing), consiste nell’assegnare a ciascun testo un’etichetta
tra un insieme predefinito di possibili classi a cui esso può appartenere.

Come ampiamente dimostrato in letteratura, le tecniche di Deep Learning
(DL) o↵rono delle soluzioni promettenti al problema della classificazione dei
testi. Nonostante le elevate potenzialità dei classificatori basati su Deep Neu-
ral Network (DNN), tuttavia, le soluzioni attualmente utilizzate in contesti
applicativi reali presentano una serie di problematiche che o↵rono interes-
santi spunti per introdurre motivi di innovazione e ricerca. Un aspetto che
contraddistingue il processo di apprendimento di questo tipo di modelli è la
necessità di disporre di una grande quantità di dati etichettati. Purtroppo,
etichettare i dati è un’operazione costosa sia in termini di tempo sia a liv-
ello economico, e in molti contesti, richiede specifiche competenze. Inoltre,
per ottenere prestazioni elevate, le architetture dei modelli di DL richiedono
specifiche abilità e competenze per essere ben strutturate e configurate a par-
tire dagli hyper parameter. Spesso, nelle applicazioni reali, i dati risultano
sbilanciati relativamente alla loro suddivisione nelle corrispondenti classi
di appartenenza, complicando ulteriormente il processo di apprendimento.
Tutti questi aspetti possono portare a problemi di overfitting relativamente
ai dati usati per l’addestramento, problemi di generalizzazione, di bias e a
pattern di classificazione non a�dabili. Inoltre, la natura di tipo blak-box
dei modelli DNN rende di�cile la comprensione dei meccanismi interni alla
classificazione, e l’identificazione delle feature che maggiormente contribuis-
cono al processo decisionale.

Il lavoro di tesi, partendo dal problema generale della classificazione di
testi, propone delle tecniche innovative basate su Ensemble di Deep Learn-
ing (EDL) per la realizzazione di modelli di classificazione altamente per-
formanti, capaci di fornire una explanation dei risultati decisionali, e adatti
a supportare il training anche in presenza di una quantità ridotta di dati
etichettati grazie alla possibilità di utilizzare strategie di apprendimento
semi-supervisionato basato sulla generazione di pseudo-label. A tale scopo,
questo lavoro di tesi propone un framework completo rivolto a fornire un
valido strumento per l’esplorazione, validazione e test dei modelli EDL pro-
posti, a supporto dell’intero processo di classificazione, a partire dal pre-

7

processing, la costruzione del modello di apprendimento, l’explanation dei
risultati, il self-training in presenza di pochi dati etichettati, e un a�na-
mento del modello tramite un feedback attuato da operatore umano di tipo
human-in-the-loop.

Sebbene le tecniche, i metodi ed i modelli proposti abbiano una valenza
generale, il problema dell’estrazione di informazioni da testi è stato contestu-
alizzato relativamente a due campi applicativi: la classificazione automatica
di ticket a supporto del customer care, e la rilevazione di fake news, come
specifici case study per la classificazione di testi brevi e lunghi, rispettiva-
mente. Il primo scenario applicativo riguarda la necessità riscontrata da
numerose aziende di fornire un supporto rapido, e�ciente ed e�cace alle
richieste sollevate dai propri clienti, con l’obiettivo di minimizzare i costi
dell’utilizzo di operatori umani nel servizio clienti. Il secondo scenario ap-
plicativo riguarda la ormai impellente necessità di fronteggiare la minaccia di
di↵usione di mis-information e dis-information diventata ormai sempre più
pericolosa per la facilità con cui le informazioni circolano sul web e tramite
social media. In questi contesti, il paradigma di apprendimento basato su
ensemble è stato adottato solo di recente, lasciando cos̀ı spazio alla possi-
bilità di introdurre soluzioni di ricerca innovative.

La sperimentazione condotta su dati provenienti da due sistemi di Cus-
tomer Relationship Management (CRM) e↵ettivamente operanti nel settore
del ticket management ha permesso di dimostrare la validità e le prestazioni
del framework proposto insieme all’e�cacia ottenuta dall’explanation fornita
ed integrata nello schema di human-in-the-loop. Inoltre, la sperimentazione
condotta su due dataset provenienti da archivi contenenti notizie vere e
fake estratte dal web, ha dimostrato l’e�cacia delle proposte di strategie
di apprendimento semi-supervisionato dei modelli EDL con tecniche di self-
training basate su ensemble nella capacità di migliorare significativamente
le prestazioni del task di classificazione, anche quando la scarsa disponi-
bilità di dati etichettati risulterebbe particolarmente inficiante il corretto
addestramento secondo una strategia di tipo super-visionata.

8

Contents

1 Introduction 13
1.1 Thesis Overview . 18
1.2 Publications . 19

2 Background 20
2.1 Text Classification . 21

2.1.1 Text Pre-processing 21
2.1.2 Feature Extraction and Selection 22
2.1.3 DNN techniques for Text classification 24

2.2 Ensemble Learning . 34
2.3 Ticket Classification . 38
2.4 Fake detection . 42
2.5 Explanation Techniques . 46

3 Related Works 52
3.1 Text classification in Ticket Management Systems 52

3.1.1 ML models for TMS 52
3.1.2 DNN models for TMS 55

3.2 Fake Detection . 57

4 A Deep Ensemble Framework for Text Classification 60
4.1 The Software Architecture of the Framework 60
4.2 The Ensemble Strategies . 63
4.3 The Explanation Technique 66

4.3.1 LIME-based Classification Explanations 66
4.3.2 The Neighbor-based Word Clouds in the Latent-Space 67

4.4 The Pseudo Labelling Strategy 70

5 Case studies: Ticket Classification and Fake Detection 72
5.1 The Ensemble-based System for Ticket Classification 72

5.1.1 The Software architecture 72
5.1.2 Exploiting Novel E�cient Deep Ensemble Classifica-

tion Models for Ticket Classification 73
5.1.3 Supporting ticket classifiers with a novel Core Human-

In-The-Loop scheme 76
5.1.4 Introducing an Explanation-based Analysis for better

interpreting classification errors 78

9

5.1.5 The proposed explanation workflow with a neighbour-
based artifacts representation 79

5.1.6 Complexity analysis of the Approach 80
5.2 The Ensemble-based self-trained Fake Detection Classifier . . 84

5.2.1 The ensemble strategy for e↵ective training with few
labelled data . 85

6 Experimental results 91
6.1 Automatic Ticket Classification Experiments 91

6.1.1 Datasets: description and statistics 91
6.1.2 Implementation, configuration, and test procedure . . 95
6.1.3 E↵ect of the imbalance-aware loss function 96
6.1.4 Comparison of the proposed approach with the baselines 97
6.1.5 Comparison of our approach with state-of-the-art al-

gorithms . 98
6.1.6 Analysis of statistical significance 100
6.1.7 Explanation results . 101

6.2 Fake Detection Experiments 105
6.2.1 Datasets and Parameters 105
6.2.2 Experimental validation of the pseudo-labelled based

self-training proposed model 107

7 Conclusions and future works 114

List of Tables

1 ML and DL-based approaches to ticket classification and in-
telligent ticket management. 53

2 Main features of the Phone and Endava dataset. 92
3 Class statistics computed on the Phone dataset (MSS = Mo-

bile Special, MOS = Mobile Ordinary, LOS = Landline Or-
dinary, LSS = Landline Special Support) and the Endava
dataset (class: Urgency). 93

4 Comparing the proposed deep ensemble learning algorithms
with and without the imbalance-aware loss function for the
Phone dataset (the values in bold are significantly better than
the others). 97

10

5 Comparing the proposed deep ensemble learning algorithms
with and without the imbalance-aware loss function for the
Endava dataset (the values in bold are significantly better
than the others). 97

6 Comparing the proposed deep ensemble learning methods
with the four deep learning baselines on the Phone dataset
(the values in bold are significantly better than the others). . 98

7 Comparing the proposed deep ensemble learning methods
with the four deep learning baselines on dataset Endava (the
values in bold are significantly better than the others). 98

8 Comparing the proposed deep ensemble learning methods
with state-of-the-art Machine Learning algorithms, on dataset
Phone (the values in bold are significantly better than the
others). 99

9 Comparing the proposed deep ensemble learning methods
with state-of-the-art Machine Learning algorithms, on dataset
Endava (the values in bold are significantly better than the
others). 99

10 Main features of the PolitiFact and GossipCop dataset. . . . 106
11 Comparison of the pseudo-labelling strategies for the Poli-

tiFact dataset: Accuracy, AUC and F-measure for di↵erent
percentages of the training set (2.5%, 5%, 10% and 20%). . . 109

12 Comparison of the pseudo-labelling strategies for the Gos-
sipCop dataset: Accuracy, AUC and F-measure for di↵erent
percentages of the training set (2.5 %, 5%, 10% and 20%). . . 110

13 Delta increment of the pseudo-labelling strategies in compar-
ison with the baseline for the PolitiFact dataset: Accuracy,
AUC and F-measure for di↵erent percentages of the training
set (2.5%, 5%, 10% and 20%). 110

14 Delta increment of the pseudo-labelling strategies in compar-
ison with the baseline for the pseudo-labelling strategies for
the GossipCop dataset: Accuracy, AUC and F-measure for
di↵erent percentages of the training set (2.5%, 5%, 10% and
20%). 111

15 Delta increment of the ensemble pseudo-labelling strategies in
comparison with the pseudo-labelling solution without ensem-
ble for the PolitiFact dataset: Accuracy, AUC and F-measure
for di↵erent percentages of the training set (2.5%, 5%, 10%
and 20%). 111

11

16 Delta increment of the ensemble pseudo-labelling strategies
in comparison with the pseudo-labelling solution without en-
semble for the GossipCop dataset: Accuracy, AUC and F-
measure for di↵erent percentages of the training set (2.5%,
5%, 10% and 20%). 112

List of Figures

1 RNN loop scheme. 26
2 LSTM memory cell. 26
3 Computing the hidden state in a GRU model. 27
4 An example of attention applied to the terms of a sentence. 30
5 The encoder – decoder architecture. 30
6 The transformer architecture proposed in [65]. 32
7 The Scaled Dot-Product Attention module. 33
8 BERT Learning scheme. 33
9 Generic ensemble classifier scheme. 37
10 Stacking ensemble. 38
11 MOE ensemble. 38
12 The word cloud of this PhD thesis. 51
13 The proposed Framework: Conceptual Architecture. 62
14 Stacking ensemble architecture. 64
15 MOE ensemble architecture. 65
16 The pseudo labelling self-training process. 71
17 The ensemble of pseudo labelling self-trained models. 71
18 Intelligent TMS Framework: Conceptual Architecture. . . . 74
19 Stacking ensemble architecture. 75
20 MOE ensemble architecture. 76
21 Proposed human-in-the-loop scheme for intelligent ticket clas-

sification . 77
22 Error analysis use case: exploring explanations for misclassi-

fied tickets. 78
23 Detailed flow of the explanation process. 80
24 The Fake Detection architecture. 86
25 Ticket length distribution w.r.t. the four classes for the Phone

dataset. 94
26 Ticket length distribution w.r.t. the four classes for the En-

dava Dataset. 94

12

27 Top 25 most frequent words in dataset Phone (entities are
reported in angle brackets). 95

28 Top 25 most frequent words in dataset Endava (entities are
reported in angle brackets). 96

29 Critical di↵erence (CD) diagram for AUC scores (Friedman
test + Nemenyi test, ↵ = 0.05). All (and only) the pairs of
methods resulting not significantly di↵erent according to the
test (i.e., receiving a p-value � 0.05) are connected through
a horizontal line. 101

30 Critical di↵erence (CD) diagram for G-mean scores (Fried-
man test + Nemenyi test, ↵ = 0.05). All (and only) the
pairs of methods resulting not significantly di↵erent accord-
ing to the test (i.e., receiving a p-value � 0.05) are connected
through a horizontal line. 101

31 Critical di↵erence (CD) diagram for F-measure scores (Fried-
man test + Nemenyi test, ↵ = 0.05). All (and only) the
pairs of methods resulting not significantly di↵erent accord-
ing to the test (i.e., receiving a p-value � 0.05) are connected
through a horizontal line. 102

32 LIME-based explanation obtained for test ticket x1. 102
33 LIME-based explanation obtained for test ticket x2. 103
34 Word clouds summarizing the neighbour sets N 100

M (x2) and
N 100

M |2(x2) returned by the framework for test ticket x2 —
the latter word cloud summarizes the example tickets that
are both in the neighborhood of x2 and have the class label
(namely, class=2, i.e. Medium Urgency) as the one predicted
for x2. 104

35 Delta increment of the di↵erent strategies in comparison with
the baseline solution for the PolitiFact dataset: Accuracy,
AUC and F-measure for di↵erent percentages of the training
set (1.25%, 2.5%, 5%, 10%, and 20%) 112

36 Delta increment of the di↵erent strategies in comparison with
the baseline solution for the Gossip dataset: Accuracy, AUC
and F-measure for di↵erent percentages of the training set
(1.25%, 2.5%, 5%, 7.5%, 10%, 15%, 20% and 25%) 113

13

1 Introduction

Recently, the volume of digital text documents has grown considerably. Most
of the text is in the form of unstructured raw data containing helpful infor-
mation.

Text Classification is the most relevant and essential task in natural lan-
guage processing, where labels represent and summarise an encoding of the
information details in the text. Applying labels can be useful for several
tasks depending on the final application.

Deep Learning (DL) o↵ers challenging solutions to the automatic ticket
classification problem. Despite the great potentialities of DL-based text
classifiers, current solutions are exposed to several challenging issues that
frequently occur in scenarios where text categorisation is used in real-life
applications. First of all, a large number of labelled data are usually nec-
essary to train a deep model adequately (the deeper and more complex the
model, the more example data are needed), as most of the known training
algorithms su↵er from limited generalisation ability, while labelling texts is
time-consuming, expensive, and very often requires specific knowledge.

Moreover, configuring the structure and hyper-parameters of a Deep Neu-
ral Network (DNN) architecture is a di�cult task, which entails long and
careful design and tuning activities to make the DNN perform well. Typical
scenarios are characterised by the fact that classes are often imbalanced.
These issues entail a high risk of obtaining a DNN-based classifier that over-
fits the training data and relies on non-general, biased and unreliable clas-
sification patterns hinging on spurious (incidental) features. On the other
hand, the black-box nature of a DNN model does not allow for easy rea-
soning on which data instance features drove the model to its classification
decision.

As case studies, two critical problems of automatic short and long text
classification have been analysed: the automatic customer support ticket
classification and the automatic fake detection, respectively.

The automatic customer support ticket classification (where the class to
be predicted can correspond to intrinsic hidden properties of the tickets,
like the urgency, impact, or to predefined ticket routing and resource al-
location schemes) and assignment for customer support has become a hot
field of application for both industrial and academic research. In fact, more
and more companies are investing in extending their TMSs (Ticket Manage-
ment Systems) with intelligent automatic tools to increase the e�ciency and
quality of ticket management processes while reducing the high costs of cus-
tomer support made by human operators. A customer request opens tickets

14

through di↵erent channels (phone calls, emails, web forms, live chats, and
recently also social media like Facebook and Twitter). In literature, many
solutions have been proposed to improve the capacity of customer support
systems in solving ticket issues in terms of accuracy and e�ciency, exploit-
ing traditional (shallow) ML models and Deep Neural Networks. The ML
solutions [3, 26, 46, 49, 52, 53, 59] for the ticket classification have explored
the entire panorama of the classic algorithms like Logistic Regression, SVM
(Support Vector Machines), Naıve Bayesian, SGD, KNN, decision trees and
Random Forests, together with di↵erent feature extraction techniques for
representing texts like Term Frequency (TF) and TF-IDF (Term Frequency
- Inverse Document Frequency). Recently, DL techniques were shown to be
a powerful and convenient solution for modelling accurate ticket classifiers as
in [45, 60, 73] where DNN architectures like an Encoder-Combiner-Decoder
and CNNs (Convolutional Neural Networks) were exploited for implement-
ing e�cient ticket classification systems. It is essential to highlight that only
a few existing approaches in the field took advantage of an ensemble learn-
ing strategy [46, 49, 59] by employing standard global combination schemes
like majority voting and averaging. At the same time, none of them tried to
exploit DL methods to learn the base classifiers and/or an instance-adaptive
combiner like in the proposed research work. On the other hand, none of
the DL-based approaches proposed in the field tried to complement the class
prediction task with explanatory artefacts, despite the black box nature of
deep classifiers, to help customer support with advanced means for better
managing and verifying the ticket processing. While ensemble approaches
have been shown e↵ective in improving shallow ticket classifiers (thanks to
the higher expressiveness and generalisation power of ensemble models), the
adoption of DNN ensembles is not really di↵used, especially in the field of
TMSs.

The second text classification case study analysed in this thesis regards the
fast and widespread propagation of fake news that is becoming an emergency
for properly disclosing information. Information accessibility has grown ex-
ponentially due to generalised online and social media use. A considerable
amount of news is generated and manipulated daily from the traditional
main press, online social systems, and personal broadcasting systems. Dis-
tinguishing the truth and veracity of the information is a fundamental task
for limiting the spread of misinformation and all the possible adverse e↵ects
on society. Fakes can be very similar to real news; thus, fake detection is
a critical and challenging problem. The conventional solution consisting of
asking trusted professionals and specialists to check claims against evidence
based on previously demonstrated or proven evident facts is time-consuming

15

and expensive; thus, unfeasible for the vast quantity of news on the web.
The automatic fake news detection of text content is a critical and chal-
lenging NLP problem. In general, there are three main types of fake news
detection: knowledge-based, content-based and context-based. Fake news
detection based on knowledge is also known as fact-checking because it uses
the approach of checking the authenticity of news by comparing it with given
documents or web resources, focusing on the semantic web, linked open data
and/or information retrieval. Content-based detection focuses on text’s con-
tent and writing style and uses two main approaches: traditional machine
learning and deep learning methods. Context-based detection approaches
consider not only the content of information but also many other critical
factors like the source, the author, the website, the topic, the propagation
path and the speed of dissemination.

The content-based text fake detection problem is considered in the pro-
posed research. In order to achieve high-quality performances, the main re-
quirement is to have su�cient reliable labelled data, which is time-consuming,
expensive and requires specific topic knowledge. Therefore, even if semi-
supervised and unsupervised methods are more appropriate in this context,
most existing research still uses supervised solutions. Among the semi-
supervised solutions present in literature, [55] proposes a method for de-
tecting deceptive and fake opinion reviews, which is primarily based on
co-training and expectation maximisation; [24] proposes a framework based
on three main modules, the tensor-based embeddings of the article text, the
graph representation based on the K-Nearest Neighbor method and finally
the belief propagation using the Fast Belief Propagation (FaBP) Network;
while [42] proposes a Convolutional Neural Network semi-supervised frame-
work built on the concept of the temporal ensemble. Analysing the current
solutions present in literature for fake detection, the following main limita-
tions can be highlighted: (i) most of the state-of-the-art research is focused
on solving the problem with supervised techniques, which requires a consid-
erable amount of labelled data; (ii) human annotating high volumes of data is
too much time-consuming and expensive while requiring specific knowledge;
(iii) extensive data labelling, crowd-sourcing or human expert annotations
creates lots of annotation inconsistencies.

My research activity proposes a comprehensive classification framework
for the entire processing flow of text classification, which relies on training
a novel kind of ensemble of deep classifiers and on deriving di↵erent easy-
to-interpret types of artefacts for explaining and debugging the predictions
of the ensemble providing AI-based interpretation methods. The proposed
framework is based on an ensemble deep neural network classifier leverag-

16

ing di↵erent types of DNN architectures (based on LSTM, GRU and Trans-
former architectures) as base classifiers of the ensemble model to increase the
diversity, expressiveness and robustness to over-fitting and class-imbalance
risks. The framework introduces two novel ensemble combination strategies
based on stacking and mixture-of-expert architectures, both leveraging an
ad hoc sub-net for extracting dense (latent space) text representations used
to learn instance-adaptive ways of fusing the predictions of the base mod-
els. An explanation module is integrated with the framework to support
a continuous, human-in-the-loop scheme for discovering, using, validating
and improving the EDL model. Two kinds of summary explanations are
provided. The first, based on the post hoc explanation LIME algorithm
[54], furnishes the subset of the terms that influenced most of the classifi-
cation results. The latter provides a word-cloud representation of the most
similar text instances, together with their corresponding label, through the
introduction of an “explanation” index structure built for each ensemble
model for keeping a representative number of example (class-labelled) text
instances in a form enabling fast similarity searches over the latent space.

The proposed framework also introduces a novel technique that exploits
the idea of pseudo-labelling in the context of semi-supervised learning [4,
10, 29, 34] for improving performances when training a deep learning model
with a small training set of labelled data. The proposed pseudo-labelling
strategy uses predictions as pseudo-labels of the unlabelled tuples by repeat-
ing a process of self-training cycles, where training is obtained by exploiting
a combination of the labelled samples and any previously pseudo-labelled
samples. The used learning model is based on BERT (Bidirectional Encoder
Representations from Transformers) followed by a Dropout layer for regu-
larisation and a final dense layer with a sigmoid activation layer. Moreover,
also the self-training process exploits ensemble strategies to improve the fi-
nal classifier performances by considering the several models obtained at the
di↵erent training iterations as base learners.

Several tests assessed the e↵ectiveness and usefulness of the proposed
framework. In particular, two real-life ticket datasets were used for the ticket
classification application, Phone and Endava. An Italian phone company
furnishes the Phone dataset; the text content of these tickets comes from
two channels: SMS messages and Facebook chats. The Endava dataset is a
publicly available dataset containing about 50K tickets submitted via email
by the customers of the Endava company to the helpdesk.

Tests for the fake detection application have been made by using the fake
news data repository named FakeNewsNet [58], which contains two com-
prehensive datasets of political and gossip news obtained by fact-checking

17

websites as PolitiFact (https://www.politifact.com/) and GossipCop
(https://www.gossipcop.com/), respectively.

18

1.1 Thesis Overview

The thesis is organized as described in the following.
Chapter 2 introduces an accurate background covering the main topics

treated in the thesis, like the problem of text classification in general, state
of the art on ensemble learning, the ticket classification problem, and some
motivations about the explanation necessity in deep learning classification.

Chapter 3 shows the most correlated works in scientific literature address-
ing the text classification in the two real application contexts: the ticket
classification for customer support and fake detection.

Chapter 4 presents the architecture of the proposed framework with a
detailed description of the main modules, including the proposed ensemble
strategies for combining the base classifiers, the explanation process and the
self-training strategy based on pseudo labelling.

Chapter 5 presents the two implemented architectures of the proposed
framework specialized for the two specific text classification real case studies:
the TMS test classifier architecture and the Fake detection architecture.

Chapter 6 discusses the experimental results obtained by testing the frame-
work by using real datasets, thus proving the e↵ectiveness of the proposed
approaches.

Finally, Chapter 7 reviews the contributions of this work and outlines
future research to be conducted.

19

1.2 Publications

The relevant publications inspired by the proposed research are listed below:

• P. Zicari, G. Folino, M. Guarascio, L. Pontieri, “Discovering accurate
deep learning based predictive models for automatic customer support
ticket classification”, in: Proc. of 36th Annual ACM Symposium on
Applied Computing, 2021, p. 1098-1101.

• Paolo Zicari, Gianluigi Folino, Massimo Guarascio, Luigi Pontieri,
“Combining deep ensemble learning and explanation for intelligent
ticket Management”, Expert Systems With Applications, Volume 206,
2022, 117815, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2022.117815.

• P. Zicari, G. Folino, M. Guarascio, L. Pontieri, “Learning deep fake-
news detectors from scarcely-labelled news corpora”, in Proc. of 25th
International Conference on Enterprise Information Systems (ICEIS
2023), Prague, Czech Republic, 24 – 26 April 2023.

20

2 Background

This section is aimed to furnish a useful background of the main topics
covered in the thesis.

More specifically, the complete process flow of the text classification is an-
alyzed in detail. A specific focus is dedicated to introducing and explaining
the deep learning techniques employed in the thesis. The Ensemble Learn-
ing subsection furnishes an exploration of the main ensemble techniques.
Moreover, a background on the importance of the ticket classification task
in the customer support application field is also furnished. Finally, the fun-
damental role of the explanation in the classification systems based on the
use of deep neural networks is here argued, highlighting the main properties
of the current explanation techniques proposed in the research studies of the
last few years.

21

2.1 Text Classification

Text classification is the most important and essential task in natural lan-
guage processing [35], used as a basic task in more complex applications,
such as sentiment analysis, topic labelling, information retrieval, question
answering and dialogue act classification. Text classification consists in ex-
tracting features from raw text data and predicting the categories of text
data based on such features.

In recent years, the exponential growth of digital documents available
through the web and social networks has pushed towards a rapid progress in
the development of automatic text classification techniques. In fact, the idea
of manually processing and classifying the huge amount of text in the actual
era of the information explosion is absolutely unfeasible due to time, energy
and cost constraints. Moreover, the automation of text classification can
benefit from more reliability and, above all, less subjectivity than human
e↵orts.

Input data for natural language tasks like text classification consist of raw,
unstructured text, that, unlike numerical, image, or signal data, requires
specific NLP techniques to be processed carefully, with still open challeng-
ing problems related to contextual words understanding, homonyms disam-
biguation, synonyms, irony and sarcasm discerning, ambiguity, the presence
of syntax and semantic errors, colloquialisms and slang, domain-specific lan-
guages.

In the following sub-sections, the main conventional text classification
tasks consisting of preprocessing, feature extraction, feature selection, and
classification stages are analyzed.

2.1.1 Text Pre-processing

Text pre-processing is a fundamental data preparation step that requires
special attention, especially in informal contexts when the text is in the
form of chat messages where spelling and grammatical rules are often ne-
glected, sentences are often very short, and punctuation is confusing. The
pre-processing performs a set of operations including the cleaning of text
from errors (misspelling), as well as removing space and stop-words. More-
over, the following preprocessing tasks are also performed to convert texts
into sequences of tokens:

• Tokenization: As a form of text segmentation, the text is split into
words, phrases, or other meaningful parts, namely tokens. Typically,

22

the segmentation is carried out considering only alphabetic or alphanu-
meric characters that are delimited by non-alphanumeric characters
(e.g., punctuation and white space).

• Lowercasing: Upper case letters in each word are converted into
lower case ones, in order to normalize the representation of a concept,
while also reducing sparsity and vocabulary size.

• Lemmatizing: Tokens are replaced with the corresponding lemma,
so that di↵erent forms of the same lemma are all uniformed to the
same root form, representing a single distinguished vocabulary entry.

• Stemming: As a simpler alternative to lemmatization, each token
can be replaced with the corresponding stem, representing a chopped-
o↵ form of the former so that words with the same stem have the same
representation even if this is not the dictionary form.

• Stopwords removal: Commonly used words, usually known as stop-
words, can be purged o↵ since they are likely to convey a low amount
of information; this also allows for reducing the number of features
and vocabulary size.

• Named entity recognition: Words that can be classified as named
entities like places, organisations, people, time expressions, quantities,
monetary values, etc., are identified and eventually replaced with an
entity token in order to generalize specific instances.

• Noise removal: Characters, digits and pieces of text that can inter-
fere with the analysis of the text are removed.

• Anonymization: Privacy protection is obtained by removing per-
sonally identifiable information so that anonymized data cannot be
associated with any individual.

2.1.2 Feature Extraction and Selection

Textual data, unlike other types of data such as images or temporal series,
does not have an intrinsic numerical representation, but, needs to be pro-
jected into an appropriate numerical feature space before being classified.
Thus, after preprocessing, the text is transformed into a list of separated
and standardized tokens. All the tokens of the entire corpus, representing
preprocessed terms, are mapped to an index-based vocabulary furnishing a
numerical internal representation. Tokens represented by the corresponding

23

index in the vocabulary of the corpus are then transformed into a tensorial
form suitable for being processed by the classifiers. Many algorithms for
representing texts in the feature space have been proposed in the literature;
this section provides an overview of the most popular and e↵ective ones.

• Bag-Of-Words (BOW): Also called Term Frequency (TF), it is one
of the most simple techniques of text extraction, where a text is con-
sidered as an unordered collection of terms (tokens), with the clear
disadvantage of ignoring sentence structure and semantic relationships
among the sentence elements. Each token is represented as a one-hot-
encoded vector with the same size as the vocabulary. Each element
of the vector is the number of times that the term occurs within a
text. Another disadvantage of this approach is the direct correlation
between the cardinal size of the vocabulary with the size of the term
vectors, which can be problematic to manage when the vocabulary
grows it happens in the case of big corpora of texts.

• Term Frequency-Inverse Document Frequency (TF-IDF): it
uses the word frequency and inverses the document frequency to model
the text. TF is the frequency of a term in a specific text, while IDF
is the reciprocal of the proportion of the texts containing this term to
the total number of texts in the corpus. In this way, the relevance of a
term in a text increases proportionally with the number of times (TF)
it appears in the text itself, but the relevance decreases when the term
occurs in many texts (IDF) lessening the e↵ect of common terms.

• N-Gram: it assigns probabilities to sequences of words, for the lan-
guage modelling task of predicting the likelihood of a string given a
sequence of preceding or surrounding context words. By adopting the
Markov assumption, the probability of an upcoming word in a sen-
tence is considered to be only depending on the previous N words.
The BOW model can be seen as an N-Gram model with N = 1.

• Word Embedding: In order to overcome the limitations of the pre-
vious language representation models, able to take into account only
the syntactic representation of a term and in some cases the syntactic
relationship of the near terms in a sentence, Word Embedding fur-
nishes a tensor representation of a term, able to capture its semantic
meaning. An embedding is an n-dimensional vector representation of
a term which encodes its semantic meaning. The mapping operation
between each term and its corresponding embedding representation

24

is obtained by a learning process usually based on neural networks
trained to catch the meaning of the term from its surrounding words
in a sentence. The distance in the embedding n-dimensional space
between two terms is representative of their semantic similarity.

– Word2Vec: it employs local context information to obtain fixed-
length real value vectors specified as the word vectors for any
word in the corpus. This approach utilises shallow neural net-
works with two architectural variants: the Continuous-bag-of-
words (CBOW) [44] and the continuous Skip-gram [43]. CBOW
learns word representations by trying to predict a word based on
its surrounding context words, the bag-of-words reference in its
denomination is referred to the fact that the order of the context
elements is not actually taken into account. The continuous skip-
gram model, instead, works in the opposite way, attempting to
predict the neighbours (the context), given a word.

– GloVe: Global Vectors for Word Representations (GloVe) [48]
is an embedding technique conceptually similar to the Word2Vec
but di↵ering from it mainly for being a count-based model instead
of a predictive model like the standard Word2Vec. While embed-
ding predictive models learning, like Word2Vec, tries to minimise
the loss between target and prediction, given the context words
and the vector representations. As a count-based model, it es-
sentially learns semantic similarity between words by using the
underlying statistics in the corpus, such as words co-occurrence.
The locality limitation of considering only the local information
(the context of each word) is overcome by GloVe thanks to the
fact that embeddings are trained by considering also global co-
occurrence statistics. GloVe model uses dimensionality reduction
in order to reduce the large dimensions of the word co-occurrence
matrix that it uses in its calculations.

2.1.3 DNN techniques for Text classification

In the last few decades, there has been a great interest in the text classifi-
cation area due to the unprecedented success of deep learning techniques.

This section o↵ers a background overview of the Deep Neural Networks
employed in the experiments conducted for testing the proposed framework.

25

The following reported DNNs architectures that currently represent the
state of the art in the text classification task are LSTM, GRU, CNN, Trans-
formers and BERT.

LSTM. The Long Short-Term Memory (LSTM) was proposed in [27] as
an improved version of conventional Recurrent Neural Networks (RNNs).
RNNs are neural networks which use sequential data or time series data.
They are characterized by a memory unit which is a neuron with a re-
current self-connection included in it as reported in the scheme of Figure
1. The loop inside the network allows for information to persist. Infor-
mation from prior inputs influences the current input and output. While
traditional deep neural networks assume that inputs and outputs are inde-
pendent of each other, the output of recurrent neural networks depends on
the prior elements within the sequence. RNNs present two problems known
as exploding gradients and vanishing gradients. These issues are defined by
the size of the gradient, which is the slope of the loss function along the
error curve. When the gradient becomes too small such that the weight pa-
rameters during the learning phase of the training become insignificant (i.e.
very close to 0), the algorithm is no longer learning. Exploding gradients
occur when the gradient is too large, creating an unstable model; in this
case, the model weights will grow too much. RNN su↵ers from the problem
of long-term dependencies, that is, if the previous state that is influencing
the current prediction is not in the recent past, the RNN model may not
be able to accurately predict the current state. LSTM was introduced to
solve the vanishing gradient problem, addressing the problem of long-term
dependencies in order to remember information for long periods of time. To
this aim, LSTMs have “cells” in the hidden layers of the neural network
as shown in Figure 2, which have three gates: an input gate, an output
gate, and a forget gate. These gates control the flow of information which
is needed to predict the output in the network. These gates are composed
of a sigmoid neural net layer (�) and a pointwise multiplication operation
(⇥). The sigmoid layer outputs numbers in the range [0, 1], describing how
much of each component should be let through.

GRU. The Gated Recurrent Unit (GRU) was proposed in [12]. GRU has
gating units that modulate the flow of information inside like the LSTM
unit, but without having separate memory cells. In GRUs, each recurrent
unit adaptively captures dependencies of di↵erent time scales. GRUs are
improved versions of standard recurrent neural networks that use two special

26

Figure 1: RNN loop scheme.

Figure 2: LSTM memory cell.

27

Figure 3: Computing the hidden state in a GRU model.

gates called the update gate and reset gate, instead of the three gates used
in the LSTM. These two gates have the function to decide what information
should be passed to the output, and they are trained to keep information
from the past or remove information which is irrelevant to the prediction,
thus solving the vanishing gradient problem of a standard RNN (Recurrent
Neural Network). The reset gate Rt controls how much of the previous state
it is desirable to remember, the update gate Zt would control how much of
the new state is just a copy of the old state. These gates implement a sigmoid
activation, forcing their values to lie in the interval (0, 1). With respect to
the LSTM, GRU combines the forget and input gates into a single update
gate, moreover, it merges the cell state and the hidden state, resulting in a
simpler model. Figure 3 illustrates a GRU, with the current time step Xt

and the hidden state of the previous time step Ht�1 as input, and the new
hidden state Ht as the output; the outputs of two gates are given by two
fully connected (FC) layers with a sigmoid activation function.

Convolutional Neural Network (CNN). Convolution is a concept widely
employed in image processing because it is able to catch the local features
of the pixel representation of the images, and then applied hierarchically to
find relationships at more distances. The operation of convolution is ap-
plied between a certain number of inputs and a convolution mask of learned
weights, able to highlight dependencies among them. Convolution is used
for extracting local information while learning dependencies among distant

28

positions becomes more di�cult because it is necessary to climb the pyra-
mid structure with a depth depending on the distance. CNN-based models
are trained to recognize patterns in text. CNN-based models, usually, are
made of several one-dimensional (1�D) convolution layers followed by one-
dimensional max-pooling operations to extract a feature vector from the
input word embeddings, ending with a classification layer for classification
purposes. Input to CNNs is a word matrix where each row represents an
embedding word vector. One-dimensional convolution operations on n em-
bedding word vectors are able to extract n-gram based features. By using
di↵erent sizes and convolution mask filters at di↵erent network layers, it is
possible to create several architectures with di↵erent performances. More-
over, repeated stacked convolutional layers with max-pooling are able to
capture the short and long-range relationships between the terms. Several
CNNs models have been proposed in the literature for text classification,
starting from the first simple implementation in [32], the Dynamic CNN in
[31], arriving to the most recent architectures like TextConvoNet in [61] that
uses a 2-dimensional convolutional filter to extract the intra-sentence and
inter-sentence n-gram features from text data. The ability to find relations
among terms in di↵erent position of sentences and texts, in general, makes
CNNs favourable and prone to be used for sequence-to-sequence learning as
in [23] and in the 2-D convolutional network proposed in [18].

Transformers and the attention mechanism. Transformers are a novel
approach based on the concept of self-attention that are able to model se-
quences without using recurrence and convolution. Sequence modelling is
the capability to take into account as much as possible previous input, pos-
sibly with the right consideration with respect to some kind of relationship
among past and present inter-dependency, in order to predict the output
sequence. Being a sequence, also the output prediction/generation has to
take into account the previously predicted or generated outputs. The for-
mulated problem requires a context-aware solution able to disambiguate
situations that could not be solved otherwise. This is the case of the well-
known Winograd schema challenge where machine intelligence is required
to solve intriguing problems like the task to identify the noun referred to
by a pronoun in an ambiguous sentence where only the union of context
analysis together with some kind of knowledge of the terms meaning is able
to disambiguate the relation between the pronoun and the right noun. The
following sentences are evident examples of this kind of problem:

• “The animal didn’t cross the street because it was too tired”

29

• “The animal didn’t cross the street because it was too wide”

In the first sentence the “it” pronoun is referred to the animal while in
the second sentence, it is related to the street. Both sentences contain
two nouns: animal and street. The two adjectives, tired and wide, o↵er the
disambiguation key to making the right correlation between the pronoun and
the right noun. The fact that a street cannot be tired and the wide adjective
is never used to describe an animal gives the solution to the problem.

Attention is a simple mechanism aimed to represent a sequence taking
into account all the dependencies between all the pairs. The easiest way
to understand the attention concept is to think about a similarity matrix
where rows and columns could represent the same sequence (self-attention)
or two di↵erent sequences. The generic element Wi, j in position (i, j) of the
similarity matrix W gives information on the level of relationship between
the element in the i� th row and the element in the j � th column.

Self-attention is useful to help understand the disambiguation in anaphora
or, in general, to find the relationships among all the elements of a sentence,
in both directions, considering the elements before and after. If the attention
mechanism is applied to the sentence “The animal didn’t cross the street
because it was too tired” it would be desirable to have a matrix like the one
reported in Fig. 4, where the di↵erent grey levels represent the di↵erent levels
of relationship between the term pairs; evidencing that among it pronoun,
the animal noun and the tired adjective there is a higher dependency.

Transformers are modeled as a typical encoder-decoder architecture like
the one shown in Fig. 5, where the encoder maps an input sequence of
symbol generically represented with x = (x1, . . . , xn) to an intermediate
representation resulting in a sequence z = (z1, . . . , zk). From the inter-
mediate representation z, the decoder then generates the output sequence
(y1, . . . , ym) of symbols one element at a time.

The first proposal of an attention-based transformer in literature is by [65]
with the architecture shown in Fig. 6. The transformer encoder processes
the input sequence that flows through a fixed number of identical layers, the
specific implementation in [1] uses 6 layers, where each layer is composed of
an attention module called multi-head attention followed by a feed-forward
neural network. The output of the encoder is inputted to the decoder, the
latter replicates the layers of the encoder, just adding one more multi-head
attention used for the output of the decoder. Thus, the attention approach
in transformers is used in three di↵erent ways, a self-attention in the en-
coder finds the relationships between all pairs of the input in the processed
sequence during the encoding phase, a self-attention in the decoder finds the

30

Figure 4: An example of attention applied to the terms of a sentence.

Figure 5: The encoder – decoder architecture.

31

relationships between the current decoded output and all the previous ones
in the sequence, moreover, attention is computed between the encoder and
the decoder in order to find the relationships between each decoded element
and all the encoded input sequence.

The multi-head attention module performs in parallel several di↵erent at-
tention computations. The resulting attention computations represent the
relationships among the encoded and decoded flowing information. More-
over, all the representations are persistent during the flow because they are
concatenated together. The Positional Encoding module is introduced in
order to di↵erentiate the positions in the flow of the embedding input ele-
ments, the implemented functions are the sine and cosine.

The multi-head attention module consists of multiple Scaled Dot-Product
Attention modules shown in fig. 7 computing the dot products and softMax
of the Q, K and V matrices, where V is the matrix of the value vectors, K
is the matrix of the key vectors and Q is the matrix of the query vectors.
The strength of the transformers algorithm is based on the fact that there
is no use of recurrence while the main computational cost is a↵ected by the
attention calculus that is based just on matrix multiplications that can be
e�ciently executed in parallel by GPUs.

BERT. Bidirectional Encoder Representations from Transformers (BERT)
[14] is a transformer-based neural architecture able to process natural lan-
guage. It is trained through an algorithm including two main steps, re-
spectively named Word Masking and Next Sentence Prediction (NSP). In
the former step, a percentage of the words composing a sentence is masked,
and the model is trained to predict the missing terms by considering the
word context, i.e., the terms that precede and follow the masked one. Then,
the model is fine-tuned by considering a further task that allows for un-
derstanding the relations among the sentences. Di↵erent datasets can be
used to perform this phase e.g., SQuAD [50], NER [63] and MNLI [68]. An
overview of this learning procedure is depicted in figure 8. In particular, toki
is referred to the generic token extracted from the text, while Ei is its inter-
nal representation inside the Bert model, and Ti is its output representation
yielded by the model. Basically, given two subsequent sentences, negative
examples are created by replacing the second with a random sentence. As
regards the architecture, BERT can be figured out as a stack of transformer
encoder layers that include multiple self-attention “heads” [14].

32

Figure 6: The transformer architecture proposed in [65].

33

Figure 7: The Scaled Dot-Product Attention module.

BERT
E[CLS] E1 EN E[SEP] EM’… …E1’

C T1 TN T1 T1’ TN’

CLS Tok 1 Tok N Tok 1 Tok MSEP

NSP Mask LM Mask LM

Masked Sentence A Masked Sentence B

Unlabeled sentence A and B pair

pre-training phase

BERT
E[CLS] E1 EN E[SEP] EM’… …E1’

C T1 TN T1 T1’ TN’

CLS Tok 1 Tok N Tok 1
Tok
MSEP

Start/End Span

Question Paragraph

Question Answer pair

fine-tuning stage

MNLI

BERT
E[CLS] E1 EN E[SEP] EM’… …E1’

C T1 TN T1 T1’ TN’

CLS Tok 1 Tok N Tok 1
Tok
MSEP

Start/End Span

Question Paragraph

Question Answer pair

fine-tuning stage

NER

BERT
E[CLS] E1 EN E[SEP] EM’… …E1’

C T1 TN T1 T1’ TN’

CLS Tok 1 Tok N Tok 1 Tok MSEP

Start/End Span

Question Paragraph

Question Answer pair

fine-tuning stage

SQuAD

Figure 8: BERT Learning scheme.

34

2.2 Ensemble Learning

Ensemble learning is a machine learning field focused on improving perfor-
mances by combining multiple learners. In [15], an ensemble (or committee)
of learners is defined as a set of learners whose individual decisions are com-
bined in some way to classify new examples. The main idea behind the
concept of ensembles is to build a certain number of (heterogeneous or ho-
mogeneous) classifiers trained with subsets (proper or not, disjoint or not)
of the original training set and then combine their predictions with some
function and then furnish a common decision that takes into account all
the base classifiers in di↵erent ways. The final model is proved to have im-
proved characteristics with respect to the single base learners in terms of
better generalization performances, trying to reduce the bias and the vari-
ances among the base learners. Ensemble exploits the diversity of weak
learners to build strong leaner following the principle that diverse classifiers
make di↵erent decision errors that can be corrected by the other ones in
the combiner (for example, when voting or average is used), thus reducing
the risk of choosing the wrong classifier. In fact, a necessary and su�cient
condition for an ensemble to be more accurate than any of its individual
members is that the classifiers must be accurate (with an error rate better
than random guessing) and diverse (the errors made by the classifiers are
uncorrelated) as stated in [25]. Moreover, most of the learning algorithms
work by performing some form of local search that may get stuck in local
optima. An ensemble constructed by running the local search from many
di↵erent starting points may provide a better approximation to the true
unknown function than any of the individual classifiers.

In the last decades, the machine learning research community has been de-
veloping new approaches to generate, combine and test ensembles of models.
The di↵erent schemes vary depending on the generation of the base classi-
fiers and the ensemble combination, i.e. the same learning algorithm can be
trained on di↵erent datasets or/and di↵erent algorithms can be trained on
the same dataset. The generic scheme of an ensemble classifier is reported
in Figure 9, the Partitioner/Dispatcher block is aimed to define the strategy
for the dispatching of the subsets of the training set to the di↵erent classi-
fiers. The Combiner block can be a trainable or not trainable function of
the base classifier predictions. The ensemble with trainable combiners has
the possibility to use the input instances of the training set together with
the base classifier predictions in order to learn when each base classifier is
supposed to make the correct decision finding a direct correlation between
the input instances, the model predictions and the correct classification for

35

each base model for a more complex ensemble combination of the single base
decisions.

Bagging [8], also known as bootstrap aggregating, is one of the standard
techniques for generating ensembles based on the method of manipulating
the training dataset. In general, the techniques that run a learning algo-
rithm several times, each time with a di↵erent subset of the training set
works especially well for ”unstable” algorithms, like decision trees and neu-
ral networks, i.e. those algorithms whose output undergoes major changes
in response to minor changes in the training data. The main idea of bagging
is to generate a series of independent observations with the same size and
distribution as that of the original data. After generating the bagging sam-
ples and passing each bag of samples to the base models, the predictions of
the multiple predictors are combined in di↵erent ways. The majority vot-
ing is mostly used for classification problems while the averaging strategy is
used in regression problems for generating the ensemble output. A bagging
subset is generated by sampling with replacement from the original training
set, with several training examples appearing multiple times. Such a trans-
formed training set is called a bootstrap replicate of the original dataset, and
the technique is called bootstrap aggregation, from which the bagging term
is derived. When the training set sampling method uses disjoint subsets of
the original training set, the ensemble is called cross-validated committee.

Random Forest [7] combines the output of multiple decision trees to reach
a single ensemble result, exploiting the bagging strategy for improving the
predictions of the base classifiers consisting of decision trees. Decision trees
are prone to problems, such as bias and over-fitting; however, when mul-
tiple decision trees form an ensemble in the random forest algorithm, they
predict more accurate results, particularly when the individual trees are un-
correlated with each other. The random forest extends the bagging method
as it utilizes both bagging and feature randomness to create an uncorrelated
forest of decision trees. Feature randomness generates a random subset
of features, which ensures low correlation among decision trees. The fun-
damental di↵erence with respect to the traditional decision tree classifier
consists in the fact that at each tree split in Random Forest, only a subset
of features is randomly selected and considered for splitting, thus promoting
the decorrelation of the trees and preventing over-fitting. Thus, two levels
of randomness are exploited in Random Forest, the bootstrap sampling con-
sisting in drawing samples from a training set with replacement, and the
feature bagging consisting of using random subsets of features.

AdaBoost [19] is another ensemble method based on manipulating the
training set for generating multiple hypotheses. AdaBoost maintains a set of

36

weights over the training examples; at each iteration, the learning algorithm
is invoked to minimize the weighted error on the training set and to return
a prediction. A weighted error of the hypothesis is computed and applied
to update the weights on the training examples. The e↵ect of the change in
weights is to place more weight on training examples that were misclassified
and less weight on examples that were correctly classified. The final classifier
is constructed by a weighted vote of the individual base classifiers; each
classifier is weighted according to its accuracy on the weighted training set.

Gradient boosting [20] is another popular boosting ensemble technique
formulated as a numerical optimization problem where the objective is to
minimize the loss of the model by adding weak learners using a gradient
descent-like procedure. Decision trees are used as the weak learner in gradi-
ent boosting. Trees are added iteratively one at a time. A gradient descent
procedure is used to minimize the loss when adding trees. In the functional
gradient descent approach, after calculating the loss, a new opportunely pa-
rameterized tree is added to the model in order to reduce the loss and then
the gradient at the following iteration. The output of the new tree is then
added to the output of the existing sequence of trees in order to correct or
improve the final output of the model. The ensemble model training stops
when a fixed number of trees are added or when the loss reaches an accept-
able level, or no longer improvements are reached on a validation dataset.

Stacking or Stacked Generalization is an ensemble technique that com-
bines the predictions from multiple machine learning models by using an-
other machine learning model that is trained to learn how to better combine
the di↵erent base models’ predictions for achieving the best performances.
The main characteristic of stacking is that the combiner is a machine learn-
ing algorithm, also called a meta-learner, i.e. a learning algorithm that
learns from other learning algorithms. The architecture, as shown in Figure
10, is built on a two-level hierarchy, where the first level consists of the base
models, usually diverse machine learning models having di↵erent prediction
’skill’, making di↵erent assumptions about the prediction task, and uncorre-
lated to each other, while the second level is represented by the meta learner.
When using stacking for prediction, while the first level is trained by using
the training set, the second level uses the probability predictions generated
by the base models for training. Di↵erent more or less complex algorithms
can be used for implementing the meta-learner; when a simple linear model
like Logistic Regression is used, it is also called blending.

MOE (Mixture of Experts) was introduced in [30]. This ensemble tech-
nique, shown in Figure 11, is based on the divide-and-conquer principle in
which the problem space is divided among di↵erent experts (learners) oppor-

37

tunely supervised by a gating network. Di↵erent strategies were developed
to divide the problem space between the experts. Moreover, di↵erent error
functions in the learning process are used to localise the base experts in dif-
ferent distributions of data space. The combiner is a gating network aimed
at modelling the local competence of the experts in di↵erent distributions
of data space according to each input data. The gating network allows the
mixing proportions of the experts to be determined by learning a partition
of input space and trusting one or more expert(s) in each of these partitions.

Figure 9: Generic ensemble classifier scheme.

38

Figure 10: Stacking ensemble.

Figure 11: MOE ensemble.

2.3 Ticket Classification

Customer support is a key functional area of modern enterprises, usually
supported by some Customer Relationship Management (CRM) platform,
which has been paid increasing attention in recent years. Nowadays, many
companies made up of specialized customer service departments employ ded-
icated personnel to provide e↵ective support to their customer base.

Tickets, also named cases or issues, are opened by a customer request
through di↵erent channels. A multi-channel ticketing system collects all

39

support tickets from di↵erent channels and organizes them in a single view.
The most common channels for customer support use emails, phone calls,
web form, live chat, and now also social media like Facebook and Twitter in
order to have easy and user-friendly communication with media increasingly
used by younger people.

The integration of requests from di↵erent channels helps the customer
support system to better manage the tickets and o↵er more personalized
assistance.

Even if customers feel more comfortable when issues are solved with hu-
man interactions, with kind and helpful agents taking care of them, it implies
very high costs to bear for a company that wants to o↵er this kind of support
in an e�cient and e↵ective way, above all when the number of customers
becomes very high. A great deal of e↵ort is focused in finding the right
compromise between cost reduction and the improvement of customer sat-
isfaction in terms of service quality, quick response and resolution of issues
with minimal stress.

Ticket Management Systems (TMSs) are a precious technical solution in
this area, based on organizing customer support activities in ad hoc business
processes, which consists in handling specific tickets (a.k.a. issues) for cus-
tomers’ requests (coming from e-mails, phone calls, web forms, live or social
media chats). Improving these processes (e.g., by prioritizing urgent tickets,
and enabling competency-aware ticket allocation) can bring great benefits
in terms of cost reduction, customer retention and reputation strengthening.

Some of the main tasks involved in this process include the automatic cat-
egorization of tickets, prioritization on the basis of some urgency criteria,
identification of the customer and automatic tracking of the his/her history,
assignment to the right agent of the customer support team, suggestion to
the agent of the best solution among possible solutions selected from a his-
torical archive preserving base knowledge of the previous cases, or eventually
generate the automatic answer to be sent back to the customer as a solution
of the ticket, generating report and analytic surveys.

Customer satisfaction increases when any request issue is resolved very
fast, above all for critical time problems, the proposed solution is right and
preferably the best among all the possible ones, customers feel that the
company takes care of them during all the steps of acquisition and use of
the o↵ered products and services.

Beneficial e↵ects of automation in addressing the issue tickets to the ap-
propriate person or unit in the support team means cuts in issue processing
time, reduction of mistakes due to human errors, reduction of company per-
sonnel involved in repetitive tasks, freeing precious resources for higher value

40

works.
This explains why the automatic classification of tickets (where the class

to be predicted can correspond to intrinsic hidden properties of the tickets,
like the urgency, impact, or to predefined ticket routing and resource alloca-
tion schemes) has become a hot field of application for both industrial and
academic research in the sectors of Natural Language Processing (NLP) and
Machine Learning (ML).

Indeed, the usage of ML techniques allows for identifying relevant be-
havioural patterns which can be exploited to understand best practices,
optimize the process and recommend actions with the aim to improve the
overall performance of the TMS.

In particular, there is a growing interest in approaches based on Deep
Learning (DL) for the development of advanced TMSs, due to their ability
to learn quite accurate classification models and automatically extract more
informative features from low-level raw and/or noisy data, without requiring
costly feature engineering steps.

The ever growing business interest in this research area is leading compa-
nies to invest in extending their TMSs with intelligent tools, to increase the
e�ciency and quality of ticket management processes.

As an example, Uber’s Customer Obsession team define and develops
advanced solutions to improve the user experience with Uber services.

Several companies are focusing their business on furnishing advanced so-
lutions for supporting TMS services through the development of software
platforms to be customized for the specific requirements of the di↵erent
customer care uses, like Zendesk, Freshworks, Salesforce.

In more detail, Zendesk o↵ers a platform for tracking and organizing tick-
ets through di↵erent channels, routing the requests to the right agent based
on their availability, workload and expertise for an e�cient and personalized
solution. The introduction of AI modules, built on billions of real customer
service interactions, gives the possibility to better understand customer ex-
perience for a more personalized support.

Freshworks is a company o↵ering scalable platforms for supporting the
customer care by integrating di↵erent channels, with smart business deci-
sions through analytic tools, leveraging data from customer context and
behavior in a unified data representation for enabling sales, marketing, and
support teams to deliver personalized solutions.

Salesforce o↵ers a cloud-based platform designed to help the connection
between the businesses of the companies and their customers. A suite of dif-
ferent products is aimed at integrating sales, services, marketing, commerce,
and IT teams furnishing a single, shared view of the customer information.

41

Moerover, a powerful set of AI-enhanced features was recently added in
order to improve the quality of customer services with prediction abilities.

One of the most advanced integrated data and AI platform is o↵ered by
IBM Watson. Recognizing the profound promise of AI in customer care, the
design of virtual agents and chat bots can quickly build natural conversation
flows between company apps and users, and deploy scalable and cost e↵ec-
tive solutions. The Provider Services Conversational Voice Agent is the IBM
AI solution designed to understand the intent of a provider’s call, verify if
there is the right permission to access the system and member information,
and then determine how best to provide the information requested, without
the need to speak with a live agent, by using significant speech customiza-
tion with seven language models and two acoustic models. Advanced NLP
systems are employed to analyze text and extract meta-data from content
such as concepts, entities, keywords, categories, sentiment, emotion, rela-
tions, and semantic roles. Moreover, cognitive search and content analytics
engine can be used to support customer applications to identify patterns,
trends and actionable insights that drive better decision-making.

42

2.4 Fake detection

Nowadays, the world of information is very complex, fast, and insidious.
Publishing, sharing and accessing information is constantly stimulated by
the generalized use of online and social media (e.g., Twitter, Facebook, In-
stagram, etc.), and huge amounts of news are generated and manipulated
every day from the traditional main media, online social systems, and per-
sonal broadcasting systems. However, this proliferation of information that
circulates so fast through the digital media makes the veracity control and
the fact-checking very di�cult, making the social media a fertile ground for
the spread of unverified and/or false information commonly referred as fake
news. People often publish posts or share other people’s posts verifying nei-
ther the source nor the information validity and reliability. Consequently,
malicious users can leverage these uno�cial channels to share misleading or
false news to manipulate the readers’ opinions and make false news viral.
Unfortunately, the spreading of false, unverified and not completely true in-
formation is considered as one of the most dangerous threats to democracy,
justice, journalism, public trust and freedom of expression. As a matter
of fact, the fast and widespread propagation of fake news together with
the disinformation has become an emergency, considering the suspicion that
important society events, like the Brexit referendum and the United States
2016 election, were influenced by malicious misinformation actions. The
complexity and the importance of this phenomenon requires to encourage
interdisciplinary research, in order to make a joint e↵ort covering all the
aspects involved in it. For example, social and psychological factors play a
key role in understanding the motivations, the causes and the consequences
of this phenomenon resulting in a distortion of the reality. Thus, only a
collaborative e↵ort among experts from di↵erent fields like computer and
information sciences, political science, journalism, social sciences, psychol-
ogy, and economics will give the possibility to reach the result of curbing
this dangerous trend, thus limiting the possible negative e↵ects.

The broad and common definition assimilates fake news to false news,
where the term news includes generically articles, claims, statements, speeches,
posts, among other types of information related to public figures and orga-
nizations, created by journalists and non-journalists. This generic defini-
tion is exclusively focused on the information authenticity, making the fact
checking the main fundamental aspect to be verified in order to state if a
news can be considered true or simply a fake. Obviously, fake news should
not be confused with information related to opinions, viewpoints, personal
considerations, feelings and all theories and thinking that have a strong com-

43

ponent of subjectivity. Thus, fake news requires a scientific demonstration
of the falsity through the support of objective facts and evidences. A nar-
row definition of fakes considers the fake news as intentionally false news,
emphasizing the deceptive intent for aims that can mislead the opinion and
the understanding of the real true facts.

Fake news can take several di↵erent forms and shapes in the social media
environment creating a variety of terms representing the concept of false
news with a multiplicity of di↵erent nuances, [6]. Terms like false news,
deceptive news, satire news, disinformation, misinformation, rumors and
clickbait emphasize di↵erently aspects related to the authenticity, the inten-
tion and the form through which the information is represented.

Satire news are written in a satiric style, where techniques, such as exag-
geration, humor, and irony make the news content exaggerated and some-
times ridiculous.

Disinformation refers to false information that is spread with the specific
intent of misleading or deceiving people, especially adopted in political pro-
paganda. Misinformation is an incorrect or misleading information that is
spread regardless of intent to mislead. The main di↵erence between disin-
formation and misinformation is the intent. Although both words refer to
wrong or false information, only disinformation is wrong on purpose, deliber-
ately false. While this distinction may seem simple enough, misinformation
and disinformation are similar and sometimes interconnected, and so get
used interchangeably.

A rumour is an unverified statement or story put in circulation without
being proved true, often related to private aspects of people life.

Clickbait typically refers to the practice of writing sensationalized or mis-
leading headlines and information in order to attract attention and encour-
age visitors to click on a link to a particular web page often for improving
money gain.

For sure, the first question to be asked is why fake news are generated.
Motivations are the same as the ones that lead people to lie, but resulting in
a high resonance capacity. One of the key main motivations is a pecuniary
reason, in fact, fake news often are produced in order to become viral on so-
cial media, thus attracting a significant amount of revenue from advertising
when users click on the website where the news is being published. This is
also the reason of the spread of fake online reviews, in fact, most of the on-
line customers base their purchase decisions on the online consumer reviews.
The possibility to artificially change the considerations, the comments and
the quality judgements inside fake reviews can unfairly grow the profit of
specific companies, brands and products. Political fake news are generated

44

to attract consensus of voters discrediting the reputation of opposite parties
and prominent political figures, in order to take advantage. Sometimes, false
news and rumors are deliberately generated with the aim of damaging the
reputation of a person or entity. Sometimes, fake news are just generated in
order to create confusion, and disorient people.

Regardless of the reasons, with social media platforms, news content can
be shared among users with limited or no filtering, fact-checking, or any
form of editorial judgment by any authoritative or regulatory third-party,
giving the possibility to easily disseminate false information. Fake detection
is of fundamental importance in order to discern between true and fake news
in order to contrast the dissemination of fakes, thus limiting the negative
dangerous e↵ects. This is the reason why digital and social media companies
like Facebook and Google are putting e↵orts to exclude fake news sites from
their advertisement platform when contravening policies against misleading
content, and to identify and flag false articles with the support of fact checker
in order to avoid accidentally propagating.

One of most di�cult and challenging task is how to check the authentic-
ity and intention of a given information. Research studies developed across
various disciplines such as sociology, economics, psychology, and computer
science are reaching important qualitative and quantitative results in the
analysis of fake news. These research studies [75] , trying to build accurate
and explainable models for fake news detection and intervention, are based
on two main group of theories, the news-related theories and the user-related
theories. News-related theories try to detect and reveal fake news by ana-
lyzing only the news, focusing on the contents, the writing style, the quality,
the sentiments expressed and the strength used. User-related theories, in-
stead, focus their attention on the analysis of the users involved in fake news
activities together with their role in the consciously or unconsciously, inten-
tionally or unintentionally spreading. Profiling the users, their reputation,
and analyzing the activities of posting, forwarding, liking, and commenting
fake news are the main objectives of these research theories.

The immediate but most expensive way to detect fake news is to delegate
this arduous task to domain experts who are able to verify the veracity or
falsity by using their knowledge for a demonstrable reasoning deducted by
real facts. Given the huge amount and high speed of circulating news, it
is unfeasible to relegate the detection and verification of fakes to the only
human e↵ort. It is therefore necessary to introduce automatic fake detection
methods.

Fake detection is a text classification problem in the Natural Language
Processing research field. Recently, machine and Deep Learning methods

45

are reaching promising results, [28]. However, learning classification models
that can reliably detect misleading/false information requires coping with
di↵erent challenging issues. First, in many social media channels, informa-
tion is conveyed through short texts, which can be regarded as a form of
raw, noisy and sparse data. Moreover, the class distribution is typically
unbalanced as the number of legit contents for a specific topic overwhelms
the malicious one. Last but not least, since class labels need to be assigned
manually performed by domain experts, the amount of labelled data is of-
ten scarce [72], so making it unsuitable to adopt a fully supervised learning
approach –which is, however, the prevalent one in the field; on the other
hand, as observed in [71], the wide diversity of news domains in social me-
dia prevents adopting a pure transfer learning solution, based on reusing an
existing good fake-news classifier (trained on a corpus containing a su�cient
number of labelled data) to detect fake news in a di↵erent domain.

46

2.5 Explanation Techniques

Recent advancements in machine learning techniques have resulted in ex-
tensive use of artificial intelligence supporting and influencing most aspects
of our lives, often demanding also important and critical decisions to com-
plex machine learning models’ predictions with the aim of limiting as far as
possible the human intervention and supervision. Nowadays, deep neural
networks have a predominant role in this scenario thanks to the high perfor-
mances, above all in terms of accuracy, that are capable of reaching in several
decision tasks. However, such deep models are characterized by having com-
plex architectures implementing non-linear functions that make so often the
entire decision process flow so di�cult to be interpreted. Thus, deep neural
networks are considered black boxes by human operators because of the dif-
ficulty of understanding their behaviour. Above all, when deep learning is
employed for supporting decision-making in critical application domains, it
is of fundamental importance to understand, analyze, interpret and explain
the rational reasons for the model behaviour behind its decision in order
to trust, validate, check and refine the used model. Moreover, in order to
motivate the final user to employ and trust an artificial intelligence model
based on machine learning and deep learning, it is of fundamental impor-
tance to explain clearly the correlation between each decision result and its
corresponding input instance. The explanation is more e↵ective if similar
training examples are provided to the user by supporting the decision result.
For this reason, in the last few years, a considerable e↵ort has been made
in the so-called explainable artificial intelligence (XAI) domain as a special
research field devoted to studying in depth the explanation problem.

Summarizing, explanations play an important role in supporting the entire
decision process with several purposes:

• guiding users through the decision-making process, thus identifying
the main reasons for the decision result;

• furnishing a correlation of cause and e↵ect between the features of
an input instance and the result decision, highlighting which features
have contributed most to the final result;

• helping the user to understand if it is better to trust or not the pre-
diction and/or the model;

• helping to evaluate the goodness of a model furnishing means to im-
prove and fine-tune the model itself by understanding its failure points;

47

• extracting new insights and hidden laws of the model;

• identifying modules responsible for incorrect decisions

• giving a human interpretable interface to an artificial and complex
system.

Several explanation techniques have been proposed in recent years, [56].
A first major distinction, [69], considers two types of explanation: ante hoc
explanation and post hoc explanation.

In the ante hoc explanation techniques, the prediction models incorporate
the modules for the explanations into their architecture. The model has the
capacity to both predict and explain why it makes that prediction as well,
thus furnishing additional information that can provide insights reasoning
why such predictions were made. Ante hoc explanation deals with the inner
working of models to interpret their results.

Di↵erently, in the entire workflow, including the post hoc explanation,
there are two separate modules: (1) the prediction module only dedicated to
the task of prediction, and (2) the explanation module for its interpretations.
The explanation module does not influence the predictions made by the
prediction module. Post hoc explanation tends to be more flexible than the
ante hoc ones because it can be applied to the models without the necessity
to analyze the structure of the classifier that could be considered as a black
box, even if it provides less comprehension of the model itself.

The explanation can be classified with respect to the furnished results as
visual, textual or example based. Visual explanation is a direct and easy-
to-understand way to represent the reasoning of the model behaviour in
the classification task through visual representation of the relevant features.
Textual reasoning is particularly useful for text classification tasks. While
the example-based explanation uses similarity and dissimilarity approaches
to explain the decision results of an input instance by putting it in relation
with other true labelled examples and counterexamples.

Moreover, the explanation can be done by exploiting: Functional Anal-
ysis, Decision Analysis, and Explainability by Design. Functional Analysis
tries to capture overall behaviour by investigating the relation between in-
puts and outputs. On the other hand, Decision Analysis tries to understand
internal behaviour by probing internal components. Explainability by De-
sign is a technique that includes explanation into the design of DNNs, thus
making the initial e↵ort to create the model architectures and algorithms
with explainability in mind, with the advantage of avoiding the expensive
and challenging building of the posterior knowledge explanation. Users who

48

adopt explainable technologies can understand the mechanisms of the sys-
tems that they are using and thus make better decisions.

The main properties that characterize the explanation approaches can be
summarized as follows:

• Locality. In order to be meaningful, an explanation should be locally
faithful, i.e. its behaviour should be coherent in the vicinity of the
instance being predicted.

• Globality. It is the possibility to identify globally faithful explanations
that are interpretable for evaluating and trusting the entire model and
not only some predictions.

• Model-agnostic. Model-agnostic explanations try to interpret the model
behaviour by making a correlation between input features and output
decisions, considering the model as a black box, without analyzing the
functionalities inside the architecture. For this reason, this kind of ex-
planation results in being more flexible and suitable for DNNs. Post
hoc explanations are model-agnostic, in fact, they assume to access the
model only for querying the classification results on di↵erent inputs.

• Model-specific. These techniques are only suitable for specific classes of
models because they generally focus on an algorithm or inner structure
details of the model. Ante hoc explanations are model-specific because
the explanation generator and the predictor are the same models with
varying degrees of transparency.

• Interpretability. The capacity of the explanation to provide a quali-
tative understanding of the input-output model behaviour for the end
users. Thus the explanations should be easy to understand and verify.

More generic properties include reliability, causality, generality, scalabil-
ity, and accuracy. As regards the accuracy and the explanation, it is worth
highlighting that there is a trade-o↵ between these two elements. Simpler
predictive algorithms are more easily interpreted by human beings, while
they are prone to be less accurate than the complex and advanced methods
that are hard to explain. Thus, the explanation, which is an assessment of
the model that reflects how easily a model is explained to the users, is often
counterbalanced by the model accuracy, which is a quantitative measure of
the probability of making correct predictions, usually strictly related to the
complexity of the model itself.

49

LIME. LIME (Local Interpretable Model-Agnostic Explanations) [54] is
a well-known model-agnostic explanation technique that explains the pre-
dictions of any classifier in an interpretable and faithful manner, focusing on
learning the behaviour of the models locally around the predictions. LIME
assumes that all complex models are locally linear; hence, it explains pre-
dictions by approximating them with an interpretable simple model around
several local neighbourhoods. The neighbourhood of a prediction is obtained
by permuting original observations and then measuring the similarity be-
tween those generated data and the original ones. The permuted new data
are classified by the classification model to be explained, then, after fixing a
certain number of features k to be used for the explanation, the k describing
features with the highest likelihood of the predicted class are selected, and
a simple model (e.g. linear model) is fitted with data based on it. The
weights of this explanation model are considered a metric of importance in
explaining the local behaviour of the complex classifier model.

Formally, the explanation produced by LIME is obtained by minimizing
a function L that measures how unfaithful an explanation model g (with
g 2 G, where G is a class of potentially interpretable models, such as lin-
ear models, decision trees, etc.) is in approximating the model probability
function f in the neighbourhood locality ⇡x of the input instance x, taking
into consideration the measure of complexity (as opposed to interpretability)
⌦(g) of the explanation model g, as in the following:

⇠(x) = L(f, g,⇡x) + ⌦(g) (1)

Word cloud. A ‘word cloud’ is a visual representation of the most frequent
words in a text. The more commonly the term appears within the text
being analysed, the larger the word appears in the image generated. By
opportunely pre-processing a text and by setting opportunely the parameters
of the word cloud generator tools, it is possible to avoid the inclusion of stop
words and common words, and it is possible to group together words with
similar meanings and/or having the same lemma. As word cloud tends
to focus only on single word frequency, it is unsuitable for context and
phrase representations. Word clouds have recently become very popular for
a first data visualization analysis of texts, being employed as a simple tool
to identify the focus of written material. Largely used in business, education
and politics, for example, to visualise the content of political speeches, word
clouds furnish an immediate analysis of the content of a written and/or oral
text highlighting whether su�cient attention is being given to the words

50

mainly representing the target concepts that need to be disclosed.
Fig. 12 shows the word cloud of this PhD thesis.

51

Figure 12: The word cloud of this PhD thesis.

52

3 Related Works

The research proposed in this thesis has focused on two specific fields of
application of the text classification: ticket classification in Customer Rela-
tionship Management (CRM) systems and fake detection. A survey of the
state of the art present in literature is here reported.

3.1 Text classification in Ticket Management Systems

The automatic ticket classification and assignment for customer support
is a specific field of application of Natural Language Processing and text
classification. In literature, many solutions have been proposed in order to
improve the capacity of customer support systems in solving ticket issues
both in terms of accuracy and e�ciency. This section is meant to discuss
some major ML approaches to the automated classification of tickets.

Some major approaches developed in the field of Machine Learning (ML)
are discussed in what follows, in two separate subsections. More specifically,
the first subsection is devoted to illustrating approaches based on traditional
(shallow) ML models and training algorithms, whereas the latter subsection
focuses on the usage of Deep Neural Networks.

Table 1 summarizes the main characteristics of both groups of approaches.
Before illustrating these approaches in more detail, it is important to pin-
point that only a few existing approaches in the field took advantage of
an ensemble learning strategy, and none of them also tried to exploit DL
methods to learn the base classifiers and/or an instance-adaptive combiner
like ours –all previous ensemble-based approaches to ticket classification em-
ployed standard global combination schemes (e.g., voting, averaging). On
the other hand, to the best of our knowledge, none of the DL-based ap-
proaches proposed in the field tried to complement the returned class pre-
dictions with explanatory artifacts, despite the black box nature of deep
classifiers.

3.1.1 ML models for TMS

A classification-based help desk system was proposed in [26] to improve
the handling of tickets in German Jordanian University, through the pro-
vision of several advanced kinds of functionalities (e.g., sending automatic
email notifications amongst collaborators for further action, defining busi-
ness processes for ticket management, monitoring associated performance
indicators). Specifically, the system allows for discovering and applying

53

Table 1: ML and DL-based approaches to ticket classification and intelligent
ticket management.

Approach ML/
DL

Ensemble Model(s) Evaluation
metrics

Data repre-
sentation

[26] ML N SVM Accuracy, Avg.
Ticket Assign-
ment Time, Avg.
Ticket Resolution
Time

TF-IDF

[49] ML Y SVM,
LogR,
SGD, NB,
DT, RF

Accuracy, Preci-
sion, Recall, F1-
score

TF-IDF

[2] ML N DT, SVM,
NB, KNN

Accuracy Boolean, TF,
TF-IDF

[59] ML N SVM,
KNN

Accuracy TF-IDF

[46] ML Y DT, MNB,
SVM, RF,
LogR,
KNN

Accuracy, Preci-
sion, Recall , F1-
score

TF-IDF

[53] ML N kNN and
variants,
DT, NB,
LogR,
SVM,
Quick-
SUCCESS

Accuracy, Preci-
sion, Recall , F1-
score

TF-IDF,
Linguistic
Features

[60] ML,
DL

N MNB,
SNN

Accuracy TF-IDF

[45], COTA v1 ML N RF, Co-
sine Sim-
ilarity
ranking

Accuracy,
Hits@3, F1-
score

TF-IDF

[45], COTA v2 DL N Encoder-
Combiner-
Decoder
(CNN,
RNN)

Accuracy,
Hits@3, F1-
score

Word Embed-
ding

[73] DL N CNN F1-Score, Preci-
sion, Recall, Ac-
curacy

Word Embed-
ding

[74] DL N CNN F1-Score, Ham-
ming Loss, H-
Loss HMC-Loss

Word Embed-
ding

54

SVM models for classifying tickets based on their title, description and com-
ments. A standard TF-IDF [38] representation (where TF and IDF stand
for Term Frequency and Inverse Document Frequency, respectively) is used
to model relevant terms from the tickets, and to turn the latter into vec-
tor space tuples suitable for training SVM models. Experimentation has
proved the e↵ectiveness of the model in terms of classification accuracy and
of many application performance indicators, such as number of tickets per
agent, percentage of closed tickets, average resolution time and average as-
signment time. Tests were executed on a dataset collected from Istanbul
Technical University ITU Issue Tracking System, a web application for an-
swering on various requests to di↵erent departments within the university.
The classification of a ticket consists of two phases (aimed at identifying the
ticket category and sub-category, respectively) and is semi-automatic: if the
prediction confidence does not overcome a predefined threshold, the ticket
class is assigned manually. Classic ML methods (namely, Logistic Regres-
sion, SVMs, Naive Bayes, SGD and Random Forests) were also exploited
in [49], in order to address three di↵erent tasks concerning the handling of
ticket messages: spam detection, ticket assignment and sentiment analysis.
The discovered classifiers are combined into an ensemble model via majority
voting, which is shown to improve the performances of the classifiers.

In [2], it is experimentally demonstrated how the adoption of ML algo-
rithms reduce manual e↵orts and human errors while ensuring high service
levels, and improve end-user satisfaction in Issue Tracking Systems (ITS),
i.e., a software system used to capture and keep track of customer issues,
and to automatically assign the issue tickets to the relevant person or unit in
the support team. Four di↵erent supervised ML techniques were tested for
performance comparison: Decision Trees (DTs), Support Vector Machines
(SVMs), näıve Bayes and k Nearest Neighbor (k-NN) classifiers. Tests were
executed on a dataset collected from Istanbul Technical University ITU Is-
sue Tracking System, a web application for answering various requests to
di↵erent departments within the university.

In order to reduce the time wasted on the incident ticket route and the
number of errors in the incident ticket classification, a novel module for
automatically classifying incident tickets was proposed in [59], as part of
an existing Information Technology Service Management (ITSM) service.
The module exploits SVM classification techniques to automatically assign
(with an estimated accuracy of 89%) each incident ticket to one of the 10
following categories: application, collaboration, enterprise resource planning
(ERP), hosting services, network, security and access, output management,
software, workplace and support.

55

[60] presents an approach to the automatic classification of user tickets
in the XSEDE (Extreme Science and Engineering Discovery Environment)
project, an NSF TeraGrid project providing researchers and students across
the country with an integrated network of high-performance computers, data
resources and tools, and research facilities. The ever-increasing number of
tickets pushed towards the automation of XSEDE user ticket classification.
To this end, the authors of [60] resorted to techniques for the discovery of
MNB and Softmax Regression Neural Network (SNN) classifiers.

In [46], the application of three popular ensemble learning strategies,
namely Bagging, Boosting (Adaboost) and Voting ensembles, is explored
in order to combine di↵erent ML classifiers. Specifically, the former two
strategies were applied to DT, Multinomial Näıve Bayes (MNB), SVM and
Random Forest base classifiers. A combination of logistic regression (LR),
SVM, MNB and k-NN are used as input to the Voting ensemble classi-
fier. Considerable improvements in the accuracy of ticket classifications are
shown for the resulting ensemble classifiers, compared to the underlying base
ones.

In [53], a study, aimed to investigate the core design elements of a typ-
ical IT ticket text classification pipeline, is presented. Experiments were
conducted on two datasets, containing ticket texts supplied by the IT In-
frastructure Library (ITIL) Change Management (CHM) ticket processing
department of a big enterprise. The aim of these experiments is the com-
parison of the TF-IDF and linguistic features-based text representations of
the tickets together with the comparison of many ML-based classifiers: i.e.,
Näıve Bayes (NB), some variants of k Nearest Neighbor (k-NN), SVM, and a
semi-supervised technique called (QuickSUCCESS), an improved version of
the Semi-sUpervised ClassifiCation of TimE SerieS (SUCCESS), proposed
in [9]. Their experiments evidence the benefit of using simple (easy to in-
terpret) classification models like decision trees and Näıve Bayes, especially
if combined with domain/expert-driven linguistic representations. Similar
research results are presented in [52], which also explores link between the
explainability of ticket classification and the paradigm of Granular Comput-
ing.

3.1.2 DNN models for TMS

Recently, Deep Learning (DL) techniques were shown a powerful and con-
venient solution for extracting accurate ticket classifiers from raw labelled
data, without needing heavy manual feature engineering. Basically, a Deep
Neural Network (DNN) can be regarded as a model capable of learning

56

a hierarchy of (mainly, non-linear) transformation layers, where each layer
yields a more abstract representation of the data than the previous ones.
For example, DL techniques are used in the intelligent system COTA, in-
tegrated into Uber’s TMS and proposed in [45], which supports two main
tasks for handling each new ticket: the identification of the ticket type and
the recommendation of a suitable resolution and of reply template. In fact,
the customer service provides a list of reply templates from which it is pos-
sible to select the proper solution to the specific identified ticket type. Two
di↵erent model implementations are proposed, COTA v1 is a model based
on feature engineering, while COTA v2 uses deep learning algorithms in an
Encoder-Combiner-Decoder architecture. The system implements DL meth-
ods based on an Encoder-Combiner-Decoder DNN architecture, which are
shown to improve significantly shallow ML methods, in terms of accuracy
and key business metrics (including ticket resolution speed and customer
satisfaction level). Another DL approach is proposed in [73], for automat-
ically classifying phone calls to the CRM front-end of a car dealer com-
pany, which usually concerns questions on car sales, services, vendors or job
opportunities. Specifically, a convolutional DNN is trained to classify the
customer calls, suitably transcribed into text documents, into four intent
categories (namely, sales, service, vendor and job). Experiments executed
on the convolutional neural network architecture with 128 filters for di↵er-
ent convolutional filter sizes demonstrated the goodness of the approach in
terms of accuracy, F1-score, precision and recall in this specific application
context.

In [74] the authors proposed a ranking framework called STAR (System
for Ticket Analysis and Resolution) for automatic ticket resolution, ticket
classification and clustering of incidents in IT service management. Their
framework, based on a CNN model, is evaluated against a large real world
dataset, and shown able to obtain accurate classifications while capturing
semantic relations.

57

3.2 Fake Detection

The fast and widespread propagation of fake news is becoming an emer-
gency for the correct disclosure of information. Information accessibility has
grown exponentially due to the generalized use of online and social media,
and huge amounts of news are generated and manipulated every day from
the traditional main media, online social systems, and personal broadcast-
ing systems. Therefore, distinguishing the truth and veracity of the news
represents a critical task in order to mitigate the di↵usion of misinformation
and consequent negative e↵ects on society. The main issue is represented
by the fact that fakes can be very similar to real news. At first glance, fake
news can easily be mistaken for real ones; thus, fake detection represents
a relevant and challenging problem. The standard solution that consists in
delegating the verification process to trusted professionals and specialists to
check claims against evidence based on previously demonstrated or proofed
evident facts is time-consuming and expensive and unfeasible for the huge
quantity of news shared on the web. The automatic fake news detection
of text contents is a critical and challenging Natural Language Processing
(NLP) problem.

In the literature, three main types of fake news detection have been pro-
posed: (i) knowledge-based, (ii) content-based and (iii) context-based.

Fake news detection based on knowledge is named fact checking, as it
adopts the approach of checking the authenticity of news by comparing the
information with documents or web resources extracted from the semantic
web, linked open data and/or information retrieval. Content-based detec-
tion techniques analyse content and writing style to identify fake news and
are based on Machine and Deep Learning methods. Finally, context-based
detection approaches combine the news content with other information, e.g.,
the source, the author, the website, the topic, the propagation path and the
speed of dissemination.

Content-based approaches to fake news detection constitute the prevalent
kind of solutions in the field, due to their broader applicability. Indeed, it is
not easy to obtain high-quality integrated information from heterogeneous
sources. Even though a large part of the content-based methods proposed
so far rely on traditional supervised learning methods, it is important to
remark that obtaining appropriate fake-news detection models via super-
vised learning entails gathering large amounts of reliable (labelled) data,
which is time-consuming, expensive and requires specific topic knowledge.
Thus, providing fake news detection systems with the ability to also exploit
unlabelled data, via semi-supervised learning mechanisms, is necessary to

58

suitably deal with real-life application scenarios where only small fractions
of news documents are provided with a fake/normal class label.

In what follows, some major semi-supervised approaches to the discovery
of content-based classification models for fake news detection are surveyed.

Semi-supervised Approaches for Fake News Detection In [55], the
authors compare four methods for detecting deceptive and fake opinion re-
views: co-training, expectation maximisation, label propagation and spread-
ing, and positive unlabelled learning. Co-training is a technique that exploits
di↵erent views of the dataset, where each view is a distribution of features
representing the data; the basic idea is to train two classifiers on each view
and then classify instances on the unlabelled category to enlarge the train-
ing set. Expectation maximization consists of two steps: the learning of
the algorithm with the conjunction of the labelled and predicted labelled
sets (Expectation step) and the prediction of the labels of the unlabelled
set (Maximization step). Label propagation and spreading use graph-based
algorithms for learning: the graph is constructed by ordering suitable vector
features based on a suitable similarity metric, such as Manhattan distance
or Euclidean distance, on both labelled and unlabelled nodes; label infor-
mation is spread across the graph dynamically until all nodes are labelled.
Positive unlabelled learning refers to a specific binary classification problem
characterised by the constraint that only positive labelled data are available
together with unlabelled data, and the classifier has to identify hidden posi-
tives from the set of unlabelled examples when negative training data is not
supplied or available.

The work in [24] proposes a semi-supervised fake detection classifier con-
sisting of three phases: building the tensor-based embeddings representation
of the article text; constructing a k-NN graph of proximal embeddings; and
propagating the beliefs by using the FaBP (Fast Belief Propagation) algo-
rithm. A similar approach, based on a graph-based semi-supervised fake
news detection algorithm is proposed in [5], exploiting document embed-
ding, graph inference for the representation of articles, and a graph neural
network-based classifier.

In [41], a semi-supervised temporal ensemble model is learned by using a
Convolutional Neural Network (CNN) as a reference architecture for train-
ing the base models against the headline and the body of the news. The
underlying idea of the temporal ensembling technique [33] is that di↵erent
prediction outputs of all previous epochs can be aggregated in order to fur-
nish a collaborative prediction which proved to be more accurate and thus

59

better suitable for inferring pseudo labels. Indeed, the ensemble predictions
of unknown labels accumulated in several training epochs perform better
than the last epoch prediction.

In [42] the same authors have also proposed a semi-supervised fake news
detection technique based on GCN (Graph Convolutional Networks) trained
with limited amounts of labelled data. The proposed solution consists of
three stages: extracting an embedded representation from the news text by
using GloVe, constructing a similarity graph using Word Mover’s Distance
(WMD), and finally leveraging a Graph Convolution Network to address the
binary classification task in a semi-supervised paradigm.

In [16], the authors introduce a novel deep two-path semi-supervised learn-
ing (DTSL) model composed of three convolutional subnets. The first is
trained by using a supervised learning scheme, while the second is trained
against unlabelled data in an unsupervised fashion. An additional shared
CNN is used to propagate low-level features to the two former networks. The
loss function is computed by weighting two components: a standard cross-
entropy loss function to evaluate the loss for labelled inputs only and the
mean squared error of the two output path predictions in order to penalize
di↵erent predictions for the same training input.

To the best of our knowledge, our current work has been the first at-
tempt to combine (language-model) pre-training and (pseudo-label based)
self-training together with an ensemble combining strategy in order to train
a powerful (BERT-based) form of deep model to discriminate fake news from
genuine ones. As a matter of fact, the idea of resorting to an “old-fashion”
pseudo-labeling approach was inspired by the results of the empirical anal-
ysis in [10], where it was shown that such an approach can be competitive
with state-of-the-art semi-supervised DL methods (leveraging consistency
regularization mechanisms), while being more resilient to out-of-distribution
samples in the unlabeled set.

60

4 A Deep Ensemble Framework for Text Classifi-

cation

In this section, a comprehensive classification framework for the entire pro-
cessing flow of text classification is proposed. It relies on training a novel
kind of ensemble of deep classifiers. Moreover, it proposes di↵erent kinds of
easy-to-interpret artefacts for explaining and debugging the predictions of
the ensemble providing AI-based interpretation methods. Finally, it intro-
duces a novel self-training learning process based on an ensemble pseudo-
labelling workflow aimed at overcoming the performance limits of scarce
labelled datasets.

The entire framework is first proposed in its general form, while two im-
plemented architectures are then described in more detail as specialized
frameworks for the two text classification fields of application treated as use
cases: the text classification for Ticket Management Systems and for fake
detection.

4.1 The Software Architecture of the Framework

The conceptual architecture of the proposed complete framework aimed at
furnishing a complete text classification tool is shown here in detail. The
framework relies on training a novel kind of ensemble of deep classifiers,
proposing di↵erent kinds of easy-to-interpret artefacts for explaining and
debugging the predictions, and supporting a pseudo-labelling-based self-
training leaning process for improving classification performances in case
of scarse labelled data.

Fig. 13 illustrates a high-level view of the proposed framework. The In-
formation Retrieval block collects raw data from di↵erent kinds of sources
by listening to di↵erent communication channels. Moreover, depending
on the specific application, this block transforms the data into a unified
semi-structured format (for the TMS ticket data, fields like customer ID,
timestamp, urgency, the free-text body of the customer request, etc. are
extracted, while for fake detection, the title and the document text are
retrieved from the web pages) and, if it is required, it makes the data
anonymous for the sake of privacy preservation. These consolidated data
are maintained in an ad-hoc repository (named Raw Data). With the help
of the Text Encoding block, texts are converted into a tensor form, suit-
able for training/undergoing neural-network models, after applying common
text processing operations (including lower-case normalization, tokenization,
stop-word removal, stemming) to their free-text contents. It is worth not-

61

ing that all these operations for data preparation represent a crucial step
for improving the performances of text classification tasks as deeply inves-
tigated in [64], especially when the text is in the form of chat messages like
in the TMS ticket use case where spelling and grammatical rules are often
neglected. Pre-processed text data are used, by means of the Deep En-
semble Model Building block, to train an ensemble-based text classification
model. Novel heterogeneous ensemble schemes based on MOE and Stacking
architectures consisting of multiple diverse DNNs are proposed in the Model
Building block implemented for the ticket application, while a self-training
ensemble-based pseudo-labelling scheme is proposed for the fake detection
application when only a few labels are available as a training set.

The Pseudo Labelling block supports a novel ensemble-based self-training
approach to be used when the available labelled data are scarce in order to
integrate them with unlabelled data furnished with labels artificially gener-
ated from the predictions of the classifier models.

The Explanation Building block supports the classification system with
multiple functions like model correction and refining; it furnishes a compre-
hension reasoning of the results with respect to the input instance, it gives
a valid instrument to the application end users for validating, checking and
comparing the results.

The details of the Ensemble, Pseudo Labelling and Explanation blocks are
reported in the following sections. Finally, the details of the two architec-
tural implementations of the proposed framework specialized for the TMS
and the fake detection applications are also reported.

62

MODEL
BUILDING

Model M0

Model M1

Model MN

…

MODEL EXTRACTION / COMBINER

Evaluation
Results

COMMUNICATION CHANNELS
INFORMATION

RETRIEVAL Raw Data
TEXT

ENCODING

EXPLANATION
BUILDING

Training Data

Pre-processed Knowledge Base

Labelled Data
Pseudo

Labelled DataValidation Data

Increasing

Unlabelled Data

D
ecreasing

UNCERTAINTY
COMPUTATION

UNLABELED DATA
SELECTION

PSEUDO-LABEL
PREDICTION

Pseudo Labelling Approach

Explanation
Results

Test Data

PERFORMANCE
EVALUATION

Deep Ensemble Model Building
Model Repository

Figure 13: The proposed Framework: Conceptual Architecture.

63

4.2 The Ensemble Strategies

The ensemble techniques are exploited in order to reach better generaliza-
tion performances and to reduce the bias and the variances among the base
learners. The Deep Ensemble Model Building block of the proposed frame-
work is built with multiple heterogeneous classifiers appropriately combined
in order to have improved characteristics with respect to the single base
learners.

In the proposed framework architecture, an ensemble text classifier is
modelled as a neural network that: (i) takes a vector x encoding the text
contents of an input sample; (ii) incorporates several di↵erent classifiers,
each of which instantiates a specific DNN architecture; (iii) includes a com-
ponent named High Level Feature Extractor (HLFE), extracting a dense
representation of x as a whole, which is meant to capture both semantic as-
pects of the text management domain and their relationships to the classes;
(iv) a combiner sub-net that is meant to combine the outputs of the base
classifiers into an overall class prediction for x, taking as an additional in-
put the high-level representation of x coming out of the HLFE component.
Defining the strategy to combine the base models into a collective decision
is a critical issue in each ensemble classification model.

As shown in Figure 14, the HLFE simply consists of three layers: (i) a
Word Embedding layer, mapping each term of x to a dense vector; (ii) a
Global Max Pooling layer [36], which summarizes the contents of the ticket
by aggregating the dense vectors of all the terms appearing in x; (iii) a
fully-connected dense layer equipped with ReLU activation functions. This
simple structure proposed for the HLFE sub-net is meant to facilitate clas-
sification explanation and model debugging. Indeed, besides enabling the
discovery of instance-adaptive combination schemes, the HLFE allows hu-
man operators and analysts to assess whether the high-level representations
the ensemble model relies upon are really meaningful and general enough,
or they rather focus on incidental aspects of the input text (so undermining
the trustworthiness of the model).

Two di↵erent ensemble architectures, denoted hereinafter as Stacking en-
semble and MOE ensemble, are proposed in the framework architecture,
which implements two alternative strategies for combining the predictions
of the base classifiers.

In the Stacking ensemble architecture, shown in Fig. 14, a feed-forward
sub-net (consisting of one layer with softmax activations in the current im-
plementation) is trained to derive overall class predictions from the predic-
tions (namely, ỹ(1), . . . , ỹ(n)) of the n base learners and the output of the

64

Base
Classifier 1

High Level Feature ExtractorBase
Classifier 2

Base
Classifier N

Neural Network Combiner

Word Embedding Layer

Global Max Pooling

Fully Connected Layer

~y

x

y(1) y(2) y(n)~ ~ ~

base model predictions

embedded feature representation

Figure 14: Stacking ensemble architecture.

HLFE sub-net.
The MOE ensemble architecture (shown in Fig. 15) implements a Mixture-

of-Experts (MOE) [39], where the overall prediction for x is obtained as a
linear combination of the predictions (namely, ỹ(1), . . . , ỹ(n)) of the n base
classifiers. To this end, a Gate sub-net (consisting of a single dense layer with
softmax activations) is learnt for deriving the weights of this combination
out of the latent representation of x returned by the HLFE sub-net (rather
than directly from x itself, as in classical MOE schemes). This architecture
aims at giving more importance to the decisions of the base models that
look more competent in the region of the latent space to which x belongs.

65

x

y(1)

y(2)

y(n)

Gate

y

 𝑧1 , 𝑧2,… , 𝑧𝑛

~

~

~

~<y(1), y(2), … , y(n)>~ ~ ~

Base
Classifier 1

Base
Classifier 2

Base
Classifier N

High Level Feature Extractor

W
or

d
E

m
be

dd
in

g
La

ye
r

G
lo

ba
l M

ax
 P

oo
lin

g

Fu
lly

C
on

ne
ct

ed
La

ye
r

Figure 15: MOE ensemble architecture.

66

4.3 The Explanation Technique

The explanation consists in providing a visual informative representation
able to explain the behaviour (i.e., the predictions) of the classification
model. As the proposed framework is devoted to classifying data with an
ensemble of deep neural networks which by their nature are assimilated to
black boxes, it is of primary importance to equip the framework with an
explanation tool able to give some kind of correlation information between
the classification decision and the input data.

In order to allow human operators to easily evaluate and debug the classi-
fication decision obtained for an input instance x, with some deep ensemble-
based classifier M , the proposed framework allows for computing two kinds
of explanation artefacts: (1) a local linear classifier computed with method
LIME, capturing which words impacted the most (and how much) on the
classification decision of M for x; (2) multiple word clouds summarizing the
contents of di↵erent groups of examples texts that fall in a neighbourhood
of x, in the embedding space associated with M . The user can also inspect
each of these groups of neighbours.

For the sake of interpretability, both artefacts (1) and (2) are derived
from the Bag-Of-Word (BOW) representation of the instances that result
from applying the text processing operations (namely, tokenization, stop-
world removal and stemming). Precisely, let V be the reference vocabulary,
and D be a given set of examples (viewed each as a plain-text document
and associated with a ground-truth class label), the BOW representation
of any text instance y, denoted as bow(y), is a vector containing as many
components as the terms in V , such that: for each term t 2 V , the respective
component bow(y)[t] of the vector stores how many times t occurs in y.

In the remainder of this section, technical details on the two kinds of
explanation mechanisms and artefacts produced in the proposed approach
will be provided: LIME-based post-hoc explanations and latent neighbours
and associated word clouds. Then the workflow that the user is expected
to follow for interactive requesting and exploring these kinds of explanation
artefacts will be treated in more detail.

4.3.1 LIME-based Classification Explanations

The proposed framework integrates a public Python implementation of the
post-hoc explanation method LIME (Locally Interpretable Model-agnostic
Explanations) proposed in [54]. For the sake of interpretability, in this
implementation, the contents of every text y is represented as a binary

67

vector where the component associated with each term t is 1 i↵ t appears in
y (i.e., if bow(y)[t] > 0).

Essentially, in order to approximate the behaviour of M around the in-
stance x, for which we want an explanation of the classification yield by
M , a (sparse) linear classification model is trained via Ridge regression on
a number (namely, 5000) of artificial instances, computed by perturbing x;
each of these instances is labelled with the class that M predicts for it,
and it is weighted according to its proximity to x (measured on the basis
of cosine similarity), in order to make the model pay more attention to the
instances closer to x (the closer the instance, the higher the misclassification
error/loss). Specifically, for each prediction class, a one-vs-all ridge classifier
is computed over a certain number n of features (i.e., binarized versions of
the instance terms) most correlated to the class, with n opportunely selected
depending on how many features are considered useful for most representing
the entire instance.

The resulting set of linear classifiers allows the user to understand how the
selected terms impacted on the decision that M took for x. These classifiers
are presented in the form of visual artefacts through a bar diagram, where
each vertical bar corresponds to one of the prediction classes and shows the
coe�cients of the top n terms considered for the class. For example, if in the
linear sub-model of a certain class cl, a term t is associated with a weight w ,
it means that when this term is removed from the instance, the membership
probability of class cl would decrease by w.

4.3.2 The Neighbor-based Word Clouds in the Latent-Space

The LIME explanations described before help study the behaviour of a clas-
sifier M locally to a test instance x, but do not allow for assessing whether
the text embedding function learnt by M (and used by the latter for combin-
ing the predictions of the base models) is really meaningful. Indeed, looking
at concrete examples of neighbours of x in this latent space can act as an
additional complementary means for evaluating the quality and reliability
of M in the portion of the instance space surrounding x.

The ensemble models proposed for classification incorporate an embedding
subnet HLFE that maps the text in a low-dimensional space, where instances
featuring similar contents and class-related patterns should appear close to
one another. It is worth noting that, when providing the proposed ensemble
models with a text instance y, the output of the HLFE subnet is a non-linear
transformation of a max-based aggregate representation of the embeddings
of the terms in y.

68

This simple embedding-combination scheme mainly serves the purpose of
complementing predictions with easy-to-interpret explanations. Indeed, the
resulting latent-space text representations exhibit two interesting properties:
(i) they capture the subset of features of an instance that impacts the most
on classification, and (ii) they are correlated to the flat BOW representation
upon which our explanation artefacts (i.e., the local models obtained with
LIME and the word clouds illustrated below) are based.

For any text instance y, let fM (y) denote the extended representation of y
that results from concatenating this latent-space representation of y (coming
out from the HLFE sub-net of model M) and the predictions ỹ(1), ..., ỹ(n)

that are returned for y by the n base classifiers incorporated in M –each of
these predictions is a discrete probability distribution over the classes.

For each ensemble classifier M , a metric-tree index IM is built on a given
set D of labelled text instance by adopting the following cosine-based func-
tion dM (x, y) (introduced in [17]) to compute the distance between two
instances x and y (in the extended latent space associated with M):

dM (x, y) =

8
><

>:

c2d
⇣

fM (x)·fM (y)
||fM (x)||⇥||fM (y)||

⌘
, if ||fM (x)||⇥ ||fM (y)|| 6= 0

c2d(�1) = 0, otherwise

(2)

where c2d(�) ⌘
p

(1� �)/2, for any � 2 R. The elements in the index IM
point to the contents of another data structure, storing, for each example y,
the text of y, its BOW representation bow(y) and its class label.

After receiving a prediction by M for a novel instance x, the user can
pose a k-NN query against IM , by simply specifying the number k of neigh-
bors that must be retrieved for x. For notation convenience, let us de-
note by N k

M (x) the result of this query, i.e. the set containing the k near-
est neighbors of x in the HLFE-transformed version of dataset D, along
with their associated distances from x –for the sake of presentation, let us
just denote this set as a set of text instances rather than a set of pairs
of the form (y, dM (x, y)) with y denoting a text identifier. Moreover, for
each class c, let N k

M (x)|c be the k nearest neighbors assigned to c (i.e.,
N k

M (x)|c = {y 2 N k
M (x) | label(y) = c}, where label(y) is meant to denote

the class label associated with any instance y).

Neighbor-based word clouds To provide the user with a compact view
of these neighbourhoods of x, a word cloud is produced for each set S chosen
among N k

M (x) and all class-wise subsets N k
M (x)|c; the word cloud depicts

each of the q most relevant terms in S with a size that is proportional to the

69

relevance of the term –in our framework prototype system, q is set to 100 by
default. The relevance of each term t for a neighbor set S, is computed as a
weighted average of the TF-IDF scores of t over the neighbors in S, where
each neighbour is assigned a weight that depends on how close it is to x in
the extended latent space (the lower the distance, the higher the weight).
Precisely, the relevance score rs(t) of t is computed as follows:

rs(t) =
X

y2S
bow(y)[t]⇥ idf (t,D)⇥ (1� dM (x, y))� (3)

where � 2 R is a scaling factor that allows for controlling the degree of
sensitivity of the relevance score to inter-text distance, while idf (t,D) is a
variant of the inverse document frequency of t in D defined as idf (t,D) =
log (|D| + 1)� log (|{d 2 D | bow(d)[t] > 0}|) + 1.

Two examples of such word clouds are reported in the experimental section
for a specific case of real-life ticket message

70

4.4 The Pseudo Labelling Strategy

A pseudo-labelling self-training ensemble-based module is proposed here in
order to improve classification performances when very few labelled data
characterize the available dataset. The scarce labelled data are split into
three subsets: the initial training set, the validation set and the test set.
In order to increase the training set, unlabelled data are labelled by the
model itself by opportunely exploiting the classification prediction and the
uncertainty of the prediction.

Figure 16 shows the detailed pseudo-labelling self-training process. Ini-
tially, the classifier model is trained by using only the labelled data, i.e.
the Initial Training Set and the Validation Set. After training, the model
is used to predict the unlabelled data and compute the uncertainty of pre-
diction in order to select a subset of the unlabelled data most suitable to
be pseudo-labelled and included in the training set. The process is iter-
atively repeated until no more unlabelled data are available or when the
selection strategy terminates or the prediction uncertainty does not satisfy
the minimum criterion to add new pseudo labels.

The self-training process generates a trained model at each iteration that
is saved in a model repository together with its performances with respect
to the validation set.

Figure 17 shows the ensemble of pseudo-labelling self-trained models. In
fact, the generated final classifier model is obtained by opportunely com-
bining the several models trained during the pseudo labelling self-training
process steps by the Ensemble Combiner. The latter implements di↵erent
ensemble strategies to combine in di↵erent ways the output of the base
learners.

71

Training and Validaton Set

Data
True

Labels

Initial Training Set

Data True
Labels

Validation Set

Data Pseudo
Labels

Pseudo-labeled Set

Data

Unlabeled Set
Trained Models

D
ecreasing

Increasing

Train Compute
Uncertainty Select Unlabelled

Generate
Pseudo Labels

Model M0

Model M1

Model MN

…

Model
Architecture

Figure 16: The pseudo labelling self-training process.

Trained Models

Model M0

Model M1

Model MN

…

Data
True

Labels

Test Set

Ensemble
CombinerSelf Training

Data
True

Labels

Validation Set

Evaluation
Results

Ensemble Model

Performance
Evaluator

Figure 17: The ensemble of pseudo labelling self-trained models.

72

5 Case studies: Ticket Classification and Fake De-

tection

An overview of the implemented architectures of the proposed framework
opportunely specialized for the two real scenarios are reported below: the
intelligent TMS (Ticket Management System) text classifier and the fake
detection system.

5.1 The Ensemble-based System for Ticket Classification

The TMS classification system is an implementation of the proposed frame-
work specialized for the categorization of tickets in customer support sys-
tems, essentially relying on combining powerful (deep) ensemble classifiers
with ad hoc explanation mechanisms.

The following main concepts will be illustrated in the next paragraphs:

• the high-level conceptual architecture of the TMS framework;

• the core intelligent deep ensemble ticket classification scheme enabled
by the Model Building block of the TMS framework;

• the human-in-the-loop scheme enabled by the explanation module im-
plemented in the proposed TMS framework architecture in order to
support the discovery, application, validation and improvement of re-
liable ticket classifiers;

• the explanation-based scheme for analyzing the wrong predictions made
by the ticket classification models for helping to detect and analyse the
weakness of the models themselves.

5.1.1 The Software architecture

The high-level view of the proposed framework specialized for TMS, which
supports a layer-wise processing flow of raw ticket data, is described here
in detail. Fig. 18 illustrates the overall conceptual architecture. The Infor-
mation Retrieval block is devoted to: (i) collecting such data from di↵erent
kinds of sources, including e-mail/chat messages, web forms, and TMS ap-
plications in the Ticket Gathering block; (ii) transforming the data into
a unified semi-structured format with fields like customer ID, timestamp,
urgency, free-text body of the customer request, etc. in the Ticket Data
Wrapping ; (iii) making the data anonymous in order to make the analysis

73

and investigation process immune from the privacy problems in the Ticket
Anonymization block.

The collected, uniformed and anonymized data are stored in the Raw
Data repository for being pre-processed in the Ticket Text Pre-processing
block and encoded in a tensor form in the Tensor Generator block inside
the Ticket Encoder.

Pre-processed tickets fill the D dataset used for training, validating and
testing the entire classification system.

Inside the Model Building block, the Deep Classifier Discovery block is
devoted to investigating and exploring the potentialities of the proposed
ensemble learning models, while the Latent Space Base Explanation Index
Building block creates the internal structure for supporting the explanation
of the classification results from a latent space representation of the ticket
data. For this purpose, the proposed ensemble models include a High-Level
Feature Extractor block mapping the (pre-processed) tickets onto a low-
dimensional “latent” space, useful to capture class-related relevant aspects
of the tickets. Finally, the Application and Validation Model block furnishes
the end user with a complete instrument for classifying new tickets together
with an explanation module fundamental for validating and improving the
performance of the classification system through the aid of human feedback.

5.1.2 Exploiting Novel E�cient Deep Ensemble Classification Mod-
els for Ticket Classification

The proposed approach to the problem of predicting the class of a new ticket
relies on discovering a special kind of classification model (or ticket classi-
fier), which takes the form of an ensemble of deep base classifiers featuring
di↵erent DNN architectures. As confirmed by the empirical study reported
in the experimental results, this ensemble model is expected to improve the
performance of all the base classifiers (thanks to its higher expressiveness
and robustness to overfitting and class-imbalance risks). More specifically,
a multi-representation ensemble approach exploiting weak models based on
di↵erent architectures is devised here.

In order to promote the diversity of the single prediction, in the proposed
solution a set of Neural Networks, DNN1, . . . , DNNn, based on di↵erent
deep architectures, are used to yield di↵erent weak predictions, which are
the input for subsequent combination strategy. In the current implementa-
tion of the framework, four di↵erent DNN architectures are used to build
the base models in the ensemble: (i) LSTM, consisting of a stack of Long
Short-Term Memory layers; (ii) CNN, a Convolutional Neural Network ar-

74

Knowledge Base

Ticket Data
Wrapping

Raw Data

Ticket
Gathering

Raw Data

Preprocessed Ticket
Dataset D

Ticket
Classification Models

Explanation Indexes

Ticket Encoding

Raw
Data

Ticket Text
Preprocessing

Tensor
GeneratorPreprocessed

data

Model

E-mail Chat
Communication channels

Information Retrieval

Ticket
Anonymization

Preprocessed Ticket
Dataset D

Model Building
Deep Classifier

Discovery

Ticket
Classification Models

Latent Space Based
Explanation Index Building

New Ticket
Instance

Application and Validation
Class Prediction

Explanation
Indexes

Prediction Explanation
(visual artifacts) Operator

Ticket Classification
Model

Explanation
Indexing

Local Explanation
Building

Model Prediction
Statistics/Issues

Model Prediction
Statistics/Issues

Figure 18: Intelligent TMS Framework: Conceptual Architecture.

75

Figure 19: Stacking ensemble architecture.

chitecture (including Global Max Pooling for down-sampling the convolu-
tion results), (iii) GRU, composed of a stack of Gated Recurrent Unit lay-
ers; and (iv) Transformer, corresponding to the encoder part of standard
Transformer architecture [66]. More details on the configuration of these
architectures are given in the experiment chapter.

All these architectures take, as input, a vectorial encoding x of the se-
quence of terms appearing in a ticket (also denoted as x in the following, with
some abuse of notation), and include a trainable word embedding layer for
mapping each of these terms to a dense low-dimensional representation of the
term –before applying the transformations encoded by the above-mentioned
DNNs. Moreover, each architecture incorporates batch-normalization and
dropout mechanisms for the sake of higher stability and robustness to over-
fitting, respectively.

The implemented base classifiers are then used in the two proposed en-
semble architectures deeply analyzed in the previous chapter: the MOE
ensemble and the Stacking ensemble ensembles that are reported in Figures
20 and 19 respectively.

To help the proposed ensemble classifiers pay attention to rare classes
(in case of class imbalance), a class-weighted version of standard categorical
cross-entropy loss function in the training process is used. Precisely, the
loss on each training instance x is here associated with a weight cl weightx
linked to the frequency of the class of x (the higher the frequency, the lower
the weight), computed as follows: cl weightx = n sample clx/all samples,

76

Figure 20: MOE ensemble architecture.

where n sample clx is the number of training examples with the same class
as x, while all samples is the total number of training examples.

5.1.3 Supporting ticket classifiers with a novel Core Human-In-
The-Loop scheme

The human-in-the-loop scheme enabled by the proposed framework is de-
scribed here, it is aimed at supporting the discovery, application, validation
and improvement of reliable ticket classifiers. As mentioned above, this
scheme exploits a novel combination of advanced (deep ensemble) ticket
classification and ad hoc explanation mechanisms.

Figure 21 illustrates the detailed logical architecture. For any new ticket
x that is to be handled in the TMS; first, an estimate of the di↵erent class-
membership probabilities is supplied to the user. These probabilities are
computed with the help of an ensemble-based classification model, denoted
hereinafter by M , preliminary trained against a given set D of the labelled
ticket —specifically, we assume model M to be an ensemble of DNN-based
ticket classifiers.

If x appears to clearly belong to one of the classes, the interactive analysis
of x ends directly with assigning this class to x. In many real-life application
contexts, where decision-makers have limited resources, this helps speed up
the ticket classification process, and obtain more accurate classifications.

By contrast, if the class-membership probabilities returned by the ensem-

77

Figure 21: Proposed human-in-the-loop scheme for intelligent ticket classi-
fication

ble model M for a new ticket x is uncertain/unconvincing1, the user can ask
for two di↵erent kinds of explanation artefacts: LIME-based post-hoc ex-
planations (providing hints on how di↵erent parts of the ticket contents may
have influenced the prediction results) and summary/detailed information
on the neighbours of x in the latent space learnt by (the HLFE compo-
nent of) model M . The details on these explanation artefacts and the way
they are computed and presented interactively to the user are treated in the
Explanation paragraph.

By shedding light on the behaviour of M on x and on its surrounding
region of the instance space, the above-mentioned explanation artefacts al-
low the operator to classify x in a more conscious way and to revise the
suggestion made by the ticket-classification model.

In particular, these artefacts can help discover that a classification model
is not trustworthy in some regions of the instance space, likely as a conse-
quence of the fact that the model was not trained with an adequate number
of examples of that region so that it tends to rely on spurious (i.e., inciden-
tal) classification patterns when classifying new instances in that region. In

1As every classifier M learnt in our framework is a DNN including dropout layers, the
uncertainty of M in classifying a ticket x can be quantified via MC Dropout [21], i.e., by
making multiple predictions for x with di↵erent (dropout-based) random variants of M ,
and computing suitable variability/entropy measures over these predictions.

78

such a case, an issue is reported to the analysts, who may eventually decide
to retrain the model, as explained in the final part of the next subsection.

5.1.4 Introducing an Explanation-based Analysis for better in-
terpreting classification errors

Data-driven explanation mechanisms are a valid aid in the core process of
classifying a new ticket. In particular, in case of uncertainty, the obtained
explanations are expected to help the user make more conscious decisions.

Figure 22: Error analysis use case: exploring explanations for misclassified
tickets.

Figure 22 reports the sketch of a di↵erent, complementary use case for
the explanation methods, where these methods are exploited to investigate
errors made by the ticket classification model.

In this use case, the user/analyst requires and explores explanations for
some ticket that was misclassified by the model. Clearly, this entails that
the ground-truth class label is known with certainty, as in the case of the la-
belled tickets in the training set or of novel tickets that were assigned a class
automatically, but this class was subsequently found to be wrong —think,
e.g., of an urgent ticket that is classified as non-urgent, so that a complaint
will eventually come from the customer or from another employee for the
delay accumulated in handling the ticket. In both cases, explanation mech-
anisms can be exploited to shed light on the reported inference mismatches
and on the factors that could have misled the classification model.

Clearly, this analysis can allow for detecting situations where the ticket

79

classification model is not working in an accurate and reliable way. To al-
leviate this problem and improve the competence of the model over the
misclassified instances, the analyst can start a re-training procedure for the
model by using an extended set of training examples —including novel tick-
ets that have been already classified (starting from the time in which the
classification model was trained), and for which the ground-truth class labels
are known (i.e. the assigned class labels were validated/revised manually by
an expert or by an informed process stakeholder). In this re-training step,
one could leverage cost-based learning approaches (assigning higher weights
to the training losses of misclassified examples) and possibly discard ob-
solete training examples (in case the model is su↵ering from performance
degradation caused by some concept drift phenomenon).

In order to support such a continuous improvement of the ticket-classification
models, the analysis workflow includes an optional step that permits the
storage of two kinds of information in an ad-hoc repository: (i) per-model
performance statistics and misclassification reports and (ii) new labelled
ticket instances (associated with a manually revised, reliable class label).

5.1.5 The proposed explanation workflow with a neighbour-based
artifacts representation

The flowchart scheme in Figure 23 sketches how the user can interactively
and incrementally exploit the explanation capabilities described so far for a
given ticket x under analysis.

LIME charts are the first concise form of explanation artefact that is
presented to the user in case she wants to investigate which properties of
the ticket under classification were likely to influence the prediction made
on x by the classification model.

If the user feels that more investigation is needed, she can ask to be
provided with summary information on the per-class k-neighborhoods of x,
presented in the form of word clouds. Algorithm 1 reports a step-by-step
description of how these word clouds are computed for a ticket x.

For the sake of deeper inspection, the user can ask to be shown the detailed
(ranked) list of the k-nearest neighbours of x for each of the classes.

The exploration of the neighbours of x can be refined iteratively and
interactively by the user, who can change the neighbourhood size k at her
will.

It is worth pinpointing that the flexible and interactive explanation pro-
cess described above is led by the user, based on her level of uncertainty
about the classification model’s predictions.

80

Figure 23: Detailed flow of the explanation process.

5.1.6 Complexity analysis of the Approach

Before illustrating the time complexity of Algorithm 1, a discussion on the
implementation of its metric-tree index parameter IM and on the cost of
initializing it prior to executing the algorithm is here provided. And then
an asymptotic study of the time taken by every run of the the algorithm,
when provided with such a kind of data index, will be reported.

Time complexity of constructing the metric-tree index In the pro-
posed framework, after training each ensemble-based ticket-classification
model M , an index IM is built for M (by using the method described in
Section 4.3.2), in order to maintain the latent representations (produced by
the HLFE layer of M) of the labelled instances in the training set D. For
the sake of convenience, it is assumed that this index takes the form of a ball
tree [37], a popular special kind of binary tree where each node represents
a hyper-sphere, named ball, in the D-dimensional space.2 Specifically, every

2It is worth noting that other kinds of data structures (possibly not relying on
metric/search-tree structure) could be used in our approach as well, including data struc-
tures that only provide approximate, but faster, answers to k-NN queries. In fact, useful
explanations for who is classifying a ticket x can be obtained by finding a representative
sample of k labelled instances staying close to x (but do not necessarily are its k nearest

81

Algorithm 1: Pseudo-code for computing neighbour-based per-
class explanations in the form of word clouds.

Input : A new ticket x being classified with a ticket
classification model M ;
A metric-tree index IM , built on the basis of (the

HLFE
subnet of) M and pointing to the labeled tickets in

D.
The neighborhood size k 2 N;

Parameters: The list [c1, . . . , cm] of classes defined over the
tickets;
The max number of relevant terms q 2 N;
A term relevance function rs (defined as in Equation

3).
Output : A list L of word clouds.

1 L = []
2 foreach c 2 [c1, . . . , cm,?] do
3 //label ? here stands for ’whatever class’
4 Nc = findNeighbors(⌧, IM , k, c)//extracts, by using IM , the

nearest k neighbors of ⌧ that belong to class c if c 6= ? (in this
case Nc = N k

M (x)|c), or to whatever class if c = ? (i.e.,
N? = N k

M (x))
5 LWT = deriveTermList(Nc, IM , rs)//produce a list of pairs

(t,rs(t)), for each term t appearing in the tickets of Nc, where
rs(t) is the relevance score of t

6 Cc = buildWordCloud(LWT , q)//generate a word cloud showing
the top-q relevant terms in neighborhood Nc

7 L + Cc // append the current word cloud to the list

8 end
9 return L

node keeps information on the centre and radius of its associated ball. In
particular, the leaves store disjoint subsets of the instances, while any inter-
nal node represents a ball that includes those of its children. Data instances
are assigned to nodes based on their distance from the node centres.

Since similar instances are expected to fall in the same ball or in close
balls, a ball-tree index can enable e�cient nearest-neighbour searches. In

neighbours.

82

particular, in the best and average cases (assuming that the tree is balanced),
a k-NN query can be answered in O(f ⇥ k ⇥ log n) [37], where n is the
number of data instances stored in the index, and f is the dimension of
their representation (i.e., the number of latent features per data instance).

In order to express the computation-time complexity of building IM for
a DNN-ensemble classifier M , let n denote the number of instances in the
training set D and let f denote the dimension of the data instance represen-
tations produced by the HLFE layer in M . Then, by resorting to the first
general algorithm described in [37], in our framework, a ball-tree index IM
for M can be constructed in O(f ⇥ n⇥ (log n)2) steps.

Time complexity of Algorithm 1 For each ticket-group label c in
c1, . . . , cm,?, representing the ticket classes plus an additional group em-
bracing all kinds of tickets, three main computation steps are performed in
Algorithm 1: (A) retrieving the neighbors of the given test instance x falling
in group c, (B) extracting a list of (term, relevance) pairs from the tickets
retrieved in the former step; and (C) constructing a word cloud summarizing
this list of relevance-weighted terms.

Under the assumptions mentioned in the previous paragraph, step A (Line
4 in the algorithm) can be done in O(f ⇥ k ⇥ log n) time, where f is the
dimension of the latent representations and n is the number of example
tickets in D.

The core task in Step B (Line 5) amounts to calculating the relevance
scores of each of the terms occurring in the tickets found for group c. This
can be done e�ciently by exploiting a dictionary (i.e., an associative map)
maintaining the (term, score) pairs. If using a binary search tree, the dictio-
nary can be initialized in O(v⇥ log v), while retrieving/updating an element
in it takes O(log v) time.

Let v be the total number of distinct terms appearing in the tickets in D
(i.e., let v be the size of the vocabulary, built in the model training phase).
In O(k⇥ v⇥ log v) time, through a single scan of the k neighbour tickets, it
is possible to update the dictionary entries of all the terms in these tickets,
according to Equation 3. Indeed, the distance from the query point x was
already returned along with each neighbour’s tickets, say x0, by the metric
tree in Step A (remember, in the algorithm we represented the result as
just a set of ticket identifiers for the sake of presentation), while the BOW
representation of x0 can be retrieved from a separate data structure (if the
tickets in D are identified through progressive positive integers, this can be
done in constant time). At the end of this scan, the term-score elements in

83

the dictionary are sorted according to decreasing score values, and eventually
put into an ordered list LWT , in O(v ⇥ log v).

Finally, Step C just amounts to extracting the top-most q elements from
the ordered list, which can be done in O(q ⇥ log v) = O(v ⇥ log v) (since
q < v).

Then, each iteration of the loop takes O(k⇥ (f ⇥ log n+ v⇥ log v)) time,
so that the total computation time of the algorithm is O(m⇥k⇥(f⇥ log n+
v ⇥ log v)).

Thus, the time required to execute the algorithm is expected to be loga-
rithmic (and anyway ensured to be at most linear) in the size of the input
dataset D —if regarding parameters m (number of ticket classes plus 1), k
(number of neighbours per test instance and ticket group), f (dimension of
the latent ticket representations) and v (vocabulary size) as minor constant
terms.

84

5.2 The Ensemble-based self-trained Fake Detection Classi-

fier

A novel fake detection classifier is here described as a specialization of the
proposed text classification framework for the discovery, application and
evaluation of deep ensemble neural networks aimed at limiting the spreading
of fake news, and, specifically devised to face the problem that only a small
portion of the available examples of news data is associated with a class
label so most of the examples are unlabelled.

Figure 24 illustrates the conceptual fake detection architecture. News
coming from di↵erent communication channels like news web sources or so-
cial networks are collected by the Data Gathering block inside the Informa-
tion Retrieval module and wrapped by the Data Wrapper block in di↵erent
fields like news text, title, pictures and eventually tags, web source, owner of
the post, or other available information. All these data form the Knowledge
Base opportunely split in labelled training, validation and test datasets and
unlabelled data, i. e. data without labels assigned by a specialist of the
field. The proposed Fake Detection architecture is designed to overcome
the problem of having only a few labelled data, a case that often arises
considering that labelling data is a task very expensive in terms of time
and money. This problem is overcome by progressively enriching the given
labelled data instances with novel pseudo-labelled tuples. At the very be-
ginning of this iterative learning process, a preliminary classification model
M0 is built (by the DNN model learning module), by reusing a pre-trained
instance of BERT as a backbone. This fine-tuning task is performed by only
using the given labelled news data instances, split as usual into a training
set and a validation set.

Afterwards, an iterative process is followed, which consists of two phases.
In the first phase, the generated model is exploited (by the Pseudo Labeling
Approach module) to estimate the class of unlabelled data instances, and
to assign an artificial class label to some of them eventually; the latter data
instances are selected (by the unlabelled data selection module) according
to di↵erent strategies described in detail in the following subsection. In the
second phase, the batch of (pseudo-) labelled data instances obtained in the
former phase are added to the training set, and exploited, together with
those already available before, to train a new version of the classification
model (e.g., M1 at iteration 1, M2 at iteration 2 and so on), which is stored
in the Detection Model Repository. These phases are iterated until no new
element of the pseudo-labelling set meets the constraints defined by the se-
lection strategy (e.g., until the probability of the model correctly predicting

85

a tuple goes under a given threshold) or until there are no more available
unlabelled instances.

Finally, the Model Extraction/Combiner module generates the final clas-
sifier for detecting incoming fake news opportunely extracting or combining
the models generated during the di↵erent self-training iterations.

In the current implementation, di↵erent strategies are explored. One of
the extraction strategies proposed consists in selecting the model and get-
ting the best AUC score on the validation set as the final model. Several
ensemble strategies are also proposed to get higher performances. The three
ensemble proposed strategies are the pseudo avg ens, avg ens and ps ens. In
the pseudo avg ens, the output predictions of the intermediate models are
averaged in order to obtain an ensemble prediction that equally takes into
account the decisions of each base model. The avg ens and the ps ens are
ensemble models based on a weighted average combiner, but the weights are
computed di↵erently, as explained in detail in the next section.

The Performance Evaluation module returns di↵erent evaluation metrics
used in the experimental section.

The final Ensemble Model module is used to classify the news as fakes or
true thus supporting the reader with an important instrument for verifying
the veracity of the news massively generated on the web.

After each iteration of pseudo labelling generation, the model parame-
ters are not saved from previous training but reinitialised randomly, thus
reducing possible consequences of confirmation bias due to the overfitting
to incorrect pseudo-labels used for training the model in the previous steps.

5.2.1 The ensemble strategy for e↵ective training with few la-
belled data

The pseudo-code in Algorithm 2 explains in detail how the proposed entire
pseudo-labelling self-training process works.

Given as input an initial Training Set (ITrS), a Validation Set (V S) and
a set of unlabelled instances (ULS) coming from a stream of news, an initial
model M is trained using the two sets ITrS and V S. The learning process
goes on through multiple training rounds, using both the manually-labelled
data initially stored in ITrS and V S, and the pseudo-labelled data added to
PsS (i.e. data without true labels that are labelled based on the predictions
returned by the model obtained at former iterations). More precisely, the
following operations are performed until no new pseudo-labelled instances
are added to the current training set (TrS).

First, for each instance of the unlabelled set, an uncertainty score U is

86

Training
Data

Knowledge Base

Unlabeled Data

Labeled Data

Pseudo Labeled
Data

Validation
Data

DNN MODEL
LEARNING

Detection Model Repository

Model M0

Model M1

Model
MN

…

UNCERTAINTY
COMPUTATION

UNLABELED DATA
SELECTION

PSEUDO-LABEL
PREDICTION

Pseudo Labeling Approach

MODEL EXTRACTION/COMBINER

Model M*

Test Data

PE
R

FO
R

M
A

N
C

E

E
VA

L
U

A
T

IO
N

Evaluation
Results

Increasing

BERT

Web News Social
Communication channels

Information Retrieval

Data
Gathering

Data
Wrapper

News

True

Fake

Ensemble Model

Figure 24: The Fake Detection architecture.

computed, which is meant to estimate how much the prediction returned by
model M for x is uncertain. In principle, di↵erent uncertainty estimation
methods [1] could be adopted for this aim. In the implementation of the
framework that was employed in the experimental analysis, the uncertainty
scores are simply derived from the highest class membership probability
returned by M for x (the closer this probability is to 0.5 the higher the
uncertainty degree).

Then, a subset X of instances taken from ULS are selected for being
pseudo-labelled by preferring those ones on which the current model M
seems to be less uncertain. Two di↵erent strategies can be adopted to make
this selection step (described later on), and they can be controlled through
the parameter strategy of Algorithm 1.

The selected instances in X are automatically assigned a pseudo label with
the help of the current model M , and put into a new temporary (Pseudo-
Label) set PsS. All of these pseudo-labelled instances are added to the
current training set TrS, while removing all the instances of X from the set
ULS of unlabelled data instances.

Ensemble and combiner strategies In order to take into account the
fact that the pseudo-labels are not true labels (i.e. labels assigned by ex-
perts and then to be considered true for sure) but labels assigned by the

87

currently trained model by opportunely evaluating its prediction and the
corresponding certainty, for each pseudo-labelled instance, a weight is com-
puted to be considered in the loss function during the subsequent training
iterations. In fact, minimizing the loss function during the training means
that the model learns how to minimize the di↵erences between each predic-
tion and each target. The idea of using di↵erent weights in the loss function
is supported by the consideration that pseudo labels are probabilistic labels;
thus, in computing the di↵erence between the prediction and the target,
the training has to take into consideration that there is an uncertainty on
the target itself. Thus, for each training instance, the model has to learn
how to generate an output as close as possible to the target for the true
label, while this di↵erence has to be scaled with the certainty level of the
target for the generated pseudo-labels (in fact, the target could also be not
correct). The labels of the instances in the initial Training Set (ITrS) are
assigned a weight of one by default because they are true labels. For the
pseudo-labelled instances, simply the prediction probability is considered as
the weight.

Finally, a new model M is trained from scratch over the (augmented)
training set TrS, still using V S as a validation set, after initializing the
weights of all the layers of M but the last (which is initialised randomly3)
with the weights of the pre-trained BERT model. The newly generated
model is then saved in the repository.

At the end of the self-training loop, a final classification model M⇤ is
extracted. Several model extraction/combination schemes are devised by
exploiting all the models obtained at the end of each self-training iteration
in di↵erent ways. In more detail, the explored model extraction schemes
consider two selection approaches, one that simply takes the last generated
self-trained model and the other that selects the model that performed the
best (precisely, the one achieving the highest AUC score) on the valida-
tion set V S. More complex ensemble approaches that combine in di↵erent
ways the output of the trained models have been explored to achieve better
performances.

Selection strategy Several alternative strategies can be adopted for se-
lecting which unlabelled data are promoted to pseudo-labelled ones, in or-

3To curb the risk of confirmation bias and of concept drifts, we do not adopt a sort
of incremental training scheme where M is initialised with a copy of the model obtained
at the previous iteration of the self-training loop (Steps 6-18 of Algorithm 1). Indeed,
restarting model parameters before each self-training cycle was identified in [10] as a key
to the success of pseudo-labelling approaches to the discovery of deep models.

88

der to obtain an improved version of the fake news classifier. In more de-
tail, two strategies are here considered. One strategy (chosen when setting
strategy = str thr in Algorithm 1), simply consists in comparing the un-
certainty score of an unlabelled data instance to a given maximal threshold
thr. The subset of samples in the unlabelled set (ULS) to be included in
the Training set (TrS) is built by selecting the instances for which the lastly
trained model M returns a prediction with an uncertainty score lower than
thr.

The second strategy (chosen when setting strategy = str bestK in Al-
gorithm 1) consists of the ranking of the instances in ULS based on their
associated prediction-uncertainty scores and eventually selecting the k ones
of them achieving the lowest scores.

In both cases, each instance x, among those selected as described so far,
is artificially assigned a (pseudo-)label that refers to the class for which the
model returned the highest class membership probability on x.

Extraction/Combiner model strategy Di↵erent strategies have been
tested for extracting the final classification model from the ones obtained
during the di↵erent self-training steps of the pseudo-labelling learning pro-
cess. The first extraction strategy (str last iter) is a simple selection ap-
proach that selects the last trained model in the self-training iteration pro-
cess. Another extraction strategy (str best auc val), by testing the inter-
mediate models on the validation set V S, selects the model achieving the
best performances (more precisely, the AUC score) as the final classifier.
Ensemble-based schemes are also proposed here in order to combine the
predictions from the intermediate-trained models in a more complex way.
Three ensemble strategies are proposed: str avg ens, str avg acc ens and
str avg ps ens. The str avg ens adopts the simplest combiner strategy; in
fact, the output predictions of the intermediate models are averaged in order
to obtain an ensemble prediction that equally takes into account the deci-
sions of each base model. The str avg acc ens is an ensemble model that
surpasses the idea of considering all the base models equal to each other,
by di↵erentiating the predictions furnished by the di↵erent base models de-
pending on the performances (precisely, the ACC score) reached by tests
on the validation set V S. Thus, the final ensemble model predicts the new
instances by computing a weighted average of the base models’ output pre-
dictions, with each prediction weighted by the accuracy of the corresponding
predicting base model. Finally, the str avg ps ens is an ensemble model also
based on a weighted average combiner, but the weights are computed di↵er-

89

ently, taking into consideration the ’goodness’ of each model, not on the base
of its performances computed on the validation set, but on the base of the
’goodness’ of the training set used in its learning phase. In fact, the mod-
els are trained with incrementally generated datasets obtained by using the
initial training set ITrS containing true labels, incremented with the gener-
ated pseudo-labels assigned to the selected (by the chosen selection strategy)
unlabelled instances. In more detail, the str avg ps ens exploits the level of
uncertainty or, more precisely, the level of certainty of the pseudo-labels
used to train each model to weigh the average in the ensemble combiner
prediction. The weight assigned to each base model is computed as the av-
erage of the probability predictions of the pseudo-labels introduced in the
training set TrS used to train the base model itself.

90

Algorithm 2: Pseudo-code for self-training the model with the
Pseudo-Labelling algorithm.
Input : Initial Training Set (ITrS);

Validation Set (V S);
Unlabelled Set (ULS); // Unlabelled instances, for which one can

produce pseudo labels
Parameters: strategy 2 {str bestK, str thr};

thr; // maximal uncertainty threshold (to be used when setting
strategy = str thr)

k; // maximum number of instances (to be used when setting
strategy = str bestK)

combiner 2
{str last iter, str best auc val, str avg ens, str avg acc ens, str avg ps ens};
Output : The model M⇤ for classifying the tuples

1 Train(M, ITrS, V S) // train the classifier M using ITrS and V S
2 TrS = ITRS // Current Training Set
3 PsS = ? // Pseudo labelled Set
4 MS = ? // Trained Model Set with the respective validation performance
5 newPseudoLabel = True
6 while |ULS| > 0 AND newPseudoLabel do
7 newPseudoLabel = False
8 U = ComputeUncertaintyScores(M,ULS) // U is an ordered list of pairs

of the form (x, u) such that x 2 ULS and u 2 R+ is a score quantifying
how much M is uncertain in making a prediction for x (with the pairs
ordered based on the score values)

9 X = SelectUnlabelled(ULS,U, strategy, k, thr) // Select the unlabelled
data to be pseudo labelled

10 if |X| > 0 then

11 newPseudoLabel = True
12 PsS = {(x,M(x)) | x 2 X} // Generate a bunch of pseudo-labelled

instances, by assigning a predicted label to each of the selected
unlabeled instances in X

13 ULS = ULS \X
14 TrS = TrS [PsS
15 W = GenerateWeights(X,M(X)) // Generate the weights for the

pseudo-labelled instances to be used in the loss function during the
training phase

16 Train(M,TrS,W, V S) // Train the model M from scratch using the tr.
set TrS and the val. set V S by applying the weights W to the loss
function

17 MS = MS [(M,Evaluate(M,V S)) // Save the trained Model and its
performance on V S

18 end

19 end

20 M⇤ = GeneratetModel(MS, combiner) // Generate a final classification model
from a combination of the ones computed in all the self-training iterations

21 return M⇤

91

6 Experimental results

The proposed text classification framework in the two specialized architec-
tures opportunely designed for the ticket management system and for the
fake detection have been tested extensively in order to evaluate the perfor-
mances in the real application scenarios.

6.1 Automatic Ticket Classification Experiments

In this section, the experimental tests conducted over the two real-life ticket
datasets, to assess the e↵ectiveness and the usefulness of the proposed in-
telligent ticket classification framework, are described. In particular, first,
a statistical analysis aimed to analyze the characteristic of these datasets is
here conducted. Then, the e↵ect of the imbalance-aware loss function is ver-
ified, and the comparison of the proposed approach with both the baseline
DNN architectures and with some state-of-the-art classifiers is reported. In
the next two subsections, the datasets and the evaluation procedure used in
the tests are illustrated in detail.

6.1.1 Datasets: description and statistics

Before illustrating the results of the experimentation conducted in this work,
in this subsection, the two main datasets used, referred to as Phone and
Endava hereinafter, are described, while showing a number of statistics cap-
turing some major characteristics of these datasets.

Phone dataset Though the classification and explanation framework pro-
posed in this work can be reused in disparate ticket management scenarios, it
was originally devised as a solution for improving the handling of CRM tick-
ets concerning requests/issues posed by the customers of an Italian phone
company.

The text content of these tickets comes from two channels: SMS messages
and Facebook chats. Given the nature of these channels, the length of the
messages is usually very short, making the task of classifying them harder.

Each customer request can pertain to one among two categories of prod-
ucts/services: mobile phones and landline phones. Independently from the
product/service category, a ticket can be assigned to either special or ordi-
nary support sta↵.

The combinations of these two orthogonal schemes of ticket categorization
gives rise to four classes, namely + Mobile Ordinary support, + Mobile

92

Table 2: Main features of the Phone and Endava dataset.

Dataset # Tickets # Classes
Vocabulary
size

Words per ticket
Avg. MedianQ1 Q3

Endava 48,549 4 12,259 39.7 23 13 41
Phone 33,439 4 5,890 9.3 7 3 14

Special support, + Landline Ordinary support and + Landline Special
support, having the following relative frequencies in the dataset: 38.56%,
13.20%, 46.43% and 1.81%, respectively. In the experiments conducted over
this dataset, we considered the problem of predicting to which of these
classes a ticket belongs based on the text content of the ticket. It can be
easily noted that this dataset su↵ers from a high level of class imbalance, as
is often the case in many real-life ticket classification applications.

Endava dataset The so-named Endava dataset is a publicly available
dataset containing about 50K tickets, submitted via email by the customers
of the company Endava to the helpdesk. This dataset and associated infor-
mation can be found at
https://github.com/karolzak/support-tickets-classification.
This dataset does not contain the original free-text descriptions of the

tickets, but a pre-processed version, was obtained after applying some text-
processing steps (including punctuation/stopword removal and case normal-
ization). Each ticket in this dataset is assigned several labels, which concern
di↵erent dimensions (e.g., the urgency or the impact of the ticket). In the
proposed tests, only the urgency label is considered as the class label to be
predicted. (based on the sole text contents of a ticket while disregarding all
the other labels associated with the ticket).

The resulting classes and the respective frequencies are the following: High
Urgency (3.40%), Medium Urgency (13.90%), Low Urgency (11.39%) and No
Urgency (71.31%). Thus, also this dataset is imbalanced.

Statistical analysis of the datasets Before studying the application
of the proposed approach to the two datasets, results from a preliminary
statistical analysis of the datasets are shown here. In fact, such analysis
allows to capture some major characteristics of the two datasets and was a
valid help for better devising the pre-processing of data and the configuration
of the classification methods.

Table 10 shows the overall number of tickets, the vocabulary size and some

https://github.com/karolzak/support-tickets-classification

93

statistics on the number of words per ticket (i.e., average, median, first and
third quartile). From this table, it is evident that the number of tuples for
the two datasets is very similar; however, while the Phone dataset presents
very short messages, the Endava dataset consists of a little longer messages
(about 9 words and about 40 words for a ticket on average, respectively).
The size of the vocabulary and the median and the quartiles are in line with
the di↵erent consistency of the two datasets.

Table 3: Class statistics computed on the Phone dataset (MSS = Mobile
Special, MOS = Mobile Ordinary, LOS = Landline Ordinary, LSS = Land-
line Special Support) and the Endava dataset (class: Urgency).

Class # Tickets % Tickets
Words per ticket

Avg. Median Q1 Q3

P
h
o
n
e MSS 4,414 13.20 8 6 3 13

MOS 12,894 38.56 8 7 3 13
LOS 15,527 46.43 9 8 4 14
LSS 604 1.81 9 7 4 14

Overall 33,439 - 9 7 3 14

E
n
d
a
v
a High 1,652 3.40 52 31 20 56

Medium 6,748 13.90 53 32 21 56
Low 5,528 11.39 50 31 20 52
No 34,621 71.31 34 19 12 35

Overall 48,549 - 39 23 13 41

A more detailed analysis of the characteristics and distributions of the
classes (and of the overall dataset) is reported in Table 3. Looking at this
table, it is possible to note the unbalanced nature of both datasets (the
minority class is about 1.8% for Phone and about 3.4% for Endava). More-
over, it is clear that the distribution of the words for each class is quite
uniform (in terms of average, median and quartiles), if excluding the No
Urgency class in Endava (34 words for tickets vs about 50 words in the
other classes). The di↵erent distribution of class No Urgency is likely due
to the fact there is no need for so many words to describe a problem that is
not urgent at all. Anyway, from this analysis, it does not seem to emerge any
further remarkable characteristics that could be exploited in better tuning
learning/classification steps.

Figures 25 and 26 illustrate the ticket length distribution for the four
classes in the datasets Phone and Endava, respectively. It is important to
observe that the values on the vertical axis are reported on a logarithmic
scale for the sake of readability and easier comparison. For these datasets,
however, the di↵erences in the distribution of the word lengths reflect the
average distribution in the classes, as there seem to be no other remarkable
features.

94

Figure 25: Ticket length distribution w.r.t. the four classes for the Phone
dataset.

Figure 26: Ticket length distribution w.r.t. the four classes for the Endava
Dataset.

95

Figures 27 and 28 show the 25 most frequent words (entities are reported
in angle brackets) in the datasets Phone and in Endava, respectively. In the
former, it is possible to notice the relatively high frequency of some entities
(i.e., the mobile and landline phone number, the company name, the date)
and of certain domain-specific terms (i.e., request, pay, activate, operator,
line).

In the Endava dataset, the most frequent terms concern certain temporal
dimensions (namely, the day of the week and the month) and TMS-related
concepts (e.g., issue, log, form, error).

Figure 27: Top 25 most frequent words in dataset Phone (entities are re-
ported in angle brackets).

6.1.2 Implementation, configuration, and test procedure

A Python prototype implementing the framework in Section 4 was de-
veloped by leveraging libraries Keras and Tensorflow. The source code
for test replicating the ticket-classification experiments can be found at
https://github.com/PaoloZicari/IntelligentTicketManagement

The DNN architectures of the base classifiers have been configured as fol-
lows. In the CNN architecture, a stack of five convolutional layers was used,
all equipped with ReLU activations, and consisting of 64 neurons. In both
LSTM and GRU architectures, each recurrent layer consists of 256 units
(equipped with tanh activations and sigmoid recurrent-step activations),

https://github.com/PaoloZicari/IntelligentTicketManagement

96

Figure 28: Top 25 most frequent words in dataset Endava (entities are
reported in angle brackets).

and fixed the dropout percentage to 0.25. Two attention heads of size 32
were used in the Transformer architecture. In all the HLFE sub-nets, the
output sizes of the Word Embedding and Fully Connected layers were fixed
to 128 and 64, respectively.

In each test run, the data were split into a training set (70%) and a test
set (30%) in a stratified fashion in order to preserve the original distribu-
tion of the class labels. All the DNN-based classifiers were trained for 32
epochs, using a batch size of 64, and Adam optimizer. The performance of
each discovered classifier were measured against the test set through three
di↵erent metrics: AUC (Area Under the Curve), G-Mean and F-Measure
metrics. Accuracy, precision and recall metrics have not been considered in
this specific context of experimental test measurements because providing
misleading results on imbalanced data. An aggregate evaluation score is
presented in the following: for each discovery method M and each evalua-
tion metric �, computed by averaging the scores assigned by metric � to the
classifiers that were found with the help of method M in 20 di↵erent runs.

6.1.3 E↵ect of the imbalance-aware loss function

The experiments described in this subsection were aimed at assessing whether
the proposed classification methods Stacking ensemble and MOE ensemble

97

Table 4: Comparing the proposed deep ensemble learning algorithms with
and without the imbalance-aware loss function for the Phone dataset (the
values in bold are significantly better than the others).

Algorithm Balancing AUC G-mean F-measure

Stacking ensemble
No 0.809 ± 0.007 0.618 ± 0.009 0.434 ± 0.021
Yes 0.811 ± 0.006 0.659 ± 0.008 0.471 ± 0.003

MOE ensemble
No 0.809 ± 0.007 0.616 ± 0.010 0.430 ± 0.021
Yes 0.810 ± 0.009 0.659 ± 0.009 0.467 ± 0.007

Table 5: Comparing the proposed deep ensemble learning algorithms with
and without the imbalance-aware loss function for the Endava dataset (the
values in bold are significantly better than the others).

Algorithm Balancing AUC G-mean F-measure

Stacking ensemble
No 0.953 ± 0.001 0.739 ± 0.005 0.568 ± 0.011
Yes 0.954 ± 0.001 0.779 ± 0.004 0.620 ± 0.006

MOE ensemble
No 0.952 ± 0.001 0.734 ± 0.008 0.556 ± 0.021
Yes 0.953 ± 0.001 0.778 ± 0.005 0.613 ± 0.007

benefit from the imbalance-aware loss function defined in this work. Ta-
ble 4 and 5 report the results obtained on the datasets by both kinds
of deep-ensemble classifiers with and without using the imbalance-aware
loss function against the datasets Phone and Endava, respectively. The
Stacking ensemble and the MOE ensemble algorithms perform significantly
better when configured with the weighted loss function in terms of both G-
mean and F-measure scores, over both datasets. Minor di↵erences between
the versions of the classification method are observed when evaluating the
AUC metric; as a matter of fact, this behaviour was expected since this
metric does not fully take into account the unbalanced nature of the data.

6.1.4 Comparison of the proposed approach with the baselines

This subsection compares the two ensemble methods proposed here with the
base DNN classifiers they are based upon, in order to establish whether the
adoption of an ensemble paradigm really leads to better predictions.

Table 6 and 7 report the results obtained by both the proposed deep
ensemble approaches and the DNN baselines against the Phone and En-
dava datasets, respectively. It is evident that, for all the evaluation met-
rics and datasets, our ensemble-based methods perform significantly bet-
ter than the baselines. Only for the F-measure metric on dataset Endava,
Stacking ensemble outperforms MOE ensemble, but the di↵erences are not
significant; in all the other cases, the results of these methods do not di↵er

98

Table 6: Comparing the proposed deep ensemble learning methods with the
four deep learning baselines on the Phone dataset (the values in bold are
significantly better than the others).

Algorithm AUC G-mean F-measure
LSTM 0.796 ± 0.006 0.649 ± 0.007 0.447 ± 0.005
CNN 0.787 ± 0.013 0.636 ± 0.012 0.435 ± 0.008
GRU 0.798 ± 0.005 0.646 ± 0.008 0.444 ± 0.013
Transformer 0.793 ± 0.013 0.631 ± 0.006 0.429 ± 0.015
Stacking ensemble 0.811 ± 0.006 0.659 ± 0.008 0.471 ± 0.003
MOE ensemble 0.810 ± 0.009 0.659 ± 0.009 0.467 ± 0.007

Table 7: Comparing the proposed deep ensemble learning methods with
the four deep learning baselines on dataset Endava (the values in bold are
significantly better than the others).

Algorithm AUC G-mean F-measure
LSTM 0.948 ± 0.001 0.765 ± 0.007 0.598 ± 0.012
CNN 0.943 ± 0.003 0.755 ± 0.008 0.573 ± 0.010
GRU 0.949 ± 0.001 0.757 ± 0.022 0.575 ± 0.033
Transformer 0.944 ± 0.003 0.757 ± 0.012 0.584 ± 0.026
Stacking ensemble 0.954 ± 0.001 0.779 ± 0.004 0.620 ± 0.006
MOE ensemble 0.953 ± 0.001 0.778 ± 0.005 0.613 ± 0.007

substantially. Among the baselines, the best achievements are obtained by
LSTM and GRU.

6.1.5 Comparison of our approach with state-of-the-art algorithms

In this section, the two proposed ensemble-based methods are compared
with: (i) two state-of-the-art ensemble-based classification algorithm, namely
Random Forest and Gradient boosting, and with (ii) several standard classi-
fication techniques that were recently shown to perform well in some TMS
datasets [52, 53], namely Naive Bayes, Decision Tree, K-Nearest-Neighbors
and Support Vector Machine (SVM) classifiers. For all the competitors (i.e.,
Naive Bayes, Decision Tree, K-Nearest-Neighbors, SVM, Gradient Boosting
and Random Forest), we resorted to the respective implementations avail-
able in popular machine-learning library scikit-learn [47], without perform-
ing any kind of parameter tuning where not specified. In more detail, the
Complement Naive Bayes (CNB) version of Naive Bayes was used in the
experiments, since CNB was shown in [51] to fit better the nature of text
data and to ensure more stable weight estimates and better classification
performances on such data.

99

Table 8: Comparing the proposed deep ensemble learning methods with
state-of-the-art Machine Learning algorithms, on dataset Phone (the values
in bold are significantly better than the others).

Algorithm AUC G-mean F-measure
Naive Bayes 0.779 ± 0.006 0.648 ± 0.006 0.462 ± 0.005
Decision Tree 0.722 ± 0.007 0.579 ± 0.004 0.399 ± 0.006
K-Nearest Neighbors 0.616 ± 0.005 0.535 ± 0.011 0.351 ± 0.016
Support Vector Machine 0.763 ± 0.005 0.603 ± 0.005 0.426 ± 0.005
Gradient Boosting 0.789 ± 0.009 0.627 ± 0.006 0.467 ± 0.009
Random Forest 0.799 ± 0.009 0.609 ± 0.004 0.428 ± 0.006
Stacking ensemble 0.811 ± 0.006 0.659 ± 0.008 0.471 ± 0.003
MOE ensemble 0.810 ± 0.009 0.659 ± 0.009 0.467 ± 0.007

Table 9: Comparing the proposed deep ensemble learning methods with
state-of-the-art Machine Learning algorithms, on dataset Endava (the values
in bold are significantly better than the others).

Algorithm AUC G-mean F-measure
Naive Bayes 0.928 ± 0.001 0.728 ± 0.005 0.566 ± 0.007
Decision Tree 0.900 ± 0.003 0.717 ± 0.004 0.563 ± 0.006
K-Nearest Neighbors 0.698 ± 0.003 0.598 ± 0.026 0.424 ± 0.007
Support Vector Machine 0.940 ± 0.001 0.660 ± 0.004 0.522 ± 0.007
Gradient Boosting 0.945 ± 0.001 0.728 ± 0.005 0.587 ± 0.008
Random Forest 0.945 ± 0.001 0.696 ± 0.004 0.536 ± 0.004
Stacking ensemble 0.954 ± 0.001 0.779 ± 0.004 0.620 ± 0.006
MOE ensemble 0.953 ± 0.001 0.778 ± 0.005 0.613 ± 0.007

For the Decision Tree method, we fixed the maximum depth to 10. For
K-Nearest-Neighbors we used a neighborhood of 3 and set parameter weight
to “distance” (in order to weight points by the inverse of their distance).
As to SVM Classifier, we specifically resorted to the version embodied by
algorithm ⌫-Support Vector Classification (⌫-SVC) [11], with ⌫ = 0.09 and
a polynomial kernel of degree 3 —parameter ⌫ allows for directly controlling
the number of support vectors and the margin errors (an upper bound on
the fraction of margin errors and a lower bound of the fraction of support
vectors).

All the above-described settings were chosen after performing a grid-
search procedure.

Table 8 and 9 report the results obtained by the above-cited competi-
tors, compared with those of ensemble-based methods, for the Phone and
Endava datasets, respectively. It is evident that, for all the evaluation met-
rics and datasets, our ensemble-based methods perform significantly better
than all the other algorithms. Only for the F-measure metric on Phone,

100

Gradient Boosting obtains the same performance as our ensemble-based
methods. Among the other algorithms, the Naive Bayes one obtains results
comparable with the ensemble-based competitors (especially on dataset En-
dava), while Decision Tree and K-Nearest Neighbors tend to stay under the
performance of the other algorithms —with the exception of Decision Tree
on dataset Endava.

6.1.6 Analysis of statistical significance

In order to assess the significance of the di↵erences observed between the
di↵erent methods considered in the experimentation, the popular Friedman-
Nemenyi statistical procedure [13, 22], a widely used in the evaluation of
classifiers, was adopted. This procedure essentially consists of two phases.
First, the Friedman test is employed to possibly reject the null hypothesis
H0 that the di↵erent populations of results (produced each by a distin-
guished classifier-induction method) have the same mean, so that they can
be considered as statistically di↵erent (↵ = 0.05). Then, if H0 is rejected, a
post-hoc Nemenyi test with a significance level of 0.05 is used (as post-hoc
test) to detect all the pairs of methods that are significantly di↵erent from
one another: if a pair of methods is assigned a p-value under 0.05, these
methods are eventually deemed as significantly di↵erent from a statistical
viewpoint.

For the sake of presentation, in this statistical-significance study the fo-
cus will be given only to a subset of the classification methods considered so
far. Specifically, among all the six di↵erent competitors, only the two best-
performing ones, i.e. state-of-the-art ensemble-based methods Gradient Boosting
and Random Forest will be considered here.

Figure 29, 30 and 31 shows the critical di↵erence (CD) diagram [13, 22],
respectively for the metrics of AUC, G-mean and F-measure, obtained by
using the Friedman-Nemenyi procedure described above. In this diagram,
two methods are connected through a horizontal line i↵ they resulted not
significantly di↵erent from one another.

It is evident from the figures that Stacking ensemble and MOE ensemble
are not significantly di↵erent for all the metrics. However, for both AUC
and G-mean, the two ensembles proposed here are significantly better than
all the base algorithms and all the ensemble-based competitors. Only for
the F-measure metric, MOE ensemble does not perform significantly dif-
ferently from Gradient Boosting, but the latter looks also similar to the
other two methods (namely, LSTM and GRU) that are neatly overcome by
MOE ensemble. Anyway, also with F-measure, Stacking ensemble confirms

101

Figure 29: Critical di↵erence (CD) diagram for AUC scores (Friedman test
+ Nemenyi test, ↵ = 0.05). All (and only) the pairs of methods resulting not
significantly di↵erent according to the test (i.e., receiving a p-value � 0.05)
are connected through a horizontal line.

Figure 30: Critical di↵erence (CD) diagram for G-mean scores (Friedman
test + Nemenyi test, ↵ = 0.05). All (and only) the pairs of methods resulting
not significantly di↵erent according to the test (i.e., receiving a p-value �
0.05) are connected through a horizontal line.

its superiority in comparison with all the other competitors.

6.1.7 Explanation results

Two examples are here shown illustrating the exploitation of the explanation
capabilities of the proposed framework in a simulation scenario where the
ensemble classifier discovered with method Stacking ensemble, named here-
inafter M , is used to predict the class of two tickets from dataset Endava.
These tickets, named hereinafter x1 and x2, were both associated with the
highest urgency class, referred to as either High Urgency or class 0 in what
follows.

102

Figure 31: Critical di↵erence (CD) diagram for F-measure scores (Friedman
test + Nemenyi test, ↵ = 0.05). All (and only) the pairs of methods resulting
not significantly di↵erent according to the test (i.e., receiving a p-value �
0.05) are connected through a horizontal line.

Figure 32: LIME-based explanation obtained for test ticket x1.

The text of the ticket x1 (related to problems with server connection
password notified by a tester in a follow-up message) is shown in Fig. 32,
which also reports the prediction returned for x1 by the proposed classifier
M and the respective local explanation obtained with the proposed LIME-
based procedure. Clearly, M guesses the real class (i.e., class 0) of this
ticket –which is given a (relatively high) membership probability of 0.63.
The terms that LIME deems most influential for this prediction decision
(highlighted in blue in the ticket message) confirm that the HLFE subnet of
M focuses on concepts (namely, server, connection, password, tester, sent)
that are really relevant for deciding the urgency class of x1. The relevance
of these terms was confirmed by the word clouds derived from the k = 100
nearest neighbors of x1 in the latent space of M , omitted here for brevity.

103

All these explanation artefacts support the prediction of M for x1.
The text of ticket x2 is shown in Fig. 33, along with the class predictions

and LIME-based artefacts returned by our framework. Di↵erently from the
previous case, the ensemble classifier is uncertain on the class of this ticket
(the membership probabilities of classes 1 and 2 are similar).

Figure 33: LIME-based explanation obtained for test ticket x2.

In fact, the explanation obtained with LIME for this prediction is not
convincing, for it relies on terms (namely, start, current, en) that fail to
capture the semantic of x2. Indeed, by looking at the text of x2, a human can
easily understand that it regards a serious problem (non-responsive screen,
and the impossibility of performing basic tasks) that should be assigned a
high level of urgency.

In fact, after performing a k-NN search (with k = 100) in the latent space
associated with the ensemble classifier, we discover that the two nearest
example tickets of class 0 share some semantic similarity with x2, in that
they also seem to be related to blocking malfunctions (a↵ecting a battery
and an interface device, respectively, instead of a server).

The (pre-processed) text contents of these example tickets (lying at a
distance of 0.539 and 0.367, respectively, from x2 in the latent space) are
reported below:

• “battery en laptop broke suddenly hi based have using laptop inventory
en since today laptop battery seems have failed completely out sudden
if remove charger connector leaving laptop run battery laptop shuts
down immediately even if battery charging percentage widows had lap-
top connected charger throughout if try start up laptop with charger
disconnected won start looks like battery drained please could you look
into makes laptop use extremely thanks regards senior manager”

104

(a) Word cloud for N 100
M (x2). (b) Word cloud for N 100

M |2(x2).

Figure 34: Word clouds summarizing the neighbour sets N 100
M (x2) and

N 100
M |2(x2) returned by the framework for test ticket x2 —the latter word

cloud summarizes the example tickets that are both in the neighborhood of
x2 and have the class label (namely, class=2, i.e. Medium Urgency) as the
one predicted for x2.

• “issues hello during course today we have experiencing intermittent
issues with interface stops responding various stages interface buttons
can longer be pressed best regards click here find out more about expe-
rience en address blvd th floor district please refer section our for list
entities”

However, by analyzing the word clouds of the 100 nearest neighbours of x2
(in the latent space) in Fig. 34, a human operator can easily reckon that the
ensemble model is not working appropriately in the proximity of x2 within
the latent space, and thus, it needs to be refined/retrained. Indeed, these
word clouds unveil that, based on the ticket embedding learnt by the model,
some semantically-relevant terms (e.g., responsive, slow, basic), which help
reckon x2 as a severe and urgent case, do not appear at all in the tickets
that the model is perceiving as neighbours of x2.

105

6.2 Fake Detection Experiments

The proposed semi-supervised deep learning ensemble-based framework de-
vised to e↵ectively detect fake news by coping with the data scarcity problem
has been tested for evaluating its performance.

Experiments conducted on two public datasets confirmed the quality of
the approach in generating accurate models, also when a limited number
of training examples are available in the early stages of the proposed semi-
supervised method.

6.2.1 Datasets and Parameters

This subsection describes the parameters used in the proposed framework
and the datasets used to assess its e↵ectiveness in detecting fake news.

The learning model employed in the performed tests is based on a BERT
layer followed by a Dropout layer for regularisation and a final dense layer
with a sigmoid activation layer. The BERT implementation presents a vec-
tor of hidden size of 768, and 12 attention heads. The used model is pre-
trained for the English language on Wikipedia and BooksCorpus, after a
normalisation phase.

The following parameters were used in BERT: Number of Epoch = 30;
Batch size = 32; Learning Rate = 3e � 5; Dropout= 0.1; the Binary Cross
entropy as loss function and the chosen optimiser was AdamW, a stochastic
optimisation method that modifies the typical implementation of weight
decay in Adam, by decoupling weight decay from the gradient update.

It is worth recalling that several strategies of extraction/combination can
be employed in the proposed framework that di↵erently exploit the trained
models built at the di↵erent steps of the self-training process. For the ex-
traction process, two strategies can be adopted, the str best auc val and the
str last iter. The first extraction strategy selects the trained model with
the best AUC performances obtained with the validation set, while the sec-
ond strategy selects just the last trained model in the iteration process. As
regards, the combination strategies, three ensemble combiners can be per-
formed by the framework, str avg ens, str avg acc ens and str avg ps ens.
They are all based on the average combination of the output of the trained
models, considered as base learners of the ensemble, obtained at di↵erent
steps of the self training process. The str avg ens computes the average of
the base learners’ output, while str avg acc ens and str avg ps ens compute
a weighted average. The str avg acc ens combiner strategy uses the accuracy
of the base learner model as the weight, while the str avg ps ens combiner

106

Table 10: Main features of the PolitiFact and GossipCop dataset.

Dataset #Articles #Classes
Vocabulary # Words per article

size Avg. Median Q1 Q3
PolitiFact 814 2 60,870 817.5 199.5 66.5 530.7
GossipCop 4,719 2 149,557 349.0 205.0 109.5 323.0

strategy uses the average of the probability predictions of the pseudo-labels
introduced in the training set used to train the base models.

Moreover, it is also worth recalling that two strategies can be employed
in the proposed framework for iteratively selecting unlabelled data to be
pseudo-labelled: strategy str thr (which relies on filtering candidates through
a maximal uncertainty threshold) and strategy str bestK (which extracts
the “bottom-k” tuples with the lowest prediction uncertainty.

A grid search was performed to choose the probability prediction thr in
the case of the str thr strategy and the number k of the best-k unlabelled
data to be pseudo-labelled at each self training iteration for the str bestK
algorithm. Respectively, the values of thr = 0.4 and k = 100, and the
values of thr = 0.3 and k = 200 were chosen for the PolitiFact and for the
GossipCop dataset.

All the experiments of the next subsection were averaged over 30 runs.
The validation set is used in the training process for selecting the best model
during the di↵erent epochs, and at the end for selecting the final model
among the models trained at the di↵erent self-training iterations.

The two datasets used for the experiments come from the FakeNewsNet
data repository [58] [57]. They respectively concern political and gossip news
obtained by two fact-checking websites: PolitiFact4 and GossipCop5.

Table 10 reports the main characteristic of the two datasets: the overall
number of articles, the vocabulary size and some statistics on the number
of words per article (i.e., average, median, first and third quartile).

The performance of the proposed methods and of the baseline is evaluated
against the test set through three di↵erent metrics: the largely used Accu-
racy metric and some measures more appropriate for evaluating unbalanced
datasets, i.e., AUC (Area Under the Curve) and F-Measure.

4https://www.politifact.com/
5https://www.gossipcop.com/

107

6.2.2 Experimental validation of the pseudo-labelled based self-
training proposed model

This subsection reports the evaluation of the proposed pseudo-labelling
strategies in comparison with the baseline when di↵erent percentages of la-
belled data (training set and validation set) are considered (2.5%, 5%, 10%
and 20%), in order to consider the situation in which a few (costly) labelled
data are available.

The traditional method consisting in fine-tuning the same pre-trained
BERT model in a fully-supervised against the sole labelled data is consid-
ered as the baseline for all the tests. After evaluating some preliminary ex-
periments, it was decided to make extensive testing considering only some of
the possible strategies selectable in the framework for the pseudo-labelling-
based self-training. More specifically, among the two pseudo-label selection
strategies (the pseudo thr and the pseudo k), only the pseudo thr was re-
ported because of its better performance. The preliminary experiments
have also shown insignificant performance variations between the two ex-
traction strategies (str best auc val and str last iter), thus leading to choose
the second strategy (str last iter) for completing the experimental results,
that is also the simplest solution which selects the last trained model, i.e.
the model that completed the entire pseudo-labelled based self-training al-
gorithm. As regards the ensemble strategies, just the str avg acc ens, and
the str avg ps ens combiners have been reported because the str avg ens
strategy did not bring any particular improvements.

Thus summarizing, the proposed experiment results report the compar-
ison of the baseline with three pseudo-labelling-based self-trained models
here named: pseudo, avg ens and ps ens. They all use the threshold based
(str thr) uncertainty pseudo-label selection strategy. However, the pseudo
uses the str last iter extraction strategy, while the avg ens and ps ens use
the str avg acc ens and the str avg ps ens ensemble combiner strategies, re-
spectively.

Tables 11 and 12 report the results of the comparison among the baseline
and the three variants of the proposed approach, pseudo, avg ens and ps ens,
in terms of Accuracy, AUC, and F-measure performance metrics for the
PolitiFact and the GossipCop datasets, respectively.

Tables 13 and 14 show the performance improvements in terms of per-
centage increment for the di↵erent metrics of the proposed self-trained mod-
els with respect to the baseline, when the PolitiFact and the GossipCop
datasets are tested, respectively.

The increment performance results in tables 13 and 14 allow for a better

108

understanding of the behaviour of the di↵erent proposed strategies when the
percentages of available labelled data vary.

Results highlight that all the proposed pseudo-labelling strategies obtain
a substantial increment for all the metrics considered and for both datasets.
The improvements are more evident for the PolitiFact dataset, which is
characterised by a smaller number of samples (814), probably because the
proposed self-training strategy is more e�cient when the labelled data are
very scarce. The other interesting discovery, more evident for the PolitiFact
dataset, is that the proposed pseudo-labelling based self-trained approaches
perform very well, with a very high-performance increment, for very low
percentages of labelled tuples. In fact, when only 2.5% of data are labelled,
the avg ens is able to reach an improvement of the performances with respect
to the baseline of 31.91%, 34.33% and 25.17% for the PolitiFact dataset
and of 15.54%, 15.50% and 13.50% for the GossipCop dataset, relatively to
accuracy, AUC and F1, respectively.

The increment of performances when using the proposed self-training so-
lutions decreases when increasing the percentage of available labelled data.
In fact, it is supposed that when the labelled data increase, the original
BERT model can exploit enough labelled tuples in order to be trained for
reaching high enough performances, thus confirming that using true, and
therefore all correct, labels are always preferable to the use of pseudo, and
therefore artificial and not always correct, labels, unless the true labelled
data are not enough to guarantee a good training of the model.

In order to highlight how the introduction of the ensemble strategies af-
fects the performance of the self-trained pseudo-labelling proposed solution,
Tables 15 and 16 are here reported. These tables, together with Figures 35
and 36, introduced for better visual comprehension, show, for the di↵erent
metrics, the performance improvements in terms of percentage increment
of the proposed self-trained ensemble models (avg ens and ps ens) with re-
spect to the same strategy but without ensemble (pseudo which selects just
the last trained model), for the PolitiFact and the GossipCop datasets, re-
spectively. The use of the ensemble techniques still is confirmed to be the
preferable choice, as it is possible to notice mainly in the PolitiFact dataset
where the avg ens is able to improve the pseudo-labelling solution without
the ensemble of maximum 6.33%, 5.59% and 9.33% when only 2.5% of la-
belled data are available for the accuracy, AUC and F1 metrics, respectively.
In the GossipCop dataset, the use of the ensemble furnishes an almost con-
stant performance increment that remains in the interval between 0.93%
and 1.54% for the accuracy metric, between 0.71% and 1.26% for the AUC
metric, and between 1.07% and 1.89% for the F1 metric.

109

A further consideration can be given by comparing the two proposed en-
semble solutions. It is worth recalling that the avg ens uses the accuracy of
the model as weight thus considering the “reliability” of the model calculated
for the validation set, while the ps ens uses the average probability of the
generated pseudo labels thus considering the “reliability” of the labels used
during the training phase. From the experimental results, it is possible to
conclude that, even if the two ensembles di↵er very much in the techniques
of weighing the base models, substantially, the performances are very sim-
ilar to each other, with a slightly better average performance improvement
o↵ered by the avg ens solution.

Table 11: Comparison of the pseudo-labelling strategies for the PolitiFact
dataset: Accuracy, AUC and F-measure for di↵erent percentages of the
training set (2.5%, 5%, 10% and 20%).

Metric Algorithm 2.5% 5% 10% 20%

Accuracy
Baseline 0.58 ± 0.09 0.65 ± 0.08 0.75 ± 0.05 0.79 ± 0.05
pseudo 0.72 ± 0.08 0.74 ± 0.08 0.80 ± 0.04 0.85 ± 0.04
avg ens 0.77 ± 0.06 0.77 ± 0.05 0.83 ± 0.05 0.87 ± 0.03
ps ens 0.76 ± 0.04 0.76 ± 0.05 0.83 ± 0.04 0.86 ± 0.03

AUC
Baseline 0.57 ± 0.08 0.65 ± 0.08 0.74 ± 0.05 0.78 ± 0.05
pseudo 0.72 ± 0.07 0.73 ± 0.09 0.80 ± 0.06 0.85 ± 0.04
avg ens 0.77 ± 0.06 0.76 ± 0.05 0.83 ± 0.05 0.87 ± 0.03
ps ens 0.76 ± 0.04 0.76 ± 0.05 0.82 ± 0.04 0.86 ± 0.03

F1
Baseline 0.62 ± 0.17 0.68 ± 0.12 0.77 ± 0.04 0.81 ± 0.05
pseudo 0.72 ± 0.12 0.77 ± 0.06 0.81 ± 0.09 0.86 ± 0.04
avg ens 0.78 ± 0.08 0.79 ± 0.06 0.85 ± 0.04 0.88 ± 0.03
ps ens 0.78 ± 0.06 0.79 ± 0.06 0.84 ± 0.04 0.88 ± 0.03

110

Table 12: Comparison of the pseudo-labelling strategies for the GossipCop
dataset: Accuracy, AUC and F-measure for di↵erent percentages of the
training set (2.5 %, 5%, 10% and 20%).

Metric Algorithm 2.5% 5% 10% 20%

Accuracy
Baseline 0.61 ± 0.04 0.66 ± 0.03 0.68 ± 0.02 0.70 ± 0.03
pseudo 0.69 ± 0.03 0.72 ± 0.02 0.75 ± 0.02 0.76 ± 0.02
avg ens 0.71 ± 0.02 0.73 ± 0.01 0.76 ± 0.02 0.77 ± 0.01
ps ens 0.71 ± 0.03 0.73 ± 0.01 0.76 ± 0.02 0.77 ± 0.02

AUC
Baseline 0.60 ± 0.04 0.66 ± 0.02 0.68 ± 0.02 0.70 ± 0.03
pseudo 0.69 ± 0.02 0.72 ± 0.02 0.74 ± 0.02 0.75 ± 0.02
avg ens 0.70 ± 0.02 0.72 ± 0.01 0.75 ± 0.02 0.76 ± 0.02
ps ens 0.70 ± 0.02 0.72 ± 0.01 0.75 ± 0.02 0.76 ± 0.02

F1
Baseline 0.65 ± 0.05 0.69 ± 0.04 0.71 ± 0.03 0.72 ± 0.05
pseudo 0.73 ± 0.05 0.75 ± 0.03 0.78 ± 0.01 0.78 ± 0.02
avg ens 0.74 ± 0.04 0.76 ± 0.02 0.79 ± 0.01 0.79 ± 0.01
ps ens 0.74 ± 0.05 0.76 ± 0.02 0.79 ± 0.01 0.79 ± 0.01

Table 13: Delta increment of the pseudo-labelling strategies in comparison
with the baseline for the PolitiFact dataset: Accuracy, AUC and F-measure
for di↵erent percentages of the training set (2.5%, 5%, 10% and 20%).

Metric Algorithm 2.5% 5% 10% 20%

Accuracy
pseudo 24.05% 13.28% 7.14% 7.51%
avg ens 31.90% 17.44% 11.61% 10.25%
ps ens 31.14% 16.76% 10.78% 9.47%

AUC
pseudo 27.22% 13.32% 7.65% 7.95%
avg ens 34.33% 17.58% 11.83% 10.58%
ps ens 33.44% 16.90% 11.02% 9.84%

F1
pseudo 14.49% 13.03% 4.52% 6.02%
avg ens 25.17% 16.04% 9.87% 8.68%
ps ens 25.08% 15.46% 9.08% 7.95%

111

Table 14: Delta increment of the pseudo-labelling strategies in compari-
son with the baseline for the pseudo-labelling strategies for the GossipCop
dataset: Accuracy, AUC and F-measure for di↵erent percentages of the
training set (2.5%, 5%, 10% and 20%).

Metric Algorithm 2.5% 5% 10% 20%

Accuracy
pseudo 13.79% 9.42% 9.88% 8.72%
avg ens 15.54% 10.43% 11.09% 10.09%
ps ens 15.46% 10.54% 11.04% 9.98%

AUC
pseudo 14.06% 9.08% 8.91% 8.3%
avg ens 15.50% 9.84% 10.01% 9.53%
ps ens 15.45% 9.90% 9.95% 9.45%

F1
pseudo 11.39% 9.23% 10.88% 9.24%
avg ens 13.50% 10.74% 12.08% 10.83%
ps ens 13.37% 10.87% 12.07% 10.72%

Table 15: Delta increment of the ensemble pseudo-labelling strategies in
comparison with the pseudo-labelling solution without ensemble for the Poli-
tiFact dataset: Accuracy, AUC and F-measure for di↵erent percentages of
the training set (2.5%, 5%, 10% and 20%).

Metric Algorithm 2.5% 5% 10% 20%

Accuracy
avg ens 6.33% 3.67% 4.18% 2.54%
ps ens 5.72% 3.08% 3.41% 1.83%

AUC
avg ens 5.59% 3.76% 3.88% 2.43%
ps ens 4.88% 3.16% 3.13% 1.75%

F1
avg ens 9.33% 2.67% 5.11% 2.50%
ps ens 9.24% 2.15% 4.36% 1.82%

112

Table 16: Delta increment of the ensemble pseudo-labelling strategies in
comparison with the pseudo-labelling solution without ensemble for the Gos-
sipCop dataset: Accuracy, AUC and F-measure for di↵erent percentages of
the training set (2.5%, 5%, 10% and 20%).

Metric Algorithm 2.5% 5% 10% 20%

Accuracy
avg ens 1.54% 0.93% 1.11% 1.28%
ps ens 1.47% 1.02% 1.06% 1.17%

AUC
avg ens 1.26% 0.71% 1.01% 1.14%
ps ens 1.22% 0.77% 0.96% 1.06%

F1
avg ens 1.89% 1.38% 1.08% 1.46%
ps ens 1.78% 1.5% 1.07% 1.35%

1.25% 2.5% 5% 10% 20%
0

10
20
30
40
50

Accuracy PSEUDO

AVG ENS

PS ENS

1.25% 2.5% 5% 10% 20%
0

10
20
30
40
50

AUC PSEUDO

AVG ENS

PS ENS

1.25% 2.5% 5% 10% 20%

Data Percentage

0
10
20
30
40
50

F-measure PSEUDO

AVG ENS

PS ENS

Politifact Dataset (Gain vs baseline)

Figure 35: Delta increment of the di↵erent strategies in comparison with the
baseline solution for the PolitiFact dataset: Accuracy, AUC and F-measure
for di↵erent percentages of the training set (1.25%, 2.5%, 5%, 10%, and
20%)

113

1.25% 2.5% 5% 7.5% 10% 15% 20% 25%
0
3
6
9

12
15
18

Accuracy PSEUDO

AVG ENS

PS ENS

1.25% 2.5% 5% 7.5% 10% 15% 20% 25%
0
3
6
9

12
15
18

AUC PSEUDO

AVG ENS

PS ENS

1.25% 2.5% 5% 7.5% 10% 15% 20% 25%

Data Percentage

0
3
6
9

12
15
18

F-measure PSEUDO

AVG ENS

PS ENS

Gossip Dataset (Gain vs baseline)

Figure 36: Delta increment of the di↵erent strategies in comparison with
the baseline solution for the Gossip dataset: Accuracy, AUC and F-measure
for di↵erent percentages of the training set (1.25%, 2.5%, 5%, 7.5%, 10%,
15%, 20% and 25%)

114

7 Conclusions and future works

In this thesis, a general framework architecture for the text classification
problem based on the ensemble paradigm is proposed.

The proposed deep ensemble classification framework integrates di↵erent
types of DNN architectures as base classifiers of the ensemble model in order
to increase the levels of expressivity and promote diversity. Although the
idea of combining heterogeneous models is not new itself, a novel idea was
introduced by including a high-level representation of the features that is
exploited for a dual purpose, to provide more accurate classifications when
extending two state-of-the-art ensemble combination strategies and to create
a “latent space” representation of ticket texts to be used together with a
similarity metric and neighbour space search strategies in the explanation
task. Based on the concept of combining the classifier model trained at
di↵erent steps of the self-training process in the presence of scarce labelled
data, a novel ensemble-based strategy of pseudo-labelling was proposed.

The proposed framework was designed in order to furnish a valid instru-
ment for the study and analysis of the state of the art in the research fields of
NLP, ML and Ensemble of DNNs and explanation; the study of the specific
context peculiarities of the automatic ticket classification and the automatic
fake detection; the design of novel classification and explanation EDN mod-
els; the proposal of a novel pseudo labelling strategy for improving classifiers
in the presence of a small number of labelled data; the implementation of
a complete framework for the entire text processing flow for performance
tests.

Several innovative research contributions have been proposed through this
framework that can be synthesized as in the following. Two novel ensem-
ble deep neural network models have been introduced. An imbalance-aware
training loss strategy has been adopted to improve performances when im-
balance class issues occur in ticket classification. A novel human-in-the-loop
explanation scheme for intelligent text classification has been introduced for
providing two kinds of artefacts, LIME (Locally Interpretable Model ag-
nostic Explanations) based on local explanations capturing the importance
of text words in the class predictions, and local word clouds, summarizing
the contents of example texts looking most similar to the predicted text
instance in the latent space learnt by the HLFE sub-net of the model. A
novel ensemble based pseudo-labelling strategy has been proposed in order
to improve the performances of the classifier in case of scarcity of labelled
data.

The solutions proposed by this thesis represent a general framework based

115

on an ensemble paradigm designed for the entire process of text classifica-
tion. From the general structure, the framework has been customized for two
application contexts used for validating the proposed strategies in real-life
scenarios: ticket classification for customer support and fake detection.

Experiments conducted on real data confirmed the accuracy of the en-
semble classifiers discovered with this framework and the usefulness of the
explanation artefacts. The experimental results proved that the ability to
provide both accurate predictions along with their interpretable explana-
tions is a valuable line of research with a high potential impact on the
quality of processes and services in all the application contexts, as demon-
strated for the intelligent Ticket Management Systems (TMSs). This ability
enables an e↵ective scheme of cooperation between the system and human
users with mutual benefits: on the one hand, predictions and explanations
allow users to make decisions in a more conscious and risk-aware fashion;
on the other hand, human feedback can help detect wrong predictions (and
prevent wrong decisions), as well as to trigger the revision/re-discovery of
biased/inaccurate classifiers. The experimental tests also demonstrated the
e↵ectiveness of the proposed innovative strategy of using the ensemble idea
for increasing performance in the pseudo-labelling self-training process. The
proposed strategy is a valid instrument to reduce the costs and di�culties of
labelling, a problem that has become increasingly significant with the huge
amount of data every day generated on the web, like for the fake detection
problem.

As concerns future work, several possible topics that would be interesting
to explore are here identified as an extension of the proposed framework: (i)
Deep Active Learning mechanisms [40], in order to allow human experts to
provide new informative example tickets that can help improve the predic-
tive performance of a ticket classifier (especially in regions of the instance
space where it is performing worse or it is more uncertain), (ii) visual ex-
planation paradigms (e.g., based on saliency/attribution maps [62, 70] and,
in particular, attention mechanisms for recurrent NNs [67]), complement-
ing the interpretable explanations provided by the local surrogate models
discovered with LIME; and (iii) more expressive methods for estimating
the epistemic uncertainty a↵ecting each prediction returned by an ensemble
classifier (using measures of disagreement over the predictions of the base
classifiers, plus uncertainty for the combiner, possibly obtained with Monte
Carlo dropout methods[1]).

116

References

[1] Moloud Abdar et al. “A review of uncertainty quantification in Deep
Learning: techniques, applications and challenges”. In: Information
Fusion 76 (2021), pp. 243–297.

[2] M. Altintas and A. Tantug. “MACHINE LEARNING BASED TICKET
CLASSIFICATION IN ISSUE TRACKING SYSTEMS”. In: AICS
e-Journal of Artificial Intelligence and Computer Science 2 (2014),
pp. 33–44.

[3] Mucahit Altintas and Ahmet Cuneyd Tantug. “Machine Learning Based
Ticket Classification in Issue Tracking Systems”. In: Journal of King
Saud University - Computer and Information Sciences (2014).

[4] Eric Arazo et al. “Pseudo-Labeling and Confirmation Bias in Deep
Semi-Supervised Learning”. In: 2020 International Joint Conference
on Neural Networks, IJCNN 2020, Glasgow, United Kingdom, July
19-24, 2020. IEEE, 2020, pp. 1–8. doi: 10.1109/IJCNN48605.2020.
9207304. url: https : / / doi . org / 10 . 1109 / IJCNN48605 . 2020 .

9207304.

[5] Adrien Benamira et al. “Semi-supervised learning and graph neu-
ral networks for fake news detection”. In: ASONAM ’19: Interna-
tional Conference on Advances in Social Networks Analysis and Min-
ing, Vancouver, British Columbia, Canada, 27-30 August, 2019. Ed.
by Francesca Spezzano, Wei Chen, and Xiaokui Xiao. ACM, 2019,
pp. 568–569. doi: 10.1145/3341161.3342958. url: https://doi.
org/10.1145/3341161.3342958.

[6] Alessandro Bondielli and Francesco Marcelloni. “A Survey on Fake
News and Rumour Detection Techniques”. In: Information Sciences
497 (May 2019). doi: 10.1016/j.ins.2019.05.035.

[7] L Breiman. “Random Forests”. In: Machine Learning 45 (Oct. 2001),
pp. 5–32. doi: 10.1023/A:1010950718922.

[8] L. Breiman. “Bagging predictors”. In: Machine Learning 24 (2004),
pp. 123–140.

[9] Krisztian Buza and Aleksandra Revina. “Speeding up the SUCCESS
Approach for Massive Industrial Datasets”. In: 2020 International
Conference on INnovations in Intelligent SysTems and Applications
(INISTA). 2020, pp. 1–6. doi: 10.1109/INISTA49547.2020.9194656.

https://doi.org/10.1109/IJCNN48605.2020.9207304
https://doi.org/10.1109/IJCNN48605.2020.9207304
https://doi.org/10.1109/IJCNN48605.2020.9207304
https://doi.org/10.1109/IJCNN48605.2020.9207304
https://doi.org/10.1145/3341161.3342958
https://doi.org/10.1145/3341161.3342958
https://doi.org/10.1145/3341161.3342958
https://doi.org/10.1016/j.ins.2019.05.035
https://doi.org/10.1023/A:1010950718922
https://doi.org/10.1109/INISTA49547.2020.9194656

117

[10] Paola Cascante-Bonilla et al. “Curriculum labeling: Revisiting pseudo-
labeling for semi-supervised learning”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 35. 8. 2021, pp. 6912–6920.

[11] Hong-Gunn Chew, Robert E Bogner, and Cheng-Chew Lim. “Dual nu-
support vector machine with error rate and training size biasing”. In:
2001 IEEE International Conference on Acoustics, Speech, and Signal
Processing. Vol. 2. IEEE. 2001, pp. 1269–1272.

[12] Kyunghyun Cho et al. On the Properties of Neural Machine Trans-
lation: Encoder-Decoder Approaches. 2014. doi: 10.48550/ARXIV.

1409.1259. url: https://arxiv.org/abs/1409.1259.

[13] Janez Demsar. “Statistical Comparisons of Classifiers over Multiple
Data Sets”. In: Journal of Machine Learning Research 7 (2006), pp. 1–
30.

[14] J. Devlin et al. “BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding”. In: NAACL-HLT. Association for
Computational Linguistics, 2019, pp. 4171–4186. doi: 10.18653/v1/
N19-1423.

[15] Thomas G. Dietterich. “Ensemble Methods in Machine Learning”. In:
Multiple Classifier Systems. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2000, pp. 1–15. isbn: 978-3-540-45014-6.

[16] Xishuang Dong et al. “Deep Two-path Semi-supervised Learning for
Fake News Detection”. In: CoRR abs/1906.05659 (2019). arXiv: 1906.
05659. url: http://arxiv.org/abs/1906.05659.

[17] Stijn van Dongen and Anton J. Enright. “Metric distances derived
from cosine similarity and Pearson and Spearman correlations”. In:
CoRR abs/1208.3145 (2012). url: http://arxiv.org/abs/1208.
3145.

[18] Maha Elbayad, Laurent Besacier, and Jakob Verbeek. “Pervasive At-
tention: 2D Convolutional Neural Networks for Sequence-to-Sequence
Prediction”. In: CoNLL. 2018.

[19] Yoav Freund and Robert E. Schapire. “Experiments with a New Boost-
ing Algorithm”. In: International Conference on Machine Learning.
1996.

[20] Jerome Friedman. “Greedy Function Approximation: A Gradient Boost-
ing Machine”. In: The Annals of Statistics 29 (Nov. 2000). doi: 10.
1214/aos/1013203451.

https://doi.org/10.48550/ARXIV.1409.1259
https://doi.org/10.48550/ARXIV.1409.1259
https://arxiv.org/abs/1409.1259
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/1906.05659
https://arxiv.org/abs/1906.05659
http://arxiv.org/abs/1906.05659
http://arxiv.org/abs/1208.3145
http://arxiv.org/abs/1208.3145
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451

118

[21] Yarin Gal and Zoubin Ghahramani. “Dropout as a bayesian approxi-
mation: Representing model uncertainty in deep learning”. In: Inter-
national Conference on Machine Learning. PMLR. 2016, pp. 1050–
1059.

[22] Salvador Garćıa and Francisco Herrera. “An Extension on “Statistical
Comparisons of Classifiers over Multiple Data Sets” for all Pairwise
Comparisons”. In: Journal of Machine Learning Research 9 (2009),
pp. 2677–2694.

[23] Jonas Gehring et al. “Convolutional Sequence to Sequence Learning”.
In: ICML’17. Sydney, NSW, Australia: JMLR.org, 2017, pp. 1243–
1252.

[24] Gisel Bastidas Guacho et al. “Semi-Supervised Content-Based Detec-
tion of Misinformation via Tensor Embeddings”. In: Proceedings of
the 2018 IEEE/ACM International Conference on Advances in So-
cial Networks Analysis and Mining. ASONAM ’18. Barcelona, Spain:
IEEE Press, 2020, pp. 322–325. isbn: 9781538660515.

[25] L.K. Hansen and P. Salamon. “Neural network ensembles”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 12.10 (1990),
pp. 993–1001. doi: 10.1109/34.58871.

[26] Feras Al-Hawari and Hala Barham. “A machine learning based help
desk system for IT service management”. In: Journal of King Saud
University - Computer and Information Sciences 33.6 (2021), pp. 702–
718.

[27] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Mem-
ory”. In: Neural Comput. 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-
7667. doi: 10.1162/neco.1997.9.8.1735. url: https://doi.org/
10.1162/neco.1997.9.8.1735.

[28] Linmei Hu et al. “Deep learning for fake news detection: A com-
prehensive survey”. In: AI Open 3 (2022), pp. 133–155. issn: 2666-
6510. doi: https://doi.org/10.1016/j.aiopen.2022.09.001.
url: https://www.sciencedirect.com/science/article/pii/
S2666651022000134.

[29] Ahmet Iscen et al. “Label Propagation for Deep Semi-Supervised Learn-
ing”. In: 2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2019, pp. 5065–5074. doi: 10.1109/CVPR.
2019.00521.

https://doi.org/10.1109/34.58871
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/https://doi.org/10.1016/j.aiopen.2022.09.001
https://www.sciencedirect.com/science/article/pii/S2666651022000134
https://www.sciencedirect.com/science/article/pii/S2666651022000134
https://doi.org/10.1109/CVPR.2019.00521
https://doi.org/10.1109/CVPR.2019.00521

119

[30] Robert A. Jacobs et al. “Adaptive Mixtures of Local Experts”. In:
Neural Computation 3.1 (1991), pp. 79–87. doi: 10.1162/neco.1991.
3.1.79.

[31] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. “A Convo-
lutional Neural Network for Modelling Sentences”. In: ArXiv abs/1404.2188
(2014).

[32] Yoon Kim. “Convolutional Neural Networks for Sentence Classifica-
tion”. In: Conference on Empirical Methods in Natural Language Pro-
cessing. 2014.

[33] Samuli Laine and Timo Aila. “Temporal ensembling for semi-supervised
learning”. In: arXiv preprint arXiv:1610.02242 (2016).

[34] Dong-Hyun Lee. “Pseudo-Label : The Simple and E�cient Semi-Supervised
Learning Method for Deep Neural Networks”. In: ICML 2013 Work-
shop : Challenges in Representation Learning (WREPL) (July 2013).

[35] Qian Li et al. “A Survey on Text Classification: From Traditional to
Deep Learning”. In: ACM Trans. Intell. Syst. Technol. 13.2 (2022),
31:1–31:41. doi: 10.1145/3495162. url: https://doi.org/10.

1145/3495162.

[36] Min Lin, Qiang Chen, and Shuicheng Yan. Network In Network. 2014.
arXiv: 1312.4400 [cs.NE].

[37] Ting Liu et al. “New algorithms for e�cient high-dimensional non-
parametric classification.” In: Journal of Machine Learning Research
7.6 (2006).

[38] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
Introduction to Information Retrieval. USA: Cambridge University
Press, 2008. isbn: 0521865719.

[39] S. Masoudnia and R. Ebrahimpour. “Mixture of experts: a literature
survey”. In: Artificial Intelligence Review 42.2 (2014), pp. 275–293.

[40] Kayo Matsushita, Kayo Matsushita, and Hasebe. Deep active learning.
Springer, 2018.

[41] Priyanka Meel and Dinesh Kumar Vishwakarma. “A temporal ensem-
bling based semi-supervised ConvNet for the detection of fake news
articles”. In: Expert Systems with Applications 177 (2021), p. 115002.
issn: 0957-4174. doi: https://doi.org/10.1016/j.eswa.2021.
115002. url: https://www.sciencedirect.com/science/article/
pii/S0957417421004437.

https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.1145/3495162
https://doi.org/10.1145/3495162
https://doi.org/10.1145/3495162
https://arxiv.org/abs/1312.4400
https://doi.org/https://doi.org/10.1016/j.eswa.2021.115002
https://doi.org/https://doi.org/10.1016/j.eswa.2021.115002
https://www.sciencedirect.com/science/article/pii/S0957417421004437
https://www.sciencedirect.com/science/article/pii/S0957417421004437

120

[42] Priyanka Meel and Dinesh Kumar Vishwakarma. “Fake News Detec-
tion using Semi-Supervised Graph Convolutional Network”. In: CoRR
abs/2109.13476 (2021). arXiv: 2109.13476. url: https://arxiv.
org/abs/2109.13476.

[43] Tomas Mikolov et al. “Distributed Representations of Words and Phrases
and their Compositionality”. In: Advances in Neural Information Pro-
cessing Systems 26 (Oct. 2013).

[44] Tomas Mikolov et al. “E�cient Estimation of Word Representations
in Vector Space”. In: Proceedings of Workshop at ICLR 2013 (Jan.
2013).

[45] Piero Molino, Huaixiu Zheng, and Yi-Chia Wang. “COTA: Improving
the Speed and Accuracy of Customer Support through Ranking and
Deep Networks”. In: KDD ’18: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
2018, pp. 586–595.

[46] S.P. Paramesh, C. Ramya, and K.S. Shreedhara. “Classifying the Un-
structured IT Service Desk Tickets Using Ensemble of Classifiers”. In:
2018 3rd International Conference on Computational Systems and In-
formation Technology for Sustainable Solutions (CSITSS). 2018, pp. 221–
227. doi: 10.1109/CSITSS.2018.8768734.

[47] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[48] Je↵rey Pennington, Richard Socher, and Christopher Manning. “Glove:
Global Vectors for Word Representation”. In: vol. 14. Jan. 2014, pp. 1532–
1543. doi: 10.3115/v1/D14-1162.

[49] Ruanda Qamili, Shaban Shabani, and Johannes Schneider. “An Intel-
ligent Framework for Issue Ticketing System Based on Machine Learn-
ing”. In: 2018 IEEE 22nd International Enterprise Distributed Object
Computing Workshop (EDOCW). Oct. 2018, pp. 79–86.

[50] Pranav Rajpurkar, Robin Jia, and Percy Liang. “Know What You
Don’t Know: Unanswerable Questions for SQuAD”. In: Jan. 2018,
pp. 784–789. doi: 10.18653/v1/P18-2124.

[51] Jason D. M. Rennie et al. “Tackling the Poor Assumptions of Naive
Bayes Text Classifiers”. In: Proceedings of the Twentieth International
Conference on International Conference on Machine Learning. ICML’03.
Washington, DC, USA: AAAI Press, 2003, pp. 616–623. isbn: 1577351894.

https://arxiv.org/abs/2109.13476
https://arxiv.org/abs/2109.13476
https://arxiv.org/abs/2109.13476
https://doi.org/10.1109/CSITSS.2018.8768734
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/P18-2124

121

[52] Aleksandra Revina, Krisztian Buza, and Vera G. Meister. “Design-
ing Explainable Text Classification Pipelines: Insights from IT Ticket
Complexity Prediction Case Study”. In: Interpretable Artificial Intel-
ligence: A Perspective of Granular Computing. Ed. by Witold Pedrycz
and Shyi-Ming Chen. Cham: Springer International Publishing, 2021,
pp. 293–332. isbn: 978-3-030-64949-4. doi: 10.1007/978- 3- 030-
64949-4_10. url: https://doi.org/10.1007/978-3-030-64949-
4_10.

[53] Aleksandra Revina, Krisztian Buza, and Vera G. Meister. “IT Ticket
Classification: The Simpler, the Better”. In: IEEE Access 8 (2020),
pp. 193380–193395. doi: 10.1109/ACCESS.2020.3032840.

[54] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ““Why Should
I Trust You?”: Explaining the Predictions of Any Classifier”. In: KDD
’16: Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. 2016, pp. 1135–1144.

[55] Jitendra Kumar Rout et al. “Revisiting Semi-Supervised Learning
for Online Deceptive Review Detection”. In: IEEE Access 5 (2017),
pp. 1319–1327. doi: 10.1109/ACCESS.2017.2655032.

[56] Atefeh Shahroudnejad. “A Survey on Understanding, Visualizations,
and Explanation of Deep Neural Networks”. In: ArXiv abs/2102.01792
(2021).

[57] Kai Shu et al. “Fake News Detection on Social Media: A Data Mining
Perspective”. In: ACM SIGKDD Explorations Newsletter 19.1 (2017),
pp. 22–36.

[58] Kai Shu et al. “FakeNewsNet: A Data Repository with News Content,
Social Context and Dynamic Information for Studying Fake News on
Social Media”. In: arXiv preprint arXiv:1809.01286 (2018).

[59] S. Silva, R. Pereira, and R. Ribeiro. “Machine learning in incident
categorization automation”. In: 2018 13th Iberian Conference on In-
formation Systems and Technologies (CISTI) (2018), pp. 1–6.

[60] Gwang Son, Victor Hazlewood, and Gregory Dean Peterson. “On Au-
tomating XSEDE User Ticket Classification”. In: XSEDE ’14: Pro-
ceedings of the 2014 Annual Conference on Extreme Science and En-
gineering Discovery Environment. Atlanta, GA, USA: Association for
Computing Machinery, 2014, pp. 1–7. isbn: 9781450328937.

https://doi.org/10.1007/978-3-030-64949-4_10
https://doi.org/10.1007/978-3-030-64949-4_10
https://doi.org/10.1007/978-3-030-64949-4_10
https://doi.org/10.1007/978-3-030-64949-4_10
https://doi.org/10.1109/ACCESS.2020.3032840
https://doi.org/10.1109/ACCESS.2017.2655032

122

[61] Sanskar Soni, Satyendra Singh Chouhan, and Santosh Singh Rathore.
“TextConvoNet: a convolutional neural network based architecture for
text classification”. In: Applied Intelligence (Dordrecht, Netherlands)
(2022), pp. 1–20.

[62] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic At-
tribution for Deep Networks”. In: Proceedings of the 34th Interna-
tional Conference on Machine Learning - Volume 70. JMLR.org, 2017,
pp. 3319–3328.

[63] Erik F. Tjong Kim Sang and Fien De Meulder. “Introduction to the
CoNLL-2003 Shared Task: Language-Independent Named Entity Recog-
nition”. In: Proceedings of CoNLL-2003. Ed. by Walter Daelemans and
Miles Osborne. Edmonton, Canada, 2003, pp. 142–147.

[64] Alper Kursat Uysal and Serkan Gunal. “The impact of preprocessing
on text classification”. In: Information processing & management 50.1
(2014), pp. 104–112.

[65] Ashish Vaswani et al. “Attention is All You Need”. In: Proceedings of
the 31st International Conference on Neural Information Processing
Systems. NIPS’17. Long Beach, California, USA: Curran Associates
Inc., 2017, pp. 6000–6010. isbn: 9781510860964.

[66] Ashish Vaswani et al. “Attention is All You Need”. In: Proceedings of
the 31st International Conference on Neural Information Processing
Systems. Long Beach, California, USA, 2017, pp. 6000–6010.

[67] Sarah Wiegre↵e and Yuval Pinter. “Attention is not not explanation”.
In: Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). 2019, pp. 11–20.

[68] Adina Williams, Nikita Nangia, and Samuel Bowman. “A Broad-Coverage
Challenge Corpus for Sentence Understanding through Inference”. In:
Jan. 2018, pp. 1112–1122. doi: 10.18653/v1/N18-1101.

[69] Feixue Yan et al. “Explainable machine learning in cybersecurity: A
survey”. In: International Journal of Intelligent Systems 37 (Nov.
2022). doi: 10.1002/int.23088.

[70] Hao Yuan et al. “Interpreting deep models for text analysis via op-
timization and regularization methods”. In: Proceedings of the AAAI
Conference on Artificial Intelligence 33.01 (2019), pp. 5717–5724.

https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.1002/int.23088

123

[71] Hua Yuan et al. “Improving fake news detection with domain-adversarial
and graph-attention neural network”. In: Decision Support Systems
151 (2021), p. 113633. issn: 0167-9236. doi: https://doi.org/10.
1016/j.dss.2021.113633. url: https://www.sciencedirect.com/
science/article/pii/S0167923621001433.

[72] Xichen Zhang and Ali A. Ghorbani. “An overview of online fake news:
Characterization, detection, and discussion”. In: Information Process-
ing & Management 57.2 (2020), p. 102025. issn: 0306-4573.

[73] Junmei Zhong and William Li. “Predicting Customer Call Intent by
Analyzing Phone Call Transcripts Based on CNN for Multi-Class Clas-
sification”. In: 8th International Conference on Soft Computing, Arti-
ficial Intelligence and Applications (2019), pp. 13–25.

[74] Wubai Zhou et al. “STAR: A System for Ticket Analysis and Resolu-
tion”. In: Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (2017), pp. 2181–
2190.

[75] Xinyi Zhou and Reza Zafarani. “A survey of fake news: Fundamental
theories, detection methods, and opportunities”. In: ACM Computing
Surveys (CSUR) 53.5 (2020), pp. 1–40.

https://doi.org/https://doi.org/10.1016/j.dss.2021.113633
https://doi.org/https://doi.org/10.1016/j.dss.2021.113633
https://www.sciencedirect.com/science/article/pii/S0167923621001433
https://www.sciencedirect.com/science/article/pii/S0167923621001433

	Introduction
	Thesis Overview
	Publications

	Background
	Text Classification
	Text Pre-processing
	Feature Extraction and Selection
	DNN techniques for Text classification

	Ensemble Learning
	Ticket Classification
	Fake detection
	Explanation Techniques

	Related Works
	Text classification in Ticket Management Systems
	ML models for TMS
	DNN models for TMS

	Fake Detection

	A Deep Ensemble Framework for Text Classification
	The Software Architecture of the Framework
	The Ensemble Strategies
	The Explanation Technique
	LIME-based Classification Explanations
	The Neighbor-based Word Clouds in the Latent-Space

	The Pseudo Labelling Strategy

	Case studies: Ticket Classification and Fake Detection
	The Ensemble-based System for Ticket Classification
	The Software architecture
	Exploiting Novel Efficient Deep Ensemble Classification Models for Ticket Classification
	Supporting ticket classifiers with a novel Core Human-In-The-Loop scheme
	Introducing an Explanation-based Analysis for better interpreting classification errors
	The proposed explanation workflow with a neighbour-based artifacts representation
	Complexity analysis of the Approach

	The Ensemble-based self-trained Fake Detection Classifier
	The ensemble strategy for effective training with few labelled data

	Experimental results
	Automatic Ticket Classification Experiments
	Datasets: description and statistics
	Implementation, configuration, and test procedure
	Effect of the imbalance-aware loss function
	Comparison of the proposed approach with the baselines
	Comparison of our approach with state-of-the-art algorithms
	Analysis of statistical significance
	Explanation results

	Fake Detection Experiments
	Datasets and Parameters
	Experimental validation of the pseudo-labelled based self-training proposed model

	Conclusions and future works

