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Introduzione

Nel 1968 Donald Shepard [65] introdusse un metodo globale delle distanze inverse

pesate per l’interpolazione di dati scattered bivariati e applicò tale schema nel contesto

nell’approssimazione di dati geografici e demografici [45]. La superficie interpolante era

definita come una combinazione lineare di funzioni peso con coefficienti che sono le valu-

tazioni funzionali nei punti di interpolazione. Il termine “scattered” si riferisce al fatto che

i punti sono irregolarmente distribuiti, cioè non soddisfano alcuna particolare condizione

geometrica. Nell’operatore di Shepard, ogni funzione peso è la normalizzazione della dis-

tanza inversa dai dati e quindi, anche se essa diminuisce all’aumentare della distanza dal

punto, è influenzata da punti che sono lontani dal punto di approssimazione [67]. Il metodo

di Shepard, essendo sensibile a tutti i punti, appartiene alla classe dei metodi globali. La

natura globale del metodo di Shepard non è da preferire per grandi set di dati. Per evitare

questo problema Franke e Nielson [43] svilupparono una modifica del metodo in cui ogni

funzione peso è localizzata in modo tale da avere un supporto compatto [40].

Un ulteriore svantaggio del metodo di Shepard è che esso riproduce in maniera

esatta solo polinomi costanti. A partire da Shepard, diversi autori hanno studiato come

migliorare la qualità di riproduzione dell’operatore di Shepard, in presenza di diversi tipi

di dati funzionali e di dati derivati, nel caso multivariato cos̀ı come in quello univariato.

Shepard [65] sostitùı le valutazioni funzionali in ogni punto con il polinomio di Taylor del

primo ordine; in questo modo, egli ottenne un operatore di interpolazione che riproduce in

maniera esatta polinomi fino al grado uno e interpola le valutazioni funzionali, cos̀ı come

le derivate del primo ordine, nei punti di interpolazione. Farwig [40] considerò il caso più

generale del polinomio di Taylor di qualsiasi ordine e investigò la velocità di convergenza
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della formula di interpolazione di Shepard globale. Franke and Nielson [43] sostituirono il

polinomio di Taylor del secondo ordine nei punti di interpolazione con la funzione quadratica

che approssima i valori dati in un set di punti vicini nel senso dei minimi quadrati pesati.

Seguendo l’idea di Franke, Renka e Brown [62] considerarono come funzioni nodali la cubica

e la serie di coseni a 10 parametri al posto della funzione quadratica e svilupparono tre

subroutine in Fortran 77 per testare l’accuratezza dei vari algoritmi. Successivamente,

Thacker et al. [67] svilupparono un pacchetto contenente la traduzione in Fortran 95 degli

algoritmi di Renka e Brown e la variante lineare dell’algoritmo originale di Shepard da

essere usati quando è noto che i dati contengono valori anomali. Questi pacchetti trovano

applicazione nella meteorologia, nelle stazioni di osservazione meteorologiche e geografiche,

quando sono disponibili solo le valutazioni funzionali.

Per quanto riguarda il caso univariato, Coman and Tr̂ımbiţaş [20] studiarono la

velocità di convergenza dell’operatore di Shepard combinato con gli operatori di interpo-

lazione polinomiale più conosciuti , come Taylor, Lagrange, Hermite, Birkhoff. Cătinaş [30]

introdusse la combinazione dell’operatore di Shepard con il polinomio di interpolazione di

Lidstone [52], mentre Caira e Dell’Accio [15] si occuparono della combinazione dell’operatore

di Shepard con il polinomio di Taylor generalizzato, proposto da Costabile [21]. Caira e

Dell’Accio dimostrarono l’accuratezza di approssimazione dell’operatore univariato di Shep-

ard combinato nell’interpolazione della soluzione discreta di problemi al valore iniziale, per

equazioni differenziali ordinarie.

Nel 2003 Han Xuli [71] sollevò il problema relativo all’aumento della qualità di

riproduzione di un operatore lineare univariato nel caso in cui siano noti valori di derivate

di ordine più alto. Allo scopo di costruire uno sviluppo di ordine superiore di una funzione,

Han Xuli propose di sostituire il classico polinomio di Taylor con una versione modificata

(o ridotta), sebbene quest’ultima interpoli le valutazioni funzionali ma perda le proprietà

di interpolazione delle derivate di ordine superiore. Nel 2005 Carl de Boor [34] diede una

dimostrazione alternativa del risultato di Han Xuli, basata sulle differenze divise, e mostrò

che il ruolo dell’operatore lineare di Xuli può essere preso da un qualsiasi operatore lineare

dello spazio delle funzioni continue su un intervallo reale. L’estensione a dati arbitrari

nel caso multivariato è meno naturale da definire, rispetto al caso univariato. Nel 2009
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Guessab, Nouisser and Schmeisser [46] studiarono un caso multivariato analogo al risultato

di Xuli, sostituendo l’intervallo reale con un dominio compatto convesso e le derivate della

funzione con le derivate direzionali, fino a un certo ordine fissato p, p ∈ N. Esempi notevoli

di funzioni peso per l’operatore lineare sono i polinomi di Bernstein, i polinomi di Lagrange

e le funzioni peso di Shepard.

Nel caso particolare dell’operatore di Shepard, che riproduce solo polinomi costanti,

l’utilizzo del polinomio di Taylor ridotto piuttosto che quello di Taylor, da un lato non au-

menta la qualità di riproduzione della combinazione e dall’altro comporta una sostanziale

perdita di informazioni, dovuta alla mancata interpolazione dei dati derivati supplementari

utilizzati. Pertanto è naturale chiedersi se sia possibile aumentare la qualità di riproduzione

dell’operatore di Shepard, oltre che la sua accuratezza nell’approssimazione, in presenza di

dati derivati supplementari e mantenendo allo stesso tempo le proprietà di interpolazione.

Un primo tentativo di soluzione è da attribuire a Cătinaş [31, 32], la quale sostitùı le valu-

tazioni funzionali con l’estensione tensoriale del polinomio di Bernoulli [22] e del polinomio

di Lidstone [6]. Dato che l’estensione tensoriale è basata sui vertici di un rettangolo, le com-

binazioni risultanti necessitano di dati strutturati in maniera particolare e quando vengono

applicati al caso dell’interpolazione di dati scattered è necessario aggiungere alcuni punti

fittizi allo scopo di creare i rettangoli.

Una nuova procedura, introdotta da Dell’Accio e Di Tommaso nel 2010 [36], per-

mette di costruire, sotto le stesse condizioni, operatori di Shepard combinati che interpolano

tutti i dati forniti nei punti di interpolazione in molteplici situazioni, che includono anche

i casi di dati lacunari difficili da gestire. Nel caso bivariato, questa procedura è basata

sull’associazione, a ogni punto di interpolazione, di un triangolo con un vertice in esso e gli

altri due vertici nel suo intorno. L’associazione è realizzata in modo da ridurre l’errore di

un opportuno polinomio di interpolazione locale tre punti, basato sui vertici del triangolo.

Il polinomio tre punti è usato al posto delle valutazioni funzionali nel metodo di Shepard,

analogamente al polinomio di interpolazione di Taylor nella combinazione di Farwig [40] o

del polinomio di Taylor ridotto nell’approccio di Xuli [71]. In particolare, a seconda dei

dati disponibili in ogni punto di interpolazione, definiamo la combinazione dell’operatore di

Shepard con
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1. il polinomio di interpolazione di Hermite sul triangolo [26];

2. il polinomio di interpolazione di Lidstone tre punti [16];

3. il polinomio di interpolazione Complementary Lidstone tre punti [27].

Assumendo che l’insieme dei dati contenga, insieme alle valutazioni funzionali,

tutte le derivate parziali fino a un certo ordine fissato p, l’operatore bivariato di Shepard-

Hermite [26], presentato nel Capitolo 2, interpola tutti i dati utilizzati e riproduce polinomi

di grado minore o uguale a p, ed è quindi migliore dell’operatore di Shepard-Taylor che

utilizza gli stessi dati. L’operatore di Shepard-Hermite è definito considerando alcuni casi

particolari di una classe generale di polinomi di interpolazione di Hermite sul triangolo,

introdotta da Chui e Lai nel 1990 [18]. Questi particolari polinomi usano e interpolano

le valutazioni funzionali e tutte le derivate in un vertice fissato del triangolo (il punto

di interpolazione in considerazione) e alcuni dei dati disponibili nei rimanenti vertici. Di

conseguenza, hanno un grado totale m maggiore del massimo ordine p di dati derivati

utilizzati e sono univocamente definiti nello spazio Pm
x
dei polinomi di grado totale minore

o uguale a m,m ∈ N.

I dati di tipo Lidstone consistono nelle valutazioni funzionali e in tutte le derivate di

ordine pari in ogni punto di interpolazione, fino a un certo ordine 2m−2. Il nome è in onore
di G. J. Lidstone, il quale nel 1929 [52] forǹı un’espressione esplicita di un polinomio che

approssima una data funzione nell’intorno di due punti piuttosto che uno, generalizzando in

questo modo il polinomio di Taylor. Dal punto di vista pratico tale sviluppo è molto utile [6]

dato che è la base per la soluzione di problemi al valore al bordo di tipo Lidstone (guardare i

lavori pionieristici [2, 4, 5, 7]). Nel 2005 Costabile e Dell’Accio [24], risposero a un problema

posto da Agarwal e Wong in [2] “sulla scarsità di letteratura sull’estensione di alcuni risultati

sull’approssimazione di funzioni univariate, in termini di polinomi di Lidstone per funzioni

di due variabili indipendenti su un dominio non rettangolare”. Essi estesero l’espansione

univariata di Lidstone a un’espansione bivariata che interpola nei vertici del triangolo stan-

dard di R2, e la cui restrizione a ogni lato del triangolo è l’espansione di Lidstone univariata.

Nel Capitolo 3 ridefiniamo l’operatore di Shepard-Lidstone utilizzando la generalizzazione

di questa espansione polinomiale a un generico triangolo di R2 evitando, in tale modo, lo
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svantaggio dell’aggiunta dei punti che si presenta nel caso dell’estensione di Cătinaş [31]. In

particolare, l’operatore di Shepard-Lidstone usa, interpolandole, le valutazioni funzionali e

tutte le derivate di ordine pari fino all’ordine 2m − 2 e riproduce i polinomi fino al grado

2m− 1.

I dati di tipo Complementary Lidstone consistono in valutazioni funzionali in

qualche punto di interpolazione e in tutte le derivate di ordine pari, fino a un certo or-

dine 2m − 1, in ogni punto di interpolazione. L’interpolazione Complementary Lidstone

complementa in maniera naturale l’interpolazione di Lidstone e fu introdotta da Costabile,

Dell’Accio e Luceri nel 2005 [29]. Successivamente, viste le sue applicazioni, essa fu svilup-

pata ulteriormente da Agarwal, Pinelas e Wong [1] e da Agarwal e Wong [8, 3]. Nel Capitolo

4 estendiamo il polinomio di interpolazione Complementary Lidstone a un polinomio bivari-

ato tre punti sui vertici di un generico triangolo di R2 e, combinandolo con l’operatore di

Shepard, forniamo una soluzione al problema dell’interpolazione di tipo Complementary

Lidstone su un insieme di dati scattered [27]. In particolare l’operatore di Shepard Com-

plementary Lidstone utilizza derivate fino all’ordine 2m − 1 e le interpola riproducendo

polinomi fino al grado 2m.

Per ognuno degli operatori elencati, viene fornita un’espressione esplicita del ter-

mine residuale nel caso di funzioni sufficientemente differenziabili. Tale espressione è ot-

tenuta sommando, al classico resto di Taylor, un termine polinomiale che è la differenza

tra ogni espansione tre punti e l’espansione di Taylor dello stesso grado. Limitazioni per

il resto sono ottenute, da cui deduciamo un criterio per l’associazione del triangolo ad

ogni punto di interpolazione. I risultati numerici sulle funzioni test generalmente usate per

l’approssimazione su dati scattered, mostrano che questi operatori hanno una buona accu-

ratezza di approssimazione, comparabile con quella degli operatori di Shepard-Taylor che

riproducono polinomi dello stesso grado, anche nei casi di dati lacunari.

Quando sono note solo le valutazioni funzionali, i polinomi tre punti, che utiliz-

zano le valutazioni funzionali in ogni punto di interpolazione, si riducono al polinomio di

interpolazione lineare tre punti. Un metodo di F. Little, chiamato Shepard triangolare e

introdotto nel 1982 [53], combina funzioni di base simili a quelle di Shepard con polinomi

di interpolazione lineare tre punti. Esso è una combinazione convessa di interpolanti lineari



6

su un insieme di triangoli, in cui ogni funzione peso è definita come il prodotto della dis-

tanza inversa dai vertici del corrispondente triangolo. Il metodo riproduce polinomi lineari

senza utilizzare alcun dato derivato e Little notò che esso supera largamente il metodo di

Shepard dal punto di vista estetico. Durante il mio periodo presso l’USI-Università della

Svizzera Italiana, lavorando con il Prof. K. Hormann, abbiamo ricavato lo stesso metodo

in maniera indipendente come un modo naturale per rompere l’asimmetria che si ha com-

binando l’operatore di Shepard con polinomi di interpolazione lineare. Nel Capitolo 5

studiamo attentamente le proprietà di questo operatore e, come novità, dimostriamo la

sua velocità di convergenza quadratica per configurazioni generali di triangoli, rendendo il

metodo indipendente da qualsiasi mesh che connetta i punti di interpolazione, quindi mesh-

less o meshfree. Un lavoro scientifico su questo argomento è in fase di elaborazione [37].
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Introduction

In 1968 Donald Shepard [65] introduced a global inverse distance weighted method

for interpolating scattered bivariate data points and applied this scheme in the context of

geographic and demographic data fitting [45]. The interpolating surface was defined as a

linear combination of weight functions with coefficients that are the function evaluations

at the interpolation points. The term “scattered” refers to the fact that the points are

irregularly spaced, i.e. they are not assumed to satisfy any particular geometric condition.

In the Shepard operator, each weight function is a normalization of the inverse distance from

the data points and therefore, even if it diminishes as the distance from the interpolation

point increases, it accords too much influence to points that are far away from the point of

approximation [67]. The Shepard method, being sensitive to all data points, belongs to the

class of global methods. The global nature of the Shepard method is not desirable for large

sets of data. To avoid this problem Franke and Nielson [43] developed a modification of the

Shepard method in which each weight function is localized such that it has small compact

support [40].

A further drawback of the Shepard’s method is that it reproduces exactly only

constant polynomials. Starting from Shepard, many authors have studied how to improve

the reproduction quality of the Shepard operator, in presence of different types of functional

and derivative data, in the multivariate as well as in the univariate case. Shepard [65]

substituted the function evaluation at each interpolation point with the first order Taylor

polynomial; in this way, he obtained an interpolation operator that reproduces exactly

polynomials up to the degree one and interpolates function evaluations, as well as first

order derivative data, at the interpolation points. Farwig [40] considered the more general
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case of the Taylor polynomial of any order and investigated the rate of convergence of

Shepard’s global interpolation formula. Franke and Nielson [43] replaced the second order

Taylor polynomial at the interpolation points by quadratic functions that fit the data values

on a set of nearby nodes in a weighted least square sense. Following Franke’s idea, Renka

and Brown [62] considered the cubic and the 10-parameter cosine series nodal functions in

place of the quadratics and developed three Fortran 77 subroutines to test the accuracy

of various algorithms. Afterwards, Thacker et al. [67] developed a package containing the

Fortran 95 translations of Renka and Brown’s algorithms and linear variations of the original

Shepard algorithm to be used when the data is known to contain outliers. These packages

find application to meteorology, weather observation stations and geography, when only

function evaluations are available.

Regarding the univariate case, Coman and Tr̂ımbiţaş [20] studied the rate of con-

vergence of the Shepard operator combined with most known polynomial interpolation

operators, such as Taylor, Lagrange, Hermite, Birkhoff. Cătinaş [30] introduced the combi-

nation of the Shepard operator with the Lidstone interpolating polynomial [52], while Caira

and Dell’Accio [15] dealt with the combination of the Shepard operator with the general-

ized Taylor polynomial, proposed by Costabile [21]. Caira and Dell’Accio demonstrated the

accuracy of approximation of the univariate combined Shepard operators to interpolate the

discrete solution of initial value problem for ordinary differential equation.

In 2003 Han Xuli [71] raised the problem related to the enhancement of the re-

production quality of a univariate linear operator if higher order derivatives of a function

are given. With the aim of constructing an higher order expansion of a function, Han Xuli

proposed to substitute the classical Taylor polynomial with a modified (or reduced) version,

despite the latter interpolates function evaluations but loses the property of interpolation

of all successive derivatives. In 2005 Carl de Boor [34] gave an alternative proof of Han

Xuli’s result, based on divided differences, and showed that the role of Xuli’s linear operator

can be taken by any bounded linear operator on the space of continuous function on a real

interval. Extension to arbitrary data in multiple dimensions is less natural to define, with

respect to the univariate case. In 2009 Guessab, Nouisser and Schmeisser [46] established a

multivariate analogue of Han Xuli’s result, by substituting the real interval with a compact
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convex domain and the derivatives of the function with the directional derivatives up to a

fixed order p, p ∈ N. Remarkable examples of the weight functions for the linear operator

are Bernstein polynomials, Lagrange polynomials and Shepard weight functions.

In the particular case of the Shepard operator, that reproduces only constant

polynomials, the use of the reduced Taylor polynomial rather than the Taylor one, on the

one hand does not increase the reproduction quality of the combination, on the other it

involves a substantially loss of information due to the lack of interpolation of used supple-

mentary derivative data. Therefore, it is natural to ask whether it is possible to enhance

the reproduction quality of the Shepard operator, as well as its accuracy of approximation,

in presence of supplementary derivative data, maintaining at the same time the interpo-

lation properties. A first attempt of solution must be ascribed to Cătinaş [31, 32], who

substituted the function evaluations with the tensorial extensions of the Bernoulli [22] and

Lidstone polynomials [6]. Since the tensorial extension is based on the vertices of a rectan-

gle, the resulting combinations need specially structured data and, therefore, when they are

applied in the case of scattered data interpolation it is necessary to add some other fictive

points in order to create the rectangles.

A new procedure, introduced in 2010 by Dell’Accio and Di Tommaso [36], allows to

construct, under the same conditions, combined Shepard operators that interpolate all given

data at each interpolation point in several situations, that includes even the hard to handle

case of lacunary data. In the bivariate case, this procedure is based on the association,

to each interpolation point, of a triangle with a vertex in it and the other two vertices

in its neighborhood. The association is realized to reduce the error of a suitable three

point local interpolating polynomial, based on the vertices of the triangle. The three point

polynomial is used instead of the function evaluations in the Shepard method, similarly

to the Taylor polynomial in the Farwig’s one [40] or the reduced Taylor polynomial in the

Xuli’s approach [71]. In particular, according to the data available at each interpolation

point, we define the combination of the Shepard operator with:

1. the Hermite interpolating polynomial on the triangle [26];

2. the three point Lidstone interpolating polynomial [16];
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3. the three point Complementary Lidstone interpolating polynomial [27].

By assuming that the set of data contains, together with function evaluations,

all partial derivatives up to a fixed order p, the bivariate Shepard-Hermite operator [26],

presented in Chapter 2, interpolates all given data and reproduces polynomials of degree

greater than p, that is better than the Shepard-Taylor operators which use the same set

of data. The Shepard-Hermite operator is defined by considering some particular cases of

a general class of Hermite interpolation polynomials on the triangle, introduced by Chui

and Lai in 1990 [18]. These particular polynomials use and interpolate function evaluations

and all derivative data at a fixed vertex of the triangle (the interpolation point under

consideration) and some of the given data at the remaining vertices. As a consequence,

they have a total degree m greater than the maximum order p of used derivative data and

are uniquely defined in the space Pm
x
of polynomials of total degree less than or equal to

m,m ∈ N.

Lidstone type data consist of function evaluations and all even order derivatives at

each interpolation point, up to some order 2m− 2. The name is in honor of G. J. Lidstone,
who in 1929 [52] provided an explicit expression of a polynomial which approximates a

given function in the neighborhood of two points instead of one, generalizing in such a

way the Taylor polynomial. From the practical point of view such development is very

useful [6] since it is the basis for the solution of the Lidstone boundary value problems (see

the pioneering papers [2, 4, 5, 7]). In 2005 Costabile and Dell’Accio [24], answering to a

question “on the lack of literature on the extension of some results on the approximation

of univariate functions by means of Lidstone polynomials to functions of two independent

variables over non-rectangular domains”, posed by Agarwal and Wong in [2], extended the

univariate Lidstone expansion to a bivariate expansion interpolating on the vertices of the

standard simplex of R2, which is the univariate Lidstone expansion when restricted to each

side of the simplex. In Chapter 3 we redefine the bivariate Shepard-Lidstone operator by

using the generalization of this polynomial expansion on a generic triangle of R2 avoiding, in

this way, the drawback of the addition of points that occurs in the Cătinaş’ extension [31].

In particular, the bivariate Shepard-Lidstone operator uses function evaluations and all even
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derivatives data up to the order 2m− 2, interpolating them and reproduces polynomials up

to the degree 2m− 1.

Complementary Lidstone type data consist of function evaluations in some inter-

polation point and all odd order derivatives, up to some order 2m−1, at each interpolation
point. Complementary Lidstone interpolation naturally complements Lidstone interpola-

tion and was introduced by Costabile, Dell’Accio and Luceri in 2005 [29]. Afterwards it

was drawn on by Agarwal, Pinelas and Wong [1] and Agarwal and Wong [8, 3] for its appli-

cations. In Chapter 4 we extend the Complementary Lidstone polynomial to a three point

bivariate polynomial on the vertices of a generic triangle of R2 and, by combining it with

the Shepard operator, we provide a solution to the Complementary Lidstone interpolation

problem on scattered data set [27]. In particular the Shepard Complementary Lidstone

operator uses derivatives data up to the order 2m − 1 interpolating them and reproduces

polynomial up to the degree 2m.

For each operator listed above, explicit expression for the remainder is given in

the case of sufficiently differentiable functions. This expression results from the addition,

to the classical Taylor remainder, of a polynomial term which is the difference between

each three point expansion and the Taylor expansion of the same degree. Bound for the

remainder are obtained, from which we deduce a criteria for the association of the triangle

to each interpolation point. Numerical results, on generally used test functions for scattered

data approximation [62], show that these operators have a good accuracy of approximation,

comparable with the one of the Shepard-Taylor operators which reproduce polynomials of

the same degree, even in the lacunary data cases.

When only function evaluations are given, the three point polynomials, which use

function evaluations at each interpolation point, reduce to the three point linear interpo-

lation polynomial. A method by F. Little, called triangular Shepard and introduced in

1982 [53], combines Shepard-like basis functions and three point linear interpolation poly-

nomials as well. It is a convex combination of the linear interpolants of a set of triangles,

in which each weight function is defined as the product of the inverse distance from the

vertices of the corresponding triangle. The method reproduces linear polynomials without

using any derivative data and Little noticed that it surpasses Shepard’s method greatly in



12

esthetic behavior. During my period at the USI-Università della Svizzera Italiana, work-

ing with Prof. K. Hormann, we discovered the same method independently as a natural

way to break the asymmetry that occurs in combining the Shepard operator with three

point linear interpolation polynomials. In Chapter 5 we deeply study the properties of this

operator and, as a novelty, we demonstrate its quadratic rate of convergence for general

configuration of triangles, making the method not dependent from any mesh which con-

nects the interpolation points, i.e. a meshless or meshfree method. A paper on this topic is

in preparation [37].
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Chapter 1

Preliminary results and posing of

the problem

1.1 Enhancement of the algebraic precision of a linear oper-

ator

Let Ω ⊂ R
s, s ∈ N, be a compact convex domain whose interior is non-empty. Let

X = {x1,x2, . . . ,xn} ⊂ Ω, n ∈ N, be a set of n distinct points (called nodes or sample

points) with associated function evaluations f(x1), . . . , f(xn), f ∈ Cp(Ω), p ≥ 0, and let

F = {φ1, φ2, . . . , φn} ⊂ Cp(Ω) be a set of functions which depend only on the node set X.

We suppose that functions in F are cardinal, i.e.

φi (xk) = δik i, k = 1, . . . , n (1.1)

and form a partition of unity, i.e.
n∑

i=1

φi(x) = 1. (1.2)

Han Xuli [71] considers, for s = 1, the linear operator

L [f ] (x) =

n∑

i=1

φi (x) f (xi) . (1.3)

Since (1.1) and (1.2) hold, L [f ] interpolates f at each sample point xi and reproduces

exactly constant functions. An important characteristic of an interpolation operator is the
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polynomial reproduction property. By denoting with Pm
x
the space of all polynomials in x of

degree at most m, we say that the interpolation operator L reproduces exactly polynomials

up to the degreem if L [f ] = f for all f ∈ Pm
x
. In addition, if there exists g ∈ Pm+1

x
such that

L [g] 6= g, then we say that L has polynomial reproduction degree equal to m. This number

is also known as algebraic degree of precision or algebraic degree of exactness. We choose

this last denomination, according to the notation in [20], and denote it by “dex (·)”. The
algebraic degree of exactness m of L depends on F . Possible choices for F are: Bernstein

basis functions (for which m = 1), Lagrange basis functions (m = n− 1) and Shepard basis
functions (m = 0).

Let us suppose that function evaluations and all the derivatives up to a fixed order

p ≥ 1 are given at each sample point. Under this assumption, it is possible to prove [71]

that, by replacing each function evaluations f(xi) in (1.3) with the Taylor polynomial of

order p for f centered at xi, i = 1, . . . , n

Tp[f,xi](x) =

p∑

j=0

f (j) (xi)

j!
(x− xi)

j (1.4)

the combined operator

LTp [f ] (x) =

n∑

i=1

φi (x)Tp[f,xi](x) (1.5)

has algebraic degree of exactness max{m, p}. In order to further enhance the algebraic

precision of the operator (1.3), the idea of Xuli in the univariate case [71], in embryonic

stage also in the Ph.D. thesis of Kraaijpoel [51] and subsequently drawn on by many authors

in the multivariate case [46, 47, 51, 73], consists on the replacement of the Taylor polynomial

Tp in (1.5) with a modified version T̃p defined as

T̃p[f,xi](x) =

p∑

j=0

aj
f (j) (xi)

j!
(x− xi)

j (1.6)

where

aj :=
p!(m+ p− j)!

(m+ p)!(p− j)!
, j = 0, 1, . . . , p. (1.7)

The coefficients aj in (1.7) are all less than or equal to 1. For this reason the modified

Taylor polynomial is also called the reduced Taylor polynomial [51] and in the following we



15

use this last denomination. After the replacement, we obtain the operator

LT̃p
[f ] (x) =

n∑

i=1

φi (x) T̃p[f,xi](x) (1.8)

which has algebraic degree of exactness m+ p [71], interpolates f at each sample point xi,

like the operators L and LTp , but loses the property of interpolation of derivatives of f , if

LTp has this property. This is the case, for example, of Shepard basis functions. Moreover,

in this particular case in which m = 0, the substitution of the Taylor polynomial with the

reduced Taylor one does not cause the enhancement of the algebraic degree of exactness

of the combination since max {m, p} = p = m + p. From now on, we focus on the case of

Shepard basis functions and we start by recalling some basic facts and results on the theory

of Shepard operators.

1.2 The Shepard operator and its modifications

The classical Shepard operator is the original global inverse distance weighted

interpolation method due to Shepard [65]. It is defined by taking φi(x) = Aµ,i (x) with

Aµ,i (x) =
||x− xi||−µ2

n∑
k=1

||x− xk||−µ2

(1.9)

where ||·||2 denotes the Euclidean norm and µ > 0 is a real parameter that controls the

range of influence of the data values. The resulting operator,

Sµ [f ] (x) =
n∑

i=1

Aµ,i (x) f (xi) , (1.10)

is a weighted average of the data values, where closer points have greater influence. This

operator is stable, in the sense that

min
i

f (xi) ≤ Sµ[f ](x) ≤ max
i

f (xi) , x ∈ R
2.

Each weight function (1.9) can be rewritten in the form [20]

Aµ,i (x) =

n∏
j=1
j 6=i

||x− xi||µ2

n∑
k=1

n∏
j=1
j 6=k

||x− xk||µ2
, (1.11)
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the denominator of (1.11) never vanishes and therefore each weight function is a globally

defined continuous function. In addition, if µ is an even integer, then each Aµ,i (x) is the

quotient of polynomials with denominators that do not vanish and so Sµ is in C∞ [11].

The exponent µ strongly influences the surface to be reconstructed. More precisely,

for 0 < µ < 1, the Shepard operator (1.10) has cusps at each sample point, and, for µ = 1,

it has corners. For µ > 1, the tangent plane at each sample point is parallel to the xy-plane,

which produces flat spots at xi. The effect of µ on the surface is illustrated in [45, 57]. The

continuity class of Shepard’s operator depends on µ and, for µ > 0, is as follows

(i) if µ is an even integer, then Sµ [f ] ∈ C∞,

(ii) if µ is an odd integer, then Sµ [f ] ∈ Cµ−1,

(iii) if µ is not an integer, then Sµ [f ] ∈ C⌊µ⌋, where ⌊µ⌋ is the larger integer less than or
equal to µ.

The cusps and corners are unsatisfactory and the flat spots have discouraged the

use of this method, since there is no reason to believe that all functions f have stationary

points at all nodes. In order to avoid the drawback of having stationary points and to

increase the algebraic degree of exactness as well, many authors [11, 15, 20, 30, 31, 32, 36,

43, 60, 61, 62, 65, 67] suggest to replace the constant values f (xi) in (1.10) with the values

of interpolation polynomials Pi [·] (x) at xi applied to f , to obtain the combined Shepard

operator [20]

SP (x) :=

n∑

i=1

Aµ,i (x)Pi [f ] (x) . (1.12)

The combined Shepard operator enhances the algebraic degree of exactness of the original

Shepard method to dex (SP ) = min
i=1,...,n

dex (Pi [·]); moreover, it has the property of interpo-
lation of derivative data, i.e.

∂r+s

∂xr∂ys
SP (xi) =

∂r+s

∂xr∂ys
Pi [f ] (xi)

i = 1, . . . , n, r, s ∈ N, 1 ≤ r + s < µ,

(1.13)

since [11]
∂r+s

∂xr∂ys
Aµ,i (xk) = 0,

i, k = 1, ..., n, r, s ∈ N, 1 ≤ r + s < µ.
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Shepard himself proposed to substitute the function evaluation f (xi) in (1.10) with the

first order Taylor polynomial for f centered at xi, obtaining an operator that interpolates

function evaluation, as well as first order derivative data at each sample point and has

algebraic degree of exactness 1. In [40] Farwig investigated the rate of convergence of the

Shepard-Taylor operator

STp [f ] (x) =

n∑

i=1

Aµ,i (x)Tp[f,xi](x) (1.14)

as a function of µ in the s-dimensional case. Let us introduce some useful notations and

report the Farwig’s result on the rate of convergence of the Shepard-Taylor operator in the

case s = 2.

A function f is said to be of class Ck,1 (Ω), k ≥ 0, if and only if f is of class Ck (Ω)

and all its partial derivatives of order k are Lipschitz continuous in Ω. We associate with

this space the seminorm |·|k,1 [40]

|f |k,1 = sup





∣∣∣ ∂kf
∂xk−i∂yi

(u)− ∂kf
∂xk−i∂yi

(v)
∣∣∣

|u− v| ;u,v ∈ Ω,u 6= v, i = 0, . . . , k



 . (1.15)

We denote with ||·|| the maximum norm (i.e. ||x|| is the maximum of the moduli of the

components of x), with Bρ (x) the closed ball, in the maximum norm, centered at x and of

radius ρ (i.e. the closed square with side length 2ρ) and set

r = inf {ρ > 0 : for every x ∈ Ω, Bρ (x) contains at least one element of X} .

If Ω is a compact convex domain, Farwig’s main theorem on the rate of convergence of the

Shepard-Taylor operator reduce to the following

Theorem 1 Let Ω be a compact convex domain. If f ∈ Cp,1 (Ω) then the supremum norm
∣∣∣∣STp [f ]− f

∣∣∣∣
Ω
of STp [f ]− f in Ω as the following estimate

∣∣∣∣STp [f ]− f
∣∣∣∣
Ω
≤ CM |f |p,1 εpµ (r) ,

where

εpµ (r) =





|log r|−1 , µ = 2,

rµ−2, µ− 2 < p+ 1, µ > 2,

rµ−2 |log r| , µ− 2 = p+ 1,

rp+1, µ− 2 > p+ 1.
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The basis function Aµ,i is global, i.e. it gives too much influence to data points

that are far away from the point of approximation and this may be not so good in some

cases. Franke and Nielson [43] developed a modification of the original Shepard operator in

which the value at a point x ∈ R
2 depends only on a set Nx of nodes nearest to x, and this

significantly improves the quality of interpolation, making the Shepard method local and

very useful to the interpolation of scattered data. The local Shepard method is obtained

by multiplying the Euclidean distances ||x− xj||2 , j = 1, . . . , n, in the expression of Aµ,i

(1.9), by Franke-Little weights [10]
(
1− ||x− xj ||2

Rwj

)µ

+

, Rwj
> 0 for each j = 1, . . . , n,

where (·)+ is the positive part function, i.e.

(t)+ :=





t, if t ≥ 0,

0, if t < 0.

The local Shepard basis functions are then defined by

W̃µ,i (x) =
Wµ,i (x)

n∑
k=1

Wµ,k (x)

, µ > 0,
(1.16)

where

Wµ,i (x) =

(
1

||x− xi||2
− 1

Rwi

)µ

+

and Rwi
is the radius of influence about node xi. In practice Rwi

is chosen just large

enough to include Nw points in the open ball B (xi, Rwi
) = {x : ||x− xi||2 < Rwi

} [59]. As
a consequence, the value at a point x ∈ Ω of the local Shepard operator

S̃ [f ] (x) =

n∑

i=1

W̃µ,i (x) f (xi) (1.17)

depends only on the data Nx = {xi ∈ X : ||x− xi||2 < Rwi
}.

Like the Shepard operator (1.10), the local Shepard operator S̃ [·] is stable, in-
terpolates function evaluations at each node but reproduces only constant functions. For

µ ∈ N, µ ≥ 1, the basis functions W̃µ,i (x) are of class C
µ−1(Ω) and

∂r+s

∂xr∂ys
W̃µ,i (xk) = 0, i, k = 1, . . . , n; r, s ∈ N, 1 ≤ r + s < µ. (1.18)
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Therefore the local Shepard-Taylor operator [40]

S̃Tp [f ] (x) =

n∑

i=1

W̃µ,i (x)

p∑

j=0

f (j) (xi)

j!
(x− xi)

j (1.19)

has algebraic degree of exactness p and interpolates all the data required for its definition,

provided that µ ≥ p+ 1.

The Shepard-reduced Taylor operator

S̃
T̃p
[f ] (x) =

n∑

i=1

W̃µ,i (x)

p∑

j=0

aj
f (j) (xi)

j!
(x− xi)

j , (1.20)

has been recently studied in [73]. As pointed out above in the case of a general linear

operator L, it does not increase the algebraic degree of exactness of the local Shepard-

Taylor operator and loses the property of interpolation of derivative data.

1.3 Statement of the main results

Recently, in [36], we introduced a new technique for combining local bivariate

Shepard operators with three point interpolation polynomials. This technique is based on

the association, to each sample point, of a triangle with a vertex in it and the other two

vertices in its neighborhood, so as to locally reduce the error of the three point polynomial

interpolant. The combination inherits both the degree of exactness and the interpolation

conditions of the polynomial interpolant at each sample point.

In this thesis, we want to consider some more kind of combinations of the Shepard

operator with three point interpolation polynomial to increase, as much as possible, the

algebraic precision of the combined operator, depending on the information we have at each

sample point. More precisely, we discuss the following situations.

Case 1 At each node are given function evaluations and derivative data, up to a fixed order

p. We enhance the algebraic degree of exactness of the Shepard operator to m = p+ q, with

q > 0, by considering the combination of the Shepard operator with some particular cases

of a general class of Hermite interpolation polynomials on the triangle, introduced by Chui

and Lai in 1990 [18]. The resulting operators maintain the interpolation properties of the



20

Shepard-Taylor operator STp [f ] and have the accuracy of approximation of the operator

STm [f ].

Case 2 At the nodes xi, i = 1, . . . , n are given some particular kind of lacunary data, such

as function evaluations and even order derivative data at each sample point or function

evaluations at some nodes and odd order derivative data at all nodes. We enhance the

algebraic degree of exactness of the Shepard operator by considering the three point Lidstone

and Complementary Lidstone polynomial, respectively. The resulting operators interpolates

on all used data and have the accuracy of approximation of the Shepard-Taylor operators

which have the same degree of exactness.

Case 3 At each node are given only function evaluations. The three point interpolating

polynomial, which uses function evaluation at each node, is the three point linear interpolat-

ing polynomial. In combining the Shepard operator with that three point polynomial, a kind of

asymmetry occurs as we combine “point-based” Shepard basis function with “triangle-based”

polynomials. To solve this asymmetry we consider the triangular Shepard operator [53]. We

study its properties and provide that this operator has a quadratic approximation, rather

than linear.

The three point interpolation polynomials relate to the vertices of triangles, there-

fore it is convenient to express them by using barycentric coordinates. To this aim, in the

next section, we recall the definition of the barycentric coordinates of a point with respect

to a triangle in R
2, introduce notations for the derivatives along the directed sides of the

triangle and state some related results which are useful in the study of the remainder term

of all the proposed three point interpolation polynomials.

1.4 Barycentric coordinates, directional derivatives and re-

lated bounds

Let Z2
+ denote the set of all pairs with non-negative integer components in the eu-

clidean space R2. For β = (β1, β2) ∈ Z
2
+, we use the notations |β| = β1+β2, β! = β1!β2! and
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β ≤ α if and only if βi ≤ αi for all i = 1, 2. Let Vk =
(
V 1
k , V

2
k

)
, k = 0, 1, 2 be non-collinear

points in an anticlockwise ordering and let ∆2 (V0, V1, V2) denote the two-dimensional sim-

plex with vertices V0, V1, V2. The barycentric coordinates (λ0 (x) , λ1 (x) , λ2 (x)), of a

generic point x = (x, y)∈ R
2, relative to the simplex ∆2 (V0, V1, V2), are defined by

λ0 (x) =
A (x, V1, V2)

A (V0, V1, V2)
, λ1 (x) =

A (V0,x, V2)

A (V0, V1, V2)
, λ2 (x) =

A (V0, V1,x)

A (V0, V1, V2)
(1.21)

where A (V0, V1, V2) is the signed area of the simplex of vertices V0, V1, V2

A (V0, V1, V2) =

∣∣∣∣∣∣∣∣∣

1 1 1

V 1
0 V 1

1 V 1
2

V 2
0 V 2

1 V 2
2

∣∣∣∣∣∣∣∣∣
.

If f is a differentiable function, and Vi and Vj are two distinct vertices of the simplex

∆2 (V0, V1, V2), the derivative of f along the directed line segment from Vi to Vj (side of the

simplex) at x is denoted by

Dijf (x) := (Vi − Vj) · ∇f (x) , i, j = 0, 1, 2, i 6= j, (1.22)

where · is the dot product and ∇f (x) =

(
∂f

∂x
(x) ,

∂f

∂y
(x)

)
. The composition of derivatives

along the directed sides of the simplex (1.22) are denoted by

Dβ
0 = Dβ1

10D
β2
20 , Dβ

1 = Dβ1
01D

β2
21 , Dβ

2 = Dβ1
02D

β2
12 . (1.23)

By setting

r = max {||V0 − V1||2 , ||V1 − V2||2 , ||V2 − V0||2} (1.24)

and

S =
1

A (V0, V1, V2)
, (1.25)

the barycentric coordinates λ1 (x) and λ2 (x) are bounded by

|λi (x)| ≤ (rS) ||x− V0||2 , i = 1, 2. (1.26)

In fact,

λi (x) = (−1)i
(
V 2
i − V 2

0

) (
x− V 1

0

)
−

(
V 1
i − V 1

0

) (
y − V 2

0

)

A (V0, V1, V2)
, i = 1, 2
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and, by the Cauchy-Schwartz inequality [9]

(
n∑

i=1
aibi

)2

≤
(

n∑
i=1

a2i

)(
n∑

i=1
b2i

)
, ai, bi ∈ R,

(1.24) and (1.25), we get (1.26). Moreover, since

λ1 (x) + λ2 (x) =

(
V 2
2 − V 2

1

) (
x− V 1

0

)
−

(
V 1
2 − V 1

1

) (
y − V 2

0

)

A (V0, V1, V2)

we have

|λ1 (x) + λ2 (x)| ≤ (rS) ||x− V0||2 . (1.27)

Regarding the bounds for the composition of the derivatives of f along the directed

sides of the simplex ∆2 (V0, V1, V2), we have

Corollary 2 Let f ∈ Ck,1 (Ω). The derivatives of f along the directed sides of the simplex

∆2 (V0, V1, V2) satisfy

∣∣∣Dβ
j f (x)

∣∣∣ ≤ 2|β|r|β| |f ||β|−1,1 , j = 0, 1, 2, |β| = k + 1, x ∈ Ω. (1.28)

Proof. Let us consider the case j = 0. By (1.23) and (1.22) we have

Dβ
0 f (x) =

β1∑
i=0

(
β1
i

)
(V 1

1 − V 1
0 )

β1−i
(
V 2
1 − V 2

0

)i

β2∑
j=0

(
β2

j

)
(V 1

2 − V 1
0 )

β2−j (V 2
2 − V 2

0

)j ∂|β|f(x)

∂x|β|−i−j∂yi+j .

Since |β| ≥ 1, at least one between |β| − i − j and i + j is greater than or equal to 1,

i = 0, . . . , β1, j = 0, . . . , β2. If |β| − i− j ≥ 1

∣∣∣∣∣
∂|β|f (x)

∂x|β|−i−j∂yi+j

∣∣∣∣∣ =

∣∣∣∣∣∣
lim
h→0

∂|β|−1f(x+h,y)

∂x|β|−i−j−1∂yi+j − ∂|β|−1f(x,y)

∂x|β|−i−j−1∂yi+j

h

∣∣∣∣∣∣
≤ |f ||β|−1,1

otherwise

∣∣∣∣∣
∂|β|f (x)

∂x|β|−i−j∂yi+j

∣∣∣∣∣ =

∣∣∣∣∣∣
lim
h→0

∂|β|−1f(x,y+h)

∂x|β|−i−j∂yi+j−1 − ∂|β|−1f(x,y)

∂x|β|−i−j∂yi+j−1

h

∣∣∣∣∣∣
≤ |f ||β|−1,1
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i = 0, . . . , β1, j = 0, . . . , β2. Therefore we have

∣∣∣Dβ
0 f (x)

∣∣∣ =
∣∣∣∣∣
β1∑
i=0

(
β1
i

)
(V 1

1 − V 1
0 )

β1−i
(
V 2
1 − V 2

0

)i

β2∑
j=0

(
β2

j

)
(V 1

2 − V 1
0 )

β2−j
(
V 2
2 − V 2

0

)j ∂|β|f(x)

∂x|β|−i−j∂yi+j

∣∣∣∣∣

≤
β1∑
i=0

(
β1

i

) ∣∣∣∣V 1
1 − V 1

0

∣∣∣∣β1−i
2

∣∣∣∣V 2
1 − V 2

0

∣∣∣∣i
2

β2∑
j=0

(
β2
j

) ∣∣∣∣V 1
2 − V 1

0

∣∣∣∣β2−j
2

∣∣∣∣V 2
2 − V 2

0

∣∣∣∣j
2

∣∣∣ ∂|β|f(x)

∂x|β|−i−j∂yi+j

∣∣∣

≤ 2|β| ||V1 − V0||β1
2 ||V2 − V0||β2

2 |f ||β|−1,1
≤ 2|β|r|β| |f ||β|−1,1 .

The cases j = 1, 2 are analogous.

1.5 On the remainder term of three point interpolation poly-

nomials

Let ∆2 (V0) := ∆2 (V0, V1, V2;V0) denote the simplex ∆2 (V0, V1, V2) with fixed

vertex V0 and let P
∆2(V0)
k [·] , k ∈ N0, N0 := N ∪ {0}, be a three point polynomial oper-

ator based on the vertices of ∆2 (V0). For a function f ∈ Cp (Ω) we suppose that the

polynomial P
∆2(V0)
k [f ] is expressed in terms of the functional or derivative data of a set

If ⊂
{
Dβ

i f (Vi) , i = 0, 1, 2, β ∈ N
2
0, |β| ≤ p

}
of cardinality k, i.e.

P
∆2(V0)
k [f ] (x) =

∑

i,β

D
β
i f(Vi)∈If

Bi,β (x)D
β
i f (Vi) , (1.29)

where Bi,β (x) ∈ Pk
x
. We suppose also that dex

(
P

∆2(V0)
k [·]

)
= k or, equivalently, that the

interpolation problem

Dβ
i

(
P

∆2(V0)
k [f ] (Vi)

)
= fβ

i , i, β such that Dβ
i f (Vi) ∈ If

has a unique solution in Pk
x
for any choice of the numbers fβ

i ∈ R, i.e. that

{
Bi,β (x) , i, β such that Dβ

i f (Vi) ∈ If
}

(1.30)
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is a basis of Pk
x
[33]. If f ∈ Ck,1 (Ω) we provide an explicit expression for the remainder

term

R
P,∆2(V0)
k [f ] = f − P

∆2(V0)
k [f ] (1.31)

through the (k − |β|)-th order truncated Taylor expansions Tk−|β|
[
Dβ

i f, V0

]
(Vi) of the data

Dβ
i f (Vi) centered at V0 with integral remainder along the segment [V0, Vi] (note that for

i = 0 we have Tk−|β|
[
Dβ

0 f, V0

]
(V0) = Dβ

0 f (V0)). In fact, for each i, β such that Dβ
i f (Vi) ∈

If , we have
Dβ

i f (Vi) = Tk−|β|
[
Dβ

i f, V0

]
(Vi)

+

∫ 1

0

D
k−|β|+1
i0 Dβ

i f (V0 + t (Vi − V0))

(k − |β|)! (1− t)k−|β| dt
(1.32)

where

Tk−|β|
[
Dβ

i f, V0

]
(Vi) =

∑

0≤γi≤k−|β|

1

γi!
Dγi

i0D
β
i f (V0)

and the Lebesgue integral on the right hand side of (1.32) is well defined and finite. In

fact f ∈ Ck,1 (Ω) implies that the k-th order derivatives of f are univariate absolutely

continuous functions when restricted to the segments [V0, Vi] , i = 1, 2 [63, pag.157]. A

Lebesgue Theorem [50, pag.340] ensures therefore that the (k + 1)-th order derivatives

of f exist almost everywhere, are Lebesgue integrable and (1.32) holds after a repeated

integration by parts. By substituting (1.32) in (1.29), after some rearrangement we get

P
∆2(V0)
k [f ] (x) = T̃k [f, V0] (x) + δ

P,∆2(V0)
k (x) (1.33)

where

T̃k [f, V0] (x) =
∑

i,β

D
β
i f(Vi)∈If

Bi,β (x)Tk−|β|
[
Dβ

i f, V0

]
(Vi)

is a polynomial in x which is expressed only in terms of directional derivatives of f up to

the order k at V0 and

δ
P,∆2(V0)
k [f ] (x) =

∑

i,β

D
β
i f(Vi)∈If

Bi,β (x)

∫ 1

0

D
k−|β|+1
i0 Dβ

i f (V0 + t (Vi − V0))

(k − |β|)! (1− t)k−|β| dt

(1.34)

is a polynomial in x which is expressed only in terms of the integral of (k + 1)-th order

directional derivatives of f . Since δ
P,∆2(V0)
k [f ] ≡ 0 for each f ∈ Pk

x
and dex

(
P

∆2(V0)
k [·]

)
=
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k, the polynomial operator T̃k [·, V0] reproduces exactly polynomials up to the degree k. For

this reason we can affirm that T̃k [f, V0] is the k-th order Taylor polynomial Tk [f, V0] for f

centered at V0

Tk [f, V0] (x) :=
∑

|α|≤k

1

α!
Dαf (V0) (x− V0)

α (1.35)

where

Dαf =
∂|α|f

∂xα1∂yα2
(1.36)

and

(x− V0)
α =

(
x− V 1

0

)α1
(
y − V 2

0

)α2 .

In fact, T̃k [f, V0] can be expressed, after some computation and rearrangement, in terms of

some partial derivatives of f up to the order k at a point V0 ∈ Ω

T̃k [f, V0] (x) =
∑

|α|≤k
α∈N2

0

Dαf (V0) pα (x) ,

where pα (x) are polynomials of degree at most k. Since T̃k [f, V0] = f for each f ∈ Pk
x

then {pα (x) : |α| ≤ k} generates Pk
x
, and therefore pα (x) 6= 0 for each α. Since T̃k [·, V0]

reproduces exactly all polynomials in Pk
x
it follows that

T̃k [Tk [f, V0] , V0] (x) = Tk [f, V0] (x) , x ∈ Ω; (1.37)

on the other hand

T̃k [Tk [f, V0] , V0] (x) = T̃k [f, V0] (x) , x ∈ Ω, (1.38)

since for each α, such that |α| ≤ k

DαTk [f, V0] (V0) = Dαf (V0) .

Therefore, by equaling the right hand side terms of (1.37) and (1.38) we get

T̃k [f, V0] (x) = Tk [f, V0] (x) .

From (1.34), the polynomial δ
P,∆2(V0)
k [f ] (x) depends only on the integral of deriva-

tivesD
k−|β|+1
i0 Dβ

i f (V0 + t (Vi − V0)) of f of order k+1 restricted to the segments [V0, Vi] , i =
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2∆
α

β
r

Figure 1.1: The angles adjacent to the longest edge of triangle ∆2 with length r are denoted
by α and β.

1, 2 and on the polynomials Bi,β (x) which can be expressed in terms of the barycentric co-

ordinates (λ0 (x) , λ1 (x) , λ2 (x)). By using bounds (1.26), (1.27) and (1.28) we can get a

bound for the polynomial δ
P,∆2(V0)
k [f ] (x) in terms of the quantities r,

(
r2S

)
and ||x− V0||2

(in this work this is done, case by case, for the expansions of Chapters 2, 3, 4 and 5). These

bounds have the following general form

∣∣∣δP,∆2(V0)
k [f ] (x)

∣∣∣ ≤ 2k |f |k,1

(
k∑

α=0

Cαr
k+1−α (

r2S
)α ||x− V0||α2

)
, ∀x ∈ Ω, (1.39)

where Cα are non-negative constants which depend on P
∆2(V0)
k . By settings (1.24) and (1.25)

the quantity r2S depends only on the shape of the fixed triangle ∆2 (V0). In fact, if α, β

denote the adjacent angles to the side of length r, then r2S = sin(α+β)
sinα sinβ

= cot (α)+cot (β) ≥
2√
3
(See Figure 1.1).

Since each term in (1.39) has the factor rk+1−α with k+1−α ≥ 1, from previous

considerations it follows that

lim
r→0

r2S=const

∥∥∥δP,∆2(V0)
k [f ]

∥∥∥
Ω
= 0. (1.40)

In other words, the limit in (1.40) means that when V1 and V2 tends to V0 so as the initial

shape of ∆2 (V0) does not change, the polynomial P
∆2(V0)
k [f ] (x) tends, in the uniform norm,

to the k-th order Taylor polynomial for f centered at V0. This property is also implied by

the results of a paper by Ciarlet and Raviart [19].

For the remainder (1.31) we easily get

R
P,∆2(V0)
k [f ] (x) = f (x)− P

∆2(V0)
k [f ] (x)

= f (x)− Tk [f, V0] (x) + Tk [f, V0] (x)− P
∆2(V0)
k [f ] (x)

= RT
k [f ] (x) + δ

P,∆2(V0)
k [f ] (x) , x ∈ Ω
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where RT
k [f ] (x) is the remainder in the Taylor expansion. Hence we have

∣∣∣RP,∆2(V0)
k [f ] (x)

∣∣∣ ≤
∣∣RT

k [f ] (x)
∣∣+

∣∣∣δP,∆2(V0)
k [f ] (x)

∣∣∣

≤ 2k |f |k,1

(
||x− V0||k+1

2

(k − 1)!
+

k∑

α=0

Cαr
k+1−α (

r2S
)α ||x− V0||α2

)
, x ∈ Ω

(1.41)

1.6 Shepard operator combined with three point interpola-

tion polynomials

Here we use the results of previous Section to define a new class of combined

Shepard operators. The technique, introduced in [36], is based on the association, to each

sample point xi ∈ X, of a triangle ∆2 (i) with a vertex in xi (the fixed vertex) and the

other two vertices in a neighborhood B (xi, Rwi
) of xi. Among all eligible triangles in

B (xi, Rwi
), ∆2 (i) is chosen so as to locally reduce δ

P,∆2(i)
k [f ] through the bound (1.39).

More precisely, for each set of indices {j, k} such that ∆2 (xi,xj ,xk;xi) ⊂ B (xi, Rwi
) we

set ri,j,k = max
{
||xi − xj||2 , ||xi − xk||2 , ||xk − xj||2

}
and Si,j,k =

1
A(xi,xj ,xk)

; therefore in

the ball B (xi, ri,j,k) we get

∣∣∣δP,∆2(xi,xj ,xk;xi)
k [f ] (x)

∣∣∣ ≤ 2k |f |k,1

(
k∑

α=0

Cαr
k+1
i,j,k

(
r2i,j,kSi,j,k

)α
)

≤ 2k |f |k,1 rk+1
i,j,k

(
r2i,j,kSi,j,k

)k

(
k∑

α=0

Cα

)
.

We set

∆2 (i) = ∆2 (xi,xj ,xk;xi)

where the indices j, k are such that the quantity rk+1
i,j,k

(
r2
i,j,k

Si,j,k

)k

is as small as possible.

This kind of choice is a compromise between the choice of a small triangle (which, however,

could have very small angles and therefore a large value of r2S) and a regular triangles (for

which r2S is near to the minimum value but which could have a big area).

We combine the local Shepard operator (1.17) with three point interpolation poly-

nomials as follows

SP [f ] (x) =
n∑

i=1
W̃µ,i (x)P

∆2(i)
k [f ] (x) , x ∈ Ω. (1.42)
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As usual, the combination (1.42) inherits the degree of exactness of the operators P
∆2(i)
k [·]

and, for each µ > p + 1, the interpolation conditions satisfied by each local polynomial

interpolant P
∆2(i)
k [·] at the vertex xi, since the basis functions W̃µ,i form a partition of

unity and satisfy the cardinality property (1.1) and (1.18).

To give a bound for the remainder term

RS [f ] (x) = f (x)− SP [f ] (x)

=
n∑

i=1

W̃µ,i (x)
(
f (x)− P

∆2(i)
k [f ] (x)

)
,

(1.43)

in line with [40, 72], we set

1. Ix = {i ∈ {1, . . . , n} : ||x− xi||2 < Rwi
}, x ∈ Ω;

2. M = sup
x∈Ω

{#(Ix)}, where # is the cardinality operator.

By easy calculation we get

|RS [f ] (x)| = |f (x)− SP [f ] (x)|
≤

∑

i∈Ix
W̃µ,i (x)

∣∣∣f (x)− P
∆2(i)
k [f ] (x)

∣∣∣

≤ 2k |f |k,1
∑

i∈Ix
W̃µ,i (x)

(
||x− Vi0 ||k+1

2

(k − 1)!
+

k∑

α=0

Cα,ir
k+1−α
i

(
r2i Si

)α ||x− Vi0 ||α2

)

≤ 2k |f |k,1
∑

i∈Ix
W̃µ,i (x)

(
Rk+1

wi

(k − 1)!
+

k∑

α=0

Cα,ir
k+1−α
i

(
r2i Si

)α
Rα

wi

)

≤ 2k |f |k,1M max
i∈Ix

{
Rk+1

wi

(k − 1)!
+

k∑

α=0

Cα,ir
k+1−α
i

(
r2i Si

)α
Rα

wi

}
.

(1.44)

We see that the error estimate (1.44) is essentially that of Zuppa’s paper [72] for the modified

local Shepard’s interpolation formula apart for the term

k∑

α=0

Cα,ir
k+1−α
i

(
r2i Si

)α
Rα

wi
. In the

practice Rwi
is chosen just large enough to include Nw nodes in the ball B (xi, Rwi

); for a

set of n uniformly distributed nodes and Nw ≪ n we can assume ri ≈ Rwi
and therefore

|RS [f ] (x)| / 2k |f |k,1Nw

(
1

(k − 1)!
+ max

i∈Ix

{
k∑

α=0

Cα,i

(
r2i Si

)α
})

max
i∈Ix

{
Rk+1

wi

}
.
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f1

f6

f2

f7

f3

f8

f4

f9

f5

f10

Figure 1.2: Test functions used in our numerical experiments. The definitions can be found
in [62].
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1.7 Settings for the numerical experiments

To test the accuracy of approximation of the combined Shepard operators (1.42)

in the bivariate interpolation of large sets of scattered data, we carry out various numerical

experiments with different sets of nodes (See Figure 1.3) and 10 test functions (see Figure

1.2), including those introduced by Franke [41, 42] and Renka and Brown [62].

Exponential: F1 = 0.75 exp
(
−(9x− 2)2 + (9y − 2)2

4

)

+0.50 exp
(
−(9x− 7)2 + (9y − 3)2

4

)

+0.75 exp
(
−(9x+ 1)2

49
− (9y + 1)2

10

)

−0.20 exp
(
−(9x− 4)2 − (9y − 7)2

)
,

Gentle: F2 =
exp

(
−81
16

(
(x− 0.5)2 + (y − 0.5)2

))

3
,

Sphere: F3 =

√
64 − 81((x − 0.5)2 + (y − 0.5)2)

9
− 0.5,

Saddle: F4 =
1.25 + cos(5.4y)

6 + 6(3x− 1)2
,

Cliff: F5 =
tanh(9y − 9x) + 1

9
,

Steep: F6 =
exp

(
−81
4
((x− 0.5)2 + (y − 0.5)2)

)

3
,

F7 = 2cos(10x) sin(10y) + sin(10xy),
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F8 = exp
(
−(5− 10x)2

2

)
+ 0.75 exp

(
−(5− 10y)2

2

)

+0.75 exp
(
−(5− 10x)2

2

)
exp

(
−(5− 10y)2

2

)
,

F9 =

((
20
3

)3
exp

(10− 20x

3

)
exp

(10− 20y

3

))2

×







1

1 + exp
(10 − 20x

3

)







1

1 + exp
(10 − 20y

3

)







5

×


exp

(10 − 20x

3

)
− 2

1 + exp
(10− 20x

3

)


 ,

F10 = exp
(
−0.04

√
(80x− 40)2 + (90y − 45)2

)

× cos
(
0.15

√
(80x− 40)2 + (90y − 45)2

)
.

We compare numerical results obtained by applying the Shepard-operators (1.42) with

those obtained by applying the Shepard-Taylor operators with the same algebraic degree of

exactness. We remark that the second operator uses function and derivatives that cannot

be available in some particular problems.

We compute numerical approximations by using the Franke dataset [49] or a sparse

set of 1089 uniformly distributed interpolation nodes in the unit square R (See Figure

1.3), introduced in [36]. The resulting approximations are computed on a regular grid of

ne = 101 × 101 points of R. In achieving the numerical comparisons we use three error

metrics [67]. These are the maximum absolute error emax, the mean absolute error emean

and mean square error eMS . The absolute approximation error is defined by

ei = ||SP [Fj ] (zi)− Fj (zi)||2 , zi ∈ R, j = 1, . . . , 10

where SP is one the combined Shepard operator (1.42), Fj is one of the test functions and

zi are the points of the regular grid of evaluation points of R. Therefore, the maximum

absolute error is

emax = max
1≤i≤ne

ei, (1.45)
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the mean absolute error is

emean =
1

ne

ne∑

i=1

ei, (1.46)

and the mean square error is defined as

eMS =

√∑ne

i=1 e
2
i

ne
. (1.47)
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Chapter 2

The Shepard-Hermite operators

Over all this chapter we assume that, together with function evaluations, all par-

tial derivatives up to a certain order p ∈ N are given at each sample point. Under this

assumption, we combine the Shepard operator with Hermite interpolation polynomials on

the simplex in order to enhance, as much as possible, the algebraic degree of exactness of

the combined operator. For one variable, the Hermite interpolation problem consists in

finding a polynomial that interpolates, on a set of distinct nodes, values of a function and

its successive derivatives up to a certain order, which may depend on the node of interpo-

lation. As well known, for each set of n distinct nodes {x1, . . . ,xn} and associated set of n
corresponding non negative integers {p1, . . . , pn}, there exists only one polynomial of degree
m = n +

n∑
i=1

pi − 1 that interpolates at xi, i = 1, . . . , n function evaluation and successive

derivatives up to the order pi of a given function f .

In the case of several variables the definition of Hermite interpolation problem is

less clear [64]; in the literature it is often defined as interpolation of all partial derivatives

up to a certain order [54]. Since we consider the case of three not collinear nodes, in line

with [18], we find more convenient to state the problem in terms of directional derivatives

along the side of the two dimensional simplex, instead of using classical partial derivatives.

To do this we need to take care not only of the maximum order p of derivative data given

at each of the three vertices, but also of the dimension of the polynomial space we work

with. In fact, for a fixed p, different subsets of derivative data at each vertex of the simplex
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can be fixed such that the associated three point interpolation problem is unisolvent in a

polynomial space of opportunely total degree. Since we want that the Shepard-Hermite

operator interpolates all given data, we require that these subsets contain all available data

at the fixed vertex V0 of the simplex ∆2 (V0, V1, V2;V0) and some of the available data at

the remaining vertices V1, V2 for a total of dim (Pm
x
) =

(
m+2
2

)
interpolation conditions. In

this way the resulting Shepard-Hermite operator has algebraic degree of exactness m > p

that is better than the Shepard-Taylor operators which use the same set of data.

2.1 Some remarks on the Hermite polynomial on the simplex

The formulation of the Hermite interpolation polynomials on the vertices of a sim-

plex ∆s (V0, V1, . . . , Vs) ⊂ R
s, given by Chui and Lai in a famous paper of 1991 [18] in con-

nection with the notion of super vertex splines, is here readapted to the case ∆2 (V0, V1, V2) ⊂
R
2. Moreover, let ci, i = 0, 1, 2 be the projection from Z

3
+ to Z

2
+ which associates to each

α = (α0, α1, α2) ∈ Z
3
+ the pair obtained from α deprived of the component i, i.e.

c0α = (α1, α2) , c1α = (α0, α2) , c2α = (α0, α1) .

The following Theorem is proven in [18, Theorem 3.1.1] in the general case of ∆s (V0, V1, . . . , Vs) ⊂
R
s.

Theorem 3 In Bézier representation with respect to ∆2 (V0, V1, V2), the Taylor polynomial

of order m of a sufficiently smooth function f centered at the vertex V0 is given by

Tm [f, V0] (x) =
∑

|α|=m

α∈Z3
+

∑

β≤c0α
β∈Z2

+

(
c0α

β

)
(m− |β|)!

m!
Dβ

0 f (V0)φ
m
α (λ0 (x) , λ1 (x) , λ2 (x)) (2.1)

where

φm
α (λ0 (x) , λ1 (x) , λ2 (x)) =

m!

α!
λ0 (x)

α0 λ1 (x)
α1 λ2 (x)

α2 .

Now we specify certain Hermite-type interpolation conditions on the vertices of a

two–dimensional simplex which ensure uniqueness of interpolation in bivariate polynomial

spaces Pm
x
. To this purpose, we need some additional definitions.
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Definition 4 A subset M2 of Z2
+ is called a lower set if for each β, γ ∈ Z

2
+, β ∈ M2 and

0 ≤ γ ≤ β it results γ ∈M2.

Let Γ2
p :=

{
β ∈ Z

2
+ : |β| ≤ p

}
, Λ3

p :=
{
α ∈ Z

3
+ : |α| = p

}
and Ap

i the raising map

from Γ2
p to Λ

3
p defined by

Ap
0β = (p− |β| , β1, β2) , Ap

1β = (β1, p− |β| , β2) , Ap
2β = (β1, β2, p− |β|) , β ∈ Z2

+.

Definition 5 A collection of subsets M2
0 , M

2
1 , M

2
2 of Γ2

p is said to form a partition of Λ3
p

if

1. Ap
iM

2
i ∩Ap

jM
2
j = ∅ for i 6= j, and

2.

2⋃

i=0

Ap
iM

2
i = Λ3

p.

The following Theorem is proven in [18, Theorem 3.1.4] in the general case of

∆s (V0, V1, . . . , Vs) ⊂ R
s and lower sets M s

0 ,M
s
1 , ...,M

s
n forming a partition of Λ

s+1
p .

Theorem 6 Let M2
0 =

{
β ∈ Z

2
+ : |β| ≤ p

}
and M2

1 , M
2
2 lower sets forming a partition of

Λ3
p. Then for any given set of data

{
fi,β ∈ R : β ∈M2

i , i = 0, 1, 2
}

there exists a unique

polynomial H
∆2(V0)
m,p of total degree m = p+ q satisfying

Dβ
i H

∆2(V0)
m,p (Vi) = fi,β, β ∈M2

i , i = 0, 1, 2.

Moreover, H
∆2(V0)
m,p (x) may be formulated in the Bézier representation of total degree m with

respect to the simplex ∆2 (V0) as follows

H∆2(V0)
m,p (x) =

2∑

i=0

∑

β∈M2
i





∑

γ≤β

(
β

γ

)
(m− |γ|)!

m!
fi,γ



φm

Am
i β (λ0 (x) , λ1 (x) , λ2 (x)) (2.2)

where

φm
Am

i β (λ0 (x) , λ1 (x) , λ2 (x)) =
m!

(Am
i β)!

λ0 (x)
(Am

i β)
0 λ1 (x)

(Am
i β)

1 λ2 (x)
(Am

i β)
2 .

Let f be a function of class Cm (Ω). Following above notations we set fi,β =

Dβ
i f (Vi) , β ∈M2

i , i = 0, 1, 2; for each x ∈ Ω, we have

f (x) = H∆2(V0)
m,p [f ] (x) +RH,∆2(V0)

m [f ] (x) (2.3)
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where R
H,∆2(V0)
m [f ] (x) is the remainder term. We emphasize that H

∆2(V0)
m,p [f ] interpolates

function evaluations at the vertices of ∆2 (V0), all partial derivatives of f up to the order p at

V0 and some directional derivatives at the remaining vertices for a total of dim (Pm
x
) =

(
m+2
2

)

interpolation conditions. As a result of the uniqueness of the interpolation polynomial,

H
∆2(V0)
m,p [·] leaves invariant all polynomials of total degree not greater than m. In order to

give a more compact expression for the bound of the error, let us consider the disjoint union

of M2
1 and M2

2 , i.e.

M2
1 ∪∗M2

2 =
(
M2

1 × {0}
)
∪
(
M2

2 × {1}
)
; (2.4)

θ ∈M2
1 ∪∗M2

2 is a pair of type (β, 0) or (β, 1). In the following, with an abuse of notation,

we write β ∈ M2
1 ∪∗ M2

2 by intending the component β of θ. The following Theorem is a

particular case of the more general result stated in Section 1.5.

Theorem 7 Let Ω be a compact convex domain containing ∆2 (V0) and f ∈ Cm,1 (Ω).

Then, for each x ∈ Ω, we have

H∆2(V0)
m,p [f ] (x) = Tm [f, V0] (x) + δH,∆2(V0)

m (x) (2.5)

where Tm [f, V0] (x) is the Taylor polynomial of order m for f centered at V0 (1.4) and

∣∣∣δH,∆2(V0)
m (x)

∣∣∣ ≤ 2m+1 |f |m,1

∑

β∈M2
1∪∗M2

2

β1∑

j=0

Cβr
j+1

(
r2S

)m−j ||x− V0||m−j2 (2.6)

with

Cβ =
∑

γ≤β

(
β

γ

) (
β1

β1−k
)
(m− |γ|)!

(m− |γ|+ 1)! (m− |β|)!β!2
β1−k. (2.7)

Proof. Let us rewrite (2.2) by expanding the sum of index i, i.e.

H
∆2(V0)
m,p (x) =

∑
β∈M2

0

{
∑
γ≤β

(
β

γ

)
(m− |γ|)!

m!
Dγ

0f (V0)

}
φm
Am

0 β (λ0 (x) , λ1 (x) , λ2 (x))

+
∑

β∈M2
1

{
∑
γ≤β

(
β

γ

)
(m− |γ|)!

m!
Dγ

1f (V1)

}
φm
Am

1 β (λ0 (x) , λ1 (x) , λ2 (x))

+
∑

β∈M2
2

{
∑
γ≤β

(
β

γ

)
(m− |γ|)!

m!
Dγ

2f (V2)

}
φm
Am

2 β (λ0 (x) , λ1 (x) , λ2 (x)) .

(2.8)
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By considering the Taylor expansion of order m of Dγ
i f (Vi) , i = 1, 2 centered at

V0 with integral remainder of we get

δ
H,∆2(V0)
m (x) =

∑
β∈M2

1

∑
γ≤β

(
β
γ

) (m−|γ|)!
m!

∫ 1

0

D
m−|γ|+1
10 D

γ
1 f(V0+t(V1−V0))

(m−|γ|+1)! (1− t)m−|γ|+1 dt

× m!
(m−|β|)!β1!β2!

λ0 (x)
β1 λ1 (x)

m−|β| λ2 (x)
β2

+
∑

β∈M2
2

∑
γ≤β

(
β
γ

) (m−|γ|)!
m!

∫ 1

0

D
m−|γ|+1
20 D

γ
2 f(V0+t(V2−V0))

(m−|γ|+1)! (1− t)m−|γ|+1 dt

× m!
(m−|β|)!β1!β2!

λ0 (x)
β1 λ1 (x)

β2 λ2 (x)
m−|β| ,

(2.9)

and

T̃m [f, V0] (x) =
∑

β∈M2
0

∑
γ≤β

(
β
γ

) (m−|γ|)!
m! Dγ

0f (V0)φ
m
Am

0 β (λ0 (x) , λ1 (x) , λ2 (x))

+
∑

β∈M2
1

∑
γ≤β

(
β
γ

) (m−|γ|)!
m!

∑
δ1≤m−|γ|

δ∈Z2
+

D
δ1
10D

γ
1 f(V0)
δ1!

φm
Am

1 β (λ0 (x) , λ1 (x) , λ2 (x))

+
∑

β∈M2
2

∑
γ≤β

(
β
γ

) (m−|γ|)!
m!

∑
δ2≤m−|γ|

δ∈Z2
+

D
δ2
20D

γ
2 f(V0)
δ2!

φm
Am

2 β (λ0 (x) , λ1 (x) , λ2 (x)) .

Let us recall the equality λ0 (x) = 1 − λ1 (x) − λ2 (x). By expanding λ0 (x)
β1 in (2.9) by

the binomial theorem, by bounds (1.26) and by considering the disjoint union of M2
1 and

M2
2 (2.4), we have the following bound for δ

H,∆2(V0)
m,p (x)

∣∣∣δH,∆2(V0)
m,p (x)

∣∣∣ ≤ 2m+1 |f |m,1

∑
β∈M2

1∪∗M2
2

β1∑
j=0

∑
γ≤β

(
β
γ

) ( β1
β1−k)(m−|γ|)!

(m−|γ|+1)!(m−|β|)!β!2
β1−k

×rj+1
(
r2S

)m−j ||x− V0||m−j2

and T̃m [f, V0] (x) is the Taylor polynomial for f of order m centered at V0.

Corollary 8 In the hypothesis of Theorem 7 for all x ∈ Ω we have

RH,∆2(V0)
m [f ] (x) = RT

m [f, V0] (x)− δH,∆2(V0)
m (x) (2.10)

where RT
m [f, V0] (x) is the remainder term in Taylor expansion of order m for f centered

at V0; moreover

∣∣∣RH,∆2(V0)
m [f ] (x)

∣∣∣ ≤ 2m+1 |f |m,1

×
(

∑
β∈M2

1∪∗M2
2

β1∑
j=0

Cβr
j+1

(
r2S

)m−j ||x− V0||m−j2 +
||x− V0||m+1

2

(m− 1)!

)
.

(2.11)
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2.2 Particular cases

In the following we test the accuracy of approximation of the Shepard-Hermite

operator in the case that, at each node, are available function evaluations and first order

derivative, i.e. p = 1, or function evaluations, first and second order derivative, i.e. p = 2.

In order to get these expansions, we graphically represent the corresponding lower sets by

Bézier nets as in [18, Theorem 3.1.4]. In particular, we denote function evaluations by

circles on the vertices of the simplex and derivatives along the directed sides of the simplex

by circles on the corresponding side; mixed derivatives are then denoted by circles in the

interior of the simplex. As in Theorem 6, we fix M2
0 such that we interpolate f and all

its partial derivatives up to the order p at the vertex V0 and lower sets M2
1 ,M

2
2 so as to

maintain a certain symmetry in the distribution of the remaining interpolation conditions

at the vertices V1, V2.

Case p = 1

Let us suppose that function evaluations and first order derivatives of a function

f are given at the vertices of ∆2 (V0), that is p = 1. Let us fix lower sets

M2
0 = {(0, 0) , (1, 0) , (0, 1)} ,

M2
1 = {(0, 0) , (0, 1)} ,

M2
2 = {(0, 0)} .

(2.12)

In Figure 2.1 we graphically represent the Bézier net according to the correspond-

ing M2
i , i = 0, 1, 2 in (2.12). The corresponding interpolation polynomial in Bézier repre-

sentation is

H
∆2(V0)
2,1 [f ] (x) = f (V0)λ0 (x) (λ0 (x) + 2λ1 (x) + 2λ2 (x))

+f (V1)λ1 (x) (λ1 (x) + 2λ2 (x)) + f (V2)λ
2
2 (x) +D10f (V0)λ0 (x)λ1 (x)

+D20f (V0)λ0 (x)λ2 (x) +D21f (V1)λ1 (x)λ2 (x) .

(2.13)

The polynomial H
∆2(V0)
2,1 [f ] (x) has algebraic degree of exactness 2. Therefore in the case

p = 1, H
∆2(V0)
2,1 has degree of precision increased by 1 with respect to the Taylor polynomial
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Figure 2.1: Lower sets for H
∆2(V0)
2,1 [f ] (x).

T1 [f, V0] (x) that uses the same data at V0. The remainder term is bounded by

∣∣∣RH,∆2(V0)
2 [f ] (x)

∣∣∣ ≤ 8 |f |2,1
(
5

3
r
(
r2S

)2 ||x− V0||22 + ||x− V0||32
)
.

Case p = 2

Let us suppose that function evaluations, first and second order derivatives of a

function f are given at the vertices of ∆2 (V0), that is p = 2. Let us fix lower sets

M2
0 = {(0, 0) , (1, 0) , (0, 1) , (2, 0) , (1, 1) , (0, 2)} ,

M2
1 = {(0, 0) , (0, 1)} ,

M2
2 = {(0, 0) , (0, 1)} .

(2.14)

In Figure 2.2 we graphically represent the Bézier net according to the correspond-

ing M2
i , i = 0, 1, 2 in (2.14). In this case we fix lower sets M2

1 ,M
2
2 to obtain an interpolant

with degree of exactness 3, that is, we fix 10 interpolation conditions. The corresponding
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Figure 2.2: Lower sets for H
∆2(V0)
3,2 [f ] (x).

interpolation polynomial is

H
∆2(V0)
3,2 [f ] (x) = f (V0)λ0 (x) (λ0 (x) (λ0 (x) + 3λ1 (x) + 3λ2 (x))

+3 (λ1 (x) + λ2 (x))
2
)
+ f (V1)λ

2
1 (x) (λ1 (x) + 3λ2 (x))

+f (V2)λ
2
2 (x) (3λ1 (x) + λ2 (x))

+D10f (V0)λ0 (x)λ1 (x) (λ0 (x) + 2λ1 (x) + 2λ2 (x))

+D20f (V0)λ0 (x)λ2 (x) (λ0 (x) + 2λ1 (x) + 2λ2 (x))

+D21f (V1)λ
2
1 (x)λ2 (x) +D12f (V2)λ1 (x)λ

2
2 (x)

+1
2D

2
10f (V0)λ0 (x)λ

2
1 (x) +

1
2D

2
20f (V0)λ0 (x)λ

2
2 (x)

+D10D20f (V0)λ0 (x)λ1 (x)λ2 (x)

(2.15)

The polynomial H
∆2(V0)
3,2 [f ] (x) has algebraic degree of exactness 3. Therefore, also in the

case p = 2, H
∆2(V0)
3,2 has degree of exactness increased by 1 with respect to the Taylor

polynomial T2 [f, V0] (x) that uses the same data at V0. The remainder term is bounded by

∣∣∣RH,∆2(V0)
3 [f ] (x)

∣∣∣ ≤ 16 |f |3,1

(
r
(
r2S

)3 ||x− V0||32 +
||x− V0||42

2

)
.

Nevertheless, in case p = 2 it is possible to fix others lower sets, as for example those

depicted in figure 2.3.
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Figure 2.3: Lower sets for H
∆2(V0)
4,2 [f ] (x)

In this case we obtain polynomial

H
∆2(V0)
4,2 [f ] (x) = f (V0)λ

2
0 (x)

(
λ2
0 (x) + 2 (λ1 (x) + λ2 (x)) (2λ0 (x) + 3 (λ1 (x) + λ2 (x)))

)

+f (V1)λ
2
1 (x) (4λ0 (x) (λ1 (x) + 3λ2 (x)) + λ1 (x) (λ1 (x) + λ2 (x)))

f (V0)λ
2
2 (x) ((3λ1 (x) + λ2 (x)) (4λ0 (x) + 2λ1 (x)) + λ2 (x) (2λ1 (x) + λ2 (x)))

+D10f (V0)λ
2
0 (x)λ1 (x) (λ0 (x) + 3λ1 (x) + 3λ2 (x))

+D20f (V0)λ
2
0 (x)λ2 (x) (λ0 (x) + 3λ1 (x) + 3λ2 (x))

+D01f (V1)λ0 (x)λ
2
1 (x) (λ1 (x) + 3λ2 (x))

+D21f (V1)λ
2
1 (x)λ2 (x) (3λ0 (x) + λ1 (x))

+D02f (V2)λ0 (x)λ
2
2 (x) (3λ1 (x) + λ2 (x))

+D12f (V2)λ1 (x)λ
2
2 (x) (3λ0 (x) + 3λ1 (x) + λ2 (x))

+1
2D

2
10 (V0)λ

2
0 (x)λ

2
1 (x) +

1
2D20f (V0)λ

2
0 (x)λ

2
2 (x)

+D10D20f (V0)λ
2
0 (x)λ1 (x)λ2 (x) +D01D21f (V1)λ0 (x)λ

2
1 (x)λ2 (x)

+1
2D

2
12f (V2)λ

2
1 (x)λ2 (x)

2 +D02D12f (V2)λ0 (x)λ1 (x)λ
2
2 (x) .

(2.16)

The algebraic degree of exactness of H
∆2(V0)
4,2 is 4, hence it increases by 2 the

algebraic degree of exactness of the Taylor polynomial T2 [f, V0] (x) that uses the same data

at V0. The remainder term is bounded by

∣∣∣RH,∆2(V0)
4 [f ] (x)

∣∣∣ ≤ 32 |f |4,1

(
848

15
r2

(
r2S

)3 ||x− V0||32 +
1352

15
r
(
r2S

)4 ||x− V0||42 +
||x− V0||52

6

)
.



42

2.3 The bivariate Shepard-Hermite operator

For each i = 1, ..., n we associate to xi the simplex ∆2(i) with fixed vertex xi and

vertices in B (xi, Rwi
) which reduces the quantity rm+1

i

(
r2i Si

)m
, i = 1, . . . , n according to

Section 1.6.

Definition 9 For each µ > 0 and m = 1, 2, . . . the bivariate Shepard-Hermite operator is

defined by

SHm,p [f ] (x) =
n∑

i=1
W̃µ,i (x)H

∆2(i)
m,p [f ] (x) , x ∈ Ω (2.17)

where H
∆2(i)
m,p [f ] (x) is the Hermite interpolating polynomial (2.2) on the simplex ∆2 (i),

i = 1, . . . , n. The remainder term is

RHm [f ] (x) = f (x)− SHm,p [f ] (x) , x ∈ Ω. (2.18)

Convergence results can be obtained by following the well known approaches [68,

§15.4], [36, 73].

Theorem 10 If f ∈ Cm−1,1 (Ω) we have

|RHm [f ] (x)| ≤ 2m+1 |f |m,1M

×max
i∈Ix





∑
β∈(M2

1∪∗M2
2 )i

β1∑
j=0

(Cβ)i r
j+1
i

(
r2i Si

)m−j
Rm−j

wi +
Rm+1

wi

(m− 1)!





where, for each i, (Cβ)i is the constant defined in (2.7).

The following statements can be easily checked.

Theorem 11 The operator SHm,p [·] interpolates on all data required for its definition, pro-

vided that µ > p+ 1.

Theorem 12 The algebraic degree of exactness of the operator SHm,p [·] is m.
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2.4 Numerical results

To test the accuracy of approximation of the bivariate Shepard-Hermite operators

in the multivariate interpolation of large sets of scattered data, we test the local Shepard

operator combined with Hermite interpolation polynomials (2.13), (2.15) and (2.16) on the

unit square R = [0, 1] × [0, 1]. For each function of the set (See Figure 1.2) we compare

numerical results obtained by applying the Shepard-Hemite operators SHm,p [f ], m = 2, 3, 4,

p = 1, 2 having degree of exactness 2, 3 and 4 with those obtained by applying the local

Shepard-Taylor operators S̃Tm [f ], m = 2, 3, 4 (1.19) having the same degree of exactness of

SHm,p [f ] respectively. In the following we set m = µ = 2, 3, 4 and p = 1, 2. We emphasize

that operators S̃Tm [f ] ,m = 2, 3, 4 make use, at each sample point, of function evaluations

and partial derivative data up to the orders 2, 3 and 4 respectively, while operators SHm,p [f ]

make use, at each sample point, of function evaluation and first order derivatives data for

m = 2, and function evaluation and first and second order derivatives data for m = 3, 4.

We compute numerical approximations by using the Franke dataset and the set of 1089

sparse uniformly distributed interpolation nodes (See Figure 1.2) in the unit square R. We

compute the resulting approximations at the points of a regular grid of 101 × 101 points

of Ω. We show in table 2.1 and Table 2.2 maximum (1.45), mean (1.46) and mean square

(1.47) interpolation errors, computed for the parameter value Nw = 30 for the operators

S̃Tm and Nw = 13 for the operators SHm,p . The local Shepard-Hermite operators defined

in this Chapter give a positive answer to the problem of the enhancement of the degree of

exactness of the Shepard operators by using supplementary derivative data. These operators

are realized as combination of the local version of the Shepard operators with Hermite

interpolation polynomials on the simplex by using the procedure described in Section 1.6

[36, 16, 27]. The local Shepard-Hermite operators SHm,p [f ] allow us not only to raise

the algebraic precision of the Shepard-Taylor operators S̃Tp [f ] that use the same data,

maintaining at the same time their interpolation properties, but also to achieve the accuracy

of approximation of the Shepard-Taylor operators S̃Tm [f ] with the same algebraic precision.

Numerical results confirm the theoretical ones and show that the proposed Shepard-Hermite

operators apply well to the scattered data interpolation problem.
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Table 2.1: Comparison of among the operators S̃Tp , p = 2, 3, 4 and the operators SHm,p ,m =
2, 3, 4, p = 1, 2 applied to the 10 test functions in Figure 1.2 using the Franke data set in
Figure 1.3.

S̃T2 SH2,1 S̃T 3 SH3,2 S̃T4 SH4.2

emax 7.88e-02 1.28e-01 5.15e-02 4.03e-02 9.91e-02 1.53e-02
f1 emean 5.78e-03 9.32e-03 1.48e-03 1.31e-03 1.33e-03 4.55e-04

eMS 1.37e-04 3.27e-04 1.88e-05 1.67e-05 2.91e-05 1.92e-06

emax 4.50e-03 5.36e-03 6.73e-04 8.39e-04 3.53e-04 1.35e-04
f2 emean 3.54e-04 6.30e-04 4.13e-05 4.02e-05 1.13e-05 3.03e-06

eMS 3.43e-07 9.92e-07 6.27e-09 6.60e-09 8.08e-10 8.19e-11

emax 3.73e-03 3.38e-03 5.10e-04 1.20e-03 1.92e-04 4.57e-04
f3 emean 1.84e-04 6.02e-04 2.07e-05 9.93e-05 5.53e-06 1.39e-05

eMS 1.44e-07 6.38e-07 2.11e-09 2.98e-08 2.14e-10 1.42e-09

emax 7.27e-03 1.11e-02 1.81e-03 1.27e-03 1.47e-03 6.60e-04
f4 emean 5.78e-04 1.16e-03 8.20e-05 7.95e-05 3.99e-05 1.96e-05

eMS 1.08e-06 3.35e-06 3.71e-08 2.94e-08 1.52e-08 3.56e-09

emax 3.08e-02 2.38e-02 1.46e-02 1.96e-02 2.37e-02 4.72e-03
f5 emean 2.18e-03 2.70e-03 7.16e-04 8.08e-04 6.69e-04 2.41e-04

eMS 1.91e-05 2.06e-05 3.01e-06 3.71e-06 4.00e-06 3.72e-07

emax 4.16e-02 4.69e-02 6.64e-03 2.33e-03 9.15e-03 4.34e-03
f6 emean 2.10e-03 2.58e-03 2.68e-04 1.38e-04 1.78e-04 6.73e-05

eMS 2.04e-05 2.93e-05 3.97e-07 7.83e-08 3.35e-07 6.60e-08

emax 1.03 1.05 2.11e-01 1.81e-01 2.84e-01 1.53e-01
f7 emean 9.86e-02 1.44e-01 1.67e-02 1.01e-02 1.35e-02 5.61e-03

eMS 2.65e-02 4.67e-02 9.21e-04 4.96e-04 1.04e-03 2.18e-04

emax 4.88e-01 5.73e-01 1.95e-01 1.63e-01 1.13e-01 8.59e-02
f8 emean 3.09e-02 3.92e-02 9.44e-03 6.83e-03 4.16e-03 2.03e-03

eMS 3.90e-03 5.31e-03 4.80e-04 2.45e-04 1.06e-04 3.87e-05

emax 2.85e+01 2.64e+01 8.59 4.45 8.19 4.21
f9 emean 1.70 1.99 3.69e-01 1.93e-01 2.70e-01 8.43e-02

eMS 1.29e+01 1.75e+01 8.69e-01 1.94e-01 5.50e-01 7.85e-02

emax 4.75e-01 5.36e-01 2.73e-01 2.45e-01 7.73e-02 3.45e-02
f10 emean 2.27e-02 3.18e-02 6.51e-03 3.83e-03 2.96e-03 1.12e-03

eMS 2.39e-03 3.68e-03 3.64e-04 2.49e-04 6.48e-05 7.85e-06



45

Table 2.2: Comparison of among the operators S̃Tp , p = 2, 3, 4 and the operators SHm,p ,m =
2, 3, 4, p = 1, 2 applied to the 10 test functions in Figure 1.2 using the sparse set of 1089
nodes in Figure 1.3.

S̃T2 SH2,1 S̃T 3 SH3,2 S̃T4 SH4.2

emax 1.82e-03 2.81e-03 3.79e-04 3.50e-04 1.25e-04 4.99e-05
f1 emean 9.24e-05 1.16e-04 8.38e-06 9.38e-06 1.42e-06 4.51e-07

eMS 3.27e-08 5.22e-08 4.36e-10 5.04e-10 2.63e-11 3.88e-12

emax 8.22e-05 6.03e-05 7.72e-06 6.80e-06 3.23e-07 8.16e-08
f2 emean 5.96e-06 4.34e-06 2.87e-07 3.58e-07 1.31e-08 2.64e-09

eMS 9.13e-11 5.02e-11 3.20e-13 4.18e-13 7.43e-16 3.60e-17

emax 1.98e-04 2.00e-04 1.09e-05 1.40e-05 1.85e-06 1.04e-06
f3 emean 3.22e-06 4.62e-06 1.60e-07 3.29e-07 1.12e-08 5.84e-09

eMS 8.41e-11 1.14e-10 2.48e-13 6.34e-13 3.66e-15 9.60e-16

emax 1.63e-04 1.99e-04 3.88e-05 3.14e-05 4.46e-06 8.62e-07
f4 emean 1.03e-05 8.39e-06 5.84e-07 7.14e-07 4.99e-08 1.37e-08

eMS 3.33e-10 2.70e-10 2.35e-12 2.86e-12 2.75e-14 2.07e-15

emax 2.03e-03 1.91e-03 3.22e-04 4.22e-04 3.80e-04 9.86e-05
f5 emean 5.36e-05 8.69e-05 5.96e-06 6.46e-06 2.34e-06 1.09e-06

eMS 1.96e-08 3.96e-08 3.96e-10 3.17e-10 1.31e-10 2.05e-11

emax 4.34e-04 4.95e-04 5.92e-05 7.25e-05 8.10e-06 2.11e-06
f6 emean 2.21e-05 2.18e-05 1.60e-06 1.85e-06 1.76e-07 3.99e-08

eMS 1.85e-09 1.91e-09 1.74e-11 2.09e-11 2.39e-13 1.47e-14

emax 2.55e-02 2.26e-02 3.67e-03 2.93e-03 5.67e-04 2.08e-04
f7 emean 1.67e-03 1.96e-03 1.27e-04 1.66e-04 1.45e-05 4.03e-06

eMS 7.51e-06 8.81e-06 6.15e-08 8.42e-08 1.11e-09 9.94e-11

emax 9.06e-03 1.11e-02 1.34e-03 1.50e-03 5.42e-04 1.37e-04
f8 emean 4.21e-04 5.87e-04 4.07e-05 5.00e-05 7.50e-06 2.55e-06

eMS 6.44e-07 1.04e-06 9.20e-09 1.04e-08 4.75e-10 4.91e-11

emax 7.16e-01 7.00e-01 1.04e-01 1.23e-01 3.24e-02 1.30e-02
f9 emean 2.56e-02 2.96e-02 2.24e-03 2.49e-03 3.55e-04 9.86e-05

eMS 3.26e-03 4.39e-03 4.34e-05 4.97e-05 1.43e-06 1.61e-07

emax 3.74e-02 4.97e-02 3.51e-02 3.68e-02 2.63e-02 4.05e-02
f10 emean 3.69e-04 4.50e-04 4.54e-05 5.11e-05 2.10e-05 1.23e-05

eMS 1.36e-06 2.18e-06 2.35e-07 2.54e-07 1.45e-07 1.89e-07
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Chapter 3

The bivariate Shepard-Lidstone

operator

Over all this chapter we assume that, together with function evaluations, all even

order partial derivatives up to a fixed order 2m − 2,m ∈ N, are given at each sample

point. We call such kind of data Lidstone type data, in honor of G. J. Lidstone, who,

in 1929 [52], provided an explicit expression of a polynomial which approximates a given

function in the neighborhood of two points instead of one, generalizing in such a way the

Taylor polynomial. This polynomial, known as Lidstone interpolating polynomial [2], uses

function evaluations and all even order derivatives up to the order 2m − 2, interpolating

them. The interest for this kind of expansion lies in the fact that it finds application to

several problems of numerical analysis such as approximation of solutions of some boundary

value problems, polynomial approximation, construction of splines with application to finite

elements, etc. [2, 4, 5, 6, 7]. In a remark made in [2, p.37] reference was made to the lack

of literature on the extension of some results on the approximation of univariate functions

by means of Lidstone polynomials to functions of two independent variables over non-

rectangular domains. Costabile and Dell’Accio [24] answered to this question by providing

a new polynomial approximation formula, which uses function evaluations and even order

derivatives at the vertices of the simplex and is the univariate Lidstone expansion when

restricted to each side.
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In this Chapter we combine the Lidstone approximation formula on the triangle

with the local Shepard operators to provide an interpolation operator which satisfies bivari-

ate Lidstone interpolation conditions. This operator uses function evaluation and all even

order derivatives data up to the order 2m− 2 interpolating them, reproduces polynomials

up to the degree 2m−1 and has the same accuracy of approximation of the Shepard Taylor
operator which has the same degree of exactness, despite the Shepard-Lidstone operator

uses lacunary data.

3.1 Some remarks on the univariate Lidstone interpolation

polynomial

Lidstone [52] in 1929 and independently Poritsky [58] in 1932 introduced a gen-

eralization of the Taylor series that approximates a given function in the neighborhood of

two points instead of one

f(x) = L2m−1[f, 0, 1](x) +RL
2m−1[f, 0, 1](x), x ∈ [0, 1]. (3.1)

L2m−1[f, 0, 1](x) is the polynomial of degree not greater than 2m− 1 defined by

L2m−1[f, 0, 1](x) =
m−1∑

k=0

[
Λk(1− x)f (2k)(0) + Λk(x)f

(2k)(1)
]

(3.2)

where the polynomials Λk(x), k = 0, 1, ..., are Lidstone polynomials [6] defined recursively

by 



Λ0(x) = x,

Λ′′k(x) = Λk−1(x), k ≥ 1,

Λk(0) = Λk(1) = 0, k ≥ 1.

(3.3)

The remainder term RL
2m−1[f, 0, 1](x) in the expansion formula (3.1) has the following

Cauchy’s representation [6]

RL
2m−1[f, 0, 1](x) = E2m(x)f

(2m)(ξ), ξ ∈ (0, 1),

where

E2m(x) = Λm(x) + Λm(1− x) (3.4)
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are the Euler polynomials [6]. The algebraic degree of exactness of the operator L2m−1[·, 0, 1](x)
is therefore 2m− 1.

For f ∈ C2m−2 ([a, b]), m = 1, 2,... and a, b ∈ R, a < b, the Lidstone interpolation

problem 



L
(2i)
2m−1[f, a, b](a) = f (2i)(a), i = 0, . . . ,m− 1,

L
(2i)
2m−1[f, a, b](b) = f (2i)(b), i = 0, . . . ,m− 1,

has a unique solution in the space of polynomials of degree not greater than 2m− 1 that is

L2m−1[f, a, b](x) =
m−1∑

k=0

h2k
[
Λk

(
b− x

h

)
f (2k)(a) + Λk

(
x− a

h

)
f (2k)(b)

]
, (3.5)

where we set h = b − a. As remarked in [25], by the continuity of the Birkhoff interpola-

tion [39]

lim
h→0

L2m−1[f, a, b](x) = T2m−1[f, a](x), for each f ∈ C2m−1 ([a, b]) (3.6)

where T2m−1[f, a](x) is the Taylor polynomial of order 2m− 1 for f centered at a, i.e.

T2m−1[f, a](x) =
2m−1∑

k=0

f (k)(a)

k!
(x− a)k . (3.7)

A first consequence of equation (3.6) is that

L2m−1[f, a, b](x) = T2m−1[f, a](x) + δ2m−1 [f, a, b] (x) , x ∈ [a, b]

where

lim
h→0

δ2m−1 [f, a, b] (x) = 0.

We can get some expressions of the difference δ2m−1 [f, a, b] (x) in terms of Lidstone poly-

nomials (3.3) and higher order derivatives of f . Each of these expressions provides an

associated representation of the error in Lidstone interpolation by the equality

RL
2m−1[f, a, b](x) = RT

2m−1[f, a](x)− δ2m−1 [f, a, b] (x)

where

RL
2m−1[f, a, b](x) = f (x)− L2m−1[f, a, b](x),

RT
2m−1[f, a](x) = f (x)− T2m−1[f, a](x).
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If f ∈ C2m−1,1 ([0, 1]) the integral form of the remainder in Taylor expansion holds [9, § 7.5]

RT
2m−1[f, a](x) =

∫ x

a

f (2m) (t)

(2m− 1)!
(x− t)2m−1 dt (3.8)

provided that the integral involved is understood as Lebesgue integral and we get the

following

Theorem 13 If f ∈ C2m−1,1 ([a, b]) we have

L2m−1[f, a, b] (x) = T2m−1 [f, a] (x) + δ2m−1 [f, a, b] (x)

where L2m−1[f, a, b] (x) is the Lidstone interpolating polynomial (3.5), T2m−1 [f, a] (x) is the

Taylor polynomial (3.7) and

δ2m−1 [f, a, b] (x) = h2m
m−1∑

k=0

h2kΛk

(
x− a

h

)(∫ 1

0

f (2m) (a+ th) (1− t)2m−2k−1

(2m− 2k − 1)!
dt

)
.

Proof. By applying the Taylor theorem with integral remainder to f (2k) (b) we

get

f (2k) (b) =

2m−1∑

i=0

hi

i!
f (2k+i) (a) + h2m

∫ 1

0

f (2m) (a+ th) (1− t)2m−2k−1

(2m− 2k − 1)!
dt. (3.9)

By substituting relation (3.9) in (3.5) we have

L2m−1[f, a, b](x) = T2m−1[f, a](x) + δ2m−1 [f, a, b] (x)

where

T2m−1[f, a](x) =
m−1∑
k=0

h2k
(
Λk

(
b−x
h

)
f (2k)(a)

+Λk

(
x−a
h

) 2m−1∑
i=0

hi

i! f
(2k+i) (a)

)

and

δ2m−1 [f, a, b] (x) = h2m
m−1∑

k=0

h2kΛk

(
x− a

h

)∫ 1

0

f (2m) (a+ th) (1− t)2m−2k−1

(2m− 2k − 1)!
dt.

Corollary 14 If f ∈ C2m−1,1 ([a, b]) we have

RL
2m−1 [f, a, b] (x) =

∫ x

a

f (2m) (t) (x− t)2m−1

(2m− 1)!
dt

−h2m
m−1∑

k=0

h2kΛk

(
x− a

h

)(∫ 1

0

f (2m) (a+ th) (1− t)2m−2k−1

(2m− 2k − 1)!
dt

)
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and

∣∣RL
2m−1 [f, a, b] (x)

∣∣ ≤ |f |2m−1,1



(x− a)2m

(2m)!
+ h2m

m−1∑

k=0

h2k (−1)k
Λk

(
x− a

h

)

(2 (m− k))!




where |f |2m−1,1 is the seminorm (1.15) on [a, b].

Proof. We use [6, Remark 1.2.1]

|Λk (x)| = (−1)k Λk (x) , x ∈ [a, b] .

3.2 The three point Lidstone interpolation polynomial

In [24] the univariate expansion (3.1) has been extended to a bivariate polynomial

expansion

f(x) = L∆2
2m−1 [f ] (x) +RL,∆2

2m−1 [f ] (x) (3.10)

for functions of class C2m−2 (Ω) on the standard simplex ∆2 =
{
(x, y) ∈ R

2 : x ≥ 0, y ≥ 0, x+ y ≤ 1
}
.

In the following we consider the generalization of the expansion given in [24] by setting

L∆2
2m−1[f ](x) =

m−1∑
k=0

m−k−1∑
j=0

(
∂2j+2kf

∂x2j∂ν2k
(0, 0)

)
2k (x+ y)2k Λj(1− x− y)Λk

(
x

x+y

)

+
m−1∑
k=0

m−k−1∑
j=0

(
∂2j+2kf

∂x2j∂ν2k
(1, 0)

)
2k (x+ y)2k Λj(x+ y)Λk

(
x

x+y

)

+
m−1∑
k=0

m−k−1∑
j=0

(
∂2j+2kf

∂y2j∂ν2k
(0, 0)

)
2k (x+ y)2k Λj(1− x− y)Λk

(
y

x+y

)

+
m−1∑
k=0

m−k−1∑
j=0

(
∂2j+2kf

∂y2j∂ν2k
(0, 1)

)
2k (x+ y)2k Λj(x+ y)Λk

(
y

x+y

)

(3.11)

where ∂
∂ν

= 1√
2

(
∂
∂y
− ∂

∂x

)
is the derivative in the direction of the slanted side of the simplex.

In the space P2m−1
x

the polynomial L∆2
2m−1[f ](x) is the unique solution of the interpolation

problem
∂2iL∆2

2m−1 [f ]

∂x2i−j∂yj
(0, 0) =

∂2if

∂x2i−j∂yj
(0, 0) (3.12)
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Figure 3.1: Lidstone interpolation extension technique.

for each i = 0, 1, ...,m − 1, j = 0, 1, ..., 2i and

∂2iL∆2
2m−1 [f ]

∂x2i−j∂νj
(1, 0) =

∂2if

∂x2i−j∂νj
(1, 0)

∂2iL∆2
2m−1 [f ]

∂y2i−j∂νj
(0, 1) =

∂2if

∂y2i−j∂νj
(0, 1)

for each i = 0, 1, ...,m − 1, j = 0, 2, 4, ..., 2i. As a consequence we have L∆2
2m−1 [f ] = f for

each f ∈ P2m−1
x

and the approximation formula (3.10) is the univariate Lidstone expansion

when restricted on each side of the boundary ∂∆2. We emphasize the asymmetry of the

interpolation conditions: we count 1 + 3 + ... + (2m− 1) = m2 interpolation conditions

at vertex (0, 0) but only 1 + 2 + ... +m = m(m+1)
2 interpolation conditions at each of the

remaining vertices; this asymmetry is a consequence of the extension technique introduced

in [23]. More precisely, fixed a point x = (x, y) ∈ ∆2 and the straight line through (x, y)

parallel to the slanted edge of the simplex, we assign (x, y) to the segment of end points

U = (x+ y, 0) and W = (0, x+ y) and we expand f along this segment by univariate

Lidstone expansion, the vertices of the simplex are then reached by expanding f and its

directional derivatives along the horizontal and vertical sides of the simplex by using the

univariate Lidstone polynomial (See Figure 3.1).

Nevertheless, the symmetry of univariate Lidstone interpolating polynomial (3.5)
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with respect to the midpoint of the interval [a, b] causes a symmetry of the bivariate polyno-

mial (3.11) with respect to the line y = x. We note that the polynomial L∆2
2m−1 [f ] requires

only even order derivatives at the vertices for its definition, up to the order 2m− 2.

Let Vi ∈ R
2, i = 0, 1, 2 be not collinear points, to write the generalization of the

univariate expansion (3.1) to the triangle ∆2 (V0, V1, V2) with vertices V0, V1, V2 we apply

the same technique used in [24] to the case of a generic simplex of R2 and we write the

resulting expansion in barycentric coordinates. In analogy with [24, Theorem 2] we state

the following

Theorem 15 Let f be a function of class C2m−2 in a convex domain Ω ⊃ ∆2. Then for

each x ∈ Ω we have

f(x) = L
∆2(V0)
2m−1 [f ] (x) +R

L,∆2(V0)
2m−1 [f ] (x)

where

L
∆2(V0)
2m−1 [f ] (x) =

m−1∑
k=0

(
m−1−k∑
j=0

(
D

(2j,2k)
2 f (V0) Λj (1− λ1 − λ2)+

+D
(2j,2k)
2 f (V2)Λj (λ1 + λ2)

)
Λk

(
λ2

λ1 + λ2

)
+

+
m−1−k∑
j=0

(
D

(2j,2k)
1 f (V0) Λj (1− λ1 − λ2)+

+D
(2j,2k)
1 f (V1)Λj (λ1 + λ2)

)
Λk

(
λ1

λ1 + λ2

))
(λ1 + λ2)

2k .

(3.13)

Proof. Let V = x ∈ ∆2 (V0) be an interior point. We set U (x) = (x+ λ2h1, y + λ2k1),

W (x) = (x− λ1h1, y − λ1k1), where (h1, k1) = V3 − V2 and (h2, k2) = V3 − V1. We assign

point V to the line segment S (x) = [U,W ] parameterized by





x (λ) = x+ λ2h1 − λ (λ1 + λ2)h1

y (λ) = y + λ2k1 − λ (λ1 + λ2) k1
, λ ∈ [0, 1] .

The restriction of f to S is the univariate function f (x (λ) , y (λ)) in [0, 1] and we expand

it by univariate Lidstone polynomial (3.2). In this expansion we replace the parameter

λ by the value λ2
λ1+λ2

which corresponds to the point V . This results in an expansion in

terms of the values of f at U and its even order derivative values in the direction of side of

vertices V1, V2 at U,W . We reach the vertices of the simplex ∆2 (V0) by assigning points
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Figure 3.2: Construction scheme of the Lidstone bivariate polynomial (3.13).

U,W to the segments with endpoints V0, V1 and V0, V2 respectively and by expanding f (U)

by the univariate Lidstone polynomial (3.2) with a = 0, b = 1 and even order directional

derivatives of f at U,W by the univariate Lidstone polynomial (3.2). The above procedure,

summarized in Figure 3.2, allows us to obtain expansion (3.13).

For the remainder term we have

Theorem 16 Let Ω ⊃ ∆2 and let f ∈ C2m−1,1 (Ω). Then for each x ∈ Ω we have

L
∆2(V0)
2m−1 [f ] (x) = T2m−1 [f, V0] (x) + δ

L,∆2(V0)
2m−1 [f ] (x) (3.14)

where T2m−1 [f, V0] (x) is the (2m− 1)-th order Taylor polynomial for f centered at V0

(1.35) and

∣∣∣δL,∆2(V0)
2m−1 [f ] (x)

∣∣∣ ≤ 22m−1 |f |2m−1,1
2m−1∑

γ=0

Cγ,mr2m−γ
(
r2S

)γ ||x− V0||γ2 (3.15)

with

Cγ,m = 4

⌈ γ+1
2 ⌉−1∑

k=0

2(m−1−k)+1∑

α=γ−2k
α odd

2k+1∑

l=0

(
α

α−γ+2k

)(2k+1
l

) ∣∣Bα−γ+2k

(
1
2

)∣∣ ∣∣Bl

(
1
2

)∣∣ 2α−γ+2k+l

(2m− 2k − α+ 1)!α! (2k + 1)!
. (3.16)

for each γ = 0, . . . , 2m− 1.

Proof. For each k = 0, . . . ,m− 1, j = 0, . . . ,m− 1− k let us consider the Taylor

expansion of D
(2j,2k)
2 f (V2) and D

(2j,2k)
1 f (V1), centered at V0 with integral remainder. By
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substituting these expansions in (3.13) we obtain

L
∆2(V0)
2m−1 [f ] (x) = T2m−1 [f, V0] (x) + δ

L,∆2(V0)
2m−1 [f ] (x)

where T2m−1 [f, V0] (x) is the Taylor polynomial of order 2m− 1 for f at V0 and

δ
L,∆2(V0)
2m−1 [f ] (x) =

m−1∑
k=0

(
m−1−k∑
j=0

(∫ 1

0

D
(2(m−k),2k)
2 f(V0+t(V2−V0))

(2(m−k−j)−1)! (1− t)2(m−k−j)−1 dt

)
Λj (λ2 + λ3)Λk

(
λ3

λ2 + λ3

)

+
m−1−k∑
j=0

(∫ 1

0

D
(2(m−k),2k)
1 f(V0+t(V1−V0))

(2(m−k−j)−1)! (1− t)2(m−k−j)−1 dt

)
Λj (λ2 + λ3)Λk

(
λ2

λ2 + λ3

))

× (λ2 + λ3)
2k .

(3.17)

By the Whittaker identities [69], using relations given in [48] we get

Λm (x) = 22m+1

(2m+1)!B2m+1

(
1 + x

2

)

= 22m+1

(2m+1)!

2m+1∑
i=0

(
2m+1

i

)
Bi

(
1
2

) (
x
2

)2m+1−i
,

m = 0, 1, 2, ...

(3.18)

and therefore

Λj (λ1 + λ2) =
22j+1

(2j+1)!

2j+1∑

i=0

(
2j+1

i

)
Bi

(
1
2

) (
λ1+λ2

2

)2j+1−i
(3.19)

Λk

(
λ2

λ1+λ2

)
= 22k+1

(2k+1)!

2k+1∑
l=0

(2k+1
l

)
Bl

(
1
2

) (
1
2

λ2
λ1+λ2

)2k+1−l

Λk

(
λ1

λ1+λ2

)
= 22k+1

(2k+1)!

2k+1∑
l=0

(2k+1
l

)
Bl

(
1
2

) (
1
2

λ1
λ1+λ2

)2k+1−l
.

Then we get

Λj (λ1 + λ2)Λk

(
λ2

λ1+λ2

)
(λ1 + λ2)

2k

=

2j+1∑
i=0

2k+1∑
l=0

(2j+1
i )Bi( 12)(

2k+1
l )2i+lBl( 12)λ

2k+1−l
2 (λ1+λ2)

2j−i+l

(2j+1)!(2k+1)!

(3.20)

and

Λj (λ1 + λ2)Λk

(
λ1

λ1+λ2

)
(λ1 + λ2)

2k

=

2j+1∑
i=0

2k+1∑
l=0

(2j+1
i )Bi( 1

2)(
2k+1

l )Bl( 12)2
i+lλ2k+1−l

1 (λ1+λ2)
2j−i+l

(2j+1)!(2k+1)! .

(3.21)
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By substituting (3.20) and (3.21) in (3.17) we have

δ
L,∆2(V0)
2m−1 [f ] (x) =

m−1∑
k=0

(
m−1−k∑
j=0

(∫ 1

0

D
(2(m−k),2k)
2 f(V0+t(V2−V0))

(2(m−k−j)−1)! (1− t)2(m−k−j)−1 dt

)

2j+1∑
i=0

2k+1∑
l=0

2i+l(2j+1
i )Bi( 12)(

2k+1
l )Bl( 12)

(2j+1)!(2k+1)! λ2k+1−l
2 (λ1 + λ2)

2j−i+l

+
m−1−k∑
j=0

(∫ 1

0

D
(2(m−k),2k)
1 f(V0+t(V1−V0))

(2(m−k−j)−1)! (1− t)2(m−k−j)−1 dt

)

2j+1∑
i=0

2k+1∑
l=0

2i+l(2j+1
i )Bi( 12)(

2k+1
l )Bl( 12)

(2j+1)!(2k+1)! λ2k+1−l
1 (λ1 + λ2)

2j−i+l


 .

By taking the modulus of both sides and by relations (1.26), (1.27) and (1.28) we have

∣∣∣δL,∆2(V0)
2m−1 [f ] (x)

∣∣∣ ≤ 22m+1 |f |2m−1,1
m−1∑
k=0

m−1−k∑
j=0

2j+1∑
i=0

2k+1∑
l=0

(2j+1
i )(2k+1

l )|Bi( 12)||Bl( 12)|2i+l

(2(m−k−j))!(2j+1)!(2k+1)!

×r2m−(2k+2j−i+1)
(
r2S

)2k+2j−i+1 ||x− V0||2k+2j−i+1
2

(3.22)

After some changes of dummy indices and by rearranging the order of summation we get

the following bound for δ
L,∆2(V0)
2m−1 [f ] (x)

22m+1 |f |2m−1,1

×
m−1∑
k=0

2m−1∑
γ=2k

2(m−1−k)+1∑
α=γ−2k
α odd

2k+1∑
l=0

( α
α−γ+2k)(

2k+1
l )|Bα−γ+2k( 12)||Bl( 12)|2α−γ+2k+l

(2m−2k−α+1)!α!(2k+1)!

×r2m−γ
(
r2S

)γ ||x− V0||γ2
= 22m+1 |f |2m−1,1

×
2m−1∑
γ=0

⌈γ+1
2 ⌉−1∑
k=0

2(m−1−k)+1∑
α=γ−2k
α odd

2k+1∑
l=0

( α
α−γ+2k)(

2k+1
l )|Bα−γ+2k( 12)||Bl( 12)|2α−γ+2k+l

(2m−2k−α+1)!α!(2k+1)!

×r2m−γ
(
r2S

)γ ||x− V0||γ2 .

(3.15) follows by setting Cγ,m as in (3.16).

Corollary 17 In the hypothesis of Theorem 16, for all x ∈ Ω, we have

R
L,∆2(V0)
2m−1 [f ] (x) = RT

2m−1 [f, V0] (x)− δ
L,∆2(V0)
2m−1 [f ] (x) (3.23)
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where RT
2m−1 [f, V0] (x) is the remainder term in Taylor expansion; moreover

∣∣∣RL,∆2(V0)
2m−1 [f ] (x)

∣∣∣ ≤ 22m−1 |f |2m−1,1(
2m−1∑
γ=0

Cγ,mr2m−γ
(
r2S

)γ ||x− V0||γ2 +
||x−V0||2m2
(2m−2)!

)
(3.24)

with Cγ,m defined in (3.16).

In the case m = 2, which is of interest in the numerical experiments, we get

∣∣∣RL,∆2(V0)
3 [f ] (x)

∣∣∣ ≤ 2 |f |3,1
(
r3
(
r2S

)
||x− V0||2 + 2r

(
r2S

)3 ||x− V0||32 + 2 ||x− V0||42
)
.

3.3 The bivariate Shepard-Lidstone operator

In defining the bivariate Shepard-Lidstone operator we associate with each sample

point xi the triangle ∆2 (i) in B (xi, Rwi
) which minimizes the quantity r2mi

(
r2i Si

)2m−1
, i =

1, . . . , n.

Definition 18 For each fixed µ > 0 and m = 1, 2, . . . the bivariate Shepard-Lidstone oper-

ator is defined by

SL2m−1 [f ] (x) =
n∑

i=1

W̃µ,i (x)L
∆2(i)
2m−1[f ] (x) , x ∈ Ω (3.25)

where L
∆2(i)
2m−1[f ] (x) , i = 1, . . . , n is the three point Lidstone interpolation polynomial (3.13)

over the whole domain Ω and W̃µ,i (x) is the local Shepard basis function (1.16). The

remainder term is

RL2m−1 [f ] (x) = f (x)− SL2m−1 [f ] (x) , x ∈ Ω.

Theorem 19 Let x ∈ Ω. The following bound holds

∣∣RL2m−1 [f ] (x)
∣∣ ≤ 22m−1 |f |2m−1,1 M

×max
i∈Ix

{
2m−1∑
γ=0

(Cγ,m)ir
2m−γ
i

(
r2i Si

)γ
Rγ

wi +
R2m

wi

(2m− 2)!

}

where, for each i, Cγ,m is the constant defined in (3.16).

The following statements can be easily checked.



57

Theorem 20 The operator SL2m−1 [·] is an interpolation operator in Vi, i = 1, ..., n.

Theorem 21 The algebraic degree of exactness of the operator SL2m−1 [·] is 2m − 1, i.e.

SL2m−1 [f ] = f for each bivariate polynomial f ∈ P2m−1
x

.

As discussed in Section 1.2 the continuity class of the Shepard operators depend

on µ, by which we can deduce the continuity class of the Shepard-Lidstone operators.

Theorem 22 If µ ∈ N, µ > 0 the continuity class of the operator (3.25) is µ− 1.

Theorem 23 For each r, s ∈ N with 1 ≤ r + s < µ+ 1 we have

∂r+s

∂xr∂ys
SL2m−1 [f ] (x)

∣∣∣∣
x=xi

=
∂r+s

∂xr∂ys
L
∆2(i)
2m−1[f ] (x)

∣∣∣∣
x=xi

, i = 1, . . . , n.

3.4 Numerical results

We test the bivariate Shepard-Lidstone approximation operator in the multivariate

interpolation of large sets of scattered data. For each function of the set in Figure 1.2 we

compare the numerical results obtained by applying the approximation operator SL2m−1 [f ]

with those obtained by applying the local Shepard-Taylor operator (1.19) S̃T2m−1 [f ] (with

the same algebraic degree of exactness 2m − 1 as SL2m−1). In the following we set m = 2

and µ = 3 then, according to Theorem 21 both operators S̃T3 [f ] and SL3 [f ] have algebraic

degree of exactness 3 and class of differentiability 2 in virtue of Theorem 22. In achieving

the numerical comparisons between the two operators we compute maximum (1.45), mean

(1.46) and mean square (1.47) interpolation errors for the parameter value Nw = 30 [62] for

the Shepard-Taylor operators S̃T2m−1 and Nw = 13 for the operators SL2m−1 . We compute

numerical approximations by using the Franke dataset and the sparse set of 1089 uniformly

distributed interpolation nodes in the unit square R (See Figure 1.3). We compute the

resulting approximations at the points of a regular grid of 101 × 101 points of R. The

numerical results are given in Table 3.1. We note that the approximations are comparable

even if SL3 uses lacunary data (functional evaluation and only second order derivatives at

each node).
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Table 3.1: Comparison among the operators S̃T3 and SL3 applied to the 10 test functions
in Figure 1.2 using the sets of interpolation nodes in Figure 1.3.

Franke data set 1089 scattered data

SL3 S̃T3 SL3 S̃T3

emax 8.54e-02 4.03e-02 6.49e-04 3.50e-04
f1 emean 3.00e-03 1.31e-03 1.76e-05 9.38e-06

eMS 5.24e-05 1.67e-05 1.48e-09 5.04e-10

emax 9.45e-04 8.39e-04 1.62e-05 6.80e-06
f2 emean 9.24e-05 4.02e-05 5.77e-07 3.58e-07

eMS 2.01e-08 6.60e-09 9.31e-13 4.18e-13

emax 3.72e-03 1.20e-03 1.31e-05 1.40e-05
f3 emean 5.51e-05 9.93e-05 3.17e-07 3.29e-07

eMS 3.86e-08 2.98e-08 7.44e-13 6.34e-13

emax 1.31e-02 1.27e-03 3.05e-05 3.14e-05
f4 emean 2.33e-04 7.95e-05 1.22e-06 7.14e-07

eMS 6.41e-07 2.94e-08 6.21e-12 2.86e-12

emax 3.97e-02 1.96e-02 7.56e-04 4.22e-04
f5 emean 1.45e-03 8.08e-04 1.17e-05 6.46e-06

eMS 1.51e-05 3.71e-06 1.17e-09 3.17e-10

emax 7.93e-03 2.33e-03 6.73e-05 7.25e-05
f6 emean 4.73e-04 1.38e-04 3.31e-06 1.85e-06

eMS 8.38e-07 7.83e-08 4.33e-11 2.09e-11

emax 4.25e-01 1.81e-01 2.27e-02 2.93e-03
f7 emean 4.30e-02 1.01e-02 2.79e-04 1.66e-04

eMS 4.62e-03 4.96e-04 4.43e-07 8.42e-08

emax 1.93e-01 1.63e-01 2.18e-03 1.50e-03
f8 emean 1.21e-02 6.83e-03 8.53e-05 5.00e-05

eMS 5.38e-04 2.45e-04 3.14e-08 1.04e-08

emax 1.18e+01 4.45 1.62e-01 1.23e-01
f9 emean 6.67e-01 1.93e-01 4.86e-03 2.49e-03

eMS 1.97 1.94e-01 1.26e-04 4.97e-05

emax 2.29e-01 2.45e-01 3.75e-02 3.68e-02
f10 emean 8.89e-03 3.83e-03 9.42e-05 5.11e-05

eMS 3.86e-04 2.49e-04 3.78e-07 2.54e-07
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Chapter 4

Complementary Lidstone

Interpolation on Scattered Data

Sets

Despite classical Lidstone interpolation (LI) has a long history [13, 12, 14, 44, 52,

69, 70] Complementary Lidstone Interpolation (CLI) has been only recently introduced by

Costabile, Dell’Accio and Luceri in [29] and drawn on by Agarwal, Pinelas and Wong in

two successive papers [1, 8]. CLI naturally complements LI: both interpolation polynomi-

als are based on two points (say them a and b) and interpolate all data required for their

definition, but while the LI polynomial requires the use of odd order Bernoulli polynomials,

function evaluations and even order derivative data in both points, the CLI polynomial

requires even order Bernoulli polynomials, function evaluation at a (or b) and odd order

derivative data in both boundary points. To generalize this kind of interpolation in the

context of bivariate scattered data we need firstly to extend the CLI polynomial to a three

point bivariate polynomial. The target polynomial will be realized by the well known exten-

sion technique [23, 24, 28] opportunely modified, taking in major account the interpolation

conditions satisfied by the three point polynomial, rather than its property to be univari-

ate CLI polynomial when restricted to the axes as in [28]. Therefore we introduce new

interpolation polynomials on the standard simplex with the following properties: i) they



60

reproduce polynomials of total degree not greater than 2m; ii) they interpolate the function

evaluation in a vertex, all odd order derivatives up to order 2m− 1 at the first vertex and

some odd order derivatives at the remaining vertices for a total of 2m2+3m+1 = dimP2m
x

interpolation conditions. The last feature allows us to extend the notion of CLI to scat-

tered data sets by combination with Shepard operators: the local combined Shepard-CLI

operator has algebraic degree of exactness 2m and uses function evaluations in some points

and odd order derivative data in all points up to the order 2m− 1, interpolating them.

4.1 Univariate Complementary-Lidstone interpolation

The CLI polynomial was recently introduced by Costabile, Dell’Accio and Luceri

[29]. For a function f of class C2m−1 in the closed interval with end-points a, b the CLI

problem 



CL2m[f, a, b](a) = f(a),

CL
(2j−1)
2m [f, a, b](a) = f (2j−1)(a), j = 1, . . . ,m,

CL
(2j−1)
2m [f, a, b](b) = f (2j−1)(b), j = 1, . . . ,m,

has a unique solution in P2m
x that is

CL2m[f, a, b](x) = f (a) +
m∑
j=1

h2j−1
(
f (2j−1) (b)

(
vj

(
x− a

h

)
− vj (0)

)

−f (2j−1) (a)

(
vj

(
b− x

h

)
− vj (1)

))
,

(4.1)

where vj(x), j = 1, ...,m are even order degree polynomials, called Lidstone second type

polynomials [29], defined recursively by





v0 (x) = 1,

v′j (x) =
∫ x

0 vj−1 (t) dt, j ≥ 1,
∫ 1
0 vj (x) dx = 0, j ≥ 1.

(4.2)

We note that, while L2m−1 [f, a, b] = L2m−1 [f, b, a] , CLI polynomial does not satisfy this

property since CL2m[f, a, b] 6= CL2m[f, b, a]. Lidstone (3.3) and Lidstone second type poly-

nomials (4.2) are related to well known Bernoulli polynomials by equations [6, 29]

Λj (x) =
22j+1

(2j+1)!B2j+1

(
1+x
2

)
, vj (x) =

22j

(2j)!B2j

(
1+x
2

)
, j = 0, 1, . . . . (4.3)
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Agarwal, Pinelas and Wong drawn on researches on Complementary Lidstone interpolation

in [29] and in two successive papers [1, 8]; in particular they used the terms Complementary

Lidstone polynomials and CLI polynomials for polynomials vj (x) and CL2m[f, a, b](x) re-

spectively; we find this terminology more appropriate and we shall adopt it in the following.

4.2 Three point Complementary Lidstone polynomials in R
2

In [8] the univariate CLI polynomial (4.1) has been extended to a bivariate polyno-

mial based on the vertices of a rectangle of R2 by using classical tensor extension technique

[17]. The purpose of the paper was to develop piecewise CLI in one and two variables and

to establish explicit error bounds for the derivatives in L∞ and L2 norms. In this section

we extend univariate CLI polynomial to bivariate polynomials based on the vertices of a

simplex of R2 and, in line with the idea presented in [28], we use univariate Lidstone and

Complementary Lidstone polynomials in combination. However, while in [28], in analogy

with papers [23, 24], the main goal was to get an intrinsic bivariate polynomial in the

standard simplex ∆2, which is the univariate CLI polynomial when restricted to the axes

x and y, here, in the extension process, we pay attention mainly on the data that these

polynomials use and on the interpolation conditions that they satisfy as well. Moreover,

since we use these polynomials in combination with Shepard operators for interpolation of

scattered data, we develop they in a more general context than the standard simplex as we

did for Lidstone polynomials.

The following expansions hold:

Theorem 24 Let f ∈ C2m−1,1 (Ω). Then for each x ∈ Ω we have

f(x) = CL
∆2(V0)
i,2m [f ] (x) +R

CL,∆2(V0)
i,2m [f ] (x) , i = 0, 1, 2 (4.4)
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where CL
∆2(V0)
i,2m [f ] ∈ P2m−1

x
are defined by

CL
∆2(V0)
0,2m [f ] (x) = f (V0) +

m∑

j=1

(
D

(2j−1,0)
0 f (V1) (vj (λ1 + λ2)− vj (0))

−D(2j−1,0)
0 f (V0) (vj (1− λ1 − λ2)− vj (1))

)

−
m∑

j=1

m−j∑

k=0

(
D

(2k,2j−1)
2 f (V0) Λk (1− λ1 − λ2) +D

(2k,2j−1)
2 f (V2)Λk (λ1 + λ2)

)

× (λ1 + λ2)
2j−1

(
vj

(
λ2

λ1 + λ2

)
− vj (0)

)

−
m∑

j=1

m−j∑

k=0

(
D

(2k,2j−1)
1 f (V0) Λk (1− λ1 − λ2) +D

(2k,2j−1)
1 f (V1)Λk (λ1 + λ2)

)

× (λ1 + λ2)
2j−1

(
vj

(
1− λ2

λ1 + λ2

)
− vj (1)

)
,

(4.5)

CL
∆2(V0)
1,2m [f ] (x) = f (V1) +

m∑

j=1

(
D

(2j−1,0)
0 f (V1) (vj (λ1 + λ2)− vj (1))

−D(2j−1,0)
0 f (V0) (vj (1− λ1 − λ2)− vj (0))

)

−
m∑

j=1

m−j∑

k=0

(
D

(2k,2j−1)
2 f (V0)Λk (1− λ1 − λ2) +D

(2k,2j−1)
2 f (V2) Λk (λ1 + λ2)

)

× (λ1 + λ2)
2j−1

(
vj

(
λ2

λ1 + λ2

)
− vj (0)

)

−
m∑

j=1

m−j∑

k=0

(
D

(2k,2j−1)
1 f (V0)Λk (1− λ1 − λ2) +D

(2k,2j−1)
1 f (V1) Λk (λ1 + λ2)

)

× (λ1 + λ2)
2j−1

(
vj

(
1− λ2

λ1 + λ2

)
− vj (1)

)
,

(4.6)

CL
∆2(V0)
2,2m [f ] (x) = f (V2) +

m∑

j=1

(
D

(0,2j−1)
0 f (V2) (vj (λ1 + λ2)− vj (1))

−D(0,2j−1)
0 f (V0) (vj (1− λ1 − λ2)− vj (0))

)

+

m∑

j=1

m−j∑

k=0

(
D

(2k,2j−1)
1 f (V0)Λk (1− λ1 − λ2) +D

(2k,2j−1)
1 f (V1) Λk (λ1 + λ2)

)

(λ1 + λ2)
2j−1

(
vj

(
λ2

λ1 + λ2

)
− vj (0)

)

+
m∑

j=1

m−j∑

k=0

(
D

(2k,2j−1)
2 f (V0)Λk (1− λ1 − λ2) +D

(2k,2j−1)
2 f (V2) Λk (λ1 + λ2)

)

(λ1 + λ2)
2j−1

(
vj

(
1− λ2

λ1 + λ2

)
− vj (1)

)

(4.7)

and R
CL,∆2(V0)
i,2m [f ] (x) , i = 0, 1, 2 are the remainder terms.
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Figure 4.1: Construction scheme of the CLI bivariate polynomial (4.5).

Proof. Let V = x ∈ ∆2 (V0) be an interior point. We set U (x) = (x+ λ2h1, y + λ2k1),

W (x) = (x− λ1h1, y − λ1k1), where (h1, k1) = V3 − V2 and (h2, k2) = V3 − V1. We assign

the point V to the line segment S (x) = [U,W ] parameterized by




x (λ) = x+ λ2h1 − λ (λ1 + λ2)h1

y (λ) = y + λ2k1 − λ (λ1 + λ2) k1
, λ ∈ [0, 1] .

The restriction of f to S is the univariate function f (x (λ) , y (λ)) in [0, 1] and we expand

it by univariate CLI polynomial (4.1) with a = 0, b = 1. In this expansion we replace

the parameter λ by the value λ2
λ1+λ2

which corresponds to the point V . This results in

an expansion in terms of the values of f at U and its odd order derivative values in the

direction of the side of vertices V1, V2 at U,W . We reach the vertices of the simplex ∆2 (V0)

by assigning points U,W to the segments with endpoints V0, V1 and V0, V2 respectively and

by expanding f (U) by the univariate CLI polynomial (4.1) with a = 0, b = 1 and odd

order directional derivatives of f at U,W by the univariate LI polynomial (3.2). The above

procedure, summarized in fig. 4.1, allows us to obtain expansion (4.5). Expansions (4.6),

(4.7) are obtained by analogy, according to the schemes in Figure 4.2(a), 4.2(b) respectively.

Expressions for remainder terms R
CL,∆2(V0)
i,2m [f ] (x) , i = 0, 1, 2 can be obtained by

using remainder representations in univariate LI and CLI [6, 29] in combination, as in [28].

These expressions are in terms of the derivatives of order 2m of f and therefore expansions
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Figure 4.2: Construction schemes of polynomials CL
∆2(V0)
1,2m [f ] (a) and CL

∆2(V0)
2,2m [f ] (b).

(4.4) reproduce exactly polynomials of total degree not greater than 2m − 1. Then the

following Theorem holds.

Theorem 25 Let f ∈ C2m,1 (Ω). Then for each x ∈ Ω, we have

CL
∆2(V0)
i,2m [f ] (x) = T2m [f, V0] (x) + δ

CL,∆2(V0)
i,2m [f ] (x) , i = 0, 1, 2 (4.8)

where T2m [f, V0] (x) is the Taylor polynomial of order 2m for f at V0 and
∣∣∣δCL,∆2(V0)

0,2m [f ] (x)
∣∣∣ ≤ 22m+1 |f |2m,1

2m∑
α=1

(
C1
0,α,m + C2

0,α,m

)
r2m+1−α (r2S

)α ||x− V0||α2
(4.9)

∣∣∣δCL,∆2(V0)
1,2m [f ] (x)

∣∣∣ ≤ 22m+1 |f |2m,1(
r2m+1

(2m+1)! +
2m∑

α=0

(
C1
1,α,m + C2

1,α,m

)
r2m+1−α (r2S

)α ||x− V0||α2

)
(4.10)

where

C1
0,α,m =

m∑

γ=1+⌊α−1
4 ⌋

2γ−α≥0

(2γ−1
2γ−α)|B2γ−α( 12)|22γ−α

(2γ−1)!

C2
0,α,m =

⌊α+1
2 ⌋∑

γ=1

m−γ∑

β=
⌊
α−1
2γ

⌋

2γ−α+2β≥0

2γ−1∑

l=0

( 2β+1
2γ−α+2β)(

2γ−1
l )|Bl( 12)||B2γ−α+2β( 1

2)|22γ−α+2β+l+1

(2m−2γ−2β+2)!(2β+1)!(2γ−1)! .

(4.11)
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C1
1,α,m =

m∑

j=⌈α+1
2 ⌉

2j−1−α∑

i=0

(2j−1
i )(2j−1−i

α )|Bi( 1
2)|2i

(2m−2j+2)!(2j−1)!

C2
1,α,m = 2

⌈α+1
2 ⌉∑

β=1

m∑

γ=⌈α+1
4 ⌉

2γ−α≥0

2β−1∑

l=0

(2γ−2β+1
2γ−α )(2β−1

l )|B2γ−α( 12)||Bl( 12)|22γ−α+l

(2m−2γ+2)!(2γ−2β+1)!(2β−1)!

(4.12)

and the bound for δ
CL,∆2(V0)
2,2m [f ] (x) is analogous to (4.10).

Proof. For each j = 1, . . . ,m, k = 0, . . . ,m − j, let us consider the Taylor

expansion of order 2m of D
(2j−1,0)
0 f (V1), D

(2k,2j−1)
2 f (V2) and D

(2k,2j−1)
1 f (V1) centered at

V0 with integral remainder. By substituting these expansions in (4.5) we have

CL
∆2(V0)
0,2m [f ] (x) = T2m [f, V0] (x) + δ

CL,∆2(V0)
0,2m [f ] (x)

where T2m [f, V0] (x) is the Taylor polynomial of order 2m centered at V0 and

δ
CL,∆2(V0)
0,2m [f ] (x) =

m∑

j=1

(∫ 1

0

D
(2m+1,0)
0 f(V0+t(V1−V0))(1−t)2m−2j+1

(2m−2j+1)! dt

)
(vj (λ1 + λ2)− vj (0))

−
m∑

j=1

m−j∑

k=0

(∫ 1
0

D
(2m−2j+2,2j−1)
2 f(V0+t(V2−V0))(1−t)2m−2j−2k+1

(2m−2k−2j+1)! dt

)
Λk (λ1 + λ2)

× (λ1 + λ2)
2j−1

(
vj

(
λ2

λ1 + λ2

)
− vj (0)

)

+

m∑

j=1

m−j∑

k=0

(∫ 1
0

D
(2m−2j+2,2j−1)
1 f(V0+t(V1−V0))(1−t)2m−2j−2k+1

(2m−2k−2j+1)! dt

)
Λk (λ1 + λ2)

× (λ1 + λ2)
2j−1

(
vj

(
1− λ2

λ1 + λ2

)
− vj (1)

)
.

(4.13)

By the Whittaker identities [69] we get (3.18) and

vk (x) =
22k

(2k)!

2k∑

l=0

(
2k

l

)
Bl

(
1

2

)(x
2

)2k−l
. (4.14)

To get the bound (4.9) we use repetitively the Mean-Value Theorem and we get

vj (λ1 + λ2)− vj (0) = v′j (ξ1) (λ1 + λ2) = Λj−1 (ξ1) (λ1 + λ2) ,

ξ1 ∈ (min {0, λ1 + λ2} ,max {0, λ1 + λ2}) ,
(4.15)

vj

(
λ2

λ1 + λ2

)
− vj (0) = v′j (ξ2)

λ2

λ1 + λ2
= Λj−1 (ξ2)

λ2

λ1 + λ2

ξ2 ∈
(
min

{
0,

λ2

λ1 + λ2

}
,max

{
0,

λ2

λ1 + λ2

})
,

(4.16)
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vj

(
λ1

λ1 + λ2

)
− vj (1) = v′j (ξ3)

(
1− λ1

λ1 + λ2

)
= Λj−1 (ξ3)

λ2

λ1 + λ2

ξ3 ∈
(
min

{
1,

λ1

λ1 + λ2

}
,max

{
1,

λ1

λ1 + λ2

}) (4.17)

for each j = 1, . . . ,m, k = 0, . . . ,m− j. By (3.18) and (4.14) we have

vj (λ1 + λ2)− vj (0) = Λj−1 (ξ1) (λ1 + λ2)

=
2j−1∑
i=0

(
2j−1

i

)
Bi

(
1
2

)
2iξ2j−1−i1 (λ1 + λ2)

(2j − 1)!
,

(4.18)

Λk (λ1 + λ2) (λ1 + λ2)
2j−1

(
vj

(
λ2

λ1+λ2

)
− vj (0)

)

=
2k+1∑
i=0

2j−1∑
l=0

(2k+1
i

)(2j−1
l

)
Bl

(
1
2

)
Bi

(
1
2

)
2i+l (λ1 + λ2)

2k−i+2j−1 ξ2j−1−l2 λ2

(2k + 1)! (2j − 1)!

(4.19)

and

Λk (λ1 + λ2) (λ1 + λ2)
2j−1

(
vj

(
1− λ2

λ1+λ2

)
− vj (1)

)

=
2k+1∑
i=0

2j−1∑
l=0

(
2k+1

i

)(
2j−1

l

)
Bi

(
1
2

)
Bl

(
1
2

)
2i+l (λ1 + λ2)

2k+2j−i−1 ξ2j−1−l3 λ2

(2k + 1)! (2j − 1)!
;

(4.20)

therefore by using relations (4.18)-(4.20) in (4.13) we have

δ
CL,∆2(V0)
0,2m [f ] (x) =

m∑

j=1

(∫ 1

0

D
(2m+1,0)
0 f(V0+t(V1−V0))(1−t)2m−2j+1

(2m−2j+1)! dt

)

×
2j−1∑
i=0

(2j−1
i )Bi( 12)2

iξ
2j−1−i
1 (λ1+λ2)

(2j−1)!

−
m∑

j=1

m−j∑

k=0

(∫ 1
0

D
(2m−2j+2,2j−1)
2 f(V0+t(V2−V0))(1−t)2m−2j−2k+1

(2m−2k−2j+1)! dt

)

×
2k+1∑
i=0

2j−1∑
l=0

(2k+1
i )(2j−1

l )Bl( 12)Bi( 12)2
i+l(λ1+λ2)

2k−i+2j−1ξ
2j−1−l
2 λ2

(2k+1)!(2j−1)!

+

m∑

j=1

m−j∑

k=0

(∫ 1
0

D
(2m−2j+2,2j−1)
1 f(V0+t(V1−V0))(1−t)2m−2j−2k+1

(2m−2k−2j+1)! dt

)

×
2k+1∑
i=0

2j−1∑
l=0

(2k+1
i )(2j−1

l )Bi( 12)Bl( 12)2
i+l(λ1+λ2)

2k+2j−i−1ξ
2j−1−l
3 λ2

(2k+1)!(2j−1)! .

By taking the modulus of both sides, by bounding ξ1, ξ2, ξ3 with the length of the seg-

ment they belong to and by relations (1.26), (1.27) and (1.28) we have that, after some
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rearrangement and changes of dummy indices, δ
CL,∆2(V0)
0,2m [f ] (x) is bounded by

∣∣∣δCL,∆2(V0)
0,2m [f ] (x)

∣∣∣ ≤ 22m+1 |f |2m,1

2m∑
α=1




m∑

γ=1+⌊α−1
4 ⌋

2γ−α≥0

(2γ−1
2γ−α)|B2γ−α( 12)|22γ−α

(2γ−1)!

+

⌊α+1
2 ⌋∑

γ=1

m−γ∑

β=
⌊
α−1
2γ

⌋

2γ−α+2β≥0

2γ−1∑

l=0

( 2β+1
2γ−α+2β)(

2γ−1
l )|Bl( 1

2)||B2γ−α+2β( 12)|22γ−α+2β+l+1

(2m−2γ−2β+2)!(2β+1)!(2γ−1)!




×r2m+1−α (r2S
)α ||x− V0||α2 .

(4.9) follows by setting C1
0,α,m and C2

0,α,m as in (4.11).

Let us now prove the bound (4.10). We proceed, as in the previous case, by

considering the (2m)-th Taylor expansion of f (V1), D
(2j−1,0)
0 f (V1), D

(2k,2j−1)
2 f (V2) and

D
(2k,2j−1)
1 f (V1) centered at V0 with integral remainder. Moreover, we need to take care of

vj (λ1 + λ2)− vj (1) = v′j (ξ1) (1− λ1 − λ2) = Λj−1 (ξ1) (1− λ1 − λ2)

ξ1 ∈ (min {1, λ1 + λ2} ,max {1, λ1 + λ2}) ,
(4.21)

vj

(
1− λ2

λ1 + λ2

)
− vj (0) = v′j (ξ3)

λ1

λ1 + λ2
= Λj−1 (ξ3)

λ1

λ1 + λ2

ξ3 ∈
(
min

{
0,

λ1

λ1 + λ2

}
,max

{
0,

λ1

λ1 + λ2

})
.

(4.22)

Therefore, from (4.16), (4.21) and (4.22) we get

vj (λ1 + λ2)− vj (1) =

2j−1∑
i=0

(2j−1
i

)
Bi

(
1
2

)
2iξ2j−1−i1 (1− λ1 − λ2)

(2j − 1)!
,

Λk (λ1 + λ2) (λ1 + λ2)
2j−1

(
vj

(
λ2

λ1+λ2

)
− vj (0)

)

=
2k+1∑
i=0

2j−1∑
l=0

(2k+1
i )(2j−1

l )Bi( 12)Bl( 12)2
i+l(λ1+λ2)

2k+2j−i−1ξ
2j−1−l
2 λ2

(2k+1)!(2j−1)! ,

Λk (λ1 + λ2) (λ1 + λ2)
2j−1

(
vj

(
1− λ2

λ1+λ2

)
− vj (0)

)

=
2k+1∑
i=0

2j−1∑
l=0

(2k+1
i )(2j−1

l )Bi( 12)Bl( 12)2
i+l(λ1+λ2)

2k+2j−i−1ξ
2j−1−l
3 λ1

(2k+1)!(2j−1)! .
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Then we have

δ
CL,∆2(V0)
1,2m [f ] (x) =

∫ 1

0

D
(2m+1,0)
0 f(V0+t(V1−V0))(1−t)2m

(2m)! dt

+
m∑

j=1

(∫ 1

0

D
(2m+1,0)
0 f(V0+t(V1−V0))(1−t)2m−2j+1

(2m−2j+1)! dt

)

×
2j−1∑
i=0

(2j−1
i )Bi( 12)2

iξ
2j−1−i
1 (1−λ1−λ2)

(2j−1)!

−
m∑

j=1

m−j∑

k=0

(∫ 1
0

D
(2m−2j+2,2j−1)
2 f(V0+t(V2−V1))(1−t)2m−2j−2k+1

(2m−2k−2j+1)! dt

)

×
2k+1∑
i=0

2j−1∑
l=0

(2k+1
i )(2j−1

l )Bi( 1
2)Bl( 12)2

i+l(λ1+λ2)
2k+2j−i−1ξ

2j−1−l
2 λ2

(2k+1)!(2j−1)!

+

m∑

j=1

m−j∑

k=0

(∫ 1
0

D
(2m−2j+2,2j−1)
1 f(V0+t(V1−V0))(1−t)2m−2j−2k+1

(2m−2k−2j+1)! dt

)

×
2k+1∑
i=0

2j−1∑
l=0

(2k+1
i )(2j−1

l )Bi( 1
2)Bl( 12)2

i+l(λ1+λ2)
2k+2j−i−1ξ

2j−1−l
3 λ1

(2k+1)!(2j−1)! ;

by taking the modulus of both sides, by bounding ξ1, ξ2, ξ3 with the length of the seg-

ment they belong to and by relations (1.26), (1.27) and (1.28) we have that, after some

rearrangement and changes of dummy indices, δ
CL,∆2(V0)
1,2m [f ] (x) is bounded by

∣∣∣δCL,∆2(V0)
1,2m [f ] (x)

∣∣∣ ≤ 22m+1 |f |2m,1 r
2m+1 1

(2m+1)!

+22m+1 |f |2m,1

2m∑

α=0




m∑

j=⌈α+1
2 ⌉

2j−1−α∑

i=0

(2j−1
i )(2j−1−i

α )|Bi( 1
2)|2i

(2m−2j+2)!(2j−1)!

+2

⌈α+1
2 ⌉∑

β=1

m∑

γ=⌈α+1
4 ⌉

2γ−α≥0

2β−1∑

l=0

(2γ−2β+1
2γ−α )(2β−1

l )|B2γ−α( 12)||Bl( 12)|22γ−α+l

(2m−2γ+2)!(2γ−2β+1)!(2β−1)!




×r2m+1−α (r2S
)α ||x− V0||α2 .

The bound (4.10) follows by setting C1
1,α,m and C2

1,α,m as in (4.12).

Corollary 26 In the hypothesis of Theorem 25 for all x ∈ Ω we have

∣∣∣RCL,∆2(V0)
0,2m [f ] (x)

∣∣∣ ≤ 22m |f |2m,1(
2

2m∑
α=1

(
C1
0,α,m + C2

0,α,m

)
r2m+1−α (r2S

)α ||x− V0||α2 +
||x−V0||2m+1

2
(2m−1)!

) (4.23)
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and
∣∣∣RCL,∆2(V0)

1,2m [f ] (x)
∣∣∣ ≤ 22m |f |2m,1(

2 r2m+1

(2m+1)! + 4

2m∑

α=0

(
C1
1,α,m + C2

1,α,m

)
r2m+1−α (r2S

)α ||x− V0||α2 +
||x−V0||2m+1

2
(2m−1)!

)

(4.24)

where Ck
0,α,m, Ck

1,α,m, k = 1, 2 are defined in (4.11) and (4.12). The bound for R
CL,∆2(V0)
2,2m [f ] (x)

is the same of the bound (4.24).

In the case m = 1, which we use in the numerical results, we get
∣∣∣RCL,∆2(V0)

0,2 [f ] (x)
∣∣∣ ≤ 4 |f |2,1

(
3r
(
r2S

)2 ||x− V0||22 + ||x− V0||32
)

∣∣∣RCL,∆2(V0)
k,2 [f ] (x)

∣∣∣ ≤ 4 |f |2,1
(
4

3
r3 + r2

(
r2S

)
||x− V0||2 + 2r

(
r2S

)2 ||x− V0||22 + ||x− V0||32
)

k = 1, 2.

4.3 The bivariate Shepard-Complementary Lidstone opera-

tor

In defining the bivariate Shepard-CLI operator we suppose that function data of

one of the following type are associated to each node xi,
{
f (xi) ,

∂2k−1f
∂x2k−1−j∂yj

(xi)

}

k=1,...,m
j=0,...,2k−1

(4.25)

or {
∂2k−1f

∂x2k−1−j∂yj
(xi)

}

k=1,...,m
j=0,...,2k−1

. (4.26)

Such data, clearly, generalize classic Complementary Lidstone univariate data to the bivari-

ate case. Now we introduce an explicit interpolant of these data, by using local Shepard

operators in combination with three point CLI polynomials (4.5), (4.6) and (4.7). For the

nature of the three point polynomial interpolants we need to associate to each sample point

xi, i = 1, . . . , n a triangle with a vertex in xi and other two vertices in its neighborhood; we

propose to do the choice by the following priority criteria: let Rwi
be the smallest positive

real number such that the ball B (xi, Rwi
) includes at least Nw nodes and at least a node

with associated data (4.25);
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1. if the function data in xi are of type (4.25) then we associate to xi the triangle in

B (xi, Rwi
) which minimizes the quantity r2m+1

i

(
r2i Si

)2m
,

2. if the function data in xi are of type (4.26) and xj is a vertex with associated data of

type (4.25) then we associate to xi the triangle in B (xi, Rwi
) with vertices in xi, xj

which minimizes the quantity r2m+1
i

(
r2i Si

)2m
.

As before, we denote by ∆2(i) the triangle associated to xi according to the

above procedure and we assume that its vertices are listed counterclockwise. To define

the Shepard-CLI operator at x ∈ Ω, according to (1.12), we substitute the value f (xi) in

(1.10) with:

a. the value at x of the interpolation polynomial (4.5) in case (1);

b. the value at x of the interpolation polynomial (4.6) in case (2) if xj is a vertex with

associated data of type (4.25);

c. the value at x of the interpolation polynomial (4.7) in case (2) if xj is a vertex with

associated data of type (4.26).

Definition 27 For each fixed µ > 0 and m = 1, 2, . . . the bivariate Shepard-CLI operators

are defined by

SCL2m [f ] (x) =
n∑

i=1

W̃µ,i (x)CL
∆2(i)
2m [f ] (x) , x ∈ Ω (4.27)

where CL
∆2(i)
2m [f ] (x) , i = 1, . . . , n is one of the CLI polynomials (4.5), (4.6) or (4.7)

according to the above rules. The remainder term is

RCL2m [f ] (x) = f (x)− SCL2m [f ] (x) , x ∈ Ω. (4.28)

Convergence results can be obtained by following the known approaches [68, §
15.4], [36, 73]. Let us denote by Ie the set of indices of nodes with functional data of type
(4.25) and by Ine the set of indices of nodes with functional data of type (4.26) we have

the following bound for the remainder term (4.28)
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Theorem 28 Let x ∈ Ω. The following bound holds:

|RCL2m [f ] (x)| ≤ 22m |f |2m,1 sup
x∈Ω

#(Ix ∩ Ie) 2 max
i∈Ix∩Ie

{
2m∑
α=1

((
C1
0,α,m

)
i
+

(
C2
0,α,m

)
i

)

× r2m+1−α
i

(
r2i Si

)α
Rα

wi
+

R2m+1
wi

(2m−1)!

}

+22m |f |2m,1 sup
x∈Ω

#(Ix ∩ Ine) max
i∈Ix∩Ine

{
2

r2m+1
i

(2m+1)! + 4
2m∑

α=0

((
C1
1,α,m

)
i
+

(
C2
1,α,m

)
i

)

× r2m+1−α
i

(
r2i Si

)α
Rα

wi
+

R2m+1
wi

(2m−1)!

}
.

(4.29)

where Ck
0,α,m, Ck

1,α,m, k = 1, 2 are defined in (4.11) and (4.12).

Proof. From (4.23), (4.24) we have

|RCL2m [f ] (x)| ≤ 22m |f |2m,1

∑

i∈Ix∩Ie
W̃µ,i (x)

×
(
2

2m∑
α=1

((
C1
0,α,m

)
i
+

(
C2
0,α,m

)
i

)
r2m+1−α
i

(
r2i Si

)α ||x− Vi0 ||α2 +
||x−Vi0 ||2m+1

2
(2m−1)!

)

+22m |f |2m,1

∑
i∈Ix∩Ine

W̃µ,i (x)

×
(
2

r2m+1
i

(2m+1)! + 4

2m∑

α=0

((
C1
1,α,m

)
i
+

(
C2
1,α,m

)
i

)
r2m+1−α
i

(
r2i Si

)α ||x− Vi0 ||α2 +
||x−Vi0 ||2m+1

2
(2m−1)!

)

≤ 22m |f |2m,1 sup
x∈Ω

#(Ix ∩ Ie) max
i∈Ix∩Ie

{
2

2m∑
α=1

((
C1
0,α,m

)
i
+

(
C2
0,α,m

)
i

)

× r2m+1−α
i

(
r2i Si

)α
Rα

wi
+

R2m+1
wi

(2m−1)!

}

+22m |f |2m,1 sup
x∈Ω

#(Ix ∩ Ine) max
i∈Ix∩Ine

(
2
(r2m+1

i )
(2m+1)! + 4

2m∑

α=0

max
i∈Ix∩Ine

((
C1
1,α,m

)
i
+

(
C2
1,α,m

)
i

)

×r2m+1−α
i

(
r2i Si

)α
Rα

wi
+

R2m+1
wi

(2m−1)!

}
.

The following statements can be easily checked.

Theorem 29 The operator S̃CL2m [·] interpolates at Vi, i = 1, ..., n if the functional data

in Vi are of type (4.25).

Theorem 30 The degree of exactness of the operator S̃CL2m [·] is 2m, i.e. S̃CL2m [f ] = f

for each bivariate polynomial f ∈ P2m
x

.
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In [10] is given the continuity class of the Shepard operators, and consequently we

can deduce the continuity class of the Shepard-CLI operators.

Theorem 31 If µ ∈ N, µ > 0 the continuity class of the operator (4.27) is µ− 1.

Theorem 32 For each k, j ∈ N with 1 ≤ 2k − 1 < µ+ 1, 0 ≤ j ≤ 2k − 1 we have

∂2k−1

∂x2k−1−j∂yj
SCL2m [f ] (x)

∣∣∣∣
x=xi

=
∂2k−1f

∂x2k−1−j∂yj
(x)

∣∣∣∣
x=xi

, i = 1, . . . , n.

4.4 Numerical results

In the following we set µ = 2. According to Theorem 30 both operators have

degree of exactness 2 and class of differentiability 1 in virtue of Theorem 31. We note

that the operator S̃T2 uses function evaluations and all partial derivatives up to the order

2 at each sample point, while the operator S̃CL2 is a lacunary interpolation operator which

uses function evaluations and partial derivatives of order not greater than 1. In achieving

the numerical comparisons between the two operators we compute maximum (1.45), mean

(1.46), mean square (1.47) interpolation errors for the parameter values Nw = 19 for the

operator S̃T2 [62] and Nw = 7 for operator S̃CL2 . We compute numerical approximations

by using a 1089 sparse set of uniformly distributed interpolation nodes in the unit square

R. To better show the accuracy of operator S̃CL2 by varying the number of lacunas, we

compute approximations in cases of: (a) 100%of data of type (4.25) coupled with 0% of

data of type (4.26); (b) 66% of data of type (4.25) coupled with 34% of data of type (4.26);

(c) 33% of data of type (4.25) coupled with 67% of data of type (4.26).

We compute the resulting approximations at the points of a regular grid of 101×101
points of R. The numerical results are given in Table 4.1. We note that the obtained

approximations are comparable even if S̃CL2 uses lacunary data.
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Figure 4.3: Sparse set of n = 1089 uniformly distributed interpolation points in R: (a)
100% of data of type (4.25) coupled with 0% of data of type (4.26); (b) 66% of data of type
(4.25) coupled with 34% of data of type (4.26); (c) 33% of data of type (4.25) coupled with
67% of data of type (4.26)).
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Table 4.1: Comparison between the operator S̃T2 and the operator SCL2 applied to the 10
test functions in Figure 1.2 using the sparse set of 1089 interpolation nodes in Figure 1.3
with the different type of data in Figure 4.3(a), Figure 4.3(b) and Figure 4.3(c).

Type of data Figure 4.3(a) Figure 4.3(b) Figure 4.3(c)

S̃T2 SCL2 SCL2 SCL2

emax 1.82e-03 1.98e-03 3.87e-03 5.26e-03
f1 emean 6.58e-05 9.83e-05 1.51e-04 1.96e-04

eMS 1.91e-08 3.76e-08 8.67e-08 1.53e-07

emax 4.80e-05 9.44e-05 1.30e-04 4.35e-04
f2 emean 2.88e-06 7.04e-06 1.11e-05 1.73e-05

eMS 2.20e-11 1.24e-10 2.92e-10 1.01e-09

emax 1.29e-04 1.71e-04 2.21e-04 7.92e-04
f3 emean 2.75e-06 3.39e-06 5.32e-06 9.02e-06

eMS 5.23e-11 8.30e-11 1.73e-10 1.17e-09

emax 1.30e-04 1.96e-04 3.36e-04 8.33e-04
f4 emean 5.18e-06 1.11e-05 1.80e-05 2.72e-05

eMS 1.01e-10 4.00e-10 1.01e-09 3.35e-09

emax 1.61e-03 2.24e-03 2.23e-03 2.13e-02
f5 emean 5.07e-05 4.98e-05 6.46e-05 1.77e-04

eMS 1.65e-08 1.85e-08 2.47e-08 9.73e-07

emax 2.85e-04 5.85e-04 7.39e-04 1.71e-03
f6 emean 1.23e-05 2.38e-05 3.45e-05 5.27e-05

eMS 6.44e-10 2.33e-09 4.49e-09 1.54e-08

emax 1.79e-02 2.67e-02 5.39e-02 1.79e-01
f7 emean 1.11e-03 1.69e-03 2.56e-03 4.39e-03

eMS 3.17e-06 7.75e-06 1.84e-05 1.15e-04

emax 6.41e-03 1.43e-02 1.26e-02 2.63e-02
f8 emean 3.26e-04 4.19e-04 6.04e-04 8.58e-04

eMS 3.57e-07 7.38e-07 1.31e-06 3.42e-06

emax 5.42e-01 8.37e-01 9.48e-01 1.71
f9 emean 1.71e-02 2.61e-02 3.76e-02 5.34e-02

eMS 1.58e-03 3.64e-03 6.35e-03 1.47e-02

emax 4.79e-02 3.66e-02 3.65e-02 3.34e-02
f10 emean 2.66e-04 3.93e-04 5.86e-04 8.91e-04

eMS 1.35e-06 1.31e-06 1.93e-06 4.51e-06
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Chapter 5

Triangular Shepard method

When only function evaluations are given, the three point polynomials of Chapters

2 and 3, reduce to the three point linear interpolation polynomial. A method by F. Little,

called triangular Shepard and introduced in 1982 [53], combines Shepard-like basis functions

and three point linear interpolation polynomials as well. It is a convex combination of the

linear interpolants of a set of triangles, in which each weight function is defined as the

product of the inverse distance from the vertices of the corresponding triangle. The method

reproduces linear polynomials without using any derivative data and Little noticed that it

surpasses Shepard’s method greatly in esthetic behavior.

During my period at the USI-Università della Svizzera Italiana, working with

Prof. K. Hormann, we rediscovered the same method independently as a natural way to

break the asymmetry that occurs in combining the Shepard operator with three point linear

interpolation polynomials. In this Chapter we deeply study the properties of the new weight

functions and of the triangular Shepard operator. Some results, here presented, are totally

new, in particular: equations (5.4) and (5.7) which can be useful for making the triangular

Shepard method able to interpolate derivative and Proposition 34 and Theorem 36 which

demonstrate the quadratic rate of convergence for general configuration of triangles. The

validity of the triangular Shepard method is confirmed by a series of experiments, based

on different Delaunay triangulations with increasing resolution and completely arbitrary

triangulations as well. In fact Proposition 34 and Theorem 36, give information on how to
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Figure 5.1: Example of a node set X (left), its Delaunay triangulation (center), and an
arbitrary triangulation T of X (right).

choose the triangulation in order to get good accuracy of approximation, i.e. they make

the method not dependent from any mesh which connects the interpolation points, i.e. a

meshless or meshfree method.

5.1 Triangle-based basis functions

To extend the point-based basis functions in (1.9) to triangle-based basis functions,

let us consider a triangulation T = {t1, t2, . . . , tm} of the nodes X. That is, each tj =

[xj1 ,xj2 ,xj3 ] is a triangle with vertices in X and each node xi ∈ X is the vertex of at least

one triangle, hence
m⋃

j=1

{j1, j2, j3} = {1, 2, . . . , n}. (5.1)

For example, T can be the Delaunay triangulation [35] of X, but we also allow for general

triangulations with overlapping or disjoint triangles (see Figure 5.1).

The triangle-based basis functions with respect to the triangulation T are then

defined by

Bµ,j(x) =

3∏

ℓ=1

1

‖x− xjℓ‖µ2
m∑

k=1

3∏

ℓ=1

1

‖x− xkℓ‖µ2

, j = 1, . . . ,m, (5.2)

where µ > 0 is again a control parameter. Like Shepard’s basis functions, the triangle-based

basis functions (5.2) are non-negative and form a partition of unity, but instead of being

cardinal they satisfy the following properties.
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Proposition 33 The triangle-based basis function in (5.2) and its gradient (that exists for

µ > 1) vanish at all nodes xi ∈ X that are not a vertex of the corresponding triangle tj.

That is,

Bµ,j(xi) = 0, (5.3)

∇Bµ,j(xi) = 0, µ > 1, (5.4)

for any j = 1, . . . ,m and i /∈ {j1, j2, j3}.

Proof. If we multiply both the numerator and the denominator of (5.2) with

‖x− xi‖µ2 , then
Bµ,j(x) =

Cj(x)
m∑
k=1

Ck(x)

,

where

Ck(x) = ‖x− xi‖µ2
3∏

ℓ=1

1

‖x− xkℓ‖µ2
, k = 1, . . . ,m.

Let us denote by Ji the set of indices of all triangles which have xi as a vertex,

Ji =
{
k ∈ {1, . . . ,m} : i ∈ {k1, k2, k3}

}
, (5.5)

and note that Ji 6= ∅ by (5.1). Then, Ck(xi) = 0 if and only if k /∈ Ji, and (5.3) follows

because j /∈ Ji. Moreover, if µ > 1, then Ck(x) is differentiable at xi, and (5.4) follows

because

∇Bµ,j(x) =
∇Cj(x)

∑m
k=1Ck(x) + Cj(x)

∑m
k=1∇Ck(x)(∑m

k=1Ck(x)
)2

and ∇Cj(xi) = 0 for i /∈ {j1, j2, j3}.
As an immediate consequence of Proposition 33 and the partition of unity property

we have, for each i = 1, . . . , n,

∑

j∈Ji
Bµ,j(xi) = 1, (5.6)

∑

j∈Ji
∇Bµ,j(xi) = 0, µ > 1 (5.7)

where Ji is the index set from (5.5).
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Figure 5.2: Triangle-based basis function B2,j(x) for the indicated triangle tj with respect
to a Delaunay triangulation T .

Figure 5.3: Triangle-based basis function B2,j(x) for the indicated triangle tj with respect
to an arbitrary triangulation T .

Figures 5.2 and 5.3 show examples of triangle-based basis functions for µ = 2.

Function values close to 0 are marked by red and the ten colours from green via blue

to pink correspond to the ten uniform intervals of function values between 0 and 1. As

predicted by Proposition 33, each basis function has local minima with function value 0

at all nodes, except at the vertices xi, i ∈ {j1, j2, j3} of the corresponding triangle tj .

According to (5.6), if Ji = {j}, so that tj is the only triangle adjacent to xi, then the basis

function has a local maximum with function value 1 at xi (see Figure 5.3).

5.2 Local linear interpolants

The second ingredient for Little’s extension of the Shepard operator [53] are the

linear polynomials that locally interpolate the given data at the vertices of each of the
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triangles. For tj ∈ T , this polynomial Lj : R
2 → R can be written as

Lj(x) =

3∑

ℓ=1

λj,jℓ(x)fjℓ, (5.8)

where λj,jℓ(x), ℓ = 1, 2, 3 are the barycentric coordinates [56] of x with respect to the

triangle tj = [xj1 ,xj2 ,xj3 ], that is,

λj,j1(x) =
A(x,xj2 ,xj3)

A(xj1 ,xj2 ,xj3)
, λj,j2(x) =

A(xj1 ,x,xj3)

A(xj1 ,xj2 ,xj3)
, λj,j3(x) =

A(xj1 ,xj2 ,x)

A(xj1 ,xj2 ,xj3)
,

with A(x,y,z) denoting the signed area of the triangle [x,y,z]. In general, λj,i(x) with

j ∈ Ji and i ∈ {j1, j2, j3} is the unique linear polynomial with λj,i(xi) = 1 and λj,i(x) = 0

for x on the line defined by the edge opposite xi in the triangle tj .

To study the approximation order of the interpolating polynomial (5.8), we let

Ω ⊂ R
2 be a non-empty, compact, and convex domain with X ⊂ Ω (e.g. the convex

hull of X). Moreover, we denote the edge vectors of the triangle tj by ej1 = xj3 − xj2 ,

ej2 = xj3 − xj1 , and ej3 = xj1 − xj2 .

Proposition 34 Let Ω be a compact convex domain which contains X and f ∈ C1,1(Ω).

Then,

|f(x)− Lj(x)| ≤ |f |1,1
(
2‖x− xj1‖22 + 4hjCj‖x− xj1‖2

)
(5.9)

for any x ∈ Ω, with hj = max{‖ej1‖2, ‖ej2‖2, ‖ej3‖2} and Cj a constant which depends only

on the shape of tj .

Proof. Let us consider the first order Taylor expansion of f(xj2) and f(xj3) at

xj1 with integral remainder [9],

f(xj2) = f(xj1) + ej3 · ∇f(xj1) + ‖ej3‖22
∫ 1

0

∂2f(xj1 + tej3)

∂ν2j3
(1− t)dt,

f(xj3) = f(xj1) + ej2 · ∇f(xj1) + ‖ej2‖22
∫ 1

0

∂2f(xj1 + tej2)

∂ν2j2
(1− t)dt,

(5.10)

where ∂2

∂ν2jk
are the second order directional derivatives along the unit vectors νjk =

ejk
‖ejk‖2

.

Substituting (5.10) in (5.8) we get

Lj(x) = T1[f,xj1 ](x) + δj(x),
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where T1[f,xj1 ] is the first order Taylor polynomial of f at xj1 and

δj(x) = λj,j2(x) ||ej3 ||22
∫ 1

0

∂2f(xj1 + tej3)

∂ν2j3
(1− t)dt

+ λj,j3(x) ||ej2 ||22
∫ 1

0

∂2f(xj1 + tej2)

∂ν2j2
(1− t)dt.

By the triangle inequality,

|f(x)− Lj(x)| ≤ |f(x)− T1[f,xj1 ](x)|+ |T1[f,xj1 ](x)− Lj(x)|. (5.11)

While the first term in (5.11) is bounded as usual [40] by

|f(x)− T1[f,xj1 ](x)| ≤ 2|f |1,1‖x− xj1‖22,

the second term is bounded by

|T1[f,xj1 ](x)− Lj(x)| = |δj(x)| ≤ 4|f |1,1rjCj‖x− xj1‖2.

In fact,

|λj,jk(x)| ≤
hj

|A(xj1 ,xj2 ,xj3)|
‖x− xj1‖2, x ∈ Ω

for k = 2, 3, and by writing ∂2f

∂ν2jk

as the limit of difference quotients of the functions ∂f
∂νjk

as

well as (1.15), we get

∣∣ ∂f
∂νjk

(u)− ∂f
∂νjk

(v)
∣∣

|u− v| ≤ 2‖f‖1,1, u,v ∈ Ω, u 6= v.

Finally, (5.9) follows by setting

Cj =
r2j

|A(xj1 ,xj2 ,xj3)|
=
sin(αj + βj)

sinαj sin βj
= cot(αj) + cot(βj),

where αj and βj are the angles adjacent to the longest edge of tj (see Figure 1.1). Note that

Cj is large for small angles αj and βj , hence it is advantageous to use as T the Delaunay

triangulation of X, because it maximizes the smallest angle. Moreover, the bound in (5.9)

also holds if we replace the reference vertex xj1 by any of the other two vertices xj2 and

xj3 of tj.
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5.3 Triangle-based Shepard operator

For any µ > 0 the triangular Shepard operator is defined by

Kµ[f ](x) =

m∑

j=1

Bµ,j(x)Lj(x), (5.12)

where Lj(x) is the linear interpolating polynomial (5.8) over triangle tj and Bµ,j(x) is the

corresponding triangle-based basis function from (5.2). For the special case µ = 2, this

operator was proposed by [53] and he noticed the following properties.

Proposition 35 The operator Kµ is an interpolation operator, that is,

Kµ[f ](xi) = fi, i = 1, . . . , n,

and dex(Kµ) = 1.

Proof. If xi is a vertex of triangle tj (i.e., i ∈ {j1, j2, j3}), then Lj(xi) = fi

by (5.8), otherwise Bµ,j(xi) = 0 by Proposition 33. Using (5.6) we then have

Kµ[f ](xi) =
m∑

j=1

Bµ,j(xi)Lj(xi) =
∑

j∈Ji
Bµ,j(xi)fi = fi.

Moreover, Kµ reproduces polynomials up to degree 1, because dex(Lj) = 1 for j = 1, . . . ,m

by construction and because the basis functions Bµ,j are a partition of unity.

Let us now turn to the approximation order of the operator Kµ, which was not

studied by [53]. To this purpose, we follow [40] and let ‖·‖ be the maximum norm and

Rρ(x) = {x ∈ R
2 : ‖x− y‖ ≤ ρ} be the axis-aligned closed square with centre y and edge

length 2ρ. With V (t) denoting the set of vertices of a triangle t ∈ T , we then define

h′ = inf{ρ > 0 : ∀x ∈ Ω ∃t ∈ T : Rρ(x) ∩ V (t) 6= ∅} (5.13)

and

h′′ = inf{ρ > 0 : ∀t ∈ T ∃ x ∈ Ω : t ⊂ Rρ(x)},

and finally

h = max{h′, h′′}. (5.14)
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Figure 5.4: The value h′ is small for this triangulation, but h′′ is large because of the
indicated large triangle.

U0

x

h

U1

U2

Ω

Figure 5.5: Example of a covering of Ω by annuli Uj .

A small value of h′ corresponds to a rather uniform triangle distribution, but does not

exclude the presence of large triangles (see Figure 5.4). The latter cannot occur if h′′ and

then also h are small, because each triangle is contained in a square with edge length 2h.

Note that in the maximum norm, the length of each triangle edge does not exceed 2h. We

further let

M = sup
x∈Ω

#{t ∈ T : Rh(x) ∩ V (t) 6= ∅}, (5.15)

where # is the cardinality operator, be the maximum number of triangles with at least

one vertex in some square with edge length 2h. Small values of M imply that there are no

clusters of triangles.

Theorem 36 Let Ω be a compact convex domain which contains X, f ∈ C1,1(Ω), and

µ > 4/3. Then,

|f(x)−Kµ[f ](x)| ≤ CM |f |1,1 h2

for any x ∈ Ω, with C a positive constant which depends on T and µ.
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Figure 5.6: Possible cases of a triangle with at least one vertex in Uk.

Proof. For y = (y1, y2) ∈ R
2 let

Qρ(y) = {x = (x1, x2) ∈ R
2 : yk − ρ < xk ≤ yk + ρ, k = 1, 2}

be the axis-aligned half-open square with centre y and edge length 2ρ. Now let x ∈ Ω be

fixed and consider the following disjoint covering of Ω. For k ∈ N0 we define by

Uk =
⋃

ν∈Z2, ‖ν‖=k

Qh(x+ 2hν)

the half-open annulus with centre x, radius 2kh, and width h. For example, U0 = Qh(x)

and U1 is the union of the 8 congruent half-open squares surrounding U0 (see Figure 5.5).

Since Ω is compact, there exists some N ∈ N, independent of x and of order O(1/h), such

that

Ω ⊂
N⋃

k=0

Uk.

Noticing that Uk is composed of 8k congruent copies of Qh(x), the number of

triangles with at least one vertex in Uk is bounded,

#{t ∈ T : Uk ∩ V (t) 6= ∅} ≤ 8kM, k = 1, . . . , N. (5.16)
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For any triangle t with at least one vertex in Uk one of the following cases (see Figure 5.6)

holds:

1) V (t) ∩ Uk−1 6= ∅ ⇒ (2k − 3)h ≤ ‖x− v‖ ≤ (2k + 1)h ∀v ∈ V (t),

2) V (t) ⊂ Uk ⇒ (2k − 1)h ≤ ‖x− v‖ ≤ (2k + 1)h ∀v ∈ V (t),

3) V (t) ∩ Uk+1 6= ∅ ⇒ (2k − 1)h ≤ ‖x− v‖ ≤ (2k + 3)h ∀v ∈ V (t).

(5.17)

Let us now denote by T0 the set of all triangles with at least one vertex in U0. By

the definitions of h′ in (5.13) and M in (5.15), this set contains at least one and at most M

triangles and for each triangle tj = [xj1 ,xj2 ,xj3 ] ∈ T0 we have

‖x− xj1‖‖x− xj2‖‖x− xj3‖ ≤ h · (3h) · (3h) = 9h3, (5.18)

because one vertex of tj is inside U0 and the other two are in U0 ∪U1. For k = 1, . . . , N we

further denote by Tk the set of all triangles with at least one vertex in Uk and no vertex in

Uk−1. By (5.16), this set contains at most 8kM triangles and by case 3 in (5.17) we have

(
(2k − 1)h

)3 ≤ ‖x− xj1‖‖x− xj2‖‖x− xj3‖ ≤
(
(2k + 3)h

)3
(5.19)

for each triangle tj = [xj1 ,xj2 ,xj3 ] ∈ Tk. Further note that by construction,

N⋃

k=0

Tk = T and

N⋂

k=0

Tk = ∅.

Let us now turn to the approximation error

e(x) = |f(x)−Kµ[f ](x)|

of the triangular Shepard interpolant at x. By (5.12) and the fact that the basis function

Bµ,j are non-negative and form a partition of unity,

e(x) =

∣∣∣∣
m∑

j=1

Bµ,j(x)f(x)−
m∑

j=1

Bµ,j(xLj(x)

∣∣∣∣ ≤
m∑

j=1

|f(x)− Lj(x)|Bµ,j(x).

Using Proposition 34 and (5.2) we then get

e(x) ≤ |f |1,1
m∑

j=1

(
2‖x− xj1‖22 + 4rjCj‖x− xj1‖2

) ∏3
ℓ=1 ‖x− xjℓ‖−µ2∑m

k=1

∏3
ℓ=1 ‖x− xkℓ‖−µ2

,

≤ C ′ |f |1,1
m∑

j=1

(
2‖x− xj1‖2 + 4rjCj‖x− xj1‖

) ∏3
ℓ=1 ‖x− xjℓ‖−µ∑m

k=1

∏3
ℓ=1 ‖x− xkℓ‖−µ

,
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where C ′ =
√
2
3mµ

is a constant which depends on the fact that we bound the Euclidean

norm with the maximum norm.

Now let ti ∈ T be a triangle such that

3∏

ℓ=1

‖x− xiℓ‖ = min
j=1,...,m

3∏

ℓ=1

‖x− xjℓ‖.

Since at least one triangle of T belongs to T0, we know from (5.18) that

3∏

ℓ=1

‖x− xiℓ‖ ≤ 9h3.

For each tj ∈ T0 we then have
3∏

ℓ=1

‖x− xiℓ‖
‖x− xjℓ‖

≤ 1

and for each tj ∈ Tk, k = 1, . . . , N , using (5.19),

3∏

ℓ=1

‖x− xiℓ‖
‖x− xjℓ‖

≤ 9h3

((2k − 1)h)3
=

9

(2k − 1)3
.

Therefore,

∏3
ℓ=1 ‖x− xjℓ‖−µ∑m

k=1

∏3
ℓ=1 ‖x− xkℓ‖−µ

≤
3∏

ℓ=1

‖x− xjℓ‖−µ
‖x− xiℓ‖−µ

≤




1, if tj ∈ T0,

9µ/(2k − 1)3µ, if tj ∈ Tk.

Further assuming without loss of generality that xj1 ∈ Uk for tj ∈ Tk, so that ‖x− xj1‖ ≤ h

for each tj ∈ T0 and ‖x− xj1‖ ≤ (2k + 1)h for each tj ∈ Tk, k = 1, . . . , N , and taking into

account that rj ≤
√
8h ≤ 3h, we get

e(x) ≤ C |f |1,1


 ∑

tj∈T0

(
2h2 + 4hjCjh

)
+

N∑

k=1

∑

tj∈Tk

(
2(2k + 1)2h2 + 4hjCj(2k + 1)h

) 9µ

(2k − 1)3µ




≤ C ′ |f |1,1


 ∑

tj∈T0

(2 + 12C ′′µ
N∑

k=1

∑

tj∈Tk

2(2k + 1)2 + 12(2k + 1)C ′′

(2k − 1)3µ


h2,

where C ′′ = max{C1, C2, . . . , Cm}. Using (5.16) we then have

e(x) ≤ C ′M |f |1,1
(
(2 + 12C ′′µ

N∑

k=1

8k
2(2k + 1)2 + 12(2k + 1)C ′′

(2k − 1)3µ

)
h2

= C ′M |f |1,1
(
2 + 12C ′′µ

N∑

k=1

k(2k + 1)2

(2k − 1)3µ
+ 96 · 9µC ′′

N∑

k=1

k(2k + 1)

(2k − 1)3µ

)
h2.
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Figure 5.7: Point-based Shepard basis function A2,i(x) for the indicated node xi ∈ X with
respect to a set of scattered points X.

As the series
∞∑
k=1

k(2k+1)
(2k−1)3µ and

∞∑
k=1

k(2k+1)2

(2k−1)3µ converge for µ > 4/3, we conclude that

the approximation order of Kµ is O(h
2).

5.4 Cardinal basis functions

Applying Kµ to the unit data δi with fi = 1 and fk = 0 for k 6= i, gives the

cardinal basis functions

B̂µ,i(x) = Kµ[δi](x) =
∑

j∈Ji
Bµ,j(x)λj,i(x), i = 1, . . . , n. (5.20)

As Kµ is linear, they allow us to rewrite the triangular Shepard operator as

Kµ[f ](x) =
n∑

i=1

B̂µ,i(x)fi,

and as the constant function f(x) ≡ 1 is in the precision set of Kµ, it follows that the

cardinal basis functions B̂µ,i form a partition of unity. However, in contrast to their classical

counterparts Aµ,i, they are not necessarily positive away from the nodes xi.

Figures 5.8 and 5.10 show examples of these cardinal basis functions for µ = 2.

Negative function values are marked by grey colour, while the small brown regions near xi

indicate function values greater than 1. Comparing the basis functions to their classical

counterparts shown in Figures 5.7 and 5.9, we observe that B̂2,i is less “spiky” than A2,i

and tends to zero faster with increasing distance from xi. Another notable property is the
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Figure 5.8: New basis function B̂2,i(x) for the indicated node xi ∈ X with respect to the
Delaunay triangulation T of the points X in Figure 5.7.

Figure 5.9: Point-based Shepard basis function A2,i(x) for the indicated node xi ∈ X with
respect to a set of scattered points X.

Figure 5.10: New basis function B̂2,i(x) for the indicated node xi ∈ X with respect to an
arbitrary triangulation T of the points X in Figure 5.9.
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behaviour of the gradient of B̂µ,i at the nodes. To this end let

Ii =
⋃

j∈Ji
{j1, j2, j3}

be the set of indices of all nodes that share a triangle with xi, that is, which are neighbours

of xi in T , including the index i itself.

Proposition 37 For any i = 1, . . . , n and µ > 1, the cardinal basis function in (5.20) has

local extrema at almost all nodes,

∇B̂µ,i(xk) = 0, k /∈ Ii, (5.21)

and

∇B̂µ,i(xk) =
∑

j∈Ji Bµ,j(xk)cj,i, k ∈ Ii, (5.22)

where cj,i are some constant vectors which depend only on tj and xi.

Proof. First note that

∇B̂µ,i(x) =
∑

j∈Ji
(∇Bµ,j(x)λj,i(x) +Bµ,j(x)∇λj,i(x)) .

If k /∈ Ii, then it follows from (5.3) and (5.4) that both Bµ,j(xk) and ∇Bµ,j(xk) vanish for

any j ∈ Ji, which is sufficient to establish (5.21). To get (5.22), we distinguish two cases.

On the one hand, if k = i, then λj,i(xi) = 1 for any j ∈ Ji and
∑

j∈Ji∇Bµ,j(xi) = 0, as

mentioned in (5.7). On the other hand, if k ∈ Ii \ {i}, then for any j ∈ Ji we have either

k ∈ {j1, j2, j3}, implying λj,i(xk) = 0, or k /∈ {j1, j2, j3}, so that ∇Bµ,j(xk) = 0. Overall,

this gives (5.22) with cj,i = ∇λj,i(x), which is a constant vector because λj,i is linear.

It follows from Proposition 37 that the interpolant Kµ[f ] does not necessarily have

flat spots at the nodes.

5.5 Numerical results

To verify the quadratic approximation order of the triangular Shepard operator

Kµ in (5.12) predicted by Theorem 36, we carried out various numerical experiments with

different sets of nodes and 12 test functions (see Figure 1.2), including those introduced
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Figure 5.11: Test functions used in our numerical experiments. The definitions of the first 10
functions can be found in [62], the last two functions are f11(x, y) = ((2x−1)(1−2y)+1)/2
and f12(x, y) = sin(2πx) cos(2πy/2.

by [55], [41, 42], and [62]. We report the results of some of these experiments for different

kinds of triangulations in Sections 5.5.1 and 5.5.2. In Section 5.5.3 we further present

a comparison of the approximation accuracy of K2 and some alternative state-of-the-art

interpolation methods.

5.5.1 Approximation order for Delaunay triangulations

Our first series of experiments is based on six different Delaunay triangulations

with increasing resolution (see Figure 5.12). These triangulations were generated by pre-

scribing N uniformly distributed nodes along the boundary of the unit square R = [0, 1] ×
[0, 1] and then using Shewchuk’s Triangle program [66] to create a conforming Delaunay

triangulation of R with no angle smaller than 20 degrees and no triangle area greater than

amax = 4
√
3/N2, by inserting Steiner points. Note that amax is the area of an equilat-

eral triangle with edge length 4/N , the spacing of the prescribed boundary nodes. Ta-

ble 5.1 lists the number of vertices and triangles, as well as the maximum edge length

hT = max{h1, . . . , hm} for the six triangulations. Note that for Delaunay triangulations hT
is of the same order as h in Theorem 36.
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Figure 5.12: Three of the six Delaunay triangulations used in our numerical experiments
with N = 40 (left), N = 80 (middle), and N = 160 (right) boundary nodes (compare
Table 5.1).

Table 5.1: Starting from N uniformly distributed nodes on the boundary of the unit square,
we generated Delaunay triangulations with n vertices, m triangles, and maximum edge
length hT (compare Figure 5.12).

N n m hT
40 202 362 0.122196
80 777 1472 0.068061
160 2991 5820 0.034871
320 11638 22954 0.018046
640 46176 91710 0.008993
1280 195323 389364 0.004494

For each of the 12 test functions fk we constructed the triangular Shepard in-

terpolant K2[fk] and determined the maximum approximation error emax by evaluating

|fk(x)−K2[fk](x)| at 100, 000 random points x ∈ R and recording the maximum value.

The results are shown in Figure 5.13 and clearly demonstrate the quadratic approximation

order of the operator K2. For other values of µ > 4/3 we obtained similar results.

Figure 5.14 shows a comparison between the reconstruction of test function f1

using the classical Shepard interpolant S2[f1] and the triangular Shepard interpolant K2[f1],

both based on samples taken at the nodes of the first four of our six Delaunay triangulations.

While it is well-known that the Shepard interpolant behaves rather poorly, which has led to

various improvements (see [67] and references therein), we include this comparison because

the construction of the triangular Shepard operator is as simple as that of the classical

Shepard operator, and we believe that it can be further improved significantly by following
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Figure 5.13: Log-log-plot of the approximation error emax over the maximum edge length hT
for the 12 test functions in Figure 1.2 and the Delaunay triangulations in Figure 5.12 and
Table 5.1. As reference, the dotted line indicates a perfect quadratic trend.

Table 5.2: Starting from the set of nodes given by the six Delaunay triangulations in
Figure 5.12, we generated compact triangulations with n vertices, m triangles and maximum
edge length hT (compare Figure 5.15).

n m hT
202 133 0.130966
777 490 0.065158
2991 1860 0.034552
11638 7151 0.016804
46176 28582 0.008769
195323 120350 0.004651

ideas similar to the ones used for extending the Shepard interpolant. Note that the superior

aesthetic behaviour of the triangular Shepard interpolants K2, compared to the Shepard

interpolants, had also been observed by [53].

5.5.2 Approximation order for general triangulations

In a second series of experiments, we tested the approximation order of K2 when

used with respect to general triangulations, constructed in the following way. For each node

xi ∈ X we choose among the 15 triangles that connect xi with 2 of its 6 nearest neighbours

in X the one which locally reduces the error bound of the associated linear interpolant

in (5.9). After omitting duplicate triangles we get a triangulation T of the nodes with

m ≤ n triangles, where some of the triangles may overlap each other. As the number of

triangles is only about 1/3 the number of triangles in the Delaunay triangulation of X, we

call T a compact triangulation of X. For our numerical experiments we created compact
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n = 202

emax = 0.273071

emax = 0.017454

n = 777

emax = 0.260427

emax = 0.004736

n = 2991

emax = 0.202130

emax = 0.001129

n = 11638

emax = 0.175267

emax = 0.000307

Figure 5.14: Reconstruction of Franke’s principal test function f1 from n samples using
classical Shepard interpolation (top) and triangular Shepard interpolation (bottom).

triangulations of the sets of nodes given by the six Delaunay triangulations in Figure 5.12

(see Figure 5.15 and Table 5.2) and determined the approximation errors for the triangular

Shepard interpolant as described in Section 5.5.1. Figure 5.16 summarizes the results and

confirms that the approximation order is again quadratic.

5.5.3 Approximation accuracy

We finally carried out a series of experiments to compare the approximation accu-

racies of the triangular Shepard operator K2 and

1. the global version of the classical Shepard operator S2 given in (1.10);

2. the global version of the first order Shepard–Taylor operator ST1 (1.14), which is

obtained by substituting in (1.10) functional evaluation at xi with the first order
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Figure 5.15: Three of the six compact triangulations used in our numerical experiments with
m = 133 (left), m = 490 (middle), and m = 1860 (right) triangles (compare Table 5.2).
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Figure 5.16: Log-log-plot of the approximation error emax over the maximum edge length hT
for the 12 test functions in Figure 1.2 and the triangulations in Figure 5.15 and Table 5.2.
As reference, the dotted line indicates a perfect quadratic trend.

Taylor polynomial of f at xi

3. the local version of the classical Shepard operator S̃2, where the Shepard basis func-

tions (1.9) are multiplied by Franke–Little weights [10] in order to make them com-

pactly supported;

4. the local version of the first order Shepard–Taylor operator S̃T1 ;

5. the linear Shepard operator LSHEP [67], which substitutes in S̃T1 the first order Taylor

polynomial of f at xi with the linear polynomial that interpolates f at xi and fits the

data at the 4 nodes closest to xi best in the least squares sense.

Note that the global and the local version of the classical Shepard operator, S2

and ST1 , as well as the LSHEP operator use the same data as K2, that is, they rely on
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Figure 5.17: The 100 nodes of the Franke data set (left), the corresponding Delaunay
triangulation with m = 188 triangles (middle), and the m = 59 triangles of the compact
triangulation (right) used in our comparison of six interpolation operators (see Table 5.3).

function values only. Instead, the global and local version of the first order Shepard–Taylor

operator, S̃2 and S̃T1 , require the first order derivatives at each sample point in addition.

Moreover, the first order operators (ST1 , S̃T1 , and LSHEP) have the same degree of exactness

as K2, namely degree 1, while the other two operators (S2 and S̃2) reproduce only constant

functions.

The results show that the global triangular Shepard operator K2 is comparable to

the local Shepard interpolation methods. This encourages us to develop and analyse a local

version of K2 in future work and to study combined operators, based on K2, with higher

degrees of exactness.
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Table 5.3: Comparison of six interpolation operators applied to the 12 test functions in
Figure 5.11 using the interpolation nodes of the Franke data set (see Figure 5.17). The
smallest error in each row is marked in boldface.

S2 ST1 K2 K2 S̃2 S̃T1 LSHEP
Delaunay compact

emax 4.34e-1 1.06e-1 5.16e-2 1.00e-1 2.15e-1 1.19e-1 2.71e-1
f1 emean 5.93e-2 2.31e-2 7.79e-3 1.47e-2 2.55e-2 1.14e-2 3.32e-2

eMS 8.24e-3 9.40e-4 1.46e-4 5.10e-4 1.84e-3 3.76e-4 3.02e-3

emax 6.17e-2 2.65e-2 2.66e-2 4.20e-2 6.79e-2 2.28e-2 9.43e-2
f2 emean 2.27e-2 7.15e-3 2.64e-3 4.53e-3 5.95e-3 3.03e-3 1.21e-2

eMS 6.88e-4 7.71e-5 2.27e-5 6.21e-5 1.29e-4 2.54e-5 3.60e-4

emax 9.48e-2 4.16e-2 9.46e-2 2.31e-2 4.45e-2 3.31e-2 6.44e-2
f3 emean 2.12e-2 7.16e-3 2.71e-3 3.39e-3 7.44e-3 3.35e-3 1.01e-2

eMS 7.71e-4 1.05e-4 6.46e-5 2.64e-5 1.07e-4 2.83e-5 2.04e-4

emax 9.24e-2 6.32e-2 3.07e-2 2.43e-2 3.32e-2 2.49e-2 5.37e-2
f4 emean 2.06e-2 3.12e-2 1.47e-3 2.73e-3 8.28e-3 2.40e-3 1.07e-2

eMS 7.13e-4 1.15e-3 9.38e-6 1.55e-5 1.10e-4 1.72e-5 1.95e-4

emax 1.86e-1 4.28e-2 1.97e-2 3.53e-2 9.36e-2 5.96e-2 1.07e-1
f5 emean 2.01e-2 1.66e-2 1.81e-3 3.86e-3 7.41e-3 3.82e-3 1.08e-2

eMS 1.08e-3 3.61e-4 1.03e-5 3.74e-5 2.27e-4 5.40e-5 3.38e-4

emax 1.30e-1 1.25e-1 8.57e-2 2.18e-2 7.29e-2 2.07e-2 8.30e-2
f6 emean 1.87e-2 4.41e-2 2.51e-3 2.96e-3 9.64e-3 5.32e-3 1.08e-2

eMS 5.97e-4 2.28e-3 5.76e-5 1.85e-5 1.62e-4 4.12e-5 2.13e-4

emax 1.77 1.00 1.08 1.35 1.33 6.14e-1 1.51
f7 emean 4.77e-1 2.11e-1 1.47e-1 2.46e-1 3.14e-1 1.33e-1 3.35e-1

eMS 3.72e-1 8.42e-2 4.03e-2 1.03e-1 1.65e-1 3.24e-2 1.93e-1

emax 1.45 5.19e-1 4.99e-1 4.54e-1 8.91e-1 3.04e-1 9.33e-1
f8 emean 1.74e-1 9.77e-2 3.69e-2 6.29e-2 9.18e-2 3.61e-2 1.03e-1

eMS 6.50e-2 1.59e-2 4.36e-3 1.04e-2 2.33e-2 2.87e-3 2.68e-2

emax 9.30e+1 3.08e+1 1.93e+1 2.67e+1 5.01e+1 2.84e+1 6.55e+1
f9 emean 1.13e+1 7.35 1.78 3.36 5.04 2.51 6.20

eMS 3.14e+2 8.37e+1 9.81 3.35e+1 8.13e+1 2.05e+1 1.10e+2

emax 1.05 7.12e-1 5.01e-1 8.10e-1 9.41e-1 1.95e-1 9.70e-1
f10 emean 1.09e-1 4.86e-2 2.80e-2 6.13e-2 6.98e-2 2.75e-2 7.12e-2

eMS 2.49e-2 6.44e-3 3.19e-3 1.10e-2 1.42e-2 1.44e-3 1.49e-2

emax 2.15e-1 9.66e-2 1.32e-2 1.63e-2 9.02e-2 5.83e-3 1.32e-1
f11 emean 2.78e-2 1.17e-2 1.33e-3 3.00e-3 1.15e-2 9.73e-4 1.87e-2

eMS 1.86e-3 3.12e-4 3.69e-6 1.58e-5 2.40e-4 1.82e-6 6.43e-4

emax 1.97e-1 1.40e-1 1.11e-1 1.68e-1 1.63e-1 9.76e-2 1.99e-1
f12 emean 7.32e-2 3.26e-2 1.64e-2 3.30e-2 4.11e-2 2.58e-2 4.91e-2

eMS 7.50e-3 1.71e-3 5.15e-4 1.89e-3 2.55e-3 1.02e-3 3.72e-3
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Conclusions and Future

Perspective

The scope of this thesis is to enhance the approximation order of the Shepard

operator by using supplementary derivative data. The idea is to consider the combination

of the Shepard operator with different three point interpolation polynomials, depending on

the data available at each interpolation node. The combined operators are realized by a

procedure, introduced by Dell’Accio and Di Tommaso in [36], which is based on the as-

sociation, to each interpolation point, of a triangle with a vertex in it and the other two

vertices in its neighborhood. After some preliminary results on the Shepard operator and

the posing of the problem in Chapter 1, we start to describe our proposals of combination

in Chapter 2, where we discuss the problem of interpolation of Hermite type data (function

evaluations and all partial derivative data up to a certain order at each node) on scat-

tered data set. The Shepard-Hermite operator is defined through some particular cases of

a general class of Hermite interpolation polynomials on the triangle, introduced by Chui

and Lai in 1990 [18]. The resulting operators allow to enhance the approximation order

of the Shepard-Taylor operators which use the same data maintaining, at the same time,

the interpolation conditions and the accuracy of approximation of the Shepard-Taylor op-

erators with the same degree of exactness. In Chapter 3 and in Chapter 4 we consider the

lacunary data cases of Lidstone type data (function evaluations and all even order derivative

data up to a certain order at each node) and Complementary Lidstone type data (function

evaluations in some nodes and all odd order derivative data up to a certain order at each

node). The Shepard-Lidstone operator and the Shepard-Complementary Lidstone opera-
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tor, besides enhancing the approximation order of the Shepard operator, give a solution

to lacunary data interpolation problem in these special cases. Numerical results show that

these operators have a good accuracy of approximation comparable with the one of the

Shepard-Taylor operators which reproduce polynomials of the same degree. These results

are carried out by numerical experiments on generally used test functions for scattered data

interpolation. In Chapter 5 we try to resolve the asymmetry that occurs in combining the

point-based Shepard basis functions with three point interpolation polynomials in the case

in which only function evaluations are given. A natural way to break this asymmetry is

to act on the basis functions and, during my period at the USI-Università della Svizzera

Italiana, in collaboration with Prof. K. Hormann, we studied the possibility to use triangle-

based basis functions rather than point-based basis functions. Few months ago, thanks to

a private communication with Prof. O. Davydov, we realized that this idea was already

considered by F. Little in an hard to find paper of 1982 [53]. In the last Chapter we deeply

study the properties of this triangular Shepard operator and, as a novelty, we demonstrate

its quadratic rate of convergence for general configuration of triangles, making the method

not dependent from any mesh which connects the interpolation points, i.e. a meshless or

meshfree method.

Future works will develop in two directions. The first one will concern the more

general case of the interpolation of Birkhoff type data (lacunary data of “general” type)

on scattered data set by the point-triangle association technique [38]. The second one will

focus on the study of localized versions of the triangular Shepard operator, as well as on

the definition of new combinations to increase its approximation order.
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