• Login
    Mostra Item 
    •   Unical - archivio istituzionale delle tesi di dottorato
    • Tesi di Dottorato
    • Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica - Tesi di Dottorato
    • Mostra Item
    •   Unical - archivio istituzionale delle tesi di dottorato
    • Tesi di Dottorato
    • Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica - Tesi di Dottorato
    • Mostra Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Background subtraction for moving object detection

    Mostra/Apri
    Thesis-Background Subtraction for moving object detection.pdf (3.116Mb)
    Creato da
    Guachi Guachi, Lorena De Los Angeles
    Pantano, Pietro
    Cocorullo, Giuseppe
    Perri, Stefania
    Corsonello, Pasquale
    Metadata
    Mostra tutti i dati dell'item
    URI
    http://hdl.handle.net/10955/1308
    https://doi.org/10.13126/unical.it/dottorati/1308
    Descrizione

    Formato

    /
    Scuola di Dottorato ""Archimede" in Scienze Comunicazione e Tecnologie, Ciclo XXVIII, a.a. 2015-2016; Background Subtraction è una tecnica che si occupa di separare dei cornice di ingresso in significativi oggetti in movimento (foreground) con i rispettivi confini dei (background) oggetti statici che rimangono quiescente per un lungo periodo di tempo per ulteriori analisi. Questo lavora principalmente con telecamere fisse focalizzati sul migliorare la qualità della raccolta di dati al fine di "comprendere le immagini". Questa tecnica per il rilevamento di oggetti in movimento ha diffuse applicazioni nel sistema di visione artificiale con le moderne tecnologie ad alta velocità, insieme con la progressivamente crescente capacità del computer, che fornisce un’ampia gamma di soluzioni reali ed efficienti per la raccolta di informazioni attraverso l’immagine/video come sequenza di ingresso. Un accurato algoritmo per Background Subtraction deve gestire sfide come jitter fotocamera, automatiche regolazioni della fotocamera, i cambiamenti di illuminazione, il bootstrapping, camuffamento, apertura foreground, gli oggetti che vengono a fermarsi e muoversi di nuovo, background dinamici, ombre, scena con diversi oggetti e notte rumorosa. Questa tesi è focalizzata sullo studio della tecnica di Background Subtraction attraverso una panoramica delle sue applicazioni, le sfide, passi e diversi algoritmi che sono stati trovati in letteratura, al fine di proporre approcci efficaci per Background Subtraction per alto performance su applicazioni in tempo reale. Gli approcci proposti hanno consentito indagini di varie rappresentazioni utilizzati per modellare il background e le tecniche considerate per la regolazione dei cambiamenti ambientali, questo ha fornito capacità di vari combinazioni di colori invarianti per segmentare il foreground e anche per eseguire una valutazione comparativa delle versioni ottimizzate del Gaussian Mixture Model e il multimodale Background Subtraction che sono approcci con alte prestazioni per la segmentazione in tempo reale. Deep Learning è stato anche studiato attraverso l’uso di architettura auto-encoder per Background Subtraction; Università della Calabria
    Soggetto
    Elettronia; Sistemi complessi
    Relazione
    ING-INF/01;

    Policy e regolamenti
    Copyright © Università della Calabria - Sistema Bibliotecario di Ateneo - Servizio Automazione Biblioteche | DSpace 6.3
    Contattaci
    Theme by 
    @mire NV
     

     

    Ricerca

    Esplora perArchivi & CollezioniData di pubblicazioneAutoriTitoliSoggettiQuesta CollezioneData di pubblicazioneAutoriTitoliSoggetti

    My Account

    LoginRegistrazione

    Policy e regolamenti
    Copyright © Università della Calabria - Sistema Bibliotecario di Ateneo - Servizio Automazione Biblioteche | DSpace 6.3
    Contattaci
    Theme by 
    @mire NV