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CHAPTER 1

(General overview of Turbulence

The understanding of turbulent behavior is one of the most intriguing, frustrating
and important, problem in physics. The problem of turbulence has been studied
by many of the greatest physicists and engineers of the 19" and 20" Centuries,
and yet we do not understand in complete detail how or why turbulence occurs,
nor can we predict turbulent behavior with any degree of reliability, even in very
simple flow situations. First of all, there is no consensus on what is the problem
of turbulence, neither is there an agreement on what are the goals of turbulence
research and theories and what would constitute its solution. Therefore lots of
formalisms are avoided, since the methods mostly brought in from linear analysis
(such as various decompositions, perturbation methods, etc.) failed, and genuinely
nonlinear analytic methods applicable to turbulence mostly do not exist. Anymore,
the existing theoretical material is rather complicated and extremely large in scope.
Many existing books are overloaded with technical details, the unprepared reader is
totally lost in the enormous ocean of existing references. It seems that in turbulence
""solutions". For those reasons, the subject of
turbulence remains and probably will remain as the most exciting one for the mind

there are more of questions than

of researchers in a really enormous variety of fields. It is a fact that most fluid flows
are turbulent, and at the same time flow occur, and in many cases represent the
dominant physics, on all macroscopic scales throughout the known universe, from the
interior of biological cells, to circulatory and respiratory systems of living creatures,
to countless technological devices and household appliances of modern society, to
geophysical and astrophysical phenomena including planetary interiors, oceans and
atmospheres and stellar physics, and finally to galactic and even supergalactic scales
(in Fig. 1.1 two examples of turbulent flows). Thus, study of turbulence is motivated
both by its inherent intellectual challenge and by the practical utility of a thorough
understanding of its nature.

Trying to give a definition (even if there is not a precise definition), we can say
that turbulence is a state of a physical system with many interacting degrees of
freedom deviated far from equilibrium. This state looks irregular and chaotic both
in time and in space.

1.1 Fluid Turbulence - Brief history and introduction

We experience turbulence everyday, in fact, wherever fluids are set into motion, and
the velocity is high enough, turbulence tends to develop. The boundary layers and
the wakes around and after bluff bodies such as cars, aeroplanes and buildings are



General overview of Turbulence

Figure 1.1: Turbulence in terrestrial (left) and jovian atmosphere (right)

turbulent. Also the flow and combustion in engines, both in piston engines and
gas turbines and combustors, are highly turbulent. Air movements in rooms are
also turbulent, at least along the walls where wall-jets are formed. Hence, when we
compute fluid flow it will most likely be turbulent. It is interesting to recognize the
fact that, when we take a picture of a turbulent flow at a given time, we see the
presence of a lot of different turbulent structures of all sizes which are actively present
during the motion. The presence of these structures was well recognized long time
ago (XV-th century) by L. da Vinci, that termed such phenomena “turbolenza“ and
in Fig. 1.2 it can be seen the beautiful pictures of vortices observed and reproduced
by him (figure from (11)). When we look at a flow at two different times, we can
observe that the general aspect of the flow has not changed appreciably, say vortices
are present all the time but the flow in each single point of the fluid looks different.
We recognize that the gross features of the flow are reproducible but details are not
predictable.

Turbulence became an experimental science since O. Reynolds who, at the end
of XIX-th century (5), observed and investigated experimentally the transition from
laminar to turbulent flow. He noticed that the flow inside a pipe becomes turbulent
every time a single parameter, a combination of the viscosity coefficient 7, a char-
acteristic velocity U , and length L, would increase. This parameter Re = UL/n is
now called the Reynolds number that completely characterizes flow behavior in this
situation. At lower Re (Fig. 1.3(a))the flow is regular (that is the motion is lami-
nar), but when Re increases beyond a certain threshold, the flow becomes turbulent
(Fig. 1.3(c)). As Re increases, the transition from a laminar to a turbulent state
occurs over a range of values of Re with different characteristics and depending on
the details of the experiment. In the limit Re — oo the turbulence is said to be in
a fully developed turbulent state. Fig. 1.3 provides the original sketch of three flow
regimes identified in the Reynolds experiments as Re is varied.

The analytical description of turbulence was born with the Navier-Stokes (NS)
equations, which are now almost universally believed to embody the physics of all
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Figure 1.2: L. da Vinci sketch of “turbolenza“

fluid flows, including turbulent ones. They are nothing but the momentum equation
based on Newton’s second law, which relates the acceleration of a fluid particle to
the resulting volume and body forces acting on it. These equations have been
introduced by L. Euler, however, the main contribution by C. Navier was to add a
friction forcing term due to the interactions between fluid layers which move with
different speed. This term results to be proportional to the viscosity coefficients 7
and £ and to the variation of speed. By defining the velocity field u(r,t) the kinetic
pressure p and the density p, the equations describing a fluid flow are the continuity
equation to describe the conservation of mass

X V)= —p(V ) (1)

the equation for the conservation of momentum

ou
P ot

and an equation for the conservation of energy

4+ (u-Vu=-VP+nVu+ (n+ g)V(V-u) (1.2)

250N - . 1.
D2 + oz, =+ 3(511.;V u) +&(V-u)” (1.3)

T [% + (- V)s] = V(xVT) + g (

where s is the entropy per mass unit, 7" is the temperature, and y is the coefficient
of thermoconduction. An equation of state closes the system of fluid equations.
These equations are nonlinear and difficult to solve. As is well known, there are
few exact solutions, and all of these have been obtained at the expense of introduc-
ing simplifying, often physically unrealistic, assumptions. Thus, little progress in
the understanding of turbulence can be obtained via analytical solutions to these

3
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)JE T

Figure 1.3: The original pictures by O. Reynolds which show the transition to a turbulent state
of a flow in a pipe, as the Reynolds number increases from top to bottom

equations, and as a consequence early descriptions of turbulence were based mainly
on experimental observations. The above equations considerably simplify if we con-
sider the tractable incompressible fluid, where p = const., so that we obtain from
the the Navier—Stokes momentum equation

ou __(Yr 2
6t+(u Viu = <p>+VVu (1.4)

where the coefficient v = n/p is the kinematic viscosity. The incompressibility of the
flow translates in a condition on the velocity field, namely the field is divergence—free,
i.e., V-u = 0. The non—linear term in equations represents the convective derivative.
Of course, we can add on the right hand side of this equation all external forces,
which eventually act on the fluid parcel. It is usual to describe the NS equations
in a dimensionless form, to this purpose there can be defined: the velocity scale U
and the length scale L to define dimensionless independent variables, namely r =
r' L (from which V = V'/L) and t =  (L/U), and dependent variables u = u'U
and p=p’ U?p. Then, using these variables in Eq.(1.4), we obtain

I

ou n

ot’
The Reynolds number Re = UL /v is evidently the only parameter of the fluid flow.
This defines a Reynolds number similarity for fluid flows, namely fluids with the

(u - Vu' = —(Vp)+ Re 'V (1.5)

same value of the Reynolds number behaves in the same way. Looking at Eq.(1.4)
it can be realized that the Reynolds number represents a measure of the relative

4



1.1 Fluid Turbulence - Brief history and introduction

strength between the non-linear convective term (u - V)u and the viscous term
vV2u. The higher Re, the more important the non-linear term is in the dynamics
of the flow. Turbulence is a genuine result of the non—linear dynamics of fluid flows.
When Re is small the motion of the elements of fluid is dominated by diffusive effect,
while when Re is large there are the convective effects to dominate the dynamics. It
can be recognized that the effects have different characteristic times, precisely the
convective time 17, ~ |(u-V)|~t ~ L/U and the diffusive time tp ~ [vV?|~t ~ L?/v.
The Reynolds number can also be defined as the ratio of the two times

Td
Re = —. 1.6
i (16)
From the above definitions of characteristic times it can be extracted the rate of
energy injected (for mass unit), e, ~ u2 /7, ~ u3 /L, and the rate of dissipated
energy, ep ~ u? /Tp ~ u3v/L?, and finally we can note that

Re~ <L, (1.7)
€D

at scale L the injection energy rate is Re times the dissipation rate. To be dissipated,
energy must be transferred to small scale, this statement introduce the concept of
energy cascade. Another important characteristic of the NS equations is that they
possess scaling properties (11), this means that there exist a class of solutions which
are invariant under scaling transformations. In particular, in the inviscid case, the
introduction of a lenght scale ¢, for which the resulting scaling transformations are
¢ — M and w — M, leaves invariate the NS equations for any scaling exponent
h (I refer the reader to the lecture of (109) for more informations). When the
viscid term is taken into account, a characteristic length scale is introduced, say
the dissipative scale £p. From a phenomenological point of view, this is the scale
where dissipative effects start to be experienced by the flow. Of course, since v is in
general very low, we expect that ¢p is very small. At this point, if it is considered a
complete separation of scales, at very large Re, between the injection scale, L, and
the dissipative one, £p, and the regime is stationary, the energy injection rate must
be balanced by the energy dissipation rate and must also be the same as the energy
transfer rate € measured at any scale ¢ within the inertial range ¢p < ¢ < L.
When the scaling invariance holds, all the statistical properties of the field depend
on the lenght scale ¢, the mean energy dissipation rate ¢ and the viscosity v, and
with some assumptions and some math, it can be shown that in the inertial range

BE(k) ~ /303 (1.8)

that represent the Kolmogorov spectrum largely observed in all experimental inves-
tigation in turbulence. The above consideration, about the scaling invariance and
the energy transfer in the inertial range, are the main results of the K41 theory
of A.N.Kolmogorov (12)—(11) and, historically, they represented a great step in the
understanding of the phenomenology of the turbulence and, as some scientists af-
firm, perhaps the only serious result that we know about turbulence. Throughout
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the 1940’s there were numerous additional contributions to the study of turbulence;
I mention only a few selected ones here. For the most part, this decade produced a
consolidation of earlier statistical work. Works of (16), (17), (18), (19) and (20) are
among the most often cited, with those of (21; 22) involving experiments.

In the last fifty years, new interesting insights in the theory of turbulence derive
from the point of view which considers a turbulent flow as a complex system, a sort
of benchmark for the theory of dynamical systems. The theory of chaos received
the fundamental impulse just through the theory of turbulence developed by Ruelle
and Takens (6) who, criticizing the old theory of Landau and Lifshitz (7), were
able to put the numerical investigation by Lorenz (8) in a mathematical framework.
Gollub and Swinney (10) set up accurate experiments on rotating fluids confirming
the point of view of Ruelle and Takens (6) who showed that a strange attractor in
the phase space of the system is the best model for the birth of turbulence. This
gave a strong impulse to the investigation of the phenomenology of turbulence from
the point of view of dynamical systems (9).

To close this section I present a list of physical attributes of turbulence, that
for the most part summarizes the preceding discussions, and which are essentially
always mentioned in descriptions of turbulent flow. In particular, a turbulent flow
can be expected to exhibit all of the following features:

1. disorganized, chaotic, seemingly random behavior;
2. nonrepeatability (i.e., sensitivity to initial conditions);

3. extremely large range of length and time scales (but such that the smallest
scales are still sufficiently large to satisfy the continuum hypothesis);

4. enhanced diffusion (mixing) and dissipation (both of which are mediated by
viscosity at molecular scales);

5. three dimensionality, time dependence and rotationality (hence, potential flow
cannot be turbulent because it is by definition irrotational);

6. intermittency in both space and time.

1.2 Plasma Turbulence

Turbulence is not only a prerogative of classical fluids, but manifest itself also in
electrically conducting fluids. The most natural conducting fluid is a ionized gas,
called plasma, that is a system of charged particles whose dynamics is dominated by
collective effect, i.e. each particle feels the average electromagnetic fields generated
by the distribution and the motion of the other particles of the system. In other
words, "plasma’ is used in physics to designate the high temperature ionized gaseous
state with charge neutrality and collective interaction between the charged particles
and waves. By an “ionized” gas it is meant that there are significant numbers of free

6



1.2 Plasma Turbulence

(unbound) electrons and electrically charged ions in addition to the neutral atoms
and molecules normally present in a gas.

Most of the matter that we can observe directly is in the plasma state and the
universe abounds with plasma turbulence. Research on plasmas is an active sci-
entific area, motivated by energy research, astrophysics and technology. In space
physics and in astrophysics (23; 24; 25), numerous data from measurements have
been heavily analyzed and reviewed (27; 28). In nuclear fusion research, studies
of confinement of turbulent plasmas have lead to a new era, namely that of the
international thermonuclear (fusion) (141) experimental reactor, as ITER. In addi-
tion, plasmas play important roles in the development of new materials with special
industrial applications.

The plasmas that we encounter in research are often far from thermodynamic
equilibrium: hence various dynamical behaviours and structures are generated be-
cause of that deviation. Turbulence plays a key role in producing and defining
those observable structures. Common to these turbulent systems is the presence
of an inertial range, an extent of scales through which energy cascades from the
large scales at which the turbulence is stirred to the small scales at which dissipa-
tive mechanisms convert the turbulent energy into heat. Plasmas are nearly always
found to be magnetized and turbulent, and in particular, the turbulent motions are
accompained by magnetic field fluctuations.

Turbulence in plasmas has several characteristic features. The first is that the
fluctuation level becomes high through the instabilities driven by the inhomogeneity.
The turbulent level and spectrum are greatly influenced by the spatial inhomogene-
ity and plasma configuration. Inhomogeneities exist for plasma parameters (e.g.,
density and temperature) as well as for the fields (magnetic field and radial electric
field). These inhomogeneities couple together to drive and/or suppress instabilities
and turbulent fluctuations. In particular, the anisotropy along and perpendicular
to strong magnetic fields induces various shapes in fluctuations: fluctuations often
have a very long correlation length along the magnetic field lines and are quasi two
dimensional. In addition, the mobilities of electrons and ions clearly differ. The
inhomogeneities, the anisotropy due to a strong magnetic field, and the difference in
ion and electron mobilities, all have a strong influence on the linear properties of the
plasma waves as well as on the turbulent transport in plasmas. Theoretical meth-
ods developed for fluid turbulence are helpful for the study of these phenomena. In
the quest to understand anomalous transports in confined plasmas, investigation of
turbulent fluctuations has been a central theme. In particular, after the discovery
of high-confinement (H) modes in tokamaks (15), it was widely recognized that the
plasma profiles vary and that the changes between them occur as sudden transitions.
One of the keys to understanding the structural formation and transitions in plas-
mas is to study the mutual interactions among plasma inhomogeneities, electric-field
structures and fluctuations.

Before presenting a more detailed description of the plasma turbulence, it is useful
to go one step back to briefly describe the theoretical approach to plasma physics.
The theoretical description of a plasma is extremely difficult, more specifically, the

7
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distributions and motions of the particles generate fields that, in turn, are respon-
sible for those distributions and motions and, considering the huge number of par-
ticles (N ~ Ny), this means solve exactly a set of N4 equations of motion coupled
with Maxwell’s equations. The last consideration obliged physicists to find a good
compromise between rigor, mathematical tractability and common sense, to finally
elaborate some theoretical schemes. There are basically three levels of description in
plasma physics: the ezact microscopic description (or orbit theory), kinetic theory,
and the macroscopic or fluid description. In a microscopic description, one imagines
to direct study of the particle motion, that is writing down Newton’s law, F = ma,
for something like 10?3 particles and solving for all 10?% interacting trajectories, that
it is still unimaginable today, even by the most advanced computers. Nonetheless,
the microscopic description is useful as a formal starting point from which to derive
soluble, practical descriptions. In the following two subsection, it will be described
in more detail the kinetic and fluid plasma theories and their turbulent "implication®,
emphasizing the role of the magnetohydrodynamic approximation and turbulence.

1.2.1 Kinetic plasma theory

The microscopic theory passed to kinetic theory by the application of statistical,
probability concepts. The kinetic theory represent, probably, the best possible trade-
off between completeness of information and mathematical simplicity. Since one is
not interested in all the microscopic particle data, one considers statistical ensembles
of systems. In order to describe the properties of a plasma, it is necessary to define
a distribution function that indicates particle number density in the phase space
whose ordinates are the particle positions and velocities. What just said means
that all the relevant informations are contained in the particle distribution function
(PDF), fo(r,u,t), for species a defined such that f,(r,u,t)drdu = dN(r,u,t) is
the number of particles in the element of volume dV = drdu in phase space (r and
u represent, respectively, the position and velocity vectors that define the particles
positions in phase space). By averaging out the microscopic information in the
exact theory, one obtains statistical kinetic equations that describe the evolution of
particle distribution function in space and time. If the collision between particles
cannot be neglected, some suitable physical model has to be adopted (different
models give rise to different kinetic equations, like the Boltzmann equation or the
Fokker-Plank-Landau equation), while, if the collision can be neglected (for example
when the plasma is rarified), the kinetic equation can be reduced to a simplest
form, called the Viasov equation (or the collisionless plasma kinetic equation). The
nominal condition for neglecting the collisional effects is that the frequency of the
relevant physical process(es) be much larger than the collision frequency: d/dt ~
—iw > vy, in which vy, is the Lorentz collision frequency and w represents whichever
of the various fundamental frequencies (e.g., w, , plasma; kcg , ion acoustic; w, ,
gyrofrequency; wp , drift) are relevant for a particular plasma application.

As already said, the kinetic equation has to be coupled with Maxwell’s equations
and this give rise to a nonlinear integro-differential system, that for the Vlasov

8
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approximation assumes the following form :

afa 8foc do afa_
0B . 1 0F
VXE——§7 VXB—MoﬂJFC*QE
v.-E="., v.B=0

€0

pP= ZQana = ZQa/fozd?)u
i= ZQanaUa = ZQa/faU-d?)u (1.10)

The above set of equations (6-dimensional in phase space), completed with the
equations for the charge and the current density Eq. (1.10), are the fundamental set
of equations that provide a complete kinetic description of a plasma and describe
phenomena in which collisions are not important, keeping track of the (statistically
averaged) particle distribution function. Plasma waves are the most important
phenomena covered by the Vlasov—Maxwell equations. In the Vlasov model the dis-
tribution function f is constant along the particle orbit in phase space, the entropy
is conserved and, because the Vlasov equation has no discrete particle correlation
(Coulomb collision) effects in it, it is completely reversible (in time) and its solu-
tions follow the collisionless single particle orbits in the six-dimensional phase space.
Although the above properties and considerations, exact solutions of the Vlasov
Maxwell system, unfortunately, can be found only in very particular cases. All the
kinetic theories present some lack, in particular it is still too complicated to deal
with realistic cases and it is complicated to direct compare results with observation
data (particle distribution functions are very difficult to measure and the only excep-
tion is the case of solar wind that permit in situ measurement). In plasma theories
some physically relevant parameters (density, flow velocity, temperature), directly
comparable with the observations, can be obtained from the moments of the particle
distribution function integrating low order powers of the velocity u times the dis-
tribution function f over velocity space in the laboratory frame: [ d3uu’ f(r,u,t),
7 = 0,1,2. The integrals are all finite because the distribution function must fall
off sufficiently rapidly with speed so that these low order, physical moments (such
as the energy in the species) are finite. That is, we cannot have large numbers of
particles at arbitrarily high energy because then the energy in the species would be
unrealistically large or divergent. Fluid moment equations are derived by taking
velocity—space moments of the relevant kinetic equation.

9



General overview of Turbulence

1.2.2 Fluid plasma theories

Just as the velocity moments of the distribution function give important macroscopic
variables, so the velocity moments of the plasma kinetic equation give the equations
that describe the time evolution of these macroscopic parameters. Because these
equations are identical with the continuum hydrodynamic equations, the theories
using the low—order moments are called fluid theories. Fluid theories provide the
equations that determine the dynamics of the moments of the PDF', but, since
there are an infinite number of moments, physician are in principle led from a single
kinetic equation to an infinite system of coupled equations, in fact, it is important to
recognize that while each fluid moment of the kinetic equation is an exact equation,
the fluid moment equations represent a hierarchy of equations which, without further
specification, is not a complete (closed) set of equations. The sequence must be
terminated by some reasonable procedure, so it is necessary to find a way to truncate
to a small number of consistent equations, and usually this is effected by setting the
third velocity moment of f to zero. This is known as the closure problem that
underlies fluid model and that does not have a unique solution.

In fluid theories all information on velocity distribution is lost, but the quantities
appearing in those theories have direct physical meaning in configuration space and
are therefore directly comparable with measurable physical parameters. There are
three main approaches in the fluid description of a plasma: multifluid models, single
fluid models and magnetohydrodynamics, but I will concentrate on the last one, thus
it will only be a brief presentation of the other two approaches.

Multifluid models are used whenever the interaction between different species
in the plasman are weak, so that each species evolves almost indipendently of the
others, with coupling through the electromagnetic fields and collision. Since there
are at least two species of particles in a plasma, there are at least two sets of fluid
equations (ions and electrons). When collision and viscosity can be neglected, the
complete set of equation (continuity, eq. of motion and eq. of state) for the two—fluid
model assume the form:

ong
(Noty) = 111
5 + V- (naus) =0 (1.11)
0uy,
MaNe W%—(UQ-V)UQ = qano(E + uy X B) — Vp, (1.12)

Pa = Cang® (1.13)

for species a=i,e and supplemented by Maxwell’s equations for the electric and
magnetic fields. Charge and current densities are defined, respectevely, as o =
N;q; +Neqe and J = n;q;u; + Negete, while p,, is the scalar pressure, C' is a constant
and 7, is the ratio between specific heats. These two sets of equations provide 16
independent equations for the 16 unknowns n;, ne, p;, pe, W;, ue, E and B.

Single fluid models replace the entire set of equations for the different fluids with
just one set of equation for an equivalent fluid.

Finally, Magnetohydrodynamics is a particular regime of single fluid models,
specifically it is a combination of a one-fluid (hydrodynamic-type plus Lorentz force

10



1.2 Plasma Turbulence

effects) model for the plasma and the Maxwell equations for the electromagnetic
fields. Magnetohydrodynamics (MHD, hereafter) is the name given to the non—
relativistic single fluid model of a magnetized, small gyroradius plasma. The MHD
description is derived by adding appropriately the two—fluid equations to obtain a
“one-fluid“ description and then making suitable approximations. It can be distin-
guished two level of MHD description: ideal and resistive MHD. In the ideal MHD
description one has to obtain density, momentum and equation of state equations
that govern the macroscopic behavior of a magnetized plasma on fast time scales
where dissipative processes are negligible and entropy is conserved. Thus, ideal
MHD processes are isentropic. In the resistive MHD there is an extention of the
time scale beyond the electron collision time scale (~ 1/v,) by adding to ideal MHD
the irreversible, dissipative effects due to the electrical resistivity in the plasma.
The MHD scheme achieves a considerable simplification of the single—fluid equa-
tions. The plasma variables, that is the total mass density of plasma p , the flow
velocity of plasma u , the plasma pressure p and the current density j are defined
as follows:

P = MeNe + MiN; =2 MyN;
MeNeUe + MiN;U;

(1.14)
u = ~ u; (1.15)
(1.16)
(1.17)

P
D = Pe +pi = 2nkpT

j = _nee(ue - uz)

A one fluid mass density (continuity) equation for the plasma is obtained by mul-
tiplying the electron and ion density equations by their respective masses to yield
Op/ot + V - pu = 0. Multiplying the density equations by their respective charges
(¢a) and summing over species yields the charge continuity equation 0p,/0t+V - j
= 0. In MHD the plasma is presumed to be quasineutral because we are interested
in plasma behavior on time scales long compared to the plasma period (w < wp)
and length scales long compared to the Debye shielding distance (Ap/dz ~ kAp <
1). In the MHD model the charge continuity equation simplifies to V - 7 = 0, since
MHD plasmas are quasineutral and have no net charge density (p, = 0), for this
reason the Gauss’ law Maxwell equation V - E = p,/ey cannot be used to deter-
mine the electric field in the plasma. Rather, since a plasma is a highly polarizable
medium, in MHD the electric field FE is determined self-consistently from Ohm’s
law (E = j/o —u x B), Ampere’s law (V x B = ppj) and the charge continuity
equation (V-7 — 0).

The complete set of "one—fluid“ equations (continuity, momentum, energy and in-
duction) reads:

11
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Op/ot+V -pu =0 (1.18)

ou 1

p— +(u-V)u=—-VP+ —(V x B) x B+
ot Ho
1
+ Fopt + [pu (Vzu + §V(V . u)] (1.19)
ow 42

plgp T Vw)|pV-u= "=V QL+ H (1.20)
86—? =V x(uxB)+nV’B (1.21)

where o is the conductivity of the medium, w = p/p(y —1) is the internal energy, Q
is the heat flux vector, Fegt represent the sum of external forces, while H and L;qqg
are the heat source term and the radiation loss term. The terms in square brackets
are the "non—ideal” terms.

The continuity equation describes changes in mass density due to advection and
compressibility by the mass flow velocity w. The charge continuity equation is the
quasineutral (p; ~ 0) form of the general charge continuity equation that results
from adding equations for the charge densities of the electron and ion species in the
plasma. The momentum equation, which is also known as the equation of motion,
provides the force density balance for a fluid element that is analogous to ma = F
for a particle. The MHD Ohm’s law is just the basic laboratory frame Ohm’s law
E = nj for a fluid moving with plasma mass flow velocity w : E/ = E + u x B.
The equation of motion (1.19) and the equation of magnetic diffusion (1.21) are
fundamental equations of magnetohydrodynamics. It is important to note that in
(1.21) the ratio of the first term to the second term of the right-hand side (in order
of magnitude) defined by

\V X (U X B)’ - U()L()
InV>B| U

= R, (1.22)

is called the magnetic Reynolds number, where Lo and Uy are typical size and ve-
locity of the considered system. Magnetic Reynolds number is equal to the ratio
of magnetic diffusion time 7p = poL?/n to Alfvén transit time 7 = L/ug (it is
assumed that u ~ uy = By/\/47p, the Alfvén speed related to the large-scale Ly
and mean magnetic field By), that is, R,, = 7g/7y - When R, > 1, the magnetic
field in a plasma changes according to diffusion equation. When R,, < 1, it can be
shown that the lines of magnetic force are frozen in the plasma.

The usual approximations of MHD are to use the assumption of incompressible fluid
(V-u = 0), adiabatic fluid (d/dt (pp~) = 0) and isothermal fluid (d/dt (p/p) = 0).
All the MHD description is certainly invalid if the frequency is too high or the
wavelenght is too short and implies a certain ordering of lenght an time scales in
the dynamics of the plasma. Another limitations stay in the neglecting of charge
separation that, as already said, restrict the MHD equations to wavelenght A > Ap
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1.2 Plasma Turbulence

and implies that electrons and ions move together; the last consideration adds an-

m-l, because motions as

rapid as cyclotron motions will affect the ions differently from the electrons. Again,
the assumption of scalar pressure, on a collisionless time scale, in a magnetic field,

other restriction to the time scale of MHD dynamics, T' > w

it is not clear because it is not known what time and space scales are required to
justify the assumption. Even the last consideration, the MHD model describes a
very wide range of phenomena in small gyroradius, magnetized plasmas, macro-
scopic plasma equilibrium and instabilities, Alfvén waves, magnetic field diffusion.
It is the fundamental, lowest order model used in analyzing magnetized plasmas.

1.2.2.1 Ciriteria for the right choice of Plasma description

In the last two section I briefly and roughly introduced the main aspect of the
kinetic and MHD plasma description and their limitations. At this point, one may
ask which kind of plasma descriptions has to be taken into account for describing
various types of plasma processes in magnetized plasmas.

The fastest, finest scale processes require kinetic descriptions, but then over longer
time and length scales more fluidlike, macroscopic models become appropriate. In
a magnetized plasma there are many more relevant parameters, and their relative
magnitudes and consequences can vary from one application to another. MHD
depend on the assumption that the plasma is strongly collisional , so that the time
scale of collisions is shorter than the other characteristic times in the system, and the
particle distributions are Maxwellian. This is usually not the case in fusion, space
and astrophysical plasmas. When this is not the case, or we are interested in smaller
spatial scales, it may be necessary to use a kinetic model which properly accounts for
the non-Maxwellian shape of the distribution function. However, because MHD is
relatively simple and captures many of the important properties of plasma dynamics
it is often qualitatively accurate and is almost invariably the first model tried.

1.2.3 Plasma instabilities and turbulence

So far, I introduced the main aspect of plasma turbulence without any detail. Now,
after the general overview on the two main description of the plasma physics, I can
briefly talk about how a plasma becomes unstable and turbulent and present the
main characteristic of kinetic and MHD turbulence.

A plasma could be considered always instable, this comes from the fact that a
plasma is a system with a enormous number of degrees of freedom. The last affir-
mation implies that there exist a great number of ways to lost the equilibrium, so
that it is estremely easy to found some unstable degree of freedom. An instability is
a process in which a small perturbation in a plasma equilibrium state grows larger
in time (note that instabilities develop at different rates and timescales). In a prac-
tical sense, an instability often represent the ability of a plasma to escape from a
configuration of fields that would otherwise contain a single charged particle indefi-
nitely. The study of instabilities has a central role in plasma physics. On one hand,
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the understanding of the mechanism underlying the development of instabilities is
fundamental to controlling them, on the other hand the observation of configura-
tion lasting longer than expected clearly proves that there are in nature ways to
control at least the fastest instabilities. The objective of much plasma research has
been dedicated to device configurations for the confinement of a high-temperature
plasma where instabilities tend to deassemble the confinement. In many of this kind
of plasma experiments an equilibrium state is never estabilished, because the lenght
of time required to produce the plasma is already comparable with an instability
growth time. A given equilibrium may be unstable in a variety of ways, and a given
instability may be common to several plasma equilibria.

1.2.3.1 Kinetic plasma turbulence

Kinetic plasma instabilities are driven by the velocity anisotropy of plasma parti-
cles residing in a temperature anisotropy, or in a bulk relative motion of a counter
streaming plasma or a beam-plasma system. The excitations can be electromag-
netic or electrostatic in nature and can release different forms of free energy stored
in anisotropic plasmas. These instabilities are widely invoked in various fields of
astrophysics and laboratory plasmas. Thus, the so called magnetic instabilities of
the Weibel-type can explain the generation of magnetic field seeds and the accel-
eration of plasma particles in different astrophysical sources (e.g., active galactic
nuclei, gamma-ray bursts, Galactic micro quasar systems, and Crab-like supernova
remnants) where the nonthermal radiation originates, as well as the origin of the
interplanetary magnetic field fluctuations, which are enhanced along the thresholds
of plasma instabilities in the solar wind. Furthermore, plasma beams built in accel-
erators (e.g., in fusion plasma experiments) are subject to a variety of plasma waves
and instabilities, which are presently widely investigated to prevent their develop-
ment in order to stabilize the plasma system. At a scale larger than the particle
mean free path, the plasma is stirred by some external mechanism, driving an as-
sortment of MHD Alfven, fast, slow, and entropy mode fluctuations in the plasma.
At this driving scale, a turbulent cascade develops nonlinearly to transfer the fluc-
tuation energy to smaller scales. The compressive modes become damped as the
cascade reaches scales of order or smaller than the collisional mean free path, but the
Alfvenic cascade continues undamped down to the scale of the ion Larmor radius.
At this kinetic scale, the electromagnetic fluctuations may be damped collisionlessly
by the Landau resonance with the ions. In the absence of collisions, this process
conserves the free energy removed from the electromagnetic fluctuations that gen-
erates nonthermal structure in velocity space of the ion distribution function. The
remaining electromagnetic fluctuation energy continues to cascade below the scale
of the ion Larmor radius as a kinetic Alfven wave cascade. Upon reaching the scale
of the electron Larmor radius, the electromagnetic fluctuations of the kinetic Alfven
wave cascade are completely damped via the Landau resonance with the electrons;
again, a generalized energy is conserved in this process, leading to the creation of
nonthermal structure in velocity space of the electrons. But the damping of the elec-
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tromagnetic fluctuations and consequent generation of structure in velocity space
does not correspond to heating. The thermalization of the turbulent energy by col-
lisions is ultimately achieved thanks to a cascade to small scales in velocity space of
the particle distribution functions (an entropy cascade). The entropy cascade drives
the distribution function structure in velocity space to scales small enough that even
weak collisions are sufficient to smooth out that structure towards the Maxwellian,
causing entropy to increase, and this is the final step in the conversion of the energy
of the turbulent fluctuations to thermal energy of the plasma particles. The entire
process described above is one of the possible numerical model to describe, in a
kinetic generalization, the familiar cascade of energy in a fluid turbulent system.

1.2.3.2 MHD plasma turbulence

A plasma flow becomes unstable when the gradient of velocity, pressure, or mag-
netic field exceed a certain treshold, which occurs when the convective transport of
momentum, heat, or magnetic flux is more efficent than the corresponding diffusive
transport by viscosity, thermal conduction, or resistivity. In the macroscopic de-
scription of plasma dynamics, there are three main types of instabilities which play
a fundamental role : the Kelvin—Helmholtz instability driven by a velocity shear;
the Rayleight—Taylor instability caused by the buoyancy force in a stratified sys-
tem; and current—driven MHD instabilities in a magnetized plasma, in particular
the tearing instability. Additionally, the presence of magnetic fields, rotation, or
stable stratification may exert a stabilizing influence on a otherwise unstable fluid.
In many systems several instability mechanisms may become active.

Many dynamical processes observed in plasma fluids can be attributed to the
effect of some instability of a stationary system. After the onset of instability the
structure of the flow is very complex and irregular and, most importantly, the further
behaviour is impredicable. Instabilities may give rise to rather coherent dynamics
such as the kinking of a plasma column, but more often, especially at high Reynolds
number, turbulence will be generated. MHD turbulence is characterized by nonlin-
ear interactions among fluctuations of the magnetic field and flow velocity over a
range of spatial and temporal scales. MHD turbulence occurs almost inevitably in
plasmas in motion and is therefore a widespread phenomenon in astrophysics, for
instance in the solar system, where we encounter turbulent magnetic fields in the
convection zone and in the solar wind, and in accretion discs, where MHD turbu-
lence is responsible for the angular momentum transport. It plays an important role
in plasma heating, the transport of energetic particles, and radiative transfer and is
ubiquitous in space and astrophysical plasmas.

By following similar equations one may apply, and generalize, the formalism devel-
oped in hydrodinamic turbulence, but in the MHD turbulence the physics is more
complex than the fluid case. There are two coupled vector fields, velocity uw and
magnetic B, and two dissipative parameters, viscosity and resistivity. In addition,
we have mean magnetic field By which cannot be transformed away. The mean
magnetic field makes the turbulence anisotropic, further complicating the problem.
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Exact solutions given initial and boundary conditions will not be very useful even
when they were available, this because field variables are typically random both in
space and time. However statistical averages and probability distribution functions
are reproducible in experiments under steady state, and they shed important light
on the dynamics of turbulence. For this reason many researchers study turbulence
statistically. The idea is to use the tools of statistical physics for understanding
turbulence. The statistical description of turbulent flow starts by dividing the field
variables into mean and fluctuating parts. Then there are computed averages of var-
ious functions of fluctuating fields. Unfortunately, only systems at equilibrium or
near equilibrium have been understood reasonably well, and a good understanding
of nonequilibrium systems is still lacking. In the recent era of research, availability
of powerful computers and sophisticated theoretical tools have helped us understand
several aspects of MHD turbulence. Numerical simulations have provided many im-
portant data and clues for understanding the dynamics of turbulence. They have
motivated new models, and have verified or rejected existing models. In that sense,
they have become another type of experiment. Because of large values of dissipative
parameters, MHD turbulence requires large length and velocity scales. This make
terrestrial experiments on MHD turbulence impossible. However, astrophysical plas-
mas are typically turbulent because of large Reynolds number, say non—linear effects
strongly prevails over dissipative effects. Taking advantage of this fact, large amount
of solar-wind in-situ data have been collected by spacecrafts. These data have been
very useful in understanding the physics of MHD turbulence. Solar wind data fa-

5/3 spectrum and also shows that MHD turbulence exhibits

vors Kolmogorov’s k£~
intermittency.

To close this part of the thesis, I will show, as in the fluid case, an exact relation-
ship in the MHD turbulence. So far, I have been discussing about the inertial range
of fluid turbulence. In this regard, a very important result on turbulence, due to
Kolmogorov (12), was the so called "4 /5-law”. Under the hypothesis of homogeneity,
isotropy, and, in the limit of infinite Reynolds number, assuming that the turbulent
flow has a finite nonzero mean dissipation energy rate € (11), the third-order velocity

structure function behaves linearly with ¢, namely

SP = —gef (1.23)

Following a similar approach developed by Yaglom (20), Politano and Pouquet
(29), derived an exact relation, from MHD equations, for the third-order correlator
involving Elsésser variables (30):

4
VE = ([0zF]%02]) = —geif (1.24)

Both Equations (Eq. 1.23, 1.24) might be used, as a formal definition of inertial
range. Since they are exact relationships derived from Navier—Stokes and MHD
equations under usual hypotheses, they represent a kind of “zeroth-order” condi-
tions on experimental and theoretical analysis of the inertial range properties of
turbulence.

16



CHAPTER 2

Turbulence in Solar Wind

Analytical results are impossible in turbulence research, apart for the 4/5-law, be-
cause of complex nature of turbulence. Therefore, experiments and numerical sim-
ulations play very important role in turbulence research. In fluid turbulence, engi-
neers have been able to obtain necessary information from experiments (e.g., wind
tunnels), and successfully design complex machines like aeroplanes, spacecraft, etc.
Unfortunately, terrestrial experiments exhibiting MHD turbulence are typically im-
possible because of large value of resistivity and viscosity of plasmas. For a typical
laboratory setup magnetic Reynolds numbers result far from turbulent regime. On
the other hand, astrophysical plasmas have large length and velocity scales, and are
typically turbulent. They are a natural testbed for MHD turbulence theories. We
have been able to make large set of measurements on nearest astrophysical plasma,
the solar wind, using spacecrafts. The data obtained from these measurements have
provided many interesting clues in understanding the physics of MHD turbulence.

2.1 The Solar Wind plasma laboratory

Our Sun lose mass by a continuous radial flow called Solar Wind. In the solar corona
the plasma is at very high temperature, and because it is not gravitationally bound,
it expands (as wonderfully sketched in Fig. 2.1) into interplanetary space in the
form of a supersonic plasma flow that extend itself radially up to distance beyond
the planetary system until it is slowed down by the termination shock. It forms a
bubble structure that extend in the space and it is called heliosphere. The solar
wind plasma consist principally of fully ionized atomic particles, electrons and ions
(the ion component is composed by a 96% of hydrogen and a small contribution of
helium and heavier nuclei).

The solar wind is structured and variable, it varies in density, speed, and tem-
perature, and in the strength and orientation of the magnetic field embedded in its

2 . The mean mag-

flow. The density of the wind decreases approximately as r~
netic field is largely polar in north—south direction, but spirals out in the equatorial
plane. Typical Sound speed (Cs ~ kpT'/m, ) is of the order of several hundred
km/s. The density fluctuation §p/p ~ (u/Cs)? =~ 0.01, hence solar wind can be
treated as incompressible fluid. The solar wind is also collisionless, in fact his mean
free path is very large (for example it is about Ay, p, ~ 1011 at 1 AU, ie. of the
order of the length scale of the system itself). The collision frequency is then typi-
cally v ~ 107° Hz, much smaller that the other typical frequencies. Since collisions

are very unlikely on the typical length scale and time scales of interest, the plasma
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Figure 2.1: A cartoon of the propagation of the Solar Wind in the interplanetary space.

components are usually far from their equilibrium, exhibiting different anisotropies
and suprathermal components. The basic physics of the solar wind is described by
a one—fluid hydrodynamic model in which it is assumed that there is a stationary
radial flow driven only by pressure and gravity. In view of the collisionless character
of the plasma, a fluid approach might appear inappropriate, but, on the large global
scales, kinetic effects are indeed negligible.

Again, the solar wind is far from steady but carries fluctuations of substantial
amplitudes. Such fluctuations are seen in all variables, namely velocity, magnetic
field, density, and temperature. The w and B fluctuations are highly correlated at
all scales and almost undoubtedly Alfvénic. Instabilities in the solar wind driven by
sheared flows, shocks, beams, or anisotropries give rise to a continous driving of the
turbulence, which would otherwise decay following one or the other of the selective
decay routes. Solar wind turbulence comes mainly in two forms, either with a high
velocity-magnetic field correlation, corresponding to outgoing Alfvénic fluctuations,
or as essentially uncorrelated fully developed turbulence exhibiting a Kolmogorov
spectrum. The solar wind provides an almost ideal laboratory for studying high-
Reynolds number MHD turbulence that is free to evolve unconstrained and unper-
turbed by in situ diagnostics, satellite-mounted magnetometers, probes and parti-
cle detectors. Measurements performed by spacecrafts represent a unique chance
to investigate a wide range of scales of low—frequency turbulence in a magnetized
medium.

In the first part of this thesis work it will be treated two aspect of solar wind
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turbulence : i) nonlinear coupling between electron and ion dynamics as wave-
particle interaction in the context of weak plasma turbulence, and ii) the electro-
static activity at high frequencies, that can results from nonlinear saturation of the
wave—particle interaction process, as one of the physical mechanisms that replace
the energy dissipation in a collisionless turbulent plasma. To realise those goals
it was done a sistematic study of in—situ measurements of electric waveforms ob-
tained by the WAVES experiment on board of STEREO spacecraft. In the rest of
the chapter it will be first introduced the tools used for those studies, that is the
S/WAVES instruments onboard the STEREO spacecrafts (Sec. 2.2), then it will be
described the nonlinear wave—particle coupling as the generation of density fluctu-
ations through a ponderomotive force caused by the high amplitude oscillation of
localized packet of Langmuir waves (Sec. 2.3), and, finally, a sistematic compar-
ison of observational datasets with numerical results of hybrid-Vlasov simulations
to conjecture that high—frequency activity in solar wind should be a consequence of
the nonlinear saturation of the wave-particle interaction process (Sec. 2.4).

2.2 In situ plasma turbulence - The STEREO mission
and the S/Waves experiment

The Solar TErrestrial RElations Observatory is a NASA mission (31; 32) that
consist of two identical spacecraft (one ahead of Earth in its orbit, the other trailing
behind), both in heliocentric orbit in the ecliptic plane at nearly 1 Astronomical
Unit. The main objective of the mission is to provide the first—ever stereoscopic
measurements to study the Sun and the nature of its coronal mass ejections, as
sketched in Fig. 2.2.

The main goals of the mission are:

1. understand the causes and mechanisms triggering coronal mass ejections;
2. characterize the propagation of coronal mass ejections through the heliosphere;

3. discover the mechanisms and sites of energetic particle acceleration in the low
corona and the interplanetary medium;

4. and develop a 3-D, time-dependent model of the magnetic topology, temper-
ature, density and velocity structure of the ambient solar wind.

To realize those purposes, the STEREO observatory carries four complementary
scientific instruments (in Fig. 2.3an overview one satellite with the various instru-
ment):

1. the Sun-Earth Connection Coronal and Heliospheric Investigation
(SECCHI) (34): study the 3-D evolution of CME’s from birth at the Sun’s
surface through the corona and interplanetary medium to its eventual impact
at Earth;
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Figure 2.2: Artist’s illustration of the twin STEREO satellites on opposites sides of the Sun.

2. the STEREO/WAVES (S/WAVES) (35; 36): that is an interplanetary ra-
dio burst tracker that traces the generation and evolution of traveling radio
disturbances from the Sun to the orbit of Earth;

3. the In situ Measurements of PArticles and CME Transients (IMPACT) (37,
) : sample the 3-D distribution and provide plasma characteristics of solar
energetic particles and the local vector magnetic field;

4. the PLAsma and SupraThermal Ion Composition (PLASTIC) (39): provide
plasma characteristics of protons, alpha particles and heavy ions. This ex-
periment will provide key diagnostic measurements of the form of mass and
charge state composition of heavy ions and characterize the CME plasma from
ambient coronal plasma.

To the purposes of this thesis, it was made use of data obtained by the S/WAVES
experiment. It consists of (i) three radio receivers (fixed, high and low frequency
receivers) that track electromagnetic disturbances through the heliosphere and (ii)
a Time Domain Sampler (TDS, hereafter) that measures in situ electric waveforms.
S/WAVES use three mutually orthogonal wire antenna, each one 6 meters long, with
an effective length of about 1 meter, to measure the electric field. The TDS makes
rapid samples of waveforms and is intended primarily for the study of Langmuir
waves, waves at the plasma frequency and the precursors of type II and III radio
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Figure 2.3: Illustration of a spacecraft in its deployed configuration. The SECCHI instruments
always point at the Sun, while SWAVES antennas are in the wake of the satellite.

bursts. Other wave modes, such as ion acoustic waves, can also be studied. The TDS
works like a modern digital oscilloscope. It samples the voltage on the S/WAVES
antennas quickly and continuously. When the sampled amplitude exceeds a com-
mandable threshold, a triggering system takes a snapshot with the largest part of
the signal at the center of the time series. The TDS should aquire events in two
different ways: with three orthogonal antennas monopole channels (the measured
signal is the difference between the antenna potential and the spacecraft potential
that is usually considered constant) as well as a pseudo—dipole channel obtained by
taking the difference of two monopoles. The selected analog signal is first filtered
with a commandable bank of low pass filters to avoid aliasing and then digitized.
Since the S/WAVES A /D converter is accurately linear, artificial nonlinear artifacts
are not introduced so that studies of nonlinear effects on the waveforms are possible.
The instrument is set to work primarily using two different sampling rates of about
At = 4 pus and At = 8 ps registering up to 16384 samples for each event (in Table
2.1 are showed all the available sampling times of the TDS instrument).

In the frequency domain, the electric field waveforms cover a maximum range that
goes from 15 Hz to 125 kHz, enabling, in principle, the detection of signatures from
below the electron cyclotron frequency (typically 100 Hz in the solar wind) to above
the plasma frequency (10-20 kHz).
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Sample speed (#/s) | At (us) | Pass band filter (kHz) | Total duration(us)
I 250,000 4 0.1-108 66
II | 125,000 8 0.1-54 131
1T | 31,250 31 0.1-13.5 524
IV | 7812 128 0.1-3.38 2,097

Table 2.1: Table of parameters of the runs. The second column is the resolution of the simulation,
third column the Reynolds numbers, fourth column reports the dissipative scale of the system and
the last column shows the Hall parameter.

IS B | v e b e b b 1 IS BRI | b
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t(ms) t(ms) t(ms)

Figure 2.4: Example of TDS electric waveform along the three spacecraft coordinates.

The measured voltage on the three antennas, in monopole mode, is converted
into an electric field, and projected in the spacecraft coordinates, using the set of
parameters called w/base caps (Graz) (35), in order to take into account the effective
length and direction of the STEREO antennas. In its final orbit the spacecraft
coordinates (X,Y,Z) are defined as follows: the X—component is sunward along the
radial direction, the Z—component is normal to the ecliptic plane, southward for
STEREO A and northward for STEREO B, and the Y-component complete the
direct orthogonal frame(in Fig. 2.4 an example of electric waveforms along the three
antennas in the new reference frame).

2.2.1 Plasma waves measurements with STEREO

Principally, the S/WAVES system was built to the purpose of understanding the
mechanism by which electromagnetic waves, the type Il and III solar bursts, are
generated: the Sun or a shock wave emits energetic electrons which are formed into a
beam, the beam generates Langmuir waves by a bump-on-tail instability, and these
Langmuir waves are converted to electromagnetic waves. Additionally, a second
objective was to continue studies of the fluctuating electric field at frequencies of the
order of the ion cyclotron frequency, which has been shown (40) to exert strong forces
on ions and is believed to be the major process determining ion heating and isotropy
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in the solar wind, and play a major role in determining the distribution function and
equation of state of the ions. However, as already pointed out (11), the response
of the unbiased S/WAVES antennas to density fluctuations completely dominates
the response to electric fields in this important frequency range, that means it is at
present not possible to measure electric fields in this frequency and amplitude range.
In addition, we need to consider the effect of impacting particles; an electric impulse
is associated with each particle impacting the surface, producing an antenna shot
noise. The larger the total antenna surface, the more impacted charged particles are
collected increasing the shot noise and limiting the signal-to-noise ratio and this is
the case of STEREQO. The TDS noise level in space condition is thus dominated by
the shot noise resulting from impacting charged particle on both the antennas and
the spacecraft. It is typically about 0.1 mV. On the S/WAVES 1-meters equivalent
length antennas, this noise level enable to observe electric field signals with an
amplitude larger than 0.1 mV. The electric field fluctuation §Fg associated to an
ion acoustic-like density fluctuation dn/n, by considering a Boltzmanian equilibrium
of the electrons, is of the order §Eg ~ 10~* V m~! . Such electric field fluctuation
would produce a voltage V' ~ 0.1 mV on the S/WAVES antennas. This voltage is
comparable to the level of noise, that is the electric field associated to the ion acoustic
mode is too low to be observed by S/WAVES. Instead, the density fluctuations
themselves have to be observed.

2.2.1.1 Few physics of Langmuir waves : non—linear dynamics and pon-
deromotive effect

Langmuir, or electron—plasma, waves are waves in which electrons and ions oscillate
out of phase. Electrostatic forces resulting from charge separation provide the restor-
ing force, while electrons provide inertia. In a thermal plasma, the frequency wy,
and wave number k of this high—frequency electrostatic wave satisfy the dispersion
relation

wr, &~ wp(1 + 3k*X\%,/2) (2.1)

where the plasma frequency wy, is given by w, = nee? /meeg, ne is the number density
of electrons, Ap = V. /wy, is the electron Debye length, V. = (kBTe/me)1/2 is the elec-
tron thermal velocity, T, is the electron temperature, and me is the electron mass.
Langmuir waves are found in space plasma wherever there are electron beams prop-
agating parallel to the magnetic field. They are observed associated with electron
beams generated by flares, beam induced by shocks, or in the presence of magnetic
depressions (also called magnetic holes). Langmuir waves are usually thought to
result from bump—-on—tail instabilities induced by beams propagating in the solar
wind. Unless the phase velocity is much greater than the electron thermal velocity
(wr,/kL > vy, ), the Langmuir wave is damped by the Landau damping (a linear
phenomenon that describes the local effect (in velocity space) of the distribution
function on the waves).

Study of the Langmuir wave system provides a relatively simple illustration of the
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relevant effects, a strong basis for study of other collapsing and turbulent systems,
and many useful tools with which to do so. Non-linear Langmuir waves are also
important in their own right, with numerous applications in the laboratory and
nature, including ionospheric modification experiments, planetary radio emissions,
relativistic—electron—beam systems, and laser—plasma experiments. Langmuir waves
depend on the plasma density through w,, hence density fluctuations, such as those
associated with ion sound waves, will affect the high frequency waves, causing them
to refract into regions of low density and high refractive index. This provides a
non-linear mechanism to couple high—frequency waves to ion sound waves. Such
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Figure 2.5: Regimes of monochromatic, plane-wave Langmuir instabilities as functions of kAp
and W (the ratio of Langmuir wave energy density to thermal energy density). Approximate
boundaries are as labeled. Region I: Electrostatic decay. Region II: Modulational instability.
Region III: Subsonic modulational instability. Region IV: Supersonic modulational instability.
Region V: Modified decay instability.

nonlinearity (essential to Langmuir collapse and strong turbulence) is described by
the Zakharov equations (42). In the framework of the Zakharov model, Langmuir
waves evolve through different kinds of wave—wave instabilities (decay instabilities,
modulational instabilities) depending on the wavelength and amplitude. Fig. 2.5,
extracted from (43), summarizes the electrostatic instabilities of interest in the case
of the non—linear evolution of a monochromatic Langmuir wave. The first Zakharov
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2.3 Observations of Langmuir ponderomotive effects

equation shows how density fluctuations affect Langmuir waves. To obtain a closed
system of equations, the effect of Langmuir waves on density fluctuations is also
included. An intense packet of coherent Langmuir waves can produce a density de-
pression via the ponderomotive force. This force comes out when the oscillations of
a wave induces an energy density proportional to the square of its amplitude, equiv-
alent to a pressure. When this energy density varies in space, a force proportional
to its gradient is exerted on the plasma. It is defined as

2
—q 2
Fp = V|E 2.2
P 4mew12) |E| (2:2)

where E is the slowly varying electric field amplitude in space. The ponderomotive
effect is an essential nonlinear ingredient for the description of modulated, or local-
ized, large—amplitude high—frequency oscillations of the electric field. This force is
much stronger for electrons than ions, owing to the inverse dependence on mass in
Eq. (2.2). Hence electrons are expelled from the packet, setting up an ambipolar
field, which then drags ions out to maintain quasineutrality. Localized Langmuir
wave packets with large enough amplitude can for instance dig ion cavities via this
ponderomotive force. As time progresses, the initial wave packet narrows and be-
comes more intense, i.e., it collapses. The corresponding density well also deepens
and narrows as the ponderomotive force becomes stronger, as shown schematically
in Fig. 2.6 (extracted from (44)). The relative density fluctuation én/n nonlinearly
generated by high frequency oscillations of the electric field through this pondero-
motive force is expected to saturate at a level comparable to the electric to thermal
energy ratio associated to the Langmuir wave:

on/n ~ Wi = egE?/nkpT. (2.3)

2.3 Observations of Langmuir ponderomotive effects

The above phenomena is known to physicists and studied since the 70’s, but space
observational evidence were lacking because it is difficult to simultaneously observe
electric field and plasma density variations at comparable spatial scales. In the
following, I will describe a method, developed in collaboration with P. Henry, C.
Briand and N. Vernet—Meyer at the observatory of Meudon—Paris, that allows such
simultaneous observations and recently published on Physics of Plasma review (15).
Using waveforms observations from the STEREO/WAVES experiment, we identi-
fied for the first time signature of such nonlinear coupling in the solar wind. To our
knowledge, this was the first direct quantitative study of density fluctuations non-
linearly coupled to finite amplitude Langmuir waves in space, based on simultaneous
observations of electric field and density fluctuations. In Sec. 2.2.1 it was briefly
introduced that at low frequencies the response of the TDS results dominated by
density fluctuations. This effect is identified observing that, from 100 Hz to few kHz,
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Figure 2.6: Schematic of a collapsing Langmuir wave packet and its associated density well,
indicating the self-focusing and intensification of the packet and the deepening and contraction of
the density well caused by the ponderomotive force.

the signal recorded by the TDS is often identical on the three monopole antenna
channels. Following (41), we recall that this is not a manifestation of waveforms
polirized along the bisectrix of the antennas, because that direction is related to the
spacecraft geometry and is usually different from any solar wind speed or magnetic
field directions, but it comes from the fact that the signal results dominated by
local density fluctuations in which the spacecraft is embedded, inducing quasistatic
changes in the spacecraft charging. The origin of this local density fluctuation has to
be found in the electrical charging of a conducting body due to the lost and collec-
tion of charged particles as interaction with the ambient plasma (46). In particular,
its electric potential permanently adjusts to the variations of the ambient plasma
to ensure the currents balance. At 1 Astronomic Unit (AU) the balance is given
between the outgoing photoelectron current and the incoming solar wind electron
current. The complete discussion about the current balance, the calibration of the
antennas and the way to measure the density fluctuations from the spacecraft po-
tential was left in the appendix A and also in (45). From the discussion, it emerges
that, in a quasi-static equilibrium, the level of density fluctuations, as a function of
the spacecraft body potential, results approximatively equal to:

e e 1
on/n~ — + + o 2.4
/ (kBTph kpT. 1+ ,f;;) * (24)

where T}, is the temperature of the photoelectrons escaping the spacecraft and 7,
the solar wind electron temperature. The value of T}, was evaluated by various
author (16; 47; 48; 19) in the range T}y, ~ [1—4] x 10* K, while the ambient electron
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2.3 Observations of Langmuir ponderomotive effects

temperature is a order of magnitude greater (T, ~ [1 — 2] x 10° K, and this means
that density fluctuations are mainly determined by the first term in Eq. (2.4) (details
in A). We can now express the variation of the scapecraft potential in function of
the level of density fluctuations crossing the spacecraft as :

T
0D ~ — <k3ph) n/n. (2.5)

e

Following the preceding discussion about the ponderomotive effect, we expect that,
if density fluctuations can be measured in this way, then we should be able to ob-
serve a strong correlation between the level of density fluctuations and the level of
Langmuir electric energy Wp. From the calculations and the discussion about the
antennas and spacecraft calibration it comes out that S/WAVES antennas enable to
measure simultaneously (i) electric field and (ii) density fluctuations. The electric
field is measured through the high frequency variations of the antenna potential
® 4, while density fluctuations are measured through the low frequency oscillations
of the spacecraft potential ®4.. To verify the effective non—linear coupling mediated
by the ponderomotive effect, we identified among the TDS events (data spanning
from November 2006 to December 2009.) those that contained (i) the signature
of Langmuir oscillation and (ii) the signature of density fluctuations. Langmuir
oscillations were selected by considering the waveforms with a localized frequency
peak above 5 kHz, while density fluctuations were isolated by considering waveforms
whose low frequency part (< 5 kHz) was identical on the three monopole antennas
(we recall that the frequency range of detection of density fluctuations is [100 Hz —
1 kHz|, while Langmuir waves are observed at the electron plasma frequency that
is typically 10-20 kHz in the solar wind at 1 AU). After the selection of the events,
for each one the high frequency part of the voltage fluctuations measured on the
three antennas is converted into an electric field Ep,, associated to Langmuir waves,
and projected in the spacecraft coordinates to take into account the effective length
and direction of the STEREO antennas. The electric energy is normalized to the
electron kinetic energy to evaluate Wy, in Eq. (2.3), with the density n estimated
from the Langmuir frequency and the choice T, ~ 10° K. Finally, the voltage fluc-
tuations observed identically on the three monopoles in the low frequency part are
converted into relative density fluctuations én/n via Eq. (2.5), assuming a photo-
electron temperature T, — 3 eV. As example, Fig. 2.7 shows a case in which the
Langmuir energy is large enough (W, ~ 1072) to generate density fluctuations by
ponderomotive effects. As expected from the non—linear theory, the level of density
fluctuations is of the order of Wy, (the electric-to-thermal energy ratio).

2.3.0.2 Langmuir ponderomotive effects in S/WAVES data

As said above, we choose TDS events form November 2006 to December 2009, but at
the very beginning of the STEREO mission (11/2006 — 02/2007) the two satellites
were inside the Earth enviroment, in particular they were immersed in the Earth
electron foreshock region, a region where Langmuir waves are known to be intense,
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Figure 2.7: TDS waveform in which Langmuir waves, plotted here in term of Wy (t) (black), and
density fluctuations dn/n(t) (red) are observed.

so we separeted the treatment of data in two parts. For each waveform in which
both Langmuir waves and density fluctuations are simultaneously observed, we con-
sider (i) the maximum density fluctuation (6n/n)mqe, during the whole waveform
event and (ii) the maximum normalized Langmuir electric energy Wp, nq. observed
during the same waveform event. Results (each single point represent a single mea-
sured waveforms) are diplayed in Fig. 2.8. The figure shows the maximum density
fluctuation (0n/n)maee as a function of the maximum normalized Langmuir electric
energy W mae- The black dotted lines represent the 3o detection level to take in
account the noise level.

Depending on W, two different behaviors are observed. For low energy Langmuir
waves (Wp mae < 10*4), the level of density fluctuations is independent on the level
of Langmuir oscillations, that is the density fluctuations are not affected by the
propagation of Langmuir waves (linear regime of Langmuir waves). At higher ener-
gies, the nonlinear evolution of Langmuir waves affects the density background until
it reaches at saturation a level of density fluctuations (6n/n)maz =~ Wi maz. The
blue line of Fig. 2.8 is the expected saturation level of density fluctuations forced by
Langmuir ponderomotive effects. The transition between the linear and non—linear
domain is observed for a normalized Langmuir electric energy Wi mae ~ 1074,
This result shows how simultaneous in—situ observations of electric field and density
fluctuations give observational evidence for non-linear coupling between Langmuir
oscillations and density fluctuations. Non-linear ponderomotive effects are at the
basics of weak and strong Langmuir turbulence. Following and developing the il-
lustrated metodology to observe contemporaneously finite amplitude Langmuir os-
cillations and associated density fluctuations will give new insights in non—linear
Langmuir processes occurring in the solar wind. To close the discussion, we justified
the choice of the photoelectron temperature Ty, ~ 3 eV. Fig. 2.9 show the same
points of Fig. 2.8, without the enviromental classification(foreshock region, free so-
lar wind), but here the red dotted lines show the level of §®,. corresponding to
n/N)maz = Wi mae for different values of Ty, i.e. Tp, = 1, 3 and 5 eV, taking
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Figure 2.8: Maximum observed density fluctuations (6n/n)maez vs. maximum Langmuir energy
WL, mae in the Earth electron foreshock (black diamonds) and in the free solar wind (red diamonds).
The blue line represents the expected saturation level of density fluctuations generated by Langmuir
ponderomotive effects.

into account the 30 noise level of the spacecraft potential. The observed level of
the spacecraft potential fluctuations is consistent with T}, = 3 & 1 eV. This value
is consistent with previously published values, whereas the linear slope is consistent
with the expected saturation level of density fluctuations generated by non—linear
Langmuir evolution.

2.4 Electrostatic activity in the high—frequency range of
solar wind turbulence

The solar wind plasma, as already said, is usually observed in a physical state of
well developed turbulence and represents one of the best natural laboratory for the
analysis of the evolution of the turbulent energy cascade, from large MHD length-
scales (low frequencies) towards short kinetic wavelengths (high frequency), in the
absence of collisional viscosity. While the system dynamics of the solar wind plasma
is well established at large wavelengths, thanks to many in situ measurements, key
aspects of the physics of turbulence in magnetized plasmas are poorly understood, in
particular, the features of the physical evolution at scales of the order of the typical
kinetic scales (ion/electron inertial length or gyroradius) are still unclear. The
energy of very large—scale fluctuations generated by the Sun is transported down to

29



Turbulence in Solar Wind

(mV)

107 ¢ s
e S5V 277
- Tph 53 eV]
I Tph=1e¥
1071 =
s b ;
£ L i
e L, ]
0% y
ot 1y .
S
104~ "
10°¢ 10

Figure 2.9: Fluctuations of potential §®sc maqs simultaneous to Langmuir oscillations of normal-
ized energies W, maz. The dotted lines show the expected level of density fluctuations generated
by Langmuir ponderomotive effects, associated to d®sc max via Eq. (A.10, for different Tpp,.

small scales, into the kinetic range, by a turbulent cascade (54; 56) , (27; 65; 66).
In this classical scenario of magnetohydrodynamic turbulence, fluctuations in the
plasma are driven at some large “outer” scale and decay by interacting locally in
k space. Eddies at some scale k~! exchange energy with eddies at nearby spatial
scales with the resulting net flow of energy to smaller spatial scales (larger k); this
cascade of energy occurs over an “inertial subrange” of k—space and it was shown
(56) to predict a power spectrum that scales as k=5/3 (Fig. 2.10). As the scales
of the fluctuations reach the proton kinetic range, the observed properties of the
solar wind turbulence start to change (showing the presence of a spectral break at
scales of the order of the ion—cyclotron frequency f.;, where f.;—0.1 Hz at 1 AU)
(57; 555 58; 59; 40), ions become demagnetized and the plasma can no longer behave
as a simple fluid, thus the fluid description breaks down and kinetic representation
is needed. At these scales, the turbulent fluctuations can be dissipated and heat the
solar wind (60), (61; 62) (64; 67; 68; 63), but the details of this damping process
are not known and there are few reported measurements in this regime of k space.
The occurrence of a nonlinear energy cascade and the Kolmogorov’s energy spec-
trum both depend on the existence of a dissipative process working at small scales.
In classical turbulence viscosity provides that dissipation, but the collisionless char-
acter of the solar wind plasma requires some physical mechanisms that provide the
necessary dissipation of energy in absence of collisional viscosity and resistivity. Un-
derstanding these mechanisms is a step of crucial importance for understanding the
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Figure 2.10: Total magnetic field power spectral density S and the spectrum of compressible
magnetic fluctuations S} (dash-dotted line) measured by Helios 2 (up to 0.08 Hz) and by Cluster
(up to 12.5 Hz) as showed by (138). In the same figure, the straight lines show power-law fits
and the vertical dotted lines indicate the ion cyclotron frequency f.; and the Doppler—shifted ion
inertial length fy, (in the third chapter it will be made use of d; instead of A; to represent the ion
inertial lenght).

origin and nature of the solar wind and in the problem of high—frequency turbu-
lence in space plasmas. For those reasons, the study of the short—wavelength (high—
frequency) region of the solar wind turbulent cascade represents a subject of recent
active interest in space plasma physics. The first analysis of the high—frequency
range of the energy spectra in the solar wind (69; 70) revealed a significant level of
electrostatic activity at frequencies of the order of few kHz, identified as ion—acoustic
fluctuations propagating along the ambient magnetic field (71). Recent observations
(59; 73; 71), focused on the analysis of the solar wind data from spacecraft, aiming
to investigate how the energy of large—scale Alfvénic fluctuations can be transferred
toward short scales and eventually turned into heat, need a better description of the
physical processes which allow the energy cascade to make the transition between
the fluid—like turbulent behavior at large scales and kinetic effects which happen
at very small scales (75; 76). The presence of electrostatic activity beyond f.; has
been attributed to Kinetic Alfvéen Waves (KAW) (59; 72) which can eventually be
dissipated at frequencies higher than the electroncyclotron frequency f > 100 Hz
(73). However, the picture of the energy cascade is yet controversial, and the role
of KAW has been questioned (93; 94). Recently, many authors (77; 78; 79; 80)
have used kinetic numerical simulations to reproduce the solar wind phenomenon
at short spatial lenght scale, that is, the generation of longitudinal proton—beam
velocity distributions associated with the propagation of electrostatic fluctuations.
These simulations reproduced the temperature anisotropy in the ion distribution
function and indicates the generation of beams of fast ions associated with a strong
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Figure 2.11: An example of the wavepacket observed from S/WAVES onborad STEREO (upper
panel), along with the corresponding Fourier spectrum (lower panel). The electric field here is
normalized to Ey = m;uaei/e, m; being the ion mass, ua the local Alfvén speed, Q; the local
ion—cyclotron frequency and e the electric charge.

electrostatic activity in the short scale termination of the electric energy spectra
at frequencies higher than f > 10f,. In the following it will presented results
coming from a sistematic comparison between high—frequency observations of elec-
tric field signals in the solar wind from the STEREO spacecraft with numerical
results of hybrid—Vlasov simulations (79; 80; 81). This analysis shows that the
high—frequency spectral region, is made by wavepackets of finite extension where
fluctuations have sinusoidal, non—sinusoidal and completely irregular waveforms.
The systematic comparison of observational datasets with numerical results of the
hybrid-Vlasov simulations, shows clear evidences that the observed high—frequency
peak is consistent with the excitation of ion—bulk electrostatic fluctuations, resulting
from resonant particle trapping associated with velocity distributions of ions that
display marked plateaus in the vicinity of the thermal speed, as a consequence of
the nonlinear saturation of the wave—particle interaction process.

2.4.1 STEREO WAVES data

We focused on signal detected in the range of frequencies 1 kHz < f < 5 kHz which
are not dominated by local density fluctuations in the low frequency domain (Sect.2.3
and appendix A). We selected and analyzed 3 years data from both STEREO space-
crafts, from 01,/2007 to 12/2009, by extracting more than 900 electric wavepakets. In
Fig. 2.11 it is reported one of the localized wavepacket of electric activity (top panel)
and its associated Fourier power spectrum (lower panel), showing the presence of
the electric peak at some few kHz and a broad tail. A carefull analysis of the various
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Figure 2.12: The time evolution of the electric field E detected by S/WAVES for three different
cases (upper panels). Middle panels report the corresponding phase space dE/dt vs. E, while the
lower panels report the Fourier power spectra. The electric field is normalized to Ey = m;ua€.i/e.

signals reveals that each wavepacket detected by STEREO is made by a sequence
of different waveforms, namely different oscillating behavior of modulated ampli-
tude. We can clearly distinguish periods where the waveform is purely sinusoidal
and other periods where it looks periodic but remarkably non-sinusoidal. During
the remaining period the waveform is characterized by irregular oscillations, say the
amplitude varies stochastically. In Fig. 2.12 three examples of the time behavior of
the detected electric field E, along with the relative phase space (E, dE/dt) (middle
panels) and the frequency spectra (lower panels) are shown. Of particular interest is
the remarkable presence of characteristic periodic non—sinusoidal wavepackets (pan-
els b in Fig. 2.12) which are made by the excitation of secondary harmonics. These
oscillations become irregular in time and the high-frequency part of the Fourier
spectrum increases (panels ¢ in Fig. 2.12).

2.4.2 Hybrid-Vlasov simulations data

To gain more insight into the origin of the high—frequency electric signals, the
wavepackets observed from S/WAVES have been also compared with results of
hybrid-Vlasov numerical simulations. The code (78), solves numerically the Vlasov
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equation for the ion species distribution function f(x,wu,t) (electron being treated

as a fluid) which in absence of collisions and under the effect of the electric E and

magnetic B fields reads:
of

q
g5 ) 1 1R
6t+(u V)f+m +

uxB

) Vaf| =0 (2.6)

(V4 being the gradient in the velocity space). The above equation is the same as
Eq.1.9, where I removed the subscript « that denoted the species. The Maxwell
equations are used to evolve self-consistently the electromagnetic fields. Numer-
ical simulations have been carried out in the 1D-3V phase space (one dimension
in physical space and three dimensions in velocity space), discretized using 2048
gridpoints in the physical domain and 51 gridpoints in each direction in the velocity
domain. Turbulence is triggered by injecting the energy in Afvénic fluctations at
low frequencies (about 10% lower than the ion—cyclotron frequency) and the system
evolution is investigated along the energy transfer towards short scales across the
ion inertial length. Here we present results obtained using plasma ¢ = 0.5, am-
plitude of the pump magnetic field fluctuations AB/B ~ 0.5, and electron to ion
temperature ratio T, /T; ~10. However, our results can last even for relatively lower
T./T; ~1 (82) and for lower amplitudes of the pump fluctuations 0.05 AB/B ~ 0.2
(81; 83). The dispersion relation obtained from the numerical signals (Fig. 2.13)
shows two branches of acoustic type electrostatic waves. Apart for the usual ion—
acoustic waves, the new branch of electrostatic waves, identified as ion—bulk waves
(78; 79), present phase velocity close to the ion thermal speed. The excitation of
these waves is due to the generation, through resonant interaction of ions with ion-
cyclotron waves (86), of diffusive plateaus in the longitudinal velocity distribution.
As the result of this process, short wavelength packets are recovered in the electric
field component parallel to the ambient magnetic field. The hybrid simulation re-
sults in sequences of different wavepackets of finite duration, one of them is reported
in Fig. 2.14 along with the corresponding Fourier power spectrum. A comparison
with observations shows that they should correspond to a ion—cyclotron frequency
of about Q. ~ 50100 Hz. Even in this case, a careful analysis of each wavepacket
shows the presence of signals of small duration which looks similar to what is ob-
served through S/WAVES, as reported in Fig. 2.15. In the example reported here
the sinusoidal waveform shows a peak at a frequency of about w ~ 50€; . A com-
parison with observations results in €.; ~ 60 Hz for solar wind plasma. As reported
above for real data, a non—sinusoidal periodic signal is due to two dominant harmon-
ics in the Fourier power spectrum, while the irregular case involves the enhancement
of a high—frequency broad spectrum. From the comparison between spacecraft data
and numerical results, one notices that the amplitude of the electric fluctuations
detected from observations is larger than that recovered in the simulations. These
differences can be due to the fact that the numerical model can describe only a
limited portion of the complex phenomenology that drive the turbulent cascade in
the real solar wind plasma. Due to computer limitations, actual numerical simu-
lations cannot describe frequencies as high as that observed from spacecrafts, and
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Figure 2.13: k — w spectrum of the parallel electric energy for a simulation with T./T;= 10. It
can be distinguished two different branches of acoustic waves, the IA waves (upper branch) and
the IBk waves (lower branch). The upper dashed line represents the theoretical prediction for the
ion—sound speed ¢s (3), while the lower dashed line represents the IBk waves phase speed.

the evolution of the electrostatic component of the simulated short—scale spectrum
is crucially affected by the numerical dissipation.

Waveforms similar to that found in the solar wind small-scale turbulence of
Fig. 2.12 and in hybrid—Vlasov simulations of Fig. 2.15 represent a property of
modulated non—linear waves. They can be obtained for example by using a simple
model obtained from a two—fluids description of plasma with an external source of
ions. This model, which results in a Van der Pol equation (85; 88; 87; 92), describes
self—oscillations of plasma with an amplitude that exibits spontaneous exponential
growth, resulting from a ion-beam instability, followed by a stabilization due to
wave-wave coupling nonlinear saturation. A brief explaination of the model and a
some results of the numerical integration of its equations are showed in appendix B

2.4.3 Conclusions

In conclusion, we investigated small-scale turbulence in the interplanetary space
which is characterized by an high level of fluctuations. Even if the available instru-
ments onboard spacecrafts do not allow us to access informations at high—frequencies
on the particle velocity distributions associated with these fluctuations or on the spe-
cific polarization properties of fields, a systematic comparison of the observed peaks
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Figure 2.14: An example of the wavepacket of hybrid—Vlasov numerical simulations detected at
a given spatial point X0 (upper panel) along with the corresponding Fourier power spectrum (lower
panel).The electric field is normalized to Fo = m;uaQei/e.

at few kHz with those obtained in hybrid-Vlasov numerical simulations succeeds in
identifying the small-scale wavepackets as due to ion—bulk electrostatic fluctuations,
associated with velocity distributions of ions that display marked plateaus in the
vicinity of the thermal speed. The small scale electrostatic fluctuations observed in
solar wind turbulence represent one of the the way turbulent energy, cascading from
large-scales, is finally “dissipated” in a collisionless plasma.
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Figure 2.15: The time evolution of the electric field E from hybrid-Vlasov numerical simulations
for three different cases (upper panels). Middle panels report the corresponding phase space dE/dt
vs. E, while the lower panels report the Fourier power spectra. The electric field is normalized to
Eo = miuaQei/e
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CHAPTER 3
Magnetic Reconnection as an
element of Turbulence

In the introduction, I reported the fact that most of the Universe is in the state
of plasma that is nearly always found to be magnetized and turbulent. The exis-
tence of this magnetic fields in the presence of plasma flows inevitably leads to the
process of magnetic reconnection, in fact, when twisted or sheared, the megnetic
field lines may break and reconnect rapidly, converting magnetic energy into heat,
kinetic energy, and fast—particle energy. Magnetic reconnection is a process that

occurs in many astrophysical and laboratory plasmas (95; 97; 98). Systems like
the solar surface (99), the magnetosphere (96), the solar wind (100; 102; 101), the
magnetosheath (103; 104), and laboratory plasmas (105; 106; 108) represent just

some of the classical systems in which magnetic reconnection occurs (in Fig. 3.1 two
of the most known situation in which magnetic reconnection takes place in space
plasma, solar flares and the reconnection in the Earth magnetoshere). Another un-
derlying common feature of the above systems is the presence of turbulence (109),
so a simultaneous description of both reconnection and turbulence is needed. In tur-
bulence, magnetic reconnection may behave in a less predictable way. Reconnection
in turbulence is a very fascinating topic of research, but only recently a quantitative
study of reconnection in turbulence has been presented (120; 121). It was showed
that multiple-reconnection events are present in turbulence and their properties
depend on the topology of the magnetic field and the local turbulence condition.
Again, turbulence provides a kind of unbiased and natural local boundary condition
for reconnection, producing much faster reconnection events than one would expect
from laminar experiments. Although the combined effects of turbulence and recon-
nection are likely to be important in a variety of physical systems, the investigations
that will be to described in the following are carried out in the limited context of
incompressible MHD, for which the turbulence problem, as well as the well-resolved
reconnection problem, are already very demanding. First, it will be explained the
process of reconnection during turbulent relaxation, following in time the dynamics
of 2D MHD turbulence and characterizing the statistical properties of the dynamical
system. After this part, it will be shown the statistical study of magnetic recon-
nection events in two—dimensional turbulence comparing numerical simulations of
magnetohydrodynamics (MHD) and Hall magnetohydrodynamics (HMHD). In fact,
besides turbulence (124), another ingredient that may accelerate the process of re-
connection is the Hall effect (144; 145). In particular, it has been proposed that
the Hall effect in reconnection causes a catastrophic release of magnetic energy,
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Figure 3.1: Left: Solar flare image as obtained by the TRACE satellite (from apod.nasa.gov).
Right: Schematics of magnetic reconnection in the magnetoshepe (from (126))

leading to fast magnetic reconnection onset (125), with reconnection rates faster
than the Sweet—Parker expectation. The objective of this work was to combine the
above ideas, namely that reconnection is locally enhanced by both turbulence and
by the Hall effect, investigating the statistics of magnetic reconnection in 2D Hall
magnetohydrodynamic (HMHD) turbulence. Using high resolution pseudo—spectral
numerical simulations, it will be compared the statistical properties of reconnection
in MHD and HMHD turbulence, by increasing the strength of the Hall effect. In
the next sections, there will be the description of the magnetic reconnection from a
theoretical point of view (Sect. 3.1), illustrating the main ideas behind the recon-
nection process and the basic equations, then, in Sect. 3.2, the overview of the main
features of 2D MHD simulations in turbulence, the methodology and the statistical
analysis of reconnection, establishing a link between length—scales in turbulence and
the diffusion region geometry. Then, in Sects. 3.3-3.4, it will be shown results of
a MHD simulation in time to show how much turbulence influence the reconnec-
tion process and, finally, the results coming from a comparison between the MHD
and the HMHD simulations, together with the new features produced by the Hall
physics.

3.1 The physics of magnetic reconnection

The idea of magnetic reconnection first originated in the attempts to understand
the heating of the solar corona and the origin of the enormous energy observed in
solar flares in which it appeared that energy was first slowly built up and stored in
the magnetic field, and then suddenly released into thermal and kinetic energy. It
was recognized (110; 111) that magnetic X points can serve as locations for plasma
heating and acceleration in solar flares. In particular Giovanelli showed that the
changing field strengths in the sunspot fields would produce large voltages that
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were capable of accelerating charged particles to high energies. Some years after,
Cowling (112) pointed out that, if a solar flare is due to ohmic dissipation, a current
sheet is needed to power it. Then, Dungey (113) showed that such a current sheet
can indeed form by the collapse of the magnetic field near the X point and was the
first to introduce the concept of brokening and rejoining of the field lines. Some
years after the above pioneering works, Parker (115) and Sweet (114) developed an
MHD model to describe steady—state reconnection in a current sheet formed at a
null point. Their proposal was to apply the model to solar flares, considering a mag-
netic field with an X—point produced by sources in the photosphere. They showed
that the problem was essentially a boundary layer problem, and they estimated the
rate of reconnection from a boundary layer analysis. This analysis shows the release
of magnetic energy over a period of time several orders of magnitude longer than
the observed, so the Sweet—Parker model represent a model for slow reconnection.
In 1964, Petschek (116) developed an alternative model where the lenght of the
current sheet was many orders of magnitude lower than that in the Sweet—Parker
model. For this to happen, the rest of the boundary layer region should consist of
slow shocks that could accelerate the matter that did not pass through the diffusive
region. In this case, the predicted reconnection rate is close to the rate needed in
solar flare. Petschek model was the first model of fast reconnection to be proposed.
Since then, a new generation of more general uniform and non—uniform model has
been developed. During the past decades, progress in understanding the physics
of magnetic reconnection has been made using space and astrophysical observa-
tions, theory and numerical simulations, and laboratory experiments. Space and
astrophysical observations (96; 100; 102; 103) have provided evidence that mag-
netic reconnection plays an important role in natural plasmas and generated strong
motivations for fundamental research. Theory and numerical simulations provide
insights to help in breaking down the complex reconnection phenomena into a set of
simpler processes and to gain improved physics understanding of each process, even
if, usually, breaking a problem in subsets of smaller problems gives as consequence
further complications in understanding the phenomenology. Magnetic fusion exper-
iments provide examples of magnetic reconnection through selforganization of their
configurations.

Magnetic reconnection is a process occurring at the boundary between two mag-
netized plasmas where the frozen—in condition for the magnetic field breaks down,
more specifically in a region of plasma where the magnetic field changes direction
over a finite distance, implying the existence of a current sheet in this region. This
current sheet can become unstable, allowing the sheared field lines to effectevely an-
nihilate by cross connecting, which release heat and accelerates the plasma to high
velocities. The above violation is described in the framework of Magnetohydrody-
namics introduced in the first chapter, that is, the plasma in magnetic reconnection
processes is treated as a conductive fluid and no distinction is made between the
dynamics of ions and electrons and we will limit to the case of collisionless plasma.
This choice is justified by the fact that many of the enviroment in which recon-
nection occurs are plasmas where the mean—free path for binary collision is much
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greater than the characteristic scale-lenght of the system.

3.1.1 Magnetic reconnection : equations and the Sweet—Parker
model

A magnetic field is viewed as emerging from and embedding in a heavy conduct-
ing plasma on two parallel surfaces separated by a substantial length. At one or
both ends the field lines are dragged around by a convective motion in the plane,
and the highly conducting but more rarefied plasma between the planes responds
dynamically. This is usually modeled using magnetohydrodynamics or Reduced
magnetohydrodynamics (RMHD). In the MHD approximation, all bulk plasma flow
at velocity u = cE x B/B? is due to the drift introduced by the E x B term. From
the condition in which there’s no distinction between different species dynamics,
electrons and ions flow at the same speed and this gives, for the current, 7 < neuw.
In presence of a finite conductivity o the equation that govern the magnetic field
(the induction equation Eq. (1.21) is given by:

9B _ g« (uxB)+iv2B (3.1)

ot oo
where, as said in section 1.2.2, the ratio between the convective term and the diffusive
term (respectevely, first and second term in the right hand side) define the magnetic
Reynolds number, R, = pooLoUy. Recall that the electric field comes from the
Ohm’s law and it is equal to E = j/o — u x B. The conductivity o in Eq. (3.1)
depends on the rate of collisions, so that, in absence of the latter, o results infinite
and the diffusive term is zero giving the condition of frozen—in for the magnetic
field in an infinitevely conductive plasma. The mathematical formulation stay in
the reduced equation for E and B:

E=—-uxB (3.2)
%—?:Vx (u x B). (3.3)

From this condition, the magnetic flux through a closed curve (bounding a surface
S) does not change, that is if the curve moves or compress, the magnetic field moves
or compress with it (to illustrate this condition we can look at Fig. 3.2). When
frozen—in condition apply, all plasma elements and all magnetic flux contained at a
given time in a magnetic flux tube will remain inside the same flux tube at all later
times :

/B-dSz/[@B/@t—Vx(uxB)]-dS:(). (3.4)
S S

During frozen—in there is a conservation of the local topology of the magnetic field
lines for which two elements connected at the same field line, at ¢ = tg line, will lie
on it also at later time though the magnetic field lines are deformed by the plasma
flow. In addition, the velocity of magnetic field lines (v = E x B/B?) is equal to the
velocity of plasma elements and any component of the electric field £ parallel to
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Figure 3.2: Schematics of the frozen—in condition : the flux through C; at ¢; equals the flux
through Cs at t2 (image from (117))

Figure 3.3: Schematics view of 2D magnetic reconnection (image from (107))

the magnetic field direction must vanish. When the magnetic reconnection is going
on, in a little region of plasma, namely diffusion region, the frozen—in condition is
violated and earlier separated magnetic fields lines, with different topoligies, get
interconnected at an X—point, where they break and reconnect forming new field
lines with a diffwerent topology from the initial ones (in Fig. 3.3 the schematic 2D
view of the process). The change of magnetic topology and connectivity of plasma
elements is due to the presence of a parallel electric field F}; within the diffusion
region, and there is also the acceleration of plasma in form of heated reconnection
jets due to the transformation of the magnetic energy partially in kinetic energy
and partially in thermal energy of the plasma. Magnetic reconnection is a 3D
problems, but the 2D steady—state description provides a good physical insight and
it is often consistent with the observations. In this picture (represented in Fig. 3.4),
the opposite directed magnetic field lines get interconnected in the X—point located
in the center of the diffusion region (the shaded region). The line connecting all the
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Figure 3.4: Schematics diagram of 2D magnetic reconnection (image adapted from (117))

X—points in the direction out of the reconnection plane is the X—line. The magnetic
separatrices are the surfaces separating magnetic fields with different topologies
and they intersect in the X-line, while their projection onto the reconnection plane
are the magnetic field lines connected to the X—point. Many theoretical models
have been proposed to describe the process of magnetic reconnection, but I will
present the first one, resulting from the collaboration between Sweet and Parker
that, though not always realistic from an observational point of view, illustrate the
main properties of magnetic reconnection.

3.1.1.1 Sweet—Parker reconnection model

Parker and Sweet were the first to formulate magnetic reconnection as a local prob-
lem in which the inflow of plasma was connected with an outflow from the diffusion
region. An example of the Sweet—Parker schematization is represented in Fig. 3.5.
Consider two oppositely directed magnetic fields, in a plasma (it is considered in a
steady state) with density p and conductivity o, that are carried toward the neutral
line at speed wu;, over a characteristic distance 2L. At the center of the configuration
there is a null point and also a layer of width 24 in which the field reconnects and
is expelled at speed wy,:. The Sweet—Parker theory predicts the reconnection rate
(uin) and establishes the basic energetics and geometry of the reconnection region
based on the following three assumption: (i) The outflow speed is the Alfvén speed
uy = B/4mp. (ii) Mass is conserved. For an incompressible flow, w;, L = u40. (iii)
The electric field E, given by the resistive MHD form of Ohm’s, is perpendicular
to the plane of the flow and must be constant in a steady state, i.e. it is inductive
everywhere except near the X—point where it is primarly resistive. From the last
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Figure 3.5: Schematization of the Sweet-Parker layer. In a steady state the magnetic diffusion
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velocity ne/4mwd balances the incoming reconnection velocity wr, and the inflowing mass durL
balances the outgoing mass 46w 4.(image adapted from (118))

this statement we have:
winB/e ~ j/o, (3.5)

where j ~ c¢B/(47d) comes from the Ohm’s law. Introducing the magnetic diffusiv-
ity 1 = ¢?/(4wo) we obtain an important results of the model:

5 Uin ~1/2

Ay S12, (3.6)
where S is the Lundquist number that is the same as the magnetic Reynold’s number
R,, with the velocity taken as the Alfvén velocity. From the energetic estimation
of the Sweet—Parker reconnection it can be showed that the Poynting flux (that
represent the inflow rate of electromagnetic energy) into the layer is of the same order
as both kinetic energy flux out of the layer and the Ohmic dissipation rate inside the
layer, so, roughly speaking, during reconnection magnetic energy is converted half
to plasma kinetic energy and half to thermal energy. Problems comes out when the
expected reconnection rate is compared with real astrophysical rate of reconnections.
Most astrophysical systems have very large .S, while in the model, because the size
of the reconnection region is equal to the whole size of the diffusion region and all
the plasma must go through the diffusion region to be accelerated, reconnection is
quite slow (corresponding to low S) and the reconnection rate is often not realistic.

3.2 Overview on 2D MHD turbulence

Recognizing that reconnection is an ongoing and statistical aspect of a turbulent
medium, and with modern computers having the resources to study these effects,
Servidio et al. (120; 121) introduced a direct quantitative study of the reconnection
that occurs in turbulence. The approach was to simulate 2D MHD turbulence
in a parameter regime in which there are many magnetic islands with the goal
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of identifying the basic physical principles at work in the turbulence-reconnection
dynamical system. From these conclusions started this reserch works in the context
of reconnection in turbulence. In the following, it will be explained the main aspect
of the 2D MHD simulated dynamical system, how to identify local reconnection
in turbulence with a step—by—step analysis and show the link between magnetic
reconnection and turbulence. First of all, it is necessary to introduce the equations
of the 2D incompressible MHD. It was chosen a uniform density, p = 1, and the set
of equations, that could be written in terms of the magnetic potential a(x,y) and
the stream function v (z,y), read:

%‘: = —(u-Vw+(b-V)j+R, Vi (3.7)
da ~12
E:(U-V)a—i—Ru Va (3.8)

where the magnetic field is b = Va x z, the velocity w = Vi x Z, the current
density j = V?a, and the vorticity w = V2¢. Eqgs. (3.7-3.8) are written in Alfvén
units (124) with lengths scaled to Lo (a typical large scale length such that the
box size is set to 2mwLg). Velocities and magnetic fields are normalized to the root
mean square Alfven speed uy and time is scaled to Lo/ua. R, and R, are the
magnetic and kinetic Reynolds numbers, respectively (at scale Lg). Eqs. (3.7-3.8)
are solved in a periodic Cartesian geometry using a well tested dealiades (2/3 rule)
pseudospectral code (127). It was employed a standard Laplacian dissipation term
with constant dissipation coefficients. The latter are chosen to achieve both high
Reynolds numbers and to ensure adequate spatial resolution. A detailed discussion
of these issues has been given by Wan et al. (129). It will be reported on runs with
resolution of 40962 with Reynolds numbers R, = R, = 1700 evolved using a time
integration of the second order Runge-Kutta in double precision. Energy, initially,
is concentrated in the shell with 4 < k£ < 10 (the wavenumber k is in unit of 1/Lg)
with mean value E = (1/2){|u?| + |b?|) ~ 1 (< ... > means spatial average), and
we choose the same initial value for kinetic and magnetic energy. The statistical
analysis was performed at the time in which the turbulence is fully developed, that
is the state of the system at which the mean square current density (j2) is very near
to its peak value. Computing the omnidirectional power spectra, since turbulence
is homogeneous and isotropic, it can be seen in (Fig. 3.6) that appears of a broad
inertial range, typical of turbulence. When turbulence is fully developed, coherent
structures appear and they can be identified as magnetic islands (or vortices). A
typical complex pattern of 2D MHD turbulence is shown in Fig. 3.7 where it is
represented a contour plot of the current j, together with the in—plane magnetic
field (line contour of a). As it can be seen, the current density j becomes very high
in narrow layers between islands. The current results bursty in space (see Fig. 3.8
that represent a zoom into the turbulent field) and this is related to the intermittent
nature of the magnetic field (130; 131) and can be interpreted as a consequence of
fast and local relaxation processes (119). Both the magnetic and velocity fields in
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Figure 3.6: Power spectra of magnetic fied.
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Figure 3.7: Shaded contour of the current j, togheter with the line contour of the magnetic
potential a.
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Figure 3.8: Current density profile j. in a sub-region of the simulation box. The magnetic flux
a is also represented as a line contour. As expected in 2D turbulence, strong and narrow peaks of
current density are present between magnetic islands.

MHD show a strong tendency to generate increasing levels of phase coherence at
smaller scales (128). Between these interacting islands the perpendicular (out-of-
plane) component of the current density j, becomes very high, as it can be seen in
Fig. 3.9 and its probability distribution function (PDF) show enhanced tails. The
magnetic structures that characterize the turbulent pattern interact non-linearly,
merge, stratch, connect, attract and repulse each other. Reconnection is a major
elements of this complex interaction.

3.2.1 Local reconnection in turbulence

To understand reconnection in 2D turbulence, we need to examine the topography
of a(z,y) and the reconnection rates in detail. In particular we need to identify the
neutral points. To this end we examine the Hessian matrix with the second—order
partial derivatives of the potential a defined as :

B 0%a
- 81‘281'] '

At each neutral point, i.e. where Va = 0, we compute the eigenvalues of H i;- 1 both
eigenvalues are positive (negative), the point is a local minimum (maximum) of a
(an O—point). If the eigenvalues are of mixed sign, it is a saddle point (an X—point).
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Figure 3.9: PDF of j,, normalized to its own rms value. The longer tails present are the signature
of intense small-scale activity, due to the intermittent nature of the magnetic field.

Because of the complex topology of turbulence, critical points can be very close to
each other, they are usually not located on the vertices of a chosen computational
grid. This affects the precision of the interpolation technique, producing false critical
points. To avoid this inconvenience we make use of a Fourier zero-padding and
interpolation technique. See Refs. (120; 121) for more details on this analysis. The
step—by—step procedure could be summarized as follow:

1. Identify critical points (Va = 0) at z*.
2. Compute the Hessian matrix at z*.
3. Compute eigenvalues A1 and Ay of Hfj(x*), with A1 > Ao.

4. Classify the critical points as maximum (both \; < 0, minimum (both A; > 0
and X—points (A Ay < 0).

5. Compute eigenvectors at each X—point. The associated unit eigenvectors are
és and é;, where coordinate s is associated with the minimum thickness ¢ of
the current sheet, while [ with the elongation ¢. It is important to note that
the local geometry of the diffusion region near each X—point is related to the
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Figure 3.10: Line-contours of of the magnetic potential a in a sub-region of the simulation box.
The position of the critical points is reported as well: O-points (blue stars for the maxima and
open red diamonds for the minima) and X-points (black x). Magnetic reconnection locally occurs
at each X-point.

Hessian eigenvalues, in particular

82
62
Ay = aT;‘ (3.11)

In Fig. 3.10 an example of a magnetic potential landscape together with its critical
points, obtained with the above procedure, is reported for a subregion of the simu-
lation box. From a scaling analysis of the Eqgs. for (3.10-3.11), the aspect ratio of
the diffusion region can be well approximated by

g >\maa:
g: Ar where A =]

Once we obtained the position of all the critical points, a precise way to measure the
reconnection rate of two islands is to compute the electric field at the X—point. This
is related to the fact that the magnetic flux in a closed 2D island is computed as
the integrated magnetic field normal to any contour connecting the central O—point
with any other specified point. Choosing that point to be an X—point bounding the
island, we find that the flux in the island is just a(O — point)a(X — point) (132).
Flux is always lost at the O—point in a dissipative system, so the time rate of change
in the flux due to activity at the X—point is

da _
ot

. (3.12)

)\min

—Ex = (R,"j)x, (3.13)
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where Fy and jx represent, respectively, the electric field and the current measured
at the X—point. The expression for the electric field comes from the Ohm’s law,
E=—ux b+R;1j, from which we take the z component (note that at the X—point
the component (u x b), is smaller compared with the current component). The dis-
tribution of the evaluated reconnection rates PDF(|Ex|) is shown in Fig. 3.11 and
it can be seen that it is broad and peaked around zero. The mean value of the
distribution is ~ 0.05, but there are strong variation from this value, that is recon-
nection rates are found in the range |Ex| € [1076,0.32]. The typical reconnection
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Figure 3.11: Probability distribution function of reconnection rates in turbulence (lin-log scale).
Vertical dotted line represents the mean value of the distribution.

rate in turbulence is found to be far higher than what is expected based on a simple
global application of the Sweet—Parker rate E'x ~ R;l/ % In the description of the
Sweet—Parker model, I show that the rate of reconnection (I recall that it consider
the system is in a steady—state) depends on the aspect ratio (Eq. (3.6), defined in
our case by Ag, so it satisfy the scaling

Ey ~ g ~/Ag. (3.14)

This trend can be viewed in Fig. 3.12 that is a scatter plot of the reconnection rates
against the aspect ratio Ag. This suggest that locally the reconnection processes
depend on the geometry and that therefore are in a quasi steady—state regime.
Further details about this analysis on (121).
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Figure 3.12: The relation between the reconnection rate and the geometry of the reconnection
region. The presence of a power-law fit (black solid line) demonstrates that there is a relation
between the reconnection rate and the geometry of the diffusion region.

3.2.2 The link between magnetic reconnection and turbulence

To estabilish a link between reconnection and 2D MHD turbulence properties it is
necessary to take a closer look at the reconnection sites. Because of the complexity
of the geometry we focused only on the X-lines with higher reconnection rates.
We needed to find a methodology to quantitatively characterize every reconnection
region and extrapolate important information, including § and ¢. Since we know
the ratio of the eigenvalues (Agr) obtained from the Hessian matrix analysis, the
problem reduces to find just one of these lengths, such as the current sheet thickness
0. The eigenvectors of the Hessian matrix, computed using the above summarized
procedure, identify the directions associated with inflow (s) and outflow (1) regions.
Once we compute these eigenvectors, it is possible to construct a system of reference
for each reconnection region, given by the unit vectors {é,¢é;} and then evaluate
the profiles of § and for the magnetic field using a fitting procedure. For each X-
point the fit has been optimized by an iteration procedure in order to minimize
the error of the interpolation. In Fig. 3.13(a) an example of the current density
profile along the s—direction is shown. A consequence of the asymmetric nature of
turbulent reconnection implies that in most of the cases the current density has
a peak not centered precisely on the X-point. Once we have the new reference
frame, we call b;(s) and by, (s) the tangential and normal component of the magnetic
field, respectively, obtained projecting the inplane magnetic field along the direction
defined by the eigenvectors:

b, = é, - b. (3.15)
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Figure 3.13: Profiles of the current density (a) in the vicinity of a X-point. The X-point is located

at s=0. In the panel (b) the tangential (b;, black) and the normal (b, red) components of the

magnetic field are shown. Horizontal dashed lines represent zero values.
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Figure 3.14: (a) histograms of thicknesses (9, grey bars) and elongations (¢, blue bars). (b) the

magnetic field autocorrelation function (solid black line) is represented. The arrows (left to right)

represent, respectively, dissipation scale Agiss, Taylor microscale Ar, and correlation length A\c.

Vertical lines are average values < 0 > (dashed grey) and < ¢ > (blue solid).

Note that a pile up of the magnetic

and an example is reported in Fig. 3.13(b)

field, in the upstream region of the reconnection event, is observed (133). Note
that, the proces of reconnection in turbulence is often asymmetric (125), so we
define §; and dy the left and right part of the current thickness 6 (6 = 01 + 92)

and two upstream magnetic field b; and by (suppriming the subscript ¢). Then,
using the iterating procedure we calculate the lenghts of the diffusion region and
the upstream tangential magnetic field. Once obtained, for each strong reconnection
event, the dimension of the diffusion region, we evaluate the PDFs of both § and
¢, the latter from Eq. (3.14, that are reported in Fig. 3.14(a), showing that they
are well separated. To estabilish a link between reconnection geometry and the
statistical properties of turbulence, we computed the auto—correlation function of
the magnetic field. First, the correlation lenght, that represent a measure of the size
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of the energy containing islands, is defined as

Ao = /0 ") (3.16)

where the upper limit is unimportant if the eddies are uncorrelated and the corre-
lation lenght, C(r), is expressed as

bz +7) - b(z))
(b%)

In the above equation, r represent the direction of arbitrary displacement for

isotropic turbulence in the plane. The auto—correlation function is illustrated in

cr) = ¢ (3.17)

Fig. 3.14(b) as well as < 6 > and < ¢ > (reported as vertical lines for comparison).

In the plot, indicated by arrows, are also present the dissipation lenght, at which
turbulence is critically damped, is defined as A\gjss = R;l/ 2<w2 + j2>_1/ 4 while
the Taylor micro—scale, the ratio of mean square fluctuations to a measure of the

mean square spatial derivatives of fluctuations, is Ay = 4/ <|t.’§|>. From the figure it

appears that the average elongation ¢ is strongly related to teh correlation lenght,
where the structure function flattens, or, analogously, where C'(r — 0. We found
that the values of diffusion layer thickness § are distributed in the range between the
Taylor scale and the dissipation scale, while the length ¢ scales with A¢ . The main
features of this ensemble of reconnecting events, including the key length scales, are
evidently controlled by the statistical properties of turbulence, setting the range of
values of length and thickness of the diffusion regions according to the correlation
length and the dissipation scale.

3.3 Time behavior of reconnection in turbulence

In the previous sections I examined the statistics of magnetic reconnection in turbu-
lence, at a given time t* showing that turbulence is a main ingredient of the magnetic
reconnection process. One may ask how the complex pattern of reconnection evolves
in time, during the decaying evolution of 2-D MHD turbulence. In the first part of
this section, I will answer the above question, showing results from simulation in
turbulence for longer times. Once showed these results, I will present in Sect 3.4 a
statistically inspection of the role of the Hall effect on the process of reconnection
in turbulence.

In analogy with simulations introduced in the previous section, we used a resolution
of 40962 mesh points, impose random (Gaussian) fluctuations, for both velocity and
magnetic fields, in the range 4 < k < 10, and choose as the final time of the simula-
tion t = 3.0. Again, the peak of non—linear activity is reached at t* = 0.5 and all the
feature described before are observed. From a macroscopic point of view, during
the relaxation process, magnetic islands reconnect, merge, repel, and the system
changes its magnetic topology. In Fig. 3.15 the current density is shown for two
different times of the simulation. The line—contours of the potential and the posi-
tion of the X—points are superposed on the same figure. As it can be immediately
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Figure 3.15: Shaded contour of the current density j at different times of the simulations, ¢t = 0.5
(left) and ¢t = 3.0 (right). Lines contour represent the magnetic potential a, while black crosses
indicate the positions of the reconnection events.

noticed, the current sheets reduce both in number and intensity at ¢ = 3.0, where
the turbulent pattern is characterized essentially by bigger islands. As an example,
the number of reconnection sites at ¢ = 0.5 is 133, reducing to 114 at the end of the
simulation. This process will eventually continue in time until only few X—points
survive to the turbulent evolution. Note that is difficult to explore this final stage of
the relaxation, since it may occur after thousands of nonlinear times (123). In terms
of the reconnection rate, the time behaviour show that these rates are higher when
the turbulence activity reach the maximum. This statement results evident looking
at Fig. 3.16 where PDFs of reconnection rates (properly normalized to dbs(t)?) at
different instants of the simulation are compared, namely at the beginning (¢t = 0.0),
at the peak of non-linear activity (¢ = 0.5), at an intermediate time (¢ = 1.5) and at
the end of the simulation (¢ = 3.0). This further evidence that fully developed tur-
bulence and fast reconnection events may strongly be related in plasma dynamics.
In the preceding section, it was found that the strongest reconnection rates depend
on the local geometry of the diffusion region, more precisely the reconnection rate
scales with the aspect ratio v/Ag = £/6. In Fig. 3.17 it is shown the same scatter
plot at different times. At the beginning of the simulation there is no clear scaling,
that is related to the fact that initial conditions are Gaussian and there’s not co-
herency in the magnetic field. When the peak of activity is reached (¢ > 0.4) the
expectation given by Eq. (3.14) is recovered. At later times, the fastest reconnection
events vanish, but the aspect relation is still valid.
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Figure 3.16: Time evolution of the PDF of |Ex]|, for ¢t = 0.0 (black stars), ¢ = 0.5 (red rombus),
t = 1.5 (blue squares) and ¢ = 3.0 (green triangles).
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Figure 3.17: Relation between the reconnection rates |Ex | and the geometry of the reconnection
region Ag, for different times of the simulation. After the peak of non-linear activity is reached,
the scaling (solid line) appears.
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3.4 The Hall effect in the reconnection process in turbulence

3.4 The Hall effect in the reconnection process in turbu-
lence

As anticipated in the introduction of the chapter, another important ingredient in
the process of magnetic reconnection is the Hall effect. The introduction of the
latter in the equations take us in the context of Hall MHD (HMHD hereafter), an
extension of the standard MHD where the ion inertia is retained in Ohm’s law. In
fact, the principal points of distinction between MHD and HMHD lies in the Ohm’s
law that, with the introduction of the Hall terms, reads :

(4 xb)

Nee€

E=—-uxb+nj— (3.18)
where n. is the electron density and e is the electric charge. The last term in the
above equation is attributed to the Hall current and cannot exist unless the 7 x b
force exists. The Hall effect becomes relevant when we intend to describe the plasma
dynamics up to length scales shorter than the ion inertial length d; (d; = ¢/wp;,
where ¢ is the speed of light and wy; is the ion plasma frequency) and time scales
of the order, or shorter, than the ion cyclotron period wgl. In other words, for
large scale phenomena this term is negligible and we recover the standard MHD
equations. It is one of the most important manifestations of the velocity difference
between electrons and ions when kinetic effects are not taken into account. In the
HMHD regime we have field-freezing of the magnetic field to the electron flow, not
to the whole bulk velocity flow and, in practical terms, this means that electron
motion can be parceled out from the aggregate motion or simplified one-fluid—type
motion of standard MHD. Generally, the Hall effect is though to be fundamental
for astrophysical plasmas, since it modifies small scale turbulent activity, producing
a departure from MHD predictions (134; 135; 136; 137; 93; 138) and, when d;/Lg
is large enough, changes in the decay rate of the turbulence at moderate Reynolds
number (139).. The importance of the Hall effect in astrophysics has been pointed
out to understand, for example, the presence of instabilities in protostellar disks
(140), the magnetic field evolution in neutron star crusts (141), impulsive magnetic
reconnection (142). In the past years, the role of the ion skin depth on reconnection
has been matter of several numerical investigations (143; 145; 146). In the following,
I will introduce the HMHD incompressible equations and present a global overview
of the turbulence properties for all the simulations performed.

3.4.1 Overview of numerical simulations in HMHD turbulence

Analogously to MHD, the equations of incompressible Hall MHD can be written
in dimensionless form. In 2.5D (2 dimensions in the physical space for three—
dimensional components) the equations read:

0
871: = —(u-V)u—VP+jxb+ R, 'V, (3.19)
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Run | Egs. resolution | R,(R,) | Adiss | € (kﬁl )
1 MHD 40962 1700 1/196 | 0

I | HMHD | 40962 1700 | 1/195 | 1/400
I | HMHD | 40962 1700 | 1/188 | 1/100
1A HMHD | 40962 1700 1/179 | 1/50

Table 3.1: Table of parameters of the runs. The second column is the resolution of the simulation,
third column the Reynolds numbers, fourth column reports the dissipative scale of the system and
the last column shows the Hall parameter.

ob

o7 = V< l(w—eng) x b + R;'V?b. (3.20)
The fields can be decomposed in perpendicular (in—plane) and parallel (out—of-
plane, along z) components, namely b = (by,b,) and v = (u,u,). For the

magnetic field by = Va x Z, where a is the magnetic potential. The coefficient
e = d;/ Ly is the Hall parameter and is proportional to the amount of dispersive
effects present in the system. Note that, for ey — 0, Egs. (3.19)-(3.20) reduce to
MHD (see Eqgs.(3.7)—(3.8)). Generally speaking the Hall term becomes a signifi-
cant factor at wavenumbers k such that kLgeyg = kd; ~ 1. The above equations
are solved with the same algorithm used for the MHD case and same initial con-
ditions. To remark, I used double periodic (z,y) Cartesian geometry, with a box
size of 27 L, using 40962 grid points, and with R, = R,=1700. I fix the above
parameters for all the simulations reported here and we vary eg, going from the
MHD case (eg = 0) to the Hall case, choosing e = 1/400,1/100,1/50. For all the
runs, the energy is initially concentrated in the shells with 4 < k£ < 10 (wavenum-
bers k in units of 1/Lg) with mean value E=(1/2)(|v|* + |b|?) ~ 1, where {...)
indicates a volume average. Using the above set of parameters, the dissipation

wavenumber 18 kgjss = Rll/2<j2>1/4 ~ 200. For the HMHD simulations, the Hall
wavenumbers are kp = 6;11 = 400, 100,50. The maximum resolved wavenumber

in all the simulations (allowed by the simulation resolution and the 2/3 rule) is
kmax = 4096/3 ~ 1365. A summary of the simulations is reported in Table 3.1,
where A\giss = 1/kgiss = 1/[R}/2<j2)1/4] is the dissipation wavenumber.

Again, I performed the analysis at the time of the peak of non—linear activity that
is the same for all the runs performed, namely ¢t ~ 0.574. One way to quantify the
differences between MHD and HMHD turbulence is to compute the power spectra
for b; and u, (in-plane components), the former is plotted in Fig. 3.18. We remark
that the case with kg = 400 (Run II) shows no appreciable difference from MHD
(Run I). This may be due to the fact that the Hall effect becomes significant in this
case in the dissipation range, and not in the inertial range, since in this simulation,
kagiss < ki (see Table I). In contrast, Runs IIT and IV clearly differ from the MHD
case, for wavenumbers > ky. This difference in the power spectra has been already
noticed in previous works, and is generally attributed to the dispersive effects. These
effects can break, in fact, the Alfvénic correlations that are typical of MHD (134; 94).
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Once again, when the turbulence is fully developed, coherent structures, in the
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Figure 3.18: Power spectra of the “perpendicular” magnetic energy, for all the Runs reported in
Table I. The vertical lines represent the Hall k-vector for Run II, III and IV, that is, respectively,
kr = 400 (red dot-dashed), kg = 100 (blue dot-dashed) and kr = 50 (green dot-dashed).

form of magnetic interacting islands, appear. Between these interacting islands the
perpendicular (out—of-plane) component of the current density j. becomes very
high, as it can be seen from Fig. 3.19, where a comparison between MHD and
HMHD is shown. Another interesting feature seems to be that the current sheets are
shorter and thinner. This is reminiscent of the systematic shortening and thinning
of current sheets seen in isolated laminar reconnection simulations (143). As I said
before, the current density is an important quantity since it captures many of the
small scale features in both turbulence and in reconnection. I show in Fig. 3.20
the PDF of j, (out of plane component), for the runs in Table 3.1. The core of the
distributions is very similar for all the simulations, but, in the HMHD cases, the tails
are more pronounced. This implies that the Hall effect cause an enhancement of the
small scale activity, that is responsible for increasing intermittency in the system.
I now examine the quantitative connection between enhanced intermittency and
reconnection rates.

3.4.2 Reconnection in turbulence: Hall MHD vs. MHD

As reported in Fig. 3.21, the magnetic potential a reveals a collection of magnetic
islands with different size and shape. Very similar patterns are observed for all
the runs. Note that the potential a is very similar in both cases since this field is
generally large-scale and very smooth. To capture the influence of the Hall physics,
one should look at the local structure of the current, shown in Fig. 3.22(left). When
Hall effect is significant, a clear bifurcation of current sheets is observed.
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Figure 3.19: Current density profile j. in a sub-region of the simulation box, for both MHD (left)
and HMHD with ez = 1/50 (right). The magnetic flux a is also represented as a line contour.
As expected in 2D turbulence, strong and narrow peaks of current density are present between
magnetic islands. As can be seen in Fig. 3.20, current density are higher in HMHD.
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Figure 3.20: PDF of j., normalized to its own rms value, for ez = 0 (black), 1/400 (red), 1/100
(blue), and 1/50 (green). The longer tails present in Run IV may be the signature of more intense
small-scale activity, due to stronger dispersive effects.
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3.4 The Hall effect in the reconnection process in turbulence

Figure 3.21: Line-contours of of the magnetic potential a for Run I (left) and Run IV (right),
in a sub-region of the simulation box. The position of the critical points is reported as well: O-
points (green stars for the maxima and open red diamonds for the minima) and X-points (black
x ). Magnetic reconnection locally occurs at each X-point.
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Figure 3.22: (Left) A contour plot of the out-of-plane component of the current j. in a sub-
region of the simulation box for Run IV. It is clearly visible the bifurcation of the sheet and the
typical structure of a reconnection region. (Right) A contour plot of the out—of-plane component
of the magnetic field b., in the same sub-region of the simulation box. The magnetic flux a is also
represented as a line contour. A quadrupole in the magnetic field can be identified, revealing the
presence of Hall activity.
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To further investigate the role of the Hall effect on the process of reconnection
in turbulence, I analyzed the out-of-plane magnetic field b, around some X-points.
As expected from theory(147), an out-of-plane magnetic quadrupole forms nearby
reconnection sites; this is shown in Fig. 3.22(right). The magnetic field shows four
distinctive polarities, organized with respect to the X—point. This effect is thought
to be a strong signature of Hall activity during reconnection in astrophysical plas-
mas (103), and in laboratory plasmas (148; 149) and here we confirm that this is
a clear signature of Hall effect in turbulent reconnection. In order to understand
quantitatively the Hall effects on reconnection, we analyze the magnetic field topol-
ogy and reconnection rates. The metodoligy of analysis is the same presented in
Sect. 3.2.1 that made use of the Hessian matrix. The number of X-points is ~ 127,
and is similar number for all the runs, indicating that the number of X—points does
not depends on small-scale features, but rather on initial conditions. Once I have
obtained the position of all the critical points, it is possible to measure the recon-
nection rate of interacting islands as the rate of change of the magnetic flux at each
X—point that, I recall, is:

Oa -1 -
a 5 — _EX — (RM j)X' (3.21)

The reconnection rates have been normalized to the mean square fluctuation §b2,,,
(~ 1 for all the runs). Note that Eq. (3.21) gives exactly the reconnection rate for a
fully 2D (MHD) case, while, in the HMHD case (2.5D), this expression gives the rate
of component-reconnection. The PDFs of E ., for the runs in Table I, are reported
in Fig. 3.23. All the distributions show a broad range with strong tails, the averaged
lying near Ey ~ 0.05—0.06 while the full range spans |Ex| € [107°,0.4]. The PDF’s
have been constructed using constant weight m per-bin (variable amplitude PDF),
with m = 6. The distribution of reconnection rates for the weak Hall case (Run II)
is very similar to the MHD results (Run I), as expected from previous discussions.
In the stronger Hall case (Run IIT and IV), instead, higher tails appear in the PDF.
Apparently, for higher values of €7 the frequency of occurence of large reconnection
rates is substantially increased. The increased frequency of large rates influences
the means. As an example, for both Run I and II I obtained the mean value
(|Ex|) ~ 0.05, while for Run IV (|Ey|) ~ 0.06. This analysis confirm that the Hall
term plays an important role in turbulence, where magnetic islands simultaneously
reconnect in a complex way. In particular, when the Hall parameter is enhanced,
being this the ratio between the ion skin depth and the system size, distributions of
reconnection rates have higher tails, revealing more frequently occurring explosive
(very large) reconnection events than in the MHD case.

As already pointed out in (121) and showed in Sect. 3.2.1, there is a relation
between the stronger reconnection rates and the geometry of the reconnection region,
in fact these strong reconnecting electric fields satisfy the scaling relation

B, ~ g — A = A (3.22)

)\min
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Figure 3.23: PDF of the reconnection rates for ez = 0 (MHD, black rombus), ez = 1/400 (red
triangles), ex = 1/100 (blue stars) and eg = 1/50 (green squares). The vertical dash-dotted line
represents the mean value of the distribution (|Ex|) for Run I (black), Run II (same as Run I),
Run IIT (blue) and Run IV (orange).

where, I recall, [ and ¢ are related, respectively, to the elongation and to the min-
imum thickness of the current sheet, i.e. to the geometry of the reconnecting re-
gion, while A\, and A, are the Hessian eigenvalues evaluated at the X-point. In
Fig. 3.25, I reported the reconnection rates, associated to each X-point, as a function
of Ag, for Runs I, III, and IV. All distributions follow the proposed power-law (at
least for stronger reconnection events), but in the HMHD case the values are more
scattered and are bounded by lower Ar. I evaluated, for each run, the evolution
of (Ag) in function of ey (not shown here), and I observed that, for the strongest
Hall effect case e = 1/50, the computed value of (Ag) is reduced to half the value
obtained in the MHD case. Following the methodology adopted in Sect. 3.2.1,
to qualitatively characterize every reconnecting region, I extract information about
currents, magnetic fields and about the geometry of the diffusion regions. Since I
know the ratio of the eigenvalues obtained from the Hessian matrix analysis, the
problem reduces to find just one of these lengths, such as the current sheet thickness
0. Again, for each X-point, it was necessary to build a system of reference that has
the origin at the X-point and, using the eigenvectors obtained in the Hessian anal-
ysis, then to define a local coordinate system based on the unit vectors {és, é, },
where the coordinates s and ¢ are related to ¢ and [ respectively. With respect to
this new reference system, the tangential and normal component of the magnetic
field are evaluated as b; = é;-b and b,, = é, - b, while the current profile is obtained
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Figure 3.24: Current density j.(s) (left) and tangential component of the magnetic field b, (right),
in the vicinity of the same X-point, for both MHD (black) and HMHD with ez = 1/50 (green). s
is the direction along és - the steepest gradient of the Hessian of a. In HMHD current sheets are
narrower and more intense.
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Figure 3.25: The relation between the reconnection rate (the electric field at the X-point) and the
geometry of the reconnection region (the ratio of the eigenvalues) for both MHD (black rombus)
and HMHD (blue and green). The presence of a power-law fit (red solid line) demonstrates that
there is a relation between the reconnection rate and the geometry of the diffusion region.
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i [ W) | (B | MAX{Ex)
0 0.014 | 0.286 | 0.049 | 0.315
1/400 | 0.013 | 0.272 | 0.050 | 0.326
1/100 | 0.008 | 0.172 | 0.057 | 0.362
1/50 0.005 | 0.077 | 0.059 | 0.364

Table 3.2: Characteristic lengths and reconnection rates for each run. The first column is the
Hall parameter, second column the average thickness of reconnection regions, the average length
of reconnection sites is reported on column 3, while the average and the maximum reconnection
rates are reported on column 4 and 5 respectively.

20]
[ <>

ol ]
0.001 0.010 0.100 1.000

Figure 3.26: Histograms of thicknesses §, (red bars), and elongations I, (azure bars) for MHD
(left) and HMHD with ez = 1/100 (right). Vertical lines are average values (d) (red) and (I)
(azure), the vertical dotted line represent the Taylor microscale Ap. In HMHD, the reconnection
sites seem to have, in average, smaller thickness and elongation.

with an iterating fit procedure along the s coordinate. The above analysis has been
performed only for stronger reconnection sites. For the present simulations, this
means |Ex| > 1072 (for all runs), together with the restriction Anag/Amin > 150
(Run I, II, IIT), and Apaz/Amin > 90 for HMHD (Run IV). In Fig. 3.24 we compare
results from MHD (Run I) and HMHD (Run IV), showing the current profile and
the local magnetic field near a particular X-point. The current density j,(s) and the
projected tangential magnetic field b;(s) has been interpolated along the direction
of é5. As already observed in Fig. 3.20, two main features are at work when the Hall
effect is not negligible, namely, the thickness § is reduced with respect the MHD
case, and j, reaches stronger values. This example serves to illustrate this effect,
which we confirm statistically through an analysis of the values of § and [ for all the
stronger X-point regions. The associated PDFs of 4 and [ have been computed, for
both MHD and HMHD, and the comparison is reported in Fig. 3.26. In the Hall
case, in average, the current sheets are both thinner and shorter than in the MHD
counterpart. These characteristic average lengths are reported in Table 3.2.
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3.5 Generalized Sweet—Parker theory for magnetic re-
connection

The turbulent reconnection activity identified in this chapter takes place in an en-
vironment in which the symmetric local conditions envisioned in standard laminar
models are unlikely. It is therefore appropriate to employ the extension of the
standard picture to asymmetric configurations. The Sweet—Parker—type analysis
for asymmetric anti—parallel reconnection has been studied in an earlier work by
(150). In particular, this analysis allows the reconnecting magnetic field strengths
and plasma densities to be different on opposite sides of the dissipation region. Here
we will summarize some of their main results. Asymmetric reconnection has also
received recent attention in observations (152; 151) and kinetic simulations (153).
In the incompressible case and in our notation, the Cassak-Shay (150) asymmetric
reconnection rate is given by

3/2,3/2
b2/ 23/

Eth ~ L2
x R,

(3.23)

being by and by the upstream magnetic fields on each side of the X-point. For this
purpose we chose the magnetic fields evaluated at 29, o, namely b; = b:(20;). Here we
examined whether the observed ensemble of turbulent reconnection events scales as
asymmetric “Sweet-Parker” in this sense, with resistivity causing the dissipation. To
acquire a broader picture of the scaling, we evaluated Eq. (3.23), first for simulations
described in Sects. 3.3 to view in which way the reconnection rates scale in time
with respect the expected rates described in the model, and then for HMHD Runs.
In Fig. 3.27, the reconnection rates, for different times of the simulation described
in Sect. 3.3, are compared with the asymmetric Sweet-Parker prediction given by
Eq. (3.23). It is evident that the model nicely describes the process of reconnection
in 2D MHD turbulence: during the time relaxation of turbulence, the reconnection
events still obey the theory proposed by (150).using several runs (listed in Fig. 3.27).
Fig. 3.27 shows that in all the simulations the reconnection rates are consistent with
the prediction given by Eq. (3.23). In this scenario turbulence plays a crucial role,
determining locally the parameters that control the Sweet-Parker reconnection rate,
namely, the lengths and local magnetic field strengths. Apparently, reconnection is
an integral part of the turbulent cascade. Fig. 3.28 show the comparison between
Run I (MHD), Run IIT (e = 1/100) and Run IV (e = 1/50) reconnection rates
versus the expectations. Apparently, in the Hall cases the reconnection rates are
more broadly distributed, and depart from the MHD behavior. In particular, there
appears to be a constant fractional increase in reconnection rate that grows with
increasing Hall parameter.
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Figure 3.27: (Asymmetric Sweet—Parker prediction at different times of the simulation. This
theory accurately describes the dynamics of reconnection in 2D MHD turbulence indicating that
the system is reconnecting in a asymmetric Sweet-Parker scenario.

3.6 Conclusions

The nonlinear dynamics of magnetic reconnection in turbulence has been investi-
gated through direct numerical simulations of decaying 2D MHD and HallMHD. In
the high resolution simulations, many reconnection events are seen, involving simul-
taneously many magnetic islands of various size. The reconnection is spontaneous
but locally driven by the fields and boundary conditions provided by the turbu-
lence.

Computing the electric field at the X-points, we see that turbulence produces a
broad range of reconnection rates, with values in excess of 0.1 to 0.3 in dimen-
sionless global Alfvén units. In addition, the strongest reconnection rates vary in
proportion to £/, the aspect ratio of the reconnection sites that characterize the
geometry of the diffusion regions. This scaling appears superficially to differ greatly
from classical laminar theories (114; 115), but taking into account the nearby mag-
netic field produced by the turbulence, a generalized form of Sweet-Parker scaling
(150) is restored. These results explain how rapid reconnection occurs in MHD tur-
bulence in association with the most intermittent non—Gaussian current structures,
and also how turbulence generates a very large number of reconnection sites that
have very small rates. Reconnection, like other transport processes, is greatly af-
fected by turbulence (151) and reconnection rates, like other turbulence parameters,
have a broad distribution of values. In contrast to laminar reconnection models that
provide a single predicted reconnection rate for the system, turbulent resistive MHD
gives rise to a broad range of reconnection rates that depend on local turbulence
parameters. Many potential reconnection sites are present, but only a few are se-

67



Magnetic Reconnection as an element of Turbulence

0.41
[ S
L * ]
0.3r 7]
— [ <o ]
EX 0.2 o B
[ 3 . ]
o® * .t
. é‘;g “:0
d e * b
0.1 r zj%,:” + MHD
[ 2 - oeps=0.01 ]
N 20 1
e ]
OO0l v v v v e
0.00 0.05 0.10 0.15 0.20 0.25

th
EX

Figure 3.28: Computed reconnection rates vs expectation from Eq. (3.23), for Run I (black
diamonds), Run III (open blue diamonds), and Run IV (green triangles). The Hall cases seem to
slightly depart from the Sweet-Parker asymmetric expectation.

lected by the turbulence, at a given time, to display robust reconnection electric
fields. We have seen that reconnection becomes an integral part of turbulence, as
suggested previously (123; 155). In fact, results of the present type may shed light
on possible scalings as Reynolds numbers are increased, even though direct com-
putational scalings remain greatly challenging. In particular, we expect that the
distribution of reconnection rates can be related to the issue of maintaining finite
energy dissipation in the infinite Reynolds numbers. A detailed examination of this
connection remains for future study.

From the freely decaying turbulence, time dependent study, it was found that the re-
connection rate distribution evolves rapidly from a state that has essentially no fast
reconnection sites, and develops a “hard” distribution that has a highly enhanced
tail of strong rates, in a time of the order of the peak turbulence dissipation time
scale. Subsequently, as the turbulence ages and begins to slow down, so also does
the reconnection rate distribution soften, with the tail of strong rates diminishing
in just a few non—linear times.

It was also provided a direct comparison of the statistics of reconnection rates ob-
tained from simulations of MHD turbulence and Hall MHD turbulence for cases with
increasing Hall parameter e = d;/Lg. For small values of Hall parameter there is
very little difference in distributions of electric current density or reconnection rates.
However for stronger Hall parameter ez > 0.01 one begins to see enhancements of
reconnection. In particular while there is a modest increase in average reconnec-
tion rate, there is a more dramatic increase in the frequency of occurrence of large
reconnection rates. Associated with this is the shortening and thinning of current
sheets, and the appearance of bifurcated current sheets, all previously reported as
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properties of laminar reconnection with Hall effect.

Evidently the impact of Hall effect depends crucially on whether this term in
Ohm’s Law become significant at wavenumbers ky lower than the reciprocal dis-
sipation scale kg;ss, so that it influences the upper inertial range, or if it becomes
significant only at scales smaller than where dissipation becomes strong. Therefore
in HMHD simulations with scalar resistivity and viscosity such as the ones I car-
ried out, the simulator has complete control over the relationship of the relevant
wavenumbers kg and kgss. What is less clear is how to estimate this relationship
in a low collisonality plasma. Typically, as suggested in (156), in kinetic theory d;
is mear the scale at which dissipative effects become significant, but it is not clear
to us whether one can make general statements concernig the precise value of the
ratio kg /kqgiss- 1f dissipation sets in at scales much smaller than d;, e.g., through
dominance of electron dissipation effects, the present work suggests that the Hall
effect can be important in establishing the most robust reconnection rates that will
be observed in turbulence. We have not however examined cases with very large Hall
parameters e ~ 1, which become computationally prohibitive. I find that as the
Hall parameter (ratio of ion inertial length to energy containing length) is increased
from zero to 1/50, the distribution of reconnection rates develops a more pronounced
tail at the highest values. Meanwhile the median rate is increased by only a few tens
of percent. This is consistent with the idea that Hall effect can influence the fastest
rates of reconnection most effectively. However many “slow” reconnection rates sites
are found both with and without Hall effect. Further study will be required to con-
firm and complete an understanding of how Hall effect influences reconnection rates
in turbulence.
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Conclusions

This thesis work concerns the study of turbulence in two physical system, i.e., the
solar wind and the reconnection sites. In particular, we tried to emphasize the
different way in which turbulence appears, manifests itself and evolves, sometimes
representing the main physics in the dynamical evolution of the considered sys-
tem. During the last years, a strong effort was spent by reserachers in the quest
to understand turbulence. Indeed, the knowledge of this complex phenomenon has
shown remarkable progress recently, thanks to the advancement in theoretical mod-
els, numerical simulations and to the various space missions available. For all these
reasons, recognition of turbulence has matured; however, it still remains a "terra—
incognita". Because of the complexity of turbulence, it was not easy to write down
a simple overview that briefly describes the enormous theoretical background, try-
ing to establish a link between the different representations and descriptions, but,
finally, the goal was achieved.

In this thesis work, we approach the study of turbulence from two different per-
spectives. First of all, using a kinetic description, we start from an observational
point of view to look at some non-linear phenomena, i.e, the ponderomotive effect
and the dissipation in collisionless plasma, related with the presence and the growth
of turbulence in plasma waves. Then, from the point of view of numerical simula-
tions, using a magnetohydrodynamics description, we move our attenption on the
process of magnetic reconnection.

In the first part of this work, we studied the electric signals, obtained by the
instruments S/WAVES onboard the two spacecraft of the STEREO/NASA mis-
sion. We tried to understand the ponderomotive effect generated by an oscillating
Langmuir wave on the density background of the solar wind and the possible gen-
eration of ion bulk waves viewed as dissipation mechanism in collisionless plasmas.
It was shown that the voltages, observed identically on the three STEREO anten-
nas at frequencies (102 — 103) Hz, are consistent with the variations observed in
the spacecraft potential, due to small scale density fluctuations present in the solar
wind. A calibration for such density fluctuations was provided too, using simultane-
ously measurements of Langmuir waves at high frequencies and density fluctuations
observed in the low frequency component. This calibration enable us to retrieve
a more precise value of the photoelectron current. It was given a direct observa-
tional evidence for non—linear coupling between solar wind density fluctuations and
Langmuir waves, with an electric-to-kinetic energy ratio Wy, > 10~%. This is the
first time that the ponderomotive effect is observed in natural plasma. The above
frequency range corresponds to solar wind density fluctuations with typical wave-
lengths A ~ [500 — 5000] m. To the best of our knowledge, it was the first time
that small-scale density fluctuations in the solar wind at such wavelength range are
measured. These small scale density measurements provide a new opportunity to
directly observe the physical processes occurring close to the dissipation range of
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solar wind turbulence. See Ref. (45) for more details.

In a more general context, we point our interest on the dissipation mechanisms
in collisionless plasma, a step of crucial importance for understanding the origin
and the nature of the solar wind and the problem of high—frequency turbulence
in space plasmas. Recent kinetic numerical simulations simulated the dissipation
mechanisms, acting in the solar wind at short spatial length scales. In this stud-
ies, the dispersion relation shows two branches of acoustic type electrostatic waves,
the usual ion—acoustic waves and a new branch of electrostatic waves, identified as
ion—bulk waves. The excitation of these waves is due to the generation, through
resonant interaction between ions with ion—cyclotron waves, of diffusive plateaus in
the longitudinal velocity distribution. As a result of this process, short wavelength
packets are recovered in the electric field component parallel to the ambient magnetic
field. It was observed that both electric signals, coming from the S/WAVES instru-
ments in the frequency range from [1 — 5] kHz, and the ion—bulk waves, obtained
in hybrid-Vlasov simulations, present a high fluctuations level in the form of local-
ized wavepackets. From a systematic comparison of the observed peaks at few kHz
with those obtained in hybrid—Vlasov numerical simulations, it was hypothesized
that the identified small-scale wavepackets are related to the ion—bulk electrostatic
fluctuations. These fluctuations are associated with ions velocity distributions, that
display marked plateaus in the vicinity of the thermal speed and represent one of
the main dissipation mechanism in collisionless plasma. A publication, (841), on this
subject was submitted to international physics journals.

In the last part of this thesis, we study the process of magnetic reconnection
in two-dimensional, high resolution, MHD simulations, trying to extract the influ-
ence of turbulence on the entire phenomenology. It was shown that the presence of
turbulence enhances the small-scales activity, producing a broad range of reconnec-
tion events with reconnection rates more similar to that observed in space plasmas.
Magnetic reconnection is a spontaneous phenomenon, but locally driven by the fields
and the boundary conditions provided by turbulence. Many potential reconnection
sites are present, but, at a given time, only a few of them are selected by turbu-
lence to display robust reconnection electric fields, F«. In addition, the strongest
reconnection rates vary in proportion to the aspect ratio of the reconnection sites,
l/4.

Recent results in this line of study, involving turbulent reconnection rates at dif-
ferent times, and a first look at how Hall effect influences reconnection in turbulence
have also been highlighted. From a time dependent study, in which turbulence is
freely decayed, we have found that the reconnection rate distribution evolves rapidly
from a state that has essentially no fast reconnection sites and develops a "hard"
distribution that has a highly enhanced tails of strong rates, in a time scale of the
order of the peak turbulence dissipation time scale. Subsequently, as the turbulence
ages and begins to slow down, so also does the reconnection rate distribution soften,
with the tail of strong rates decreasing in just a few nonlinear times.

The results concernig the influence of the Hall effect in the Ohm’s law on the
distribution of reconnection rates in turbulence appear very intriguing. Indeed, we
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find that, as the Hall parameter (represented by between the ratio of the ion inertial
length and the energy containing length) increases from zero to 1/50, the distribu-
tion of reconnection rates develops a more pronounced tail at the highest values.
Meanwhile, the median rate increases by only a few tens of percent. This results are
consistent with the idea that the Hall effect can influence the fastest rates of recon-
nection more effectively. However, many "slow" reconnection rates sites are found
both with and without the presence of the Hall effect in our numerical simulations.
Further, more study are required to confirm and complete our understanding of how
the Hall effect can influence the reconnection rates in turbulence. See Ref. (122) for
more details.
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APPENDIX A

Using the STEREO spacecraft as
a density probe

In monopole mode, an antenna measure the difference of potential between the an-
tenna potential and the spacecraft floating potential, where the last one is usually
considered a ground to study electric field oscillations measured on the antenna.
Therefore, the voltage waveforms are generally interpreted and calibrated in term of
in—situ electric field waveforms. In contrast, we used explicitly in this calculations
the spacecraft potential variations, taking advantage of the large difference in sur-
face between the spacecraft and the antennas which makes their equilibrium time
scales very different, so that there is a large frequency range in which the voltage
fluctuations measured in monopole mode reveal the density fluctuations.

A.1 Floating potential of spacecraft and antennas

The spacecraft body emits and collects charged particles, and its electric potential
permanently adjusts to the change of the ambient plasma parameters, to ensure
the currents balance. The charging of the STEREO body is due to some physical
processes (51): (1) incident energetic photons inducing photoelectron emission (50);
(2) incident energetic electrons striking the surface, inducing secondary emission of
electrons; and (3) ambient electrons and ions striking the surface and transferring
their charge.

To be more detailed :

1. the impact of energetic photons induce the emission of photoelectrons from
the spacecraft by solar ultraviolet radiation and the comparison of the pho-
toelectron current Ip,. To have an estimation, we consider that the average
solar ultraviolet radiation at 1 AU is ~ 1073 Wm? that corresponds to an
average flux of ionising photons F ~ 10 m™2s7! . On a surface at zero

potential at 1 AU, the photoemission flux j,;, depends on the average surface

photoemission efficiency:
Gpn = 010Mm 2571 (A1)

per unit of projected sunlit surface, with § ~ 1-4 for typical spacecraft covers
(465 A7; 48; 19). Photoelectrons escape from the sunlit face of the spacecraft
of surface S , so that I, = jppS| .
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Using the STEREOQO spacecraft as a density probe

2. The secondary emission of electrons caused by the impact of energetic electrons
is important only for striking electrons with energy greater than 10eV, and is
practically negligible for the two STEREQO spacecrafts.

3. The third physical effect could be divided in two part, (i) the collection of solar
wind electrons and (ii) protons (we neglected the very small contribution of the
heavier ions). (i) Solar wind electrons have a thermal velocity (v, . ~ 1200
km s~1) larger than the solar wind speed (vsy =~ 300-800 km s—1), so that
the associated incoming electron flux on a spacecraft at zero potential is the
ambient electron random flux jo ~ ne\/kpT./27me < 1013 m=2571 (m, , n,
and T, are respectively the electron mass, density and temperature) and solar
wind electron are collected on the total surface Sy so that I, = jeSie. (ii)
Solar wind protons have a thermal velocity (vi,, ~ 50 km s~!) much smaller
than the solar wind speed, so that solar wind protons are collected on one face
only and the associated attachment flux is better estimated from the mean
proton flux j, ~ n,Vew ~ 102 m=2s1. With Sy ~ 6.Sperp (considering a
cubic shape), the proton current is more than an order of magnitude lower
than the proton current I, = jpSperp K JeStot = Ie. I recall that the values of
the parameters are those typical for the free solar wind at 1 AU.

Summarizing, I, > I. > I,,, so that we neglected the secondary emission and the
protons attachment and we considered, as main charging processes, the photoelec-
tron current and the ambient electron current. Because the escaping electrons are
more than the attached ones, STEREQ surfaces charge positively, until its positive
electric potential ® binds sufficiently the photoelectrons to make their net outward
flux balance the inward flux of solar wind electrons, and this means that, to have
the balance, the potential of the bodies (spacecraft and antennas) provide the pho-
toelectrons with a potential energy that outweights their typical kinetic energy of a
few eV. To obtain the current balance, we considered that both electron populations
are Maxwellian with temperature T, and T}, so that the expressions for ambient
electrons and photoelectrons current, respectevely, are given by (52):

ed @ —ed
Ly, ~7 1 A2
oh ]pheSJ_< + k‘BTph) exp (kBTph> (A.2)
kgT, ed 7
I, ~n, S1 A3
(5o ) s (1+ o) (A3

where e is the electron charge, a and 3 are both equal to 0, 1/2 and 1 for respectively
plane, cylindrical and spherical geometry of the considered charging process.

A.2 Equilibrium potential

Once we estabilished the charging processess and their expressions, we could show
the spacecraft equilibrium potential. Before proceding in this way, it is useful to

78



A.3 Charging time scales

give some geometrical informations. The scale length of the spacecraft body L. is
larger than the photoelectrons’ Debye length (10 cm at 1 AU), the photoemission
is consider to take place in plane geometry so that ags. = 0. On the other hand,
since Lg. is smaller than the solar wind electron Debye length (10 m at 1 AU),
plasma electrons are collected in 3D so that Bs. = 1. The current balance condition
Iy, = I. applied to Eqgs.(A.2)—(A.3) for the spacecraft body then gives its equilibrium
potential ®g.:

No kpTe

where Ny = jph(kBTe/27Tm5)_1/2SJ_SC/SSC. The above calculations also hold for the
equilibrium potential of the antenna ® 4 in cylindrical geometry so that a4 = 84 —
0.5 in Egs. (A.2)—(A.3), which gives:

kpT
Dy = — Be P 1ogn [” (1 4 P )} (A.4)

by~

LZLTS [ n ( 1+ e®a/kpTe >1/2 (A.5)
e " '

NE 1+ e®a/kpTy,

where Ng' = jpn(kpT./2mme)"1/25,4/S 4. To solve Egs. (A.4-A.5) we made use
of STEREO spacecraft parameters (note that Eq. (A.5) is a rough approximation
because the antenna length is of the order of the Debye length, but this does not
significantly affect the final result). In detail, The dimensions of the spacecraft are
L1 x Ly x Lz = 1.14 x 1.22 x 2.03 meters, with a sunlit surface §7¢ = Ly x L3 >~ 2.5
m~2. The solar wind electrons are collected from all the spacecraft surface, except
the face located in the wake, so that the surface Sg. ~ 9.9 m~2. The S/WAVES
antennas are 6 m long, with an average diameter of 23.6 mm and inclination of
125° to the sun—spacecraft direction. This gives a sunlit projected surface of about
Sf = 0.12 m™2 and a total surface area of about S{i, = 0.45 m~2 per boom. To
complete the calculations, we choosed, T, — 3 eV and typical solar wind densities
n = [1-10] em™3 and temperature T, = 10 eV. Egs. (A.4-A.5) yield to ®4. = [3-8§]
Volts and ®4 = [5-10] Volts.

A.3 Charging time scales

The above results are valid as long as the solar wind density fluctuates with fre-
quencies lower than the typical charging frequency of the considered object, so that
the equilibrium remains quasistatic. We concentrated on density fluctuations with
frequencies fs, lower than the charging frequency of the spacecraft fs., but larger
than the charging frequency of the antenna f4. Indeed, for én/n to produce a signal
on the monopole antenna voltage, the density fluctuation must modify the space-
craft potential without modifying the antenna potential, that is density fluctuations
that have frequencies fs,, such that fa < f5, < fse. To evaluate the two frequencies
we calculated the charging e—folding time 7 = RC', where C' is the capacitance and
R the resistance of the considered object (and it was necessary to made other ge-
ometrical assumption). Since the dimension of the spacecraft Lg. and the antenna
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radius a are both much smaller than the ambient Debye length Ap, the electric field
surrounding them can be considered a Coulomb field locally, vanishing at distance
Ap. The spacecraft capacitance Cy. can be roughly evaluated as the capacitance of
a spherical conductor of radius Lg. ~ 1 m, finding C. ~ 4megLs. >~ 110 pF. A better
estimation using two cubes instead of a sphere actually gives Cs. ~ 200 pF, that
was the final choice. The antenna capacitance C'4 is evaluated as the low frequency
capacitance of a cylindrical conductor of length L and radius a in a plasma of Debye
length Ap (53). In the limit L > Ap the antenna capacitance is:

27(60[/

Cpm~——"
4 logn(Ap/a)

~ 47pF (A.6)

while for L < Ap it reduces to the capacitance in vacuum:

27T€0L

CA™ logn(L]a) 1

~ 64pF. (A.7)

To take in account the fact that STEREO antennas have lenght of the same order as
the Debye lenght, we choosed an intermediate value, i.e. C4 ~ 60 pF. The resistance
could be calculated as the inverse of the variation of the current with respect the
potential (R = |dI/d®|), but since the photoelectron current is the fastest charging
process we obtained R ~ |dlp,/d®| ~ (e/kpT,y). From the balance I, = I, it
comes out for the resistance:

~ e kT, \'/? ed; \ P
Rl ~eSt 1 A.8
i = kT (27Tm6> T ke (A.8)

with i = sc or A, Bsc = 1, B4 = 1/2. The charging frequencies f; = 1/(27R;C;)
are solved numerically and shown in Fig. A.1 as a function of the plasma density,
the electron temperature and the photoelectron temperature. They are nearly inde-
pendent to the electron temperature in the range of solar wind parameters (central
panel). The dotted line in the right panel indicates the photoelectron temperature
around 3 eV. Summarizing, for typical solar wind parameters, density fluctuations
with frequencies between ~ 100 Hz and a few kHz produce a change in spacecraft
potential, but no change in antenna potential. Signals of much higher frequency
vary too fast for changing the floating potential of the spacecraft and antennas.
Signals of much smaller frequency similarly modify the floating potentials of the
spacecraft and antennas, so that the voltage difference between them is too small to
be observed. For density fluctuations signals, the antenna acts as a ground while the
potential of the spacecraft varies with the density fluctuation; whereas electric field
oscillations behave just opposite: spacecraft potential is a ground and the antenna
potential oscillates with the electric field.
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Figure A.1: Frequency range of detection of density fluctuations (in grey) between the spacecraft
(blue line) and antenna (red line) charging frequencies as a function of density n (left panel), elec-
tron temperature Te (central panel) and photoelectron temperature T, (right panel). The vertical
dotted lines show typical solar wind parameters, in the third panel it shows the photoelectron
temperature associated with the STEREQO spacecraft Tp,n, >~ 3 eV.

A.4 Variations of spacecraft potential associated to den-
sity fluctuations
At this point of the discussion, differentiating Eq. (A.4), we obtained an expression

in which each small variation dn of the plasma density, in the above mentioned
frequency range, produces a change in spacecraft potential §®g.:

e e 1
on/n~ — + + 0P A9
/ (kBTph kgTe 1+ Zq;STC > (A.9)

Since Ty, < Te, 6n/n is mainly determined by the first term in Eq. (A.9), thus it
is roughly proportional to d®,. with a proportionality factor set by T,,. A relative
variation in plasma density dn/n thus induces a voltage 0® ~ —d®,. detected on
all monopole antenna channels which can be roughly expressed as:

on/n ~ P [Volt] (A.10)

TonleV]
that can be verified numerically using typical solar wind parameters. Numerical
results of Eq. (A.9) (black line), and Eq. (A.10) (red line) are shown in Fig. A.2.
The variation of the spacecraft potential induced by density fluctuations does not
depend much on the plasma density and the electron temperature (two first panels),
but mainly depends on the photoelectron temperature (third panel). !

!The approximation (red value) only underestimates the actual solution Eq. (A.9) by about
20%. Tt is thus not strictly necessary to know the actual value of the spacecraft potential @, but
only its variations, to have a good estimation of the associated density fluctuations.
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Figure A.2: Ratio of density fluctuations to spacecraft potential variations (—(dn = n)/d®) in
function of plasma density, electron temperature and photoelectron temperature. Both the full
expression Eq. (A.9), in black, and the approximation Eq. (A.10), in red, are shown. The vertical
dotted lines show typical solar wind parameters, in the third panel it shows the photoelectron
temperature associated with the STEREO spacecraft Tpn >~ 3 eV.
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APPENDIX B

A simple Van der Pol model

The waveforms observed in 2.4.2 should be different manifestations of ion-bulk
waves, excited by a plasma instability as results from numerical simulations (78; 79).
Following (88), a Van der Pol equation can be obtained from the two—fluid model
of plasma in cartesian geometry, which can reproduce the observed waveforms. The
electron equation of motion, neglecting the v, x B term, is given by

dv,
m
dt
where v, is the electron velocity, T, the electron temperature, m the electron mass

and n = n; + n. the total plasma density. Assuming spatial variations of the form
exp(ikyx), where k, is the axial wavenumber associated to disturbances which gen-

T.
= eV + £Vn (B.1)

erate the burst, and introducing the density fluctuations through n = ng + én(z,t),
where ng is a steady state average, in the low frequency approxiamtion neglect-
ing electron inertia density fluctuations are proportional to potential fluctuations
on ~ (eng/T.)d¢. The dissipationless ion equation of motion, by ignoring pressure
gradient term due to a strong temperature anisotropy, is given by

dV,‘
dt

where M is the ion mass. The evolution equation for density is modeled through

M

= —eV¢ (B.2)

on

—+ V- (nv;) =5 (B.3)

ot
where S is a source term due to the presence of fluctuations locally created by
electron heating effects (88). By eliminating the velocities, and using the relation
between plasma density and potential, we obtain a differential equation which de-

scribes the time behavior of the density

d’n dS\ dn

1/2 is the ion sound

where wg = kgcs is the ion-sound frequency and ¢y = (T./M)
velocity. The same equation can be derived for the electrical potential ¢. From
thermodynamics arguments it can be shown (88) that the function S is described
as a power of density fluctuations S = an — gn? —yn? —.... Under the hypothesis

that wy > «, Bn and yn?, equation (Eq. (B.4) reduces to a Van der Pol equation
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(85). By adding an external forcing term oscillating at a frequency w we obtain the
forced equation in dimensionless form

i —e(l —&x — Ca®)i + x = I cos(Qr) (B.5)

which will be used for numerical simulations. Here 2 = w/wy is the ration between
the external frequency and the internal frequency, € is the ratio between the growth
rate of perturbations and the nonlinear damping coefficient while 7 = wpt and dots
indicate derivative with respect to 7. In the following we will use the classical case
where £ = 0 and ¢ = 1. The Van der Pol equation, which describes a system with
a noninear damping, has been widely used in plasmas. For example the equation
describes the nonlinear mode-mode coupling mechanism through which an ion-sound
plasma instability should saturate (87; 88), the feedback stabilization of a drift-type
instability (89), the saturation of unstable modes in a beam-plasma system (91),
mode loking and frequency pulling in a ¢ machines caused by fluctuations of a
plasma column during the current-driven, ion acoustic instability in a collisionless
plasma (90), and as a nonlinear mechanism describing the transition to turbulence in
a bounded plasma characterized by weakly unstable modes, where the various modes
are represented by an ensemble of Van-der-Pol oscillators (92). For a fixed value of I'
and ¢, the dynamics is drived by the external frequency w. As w < wy, no interaction
between oscillations takes place and both frequencies appears in the spectrum. On
the contrary, when w increases and w = wy < wy, the internal frequency is suppressed
by the external oscillation and a single frequency w appears in the spectrum. When
w is further increased and w = wy > wy, the internal frequency wg reappers in the
spectrum. The interval Aw = ws—w; is called the synchronization region because the
oscillation syncronizes at a given frequency, while close to both w; and we periodic
pulling is observed. Solutions of Eq.B.5 are obtained as oscillations where both
amplitude and phases are modulated in time, which can explain the modulations
observed in space plasma. Numerical experiments have been carried out by keeping
fixed all parameters but 2 in Eq. (B.5) to show qualitative agreements between the
simple model and the observational results. In Fig. B.1 I show the results obtained
for three different values of Q and I' = 1.0, e = 0.5, £ = 0.01 and ¢ = 0.1 (changing
the values of these fixed parameters don’t change qualitatively the results). Looking
at the different kind of behavior, it can be recognized the frequency synchronization,
both frequencies outside the synchronization region and a kind of periodic pulling
that look very similar what observed in STEREO/Waves data and hybrid—Vlasov
simulations data (Fig. 2.12 and Fig. 2.15).
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Figure B.1: Examples of oscillation regimes (upper panels) obtained from simulations of the
Van der Pol equation, with their relative phase space (middle panels) and power spectrum (lower
panels). The parameters used for the case a) are: ¢ = 0.5, I' = 1.0 and Q = 3.0, for case b) are:
e=0.5, = 1.0 and Q = 0.45, while for the case c) are: e = 0.5, I' = 1.0 and 2 = 0.45.

85






Bibliography

[1] Tsinober A., Springer Dordrecht Heidelberg London New York, (2009)
[2] Davidson L., Chalmers University of Technology, Géteborg, Sweden, (2011).

[3] Krall N. A., and Trivelpiece A. W., Principles of Plasma Physics (San Francisco,
CA: San Francisco Press), (1986).

[4] McDonough J. M., Departments of Mechanical Engineering and Mathematics
University of Kentucky, (2004).

[5] Reynolds O., Philos. Trans. R. Soc. London,174, pg. 935, (1883)

[6] Ruelle D., Takens F., Commun. Math. Phys., 20, pg. 167, (1971).

[7] Landau L.D., Lifshitz E.M., Editions MIR, Moscow, U.S.S.R, (1971).
[8] Lorenz E.N., J. Atmos. Sci., 20, pg. 130, (1963).

[9] Bohr T., Jensen M.H., Paladin G., Vulpiani A., Cambridge University Press,
Cambridge, U.K., (1998).

[10] Gollub J.P.; and Swinney H.L., Phys. Rev. Lett., 35, pg. 927, (1975).

[11] Frisch U., Cambridge University Press, Cambridge, U.K.; New York, U.S.A,
(1995).

[12] Kolmogorov A.N., Dokl. Akad. Nauk. SSSR, 30, pg. 301, (1941). Reprinted in
Proc. R. Soc. London, Ser. A 434, pg. 94AS13, (1991).

[13] Callen J.D., Fundamentals of Plasma Physics, (2003).

[14] Hiwatari R., Okano K., Asaoka Y., Shinya K., Ogawa Y., Nuclear Fusion, 45,
pg. 96, (2005).

[15] Wagner F. et al., Phys. Rev. Lett. 53, 1453 (1984)

[16] Batchelor G. K., Quart. Appl. Math., 6, pg. 97, (1948).

[17] Burgers J. M., Adv. Appl. Mech., 1, pg. 171, (1948).

[18] Heisenberg W., Proc. Roy. Soc. A, 195, pg. 402, (1948).

[19] von Karman T., Proc. Nat. Acad. Sci., Wash., 34, pg. 530, (1948).

[20] Yaglom A. M., Izv. Akad. Nauk. SSSR Ser. Geogr. i Geofiz., 12, pg. 501, (1948).

[21] Corrsin S., J. Aero. Sci., 16, pg. 757, (1949).

87



BIBLIOGRAPHY

[22] Obukhov A. M., Doklady. Akad. Nauk. SSSR, 67, pg. 643, (1949).
[23] Kraichnan R.H., Phys. Fluids, 8, pg. 1385, (1965).

[24] Biskamp D., Cambridge University Press, Cambridge, U.K.; New York, U.S.A,
(1993).

[25] Biskamp D., Cambridge University Press, Cambridge, U.K.; New York, U.S.A|
(2003).

[26] Schekochihin A.A., and Cowley S.C., Springer, Dordrecht, The Netherlands,
pg. 85, (2007).

[27] Tu C.Y., and Marsch E., Space Sci. Rev., 73, (1995a).

[28] Tu C.Y., and Marsch E., J. Geophys. Res., 100, pg. 12323, (1995b).
[29] Politano H., and Pouquet A., Phys. Rev. E |, 52, pg. 636, (1995).
[30] Elsésser, W.M., Phys. Rev., 79, pg. 183, (1950).

[31] Kaiser M.L., Advances in Space Research 36, pg. 1483 (2005).

[32] Kaiser M.L., Kucera T.A., Davila J.M., Cyr O.C., Guhathakurta M., and Chris-
tian E., Space Science Reviews, 198 (2007).

[33] Driesman A., Hynes S., and Cancro G., Space Science Reviews, 136, pg. 17,
(2008).

[34] Howard R.A. et al., Space Science Reviews 136, pg. 67, (2008).
[35] Bale S.D. et al., Space Science Reviews, 136 , pg. 529, (2008).

[36] Bougeret J.L. et al., Space Science Reviews, 136 , pg. 487, (2008).
[37] Luhmann J.G. et al., Space Science Reviews, 136 , pg. 117, (2008).

[38] M. H. Acuna, Curtis D., Scheifele J. L., Russell C. T., Schroeder P., Szabo A.,
and Luhmann J. G., Space Science Reviews, 136, pg. 208, (2007).

[39] Galvin A.B. et al., Space Science Reviews, 136 , pg. 437, (2008).

[40] Kellogg P. J., Bale S.D., Mozer F.S., Horbury T.S., Reme H., Astrophys. J.,
645, pg. 704, (2006).

[41] Kellogg P. J., Goetz K., Monson S.J., Bale S.D., Reiner M.J., and Maksimovic
M., J. Geophys. Res, 114, (2009)

[42| Zakharov, V. E., Soviet Journal of Experimental and Theoretical Physics, 35 ,
pg. 908, (1972).

[43] Zakharov, V. E., S. L. Musher, and A. M. Rubenchik, 129 , pg. 285, (1985).

88



BIBLIOGRAPHY

[44] Robinson, P. A.,; Rev. Mod. Phys., 69, 2, (1997).

[45] Henri P., Meyer—Vernet N., Briand C., and Donato S., Phys. Plasma, 18,
082308 (2011).

[46] Pedersen A., Annales Geophysicae, 13, 118 (1995).

[47] Pedersen A., Lybekk P.B., André M., Eriksson A., Masson A., Mozer F. S.,
Lindqvist P., Décréau P.M.E., Dandouras I., Sauvaud J., Fazakerley A., Taylor
M., Paschmann G., Svenes K.R., Torkar K., and Whipple E., J. Geophys. Res.,
113, pg. 7, (2008)

[48] Escoubet C. P., Pedersen A., Schmidt R., and Lindqvist P.A., J. Geophys. Res.,
102, pg. 17595 (1997).

[49] Scudder J. D., Cao X., and Mozer F.S., J. Geophys. Res. 105, pg. 21281 (2000).
[50] Grard R. J. L., J. Geophys Res., 78, pg. 2885, (1973).

[51] Salem C., Bosqued J.M., Larson D.E., Mangeney A., Maksimovic M., Perche
C., Lin R.P., Bougeret J.L. et al., J. Geophys. Res., 106, pg. 701, (2001).

[52] Meyer—Vernet N., Cambridge University Press, (2007).
[53] Meyer—Vernet N. and Perche C., J. Geophys. Res., 94, pg. 2405, (1989).

[54] Matthaeus W. H., Oughton S., Pontius D. H., and Zhou Y., J. Geophys. Res.,
99, pg. 19267, (1994)

[55] Goldstein M. L., Roberts D. A., and Fitch C. A., J. Geophys. Res., 99, pg.
11519, (1994).

[56] Goldstein M. L., Roberts D. A., and Matthaeus W. H. ; ARA&A, 33, pg. 283,
1995

[57] Smith C. W., Matthaeus W. H., and Ness N. F., in Proc. 21st Int. Cosmic Ray
Conf., ed. R J Protheroe (Adeliade), pg. 280, (1990).

[58] Leamon R. J., Smith C. W., and Ness N. F., Matthaeus W.H., and Wong,
H.K.J. Geophys. Res., 103, pg. 4775, (1998).

[59] Bale S. D., Kellogg P. J., Mozer F. S., Horbury T. S., and Reme H., Phys. Rev.
Lett., 94, pg. 215002, (2005).

[60] Marsch E., Rev. Mod. Astron., 4, pg. 145, (1991).

[61] Richardson J. D., Paularena K. I., Lazarus A. J., and Belcher J. W., Geophys.
Res. Lett., 22, pg. 1469, (1995).

[62] Dmitruk P., Matthaeus W. H., Milano L. J., Oughton S., Zank G. P., and
Mullan D. J., Astrophys. J., 575, pg. 57, (2002).

89



BIBLIOGRAPHY

[63] Dmitruk, P., and Matthaeus, W. H. 2003, ApJ, 597, pg. 1097, (2003).

[64] Vasquez B. J., Smith C. W., Hamilton K., McBride B. T., and Leamon R. J.,
J. Geophys. Res., 112, pg. A07101, (2007).

|65 Sorriso-Valvo L., Marino R., Carbone V., Noullez A., Lepreti F., Veltri P.,
Bruno R., Bavassano B., Pietropaolo E., Phys. Rev. Lett., 99, pg. 115001 (2007).

[66] McBride B.T., Smith C.W., and Forman M.A., Astrophys. J., 679, pg. 1644,
(2008).

[67] Marino R., Sorriso-Valvo L., Carbone V., Noullez A., Bruno R., and Bavassano
B., Astrophys. J., 677, pg. L71, (2008).

[68] Carbone V., Marino R., Sorriso-Valvo L., Noullez A., and Bruno R., Phys. Rev.
Lett., 103, pg. 061102, (2000).

[69] Gurnett D. A., and Frank L. A.; J. Geophys. Res., 83, pg. 58, (1978).

[70] Gurnett D. A., Neubauer F. M., and Schwenn R., J. Geophys. Res., 84, pg.
541, (1979).

[71] Mangeney A., Salem C., Lacombe C., Bougeret J.L., Perche C., Manning R.,
Kellogg P.J., Goetz K., Monson S.J., and Bosqued J.M., Ann. Geophys., 17, pg.
307, (1999).

[72] Howes G.G., Dorland W., Cowley S.C., Hammett G.W., Quataert E.
Schekochihin A.A., and Tatsuno T., Phys. Rev. Lett., 100, pg. 065004, (2008)

[73] Sahraoui F., Goldstein M.L., Robert P., and Khotyaintsev Y.4ALV., Phys. Rev.
Lett., 102, pg. 231102, (2009).

[74] Alexandrova O., Saur J., Lacombe C., Mangeney A., Mitchell J., Schwartz S.J.,
and Robert P., Phys. Rev. Lett., 103, pg. 165003, (2009).

[75] Perri S., Carbone V., Veltri P., Astrophys. J., 725, pg. L52, (2010)

[76] Carbone V., Perri S., Yordanova E., Veltri P., Bruno R., Khotyaintsev Y., and
AndrAl M., Phys. Rev. Lett., 104, pg. 181101, (2010).

[77] Araneda J.A., Maneva Y., and Marsch E., Phys. Rev. Lett., 102, pg. 175001,
(2009).

[78] Valentini F., Travnicek P., Califano F., Hellinger P., and Mangeney A.,
J.Comput. Phys., 225, 753, (2007).

[79] Valentini F., Veltri P., Califano F., and Mangeney A., Phys. Rev. Lett., 101,
pg. 025006, (2008).

[80] Valentini F., and Veltri P., Phys. Rev. Lett., 102, pg. 225001, (2009).

90



BIBLIOGRAPHY

[81] Valentini F., Califano F., and Veltri P. 2010, Phys. Rev. Lett., 104, pg. 205002,
(2010).

[82] Valentini F., Califano F., Perrone D., Pegoraro F., and Veltri P., Phys. Rev.
Lett., 106, pg. 165002, (2011).

[83] Valentini F., Perrone D., and Veltri P., Astrophys. J., 739, pg. 54, (2011).
[84] Carbone V., Donato S., Valentini F., Vecchio A., Veltri P., (2011) in press.
[85] Van der Pol B., Phil. Mag., 43, pg. 700, (1922).

|86] Kennel C.F., and Engelmann F., Phys. Fluids, 9, pg. 2377, (1966).

[87] Keen B.E., and Fletcher W.H.W., Phys. Rev. Lett., 23, pg. 760, (1969).

[88] Keen B.E., and Fletcher W.H.W., J. Phys. D: Appl. Phys., 3, pg. 1868, (1970).
[89] Keen B.E., Phys. Rev. Lett., 24, pg. 259, (1970).

[90] Keen B.E., and Fletcher W.H.W., J. Phys. A: Gen. Phys., 5, pg. 152, (1972).
[91] DeNeef P., and Lashinski H., Phys. Rev. Lett., 31, pg. 1939, (1973).

[92] Abrams R.H. Jr., Yadlowsky E.S., and Lashinsky H., Phys. Rev. Lett., 22, pg.
275, (1969).

[93] Matthaeus W. H., Servidio S., and Dmitruk P., Phys. Rev. Lett., 101, pg.
149501, (2008).

[94| Servidio S., Matthaeus W.H., and Carbone V., Phys. Plasmas, 15, pg. 042314,
(2008).

[95] Sonnerup B. U. O., J. Plasma Phys., 4, pg. 161, (1970).

[96] Sonnerup B. U. O. and Cahill L. J., J. Geophys. Res., 72, pg. 171, (1981).
[97] Vasyliunas V. M., Geophys. Space Phys., 13, pg. 303, (1975).

[98] Moffatt, H. K., Cambridge U. Press, Cambridge, England, (1978).

[99] Parker E. N., Astrophys. J., 62, pg. 509, (1983)

[100] Gosling J. T., Skoug R. M., McComas D. J. and Smith C. W.. J. Geophys.
Res., 110, pg. A01107, (2005).

[101] Gosling J. T. and Szabo A., J. Geophys. Res., 113, pg. A10103, (2008).

[102] Phan T. D., Gosling J. T., Davis M. S., Skoug R. M., Qieroset M., Lin R. P.,
Lepping R. P., McComas D. J., Smith C. W., Reme H. and Balogh A., Nature,
439, pg. 175, (2006)

91



BIBLIOGRAPHY

[103] Retino A., Sundkvist D., Vaivads A., Mozer F., André, M., and Owen C. J.,
Nature Phys., 3, pg. 235, (2007)

[104] Sundkvist D., Retin6 A., Vaivads A., and Bale S. D., Phys. Rev. Lett., 99,
pg. 025004, (2007).

[105] Taylor J. B., Rev. Mod. Phys., 58, pg. 741, (1986).
[106] Yamada M., Phys. Plasmas, 14, pg. 058102, (2007).
[107] Yamada M., Rev. Mod. Phys., 82, pg. 603, (2010).

[108] Brown M. R., Cothran C. D., and Fung J., Phys. Plasmas, 13, pg. 056503,
(2006).

[109] Bruno R. and Carbone V., Living Rev. Solar Phys., 2, (2005).

[110] Giovanelli R., Nature, 158, pg. 81, (1946).

[111] Hoyle, F., Cambridge University Press, Cambridge, (1949).

[112] Cowling T. G., University Chicago Press, Chicago, (1953).

[113] Dungey J. W., Phyl. Mag., 44, pg. 725, (1953).

[114] Sweet P. A., Cambridge University Press, New York, (1958).

[115] Parker E. N., J. Geophys. Res., 62, pg. 509, (1957).

[116] Petschek H. E., Physics of Solar Flares, ed. W.N. Hess, NASA, (1964)
[117] Priest E. and Forbes T., Cambridge University Press, (2000).

[118] Zweibel E. G., and Yamada M., Annu. Rev. Astron. Astrophys., pg. 291,
(2000)

[119] Servidio S., Matthaeus W. H., and Dmitruk P., Phys. Rev. Lett., 100, pg.
095005, (2008).

[120] Servidio S., Matthaeus W. H., Shay M. A., Cassak P. A., and Dmitruk, P.,
Phys. Rev. Lett., 102, pg. 115003, (2009.).

[121] Servidio S., Matthaeus W. H., Shay M. A., Dmitruk P., Cassak P. A., and
Wan M., Phys. Plasmas, 17, pg. 032315, (2010).

[122| Servidio S., Dmitruk P., Greco A., Wan M., Donato S., Cassak P.A., Shay
M. A., Carbone V., and Matthaeus W.H., Nonlin. Proc. Geophys., 18, pg.675,
(2011).

[123] Matthaeus W. H., and Montgomery D., Ann. N.Y. Acad. Sci., 357, pg. 203
(1980).

92



BIBLIOGRAPHY

[124] Matthaeus W. H. and Lamkin S. L., Phys. Fluids, 29, pg. 2513, (1986).

[125] Cassak P. A., Drake J. F., and Eckhardt B., Phys. Rev. Lett., 98, pg. 215001,
(2007).

[126] Hughes, W., Cambridge University Press, London, (1995)

[127] Ghosh S., Hossain M., and Matthaeus W. H., Comput. Phys. Commun., 74,
pg. 18, (1993).

[128] Wan M., S. Oughton, Servidio S. and Matthaeus W. H., Phys. Plasmas, 16,
pg. 080703 (2009).

[129] Wan M., Oughton S., Servidio S., and Matthaeus W. H., Phys. Plasmas, 17,
pg. 082308, (2010).

[130] Sorriso-Valvo L., Carbone V., Veltri P., Consolini G., and Bruno R., Geoph.
Res. Lett., 26, (1999).

[131] Mininni P. D. and Pouquet A., Phys. Rev. E, 80, pg. 025401, (2009).

[132] Smith D., Ghosh S., Dmitruk P., and Matthaeus W. H., Geophys. Res.Lett.,
31, pg. L02805, (2004).

[133] Dorelli J. C., and Birn J., J. Geophys. Res. 108, pg. 1133, (2003).

[134] Servidio S., Carbone V., Primavera L., Veltri P., and Stasiewicz K., Planet.
Space Sci., 55, pg. 2239 (2007).

[135] Galtier S., and Buchlin E.,; Astrophys. J., 656, pg. 560 (2007).
[136] Dmitruk P., and Matthaeus W. H., Phys. Plasmas, 13, pg. 042307, (2006).

[137] Mininni P. D., Alexakis A., and Pouquet A., J. Plasma Phys, 73, pg. 377,
(2007).

[138] Alexandrova O., Carbone V., Veltri P., and Sorriso-Valvo L., Planet. Space
Sci., 55, pg. 2224, (2007).

[139] Matthaeus W. H., Dmitruk P., Smith D., Ghosh S., and Oughton S., Geophys.
Res. Lett., 30, pg. 2104, (2003).

[140] Balbus S.A., and Terquem C., Astrophys. J., 552, pg. 235, (2001).
[141] Goldreich P., and Reisenegger A., Astrophys. J., 395, pg. 250, (1992).
[142] Bhattacharjee A., and Ng C.S., Astrophys. J., 548, pg. 318, (2001).

[143] Shay M. A., Drake J. F., Denton, R. E., and Biskamp D., J. Geophys. Res.,
103, pg. 9165 (1998).

93



BIBLIOGRAPHY

[144] Birn J., Drake J.F., Shay M.A., Rogers B.N., Denton R.E., Hesse M.,
Kuznetsova M., Ma Z.W., Bhattacharjee A., Otto A., and Prichett P.L.; J.
Geophys. Res., 106, pg. 3715, (2001).

[145] Ma Z. W., and Bhattacharjee A., J. Geophys. Res., 106, pg. 3773, (2001).

[146] Smith D., Ghosh S., Dmitruk P., Matthaeus W. H., Geophys. Res. Lett., 31,
pg. L02805 (2004).

[147] Sonnerup B. U. O., in Solar System Plasma Physics, ed. by E. N. Parker, C.
F. Kennel and L. J. Lanzerotti, North-Holland, pg. 47, (1979).

[148] Ren Y., Yamada M., Gerhardt S., Ji H., Kulsrud R., and Kuritsyn A., Phys.
Rev. Lett., 95, pg. 055003 (2005).

[149] Matthaeus W. H., Cothran C. D., Landreman M., and Brown M. R., Geophys.
Res. Lett., 32, pg. 123104 (2005).

[150] Cassak P. A., and Shay M. A., Phys. Plasmas, 14, pg. 102114, (2007).

[151] Mozer F. S., and Hull A., Phys. Plasmas, 17, pg. 102906, (2010).

[152] Mozer F. S.; and Pritchett P. L., Geophys. Res. Lett., 36, pg. L07102, (2009).
[153] Pritchett P. L., and Mozer F. S.; J. Geophys. Res., 114, pg. A11210, (2009).

[154] Orszag S.A., Fluid Dynamics, edited by R. Ballian and J.-L. Puebe, Gordon
& Breach, N.Y., 235, (1977).

[155] Carbone V., Veltri P., and Mageney A., Phys. Fluids A, 2, pg. 1487, (1990).

[156] Gary S. P. and Borovsky J. E., J. Geophys. Res. 109, pg. A06105 (2004).

94



	General overview of Turbulence
	Fluid Turbulence - Brief history and introduction
	Plasma Turbulence
	Kinetic plasma theory
	Fluid plasma theories
	Plasma instabilities and turbulence


	Turbulence in Solar Wind
	The Solar Wind plasma laboratory
	In situ plasma turbulence - The STEREO mission and the S/Waves experiment
	Plasma waves measurements with STEREO

	Observations of Langmuir ponderomotive effects
	Electrostatic activity in the high--frequency range of solar wind turbulence
	STEREO WAVES data
	Hybrid-Vlasov simulations data
	Conclusions


	Magnetic Reconnection as an element of Turbulence
	The physics of magnetic reconnection
	Magnetic reconnection : equations and the Sweet--Parker model

	Overview on 2D MHD turbulence
	Local reconnection in turbulence
	The link between magnetic reconnection and turbulence

	Time behavior of reconnection in turbulence
	The Hall effect in the reconnection process in turbulence
	Overview of numerical simulations in HMHD turbulence
	Reconnection in turbulence: Hall MHD vs. MHD

	Generalized Sweet--Parker theory for magnetic reconnection
	Conclusions

	Conclusions
	Appendices
	Using the STEREO spacecraft as a density probe
	Floating potential of spacecraft and antennas
	Equilibrium potential
	Charging time scales
	Variations of spacecraft potential associated to density fluctuations

	A simple Van der Pol model
	Bibliography

