
Università della Calabria
Dipartimento di Matematica

Dottorato di Ricerca in Matematica ed Informatica

xxv ciclo

Settore Disciplinare INF/01 – INFORMATICA

Tesi di Dottorato

Datalog with existential quantifiers:
An optimal trade-off between expressiveness and

scalability

Pierfrancesco Veltri

Supervisori Coordinatore

Prof. Nicola Leone Prof. Nicola Leone

Prof. Giorgio Terracina

A.A. 2011 – 2012

Dedicated to my parents,

Francesco and Rosa,

for their loving support

Acknowledgments

First of all, I would like to express my deep and sincere gratitude to my super-
visor Nicola Leone, whose constant support, and warm encouragement have made
possible to achieve the results described in this thesis. His energy and enthusiasm
in research gave me all the inspiration and motivation I needed to complete my
doctoral studies. It has been a privilege and honour to work under his supervision
during these years.

I am deeply grateful to Marco Manna and Giorgio Terracina for their constant
help and brilliant advices; their steadfast support to my studies has been greatly
needed and deeply appreciated.

I am also thankful to Marco Maratea and my supervisor Francesco Ricca for
the precious advices they gave me, and for the opportunities for personal and
professional growth they ensured me.

I would like to thank also the research group of the Department of Mathe-
matics at Unical, which has been a source of friendships as well as good advice
and collaboration. Among them, a sincere and grateful thanks goes to all the col-
leagues who shared the office with me, especially Onofrio Febbraro and Kristian
Reale for their friendship and constant help.

I wish to thank also a very special person that came into my life recently, and
that became extremely important for me. Her love helped me to get through tough
moments.

Lastly, and most importantly, I owe my deepest gratitude to my mother, my
father, my brothers, and my dog, Batista, for their care, moral support, and uncon-
ditional love.

1

Abstract

Ontologies and rules play a central role in the development of the Semantic
Web. Recent research in this context focuses especially on highly scalable for-
malisms for the Web of Data, which may highly benefit from exploiting database
technologies.

In particular, Datalog∃ is the natural extension of Datalog, allowing existen-
tially quantified variables in rule heads. This language is highly expressive and
enables easy and powerful knowledge-modeling, but the presence of existentially
quantified variables makes reasoning over Datalog∃ undecidable, in the general
case. The results in this thesis enable powerful, yet decidable and efficient rea-
soning (query answering) on top of Datalog∃ programs.

On the theoretical side, we define the class of parsimonious Datalog∃ pro-
grams, and show that it allows of decidable and efficiently-computable reasoning.
Unfortunately, we can demonstrate that recognizing parsimony is undecidable.
However, we single out Shy, an easily recognizable fragment of parsimonious
programs, that significantly extends both Datalog and Linear Datalog∃. More-
over, we show that Shy preserves the same (data and combined) complexity of
query answering over Datalog, although the addition of existential quantifiers.

On the practical side, we implement a bottom-up evaluation strategy for Shy

programs inside the DLV system, enhancing the computation by a number of op-
timization techniques. The resulting system is called DLV∃– a powerful system
for answering conjunctive queries over Shy programs, which is profitably applica-
ble to ontology-based query answering. Moreover, we design a rewriting method
extending the well-known Magic-Sets technique to any Datalog∃ program. We
demonstrate that our rewriting method preserves query equivalence on Datalog∃,
and can be safely applied to Shy programs. We therefore incorporate the Magic-
Sets method in DLV∃. Finally, we carry out an experimental analysis assessing
the positive impact of Magic-Sets on DLV∃, and the effectiveness of the enhanced
DLV∃ system compared to a number of state-of-the-art systems for ontology-
based query answering.

3

Sommario

Nello sviluppo del Semantic Web, attualmente, le ontologie giocano un ruolo
fondamentale. Gli studi condotti nell’ultimo periodo in questo ambito si sono
focalizzati maggiormente sulla ricerca di formalismi altamente scalabili per il
Web of Data, che potrebbe beneficiare delle più recenti tecnologie del mondo
dei database.

In questo contesto spicca il linguaggio Datalog∃, che è la naturale estensione
di Datalog dove si possono rappresentare variabili quantificate esistenzialmente in
testa alle regole. Questo linguaggio è altamente espressivo e consente di modellare
domini di conoscenza in maniera semplice e potente. Purtroppo, però, la presenza
delle variabili esistenziali rende indecidibile il ragionamento su Datalog∃, nel caso
generale. I risultati riportati in questo lavoro di tesi ci consentono di fare ragion-
amento (e quindi query answering) su programmi Datalog∃ in maniera potente,
nonché decidibile ed efficiente.

Da un punto di vista teorico, definiamo la classe dei programmi Datalog∃ “par-
simoniosi” e mostriamo che fare ragionamento su programmi di questo tipo è
decidibile ed anche efficiente. Sfortunatamente, però, possiamo dimostrare che
riconoscere la proprietà di “parsimonia” è indecidibile. Così, individuiamo un
frammento facilmente riconoscibile dei programmi parsimoniosi, chiamato Shy,
che estende in maniera significativa sia Datalog che Linear Datalog∃. Inoltre,
mostriamo che Shy preserva la stessa complessità (data e combined) del query
answering su Datalog, nonostante l’aggiunta dei quantificatori esistenziali.

Dal punto di vista pratico, invece, implementiamo una strategia di valutazione
bottom-up per programmi Shy all’interno del ben noto sistema DLV, ed arricchi-
amo la computazione attraverso una serie di tecniche di ottimizzazione. Il sistema
ottenuto è stato chiamato DLV∃– un potente ragionatore in grado di rispondere a
query congiuntive su programmi Shy, che è proficuamente applicabile al problema
dell’ontology-based query answering. Inoltre, progettiamo un metodo di riscrit-
tura che estende la ben nota tecnica Magis-Sets a qualsiasi programma Datalog∃.
Dimostriamo che la nostra tecnica di riscrittura preserva l’equivalenza tra query
su Datalog∃, e può essere tranquillamente applicata a programmi Shy. Quindi,
integriamo questo metodo basato sui Magic-Sets in DLV∃. E per concludere, con-

5

6

duciamo un’analisi sperimentale che dimostra l’effetto positivo dell’impatto che i
Magic-Sets hanno su DLV∃, ed anche l’efficacia del sistema evoluto, DLV∃, a con-
fronto con una serie di sistemi che rappresentano lo stato dell’arte nell’ontology-
based query answering.

Contents

1 Introduction 13

2 The Datalog± family 19

2.1 The framework . 19
2.1.1 Preliminaries . 20
2.1.2 Programs and Queries . 21
2.1.3 Query Answering and Universal Models 22
2.1.4 The Chase . 23

2.2 Decidability landscape . 24
2.2.1 Forward and backward chaining mechanisms 25
2.2.2 Abstract classes and their semantic properties 26
2.2.3 Actual languages and their syntactic conditions 28

2.3 Complexity . 32
2.3.1 Adding (negative) constraints 34
2.3.2 Adding Equality-Generating Dependencies (EGDs) and

Keys . 35
2.4 Comparative analysis . 38

3 Parsimonious and Shy programs 41

3.1 Parsimony: A novel semantic property ensuring decidability 41
3.2 Shyness: A syntactic property guaranteeing parsimony 44

3.2.1 The Shy language: Definition and main properties 44
3.2.2 Conjunctive query answering over Shy 47

3.3 Complexity analysis . 50
3.4 Shy vs. other Datalog± classes . 51

4 A DLV-based implementation of QA over Shy 55

4.1 The DLV system . 55
4.1.1 General architecture . 56
4.1.2 Intelligent grounding . 57

4.2 DLV∃: Design and implementation 61

7

8 CONTENTS

4.3 Optimizations . 65
4.3.1 Optimal resumption level 66
4.3.2 Magic-Sets . 67

5 Experimental analysis 75

5.1 DLV∃ vs. expressive ontology-based QA systems 76
5.2 DLV∃ vs. highly scalable QA systems 79
5.3 Impact of the proposed Magic-Sets optimization 82

6 Related work 85

6.1 Description Logics . 86
6.1.1 The DL-Lite family . 87
6.1.2 Shy vs. DL-Lite languages 88

6.2 Ontology reasoners . 89

7 Conclusion 91

Bibliography 94

List of Tables

2.1 Combined and Data Complexities for the main concrete decidable classes . . . 32

3.1 Complexity of the QA[C] problem 53

5.1 Running times for LUBM queries (sec). 78

5.2 Query evaluation time (seconds) of DLV∃ and improvements (IMP)
of Magic-Sets . 82

6.1 DL VS Shy; A, B, C are concept names, R, S are role names. . . . 88

9

List of Figures

2.1 Inclusions between decidable cases 30
2.2 Local weaknesses/shortcomings of the Datalog± family 38

3.1 Snapshot of pChase(P,3) w.r.t. Example 3.2.12 50
3.2 Taxonomy of representative Datalog± languages 52

4.1 Architecture of the DLV system . 56
4.2 Dependency Graph . 57
4.3 DLV’s instantiating procedure . 59

5.1 Running times for LUBM queries (sec.) over lubm-10 dataset . . 81

6.1 Relationships between DLs, Datalog± and Shy 88

11

12 LIST OF FIGURES

Chapter 1

Introduction

The adoption of ontologies and semantic technology in companies, govern-
mental organizations, and academia is becoming nowadays more and more promi-
nent, especially for knowledge representation and data management. Thanks to
their expressive power and formal semantics, ontologies have also been adopted as
high-level conceptual descriptions of the data in a database, often replacing tradi-
tional metadata and documentation such as data dictionaries, UML class-diagrams
and E/R schemata. Recently, the relationship of ontologies and databases tight-
ened, originating a new type of data management systems where a relational
database is enriched by an ontological theory that enforces expressive constraints
over the database. Such constraints go far beyond traditional integrity constraints
and can be used to enable complex reasoning tasks over the database instances.
However, the main task in an ontological database remains that of query answer-
ing. A number of commercial data management systems – such as Oracle1, On-
totext2 and Ontoprise3 – provide ontological querying capabilities in their current
solutions. Also, ontological reasoning is part of several research-based systems,
such as QuOnto [2], FaCT++ [89], and Nyaya [43]. The main problem is how to
couple these two different types of technologies smoothly and efficiently.

In knowledge representation community, the term “ontology” indicates the
general domain knowledge – sometimes also called terminological knowledge –
in order to be clearly distinguished from the assertional knowledge, called here
data set. Given a knowledge base KB = (Σ,D) composed of an ontology Σ and
of data set D, and a query q, the ontology-based Query Answering (QA) problem
consists in computing the set of answers to the query q on KB, while taking
implicit knowledge represented in the ontology into account.

A key issue in ontology-based QA is the design of the language that is pro-

1See: http://www.oracle.com/
2See: http://www.ontotext.com/
3See: http://www.ontoprise.de/

13

14 CHAPTER 1. INTRODUCTION

vided for specifying the ontological theory Σ. This language should balance ex-
pressiveness and complexity, and in particular it should possibly be: (1) intuitive
and easy-to-understand; (2) QA-decidable (i.e., QA should be decidable in this
language); (3) efficiently computable; (4) powerful enough in terms of expres-
siveness; and (5) suitable for an efficient implementation.

In the Semantic Web, ontological knowledge is often represented with for-
malisms based on description logics (DLs). However, DLs traditionally focused
on reasoning tasks about the ontology itself (the so-called TBox), for instance
classifying concepts; querying tasks were restricted to ground atom entailment.
Conjunctive query answering with classical DLs has appeared to be extremely
complex (e.g., for the classical DL ALCI , it is 2EXP-complete, and still NP-
complete in the size of the data). Hence, less expressive DLs specially devoted
to conjunctive query answering on large amounts of data have been designed re-
cently. A family of well-known DLs fulfilling this criterion is, e.g., the DL-Lite

family [34, 81] (which has recently been further extended in [9, 10]). The follow-
ing example briefly illustrates how queries can be posed and answered in DL-Lite.

Example 1.0.1. A DL knowledge base consists of a TBox and an ABox (the
data set). For example, the knowledge that every conference paper is an article
and that every scientist is the author of at least one paper can be expressed by
the axioms ConferencePaper ⊑ Article and Scientist ⊑ ∃isAuthorOf in the
TBox, respectively, while the knowledge that John is a scientist can be expressed
by the axiom Scientist(john) in the ABox. A simple Boolean conjunctive query
(BCQ) asking whether John authors a paper is ∃XisAuthorOf(john,X).

An ABox can be identified with an extensional database, while a TBox can be
regarded as a set of integrity constraints involving, among others, functional de-
pendencies and (possibly recursive) inclusion dependencies [47, 1]. An important
result of [34, 81] is that the DL-Lite description logics, in particular, DL-LiteF ,
DL-LiteR, and DL-LiteA, are not only decidable, but that answering (unions of)
conjunctive queries for them is in LOGSPACE, and actually in AC0, in the data
complexity, and query answering in DL-Lite is FO-rewritable [34]. Notice that,
in the context of DLs as well as in other contexts, two complexity measures are
classically considered for query answering problem: the usual complexity, called
combined complexity, and data complexity. We talk about combined complexity
of query answering in general, and about data complexity of query answering,
under the assumption that only the data, here the ABox, are considered as part of
the input while both the query and the TBox are considered fixed.

Moreover, many alghoritms and systems for DL-Lite have been developed,
such as Quonto (Acciarri et al. 2005), Owlgres (Stocker and Smith 2008), Re-
quiem (Perez-Urbina, Motik, and Horrocks 2009), and Presto (Almatelli, and

15

Rosati 2010). Thus, DL-Lite is a well-consolidated formalism for ontology-based
QA in the Semantic Web context.

On the other hand, querying large amounts of data is the fundamental task of
databases. Therefore, the challenge in this domain is now to access data while tak-
ing ontological knowledge into account. The deductive database language Datalog

allows to express some ontological knowledge. However, in Datalog rules, vari-
ables are range-restricted, i.e., all variables in the rule head necessarily occur in
the rule body, which does not allow for value invention. This feature has been
recognized as crucial in an open-world perspective, where it cannot be assumed
that all individuals are known in advance. This motivated the recent extension of
Datalog to TGDs (i.e., existential rules) which gave rise to Datalog±, the family
of Datalog-based languages proposed by Calì, Gottlob, and Lukasiewicz (2009)
for tractable query answering over ontologies, that is arousing increasing interest
[77] in the last period. This family of languages, that encompasses and general-
izes all the description logics of the DL-Lite family, is mainly based on Datalog∃,
the natural extension of Datalog that allows ∃-quantified variables in rule heads.
For example, the following Datalog∃ rules

∃Y father(X,Y) :- person(X).

person(Y) :- father(X,Y).

state that if X is a person, then X must have a father Y , which has to be a per-
son as well. However, more in general, the Datalog± family intends to collect
all expressive extensions of Datalog which are based on tuple-generating depen-

dencies (or TGDs, which are Datalog∃ rules with possibly multiple atoms in rule
heads), equality-generating dependencies and negative constraint. In particular,
the “plus” symbol refers to any possible combination of these extensions, while
the “minus” one imposes at least decidability, since Datalog∃ alone is already un-
decidable.

A number of QA-decidable Datalog± languages have been defined in the liter-
ature. They rely on three main paradigms, called weak-acyclicity [48], guardness

[27] and stickiness [29], depending on syntactic properties. But there are also
QA-decidable “abstract” classes of Datalog∃ programs, called Finite-Expansion-

Sets, Finite-Treewidth-Sets and Finite-Unification-Sets, depending on semantic
properties that capture the three mentioned paradigms, respectively [77]. How-
ever, even if all known languages based on these properties enjoy the simplic-
ity of Datalog and are endowed with a number of properties that are desired
for ontology specification languages, none of them fully satisfy conditions (1)–
(5) above (see Section 2.4). While DL-Lite is a well-consolidated formalism for
ontology-based QA in the Semantic Web context, the Datalog± family has still
some “weaknesses”. In particular, notwithstanding a number of Datalog± frag-
ments have been already proposed, the evident gap emerging in this scenario is

16 CHAPTER 1. INTRODUCTION

given by the lack of a language that offers a good efficiency whitout renouncing
expressiveness. Thus, in this work, we focus on this framework and we intend
to close this gap by singling out a new class of Datalog∃ programs, called Shy,
which enjoys a new semantic property called parsimony and results in a power-
ful and yet QA-decidable ontology specification language that combines positive
aspects of different Datalog± languages. Shy represents an optimal trade-off be-
tween expressiveness and scalability in the scenario of Datalog with existential
quantifiers (see Section 3.4). Indeed, with respect to properties (1)–(5) above,
the class of Shy programs behaves as follows: (1) it inherits the simplicity and
naturalness of Datalog; (2) it is QA-decidable; (3) it is efficiently computable
(tractable data complexity and limited combined-complexity); (4) it offers a good
expressive power being a strict superset of Datalog; and (5) it is suitable for an
efficient implementation. Specifically, Shy programs can be evaluated by parsi-
monious forward-chaining inference that allows of an efficient on-the-fly QA, as
witnessed by the experimental results 4 reported in Chapter 5. From a technical
viewpoint, the contribution of our work is the following.
▸ We propose a new semantic property called parsimony, and prove that on the
abstract class of parsimonious Datalog∃ programs, called Parsimonious, (atomic)
query answering is decidable and also efficiently computable.
▸ After showing that recognition of parsimony is undecidable (coRE-complete), we
single out Shy, a subclass of Parsimonious, which guarantees both easy recogniz-
ability and efficient answering even to conjunctive queries.
▸ We demonstrate that both Parsimonious and Shy preserve the same (data and
combined) complexity of Datalog for atomic query answering: the addition of
existential quantifiers does not bring any computational overhead here.
▸ We introduce a novel approach for conjunctive query answering, called par-

simonious-chase resumption, which is sound and complete for query answering
over Shy.
▸We implement a bottom-up evaluation strategy for Shy programs inside the well-
known DLV system, and enhance the computation by a number of optimization
techniques (e.g. we implement a variant of the well-known magic-set optimization
technique (Cumbo et al. 2004), that we adapted to Datalog∃), yielding DLV∃ –
a powerful system for query answering over Shy programs, which is profitably
applicable for ontology-based query answering. To the best of our knowledge,
DLV∃ is the first system supporting the standard first-order semantics for unre-
stricted CQs with existential variables over ontologies with advanced properties
(some of these beyond AC0), such as, role transitivity, role hierarchy, role inverse,

4Intuitively, parsimonious inference generates no isomorphic atoms (see Section 3.1); while
on-the-fly QA does not need any preliminary materialization or compilation phase (see Chapter
5), and is very well suited for QA against frequently changing ontologies.

17

and concept products [50].
▸ We perform an experimental analysis, comparing DLV∃ with a number of state-
of-the-art systems for ontology-based QA. The positive results attained through
this analysis give clear evidence that DLV∃ is definitely the most effective system
for query answering in dynamic environments, where the ontology is subject to
frequent changes, making pre-computations and static optimizations inapplicable.
▸ We analyze the Datalog± framework, providing a precise taxonomy of the QA-
decidable Datalog∃ classes (see Chapter 2). It turns out that both Parsimonious

and Shy strictly contain Datalog ∪ Linear-Datalog∃, while they are uncomparable
to Finite-Expansion-Sets, Finite-Treewidth-Sets, and Finite-Unification-Sets (see
Section 3.4).
▸ We analyze related work, providing a description of the basic DL-Lite classes,
we observe that Shy encompasses and generalizes all the languages of the DL-Lite

family (see Chapter 6).

The remainder of the thesis is structured as follows. First, syntax and seman-
tics of Datalog∃ programs, as well as some preliminaries and useful notation, are
fixed in Chapter 2. Moreover, in the same chapter, an overview of the Datalog±

family is also provided, and strenghts and weaknesses of this framework are high-
lighted. Then, a new class of Datalog∃ programs, called Parsimonious-Sets, is
introduced in Chapter 3, as well as some of its properties. In particular, recogniz-
ing parsimony is demonstrated to be undecidable, thus, the Shy language and its
main properties are presented. Afterwards, a description of the DLV∃ system is
provided in Chapter 4, where the variant of the Magic-Sets tecnique implemented
in DLV∃ for Shy programs is also discussed. Moreover, experimental results are
presented in Chapter 5. Finally, related work and conclusion are reported in Chap-
ters 6-7.

18 CHAPTER 1. INTRODUCTION

Chapter 2

The Datalog± family

In this chapter we give an overview of the Datalog± family of languages. In
Section 2.1, after some useful preliminaries, we introduce Datalog∃ programs and
conjunctive queries (CQs), query answering and universal models and, finally, the
chase procedure. In Section 2.2 we survey all notable Datalog± classes. After-
wards, in Section 2.3, we deal with complexity. Finally, in Section 2.4, we an-
alyze relationships among Datalog± fragments, enlighting the lack of an optimal
trade-off between expressiveness and scalability.

2.1 The framework

As discussed in the introduction, Datalog∃ is the natural extension of Datalog

that allows existentially quantified variables in rule heads. In particular, Datalog∃

rules, or more in general TGDs, are an interesting fragment of first-order logic
originally introduced in the context of the design of relational database schemas
and suitable for expressing integrity constraints of databases [23]. Nowadays, as
previously discussed, TGDs are also an important and convenient formalism for
describing missing information in ontologies. However, in this context, a crucial
question is how to interpret the combined information provided by an extensional
database and an ontological theory. In the case of TGDs, given a database D

and a set of dependencies Σ, the semantics of this pair is commonly given by the
so-called universal model U of the logical theory D ∪ Σ (i.e., U contains D and
also satisfies all TGDs of Σ) which can be homomorphically mapped to all other
models of D ∪Σ. In terms of query evaluation, this entails, for example, that for
a Boolean CQ q, D ∪Σ ⊧ q iff U ⊧ q [48, 44]. However, Calì, Gottlob, and Kifer
(2008) have shown that CQ answering under general TGDs is logspace-reducible
to CQ answering under Datalog∃ programs. Therefore, w.l.o.g., Datalog∃ can be
always used instead of general TGDs for QA purposes.

19

20 CHAPTER 2. THE DATALOG± FAMILY

A well-known procedure that computes a universal model for a Datalog∃ pro-
gram is called chase [70, 60]. Due to its power, this technique, firstly introduced
for enforcing the validity of a set of TGDs, has several important uses, such as
query equivalence and query optimization [1]. However, there are cases where the
universal model found by the chase is infinite and also there are cases where the
problem of deciding whether a Datalog∃ program entails a query is undecidable
[48, 44]. Finally, even if the QA problem is decidable, it could be computationally
hard.

In this section, after some useful preliminaries, we provide more formally
syntax of Datalog∃ programs and CQs. Next, we equip such structures with a
formal semantics. Finally, we show the chase, a well-known procedure that allows
of answering CQs [70, 60].

2.1.1 Preliminaries

The following notation will be used throughout the thesis. We always denote
by ∆C , ∆N and ∆V , countably infinite domains of terms called constants, nulls

and variables, respectively; by ∆, the union of these three domains; by t, a generic
term; by c, d and e, constants; by ϕ, a null; by X and Y, variables; by X and Y,
sets of variables; by Π an alphabet of predicate symbols each of which, say p,
has a fixed nonnegative arity, denoted by arity(p); by a, b and c, atoms being
expressions of the form p(t1, . . . , tk), where p is a predicate symbol and t1, . . . , tk
is a tuple of terms. Moreover, if the tuple of an atom consists of only constants
and nulls, then this atom is called ground; if T ⊆∆C ∪∆N , then base(T) denotes
the set of all ground atoms that can be formed with predicate symbols in Π and
terms from T ; if a is an atom, then pred(a) denotes the predicate symbol of a; if
ς is any formal structure containing atoms, then terms(ς) (resp., dom(ς)) denotes
all the terms from ∆ (resp., ∆C ∪ ∆N) occurring in the atoms of ς; moreover,
vars(ς) = terms(ς) ∖ dom(ς) indicates all the variables appearing in the atoms of
ς .

Mappings.

Given a mapping µ ∶ S1 → S2, its restriction to a set S is the mapping µ∣S from
S1 ∩ S to S2 s.t. µ∣S(s) = µ(s) for each s ∈ S1 ∩ S. If µ′ is a restriction of µ,
then µ is called an extension of µ′, also denoted by µ ⊇ µ′. Let µ1 ∶ S1 → S2 and
µ2 ∶ S2 → S3 be two mappings. We denote by µ2 ○ µ1 ∶ S1 → S3 the composite

mapping.
We call homomorphism any mapping h ∶ ∆ → ∆ whose restriction h∣∆C

is
the identity mapping. In particular, h is an homomorphism from an atom a =

p(t1, . . . , tk) to an atom b if b = p(h(t1), . . . , h(tk)). With a slight abuse of

2.1. THE FRAMEWORK 21

notation, b is denoted by h(a). Similarly, h is a homomorphism from a set of
atoms S1 to another set of atoms S2 if h(a) ∈ S2, for each a ∈ S1. Moreover,
h(S1) = {h(a) ∶ a ∈ S1} ⊆ S2. In particular, if S1 = ∅, then h(S1) = ∅. In case
the domain of h is the empty set, then h is called empty homomorphism and it is
denoted by h∅. In particular, h∅(a) = a, for each atom a.

An isomorphism between two atoms (or two sets of atoms) is a bijective ho-
momorphism. Given two atoms a and b, we say that: a ⪯ b iff there is a homo-
morphism from b to a; a ≃ b iff there is an isomorphism between a and b; a ≺ b
iff a ⪯ b holds but a ≃ b does not.

A substitution is a homomorphism σ from ∆ to ∆C ∪∆N whose restriction
σ∣∆C∪∆N

is the identity mapping. Also, σ∅ = h∅ denotes the empty substitution.

2.1.2 Programs and Queries

A Datalog∃ rule r is a finite expression of the form:

∀X∃Y atom[X′∪Y] ← conj[X] (2.1)

where (i) X and Y are disjoint sets of variables (next called ∀-variables and
∃-variables, respectively); (ii) X′ ⊆ X; (iii) atom[X′∪Y] stands for an atom
containing only and all the variables in X′ ∪ Y; and (iv) conj[X] stands for a
conjunct (a conjunction of zero, one or more atoms) containing only and all the
variables in X. Constants are also allowed in r. In the following, head(r) denotes
atom[X′∪Y], and body(r) the set of atoms in conj[X]. Universal quantifiers are
usually omitted to lighten the syntax, while existential quantifiers are omitted only
if Y is empty. In the second case, r coincides with a standard Datalog rule. If
body(r) = ∅, then r is usually referred to as a fact. In particular, r is called
existential or ground fact according to whether r contains some ∃-variable or not,
respectively. A Datalog∃ program P is a finite set of Datalog∃ rules. We denote
by preds(P) ⊆ Π the predicate symbols occurring in P , by data(P) all the atoms
constituting the ground facts of P , and by rules(P) all the rules of P being not
ground facts.

Example 2.1.1. The following expression is a Datalog∃ rule where father is the
head and person the only body atom.

∃Y father(X,Y) :- person(X).

Given a Datalog∃ program P , a conjunctive query (CQ) q over P is a first-
order (FO) expression of the form:

∃Y conj[X∪Y] (2.2)

22 CHAPTER 2. THE DATALOG± FAMILY

where X are its free variables, and conj[X∪Y] is a conjunct containing only and
all the variables in X ∪ Y and possibly some constants. To highlight the free
variables, we write q(X) instead of q. Query q is called Boolean CQ (BCQ)
if X = ∅. Moreover, q is called atomic if conj is an atom. Finally, atoms(q)
denotes the set of atoms in conj.

Example 2.1.2. The following expression is a CQ asking whether there exists a
grandfather having john as nephew.

∃Y father(’john’,X),father(X,Y)

2.1.3 Query Answering and Universal Models

In the following, we equip Datalog∃ programs and queries with a formal se-
mantics to result in a formal QA definition.

Given a set S of atoms and an atom a, we say that S ⊧ a (resp., S ⊩ a) holds
if there is a substitution σ s.t. σ(a) ∈ S (resp., a homomorphism h s.t. h(a) ∈ S).

Let P ∈ Datalog∃. A set M ⊆ base(∆C ∪∆N) is a model for P (M ⊧ P , for
short) if, for each r ∈ P of the form (2.1), whenever there exists a substitution σ s.t.
σ(body(r)) ⊆ M , then M ⊧ σ∣X(head(r)). (Note that, σ∣X(head(r)) contains
only and all the ∃-variables Y of r.) The set of all the models of P are denoted by
mods(P).

Let M ∈ mods(P). A BCQ q is true w.r.t. M (M ⊧ q) if there is a substitution
σ s.t. σ(atoms(q)) ⊆M . Analogously, the answer of a CQ q(X) w.r.t. M is the
set ans(q,M) = {σ∣X ∶ σ is a substitution ∧ M ⊧ σ∣X(q)}.

The answer of a CQ q(X) w.r.t. a program P is the set ansP (q) = {σ ∶ σ ∈

ans(q,M) ∀M ∈ mods(P)}. Note that, ansP (q) = {σ∅} iff q is a BCQ. In this
case, we say that q is cautiously true w.r.t. P or, equivalently, that q is entailed by
P . This is denoted by P ⊧ q, for short.

Let C be a class of Datalog∃ programs. The following definition formally fixes
the computational problem studied in this thesis, concerning query answering.

Definition 2.1.3. QA[C] is the following decision problem. Given a program P

belonging to C, an atomic query q, and a substitution σ for q, does σ belong to
ansP (q)?

In the following, a Datalog∃ class C is called QA-decidable if and only if
problem QA[C] is decidable. Finally, before concluding this section, we mention
that QA can be carried out by using a universal model. Actually, a model U for
P is called universal if, for each M ∈ mods(P), there is a homomorphism h s.t.
h(U) ⊆M .

2.1. THE FRAMEWORK 23

Procedure 1 CHASE(P)

Input: Datalog∃ program P

Output: A Universal Model chase(P) for P
1. C ∶= data(P)
2. NewAtoms ∶= ∅

3. for each r ∈ P do

4. for each firing substitution σ for r w.r.t. C do

5. if ((C ∪NewAtoms) /⊧ σ(head(r)))
6. add(σ̂(head(r)),NewAtoms)
7. if (NewAtoms ≠ ∅)
8. C ∶= C ∪NewAtoms

9. go to step 2
10. return C

Proposition 2.1.4 (Fagin et al. (2005)). Let U be a universal model for P . Then,

(i) P ⊧ q iff U ⊧ q, for each BCQ q; (ii) ansP (q) ⊆ ans(q,U) for each CQ q;

and (iii) σ ∈ ansP (q) iff both σ ∈ ans(q,U) and σ ∶∆V →∆C .

2.1.4 The Chase

As already mentioned, the chase is a well-known procedure for constructing
a universal model for a Datalog∃ program. We are now ready to show how this
procedure works, in one of its variants (although slightly revised).

First, we introduce the notion of chase step, which, intuitively, fires a rule r

on a set C of atoms for inferring new knowledge. More precisely, given a rule r

of the form (2.1) and a set C of atoms, a firing substitution σ for r w.r.t. C is a
substitution σ on X s.t. σ(body(r)) ⊆ C. Next, given a firing substitution σ for r
w.r.t. C, the fire of r on C due to σ infers σ̂(head(r)), where σ̂ is an extension of
σ on Y∪X associating each ∃-variable in Y to a different null. Finally, Procedure
1 illustrates the overall restricted chase procedure. Importantly, we assume that
different fires (on the same or different rules) always introduce different “fresh”
nulls. The procedure consists of an exhaustive series of fires in a breadth-first
(level-saturating) fashion, which leads as result to a (possibly infinite) chase(P).

The level of an atom in chase(P) is inductively defined as follows. Each
atom in data(P) has level 0. The level of each atom constructed after the appli-
cation of a restricted chase step is obtained from the highest level of the atoms in
σ(body(r)) plus one. For each k ≥ 0, chasek(P) denotes the subset of chase(P)
containing only and all the atoms of level up to k. Actually, by Procedure 1,
chasek(P) is precisely the set of atoms which is inferred the kth-time that the

24 CHAPTER 2. THE DATALOG± FAMILY

outer for-loop is ran.
The chase graph for P is the directed graph consisting of chase(P) as the set

of nodes and having an arrow from a to b iff b is obtained from a and possibly
other atoms by a one-step application of a rule r ∈ P .

Proposition 2.1.5. [48, 44] Given a Datalog∃ program P , CHASE constructs a

universal model for P .

Unfortunately, CHASE does not always terminate.

Proposition 2.1.6. [48, 44] QA[Datalog∃] is undecidable even for atomic queries. In

particular, it is RE-complete.

Therefore, the general Datalog∃ language has to be somehow restricted in or-
der to reach decidability of QA. In the next section we show the scenario of the
most known QA-decidable fragments of Datalog∃.

2.2 Decidability landscape

Datalog [1] has been widely used as a database programming and query lan-
guage for long time. It is rarely used directly as a query language in corporate
application contexts. However, it is used as an inference engine for knowledge
processing within several software tools, and has recently gained popularity in the
context of various applications, such as web data extraction [21, 51], source code
querying and program analysis [57], and modeling distributed systems [3]. At
the same time, Datalog has been shown to be too limited to be effectively used
to model ontologies and expressive database schemata, as explained in [78]. In
this respect, the main missing feature in Datalog is the possibility of expressing
existential quantification in the head; this was addressed in the literature by in-
troducing Datalog with value invention [26, 71]. Unfortunately, as remarked in
Section 2.1.4, QA over general Datalog∃ is undecidable even for atomic queries;
therefore, some restrictions is needed to ensure decidability.

In this regard, Datalog±, the family of Datalog-based languages proposed by
Calì, Gottlob, and Lukasiewicz (2009) for tractable query answering over ontolo-
gies, is arousing increasing interest [77]. More in general, the Datalog± family
intends to collect all expressive extensions of Datalog which are based on tuple-

generating dependencies (or TGDs, which are Datalog∃ rules with possibly mul-
tiple atoms in rule heads), equality-generating dependencies and negative con-

straint. In particular, the “plus” symbol refers to any possible combination of
these extensions, while the “minus” one imposes at least decidability.

A number of QA-decidable Datalog± languages have been defined in the lit-
erature. Decidable classes found in the literature are based on various syntactic

2.2. DECIDABILITY LANDSCAPE 25

properties of existential rules. In order to classify them, three abstract properties
related to the behavior of reasoning mechanisms are considered in [15, 13]: the
“forward chaining halts in finite time”; the “forward chaining may not halt but the
atoms generated have a tree-like structure”; the “backward chaining mechanism
halts in finite time”. These properties yield three abstract classes of rules, respec-
tively called finite expansion sets, bounded treewidth sets and finite unification

sets. These classes are said to be abstract in the sense that they do not come with
a syntactic property that can be checked on rules or programs. As a matter of fact,
none of these classes is recognizable, i.e., the problem of determining whether a
given program fulfills the abstract property is not decidable [13]. In the follow-
ing, we first give some preliminary notions about these reasoning mechanisms and
then we analyze these three abstract classes in more detail.

2.2.1 Forward and backward chaining mechanisms

In this section we give some preliminary notions about forward and backward
chaining algorithm. In the sequel, let P be a Datalog∃ program, we denote by
D the set, data(P), of ground facts of P and by Σ the set, rules(P), of rules
of the program. Moreover, given a Datalog∃ rule r, the set of variables fr(r) =
vars(head(r)) ∩ vars(body(r)) is called the frontier of r.

Definition 2.2.1. Given a rule r ∈ Σ, r is applicable to D if there is a substitution
h on vars(body(r)) s.t. h(body(r)) ⊆ D; the application of r on D w.r.t. h is a
set of ground atoms σ(D,r, h) = D ∪ h′(head(r)) where h′ is an extension of h
on vars(head(r)) ∪ vars(body(r)), that replaces each X ∈ fr(r) with h(X), and
each other variable with a “fresh” null not introduced before; this application is
said to be redundant if σ(D,r, h) ≡D.

Now, we are ready to define a derivation sequence.

Definition 2.2.2. A Σ-derivation of D is a finite sequence (D0 = D), ...,Dk s.t.
for all 0 ≤ i < k, there is ri ∈ Σ and a substitution hi from body(ri) to Di s.t.
Di+1 = σ(Di, ri, hi).

Below, we report a theorem stating the completeness of forward chaining.

Theorem 2.2.3. Let q be a BCQ. Then (D,Σ) ⊧ q iff there exists an Σ-derivation

(D0 =D), ...,Dk such that Dk ⊧ q.

It follows that a breadth-first forward chaining mechanism yields a positive
answer in finite time when (D,Σ) ⊧ q. This mechanism, called the saturation

hereafter (and the chase in databases) works as follows. Let D0 =D be the initial
set of ground atoms. Each step i (i ≥ 1) consists of checking if q maps to Di−1,

26 CHAPTER 2. THE DATALOG± FAMILY

and otherwise producing Di from Di−1, by computing all new substitutions from
each rule body to Di−1, then performing all corresponding rule applications. A
substitution is said to be new if it has not been already computed at a previous
step, i.e., it uses at least an atom added at step i−1 (i ≥ 2). The result Dk obtained
after the step k is called the k-saturation of D and is denoted by σk(D,Σ).

The two classical ways of processing rules are forward chaining, introduced
above, and backward chaining. Instead of using rules to enrich the facts, the back-
ward chaining proceeds in the “reverse” manner: it uses the rules to rewrite the
query in different ways with the aim of producing a query that maps to D. The key
operation in this mechanism is the unification operation between part of a current
goal (a conjunctive query in our framework) and a rule head. This mechanism
is typically used in logic programming, with rules having a head restricted to a
single atom, which is unified with an atom of the current goal. The operator that
rewrites the query is denoted by β and is informally defined as follows (for a for-
mal definition see [15, 17]): given a conjunctive query q, a rule r ∈ Σ and a unifier
µ of (part of) q with (the head of) r, β(q, r, µ) = qµ ∪Bµ where qµ is a specializa-
tion of the non-unified subset of q (determined by µ), and Bµ is a specialization
of the body of r (also determined by µ). Now we define a rewriting sequence.

Definition 2.2.4. Let q be a boolean conjunctive query. An Σ-rewriting of q is a
finite sequence (q0 = q), q1, ..., qk s. t. for all 0 ≤ i < k, there is ri ∈ Σ and a unifier
µ of qi with (the head of) ri such that qi+1 = β(qi, ri, µ).

The soundness and completeness of the backward chaining mechanism can
be proven via the following equivalence with the forward chaining: there is an
Σ-rewriting from the query q to a query q′ that maps to the initial set of ground
atoms D iff there is a Σ-derivation from D to a set of ground atoms D′ such that
q maps to D′.

2.2.2 Abstract classes and their semantic properties

Now, we are ready to analyze, in more detail, the abstract classes finite ex-

pansion sets, bounded treewidth sets and finite unification sets introduced be-
fore. In particular, a set of Datalog∃ rules Σ is said to be a finite expansion

set (fes) if, for every set of ground atoms D, there exists an integer k such that
σk(D,Σ) ≡ σk+1(D,Σ), i.e., all rule applications to σk(D,Σ) are redundant [18].
Weaker versions, in the sense that they allow to stop in less cases, can be con-
sidered. For instance the halting condition may be σk(D,Σ) = σk+1(D,Σ), i.e.,
no new rule application can be performed on σk(D,Σ); a forward-chaining algo-
rithm with this halting condition corresponds to the so-called oblivious chase in
databases (note that the restricted chase is still weaker than fes). If Σ is a fes, then
the termination is guaranteed for any forward chaining that (1) builds a derivation

2.2. DECIDABILITY LANDSCAPE 27

sequence until the halting condition is satisfied (the order in which rules are ap-
plied does not matter), then (2) checks if the query maps to the obtained result.
Bounded-treewidth sets of rules form a more general class, which was essentially
introduced in [27]. The following definition of the treewidth of a set of ground
atoms corresponds to the usual definition of the treewidth of a graph, where the
considered graph is the primal graph of the hypergraph of the set of atoms (this
graph has the same set of nodes as the hypergraph and there is an edge between
two nodes if they belong to the same hyperedge).

Definition 2.2.5. Let D be a set of ground atoms. A tree decomposition of D is
an undirected tree T with set of nodes X = {X1, ...,Xk} where:

1. ⋃iXi = terms(D);

2. for each atom a in D, there is Xi ∈ X s.t. terms(a) ⊆Xi;

3. for each term t in D, the subgraph of T induced by the nodes Xi that contain
t is connected (“running intersection property”). The width of a tree decom-
position T is the size of the largest node in T , minus 1. The treewidth of D
is the minimal width among all its possible tree decompositions.

A set of Datalog∃ rules Σ is called a bounded treewidth set (bts) if for any
set of ground atoms D there exists an integer b such that, for any D′ that can be
Σ-derived from D (for instance with the chase algorithm), treewidth(D′) ≤ b.
A fes is a bts, since the finite chase graph generated by a fes has a treewidth
bounded by its size. Proving the decidability of QA with bts is not as immediate
as with fes. Indeed, the proof relies on a theorem from Courcelle [39], that states
that classes of first-order logic having the bounded treewidth model property are
decidable. This proof does not (at least not directly) provide a halting algorithm.
Very recently, a subclass of bts has been defined, namely greedy bts (gbts), which
is equipped with a halting algorithm [19]. This class is defined as follows. A
derivation is said to be greedy if, for every rule application in this derivation, all
the frontier variables (notice that the frontier variables of a rule are the universally
quantified variables appearing in the head of the rule) not being mapped to terms
of the initial set of ground atoms are jointly mapped to terms added by a single
previous rule application. The third class, finite unification set (fus) [15], requires
that the number of rewritings of q using the rules Σ is finite for any set of ground
atoms D. More precisely, one considers only the “most general” rewritings of q,
the other rewritings being useless for the querying task. Indeed, let q1 and q2 be
two rewritings such that q1 maps to q2 (i.e., q1 is “more general” than q2): if q1
does not map to D, neither does q2. A set of Datalog∃ rules Σ is called a fus if for
every set of ground atoms D, there is a finite set Q of Σ-rewritings of q such that,
for any Σ-rewriting q′ of q, there is an Σ-rewriting q′′ in Q that maps to q′. Note

28 CHAPTER 2. THE DATALOG± FAMILY

that it may be the case that the set of the most general rewritings is finite while
the set of rewritings is infinite. If Σ is a fus, then a backward chaining algorithm
that builds rewritings of q in a breadth-first way, while maintaining a set Q of the
most general Σ-rewritings built, and answers yes if an element of Q maps to D,
necessarily halts in finite time. The fes and fus classes are not comparable, neither
are bts (resp. gbts) and fus.

2.2.3 Actual languages and their syntactic conditions

Let us now enumerate the main concrete classes. Most of them implement
one of the three preceding abstract behaviors; however, some concrete classes that
are not bts neither fus have been exhibited very recently [29], we will mention
them in this section. The typical fes concrete class is plain Datalog, where rules
do not have any existential variable in their head, i.e., for any Datalog rule r,
vars(head(r)) ⊆ vars(body(r)). Other names for this class are range-restricted

rules (rr) [1], full implicational dependencies [37] and total tuple-generating de-
pendencies [24]. These rules typically allow to express specialization relation-
ships between concepts or relations in ontological languages, as well as properties
of relations such as reflexivity, symmetry or transitivity. A special class is that of
disconnected (disc) rules, which have an empty frontier [18]. A disconnected rule
needs to be applied only once: any further application of it is redundant; this is
why these rules are both fes and fus. The body and the head of a disc-rule may
share constants, which allows to express knowledge about specific individuals.
Apart from this use, this class is mostly useful in technical constructions. Other
fes cases are obtained by restricting possible interactions between rules. These
interactions have been encoded in two different directed graphs: a graph encoding
variable sharing between positions in predicates and a graph encoding dependen-
cies between rules. In the first graph, called (position) dependency graph [48], the
nodes represent positions in predicates, i.e., the node (p, i) represents a position
i in predicate p. Then, for each rule r and each variable X in body(r) occur-
ring in position (p, i), edges with origin (p, i) are built as follows: if X ∈ fr(r),
there is an edge from (p, i) to each position of X in head(r); furthermore, for each
existential variable Y in head(r) (i.e., Y ∈ vars(head(r))∖fr(r)) occurring in po-
sition (r, j), there is a special edge from (p, i) to (r, j). A set of Datalog∃ rules
is said to be weakly acyclic (wa) if its position dependency graph has no circuit
passing through a special edge. Intuitively, such a circuit means that the intro-
duction of a null in a given position may lead to create another null in the same
position, hence an infinite number of null terms. The weak-acyclicity property
is a sufficient condition (but of course not a necessary condition) for the forward
chaining to be finite [48, 45]. Recently, weak-acyclicity has been independently
generalized in various ways, namely safety [74], super-weak-acyclicity [72] and

2.2. DECIDABILITY LANDSCAPE 29

joint-acyclicity [65], while keeping the forward chaining finiteness property. Note
that joint-acyclicity (ja) is obtained by simply shifting the focus from positions to
existential variables, hence replacing the position dependency graph by the exis-

tential dependency graph,where the nodes are the existential variables occurring
in rules; this yields a finer analysis of potentially infinite creations of nulls. In
the second graph, called graph of rule dependencies (GRD), the nodes represent
rules and the edges represent dependencies between rules. Intuitively, we say that
a rule r2 depends on a rule r1 if r1 may bring knowledge that leads to a new appli-
cation of r2. GRD encodes dependencies between rules from a program P . It is a
directed graph with P as the set of nodes and an edge (ri, rj) if rj depends on ri.
The acyclicity of the GRD, noted aGRD in Figure 2.1 ensures that the forward
chaining, as well as the backward chaining, is finite, thus aGRD is both a fes and
a fus class. More generally, when all strongly connected components of the GRD
have the property of being weakly-acyclic sets of rules (noted wa-GRD), then
the forward chaining is finite; this class corresponds to the notion of a stratified
chase graph in [44]. Let us now review gbts classes, which, intuitively, ensure that
the derived facts have a tree-like structure that can be built in a greedy way. The
notion of a guarded rule is inspired from guarded logic [8]. A rule r is guarded

(g) if there is an atom a in its body (called a guard) that contains all variables
from the body, i.e., vars(body(r)) ⊆ vars(a). A generalization of guarded rules
is obtained by relaxing the guardedness property: a set of rules is weakly guarded

(wg) if, for each rule r, there is a ∈ body(r) (called a weak guard) that contains all
affected variables from body(r). The notion of an affected variable is relative to
the rule set: a variable is affected if it occurs only in affected predicate positions,
which are positions that may contain a new null generated by forward chaining.
The important property is that a rule application necessarily maps non-affected
variables to terms from ∆C .

A rule r is frontier-one (fr1) if its frontier is of size one (note that rules re-
stricted to a frontier of size two still lead to undecidability). By noticing that
the shape of derived facts depends only on how the frontier of rules is mapped
(and not on how the whole body is mapped, since only the images of the frontier
are used to apply a rule), one obtains a generalization of both fr1 and guarded

rules: a rule r is frontier-guarded (fg) if there is an atom a in its body that con-
tains all variables in its frontier, i.e., vars(fr(r)) ⊆ vars(a). The same remark as
for guarded rules can be made: only affected variables need to be guarded.One
then obtains a generalization of both wg and fg: a set of rules is weakly-frontier-

guarded (wfg) if, for each rule r, there is a ∈ body(r) that contains all affected
variables from fr(r). In a very recent paper [65], the class w(f)g is further
generalized into jointly-(frontier)-guarded (j-(f)g), by refining the notion of af-
fected variable. Interestingly, [65] exhibits a class that is bts but neither fes nor
gbts, namely glutfrontier-guarded (glut-fg). This class generalizes both notions

30 CHAPTER 2. THE DATALOG± FAMILY

Figure 2.1: Inclusions between decidable cases

of joint-acyclicity (which itself generalizes weak-acyclicity) and joint-(frontier)-

guardedness: a set of rules is glut-(frontier)-guarded if each rule has an atom
in its body that contains all glut variables (occurring in its frontier). This class
relies on a special method for eliminating existential quantifiers; instead of be-
ing replaced by functional terms as in skolemization, existential quantifiers are
replaced by “flattened” functional terms encoded as additional arguments in pred-
icates. Briefly, the glut variables are the variables that remain affected after this
rule rewriting.

Whether the gbts class is concrete, i.e. recognizable, is not known yet. Note
that guarded and weakly guarded rules were already provided with an algorithm
[27, 28], but that it was not the case for fr1-rules and their generalizations up to
(j-(f)g)-rules, which can now benefit from the algorithm for gbts. A glut-fg set of
rules can be translated into an exponentially large j-fg set of rules, thus the glut-fg

class is also provided with an algorithm.
About fus concrete cases, two classes are exhibited in [15]. The first class

is that of atomic-hypothesis rules (ah) - where “hypothesis” stands for “body” -
whose body is restricted to a single atom; these rules are also called linear TGDs

2.2. DECIDABILITY LANDSCAPE 31

[1]. Since ah-rules are fus, there is a halting algorithm based on backward chain-
ing, but, since they are also special guarded rules, there is also a halting algo-
rithm based on forward chaining. Atomic-hypothesis rules are useful to express
necessary properties of concepts or relations in ontological languages, without
any restriction on the form of the head, i.e., by rules of the form h ← C(X) or
h ← r(X1, ...,Xk), where C is a concept, r a k-ary relation and h any head atom.
Specific ah-rules translate the so-called inclusion dependencies (ID) in databases:
the body and the head of these rules are each composed of a single atom, whose
arguments are pairwise distinct variables.

The second class of rules, domain-restricted rules (dr), constrains the form
of the head: the head atom contains all or none of the variables in the body.
For instance, a domain-restricted rule can express the so-called concept-product,
argued to be a useful constructor for description logics in [86]: this operator
allows to compute the cartesian product of two concepts by rules of the form
r(X,Y) ← p(X),q(Y) (e.g., biggerThan(X,Y) ← elephant(X),mouse(Y)).

In [29], another concrete fus class is defined: sticky rules, which are incompa-
rable with ah-rules and dr-rules. The stickyness property restricts multiple occur-
rences of variables (in the same atom or in distinct atoms, i.e., in joins) in the rule
bodies. Variables that occur in rule bodies are marked according to the following
procedure: (1) for each rule r, for each variable X in body(r), if there is an atom in
head(r) that does not contain X, then mark every occurrence of X in body(r); (2)
repeat the following step until a fixpoint is reached: for each rule r, if a marked
variable in body(r) appears at position i of an atom whose predicate is p then, for
every rule r′ (including r = r′) and every variable X appearing in position i of an
atom whose predicate is p in head(r′), mark every occurrence of X in body(r′). A
program P is said to be sticky if there is no rule r ∈ P such that a marked variable
occurs in body(r) more than once. The above mentioned concept-product rule is
obviously sticky since no variable occurs twice in the rule body.

Several generalizations of sticky rules are defined in [30]. All these classes
are obtained by more sophisticated variable-marking techniques. Weakly-sticky

(w-sticky) sets are a generalization of both weakly-acyclic sets and sticky sets:
intuitively, if a marked variable occurs more than once in a rule body, then at least
one of these positions has to be safe, i.e., only a finite number of terms can appear
in this position during the forward chaining. Sticky join (sticky-j) sets generalize
sticky sets. Finally, weakly-sticky-join (w-sticky-j) sets generalize both weakly-

sticky sets and sticky-join sets. These classes are still incomparable with dr.
Figure 2.1 synthesizes inclusions between the preceding concrete decidable

classes. All inclusions are strict and classes not related in the schema are indeed
incomparable. Each class belongs to at least one of the abstract classes fes, fus,
gbts and bts, except for the two recent classes weakly-sticky and weakly-sticky-

join: indeed, they generalize both a fes but not fus nor gbts class, namely wa, and

32 CHAPTER 2. THE DATALOG± FAMILY

Class C
Data Combined

Complexity Complexity

glut-fg EXP-hard 3EXP-complete

gbts EXP-complete 3EXP-complete

j-fg EXP-complete 2EXP-complete

wfg EXP-complete 2EXP-complete

wg EXP-complete 2EXP-complete

fg P-complete 2EXP-complete

fr1 P-complete 2EXP-complete

guarded P-complete 2EXP-complete

j-a P-complete 2EXP-complete

wa, wa-GRD P-complete 2EXP-complete

Datalog P-complete EXP-complete

linear in AC0 PSPACE-complete

sticky, sticky-j in AC0 EXP-complete

w-sticky, w-
sticky-j

in AC0 2EXP-complete

Table 2.1: Combined and Data Complexities for the main concrete decidable classes

a fus but not bts class, namely sticky.

2.3 Complexity

In this section we deal with the complexity of QA[C] problem as Definition
2.1.3, given a program P belonging to a class C of those introduced in Section
2.2.3. Two complexity measures are classically considered for QA[C] problem:
the usual complexity, called combined complexity, and data complexity. We talk
about combined complexity of QA[C] in general, and about data complexity of
QA[C], under the assumption that only the data, here data(P), are considered as
part of the input while both q and rules(P) are considered fixed.

The latter complexity is relevant when the data size is much larger than the
size of the rules and the query. Table 2.1 summarizes the combined and data com-
plexity results for the main concrete classes mentioned in Section 2.2.3. Note
that combined complexity is here without bound of the predicate arity (putting an
upper-bound on the arity of predicates may decrease the complexity). By defini-
tion, all fus classes have polynomial data complexity, since the number of rewrit-

2.3. COMPLEXITY 33

ten queries is not related to the data size. They are even first-order rewritable,
which means that every query q can be rewritten as a first-order query q′ using
the set of rules of the program P , such that the evaluation of q produces the
same set of answers as the evaluation of q′ on P (i.e. ansP (q) = ansP (q′)).
An interest of first-order queries is that they can be encoded in SQL, which al-
lows to use relational database systems, thus benefiting from their optimizations.
Obviously, any Boolean query over a fus class can be rewritten as a first-order
query. It is well-known in databases that deciding whether a first-order query is
entailed by a database belongs to the class AC0 in data complexity. Several non-
fus classes have polynomial data complexity: some gbts classes, namely fg (and
its subclasses fr1 and guarded), some fes classes, namely wa-GRD and ja (and
subclasses aGRD, wa and Datalog) and some non-bts classes, namely w-sticky-j

(and its subclass w-sticky). Note that relaxing guardedness into weak-guardedness
leads to EXP-complete data complexity.

In this thesis, every class C of the Datalog± family will be indifferently de-
noted by C Datalog± or C Datalog∃. In general, we prefer the first notation when
we refer to C as a class of the Datalog± framework, and the second when we
want to remark the presence of existential quantifiers as an extension of standard
Datalog. Moreover, we indifferently use both database and logic programming no-
tations. In particular, we refer to a Datalog∃ program P as the union of a database
D and a set of TGDs Σ, and vice versa.

Notice that, two additional features, that are important for representing ontolo-
gies, could be added to Datalog± without increasing complexity. These features
are: negative constraints and a limited form of equality-generating dependencies

(EGDs). A negative constraint is a Horn clause whose body is not necessarily
guarded and whose head is the truth constant false which we denote by �. For
example, the requirement that a person ID cannot simultaneously appear in the
employee(ID,Name) and in the retired(ID,Name) relation can be expressed
by:

� ← employee(X,Y), retired(X,Z) (2.3)

While negative constraints do add expressive power to Datalog±, they are actually
very easy to handle, and we next show that the addition of negative constraints
does not increase the complexity of query answering (see [28] for a detailed analy-
sis). It is also allowed a limited form of equality-generating dependencies, namely,
keys, to be specified, but it is required that these keys be - in a precise sense - not
conflicting with the existential rules of the Datalog± program. Because it had been
shown that the interaction of TGDs and general EGDs leads to undecidability of
query answering. In [28], a result from [31] about non-key-conflicting inclusion
dependencies is lifted to the setting of arbitrary TGDs to prove that the keys that

34 CHAPTER 2. THE DATALOG± FAMILY

we consider do not increase the complexity. With these additions we have a quite
expressive and still efficient version of Datalog±. Notice that, these two features
are not properly admitted by Datalog∃ syntax, but, in the following two sections
we show how they can be integrated into two particular classes, Guarded and
Linear, of the Datalog± framework without increasing complexity of query an-
swering.

2.3.1 Adding (negative) constraints

In this section, we recall the extension of Datalog± with (negative) constraints,
which are an important ingredient, in particular, for representing ontologies. A
negative constraint (or simply constraint) is a first-order formula of the form:

� ← conj[X] (2.4)

where conj[X] is a (not necessarily guarded) conjunction of atoms. It is often
also written as ¬p(X) ← conj′[X], where conj′[X] is obtained from conj[X] by
removing the atom p(X). We implicitly assume that all sets of constraints are
finite here.

Example 2.3.1. If the two unary predicates male and female represent two
classes (also called concepts in DLs), we may use the constraint � ← male(X),

female(X) (or alternatively ¬female(X) ← male(X)). to assert that the two
classes have no common instances. Similarly, if additionally the binary predi-
cate mother represents a relationship (also called a role in DLs), we may use
� ← male(X),mother(X,Y) to enforce that no member of the class male is the
mother of another individual. Furthermore, if the two binary predicates mother
and father represent two relationships, we may use the constraint � ← mo-
ther(X,Y),father(X,Y) to express that the two relationships are disjoint.

Query answering on a database D under a set of TGDs ΣT (as well as a set
of EGDs ΣE as introduced in the next section) and a set of constraints ΣC can be
done effortless by additionally checking that every constraint σ = � ← conj[X] ∈

ΣC is satisfied in D and ΣT , each of which can be done by checking that the BCQ
qσ = conj[X] evaluates to false on D and ΣT . We write D ∪ΣT ⊧ ΣC iff every qσ
with σ ∈ ΣC evaluates to false in D and ΣT . Thus, a BCQ q is true in D and ΣT

and ΣC , denoted D∪ΣT ∪ΣC ⊧ q, iff (i) D∪ΣT ⊧ q or (ii) D∪ΣT /⊧ ΣC (as usual
in DLs). Therefore, D∪ΣT ∪ΣC ⊧ q iff (i) D∪ΣT ⊧ q or (ii) D∪ΣT ⊧ qσ for some
σ ∈ ΣC . As an immediate consequence, we have that constraints do not increase
the data complexity of answering BCQs in the guarded (resp., linear) case.

2.3. COMPLEXITY 35

2.3.2 Adding Equality-Generating Dependencies (EGDs) and

Keys

In this section, we recall the addition of equality-generating dependencies
(EGDs) to Guarded (and Linear) Datalog∃, which are also important when rep-
resenting ontologies. Note that EGDs generalize functional dependencies (FDs)

and, in particular, key dependencies (or keys) [1]. In [28] a result by [31] about
non-key-conflicting (NKC) inclusion dependencies is transferred to the more gen-
eral setting of Guarded Datalog±. However, while adding negative constraints is
effortless from a computational perspective, adding EGDs is more problematic:
The interaction of TGDs and EGDs leads to undecidability of query answering
even in simple cases, such that of functional and inclusion dependencies [36], or
keys and inclusion dependencies (see, e.g., [31], where the proof of undecidabil-
ity is done in the style of Vardi as in [61]). It can even be seen that a fixed set of
EGDs and guarded TGDs can simulate a universal Turing machine, and thus query
answering and even propositional ground atom inference is undecidable for such
dependencies. For this reason, we consider a restricted class of EGDs, namely,
non-conflicting key dependencies (or NC keys), which show a controlled inter-
action with TGDs (and negative constraints), such that they do not increase the
complexity of answering BCQs. Nonetheless, this class is sufficient for modeling
ontologies (e.g., in DL-Lite, see Chapter 6). An equality-generating dependency

(or EGD) σ is a first-order formula of the form:

Xi = Xj ← conj[X] (2.5)

where conj[X], called the body of σ, denoted body(σ), is a (not necessarily
guarded) conjunction of atoms, and Xi and Xj are variables from ∆V . We call
Xi = Xj the head of σ, denoted head(σ). Given a database schema R, such σ is
satisfied in a database D for R iff, whenever there exists a homomorphism h such
that h(conj[X]) ⊆D, it holds that h(Xi) = h(Xj).

Example 2.3.2. The following formula σ is an equality-generating dependency:

Y = Z ← r1(X,Y),r2(Y,Z). (2.6)

The database D = {r1(a,b),r2(b,b)} satisfies σ because every homomorphism
h mapping the body of σ to D is such that h(Y) = h(Z). On the contrary, the
database D = {r1(a,b),r2(b,c)} does not satisfy σ.

An EGD σ on R of the form Xi = Xj ← conj[X] is applicable to a database D

for R iff there exists a homomorphism η ∶ conj[X] →D such that η(Xi) and η(Xj)
are different and not both constants. If η(Xi) and η(Xj) are different constants
in dom(D), then there is a hard violation of σ, and the chase fails. Otherwise,

36 CHAPTER 2. THE DATALOG± FAMILY

the result of the application of σ to D is the database h(D) obtained from D

by replacing every occurrence of a non-constant element e ∈ {η(Xi), η(Xj)} in
D by the other element e’ (if e and e’ are both nulls, then e precedes e’ in
the lexicographic order). Note that h is a homomorphism, but not necessarily an
endomorphism of D, since h(D) is not necessarily a subset of D. But for the
special class of TGDs and EGDs that we recall in this section, h is actually an
endomorphism of D. The chase of a database D, in the presence of two sets
ΣT and ΣE of TGDs and EGDs, respectively, denoted chase(D,ΣT ∪ ΣE), is
computed by iteratively applying (1) a single TGD once, according to the standard
order and (2) the EGDs, as long as they are applicable (i.e., until a fixpoint is
reached).

Example 2.3.3. Consider the following set of TGDs and EGDs Σ = {σ1, σ2, σ3}:

σ1 ∶ ∃Z s(X,Y,Z) ← r(X,Y).

σ2 ∶ Y = Z ← s(X,Y,Z).

σ3 ∶ X = Y ← r(X,Y), s(Z,Y,Y).

Let D be the database {r(a,b)}. In the computation of chase(D,Σ), we first
apply σ1 and add the fact s(a,b,z1), where z1 is a null. Then, the application of
σ2 on s(a,b,z1) yields z1 = b, thus turning s(a,b,z1) into s(a,b,b). Now,
we apply σ3 on r(a,b) and s(a,b,b), and by equating a = b, the chase fails;
this is a hard violation, since both a and b are constants in dom(D).

The following definition generalizes the notion of separability originally in-
troduced in [31] to Datalog±. Intuitively, the semantic notion of separability

for EGDs formulates a controlled interaction of EGDs and TGDs/(negative) con-
straints, so that the EGDs do not increase the complexity of answering BCQs.

Definition 2.3.4. Let R be a relational schema, and ΣT and ΣE be sets of TGDs
and EGDs on R, respectively. Then, ΣE is separable from ΣT iff for every
database D for R, the following conditions (1) and (2) are both satisfied:

1. (i) If there is a hard violation of an EGD of ΣE in chase(D,ΣT ∪ΣE), then
there is also a hard violation of some EGD of ΣE in D.

2. (ii) If there is no chase failure, then for every BCQ q, it holds that chase(D,

ΣT ∪ΣE) ⊧ q iff chase(D,ΣT) ⊧ q.

Note that (2) is equivalent to: (2′) if there is no chase failure, then for every
CQ q, it holds that ansD,ΣT∪ΣE

(q) = ansD,ΣT
(q). Here, (2′) implies (2), since (2)

is a special case of (2′), and the converse holds, since a tuple t over ∆ is an answer
for a CQ q to D and Σ iff the BCQ qt to D and Σ evaluates to true, where qt is

2.3. COMPLEXITY 37

obtained from q by replacing each free variable by the corresponding constant in
t.

In [28], it is showed that adding separable EGDs to TGDs and constraints does
not increase the data complexity of answering BCQs in the guarded and linear
case. It follows immediately from the fact that the separability of EGDs implies
that chase failure can be directly evaluated on D. Here, for disjunctions of BCQs
Q, D ∪Σ ⊧ Q iff D ∪Σ ⊧ q for some BCQ q in Q.

We next recall a sufficient syntactic condition of separability of EGDs intro-
duce in [31]. We assume that the reader is familiar with the notions of a functional
dependency (FD) (which informally encodes that certain attributes of a relation
functionally depend on others) and a key (dependency) (which is informally a
tuple-identifying set of attributes of a relation) [1]. Clearly, FDs are special types
of EGDs. A key k of a relation r can be written as a set of FDs that specify that
k determines each other attribute of r. Thus, keys can be identified with sets of
EGDs. It will be clear from the context when we regard a key as a set of attribute
positions, and when we regard it as a set of EGDs. The following definition gen-
eralizes the notion of "non-key-conflicting" dependency relative to a set of keys,
introduced in [31], to the context of arbitrary TGDs.

Definition 2.3.5. Let k be a key, and σ be a TGD of the form ∃Y r[X′∪Y] ← conj[X]
Then, k is non-conflicting (NC) with σ iff either (i) the relational predicate on
which k is defined is different from r, or (ii) the positions of k in r are not a
proper subset of the X′-positions in r in the head of σ, and every variable in Y

appears only once in the head of σ. We say k is non-conflicting (NC) with a set
of TGDs ΣT iff k is NC with every σ ∈ ΣT . A set of keys ΣK is non-conflicting

(NC) with ΣT iff every k ∈ ΣK is NC with ΣT .

Example 2.3.6. Consider the four keys k1, k2, k3, k4 defined by the key attribute
sets K1 = {r[1],r[2]},K2 = {r[1],r[3]},K3 = {r[3]},K4 = {r[1]}, respec-
tively, and the TGD σ = ∃Zr(X,Y,Z) ← p(X,Y). Then, the head predicate
of σ is r, and the set of positions in r with universally quantified variables is
H = {r[1],r[2]}. Observe that all keys but k4 are NC with σ, since only K4 ⊂H .
Roughly, every atom added in a chase by applying σ would have a fresh null in
some position in K1,K2, and K3, thus never firing k1, k2, and k3, respectively.

It has been showed that the property of being NC between keys and TGDs im-
plies their separability. The main idea behind the proof can be roughly described
as follows. The NC condition between a key k and a TGD σ assures that either
(a) the application of σ in the chase generates an atom with a fresh null in a po-
sition of k, and so the fact does not violate k (see also Example 2.3.6), or (b) the
X′-positions in the predicate r in the head of σ coincide with the key positions
of k in r, and thus any newly generated atom must have fresh distinct nulls in all

38 CHAPTER 2. THE DATALOG± FAMILY

but the key position, and may eventually be eliminated without violation. It then
follows that the full chase does not fail. Since new nulls are all distinct, it also
contains a homomorphic image of the TGD chase. Therefore, the full chase is in
fact homomorphically equivalent to the TGD chase.

We conclude this section by recalling that in the NC case, keys do not increase
the data complexity of answering BCQs under guarded (resp., linear) TGDs and
constraints. However, we refer the reader to [28] for a detailed analysis of the
addition of negative constraints and keys to Datalog±.

2.4 Comparative analysis

In this section we show some local weaknesses of the Datalog± framework,
that motivated our work. As introduced before, a key issue in ontology-based QA
is the design of the language that is provided for specifying the ontological theory
Σ. This language should balance expressiveness and complexity, and in particu-
lar it should possibly be: (1) intuitive and easy-to-understand; (2) QA-decidable
(i.e., QA should be decidable in this language); (3) efficiently computable; (4)
powerful enough in terms of expressiveness; and (5) suitable for an efficient im-
plementation.

Figure 2.2: Local weaknesses/shortcomings of the Datalog± family

In particular, if we consider the languages of the Datalog± family (introduced
in Section 2.2), all of them satisfy the first two properties above (1 and 2). But,

2.4. COMPARATIVE ANALYSIS 39

currently, each Datalog± language is missing at least one of the last three proper-
ties (3, 4 and 5). Indeed, analyzing Figure 2.1 and Table 2.1, we can observe that
it is still missing a language that is suitable for an efficient implementation and
that offers a good efficiency without renouncing to the expressiveness. This lan-
guage should possibly be expressive enough to extend at least Datalog and Linear

Datalog±, while preserving tractable data complexity of QA. These two languages
are important because the former offers some useful expressive axioms as for ex-
ample “transitivity” and “concept product”, while the latter is very efficient and
extends all the description logics of the DL-Lite family, as showed in [27, 28].

Figure 2.2 shows the weaknesses of the Datalog± family in more detail. Notice
that, each language of the Datalog± framework showed in Figure 2.2 is the most
representative language of the abstract class to which it belongs. The other classes
of the family have been excluded because they are in fact combinations of these
representative languages (see Figure 2.1). We have to say that Linear and Sticky-

Join are very efficiently computable and extend all the description logics of the
DL-Lite family. but they are not expressive enough to represent “transitivity” and
“concept product” and to generalize Datalog. Weakly-Guarded Datalog± is very
expressive, because it extends both Linear Datalog± and standard Datalog, but
it is exponential even in data complexity. Moreover, to be complete w.r.t. QA,
the CHASE ran on a program belonging to Guarded or Weakly-Guarded Datalog±

requires the generation of a very high number of isomorphic atoms, therefore no
(efficient) implementation has been realized yet.

Thus, it is clear that there is a gap in the Datalog± family, because if we need
efficiency we have to renounce to the expressiveness and vice versa. In the work
reported in this thesis, we introduce a new Datalog± fragment, called Shy (see
Chapter 3), that combines positive aspects of different Datalog± languages and
closes this gap. Shy represents an optimal trade-off between expressiveness and
scalability in the scenario of Datalog with existential quantifiers. In fact, with re-
spect to properties (1)–(5) above, this new class of programs behaves as follows:
(1) it inherits the simplicity and naturalness of Datalog; (2) it is QA-decidable;
(3) it is efficiently computable (tractable data complexity and limited combined-
complexity); (4) it offers a good expressive power being a strict superset of
Datalog and Linear Datalog±; and (5) it is suitable for an efficient implemen-
tation, indeed we implement a bottom-up evaluation strategy for Shy programs
inside the well-known DLV system. This extension of DLV is called DLV∃. We
carried out an experimental analysis comparing a number of state-of-the-art sys-
tems for ontology-based QA with DLV∃. The results of our analysis confirm the
effectiveness of DLV∃, which outperforms all other systems in the benchmark
domain.

40 CHAPTER 2. THE DATALOG± FAMILY

Chapter 3

Parsimonious and Shy programs

In this chapter we present the main theoretical contribution of this thesis, that
is, the design of two novel Datalog∃ classes, called Parsimonious and Shy. First,
we slightly modify the CHASE in order to define a novel semantic property, called
parsimony. Next, we define a new class of Datalog∃ programs depending on the
parsimony property, and we show interesting properties of this class. But, we
prove that recognizing parsimony is undecidable. Therefore, we define a novel
syntactic Datalog∃ class, called Shy, and we prove that this class enjoys the par-
simony property. Shy significantly extends Datalog and Linear Datalog∃, while
preserving the same (data and combined) complexity of query answering over
Datalog, although the addition of existential quantifiers.

This chapter is structured as follows: in Section 3.1 we introduce the class
of Parsimonious programs, as well as some of its properties; in Section 3.2 we
present Shy and we show that conjunctive query answering over Shy is decidable;
in Section 3.3 we deal with complexity and, finally, in Section 3.4 we compare
Shy against other classes of the Datalog± family.

3.1 Parsimony: A novel semantic property ensuring

decidability

In this section we introduce a new class of Datalog∃ programs, called parsi-

monious programs. Intuitively, the key idea behind this class is as follows. As
already mentioned, the chase is a well-known procedure for constructing a uni-
versal model for a Datalog∃ program. But, unfortunately, this procedure does not
always terminate. Thus, we first modify the standard version of the algorithm in
order to get a new procedure that terminates on any Datalog∃ program. Next, we
define the parsimony property that relies on this new version of the chase. In par-
ticular, we say that a Datalog∃ program P enjoys the parsimony property if every

41

42 CHAPTER 3. PARSIMONIOUS AND SHY PROGRAMS

atom of chase(P) has an homomorphic representative atom in pChase(P). This
property is very powerful because it allows us to carry out atomic QA against Par-

simonious programs by considering only this new version of the chase procedure.
It follows that atomic QA over Parsimonious programs is decidable.

Thus, first of all, we slightly modify the standard CHASE procedure introduced
in Section 2.1.4.

Definition 3.1.1. For any Datalog∃ program P , parsimonious chase (PARSIM-
CHASE(P) for short) is the procedure resulting by the replacement of operator /⊧
by /⊩ in the condition of the if-instruction at step 5 in Procedure 1 CHASE(P).
The output of PARSIM-CHASE(P) is denoted by pChase(P).

Note that, differently from chase(P), here pChase(P) might not be a model
any more. Based on Definition 3.1.1, we next define a new class of Datalog∃

programs depending on a novel semantic property, called parsimony.

Definition 3.1.2. A Datalog∃ program P is called parsimonious if pChase(P) ⊩
a, for each a ∈ chase(P). Parsimonious next denotes the class of all parsimonious
programs.

We next show that atomic QA against a Parsimonious program can be carried
out by the PARSIM-CHASE algorithm.

Proposition 3.1.3. Algorithm PARSIM-CHASE over parsimonious programs is

sound and complete w.r.t. atomic QA.

Proof. Soundness follows, by Definition 3.1.1, since pChase(P) ⊆ chase(P)
holds. In fact, since each substitution is a homomorphism, then, given a set of
atoms S and an atom a, S ⊧ a always entails S ⊩ a. Conversely, S /⊩ a always
entails S /⊧ a. Finally, ans(q,pChase(P)) ⊆ ansP (q), for each CQ q.

For completeness, let P be a parsimonious program and q be an atomic query.
To prove that ansP (q) ⊆ ans(q,pChase(P)) we observe that whenever σ ∈

ansP (q), then chase(P) ⊧ σ(q), namely there is a substitution σ′ such that
σ′(σ(q)) ∈ chase(P). But, by Definition 3.1.2, pChase(P) ⊩ σ′(σ(q)), namely
there is a homomorphism h such that h(σ′(σ(q))) ∈ pChase(P). Now, since
each substitution is a homomorphism and since composition of homomorphisms
is a homomorphism, we call h′ the homomorphism h ○ σ′. Thus, h′(σ(q)) ∈
pChase(P). But, since h′ = h ○ σ′ is actually a substitution, then pChase(P) ⊧
σ(q), namely σ ∈ ans(q,pChase(P)).

Now, before proving one of the main results of this section concerning decid-
ability of atomic query answering against parsimonious programs, we show that
the cardinality of pChase(P) is finite as well as the number of levels reached by
PARSIM-CHASE.

3.1. PARSIMONY: A NOVEL SEMANTIC PROPERTY ENSURING DECIDABILITY43

Lemma 3.1.4. Let P be a Datalog∃ program, α be the maximum arity over all

predicate symbols in P , and Φ be a set of α nulls. Then, there is a one-to-one

correspondence µ between pChase(P) and a subset of base(dom(P) ∪Φ) such

that a ≃ µ(a), for each a ∈ pChase(P).

Proof. First we observe that each atom in pChase(P), say a, has at most α differ-
ent nulls. Thus, after replacing the nulls of a with different nulls from Φ we obtain
an isomorphic atom belonging to base(dom(P)∪Φ). Now assume that two atoms
a1 ≠ a2 in pChase(P) had one common isomorph b ∈ base(dom(P)∪Φ), namely
a1 ≃ b and a2 ≃ b. This would clearly entail that a1 ≃ a2. But this is not possible
since data(P) contains no pair of isomorphic atoms, and because PARSIM-CHASE

(due to the introduction of operator ⊩) does not allow any addition to pChase(P)
of an isomorphic atom. Consequently, µ can be built by associating to each atom
in pChase(P) one of its isomorphic atoms in base(dom(P) ∪Φ).

Corollary 3.1.5. Let P be a Datalog∃ program, and α be the maximum arity over

all predicate symbols in P . Then, ∣pChase(P)∣ ≤ ∣preds(P)∣ ⋅ (∣dom(P)∣ + α)α.

Proof. This upperbound directly follows from Lemma 3.1.4 by considering the
cardinality of base(dom(P) ∪Φ), where Φ is a set of α nulls.

The following theorem claims that parsimony makes atomic query answering
decidable.

Theorem 3.1.6. Atomic query answering against Parsimonious programs is de-

cidable.

Proof. Proposition 3.1.3 ensures that atomic QA is sound and complete against
pChase(P). Corollary 3.1.5 ensures that the cardinality of pChase(P) is finite,
entailing that both PARSIM-CHASE stops after computing no more that ∣pChase(P)∣
levels, and the number of firing substitutions considered at step 4 of the algorithm
is always finite.

However, we now show that, unfortunately, recognizing parsimony is unde-
cidable. Later, we introduce a recognizable fragment of parsimonious programs.

Theorem 3.1.7. Checking whether a program is parsimonious is not decidable.

In particular, it is coRE-complete.

Proof. For the membership, given a Datalog∃ program P , we show that one can
semi-decide whether P is not parsimonious. In fact, in such a case, there must ex-
ist by definition a level k such that, for each atom a ∈ chasek(P), chasek−1(P) ⊩
a but there is an atom a′ ∈ chasek+1(P) such that chasek(P) /⊩ a′. Thus, if a
program is not parsimonious, then we can discover that by running the CHASE.

44 CHAPTER 3. PARSIMONIOUS AND SHY PROGRAMS

Algorithm 2 ORACLE-QA(P, q)

Input: Datalog∃ program P ∧ Boolean atomic query q

Output: true ∨ false
1. if (IS-PARSIMONIOUS(P))
2. return (pChase(P) ⊧ q)
3. else

4. k ∶= firstAwakeningLevel(P)

5. P ′ ∶= P ∪ (chasek(P) − chasek−1(P))
6. return ORACLE-QA(P ′, q)

For the hardness part, we use Algorithm 2, called ORACLE-QA, that would
solve the QA[Datalog∃] problem (which, by Proposition 2.1.6, is RE-complete) if the
problem of checking whether a program is parsimonious was decidable.

In particular, given a Datalog∃ program P , we denote by IS-PARSIMONIOUS

the Boolean terminating function deciding whether P is parsimonious or not; and
by firstAwakeningLevel(P) the lowest level k reached by the CHASE such that
pChase(P) ⊩ a for each a ∈ chasek−1(P), and pChase(P) /⊩ a for at least one
a ∈ chasek(P). Finally, it is enough to show that the algorithm: (i) is sound, since
P ′ only contains atoms from chase(P); (ii) is complete, since P ′ evolves to a
parsimonious program after each execution of instruction 5 adding to P ′ at least
one atom a such that chasek−1(P) /⊩ a; (iii) terminates, since the cardinality of
pChase(P) is finite (where P denotes the initial program), entailing that at most
∣pChase(P)∣ recursive calls can be activated.

3.2 Shyness: A syntactic property guaranteeing par-

simony

We next define a novel syntactic Datalog∃ class: Shy. Later, we prove that this
class enjoys the parsimony property.

3.2.1 The Shy language: Definition and main properties

Calì, Gottlob, and Kifer (2008) introduced the notion of “affected position”
(see Chapter 2) to know whether an atom with a null at a given position might
belong to the output of the CHASE. Specifically, let a be an atom of arity k with
a variable X occurring at position i ∈ [1..k]. Position i of a is marked as affected

w.r.t. P if there is a rule r ∈ P s.t. pred(head(r)) = pred(a) and X is either

3.2. SHYNESS: A SYNTACTIC PROPERTY GUARANTEEING PARSIMONY45

an ∃-variable, or a ∀-variable s.t. X occurs in the body of r in affected positions
only. Otherwise, position i is definitely marked as unaffected. However, this
procedure might mark as affected some position hosting a variable that can never
be mapped to nulls.

To better detect whether a program admits a firing substitution that maps a
∀-variable into a null, we introduce the notion of null-set of a position in an atom.
More precisely, ϕr

X denotes the “representative” null that can be introduced by the
∃-variable X occurring in rule r. (If (r,X) ≠ (r′,X′), then ϕr

X ≠ ϕ
r′

X′
.)

Definition 3.2.1. Let P be a Datalog∃ program, a be an atom, and X a variable
occurring in a at position i. The null-set of position i in a w.r.t. P , denoted by
nullset(i,a), is inductively defined as follows. If a is the head atom of some rule
r ∈ P , then nullset(i,a) is: (1) either the set {ϕr

X}, if X is ∃-quantified in r; or (2)
the intersection of every nullset(j,b) s.t. b ∈ body(r) and X occurs at position
j in b, if X is ∀-quantified in r. If a is not a head atom, then nullset(i,a) is the
union of nullset(i,head(r)) for each r ∈ P s.t. pred(head(r)) = pred(a).

Note that nullset(i,a) may be empty. A representative null ϕ invades a vari-
able X that occurs at position i in an atom a if ϕ is contained in nullset(i,a). A
variable X occurring in a conjunct conj is attacked in conj by a null ϕ if each
occurrence of X in conj is invaded by ϕ. A variable X is protected in conj if it is
attacked by no null. Clearly, each attacked variable is affected but the converse is
not true.

We are now ready to define the new Datalog∃ class.

Definition 3.2.2. A rule r of a Datalog∃ program P is called shy w.r.t. P if the
following conditions are both satisfied:

1. If a variable X occurs in more than one body atom, then X is protected in
body(r);

2. If two distinct ∀-variables are not protected in body(r) but occur both in
head(r) and in two different body atoms, then they are not attacked by the
same null.

Finally, Shy denotes the class of all Datalog∃ programs containing only shy rules.

After noticing that a program is Shy regardless its ground facts, we give an
example of program being not Shy.

Example 3.2.3. Let P be the following Datalog∃ program:

46 CHAPTER 3. PARSIMONIOUS AND SHY PROGRAMS

r1 ∶ ∃Y u(X,Y) :- q(X).

r2 ∶ v(X,Y,Z) :- u(X,Y), p(X,Z).

r3 ∶ p(X,Y) :- v(X,Y,Z).

r4 ∶ u(Y,X) :- u(X,Y).

Let a1, . . . ,a9 be the atoms of P in left-to-right/top-to-bottom order.
First, nullset(2,a1) = {ϕ

r1
Y }. Next, this singleton is propagated (head-to-body) to

nullset(2,a4) and nullset(2,a9). At this point, from a9 the singleton is propagated
(body-to-head) to nullset(1,a8), and from a4 to nullset(2,a3), and so on, accord-
ing to Definition 3.2.1. Finally, even if X is protected in r2 since it is invaded only
in a4, rule r2, and therefore P , is not shy due to Y and Z that are attacked by ϕr1

Y

and occur in head(r2). Moreover, it is easy to verify that P plus any fact for q
does not belong to Parsimonious.

Intuitively, the key idea behind this class is as follows. If a program is shy
then, during a CHASE execution, nulls do not meet each other to join but only to
propagate. Moreover, a null is propagated, during a given fire, from a single atom
only. Hence, the shyness property, which ensures parsimony.

Theorem 3.2.4. Shy ⊂ Parsimonious.

Proof. Let P be a Shy program. Assume that there exists a level k such that
pChase(P) ⊩ a for each a ∈ chasek−1(P), and pChase(P) /⊩ b for at least
one atom b ∈ chasek(P). Let j < k − 1 be the level where PARSIM-CHASE has
stopped. Since b ∈ chasek(P)−chasek−1(P), then there must be at least one atom
in chasek−1(P)−chasek−2(P) that is necessary for firing a rule r to chasek−1(P)
to infer b. Let σ be the firing substitution for r w.r.t. chasek−1(P) used for
inferring b, and a1, . . . ,an be the body atoms of r. Clearly, pChase(P) ⊩ σ(ai)
for each i ∈ [1..n]. Now, since P is shy then, by Definition 3.1.2, σ may map a
variable into a null only if such a variable does not appear in two different atoms,
and two different variables appearing in the head cannot be mapped to the same
null. This means that if we consider the n homomorphisms h1, . . . , hn such that
hi(σ(ai)) ∈ pChase(P) for each i ∈ [1..n], then we can take the union h of their
restrictions on the ∃-variables of r without generating any conflict. But this is not
possible because h ○ σ is also a firing substitution for r on pChase(P) entailing
the existence of an homomorphism from σ(head(r)) to h(σ(head(r))). Finally,
this entails an homomorphism from b to the atom inferred by the extension of
h ○ σ.

Corollary 3.2.5. Atomic QA over Shy is decidable.

We now show that recognizing parsimony is decidable.

Theorem 3.2.6. Checking whether a program P is shy is decidable. In particular,

it is doable in polynomial-time.

3.2. SHYNESS: A SYNTACTIC PROPERTY GUARANTEEING PARSIMONY47

Proof. First, the occurrences of ∃-variables in P fix the number h of nulls appear-
ing in the null-sets of P . Next, let k be the number of atoms occurring in P , and
α be the maximum arity over all predicate symbols in P . It is enough to observe
that P allows at most k∗α null-sets each of which of cardinality no greater than h.
Finally, the statement holds since the null-set-construction is monotone and stops
as soon as a fixpoint has been reached.

3.2.2 Conjunctive query answering over Shy

In this section we show that conjunctive QA against Shy programs is also de-
cidable. To manage CQs, we next describe a technique called parsimonious-chase
resumption, which is sound for any Datalog∃ program P , and also complete over
Shy. Before proving formal results, we give a brief intuition of this approach.
Assume that pChase(P) consists of the atoms p(c, ϕ), q(d,e), r(c,e). It is def-
initely possible that chase(P) contains also q(ϕ,e), which, of course, cannot be-
long to pChase(P) due to q(d,e). Now consider the CQ q = ∃Y p(X,Y),q(Y,Z).
Clearly, pChase(P) does not provide any answer to q even if P does. Let us both
“promote” ϕ to constant in ∆C , and “resume” the PARSIM-CHASE execution at
step 3, in the same state in which it had stopped after returning the set C at step
10. But, now, since ϕ can be considered as a constant, then there is no homo-
morphism from q(ϕ,e) to q(d,e). Thus, q(ϕ,e) may be now inferred by the
algorithm and used to prove that ansP (q) is nonempty.

We call freeze the act of promoting a null from ∆N to an extra constant in
∆C . Also, given a set S of atoms, we denote by ⌈S⌋ the set obtained from S

after freezing all of its nulls. The following definition formalizes the notion of
parsimonious-chase resumption after freezing actions.

Definition 3.2.7. Let P ∈ Datalog∃. The set pChase(P,0) denotes data(P), while
the set pChase(P, k) denotes pChase(rules(P)∪ ⌈pChase(k − 1)⌋), for each k >

0.

Clearly, the sequence {pChase(P, k)}k∈N is monotonically increasing; the
limit of this sequence is denoted by pChase(P,∞). The next lemma states that
the proposed resumption technique is always sound w.r.t. QA, and that its infinite
application also ensures completeness.

Lemma 3.2.8. pChase(P,∞) = chase(P) ∀P ∈ Datalog∃.

Proof. The statement holds since operator ⊩ in PARSIM-CHASE behaves, on free-
zed nulls, as ⊧ in the CHASE.

48 CHAPTER 3. PARSIMONIOUS AND SHY PROGRAMS

Before proving that the PARSIM-CHASE algorithm over Shy programs is com-
plete w.r.t. CQ answering after a finite number of resumptions, we need to intro-
duce some more notation. The chase-graph for a Datalog∃ program P is the di-
rected acyclic graph GP = ⟨chase(P),A⟩where (a,b) ∈ A iff b has been inferred
by the CHASE through a firing substitution σ for a rule r where a ∈ σ(body(r)).
Moreover, for a given set S ∈ chase(P), GS

P denotes the maximal subgraph of
GP where a node may have no ingoing arc only if it belongs to S.

Lemma 3.2.9. Let P be a Shy program, q be a CQ, σa ∈ ansP (q), σ be a substi-

tution proving that P ⊧ σa(q) holds, and YN be only and all the ∃-variables of

q mapped by σ to nulls. Then, there is a substitution σ′, proving that P ⊧ σa(q)
holds, that maps at least one variable in YN to a term occurring in pChase(P).

Proof. Let Φ contain the nulls occurring in σ(q), B contain the atoms in chase(P)
where the nulls of Φ have been introduced for the first time, and b1, . . . ,bn be the
atoms of B listed in the same order they have been inferred by the CHASE. More-
over, let Φi denote, for each i ∈ [1..n], the subset of Φ of only and all the nulls
that have been introduced for the first time in bi, and a1 an atom form pChase(P)
such that a1 ⪯ b1. We build σ′ in such a way that at least one variable in YN is
mapped to some term occurring in a1. In particular, we build a set A ⊆ chase(P)
and a homomorphism h ∶ Φ → terms(A) such that a1 ∈ A and, for each atom b

in GB
P containing at least a null from Φ, there is h′ ⊇ h such that h′(b) belongs to

GA
P . Finally, σ′ = h ○ σ.

We proceed by induction. More precisely, we construct A, GA
P and h by pro-

gressively considering all the atoms of GB
P in the same order they have been in-

ferred by the CHASE. Initially, A = {a1}, GA
P contains only node a1, and h maps

each constant in σ(q) to itself, and each null in Φ1 occurring at position i in b1 to
the ith term of a1.

Base case: Let b be the first atom in GB
P inferred by the CHASE, via a rule r,

after b1. Let σr be the firing substitution for r used by the CHASE whose extension
σ̂r has produced b. If σr(body(r)) does not involve b1, then b = b2 and we can
choose any a ⪯ b to extend A. On the contrary, if σr(body(r)) involves b1, since
P is shy, then there is also a firing substitution σ′r for r, where a1 ∈ σ′r(body(r))
and σr(body(r))−{b1} = σ′r(body(r))−{a1}. (Note that also in this case, b = b2

might hold.) Clearly, if σr can be extended to infer a new atom b, then either
σ′r can be extended to infer a new atom a or there is already some a such that
{a} ⊧ σ′r(head(r)). But since a null in a but not in b either comes from a1 or
it is fresh, then a ⪯ b. Finally, a is added to A, GA

P is updated and, only in case
b = b2, h is updated according to a.

Inductive hypothesis: After considering the first k atoms in GB
P inferred by the

CHASE, we assume that, for each such an atom b containing at least a null from
Φ, there is h′ ⊇ h such that h′(b) belongs to GA

P .

3.2. SHYNESS: A SYNTACTIC PROPERTY GUARANTEEING PARSIMONY49

Inductive step: Let b be the (k+1)th atom in GB
P inferred by the CHASE, via a

rule r. By using the same argument that was used in the Base case, we can extend
A and GA

P by an atom a ⪯ b. Moreover, if b = bi for some i ∈ [2..n], then h is
updated according to a. The only difference here is that b may require more than
one atom among the first k already inferred.

Therefore, a conjunctive query q may be not Shy. Nulls could meet each other
to join in the positions of existentially quantified variables. Thus, PARSIM-CHASE

is not sufficient for answering conjunctive queries. But, in light of Lemma 3.2.9,
we prove that, given a conjunctive query q with n different ∃-variables, we can
answer q by considering pChase(P,n + 1).

Lemma 3.2.10. Let P ∈ Shy and q be a CQ with n different ∃-variables. Then,

ansP (q) ⊆ ans(q,pChase(P,n + 1)).

Proof. In Light of Lemma 3.2.9, in the worst case, to be sure that all the nulls
involved by σ′ are generated, we claim that it is enough to compute pChase(P,n)
where n is the number of ∃-variables of q. With respect to Lemma 3.2.9, let Y
be one of the variable in YN mapped by σ′ to a term occurring in pChase(P).
Assume that this term is a null say ϕ. After freezing ϕ, we could replace Y in
q by ϕ to obtain q′. Clearly, P ⊧ σa(q) iff P ⊧ σa(q′). However, The BCQ
σa(q′) has an ∃-variable less than the BCQ σa(q). Thus, we can use again the
statement of Lemma 3.2.9 after replacing pChase(P) by pChase(P,2) and q by
q′. We can reiterate this process until the query has no ∃-variable, namely after
n − 1 resumptions producing pChase(P,n). Finally, by Definition 3.1.2, we are
sure that pChase(P,n + 1) contains all the atoms appearing in σa(σ′(q)).

Now, we are ready to demonstrate the decidability of conjunctive QA over
Shy.

Theorem 3.2.11. Conjunctive QA over Shy is decidable.

Proof. Soundness follows by Lemma 3.2.8, completeness by Lemma 3.2.10, while
termination by combining Theorem 3.1.6 and Definition 3.2.7.

The following example, after defining a Shy program P , shows that P imposes
the computation of pChase(P,3) to prove (after two resumptions) that a BCQ q

containing two atoms and two variables is entailed by P .

Example 3.2.12. Let P denote the following Shy program.

p(a,b). u(c,d). r1 ∶ ∃Z v(Z) :- u(X,Y). r2 ∶ ∃Y u(X,Y) :- v(X).

r3 ∶ p(X,Z) :- v(X), p(Y,Z). r4 ∶ p(X,W) :- p(X,Y), u(Z,W).

Consider the BCQ q = ∃X,Y p(X,Y),u(X,Y). Figure 3.1 shows that q cannot be
proved before two freezing.

50 CHAPTER 3. PARSIMONIOUS AND SHY PROGRAMS

Figure 3.1: Snapshot of pChase(P,3) w.r.t. Example 3.2.12

3.3 Complexity analysis

In this section we study the complexity of Parsimonious and Shy programs.
Moreover, let C be one of these classes, we talk about combined complexity of
QA[C] in general, and about data complexity of QA[C] under the assumption that
data(P) are the only input while both q and rules(P) are considered fixed. The
results obtained from our analysis have been then compared, in Section 3.4, with
those already proved for some representative Datalog± languages. We start with
upper bounds.

Theorem 3.3.1. QA[Parsimonious] is in P (resp., EXP) in data complexity (resp., com-

bined complexity).

Proof. Let P be a parsimonious program, α be the maximum arity over all pred-
icate symbols in P , and β be the maximum number of body atoms over all rules
in P . Since ∣pChase(P)∣ ≤ ∣preds(P)∣ ⋅ (∣dom(P)∣+α)α by Corollary 3.1.5, then
each rule admits at most ∣pChase(P)∣β different firing substitutions. Thus, all the
firing substitutions are no more that ∣P −data(P)∣⋅∣preds(P)∣β ⋅(∣dom(P)∣+α)α⋅β .
Moreover, for each firing substitution σ for a rule r, the algorithm has to check
whether there is an homomorphism from σ̂(head(r)) to pChase(P). These
checks are no more than ∣P − data(P)∣ ⋅ ∣preds(P)∣2⋅β ⋅ (∣dom(P)∣ + α)2⋅α⋅β .

We now consider lower bounds, and thus completeness.

Theorem 3.3.2. Both QA[Shy] and QA[Parsimonious] are P-complete (resp., EXP-complete)

in data complexity (resp., combined complexity).

Proof. Since, by Theorem 3.2.4, a shy program is also parsimonious, then (i)
upper-bounds of Theorem 3.3.1 hold for Shy programs as well; (ii) lower-bounds
for QA[Datalog] [41] also hold both for Shy and Parsimonious programs, by Theorem
3.4.1.

3.4. SHY VS. OTHER DATALOG± CLASSES 51

3.4 Shy vs. other Datalog± classes

In this section we present a comparison between Shy and other Datalog±

classes. Thus, we first recall the most representative QA-decidable subclasses of
Datalog∃, discussed in Section 2.4. Then, we provide their precise taxonomy and
the complexity of QA in each class, highlighting the differences to Parsimonious

and Shy.
The best-known QA-decidable subclass of Datalog∃ is clearly Datalog, the

largest ∃-free Datalog∃ class [1] which, notably, admits a unique and yet finite
(universal) model enabling efficient QA.

As showed in Chapter 2, three abstract QA-decidable classes have been sin-
gled out, namely, Finite-Expansion-Sets, Finite-Treewidth-Sets, and Finite-Unifi-

cation-Sets [16, 14]. Syntactic subclasses of Finite-Treewidth-Sets, of increasing
complexity and expressivity, have been defined by Calì, Gottlob, and Kifer (2008).
They are: (i) Linear-Datalog∃ where at most one body atom is allowed in each
rule; (ii) Guarded-Datalog∃ where each rule needs at least one body atom that
covers all ∀-variables; and (iii) Weakly-Guarded-Datalog∃ extending Guarded

by allowing unaffected “unguarded” variables (see Section 3.2.1 for the meaning
of unaffected). The first one generalizes the well known Inclusion-Dependencies

class [60, 1], with no computational overhead; while only the last one is a superset
of Datalog, but at the price of a drastic increase in complexity. In general, to be
complete w.r.t. QA, the CHASE ran on a program belonging to one of the latter
two classes requires the generation of a very high number of isomorphic atoms,
so that no (efficient) implementation has been realized yet.

More recently, another class of Datalog∃, called Sticky, has been defined by
Calì, Gottlob, and Pieris (2010a). Such a class enjoys very good complexity,
encompasses Inclusion-Dependencies, but since it is FO-rewritable, it has limited
expressive power and, clearly, does not include Datalog. Intuitively, if a program
is sticky, then all the atoms that are inferred (by the CHASE) starting from a given
join contain the term of this join. Several generalizations of stickiness have been
defined by Calì, Gottlob, and Pieris (2010b). For example, the Sticky-Join class
preserves the sticky-complexity by also including Linear-Datalog∃. Both Sticky

and Sticky-Join are subclasses of Finite-Unification-Sets.
Finally, in the context of data exchange, where a finite universal model is re-

quired, Weakly-Acyclic-Datalog∃, a subclass of Finite-Expansion-Sets, has been
introduced [48]. Intuitively, a program is weakly-acyclic if the presence of a null
occurring in an inferred atom at a given position does not trigger the inference of
an infinite number of atoms (with the same predicate symbol) containing several
nulls in the same position. This class both includes and has much higher complex-
ity than Datalog, but misses to capture even Inclusion-Dependencies. A number
of extensions, techniques and criteria for checking chase termination have been

52 CHAPTER 3. PARSIMONIOUS AND SHY PROGRAMS

Figure 3.2: Taxonomy of representative Datalog± languages

recently proposed in this context [44, 72, 74, 53].
Figure 3.2 provides a precise taxonomy of the considered classes; while Table

3.1 summarizes the complexity of QA[C], by varying C among the syntactic classes.
In both diagrams, only Datalog is intended to be ∃-free; while Datalog∃ is the only
undecidable language in the figure.

Theorem 3.4.1. For each pair C1 and C2 of classes represented in Figure 3.2, the

following hold: (i) there is a direct path from C1 to C2 iff C1 ⊃ C2; (ii) C1 and C2
are not linked by any directed path iff they are uncomparable.

Proof. Relationships among known classes are pointed out by Mugnier (2011).
Shy ⊂ Parsimonious holds by Theorem 3.2.4. Shy ⊃ Datalog ∪ Linear holds since
Datalog programs only admit protected positions, while Linear ones only bod-
ies with one atom. However, since there are both Weakly-Acyclic and Sticky

programs being not Parsimonious, then both Shy and Parsimonious are uncompa-
rable to Finite-Expansion-Sets, Weakly-Acyclic, Finite-Unification-Sets, Sticky-

Join and Sticky. Now, to prove that Shy /⊆ Finite-Treewidth-Sets we use the shy
program

set1(a,a). ∃V′ set1(V,V′) :- set1(X,V).

set2(b,b). ∃V′ set2(V,V′) :- set2(X,V).

graphK(V1,V2) :- set1(V1,X), set2(V2,Y).

whose chase-graph GP has no finite treewidth [27] since it contains a complete
bipartite graph Kn,n of 2n vertices – the treewidth of which is n [62] – where n

is not finite. Finally, since there are Guarded programs that are not Parsimonious,
then both Shy and Parsimonious are uncomparable to Finite-Treewidth-Sets, -
Weakly-Guarded and Guarded.

We care to notice that the proof of Theorem 3.4.1 uses the so called concept

product to generate a complete and infinite bipartite graph. A natural and common
example is

biggerThan(X,Y) :- elephant(X), mouse(Y).

3.4. SHY VS. OTHER DATALOG± CLASSES 53

Class C
Data Combined

Complexity Complexity

Weakly-Guarded EXP-complete 2EXP-complete

Guarded

Weakly-

Acyclic

P-complete 2EXP-complete

Datalog, Shy

(Parsimonious) P-complete EXP-complete

Sticky, Sticky-

Join

in AC0 EXP-complete

Linear in AC0 PSPACE-complete

Table 3.1: Complexity of the QA[C] problem

that is expressible in Shy if elephant and mouse are disjoint concepts. How-
ever, such a concept cannot be expressed in Finite-Treewidth-Sets and can be only
simulated by a very expressive ontology language for which no tight worst-case
complexity is known [86].

Thus, if we consider Figure 2.2 we can conclude that Shy closes that gap,
resolving the weaknesses of the Datalog± framework enlighted in Section 2.4.
Shy represents an optimal trade-off between expressiveness and scalability in the
Datalog± framework. It offers a high expressive power, being a strict superset of
both Datalog and Linear Datalog∃. It supports the standard first-order semantics
for unrestricted CQs with existential variables, and it provides advanced properties
(some of these beyond AC0), such as, role transitivity, role hierarchy, role inverse,
and concept products. Notwithstanding its high expressive power, Shy preserves
the same complexity as Datalog for QA (tractable data complexity and limited
combined complexity) and it inherits the simplicity and naturalness of logic pro-
graming. Moreover, Shy is well suitable for an efficient implementation. Indeed,
we implemented a bottom-up evaluation strategy for Shy programs (see Chapter
4) inside the well-known DLV system. We performed an experimental analysis
(see Chapter 5), comparing our system, DLV∃, to a number of state-of-the-art sys-
tems for ontology-based query answering. The results evidence that DLV∃ is the
most effective system in the benchmark domain for query answering in dynamic
environments. In fact in this field the ontology is subject to frequent changes,
making pre-computations and static optimizations inapplicable.

54 CHAPTER 3. PARSIMONIOUS AND SHY PROGRAMS

Chapter 4

A DLV-based implementation of QA

over Shy

In this chapter we present the main practical contribution of this thesis, that
is, the implementation of a bottom-up evaluation strategy for Shy programs inside
the DLV system, whose computation is enhanced by a number of optimization
techniques that we developed specifically for Shy. The resulting system is called
DLV∃- a system for QA over Shy programs, which is profitably applicable for
ontology-based QA.

This chapter is structured as follows: we first introduce the DLV system and
its general architecture in Section 4.1; next, in Section 4.2, we analyze in more
detail the implementation of DLV∃, showing all of its features; finally, in Section
4.3, we present the query-driven optimizations that we implemented in DLV∃.

4.1 The DLV system

DLV [68] is a deductive database system, based on Disjunctive Logic Pro-

gramming (DLP) [38, 82, 75, 73, 49, 90, 69], which offers front-ends to several
advanced KR formalisms. It has been conceived by an Italian-Austrian research
team (of the University of Calabria and the Vienna University of Technology).

The DLV system embeds important results obtained in the fields of Artificial
Intellingence, Databases and Computational Logic, and it is founded on a solid
theoretical basis. It supports, beyond the classical constructs of DLP, the spec-
ification of "strong" constraints (conditions that have to be necessarily satisfied)
and "weak" constraints (conditions that have to be possibly satisfied). It allows to
resolve very hard problems by simply specifying, in a declarative way, the desired
solutions. DLV is based on the extension of the Gelfond-Lifschitz semantics to
the disjunctive case [49].

55

56 CHAPTER 4. A DLV-BASED IMPLEMENTATION OF QA OVER SHY

The first release of the system became available in 1997, after several years
of theoretical research. It has been significantly improved over and over in the
last years, incorporating new features and relevant optimisation techniques in all
modules of the engine. Nowadays it represents the state of the art among Knowl-
edge Representation and Reasoning (KRR) systems. Thanks to a long lasting
theoretical and implementation effort, the language is now supported by an ef-
ficient run-time system that exploits techniques developed throughout the years
by the scientific and industrial database community. By analyzing the nature of
its specific input, the system is able to apply the techniques that better reflect the
complexity of the problem at hand, so that easy problems are solved fast, while
only harder problems involve methods of higher computational cost.

4.1.1 General architecture

Figure 4.1: Architecture of the DLV system

The heart of DLV is the DLV Core module. It controls the execution of the en-
tire system. This module pre-processes input programs and post-processes com-
puted models.

4.1. THE DLV SYSTEM 57

The system takes input data from user (mainly via command-line) and from
file-system and/or from database systems. At the start the input (possibly trans-
formed by a frontend) is send to the Intelligent Grounding module. This module
produces a propositional program P’ having the same answer sets of P. In general,
P’ is significantly smaller than Ground(P).

Afterwards the Model Generator (MG) and Model Checker (MC) modules are
invoked. They both work over the propositional program P’. The former produces
an interpretation that is candidate to be an answer set, the latter checks whether it
is really an answer set. This process is reiterated until there are no other answer
sets or it has been computed the requested number of answer sets.

Notice that Datalog (and, in particular, Datalog∃) programs are solved directly
by the Intelligent Grounding, because they have no negation and disjunction.
Thus, the other two modules (Model Generator and Model Checker) of the DLV
Core are not involved in the evaluation of Shy programs. In fact, the PARSIM-
CHASE algorithm defined in Section 3.1 and the resumption technique introduced
in Section 3.2.2 were integrated in the Intelligent Grounding. In the following
section we illustrate the algorithm of the original Intelligent Grounding of DLV,
and next, in Section 4.2, we show how we modified the original implementation
in order to deal with Shy programs.

4.1.2 Intelligent grounding

Given an input DLP program P, the Intelligent Grounding module efficiently
generates a ground instantiation which have the same answer sets of the standard
instantiation, but, in general, it is much smaller than the latter. Notice that the size
of the instantiation is a crucial aspect for the efficiency, because the computation
takes exponential time (in the worst case) with respect to the size of the ground
input program (generated by the instantiator).

Figure 4.2: Dependency Graph

In order to generate a small ground program equivalent to P, the instantia-

58 CHAPTER 4. A DLV-BASED IMPLEMENTATION OF QA OVER SHY

tion module of DLV produces ground instances of the rules containing only atoms
that can be probably derived from P, so avoiding the combinatorial explosion that
could be obtained by using a trivial algorithm that would consider all the atoms of
the Herbrand Base. This can be done by taking into account some structural infor-
mations of the input program, concerning the dependencies between IDB predi-
cates. Note that a predicate p is an extensional database predicate (EDB predicate)
if all defining rules1 for p are facts; otherwise, p is an intensional database predi-
cate (IDB predicate). Now it will be given the definition of the Dependency Graph

of P, that, intuitively, describes how predicates depends on each other.

Definition 4.1.1. Let P be a disjunctive logic program. The Dependency Graph

of P is a directed graph GP =< N,E >, where N is the set of nodes and E is the
set of arcs. N contains a node for each IDB predicate of P , while E contains an
arc e = (p, q) if there is a rule r in P such that q occurs in the head of r while p

appears in a positive literal of the body of r.

The graph GP induces a subdivision of P in different subprograms (also called
modules) so allowing a modular evaluation of the program itself. We say that a
rule r ∈ P defines a predicate p if p appears in the head of r.
For each strictly connected component (SCC2) C of GP , the set of the rules defin-
ing all the predicates in C is called module of C and it is denoted by PC

3.
In more detail, a rule r occurring in a module of PC (i.e. r defines some predicate
q ∈ C) is called recursive if there is some predicate p ∈ C occurring in the positive
body of r, otherwise, r is considered as an exit rule.

Example 4.1.2. Consider the following program P , where a is an EDB predicate:
r1: p(X,Y) ∨ s(Y) ← q(X), q(Y), not t(X,Y).
r2: q(X) ← a(X).
r3: p(X,Y) ← q(X), t(X,Y).
r4: t(X,Y) ← p(X,Y), s(Y).

The graph GP is illustrated in Figure 4.2; the strictly connected components of
GP are {s}, {q}, {p, t}. They correspond to the following 3 modules:

{ p(X,Y) ∨ s(Y) ← q(X), q(Y), not t(X,Y). }
{ q(X) ← a(X). }
{ p(X,Y) ← q(X), t(X,Y).
p(X,Y) ∨ s(Y) ← q(X), q(Y), not t(X,Y).
t(X,Y) ← p(X,Y), s(Y). }

1A defining rule for a predicate p is a rule r ∈ P such that some atom p(t) belongs to head(r).
2We remember that a strictly connected component of a directed graph is a maximal subset of

nodes, such that each node is reachable from each other.
3Notice that, since integrity constraints are considered as rules with the same head (i.e., a

special symbol that does not appear anywhere in the program), they all belong to the same module.

4.1. THE DLV SYSTEM 59

Figure 4.3: DLV’s instantiating procedure

60 CHAPTER 4. A DLV-BASED IMPLEMENTATION OF QA OVER SHY

Moreover, the first two modules contain no recursive rules, while the third one
contains an exit rule, that is p(X,Y) ∨ s(Y) ← q(X), q(Y), not t(X,Y), and
two recursive rules.

The dependency graph4 induces a partial ordering on its SSCs, defined as
follows: for each pair A,B of SCCs of GP , it is said that B directly depends on
A (denoted by A ≺ B) if there is an arc outgoing from a predicate of A and going
into a predicate of B; and, B depends on A if A ≺S B, where ≺S denotes the
transitive closure of the relation ≺.

Example 4.1.3. Consider the dependency graph illustrated in Figure 4.2; it can
be noted that component {p, t} depends on components {s} and {q}, while {s}
depends only on {q}.

This ordering can be exploited for choosing an ordered sequence C1, ..., Cn of
SCCs of GP (that is not unique, in general) such that whenever Cj depends on Ci,
Ci precedes Cj in the sequence (namely i < j). Intuitively, this partial ordering
allows to evaluate the program a module at a time, so that all data necessary for
instantiating a module Ci have been already generated during the instantiation of
the modules preceding Ci.

Now, it will be given a description of the instantiation process based on this
principle. In the sequel, let P be a DLP program, ANS(P) and EDB(P) denote
the set of all answer sets of P and the set of initial ground facts of P , respectively.

The procedure Instantiate showed in Figure 4.3 takes as input both the pro-
gram P and its dependency graph GP , and then it returns in output a set Π of
ground rules containing only atoms which can be probably derived starting from
P , such that ANS(P) = ANS(Π ∪ EDB(P)). As already mentioned, the input
program P is divided into modules corresponding to SCCs of the dependency
graph GP . These modules are evaluated one at a time following the ordering in-
duced by the dependency graph. The algorithm creates a new set of atoms S, that
will contain the subset of Herbrand Base that is significant for the instantiation.
Initially, S = EDB(P) and Π = ∅. Then, a strictly connected component C
with no ingoing arcs, is removed by GP and the module corresponding to C is
evaluated by the function InstantiateComponent. This ensures that modules are
evaluated one at a time so that whenever C1 ≺S C2, PC1

is evaluated before PC2
.

The procedure Instantiate remains active until all the components of GP have not
been evaluated.

Example 4.1.4. Let P be the program of Example 4.1.2. The only component of
GP having no ingoing arc is {q}. Thus the module Pq is evaluated for first. Then,
after {q} is removed by GP , {s} becomes the only component of GP having no

4We remember that dependency graph does not take into account negative dependencies.

4.2. DLV∃: DESIGN AND IMPLEMENTATION 61

ingoing arc, thus it is evaluated. After the evaluation and the removal of {s} by
GP , {p, t} is processed, so completing the instantiation process.

While the procedure InstantiateComponent takes as input both the component
C that has to be instantiated and S, and then for each atom a belonging to C and
for each rule r defining a, it computes the ground instance of r containing only
atoms that can be probably derived from P . At the same time, the procedure up-
dates the set S by adding atoms appearing in the head of the rules of Π. Finally,
each rule r in C is processed by the procedure InstantiateRule. This procedure,
starting from the set of atoms that have been demonstrated to be significant so far,
builds all the ground instances of r, it adds them to Π and it marks as significant
the atoms of the head of the new ground rules generated. It is worth noting that
a disjunctive rule r could appear in modules of different components. Thus, be-
fore processing r, InstantiateRule verifies whether r has been already "grounded"
during the instantiation process of another component. This ensures that a rule is
processed only once inside a unique module of the program. Concerning recur-
sive rules, they are processed many times following a semi-näive tecnique, where,
during a generic iteration n, only significant informations derived during the iter-
ation n − 1 are used. This is implemented by using a significant partitioning of
atoms into 3 sets: ∆S,S and NS. NS is filled by atoms derived during the current
iteration (n); ∆S contains atoms computed during the previous iteration (n − 1);
finally S contains atoms obtained previously (namely from iteration n − 2 back-
wards). Initially ∆S and NS are empty and exit rules contained in the module C

are evaluated through a single call to procedure InstantiateRule; finally, recursive
rules are evaluated through a do-while cycle. At the beginning of each iteration,
NS is assigned to ∆S, i.e., new informations derived during the iteration n are
considered significant for the next iteration (n + 1). Then, the method Instanti-

ateRule is invoked for each recursive rule r and, at the end of each iteration, ∆S

(since it has been already exploited) is added to S. The procedure stops when no
new informations are derived during the current iteration (namely when NS = ∅).

Theorem 4.1.5. Let P be a disjunctive logic program, and Π be the ground pro-

gram generated by algorithm Instantiate. We have that ANS(P) = ANS(Π ∪

EDB(P)) (i.e., P and Π ∪ EDB(P) have the same answer sets).

4.2 DLV∃: Design and implementation

We implemented a system for answering conjunctive queries over Shy pro-
grams (it actually works on any parsimonious program) on top of the DLV system
introduced in Section 4.1. The system, called DLV∃, efficiently integrates the
PARSIM-CHASE algorithm defined in Section 3.1 and the resumption technique

62 CHAPTER 4. A DLV-BASED IMPLEMENTATION OF QA OVER SHY

introduced in Section 3.2.2, in the DLV system. Following the DLV philosophy,
it has been designed as an in-memory reasoning system.

To answer a CQ q against a Shy program P , DLV∃ carries out the following
steps.

Skolemization.

∃-variables in rule heads are managed by skolemization. Given a head atom
a = p(t1, . . . , tk), let us denote by fpos(Y,a) the position of the first occurrence
of variable Y in a. The skolemized version of a is obtained by replacing in a

each ∃-variable Y by f
p

fpos(Y,a)
(t′

1
, . . . , t′k) where, for each i ∈ [1..k], t′i is either

#fpos(ti,a) or ti according to whether ti is an ∃-variable or not, respectively. Every
rule in P with ∃-variables is skolemized in this way, and skolemized terms are
interpreted as functional symbols [33] within DLV∃.

Example 4.2.1. The Datalog∃ rule

∃X,Y p(Z,X,W,Y) :- s(Z,W).

is skolemized in

p(Z,t1,W,t2) :- s(Z,W).

where t1 = f
p

2
(Z,#2,W,#4), t2 = f

p

4
(Z,#2,W,#4).

The skolemization task is carried out at parsing time. Every rule is first rewrit-
ten according to the criteria above, and, then, it is stored. Thus, the parser of DLV
has been extended in order to accomodate existential quantifiers in rule heads. In
the following, we illustrate the syntax of existential quantifiers in DLV∃ by show-
ing a list of example programs executable by the system.

Employee and department

Consider an employee database, which stores information about managers,
employees, and departments, where managers may supervise employees and di-
rect departments, and employees may work in a department. The relational schema
R consists of the unary predicates manager and employee as well as the binary
predicates directs, supervises, and works_in with obvious semantics. In this
context, a Shy program encoding this domain could consist of the following rules:

• every manager is an employee:

employee(M) :- manager(M).

4.2. DLV∃: DESIGN AND IMPLEMENTATION 63

• every manager directs at least one department:

#exists{P} directs(M,P) :- manager(M).

• every employee supervising a manager is a manager:

manager(E) :- employee(E), supervises(E,E’), manager(E’).

• every employee who directs a department is a manager, and supervises at
least another employee who works in the same department:

#exists{E’} aux(E,E’,P) :- employee(E), directs(E,P).

manager(E) :- aux(E,E’,P).

supervises(E,E’) :- aux(E,E’,P).

works_in(E’,P) :- aux(E,E’,P).

Father and person

Consider a family database, which stores information about fathers and per-
sons, where every person must have a father, which has to be a person as well. In
this context, a Shy program implementing this issue could be:

• every person has a father:

#exists{X} father(X,Y) :- person(Y).

• every father has to be a person as well:

person(X) :- father(X,Y).

• the individual “pierfrancesco” is a person:

person(‘‘pierfrancesco’’).

Data loading and filtering.

Since DLV∃ is an in-memory system, it needs to load input data in memory
before the reasoning process can start. In order to optimize the execution, the
system first singles out the set of predicates which are needed to answer the input
query, by recursively traversing top-down (head-to-body) the rules in P , starting
from the query predicates. This information is used to filter out, at loading time,
all the facts belonging to predicates certainly irrelevant for answering the input
query.

Notice that, the application of this optimization tecnique is optional. In partic-
ular, data filtering is automatically activated only if the input to DLV∃ is structured
according to the following guidelines:

64 CHAPTER 4. A DLV-BASED IMPLEMENTATION OF QA OVER SHY

• input files are distinguished between rule files (the so-called TBox in on-
tologies) and data files (the ABox); the extension ".rul" is used for TBox’s
files, and ".data" for ABox’s ones;

• there is a file, “p.data”, for each predicate name “p” of the ABox storing all
and only the assertions regarding “p” (notice that, the file has to be named
with the same name of the predicate);

• an eventual query in input is expressed in a rule file.

If the input is organized in this way, DLV∃ first scans the rule files, and then
(by considering the input query and the TBox) it singles out the set of the pred-
icates that have to be considered in order to answer the input query. Thus, it
loads only data files whose names are in this predicate set. The other part of the
ABox is totally ignored by DLV∃ parser. However, this organization of the input
data files is not mandatory. But, if the previous suggestions are not followed the
optimization on the data loading task will not be applied.

pChase Computation.

After the skolemization, and loading phases, the system computes pChase(P)
as defined in Section 3.1. Since ∃-variables have been skolemized, the rules
are safe and can be evaluated in the usual bottom-up way; but, according to
pChase(P), the generation of homomorphic atoms should be avoided. To this
end, each time a new head-atom a is derivable, the system verifies whether an
homomorphic atom had been previously derived, where each skolem term is con-
sidered as a null for the sake of homomorphisms verification. In the negative case,
a is derived; otherwise it is discarded.

If the input query is atomic, then pChase(P) is sufficient to provide an answer
(see Proposition 3.1.3); otherwise, the fixpoint computation should be resumed
several times (see Lemma 3.2.10). In this case, every null (skolem term) derived
in previous reiterations is freezed (see Section 3.2.2) and considered as a standard
constant; in our implementation, this is implemented by attaching a “level” to
each skolem term, representing the fixpoint reiteration where it has been derived.
This is important because homomorphism verification must consider as nulls only
skolem terms produced in the current resumption-phase; while previously intro-
duced skolem terms must be interpreted as constants.

The PARSIM-CHASE procedure is integrated in the Intelligent Grounding mod-
ule of DLV. The homomorphism verification (see Section 2.1.1) is implemented
in the function InstantiateRule (see Figure 4.3). At the beginning of the function,
we verify whether an homomorphism of the head atom of the current rule had
been previously derived.

4.3. OPTIMIZATIONS 65

The resumption mechanism is implemented as follows. The procedure Instan-

tiate (see Figure 4.3) is invoked as many times as the number k of resumptions
stated by Lemma 3.2.10. In particular, we attach a “resumption-phase”, kcurr, to
the grounding module, representing the number of times that Instantiate has been
invoked so far.

During each execution of the procedure Instantiate, the skolem terms that play
the role of nulls are identified by verifying whether the level of the skolem term
is equal to current resumption-phase. If they are equal, the skolem term will be
considered as a null in homomorphism verifications of that iteration, otherwise as
a constant.

Query answering.

After the fixpoint is resumed k times, the answers to query q are given by
ans(q,pChase(P, k + 1)).

In DLV∃ syntax, queries consist of one or more literals, which must be sep-
arated by commata and terminated by a question mark. Note that if you want to
express some existentially quantified variables in the query you have to follow the
syntax seen above for program rules. Only one query per program is considered.
If you specify more than one query, only the last one will be considered and DLV∃

will issue an appropriate message.

Example 4.2.2. The following three are ground queries,

a ?

b, c ?

a2(h,i,j,k), b1(1,2,3) ?

while the next three are non-ground queries.

a(X) ?

#exists{X,Y} a(X), b(X,Y), c(Y,Z) ?

#exists{X} a2(Z,i,X,k), b1(X,Z,3) ?

4.3 Optimizations

In this section, we present some additional optimization tecniques implemented
in DLV∃. The query is the central point in every system for QA and optimizations
are designed and developed around it. Thus, we integrate two different (query-
oriented) optimization tecniques in DLV∃: (1) we further optimize the number
of times that the PARSIM-CHASE has to be resumed for answering conjunctive
queries, in fact, we reduce the bound stated in Lemma 3.2.10 by considering the

66 CHAPTER 4. A DLV-BASED IMPLEMENTATION OF QA OVER SHY

Algorithm 3 RESUMPTION-LEVEL(q,P)

Input: A CQ q = ∃Y conj[X∪Y] and a program P

Output: The number of needed resumptions for q and P .
1. Y∗ ∶=Y

2. for each Y ∈Y do

3. if Y is protected in q OR Y occurs in only one atom of q
4. remove(Y,Y∗)
5. return ∣Y∗∣

structure of the query; (2) we optimize the DLV∃ computation by “pushing-down”
the bindings coming from possible query constants, in order to exclude some facts
and rules which are not needed for the query at hand. To this end, the program is
rewritten by a variant of the well-known magic-set optimization technique [40],
that we adapted to Datalog∃ by avoiding to propagate bindings through “attacked”
argument-positions (since ∃-quantifiers generate “unknown” constants). The re-
sult is a program, being equivalent to P for the given query, that can be evaluated
more efficiently. In the following, P denotes the program that has been rewritten
by magic-sets. A more detailed description of the Magic-Sets tecnique imple-
mented in DLV∃ is reported in Section 4.3.2.

4.3.1 Optimal resumption level

If the input query is atomic, then pChase(P) is sufficient to provide an answer
(see Proposition 3.1.3); otherwise, the fixpoint computation should be resumed
several times.

In Section 3.2.2, we proved that resuming the computation k times is “suf-
ficient” for answering a generic CQ with k different ∃-variables (see Lemma
3.2.10). However, this number of resumptions is not always “necessary”. In fact,
in our implementation, this number is further reduced by Algorithm 3 considering
the structure of the query w.r.t. P .

Lemma 4.3.1. Let P ∈ Shy, q be a CQ and k be the number of needed resumptions

for q on P returned by Algorithm 3. Then, ansP (q) ⊆ ans(q,pChase(P, k + 1)).

Proof (Sketch). Let P ∈ Shy, q be a CQ, σa ∈ ansP (q), σ be a substitution proving
that P ⊧ σa(q) holds, and X be only and all the ∃-variables of q mapped by
σ to nulls. Then, there is a substitution σ′, proving that P ⊧ σa(q) holds, that
maps at least one variable in X to a term occurring in pChase(P). Thus, in the
worst case, to be sure that all the nulls involved by σ′ are generated, it is enough
to compute pChase(P,n) where n is the number of ∃-variables of q. Moreover,

4.3. OPTIMIZATIONS 67

pChase(P,n + 1) contains the atoms for σ′. In the sequel, let X be an existential
variable of the query. If X occurs in only one atom of q and X /∈ X, σ maps X
to a constant value. This can be resolved by pChase(P). Otherwise, if X occurs
in only one atom of q and X ∈ X, generating the specific null mapped on X by σ

is not necessary, because that null does not meet other nulls to join. Finally, if X
occurs in more than one atom of q but it is protected in q, then X can be mapped
by σ only to a constant value. Note that, joins on constant values are resolved
by pChase(P). Thus, we are sure that all the nulls involved by σ′ are generated
already by pChase(P,n − 1) in every case considered above.

4.3.2 Magic-Sets

In this section we focus on a particular optimization we developed in DLV∃,
the Magic-Sets tecnique. The original Magic-Sets technique was introduced for
Datalog [20]. Many authors have addressed the issue of extending Magic-Sets
to broader languages, including nonmonotonic negation [46], disjunctive heads
[52, 4], and uninterpreted function symbols [32, 5]. In order to bring Magic-Sets
to the more general framework of Datalog∃, two main difficulties must be faced:
the first is, obviously, the presence of existentially quantified variables; the second
regards the correctness proof of a Magic-Sets rewriting. In fact, while a Datalog

program can be associated with a universal model that comprises finitely many
atoms, the universal model of a Datalog∃ program comprises in general infinitely
many atoms. In this work, we designed a Magic-Sets rewriting algorithm han-
dling existential quantifiers, and thus suitable for Datalog∃ programs in general.
We demonstrated that our Magic-Sets algorithm preserves query equivalence for
any Datalog∃ program and we show how Magic-Sets can be safely applied to Shy
programs. Moreover, we implemented the Magic-Sets strategy in DLV∃ and we
performed an experimental analysis. The results evidenced the optimization po-
tential provided by Magic-Sets. A more detailed discussion about this analysis is
reported in Chapter 5.

Magic-Sets for Datalog∃

The original Magic-Sets technique was introduced for Datalog [20]. In or-
der to bring it to the more general framework of Datalog∃, we have to face two
main difficulties. The first is that originally the technique was defined to han-
dle ∀-variables only. How does the technique have to be extended to programs
containing ∃-variables? The second difficulty, which is eventually due to the first
one, concerns how to establish the correctness of an extension of Magic-Sets to
Datalog∃. In fact, any Datalog program is characterized by a unique universal
model of finite size. In this case, the correctness of Magic-Sets can be established

68 CHAPTER 4. A DLV-BASED IMPLEMENTATION OF QA OVER SHY

by proving that the universal model of the rewritten program (modulo auxiliary
predicates) is a subset of the universal model of the original program and contains
all the answers for the input query. On the other hand, a Datalog∃ program may
have in general many universal models of infinite size. Due to this difference, it is
more difficult to prove the correctness of a Magic-Sets technique.

The difficulty associated with the presence of ∃-variables is circumvented by
means of the following observation: A hypothetical top-down evaluation of a
query over a Datalog∃ program would only consider the rules whose head atoms
unify with the (sub)queries. Therefore, the Magic-Sets algorithm has to skip those
rules whose head atoms have some ∃-variables in arguments that are bound from
the (sub)queries. Concerning the second difficulty, we prove the correctness of
the new Magic-Sets technique by considering all models of original and rewritten
programs, showing that the same set of substitution answers is determined for the
input query.

Magic-Sets Algorithm

Magic-Sets stem from SLD-resolution, which roughly acts as follows: Each
rule r s.t. σ(head(r)) = σ′(q), where σ and σ′ are two substitutions, is con-
sidered in a first step. Then, the atoms in σ(body(r)) are taken as subqueries,
and the procedure is iterated. During this process, if a (sub)query has some ar-
guments bound to constant values, this information is used to limit the range of
the corresponding variables in the processed rules, thus obtaining more targeted
subqueries when processing rule bodies. Moreover, bodies are processed in a cer-
tain sequence, and processing a body atom may bind some of its arguments for
subsequently considered body atoms. The specific propagation strategy adopted
in a top-down evaluation scheme is called sideways information passing strategy

(SIPS). Roughly, a SIPS is a strict partial order over the atoms of each rule which
also specifies how the bindings originate and propagate [22].

In order to properly formalize our Magic-Sets algorithm, we first introduce
adornments, a convenient way for representing binding information for intentional
predicates.

Definition 4.3.2 (Adornments). Let p be a predicate of arity k. An adornment for
p is a string α = α1⋯αk defined over the alphabet {b, f }. The i-th argument of p
is considered bound if αi = b, or free if αi = f (i ∈ [1..k]).

Binding information can be propagated in rule bodies according to a SIPS.

Definition 4.3.3 (SIPS). Let r be a Datalog∃ rule and α an adornment for -
pred(head(r)). A SIPS for r w.r.t. α is a pair (≺αr , fα

r), where: ≺αr is a strict
partial order over atoms(r) s.t. a ∈ body(r) implies head(r) ≺αr a; fα

r is a func-
tion assigning to each atom a ∈ atoms(r) the subset of the variables in a that

4.3. OPTIMIZATIONS 69

Algorithm 4 MS(q,P)

Input: An atomic query q = g(u1, . . . , uk) and a Datalog∃ program P

Output: an optimized Datalog∃ program
1. begin

2. α ∶= α1⋯αk, where αi = b if ui ∈∆C , and αi = f otherwise (i ∈ [1..k]);
3. S ∶= {⟨g, α⟩}; D ∶= ∅; Rmgc

∶= {mgc(q,α)← }; Rmod
∶= ∅;

4. while S ≠ ∅ do

5. ⟨p, α⟩ ∶= any element in S; S ∶= S ∖ {⟨p, α⟩}; D ∶=D ∪ {⟨p, α⟩};
6. foreach r ∈ rules(P) s.t. head(r) = p(t1, . . . , tn) and

ti ∈∆∃ implies αi = f (i ∈ [1..k]) do

/ / a ∶= p(t1, . . . , tn)

7. Rmod
∶= Rmod

∪ {head(r)←mgc(a, α) ∧ body(r)};
8. foreach q(s1, . . . , sm) ∈ body(r) s.t. q ∈ idb(P) do

/ / b ∶= q(s1, . . . , sm)
9. B ∶= {c ∈ body(r) ∣ c ≺αr b};
10. β ∶= β1⋯βm, where βi = b if si ∈∆C ∪ f

α
r (B), and

βi = f otherwise (i ∈ [1..k]);
11. Rmgc

∶= Rmgc
∪ {mgc(b, β)←mgc(a, α) ∧B};

12. if ⟨q, β⟩ ∉D then S ∶= S ∪ {⟨q, β⟩};
13. return Rmgc

∪Rmod
∪ {a← ∣ a ∈ data(P)};

are made bound after processing a; fα
r must guarantee that fα

r (head(r)) contains
only and all the variables of head(r) corresponding to bound arguments according
to α.

The auxiliary atoms introduced by the algorithm are obtained as described
below.

Definition 4.3.4 (Magic Atoms). Let a = p(t1, . . . , tk) be an atom and α be an
adornment for p. We denote by mgc(a, α) the magic atom mgc_pα(t̄), where: t̄
contains all terms in t1, . . . , tk corresponding to bound arguments according to α;
and mgc_pα is a new predicate symbol (we assume that no standard predicate in
P has the prefix “mgc_”).

We are now ready to describe the MS algorithm (see Algorithm 4), associating
each atomic query q over a Datalog∃ program P with a rewritten and optimized
program MS(q,P). (More complex queries can be encoded by means of auxil-
iary rules.) The algorithm uses two sets, S and D, to store pairs of predicates
and adornments to be propagated and already processed, respectively. Magic and
modified rules are stored in the sets Rmgc and Rmod , respectively. The algorithm
starts by producing the adornment associated with the query (line 1), which is

70 CHAPTER 4. A DLV -BASED IMPLEMENTATION OF QA OVER SHY

paired with the query predicate and put into S (line 2). Moreover, the algorithm
stores a ground fact named query seed into Rmgc (line 2). Sets D and Rmod are
initially empty (line 2).

After that, the main loop of the algorithm is repeated until S is empty (lines 3–
11). More specifically, a pair ⟨p, α⟩ is moved from S to D (line 4), and each rule r
s.t. head(r) = a and pred(a) = p is considered (lines 5–11). Considered rules are
constrained to comply with the binding information from α, that is, no existential
variables have to receive a binding during this process (line 5). The algorithm adds
to Rmod a rule named modified rule which is obtained from r by adding mgc(a, α)
to its body.

Binding information from α are then passed to body atoms according to a spe-
cific SIPS (lines 7–11). Specifically, for each body atom b = q(s̄), the algorithm
determines the set B of predecessor atoms in the SIPS (line 8), from which an
adornment string β for q is built (line 9). B and β are then used to generate a
magic rule whose head atom is mgc(b, β), and whose body comprises mgc(a, α)
and atoms in B (line 10). Moreover, the pair ⟨q, β⟩ is added to S unless it was
already processed in a previous iteration (that is, unless ⟨q, β⟩ ∈ D; line 11). Fi-
nally, the algorithm terminates returning the program obtained by the union of
Rmgc , Rmod and {a ← ∣ a ∈ data(P)} (line 12).

Example 4.3.5. The next rules belong to a Datalog∃ program hereafter called P-

Jungle:

r1 ∶ ∃Z pursues(Z,X) ← escapes(X)

r2 ∶ hungry(Y) ← pursues(Y,X), fast(X)

r3 ∶ pursues(X,Y) ← pursues(X,W), prey(Y)

r4 ∶ afraid(X) ← pursues(Y,X), hungry(Y), strongerThan(Y,X)

This program describes a funny scenario where an escaping, yet fast animal X
may induce many other animals to be afraid. We now use P-Jungle for show-
ing an example of the application of the Algorithm 4. In particular, we consider
SIPS s.t. atoms are totally ordered from left-to-right and binding information
is propagated whenever possible. In this setting, the Algorithm 4 run on query
afraid(antelope) and P-Jungle yields the following rewritten program:

mgc_afraidb(antelope) ←

mgc_pursuesfb(X) ← mgc_afraidb(X)

mgc_pursuesff ← mgc_pursuesfb(Y)

mgc_pursuesbf (Y) ← mgc_hungryb(Y)

mgc_hungryb(Y) ← mgc_afraidb(X), pursues(Y,X)

∃Z pursues(Z,X) ← mgc_pursuesfb(X), escapes(X)

∃Z pursues(Z,X) ← mgc_pursuesff , escapes(X)

4.3. OPTIMIZATIONS 71

hungry(Y) ← mgc_hungryb(Y), pursues(Y,X), fast(X)

pursues(X,Y) ← mgc_pursuesfb(Y), pursues(X,W), prey(Y)

pursues(X,Y) ← mgc_pursuesff , pursues(X,W), prey(Y)

pursues(X,Y) ← mgc_pursuesbf (X), pursues(X,W), prey(Y)

afraid(X) ← mgc_afraidb(X), pursues(Y,X), hungry(Y),

strongerThan(Y,X)

A detailed description is reported in [7].

Query Equivalence Result

We start by establishing a relationship between the model of P and those of
MS(q,P). The relationship is given by means of the next definition.

Definition 4.3.6 (Magic Variant). Let I ⊆ base(∆C∪∆N), and {vari(I)}i∈N be the
following sequence: var0(I) = I; for each i ≥ 0, vari+1(I) = vari(I) ∪ {a ∈ I ∣ ∃α
s.t. mgc(a, α) ∈ vari(I)} ∪ {mgc(a, α) ∣ ∃r, σ s.t. r ∈ Rmgc ∧ σ(head(r)) =
mgc(a, α) ∧ σ(body(r)) ⊆ vari(I)}. The fixpoint of this sequence is denoted by
var(I).

We point out that the magic variant of a set of atoms I comprises magic atoms
and a subset of I . Intuitively, these atoms are enough to achieve a model of
MS(q,P) if I is a model of P . This intuition is formalized below and proven
in [7].

Lemma 4.3.7. If M ⊧ P , then var(M) ⊧MS(q,P).

The soundness of the Algorithm 4 w.r.t. QA can be now established.

Theorem 4.3.8 (Soundness). If σ ∈ ans(q,MS(q,P)), then σ ∈ ansP (q).

Proof. Assume σ ∈ ans(q,MS(q,P)). Let M ⊧ P . By Lemma 4.3.7, var(M) ⊧
MS(q,P). Since σ ∈ ans(q,MS(q,P)) by assumption, σ(q) ∈ var(M). Thus,
σ(q) ∈ M because var(M) comprises magic atoms and a subset of M by con-
struction.

To prove the completeness of the Algorithm 4 w.r.t. QA we identify a set of
atoms that are not entailed by the rewritten program but not due to the presence of
magic atoms.

Definition 4.3.9 (Killed Atoms). Let M ⊧MS(q,P). The set killed(M) is defined
as follows: {a ∈ base(∆) ∖M ∣ either pred(a) ∈ edb(P), or ∃α s.t. mgc(a, α) ∈
M}.

72 CHAPTER 4. A DLV-BASED IMPLEMENTATION OF QA OVER SHY

Since the falsity of killed atoms is not due to the Magic-Sets rewriting, one ex-
pects that their falsity can also be assumed in the original program. This intuition
is formalized below and proven in [7].

Lemma 4.3.10. If M ⊧MS(q,P), M ′
⊧ P and M ′

⊇M , then M ′ ∖ killed(M) ⊧
P .

We can finally prove the completeness of the Algorithm 4 w.r.t. QA, which
then establishes the correctness of Magic-Sets for queries over Datalog∃ programs.

Theorem 4.3.11 (Completeness). If σ ∈ ansP (q), then σ ∈ ans(q,MS(q,P)).

Proof. Assume σ ∈ ansP (q). Let M ⊧ MS(q,P). Let M ′
⊧ P and be s.t. M ′

⊇

M . By Lemma 4.3.10, M ′ ∖ killed(M) ⊧ P . Since σ ∈ ansP (q) by assumption,
σ(q) ∈ M ′ ∖ killed(M). Note that all instances of the query which are not in M

are contained in killed(M) because the query seed belongs to M . Thus, σ(q) ∈M
holds.

Preserving Shyness in the Magic-Sets Rewriting

In Section 4.3.2, the correctness of MS has been established for Datalog∃ pro-
grams in general. Our goal now is to preserve the desirable shyness property in
the rewritten of a Shy program.

In fact, shyness is not preserved by MS per sé. Resuming Example 4.3.5,
MS run on query afraid(antelope) and program P-Jungle may produce from
r4 a rule mgc_hungryb(Y) ← mgc_afraidb(X), pursues(Y,X), which as-
sumes hungry(ϕ) relevant whenever some pursues(ϕ,X) is derived, for any
ϕ ∈∆N . However, shyness guarantees that any extension of this substitution for r4
is actually annihilated by strongerThan(Y,X), which thus enforces protection
on Y. Unfortunately, SIPS cannot represent this kind of information in general, and
thus MS may yield a non-shy program. Actually, the rewritten program in Exam-
ple 4.3.5 is not shy because it contains rule hungry(Y) ← mgc_hungryb(Y),

pursues(Y,X), fast(X).
The problem described above originates by the inability to represent in SIPS

that no join on nulls is required to evaluate Shy programs. We thus explicitly en-
code this information in rules by means of the following transformation strategy:
Let r be a rule of the form (2.1) in a program P , and #dom be an auxiliary pred-
icate not occurring in P . We denote by r⋆ the rule obtained from r by adding
a body atom #dom(X) for each protected variable X in body(r). Moreover, we
denote by P ⋆ the program comprising each rule r⋆ s.t. r ∈ P , and each fact
#dom(c) ← s.t. c ∈ dom(P). (Note that the introduction of these facts is not re-
ally required because #dom can be treated as a built-in predicate, thus introducing
no computational overhead.)

4.3. OPTIMIZATIONS 73

Proposition 4.3.12. If P is Shy, then P ⋆ is shy as well and mods(P) = mods(P ⋆).

Now, for an atomic query q over a Shy program P , in order to preserve shy-
ness, we apply the Algorithm 4 to P ⋆ and force SIPS to comply with the follow-
ing restriction: Let r ∈ P ⋆ and α be an adornment. For each a,b ∈ body(r) s.t.
a ≺αr b, and for each variable X occurring in both a and b, SIPS (≺αr , fα

r) is s.t.
a ≺αr #dom(X) ≺αr b. (See [7] for an example.)

Theorem 4.3.13. Let q be an atomic query. If P is Shy, then MS(q,P ⋆) is Shy.

Proof. All arguments of magic predicates have empty null-sets. Indeed, each
variable in the head of a magic rule r either occurs in the unique magic atom of
body(r), or appears as the argument of a #dom atom. Consequently, all rules
in Rmgc are shy. Moreover, each rule in Rmod is obtained from a rule of P ⋆ by
adding a magic atom to its body. No attack can be introduced in this way because
arguments of magic atoms have empty null-sets. Thus, since the original rule is
shy, the modified rule is also shy.

In order to handle CQs of the form ∃Y conj[X∪Y], we first introduce a rule
rq of the form q(X) ← conj. We then compute P ′ = MS(q(X), (P ∪ {rq})⋆)
further restricting the SIPS for rq to not propagate bindings via attacked variables,
that is, to be s.t. Z ∈ fα

rq
(conj) implies that Z is protected in conj (where α is

the adornment for q). After that, we remove from P ′ the rule associated with the
query, thus obtaining a Shy program P ′′. Finally, we evaluate the original query
∃Y conj[X∪Y] on program P ′′.

74 CHAPTER 4. A DLV-BASED IMPLEMENTATION OF QA OVER SHY

Chapter 5

Experimental analysis

In this chapter we report on some experiments we carried out in order to eval-
uate the efficiency and the effectiveness of DLV∃. In particular, our analysis is
divided into three main categories: (1) the experiments where we compare DLV∃

to a number of very expressive QA systems, (2) the experiments where we con-
front DLV∃ to some highly scalable (but less expressive) QA systems, and (3)
the experiments on the Magic-Sets optimization implemented in DLV∃. In the
first category, we compare DLV∃ against a number of state-of-the-art systems for
ontology-based query answering, i.e., Pellet [88], OWLIM-SE [25] and OWLIM-
Lite [25]. Then, we take into account several systems for ontological query an-
swering which are based on the query rewriting tecnique, i.e., Requiem [79] and
Presto [85]. On the one hand, the expressivity of the languages of these systems
is limited to AC0, thus it is much more restricted than the expressivity of Shy (see
Chapter 6). On the other hand, these systems are very highly scalable. In the third
category of experiments, we compare the standard DLV∃ system against DLV∃

without the Magic-Sets optimization. Notice that, we do not include any exper-
iments on the optimal resumption tecnique presented in Chapter 4, because no
query of the considered benchmark suite requires a level of resumption greater
than 2. Thus, in this case, the optimization on the number of resumptions does
not considerably affect performance of the system. This aspect will be dealt in the
future.

This chapter is structured as follows: first of all, we present the results of
the comparison between DLV∃ and the others systems for ontology-based QA. In
particular, DLV∃ is first compared against Pellet, OWLIM-SE and OWLIM-Lite
in Section 5.1, and then against Presto and Requiem in Section 5.2. Finally, in
Section 5.3 we discuss the experiments on the Magic-Sets tecnique implemented
in DLV∃.

75

76 CHAPTER 5. EXPERIMENTAL ANALYSIS

5.1 DLV∃ vs. expressive ontology-based QA systems

Benchmark Focus.

The focus of thesetests is on rapidly changing and evolving ontologies (rules
or data). In fact, in many contexts data frequently vary, even within hours, and
there is the need to always provide the most updated answers to user queries. One
of these contexts is e-commerce; another example is the university context, where
data on exams, courses schedule and assignments may vary on a frequent basis.
Benchmark framework from university domain and obtained results are discussed
next.

Compared Systems.

As it will be pointed out in Section 6.2, ontology reasoners mainly rely on
three categories of inference, namely: tableau, forward-chaining, and query-rewri-
ting. Systems belonging to the latter category are still research prototypes and a
comparison with them is reported in Section 5.2. Here, we compare DLV∃ with
the following systems, being representatives of the first two categories.
▸ Pellet [88] is an OWL 2 reasoner which implements a tableau-based deci-
sion procedure for general TBoxes (subsumption, satisfiability, classification) and
ABoxes (retrieval, conjunctive query answering).
▸OWLIM-SE [25] is a commercial product which supports the full set of valid in-
ferences using RDFS semantics; it’s reasoning is based on forward-chaining. This
system is oriented to massive volumes of data and, as such, based on persistent
storage manipulation and reasoning.
▸ OWLIM-Lite [25], sharing the same inference mechanisms and semantics with
OWLIM-SE, is another product of the OWLIM family designed for medium data
volumes; reasoning and query evaluation are performed in main memory.

Data Sets.

We concentrated on a well known benchmark suite for testing reasoners over
ontologies, namely LUBM [55].

The Lehigh University Benchmark (LUBM) has been specifically developed
to facilitate the evaluation of Semantic Web reasoners in a standard and system-
atic way. In fact, the benchmark is intended to evaluate the performance of those
reasoners with respect to extensional queries over large data sets that commit to
a single realistic ontology. It consists of a university domain ontology with cus-
tomizable and repeatable synthetic data. The LUBM ontology schema and its data

5.1. DLV∃ VS. EXPRESSIVE ONTOLOGY-BASED QA SYSTEMS 77

generation tool are quite complex and their description is out of the scope of this
thesis.

We used the Univ-Bench ontology that describes (among others) universities,
departments, students, professors and relationships among them; we considered
the entire set of rules in Univ-Bench, except for equivalences with restrictions on
roles, which cannot be expressed in Shy in some cases; these have been trans-
formed in subsumptions. Data generation is carried out by the Univ-Bench data
generator tool (UBA) whose main generation parameter is the number of univer-
sities to consider. The interested reader can find all information in [55].

In order to perform scalability tests, we generated a number of increasing data
sets named: lubm-10, lubm-30, and lubm-50, where right-hand sides of these
acronyms indicate the number of universities used as parameter to generate the
data. The number of statements (both individuals and assertions) stored in the
data sets vary from about 1M for lubm-10 to about 7M for lubm-50

LUBM incorporates a set of 14 queries aimed at testing different capabili-
ties of the systems. A detailed description of rules and queries is provided at
http://www.mat.unical.it/kr2012.

Data preparation.

LUBM is provided as owl files. Each owl class is associated with a unary
predicate in Datalog∃; each individual of a class is represented by a Datalog∃

fact on the corresponding predicate. Each role is translated in a binary Datalog∃

predicate with the same name. Finally, assertions are translated in suitable Shy

rules. The following example shows some translations where the DL has been
used for clarity.

Example 5.1.1. The assertions

AdministrativeStaff ⊑ Employee

subOrgOf+

are translated in the following rules:

Employee(X) :- AdministrativeStaff(X).

subOrgOf(X,Z) :-subOrgOf(X,Y),subOrgOf(Y,Z).

where subOrgOf stands for subOrganizationOf.

The complete list of correspondences between DL, OWL, and Datalog∃ rules
and queries is provided at http://www.mat.unical.it/kr2012.

78 CHAPTER 5. EXPERIMENTAL ANALYSIS

Qall Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 # solved Geom. Avg time

lubm-10

DLV∃ 17 5 4 2 4 6 1 6 4 8 5 <1 1 6 2 14 2.87
Pellet 27 82 84 84 82 80 88 81 89 95 82 82 89 82 84 14 84.48
OWLIM-Lite 33 33 – 33 33 33 33 4909 70 – 33 33 33 33 33 12 53.31
OWLIM-SE 105 105 105 105 105 105 105 105 106 106 105 105 105 105 105 14 105.14

lubm-30

DLV∃ 55 16 13 7 14 21 3 21 12 25 18 <1 5 23 8 14 9.70
Pellet – – – – – – – – – – – – – – – 0 –
OWLIM-Lite 106 107 – 107 106 107 106 – 528 – 107 106 106 107 106 11 123.18
OWLIM-SE 323 323 328 323 323 323 323 323 323 326 323 323 323 323 323 14 323.57

lubm-50

DLV∃ 93 27 23 12 23 35 6 34 22 42 31 <1 9 33 14 14 16.67
Pellet – – – – – – – – – – – – – – – 0 –
OWLIM-Lite 187 188 – 190 187 189 188 – 1272 – 189 187 187 189 187 11 223.79
OWLIM-SE 536 536 547 536 536 536 537 536 536 542 536 536 536 536 537 14 537.35

Table 5.1: Running times for LUBM queries (sec).

Results and Discussion.

Tests have been carried out on an Intel Xeon X3430, 2.4 GHz, with 4 Gb Ram,
running Linux Operating System; for each query, we allowed a maximum running
time of 7200 seconds (two hours).

Table 5.1 reports the times taken by the tested systems to answer the 14 LUBM
queries. Since, as previously pointed out, we are interested in evaluating a rapidly
changing scenario, each entry of the table reports the total time taken to answer the
respective query by a system (including also loading and reasoning). In addition,
the first column (labeled Qall) shows the time taken by the systems to compute
all atomic consequences of the program; this roughly corresponds to loading and
inference time for Pellet, OWLIM-Lite, and OWLIM-SE and to parsing and first
fixpoint computation for DLV∃.

The results in Table 5.1 show that DLV∃ clearly outperforms the other systems
as an on-the-fly reasoner. In fact, the overall running times for DLV∃ are signif-
icantly lower than the corresponding times for the other systems. Pellet shows,
overall, the worst performances. In fact, it has not been able to complete any
query against lubm-30 and lubm-50, and is also slower than competitors for the
smallest data sets.

For both OWLIM-Lite and OWLIM-SE, most of the total time is taken for
loading/inference (Qall), as the reconstruction of the answers from the material-
ized inferences is a trivial task, often taking less than one second. However, as
previously stated, this behavior is unsuited for reasoning on frequently chang-
ing ontologies, where previous inferences and materialization cannot be re-used,
and loading must be repeated or time-consuming updates must be performed.
As expected, loading/inference times (Qall) for OWLIM-SE are higher than for
OWLIM-Lite, but OWLIM-SE is faster than OWLIM-Lite in the reconstruction
of the answers from the materialized inferences (this time is basically obtain-
able by subtracting Qall). Because of this inefficiency in answers-reconstruction
OWLIM-Lite has not been able to answer some queries in the time-limit that we

5.2. DLV∃ VS. HIGHLY SCALABLE QA SYSTEMS 79

set for the experiments (two hours); these queries involve many classes and roles.
We carried out some tests also on ontology updates; just to show an exam-

ple, deleting 10% of lubm-50 individuals imposed OWLIM-SE 152 seconds of
update activities, which is sensibly higher than the highest query time needed by
DLV∃ (42 seconds for Q9) on the same data set. OWLIM-Lite was even worse on
updates, since it required 133 seconds for the deletion of just one individual.

It is worth pointing out that DLV∃ is the only of the tested systems for which
the times needed for answering single queries (Q1 . . .Q14) are significantly smaller
than those required for materializing all atomic consequences (Qall). This result
highlights the effectiveness of the query-oriented optimizations implemented in
DLV∃ (magic sets and filtering, in particular), and confirms the suitability of the
system for on-the-fly query answering. Interestingly, even if DLV∃ is specifically
designed for query answering, it outperformed the competitors also for the com-
putation of all atomic consequences (query Qall). Indeed, on each of the three
ontologies, DLV∃ took, respectively, about 17% and 51% of the time taken by
OWLIM-SE and OWLIM-Lite.

5.2 DLV∃ vs. highly scalable QA systems

Compared systems.

In this section we report on another experimental analysis we performed, com-
paring DLV∃ against two of state-of-the-art systems for ontology-based QA re-
lying on the query-rewriting category of inference. In particular, we compared
DLV∃ with the following systems: Requiem [79] and Presto [85]. Thus, we first
introduce the query rewriting tecnique, and we next overview the main features of
these systems.

More precisely, query answering by query rewriting is performed by first com-
puting a rewriting of the query with respect to the intensional part of the ontology
(TBox), thus obtaining a so-called perfect reformulation of the initial query. Such
a perfect reformulation is then evaluated over the extensional part of the ontol-
ogy (ABox) only. The expressivity of the languages (mainly DLs) of the systems
belonging to this category of inference is limited to AC0 and excludes, for in-
stance, transitivity property or concept product. But, a distinguishing feature of
DL-Lite with respect to the other DLs is that the perfect reformulation of con-
junctive queries can be expressed by first-order queries. This property, also called
first-order rewritability of conjunctive queries, is extremely important, because it
allows to delegate the management of the ABox to a relational database system
(RDBMS) and to solve query answering by shipping the perfect reformulation of
the initial query (expressed in the SQL language) to the RDBMS. This implemen-

80 CHAPTER 5. EXPERIMENTAL ANALYSIS

tation strategy actually allows to handle ABoxes of very large size (comparable to
the size of a database).

However, the bottleneck of these algorithms and systems is constituted by
the fact that the perfect reformulation computed increases exponentially with the
number of atoms of the conjunctive query.

Two systems that tries to overcome the above limitation are: Presto and Re-
quiem. In the following, we report a brief description of the algorithms imple-
mented by them.

Presto

Presto is an algorithm for the perfect reformulation of unions of conjunctive
queries over DL-Lite ontologies. Presto is based on the following ideas: (i) it does
not generate a union of conjunctive queries, but a non-recursive datalog program.
In fact, the use of a disjunctive normal form is one of the reasons for the expo-
nential blow-up of previous techniques, which can thus be avoided by Presto; (ii)
the query expansion rules (based on resolution) used by previous techniques are
deeply optimized in Presto. In particular, Presto applies expansion rules driven
by the goal of eliminating existential joins from the query based on the compu-
tation of most general subsumees of concept and role expressions, which turns
out to be a much smarter strategy than previous approaches. As a consequence of
the above innovations, the query produced by Presto is not exponential anymore
with respect to the number of atoms of the initial conjunctive query, but is only
exponential with respect to the number of eliminable existential join variables of
the query: such variables are a subset of the join variables of the query, and are
typically much less than the number of atoms of the query.

Requiem

Requiem algorithm takes as input a conjunctive query q and a DL-Lite TBox
T , and produces a union of conjunctive queries q′ that is a rewriting of q w.r.t. T .

The algorithm first transforms q and T into clauses, and then computes the
rewriting by using a resolution-based calculus to derive new clauses from the ini-
tial set. The rewriting is computed in four steps: clausification, saturation, un-
folding, and pruning. The algorithm starts by transforming q and T into a set of
clauses Σ(T ∪ {q}). The expression Σ(T) denotes the set of clauses obtained
from axioms in T . Then, the algorithm keeps producing clauses in the saturation
step until no other clause unique up to variable renaming can be produced. After
the saturation step, the resulting clauses without existential variables are unfolded
(a formal description of the unfolding step can be found in [80]). In the last step,
every clause that does not have the same head predicate as q is dropped.

5.2. DLV∃ VS. HIGHLY SCALABLE QA SYSTEMS 81

Data preparation

We concentrated on the LUBM benchmark suite introduced before. LUBM
Tbox and queries are given as input to Requiem and Presto. lubm-10 dataset
and rewritings produced by the two systems are given as input to standard DLV
in order to obtain answers to the queries. Actually, the syntax of these rewrit-
ings had been adapted to the syntax of DLV. Obviously, without altering original
rewritings.

Results and discussion

Tests have been performed on an Intel Dual T2300, 1.6 GHz, with 1 Gb Ram,
running Linux Operating System; for each query, we allowed a maximum run-
ning time of 7200 seconds (two hours) and a maximum memory usage of 1 Gb
(gigabyte).

Figure 5.1: Running times for LUBM queries (sec.) over lubm-10 dataset

Figure 5.1 reports the times taken by the tested systems to answer the 14
LUBM queries. For each system we have 3 columns: loading time, query an-
swering time, total time (loading + answering). Loading and answering times for
Requiem+DLV and Presto+DLV are the time taken by DLV for loading tuples
from dataset and the time for evaluating the programs generated by the rewriters,
respectively. Notice that, since rewritings produced by the two systems consid-
ered could involve different predicates, loading times could be different because
of data filtering optimization introduced before. We observed that query rewrit-
ing time, in this case, is unrelevant for all the LUBM queries. Thus, we did not
consider it in this analysis.

Obviously, we did not expect that performances of DLV∃ could be better than
performances of the other two systems in the benchmark domain. Presto and
Requiem are very highly scalable systems for query anwering (by query rewriting)

82 CHAPTER 5. EXPERIMENTAL ANALYSIS

over ontologies expressed in languages whose expressivity is much more limited
than the expressivity of Shy (see Chapter 6).

However, we are very satisfied because DLV∃ is always in the middle between
Requiem (that results the best on every query) and Presto if queries 4, 9 and 13 are
not considered. Unfortunately, the delay of DLV∃ for these three queries is high
and it affects the average total time. But, concerning average answering time,
we observe that DLV∃ is faster than Presto. This is not still valid if we look at the
average loading time. In fact, Magic-Sets rewritings takes into account more pred-
icates than the ones involved in Presto’s rewritings. Therefore, the effectiveness
of the input filter optimization for DLV∃ is less evident than for Presto+DLV.

5.3 Impact of the proposed Magic-Sets optimization

The empirical evidence of the effectiveness of the Magic-Sets optimization im-
plemented in DLV∃ is provided by means of the following experimental analysis
on LUBM benchmark suite. Tests have been carried out on an Intel Xeon X3430,
2.4 GHz, with 4 Gb Ram, running Linux Operating System. For each query, we
allowed 7200 seconds (two hours) or running time and 2 Gb of memory.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14

lubm-10

DLV∃ 3.40 3.21 0.93 1.37 5.73 2.29 5.12 3.97 4.83 3.53 0.33 0.86 5.26 1.88

DLV∃+MS 1.83 1.95 0.63 0.39 1.20 0.48 2.95 1.08 3.45 2.54 0.08 0.85 0.76 1.88
IMP 46% 39% 32% 72% 79% 79% 42% 73% 29% 28% 76% 1% 86% 0%

lubm-30

DLV∃ 11.90 11.49 2.09 4.40 18.42 8.07 18.02 13.53 15.87 12.42 1.13 2.93 18.95 6.41

DLV∃+MS 6.20 6.28 1.44 1.28 3.91 1.67 9.85 3.11 11.82 7.95 0.24 2.85 2.42 6.23
IMP 48% 45% 31% 71% 79% 79% 45% 77% 26% 36% 79% 3% 87% 3%

lubm-50

DLV∃ 21.15 19.05 3.72 7.71 31.80 14.46 31.47 23.63 28.96 21.80 1.99 5.48 32.50 11.52

DLV∃+MS 10.86 11.39 2.42 2.23 6.36 3.03 16.32 5.23 20.30 14.10 0.39 5.32 4.13 11.49
IMP 49% 40% 35% 71% 80% 79% 48% 78% 30% 35% 80% 3% 87% 0%

Table 5.2: Query evaluation time (seconds) of DLV∃ and improvements (IMP) of
Magic-Sets

We evaluated the impact of Magic-Sets on DLV∃. Specifically, we measured
the time taken by DLV∃ to answer the 14 LUBM queries with and without the
application of Magic-Sets. Results are reported in Table 5.2, where times do not
include data parsing and loading as they are not affected by Magic-Sets. On the
considered queries, Magic-Sets reduce running time of 50% in average, with a
peak of 87% on q13. If only queries with no constants are considered, the average
improvement of Magic-Sets is 37%, while the average improvement rises up to
55% for queries with at least one constant. We also point out that the average
improvement provided by Magic-Sets is always greater than 25% if q12 and q14

5.3. IMPACT OF THE PROPOSED MAGIC-SETS OPTIMIZATION 83

are not considered. Regarding these two queries, Magic-Sets do not provide any
improvement because the whole data sets are relevant for their evaluation.

84 CHAPTER 5. EXPERIMENTAL ANALYSIS

Chapter 6

Related work

In this chapter, we give a brief overview of several related approaches in the
literature. The main motivation behind our research is the Semantic Web. We
recall that the vision of the Semantic Web has led in the recent years to a new
way of conceiving information systems, deeply integrated into the Web and its
semantics, where Web information is annotated, so as to be machine-readable; in
this way, such information can be integrated and especially queried in information
systems, and not merely searched by keywords. This requires a precise sharing
of terms by means of an ontology, so that the semantics of terms across different
sources is clear. Moreover, by using ontologies, it is possible to perform auto-
mated reasoning tasks in order to infer new knowledge from the raw information
residing on theWeb. Underneath the ontology, a data layer represents the raw data
present on the Web, in an inherently heterogeneous way. The World Wide Web
Consortium (W3C) defines several standards, including the Resource Description
Framework (RDF) for the data layer, the Web Ontology Language (OWL) (based
on description logics (DLs)) for the ontology layer, and the currently being stan-
dardized Rule Interchange Format (RIF) for the rule layer. As for the latter, rather
than providing a common semantics, RIF aims at offering a common exchange
format for rules, given that numerous languages already exist. The remainder of
this chapter is structered as in the following. We start by discussing the features of
DLs employed in Semantic Web reasoning. Next, we highlight the DL-Lite family
and we show syntax and semantics of the base classes of this family. Afterwards,
we recall a useful result of [28] about the relationship between DL-Lite and Linear

Datalog±, and we generalize this result to the more expressive language Shy. Fi-
nally, we close by reviewing some ontology reasoning systems.

85

86 CHAPTER 6. RELATED WORK

6.1 Description Logics

In the Semantic Web, the ontology layer is highly important, and has led to a
vast corpus of literature. DLs have been playing a central role in ontology reason-
ing; they are decidable fragments of first-order logic, based on concepts (classes
of objects) and roles (binary relations on concepts); several variants of them have
been thoroughly investigated, and a central issue is the trade-off between expres-
sive power and computational complexity of the reasoning services. In DL rea-
soning, a knowledge base usually consists of a TBox (terminological component,
i.e., ontology statements on concepts and roles) and an ABox (assertional com-
ponent, i.e., ontology statements on instances of concepts and roles); the latter
corresponds to a data set.

The description logic SROIQ [58] is one of the most expressive DLs, which
is underlying OWL 2 1, a new version of OWL 2. Reasoning in SROIQ is com-
putationally expensive, and several more tractable languages have been proposed
in the Semantic Web community. Among such languages, we now discuss the DL-

Lite family [34, 81], EL++ [11], and DLP [54], which are underlying the OWL 2
profiles QL, EL, and RL 3, respectively, as well as ELP [66], SROEL(x) [63],
and SROELV3(⊓, x) [64]. The DL-Lite family of description logics [34, 86] fo-
cuses on conjunctive query answering under a database and a set of axioms that
constitute the ontology; query answering is in AC0 in the data complexity, due to
FO-rewritability of all languages in the DL-Lite family (note that query answering
in the extended DL-Lite family introduced in [9, 10] may also be more complex
(P and coNP)). The description logic DL-LiteR of the DL-Lite family provides the
logical underpinning for the OWL 2 QL profile. Note here that the unique name
assumption can be given up in DL-LiteR and OWL 2 QL, as it has no impact on
the semantic consequences of a DL-LiteR and an OWL 2 QL ontology.

The description logic EL++ [11] is an extension of EL [12, 11] by the bottom
element �, nominals, concrete domains, and role inclusions (between concatena-
tions of abstract roles and atomic abstract roles); reasoning in EL++ is P-complete,
while conjunctive query answering in EL++ is undecidable. The OWL 2 EL pro-
file is based on EL++; reasoning and conjunctive query answering in OWL 2 EL
are both P-complete in the data complexity. OWL 2 EL allows for stating the
transitivity of atomic roles.

DLP [54] is a Horn fragment of OWL, i.e., a set of existential-free rules and
negative constraints, without unique name assumption. The OWL 2 RL profile is
an (existentialfree) extension of DLP, which aims at offering tractable reasoning
services while keeping a good expressive power, enough to enhance RDF Schema

1See: http://www.w3.org/TR/owl2-overview/
2See: http://www.w3.org/TR/owl-features/
3See: http://www.w3.org/TR/owl2-profiles/

6.1. DESCRIPTION LOGICS 87

with some extra expressiveness from OWL 2. Compared to DLP, OWL 2 RL can
in particular additionally encode role transitivity.

The rule-based tractable language ELP [66] generalizes both EL++ and DLP.
In particular, it extends EL++ with local reflexivity, concept products, universal
roles, conjunctions of simple roles, and limited range restrictions.

A closely related extension of EL++ is the DL SROEL(x) [63], which pro-
vides efficient rule-based inferencing for OWL 2 EL, and which is in turn ex-
tended by the DL SROELV3(⊓, x) [64]. The latter introduces so-called nominal

schemas, which allow for variable nominals, which are expressions that may ap-
pear in more than one conjunct in a concept expression, and such that all occur-
rences of the same variable nominal bind to the same individual.

In the following we report a more detailed analysis on the DL-Lite family, and
a comparison between DL-Lite and Datalog±.

6.1.1 The DL-Lite family

The base classes of the family are: DL-LiteF , DL-LiteR and DL-LiteA. All
the other languages are constituted by restricting and combining these classes. In
fact, in addition to these languages, we have (i) DL-Litecore, which is the intersec-
tion of DL-LiteF and DL-LiteR, (ii) DL-Lite+A, which is obtained from DL-LiteA
by adding role attributes and identification constraints, and (iii) DL-LiteF,⊓, DL-

LiteR,⊓, and DL-Lite+A,⊓, which are obtained from DL-LiteF , DL-LiteR, and DL-

Lite+A, respectively, by additionally allowing conjunctions in the left-hand sides of
inclusion axioms (without increase of complexity, which is related to the addition
of Boolean role constructors in some popular description logics, as explored in
[87]). Furthermore, each above description logic (with binary roles) DL-LiteX
has a variant, denoted DLR-LiteX , which additionally allows for n-ary relations,
along with suitable constructs to deal with them.

In [28], an important result about the relationship between DL-Lite and Linear

Datalog± is reported. In particular, it has been proved that the description logics
DL-LiteF , DL-LiteR and DL-LiteA (the base classes of the DL-Lite family) are re-
ducible to Linear Datalog∃ with (negative) constraints and non-conflicting (NC)

keys, called Datalog±
0
. Moreover, the former are strictly less expressive than the

latter. The other description logics of the DL-Lite family can be similarly trans-
lated into Datalog±

0
.

Note that DL-LiteR is able to fully capture the (DL fragment of) RDF Schema
4, the vocabulary description language for RDF; see [42] for a translation. Hence,
Datalog±

0
is also able to fully capture (the DL fragment of) RDF Schema.

4See: http://www.w3.org/TR/rdf-schema

88 CHAPTER 6. RELATED WORK

In the next section, we generalize these results to the more expressive language
Shy.

6.1.2 Shy vs. DL-Lite languages

In Section 3.4 we showed that Shy encompasses and generalizes Linear Datalog∃.
Adding (negative) constraints and non-conflicting (NC) keys to Shy, as showed in
Sections 2.3.1 and 2.3.2 for Linear Datalog∃, does not increase the data complex-
ity of answering BCQs under Shy TGDs and constraints.

Figure 6.1: Relationships between DLs, Datalog± and Shy

Let Shy+ denote the extension of Shy equipped with (negative) constraints and
non-conflicting (NC) keys, we can say that Shy+ is strictly more expressive than
all the description logics of the DL-Lite family. The scenario of the relationships
among these description logics, Shy and the other Datalog± languages is depicted
in Figure 6.1.

DL Axiom Shy Rule

A ⊑ B pA(X)→ pB(X)

A ⊓B ⊑ C pA(X), pB(X)→ pC(X)

A ⊑ ∃R.B pA(X)→ ∃Y pR(X,Y), pB(Y)

∃R.A ⊑ B pR(X,Y), pA(Y)→ pB(X)

R ⊑ S pR(X,Y)→ pS(X,Y)

R ⊑ S− pR(X,Y)→ pS(Y,X)

R+ pR(X,Y), pR(Y,Z)→ pR(X,Z)

Table 6.1: DL VS Shy; A, B, C are concept names, R, S are role names.

Furthermore, we report in Table 6.1.2 the main DL constructs that can be

6.2. ONTOLOGY REASONERS 89

expressed in Shy. for better understanding the expressive power of Shy. For each
of them, we have also reported its translation in Shy.

6.2 Ontology reasoners

To the best of our knowledge, there is only one ongoing research work directly
supporting ∃-quantifiers in Datalog, namely Nyaya [43]. This system, based on
an SQL-rewriting, allows a strict subclass of Shy called Linear-Datalog∃, which
does not include, for instance, transitivity and concept products.5

Since the system we developed enables ontology reasoning, existing ontology
reasoners are also related. They can be classified in three groups: query-rewriting,
tableau and forward-chaining.

The systems QuOnto [2], Presto [85], Quest [83], Mastro [35] and OBDA [84]
belong to the query-rewriting category. They rewrite axioms and queries to SQL,
and use RDBMSs for answers computation. Such systems support standard first-
order semantics for unrestricted CQs; but the expressivity of their languages is
limited to AC0 and excludes, for instance, transitivity property or concept products.

The systems FaCT++ [89], RacerPro [56], Pellet [88] and HermiT [76] are
based on tableau calculi. They materialize all inferences at loading-time, im-
plement very expressive description logics, but they do not support the standard
first-order semantics for CQs [50]. Actually, the Pellet system enables first-order
CQs but only in the acyclic case.

OWLIM [25] and KAON2 [59] are based on forward-chaining.6 Similar to
tableau-based systems, they perform full-materialization and implement expres-
sive DLs, but they still miss to support the standard first-order semantics for CQs
[50].

Summing up, it turns out that DLV∃ is the first system supporting the stan-
dard first-order semantics for unrestricted CQs with ∃-variables over ontologies
with advanced properties (some of these beyond AC0), such as, role transitivity,
role hierarchy, role inverse, and concept products. The experiments confirm the
efficiency of DLV∃, which constitutes a powerful system for a fully-declarative
ontology-based query answering.

5We could not compare DLV∃ with Nyaya since, as a research prototype, Nyaya provides no
API for data loading and querying.

6Actually, KAON2 first translates the ontology to a disjunctive Datalog program, on which
forward inference is then performed.

90 CHAPTER 6. RELATED WORK

Chapter 7

Conclusion

In the field of data and knowledge management, query answering over ontolo-
gies (QA) is becoming more and more a challenging task. In this context, a con-
junctive query (CQ) q is not merely evaluated on a extensional relational database
D, but over a logical theory combining D with an ontology Σ describing rules
for inferring intensional knowledge from D. A key issue here is the design of the
language provided for specifying Σ. This language should balance expressiveness
and complexity.

In the Semantic Web community, DL-Lite is a well-consolidated formalism
for ontology-based QA. It is based on a solid theoretical fundation. Its expressiv-
ity is limited but it is specially devoted to conjunctive query answering on large
amounts of data. In fact, query answering in DL-Lite is FO-rewritable. Moreover,
recently, many efficient alghoritms and systems for DL-Lite have been developed
and proposed in literature.

On the other hand, accessing data while taking ontological knowledge into ac-
count is becoming a challenging task also in databases. In this domain, Datalog±,
the family of Datalog-based languages recently proposed for tractable QA, is
arousing more and more interest. This family, that generalizes well known on-
tology specification languages (e.g. DL-Lite), is mainly based on Datalog∃, which
is the natural extension of Datalog that allows ∃-quantified variables in rule heads.

However, even if all known QA-decidable Datalog± languages maintain the
simplicity of Datalog and are endowed with properties that are desired for ontol-
ogy languages, none of them fully satisfy the following conditions: (1) efficient
computability, (2) sufficient expressivity, and (3) suitability for an efficient imple-
mentation. For instance, Linear Datalog± is very efficiently computable. More-
over, an efficient rewriting algorithm has been proposed and developed for it. This
system is the only one ongoing research work directly supporting ∃-quantifiers in
Datalog, namely Nyaya [43].

But the expressivity of Linear Datalog± is very limited. In fact, it does not

91

92 CHAPTER 7. CONCLUSION

include, for example, transitivity and concept products.
Guarded fragment is a strict supersets of Linear Datalog±, having tractable

data complexity. But the chase ran on a program belonging to Guarded class
requires the generation of a very high number of isomorphic atoms, therefore no
(efficient) implementation has been developed yet.

Weakly-Guarded offers a good expressive power, it is in fact more expres-
sive than both Linear and Guarded Datalog±, but relaxing guardedness into weak-
guardedness leads to EXP-complete data complexity.

Similar considerations can be extended to all other Datalog± classes. However,
a detailed analysis of the entire Datalog± family is reported in Chapter 2.

Thus, this family of languages has still some "weaknesses". In particular,
notwithstanding a number of Datalog± fragments has been already proposed, the
evident gap emerging in this scenario is given by the lack of a language that offers
a good efficiency without renouncing to the expressiveness.

Thus, in this work, we focused on this framework and we closed this gap
by singling out a new class of Datalog∃ programs, called Shy. This satisfies a
new semantic property called parsimony and results in a powerful and yet QA-
decidable ontology specification language that combines positive aspects of dif-
ferent Datalog± languages. Shy is an optimal trade-off between expressiveness
and scalability in the scenario of Datalog with existential quantifiers (see Section
3.4).

Indeed, the results obtained from our research can be summarized in the fol-
lowing terms. We proposed a new semantic property called parsimony. We proved
that (atomic) query answering is decidable and also efficiently computable on the
abstract class of parsimonious Datalog∃ programs, called Parsimonious. After
showing that recognition of parsimony is undecidable (coRE-complete), we singled
out Shy, a subclass of Parsimonious, which guarantees both easy recognizabil-
ity and efficient answering even to conjunctive queries. We demonstrated that
both Parsimonious and Shy preserve the same (data and combined) complexity of
Datalog for atomic query answering. This shows that the addition of existential
quantifiers does not bring any computational overhead here.

We introduced a new approach for conjunctive query answering, called par-

simonious-chase resumption, which is sound and complete for query answering
over Shy.

We implemented a bottom-up evaluation strategy for Shy programs inside the
well-known DLV system. We enhanced the computation by a number of optimiza-
tion techniques (among the improvements implemented in DLV∃, we highlighted
the variant of the well-known magic-set optimization technique (Cumbo et al.
2004), adapted to Datalog∃ and implemented in DLV∃), yielding DLV∃ – a pow-
erful system for query answering over Shy programs. This system is profitably
applicable for ontology-based query answering. To the best of our knowledge,

93

DLV∃ is the first system supporting the standard first-order semantics for unre-
stricted CQs with existential variables over ontologies with advanced properties
(some of these beyond AC0), such as, role transitivity, role hierarchy, role inverse,
and concept products [50]. We performed an experimental analysis, comparing
DLV∃ to a number of state-of-the-art systems for ontology-based QA. The positive
results attained through this analysis demonstrates a clear evidence that DLV∃ is
definitely the most effective system for query answering in dynamic environments,
where the ontology is subject to frequent changes, making pre-computations and
static optimizations inapplicable.

Finally, we analyzed the Datalog± framework, providing a precise taxonomy
of the QA-decidable Datalog∃ classes (see Chapter 2). It turned out that both
Parsimonious and Shy strictly contain Datalog ∪ Linear-Datalog∃, while they
are uncomparable to Finite-Expansion-Sets, Finite-Treewidth-Sets, and Finite-

Unification-Sets (see Section 3.4). We analyzed related work, providing a de-
scription of the basic DL-Lite classes. After that, we observed that Shy encom-
passes and generalizes all the languages of the DL-Lite family (see Chapter 6).

In conclusion, we would like to remark that the work presented in this thesis
is also the subject of the following papers: [67, 6]

94 CHAPTER 7. CONCLUSION

Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases:

The Logical Level. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1995.

[2] Andrea Acciarri, Diego Calvanese, Giuseppe De Giacomo, Domenico
Lembo, Maurizio Lenzerini, Mattia Palmieri, and Riccardo Rosati.
QUONTO: querying ontologies. In Proc. of the 20th national conference

on Artificial intelligence, volume 4, pages 1670–1671. AAAI Press, 2005.

[3] Peter Alvaro, Dmitriy Ryaboy, and Divyakant Agrawal. Towards scalable
architectures for clickstream data warehousing. In Databases in Networked

Information Systems, volume 4777, pages 154–177. Springer Berlin / Hei-
delberg, 2007.

[4] Mario Alviano, Wolfgang Faber, Gianluigi Greco, and Nicola Leone. Magic
sets for disjunctive datalog programs. Artificial Intelligence. Elsevier, 187–
188:156–192, 2012.

[5] Mario Alviano, Wolfgang Faber, and Nicola Leone. Disjunctive ASP with
functions: Decidable queries and effective computation. Theory and Prac-

tice of Logic Programming. Cambridge University Press, 10(4–6):497–512,
July 2010.

[6] Mario Alviano, Nicola Leone, Marco Manna, Giorgio Terracina, and Pier-
francesco Veltri. Magic-sets for datalog with existential quantifiers. In Dat-

alog, pages 31–43, 2012.

[7] Mario Alviano, Nicola Leone, Marco Manna, Giorgio Terracina, and
Pierfrancesco Veltri. Magic-Sets for Datalog with Existential Quanti-
fiers (Extended Version). Technical report, Department of Mathematics,
University of Calabria, Italy, June 2012. See www.mat.unical.it/

datalog-exists/pub/12dl2.pdf.

95

96 BIBLIOGRAPHY

[8] Hajnal Andréka, Johan Van Benthem, and István Németi. Modal languages
and bounded fragments of predicate logic, 1996.

[9] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Za-
kharyaschev. Dl-lite in the light of first-order logic. In IN PROC. OF THE

22ND CONF. ON AI (AAAI-07), pages 364–369. AAAI Press, 2007.

[10] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Za-
kharyaschev. The dl-lite family and relations. JOURNAL OF ARTIFICIAL

INTELLIGENCE RESEARCH (JAIR), 36:1–69, 2009.

[11] Franz Baader, Sebastian Brand, and Carsten Lutz. Pushing the el envelope.
In In Proc. of IJCAI 2005, pages 364–369. Morgan-Kaufmann Publishers,
2005.

[12] Franz Baader, Ralf Kústers, and Ralf Molitor. Computing least common
subsumers in description logics with existential restrictions. pages 96–101.
Morgan Kaufmann, 1999.

[13] J. . Baget, M. Leclére, and M. . Mugnier. Walking the decidability line for
rules with existential variables. KR 2010, pages 466–476, 2010. Cited By
(since 1996): 1.

[14] Jean-François Baget, Michel Leclère, and Marie-Laure Mugnier. Walking
the Decidability Line for Rules with Existential Variables. In Fangzhen Lin,
Ulrike Sattler, and Miroslaw Truszczynski, editors, Principles of Knowledge

Representation and Reasoning: Proceedings of the Twelfth International

Conference, KR ’10. AAAI Press, 2010.

[15] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Êric Sal-
vat. Extending decidable cases for rules with existential variables. In Pro-

ceedings of the 21st international jont conference on Artifical intelligence,
IJCAI’09, pages 677–682, San Francisco, CA, USA, 2009. Morgan Kauf-
mann Publishers Inc.

[16] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat.
Extending Decidable Cases for Rules with Existential Variables. In Craig
Boutilier, editor, Proceedings of the 21st International Joint Conference on

Artificial Intelligence, IJCAI ’09, pages 677–682, 2009.

[17] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat.
On rules with existential variables: Walking the decidability line. Artificial

Intelligence, 175(9 - 10):1620 – 1654, 2011.

BIBLIOGRAPHY 97

[18] Jean-François Baget and Marie-Laure Mugnier. Extensions of simple con-
ceptual graphs: the complexity of rules and constraints. JOUR. OF ARTIF.

INTELL. RES, 16:2002, 2002.

[19] Jean-François Baget, Marie-Laure Mugnier, Sebastian Rudolph, and
Michaël Thomazo. Walking the complexity lines for generalized guarded
existential rules. In Proceedings of the Twenty-Second international joint

conference on Artificial Intelligence - Volume Volume Two, IJCAI’11, pages
712–717. AAAI Press, 2011.

[20] François Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman.
Magic Sets and Other Strange Ways to Implement Logic Programs. In Proc.

Int. Symposium on Principles of Database Systems, pages 1–16, 1986.

[21] Robert Baumgartner, Sergio Flesca, and Georg Gottlob. Visual web infor-
mation extraction with lixto. In In The VLDB Journal, pages 119–128, 2001.

[22] Catriel Beeri and Raghu Ramakrishnan. On the power of magic. Journal of

Logic Programming, 10(1–4):255–259, 1991.

[23] Catriel Beeri and Moshe Y. Vardi. A Proof Procedure for Data Dependen-
cies. J. ACM, 31(4):718–741, September 1984.

[24] Catriel Beeri and Moshe Y. Vardi. A proof procedure for data dependencies.
J. ACM, 31(4):718–741, September 1984.

[25] Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan Peikov, Zdravko
Tashev, and Ruslan Velkov. OWLIM: A family of scalable semantic reposi-
tories. Semant. web, 2:33–42, January 2011.

[26] Luca Cabibbo. The expressive power of stratified logic programs with value
invention. In IN ICDT95 (FIFTH INTERNATIONAL CONFERENCE ON

DATA BASE THEORY), PRAGUE, LECTURE NOTES IN COMPUTER SCI-

ENCE 893, pages 208–221, 1996.

[27] Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the Infinite Chase:
Query Answering under Expressive Relational Constraints. In Proc. of the

11th International Conference on Principles of Knowledge Representation

and Reasoning, pages 70–80. AAAI Press, 2008. Revised version: http:

//dbai.tuwien.ac.at/staff/gottlob/CGK.pdf.

[28] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. A general datalog-
based framework for tractable query answering over ontologies. In Proceed-

ings of the twenty-eighth ACM SIGMOD-SIGACT-SIGART symposium on

98 BIBLIOGRAPHY

Principles of database systems, PODS ’09, pages 77–86, New York, NY,
USA, 2009. ACM.

[29] Andrea Calì, Georg Gottlob, and Andreas Pieris. Advanced Processing for
Ontological Queries. PVLDB, 3(1):554–565, 2010.

[30] Andrea Calì, Georg Gottlob, and Andreas Pieris. Query Answering under
Non-guarded Rules in Datalog±. In Pascal Hitzler and Thomas Lukasiewicz,
editors, Proceedings of the 4th International Conference on Web Reasoning

and Rule Systems, volume 6333 of Lecture Notes in Computer Science, pages
1–17. Springer, 2010.

[31] Andrea Calì, Domenico Lembo, and Riccardo Rosati. On the decidabil-
ity and complexity of query answering over inconsistent and incomplete
databases. In In Proc. of PODS 2003, pages 260–271, 2003.

[32] Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola
Leone. Magic Sets for the Bottom-Up Evaluation of Finitely Recursive Pro-
grams. In Esra Erdem, Fangzhen Lin, and Torsten Schaub, editors, Logic

Programming and Nonmonotonic Reasoning — 10th International Confer-

ence (LPNMR 2009), volume 5753 of Lecture Notes in Computer Science,
pages 71–86. Springer Verlag, September 2009.

[33] Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola
Leone. Enhancing ASP by Functions: Decidable Classes and Implemen-
tation Techniques. In Maria Fox and David Poole, editors, Proceedings of

the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI ’10.
AAAI Press, 2010.

[34] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Tractable reasoning and efficient query
answering in description logics: The dl-lite family. Journal of Automated

Reasoning, 39:385–429, 2007. 10.1007/s10817-007-9078-x.

[35] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, Antonella Poggi, Mariano Rodriguez-Muro, Riccardo Rosati,
Marco Ruzzi, and Domenico Fabio Savo. The mastro system for ontology-
based data access. Semantic Web, 2(1):43–53, 2011.

[36] A. Chandra and M. Vardi. The implication problem for functional and inclu-
sion dependencies is undecidable. SIAM Journal on Computing, 14(3):671–
677, 1985.

BIBLIOGRAPHY 99

[37] Ashok K. Chandra, Harry R. Lewis, and Johann A. Makowsky. Embedded
implicational dependencies and their inference problem. In Proceedings of

the thirteenth annual ACM symposium on Theory of computing, STOC ’81,
pages 342–354, New York, NY, USA, 1981. ACM.

[38] Keith L. Clark. Negation as Failure. In Hervé Gallaire and Jack Minker,
editors, Logic and Data Bases, pages 293–322. Plenum Press, New York,
1978.

[39] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable
sets of finite graphs. Information and Computation, 85(1):12 – 75, 1990.

[40] Chiara Cumbo, Wolfgang Faber, Gianluigi Greco, and Nicola Leone. En-
hancing the magic-set method for disjunctive datalog programs. In Proceed-

ings of the the 20th International Conference on Logic Programming - ICLP

’04, volume 3132 of LNCS, pages 371–385, 2004.

[41] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Com-
plexity and expressive power of logic programming. ACM Comput. Surv.,
33:374–425, September 2001.

[42] Jos de Bruijn and Stijn Heymans. Logical foundations of (e)rdf(s): Com-
plexity and reasoning. In Karl Aberer, Key-Sun Choi, Natasha Noy, Dean
Allemang, Kyung-Il Lee, Lyndon Nixon, Jennifer Golbeck, Peter Mika, Di-
ana Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe Cudré-
Mauroux, editors, The Semantic Web, volume 4825 of Lecture Notes in Com-

puter Science, pages 86–99. Springer Berlin / Heidelberg, 2007.

[43] Roberto De Virgilio, Giorgio Orsi, Letizia Tanca, and Riccardo Torlone.
Semantic Data Markets: A Flexible Environment for Knowledge Manage-
ment. In Proc. of the 20th ACM international Conference on Information and

Knowledge Management, CIKM ’11, New York, NY, USA, 2011. ACM. to
appear.

[44] Alin Deutsch, Alan Nash, and Jeff Remmel. The chase revisited-
deutschnashremmelpods2008. In Proc. of the 27th ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems., PODS ’08, pages
149–158, New York, NY, USA, 2008. ACM.

[45] Alin Deutsch and Val Tannen. Reformulation of xml queries and constraints.
In Proceedings of the 9th International Conference on Database Theory,
ICDT ’03, pages 225–241, London, UK, UK, 2002. Springer-Verlag.

100 BIBLIOGRAPHY

[46] Wolfgang Faber, Gianluigi Greco, and Nicola Leone. Magic Sets and their
Application to Data Integration. Journal of Computer and System Sciences,
73(4):584–609, 2007.

[47] Ronald Fagin. A normal form for relational databases that is based on do-
mains and keys. ACM Transactions on Database Systems, 6:387–415, 1981.

[48] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data
exchange: semantics and query answering. Theoretical Computer Science,
336(1):89–124, May 2005.

[49] Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for
Logic Programming. In Logic Programming: Proceedings Fifth Intl Con-

ference and Symposium, pages 1070–1080, Cambridge, Mass., 1988. MIT
Press.

[50] Birte Glimm, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. Conjunc-
tive query answering for the description logic SHIQ. J. Artif. Int. Res.,
31(1):157–204, January 2008.

[51] Georg Gottlob and Christoph Koch. Monadic datalog and the expressive
power of languages for web information extraction. J. ACM, 51:17–28, 2002.

[52] Sergio Greco. Binding Propagation Techniques for the Optimization of
Bound Disjunctive Queries. IEEE Transactions on Knowledge and Data

Engineering, 15(2):368–385, March/April 2003.

[53] Sergio Greco, Francesca Spezzano, and Irina Trubitsyna. Stratification cri-
teria and rewriting techniques for checking chase termination. PVLDB,
4(11):1158–1168, 2011.

[54] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. De-
scription logic programs: combining logic programs with description logic.
In Proceedings of the 12th international conference on World Wide Web,
WWW ’03, pages 48–57, New York, NY, USA, 2003. ACM.

[55] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for
OWL knowledge base systems. Web Semant., 3:158–182, October 2005.
See URL:http://swat.cse.lehigh.edu/projects/lubm/.

[56] V. Haarslev and R. Möller. Racer system description. In R. Goré, A. Leitsch,
and T. Nipkow, editors, International Joint Conference on Automated Rea-

soning, IJCAR’2001, pages 701–705, Siena, Italy, 2001. Springer-Verlag.

BIBLIOGRAPHY 101

[57] Elnar Hajiyev, Mathieu Verbaere, and Oege De Moor. Codequest: Scalable
source code queries with datalog. In In ECOOP Proceedings, pages 2–27.
Springer, 2006.

[58] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible
sroiq. In In KR, pages 57–67. AAAI Press, 2006.

[59] U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ- Descrption Logic
to Disjunctive Datalog Programs. In Proc. of the 9th International Confer-

ence on Knowledge Representation and Reasoning, KR ’04, pages 152–162,
Whistler, Canada, 2004.

[60] D.S. Johnson and A. Klug. Testing containment of conjunctive queries under
functional and inclusion dependencies. Journal of Computer and System

Sciences, 28(1):167–189, February 1984.

[61] D.S. Johnson and A. Klug. Testing containment of conjunctive queries under
functional and inclusion dependencies. Journal of Computer and System

Sciences, 28(1):167 – 189, 1984.

[62] Ton Kloks. Treewidth, Computations and Approximations, volume 842 of
Lecture Notes in Computer Science. Springer, 1994.

[63] Markus Krotzsch. Proceedings of the twenty-second international joint con-
ference on artificial intelligence efficient rule-based inferencing for owl el.

[64] Markus Krotzsch, Frederick Maier, Adila A. Krisnadhi, and Pascal Hitzler.
A better uncle for owl – nominal schemas for integrating rules and ontolo-
gies, 2011.

[65] Markus Krötzsch and Sebastian Rudolph. Extending decidable existential
rules by joining acyclicity and guardedness. In Proceedings of the Twenty-

Second international joint conference on Artificial Intelligence - Volume Vol-

ume Two, IJCAI’11, pages 963–968. AAAI Press, 2011.

[66] Markus Krotzsch, Sebastian Rudolph, and Pascal Hitzler. Elp: Tractable
rules for owl 2. Technical report, 2008.

[67] Nicola Leone, Marco Manna, Giorgio Terracina, and Pierfrancesco Veltri.
Efficiently computable Datalog∃ programs. In KR, 2012.

[68] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gott-
lob, Simona Perri, and Francesco Scarcello. The DLV System for Knowl-
edge Representation and Reasoning. ACM TOCL, 7(3):499–562, 2006.

102 BIBLIOGRAPHY

[69] Jorge Lobo, Jack Minker, and Arcot Rajasekar. Foundations of Disjunctive

Logic Programming. The MIT Press, Cambridge, Massachusetts, 1992.

[70] David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. Testing impli-
cations of data dependencies. ACM Trans. Database Syst., 4(4):455–469,
December 1979.

[71] Daniel Mailharro. A classification and constraint-based framework for con-
figuration. Artif. Intell. for Engineering Design, Analysis and Manufactur-

ing, 12:383–397, 1998.

[72] Bruno Marnette. Generalized schema-mappings: from termination to
tractability. In Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, PODS ’09, pages
13–22, New York, NY, USA, 2009. ACM.

[73] John McCarthy. Circumscription — a Form of Non-Monotonic Reasoning.
Artificial Intelligence, 13(1–2):27–39, 1980.

[74] Michael Meier, Michael Schmidt, and Georg Lausen. On Chase Termination
Beyond Stratification. PVLDB, 2(1):970–981, 2009.

[75] Jack Minker. On Indefinite Data Bases and the Closed World Assumption.
In Donald W. Loveland, editor, Proceedings 6th Conference on Automated

Deduction (CADE ’82), volume 138 of Lecture Notes in Computer Science,
pages 292–308, New York, 1982. Springer.

[76] Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau Reasoning for
Description Logics. Journal of Artificial Intelligence Research, 36:165–228,
2009.

[77] Marie-Laure Mugnier. Ontological query answering with existential rules. In
Proceedings of the 5th international conference on Web reasoning and rule

systems, RR’11, pages 2–23, Berlin, Heidelberg, 2011. Springer-Verlag.

[78] Peter F. Patel-Schneider and Ian Horrocks. A comparison of two modelling
paradigms in the semantic web, 2007.

[79] H. Pérez-Urbina, B. Motik, and I. Horrocks. A comparison of query rewrit-
ing techniques for dl-lite. In Proceedings of the 22st International Workshop

on Description Logics, volume 477 of DL ’09. CEUR-WS.org, 2009.

[80] Héctor Pérez-urbina, Boris Motik, and Ian Horrocks. Rewriting conjunctive
queries under description logic constraints. Technical report, 2008.

BIBLIOGRAPHY 103

[81] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Gia-
como, Maurizio Lenzerini, and Riccardo Rosati. Linking data to ontologies.
In Journal on Data Semantics X, volume 4900 of Lecture Notes in Computer

Science, pages 133–173. Springer Berlin / Heidelberg, 2008.

[82] Raymond Reiter. On Closed World Data Bases. In Hervé Gallaire and Jack
Minker, editors, Logic and Data Bases, pages 55–76. Plenum Press, New
York, 1978.

[83] Mariano Rodriguez-Muro and Diego Calvanese. Dependencies: Making
ontology based data access work in practice. In Proc. of the 5th Alberto

Mendelzon International Workshop on Foundations of Data Management,
volume 477, Santiago, Chile., 2011.

[84] Mariano Rodriguez-Muro and Diego Calvanese. Dependencies to optimize
ontology based data access. In Riccardo Rosati, Sebastian Rudolph, and
Michael Zakharyaschev, editors, Description Logics, volume 745 of CEUR

Workshop Proceedings. CEUR-WS.org, 2011.

[85] R. Rosati and A. Almatelli. Improving Query Answering over DL-Lite On-
tologies. In Twelfth International Conference on Principles of Knowledge

Representation and Reasoning (KR 2010), KR ’10, pages 290–300, Toronto,
Ontario, Canada, 2010. AAAI Press.

[86] Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. All elephants are
bigger than all mice. In Proceedings of the 21st International Workshop on

Description Logics, volume 353 of DL ’08. CEUR-WS.org, 2008.

[87] Sebastian Rudolph, Markus KrÃ¶tzsch, and Pascal Hitzler. Cheap boolean
role constructors for description logics.

[88] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical OWL-DL reasoner. Web Semant., 5(2):51–
53, June 2007.

[89] D. Tsarkov and I. Horrocks. FaCT++ Description Logic Reasoner: System
Description. In Proc. of the 3rd Int. Joint Conf. on Automated Reasoning,
volume 4130 of IJCAR ’06, pages 292–297, Seattle, WA, USA., 2006.

[90] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. Unfounded Sets
and Well-Founded Semantics for General Logic Programs. In Proceedings

of the Seventh Symposium on Principles of Database Systems (PODS’88),
pages 221–230, 1988.

