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Abstract

Some advanced linear models of beam are proposed with the aim to well repre-
sent 3D effects due to complex material behaviours or warping deformations avoid-
ing the use of much more computationally expensive folded plates or 3D-like simu-
lations.

They are potentially very usefull also for the geometrically-nonlinear case due
to the recent proposal of the Implicit Corotational Method (or simply ICM), which
represents a framework to obtain frame-invariant structurals models for one or two-
dimensional fibred continua starting from the corresponding linear solution for the
3D Cauchy continuum, increasing the research interest in this kind of formulations.

At first, a mixed model of laminated beam including in-plane and out-of-plane
warping deformations is derived. The linear formulation proposed is obtained on
the basis of a semi-analytical approach which solves the Cauchy continuum equa-
tions for beam-like bodies under the usual Saint Venant (SV) loading assumptions,
but without introducing any simplifying hypothesis on the stress field. It can be
proved as if no end-effects are considered the formulation is coincident with that
proposed by Tegan which, due to the generality of the stress field considered, allows
the treatment of beams with nonhomogeneous and anisotropic materials where sig-
nificant interlaminar tensions could arise.

The 3D stress solution obtained far from the end bases and that due to all the
warping effects added are exploited to obtain the cross-section flexibility matrix,
while the kinematics of the mixed model is described in a simplyfied way, i.e. in
terms of a rigid section motion and the deformative modes of the cross-section
considered independently amplified along the longitudianal axis.

The SV stress field for the isotropic and homogeneous case can be easly recov-
ered from the Iesan solution and enriched with a simplified treatment of nonuniform
out plane-warping effects of the cross section, providing a less expensive, but suit-
able enough, description of beams with both thin-walled or compact section. Also
in this case, as advantage of the mixed formulation employed, an essential kinemat-
ical description is possible. It is based on the standard rigid section motion and
out-of-plane variable warping effects, whose shape over the section is furnished by
the SV shears and torsion functions. A FE based on the exact solution of the model
is provided and numerical analyses are performed. Comparisons are proposed with

respect to 3D or plate-based solutions showing the accuracy of the approach.



Introduction

Beam-like structures are widely used in engineering practice and the improve-
ment of both continuum models and FEM solution procedures for their linear
and nonlinear analysis still represents a primary task for researchers.

Saint Venant (SV) rod theory, see [13], is a powerful theoretical basis for
deriving beam models to be used in standard 3D frame analysis [20, 15| be-
cause it allows an accurate one-dimensional description of the 3D continuum
behaviour in terms only of cross-section generalized parameters. Subsequent
extensions, like that of Iesan [13], allows the SV solution also to be exploited
for non-isotropic and non-homogeneous materials. In some cases of load-
ing and boundary conditions, for example torsion actions applied to open
profiles, the structural behaviour is not correctly described by the SV the-
ory as the end effects due to variable warping along the beam axis could
produce important additional normal and shear stresses which are not neg-
ligible. Following the pioneering work of Vlasov [23] much researches have
been devoted to the formulation of mechanical models capable of describ-
ing this phenomenon accurately, focusing their attention on isotropic beams
only. The initial Vlasov theory has been notably refined in terms of both
the theoretical aspects, for example see [5, 4], and the numerical methods
of analysis [22, 1, 14, 6]. The main part of these works are focused on the
analysis of thin-walled profiles, while more recent contributions extended the
range of application by proposing beam theories suitable for the FEM anal-
ysis of one-dimensional structures with generic cross-sections and subjected
also to non-uniform shear warping effects [17, 7].

In the present work advanced linear models of beam are proposed with
the aim to well represent 3D effects due to complex material behaviours or

warping deformations.



At first, the semi-analytical approach used for instance in [12, 18, 24] is
exploited to obtain the 3D exact stress solution for a composite beam. The
basic idea is that of formulating the Cauchy problem in a manner that allows
its analytical solution with respect the beam axial coordinate while a FEM
description of the cross-section is required. The approach is potentially very
accurate as it does not introduce any simplifying hypothesis on the stress
field, completely 3D, and allows all the in-plane and out-of-plane deformative
shapes of the cross-section to be exactly calculated.

A mixed one-dimensional model is then derived so to maintain all the
details of this exact solution. This goal is reached by a separate description
for the 3D stress and displacement fields. In particular, the latter is repre-
sented in terms of a rigid section motion and the other section modal shapes
indepentently amplyfied along the axial direction of the beam, while stresses
are exactly those provided by the solution far from the end bases enriched by
the contributions due to all the other warping effects added. The assumed
fields are introduced in the Hellinger Reissner functional to obtain an accu-
rate Ritz-Galerkin approximation of the beam model in terms of generalized
static and kinematic quantities.

With respect to the homogeneous and isotropic case, a more simple but
accurate enough, linear model of beam is then proposed with the aim to
account for the variable out-of-plane warping of the cross-section due to
shear and torsion.

Its main feature is that it maintains all the details of the standard SV so-
lution in order to analyze beams with both compact or thin-walled sections.
This goal is reached by formulating the model in the mixed format. In partic-
ular, the kinematical description maintains, as standard compatible models
[7, 1], a rigid section motion and out-of-plane deformations represented by
the SV shears and torsion warping functions independently amplified along
the beam axis. The stress field is more accurately evaluated as the sum of
the exact contribution due to the SV solution and to some further terms due
to variable warping. The constitutive laws in terms of generalized quantities
so obtained account for all the coupling effects arising from the SV problem.

The warping functions are calculated through a preliminary analysis
which involves the solution of 3 Neumann boundary-value problems on the

cross-section domain. These problems are solved numerically using a FE ap-



proach like those presented in [20, 15], see also [11, 17| for a solution based
on the Boundary Element Method.

The description of the stress field induced by the non-uniform warping is
obtained on the basis of two distinct approaches which differ in the evaluation
of the shear contributions. The first one uses a Benscoter-like [4] expression.
The second approach, denoted as Jourawsky-like, evaluates this contribution
through the equilibrium equation in the axial direction, requiring the FEM
evaluation of 3 additional warping functions on the cross section domain.

The validation of the proposed model is performed by means of a mixed
finite element formulated on the basis of exact shape functions. In partic-
ular the static fields interpolation exactly satisfy the homogeneous form of
the equilibrium equations adopting an exponential distribution of the bi-
moments and bi-shears, while the resultant force and moment are constant
and linear respectively, as in standard beam models. The static interpo-
lation also allows the discrete form of the strain energy to be evaluated
exactly without using any explicit displacement interpolations. Externally
the element exposes kinematical parameters only, thanks to the use of static
condensation so reducing the global computational efforts. The finite ele-
ment proposed has no discretization error. This feature allows us to perform
the numerical experimentation focusing attention only on the beam model
approximation. The numerical tests presented regard single or framed beam
structures and the results obtained are compared with those proposed by
other authors or calculated by using shell model analyses.

As a final comment observe how the mixed model adopted here is par-
ticularly suitable for the extension to geometrically nonlinear analyses using
corotational strategies [10, 3] where displacements and rotations require com-
plex change—of-observer rules on the contrary the stresses are not affected by
this change. The use of a formulation valid for generic cross sections, that
refers all the variables to the same axis and which is able to detect even-
tual coupling between torsional and shear warping, is a further advantage

especially in the geometrically nonlinear case |21, 3].



Chapter 1

The lesan approach

1.1 The Iesan approach to derive the SV solution

In this section the SV solution is described according to the approach of
Iesan [13] whose main advantage consists in its generality as no simplify-
ing hypothesis on the stress field are introduced. This allows for instance
to consider the presence of different fiber materials and fiber orientations
which may cause complex 3D stress states (including significant interlami-
nar stresses) not present in the standard formulation. For a review of the
SV problem we refer also to [15, 20].

1.1.1 Preliminaries

Let us consider a cylinder occupying a reference configuration B of length ¢
confined by the lateral boundary (the so called mantel) denoted by 0B and
two terminal bases (¢ and €2, on which the external forces are applied.
The cylinder is referred to a Cartesian frame (O, s, 2, x3) with unit vec-
tors {ej,es, e3} and e; aligned with the cylinder axis. In this system, see

Figure 1.1, we denote with X the position of a point P

ngsel
X =Xo+ax with

T = To€q
where X represents the position of P with respect to the beam axis, s is
an abscissa which identifies the generic cross-section €[s] of the beam and x
is the position of P inside 2[s]. Finally we have assumed the convention of

summing on repeated indexes for the Greek letter o that goes from 2 to 3.
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Figure 1.1: The cylindric solid.

Adopting a Voight-like matrix notation, the strain components will be

e = H (1.1a)
g

where e = {€11, 712, 713} collects the terms of the standard SV formulation,

collected in vector € as

while g = {e22, €33, 123}
Introducing the displacement vector u = uyeyg, the strains-displacements

relations of the 3D continuum can be expressed in the following form

e = Du+ Su,, (1.1b)
where ~ _
0 0 0
ai 0 0 1 0 0]
5 01 0
oy 0 00 1
D= g . S=
0 — 0 0 0 O
6:32 8
0o o 2 00 0
5 0% 0 0 0]
O R R
L Oxz  Oxa

Eq. (1.1b) allows to express contributions in e and g separately as
e=D.u+u,, g=Dyu, (1.1c)

operators D, and D, being implicitly defined as blocks of D.

With the same notation used in Eq.(1.1a), stresses can collected in vector

o= H (1.1d)
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where s = {0'11, g12, 013} and r = {0’22, g33, 0'23}.

The equilibrium equations are

D¢ +S"¢,,=0 on B
No=0 on 0B

(1.1e)

where introducing the normal unitary vector to the mantel n = {0, ng, nsz}

0 ng N3 0 0 0
N=|0 0 0 ng 0 mn3
0 0 0 0 nsy n9

Finally constitutive equations are
o=Ce (1.1f)

which in the standard case of isotropic material become for instance

011 _2/1 + A0 O A 0 €11

099 0 w0 0 0 Y12

o3| _ 0 0 0 0] |ms3 (1.1g)
093 A0 0 2u+A XA 0] |exw '
031 A 0 0 A 2u +A 0 £33

1012 ] L 0 0 0 0 0 M L7723 ]

where ¢ and \ are the Lamé constants defined as
vE E

A=

QA+ -20) * """ 20+
1.1.2 The generalized SV solution

Following Tesan the displacement field u[X] is obtained for the case of ex-
tension, bending and torsion by integrating along s a particular rigid dis-
placement field, while the solution due to shears can be obtained by a new
integration of the displacement field so obtained when the contributions due
to extension and torsion are zeroed.

In particular, the initial rigid motion considered is

us=a+pBNX (1.2a)
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with e e 3 linked through the conditions

_aF2

Eq. (1.2a) conveniently can be rewritten in the form

U,s = apUop + artor + ap, (s wop, + UiR,) + apy (s wor, + wim)  (1.2b)

where
1 0 0 0
UoE = 0 9 uOFQ - - 1 9 uUFg - - 0 ) uor = —xI3
0 0 1 To
and
T I3
up, =0, wp=|0
0

Note that vectors multiplying coefficients ag represent a rigid section motion.

The first integration with respect to s gives

u = ag(suop + u1g)

+ aT(suOT -+ ulT)

(1.2¢)

1
+ ap, (582U0F2 + su1p, + u2p,)

1
+ apy (532U0F3 + suip, + uory)

while the second integration furnishes the terms

1 3 1,
Uy = aSQ(és UoR, + 58U, + suzp, + U3p,)
‘ : (1.2d)
+ ass(és?’uop3 + §s2u1p3 + suaop, + usp,)
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So the final form for the displacement field is

u = ag(sugr + wiE)

+ ar(suor + u1ir)

1
2
+ ap,(=s“uop, + suip, + usp,)

2

1 (1.2e)
+ aF3(§.92u0F3 + suip, + UQFS)

1 4 1,
+ Gsz(gs Uop, + 58 Uip, + Susp, + UsE,)
+ 053(68 Uopy + 58 IR + SuzR + U3Fy)

The 6 contributions
Uip, UU1T, U2FR,, U2Fy, U3F,, U3F;

depend only on x and appear due to integrations with respect to s.

They represent the in-plane and out-of-plane warping functions and can
be evaluated by means of the equilibrium equations (1.1e) once the strain
€ has been obtained from the compatibility condition (1.1b) and the stress
o from the elastic constitutive laws (1.1f)

Due to the form assumed for u, see Egs. (1.2e), the equilibrium condition
(1.1e) furnishes a series of generalized plane problems defined on the beam
section domain Q[s] which allow the evaluation of the 18 components of the
generalized warping functions (see [13], sections 4.2-4.4). The six constants
ag are finally evaluated in terms of the beam section resultant force N|s]

and moment M [s] so defined
N[s]:/sdA , M[s]:/w/\sdA. (1.3)
Q Q

where s = 8T o is the traction on the section with positive normal e;.
Denoting as W, the spin tensor associated to vector  and recalling that
for its definition & A s = Ws, the latter of (1.3) can be rewritten also as

follows:
M]s] :/WxsdA
Q

The formulation presented does not involve any a priori assumption and
could also be applied to non-homogeneous and non-isotropic materials where

the physical intuition of the semi-inverse method, used in the standard
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derivation of the SV solution, is difficult to apply. The solution is defined

apart from a self equilibrated stress state which depends on the exact force

distribution on the end bases.



Chapter 2

Semi-analytical formulation for

beam-like structures

2.1 A semi analytical formulation for beam-like struc-

tures

In this chapter a semi analytical formulation like that proposed in [12, 18, 24|
is used to derive a convenient description of slender structures in terms of
their axial dimension without loosing the basic three dimensionality of the
problem as in the standard SV solution.

A beam description suitable to analyze the largest generality of cross-
sections in terms of both composition and shape can be so recovered, as it
is potentially possible to consider three dimensional states of stress due to
anisotropy and unhomogeneity of the materials as well as end-effects as for
example the Vlasov nonuniform warping or local deformation modes of the
cross-sections.

The basic idea of the formulation is obtain the equilibrium beam equa-
tions exploiting the virtual works principle where a separation of the deriva-
tives with respect to the axial coordinate from the other ones is introduced
when expressing the strain-displacement relations. Of a mathematical point
of view this allows to separate the solution along the beam axis which is
found in a closed form from the the cross-section where a proper FEM dis-
cretization is required. This leds to search the eigensolutions of a matrix

polynomial when describing the end-effects, while it results quite easy to

10
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have the solution far from the end-bases described by a set of linear alge-
braic equations. It is easy to show as this central solution is equivalent to
that of the generalized SV problem as formulated by Iesan and described in

the previous chapter.

2.2 Formulation of the 3D problem

Let consider the same cylinder in figure 1.1 referred to the rectangular Carte-
sian coordinates system (O, s, o, £3) with unit vectors (ej, ez, es) indicated.
As in 1.1 e; runs along the beam axis, while cross-sections are laid in the
r9 — x3 plane. Finally external forces are applied only on the end bases.

The terms in the virtual work equation
0L; —0Le =0 (2.1a)

can be expressed as follows for the portion of the beam between 2 sections

at the infinitesimal distance ds in absence of body forces

0L; = / selodAds, 0L, = / (6u”[s, z]s[s, z] + 6u’ [s + ds, x]s[s + ds, x]) dA
Q Q
(2.1b)
s[s] being the tractions on the two sections s + ds and s of normal +e;

respectively which can be evaluated as
s=+S8To (2.1c)
A Taylor expantion of u and o about s = 0 gives
L= /Q (6u.l [s,2]ST o s, ] + ou'[s,x] ST o, [s,2]) dA ds (2.1d)
Exploiting eq. (1.1b), the internal work in (2.1b) becomes
L; = /Q((SuTDTU + ou,l STo)dA ds (2.1e)
Substituting Egs. (2.1d) and (2.1e), Eq. (2.1a) becomes
/Q (ou' DT — 5u’ ST, )dAds =0 (2.1f)

Expressing the stresses o through eq. (1.1f) in terms of the strains e,
Eq. (2.1f) becomes

/ {su” DTCDu + su” (DT CSu,s —STCD)u,s —6u’ STCSu,s } dA =0
Q
(2.1g)
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2.3 Solution of the 3D Problem

In order to solve Eq. (2.1g) a proper interpolation of the displacement field

wu is introduced that can be expressed in a symbolic format as
uls, @] = ®[alqls] (2.22)

®[x] being the interpolation operator in the cross-section domain and q([s]
the nodal values of the unknowns still dependent on s.

Introducing matrix

¥[z] = D®|x] (2.2b)

collecting the derivatives of the shape functions in ®[z], Eq. (2.1f) can
be rewritten as
Mq[s],ss _Wq[s],s _Kq[s] = O (22C)

where the terms

M:/tI)TSTCS{)dA, W =E - ET, K:/\IITC\I'dA,
& @ (2.2d)

E = / vTCS® dA
Q

can be calculated by a standard FEM assemblage once a local interpolation
for w is defined over a generic element, due to the additivity of integrals.
It is possble to rewrite Eq. (2.2¢) to a system of first order differential

equations as

M O 988 W K 9 S
Dos | _ 1 (2.3)
0 I q,;s I 0 q
So, introducing
s M K
=% a-= 0 r= w
q 0 I I o0
Eq. (2.3a) is
Qd,;=Td (2.3b)

where €2 is a symmetric and posive defined matrix.

The system in (2.3b) can be solved by using the transformation in the Jor-
dan canonical form of the matrix Q~'T'. As shown by Mielke [16], the Jordan
matrix J of the system (2.3b) is characterized by 2 4 x 4 non-diagonal blocks
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corresponding to the solution for bendings and shears, 2 2 X 2 non-diagonal
blocks linked to extension and torsion all associated to null eigenvalues in
J and by a diagonal part associated to non-null eigenvalues (see Fig. 2.1)

whose eigenvectors represent end-effects.

01
0 6 1 bending
0

01
0 (1) 1 bending
0

01

0 axial

01

torsion
0

A1
A2

exponential solutions

Al

Figure 2.1: Characteristic pattern of the Jordan form of the system.

The solution of the system (2.3b) is then constituted by polynomial con-
tributions which propagate undisturbed along the beam and exponential ones
that decay moving away from the first or the end basis respectively. Eigenval-
ues represent the characteristic decay lenght of the generalized eigenvectors
associated so deformative modes linked to the smallest (positive or negative)
values of them are more important and will be included in the general beam
model that will be derived in the following chapter.

Due to the structure of J extension and torsion should be described by
two generalized eigenvectors, while the part of the solution linked to shears
and bendings is described in terms of 4 + 4 generalized eigenvectors.

Practically the central solution due to bendings and shears can be ex-

pressed in the form

4.5 = (200 Q10 920 an] 2 (2.4a)

o O O
»
Q
¥
Q
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where a = F3 or F3, while introducing 8 = E or 1" we have

%[5] = [qog ‘hg} [(1) i]

for extension and torsion.

am

aoﬂ] (2.4b)

Generalized eigenvectors corresponding to the 12 null eigenvalues of J
can be calculated introducing a generator vector dpj for different Jordan
chains k from

T'dy, =0 (2.5a)

and then subsequent vectors d;j from

Let consider for instant a solution q;, = gg; constant with s. In this case

0
dor = [ ] . Substituting the assumed solution in Egs. (2.5a) we obtain
dok

Kqy, =0 (2.5¢)

which means that generator vectors can be obtained as the direction of sin-
gularity of K so the rigid translations and the rotation about the beam axis,
all constant with s, can be considered. From now on we will denote as ggg
and qgr the nodal vectors decribing a rigid displacement of the beam along
x1 a rotation about it, while qop, and qqp, will represent the lateral displace-
ments along x2 and x3. Starting from each of the body motions introduced
a set of 4 Jordan chains can be generated.

It is easy to demonstrate that a set of vector q; ... qz; calculated as
in Egs. (2.6) are the terms of a Jordan chain whose lead vector is dy
d(i-1)k

qik
torsion (k = EorT) while it goes from 1 to 3 for the bendig contributions
(k= Fyor F3).

and the other terms are d;;. = [ ] with ¢ = 1 for extension and

Kqy, = Mqy, — Waqy, (2.6)



Chapter 2 - Semi analytical formulation for beam-like structures 15

2.3.1 Meaning of the generalized eigenvectors
Eqgs. (2.4a) and (2.4b) can be expanded as follows
q, = aoaq(]a
+ ala(Squ + qla)

1 2
+ a20¢(75 Qo + 5914 + q2a)

2 (2.7)
+ a3a(63 oo + 55 %1a + 5G9 + G34),
43 = aopqop

+ a15(5q05 + 1)

where a clear similarity with the displacement field assumed by Iesan in
Egs. (1.2e) can be seen. A part from the FEM discretization of the so-
lution over the cross-section, Eqs. (2.7) and (1.2e) differ for a rigid body
motion represented by the terms apaqo, and agpqog with o = Fy and F3
and 8 = E and T which have the clear meaning already discussed, while
terms a14(goaS + q1,) represent a rigid rotations about axes x3 and x re-
spectively as vectors qyp, and q,p, from a comparison with contributions
uip, = {22, 0, 0} and w1, = {x3, 0, 0} in Eq. (1.2e) are a rotation of the

cross-section.

2.3.2 Solvability of the chains

Let introduce now the generalized tensions vector 1 defined by the equiva-

lence
oqgin= / oult =6q"ETq +6q" Maq.s . (2.8)
Q

All constant vectors ¢ = g ; are characterized by null stresses and null

generalized tensions 1 which implyes
E"qy;=0 (2.9)

Similary for the two rigid motion defined by the linear solutions q =

dooS + g1, we have the further condition

ETq1a+Mqu =0 (210)
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From (2.9) it is possible to show that the right-end-side term in the first
of Eq. (2.6) has no components along the directions g, of singularity for
K. Recalling the defintition of the operator W in Eq. (2.2d) we have

QOTjWQOk = qngTQOj - QOTjETQOk (2.11a)
From Egs. (2.9) and (2.10) it is also symply to show that
90;(Mqy, —Wq,,) =0. (2.11b)
Always from (2.2d), Eq. (2.11b) becomes
a0;(Mqoo + E"q1,) —ai o B qo; =0 (211c)

With respect to the last of (2.6) it is possible to demonstrate the orthog-
onality between the known term and the only directions gqg .
We have

a0 ; (Mg, , —Waqy,) = q5;Mq,, — q1 ;Kqs, (2.11d)

recalling the first of (2.6).
Substituting the second Eq. in (2.6), Eq. (2.11d) becomes

QOTj(MQ1a -Waqy,) = qngQ1a - Q{j(M(IOa -Waq,,) (2.11e)

which expressing W in terms of E and E7 (see Eq. (2.2d)) and recalling
Eq. (2.10) furnishes

40;(Ma1 o — Wdazo) = 41(Mag; + E"qy ;) (2.11f)

that clearly is zero only when j = a.

2.4 Strain Energy

Letting
L.[z] = [S®z], W[a]

strains can be written as € = L¢[x]d][s] and the strain energy density becomes

1 1
d=_ / el'CedA = -d"Cyd (2.12)
2 /g 2
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where

Cy= / LI'CcL.dA =
Q

M ET
K
For now, only the terms due to the central solution of Eq. (2.3b) are
considered.

The terms q;, = aprqor and g, = a14(q@psS + q1,) are rigid motions.

Vectors
0
dk = agk [ ] == d()k (213&)
dok
and
do=aia| 1% | =aia(sdoa+dia) (2.13b)
qyqaS + qiq

therefore produce no strain energy whcih implyes

Cudor =0 Vk

(2.13(“,)
Cd(SdOa + dla) =0=Cyd1,=0 a=mN,IFK

A part from the rigid motion in (2.7), extension and torsion will con-

tribute with the displacement

qs(s) = ai1p (SQQ,B +q ,3) (2.14a)
or in terms of vector d
_ dop _
ds(s) = a1 =aj8(sdog +dip) (2.14b)
41515903

where, recalling Eq. (2.13c), only teh term a; gd; g will be included to the
strain energy.
From (2.7) we have for bending

1 3 1 2
qa[s] = a3a 68 q0a+§8 1o 1t592, T Gq34

(2.15a)

1
+ 24 <232q0a + 841 o + q2a>
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and for d[s]

%quOQ + 541 o + qsq

540 o +QIa
%83QO(1 + %82(1104 + 542 o + 930 52

§S 4o + 591 o + dsq

da[s]:a{’)a + agq

1 1
= aga(gs?’doa + 5stM + sdao + d3o)

1
+ a2a(§52d0a + sdiq + d2a)

(2.15b)
that recalling Egs. in (2.13c¢) gives as only contributions
a3a(3d2a + d3a) + a2a(d2a)
Introducing quantities
Qg = [dlE dap, dap, dir d3p, dSFg}
(2.16)
a= [GE ap, apy; ar as, %‘3}
with
g = a1E, ar = a17,
afp, = a2 F, + SA3Fy, A4Sy, = A3 Fy,
ap; = A2 F3 + Sa3Fy, 83 = A3 [y,
the more compact expression of d[s] is obtained
ds] = Qals (2.17)
The strain energy in (2.12) is then
LT L 7
o = id[s] Cud[s] = 50 C.a (2.18)

where
Ca[S] = QngQd
Modal amplitudes in @ can be expressed in terms of the cross-section resul-

tants. The constitutive laws allow to evaluate stresses as
o = L,[z]|d
where Ly[x]| = CL.[z]. Egs. (1.3) give then

N = / {STL,dAYd, M = / (W,STL,dA}d (2.19)
Q Q
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that introducing ¢, = {IN, M} and matrix

Jo STL,dA
JoWa.STL,dA

[ 8TCS®dA fo8TCwdA
JoW.STCS®dA [, W,STCWdA

p:

can be rewritten as

t, = Lyd (2.20)

Recalling (2.14b) and (2.15b) and that the following condition holds with
respect to the rigid part of the motion in (2.13a) and (2.13b)

Lydor =0 Vk
(2.21)
Lp(Sd()a + dla) =0= Lpdla =0 a= Fl,FQ
vector d can be evaluated as in (2.17) and Eq. (2.20) becomes
tp = Qaaa Qa = Lde (222)

Finally, introducing Q, = Q, ! the complementary form of the strain energy

in (2.18) becomes

Yls] = gtolsl” Hty s (2.23)

where H = Q] C,Q, is the flexibility matrix of the cross-section.



Chapter 3

A generalized beam model

3.1 A generalized mixed beam model

In this chapter a beam model suitable to analyze the largest generality of
cross-sections in terms of both composition and shape is proposed. The basic
idea is to reuse the central solution of the generalized SV problem described
in the previous chapter enriched with some of the modal shapes correspond-
ing to the non null eigenvalues of the problem (2.3b), independently amplified
along the beam axis through variable warping descriptors.

A mixed approach will be followed with an essential kinematical descrip-
tion based on a rigid section motion and the additional in-plane or out-of-
plane modal shapes of the cross section, while the stress field due to both
the central solution and the additional contributions will be exactly taken
into account. However, this is sufficient to recover the exact expression of
the internal work in terms of generalized quantities and the costitutive law

between generalized strains and stresses.

3.2 The displacement field
The displacement field is expressed as:

w[X] = wols] + @ls] A+ Au[xlpuls] (3.1)
where ug[s] and ¢]s] are the mean translation and rotation of the section,

while p[s] give the variability, along the beam axis, of the warping vectors

20
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w;[x] = ®[x]|q,,; collected in the modal matrix A, as
Alz] = [alm e @nlx] (32)
Warping modes are normalized according to the following conditions:
/ @lr] dA = / Woilz] dA =0 (3.3)
Q Q
that is we scale the original modes wy, as follows
wilx] = wilx] — kr — Wk

where constants in kj and in ¢j are calculated from Eq. (4.10) as follows

) o] L

JoWae [oWoWa] |k Jo Wawy

If the origin of the system O is established at the geometrical centroid of the
cross-section and axes x9 and x3 coincide with its principal directions, we
have fQ W, = 0 and fQ W, W, = —diag[J,, Joo, J33] where J33 = fQ 3,
Joo = [ a3 and J, = Jog + Jss.

From the displacements in (3.1), exploiting (1.1b), the following expres-

sion for the strains collected in e and g is obtained

e=¢er[s] + xp[s] N @+ Aul®]p,s [s] + Dew[]pa]s] (3.4)
g = Dyo[z]|p[s]

In Eq.(3.4) er[s] and x[s] are generalized strain parameters so defined

erls] = wo,s [s] +er Apls],  xpls] = ¢y [s] (3.5)

while D, [x] = D.Ay[x] and Dy, [x] = DyA,[x].

The beam internal work is

W[s]:/e/ga'TedAds:/E/Q{sTe—i—rTg}dAds (3.6)

that, substituting the strain expression of the Eqs.(3.4), becomes

Wls] = A{N[S] ~ep[s] + Mls| - xp[s] + Bls] - pos [s] + T'[s] - p[s]} ds
(3.7)
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where the resultant force IN[s] and moment Ms] are the same of Eq. (1.3)
while the generalized actions due to the non-uniform warping i.e. the bs-

moment B[s] and the bi-shear T'[s] are so defined
B[s] = / AlsdA, Tis] = / {Dl,s+ D], r} dA (3.8)
Q Q

independently on the stress description. Recalling Eq. (1.1b) which defines
operators D, and D, the latter of Eq. (3.8) can be rewritten in a more
compact format as

T[s] = /Q DlodA

having introduced D, = DA, = ¥[q,,1 ... q,, ]

Static assumptions

Stresses o are independently described as a part due to the central solution
of Eq. (2.3b) called primary stress and denoted as o, and an additional
term o, due to the warping modes variable with s added to this solution

and called secondary stress
o=0,+0, (3.9)
In particular the following distribution on the section is adopted
o = Lyz]d[s] = L,[2](Qpay[s] + Q. a.s]) (3.10)

where ap[s] = {a1...a6} and ay[s] = {aw1 .. @un, @y 1) - Gy (ngn)} are
generalized strain parameters to be defined using Eqgs. (1.3) and (3.8), while
modal matrices @, and Q,, collect the modes due to the central solution
(2.16) and the contributions due to the warping eigenvectors. The latter is

defined as follows

Qw:[dwl dwn7dw(n+1) dw(nJrn)} (3.11)

Qwi 0
dy,; = [ ] , o dy (n+i) — [ ]
0 dui

The definition of the resultant force and moment N and M leds to Eq.

with

(2.19) once more, while with respect to the bi-moment B and the bi-shear
T in Eq. (3.8) we obtain

B= / {ATSTL,dAYd, T = / {DTL,dA}d (3.12)
Q Q
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So introducing t = {t,, t,,}, where t,, = {B, T'} collects the actions due to

warping modes, and matrix

L - Jo ALS LodA| | [, ALSTCS®AA [ ALSTCWdA
JoDLLsdA foDICSs®dA [, DIC¥dA
it is possible to write
t=Ld (3.13)
where
= |
L.
From Eq. (3.13) we obtain then
t= Qapap + Qawa’tw Qap = LQp? Qaw = LQw (314)

that can be also rearranged in the more compact form

t=Q,a
ap] (3.15)

a,

Q.= 1@, 1Q.|, a= [

Finally, introducing Q, = Q, ', as for the central solution studied in the

previous chapter, the strain energy in its complementary form (2.18) becomes
1
Yls] = 5t[s]THt[s] (3.16)

where H = Q] C,Q, is the flexibility matrix of the cross-section.



Chapter 4

Isotropic and homogeneous

beam with variable warpings

4.1 The SV solution for homogenous cross-section

with isotropic material

The SV problem as formulated in chapter 1 can be easly solved in the case
of homogenous and isotropic beams. In the following the analytical solution
for the in-plane warping functions is reported, while shear and torsion aut-
of-plane warpings must be calculated numerically as solution of a set of 3

Neumann boundary-value problems defined on the cross-section.

4.1.1 Homogenous cross-section with isotropic material

From now on we assume the reference system aligned with the principal axes
of inertia of the cross-section and its origin located in the centroid.
In the isotropic case the equilibrium equations furnish (see [13], sec.1.7)

the following expression for the generalized warping functions,

0 20 2 !
XToa — X
g = |—vag|, Wk, = |pB 2|, ugp = ’;5323332
[ —vaaTs3 o (4.1)
w1x] ws (] wax]
U = 0 ,  usp, = 0 ,  U3p; = 0
0 0

24
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where introducing the vector w[z| = {w1,ws,ws}, the set of PDEs to solve

on the cross-section € is defined as follows

I3ng — xra2ng,
2 2
w w 20 =0 €1 Lo — T
122 TW,33 + € Cg- y( 22 31 + Tox3N3
now,s tngw,3=g € 0 x3 — a3
-V 9 ng — rox3ng

The stress solution

Exploiting Eq. (1.3) the only nonzero stress components are (see [13, 20, 15])

s = D,[z|N|s| + Dy, [x]M]s] (4.3)
where
1 I3 xI9
- o B T2
A 0 0 Jo2 J33
Dn=10 D;op D;o3| » Dm=1D,11 0 0 (4.4)
0 Dr32 Dr33 D;or 0 0
with ]
D11 = jt(wm —x3),
1
D;oy = j(wl,a +x9),
t
3 2w3,9 +v (73 — 23)
D799 = —(wi,20 —23) + ,
2= ) T i) (45)
c2 W3,2 —VT2T3 '
Dyoy = — 2 (w19 —ag) + 327 VT2T8
723 7 (wi,2 —x3) + (1 0)’
3 W9,3 —VT2T3
D = =2 T THaTo
T32 Jt (W1,3 +$2) + 2J33(1 + V) )
co 2w3,3 +V(x% — m%)
Dygy=—2
| Dras = =7, (Wiat2) + 4 Jo(1 + 1)

Jog and J33 being the principal inertia moments of the cross-section, v the
Poisson ratio, while J;, co and c3 are the torsional inertia and shear center

coordinates defined as

Ji = / {(w1,3 +x2)72 — (W1,2 —23)73} dA,
Q

1 v
= _ Y 2 2
Q=3 N {/Q(l‘zw;g,g Taws, )dA + 5 /QCL'Q(ZL‘2 + xg)} . (4.6)

1 v
3= — :cw,—xw,dA+/a: x2+x2}
3 2J33(1+u){/ﬂ(322 2W2,3 ) 293(2 3)
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4.2 A generalized linear beam model based on an

extension of the SV solution

In this section a mixed beam model is obtained on the basis of the Hellinger

Reissner variational principle, introducing an independent description for the
3D stress and displacement fields expressed in terms of generalized quantities
varying along s and of an assumed distribution on the beam section domain.

They are then introduced in the Hellinger Reissner functional
Mgr=W — 1/) - Ee:ct (47)

where the complementary strain energy v and the internal work W are

¢:;/Z/QU:C_1o'dAds : W:/K/Qa:s[u]dAds (4.8)

while L¢,;+ represents the external work and : is the scalar product. The
integration over the cross-section allows Eq.(4.7) to be expressed in terms of
generalized stress and displacement parameters alone.

The beam model so obtained can be used for all kinds of cross-sections
and is not limited to thin-walled ones. The Vlasov and SV solution are

recovered as particular cases.
4.2.1 Kinematic assumptions and internal work
The beam kinematics is described as
ulX] = uols] + @ls] A @+ Aulz]uls (4.9)

where ug[s] and ¢[s] are the mean translation and rotation of the section
while p[s] give the variability, along the beam axis, of the SV warping w[x]
collected in A, [X] as

Warpings w[x] are evaluated as in Eq.(4.2) and normalized according to the

following conditions

/ Aufx] dA = / W, Au[z] dA = 0 (4.10)
Q Q
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The in plane deformation due to Poisson effects provided by the SV solution
can be neglected without drawbacks.
From the kinematics assumed in Eq.(4.9) we have the folloving expression

for the strains
e=cer[s|+xp[s] N @+ Avlxlp,s [s] + Dewx]p[s] (4.11)

where €, = {er1,e12,¢3} and x; = {xr1,XL2, X3} are the generalized

strain parameters defined as

er[s] =uo.s[s| +ei Nls] , xrp=[s]s (4.12)
and
0 0 0
D,x] = [@1,0 @w2,2 Wsy2

W1,3 W2,3 W33
The strain-displacement relationship (4.11) allows the evaluation of the in-

ternal work W in terms of the generalized actions on the section:

W= [ [ sedads = [(Nls)erls)+Mlslxs s+ Bls) s [s4T1s)ls)ds

o ‘ (4.13)

where the resultant force N[s] and moment M/|s] are defined in Eq. (1.3)
while

Bls] = /QAZS dA and TIs] = /QDZ;JS dA (4.14)

are the new generalized actions, due to the non-uniform warping, called from

now on bi-moment and bi-shear respectively.

4.2.2 Static assumptions

Stresses o are independently interpolated and are obtained by adding to a
part called primary stress and denoted as o, an additional term o, called

secondary stress due to the variable warping:
O =04, +0,.

We assume that the significant components of o with respect to {e1, es, es}
are 011, 012 and o13 collected in s as in the SV case. In particular the

following distribution on the section is adopted for the primary terms

Ssy = Dy[x]ay[s] + Dp[x]am[s] (4.15)
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where a, and a,, are the generalized stress parameters to be defined by the
equivalence condition with the section stress resultants, while D,, and D,,
are reported in Eqgs. (4.4),(4.5).

The stress assumption in Eq. (4.15) accounts for all the correct coupling
effects contained in the SV solution which, in this way, is described exactly
in the proposed formulation while it is missed in other similar models, see for
example [7, 1], formulated on the basis of simplified kinematic assumptions.

Two different approaches will be considered and compared for the evalu-

ation of the shear stress components of oy,.

4.2.3 Some properties of the SV stress interpolation

From Eq.(1.3) the following properties can be derived

/DndA:I,/DmdAZO (4.16a)
Q Q

and
/ W,.D, dA =0, / W.D,, dA=1 (4.16b)
Q Q

Furthermore from (4.10) and (4.4) and exploiting the properties coming from
the solution of problems (4.2) and the use of a principal reference system we
have
/ATD dA—/ATD dA =0
w n - w m -
@ @ (4.16¢)
DI D, dA = / D! D, dA=0
Q Q

The Benscoter-type stress distribution

The first static description evaluates the additional stress term o“ on the
basis of the displacement assumption (4.9) allowing the warping function to
vary with s in a way similar to that initially proposed by Benscoter in [4]

and used also in [1, 7]. The following expression is then adopted
Sw = Aulx]ap[s] + Dey|x|a(s] (4.17)

where ap[s] and a,[s] are the generalized stress components due to warping

Equation (4.17) allows the total stress to be written as

s = Dy[x]ay[s] + Dy [x]amn[s] + Auz]ap(s] + Dey[x]ass] . (4.18)
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resultants N, M, B, T is determined Eqgs. (1.3) and (4.14). Substituting
Eq. (4.18) in Eq. (1.3) and exploting (4.16) and Eqgs. (4.10), the following

expressions for a,[s] and a,,[s] can be obtained
anls] = N[s] — Quails] , an[s] = M]s] — Q, ai]s] (4.19)

where

Qn:/Dew dA, Qm:/WIDew dA
Q Q

From the definition of B and T in Eq.(4.14) and recalling the properties in
Eqgs.(4.10) and (4.16), we obtain

apls] = HppBls], ay[s| = F7pT|s] (4.20)
where
HpL=J, = /QAZAW dA, F;'= /QDeTwadA (4.21)

and the further property
/ AT'D,, dA = / DI A,dA=o0. (4.22)
Q Q

is exploited.
Finally introducing vector t[s] = {N[s], M[s], Bls]|, T[s]} the expres-
sion of the stress field Eq. (4.18) can be rearranged as

s = Diz]t[s] (4.23)

where

Dylz) = Aulz|Hpp, Dix] = (Deylx] — D[], — Dy 2] Q) Fr

4.2.4 The Jourawsky-type stress interpolation

The stress in Eq. (4.18) does not verify the equilibrium equations of the 3D
problem. Alternatively the following form for the secondary stress field can
be assumed

8, = Aylxlay[s] + Dylx]ay,s [s] (4.24)
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with
0 0 0
Dylx] = (Y1, V2,2 3,2
P1,3 V2,3 V3,3

The secondary warping function 1 is evaluated from the equilibrium equation
in the axial direction, under the usual SV assumption about the loads. The

following 2D problem is obtained

Poo+Paz+w =0 €

(4.25)
Pone +ang =0 €00

Also in this case the coefficients ay[s], an[s], aw[s] and a,s[s] can be
evaluated through Eq. (1.3) and (4.14) in terms of the stress resultants. The
equivalence with the bi-moment gives the same expression for a,, reported

in Eq. (4.20) exploiting Egs. in (4.16) and the new condition

/ AlD, =0, (4.26)
Q
while recalling Eq. (4.22) from bi-shear equivalence we have

Qy,s [s] = HppT|s] (4.27)

for which now

J, = / AT A, dA = / D! D,dA (4.28)
Q Q

Quantities n and m are calculated using properties (4.16) and the new
conditions

/ qu dA = 07 / WxD¢ = —(61 & 61)Jw (4.29)
Q Q
which allow us to obtain

anls] = Nls], anls]| = M|s] + Ti[s]e;

The stress field is then defined as in Eq. (4.23) with the only difference that

the matrix Dy is now

D,[x] = Dy[x|Hpp + Dy,[z](e1 ® e1)
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4.2.5 The Hellinger-Reissner functional

Introducing A = diag{1/E, 1/G, 1/G} with E and G the Young and the
shear modula of the material, for both the stress descriptions the comple-

mentary energy ¢ can be formulated as

wzl//s.AsdAdszl/tTths (4.30)
2 JeJo 2 Je

where

HNN HNM 0 HNT
HY,, Hyy 0  Hyr
0 0 Hpgp 0
H:I]\}T H?\}T 0 Hrr

H= / DTAD = (4.31)
Q

assumes the meaning of flexibility matrix relative to the cross-section.
For the sequel, the complementary energy in Eq. (4.30) can be conve-

niently rearranged in the following form

1 1
V=g /g tIH,t,, ds + oTel /K t'Ht,ds

where

with t, = {Nl, Mo, Mg} and t, = {Ml, No, Ng} Matrices

HG’O’ 0 ] HTT HTT
Hn: ) Hs:
0 Hpp) Hl Hrp

are implicitly defined by Eq. (4.31).

In this way it is possible to decouple the normal and shear parts of
the model and exploit the fact that H,, is a diagonal matrix defined as
H,, = diag[}, ﬁ, i]

With this notation, the internal work W in Eq.(4.13) can be expressed

in compact form as

W= / (tals] @uls] + tals] T oy[s]) ds (4.32)
/
where
2 e,
Qn - Y Qs -
Pos ©
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and o, = {er1, xr2, X3}, @, = {XL1, €12, €13}
The model is completed by the definition of the external work. In par-

ticular the contribution due to the body force b[X], under the displacement

assumption (4.9), becomes

Lext = /(P[S] ~ugls] + ml[s| - p[s] + q[s] - p[s]) ds (4.33)
‘
where

pls] :/Qb[X]dA, m[s]:/Q:n/\b[X]dA, als] :/le[X]GJ[xg,xid;i).

The one-dimensional beam equations

From the stationary condition of IIyr with respect to the displacement pa-

rameters, we obtain the equilibrium equations for the one-dimensional model
N s +p[3] =0,
M., ;+e AN+m[s]=0, (4.35)
B,,—T+qls]=0.

while from the stationary condition with respect to stress parameters we

obtain the constitutive laws:

1 1
on = pHntn 05 = aHsts (4.36)
By inverting Eqgs.(4.36) we obtain
125 K,, 0 - t, K., K N
B 0 Kpp| |Ms T K.r Krr| |p

Egs. (4.36) and (4.37) could also be transformed in terms of generalized
stress variables N and M.



Chapter 5

A mixed FE based on exact

shape function

5.1 The finite element interpolation

A finite element based on a mixed interpolation of stresses and displacements
is presented. The shape functions used for the generalized stresses are exact
in the case of zero body forces and could be easily extended exploiting a
particular solution which account for different load cases. The finite element
so evaluated is then exact but also simple and suitable for general use and
allows the validation of the beam models previously presented avoiding errors

due to the domain discretization.

5.1.1 Stress interpolation

The following interpolations for M and IV, satisfying the homogeneous form
of (4.35), are adopted

) Ng ) Ms1 0
N = 7 |7mes| M(s] = 5 |ms2| T [s] [me2
Me2 ms3 Me3

where 1 [8] = S/€—1/2 while mgl = Mk[O]-f—Mk[g] and Mel = Mk[f] —Mk[O]
Collecting the stress parameters in the vector

T
BS: Ng  Ms1 Ms2 M3 Te2  Mle3

33
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the previous interpolations can be rearranged as follows

to = No[s|Bs, tr=N:Bg (5.1)
where
7 00 0 0 05000 0
N,[s]= |0 $ 0 mfsg 0|, N.=[0000O0 —1%
0 0 5 0 71 0000+ 0

To obtain the exact shape functions for B and T we need to solve the
bi-moment equilibrium equation B,;= T that, once the constitutive laws
(4.37) have been substituted, becomes

K, = (Krr - Kip K K.r)
Kppp.ss—K,p=Klro, - (5.2)
Qc = KTT tT
where g, is constant with s and K, is a positive definite symmetric matrix.

The solution of the differential problem (5.2) is obtained, apart for an

inessential constant, from its homogeneous form which transforms into the

following generalized eigenvalues problem and a set of ODEs

fiuss _AZZf’L - 07

. (5.3)
(K, — N Kpp)g; =0
once W is expressed as
3
n=>_filslg; = Qfls| (5.4)
=1
where
fils]
Q=la @ a. fls=|pk] - (5.5)
f3ls]

Using the normalization condition qZTKBqu = §;x the following relations
holds
Q'KppQ=1, Q'K,Q=A, A=diag]\{,\3,N]]  (5.6)

where I is the identity matrix and A; are real and positive due to the prop-

erties of Kpp and K ,.
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From Eqs.(5.4) and (4.37) we obtain

3
B = Z(Cl cosh (A;s) + d; sinh (\;s)) K ppg;
i=1
while the bi-shear is recovered as T' = B,;. The coefficients ¢; and d; are
expressed in terms of the end section values of B. Collecting the discrete

parameters in vector

5. — Bl + Bi[0]
4 R A
w = BS BS BS B€ B€ B€ )
16 |: 1 2 3 1 2 3 Bk,’[e] _ Bk[O]
Bek == #.
the interpolation of B and T becomes
B = KBBQA[S]QeBw ) T= KBBQA[S]aS QEIBUJ (57)

where A[s] = Np[s]N, and
Q" o Nglf]+ N
= , N.={
Qe [ 0 QT] [NB[e] — Np|

while N . = diag[cosh(\gs)] and N4 = diag[sin(Ags)].

5.1.2 The discrete form of the internal work

The discrete form of the internal work W in Eq. (4.32) is obtained without
using any explicit interpolation for the displacements. In particular, after by

parts integration, the following expression is obtained

W = Bids + BL., (5.8)

where the kinematical parameters, collected in the vectors

T T
Ps = |Pr1 Gs1 D2 D3 De2 ¢33] y Q= [Hs He}

are defined as

Pe2 = %(802[0] +@2[l]) — Pr3,  Ges = %(903[0] + @3[l]) + ¢ro

6ok = 01l — @rl0]) Gy = 5l — o)

and

pell] — ui0], pll] + 0],

Hsk = 9 y  Hek = 9
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5.1.3 The discrete form of the complementary strain energy

The discrete form of the complementary energy will be obtained by summing

the contributions of the normal and tangential stresses

¢ = ¢U+w7- (59)

The first term is defined as
1 T
o ‘= t,H,t,)d 1

which, on the basis of Eqs.(5.1),(5.6),(5.7) and (4.37), becomes

(BTH Bﬁw + ﬂgHgaﬂS)

(5.
1
wa- 5

where

1
¢ p = QeT/ATA dsQ., Hi, =% /NU[S]THMNU[S] ds. (5.11)
14 L

In a similar way the tangential part is defined as

1 [t
1/}7— _267/0 (tS Hsts)dS.

A by block inversion of the constitutive law (4.37) allows us to device the
relation Hyr = GK , which together with the eigenvalues property in
(5.6) gives the equation

Q"KppHrrKppQ = GA™".

usefull for rewriting 1), as

” _ 1 lﬁs]T[ H?, Hf—T] [ﬂs]
T2|B,] |HY)T Hpl B,

once the stress interpolations (5.1),(5.7) have been substituted. The intro-

duced discrete operators are

l
HY = ZNTH. N,

/
Hp = Q7 / ATA A, dsQ,
0

TT_ GN HTTKBBQ/ AanSQe
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Finally the total complementary strain energy of the element can be
T e e

Bs ss  Hg,| |Bs (5.12)

B.] [HS)" HE,| |8,

G = HS, + HS, . HY, = Hip+Hyp, HS, = Hop.

oo )

expressed as follows

1
v=3

where

5.1.4 Local to global contribution

As is standard in mixed formulation the solution is obtained using a pseudo
compatible format (see for example [8, 9]) in which the stresses, that do not
require interelement continuity, are locally solved as a function of the element
displacements.

The assemblage requires that the kinemathical element variables be ex-
press in terms of the global ones by using standard change of reference rules
which involve the nodal displacements and rotations while the warping pa-

rameters are directly identified with the global ones.

5.2 Numerical examples

In order to validate our proposal a series of numerical tests regarding single
beams and frames have been performed. Single beams have been considered
mainly to compare the accuracy of the Bensoter—type and Jouwrasky—type
stress descriptions. Frames have allowed us to validate the model in more
complex cases requiring the connections of more finite elements.

A preliminary cross section analysis is performed to solve the 2D PDEs
problems (4.2) and (4.25), required for the evaluation of the cross sec-
tion flexibility matrices, and to calculate the eigensolution of the problem in
Eq. (5.5). These computations are performed by means of the general pur-
pose FEM code COMSOL using quadrangular 9 nodes isoparametric FEs.
The frame analysis is performed by using a C+-+ code specifically imple-
mented for this purpose. Thanks to the exact mixed interpolation all the

tests are performed by using only one finite element for each member.
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Figure 5.1: Channel-shaped shear wall core with an end torque.

5.2.1 Shear wall core

The first test regards the shear wall core shown in Figure 5.1 fully restrained
at one end and subjected to a torque M at the free end. This test, analyzed
by many other authors |22, 14, 1, 7|, is very sensitive to an accurate evalua-
tion of the secondary shear stress and for this reason is particularly suitable
to verify the performance of the Benscoter—type and Jouwrasky—type stress
descriptions. In Table 5.1 the values of the torsional rotation at the free
end are compared with reference solutions in the literature and by standard
Vlasov and SV solutions. The latter is obtained with the model in [10] per-
forming only the linear step of the asymptotic analysis. The sensitivity in
the evaluation of the secondary shear stresses is highlighted by the Vlasov
solution in which lacks this effect.

The results obtained by the two new proposals improve that of the Vlasov
theory but only the Jourawsky-type model gives an accurate prediction of the
free end rotation. The different evaluation of the tangential stress is high-
lighted in Figure 5.3 where the significant components of o are reported.
Note how the small difference with respect |22, 14| is related to the use of
the sectorial area theory to calculate the cross-section mechanical proper-
ties as confirmed by the result labeled "Jourawsky-sect." obtained with the

Jourawsky type stress evaluation but describing the cross section in terms of
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mesh warp. constr. warp. free

Benscoter-type 1 FE 4.1395 43.3729
Jourawsky-type 1 FE 4.2114 43.3729
Jourawsky-sect. 1 FE 4.2366 43.2692
SV [10] 1 FE - 43.3727
Vlasov [23] - 4.0806 -
Back et al. [1I] 6 FE 4.210 -
Tralli [22] 6 FE 4.2389 -
Kim et al. [14] 1FE 4.236 -

Table 5.1: C section: torsional angle ¢1(x1073rad) at the free end.

its midline. Finally note the great difference with respect to the SV rotation
that however is exactly reproduced by both our models when the warping is
free.

Figure 5.2 reports the shapes of the @ and 1 functions evaluated through
the COMSOL code.

Figure 5.2: C section: @ functions and v functions.

5.2.2 Box-shaped beam

The second test regards the beam depicted in Figure 5.4 and proposed in [19]
with the aim of emphasising the different behaviour of closed section. Two
torsional moments are applied along the beam and the supports constrain the

torsional rotation while allow the warping of the section. Table 5.2 furnishes



Chapter 5 - A mized FE based on exact shape function 40

Benscoter-type Jourawsky-type
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Figure 5.3: C section: significant stress components at the cantilevered

end.

mesh x1=2 x1=75

Benscoter-type 5 FE 4.0114  -7.0662

Jourawsky-type 5 FE 4.0843 -7.1563

SV [10] 5FE 4.1039 -7.1876
Murin [19] 5FE 412 -7.21

Table 5.2: Box-shaped beam: torsional angle o1 (x10~%rad) at significant

sections.

the values of the torsional angle evaluated at the loaded sections. It can be
observed how the free-to—warp condition and the shape of the section lead
to small differences with the standard SV solution. In Fig. 5.5 the values
of By obtained with the Jourawsky—type model are plotted. In Fig. 5.7 the
significant stress components for section at x = 2m are shown, note how, also
if the two beam models proposed evaluate the same displacements, the stress
responses are completely different. Also in this case the warping functions

are plotted in Fig. 5.6.

5.2.3 L-shaped frame

In order to consider assemblages of more beams, the L-shaped frame shown
in Figure 5.8 has been analyzed. The frame is formed by two orthogonal

members subjected to a torsional moment in the mid-span of the column.
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E=2.1-10" N/m?
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Figure 5.4: Box-shaped beam.
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Figure 5.5: Box-shaped beam: bimoment distribution along the beam.

The constraint conditions are completely fixed in points A and D, while
in B only the displacement in the x3 direction is prevented. With respect
to warping in joint B three different types of connections are considered
[2, 21], flange continuity, diagonal stiffened joint and diagonal/box stiffened
joint, which are simulated by applying different continuity conditions on the
warping variables, i.e. continuity of the warping parameters for the first two
cases and imposing zero warping parameters in the third one.

Figures 5.9 and 5.10 report the computed values of the torsional rotation
of the two members forming the frame at different sections. The values
obtained with the Jourawsky-type model (continuous lines in the Figures)
are compared with those obtained with the ABAQUS commercial code by
using a 3D shell model (discrete points in the Figures) with S/R elements (see
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Figure 5.6: Box-shaped beam: @ functions and ¢ functions.

Figs. 5.11 and 5.12 for the meshes employed), no important differences can
be observed. The results are also in good agreement with analyses presented
in [2].

Fig. 5.11 shows the deformed configurations for the different joint con-

sidered. In 5.12 the joint region is more deeply showed.

5.2.4 Space frame

The last test is the symmetric space frame shown in Figure 5.13. The struc-
ture consists of two portal frames joined through a transverse beam and
loaded with a vertical load P applied at the top of each column and at the
center of the beam CH. As in [2] the column bases are fixed, nodes B, D,
G, I cannot translate along the 1 and x3 axes, while in point M only the
uy displacement component is prevented. Also in this case the previously
described diagonal/box stiffened joint and diagonal stiffened joint conditions
on the warping parameters at nodes B, D, G and [ are investigated.
Figure 5.14 shows the bi-moment along the axial direction of the elements

calculated with the Jourawsky-type model.
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Figure 5.7: Box-shaped beam: significant stress components.
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Figure 5.8: L-shaped frame.
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Figure 5.11: Deformed configuration frame.

Figure

5.12: Deformed configuration at joints.
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Chapter 6

Conclusions

In this work a general beam model suitable to represent 3D effects due to
complex material behaviours or warping deformations is presented. It is de-
rived using a mixed approach with a simplified kinematical description in
terms of a rigid motion of the cross sections and the contribution due to
in-plane or out-of-plane variable warpings effects, while stresses are exactly
evaluated. The starting point of the formulation is a semi-analytical ap-
proach which allows to solve the Cauchy problem under the standard SV
loading conditions without introducing simplifying hypothesis on the stress
field. It is exploited to obtain the warping modes shape over the cross-section
and to evaluate the stress field due both to these contributions and to what
we call central solution. The relations with respect to the lesan solution of
the generalized SV problem for composite beams are discussed.

The SV stress field for the isotropic and homogeneous case can be easly
recovered as a particular case and a simplified linear model for beams with
variable out—of—plane warpings due to shear and torsion has been derived.
With respect to other proposals, derived only from kinematical hypotheses,
the mixed formulation allows to include the SV solution coherently making
the analysis of any kind of cross sections, compact or thin—walled possible.
The only extra cost consists in the numerical solution of some Neumann
boundary-value problems on the cross-section domain.

The model proposed has been implemented on the basis of an exact mixed
finite element which makes possible to focus attention on the accuracy of

the continuum formulation only, avoiding any disturbing effect due to the

46
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discretization. Each numerical test presented is then exactly solved with
respect to the beam model equations, except for the errors due to the FEM
evaluation of the warping functions.

Two different stress descriptions have been presented and compared. Nu-
merical results show their accuracy with a better behaviour for the formula-
tion denoted as Jourawsky-type.

The extension of the linear beam model proposed to the geometrically
nonlinear analysis using corotational strategies appears simple thank to the

mixed description adopted.
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