

UNIVERSITA’ DELLA CALABRIA

Dipartimento di Matematica e Informatica

Dottorato di Ricerca in
Matematica e Informatica

Con il contributo del MIUR

XXVII Ciclo

Answer Set Programming: Development Tools

and Applications to Tourism.

Settore Scientifico Disciplinare INF/01 – INFORMATICA

Coordinatore: Ch.mo Prof. Nicola Leone

Supervisore/Tutor: Prof. Giorgio Terracina

 Dottorando: Dott.ssa Barbara Nardi

A Giulia e Francesco,
i grandi amori della mia vita!

Sommario

L’Answer Set Programming (ASP) è un paradigma di programmazione dichiar-
ativo che è basato sulla semantica dei modelli stabili. L’idea di base dell’ASP è
quella di codificare un problema computazionale in un programma logico i cui
modelli stabili (answer set) corrispondono alle soluzioni del problema. Negli ul-
timi anni sono state sviluppate numerose applicazioni di ASP che testimoniano
un crescente interesse per questo paradigma di programmazione sia in ambito ac-
cademico che in ambito industriale. Lo sviluppo di tali applicazioni ha fornito
e fornisce tuttora indicazioni importanti sulle reali potenzialità di tale paradigma
di programmazione per la soluzione pratica di problemi complessi, e contempo-
raneamente consente di evidenziare alcuni aspetti critici da affrontare per rendere
più efficace ed agevole l’utilizzo di ASP in contesti reali.

Questa tesi offre vari contributi in questo contesto che possono essere riassunti
come segue:

(i) sviluppo di due applicazioni di ASP in uno specifico ambito industriale;

(ii) progettazione ed implementazione di nuovi strumenti di sviluppo per ASP.

Per quanto riguarda il primo punto, la tesi affronta due problemi molto sentiti
nel settore turistico. Il primo è noto in letteratura come il problema dell’allotment
(semi-)automatico di pacchetti turistici; ed il secondo riguarda la gestione intelli-
gente di un servizio newsletter personalizzata per i clienti di un’agenzia viaggio.
Tali soluzioni confermano le buone qualità di ASP come strumento efficace per la
risoluzione di complessi problemi reali.

Per quanto riguarda il secondo punto, la tesi descrive due nuovi strumenti di
sviluppo che estendono ASPIDE, uno dei più noti ambienti integrati di sviluppo
per ASP. Il primo strumento ha come obiettivo quello di agevolare la scrittura
di programmi logici per gli utenti meno esperti della sintassi di ASP, ed è par-
ticolarmente indicato per quegli utenti che prediligono l’utilizzo di interfacce
grafiche. Si tratta di un nuovo strumento di programmazione visuale che con-
sente di “disegnare” un programma ASP componendone le regole in modo com-
pletamente grafico. Il secondo strumento di sviluppo descritto nella tesi è stato
ispirato da una necessità particolarmente sentita in quelle comunità scientifiche
in cui si studia l’utilizzo della programmazione logica, e delle sue estensioni, per
il ragionamento e l’interrogazione di ontologie. L’ostacolo da superare consiste
nell’integrare l’editing di ontologie con lo sviluppo/la generazione di programmi
logici. A tale scopo nella tesi si propone uno strumento che estende due fra i più

noti ambienti di sviluppo nei due campi, ASPIDE e Protégé, consentendone un
agevole utilizzo congiunto.

I contributi principali di questa tesi hanno dato origine alle seguenti pubbli-
cazioni scientifiche:

• Barbara Nardi, Kristian Reale, Francesco Ricca, Giorgio Terracina: An Inte-
grated Environment for Reasoning over Ontologies via Logic Programming.
Web Reasoning and Rule Systems - 7th International Conference, RR 2013,
Mannheim, Germany, July 27-29, 2013. (LNCS – Vol. 7994 – Springer –
Pg. 253-258).

• Barbara Nardi: A Visual Syntax for Answer Set Programming. Web Rea-
soning and Rule Systems - 8th International Conference, RR 2014, Athens,
Greece, September 15-17, 2014. (LNCS – Vol. 8741 – Springer – Pg.249-
250).

• Carmine Dodaro, Nicola Leone, Barbara Nardi, Francesco Ricca: Allotment
Problem in Travel Industry: A Solution Based on ASP. Web Reasoning and
Rule Systems - 9th International Conference, RR 2015, Berlin, Germany,
August 4-5, 2015. (LNCS – Vol. 9209 – Springer – Pg. 77-92).

Abstract

Answer Set Programming (ASP) is a declarative rule–based programming
paradigm for knowledge representation and declarative problem–solving. The
idea of ASP is to represent a given computational problem by using a logic pro-
gram, i.e., a set of logic rule, such that its answer sets correspond to solutions, and
then, use an answer set solver to find such solutions.

Logic programming paradigms have received renewed interest in recent years,
as demonstrated by emerging applications in many different areas of computer
science, as well as industry. Due to this renewed interest an increased level of
activity in the area has been registered which involved new partitioners both from
academia and industry.

The development of such applications has provided important information on
the real potentials of this programming paradigm, especially concerning the capa-
bility of solving complex problems in practice; moreover, application developers
highlighted some critical issues to be addressed to make ASP more effective and
easy to use ASP in real-world.

This thesis offers several contributions in this context can be summarized as
follows:

(i) The development of two applications of ASP in a specific industrial field;

(ii) The design and implementation of new development tools for ASP.

Concerning point (i), the thesis addresses two issues considered relevant in
the tourism industry. The first is known in the literature as the problem of (semi-
)automatic allotment of package tours; and the second is the intelligent manage-
ment of personalized newsletters for customers of travel agency. The ASP-based
solutions presented in the thesis confirm that ASP is an effective tool for solving
complex real-world problems.

Concerning point (ii), the thesis describes two new development tools that
extend ASPIDE, a well-known integrated development environment for ASP. The
first tool aims at making easier the writing of logic programs for novice program-
mers and is particularly suitable for those who prefer visual programming tools.
In particular, the user can “ draw ” an ASP program composing graphically the
logic rules. The second development tool described in the thesis answers a need
arising in the scientific communities that study the usage of logic programming,
and its extensions, for reasoning and querying ontologies. The goal is to integrate
editing tools for ontologies with tools for the development/generation of logic

programs. To this end, the thesis proposes a tool that connects two well-known
development environments in the two fields,ASPIDE and Protégé, in an integrated
environment.

The main contributions presented in this thesis have been published in the
following research papers:

• Barbara Nardi, Kristian Reale, Francesco Ricca, Giorgio Terracina: An Inte-
grated Environment for Reasoning over Ontologies via Logic Programming.
Web Reasoning and Rule Systems - 7th International Conference, RR 2013,
Mannheim, Germany, July 27-29, 2013. (LNCS – Vol. 7994 – Springer –
Pg. 253-258).

• Barbara Nardi: A Visual Syntax for Answer Set Programming. Web Rea-
soning and Rule Systems - 8th International Conference, RR 2014, Athens,
Greece, September 15-17, 2014. (LNCS – Vol. 8741 – Springer – Pg.249-
250).

• Carmine Dodaro, Nicola Leone, Barbara Nardi, Francesco Ricca: Allotment
Problem in Travel Industry: A Solution Based on ASP. Web Reasoning and
Rule Systems - 9th International Conference, RR 2015, Berlin, Germany,
August 4-5, 2015. (LNCS – Vol. 9209 – Springer – Pg. 77-92).

Contents

1 Introduction 1

2 Answer Set Programming 6
2.1 Basic Language . 6
2.2 ASP construct for optimization problems 10
2.3 Knowledge Representation in ASP 10

3 Development Tools for ASP 16
3.1 ASPIDE . 16
3.2 JASP: Combining Java and ASP 21

4 Applications of ASP:
Tools for Travel Agencies 30
4.1 Automatic Allotment of Package Tours 30

4.1.1 Travel Agent Requirements 31
4.1.2 Basic Allotment Solution via ASP 32
4.1.3 Additional Preferences on Allotment 35
4.1.4 Empirical Validation . 37
4.1.5 Implementation in JASP 41

4.2 Intelligent Newsletter . 44
4.2.1 Requirements of the iTravel+ Newsletter 44
4.2.2 Specification in ASP . 46
4.2.3 Implementation in JASP 50

4.3 Related work . 52

5 Extensions of ASPIDE 54
5.1 Visual Editor . 54

5.1.1 New Visual ASP . 55
5.1.2 Overview of the new editor 56

CONTENTS

5.1.3 A use case for Visual ASP 58
5.2 Integration of ASPIDE and protégé 73

5.2.1 Integrating ASPIDE and protégé 74
5.2.2 Some use cases . 75

5.3 Related Work . 78

6 Conclusion 81

Chapter 1

Introduction

Answer Set Programming (ASP) [38, 26, 51, 55, 48, 39, 4] is a declarative rule-
based language for knowledge representation and reasoning that has been devel-
oped in the field of logic programming and nonmonotonic reasoning. The idea
of ASP is to represent a given computational problem by using a logic program
such that its answer sets correspond to solutions, and then, use an answer set
solver to find such solutions [48]. The high knowledge-modeling power [4, 26],
and the availability of efficient systems [14], make ASP suitable for implementing
complex knowledge-based applications. Indeed, ASP has been applied in several
fields ranging from Artificial Intelligence [3, 5] to Knowledge Management [4],
and Information Integration [50], as well as industry [40].

The development of such applications has provided important information on
the real potentials of this programming paradigm, especially concerning the capa-
bility of solving complex problems in practice; moreover, application developers
highlighted some critical issues to be addressed to make ASP more effective and
easy to use ASP in real-world [46].

This thesis offers several contributions in this context can be summarized as
follows:

(i) A tool for automatic allotment of package tours;

(ii) An intelligent newsletter service for travel agencies;

(iii) A new visual editor for ASP programs;

(iv) An integrated environment for ontology reasoning and querying via logic
programming.

1

CHAPTER 1. INTRODUCTION 2

Automatic Allotment. In the travel industry it is common for tour operators to
pre-book for the next season blocks of package tours, which are called allotments
in jargon [20, 23]. This practice is of help for both tour operators and service sup-
pliers. Indeed, the first have to handle possible market demand changes, whereas
the seconds are subject to the possibility that some package tours remain unsold,
e.g., the rooms of a hotel can remain empty in a given season. Therefore, ser-
vice suppliers and tour operators agree on sharing the economic risk of a potential
low market demand by signing allotment contracts [23]. The effectiveness of this
form of supplying has been studied in the economics literature under a number
of assumptions on the behavior of the contractors [20, 41]. These studies, how-
ever, do not approach the problem of providing a tool that helps travel agents in
the act of selecting package tours to be traded with service suppliers in the future
market. Basically, given a set of requirements on the properties of packages to
be brought, budget limits, and an offer of packages from several suppliers, the
problem from the perspective of the travel agent is to select a set of offers to
be brought (or pre-booked) for the next season so that the expected earnings are
maximized [20]. Despite allotment is –de facto– one of the most commonly-used
supplying practices in the tourism industry, the final selection of packages offered
by travel suppliers is often done in travel agencies more or less manually.

In this thesis we approach the problem of automatic allotment of package
tours, and we formalize and solve it by using ASP, and in particular

• We abstract the requirements of a real travel agent that needs to solve an
allotment problem, and we solve it by using an ASP program.

• We model in ASP a number of additional preference criteria on packages
to be selected that, according to a travel agent advise, allow one to further
optimize the selection process by taking into account additional knowledge
of the domain.

• We report on the results of a preliminary experimental analysis using real-
word data that validates our approach.

Intelligent Newsletter. Newsletters delivered electronically via email (also
called e-newsletters) have gained rapid acceptance in several business areas since
the Internet technologies, and e-mail in particular become of common usage. The
goal of a e-newsletter is to inform the subscribed customers about some news
concerning specific topics they may be interested in. A newsletter can be used

CHAPTER 1. INTRODUCTION 3

for commercial and marketing purposes, or as a very informative support tool for
the users of web sites and portals. An effective implementation of a newsletter
service, hence, should bring important news to the attention of the user and leave
other news on the bottom of a message. Moreover, it is important to control the
length of messages, as well as the frequency they are sent, in order to avoid the
newsletter messages are considered spam to be trashed. However different users
may have different preferences and different interests, so the need for personal-
izing messages depending on the user they are addressed is very important for
increasing the effectiveness of this communication media.

In this thesis we present a solution to the problem of scheduling and organizing
messages for the newsletter service of a travel agent, that was devised according
to the requirements of the iTravelPlus project developed by the Tour Operator Top
Class s.r.l. and the University of Calabria.

It is worth pointing out that the newsletter of iTravelPlus is not intended to be
a recommender system [70], which sends customized messages via email contain-
ing commercial proposals. Instead the idea is to provide each registered customer
with a number of news it can be interested in regarding several topics, such as
information on the place(s) he/she is visiting, suggested destinations for the next
trip, as well as administrative news, availability of travel document, meteo, safety
news (e.g., alerts on whether the travel destination was affected by an earthquake
or an other natural phenomenon that will be dangerous for the personal safety);
up to news about local traditions, festivals, concerts and so on. The customiza-
tion system should organize the news by selecting and by ordering them in the
best possible and attractive way to each user. This means that also the length and
frequency of emails should be controlled and customized. The desired intelligent
behavior is obtained in this work by devising a proper ASP program that generates
the plan of messages to send by personalizing the experience of each user while
trying to maximize the effectiveness of messages.

A new Visual Editor for ASPIDE. In order to facilitate the design of ASP ap-
plications a rich set of tools for ASP-program development were proposed in the
last few years, which are nowadays collected in rich integrated development en-
vironments, such as ASPIDE [32] and SeaLion [11]. Nonetheless, the task of
designing a logic program consists of writing text files (more or less computer-
assisted) for the majority of ASP programmers. Although the basic syntax of
ASP is not particularly difficult, writing ASP programs might be uncomfortable
for novices as well as for users who prefer graphic tools. To face with a similar

CHAPTER 1. INTRODUCTION 4

problem in the field of databases, a number of tools and graphical user interfaces
were proposed [79, 62, 60, 72] starting from the 70s for facilitating the specifica-
tion of queries. Today many commercial and free relational database query tools
offer fully graphical Query By Example (QBE) interfaces for facilitating the end
approach of users to systems and languages. The practical relevance of graphic
tools is now well-recognized: a QBE interface is, indeed, the default in the user-
oriented Microsoft Access. Following this idea, ASPIDE was equipped with a
QBE-like editor for logic rules (see Chapter 3.1). However, the ASPIDE visual
editor resulted to be not immediate and intuitive for non-expert users. The main
drawback of the ASPIDE QBE-like editor is that it can only represent the body of
a rule as a query, and the interface does not provide a clear intuitive image of an
entire rule and of the entire program.

After analyzing the limits of this QBE-like proposal, we devised a new visual
interface for ASPIDE that supports all the powerful language constructs of ASP,
and overcomes the limits of the original visual editor. The user does not have to
edit text files, or know the details of a specific ASP dialect, but he/she can exploit
a fully graphic environment that immediately recalls the structure of programs and
rules, and allows the user to create rules by almost always clicking and dragging
graphical elements on the main drawing area.

Integrated environment for ontologies and logic programs. Ontology-based
reasoning is becoming more and more a relevant task [12, 16] in the area of knowl-
edge representation and reasoning. New Semantic Web repositories are continu-
ously built either from scratch or by translation of existing data in ontological form
and are made publicly available. These repositories are often encoded by using
W3C [77] standard languages like RDF(S), and OWL, and query answering on
such repositories can be carried out with specific reasoners, supporting SPARQL
as the query language.

In this context, the interest in approaches that resort to logic programming
for implementing various reasoning tasks over ontologies is growing. Consider
for instance that recent studies have identified large classes of queries over on-
tologies that can be Datalog-rewritable (see [42] for an overview) or First-Order
Rewritable [17]. Approaches dealing with such fragments usually rely on query
reformulation, where the original query posed on the ontology is rewritten into an
equivalent set of rules/queries that can be evaluated directly on the ontology in-
stances. Many query rewriters that are based on this idea exist [22, 1, 57, 71, 73]
producing SQL queries or stratified Datalog programs. Moreover, even consider-

CHAPTER 1. INTRODUCTION 5

ing a setting where SPARQL queries are posed on RDF repositories, translations
to ASP were proposed [59] and implemented [43].

However, if we look at this scenario from a developer point of view, one can
notice that different families of tools are required. On the one hand, one needs
a good environment for designing and editing ontologies. On the other hand one
would like to design, execute and test ASP programs for ontology reasoning. Un-
luckily specific tools for these tasks are currently developed independently and
miss a common perspective. We face with this issue proposing the integration
of two major development environments for ASP programs and Ontology edit-
ing, respectively: ASPIDE [32] and protégé [76]. Protégé being one of the most
diffused environments for the design and the exploitation of ontologies; and AS-
PIDE being the most comprehensive IDE for ASP. In particular, protégé is an
open source ontology editor and knowledge-base framework, which (i) provides
an environment for ontology-based prototyping and application development; (ii)

supports several common formats (such as RDF(S), OWL); (iii) supports several
querying and reasoning engines; and (iv) can be extended with user-defined plu-
gins. ASPIDE supports the entire life-cycle of ASP programs development, and
can be extended with user-defined plugins [30] to support: (i) new input formats,
(ii) program rewritings, and even (iii) the customization of solver results.

In this thesis we present an extension of both editors with specific plugins that
enable a synergic interaction between them. The user can, thus, handle both on-
tologies and ASP-based reasoning by exploiting specific tools integrated to work
together. Note that, our solution has to be considered as a first step towards
the development of a general platform, which can be personalized and extended
(also with the help of the research community) by integrating additional rewrit-
ers/reasoners. The aim is to provide an environment for developing, running and
testing ASP-based ontology reasoning tools and their applications.

Thesis Structure. This thesis is structured as follows: Chapter 2 overviews ASP
syntax and semantics, and shows how ASP can be used as a tool for knowledge
representation and reasoning; Chapter 3 presents the main developer tools for ASP
programmers that have been either extended or employed in this thesis; Chapter
4 is devoted to the description of two applications of ASP to the tourism domain;
Chapter 5 presents the two new developer tools developed in this work that extend
ASPIDE with a new visual editor and a plug-in for interacting with protégé; and,
eventually, Chapter 6 concludes the thesis summarizing the obtained results.

Chapter 2

Answer Set Programming

In this Chapter we overview Answer Set Programming (ASP) [38, 26, 51, 55, 48,
39, 4], a declarative rule-based programming paradigm for knowledge represen-
tation and declarative problem-solving. The idea of ASP is to represent a given
computational problem by using a logic program, i.e., a set of logic rule, such
that its answer sets correspond to solutions, and then, use an answer set solver to
find such solutions. The high knowledge-modeling power [4, 26], and the avail-
ability of efficient systems [15] make ASP suitable for implementing complex
knowledge-based applications.

2.1 Basic Language

Syntax. Let V be a set of variables, C be a set of constants, and S be a set of
predicates symbols. We assume variables to be strings starting with uppercase
letters and constants to be non-negative integers or strings starting with lowercase
letters. Predicates (represented by strings starting with lowercase letters) have
each one an associated arity (non-negative integer) representing the number of
terms contained in the predicate.

A term is either a variable or a constant. An atom is an expression p(t1, . . .,tn),
where p is a predicate of arity n and t1,. . . ,tn are terms. A literal is a positive lit-
eral p or a negative literal not p, where p is an atom.

A disjunctive rule (rule, for short) r is a formula

a1 v · · · v an :- b1, · · · , bk, not bk+1, · · · , not bm.

where a1, · · · , an, b1, · · · , bm are atoms and n ≥ 0, m ≥ k ≥ 0.
The disjunction a1 v · · · v an is called head of r, while the conjunction b1, · · · ,

bk, not bk+1, · · · , not bm is the body of r.

6

Chapter 1. Answer Set Programming 7

We denote by H(r) the set {a1, ..., an} of the head atoms, and by B(r) the set of
the body literals. In particular, B(r) = B+(r)∪B−(r), whereB+(r) (the positive
body) is {b1,. . . , bk} and B−(r) (the negative body) is {bk+1, . . . , bm}.
A rule having precisely one head literal (i.e. n = 1) is called a normal rule. If
the body is empty (i.e. k = m = 0), it is called a fact, and we usually omit the
“ :- ” sign, while rules with empty head are called integrity constraints (or simply
constraint):

:- b1, · · · , bk, not bk+1, · · · , not bm.

A disjunctive logic program P is a finite set of rules (possibly including in-
tegrity constraints), and Rules(P) denotes the set of rules (including integrity
constraints) in P . A not-free program P (i.e., such that ∀r ∈ p : B−(r) = ∅) is
called positive, and a v -free program P (i.e., such that ∀r ∈ p : |H(r)| ≤ 1) is
called normal logic program.

A rule is safe if each variable in that rule also appears in at least one positive
literal in the body of that rule. A program is safe, if each of its rules is safe, and
in the following we will only consider safe programs.

A term (an atom, a rule, a program, etc.) is called ground, if no variable
appears in it. A ground program is also called a propositional program.

Given a literal `, let not.l = a if l = not a, otherwise not.l = not l, and given
a set L of literals, not.L = {not.l | l ∈ L}.

Example 2.1 For example consider the following program:

r1: a(X) v b(X) :- c(X, Y), d(Y), not e(X).

r2: :- c(X, Y), k(Y), e(X), not b(X).

r3: m :-n, o, a(1).

r4: c(1, 2).

r1 is a disjunctive rule s.t. H(r1) = {a(X), b(X)}, B+(r1) = {c(X, Y), d(Y)},
and B−(r1) = {e(X)};
r2 is a constraint s.t. B+(r2) = {c(X, Y), k(Y), e(X)}, and B−(r2) = {b(X)};
r3 is a ground positive (non-disjunctive) rule s.t. H(r3) = {m} B+(r3) =

{n, o, a(1)}, and B−(r3) = ∅; r4 is a fact (note that :- is omitted).

The aggregate functions, are functions of the form f(S), where S is a set term,
and f is an aggregate function symbol.
Aggregate functions map multisets of constants to a constant. The most common
functions implemented in ASP systems are the following:

Chapter 1. Answer Set Programming 8

• #min, minimal term, undefined for the empty set;

• #max, maximal term, undefined for the empty set;

• #count, number of terms;

• #sum, sum of integers.

An aggregate atom is of the form f(S) ≺ T , where f(S) is an aggregate
function, ≺ ∈ {<, ≤, >,≥} is a comparison operator, and T is a term called
guard. An aggregate atom f(S) ≺ T is ground if T is a constant and S is a
ground set.

Semantics. The semantics of a disjunctive logic program is given by its answer
set [63].

Let P be an ASP program. The Herbrand universe, denoted by UP , is the set
of all constants appearing in P and the Herbrand base, denoted by BP , of P is
the set of all possible ground atoms which can be constructed from the predicate
symbols appearing in P with the constants in UP (see e.g.,[4]).
Given a rule r, Ground(r) denotes the set of rules obtained by applying all pos-
sible substitutions σ from the variables in r to elements of UP . Similarly, given a
program P , the ground instantiation of P is the set

⋃
r∈P Ground(r).

For every program P , we define its answer set using its ground instantiation
P in two steps:

• to define the answer set of positive programs;

• to give a reduction of general programs to positive ones and use this reduc-
tion to define answer set of general programs.

A set L of ground literals is said to be consistent if, for every atom ` ∈ L, its
complementary literal not ` is not contained in L. An interpretation I for P is a
consistent set of ground literals over atoms in BP . A ground literal ` is true w.r.t.
I if ` ∈ I; ` is false w.r.t. I if its complementary literal is in I; ` is undefined w.r.t.
I if it is neither true nor false w.r.t. I .

Let r be a ground rule in P . The head of r is true w.r.t. I if exists a ∈ H(r)

s.t. a is true w.r.t. I (i.e., some atom in H(r) is true w.r.t. I). The body of r is true
w.r.t. I if ∀` ∈ B(r), ` is true w.r.t. I (i.e. all literals on B(r) are true w.r.t I).
The body of r is false w.r.t. I if ∃` ∈ B(r) s.t. ` is false w.r.t I (i.e., some literal

Chapter 1. Answer Set Programming 9

in B(r) is false w.r.t. I). The rule r is satisfied (or true) w.r.t. I if its head is true
w.r.t. I or its body is false w.r.t. I .

An interpretation I is total if, for each atom A in BP , either A or not.A is in I
(i.e., no atom in BP is undefined w.r.t. I). A total interpretation M is a model for
P if, for every r ∈ P , at least one literal in the head is true w.r.t. M whenever all
literals in the body are true w.r.t. M . X is a answer set for a positive program P
if its positive part is minimal w.r.t. set inclusion among the models of P .

Example 2.2 Consider the positive programs:

P1 = {a v b v c.; :- a.}
P2 = {a v b v c.; b :- c.; c :- b.}

The answer set of P1 are {b, not a, not c} and {c, not a, not b}, while {b, c, not a}
is the only answer set of P2.

The reduct or Gelfond-Lifschitz transform of a general ground program P
w.r.t. an interpretation X is the positive ground program PX , obtained from P
by (i) deleting all rules r ∈ P whose negative body is false w.r.t. X and (ii) delet-
ing the negative body from the remaining rules.

An answer set of a general program P is a model X of P such that X is an
answer set of PX .

X is an answer set of a program P if it is a minimal model of Ground(P)X .
We can observe that any answer set A of P is also a model of P because

Ground(P)A ⊆ Ground(P), and rules in Ground(P)−Ground(P)A are satis-
fied w.r.t. A.

Example 2.3 Given the (general) program

P3 = {
a v b :- c.;
b :- not a, not c.;

a v c :- not b.

}

and the interpretation I = {b, not a, not c}, the reduct PI
3 is {a v b :- c., b.}. I

is an answer set of PI
3 , and for this reason it is also an answer set of P3. Now

consider J = {a, not b, not c}. The reduct PJ
3 is {a v b :- c. ; a v c.} and it can

be easily verified that J is an answer set of PJ
3 , so it is also an answer set of P3.

Chapter 1. Answer Set Programming 10

2.2 ASP construct for optimization problems

Optimization problems are modeled in ASP using weak constraint [10]. A weak
constraint ω is of the form:

:∼ b1, . . . , bk, notbk+1, . . . , notbm. [w@l]

where w and l are the weight and level of ω. (Intuitively, [w@l] is read “as weight
w at level l”). An ASP program with weak constraints is Π = 〈P,W 〉, where P is
a program and W is a set of weak constraints.

Given a program with weak constraints Π = 〈P,W 〉, the semantics of Π ex-
tends from the basic case defined above. Thus, let GΠ = 〈GP , GW 〉 be the in-
stantiation of Π; a constraint ω ∈ GW is violated by an interpretation I if B(ω) is
true in I . An optimum answer set O for Π is an answer set of GP that minimizes
the sum of the weights of the violated weak constraints in GW (called cost) in a
prioritized way (i.e., respecting levels).

Example 2.4 Given the following program with weak constraints

a v b. c v d. e v f.

:∼ a, c. [1@1]

an optimum answer sets is {not a, b, not c, d, e, not f}, which has cost zero.

2.3 Knowledge Representation in ASP

Answer Set Programming is employed as a tool for knowledge representation and
common sense reasoning in several application domains, ranging from classical
deductive databases to artificial intelligence. ASP is particular suitable for han-
dling incomplete knowledge and non-monotonic reasoning, and allows for encod-
ing problems in a declarative fashion. Thanks to this approach, writing an ASP
program is as easy as describing the problem domain, while the complexity of the
reasoning task is hidden by using a dedicated ASP system. In addition, the (op-
tional) separation of a fixed non-ground program from an input database allows
one to obtain uniform solutions over varying instances.

ASP is a powerful formalisms, and allows complex problems to be expressed;
its expressive power captures all problems belonging to the second level of the
polynomial hierarchy (the complexity class ΣP

2). This high expressive power
is significantly relevant for approaching hard problems; for example, in solving

Chapter 1. Answer Set Programming 11

planning and diagnosis problems, or, in the field of Artificial Intelligence, for
solving problems not reducible to SAT instances.

ASP allows the encoding of problems in an intuitive and concise fashion fol-
lowing a “Guess&Check” programming methodology (originally introduced in
[25] and refined in [45]). According to this approach a program P which encodes
a problem P consists of the following parts:

Input Instance: An instance F of the problem P is specified in input using a
database of facts.

Guess Part: A set of disjunctive rules G ⊆ P , referred to as the “guessing part”,
is used the define the search space .

Check Part: The search space is then pruned by the “checking part”, consisting
of a set of constraints C ⊆ P which impose some properties to be verified.

Basically, the first two parts of the program, that is, the input instance and
the guessing part, represent the “candidate solutions” to the problem. By adding
the check part those solutions are filtered in order to guarantee that the answer
sets of the resulting program represent exactly the admissible solutions for the
input instance. The following example represents the typical application of the
Guess&Check methodology.

Example 2.5 Suppose that we want to partition a set of people into two groups,
but we also know that some pairs of people dislike each other, thus we have to
keep those two in different groups. Assume that the input instance consists of the
following facts:

person(bob). person(eve). dislike(bob, eve).

So as, applying the guess&check methodology, the guess part would model the
possible assignments of persons to groups:

group(P, 1) v group(P, 2) :- person(P).

The resulting program (input instance + guess) produces the following answer
set:

{person(bob), person(eve), dislike(bob, eve), group(bob, 1), group(eve, 1)}
{person(bob), person(eve), dislike(bob, eve), group(bob, 1), group(eve, 2)}

Chapter 1. Answer Set Programming 12

{person(bob), person(eve), dislike(bob, eve), group(bob, 2), group(eve, 1)}
{person(bob), person(eve), dislike(bob, eve), group(bob, 2), group(eve, 2)}

However, we want to discard assignments in which people that dislike each other
belong to the same group. To this end, we add the checking part by writing the
following constraint:

:- group(P1, G), group(P2, G), dislike(P1, P2).

Now, adding the constraint to the original program allows us to obtain the in-
tended answer sets, as the checking part acted as a sort of filter:

{person(bob), person(eve), dislike(bob, eve), group(bob, 1), group(eve, 2)}
{person(bob), person(eve), dislike(bob, eve), group(bob, 2), group(eve, 1)}

In the following, we illustrate the use of ASP as a tool for knowledge represen-
tation by using some well-known examples, including classic deductive database
applications, and hard problems that can be solved applying the “Guess&Check”
programming style.

Reachability. Given a finite directed graph G = (V,A), we want to compute all
pairs of nodes (a, b) ∈ V × V such that b is reachable from a through a nonempty
sequence of arcs in A. In different terms, the problem amounts to computing the
transitive closure of the relation A.

The input graph is encoded by assuming that A is represented by the binary
predicate arc(X, Y), where a fact arc(a, b) means that G contains an arc from a

to b, i.e., (a, b) ∈ A; whereas, the set of nodes V is not explicitly represented,
since the nodes appearing in the transitive closure are implicitly given by these
facts.

The following program then defines a predicate reachable(X, Y) containing
all facts reachable(a, b) such that b is reachable from a through the arcs of the
input graph G:

r1: reachable(X, Y) :- arc(X, Y).

r2: reachable(X, Y) :- arc(X,U), reachable(U, Y).

The first rule states that node Y is reachable from node X if there is an arc in the

Chapter 1. Answer Set Programming 13

graph from X to Y , whereas the second rule represents the transitive closure by
stating that node Y is reachable from node X if there is a node U such that U is
directly reachable from X (there is an arc from X to U) and Y is reachable from
U .

Hamiltonian Path. Given a finite directed graph G = (V,A) and a node a ∈ V
of this graph, does there exist a path in G starting at a and passing through each
node in V exactly once?

This is a classical NP-complete problem in graph theory. Suppose that the
graph G is specified by using facts over predicates node (unary) and arc (binary),
and the starting node a is specified by the predicate start (unary). Then, the fol-
lowing program Php solves the Hamiltonian Path problem:

r1: inPath(X, Y) v outPath(X, Y) :- arc(X, Y).

r2: reached(X) :- start(X).

r3: reached(X) :- reached(Y), inPath(Y,X).

r4: :- inPath(X, Y), inPath(X, Y 1), Y <> Y 1.

r5: :- inPath(X, Y), inPath(X1, Y), X <> X1.

r6: :-node(X), not reached(X), not start(X).

The disjunctive rule (r1) guesses a subset S of the arcs to be in the path, while
the rest of the program checks whether S constitutes a Hamiltonian Path. Here, an
auxiliary predicate reached is defined, which specifies the set of nodes which are
reached from the starting node. Doing this is very similar to reachability, but the
transitivity is defined over the guessed predicate inPath using rule r3. Note that
reached is completely determined by the guess for inPath, no further guessing is
needed. In the checking part, the first two constraints (namely, r4 and r5) ensure
that the set of arcs S selected by inPath meets the following requirements, which
any Hamiltonian Path must satisfy: (i) there must not be two arcs starting at the
same node, and (ii) there must not be two arcs ending in the same node. The third
constraint enforces that all nodes in the graph are reached from the starting node
in the subgraph induced by S.

Traveling Salesperson. The Traveling Salesperson Problem (TSP) is a well-
known optimization problem, widely studied in Operation Research.

Given a weighted directed graph G = (V,E,C) and a node a ∈ V of this
graph, find a minimum-cost cycle (closed path) in G starting at a and passing

Chapter 1. Answer Set Programming 14

through each node in V exactly once.
A DLP encoding for the Traveling Salesperson Problem (TSP) can be easily

obtained from an encoding of Hamiltonian Cycle by adding optimization: each arc
in the graph carries a weight, and a tour with minimum total weight is selected.

Suppose that the graph G is specified by predicates node (unary) and arc

(ternary), and that the starting node is specified by the predicate start (unary).
The ASP program with weak constraints solving the TSP problem is thus as

follows:
r1: inPath(X, Y,C) v outPath(X, Y,C) :- edge(X, Y,C).

r2: reached(X) :- start(X).

r3: reached(X) :- reached(Y), inPath(Y,X,).

r4: :- inPath(X, Y,), inPath(X, Y 1,), Y <> Y 1.

r5: :- inPath(X, Y,), inPath(X1, Y,), X <> X1.

r6: :- vertex(X), not reached(X).

r7: :∼ inPath(X, Y,C) [C@1].

The last weak constraint (r7) states the preference to avoid taking arcs with
high cost in the path, and has the effect of selecting those answer sets for which
the total cost of arcs selected by inPath (which coincides with the length of the
path) is the minimum (i.e., the path is the shortest) .

The TSP encoding provided above is an example of the “guess, check and
optimize” programming pattern [45] by adding an additional “optimization part”
which mainly contains weak constraints. In the example above, the optimization
part contains only the weak constraint r7.

Team Building. A project team has to be built from a set of employees accord-
ing to the following specifications

(p1) The team consists of a certain number of employees.

(p2) At least a given number of different skills must be present in the team.

(p3) The sum of the salaries of the employees working in the team must not
exceed the given budget.

(p4) The salary of each individual employee is within a specified limit.

(p5) The number of women working in the team has to reach at least a given
number.

Chapter 1. Answer Set Programming 15

Suppose that our employees are provided by a number of facts of the form
emp(EmpId,Sex,Skill,Salary); the size of the team, the minimum number of
different skills, the budget, the maximum salary, and the minimum number of
women are specified by the facts nEmp(N), nSkill(N), budget(B),maxSal(M),
and women(W). We then encode each property pi above by an aggregate atom
Ai , and enforce it by an integrity constraint containing notAi .

r1: in(I) v out(I) :- emp(I, Sx, Sk, Sa).

r2: :-nEmp(N), not #count{I : in(I)} = N.

r3: :-nSkill(M), not #count{Sk : emp(I, Sx, Sk, Sa), in(I)} ≥M.

r4: :- budget(B), not #sum{Sa, I : emp(I, Sx, Sk, Sa), in(I)} ≤ B.

r5: :-maxSal(M), not #max{Sa : emp(I, Sx, Sk, Sa), in(I)} ≤M.

r6: :-women(W), not #count{I : emp(I, f, Sk, Sa), in(I)} ≥ W.

Intuitively, the disjunctive rule “guesses” whether an employee is included
in the team or not, while the five constraints correspond one-to-one to the five
requirements p1-p5 . Thanks to the aggregates the translation of the specifications
is clear and intuitive.

Chapter 3

Development Tools for ASP

In order to facilitate the design of ASP applications, a rich set of tools for ASP-
program development were proposed in the last few years, including editors [58,
74] and debuggers [9, 8, 27].

In the next sections we present two advanced development tools for ASP,
namely ASPIDE [32] and JDLV [28]. ASPIDE is an extensible integrated de-
velopment environment for ASP, which will be extended in Chapter 5. JDLV is
a plugin for Eclipse, supporting a hybrid language that transparently enables a
bilateral interaction between ASP and Java. JDLV will be used in Chapter 4 for
implementing real-world applications of ASP.

3.1 ASPIDE

ASPIDE [33] is a comprehensive IDE for ASP programs, which integrates an ad-
vanced editing tool with a collection of user-friendly graphical tools for program
composition and execution.

ASPIDE offers a textual mode to edit the ASP programs using the DLV syn-
tax, and support all the main language extensions (i.e. disjunction, aggregates and
constraints). The editing of ASP files is semplified by an advanced text editor
which provides text highlighting, auto completion, refactoring, token pair high-
lighter and others advanced functionalities below described.

The user interface of ASPIDE is depicted in Figure 3.1.
In the upper part of the interface a toolbar allows the user to quickly access

some common operations. In the center of the interface there is the main editing
area where it is possible to open several files organized in a tabbed panel. The left
part of the interface is dedicated to the workspace explorer, which list projects,

16

CHAPTER 3. DEVELOPMENT TOOLS FOR ASP 17

Figure 3.1: The user interface of ASPIDE.

and to the error console, which organizes errors and warnings according to the
project and files where they are localized. On the right, there are the outline panel
and the template panel. The layout of the IDE is customizable, indeed the user
can rearrange components the way he/she likes best.

In the following paragraphs we overview all the main functionalities that are
available in ASPIDE.

Workspace organization. ASPIDE allows for organizing logic programs in pro-
jects à la Eclipse, which are collected in a workspace. Projects collect either
different parts of an encoding or several equivalent encodings solving the same
problem.

Advanced text editor. The editing of ASP files is simplified by an advanced
text editor which provides keyword outlining (such as “ :- ’ and “not”); text high-
lighting of predicate names, variables, strings, and comments; auto completion,
predicate names are both learned while writing, and extracted from the files be-
longing to the same project, variables are suggested by taking into account the
rule we are currently writing; refactoring to modify programs in a guided way;

CHAPTER 3. DEVELOPMENT TOOLS FOR ASP 18

and others advanced functionalities.

Dynamic syntactic and semantic checking. This functionality checks the pro-
gram syntactical and semantical correctness during its development, highlighting
the code that contains errors or warnings.

Quick fix. The editor suggests quick fixes to reported errors or warnings, and
applies them (on request) by automatically changing the affected part of code.

Dynamic code template. ASPIDE provides support for assisted writing of rules
(guessing patterns, etc.), as well as automated writing of entire subprograms (e.g.,
transitive closure rules) by means of code templates, which can be instantiated
while writing.

Outline navigation. ASPIDE creates an outline view which graphically repre-
sents program elements. Each item in the outline can be used to quickly access the
corresponding line of code (a very useful feature when dealing with long files).

Dependency graph. Another tool to navigate the code is the dependency graph.
ASPIDE creates automatically a graphical representation of several variants of the
(non-ground) dependency graphs associated with a project, and can be used for
analyzing rule dependencies and browsing the program.

Debugger and Profiler. This functionalities allow the user to interact with ASP
solver in order to understand the reason why a program does not produce the
expected output.

Unit Testing. In software engineering, the task of testing and validating pro-
grams is a crucial part of the life-cycle of software development process and a
test conceived for verifying the behavior of a specific part of a program is called
unit testing. The testing feature consists on a unit testing framework for logic pro-
grams in the style of JUnit. The developer can specify rules by composing one or
several units, specify one or more inputs and assert a number of conditions on both
expected outputs and the expected behavior of sub-programs. For an exhaustive
description of the testing language and of the graphical tool we refer the reader
to [29].

CHAPTER 3. DEVELOPMENT TOOLS FOR ASP 19

Configuration of the execution. This feature allows to select the solver exe-
cutable and the options for the program execution.

Presentation of results. The output of the program (either its answer sets, or the
database table contents) can be visualized within the same environment in textual
mode or using a table view of models.

Visual Editor. Using the Visual Editor, the users can draw logic programs by
exploiting a full graphical environment that offers a QBE-like style for building
the logic rules [31]. Note that this feature is different from the new visual pro-
grammin interface presented in next chapter, that uses a radically-different graph-
ical language. In the remainder of this work we refer to the original visual editor
of ASPIDE by Visual ASP, and we name New Visual ASP the new visual editor
described in the next chapter.

Reverse engeenearing. The user can switch, every time he needs, from the Text
Editor to the Visual Editor (and vice-versa) allowing textual (visual) refreshing
during the switching phase.

Configuration of the execution. The execution of ASP programs is fully cus-
tomizable by using the RunConfiguration Dialog that allows one to set the system
executable, setup invocation options and input files. A number of shortcuts and
drop down menus allows one for a quick execution of single files or selection of
files within a project.

User-defined Plugins. An important feature of ASPIDE is the possibility to ex-
tend it with user defined plugins. Developers can create libraries for extending
ASPIDE with: (i) new input formats, (ii) program rewritings, and even (iii) cus-
tomizing the visualization/format of results. An input plugin can take care of input
files that appear in ASPIDE as a logic program, and an output plugin can handle
the external conversion of the computed results. A rewriting plugin may encode a
procedure that can be applied to rules in the editor (e.g., disjunctive rule shifting
can be applied on the fly by selecting rules in the editor and applying the men-
tioned rewriting). An SDK available from the ASPIDE web site allows one to
develop new plugins.

CHAPTER 3. DEVELOPMENT TOOLS FOR ASP 20

Figure 3.2: Results

Results window. The ASP solvers, in general, show to the users the results of
the execution in textual mode and sometimes those results are not so much read-
able by the users. A useful way to have a more user-friendly visualization is to
organize them in tables, showing each predicate as a table of tuples. ASPIDE
allows to wrap the results generated by DLV and to organize the answer-set in
useful data structures. Exploiting these data structures, the results are visualized
to the users using tables.

The figure 3.2 shows the result window of ASPIDE: the answer-sets are orga-
nized in a tree and each answer-set present the list of predicates obtained. Just by
clicking on a predicate, the window will show a table of contents of that predicate

CHAPTER 3. DEVELOPMENT TOOLS FOR ASP 21

as a set of tuples. Using the window, the user can choose to save the results in
some file as sets of facts.

Database connectivity. ASPIDE simplifies access to external databases by a
graphical tool connecting to DBMSs via JDBC. The database management fea-
ture of ASPIDE supports the creation of both #import/#export directives of DLV,
and fully-graphical composition of TYP files [75]. Imported sources are empha-
sized also in the program editor by exploiting a specific color indicating the corre-
sponding predicates. Database oriented applications can be run by setting DLVDB

as engine in a run configuration. A data integration scenario [47] can be imple-
mented by exploiting these features.

3.2 JASP: Combining Java and ASP

ASP is a convenient development framework that offers advantages from a Soft-
ware Engineering viewpoint, in flexibility, readability, extensibility, ease of main-
tenance, etc. However, to develop real-world ASP-based application it is neces-
sary to integrate ASP technologies (i.e., ASP programs and solvers) in the well–
assessed software–development processes and platforms, which are tailored for
imperative/object-oriented programming languages. Effective programming-tools
were conceived to ease the usage and the integration of ASP-based technologies
in the existing programming environments. The development of APIs, which of-
fer methods for interacting with an ASP system from an embedding program, was
a necessary step in accommodating he use of ASP-based solutions within large
software systems. Among the first proposals we mention the DLV Wrapper [65],
a library that allows to embed ASP programs and control the execution of the
DLV system from a Java program, and the ONTODLV API [36], a richer API
that allows to embed ontologies and reasoning modules developed using the ON-
TODLP language [67]. In APIs, however, the burden of the integration between
ASP and Java is still in the hands of the programmer, who must take care of the
(often repetitive and) time-consuming development of scaffolding code that exe-
cutes the ASP system and gets data back and forth from logic-based to imperative
representations.

These observations inspired the development of a hybrid language, called
JASP [28], that transparently supports a bilateral interaction between ASP and
Java. JASP introduces minimal syntax extensions both to Java and ASP. Its
specifications are both easy to learn by programmers and easy to integrate with

CHAPTER 3. DEVELOPMENT TOOLS FOR ASP 22

other existing Java technologies. The programmer can simply embed ASP code
in a Java program without caring about the interaction with the underlying ASP
system. In the following we describe JASP and present the main features of the
language that were employed in this thesis, for a complete description of JASP
we direct the reader to [28].

JASP language. In JASP the programmer can simply embed ASP code in a
Java program without caring about the interaction with the underlying ASP sys-
tem. The logical ASP program can access Java variables, and the answer sets,
resulting from the execution of the ASP code, are automatically stored in Java
objects, possibly populating Java collections, transparently. A key ingredient of
JASP is the mapping between (collections of) Java objects and ASP facts. In
JASP , Java Objects are mapped to logic facts (and vice versa) by adopting a
structural mapping strategy. JASP exploits the same ideas of modern Object-
Relational Mapping (ORM) frameworks, such as Hibernate and TopLink, where
objects are saved/loaded from/to relational databases. JASP supports both a
default mapping strategy, which fits the most common programmers’ require-
ments, and custom ORM specifications that comply with the Java Persistence API
(JPA) [56] to suit enterprise application development standards.

The JASP code is very natural and intuitive for a programmer skilled in both
ASP and Java. A monolithic block of plain ASP code (called module) is embed-
ded in the Java method, which is executed “in-place”, i.e., the solving process is
triggered at the end of the module specification.

As an example consider the NP-complete problem known as 3-Colorability.
Given a graph G = (V,A), 3-Colorability amounts to assign to each node of G
one of three colors (say, red, blue or green) such that adjacent nodes always have
distinct colors. The input graph G is represented by facts of the form node(v)
∀v ∈ V , and arc(a,b) ∀(a, b) ∈ A.

The solutions is the ASP program made by only two rules:

col(X, red) v col(X, blue) v col(X, green) :-node(X).

:- arc(X, Y), col(X,C), col(Y,C).

The disjunctive rule can be read “if X is a node then it is either colored red
or blue or green”. The constraint can be read “discard solutions where an arc
connects two nodes, namely X and Y , which have both color C”.

In Figure 3.3 is depicted the simple JASP code solving the 3-Colorability
problem. The program in Figure 3.3 defines a Graph class with a method com-

CHAPTER 3. DEVELOPMENT TOOLS FOR ASP 23

Figure 3.3: The JDLV Eclipse plugin.

pute3Coloring(), which computes a 3-coloring of the given graph. The ASP code
is embedded in a module statement enclosed within special tags (< # . . .# >).
When compute3Coloring() is invoked, Java objects are transformed into logic
facts, by applying an ORM strategy as specified in the module parameters. In the
example Fields (containing collections of Java objects), such as arcs and nodes,
are mapped to corresponding predicates arc and node, respectively:

<# in = arcs::arc, nodes::node, out = res::col

The local variable res is mapped as output variable corresponding to predicate
col. This row encoding the mapping between Java objects and ASP predicates.

The meaning of this program is the following: when compute3Coloring() is
called, the set nodes is transformed in a series of unary facts of the form node(x),

CHAPTER 3. DEVELOPMENT TOOLS FOR ASP 24

one fact for each string x in nodes; similarly, each instance of arc stored in the
variable arcs is transformed in a binary fact, e.g., arc(from,to). These facts are
input of the logic program, which is evaluated ”in-place”. In case no 3-coloring
exists, variable res is set to null, else, when the first answer set is computed, for
each fact col contained in the solution a new object of the class Colored is created
and added to res, which, in turn, is returned by the method.

if no answerset res = null

return res;

The JASP’s default ORM strategy is applied to map one object per logic
fact, which compound keys, i.e., keys made of all basic attributes, and embedded
values for one to one associations, which naturally fits the usual way of represent-
ing information in ASP, e.g., in the example, one fact models one node. Such a
mapping is inverted to obtain Java objects from logic facts, and ensures the safe
creation of new Java objects without requiring value invention in logic programs.
Although this strategy poses (very few) restrictions such as non-recursive type
definition (e.g., tree-like structures are not admitted in JASP-core), based on our
experience, it is sufficient to handle common use cases. On the other hand, full
JASP language allows for custom ORM strategies specified by JPA [56] anno-
tations. It is now clear that, JASP directly extends the syntax of Java such that
JASP module statements are allowed in Java block statements. Concerning the
syntax allowed within modules, JASP is compliant with the language of DLV,
and also supports a number of advanced features that will be described later on.

Object-Relational Mapping in JASP . In order to give a more formal account
on the way objects are translated back an forth from Java to ASP we detail the
ORM mechanism that is used in JASP . We limit our definitions to class names
and fields, since other language features (e.g., modifiers, methods) do not play a
role in object-relational mappings. We always assume that Java statements are
correct w.r.t. both syntax and typing rules; and, it is given the set of admissible
(Java) identifiers. We consider only local scope name conventions, since the defi-
nitions introduced in the following can be extended to the general case considering
fully qualified names.

A class (schema) K is a tuple K = 〈N,F〉, where N is the identifier denoting
the class name, andF = 〈f1, . . . , fm〉 (m ≥ 0) is the tuple of declared fields ofN .
A field fi (0 ≤ i ≤ m) is a pair fi = (ni, ti) where ni is the field name and ti is the
field type. With a little abuse of notation we refer to the type of a variable/field and

CHAPTER 3. DEVELOPMENT TOOLS FOR ASP 25

to the name of the corresponding class interchangeably. FN denote the tuple of
fields of class N , and fN

i = (nN
i , t

N
i) denote the i-th field of FN . The set of basic

types B contains String and all Java primitive types and corresponding boxing
reference types, e.g., both int and Integer are basic types. The set of collection
types C contains all valid capture conversions of Collection <? >, Set <? > and
List <? > and the corresponding raw types, e.g., both Set < String > and Set
are collection types. The actual type argument of a collection c ∈ C is denoted by
Actual(c), e.g., Actual(Set < String >) is String.

Now we illustrate the ORM strategy that is transparently applied in JASP-
core. Any Java class that is mapped to an ASP representation is required to have
no-arguments constructor, and non-recursive type definition (e.g., tree-like struc-
tures are not admitted in JASP-core); moreover, both array fields and collections
fields are not allowed. Otherwise the JASP-core program is not correct and, an
implementation is required to issue an error. The JASP-core ORM strategy tries
to map one object per logic fact. The number of predicate arguments needed for
representing an object of type N , is given by function A(·) defined as follows:

A(N) =


1 if N ∈ B
A(Actual(N)) if N ∈ C
0 if N 6∈C∪B ∧ |FN |=0∑

fN=(nN ,tN)A(tN) if |FN | > 0.

Basically, to represent a field of a basic type it is necessary one argument, to
represent a collection it is necessary as many arguments as are needed by repre-
senting his actual type, and to represent a field of a non-basic type it is necessary
as many arguments as required for representing the basic fields of the included
type.

Given a Java variable of name V and type T , and a predicate name N the
schema mapping functionM(N, V) associates to V a set of predicates containing
a predicate of name N and arity A(T).

For instance, the class Arc in the previous example contains two fields of type
String. In the Figure 3.3, the variable arcs is mapped to predicate name arc; in
this case,M(arc, arcs) is applied associating the binary predicate arc to variable
arcs. The ASP-Core language, as in ASP, does not support a predicates with
variable arguments. In the case in which the predicates employed in the rules of a
JASP-core module have a different arity w.r.t. the one produced by the mapping
then the specification is not correct, and an implementation is expected to issue an
error.

CHAPTER 3. DEVELOPMENT TOOLS FOR ASP 26

ASP facts are created from Java objects by properly filling predicate attributes
of the schema defined byM(·, ·).

Basic types are mapped to logic terms by exploiting the toString() method,
if the resulting string does not match a symbolic constant or a number of ASP-
Core it is surrounded by quotes. Predicate attributes are filled according to the
declaration order of fields. The mapping can be inverted to obtain Java objects
from ASP facts. Basically, a new Java object is created for each collection of facts
matching the schema associated to an output variable mapping. In the cases in
which a basic attribute is filled, in the ASP program, by a term that cannot be
converted back to the expected Java type, a Java exception is thrown at runtime.

The mapping strategy defined above, in term of the naming conventions for
structural ORM patterns defined in [35, 7], corresponds to mapping classes to
relations with a compound key made of all class attributes, combined with em-
bedded value for one to one associations; The choice of using a compound key
(made of all basic attributes) fits the usual way of representing information in ASP,
e.g., in the example, one fact models one node. Moreover, it ensures the safe cre-
ation of new Java objects without requiring value invention in ASP programs [13].
This strategy has the side effect of discarding both duplicates in a Collection and
the object position in a List, since ASP has the “set semantics”. Specific ORM
strategies are employed by commercial tools to handle such a scenario in rela-
tional databases (see [7]). This strategy is sufficient to handle common use cases;
nonetheless custom ORM strategies can be specified with JPA annotations in the
full language.

JPA Mappings. JASP spouses the work done in the field ORM [35, 7], and
complies with enterprise application development standards for customizing the
JASP-core mapping strategy. JASP supports JPA [56] standard Java annota-
tions for defining how Java classes map to relations (logic predicates). Note that,
although ORM frameworks address different behavioral problems w.r.t. JASP
(e.g, object persistence, transaction control, etc.), they are based on a mechanisms
to describe/map Java classes into relational data. The full description of JPA’s
mapping features is out of the scope of this thesis (see [7, 56] for a full account).

An important issue to be considered in JPA mappings is the usage of surro-
gate keys that are generated values. Persistence frameworks generate new identi-
fiers according to custom algorithms when persistent objects are saved, whereas
JASP might require to create new ids also when answer sets are transformed in
objects. In JASP , it is up to the programmer ensuring that objects have a valid id

CHAPTER 3. DEVELOPMENT TOOLS FOR ASP 27

before being transformed into facts, whereas, for the other direction, there are two
possible strategies: (i) embed an ASP dialect supporting value invention [13], so
that new ids can be created in the ASP part, e.g., exploiting an id function sym-
bol holding all basic attributes. In this case, the programmer has to be aware of
termination problems; (ii) give the programmer the possibility of not specifying a
value for the id field by exploiting either non-positional notation or a placeholder
term “generated value”, so that the buildFacts() procedure becomes in charge of
creating new ids. The id generation function can be also shared with the actual
persistence framework. The latter is the approach currently supported by the im-
plementation. It is also require that the generated id fields cannot be joined in
rule bodies (in this case, the system issues a warning), which is a compromise for
overcoming the fact that ASP traditionally is a function-free language. Note that,
this issue does not occur in the JASP-core mapping strategy, since the key is the
natural one containing all predicate attributes.

Named Non-positional Notation. JASP introduces an alternative compact
notation for logic atoms modeling Java objects borrowed from [69], that can be
implemented by rewriting in plain ASP. For instance, considering a class Person
which has seven fields, but we want to select the names of those how are taller
than 2 meters, we write the rule

veryTall(X) : −person(name : X, height : H), H > 2.

instead of

veryTall(X) : −person(X, , , , , H,), H > 2.

This notation improves readability, and is less error-prone.

Dynamic Composition of JASP Modules. JASP-core modules are mono-
lithic blocks of ASP rules forming a program, that are executed ”in-place”. To
give more flexibility, it is introduced module increments, that enable building ASP
programs incrementally throughout the application. Syntactically, module incre-
ments start by ”< +”, and, semantically, correspond to accumulating additional
rules and facts to the (possibly new) module at hand, without triggering the solv-
ing process. Since modules are interpreted as Java variables/fields, the usual Java
scope rules apply to module increments.

CHAPTER 3. DEVELOPMENT TOOLS FOR ASP 28

Figure 3.4: Dynamic Module Composition and Invocation.

As an example consider the code in Figure 3.4. Module “m1”, which generates
all teams of at most five people, is defined incrementally. In particular a boolean
the flag forceMixG is checked that indicates whether teams composed only of
people of same gender are allowed, an additional constraint that is added to “m1”
only in this case.

Accessing the Host Environment. JASP allows the programmer to include
arbitrary Java expressions in logic rules that are evaluated at runtime. Syntacti-
cally JASP uses the operator ${javaExpr} that is expanded in the string obtained
evaluating the Java expression << ”” + javaExpr >> corresponding to a call to
the method toString(). For instance,

for (int i = 0; i<10; i++)

<#+ (dyn)

a(${i},${i+1}). #>
dynamically adds ten facts to module “dyn” (i.e., a(1, 2).a(2, 3), ...a(10, 11)).

The JDLV plugin. JASP is implemented in a prototype development system,
called JDLV as an Eclipse plugin. JDLV includes Jdlvc, a compiler to generate

CHAPTER 3. DEVELOPMENT TOOLS FOR ASP 29

Annotation Summary
@Entity Indicates a class with mapping. Class name is the

predicated name.
@Table
(name=”pred-name”)

In conjunction with @Entity, to rename the default
predicate name.

@Column Identifies a class member, to be included in the map-
ping.

@Id Marks a class member as identifier (key) of the rela-
tive table.

@OneToMany
@ManyToOne
@ManyToMany
@OneToOne

On class members to denote associations multiplicity

@JoinTable
(name=”pred-name”)

In conjunction with @OneToMany or @ManyToOne
to specify a mapping realized through an associative
predicate

Table 3.1: Main JPA Annotations supported by JDLV.

plain Java classes from JASP files. The Jdlvc compiler produces plain Java
classes which manage the generation of logic programs and control statements for
the underlying solver DLV.

The JDLV plugin extends Eclipse with the possibility of editing files in the
JASP syntax in a friendly environment featuring:

(i) automatic completion for assisted editing logic program rules;

(ii) dynamic code checking and errors highlighting (producing descriptive error
messages and warnings);

(iii) outline view, a visual representation and indexing JASP statements, and

(iv) automatic generation of Java code, by means of our JDLV compiler.

Given JASP files as input, the Jdlvc compiler produces plain Java classes which
manage the generation of logic programs and control statements for the underlying
ASP solver. Jdlvc is written in Java, and uses Java Reflection to analyze mappings
(compile-time) and actual object types (runtime). An enhanced version of the
DLV Java Wrapper library [66] is used to implement the solving process trough
a call to the DLV system [45]. Figure 3.1 summarizes the most common JPA
annotations supported by JDLV. JDLV offers a seamless integration of ASP-
based technologies within the most popular development environment for Java.

Chapter 4

Applications of ASP:
Tools for Travel Agencies

This chapter is devoted to the description of two applications of ASP to the tourism
domain. The applications model and solve real-world problems arising in the ap-
plied research project iTravelPlus involving the Tour Operator Top Class s.r.l. and
the University of Calabria. In particular, in Section 4.1 we formalize an allot-
ment problem that abstracts the requirements of a real travel agent, and we solve
it using Answer Set Programming; and, in Section 4.2, we formalize the problem
of managing a personalized newsletter considering the preference of the user to
inform a potential traveler about news, events, and other information regarding
destinations of interest for the user.

4.1 Automatic Allotment of Package Tours

In the travel industry it is common for tour operators to pre-book for the next
season blocks of package tours, which are called allotments in jargon [23, 20].
This practice is of help for both tour operators and service suppliers. Indeed,
the first have to handle possible market demand changes, whereas the seconds are
subject to the possibility that some package tours remain unsold, e.g., the rooms of
a hotel can remain empty in a given season. Therefore, service suppliers and tour
operators agree on sharing the economic risk of a potential low market demand
by signing allotment contracts [23]. Basically, given a set of requirements on the
properties of packages to be brought, budget limits, and an offer of packages from
several suppliers, the problem from the perspective of the travel agent is to select a
set of offers to be brought (or pre-booked) for the next season so that the expected

30

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES31

earnings are maximized [20].
In this Section we approach the problem of automatic allotment of package

tours, and we formalize and solve it by using ASP. We first abstract the require-
ments of a real travel agent that needs to solve an allotment problem, and we
solve it by using an ASP program. Then we model in ASP a number of additional
preference criteria on packages to be selected that, according to a travel agent ad-
vise, allow one to further optimize the selection process by taking into account
additional knowledge of the domain. Moreover we report on the results of a pre-
liminary experimental analysis using real-word data that validates our approach.
A Java library implementing our automatic allotment tool suitable to be integrated
as a WEB service of the iTravel+ system is also presented.

4.1.1 Travel Agent Requirements

In this section we informally describe the requirements of a common problem in
the tourism industry, i.e. the problem of booking in advance blocks of package
tours for the next season. A travel agency usually selects a block of package tours
from several travel suppliers, which may apply several discounts if predetermined
amounts of their package tours are bought. In general, a critical requirement is
that the sum of prices of selected package tours must not exceed a limited budget.
This means that travel agencies are not allowed to buy all the package tours they
need. Thus, their goal is to select package tours in order to maximize the expected
earnings. Moreover, depending on the specific needs, travel agencies might spec-
ify other preferences among the selected package tours. Those preferences are not
general. On the contrary, two different travel agencies usually have different pri-
orities among selected packages according to their experience and customer base.
In the following we detail several preferences that travel agencies might specify
according to their needs.

Preference of suppliers according to destination. Travel agencies might spec-
ify a preference of suppliers for package tours involving particular destinations.
For instance, a supplier can be considered highly reliable for travels in Europe and
unreliable for travels in other countries.

Preference of suppliers according to the type of holidays. A supplier can be
considered also preferable for particular types of holidays. For instance, some

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES32

suppliers are specialized in holidays involving cruises, while others are specialized
in holidays involving sports activities.

Preference on package tours with the highest rating. After a trip, travelers
usually evaluate their holidays by assigning a numerical score. A package tour is
evaluated by looking at the rating assigned by the travelers. Thus, travel agencies
give priority to the package tours with the highest ratings.

Preferences on the number of package tours to buy. According to their typol-
ogy of customers travel agencies also express a preference on the number of pack-
age tours to buy. In particular, in case travel agencies obtain the same expected
earnings from two or more package tours then they can maximize or minimize the
number of bought package tours according to their customer base. For instance,
travel agencies working with wealthy customers may prefer to buy few package
tours with highest earnings, while travel agencies working with many customers
may prefer to maximize the number of package tours to buy.

Preference on the amount of money to pay. Another important preference
concerns the amount of money to pay. In particular, in case travel agencies obtain
the same expected earnings from two or more package tours it is preferable to
select package tours with the lowest prices.

4.1.2 Basic Allotment Solution via ASP

This section illustrates the ASP program which solves the allotment problem spec-
ified in the previous section. First, the input data is described, then, the ASP rules
solving the allotment problem are presented. Finally, preferences that can be spec-
ified by travel agencies are described.

Data Model. The input of the process is specified by means of the predicates
described in this section. The predicates representing the facts of our encoding
are the following:

• Instances of the predicate availablePackage(pkId, supplier, destination, type,
sellingPrice, purchasePrice, rating, availableQuantity) represent stocks of
available package tours in the market, where pkId is the identifier of the tour
package, supplier is the identifier of the supplier selling the package tour,

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES33

destination is the destination of the package tour, type is the type of holiday,
sellingPrice is the price applied by the travel agency to their customers, pur-
chasePrice is the price applied by the supplier to the travel agency, rating is
a numerical score associated to the package tour representing the apprecia-
tion of customers for this package tour, and availableQuantity corresponds
to the quantity of available package tours of this kind in the market.

• Instances of the predicate requiredPackage(destination, type, minPrice, max-
Price, requiredQuantity) represent package tours required by a travel agency,
where destination is destination of the package tour required, type is the type
of holiday required, minPrice and maxPrice represents the range of prices
the travel agency is willing to pay for a given destination and type of holi-
day, and requiredQuantity corresponds to the quantity of required package
tours of this kind.

• Instances of the predicate discount(supplier, quantity, percentageDiscount)
represent the discount applied by suppliers if a given amount of their pack-
age tours is bought, where supplier represents the identifier of the supplier,
quantity is the minimum quantity of bought package tours for applying the
discount, and percentageDiscount is the percentage discount applied.

• The only instance of the predicate budget(b) represents the maximum amount
of money the travel agency is willing to pay.

• Instances of the predicate evalSupplierDestination(supplier, destination, score)
represent the evaluations of suppliers according to destination, where sup-
plier is the identifier of the supplier, destination is the destination of the
package tour, and score is a numerical score representing the reliability of
the supplier for package tours involving the destination.

• Instances of the predicate evalSupplierType(supplier, type, score) represent
the evaluations of suppliers according to type of holiday, where supplier
is the identifier of the supplier, type is the type of holiday, and score is a
numerical score representing the reliability of the supplier for package tours
concerning the type of holiday.

Encoding The Allotment Problem. We now describe the ASP rules used for
solving the allotment problem. We follow the Guess&Check&Optimize program-
ming methodology [25, 45]. In particular, the following disjunctive rule guesses a

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES34

quantity to buy for each required package:

buy(P,Q) v nBuy(P,Q) :- availablePackages(P, ,D, T, SP, PP, , AvQ),

requiredPackages(D,T,MinP,MaxP,ReqQ),

0 ≤ Q ≤ ReqQ,

Q ≤ AvQ,

MinP ≤ SP ≤MaxP.

(4.1)

The guess of the quantity is limited to available package tours which are requested
and their selling price is in the requested range. Then, assignments buying differ-
ent quantities of the same package tour are filtered out by the following constraint:

:-#count{Q,P : buy(P,Q)} > 1, availablePackages(P, , , , , , ,). (4.2)

Suppliers may apply one or more discounts if predetermined amounts of their
package tours are bought. In general several discounts are offered depending on
the volume of booked packages. In this case the maximum applicable discount
among them must be applied. All applicable discounts and the maximum discount
among them are computed by the following rules:

allDiscounts(S,D) :- discount(S,Q1, D),

#sum{Q,P : buy(P,Q)} ≥ Q1.

maxDiscount(S,Disc) :- discount(S, ,),

#max{D : allDiscounts(S,D)} = Disc.

(4.3)

The predicate allDiscounts(supplier, discount) stores the association between the
supplier and all the applicable discounts, while maxDiscount(supplier, discount)
stores the association between the supplier and the corresponding maximum ap-
plicable discount. Then, the prices of the package tours are updated according
to the above-computed discounts. This behavior is achieved by employing the
following rule:

discountPrices(P, SP, PPD) :- availablePackages(P, S, , , SP, PP, ,),

maxDiscount(S,MD),

PPD = PP − (PP ∗MD)/100.

(4.4)

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES35

The predicate discountPrices stores the original selling price and the purchase
price after the application of the discount for each package tour. This predicate
is then used to handle a critical requirement on the budget, i.e. the sum of prices
of selected package tours must not exceed a limited budget. This is expressed in
ASP by the following rule:

:-#sum{PP ∗Q,P : buy(P,Q), discountPrices(P, , PP)} > B,

budget(B).
(4.5)

Finally, the last requirement is to maximize the earnings. This is obtained in our
encoding by means of the following weak constraint:

:∼discountPrices(P, SP, PP), buy(P,Q), E = (SP − PP) ∗Q.[−E@`]

(4.6)

Intuitively, when a stock of package tours is bought the solution is associated with
a cost depending on the earnings obtained by buying those packages. The weight
of weak constraint is negative since weak constraints expresses the minimization
of the cost associated to a solution.1

4.1.3 Additional Preferences on Allotment

In this section, we describe preferences travel agencies might specify among the
selected package tours depending on their specific needs. Different travel agencies
usually have different priorities among selected package tours which are expressed
in our framework by means of weak constraints. In the weak constraints we use
numerical values `1, . . . , `5 representing the levels of weak constraints. Then, an
order on the preferences can be specified by properly assigning a value to those
levels. The only requirement is that the level ` of the constraint that maximizes
earnings (4.6) is greater than all the other weak constraints that are specified in
the following.

Preference of suppliers according to destination. A travel agency might spec-
ify a preference of suppliers according to the destination of a travel. The following
weak constraint expresses this preference:

:∼evalSupplierDestination(S,D, SC), availablePackages(P, S,D, , , , ,),

nBuy(P,Q).[SC ∗Q@`1]

1ASP solvers may have undefined behaviors in presence of negative weights. A work-around
is to augment the weight of the weak constraint by the maximum possible earnings.

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES36

(4.7)

Intuitively, when a stock of package tours is not bought a numerical penalty is
associated to the solution. For each package tour which is not selected the cost of
the solution is increased by the score associated to the corresponding supplier for
the destination.

Preference of suppliers according to the type of holidays. Similarly, the fol-
lowing weak constraint expresses a preference among suppliers according to the
type of holidays:

:∼ evalSupplierType(S, T, SC), availablePackages(P, S, , T, , , ,),

nBuy(P,Q).[SC ∗Q@`2]
(4.8)

For each package that is not selected the solution cost is increased by the score
associated to the corresponding supplier for the type of holiday. The effect is
to maximize the number of package tours in the solution that are provided by
preferred suppliers.

Preference on package tours with the highest rating. Travel agencies give
priority to the package tours with the highest ratings. This preference is expressed
by the following weak constraint:

:∼ availablePackages(P, , , , , , R,), nBuy(P,Q).[R ∗Q@`3] (4.9)

Here, the cost of the solution is given by the sum of ratings of package tours which
are not bought. Thus we maximize the ratings of selected package tours.

Preferences on the number of package tours to buy. In case a travel agency is
willing to minimize the number of packages to buy we apply the following weak
constraint:

:∼ buy(P,Q).[Q@`4] (4.10)

The cost of the solution is increased by the quantity of package tours which are
not bought. Otherwise, if a travel agency is willing to maximize the number of
packages to buy we apply the following weak constraint:

:∼ nBuy(P,Q).[Q@`4] (4.11)

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES37

Here, the cost of the solution is increased by the quantity of package tours which
are bought. Note that weak constraints (4.10) and (4.11) are never applied together
since travel agencies either maximize or minimize the number of package tours to
buy.

Preference on the amount of money to pay. Finally, travel agencies may also
want to minimize the amount of money to pay. Note that this is different from the
earnings, since in this case travel agency minimizes the purchase prices without
considering their selling prices. This behavior is employed by the following weak
constraint:

:∼ discountPrices(P, , PP), buy(P,Q).[PP ∗Q@`5] (4.12)

Intuitively, the cost of the solution depends on sum of prices of package tours
which are bought. Hence, this has the effect to minimize the price of package
tours in the solution.

Specification of preferences. As stated in Section 4.1.1, the preferences de-
pends on the specific needs of travel agencies, and can be applied selectively by
simply adding or ignoring some of the weak constraints described in Section 4.1.3.
Moreover, a travel agent must also specify a layering of preferences by properly
assigning values to `1, . . . , `5. As an example, consider a travel agent that wants
to give highest priorities on package tours with the highest ratings; and then max-
imize the number of packages to buy. In the encoding those preferences are spec-
ified by considering weak constraints (4.9) and (4.11) and by assigning integer
values to the levels such that `3 > `5, e.g., `3 = 2, and `5 = 1.

4.1.4 Empirical Validation

We validated our ASP-based solution running a preliminary experiment on real-
world data provided by the partners of the iTravelPlus project. In particular, we
obtained an instance of a database of package tours querying the database of the
iTravel+ system and properly encoding it by means of ASP facts. Moreover, we
generated a specification of the requested package tours by running a mining ser-
vices of the same system that generates a prediction based on the package tours
sold in the past. Finally, we randomly generated a number of additional require-
ments to test the effects of the optional preferences of our solution. The system

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES38

 0.01

 0.1

 1

 10

 100 1000 10000

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Size

TestDBx2
TestDBx1

TestDBx0.5

Figure 4.1: Scalability w.r.t. the number of available package tours.

was run on a four core Intel Xeon CPU X3430 2.4 GHz, with 16 GB of physical
RAM, each execution was limited to 600 seconds.

The performance of the system for different sizes of the available packages
is reported in Table 4.1. In particular, the first column reports the sizes of the
considered DBs. We considered the original database (labeled DBx1) and then
we consider two more settings containing the first half of the same database (la-
beled DBx0.5), a generated instance (labeled DBx2) having twice of the facts from
DBx1 obtained adding more suppliers. The second column reports the minimum
and the maximum available package tours among the instances considered. The
number of considered instances is reported in the third column together with the

Table 4.1: Performance of the system for different available package tours.
Available Pkgs Time Time

(Min-Max) #inst #solved #optima (no pref.) (all pref.)
DBx0.5 216-291 30 30 30 0.6 0.8
DBx1 445-584 30 30 26 48.5 147.8
DBx2 963-1093 30 30 14 11.7 33.41

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES39

 0

 50

 100

 150

 200

 250

 300

 0 10000 20000 30000 40000 50000 60000 70000 80000

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Budget (Euro)

TestDBx0.5-6m

Figure 4.2: Performance of the system depending on the budget.

number of instances in which the system found a (sub-optimal) solution (fourth
column) and the number of instances in which the system found the optimum so-
lution (fifth column). The sixth column reports the sum of execution times (in
seconds) elapsed for finding the optimum solution of the allotment problem with-
out optional preferences. The seventh column reports the sum of time in seconds
of finding the optimum solution of the allotment problem where all preferences
are enabled. As first observation we note that the system provides a solution for
all the instances considered within 10 minutes. The provided solutions are usually
either close to the optimum ones or are optimal but the system is not able to proof
their optimality within the timeout. Moreover, when we consider half size of the

Table 4.2: Performance of the system for different periods (in months).
Required Pkgs Search Space

Period (Min-Max) #inst #solved #optima (avg)
2m 79-94 30 30 30 227

4m 174-182 30 30 24 254

6m 345-365 30 30 16 2110

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES40

DB size the system finds always the optimum solution, while for the original size
of the DB this is the case in the 87% of the instances, which is a fairly acceptable
performance for an off-line process. The performance is still good in the case we
double the size of the original DB, since the system is able to find the optimum for
about half of the instances. In addition, we also observe that adding the preference
does not reduce either the number of solved instances nor the number of instances
in which the optimum solution is found. As expected, we observe a constant slow
down in the solving time, which is approximately three times higher than the one
measured with no preferences.

It is worth pointing out that the performance of the system does not heavily
depend on the quantity of available packages. In fact, rule (1) in Section 4.1.2
filters out all the package tours which are not required. In order to confirm this
observation, we increased the available quantities for each package tours in the
database by several factors. The result is reported in Figure 4.1, in which, for a
particular size of the DB, a point (x, y) represents the solving time y where the
availability of package tours is x percent of the original size. The graph shows
that the execution times grow until the offered packages are 120% more than in
the original DB, and then performance has a constant trend that is not dependent
on the quantity of available packages.

Table 4.2 reports on the performance of the system for different periods of
request packages. In particular, the first column reports the considered period
expressed in months. The second column reports the minimum and the maxi-
mum required package tours among the instances considered. The number of
considered instances is reported in the third column together with the number of
instances in which the system found a solution (fourth column) and the number of
instances in which the system found the optimum solution (fifth column). The last
column reports the average search space for the considered instances. Also in this
case, the system provides a solution for all the instances considered. Moreover,
when we consider a period of 2 months the system also finds always the optimum
solution, while if we considered a period of 4 months this is the case in the 80% of
the instances. It is worth pointing out that, travel agencies usually book package
tours for one season, thus they consider a period of at most 3-4 months. Nonethe-
less, the performance is still good in the case we consider a period of 6 months,
since the system is able to find the optimum for about half of the instances.

Finally, another observation concerns the budget allowed by the travel agency,
since the hardness of the instances depends on this parameter. In fact, is it easy to
see that instances with very low (resp. high) budgets w.r.t. to the one needed to

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES41

fulfill the request are likely easy, since they correspond to over-constrained (resp.
under-constrained) problems where the solution is to buy no package tours (resp.
to buy all required package tours). Thus, we also analyzed the behavior of the
system in case we consider different budgets. The result is reported for DBx0.5
and a request of 6 months in Figure 4.2, in which a point (x, y) represents the
solving time y if the budget is limited to x euro. The trend of the system confirms
our expectations, since the instance is trivially solved when the budget is enough
either to buy nothing or to buy everything. The maximum hardness is reached
when the allotted budget can cover about 40% of the request in our experiment, a
setting that in real-world instances is not that common, since the budget is usually
enough to cover most of the requests.

4.1.5 Implementation in JASP
Despite the specification of the allotment problem provided in the previous sec-
tions can be executed using an ASP system, it is not ready to be integrated in
the iTravel+ system. In this section we describe the development of a Java API
that provides all the interfaces that are needed to integrate our ASP program in a
service of the iTravel+ system. The first step that was accomplished is to provide
a specification in Java of the data model presented in Section 4.1.2, resulting in
the class diagram is depicted in the Figure 4.3. In particular we have the classes:
Budget, AvailablePackage, RequiredPackage, Discount, EvalSupplierDestination,
EvalSupplierType, Buy. Note that the Java Classes have the same name of the logic
predicates so that JASP makes automatic the conversion of Java objects repre-
senting the domain model and the corresponding predicates of our data model.
More in detail, Budget has an attribute to represent the available budget to buy
stocks. AvailablePackage has the attribute to identify the package, an attribute to
identify the supplier, an attribute to identify the destination, an attribute to identify
the type of travel, a numeric attribute to represent the selling price, i.e., the price
to the client, a numeric attribute to represent the purchase price, i.e., the price to
the travel agency, a numeric attribute to express the rating and a numeric attribute
to express the package availability. RequiredPackage has an attribute to identify
the destination, an attribute to identify the type of package, two attribute to the
max and min price that the clients would pay to the package and a required quan-
tity, i.e., an evaluation of the package quantity of a type that an agency would buy.
Discount has an attributes to represent the supplier, and some values starting by
the supplier apply some discount to the travel acency.

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES42

Figure 4.3: Class Diagram of the Allotment API.

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES43

Figure 4.4: JASP code for AllotmentReasoning class.

EvalSupplierDestination has an attribute to identify the supplier, an attribute to
identify the destination of travel and an evaluation expressed about the supplier
on the destination. EvalSupplierType has an attribute to identify the supplier, an
attribute to identify the type of travel and an evaluation expressed about the sup-
plier on the type of travel.

In the diagram of Figure 4.3 are also present the classes DBGateway, Pref-
erence, Preferences and AllotmentReasoning. The first handles the relational
database where the input of the allotment module is stored, whereas the reasoning
facility is provided by class AllotmentReasoning.

The AllotmentReasoning class has a unique method, named computeAllot-
ment() that executes the logic program and returns the list of packages that the
reasoning model suggest to buy. The source code of the reasoning method, which
has been developed in JASP , is depicted in Figure 4.4. The main method com-
puteAllotment() includes a block of ASP code containing the fixed part of the
encoding presented in Section 4.1.2. Since preference order can be decided de-
pending on the user needs, weak constraints modeling preferences are added dy-
namically by using the feature of JASP that allows one to acces the host envi-

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES44

ronment (see Chapter 3). Looking at the last line of the JASP block we see that
this feature is exploited to add the weak constraints that are generated by calling
generateWeakConstraints(). In more details weak constraints are represented by
the values of the enumeration Preference, and they are stored in an instance of
the class Preferences. This latter models a list in which so that the position of a
preference object in that list corresponds to the level of the corresponding weak
constraint in the ASP program. The Java code for the AllotmentReasoning class
is then automatically generated by the JDLV plugin.

4.2 Intelligent Newsletter

The iTravel+ system has among the goals the one of providing an intelligent
newsletter service for travel agencies customers.

Newsletters delivered electronically via email (e-Newsletters) have gained rapid
acceptance in several business areas since the Internet technologies –in general–,
and e-mails –in particular– become a widely-adopted communication media. The
goal of the newsletter is to inform the subscribed customers about some news
concerning specific topics they may be interested in. A newsletter can be used for
commercial and marketing purposes, or as a very informative support tool for the
users of web sites and portals. The email, in textual or HTML format, usually of-
fer a summary of the news of a web site that may be of interest for a customer/user.
An effective implementation of a newsletter service, hence, should bring impor-
tant news to the attention of the user and leave other news on the bottom of a
message. Moreover, it is important to control the length of messages, as well as
the frequency they are sent, in order to avoid the newsletter messages are consid-
ered spam to be trashed. However different users may have different preferences
and different interests, so the need for personalizing messages depending on the
user they are addressed is very important for increasing the effectiveness of this
communication media.

In this section we present a solution to the problem of scheduling and or-
ganizing messages for the newsletter service of a travel agent, that was devised
according to the requirements of the iTravelPlus project.

4.2.1 Requirements of the iTravel+ Newsletter

The newsletter of iTravel+ was not specified as the typical recommender system.
Indeed, it is not intended to send customized messages via email containing com-

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES45

mercial proposals, discounts or special offers or to encourage customers to buy
something. Instead the idea is to provide each registered customer with a number
of news it can be interested in regarding several topics, such as information on the
place(s) he/she is visiting, suggested destinations for the next trip, as well as ad-
ministrative news, availability of travel document, meteo, safety news (e.g., alerts
on whether the travel destination was affected by an earthquake or an other natu-
ral phenomenon that will be dangerous for the personal safety); up to news about
local traditions, festivals, concerts and so on. Basically, the news service is not
specialized on a single topic, but regards many possible ones. As a consequence,
a mailing system the just sends news as soon as they are available, without per-
sonalizing the content can result in a annoying service where the user is flooded
by many possibly irrelevant messages. The customization system should organize
the news by selecting and by ordering them in the best possible and attractive way
to each user. This means that also the length of the email should be customized.
The user can decide how many messages he/she prefers to receive for every email
and the topics he/she is interested in a specific period of time. Some of these pref-
erences can be specified during the registration or can be determined by applying
well-known data mining techniques, some others should be deduced by applying
some form of reasoning during the composition of messages.

The system may have a large quantity of news, which are classified by cat-
egory. Each news is marked as Urgent or Regular. For each user, a news can
be interesting if it is about a selected category (preferences expressed by the user
during the registration step) or if a news is about an interesting travel destina-
tion for the user. The interesting destination could be the destination of the next
booked travel, just about a place where it is expected to travel. Obviously, the
user should not receive the same news multiple times. Once the relevant news for
a user are determined, they must be grouped and sent by respecting constraints on
message length and frequency, trying to maximize the useful information. This
corresponds to determining the right schedule for messages to be sent in a fixed
period. In particular the requirement is to build a weekly scheduling of messages
to distribute. In this schedule the urgent news are sent as soon as possible. Each
news has an expiration date, so, if the current date is over the expiration date,
the expired news are trashed. During the scheduling task we try to maximize the
number of dispatched news before the expiration date (or, that is the same, we try
to minimize the number of news that are not dispatched before their expiration
date). Since there is a continuous flow of new news, the scheduling is re-executed
every day by looking ahead seven days so to full fill requirements.

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES46

In the following we present an ASP program that is able to select the news and
schedule their composition in one or more email to be sent according to the user
preferences.

4.2.2 Specification in ASP

This section illustrates the ASP program which implements the customized newslet-
ter service specified in the previous section. First, the input data is described, then,
the ASP rules solving the problem are presented.

Data Model. The input of the process is specified by means of the predicates
described in the following:

• Instances of predicate news(News, Place, Category, Urgent, Expiration Date)
represent the set of the news in input. Concerning the attributes, New is the
news identifier, Place is the identifier of the place which the news refers,
Category specifies the category of the news (i.e., ”security”, ”roads condi-
tion”, etc.), Urgent is a flag that specifies if the news is an urgent news or
not, Expiration Date allows to discard expired news (e.g., sending the news
concerning a concert is not useful after the concert took place).

• Instances of predicate user(User, NewsForEmail, EmailForWeek) represent
the user registered to the newsletter. Concerning the attributes, User rep-
resents the user to which send the emails, NewsForEmail is the number of
news that he/she would receive in a week, EmailForWeek is the max number
of email that he/she would receive in a week.

• Instances of predicate userTravelDestination(User, Place, End Date) model
places where a given user is traveling or he/she is expected to travel. Con-
cerning the attributes, User is the identifier of the user, Place is the destina-
tion, End Date is the end date of the travel.

• Instances of predicate userDestination(User, Destination) specify destina-
tions that are of interest for users.

• Instances of the predicate userCategory(User, Category) specify the cate-
gory of news that can be of interest for users.

• Instances of the predicate sent(News, User, Day) model the set of news al-
ready sent to a given user in a specific day of the week.

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES47

• The predicate today(Today) has an unique instance. It represents the current
day for which the program is expected to compute the messages to be sent.

• The predicate currentWeek(startDay, endDay) has a unique instance, which
identifies in current year the current week. Concerning attributes, startDay
and endDay are respectively the first day of the week and the last day of the
week.

• The predicate nextWeek(startDay, endDay) has a unique instance, which
identifies the next week for which we are planning the emails. The next
week is also taken into account to enlarge the horizon of our reasoning.
Concerning attributes, startDay and endDay are respectively the first day of
the week and the last day of the next week.

• maxNewsForDay(1..maxNews) is an auxiliary predicate used to define the
max number of news for a day.

• day(1..365) is an auxiliary predicate used to define the days of the year.

Newsletter Encoding. In this section we describe the ASP rules for solving the
newsletter problem. In particular, the goal is to compute the set of news to be
sent in a week from today.2 To this end, we adopt to the Guess&Check&Optimize
programming methodology [25, 45], but before presenting the guessing rule, we
report some auxiliary ones that prepare the input for the next steps. The rule:

urgent(N) :-news(N, , , urgent,). (4.13)

identifies the urgent news having priority over the others.
We consider of interest for a user all the news concerning a travel destination

he/she is visiting or he/she has planned to visit in the future. Thus, with the
following rules the news are selected for a user if: (i) the destination is about
a place of interest for the user, (ii) it is about a category specified by the user,
(iii) if it is not expired, and (iv) if it was not previously sent.

2Since this program is expected to be run every day to obtain the expected behavior for the
system, “today” indicates the day the scheduling is run.

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES48

interestingNews(U,N,ExpDate, Urg, L) :-news(N,L, Urg, ExpDate),

userCategory(U,C),

userDestination(U,L),

today(O), ExpDate > O,

notsent(N,U,GP),

day(GP), GP < O.

(4.14)

userDestination(U,L) :-userTravelDestination(U,L,D), D > O,

today(O).
(4.15)

The next rule guesses the news to be sent today and in the following seven
days:

send(User,News,Day) v notSend(User,News,Day) :-

interestingNews(User,News,End, Urg, L),

weekDays(Day), End ≥ Day.

(4.16)

where rule:

weekDays(X) :- day(X), today(O), X ≥ O,X < Ops,Ops = O + 7.

(4.17)

is used to calculate the days of the week that starts from today.
Urgent news are sent immediately:

send(User,News,Day) :- interestingNews(User,News,End, Urg, L),

toDay(Today).

(4.18)

To ensure that a news is not sent several times, we write the following con-
straint:

:- send(User,News,Day1), send(User,News,Day2), Day1! = Day2.

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES49

(4.19)

This constraint expresses the condition that is not possible to send the same
news to a user in two different days.

We use also a constraint to set the maximum number of news to collect in the
same email for each user, as expected the urgent news are not counted:

:-#count{(N : send(U,N,G), noturgent(N)} > NewsForEmail,

user(U,NewsForEmail, EmailForWeek), weekDays(G).
(4.20)

An other constraint is used to impose the maximum number of emails per
week for each user:

:-#count{(Day : sentNotUrgentInDate(User,Day), Day ≥ I,

Day ≤ F, currentWeek(I, F)} > EmailForWeek,

user(User,NewsForEmail, EmailForWeek).

(4.21)

:-#count{(Day : sentNotUrgentInDate(User,Day), Day ≥ I,

Day ≤ F, nextWeek(I, F)} > EmailForWeek,

user(User,NewsForEmail, EmailForWeek).

(4.22)

sentNotUrgentInDate(User,Day) :- sent(User,News,Day),

not urgent(News).

sent(News, User,Day) :- send(User,News,Day).

(4.23)

Among the possible ways of collecting news and sending messages in the next
week we select some that satisfy a number of optimization criteria.

We start by minimizing the number of emails not sent for respecting the expi-
ration dates:

:∼ lostNews(N,U).[1@2]

lostNews(N,U) :- interestingNews(U,N,Date, Urg, L),

weekDays(PrecG), P recG < Date, not sent(N,U, PrecG).

(4.24)

Then we try to maximize the news sent to a user in a given day:

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES50

:∼#count{N : send(U,N,G), noturgent(N)} = newsInADay,

Pay = NewsForMail −NewsInADay,
maxNewsForDay(newsInADay),

newsInADay < NewsForMail,

user(U,NewsForMail, NewsForWeek),

weekDays(G).[Pay@3]

(4.25)

Moreover news concerning current destinations of a user are preferred:

:∼userTravelDestination(U,L,Date), notsentToUser(N,U),

insterstingNews(U,N,EndDate,, L).[1@4]
(4.26)

The number of days in which the emails are send is minimized:

:∼ sentInDate(User,Day).[1@5]

sentInDate(User,Day) :- send(User,News,Day).
(4.27)

Eventually the number of interesting news is maximized:

:∼interestingNews(U,N, S, notUrgent, L),

not sentToAUser(N,U).[1@10]

sentToAUser(News, User) :- send(User,News,Day).

(4.28)

4.2.3 Implementation in JASP
The ASP program provided in previous section was specified having in mind that
it will be integrated in the iTravel+ system. In this section we describe the devel-
opment of a Java API that provides all the interfaces that are needed to integrate
our ASP program in a service of the iTravel+ system. As we did in case of the
allotment problem in previous section, we provided a specification in Java of the
data model, and we included additional Java classes for handling the input from a
database and used JASP to embed ASP in the implementation of a facade class.
The resulting class diagram is depicted in the Figure 4.5. The classes Sent, News,
Today, CurrentWeek, LastWeek, User, UserCategory, UserDestination, UserTrav-
elToDestination represent the mapping with the logic predicates in the domain,

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES51

Figure 4.5: Class Diagram of the newsletter API.

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES52

and as before Java classes have the same name of the corresponding logic pred-
icates. The Class DBGateway manage the mapping between the database and
the java objects. Finally, the main class is named NewsletterReasoning and pro-
vides a method computeSend() to be called each time we want to call an ASP
solver to produce as output the set of news to be sent. The implementation of
this method has been obtained by using the JDLV plugin and is depicted in Fig-
ure 4.6. Also in this case, the ASP encoding presented in this section is embedded
in a JASP module, and the solver is automatically called whenever the corre-
sponding method is called.

4.3 Related work

In the literature there are solution to many e-tourism systems challenges including:
package tours search and assemblage, automatic holiday advisors, modeling of
general purpose ontologies of the touristic domain [49, 18, 19, 52, 53, 61, 24, 44],
etc. These studies do not focus –to the best of our knowledge– on helping travel
agents in the act of selecting package tours to be traded with service suppliers in
the future market. Concerning the applications of ASP, we mention that it has
been used to develop several industrial applications [40, 68] and, in particular, it
has already been exploited in an e-tourism system [37]. Nonetheless, the problem
considered in [37] was to identify the package tours that best suit the needs of a
customer of an e-tourism platform; thus, [37] approaches a different problem of
the one considered here.

For the sake of completeness, we also mention a different way of dealing with
the problem of allotment [78]. This approach aims at acquiring directly and on-
demand from hotel management services the information about the hotel rooms
and facilities that suit the request of a tour operator, so to avoid the allotment pro-
blem using agent technologies [78]. This is clearly a radically different approach
from ours that aims at optimizing the pre-booking of allotments for an entire pe-
riod of time.

Summarizing, this chapter presents the first attempt to exploit ASP for as-
sisting tour operators in the allotment of packages, as well as the fist attempt to
employ ASP for modeling the business logic of an intelligent newsletter.

CHAPTER 4. APPLICATIONS OF ASP:TOOLS FOR TRAVEL AGENCIES53

Figure 4.6: JASP code for NewsletterReasoning class.

Chapter 5

Extensions of ASPIDE

The design of logic programs has been made more comfortable to users since
the proposal of the first advanced editors for ASP. There are however special cate-
gories of users with specific needs that still need more specialized tools to develop
ASP programs comfortably. In this chapter we describe two new development
tools extending the ASPIDE environment for ASP that cope with two separate but
relevant categories of users. The first one is a a new system that allows for draw-
ing an ASP-program on the screen, so that a user does not have to edit text files
or know the details of the ASP syntax. As a consequence, it is expected to reduce
the difficulty of producing ASP programs for both novice and inexperienced pro-
grammers, but also making more comfortable the encoding tasks for experts who
prefer graphic tools. The second one was inspired by the growing community in-
terested in approaches that resort to Datalog (and its extensions) for implementing
various reasoning tasks over ontologies. We noticed that in this specific field, the
editing environments for ontologies –on the one hand– and logic programming
–on the other hand– are often developed independently and miss a common per-
spective. To facing with this issue we worked on the integration of ASPIDE with
the ontology specification tool protégé. We extended both systems with specific
plugins that enable a synergic interaction between the two development environ-
ments. The developer can then handle both ontologies and logic-based reasoning
over them by exploiting specific tools integrated to work together.

5.1 Visual Editor

In order to facilitate the design of ASP applications, a rich set of tools for ASP-
program development were proposed in the last few years, including editors [58,

54

CHAPTER 5. EXTENSIONS OF ASPIDE 55

74] and debuggers [9, 8, 27]. However, the task of designing a logic program
consists of writing text files (more or less computer-assisted). Although the ba-
sic syntax of ASP is not particularly difficult, writing ASP programs might be
uncomfortable for novices and error-prone. Extending the idea of Query By Ex-
ample (QBE) interfaces[21] proposed in the area of databases for facilitating the
approach of users to systems and languages, ASPIDE features a QBE-like editor
for logic rules (see Chapter 3.1). However, the ASPIDE visual editor resulted to
be not immediate and intuitive for non-expert users.

After analyzing the limits of this proposal we devised a new visual interface
that supports all the powerful language constructs of ASP, like disjunction, re-
cursion, unstratified negation, constraints, and aggregates. The use of New Visual
ASP can encourage novice and unexperienced ASP programmers. This new editor
is able to load and store ASP programs in the syntax of the ASP system DLV [45].

In the following we refer to the ASPIDE QBE-like interface as Visual ASP and
we name the new tool introduced in this thesis as New Visual ASP.

5.1.1 New Visual ASP

New Visual ASP is conceived to the task of writing ASP programs by offering the
possibility to draw single programs using a fully graphical environment. The goal
is to support under a common visual syntax, and without editing the text files, all
constructs of a modern ASP implementation as well as more recent extensions of
logic languages for ontology-reasoning, such as rules with existential quantifica-
tion in the head [15]. New Visual ASP should provide a new way of developing
logic programs and rule-based reasoning, which we expect it to be more appre-
ciated by users that like graphical environments as well as by non-expert users.
Indeed, the user does not have to edit text files, or know the details of a specific
implementation, but he can exploit a fully graphic tool for designing programs.

The description of a visual language in formal terms is usually complex and
difficult to understand, thus we rather we adopt in this section a more direct
description style based on running examples. Since we developed a prototype
that we have integrated into an extended version of the ASPIDE environment,
we present step by step the development of the examples in the environment by
providing a number of snapshots of the running system, and a complete list of
available commands. The New Visual ASP is not intended to replace the textual
editor of ASPIDE, but to complement it, so that the user can choose to edit the
ASP programs in the textual way or in the visual way. Basically, the user can

CHAPTER 5. EXTENSIONS OF ASPIDE 56

Figure 5.1: The New Visual Editor embedded in ASPIDE.

draw the program using the visual editor and then can switch to the textual editor
to visualize the encoding of the problem in the ASP syntax and vice versa.1

In the following, we first provide an overview of the tool, and then we present
the features available also by means of an use-case.

5.1.2 Overview of the new editor

In the new visual language rules are represented by means of a graph (see Figure
5.1) where atoms/literals are boxes connected by edges symbolizing logical con-
nectives. Predicate arguments can be specified in apposite boxes, and are imme-
diately visible. Joins between variables can be created by dragging and dropping
variables. Each element is represented by a block coloring in a different way, i.e,
facts are represented by a block with the topper coloring green, the predicates in
the head of the rule are orange meanwhile the predicates in the body are light or-

1To switch between the different editors we can use the icon with a green double arrows in the
toolbar of ASPIDE (see Figure 5.1).

CHAPTER 5. EXTENSIONS OF ASPIDE 57

ange, and so on. When the user draws an ASP program the syntactic correctness is
imposed by design (e.g., the editor will not allow to add negation as failure in the
head). However, in case some semantic condition is not verified, such as safety
of rules, arities of predicates, the error is identified and the box that contains the
error is marked with a small red icon.

The central region in 5.1 is where ASP programs are composed. On the top
of this area there is a toolbar with the main operations needed to write the rules,
namely from left to right:

• New Predicate allows to add a new atom in an existing rule. Selecting an
atom/literal the new one will be inserted immediately after it;

• Remove Entity removes the selected atom/literal from the rule;

• New Rule creates a new rule, where both head and body are empty;

• New Facts Table allows to create a block of facts;

• Remove Rules removes the selected rules;

• New Constraint allows to create a new integrity constraint;

• New Weak Constraint allows to create a new weak constraint;

• New Query allows to create a new query;

• New Operation allows to insert a comparison operator or an a arithmetic
operator after the selected entity;

• New Directive allows to define the directives of DLV (maxint, const, in-
clude, import, export);

• Aggregate allows to include an aggregate operation in a rule;

• Collapse allows to collapse two or more rule in a unique box to make more
readable the program in the case it become more bigger graphically;

• Collapse Rule allows to collapse one or more predicate in a single box:

• Expand allows to expand the selected collapsed entity;

• Zoom slider allows to increase and decrease the size the drawing area;

CHAPTER 5. EXTENSIONS OF ASPIDE 58

• Relayout All automatically disposes rules in the editing area;

• Relayout Expression recomposes the layout of a rule.

Many of the previous operation are also available via drop-down menus (ac-
tivated by clicking the right button of the mouse) or by clicking on specific icons
appearing whenever the mouse is over a selected graphic representation.

On the right part of the main window of the New Visual ASP, there is an outline
panel that is associated with the visual program. Into the outline can be visualized
a list of the predicates allowed in the program. For each predicate, it is possible to
expand the corresponding node and we can visualize the list of rule in which it is
used.

5.1.3 A use case for Visual ASP

In the following paragraphs we show how New Visual ASP can be used to design
ASP programs by exploiting an example.

Running Example. We consider the well-known problem called “Hamiltonian
Path”. Given a finite directed graph G = 〈V,E〉 and a node X ∈ V of this graph,
does there exist a path in G starting at X and passing through each node in V
exactly once? This is a classical NP-complete problem in graph theory. Suppose
that the graph G is specified by using facts over predicates vertex (unary) and
edge (binary), and a starting node X is specified by the predicate start (unary).
HAMILTONIAM PATH can be encoded as follows:

% Facts
f1: vertex(v). ∀v ∈ V
f2: edge(i, j). ∀(i, j) ∈ E

% Guess arcs of the path
r1: inPath(X, Y) v outPath(X, Y) :- edge(X, Y,).

% Auxiliary rules
r2: reached(X) :- start(X).

r3: reached(X) :- reached(Y), inPath(Y,X).

% Checking part:specify constraints on solution

CHAPTER 5. EXTENSIONS OF ASPIDE 59

% All vertexes must be in the path
r4: :- vertex(X), not reached(X), not start(X).

% Each vertex in the path must have at most one
% incoming and one outgoing edge
r5: :- vertex(X), 2 <= #count{Y : inPath(X, Y)}.
r6: :- vertex(X), 2 <= #count{Y : inPath(Y,X)}.

The first two lines introduce suitable facts, representing the input graphG. The
disjunctive rule r1 guesses a subset S of the arcs to be in the path, while the rest of
the program checks whether S constitutes a Hamiltonian Path. Here, an auxiliary
predicate reached is defined, which specifies the set of nodes which are reached
from the starting node. In the checking part, the constraint r4 enforces that all
nodes in the graph are reached in the subgraph induced by S. The two constraints
r5 and r6 ensure that the set of arcs S selected by inPath meets the following
requirements, which any Hamiltonian Path must satisfy: (i) a vertex must have at
most one incoming edge; (ii) a vertex must have at most one outgoing edge.

System Usage. We show how to employ New Visual ASP for drawing that en-
coding. Note that the system supports many different ways of creating and mod-
ifying rules and constraints, we mention only some of the possible combinations
of commands and shortcuts that can be exploited for the considered program. The
development of our Hamiltonian path encoding starts as usual in ASPIDE, i.e.,
one has to create a new Project, and a new file into the project. ASPIDE visualizes
a blank text editor by default (see Figure 5.2). Thus, we switch to the graphical
editor by clicking on the switch editor button (the one with green arrows in the
main toolbar, see Figure 5.3). Now we can start “drawing” our ASP program.
First of all we add the input facts: vertex, edge and start. More in detail, there
are two possibilities to add facts. The first one is to create a New Facts Table. In
that case a box with a light green topper is added in the visual editor; and by click-
ing on this box, the details of the fact table are shown in the panel in the bottom
of the window, labeled Details (see Figure 5.4). In that panel we specify the name
of the predicate, and the attributes, and we can add or remove facts populating
a table (see Figure 5.5). This solution is preferable when several instances have
to be inserted, as it is probably the case for edge and vertex predicates. Indeed
for edge we repeat the same operations made for creating the facts of vertex. The
second options for creating a fact is to create a new rule, by clicking on New Rule

CHAPTER 5. EXTENSIONS OF ASPIDE 60

Figure 5.2: New File in ASPIDE.

Figure 5.3: Open visual editor.

CHAPTER 5. EXTENSIONS OF ASPIDE 61

Figure 5.4: Modifying the details of the head atom.

Figure 5.5: Vertex Facts.

and leaving empty the rule body. This one is more convenient when one single
fact or a few facts have to be inserted. We use this second option for creating the
predicate start. In particular, we create a new rule by clicking on “New Rule” in
the toolbar, so we add a new empty rule, and then we adjust its content, i.e., we
add one attribute and we fill it with “1” by double clicking in the box in the point
corresponding to the attribute and typing the constant. The result of the complete
insertion of the predicates vertex, edge and start is depicted in Figure 5.6.

CHAPTER 5. EXTENSIONS OF ASPIDE 62

Figure 5.6: Add fact as a rule with empty body.

Figure 5.7: Unsafe disjunctive rule.

Figure 5.8: Create body.

CHAPTER 5. EXTENSIONS OF ASPIDE 63

Now we draw the disjunctive rule r1 by clicking on the New Rule button on
the toolbar, as we have done for start predicate, and we add atom inPath. inPath is
binary, so we add two attributes and properly name them. Since r1 is a disjunctive
rule, we now add the atom outPath in the head of the rule. One possibility is to
select the predicate inPath and click on the New Predicate button on the toolbar
and then add the attributes. The connection between this two atoms is labeled
with OR to indicate that the two are in a disjunction. At that point the rule is
not safe (the body is missing), and the rule is marked as incorrect with a small
red icon on the predicate box, as we can see in the Figure 5.7. Thus we go on
and add the atom edge in the body of the rule. The first possibility to do that is
to click on the head of the rule and select the icon New Predicate, depicted as
a table icon with green add operator. In alternative one could select the head of
the rule and click on the New Predicate button on the toolbar, or one could select
New Predicate from the drop-down menu obtained by right-clicking on atoms of
the head, or one could select Insert Existing Predicate from the drop-down menu
obtained by right-clicking on atoms of the body (see Figure 5.8). In each case the
tool adds a predicate with a generic name newPredicate, which has to be modified
as we did for the head atoms. In particular we name it edge, and we perform the
join with the atoms in the head by dragging each attribute of the head into the
corresponding one of the body. After joining the attributes the rule becomes safe
and no error icon is present in the rule now (see Figure 5.9).

We apply a similar process to write also the rules r2 and r3 (see Figure 5.10).
Note that in the rule r2, the arch in the body is labeled with the join symbol to
indicate that they are in join relation between them. In this case, to create the
second predicate in the body of r2 we might use the Join with New Predicate icon.
We ask to join reached with start on their attributes. Each selection is done acting
on a list of possible matches that is generate automatically by the tool (see in
sequence Figure 5.11, 5.12, Figure 5.13).

CHAPTER 5. EXTENSIONS OF ASPIDE 64

Figure 5.9: Complete disjunctive rule.

Figure 5.10: The first three rules of the program.

CHAPTER 5. EXTENSIONS OF ASPIDE 65

Figure 5.11: Select attribute to join.

Figure 5.12: Select predicate to join.

Figure 5.13: Select attribute of the predicate to join.

CHAPTER 5. EXTENSIONS OF ASPIDE 66

Figure 5.14: Adding new constraint.

Figure 5.15: Program with the first constraint.

CHAPTER 5. EXTENSIONS OF ASPIDE 67

Figure 5.16: Adding aggregate atom.

Figure 5.17: Adding guard to aggregate atom.

CHAPTER 5. EXTENSIONS OF ASPIDE 68

To create the constraint defined by the rule r4, we click on the toolbar button
New Constraint, which provides a rule with empty head and a literal in the body
with a generic name, that we properly update (see Figure 5.14). Then we select
the literal in the body to be negated and click on the NOT icon available around
the box when it is selected. The resulting program is depicted in Figure 5.15.

The last rules, r5 and r6, are constraints with aggregate atoms. We create
the constraint as we seen by adding vertex and inPath as before. Then we select
inPath and we click the Aggregate icon around the box predicate or the Aggregate
button on the toolbar, and select COUNT from a drop-down menu (see Figure
5.16). To complete the rule r5 we add a lower guard to the aggregate with value
equals to ’2’. To do this, we double click on the box in the text field corresponding
to LowerGuard or we can use the Detail tab and set the value of the field labeled
Lower Guard (see Figure 5.17). Finally we repeat a similar procedure to insert the
remaining rule, r6.

The entire graphical representation of our program solving the Hamiltonian

Figure 5.18: Program Hamiltonian Path.

CHAPTER 5. EXTENSIONS OF ASPIDE 69

Path problem is reported in Figure 5.18.
There are many other functionality and alternative ways of creating rules in

New Visual ASP. In the following we describe the ones that we did not exploit in
the example presented above namely:

• The Remove button in the toolbar can be used to remove one or more literals
from a rule. The same operation is applicable both by selecting the literal
to remove and by clicking on the icon of a red minus.

• The Remove Rule button of the toolbar allows to remove the entire rule
that is selected in the main window. The same command can be acted by
the drop-down menu that can be activated by right clicking on the selected
rule (see see Figure 5.19).

• The New Weak Constraint adds a new weak constraint. Contrary to strong
constraints, weak constraints allow for expressing conditions that should be
satisfied, but not necessarily have to be. Associated to the weak constraint
there is a weight and a priority level. A new weak constraint is visualized in
Figure 5.20. The head of the weak constraint contains the fields of weight
and level, and the body is built as for normal rules.

• The New Operation button allows to introduce comparisons (=, ! =, ≤,
≥,<, >) and arithmetic operations (+, −, ∗, ÷) into the visual ASP pro-
gram. To insert one of this operation we select a predicate and we choose
the specific one. Into the program will be added a box labeled with the
selected operator. An example is in Figure ??. The same behavior can be
obtained also via drop-down menu and trough dedicated icons shown when
a body literal is selected and the mouse is over its box.

• The New Directive button allows to set some directives offered by DLV,
such as to set the maxint value or import tables from external databases.
Suppose that, in our example of the Hamiltonian Path, instead of using facts
for the predicate edge we want to import values contained in some external
database table named edge, we select Import from the menu New Directive.
A new Import directive will be shown where we can specify our directive
parameters (see Figure 5.22).

• The Collapse (Collapse Rule) button allows to collapse two or more enti-
ties (respectively, one or more rules, each one will be collapsed separately).

CHAPTER 5. EXTENSIONS OF ASPIDE 70

Figure 5.19: Remove rule.

Only the head of a collapsed rule is visible so to gain space in the draw-
ing window. We could also compact the body of a rule by collapsing some
of the literals in the body. We collapsed the two literals of a reachability
encoding in Figure 5.23. An other possibility to Collapse two or more enti-
ties is to use the icon around one of the selected entities, or to use the right
mouse button and selecting Collapse.

• The Expand button allows to expand collapsed specifications.

CHAPTER 5. EXTENSIONS OF ASPIDE 71

Figure 5.20: Weak constraint.

Figure 5.21: Rule with a comparison operator.

CHAPTER 5. EXTENSIONS OF ASPIDE 72

Figure 5.22: Import directive.

Figure 5.23: Effect of Collapse.

CHAPTER 5. EXTENSIONS OF ASPIDE 73

5.2 Integration of ASPIDE and protégé

Ontology-based reasoning is considered a crucial task in the area of knowledge
management [12, 16]. New Semantic Web repositories are continuously built ei-
ther from scratch or by translation of existing data in ontological form and are
made publicly available. These repositories are often encoded by using W3C [77]
standard languages like RDF(S), and OWL, and query answering on such reposi-
tories can be carried out with specific reasoners, supporting SPARQL as the query
language.

In this context, the interest in approaches that resort to logic programming
(mainly Datalog and its extensions) for implementing various reasoning tasks over
ontologies is growing. Consider for instance that recent studies have identified
large classes of queries over ontologies that can be Datalog-rewritable (see [42]
for an overview) or First-Order Rewritable [17]. Approaches dealing with such
fragments usually rely on query reformulation, where the original query posed
on the ontology is rewritten into an equivalent set of rules/queries that can be
evaluated directly on the ontology instances. Many query rewriters that are based
on this idea exist [22, 1, 57, 71, 73] producing SQL queries or stratified programs.
Moreover, even considering a setting where SPARQL queries are posed on RDF
repositories, translations to Datalog with negation as failure were proposed [59]
and implemented [43].

However, if we look at this scenario from a developer point of view, one can
notice that different families of tools are required. On the one hand, one needs
a good environment for designing and editing ontologies. On the other hand one
would like to design, execute and test Datalog programs for ontology reasoning.
Unluckily specific tools for these tasks are currently developed independently and
miss a common perspective. We face with this issue proposing the integration of
two major development environments for ASP programs and Ontology editing,
respectively: ASPIDE [32] and protégé [76].

Protégé being one of the most diffused environments for the design and the ex-
ploitation of ontologies; and ASPIDE being the most comprehensive IDE for ASP
extended with non monotonic negation and disjunction under the stable model
semantics [39].

We extended both systems with specific plugins that enable a synergic interac-
tion between the two development environments. The developer can then handle
both ontologies and logic-based reasoning over them by exploiting specific tools
integrated to work together. Note that, our solution has to be considered as a first

CHAPTER 5. EXTENSIONS OF ASPIDE 74

Input-Plugin
RMI-Server

ASPIDE-Plugin
RMI-Client

Figure 5.24: Integration of ASPIDE and protégé.

step towards the development of a general platform, which can be personalized
and extended (also with the help of the research community) by integrating addi-
tional rewriters/reasoners. The aim is to provide an environment for developing,
running and testing ASP-based ontology reasoning tools and their applications.

5.2.1 Integrating ASPIDE and protégé

The integration between ASPIDE and protégé is obtained by developing two sep-
arate plugins respectively extending these systems, see Figure 5.24. Both plugins
are developed according to the following principle: simple modifications to on-
tologies and logic programs should be possible in both environments, but the user
can switch to the most specific editor seamlessly.

As far as ASPIDE is concerned, we developed an input plugin [30] that rec-
ognizes and takes care of the ontology file types.The ASPIDE plugin offers two
editing modalities for ontology files, which can be selected by clicking on the
standard “switch button” of ASPIDE. The first modality opens a simple text editor
embedded in ASPIDE, the second modality automatically opens the selected file
in protégé. The plugin can also associate ontology files with some specific query
rewriter, which is available in ASPIDE in the form of a rewriting plugin. Clearly
new rewriters can be added to the system by developing additional rewriting plu-
gins. ASPIDE is equipped with run configurations. A run configuration allows
to setup a Datalog engine with its invocation options, to select input files and to
(possibly) specify the associated rewriters.

Concerning the protégé side, we developed a plugin for protégé that displays
the currently open ASPIDE workspace2 in the usual tree-like structure. The idea
is that the ASPIDE workspace acts as a common repository for Datalog programs
and ontologies. The user can browse, add, remove or modify files in the workspace
from protégé. Datalog programs can be modified in protégé by using a simple text
editor in the plugin panel, whereas ontology files in the workspace are open and

2The workspace of ASPIDE is a directory collecting programs and files organized in projects.

CHAPTER 5. EXTENSIONS OF ASPIDE 75

displayed in protégé as usual. The user can also: require to open specific files in
ASPIDE, execute one of the available rewriters, and invoke a Datalog reasoning
engine by setting up and executing an ASPIDE run configuration.

The two plugins are connected each other via Java RMI. In particular, the
ASPIDE plugin acts as a server. It publishes a remote interface that allows the
protégé plugin to access the ASPIDE workspace and to require the execution of
available commands. The same remote interface is exploited by ASPIDE to open
ontologies in protégé.

5.2.2 Some use cases

In this section we consider some use cases possibly involving three kind of users
interacting with our platform, namely:

(i) an ontology engineer,

(ii) an engineer of query rewritings for ontologies,

(iii) a Datalog specialist using ontologies for reasoning tasks.

In our description we refer to the well known Datalog-based rewriters, Re-
quiem [57] and Presto [71]. The first has been already integrated in our platform
as a rewriting plugins of ASPIDE, and we are already working to integrate also
Presto. Moreover, for the sake of presentation, we refer to some instantiation
of the well known LUBM ontology. First of all, consider an ontology engineer,
whose main objective is the design/update of ontologies. In this case the user
starts his session from protégé by opening the ontology and modifying it with
standard protégé tools. Then, in order to check the result of some reasoning task
on the ontology, to be carried out with Requiem or Presto, the ASPIDE plugin can
be opened inside protégé and used to select a run configuration choosing the de-
sired rewriter and Datalog engine. The plugin allows also to inspect the produced
rewriting before/after the execution, as well as the query result in the output panel
of ASPIDE.

Figure 5.25(a) shows LUBM opened in protégé and a Requiem query rewriting
shown in the ASPIDE panel inside protégé.

Let us now consider a rewriting engineer, whose main objective is the design/imp-
rovement of Datalog-based rewritings for ontology reasoning. In this case, his
session can start either from protégé or from ASPIDE. In fact, the ASPIDE plugin
for protégé allows to open ontology files directly in ASPIDE, in order to perform

CHAPTER 5. EXTENSIONS OF ASPIDE 76

Figure 5.25: ASPIDE and protégé plugins at work.

basic inspection/modification tasks. Now, provided that an ASPIDE rewriting plu-
gin is available, the user can activate the corresponding algorithm, inspect the re-
sulting Datalog program, possibly modify it and run the Datalog engine to check
the result. As a simple example, one could be interested in studying performance
improvements possibly obtained on query answering by the application of magic-
sets or unfolding strategies3 applied in cascade, as a post-processing step, to a
Requiem output program. This kind of analysis can be easily carried out with
the proposed platform by properly setting two run configurations, one including
and one excluding the post-processing step. As another example the rewriting en-

3These are standard query optimization strategies for Datalog programs.

CHAPTER 5. EXTENSIONS OF ASPIDE 77

Figure 5.26: Configuring the execution of query and ontology rewritings.

gineer can be interested in checking the correctness and the performance of his
brand new rewriting w.r.t. existing ones; again, this can be simply done by setting
up different run configurations working on the same ontology.

Figure 5.25(b) illustrates the ASPIDE plugin at work on the LUBM ontology,
with the Datalog program resulting from the activation of a rewriting plugin.

Finally, consider a Datalog specialist that needs to carry out complex reason-
ing tasks over ontologies. As an example, assume that the user is interested in
identifying maximal cliques of coauthors in LUBM. LUBM provides both the
Person and Publication concepts and the publicationAuthor role, which specifies
the Authors (i.e. Persons) of each Publication. Finding a maximal clique of Au-
thors is something that can be easily expressed with disjunctive Datalog extended
with weak constraints,4 provided the output of an ontology reasoner querying the
ontology. Observe that, without our platform, the user should first infer authors
and co-authorship relations from LUBM, then he should translate obtained results
in a Datalog compliant format, and finally he should run a maximal clique encod-
ing based on Datalog. To the contrary, by using the protégé plugin inside ASPIDE
and a single ASPIDE run configuration it is sufficient to specify: the input on-

4We refer the reader to [4, 45] for more details on these extensions of Datalog.

CHAPTER 5. EXTENSIONS OF ASPIDE 78

tology file, the queries needed to infer data of interest, the rewriting plugin to
activate, the program for computing maximal cliques, and the Datalog evaluation
engine supporting needed language extensions. Figure 5.26 shows the run config-
uration implementing the above example, where the DLV system [45] is selected
as Datalog engine.

Implementations Availability. The two plugins are available in beta version
for ASPIDE v. 1.35 and protégé v. 4.3. They can be downloaded from the
ASPIDE website http://www.mat.unical.it/ricca/aspide, and in-
stalled acting on the ASPIDE menu “File→Plugins→Manage Plugins”.

5.3 Related Work
We presented a graphical interface for designing ASP programs, that is able to
support all the powerful language constructs of ASP, like disjunction, recursion,
unstratified negation, constraints, and aggregates. In the literature different for-
malisms were proposed that use a visual approach to logic programming. The
articles [64, 2] describe a visual logic programming language based on a topolog-
ical diagrammatic notation which combines Venn/Euler-like diagrams and DAGs
(directed acyclic graphs). This formalism allows to represent, by basic syntac-
tic elements (square boxes, rounded boxes, circles, arrows, lines) the constructs
used in logic programming, including function symbols. Comparing the approach
of [64, 2] with the one proposed in this paper we note that the latter does not di-
rectly support aggregates that are widely used in real applications, so this visual
language can serve only as a source of inspiration for developing a visual language
for ASP. The ASPIDE[34] environment for ASP also features a graphical interface
for designing ASP programs, that is able to support all the powerful language con-
structs of ASP, like disjunction, recursion, unstratified negation, constraints, and
aggregates. Nonetheless, this interface is not based on a formally-defined visual
syntax, rather it disperses the definition of rules in several panels, the central one
contains a graphical view of the body of a single rule. This interface was inspired
by QBE interfaces, and the body of a rule is seen as a conjunctive query. The AS-
PIDE visual interface thus recalls the very well known and widely adopted QBE
formalism for relational databases, which should be an advantage in familiarity
for users that already uses this kind of visual languages. Nonetheless, the AS-
PIDE interface is not immediate and intuitive for non-expert users, since it does
not provide a uniform view on rules and logic programs. We make this intuition

CHAPTER 5. EXTENSIONS OF ASPIDE 79

more clear by providing direct comparison of the two editors in the same example.
In that way we show the different representation of the same program into the two
visual editor available for ASPIDE. Consider an encoding of the 3-COLORING

problem: given an undirected graph G = (V,E), assign each vertex one of three
colors – say, red, green, or blue – such that adjacent vertices always have distinct
colors. 3-COLORING can be encoded in ASP as follows:

node(v). arc(a,b). ∀v ∈ V ∀(a,b) ∈ A

col(X,red) v col(X,blue) v col(X,green) :- node(X).

:- arc(X,Y), col(X,C), col(Y,C).

The first line asserts facts (these are rules with true body that is omitted) rep-
resenting the input graph G, the second line states that each vertex needs to have
some color. The last line contains a rule with false head that acts as an integrity
constraint, since it disallows situations in which two connected vertexes are as-
sociated with the same color. The Figure 5.27 reports a snapshot of graphical
representation into the new visual editor. In contrast, in the Figure 5.28, is de-
picted the same problem with the old ASPIDE editor. It is immediate to see that
the new representation is more compact integrated and intuitive. Indeed, the New
Visual ASP the complete logic program is visible and modifiable in the main win-
dow, is not the same in the Visual ASP. The shape of the rules is immediately
recognizable, and there is a one to one mapping with the textual syntax. The new
interface result also in a more friendly impact for programmers that are already
expert of logic.

Concerning other systems that feature a full graphic tool for creating logic pro-
grams, we mention OntoDLV [69] and OntoStudio (http://www.ontoprise.de) that
allow for specifying conjunctive queries and rules respectively and are strongly
dependent on the features of the underlying logic-based ontology language; con-
trarily, New Visual ASP supports all the major language features of ASP, main-
taining a clear separation between the rule editor and the ontology editor on the
lines of [54]. Related works are also Visual Query Systems (VQS) and Visual
Query Languages (VQL) that were developed in the Database Community [21].
Many graphical tool for querying Databases were presented. [6] proposes a taxon-
omy, based on expressive power, usability and classes of potential users, of Visual
Query System. Nonetheless VQS systems were conceived for querying relational
databases, thus they can only serve as a basis for devising a visual language as
expressive as ASP.

CHAPTER 5. EXTENSIONS OF ASPIDE 80

Figure 5.27: The new visual editor

Figure 5.28: The old visual editor

Chapter 6

Conclusion

In the recent years ASP has been successfully applied for developing industrial ap-
plications. The development of applications confirmed the applicability of ASP-
based technologies for solving complex real-world applications, moreover, appli-
cation developers highlighted the need for more powerful programming tool to
make ASP more effective and easy to use ASP in real-world development scenar-
ios. This thesis provides several contributions in this context, and in particular is
about:

(i) The development of two real-world applications of ASP in the domain of
tourism;

(ii) The design and implementation of two new extensions of the ASPIDE IDE.

Concerning point (i), an application of ASP to the problem of allotment in
travel industry is proposed, and an intelligent newsletter service for the customers
of a travel agency is provided. Both problems were formalized in ASP by abstract-
ing the requirements of a real travel agency. Since ASP programs are executable
specifications we easily obtained using JDLV the implementations of a tool for
supporting a travel agent in selecting the packages to be traded for next season,
and of a newsletter service. The implementation were assessed on real-word data
provided by the travel agency Top Class s.r.l. The preliminary results that were
obtained are promising. The development of such applications has confirmed that
ASP can be used for solving complex problems in practice, indeed, the ASP so-
lutions described in this thesis will be included as an advanced reasoning service
of the e-tourism platform developed under the iTravelPlus project by the Tour
Operator Top Class s.r.l. and the University of Calabria.

81

CHAPTER 6. CONCLUSION 82

Concerning point (ii), the thesis describes two new development tools that ex-
tend the well-known ASPIDE development environment: a visual programming
environment and an environment for developing logic-programming-based ontol-
ogy reasoning tools. The visual programming environment supports all the pow-
erful language constructs of ASP, like disjunction, recursion, unstratified nega-
tion, constraints, aggregates, and weak constraints, and makes easier the writing
of logic programs for novice programmers and targets those users prefer graphic
tools. The ontology-orinted tool consists on an extension of ASPIDE and Protégé
with specific plugins that enables a synergic interaction between the two devel-
opment environments. The developer can then handle both ontologies and logic-
based reasoning over them by exploiting specific tools integrated to work together.
The presented solution moves the first step towards the development of a general
environment for developing, running and testing logic-programming-based ontol-
ogy reasoning tools.

The main contributions presented in this thesis have been published in the
following research papers:

• Barbara Nardi, Kristian Reale, Francesco Ricca, Giorgio Terracina: An Inte-
grated Environment for Reasoning over Ontologies via Logic Programming.
Web Reasoning and Rule Systems - 7th International Conference, RR 2013,
Mannheim, Germany, July 27-29, 2013. (LNCS – Vol. 7994 – Springer –
Pg. 253-258).

• Barbara Nardi: A Visual Syntax for Answer Set Programming. Web Rea-
soning and Rule Systems - 8th International Conference, RR 2014, Athens,
Greece, September 15-17, 2014. (LNCS – Vol. 8741 – Springer – Pg.249-
250).

• Carmine Dodaro, Nicola Leone, Barbara Nardi, Francesco Ricca: Allotment
Problem in Travel Industry: A Solution Based on ASP. Web Reasoning and
Rule Systems - 9th International Conference, RR 2015, Berlin, Germany,
August 4-5, 2015. (LNCS – Vol. 9209 – Springer – Pg. 77-92).

Bibliography

[1] Andrea Acciarri, Diego Calvanese, Giuseppe De Giacomo, Domenico
Lembo, Maurizio Lenzerini, Mattia Palmieri, and Riccardo Rosati.
QUONTO: querying ontologies. In Proc. of the 20th national conference
on Artificial intelligence, volume 4, pages 1670–1671. AAAI Press, 2005.

[2] Jaume Agust, Jordi Puigsegur, Dave Robertson, and W. Marco Schorlemmer.
Visual logic programming through set inclusion and chaining. In IN CADE-
13 WORKSHOP ON VISUAL REASONING, 1996.

[3] Marcello Balduccini, Michael Gelfond, Richard Watson, and Monica No-
geira. The USA-Advisor: A Case Study in Answer Set Planning. In Thomas
Eiter, Wolfgang Faber, and Mirosław Truszczyński, editors, Proceedings of
the 6th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR-01), volume 2173 of LNCS, pages 439–442. Springer,
2001.

[4] Chitta Baral. Knowledge Representation, Reasoning and Declarative Pro-
blem Solving. Cambridge University Press, 2003.

[5] Chitta Baral and Michael Gelfond. Reasoning Agents in Dynamic Domains.
In Jack Minker, editor, Logic-Based Artificial Intelligence, pages 257–279.
Kluwer Academic Publishers, 2000.

[6] Carlo Batini, Tiziana Catarci, Maria Francesca Costabile, and Stefano
Levialdi. Visual query systems: A taxonomy. In Elöd Knuth and
Lutz Michael Wegner, editors, VDB, volume A-7 of IFIP Transactions,
pages 153–168. North-Holland, 1991.

[7] Christian Bauer and Gavin King, editors. Java Persistence with Hibernate.
Manning, 2006.

83

BIBLIOGRAPHY 84

[8] Martin Brain and Marina De Vos. Debugging Logic Programs under the
Answer Set Semantics. In Marina de Vos and Alessandro Provetti, editors,
Proceedings ASP05 - Answer Set Programming: Advances in Theory and
Implementation, Bath, UK, July 2005.

[9] Martin Brain, Martin Gebser, Jorg Puhrer, Torsten Schaub, Hans Tompits,
and Stefan Woltran. That is Illogical Captain! The Debugging Support Tool
spock for Answer-Set Programs: System Description. In Marina De Vos
and Torsten Schaub, editors, Proceedings of the Workshop on Software En-
gineering for Answer Set Programming (SEA’07), pages 71–85, 2007.

[10] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Enhancing Dis-
junctive Datalog by Constraints. IEEE Transactions on Knowledge and Data
Engineering, 12(5):845–860, 2000.

[11] Paula-Andra Busoniu, Johannes Oetsch, Jörg Pührer, Peter Skocovsky, and
Hans Tompits. Sealion: An eclipse-based IDE for answer-set programming
with advanced debugging support. TPLP, 13(4-5):657–673, 2013.

[12] Andrea Calı̀, Georg Gottlob, and Thomas Lukasiewicz. A general datalog-
based framework for tractable query answering over ontologies. In Proceed-
ings of the twenty-eighth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, PODS ’09, pages 77–86, New York, NY,
USA, 2009. ACM.

[13] Francesco Calimeri, Susanna Cozza, and Giovambattista Ianni. External
sources of knowledge and value invention in logic programming. Annals of
Mathematics and Artificial Intelligence, 50(3–4):333–361, 2007.

[14] Francesco Calimeri, Giovambattista Ianni, and Francesco Ricca. The third
open answer set programming competition. TPLP, 14(1):117–135, 2014.

[15] Francesco Calimeri, Giovambattista Ianni, and Francesco Ricca. The third
open answer set programming competition. TPLP, 14(1):117–135, 2014.

[16] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Tractable reasoning and efficient query
answering in description logics: The dl-lite family. Journal of Automated
Reasoning, 39(3):385–429, 2007.

BIBLIOGRAPHY 85

[17] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Data complexity of query answering in
description logics. Artif. Intell., 195:335–360, 2013.

[18] Jorge Cardoso. Combining the semantic web with dynamic packaging sys-
tems. In AIKED’06, pages 133–138, Stevens Point, Wisconsin, USA, 2006.
World Scientific and Engineering Academy and Society (WSEAS).

[19] Jorge Cardoso. Developing an owl ontology for e-tourism. In Semantic Web
Services, Processes and Applications, pages 247–282. Springer, 2006.

[20] Massimiliano Castellani and Maurizio Mussoni. An economic analysis of
tourism contracts: Allotment and free sale*. In Advances in Modern Tourism
Research, pages 51–85. Springer, 2007.

[21] Tiziana Catarci, Maria Francesca Costabile, Stefano Levialdi, and Carlo Ba-
tini. Visual query systems for databases: A survey. J. Vis. Lang. Comput.,
8(2):215–260, 1997.

[22] Alexandros Chortaras, Despoina Trivela, and Giorgos B. Stamou. Opti-
mized query rewriting for owl 2 ql. In Nikolaj Bjørner and Viorica Sofronie-
Stokkermans, editors, CADE, volume 6803, pages 192–206. Springer, 2011.

[23] Chris Cooper, John Fletcher, Alan Fyall, David Gilbert, and Stephen Wan-
hill. Tourism: Principles and Practice. Financial Times Management, 4
pap/pas edition.

[24] A. Dogac, Y. Kabak, G. Laleci, S. Sinir, A. Yildiz, S. Kirbas, and Y. Gurcan.
Semantically enriched web services for the travel industry. SIGMOD Rec.,
33(3):21–27, 2004.

[25] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Declara-
tive Problem-Solving Using the DLV System. In Jack Minker, editor, Logic-
Based Artificial Intelligence, pages 79–103. Kluwer Academic Publishers,
2000.

[26] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Datalog.
ACM Transactions on Database Systems, 22(3):364–418, September 1997.

[27] Omar El-Khatib, Enrico Pontelli, and Tran Cao Son. Justification and de-
bugging of answer set programs in ASP. In Clinton Jeffery, Jong-Deok

BIBLIOGRAPHY 86

Choi, and Raimondas Lencevicius, editors, Proceedings of the Sixth Inter-
national Workshop on Automated Debugging, California, USA, September
2005. ACM.

[28] Onofrio Febbraro, iGiovanni Grasso, Nicola Leone, and Francesco Ricca.
JASP: a framework for integrating Answer Set Programming with Java. In
Proc. of KR2012. AAAI Press, 2012.

[29] Onofrio Febbraro, Nicola Leone, Kristian Reale, and Francesco Ricca. Unit
testing in aspide. CoRR, abs/1108.5434, 2011.

[30] Onofrio Febbraro, Nicola Leone, Kristian Reale, and Francesco Ricca. Ex-
tending aspide with user-defined plugins. In CILC, volume 857, pages 236–
240. CEUR-WS.org, 2012.

[31] Onofrio Febbraro, Kristian Reale, and Francesco Ricca. A Visual Interface
for Drawing ASP Programs. In Proc. of CILC2010, Rende(CS), Italy, July
2010.

[32] Onofrio Febbraro, Kristian Reale, and Francesco Ricca. Aspide: Integrated
development environment for answer set programming. In Logic Program-
ming and Nonmonotonic Reasoning - 11th International Conference, LP-
NMR 2011, Vancouver, Canada, May 16-19, 2011. Proceedings, volume
6645 of Lecture Notes in Computer Science, pages 317–330, 2011.

[33] Onofrio Febbraro, Kristian Reale, and Francesco Ricca. ASPIDE: integrated
development environment for answer set programming. In Logic Program-
ming and Nonmonotonic Reasoning - 11th International Conference, LP-
NMR 2011, Vancouver, Canada, May 16-19, 2011. Proceedings, pages 317–
330, 2011.

[34] Onofrio Febbraro, Kristian Reale, and Francesco Ricca. Aspide: Integrated
development environment for answer set programming. In LPNMR, pages
317–330, 2011.

[35] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2002.

[36] Lorenzo Gallucci and Francesco Ricca. Visual querying and application
programming interface for an ASP-based ontology language. In Proc. of
SEA 2007, pages 56–70, 2007.

BIBLIOGRAPHY 87

[37] Alfredo Garro, Luigi Palopoli, and Francesco Ricca. Exploiting agents in
e-learning and skills management context. AI Communications – The Euro-
pean Journal on Artificial Intelligence, 19(2):137–154, 2006.

[38] Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for
Logic Programming. In Logic Programming: Proceedings Fifth Intl Con-
ference and Symposium, pages 1070–1080, Cambridge, Mass., 1988. MIT
Press.

[39] Michael Gelfond and Vladimir Lifschitz. Classical Negation in Logic Pro-
grams and Disjunctive Databases. New Generation Computing, 9:365–385,
1991.

[40] Giovanni Grasso, Nicola Leone, Marco Manna, and Francesco Ricca. Logic
Programming, Knowledge Representation, and Nonmonotonic Reasoning:
Essays in Honor of Michael Gelfond, volume 6565 of Lecture Notes in AI
(LNAI). Springer Verlag, 2011.

[41] Tugba Gurcaylilar-Yenidogan, Alp Yenidogan, and Josef Windspergerc. An-
tecedents of contractual completeness: the case of tour operator-hotel allot-
ment contracts. Procedia - Social and Behavioral Sciences, 24(0):1036 –
1048, 2011. The Proceedings of 7th International Strategic Management
Conference.

[42] Stijn Heymans, Thomas Eiter, and Guohui Xiao. Tractable reasoning with
dl-programs over datalog-rewritable description logics. In Proceedings of
the 2010 conference on ECAI 2010: 19th European Conference on Artificial
Intelligence, pages 35–40, Amsterdam, The Netherlands, The Netherlands,
2010. IOS Press.

[43] Giovambattista Ianni, Thomas Krennwallner, Alessandra Martello, and Axel
Polleres. A rule system for querying persistent rdfs data. In ESWC, volume
5554 of LNCS, pages 857–862. Springer, 2009.

[44] Bullock Joe and Goble Carole. Tourist: the application of a description
logic based semantic hypermedia system for tourism. In HYPERTEXT ’98:
Proceedings of the ninth ACM conference on Hypertext and hypermedia,
pages 132–141. ACM, 1998.

BIBLIOGRAPHY 88

[45] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gott-
lob, Simona Perri, and Francesco Scarcello. The DLV System for Knowl-
edge Representation and Reasoning. ACM TOCL, 7(3):499–562, 2006.

[46] Nicola Leone and Francesco Ricca. Answer set programming: A tour from
the basics to advanced development tools and industrial applications. In
Reasoning Web. Web Logic Rules - 11th International Summer School 2015,
Berlin, Germany, July 31 - August 4, 2015, Tutorial Lectures, volume 9203
of Lecture Notes in Computer Science, pages 308–326. Springer, 2015.

[47] N. Leone et al. The INFOMIX system for advanced integration of incom-
plete and inconsistent data. In Proc. of SIGMOD’05, pages 915–917, New
York, NY, USA, 2005. ACM.

[48] Vladimir Lifschitz. Answer Set Planning. In Danny De Schreye, editor,
Proceedings of the 16th International Conference on Logic Programming
(ICLP’99), pages 23–37, Las Cruces, New Mexico, USA, November 1999.
The MIT Press.

[49] Alexander Maedche and Steffen Staab. Applying semantic web technolo-
gies for tourism information systems. In Karl Weber, Andrew Frew, and
Martin Hitz (eds.), editors, ”Proceedings of the 9th International Confer-
ence for Information and Communication Technologies in Tourism ENTER
2002 Innsbruck Austria”. Springer, 2002.

[50] Marco Manna, Francesco Ricca, and Giorgio Terracina. Consistent query
answering via ASP from different perspectives: Theory and practice. Theory
and Practice of Logic Programming, 13(2):277–252, 2013.

[51] V. Wiktor Marek and Mirosław Truszczyński. Stable models and an alterna-
tive logic programming paradigm. CoRR, cs.LO/9809032, 1998.

[52] Hepp Martin, Siorpaes Katharina, and Bachlechner Daniel. Towards the
semantic web in e-tourism: can annotation do the trick? In Proceedings of
the 14th European Conference on Information System (ECIS 2006), 2006.

[53] Hepp Martin, Siorpaes Katharina, and Bachlechner Daniel. Towards the
semantic web in e-tourism: Lack of semantics or lack of content? In Poster
Proceedings of the 3rd Annual ESWC (2006), 2006.

BIBLIOGRAPHY 89

[54] Barbara Nardi, Kristian Reale, Francesco Ricca, and Giorgio Terracina. An
integrated environment for reasoning over ontologies via logic program-
ming. In RR, pages 253–258, 2013.

[55] Ilkka Niemelä. Logic Programs with Stable Model Semantics as a Constraint
Programming Paradigm. In Ilkka Niemelä and Torsten Schaub, editors, Pro-
ceedings of the Workshop on Computational Aspects of Nonmonotonic Rea-
soning, pages 72–79, Trento, Italy, May/June 1998.

[56] Oracle. JSR 317: JavaTM Persistence 2.0, 2009. http://jcp.org/en/
jsr/detail?id=317.

[57] H. Pérez-Urbina, B. Motik, and I. Horrocks. A comparison of query rewrit-
ing techniques for dl-lite. In Proceedings of the 22st International Workshop
on Description Logics, volume 477 of DL ’09. CEUR-WS.org, 2009.

[58] Simona Perri, Francesco Ricca, Giorgio Terracina, D. Cianni, and P. Veltri.
An integrated graphic tool for developing and testing DLV programs. In
Marina De Vos and Torsten Schaub, editors, Proceedings of the Workshop
on Software Engineering for Answer Set Programming (SEA’07), pages 86–
100, 2007.

[59] Axel Polleres. From sparql to rules (and back). In WWW, pages 787–796.
ACM, 2007.

[60] S. Polyviou and G. Samaras P. Evripidou. Query by Browsing: A Visual
Query Language Based on the Relational Model and the Desktop User In-
terface Paradigm. University of Cyprus, Department of Computing, 2004.

[61] Katrine Prantner, Ying Ding, Michael Luger, Zhixian Yan, and Christoph
Herzog. Tourism ontology and semantic management system: State-
of-the-arts analysis. In Proceedings of IADIS International Conference
WWW/Internet 2007 Vila Real, Portugal, October (2007). IADIS, 2007.

[62] H. A. Proper. Interactive Query Formulation using Query by Navigation.
Asymetrix Research Report 94-4, Asymetrix Research Laboratory, 1994.

[63] Teodor C. Przymusinski. Stable Semantics for Disjunctive Programs. New
Generation Computing, 9:401–424, 1991.

BIBLIOGRAPHY 90

[64] Jordi Puigsegur and Jaume Agust. Visual logic programming by means of
diagram transformations. In In Proc. of APPIA-GULP-PRODE Joint Con-
ference in Declarative Programming, La Coru na, pages 311–328, 1998.

[65] Francesco Ricca. A Java wrapper for DLV. In Proc. of ASP 2003, volume 78
of CEUR Workshop Proceedings. CEUR-WS.org, 2003.

[66] Francesco Ricca. The DLV Java Wrapper. In Marina de Vos and Alessandro
Provetti, editors, Proceedings ASP03 - Answer Set Programming: Advances
in Theory and Implementation, pages 305–316, Messina, Italy, September
2003. Online at http://CEUR-WS.org/Vol-78/.

[67] Francesco Ricca, Lorenzo Gallucci, Roman Schindlauer, Tina Dell’Armi,
Giovanni Grasso, and Nicola Leone. OntoDLV: An ASP-based system for
enterprise ontologies. J. Log. Comput., 19(4):643–670, 2009.

[68] Francesco Ricca, Giovanni Grasso, Mario Alviano, Marco Manna, Vincen-
zino Lio, Salvatore Iiritano, and Nicola Leone. Team-building with answer
set programming in the gioia-tauro seaport. TPLP, 12(3):361–381, 2012.

[69] Francesco Ricca and Nicola Leone. Disjunctive Logic Programming with
types and objects: The DLV+ System. Journal of Applied Logics, 5(3):545–
573, 2007.

[70] Francesco Ricci. Recommender systems: Models and techniques. In Ency-
clopedia of Social Network Analysis and Mining, pages 1511–1522. 2014.

[71] R. Rosati and A. Almatelli. Improving Query Answering over DL-Lite On-
tologies. In Twelfth International Conference on Principles of Knowledge
Representation and Reasoning (KR 2010), KR ’10, pages 290–300, Toronto,
Ontario, Canada, 2010. AAAI Press.

[72] G. Santucci and P. A. Sottile. Query by Diagram: a Visual Environment for
Querying Databases. Dipartimento di Informatica e Sistemistica, Universitá
degli Studi di Roma ′La Sapienza′, 1993.

[73] Markus Stocker and Michael Smith. Owlgres: A scalable owl reasoner.
In Catherine Dolbear, Alan Ruttenberg, and Ulrike Sattler, editors, 5th Int.
Workshop on OWL: Experiences and Directions (OWLED 2008), volume
432. CEUR-WS.org, 2008.

BIBLIOGRAPHY 91

[74] Adrian Sureshkumar, Marina De Vos, Martin Brain, and John Fitch. APE:
An AnsProlog* Environment. In Marina De Vos and Torsten Schaub, edi-
tors, Proceedings of the Workshop on Software Engineering for Answer Set
Programming (SEA’07), pages 101–115, 2007.

[75] Giorgio Terracina, Nicola Leone, Vincenzino Lio, and Claudio Panetta. Ex-
perimenting with recursive queries in database and logic programming sys-
tems. Theory and Practice of Logic Programming, 8:129–165, 2008.

[76] Stanford University. The Protégé Ontology Editor and Knowledge Acquisi-
tion System, 2012. http://protege.stanford.edu.

[77] W3C. The World Wide Web Consortium, 2012. http://www.w3.org/.

[78] Josef Withalm, Eibel Karl, and Micheal Fasching. Agents solving strategic
problems in tourism. In DanielR. Fesenmaier, Stefan Klein, and Dimitrios
Buhalis, editors, Information and Communication Technologies in Tourism
2000, pages 275–282. Springer Vienna, 2000.

[79] D. Young and B. Shneiderman. A Graphical Filter/Flow Representation of
Boolean Queries: A Prototype Implementation and Evaluation. Human-
Computer Interaction Laboratory & Department of Computer Science,
1993.

