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I. INTRODUCTION

Omne ignotum pro magnifico.

Tacito

Recent progress in fabrication of nanostructured quantum wires has shown that it is possible to realize quasi-one-
dimensional condensed matter systems hosting a few, and even just one, conducting channel, thus effectively behaving
as “truly one-dimensional” conductors. This motivated the rise of a great attention, theorical as well as experimental,
towards one-dimensional systems. Experimentally, the creation of one-dimensional systems is challenging but realiz-
able. Molecular or atomic layer epitaxy (the deposition of a crystalline overlayer on a crystalline substrate) is one
promising and consolidated approach to build one-dimensional quantum wires. For example, the growth of AlAs-
AlGaAs-AlAs on vicinal (110) GaAs substrates1, a defect free Fe layers obtained on As-saturated GaAs surfaces2 and
growth of Au-assisted and self-assisted InAs nanowires with diameters of 10 nm3. The most used material are Si and
Ge from group IV, InAs, GaAs and GaN from group III-V and CdSe or ZnO from group II-VI. Alternatively, theoret-
ical predictions can be, and have been, tested4,5 on macromolecules with tubular structure like single walled carbon
nanotubes6. It is also possible to fabricate atomically precise nanostructures like 1D Co atomic chains deposited on
the stepped surface of Pt(997)5 or atomic Au chains deposited on Si step edges7,8.
There are two main reasons that have led to increased attention in one-dimensional systems: the exotic effects that

occur with a decrease in the number of dimensions (integer and fractional quantum Hall effect, spin-charge separation,
breaking down of Fermi liquid approach, Majorana fermions at the boundaries) and the possible technological and
engineering applications that the control of nanoscopic systems would allow (NASA spent $11 million in 2005 to
produce a one-meter long prototype quantum wire able to conduct electricity 10 times faster than copper at just
a sixth of the weight and the chemistry Nobel prize Richard Smalley saw quantum wire as “a divine solution to
humanity’s electricial power transmission problem”). After single quantum wires were built, the next natural step is
to extend the results of electronic engineering to the quantum world. That is, to design and reproduce the quantum
analogue of more complex structures like logic gates, beam splitters, switches, bridges and others. In real life, a circuit
is not only composed by a single perfect wire: it contains junctions and impurities, points where an electron have
to “choose what to do”. Thus, in order to be effective for real systems, a formalism must provide a tool to treat
barriers in a single wire, junctions between two, or more, wires (see Figure [1], panel d) and in general other possible
component useful for the realization of a quantum circuit.
Teoretically, a large class of electronic systems in spatial dimensions higher than one is well described within Landau

Fermi liquid theory which is capable of successfully accounting for the main effects of electronic interaction9–12. In
Landau’s Fermi liquid theory, adding the interaction among electrons and/or between electrons and external potentials
(such as the lattice potential of ions in a metal, for instance) on top of a Fermi gas does modify the whole picture
of the Fermionic system only quantitatively, not qualitatively. Indeed, the basic assumption is that, close to the
Fermi surface, low-energy elementary ”quasiparticle” excitations of the interacting electron liquid are in one-to-one
correspondence with particle- and hole-excitations in the noninteracting Fermi gas. This corresponds to a nonzero
overlap between the quasiparticle wave function in the Fermi liquid and the electron/hole wave function in the
noninteracting Fermi gas, which is reflected by a coefficient ZF of the quasiparticle peak at the Fermi surface in the
spectral density of states that is finite though, in general, < 1 (ZF = 1 corresponds to the noninteracting limit). The
”adiabatic deformability” of quasiparticles to electrons and/or holes by smoothly switching off the interaction allows,
for instance, to address transport in a Fermi liquid in a similar way to what is done using scattering approach in a
noninteracting Fermi gas, etc.13. At variance with what happens in spatial dimensions higher than 1, in purely one-
dimensional interacting electronic systems the effects of the interaction are much more dramatic that what happens in
Landau’s theory14. Any attempt to encode the effects of the interaction in a simple finite parameter renormalization
of the quasiparticles and of the quasihole does ultimately fail, due to the fact that the formulas for the renormalized
quantities would blow up at the Fermi level, thus invalidating the whole procedure leading to Landau Fermi liquid
theory. Landau’s Fermi liquid theory is grounded on the possibility of obtaining reliable results by perturbatively
treating the electronic interaction12,15. This is strictly related to the small rate of multi-particle inelastic processes,
in which, due to the interaction, an electron/hole emits electron-hole pairs. While this is typically the case in systems
with spatial dimension d higher than one, in one-dimensional systems, the proliferation of particle-hole pair emission
at low energies leads to a diverging corresponding rate, which makes the quasiparticle peak disappear (ZF = 0).
As a result, the interaction cannot be dealt with perturbatively and one has rather to resort to nonperturbative
techniques, allowing for summing over infinite sets of diagrams16–18 Formally, interacting electrons in one dimension
are commonly treated within Tomonaga-Luttinger liquid (TLL)-approach19,20. TLL formalism provides a general
description of low-energy physics of a one-dimensional interacting electronic system in terms of collective bosonic
excitations (charge- and/or spin-plasmons). Electronic operators are realized as nonlinear vertex operators of the
bosonic fields21,22. Tomonaga was able to encode the excitations of a one-dimensional Fermi gas into the excitations
of free Bosons. Resorting to Bosonic coordinates, one sees the magic that the Bosonic Hamiltonian corresponding to
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FIG. 1. a) InAs quantum wires grown on the InAs (111)B surface from 40 nm diameter Au colloids dispersed from solution
[picture from: ”Electron transport in indium arsenide nanowires”, Shadi A. Dayeh]; b) TEM image of a single-walled nanotube
[picture from: ”Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls”, Bethune et al.]; c) STM topog-
raphy showing 1D atomic chains of Co grown by step decoration on Pt(997) [picture from: ”Atomic Chains at Surfaces”, J. E.
Ortega and F. J. Himpsel]; d) carbon nanotube film with X- and Y-junctions [picture from: ”Flexible high-performance carbon
nanotube integrated circuits”, Dong-ming Sun, et al.]

free Fermions and the one corresponding to interacting Fermions take the same form. They are both quadratic in the
particle density operator. As for what concerns transport properties, the most striking prediction of the TLL-approach
is possibly the power-law dependence of the conductance on the low-energy reference scale (”infrared cutoff”), which
is typically identified with the (Boltzmann constant times the) temperature, or with the (Fermi velocity times the)
inverse system length (”finite-size gap”) in a dc transport measurement, or with eV , with V being an applied voltage,
in a nonequilibrium experiment. While TLL-formalism poses no particular constraints on the strength of the “bulk”
interaction within the quantum wires, it suffers of limitations, when used to describe transport across impurities in
an interacting quantum wire, or conduction properties at a junction of quantum wires. Within TLL-framework, a
junction of quantum wires is mapped onto a model of K-one dimensional TLLs (one per each wire), interacting with
each other by means of a “boundary interaction” localized at x = 0. Dealing with such a class of boundary problems
requires pertinently setting the boundary conditions on the plasmon fields at x = 0. While in some very special cases
the boundary conditions can be written as simple linear relations between the plasmon fields, in general they cannot.
When it is possible the linear relation is expressed in terms of a “current splitting matrix” (M-matrix). This is a
consequence of the nonlinearity of the relations between bosonic and fermionic fields: even linear conditions among
the fermionic fields are traded for highly nonlinear conditions in the bosonic fields. As a consequence, except at the
fixed points of the boundary phase diagram, where the boundary conditions are “conformal”, that is, linear in the
bosonic fields, the boundary interaction can only be dealt with perturbatively, with respect to the closest conformal
fixed point23,24. Other information can be obtained only making educated guesses from the global topology of the
fixed-point manifold of the phase diagram. Using the Bosonic approach junctions of 2 and 3 wires have beed analysed
under particular symmetries in the bulk or at the junction25–31. Recently, the bosonization approach in combination
with zero-temperature numerics has successfully been employed to compute the junction conductance by relating it
to the asymptotic behavior of certain static correlation functions. Correspondingly, the length scale over which the
asymptotic behavior emerges has been worked out, as well32,33. Also, numerical calculations of the finite-temperature
junction conductance can be performed by using quantum Monte Carlo approach34 or, likely, by implementing some
pertinently adapted version of the finite-temperature density matrix renormalization group approach to quantum spin
chains35,36.
Alternatively, one may not be required to give up using fermionic coordinates, by employing a systematic renormal-

ization group (RG) procedure to treat the effects of the bulk interaction on the scattering amplitudes at the junction.
Among the various possible ways of implementing RG for junctions of interacting QWs, the two most effective (and
widely used) ones are certainly the poor man’s fermionic renormalization group (FRG)-approach, based upon a sys-
tematic summation of the leading-log divergences of the S-matrix elements at the Fermi momentum and typically
yielding equations that can be analytically treated37–40, and the functional renormalization group (fRG)-approach,
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based on the functional renormalization group method, leading to a set of coupled differential equations for the vertex
part that, typically, can only be numerically treated41–50. Both approaches are expected to apply only for a sufficiently
weak electronic interaction in the quantum wires and, in this sense, they are less general than the TLL-approach,
which applies even for a strong bulk interaction. Nevertheless, at variance with the TLL-approach, a RG-approach
based on the use of fermionic coordinates leads to equations for the S-matrix elements valid at any scale and, thus,
it allows for recovering the full scaling of the conductance, all the way down to the infrared cutoff.
Besides the remarkable merit of providing analytically tractable RG-flow equations, the FRG-approach, when

applied to interacting spinful electrons, also accounts for the backscattering bulk interaction, which is usually neglected
in the TLL-framework37,38. Moreover, it can be readily generalized to describe junctions involving superconducting
contacts, at the price of doubling the set of degrees of freedom, to treat particle- and hole-excitations on the same
footing51. The fermionic RG-approaches suffer, however, of the limitation on the bulk interaction, which must be
weak, in order for the technique to be reliably applicable. Futhermore, they are not able to describe many-particle
scattering processes (that can be instead defined through a M-matrix) even going beyond the leading log correction
in perturbation theory52–54.
The search for observable predictions regarding the junction of quantum wires has so far been focused on two

main physical quantity: the charge transport properties of the system, expressed in terms of the conductance tensor,
and described through different techniques like the Landauer-Buttiker formalism, the Kubo formula or the Green’s
function method, or the or measurements of the local density of states (LDOS) of the bulk electrons close to the
junction, directly measurable with a scanning tunneling microscope (STM). Both these quantities are related to the
S or M matrices, so the knowledge of such matrices, that is the knowledge of the boundary conditions, gives direct
access to these and other physical properties of the system (like the power dissipation, or the measurements of the
occupation of pairs of Majorana zero modes).
Starting from these observations, the thesis is organized as follows:

• in Chapter II we provide an effective tool able to generalize in a systematic way the implementation of the
boundary conditions, discussing the theoretical and applicative interest. Such a tool, able to manage and tame
the mare magnum of possible boundary conditions of a system involving one dimensional quantum wires, would
be the trait d’union between the classical electronic engineering, which led to the patent and to the manufacture
of all the know electronic devices, and the quantum mechanichs that, for what concerns this area of application,
it is still terra incognita in many of its aspects;

• in Chapter III making a combined use of bosonization and fermionization techniques, we build nonlocal trans-
formations between dual fermion operators, describing junctions of strongly interacting spinful one-dimensional
quantum wires. Our approach allows for trading strongly interacting (in the original coordinates) fermionic
Hamiltonians for weakly interacting (in the dual coordinates) ones. It enables us to generalize to the strongly
interacting regime the FRG-approach to weakly interacting junctions. As a result, on one hand, we are able to
pertinently complement the information about the phase diagram of the junction obtained within bosonization
approach; on the other hand, we map out the full crossover of the conductance tensors between any two fixed
points in the phase diagram connected by a renormalization group trajectory55;

• in Chapter IV we investigate more exotic setups, studying the local density of states (LDOS) in systems of
Luttinger-liquid nanowires connected to a mesoscopic superconducting island with finite charging energy, in
which Majorana bound states give rise to different types of topological Kondo effects56. Kondo effect emerges
usually due to the coupling of bulk electrons with a quantum spin with degenerate energy levels. Similarly,
topological Kondo is achieved when the nonlocal quantum spin is build in terms of K > 3 Majorana fermions at
the interface between the Luttinger-liquid nanowires and the mesoscopic superconductor. We show that electron
interactions enhance the low-energy LDOS in the leads close to the island, with unusual exponents due to Kondo
physics that can be probed in tunneling experiments57;

• in Chapter V we provide the main conclusions of this thesis and outline some further perspective of our
investigation.
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FIG. 2. Sketch of the system: K quantum wires of length ℓ join together at x = 0

II. RENORMALIZATION GROUP APPROACHES TO JUNCTIONS

OF INTERACTING QUANTUM WIRES

What is not possible is not to choose.

Jean-Paul Sartre

Within Luttinger Liquid framework an impurity corresponds to a nonintegrable boundary interaction term58 which,
in general, can be dealt with only perturbatively, using, as paradigmatic reference, the case in which the impurity
strength is so high to effectively break the wire into two (”disconnected” quantum wire), or is so weak that the
wire may be regarded as ”almost homogeneous”, or in general a more complex situation that can be expressed as a
linear relation between bosonic fields that preserve the right commutation rules (”conformal” boundary condition).
In Fermionic coordinates, instead, the amplitudes corresponding to the possible single-electron scattering processes at
an impurity are encoded within the scattering matrix S, which is typically K ×K (for a normal junction or 2K × 2K
for a superconducting junction), K being the number of independent single-electron channels. If, at a first stage,
one neglects the interaction, then the S matrix exactly encodes all the scattering processes, no matter on how strong
is the interaction centre (the junction). Introducing the interaction one then finds that, within perturbation theory,
the amplitude of each single-particle scattering process diverges, as the corresponding energy gets close to the Fermi
energy. Keeping these divergence under control in a systematic way is possible, by resorting to the renormalization
group (RG) approach, in which divergences are traded for an effective dependence of the physical amplitudes on
a dimensionful energy scale (which can be the level spacing, or kBT , T being the temperature, or ~ω, where ω is
the frequency associated to an ac measurement, etc.). Such a dependence propagates onto the physical quantities,
calculated starting from the single-particle amplitudes, and thus takes physical effects which can be detected, for
instance, in an equilibrium dc transport measurement. As a result, the Fermionic approach can be, for a large class
of impurity problems, as effective as the Bosonic one.

II.1. Model

In this section we outline the main properties of the physical systems we mean to study. As sketched in Fig. [2], we
will consider systems made by an arbitrary number of one dimensional quantum wires of length ℓ, coupled together
at a point called ”junction”. We will assume that all the wires are single-channel and spinless (treating each channel
within a single wires, including the spin, individually). The generic system is described by an Hamiltonian of the form

H =

K∑

j=1

HB,j +HJ +HI (2.1)
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FIG. 3. a) Parabolic dispersion relation for a 1d quantum wire; b) linearized dispersion relation around the left and right Fermi
points and with a bandwidth cutoff; c)linearized dispersion relation without a bandwidth cutoff (Luttinger model)

Here, HB,j is the bulk Hamiltonian for the j-th wire. Each wire is characterized by a spatial coordinate going from
0, near the junction, to ℓ (with ℓ → +∞), far from the junction. For a system of free fermions in one dimension the
dispersion relation for Hamiltonian is usually parabolic and the Fermi surface of the noninteracting model consists of
two disconnected Fermi points, ±kF (see Fig. [3], panel a), such that e+i(kF+k)x represent a wave going from 0 to
ℓ, that is an “outgoing” or “right Fermi point” fermion and we will use the index R to denote it, while e−i(kF+k)x

represent a wave going from ℓ to 0, that is an “ingoing” or “left Fermi point” fermion and we will use the index L to
denote it.

As it was suggested by Tomonaga, in the Luttinger Liquid context, the divergences at the Fermi level are a low-
energy feature and, thus, one may take care of them by keeping only low-energy, long-wavelength excitations nearby
the Fermi energy, that is, by linearizing the single-particle spectrum and neglecting states further away from the two
Fermi point. For this reason, we introduce the “high-k cutoff”, called “bandwidth cutoff”, such that |k| < Λ and the
dispersion relation ǫ(p) may be regarded as linear, about the Fermi points, for |p − kF | < Λ and for |p + kF | < Λ,
respectively (see Fig. [3], panel b). Thus, as a consequence of linearization, we introduce two sets of fermionic
operators describing electrons with momentum near the “left” and “right” Fermi points so that we can write the
fermionic field as

ψj(x) = e−ikF,jxψL,j (x) + e+ikF,jxψR,j (x) (2.2)

where we have defined the chiral fields

ψR,j (x) =
1√
ℓ

∑

k

eikxaR,j (k)

ψL,j (x) =
1√
ℓ

∑

k

e−ikxaL,j (k) (2.3)

that, by definition, vary slowly on the length scale k−1
F and may be regarded as independent Fermionic fields, obeying

the anticommutation relations:

{

ψA(x), ψ
†
B(y)

}

= δABδ(x− y) (2.4)

{ψA (x) , ψB (x)} =
{

ψ†
A (x) , ψ†

B (x)
}

= 0 (2.5)

In terms of these fields the bulk Hamiltonian has the form
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HB = −i
K∑

j=1

vj

ℓ∫

0

dx
{

ψ†
R,j (x) ∂xψR,j (x)− ψ†

L,j (x) ∂xψL,j (x)
}

(2.6)

with dispersion relation ǫj;k = vjk For a mathematically more rigorous treatment20 we have to introduce some high
energy non-physical states extending the relation dispersion from −∞ to +∞ in both right and left branches (see
Fig. [3], panel c). Doing so, that is removing the bandwidth cutoff, it is necessary to introduce another cutoff to
avoid unphysical divergences. This is realized introducing a “transfer cutoff” in the interaction Hamiltonian. The
differences in the use of the bandwidth or transfer cutoff are deeply discussed in Refs. [16, 59, and 60].
HJ is the junction Hamiltonian; it contains all the boundary operators that describe the physical processes involving

the electrons at the point x = 0. Typically, the most relevant terms are bilinear or quartic in the fermionic operators.
They may preserve or not charge and spin (for example in presence of a superconducting junction) and may involve
other operators like majorana edge states or quantum dots. The form of the junction Hamiltonian depends strongly
by the system taken into analysis so, for the moment, we will not give to it a specific form.
HI is the interaction Hamiltonian. Requiring the conservation of the number of electrons in each wire, it has the

form of a density-density interaction and contains intra-wire and inter-wire terms. Its generic form is

HI =
1

2

K∑

j=1

K∑

j′=1

x
dxdyρj(x)Vj,j′(x− y)ρj′(y) (2.7)

where Vj,j′(x − y) is a real, symmetric under wire indices exchange and parity-symmetric short range potential and

ρj(x) = ψ†
j (x)ψj(x). The fact that Vj,j′ (x) has a finite range, λ, limits the momentum transfer to a stripe of half-width

D0 ∼ 1/λ about the Fermi momentum, this act as our transfer cutoff.
From the Hamiltonian, H, we can recover the Hamiltonian for spinful wires or multichannel wires with an appro-

priate wire indices replacement. For example, the Hamiltonian for K spin- 12 wires is recovered from the Hamiltonian
for 2K spinless wires through the replacement

j even→ j, ↑
j odd→ j, ↓ (2.8)

In this case Eq. [2.6] and Eq. [2.7] assume the form

HB = −i
K∑

j=1

∑

σ

vj

∫ ℓ

0

dx
{

ψ†
R,j,σ(x)∂xψR,j,σ(x)− ψ†

L,j,σ(x)∂xψL,j,σ(x)
}

(2.9)

and

HI =
1

2

K∑

j=1

K∑

j′=1

∑

σσ′

∫ L

0

dx dy ρj,σ(x)Vj,j′;σ,σ′(x− y)ρj′,σ′(y) (2.10)

respectively. Finally, even if it is not true in general (like for example for a spin-orbit coupled quantum wire in a
magnetic field61), in the following, to simplify the notation, we will assume that the Fermi momentum is the same for
all the wires specifying, where needed, the main effects of this simplification.

II.2. Scattering matrix

In the non interacting case, if the only relevant operators within the junction Hamiltonian are the operators bilinear
in the fermionic fields, the full dynamics of the scattering problem is encoded by the K ×K scattering matrix S (ǫk),
defined so that S (ǫk) acts on the incoming-wave amplitudes, giving back the outgoing-wave amplitudes. For a normal
junction of K wires for example:

aR,j (k) =
K∑

j′=1

Sj,j′ (ǫk) aL,j′ (k) (2.11)
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or in matrix form







...
aR,j (k)

...







=






S1,1 (ǫk) · · · S1,K (ǫk)
...

. . .
...

SK,1 (ǫk) · · · SK,K (ǫk)












...
aL,j (k)

...







(2.12)

The element on the diagonal, Si,i (ǫk) ≡ ri,i, represent the reflection coefficient within wire i, while the off-diagonal
terms, Si,j (ǫk) ≡ ti,j , correspond to the transmission coefficient between different wires. The modulus squared of these
coefficients correspond to the probability amplitude for that process. From probability current continuity equation,
one readily sees that S (ǫk) is a unitary matrix, that is

S (ǫk)S
† (ǫk) = S† (ǫk)S (ǫk) = 1

This constrain correspond to the quantum analogous of the Kirchhoff law and strongly restricts the number of
independent element of the S-matrix. A K ×K complex matrix depends from a total of 2K2 real parameters; the
unitary requirement, that can also be written as

K∑

k=1

SikS
∗
jk =

K∑

k=1

SkiS
∗
kj = δij , 1 ≤ i, j ≤ K (2.13)

impose some constraints on them. These equations are redundant, as it can be easily seen observing that an exchange of
i and j leaves the conditions unaffected. This means that the only independent constrains are given by 1 ≤ i ≤ j ≤ K,
or:

{∑K
k=1

∣
∣S2
ik

∣
∣ = 1 1 ≤ i = j ≤ K

∑K
k=1 SikS

∗
jk = 0 1 ≤ i < j ≤ K

(2.14)

The first line is real and put K constrains, the second line contains (K − 1) + (K − 2) + · · · + 2 + 1 = K (K − 1) /2
complex independent equation, that correspond to K (K − 1) constrains. This means that a unitary matrix has only
2K2−K−K (K − 1) = K2 real independent parameters. In a physical contest, these parameters are somehow related
to the coefficients that appear in the junction Hamiltonian, HJ and not all of them are important or truly independent.
Indeed, there are two main reasons that further reduce the number of free parameters: possible symmetries of the
system (time reversal, particle-hole, Zn, Dn, ...) and the fact that physical quantities, being real, depend on the
amplitudes and not on the phases of the S-matrix coefficients (so for example an overall phases in the S-matrix has
no real physical meaning). There are different ways to parametrize a matrix in terms of the independent parameters.
We can write a generic 2× 2 S-matrix (S ∈ U (2))

S =

[
r1,1 t1,2
t2,1 r2,2

]

(2.15)

as

S (θ, φ, ϕ1, ϕ2) = eiφ
[

cos θeiϕ1 sin θeiϕ2

− sin θe−iϕ2 cos θe−iϕ1

]

(2.16)

or, putting ϕ1,2 = ψ1 ± ψ2, as

S (θ, φ, ψ1, ψ2) = eiφ
[
eiψ1 0
0 e−iψ1

] [
cos θ sin θ
− sin θ cos θ

] [
eiψ2 0
0 e−iψ2

]

(2.17)

Another useful parametrization is given in terms of the Pauli matrices σi, i = 1, 2, 3
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σi =

[
δi,3 δi,1 − iδi,2

δi,1 + iδi,2 −δi,3

]

(2.18)

and Euler angles θi, i = 1, 2, 3, as

S (φ, θ1, θ2, θ3) = eiφe
i
2 θ1σ3e

i
2 θ2σ1e

i
2 θ3σ3 (2.19)

Let us note that for φ = 0 we obtain the subgroup SU (3).
For a generic 3× 3 S-matrix (S ∈ U (3))

S =





r1,1 t1,2 t1,3
t2,1 r2,2 t2,3
t3,1 t3,2 r3,3



 (2.20)

a possible useful parametrizations is

S
(

{ϕi}5i=1 ,K
)

=





1 0 0
0 eiϕ1 0
0 0 eiϕ2



K





eiϕ3 0 0
0 eiϕ4 0
0 0 eiϕ5



 (2.21)

where K, in the Kobayashi-Maskawa parametrization, depends on four free parameters and can be written as

K
(

{θi}3i=1 , δ
)

=





cos θ1 − sin θ1 cos θ3 − sin θ1 sin θ3
sin θ1 cos θ2 cos θ1 cos θ2 cos θ3 − sin θ2 sin θ3e

iδ cos θ1 cos θ2 sin θ3 + sin θ2 cos θ3e
iδ

sin θ1 sin θ2 cos θ1 sin θ2 cos θ3 − cos θ2 sin θ3e
iδ cos θ1 sin θ2 sin θ3 − cos θ2 cos θ3e

iδ



 (2.22)

or, in the Chau-Keung parametrization, as

K
(

{ϑi}3i=1 , ξ
)

=





1 0 0
0 cosϑ1 sinϑ1
0 − sinϑ1 cosϑ1









cosϑ2 0 sinϑ2e
−iξ

0 1 0
− sinϑ2e

iξ 0 cosϑ2









cosϑ3 sinϑ3 0
− sinϑ3 cosϑ3 0

0 0 1



 (2.23)

Another useful parametrization62 is given in terms of the Gell-Mann matrices λi, i = 1, ..., 8, and the generalized
Euler angles ψi, i = 1, ..., 9, as

S
(

φ, {ψi}8i=1

)

= eiφUe
i
2λ5ψ1Ūeiλ8ψ2 (2.24)

where

U
(

{ψi}5i=3

)

= e
i
2λ3ψ3e

i
2λ2ψ4e

i
2λ3ψ5 (2.25)

and

Ū
(

{ψi}8i=6

)

= e
i
2λ3ψ6e

i
2λ2ψ7e

i
2λ3ψ8 (2.26)

The sets (ψ3, ψ4, ψ5) and (ψ6, ψ7, ψ8) play the roles of Euler angles for two different SU (2) groups. The angles
(ψ1, ψ4, ψ7) take the name of latitudes and they range in [0, π], while the angles (ψ2, ψ3, ψ5, ψ6, ψ8) are called azimuthal
coordinates.
Increasing the order of the matrix makes the parametrization harder (see for example Ref. [63] for the parametriza-

tion of a 4×4 unitary matrix). However, for a generic S-matrix of order K some recursive algorithms can be in hand.
Any SK ∈ U (K) can be written in the form
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SK = BK ·
(

1 0
0 SK−1

)

(2.27)

where BK ∈ U (K) is an unitary matrix uniquely defined by its first column that is a vector of the unit sphere S2K−1

of the Hilbert space CK

S2K−1 =
{
x ∈ CK , ‖x‖ = 1

}
(2.28)

and SK−1 ∈ U (K − 1). Iterating the relation, SK can be written as the product of K unitary matrices

S = BK ·B1
K−1 · · ·BK−1

1 (2.29)

where

BnK−n =

(
IK 0
0 BK−n

)

(2.30)

Such a parametrization always exists. It is easy to check that the number of parameters is preserved, because it is
given be 1 + 3 + · · ·+ 2K − 1 = K2.
What we have said until now can be extended to the case of superconducting junctions, that is systems that allow

physical processes at the boundary that do not preserve charge (the easiest examples are the normal-superconductor
junction51 and the normal-”topological superconductor” junction61,64). In this case a description in terms of S-matrix
can still be used but with some minor adjustments. First of all the dimension of the S-matrix must be doubled, to
take into account both the particle and hole channels on the same footing. That is

aR,j (k) =
K∑

j′=1

[

Se,ej,j′ (ǫk) aL,j′ (k) + Se,hj,j′ (ǫk) a
†
L,j′ (−k)

]

(2.31)

and

a†R,j (−k) =
K∑

j′=1

[

Sh,ej,j′ (ǫk) aL,j′ (k) + Sh,hj,j′ (ǫk) a
†
L,j′ (−k)

]

(2.32)

The diagonal elements, Se,ei,i (ǫk) ≡ rNi,i, still represent the reflection coefficients within wire i, while the off-diagonal

terms, Se,ei,j (ǫk) ≡ tNi,j , correspond to the transmission coefficients between different wires. The new elements on the

form, Sh,ei,i (ǫk) ≡ rAi,i, represent the Andreev reflection coefficient within wire i, while the terms, Sh,ei,j (ǫk) ≡ tAi,j ,
correspond to the crossed Andreev reflection coefficient between different wires. They transform an incoming electron

into an outgoing hole. The S-matrix elements Sh,hi,j (ǫk) and S
e,h
i,j (ǫk) play the same role of Se,ei,j (ǫk) and S

h,e
i,j (ǫk) but

for an incoming hole. All these 2K × 2K coefficients are not independent. Indeed, the unitary condition, S†S, is true
also for the superconducting case. Furthermore, making the complex conjugate of Eq.[2.32] and replacing k with −k,
we derive the particle-hole symmetry constraint

Sh,hi,j (ǫk) = Se,e†i,j (ǫ−k)

Sh,ei,j (ǫk) = Se,h†i,j (ǫ−k) (2.33)

These are all the general statement on the S-matrix that can be derived without giving a specific form to the
junction Hamiltonian HJ . Knowing the S-matrix, its symmetries and how its coefficients are related to the physical
parameters (like the chemical potential, backscattering amplitude and so on) is fundamental to describe the behaviour
of the system. Following the fermionic approaches37,39 the S-matrix remains the major player also in presence of a
weak bulk interaction, as long as it is confined to a finite region L so that it is possible to define asymptotic scattering



12

states. Indeed, as we will show in the next section through a Green’s functions approach, the effect of the interaction
can be absorbed within a renormalization of the scattering matrix coefficients. That is, the S-matrix of the non
interacting system is replaced by a new, scale dependent, S-matrix, where the role of the scale, Λ, can be played for
example by the temperature, the length of the system, the energy or the applied voltage. The equations that give
the form of the renormalized S-matrix coefficients as a function of the scale variable are called renormalization group
(RG) equations. They depend on the interaction potential present in HI , and on the S-matrix itself (in particular on
the bare value of the S-matrix, that is the matrix in the non interacting regime). They can be written as

dSi,j (ǫk,Λ)

d ln Λ
= β ({Si,j (ǫk,Λ)} , Vi,j (Λ)) (2.34)

The small number of S-matrices for which all the RG equations are zero are scale invariant and the interaction does
not modify the behaviour of the system. For this reason, they are called fixed points (FP). Each of them define a class,
within the space of all possible K ×K (or 2K × 2K) matrices, to which all other non FP S-matrices move towards
during the renormalization procedure driven by Eqs. [2.34]. All the S-matrices, obtained by the same Hamiltonian,
that collapse on the same FS at the end of the RG trajectory, and therefore belong to the same class, share the
same low energy, low temperature, large length behaviour in presence of interaction. Furthermore, playing with the
interaction potential it is possible to stabilize one particular FP and force the system to work as we want. Later
we will give some example of possible and interesting FPs showing their importance. The parametrization of the
S-matrix given above, plays now a relevant role. Indeed, it allows us to exchange the RG equations for the coefficients
into equation for the K2 real parameter that parametrize the matrix. Furthermore, under particular circumstances,
the RG equations for these parameters can be traded for equations for the physical parameters contained in HJ .

II.2.1. Current splitting matrix

Until now we have described all actors and stages involved in the S-matrix description of junctions of one dimensional
quantum wires. The last step consist in the definition of the “current splitting matrix” M

S , whose elements are given
by

M
S
i,j ≡ |Si,j |2 (2.35)

M
S has two important properties: first, its elements are real and positive, second, it satisfy the constrains

∑

i

M
S
i,j =

∑

j

MS
i,j = 1 (2.36)

This condition is the classical Kirchhoff law for the currents. Indeed, starting from the S-matrix it is easy to check
that the “current splitting matrix” defined above relates the incoming and outgoing currents, IR(L)j . If the S-matrix
energy dependence can be disregarded, Eq.[2.11] can be also be written as

ψR,j (0) = Sj,j′ψL,j′ (0) (2.37)

that implies

IRi ∝
〈

ψ†
R,iψR,i

〉

=
∑

j

|Si,j |2
〈

ψ†
L,jψL,j

〉

∝
∑

j

M
S
i,jILj (2.38)

Furthermore, in the DC limit, the Landauer-Buttiker theory relates the conductance tensor Gi,j , that is a physical
well defined and measurable quantity, with the S-matrix, and then the M -matrix, through (see Appendix [II.8]

Gi,j ∝ δi,j −M
S
i,j (2.39)

So, a control on the current splitting matrix implies a control on the transport properties of the system under analysis.
To better understand the mathematical properties of M, it is helpful to define the following sets of matrices:
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we call a matrix “doubly stochastic” if all its element are real and positive and the sum over the element of a row
or a column is one. That is, if it belongs to the set

Dstoc (K) ≡






MK×K : Mi,j ∈ R+ ∧

K∑

i=1

Mi,j =

K∑

j=1

Mi,j = 1






(2.40)

Furthermore, we call a matrix “unistochastic” if it is doubly stochastic and its elements can be written as the modulus
squared of the elements of an unitary matrix. That is if it belongs to the set

Ustoc (K) ≡






MK×K : Mi,j ∈ R+ ∧

K∑

i=1

Mi,j =

K∑

j=1

Mi,j = 1 ∧ Mi,j = |Si,j |2 ∧ S ∈ U (K)






(2.41)

It is true that Ustoc (K) ⊂ Dstoc (K) but not the vice versa.
This two sets of matrices are present in a great number of fields in physics involving transition probabilities, like

particle physics, foundation of quantum theory, quantum information, computation theory, quantum mechanics on
graphs65–69 and condensed matter physics23,24,70. For this reason a great interest has risen around the mathematical
properties of these matrices sets and their relation with Birkhoff’s Polytope, van der Waerden matrix and Hadamard
matrix71,72. Of particular importance is the Birkhoff–von Neumann theorem73 that states that a matrix is doubly
stochastic if and only if it is a convex combination of permutation matrices

MK×K ∈ Dstoc (K) ⇐⇒







MK×K =
∑

i aiPi
ai ≥ 0,

∑

i ai = 1

Pi ∈ Perm

(2.42)

where the permutation set is defined as

Perm (K) ≡






PK×K : Pi,j ∈ {0, 1} ∧

K∑

i=1

Pi,j =

K∑

j=1

Pi,j = 1






(2.43)

that is, all the elements of each row or column are zero except one that is equal to 1. Let us note en passant that the
intersection between the unistochastic set and the orthogonal group O (K) is the permutation group

Ustoc (K)
⋂

O (K) ≡ Perm (K) (2.44)

The importance of this statement will be clear later, for now let us underline that within Perm (K) there are some
elements such that their corresponding unitary matrix satisfy the FP condition β ({Si,j (ǫk,Λ)} , Vi,j (Λ)) = 0 like, for
example

SN =

(
1 0
0 1

)

, SD =

(
0 1
1 0

)

(2.45)

that respectively describe a junction of two wires that are totally decoupled or fully connected; playing with the
interaction potential we can force the system to collapse on one of these FP. That is, they act as a “quantum”
ON/OFF switch. For a three wire junction we have the following interesting FPs

SN =





1 0 0
0 1 0
0 0 1



 , Sχ− =





0 1 0
0 0 1
1 0 0



 , Sχ+ =





0 0 1
1 0 0
0 1 0



 ,

SN1
=





1 0 0
0 0 1
0 1 0



 , SN2
=





0 0 1
0 1 0
1 0 0



 , SN3
=





0 1 0
1 0 0
0 0 1



 (2.46)
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FIG. 4. Examples of fixed points for two- and three-wire junctions. Panel a) and b) correspond to the matrices SN and SD of
Eq. [2.45]. We have respectively a fully disconnected junction or a perfect wire. Panels from c) to f) refer to Eq. [2.46] and
represent in order three fully disconnected wires (SN ), one disconnected wire with perfect transmission between the other two
(SNi), counterclockwise and clockwise perfect transmission of current (Sχ±)

The first represent three disconnected wires; the second and the third correspond to a system in which the current
coming from wire i is totally transmitted to the next of previous wire, while the last three matrices correspond to a
system in which one wire is decoupled and the other two are fully connected. They are the quantum counterpart of
the electronic component that in engineering go under the name of circulators and switches (a pictorial interpretation
of these matrices is given in Fig. [4]). These are only a small example of possible realizable systems. Changing the
number of involved wires, other interesting behaviours that can be described through the splitting matrix formalism,
and that have a relevant physical and engineering role if reproduced experimentally, emerges. For examples, the
“magic tee” and the “rat-race coupler” described by a scattering matrix of the form

Smagix−tee =
1√
2






0 0 1 −1
0 0 1 1
1 1 0 0
−1 1 0 0




 Srat−race =

−i√
2






0 1 0 −1
1 0 1 0
0 1 0 1
−1 0 1 0




 (2.47)

or the symmetrical and asymmetrical couplers (with α2 + β2 = 1)

Ssym =






0 α iβ 0
α 0 0 iβ
iβ 0 0 α
0 iβ α 0




 Sasym =






0 α β 0
α 0 0 −β
β 0 0 α
0 −β α 0




 (2.48)

or more complicated systems that involves an higher number of wires like the one in Refs. [74–76].
Through the fermionic approaches, that are based on imposing boundary conditions via the S-matrix, it is possible

to perform a systematic study of physical systems whose current splitting matrix belongs to the set of unistochastic
matrices Ustoc (K). Within this set, we can focus on some particular matrices, some of them belonging to the
permutation group Perm (K), that are very interesting from a physical and applicative point of view. Furthermore,
we know that this is only a subset of a more wide set including splitting matrix, like the ones belonging to Dstoc (K),
with even more interesting properties. To do this other approaches must be implemented, like the one that we will
discuss in the next sections.
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For a junction where Andreev-like processes are allowed at the boundary, the dc conductance is proportional to

Gi,j ∝ δi,j −
∣
∣Se,ei,j

∣
∣
2
+
∣
∣
∣S
e,h
i,j

∣
∣
∣

2

(2.49)

If we assume that the junction is superconductive, that is all the boundary processes are mediated by the supercon-
ductor so that no direct coupling between normal wires are allowed, for energies under the superconducting gap no
normal processes are present, Se,ei,j = 0, and the dc conductance reduces to

Gi,j ∝ δi,j +
∣
∣
∣S
e,h
i,j

∣
∣
∣

2

(2.50)

This suggest us to define a current splitting matrix, belonging to the set −Ustoc (K), of the form

M
A
i,j ≡ −

∣
∣
∣S
e,h
i,j

∣
∣
∣

2

(2.51)

It follows that there is a duality between the normal and purely superconducting junction77 and that the full analysis
done for the normal case can be extended to the superconducting case only changing a sign in front of each splitting
matrix. The general case, when normal and Andreev-like processes are both non zero it is much more complicate as
the corresponding splitting matrix does not belong to any known set.

II.3. G-ology model and renormalization group equations for bulk and boundary parameters

In this section we analyse the effect of a density-density interaction Hamiltonian on the bulk and boundary properties
of the system. Starting from Eq. [2.7] and making advantage of the decomposition of the fermionic fields Eq. [2.2],
one obtains

ρj(x) = ψ†
j (x)ψj (x)

= ψ†
j,Rψj,R + ψ†

j,Lψj,L + ψ†
j,Rψj,Le

−2ikF x + ψ†
j,Lψj,Re

2ikF x (2.52)

the interaction can be decomposed in a sum of nine different contributions involving left and right chiral fields, which
can be listed as

R†R†RR R†L†RR L†L†RR

R†R†RL R†L†RL L†L†RL

R†R†LL R†L†LL L†L†LL

The Feynman diagrams corresponding to each contribution are shown in Fig. [5] and the corresponding processed
in momentum space in Fig. [6].

Following the standard g-ology notation we classify the different types of interaction as follows. We have a forward
scattering term that involves particles with the same chirality and preserve it. The associated momentum transfer is
small and, in the limit of short range interaction, the corresponding interaction Hamiltonian has the form

Hg4 =
1

2

∑

X=L,R

∑

j,j′

g4;j,j′

L∫

0

dx : ψ†
X,j (x)ψX,j (x) :: ψ

†
X,j′ (x)ψX,j′ (x) : (2.53)

with g4;j,j′ ≈ Vj,j′ (0). The normal ordering : : excludes the unphysical interaction of a particle with itself. The
main effect of this interaction term is just to renormalize the Fermi velocity and the chemical potential by a finite,
non-diverging, amount while it has no effect of the renormalization of the scattering matrix and gives only a sub
leading contribution to the renormalization of the other interaction constants (as we will show in next sections). For
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FIG. 5. Scattering processes and g-ology notation of the interaction terms in Hint. Solid and dashed lines represent rightgoing
and leftgoing particles, wavy line represent the interaction.
From top-left to bottom-right: forward and backward scattering that preserve chiralities, monochirality forward scattering,
Umklapp scattering and two examples of non conserving chiralities processes.

FIG. 6. Scattering processes depicted in Fig. [5] represented in the momentum-energy plane

this reasons it can be neglected, from the point of view of the RG analysis. Another forward scattering term that
preserves the chiralities but involves particles with opposite chirality is given by

Hg2 =
∑

j,j′

g2;j,j′

L∫

0

dx : ψ†
R,j (x)ψR,j (x) :: ψ

†
L,j′ (x)ψL,j′ (x) : (2.54)

Again the transfer momentum is small and g2;j,j′ ≈ Vj,j′ (0). Next, the backward scattering term that involves
particles with opposite chiralities and a momentum transfer of the order of 2kF is given by

Hg1 = −
∑

j,j′

g1;j,j′

L∫

0

dx : ψ†
R,j (x)ψR,j′ (x) :: ψ

†
L,j′ (x)ψLj (x) : (2.55)

with g1;j,j′ ≈ Vj,j′ (2kF ). For an long range interaction the backward scattering can be neglected compared to the
forward term, g1;j,j′ ≪ g2;j,j′ , while for a short range interaction they have the same order of magnitude. In the limit
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of point-like interaction, in agreement with the Pauli principle, they have exactly the same values such that the two
contribution, at least in the same wire, cancel each other, g1;j,j − g2;j,j = 0. It is worth to note that, if two wires
have different Fermi momentum, kF,j 6= kF,j′ , then the inter-wire backward scattering should contain an additional
multiplicative fast oscillating factor of the form exp [2i (kF,j − kF,j′)x] and can be ignored61 as the density operator

vary slowly on the scale of k−1
F so that the whole argument averages to zero, after integration. Another backward

scattering term in the interaction Hamiltonian is given by the Umpklapp process that involves two particles near the
same Fermi point that reverse the chiralities after the interaction

Hg3 =
1

2

∑

X=L,R

∑

j,j′

g3;j,j′

L∫

0

dx : ψ†
X,j (x)ψX̄,j (x) :: ψ

†
X,j′ (x)ψX̄,j′ (x) : e

±4ikF x (2.56)

(plus sign is for X = L and minus sign for X = R). This process has a transfer momentum of 4kF and its contribution
is important only at half filling where 4kF is equal to a reciprocal lattice vector and momentum conservation can
be fulfilled. Assuming this is not the case, we will neglect it. Finally, the terms that expect the change of only one
chirality, labeled g5;j,j′ , can be readily neglect, as the argument of the integral is proportional to the rapidly oscillating
function exp (2ikFx) and average to zero after integration. Accordingly, the RG analysis performed in the rest of this
thesis will be based upon an interaction Hamiltonian involving only Eq. [2.54] and Eq. [2.55]. In presence of only
intra-wire interaction the coupling constants are written as

gλ;j,j′ = δj,j′gj,λ

to remove the redundant wire labels. In the spinful case (Eq. [2.8]), the notation

gj,1,‖ = Vj,↑↑(2kF ) = Vj,↓↓(2kF )

gj,2,‖ = Vj,↑↑(0) = Vj,↓↓(0)

gj,1,⊥ = Vj,↑↓(2kF ) = Vj,↓↑(2kF )

gj,2,⊥ = Vj,↑↓(0) = Vj,↓↑(0) (2.57)

is conventionally introduced, to highlight the spin dependence of the interaction on the spin of the involved fermions.

II.4. Renormalization group equations for the conductance tensor and the single particle scattering matrix

One of the main questions about systems of quantum wires is about their transport behaviour. In the following
section we study how junctions of quantum wires conduct electricity. In particular, we are interested in the low-energy,
low-temperature, long-distance limit. In this limit indeed, different junctions with different structures and interaction
show the same behavior, that is belong to the same universality class and share the same linear conductance. In this
section we compute the dc-conductance for a junction of K quantum wires resorting to the Matsubara imaginary-time
formalism, depicted in Appendix [II.6]. In this section the computation is restricted to a normal junction in presence
of forward scattering only but a straight application of the approach allows to extend the result for a superconducting
junction with backward scattering. Up to second order in the interaction, we may list the following contributions to
the D-tensor, defined in Appendix [II.8]. In the absence of interaction, we obtain

DI
(0);j,j′(x, x

′; iΩn)

=
e2v2

β

∑

ω

{−G(0)
(L,j);(L,j′)(x, x

′; iω + iΩn)G
(0)
(L,j′);(L,j)(x

′, x; iω)−G
(0)
(R,j);(R,j′)(x, x

′; iω + iΩn)G
(0)
(R,j′);(R,j)(x

′, x; iω)

+ G
(0)
(L,j);(R,j′)(x, x

′; iω + iΩn)G
(0)
(R,j′);(L,j)(x

′, x; iω) +G
(0)
(R,j);(L,j′)(x, x

′; iω + iΩn)G
(0)
(L,j′);(R,j)(x

′, x; iω)} (2.58)

The first-order correction to the D-kernel due to the interaction is given by

DI
(1);j,j′(x, x

′; τ)

= −e2v2
K∑

u,u′=1

gu,u′

∫ L

0

dx”
∫ β

0

dτ”〈Tτ [: ψ
†
R,j′(x, τ)ψR,j′(x, τ) : − : ψ†

L,j′(x, τ)ψL,j′(x, τ) :]
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× [: ψ†
R,j(x

′, 0)ψR,j(x
′, 0) : − : ψ†

L,j(x
′, 0)ψL,j(x

′, 0) :] : ψ†
R,u(x

”, τ”)ψR,u(x
”, τ”) :: ψ†

L,u′(x
”, τ”)ψL,u′(x”, τ”) :〉(2.59)

At variance, the second-order contribution is given by

DI
(2);j,j′(x, x

′; τ)

=
e2v2

2

K∑

u,u′=1

K∑

s,s′=1

gu,u′gs,s′

∫ L

0

dx1dx2

∫ β

0

dτ1dτ2

× 〈Tτ [: ψ
†
R,j(x, τ)ψR,j(x, τ) : − : ψ†

L,j(x, τ)ψL,j(x, τ) :][: ψ
†
R,j′(x

′, 0)ψR,j′(x
′, 0) : − : ψ†

L,j′(x
′, 0)ψL,j′(x

′, 0) :]

× : ψ†
R,u(x1, τ1)ψR,u(x1, τ1) :: ψ

†
L,u′(x1, τ1)ψL,u′(x1, τ1) :: ψ

†
R,s(x2, τ2)ψR,s(x2, τ2) :: ψ

†
L,s′(x2, τ2)ψL,s′(x2, τ2) :〉(2.60)

Let us, now, start to systematically compute the various corrections making use of the Green’s function of Appendix
[II.7]. For the unperturbed result, in the zero temperature limit (see Eq. [2.200] in Appendix [II.8]), we obtain the
standard result

Gj,j′ =
e2

2π

{

−δj,j′ + |Se,ej,j′ |2
}

(2.61)

where the scattering matrix is evaluated at the Fermi level.
For the First-order corrections, let us set X,X ′ = L,R. A straightforward application of Wick’s theorem yields
(denoting, for simplicity, (x, τ) with w, (x′, 0) with w′, (x”, τ”) with w”)

〈Tτ : ψ†
X,j(w)ψX,j(w) :: ψ

†
X′,j′(w

′)ψX′,j′(w
′) :: ψ†

R,u(w
”)ψR,u(w

”) :: ψ†
L,u′(w

”)ψL,u′(w”) :〉
= −G(0)

(X,j);(X′,j′)(w,w
′)G(0)

(X′,j′);(R,u)(w
′, w”)G

(0)
(R,u);(L,u′)(w

”, w”)G
(0)
(L,u′);(X,j)(w

”, w)

− G
(0)
(X,j);(X′,j′)(w,w

′)G(0)
(X′,j′);(L,u′)(w

′, w”)G
(0)
(L,u′);(R,u)(w

”, w”)G
(0)
(R,u);(X,j)(w

”, w)

− G
(0)
(X,j);(R,u)(w,w

”)G
(0)
(R,u);(L,u′)(w

”, w”)G(L,u′);(X′,j′)(0)(w
”, w

′
)G

(0)
(X′,j′);(X,j)(w

′
, w)

− G
(0)
(X,j);(R,u)(w,w

”)G
(0)
(R,u);(X′,j′)(w

”, w
′
)G

(0)
(X′,j′);(L,u′)(w

′
, w”)G

(0)
(L,u′);(X,j)(w

”, w)

+ G
(0)
(X,j);(R,u)(w,w

”)G
(0)
(R,u);(X,j)(w

”, w)G
(0)
(X′,j′);(L,u′)(w

′
, w”)G

(0)
(L,u′);(X′,j′)(w

”, w′)

− G
(0)
(X,j);(L,u′)(w,w

”)G
(0)
(L,u′);(R,u)(w

”, w”)G
(0)
(R,u);(X′,j′)(w

”, w
′
)G

(0)
(X′,j′);(X,j)(w

′
, w)

− G
(0)
(X,j);(L,u′)(w,w

”)G
(0)
(L,u′);(X′,j′)(w

”, w
′
)G

(0)
(X′,j′);(R,u)(w

′
, w”)G

(0)
(R,u);(X,j)(w

”, w)

+ G
(0)
(X,j);(L,u′)(w,w

”)G
(0)
(L,u′);(X,j)(w

”, w)G
(0)
(X′,j′);(R,u)(w

′
, w”)G

(0)
(R,u);(X′,j′)(w

”, w′) (2.62)

As a result, in Fourier space one obtains

DI
(1);j,j′(x, x

′; iΩn) = e2v2
K∑

u,u′=1

gu,u′
∑

X,X′=L,R

(−1)X+X′ 1

β2

∑

ω,ω′

∫ L

0

dx1

×
{

G
(0)
(X,j);(X′,j′)(x, x

′; iω + iΩn)G
(0)
(X′,j′);(R,u)(x

′, x1; iω)G
(0)
(R,u);(L,u′)(x1, x1; iω

′)G(0)
(L,u′);(X,j)(x1, x; iω)

+G
(0)
(X,j);(X′,j′)(x, x

′; iω + iΩn)G
(0)
(X′,j′);(L,u′)(x

′, x1; iω)G
(0)
(L,u′);(R,u)(x1, x1; iω

′)G(0)
(R,u);(X,j)(x1, x; iω)

+G
(0)
(X,j);(R,u)(x, x1; iω)G

(0)
(R,u);(L,u′)(x1, x1; iω

′)G(0)
(L,u′);(X′,j′)(x1, x

′
; iω)G

(0)
(X′,j′);(X,j)(x

′
, x; iω − iΩn)

+G
(0)
(X,j);(R,u)(x, x1; iω)G

(0)
(R,u);(X′,j′)(x1, x

′
; iω′)G(0)

(X′,j′);(L,u′)(x
′
, x1; iω

′ − iΩn)G
(0)
(L,u′);(X,j)(x1, x; iω − iΩn)

−G
(0)
(X,j);(R,u)(x, x1; iω)G

(0)
(R,u);(X,j)(x1, x; iω − iΩn)G

(0)
(X′,j′);(L,u′)(x

′
, x1; iω

′)G(0)
(L,u′);(X′,j′)(x1, x

′; iω′ + iΩn)

+G
(0)
(X,j);(L,u′)(x, x1; iω)G

(0)
(L,u′);(R,u)(x1, x1; iω

′)G(0)
(R,u);(X′,j′)(x1, x

′
; iω)G

(0)
(X′,j′);(X,j)(x

′
, x; iω − iΩn)

+G
(0)
(X,j);(L,u′)(x, x1; iω)G

(0)
(L,u′);(X′,j′)(x1, x

′
; iω′)G(0)

(X′,j′);(R,u)(x
′
, x1; iω

′ − iΩn)G
(0)
(R,u);(X,j)(x1, x; iω − iΩn)

−G
(0)
(X,j);(L,u′)(x, x1; iω)G

(0)
(L,u′);(X,j)(x1, x; iω − iΩn)G

(0)
(X′,j′);(R,u)(x

′
, x1; iω

′)G(0)
(R,u);(X′,j′)(x1, x

′; iω′ + iΩn)

}

(2.63)
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FIG. 7. First order corrections to the conductance loop: a) one loop correction; b) vertex correction

Diagrammatically, in Eq. [2.63] we can identify two different set of conductance correction terms: the one loop
correction and the verted correction, both depicted in Fig. [7]. Now, after back-rotating to real frequencies by
substituting iΩn with Ω + iη, it is easy to verify that, upon pertinently closing the various integration paths in the
ǫ-space, all the terms at the fourth, fifth, seventh and eighth row of Eq. [2.63] are equal to zero. Therefore, we obtain

DI
(1);j,j′(x, x

′; iΩn) = e2v2
K∑

u,u′=1

gu,u′
∑

X,X′=L,R

(−1)X+X′ 1

β2

∑

ω,ω′

∫ L

0

dx1

×
{

G
(0)
(X,j);(X′,j′)(x, x

′; iω + iΩn)G
(0)
(X′,j′);(R,u)(x

′, x1; iω)G
(0)
(R,u);(L,u′)(x1, x1; iω

′)G(0)
(L,u′);(X,j)(x1, x; iω)

+G
(0)
(X,j);(X′,j′)(x, x

′; iω + iΩn)G
(0)
(X′,j′);(L,u′)(x

′, x1; iω)G
(0)
(L,u′);(R,u)(x1, x1; iω

′)G(0)
(R,u);(X,j)(x1, x; iω)

+G
(0)
(X,j);(R,u)(x, x1; iω)G

(0)
(R,u);(L,u′)(x1, x1; iω

′)G(0)
(L,u′);(X′,j′)(x1, x

′
; iω)G

(0)
(X′,j′);(X,j)(x

′
, x; iω − iΩn)

+G
(0)
(X,j);(L,u′)(x, x1; iω)G

(0)
(L,u′);(R,u)(x1, x1; iω

′)G(0)
(R,u);(X′,j′)(x1, x

′
; iω)G

(0)
(X′,j′);(X,j)(x

′
, x; iω − iΩn)

}

It is fundamental to observe that all the vertex correction disappeared while the remaining contributions are readily
identified to be given by

DI
(1);j,j′(x, x

′; iΩn) = −e2v2
∑

X,X′=L,R

(−1)X+X′ 1

β2

∑

ω,ω′

∫ L

0

dx1

×
{

G
(0)
(X,j);(X′,j′)(x, x

′; iω + iΩn)δG
(1)
(X′,j′);(X,j)(x

′, x; iω)

+ δG
(1)
(X,j);(X′,j′)(x, x

′; iω)G(0)
(X′,j′);(X,j)(x

′
, x; iω − iΩn)

}

(2.64)

with δG
(1)
(X′,j′);(X,j)(x

′, x; iω) being the first-order one-loop corrections to one of the two Green’s functions of the

conductance loop. The absence of vertex corrections is true also in presence of a forward scattering interaction and
in presence of anomalous contractions. Furthermore, following Ref. [78], we assume that vertex corrections give zero
contribution up to the second order. It follows that, instead to compute the laborious dc conductance correction we
can focus on the perturbative treatment of the Green’s functions only as we will do in the next section.

II.4.1. First order correction to the Green’s functions and renormalization group equations for the scattering matrix

In the following, using the Matsubara imaginary time technique we will compute the first order correction to the
fermions propagators and then to the scattering matrix coefficients in presence of interaction. We will do it in the
Matsubara formalism for a junction that, at the boundary, allows for any possible single particle normal and Andreev-
like processes. Through this approach we will show how to reproduce and extend, to the case of energy dependent
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scattering matrix and in presence of any kind of inter-wire and intra-wire interaction the RG equation of Refs. [37
and 39] for a normal junction; furthermore we will extend the results of Ref. [51] for the NS junction to the case of K
wires allowing for spin-flip and p-wave Andreev processes at the boundary. Another advantage of the formalism we
will develop in the following is the possibility to go beyond the leading log approximation including, in the correction
of the scattering matrix, diagrams of higher order in the interaction parameters. Indeed, a comparison between the
FRG technique and the bosonic approach61 highlights how the first order correction to the S-matrix is insufficient
to gather all the features of systems that involves interaction with Majorana’s fermion at the boundary. Have an
handleable tool able to include sub-leading correction within the RG equation could be crucial for the application of
the fermionic approach of such kind of systems.
Let us take an interaction Hamiltonian of the form of Eq. [2.54] plus Eq. [2.55]. To take them both into account at

the same time the smart approach is to forget for the moment about the wire and interaction indices and add them
only at the end of the computation through the unique substitutions

g →
∑

a,a′

g2;a,a′

x→ x, j

x′ → x′, j′

R, x1 → R, x1, a

L, x1 → L, x1, a
′ (2.65)

for the forward scattering and

g → −
∑

a,a′

g1;a,a′

x→ x, j

x′ → x′, j′

R†, x1 → R†, x1, a

L†, x1 → L†, x1, a
′

R, x1 → R, x1, a
′

L, x1 → L, x1, a (2.66)

for the backscattering term. The starting point is to compute the first order of the Dyson’s series for the normal
Green’s function

δG
(1)
RL (x, τ, x′) = +g

L∫

0

dx1

β∫

0

dτ1

〈

TτψR (x, τ) : ψ†
R (x1, τ1)ψR (x1, τ1) :: ψ

†
L (x1, τ1)ψL (x1, τ1) : ψ

†
L (x′, 0)

〉

(2.67)

and for the anomalous Green’s function

δF
(1)
RL (x, τ, x′) = +g

L∫

0

dx1

β∫

0

dτ1

〈

TτψR (x, τ) : ψ†
R (x1, τ1)ψR (x1, τ1) :: ψ

†
L (x1, τ1)ψL (x1, τ1) : ψL (x′, 0)

〉

(2.68)

making use of the Wick’s theorem (a detailed computation can be found in Appendix [II.9]). Discarding all the
trivially zero contractions, in Fourier space, we have the following first order contributions for the normal Green’s
function

δG
(1)
RL (x, x′, iω) ≈ +

g

β

L∫

0

dx1
∑

ω′

[

+G
(0)
RR (x, x1, iω)G

(0)
RL (x1, x1, iω

′)G(0)
LL (x1, x

′, iω)

+G
(0)
RL (x, x1, iω)G

(0)
LR (x1, x1, iω

′)G(0)
RL (x1, x

′, iω)

+G
(0)
RL (x, x1, iω)F

(0)
RL (x1, x1, iω

′) F̃ (0)
RL (x1, x

′, iω)
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+F
(0)
RL (x, x1, iω) F̃

(0)
RL (x1, x1, iω

′)G(0)
RL (x1, x

′, iω)

−F (0)
RL (x, x1, iω)G

(0)
RL (x1, x1, iω

′) F̃ (0)
RL (x1, x

′, iω)] (2.69)

and for the anomalous Green’s function

δF
(1)
RL (x, x′, iω) ≈ +

g

β

L∫

0

dx1
∑

ω′

[

+G
(0)
RR (x, x1, iω)F

(0)
RL (x1, x1, iω

′)G(0)
LL (x′, x1,−iω)

+G
(0)
RL (x, x1, iω)G

(0)
LR (x1, x1, iω

′)F (0)
RL (x1, x

′, iω)

−G(0)
RL (x, x1, iω)F

(0)
RL (x1, x1, iω

′)G(0)
LR (x′, x1,−iω)

+F
(0)
RL (x, x1, iω) F̃

(0)
RL (x1, x1, iω

′)F (0)
RL (x1, x

′, iω)

+F
(0)
RL (x, x1, iω)G

(0)
RL (x1, x1, iω

′)G(0)
LR (x′, x1,−iω)] (2.70)

Substituting the full form of the Green’s functions through Eq. [2.187], a comparison with the the zeroth order normal
and anomalous Green’s functions

G
(0)
R,L (x, x′, iωn) =

1

l

∑

k

e+ik(x+x
′)

(ǫk − iω)
Se,e (ǫk)

1

2πv

∫

dǫ
e+i

ǫ
v (x+x

′)

(ǫ− iω)
Se,e (ǫ)

i

v
Θ(ω)Se,e (iω) e−i

ω
v (x+x

′) (2.71)

and

F
(0)
R,L (x, x′, iωn) =

1

l

∑

k

e+ik(x+x
′)

(ǫk − iω)
Se,h (ǫk)

1

2πv

∫

dǫ
e+i

ǫ
v (x+x

′)

(ǫ− iω)
Se,h (ǫ)

i

v
Θ(ω)Se,h (iω) e−

ω
v (x+x

′) (2.72)

give us the first order correction to the Se,e and Se,h coefficients. Upon restoring the wire indices, for the forward
interaction, Eq. [2.54], through the replacement in Eq. [2.65] and for the backscattering term, Eq. [2.55], with the
replacement in Eq. [2.66] and adding up the two contributions we can write the first order correction in the matrix
form

dS (ω,Λ)

d ln Λ
= −S (ω,Λ)F † (−Λ,Λ)S (ω,Λ) + F (Λ,Λ) (2.73)

where Λ = D/D0 and the scattering matrix is written in the block form

S (ω,Λ) : =

(
Se,e (ω,Λ) Se,h (ω,Λ)
Sh,e (ω,Λ) Sh,h (ω,Λ)

)

=

(
Se,e (ω,Λ) Se,h (ω,Λ)
Se,h∗ (−ω,Λ) Se,e∗ (−ω,Λ)

)

(2.74)

and where we defined a ”Friedel” matrix39 of the form
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F (ω,Λ) : =

(
F e,e (ω,Λ) F e,h (ω,Λ)
Fh,e (ω,Λ) Fh,h (ω,Λ)

)

=

(
F e,e (ω,Λ) F e,h (ω,Λ)
F e,h∗ (−ω,Λ) F e,e∗ (−ω,Λ)

)

(2.75)

with F e,e and F e,h, K ×K matrices whose elements are given by

F e,ej,j′ (ω,Λ) :=
1

2 (2π) v

[

−g2;j,j′Se,ej,j′ (ω,Λ) +
∑

a

g1;j,aδj,j′S
e,e
a,a (ω,Λ)

]

F e,hj,j′ (ω,Λ) :=
1

2 (2π) v

[

g2;j,j′S
e,h
j,j′ (ω,Λ)− g1;j′,jS

e,h
j′,j (ω,Λ)

]

(2.76)

The current form of the RG equation for the S matrix breaks the particle-hole symmetry of Eq. [2.33]. To preserve
the particle-hole symmetry explicitly we have to modify the equation as

dS (ω,Λ)

d ln Λ
= −S (ω,Λ)

1

2

[
F † (Λ,Λ) + F † (−Λ,Λ)

]
S (ω,Λ) +

1

2
[F (Λ,Λ) + F (−Λ,Λ)] (2.77)

This is equivalent to subtracting from the original quartic Hamiltonian a cutoff-dependent chemical potential term79.
Eq. [2.77] applies well to a large class of systems, including the resonant tunneling40 and normal-superconducting
junction51. In these cases the intrinsic energy dependence of the scattering matrix play a crucial role in the com-
prehension of the physical properties of the system in presence of interaction. Instead, in presence of a structureless
impurity37–39 the scattering matrix is assumed to be an analytic function, slowly varying on the scale of the Fermi
energy. Therefore, it is possible to neglect the intrinsic energy dependence of the scattering matrix and the RG
equation reduces to

dS (Λ)

d ln Λ
= −S (Λ)F † (Λ)S (Λ) + F (Λ) (2.78)

This simple and elegant equation give us some interesting information on the behavior of the scattering matrix under
the change of scale. First of all we see that

dI

d ln Λ
=
dS (Λ)S† (Λ)

d ln Λ

= S (Λ)
dS† (Λ)

d ln Λ
+
dS (Λ)

d ln Λ
S† (Λ)

= −S (Λ)S† (Λ)F (Λ)S† (Λ) + S (Λ)F † (Λ) +

−S (Λ)F † (Λ)S (Λ)S† (Λ) + F (Λ)S† (Λ)

= 0 (2.79)

and then that S remains unitary under the RG flow. Indeed, let us call dS the variation of S under an infinitesimal
change of scale. Then

(S + dS)
(
S† + dS†) = SS† + SdS† + dSS†

≈ I + d
(
SS†)

≈ I (2.80)

Finally, we can easily find the fixed points, corresponding to values of S which do not change under RG flow. Indeed,
to do so, S must set to zero the right-hand term of Eq. [2.78], which implies the condition

S (Λ)F † (Λ) = F (Λ)S† (Λ) (2.81)
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For K = 2 and K = 3, examples of scattering matrices that satisfy the FP conditions are the ones in Eq. [2.45] and
Eq. [2.46] or for example the matrix

SM =





− 1
3

2
3

2
3

2
3 − 1

3
2
3

2
3

2
3 − 1

3



 (2.82)

that correspond to a system with maximum transparency allowed by unitarity and compatible with time reversal
symmetry. We will discuss it in details in the next Chapter. An important limit of Eq. [2.78] is the case of a junction
of spinless wires without inter-wire interaction; the F matrix is given by

Fj,j′ =
1

4πv
(gj,2 − gj,1)Sj,jδj,j′ (2.83)

Another interesting limit is the junction of spin- 12 wires, in absence of inter-wire interaction, such that

F(j,σ),(j′,σ′) = δσ,σ′
1

4πv

(
gj,2,‖ − gj,1,‖ − gj,1,⊥

)
Sj,jδj,j′ (2.84)

valid under the assumption that spin is preserved by the boundary Hamiltonian. Yet, an important remark to make,
before concluding this section, is that, typically, the RG trajectories do not flow all the way down to D/D0 = 0, but
must be cut off at a physically relevant scale D∗. As the temperature T = 0, D∗ typically is the lowest energy scale
available for an excitation of the system. For instance, in a finite-size system of length L, one clearly gets D∗ ∼ vF /L.
At finite temperature T , provided vF /L ≪ kBT (kB being Boltzmann’s constant), it is natural to stop the RG flow
at DT ∼ kBT , to take into account the smearing of the Fermi surface over an energy width ∼ kBT .
It is possible to give a graphical interpretation of the first order correction of the scattering matrix in terms of Feynman
diagrams in space-frequency domain. The building blocks to assemble any physical process are the normal and
anomalous Green’s functions in Appendix [II.7]. In particular we recognize the normal Green’s functions G(R,j);(R,j)

and G(L,j);(L,j) that represent the propagation of a left or right going electron or hole inside a given wire j. In Fig.
[8], panel a), they are pictorially represented as a straight line approaching or leaving the junction. For a left going
particle the line is dotted, while for a right going particle it is continuous; for an hole we will use the same convention
but with the direction of the arrow reversed. In addition we have the normal and anomalous Green’s functions
G(R,j);(L,j′), F(R,j);(L,j′) and F̃(R,j);(L,j′) that involve a reflection or transmission by the junction of a particle or of
an hole. These processes are shown in Fig. [8], panel b), where the scattering matrix dependence is highlighted.
Combining these blocks with the interaction processes of Fig. [5] it is easy to give a pictorial representation of each
line of Eqs. [2.69,2.70]. In Fig. [9] for example the first three lines of Eq. [2.69] are depicted for both forward and
backward scattering. The scattering matrix dependence of these processes can be easily compared with the first three
lines of Eqs. [2.214,2.215]. The space-frequency representation can be easily used for the higher order corrections to
give a real space interpretation of the physical processes.

II.4.2. One-loop correction to the bulk interacting constants

It is well known16,59,60 that the interaction strengths g1;j,j′ and g2;j,j′ are not constant and change in the course of
renormalization. For this reason the RG equations for the S-matrix must be supplemented with the RG equations
for g1;j,j′ and g2;j,j′ . The starting point to compute these RG equations is the interaction Hamiltonian of Eq. [2.54]
and Eq. [2.55]; the first order processes contained in it (remembering that the four fermions fields are not exactly
evaluated at the same point x [2.7]) are shown in Fig. [5]. Now, we will compute all the 1-loop processes that contain
a right/outgoing (ω1, p1) and left/ingoing (ω2, p2) fermion in the initial state and a right/outgoing (ω3, p3) and
left/ingoing (ω4, p4) fermion in the final state. All the processes are shown in Fig. [10] where: a continuous line
represents a right/outgoing chirality field, a dashed line a left/ingoing chirality field, a wavy line a g2;j,j′ or g1;j,j′
interaction. To proceed, we have, first of all, to compute the free Green’s function at imaginary time for right and
left movers, in momentum-frequency domain. Through a Fourier transformation of Eqs. [2.187] we obtain

G(R,j);(R,j′)(p, iω) = − δj,j′

vF p+ iω
(2.85)

Similarly, for left movers:
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FIG. 8. Real space representation of the normal and anomalous Green’s functions involving a) one chirality (G(R,j);(R,j),

G(L,j);(L,j)), b) two chiralities (G(R,j′);(L,j), F(R,j′);(L,j) and F̃(R,j′);(L,j) ). First two diagrams of panel a) correspond to the
propagation of a right or left Fermi point particle while the last two diagrams correspond to the propagation of a right or left
Fermi points hole. Panel b) represent normal or Andreev reflection/transmission of a particle or of an hole at the junction.

G(L,j);(L,j′)(p, iω) =
δj,j′

vF p− iω
(2.86)

It is useful to note that:

G(R,j);(R,j′)(p, iω) = −G∗
(L,j);(L,j′)(p.iω) (2.87)

Let us start from the Cooper pair channel a)

Π
(a)
j,j′ = (g2;j,j′)

2
∫
dQ

2π

∫
dΩ

2π
G(R,j);(R,j)(Q, iΩ)G(L,j′);(L,j′)(−Q+ p,−iΩ+ iω)

= − (g2;j,j′)
2
∫
dQ

2π

∫
dΩ

2π

1

vFQ+ iΩ
· 1

vF (−Q+ p)− i(−Ω+ ω)

= (g2;j,j′)
2
∫
dQ

2π

∫
dΩ

2π

1

Ω− ivFQ
· 1

(Ω− ω) + ivF (Q− p)

(where ω ≡ ω1 + ω2, p ≡ p1 + p2). Integrating in dΩ with the residues method, the two poles Ω1 = +ivFQ and
Ω2 = −ivF (Q− p) + ω have to be on different sides of the real axis to have a non zero integral. For p > 0 (for p < 0
the result is the same) such request is satisfied for Q < 0 and p < Q < Λ/2, where we have introduced the transfer
cut-off Λ
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FIG. 9. Examples of first order contributions in real space to the RG equations of the scattering coefficient Se,e

j,j′

FIG. 10. One-loop processes that give a logarithmic contribution to the correction of the interaction constants. First three
diagrams from first row contribute to the renormalization of g2;j,j′ while last diagram of first row and second row contributes
to the renormalization of g1;j,j′ . Diagrams a), c), d) and e) are the Cooper pair channel while diagrams b), f), g) and h) are
the zero sound channel.

Π
(a)
j,j′ =

i (g2;j,j′)
2

2π

[
∫ Λ/2

p

dQ−
∫ 0

−Λ/2

dQ

]

1

2ivFQ− ivF p− ω

≈ (g2;j,j′)
2

4vFπ
ln

[
v2FΛ

2

ω2 + v2F p
2

]

+ . . . (2.88)
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For the zero sound channel b)

Π
(b)
j,j′ = (g2;j,j′)

2
∫
dQ

2π

∫
dΩ

2π
G(R,j);(R,j)(Q, iΩ)G(L,j′);(L,j′)(Q+ p̄, iΩ+ iω̄)

= − (g2;j,j′)
2
∫
dQ

2π

∫
dΩ

2π

1

vFQ+ iΩ
· 1

vF (Q+ p̄)− i(Ω + ω̄)

= − (g2;j,j′)
2
∫
dQ

2π

∫
dΩ

2π

1

Ω− ivFQ
· 1

(Ω + ω̄) + ivF (Q+ p̄)

≈ − (g2;j,j′)
2

4vFπ
ln

[
v2FΛ

2

ω̄2 + v2F p̄
2

]

(2.89)

(with ω̄ ≡ ω1 − ω4, p̄ ≡ p1 − p4). For the channel c), making use of Eq. [2.87], we have

Π
(c)
j,j′ = (g1;j,j′)

2
∫
dQ

2π

∫
dΩ

2π
G(L,j);(L,j)(Q, iΩ)G(R,j′);(R,j′)(−Q+ p,−iΩ+ iω)

= (g1;j,j′)
2

[∫
dQ

2π

∫
dΩ

2π
G(R,j′);(R,j′)(Q, iΩ)G(L,j);(L,j)(−Q+ p,−iΩ+ iω)

]∗

≈ (g1;j,j′)
2

4vFπ
ln

[
v2FΛ

2

ω2 + v2F p
2

]

(2.90)

Channel d) it is the same as Π
(a)
j,j′ except for the different interaction strengths

Π
(d)
j′,j = (g2;j,j′g1;j,j′)

∫
dQ

2π

∫
dΩ

2π
G(R,j);(R,j)(Q, iΩ)G(L,j′);(L,j′)(−Q+ p,−iΩ+ iω)

≈ (g2;j,j′g1;j,j′)

4vFπ
ln

[
v2FΛ

2

ω2 + v2F p
2

]

(2.91)

For channel e) we note that is the same as Π
(c)
j,j′ except for the interaction strengths

Π
(e)
j′,j = (g1;j,j′g2;j,j′)

∫
dQ

2π

∫
dΩ

2π
G(L,j);(L,j)(Q, iΩ)G(R,j′);(R,j′)(−Q+ p,−iΩ+ iω)

≈ (g1;j,j′g2;j,j′)

4vFπ
ln

[
v2FΛ

2

ω2 + v2F p
2

]

(2.92)

The zero sound channel f) is an interesting one; the fermionic loop inside bring a minus sign and we have K of this

diagrams (one for each wire index inside the loop). It is similar to Π
(b)
j,j′ and gives

∑

j”

Π
(f)
j′,j = −




∑

j”

g1;j,j”g1;j′,j”





∫
dQ

2π

∫
dΩ

2π
G(R,j”);(R,j”)(Q, iΩ)G(L,j”);(L,j”)(Q− p̄, iΩ− iω̄)

≈

(
∑

j” g1;j,j”g1;j′,j”

)

4vFπ
ln

[
v2FΛ

2

ω̄2 + v2F p̄
2

]

(2.93)

Channel g) and h) are similar to Π
(f)
j,j′ without the minus sign and the sum over the wires

Π
(g)
j′,j = (g2;j,jg1;j,j′)

∫
dQ

2π

∫
dΩ

2π
G(R,j);(R,j)(Q, iΩ)G(L,j);(L,j)(Q− p̄, iΩ− iω̄)

≈ − (g2;j,jg1;j,j′)

4vFπ
ln

[
v2FΛ

2

ω̄2 + v2F p̄
2

]

(2.94)
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and

Π
(h)
j′,j = (g1;j,j′g2;j′,j′)

∫
dQ

2π

∫
dΩ

2π
G(R,j′);(R,j′)(Q, iΩ)G(L,j′);(L,j′)(Q− p̄, iΩ− iω̄)

≈ − (g1;j,j′g2;j′,j′)

4vFπ
ln

[
v2FΛ

2

ω̄2 + v2F p̄
2

]

(2.95)

At this point, the sum of diagrams a), b) and c) form a new vertex Π
(2)
j,j′ , while diagrams d), e), f), g) and h) form a

new vertex Π
(1)
j′,j

−Π
(2)
j,j′ = −g(2)j,j′ +Π

(a)
j,j′ +Π

(b)
j,j′ +Π

(c)
j,j′

= −g2;j,j′ +
(g2;j,j′)

2

4vFπ
ln

[
v2FΛ

2

ω2 + v2F p
2

]

− (g2;j,j′)
2

4vFπ
ln

[
v2FΛ

2

ω̄2 + v2F p̄
2

]

+
(g1;j,j′)

2

4vFπ
ln

[
v2FΛ

2

ω2 + v2F p
2

]

= −g2;j,j′ +
(g2;j,j′)

2

4vFπ
ln

[
ω̄2 + v2F p̄

2

ω2 + v2F p
2

]

+
(g1;j,j′)

2

4vFπ
ln

[
v2FΛ

2

ω2 + v2F p
2

]

(2.96)

−Π
(1)
j′,j = −g1;j,j′ +Π

(d)
j′,j +Π

(e)
j′,j +

∑

j”

Π
(f)
j′,j +Π

(g)
j′,j +Π

(h)
j′,j

= −g(1)j′,j +
(g2;j,j′g1;j,j′ + g1;j,j′g2;j,j′)

4vFπ
ln

[
v2FΛ

2

ω2 + v2F p
2

]

+

(
∑

j” g1;j,j”g1;j′,j” − g2;j,jg1;j,j′ − g1;j,j′g2;j′,j′
)

4vFπ
ln

[
v2FΛ

2

ω̄2 + v2F p̄
2

]

= −g(1)j′,j +
(g2;j,j′g1;j,j′)

2vFπ
ln

[
v2FΛ

2

ω2 + v2F p
2

]

+

(
∑

j” g1;j,j”g1;j′,j” − g2;j,jg1;j,j′ − g1;j,j′g2;j′,j′
)

4vFπ
ln

[
v2FΛ

2

ω̄2 + v2F p̄
2

]

(2.97)

In the renormalization group philosophy we ask the 1-loop corrected new vertex function to be cutoff independent.
This is realized letting g1;j,j′ and g2;j,j′ to be energy dependent. That is, are valid the following differential equations:

∂g2;j,j′

∂Λ
=

∂

∂Λ

[

Π
(a)
j,j′ +Π

(b)
j,j′ +Π

(c)
j,j′

]

=
2g2;j,j′

4vFπ

∂g2;j,j′

∂Λ
ln

[
ω̄2 + v2F p̄

2

ω2 + v2F p
2

]

+
1

4vFπ

∂ (g1;j,j′)
2

∂Λ
ln

[
v2FΛ

2

ω2 + v2F p
2

]

+
(g1;j,j′)

2

4vFπ

2

Λ

(2.98)

∂g1;j,j′

∂Λ
=

∂

∂Λ



Π
(d)
j′,j +Π

(e)
j′,j +

∑

j”

Π
(f)
j′,j +Π

(g)
j′,j +Π

(h)
j′,j





=
1

2vFπ

∂ (g2;j,j′g1;j,j′)

∂Λ
ln

[
v2FΛ

2

ω2 + v2F p
2

]

+
(g2;j,j′g1;j,j′)

2vFπ

2

Λ

+
1

4vFπ

∂
(
∑

j” g1;j,j”g1;j′,j” − g2;j,jg1;j,j′ − g1;j,j′g2;j′,j′
)

∂Λ
ln

[
v2FΛ

2

ω̄2 + v2F p̄
2

]

+

(
∑

j” g1;j,j”g1;j′,j” − g2;j,jg1;j,j′ − g1;j,j′g2;j′,j′
)

4vFπ

2

Λ
(2.99)

At the second order in the interaction strengths these equations reduce to

Λ
∂g2;j,j′

∂Λ
≈ (g1;j,j′)

2

2vFπ
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FIG. 11. Additional one-loop processes to the correction of the interaction constants. Diagrams i), l), m), n) involve an
Umpklapp interaction and are only relevant at half filling. Diagrams o), p) are the not logarithmically divergent third channel
diagrams.

Λ
∂g1;j,j′

∂Λ
≈

2 (g2;j,j′g1;j,j′) +
(
∑

j” g1;j,j”g1;j′,j” − g2;j,jg1;j,j′ − g1;j,j′g2;j′,j′
)

2vFπ
(2.100)

Integrating from a given value D0 such that g1;j,j′ (D0) = Vj,j′ (2kF ) and g2;j,j′ (D0) = Vj,j′ (0), to the energy scale
E, we obtain the running coupling constants of the systems. Eqs. [2.100] are valid only if we assume not to be
at half filling. Indeed, at half filling the Upklapp interaction term Eq. [2.56] cannot be discarded and contributes
logarithmically to the renormalization of forward and backward scattering with the six zero sound diagrams i), l), m),

n) of Fig. [11], all of them proportional to (g3;j,j′)
2
. Diagrams o) and p) of Fig. [11], called the third channel, are

instead proportional to g4;j,j′g2:j,j′ and should always be taken into account due to the presence of the interaction
term Eq. [2.53]. Luckily, it is easy to check that they give a non logarithmic correction and do not modify the RG
equations for g1;j,j′ and g2;j,j′ . In the particular cases of spinless electrons without inter-wire interaction the equations
computed above reduces to

Λ
∂gj,2
∂Λ

=
1

2πv
(gj,1)

2

Λ
∂gj,1
∂Λ

=
1

2πv
(gj,1)

2 (2.101)

From Eq. [2.101] follows that the linear combination (gj,2 − gj,1), that appears also in Eq. [2.83] is scale invariant. It
is not the case of spin- 12 electrons, where the RG equations for the coupling constants reduce to

Λ
∂gj,2,‖
∂Λ

=
1

2πv
(gj,1,‖)

2

Λ
∂gj,2,⊥
∂Λ

=
1

2πv
(gj,1,⊥)

2

Λ
∂gj,1,‖
∂Λ

=
1

2πv

[
(gj,1,‖)

2 + (gj,1,⊥)
2
]

Λ
∂gj,1,⊥
∂Λ

=
1

2πv
2gj,1,⊥

[
gj,2,⊥ − gj,2,‖ + gj,1,‖

]
(2.102)

II.4.3. Second order correction and sub leading contributions to the renormalization group equation for the scattering matrix

Solving the RG equation is equivalent in summing over an infinite class of diagrams in perturbation theory78,80

proportional to
(

g
(i)
j,j′

)n (

ln D
D0

)n

. In the following we will show how the Matsubara formalism described in the last sec-
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tions can be used to go beyond the leading-log correction including the sub leading terms of the form
(

g
(i)
j,j′

)m (

ln D
D0

)n

with m > n emerging starting from the second order correction. Being an example we will only consider forward
scattering and assume that no Andreev-like processes are allowed at the boundary. For the second order of the Dyson’s
series we have

δG
(2)
RL (x, τ, x′) = +

g2

2

L∫

0

dx1

β∫

0

dτ1

L∫

0

dx2

β∫

0

dτ2

〈

TτψR (x, τ) : ψ†
R (x1, τ1)ψR (x1, τ1) :: ψ

†
L (x1, τ1)ψL (x1, τ1) :

: ψ†
R (x2, τ2)ψR (x2, τ2) :: ψ

†
L (x2, τ2)ψL (x2, τ2) : ψ

†
L (x′, 0)

〉

(2.103)

Using Wick’s theorem, in space-frequency representation we have the following contributions

δG
(2)
RL (x, x′, iω) ≈ g2

β2

L∫

0

dx1

L∫

0

dx2
∑

ω1,ω2

[−G(0)
RR (x, x1, iω)G

(0)
RL (x1, x

′, iω)G(0)
LR (x1, x2, iω1)G

(0)
RL (x2, x2, iω2)G

(0)
LL (x2, x1, iω1)

−G(0)
RR (x, x1, iω)G

(0)
RL (x1, x

′, iω)G(0)
LL (x1, x2, iω1)G

(0)
RL (x2, x1, iω1)G

(0)
LR (x2, x2, iω2)

+G
(0)
RR (x, x1, iω)G

(0)
LL (x1, x

′, iω)G(0)
RR (x1, x2, iω1)G

(0)
RL (x2, x2, iω2)G

(0)
LL (x2, x1, iω1)

+G
(0)
RR (x, x1, iω)G

(0)
LL (x1, x

′, iω)G(0)
RL (x1, x2, iω1)G

(0)
RL (x2, x1, iω1)G

(0)
LR (x2, x2, iω2)

+G
(0)
RR (x, x1, iω)G

(0)
RL (x2, x

′, iω)G(0)
RL (x1, x1, iω1)G

(0)
LL (x1, x2, iω)G

(0)
LR (x2, x2, iω2)

−G(0)
RR (x, x1, iω)G

(0)
RL (x2, x

′, iω)G(0)
RR (x1, x2, iω − iω1 + iω2)G

(0)
LL (x1, x2, iω1)G

(0)
LL (x2, x1, iω2)

+G
(0)
RR (x, x1, iω)G

(0)
RL (x2, x

′, iω)G(0)
RL (x1, x2, iω − iω1 + iω2)G

(0)
LR (x1, x2, iω1)G

(0)
LL (x2, x1, iω2)

+G
(0)
RR (x, x1, iω)G

(0)
LL (x2, x

′, iω)G(0)
RL (x1, x1, iω1)G

(0)
LR (x1, x2, iω)G

(0)
RL (x2, x2, iω2)

+G
(0)
RR (x, x1, iω)G

(0)
LL (x2, x

′, iω)G(0)
RR (x1, x2, iω − iω1 + iω2)G

(0)
LL (x1, x2, iω1)G

(0)
RL (x2, x1, iω2)

−G(0)
RR (x, x1, iω)G

(0)
LL (x2, x

′, iω)G(0)
RL (x1, x2, iω − iω1 + iω2)G

(0)
LR (x1, x2, iω1)G

(0)
RL (x2, x1, iω2)

+G
(0)
RL (x, x1, iω)G

(0)
RL (x1, x

′, iω)G(0)
LR (x1, x2, iω1)G

(0)
RL (x2, x2, iω2)G

(0)
LR (x2, x1, iω1)

+G
(0)
RL (x, x1, iω)G

(0)
RL (x1, x

′, iω)G(0)
LL (x1, x2, iω1)G

(0)
RR (x2, x1, iω1)G

(0)
LR (x2, x2, iω2)

−G(0)
RL (x, x1, iω)G

(0)
LL (x1, x

′, iω)G(0)
RR (x1, x2, iω1)G

(0)
RL (x2, x2, iω2)G

(0)
LR (x2, x1, iω1)

−G(0)
RL (x, x1, iω)G

(0)
LL (x1, x

′, iω)G(0)
RL (x1, x2, iω1)G

(0)
RR (x2, x1, iω1)G

(0)
LR (x2, x2, iω2)

+G
(0)
RL (x, x1, iω)G

(0)
RL (x2, x

′, iω)G(0)
RR (x1, x2, iω − iω1 + iω2)G

(0)
LL (x1, x2, iω1)G

(0)
LR (x2, x1, iω2)

+G
(0)
RL (x, x1, iω)G

(0)
RL (x2, x

′, iω)G(0)
RL (x1, x2, iω)G

(0)
LR (x1, x1, iω1)G

(0)
LR (x2, x2, iω2)

−G(0)
RL (x, x1, iω)G

(0)
RL (x2, x

′, iω)G(0)
RL (x1, x2, iω − iω1 + iω2)G

(0)
LR (x1, x2, iω1)G

(0)
LR (x2, x1, iω2)

+G
(0)
RL (x, x1, iω)G

(0)
LL (x2, x

′, iω)G(0)
RR (x1, x2, iω)G

(0)
LR (x1, x1, iω1)G

(0)
RL (x2, x2, iω2)

−G(0)
RL (x, x1, iω)G

(0)
LL (x2, x

′, iω)G(0)
RR (x1, x2, iω − iω1 + iω2)G

(0)
LL (x1, x2, iω1)G

(0)
RR (x2, x1, iω2)

+G
(0)
RL (x, x1, iω)G

(0)
LL (x2, x

′, iω)G(0)
RL (x1, x2, iω − iω1 + iω2)G

(0)
LR (x1, x2, iω1)G

(0)
RR (x2, x1, iω2)] (2.104)

To each of this term correspond a real space diagrams like the ones depicted in Fig. [9] for the first order correction. We

can identify leading-log terms, proportional to g2 ln
(
D
D0

)2

, corresponding to an iteration of the first order diagrams

and that have already been taken into consideration at each order during the RG procedure. Furthermore we have
non logarithmic contributions, that are small compared to the logarithmic divergent terms and finally sub leading

terms proportional to g2 ln
(
D
D0

)

that are the ones we are searching for. A comparison with Eq. [2.71] give us the

second order correction to the scattering matrix. The energy dependent case is computed in Appendix [II.9] while for
the energy independent case, in presence of forward scattering only, the correction reduces to
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δS
(2)
j,j′ ≈

γ

16π2v2
δD

D



+gj,j′gj,j′Sj,j′ −
∑

a,a′

gj,j′ga,a′Sj,a′Sa,j′S
∗
a,a′ −

∑

a,a′

gj,a′ga,a′Sa,j′Sj,a′S
∗
a,a′

−
∑

a,a′

ga,a′ga,a′Sj,a′Sa,j′S
∗
a,a′ + 2

∑

a,a′

∑

b,b′

ga,a′gb,b′Sj,a′Sb,j′Sa,b′S
∗
a,a′S

∗
b,b′

+
∑

a,a′

∑

b,b′

ga,a′gb,b′Sj,a′Sa,j′S
∗
b,a′Sb,b′S

∗
a,b′ −

∑

a,a′

ga,a′ga,j′Sj,a′S
∗
a,a′Sa,j′





+
1

16π2v2
δD

D



+
∑

a,a′

gj,a′ga,j′Sj,j′S
∗
a,a′Sa,a′ −

∑

a,a′

∑

b,b′

ga,a′gb,b′Sj,a′Sb,j′Sa,b′S
∗
b,a′S

∗
a,b′



 (2.105)

(we have omitted the redundant electron/hole indices in the scattering matrix coefficients). In absence of inter-wire
interaction (that is ga,a′ = gaδa,a′), we have

δS
(2)
j,j′ ≈

γ

16π2v2
δD

D

[

+δj,j′gjgjSj,j′ −
∑

a

δj,j′gjgaSj,aSa,j′S
∗
a,a − gjgjSj,j′Sj,jS

∗
j,j

−
∑

a

gagaSj,aSa,j′S
∗
a,a + 2

∑

a,b

gagbSj,aSb,j′Sa,bS
∗
a,aS

∗
b,b

+
∑

a,b

gagbSj,aSa,j′S
∗
b,aSb,bS

∗
a,b − gj′g,j′Sj,j′S

∗
j′,j′Sj′,j′





+
1

16π2v2
δD

D



+gjgj′Sj,j′S
∗
j′,jSj′,j −

∑

a,b

gagbSj,aSb,j′Sa,bS
∗
b,aS

∗
a,b



 (2.106)

If we assume the same interaction in all the wires (that is ga = g), we are left with

δS
(2)
j,j′ ≈

γg2

16π2v2
δD

D

[

δj,j′Sj,j′ −
∑

a

δj,j′Sj,aSa,j′S
∗
a,a − Sj,j′Sj,jS

∗
j,j − Sj,j′S

∗
j′,j′Sj′,j′

−
∑

a

Sj,aSa,j′S
∗
a,a + 2

∑

a,b

Sj,aSb,j′Sa,bS
∗
a,aS

∗
b,b +

∑

a,b

Sj,aSa,j′S
∗
b,aSb,bS

∗
a,b





+
g2

16π2v2
δD

D



Sj,j′S
∗
j′,jSj′,j −

∑

a,b

Sj,aSb,j′Sa,bS
∗
b,aS

∗
a,b



 (2.107)

It is easy to check that the second order correction to the scattering matrix reduces to zero in the following cases

2− wire SN : Sj,j = 1, Sj,j+1 = 0

2− wire SD : Sj,j = 0, Sj,j+1 = 1

3− wire SN : Sj,j = 1, Sj,j±1 = 0

3− wireSχ± : Sj,j = 0, Sj,j∓1 = 1, Sj,j±1 = 0

3− wireSM : Sj,j = −1

3
, Sj,j±1 =

2

3
(2.108)

that are the fixed point for two and three wires obtained through the first order correction but new non trivial and
non universal fixed points depending from the interaction constants can emerge adding up first and second order
contributions.
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II.5. Luttinger liquid approach and splitting matrix implementation of the boundary conditions

In general, the effect of electron-electron interaction is threated using bosonization method. Bosonization is a
mathematical procedure allowing for mapping a system of interacting Fermions in 1 + 1 dimensions into a massless
free Boson theory [see for example Ref. [13]]. In this section we introduce the procedure for a system of K spinless
and spin- 12 wires. The bulk Hamiltonian of Eq. [II.1] can be rewritten in bosonic coordinates introducing K bosonic
fields Φj (x) described by the quadratic Hamiltonian

HBoso =
1

2π

K∑

j=1

ℓ∫

0

dx

[
1

vj
(∂tΦj (x))

2
+ vj (∂xΦj (x))

2

]

(2.109)

together with the corresponding dual fields Θj (x) related to the Φ-fields by the relation

∂tΦj (x) = vj∂xΦj (x) (2.110)

and satisfying the commutation relation

[Φj (x) , ∂yΘi (y)] = 2πiδ (x− y) δj,i (2.111)

such that the bosonic Hamiltonian can also be written as

H0 =
1

2π

K∑

j=1

vj

ℓ∫

0

dx
[

(∂xΦj (x))
2
+ (∂xΘj (x))

2
]

(2.112)

The relation between the fermionic and the bosonic fields is given by

ψR/L,j (x) = ηR/L,je
iΦR/L,j(x) (2.113)

with the chiral bosonic fields defined as

ΦR/L,j = Φj ±Θj (2.114)

and ηR/L,j real fermion Klein factors that ensure the right anticommutation relation between the fermionic operators
in different wires. The total current and density operators

Jj = JR,j − JL,j = vj

[

: ψ†
R,j (x)ψR,j (x) : − : ψ†

L,j (x)ψL,j (x) :
]

ρ = ρR + ρL =
[

: ψ†
R,j (x)ψR,j (x) : + : ψ†

L,j (x)ψL,j (x) :
]

(2.115)

can be expressed in terms of the bosonic chiral fields as

JR/L,j = ±vj (1/2π) ∂xΦR/L,j (x)
ρR/L,j = ± (1/2π) ∂xΦR/L,j (x) (2.116)

In presence of an interaction given by Eqs. [2.53, 2.54, 2.55], with only inter-wire terms, that is gk;j,j′ = δj,j′gk;j ,
expressing the chiral fermionic fields in terms of the bosonic ones, we can observe that the term proportional to g4;j
has the form

Hg4;j =
∑

X=L,R

g4;j
2

L∫

0

dx
[

(ρR)
2
+ (ρL)

2
]
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=
∑

X=L,R

g4;j
8π2

L∫

0

dx
[

(∂xΦj (x))
2
+ (∂xΘj (x))

2
]

(2.117)

and a comparison with the bulk Hamiltonian tell us that the only effect produced by it is a finite renormalization of
the Fermi velocity

v∗j = vj +
g4;j
4π

(2.118)

The other two interaction terms instead mix the left and right sector as

Hg2+g1 = (g2;j − g1;j)

L∫

0

dxρRρL

=
(g2;j − g1;j)

4π2

L∫

0

dx (∂xΦR,j (x)) (∂xΦL,j (x)) (2.119)

Luckily, the full Hamiltonian is still quadratic in the bosonic Θ and Φ fields and it is given by

H =
1

2π

K∑

j=1

uj

L∫

0

dx

[

gj (∂xΦj (x))
2
+

1

gj
(∂xΘj (x))

2

]

(2.120)

with the definitions

ujgj = vj

(

1− g1;j − g2;j
2πvj

)

uj
gj

= vj

(

1 +
g1;j − g2;j

2πvj

)

(2.121)

where gj = 1 represent the non interacting case. Now it is easy to check that, in terms of the rescaled fields

Φ̃j (x) =
√
gjΦj (x)

Θ̃j(x) =
1

√
gj

Θj(x) (2.122)

the non interacting Hamiltonian and the interacting one have the same form. At this point it is useful to define a
new set of chiral fields

Φ̃R/L,j = Φ̃j ± Θ̃j (2.123)

that are related to the non interacting chiral fields by the Bogoliubov transformation

ΦR,j =
1

2
√
gj

{

(1 + gj) Φ̃R,j + (1− gj) Φ̃L,j

}

ΦL,j =
1

2
√
gj

{

(1 + gj) Φ̃L,j + (1− gj) Φ̃R,j

}

(2.124)

and satisfying

[

Φ̃R/L,i(x, t), Φ̃R/L,j(x
′, t)
]

= ±iπsg(x− x′)δij (2.125)



33

The same procedure defined above for a spinless system can be extended in presence of spin- 12 electrons. A junction

of K spin- 12 wires is described introducing 2K bosonic fields. The doubled number of fields, compared to the spinless
case, is needed to take into account that each wire has now two channels (↑ and ↓ channel). Accordingly with the
spinless case, we label the bosonic fields as Φj,σ (x) and the dual fields as Θj,σ (x). In analogy with Eqs. [2.114, 2.116]
we introduce the chiral spin-dependent currents and densities

JR/L,j,σ = ±vj (1/2π) ∂xΦR/L,j,σ (x)
ρR/L,j,σ = ± (1/2π) ∂xΦR/L,j,σ (x) (2.126)

However, it is more appropriate to work in terms of total (charge) current and density and spin current and density,
defined as

JR/L,j,c(s) = JR/L,j,↑ ± JR/L,j,↓
ρR/L,j,c(s) = ρR/L,j,↑ ± ρR/L,j,↓ (2.127)

These quantities suggest to define the bosonic fields

ΦR/L,j,c =
1√
2

(
ΦR/L,j,↑ +ΦR/L,j,↓

)
= Φj,c ±Θj,c

ΦR/L,j,s =
1√
2

(
ΦR/L,j,↑ − ΦR/L,j,↓

)
= Φj,s ±Θj,s (2.128)

These linear combinations of the spin-dependent bosonic fields describe charge and spin plasmons respectively. In
absence of interactions they are valid fundamental excitations like the original spin-↑, spin-↓ excitations (the same is
true for any new excitation obtained through a canonical rotation of the spin-dependent bosonic fields). However, in
presence of an intra-wire interaction, they correctly describe the spin-charge separation effect81. Indeed, due to the
inter-channel interaction terms that allows electrons with different spin to interact each other inside each wire, they
represent the correct degrees of freedom to use to map the interacting fermions Hamiltonian into an Hamiltonian for
free bosons. Following Eq. [2.113], it is a straightforward to write the relation between fermionic and bosonic fields
as

ψR,σ,j (x) = ηR,σ,je
i
2 [Φj,c+Θj,c+σ(Φj,s+Θj,s)]

ψL,σ,j (x) = ηL,σ,je
i
2 [Φj,c−Θj,c+σ(Φj,s−Θj,s)] (2.129)

Making use of these rules the bulk Hamiltonian for free fermions is mapped into a sum of two contribution. A term
that rule over the charge sector

H0;B;c =
1

4π

∫ L

0

dx

K∑

j=1

[
1

v
(∂tΦc,j)

2 + v(∂xΦc,j)
2

]

(2.130)

and a term that describe the spin sector

H0;B;s =
1

4π

∫ L

0

dx

K∑

j=1

[
1

v
(∂tΦs,j)

2 + v(∂xΦs,j)
2

]

(2.131)

All the previous transformations lead to contributions to the system Hamiltonian that are quadratic in the bosonic
fields. The interaction Hamiltonian shares this property, once one has set to zero the all the terms ∝ gj,1,⊥, in which
case, on rewriting HI in Eq. [2.10] in terms of the bosonic fields, one obtains HI = Hint,1 +Hint,2, with

Hint,1 =

K∑

j=1

gj,1,‖ − gj,2,‖
16π2

∫ L

0

dx {−(∂xΘj,c(x))
2 − (∂xΘj,s(x))

2 + (∂xΦj,c(x))
2 + (∂xΦj,s(x))

2}
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Hint,2 =

K∑

j=1

gj,2,⊥
16π2

∫ L

0

dx {(∂xΘj,c(x))2 + (∂xΦj,s(x))
2 − (∂xΘj,s(x))

2 − (∂xΦj,c(x))
2} (2.132)

On adding the terms in Eqs. [2.132] to the noninteracting Hamiltonian for the charge sector (Eq. [2.130]) plus the
one for the spin sector (Eq. [2.131]), one eventually obtains a bosonic Hamiltonian H that is still quadratic, although
with pertinently renormalized coefficients, given by

H =
1

4π

K∑

j=1

uj,c

∫ L

0

dx

{

gj,c(∂xΦj,c(x))
2 +

1

gj,c
(∂xΘj,c(x))

2

}

+
1

4π

K∑

j=1

uj,s

∫ L

0

dx

{

gj,s(∂xΦj,s(x))
2 +

1

gj,s
(∂xΘj,s(x))

2

}

(2.133)

with

uj,cgj,c = v

[

1 +
gj,1,‖ − gj,2,‖ − gj,2,⊥

4πv

]

uj,c
gj,c

= v

[

1− gj,1,‖ − gj,2,‖ − gj,2,⊥
4πv

]

uj,sgj,s = v

[

1 +
gj,1,‖ − gj,2,‖ + gj,2,⊥

4πv

]

uj,s
gj,s

= v

[

1− gj,1,‖ − gj,2,‖ + gj,2,⊥
4πv

]

(2.134)

When gj,1,⊥ 6= 0, one can employ the identities

ψ†
R,σ,j(x)ψR,σ̄,j(x) → e−iσ[Φj,s(x)+Θj,s(x)]

ψ†
L,σ,j(x)ψL,σ̄,j(x) → e−iσ[Φj,s(x)−Θj,s(x)] (2.135)

to express the total additional contribution to Hint, Hint,3, as

Hint,3 ∼
∫ L

0

dx

K∑

j=1

Wj cos[2Φj,s(x)] (2.136)

with Wj ∝ gj,1,⊥. To lowest order, the renormalization group equation for Wj is

dWj

dℓ
=

[

2− 2

gj,s

]

Wj (2.137)

which tells us that the nonlinear interaction term ∝ gj,1,⊥ is irrelevant as long as gj,s < 1 and, accordingly, even if
gj,1,⊥ has not been fine-tuned to 0.
Until now, we focused on the bulk, not considering the presence of the junction. This implies that we are working

with double degree of freedom, keeping both Φj and Θj fields, in the spinless case, or both Φj,c(s) and Θj,c(s) fields,
in the spinful case. To remove the redundant degree of freedom we have to impose the boundary conditions at x = 0.
The standard approach, Refs. [23 and 29], consists in implementing the boundary conditions in terms of a splitting
matrix that connect incoming and outgoing currents at the junction. In the spinless case it corresponds to set

JR,i = MijJL,j (2.138)

Making use of Eq. [2.116] we can switch this relation with a relation that connect incoming and outgoing field through
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ΦR,i = MijΦL,j + Ci (2.139)

In the following, we will discard the constant vector
−→
C as it play no role into the physical quantities like the conduc-

tance, the tunnel density of states or the correlation functions. This boundary condition can also be written for the
Bogoliobov transformed chiral fields

Φ̃R,i = M̃ijΦ̃L,j + C̃i (2.140)

Assuming the same interaction in each wire, the matrices M and M̃ are related by

M̃ =
(1 + g)M− (1− g)I

(1 + g)I− (1− g)M
(2.141)

Let us note that if M is an involutory matrix, M2 = I, then

M̃ =
(1 + g)M− (1− g)I

(1 + g)I− (1− g)M

=
(1 + g)M− (1− g)MM

(1 + g)I− (1− g)M

=
(1 + g)I− (1− g)M

(1 + g)I− (1− g)M
M

= M (2.142)

In order for the incoming and outgoing fields to satisfy the right bosonic commutation relations, the splitting matrix
must be real and belong to the orthogonal set

O (K) ≡
{

MK×K :
∑

k

MkjMki = δj,i ∧
∑

k

MjkMik = δj,i

}

(2.143)

and, for a normal junction, must satisfy the current conservation law,
∑

i Ji = 0, that forces the splitting matrix to
satisfy the following constraint

∑

j

Mij = 1 (2.144)

that correspond to require that the splitting matrix belongs to the generalized doubly stochastic set, Dgen
stoc (K) where

the condition Mij ∈ R+ is relaxed. Likewise, for a perfect superconducting junction, where the total electron density,
∑

i ρi = 0, must be zero at the junction, the current conservation constraint is replaced by

∑

j

Mij = −1 (2.145)

It follows that, in the case of a superconducting junction, the splitting matrices that satisfy orthogonality and zero
density at the boundary are simply related to the normal case by

M
sup
1 = −M1, M

sup
2 = −M2 (2.146)

A comparison with the scattering matrix approach described before, show us that the intersection between the
boundary condition that can be studied through the bosonization approach (M ∈ O (K)∩Dgen

stoc (K)) and the boundary
condition treated with the fermionic approach (MS ∈ Ustot (K)) is given by the permutation set Perm (K) that contains
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the only fixed points that can be studied simultaneously by fermionic and abelian bosonization approach. For K = 2
the only matrices that satisfy the orthogonal and current conservation constrain are given by

M1 =

(
1 0
0 1

)

, M2 =

(
0 1
1 0

)

(2.147)

They are the same obtained through the fermionic renormalization group approach and represent a disconnected or
fully healed wire. For K = 3, it is possible to show that orthogonality and current conservation implies that the
splitting matrix rows and columns are given by a cyclic permutation of three real number between −1/3 and 1 such
that their sum and the sum of their squares is one. For a three wire junction we have two classes of splitting matrices,
that satisfy such constraints, and both can be parametrized by a single parameter θ. We have:

M1 =





a b c
c a b
b c a



 , M2 =





b a c
a c b
c b a



 (2.148)

where:

a = [1 + 2cosθ] /3 (2.149)

b =
[

1− cosθ +
√
3sinθ

]

/3 (2.150)

c =
[

1− cosθ −
√
3sinθ

]

/3 (2.151)

In terms of the Bogoliubov transformed matrices:

M̃1 =





ã b̃ c̃

c̃ ã b̃

b̃ c̃ ã



 , M̃2 = M2 (2.152)

due to the fact that M2
2 = I and where:

ã =

[
3g2 − 1 + (3g2 + 1)cosθ

]

3 [1 + g2 + (g2 − 1)cosθ]
(2.153)

b̃ =
2
[
1− cosθ +

√
3gsinθ

]

3 [1 + g2 + (g2 − 1)cosθ]
(2.154)

c̃ =
2
[
1− cosθ −

√
3gsinθ

]

3 [1 + g2 + (g2 − 1)cosθ]
(2.155)

The M1 class (det[M1] = 1) represent the Z3 symmetric fixed points, while the M2 class (det[M2] = −1) breaks the
Z3 symmetry. The M1 subclass with b = c preserve the time reversal symmetry. For given values of θ we recover the
permutation matrix depicted in Fig. [4], in particular

M1 (θ = 0) = MN , M1

(

θ =
2π

3

)

= Mχ− , M1

(

θ =
4π

3

)

= Mχ+ ,

M2 (θ = 0) = MN1
, M2

(

θ =
4π

3

)

= MN2
, M2

(

θ =
2π

3

)

= MN3
(2.156)

An interesting splitting matrix, not belonging to the permutation set, is obtained from the M1 class for θ = π. It
correspond to

M1 (θ = π) =





− 1
3

2
3

2
3

2
3 − 1

3
2
3

2
3

2
3 − 1

3



 (2.157)
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and its coefficients can not be expressed as the modulus square of the coefficients of an unitary matrix. For this reason,
the properties of this boundary condition, that is associated with the presence of multi particle Andreev-like boundary
interactions at the junction29, can not be studied within the standard FRG formalism. However, in the next Chapter
we will develop an approach that, making use of both fermionic and bosonic coordinates, will allow to describe this
boundary condition in terms of appropriate fermionic degrees of freedom. On the other side the unistochastic matrix

M =





1
9

4
9

4
9

4
9

1
9

4
9

4
9

4
9

1
9



 (2.158)

obtained from Eq. [2.82], is not orthogonal and represent an example of fixed point that can be studied with the FRG
approach but is not accessible by abelian bosonization.
For K > 3, it is not straightaway to parametrize the splitting matrices set in terms of a finite amount of parameters

such that the orthogonal and current (or charge) conservation low is ensured. However it can be done performing an
appropriate change of basis. For K = 3, starting from the chiral bosonic fields, let us define the center of mass and
relative fields through the change of basis





Φ̃R/L,0
Φ̃R/L,I
Φ̃R/L,II



 =






1√
3

1√
3

1√
3

1√
2

− 1√
2

0
1√
6

1√
6

− 2√
6










Φ̃R/L,1
Φ̃R/L,2
Φ̃R/L,3



 = B̃





Φ̃R/L,1
Φ̃R/L,2
Φ̃R/L,3



 (2.159)

that means





Φ̃R/L,1
Φ̃R/L,2
Φ̃R/L,3



 =






1√
3

1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 − 2√
6










Φ̃R/L,0
Φ̃R/L,I
Φ̃R/L,II



 = B̃
T





Φ̃R/L,0
Φ̃R/L,I
Φ̃R/L,II



 (2.160)

The boundary conditions for the rotated basis is given by the transformation





Φ̃R,0
Φ̃R,I
Φ̃R,II



 = B̃M̃B̃
T





Φ̃L,0
Φ̃L,I
Φ̃L,II



 = R̃





Φ̃L,0
Φ̃L,I
Φ̃L,II



 (2.161)

The splitting matrix for the interacting rotated basis is then given by

R̃ = B̃M̃B̃
T =












1 0 0

0 g2−1+(1+g2)cosθ
1+g2+(g2−1)cosθ

2gsinθ
1+g2+(g2−1)cosθ

0 − 2gsinθ
1+g2+(g2−1)cosθ

g2−1+(1+g2)cosθ
1+g2+(g2−1)cosθ




 =

(

1 0

0 R̃1,2x2

)

M̃1 class






1 0 0

0 1
2 (cosθ −

√
3sinθ) 1

2 (
√
3cosθ + sinθ)

0 1
2 (
√
3cosθ + sinθ) − 1

2 (cosθ −
√
3sinθ)




 =

(

1 0

0 R̃2,2x2

)

M̃2 class

(2.162)

that reduces to

R = BMB
T =












1 0 0

0 cosθ −sinθ
0 −sinθ cosθ




 =

(

1 0

0 R1,2x2

)

M1 class






1 0 0

0 1
2 (cosθ −

√
3sinθ) 1

2 (
√
3cosθ + sinθ)

0 1
2 (
√
3cosθ + sinθ) − 1

2 (cosθ −
√
3sinθ)




 =

(

1 0

0 R2,2x2

)

M2 class

(2.163)
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for the non interacting case. The first line and column simply reflect the fact that current is conserved (Neumann
boundary condition on Φ0, Dirichlet boundary condition on Θ0 that is pinned). The superconducting junction
splitting matrices are instead simply given again by minus these matrices (Neumann boundary condition on Θ0,

Dirichlet boundary condition on Φ0 that is pinned).The 2 × 2 submatrices R̃ are rotation matrices for the M̃1 class

(R̃1,2x2 = R̃
T
1,2x2 = I, det[R̃1,2x2] = 1) and improper rotation matrices for the M̃2 class (R̃2,2x2 = R̃

T
2,2x2 = I,

det[R̃2,2x2] = −1). It is easy to check that this connection between splitting matrices of order K and the proper and
improper rotations of order K − 1

M̃ = B̃
T
R̃B̃

is true at any order and give us an easy way to parametrize the splitting matrices provided a parametrization for the
rotation matrices. A similar procedure is applied for a junction of spinful wires. Assuming that both total spin and
charge are conserved at each scattering event at the junction, the boundary conditions ca be separately imposed to
charge and spin bosonic fields. This is realized introducing two splitting matrices Mc(s)

ΦR,i;c(s) = Mc(s);i,jΦL,j;c(s) + Ci,c(s) (2.164)

The condition
∑

iMc(s);i,j =
∑

j Mc(s);i,j = 1 becomes a conservation low for the charge and spin currents. Until now
we have described how to implement boundary conditions within the abelian bosonization approach. The next step
to build the flow diagrams of a physical system consist in the stability analysis of each boundary condition. This can
be performed through the delayed evaluation of boundary condition (DEBC), developed by Ref. [82] and applied to
junctions of two and three quantum wires in Refs. [29 and 30]. The basic idea behind the DEBC method is to delay
the choice of the boundary condition until after we write the operators corresponding to the (multi)particle tunneling
processes at the junction. The stable boundary condition is then imposed on the bosonic fields a posteriori, taking
into account the scaling dimensions of the tunneling operators given the different choices of boundary conditions. In
the next Chapter we will give an example of the method applying it to a junction of three spinful wires.

II.6. Appendix A: Matsubara imaginary-time Green’s function technique

The properties of quantum mechanical systems are described by expectation values that, in general, can be written
in terms of Green’s functions. The method of Green’s function is particularly effective for problem solved through
perturbation theory, like the one we will treat in the following. A retarded Green’s function, in terms of which physical
quantities can be expressed, has the form

GRA,B (x, t;x′, t′) = iΘ(t− t′)
〈
[A (x, t) , B (x′, t′)]±

〉
(2.165)

where the anti-commutator, [ , ]+ = { , }, is for fermions and the commutator, [ , ]− = [ , ], is for bosons operators.
The operator are expressed in the Heisenberg representation as

A (x, t) = eiHtA (x) e−iHt (2.166)

The average 〈· · · 〉 represent a thermal and quantum average given by

〈· · · 〉 = 1

Z

∑

n

〈n |· · · |n〉 e−βEn (2.167)

where |n〉 and En is a set of eigenstates and eigenvalues of the Hamiltonian, β = 1/KBT and

Z =
∑

n

e−βEn (2.168)

is the partition function. When the interaction Hamiltonian is time independent, the Green’s function is invariant
under time translation and then it does not depend on t and t′ separately but only be their difference t − t′; in
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this case is useful to move back and forth the space-time domain and the space-frequency domain through a Fourier
transformation

GRA,B (x, x′, t− t′) =
1

2π

+∞∫

−∞

dωe−iω(t−t
′)GRA,B (x, x′, ω)

GRA,B (x, x′, ω) =

+∞∫

−∞

d (t− t′) eiω(t−t
′)GRA,B (x, x′, t− t′) (2.169)

In order to simplify th computation it is convenient to make advantage of the Matsubara imaginary time formalism.
We define the imaginary-time Matsubara Green’s function as

GA,B (x, τ ;x′, τ ′) = 〈TτA (x, τ) , B (x′, τ ′)〉 (2.170)

where Tτ is the imaginary-time ordering operator

TτA (x, τ) , B (x′, τ ′) =

{

A (x, τ) , B (x′, τ ′) τ > τ ′

∓A (x, τ) , B (x′, τ ′) τ < τ ′

(with minus sign for fermions and plus sign for bosons) and τ and τ ′ real quantities ∈ [0, β]. In this formalism the
time evolution is described by

A (x, τ) = eτHA (x) e−τH

A† (x, τ) = eτHA† (x) e−τH (2.171)

Like the retarded real-time Green’s function, the Matsubara Green’s function, for a time independent Hamiltonian,
depends only by the time difference

GA,B (x, τ ;x′, τ ′) = GA,B (x, x′, τ − τ ′) (2.172)

Furthermore it satisfy the anti-periodic (for fermions) or periodic (for bosons) condition of the form

GA,B (x, x′, τ − τ ′) = ∓GA,B (x, x′, τ − τ ′ + β) (2.173)

This property ensure us that the Matsubara Green’s function has period 2β and can be Fourier expanded on the
interval [−β, β]

GA,B (x, x′, τ − τ ′) =
1

β

∑

n∈Z
e−iΩn(τ−τ ′)GA,B (x, x′, iΩn)

GA,B (x, x′, iΩn) =
1

2

+β∫

−β

d (τ − τ ′) eiΩn(τ−τ ′)GA,B (x, x′, τ − τ ′) (2.174)

with Ωn = nπ/β. Due to the (anti)-periodic condition we can write

GA,B (x, x′, iΩn) =
1

2






0∫

−β

dωeiΩn(τ−τ ′)GA,B (x, x′, τ − τ ′) +

β∫

0

dωeiΩn(τ−τ ′)GA,B (x, x′, τ − τ ′)





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=
[∓ (−1)

n
+ 1]

2

β∫

0

dωeiΩn(τ−τ ′)GA,B (x, x′, τ − τ ′)

where we used e−iΩnβ = (−1)
n
. For fermions and bosons respectively only odd and even values of n give non zero

contribution to the Fourier series, so we can write the Fourier expansion as

GA,B (x, x′, τ − τ ′) =
1

β

∑

ωn

e−iωn(τ−τ ′)GA,B (x, x′, iΩn)

GA,B (x, x′, iωn) =

β∫

0

d (τ − τ ′) eiωn(τ−τ ′)GA,B (x, x′, τ − τ ′) (2.175)

where we have defined the so called Matsubara frequencies

ωn =

{
(2n+1)π

β fermions
2nπ
β bosons

(2.176)

It is worth to note that, in the zero temperature limit, β → ∞, the discrete Matsubara frequencies become continuous.
The key ingredient of the Matsubara imaginary-time formalism is that it is possible to relate the retarded Green’s

functions and the Matsubara Green’s functions through the analytic continuation procedure that consist in the
replacing iωn → ω + iη. Indeed, in the space-frequency domain, resorting to the Lehmann representation, we can
write (respectively for fermions and bosons)

GA,B (x, x′, iωn) = − 1

Z

∑

n,n′

〈n |A|n′〉 〈n′ |B|n〉
iωn + En − En′

(
e−βEn − (∓) e−βEn′

)

GRA,B (x, x′, ω) = − 1

Z

∑

n,n′

〈n |A|n′〉 〈n′ |B|n〉
ω + En − En′ + iη

(
e−βEn − (∓) e−βEn′

)
(2.177)

from which it directly follows

GRA,B (x, x′, ω) = −iGA,B (x, x′, iωn → ω + iη) (2.178)

II.7. Appendix B: Normal and anomalous Green’s functions

To compute the Green’s function correction, the starting point are the left and right going fields of Eq. [2.3] that
in the Schroedinger representation are

ψR,j (x) =
1√
l

∑

k

aR,j (k) e
ikx

ψL,j (x) =
1√
l

∑

k

aL,j (k) e
−ikx (2.179)

with the right and left going modes related to each other through the scattering matrix S of Eq. [2.31]

aR,j (k) =

K∑

j′=1

[

Se,ej,j′ (ǫk) aL,j′ (k) + Se,hj,j′ (ǫk) a
†
L,j′ (−k)

]

(2.180)

Annihilation and creating operators satisfy
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〈

a†L,j (k) aL,j′ (k
′)
〉

= δj,j′δk,k′f (ǫk)
〈

aL,j (k) a
†
L,j′ (k

′)
〉

= δj,j′δk,k′ [1− f (ǫk)] = δj,j′δk,k′f(−ǫ) (2.181)

where f (ǫk) is the fermi distribution function. Propagating at imaginary time τ , we obtain

ψR,j (x, τ) =
1√
l

∑

k

aR,j (k) e
ikx−ǫkτ

ψL,j (x, τ) =
1√
l

∑

k

aL,j (k) e
−ikx−ǫkτ (2.182)

and

ψ†
R,j (x, τ) =

1√
l

∑

k

a†R,j (k) e
−ikx+ǫkτ

ψ†
L,j (x, τ) =

1√
l

∑

k

a†L,j (k) e
+ikx+ǫkτ (2.183)

for the complex conjugate fields., with ǫk = vk. From Eqs. (2.180, 2.181) we can compute the following expectation
values involving different chiralities

〈

a†L,j (k) aR,j′ (k
′)
〉

=
∑

i

〈

a†L,j (k)
[

Se,ej′,i (ǫ
′
k) aL,i (k

′) + Se,hj′,i (ǫ
′
k) a

†
L,i (−k′)

]〉

〈

a†L,j (k)
[

Se,ej′,j (ǫ
′
k) aL,j (k

′)
]〉

= Se,ej′,j (ǫk) δk,k′f (ǫk)
〈

aR,j (k) a
†
L,j′ (k

′)
〉

=
∑

i

〈[

Se,ej,i (ǫk) aL,i (k) + Se,hj,i (ǫk) a
†
L,i (−k)

]

a†L,j′ (k
′)
〉

〈[

Se,ej,j′ (ǫk) aL,j′ (k)
]

a†L,j′ (k
′)
〉

= Se,ej,j′ (ǫk) δk,k′ [1− f (ǫk)]
〈

a†R,j (k) aL,j′ (k
′)
〉

=
∑

i

〈[

Se,e∗j,i (ǫk) a
†
L,i (k) + Se,h∗j,i (ǫk) aL,i (−k)

]

aL,j′ (k
′)
〉

〈[

Se,e∗j,j′ (ǫk) a
†
L,j′ (k)

]

aL,j′ (k
′)
〉

= Se,e∗j,j′ (ǫk) δk,k′f (ǫk)
〈

aL,j (k) a
†
R,j′ (k

′)
〉

=
∑

i

〈

aL,j (k)
[

Se,e∗j′,i (ǫ′k) a
†
L,i (k

′) + Se,h∗j′,i (ǫ′k) aL,i (−k′)
]〉

〈

aL,j (k)
[

Se,e∗j′,j (ǫ′k) a
†
L,j (k

′)
]〉

= Se,e∗j′,j (ǫk) δk,k′ [1− f (ǫk)]

〈aL,j (k) aR,j′ (k′)〉 =
∑

i

〈

aL,j (k)
[

Se,ej′,i (ǫ
′
k) aL,i (k

′) + Se,hj′,i (ǫ
′
k) a

†
L,i (−k′)

]〉

〈

aL,j (k)
[

Se,hj′,j (ǫ
′
k) a

†
L,j (−k′)

]〉

= Se,hj′,j (−ǫk) δk,−k′ [1− f (ǫk)]

〈aR,j (k) aL,j′ (k′)〉 =
∑

i

〈[

Se,ej,i (ǫk) aL,i (k) + Se,hj,i (ǫk) a
†
L,i (−k)

]

aL,j′ (k
′)
〉

〈[

Se,hj,j′ (ǫk) a
†
L,j′ (−k)

]

aL,j′ (k
′)
〉

= Se,hj,j′ (ǫk) δk,−k′f (−ǫk)
〈

a†L,j (k) a
†
R,j′ (k

′)
〉

=
∑

i

〈

a†L,j (k)
[

Se,e∗j′,i (ǫ′k) a
†
L,i (k

′) + Se,h∗j′,i (ǫ′k) aL,i (−k′)
]〉

〈

a†L,j (k)
[

Se,h∗j′,j (ǫ′k) aL,j (−k′)
]〉

= Se,h∗j′,j (−ǫk) δk,−k′f (ǫk)
〈

a†R,j (k) a
†
L,j′ (k

′)
〉

=
∑

i

〈[

Se,e∗j,i (ǫk) a
†
L,i (k) + Se,h∗j,i (ǫk) aL,i (−k)

]

a†L,j′ (k
′)
〉
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〈[

Se,h∗j,j′ (ǫk) aL,j′ (−k)
]

a†L,j′ (k
′)
〉

= Se,h∗j,j′ (ǫk) δk,−k′ [1− f (−ǫk)] (2.184)

that will help us to compute the single particle Green’s functions. Let us not that, due the presence of Andree-
like processes a the boundary, we have to compute not only the ordinary Green’s function involving a creation and
annihilation operator but also anomalous Green’s functions that describe the annihilation or creation of two particles.
In particular we have to compute

G(X,j);(X′,j′) (x, τ ;x
′, τ ′) = Θ (τ − τ ′)

〈

ψX,j (x, τ)ψ
†
X′,j′ (x

′, τ ′)
〉

−Θ(τ ′ − τ)
〈

ψ†
X′,j′ (x

′, τ ′)ψX,j (x, τ)
〉

F(X,j);(X′,j′) (x, τ ;x
′, τ ′) = Θ (τ − τ ′) 〈ψX,j (x, τ)ψX′,j′ (x

′, τ ′)〉 −Θ(τ ′ − τ) 〈ψX′,j′ (x
′, τ ′)ψX,j (x, τ)〉

F̃(X,j);(X′,j′) (x, τ ;x
′, τ ′) = Θ (τ − τ ′)

〈

ψ†
X,j (x, τ)ψ

†
X′,j′ (x

′, τ ′)
〉

−Θ(τ ′ − τ)
〈

ψ†
X′,j′ (x

′, τ ′)ψ†
X,j (x, τ)

〉

(2.185)

In the Matsubara frequency-real space representation, using Eq. [2.175] (that holds also for the anomalous Green’s
functions), and

[

e(iωn−ǫ)β − 1
]

[1− f (ǫ)] = −1 (2.186)

we have

G(L,j);(L,j′) (x, x
′, iωn) =

1

l

∑

k

e−ik(x−x
′)

(ǫk − iωn)
δj,j′

G(R,j);(R,j′) (x, x
′, iωn) =

1

l

∑

k

e+ik(x−x
′)

(ǫk − iωn)
δj,j′

G(L,j);(R,j′) (x, x
′, iωn) =

1

l

∑

k

e−ik(x+x
′)

(ǫk − iωn)
Se,e∗j′,j (ǫk)

G(R,j);(L,j′) (x, x
′, iωn) =

1

l

∑

k

e+ik(x+x
′)

(ǫk − iωn)
Se,ej,j′ (ǫk)

F(L,j);(L,j′) (x, x
′, iωn) = 0

F(R,j);(R,j′) (x, x
′, iωn) = 0

F(L,j);(R,j′) (x, x
′, iωn) =

1

l

∑

k

e−ik(x+x
′)

(ǫk − iωn)
Se,hj′,j (−ǫk)

F(R,j);(L,j′) (x, x
′, iωn) =

1

l

∑

k

e+ik(x+x
′)

(ǫk − iωn)
Se,hj,j′ (ǫk)

F̃(L,j);(L,j′) (x, x
′, iωn) = 0

F̃(R,j);(R,j′) (x, x
′, iωn) = 0

F̃(L,j);(R,j′) (x, x
′, iωn) = −1

l

∑

k

e+ik(x+x
′)

(ǫk + iωn)
Se,h∗j′,j (−ǫk)

F̃(R,j);(L,j′) (x, x
′, iωn) = −1

l

∑

k

e−ik(x+x
′)

(ǫk + iωn)
Se,h∗j,j′ (ǫk) (2.187)

These are the normal and anomalous Green’s functions in the space-frequency space used in the main text.
To simplify the notation we define the following quantities

ϕ(L,j);(L,j′) (x, x
′, k) = δj,j′e

−ik(x−x′)

ϕ(R,j);(R,j′) (x, x
′, k) = δj,j′e

+ik(x−x′)
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ϕ(L,j);(R,j′) (x, x
′, k) = Se,e∗j′,j (ǫk) e

−ik(x+x′)

ϕ(R,j);(L,j′) (x, x
′, k) = Se,ej,j′ (ǫk) e

+ik(x+x′) (2.188)

II.8. Appendix C: Linear response theory approach to the conductance tensor

In this appendix, we review the linear response theory approach to the derivation of the conductance tensor for a
junction of quantum wires. Let Wj be the j-th wire connected to the junction (j = 1, . . . ,K). In order to implement
linear response theory, we imagine to connect Wj to a reservoir Rj , which can either be characterized by the same
parameters as the wire to which it is connected, or not (a typical situation corresponds to Wj being an interacting
one-dimensional quantum wire, described as a single Luttinger liquid, connected to a Fermi liquid reservoir83). For the
sake of simplicity, we assume that the parameters characterizing both the wires and the reservoirs are all independent
of j. In order to induce a current flow across the junction, we assume that each reservoir is characterized by an
equilibrium distribution with chemical potential µj = eVj . This induces electric fields {Ej(t)} distributed in the
various branches of the junction, which we account for by introducing a set of uniform vector potentials Aj(t), one
for each wire, such that Ej(t) = −∂tAj(t). Letting Jj(x) be the current operator for particles in wire-j and letting
each wire to be of length ℓ, we may define the ”source” Hamiltonian HSource(t), describing the coupling to the applied
electric fields, given by

HSource(t) =

K∑

j=1

∫ ℓ

δ

dxAj(t)Jj(x) (2.189)

Let us, now, denote with Jj;I(x, t), HSource;I(t) the operators taken in the interaction representation with respect to
the Hamiltonian without the source term. Within linear response theory, the current evaluated at point x of wire-j
is therefore given by

Ij(x, t) = i

K∑

j′=1

∫ ∞

−∞
dt′
∫ ℓ

δ

dx′Dj,j′(x, t;x′, t′)Aj′(t
′) (2.190)

with

Dj,j′(x, t;x′, t′) = θ(t− t′)〈[Jj;I(x, t), Jj′;I(x′, t′)]〉 (2.191)

Equation [2.190] does generically apply to any situation, whether the wires are interacting, or not, and whether one
uses a fermionic, or a bosonic representation for the Hamiltonian of the junction. An important remark, however, is
that, in any case, the current must be consistently probed outside of the region across which the electric fields are
applied, that is, in Eq. [2.190] one has always to assume that x > ℓ. Another important formula is the Fourier-space
counterpart of Eq. [2.190], that is

Ij(x, ω) = − 1

ω

K∑

j′=1

∫ ℓ

δ

dx′Dj,j′(x, x′;ω)Ej′(ω) (2.192)

with

Ij(x, ω) =

∫

dteiωtIj(x, t)

Ej′(ω) =
∫

dteiωtEj′(t)

Dj,j′(x, x′;ω) =
∫

dteiωtDj,j′(x, t;x′, 0) (2.193)

For a normal wire, the current operator in branch j is given by

Jj = ev
{

: ψ†
R,j(x)ψR,j(x) : − : ψ†

L,j(x)ψL,j(x) :
}

(2.194)

An important observation to make at this point is that, on connecting the wires to the reservoirs, we basically assume
a continuity condition for the current operator at the interface. From the microscopical point of view, this appears
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to be the ”macroscopic” counterpart of the ”smooth” crossover in the interaction strength in real space discussed in
the microscopic lattice model considered in Ref. [41]. It would be also interesting to work out a macroscopic field-
theoretical Hamiltonian describing a ”sharp” interface in the microscopic model, but this goes beyond of the scope
of this work. As specified above, in the following we assume current continuity at the interface, that is, a smooth
crossover in the bulk interaction strength.

II.8.1. Conductance tensor in the non interacting case

In this section we compute the conductance tensor for a junction of quantum wires in absence of interaction. In
this case, the D-tensor, using imaginary time formalism, is given by

DI
(0);j,j′(x, x

′; iΩn)

=
e2v2

β

∑

ω

{−G(0)
(L,j);(L,j′)(x, x

′; iω + iΩn)G
(0)
(L,j′);(L,j)(x

′, x; iω)−G
(0)
(R,j);(R,j′)(x, x

′; iω + iΩn)G
(0)
(R,j′);(R,j)(x

′, x; iω)

+ G
(0)
(L,j);(R,j′)(x, x

′; iω + iΩn)G
(0)
(R,j′);(L,j)(x

′, x; iω) +G
(0)
(R,j);(L,j′)(x, x

′; iω + iΩn)G
(0)
(L,j′);(R,j)(x

′, x; iω)} (2.195)

Making use of the Green’s function of Appendix [II.7], for the unperturbed result on summing over ω, we obtain

DI
(0);j,j′(x, x

′; iΩn)

=
e2v2

ℓ2

∑

k1,k2

∑

X,X′=L,R

[f(ǫ1)f(−ǫ2)− f(ǫ2)f(−ǫ1)]
iΩn − ǫ1 + ǫ2

ϕ(X,j);(X′,j′)(x, x
′; k1)ϕ(X′,j′);(X,j)(x

′, x; k2) (2.196)

with the ϕ functions defined in Eqs. [4.38]. Therefore, returning to real times with the analytic continuation, we have

DR
(0);j,j′(x, x

′; Ω)

= −ie
2v2

ℓ2

∑

k1,k2

∑

X,X′=L,R

[f(ǫ1)f(−ǫ2)− f(ǫ2)f(−ǫ1)]
Ω + iη − ǫ1 + ǫ2

ϕ(X,j);(X′,j′)(x, x
′; k1)ϕ(X′,j′);(X,j)(x

′, x; k2)

→ −i e
2

4π2

∫

dǫ1dǫ2
∑

X,X′=L,R

[f(ǫ1)f(−ǫ2)− f(ǫ2)f(−ǫ1)]
Ω + iη − ǫ1 + ǫ2

ϕ(X,j);(X′,j′)

(

x, x′;
ǫ1
v

)

ϕ(X′,j′);(X,j)

(

x′, x;
ǫ2
v

)

(2.197)

We are always assuming x > x′. Also, it easy to check that all the contributions from poles of the Fermi functions
cancel with each other. Therefore, on pertinently closing the integration path in dǫ1, we eventually obtain

DR
(0);j,j′(x, x

′; Ω) = − e2

2π

∫

dǫ[f(ǫ+Ω)f(−ǫ)− f(ǫ)f(−ǫ− Ω)]

{

ϕ(R,j);(R,j′)

(

x, x′;
ǫ+Ω

v

)

ϕ(R,j′);(R,j)

(

x′, x;
ǫ

v

)

− ϕ(R,j);(L,j′)

(

x, x′;
ǫ+Ω

v

)

ϕ(L,j′);(R,j)

(

x′, x;
ǫ

v

)
}

(2.198)

As Ω → 0, one obtains

DR
(0);j,j′(x, x

′; Ω) → e2

2π

∫

dǫ
βΩ

4 cosh2
(
βǫ
2

){−δj,j′ + |Se,ej,j′(ǫ)|2} (2.199)

Therefore, the dc conductance tensor is given by

Gj,j′ =
∂Ij
∂Vj′

=
e2

2π

∫

dǫ
β

4 cosh2
(
βǫ
2

){δj,j′ − |Se,ej,j′(ǫ)|2} (2.200)

Eq. [2.192] remains valid also in the spinful case. The only difference is that the current and D-tensor assume an
explicit spin dependence. The T → 0 limit dc-conductance tensor, assuming no spin-flip processes are allowed at the
junction, becomes

G(j,σ);(j′,σ′) =
∂Ij,σ
∂Vj′,σ

= δσ,σ′
e2

2π
{−|Se,ej,j′ |2 + δj,j′} (2.201)
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It is then useful to introduce the charge- and the spin-conductance tensors Gc, Gs, respectively defined as

Gc;(j,j′) =
∑

σ,σ′

G(j,σ);(j′,σ′) , Gs;(j,j′) =
∑

σ,σ′

σσ′G(j,σ);(j′,σ′) (2.202)

which, from Eq. [2.201], implies

Gc;(j,j′) = Gs;(j,j′) =
e2

π
{−|Se,ej,j′ |2 + δj,j′} (2.203)

When a weak bulk interaction is added to the junction Hamiltonian we still use Eq. [2.200] in the spinless case and
Eq. [2.203] for the charge- and the spin-conductance tensors by just replacing the ”bare” S-matrix elements with the
running ones, Sj,j′(Λ) as discussed in Sec. [II.4].

II.9. Appendix D: First and second order scattering matrix corrections

II.9.1. First order correction

Let us start computing the first order of the Dyson’s series for the normal Green’s function

δG
(1)
RL (x, τ, x′) = +g

L∫

0

dx1

β∫

0

dτ1

〈

TτψR (x, τ) : ψ†
R (x1, τ1)ψR (x1, τ1) :: ψ

†
L (x1, τ1)ψL (x1, τ1) : ψ

†
L (x′, 0)

〉

(2.204)

Using Wick’s theorem and considering that, due to the normal ordering within each chiral density operator,

G
(0)
XX (xi, τi, xi, τi) = 0. We have

δG
(1)
RL (x, τ, x′) = +g

L∫

0

dx1

β∫

0

dτ1 [

+G
(0)
RR (x, τ, x1, τ1)G

(0)
RL (x1, τ1, x1, τ1)G

(0)
LL (x1, τ1, x

′, 0)

+G
(0)
RL (x, τ, x1, τ1)G

(0)
LR (x1, τ1, x1, τ1)G

(0)
RL (x1, τ1, x

′, 0)

+G
(0)
RL (x, τ, x1, τ1)F

(0)
RL (x1, τ1, x1, τ1) F̃

(0)
RL (x1, τ1, x

′, 0)

+F
(0)
RL (x, τ, x1, τ1) F̃

(0)
RL (x1, τ1, x1, τ1)G

(0)
RL (x1, τ1, x

′, 0)

−F (0)
RL (x, τ, x1, τ1)G

(0)
RL (x1, τ1, x1, τ1) F̃

(0)
RL (x1, τ1, x

′, 0)] (2.205)

In Fourier space, integrating into the time variables to remove two over three ωi sums, we obtain

δG
(1)
RL (x, x′, iω) ≈ +

g

β

L∫

0

dx1
∑

ω′

[

+G
(0)
RR (x, x1, iω)G

(0)
RL (x1, x1, iω

′)G(0)
LL (x1, x

′, iω)

+G
(0)
RL (x, x1, iω)G

(0)
LR (x1, x1, iω

′)G(0)
RL (x1, x

′, iω)

+G
(0)
RL (x, x1, iω)F

(0)
RL (x1, x1, iω

′) F̃ (0)
RL (x1, x

′, iω)

+F
(0)
RL (x, x1, iω) F̃

(0)
RL (x1, x1, iω

′)G(0)
RL (x1, x

′, iω)

−F (0)
RL (x, x1, iω)G

(0)
RL (x1, x1, iω

′) F̃ (0)
RL (x1, x

′, iω)] (2.206)

Substituting the full form of the Green’s functions
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δG
(1)
RL (x, x′, iω) ≈ +

g

β (2π)
3
v3

L∫

0

dx1
∑

ω′

∫ 3∏

i=1

dǫi [

+
e+i

ǫ1
v (x−x1)

(ǫ1 − iω)

e+i2
ǫ2
v x1

(ǫ2 − iω′)
Se,e (ǫ2)

e−i
ǫ3
v (x1−x′)

(ǫ3 − iω)

+
e+i

ǫ1
v (x+x1)

(ǫ1 − iω)
Se,e (ǫ1)

e−i2
ǫ2
v x1

(ǫ2 − iω′)
Se,e∗ (ǫ2)

e+i
ǫ3
v (x1+x

′)

(ǫ3 − iω)
Se,e (ǫ3)

−e
+i

ǫ1
v (x+x1)

(ǫ1 − iω)
Se,e (ǫ1)

e+i2
ǫ2
v x1

(ǫ2 − iω′)
Se,h (ǫ2)

e−i
ǫ3
v (x1+x

′)

(ǫ3 + iω)
Se,h∗ (ǫ3)

−e
+i

ǫ1
v (x+x1)

(ǫ1 − iω)
Se,h (ǫ1)

e−i2
ǫ2
v x1

(ǫ2 + iω′)
Se,h∗ (−ǫ2)

e+i
ǫ3
v (x1+x

′)

(ǫ3 − iω)
Se,e (ǫ3)

+
e+i

ǫ1
v (x+x1)

(ǫ1 − iω)
Se,h (ǫ1)

e+i2
ǫ2
v x1

(ǫ2 − iω′)
Se,e (ǫ2)

e−i
ǫ3
v (x1+x

′)

(ǫ3 + iω)
Se,h∗ (ǫ3)] (2.207)

and remembering that

x > x′ > {xi} > 0 (2.208)

let us compute each contribution. We obtain

δG
(1)
RL (x, x′, ω) ≈ +

g

βv3
Θ(ω)e−

ω
v (x+x

′)
∑

ω′

L∫

0

dx1

[−iΘ(ω′)Se,e (iω′) e2
x1
v (ω−ω′)

+iΘ(−ω′)Se,e (iω)Se,e∗ (iω′)Se,e (iω) e2
x1
v (−ω+ω′)

−iΘ(ω′)Se,e (iω)Se,h (iω′)Se,h∗ (−iω) e−2
x1
v (ω+ω′)

−iΘ(ω′)Se,h (iω)Se,h∗ (−iω′)Se,e (iω) e−2
x1
v (ω+ω′)

+iΘ(ω′)Se,h (iω)Se,e (iω′)Se,h∗ (−iω) e−2
x1
v (ω+ω′)] (2.209)

If we make the comparison with the zeroth order Green’s function

G
(0)
R,L (x, x′, iωn) =

1

l

∑

k

e+ik(x+x
′)

(ǫk − iω)
Se,e (ǫk)

1

2πv

∫

dǫ
e+i

ǫ
v (x+x

′)

(ǫ− iω)
Se,e (ǫ)

i

v
Θ(ω)Se,e (iω) e−i

ω
v (x+x

′) (2.210)

integrating in dx1 exchanging the sum over ω′ with an integral and letting the integral going from −D to 0 we obtain

δSe,e (iω) ≈ +
g

2 (2π) v

[ −
0∫

−D

dω′Se,e (−iω′)

[

e2
L
v (ω+ω

′) − 1
]

(ω + ω′)
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−
0∫

−D

dω′Se,e (iω)Se,e∗ (iω′)Se,e (iω)

[

e2
L
v (−ω+ω

′) − 1
]

(ω − ω′)

+

0∫

−D

dω′Se,e (iω)Se,h (−iω′)Se,h∗ (−iω)

[

e−2L
v (ω−ω

′) − 1
]

(ω − ω′)

+

0∫

−D

dω′Se,h (iω)Se,h∗ (iω′)Se,e (iω)

[

e−2L
v (ω−ω

′) − 1
]

(ω − ω′)

−
0∫

−D

dω′Se,h (iω)Se,e (−iω′)Se,h∗ (−iω)

[

e−2L
v (ω−ω

′) − 1
]

(ω − ω′)
] (2.211)

Let us analyse term by term the behaviour of the last equation under a change of the cut-off using the Leibniz rule

δD

0∫

−D

dω1F (ω1) = F (−D) δD (2.212)

The first order correction to Se,e is

δSe,e (iω) ≈ g

2 (2π) v

δD

D

[ −Se,e (iD)

+Se,e (iω)Se,e∗ (−iD)Se,e (iω)

−Se,e (iω)Se,h (iD)Se,h∗ (−iω)
−Se,h (iω)Se,h∗ (−iD)Se,e (iω)

+Se,h (iω)Se,e (iD)Se,h∗ (−iω)] (2.213)

Let us restoring the wire indices, for the forward interaction, Eq. [2.54], through the replacement in Eq. [2.65] that
means

δSe,ej,j′ (iω) ≈
1

2 (2π) v

δD

D

[ −g2;j,j′Se,ej,j′ (iD)

+
∑

a,a′

g2;a,a′S
e,e
j,a′ (iω)S

e,e∗
a,a′ (−iD)Se,ea,j′ (iω)

−
∑

a,a′

g2;a,a′S
e,e
j,a′ (iω)S

e,h
a,a′ (iD)Se,h∗a,j′ (−iω)

−
∑

a,a′

g2;a,a′S
e,h
j,a′ (iω)S

e,h∗
a,a′ (−iD)Se,ea,j′ (iω)

+
∑

a,a′

g2;a,a′S
e,h
j,a′ (iω)S

e,e
a,a′ (iD)Se,h∗a,j′ (−iω)] (2.214)

while for the backscattering term, Eq. [2.55], we have to make the replacement in Eq. [2.66] that means

δSe,ej,j′ (iω) ≈
1

2 (2π) v

δD

D

[ −
∑

a

g1;j,aδj,j′S
e,e
a,a (iD)
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+
∑

a,a′

g1;a,a′S
e,e
j,a′ (iω)S

e,e∗
a,a (−iD)Se,ea′,j′ (iω)

−
∑

a,a′

g1;a,a′S
e,e
j,a′ (iω)S

e,h
a′,a (iD)Se,h∗a,j′ (−iω)

−
∑

a,a′

g1;a,a′S
e,h
j,a (iω)Se,h∗a,a′ (−iD)Se,ea′,j′ (iω)

+
∑

a,a′

g1;a,a′S
e,h
j,a (iω)Se,ea′,a′ (iD)Se,h∗a,j′ (−iω)] (2.215)

Adding the two contributions we have the full first order correction to the normal elements of the scattering matrix.
We are at half of the work; now, we have to repeat the full procedure for the anomalous Green’s function, in order to
obtain the RG equation for the Andreev scattering matrix elements.
For the first order of the Dyson’s series, for the anomalous Green’s function, we have

δF
(1)
RL (x, τ, x′) = +g

L∫

0

dx1

β∫

0

dτ1

〈

TτψR (x, τ) : ψ†
R (x1, τ1)ψR (x1, τ1) :: ψ

†
L (x1, τ1)ψL (x1, τ1) : ψL (x′, 0)

〉

(2.216)

Using Wick’s theorem

δF
(1)
RL (x, τ, x′) = +g

L∫

0

dx1

β∫

0

dτ1 [

+G
(0)
RR (x, τ, x1, τ1)F

(0)
RL (x1, τ1, x1, τ1)G

(0)
LL (x′, 0, x1, τ1)

+G
(0)
RL (x, τ, x1, τ1)G

(0)
LR (x1, τ1, x1, τ1)F

(0)
RL (x1, τ1, x

′, 0)

−G(0)
RL (x, τ, x1, τ1)F

(0)
RL (x1, τ1, x1, τ1)G

(0)
LR (x′, 0, x1, τ1)

+F
(0)
RL (x, τ, x1, τ1) F̃

(0)
RL (x1, τ1, x1, τ1)F

(0)
RL (x1, τ1, x

′, 0)

+F
(0)
RL (x, τ, x1, τ1)G

(0)
RL (x1, τ1, x1, τ1)G

(0)
LR (x′, 0, x1, τ1)] (2.217)

In Fourier space, integrating into the time variables

δF
(1)
RL (x, x′, iω) ≈ +

g

β

L∫

0

dx1
∑

ω′

[

+G
(0)
RR (x, x1, iω)F

(0)
RL (x1, x1, iω

′)G(0)
LL (x′, x1,−iω)

+G
(0)
RL (x, x1, iω)G

(0)
LR (x1, x1, iω

′)F (0)
RL (x1, x

′, iω)

−G(0)
RL (x, x1, iω)F

(0)
RL (x1, x1, iω

′)G(0)
LR (x′, x1,−iω)

+F
(0)
RL (x, x1, iω) F̃

(0)
RL (x1, x1, iω

′)F (0)
RL (x1, x

′, iω)

+F
(0)
RL (x, x1, iω)G

(0)
RL (x1, x1, iω

′)G(0)
LR (x′, x1,−iω)] (2.218)

Substituting the full form of the Green’s functions

δF
(1)
RL (x, x′, iω) ≈ +

g

β (2π)
3
v3

L∫

0

dx1
∑

ω′

∫ 3∏

i=1

dǫi [

+
e+i

ǫ1
v (x−x1)

(ǫ1 − iω)

e+i2
ǫ2
v x1

(ǫ2 − iω′)
Se,h (ǫ2)

e−i
ǫ3
v (x

′−x1)

(ǫ3 + iω)

+
e+i

ǫ1
v (x+x1)

(ǫ1 − iω)
Se,e (ǫ1)

e−i2
ǫ2
v x1

(ǫ2 − iω′)
Se,e∗ (ǫ2)

e+i
ǫ3
v (x1+x

′)

(ǫ3 − iω)
Se,h (ǫ3)
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−e
+i

ǫ1
v (x+x1)

(ǫ1 − iω)
Se,e (ǫ1)

e+i2
ǫ2
v x1

(ǫ2 − iω′)
Se,h (ǫ2)

e−i
ǫ3
v (x1+x

′)

(ǫ3 + iω)
Se,e∗ (ǫ3)

−e
+i

ǫ1
v (x+x1)

(ǫ1 − iω)
Se,h (ǫ1)

e−i2
ǫ2
v x1

(ǫ2 + iω′)
Se,h∗ (ǫ2)

e+i
ǫ3
v (x1+x

′)

(ǫ3 − iω)
Se,h (ǫ3)

+
e+i

ǫ1
v (x+x1)

(ǫ1 − iω)
Se,h (ǫ1)

e+i2
ǫ2
v x1

(ǫ2 − iω′)
Se,e (ǫ2)

e−i
ǫ3
v (x1+x

′)

(ǫ3 + iω)
Se,e∗ (ǫ3)] (2.219)

Let us compute contribution by contribution. We are left with

δF
(1)
RL (x, x′, ω) ≈ +

g

βv3
Θ(ω)e−

ω
v (x+x

′)
∑

ω′

L∫

0

dx1

[+iΘ(ω′)Se,h (iω′) e2
x1
v (ω−ω′)

+iΘ(−ω′)Se,e (iω)Se,e∗ (iω′)Se,h (iω) e2
x1
v (−ω+ω′)

−iΘ(ω′)Se,e (iω)Se,h (iω′)Se,e∗ (−iω) e−2
x1
v (ω+ω′)

−iΘ(ω′)Se,h (iω)Se,h∗ (−iω′)Se,h (iω) e−2
x1
v (ω+ω′)

+iΘ(ω′)Se,h (iω)Se,e (iω′)Se,e∗ (−iω) e−2
x1
v (ω+ω′)] (2.220)

The comparison with the zeroth order Green’s function

F
(0)
R,L (x, x′, iωn) =

1

l

∑

k

e+ik(x+x
′)

(ǫk − iω)
Se,h (ǫk)

1

2πv

∫

dǫ
e+i

ǫ
v (x+x

′)

(ǫ− iω)
Se,h (ǫ)

i

v
Θ(ω)Se,h (iω) e−

ω
v (x+x

′) (2.221)

brings us to

δSe,h (iω) ≈ +
g

2 (2π) v

[ +

0∫

−D

dω′Se,h (−iω′)

[

e2
L
v (ω+ω

′) − 1
]

(ω + ω′)

−
0∫

−D

dω′Se,e (iω)Se,e∗ (iω′)Se,h (iω)

[

e2
L
v (−ω+ω

′) − 1
]

(ω − ω′)

+

0∫

−D

dω′Se,e (iω)Se,h (−iω′)Se,e∗ (−iω)

[

e−2L
v (ω−ω

′) − 1
]

(ω − ω′)

+

0∫

−D

dω′Se,h (iω)Se,h∗ (iω′)Se,h (iω)

[

e−2L
v (ω−ω

′) − 1
]

(ω − ω′)

−
0∫

−D

dω′Se,h (iω)Se,e (−iω′)Se,e∗ (−iω)

[

e−2L
v (ω−ω

′) − 1
]

(ω − ω′)
] (2.222)

Let us analyse term by term the behaviour of the last equation under a change of the cut-off applying the variation
rule



50

δSe,h (iω) ≈ g

2 (2π) v

δD

D

[ +Se,h (iD)

+Se,e (iω)Se,e∗ (−iD)Se,h (iω)

−Se,e (iω)Se,h (iD)Se,e∗ (−iω)
−Se,h (iω)Se,h∗ (−iD)Se,h (iω)

+Se,h (iω)Se,e (iD)Se,e∗ (−iω)] (2.223)

Let us restoring the wire indices, for the forward interaction, Eq. [2.54], making the replacement in Eq. [2.65], we
have

δSe,hj,j′ (iω) ≈
1

2 (2π) v

δD

D

[ +g2;j,j′S
e,h
j,j′ (iD)

+
∑

a,a′

g2;a,a′S
e,e
j,a′ (iω)S

e,e∗
a,a′ (−iD)Se,ha,j′ (iω)

−
∑

a,a′

g2;a,a′S
e,e
j,a′ (iω)S

e,h
a,a′ (iD)Se,e∗a,j′ (−iω)

−
∑

a,a′

g2;a,a′S
e,h
j,a′ (iω)S

e,h∗
a,a′ (−iD)Se,ha,j′ (iω)

+
∑

a,a′

g2;a,a′S
e,h
j,a′ (iω)S

e,e
a,a′ (iD)Se,e∗a,j′ (−iω)] (2.224)

while for the backscattering term, Eq. [2.55], with the replacement in Eq. [2.66], we have

δSe,hj,j′ (iω) ≈ − 1

2 (2π) v

δD

D

[ +g1;j′,jS
e,h
j′,j (iD)

+
∑

a,a′

g1;a,a′S
e,e
j,a′ (iω)S

e,e∗
a,a (−iD)Se,ha′,j′ (iω)

−
∑

a,a′

g1;a,a′S
e,e
j,a′ (iω)S

e,h
a′,a (iD)Se,e∗a,j′ (−iω)

−
∑

a,a′

g1;a,a′S
e,h
j,a (iω)Se,h∗a,a′ (−iD)Se,ha′,j′ (iω)

+
∑

a,a′

g1;a,a′S
e,h
j,a (iω)Se,ea′,a′ (iD)Se,e∗a,j′ (−iω)] (2.225)

Adding the two contributions we have the full first order correction to the Andreev elements of the scattering matrix.
At this point putting together Eqs. [2.214,2.215,2.224,2.225] and back-rotating to real frequencies we obtain the first
order correction used in the main text.

II.9.2. Second order correction

In this section we will compute one by one all the second order contributions the scattering matrix for a normal
junction. Starting from the second order of the Dyson’s series we have

δG
(2)
RL (x, τ, x′) = +

g2

2

L∫

0

dx1

β∫

0

dτ1

L∫

0

dx2

β∫

0

dτ2

〈

TτψR (x, τ) : ψ†
R (x1, τ1)ψR (x1, τ1) :: ψ

†
L (x1, τ1)ψL (x1, τ1) :
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: ψ†
R (x2, τ2)ψR (x2, τ2) :: ψ

†
L (x2, τ2)ψL (x2, τ2) : ψ

†
L (x′, 0)

〉

(2.226)

that using the Wick’s theorem and ignoring for the moment that, due to the normal ordering within each chiral

density operator, G
(0)
XX (xi, τi, xi, τi) = 0

δG
(2)
RL (x, τ, x′) ≈ g2

2

L∫

0

dx1

β∫

0

dτ1

L∫

0

dx2

β∫

0

dτ2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

G
(0)
RL (x, τ, x′, 0) G

(0)
RR (x, τ, x1, τ1) G

(0)
RL (x, τ, x1, τ1) G

(0)
RR (x, τ, x2, τ2) G

(0)
RL (x, τ, x2, τ2)

G
(0)
RL (x1, τ1, x

′, 0) G
(0)
RR (x1, τ1, x1, τ1) G

(0)
RL (x1, τ1, x1, τ1) G

(0)
RR (x1, τ1, x2, τ2) G

(0)
RL (x1, τ1, x2, τ2)

G
(0)
LL (x1, τ1, x

′, 0) G
(0)
LR (x1, τ1, x1, τ1) G

(0)
LL (x1, τ1, x1, τ1) G

(0)
LR (x1, τ1, x2, τ2) G

(0)
LL (x1, τ1, x2, τ2)

G
(0)
RL (x2, τ2, x

′, 0) G
(0)
RR (x2, τ2, x1, τ1) G

(0)
RL (x2, τ2, x1, τ1) G

(0)
RR (x2, τ2, x2, τ2) G

(0)
RL (x2, τ2, x2, τ2)

G
(0)
LL (x2, τ2, x

′, 0) G
(0)
LR (x2, τ2, x1, τ1) G

(0)
LL (x2, τ2, x1, τ1) G

(0)
LR (x2, τ2, x2, τ2) G

(0)
LL (x2, τ2, x2, τ2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
connected

(2.227)

we have 5! = 120 terms within the determinant whence we have to remove the disconnected diagrams. This means
that we can remove all the 4! terms contained in

G
(0)
RL (x, τ, x′, 0)

∣
∣
∣
∣
∣
∣
∣
∣
∣

G
(0)
RR (x1, τ1, x1, τ1) G

(0)
RL (x1, τ1, x1, τ1) G

(0)
RR (x1, τ1, x2, τ2) G

(0)
RL (x1, τ1, x2, τ2)

G
(0)
LR (x1, τ1, x1, τ1) G

(0)
LL (x1, τ1, x1, τ1) G

(0)
LR (x1, τ1, x2, τ2) G

(0)
LL (x1, τ1, x2, τ2)

G
(0)
RR (x2, τ2, x1, τ1) G

(0)
RL (x2, τ2, x1, τ1) G

(0)
RR (x2, τ2, x2, τ2) G

(0)
RL (x2, τ2, x2, τ2)

G
(0)
LR (x2, τ2, x1, τ1) G

(0)
LL (x2, τ2, x1, τ1) G

(0)
LR (x2, τ2, x2, τ2) G

(0)
LL (x2, τ2, x2, τ2)

∣
∣
∣
∣
∣
∣
∣
∣
∣

(2.228)

because it is easy to see that they are completely disconnected. So we are left with 4× 4! = 96 terms, some of them
still corresponding to disconnected diagrams. Let us expand the determinant

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 G
(0)
RR (x, τ, x1, τ1) G

(0)
RL (x, τ, x1, τ1) G

(0)
RR (x, τ, x2, τ2) G

(0)
RL (x, τ, x2, τ2)

G
(0)
RL (x1, τ1, x

′, 0) G
(0)
RR (x1, τ1, x1, τ1) G

(0)
RL (x1, τ1, x1, τ1) G

(0)
RR (x1, τ1, x2, τ2) G

(0)
RL (x1, τ1, x2, τ2)

G
(0)
LL (x1, τ1, x

′, 0) G
(0)
LR (x1, τ1, x1, τ1) G

(0)
LL (x1, τ1, x1, τ1) G

(0)
LR (x1, τ1, x2, τ2) G

(0)
LL (x1, τ1, x2, τ2)

G
(0)
RL (x2, τ2, x

′, 0) G
(0)
RR (x2, τ2, x1, τ1) G

(0)
RL (x2, τ2, x1, τ1) G

(0)
RR (x2, τ2, x2, τ2) G

(0)
RL (x2, τ2, x2, τ2)

G
(0)
LL (x2, τ2, x

′, 0) G
(0)
LR (x2, τ2, x1, τ1) G

(0)
LL (x2, τ2, x1, τ1) G

(0)
LR (x2, τ2, x2, τ2) G

(0)
LL (x2, τ2, x2, τ2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
connected

= −G(0)
RR (x, τ, x1, τ1)

∣
∣
∣
∣
∣
∣
∣
∣
∣

G
(0)
RL (x1, τ1, x

′, 0) G
(0)
RL (x1, τ1, x1, τ1) G

(0)
RR (x1, τ1, x2, τ2) G

(0)
RL (x1, τ1, x2, τ2)

G
(0)
LL (x1, τ1, x

′, 0) G
(0)
LL (x1, τ1, x1, τ1) G

(0)
LR (x1, τ1, x2, τ2) G

(0)
LL (x1, τ1, x2, τ2)

G
(0)
RL (x2, τ2, x

′, 0) G
(0)
RL (x2, τ2, x1, τ1) G

(0)
RR (x2, τ2, x2, τ2) G

(0)
RL (x2, τ2, x2, τ2)

G
(0)
LL (x2, τ2, x

′, 0) G
(0)
LL (x2, τ2, x1, τ1) G

(0)
LR (x2, τ2, x2, τ2) G

(0)
LL (x2, τ2, x2, τ2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
connected

+G
(0)
RL (x, τ, x1, τ1)

∣
∣
∣
∣
∣
∣
∣
∣
∣

G
(0)
RL (x1, τ1, x

′, 0) G
(0)
RR (x1, τ1, x1, τ1) G

(0)
RR (x1, τ1, x2, τ2) G

(0)
RL (x1, τ1, x2, τ2)

G
(0)
LL (x1, τ1, x

′, 0) G
(0)
LR (x1, τ1, x1, τ1) G

(0)
LR (x1, τ1, x2, τ2) G

(0)
LL (x1, τ1, x2, τ2)

G
(0)
RL (x2, τ2, x

′, 0) G
(0)
RR (x2, τ2, x1, τ1) G

(0)
RR (x2, τ2, x2, τ2) G

(0)
RL (x2, τ2, x2, τ2)

G
(0)
LL (x2, τ2, x

′, 0) G
(0)
LR (x2, τ2, x1, τ1) G

(0)
LR (x2, τ2, x2, τ2) G

(0)
LL (x2, τ2, x2, τ2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
connected

−G(0)
RR (x, τ, x2, τ2)

∣
∣
∣
∣
∣
∣
∣
∣
∣

G
(0)
RL (x1, τ1, x

′, 0) G
(0)
RR (x1, τ1, x1, τ1) G

(0)
RL (x1, τ1, x1, τ1) G

(0)
RL (x1, τ1, x2, τ2)

G
(0)
LL (x1, τ1, x

′, 0) G
(0)
LR (x1, τ1, x1, τ1) G

(0)
LL (x1, τ1, x1, τ1) G

(0)
LL (x1, τ1, x2, τ2)

G
(0)
RL (x2, τ2, x

′, 0) G
(0)
RR (x2, τ2, x1, τ1) G

(0)
RL (x2, τ2, x1, τ1) G

(0)
RL (x2, τ2, x2, τ2)

G
(0)
LL (x2, τ2, x

′, 0) G
(0)
LR (x2, τ2, x1, τ1) G

(0)
LL (x2, τ2, x1, τ1) G

(0)
LL (x2, τ2, x2, τ2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
connected

+G
(0)
RL (x, τ, x2, τ2)

∣
∣
∣
∣
∣
∣
∣
∣
∣

G
(0)
RL (x1, τ1, x

′, 0) G
(0)
RR (x1, τ1, x1, τ1) G

(0)
RL (x1, τ1, x1, τ1) G

(0)
RR (x1, τ1, x2, τ2)

G
(0)
LL (x1, τ1, x

′, 0) G
(0)
LR (x1, τ1, x1, τ1) G

(0)
LL (x1, τ1, x1, τ1) G

(0)
LR (x1, τ1, x2, τ2)

G
(0)
RL (x2, τ2, x

′, 0) G
(0)
RR (x2, τ2, x1, τ1) G

(0)
RL (x2, τ2, x1, τ1) G

(0)
RR (x2, τ2, x2, τ2)

G
(0)
LL (x2, τ2, x

′, 0) G
(0)
LR (x2, τ2, x1, τ1) G

(0)
LL (x2, τ2, x1, τ1) G

(0)
LR (x2, τ2, x2, τ2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
connected

(2.229)

At this point let us note that if we rename the dummy index (x1, τ1) ⇋ (x2, τ2), first and third line are the same at
less than an even number of exchanges of rows or columns and the same happens for the second and fourth line. So
that we are left with only 48 terms. The determinant is now
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 G
(0)
RR (x, τ, x1, τ1) G

(0)
RL (x, τ, x1, τ1) G

(0)
RR (x, τ, x2, τ2) G

(0)
RL (x, τ, x2, τ2)

G
(0)
RL (x1, τ1, x

′, 0) G
(0)
RR (x1, τ1, x1, τ1) G

(0)
RL (x1, τ1, x1, τ1) G

(0)
RR (x1, τ1, x2, τ2) G

(0)
RL (x1, τ1, x2, τ2)

G
(0)
LL (x1, τ1, x

′, 0) G
(0)
LR (x1, τ1, x1, τ1) G

(0)
LL (x1, τ1, x1, τ1) G

(0)
LR (x1, τ1, x2, τ2) G

(0)
LL (x1, τ1, x2, τ2)

G
(0)
RL (x2, τ2, x

′, 0) G
(0)
RR (x2, τ2, x1, τ1) G

(0)
RL (x2, τ2, x1, τ1) G

(0)
RR (x2, τ2, x2, τ2) G

(0)
RL (x2, τ2, x2, τ2)

G
(0)
LL (x2, τ2, x

′, 0) G
(0)
LR (x2, τ2, x1, τ1) G

(0)
LL (x2, τ2, x1, τ1) G

(0)
LR (x2, τ2, x2, τ2) G

(0)
LL (x2, τ2, x2, τ2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
connected

= −2G
(0)
RR (x, τ, x1, τ1)

∣
∣
∣
∣
∣
∣
∣
∣
∣

G
(0)
RL (x1, τ1, x

′, 0) G
(0)
RL (x1, τ1, x1, τ1) G

(0)
RR (x1, τ1, x2, τ2) G

(0)
RL (x1, τ1, x2, τ2)

G
(0)
LL (x1, τ1, x

′, 0) G
(0)
LL (x1, τ1, x1, τ1) G

(0)
LR (x1, τ1, x2, τ2) G

(0)
LL (x1, τ1, x2, τ2)

G
(0)
RL (x2, τ2, x

′, 0) G
(0)
RL (x2, τ2, x1, τ1) G

(0)
RR (x2, τ2, x2, τ2) G

(0)
RL (x2, τ2, x2, τ2)

G
(0)
LL (x2, τ2, x

′, 0) G
(0)
LL (x2, τ2, x1, τ1) G

(0)
LR (x2, τ2, x2, τ2) G

(0)
LL (x2, τ2, x2, τ2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
connected

+2G
(0)
RL (x, τ, x1, τ1)

∣
∣
∣
∣
∣
∣
∣
∣
∣

G
(0)
RL (x1, τ1, x

′, 0) G
(0)
RR (x1, τ1, x1, τ1) G

(0)
RR (x1, τ1, x2, τ2) G

(0)
RL (x1, τ1, x2, τ2)

G
(0)
LL (x1, τ1, x

′, 0) G
(0)
LR (x1, τ1, x1, τ1) G

(0)
LR (x1, τ1, x2, τ2) G

(0)
LL (x1, τ1, x2, τ2)

G
(0)
RL (x2, τ2, x

′, 0) G
(0)
RR (x2, τ2, x1, τ1) G

(0)
RR (x2, τ2, x2, τ2) G

(0)
RL (x2, τ2, x2, τ2)

G
(0)
LL (x2, τ2, x

′, 0) G
(0)
LR (x2, τ2, x1, τ1) G

(0)
LR (x2, τ2, x2, τ2) G

(0)
LL (x2, τ2, x2, τ2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
connected

(2.230)

Using now that contraction at the same position with the same chiral indices are zero and removing disconnected
diagrams, we are left with

δG
(2)
RL (x, τ, x′) = +

g2

2

L∫

0

dx1

β∫

0

dτ1

L∫

0

dx2

β∫

0

dτ2

〈

TτψR (x, τ) : ψ†
R (x1, τ1)ψR (x1, τ1) :: ψ

†
L (x1, τ1)ψL (x1, τ1) :

: ψ†
R (x2, τ2)ψR (x2, τ2) :: ψ

†
L (x2, τ2)ψL (x2, τ2) : ψ

†
L (x′, 0)

〉

= g2
L∫

0

dx1

β∫

0

dτ1

L∫

0

dx2

β∫

0

dτ2 [

−G(0)
RR (x, τ, x1, τ1)G

(0)
RL (x1, τ1, x

′, 0)G(0)
LR (x1, τ1, x2, τ2)G

(0)
RL (x2, τ2, x2, τ2)G

(0)
LL (x2, τ2, x1, τ1)

−G(0)
RR (x, τ, x1, τ1)G

(0)
RL (x1, τ1, x

′, 0)G(0)
LL (x1, τ1, x2, τ2)G

(0)
RL (x2, τ2, x1, τ1)G

(0)
LR (x2, τ2, x2, τ2)

+G
(0)
RR (x, τ, x1, τ1)G

(0)
LL (x1, τ1, x

′, 0)G(0)
RR (x1, τ1, x2, τ2)G

(0)
RL (x2, τ2, x2, τ2)G

(0)
LL (x2, τ2, x1, τ1)

+G
(0)
RR (x, τ, x1, τ1)G

(0)
LL (x1, τ1, x

′, 0)G(0)
RL (x1, τ1, x2, τ2)G

(0)
RL (x2, τ2, x1, τ1)G

(0)
LR (x2, τ2, x2, τ2)

+G
(0)
RR (x, τ, x1, τ1)G

(0)
RL (x2, τ2, x

′, 0)G(0)
RL (x1, τ1, x1, τ1)G

(0)
LL (x1, τ1, x2, τ2)G

(0)
LR (x2, τ2, x2, τ2)

−G(0)
RR (x, τ, x1, τ1)G

(0)
RL (x2, τ2, x

′, 0)G(0)
RR (x1, τ1, x2, τ2)G

(0)
LL (x1, τ1, x2, τ2)G

(0)
LL (x2, τ2, x1, τ1)

+G
(0)
RR (x, τ, x1, τ1)G

(0)
RL (x2, τ2, x

′, 0)G(0)
RL (x1, τ1, x2, τ2)G

(0)
LR (x1, τ1, x2, τ2)G

(0)
LL (x2, τ2, x1, τ1)

+G
(0)
RR (x, τ, x1, τ1)G

(0)
LL (x2, τ2, x

′, 0)G(0)
RL (x1, τ1, x1, τ1)G

(0)
LR (x1, τ1, x2, τ2)G

(0)
RL (x2, τ2, x2, τ2)

+G
(0)
RR (x, τ, x1, τ1)G

(0)
LL (x2, τ2, x

′, 0)G(0)
RR (x1, τ1, x2, τ2)G

(0)
LL (x1, τ1, x2, τ2)G

(0)
RL (x2, τ2, x1, τ1)

−G(0)
RR (x, τ, x1, τ1)G

(0)
LL (x2, τ2, x

′, 0)G(0)
RL (x1, τ1, x2, τ2)G

(0)
LR (x1, τ1, x2, τ2)G

(0)
RL (x2, τ2, x1, τ1)

+G
(0)
RL (x, τ, x1, τ1)G

(0)
RL (x1, τ1, x

′, 0)G(0)
LR (x1, τ1, x2, τ2)G

(0)
RL (x2, τ2, x2, τ2)G

(0)
LR (x2, τ2, x1, τ1)

+G
(0)
RL (x, τ, x1, τ1)G

(0)
RL (x1, τ1, x

′, 0)G(0)
LL (x1, τ1, x2, τ2)G

(0)
RR (x2, τ2, x1, τ1)G

(0)
LR (x2, τ2, x2, τ2)

−G(0)
RL (x, τ, x1, τ1)G

(0)
LL (x1, τ1, x

′, 0)G(0)
RR (x1, τ1, x2, τ2)G

(0)
RL (x2, τ2, x2, τ2)G

(0)
LR (x2, τ2, x1, τ1)

−G(0)
RL (x, τ, x1, τ1)G

(0)
LL (x1, τ1, x

′, 0)G(0)
RL (x1, τ1, x2, τ2)G

(0)
RR (x2, τ2, x1, τ1)G

(0)
LR (x2, τ2, x2, τ2)

+G
(0)
RL (x, τ, x1, τ1)G

(0)
RL (x2, τ2, x

′, 0)G(0)
RR (x1, τ1, x2, τ2)G

(0)
LL (x1, τ1, x2, τ2)G

(0)
LR (x2, τ2, x1, τ1)

+G
(0)
RL (x, τ, x1, τ1)G

(0)
RL (x2, τ2, x

′, 0)G(0)
RL (x1, τ1, x2, τ2)G

(0)
LR (x1, τ1, x1, τ1)G

(0)
LR (x2, τ2, x2, τ2)

−G(0)
RL (x, τ, x1, τ1)G

(0)
RL (x2, τ2, x

′, 0)G(0)
RL (x1, τ1, x2, τ2)G

(0)
LR (x1, τ1, x2, τ2)G

(0)
LR (x2, τ2, x1, τ1)

+G
(0)
RL (x, τ, x1, τ1)G

(0)
LL (x2, τ2, x

′, 0)G(0)
RR (x1, τ1, x2, τ2)G

(0)
LR (x1, τ1, x1, τ1)G

(0)
RL (x2, τ2, x2, τ2)
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−G(0)
RL (x, τ, x1, τ1)G

(0)
LL (x2, τ2, x

′, 0)G(0)
RR (x1, τ1, x2, τ2)G

(0)
LL (x1, τ1, x2, τ2)G

(0)
RR (x2, τ2, x1, τ1)

+G
(0)
RL (x, τ, x1, τ1)G

(0)
LL (x2, τ2, x

′, 0)G(0)
RL (x1, τ1, x2, τ2)G

(0)
LR (x1, τ1, x2, τ2)G

(0)
RR (x2, τ2, x1, τ1) (2.231)

for a total of 20 terms. In Fourier space and integrating into the time variables to remove three over five ωi sums, we
obtain

δG
(2)
RL (x, x′, iω) ≈ g2

β2

L∫

0

dx1

L∫

0

dx2
∑

ω1,ω2

[−G(0)
RR (x, x1, iω)G

(0)
RL (x1, x

′, iω)G(0)
LR (x1, x2, iω1)G

(0)
RL (x2, x2, iω2)G

(0)
LL (x2, x1, iω1)

−G(0)
RR (x, x1, iω)G

(0)
RL (x1, x

′, iω)G(0)
LL (x1, x2, iω1)G

(0)
RL (x2, x1, iω1)G

(0)
LR (x2, x2, iω2)

+G
(0)
RR (x, x1, iω)G

(0)
LL (x1, x

′, iω)G(0)
RR (x1, x2, iω1)G

(0)
RL (x2, x2, iω2)G

(0)
LL (x2, x1, iω1)

+G
(0)
RR (x, x1, iω)G

(0)
LL (x1, x

′, iω)G(0)
RL (x1, x2, iω1)G

(0)
RL (x2, x1, iω1)G

(0)
LR (x2, x2, iω2)

+G
(0)
RR (x, x1, iω)G

(0)
RL (x2, x

′, iω)G(0)
RL (x1, x1, iω1)G

(0)
LL (x1, x2, iω)G

(0)
LR (x2, x2, iω2)

−G(0)
RR (x, x1, iω)G

(0)
RL (x2, x

′, iω)G(0)
RR (x1, x2, iω − iω1 + iω2)G

(0)
LL (x1, x2, iω1)G

(0)
LL (x2, x1, iω2)

+G
(0)
RR (x, x1, iω)G

(0)
RL (x2, x

′, iω)G(0)
RL (x1, x2, iω − iω1 + iω2)G

(0)
LR (x1, x2, iω1)G

(0)
LL (x2, x1, iω2)

+G
(0)
RR (x, x1, iω)G

(0)
LL (x2, x

′, iω)G(0)
RL (x1, x1, iω1)G

(0)
LR (x1, x2, iω)G

(0)
RL (x2, x2, iω2)

+G
(0)
RR (x, x1, iω)G

(0)
LL (x2, x

′, iω)G(0)
RR (x1, x2, iω − iω1 + iω2)G

(0)
LL (x1, x2, iω1)G

(0)
RL (x2, x1, iω2)

−G(0)
RR (x, x1, iω)G

(0)
LL (x2, x

′, iω)G(0)
RL (x1, x2, iω − iω1 + iω2)G

(0)
LR (x1, x2, iω1)G

(0)
RL (x2, x1, iω2)

+G
(0)
RL (x, x1, iω)G

(0)
RL (x1, x

′, iω)G(0)
LR (x1, x2, iω1)G

(0)
RL (x2, x2, iω2)G

(0)
LR (x2, x1, iω1)

+G
(0)
RL (x, x1, iω)G

(0)
RL (x1, x

′, iω)G(0)
LL (x1, x2, iω1)G

(0)
RR (x2, x1, iω1)G

(0)
LR (x2, x2, iω2)

−G(0)
RL (x, x1, iω)G

(0)
LL (x1, x

′, iω)G(0)
RR (x1, x2, iω1)G

(0)
RL (x2, x2, iω2)G

(0)
LR (x2, x1, iω1)

−G(0)
RL (x, x1, iω)G

(0)
LL (x1, x

′, iω)G(0)
RL (x1, x2, iω1)G

(0)
RR (x2, x1, iω1)G

(0)
LR (x2, x2, iω2)

+G
(0)
RL (x, x1, iω)G

(0)
RL (x2, x

′, iω)G(0)
RR (x1, x2, iω − iω1 + iω2)G

(0)
LL (x1, x2, iω1)G

(0)
LR (x2, x1, iω2)

+G
(0)
RL (x, x1, iω)G

(0)
RL (x2, x

′, iω)G(0)
RL (x1, x2, iω)G

(0)
LR (x1, x1, iω1)G

(0)
LR (x2, x2, iω2)

−G(0)
RL (x, x1, iω)G

(0)
RL (x2, x

′, iω)G(0)
RL (x1, x2, iω − iω1 + iω2)G

(0)
LR (x1, x2, iω1)G

(0)
LR (x2, x1, iω2)

+G
(0)
RL (x, x1, iω)G

(0)
LL (x2, x

′, iω)G(0)
RR (x1, x2, iω)G

(0)
LR (x1, x1, iω1)G

(0)
RL (x2, x2, iω2)

−G(0)
RL (x, x1, iω)G

(0)
LL (x2, x

′, iω)G(0)
RR (x1, x2, iω − iω1 + iω2)G

(0)
LL (x1, x2, iω1)G

(0)
RR (x2, x1, iω2)

+G
(0)
RL (x, x1, iω)G

(0)
LL (x2, x

′, iω)G(0)
RL (x1, x2, iω − iω1 + iω2)G

(0)
LR (x1, x2, iω1)G

(0)
RR (x2, x1, iω2)] (2.232)

As done for the first order we have to compute each contribution. We have

δG
(2)
RL (x, x′, iω) ≈ g2

β2v5

∑

ω1,ω2

L∫

0

dx1

L∫

0

dx2Θ(ω)e−
ω
v (x+x

′)

[−iΘ(−ω1)Θ (ω2)Θ (x2 − x1)S (iω)S∗ (iω1)S (iω2) e
2

x1
v 0e2

x2
v (ω1−ω2)

+iΘ(ω1)Θ (−ω2)Θ (x2 − x1)S (iω)S (iω1)S
∗ (iω2) e

2
x1
v 0e2

x2
v (ω2−ω1)

+iΘ(ω1)Θ (ω2)Θ (x1 − x2)S (iω2) e
2

x1
v (ω−ω1)e2

x2
v (ω1−ω2)

+iΘ(−ω1)Θ (ω2)Θ (x2 − x1)S (iω2) e
2

x1
v (ω−ω1)e2

x2
v (ω1−ω2)

−iΘ(ω1)Θ (−ω2)S (iω1)S (iω1)S
∗ (iω2) e

2
x1
v (ω−ω1)e2

x2
v (ω2−ω1)

−iΘ(ω1)Θ (−ω2)Θ (x2 − x1)S (iω)S (iω1)S
∗ (iω2) e

2
x1
v (ω−ω1)e2

x2
v (ω2−ω)

+iΘ(−ω1)Θ (ω2)Θ (x1 − x2)S (iω) e2
x1
v (ω1−ω2)e2

x2
v (ω2−ω1)

−iΘ(ω1)Θ (−ω2)Θ (ω1 − ω − ω2)Θ (x2 − x1)S (iω) e2
x1
v (ω1−ω2)e2

x2
v (ω2−ω1)
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−iΘ(−ω1)Θ (ω2)Θ (x1 − x2)S (iω)S (iω − iω1 + iω2)S
∗ (iω1) e

2
x1
v (ω1−ω2)e2

x2
v (ω1−ω)

+iΘ(−ω1)Θ (−ω2)Θ (ω − ω1 + ω2)Θ (x2 − x1)S (iω)S (iω − iω1 + iω2)S
∗ (iω1) e

2
x1
v (ω1−ω2)e2

x2
v (ω1−ω)

+0

−iΘ(−ω1)Θ (ω2)Θ (x1 − x2)S (iω2) e
2

x1
v (ω1−ω2)e2

x2
v (ω−ω1)

−iΘ(ω2)Θ (ω1 − ω − ω2)Θ (x2 − x1)S (iω2) e
2

x1
v (ω1−ω2)e2

x2
v (ω−ω1)

+iΘ(−ω1)Θ (ω2)S (iω − iω1 + iω2)S
∗ (iω1)S (iω2) e

2
x1
v (ω1−ω2)e2

x2
v (ω1−ω2)

+iΘ(−ω1)Θ (ω2)S (iω)S (iω)S∗ (iω1)S (iω2)S
∗ (iω1) e

2
x1
v (ω1−ω)e2

x2
v (ω1−ω2)

−iΘ(ω1)Θ (−ω2)Θ (x2 − x1)S (iω)S (iω)S∗ (iω2) e
2

x1
v (ω1−ω)e2

x2
v (ω2−ω1)

−iΘ(−ω1)Θ (−ω2)Θ (x1 − x2)S (iω)S (iω)S∗ (iω2) e
2

x1
v (ω1−ω)e2

x2
v (ω2−ω1)

−iΘ(−ω1)Θ (ω2)Θ (x2 − x1)S (iω)S (iω2)S
∗ (iω1) e

2
x1
v 0e2

x2
v (ω1−ω2)

+iΘ(ω1)Θ (−ω2)Θ (x2 − x1)S (iω)S (iω1)S
∗ (iω2) e

2
x1
v 0e2

x2
v (ω2−ω1)

+iΘ(−ω1)Θ (−ω2)Θ (ω − ω1 + ω2)Θ (x1 − x2)S (iω)S (iω)S∗ (iω2) e
2

x1
v (ω1−ω)e2

x2
v (ω2−ω1)

+iΘ(ω1)Θ (−ω2)Θ (ω1 − ω − ω2)Θ (x2 − x1)S (iω)S (iω)S∗ (iω2) e
2

x1
v (ω1−ω)e2

x2
v (ω2−ω1)

+iΘ(−ω1)Θ (−ω2)S (iω)S (iω)S (iω)S∗ (iω1)S
∗ (iω2) e

2
x1
v (ω1−ω)e2

x2
v (ω2−ω)

−iΘ(−ω1)Θ (−ω2)Θ (ω − ω1 + ω2)S (iω)S (iω)S (iω − iω1 + iω2)S
∗ (iω1)S

∗ (iω2) e
2

x1
v (ω1−ω)e2

x2
v (ω1−ω)

−iΘ(−ω1)Θ (ω2)Θ (x1 − x2)S (iω)S∗ (iω1)S (iω2) e
2

x1
v (ω1−ω)e2

x2
v (ω−ω2)

−iΘ(−ω1)Θ (−ω2)Θ (ω − ω1 + ω2)Θ (x1 − x2)S (iω) e2
x1
v (ω1−ω)e2

x2
v (ω−ω1)

+iΘ(ω2)Θ (ω1 − ω − ω2)Θ (x2 − x1)S (iω) e2
x1
v (ω1−ω)e2

x2
v (ω−ω1)

−iΘ(−ω1)Θ (ω2)Θ (ω − ω1 + ω2)Θ (x2 − x1)S (iω)S (iω − iω1 + iω2)S
∗ (iω1) e

2
x1
v (ω1−ω)e2

x2
v (ω1−ω2)

+iΘ(−ω1)Θ (−ω2)Θ (ω − ω1 + ω2)Θ (x1 − x2)S (iω)S (iω − iω1 + iω2)S
∗ (iω1) e

2
x1
v (ω1−ω)e2

x2
v (ω1−ω2)](2.233)

Now we can note that first and second line are equal and opposite, 11th line is zero, fourth and 12th lines are equal
and opposite, 18th and 14th are equal and opposite. Comparing with Eq. [2.71] we are left with

δS(2) (iω) =
g2

β2v4

[+

>0∑

ω1

>0∑

ω2

S (iω2)

L∫

0

dx2e
2

x2
v (ω1−ω2)

L∫

x2

dx1e
2

x1
v (ω−ω1)

−
>0∑

ω1

<0∑

ω2

S (iω1)S (iω1)S
∗ (iω2)

L∫

0

dx1e
2

x1
v (ω−ω1)

L∫

0

dx2e
2

x2
v (ω2−ω1)

−
>0∑

ω1

<0∑

ω2

S (iω)S (iω1)S
∗ (iω2)

L∫

0

dx1e
2

x1
v (ω−ω1)

L∫

x1

dx2e
2

x2
v (ω2−ω)

+

<0∑

ω1

>0∑

ω2

S (iω)

L∫

0

dx2e
2

x2
v (ω2−ω1)

L∫

x2

dx1e
2

x1
v (ω1−ω2)

−
>0∑

ω1

<0∑

ω2

Θ(ω1 − ω − ω2)S (iω)

L∫

0

dx1e
2

x1
v (ω1−ω2)

L∫

x1

dx2e
2

x2
v (ω2−ω1)

−
<0∑

ω1

>0∑

ω2

S (iω)S (iω − iω1 + iω2)S
∗ (iω1)

L∫

0

dx2e
2

x2
v (ω1−ω)

L∫

x2

dx1e
2

x1
v (ω1−ω2)
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+

<0∑

ω1

<0∑

ω2

Θ(ω − ω1 + ω2)S (iω)S (iω − iω1 + iω2)S
∗ (iω1)

L∫

0

dx1e
2

x1
v (ω1−ω2)

L∫

x1

dx2e
2

x2
v (ω1−ω)

−
∑

ω1

>0∑

ω2

Θ(ω1 − ω − ω2)S (iω2)

L∫

0

dx1e
2

x1
v (ω1−ω2)

L∫

x1

dx2e
2

x2
v (ω−ω1)

+

<0∑

ω1

>0∑

ω2

S (iω − iω1 + iω2)S
∗ (iω1)S (iω2)

L∫

0

dx1e
2

x1
v (ω1−ω2)

L∫

0

dx2e
2

x2
v (ω1−ω2)

+

<0∑

ω1

>0∑

ω2

S (iω)S (iω)S∗ (iω1)S (iω2)S
∗ (iω1)

L∫

0

dx1e
2

x1
v (ω1−ω)

L∫

0

dx2e
2

x2
v (ω1−ω2)

−
>0∑

ω1

<0∑

ω2

S (iω)S (iω)S∗ (iω2)

L∫

0

dx1e
2

x1
v (ω1−ω)

L∫

x1

dx2e
2

x2
v (ω2−ω1)

−
<0∑

ω1

<0∑

ω2

S (iω)S (iω)S∗ (iω2)

L∫

0

dx2e
2

x2
v (ω2−ω1)

L∫

x2

dx1e
2

x1
v (ω1−ω)

+
<0∑

ω1

<0∑

ω2

Θ(ω − ω1 + ω2)S (iω)S (iω)S∗ (iω2)

L∫

0

dx2e
2

x2
v (ω2−ω1)

L∫

x2

dx1e
2

x1
v (ω1−ω)

+

>0∑

ω1

<0∑

ω2

Θ(ω1 − ω − ω2)S (iω)S (iω)S∗ (iω2)

L∫

0

dx1e
2

x1
v (ω1−ω)

L∫

x1

dx2e
2

x2
v (ω2−ω1)

+

<0∑

ω1

<0∑

ω2

S (iω)S (iω)S (iω)S∗ (iω1)S
∗ (iω2)

L∫

0

dx1e
2

x1
v (ω1−ω)

L∫

0

dx2e
2

x2
v (ω2−ω)

−
<0∑

ω1

<0∑

ω2

Θ(ω − ω1 + ω2)S (iω)S (iω)S (iω − iω1 + iω2)S
∗ (iω1)S

∗ (iω2)

L∫

0

dx1e
2

x1
v (ω1−ω)

L∫

0

dx2e
2

x2
v (ω1−ω)

−
<0∑

ω1

>0∑

ω2

S (iω)S∗ (iω1)S (iω2)

L∫

0

dx2e
2

x2
v (ω−ω2)

L∫

x2

dx1e
2

x1
v (ω1−ω)

−
<0∑

ω1

<0∑

ω2

Θ(ω − ω1 + ω2)S (iω)

L∫

0

dx2e
2

x2
v (ω−ω1)

L∫

x2

dx1e
2

x1
v (ω1−ω)

+
∑

ω1

>0∑

ω2

Θ(ω1 − ω − ω2)S (iω)

L∫

0

dx1e
2

x1
v (ω1−ω)

L∫

x1

dx2e
2

x2
v (ω−ω1)

−
<0∑

ω1

>0∑

ω2

Θ(ω − ω1 + ω2)S (iω)S (iω − iω1 + iω2)S
∗ (iω1)

L∫

0

dx1e
2

x1
v (ω1−ω)

L∫

x1

dx2e
2

x2
v (ω1−ω2)

+

<0∑

ω1

<0∑

ω2

Θ(ω − ω1 + ω2)S (iω)S (iω − iω1 + iω2)S
∗ (iω1)

L∫

0

dx2e
2

x2
v (ω1−ω2)

L∫

x2

dx1e
2

x1
v (ω1−ω)] (2.234)

Integrating in dx1 and dx2, introducing the wire indices for the forward scattering, exchanging the sum over ωi with
an integral and letting the integral going from −D to 0 we have that
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δS
(2)
j,j′ (iω) =

∑

a,a′

∑

b,b′

ga,a′gb,b′

4 (2π)
2
v2

[+

0∫

−D

dω1

0∫

−D

dω2δj,aδa′,j′δa,bSb,b′ (−iω2) δb′,a′
1

(ω + ω1)

[
1

(ω2 − ω1)

(

e
2L
v (ω+ω2) − e

2L
v (ω+ω1)

)

− 1

(ω + ω2)

(

e
2L
v (ω+ω2) − 1

)]

−
0∫

−D

dω1

0∫

−D

dω2δj,aδa′,j′Sa,b′ (−iω1)Sb,a′ (−iω1)S
∗
b,b′ (iω2)

1

(ω + ω1) (ω2 + ω1)

[

e
2L
v (ω+ω2+2ω1) − e

2L
v (ω+ω1) − e

2L
v (ω2+ω1) + 1

]

−
0∫

−D

dω1

0∫

−D

dω2δj,aSb,j′ (iω)Sa,a′ (−iω1) δa′,b′S
∗
b,b′ (iω2)

1

(ω2 − ω)

[
1

(ω + ω1)

(

e
2L
v (ω2+ω1) − e

2L
v (ω2−ω)

)

− 1

(ω2 + ω1)

(

e
2L
v (ω2+ω1) − 1

)]

+

0∫

−D

dω1

0∫

−D

dω2δj,aSb,j′ (iω) δa,bδa′,b′δb′,a′
1

(ω1 + ω2)

[
1

(ω2 + ω1)

(

e
2L
v (ω1+ω2) − 1

)

− 2L

v

]

−
0∫

−D

dω1

0∫

−D

dω2Θ(−ω1 − ω − ω2) δj,aSb,j′ (iω) δa,bδa′,b′δb′,a′
1

(ω2 + ω1)

[
1

(ω1 + ω2)

(

e
2L
v (ω2+ω1) − 1

)

− 2L

v

]

−
0∫

−D

dω1

0∫

−D

dω2δj,aSb,j′ (iω)Sa,b′ (iω − iω1 − iω2)S
∗
b,a′ (iω1) δb′,a′

1

(ω1 + ω2)

[
1

(ω1 − ω)

(

e
2L
v (2ω1−ω+ω2) − e

2L
v (ω1+ω2)

)

− 1

(2ω1 − ω + ω2)

(

e
2L
v (2ω1−ω+ω2) − 1

)]

+

0∫

−D

dω1

0∫

−D

dω2Θ(ω − ω1 + ω2) δj,aSb,j′ (iω)Sa,b′ (iω − iω1 + iω2)S
∗
b,a′ (iω1) δb′,a′

1

(ω1 − ω)

[
1

(ω1 − ω2)

(

e
2L
v (2ω1−ω−ω2) − e

2L
v (ω1−ω)

)

− 1

(2ω1 − ω − ω2)

(

e
2L
v (2ω1−ω−ω2) − 1

)]

−
D∫

−D

dω1

0∫

−D

dω2Θ(ω1 − ω + ω2) δj,aδb′j′δa,bδa′,b′Sb,a′ (−iω2)
1

(ω − ω1)

[
1

(ω1 + ω2)

(

e
2L
v (ω+ω2) − e

2L
v (ω−ω1)

)

− 1

(ω + ω2)

(

e
2L
v (ω+ω2) − 1

)]

+

0∫

−D

dω1

0∫

−D

dω2δj,aδb′,j′Sa,b′ (iω − iω1 − iω2)S
∗
b,a′ (iω1)Sb,a′ (−iω2)

1

(ω1 + ω2) (ω1 + ω2)

[

e
2L
v (2ω1+2ω2) − 2e

2L
v (ω1+ω2) + 1

]
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+

0∫

−D

dω1

0∫

−D

dω2Sj,a′ (iω)Sa,j′ (iω)S
∗
b,a′ (iω1)Sb,b′ (−iω2)S

∗
a,b′ (iω1)

1

(ω1 + ω2) (ω1 − ω)

[

e
2L
v (2ω1+ω2−ω) − e

2L
v (ω1+ω2) − e

2L
v (ω1−ω) + 1

]

−
0∫

−D

dω1

0∫

−D

dω2Sj,a′ (iω)Sa,j′ (iω) δa′,b′δb,aS
∗
b,b′ (iω2)

1

(ω2 + ω1)

[
1

(ω1 + ω)

(

e
2L
v (ω2+ω1) − e

2L
v (ω2−ω)

)

− 1

(ω2 − ω)

(

e
2L
v (ω2−ω) − 1

)]

−
0∫

−D

dω1

0∫

−D

dω2Sj,a′ (iω)Sa,j′ (iω) δa′,b′δb,aS
∗
b,b′ (iω2)

1

(ω1 − ω)

[
1

(ω2 − ω1)

(

e
2L
v (ω2−ω) − e

2L
v (ω1−ω)

)

− 1

(ω2 − ω)

(

e
2L
v (ω2−ω) − 1

)]

+

0∫

−D

dω1

0∫

−D

dω2Θ(ω − ω1 + ω2)Sj,a′ (iω)Sb,j′ (iω) δa,bδa′,b′S
∗
a,b′ (iω2)

1

(ω1 − ω)

[
1

(ω2 − ω1)

(

e
2L
v (ω2−ω) − e

2L
v (ω1−ω)

)

− 1

(ω2 − ω)

(

e
2L
v (ω2−ω) − 1

)]

+

0∫

−D

dω1

0∫

−D

dω2Θ(−ω1 − ω − ω2)Sj,a′ (iω)Sb,j′ (iω) δa,bδa′,b′S
∗
a,b′ (iω2)

1

(ω2 + ω1)

[
1

(ω1 + ω)

(

e
2L
v (ω2+ω1) − e

2L
v (ω2−ω)

)

− 1

(ω2 − ω)

(

e
2L
v (ω2−ω) − 1

)]

+

0∫

−D

dω1

0∫

−D

dω2Sj,a′ (iω)Sb,j′ (iω)Sa,b′ (iω)S
∗
a,a′ (iω1)S

∗
b,b′ (iω2)

1

(ω1 − ω) (ω2 − ω)

[

e
2L
v (ω1+ω2−2ω) − e

2L
v (ω1−ω) − e

2L
v (ω2−ω) + 1

]

−
0∫

−D

dω1

0∫

−D

dω2Θ(ω − ω1 + ω2)Sj,a′ (iω)Sb,j′ (iω)Sa,b′ (iω − iω1 + iω2)S
∗
b,a′ (iω1)S

∗
a,b′ (iω2)

1

(ω1 − ω) (ω1 − ω)

[

e
2L
v (2ω1−2ω) − 2e

2L
v (ω1−ω) + 1

]

−
0∫

−D

dω1

0∫

−D

dω2Sj,a′ (iω) δb′,j′δa,bS
∗
a,a′ (iω1)Sb,b′ (−iω2)

1

(ω1 − ω)

[
1

(ω + ω2)

(

e
2L
v (ω1+ω2) − e

2L
v (ω1−ω)

)

− 1

(ω1 + ω2)

(

e
2L
v (ω1+ω2) − 1

)]

−
0∫

−D

dω1

0∫

−D

dω2Θ(ω − ω1 + ω2)Sj,a′ (iω) δb′,j′δa,bδa′,b′δb,a
1

(ω1 − ω)

[
1

(ω − ω1)

(

1− e
2L
v (ω1−ω)

)

− 2L

v

]

+

D∫

−D

dω1

0∫

−D

dω2Θ(ω1 − ω + ω2)Sj,a′ (iω) δb′,j′δa,bδa′,b′δb,a
1

(ω − ω1)

[
1

(ω1 − ω)

(

1− e
2L
v (ω−ω1)

)

− 2L

v

]

−
0∫

−D

dω1

0∫

−D

dω2Θ(ω − ω1 − ω2)Sj,a′ (iω) δb′,j′Sa,b′ (iω − iω1 − iω2)S
∗
b,a′ (iω1) δb,a
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1

(ω1 + ω2)

[
1

(ω1 − ω)

(

e
2L
v (2ω1+ω2−ω) − e

2L
v (ω1+ω2)

)

− 1

(2ω1 + ω2 − ω)

(

e
2L
v (2ω1+ω2−ω) − 1

)]

+

0∫

−D

dω1

0∫

−D

dω2Θ(ω − ω1 + ω2)Sj,a′ (iω) δb′,j′Sa,b′ (iω − iω1 + iω2)S
∗
b,a′ (iω1) δb,a

1

(ω1 − ω)

[
1

(ω1 − ω2)

(

e
2L
v (2ω1−ω2−ω) − e

2L
v (ω1−ω)

)

− 1

(2ω1 − ω2 − ω)

(

e
2L
v (2ω1−ω2−ω) − 1

)]

]

At this point we apply the generalized Leibniz rule

δD

0∫

−D

dω1

0∫

−D

dω2F (ω1, ω2) =

0∫

−D

dω1F (ω1,−D) δD +

0∫

−D

dω2F (−D,ω2) δD (2.235)

term by term. Let us start from 1st+8th lines, after some manipulations we obtain

δ1st + δ8th ≈ gj,j′gj,j′

16π2v2
Sj,j′ (iD)

δD

D

[

Ei

(
2L

v
ω

)

− ln (ω) + ln (D)

]

(2.236)

Using the Puiseux series of Ei(z)

Ei (z) = γ + ln |z|+
∞∑

n=1

zn

n · n! (2.237)

where γ ≈ 0, 57721... is the Euler-Mascheroni constant, we are left with

δ1st + δ8th ≈ gj,j′gj,j′

16π2v2
Sj,j′ (iD) [γ + ...]

δD

D
(2.238)

where . . . stands for non sub leading corrections. Next terms is

δ2nd =

∑

a,a′ gj,j′ga,a′

16π2v2
δD

[−
0∫

−D

dω1

Sj,a′ (−iω1)Sa,j′ (−iω1)S
∗
a,a′ (−iD)

(ω + ω1) (ω1 −D)

[

e
2L
v (2ω1−D) − e

2L
v (ω+ω1) − e

2L
v (ω1−D) + 1

]

+

0∫

−D

dω2

Sj,a′ (iD)Sa,j′ (iD)S∗
a,a′ (iω2)

D (ω2 −D)

[

e
2L
v (ω2−2D) − e−

2L
v D − e

2L
v (ω2−D) + 1

]

] (2.239)

It can not be further simplified without an explicit form for the scattering matrix. Instead, forgetting about the
energy dependence of the scattering matrix we can solve the integrals to obtain

δ2nd ≈ −
∑

a,a′ gj,j′ga,a′

16π2v2
Sj,a′Sa,j′S

∗
a,a′ [γ + ...]

δD

D
(2.240)

Next one is

δ3rd =

∑

a,a′ gj,a′ga,a′

16π2v2
δD

[

0∫

−D

dω1

Sa,j′ (iω)Sj,a′ (−iω1)S
∗
a,a′ (−iD)

D

[
1

(ω + ω1)

(

e
2L
v (ω1−D) − e−

2L
v D
)

− 1

(ω1 −D)

(

e
2L
v (ω1−D) − 1

)]
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−
0∫

−D

dω2

Sa,j′ (iω)Sj,a′ (iD)S∗
a,a′ (iω2)

(ω2 − ω)

[
1

D

(

e
2L
v (ω2−ω) − e

2L
v (ω2−D)

)

− 1

(ω2 −D)

(

e
2L
v (ω2−D) − 1

)]

] (2.241)

In the energy independent case it reduces to

δ3rd ≈ −
∑

a,a′ gj,a′ga,a′

16π2v2
Sa,j′Sj,a′S

∗
a,a′

[

γ + ln

(
2L

v

)

+ ...

]
δD

D
(2.242)

Proceeding, we have

δ4th =

∑

a gj,agj,a
16π2v2

2δD[+

0∫

−D

dω1Sj,j′ (iω)
1

(ω1 −D)

[
1

(ω1 −D)

(

e
2L
v (ω1−D) − 1

)

− 2L

v

]

]

≈ −
∑

a gj,agj,a
16π2v2

Sj,j′ (iω)
δD

D
+ ... (2.243)

and

δ5th =

∑

a gj,agj,a
16π2v2

δD

[−2

0∫

−D

dω1Θ(−ω1 − ω +D)Sj,j′ (iω)
1

(ω1 −D)

[
1

(ω1 −D)

(

e
2L
v (ω1−D) − 1

)

− 2L

v

]

]

≈
∑

a gj,agj,a
16π2v2

Sj,j′ (iω)
δD

D
+ ... (2.244)

The following term is

δ6th =

∑

a,a′ gj,a′ga,a′

16π2v2
δD

[−
0∫

−D

dω1

Sa,j′ (iω)Sj,a′ (iω − iω1 + iD)S∗
a,a′ (iω1)

(ω1 −D)

[
1

(ω1 − ω)

(

e
2L
v (2ω1−D) − e

2L
v (ω1−D)

)

− 1

(2ω1 −D)

(

e
2L
v (2ω1−D) − 1

)]

+

0∫

−D

dω2

Sa,j′ (iω)Sj,a′ (iω + iD − iω2)S
∗
a,a′ (−iD)

(ω2 −D)

[
1

D

(

e
2L
v (−2D+ω2) − e

2L
v (−D+ω2)

)

− 1

(2D − ω2)

(

e
2L
v (−2D+ω2) − 1

)]

] (2.245)

Forgetting about the energy dependence of the scattering matrix and solving the integrals

δ6th =

∑

a,a′ gj,a′ga,a′

16π2v2
Sa,j′Sj,a′S

∗
a,a′ [...]

δD

D
(2.246)

We observe no linear contribution in lnD. Then we have

δ7th ≈
∑

a,a′ gj,a′ga,a′

16π2v2
δD
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[+

0∫

−D

dω2Sa,j′ (iω)Sj,a′ (iω + iD + iω2)S
∗
a,a′ (−iD)

1

D

[
1

(D + ω2)

(

e
2L
v (−2D−ω2) − e−

2L
v D
)

− 1

(2D + ω2)

(

e
2L
v (−2D−ω2) − 1

)]

] (2.247)

that in the energy independent case reduces to

δ7th =

∑

a,a′ gj,a′ga,a′

16π2v2
Sa,j′Sj,a′S

∗
a,a′ [...]

δD

D
(2.248)

Again, no linear contribution in lnD. The successive is

δ9th =

∑

a,a′ gj,a′ga,j′

16π2v2
δD

[+

0∫

−D

dω1

[
Sj,j′ (iω − iω1 + iD)S∗

a,a′ (iω1)Sa,a′ (iD) + Sj,j′ (iω + iD − iω1)S
∗
a,a′ (−iD)Sa,a′ (−iω1)

]

1

(ω1 −D) (ω1 −D)

[

e
2L
v (2ω1−2D) − 2e

2L
v (ω1−D) + 1

]

(2.249)

Forgetting about the energy dependence of the scattering matrix and solving the integral

δ9th = +2

∑

a,a′ gj,a′ga,j′

16π2v2
Sj,j′S

∗
a,a′Sa,a′

[
1

2
+ ...

]
δD

D
(2.250)

Next

δ10th =

∑

a,a′
∑

b,b′ ga,a′gb,b′

16π2v2
δD

[+

0∫

−D

dω1Sj,a′ (iω)Sa,j′ (iω)S
∗
b,a′ (iω1)Sb,b′ (iD)S∗

a,b′ (iω1)

1

(ω1 −D) (ω1 − ω)

[

e
2L
v (2ω1−D) − e

2L
v (ω1−D) − e

2L
v (ω1−ω) + 1

]

−
0∫

−D

dω2Sj,a′ (iω)Sa,j′ (iω)S
∗
b,a′ (−iD)Sb,b′ (−iω2)S

∗
a,b′ (−iD)

1

(ω2 −D)D

[

e
2L
v (−2D+ω2) − e

2L
v (−D+ω2) − e−

2L
v D + 1

]

] (2.251)

with no energy dependence it is

δ10th = +

∑

a,a′
∑

b,b′ ga,a′gb,b′

16π2v2
Sj,a′Sa,j′S

∗
b,a′Sb,b′S

∗
a,b′

[

γ + ln

(
2L

v

)

+ ...

]
δD

D
(2.252)

Next one is

δ11th ≈
∑

a,a′ ga,a′ga,a′

16π2v2
δD

[+

0∫

−D

dω2

Sj,a′ (iω)Sa,j′ (iω)S
∗
a,a′ (iω2)

(ω2 −D)
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[
1

D

(

e
2L
v (ω2−D) − e

2L
v (ω2−ω)

)

+
1

(ω2 − ω)

(

e
2L
v (ω2−ω) − 1

)]

] (2.253)

Forgetting about the energy dependence of the scattering matrix and solving the integral

δ11th = −
∑

a,a′ ga,a′ga,a′

16π2v2
Sj,a′Sa,j′S

∗
a,a′ [γ + ...]

δD

D
(2.254)

Likewise

δ12th ≈
∑

a,a′ ga,a′ga,a′

16π2v2
δD

[−
Sj,a′ (iω)Sa,j′ (iω)S

∗
a,a′ (−iD)

D

[

γ + ln

(
2L

v

)

+ ...

]

+

0∫

−D

dω2

Sj,a′ (iω)Sa,j′ (iω)S
∗
a,a′ (iω2)

D

[
1

(ω2 +D)

(

e
2L
v (ω2−ω) − e−

2L
v D
)

− 1

(ω2 − ω)

(

e
2L
v (ω2−ω) − 1

)]

] (2.255)

that can be reduced to

δ12th = −2

∑

a,a′ ga,a′ga,a′

16π2v2
Sj,a′Sa,j′S

∗
a,a′ [γ + ...]

δD

D
(2.256)

Next one is

δ13th ≈
∑

a,a′ ga,a′ga,a′

16π2v2
δD

[+

0∫

−D

dω2

Sj,a′ (iω)Sa,j′ (iω)S
∗
a,a′ (iω2)

(D + ω)

[
1

(ω2 − ω)

(

e
2L
v (ω2−ω) − 1

)

− 1

(ω2 +D)

(

e
2L
v (ω2−ω) − e−

2L
v D
)]

] (2.257)

that implies

δ13th =

∑

a,a′ ga,a′ga,a′

16π2v2
Sj,a′Sa,j′S

∗
a,a′

[

γ + ln

(
2L

v

)

+ ...

]
δD

D
(2.258)

The following is

δ14th ≈ [+

0∫

−D

dω2

Sj,a′ (iω)Sa,j′ (iω)S
∗
a,a′ (iω2)

(ω2 −D)

[
1

D

(

e
2L
v (ω2−ω) − e

2L
v (ω2−D)

)

− 1

(ω2 − ω)

(

e
2L
v (ω2−ω) − 1

)]

] (2.259)

such that

δ14th =

∑

a,a′ ga,a′ga,a′

16π2v2
Sj,a′Sa,j′S

∗
a,a′ [γ + ...]

δD

D
(2.260)



62

The sixteenth is

δ15th ≈
∑

a,a′
∑

b,b′ ga,a′gb,b′

16π2v2
δD

[+

0∫

−D

dω1

[

Sj,a′ (iω)Sb,j′ (iω)Sa,b′ (iω)S
∗
a,a′ (iω1)S

∗
b,b′ (−iD) + Sj,a′ (iω)Sb,j′ (iω)Sa,b′ (iω)S

∗
a,a′ (−iD)S∗

b,b′ (iω1)
]

(ω − ω1)D

[

e
2L
v (ω1−D) − e

2L
v (ω1−ω) − e−

2L
v D + 1

]

]

Forgetting about the energy dependence it becomes

δ15th = 2

∑

a,a′
∑

b,b′ ga,a′gb,b′

16π2v2
Sj,a′Sb,j′Sa,b′S

∗
a,a′S

∗
b,b′ [γ + ...]

δD

D
(2.261)

Next is

δ16th ≈
∑

a,a′
∑

b,b′ ga,a′gb,b′

16π2v2
δD

[−
0∫

−D

dω2Sj,a′ (iω)Sb,j′ (iω)Sa,b′ (iω + iD + iω2)S
∗
b,a′ (−iD)S∗

a,b′ (iω2)
1

D
] (2.262)

and

δ16th =

∑

a,a′
∑

b,b′ ga,a′gb,b′

16π2v2
Sj,a′Sb,j′Sa,b′S

∗
b,a′S

∗
a,b′ [−1 + ...]

δD

D
(2.263)

The following is

δ17th =

∑

a,a′ ga,a′ga,j′

16π2v2
δD

[−
0∫

−D

dω1

Sj,a′ (iω)S
∗
a,a′ (iω1)Sa,j′ (iD)

(ω1 − ω)

[
1

(ω −D)

(

e
2L
v (ω1−D) − e

2L
v (ω1−ω)

)

− 1

(ω1 −D)

(

e
2L
v (ω1−D) − 1

)]

[+

0∫

−D

dω2

Sj,a′ (iω)S
∗
a,a′ (−iD)Sa,j′ (−iω2)

D

[
1

(ω + ω2)

(

e
2L
v (ω2−D) − e−

2L
v D
)

− 1

(ω2 −D)

(

e
2L
v (ω2−D) − 1

)]

] (2.264)

such that

δ17th = −
∑

a,a′ ga,a′ga,j′

16π2v2
Sj,a′S

∗
a,a′Sa,j′ [γ + ...]

δD

D
(2.265)

We have then

δ18th ≈
∑

a ga,j′ga,j′

16π2v2
δD[

0∫

−D

dω2
Sj,j′ (iω)

(D + ω)

[
1

(ω +D)

(

1− e
2L
v (−D−ω)

)

− 2L

v

]

]
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≈
∑

a ga,j′ga,j′

16π2v2
δD

D
Sj,j′ (iω)

[

1− 2LD

v

]

(2.266)

and

δ19th ≈
∑

a ga,j′ga,j′

16π2v2
δD



+

0∫

−D

dω2
Sj,j′ (iω)

D

[
1

D

(

e
2L
v (ω−D) − 1

)

+
2L

v

]




≈
∑

a ga,j′ga,j′

16π2v2
δD

D
Sj,j′ (iω)

[
2LD

v
− 1

]

(2.267)

Finally

δ20th =

∑

a,a′ ga,a′ga,j′

16π2v2
δD

[−
0∫

−D

dω1Sj,a′ (iω)Sa,j′ (iω − iω1 + iD)S∗
a,a′ (iω1)

1

(ω1 −D)

[
1

(ω1 − ω)

(

e
2L
v (2ω1−D) − e

2L
v (ω1−D)

)

− 1

(2ω1 −D)

(

e
2L
v (2ω1−D) − 1

)]

+

0∫

−D

dω2Sj,a′ (iω)Sa,j′ (iω + iD − iω2)S
∗
a,a′ (−iD)

1

(ω2 −D)

[
1

D

(

e
2L
v (−2D+ω2) − e

2L
v (−D+ω2)

)

− 1

(2D − ω2)

(

e
2L
v (−2D+ω2) − 1

)]

] (2.268)

that in the energy independent case gives no linear contribution in lnD

δ20th =

∑

a,a′ ga,a′ga,j′

16π2v2
Sj,a′Sa,j′S

∗
a,a′ [...]

δD

D
(2.269)

like

δ21th ≈
∑

a,a′ ga,a′ga,j′

16π2v2
δD

[+

0∫

−D

dω2Θ(ω +D + ω2)Sj,a′ (iω)Sa,j′ (iω + iD + iω2)S
∗
a,a′ (−iD)

1

D

[
1

(D + ω2)

(

e
2L
v (−2D−ω2) − e−

2L
v D
)

− 1

(2D + ω2)

(

e
2L
v (−2D−ω2) − 1

)]

] (2.270)

that is indeed

δ21th =

∑

a,a′ ga,a′ga,j′

16π2v2
Sj,a′Sa,j′S

∗
a,a′ [...]

δD

D
(2.271)

Adding together all the term computed above in both the energy dependent and independent cases gives the second
order correction of the scattering matrix used in the main text.
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III. DUAL FERMIONIC VARIABLES AND RENORMALIZATION

GROUP APPROACH TO JUNCTIONS OF STRONGLY INTERACT-

ING QUANTUM WIRES

Quite a three pipe problem.

Arthur Conan Doyle

In this Chapter, to overcome all the limitation of the fermionic and bosonic approaches we study a junction of
spinful interacting QWs by making a combined use of bosonization and fermionization, that is, we go back and forth
from fermionic to bosonic coordinates, and vice versa, to build ”dual-fermion” representations of the junction in
strongly interacting regimes. In resorting from a bosonic to a fermionic problem, our approach is reminiscent of the
refermionization scheme used in Ref. [84] to discuss the large-distance behavior of the classical sine-Gordon model at
the commensurate-incommensurate phase transition. Specifically, in Ref. [84] the refermionization allows for singling
out at criticality the low-energy two-fermion excitations from the one-fermion ones and to prove that the latter ones
keep gapped along the phase transitions and do not contribute to the large-distance scaling of the correlations. At
variance, in our case it is the second of a two-step process, that ends up again into a fermionic ”dual fermionic” model
for the strongly-interacting system. The guideline to construct the appropriate novel fermionic degrees of freedom is
to eventually rewrite the relevant boundary interactions as bilinear functionals of the fermionic fields. Specifically,
moving from the original fermionic coordinates to the TLL-bosonic description of the junction, we are able to warp
from the weakly interacting regime to different strongly interacting regimes. Therefore, at appropriate values of the
interaction-dependent Luttinger parameters, we move back from the bosonic- to pertinent dual-fermionic coordinates,
chosen so that the relevant boundary interactions are bilinear functionals of the fermionic fields. Our mapping between
dual coordinates is actually preliminary to the implementation of the RG-approach.

The RG-approach formulated in fermionic coordinates, such as FRG, suffers of the limitation that it requires that
relevant scattering processes at the junction are fully encoded in terms of a single-particle S-matrix. While this is
certainly the case at weak bulk interaction, a strong attractive interaction in either charge-, or spin-channel (or in
both) is known to stabilize phases (RG attractive fixed points) at which two-particle scattering is the most relevant
process at the junction25–29. Just because of the way it is formulated, the FRG-approach fails to describe many-
particle scattering processes, even after improvements of the technique that allow to circumvent the constraint of
having a small bulk interaction52–54. Resorting to the appropriate dual-fermion basis allows us to describe within
the FRG-approach also fixed points stabilized by many-particle scattering processes, as well as fixed points whose
properties have not been mapped out within the TLL-framework in terms of a rotation matrix such as, for instance,
the mysterious-fixed point in the three-wire junction of spinless quantum wires studied in Ref. [29] and its counterpart
in the junction of spinful quantum wires. Moreover, in computing the conductance tensor along the RG-trajectories
connecting fixed points of the phase diagram, we show how our approach, while being consistent with the TLL-
approach in the range of parameters where both of them apply, on the other hand allows for complementing the
results of Refs. [25–27, and 30] about the two-wire and the three-wire junction, with a number of additional results
about the topology of their phase diagram and their conductance properties.

III.1. Dual Fermionic variables and renormalization group approach to the calculation of the conductance

at a junction of two spinful interacting quantum wires

To introduce and check the validity of our approach, in this section we discuss a junction of two interacting spinful
quantum wires. This appears to be quite an appropriate place to test our technique: indeed, the two-wire junction
has widely been studied in the past, both within the bosonization approach25–27, and by means of standard RG
techniques for a weak bulk interaction37–40. The two-wire junction of spinful quantum wires is described by the
(K = 2) Hamiltonian H = HB +HI of Eqs. [2.9, 2.10]

For a weak bulk interaction, the most relevant contribution to HB is given by a linear combination of the operators
B(j,j′),σ,(X,Y )(0), defined as

B(j,j′),σ,(X,X′)(0) = ψ†
X,j,σ(0)ψX′,j′,σ(0) (3.1)

with X,X ′ = L,R. Assuming equivalence between the two wires and a spin-symmetric and spin-conserving boundary
interaction, HB can be generically written as
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HB =
∑

X,X′=L,R

∑

σ

{[τX,X′B(1,2),σ,(X,X′)(0) + h.c.] +
∑

j=1,2

µX,X′B(j,j),σ,(X,X′)(0)} (3.2)

In addition to the contributions reported in Eq. [3.2], terms that are quadratic (or of higher order) in the B’s can in
principle arise along RG-procedure, even if they are not present in the ”bare” Hamiltonian. For instance, the simplest
higher-order boundary interaction terms consistent with spin conservation at the junction, H2,0 and H0,2, are given
by25–27

H2,0 = V2,0
∑

X,X′=R,L

{B(X,X′),↑,(1,2)(0)B(X′,X),↓,(1,2)(0) + h.c.}

H0,2 = V0,2
∑

X,X′=R,L

{B(X,X′),↑,(1,2)(0)B(X′,X),↓,(2,1)(0) + h.c.} (3.3)

III.1.1. The weakly interacting regime

As it can be shown using the bosonization approach, for a weak bulk interaction, higher-order operators such as
those in Eqs. [3.3] are highly irrelevant operators and, accordingly they are typically ignored and one uses for HB

the formula in Eq. [3.2]. Physically, this means that the relevant scattering processes at the junction consist only
of one single particle/hole scattered into one single particle/hole, such as those drawn in Fig. [12], panel a. These
processes are fully described by the single-particle S-matrix, for which the renormalization group equations can be
fully recovered using the technique we review in Sec. [II.4]. The symmetry requirements listed above imply that the
single-particle S-matrix takes the block-diagonal form

S(j,σ);(j′,σ′)(k) = δσ,σ′ Sj,j′(k) (3.4)

with the S(k)-matrix being given by

S(k) =

[
rk tk
tk rk

]

(3.5)

and rk and tk respectively corresponding to the amplitude for the particle to be backscattered in the same wire,
or transmitted into the other wire. In the following we will pose no particular constraints on the rk’s and the tk’s,
except that, near the Fermi points, they are quite flat functions of k, without displaying particular features, such as
a resonant behavior: accordingly, we assume that the amplitudes are all computed at the Fermi level and drop the k
label (this is a specific case of the general assumptions on the behavior of the S-matrix elements near by the Fermi
surface that we make in Sec. [II.4]). To write the RG-equations for the S-matrix elements, one needs the F matrix
which, in this specific case, is given by Eq. [2.84] and has the form

F =
1

2






βr 0 0 0
0 βr 0 0
0 0 βr 0
0 0 0 βr




 (3.6)

with β = 1
2πv

(
−g1‖ − g1⊥ + g2‖

)
. Taking into account the symmetries of the S- and of the F -matrix, the RG-equations

for the amplitudes r, t are obtained in the form

dr

dℓ
=
β

2

(

r − r |r|2 − r∗t2
)

= βr |t|2

dt

dℓ
= −βt |r|2 = −β(t− t |t|2) (3.7)

Equations [3.7] must be supplemented with the RG-equation for the running strength β, which is given by
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FIG. 12. Sketch of possible scattering processes at a two-wire junction (note that incoming particles from wire j can either be
scattered into the same wire, or into a different wire):
(a) Single-particle/single-hole scattering processes. These are determined by Htun in Eq. [3.2] and are fully described in terms
of a single-particle S-matrix;
(b) Many-body scattering processes in which one particle/one hole is scattered into two particles and one hole/two holes and
one particle. These processes can be induced by boundary interaction Hamiltonians such as those in Eq. [3.3] and their
proliferation requires resorting to a bosonic Luttinger-liquid description of the junction;
(c) Scattering processes for a particle-particle and for a particle-hole pair. These are again determined by the Hamiltonians in
Eq. [3.3] and are the only allowed processes in the presence of a strong repulsive (attractive) interaction in the spin (charge)
channel, and vice versa. On pertinently defining new fermionic coordinates, they can still be described in terms of a ”single-pair”
S-matrix.

dβ

dℓ
=

1

(2πv)2
{(g1,⊥)2 + 2g1,⊥

(
g2,⊥ − g2,‖ + g1,‖

)
} (3.8)

(See Eqs. [2.57] for the definition of the bulk interaction strengths gj,1(2),⊥, gj,1(2),‖: here we drop the wire index j as
the interaction strengths are assumed to be the same in each wire.) Equations [3.7], together with Eq. [3.8] and Eqs.
[2.102] for the running interaction strengths, constitute a closed set of equations, whose solution yields the scaling
functions r(D), t(D). From the explicit formulas for the running scattering amplitudes, one may readily compute
the charge- and the spin-conductance tensors, using the formulas derived in Appendix [II.8]. As a result, due to the
symmetries of the S-matrix, the charge- and the spin-conductance tensor are equal to each other and both given by

Gc(D) = Gs(D) = G(D)

[
1 −1
−1 1

]

(3.9)

with G(D) = e2

π |t(D)|2. An explicit analytical formula can be provided for G(D) in some simple cases such as, for
instance, if g1⊥ is fine-tuned to 0. In this case, as it arises from Eq. [3.8], β keeps constant along the RG-trajectories
and, therefore, one may exactly integrate Eqs. [3.7] for r(D) and t(D). One obtains

G(D) =
e2

π

T0 |D/D0|2β

R0 + T0 |D/D0|2β
(3.10)

with T0 = 1 − R0 = |t0|2 and r0, t0 corresponding to the ”bare” scattering amplitudes in Eq. [3.5]. Another case in
which an explicit analytical solution can be provided corresponds to having g1⊥ = g1‖ = g1 and g2⊥ = g2‖ = g2. In
this case, the set of Eqs. [2.102] collapse onto a set of two equations for g1(D), g2(D) which can be readily integrated,
yielding the running interaction strengths

g1(D) =
g1

1 + g1
πv ln

D0

D
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πG(D)   /e 2

a) b)

ln(D  /D) ln(D  /D)
0 0

FIG. 13. (a) Plot of G(D) vs. ln(D0/D) as from Eq. [3.10] for T0 = 1−R0 = 0.4, β = 0.35 (purple curve - corresponding to
an effectively repulsive interaction), and β = −0.35 (blue curve - corresponding to an effectively attractive interaction), with
T0 = |t0|

2, R0 = |r0|
2;

(b) Plot of G(D) vs. ln(D0/D) as given in Eq. [3.12] for T0 = 1 − R0 = 0.4, g1/(2πv) = 0.2, γ = 0.36 (purple curve -
corresponding to an effectively repulsive interaction), and β = −0.36 (blue curve - corresponding to an effectively attractive
interaction).

g2(D) = g2 −
g1
2

+
1

2

g1

1 + g1
πv ln

D0

D

(3.11)

and β(D) = [g2(D)− 2g1(D)]/(2πv). Once β(D) is known, Eqs. [3.7] can be integrated, yielding

G(D) =
e2

π

[

T0
[
1 + g1

πv ln
∣
∣D0

D

∣
∣
]3/2 |D/D0|2γ

R0 + T0
[
1 + g1

πv ln
∣
∣D0

D

∣
∣
]3/2 |D/D0|2γ

]

(3.12)

with γ =
(
− g1

2 + g2
)
/(2πv), T0 = |t0|2, R0 = |r0|2. As an example of typical scaling plots for G(D) in the simple

cases discussed before, in Fig. [13] we plot G(D)π/e2 vs. ln(D0/D), as from Eq. [3.10] (panel (a)) and from Eq.
[3.12] (panel (b)), with the values of the parameters reported in the caption. Consistently with the results obtained
within Luttinger liquid framework25–27, G(D)π/e2 either flows to 0 for an effectively repulsive interaction (β, γ > 0),
or to 2 (the maximum value allowed by unitarity), for an effectively attractive interaction (β, γ < 0). For general
values of the interaction strengths, the equations have to be numerically integrated. In Fig. [14], we provide some
examples of scaling of G(D) vs. ln(D0/D) in the general case. It is important to stress39 that, due to the nontrivial
renormalization group flow of the interaction strengths, the flow of G(D) can be a nonmonotonic function of D for
some specific values of the interaction strengths. It would be interesting to check such a feature in a real life two-wire
junction: remarkably, this prediction is only obtained within the FRG-approach, in which it is possible to account for
the flow of the running interaction strengths, as well.
The possibility of mapping out the full crossover of the conductance as a function of the scale D is possibly the most
important feature of the FRG approach.

III.1.2. The strongly interacting regimes

Yet, since, as we discuss to some extent in Sec. [II.4], the validity of the FRG technique is grounded on the
assumption that all the relevant scattering processes at the junction are described by the single-particle S-matrix37–40,
it breaks down when attempting to recover the full crossover of the conductance towards fixed points where multi-
particle scattering is the most relevant process at the junction, such as the strongly coupled fixed point stabilized by
either H2,0 or H0,2 in Eq. [3.3]25–27. Technically, what happens is that, as soon as boundary operators such as H2,0
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a) b)

FIG. 14. (a) Plot of G(D) vs. ln(D0/D), obtained by numerically integrating Eqs. [3.7,3.8,2.102] for g1,‖(D0)/(2πv) =
g1,⊥(D0)/(2πv) = g2,⊥(D0)/(2πv) = 0.3, g2,‖(D0)/(2πv) = 0, R0 = T0 = 0.5;
(b) Same as in panel (a), but with g2,‖(0)/(2πv) = 0.3, as well.

or H0,2 become relevant, the proliferation of low-energy many-body scattering processes such as the one we sketch
in Fig. [12], panel b, invalidates the single-particle S-matrix description of the junction dynamics. Nevertheless,
some many-body scattering processes can be strongly limited by having, for instance, a strong repulsive interaction
among particles with the same spin and a strong attractive interaction among particles with the same charge. In
the bosonic framework, this corresponds to having values of the Luttinger parameters in Eqs. [2.134] such that
gc ≥ 2, gs ≪ 1. Indeed, in this limit on one hand, the strong spin repulsive interaction forbids the single-particle
processes described by HB in Eq. [3.2] (at small values of the boundary coupling strengths τX,X′ , µX,X′ this can be
readily seen from the explicit result for the scaling dimension of HB computed within the bosonization approach,
which is xB,weak = 1− 1

2gc
− 1

2gs
, which becomes ≫ 1, corresponding to a largely irrelevant operator). On the other

hand, one expects that the strong charge attraction stabilizes tunneling of composite objects carrying zero spin, such
as two-particle pairs, as the one depicted at the left-hand panel of Fig. [12], panel c. As a consequence, due to
the fact that these are again one-into-one scattering processes, one expects that it is possible to choose the effective
low-energy degrees of freedom of the system to resort to a single-particle S-matrix in the new coordinates. In fact,
this is the idea behind the dual fermion approach we are going to discuss next. When resorting to dual fermion
coordinates, an important issue is related to whether the vacuum states at a fixed particle number85 for the original
and the dual-fermions are the same. In fact, while dual fermion formalism only captures composite excitations e.g.
two-particle states in the gc ∼ 2, gs ≪ 1-regime, at such values of the parameters, these states are the only ones that
at low energy are effectively able to tunnel across the junction (that is, the only ones whose tunneling is described
by a non-irrelevant operator). So, as long as one is only concerned about states relevant for low-energy tunneling
across the junction (that is, states relevant for the calculation of the dc-conductance tensor of the junction), one can
effectively assume that the fixed-particle number vacuum states are the same in terms of the new (dual) and of the
old fermions. The definition of the dual fermion operators strongly depends on the boundary conditions of the various
fields at the junction. Accordingly, in the following we define different dual fermion operators in different regimes of
values of the boundary interaction, and eventually show that, whenever two different sets of dual coordinates apply
to the same region, they yield the same results, as they are expected to.

Let us begin with the weak boundary interaction regime. Referring to the bosonization formulas of Sec. [II.5],
this corresponds to assuming Neumann (Dirichlet) boundary conditions for all the Φ (Θ)-fields in Sec. [II.5] and, in
addition, to equating the Klein factors so that ηR,σ,j = ηR,σ,j , ∀σ, j. In this limit, one may respectively rewrite H0,2

and H2,0 in bosonic coordinates as

H2,0 = v2,0 cos[Φ1,c(0)− Φ2,c(0)]

H0,2 = v0,2 cos[Φ1,s(0)− Φ2,s(0)] (3.13)

with v2,0 ∝ V2,0, v0,2 ∝ V0,2. The scaling dimensions of the operators in Eqs. [3.13] are respectively given by
x2,0 = 2/gc, x0,2 = 2/gs. Thus, in the regime of a strongly attractive interaction in the charge (spin)-channel and
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strongly repulsive interaction in the spin (charge)-channel, H2,0 (H0,2) may become the most relevant boundary
operator at weak boundary coupling. The strategy of our dual fermion approach consists in defining a novel set of
fermionic fields, in terms of which the operators in Eqs. [3.13] are realized as bilinears, similar to the B-operators
in Eq. [3.1]. To be specific, let us introduce the center-of-mass and the relative fields in the charge- and in the
spin-sector, respectively given by

Φc(s)(x) =
1√
2
[Φ1,c(s)(x) + Φ2,c(s)(x)]

Θc(s)(x) =
1√
2
[Θ1,c(s)(x) + Θ2,c(s)(x)] (3.14)

and

ϕc(s)(x) =
1√
2
[Φ1,c(s)(x)− Φ2,c(s)(x)]

ϑc(s)(x) =
1√
2
[Θ1,c(s)(x)−Θ2,c(s)(x)] (3.15)

Next, let us perform the canonical transformation to a new set of bosonic fields, defined as







Φ̄c(s)(x)
Θ̄c(s)(x)
ϕ̄c(s)(x)
ϑ̄c(s)(x)






=







√
2 0 0 0
0 1√

2
0 0

0 0
√
2 0

0 0 0 1√
2












Φc(s)(x)
Θc(s)(x)
ϕc(s)(x)
ϑc(s)(x)




 (3.16)

It is worth stressing that the transformation in Eqs. [3.16] relate to each other bosonic operators at a given position in
real space. Since the correspondence rules between the bosonic and the (original or dual) fermionic fields, summarized
in Sec. [II.5], are local in real space, as well, one concludes that, written in terms of dual fermionic coordinates,
the boundary interaction Hamiltonian HB is still local and that the dynamics far from the junction can be fully
encoded within dual fermion scattering states. Now, assuming gs ≪ 1, gc = 2 + δgc, with |δgc| ≪ 1, we see that
gs ≪ 1 makes H0,2 strongly irrelevant. This fully suppresses spin transport across the junction and, therefore, we
may just focus onto charge transport, ruled by H2,0. In fact, it appears that single-spinful particle-tunneling processes
are already suppressed against two-particle pair tunneling processes as soon as gs < 2/3. As conservation of spin
symmetry implies gs = 1, in order to realize the condition above one may, for instance, think of two coupled spinless
interacting one-dimensional electronic systems (which could possibly realized as semiconducting quantum wires in the
presence of spin-orbit and Zeeman interactions), with a mismatch in the Fermi momenta that prevents the interaction
from opening a gap in the fermion spectrum. The two channels can, therefore, be regarded as the two opposite spin
polarization, although without any symmetry implying gs = 1. To rewrite this latter operator as a bilinear functional
of fermionic operators, we define the spinless chiral fermionic fields χR,j(x), χL,j(x) as

χR,j(x) = ηR,j e
i
2 [Φ̄c(x)−(−1)j ϕ̄c(x)+Θ̄c(x)−(−1)j ϑ̄c(x)]

χL,j(x) = ηL,j e
i
2 [Φ̄c(x)+(−1)j ϕ̄c(x)+Θ̄c(x)+(−1)j ϑ̄c(x)] (3.17)

with j = 1, 2 and with ηR,j , ηL,j being real fermionic Klein factors. ”Inverting” the bosonization procedure outlined in
Sec. [II.5] into a pertinent re-fermionization to spinless fermions, we find that the bulk Hamiltonian for the χ-fermions
is given by

Hc;bulk = −iu
∑

j=1,2

∫ L

0

dx {χ†
R,j(x)∂xχR,j(x)− χ†

L,j(x)∂xχL,j(x)}

−uπδgc
2

∑

j=1,2

∫ L

0

dx : χ†
R,j(x)χR,j(x) :: χ

†
L,j(x)χL,j(x) : (3.18)

with the velocity u ∝ v. The χL/R,j-fields are the appropriate degrees of freedom to describe pair scattering at the
junction in terms of a single-particle S-matrix. In order to prove that it is so, we note that H2,0 can be regarded as
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the bosonic expression for the boundary weak coupling limit of a tunnel Hamiltonian for the spinless fermions, Hc,tun,
given by

Hc,tun = v2,0{χ†
1(0)χ2(0) + χ†

2(0)χ1(0)} (3.19)

with χj(0) = χR,j(0) + χL,j(0). While the strong spin repulsion sets the spin conductance tensor to 0, the charge
conductance can nevertheless be different from zero, due to zero-spin pair-tunneling across the junction. Once the
RG-flow for the S-matrix elements describing χ-fermion scattering at the junction has been derived as we did before,
using the formulas we report in Appendix [II.8] and the expression of the charge current operator in wire j in terms
of the dual fermionic fields:

Jc,j(x) = eu
√
2 {: χ†

R,j(x)χR,j(x) : − : χ†
L,j(x)χL,j(x) :} (3.20)

we obtain that the charge conductance tensor scales according to

Gc(D) =

[
e2

π −G(D) G(D)

G(D) e2

π −G(D)

]

(3.21)

with

G(D) =
e2

π

[

T0|D/D0|−
δgc
2

R0 + T0|D/D0|−
δgc
2

]

(3.22)

and the bare reflection and transmission coefficients respectively given by

R0 =

∣
∣
∣
∣
∣

u2 − v22,0
u2 + v22,0

∣
∣
∣
∣
∣

2

T0 =

∣
∣
∣
∣
∣

2uv2,0
u2 + v22,0

∣
∣
∣
∣
∣

2

(3.23)

In Fig. [15], we plot G(D) versus ln(D0/D) in two paradigmatic cases, respectively corresponding to δgc > 0 and
to δgc < 0. To our knowledge, this is the first example of a full scaling plot of the conductance for a junction of
strongly interacting one-dimensional quantum wires. While, on one hand, this shows the effectiveness of our approach
in describing the crossover of the conductance towards the spin-insulating charge-conducting fixed point, on the other
hand, one has also to prove the consistency of an effective theory strongly relying on the weak boundary coupling
assumption with an RG-flow taking the system all the way down to the perfectly charge-conducting fixed point,
corresponding to the strongly interacting limit of the boundary interaction25–27. When δgc > 0, the relevance of H2,0

drives the system towards the strongly boundary interaction limit in the charge channel, corresponding to pinning
ϕc(0) and, accordingly, to imposing Neumann boundary conditions on ϑc(0). Since Φc(0) does not appear in the
boundary interaction, one assumes that it still obeys Neumann boundary conditions and, accordingly, that Θc(0) is
pinned at a constant value. We now prove that these boundary conditions are recovered by taking the strongly coupled
limit of Hc,tun in Eq. [3.19] and using the refermionization rules in Eqs. [3.17]. Indeed, on making the strong-coupling
assumption,

∣
∣ v2,0
u

∣
∣≫ 1, as from Eqs. [3.23], one obtains R0 → 0, T0 → 1, that is, the boundary conditions correspond

to perfect transmission from wire-1 to wire-2, and vice versa. In terms of the dual fermionic fields, this corresponds
to the conditions

χR,2(x) = eiλ χL,1(−x)
χR,1(x) = e−iλ χL,2(−x) (3.24)

with λ being some nonuniversal phase. From Eqs. [3.17], one sees that Eqs. [3.24] imply Dirichlet boundary conditions
at x = 0 for both ϕ̄c(x) and Θ̄c(x), with the dual fields ϑ̄c(x), Φ̄c(x) obeying Neumann boundary conditions. This is
exactly the same result one would obtain working in bosonic variables by sending to ∞ the interaction strength v2,0
in Eq. [3.13]. Due to the strong repulsion in the spin channel, such a fixed point corresponds to perfect transmission
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FIG. 15. Plot of Gc(D) vs. ln(D0/D) as from Eq. [3.22] for T0 = R0 = 0.5 and for δgc respectively equal to 0.6 (blue curve)
and to -0.6 (purple curve).

in the charge channel, but perfect reflection in the spin channel, that is, it must be identified with the non-symmetric
charge-conducting spin-insulating phase of Refs. [25–27]. To conclude the consistency check, we note that, on alledging

for additional backscattering contributions to Hc,tun of the generic form µ1χ
†
R,1(0)χ

†
R,1(0) + µ2χ

†
L,1(0)χ

†
L,(0) (which

play no role at weak coupling) and using again Eqs. [3.24], one obtains the bosonic operators

H̃c,tun ∼ µ cos
[
ϑ̄c(0)

]
(3.25)

with µ being some nonuniversal constant. Equation [3.25] corresponds to the bosonic version of the leading boundary
perturbation at the non-symmetric charge-conducting spin-insulating fixed point25–27.

Our approach also allows for analyzing the complementary situation in which gc ≪ 1 and gs ∼ 2. In this case,
one expects that the strong repulsion in the charge channel and the strong attraction in the spin channel stabilize
single-pair tunneling processes at the junction such as those sketched at the right-hand panel of Fig. [12], panel c,
that is, tunneling of particle-hole pairs, with total spin 1. Again, for gs = 2, the S-matrix describes single-particle
into single-particle scattering processes, once it is written in the appropriate basis. To select the pertinent degrees
of freedom, we therefore repeat the refermionization procedure in Eq. [3.17], by just exchanging the charge- and the
spin-sector with each other. Of course, charge- and spin-conductance are exchanged with each other, compared to
the previous situation and, accordingly, the flow will be towards the charge-insulating spin-conducting fixed point of
Refs. [25–27]. An important remark, however, concerns the effects of a possible residual interaction, which, as we did
before, can be in principle introduced for accounting for gs slightly different from 2. Indeed, a term in the ”residual”
bulk interaction Hamiltonian such as the one ∝ gj,1,⊥ in Eq. [2.10], once expressed in terms of the fermionic fields in
Eqs. [3.17] would take the form

Hδ =

2∑

j=1

mj

∫

dx {χ†
R,j(x)χL,j(x) + χ†

L,j(x)χR,j(x)} (3.26)

withmj ∝ gj,1,⊥, which would open a bulk gap in the single-χ fermion spectrum, thus making the whole system behave
as a bulk spin insulator. Therefore, in order to recover the correct physics of the charge-insulating spin-conducting
fixed point, we must assume that all the gj,1,⊥ are tuned to zero, which is typically the case when resorting to the
bosonic approach to spinful electrons25–27.
As we have just shown, resorting to pertinent dual-fermion operators allows for mapping out the full crossover with

the appropriate energy scale of the charge and/or spin conductance of a junction in region of values of the interaction
parameters in which one is typically forbidden to use the standard weak-coupling formulation of either FRG, or fRG.
In the following, we apply our technique to the spinful three-wire junction studied using the bosonization approach
in Ref. [30], and will recover the full crossover of the conductance tensor in regions typically not accessible in the
bosonic formalism.
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FIG. 16. Sketch of a three-wire junction of spinful quantum wires pierced by a magnetic flux Φ.

III.2. Dual Fermionic variables and renormalization group approach to the calculation of the conductance

at a junction of three spinful interacting quantum wires

We now consider a three-spinful-wire junction, such as the one we sketch in Fig. [16]. Resorting to the appropriate
fermionic variables, we generalize to strongly interacting regions the weak-coupling FRG-approach. As a result, we
map out the full dependence of the conductance tensor on the low-energy running cutoff scale even in strongly-
interacting regions of the parameter space. Eventually, we discuss the consistency of our results about the phase
diagram of the junction with those obtained in Ref. [30], particularly showing how our technique can be used to
recover informations that typically cannot be derived within the bosonization approach used there. Consistently
with Ref. [30], in the following, we make the simplifying assumption that, in the weakly interacting regime, the bulk
interaction is purely intra-wire and is the same in all the three wires. In fact, while this assumption is already expected
to yields quite a rich phase diagram30, in principle our approach can be readily generalized to cases of different bulk
interactions in different wires, such as the one considered in Ref. [31].

III.2.1. The weakly interacting regime

For a weak boundary interaction, assuming total spin conservation at the junction, the most relevant boundary
interaction Hamiltonian is a combination of the bilinear operators in Eq. [3.1]. The relevant scattering processes at
the junction are all encoded in the single-particle S-matrix elements, S(j,σ),(j′,σ′)(k). Because of spin conservation,
the S-matrix is diagonal in the spin index, that is, S(j,σ),(j′,σ′)(k) = δσ,σ′Sj,j′(k). Assuming also that the boundary
Hamiltonian is symmetric under exchanging the wires with each other, the 3× 3 matrix S(k) takes the form

S =





r t̄ t
t r t̄
t̄ t r



 (3.27)

(Note that, in Eq. [3.27] we assume that all the amplitudes are computed at the Fermi level and accordingly drop the
index k from the S-matrix elements. This is consistent with the discussion of Sec. [II.4], where we assume that, close
to the Fermi level, the scattering amplitudes are smooth functions of k.) It is worth mentioning that, in writing Eq.
[3.27], we allowed for time-reversal symmetry breaking as a consequence, for instance, of a magnetic flux φ piercing
the centre of the junction (see Fig. [16]). This implies that, in general, the scattering amplitude t from wire j to wire
j + 1 is different from the one from wire j to wire j − 1 (t̄). From Eq. [3.27] one therefore finds that the F -matrix

elements in Eq. [2.84] are given by Fj,j′ = β
2 rδj,j′ , with again β = 1

2πv

[
−g1‖ − g1⊥ + g2‖

]
. On applying the FRG

formalism of Sec. [II.4], one readily obtains the RG-equations for the independent S-matrix elements, given by

dr

dℓ
=
β

2

[

r − |r|2 r − 2tt̄r∗
]

dt

dℓ
= −β

2

[

2t |r|2 + t̄2r∗
]
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dt̄

dℓ
= −β

2

[

2t̄ |r|2 + t2r∗
]

(3.28)

which, again, must be supplemented with the RG-equations for the running coupling strengths, Eqs. [2.102,3.8].
Since, as a consequence of spin conservation in scattering processes at the junction, the S-matrix is diagonal in the
spin indices, the charge- and spin-conductance tensors are equal to each other at the fixed points, as well as along the
RG-trajectories obtained integrating Eqs. [3.28]. In particular, using the formalism of Appendix [II.8], one obtains

Gc,s(D) =
e2

π





−R(D) + 1 −T̄ (D) −T (D)
−T (D) −R(D) + 1 −T̄ (D)
−T̄ (D) −T (D) −R(D) + 1



 (3.29)

with R(D) = |r(D)|2, T (D) = |t(D)|2, and T̄ (D) = |t̄(D)|2. The RG-flow of the scattering coefficients T (D), T̄ (D) is
recovered by solving the set of differential equations

dT

dℓ
= −β

2

[(
5T − T̄

)
(1− T − T̄ )− T T̄

]

dT̄

dℓ
= −β

2

[(
5T̄ − T

)
(1− T − T̄ )− T T̄

]
(3.30)

which are derived from Eqs. [3.28] by taking into account the unitarity constraint T (D) + T̄ (D) + R(D) = 1. The
fixed points of the boundary phase diagram are, therefore, determined by setting to zero the terms at the right-hand
side of Eqs. [3.30]. From Eq. [3.29] one may therefore recover the corresponding charge- and the spin-conductance
tensors. Borrowing the labels used in Ref. [30], we obtain the following fixed points:

• The [Nc, Ns] (”disconnected”) fixed point

This fixed point corresponds to having R = 1 and T = T̄ = 0 which, according to Eq. [3.29], yields

Gc = Gs =
e2

π





0 0 0
0 0 0
0 0 0



 (3.31)

as it is appropriate for a disconnected junction.

• The χ++ fixed point

This corresponds to R = T̄ = 0, T = 1, which yields

|Sj,j′ |2 =





0 0 1
1 0 0
0 1 0



 (3.32)

and, accordingly

Gc = Gs =
e2

π





1 0 −1
−1 1 0
0 −1 1



 (3.33)

• The χ−− fixed point

This corresponds to R = T = 0, T̄ = 1, which yields

|Sj,j′ |2 =





0 1 0
0 0 1
1 0 0



 (3.34)
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FIG. 17. Renormalization group flow of the scattering coefficients for a three-wire junction for g1,⊥ = 0, β constant and equal
to -0.3, and different choices of the initial values of the scattering coefficients:
(a) Renormalization group flow corresponding to T (D0) = T̄ (D0) = 0.1, R(D0) = 0.8. The curves corresponding to T (D) and
to T̄ (D) vs ln(D0/D) collapse onto the single red curve of the graph, while the flow of R(D) vs ln(D0/D) is described by the
blue curve. As D0/D grows, the scattering coefficients flow towards the asymptotic values corresponding to the M -fixed point;
(b) Renormalization group flow corresponding to T (D0) = 0.1, T̄ (D0) = 0.3, R(D0) = 0.6. As D0/D grows, the scattering
coefficients flow towards the asymptotic values corresponding to the χ−−-fixed point.

and, accordingly

Gc = Gs =
e2

π





1 −1 0
0 1 −1
−1 0 1



 (3.35)

• The M fixed point

This corresponds to T = T̄ = 4
9 , R = 1

9 and has to be identified with the symmetric39, or with the Griffith86

fixed point of a junction of three interacting wires. One obtains

|Sj,j′ |2 =





1
9

4
9

4
9

4
9

1
9

4
9

4
9

4
9

1
9



 (3.36)

and, accordingly

Gc = Gs =
e2

π





8
9 − 4

9 − 4
9

− 4
9

8
9 − 4

9
− 4

9 − 4
9

8
9



 (3.37)

χ±± must clearly be identified with the ”chiral” fixed points of Ref. [30], where time-reversal symmetry breaking
is maximum, both in the charge and in the spin sector. Along the RG-trajectories connecting two fixed points, the
conductance flow is determined by Eq. [3.29]. The topology and the direction of the RG-trajectories depend on both
β and on the bare values of the S-matrix elements. β scales with ℓ as determined by Eqs. [2.102,3.8], which makes it
necessary to resort to a full numerical integration approach. A set of simplified situations can be realized, however,
where β keeps constant along RG-trajectories. For instance, if g1,⊥(D0) = 0, Eq. [3.8] implies that β is constant.
In this case, from Eqs. [3.30] one readily sees that, if β > 0, the boundary flow is towards the NN -fixed point. At
variance, if β < 0 and T (D0) > (<)T̄ (D0), the boundary flow is towards the χ++ (χ−−)-fixed point. As an example of
possible RG-trajectories that may be realized in this specific case, in Fig. [17] we plot T (D) and T̄ (D) for β constant
and negative, while we draw similar plots in Fig. [18] for constant and positive β and in Fig. [19] for non-constant β
(see the captions for details).
All the analysis we have done so far applies to a junction of three spinful quantum wires for weak bulk interaction.
We now employ the dual-fermion approach to generalize the FRG-technique to regimes corresponding to strong bulk
interactions either in the charge-, or in the spin-channel (or in both of them). See Appendix [III.4] for a detailed list
of relevant boundary operators for different values of the interaction constants.
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FIG. 18. Renormalization group flow of the scattering coefficients for a three-wire junction for g1,⊥ = 0, β constant and equal
to 0.3, and different choices of the initial values of the scattering coefficients:
(a) Renormalization group flow corresponding to T (D0) = 0.35, T̄ (D0) = 0.45, R(D0) = 0.2;
(b) Renormalization group flow corresponding to T (D0) = T̄ (D0) = 0.4, R(D0) = 0.2. As D0/D grows, in both cases the
scattering coefficients flow towards the NN -fixed point.
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FIG. 19. Renormalization group flow of the scattering coefficients for a three-wire junction for non-constant β:
(a) Renormalization group flow corresponding to T (D0) = 0.2, T̄ (D0) = 0.1, R(D0) = 0.4 and to g1,‖(D0)/(2πv) =
g1,⊥(D0)/(2πv) = g2,‖(D0)/(2πv) = g1,⊥(D0)/(2πv) = 0.4. For these values of the bare parameters the junction is attracted
by the disconnected fixed point (R → 1 while T, T̄ → 0);
(b) Renormalization group flow corresponding to T (D0) = 0.4, T̄ (D0) = 0.35, R(D0) = 0.25 and to g1,‖(D0)/(2πv) =
0.3, g1,⊥(D0)/(2πv) = −0.2, g2,‖(D0)/(2πv) = g1,⊥(D0)/(2πv) = 0.2. For these values of the bare parameters the junction
is attracted by the χ++-fixed point.

III.2.2. Fermionic analysis of the strongly interacting regime at gc ∼ gs ∼ 3

A first regime to which our dual-fermion approach can be successfully applied corresponds to a strong attractive
interaction, both in the charge and in the spin channels. In particular, we assume gc ∼ gs ∼ 3. According to the phase
diagram derived in Ref. [30] within the bosonization approach, in this range of values of the Luttinger parameters
one expects to find a fixed point where paired electron tunneling and Andreev reflection are the dominant scattering
processes at the junction and, in addition, two fixed points with maximally broken time-reversal symmetry, to be
identified with the χ++ and the χ−−-fixed points discussed in the previous subsection. To apply the FRG-approach
to this part of the phase diagram, we have to define the appropriate dual fermion coordinates. To do so, let us set
gc = gs = 3. We therefore note that, though, in general, the charge- and spin-velocities uc and us can be different
from each other, one may easily make them equal by a pertinent rescaling of the real-space coordinate in the charge-
and in the spin-sector of the bosonic Hamiltonian in Eq. [2.133]. As the rescaling does not affect the boundary
interaction (which is localized at x = 0), in the following, without loss of generality, we will assume uc = us ≡ u.
In choosing the appropriate dual fermion coordinates, we use the criterion of mapping the fixed point we recover in
the strongly interacting limit one-to-one onto those of the phase diagram in the weakly interacting regime. Referring
to the bosonization formulas of Sec. [II.5], we define the dual bosonic fields Φ̃c(s),j(x), Θ̃c(s),j(x) in terms of those in
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Eqs. [2.130,2.131] as











Φ̃c(s),1(x)

Φ̃c(s),2(x)

Φ̃c(s),3(x)

Θ̃c(s),1(x)

Θ̃c(s),2(x)

Θ̃c(s),3(x)











=













1√
3

1√
3

1√
3

0 1
3 − 1

3
1√
3

1√
3

1√
3

− 1
3 0 1

3
1√
3

1√
3

1√
3

1
3 − 1

3 0

0 −1 1 1
3
√
3

1
3
√
3

1
3
√
3

1 0 −1 1
3
√
3

1
3
√
3

1
3
√
3

−1 1 0 1
3
√
3

1
3
√
3

1
3
√
3






















Φc(s),1(x)
Φc(s),2(x)
Φc(s),3(x)
Θc(s),1(x)
Θc(s),2(x)
Θc(s),3(x)










(3.38)

Consistently with Eqs. [2.129], we therefore define the dual fermionic fields as

ψ̃R,σ,j(x) = ηR,σ,je
i
2 [Φ̃j,c(x)+Θ̃j,c(x)+σ(Φ̃j,s(x)+Θ̃j,s(x))]

ψ̃L,σ,j(x) = ηL,σ,je
i
2 [Φ̃j,c(x)−Θ̃j,c(x)+σ(Φ̃j,s(x)−Θ̃j,s(x))] (3.39)

Using Eq. [3.38] one sees that, when expressed in terms of the Φ̃ and of the Θ̃-fields, the bulk Hamiltonian in Eq.
[2.133] reduces back to the one with gc = gs = 1, which, when expressed in terms of the fermionic fields defined in
Eqs. [3.39], corresponds to the free Hamiltonian H0,F , given by

H0,F = −iu
3∑

j=1

∑

σ

∫ L

0

dx
{

ψ̃†
R,j,σ(x)∂xψ̃R,j,σ(x)− ψ̃†

L,j,σ(x)∂xψ̃L,j,σ(x)
}

(3.40)

Equation [3.40] is the striking result of our technique of introducing dual fermion operators: it is a free-fermion
Hamiltonian which describes a system that is strongly interacting in the original coordinates. Based upon the dual
fermion fields in Eqs. [3.39] one may therefore introduce dual boundary operators analogous to those defined in Eq.
[3.1], namely, one may set

B̃(j,j′),σ,(X,X′)(0) = ψ̃†
X,j,σ(0)ψ̃X′,j′,σ(0) (3.41)

and assume that the boundary interaction is realized as a linear combination of the operators in Eq. [3.41] and/or
of products of two of them. In the absence of additional bulk interaction involving the dual fermion fields, or in
the weakly interacting regime, the most relevant boundary interaction term is realized as a linear combination of the
B̃-operators only. Therefore, the physically relevant processes at the junction are all encoded within the single-particle
S-matrix elements in the basis of the dual fields, S̃(j,σ);(j′,σ′). A nontrivial flow for the S̃-matrix elements is induced
by a nonzero bulk interaction in the dual-fermion theory, that is, by having gc(s) = 3+ δgc(s), with |δgc(s)|/gc(s) ≪ 1.

The dual interaction Hamiltonian, H̃int can be readily recovered using Eqs. [3.38,3.39]. The result is

H̃int =

3∑

j=1

∑

σ,σ′

gj;(σ,σ′)

∫ L

0

dx ρ̃R,j,σ(x)ρ̃L,j,σ′(x) +

3∑

j 6=j′=1

∑

σ,σ′

g(j,j′);(σ,σ′)

∫ L

0

dx ρ̃R,j,σ(x)ρ̃L,j′,σ′(x) (3.42)

with ρ̃R(L),j,σ(x) =: ψ̃†
R(L),j,σ(x)ψ̃R(L),j,σ(x) :, and

gj;(σ,σ′) =
2πu(δgc + δgs)

9
δσ,σ′ +

2πu(δgc − δgs)

9
δσ,σ̄′

g(j,j′);(σ,σ′) = −8πu(δgc + δgs)

9
δσ,σ′ − 8πu(δgc − δgs)

9
δσ,σ̄′ (3.43)

plus terms that do not renormalize the scattering amplitudes. H̃int takes the form of the generalized bulk Hamiltonian
in Eq. [2.10]. Given the corresponding F -matrix elements reported in Eq. [2.76], one may derive the RG-equations in

the case in which the spin is conserved at a scattering process at the junction, which implies S̃(j,σ);(j′,σ′) = δσ,σ′ S̃j,j′ ,

and the boundary interaction is symmetric under a cyclic permutation of the three wires, that is, the S̃j,j′ -matrix
elements are given by
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S̃ =






r̃ ˜̄t t̃

t̃ r̃ ˜̄t
˜̄t t̃ r̃




 (3.44)

Summing over both the inter-wire and the intra-wire processes allowed by the bulk interaction, one obtains

dr̃

dℓ
=

(
γ − α

2

)

{r̃ − |r̃|2r̃ − 2t̃˜̄tr̃∗}

dt̃

dℓ
= −

(
γ − α

2

)

{2t̃|r̃|2 + (˜̄t)2r̃∗}

d˜̄t

dℓ
= −

(
γ − α

2

)

{2˜̄t|r̃|2 + (t̃)2r̃∗} (3.45)

with α = g(j,j′);(σ,σ)/(2πu), γ = gj;(σ,σ)/(2πu). Equations [3.45] are equal with Eqs. [3.28] in the weakly interacting
case, provided one substitutes the (running) parameter β in Eqs. [3.28] with the (constant) parameter γ − α. As a

result, the RG-flow of the S̃-matrix elements is the same as the one obtained for the S-matrix elements. Nevertheless,
due to the nonlinear correspondence between the original and the dual fermionic fields, the result for the conductance
at corresponding points of the phase diagram is completely different. To discuss this point, let us write the current
operators at fixed spin polarization, Jj,σ(x), in terms of the dual fermionic fields as

Jj,σ(x) = eu
∑

X=L,R

{ρ̃X,j−1,σ(x)− ρ̃X,j+1,σ(x)} (3.46)

with j + 3 ≡ j. Using Eq. [3.46], the D-tensor

D(j,σ),(j′,σ′)(x, x
′;ω) = δσ,σ′Dj,j′(x, x′;ω) (3.47)

has the form

Dj,j′(x, x′;ω) =
e2

2π

∫

dE f(E)[f(−E − ω)− f(−E + ω)]

×
{

2ei
ω
u (x−x′)δj,j′ + ei

ω
u (x+x′)[|S̃j−1,j′−1|2 + |S̃j+1,j′+1|2]

− ei
ω
u (x−x′)[δj−1,j′+1 + δj+1,j′−1]− ei

ω
u (x+x′)[|S̃j−1,j′+1|2 + |S̃j+1,j′−1|2]

}

(3.48)

Following the approach developed in Chap. [II] one therefore readily derives the dc conductance tensor, which is given
by

G(j,σ);(j′,σ′) = δσ,σ′Gj,j′ (3.49)

with

Gj,j′ =
e2

2π

{

2δj,j′ + |S̃j+1,j′+1|2 + |S̃j−1,j′−1|2

−
[

δj+1,j′−1 + δj−1,j′+1 + |S̃j−1,j′+1|2 + |S̃j+1,j′−1|2
]}

(3.50)

One eventually obtains the spin and conductance tensors

Gc(D) = Gs(D) = G0 −
3e2

2π
Γ(D) (3.51)

with
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G0 =
e2

π





4 −2 −2
−2 4 −2
−2 −2 4



 , Γ(D) =






(T̃ (D) + ˜̄T (D)) − ˜̄T (D) −T̃ (D)

−T̃ (D) (T̃ (D) + ˜̄T (D)) − ˜̄T (D)

− ˜̄T (D) −T̃ (D) (T̃ (D) + ˜̄T (D))




 (3.52)

and T̃ (D) = |t̃(D)|2, ˜̄T (D) = |˜̄t(D)|2. The RG-flow of T̃ (D) and of ˜̄T (D) is determined by Eqs. [3.30], with β replaced
by γ−α ∝ δgc+δgs. As a result, for δgc+δgs > 0 the stable fixed point is the ”dual” disconnected fixed point, which we
dub [Ñc, Ñs], as, in bosonic coordinates, it corresponds to imposing Neumann boundary conditions on all the Φ̃j,c(s)(x)-
fields at x = 0. From Eqs. [3.51,3.52] one therefore finds that the corresponding charge- and spin-conductance tensors
are given by Gc = Gs = G0. This is absolutely consistent with the result provided in Ref. [30] for gc = gs = 3. Indeed,

from Eqs. [3.38,3.39] one sees that, resorting back to the original bosonic fields, the [Ñc, Ñs]-fixed points corresponds
to the [Dc, Ds]-fixed point of Ref. [30], with Dirichlet boundary conditions imposed on the relative fields ϕ1,c(s)(x) =
1√
2
[Φ1,c(s)(x) − Φ2,c(s)(x)] and ϕ2,c(s)(x) =

1√
6
[Φ1,c(s)(x) + Φ2,c(s)(x) − 2Φ3,c(s)(x)], where the charge- and the spin-

conductance tensors for gc = gs = 3 are equal to each other and both equal to G0. To double-check the consistency
between our dual-fermion FRG-formalism and the bosonization approach, we note that, at the [Ñc, Ñs]-fixed point, a
generic linear combination of the boundary operators in Eq. [3.41] can be expressed, in the original bosonic degrees of

freedom, as a linear combination of the operators Oj,σ(0) = ηL,2,σηL,1,σ e
− i

2 [Θj+1,c(0)+Θj,c(0)]− iσ
2 [Θj+1,s(0)+Θj,s(0)] and

of their Hermitean conjugates, which is the result obtained in Ref. [30] by means of a pertinent application of the
delayed evaluation of boundary conditions (DEBC)-technique28,29.

When δgc + δgs < 0, the [Ñc, Ñs]-fixed point becomes unstable. As in the weakly interacting case, we see that, if

T̃ (D0) 6= ˜̄T (D0), the junction flows towards either one of the ”dual-chiral” fixed points, χ̃++, χ̃−−, with the crossover

of the conductance tensors with the scale being given by Eq. [3.51]. In particular, if T̃ (D0) >
˜̄T (D0), the flow is

towards the infrared stable χ̃++-fixed point. This corresponds to R̃ = ˜̄T = 0, T̃ = 1. From Eq. [3.51], one therefore
obtains that the fixed point conductances are given by

Gc = Gs =
e2

π





1 −2 1
1 1 −2
−2 1 1



 ≡ e2

π
Q+
χ (3.53)

By consistency, one would expect that the χ̃++ fixed point should be identified with the χ++ fixed point emerging
from the weak interaction calculation of the previous section. However, in order to compare the conductances obtained
in Eq. [3.53] with those of Eq. [3.33] one has to take into account that formula for the conductance tensor derived
within dual-fermion approach applies to a junction connected to reservoirs with gc = gs = 3. Therefore, to make the
comparison, one has to trade Eq. [3.53] for a formula for the conductance tensors of a junction connected to reservoirs
with gc = gs = 1, Gc;wl, Gs;wl. As pointed out in28,29,83, this can be done by means of pertinent generalizations of
Eq. [2.7] of Refs. [28 and 29], that is,

[G−1]c(s);(j,j′) = [G−1]c(s);wl;(j,j′) +G−1
in,c(s)δj,j′ (3.54)

with the interface charge (spin) conductance Gin,c(s) =
2gc(s)
gc(s)−1

e2

π (see Fig. [20] for a sketch of the junction connected

to reservoirs with generic values of the Luttinger parameter gL).
The result is

Gc;wl = Gs;wl =
e2

π
Q+
χ

{

I +
Q+
χ

3

}−1

=
e2

π





1 0 −1
−1 1 0
0 −1 1



 (3.55)

that is, the same result as in Eq. [3.33]. Similarly, one can prove that the chiral χ̃−−-fixed point, towards which the

RG-trajectories flow if T̃ (D0) <
˜̄T (D0), has to be identified with the χ−−-fixed point of Sec. III.2.1.

When T̃ (D0) =
˜̄T (D0), the RG-trajectories flow towards a nontrivial fixed point, which we dub M̃ , by analogy to

the M -fixed point we found in Sec. III.2.1. Such a fixed point corresponds to R̃ = 1/9, T̃ = ˜̄T = 4/9. Therefore, from
Eq. [3.51], one finds that the fixed point conductance tensors are given by
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FIG. 20. Sketch of a connected junction of K wires with parameters g, u connected to reservoirs with parameters gL, uL.

Gc = Gs =
e2

π





4
3 − 2

3 − 2
3

− 2
3

4
3 − 2

3
− 2

3 − 2
3

4
3



 ≡ e2

π
QMχ (3.56)

Performing the same transformation as in Eq. [3.55], one eventually finds

Gc;wl = Gs;wl =
e2

π
QMχ

{

I +
QMχ
3

}−1

=
e2

π





4
5 − 2

5 − 2
5

− 2
5

4
5 − 2

5
− 2

5 − 2
5

4
5



 (3.57)

On comparing Eq. [3.57] with Eq. [3.37] we now see that, at odds with what happens with the chiral fixed points, the

M and the M̃ -fixed points cannot be identified with each other. While we are still lacking a clear explanation for this
different behavior at different fixed points, we suspect that this shows that, while the conductance at χ++ as well as the
χ−−-fixed points are in a sense universal, that is, independent of the Luttinger parameters (provided one pertinently
takes into account the corrections due to different Luttinger parameters for the reservoirs), the conductance at the
M -fixed point does depend explicitly on the Luttinger parameters. This would definitely not be surprising, as such a
feature would be shared by a similar fixed point such as, for instance, the nontrivial fixed point at a junction between
a topological superconductor and two interacting one-dimensional electronic systems61. In any case, we believe that
this issue calls for a deeper investigation, which will possibly be the subject of a forthcoming work.
As so far we mainly concentrated around the ”diagonal” in Luttinger parameter plane, that is, at gc ∼ gs, we are

now going to complement our analysis by discussing the regime with gc ∼ 3, gs ∼ 1, together with the complementary
one, gc ∼ 1, gs ∼ 3.

III.2.3. Fermionic analysis of the strongly interacting regime for gc ∼ 3, gs ∼ 1 and gc ∼ 1, gs ∼ 3

We now discuss the ”asymmetric” regime gc ∼ 3, gs ∼ 1. In order to recover the whole procedure, we again note
that it is always possible to separately rescale the real-space coordinate in the bosonic Hamiltonian in Eq. [2.133],
so to make the charge- and the spin-plasmon velocities to be both equal to u. Therefore, to actually define the dual
fermion coordinates, let us assume gc = 3, gs = 1. Due to the absence of bulk interaction in the spin sector, we have
no need to transform the Φs,j ,Θs,j-fields. At variance, we do trade the fields Φc,j ,Θc,j for the fields Φ̃c,j , Θ̃c,j defined
in Eq. [3.38]. Accordingly, we consistently define the dual fermionic fields as

χR,σ,j(x) = ηR,σ,je
i
2 [Φ̃j,c(x)+Θ̃j,c(x)+σ(Φj,s(x)+Θj,s(x))]
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χL,σ,j(x) = ηL,σ,je
i
2 [Φ̃j,c(x)−Θ̃j,c(x)+σ(Φj,s(x)−Θj,s(x))] (3.58)

Again, one sees that, when expressed in terms of the dual fermion operators in Eqs. [3.58], the bulk Hamiltonian in
Eq. [2.133] reduces back to the free fermionic Hamiltonian, given by

H0,F ;χ = −iu
3∑

j=1

∑

σ

∫ L

0

dx
{

χ†
R,j,σ(x)∂xχR,j,σ(x)− χ†

L,j,σ(x)∂xχL,j,σ(x)
}

(3.59)

Having defined the dual fermion operators, we now assume that the leading boundary perturbation is realized as a
linear combination of the dual boundary operators defined as

B̃χ;(j,j′),σ,(X,X′)(0) = χ†
X,j,σ(0)χX′,j′,σ(0) (3.60)

and/or of products of two of them. Just as we have done before, we also assume that the most relevant scattering
processes at the junction are fully described by means of the single-particle S-matrix elements in the basis of the
χ-fields, Sχ;(j,σ);(j′,σ′). Slightly displacing (gc, gs) from (3,1), that is, setting gc = 3 + δgc, gs = 1 + δgs, with

|δgc|/3, |δgs| ≪ 1, gives rise to an effective interaction Hamiltonian Hχ;int, which takes exactly the same form as H̃int

in Eq. [3.42], and is given by

Hχ;int =

3∑

j=1

∑

σ,σ′

gχ;j;(σ,σ′)

∫ L

0

dxρχ;R,j,σ(x)ρχ;L,j,σ′(x)+
3∑

j 6=j′=1

∑

σ,σ′

gχ;(j,j′);(σ,σ′)

∫ L

0

dxρχ;R,j,σ(x)ρχ;L,j′,σ′(x) (3.61)

with ρχ;R(L),j,σ(x) =: χ†
R(L),j,σ(x)χR(L),j,σ(x) :, and

gχ;j;(σ,σ′) =
8πu(δgc − 3δgs)

9
δσ,σ′ +

8πu(δgc + 3δgs)

9
δσ,σ̄′

gχ;(j,j′);(σ,σ′) = −4πu(δgc − 3δgs)

9
δσ,σ′ − 4πu(δgc + 3δgs)

9
δσ,σ̄′ (3.62)

plus terms that do not renormalize the scattering amplitudes. Making the assumption that the spin is conserved at a
scattering process at the junction, we again obtain that Sχ;(j,σ);(j′,σ′) = δσ,σ′Sχ;(j,j′), with, for a boundary interaction
symmetric under a cyclic permutation of the three wires, the Sχ-matrix being given by

Sχ =





rχ t̄χ tχ
tχ rχ t̄χ
t̄χ tχ rχ



 (3.63)

The RG-equations for the running Sχ-matrix elements are derived in perfect analogy with Eq. [3.45]. The result is
exactly the same, except that now γ − α ∝ δgc − 3δgs. In order to trace out the correspondence between the fixed
point of the boundary phase diagram for the dual-fermion scattering amplitudes and those of the phase diagram for
the original fermion amplitudes, we now discuss the behavior of the charge- and of the spin-conductance tensor along
the RG-trajectories. To do so, we note that, due to the fact that the spin sector of the theory is left unchanged, when
resorting to the dual coordinates, the spin-conductance tensor, when expressed in terms of the scattering coefficients
at the junction, takes the same form as in the noninteracting case, given in Eq. [3.29]. As variance, the charge-
conductance tensor depends on the scattering coefficients as given in Eq. [3.52]. As a result, one obtains

Gc(D) = G0 −
3e2

2π
Γχ(D) , Gs(D) =

e2

π





−Rχ(D) + 1 −T̄χ(D) −Tχ(D)
−Tχ(D) −Rχ(D) + 1 −T̄χ(D)
−T̄χ(D) −Tχ(D) −Rχ(D) + 1



 (3.64)

with Rχ(D) = |rχ(D)|2, Tχ(D) = |tχ(D)|2, T̄χ(D) = |t̄χ(D)|2. We are, now, in the position of mapping out the whole
phase diagram of the spinful junction for gc ∼ 3, gs ∼ 1, including the fixed point manifold, and of tracing out the
correspondence between the fixed points given in terms of the dual fermion amplitudes, and the described in terms of
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the original fermionic coordinates30. First of all, we note that, when δgc − 3δgs > 0, the system is attracted towards
the ”dual disconnected” fixed point [Nχ,c, Nχ,s], characterized by the scattering coefficients Rχ = 1, Tχ = T̄χ = 0.
At such a fixed point, one obtains Gc = G0, Gs = 0, which enables us to identify [Nχ,c, Nχ,s] with the [Dc, Ns]-fixed
point in the phase diagram of Ref. [30], that is, with a spin-insulating fixed point where the most relevant process at
the junction is pair-correlated Andreev reflection in each wire. At variance, when δgc − 3δgs < 0, the junction flows
towards one among the dual χ++, χ−−, or M -fixed points. In particular, from Eqs. [3.64], one sees that, at the dual
χ++-fixed point, Gc is given by Eq. [3.53], while Gs takes the form provided in Eq. [3.33]. After the correction of Eq.
[3.55], one eventually finds that Gc and Gs are equal to each other, and both equal to the fixed-point conductance
at the χ++-fixed point in the original coordinates. Thus, we are eventually led to identify the dual χ++-fixed point
with the analogous one, realized in the original coordinates. A similar argument leads to the identification of the dual
χ−−-fixed point with the analogous one, realized in the original coordinates. As for what concerns the dual M -fixed
point, after correcting the charge-conductance tensor as in Eq. [3.57], one finds that, at such a fixed point,

Gc;wl =
e2

π





4
5 − 2

5 − 2
5

− 2
5

4
5 − 2

5
− 2

5 − 2
5

4
5



 , Gs;wl = Gs =
e2

π





8
9 − 4

9 − 4
9

− 4
9

8
9 − 4

9
− 4

9 − 4
9

8
9



 (3.65)

Putting together Eqs. [3.65,3.57,3.37] we again see that M -like fixed points are not mapped onto each other, not even
after the correction of Eq. [3.57]. This is again consistent with our previous hypothesis, namely, that the conductance
at the M -fixed point does depend explicitly on the Luttinger parameters and, therefore, it is different in the various
cases we discussed before.
Before concluding this subsection, we point out that the same analysis we just performed in the case gc ∼ 3, gs ∼ 1

does apply equally well to the complementary situation gc ∼ 1, gs ∼ 3, provided one swaps charge- and spin-operators
(and conductances) with each other.
Putting together all the results we obtained using the FRG-approach, one may infer the global topology of the

phase diagram of a spinful three-wire junction and compare the results with those obtained within the bosonization
approach. This will be the subject of the next subsection.

III.2.4. Global topology of the phase diagram from fermionic renormalization group approach

Following Ref. [30], we discuss the main features of the phase diagram of the three-wire junction within various
regions in the gc − gs plane. Let us start from the ”quasisymmetric” region gc ∼ gs. From the results of Sec. III.2.1
we see that, setting gc = 1 + δgc, gs = 1 + δgs, as long as δgc + δgs < 0 (corresponding to 1

2gc
+ 1

2gs
< 1), the system

flows towards the disconnected [Nc, Ns]-fixed point. At variance, for δgc + δgs > 0 (that is, for 1
2gc

+ 1
2gs

> 1), as

soon as scattering processes from wire j to wires j ± 1 take place at different rates (i.e., T 6= T̄ ), the RG-trajectories
flow towards either one of the χ++ or χ−−-fixed points. While this is basically consistent with the region of the
phase diagram derived in30 corresponding to gc ∼ gs ∼ 1, in addition, when T = T̄ , we found that the system flows
towards a symmetric fixed point, which we dubbed M , with peculiar, gc, gs-dependent transport properties. Within
the FRG-approach we were able to map out the full crossover of the charge- and spin-conductance tensor between any
two of the fixed points listed above, with some paradigmatic examples shown in the figures of Sec. III.2.1. Keeping
within the quasisymmetric region, in Sec. III.2.2 we show that, setting gc = 3 + δgc, gs = 3 + δgs, for δgc + δgs > 0
(that is, for gc + gs > 6), the stable RG-fixed point corresponds to the [Dc, Ds]-fixed point of Ref. [30] while, as
soon as δgc + δgs < 0 (that is, for gc + gs < 6), the system flows towards either one of the χ++ or χ−− fixed points
in the non-symmetric case, or towards an ”M -like” fixed point in the symmetric case. As discussed above, while,
at both the χ++ and the χ−−-fixed points the conductance tensors for the junction not connected to the leads are
the same, regardless of the value of the Luttinger parameters, at variance, at the M -fixed point they do depend on
gc and gs and, in this sense, they appear to be ”nonuniversal”. Over all, the results we obtained across the region
gc ∼ gs are consistent with a phase diagram where the [Nc, Ns] and the [Dc, Ds]-fixed points are respectively stable
for 1

2gc
+ 1

2gs
< 1 and for gc + gs > 6, while, at intermediate values of the Luttinger parameters, depending on the

bare values of the scattering coefficients at the junction, one out of the (universal) chiral χ++, χ−−-fixed points or
the (nonuniversal) M -fixed point becomes stable. This results already complements the phase diagram of Ref. [30]
by introducing the M -fixed point, which has necessarily to be there, in order to separate the phases corresponding to
χ++ and to χ−− from each other. To push our analysis outside of the gc ∼ gs-region, we discussed the nonsymmetric
case gc ∼ 3, gs ∼ 1. In this case, we found that the manifold of fixed points consists of the [Dc, Ns] asymmetric
fixed point, at which the junction is characterized by perfect pair-correlated Andreev reflection in each wire, while
it is perfectly insulating in the spin sector, the chiral χ++, χ−−-fixed points and, again, an M -like fixed point. Also
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in this region our results appear on one hand to be consistent with the phase diagram of Ref. [30], on the other
hand to complement it with singling out the M -like fixed point. The complementary regime gc ∼ 1, gs ∼ 3 can be
straightforwardly recovered from the previous discussion by just swapping charge and spin with each other. Aside
from recovering the global phase diagram of the junction, our technique allows for generalizing to strongly-interacting
regimes the main advantage of using fermionic, rather than bosonic coordinates, that is, the possibility mapping out
the crossover of the conductance between fixed points in the phase diagram.

III.3. Discussion and conclusions

In the Chapter, we generalize the RG approach to junctions of strongly-interacting QWs. In order to do so, we make
a combined use of both the fermionic and the bosonic approaches to interacting electronic systems in one dimension,
which enables us to build pertinent nonlocal transformation between the original fermion fields and dual-fermion
operators, so that, a theory that is strongly interacting in terms of the former ones, maps onto a weakly interacting
one, in terms of the latter ones. On combining the dual-fermion approach with the FRG-technique, we are able to
produce new and interesting results, already for the well-known two wire junction. When applied to a Z3-symmetric
three-wire junction, our technique first of all allows for recovering fundamental informations concerning the topology
of the global phase diagram, as well as all the fixed points accessible to the junction in various regions of the parameter
space. While, in this respect, our approach looks like a useful means to complement the bosonization approach to
conductance properties of junctions of quantum wires, where it appears extremely useful and, in a sense, rather
unique, is in providing the full crossover of the conductance tensors between any two fixed points connected by an
RG-trajectory. The crossover in the conductance properties can be experimentally mapped out by monitoring the
transport properties of the junction as a function of a running reference scale, such as the temperature, or the effective
system size. While the standard FRG approach just yields crossover curves at weak bulk interaction in the quantum
wires37–40, as stated above, our approach extends such a virtue of the fermionic approach to regions at strong values
of the bulk electronic interaction in the wires.
By resorting to the appropriate dual fermionic degrees of freedom, our approach allows for describing in terms of

effectively one-particle S-matrix elements correlated pair scattering and/or Andreev reflection, in regions of values
of the interaction parameters where they correspond to the most relevant scattering processes at the junction. This
allows for envisaging, within our technique, fixed points such as the [Dc, Ds], or the [Dc, Ns] one. In fact, due to basic
assumption of the standard FRG-approach that all the relevant processes at the junction are encoded in the single-
particle S-matrix elements, fixed points such as those listed before are typically not expected to be recovered without
resorting to the appropriate dual fermion coordinates, not even after relaxing the weak bulk interaction constraint53.
While, for simplicity, here we restrict ourselves to the case of a symmetric junction and of a spin-conserving boundary

interaction at the junction, our approach can be readily generalized to a non-symmetric junction characterized, for
instance, by different Luttinger parameters in different wires31, and/or by a non-spin-conserving boundary interaction.
Also, a generalization of our approach to a junction involving ordinary51, or topological superconductors61,64 is likely to
allow for describing the full crossover of the conductance in a single junction, as well as of the equilibrium (Josephson)
current in a SNS-junction thus generalizing, in this latter case, the results obtained Refs. [87–89] to an SNS-junction
with an interacting central region.

III.4. Appendix A: Bosonization analysis of the three-wire junction

In this Appendix, following the approach of Ref. [30], we start our analysis with of all the leadingmost boundary
interaction operators at the three-wire junction. In fact, the phase diagram of the three-wire junction is much richer
than the one of the two-wire junction27. In analogy to what we have done for the two-wire junction, the boundary
Hamiltonian for the three-wire junction is a linear combination of the bilinear operators in Eq. [3.1] and contain terms
corresponding to inter-wire single-particle tunneling, as well as to intra-wire single-particle backscattering. That is

Hsingle
tun = −




∑

j

∑

σ

Γσj,j−1ψ
†
σ,j(0)ψσ,j−1(0) + h.c.



−




∑

j

∑

σ

µσj ψ
†
R,σ,j(0)ψL,σ,j(0) + h.c.



 (3.66)

with Γσj,j−1 being complex tunneling amplitudes. In addition to the operators appearing in Eq.[3.66], additional
composite operators, corresponding to two-particle scattering processes at the junction, may arise and potentially
become relevant, for a pertinent choice of the bulk interaction parameters of the system. At the various fixed points
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appearing in the boundary phase diagram of the three-wire junction, all these operators must be supplemented with
the pertinent boundary conditions on the various bosonic fields describing charge and spin degrees of freedom, within
a pertinent implementation of the DEBC method developed in Ref. [82]. In order to resort to DEBC method, it
is appropriate to resort to the center of mass and relative fields, Φc(s)(x), ϕ1,c(s)(x), ϕ2,c(s) and Θc(s), ϑ1,c(s), θ2,c(s),
defined as

Φc(s)(x) =
1√
3

(
Φ1,c(s)(x) + Φ2,c(s)(x) + Φ3,c(s)(x)

)

ϕ1,c(s) =
1√
2

(
Φ1,c(s)(x)− Φ2,c(s)(x)

)

ϕ2,c(s)(x) =
1√
6

(
Φ1,c(s)(x) + Φ2,c(s)(x)− 2Φ3,c(s)(x)

)

Θc(s)(x) =
1√
3

(
Θ1,c(s)(x) + Θ2,c(s)(x) + Θ3,c(s)(x)

)

ϑ1,c(s)(x) =
1√
2
(x)
(
Θ1,c(s)(x) −Θ2,c(s)(x)

)

ϑ2,c(s)(x) =
1√
6

(
Θ1,c(s)(x) + Θ2,c(s)(x)− 2Θ3,c(s)(x)

)
(3.67)

Remarkably, the continuity equation for the charge and the spin current at the junction implies

∂xΦc(0) = ∂xΦs(0) = 0 (3.68)

which implies that both Θc(0) and Θs(0) are pinned at any point of the phase diagram. Keeping in mind Eq. [3.68]
as an over-all condition, we now proceed to consider the set of fixed point at which the fermionic renormalization
group approach can be effectively applied.

III.4.1. Allowed boundary interaction terms at three-wire junction

In this part of the Appendix, we list all the allowed boundary interaction terms at a three-wire junction. In
particular, after working out their expressions in fermionic coordinates, we resort to the corresponding bosonized
operators, by pertinently using the bosonization rules for fermionic fields encoded in Eqs. [2.129]. For a spinful three-
wire junction, the derivation of the leadingmost boundary interaction terms, which can drive the junction towards
any of the allowed infrared stable fixed points, has been performed in Ref. [30]. In order to simplify the notation
both in this subsection and in the following one, when listing the various boundary interaction terms, it is useful to
define the operators S±

j,σ;(X,Y ), with X,Y = L,R, respectively given by

S+
j,σ;(X,Y )(x) = ψ†

X,σ,j+1(x)ψY,σ,j(x)

S−
j,σ;(X,Y )(x) = ψ†

X,σ,j−1(x)ψY,σ,j(x) (3.69)

The quadratic Hamiltonian in Eq. [3.66], describing boundary tunneling plus backscattering at a three-wire junction,
can be fully expressed as a linear combination of the operators in Eq. [3.69], together with the corresponding
Hermitean conjugate. As it happens at the two-wire junction, additional multi-particle boundary interactions can
arise as combinations of single particle processes and their Hermitian conjugates. Following the analysis of30, in the
following we will mainly focus onto the most relevant ones, namely, the two-particle processes, which can become the
leading operators at some nontrivial fixed point of the phase diagram. In the following, after providing the bosonized
version of the various operators in Eqs. [3.69], we will list the additional two-particle boundary interaction terms that
can arise at the junction, together with their corresponding bosonized expressions. Starting with the one-particle
operators, we may single out the following terms

• Tunneling in the + cycle

S+
j,σ(0) = ψ†

R,σ,j+1(0)ψL,σ,j(0) → ηR,σ,j+1ηL,σ,j
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× e−
i
2 [Φj+1,c(0)+Θj+1,c(0)+σ(Φj+1,s(0)+Θj+1,s(0))]e

i
2 [Φj,c(0)−Θj,c(0)+σ(Φj,s(0)−Θj,s(0))] (3.70)

• Tunneling in the − cycle

S−
j,σ(0) = ψ†

R,σ,j−1(0)ψL,σ,j(0) → ηR,σ,j−1ηL,σ,j

× e−
i
2 [Φj−1,c(0)+Θj−1,c(0)+σ(Φj−1,s(0)+Θj−1,s(0))]e

i
2 [Φj,c(0)−Θj,c(0)+σ(Φj,s(0)−Θj,s(0))] (3.71)

• Backscattering

SBj,σ(0) = ψ†
R,σ,j(0)ψL,σ,j(0) → ηR,σ,jηL,σ,j

× e−
i
2 [Φj,c(0)+Θj,c(0)+σ(Φj,s(0)+Θj,s(0))]e

i
2 [Φj,c(0)−Θj,c(0)+σ(Φj,s(0)−Θj,s(0))] (3.72)

• LL-combinations

SLj,σ(0) = ψ†
L,σ,j+1(0)ψL,σ,j(0) → ηL,σ,j+1ηL,σ,j

× e−
i
2 [Φj+1,c(0)−Θj+1,c(0)+σ(Φj+1,s(0)−Θj+1,s(0))]e

i
2 [Φj,c(0)−Θj,c(0)+σ(Φj,s(0)−Θj,s(0))] (3.73)

• RR-combinations

SRj,σ(0) = ψ†
R,σ,j+1(0)ψR,σ,j(0) → ηR,σ,j+1ηR,σ,j

× e−
i
2 [Φj+1,c(0)+Θj+1,c(0)+σ(Φj+1,s(0)+Θj+1,s(0))]e

i
2 [Φj,c(0)+Θj,c(0)+σ(Φj,s(0)+Θj,s(0))] (3.74)

together with their Hermitean conjugates.

Let us, now, extend the above list by including all the two-particle operators that can become relevant at some
nontrivial fixed point of the phase diagram of the spinful three-wire junction. The allowed terms (together with the
corresponding bosonized expressions) are given by

• Pair Tunneling in + cycle

PT+
j = S+

j,↑;(R,L)(0)S
+
j,↓;(R,L)(0) → ηR,j+1,↑ηL,j,↑ ηR,j+1,↓ηL,j,↓

× e−
i
2 [Φj+1,c(0)+Θj+1,c(0)+Φj+1,s(0)+Θj+1,s(0)]e

i
2 [Φj,c(0)−Θj,c(0)+Φj,s(0)−Θj,s(0)]

× e−
i
2 [Φj+1,c(0)+Θj+1,c(0)−Φj+1,s(0)−Θj+1,s(0)]e

i
2 [Φj,c(0)−Θj,c(0)−Φj,s(0)+Θj,s(0)] (3.75)

• Pair Tunneling in − cycle

PT−
j+1 = S−

j+1,↑;(R,L)(0)S
−
j+1,↓;(R,L)(0) → ηR,j,↑ηL,j+1,↑ ηR,j,↓ηL,j+1,↓

× e−
i
2 [Φj,c(0)+Θj,c(0)+Φj,s(0)+Θj,s(0)]e

i
2 [Φj+1,c(0)−Θj+1,c(0)+Φj+1,s(0)−Θj+1,s(0)]

× e−
i
2 [Φj,c(0)+Θj,c(0)−Φj,s(0)−Θj,s(0)]e

i
2 [Φj+1,c(0)−Θj+1,c(0)−Φj+1,s(0)+Θj+1,s(0)] (3.76)
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• Pair Tunneling in LL-RR combinations with net spin

PTSL,Rj,σ = S+
j,σ;(L,L)(0)S

−
j,σ;(R,R)(0) → ηL,j+1,σηL,j,σηR,j+1,σηR,j,σ

× e−
i
2 [Φj+1,c(0)−Θj+1,c(0)+σ(Φj+1,s(0)−Θj+1,s(0))]e

i
2 [Φj,c(0)−Θj,c(0)+σ(Φj,s(0)−Θj,s(0))]

× e−
i
2 [Φj+1,c(0)+Θj+1,c(0)+σ(Φj+1,s(0)+Θj+1,s(0))]e

i
2 [Φj,c(0)+Θj+1,c(0)+σ(Φj+1,s(0)+Θj+1,s(0))] (3.77)

• Pair Tunneling in LL-RR combinations without net spin

PTL,Rj,σ = S+
j,σ;(L,L)(0)S

−
j,−σ;(R,R)(0) → ηL,j+1,σηL,j,σηR,j+1,−σηR,j,−σ

× e−
i
2 [Φj+1,c(0)−Θj+1,c(0)+σ(Φj+1,s(0)−Θj+1,s(0))]e

i
2 [Φj,c(0)−Θj,c(0)+σ(Φj,s(0)−Θj,s(0))]

× e−
i
2 [Φj+1,c(0)+Θj+1,c(0)−σ(Φj+1,s(0)+Θj+1,s(0))]e

i
2 [Φj,c(0)+Θj+1,c(0)−σ(Φj+1,s(0)+Θj+1,s(0))] (3.78)

• Intra-wire pair backscattering

PBj = SBj,↑(0)S
B
j,↓(0) → ηR,↑,jηL,↑,jηR,↓,jηL,↓,j

× e−
i
2 [Φj,c(0)+Θj,c(0)+Φj,s(0)+Θj,s(0)]e

i
2 [Φj,c(0)−Θj,c(0)+Φj,s(0)−Θj,s(0)]

× e−
i
2 [Φj,c(0)+Θj,c(0)−Φj,s(0)−Θj,s(0)]e

i
2 [Φj,c(0)−Θj,c(0)−Φj,s(0)+Θj,s(0)] (3.79)

• Inter-wire pair backscattering with net spin

PBSj,j+1,σ = SBj,σ(0)S
B
j+1,σ(0) → ηR,σ,jηL,σ,jηR,σ,j+1ηL,σ,j+1

× e−
i
2 [Φj,c(0)+Θj,c(0)+σ(Φj,s(0)+Θj,s(0))]e

i
2 [Φj,c(0)−Θj,c(0)+σ(Φj,s(0)−Θj,s(0))]

× e−
i
2 [Φj+1,c(0)+Θj+1,c(0)+σ(Φj+1,s(0)+Θj+1,s(0))]e

i
2 [Φj+1,c(0)−Θj+1,c(0)+σ(Φj+1,s(0)−Θj+1,s(0))] (3.80)

• Inter-wire pair backscattering without net spin

PBj,j+1,σ = SBj,σ(0)S
B
j+1,−σ(0) → ηR,σ,jηL,σ,jηR,−σ,j+1ηL,−σ,j+1

× e−
i
2 [Φj,c(0)+Θj,c(0)+σ(Φj,s(0)+Θj,s(0))]e

i
2 [Φj,c(0)−Θj,c(0)+σ(Φj,s(0)−Θj,s(0))]

× e−
i
2 [Φj+1,c(0)+Θj+1,c(0)−σ(Φj+1,s(0)+Θj+1,s(0))]e

i
2 [Φj+1,c(0)−Θj+1,c(0)−σ(Φj+1,s(0)−Θj+1,s(0))] (3.81)

• Pair Exchange processes

PEj,σ = S+
j,σ;(R,L)(0)S

−
j+1,−σ;(R,L)(0) → ηR,σ,j+1ηL,σ,jηR,−σ,jηL,−σ,j+1

× e−
i
2 [Φj+1,c(0)+Θj+1,c(0)+σ(Φj+1,s(0)+Θj+1,s(0))]e

i
2 [Φj,c(0)−Θj,c(0)+σ(Φj,s(0)−Θj,s(0))]

× e−
i
2 [Φj,c(0)+Θj,c(0)−σ(Φj,s(0)+Θj,s(0))]e

i
2 [Φj+1,c(0)−Θj+1,c(0)−σ(Φj+1,s(0)−Θj+1,s(0))] (3.82)

• Particle Hole Pair Tunneling in + cycle

PH+
j = S+

j,↑;(R,L)(0)[S
−
j,↓;(R,L)(0)]

† → ηR,↑,j+1ηL,↑,jηL,↓,jηR,↓,j+1

× e−
i
2 [Φj+1,c(0)+Θj+1,c(0)+Φj+1,s(0)+Θj+1,s(0)]e

i
2 [Φj,c(0)−Θj,c(0)+Φj,s(0)−Θj,s(0)]

× e−
i
2 [Φj,c(0)−Θj,c(0)−Φj,s(0)+Θj,s(0)]e

i
2 [Φj+1,c(0)+Θj+1,c(0)−Φj+1,s(0)−Θj+1,s(0)] (3.83)
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• Particle Hole Pair Tunneling in − cycle

PH−
j = S−

j+1,↑;(R,L)(0)[S
−
j+1,↓;(R,L)(0)]

† → ηR,↑,jηL,↑,j+1ηL,↓,j+1ηR,↓,j

× e−
i
2 [Φj,c(0)+Θj,c(0)+Φj,s(0)+Θj,s(0)]e

i
2 [Φj+1,c(0)−Θj+1,c(0)+Φj+1,s(0)−Θj+1,s(0)]

× e−
i
2 [Φj+1,c(0)−Θj+1,c(0)−Φj+1,s(0)+Θj+1,s(0)]e

i
2 [Φj,c(0)+Θj,c(0)−Φj,s(0)−Θj,s(0)] (3.84)

• Particle Hole Exchange processes

PHEj,σ = S+
j,σ;(R,L)(0)[S

−
j+1,−σ;(R,L)(0)]

† → ηR,σ,j+1ηL,σ,jηL,−σ,j+1ηR,−σ,j

× e−
i
2 [Φj+1,c(0)+Θj+1,c(0)+σ(Φj,s(0)+Θj,s(0))]e

i
2 [Φj,c(0)−Θj,c(0)+σ(Φj,s(0)−Θj,s(0))]

× e−
i
2 [Φj+1,c(0)−Θj+1,c(0)−σ(Φj+1,s(0)+Θj+1,s(0))]e

i
2 [Φj,c(0)+Θj,c(0)−σ(Φj,s(0)−Θj,s(0))] (3.85)

together with all the corresponding Hermitean conjugate operators.

In the following, we use all the expressions listed above to derive the relevant boundary operators allowed at each
fixed point, by means of a systematic application of the DEBC method.

III.4.2. The weakly coupled fixed point

As stated in Eq. [3.68], the boundary conditions obeyed by the center-of-mass fields, both in the charge- and in
the spin-sector, are uniquely set by charge- and spin-continuity equations. As a result, flowing between fixed points
in the boundary phase diagram of the three-wire junction can only determine a change in the boundary conditions
obeyed by the relative fields ϕj,c(s)(x), ϑj,c(s)(x), at x = 0. Among all possible boundary fixed point, the simplemost
one corresponds to a “disconnected” junction, characterized by the fact that all the ϕ-fields obey Neumann boundary
conditions at x = 0, that is,

∂xϕj,c(0) = ∂xϕj,s(0) = 0 (3.86)

Accordingly, from now on we will denote the disconnected fixed point as [Nc, Ns]. Consistently with Eq. [3.86], one
obtains that all the fields ϑ1(2),c(s)(x) are “pinned” at x = 0. At a three-wire spinful junction, we find that, at the
[Nc, Ns]-fixed point, the most relevant allowed boundary operators are the ones listed in the table below, together
with the corresponding scaling dimension

Operators Bosonized Form Scaling dimension ∆

S+
1,σ(0), [S

−
2,σ]

†(0), SL1,σ(0), S
R
1,σ(0) ηL,2,σηL,1,σe

− i
2

[

− 2√
2
ϕ1,c(0)

]

e
− i

2σ
[

− 2√
2
ϕ1,s(0)

]

∆NN
S = 1

2gc
+ 1

2gsS+
2,σ(0), [S

−
3,σ]

†(0), SL2,σ(0), S
R
2,σ(0) ηL,3,σηL,2,σe

− i
2

[

1√
2
ϕ1,c(0)− 3√

6
ϕ2,c(0)

]

e
− i

2σ
[

1√
2
ϕ1,s(0)− 3√

6
ϕ2,s(0)

]

S+
3,σ(0), [S

−
1,σ]

†(0), SL3,σ(0), S
R
3,σ(0) ηL,1,σηL,3,σe

− i
2

[

1√
2
ϕ1,c(0)+

3√
6
ϕ2,c(0)

]

e
− i

2σ
[

1√
2
ϕ1,s(0)+

3√
6
ϕ2,s(0)

]

PT+
1 , PT

−†
2 , PHE1,σ, PT

LR
1,σ ηL,2,↑ηL,1,↑ηL,2,↓ηL,1,↓e

− i
2

[

− 4√
2
ϕ1,c(0)

]

∆NN
PT = 2

gcPT+
2 , PT

−†
3 , PHE2,σ, PT

LR
2,σ ηL,3,↑ηL,2,↑ηL,3,↓ηL,2,↓e

− i
2

[

2√
2
ϕ1,c(0)− 6√

6
ϕ2,c(0)

]

PT+
3 , PT

−†
1 , PHE3,σ, PT

LR
3,σ ηL,1,↑ηL,3,↑ηL,1,↓ηL,3,↓e

− i
2

[

2√
2
ϕ1,c(0)+

6√
6
ϕ2,c(0)

]

PE1,↑, PE
†
1,↓ ηL,2,↑ηL,1,↑ηL,2,↓ηL,1,↓e

− i
2

[

− 4√
2
ϕ1,s(0)

]

∆NN
PE = 2

gsPE2,↑, PE
†
2,↓ ηL,3,↑ηL,2,↑ηL,3,↓ηL,2,↓e

− i
2

[

2√
2
ϕ1,s(0)− 6√

6
ϕ2,s(0)

]

PE3,↑, PE
†
3,↓ ηL,1,↑ηL,3,↑ηL,1,↓ηL,3,↓e

− i
2

[

2√
2
ϕ1,s(0)+

6√
6
ϕ2,s(0)

]
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plus the corresponding Hermitean conjugates (note that, in constructing the table above, we have employed the
condition on the Klein factors ηR,j,σ = ηL,j,σ, valid at the [Nc, Ns]-fixed point ∀j, σ. The table above suggests us
for which values of the Luttinger interaction parameter it is appropriate to use the fermionic renormalization group
approach. Clearly, the simplest possible option is the noninteracting case, namely, gc = gs = 1. In this case, one
recovers a junction of three noninteracting quantum wires. All the allowed boundary interaction terms at the [Nc, Ns]-
fixed point are irrelevant, except the ”tunneling ones”, that is S+

j,σ(0), all the operators that collapse onto the set of
the ones above, as from the table, together with their Hermitean conjugate. Thus, the generic boundary interaction,
for such values of the Luttinger parameters, is simply given by

HB;(NN);(1,1) =

3∑

j=1

τjS
+
j,σ(0) + h.c. (3.87)

On adding a weak interaction, either in the charge-, or in the spin-channel (or in both of them), allows for treating
the problem within standard fermionic renormalization group approach.

III.4.3. The [Dc, Ds]-fixed point

We now consider the fixed point corresponding to a ”fully healed” junction, that is, the one with Dirichlet boundary
conditions on all the relative fields ϕ1(2),c(0), ϕ1(2),s(0). Henceforth, we dub such a fixed point [Dc, Ds]. At the
[Dc, Ds]-fixed point, the allowed boundary operators may be again recovered by a straightforward application of
DEBC-technique. Taking into account that Dirichlet-like boundary conditions in the bosonic fields correspond to

relations among the fermionic fields of the form ψR,σ,j(0) ∝ ψ†
L,σ,j(0), which implies ηR,σ,j = ηL,σ,j , the leading

boundary operators can be collected in the following table

Operators Bosonic Form Scaling dimension ∆

S+
1,σ(0), S

−
2,σ(0) ηL,σ,2ηL,σ,1e

− i
2

[

2√
6
ϑ2,c(0)

]

e
− i

2σ
[

2√
6
ϑ2,s(0)

]

∆DD
S = 1

6 (gc + gs)S+
2,σ(0), S

−
3,σ(0) ηL,σ,2ηL,σ,3e

− i
2

[

− 1√
2
ϑ1,c(0)− 1√

6
ϑ2,c(0)

]

e
− i

2σ
[

− 1√
2
ϑ1,s(0)− 1√

6
ϑ2,s(0)

]

S+
3,σ(0), S

−
1,σ(0) ηL,σ,3ηL,σ,1e

− i
2

[

1√
2
ϑ1,c(0)− 1√

6
ϑ2,c(0)

]

e
− i

2σ
[

1√
2
ϑ1,s(0)− 1√

6
ϑ2,s(0)

]

PT+
1 , PT

−
2 , PE1,σ ηL,2,↑ηL,2,↓ηL,1,↑ηL,1,↓e

− i
2

[

4√
6
ϑ2,c(0)

]

∆DD
PT = 2

3gcPT+
2 , PT

−
3 , PE2,σ ηL,3,↑ηL,3,↓ηL,2,↑ηL,2,↓e

− i
2

[

− 2√
2
ϑ1,c(0)− 2√

6
ϑ2,c(0)

]

PT+
3 , PT

−
1 , PE3,σ, ηL,1,↑ηL,1,↓ηL,3,↑ηL,3,↓e

− i
2

[

2√
2
ϑ1,c(0)− 2√

6
ϑ2,c(0)

]

PH+
1 , PH

−
2 , PHE1,↑, PHE

†
1,↓ ηL,2,↑ηL,2,↓ηL,1,↑ηL,1,↓e

− i
2

[

4√
6
ϑ2,s(0)

]

∆DD
PH = 2

3gsPH+
2 , PH

−
3 , PHE2,σ, PHE

†
2,↓ ηL,3,↑ηL,3,↓ηL,2,↑ηL,2,↓e

− i
2

[

− 2√
2
ϑ1,s(0)− 2√

6
ϑ2,s(0)

]

PH+
3 , PH

−
1 , PHE3,σ, PHE

†
3,↓ ηL,1,↑ηL,1,↓ηL,3,↑ηL,3,↓e

− i
2

[

2√
2
ϑ1,s(0)− 2√

6
ϑ2,s(0)

]

together with the corresponding Hermitean conjugates. At the [Dc, Ds]-fixed point, an effective refermionization can
be done for gc ∼ gs ∼ 3, as realized in the main text. Indeed, for values of the Luttinger parameters as such, the
leadingmost boundary operators are the tunneling term at the first lines of the table before.

III.4.4. The [Dc, Ns]-fixed point

The [Dc, Ns]-fixed point has been predicted in the phase diagram of Ref.[30] as corresponding to Dirichlet boundary
conditions on the relative fields ϕj,c(x) at x = 0, and Neumann boundary conditions on ϕj,s(x) at x = 0. Again, one
may succesfully employ the DEBC-method to work out the leadingmost boundary operators at such a fixed point,
which we list in the following table, together with the corresponding scaling dimensions
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Operators Bosonic Form Scaling dimension ∆

S+
1,σ(0), S

−
2,−σ(0) ηL,σ,2ηL,σ,1e

− i
2

[

2√
6
ϑ2,c(0)

]

e
− i

2σ
[

− 2√
2
ϕ1,s(0)

]

∆DN
S = gc

6 + 1
2gsS+

2,σ(0), S
−
3,−σ(0) ηL,σ,3ηL,σ,2e

− i
2

[

− 1√
2
ϑ1,c(0)− 1√

6
ϑ2,c(0)

]

e
− i

2σ
[

1√
2
ϕ1,s(0)− 3√

6
ϕ2,s(0)

]

S+
3,σ(0), S

−
1,−σ(0) ηL,σ,1ηL,σ,3e

− i
2

[

1√
2
ϑ1,c(0)− 1√

6
ϑ2,c(0)

]

e
− i

2σ
[

1√
2
ϕ1,s(0)+

3√
6
φ2,s(0)

]

SB1,σ(0), PT
+†
2 , PT−†

3 , PB†
23,σ, PBS

†
23,σ ∝ e

− i
2

[

2√
2
ϑ1,c(0)+

2√
6
ϑ2,c(0)

]

∆DN
B = 2

3gcSB2,σ(0), PT
+†
3 , PT−†

1 , PB†
31,σ, PBS

†
31,σ ∝ e

− i
2

[

− 2√
2
ϑ1,c(0)+

2√
6
ϑ2,c(0)

]

SB3,σ(0), PT
+†
1 , PT−†

2 , PB†
12,σ, PBS

†
12,σ ∝ e

− i
2

[

− 4√
6
ϑ2,c(0)

]

PTSLR1↑ , PTS
LR
1↓ , PH

+
1 , PH

−†
2 ∝ e

− i
2

[

− 4√
2
ϕ1,s(0)

]

∆DN
PTS = 2

gsPTSLR2↑ , PTS
LR
2↓ , PH

+
2 , PH

−†
3 ∝ e

− i
2

[

2√
2
ϕ1,s(0)− 6√

6
ϕ2,s(0)

]

PTSLR3↑ , PTS
LR
3↓ , PH

+
3 , PH

−†
1 ∝ e

− i
2

[

2√
2
ϕ1,s(0)+

6√
6
ϕ2,s(0)

]

together with the corresponding Hermitean conjugates. Note that we have not specified the functional of Klein
factors appearing in front of the bosonized vertex in any of the operators in the table above but the tunneling ones.
In fact, in the region of values of bulk parameters in which refermionization can be effectively implemented, that is,
gc ∼ 3, gs ∼ 1, the tunneling operators are the leadingmost ones. Yet, before refermionizing it is important to point
out that, in general, due to the large difference between gc and gs, one expects that the plasmon velocities in the
charge- and in the spin-sector are, in general, quite different from each other. Nevertheless, this does not spoil the
whole procedure. In fact, as we are dealing with fields defined onto half-lines ranging from x = 0 to x→ ∞, one may
always separately rescale the spatial coordinates in the charge-Hamiltonian.

III.4.5. The [Nc, Ds]-fixed point

The [Nc, Ds]-fixed point has been predicted as symmetric to the [Dc, Ns]-one upon swapping charge- and spin-
sectors with each other. After discussing the refermionization near by the [Dc, Ns]-fixed point, the one near by the
[Dc, Ns]-one can be simply recovered by symmetry, just swapping charge and spin with each other. Accordingly, one
readily obtains that the table of allowed boundary interaction at this fixed point is given by

Operators Bosonic Form Scaling dimension ∆

S+
1,σ(0) ηL,2,σηL,1,σe

− i
2

[

− 2√
2
ϕ1,c(0)

]

e
− i

2σ
[

2√
6
ϑ2,s(0)

]

∆ND
S = 1

2gc
+ gs

6S+
2,σ(0) ηL,3,σηL,2,σe

− i
2

[

1√
2
ϕ1,c(0)− 3√

6
ϕ2,c(0)

]

e
− i

2σ
[

− 1√
2
ϑ1,s(0)− 1√

6
ϑ2,s(0)

]

S+
3,σ(0) ηL,1,σηL,3,σe

− i
2

[

1√
2
ϕ1,c(0)+

3√
6
ϕ2,c(0)

]

e
− i

2σ
[

1√
2
θs1− 1√

6
θs2

]

SB1,↑(0) ∝ e
− i

2

[

2√
2
ϑ1,s(0)+

2√
6
ϑ2,s(0)

]

∆ND
B = 2

3gsSB2,↑(0) ∝ e
− i

2

[

− 2√
2
ϑ1,s(0)+

2√
6
ϑ2,s(0)

]

SB3,↑(0) ∝ e
− i

2

[

− 4√
6
ϑ2,s(0)

]

PTSLR1↑ ∝ e
− i

2

[

− 4√
2
ϕ1,c(0)

]

∆ND
PTS = 2

gcPTSLR2↑ ∝ e
− i

2

[

2√
2
ϕ1,c(0)− 6√

6
ϕ2,c(0)

]

PTSLR3↑ ∝ e
− i

2

[

2√
2
ϕ1,c(0)+

6√
6
ϕ2,c(0)

]

plus, of course, the corresponding Hermitean conjugates. By symmetry, one readily infers that, in this case, refermion-
ization will be effective for gc ∼ 1, gs ∼ 3.

III.4.6. The chiral fixed points [χ±
c , χ

±
s ]

The “clockwise” and the ”counterclockwise”-chiral fixed points, respectively denoted with [χ+
c , χ

+
s ] and [χ−

c , χ
−
s ]

in the following, correspond to respectively pinning the S+
j,σ- and the S−

j,σ-boundary operators. Pinning the S+
j,σ’s
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FIG. 21. Phase diagram predicted by the DEBC method, as proposed by Ref. [30]

is equivalent to imposing Dirichlet boundary conditions on 1√
6
ϑ2,c(s)(0) − 1√

2
ϕ1,c(s)(0) as well as on 1√

2
ϑ1,c(s)(0) +

3√
6
ϕ2,c(s)(0). This leads to the following table for the leading allowed boundary operators at the [χ+

c , χ
+
s ]-fixed point

Operators Bosonic Form Scaling dimension ∆

S−
1,σ(0), S

B†
1,σ(0),

SL1,σ(0), S
R
2,σ(0), PTS

LR†
3,σ ,

PBS31,σ, PE3,−σ, PHE
†
3,−σ

ηL,σ,3ηL,σ,1e
− i

2

[

2√
2
ϑ1,c(0)− 2√

6
ϑ2,c(0)

]

e
− i

2σ
[

2√
2
ϑ1,s(0)− 2√

6
ϑ2,s(0)

]

∆χχ
S = 2gc

3+g2c
+ 2gs

3+g2s

S−
2,σ(0), S

B†
2,σ(0),

SL2,σ(0), S
R
3,σ(0), PTS

LR†
1,σ ,

PBS12,σ, PE1,−σ, PHE
†
1,−σ

ηL,σ,1ηL,σ,2e
− i

2

[

4√
6
ϑ2,c(0)

]

e
− i

2σ
[

4√
6
ϑ2,s(0)

]

S−
3,σ(0), S

B†
3,σ(0),

SL3,σ(0), S
R
1,σ(0), PTS

LR†
2,σ ,

PBS23,σ, PE2,−σ, PHE
†
2,−σ

ηL,σ,2ηL,σ,3e
− i

2

[

− 2√
2
ϑ1,c(0)− 2√

6
ϑ2,c(0)

]

e
− i

2σ
[

− 2√
2
ϑ1,s(0)− 2√

6
ϑ2,s(0)

]

plus the corresponding Hermitean conjugates. As for what concerns the [χ−
c , χ

−
s ]-fixed point, similar observations

apply, except that the fields to be pinned now are given by 1√
6
ϑ2,c(s)(0)+

1√
2
ϕ1,c(s)(0) and

1√
2
ϑ1,c(s)(0)− 3√

6
ϕ2,c(s)(0).

This leads to a collapse of the leadingmost allowed boundary operators onto the three ones listed in the table below

Operators Bosonic Form Scaling dimension ∆

S+
1,σ(0) ηL,σ,1ηL,σ,2e

− i
2

[

4√
6
ϑ2,c(0)

]

e
− i

2σ
[

4√
6
ϑ2,s(0)

]

∆χχ
S = 2gc

3+g2c
+ 2gs

3+g2sS+
2,σ(0) ηL,σ,2ηL,σ,3e

− i
2

[

− 2√
2
ϑ1,c(0)− 2√

6
ϑ2,c(0)

]

e
− i

2σ
[

− 2√
2
ϑ1,s(0)− 2√

6
ϑ2,s(0)

]

S+
3,σ(0) ηL,σ,3ηL,σ,1e

− i
2

[

2√
2
ϑ1,c(0)− 2√

6
ϑ2,c(0)

]

e
− i

2σ
[

2√
2
ϑ1,s(0)− 2√

6
ϑ2,s(0)

]

again together with the corresponding Hermitean conjugates. The [χ±
c , χ

±
s ]-fixed points can be accessed from either

the [Nc, Ns], or from the [Dc, Ds] fixed point, in the presence of a small time-reversal breaking magnetic flux pearcing
the junction30. The bosonization analysis we performed in this Appendix allows to list and classify, according to
their scaling dimension, the allowed boundary operators at any fixed point of the phase diagram (see Fig. [21] for the
proposed phase diagram obtained within the DEBC method). This paves the way to the systematic implementation
of the refermionization procedure of both the bulk and the (leadingmost) boundary Hamiltonians.
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IV. TUNNELING SPECTROSCOPY OF MAJORANA-KONDO DE-

VICES

What I tell you three times is true.

Lewis Carroll

Majorana bound states have become of major interest in condensed matter physics,90–98 due to potential applications
as building blocks in fault-tolerant quantum computing99 and the possibility to engineer such topological states using
conventional s-wave superconductors and spin-orbit coupling.100–102 Information in these states is encoded non-locally,
with the long-range entanglement providing a mechanism for electron teleportation103.

Recently, it has been realized that the topologically protected ground-state subspace formed by several Majorana
bound states can act as a non-local quantum impurity, which when subjected to strong charging effects and coupled
to conduction electrons can give rise to a topological Kondo effect.56 Here a stable non-Fermi liquid behavior is
obtained, reminiscent of the multichannel Kondo effect but robust against perturbations. In Ref. [104] the full
crossover was studied using numerical renormalization group. The situation with an arbitrary number of leads of
interacting electrons was studied in Refs. [105 and 106], where in addition an interaction-induced intermediate-coupling
unstable fixed point was discovered. The topological protection of this novel Kondo effect opens new possibilities for
the experimental observation of multi-channel Kondo impurity dynamics.107,108 Additional physical effects can be
observed when including a Josephson coupling to the mesoscopic island hosting the Majorana bound states; phase
fluctuations then cause a non-trivial interplay between topological Kondo and resonant Andreev reflection processes,
giving a continuous manifold of stable non-Fermi liquid states.109 With N wires each connected to one Majorana on
the island, the symmetry group of this topological Kondo effect is SO1(N), previously encountered also for a junction
of Ising chains,110 unlike that of Ref. [56] which is SO2(N).

The observable predictions regarding the topological Kondo effect have so far been focused on charge transport
through the system56,105–107,109,111 or measurements of the occupation of pairs of Majorana zero modes, analogous
to magnetization.107 In this Chapter, we show that the local density of states (LDOS) of the lead electrons close to
the island provide a clear signature of the topological Kondo effect of Béri and Cooper,56 directly measurable with a
scanning tunneling microscope (STM). In particular, we show that the LDOS close to the island follows the power law

ρ(ω) ∼ ω
1

Ng+
N−1
N g−1 as a function of energy ω → 0, where g is the Luttinger liquid parameter for the electron-electron

interaction strength with g = 1 for non-interacting leads and g < 1 for repulsive interactions. Hence for realistic values
1/(N − 1) < g < 1, we have a diverging LDOS in the zero-bias limit close to the junction.

In contrast to the usual picture of a power-law vanishing of the low-energy LDOS in a Luttinger liquid with
or without boundary/impurity,26,85,112–114 an interaction-induced divergence is in fact a rather generic feature of
Luttinger-liquid wire junctions,70 and Luttinger-liquid junctions with a superconductor, with64 or without115,116

Majorana bound states. The key feature of the SO2(N) topological Kondo effect of Ref. [56] is that the power law
governing the divergence depends on the number N of leads participating in the effect, making adjustable gate voltages
a route to observe this signature. This N dependence of the LDOS is however absent in the SO1(N) topological Kondo
effect of Ref. [109], where we find the zero-energy divergence ρ(ω) ∼ ωg−1 for all fixed points within the non-Fermi
liquid manifold, which is the same power law as that encountered for perfect Andreev reflection at a single Luttinger-
liquid junction with a Majorana fermion64.

IV.1. Model

IV.1.1. Device setup

We consider the setup where the topological Kondo effect can take place56, namely a mesoscopic s-wave supercon-
ducting island hosting a set of Ntot localized Majorana bound states, of which N ≥ 3 are tunnel-coupled to normal
leads of conduction electrons. This setup is sketched in Fig. [22]. Experimentally, this can be achieved by depositing
Ntot/2 nanowires with strong spin-orbit coupling, e.g. InSb or InAs, subjected to a magnetic field, on top of a floating
mesoscopic superconducting island; this creates Ntot Majorana bound states, one at each end of the wire parts that
are on top of the superconductor.90–98 With proper gating, N of these Ntot Majoranas are tunnel coupled to the N
normal parts of the nanowires, which then act as leads. We will also consider a generalized setup, where the island is
Josephson coupled to a bulk s-wave superconductor.109

The full Hamiltonian of the system under consideration is hence given by H = Hleads +Hisland +Ht.
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FIG. 22. Schematic setup for a Majorana device hosting the topological Kondo effect. Spin-orbit coupled semiconductor
nanowires (two in the figure) are deposited on top of an ordinary superconducing island (grey box) with charging energy EC .
In a magnetic field, Majorana bound states γi (red dots) are formed at the ends of the wire parts coupled to the superconductor
(dark grey). Gate voltages create tunnel barriers between N Majorana fermions and the N normal leads (in the figure, N = 3).
This leads to an SO2(N) topological Kondo effect at low temperature.56 When Josephson coupling the superconducting island
to an additional bulk superconductor (blue), the system will, in the limit of large Josephson energy EJ , give an SO1(N)
topological Kondo effect which becomes tunable by the lead-Majorana couplings.109

The normal leads of effectively spinless electrons are described by the Hamiltonian

Hleads = −ivF

N∑

j=1

∫ ∞

0

dx
[

ψ†
j,R∂xψj,R − ψ†

j,L∂xψj,L

]

, (4.1)

with fermionic fields ψj(x) for each lead j, consisting of outgoing (R) and incoming (L) components (i.e. right and
left movers). We assume all leads are identical. At x = 0, we have the boundary condition ψj,R(0) = ψj,L(0) ≡ ψj(0)
for disconnected leads. However, here the lead electrons are coupled to the localized Majorana modes on the island.

These are described by operators γj obeying γ
†
j = γj , with anticommutation relations {γj , γj′} = δjj′ .

The island Hamiltonian is given by

Hisland = EC(Q− ng)
2 − EJ cos Ξ, (4.2)

where EC is the charging energy, Q the total electron number on the island (with contributions from both Cooper
pairs and occupied Majorana states), ng the backgate parameter (assumed to be close to an integer) determined
by the voltage across the capacitor, EJ the Josephson energy for the coupling between the island and the bulk
superconductor, where Ξ is their phase difference (we will take the phase of the island to be Ξ, canonically conjugate
to Q). The system on the island inherits a superconducting gap ∆sc due to proximity.
The coupling between the lead electrons and the Majorana modes on the island is given by the tunneling

Hamiltonian103,117

Ht =

N∑

j=1

λje
−iΞ/2ψ†

j (0)γj + h.c., (4.3)

where we choose the couplings λj to be real and positive. This lead-Majorana tunneling gives a hybridization energy
of Γj = 2πν0λ

2
j , where ν0 = 1/πvF is the density of states for the unperturbed leads.

In the following we will be interested in two limiting cases, where the low-energy solution of the problem
simplifies56,109: for EJ = 0, the low-energy (i.e., for T, V ≪ EC ,∆sc,minΓj) behavior is governed by an SO2(N)
topological Kondo effect, whereas when EJ is the largest energy energy scale, the topological Kondo effect has
symmetry group SO1(N).

IV.1.2. Low-energy theory without Josephson coupling

In the absence of Josephson coupling, i.e., with EJ = 0, the physics at low energies ( T, V ≪ EC ,∆sc,minΓj)
is governed by virtual transitions of electrons hopping onto the dot, leading to an effective low-energy Hamiltonian
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H = Hleads +H
(1)
K , where56

H
(1)
K =

∑

i 6=j
J+
jkγjγkψ

†
k(0)ψj(0)−

∑

j

J−
jjψ

†
j (0)ψj(0), (4.4)

for the tunneling between the leads. The (positive) coupling constants are given by J±
jk ≈ λjλk/EC . The first term in

H
(1)
K shows a non-local quantum impurity set up by the products γjγk, exchange-coupled to the spin object formed

by the lead electron products ψ†
k(0)ψj(0). The resulting entanglement gives rise to a multichannel topological Kondo

effect below the energy scale defined by the Kondo temperature TK ; here TK ∼ ECe
−1/ν0J when assuming isotropic

J+
jk = J .

Including electron-electron interactions, the leads are conveniently treated using bosonization,112 which expresses
the lead Hamiltonian as

Hleads =
v

2π

N∑

j=1

∫ ∞

0

dx

[

g(∂xφj)
2 +

1

g
(∂xϑj)

2

]

, (4.5)

where φj and ϑj are non-chiral bosonic fields with commutation relation [φi(x), ∂yϑj(y)] = 2πiδ(x − y)δij , g is the
Luttinger-liquid interaction parameter (with g = 1 in the absence of interactions, and g < 1 for repulsive interactions)
and v the interaction-renormalized Fermi velocity. The bosonized form of the electron operator is then given by
ψj,L/R = χj(2πa)

−1/2ei(φj∓ϑj), where a is the short-distance cut-off, and χj is the Klein factor (a Majorana fermion).
This Majorana fermion from bosonization can be hybridized with the localized Majorana fermion γj coupled to the
lead, such that one simply replaces γjχj with a number ±i which is gauged away, see Refs. [105 and 106]. This leads to
a description of the strong-coupling fixed point in terms of the bosonic field Φ = (Φ1, ..., ΦN ), where Φj = φj(x = 0),
which is pinned by the potential

V (1)[Φ] ∝ −
∑

j 6=k
cos(Φj − Φk), (4.6)

whose minima form an N − 1 dimensional triangular lattice. This means that in a rotated basis, the ”zero-mode”
Φ̌0 ≡ (1/

√
N)
∑

j Φj ≡ v0 · Φ, is a free field (physically, this is due to current conservation at the junction), whereas

the components Φ̌1, ..., Φ̌N−1, described by vectors v1, ...,vN−1 orthogonal to v0 (spanning the reciprocal N − 1
dimensional triangular lattice), are fixed. Explicitly, the rotated basis is given by

φ̌0 =
1√
N

N∑

j=1

φj ,

φ̌1 =
1√
2
φ1 −

1√
2
φ2, (4.7)

φ̌2 =
1√
6
φ1 +

1√
6
φ2 −

2√
6
φ3

...

φ̌N−1 =
1

√

N(N − 1)

N−1∑

j=1

φj −
N − 1

√

N(N − 1)
φN ,

where for N = 3 the last line should be neglected.
Hence at strong coupling we have a theory of Luttinger liquid wires (Eq. [4.5]) connected at a junction (x = 0), where

the field φ̌0(x) obeys Neumann (free) boundary condition (BC), whereas the orthogonal components φ̌1(x), ..., φ̌N−1(x)
obey Dirichlet (fixed) BCs. By duality, we simultaneously have that ϑ̌0(x) obeys Dirichlet BC, and that the orthogonal
components ϑ̌1(x), ..., ϑ̌N−1(x) obey Neumann BCs (the ϑ̌ fields are obtained from the ϑ fields in the same way as
the φ̌ fields from the φ fields).
Furthermore, instanton tunneling of the pinned fields at strong coupling yields a leading irrelevant operator with

scaling dimension105,106 ∆LIO = 2g(N−1)/N , determining the finite-temperature scaling of the non-local conductance.

IV.1.3. Low-energy theory with strong Josephson coupling

Another type of low-energy topological Kondo effect is obtained in the limit of strong Josephson coupling, more
specifically when maxΓj ≪

√
8ECEJ <∼ EJ ; see Ref. [109]. The low-energy theory that emerges in this parameter
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regime is given by H = Hleads +HA +H
(2)
K , where

HA = −
∑

j

λjγjψ
†
j (0) + h.c., (4.8)

H
(2)
K =

∑

j 6=k
Jjkγjγk(ψ

†
k(0) + ψk(0))(ψ

†
j (0) + ψj(0)),

(4.9)

where λj is the Majorana tunneling coupling in Eq. [4.3] and Jjk ≈ λjλk/EJ . Here HA corresponds to the usual

single-lead resonant Andreev reflection processes, while the exchange term H
(2)
K contains both the same processes as

in Eq. [4.4] as well as crossed Andreev reflection processes.

Performing the same bosonization procedure as above for H
(1)
K now leads to a strong-coupling pinning potential109

V (2)[Φ] ∝ −
∑

j

√

Γj sinΦj −
√

TK
∑

j 6=k
cosΦj cosΦk, (4.10)

for the Φ field. This implies a manifold of strong-coupling fixed points, tuned by the N parameters δj ≡
√

Γj/TK ,

where the minima of the potential V (2)[Φ] form an N dimensional generalization of the body-centered cubic lattice
for Γj ≪ TK , with the center-point being shifted as a function of the δj parameters. Here the Kondo temperature TK
defines the energy scale below which the Kondo effect develops, given by TK ≈

√
8EJECe

−EJ/(N−2)Γ for isotropic
Γj = Γ.
Hence in the regime of strong Josephson coupling, the strong-coupling theory is that of Luttinger liquid wires

connected at a junction where all the fields φ̌0(x), φ̌1(x), ..., φ̌N−1(x) have Dirichlet BCs, and all the dual fields
ϑ̌0(x), ϑ̌1(x), ..., ϑ̌N−1(x) have Neumann BCs.
The finite-temperature behavior is governed by a leading irrelevant operator with scaling dimension

∆LIO = min






2,

1

2

N∑

j=1

[

1− 2

π
sin−1

(
δj

2(N − 1)

)]2





, (4.11)

arising from instanton tunneling of the fields between adjacent potential minima.

IV.2. Local density of states

The local density of states ρi available for electron tunneling into the ith lead is given by

ρi(x, ω) = − 1

π
ImGRi (x, ω)

=
1

π
Re

∫ ∞

0

dt eiωt〈ψi(x, t)ψ†
i (x, 0)〉, (4.12)

where GRi (x, ω) is the equal-position retarded Green’s function for the electrons in the ith lead. The local density
of states ρi is directly measurable using scanning tunneling microscopy, as the differential tunneling conductance
Gi(x, V ) at position x in lead i is directly proportional to this quantity as a function of applied voltage V , i.e.
Gi(x, V ) ∝ ρi(x, ω = eV ).
We shall here be concerned with the low-energy behavior of the LDOS, where temperature T and energy ω are well

below the Kondo temperature TK of the system. With the N wires effectively connected at a single junction with a
boundary condition due to the topological Kondo effect, see Fig. [23], the problem of finding the LDOS is analogous
to that for a junction of several Luttinger liquid wires.29,30,70,118,119

IV.2.1. Electron Green’s function

The zero-temperature, equal-position Green’s function 〈ψi(x, t)ψ†
i (x, 0)〉 for wire i in the N -wire junction system

can be calculated following Agarwal et al. in Ref. [70]. This amounts to finding the current-splitting matrix M for
the junction, which relates the incoming ji,L and outgoing ji,R currents at the junction through ji,R =

∑

j Mijjj,L.
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FIG. 23. The topological Kondo problem at low energy is equivalent to an N -wire junction with a splitting matrix M describing
the boundary condition at the junction. With an STM tip the LDOS ρi(x, ω) of wire i is probed.

In terms of the chiral bosonic fields φi,L = φi − ϑi and φi,R = φi + ϑi, such that the electron field is expressed as
ψj,L/R ∝ eiφj,L/R , the M matrix is equivalent to the boundary condition

φi,R =
∑

j

Mijφj,L. (4.13)

With a Bogoliubov transformation

φj,R/L = [(1 + g)φ̃j,R/L + (1− g)φ̃j,L/R]/(2
√
g), (4.14)

one obtains the free outgoing/incoming fields φ̃j,R/L with commutation relations

[φ̃j,R/L(x, t), φ̃j,R/L(x
′, t)] = ±iπ sgn(x− x′). (4.15)

Their splitting matrix M̃, which relates φ̃i,R(x) =
∑

j M̃ij φ̃j,L(−x) in the ”unfolded picture” (where x is extended to

the entire real line) is given by

M̃ = [(1 + g)M− (1− g)L][(1 + g)L− (1− g)M]−1, (4.16)

where L is the identity matrix.
The Green’s function now follows from

〈ψi(x, t)ψ†
i (x, 0)〉 = 〈ψi,L(x, t)ψ†

i,L(x, 0)〉
+ 〈ψi,R(x, t)ψ†

i,R(x, 0)〉+ ei2kF x〈ψi,R(x, t)ψ†
i,L(x, 0)〉

+ e−i2kF x〈ψi,L(x, t)ψ†
i,R(x, 0)〉, (4.17)

where the two oscillatory terms vanish for lead lengths L→ ∞ in the cases we are interested in, since the corresponding

Green’s functions contain an L dependence ∼ L(M̃ii−1)g. The remaining terms are given by

〈ψi,R(x, t)ψ†
i,R(x, 0)〉 =

1

2πa
〈eiφi,R(x,t)e−iφi,R(x,0)〉

=
1

2πa
〈ei[(1+g)φ̃i,R(x,t)+(1−g)φ̃i,L(x,t)]/(2

√
g)

×e−i[(1+g)φ̃i,R(x,0)+(1−g)φ̃i,L(x,0)]/(2
√
g)〉

=
1

2πa
〈ei[(1+g)

∑

j M̃ij φ̃j,L(−x,t)ei(1−g)φ̃i,L(x,t)]/(2
√
g)

×e−i[(1+g)
∑

j M̃ij φ̃j,L(−x,0)e−i(1−g)φ̃i,L(x,0)]/(2
√
g)〉.

(4.18)

With the relation 〈eiα1φ(z1) · · · eiαnφ(zn)〉 =
∏

i<j(zi − zj)
αiαj for the expectation value of a product of vertex op-

erators with complex coordinates z = x + iτ ,120 one arrives at 〈ψi,R(x, t)ψ†
i,R(x, 0)〉 = 〈ψi,L(x, t)ψ†

i,L(x, 0)〉 =

〈ψi(x, t)ψ†
i (x, 0)〉/2, with70

〈ψi(x, t)ψ†
i (x, 0)〉 =
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=
1

2πa

[
ia

−vt+ ia

](g+1/g)/2

(4.19)

×
[ −a2 − 4x2

(−vt+ ia)2 − 4x2

]M̃ii(1/g−g)/4
.

Now, close to the junction, where we can put x→ 0, as well as far from the junction, where x→ ∞, the expressions
allow us to compute the LDOS. When x→ 0, we have

〈ψi(0, t)ψ†
i (0, 0)〉

=
1

2πa

[
ia

−vt+ ia

]{(1−M̃ii)g+(1+M̃ii)/g}/2
, (4.20)

which means that the (chiral) boundary field ψi(0, t) has scaling dimension

∆i = {(1− M̃ii)g + (1 + M̃ii)/g}/2, (4.21)

i.e. 〈ψi(0, τ)ψ†
i (0, 0)〉 ∼ τ−∆i for imaginary time τ ≫ a/v.

Similarly, far away from the junction, where x→ ∞, one has

〈ψi(x, t)ψ†
i (x, 0)〉 =

1

πa

[
ia

−vt+ ia

](g+1/g)/2

, (4.22)

implying the usual scaling exponent ∆i = (g + 1/g)/2 for bulk (non-chiral) electrons.

IV.2.2. The local density of states

Far away from the junction, putting Eq. [4.22] for the Green’s function (x → ∞) into the expression of Eq. [4.12]
for the LDOS, we arrive at70,121

ρi(x→ ∞, ω) =
1

aπΓ(∆i)

(a

v

)∆i

ω∆i−1e−aω/vH(ω), (4.23)

where Γ is the gamma function and H is the Heaviside step function, and with the above scaling dimension ∆i =
(g+1/g)/2. For non-interacting electrons in the leads this reduces to ρi(x, ω) = 1/(πv) ≡ ν0, i.e. the density of states
ν0 for a bulk spinless quantum wire, as expected.
Considering positive energies ω ≪ v/a, we will neglect the factor e−aω/vH(ω) in the discussion below.
An analytical expression can also be obtained for the limit 2xω/v ≫ 1, resulting in116

ρi(x, ω) =
1

πvΓ((g + 1/g)/2)

(aω

v

)(g+1/g)/2−1

+
22−(g+1/g)/2 cos(2xω/v + δ)

πvΓ(M̃ii(1/g − g)/4)
(4.24)

×
(aω

v

)M̃ii(1/g−g)/4)−1

×
(a

x

)(3g+1/g)(1+M̃ii)/8+(g+3/g)(1−M̃ii)/8

where δ ≡ Arg(i(g+3/g)(1+M̃ii)/8+(3g+1/g)(1−M̃ii)/8). Note that for fixed ω the second term vanishes as x→ ∞, reducing
the expression in Eq. [4.24] to that in Eq. [4.23].
Finally and most importantly, namely close to the junction, putting the expression in Eq. [4.20] for the Green’s

function of the chiral boundary field at the junction (x = 0) into the expression in Eq. [4.12] for the LDOS, we arrive
at70

ρi(0, ω) =
1

a2πΓ(∆i)

(a

v

)∆i

ω∆i−1, (4.25)

with ∆i now given by Eq. [4.21]. This behavior occurs within a distance of the order of x < v/(2ω) from the junction.

In order to proceed, we must now see what values for the M̃ matrix the different boundary conditions in the
topological Kondo effect correspond to.
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IV.3. Local density of states for topological Kondo systems

IV.3.1. Strong Josephson coupling

The simplest case is for strong Josephson coupling, where all the φ̌j fields have Dirichlet, and all the ϑ̌j fields have

Neumann BCs, at all strong-coupling fixed points. The electron operator ψj,L/R ∝ ei(φj∓ϑj) at the junction at x = 0
is then given by

ψj,R(0) ∝ ei[φj(0)+ϑj(0)] = eicieiϑj(0), (4.26)

where ci, a constant depending on the potential minimum the φj(0) field is trapped in, can be gauged away. Hence

ψj,R(0) = ψ†
j,L(0), meaning that φ̃i,R(0) = −φ̃i,L(0), i.e. the M̃ matrix is that for perfect Andreev reflection in each

lead separately, namely

M̃ =








−1 0 . . . 0
0 −1 . . . 0
...

...
. . .

...
0 0 . . . −1







, (4.27)

such that M̃ii = −1 for all i.
Let us now consider the electron Green’s function in Eq. [4.19] close to the junction, i.e. letting x → 0. With

M̃ii = −1,

〈ψi(x, t)ψ†
i (x, 0)〉 =

1

2πa

[
ia

−vt+ ia

]g

(4.28)

implying a scaling dimension (Eq. [4.21]) equal to ∆i = g. The lead LDOS at the junction therefore behaves as

ρi(0, ω) ∼ ωg−1. (4.29)

Hence the LDOS has exactly the same behavior as for a single-wire perfect Andreev reflection,64 meaning that
tunneling spectroscopy follows the same power law for all fixed points appearing, i.e. there is no difference between
the Kondo fixed point manifold and the resonant Andreev reflection fixed point.
For non-interacting lead electrons, i.e. with g = 1, Eq. [4.25] results in

ρi(0, ω) =
1

2πv
=
ν0
2
, g = 1, (4.30)

such that the electron density of states at the junction is half of that for bulk spinless electrons.
This can be confirmed by the exact solution for a Majorana fermion coupled to a quantum wire. Decomposing the

lead electron into two Majorana fermions η and ζ, such that ψj(x) = [ηj(x) + iζj(x)]/
√
2, the Majorana tunneling

term (Eq. [4.8]) reads HA ∝ ∑

j

√
Γjγjζj(0). Hence at the resonant Andreev reflection fixed point (Γj → ∞), the

ζj Majorana is hybridized with the γj Majorana within a ”screening cloud” of size89 ξM ∼ v/Γj . In particular, the
x = 0 Matsubara Green’s function Gζj for the ζj Majorana is given by122

Gζj (0, iωn) =
−i sgn(ωn)

2v

iωn
iωn + iΓjsgn(ωn)

. (4.31)

Hence the ζj contribution ∝ ImGζj (0, iωn → ω) to the LDOS vanishes as Γj → ∞.
Therefore, at x ≪ ξM , only the ηj Majorana contributes to the LDOS of the lead electron, which thus is half the

bulk value, i.e. ρj(0, ω) = ν0/2.

IV.3.2. Without Josephson coupling

For the topological Kondo model without Josephson coupling, i.e. the SO2(N) model of Béri and Cooper,56 the
fields φ̌0(x), ϑ̌1(x), ..., ϑ̌N−1(x) have Neumann BCs, and the fields ϑ̌0(x), φ̌1(x), ..., φ̌N−1(x) Dirichlet BCs at the
strong-coupling fixed point.
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The original fields in terms of the rotated ones in Eq. [4.7] are given by

φ1 =
1√
N
φ̌0 +

1√
2
φ̌1 +

1√
6
φ̌2 + ...+

1
√

N(N − 1)
φ̌N−1,

φ2 =
1√
N
φ̌0 −

1√
2
φ̌1 +

1√
6
φ̌2 + ...+

1
√

N(N − 1)
φ̌N−1,

φ3 =
1√
N
φ̌0 −

2√
6
φ̌2 + ...+

1
√

N(N − 1)
φ̌N−1,

... (4.32)

φN =
1√
N
φ̌0 −

N − 1
√

N(N − 1)
φ̌N−1,

where for N = 3 the terms after the dots should be neglected. The change of basis between ϑj and ϑ̌j is the same.

Hence, the electron operator ψj,L/R ∝ ei(φj∓ϑj) at the junction at x = 0 is then given by, for simplicity considering
lead j = 1,

ψ1,R(0) ∝ ei[ϑ1(0)+φ1(0)] = e
i[ 1√

N
ϑ̌0(0)+...+

1√
N
φ̌0(0)+...]

= eic1e
i[ 1√

N
φ̌0(0)+

1√
2
ϑ̌1(0)+...+

1√
N(N−1)

ϑ̌N−1(0)]
,

(4.33)

with c1 a constant, depending on the pinning value of the fields with Dirichlet BCs, which we gauge away.
From Eqs. [4.18)-(4.20] it follows that the term φ̌0/

√
N in the exponent in Eq. [4.33] contributes a term 1/(Ng),

and each term ϑ̌n/
√

n(n+ 1) contributes a term g/[n(n+ 1)], in the exponent of 〈ψ1(0, t)ψ
†
1(0, 0)〉, which gives

〈ψ1(0, t)ψ
†
1(0, 0)〉

=
1

πa

[
ia

−vt+ ia

] 1
Ng+

∑N−1
k=1

1
k(k+1)

g

(4.34)

(see also Appendix [IV.5] for a derivation of the M̃ matrix). Hence we have the scaling exponent

∆i =
1

Ng
+
N − 1

N
g. (4.35)

For x≪ v/(2ω), the lead LDOS therefore goes as

ρi(x→ 0, ω) ∼ ω
1

Ng+
N−1
N g−1. (4.36)

Thus, for 1
N−1 < g < 1, we have a diverging LDOS at zero energy in the vicinity of the junction. For non-interacting

lead electrons, g = 1, we get ∆i = 1, again giving the result ρi(0, ω) =
ν0
2 according to Eq. [4.25].

Note also, that in the 2xω/v ≫ 1 limit, there is an unusual exponent in the x dependence of the subleading
oscillatory term in Eq. [4.24], which has an envelope decaying as ∼ x−3/(4g)−(g−1/g)/(2N) as a function of distance x
from the junction, and diverging as ∼ ω(1−2/N)(g−1/g)/4−1 as function of energy.

IV.4. Discussion and conclusions

In this work, we have investigated the tunneling spectroscopy of topological Kondo systems, providing a route
complementary to transport measurements in the search for experimental signatures of the predicted non-Fermi
liquid behavior.
We have found that for the minimal topological Kondo setup of Béri and Cooper,56 with a strong-coupling SO2(N)

Kondo fixed point, the LDOS of the effectively spinless electrons in lead i in the immediate neighborhood of the
junction (meaning that the distance x from the junction is less than v/(2ω)) follows the power law in Eq. [4.36],

i.e. it goes as ∼ ω
1

Ng+
N−1
N g−1 as a function of energy ω. For non-interacting leads, g = 1, the LDOS close to the

junction is a constant, equal to half the bulk value, i.e. 1/(2πv). However, for interacting lead electrons, g < 1, the
scaling dimension (Eq. [4.35]) controlling the LDOS and hence the tunneling conductance of an STM tip probing lead
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i, depends on the number N of leads. An experimental signature of the topological Kondo fixed point is therefore
obtained by, using gate voltages, changing the number N of leads coupling to the Majoranas on the island, and then
observing how the scaling exponent of the tunneling conductance in lead i changes.

In the topological Kondo system with a strong Josephson coupling, realizing an SO1(N) topological Kondo fixed
point together with a resonant Andreev reflection fixed point and a continuous manifold of fixed points where Kondo
and resonant Andreev reflection processes coexist,109 we find that the LDOS of the lead electrons close to the junction
instead follows the power law ∼ ωg−1 as a function of energy, also with the constant value 1/(2πv) for g = 1. Hence in
the strong Josephson coupling case, an STM experiment cannot distinguish the Kondo fixed point, or the coexistence
manifold, from the pure resonant Andreev reflection fixed point.
The only trace of the topological Kondo physics in the LDOS in the SO1(N) case would come from the corrections

due to the leading irrelevant operators at the fixed points. With scaling dimension ∆LIO > 1, given by Eq. [4.11],
these operators contribute terms ∼ ω∆LIO−1 to the LDOS at x→ 0. Hence in these subleading corrections there is a
difference between the resonant Andreev reflection fixed point where ∆LIO = 2 and in the Kondo fixed point manifold,
where 1 < ∆LIO ≤ 3/2 (1 < ∆LIO ≤ 2) for N = 3 (N > 3). However, any repulsive interaction among the lead
electrons renders the LDOS (Eq. [4.29]) divergent at zero energy, obscuring the subleading corrections which vanish
as ω → 0.
In summary, we have provided analytical expressions for the LDOS of the leads in Majorana devices hosting

the topological Kondo effect. This provides a clear signature, complementary to previously proposed transport
measurements, to look for in experiments.

IV.5. Appendix A: Splitting matrix for topological Kondo

Let us here compute the M̃ matrix for the topological Kondo effect of Béri and Cooper.56

First, note that the non-chiral and chiral bosonic fields (see Sec. IV.IV.2.1) are related by

ϑ̃i(x) =
1√
g
ϑi(x) =

(

φ̃R,i − φ̃L,i

)

/2

=
1√
g
(φR,i − φL,i) /2, (4.37)

φ̃i(x) =
√
gφi(x) =

(

φ̃L,i + φ̃R,i

)

/2

=
√
g (φL,i + φR,i) /2. (4.38)

The topological Kondo BC, i.e. the fields φ̌0(x), ϑ̌1(x), ..., ϑ̌N−1(x) having Neumann BCs and the fields ϑ̌0(x), φ̌1(x), ..., φ̌N−1(x)
Dirichlet BCs, means that we pin the following vector (cf. Refs. [29 and 30])















1√
N
[ϑ̃1(x = 0) + ϑ̃2(x = 0) + ϑ̃3(x = 0) + . . .+ ϑ̃N (x = 0)]

1√
2
[φ̃1(x = 0)− φ̃2(x = 0)]

1√
6
[φ̃1(x = 0) + φ̃2(x = 0)− 2φ̃3(x = 0)]

1√
12
[φ̃1(x = 0) + φ̃2(x = 0) + φ̃3(x = 0)− 3φ̃4(x = 0)]

...
1√

(N−1)N
[φ̃1(x = 0) + φ̃2(x = 0) + φ̃3(x = 0) + φ̃4(x = 0) + · · · − (N − 1)φ̃N (x = 0)]















=
−→
0 (4.39)

to a value that we set to be the null vector ~0. With the notation Φ̃j ≡ φ̃j(x = 0) and Θ̃j = ϑ̃j(x = 0), we write this as














1√
N
(Θ̃1 + Θ̃2 + Θ̃3 + . . .+ Θ̃N )

1√
2
(Φ̃1 − Φ̃2)

1√
6
(Φ̃1 + Φ̃2 − 2Φ̃3)

1√
12
(Φ̃1 + Φ̃2 + Φ̃3 − 3Φ̃4)

...
1√

(N−1)N
(Φ̃1 + Φ̃2 + Φ̃3 + Φ̃4 + · · · − (N − 1)Φ̃N )














=
−→
0 . (4.40)
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From Eqs. [4.38] and [4.37] we have












(Φ̃R,1 − Φ̃L,1 + Φ̃R,2 − Φ̃L,2 + Φ̃R,3 − Φ̃L,3 + . . .+ Φ̃R,N − Φ̃L,N )

(Φ̃R,1 + Φ̃L,1 − Φ̃R,2 − Φ̃L,2)

(Φ̃R,1 + Φ̃L,1 + Φ̃R,2 + Φ̃L,2 − 2Φ̃R,3 − 2Φ̃L,3)

(Φ̃R,1 + Φ̃L,1 + Φ̃R,2 + Φ̃L,2 + Φ̃R,3 + Φ̃L,3 − 3Φ̃R,4 − 3Φ̃L,4)
...

(Φ̃R,1 + Φ̃L,1 + Φ̃R,2 + Φ̃L,2 + Φ̃R,3 + Φ̃L,3 + Φ̃R,4 + Φ̃L,4 + · · · − (N − 1)Φ̃R,N − (N − 1)Φ̃L,N )












=
−→
0 , (4.41)

where Φ̃R/L,j = φ̃R/L,j(x = 0). Hence












Φ̃R,1 + Φ̃R,2 + Φ̃R,3 + Φ̃R,N
Φ̃R,1 − Φ̃R,2

Φ̃R,1 + Φ̃R,2 − 2Φ̃R,3
Φ̃R,1 + Φ̃R,2 + Φ̃R,3 − 3Φ̃R,4

...

Φ̃R,1 + Φ̃R,2 + Φ̃R,3 + Φ̃R,4 + · · · − (N − 1)Φ̃R,N












=












Φ̃L,1 + Φ̃L,2 + Φ̃L,3 + Φ̃L,N
−Φ̃L,1 + Φ̃L,2

−Φ̃L,1 − Φ̃L,2 + 2Φ̃L,3
−Φ̃L,1 − Φ̃L,2 − Φ̃L,3 + 3Φ̃L,4

...

Φ̃L,1 + Φ̃L,2 + Φ̃L,3 + Φ̃L,4 + · · · − (N − 1)Φ̃L,N












(4.42)

⇔











1 1 1 1 · · · 1
1 −1 0 0 · · · 0
1 1 −2 0 · · · 0
1 1 1 −3 · · · 0
...

...
...

...
. . .

...
1 1 1 1 · · · −(N − 1)






















Φ̃R,1
Φ̃R,2
Φ̃R,3
Φ̃R,4
...

Φ̃R,N












=











1 1 1 1 · · · 1
−1 1 0 0 · · · 0
−1 −1 2 0 · · · 0
−1 −1 −1 3 · · · 0
...

...
...

...
. . .

...
−1 −1 −1 −1 · · · (N − 1)






















Φ̃L,1
Φ̃L,2
Φ̃L,3
Φ̃L,4
...

Φ̃L,N












. (4.43)

It follows that












Φ̃R,1
Φ̃R,2
Φ̃R,3
Φ̃R,4
...

Φ̃R,N












=













1
N

1
2

1
6

1
12 · · · 1

N(N−1)
1
N − 1

2
1
6

1
12 · · · 1

N(N−1)
1
N 0 − 1

3
1
12 · · · 1

N(N−1)
1
N 0 0 − 1

4 · · · 1
N(N−1)

...
...

...
...

. . .
...

1
N 0 0 0 · · · − 1

N























1 1 1 · · · · · · 1
−1 1 0 0 · · · 0
−1 −1 2 0 · · · 0
−1 −1 −1 3 · · · 0
...

...
...

...
. . .

...
−1 −1 −1 −1 · · · (N − 1)











︸ ︷︷ ︸

=M̃












Φ̃L,1
Φ̃L,2
Φ̃L,3
Φ̃L,4
...

Φ̃L,N












. (4.44)

Thus the splitting matrix M̃ for the topological Kondo effect is

M̃ =








2/N − 1 2/N · · · 2/N
2/N 2/N − 1 · · · 2/N
...

...
. . .

...
2/N 2/N · · · 2/N − 1







. (4.45)

For Fermi-liquid leads (g = 1, i.e. M̃ = M), this agrees105,106 with the expression Gij = (e2/h)(δij −Mij) for the
g = 1 conductance tensor.
Hence, according to Eq. [4.21], the scaling dimension for electron tunneling into a lead, close to the junction, is
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∆i = {(1− M̃ii)g + (1 + M̃ii)/g}/2
= (N − 1)g/N + 1/(Ng). (4.46)
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53 D. N. Aristov and P. Wölfle, Phys. Rev. B 88, 075131 (2013).
54 D. N. Aristov and P. Wölfle, Phys. Rev. B 84, 155426 (2011).
55 D. Giuliano and A. Nava, Phys. Rev. B 92, 125138 (2015).
56 B. Béri and N. Cooper, Phys. Rev. Lett. 109, 156803 (2012).
57 E. Eriksson, A. Nava, C. Mora, and R. Egger, Phys. Rev. B 90, 245417 (2014).
58 I. Affleck, “Quantum impurity problems in condensed matter physics,” Lecture Notes, Les Houches (2008).
59 G. S. Grest, Phys. Rev. B 14, 5114 (1976).
60 T. Sugiyama, Prog. Theor. Phys. 64, 406 (1980).
61 I. Affleck and D. Giuliano, J. Stat. Mech. P06011 (2012), 10.1088/1742-5468/2013/06/P06011.
62 M. Cvetic, G. W. Gibbons, H. L, and C. N. Pope, Phys. Rev. D 65, 106004 (2002).
63 P. Dita, J. Phys. A: Math. Gen. 15, 3465 (1982).
64 L. Fidkowski, J. Alicea, N. H. Lindner, R. M. Lutchyn, and M. P. A. Fisher, Phys. Rev. B 85, 245121 (2012).
65 A. Lande, From Dualism to Unity in Quantum Physics (Cambridge U. P., 1960).
66 C. Rovelli, Int. J. of Theor. Phys. 35, 1637 (1996).
67 A. Khrennikov, J. Phys. 34, 1 (2001).
68 G. Tanner, J. Phys. A 34, 8485 (2001).
69 K. Zyczkowski, M. Kus, W. Sirker, Slomczynski, and H.-J. Sommers, J. Phys. A 36, 3425 (2003).
70 A. Agarwal, S. Das, and D. Sen, Phys. Rev. B 81, 035324 (2010).
71 I. Bengtsson, “The importance of being unistochastic,” USITP 03-12 (2003).
72 I. Bengtsson, A. Ericsson, M. Kus, W. Tadej, and K. Zyczkowski, Commun. Math. Phys. 259, 307 (2005).
73 G. Birkhoff, Univ. Nac. Tucuman Rev. A 5, 147 (1946).
74 B. Jokanovic and A. Marincic, in TELSIKS 2003. 6th International Conference in Telecommunications in Modern Satellite,

Cable and Broadcasting Service, 2003. (2003).
75 F. M. Ghannouchi and A. Mohammadi, The Six-Port Technique with Microwave and Wireless Applications (ARTECH

HOUSE, 2009).
76 L. Arnaut and L. Davis, in 1995. 25th European Microwave Conference (1995).
77 S. Das and S. Rao, Phys. Rev. B 78, 205421 (2008).
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