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Abstract

Strings play a fundamental role in computer science. Data is codified into strings, and

by interpreting them information can be derived. Given a set of strings, few interesting

questions arise, such as “are these strings related?”, and “if they are related, how can we

measure this relatedness?”. The definition of a degree of similarity (or correlation) between

strings is strongly important. Di↵erent definitions of similarity between strings already

exist in literature and they steam from the concept of metric in mathematics. One of the

most famous and well-known string similarity metric is the edit distance, which measures

the minimum number of edit operations required to transform one string into another one.

However, in the definition of the similarity between two strings, one important natural as-

sumption is made: identical symbols among strings represent identical information, whereas

di↵erent symbols introduce some form of di↵erentiation. This last assumption results to

be extremely reductive. In fact, there are cases in which symbol identity seems to be not

enough, and even if there are no common symbols between two strings, it could happen that

they represent similar information. Moreover, there are cases in which a one-to-one mapping

between symbols is not enough, thus a many-to-many mapping is needed. The necessity of

a suitable metric capable of capturing hidden correlations between strings emerges and this

metric should take into account that di↵erent symbols may express similar concepts.

This thesis aims to provide a contribution in this setting. Initially, we present a frame-

work that generalizes most of the existing string metrics based on symbol identity, making

them suitable for application scenarios which involve strings defined on heterogeneous al-

phabets. We formally define the Multi-Parameterized Edit Distance, a generalization of the

edit distance with the support of our framework, and we discuss its computational issues.

Then, we present various heuristics designed, implemented and tested out, in order to

approach computational issues of the generalization: we start with a survey on heuristics

to acquire a global view of the problem, then we select, discuss and test three of them in

detail.

In the last part, we discuss several application contexts which have been studied in this

thesis. These scenarios span from engineering to biomedical informatics. In particular, they

concentrate on Wireless Sensors Area Networks, White Matter Fiber-Bundles analysis and

Electroencephalogram analysis.

Finally, at the end of the thesis, we draw our conclusions and highlight future work.
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Sommario

Le stringhe giocano un ruolo fondamentale in informatica: codificando i dati, la loro inter-

pretazione permette di derivare informazione. Dato un insieme di stringhe, alcune interes-

santi domande emergono: “queste stringhe sono correlate?”, e se lo sono, “possiamo misura

la loro correlazione?”. La definizione di un grado di similarità tra stringhe risulta essere

fortemente importante. Varie definizioni di similarità tra stringhe sono state definite nella

letteratura, derivanti dal concetto di metrica in matematica. Una delle più famose metriche

di similarità tra stringhe è la edit distance, definita come il numero minimo di edit operation

necessarie a trasformare una stringa in un’altra. Tuttavia, le varie definizioni presentano

un’assunzione chiave: simboli uguali tra le stringhe rappresentano la stessa identica infor-

mazione, mentre simboli diversi introducono una qualche di↵erenza. Questa assunzione

risulta essere estremamente riduttiva: esistono casi in cui l’identità tra simboli sembra non

essere su�ciente a definire una similarità, e nel caso in cui non ci siano simboli in comune

tra due stringhe, si può verificare che simboli diversi rappresentino la stessa informazione.

Inoltre, in alcuni casi una mappatura one-to-one tra i simboli risulta ine�cace, quindi si

necessita una mappatura many-to-many. La necessità di avere una metrica di similarità

tra stringhe che sia in grado di catturare correlazioni nascoste tra le stringhe emerge, ove

il concetto chiave è rappresentato dal considerare che simboli di↵erenti possono esprimere

concetti simili.

Lo scopo di questa tesi è di contribuire in questo scenario. In primis, un framework che

generalizza la maggior parte delle metriche di similarità tra stringhe (basate sull’identità

tra simboli) viene presentato, idoneo a scenari di applicazione in cui sono presenti stringhe

definite su alfabeti eterogenei. La Multi-Parameterized Edit Distance (una generalizzazione

della edit distance con il supporto del framework) viene definita formalmente e studiata dal

punto di vista della complessità computazionale.

In seguito, di↵erenti euristiche, definite, implementate e testate, vengono presentate, in

modo da approcciarsi alle di�coltà computazionali presenti. Varie euristiche sono presentate

e tre di esse sono studiate, discusse e testate in dettaglio.

Alcuni contesti di applicazione, studiati in questa tesi, sono quindi discussi, spaziando

dal settore ingegneristico a quello informatico biomedico: anomaly detection nelle Wireless

Sensors Area Network, analisi dei White Matter Fiber-Bundles e analisi degli Elettroence-

falogrammi. Le conclusioni e una panoramica dei lavori futuri chiudono la tesi.
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Chapter 1

Introduction

Strings play a fundamental role in computer science. Data is codified into strings by using

various techniques and, by interpreting them, information can be derived. Almost every-

thing in the digital world can be represented as strings: time series, access logs, astronomical

data, this thesis, this exact phrase, everything that can be actually accessed. Even in the

non-digital world, strings are everywhere: tram time schedules, road addresses, the plate

of your car, the content of the book on your left, etc. The academic literature has been

researching for many years over strings, making a fundamental theory that plays a crucial

role in theoretical computer science. Information is the nourishment of computer science

and with strings we encode and represent it.

From the point of view of the human society, experience strictly correlates to evolution.

When we find ourselves in a novel situation, our brain automatically exploits our experience

in order to understand whether we already encountered something similar to it or which

is correlated to the situation itself. Terms like similarity and correlation are synonyms and

represent very important concepts. These concepts also apply to computer science and to

strings especially. Given a set of strings, few interesting questions arise, such as “are these

strings related?”, “if they are related, how can we measure this relatedness?” and “can

we define some sort of measure of (dis)similarity between strings?”. The definition of a

degree of correlation or similarity between strings is strongly important: it gives us the

possibility to extrapolate interesting properties, which can be used in various contexts. A

straightforward example could be that of clustering a set of strings, determining whether

two or more strings should be put “in the same cluster”, being su�ciently similar to each
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other.

The academic community is very active on this aspect, thus di↵erent definitions of

similarity/correlation between strings exist. Eventually, they steam from the concept of

metric (or distance function) in mathematics, which is a function that defines a distance

between each pair of elements of a set. In this case, distance is used to quantify the similarity

between two strings. As an example, a famous and well-know metric in computer science

is the Hamming distance, which measures the minimum number of substitutions required

to change one string into the other. A large number of metrics exist and they are used in

very heterogeneous contexts, such as information retrieval, machine learning, computational

biology, etc.

Among these metrics, a particular one is the so called edit distance. It measures the

minimum number of edit operations required to transform one string into another one. Edit

operations can be of di↵erent kind, most common operations are deletions, insertions and

substitutions of symbols. In this case, whether we try to define the similarity between

two strings, one important natural assumption is made: identical symbols among strings

represent identical information, whereas di↵erent symbols introduce, in a way or another,

some form of di↵erentiation. This last assumption results to be extremely reductive. In

fact, there are cases in which symbol identity seems to be not enough, and even if there

are no common symbols between two strings, it could happen that they represent similar

information.

Let us consider two strings generated by heterogeneous data streams, derived from

two di↵erent ways of measuring the same reality; think, for instance, of two sensors one

measuring light and the other measuring temperature. The values, the scales and the

meaning of the two sensors may be very di↵erent, but, if sensors are near to a fire, light

can be influenced by temperature, and vice versa. To properly monitor this last event,

we should, then, be able to understand the correlations between these two heterogeneous

measurements. In another, extreme, case, suppose one of the streams has been deliberately

manipulated in such a way as to appear dissimilar from the other (think for example to

code cloning techniques [67]). In this case, it can be of outmost importance being able to

detect their correlation. But how can we detect the similarity between such streams?

When dealing with heterogeneous data streams, generated sequences may come from

very di↵erent contexts and may be represented with di↵erent symbols/metrics. Further-
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more, we need to take in account that providing the flexibility of mapping some symbol of

the first stream into more than one symbol of the second stream (and vice versa) would

be extremely useful, thus many-to-many mappings between symbols need to be considered.

This is also useful, for example, to accomodate di↵erent discretization metrics of numerical

sequences. Obviously, the best mapping between symbols, i.e., the one which gives the

minimum distance or which discovers the optimal correlation, is not know a priori, thus

searching it becomes part of the problem.

The necessity of a suitable metric capable of capturing hidden correlations between

strings emerges. This metric should take into account that di↵erent symbols in the involved

strings may express similar concepts. An ideal näıve solution would be that of considering

all of the possible correlations between symbols. However, this approach is infeasible; worse,

it reduces to an intractable problem.

For a better understanding of this problem, which is discussed in detail in Chapter 2, let

s
1

= AAABCCDCAA and s
2

= EEFGHGGFHH be two strings. They obviously have no symbols

in common, thus resulting in being two strings completely di↵erent. However, suppose a

hidden correlation exists, which matches symbols {A,B} with {E,H}, and symbols {C,D}

with {F,G}. Thus, the following alignment is possible:

s
1

: AAABCCDDCAA ! AAABCCDDCAA

s
2

: EEFGHGGFHH ! -EEFGHGGFHH

** * *****

which states that the second string could be obtained from the first one with just 3

(parameterized) edit operations, thus showing a signicant, not obvious, correlation between

the two strings (see Chapter 4 for all details). Furthermore, di↵erent mappings could exists

that might give a lower number of edit operations, but enumerating them all is in fact

infeasible.

There are di↵erent contexts in which such a metric can be e↵ectively used in order to

approach particular problems. For instance, the engineering world is actually interested

in the design, development and monitoring of wireless sensors area networks, whose com-

plexity is constantly growing, thanks to the Internet of Things. Here, sensors transmit

heterogeneous data, i.e., they are devices producing di↵erent kinds of signals. Challenges

such as anomaly detection in this context would benefit from a metric which is capable of
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discovering hidden correlations between heterogeneous series of data. And shifting away

from the engineering world, the biomedical context o↵ers various scenarios in which such a

metric would be useful. For example, White Matter Fiber-Bundle analysis concentrates on

the investigation of brain, in which the capability of extracting, visualizing and analyzing

White Matter fibers play a key role. This analysis is important because it may provide

significant insights in brain functions and anomalies, in order to better understand and

predict di↵erent neurodegenerative pathologies, such as multiple sclerosis. Here, providing

a suitable string representation of the fibers, processes that were time consuming and error

prone for a large cohort of patients would be more accessible.

In this thesis, we provide a contribution in this setting. We present a framework that

generalizes most of the existing string metrics based on symbol identity making them suit-

able for application scenarios where involved strings could be based on heterogeneous al-

phabets. This way, our approach paves the way to the adoption of string metrics in all

those contexts in which involved strings come from di↵erent sources, each adopting its own

alphabet. The main components of the proposed framework are: (i) a matching schema,

which formalizes matches between symbols, and (ii) a generalized metric function, which

abstracts the computation of string metrics on the basis of a pre-defined matching schema.

The proposed framework is based on the identification of the best matching schema for the

metric function, i.e., the matching schema leading to the minimum value of the distance

function when applied on the strings into consideration. We will prove the hardness of

this problem, thus we provide various heuristics in order to approach it, together with a

large series of tests. Then, application contexts with various contributions to each of them

are presented. We highlight how the proposed framework and the specialization of it in a

particular metric can be used in order to approach relevant challenges. Finally, at the end

of this thesis, we draw our conclusion and we give space for future works.

The plan of the thesis is as follows: in Chapter 2 we give the background needed and

we introduce fundamental concepts such as strings and distances; moreover, a review of the

current related literature is provided. In Chapter 3 we introduce and define the proposed

framework: few examples are given, plus we show how the framework generalizes most of

the existing string metrics based on symbol identity. In Chapter 4, we formally define the

Multi-Parameterized Edit Distance, a generalization of the edit distance with the support

of the proposed framework, and we discuss its computational issues. Chapter 5 is devoted
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to the presentation of the various heuristics designed and implemented in order to approach

computational issues of the generalization: first, a survey on heuristics is carried out to

acquire a global view of the problem, then three heuristics are selected, ad-hoc implemented

and tested out. Chapter 6 is devoted to describe application contexts which have been

studied in this thesis. They can be distinguished in two macro areas: engineering, with

Wireless Sensors Area Networks, and biomedical informatics, with White Matter Fiber-

Bundles analysis and Electroencephalogram analysis. Finally, in Chapter 7 we draw some

conclusions and highlight future work.
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Chapter 2

Background and Problem

Definition

2.1 Introduction

In this chapter we give an overview of the background needed for this thesis. The plan of the

chapter is as follows: we first introduce fundamental concepts such as strings and similarity

metrics. Then, we exploit the problems that emerge in the general context of heterogeneous

alphabets and we point out the problem of discovering hidden correlations. Also, we discuss

the context of our problem and its hardness. Finally, we describe an overview of the related

academic literature in this context.

2.2 The fundamental concept of string

Strings essentially are ordered sequences of symbols. For a moment, we refrain to give a

precise and formal definition for them. Instead, we concentrate on some examples of what a

string can be, how can be represented and, most importantly, what does it mean, i.e., what

is the semantic of a string. In this thesis, strings are distinguished by using a monospaced

font, such as this one. Also, terms such as sequences and streams are synonyms for

strings and we will often use them interchangeably in various contexts.

Table 2.1 shows some examples of strings.

Strings are usually drawn from an alphabet, which is a finite and nonempty set whose

elements are symbols, which are usually also called characters or letters. Thus, a string
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String example

abcdwxyz
0422003

010001001110
--XyX@@%115&&//

this phd thesis does not exist

Table 2.1: Few examples of strings.

defined on an alphabet ⌃ is a finite sequence of elements of ⌃. The appearance of a

symbol in a string is called occurrence; a symbol could occur one or more times in a string,

or even zero. As an example, the alphabet the fifth string in Table 2.1 is defined on

could be the set of the lowercase English letters and a space, or even simply the alphabet

⌃ = {d,e,h,i,n,o,p,s,t,x, } (note the space symbol).

Alphabets can be enhanced and more structural properties can be defined. Let s =

phdthsssshtdhp an example of string defined on ⌃. We denote with ⌃⇤ the set of all

strings which can be defined on an alphabet ⌃. In this case, ⌃⇤ = {✏,d,dd, . . . ,e, . . . },

where ✏ is the empty string, i.e., the sequence containing no symbols. Further definitions,

which are defined in the next sections, will be used throughout the thesis.

2.3 Similarity, correlation and distance

Given a pair of strings, some interesting questions arise, such as “are these strings related?”,

“if they are related, how can we measure this relatedness?” and “can we define some sort

of measure of (dis)similarity between strings?”. In particular, such questions give us as

results the possibility to extrapolate interesting properties, which could be used in various

contexts. As an example, suppose we would need to cluster a set of strings S. A cluster

S 2 S in this case would be represented by all of the strings s 2 S which are “close” or

“similar” to each other. Thus, a definition of similarity is needed.

The good news is that such a defintion, which strictly depends on the approach used

to compute it, already exists. The first (and also most famous) approach is that of the

Hamming distance [55], introduced by Richard Hamming as a geometrical model for error

detecting codes. Into the space of {0, 1}n points, Hamming introduced a distance, better

know by its mathematical term metric, D(x, y), where x, y 2 {0, 1}n. The definition of

that distance is based on the observation that a single error in a code point changes one
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coordinate, two errors, two coordinates, etc. Thus, the distance D(x, y) between two points

x and y is defined as the number of coordinates for which x and y are di↵erent. D(x, y) is

a metric, as shown in [55].

Let s
1

= 0100110 and s
2

= 0110100 be two strings. Clearly, D(s
1

, s
2

) = 2 and we

visualize this results by drawing s
1

and s
2

one below the other. Additionally, in the row

below the last string we denote with the symbol * a position in which s
1

and s
2

match, e.g.,

they have a symbol in common.

s
1

: 0100110

s
2

: 0110100

** ** *

It is straightforward to see that the Hamming distance can be applied only on points defined

on the same space, e.g., the number of components of points has to be the same.

What about points defined on di↵erent spaces? More general, can Hamming distance

be defined on generic strings? It seems the answer is no, thus a di↵erent metric is needed

to work with.

Back to 1965, Vladimir Iosifovich Levenshtein, working on information theory and error-

correcting codes, introduced a metric for codes capable of correcting deletions, insertions

and reversal [75]. This was later called Levenshtein distance and is informally defined as the

minimum number of single-symbol edits, i.e., edit operations, which are deletions, insertions

and substitutions, required to change one string into the other, where each operation has

a cost assigned to. As for an example, let s
1

= ATGCA and s
2

= GGCA two strings and let

D(x, y) the Levenshtein distance between x and y. Suppose that deletions, insertions and

substitution respectively have cost equals to 1, 1 and 2. D(s
1

, s
2

) is 3 and we can (possibly)

obtain it by

1. inserting symbol A at beginning of s
2

(cost 1),

2. substituting symbol G (first one) with symbol T in s
2

(cost 2).

It is straightforward to see that numerically D(s
1

, s
2

) depends on the cost assigned to each

edit operation. Moreover, there could be di↵erent ways of applying edit operations in order

to obtain D(s
1

, s
2

).

Levenshtein distance belongs to a larger family of distance called edit distance. Di↵erent
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definition of an edit distance use di↵erent sets of symbol or string operations. Other exam-

ples of edit distances are the longest common subsequence (LCS) which allows deletions and

insertions but substitutions, or the Jaro distance [65] which allows only transposition. Also,

Hamming distance is an edit distance, allowing only substitutions, thus it can be applied

only on strings of the same length. Edit distance essentially represents a parametric metric,

equipped with a set of allowed edit operations and to each operation a cost is assigned.

In [113], Wagner and Fischer proposed an algorithm for determining a sequence of edit

transformations that changes one string into another, i.e., computing the edit distance,

using the same three edit operations used in the Levenshtein distance with cost being

parameterized. Their algorithm is proportional to the product of the lengths of the two

input strings and it represents one of the earliest problem of dynamic programming studied

by all of computer science students.

During this thesis, when it is not di↵erently specified, we will use (classical) edit distance

and Levenshtein distance as synonyms, and we will make use of the algorithm presented

in [113] for the implementation. Moreover, we will use the term alignment in the classical

term, representing a number of edit operations needed to transform a string into another.

2.4 The real problem

As pointed out in the previous sections, various string metrics exist and they may signifi-

cantly di↵er for the rules adopted to measure the (dis)similarity degree; it appears obvious

that these rules depend on the context in which they are applied. For example, in [43]

a survey on duplicate record detection in databases indicates di↵erent string metrics with

di↵erent allowed edit operations which have been specifically tailored for the application

context. However, it is important to point out that most of available metrics are based on

the natural assumption that identical symbols among strings represent identical information,

whereas di↵erent symbols introduce, in a way or another, some form of di↵erentiation.

Let s = AAABCD and t = 111234: any standard metric would state that they are

completely di↵erent. Nevertheless, there are cases (like the one shown above) in which

symbol identity seems to be not enough. In fact, even if there are no common symbols

between two strings, it could happen that they somehow represent similar information.

What happens if we strongly believe that there is some underlying matching between
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two strings that apparently have di↵erent symbols but similar structures? As an example,

consider two strings s and t and assume that they are generated by heterogeneous data

streams, derived from two di↵erent ways of measuring the same reality; think, for instance,

of two sensors one measuring light and the other measuring temperature. The values, the

scales and the meaning of the two sensors may be very di↵erent, but, if sensors are near

to a fire, light can be influenced by temperature, and vice versa. To properly monitor

this last event, we should, then, be able to understand the correlations between these

two heterogeneous measurements. As a further example, suppose that s and t have been

deliberately manipulated in such a way as to appear dissimilar, even if their meaning is

actually identical - think, for instance, of code cloning techniques [67]. In these cases,

the necessity arises of a suitable metric capable of capturing hidden correlations between

strings. This metric should take in account that di↵erent symbols in the involved strings

may express similar concepts.

2.5 Related work

String similarity computation has been a challenging issue in the past literature, and several

attempts to face this problem have been presented. However, most of the literature gener-

alizing classical approaches with parameterized alphabets focuses on the pattern matching

problem (starting from [10]), where the objective is to seek (exact or approximate) occur-

rences of a given pattern in a text. This is the context in which parameterized strings were

introduced. Here, some of the symbols act as parameters that can be properly substituted

at no cost; in approximate pattern matching, patterns have a parameterized match with a

text if at most k mismatches occur [77].

A seminal work on this topic is presented in [10]. The approach described in this

paper compares parameterized strings. It considers bijective global transformation functions

allowing exact p-matches only. This means that the two strings to match must have the

same length; thus, no substitutions or insertions are allowed.

Mismatches are allowed in [57], where the authors face the problem of finding all the

locations in a string s for which there exists a global bijection ⇡ that maps a pattern p

into the appropriate substring of s minimizing the Hamming distance. From the function

viewpoint, injective functions, instead of bijective ones, are considered in [6].
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String matching has been extensively used for the clone detection problem, i.e., to check

if a code contains two or more cloned parts. In [67], a token-based code clone detection

approach is presented. Here, matches between strings are carried out by using a su�x-tree

algorithm. The code is tokenized by only one parameter; thus, a match is represented by a

one-to-many mapping.

The work in [5] introduces the concept of generalized function matching applied to the

pattern matching problem in several contexts, like image searching, DNA analysis, poetry

and music analysis, etc.

The authors in [44] carry out a comprehensive complexity analysis of the pattern match-

ing problem with parameters (called variables in this paper) with several configurations (e.g.,

exploiting injective or non-injective functions, allowing or disallowing deletions, etc.). They

show that most of the considered variants are NP-complete problems. A detailed survey on

parameterized matching appears in [83].

Moving towards string similarity computation, a relevant research issue regards the

longest common subsequence problem (hereafter, LCS) and its parameterized versions.

Some interesting approaches to facing this problem can be found in [16], [92], and [69].

Specifically, in [16], the definition of arc-annotated sequences is used, [92] considers the

gapped version of LCS, whereas in [69] the parameterized version of the LCS problem is

considered. Interestingly, LCS allows only insertions and deletions, but no substitutions.

String similarity metrics present important overlap with approximate pattern match-

ing, since one can determine the distance between two strings asking whether there exists

an approximate pattern matching with at most k mismatches. However, having a direct

approach for measuring the parameterized distance provides obvious benefits.

Few works consider the problem of parameterized distances between strings. In [11], the

notion of p-edit distance is introduced. It focuses on the edit distance, where allowed edit

operations are insertions, deletions and exact p-matches. Mismatches are not allowed. Fur-

thermore, two substrings that participate in two distinct exact p-matches are independent

of each other, so that mappings have local validity over substrings not broken by insertions

and deletions. In particular, within each of these substrings, the associated mapping func-

tion must be bijective. The work presented in [69] extends the approach proposed in [11]

by requiring the transformation function to have a global validity; however, it still limits

the set of allowed edit operations (in particular, substitutions are not possible).
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The work in [50] is based on the approach proposed in [10]; it introduces an order-

preserving match, but it limits the number of mismatches to k. In [54], a preliminary

approach to a many-to-many mapping function for string alignment can be found; it com-

putes alignments between two parameterized strings and gives preferences to alignments on

the basis of the co-occurrence frequency.

Moreover, it is worth to recall that edit distance has been exploited in the problem

of sequence alignment in the bioinformatics context. Here, two symbolic representations

of DNA or protein sequences are aligned in order to identify regions of similarity. The

comparison aims at looking for evidence that two sequences have diverged from a common

ancestor by a process of mutation and selection [39]. Classical edit operations here are

intended as the basic mutational processes that are insertions and deletions (also called

gaps), which add or remove residues, and substitutions, which change residues in a sequence.

Alignments in pairwise alignment are scored by the sum of terms for each aligned pair of

residues and each aligned residue pair is scored by using a scoring matrix. Scoring matrices,

also called substitution matrices, are matrices which store the score assigned to a pair

of aligned residues. Two main categories of scoring matrices exist in literature, namely

(i) position-independent and (ii) position-specific scoring matrices. The former category

includes well-known scoring matrices such as PAM and BLOSUM [60, 100], while the latter

includes scoring matrices used in protein BLAST [4]. Scoring matrices in both categories

are defined upon specific alphabets, e.g., nucleotides or amino acids, and over homogeneous

sequences, thus the heterogeneous case is not applicable.
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Chapter 3

Generalizing identity-based string

comparison metrics

3.1 Introduction

In this chapter, we formally introduce the theoretical foundation of our work. In particular,

we define and analyze the framework F, which is intended to generalizing identity-based

string similarity metrics. We first give the formal basis by defining important preliminary

concepts and then we introduce matching schemas and generalized metric functions, which

are the main ingredients for the framework F. Finally, we show how the introduced frame-

work can be exploited to generalize some notable string similarity metrics. Each section is

correlated by various examples.

Part of the work proposed in this chapter has been published in [30].

3.2 Preliminaries

In a general context, let ⇧
1

and ⇧
2

be two (possibly disjoint) alphabets of symbols and let

s
1

and s
2

be two strings defined over ⇧
1

and ⇧
2

, respectively. We denoted the length of a

string s, i.e., the number of its symbols, by len(s
1

). We refer to a symbol in s by accessing

its position: for each position 1  j  len(s), the j-th symbol of s will be identified by

si[j] and we will denote the substring of s starting at position x and ending at position y

as s[x..y].

In order to define the basis for the framework F, we need further concepts. The idea is
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to use a special concept called matching schema which intuitively represents how di↵erent

combinations of the alphabets ⇧
1

and ⇧
2

can be combined via matching. A matching

schema is extremely important for the definition of F.

Definition 1 (⇡-partition) Given an alphabet ⇧ and an integer ⇡ such that 0 < ⇡  |⇧|,

a ⇡-partition is a partition �⇡ of ⇧ such that 0 < |�v|  ⇡, for each �v 2 �⇡. ⇤

Definition 2 (h⇡
1

,⇡
2

i-matching schema) Given two alphabets ⇧
1

and ⇧
2

and two inte-

gers ⇡
1

and ⇡
2

, a h⇡
1

,⇡
2

i-matching schema is a functionMh⇡1,⇡2i : �
⇡1
1

⇥�⇡2
2

! {true, false},

where �⇡ii (i 2 {1, 2}) is a ⇡i-partition of ⇧i and, for each �v 2 �⇡1
1

(resp., �w 2 �⇡2
2

), there

is at most one �w 2 �⇡2
2

(resp., �v 2 �⇡1
1

) such that M(�v,�w) = true. This means that

all the symbols in �v match with all the ones in �w. M(�v,�w) = false indicates that all

the symbols in �v mismatch with all the ones in �w. ⇤

Intuitively, a ⇡-partition �⇡ is a subset of P(⇧) where each subset �v 2 �⇡ contains

at most ⇡ symbols from ⇧ and for each �v,�w 2 �⇡,�v \ �w = ;, i.e., they contain

no common symbols. Using two ⇡-partitions, given two strings s
1

and s
2

defined over

two alphabets ⇧
1

and ⇧
2

, a h⇡
1

,⇡
2

i-matching schema states which symbols of s
1

can be

considered matching with symbols of s
2

. It is essential to note that many-to-many matching

are actually expressed with ⇡-partitions and at the same time they disallow ambiguous

matchings.

Example 1 Let ⇧
1

= {A,B,C,D} and ⇧
2

= {E,F,G,H}. Let s
1

= AAABCCDCAA and

s
2

= EEFGHGGFHH. The values of ⇡
1

and ⇡
2

define the cardinality of each subset in a ⇡-

partition. For ⇡
1

= ⇡
2

= 2, one (of the many) possible matching schemas is {{A,B}-{E,H},

{C,D}-{G,F}}. Note that here {A,B}-{E,H} means that symbols A and B match with

symbols E and H. As a further example, having ⇡
1

= ⇡
2

= 1, a possibile matching schema

is {{A}-{E}, {B}-{G}, {C}-{F}, {D}-{H}}.

It is interesting to point out that, given ⇧
1

, ⇧
2

, ⇡
1

and ⇡
2

, many possible matching

schemas can be defined. However, in some contexts, it may be useful to limit valid matching

schemas via some constraints (a real example is given in Section 6.3). In order to provide

this possibility, the following definition formally introduces both the notions of constraint(s)

over a matching schema and constrained matching schema.
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Definition 3 (h⇡
1

,⇡
2

,�i-constrained matching schema) A constraint � associated with

a matching schema Mh⇡1,⇡2i is a set of unordered pairs of symbols (ci, cj), such that ci 2 ⇧1

,

cj 2 ⇧2

and, for each (ci, cj) 2 �, there exists no pair (�v,�w), �v 2 �
1

⇡1 ,�w 2 �
2

⇡2 , hav-

ing ci 2 �
1

, cj 2 �
2

and M(�
1

,�
2

) = true. A h⇡
1

,⇡
2

,�i-constrained matching schema is

represented by Mh⇡1,⇡2,�i only if � 6= ;. ⇤

Example 2 Continuing the Example 1, suppose we have � = {(B,H), (C,F)}, the matching

schema represented by {{A,B}-{E,H}, {C,D}-{G,F}} is no more valid, whereas the matching

schema represented by {{A,B}-{E,F}, {C,D}-{G,H}} is.

Throughout the whole thesis, whenever it is clear from the context, for the sake of

simplicity, we avoid to write Mh⇡1,⇡2,�i and we simply denote it by M .

The generalizability of the framework F is based on the fact that it can generalize any

string metric based on the assumption of symbol identity. Therefore, in defining it, we are

not interested in a particular function specification, rather in a generalization of a metric

function.

Definition 4 (Generalized metric function) Given a metric function f(·, ·), based on

symbol identity, and given a valid constrained matching schema M , the generalized metric

function fMh⇡1,⇡2,�i(·, ·) (or simply fM (·, ·)) is obtained from f(·, ·) by substituting symbol

identity with the symbol matchings defined in M . ⇤

Having a generalized metric function, we now need to formally define the result of the

application of it, i.e., the distance given by the application of the metric. In this case, the

obtained distance depends on M and f .

Definition 5 (Generalized distance) Given two strings s
1

and s
2

over ⇧
1

and ⇧
2

, re-

spectively, and given the set M of valid constrained matching schemas, the generalized

distance F (s
1

, s
2

) between s
1

and s
2

returns the minimum value returned by fM (s
1

, s
2

)

that can be obtained by taking any possible matching schema M of M. Formally:

F (s
1

, s
2

) = min
Mh⇡1,⇡2,�i2M

{fM (s
1

, s
2

)}.

⇤
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Finally, we defined all of the bricks needed in order to build the framework F. In

Section 3.3 we formally define the framework and we give the intuition behind it.

3.3 The framework

Thanks to the definitions in Section 3.2, we are now able to present our framework F. It

consists of a quintuple:

F = h⇧
1

,⇧
2

, h⇡
1

,⇡
2

,�i,M, fM (·, ·)i

where ⇧
1

and ⇧
2

are the alphabets on which the strings under consideration are defined,

h⇡
1

,⇡
2

,�i are the parameters necessary to define valid matching schemas, M is the set of

all the valid constrained matching schemas over ⇧
1

and ⇧
2

, and fM (·, ·) is the generalized

metric function. When applied on two strings s
1

and s
2

over the alphabets ⇧
1

and ⇧
2

,

respectively, F returns the value of F (s
1

, s
2

), where F (s
1

, s
2

) is the generalized distance of

s
1

and s
2

over f(·, ·) and M.

3.4 Generalization of notable string similarity metrics

In the previous sections, we introduced our framework F, which paves the way to a quite

general computation of string (dis)similarity. We are now ready to show that F is general

enough to encompass several classical and notable string similarity metrics. Our idea is to

first show that a particular specialization of F includes both character-based and token-based

distances; starting from this, we show that F can also be specialized to more sophisticated

comparison approaches, such as parameterized pattern matching proposed in [10].

Proposition 1 Given the following specialization of F:

1. ⇡
1

= ⇡
2

= 1;

2. � = {(ci, cj)|ci 2 ⇧1

, cj 2 ⇧2

, ci 6= cj};

then, fM (·, ·) = f(·, ·) for all the metric functions f(·, ·) based on symbol identity. ⇤

The reason behind the Proposition 1 is that, intuitively, with ⇡
1

= ⇡
2

= 1, the cardinality

of each matching subset is equal to 1, i.e., we admit only one-to-one symbol matchings.
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Furthermore, with the provided construction of �, only symbol identities are allowed. As a

consequence, there is only one valid matching schema Mh1,1,�i, which is the one stating that,

for each pair (�v,�w),�v 2 �⇡1
1

and �w 2 �⇡2
2

, M(�v,�w) = true if and only if �v = �w.

This matching schemas simulates symbol identity specification for the generalized metric

functions based on symbol identities.

In the following subsections, we show how our framework F, according to Proposition 1,

can be used to generalize some notable string similarity metrics.

3.4.1 Edit Distance

In its simplest form, the edit distance between two strings s
1

and s
2

is the minimum

number of edit operations (insertions, deletions or substitutions) of single characters needed

to transform s
1

into s
2

, where each operation has a cost equal to 1 [75]. This version of

the edit distance is also referred to as Levenshtein distance. A basic algorithm for edit

distance computation exploits a dynamic programming approach; in it, the choice of the

edit operation is carried by a recurrence formula, where the discriminating factor is based

on the question “Is s
1

[i] = s
2

[j]?”.

If our framework F is applied, this question is substituted by the question “According to

M , symbols s
1

[i] and s
2

[j] should be matched?”. As specified by Proposition 1, according to

the specialization defined therein, this question is equivalent to asking for symbol identity.

3.4.2 A�ne Gap Distance

The a�ne gap distance metric [116] is similar to the edit distance, except for the fact that

it introduces two extra edit operations, i.e., open gap and extend gap. In this way, the

cost of the first insertion (gap opening) can be di↵erent from, and is usually higher than,

the cost of adding consecutive insertions (gap extensions). Similarly to the edit distance,

the discriminating factor in computing the a�ne gap distance is based on the question

“Is s
1

[i] = s
2

[j]?”. When applying our framework F with the specialization introduced in

Proposition 1, this question is substituted by the one “According to M , symbols s
1

[i] and

s
2

[j] should be matched?”, which has been shown to be equivalent to asking for symbol

identity.
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3.4.3 Smith-Waterman Distance

The Smith-Waterman distance [104] is an extension of both the edit distance and the a�ne

gap distance, in which mismatches at the beginning and the end of strings have lower costs

than mismatches in the middle. This metrics allows for substring matchings and is well

suited for fitting shorter strings into longer ones. Also in this case, the basic resolution

schema exploits dynamic programming, where the discriminating factor in the recurrence

formula is the question “Is s
1

[i] = s
2

[j]?”.

3.4.4 Jaro Distance Metric

The Jaro distance metric, introduced in [65], is based on the concepts of common characters

and transpositions.

Given two strings s
1

and s
2

, two symbols s
1

[i] and s
2

[j] are common characters when

s
1

[i] = s
2

[j] and |i� j|  1

2

min{len(s
1

), len(s
2

)}. Given the i-th common character a in s
1

and the j-th common character b in s
2

, if a 6= b this is a transposition.

The Jaro distance value is, then, computed as:

Jaro(s
1

, s
2

) =
1

3

 

c

len(s
1

)
+

c

len(s
2

)
+

c� 1

2

t

c

!

where c is the number of common characters and t is the number of transpositions.

The characteristics of the Jaro distance metric clearly di↵er from the ones of the afore-

mentioned metrics. However, as a common core for the definitions of common character

and transposition, there is, again, symbol equality, where the discriminating question is “Is

s
1

[i] = s
2

[j]?”.

Also in this case, it is easy to show that substituting this question with the one “Ac-

cording to M , symbols s
1

[i] and s
2

[j] should be matched?”, under the specialization of

Proposition 1, makes the two settings equivalent.

3.4.5 Atomic Strings

In atomic strings [86], the comparison shifts away from single character to longer strings. In

particular, s
1

and s
2

are tokenized by punctuation characters. Each token is called atomic

string. Two atomic strings match if they are equal or if one is a prefix of the other. The
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similarity between s
1

and s
2

is, then, computed as the fraction of the atomic strings that

match.

Observe that, even if this metrics moves from the comparison of single characters to

the one of substrings, the basic operation used to identify a matching for atomic strings is

the identity of sequences of single characters. As a consequence, the same considerations

outlined above when substituting the question “Is s
1

[i] = s
2

[j]?” with the one “According

to M , symbols s
1

[i] and s
2

[j] should be matched?” are still valid.

3.4.6 WHIRL

In [33] the cosine similarity is combined with the tf.idf weighting scheme in the WHIRL

system to compare pairs of strings in a set of records. In particular, each string s is separated

into words; a weight vs(w) is assigned to each word w of s, which depends on the number

tfw of times when w appears in s and on the fraction idfw of records containing w. The

cosine similarity between two strings s
1

and s
2

is, then, defined as:

sim(s
1

, s
2

) =
⌃wvs1(w) · vs2(w)
||vs1 ||2 · ||vs2 ||2

.

Despite the complexity of this metric, as for its application to our context, the most relevant

thing to observe is that both the tfw and the idfw components are based on the exact

occurrence of w in the string(s). As a consequence, again, when asking whether a word w is

contained into a string s, the basic question for the computation is “Is w[i] = s[j]?”, which,

as previously shown, can be simulated by the question “According to M , symbols w[i] and

s[j] should be matched?”, under the specialization of Proposition 1.

3.4.7 Q-grams with tf.idf

Q-grams with tf.idf [53] extends the metric adopted in WHIRL by using q-grams, instead

of words. This allows the management of spelling errors, the insertion and the deletion of

words. The computation setting is equal to the one of WHIRL; therefore, all considerations

about the specialization of F seen for WHIRL can be applied also to this metrics.
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3.4.8 Parameterized pattern matching

In [10], an approach to comparing strings over partially overlapping alphabets is proposed.

This approach, named parameterized pattern matching, aims at identifying pairs of strings

being equal except for a one-to-one symbol substitution. In particular, the alphabet of each

string si is partitioned in two alphabets, namely ⌃i and ⇧i, the former containing standard

symbols and the latter encompassing parameters. Parameters can be renamed at no cost.

Two such strings identify a parameterized match if one string can be obtained by renaming

the parameters of the other by means of a one-to-one function. This approach has been

shown to be particularly useful in code cloning identification.

Our framework can be specialized to accommodate parameterized pattern matching. In

fact, given two strings s
1

and s
2

, defined over the alphabets ⌃
1

[⇧
1

and ⌃
2

[⇧
2

, respectively,

consider the following specialization of F:

1. ⇡
1

= ⇡
2

= 1;

2. � = {(ci, cj)|ci 2 ⌃1

, cj 2 ⌃2

, ci 6= cj};

Let f(·, ·) be the Hamming distance (which, basically, is the edit distance allowing

symbol substitutions only). If F (s
1

, s
2

) = 0, then there is a parameterized matching between

s
1

and s
2

.

In particular, ⇡
1

= ⇡
2

= 1 constraints to one-to-one functions. The definition of � states

that the only valid match configuration between pairs of symbols in ⌃
1

and ⌃
2

is symbol

identity, whereas any symbol in ⇧
1

(resp., in ⇧
2

) can be matched at no cost, by means

of a one-to-one matching function, with any symbol of the other string. F (·, ·) finds the

minimum value of the Hamming distance, among all the possible one-to-one substitutions.

A value of this distance equal to 0 denotes that one string can be obtained by renaming

the parameters of the other by means of a one-to-one function and, consequently, that a

parameterized match holds.



Chapter 4

Multi-Parameterized Edit Distance

4.1 Introduction

In this chapter we formally define one of the most important result derived from the frame-

work F, showing how it can be applied to generalize a classic metric in such a way that

symbol identity is substituted by many-to-many symbol correlations, with respect to the

general idea and motivation behind it given in Chapter 1, where identifying the best match-

ing schema is part of the problem. Furthermore, this chapter focuses on studying in detail

all of the theoretical and practical implications of this generalization. We introduce the

Multi-Parameterized Edit Distance (MPED), which is a generalization of the classical edit

distance with the support of our framework. The MPED allows the computation of the

minimum edit distance between two strings, provided that finding the optimal matching

schema, under a set of constraints, is part of the problem. This chapter is organized as fol-

lows: in Section 4.2 we introduce some basic definitions and the definition of MPED. Then,

in Section 4.3 some examples are presented in order to give to the reader some insights

on the problem in instance. Finally, in Section 4.4 computational issues are discussed. In

particular, the NP-Hardness of the problem and a lower bound L are analyzed in depth.

Part of the work presented in this chapter is included in [30].

4.2 Definitions

Definition 6 (Transposition) Let s
1

and s
2

be two strings defined over the alphabets

⇧
1

and ⇧
2

. Let � be a symbol not included in ⇧
1

[ ⇧
2

. Then, a string s̄i over ⇧i [ {�}
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(i 2 1, 2) is a transposition of si if s̄i can be obtained from si by deleting all the occurrences

of �. The set of all the possible transpositions of si is denoted by T R(si). ⇤

Definition 7 (Alignment) An alignment for the strings s
1

and s
2

is a pair hs̄
1

, s̄
2

i, where

s̄
1

2 T R(s
1

), s̄
2

2 T R(s
2

) and len(s̄
1

) = len(s̄
2

). Here, � is meant to denote an inser-

tion/deletion operation performed on s
1

or s
2

. ⇤

Definition 8 (Match and distance) Let hs̄
1

, s̄
2

i be an alignment for s
1

and s
2

, letMh⇡1,⇡2,�i

be a h⇡
1

,⇡
2

,�i-constrained matching schema over ⇡-partitions �⇡1
1

and �⇡2
2

and the set of

constraints �, and let j be a position with 1  j  len(s̄
1

) = len(s̄
2

). We say that hs̄
1

, s̄
2

i

has a match at j if:

• s
1

[j] 2 �v, s2[j] 2 �w, �v 2 �⇡1
1

, �w 2 �⇡2
2

and Mh⇡1,⇡2,�i(�v,�w) = true.

The distance between s̄
1

and s̄
2

under Mh⇡1,⇡2,�i is the number of positions at which the

pair hs̄
1

, s̄
2

i does not have a match. ⇤

Given the previous definitions, we can introduce the notion of Multi-Parameterized Edit

Distance between two strings s
1

and s
2

as follows:

Definition 9 (Multi-Parameterized Edit Distance - MPED) Let ⇡
1

and ⇡
2

be two

integers such that 0 < ⇡
1

 |⇧
2

| and 0 < ⇡
2

 |⇧
1

|; the Multi-Parameterized Edit Distance

between s
1

and s
2

(Lh⇡1,⇡2,�i(s1, s2), for short) is the minimum distance that can be obtained

with any h⇡
1

,⇡
2

,�i-constrained matching schema and any alignment hs̄
1

, s̄
2

i.

Formally:

FL = h⇧
1

,⇧
2

, h⇡
1

,⇡
2

,�i,M,LM (·, ·)i

and

FL(s1, s2) = Lh⇡1,⇡2,�i(s1, s2) = min
Mh⇡1,⇡2,�i2M

{LM (s
1

, s
2

)}.

where L(·, ·) is the classical edit distance. ⇤

Observe that, in order to properly compute Lh⇡1,⇡2,�i(s1, s2), several components play a

crucial role, namely:
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• ⇡
1

and ⇡
2

, which determine the (maximum) size of each partition;

• ⇡-partitions �⇡1
1

and �⇡2
2

; in fact, there can be many ⇡-partitions for the same set of

⇡
1

, ⇡
2

, ⇧
1

, and ⇧
2

;

• matching schemas Mh⇡1,⇡2,�i, which determine the way to combine partitions of dif-

ferent sets via matching;

• alignments; in fact, there can be many possible alignments between two strings.

Moreover, note how � plays a crucial role in the computation of MPED. In fact, when �

is not empty, it means that additional information about which symbols should not match

is injected in the computation. In order to reinforce this concept and to point out that

some a priori knowledge might be available, even if not complete, we enrich the notion of

MPED with a particularly common case, i.e., when identical symbols should be considered

as matching anyway, yet allowing many-to-many matching in the matching schema. We

call this specific case Semi Blind Multi-Parameterized Edit Distance and we formally define

it enriching Definition 8 as follows:

Definition 10 (Semi-Blind Multi-Parameterized Edit Distance - MPED
SB

) The Semi-

Blind Multi-Parameterized Edit Distance (MPED
SB

for short) is obtained from MPED by

considering a match between hs
1

, s
2

i at j if (cfr Definition 8):

• s
1

[j] 2 �v, s2[j] 2 �w, �v 2 �⇡1
1

, �w 2 �⇡2
2

and Mh⇡1,⇡2,�i(�v,�w) = true,

• s
1

[j] = s
2

[j].

Observe that this concept might be further generalized with matchings that should always

hold (as opposit to constraints, specifying matchings that must not hold). However, this is

a less interesting case, in practice.

4.3 Examples

Example 3 Let s1 = AAABCCDCAA and s2 = EEFGHGGFHH, which determines ⇧
1

=

{A,B,C,D} and ⇧
2

= {E,F,G,H}. For ⇡
1

= ⇡
2

= 1, the best alignment hs̄
1

, s̄
2

i that can

be computed is obtained by matching {A}-{E}, {B}-{G}, {C}-{H}, and {D}-{F}. The

aligment:
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s
1

: AAABCCDDCAA ! AAABCCDDCAA

s
2

: EEFGHGGFHH ! EEFGHGGFH-H

** ** **

gives Lh1,1i(s1, s2) = 5. Observe that this approach works properly even if ⇧
1

\⇧
2

= ; and

the input strings have di↵erent lengths.

If we set ⇡
1

= ⇡
2

= 2, the best alignment is the one obtained by matching {B,A}-{E,H},

and {C,D}-{G,F}, namely:

s
1

: AAABCCDDCAA ! AAABCCDDCAA

s
2

: EEFGHGGFHH ! -EEFGHGGFHH

** * *****

which gives Lh2,2i(s1, s2) = 3.

Suppose, now, to introduce the constraint � = {hA,Ei}. For ⇡
1

= ⇡
2

= 1, the best

alignment hs̄
1

, s̄
2

i is the following:

s
1

: AAABCCDDCAA ! AAABC-CDDCAA

s
2

: EEFGHGGFHH ! --EEFGHGGFHH

** *****

which still gives Lh1,1,�i(s1, s2) = 5, but where A and E do not match anymore. Optimal

matchings are, in fact, {A}-{H}, {B}-{E}, {C}-{F}, and {D}-{G}. ⇤

4.4 Computational issues: complexity

4.4.1 NP-Hardness

After having defined MPED, it is important to analyze its properties. We start by de-

termining its computational complexity. The specialization of F provided in Proposition 1

ensures that, in that case, there exists only one valid matching schema in M, and this can be

easily derived by construction. However, in general, M could contain n matching schemas;

each matching schema Mh⇡1,⇡2,�i 2 M could match ⇡
1

symbols of ⇧
1

with ⇡
2

symbols of ⇧
2

;

furthermore, for each matching schema, several alignments between s
1

and s
2

are possible.

In this section, we show that the general problem of computing MPED is NP-Hard.
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Theorem 1 The problem of computing Lh⇡1,⇡2,�i(s1, s2) is NP-Hard.

Proof.

This theorem can be proven by performing a reduction from the three-dimensional

matching problem (hereafter, 3DM) [48]. First recall that 3DM is defined as follows:

Let X, Y and Z be finite and disjoint sets, and let M be a subset of X ⇥ Y ⇥ Z.

That is, M consists of triples hXi, Yi, Zii such that Xi 2 X, Yi 2 Y , and Zi 2 Z.

Now, M 0 ✓ M is a 3DM if, for any two distinct triples hX
1

, Y
1

, Z
1

i 2 M 0
and

hX
2

, Y
2

, Z
2

i 2 M 0
, we have X

1

6= X
2

, Y
1

6= Y
2

, and Z
1

6= Z
2

.

The decision problem is, then, stated as follows: given a set M and an integer k, decide

whether there exists a 3DM M 0 ✓ M such that |M 0| � k.

Let us, now, turn to the reduction. Let Mi indicate the i-th triple in M and let q = |M |.

Let ⇧
1

= X [ Y [ Z [ ⌃ and ⇧
2

= {Mi} [ ⌃, where the pairs (Xi,Mj) (resp., (Yi,Mj),

(Zi,Mj)) are not constrained, i.e., any of these pairs can possibly match.

For each triple Mi, ⌃ contains the set of symbols {ci1 . . . ciq , ti1 . . . ti7 , mi1 . . .mi7}; the

set of constraints � is constructed in such a way as to allow symbol identity only among

the symbols in {ci1 . . . ciq , ti1 . . . ti7 ,mi1 . . .mi7}.

Then, starting from M , we build the following strings:

s
1

= �
1

c
11 c

12 · · · c
1

q

�
2

c
21 c

22 · · · c
2

q

· · · �q cq1 cq2 · · · cq
q

s
2

=  
1

c
11 c

12 · · · c
1

q

 
2

c
21 c

22 · · · c
2

q

· · ·  q cq1 cq2 · · · cq
q

where, for each triple Mi, the “blocks” �i and  i have the form:

ti1 Xi ti2 ti3 ti4 Yi ti5 ti6 ti7 Zi

Mi mi1 mi2 Mi mi3 mi4 mi5 Mi mi6 mi7

To clarify this construction, consider the set M = {hX
1

, Y
2

, Z
2

i, hX
2

, Y
1

, Z
1

i, hX
3

, Y
2

, Z
3

i,

hX
3

, Y
3

, Z
4

i}. The first triple generates the following portions of strings:
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s
1

= t
11 X

1

t
12 t

13 t
14 Y

2

t
15 t

16 t
17 Z

2

c
11 c

12 c
13 c

14 · · ·

s
2

= M
1

m
11 m

12 M
1

m
13 m

14 m
15 M

1

m
16 m

17 c
11 c

12 c
13 c

14 · · ·

Observe that, without any edit operation on s
1

and s
2

, the ci1 · · · ciq blocks match, whereas

all the other blocks (each consisting of 10 symbols) do not match. As a consequence, without

any edit operation, the distance between the two strings is d = 10 · q. For instance, in the

previous example, the initial distance is d = 40.

Assume, now, that we are interested in computing Lh⇡1,⇡2,�i(s1, s2), where ⇡1 = 1 and

⇡
2

= 3. In other words, assume that each parameter in s
1

can match at most one parameter

in s
2

1, whereas each parameter in s
2

can match up to 3 parameters in s
1

2.

First we focus on the alignment of the blocks �i and  i; it is easy to see that, if these

blocks are considered in isolation, the only way to reduce their edit distance is to assign

both Xi, Yi, and Zi to Mi in the matching schema and align them as follows:

ti1 Xi ti2 ti3 ti4 Yi ti5 ti6 ti7 Zi � �

� Mi mi1 mi2 � Mi mi3 mi4 mi5 Mi mi6 mi7

In this case, the distance between these two blocks becomes 9.

It is easy to check that, if at least one among Xi, Yi, and Zi is not associated with Mi

in the matching schema, or a di↵erent alignment is carried out among blocks, the obtained

distance is greater than or equal to 10. As a consequence, the corresponding choice is not

convenient on the global perspective of finding the minimum edit distance.

Now, observe that the role of the blocks ci1 · · · ciq is exactly to isolate the �i- i blocks;

in fact, it is easy to verify that it will be never convenient to perform insertions and deletions

within these blocks, since these operations would increase the overall distance.

In conclusion, Lh⇡1,⇡2,�i(s1, s2) is obtained in correspondence of the matching schema

that selects the maximum number of disjoint triples. The number of these triples can be

determined by the decrease of the initial distance (each selected triple implies that distance

decreases by 1). As a consequence, given a set M , such that |M | = q, and an integer k,

deciding whether there exists a 3DM M 0 ✓ M such that |M 0| � k corresponds to checking

1This corresponds to say that each X
i

(resp., Y
i

, Z
i

) can be selected in at most one triple.
2This is needed to accommodate the triple hX

i

, Y
i

, Z
i

i in M
i

.
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whether Lh⇡1,⇡2,�i(s1, s2)  10 · q � k, with ⇡
1

= 1 and ⇡
2

= 3. This implies that 3DM

can be reduced to the computation of Lh⇡1,⇡2,�i(s1, s2) and, therefore, that this last task is

NP-Hard. ⇤

4.4.2 A lower bound L

The intractability of the problem of computing Lh⇡1,⇡2,�i(s1, s2) points out the need of

heuristic approaches for its solution. In this context, it is highly useful to establish a lower

bound L for d⇤ = Lh⇡1,⇡2,�i(s1, s2) that could be computed in polynomial time; indeed, L

could be used to evaluate the quality of the results returned by heuristic approaches.

First, we start with the definition of a lower bound L for d⇤ when ⇡
1

= 1 and ⇡
2

= 1,

and, then, we generalize it to any value of ⇡
1

and ⇡
2

. We point out that the computation

of L is not a trivial task even for the case when ⇡
1

= 1 and ⇡
2

= 1; in fact, a trivial lower

bound could be easily set to 0, but a useful value for L should approximate d⇤ as much as

possible.

Given two strings s
1

and s
2

over ⇧
1

and ⇧
2

, respectively, our goal is to characterize

d⇤ as precisely as possible by estimating the role, in the computation of d⇤, of each pair of

symbols (a, b) such that a 2 ⇧
1

and b 2 ⇧
2

, without the need of computing the optimal

matching schema first. Unfortunately, the role played by each pair (a, b) is not independent

of the matchings of the other pairs of symbols included in the optimal matching schema. In

particular, it is not possible to compute the exact role played by (a, b) without preliminarily

fixing the whole matching schema.

As a consequence, our aim is to estimate d⇤ on the basis of an estimation of the maximum

number of potential matchings between pairs of symbols, given a maximum number of

insertions and deletions (indels, in the following) performed on s
1

or s
2

.

Without loss of generality, to simplify the presentation, in the following, we assume that

|⇧
1

| = |⇧
2

| = p and len(s
1

) = len(s
2

) = l.

To describe our approach for the computation of L, we observe that d⇤ could be written

as:

d⇤ = l + �⇤ � µ⇤

where �⇤ is the number of indels present in the optimal alignment hs̄
1

, s̄
2

i, and µ⇤ is the



50 CHAPTER 4. MULTI-PARAMETERIZED EDIT DISTANCE

number of matches present in hs̄
1

, s̄
2

i. In the following, we will denote as hs̄
1

, s̄
2

i� the

optimal alignment that can be obtained allowing at most � indels.

Clearly, �⇤ and µ⇤ are not known a priori. However, we can polynomially simulate the

computation of d⇤ as follows: for increasing values � of indels we estimate the number µ� of

matches that can be obtained. The minimum value of the formula l + � � µ� is, then, the

best estimation of d⇤. Formally:

L = min
�2[0..l/2]

{l + � � µ�}

Now, given a maximum number � of indels allowed in the alignment, we compute µ� by

estimating the number of potential matches !�(a, b) for each pair of symbols (a, b) in the

corresponding alignment hs̄
1

, s̄
2

i� as follows:

!�(a, b) = min

 

l
X

i=1

(a, b, s1[i], s2[i� �..i+ �]),
l
X

i=1

(a, b, s1[i� �..i+ �], s2[i])

!

where (a, b, substr
1

, substr
2

) returns 1 if a appears in the substring substr
1

and b appears

in the substring substr
2

, 0 otherwise.

Observe that !�(a, b) is actually an overestimation of the true number of matches be-

tween a and b in hs̄
1

, s̄
2

i� because it is not guaranteed that a and b are aligned in hs̄
1

, s̄
2

i�
every time they have been counted as a match.

Armed with the values of !�, we can compute µ� as follows. First, we construct a

(complete) bipartite weighted graph G� = (V, U,E,!�), where each vertex in V (resp. U)

is a symbol of ⇧
1

(resp. ⇧
2

). Then, we compute a maximum weighted matching M� on G�

as follows:

µ� =
X

!�(a, b) s.t. (a, b) 2 M�

Observe that the computation of the maximum weighted matching simulates the con-

struction of the valid matching schema that allows the highest number of matches.

Once these two tasks have been performed, it is possible to state the following proposi-

tion:

Proposition 2 L = min�2[0..l/2]{l + � � µ�} is a lower bound for d⇤ = Lh⇡1,⇡2,�i(s1, s2) =
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l + �⇤ � µ⇤, that is L  d⇤.

Proof

To show that L  d⇤, we must quantify the di↵erence between the first and the second

term of the inequality.

We start by characterizing µ� and we show that it is monotonically increasing. In fact, µ�

is obtained by counting the co-occurrences of each pair of symbols appearing in a window of

size 2·�+1, as the substrings considered by  are s
2

[i��..i+�] and s
1

[i��..i+�], respectively.

Clearly, enlarging the window will never produce a decrease of the co-occurrences.

Given the value �⇤ of � for the optimal solution, µ�⇤ � µ⇤. In fact, we have shown that

the estimation of the matchings computed by µ� is, actually, an overestimation of the real

matchings that can be obtained. Unfortunately, the real value of �⇤ cannot be determined

without deriving the exact solution.

Now, since l+�⇤�µ⇤ is the minimum value that can be obtained from the exact solution,

it follows that min�2[0..l/2]{l + � � µ�}  l + �⇤ � µ⇤, since �⇤ 2 [0..l/2]. This proves the

proposition. ⇤

Extension to generic values of ⇡
1

and ⇡
2

The philosophy underlying the computation

of L for generic values of ⇡
1

and ⇡
2

does not change w.r.t. the case when ⇡
1

= 1 and ⇡
2

= 1,

examined in detail above. The only di↵erence is that the computation of the maximum

weight matching must be substituted by the computation of ⇡-partitions for ⇧
1

and ⇧
2

on the bipartite graph such that: (i) arcs within the ⇡-partitions are all considered in the

computation of µ�, and (ii) µ� is maximum.
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Chapter 5

Attacking the giant: heuristic

approaches

5.1 Introduction

In Section 4.4 we discussed NP-Hardness of the computation of MPED, where the hardness

of finding the optimal matching schema is part of problem. Obviously a naive approach is

intractable even for smaller values of parameters such as |⇧
1

| and |⇧
2

|. Thus, a heuristic

approach is needed. This chapter focuses exactly on the heuristics designed and developed

for the computation of the MPED.

We start this chapter by drawing a global view on heuristics in general. Instead of run-

ning around in the dark, our research direction was that of implementing various heuristics

in order to approach the problem while minimizing the e↵ort. Thus, we decided to make use

of a tool called HeuristicLab, that is an environment in which di↵erent already implemented

heuristics can be used. When we discovered this tool, it sure was surprising and allowed

us to concentrate rather on problem design, i.e., how to fit the problem in the settings of

HeuristicLab, than on implementing heuristics by ourselves, which surely requires a huge

amount of time resource. However, we decided to implement some of the studied heuristics

in order to gather a better performance and a interoperable ad-hoc and stand alone version.

Various heuristics, belonging to di↵erent families of metaheuristics, have been tested in

HeuristicLab and have been compared together. This allowed us to finalize our global view

on heuristics and, by using the insights provided by the results, we decided to implement
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three metaheuristics, namely (i) Hill Climbing, (ii) Simulated Annealing and (iii) Evolu-

tion Strategy. The first two have been chosen because they are among the most exploited

heuristics in classical optimization problems, and we aimed to check whether a specialized

version for MPED could provide good results. They both belong to the family of local

search, also called neighbourhood-based search, and have been used in various contexts and

applications. Instead, evolution strategy belongs to the family of evolutionary algorithms,

where more notable genetic algorithms belong too. Evolution strategy draws inspiration

from the biological process of evolution, in which a population evolves through generations.

All of these heuristics have been selected for an ad-hoc implementations based on the fact

that the concept of matching schema essentially plays an important role. In the first two,

the set of matching schemas M is the set of candidate solutions and for each matching

schema M 2 M a neighbourhood can be extrapolated. In the evolution strategy context,

M still represents the set of candidate solutions, and a population, i.e., a subset of M, is

considered.

The rest of the chapter is organized as follows: the first global view on heuristics is

presented in Section 5.2. Analyzing the results, we pointed out some of the most promising

heuristics, thus ad-hoc implementations of hill climbing, simulated annealing and evolu-

tion strategy are presented and discussed respectively in Section 5.3.1, Section 5.3.2 and

Section 5.4.2. Hill climbing and simulated annealing have been compared together, due to

both being neighbourhood-based heuristics; for the evolution strategy, we implemented few

variants and compared themselves, also a comparison with hill climbing has been carried

out.

Part of the work presented in this chapter has been presented in [23, 25–27, 30, 107].

5.2 A global view on heuristics

Due to the NP-Hardness of the computation of MPED, an approach which exhaustively

enumerates every M 2 M is not properly feasible even for small cardinalities of the involved

alphabets ⇧
1

and ⇧
2

. Thus, we strongly rely on using heuristics in order to maintain

an acceptable trade-o↵ between the precision of a proposed solution and the time used to

compute it.

Initially, a starting point for the design and development of heuristics was that of
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neighbourhood-based heuristics, heuristics which solve computationally hard optimization

problem and are based on the concept of a solution and its neighbors, which are solutions

themselves. The core approach of a neighbourhood-based heuristic is to explore a so called

search space, i.e., the set of the canditate solutions for the problem, by starting at some

point, i.e., a solution, and then moving to another point by some sort of decisions or criteria.

In the case of MPED, the search space for an heuristic is defined by M, where a solution

is a matching schema M 2 M. A definition of a neighbourhood for a matching schema

M is needed. For example, one could define the neighbourhood of M a set N where each

M i 2 N di↵ers from M for at most one pair of match between two symbols.

Moreover, there are di↵erent families of heuristics which are di↵erent from the neighbourhood-

based approach. As an example, evolution strategy is a population-based metaheuristic

inspired by the natural idea of evolution and adaption. The idea is simple: a population

evolves through time by mutation or recombination, best individuals survive while worst

are discarded and the best of the best individuals will represent an optimal solution for the

problem.

We experimented di↵erent heuristics which have been tailored to the problem of com-

puting the MPED, in order to improve the e�ciency of heuristic-based computations. For

a preliminary view on heuristics, we exploited a tool called HeuristicLab [114], which is

a framework providing implementations of di↵erent heuristics. We adapted some of the

heuristics provided to the computation of MPED and compared them. The rest of this

section is dedicated to the aforementioned tool and comparisons.

5.2.1 HeuristicLab

HeuristicLab [114] (HL) is an optimization environment which is intended to provide a gen-

eral and reliable system for algorithm development, testing and analysis, by allowing users

the application of heuristic optimization methods on simple and complex problems. Heuris-

ticLab provides users a graphical user interface where main idea is to represent algorithms

as operator graphs which can be modified via drag-and-drop. Main features of HL can be

outlined as follows:

• Various problems and algorithms: many well-known heuristic algorithms and

optimization problems are already defined and implemented in HeuristicLab and can
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Figure 5-1: Applying a genetic algorithm for a vehicle routing problem. A video tour of
HL and further information can be found at https://dev.heuristiclab.com/trac.
fcgi/

be used or extended;

• Visual algorithm designer: a tool which can be used to model and extend opti-

mization algorithms;

• Experiment designer and result analysis: HeuristicLab allows users to define

and execute experiments by selecting algorithms, parameters and problems, providing

interactive charts for a graphical analysis of results;

• Parallel and distributed computing: the support of parallel execution of algo-

rithms both on multi-core or distributed systems is available.

Figure 5-1 represents a screenshot of HL showing a vehicle routing problem.

In our preliminary comparative benchmarks, we tried out various heuristics already

present in HL, which are local search, simulated annealing, genetic algorithm, o↵spring

selection genetic algorithm, genetic algorithm with an age-layered population structure, evo-

lution strategy and o↵spring selection evolution strategy. It is due to notice that together

with the comparisons of these heuristic, two additional heuristics were used in the experi-

ments, that are random-restart steepest ascent hill climbing and simulated annealing, both

of them implemented in C++.

Selected heuristics are di↵erent in the approach, albeit they all share the same goal,

https://dev.heuristiclab.com/trac.fcgi/
https://dev.heuristiclab.com/trac.fcgi/
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which is to find the most optimal M 2 M. Following paragraphs expose some details

regarding the heuristics. Detailing all of the possibile parameter setups for each heuristics

is beyond the scope of this thesis, thus we only briefly indicate core parameters values. The

interested reader can refer to [114] for further information.

Local Search Local search heuristic starts at some random starting point in the search

space, selects a sample of k neighboring solutions then evaluates those k solutions and

moves to the best one. The parameters for a local search heuristics are represented by the

sample size and maximum number of iterations. Table 5.1 shows the values for the specified

parameters.

Parameter Value

Sample Size |⇧
1

|+ |⇧
2

|

Table 5.1: Parameters for Local Search heuristic

Simulated Annealing The simulated annealing [71] implementation available in Heuris-

ticLab is quite configurable as it provides a variety of selectable cooling schedules in the form

of di↵erent annealing operators in addition to parameters for the number of inner iterations

per step as well as the overall maximum number of iterations. A detailed implementation-

independent introduction of the simulated annealing heuristic is presented in Section 5.3.2.

Table 5.2 shows the values for the specified parameters.

Parameter Value

Inner Iterations |⇧
1

|+ |⇧
2

|
Start Temperature 100
Annealing Operator exponential discrete double-value modifier

Table 5.2: Parameters for Simulated Annealing heuristic

Genetic Algorithm A genetic algorithm [85] (GA) is a population-based metaheuris-

tic inspired by natural selection that iteratively evolves a population of solution candidates

represented by genomes over a number of generations with nature-like operators such as mu-

tation, crossover and selection. In our experiment, we have observed that order-preserving

crossover operators work well for our problem, thus we used a partially matched crossover
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operator in combination with a cyclic crossover for all of the presented GA variants. Some

details about mutators (which are in common with Evolution Strategies) are available in

Section 5.4.2. Table 5.3 indicates the values for the specified parameters.

Parameter Value

Population Size 10(|⇧
1

|+ |⇧
2

|)
Mutators swap2, swap3
Crossover Operators partially matched, cyclic
Elites 1
Mutation Probability 5%
Selector proportional, with windowing

Table 5.3: Parameters for Genetic Algorithm heuristic

O↵spring Selection Genetic Algorithm O↵spring selection [1] is an extension to the

classical model of a Genetic Algorithm. It adds a selection step after reproduction that

truncates low quality crossover results before they ever become part of the new population

by comparing the new child’s fitness with its parents fitness. The idea is to prevent prema-

ture convergence by not drowning out good genes through improper crossover operations

and to adaptively steer selection pressure. O↵spring Selection GA o↵ers a moderate num-

ber of parameters available to setup. The maximum selection pressure signals premature

conversion of the GA and halts execution if the creation of o↵spring is failed; the success

ratio determines what fraction of the o↵spring has to outperform its parents; the compari-

son factor is used to determine if a child is successful based on the parent’s fitness and can

dynamic changed ver time. Table 5.4 shows values for the specified parameters.

Genetic Algorithm with an Age-Layered Population Structure A di↵erent mech-

anism to avoid premature convergence can be seen in an Age-Layered Population Struc-

ture [61] (ALPS). It works by assign all individuals in the population an age and having

individuals compete only within their own layer, but gradually ascend through the layers

to more mature individuals as they get older. Additionally, completely new individuals

are also generated periodically to replace the ones that aged out of the lowest age layer.

This approach aims to give fresh genes a fair chance to gradually mix into the population

avoiding them to get eliminated out of the gene-pool immediately. The number of layers

parameter indicates the number of age groups individual progress through. Table 5.5 shows
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Parameter Value

Population Size 10(|⇧
1

|+ |⇧
2

|)
Mutators swap2, swap3
Crossover Operators partially matched, cyclic
Elites 1
Mutation Probability 5%
Maximum Selection Pressure 200
Selected Parents 200
Comparison Factor 0
Lower Bound Comparison Factor 1
Upper Bound Success Ratio 1
O↵spring Selection Before Mutation false

Table 5.4: Parameters for O↵spring Selection Genetic Algorithm heuristic

values for the specified parameters.

Parameter Value

Population Size 10(|⇧
1

|+ |⇧
2

|)
Mutators swap2, swap3
Crossover Operators partially matched, cyclic
Elites 1
Mutation Probability 5%
Number of Layers 10
Selector generalized rank with pressure 4
Plus Selection false

Table 5.5: Parameters for Genetic Algorithm with ALPS heuristic

Evolution Strategy Evolution strategies are inspired by evolution and they rely primar-

ily on Mutation and Selection although it is also possible to include crossover operators. As

we will notice in Section 5.2.2, the evolution strategy algorithm implemented in HeuristicLab

resulted in a very promising approach, thus we decided to implement it as a stand-alone

version implemented in C++. A complete discussion on it is presented in Section 5.4.2. The

comparisons hereafter available refer to the HeuristicLab version; Table 5.6 shows values

for each available parameter.

O↵spring Selection Evolution Strategy O↵spring selection can be also applied to

evolution strategies. Context and properties remain unaltered. Table 5.7 presents value for

each available parameter.
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Parameter Value

Population Size 10(|⇧
1

|+ |⇧
2

|)
Mutators swap2, swap3
Parents Per Child 1
Plus Selection true

Table 5.6: Parameters for Evolution Strategy algorithm

Parameter Value

Population Size 10(|⇧
1

|+ |⇧
2

|)
Mutators swap2, swap3
Max. Selection Pressure 200
Comparison Facto .5
Success Ratio 1
Elites 1
Selected Parents 40
Plus Selection true

Table 5.7: Parameters for O↵spring Selection Evolution Strategy algorithm

5.2.2 Comparison of di↵erent heuristics

Experimental Setup

In this comparison we considered pairs of string which have been generated randomly. The

parameters which have been varied are the alphabets cardinalities |⇧
1

| and |⇧
2

| and the

strings lengths len(s
1

) and len(s
2

). Moreover, a degree of correlation has been added to

each pair of string. Table 5.8 shows the considered values for the parameters.

For each di↵erent parameterization one problem instance has been generated based on

the selected parameter set. For each problem instance, we applied the heuristics discussed

in the previous subsection. To account for the stochasticity of the results, we repeated the

execution of each heuristic on the same problem instance 10 times.

Generated results are represented by two types of data visualization components, that

are (i) line plots of individual runs and (ii) tables with the aggregated results for all 10

Parameter Values to consider

Degree of added correlation {0, .5, 1}
Alphabet cardinalities {8, 12, 16}
String lengths 256

Table 5.8: Comparative benchmark parameters for HeuristicLab heuristics comparison.
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runs per heuristic.

Line plots contain di↵erent marked lines for each heuristic. Each line plot represents

the first of the 10 runs, thus it is meant to show only an exemplary run for the pair

heuristic - parameter configuration. The x-axis indicates the number of evaluations up to

the maximum, while the corresponding best obtained MPED value after that number of

evaluations is indicated on the y-axis. Therefore, lower y-values are better.

Tables with aggregated results have been generated from each parameter configuration

following two steps. In the former step we computed the following values for each problem

instance:

• the best obtained MPED value for each heuristic,

• the best obtained MPED value across all heuristics and runs,

• the di↵erence between these two values.

In the latter step we aggregated the results among all 10 problem instances, thus obtaining:

• the average of the best obtained MPED values for each heuristic E(MPED),

• the average of the inaccuracy E(inacc),

• the standard deviation of the obtained MPED values �(MPED).

Standard deviation has been used for the whole populations in this example since we

do not want to extrapolate our results beyond our sample with such a small number of

runs. The standard deviation of the inaccuracy is the same as the standard deviation of the

obtained MPED values, because the individual data points are o↵set by a constants. Note

that discussions of the plots will be slightly presumptive in nature because it is di�cult to

provide final statements only regarding a survey.

Results

In the following we consider all of the parameters configurations. We start by analyzing

the configuration with alphabet cardinality equals to 16, which we believe being the most

challenging problem for all the compared heuristics. However, Table 5.9 shows the lowest

obtained MPED value among all runs and heuristics.
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Alphabet cardinality Added correlation Lowest obtained MPED

16 0.0 186
16 0.5 127
16 1.0 0
12 0.0 181
12 0.5 123
12 1.0 0
8 0.0 165
8 0.5 104
8 1.0 0

Table 5.9: Lowest obtained MPED value among all runs and heuristics for HeuristicLab
heuristics comparison.

Alphabet cardinality 16 Figure 5-2 shows the graph resulting from the runs with al-

phabet cardinality 16 and added correlation 0. Clearly, population-based heuristics seem to

be performing better in general than the single-solution based heuristic. Note that evolu-

tion strategies parameterization is also to be considered population based, albeit it presents

smaller populations than genetic algorithms variants. We used this insight in order to de-

sign and implement the ad-hoc evolution strategy presented in Section 5.4.2. Table 5.10

shows in detail results obtained by each heuristic. Results for added correlation 0.5 and 1

are respectively represented in Figure 5-3, Figure 5-4, Table 5.11 and Table 5.12.

Alphabet cardinality 12 Decreasing the alphabet cardinality to 12 results in a similar

picture across all correlation values. Figure 5-5, Figure 5-6 and Figure 5-7 respectively show

graphs resulting from the runs, while Table 5.13, Table 5.14 and Table 5.15 respectively show

in detail results obtained by each heuristics. Note that results with no added correlation

seem to be even a bit worse than those with alphabet cardinality 16: this is intended because

a shorter number of evaluations apparently overtakes the decrease in search space.

Alphabet cardinality 8 Reaching an alphabet size of 8 and considering 0 added cor-

relation seems to decrease the performance gap between population-based heuristics and

neighborhood-based heuristics. However, this only happens with 0 added correlation as pre-

sumably with a smaller search space it’s easier to find a good solution by chance. Adding

more correlation, the e↵ect disappears and population-based heuristics clearly gain lead

again. Figure 5-8, Figure 5-9 and Figure 5-10 respectively show graphs of the runs, while

detailed results obtained by each heuristics are respectively shown in Table 5.16, Table 5.17
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and Table 5.18.
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Figure 5-2: Runs with alphabets cardinality 16 and added correlation 0

Heuristic E(MPED) E(inacc) �(MPED)

HL O↵spring Selection GA 187.9 1.9 1.3748
HL Genetic Algorithm 188.1 2.1 1.8138
HL Evolution Strategy 189.1 3.1 2.2561
HL O↵spring Selection ES 189.1 3.1 1.6401
HL ALPS GA 189.2 3.2 1.4697
C++ Hill Climbing 193.5 7.5 1.8028
HL Local Search 195.2 9.2 2.7857
C++ Simulated Annealing 198.8 12.8 1.7205
HL Simulated Annealing 208.8 22.8 2.8213

Table 5.10: HL heuristics comparison, alphabet cardinality 16 and added correlation 0
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Figure 5-3: Runs with alphabets cardinality 16 and added correlation 0.5

Heuristic E(MPED) E(inacc) �(MPED)

HL ALPS GA 127 0.0 0.0000
HL Evolution Strategy 127 0.0 0.0000
HL Genetic Algorithm 127.0 0.0 0.0000
HL O↵spring Selection ES 127 0.0 0.0000
HL O↵spring Selection GA 127 0.0 0.0000
C++ Hill Climbing 128.3 1.3 3.9000
HL Local Search 148 21.0 32.0905
C++ Simulated Annealing 180.1 53.1 2.4678
HL Simulated Annealing 206.9 79.9 4.1340

Table 5.11: HL heuristics comparison, alphabet cardinality 16 and added correlation 0.5
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Figure 5-4: Runs with alphabets cardinality 16 and added correlation 1

Heuristic E(MPED) E(inacc) �(MPED)

C++ Hill Climbing 0 0.0 0.0000
HL ALPS GA 0 0.0 0.0000
HL Evolution Strategy 0 0.0 0.0000
HL Genetic Algorithm 0 0.0 0.0000
HL O↵spring Selection ES 0 0.0 0.0000
HL O↵spring Selection GA 0 0.0 0.0000
HL Local Search 58.2 58.2 88.9065
C++ Simulated Annealing 127.9 127.9 8.2879
HL Simulated Annealing 202.7 202.7 8.1615

Table 5.12: HL heuristics comparison, alphabet cardinality 16 and added correlation 1
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Figure 5-5: Runs with alphabets cardinality 12 and added correlation 0

Heuristic E(MPED) E(inacc) �(MPED)

HL O↵spring Selection ES 183.2 2.2 1.2490
HL O↵spring Selection GA 183.3 2.3 1.0050
HL Evolution Strategy 183.4 2.4 1.2000
HL Genetic Algorithm 183.7 2.7 1.4177
HL ALPS GA 183.8 2.8 1.4697
C++ Hill Climbing 186.9 5.9 1.9209
C++ Simulated Annealing 189.1 8.1 0.7000
HL Local Search 189.3 8.3 2.7946
HL Simulated Annealing 196.3 15.3 1.7349

Table 5.13: HL heuristics comparison, alphabet cardinality 12 and added correlation 0
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Figure 5-6: Runs with alphabets cardinality 12 and added correlation 0.5

Heuristic E(MPED) E(inacc) �(MPED)

C++ Hill Climbing 123 0.0 0.0000
HL ALPS GA 123 0.0 0.0000
HL Evolution Strategy 123 0.0 0.0000
HL Genetic Algorithm 123.0 0.0 0.0000
HL O↵spring Selection ES 123 0.0 0.0000
HL O↵spring Selection GA 123 0.0 0.0000
HL Local Search 156.8 33.8 33.8757
C++ Simulated Annealing 165.3 42.3 4.4283
HL Simulated Annealing 195.6 72.6 3.6661

Table 5.14: HL heuristics comparison, alphabet cardinality 12 and added correlation 0.5
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Figure 5-7: Runs with alphabets cardinality 12 and added correlation 1

Heuristic E(MPED) E(inacc) �(MPED)

C++ Hill Climbing 0 0.0 0.0000
HL ALPS GA 0 0.0 0.0000
HL Evolution Strategy 0 0.0 0.0000
HL Genetic Algorithm 0 0.0 0.0000
HL Local Search 0 0.0 0.0000
HL O↵spring Selection ES 0 0.0 0.0000
HL O↵spring Selection GA 0 0.0 0.0000
C++ Simulated Annealing 97.7 97.7 8.9336
HL Simulated Annealing 188.2 188.2 12.1885

Table 5.15: HL heuristics comparison, alphabet cardinality 12 and added correlation 1
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Figure 5-8: Runs with alphabets cardinality 8 and added correlation 0

Heuristic E(MPED) E(inacc) �(MPED)

HL O↵spring Selection GA 165.8 0.8 1.2490
HL O↵spring Selection ES 166.1 1.1 1.1358
HL Genetic Algorithm 166.6 1.6 1.1136
HL ALPS GA 166.8 1.8 1.7205
HL Evolution Strategy 166.9 1.9 1.4457
C++ Simulated Annealing 169.2 4.2 1.9391
C++ Hill Climbing 169.4 4.4 1.3565
HL Local Search 170.6 5.6 2.3749
HL Simulated Annealing 176.1 11.1 3.2078

Table 5.16: HL heuristics comparison, alphabet cardinality 8 and added correlation 0
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Figure 5-9: Runs with alphabets cardinality 8 and added correlation 0.5

Heuristic E(MPED) E(inacc) �(MPED)

C++ Hill Climbing 104 0.0 0.0000
HL ALPS GA 104 0.0 0.0000
HL Evolution Strategy 104 0.0 0.0000
HL Genetic Algorithm 104 0.0 0.0000
HL O↵spring Selection ES 104 0.0 0.0000
HL O↵spring Selection GA 104 0.0 0.0000
HL Local Search 110.6 6.6 19.8000
C++ Simulated Annealing 128.8 24.8 12.9754
HL Simulated Annealing 170.9 66.9 6.8768

Table 5.17: HL heuristics comparison, alphabet cardinality 8 and added correlation 0.5
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Figure 5-10: Runs with alphabets cardinality 8 and added correlation 1

Heuristic E(MPED) E(inacc) �(MPED)

C++ Hill Climbing 0 0.0 0.0000
HL ALPS GA 0 0.0 0.0000
HL Evolution Strategy 0 0.0 0.0000
HL Genetic Algorithm 0 0.0 0.0000
HL Local Search 0 0.0 0.0000
HL O↵spring Selection ES 0 0.0 0.0000
HL O↵spring Selection GA 0 0.0 0.0000
C++ Simulated Annealing 49.4 49.4 24.9648
HL Simulated Annealing 150.8 150.8 23.6761

Table 5.18: HL heuristics comparison, alphabet cardinality 8 and added correlation 1
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5.3 Survey on local search heuristics

5.3.1 Hill Climbing

The basic idea underlying the proposed heuristic is that, if we were armed with the best

matching schema, then the computation of MPED between s
1

and s
2

could be done easily

by means of dynamic programming.

Hill climbing heuristic works as follows: intuitively, at step 0, a starting matching schema

M0 is chosen, and LM0
(s

1

, s
2

) is computed. At the generic iteration i, the neighbors M i
⌫
j

of the current matching schema M i are considered, and the distances LM i

⌫

j (s
1

, s
2

) are

computed. A neighborM i
⌫
j

of a matching schemaM i is a perturbation ofM i that exchanges

only one pair of symbols between two partitions of the same alphabet.

The matching schema guaranteeing the lowest distance is, then, chosen and set as the

starting matching schema M i+1 for the next step. This activity stops when the edit distance

cannot be further improved. When this happens, the current edit distance is returned

as result. To avoid repeated computations, a hash map registering the already verified

matching schemas is exploited.

Finally, to increase the chances of finding the optimal alignment, a certain number

of random restarts, each characterized by a new randomly selected matching schema, are

carried out.

Since, at each step, we are interested to find a matching schema returning a distance

LM i

⌫

j (s
1

, s
2

) lower than the current minimum dmin, for computing LM i

⌫

j (s
1

, s
2

) we resort to

the approach presented by Landau and Vishkin in [73], which is able to compute the edit

distance between s
1

and s
2

in O(dmin ·max{len(s
1

), len(s
2

)}), if this distance is less than

dmin.

The ideas illustrated above are formalized in the Algorithm HILL-CLIMBING, reported

in Algorithm 1.

We observe that explicitly storing, comparing, and ordering matching schemas can be

computationally heavy tasks, from both the execution time and the space occupancy per-

spectives. In our solution, we take advantage of some peculiarities of matching schemas,

which allow us to resort to a virtual and compact representation of them. This allows sig-

nificant reductions of both the time and the space required to handle matching schema

manipulation.
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Figure 5-11: Examples of h⇡
1

,⇡
2

i-matching schemas for ⇡
1

= 3 and ⇡
2

= 2

In particular, given the pair h⇡
1

,⇡
2

i, a valid configuration of a h⇡
1

,⇡
2

i-matching schema

has always the form depicted in Figure 5-11(a) – here a h3, 2i-matching schema is used as an

example. Observe that, if we change the order of the symbols in ⇧
1

and ⇧
2

, instead of the

content of the matrix, as represented in Figure 5-11(b), the representation of the matching

schema still holds. As a consequence, a cheaper representation of matching schemas may

simply resort to the order of the symbols in ⇧
1

and ⇧
2

, as they implicitly imply partitions,

matches, and mismatches. For instance, the matching schema of Figure 5-11(b) can be sim-

ply represented by the pair of ordered symbols ⇧
1

= {a4, a7, a3, a1, a5, a6, a2, a8, a10, a9}

and ⇧
2

= {b3, b4, b1, b2, b8, b9, b5, b6, b7}; in this case, partitions {a4, a7, a3} of ⇧
1

and

{b3, b4} of ⇧
2

match. With this representation at hand, changing the matchings of a sym-

bol ai in ⇧1

with symbols in ⇧
2

simply translates with a change in the position of ai in

⇧
1

.

In our solution, we exploit this representation for initializing matching schemas, for

computing neighbors and for storing checked matching schemas. Since this representation

is transparent to the actual usage of matching schemas, for the sake of presentation, we

express operations on matching schemas as they were explicitly represented as matrices.

One of the most interesting operations carried out in HILL-CLIMBING is the construc-

tion of the neighbors of a given matching schema M . This task is formalized in the function

Neighbours, reported in Algorithm 2. In particular, given a starting matching schema

M , its rows and columns are virtually swapped one by one to generate matching schemas

that di↵er from M for only one symbol swap in partitions.
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Input : two strings s
1

and s
2

over the alphabets ⇧
1

and ⇧
2

, respectively;
a set � of constraints;
three integers ⇡

1

, ⇡
2

, and T ;
Output: Lh⇡1,⇡2,�i(s1, s2);
Data : two |⇧

1

|⇥ |⇧
2

| matching schemas M and M 0;
Checked: a hash map for tested matching schemas;
improved: boolean;
t,mindist, globaldist: integer

begin
t = 0;
initialize(M ,⇡

1

,⇡
2

,�);
mindist = LM (s

1

, s
2

);
globaldist = mindist;
improved = true;
Checked = ;;
while improved do

improved = false;
N = Neighbours(M,�);

foreach M
0
in N and not in Checked do

Checked = Checked [ M
0
;

if LM
0
(s

1

, s
2

) < mindist then

mindist = LM
0
(s

1

, s
2

);
improved = true;

M = M
0
;

end

end
if not improved then

if mindist < globaldist then
globaldist = mindist;
improved = true;
t = 0;

else if t < T then
t = t+ 1;
improved = true;
M = randomSelect(M ,⇡

1

,⇡
2

,�);
mindist = LM (s

1

, s
2

);

end

end
return globaldist ;

end

Algorithm 1: The algorithm HILL-CLIMBING for the computation of
Lh⇡1,⇡2,�i(s1, s2).
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Function Neighbours (M,�)
Input : a matching schema M over the alphabets ⇧

1

and ⇧
2

, respectively;
a set of constraints �;

Output: a set of matching schemas MS;
Data : n, m, r

1

, r
2

, c
1

, c
2

: integer;
begin

MS = ;;
for r

1

= 0 ! |⇧
1

| do
for r

2

= r
1

! |⇧
1

| do
swaprows(M , r

1

, r
2

);
for c

1

= 0 ! |⇧
2

| do
for c

2

= c
1

! |⇧
2

| do
swapcolumns(M , c

1

, c
2

);
if isvalid(M ,�) then

MS = MS [M ;

end

end

end

end
return MS;

end

Algorithm 2: The function Neighbours for the construction of the neighbors of a
given matching schema M .
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5.3.2 Simulated Annealing

In order to span over local search heuristics, we implemented also an ad-hoc solution based

on Simulated Annealing (SA) [71]. It is a probabilistic metaheuristic for the generic op-

timization problem of locating a good approximation to the global optimum of a given

function in a large search space.

The goal of SA is to bring a system, from an arbitrary initial state, to a state with the

minimum possible energy; in our context, the initial state is a valid matching schema, and

the state with the minimum possible energy is the one corresponding to an optimal matching

schema. Each step of SA consists in selecting a neighbor state n0 of the current state n and

deciding whether to move the system to n0 or stay in n; in our case, each state is a matching

schema, and the neighbor of a state is a random perturbation of the current matching

schema. A control parameter required by SA is called temperature, which determines both

the number of iterations that are carried out by the algorithm and the behavior of the

random walk. In our approach we empirically set it to (len(s
1

) + len(s
2

))(|⇧
1

|+ |⇧
2

|).

Figure 3 shows the pseudocode of SA. M is initialized with a valid starting assignment.

Until the temperature decreases, a random neighbor M 0 is selected and the distance with

this matching schema is computed. The if at line 9 of the algorithm decides whether to

move to the new state of the system or not. This is certainly done if the current distance

is worse than the next one; otherwise, a probability function [84] is used, indicated here

as accept(). This function is based on both the energy of the current and the next states

and on the value of current temperature. In case of a state change, the current matching

schema M becomes M
0
and the best distance is updated as well. The functions initialize

and randomNeighbors generate random valid matching schemas.

The output of the function is the distance, i.e. the dissimilarity, between s
1

and s
2

.

5.3.3 Experimental Analysis

The purpose of this part of the thesis is to evaluate the applicability of the proposed

framework and the e↵ectiveness of the proposed neighborhood-based heuristics (herefter

HC and SA) for computing Lh⇡1,⇡2,�i(s1, s2).

In the following experiments, we considered two main aspects, namely (i) the reliability

and (ii) the execution time of the two heuristics into consideration. In order to precisely
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Input : two strings s
1

and s
2

over the alphabets ⇧
1

and ⇧
2

, respectively;
a set � of constraints;
two integers ⇡

1

and ⇡
2

Output: Lh⇡1,⇡2,�i(s1, s2)
Data : T , current, next, best: integers
begin

T = (len(s
1

) + len(s
2

))(|⇧
1

|+ |⇧
2

|);
initialize(M ,⇡

1

,⇡
2

,�);
current = LM (s

1

, s
2

);
while T > 0 do

T = T � 1;

M
0
= randomNeighbor(M,⇡

1

,⇡
2

,�);

next = LM
0
(s

1

, s
2

);
if current > next or accept() then

M = M
0
;

current = next;
if current < best then

best = current;
end

end

end
return best ;

end

Algorithm 3: Simulated annealing (SA) pseudocode

evaluate the reliability of the two heuristics, we compared the results returned by them on

a set of test data, pre-labeled with the exact value of Lh⇡1,⇡2,�i(s1, s2) for them, computed

by means of an exhaustive approach (hereafter EX where needed). This approach explores

all possible matching schemas and computes the lowest edit distance. As pointed out in

Section 4.4, EX is unfeasible for large values of |⇧i| and ⇡i, thus this test was carried out only

for small data sets. The analysis of execution times has the dual purpose of both measuring

the gain of a heuristic w.r.t the exact solution and verifying its actual applicability to real

cases.

The next part is structured as follow: first, we describe the exploited dataset, then we

discuss the results of our evaluations on reliability and execution times.

Dataset

The dataset for this experiment has been generated along the lines of the previous ones.

Each element of the dataset is a pair of strings (s
1

, s
2

); both s
1

and s
2

are randomly
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generated. Without loss of generality, for each instance we randomly generated the strings

assuming the following conditions:

• len(s
1

) = len(s
2

) = len(s),

• |⇧
1

| = |⇧
2

| = |⇧|,

• ⇡
1

= ⇡
2

= ⇡i.

With these conditions, we generated a dataset with the following parameters:

• len(s) = {50, 100, 200, 350, 500},

• |⇧| = {3..10},

• ⇡i = {1..4} and such that ⇡i < d|⇧|/2e.

Reliability Analysis

As previously pointed out, we compared the results provided by the two heuristics, HC and

SA, with those returned by EX. It was possible to obtain the exact results in a reasonable

amount of time only for some of the instances available in the dataset. For each test, we

carried out ten executions of the heuristics and averaged the obtained solutions.

Precision of the solutions provided by HC has been measured as follow: let dEX be

the exact solution for an instance of Lh⇡1,⇡2,�i(s1, s2)and let dHC be the average solution

returned by HC. The precision PHC thus is computed as

PHC = 1� dHC

dEX
; (5.1)

PSA, i.e., the precision of SA, was computed analogously. Note that is always that

dEX > 0.

Table 5.19 illustrates PHC and PSA for some test data, in particular, for each combi-

nation of len(s), |⇧| and ⇡i. Note that a precision of 1.00 means that the corresponding

heuristics provided exactly the value dEX . N/A in the table stands for instances where

an excessive execution time was required by EX and, consequently, it was not possible to

compute PHC and PSA.
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len(s)

50 100 200 350 500
⇡ |⇧| PHC PSA PHC PSA PHC PSA PHC PSA PHC PSA

1

3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00
5 0.98 0.98 0.96 0.96 0.99 0.99 0.99 0.99 0.99 0.99
6 1.00 1.00 0.97 0.97 1.00 1.00 0.98 0.98 0.97 0.97
7 1.00 1.00 0.97 0.97 0.96 0.96 1.00 1.00 0.97 0.97
8 0.93 0.93 0.98 0.98 0.96 0.96 0.97 0.97 1.00 0.98
9 1.00 0.93 1.00 1.00 1.00 0.98 0.98 0.98 0.99 0.99
10 0.93 0.93 0.95 0.95 0.97 0.97 1.00 0.97 0.97 0.97

2
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99
6 1.00 1.00 1.00 1.00 0.96 0.96 0.99 0.99 0.97 0.97
7 1.00 1.00 0.98 0.98 0.97 0.97 N/A N/A N/A N/A

3 7 0.93 0.93 0.94 0.94 1.00 1.00 N/A N/A N/A N/A

Table 5.19: Values of PHC (left value) and PSA (right value) for di↵erent values of ⇡, |⇧|
and len(s). N/A represents an instance for which the exact value cannot be computed in a
feasible time.

It is interesting to observe that, even with long sequences or large alphabets, PHC and

PSA are always very high. This is encouraging in expecting a very high reliability of the

two heuristics in real application cases.

Execution Time Analysis

To evaluate the temporal behavior of HC and SA we designed two main experiments focusing

on the variations of len(s) and |⇧|, respectively.

The first experiment is centered on the variation of |⇧|. For each value of |⇧| belonging

to the integer interval [3, 10], we computed the running time necessary to obtain Lh1,1,;i by

applying EX, on the one hand, and HC and SA, on the other hand. The same computa-

tion has been carried out for each value of len(s) belonging to the set {100, 200, 350, 500}.

Figure 5-12 shows obtained results. Here, for each value of len(s), we show the increase of

the execution time against |⇧|. As expected, analyzing this figure shows that EX has an

exponential increase of its running time. We see that SA is always slower than HC and,

in several cases, even slower than EX. This is due to the intrinsic nature of this heuristic,

which may require a certain number of unnecessary iterations in some cases. Finally, HC

is always faster than EX and always below 1 second within the tested dataset.
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Figure 5-12: Execution time (in seconds) of HC, SA and EX against |⇧|. The four graphs,
from top to bottom and from left to right, indicate the results for len(s) = 100, 200, 350
and 500, respectively.
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Figure 5-13: Execution time (in seconds) of HC, SA and EX against len(s). The six graphs,
from top to bottom and from left to right, indicate the result for |⇧| 2 {5..10}.

The second experiment focuses on the variation of the execution time of EX, HC and SA

against len(s). In particular, for each value of len(s) belonging to the set {50, 100, 200, 350, 500},

we computed the running time necessary to obtain Lh1,1,;i(s1, s2) for EX, HC, and SA. In

this case, we considered six di↵erent values of |⇧|, i.e., |⇧| 2 {5..10}. Therefore, we obtained

six di↵erent graphs. Results are shown in Figure 5-13.

From the analysis of these graphs, it is easy to see that an increase of l and an increase

of |⇧| lead to a strong increase of the execution time of EX, which becomes out of scale

already for len(s) = 50 with |⇧| = 10. The execution time of HC is basically flat and always

below 1 second for each configuration; this makes HC far more performing than SA.

These last two experiments, along with the essentially identical reliability of HC and

SA, make HC the preferred local search heuristic.

As a final test, we analyzed the execution time of HC against len(s) for several values of

|⇧|. Figure 5-14 shows obtained results. The analysis of this figure confirms the quadratic

dependency of the execution time from len(s), caused by the dynamic programming solution

underlying it. The dependency from |⇧| is small, both because the values of |⇧| are usually
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Figure 5-14: Execution time (in seconds) of HC against len(s) for several values of |⇧|.

much smaller than len(s) and because our way of computing neighbors for matching schemas

allows HC to avoid the necessity to consider a great number of matching schemas.
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5.4 Survey on evolution strategies

Evolution Strategy, also called Evolutionary Strategy or Evolutionary Programming is a

population-based metaheuristic [8, 42, 103]. It belongs to the generic family of evolutionary

algorithms, which include, for instance, the more famous Genetic Algorithm. Evolutionary

algorithms, thus evolution strategy too, are inspired by the principles of biological evolution.

The key idea which governs these principles is the following: given a population of some

individuals within an limited-resource environment, the competition between them in order

to obtain more or better resources provokes a natural selection. Therefore, individuals

winning the competition are the best individuals.

The same idea can be seccesfully adapted to an algorithm in order to solve an optimiza-

tion problem. A set of candidate solutions is generated and a fitness value is attributed to

each of them. Here, the analogy labels the candidate solutions as individuals, and individ-

uals with a higher (or lower, with respect to the objective function of the problem) fitness

value are the best, e.g., optimal, solutions. In the general idea, some of the best individu-

als are chosen as the new starting point for the next generation by applying mutation or

recombination operators. The mutation operator is applied on a single individual and the

result is a new individual, i.e., a candidate solution is mutated in a particular way in order

to create a new candidate solution. The recombination operator is applied on two or more

individuals called parents and it produces one or more individuals called children. When

these two operators are applied on the parents the new set of generated individuals is called

o↵spring. Each individual of this set is then valued w.r.t. the objective function, thus the

fitness value is computed, and competes with the old individuals in order to be present

in the next generation. This general process represents a loop and it is terminated by a

particular stop criterion, which for instance can be a desired fitness value or a maximum

number of evaluation.

It is useful to understand the flow of an evolutionary algorithm in order to approach

how evolution strategy works. In Figure 4 a pseudocode is presented.

5.4.1 Components of an Evolutionary Algorithm

Before introducing the evolution strategy designed for the computation of the MPED, a

better understanding of the various components of an evolutionary algorithm is needed. In
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begin
INITIALISE population P with random candidate solutions;
EVALUATE each candidate p 2 P ;
repeat

SELECT parents;
RECOMBINE pairs of parents;
MUTATE the resulting o↵springs;
EVALUATE new candidates;
SELECT individuals for the next generation;

until TERMINATION CRITERION is satisfied;

end

Algorithm 4: Pseudocode of an evolutionary algorithm.

this section we discuss the main components from the point of view of the application to

the problem of computing the MPED.

Representation of individuals

As a first move in the direction of defining an evolutionary algorithm, we must abstract

or simplify some aspects of the problem to create a well-defined context in which possible

solutions can exist and can be evaluated. This work is often carried out by domain experts.

In the context of evolutionary algorithms, we refer to possible solutions within the origi-

nal problem context as phenotypes while their encoding, that maps solutions to individuals,

are called genotypes. The representation is the mapping from the phenotypes onto a set of

genotypes which represent them. Obviously, there is no a particular representation for each

possible problem context. For instance, given an optimization problem where the possible

solutions are integers, phenotypes are surely formed by the given set of integers, whereas

there could be di↵erent mappings forming the set of genotypes. As an example, the binary

representation of the integer number could be used: in this case, the value 42 would be a

phenotype, and 101010 a genotype representing it. At the end of the evolutionary algo-

rithm, a solution would be a good phenotype and it can be obtained by decoding the best

genotype.

We introduce the representation for our problem in Section 5.4.2.
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Evaluation function

Evaluation function represents requisites that individuals would reach by adapting through-

out the evolution. It constitutes the basis for the selection and indicates a criterion of

improvement for an individual. We can see the evaluation function as a quality metric of

an individual.

In the literature, the evaluation function is called cost function whether the optimization

problem is a minimization problem, whereas it is called fitness function when the optimiza-

tion problem is a maximization one. Also in this case, the terminology could be confusing;

since an evolutionary algorithm usually solves an optimization problem, the term objective

function might be used as well.

Population

Population is the set of (the representation of) possible solutions. Population is peculiarly

important due to being the unit of evolution. In fact, individuals are static objects which do

not change, while population intrinsically carries the concept of evolution and adaption. An

important property of the population is the population size, that is how many individuals

are in it. Usually, population size remains constant during time.

Parent Selection Mechanism

The parent selection mechanism allows to select the best individuals in order to become

parents for the next generation. An individual is a parent if it has been selected to endure

variations in order to create o↵spring.

Mutation

Mutation operator is applied on a single individual and it produces a modified individual.

Usually, the mutation operator is always stochastic, i.e., introduced mutations are always

due to a series of random choices. In general, mutation should be supposed to cause a

random, unbiased change.

Thanks to the mutation operator it is possible to introduce new information within the

population and consequently to explore the search space. It is straightforward to see how

mutation operator allows to move in the space by generating new points, i.e., solutions. The
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magnitude of the mutation defines the distance between an individual and the one obtained

by applying the mutation operator to it. The lesser the magnitude the closer the solutions

in the space. In essence, the mutation operator (as many other variation operators) defines

the evolutionary implementation of elementary (search) steps.

The kind of mutation operator depends on the problem, i.e., some mutation operators

are better than others with respect to a particular representation. A specific methodology

to define a mutation operator does not exist, albeit some rules have been proposed [15].

Crossover

The crossover operator combines information from two or more parents to one or more chil-

dren. As the mutation operator, crossover is unbiased and stochastic. The main idea derives

from the natural concept of hereditariness: joining two or more individuals with di↵erent

but interesting characteristics or properties, a progeny which combines these characteristics

might be generated.

Selection

In nature, selection is needed in order to distinguish individuals among their quality. In

fact, selection operator leads the search in direction of the best promising zones including

optimal solutions, thus giving a direction to the evolution. It is truly important to note

that without selection, this evolutionary process would be the same as a random walking

method. Individuals which will survive for the next generation are identified in the selection,

based on their fitness level: it depends on the problem if either lower of higher is preferred.

Selection operator is generally deterministic.

Initialization and Termination Criterion

Usually, the initialization of the individuals is random. However, some heuristics might be

implemented in order to generate individuals with a good fitness value in the initialization.

When the problem has an optimal fitness value, ideally the termination criterion would

represent the discovery of a solution with that exact fitness value. Similarly, the evolution

process could stop when a solution is found with an optimal fitness value up to a di↵erence

of ✏ > 0.
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Most of the time, a guarantee to reach the optimal fitness value is not available. In

order to to avoid a infinite execution, a termination criterion is needed. Some of the most

common options could be, for instance, (i) to stop the execution after a maximum time

T , (ii) to stop the execution after a certain number of calls to the fitness function or (iii)

to continue the execution until the best fitness value found is greater (resp. lesser) than a

certain threshold for a specific amount of time T .

5.4.2 Evolution Strategy

Evolution Strategy (ES from now on) belongs to the family of evolutionary algorithm. In the

beginning, evolution strategies were not intended to compute the maximum or the minimum

of some real-valued static function. Rather, they were used as a set of rules for the automatic

design and analysis of consecutive experiments. First applications of ES were experimental;

some examples dealt with drag minimization of a joint plate [98] and structure optimization

of a two-phase flashing nozzle [101]. Due to the impossibility to describe and solve such

problems in an analytical way, ES was simply used as an algorithm based on random changes

of the experimental mechanisms. The idea was to apply random changes, to select the

changes which performed better and to repeat the process until an optimal solution for the

problem was found. We see that the first ES implementation e↵ectively was in hardware,

due to a lack of computational resources for high-precision simulations. Measurements

of the objective function was obtained experimentally and changes, i.e., mutations, were

introduced in the hardware.

ES can be seen as a specific instantiation of evolutionary algorithms and can be char-

acterized by some specific properties [9], that are:

• Selection is a deterministic process;

• Mutation should be unbiased, i.e., it should not use any fitness information;

• Mutation operators are parameterized thus they can change their properties during

optimization;

• Individuals consist of decision parameters as well as strategy parameters.

Depending on few parameters, di↵erent versions of ES exists and are briefly presented

hereafter.
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(1 + 1)�ES variant

The first and simplest form of ES derived from the applications aforementioned. Since there

was just one old individual (parent) and just one new individual (o↵spring) per iteration

(generation) and since the selection took place among those two, this form of ES has been

called (1+1)�ES and referred as two-membered. This form represents the original version

of ES, which was developed in order to approach discrete problems, it used mutations

with a small magnitude and it was prone to stuck in a local optimum point. It has been

proved that, given enough time, (1 + 1) � ES reaches the global optimum of an objective

function [103].

(µ+ 1)�ES variant

(µ + 1) � ES represents the first generalization of (1 + 1)�ES. In this version, µ parents

are maintained for each generation. Two of them are chosen at random and recombined to

give life to an o↵spring, which also experiences mutation. The selection, thus, resembles the

natural concept of “extinction of the worst” by cutting an o↵spring or one of the parents

and keeping constant the population size.

(µ+ �)� ES and (µ,�)� ES variants

Two further versions of multi-membered ES were introduced by Schwefel, which are:

• the (µ + �) � ES, in which � � 1 descendants are created in a generation and the

population size is mantained constant by discarding the � worst individuals out of all

µ+ � individuals;

• the (µ,�) � ES, where the selection is applied among the � o↵spring only, in fact

ignoring their parents and their fitness values. This strategy relies in a strict Darwinian

sense of natural selection by having a birth surplus, i.e., � > µ. Essentially, parents

do not survive for the successive generation, while µ individuals out of the � o↵springs

are chosen as the parents for the successive generation.

In order to better understand the process which governs the ES, Algorithms 5 and 6 respec-

tively show pseudocodes of the state-of-the-art (1 + 1)�ES and (µ + �)�ES algorithms

capable of self-adaptation. To discuss all of the details within the algorithm is out of the
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scope for this thesis, while a discussion regarding the specialization of fundamental compo-

nents of ES to the MPED is needed and presented in the following subsection.

5.4.3 Fundamental Components of Evolution Strategy for MPED

Individuals

The space of candidate solutions for the computation of MPED is represented by M, i.e.,

the set of the possible matching schemas. Indeed, a solution of the problem is exactly a

matching schemaM , thus a representation in order to treat matching schemas as individuals

is needed.

The representation used is the same as in hill climbing presented in Section 5.3.1. Simply,

the order of the symbols is stored in an array, where each element i 2 N
0

indicates the i-th

symbol in the lexicographically ordered juxtaposition of the symbols of the alphabet ⇧.

This representation results to be useful in order to apply mutation operators on a match-

ing schemas.

Cost value

Cost value1 for an individual M is given by the value of the edit distance computed using

M as a matching schema, i.e., LM (s
1

, s
2

).

Mutation operator

We designed and implemented di↵erent mutation operators which are briefly described next.

Section 5.4.5 presents the result for each mutation operator.

Swap2 Randomly selects two elements of the permutation and swaps them.

Swap2-E A specialized version of Swap2 mutation operator for the MPED. It avoids to

generate permutations which would result in giving the same value of MPED. Straight-

forwardly, whether ⇡i = 1, Swap2-E is the same as Swap2. As an example, Figure 5-11

illustrates a h3, 2i-matching schema. Suppose we could swap a1 and a3: the new obtained

permutation would be equal to the original permutation, thus the mutation would produce

an already existing individual.

1Since we are minimizing the edit distance, we refer to the cost value instead of fitness value.
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Swap3 Mutates an individual by swapping three random elements between them. Posi-

tions of the element must be distinct.

Swap2-Swap3 A mutation operator which uses both Swap2 and Swap3 operators. Each

time the operator is invoked, it randomly selects whether applying Swap2 or Swap3.

Scramble Selects a (contigue) part of the permutation and randomly repositions elements

within it.

Inversion Selects a (contigue) part of the permutation and inverts the element in it.

Translocation Selects a (contigue) part of the permutation and moves it in another

position without modifying the selected part.

5.4.4 Evolution Strategy Implementations

The strategies have been implemented using C++ language (C++11 standard). It is im-

portant to point out that crossover has not been used in the implementations, thus on

generating o↵spring we cloned the selected parent.

Moreover, for the sake of simplicity, within the pseudocode context we made the follow-

ing assumptions:

• a function shu✏e exists which shu✏es randomly a given integer representation of a

matching schema;

• a function mutate exists and implements one of the designed mutation operators;

• an integer representation of a matching schema M possesses the attribute “costValue”

which represents the MPED computed with M , i.e., LM (s
1

, s
2

).

In the following, we briefly describe the ES variations which have been implemented.

The experimental campaign will be discussed in Section 5.4.5.

(1 + 1)�ES

The implemented (1+1)�ES variant exactly mimics the description given in Section 5.4.2.

The termination condition has been parameterized: it is possible to stop the algorithm
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after a maximum number of generations or after a number of generations in which an

improvement has not been obtained. Furthermore, it is possible to give a matching schema

as a starting point, otherwise a random matching schema is selected.

Algorithm 5 shows the pseudocode of (1 + 1)�ES implementation.

Input : two strings s
1

and s
2

over the alphabets ⇧
1

and ⇧
2

, respectively;
a set � of constraints;
three integers ⇡

1

, ⇡
2

and maxGeneration;
two booleans StartingMatchingSchema and checkPlateau

Output: Lh⇡1,⇡2,�i(s1, s2)
Data : plateau, currentGeneration: integers

parent, child: matching schemas
begin

parent = initialize();
if startingMatchingSchema then

parent = startingParent;
else

shu✏e(parent);
parent.costValue = Lparent(s

1

, s
2

);

end
plateau = 0;
currentGeneration = 0;
while currentGeneration < maxGeneration do

child = parent;
mutate(child);

child.costValue = Lchild(s
1

, s
2

);
if child.costValue < parent.costValue then

parent = child;
else if checkPlateau then

plateau = plateau + 1;
if plateau == maxPlateau then

return parent.costValue;
end

end
currentGeneration = currentGeneration + 1;

end
return parent.costValue;

end

Algorithm 5: Pseudocode of (1 + 1)� ES.

(1 + 1)�ES Restart

As opposed to the (1 + 1)�ES variant, the restart property allows this variant to continue

the execution, whether in presence of a plateau, by generating a random matching schema.
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Using a feedback from the search context, it is possible to check if the obtained improvement

in a range of generations is lower than a certain threshold and to decide whether to continue

the research.

(1 + 1)�ES Simple Restart

In this variant, the (1 + 1)�ES Restart is executed a specified number k of times.

(µ+ 1)�ES

A theoretical idea of this variant has been presented in Section 5.4.2. In this case, each

generated o↵spring which experienced mutation is compared with the worst parent of the

current generation. In this case, the number µ of parents to maintain at each generation

has been parameterized.

(µ+ �)�ES

A description of this variant has been given in Section 5.4.2. Also in this case, each com-

ponent has been parameterized, thus it is possible to select the number µ of parents to

maintain at and the number � of o↵springs to generate at each generation. Algorithm 6

shows the pseudocode of (µ+ �) implementation.

5.4.5 Experiments

A series of experiments to evaluate the reliability, precision and applicability of ES have

been carried out. The main properties to determine and to analyze in this experimental

campaign are: (i) precision of the ES and (ii) execution runtime.

The following part is organized as follows: in order to measure the precision, we started

by comparing ES with an exhaustive approach. Due to the intractability of large instances,

a general comparison with respect to Hill Climbing metaheuristic proposed in Section 5.3.1

has been carried out. Then, a series of tests in which a comparison between di↵erent

mutation operators has been computed and analyzed. Finally, we compared all of the

implemented ES variants.

For sake of simplicity, when a variant is not specified then (µ+1)�ES variant, together

with the Swap2 operator, has been used.
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Input : two strings s
1

and s
2

over the alphabets ⇧
1

and ⇧
2

, respectively;
a set � of constraints;
five integers ⇡

1

, ⇡
2

, maxGeneration, µ and �;
one boolean StartingMatchingSchema

Output: Lh⇡1,⇡2,�i(s1, s2)
Data : currentGeneration: integers

poolParents, poolChildren: set of matching schemas
begin

poolParents = ; if startingMatchingSchemas then
poolParents = startingPoolParents;

else
for i = 0 ! µ do

parent = generateRandomParent();
poolParents.insert(parent);

end

end
currentGeneration = 0;
while currentGeneration < maxGeneration do

poolChildren = ;;
for j = 0 ! � do

child = selectRandomParent(poolParents);
mutate(child);

child.costValue = Lchild(s
1

, s
2

);
poolChildren.insert(child);

end
poolParents = selectBestIndividuals(poolChildren, poolParents);
currentGeneration = currentGeneration + 1;

end
bestParent = selectBestIndividual(poolParents);
return bestParent.costValue;

end

Algorithm 6: Pseudocode of (µ+ �)�ES.

Precision (vs Exhaustive Approach)

Tests Configuration To carry out this test, three di↵erent configurations of (µ+�)�ES,

namely strong, medium and light, have been used. Configurations di↵er by the maximum

number of generations. In particular, Table 5.20 shows used values for the respective pa-

rameters.

Dataset Due to the same nature of the experiment, we used the same datasets generated

for the analysis of reliability of HC and SA discussed in Section 5.3.3.
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Configuration µ � N. of generations

strong 30 120 120
medium 30 120 60
light 30 120 30

Table 5.20: Parameters and values for each configuration of (µ+ �)�ES vs an exhaustive
approach.

Results In order to achieve coherent statistical results using ES heuristic, each test has

been carried out 10 times and the average value has been used as solution. Precision is

computed as follows: let dEX be the solution of an instance using the exhaustive approach,

i.e., the optimum, and let dES be the ES solution. We define precision PES as

PES = 1� dES � dEX

dEX
(5.2)

Table 5.21, 5.22 and 5.23 respectively report results for each configuration, i.e., strong,

medium and light. Note that when PES = 1.00, ES reaches the same solution as the

exhaustive approach. A cell reporting N/A indicate an instance for which the exhaustive

approach could not be computed.

It is important to point out that, for each configuration, ES successfully reaches a

precision equal or very close to 1.00. These results shows how the evolutionary mechanism,

strongly based on a stochastic process, becomes useful to e↵ectively explore a large search

space.
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len(s)

50 100 200 350 500
⇡ |⇧| P(µ+�)�ES P(µ+�)�ES P(µ+�)�ES P(µ+�)�ES P(µ+�)�ES

3 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00 1.00

1 7 1.00 1.00 1.00 1.00 0.98
8 1.00 1.00 1.00 1.00 1.00
9 1.00 1.00 1.00 0.99 1.00
10 1.00 0.98 1.00 1.00 1.00

5 1.00 1.00 1.00 1.00 1.00
2 6 1.00 1.00 1.00 1.00 1.00

7 1.00 1.00 1.00 N/A N/A

3 7 1.00 1.00 0.98 N/A N/A

Table 5.21: Results for (µ+ �)�ES with configuration strong.

len(s)

50 100 200 350 500
⇡ |⇧| P(µ+�)�ES P(µ+�)�ES P(µ+�)�ES P(µ+�)�ES P(µ+�)�ES

3 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00 1.00

1 7 1.00 1.00 1.00 1.00 1.00
8 1.00 1.00 0.98 1.00 1.00
9 1.00 1.00 1.00 1.00 0.00
10 1.00 0.98 0.99 1.00 1.00

5 1.00 1.00 1.00 1.00 1.00
2 6 1.00 1.00 1.00 1.00 1.00

7 1.00 1.00 1.00 N/A N/A

3 7 1.00 1.00 0.98 N/A N/A

Table 5.22: Results for (µ+ �)�ES with configuration medium.
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len(s)

50 100 200 350 500
⇡ |⇧| P(µ+�)�ES P(µ+�)�ES P(µ+�)�ES P(µ+�)�ES P(µ+�)�ES

3 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00 1.00

1 7 1.00 1.00 1.00 1.00 1.00
8 1.00 0.98 0.97 1.00 1.00
9 1.00 1.00 0.99 1.00 1.00
10 1.00 1.00 100 1.00 1.00

5 1.00 1.00 1.00 1.00 1.00
2 6 1.00 1.00 1.00 1.00 1.00

7 1.00 1.00 0.99 N/A N/A

3 7 1.00 1.00 1.00 N/A N/A

Table 5.23: Results for (µ+ �)�ES with configuration light.
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Parameter Value

µ 30
� 120
Maximum n. of generations 120

Table 5.24: Selected values for ES parameters.

Runtime (vs Hill Climbing)

Tests Configuration For this configuration, (µ + �)�ES variant has been chosen as

candidate. The test carried out determines how the runtime of ES compares to HC, which

we presented in Section 5.3.1. Furthermore, in addition to the runtime, the obtained solution

is accounted too. Table 5.24 shows selected values for the respective parameters.

Dataset As for the precision experiment, a set of instances have been created, using the

following ranges of values:

• len(s) = {1000, 2000, 3500},

• |⇧| = {14, 16, 18, 20},

• ⇡i = {1..10} and such that ⇡i < d|⇧|/2e.

Results (graphs) We decided to show results for a subset of parameters values and for

a clearer presentation few graphs have been produced. Graphs have been divided in two

parts:

• Figures 5-15, 5-16, 5-17 and 5-18 report results for di↵erent values of the parameter

|⇧|, having others as fixed;

• Figures 5-19, 5-20, 5-21 and 5-22 instead report results for di↵erent values of ⇡
1

= ⇡
2

,

also having others parameters as fixed.

After analyzing the results, we can notice how, for both the runtime and the optimality

of the obtained solutions, ES performs significantly better than HC. In fact, ES reaches

a better solution in a significantly lower number of iterations2. Also, from the obtained

solution we extrapolated the related matching schema M and we correctly assured that M

was a valid matching schema for the instance.

2We will also show in a few experiments that the running time is also significantly smaller.
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Figure 5-15: Runtime comparison of ES and HC with |⇧| = 14, len(s) = 2000,⇡
1

= ⇡
2

= 1

Figure 5-16: Runtime comparison of ES and HC with |⇧| = 16, len(s) = 2000,⇡
1

= ⇡
2

= 1
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Figure 5-17: Runtime comparison of ES and HC with |⇧| = 18, len(s) = 2000,⇡
1

= ⇡
2

= 1

Figure 5-18: Runtime comparison of ES and HC with |⇧| = 20, len(s) = 2000,⇡
1

= ⇡
2

= 1
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Figure 5-19: Runtime comparison of ES and HC with |⇧| = 16, len(s) = 2000,⇡
1

= ⇡
2

= 2

Figure 5-20: Runtime comparison of ES and HC with |⇧| = 16, len(s) = 2000,⇡
1

= ⇡
2

= 3
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Figure 5-21: Runtime comparison of ES and HC with |⇧| = 16, len(s) = 2000,⇡
1

= ⇡
2

= 4

Figure 5-22: Runtime comparison of ES and HC with |⇧| = 16, len(s) = 2000,⇡
1

= ⇡
2

= 5
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Results (tables) To account all of the results, a tabular view of them is presented.

Moreover, an analyis of precision has been carried out too. Due to being unfeasible to

obtain exact solution for these problem instances, we estimated the precision of ES w.r.t

the ad-hoc HC implementation, defining it as

PES = 1� dES �min(dES , dHC)

min(dES , dHC)
(5.3)

where dHC is the solution obtained by HC. It is useful to underline that PES = 1.00 implies

that ES, for that specific instance, has a higher than or at least equal to HC. Also in

this case, for a statistic coherence, both ES and HC have been executed 10 times for each

instance and the average values has been used as solution.

Table 5.25 summarizes the precision comparison. Table 5.26 compares ES runtime TES

with HC runtime THC .

Observing the results, we conclude that ES performs significantly better than HC, both from

the precision and runtime points of view. on average, ES results 13.6 times faster than HC

and only in few cases, runtime is slightly similar. In the best case (|⇧| = 20, len(s) = 1000,

⇡i = 6), ES is 100 times faster than HC and maintains an estimated precision of 0.99. In

the worst case (|⇧| = 14, len(s) = 3500, ⇡i = 1), ES’ runtime is close to HC’s but the

runtime ratio is 0.97.
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len(s)

1000 2000 3500
⇡ |⇧| P

(µ+�)�ES P
(µ+�)�ES P

(µ+�)�ES

14 1.00 1.00 1.00
1 16 1.00 1.00 1.00

18 1.00 1.00 1.00
20 1.00 1.00 1.00

14 1.00 1.00 1.00
2 16 1.00 1.00 1.00

18 1.00 1.00 1.00
20 1.00 1.00 1.00

14 1.00 1.00 1.00
3 16 1.00 1.00 1.00

18 1.00 1.00 1.00
20 1.00 1.00 1.00

14 1.00 1.00 1.00
4 16 1.00 1.00 1.00

18 1.00 1.00 1.00
20 0.99 1.00 1.00

14 1.00 1.00 1.00
5 16 1.00 1.00 1.00

18 1.00 1.00 1.00
20 1.00 1.00 1.00

14 1.00 1.00 1.00
6 16 1.00 1.00 1.00

18 1.00 1.00 1.00
20 0.99 1.00 1.00

14 1.00 1.00 1.00
7 16 1.00 1.00 1.00

18 0.99 1.00 1.00
20 0.99 1.00 1.00

16 1.00 1.00 1.00
8 18 1.00 1.00 1.00

20 1.00 1.00 1.00

9 18 1.00 0.99 1.00
20 1.00 1.00 1.00

10 20 1.00 1.00 1.00

Table 5.25: Obtained precision of (µ+ �)�ES w.r.t HC.
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len(s)

1000 2000 3500
⇡ |⇧| T

(µ+�)�ES/THC T
(µ+�)�ES/THC T

(µ+�)�ES/THC

14 0.90 0.89 0.97
1 16 0.45 0.60 0.74

18 0.42 0.31 0.21
20 0.23 0.23 0.15

14 0.29 0.36 0.53
2 16 0.30 0.26 0.25

18 0.10 0.12 0.15
20 0.07 0.11 0.07

14 0.12 0.14 0.44
3 16 0.18 0.12 0.10

18 0.11 0.10 0.08
20 0.03 0.03 0.02

14 0.26 0.14 0.12
4 16 0.06 0.11 0.11

18 0.09 0.06 0.10
20 0.06 0.03 0.04

14 0.09 0.18 0.11
5 16 0.04 0.10 0.08

18 0.03 0.07 0.08
20 0.04 0.03 0.03

14 0.09 0.15 0.16
6 16 0.07 0.08 0.13

18 0.06 0.08 0.05
20 0.01 0.03 0.05

14 0.29 0.15 0.24
7 16 0.10 0.06 0.07

18 0.03 0.05 0.06
20 0.02 0.03 0.05

16 0.08 0.09 0.07
8 18 0.05 0.06 0.04

20 0.02 0.02 0.06

9 18 0.08 0.05 0.03
20 0.03 0.02 0.04

10 20 0.04 0.05 0.06

Table 5.26: Runtime analysis of (µ+ �)�ES w.r.t HC.
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Mutation Operators Tests

Tests Configuration Mutation operators have been tested using the (µ+1)�ES variant.

Table 5.27 indicates selected values for the parameters. For each mutation operator, the

variant has been executed 100 times.

Parameter Value

µ 5
Maximum n. of generations 3600

Table 5.27: Selected values for ES parameters within mutation operators tests.

Dataset Also for this test, a dataset with the same conditions as of previous experiments

has been generated, using the following ranges of values:

• len(s) = 1000,

• |⇧| = 20,

• ⇡i = {1..10}.

Results (graphs) To visualize the results for each mutation operators and to compare

them at the same time, box-and-whisker diagrams have been produced. By analyzing the

obtained results, we first note how Swap2, Swap2-E and Swap2-Swap3 represent the muta-

tion operators which the lowest MPED and the lowest median MPED. When ⇡i increases,

the behaviour of Swap3 seems to mimic that of the aforementioned mutation operators: the

intuition is that for increasing values of ⇡i, Swap3 modifies di↵erent ⇡i-partitions, thus e↵ec-

tively perturbs the matching schema. Also, Swap2 shows the smaller interquartile range due

to the specialization of avoiding to generate permutations which would result in the same

value of MPED. We conclude that mutation operators which manipulate (large) portions

of the array used to represent the matching schemas are less e↵ective than the ones which

swap symbols, due to the fact that the formers do not introduce an e↵ective variation.
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Figure 5-23: Comparison of mutation operators with |⇧| = 20, len(s) = 1000,⇡
1

= ⇡
2

=

{1, 2, 3}
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Figure 5-24: Comparison of mutation operators with |⇧| = 20, len(s) = 1000,⇡
1

= ⇡
2

=

{4, 5, 6}
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Figure 5-25: Comparison of mutation operators with |⇧| = 20, len(s) = 1000,⇡
1

= ⇡
2

=

{7, 8, 9}
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Figure 5-26: Comparison of mutation operators with |⇧| = 20, len(s) = 1000,⇡
1

= ⇡
2

= 10

Results (tables) We estimated the precision PM defined as

PM = 1� dM �min(⇥i)

min(⇥i)
(5.4)

for each mutation operator used, where dM is the median value of 100 executions for a

specific mutation operator and ⇥i is the set of median values of all of the mutation operators

tested for ⇡ = i, i 2 {1..10}. Note that dM represents the obtained MPED.

Table 5.28 shows obtained results. A cell containing 1.00 indicates that the corresponding

mutation operator obtained the lowest median value for the corresponding value of ⇡i.

Here, we distinguish the same trend observed in the graphical results. Precision of mutation

operators which manipulate (large) portions of the permutations obtain the lowest precision,

with the minimum equals to 0.96, obtained by the Translocation mutation operator. It is

important to note how Swap2-E, which represents a specialized version of Swap2 for MPED,

obtained a precision of 1.00 for each value of ⇡i.

Precision among ES variants

There are no significative di↵erences in runtimes of di↵erent ES variants. As a consequence,

we next concentrate on the precision analysis for those variants that best performed in

previous tests. In particular, we considered:

• (1 + 1)�ES, allowing at most 14400 generations,
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⇡ Swap2-E Swap2 Swap3 Swap2-Swap3 Inversion Scramble Translocation

1 1.00 1.00 0.99 1.00 0.99 0.99 0.98
2 1.00 1.00 0.99 1.00 0.98 0.99 0.98
3 1.00 1.00 0.99 1.00 0.98 0.98 0.98
4 1.00 1.00 0.99 1.00 0.98 0.98 0.98
5 1.00 1.00 1.00 1.00 0.98 0.98 0.97
6 1.00 1.00 1.00 1.00 0.97 0.98 0.97
7 1.00 0.99 1.00 0.99 0.97 0.98 0.97
8 1.00 0.99 1.00 1.00 0.97 0.98 0.96
9 1.00 0.99 1.00 1.00 0.97 0.98 0.96
10 1.00 0.99 0.99 0.99 0.96 0.97 0.96

Table 5.28: Estimated precision PM for each mutation operator for di↵erent values of ⇡i.

• (1 + 1)�ES Simple Restart, allowing 10 attempts and at most 1440 generations per

attempt,

• (µ+ 1)�ES, with µ = 30 and allowing at most 14400 generations,

• (µ+ �)�ES with µ = 30,� = 120 and allowing at most 120 generations.

Each variants used Swap2-E mutation operator and has been executed 100 times for each

problem instance.

Dataset As we have done for the other tests, a set of problem instances has been gener-

ated, using the following ranges of values:

• len(s) = 1000,

• |⇧| = 20,

• ⇡i = {1..10}.

Results (graphs) In the following, a series of box-and-whisker diagrams have been pro-

duced, reporting values of MPED obtained by the used variants. From the graphs, we see

that (µ+�)�ES and (µ+1)�ES are the best variants in this test, albeit the lowest MPED

is often reached also by (1 + 1)�ES variant. The Simple Restart variant does not perform

as the others, probably due to having a lower number of generations per attempt; in fact, a

restart might drive the heuristic in a point in the search space close to the one in which it

previously terminated. In conclusion, (µ+�)�ES and (µ+1)�ES variants perform better

and with a smaller interquartile range than (1 + 1)�ES variant.
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Figure 5-27: Comparison of ES variants with |⇧| = 20, len(s) = 1000,⇡
1

= ⇡
2

= {1, 2, 3}
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Figure 5-28: Comparison of ES variants with |⇧| = 20, len(s) = 1000,⇡
1

= ⇡
2

= {4, 5, 6}
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Figure 5-29: Comparison of ES variants with |⇧| = 20, len(s) = 1000,⇡
1

= ⇡
2

= {7, 8, 9}
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Figure 5-30: Comparison of ES variants with |⇧| = 20, len(s) = 1000,⇡
1

= ⇡
2

= 10
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Results – Table Similarly to what we have done in previous tests, we estimated the

precision PV as

PV = 1� dV �min(⇥i)

min(⇥i)
(5.5)

for each selected ES variant, where dV is the median value of 100 executions for a specific

variant and ⇥i is the set of median values of all of the variants tested for ⇡ = i, i 2 {1..10}.

Also in this case, dV represents the obtained MPED by a variant on a specific instance.

Table 5.29 shows obtained results. A cell containing 1.00 indicates that the corresponding

variant obtained the lowest median value for the corresponding value of ⇡i.

⇡ (µ+�)-ES (µ+1)-ES (1+1)-ES SRS (1+1)-ES

1 1.00 1.00 0.99 0.99

2 1.00 1.00 0.99 1.00

3 1.00 1.00 0.99 0.99

4 1.00 1.00 0.99 0.99

5 1.00 1.00 0.99 0.99

6 1.00 1.00 0.99 0.99

7 1.00 1.00 0.99 0.99

8 1.00 1.00 0.99 0.98

9 1.00 1.00 0.99 0.98

10 1.00 1.00 0.99 0.98

Table 5.29: Estimated precision PV for each ES variant and di↵erent values of ⇡.

As results show, there are no distinguished di↵erences between ES variants. In fact, the

most significant di↵erence, albeit irrelevant, is found on the instance with ⇡i = 8, where

(1 + 1)�ES returns a median value of 378 whereas (µ+ �)�ES returns 372.

Probability Distribution Tests

One last interesting analysis is the quantification of the quality of ES heuristic, i.e., the

guarantee (or the probability to guarantee) that ES reaches a good solution within a certain

time interval. The next tests measure the probability that ES reaches a certain level of

accuracy within a certain amount of time.
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For the following tests, (µ + �)�ES has been used, equipped with Swap2-E mutation

operator. For a better comprehension of the behaviour of the variant, two di↵erent config-

urations have been used: Table 5.30 shows both configurations with respective parameters.

N. of evaluations µ � Maximum n. of generations

3600 30 120 30

14400 30 120 120

Table 5.30: Configurations of (µ+ �)�ES for probability distribution test.

Dataset A set of problem instances has been generated, along the same lines as the

previous tests, using the following ranges of values:

• len(s) = 1000,

• |⇧| = 20,

• ⇡i = {1..10}.

Both configurations have been executed 100 times for each problem instance.

Results (graphs) GivenX as the minimum value among the set of 100 runs, the following

graphs show the probability of obtaining a value of MPED x 2 [X,X +�], where � is an

increment of the obtained MPED which depends on the number of evaluations.
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Figure 5-31: Probability distribution for a particular MPED value with |⇧| = 20, len(s) =

1000,⇡
1

= ⇡
2

= 1
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Figure 5-32: Probability distribution for a particular MPED value with |⇧| = 20, len(s) =

1000,⇡
1

= ⇡
2

= {2, 3, 4}
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Figure 5-33: Probability distribution for a particular MPED value with |⇧| = 20, len(s) =

1000,⇡
1

= ⇡
2

= {5, 6, 7}
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Figure 5-34: Probability distribution for a particular MPED value with |⇧| = 20, len(s) =

1000,⇡
1

= ⇡
2

= {8, 9, 10}
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From the analysis of these figures we observe that both with 3600 and 14400 evaluations

the probability of finding a value near the optimum is very high. Increasing the number of

iterations obviously significantly increases such probability and, most importantly, reduces

the range of values below the optimum returned by the evaluation. Finally, we can observe

that 100% probability is always reached in less than 10% of the optimal value; this allows

us to empirically conclude that the approach allows to guarantee high precision even with

low numbers of iterations.



Chapter 6

Applications of the

Multi-Parameterized Edit Distance

6.1 Introduction

This chapter is dedicated to show the application of the MPED in in di↵erent contexts,

from strictly engineering ones, e.g., Wireless Sensor Area Networks, to medical based con-

texts such as White Matter Fiber-Bundles and Electroencephalography analysis. For each

application context, we introduce the background and corresponding issues, and we provide

a review of academic literature.

This thesis does not include all the considered application contexts (a complete overview

can be found in the following papers [23–31, 35, 107]). Three main applications are described

next, namely (i) Wireless Sensor Area Networks, (ii) White Matter Fiber-Bundle and (iii)

Electroencephalography analysis.

In particular, Section 6.2 reports on Wireless Sensor Area Networks (WSANs) and

related application. WSANs complexity is actually growing fast thanks to the Internet-of-

Things world, thus various problems are arising. We concentrate on the problem of anomaly

detection, i.e., the automatic detection of an anomaly in the network. MPED has been used

in order to define a degree of similarity between time series of heterogeneous sensor data.

Part of the work presented in Section 6.2 has been published in [23, 35].

Section 6.3 is dedicated to the context of White Matter Fiber-Bundles analysis. The ob-

jective here is reconstructing, visualizing and analyzing in vivo White Matter (WM) fibers.
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Particular sets of fibers called fiber-bundles, representing di↵erent WM structures, connect

di↵erent gray matter regions of the brain, allowing them to communicate. Thus, analyzing

WM structures is a crucial step to understand and predict e↵ects of some neurodegenerative

pathologies. In this context, we defined a string-representation of the fibers and we used

MPED in order to extract and characterize WM Fiber-Bundles. Part of the work presented

in 6.3 has been published in [26–29, 107].

Finally, in Section 6.4, a new string-based and network-based approach is used to in-

vestigate neurological disorders. Electroencephalogram data are analyzed with a slightly

di↵erent version of the MPED, called consensus MPED, in conjunction with network based

analysis tools, to help experts in their work. In order to show the e↵ectiveness of the

approach, we show how it can be employed for Creutzfeldt-Jacob Disease, epilepsy and

Alzheimer’s Disease. Part of the work presented in Section 6.4 has been published in [25].

6.2 MPED for Wireless Sensor Area Networks

6.2.1 Background

Recent technological and software improvements allowed a widespread di↵usion of Wireless

Sensor Networks and related applications [3, 45]. This led to a significant increase in the

amount of produced sensor data and in the complexity of sensor networks. Significant

e↵ort has been spent in the last few years on the definition of frameworks for a flexible and

e�cient management of Wireless Sensor and Actuator Networks (WSANs) [46, 108]; this

includes intelligent sensing/actuation techniques, as well as data abstractions for improved

data analysis.

The complexity of WSANs is constantly growing. In fact, a growing number of networks

include heterogeneous sensors, i.e. devices producing di↵erent kinds of signals/measures/messages.

As an example, sensors in the network may produce not only di↵erently scaled real value

data, but also text messages, discrete signals, symbolic alerts, etc.

While sensors network management and the development of robust data acquisition

layers received much attention in the literature, one big open challenge in WSANs is anomaly

detection [17, 18], i.e. the detection of unexpected behavior in incoming data. Anomalies

can be generated either by malfunctioning in the sensors or by deviations in the environment.

In most cases, it is a challenging task being able to distinguish between the two.
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Most of the approaches for anomaly detection concentrate on the analysis of data pro-

duced by each single device [126]. This is mainly done by fairly complex mathematical

analysis of data streams; however, these approaches can be usually applied on numerical

data only. Other approaches compare incoming data packets to fixed patterns identifying

known behavioral models [2]; typical applications of this kind of techniques are fraud de-

tection for credit cards [94] and intrusion detection in security [47]. Neural networks are

often applied also in this setting [18]. However, all these techniques are not well suited for

heterogeneous sensor networks.

Due to the nature of the problem being intrinsically denoted by a heterogeneous kind of

network, we proposed a novel approach specifically conceived for monitoring heterogeneous

WSANs using MPED. In particular, our proposal is to identify (hidden) correlations between

sensors and to exploit such knowledge to monitor the behaviour of sensors during their

working life. As an example, assume we are able to identify that the behavior of two

di↵erent and heterogeneous sensors is, for some not necessarily obvious reason, correlated.

The observation of significant variations of this correlation during time may allow us to

suspect that some anomaly is occurring. In fact, it may happen that for two sensors

measuring light and temperature, values of temperature are actually influenced by (e.g.,

sun) light or vice versa (think for example to sensors near incandescent objects).

Obviously, this correlation measure should be robust enough to endorse reasonable vari-

ations like time shifts and value drifts, but to identify spikes and noises in the signals.

As previously pointed out, when dealing with heterogeneous data streams, generated

sequences may come from very di↵erent contexts and may be represented with di↵erent

symbols/metrics. Moreover, in order to accommodate possible drifts, it is necessary to

provide the flexibility of mapping some symbol of the first sequence into more than one

symbol of the second sequence (and vice versa) so that many-to-many mappings can be

considered. Giving these considerations, MPED exactly fits these prerequisites.

We tested our approach in an experimental environment based on the Building Manage-

ment Framework (BMF). Results show that the proposed approach is actually capable of

identifying hidden correlations, is robust enough to acceptable environment variations and

is capable to identify potential sensors faults. We note that to the best of our knowledge

there is no approach in the literature facing all the problems outlined above.

This Section is organized in two parts: first we present the exploited case study and
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we give further information to understand it, then we describe our experiments and discuss

corresponding results.

6.2.2 Case study

As a case study, ambient data have been sensed from a set of wireless sensor nodes de-

ployed in an indoor building environment, specifically at DIMES, Department of Informat-

ics, Modelling, Electronics and Systems, University of Calabria, as shown in Figure 6-1. In

particular, the node tagged as (a) has been positioned in an air conditioned and artificially

illuminated laboratory; node (b) has been located in a corridor without windows and with

air conditioning system; node (c) has been placed in an o�ce room far from the direct

sunlight; nodes (d) and (e) have been placed both in the same room as node c, but with

their sensors leant against a window.

Nodes organized in a multi-hop wireless sensor network have been e↵ectively and e�-

ciently managed through the Building Management Framework (BMF) [46]. The BMF is

a domain-specific framework designed for the flexible and e�cient management of WSANs

deployed in buildings. It o↵ers features such as fast prototyping of WSAN applications,

intelligent sensing/actuation techniques, and abstractions for capturing the floor plan of a

building.

BMF enables the use of heterogeneous WSANs managed by a basestation, which acts

both as a network configurator and a data collector. Basestation and nodes communicate

through the BMF Communication Protocol, an application level protocol built on top of

multi-hop networks protocols (Dissemination and Collection Tree Protocols [51, 76]) An

example of BMF network is shown in Figure 6-2, where the BMF high-level layered ar-

chitecture for both the BMF basestation and node sides is shown. In particular, on the

basestation-side, the BMF architecture is split in layers comprehending: (i) support for

heterogeneous sensor platforms (e.g. TelosB, Tyndall, Shimmer, SunSPOT), (ii) a network

management layer that allows to flexibly manage the BMF network through configuration

packets sent over the air, (iii) a Basestation Core providing a set of functionalities to man-

age/configure the network (e.g. group nodes, create periodic sensing or actuation requests to

the network), and (iv) a set of applications that can be run on top of the Basestation Core;

on the node-side the BMF layers comprehend: (i) a set of platform-specific components

to allow the use of di↵erent type of nodes in a BMF network, (ii) a network management
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Basestation 
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e 

Figure 6-1: Wireless sensor nodes deployed at DIMES.

layer to allow communication among nodes and with the basestation, and (iii) a platform-

independent core to implement the node specific functionalities, such as signal processing

and multi-request scheduling on the nodes functionalities.

For the case study, BMF nodes have been configured to send to the basestation synthetic

data every minute. In particular, every node in the deployment collects data from light and

temperature sensors every second and every minute sends to the basestation the mean

computed over the samples read. To provide the approach with a complete input, the BMF

basestation has been improved with a filter that removes redundant packets received from

the network and purposely masks data losses.

6.2.3 Experiments and discussion

In this section, we report results for a number of tests carried out to assess the e↵ectiveness

of our technique. Tests have been carried out collecting one whole day data from di↵erent



128 CHAPTER 6. APPLICATIONS OF THE MULTI-PARAMETERIZED EDIT DISTANCE

Heterogeneous WSAN Nodes 

Basestation Node 

WSAN Multi-hop Routing Path BMF Communication Protocol 

Applications 
Basestation Core 

Network Management 
Heterogeneous Platform Support 

Platform Independent Core 
Network Management 

Platform Specific Components 

Figure 6-2: A BMF Network.

wireless sensor nodes (see Section 6.2.2).

Collected numerical data have been discretized in order to produce one string for each

pair node-sensor; for each string si, len(si) = 500 and ⇧i = 20. We then concentrated

on comparing light and temperature data coming from each node. We carried out the

experiments using MPED (with the ad-hoc hill climbing heuristic) and it has been executed

on a server equipped with an Intel Xeon X3430 processor and 4 GB of RAM running the

Ubuntu Linux kernel 2.6.26-2-686-bigmem SMP i686 GNU/Linux operating system.

We carried out three kinds of tests, which are detailed next.

6.2.4 Hidden correlation for di↵erent positioning of the sensors nodes

In this test, we considered only the nodes a-d. Figure 6-3 plots the raw data collected from

considered nodes; observe that it is hard to state, from the figures only, some degree of

correlation between measured temperature and light.

We first measured Ih⇡1,⇡2i for the four sensors nodes and using di↵erent configurations,

namely Ih1,1i, Ih2,2i, and Ih3,3i; moreover, we computed the same measures on randomly

generated string pairs (having the same lengths and alphabets as the test ones) and averaged

obtained values. Results are shown in Table 6.1. From the analysis of this table, it is

possible to observe that the most correlated measures are those obtained from nodes (a)

and (d). Obtained results confirmed our intuition for (d) since intuitively temperature
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Figure 6-3: Plot of (T)emperature and (L)ight collected from nodes a,b,c,d

is significantly dependent on sunlight; however results for (a) where not so obvious but

they can be motivated by the fact that temperature and light are kept almost constant by

artificial illumination and conditioning (see Figure 6-3).

In order to have a comparison meter for these results, we also computed the standard

mathematical correlation degree between numerical sequences (see Table 6.1), which basi-

cally confirmed the trends measured with MPED. Observe, however, that computing this

measure is possible only between pairs of numerical data; as an example, we could have

not computed it if one of the sensors produced labelled messages; on the contrary, Ih⇡1,⇡2i

is a more general measure which may compare heterogeneous sequences, and can take into

account both temporal and amplitude shifts.
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Node Ih1,1i(T, L) Ih2,2i(T, L) Ih3,3i(T, L) Std Corr.

a 62.00% 75.00% 81.80% 0.49
b 30.40% 45.80% 54.40% 0.22
c 41.40% 52.60% 69.60% 0.54
d 55.50% 72.00% 80.80% 0.61

expected random 27,57% 41,80% 49,90% 0.016

Table 6.1: MPED and Std Correlation

Node Ih1,1i(T, L) Ih2,2i(T, L) Ih3,3i(T, L)

Day 1 Day 2 Day 1 Day 2 Day 1 Day 2
d 51.72% 51.01% 64.94% 67.20% 72.77% 75.85%
e 49.04% 43.17% 63.54% 66.91% 71.67% 75.46%

Table 6.2: Day span

6.2.5 Robustness of the measure

In a second series of experiments, we verified the robustness of the approach to natural

and artificial variations in the measurement context. Specifically, we considered nodes d-e

from which we collected the stream of Temperature and Light for two consecutive days.

Moreover, the second day of observation, one of the nodes has been covered with an opaque

sheet in order to simulate a “cloudy” day. Obtained results for Ih⇡1,⇡2i are shown in Table

6.2. The analysis of this table shows that (i) correlation results remain stable throughout

the days and that (ii) the proposed measure is robust to context variations. In fact, the

correlation computed for node (e) does not significantly change over the two days even if

this was the one covered by the opaque sheet.

6.2.6 Sensitivity to sensor faults

In the third series of experiments, we checked the sensitivity of the approach to possible

faults of node sensors. In particular, we simulated faults in one of the sensors of a node intro-

ducing randomly generated out-of-scale noise in the stream. Then, we computed Ih⇡1,⇡2i for

di↵erent percentage of noisy values. Obtained results are illustrated in Figure 6-4 where it

is possible to observe that the correlation index correctly decreases for an increasing amount

of noise. From the analysis of this graph it is possible to conclude that our approach could

be possibly able to identify potential sensor faults when observing significant variations in

the correlation index.
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Figure 6-4: Sensitivity to sensor faults, Node (d)
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6.3 MPED for White Matter Fiber-Bundles

6.3.1 Background

Reconstructing and visualizing in vivo White Matter (WM) fibers is a challenging issue in

the investigation and the study of brain. For instance, the knowledge of these fibers is useful

to understand and predict the e↵ects of some neurodegenerative pathologies, like multiple

sclerosis [91, 120]. Moreover, they can be used in neurosurgical planning to interactively

guide the surgeon during an operation [52]. Right now, the most accurate method present

in literature to perform this task is tractography [87], which is based on the analysis of

the main di↵usion directions of the water molecules when they move through WM tissues.

This movement can be analyzed by a Magnetic Resonance Imaging (MRI) technique called

Di↵usion Tensor Imaging (DTI) [12], which has been used in our context. Also, other

di↵erent methods for automated probabilistic reconstruction of sets of major white-matter

pathways have been proposed [13, 14, 122]. From an anatomic point of view, particular sets

of fibers called fiber-bundles represent di↵erent WM structures [22]. These connect di↵erent

gray matter regions of the brain, allowing them to communicate. To analyze WM structures,

it is crucial to isolate subsets of fibers belonging to the WM regions into consideration.

This task is often performed manually by expert neuroanatomists that define inclusion and

exclusion criteria in such a way to delineate regions of interests and isolate specific WM fiber-

bundles [63, 82]. However, this way of proceeding is time consuming and it strongly depends

from the operator. Moreover, another di↵erent issue represents an obstacle: the amount of

data to analyze when facing this problem is enormous. As for an example, a simple whole

brain tractography could generate up to 106 fibers. As a consequence, investigating WM

structures of a cohort of people becomes a big data application and cannot be performed

manually. In order to overcome this limitation, di↵erent automated approaches to extracting

and, then, characterizing WM fiber-bundles have been proposed in the past literature (see,

for instance, [49, 90, 121, 125]). WM fiber-bundles models, usually constructed by experts,

provide a coincise representation of the bundles of interest. Then, given a set of models,

the extraction and characterization of WM fiber-bundles from tractography data resorts

to determining the real fiber-bundles corresponding to these models. A way to perform

this last task consists of clustering WM fibers derived from tractography data and, then,

applying a model-based characterization algorithm to identify fiber-bundles, starting from
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available models and obtained clusters. As will be clear below, this way of proceeding

can guarantee the indispensable e�ciency when the number of models to process is high.

Nevertheless, in case where this approach is applied as it is, fibers should be clustered on

the basis of their layout in the three-dimensional space. Therefore, we are in presence of a

multi-dimensional clustering problem. This can be considered as a simplified version of the

more complex multi-view clustering problem, which is well known for being a very di�cult

problem in the literature [19, 110].

6.3.2 Extract and characterize White Matter Fiber-Bundles

As a contribution in this setting we aim at proposing a new automated approach that,

given as input a set of WM fibers, generated from streamlines produced by tractography,

and a set of models, extracts fiber-bundles through clustering and a subsequent model-based

characterization. The core “ingredients” of this proposal essentially are (i) a new string-

based formalism allowing an alternative representation of WM fibers and (ii) a model-based

characterization algorithm, fused together with the MPED.

Our approach can be summarized in four main steps, namely:

1. representation of WM fibers as strings;

2. computation of the dissimilarity degree, i.e., MPED value, for each pair of available

WM fibers;

3. clustering of involved WM fibers;

4. exploitation of obtained clusters to identify the fiber-bundles corresponding to the

models of interest.

Thanks to the string representation of the fibers, our WM fiber clustering task reduces

to a string clustering one, which is simpler to face. Indeed, it is su�cient to find a metric to

measure string dissimilarity, construct a dissimilarity matrix and apply a suitable clustering

algorithm. In this case, the MPED optimally fits the problem and we will see how using the

MPED leads to better results than a classical string dissimilarity metric, e.g., edit distance.

After the set of WM fiber clusters has been determined, our approach is able to exploit

obtained clusters to extract the interesting fiber-bundles corresponding to the given models.

Specifically, given a set of approximate models of fiber-bundles constructed by an expert,
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our approach matches each model m with a corresponding cluster and, then, exploits this

matching to identify the WM fiber-bundles closest to m. Observe that, once clusters are

available, the matching process can be carried out e�ciently, because it is not necessary to

compare each model with the whole set of available WM fibers. Indeed, it is su�cient to

exploit medoids to characterize clusters and, consequently, to compare each model m with

the medoids of extracted clusters to determine the one closest to m. Clearly, the number

of medoids is generally orders of magnitude smaller than the number of WM fibers. This

provides users with the possibility to dynamically change the models of interest and to

immediately obtain the corresponding bundles.

String representation of WM fibers

The main purpose of this step is to represent a three-dimensional fiber in a di↵erent for-

mat, more compatible with clustering. In the past, several ways for representing a three

dimensional line have been proposed. These di↵erent representations depend on both the

context and the expected use.

In this context, we choose to represent a fiber as a sequence of voxels (volumetric pic-

ture elements), representing, in their turn, values on a grid in a three-dimensional space.

By adopting this guideline, a generic fiber fi 2 F can be represented as a sequence

fi = (vi1 , vi2 , . . . , vim) of voxels in the three-dimensional space. This sequence is aimed

to approximate the corresponding three-dimensional line. As a consequence, the number of

voxels representing a fiber is proportional to its length. Therefore, fibers having di↵erent

lengths will be represented by a di↵erent number of voxels. The position of each voxel in

the three-dimensional space is determined on the basis of the position of the neighboring

voxels.

A color ci
j

is assigned to each voxel vi
j

2 fi. This color is determined by the orientation

of vi
j

in the three-dimensional space [38]. Specifically, let pxi
j

(resp., pyi
j

, pzi
j

) be the fraction

of information of vi
j

parallel to the x (resp., y, z) axis. A basic color cx (resp., cy, cz) is

associated with the x (resp., y, z) axis. On the basis of the standard code of colors defined

in [74], let cx = red, cy = green and cz = blue. ci
j

is, then, obtained by the weighted

combination of cx, cy and cz. Clearly, adopted weights are strictly related to the orientation

of vi
j

in the three-dimensional space. For instance, if vi
j

is parallel to the x axis, pxi
j

= 1,

pyi
j

= 0, pzi
j

= 0, and, consequently, ci
j

= cx = red.
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Thanks to this notation, a fiber fi 2 F can be expressed as a sequence �i = (ci1 , ci2 , . . . , cim)

of colors. Each element ci
j

corresponds to the color, expressed in the RGB color space, as-

sociated with vi
j

. Thanks to the fiber discretization tasks described above, a fiber fi 2 F ,

through its representation �i, can be easily translated into a string using a mapping func-

tion:

⌥ : RGB ! ⌃

where |⌃| = s. In our approach, we decided to adopt the algorithm described in [7] for

implementing ⌥. Thanks to it, a fiber fi 2 F can be expressed as a string in ⌃m.

The algorithm for implementing ⌥ belongs to the family of minimum variance quanti-

zation algorithms [59]. Quantization is a technique extensively used in image processing.

It allows the reduction of the number of colors of an image. It clusters pixels into groups

on the basis of the variance among the corresponding pixel values. In this way, it divides

the RGB color cube into several smaller boxes and, then, maps all the colors falling within

each box into the color of its center. In carrying out this task, it exploits the so-called

RGB color cube, which is a three-dimensional array of all the colors that can be defined in

the selected space. There are two main quantization methods proposed in the literature,

namely uniform quantization and minimum variance quantization (which is the one adopted

in our approach). They di↵er for the technique used to divide up the RGB color cube. The

former cuts up the color cube into equally sized boxes; the latter divides the color cube into

boxes of possibly di↵erent sizes, on the basis of the distribution of colors in the image. If

the number s of boxes to obtain is an input parameter, then the algorithm automatically

determines the position of boxes on the basis of the variance of the color data. Once the

image is partitioned into s optimally located boxes, the pixels within each box are mapped

to the pixel at the center of that box. Finally, a character is associated with each box

center. In this way, an alphabet ⌃, representing all the s boxes generated by the algorithm,

is defined.

At the end of these activities, a set F = {f
1

, f
2

, . . . , fn} of fibers can be represented

as a set T = {t
1

, t
2

, . . . , tn} of strings. Specifically, each element ti 2 T is a string of ⌃m

corresponding to fi.

To formally express these transformations, we introduce a function ⌧(·). First, it per-

forms the transformation of fi in a sequence of voxels; then, it associates a color with each
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voxel; finally, it transforms each voxel into a string. In the following, we use the notation

ti = ⌧(fi) to represent the string ti that the function ⌧(·) returns when it takes fi in input.

The length of ti is equal to the number of voxels exploited to represent fi. As a consequence,

if two fibers fi and fj have di↵erent lengths in the three-dimensional space, ti and tj have

di↵erent lengths.

Algorithm Fibers-To-Strings (see Algorithm 7) describes the transformation of a set

F of fibers into a set T of strings.

It receives a set F = {f
1

, f
2

, . . . , fn} of WM fibers to transform, the cardinality s of

the alphabet ⌃ which strings belong to, the size vxS of voxels in the three-dimensional

space, and the size stS of the fiber step used by tractography algorithm. It returns a set

T = {t
1

, t
2

, . . . , tn} of strings representing the fibers in F .

The algorithm starts by computing the Step Rate stR, a parameter necessary for nor-

malization in the next steps. For this purpose, it sets stR as the ratio of the step size stS

of tractography to the norm of vxS. This computation of the norm of vxS is necessary

because vxS is three-dimensional whereas stS is scalar. As a consequence, to perform the

ratio, a scalar must be derived from vxS, representing it.

After the computation of stR, Fibers-To-Strings sets T to empty. Then, for each

fiber fi 2 F , it performs some tasks devoted to obtain a string ti over the alphabet ⌃

corresponding to fi.

Specifically, ti is initially empty. Then, on the basis of stS, a set Pi = {fi0 , fi1 , . . . , fi⌫}

of three-dimensional points representing fi are determined.

For each point fi
j

, 0  j  ⌫ � 1, of Pi, Fibers-To-Strings performs two tasks,

namely:

• It determines the di↵erence between fi
j

and fi
j+1 , which indicates the direction of

the corresponding voxel in the three-dimensional space. Then, it normalizes this

di↵erence by dividing it by stR; let pi = (pxi , p
y
i , p

z
i ) be the corresponding point in the

three-dimensional space.

• It calls the function ⌥, illustrated above, for transforming the point pi in a character

of the alphabet ⌃. This character is then concatenated to ti. The symbol � denotes

string concatenation.

Once all the points fi
j

, 0  j  ⌫ � 1, of Pi have been processed, and ti is complete, ti
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Input : a set F = {f
1

, f
2

, . . . , fn} of fibers
the cardinality s of the alphabet ⌃
the size vxS of voxels in the three-dimensional space
the size stS of the tractography step

Output: a set T = {t
1

, t
2

, . . . , tn} of strings
begin

stR = stS
norm(vxS) ;

T = ;;
foreach fi 2 F do

ti = ;;
Pi = computeRepresentative(fi);
for 0  j < |Pi| do

(pxi , p
y
i , p

z
i ) =

✓

fx

i

j

�fx

i

j+1

stR ,
fy

i

j

�fy

i

j+1

stR ,
fz

i

j

�fz

i

j+1

stR

◆

;

ti = t�⌥(pi, s);
end
T = T [ ti;

end
return T ;

end

Algorithm 7: Algorithm Fibers-To-Strings

is added to T .

Fibers-To-Strings terminates when all the fibers of F have been processed and,

therefore, T is complete. It returns T as output.

Dissimilarity Matrix

The purpose of Step 2 is the construction of the Dissimilarity Matrix D associated with

F . D is a n ⇥ n matrix; its generic element dij = D[i, j] is a real number in the interval

[0, 1] and indicates the dissimilarity degree of the string representations ti of fi and tj of fj .

To obtain the value of dij , it is necessary to apply a string-based dissimilarity metric on ti

and tj . With regard to this issue, we point out that, in our application context, classical

string-based dissimilarity metrics (like the Hamming or the Levenshtein distance), which

measure the minimum number of edit operations necessary to transform the first string into

the second one, would not work properly. As we pointed out in Chapter 1, they are based

on the assumption that one-to-one correspondences between the symbols of the two strings

are implicitly determined simply by identity.

Actually, in our scenario, the adoption of only one-to-one correspondences would be
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reductive and could lead to either imprecise or wrong results. In fact, in our application

context, there could be di↵erent symbols expressing the same or similar concepts. Think,

for instance, of two symbols, one representing a horizontal voxel and the other denoting a

slightly oblique one, derived from an approximation during discretization: an error could

arise if they are considered di↵erent. Analogously, it could be extremely important to be

able to match a horizontal voxel with both another horizontal voxel and/or a slightly oblique

one. Clearly, to avoid over-matchings, the number of these exceptions should be limited.

Finally, there may exist pairs of symbols (e.g., a horizontal and a vertical voxel) that clearly

should not match. In this case, it would be necessary to constrain invalid matches.

Thus, we use the MPED
SB

as a string dissimilarity metric due to the intrinsic considera-

tion that, in this context, symbol identity should be considered together with the possibility

of allowing many-to-many matchings and of specifying constraints.

The Dissimilarity MatrixD is thus computed as following: given a set F = {f
1

, f
2

, . . . , fn}

of WM fibers and the corresponding set T = {t
1

, t
2

, . . . , tn} of strings, such that ti = ⌧(fi),

given two integers ⇡
1

and ⇡
2

and a constraint �, the generic element D[i, j] of the Dissimi-

larity Matrix D associated with F is computed as:

D[i, j] = Lh⇡1,⇡2,�i(ti, tj) (6.1)

Observations First, since the possible edit operations allowed during the computation of

Lh⇡1,⇡2,�i(s1, s2) are insertions, deletions and substitutions, the MPED
SB

allows the com-

parison of strings of di↵erent lengths. As for this specific case, not only our approach

works properly even in presence of fibers of di↵erent lengths, but also it correctly returns

a high dissimilarity value, in case of very di↵erent lengths, because a high number of inser-

tions/deletions will be necessary. As a consequence of this fact, for instance, our approach

is capable of recognizing as dissimilar two horizontal straight fibers having very di↵erent

lengths, in spite of their identical direction in the three-dimensional space.

As a further consideration, we observe that spatial metrics require a fine-grained exam-

ination of the spatial coordinates of involved fibers. In fact, they either consider the Eu-

clidean distance between fibers or require a fine-tuned registration of these last ones before

starting distance computation. Euclidean-distance-based approaches may fail to identify

similar fibers within thick bundles. In fact, if the proximity threshold is high, they may
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put together fibers with very di↵erent shapes; on the other side, if the proximity threshold

is low, they may put in di↵erent bundles fibers approximatively having the same shape.

Registration-based approaches are strongly dependent on the accuracy of the registration

phase, which becomes a critical step. Our metric does not require any registration phase for

comparing the fibers of a certain brain, and does not depend on spatial coordinates, since

it exploits directionality information only. As a consequence, when applied to compute

fiber dissimilarity, it is capable of overcoming the drawbacks of the two approach families

mentioned above. As an example, fibers in a thick bundle will be all considered similar,

since they approximatively share the same shape.

A further positive feature of MPED
SB

w.r.t. spatial metrics consists in its capability

of avoiding the matching of two symbols representing totally di↵erent orientations (think,

for instance, of a horizontal voxel and a strictly vertical one), which, again, is useful to

discriminate similarities and dissimilarities of fibers despite their proximity in the three-

dimensional space.

Last, but not the least, our MPED
SB

-based approach is capable of supporting both

expert and inexpert people, without the need of information regarding spatial locations.

Clustering of WM fibers

This step is aimed to pre-process F by applying a clustering algorithm on it in such a

way as to group together anatomically homogeneous fibers. Thanks to the Dissimilarity

Matrix D, computed during Step 2, the problem of clustering three-dimensional curves can

be reduced to the one of clustering a set of strings, which can be faced by means of one of

the many classical clustering algorithms already proposed in the literature. For instance,

some clustering algorithms that can be easily incorporated in our approach are k-means

[79], k-medoids [68], and Expectation Maximization - EM [37].

Algorithm WM-Fiber-Clusters (see Algorithm 8) describes the clustering task of

our approach. It receives a set F = {f
1

, f
2

, . . . , fn} of WM fibers and returns a set Cl =

{cl
1

, cl
2

, . . . , clk} of clusters and the set � = {�
1

, �
2

, . . . , �k} of the corresponding medoids1.

WM-Fiber-Clusters exploits the function ⌧(·), described in Section 6.3.2, to imple-

ment Step 1 of our approach, whereas it uses the first foreach cycle to implement Step

1Recall that the medoid � of a cluster cl is the element of cl “least dissimilar” from all the other ones.
Di↵erently from other cluster representative elements (like mean), medoid is robust to noise and can be
always determined, even when the context of interest does not support Euclidean distance.
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Input : a set F = {f1, f2, . . . , fn} of fibers

Output: a set Cl = {cl1, cl2, . . . , cl
k

} of clusters

the set � = {�1, �2, . . . , �
k

} of the medoids of the clusters of Cl
begin

foreach pair (f
i

, f
j

) s.t. f
i

2 F, f
j

2 F do
D[i, j] = Lh⇡1,⇡2,�i(⌧(fi), ⌧(fj));

end
Cl = cluster(F,D,);
foreach cl

j

2 Cl do
Cl=(Cl \ cl

j

) [ split(cl
j

);

end
� = computeMedoids(Cl);
return Cl,�

end

Algorithm 8: Algorithm WM-Fiber-Clusters

2.

The clustering of the fibers of F is carried out by the function cluster, which implements

the adopted clustering algorithm. The parameter  is necessary if cluster implements a

clustering algorithm requiring the number  of desired clusters in input. The output of

cluster is a set Cl = {cl
1

, cl
2

, . . . , cl} of clusters; specifically, the cluster clj 2 Cl contains

an anatomically homogeneous subset clj = {fj1 , fj2 , . . . , fj
l

} of the fibers of F .

The clusters of Cl obtained at the end of this step may still have a problem. Indeed,

as pointed out by the observations gave at Step 2, MPED
SB

does not consider spatial

information. As a consequence, it may happen that a cluster clj 2 Cl contains homogeneous

fibers (i.e., all with similar shapes), but some of them actually distant in space (for instance,

in di↵erent hemispheres). To face this issue, in our approach, each cluster clj undergoes

a splitting phase aimed only to separate fibers very far in space. As far as this task is

concerned, we point out that: (i) it does not require registration, because it compares

fibers of the same brain; (ii) it is far less sensitive to space coordinates than purely spatial

methods, since it is devoted to just identify very far fiber sets (for instance, fibers with

homogeneous shape but belonging to di↵erent hemispheres). Function split carries out this

task.

Finally, function computeMedoids returns the set � = {�
1

, �
2

, . . . , �k} of the medoids of

the clusters of Cl. The medoid �j 2 � is used as the representative of the cluster clj 2 Cl

and is exploited to speed up the model characterization phase in Step 4. In fact, as it will be

clear in the next section, the computation of clusters can be considered as a pre-processing

phase of our fiber-bundle extraction and characterization technique. This phase must be

performed once and for all for each brain. As a consequence, once it has been carried
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Input : a set Cl = {cl1, cl2, . . . , cl
k

} of clusters

a set � = {�1, �2, . . . , �
k

} of the medoids of the clusters of Cl
a set  = { 1, 2, . . . , q

} of models

Output: a set ⇥ = {✓1, ✓2, . . . , ✓q} of bundles corresponding to  

begin
⇥ = ;;
foreach  

l

2  do
�

l

= ;;
foreach �

j

2 � do
�

l

= �

l

[ Lh⇡1,⇡2,�i(⌧( l

), ⌧(�
j

));

end
µ = argmin(�

l

);

⇥ = ⇥ [ cl
µ

;

end
return ⇥

end

Algorithm 9: Algorithm WM-Fiber-Bundles

out, the derivation of the fiber-bundles associated with each model  l 2  requires the

examination of only k medoids, instead of the n available WM fibers. Interestingly, k is,

generally, orders of magnitude smaller than n.

Model-based WM fiber-bundles extraction and characterization

Once clusters and their medoids are available, our approach can perform the fiber-bundle

extraction and characterization activities. For this purpose, it carries out Step 4, which,

essentially, consists of the Algorithm WM-Fiber-Bundles (see Algorithm 9).

This algorithm receives a set Cl = {cl
1

, cl
2

, . . . , clk} of clusters, the set � = {�
1

, �
2

, . . . , �k}

of the medoids of the clusters of Cl, and a set  = { 
1

, 
2

, . . . , q} of models. Each model

 l 2  represents the approximate shape of a fiber-bundle of interest. It could be obtained

in two di↵erent ways, namely: (i) by exploiting a spline curve to draw the profile of the

fiber-bundle of interest; (ii) by importing the mean-line profile of the fiber-bundle of interest

from an atlas of pre-labeled fiber-bundles. Interestingly, the approximate model adopted

to extract a specific fiber-bundle may be adopted also to extract the same fiber-bundle

from other images characterized by di↵erent resolutions, and possibly acquired from other

subjects. Indeed, the representation of our model is based on its shape and is independent

of its spatial location.

As previously pointed out, our approach does not require a complex registration phase.

In fact, it only needs a smooth alignment of the reference axes of both the models and the

brain. This because MPED
SB

disallows the matching of lines having completely di↵erent

directions (such as a straight horizontal line and a straight vertical one), but allows the
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matching of lines with slightly di↵erent directions (such as a horizontal line and a slightly

oblique one).

The output ofWM-Fiber-Bundles is a set ⇥ = {✓
1

, ✓
2

, . . . , ✓q} of derived fiber-bundles

such that each ✓l 2 ⇥ contains a subset of the fibers of F .

In more detail, for each model  l 2  , WM-Fiber-Bundles generates the correspond-

ing fiber-bundle by associating the most appropriate cluster of Cl with it. For this purpose,

it constructs the set �l of the distances between each medoid of � and  l. In order to

compute the distance between  l and a medoid �j 2 �, WM-Fiber-Bundles transforms

both of them into two strings sl = ⌧( l) and sj = ⌧(�j) by applying the function ⌧(·),

described in Section 6.3.2. Then, it computes the MPED
SB

distance between sl and sj .

After this, it determines the minimum value �µ of �l. Clearly, �µ corresponds to a medoid

�µ 2 � and to a cluster clµ 2 Cl. Finally, it identifies clµ as the cluster of WM fibers having

the closest structure and features to  l and returns clµ as the fiber-bundle corresponding

to  l.

We point out, again, that, thanks to the pre-processing clustering phase, this step re-

quires the examination of only k medoids, instead of the n available WM fibers. This feature,

and the consequent e�ciency of our approach, make it possible to easily apply the same

models to di↵erent subjects (and, consequently, to the results of di↵erent tractographies)

in a reasonable time. This way, it is possible, for instance, to compare the fiber-bundles of

di↵erent people, such as healthy and ill patients.

Experiments

In this section we present the experimental campaign we carried out on the problems pre-

viously pointed out. First, we present tests of the pre-processing phase and the results

of the application of MPED
SB

. Then, we present some tests analyzing the computational

e�ciency. Finally, we present a real case study and corresponding tests.

Pre-processing phase As previously pointed out, the pre-processing phase of our ap-

proach includes the string-based representation and the clustering of available fibers. To

validate this phase (measuring its e↵ectiveness and e�ciency), we performed several tests

on a virtual phantom created by the phantom generator described in [21]. Figure 6-5 graph-

ically displays this phantom. We asked an expert to manually annotate the corresponding
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Figure 6-5: The virtual phantom used for our experimental campaign

data. Annotations performed by him are represented in the same figure; in particular, a

number is associated with each bundle. As shown in Figure 6-5, the expert defined four

fiber-bundles, namely: (1-2) diagonal, (3) vertical, and (4) horizontal bundles, which were

used as a gold standard2. Indeed, our validation task required a ground truth and, in our

opinion, the best possible ground truth was represented by a set of fiber-bundles manually

annotated by an expert.

To perform our test activity, we compared the results of four approaches, namely: (i) our

approach, with the usage of k-means as clustering algorithm in Step 3; (ii) our approach,

with the exploitation of EM as clustering algorithm; (iii) QuickBundles, applied directly

on the phantom; (iv) a baseline feature-based k-means, applied directly on the string-based

representation of the phantom.

Whenever necessary (in particular, for cases (i), (ii), and (iv)), fibers were transformed

into strings by applying the technique presented in Section 6.3.2; each fiber turned out to

be characterized by 30 voxels. We set the cardinality of the string alphabet to 6. As for

cases (i) and (iv), we set the number of required clusters (i.e., k) to 4. As for cases (i)

and (ii), we set ⇡
1

= 1 and ⇡
2

= 1 for MPED
SB

and specified a constraint set � aimed to

avoid, for instance, matches between horizontal and vertical voxels. As for case (iii), we

run QuickBundles with a threshold value equal to 6mm, which empirically was proved to

2Recall that, in statistics, the gold standard test refers to the most accurate test that can be carried out
without restrictions.
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Precision Recall F-measure Overall

Our approach - k-means 0.72 0.98 0.83 0.60
Our approach - EM 0.77 0.89 0.83 0.63

QuickBundles 0.91 0.55 0.69 0.50
K-means Baseline 0.44 0.44 0.44 -0.12

Table 6.3: Results for Cluster 1

Precision Recall F-measure Overall

Our approach - k-means 0.75 0.97 0.85 0.65
Our approach - EM 0.76 0.92 0.83 0.63

QuickBundles 0.94 0.51 0.66 0.48
K-means Baseline 0.47 0.41 0.44 -0.05

Table 6.4: Results for Cluster 2

Precision Recall F-measure Overall

Our approach - k-means 0.92 0.32 0.48 0.29
Our approach - EM 0.70 0.51 0.59 0.30

QuickBundles 0.51 0.78 0.62 0.04
K-means Baseline 0.48 0.35 0.40 -0.03

Table 6.5: Results for Cluster 3

Precision Recall F-measure Overall

Our approach - k-means 0.93 0.99 0.96 0.92
Our approach - EM 0.98 0.94 0.96 0.92

QuickBundles 0.82 0.99 0.90 0.78
K-means Baseline 0.33 0.64 0.44 -0.63

Table 6.6: Results for Cluster 4

produce the best results. Finally, as for (iv), we considered each of the 30 voxels of a fiber as

a feature of the fiber itself. Therefore, we defined the input of the feature-based clustering

algorithm as a set of feature vectors wi = (xi1 , . . . , xim), where each wi corresponded to a

fiber fi and each xi
j

corresponded to a voxel vi
j

of fi. The approach delineated by (iv) can

be used as a baseline of comparison because the only pre-processing task it requires consists

of the transformation of fibers into strings. Therefore, it is lightweight and fast, and, if it

provided satisfying results, it should be preferred to the other ones.

To evaluate the accuracy of all the four approaches, we compared the results obtained

by them with the expert’s annotation in such a way as to compute Precision, Recall, F-

measure and Overall [96]. Obtained results are reported in Tables 6.3 – 6.6. Furthermore,

qualitative and graphical representations of the clusters computed by cases (i) and (iii) are

shown in Figures 6-6 and 6-7, respectively.
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Figure 6-6: The clusters generated by our approach with the adoption of k-means as clus-
tering algorithm

Figure 6-7: The clusters generated by QuickBundles

From the analysis of Tables 6.3 – 6.6, we can draw the following conclusions:

• The baseline approach is light and quick; however, its accuracy is so low to make it

inapplicable in our context. In more detail, the values of Precision, Recall, F-measure

and Overall returned by it are worse than the ones of all the other approaches and,

in any case, are unsatisfying for all clusters.

• QuickBundles guarantees a very high Precision only for Clusters 1 and 2. As for these

clusters, it obtains the best Precision among the four approaches into consideration.

However, this result is obtained at the price of having a very low Recall. This behavior

is caused by the fact that QuickBundles ignores information about voxel directionality

and considers only voxel proximity. The same reasons represent the cause of the low
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value of Precision obtained by QuickBundles for Cluster 3. By contrast, QuickBundles

shows a high value of Recall for this last cluster, which, if related with the low value

of Recall for Clusters 1 and 2, testifies the di�culty of this approach to distinguish

among bundles near in space.

• If we focus on cases (i) and (ii), which correspond to two versions of our approach,

we cannot observe a substantial di↵erence between the results obtained by applying

k-means and those returned by adopting EM. This fact represents a proof of the good

robustness degree characterizing MPED
SB

.

• Results obtained for all the clusters testify that the Precision of our approach is

generally higher than the one of the other approaches. At the same time, our approach

can guarantee a satisfying level of completeness testified by a satisfying value of Recall.

The satisfying results of our approach are further confirmed by the analysis of F-

measure and Overall. In fact, QuickBundles returns a higher F-measure than the

one obtained by our approach only for Cluster 3. However, for this cluster, as shown

above, the Precision of QuickBundles is unacceptable, and this fact produces a very

low value of Overall.

Summarizing, the previous test shows that our approach can guarantee a good balance

between Precision and Recall in the extraction and characterization of fiber bundles when

directionality information plays a key role.

MPED
SB

metric In this test, we validated our approach’s capability of characterizing

WM fiber-bundles. The input dataset consisted of a virtual di↵usion MR phantom, gener-

ated by Phantomas [21]. This phantom accurately simulated the brain complexity with the

fiber geometry used in the 2nd HARDI Reconstruction Challenge (ISBI 2013). The ground

truth was obtained by requiring our expert to manually segment all the fiber-bundles in

the phantom. In this way, the approximate shapes of these fiber-bundles were defined and

17 models were identified. These are illustrated in Figure 6-8. In this figure, each bundle

is colored on the basis of the standard code of colors for tractography defined in [74] and

described in Section 6.3.2.

To perform our validation, we measured the distance between each of the 17 models and

the fibers in the phantom. To carry out this task, we applied both MPED
SB

and the classic
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Figure 6-8: The 17 bundles identified in the di↵usion MR phantom adopted in our test

edit distance. We compared each obtained result with the ground truth and computed

Precision, Recall, F-measure and Overall [96] for both SBED and the edit distance. In

Table 6.7, we illustrate the results obtained for each model, whereas, in Table 6.8, we

present the average values of Precision, Recall, F-measure and Overall for the two distances.

Before illustrating obtained results, we must preliminarily observe that, in our reference

context, Precision is more important than Recall because the number of fibers generated
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Model

1 2 3 4 5 6 7 8

MPEDSB

Precision 1 1 0.2081 0.4069 1 0.5194 0.9412 0.9474
Recall 0.0220 0.1111 0.7701 0.6344 0.4886 0.6505 0.3556 0.3462
F-measure 0.0430 0.2000 0.3277 0.4958 0.6565 0.5776 0.5162 0.5071
Overall 0.0220 0.1111 �2.1604 �0.2903 0.4886 0.0486 0.3334 0.3270

Edit
Precision 0 0 0.3602 0.4143 0 0.5276 1 1
Recall 0 0 0.7701 0.6236 0 0.6505 0.3556 0.3270
F-measure NULL NULL 0.4908 0.4978 NULL 0.5826 0.5246 0.4928
Overall NULL NULL �0.5978 �0.2580 NULL 0.0681 0.3556 0.3270

9 10 11 12 13 14 15 16 17

MPEDSB

Precision 0.7333 0.6689 1 1 1 1 0.9797 1 0
Recall 0.9245 0.6689 0.0577 0.0198 0.1154 0.0155 0.7472 0.2553 0
F-measure 0.8179 0.6689 0.1091 0.0388 0.2069 0.0305 0.8478 0.4068 NULL
Overall 0.5883 0.3378 0.0577 0.0198 0, 1154 0.0155 0.7317 0.2553 NULL

Edit
Precision 0.7333 0.6972 1 0 0 1 0.9797 1 0
Recall 0.9245 0.6689 0.0192 0 0 0.0199 0.7472 0.1064 0.0007
F-measure 0.8179 0.6828 0.0377 NULL NULL 0.0390 0.8478 0.1923 NULL
Overall 0.5883 0.3784 0.0192 NULL NULL 0.0199 0.7317 0.1064 NULL

Table 6.7: Results obtained by applying MPED
SB

and the edit distance on the 17 models
into consideration

Avg. Precision Avg. Recall Avg. F-measure Avg. Overall

MPEDSB 0.7885 0.3637 0.4032 0.3346

Edit Distance 0.5124 0.3067 0.3063 0.1581

Table 6.8: Comparison of the average Precision, Recall, F-measure and Overall obtained
by applying MPED

SB

and the edit distance

by tractography algorithms usually does not reflect the number of real fibers of a human

brain.

From the analysis of obtained results, it is possible to draw the following conclusions:

• MPED
SB

reaches a very high average Precision (i.e., 78.85%).

• It also reaches a satisfying average Recall (i.e., 36.37%) with peaks of 92%.

• The average Precision, Recall, F-measure and Overall of MPED
SB

are higher than the

ones of the edit distance (i.e., +27.60%, +5.70%, +9.69%, +17.66%, respectively).

• There are few models (i.e., 3 and 17), where both MPED
SB

and the edit distance do

not work properly. These cases need deep analyses in the future, which, probably, will

lead to perform some corrections on both approaches.
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All the previous results allow us to conclude that the adoption of the new metric

MPED
SB

(which, as specified above, represents one of the main contributions of this paper)

represents a step forward in the computation of string similarity and dissimilarity.

Speed test In carrying out this test, we started from the following considerations: (i)

the pre-processing phase of our approach must be carried out once and for all for each

brain; as a consequence, it is possible to exclude it from our test; (ii) one of the quickest

approaches for the extraction of WM fiber-bundles is QuickBundles; as a consequence, it

appears reasonable to compare our approach with it.

We applied both our approach (after the pre-processing phase) and QuickBundles to

the virtual di↵usion MR phantoms shown in Figures 6-5 and 6-8.

At the end of these tests, we obtained that, on average, our approach showed to be

2.54 times slower than QuickBundles. For instance, to process the phantom of Figure 6-8,

QuickBundles took 0.87 seconds, whereas our approach needed 2.21 seconds.

However, in our opinion, with regard to these results, two considerations are in order.

In fact: (i) even if slower than QuickBundles, our approach show a quickness acceptable for

real cases; (ii) as previously pointed out, QuickBundles has an important limitation in that

it is incapable of distinguishing among bundles near in space; our approach overcomes this

limitation, as testified by the higher values of accuracy measures obtained in the previous

tests.

As a consequence, it appears reasonable to partially sacrifice quickness in favor of accu-

racy (and, therefore, to choose our approach instead of QuickBundles) in all those cases in

which the accuracy of results is the most important feature.

Application on a control subject Till now, we carried out our tests on virtual phan-

toms. Now, it is time to test our approach as a whole and on a real case. For carrying

out this task, we required the collaboration of a healthy volunteer, on whom our approach

could have been applied. This volunteer underwent a MR examination on a 3 Teslas Siemens

Prisma MR System (64 channels head-coil). Di↵usion protocol consisted on the acquisition

of 100 slices in the AC-PC plane, TR/TE = 13700/69 ms, FOV = 160⇥ 160, with a spatial

resolution of 1.5 mm3 along 45 gradient directions (b = 3000 s.mm�2). The Orientation

Distribution Function (ODF) and the probabilistic tractography were computed using the
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algorithms of MRtrix [111].

We required our expert to draw approximate shapes in such a way as to extract two

fiber bundles. These were Corpus Callosum (CC) forceps minor - Figure 6-9(a) - and right

Cortico-Spinal Tract (CST) - Figure 6-10(a).

To carry out our validation task, first we transformed the available tractography fibers

into strings. Then, we computed the Dissimilarity Matrix and performed the clustering

activity (in particular, we chose EM as clustering algorithm). Finally, we carried out the

extraction of fiber-bundles and, next, their characterization.

The extracted fibers are shown in Figure 6-9(b) and 6-10(b). An anatomical analysis of

these figures is already su�cient to verify that our approach was capable of well extracting

both forceps minor of CC (Figure 6-9(b)) and right CST (Figure 6-10(b)).

Discussion

After having described our approach, we want to point out that it can be easily extended

from fiber-bundle extraction and characterization to several other contexts in which it is

necessary to perform multi-dimensional (and, more in general, multi-view) clustering and

characterization activities and/or in tasks requiring the integration of data belonging to

di↵erent domains. In fact, it is su�cient to associate a color with each axis of the corre-

sponding multi-dimensional domain to suitably color the corresponding voxel, and, after all

voxels have been colored, to suitably discretize the corresponding color representation.

For instance, our approach can be adopted in all those biomedical contexts in which

it is necessary to perform multi-dimensional (and, more in general, multi-view) clustering

and characterization activities. Moreover, it can be adopted in those contexts someway

requiring a multi-view clustering and a possible model-guided characterization of obtained

clusters. As an example, in the clinical observation of the vital parameters of a patient

[88], it is possible to simultaneously consider several measures, such as electrocardiogram,

temperature, respiratory rate, etc. Thanks to our approach, all these measures can be

analyzed simultaneously and compared in such a way as to evidence possible correlations.

Furthermore, our approach could be adopted also in contexts very di↵erent from the

biomedical ones, whenever multi-view clustering and characterization tasks must be carried

out. Think, for instance, of the analysis of air flows or of weather perturbation in meteorol-

ogy or to the discovery of hidden correlations in multi-sensor (and possibly heterogeneous)
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Figure 6-9: a. Approximate shape of Corpus Callosum (CC) and its axis of symmetry
(black dotted line) drew by the operator; b. Extracted forcep minor of CC fibers (green)

data streams related to a unique phenomenon.

Finally, the general philosophy underlying our approach can be extended to other

multi-view data applications. As an example, the search of frequent structures in a multi-

dimensional space can be reduced to the search of frequent patterns in a set of strings. An

analogous consideration holds for the search of specific structures in a multi-dimensional

space.
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Figure 6-10: a. Approximate shape of Cortico-Spinal Tract (CST) and its axis of symmetry
(black dotted line) drew by the operator; b. Extracted right CST fibers (green)

6.3.3 Integration of spatial information

In this section, we enhance the previous approach, and we present a methodology that in-

tegrates QuickBundles with a string-based fiber representation in such a way as to extract

anatomically homogeneous WM fiber-bundles. QuickBundles (QB) [49] is, probably, the

most famous approach that does not need a priori knowledge to isolate and extract WM
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fiber-bundles. Due to its simplicity, QB showed good results in terms of fiber-bundle extrac-

tion and execution time. However, as a side e↵ect, the pure unsupervised approach used

by it could lead to the extraction of anatomically incoherent regions. Indeed, the process

of fiber generation adopted by QB does not take prior information from neuroanatomists

into consideration. Nevertheless, this last information could play a key role for obtaining

more satisfying results. As a consequence, this limitation could generate a bias in real

applications, where anatomical information is important for analysis.

Given a set F = {f
1

, f
2

, . . . , fn} of WM fibers to cluster and a setM = {m
1

,m
2

, . . . ,mk}

of models, our approach consists of the following steps: (i) application of a string-based fiber

representation formalism to construct the set T (resp., V ) of the strings corresponding to F

(resp., M); (ii) construction of a matrixD such thatD[i, j] indicates the dissimilarity degree

between the string corresponding to fi and the one associated with mj ; (iii) assignment

of each fiber of F to at most one model of M on the basis of D in such a way as to

produce a set B = {b
1

, b
2

, . . . , bk} of WM fiber-bundles; interestingly, at this stage, it is not

possible to distinguish symmetrical structures; (iv) application of QB to each bundle of B

for overcoming this limitation. We conducted an experimental campaign to compare the

performance of our approach with that of QB. As will be clear below, obtained results are

very encouraging.

The following part is organized as follows. We first present QB in order to understand

its functioning and we provide a technical description of the proposed approach. Then

we illustrate the experimental campaign conducted to evaluate it. Finally, we draw our

conclusion and delineate some possible future developments of this research.

QuickBundles QB [49] is an e�cient unsupervised algorithm to cluster WM fiber-bundles.

The idea behind it is simple. At each iteration, a given fiber of the tractography could be

assigned to a pre-existing cluster or it could generate a new cluster. Initially, the first fiber is

simply assigned to a first cluster containing only it. As for the other fibers, the assignment

of a fiber to a cluster is performed according to a given threshold ✓. If the distance between

the current fiber and the centroid of at least one cluster is less than ✓, the fiber is assigned

to the cluster corresponding to the minimum distance. Otherwise, if there does not exist

any cluster whose centroid has a distance from the current fiber less than ✓, a new cluster

is created and the fiber is assigned to it. This process is repeated until all the fibers in
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the tractography are assigned to a cluster. In order to measure the distance between two

fibers, a new metric, called Minimum Average Direct Flip (MDF), is introduced. Di↵erently

from most classical clustering algorithms, like K-Means, in QB there is no re-assignment or

updating step. So, when a fiber is assigned to one cluster, it is not possible for that fiber

to change its cluster.

Technical description of the approach

Our approach joins together QB and MPED
SB

and aims at overcoming the main problem

of the former by using the latter. Its first ingredient is a WM fiber-bundle reference model,

which must represent an approximate shape of the fiber-bundle to extract. It could be

obtained in two di↵erent ways, namely: (i) by exploiting a spline curve to draw the profile

of the fiber-bundle of interest, or (ii) by importing the mean-line profile of the fiber-bundle of

interest from an atlas of pre-labeled fiber-bundles. Both kinds of models can be constructed

either by a generic user or with the support of an expert one. The second ingredient of our

approach is a fiber representation formalism allowing fibers to be mapped on strings, which

is the one presented and discussed in Section 6.3.2.

Once the two main ingredients of our approach have been defined, it is possible to

describe it. Specifically, let F = {f
1

, f
2

, . . . , fn} be a set of WM fibers to cluster and let

M = {m
1

,m
2

, . . . ,mk} be the set of models. Our approach consists of the following steps:

• Construction of the set T = {t
1

, t
2

, . . . , tn} of the strings corresponding to F and of

the set V = {v
1

, v
2

, . . . , vk} of the strings corresponding to M . For this purpose, the

fiber representation formalism described above is applied.

• Construction of a n⇥k matrix D. The element D[i, j] of D indicates the dissimilarity

degree computed by applying MPED
SB

on the string ti, associated with fi, and the

string vj , associated with mj .

• Assignment of each fiber of F to at most one model of M as follows:

– for each row i of D, let µ be the minimum value of this row and let jµ be the

corresponding column;

– if µ is lesser than a certain threshold Th then fi is assigned to mj
µ

; otherwise,

fi is not assigned to any model.
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Figure 6-11: The two phantoms used in our experimental campaign

• At the end of this step, we have a set B = {b
1

, b
2

, . . . , bk} of WM fiber-bundles, one

for each model of M . However these bundles have a weak point. Indeed, the assign-

ment approach above is incapable of distinguishing among symmetrical structures. To

overcome this limitation, for each bundle bl 2 B, we apply QB to it. QB returns the

same bundle bl if it does not present a symmetrical structure. Otherwise, QB splits

bl into two symmetrical bundles b0l and b00l .

Experimental campaign

Our experimental campaign consisted of two phases. The former was devoted to tune

our approach. The latter aimed to compare it with the classical QB. In both cases we

exploited simulated di↵usion phantoms, as well as some classical performance measures,

namely, Precision, Recall, F-Measure and Overall.

Phase 1: Parameter Tuning. As for this phase, the input dataset consisted of the

virtual phantom shown in Figure 6-11(a) and created by Phantomas [21]. In order to

obtain the ground truth, experts segmented this phantom manually into 4 fiber-bundles,

which are numbered in Figure 6-11(a). To find the best value of the input parameter

Th, we considered di↵erent values of it ranging from 0.20 to 0.50. The corresponding

values of Precision, Recall, F-Measure and Overall for the four models are reported in

Figure 6-12. From the analysis of this figure, we can observe that, from Th = 0.20 to

Th = 0.36, an increase of Th leads to an increase of at least one between Precision and
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Figure 6-12: Variation of the four performance measures against the threshold Th for each
model of the phantom of Figure 6-11(a)

Recall and to an increase of both F-Measure and Overall, which (we recall) are parameters

combining Precision and Recall. Starting from Th = 0.36 no further increase of the values

of performance measures can be observed in any model, and our approach shows a stable

behavior. As a consequence, we chose to set Th to the middle of this range and we set it

to 0.44.

Phase 2: Comparison with the classical QB. After having tuned Th, we applied

the classical QB on the previous phantom to compare the performance of our approach

(with Th = 0.44) with that of QB. The obtained results are reported in Table 6.9. From

the analysis of this table we can observe that our approach shows a much higher average

Precision, a slightly lower average Recall, a higher average F-Measure and a much higher

average Overall than QB.

To obtain a (possible) confirmation of this result, we applied both our approach, with

Th = 0.44, and QB on a second phantom shown in Figure 6-11(b). This consisted of a

virtual di↵usion MR phantom that accurately simulates the brain complexity with the fiber

geometry used in the 2nd HARDI Reconstruction Challenge (ISBI 2013). Data were gen-
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Our approach QB

Model Precision Recall F-Measure Overall Precision Recall F-Measure Overal

1 0.99 0.72 0.83 0.71 0.96 1.00 0.98 0.95

2 0.84 0.96 0.90 0.78 0.54 0.77 0.64 0.12

3 0.97 0.81 0.88 0.78 0.54 0.77 0.64 0.12

4 0.99 0.94 0.96 0.93 1.00 0.93 0.96 0.93

Avg values 0.95 0.85 0.89 0.80 0.76 0.87 0.80 0.54

Table 6.9: Performance values obtained by our approach and QB when applied on the
phantom of Figure 6-11(a)

Our approach QB

Model Precision Recall F-Measure Overall Precision Recall F-Measure Overal

1 0.94 0.71 0.81 0.67 0.91 0.70 0.79 0.63

2 0.90 0.64 0.75 0.57 0.33 0.71 0.45 -0.76

3 0.78 0.41 0.54 0.29 0.31 0.75 0.44 -0.90

4 0.89 0.69 0.77 0.60 0.85 0.75 0.80 0.62

5 0.77 0.57 0.66 0.40 0.80 0.78 0.79 0.58

6 0.96 0.68 0.79 0.65 0.29 0.79 0.43 -1.13

7 0.94 0.29 0.45 0.27 0.14 0.82 0.24 -4.33

8 0.68 0.33 0.45 0.18 0.13 0.91 0.23 -4.96

Avg values 0.86 0.54 0.63 0.45 0.47 0.78 0.52 -1.28

Table 6.10: Performance values obtained by our approach and QB when applied on the
phantom of Figure 6-11(b)

erated by means of Phantomas [21]. To obtain the ground truth, experts segmented all the

fiber-bundles in the phantom manually. At the end of this task, they defined the approx-

imate shapes of these fiber-bundles; in particular, they identified 17 models. Numbering

these models in Figure 6-11(b) was not possible due to the 3D nature of this image.

Because of its fully unsupervised nature, QB was capable of extracting just 8 out of the

17 fiber-bundles of the phantom. Our approach, instead, extracted all the 17 fiber bundles.

As a consequence, a comparison between our approach and QB was possible only for the 8

models detected by QB. Obtained results are reported in Table 6.10.

From the analysis of this table we can observe that QB generally shows a higher value

of Recall than our approach (this can be observed in 7 out of 8 models), but lower values of

Precision (which were much lower in 5 cases, lower in 2 cases and slightly higher in only 1

case). As for the combined parameters F-Measure and Overall, our approach shows better

results than QB in 6 out of 8 cases. Finally, if we consider the average values of these

measures, we obtain that our approach shows a better Precision, a better F-Measure, a

better Overall and a worse Recall than QB.

As previously pointed out, this di↵erence of behavior is due to the nature of the struc-
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tures extracted by QB. In fact, the fiber-bundles obtained by QB are not isolated but they

are merged with other structures that are spatially near to them (even if they present a

completely di↵erent anatomical meaning). By contrast, the fiber-bundles obtained by our

approach are “purer”, since they contain only anatomically uniform fibers, corresponding

to the fiber bundles of our interest. In support of this reasoning, it is well known that, in

this application field, Precision is much more important than Recall.

Conclusion

As a final consideration, we point out that our approach overcomes the main problem of

QB, i.e., the possibility that it returns anatomically incoherent fiber clusters, in which the

desired fiber-bundles are not isolated but merged with other structures spatially near to

them (even if they present a completely di↵erent anatomical meaning). This work must not

be considered as an ending point of our research e↵orts. Indeed, several developments are

possible. First of all, we plan to extend our experiments from phantoms to real cases. After

this, we would like to further improve QB in such a way as to correct fiber assignments to

clusters when these assignments appear incorrect in a second time. Finally, we will work on

the MPED
SB

constraint optimizations in such a way as to define an approach that allows the

discovery of the best constrains for improving the extraction of specific WM fiber-bundles.
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6.4 MPED for Electroencephalograms

In this section, we apply MPED, in conjunction with a network-based approach to help

experts to investigate neurological disorders in which the connections among brain areas

play a key role. Our approach uses a slightly di↵erent version of MPED, called Consensus

MPED (cMPED) which operates as follows: it receives an electroencephalogram (EEG)

of a patient, on which a preprocessing step for removing artifacts has been performed.

Then, it constructs a network with nodes that correspond to electrodes and with edges

that denote the disconnection level of the brain areas underlying the involved electrodes.

The weight of an edge measures this disconnection level and is computed by applying

the cMPED. Once this network has been constructed, some suitable projections can be

derived from it, depending on the neurological disorder to investigate. After this, for each

projection, a connection coe�cient, taking both the number and the dimension of available

cliques into account, is computed. The values of this coe�cient for the various projections

are employed to help experts in their analyses of neurological disorders. This section is

organized as follows: in Section 6.4.1 we give some interesting and useful background in

order to understand the problem. Section 6.4.2 presents the ingredients of our approach

while Section 6.4.3 shows the approach itself. In Section 6.4.4 we describe its application

by studying few neurological disorders and in Section 6.4.5 we compare our approach with

another one recently proposed in the literature.

6.4.1 Background

In recent years, the incidence of neurological disorders is growing also because population

is aging in most countries. At the same time, the e↵orts to design approaches capable of

determining the onset of these disorders and of monitoring their course in the correspond-

ing patients are intensifying [41, 62, 118]. Also the tools supporting neurologists in their

activities are becoming more complex and sophisticated (think, for instance, of electroen-

cephalograms with 256 electrodes, instead of the classical ones with 19 electrodes). The

counterpart of these important advances is the need of handling huge amounts of data that

experts have di�culty to analyze manually. In this scenario, automatic tools supporting

experts to analyze available data are becoming mandatory.

Among the many diagnostic tools available to neurologists, EEG is one of the least inva-
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sive. For this reason, it is adopted to support the analyses of many neurological disorders.

In the literature, many techniques to process EEG data have been proposed, and most of

them are based on signal analysis [20, 66, 89, 106, 109, 115].

An EEG can be easily modeled as a network. Indeed, in the literature, several ap-

proaches that use networks to model EEGs and to investigate neurological disorders have

been presented [36, 78, 81, 95, 105, 124]. After having modeled an EEG as a network, these

approaches generally use basic concepts and metrics of network analysis (e.g., centrality

measures, diameter, path length) to support an expert in her diagnosis.

It is well known that, in many neurological investigations, the key role is played by the

connections between the brain areas. Network analysis provides some basic parameters to

evaluate the connection level of a network. The most known of them are network density

and clustering coe�cient. However, these two parameters have not been specifically con-

ceived for measuring the connection degree of a network. As a consequence, a challenging

issue could be defining a parameter specifically thought for this purpose. Hopefully, this

parameter could work better than density and clustering coe�cient for evaluating the con-

nection degree of a network. To define this parameter, we observe that cliques play a central

role in identifying highly-connected portions of a network. Thus, they could represent the

key concept in this task since the higher the number and the dimension of available cliques

in a network and the higher the corresponding connection level.

However, a network associated with an EEG is totally connected, since a potential

di↵erence can be evaluated for each pair of its electrodes. As a consequence, we would have

only one clique of maximum dimension in all cases. On the other side, potential di↵erence

between two electrodes is an indicator of the strength of the connection between them and,

ultimately, between the corresponding brain areas. As a consequence, it is reasonable to

use a metric derived from it to weigh the corresponding edges in the network. This metric

could represent the distance, or the disconnection level, of the associated brain areas.

These edge weights could guide the analyses of the network and, ultimately, of the

corresponding patient. As a matter of facts, it could be possible to define suitable projections

of the network (i.e., suitable subnetworks) on the basis of them, and to evaluate the number

and the dimension of the cliques on each of these projections. For instance, assume to obtain

a derived network projection by removing the edges with the top X% of the weights. This

is equivalent to not considering the edges with the highest distances or, in other words, to
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consider only the projected network embracing the most connected brain areas. On the

basis of this reasoning, the number and the dimension of cliques in this projected network

could surely play a prominent role in the definition of a connection coe�cient for the whole

original network.

In this scenario, a metric that, starting from the potential di↵erences, can determine the

disconnection level between two nodes is particularly important. In several contexts, related

to sensors and biomedical engineering, string-based approaches, turning analog signals into

discretized data streams, proved to be well suited. As a matter of facts, several approaches

of this family turned out to be successful in analyzing, for instance, generic sensor network

data [64, 127] and biomedical data streams [27, 99, 102]. In particular, once input data

is transformed into a string, several metrics can be applied to measure the (dis)similarity

between them. Some classical measures, like Hamming Distance, Longest Common Subse-

quence (LCS), and Levenshtein Distance [75], have been successfully adopted in this context.

However, they are not well suited in some cases, particularly when the discretization step

of similar signals may produce quite di↵erent discretized data, which makes it compulsory

some form of approximation in string comparison.

6.4.2 Core ingredients

Consensus MPED

Here, we extend the problem of pairwise approximate string comparison to the analysis of

sets of heterogeneous strings. This might be particularly important when we want to analyze

the relative properties between pieces of information in a group, such as the connection level

between groups of signals (see Section 6.4.3).

In order to carry out this task, we exploit our MPED, defining a slightly di↵erent version

called consensus Multi-Parameterized Edit Distance (cMPED, for short), which is described

next.

Intuitively, since strings to be examined are assumed to be correlated, the objective is

both to identify hidden correlations and to compare strings on a common base. Then, given

a set of strings and the set of matching schemas computed by MPED between them, we

construct a consensus-based matching schema M , common to all strings, and we compute

the corresponding cMPED accordingly.
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More formally, given a set S = {s
1

, . . . , sn} of strings on a common alphabet ⇧ obtained

as the union of the involved alphabets, let D be the set of (MPED) distances between each

pair si and sj and let M be the set of the corresponding matching schemas. In particular,

dij 2 D represents the distance between si and sj and Mij 2 M indicates the matching

schema corresponding to dij , si and sj .

A consensus matrix C can be built from M such that, for each pair of symbols l 2 ⇧

and m 2 ⇧:

C(l,m) =
P

i,j

M
ij

(l,m)

n(n�1)

.

Recall that Mij(l,m) = 1 if symbols l and m match in the matching schema Mij , and

Mij(l,m) = 0 otherwise. Since the sum is made over all the pairs of indices i, j corresponding

to strings in S, C(l,m) measures the portion of matching schemas that agree on the match

between symbols l and m, over all the n(n� 1) string pairs in S.

In order to build M , we consider the consensus stored in C among the pairs of symbols

that should be considered to match. However, using a fixed threshold would be too weak,

given the possibly high heterogeneity of situations coming from di↵erent distance sets. For

instance, very dissimilar string sets will probably significantly disagree on many matchings

of schemas, whereas very similar string sets will probably agree on most matchings.

To face this issue, given the maximum distance dmax, which can be in principle returned

by MPED on S, we introduce the following sigmoid-based threshold computation3:

Th(D) = 1

1+e�3.5(min

i,j

{d
ij

/d

max

}�0.95)

which represents the basis for the computation of each element of M as specified below:

M(l,m) =

8

>

<

>

:

1, if C(l,m) � Th(D)

0, otherwise.

The consensus-based matching schema M thus computed is then employed as the com-

mon matching schema between all string pairs in S. Since it may di↵er from the original

matching schemas that allowed the construction of D, a new distance set cD of cMPEDs

between strings in S is computed. This task is carried out by running MPED with the

3This formula has been empirically obtained over several sets of strings.
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forced matching schema M , which corresponds to computing the edit distance using M in-

stead of symbol identity matching. Observe that M might not produce the lowest possible

distance in some cases, and that it might not be compliant to parameters ⇡
1

,⇡
2

used in

the previous step; however, this new matching schema expresses information shared among

all considered string pairs and, consequently, it carries more contextualized and meaningful

information.

Connection coe�cient

As previously pointed out, in many application contexts (belonging to both the neurological

scenarios and other ones), the key role is played by the (dis)connection degree of the network

nodes. In the classical network analysis, several parameters to measure this feature have

been proposed. The simplest one is network density, whereas the most common one is

clustering coe�cient.

Consider a network N = hV,Ei, where V is the set of its nodes and E is the set of its

edges. Each edge eij connects the nodes vi and vj . It can be represented as eij = (vi, vj , wij).

Here, wij is a measure of “distance” between vi and vj and depends on the application

context.

Network density indicates the portion of the potential connections in a network that are

actual connections. If N is undirected, network density can be computed as:

DN = |E|
|V |(|V |�1)

2

Clustering coe�cient measures the degree to which nodes tend to cluster together. To

define it, we must preliminarily introduce some concepts. In particular, a triad in N is a

subnetwork consisting of three nodes. These nodes could be totally disconnected, partially

connected or totally connected (in which case the triad is closed). The clustering coe�cient

CCN is defined as:

CCN = number of closed triads
total number of triads

Clustering coe�cient is already a good connectivity indicator. However, it is based

on triads and, therefore, it focuses on the capability of nodes to be connected in small

subnetworks (consisting all of three nodes). It could be extremely important to also evaluate

the dimension of the totally connected subnetworks existing in a network. Clearly, this
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phenomenon is also partially measured by clustering coe�cient, because the larger the

totally connected subnetwork the higher the fraction of closed triads. However, in our

opinion, clustering coe�cient does not evidence this capability well and clearly. In fact,

keeping n+ 1 nodes totally connected is exponentially more di�cult than keeping n nodes

totally connected, and this aspect is not considered by the clustering coe�cient.

Just as the clustering coe�cient is based on triads, so a new coe�cient should be based

on cliques. We recall that the concept of clique is an extension of the concept of triad. In

fact, a clique of dimension n represents a subnetwork of n nodes totally connected such

that it cannot be further extended to n + 1 nodes. We call connection coe�cient the new

coe�cient we are proposing in this section.

To define it, we must preliminarily introduce the set Cl of the cliques of N and the set

Clk ✓ Cl of the cliques of dimension k belonging to N . Starting from these definitions, the

connection coe�cient CN is defined as:

CN =

|V |
X

k=1

|Clk| · 2k

where |Clk| indicates the cardinality (i.e., the number of cliques) of Clk.

The definition of this coe�cient is based on the following considerations: (i) both the

dimension and the number of cliques are important as connectivity indicators; (ii) the

concept of clique is intrinsically exponential; in other words, a clique of dimension n+ 1 is

exponentially more complex than a clique of dimension n.

6.4.3 The proposed approach

After having examined the metrics employed in our approach, we are now able to describe

it. Preliminarily, we point out that our approach could be applied to any context that can

be modeled as a network such that: (i) each node has associated a string representing the

features to investigate for the corresponding node in the context of interest; (ii) distances

between strings weigh the strength of the relationships between the corresponding nodes

and, therefore, between the corresponding entities; (iii) node connection plays a key role.

The investigation of several neurological disorders perfectly fits the scenario depicted

above and, therefore, we specialize our approach to this context.

Having this in mind, consider a set S of EEGs, on which all the necessary pre-processing
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steps for eliminating the artifacts have been carried out.

Each EEG is then discretized to obtain strings from the analog data. It is well known

that, whenever analog data is discretized, some amount of discretization error can always

be present. A näıve discretization may a↵ect the whole analysis process. Generally, the

goal of a discretization step is to reduce this error as much as possible with respect to the

modeling purposes. Several discretization techniques have been presented in the literature

(see, e.g., [32, 70, 123]). In our approach, we employ the well known SAX (Symbolic

Aggregate approXimation) algorithm [70]. Indeed, SAX allows: (i) a fast computation of

discretized data, (ii) the dimensionality reduction of the analog signal into a string. SAX

transforms an input data series with n measurement points into a string. It requires two

key parameters, namely the length d of the output string, and the number of symbols to be

considered for the string alphabet. SAX consists of two steps; first, it transforms input data

into a Piecewise Aggregate Approximation (PAA) representation; then, it converts this last

representation into a string. The adoption of PAA guarantees that symbols corresponding

to input features have the same probabilities.

A network N = hV,Ei can be associated with each EEG of S. Each node vi 2 V

corresponds to an electrode. Each edge eij 2 E connects the nodes vi and vj and can be

represented as:

eij = (vi, vj , wij)

Here, wij is a measure of the “distance” between vi and vj . It is an indicator of the

disconnection level of vi and vj . In principle, as we pointed out above and as it will be clear

in the following, the tasks composing our approach are orthogonal to the measure adopted

for estimating wij . However, having in mind the considerations expressed in Section 6.4.2,

we employed the average cMPED values computed throughout the whole EEG.

Observe that the network N presented above is totally connected. This makes it impos-

sible its usage to investigate phenomena having the network connection level as a key factor,

as the ones we want to analyze here. However, we argue that N is a weighted network,

and the corresponding weights are indicators of the connection level of the corresponding

nodes; as a consequence, they could be employed to discriminate strong connections from

weak ones.

In order to discriminate node connections and, at the same time, to make the adoption
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of the connection coe�cient possible, we need to construct a new model derived from N .

In performing this task, we implement a simple strategy, which allows us to obtain a more

“user-friendly” and “expressive” model. In particular, we construct a new network, namely

N⇡, by performing a “projection” of N with the objective of removing the “weakest” edges

from it and by coloring the others on the basis of their weight. The details of the projection

and coloring activities depend on the neurological disorder to analyze. To give an idea

of them, in the following, we show a generic projection and coloring schema. In Section

6.4.4, we provide the detailed schema for CJD, epilepsy and AD. In our example schema,

we use three colors, namely blue, red and green. Blue edges denote strong connections (i.e.,

small weights), red edges represent intermediate ones and, finally, green edges indicate weak

connections. More formally, N⇡ can be represented as:

N⇡ = hV,E⇡i

Here, the nodes of N⇡ are the same as the ones of N . To define E⇡, we employ the

distribution of the weights of the edges of N . Specifically, let maxE (resp., minE) be the

maximum (resp., minimum) weight of an edge of E. Starting from maxE and minE , it is

possible to define a parameter stepE = max
E

�min
E

10

, which represents the length of a “step”

of the interval between minE and maxE . We can define dk(E), 0  k  9, as the number

of the edges of E with weights belonging to the interval between minE + k · stepE and

minE + (k + 1) · stepE . All these intervals are closed on the left and open on the right,

except for the last one that is closed both on the left and on the right. E⇡ consists of all

the edges of E belonging to dk(E), k  thmax. The edges of E⇡ are colored according to

the scheme mentioned previously, i.e., E⇡ = Eb
⇡ [ Er

⇡ [ Eg
⇡, where:

• Eb
⇡ =

n

eij 2 E | eij 2
S

th
min

kth
br

dk(E)
o

,

• Er
⇡ =

n

eij 2 E | eij 2
S

th
br

<kth
rg

dk(E)
o

,

• Eg
⇡ =

n

eij 2 E | eij 2
S

th
rg

<kth
max

dk(E)
o

.

Here, thmin, thbr, thrg and thmax are suitable threshold values belonging to the integer

interval [0, 9]. Their value depend on the neurological disorder to analyze and can be

determined experimentally. In particular, as for the analysis of AD, we experimentally set

thmin = 0, thbr = 1, thrg = 4 and thmax = 6.
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Figure 6-13: Distribution of the edge weights and colored network of a control subject, a
patient with MCI and a patient with AD

To give an idea of the expressiveness of colored networks, in Figure 6-13 we report the

distribution of the edge weights and the colored network of a control subject (resp., a patient

with Mild Cognitive Impairment - hereafter, MCI - and a patient with AD). The disposal of

nodes in the network reflects the 10-20 system, even if they are rotated 90 degrees clockwise.

It is straightforward to observe that the control subject presents a weight distribution more

biased on the left than the patient with MCI, who, in turn, presents a weight distribution

more biased on the left than the patient with AD. A direct consequence of this fact is

that the colored network of the patient with AD presents lesser and weaker edges than the

colored network of the patient with MCI that, in turn, presents lesser and weaker edges

than the colored network of the control subject.

In order to quantify this phenomenon, in Table 6.11, we report the values of some
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measures characterizing the three colored networks shown in Figure 6-13. Specifically, the

considered measures are: (i) the total number of colored edges; (ii) the total number of blue

(resp., red, green) edges4; (iii) the percentage of colored edges against the total number

of original edges; (iv) the percentage of blue (resp., red, green) edges against the total

number of original edges. The quantitative values reported in Table 6.11 fully confirm the

qualitative analysis mentioned above.

Parameter Control Subject Patient with MCI Patient with AD

Total number of colored edges 170 141 69
Total number of blue edges 105 35 2
Total number of red edges 59 75 40
Total number of green edges 6 31 27
Percentage of colored edges 99.4% 82.5% 40.3%
Percentage of blue edges 61.4% 20.5% 1.2%
Percentage of red edges 34.5% 43.8% 23.4%
Percentage of green edges 3.5% 18.1% 15.8%

Table 6.11: Quantitative measures representing the colored networks of Figure 6-13

From the previous description, it emerges that, thanks to N⇡, we reached our objectives

of: (i) discriminating strong connections from weak ones; (ii) representing connections in

a friendly and expressive way, and (iii) making the adoption of the connection coe�cient

possible. This last objective is extremely important because, as it will be clear in the follow-

ing, the connection level is a very important indicator in the analysis of several neurological

disorders.

We are now able to provide a general schematization of our approach. Specifically, it

consists of the following steps:

1. Construct the set S of the EEGs of interest by performing electroencephalograms of the subjects to analyze.

2. Preprocess the EEGs of S to remove artifacts.

3. For each preprocessed EEG of S:

3.1 Compute cMPED for each pair of electrodes.

3.2 Compute the corresponding network N using cMPED values as edge weights.

3.3 Derive the “projected” network(s) from N .

3.4 Compute the connection coe�cient for the “projected” network(s).

3.5 Analyze the connection coe�cients to draw the suitable conclusions.

4Recall that blue edges are the strongest ones, red edges have an intermediate weight, whereas green
edges are the weakest ones.
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As for Step 3.5, once the projected networks, and the corresponding connection coe�-

cient, have been obtained for all the EEGs of S, many analyses can be performed on them to

extract useful information. These analyses depend on the neurological disorder the expert

is investigating. To give an idea of them, in the next section, we consider three neurological

disorders, namely CJD, epilepsy and AD.

6.4.4 Investigating neurological disorders

In this section, we provide an overview of how the general approach presented in Section

6.4.4 can be specialized in the investigation of three neurological disorders, namely CJD,

epilepsy and AD.

Creutzfeldt-Jacob Disease

CJD is a rapidly progressive, uniformly fatal Transmissible Spongiform Encephalopathy

(TSE), characterized by the accumulation of a variant of the host encoded cellular prion

protein in the brain [118, 119]. Sporadic CJD (hereafter, sCJD) represents the most com-

mon form of CJD; in fact, it occurs worldwide in 84% of cases of CJD. It has an annual

mortality rate of 1.39 per million. An early and reliable diagnosis of CJD is extremely

important to exclude other, potentially treatable, causes of encephalopathies. However, the

early diagnosis of this disease is complicated by the extreme heterogeneity of its clinical pre-

sentation. EEG has always been, and still is, one of the main methods to perform clinical

diagnosis of CJD. In fact, in the EEG of patients with sCJD, it is often possible to observe

three-phase periodic spikes with sharp waves known as “Periodic Sharp Wave Complexes”

(hereafter, PSWCs). More specifically, PSWCs were reported to occur in the EEG trac-

ings of about two-thirds of patients with sCJD. For this reason, they were included in the

World Health Organization diagnostic classification criteria of sCJD [117–119]. In the past,

approaches to investigating PSWCs in the EEGs of patients with sCJD were mainly based

on signal processing [109, 115]. By contrast, to the best of our knowledge, no network anal-

ysis based approach to investigating the CJD phenomenon has been previously proposed

in the literature. In sCJD the investigation of the connection degree of the brain areas is

extremely important. In particular, in the past literature, it was shown that brain areas

are more connected in presence of PSWCs than in absence of them [112]. This implies that

our approach could really represent a useful tool for investigating PSWCs.
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Figure 6-14: Partitioning of an EEG into segments with PSWCs and without PSWCs

To give an idea of how our approach can be applied in this case, consider an EEG of a

patient with sCJD. This EEG can be segmented in such a way as to separate the tracing

segments with PSWCs from those without PSWCs (Figure 6-14). As a consequence of this

task, several tracing segments can be found in the EEG, which could be grouped in two

distinct sets, namely those containing PSWCs and those not containing PSWCs.

At this point, a network N (resp., N ) representing the set of the EEG segments with

PSWCs (resp., without PSWCs) can be defined. Specifically:

N = hV,Ei N =
⌦

V,E
↵

Here, V is the set of the nodes of N and N . Each node vi 2 V corresponds to an

electrode. E (resp., E) is the set of the edges of N (resp., N ). Each edge eij 2 E (resp.,

eij 2 E) connects the nodes vi and vj . It can be represented as eij = (vi, vj , wij) (resp.,

eij = (vi, vj , wij)). wij (resp., wij) denotes the values of the cMPED between vi and vj ,

averaged for all segments with (resp., without) PSWCs, and, as usual, it is an indicator of

the disconnection level of vi and vj . Once N and N have been constructed, it is possible

to derive N⇡ and N⇡.

In Figure 6-15, we report the colored networks N⇡ and N⇡ for a patient with sCJD. The

disposal of the nodes in the networks reflects the 10-20 system, even if they are rotated 90

degrees clockwise.

Observe that, in this figure, the number of edges of N⇡ is higher than the one of N⇡.

Furthermore, in N⇡, there are much more blue and red edges than those in N⇡, where,
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Figure 6-15: Colored Networks N⇡ and N⇡ for a patient with CJD

instead, a higher number of green edges can be observed. When passing from N⇡ to N⇡ the

number of edges decreases of |E|�|E|
E

= -9.03%.

By computing the corresponding connection coe�cient, we obtain:

CN
⇡

= 196642 CN
⇡

= 51704
CN

⇡

�CN
⇡

CN
⇡

= �73.71%

This example shows that our approach is really useful to support experts in their analysis

of patients with sCJD. In fact, in patients with PSWCs, the connection coe�cient is much

higher than in control subjects. Interestingly, in this case, the decreases of density and

clustering coe�cients when passing from N⇡ to N⇡ are as follows:

DN
⇡

�DN
⇡

DN
⇡

= �9.03%
CCN

⇡

�CCN
⇡

CCN
⇡

= �3.46%

These values clearly evidence that our connection coe�cient is really more powerful in

discriminating patients with PSWCs from patients without PSWCs.

Clearly, this study could stimulate neurologists to organize medical campaigns aimed to

verify how much our approach is capable of helping experts in the analysis of patients with

sCJD. For instance, several sets of patients with sCJD could be selected and parameters as

sensitivity, specificity and precision could be computed.

Epilepsy

Epilepsy is a neurological disorder characterized by recurrent seizures. These are still consid-

ered unpredictable, despite the huge e↵orts spent in recent years by the scientific community

to develop predictive algorithms. One of the main tools adopted to perform the analysis of

epileptic patients is EEG. To facilitate the diagnosis of this disorder, worldwide researchers
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are working to automatically mark the critical events occurring in an EEG, as well as to

extract meaningful features from EEG signals. A specific form of epilepsy is Childhood

Absence Epilepsy (CAE), an idiopathic generalized epileptic disorder [40, 41] characterized

by recurrent “absence seizures” that cause disruption of awareness and are often associated

with staring. Detecting ictal states in patients with CAE is a very delicate and time con-

suming task for a neurologist, who has to analyze the whole EEG. Our approach could help

her in this task.

To give an idea of how our approach can be applied in this case, consider an EEG of a

patient with CAE. Starting from it, a network N can be constructed, as specified in Section

6.4.4. After this, two network projections, namely black and white ones, can be constructed.

Formally speaking, these two network projections can be defined as N blk
⇡ = hV,Eblk

⇡ i and

Nwht
⇡ = hV,Ewht

⇡ i. Here:

• Eblk
⇡ =

n

eij 2 E | eij 2
S

0k4

dk(E)
o

,

• Ewht
⇡ =

n

eij 2 E | eij 2
S

5k9

dk(E)
o

.

We observe that Nwht considers the five intervals of edge distribution characterized by

the heaviest weights, whereas N blk encompasses the other ones. Now, it could be possible

to compute, on a time slot base, the value of the connection coe�cients CN blk

⇡

and CNwht

⇡

of

N blk
⇡ and Nwht

⇡ , respectively.

Since edge weights represent distances, on the basis of the results of [95], we can expect

that, in presence of an ictal state, CN blk

⇡

presents a maximum, whereas CNwht

⇡

shows a

minimum. This is explained by the fact that, during ictal states, the weights of the edges

tend to decrease and, therefore, several edges disappear from Nwht and appear in N blk.

In Table 6.12, we report data about figures specified by an expert neurologist when she

examined a whole EEG of a patient with CAE. The physician identified 8 seizures, which

took place into the time-slots specified in this table. We use this table as a starting point

and a benchmark of accuracy for the detection of ictal states performed by our approach.

In Figures 6-16 and 6-17, we plot the values of the connection coe�cient (y axis) for

each time-slots (x axis) for the EEG into consideration and for N blk
⇡ and Nwht

⇡ , respectively.

Clearly, in these figures, it is straightforward to observe that there are some time-slots in

which connection coe�cient is several orders of magnitude lower than others. The important

result is that those time-slots are exactly the ones that the neurologist spotted as ictal



6.4. MPED FOR ELECTROENCEPHALOGRAMS 173

Seizure id Starting time-slot Ending time-slot

1 4 26
2 120 122
3 165 205
4 306 332
5 449 451
6 470 496
7 642 659
8 891 913

Table 6.12: Table produced by a neurologist regarding starting and ending time-slots for
each seizure of the EEG into consideration

states. Thus, without having to manually analyze the whole EEG of a patient, thanks to

our approach, ictal states can be easily distinguished from the others.

Again, this study is simply a starting point. In fact, in the future, we plan to perform

research e↵orts to try to make our approach capable of predicting the next seizures of a

patient. The ultimate goal is, again, stimulating neurologists to organize medical campaigns

for verifying how much our approach is capable of helping experts in the analysis of patients

with CAE and, more in general, with several forms of epilepsy.

In Figures 6-18 and 6-19, we plot the values of the density coe�cient DN blk

⇡

and DNwht

⇡

for the same EEG of Figures 6-16 and 6-17. It is straightforward to observe that density

coe�cient is less capable of clearly distinguishing ictal states from the other ones. As a

matter of fact, if some form of evidence of ictal states can be observed for DNwht

⇡

, for DN blk

⇡

this evidence disappears.

Analogous conclusions can be drawn for clustering coe�cient, with values for CCN blk

⇡

and CCNwht

⇡

for the same EEG shown in Figures 6-16 and 6-17 that are reported in Figures

6-20 and 6-21.

Alzheimer’s Disease

In recent years, the e↵orts to design approaches capable of determining the onset of AD in

advance are intensifying [58, 97]. Even if this issue is challenging, it is extremely complex. A

further important issue that makes the diagnosis on these patients di�cult concerns the fact

that they, due to the very nature of their disease, do not easily undergo examinations, like

Magnetic Resonance Imaging, which force them to stay motionless for a long time. A non-

invasive and well tolerated examination, which can be done on patients with AD, is EEG.

The possibility of using EEG for characterizing patients with AD is evidenced in [62, 66].
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Figure 6-16: Connection coe�cient for the network N blk

Figure 6-17: Connection coe�cient for the network Nwht



6.4. MPED FOR ELECTROENCEPHALOGRAMS 175

Figure 6-18: Density for the network N blk

Figure 6-19: Density for the network Nwht
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Figure 6-20: Clustering coe�cient for the network N blk

Figure 6-21: Clustering coe�cient for the network Nwht
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In fact, the EEGs of patients with AD present some peculiarities, namely slowing, reduced

complexity and perturbations in synchrony. As specified in [93], MCI can be prodromal for

AD. In fact, several papers suggest that patients with MCI tend to convert to AD with a

rate of about 10-15% annually [34]. For this reason, a large variety of approaches aiming

at characterizing both MCI and AD have been proposed in the past literature. Several

of these approaches are based on the analysis of EEG. In fact, it is well known that, in

AD progression and in MCI progression towards AD, a key role is played by the loss of

connectivity among the di↵erent cortical areas.

In this context, our approach can help the experts in evaluating whether a certain patient

is presumably su↵ering from MCI or from AD5 and, even more interesting, in evaluating if,

with the passing of time, an individual with MCI is converting to AD or not.

To give an idea of how our approach can be applied in this case, consider the EEG of a

patient p performed at two di↵erent time instants, namely t
0

and t
1

, being t
1

some months

after t
0

. Starting from them, two networks N
0

⇡

= hV,E
0

⇡

i and N
1

⇡

= hV,E
1

⇡

i can be

constructed.

Here: E
0

⇡

= Eb
0

⇡

[Er
0

⇡

[Eg
0

⇡

; Eb
0

⇡

, Er
0

⇡

, and Eg
0

⇡

are computed by applying the definitions

of Section 6.4.4.

E
1

⇡

= Eb
1

⇡

[ Er
1

⇡

[ Eg
1

⇡

; Eb
1

⇡

, Er
1

⇡

, and Eg
1

⇡

are also computed as specified in Section

6.4.4. However, in their computation, the reference interval [minE ,maxE ] for the edge

weight distribution is the one of the edges of E
0

⇡

and not the one of the edges of E
1

⇡

. As

will be clear below, this is necessary for making it possible the comparison of the course of

the neurological situation of p when passing from t
0

to t
1

.

In order to give an idea of the capabilities of our approach in this application context, in

Figure 6-22, we illustrate the networks N
0

⇡

and N
1

⇡

for two patients with MCI at t
0

, who

remained with MCI at t
1

. Both the images and the corresponding quantitative descriptions,

reported in Table 6.13, show that there is no substantial change in the networks of these

patients when passing from t
0

to t
1

.

A completely di↵erent situation can be observed in Figure 6-23, where we show the

networks N
0

⇡

and N
1

⇡

for two patients with MCI at t
0

, who converted to AD at t
1

. In this

case, both the images and the corresponding quantitative descriptors, reported in Table

5Recall that a clinical diagnosis of AD is very di�cult, especially at the early stages of the disease; for a
definitive diagnosis of AD, the biopsy of brain tissues is even necessary.
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Figure 6-22: The networks N
0

⇡

and N
1

⇡

for two patients with MCI at both t
0

and t
1

6.14, evidence a substantial change in the networks of these patients when passing from t
0

to t
1

.

Let us now examine connection coe�cient. In particular, let us consider
CN1

⇡

�CN0
⇡

CN0
⇡

, i.e.,

the variation of the connection coe�cient when passing from t
0

to t
1

. For the two patients

MCI-MCI of Figure 6-22, this variation is equal to �25.00% and �4.96%, whereas for the

two patients MCI-AD of Figure 6-23, this variation is equal to �89.06% and �99.41% These

results show that our approach can really help experts to evaluate the conversion of a patient

from MCI to AD.

Let us consider, now, the variation of network density
DN1

⇡

�DN0
⇡

DN0
⇡

for the same patients.

We obtain that it is equal to �2.51% and �11.19% for the two MCI-MCI patients and is

equal to �3.29% and �71.94% for the two MCI-AD patients. An analogous task performed

on clustering coe�cient returns that
CCN1

⇡

�CCN0
⇡

CCN0
⇡

is equal to �1.61% and �3.19% for the

two MCI-MCI patients and is equal to �5.48% and �39.89% for the two MCI-AD patients.

These results show that, also for this scenario, the connection coe�cient introduced is

better than the classical network density and clustering coe�cient parameters in discrimi-

nating di↵erent neurological situations.
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Parameter N0⇡ (I patient N1⇡ (I patient N0⇡ (II patient N0⇡ (II patient
MCI-MCI) MCI-MCI) MCI-MCI) MCI-MCI)

Total number of colored edges 159 155 134 118
Total number of blue edges 7 12 2 2
Total number of red edges 98 65 49 31
Total number of green edges 54 78 83 85
Percentage of colored edges 92.98% 90.64% 78.36% 69.00%
Percentage of blue edges 4.09% 7.02% 1.17% 1.17%
Percentage of red edges 57.30% 38.01% 28.65% 18.13%
Percentage of green edges 31.57% 45.61% 48.54% 49.71%

Table 6.13: Quantitative measures representing the networks N
0

⇡

and N
1

⇡

for the two
patients considered in Figure 6-22

Parameter N0⇡ (I patient N1⇡ (I patient N0⇡ (II patient N0⇡ (II patient
MCI-AD) MCI-AD) MCI-AD) MCI-AD)

Total number of colored edges 152 147 139 39
Total number of blue edges 39 5 33 1
Total number of red edges 84 52 60 8
Total number of green edges 29 90 46 30
Percentage of colored edges 88.89% 85.96% 81.28% 22.80%
Percentage of blue edges 22.81% 2.92% 19.29% 0.58%
Percentage of red edges 49.12% 30.40% 35.08% 4.68%
Percentage of green edges 16.95% 52.63% 26.90% 17.54%

Table 6.14: Quantitative measures representing the networks N
0

⇡

and N
1

⇡

for the two
patients considered in Figure 6-23

6.4.5 Discussion

In the previous section, we have shown how our approach can be useful to support experts

in their analyses of some neurological disorders. We have also compared our connection

coe�cient with two classical network analysis parameters and we have seen that it is better

than them in discriminating neurological situations in which the connection level of brain

areas plays a key role.

However, it is extremely interesting to evaluate our approach as a whole in at least one

scenario. One way to do this task is to choose a scenario among the three ones mentioned

above and to verify the behavior of both our approach and another one that proved to be

well suited therein.

To carry out this task, we chose the scenario described in Section 6.4.4 and the approach

based on Permutation Disalignment Index (hereafter, PDI) presented in [80]. Indeed, PDI

proved to be well suited in quantifying the overall coupling strength between EEG sig-

nals associated with MCI progression towards AD. Furthermore, in this scenario, PDI was

shown to outperform both Coherence and Dissimilarity Index. The former is a well known
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Figure 6-23: The networks N
0

⇡

and N
1

⇡

for two patients with MCI at t
0

, who converted to
AD at t

1

parameter adopted in neurological research; the latter is a nonlinear and symbolic measure

that proved to be promising in the pairwise analysis of EEG data. In [80], the authors use

boxplots and PDI to verify whether a patient with MCI at t
0

converts to AD at t
1

or not.

Before proceeding with the description of this activity, we point out that, here, we do

not aim at comparing the two approaches for establishing if one of them is better than

the other. In fact, for this last purpose, it would be necessary to perform a theoretical

investigation and an experimental campaign totally centered on AD, as well as to analyze

many patients according to the protocols typical of medical experimental campaigns in this

research area. Actually, this is not the purpose of this work. Indeed, we aim at showing that

our approach can be useful to help experts in their analyses of those neurological disorders

strongly characterized by the decrease of the connections between brain areas. This way,

we hope to stimulate neurologists to organize medical campaigns for quantifying how much

our approach can help experts in the analysis of patients with specific neurological diseases.

In particular, we apply the approach of [80] to the same four patients considered in Section

6.4.4 to verify whether the results returned by our approach are in line with the ones

returned by the approach of [80].
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Figure 6-24: Results of the application of the approach of [80] to the patients of Figures
6-22 and 6-23

In Figure 6-24, we report the boxplots of the four patients. In Table 6.15, we present the

values of some parameters helping to quantify the results shown in Figure 6-24. From the

analysis of Figure 6-24 and Table 6.15, and from the comparison of the results represented

therein with the ones of Section 6.4.4 (summarized in Table 6.16), obtained by applying our

approach to the same patients, we can see that our approach returns results in line with

(and even better than) the ones returned by the approach of [80]. Indeed, in these (limited

number of) cases, it proved to be more capable of discriminating the conversion form MCI

to AD than the approach of [80].

Variation of medians Variation of 25th percentile Variation of 75th percentile
from T0 to T1 from T0 to T1 from T0 to T1

MCI-MCI-1 9.04% 8.59% 9.13%
MCI-MCI-2 4.93% 5.75% 4.53%
MCI-AD-1 20.65% 11.27% 35.97%
MCI-AD-2 31.70% 19.59% 43.43%

Table 6.15: Quantitative measures representing the results shown in Figure 6-24

This result is extremely encouraging and, in our opinion, it allows us to say that our

approach reached its goal to help neurologists in their analyses of some disorders.

In Section 6.4.3, presenting the proposed approach, we observed that, in principle, the

tasks composing our approach are orthogonal to the measure adopted for estimating wij .
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Variation of CN from T0 to T1

P
MCI�MCI�1 -25.00%

P
MCI�MCI�2 -4.96%
P
MCI�AD�1 -89.06%

P
MCI�AD�2 -99.41%

Table 6.16: Summary of Section 6.4.4

Then, we adopted cMPED and we motivated our choice. To show both the orthogonality

of our approach to the choice of the measure for edge weights and to further investigate

about the adequacy of cMPED, we repeated all the tasks described in Section 6.4.4 by

substituting cMPED with PDI. After performing all tasks we obtained that the decrease

of the connection coe�cient when passing from N
0

⇡

to N
1

⇡

is �60.66 and �53.44 for the

two MCI-MCI patients (it was �25.00 and �4.96 with cMPED), and �95.65 and �99.17

for the two MCI-AD patients (it was �89.06 and �99.41 with cMPED).

These results allow us to draw two important considerations, namely that: (i) cMPED

is well suited since it behaved even better than PDI in the cases we have considered, and

(ii) the general behavior of our approach is really orthogonal to the choice of the measure

used for edge weights; in fact, it obtains satisfying results (even if worse) even when PDI is

used instead of cMPED.

As a last remark about our approach, we observe that, in all the reasonings throughout

this paper, we have considered the overall EEG tracing. However, it is well known that each

EEG can be decomposed in several sub-bands (e.g., ↵, �, � and ✓) and that the analysis

of these sub-bands can provide extremely useful information in the investigation of several

neurological disorders. As for our approach, it can be applied either on the overall EEG or

onto each of its sub-bands. Thanks to the analysis of sub-bands, further information useful

for neurologists could be extracted.
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Conclusion

In this thesis we formally defined a framework that generalizes most of the existing string

metrics based on symbol identity, making them suitable for application scenarios in which

involved strings could be based on heterogeneous alphabets. We have shown how the nat-

ural assumption of symbol identity is strictly reductive and that many-to-many mappings

between them need to be considered and handled. Due to these necessities, we based the

framework on two main components that are a matching schema, which formalizes matches

between symbols, and a generalized metric function, which abstracts the computation of

string metrics on the basis of a pre-defined matching schema. We introduced the Multi-

Parameterized Edit Distance, a generalization of the edit distance with the support of the

proposed framework, and we discussed its computational issues. Due to the hardness of

the MPED, various heuristics have been analyzed and developed: we started by making an

excursus of various families of heuristics, then we focused in detail on few of them, in partic-

ular hill climbing, simulated annealing and evolution strategy. Finally, various application

scenarios have been presented in which MPED has been successfully applied, possibly in

conjunction with other various techniques, such as network analysis.

This work paved the way to a future in which numerous improvements of MPED and

completely new application contexts can be researched. Some interesting examples are the

following:

• Multivariate time series analysis : a multivariate time series [56] is a series of ob-

servations xi(t), i = 1, . . . , n, t = 1, . . . ,m made through time in sequence where i

indicates the measurements made at each time point t and at least two measurements
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are present. Multivariate time series are common in various fields, such as finance

and medicine, and by contrast to simple time series, they have not been extensively

researched. Various challenges are still open, such as the definition of a general simi-

larity measure for multivariate time series. For example, think of an object, such as

an IoT device, carrying few sensors, each of which generates a number of values each

instant of time. An example of query in this context would be that of find frequent

usage patterns, in order to minimize the power consumption. An approach using

MPED could exploit a common matching schema between all of the observations, in

order to discover hidden correlations.

• A formal language for constraints �: when the cardinalities of the alphabets ⇧
1

and

⇧
2

become large or the application context becomes complex (such as the multivariate

time series), the definition of � might become di�cult. Thus, a formal language, with

enough expressive power, could be useful in order to better define � through a set

of rules and a reasoning schema could be defined to navigate through valid matching

schemas.

• High performance computing for MPED : to improve heuristics performance, the par-

allelization of its computation could be exploit. As a matter of fact, heuristics such as

evolution strategy are highly prone to be parallelized [72] and at the time of writing

this thesis, an evaluation of the e↵ectiveness of parallelization is an ongoing work.
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Bericht HE/F. 86

[102] Shie, B., Jang, F., and Tseng, V. (2010). Intelligent panic disorder treatment by using

biofeedback analysis and web technologies. IJBIDM, 5(1):77–93. 159

[103] Simon, D. (2013). Evolutionary optimization algorithms. John Wiley & Sons. 82, 87

[104] Smith, T. and Waterman, M. (1981). Identification of common molecular subse-

quences. Journal of Molecular Biology, 147(1):195 – 197. 38

[105] Stam, C., Haan, W. D., Da↵ertshofer, A., Jones, B., Manshanden, I., Walsum, A. V.,

Montez, T., Verbunt, J., Munck, J. D., Dijk, B. V., et al. (2009). Graph theoretical anal-

ysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain,

132(1):213–224. Oxford Univ Press. 158



196 BIBLIOGRAPHY

[106] Stam, C., Made, Y. V. D., Pijnenburg, Y., and Scheltens, P. (2003). EEG syn-

chronization in mild cognitive impairment and Alzheimer’s disease. Acta Neurologica

Scandinavica, 108(2):90–96. Wiley Online Library. 158

[107] Stamile, C., Cauteruccio, F., Terracina, G., Ursino, D., Kocevar, G., and Sappey-

Marinier, D. (2015). A model-guided string-based approach to white matter fiber-bundles

extraction. In Brain Informatics and Health - 8th International Conference, BIH 2015,

London, UK, August 30 - September 2, 2015. Proceedings, pages 135–144. 52, 121, 122

[108] Stankovic, J. A. (2008). When sensor and actuator networks cover the world. ETRI

Journal, 30(5):627–633. 122

[109] Steinho↵, B., Zerr, I., Glatting, M., Schulz-Schae↵er, W., Poser, S., and Kretzschmar,

H. (2004). Diagnostic value of periodic complexes in Creutzfeldt–Jakob disease. Annals

of Neurology, 56(5):702–708. Wiley Online Library. 158, 167

[110] Sun, S. (2013). A survey of multi-view machine learning. Neural Computing and

Applications, 23(7):2031–2038. 131

[111] Tournier, J.-D., Calamante, F., and Connelly, A. (2012). Mrtrix: Di↵usion tractog-

raphy in crossing fiber regions. Int. J. Imaging Syst. Technol., 22(1):53–66. 148

[112] Traub, R. and Pedley, T. (1981). Virus-induced electrotonic coupling: Hypothesis

on the mechanism of periodic EEG discharges in Creutzfeldt-Jakob disease. Annals of

Neurology, 10(5):405–410. Wiley Online Library. 167

[113] Wagner, R. A. and Fischer, M. J. (1974). The string-to-string correction problem. J.

ACM, 21(1):168–173. 28

[114] Wagner, S., Kronberger, G., Beham, A., Kommenda, M., Scheibenpflug, A., Pitzer,

E., Vonolfen, S., Kofler, M., Winkler, S., Dorfer, V., and A↵enzeller, M. (2014). Advanced

Methods and Applications in Computational Intelligence, volume 6 of Topics in Intelli-

gent Engineering and Informatics, chapter Architecture and Design of the HeuristicLab

Optimization Environment, pages 197–261. Springer. 53, 55

[115] Wang, P., Wu, Y., Hung, C., Kwan, S., Teng, S., and Soong, B. (2008). Early detection

of periodic sharp wave complexes on EEG by independent component analysis in patients



BIBLIOGRAPHY 197

with Creutzfeldt-Jakob disease. Journal of Clinical Neurophysiology, 25(1):25–31. LWW.

158, 167

[116] Waterman, M., Smith, T., and Beyer, W. (1976). Some biological sequence metrics.

Advances in Mathematics, 20(3):367 – 387. 37

[117] (WHO), W. H. O. (1998). Consensus on criteria for diagnosis of sporadic CJD. Weekly

Epidemiological Record, 73:361–365. 167

[118] Wieser, H., Schindler, K., and Zumsteg, D. (2006). EEG in Creutzfeldt–Jakob disease.

Clinical Neurophysiology, 117(5):935–951. Elsevier. 157, 167

[119] Wieser, H., Schwarz, U., Blättler, T., Bernoulli, C., Sitzler, M., Stoeck, K., and

Glatzel, M. (2004). Serial EEG findings in sporadic and iatrogenic Creutzfeldt–Jakob

disease. Clinical Neurophysiology, 115(11):2467–2478. Elsevier. 167

[120] Wilson, M., Tench, C., Morgan, P., and Blumhardt, L. (2003). Pyramidal tract

mapping by di↵usion tensor magnetic resonance imaging in multiple sclerosis: improving

correlations with disability. J Neurol Neurosurg Psychiatry, 74(2):203–207. 130

[121] Yeatman, J. D., Dougherty, R. F., Myall, N. J., Wandell, B. A., and Feldman, H. M.

(2012). Tract profiles of white matter properties: automating fiber-tract quantification.

PloS one, 7(11):e49790. 130

[122] Yendiki, A., Panneck, P., Srinivasan, P., Stevens, A., Zöllei, L., Augustinack, J.,

Wang, R., Salat, D. H., Ehrlich, S., Behrens, T. E. J., Jbabdi, S., Gollub, R. L., and

Fischl, B. (2011). Automated probabilistic reconstruction of white-matter pathways in

health and disease using an atlas of the underlying anatomy. Front. Neuroinform., 2011.

130

[123] Yi, B. and Faloutos, C. (2000). Fast time sequence indexing for arbitrary lp norms.

In Proceedings of the 26th International Conference on Very Large Databases, pages 385–

394, Cairo, Egypt. 163

[124] Yu, M., Gouw, A., Hillebrand, A., Tijms, B., Stam, C., van Straaten, E., and Pijnen-

burg, Y. (2016). Di↵erent functional connectivity and network topology in behavioral

variant of frontotemporal dementia and Alzheimer’s disease: an EEG study. Neurobiology

of aging, 42:150–162. Elsevier. 158



198 BIBLIOGRAPHY

[125] Zhang, S., Correia, S., and Laidlaw, D. H. (2008). Identifying white-matter fiber

bundles in dti data using an automated proximity-based fiber-clustering method. IEEE

transactions on visualization and computer graphics, 14(5):1044–1053. 130

[126] Zhang, Y. and Jiang, J. (2008). Bibliographical review on reconfigurable fault-tolerant

control systems. Annual Reviews in Control, 32(2):229 – 252. 123

[127] Zoumboulakis, M. and Roussos, G. (2011). Complex Event Detection in Extremely

Resource-Constrained Wireless Sensor Networks. MONET, 16(2):194–213. 159


	Abstract
	Sommario
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Background and Problem Definition
	2.1 Introduction
	2.2 The fundamental concept of string
	2.3 Similarity, correlation and distance
	2.4 The real problem
	2.5 Related work

	3 Generalizing identity-based string comparison metrics
	3.1 Introduction
	3.2 Preliminaries
	3.3 The framework
	3.4 Generalization of notable string similarity metrics
	3.4.1 Edit Distance
	3.4.2 Affine Gap Distance
	3.4.3 Smith-Waterman Distance
	3.4.4 Jaro Distance Metric
	3.4.5 Atomic Strings
	3.4.6 WHIRL
	3.4.7 Q-grams with tf.idf
	3.4.8 Parameterized pattern matching


	4 Multi-Parameterized Edit Distance
	4.1 Introduction
	4.2 Definitions
	4.3 Examples
	4.4 Computational issues: complexity
	4.4.1 NP-Hardness
	4.4.2 A lower bound L


	5 Attacking the giant: heuristic approaches
	5.1 Introduction
	5.2 A global view on heuristics
	5.2.1 HeuristicLab
	5.2.2 Comparison of different heuristics

	5.3 Survey on local search heuristics
	5.3.1 Hill Climbing
	5.3.2 Simulated Annealing
	5.3.3 Experimental Analysis

	5.4 Survey on evolution strategies
	5.4.1 Components of an Evolutionary Algorithm
	5.4.2 Evolution Strategy
	5.4.3 Fundamental Components of Evolution Strategy for MPED
	5.4.4 Evolution Strategy Implementations
	5.4.5 Experiments


	6 Applications of the Multi-Parameterized Edit Distance
	6.1 Introduction
	6.2 MPED for Wireless Sensor Area Networks
	6.2.1 Background
	6.2.2 Case study
	6.2.3 Experiments and discussion
	6.2.4 Hidden correlation for different positioning of the sensors nodes
	6.2.5 Robustness of the measure
	6.2.6 Sensitivity to sensor faults

	6.3 MPED for White Matter Fiber-Bundles
	6.3.1 Background
	6.3.2 Extract and characterize White Matter Fiber-Bundles
	6.3.3 Integration of spatial information

	6.4 MPED for Electroencephalograms
	6.4.1 Background
	6.4.2 Core ingredients
	6.4.3 The proposed approach
	6.4.4 Investigating neurological disorders
	6.4.5 Discussion


	7 Conclusion
	Bibliography

