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Introduction

In the last decades it was registered a signi�cant move from towns to big

cities. It is expected that the tendency will grow in the next future. This fact

generates lots of impacts in the life of the cities. Firstly, an exponential increase

in the consumption of di�erent types of energies (water, electric energy, fossil

fuel) is registered, secondly, a big growth of passengers and freight transport

demand is generated. This situation produces high tra�c and congestion level

into dense urban areas, as a consequence. For the industrial point of view, it

is crucial to have e�cient delivery systems to reduce costs and transportation

time, as long as to increase the customer satisfaction, especially in the last

mile. Freight distribution e�ciency, usually expressed in terms of customers'

ordering timing, is an important issue for companies. For this reason, lots of

companies use a Vendor Managed Inventory paradigm in their business, that

has become a popular strategy for reducing inventory holding and distribution

costs.

The thesis is part of a collaboration project with a big international com-

pany (from this point we refer to it as FMCG Company or simply as Company).

FMCG Company is an American multinational consumer goods corpora-

tion, operating in a wide range of cleaning and personal care products and

selling them in approximately 180 countries. The distribution channels are

di�erent for size and typology, so they are represented by a large variety of

retailers: grocery stores, drug stores, hyper and super markets, distributors,

baby stores, e-commerce, high-frequency stores, pharmacies and nanostores.
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INTRODUCTION

The Company operates in di�erent territories divided in emerging markets

(Asia, Africa and Latin-America) and developed markets (North America and

Western Europe). With the aim to improve the business while guarantee a

widespread coverage of the deliveries, the Company faces very often lots of

challenges related to the distribution in the last-mile delivery, especially into

big and Mega cities 1.

For all these reasons, FMCG Company is interested in the potentiality

of the application of a VMI system in the last-mile delivery, especially in a

complex urban environment like a big/mega city, a�ected by the congestion

and the presence of a large number of so-called "Nanostores", that are small

stores featured by high frequency replenishment and small order sizes. For the

Company, they are one of the big sectors for potential growth together with

e-commerce, representing now around up to 40% of the business in relevant

markets, especially the emerging-ones.

The research work has the aim to match the Company's desires, investi-

gating the potential value of re-applying the VMI concept in the Nanostore

channel into a big�city context and understanding the value that the system

can generate in terms of transportation costs, comparing with the traditional

current set-up, the Customer Managed Inventory.

In general, the VMI setting consists of a vendor/supplier or a manufac-

turer, and a set of customers/retailers located in a given geographical region.

In the VMI system the supplier (vendor) monitors the inventory and decides

the replenishment policy of each retailer (customers). The VMI assigns to

the supplier the role of leading actor in the decisional process. More precisely,

the supplier monitors retailers' inventory, checks inventory replenishment, and

decides the delivery scheduling and routes. The main advantages o�ered by

a VMI setting consist of costs' reduction due to the fact that the inventory

management is performed by only the supplier instead of all the customers, and

1Mega-cities have a total population in excess more than 10 million inhabitants.
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INTRODUCTION

of improving the network workload due to the orders' ful�lments coordination.

The use of the VMI paradigm usually allows to reach a competitive advan-

tage for the Company in a long term planning horizon. Indeed, the company

achieves great savings from:

• using tailored inventory policies to resupply the set of customers in each

district as best as possible;

• optimizing of the deliveries to the stores, generating a decrease of the

transportations cost;

• gaining the customer loyalty, by increasing the sense of customer satis-

faction due to the reductions of delays and errors in delivering;

• reducing some negative e�ects on the supply chain like uncertainty, bull-

whip e�ects and stock-outs;

• improving the �exibility in production;

• reducing inventory costs.

The aim of reducing the transportation cost, while making under control

the inventory cost, needs the de�nition of Inventory Routing Problems (IRPs).

IRPs are combinatorial problems arising in the context of the VMI system,

in which inventory control and routing decisions have to be made simultane-

ously. In particular, the vendor decides on the best replenishment policy of the

customers by avoiding stock-out, respecting their maximum inventory capac-

ity and achieving the minimization of the total transportation and inventory

costs. As regard to the classical vehicle routing problems, the IRPs show a

growing complexity due to the integration of the inventory component into the

decisional process devoted to de�ne the best sequence in which customers must

be serviced. The �eld is largely investigated in the past, a literature overview

could be found in [17] and [25], while the successful industrial applications are

described in [2].
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The main idea for our research is to divide the big urban space into little

districts to manage the distribution problem. In this way, it is possible to

embed the VMI setting into the city logistics context. Each district presents

a hub-shop, in a central position, that receives and storages freight for the

delivers to the �nal customers. The hub-shop have to cover the demand of

the entire district. We mainly study a variant of the classical problem that is

the multi-depot IRP (MDIRP ). As showed, the inventory routing problem

has received a lot of attention over the last years. However, to the best of our

knowledge, the multi-depot case was not so large investigated in the inventory

routing literature. Indeed, the main contributions devoted to the MDIRP are

highlighted in the following: a clustering technique to generate multi-depot

instances was proposed in [45], while in [49] a mixed integer linear program for

the multi-depot IRP is proposed. Lots of applications to the multi-depot case

can be found following Vehicle Routing Problems papers, like [36] and [50],

that represent a good inspiration for the research.

In the following we list the major contributions of this thesis:

• in the �rst part of the thesis theMDIRP is formulated and two chapters

are dedicated to its investigation. In Chapter 1, a simple Branch-and-cut

algorithm is designed to solve the problem, and some valid inequalities

are introduced. To reduce the complexity of the problem, a clustering

method inspired by the Capacitated Concetrator Location Problem is used

to pre�assign customers to the depots. This method allows to simplify

the problem that takes place in a large urban space, while obtaining good

solutions within a computational time smaller than the one required by

the branch�and�cut algorithm. Indeed, the branch-and-cut algorithm

combined with the clustering is faster than the simple version, while the

resolution method remains very slow in general. The aim of this work is to

show that, even if a clustering approach in a multi-depot problem is useful

to improve the solution obtained in a given time limit, it is not su�cient
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for �nding high quality solutions. For these reasons, the focus of the

next chapter consists of designing and of comparing di�erent clustering

approaches for the MDIRP . More speci�cally, a faster clustering model

is developed, able to take into account several features that are typical of

the IRP , and a complex heuristic approach is designed in order to solve

large instances;

• in the Chapter 2, a complex Matheuristic is designed for solving the

problem, it is divided in three main steps: a clustering optimization phase

(in order to group the customers around each depot), a route generation

phase (in order to build a set of feasible routes), a �nal optimization

phase ( in which a simpli�ed version of the model is solved on the basis

of feasible paths). Finally, the matheuristic is compared with the branch�

and�cut algorithm, getting better solution quality within a computational

time shorter than the one of the exact algorithm. This evidence allows us

to propose to the Industry Company to test this algorithm on real case

benchmarks;

• in the Chapter 3, a more complex version of theMDIRP is designed. We

added the possibility to deliver multi�product by using an heterogeneous

�eet of vehicles. In this way, we modi�ed the problem to make it as close

as possible to the real scenario in which the Company works. In this case,

a Variable MIP Neighborhood Search algorithm is designed to solve the

problem. We present computational results for some classical benchmark

and ad hoc data set instances;

• in the Chapter 4, an application of the matheuristic for the MDIRP

using real data for Surabaya city (Isle of Jackarta) is presented. The aim

of this Chapter is to show the e�ectiveness of the VMI setting applied to

the last�mile delivery of the Nanostores in a real context. We are able to

prove that the VMI has a good impact on the business of the Company,
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because it is able to reduce a big portion of the transportation costs that

the Company actual pays to ship freights to the stores in a wide area.
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Chapter 1

The impact of a clustering

approach on solving the

Multi-Depot IRP

Joint work with Luca Bertazzi and Demetrio Laganà

Published on: Optimization and Decision Science: Methodologies

and Applications. ODS 2017. Springer Proceedings in Mathematics

& Statistics, vol 217. Springer, Cham

Abstract: We study theMulti-Depot Inventory Routing Problem (MDIRP)

with homogeneous vehicle �eet and deterministic demand. We implement a

branch-and-cut algorithm for this problem. Then, we design a matheuristic in

which we �rst optimally solve a modi�ed version of the Capacitated Concen-

trator Location Problem (CCLP ) to generate a cluster of customers for each

depot and, then, we exactly solve the problem based on these clusters with a

branch-and-cut algorithm. Computational results are presented to compare the

performance of the matheuristic with respect to the branch-and-cut, in order

to analyze the value of the clustering approach in solving this problem.
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1.1 Introduction

Keywords: Inventory routing, branch-and-cut, clustering.

1.1 Introduction

Inventory Routing Problems (IRPs) spread out in the integrated optimiza-

tion of inventory and distribution management in supply chains. This is a

win-win approach in which a supplier coordinates the replenishment of a set of

customers, deciding when to visit each customer over a time horizon, the quan-

tities to deliver and the routes to travel. These problems received a remarkable

attention in the recent decades. Examples of real industrial applications can

be found in the survey presented by [2]. Di�erent versions of the problem were

investigated in the literature, for example the single and multi-vehicle case,

the single and multi-product case, the cases with deterministic, stochastic and

robust demand. For an in depth analysis of the state of the art, the reader can

refer to the tutorials by [17] and [18] and to the survey by [25].

IRPs are well known to be NP-hard problems. For this reason, the main

challenge is to design e�cient exact algorithms on one side and e�ective heuris-

tic algorithms on the other side. Di�erent solution methods were proposed in

the past for the single-depot case: exact methods can be found in [3] and [26],

while decomposition approaches are proposed by [22] and [29]. The Multi-

Depot IRP (MDIRP ) is not largely investigated in literature. A clustering

technique to generate multi-depot instances was proposed by [45], while a for-

mulation for a multi-depot and multi-commodity IRP was introduced by [49].

To the best of our knowledge, no branch-and-cut algorithms are available for

it. Instead, the multi-depot case was studied for the simpler VRPs, where

the clustering of customers for each depot is often used. E�ective clustering

techniques are designed also for Location�Routing Problems. The most recent

and complete survey about this class of problems is presented by [48] and an

e�ective application can be found in [20].
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1.2 Problem Description and Formulation

Our contribution is to provide the �rst branch-and-cut algorithm for the

MDIRP and to design a matheuristic algorithm, based on an optimal solution of

a variant of the classical Capacitated Concentrator Location Problem (CCLP).

Computational results are presented to evaluate the impact of the clustering

on the solution quality and on the computational time, with respect to the best

solution provided by the branch-and-cut.

The remainder of the paper is organized as follows. TheMDIRP is formally

described and formulated in Section 1.2. The branch-and-cut algorithm is

described in Section 1.3. The matheuristic we propose is described in Section

1.4. The computational results are shown in Section 1.5. Finally, conclusions

are drawn in Section 1.6.

1.2 Problem Description and Formulation

In this section, the MDIRP is described and the corresponding mathemati-

cal formulation based on binary edge-variables is presented. This formulation is

an extension of the single�vehicle and single�depot IRP formulation proposed

by [3]. We consider a complete undirected graph G(V,E). A set of depots

P = {1, 2, . . . , l} delivers a product to a set I = {1, 2, . . . , n} of customers.

The set with all vertices is denoted by V = P ∪ I. The parameter cij is the

travelling cost of the edge (i, j) ∈ E. These costs satisfy the triangle inequal-

ity. Given S (a proper and non�empty subset of vertices), S ∈ I, E(S) denotes

the set of edges (i, j), such that i, j ∈ I. The set of the vehicles is denoted

by K = {1, 2, . . . ,M}. Each vehicle has capacity C. A discrete time horizon

H is given. The set of time periods is denoted by T = {1, 2, . . . , H}. Each

customer i ∈ I de�nes a maximum inventory level Ui and has a given starting

inventory level Invi0 ≤ Ui. At each time t ∈ T , each customer i has to satisfy

the deterministic demand dit. In this problem split delivery is allowed. More

speci�cally, two types of split may occur: the �rst split delivery consists of

15



1.2 Problem Description and Formulation

servicing the same customer with two vehicle�routes departing from the same

depot in the same time period, while the second split delivery occurs when the

same customer is visited by two vehicle�routes departing from di�erent depots

in the same time period.

The variable Invit indicates the inventory level of customer i at the begin

of period t. The time H + 1 is included in the inventory computation to take

into account the consequences of the decisions at time H. The variable yiktp

represents the quantity delivered to customer i in period t by vehicle k from

depot p. The binary variable xijktp is equal to 1 if the edge (i, j) is traversed in

period t by vehicle k starting from depot p. The binary variable ziktp is equal

to 1 if customer i is visited in period t by vehicle k from depot p. The binary

variable zpktp is equal to 1 if vehicle k located in depot p starts its tour from

depot p in period t. This problem can be formulated as follows:

Min
∑
t∈T

∑
i∈V

∑
j∈V

∑
k∈K

∑
p∈P

cijxijktp (1.1)

s.to.

Invi,t+1 = Invit +
∑
k∈K

∑
p∈P

yiktp − dit t ∈ T, i ∈ I (1.2)

∑
p∈P

∑
k∈K

yiktp + Invit ≤ Ui t ∈ T, i ∈ I (1.3)

∑
i∈I

yiktp ≤ C zpktp t ∈ T, p ∈ P, k ∈ K (1.4)

yiktp ≤ C ziktp i ∈ I, t ∈ T, p ∈ P, k ∈ K (1.5)

∑
i∈I

yiktp ≥ zpktp t ∈ T, p ∈ P, k ∈ K (1.6)

zbktp = 0 ∀ t ∈ T, p ∈ P, k ∈ K, b ∈ P (p 6= b) (1.7)
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1.2 Problem Description and Formulation

∑
p∈P

zpktp ≤ 1 t ∈ T, k ∈ K (1.8)

∑
p∈P

ziktp ≤ 1 t ∈ T, k ∈ K, i ∈ I (1.9)

∑
j∈I,j<i

xijktp +
∑

j∈I,j>i

xijktp = 2 ziktp i ∈ I, t ∈ T, p ∈ P, k ∈ K (1.10)

∑
(i,j)∈E(S)

xijktp ≤
∑
i∈S

ziktp − zuktp S ⊆ I, |S| ≥ 2, t ∈ T,

k ∈ K, p ∈ P, for a given u ∈ S
(1.11)

xijktp ∈ {0, 1} i, j ∈ V, t ∈ T, p ∈ P, k ∈ K (1.12)

Invit ≥ 0 i ∈ I, t ∈ T (1.13)

yiktp ≥ 0 i ∈ I, t ∈ T, p ∈ P, k ∈ K (1.14)

ziktp ∈ {0, 1} i ∈ I, t ∈ T, p ∈ P, k ∈ K. (1.15)

The objective function (1.1) states the minimization of the total routing

cost. Constraints (1.2)-(1.3) are inventory constraints at the customers. Con-

straints (1.4)-(1.5) are capacity constraints. Constraints (1.6)-(1.9) de�ne the

multi-depot case and split delivery. Constraints (1.10)-(1.11) are classical rout-

ing constraints. Constraints (1.12)-(1.15) de�ne integrality and non-negativity

variables conditions.
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1.3 A Branch-and-Cut Algorithm

1.3 A Branch-and-Cut Algorithm

In order to exactly solve the MDIRP described in the previous section,

we design and implement the following branch-and-cut algorithm. The sub-

tour elimination constraints (1.11) were initially removed from the formulation

(1.1)-(1.15) and added dynamically using the separation procedure described in

[46]. They were introduced considering a given u ∈ S, for which the following

condition is valid: u = argmaxi{z̄iktp}, where z̄iktp is the value of variable ziktp
in the current LP relaxation. At each tree node, the violated (1.11) are found

and added to the current sub-problem that is then optimized. If no violations

are identi�ed, branching occurs at the current node. No priority variables are

de�ned for the branching strategy. In order to improve the quality of the root

node lower bound of the branch-and cut tree, the following valid inequalities

are added to the initial LP.

1. Priority inequalities :

ziktp ≤ zpktp i ∈ I, t ∈ T, p ∈ P, k ∈ K. (1.16)

These valid inequalities are used by [3]. We consider an adapted version

of them for the MDIRP.

2. Logical inequalities :

xipktp + xpiktp ≤ 2 ziktp i ∈ I, t ∈ T, p ∈ P, k ∈ K. (1.17)

xijktp ≤ ziktp i, j ∈ I, t ∈ T, p ∈ P, k ∈ K. (1.18)

These inequalities are inspired by the logical cuts by [37] and [38].
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1.4 A Matheuristic for the MDIRP

3. Aggregate parity inequalities :∑
p∈P

∑
(i,j)∈δ(S)

xijktp ≥
∑
p∈P

∑
(i,j)∈F

xijktp − |F |+ 1, t ∈ T, k ∈ K,

F ⊆ δ(S), |F | odd.
(1.19)

4. Disaggregate parity inequalities :

∑
(i,j)∈δ(S)

xijktp ≥
∑

(i,j)∈F

xijktp − |F |+ 1, t ∈ T, p ∈ P, k ∈ K,

F ⊆ δ(S), |F | odd.
(1.20)

Parity inequalities are initially de�ned in [9] as co-circuit inequalities.

They are really e�ective for problems with binary variables, in case the

parity of vertices is required. Inequalities (1.19)-(1.20) are separated

heuristically following the procedure described by [7].

1.4 A Matheuristic for the MDIRP

As explained before, solving MDIRP with an exact method is really com-

plex. The branch-and-cut algorithm is very slow even in small instances. There-

fore, we design a matheuristic algorithm based on the following three steps:

1. Optimally solve the CCLP described below to generate clusters composed

by a depot and a subset of customers.

2. Import the clusters in the MDIRP model: for each customer i not asso-

ciated with depot p the corresponding ziktp variables are set to zero, in

order to forbid routes serving customers not associated to p.

3. Apply the branch-and-cut described in Section 1.3 to the model obtained

in step 2.
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1.4 A Matheuristic for the MDIRP

Let us now describe the CCLP we solve in the matheuristic. The CCLP

was largely investigated in the literature for the VRP. Di�erent formulations

and variants are described by [40]. We present an adapted formulation of the

classical CCLP in order to match with the MDIRP case. We de�ne the set

P of depots as the set of potential concentrators. Let γ be the number of

concentrators to open, Rp be the �xed cost to make p as a concentrator, Di

be the demand of customer i used to build the clusters, Γpi be the cost to

assign customer i to concentrator p, Φp be capacity of each concentrator. The

model involves two sets of binary variables: gpi equal to 1 if the customer i is

assigned to depot p and bp equal to 1 if p is selected to be a concentrator. The

mathematical formulation is described below:

Min
∑
p∈P

∑
i∈I

Γpigpi +
∑
p∈P

Rpbp (1.21)

s.t. ∑
p∈P

gpi = 1 i ∈ I (1.22)

∑
i∈I

Digpi ≤ Φpbp p ∈ P (1.23)

∑
p∈P

bp = γ (1.24)

bp ∈ {0, 1} p ∈ P (1.25)

gpi ∈ {0, 1} p ∈ P, i ∈ I. (1.26)

The objective function (1.21) minimizes the total cost to build the clusters.

Constraints (1.22) guarantee that each customer is assigned to exactly one clus-

ter. Constraints (1.23) ensure that the capacity of each cluster is not violated.

Constraint (1.24) guarantee that γ clusters are built. Constraints (1.25)-(1.26)

impose that the variables are all binary.
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1.5 Computational Results

Instance Time N.Clust. Cardinal. Instance Time N.Clust. Cardinal.

n5d2h3 40ms 2 3�2 n5d2h3 30ms 2 3�2

n10d2h3 50ms 2 4�6 n10d2h3 40ms 2 4�6

n15d2h3 70ms 2 6�9 n15d2h3 35ms 2 8�7

n20d30h3 50ms 3 5�11�4 n2d30h3 70 3 4�12�4

n25d4h3 60ms 4 5�9�4�7 n25d4h3 50ms 4 9�5�4�7

n30d4h3 80ms 4 5�12�4�9 n30d4h3 70ms 4 5�11�5�9

n5d2h6 40ms 2 3�2 n5d2h6 30ms 2 3�2

n10d2h6 50ms 2 4�6 n10d2h6 55ms 2 3�7

n15d2h6 30ms 2 11�4 n15d2h6 3ms0 2 11�4

n20d3h6 90ms 3 4�9�7 n20d3h6 80ms 3 12�4�4

Table 1.1: CCLP computational results

1.5 Computational Results

The branch-and-cut and the matheuristic described in Section 1.3 and 1.4

were implemented in C++ by using IBM Concert Technology and CPLEX 12.6,

and run on an Intel Core i7-6500U 2.50 GHz and 8 GB RAM personal computer.

An adapted version of two subsets of instances derived from the benchmark

instances provided in [3] for the single-depot IRP are used. Instances are labeled

as nNdDhH, where N is the number of customers, D is the number of the

depots, H is the time horizon. A time limit of 2 hours is set for both the

branch-and-cut and the matheuristic.

Table 1 provides the results obtained by solving the CCLP with the fol-

lowing data: γ = |P |, Rp = 0, Di equal to the average demand over the time

horizon, Γpi = cpi, Φp = MC. For each instance, it gives the computational

time (ms), the number of clusters and their cardinality. The table is organized

as follows: column Instance describes the instance label, columnTime reports

the computational time, column N. Clust. describes the number of generated

clusters and column Cardinal. reports the cardinality of each cluster.

The results show that the clustering phase is no time consuming and the

cardinality of the clusters is enough homogeneous in each instance.
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1.5 Computational Results

Matheuristic Branch-and-cut GAP(%)

Instance Time(s) Soub. Par. Cost LB GAP Time(s) Soub. Par. Cost LB GAP

n5d2h3 51.35 22 198 1148.8 1148.8 0.00 210.77 127 436 1148.8 1148.8 0.00 0.00

n10d2h3 1150.83 230 677 2214.29 2214.29 0.00 t.l. 1008 1295 2149.16 1972.55 8.22 3.00

n15d2h3 t.l. 554 925 4117.12 3783.77 8.10 t.l. 1785 1802 4614.66 3383.05 26.69 -11.00

n20d3h3 t.l. 572 992 3467.5 3205.57 7.55 t.l. 1604 1954 3629.04 2579 28.93 -4.00

n25d4h3 t.l 369 728 3917.78 3536.76 9.04 t.l / / / / /

n30d4h3 t.l. 603 1185 4401.29 4142.78 5.87 t.l / / / / /

n5d2h6 5.06 51 185 2705.04 2705.04 0.00 5003.34 414 1035 2595.14 2595.14 0.00 4.00

n10d2h6 t.l. 444 1245 4939.37 4270.29 13.55 t.l. 1295 1610 5117,57 2971.66 41.93 -3.00

n15d2h6 t.l. 1264 2811 10830.5 7601.98 29.81 t.l. 1725 3565 10850 6795.24 37.37 -0.10

n20d3h6 t.l. 723 2278 11242.9 8899.94 20.84 t.l. / / / / /

Instance Time(s) Soub. Par. Cost LB GAP Time(s) Soub. Par. Cost LB GAP

n5d2h3 106,17 27 216 956.38 956.30 0.00 112.79 98 314 956.38 956.38 0.00 0.00

n10d2h3 t.l. 173 560 2572.43 2346.81 9.61 t.l. 718 1072 2653.39 1789.64 48.27 -3.05

n15d2h3 t.l. 325 649 2436.43 2202.38 10.62 t.l. 573 1080 2436.43 2154.64 13.07 0.00

n20d3h3 3048.27 336 837 3837.28 3837.28 0.00 t.l. 1022 2005 4969.69 3460.06 43.63 -22.78

n25d4h3 t.l 360 472 3917.78 3536.76 9.04 t.l / / / / /

n30d4h3 t.l. 493 784 4415.79 4118.8 7.21 t.l / / / / /

n5d2h6 t.l. 44 704 5243.49 5218.33 0.48 t.l. 384 932 6304.28 4289.37 46.97 -16.82

n10d2h6 t.l 458 991 5530.09 4926.71 12.24 t.l. 1141 1793 6055.99 3609.7 67.97 -8.68

n15d2h6 t.l. 864 1901 9047.82 6880.83 31.49 t.l. / / / / /

n20d3h6 t.l. 726 1512 6748.37 5884.97 12.97 t.l / / / / /

Table 1.2: Matheuristic vs. Branch-and-cut

Table 2 compares the results obtained by applying the branch-and-cut algo-

rithm introduced in Section 1.3 and the matheuristic described in Section 1.4.

For each instance, it shows, both for the matheuristic and the branch-and-cut,

the computational time (seconds) or t.l. when the time limit is reached (col-

umn Time(s)), the total number of added inequalities (subtour elimination

constraints (column Soub.), disaggregated and aggregated parity inequalities

(column Par.)), the cost of the best feasible solution found in the time limit

(column Cost), the CPLEX lower bound value (column LB) and the CPLEX

GAP (column GAP). In the last column the percentage GAP between the

feasible solutions of two approaches is shown.

The results show that the matheuristic is always able to �nd a feasible

solution in the time limit, while the branch-and-cut is not able to �nd it in

35% of the instances. Moreover, the CPLEX GAP of the matheuristic is about

9% on average, while it is about 26% in the solved instances. Note that the

CPLEX GAP increases in the instances with time horizon H = 6 with respect
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1.6 Conclusion

to the instances with H = 3. The last column of Table 1.2 shows that the

matheuristic is able to �nd better solutions than the branch-and-cut in the

same time limit, with a maximum reduction of about 23% of the cost. This

underlines that the matheuristic is more e�cient in terms of solution quality

and computational time.

1.6 Conclusion

We studied the Multi-Depot Inventory Routing Problem (MDIRP ). This

problem is very di�cult to be solved to optimality. A branch-and-cut algorithm

designed for it was able to �nd a feasible solution in only 65% of the instances

and provides an average CPLEX GAP of 26% in the solved instances. Our

results showed that embedding the clusters obtained by optimally solving a

variant of the Capacitated Concentrator Location Problem in the branch-and-

cut allowed us to always �nd a feasible solution of the problem, to reduce the

CPLEX GAP to 9% and to �nd better solutions. Future research could be

devoted to improve this matheuristic, trying to strongly enhance the clustering

approach.
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Chapter 2

A Matheuristic Algorithm for the

Multi-Depot Inventory Routing

Problem

Joint work with Luca Bertazzi, Leandro C. Coelho, Demetrio Laganà

Accepted by Transportation Research Part E

The Vendor-Managed Inventory paradigm has important applications in

modern supply chain management. One of these applications is the Multi-

Depot Inventory Routing Problem (MDIRP ), where several depots serve the

demand of a set of customers over time. The supplier has to determine how

to serve the customers from di�erent depots, managing the inventory levels

at the customers to avoid stock-outs, with the aim of minimizing the routing

cost. This is an NP-hard problem that aims at optimizing the trade-o� between

inventory and routing management in an integrated way. We formulate this

problem as a mixed-integer linear programming model and design a three�phase

matheuristic to solve the problem in signi�cantly shorter computational time.

The solutions provided by the matheuristic algorithm are compared with the

ones obtained with a branch�and�cut algorithm. Computational experiments

24



2.1 Introduction

on classical single�depot Inventory Routing Problem instances and on a new

dataset of MDIRP instances show that the proposed matheuristic is very

e�ective.

Keywords: Multi-Depot Inventory Routing Problem, Mixed-Integer Linear

Programming, Matheuristic, Clustering.

2.1 Introduction

In the last decades companies increased their interest in optimizing supply

chains. The spread of globalization and the development of information and

communication technologies stimulated research towards the development of

integrated logistics models, with the aim of reducing the total cost, thanks

to a better coordination of the operations. The main contributions in this

direction are devoted to develop optimization models focused on two or more

sequential logistics activities in the supply chain, such as inventory and routing,

production, inventory and routing, location and routing. All the resulting

optimization models are based on two�echelon networks, in which one or more

depots deliver products to many retailers or customers.

Our problem falls within the �eld of the two�echelon optimization problems

in which customers are supplied from a set of depots over a �nite planning hori-

zon. In this setting, the Vendor-Managed Inventory (VMI) paradigm gained

importance in di�erent companies in the last years. In this paradigm, the sup-

plier monitors the inventory levels of each retailer and decides a replenishment

policy. The supplier has the role of leading actor in the decisional process,

in order to establish when and how much to deliver, and the routes traveled

by vehicles. This system applies a win-win strategy, because it guarantees an

overall reduction of the logistic cost for the supplier and savings in the or-

dering cost for the customers. The development of the VMI setting derives

from successful industrial applications in di�erent �elds: Procter & Gamble
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2.1 Introduction

and Walmart ([10]), chemical products ([32]), oil and gas ([12], [41], [51]), fuel

([47]) and maritime cement transportation ([30]). For an in depth overview of

VMI applications we refer to ([2]).

The optimization problem that integrates VMI with routing is the well�

known Inventory Routing Problem (IRP ). In comparison to the classical Vehi-

cle Routing Problem (V RP ), the IRP shows an added complexity due to the

integration of the inventory component into the multi-period decisional pro-

cess. Usually, an IRP deals with minimizing the sum of inventory and routing

costs during the planning horizon, while avoiding stock�outs at the customers.

Three main decisions are relevant in an IRP : when and how much to deliver to

customers and which routes to use. Uncertain IRP has been not widely inves-

tigated due to the increased complexity of the problem (see [52], [18], [28], [13]).

Despite the fact that supply chains are usually characterized by a great level

of uncertainty, the literature demonstrates that good results also derive from

deterministic analysis. Deterministic IRP s are common both from a practical

standpoint or as a research area. The single�product and single�vehicle IRP

is studied in [3], [53]. Several papers investigate the single�product and multi�

vehicle IRP , including [27] and [1]. The multi�product and multi-vehicle IRP

is studied in [23] and [29]. Exact algorithms for the IRP include branch�and�

cut, branch�and�price, and more recently, branch�and�price�and�cut ([33]).

Heuristic methods were successfully applied to large IRP instances. A basic

heuristic approach consists of decomposing the IRP in sub�problems solved

in hierarchical order. Recent years have seen a large use of hybrid heuristic

algorithms, in which mathematical programming models are embedded into

heuristic frameworks. These algorithms are referred to as matheuristics and

provide good results in solving IRP s, as shown by [5] for the single-vehicle case

and by [4] for the multi-vehicle case. We refer to [16] for an introduction to

matheuristics in solving IRP s. A decomposition approach to tackle large scale

instances of the IRP can be found in [22], and [29]. For an in depth analysis
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2.1 Introduction

of the state of the art, the reader can refer to the tutorials by [17] and [18] and

to the survey by [25].

We study an IRP in which the deterministic demand of a set of customers

is satis�ed from a set of depots. These depots are supplied on each day of the

quantity needed to face the deliveries on that day. The inventory levels of the

customers are managed by the supplier, who is responsible for avoiding stock�

out, while the corresponding inventory cost is paid by the customers. Therefore,

the supplier minimizes the routing cost only, but guarantees that no stock�out

occurs at the customers. The aim is to determine the vehicles assigned to each

depot on each day, the customers served by each depot on each day, when and

how much to deliver to each customer, and the delivery routes to use on each

day. This problem is referred to as the Multi�Depot Inventory Routing Problem

(MDIRP ). The main di�erence of our problem with respect to the practice

implemented in many companies is that the assignment of customers to depots

is not �xed a priori, hence we are more �exible. A typical application of this

problem is when customers are located in a large urban area. Indeed, when a

customer needs a resupply in a high tra�c area, the main goal of the supplier

is to ful�ll (even partially) the request by using vehicles visiting the customer

from di�erent depots. In this context the routing problem embedded into the

MDIRP allows split deliveries. We formulate this problem as a mixed-integer

linear programming model and we design a three�phase matheuristic to e�ec-

tively solve the problem in much shorter computational time. In the �rst phase

of the matheuristic, an integer program is used to build clusters of customers on

the basis of a quantitative measure of a customer critical inventory level. The

importance of driving the solution with a clustering approach was discussed

in [19], where a clustering procedure based on the solution of the classical

Capacitated Concentrator Location Routing Problem (see [20]) is embedded in

a branch-and-cut. The cited work underlined that a clustering approach in

a multi-depot problem is useful for obtaining good solutions, but that a fast
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2.2 Problem description

heuristic procedure to perform this step is necessary. This is the motivation for

a fast clustering model in our approach, able to incorporate several problem

features. In the second phase, intra and inter-cluster routes are generated by

considering the limited amount of resources in terms of vehicle capacity and

maximum number of customers that can be served from a supplier. In the third

phase, a route�based mixed-integer linear programming formulation is solved

to obtain a feasible solution for the problem. The results are compared with

the ones obtained by solving the mixed integer linear programming formulation

of the problem with a branch�and�cut algorithm.

The remainder of the paper is organized as follows. The problem is for-

mally described in Section 2.2. In Section 2.3 a mathematical formulation

of the MDIRP is presented. The branch�and�cut algorithm is described in

Section 2.4. The matheuristic algorithm is presented in Section 2.5. In Sec-

tion 2.6 extensive computational results are presented and discussed. Finally,

conclusions are drawn in Section 2.7.

2.2 Problem description

We consider a complete undirected graph G = (V,E), where V is the set

of vertices and E is the set of edges. We partition the set V in such a way

that V = P ∪ I, where P = {1, 2, . . . ,m} is the set of depots that deliver a

product to the set of customers I = {m+ 1,m+ 2, . . . ,m+n} over a �nite and
discrete time horizon H. Let T = {1, 2, . . . , H} be the corresponding set of

time periods. A non�negative cost cij is associated with each edge (i, j) ∈ E.
We assume that G is an Euclidean graph, so the triangular inequality holds.

A set K = {1, 2, . . . ,M} of vehicles, with the same capacity C, is available to

perform deliveries. Each vehicle k ∈ K can be assigned to one depot p ∈ P for

each time period t ∈ T . Each customer i ∈ I can be served by di�erent vehicles

from di�erent depots in the same time period t ∈ T . Two types of split delivery
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2.3 Mathematical formulation

are permitted: when on a given period customer is visited by two vehicles from

the same or from di�erent depots. Both situations typically occur only if the

capacity of each vehicle is small. Moreover, a maximum inventory level Ui and

a given starting inventory level Ii0 are associated with each customer i ∈ I. We

assume that both Ui and Ii0 are integer. In each time period t, a deterministic

integer demand dit of each customer i must be satis�ed. The inventory level of

each customer i cannot be negative in each time period t ∈ T ∪ {H + 1}, i.e.,
stock�out is not allowed. The aim is to determine:

1. the set of vehicles to assign to each depot at each time period,

2. the quantity of product to deliver to each customer at each time period

by using each vehicle,

3. the set of routes to travel at each time period,

that minimize the total routing cost over the time horizon.

2.3 Mathematical formulation

The aim of this section is to provide a mathematical formulation that will

be solved by branch�and�cut. In this way we are able to perform a comparison

between the solutions' values obtained with the matheuristic algorithm and the

ones found by the branch�and�cut. For this purpose, an edge�based formula-

tion related to the routing problem, in which binary variables are associated

with the edges of the graph for each vehicle and each period, is presented.

We now present a mathematical formulation of the problem, which is adapted

from [3], in which the multi�depot multi-vehicle case is tackled by using binary

variables. We introduce the following notation. Let δ(S) be the set of edges

(i, i′) incident to the vertices i ∈ S ⊂ V , with i′ /∈ S(edge cutset); for the sake
of notation, if S = {i}, we denote the corresponding edge cutset as δ(i). Let

29



2.3 Mathematical formulation

E (U) be the set of edges (i, j) such that i, j ∈ U , where U ⊆ I is a given set of

customers. Our mathematical formulation is based on the following variables:

• Iit: inventory level at customer i at the end of time period t;

• yiktp: quantity to deliver to customer i in time period t by vehicle k

starting the route from depot p;

• xijktp: binary variable equal to 1 if vehicle k starting from depot p travels

directly from vertex i to vertex j in time period t, and equal to 0 otherwise

(these variables are de�ned for each i < j);

• ziktp: binary variable equal to 1 if vehicle k from depot p visits customer

i in time period t, and equal to 0 otherwise;

• zpktp: binary variable equal to 1 if vehicle k, assigned to depot p, starts

its route from depot p in time period t, and equal to 0 otherwise.

The mathematical formulation is described by (2.1)�(2.14).

min
∑
t∈T

∑
(i,j)∈E

∑
k∈K

∑
p∈P

cijxijktp (2.1)

s.t. Iit = Iit−1 +
∑
k∈K

∑
p∈P

yikt−1p − dit−1 ∀t ∈ T ∪ {H + 1}, ∀i ∈ I (2.2)

Iit +
∑
p∈P

∑
k∈K

yiktp ≤ Ui ∀t ∈ T, ∀i ∈ I (2.3)

∑
i∈I

yiktp ≤ C zpktp ∀t ∈ T, ∀p ∈ P,∀k ∈ K (2.4)∑
i∈I

yiktp ≥ zpktp ∀t ∈ T, ∀p ∈ P,∀k ∈ K (2.5)

yiktp ≤ C ziktp ∀i ∈ I, ∀t ∈ T, ∀p ∈ P,∀k ∈ K (2.6)
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2.3 Mathematical formulation

zbktp = 0 ∀t ∈ T, ∀p, b ∈ P, p 6= b,∀k ∈ K,(2.7)∑
p∈P

zpktp ≤ 1 ∀t ∈ T, ∀k ∈ K (2.8)

∑
j∈V :(j,i)∈E

xjiktp +
∑

j∈V :(i,j)∈E

xijktp = 2ziktp ∀i ∈ V,∀t ∈ T, ∀p ∈ P,∀k ∈ K (2.9)

∑
(i,j)∈E(S)

xijktp ≤
∑
i∈S

ziktp − zuktp ∀S ⊆ I, |S| ≥ 2, ∀t ∈ T,

∀k ∈ K,∀p ∈ P, u ∈ S (2.10)

xijktp, xpjktp, xjpktp ∈ {0, 1} ∀i, j ∈ I, ∀t ∈ T, ∀p ∈ P,∀k ∈ K(2.11)

Iit ≥ 0 ∀i ∈ I, ∀t ∈ T ∪ {H + 1} (2.12)

yiktp ≥ 0 ∀i ∈ I, ∀t ∈ T, ∀p ∈ P,∀k ∈ K (2.13)

ziktp ∈ {0, 1} ∀i ∈ V,∀t ∈ T, ∀p ∈ P,∀k ∈ K.(2.14)

The objective function (2.1) minimizes the total routing cost. Constraints

(2.2) balance the inventory �ow at the customers. Note that the variable Ii1

is equal to the initial inventory level Ii0. Constraints (2.3) guarantee that the

maximum inventory level of each customer does not exceed Ui. Constraints

(2.4) ensure that the total quantity loaded on vehicle k departing from depot p

in period t does not exceed the capacity C, and, together with constraints (2.5)

guarantee that, if the total quantity is greater than 0, then the corresponding

vehicle is used. Constraints (2.6) enforce that, if a positive quantity of product

is delivered to customer i with vehicle k starting from depot p in time period t,

then customer i is visited. Constraints (2.7) guarantee that a vehicle k assigned

to depot b in time period t cannot start a route from a di�erent depot p in the

same time period. Constraints (2.8) impose that each vehicle k can be assigned

to at most one depot p in each time period t. Constraints (2.9) and (2.10)

control the degree of the vertices and prohibit subtours, respectively. Finally,

constraints (2.11)�(2.14) de�ne the integrality and non-negativity conditions

for the variables. Note that constraints (2.12) also guarantee that no stock-out

occurs at each customer.
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2.4 A Branch�and�cut algorithm

2.4 A Branch�and�cut algorithm

We design the following branch�and�cut algorithm to solve the problem.

The goal is to solve the mathematical formulation (2.1)�(2.14) obtaining solu-

tions with which to compare the performance of the matheuristic. The initial

linear programming relaxation (LP ) is obtained by removing constraints (2.10)

from the problem formulation (2.1)�(2.14), adding the following constraints

that guarantee that each customer i is visited at most once from vehicle k in

each time period t: ∑
p∈P

ziktp ≤ 1 ∀t ∈ T,∀k ∈ K, ∀i ∈ I, (2.15)

and then by adding violated subtour elimination constraints for each period,

for each vehicle and for each depot. Constraints (2.15) are redundant in model

(2.1)�(2.14), but they can increase the value of the corresponding LP . Sub-

tour elimination cuts are separated heuristically along the lines of the procedure

designed by [49]. More precisely, the heuristic �nds all the connected compo-

nents in the auxiliary graph induced by all the edges such that xijktp ≥ ε + τ ,

where xijktp is the value of variable xijktp on edge (i, j) in the current LP while

ε ∈ {0, 0.25, 0.50} and τ is a tolerance. Whenever a subset of customers Sp

not connected with the depot p is found, the corresponding subtour elimina-

tion constraint is added for u = argmaxi∈Sp {ziktp}, where ziktp is the value of
variable ziktp in the current LP . This heuristic procedure is also applied to any

integer solution of the relaxed formulation, so that the best integer solution of

the branch�and�cut is connected to the depot. Note that, when the solution

of the LP relaxation is integer in the variables x and z, then constraints (2.10)

can be violated only if a subset of customers is not connected with the depot

p. Therefore, all violations of constraints (2.10) are found by setting ε = 0 and

computing the connected components on the corresponding auxiliary graph.

Therefore, in this case, this separation algorithm is applied with ε = 0 only,

and it is able to �nd exactly all the violations. The branching rule to be used
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is determined by the MIP solver.

In order to improve the quality of the root node lower bound, the following

valid inequalities are added to the LP described so far:

1. Priority inequalities:

ziktp ≤ zpktp, ∀i ∈ I,∀k ∈ K, ∀p ∈ P, ∀t ∈ T. (2.16)

These valid inequalities were presented by [3] to improve the performance

of the proposed branch-and-cut for the single�vehicle IRP .

2. Logical inequalities:

xipktp + xpiktp ≤ 2 ziktp, ∀i ∈ I,∀t ∈ T,∀p ∈ P, ∀k ∈ K (2.17)

xijktp ≤ ziktp, ∀i, j ∈ I,∀t ∈ T,∀p ∈ P, ∀k ∈ K. (2.18)

These inequalities are inspired by the logical cuts of [37] and [38]. Inequal-

ities (2.17) impose that if the depot p is the predecessor or the successor

of customer i in the route executed in period t by vehicle k starting from

depot p, then customer i has to be visited in period t by vehicle k starting

from depot p. Inequalities (2.18) impose that if customer j is the succes-

sor of customer i in the route performed in period t by vehicle k starting

from depot p, then customer i has to be visited in period t by vehicle k

starting from depot p.

3. Disaggregate parity inequalities:∑
(i,j)∈δ(S)\(F )

xijktp ≥
∑

(i,j)∈(F )

xijktp − |F |+ 1,

∀t ∈ T,∀p ∈ P, ∀k ∈ K, ∀F ⊆ δ(S), |F | odd (2.19)

Note that, since split delivery is allowed, aggregate parity inequalities

over vehicles are not valid. For example, consider the feasible solution
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2.4 A Branch�and�cut algorithm

in which, given t and p, customers 1, 2 and 3 are visited in the route

traveled by vehicle 1. Moreover, suppose that a direct delivery is used

to serve customer 1 from the same depot p with vehicle 2. This feasible

solution does not satisfy the aggregate parity inequality over vehicles 1

and 2 with S = {1} and F = {(p, 1)}.

4. Depot�Aggregate parity inequalities:∑
p∈P

∑
(i,j)∈δ(S)\(F )

xijktp ≥
∑
p∈P

∑
(i,j)∈(F )

xijktp − |F |+ 1,

∀t ∈ T,∀k ∈ K, ∀F ⊆ δ(S), |F | odd (2.20)

These inequalities are added dynamically to the LP in each node of the

branch�and�cut algorithm. Parity inequalities were introduced by [9]

as co�circuit inequalities. They are e�ective for problems with binary

variables, in case that the parity of vertices is required. An example of

application of these inequalities is presented by [46] for the Symmetric

TSP polytope. Inequalities (2.19) and (2.20) are separated heuristically

according to the procedure described by [7].

2.4.1 Initial solution

An initial solution of the branch-and-cut is computed as follows.

We solve a relaxed formulation of (2.1)�(2.14), named RMDIRP in the

sequel, in which the routing cost in the objective function is replaced by∑
t∈T
∑

k∈K
∑

p∈P
∑

i∈I cpiziktp, where cpi is the cost of the edge (p, i) ∈ E

connecting the depot p to the customer i. Moreover, all the routing constraints

(2.9) and (2.10) and the corresponding variables xijktp are temporarily removed

from the mathematical formulation. A set of feasible clusters (one for each ve-

hicle) is de�ned on the basis of the values of variables ziktp in any optimal

RMDIRP solution. For each cluster, the optimal TSP tour is computed and

the corresponding value of the objective function (2.1) is then determined. The
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2.4 A Branch�and�cut algorithm

relaxed formulation is solved repeatedly by adding at every iteration the fol-

lowing diversi�cation constraints, with the aim of obtaining di�erent solutions:

1. Let Zktp = {i ∈ I : ziktp = 1} be the set of the customers served by vehicle

k in period t from depot p in the current feasible RMDIRP solution. A

set of feasible routes is built by solving a TSP on the sub�graph induced

by Zktp ∪ {p}, for each k, t and p.

2. The average routing cost is computed over the set of routes returned in

step 1. All the routes with a cost greater than the average routing cost

are considered as candidates for diversi�cation.

3. For each candidate route, a set of moving nodes, Bktp, is built as fol-

lows. The vertices served in the route are ordered according to their

non�decreasing insertion cost. The insertion cost of the vertex i is de-

�ned as the di�erence between the optimal TSP tour cost to serve all the

customers in the route and the optimal TSP tour cost to serve all the

customers in the route except i. The �rst

⌊
|Zktp|

2

⌋
vertices are inserted

in the set Bktp.

4. The diversi�cation constraint is formulated as follows:∑
i∈Bktp

(1− ziktp) +
∑

i∈I\Bktp

ziktp ≥
⌈
|Bktp|
|P |

⌉
. (2.21)

Observe that the number of customers that can be moved among the

routes decreases with the number of depots. Inequalities (2.21) are added

to the RMDIRP and the new problem is re-optimized. For each problem

with diversi�cation constraints, a time limit of 20 minutes is imposed.

5. The procedure ends when a maximum number ω of iterations is reached

or GAP = (cW−cB)
cB

100 ≥ ϑ, where cW and cB are the costs of the worst

and the best RMDIRP solutions respectively, while ϑ is a gap limit.
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At the end of the procedure the best solution found is used as starting solu-

tion for the branch�and�cut algorithm. The pseudocode of this procedure is

provided in Algorithm 1.

The proposed branch-and-cut algorithm shares the following features with

the existing branch-and-cut algorithms designed for IRP s (see [3], [1], [6]).

Subtours elimination constraints are removed from the formulation and dynam-

ically added. Priority and logical valid inequalities are added. The initial upper

bound is obtained by applying a heuristic algorithm. The main di�erences are

that di�erent separation algorithms are used, speci�c valid inequalities (dis-

aggregate parity and depot-aggregate parity) are used, while the symmetry

breaking constraints and the fractional capacity cuts are not added. Finally,

the branching rule is left to the MIP solver, instead of giving priority to the z

variables.

2.5 Matheuristic for the MDIRP

We propose a matheuristic algorithm for the solution of the MDIRP able

to solve realistic�size instances. It is based on a three�phase decomposition

approach:

• Clustering phase: the idea of grouping customers in a set of clusters is

not new. A similar idea is presented by [50] for a multi�depot multi�

vehicle V RP . They group customers in two sets: the �rst one composed

of customers served by the depot nearest to them, and the second serving

borderline customers. They de�ne borderline customers as those approx-

imately equally closed to two depots. They use this classi�cation as

starting point for routes generation. Here, we use the same concept of

borderline customers, but we implement a di�erent clustering procedure,

strongly focused on the nature of the MDIRP . More precisely, an inte-

ger linear programming model is solved to generate a partition of the set
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Algorithm 1 Initial solution for the branch-and-cut algorithm
Set κ = 0;

Let sRMDIRP be a solution for the RMDIRP

Set WsRMDIRP = BsRMDIRP = sRMDIRP ; where WsRMDIRP is the worst

RMDIRP solution, whose cost is cW and BsRMDIRP is the best RMDIRP

solution whose cost is cB;

Set GAP = 0, k = 0

while Problem is feasible and GAP ≤ ϑ and κ ≤ ω do

determine the route set Rκ;

determine the average routing cost cκR of routes in Rκ

for each route r ∈ Rκ do

if cr ≥ cκR then

build set Bktp

add diversi�cation constraint (2.21)

end if

end for

Solve the RMDIRP with diversi�cation constraints , and let sRMDIRP be the

corresponding solution.

if csRMDIRP < cBsRMDIRP then

Set BsRMDIRP = sRMDIRP

end if

if csRMDIRP > cWsRMDIRP then

WsRMDIRP = sRMDIRP

end if

GAP = (cB−cW )
cB

100

κ = κ+ 1

end while
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2.5 Matheuristic for the MDIRP

of customers into a set of clusters, one cluster for each depot p ∈ P .

• Routing construction phase: a set R of routes is built for the clusters

generated in the �rst phase. The routes are generated on the basis of

several replenishment policies and assuming di�erent vehicle capacities.

Two types of routes are generated: intra-cluster routes and inter-cluster

routes. In the �rst type, each route can visit only customers in the cluster,

while in the second type each route can also visit borderline customers,

i.e., customers not in the cluster, but close enough to it. This latter type

of routes is introduced to add �exibility in the construction of the routes.

• Optimization phase: a binary linear programming model, referred to as

Route-based MDIRP , is optimally solved to obtain a feasible solution of

the MDIRP , selecting routes from the set R to perform in each period

and the quantity to deliver to each customer in each of the selected routes.

This quantity can be di�erent than the one used to generate the routes.

We now describe these three phases in detail.

2.5.1 Clustering phase

The aim of this phase is to partition the set of customers I into a set of

clusters C = {C1, C2, . . . , C|P |}. We identify critical customers and build clusters

having two main features: a limited number of customers and a maximum

average critical level. The idea to identify critical customers in an IRP was

proposed by [22], where a qualitative de�nition of critical customers is proposed.

We propose a quantitative measure, computed on the basis of the minimum

number of deliveries needed to serve the customer over the time horizon and

of the average distance of the customer from the depots. The corresponding

critical level CLi is computed as:

CLi = αRi + (1− α)Mi, (2.22)
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where α takes values between 0 and 1, while Ri and Mi are respectively the

minimum number of deliveries to customer i over the time horizon and the

average delivery cost for each customer i with respect to all the depots. These

parameters are obtained by computing:

R̂i =

max

{
0,
∑
t∈T

dit − Ii0
}

Ui

M̂i =

∑
p∈P

DCp
i

|P |
,

where DCp
i = cpTST − cpTST\{i} is an estimated transportation cost to serve

customer i from depot p, computed as the di�erence between the optimal TSP

tour cost to serve all customers in I from depot p ∈ P (cpTST ) and the optimal

TSP tour cost to serve all customers I\ {i} from depot p ∈ P (cpTST\{i}). The

values of Ri and Mi in (2.22) are obtained by normalizing R̂i and M̂i in the

interval [0, 10], where 0 is assumed to be the minimum value and 10 to be the

maximum value.

The values of CLi are the input data of the following binary linear program-

ming model aimed at building the clusters. Let CC be the maximum number

of customers for each cluster, TC be the maximum value of the average critical

level for each cluster and bpi a binary variable equal to 1 if customer i belongs

to the cluster Cp, and 0 otherwise. Then, the model is formulated as follows:

min
∑

(p,i)∈E

cpi bpi (2.23)

s.t.
∑
i∈I

bpi ≤ CC ∀ p ∈ P (2.24)∑
p∈P

bpi = 1 ∀ i ∈ I (2.25)∑
i∈I

CLibpi/CC ≤ TC ∀ p ∈ P (2.26)

bpi ∈ {0, 1} ∀ p ∈ P, ∀i ∈ I. (2.27)
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The objective function (2.23) minimizes the total distance between cus-

tomers and depots. Constraints (2.24) enforce the total number of customers

in each cluster to be within the maximum number CC. Constraints (2.25) im-

pose that each customer is assigned to exactly one cluster. Constraints (2.26)

enforce the average critical level of each cluster to be not greater than the

maximum value TC. Constraints (2.27) de�ne variables bpi.

In the following, we will refer this procedure as the one that receives an

instance of the MDIRP as input, IMDIRP , and returns a set of clusters C ={
C1, . . . , C|P |

}
, that is: C ← Clustering (IMDIRP ).

2.5.2 Routing construction phase

The aim of the second phase is to generate a restricted number of routes

for the MDIRP on the basis of the clusters generated by model (2.23)�(2.27)

and on the basis of some replenishment policies. Two classes of routes are

generated: intra-cluster and inter-cluster routes. The �rst class is composed

of all routes serving customers that are in the same cluster, while the second

class is composed of all the routes that serve also borderline customers. Let

us �rst describe the intra-cluster routes we generate. For each cluster Cp,

we focus on direct delivery routes from the depot to one customer and on

routes built by aggregating the customers served in the same time period based

on di�erent replenishment policies. Indeed, the way used to serve a set of

customers in the same route is even a�ected by the replenishment policies

of the customers. Therefore, we adopt several resupply policies allowing us

to precompute delivery quantities according to di�erent intershipment times.

These policies are as follows:

• Order�up�to level policy.This policy, inspired to the corresponding pol-

icy in [3], aims at restoring the maximum inventory level at customer i

whenever the demand is greater or equal to the current inventory level.

The rationale of this policy is to have an inventory level at the customer
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enough to satisfy the demand of the customer on some days. This policy

is referred to as g1. For each customer i in the cluster Cp and for each

time period, the replenishment quantity ŷit(g1) is computed as follows:

ŷit(g1) =

Ui − Îit−1(g1), if dit ≥ Îit−1(g1)

0, otherwise

where Îit−1(g1) = Ii0 +
t−2∑
h=1

ŷih(g1)−
t−2∑
h=1

dih.

• Demand level policy. This policy aims to have an inventory level equal

to the demand, whenever the demand is greater or equal to the current

inventory level. The rationale of this policy is to have an inventory level

at the customer equal to 0 after serving the demand of the customer.

This policy is referred to as g2. For each customer i in the cluster Cp and

for each time period, the replenishment quantity ŷit(g2) is computed as

follows:

ŷit(g2) =

dit − Îit−1(g2), if dit ≥ Îit−1(g2)

0, otherwise

where Îit−1(g2) = Ii0 +
t−2∑
h=1

ŷih(g2)−
t−2∑
h=1

dih.

• Initial�inventory�level policy. This replenishment policy aims at restoring

the maximum between the initial inventory level Ii0 and the demand dit

in each time period, whenever the current inventory level is lower than

the demand. The rationale of this policy is to have an inventory level

in the interval between the level obtained by applying the policy g1 and

the one obtained by applying the policy g2, based on the initial inventory

level. We refer to this policy as g3. For each customer i in the cluster Cp

and for each time period, the replenishment quantity ŷit(g3) is computed
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as follows:

ŷit(g3) =

max
{
Ii0 − Îit−1(g3), dit − Îit−1(g3)

}
, if dit ≥ Îit−1(g3)

0, otherwise

where Îit−1(g3) = Ii0 +
t−2∑
h=1

ŷih(g3)−
t−2∑
h=1

dih.

• Critical�customers�level policy. This replenishment policy tries to match

the speci�c features of the MDIRP , as it aims at delivering the demand

or twice its value, depending on the value of the critical level CLi, to

the customers having not enough inventory level to satisfy the demand.

We refer to this policy as g4. For each customer i in the cluster Cp and

for each time period, the replenishment quantity ŷit(g4) is computed as

follows:

ŷit(g4) =


min {2dit, Ui} , if dit ≥ Îit−1(g4), and CLi ≥ 6

dit, if dit ≥ Îit−1(g4), and CLi < 6

0, otherwise

where Îit−1(g4) = Ii0 +
t−2∑
h=1

ŷih(g4)−
t−2∑
h=1

dih.

Note that the threshold on the critical level CLi has been set equal to 6,

that is an average value in the scale from 1 to 10.

Each replenishment policy allows us to de�ne a set of customers served in

each time period. If the vehicle capacity is respected, then a TSP route is

generated starting from the depot and visiting all the served customers. If the

capacity constraint is exceeded, some deliveries are moved to the previous or

to the next day until feasibility is recovered. More precisely, the following steps

are executed to construct a feasible delivery schedule:

• For each period t = 1, . . . , H − 1, if the vehicle capacity is exceeded,

the customers to be served in t are sorted in non�decreasing value of
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the critical level CLi and, following this ordering, they are moved to

time period t + 1 until the capacity constraint is satis�ed. In t + 1 all

the replenishment quantities of the postponed customers are re-computed

according to the replenishment policy.

• If the capacity constraint is violated in period t = H, customers are

sorted in non�increasing value of the critical level CLi and, following this

ordering, they are moved to period t− 1 until the capacity constraint is

satis�ed. In t− 1 all the delivery quantities of the anticipated customers

are re-computed according to the replenishment policy. This procedure

is repeated until t = 2.

• For each time period, a delivery route is built by solving a TSP on the

sub�graph induced by all the customers to be served in that time period

and the corresponding depot.

This generation of intra-cluster routes for cluster Cp is executed with three

di�erent values of the capacity Cap: C, C/2 and C/3. This meets the aim of

generating di�erent routes. In the following, we will refer to this procedure as

Intra�cluster Route Generation (INTRARG), which operates on the basis of

a given time horizon H, replenishment policy g, cluster Cp and capacity Cap,

and returns a set of TSP routes over H supplying customers of Cp with policy

g, TSPRg
Cp
, that is: TSPRg

Cp
← INTRARG (H, g, Cp, Cap).

Let us now describe how inter-cluster routes are generated. For each cluster

Cp:

• Build the corresponding rectangular convex hull, i.e., the smallest rect-

angular area including all the points associated with the geographical co-

ordinates of the customers in the cluster. Let Xp
min, X

p
max, Y

p
min and Y

p
max

be the minimum and the maximum values of customers' coordinates, re-

spectively, of the cluster Cp. The corresponding rectangular convex hull is

built over the following vertices: (Xp
min, Y

p
min), (Xp

min, Y
p
max), (Xp

max, Y
p
min)
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and (Xp
max, Y

p
max). Let DGp be the diagonal of this rectangular convex

hull (see Figure 2.1).

• Build the set Bordp of the borderline customers: this set is composed

of all the customers not included in Cp whose distance from the nearest

extreme vertex of the rectangular convex hull is less than λDGp, where

0 < λ < 1 is a parameter set on the basis of the number of clusters.

• Build the inter-cluster routes serving the customers in the set Bordp∪Cp:
they are built using the same procedure adopted to generate intra�cluster

routes, in which only g1, g2 and g3 and capacity Cap equal to C, C/2 and

C/3 are considered (see Figure 2.1).

In the following, we will refer to this procedure as Inter�cluster Route Gen-

eration (INTERRG), which operates on the basis of a given time horizon H,

replenishment policy g, cluster Bordp ∪ Cp and of capacity Cap, and returns

a set of TSP routes over H supplying customers of Bordp ∪ Cp with policy g,

TSPRg
Bordp∪Cp

, that is: TSPRg
Bordp∪Cp

← INTERRG (H, g,Bordp ∪ Cp, Cap).
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Figure 2.1: Examples of rectangular convex hull and inter-cluster routes.

A set R of delivery routes is built from the union of the set of all the

intra�cluster routes and of the set of all the inter�cluster routes, excluding all
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dominated routes.

2.5.3 Optimization phase

In the third phase, the following Route-based MDIRP , based on the set of

routes R, is optimally solved to determine a feasible solution of the MDIRP .

We introduce the following parameters that use an explicit index of the routes

r ∈ R:

• cr: cost of route r ∈ R

• air: binary parameter equal to 1 if customer i is served in route r, 0

otherwise

and the following decision variables:

• mirt: quantity shipped to customer i in route r in time period t

• Invit: inventory level of customer i at the end of time period t ∈ T ∪
{H + 1}

• nrt: binary variable equal to 1 if route r is used in time period t and 0

otherwise.

The problem is then formulated as follows:
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min
∑
t∈T

∑
r∈R

cr nrt (2.28)

s.t. Invi,t = Invit−1 +
∑
r∈R

mirt−1 − dit−1, ∀i ∈ I,∀t ∈ T ∪ {H + 1}(2.29)∑
r∈R

mirt + Iit ≤ Ui, ∀t ∈ T,∀i ∈ I (2.30)∑
i∈I

mirt ≤ C nrt, ∀r ∈ R, ∀t ∈ T (2.31)

mirt ≤ C air, ∀i ∈ I,∀r ∈ R, ∀t ∈ T (2.32)∑
r∈R

nrt ≤M, ∀t ∈ T (2.33)

Invit ≥ 0, ∀i ∈ I,∀t ∈ T ∪ {H + 1}(2.34)

mirt ≥ 0, ∀i ∈ I,∀r ∈ R, ∀t ∈ T (2.35)

nrt ∈ {0, 1} , ∀r ∈ R, ∀t ∈ T. (2.36)

The objective function (2.28) minimizes the total routing cost. Constraints

(2.29) de�ne the inventory level at each customer i at each time period t.

Constraints (2.30) enforce the maximum inventory level of each customer i

at each time period t to be not greater than Ui. Constraints (2.31) enforce

the total amount delivered with each route r in time period t to be within

the vehicle capacity, while constraints (2.32) guarantee that a quantity can be

delivered to customer i by vehicle r in period t only if customer i is served

by route r. Constraints (2.33) enforce the number of routes used in each time

period t to be within the �eet size M . Finally, constraints (2.34)�(2.36) de�ne

the decision variables.

The overall scheme of the matheuristic algorithm designed for theMDIRP

is described in the Algorithm 2.
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Algorithm 2 Pseudo-code for our matheuristic

R := ∅
Phase 1: clustering

for i ∈ I do
compute parameter Ri, Mi, CLi = αRi + (1− α)Mi

end for

solve the clustering problem (2.23)�(2.27), C ← Clustering (IMDIRP )

Phase 2: Routing construction

for each cluster Cp ∈ C do

for each customer i ∈ Cp do

determine the direct delivery routes rpi from depot p ∈ Cp to i

add this route to R: R := R ∪ {rpi }

end for

for each replenishment policy g1, g2, g3, g4 do

for each capacity Cap ∈
{
Q, Q2 ,

Q
3

}
do

for each customer i ∈ Cp do

for each t ∈ T do

compute the replenishment quantity ŷit(g);

end for

end for

determine TSPRgCp
← INTRARG (H, g, Cp, Cap)

update R: R = R ∪ TSPRgCp

determine TSPRgBordp∪Cp
← INTERRG (H, g, Cp, Cap)

update R: R = R ∪ TSPRgBordp∪Cp

end for

end for

end for

Phase 3: Optimization

eliminate from R all the dominated routes

solve the route-based MDIRP formulation (2.28)�(2.36)
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2.6 Computational results

The branch-and-cut algorithm described in Section 2.4 and the matheuristic

described in Section 2.5 were coded in C++ and compiled with g++ -O3.

Computational experiments were carried out on a PC equipped with an Intel

Core i7-6500U CPU running at 2.50 GHz, with 8 GB of RAM with the Scienti�c

Linux 6.6 operating system. We use the MIP solver IBM CPLEX 12.6.1 using

its default settings. To solve the TSP we use the Concorde TSP Solver.

The performances of the algorithms are evaluated on two di�erent sets of

instances. The �rst one is the benchmark set of the Single-Depot Single-Vehicle

IRP instances from [3]; in this case the results obtained applying the three�

phase matheuristic algorithm were compared with the optimal results available

in literature. The second set of instances is speci�c for the multi�depot and

multi�vehicle case, and it is derived from the same instances. Speci�cally, we

maintain the original depot as the �rst depot and we generate the remaining

p − 1 depots randomly. Our data set is composed of 100 instances with 5 to

50 customers. For each number of customers, �ve instances are generated with

the number of depots from 2 to 6 according to the size of the instance. The

time horizon H is 3 and 6. In order to generate multi�vehicle instances, we

consider a �eet of 3 vehicles with a capacity that is reduced by 1
3
up to 1,

with respect to the capacity in the original instances. Because there are no

optimal solutions for the new data set of instances designed for the MDIRP ,

the solution values provided by the matheuristic are compared with the best

upper bounds obtained with the branch�and�cut described in Section 2.4.

2.6.1 Matheuristic performance on the Single-Depot, Single-

Vehicle IRP

The matheuristic algorithm is executed on the classical IRP instances for

the single-depot and single-vehicle problem. This data set is composed of 100
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instances with up to 50 customers, a time horizon H = 3, 6 and inventory cost

hi in [0.1, 0.5]. Instances are labelled as absXnY , where X is the instance

number and Y is the customer number. The data related to the supplier

and its inventory cost are not considered. The goal is to demonstrate that

the matheuristic, designed for a the multi-depot and multi-vehicle case, also

performs well on Single-Depot Single-Vehicle IRP .

Numerical results are shown in Table 2.1. The average results grouped

for instance size are described, each group is composed of 5 instances. This

table is organized as follows. Column Instance provides the instance name.

Column TimeMH (s) provides the matheuristic computational time, while

column TimeEX (s) reports the computational time of the exact approach.

Column Gap % provides the gap between the two approaches, computed as

GAP % = MH−EX
EX

100. These results were provided by [29]. Finally columns

Optimal MH and Optimal EX describe the number of instances closed to

optimality into each group for the two approaches. Note that each group is

made up of �ve instances.

H=3 H=6

Instance TimeMH (s) TimeEX (s) Gap % Optimal MH Optimale EX Instance TimeMH (s) TimeEX (s) Gap % Optimal MH Optimale EX

absNn5 0.11 1.09 0.00 5\5 5\5 absNn5 0.63 185.97 0.72 2\5 5\5

absNn10 0.40 2.22 0.00 5\5 5\5 absNn10 1.41 17.07 0.87 1\5 5\5

absNn15 0.75 4.71 1.80 2\5 5\5 absNn15 3.53 7.09 3.31 0\5 5\5

absNn20 1.15 9.22 0.54 4\5 5\5 absNn20 8.81 42.17 2.43 0\5 5\5

absNn25 1.88 14.25 1.43 3\5 5\5 absNn25 8.08 75.31 1.69 0\5 5\5

absNn30 2.85 26.29 2.14 3\5 5\5 absNn30 48.57 458.36 5.56 0\5 5\5

absNn35 3.84 32.82 2.37 4\5 5\5 absNn35 51.36 1402.34 4.05 0\5 5\5

absNn40 6.00 65.28 1.07 3\5 5\5 absNn40 67.74 3994.09 3.17 0\5 5\5

absNn45 6.09 100.33 0.61 4\5 5\5 absNn45 80.65 6471.17 2.39 0\5 4\5

absNn50 11.98 208.81 0.54 1\5 5\5 absNn50 70.35 18709.67 2.76 0\5 3\5

Average 3.50 46.5 1.04 Average 34.11 3131.32 2.69

Table 2.1: Performance on the Single-Depot, Single-Vehicle IRP

The results for the clustering and route generation phases are not reported

in the table. Obviously, the �rst phase is not useful in this con�guration, be-

cause there is only one cluster related to the single depot. The route generation

phase is very fast and e�ective. On average 42 routes are generated withH = 3,

and 62 with H = 6. In the instances with H = 3, the matheuristic provides
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an optimal solution for a large number of instances with a computational time

that is much smaller than the one required by the exact solver. The average

duality gap is only 1.04%. In the instances with H = 6, the number of optimal

solution provided is smaller than the previous case, but the average duality gap

is around 2.69%. The savings in computational time are higher in this case.

We can conclude the matheuristic is very e�ective to solve the Single-Depot,

Single-Vehicle IRP .

2.6.2 Matheuristic performance on the Multi-Depot, Multi-

Vehicle IRP

In this section the results for the MDIRP are presented. Firstly, the three

phase matheuristic is tested on the modi�ed set of instances derived from [3],

as previously explained. Secondly, the branch�and�cut algorithm is executed

on the same data set of instances and the best upper bounds found by the

exact method are compared with the values of the solutions provided by the

matheuristic. The instances are labelled as SnNdDhH, where S indicates the

instance number, N is the number of customers in the instance, D is the

number of depots, and H is the number of periods. A time limit of 3 hours was

imposed to CPLEX for solving the mathematical model given by (2.28)�(2.36),

while the branch-and-cut was run with a time limit of 6 hours. The following

parameters are set after preliminary tests on a subset of instances: ε = 0.2,

ω = 10, α = 0.2, TC = 6, CC ∈ {3, . . . , 15} and λ ∈ {0.2, . . . , 0.5}.
Tables 2.2 shows the results provided by the matheuristic algorithm. These

tables are organized as follows. Column Instance denotes the instance name.

Column N. Clust. reports the number of generated clusters, while column

|Ci| reports the cardinality of each cluster. Column N. Routes provides the

number of intra�cluster and inter�cluster routes. The computational time of

the algorithm is reported in column Time (s), while the cost of the best

solution is reported in column Cost. Finally, column MHIRP GAP% shows
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the gap provided by CPLEX to solve model (2.28)�(2.36).

Instance N.Clust. |Ci| N. Routes Time (s) Cost MHIRP GAP % Instance N. Clust. |Ci| N. Routes Time (s) Cost MHIRP GAP%

1n5d2h3 2 4,3 10 0.09 1148.80 0.00 1n5d2h6 2 4,3 19 0.17 2595.14 0.00

2n5d2h3 2 4,3 16 0.1 956.24 0.00 2n5d2h6 2 4,3 15 3.76 3296.32 0.00

3n5d2h3 2 3,4 13 0.13 1801.02 0.00 3n5d2h6 2 4,3 18 0.8 5145.63 0.00

4n5d2h3 2 3,4 12 0.12 1425.39 0.00 4n5d2h6 2 4,3 26 6.59 2963.12 0.00

5n5d2h3 2 3,4 10 0.08 1808.4 0.00 5n5d2h6 2 4,3 26 86.09 3117.05 0.00

1n10d2h3 2 5,7 71 1.76 2112.53 0.00 1n10d2h6 2 5,7 81 11.5 4363.89 0.00

2n10d2h3 2 5,7 75 2.21 2425.97 0.00 2n10d2h6 2 5,7 86 369.07 5271.25 0.00

3n10d2h3 2 8,4 65 0.83 1651.54 0.00 3n10d2h6 2 8,4 82 64.52 5290.70 0.00

4n10d2h3 2 7,5 59 0.81 2449.30 0.00 4n10d2h6 2 4,8 115 665.89 5649.83 0.00

5n10d2h3 2 7,5 62 0.89 1982.90 0.00 5n10d2h6 2 4,8 135 565.2 5052.26 0.00

1n15d2h3 2 7,10 188 3.76 3891.56 0.00 1n15d2h6 2 7,10 239 3466.42 8942.68 0.00

2n15d2h3 2 7,10 169 4.3 2436.43 0.00 2n15d2h6 2 10,7 233 1995.81 9072.41 0.00

3n15d2h3 2 9,8 176 3.84 3189.5 0.00 3n15d2h3 2 8,9 260 1693.07 8775.99 0.00

4n15d2h3 2 8,9 180 3.88 2298.16 0.00 4n15d2h6 2 12,5 272 5516.63 8690.27 0.00

5n15d2h3 2 6,11 222 1.93 2329.42 0.00 5n15d2h6 2 9,8 236 473.50 8905.06 0.00

1n20d3h3 3 7,11,5 255 11.66 3095.91 0.00 1n20d3h6 3 5,10,8 297 6614.13 9616.51 0.00

2n20d3h3 3 7,11,5 255 6.44 4074.56 0.00 2n20d3h6 3 8,8,7 321 1596.92 8386.92 0.00

3n20d3h3 3 7,11,5 269 5.79 3361.74 0.00 3n20d3h6 3 8,8,7 306 1405.85 10895.99 0.00

4n20d3h3 3 8,10,5 252 7.88 4151.87 0.00 4n20d3h6 3 10,8,5 294 89.36 6826.68 0.00

5n20d3h3 3 5,11,7 273 27.81 4235.63 0.00 5n20d3h6 3 13,9,1 495 1577.32 11343.97 0.00

1n25d4h3 4 6,10,5,8 277 13.97 3354.83 0.00 1n25d4h6 4 15,7,2,5 617 9574 11276.2 0.00

2n25d4h3 4 9,7,5,8 263 11.07 3654.25 0.00 2n25d4h6 4 9,7,5,8 397 3728.45 9172.41 0.00

3n25d4h3 4 9,8,6,6 258 13.93 3870.56 0.00 3n25d4h6 4 9,8,6,6 251 92.81 9575.81 0.00

4n25d4h3 4 11,5,8,5 330 43.8 4925.73 0.00 4n25d4h6 4 6,10,7,6 314 37.63 9215.81 0.00

5n25d4h3 4 9,9,9,2 343 9.88 4475.17 0.00 5n25d4h6 4 8,10,6,5 353 538.80 8869.16 0.00

1n30d4h3 4 6,13,5,10 533 76.56 4262.32 0.00 1n30d4h6 4 8,13,7,6 466 10800 12255.30 1.12

2n30d4h3 4 5,14,6,9 562 22.2 3733.09 0.00 2n30d4h6 4 6,11,6,11 545 1575.14 12001.80 0.00

3n30d4h3 4 7,13,4,10 533 18.94 4649.11 0.00 3n30d4h6 4 8,11,4,11 639 2542.20 10675.78 0.00

4n30d4h3 4 11,11,1,11 608 18.26 3580.22 0.00 4n30d4h6 4 11,11,6,6 531 600.42 9875.90 0.00

5n30d4h3 4 11,13,5,5 560 21.9 4199.74 0.00 5n30d4h6 4 11,11,6,6 536 2841.61 9325.37 0.00

1n35d5h3 5 8,9,6,4,13 529 21.98 5351.66 0.00 1n35d5h6 5 9,10,10,4,7 501 61.94 11029.50 0.00

2n35d5h3 5 11,7,7,4,11 531 28.02 5213.10 0.00 2n35d5h6 5 10,9,7,4,10 605 76.15 11195.46 0.00

3n35d5h3 5 7,10,6,6,11 483 27.83 4790.49 0.00 3n35d5h6 5 8,10,6,6,10 651 1877.39 10747.05 0.00

4n35d5h3 5 11,10,5,3,11 581 31.33 5430.31 0.00 4n35d5h6 5 10,8,10,6,6 435 71.3 10389.20 0.00

5n35d4h3 5 11,11,4,1,13 734 32.59 4545.17 0.00 5n35d5h6 5 10,9,11,5,5 607 714.18 14750.82 0.00

1n40d5h3 5 11,4,3,17,10 1085 58.14 5810.59 0.00 1n40d5h6 5 11,8,11,10,5 763 1185.19 12152.40 0.00

2n40d5h3 5 10,7,8,10,10 598 57.39 5543.21 0.00 2n40d5h6 5 10,7,8,10,10 812 4330.62 13797.56 0.00

3n40d5h3 5 13,4,5,13,10 836 70.95 5568.42 0.00 3n40d5h6 5 10,5,10,10,10 865 4939.05 10840.55 0.00

4n40d5h3 5 13,4,7,13,8 798 49.24 5112.32 0.00 4n40d5h6 5 14,8,10,6,7 790 124.50 12337.50 0.00

5n40d5h3 5 10,5,10,10,10 637 98.69 4695.32 0.00 5n40d5h6 5 14,5,16,5,5 1149 2672.15 12673.98 0.00

1n45d6h3 6 15,4,3,15,2,12 654 136.24 6547.97 0.00 1n45d6h6 6 7,13,8,11,6,6 761 576.78 10940.30 0.00

2n45d6h3 6 10,7,4,14,6,10 816 149.27 5896.87 0.00 2n45d6h6 6 10,7,4,10,10,10 713 323.05 11323.10 0.00

3n45d6h3 6 10,4,7,10,10,10 683 69.24 6084.01 0.00 3n45d6h6 6 7,8,8,13,7,8 680 640.15 11606 0.00

4n45d6h3 5 10,3,9,13,6,7 1059 47.41 6420.13 0.00 4n45d6h6 6 8,11,11,10,5,6 701 2236.47 11838.5 0.00

5n45d6h3 6 13,5,7,13,7,6 821 76.56 5002 0.00 5n45d6h6 6 9,13,2,13,6,8 964 2836.15 12392.35 0.00

1n50d6h3 6 7,16,16,5,2,10 1432 2047.59 7238.44 0.00 1n50d6h6 6 13,6,13,11,6,7 1049 5049.94 12892.30 0.00

2n50d6h3 6 7,7,16,8,3,15 1302 197.92 6131.18 0.00 2n50d6h6 6 10,10,10,8,8,10 954 1013.1 14529.04 0.00

3n50d6h3 6 10,10,10,8,8,10 720 61.17 6788 0.00 3n50d6h6 6 10,10,10,8,8,10 918 2778.32 13245.80 0.00

4n50d6h3 6 8,7,13,4,11,13 999 70.88 6283.02 0.00 4n50d6h6 6 16,11,16,2,4,7 1511 13186.52 13186.52 0.00

5n50d6h3 6 9,7,13,8,7,12 893 362.70 5914.12 0.00 5n50d6h6 6 11,8,13,10,6,8 939 4175.72 12588.10 0.00

Average 461.82 87.78 0.00 Average 492 1965.4 0.00

Table 2.2: Matheuristic performance for instances with H = 3, 6

Unlike the exact method, our matheuristic provided solutions within a few

minutes of computing time. The results show that clusters are balanced in

terms of number of customers and that the number of generated routes is very

small with respect to the potential number of routes. The average number of
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routes that are generated is 462 for the set with H = 3, and is 492 for the set

with H = 6. The number of routes exceeds 1000 in only 6% of the instances,

the ones with the largest number of customers. The average computational

time is 88 seconds for the data set with H = 3, while is around 1965 seconds

for the data set with H = 6.

2.6.2.1 Branch-and-cut performance

Table 2.3 provides average results for the branch�and�cut algorithm for

the instances with H = 3 and H = 6, respectively. The average results are

grouped for instance size, each group is composed of 5 instances. The tables are

organized as follows. Column Instance provides the instance name. Column

Time (s) shows the computational time, while column Nodes provides the

number of nodes processed in the branch-and-cut algorithm. Columns Sub-

tours, Dis Parity Ineqs andAggr Parity Ineqs report the number of added

sub�tour elimination, disaggregate parity and aggregate parity inequalities that

are added dynamically to the LP , respectively. Finally, column Gap (%) pro-

vides the optimality gap. These results show that, even if an initial solution

is provided and several families of cuts are used, the problem remains very

challenging to be solved exactly. Even for small instances with 10 customers

and 3 periods, optimality is not achieved for all instances. Several instances

with more than 35 customers used all the computational time at the root node

only, and the average gap was 31.24% for instances with 3 periods and 36.95%

for those with 6 periods. The �rst reason why our branch-and-cut does not

perform well in the Multi-Vehicle and Multi-Depot IRP can be attributed to

the fact that the multi-vehicle case allows symmetry solutions when the �eet

of vehicles is homogeneous. This makes the problem much more di�cult to

be solved, even if symmetry breaking inequalities are added to the initial LP.

On the other hand, the quality of the lower bound corresponding to the initial

LP is very poor, and the addition of the symmetry breaking inequalities and
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of some classes of already known valid inequalities does not improve so much

this bound. Therefore, closing the gap remains a very di�cult issue for the

branch�and�cut.

H=3 H=6

Instance Time (s) Nodes Subtours Dis Par. Ineqs Aggr Par. Ineqs GAP % Instance Time (s) Nodes Subtours Dis Par. Ineqs Aggr Par. Ineqs GAP %

Nn5d2h3 496.50 2837 107 221 158 0.00 Nn5d2h6 19097 15378 400 716 486 10.32

Nn10d2h3 9596.61 3376 566 482 323 2.60 Nn10d2h6 21700 2100 1429 1477 743 30.20

Nn15d2h3 18531.5 2689 1309 951 628 16.99 Nn15d2h6 21700 724 1727 1586 718 31.46

Nn20d3h3 21700 470 1501 1497 720 19.77 Nn20d3h6 21700 40 1496 2294 1077 41.55

Nn25d4h3 21700 86 1431 1667 710 39.99 Nn25d4h6 21700 4 1348 1462 692 43.19

Nn30d4h3 21700 29 1194 1736 747 36.29 Nn30d4h6 21700 1 998 1922 911 43.40

Nn35d5h3 21700 4 919 1281 442 46.15 Nn35d5h6 21700 1 735 936 612 40.33

Nn40d5h3 21700 2 1185 1719 706 51.99 Nn40d5h3 21700 1 784 956 596 40.49

Nn45d6h3 21700 1 871 1476 727 44.88 Nn45d6h6 21700 0 455 572 469 41.76

Nn50d6h3 21700 1 553 1384 676 53.76 Nn50d6h6 21700 1 233 482 239 46.40

Average 18052.46 949 963 1241 584 31.24 Average 21439 1824 961 1240 654 36.95

Table 2.3: Branch�and�cut performance for instances with H = 3, 6

2.6.2.2 Performance comparison

In this section the comparison between the results of the matheuristic al-

gorithm and the branch�and�cut is presented. Table 2.4 provides the results

for all the instances with time horizon H = 3 and H = 6. The table is orga-

nized as follows. Column Instance provides the instance name. ColumnsMH

and TimeMH (s) provide the cost of the matheuristic solution and the cor-

responding computational time, respectively. Columns B&C and TimeB&C

(s) report the cost of the best branch�and�cut solution obtained within the

time limit allowed and the corresponding computational time, respectively. Fi-

nally, column Gap % provides the gap between the two approaches, computed

as GAP % = MH−B&C
B&C

100.

The results shown in Table 2.4 demonstrate that the matheuristic algo-

rithm is signi�cantly more e�ective than the branch�and�cut. It is clear that

instances with a longer time horizon are more di�cult to solve. Nevertheless,

the results provided by the matheuristic are good for both data sets. The result

demonstrates that the route generation phase is not a�ected by the time hori-

zon dimension. For this reason, it is possible to solve the instances with H = 6
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Instance MH TimeMH (s) B&C TimeB&C (s) Gap % Instance MH TimeMH (s) B&C TimeB&C (s) Gap %

1n5d2h3 1148.80 0.09 1148.80 89.71 0.00 1n5d2h6 2595.14 0.17 2595.14 8685.15 0.00

2n5d2h3 956.24 0.10 956.24 434.76 0.00 2n5d2h6 3296.32 3.76 3296.32 21700 0.00

3n5d2h3 1801.02 0.13 1801.02 360.51 0.00 3n5d2h6 5145.63 0.80 5145.63 21700 0.00

4n5d2h3 1425.39 0.12 1425.39 1537.42 0.00 4n5d2h6 2963.12 6.59 2963.12 21700 0.00

5n5d2h3 1808.40 0.08 1808.40 60.09 0.00 5n5d2h6 3117.05 86.09 3120.91 21700 -0.12

1n10d2h3 2112.53 1.76 2177.99 21700 -3.00 1n10d2h6 4363.89 11.5 5102.45 21700 -14,47

2n10d2h3 2425.97 2.21 2427.66 21700 -0.06 2n10d2h6 5271.25 369.07 5501.12 21700 -4.18

3n10d2h3 1651.54 0.83 1651.54 1854.78 0.00 3n10d2h6 5290.71 64.52 5617.17 21700 -5.81

4n10d2h3 2449.30 0.81 2449.30 1994.27 0.00 4n10d2h6 5649.83 665.89 5849.66 21700 -3.42

5n10d2h3 1982.90 0.89 1982.90 734 0.00 5n10d2h6 5052.26 565.20 5077.50 21700 -0.50

1n15d2h3 3891.56 3.76 4588.88 21700 -15.20 1n15d2h6 8942.69 3466.42 9904.03 21700 -9.71

2n15d2h3 2436.43 4.30 2436.43 20955 0.00 2n15d2h6 9072.41 1995.81 10202.70 21700 -11.08

3n15d2h3 3189.50 3.84 3075.69 6602.50 3.70 3n15d2h6 8775.07 1693.07 9276.72 21700 -5.41

4n15d2h3 2298.16 3.88 2481.13 21700 -7.37 4n15d2h6 8690.27 5516.63 8875.49 21700 -2.09

5n15d2h3 2329.42 1.93 2912.07 21700 -20.01 5n15d2h6 8905.06 473.50 8997.27 21700 -1.03

1n20d3h3 3095.91 11.66 3263.25 21700 -5.13 1n20d3h6 9616.51 6614.13 11433.40 21700 -15.89

2n20d3h3 4074.56 6.44 4395.27 21700 -7.29 2n20d3h6 8386.92 1596.92 9094.27 21700 -7.78

3n20d3h3 3361.74 5.79 3399.42 21700 -1.11 3n20d3h6 10895.99 1405.85 10807.75 21700 0.82

4n20d3h3 4151.87 7.88 4501.08 21700 -7.76 4n20d3h6 6826.68 89.36 12965.10 21700 -47.34

5n20d3h3 4235.63 27.81 4338.40 21700 -2.37 5n20d3h6 11343.97 1577.32 13545.80 21700 -16.25

1n25d4h3 3354.83 13.97 4203.45 21700 -20.19 1n25d4h6 11276.20 9574 11949.99 21700 -5.64

2n25d4h3 3654.25 11.07 4570.13 21700 -20.04 2n25d4h6 9172.41 3728.45 10369.70 21700 -11.54

3n25d4h3 3870.56 13.93 4127.82 21700 -6.23 3n25d4h6 9575.81 92.81 10511.3 21700 -8.90

4n25d4h3 4925.73 43.80 5722.99 21700 -13.93 4n25d4h6 9215.81 37.63 10457.10 21700 -11.87

5n25d4h3 4475.17 9.88 6214.81 21700 -27.99 5n25d4h6 8869.16 538.70 9556.95 21700 -7.20

1n30d4h3 4262.32 76.56 5206.49 21700 -18.13 1n30d4h6 12255.30 10800 1275.90 21700 -3.94

2n30d4h3 3733.09 22.20 4805.12 21700 -22.31 2n30d4h6 12001.80 1575.14 12848.94 21700 -6.59

3n30d4h3 4649.11 18.94 5344.53 21700 -13.01 3n30d4h6 10675.78 2542.20 11921.20 21700 -10.45

4n30d4h3 3580.22 18.26 4805.12 21700 -25.49 4n30d4h6 9875.90 600.42 11420.40 21700 -13.52

5n30d4h3 4199.74 21.90 4693.64 21700 -10.52 5n30d4h6 9325.37 2841.61 9960.20 21700 -6.37

1n35d5h3 5351.66 21.98 7013.75 21700 -23.70 1n35d5h6 11029.50 61.94 12924 21700 -14.66

2n35d5h3 5213.10 28.02 6138.55 21700 -15.08 2n35d5h6 11195.46 76.15 11561.10 21700 -3.16

3n35d5h3 4790.49 27.83 6228.25 21700 -23.08 3n35d5h6 10747.05 1877.39 11676.1 21700 -7.96

4n35d5h3 5430.31 31.33 6660.30 21700 -18.47 4n35d5h6 10389.2 71.3 11004.45 21700 -5.59

5n35d5h3 4545.17 32.59 5771.25 21700 -21.24 5n35d5h6 14750.82 714.18 15450.90 21700 -4.53

1n40d5h3 5810.59 58.14 7080.27 21700 -17.93 1n40d5h6 12152.40 1185.19 12208.50 21700 -0.46

2n40d5h3 5543.21 57.39 7128.72 21700 -22.24 2n40d5h6 13797.56 4330.62 1399.70 21700 -1.44

3n40d5h3 5568.42 70.95 6434.14 21700 -13.45 3n40d5h6 10840.55 4939.05 10887.50 21700 -0.43

4n40d5h3 5115.32 49.24 5742.3 21700 -10.92 4n40d5h6 12337.50 124.50 12554.70 21700 -1.73

5n40d5h3 4695.32 98.69 5196.53 21700 -9.65 5n40d5h6 12673.98 2672.15 13283.70 21700 -4.58

1n45d6h3 6547.97 136.24 7272.02 21700 -9.96 1n45d6h6 10940.30 576.78 10884.90 21700 0.51

2n45d6h3 5896.87 149.27 6634.67 21700 -11.12 2n45d6h6 11323.10 323.05 11596.40 21700 -2.53

3n45d6h3 6084.01 69.24 6721.43 21700 -9.48 3n45d6h6 11606 640.15 11639.20 21700 -0.29

4n45d6h3 6420.13 47.41 6292.32 21700 2.03 4n45d6h6 11838.5 2236.47 12166.64 21700 -2.29

5n45d6h3 5002 76.46 5650.86 21700 -11.48 5n45d6h6 12392.35 2836.15 13373.20 21700 -7.33

1n50d6h3 7238.44 2407.59 7881.37 21700 -8.16 1n50d6h6 12892.30 5049.94 14031.90 21700 -8.12

2n50d6h3 6131.18 197.92 7432.50 21700 -17.51 2n50d6h6 14529.04 1013.1 14635.36 21700 -0.73

3n50d6h3 6788 61.17 7611.76 21700 -10.82 3n50d6h6 13245.80 2778.32 13721.20 21700 -3.46

4n50d6h3 6238.02 70.88 7740.36 21700 -18.83 4n50d6h6 13122.22 4054.4 13202.47 21700 -0.60

5n50d6h3 5914.12 362.70 6509.11 21700 -9.14 5n50d6h6 12588.10 4175.72 13676.20 21700 -7.96

Average 87.78 18052.46 -10.47 Average 1965.40 21439.75 -5.98

Table 2.4: Performance comparison
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without increasing the number of route�variables in formulation (2.28)�(2.36).

Instead, the branch�and�cut algorithm can solve only small and medium size

instances, while the possibility to �nd optimal solutions decreases with the

instance size. Futhermore, the branch�and�cut algorithm is able to solve to

optimality for only 11 small instances. As a consequence, the time limit of 6

hours is reached in 89 instances.

In the set with H = 3, the average duality gap is equal to 31.24%, while in

the set with H = 6 this gap is equal to 36.22%. There is no sensitive di�erence

between the gaps of the two data sets. This is due to the good quality of the

initial solution built with the procedure described in Section 2.4, and used as

starting solution for the branch�and�cut algorithm. The availability of this

good initial solution allows to reduce the number of nodes to explore in the

branch�and�cut tree, mainly in the data set with H = 6. The drawback of the

branch�and�cut is that in large instances all the computational time is spent

adding cuts to the LP formulation at the root node. In 96% of all the cases,

the matheuristic is able to �nd a solution in a smaller computational time

than the one provided by the branch�and�cut algorithm. For the data set with

H = 3, the matheuristic provides a feasible solution with a total cost lower than

that of the solution found by the branch�and�cut by 10.47%, on average. The

matheuristic is able to �nd the best solution within a computational time that

is 17964.68 seconds smaller on average than the ones of the branch�and�cut.

For the data set with H = 6, the matheuristic �nds a feasible solution that is

better by 5.98% on average than the best solution provided by the branch�and�

cut, and in a computational time that is 19474.7 seconds smaller on average

than the ones of the branch�and�cut.
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2.6.2.3 Impact of the clustering and route generation phases on the

quality of the solutions

We now assess the impact of the clustering and route generation phases on

the �nal solution of our matheuristic. The following results highlight the key

role played by the inter�cluster routes that are built around the so called �bor-

derline customers�, indeed, a tailored clustering procedure and the correspond-

ing intra�cluster routes are not su�cient to guarantee good quality of the solu-

tions. The next table provide the results of the sensitivity analysis in terms of

total number of generated routes, total number of inter-cluster and intra-cluster

routes, and number of selected intra-cluster and inter-cluster routes. The aver-

age results are grouped for instance size, each group is composed of 5 instances.

The table is organized as follows: column Instance gives the name of the in-

stance, column N. Clust. shows the number of clusters, column Tot.Routes

reports the total number of generated routes, columns Intra-cluster R. and

Inter-cluster R. provide the total number of intra�cluster and inter�cluster

routes, respectively, column Solution Routes describes the number of selected

routes in the �nal solution, columns Sol.intra-c and Sol.inter-c describe the

number of selected intra�cluster and of inter�cluster routes, respectively. Fi-

nally, column Incidence refers to the ratio Sol.inter−c
Solution Routes

.

The results show that the impact of the inter�cluster routes in the �nal so-

lution is signi�cant. In fact, the average value of the ratio for the data set with

H = 3 is equal to 16%, while with H = 6 it is around 18%. Considering all the

values reported in the last column of Tables 3.2, it is possible to notice that

the importance of inter�cluster routes increases with the size of the instances,

reaching values that are higher than 50%. Therefore, the solution is very in-

�uenced by these routes. The potential of the matheuristic in the multi�depot

case is to �nd a good trade�o� between simpli�cation of the problem (phase

1) and global optimization (phases 2 + 3). Therefore, solving a single�depot

IRP for each cluster could be less e�cient.
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H=3

Instance N.Clust. Tot.Routes Intra-cluster R. Inter-cluster R. Solution Routes Sol.Intra-c Sol.Inter-c Incidence

Nn5d2h3 2 12 7 5 4 4 0 0.00

Nnd210h3 2 67 51 16 4 4 1 0.09

Nn15d2h3 2 187 168 17 5 4 1 0.13

Nn20d3h3 3 261 228 33 5 4 1 0.22

Nn25d4h3 4 294 248 46 6 4 2 0.27

Nn30d4h3 4 559 514 45 6 5 1 0.12

Nn35d5h3 5 572 510 61 6 5 1 0.11

Nn40d5h3 5 791 726 65 6 5 1 0.19

Nn45d6h3 6 807 734 73 6 4 2 0.28

Nn50d6h3 6 1069 995 75 7 5 1 0.21

average 4 462 418 44 5 4 1 0.16

H=6

Nn5d2h6 2 21 9 11 6 6 0 0.00

Nnd210h6 2 100 64 36 9 7 1 0.16

Nn15d2h6 2 248 204 44 9 7 1 0.16

Nn20d3h6 3 343 279 64 10 9 1 0.13

Nn25d4h6 4 386 308 78 12 10 2 0.14

Nn30d4h6 4 543 447 96 12 10 2 0.16

Nn35d5h6 5 560 463 97 13 8 5 0.36

Nn40d5h6 5 876 745 131 14 11 2 0.17

Nn45d6h6 6 764 639 125 16 10 5 0.35

Nn50d6h6 6 1074 940 134 13 11 3 0.21

average 4 492 410 82 11 9 2 0.18

Table 2.5: Inter-cluster route incidence with H = 3, 6

2.7 Conclusion

In this study, the MDIRP with a homogeneous �eet of vehicles is stud-

ied. While classical IRPs have been studied extensively, the multi-depot case

represents a variant not well investigated despite its applications in last-mile de-

livery optimization, when the Vendor�Managed Inventory paradigm is applied.

A MILP formulation is presented. An e�ective matheuristic algorithm to solve

theMDIRP is designed and implemented. A take away message from this ap-

proach is that a good clustering and the corresponding intra-cluster routes are

not enough to guarantee a good performance of the matheuristic. We showed

that, in our approach, the main role is played by the inter-cluster routes, based

on "borderline customers" among clusters. Furthermore, the clustering phase

impacts also on the computational time of the matheuristic: if clusters are not

so balanced in terms of critical level and cardinality, the computational time
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for generating the routes increases and slows down the solving process. We can

conclude that a good clustering phase is the one able to produce, in short com-

putational time, clusters that are a good basis to build e�ective intra-cluster

routes. Our matheuristic clearly outperformed a branch�and�cut algorithm

with several families of cuts. Future research could be devoted to improve the

branch-and-cut algorithm and to study the MDIRP in order to better adapt

this problem to the real cases.
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Chapter 3

A Variable MIP Neighborhood

Search for the Multi-attribute

Inventory Routing Problem

Abstract: In this Chapter, a mathematical formulation for the Multi�

attribute Inventory Routing Problem (MAIRP ) is proposed. More precisely,

we extend the Multi�depot Inventory Routing Problem (MDIRP ) in order to

consider the multi-product case with a heterogeneous �eet of vehicles and ex-

plicit constraints for the route duration. The MAIRP is a NP�hard problem

more complex than the classical Inventory Routing Problem (IRP ). Never-

theless, it captures a lot of the features that can be found in real applications

of the VMI setting. We introduce a hybrid algorithm to solve it, in which

several Mixed Integer Programming (MIP ) models are solved to explore the

neighborhoods of a Variable Neighborhood Search (V NS) scheme applied to

the MAIRP . The impact is to accelerate the resolution process with respect

to other approaches used for the MIP standalone. We design several neigh-

borhoods that are based on the features of the problem, and we present com-

putational results on classical benchmark instances.

Keywords: Variable Neighborhood Search, Mixed-Integer Programming, In-
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3.1 Introduction

ventory Routing Problem.

3.1 Introduction

In this Chapter a rich variant of the IRP is introduced, the so�called Multi-

attribute Inventory Routing Problem (MAIRP ). The classical Inventory Rout-

ing Problem (IRP ) combines inventory management policies and vehicle rout-

ing operational plans within a unique and coordinate scheme. In the case of the

MAIRP , a vendor has to deliver a group of products from di�erent origins (a

set of depots) to a set of customers with a heterogeneous �eet of vehicles, while

limiting the time duration of routes. The objective of the problem is to jointly

minimize depots and customers inventory costs and the transportation cost,

while satisfying the customers' demands and avoiding the stock�out. Since the

MAIRP is a general case of the IRP , it is a NP�hard problem. A hybrid algo-

rithm based on the Variable Neighborhood Search (VNS) method is designed,

where the neighborhoods' exploration is performed through a branch�and�cut

algorithm working on a small portion of the whole search space. This method-

ology was already sucessfully applied to the optimization problem related to the

inventory and distribution of cash for automated teller machines by Larrain et

al. [43]. The authors called this approach Variable MIP Neighborhood Search

(VMNS). The name is self-explanatory, so we decided to maintain the same

de�nition. An extensive overview of the IRP and its industrial applications

could be found in [2], while a deep literature review is described in [25]. Di�er-

ent algorithms were proposed to solve the IRP : exact methods are presented

in [3], [23] and [24], heuristic algorithms are described in [14], [29] and [47],

while hybrid algorithms can be found in [43] and [16].

The proposed hybrid algorithm starts with an initial solution that is built

by solving the MAIRP mathematical formulation by the means of a branch�

and�cut algorithm that is stopped when an integer feasible solution is found
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3.2 Problem Description

within a time limit. At this point the local search phase starts by solving a

sequence of neighborhoods in order to improve the current solution obtained.

The algorithm continues to alternate the two phases as explained in the fol-

lowing sections. The exploration of the neighborhoods is performed through

MIPs according to a given order. The idea to solve the local search using a

MIP is not new, it was explored in the literature by [5] and [23], while the

orderly exploration is inspired by the Variable Neighborhood Descent search

[44]. Some similarities can be found with other MIP heuristics like �x-and-

relax [35], restrict-and-relax [42] and relaxation induced neighborhood search

[31]. The last technique is similar to our methods and it is used in commercial

solvers.

The remainder of the chapter is organized as follows: in Section 3.2 the

problem is described while in Section 3.3 the mathematical formulation of the

problem is provided. In Sections 3.4 and 3.5 the hybrid VMNS is detailed and

in Section 3.6 some preliminary computational results are shown, followed by

conclusion in Section 3.7.

3.2 Problem Description

We consider a complete undirected graph G = (V,E), where V is the set

of vertices and E is the set of edges. We suppose that G is an Euclidean

graph, in which the triangular inequality holds. We partition the set V in

such a way that V = D ∪ I where D = {1, 2, . . . ,m} is the set of depots and
I = {m + 1,m + 2, . . . , n} is the set of customers. A set of di�erent products

P = {1, 2, . . . , p} has to be delivered from the depots to the customers, over a

�nite and discrete time horizon H. Let T = {1, . . . , H} be corresponding set

of time periods. A set K = {1, 2, . . . , k} of vehicles with di�erent capacities

Qk is available to perform the deliveries, and let αk be the variable cost for

distance unit. Each vehicle can be assigned only to one depot d ∈ D in each
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3.2 Problem Description

time period t ∈ H. Each customer i ∈ I can be served by di�erent vehicles

in the same period t ∈ H, travelling from di�erent depot d ∈ D. A maximum

inventory level Ui and a given starting inventory level Iip0 for each product

p ∈ P are associated with the customers. We assume that they are both

integer. A given starting inventory level Iid0 is associated with each depot for

each product p ∈ P . The inventory level capacity at the depots is unlimited.

In each time period t, a deterministic integer demand dipt for each customer i

and each product p must be satis�ed. An amount rdpt of each product p in each

depot d and for each period t is available, it is also integer. The inventory level

of each customer i cannot be negative in each time period t ∈ T ∪ {H + 1}.
A non-negative cost cij and a travelling time τij are associated with each edge

(i, j) ∈ E. A non-negative unit inventory holding cost hip is associated to

customer i and product p and a non-negative unit inventory holding cost hid

for depot d and product p is considered. The service time is the same for each

customer and it is denoted by ω, while the maximum duration time of each

route is M .

The aim is to determine:

1. the set of customers to be served by a depot in each time period;

2. the vehicles to assign to a supplier by considering that each vehicle cannot

be shared among suppliers in the same period;

3. the quantity of each product to deliver to each customer at each time

period;

4. the set of routes to execute that minimize the total inventory and trans-

portation costs.

The replenishment plan is subject to the following constraints:

• inventory level at each customer can never exceed its maximum capacity;
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3.3 Mathematical formulation

• no stock-out can occur at the customers;

• each vehicle can perform only one route in the time period, that starts

and ends at the same depot;

• vehicle capacity cannot be exceeded;

• maximum time allowed for each route cannot be exceeded;

• connections between depots are forbidden ( a vehicle cannot transit from

a depot to another depot in a route);

• the split is allowed only in the sense that a customer could be serviced

in the same time period by di�erent vehicles that start their tour from

di�erent depots;

• for each period only one vehicle can start its tour from one depot;

• maximum inventory levels of the customers and vehicle capacities are

shared among di�erent products.

3.3 Mathematical formulation

We present a mathematical formulation of the problem. We introduce the

following notation. Let δ(S) be the set of edges (i, i′) incident to the vertices

i ∈ S ⊂ V (edge cutset); for the sake of notation, if S = {i}, we denote the

corresponding edge cutset as δ(i). Let E (U) be the set of edges (i, j) such

that i, j ∈ U , where U ⊆ I is a given sub�set of customers. Our mathematical

formulation is based on the following variables:

• Iipt: inventory level at customer i ∈ I at the end of period t ∈ T for the

product p ∈ P ;

• Idpt: inventory level at depot d ∈ D at the end of period t ∈ T for the

product p ∈ P ;
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3.3 Mathematical formulation

• yipktd: quantity to deliver to customer i ∈ I of product p ∈ P in period

t ∈ T by vehicle k ∈ K starting the tour from depot d ∈ D ;

• xijktd: binary variable equal to 1 if vehicle k ∈ K travels directly from

vertex i ∈ V to vertex j ∈ V in period t ∈ T starting the tour from depot

d ∈ D and 0 otherwise;

• ziktd: binary variable equal to 1 if vehicle k ∈ K visits customer i ∈ I in

period t ∈ T starting the tour from depot d ∈ D and 0 otherwise;

• zdktd: binary variable equal to 1 if vehicle k ∈ K, located in depot d ∈ D,

starts the tour from depot d ∈ D in period t ∈ T and 0 otherwise;

The mathematical formulation is described by (3.1)�(3.19).

min
∑
i∈I

∑
p∈P

∑
t∈T

hipIipt +
∑
d∈D

∑
p∈P

∑
t∈T

hdpIdpt +
∑
t∈T

∑
(i,j)∈E

∑
k∈K

∑
d∈D

αkcijxijktp (3.1)

s.t. Idp,t+1 = Idpt −
∑
k∈K

∑
i∈I

yipktd + rdpt ∀t ∈ T, ∀p ∈ P,∀d ∈ D (3.2)

Iip,t+1 = Iipt +
∑
k∈K

∑
d∈D

yipktd − dipt ∀t ∈ T, ∀p ∈ P,∀i ∈ I (3.3)∑
p∈P

∑
k∈K

∑
d∈D

yipktd +
∑
p∈P

Iipt ≤ Ui ∀t ∈ T, ∀i ∈ I (3.4)

∑
i∈I

∑
p∈P

yipktd ≤ Qk zdktd ∀t ∈ T, ∀d ∈ D,∀k ∈ K (3.5)

yipktd ≤ Qk ziktd ∀i ∈ I, ∀t ∈ T, ∀p ∈ P,∀k ∈ K,∀d ∈ D(3.6)∑
i∈I

∑
p∈P

yipktd ≥ zdktd ∀t ∈ T, ∀d ∈ D,∀k ∈ K (3.7)

zbktd = 0 ∀t ∈ T, ∀d ∈ D,∀k ∈ K,∀b ∈ D (p 6= b)(3.8)∑
d∈D

zdktd ≤ 1 ∀t ∈ T, ∀k ∈ K (3.9)∑
d∈D

ziktd ≤ 1 ∀t ∈ T, ∀k ∈ K,∀i ∈ I (3.10)∑
k∈K

zdktd ≤ 1 ∀t ∈ T, ∀d ∈ D (3.11)∑
(i,j)∈E

τijxijktd +
∑
i∈I

ωziktd ≤M ∀k ∈ K,∀t ∈ T, ∀d ∈ D (3.12)
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∑
j∈I,j<i

xijktd +
∑

j∈I,j>i
xijktd = 2ziktd ∀i ∈ V,∀t ∈ T, ∀d ∈ D,∀k ∈ K (3.13)

∑
(i,j)∈E(S)

xijktd ≤
∑
i∈S

ziktd − zuktd ∀S ⊆ V, |S| ≥ 2, ∀t ∈ T, ∀k ∈ K,

∀d ∈ D,u ∈ S (3.14)

xijktd, xdjktd, xjdktd ∈ {0, 1} ∀i, j ∈ I, ∀t ∈ T, ∀d ∈ D,∀k ∈ K (3.15)

Iipt ≥ 0 ∀i ∈ I, ∀t ∈ T, ∀p ∈ P (3.16)

Idpt ≥ 0 ∀d ∈ D,∀t ∈ T, ∀p ∈ P (3.17)

yipktd ≥ 0 ∀i ∈ I, ∀t ∈ T, ∀p ∈ P,∀k ∈ K,∀d ∈ D(3.18)

ziktd, zdktd ∈ {0, 1} ∀i ∈ I, ∀t ∈ T, ∀d ∈ D,∀k ∈ K. (3.19)

The objective function (3.1) minimizes the total inventory and routing costs

at the customers and suppliers. Constraints (3.2)-(3.3) de�ne the inventory at

the suppliers and customers. Constraints (3.4) impose the maximum inven-

tory level at the customer. Constraints (3.5)-(3.6) are capacity constrains on

the vehicles. Constraints (3.7) establish that vehicle k ∈ K starts the tour

from depot d ∈ D in period t ∈ T if an amount of products is delivered to

some customers by this vehicle. Constraints (3.8) forbid connections between

depots and constraints (3.9) impose that each vehicle can be located in only

one depot. Constraints (3.10) enforce each customer to be visited with a route

starting from one depot at most in a given period t ∈ T and with vehicle

k ∈ K. Constrains (3.11) allow only one vehicle can leave a depot in a time pe-

riod. Constraints (3.12) impose that duration of the route cannot be exceeded.

Constraints (3.13) and (3.14) control the degree of the vertices and prohibit

subtours, respectively. Finally, constraints (3.15)�(3.19) de�ne the integrality

and non-negative conditions for the variables.
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3.4 Variable MIP Neighborhood Search

In this section we describe the two main tools used for solving the problem.

In Section 3.4.1 the branch-and-cut phase is described, while in Sections 3.4.2

and 3.5 the local search scheme is detailed.

The VMNS is a matheuristic algorithm that uses aMIP to explore neigh-

borhoods. In our algorithm, the MIPs are based on a mathematical formu-

lation with routes variables that reproduces the problem of the (3.1)-(3.19)

formulation, in which some variables are �xed and new constraints are added.

The algorithm is based on two di�erent phases called routines in the fol-

lowing, that are executed alternately. These routines di�er mainly as to their

structure: the �rst one implements a branch�and�cut algorithm that is the

main framework of the Variable Neighborhood Search scheme and it is named

BCR, while the second one implements the matheuristic algorithm described

in the second Chapter as the main tool used in the Variable Neighborhood

Search scheme, and it is referred to as LSR. In the following the two routines

are described in details, while the structure of the VMNS is presented in the

next sections.

3.4.1 Branch�and�cut Routine

The branch�and�cut solves the problem obtained by removing constraints

(3.14) from problem formulation (3.1)- (3.19), and by adding only the violated

subtour elimination constraints for each period t ∈ T , for each vehicle k ∈
K and for each depot d ∈ d. They are added dynamically using the exact

separation procedure described in [46]. They were introduced considering a

given u ∈ S, for which the following condition is valid: u = argmaxi{z̄iktd},
where z̄iktd is the value of variable ziktd in the current LP relaxation. At each

tree node, the violated (3.14) are checked and added to the current sub-problem

that is then optimized. If no violations are identi�ed, branching occurs at the
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3.4 Variable MIP Neighborhood Search

current node. No priority variables are de�ned for the branching strategy.

Moreover, in order to improve the quality of the root node lower bound of the

branch�and�cut tree, the following valid inequalities are added to the initial

LP of formulation (3.1)- (3.19):

1. Priority inequalities:

ziktd ≤ zdktd, ∀i ∈ I,∀k ∈ K, ∀d ∈ D, ∀t ∈ T (3.20)

These valid inequalities were presented by [3] to improve the performance

of the proposed branch-and-cut for the single�vehicle IRP.

2. Logical inequalities:

xidktd + xdiktd ≤ 2 ziktd, ∀i ∈ I,∀t ∈ T,∀d ∈ D, ∀k ∈ K (3.21)

xijktd ≤ ziktd, ∀i, j ∈ I,∀t ∈ T,∀d ∈ D, ∀k ∈ K (3.22)

Inequalities (3.21) impose that if depot d is the predecessor or the succes-

sor of customer i in the route executed in period t by vehicle k starting

from depot d, then customer i has to be visited in period t by vehicle k

starting from depot d. Inequalities (3.22) impose that if customer j is

the successor of customer i in the route performed in period t by vehicle

k starting from depot d, then customer i has to be visited in period t

by vehicle k starting from depot d. They are inspired by the logical cuts

discussed in [37] and [38].

3.4.1.1 Initial solution

The performance of the branch�and�cut algorithm described in Section

3.4.1 is sped up by �nding an initial solution computed as follows. We solve a

relaxed formulation of (3.1)-(3.19), in which the routing part is dropped from

the objective function, while the total routing cost is estimated by adding the
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following term
∑

t∈T
∑

k∈K
∑

d∈D
∑

i∈I cdiziktd, where cdi is the cost of the edge

(d, i) ∈ E. Moreover, all the routing constraints (3.12)-(3.14) and the corre-

sponding variables xijktd are dropped from the mathematical formulation. In

the relaxed version of the problem, the constraint (3.12) is substituted by a

new constraint that contains an estimation of the route duration:∑
i∈V

(MDd + ω)ziktd ≤M ∀t ∈ T,∀k ∈ K, ∀d ∈ D (3.23)

where MDd is the medium travelling time. A set of feasible clusters is de�ned

on the basis of the values of variables ziktd for each k ∈ K, for each t ∈ T and

for each d ∈ D. For each of such clusters, the optimal TSP tour is found and

the corresponding cost is added to the optimal objective value of the relaxed

formulation.

3.4.2 Local Search Routine

This routine builds several neighborhoods whose exploration helps in �nding

feasible solutions that are better than the initial one provided by the BCR. In

order to explore quickly the neighborhoods, the mathematical structure of the

MIPs that are solved repeatedly must be easier than the one presented in the

previous Section. In light of the preliminary computational study and of the

analysis presented in Chapter 2, all the following observations were considered

in designing the mathematical structure of the MIPs solved in the VMNS

scheme:

• due to the decomposable structure of theMDIRPs, clustering techniques

are helpful to reduce the complexity of such problems;

• a good way to explore neighborhoods in a Local Search framework is

to use a matheuristic algorithm providing new solutions with a small

computational e�ort in the neighborhood of a given solution;
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• Route�based formulations are more e�ective to approach multi�attribute

MDIRPs than arc�based formulations.

On the basis of the above, we decided to embed the matheuristic algorithm

described in Chapter 2 into the VNS scheme. Obviously, the integration implies

some modi�cations and adaptations that will be described in the following,

where the main steps of the matheuristic are re-called:

1. clustering phase : an integer linear programming model is solved to obtain

a partition of the set of customers into a set of clusters, one for each depot;

2. Routing construction phase: a set R of routes is built for the clusters

generated in the �rst phase. The routes are generated by varying the

vehicle capacity and by considering di�erent replenishment policies. Two

types of routes are generated: intra-cluster routes and inter-cluster routes.

3. Optimization phase: a binary linear programming model with route vari-

ables is optimally solved to obtain a feasible solution of the MAIRP .

The matheuristic was not implemented straight as it to explore each neigh-

bourhood. Indeed, clustering and routing construction phases are computed

only once at the beginning of the whole VMNS execution, in order to gener-

ate �xed clusters and to obtain a good set of feasible routes. The route�based

mathematical formulation is solved each time a neighbourhood is explored by

adding tailored constraints that accelerate �nding an improved solution. In the

following short description of the necessary adjustments of the matheuristic al-

gorithm is provided.

3.4.2.1 Routing construction phase

The aim of the second phase is to generate a restricted number of routes for

the MDIRP on the basis of the clusters generated by model (2.23)�(2.27) and

on the basis of di�erent replenishment policies. As explained in section 2.5.2,
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3.4 Variable MIP Neighborhood Search

two classes of routes are generated: intra-cluster and inter-cluster routes. The

unique di�erence with respect to theMDIRP relies in the presence of multiple

products at the same customer. However, since the maximum inventory level at

each customer and the vehicle capacity are resources that are shared among dif-

ferent products, no change occurs in the route generation procedure described in

Chapter 2. In fact, the demand of each customer, the initial inventory levels and

the quantity scheduled by each policy are not considered product-by-product,

but they are aggregate during the route generation process. Despite the fact

that model (3.1)-(3.19) accounts for these quantity separately, the route gen-

eration procedure is able to determine a set of routes that are still e�ective for

the multi�product case. In the replenishment policies described in section 2.5.2

it is necessary to make the following substitutions: dit =
∑
p∈P

dipt; Îit =
∑
p∈P

Iipt

and ŷit =
∑
p∈P

yipt. The procedure for building the routes remains unchanged,

excepted for capacity parameter Cap. In the new problem a heterogeneous �eet

of vehicles is considered, so the intra�cluster routes are generated on the basis

of the di�erent capacities by setting with Cap ∈ {Ck, Ck/2, Ck/3; ∀k ∈ K},
while the inter�cluster routes are determined by considering only maximum

vehicle capacity, namely with Cap = max{Ck; ∀k ∈ K}.

3.4.2.2 Optimization phase

In the third phase, route�based mathematical formulation is solved with

the set of routes R, and a feasible MAIRP solution is found in each neigh-

borhood. A partition of R is de�ned according to the vehicle capacities, as

R = {R1, R2, ..., Rk} ∀k ∈ K, where each subset Rk is composed by the

routes in which vehicles with capacity Ck are used. We introduce the following

parameters that are indexed in the set of routes, r ∈ R:

• cr: cost of route r ∈ R,

• tr: travelling time of route r ∈ R,
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• air: binary parameter equal to 1 if customer i is served in route r, 0

otherwise

and the following decision variables:

• mirtpd: quantity of product p shipped to customer i in route r in time

period t starting from depot d;

• Invitp: inventory level of product p at customer i at the end of time

period t ∈ T ∪ {H + 1};

• Invdtp: inventory level of prodcut p at depot d at the end of time period

t ∈ T ∪ {H + 1};

• nrtd: binary variable equal to 1 if route r is used in time period t starting

from depot d, 0 otherwise.

The problem is then formulated as follows:

min
∑
t∈T

∑
r∈R

∑
d∈D

cr nrtd +
∑
t∈T

∑
p∈P

∑
d∈D

hd Invdtp +
∑
t∈T

∑
p∈P

∑
i∈I

hi Invitp (3.24)

s.t. Invd,t+1,p = Invdtp −
∑
r∈R

∑
i∈I

mirtdp + rdtp, ∀d ∈ D,∀t ∈ T, ∀p ∈ P (3.25)

Invi,t+1,p = Invitp +
∑
r∈R

∑
d∈D

mirtdp − ditp, ∀i ∈ I, ∀t ∈ T, ∀p ∈ P (3.26)∑
r∈R

∑
p∈P

∑
d∈D

mirtpd +
∑
p∈P

Iitp ≤ Ui, ∀t ∈ T, ∀i ∈ I (3.27)

∑
i∈I

∑
p∈P

mirtpd ≤ Ck nrtd, ∀r ∈ Rk, ∀Rk ∈ R,

∀t ∈ T, ∀d ∈ D (3.28)

mirtpd ≤ Ck air, ∀i ∈ I, ∀r ∈ Rk, ∀Rk ∈ R,

∀t ∈ T, ∀p ∈ P,∀d ∈ D (3.29)
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3.5 VMNS scheme

∑
r∈R

nrtd ≤ 1, ∀t ∈ T, ∀d ∈ D (3.30)∑
r∈Rk

∑
d∈D

nrtd ≤ 1, ∀t ∈ T, ∀Rk ∈ R (3.31)

ω|r|xrtd + trxrtd ≤M, ∀t ∈ T, ∀r ∈ R,∀d ∈ D (3.32)

Invitp ≥ 0, ∀i ∈ I, ∀t ∈ T, ∀p ∈ P (3.33)

Invdtp ≥ 0, ∀d ∈ D,∀t ∈ T, ∀p ∈ P (3.34)

mirtpd ≥ 0, ∀i ∈ I, ∀r ∈ R,

∀t ∈ T, ∀d ∈ D,∀p ∈ P (3.35)

nrtd ∈ {0, 1} , ∀r ∈ R,∀t ∈ T, ∀d ∈ D. (3.36)

The objective function (3.24) minimizes the total inventory and routing cost.

Constraints (3.25) and (3.26) de�ne the inventory level at each customer and

depot. Constraints (3.27) enforce the maximum inventory level of each cus-

tomer i at each time period t to be not greater than Ui. Constraints (3.28)

enforce the total amount delivered with each route r in time period t to be

within the vehicle capacity, while constraints (3.29) guarantee that a quantity

can be delivered to customer i by vehicle r in period t only if customer i is

served by route r. Constraints (3.30) and (3.31) enforce the number of routes

used in each time period t to be within the �eet size and manage the split.

Constraints (3.32) impose that the travelling time and the service time do not

exceed the total duration for each route. Finally, constraints (3.33)�(3.36)

de�ne the decision variables.

3.5 VMNS scheme

The main scheme of the procedure is described in the following. The fol-

lowing steps are executed only once during the whole VMNS :

• the relaxed version of the initial problem is solved within a time limit α

(as explained in 3.4.1.1), in order to provide an initial MAIRP feasible

solution;
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• the clustering and route generation phases are computed in order to build

all the necessary input sets for the algorithm (see section 3.4.2.1);

Secondly, the branch-and-cut routine (BCR) is started and solved until a new

integer solution is found or a time limit β is reached. At this point, the lo-

cal search routine (LSR) is executed: di�erent neighborhoods of the current

incumbent solution are explored in search of an improvement. The neighbor-

hoods are ordered according to a given rule that is illustrated in the following

Sections. A maximum time for this routine is established as well (γ). At the

end, the algorithm comes back to the BCR that restarts from where it was left

with a new initial solution, that is equal to the best improvement found in the

LSR . For the total algorithm a time limit is imposed (δ).

In the following we reported the outline of the algorithm for the BCR and

the LSR . We introduce the following notation: a solution for the MIP prob-

lem is represented as a vector Y with all the variable, the set N = {1, 2, . . . , n}
indicates the set of the Neighbourhoods that have been explored. In general

a neighbourhood is obtained applying an operator to the current improvement

Y . (Y, n) indicates that operator n is applied to solution Y . In our case, the

operator consists of setting a subset of variable to the value they have in the

current improvement and leaving the other free. In this way it is possible to

solve a restricted MIP that corresponds to explore a neighbourhood in the

LSR. We use the MIP formulation (3.24)-(3.36) to explore the LSR; while

formulation (3.1)-(3.19) is used in the BCR routine. The main scheme of the

algorithm is represented in Figure 3.1.
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3.5 VMNS scheme

Figure 3.1: VMNS scheme

The pseudo-code of the algorithm is reported in Algorithm 3.

Algorithm 3 Pseudo-code VMNS

solve the RELAXED MAIRP until time limit α is reached → Y 0

solving clustering and routing generation procedure for building the set R
solve the BCR with initial MIP-Start Y 0 until time limit β is reached

while stopping time limit δ is not met do

solving LSR (Y , γ)

solving BCR (Y , β)

end while

BCR : in this phase the MAIRP is solved. At the beginning, a feasible

solution is found through a relaxation of the main MIP and it is passed as

initial solution to the branch-and-cut algorithm. After the LSR is executed,

the new initial solution for the branch-and-cut is represented by the best im-
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3.5 VMNS scheme

provement found in the local search phase.

LSR : in this phase di�erent neighborhoods are explored around a given

solution Y (the best solution found in the BCR, when n = 1). If a new

improvement is found in the current n, the procedure is re-started from the be-

ginning and the new solution is explored applying all the neighborhoods from

n = 1. If no improvements are found, the incumbent is explored with the

following neighborhoods. The procedure ends if the time limit is reached or

if all the neighborhoods are explored without �nding a new improvement. In

order to save the time, instead of solving each neighborhood to optimality, the

solver stops as soon as it �nds an improvement of the current solution Y or

when the time limit is reached. The LSR is described in detail by Algorithm 4.

Algorithm 4 Pseudo-code LSR
Input: starting solution Y , n = 1

while n = |N | or time limit γ is reached do

explore (Y, n)

if a new improvement is found then

n=1

end if

if no improvement is found then

n=n+1

end if

end while

3.5.1 Neighborhood description

We developed four di�erent neighborhoods for the VMNS. They are di-

vided in two main categories: simple neighborhoods, that consider only one
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3.5 VMNS scheme

feature of the problem at a time, and complex neighborhoods, that combine

di�erent features. The list is reported below:

1. Depot: select a depot d and �x all the variable values related to it, while

all the remaining variables rest free for each d ∈ D\{d}. The exploration
is repeated for each depot within the same neighbourhood.

2. Time: select a period t and �x all the variable values related to it, while

all the remaining variables rest free for each t ∈ H \{t}. The exploration
is repeated for each period within the same neighbourhood.

3. Route: select a route r and �x all the variable values related to it, while

all the remaining variables rest free for each r ∈ R\{r}. The exploration
is repeated for each route contained in the last improved solution in the

same neighbourhood.

4. Depot-Depot: select two depots d1 and d2 and �x all the variable values

related to them, while the other variables remain free. The exploration

is repeated for each combination of these depot indices in the neighbour-

hood;

5. Route-Route: select two routes r1 and r2 and �x all the variable val-

ues related to them, while the other variables are free. The exploration

is repeated for each combination of these indices contained in the last

improved solution in the neighbourhood;

All the neighborhoods where a large number of variables is set are expected

to be explored faster than the other ones, because they have a small size. If

the size of neighborhoos is very small it is possible to have no improvement

of the objective function, while if it is large a long time is required to �nd a

good feasible solution that improves the incumbent. The aim is to �nd a good

trade-o�.
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3.6 Computational results

In this section computational results on the MAIRP instances are pre-

sented and discussed . The algorithm was coded in C++ and compiled with

g++ -O3. Computational experiments were carried out on a PC equipped with

an Intel Core i7-6500U CPU running at 2.50 GHz, with 8 GB of RAM with

the Scienti�c Linux 6.6 operating system. We use IBM CPLEX 12.6.1 Con-

cert Technology with default parameters to solve the MIPs. Concorde solver

(http://www.math.uwaterloo.ca/tsp/concorde.html) is used to �nd the optimal

TSP solution. The performance of the algorithms is evaluated on a set of in-

stances derived from the benchmark set of [23], adapted for the MAIRP . We

maintain the original depot as the �rst depot and we generate the remaining

d− 1 depots randomly. Our data set is composed of instances with a number

of customers ranging from 5 to 25, while the number of depots ranges from 2 to

4 based on the size of the instance. The time horizon H is equal to 3. In order

to generate heterogeneous vehicle instances, we consider a �eet of 3 vehicles

whose capacity is obtained by reducing/increasing the original capacity by 1
3

up to 1. Instances are labelled as SnNdDhHpP, where S indicates the instance

number, N is the number of customers in the instance, D is the number of

depots, H is the number of periods and P is the number of products. The

parameters of the heurisitc are set as follows: α = 240s, β = 100s, γ = 1200s

and δ = 7200. Table 3.1 reports provided by the VMNS algorithm. Column

Instance describes the instance name, column Solution reports the best so-

lution found by the algorithm, column Improvements introduces the total

number of improvements found by the procedure, column Time(s) introduces

the computational time in seconds and column GAP% describes the Cplex-

GAP related to the �nal improvement in the BCR . The VMNS works well on

small instances, while the risk to be trapped in local optimal solutions increases

with the size of the instances. Given the di�culty of the problem, the results

demonstrate that the heuristic algorithm is e�ective. The algorithm is able to
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approach small and medium instances maintaining the medium GAP around

the 16%, while only 6 instances are closed to optimality. We can observe that

the algorithm does not improve the quality of the initial solution when it is

executed on small instances, even using di�erent neighborhood search strate-

gies. This case occurs whenever the initial solution is optimal. In the following

Table, we assess the behaviour of the local search in terms of improvements

provided in each neighborhood's exploration.

Instance Solution Improvements Time(s) GAP%

1n5d2h3p3 217.11 0 13 0.00

1n10d2h3p3 5613.74 10 7200 21.16

1n15d2h3p3 5917.00 7 7200 23.31

1n20d3h3p3 8354.77 4 7200 27.44

1n25d4h3p3 10659.5 3 7200 22.55

2n5d2h3p3 218.15 0 6 0.00

2n10d2h3p3 6152.04 10 7200 25.67

2n15d2h3p3 5812.28 8 7200 20.00

2n20d3h3p3 9801.62 4 1492 0.00

2n25d4h3p3 11596.20 2 7200 31.40

3n5d2h3p3 221.98 0 7 0.00

3n10d2h3p3 5487.40 10 7200 19.86

3n15d2h3p3 6117.99 7 7200 22.59

3n20d3h3p3 11625.2 3 7200 16.96

3n25d4h3p3 10581.10 2 7200 24.56

4n5d2h3p3 216.89 0 5 0.00

4n10d2h3p3 7201.62 8 7200 18.36

4n15d2h3p3 6583.35 5 7200 25.59

4n20d3h3p3 10261.00 2 7200 7.98

4n25d4h3p3 9923.42 2 7200 27.95

5n5d2h3p3 228.05 1 571 0.00

5n10d2h3p3 7080.10 7 7200 13.23

5n15d2h3p3 6035.47 5 7200 19.27

5n20d3h3p3 9708.79 6 7200 7.44

5n25d4h3p3 10659.50 3 7200 31.59

Average 5 5555.76 16.27

Table 3.1: VMNS computational results

In Table 3.2, the number of improvements found in each neighborhood is

shown. The Table is organized as follows: each column reports the number
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of improvements obtained by exploring the following neighborhoods, named as

Depot, Time, Route, Depot-Depot, Route-Route, respectively. The best

improvements are achieved whenever a neighborhood involves a modi�cation in

the depot set or in the route set. This is due to the fact that the neighborhoods

Depot and Route operate directly on the more sensitive features of the prob-

lem. Neighborhood Route is more e�ective than the one named Depot, since

it modi�es the assignment of a subset of customers to a given depot. Indeed,

Instance Depot Time Route Depot-Depot Route-Route

1n5d2h3p3 0 0 0 0 0

1n10d2h3p3 2 0 8 0 0

1n15d2h3p3 2 2 2 1 0

1n20d3h3p3 0 0 0 0 4

1n25d4h3p3 1 0 1 0 1

2n5d2h3p3 0 0 0 0 0

2n10d2h3p3 1 0 6 0 3

2n15d2h3p3 3 1 4 0 0

2n20d3h3p3 0 0 0 0 4

2n25d4h3p3 1 0 1 0 0

3n5d2h3p3 0 0 0 0 0

3n10d2h3p3 2 2 6 0 0

3n15d2h3p3 3 0 4 0 0

3n20d3h3p3 0 1 0 0 2

3n25d4h3p3 1 0 1 0 0

4n5d2h3p3 0 0 0 0 0

4n10d2h3p3 1 0 6 0 1

4n15d2h3p3 2 0 3 0 0

4n20d3h3p3 1 0 1 0 0

4n25d4h3p3 1 0 1 0 0

5n5d2h3p3 0 0 1 0 0

5n10d2h3p3 2 2 3 0 0

5n15d2h3p3 1 0 4 0 0

5n20d3h3p3 1 2 0 0 3

5n25d4h3p3 1 0 0 1 1

Average 1.04 0.4 2.08 0.08 0.76

Total 26 10 52 2 19

Table 3.2: Neighbourhoods computational results

the e�ectiveness of the Depot is about 24%, while the one of Route is 48%.

Due the small number of depots with respect to the number of customers that

arises in the proposed instances, involving two routes in the neighborhood's
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exploration provides a larger number of improvements than the ones o�ered by

other combinations. In general, a single operator improves a lot the quality of

the solution because it does not imply �xing a large number of variables in the

current solution, so that the size of the neighborhood is large. The following

�gure summarizes the incidence of each neighborhood:

Figure 3.2: Neighborhood incidence

The Gaps provided by CPLEX remain still large due to the weakness of

the lower bound provided by the LP relaxation. This occurs especially when

the number of customers, products and depots is large. Therefore, to assess

the performance of the VMNS on classical IRP instances and to evaluate

well the performance of the proposed algorithm, we executed additional test

on the MDIRP variant and on classical IRP , that refers to the case of the

single-depot and single-vehicle problem.

The data set used in the additional test is composed of 25 instances with

up to 25 customers, with an horizon H = 3 and inventory cost hi in [0.1, 0.5],

(the data set is a sub set of the one used in Chapter 2 ). Instances are labelled

as SnNdDhH, where S indicates the instance number, N is the number of cus-

tomers in the instance, D is the number of depots, and H is the number of

periods. A time limit of 2 hours was imposed to the VMNS for solving the
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problem. The table is organised as follows: column Instance describes the

instance name, column Solution reports the best solution found by the algo-

rithm, column Improvements introduces the total number of improvements

found by the procedure, column Time(s) introduces the computational time in

seconds, column GAP% describes the CplexGAP related to the �nal improve-

ment in the BCR, column B&C sol. describes the solution value obtained by

the branch�and�cut detailed in Section 2.4, while columns B& C Time(s) and

B&C GAP(%) report its computational time and the performance quality,

respectively.

Instance Solution Improv. Time(s) GAP% B&C sol. B&C Time(s) B&C GAP%

1n5d2h3 1148.80 0 120.00 0.00 1148.80 89.71 0.00

1n10d2h3 3840.09 4 7200 25.71 2177.98 21700 10.91

1n15d2h3 4398.72 10 7200 26.68 4588.88 21700 27.35

1n20d3h3 3811.38 4 7200 35.56 3263.25 21700 19.32

1n25d4h3 4632.66 3 7200 46.54 4203.45 21700 31.93

2n5d2h3 956.24 0 68 0.00 956.24 434.76 0.00

2n10d2h3 2427.66 8 7200 6.82 2427.66 21700 2.11

2n15d2h3 2302.13 10 7010 0.00 2302.13 20955 0.00

2n20d3h3 4079.90 3 7200 33.18 4395.27 21700 20.66

2n25d4h3 7485.21 2 7200 44.22 4570.13 21700 35.61

3n5d2h3 1801.02 0 2.18 0.00 1801.02 360.51 0.00

3n10d2h3 1651.54 4 650 0.00 1651.54 1854.78 0.00

3n15d2h3 3075.69 5 5430 0.00 3075.69 6602.50 0.00

3n20d3h3 3456.70 3 7200 12.13 3399.42 21700 14.21

3n25d4h3 5364.83 2 7200 43.18 4127.82 21700 33.47

4n5d2h3 1425.39 0 3.47 0.00 1425.39 1537.42 0.00

4n10d2h3 2249.30 2 331 0.00 2249.30 1994.27 0.00

4n15d2h3 8955.30 4 7200 31.15 2481.13 21700 20.00

4n20d3h3 6163.29 4 7200 32.98 4501.08 21700 20.78

4n25d4h3 6253.37 2 7200 35.97 5722.99 21700 42.14

5n5d2h3 1808.40 0 240 0.00 1808.40 60.09 0.00

5n10d2h3 1982.90 2 454 0.00 1982.90 734 0.00

5n15d2h3 2454.81 7 7200 13.15 2912.07 21700 37.69

5n20d3h3 5226.28 4 7200 35.67 4338.40 21700 23.86

5n25d4h3 4921.22 2 7200 24.22 6214.81 21700 56.78

Average 3 4892.34 17.88 14404.92 15.87

Table 3.3: Performance on the Multi-depot IRP

The VMNS and the branch�and�cut are able to provide an optimal so-
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lution for 10 instances. Note that the time limit for the two algorithms is

di�erent: VMNS has a time limit of 2 hours while the alternative algorithm

runs with 6 hours of time limit. The medium Cplex GAP for the VMNS is

around 17.88%, while for the branch�and�cut is around 15.87%. The VMNS

is able to �nd solution as good as the branch�and�cut in smaller computa-

tional time. In conclusion, we can state that the VMNS is much e�ective in

solving the MDIRP than the branch�and�cut. On the other hand, it is not

competitive with the matheuristic described in the previous chapter, because

the instances have an homogeneous �eet of vehicles. This characteristic gener-

ates lots of equivalent MDIRP solutions, that are not faced by the VMNS.

The average number of improvements for each instance is equal to 3, where the

e�ectiveness of the Depot neighborhood is about 32% and is about 31% for the

Route-Route neighborhood. There are no improvements for the Depot-Depot

neighborhood. Probably, more speci�c neighborhood are needed in order to

produce most competitive results for the MDIRP special case.

In order to investigate the behavior of the VMNS on the single�attribute

IRP we test the algorithm on a data set composed of 50 instances with up to 50

customers, with an horizon H = 3 and inventory cost hi in [0.1, 0.5], (the data

set is derived by [3]). Instances are labelled as absXnY , whereX is the instance

number and Y is the customer number. The data concerning the supplier and

the unit inventory costs are not considered. Numerical results are shown in

Table 3.4. This table is organized as follows. Column Instance provides the

instance name. Columns VMNS and TimeVMNS (s) provide the cost of

the VMNS solution and the corresponding computational time, respectively.

Columns EX and TimeEX (s) report the cost of the best solution obtained

within the time limit allowed with an exact approach (values with asterisk

are optimal) and the corresponding computational time, respectively. Finally,

column Gap % provides the gap between the two algorithms, computed as

GAP % = VMNS−EX
EX

100. These results were provided by [29].
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Instance VMNS TimeVMNS (s) EX TimeEX (s) Gap %

abs1n5 1309.92 0.02 1309.92* 0.16 0.00

abs1n10 2040.29 0.03 2040.29* 0.23 0.00

abs1n15 2403.84 11.20 2403.84* 0.28 0.00

abs1n20 2687.02 7.60 2687.02* 0.31 0.00

abs1n25 3277.94 16.00 3277.94* 1.64 0.00

abs1n30 4261.6 34.99 4261.6* 3.78 0.00

abs1n35 4038.32 35.80 4038.32* 7.73 0.00

abs1n40 4740.68 35.70 4740.68* 129.00 0.00

abs1n45 5010.06 101 5010.06* 35.16 0.00

abs1n50 5173.26 2.00 5173.26* 110.66 0.00

abs2n5 1051.28 0.05 1051.28* 0.58 0.00

abs2n10 2442.47 4.00 2442.47* 0.81 0.00

abs2n15 2432.22 6.30 2432.22* 1.74 0.00

abs2n20 2934.18 12.00 2934.18* 3.61 0.00

abs2n25 3545.46 29.80 3545.46* 5.94 0.00

abs2n30 3990.9 45.30 3990.9* 17.23 0.00

abs2n35 4085.74 56.40 4085.74* 24.81 0.00

abs2n40 4572.27 40.00 4572.27* 100.94 0.00

abs2n45 4623.22 62.00 4623.22* 40.64 0.00

abs2n50 5414.25 158.70 5414.25* 244.03 0.00

abs3n5 1942.2 0.20 1942.2* 0.95 0.00

abs3n10 2136.22 4.00 2136.22* 2.22 0.00

abs3n15 2904.46 7.60 2904.46* 4.72 0.00

abs3n20 3152.3 8.91 3152.3* 8.42 0.00

abs3n25 3704.66 15.70 3704.66* 13.91 0.00

abs3n30 4450.7 29.64 4450.7* 22.19 0.00

abs3n35 4935.18 116.30 4935.18* 31.44 0.00

abs3n40 4946.02 93.00 4946.02* 45.63 0.00

abs3n45 5203.44 85.00 5203.44* 62.42 0.00

abs3n50 5526.59 139.20 5526.59* 170.8 0.00

abs4n5 1409.22 0.10 1409.22* 1.31 0.00

abs4n10 1908.46 0.50 1908.46* 3.31 0.00

abs4n15 2315.44 3.00 2315.44* 7.23 0.00

abs4n20 3334.21 6.00 3334.21* 15.63 0.00

abs4n25 3449.65 64.00 3449.65* 24.49 0.00

abs4n30 3729.76 67.00 3729.76* 50.69 0.00

abs4n35 3850.56 50.00 3850.56* 44.66 0.00

abs4n40 4141.62 89.00 4141.62* 62.48 0.00

abs4n45 4809.82 122.00 4809.82* 100.09 0.00

abs4n50 5644.14 202.60 5644.14* 157.09 0.00

abs5n5 1192.64 2.00 1192.64* 2.45 0.00

abs5n10 2295.09 5.00 2295.09* 4.52 0.00

abs5n15 2455.21 9.66 2455.21* 9.56 0.00

abs5n20 3440.98 21.20 3440.98* 18.13 0.00

abs5n25 3793.42 18.00 3793.42* 25.28 0.00

abs5n30 3715.86 25.34 3715.86* 37.56 0.00

abs5n35 4117.26 28.80 4117.26* 55.44 0.00

abs5n40 4581.28 100.65 4581.28* 97.00 0.00

abs5n45 4629 161.44 4629* 263.33 0.00

abs5n50 5357.4 64.50 5357.4* 361.45 0.00

Average 45.85 46.5 0.00

Table 3.4: Performance in the Single-Depot, Single-Vehicle IRP
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The VMNS provides an optimal solution for all the instances with a com-

putational time that is as good as the one required by the exact solver. All the

instances are solved to optimality in less than 3 minutes. In conclusion, we can

state that the VMNS is e�ective in solving also the classical single attribute

IRP .

3.7 Conclusion

In this chapter we introduce a rich variant of the classical IRP : the Multi-

attribute IRP . The problem is very challenging from the computational point

of view, as well as it is very interesting for applications in real cases. We intro-

duce a complex algorithm for solving it, that is based on two main phases: a

branch-and-cut algorithm and a local search. The approach is inspired by the

work of [43] that successfully applied it for solving real industrial instances for a

particular variant of IRP . The VMNS is expected to short the computational

time with respect to other exact approaches. This is shown by applying the

VMNS both to the MDIRP and to the classical IRP . The results demon-

strate that the proposed method is competitive also in solving special cases of

theMAIRP . The algorithm is �exible and it can be easily adapted for solving

other classes of distribution problems. The fact that it relies on mathemat-

ical formulation helps the solving process also for big instances, nevertheless

the procedure to generate new and di�erent neighborhoods is also simple, be-

cause it consists in imposing new constraints. The algorithm described in the

Chapter is quite �exible and competitive, its "double" nature allows to solve

medium instances in a reasonable computational time providing good quality

solution. The LSR accelerates the search mechanism of an exact solver, when

it is careful embedded into the search�tree of a branch�and�bound method.

The VMNS represents a very inspiring search tool for future investigations

and developments.
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Chapter 4

Vendor-Management Inventory in

the Nanostores: the last-mile

delivering in Surabaya city

Abstract: Vendor Managed Inventory (VMI) is a coordination paradigm

in the integrated management of the supply-chain that tries to optimize simul-

taneously inventory and routing. In this system, the decisions about timing

and level of customer's replenishment are determined by the supplier that is

supposed to have the complete knowledge about the customers' need, in order

to avoid stock-outs. In this work, the approach presented in the Chapter 2

is applied to a logistic network in the supermarket distribution industry. The

system comprises a distribution centre and several retails located in Surabaya,

a port city on the Indonesian Island of Java. A detailed analysis of the context

and some computational results are presented.

Keywords: Vendor Management Inventory, Clustering, Mega-city, Nanos-

tores

85



4.1 Introduction

4.1 Introduction

The aim of this chapter is to investigate and asses the convenience of the

application of the VMI system in managing the supply chain of a speci�c

FMCG Company segment of customers in Surabaya city, focusing on the last-

mile deliveries in the urban environment. Generally, the last leg of the supply

chain is often less e�cient, and it usually represents up to 30% of the total cost

for moving goods. The last mile problem also includes the challenge of making

deliveries in urban areas where retail stores, restaurants, and other merchants

in a central business district often contribute to congestion and safety problems.

Moreover, in the last decades it was registered a signi�cant population move

from towns to big cities. It is expected that the tendency will grow in the next

future. This situation produces the increase of tra�c and congestion into dense

areas of the cities, as a consequence. The e�ciency of last-mile deliveries is a

big challenge for lots of companies that every day needs to apply operational

strategies in order to obtain a good trade-o� between the customer satisfaction

and the transportation costs.

The FMCG Company is an American multinational consumer goods cor-

poration, operating in the hyper/super market chain, who serve customers of

di�erent sizes and typologies including Nanostores, that represent a big portion

of the Company business. It produces and distributes a wide range of cleaning

and personal care products and includes also food, snacks and beverage in its

portfolio. The Company operates in four di�erent big sectors (Beauty, Groom-

ing and Health Care, Fabric & Home Care, and Baby, Feminine & Family Care)

selling its products in approximately 180 countries. The distribution channels

are di�erent for size and typology, so they are represented by a large variety

of retailers: mass merchandisers, grocery stores, drug stores, hyper and super

markets, distributors, baby stores, beauty stores, e-commerce, high-frequency

stores, pharmacies and nanostores. The Company distinguishes its territories

of action in emerging markets (Asia, Africa and Latin-America) and devel-
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oped markets (North America and Western Europe). Generally, the FMCG

Company supply chain can be considered a multiple�echelon system: �nished

products are carried from the production plant to the Plant Distribution Centre

(PDC), from there to the Regional Distribution Centre (RDC) and afterwards

also to the Retail Distribution Centre. This part of the supply chain is man-

aged completely by the Company (it is underlined in �gure 4.1).

PLANT PDC RDC RET DC RET S CLIENTS

Figure 4.1: FMCG Company supply chain: a multi�echelon system

The freight that moves from Retail Distribution Centre (RETDC) and

Retail Shop (RET S) is not under the Company control. The RETDC level

usually assumes various con�gurations, it could coincide with di�erent types

of distributors like wholesalers, large retailers, discounts or distribution centres

of third logistics parties. Actually the outbound logistics is an outsourcing

activity: the Company does not own a �eet of vehicles for deliveries. It usually

signs long-terms contracts with di�erent transport companies. The agreements

are not the same in all the geographical contexts (e.g. the presence or the

absence of particular infrastructures, particular law of the region), because it

is necessary to take into account speci�c needs and environment requirements,

all these aspects in�uence the prices and the transport modes. As consequence,

there is not a homogeneous way for moving freight in the last part of the supply�

chain.

As all the consumer packaged goods companies, FMCG Company faces
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hard challenges for distributing its products within cities, especially for big

and mega cities. This term is referred to a city with a total population in

excess more than 10 million inhabitants [21]. Only the Asian continent hosted

half of the world's 29 mega-cities at the end of 2015. This number is expected

to grow in the future. The mega-city' s big challenge is frequently considered

as tra�c congestion, but in reality it is not the only infrastructural problem.

There are lots of issues related to power and water supply, energy and resources

consumption, crime, health and safety, air and noise pollution.

In this work, the main focus is about the mega city network structure for

considering opportunity and challenges in the consumer good shop replenish-

ing activity. The high population density favours the birth of millions of small

stores located in the urban areas. These traditional channel stores are inde-

pendent, family-owned stores (like kiosks, neighbourhood stores, grocery and

convenience stores) and they are typical of the emerging markets. FMCG Com-

pany usually refers to these stores as Nanostores, that are characterized by

high levels of fragmentation and small order quantities (they are represented

by the RET S level on �gure 4.1).

Nanostore sector is considered today the largest potential channel for growth

together with E-commerce for the Company. In a world where more and more

people are moving into large city environments, and with a growing number

of logistical challenges arising in such contexts, one of the Company's aim is

to bring its products to the Nanostore owners/consumers at an a�ordable last

mile cost (which accounts for 30-70% of the total supply chain cost). For an in

depth overview about the Nanostore classi�cation the reader can refer to the

Appendix A.

This analysis aims to look at the potential value of re-applying the

VMI concept in the Nanostore channel within a big�city context and

understand the value such a set-up can generate vis-a-vis the current

set-up. In fact, a VMI approach will help in optimizing the order sizes, routing
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e�ciencies and on-shelf-availability, likely this will have a positive e�ect on sales

as well. As explained in Section 2.1, the VMI represents a win-win strategy for

the integrated management and optimization of two di�erent stage activities

in the supply chain (storage and delivery), that was largely investigated in the

past and successfully applied by lots of companies. For an in depth overview

of the �eld, the reader can refer to [18] and [25] for mathematical methods and

algorithms, and to [2] for the industrial applications. The chapter is organized

as follow: in the Section 4.2 the logical �ow followed to develop the analysis

is described, in Section 4.3 the Surabaya city context and the features of the

network are deeply investigated, in Section 4.4 the scope of the application is

described and in Section 4.5 all the computational results and their impact on

the business are shown.

4.2 Methodology

In order to provide satisfying results for the Company, the methodology

employed to complete the project and to analyse the case�study in Surabaya

city is divided in three di�erent consequent steps and it is reported in �gure

4.2.

In the STEP 1, the data set provided by the Company is analysed. All

the data available are pre-processed and puri�ed for eliminating errors or in-

consistency in the information. After this activity, the context of analysis is

deeply investigated: the data are localized in their geographical context and

di�erent studies are conducted with the aim to select the best method to build

the graph network (the main starting point of the optimization process). The

details about the activities of the STEP 1 are described in Section 4.3.

In the STEP 2, we de�ne a general heuristic framework for solving the

problem, that is summarized below. The main idea is to divide the city into

little districts to manage the distribution problem. Each district presents a
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Figure 4.2: Logical �ow in the analysis

hub-shop, in a central position, that stores and deliver freight to the �nal

customers. The hub-shop have to cover the demand of the entire district. In

order to face the problem in the best way it was decided to divide the heuristic

methodology in three distinct phases:

1. in the �rst phase, we de�ne a good procedure to create the districts.

In particular, a procedure for aggregating the customers into clusters is

considered, in which a single depot is responsible for the second level

distribution. Clustering is performed on the base of di�erent parameters

(distance depot-customer, demand level, inventory level);

2. in the second phase, a set of feasible delivery routes is generated;

3. in the third phase an IRP mathematical formulation is solved through

an algorithm that create a good and feasible schedule in order to decide:
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when to deliver freight to each customer, how much to deliver and which

is the best routing planning for delivery, with the �nal aim of minimizing

the total transportation costs.

The details of the algorithm are previously described in Chapter 2.

In the STEP 3, the results collected applying the matheuristic algorithm

are discussed in order to evidence the possible improvements for the business

in delivering products in the last-mile, applying a VMI strategy at the place

of the traditional Customer Managed Inventory.

4.3 A general overview

As said before, this section presents a general overview about the Surabaya

city structure and all the features related to the FMGC case study, in order to

focus the attention on the most important elements. The context of analysis

and the network are deeply described in the following.

4.3.1 The context of analysis

Surabaya is a port city on the Indonesian island of Java. The total metropoli-

tan area presents a population of 6.484.206 (in 2010), making Surabaya now the

third largest metropolitan area in Indonesia, after Greater Jakarta and Greater

Bandung. Also if it is not formally de�ned as Mega-city, it is characterized by

the same challenges and a�ected by same tra�c and congestion problems.

FMCG Company operates in this emerging market delivering its products

to all the retailers located in the urban space, that belong to the category of

Nanostores. The distribution network consists in one central depot (or vendor)

and a set of retailers (or customers) localised in the Surabaya urban area. The

demand of the customers occurs continuously at a rate. Standard deliveries

are carried out by a heterogeneous �eet of trucks. The data set is composed

of a central depot and a list of 947 shops to be replenished, characterized
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Figure 4.3: Surabaya City

by di�erent features: geographical coordinates, addresses, delivery volumes,

actual scheduled days of replenishment, orders quantities, for a total horizon

of one month. Some data are also available for the three typologies of vehicles

(di�erent for their capacity) used for deliveries and for their logistic costs. The

depot is in a central position, the shop locations are represented below:

Figure 4.4: Geographical Nanostores' positions

As can be seen, Nanostores are located very near each other. In the current

situation the city is divided into 12 Zones by the distributors, that perform

the last-mile deliveries in outsourcing for the Company. Each zone is made

up of base units, called Areas . The deliveries and the truck assignment are
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organized on area base. The total number of areas is 49. Areas and Zones are

de�ned at the beginning of the activities and they are considered �xed. The

di�erence between Zone and Area is presented in the following �gure:

Figure 4.5: Di�erence between "Area" and "Zone"

The particular distribution structure is mainly due to the mechanism used

for ordering and selling products. Generally, one or more areas are committed

to a salesman, that has the role to collect all the customers' orders into his

territory and to organize the vehicle for the delivery. The information �ow

between the vendor and the customers is only using limited ICT systems and

optimizations. Indeed, the salesman usually uses traditional ways for collection

orders like by phone or directly speaking with the Nanostore owners. Areas

are di�erent for extension and size, the number of customers in each area is

heterogeneous. The details are reported in the table below:
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Zone N. Customers N. Areas Cardinalities

Zone1 32 4 3,1,26,2

Zone2 28 9 1,1,18,3,1,1,1,1,1

Zone3 49 6 5,6,1,2,28,7

Zone4 59 10 2,2,21,2,1,1,5,1,1,23

Zone5 57 7 1,7,1,42,1,1,4

Zone6 135 16 46,1,2,6,3,2,21,10,1,8,5,2,4,2,2,20

Zone7 135 21 9,1,4,22,40,10,1,9,10,1,8,1,6,1,2,2,1,1,1,2,3

Zone8 138 21 6,33,4,5,14,7,9,6,2,23,3,6,7,3,2,2,1,1,2,1,1

Zone9 80 1 80

Zone10 51 1 51

Zone11 131 1 131

Zone12 52 9 3,4,1,1,19,22,1,1

Table 4.1: Actual number of customers into each Area

The aim of the analysis is to maintain the zones in delivery scheme and to

re-organize the areas into each zone.

4.3.2 The network

In order to apply the matheurisitc algorithm presented in Chapter 2 for

testing the case-study, it is necessary to build a graph for representing the

network of Nanostores and the street connections between them. A graph

is usually composed by di�erent elements: vertices or nodes (�xed points

to refer), arcs (oriented connections between two vertices) and edges (not

oriented connections between two vertices). When a graph is used to model an

urban area, the arcs and edges correspond to the road segments, and vertices

correspond to road intersections or customers to be served. The urban space

is really complex to be modelled through a graph because it is necessary to

consider di�erent directions between two points, outward voyage, return trip

and lots of intersections.

The data set contains the GPS coordinates of each Nanostore, so the po-

sition of each shop on the real map becomes a graph vertex. It is necessary

to �nd a method to �x the edge/arcs, with the associated distance between
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nodes and to understand which is the best way to measure the distances be-

tween two nodes. For the Surabaya city, the total number of Nanostores is 947,

concentrated into a not so large urban space.

Considering an enlargement of the representation it is possible to notice

that lots of Nanostores are often concentrated in the same area of the city, and

in many cases also in the same streets.

Figure 4.6: Nanostore in urban area: enlargement representation

In order to build a useful and plausible graph�network we need to consider

di�erent aspects:

• it is necessary to simplify the high complexity of the urban space as much

as possible;

• it is necessary to guarantee that the triangular inequalities hold on our

graph;

• the customers are positioned very close each other.

Starting from these evidences, the possibility to represent the network of Surabaya

city through an undirected graph was investigated.

In general, when a graph is built on a real city, the normal procedure is

to consider the shortest real route (shortest path) between the origin and the
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destination of each arc/edge, taking into account one-way streets, deviations

and all the components that are typical of the street urban network. In order to

simplify the graph, we analyse the possibility of considering the linear geode-

tic distance between two points on the earth, at the place of the shortest-path,

see [34].

The main di�erence between two methods is done by measurement precision

and time consuming. In fact, while the �rst method gives in output the real

distances between the points, the second sacri�ces the precision for the fastness

in the measurement. The necessary time amount to apply the second method is

considerably shorter than the other. Both the methods guarantee the validity

of the triangular inequalities.

In order to apply the best strategy, the analysis is focused to understand

which is the real di�erence of measure in the case of Surabaya city. The main

idea is to compute the distances through the two methods for a limited number

of Nanostores, and to compare them in order to understand the committed error

using the geodetic distance at the place of the shortest path. For this purpose,

an on line software for mapping points and computing distances on the street

network is used (ArcGIS ). A set of 300 di�erent distances between two nodes

is chosen (completely random). For these points the shortest-path is computed

through the on-line tool 1. For the geodetic linear distance, considering two

point A and B and their latitude (LAT) and longitude (LON), the following

formula is used (see [34]):

DistanceAB = R ∗ arccos(sinLAT (A) ∗ sinLAT (B)+

cosLAT (A) ∗ cosLAT (B) ∗ cosLON(A)− LON(B));
(4.1)

where the Earth ray is:

R = 6731 km (4.2)

1ArcGis calculates it as the optimized distance routed by vehicles considering the speci�c rules for the

cars

96



4.3 A general overview

Figure 4.7: Di�erence between geodetic distance and shortest path in Surabaya

area

For comparing the real distance (compute by the program) and the geodetic

distance (compute with the formula), theMean Squared Percentage Error

(MSPE) is evaluated, that is the average error committed considering an es-

timator at the place of the real data observed. In this case the estimator is the

geodetic distance. The MSPE could be considered the measure of the quality

of an estimator. It is obvious that values of the error closed to zero are good,

because that means our sempli�cation is very closed to the reality. If a set of n

estimator X̂ is considered; and X is the vector of observed values, the MSPE

of the predictor can be estimated as reported below (see [39]):

MSEP =

∑
I

( X̂i−Xi

Xi
)2

|I|
(4.3)

The MSPE committed considering the Geodetic Distance (the estimator

X̂i) at the place of the driving distance on the graph (observed value Xi) is

equal to 0.49%. Starting from the point that the committed error is minimum,

we decide to measure the length of each arch/edge using the geodetic distance.
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4.4 Managerial challenge and assumptions

As explained before, a large part of the work described in this thesis was

carried out in the context of an industrial research project, aimed to reorganize

the last-mile deliveries at FMCG Company, with a special emphasis on the cus-

tomer deliveries to Nanostores. The reorganization of the distribution activities

based on VMI model is the core of the project. The main output of the study

is represented by the prototype of an algorithm that is able to schedule the de-

liveries in a certain horizon and to calculate the best routes to serve customers

located into large urban spaces. It was realized starting from the scienti�c

literature on IRPs and best practices. In order to keep computational times

within acceptable limits, a deterministic approach was implemented and deeply

investigated in Chapter 2. After the theoretical phase, a practical analysis is

developed on the Surabaya context, in order to investigate the real e�ectiveness

of the algorithm. Through the research work, the Company wants to pursue

the following objectives:

1. testing and evaluating the proposed model and algorithm with real data

of the Company with a really large network of di�erent customers in a

Mega-City environment;

2. understanding the real value for the business in applying the VMI setting

at the place of the classical Customer Managed Inventory in a mega-city

context; applying also VMI in a retail channel where it has not been

used so far;

3. comparing the use of a simple VMI framework with one where some

cross�docking/little�depots are positioned into the city, in order to un-

derstand if the multi�depot approach could be useful for the business.

The data set provided by the Company is incomplete or it does not fully

match with all the input parameters required by the algorithm. For this reason,
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a series of initial assumptions are �xed before the analysis, after a preliminary

discussion with the company's management people:

• the capacity of the central depot is supposed to be in�nitive;

• the �eet is supposed homogeneous with the capacity of each vehicle as-

sumed equal to 300 boxes ( the medium size capacity of the vehicles used

in reality by the Company);

• the driving time for each vehicle is assumed 8 hours/day;

• the maximum inventory level is de�ned equal to 3
2
of the the medium

daily demand for the customer into the horizon; actually the Nanostores

often risk the stock-out, so their inventory capacity has to be not so large

with respect to the demand;

• the initial inventory for each customer is de�ned equal to 1
2
of medium

daily demand for the customer into the horizon, de�ned like a small

portion of the maximum inventory level;

• a series of mini�depots are randomly generated for each area in order

to apply the clustering phase of the algorithm; also in this case their

capacity is supposed in�nitive.

All the other input data are extracted on the data set provided by the Com-

pany. Furthermore, the necessary adjustments were done in order to adapt the

algorithm also at the single-depot case.

4.5 Computational results

In this Section, we illustrate the experiments aimed at evaluating the e�ec-

tiveness of the approach just described and coded in C++ and compiled with

g++ -O3. Computational experiments were carried out on a PC equipped with
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an Intel Core i7-6500U CPU running at 2.50 GHz, with 8 GB of RAM with

the scienti�c Linux 6.6 operating system. We use the MIP solver IBM CPLEX

12.6.1 using its default settings. To solve the TSP we use the Concorde TSP

Solver. The performance of the algorithm is evaluated on a set of 12 instances

(one for each Zone) derived from the data set for Surabaya city, with 28 to 138

customers. The number of depots increases from 3 to 11 according to the size

of the instance. The time horizon H is 6. The following parameters are set:

ε = 0.2, ω = 10, α = 0.2, TC = 6, CC ∈ {3, . . . , 23} and λ ∈ {0.2, . . . , 0.5}.
A time limit of 3 hours was imposed to CPLEX for solving the mathematical

model given by (2.28)�(3.36).

4.5.1 Clustering results

As explained in the previous sections, in the �rst step of the algorithm we

re�de�ne the customer's clusters for each Zone, trying to create clusters that

are balanced from the cardinality and critical level point of view. For an in�

depth overview of this aspect, the reader has to refer to Section 2.5.1. Table

4.5.1 provided the results and it is organized as follows. Column Zone provides

the zone name, column N.Customers reports the number of customers into

each Zone, column N.Depots shows the number of depots generated for each

Zone, column N.Areas provides the number of new Areas generated in each

Zone after the clustering phase and the column Cardinalities describes the

number of customers contained into each Area. The table shows the number

of the di�erent areas we obtained in each zone. If we compare the results with

the initial situation shown in the Table 4.1, it is evident that the new clusters

are balanced and homogeneous. In the initial situation in which the Company

operates, there are lots of ine�ciencies, probably due to the mechanism through

the deliveries are organized that makes the distribution and the territories so

fragmented. In the case of the VMI setting, this aspect is managed by one

entity that is able to optimize the delivery scheme, as a whole. We are able to
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Zone N. Customers N. Depots N. Areas Cardinalities

Zone1 32 3 3 14,12,6

Zone2 28 2 2 14,14

Zone3 49 6 5 10,12,10,12,5

Zone4 59 3 3 23,13,23

Zone5 57 3 3 19,19,19

Zone6 135 10 10 14,14,14,14,14,14,14,14,9,14

Zone7 135 11 11 13,15,14,1,15,4,15,15,15,13,15

Zone8 138 11 11 12,15,15,15,15,10,5,15,6,15,15

Zone9 80 6 6 6,15,15,15,15,14

Zone10 51 3 3 19,13,19

Zone11 131 9 9 15,15,15,15,15,15,11,15,15

Zone12 52 3 3 18,16,18

Table 4.2: Clustering Results

eliminate also all the ine�ciencies related to the presence of clusters made up

of only one or two customers, for building a good set of feasible routes.

4.5.2 Route generation and �nal optimization results

In the second and in the third phase of the algorithm, a set of feasible routes

is built, and it is used to solve an IRP model with route variables, in order to

obtain the �nal scheduling for the deliveries and the minimization of the total

kilometres covered by the vehicles. All the details about these two steps are

described in Sections 2.5.2 and 2.5.3. Table 4.5.2 collects the results and it is

organized as follows. Column Zone introduces the name of each zone, column

N. Routes indicates the total number of routes generated by the algorithm;

column MHSol.(km) describes the solution obtained from the algorithm, in

terms of total kilometres routed for delivering freight in each Zone; column

Time(s) reports the computational time for each instance and the column

GAP % indicates the CplexGAP of the model (2.28)�(2.36).

In general, it is possible to observe that all the instances are closed to op-

timality, in a not so long computational time. The columns 3 and 4 underline
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Zone N. Routes MHSol.(km) Time(s) TimeIRP(s) Gap%

Zone1 778 346,99 64,82 3,58 0.00

Zone2 968 126,13 27,61 8,05 0.00

Zone3 1011 90,49 208,3 7,67 0.00

Zone4 4531 267,16 683,98 60,72 0.00

Zone5 3544 308,6 890 35,44 0.00

Zone6 4447 490 5759,21 39,65 0.00

Zone7 4735 534,86 4603,71 37,21 0.00

Zone8 4574 534,36 3719,53 35,46 0.00

Zone9 2887 196 3057,89 18,56 0.00

Zone10 2747 145,09 121,5 7,73 0.00

Zone11 4983 148,74 6000 43,7 0.00

Zone12 2721 136,49 187,74 20,17 0.00

AVERAGE 3161 2110,36 26,49 0.00

Table 4.3: Matheuristic Results

that the bigger part of the computational time is consumed in the routes gen-

eration phase, because the �nal optimization needs only few seconds in all the

instances. If we compare the case-study results with the benchmark instances

run in Chapter 2 withH = 6, we can underline that the medium computational

time is similar to the benchmark. Indeed, in the case-study it is only 7,37%

more than in the previous tests, while the medium number of routes generated

is more than 5 times respect to the benchmark case. This extreme increase

in the number of routes is a bit expected and obviously related to the partic-

ular shape of the network. Actually the customers are very near each other

and they present small frequent orders, for the majority. The route generation

phase is a�ected for the both factors, because it is driven by the clusters and

the borderline customers (a big number in our case) and by the capacity of the

vehicle. So the di�erent combination of customers for possible feasible routes

becomes copious. In spite of this aspect, the total computational time does not

increase so much. The computational results demonstrated that the matheuris-

tic maintain its e�ectiveness also in complex and real networks, because it is

able to provide fast and good solutions also in real situations, that are more
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complex that the literature benchmarks tested in Chapter 2.

4.5.3 Performances Comparison

In the following, a comparison between the actual situation in Surabaya

city and the results obtained with our approach is provided. In particular, the

total amount of covered kilometres by the vehicles in each Zone is compare

with the amount computed by the algorithm that simulates the use of a VMI

system. Table 4.5.3 shows the results and it is organized as follows. Column

Zone introduces the name of each zone, MHSol.(km) describes the solution

obtained from the algorithm, in terms of total kilometres routed for delivering

freight in each Zone, column MHSol.+MSEP introduces the previous value

with the correction described in Section 4.3.2; column Actual(Km) provides

the total kilometres routed in Surabaya city with the Customer Managed In-

ventory approach (the classical one) and it is derived from the data set; �nally

the column GAP% describes the gap between the solution obtained with the

VMI approach and the real data, computed as explained in the following:

GAP = ( (MHSol+MSEP )−Actual(Km)
Actual(Km)

) ∗ 100

The last column shows that the matheuristic approach is able to �nd solu-

tions better than 21,65% for the deliveries in term of total kilometres reduction.

In general, the algorithm is able to �nd a better solution than the real situation

for around the 92% of the instances. This is a valuable result, because it un-

derlines the potential bene�t for the business in applying a VMI system also

in the last part of the supply chain, where deliveries are fragmented and not so

easy to optimize. It is possible to a�rm that implementing a VMI approach

could be an interesting investment to optimize the deliveries also in emerging

markets where the big-cities are featured by the large presence of Nanostores.
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Zone MHSol.(km) MHSol.+MSEP Actual (Km) GAP%

Zone1 366,77 368,38 193,73 90,25

Zone2 126,13 126,41 140,19 -9,83

Zone3 90,49 90,74 203,75 -55,46

Zone4 267,16 267,99 226,04 18,55

Zone5 308,6 309,73 365,42 -15,24

Zone6 490 491,66 710,32 -30,78

Zone7 534,86 536,52 710,28 -24,46

Zone8 534,36 536,065 757,38 -29,22

Zone9 196 196,69 344,50 -42,90

Zone10 145,09 145,65 232,17 -37,26

Zone11 148,74 149,09 540,46 -72,41

Zone12 136,49 136,94 279,90 -51,07

AVERAGE -21,65

Table 4.4: Comparing reality and simulated VMI

4.5.4 Single-Depot VMI vs. Multi-Depot VMI

In the previous analysis, the case of a VMI with a big single depot was con-

sidered, in order to re�ect the actual situation in the city of Surabaya, where

a big DC is situated in the urban area for the storage of the freight. Accord-

ing with the Company, the second aspect to investigate is what can happen

if a VMI system with a series of mini-depots and/or cross-docking points is

considered. The main question is understanding the convenience of this pos-

sibility (that faces lots of investments in infrastructures) comparing with the

single-depot case. In this paragraph, we compare the results concerning the

single-depot and the multi-depot case. For the second approach, we can use

the algorithm of Chapter 2 without necessity of any adjustment or adaptation.

Table 4.5.4 shows the results and it is organized as follows. Column Zone

introduces the name of each zone, column SD-MH(Km) reports the solution

deeply described in the previous paragraph, column MD-MH(Km) describes
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the total kilometres routed for the deliveries in the second scenario, column

GAP% reports the gap between the two solutions that is computed as follow:

GAP = (SDMH−MDMH
SDMH

) ∗ 100

Zone SD-MH(Km) MD-MH(Km) GAP%

Zone1 368,38 346,48 -5,94

Zone2 126,41 57,20 -54,74

Zone3 90,74 49,51 -45,43

Zone4 267,99 169,34 -36,80

Zone5 309,73 232,13 -25,05

Zone6 491,66 339,64 -30,91

Zone7 536,52 345,81 -35,54

Zone8 536,065 349,70 -34,76

Zone9 196,69 142,69 -27,45

Zone10 145,65 115,56 -20,65

Zone11 149,09 71,34 -52,14

Zone12 136,94 92,45 -33,49

AVERAGE -33,05

Table 4.5: Single-depot VMI vs. Multi-depot VMI

Results underlines that using a con�guration with multi points of replenish-

ment can allow a further saving of around 33% in terms of kilometres covered

by the vehicles. This aspect could be a good advice for the Company for deeper

investigating this solution scheme during the analysis of a possible investment

for introducing a VMI system into these emerging markets.

4.5.5 Loading Performances

Another aspect to consider in analysing the simulation of VMI system

is related to the loading performances. As said before, in this moment the

Company usually uses contracts with third parties for the freight delivering.
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The data set reports an heterogeneous �eet composed of three di�erent types of

vehicles: the smallest with a capacity of 100 boxes, the medium with a capacity

of 300 boxes (which one we use in the analysis) and the bigger with a capacity

of 500 boxes. We consider obviously the medium size. Table 4.5.5 shows the

results and it is organized as follows. Column Zone describes the name of the

zone, column Del.Quantity/week reports the number of boxes delivered in

each zone during the horizon (in this case the horizon is one week), column N.

Trip introduces the number of necessary routes the vehicle has to perform in

each zone for satisfy the demand, column DQ
Trip

shows the medium number of

boxes for each trip, column LF300 describes the load factor for the vehicles

with capacity of 300 boxes in each trip while column LF100 introduces the

load factor for the vehicles with capacity of 100 boxes in each trip. The load

factor is computed as follows:

LF =
DQ
tripS

V ehicleCapacity
.

Zone Del.Quantity/week N.Trip DQ
Trip LF300 LF100

Zone1 289 5 57,8 0,19 0,58

Zone2 516 9 57,33 0,19 0,57

Zone3 544 6 90,66 0,30 0,91

Zone4 538 8 67,25 0,23 0,67

Zone5 1078 10 107,8 0,36 -

Zone6 107 11 9,72 0,03 0,10

Zone7 167 11 15,18 0,05 0,15

Zone8 145 12 12,08 0,04 0,12

Zone9 102 6 17 0,06 0,17

Zone10 112 3 37,33 0,12 0,37

Zone11 209 13 16,08 0,05 0,16

Zone12 263 3 87,66 0,29 0,87

Table 4.6: Loading performances

The results clearly show that if we consider a medium size vehicle for de-

livering, it needs to travel often with not full load. This is done because of
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both the so fragmented delivers typical of Nanostores and the aim to minimize

the total distance travelled. In fact, no penalty in the objective function is in-

troduced for the vehicles that travels with not full load in our model. Thanks

to the information given by the Company, we know also that vehicles with a

smaller capacity are available. The table shows the possibility to improve the

load factor for the deliveries choosing the vehicles with small capacity. In this

case, the load factors increase, but they are far from the condition of full load

travelling as the same. Our result can seem a bit surprising, considering that

the data suggest the presence also of vehicles with a very big capacity in reality.

The fact can be easily explained thanks to the wide di�erent con�guration of

the Nanostores. As explained in Appendix A, the term Nanostores includes

�nal shops of di�erent dimension, from kiosks to large mini-markets. For easily

conducting the analysis, we consider only the medium case, but the necessity to

manage so di�erent shops suggest a great level of variance in the deliver quan-

tity that cannot be completely neglected. In a full operational VMI system,

the company has to be able also to face these �uctuations that justify also the

presence of bigger vehicle capacity. For an in depth overview of the aspects it

is possible to conduct other analysis on di�erent vehicles capacity and on the

accuracy of the demand prediction in this particular channel.

Considering the possibility to invest for building of a VMI system, it is

necessary to understand which typology of vehicle is more suitable for the

condition of the environment. Our results underlines the necessity to consider

a �eet composed of small vehicle for the major part, in order to easily move

in complex and huge urban areas, and to better face the possible optimization

schedule of a VMI system that manage lots of Nanostores. This is truer if

the possibility of a multi-depot scheme is considered. Also considering the case

of an outsourcing for delivery service, it is possible to stipulate contracts that

considers small carriers or taking into account other features about vehicle size.
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4.6 Conclusion

The results presented in this chapter are relevant from an industrial point of

view. We are collaborating with Company's centre for innovation and manage-

ment of the supply chain, with the aim of formulating and testing optimization

models and methods for the application of the VMI systems in complex net-

work with a high presence of Nanostores. We investigated, formulated and

solved the problem, and we introduced an application on a data set provided

by the Company for Surabaya last-mile deliveries. We obtained good results

in terms of reduction of the total distances travelled, this evidence underlines

the potential saving costs applying the VMI in the last-mile deliveries. We are

able to solve big instances up to 138 customers in a real context in acceptable

computational time also for the Company point of view. Lots of aspects are

suggested to be deeply investigate if the Company maintains its interest on

projecting a VMI system in the last-mile. Precisely, it is possible to introduce

more constraints in the problem or add more factors in the objective function

in order to take into account another trade-o� between di�erent types of costs

in the optimization. Other improvements could be done trying to correct the

�nal solution with some techniques that re-combine the routes to obtain full

load deliveries. Finally, the possibility to use small vehicles without losing

the e�ectiveness in routing opens some perspective in considering a sustainable

management of the �eet, introducing green small vehicle and cargo-bikes for the

last-mile deliveries in big cities. The situation of Surabaya city is very similar

to other big cities, especially in emerging markets, so implementing a VMI sys-

tem could be a good opportunity for saving money in terms of transportation

costs for the last-mile and can also represents a solution with an elevated level

of scalability and portability in di�erent markets and urban areas all around

the world.
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Conclusion

The thesis is focused on the implementation of a VMI setting in a large

urban environment and on the study of the Inventory Routing Problems. In

particular, the thesis is inspired by applying the VMI paradigm in the last�

mile delivery according to the needed of an Industry Company. We focus on

two main variants of the IRP : the Multi-depot IRP and the Multi-attribute

IRP . The thesis is divided in four chapters.

In Chapter 1 we study the Multi-depot IRP with homogeneous vehicle �eet

and deterministic demand. A basic branch�and�cut algorithm is used to solve

the MIP formulation of the problem. The performance of the branch�and�cut

are improved by pre�assigning customers to the depots. The clustering method

is inspired by the well-known Capacitated Concentrator Location Problem.

Classical benchmark instances are solved with this clustering�based branch�

and�cut algorithm. The results show that the cluster�based branch�and�cut is

always able to �nd better solutions than the basic branch-and-cut. Clustering

methods enhance the standard branch�and�cut algorithm performance to �nd

feasible solutions at the early stage of the search tree. Nevertheless, the main

result highlighted in this Chapter is that e�cient clustering procedures, in

which routing costs are well accounted, represent a power tool to reduce the

complexity in solving large MDIRP instances.

In Chapter 2 we design a more sophisticated matheuristic algorithm to solve

MDIRP instances de�ned over a time horizon of six periods. We propose a

clustering formulation based on a mathematical de�nition of critical customers
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around which the urban space is partitioned into clusters. For each cluster and

for each pair of clusters, a set of intra and inter cluster routes is built. At the

end of this phase, a route-based formulation is solved in order to provide a

MDIRP feasible solution. The clustering phase is di�erent from the previous

one. It is strongly designed in accordance with the features of the IRP . A

quantitative measure of the critical level of each customer is proposed according

to the distance from the depots and the stock�out risk. Feasible routes are

returned by heuristic procedures based on di�erent replenishing policies and the

vehicle capacity. All these ingredients contribute to obtain good results. The

matheuristic algorithm overcomes the branch�and�cut algorithm in terms of

solutions' quality and computational times. The matheuristic is able to provide

solutions for instances with cardinality up to 50 customers. This matheuristic

was used to solve the case of study proposed by the Company.

In Chapter 3, the Multi-attribute IRP is investigated. We propose a MIP

mathematical formulation which considers the multi�product case with hetero-

geneous �eet of vehicles and explicit constraints for the route duration. This

con�guration contains a lots of features typical of real problems. We introduce

a Variable Neighborhood MIP Search (VMNS) for solving it. The VMNS

is composed by two phases that are executed alternatively: a branch-and-cut

phase and a local search phase. A sequence of neighborhoods is designed in

order to improve the solution. Some preliminary results are provided. In gen-

eral, the algorithm is really e�ective in small and medium size instances, while

in the large instances with more than 50 customers and 6 periods there is a

high risk of being trapped in local optimal solutions. The other challenge is

related to the dimension of the neighborhoods: if they are very small it is

possible to not improve to the objective function, while if they are large a

long time is required to �nd a feasible solution within them. We introduced

simple neighborhoods, that consider one feature of the problem at a time and

only some neighborhoods obtained by restricting the search space according to
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given values of more than one feature of the problem. Further improvements

could be based on in depth study on the behaviour of the neighborhoods and

their e�ectiveness, as well on the implementation of a diversi�cation technique

in order to avoid the stagnation.

In Chapter 4, the case of study provided by the company is presented. The

analysis is set on Surabaya, a big city of the Isle of Java, that presents all the

typical features of a mega�city in an emerging market. It is featured by the

large presence of nanostores, that increases the complexity of deliveries in the

last-mile. After pre�processing the scenarios, we implement a VMI setting in

this context applying the algorithm described in Chapter 2, and we compare the

results obtained with the matheuristic with the ones coming from the delivery

policy used by the Company. The good results obtained underline the potential

saving costs that can be achieved by extending the VMI setting to the last-

mile deliveries. This represents a signi�cant result for the Company that opens

interesting perspective in developing VMI to replenish the nanostores.
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Chapter 5

Appendix A: Nanostore features

and classi�cation

A Nanostore is a small shop that sells a variety of products (like

food, drug and non-food items) conveniently located near shopper

homes, for basic daily purchases or emergency needs. For FMCG Com-

pany, a Nanostore is a small store located in an urban area featured by an high

density of population. These traditional channel stores are independent, family-

owned stores (like kiosks, convenience or rural shops), they are visited di�erent

times by shoppers during the day/week, for buying one or a limited number of

items. They are typical of the emerging markets and so di�used in big/mega

cities. Nanostores have di�erent characteristics: they usually are independent

retailers, family business managed by not so expert people in the �eld. The

shops are usually located in the urban area and present a reduced size, with 15

to 40 squared metres of surface for kiosk, up to a maximum of 1000 squared

metres for large mini-markets. Furthermore, they do not use large warehouses,

their stock capacity is limited to few quantities of goods, and as a consequence,

they present high frequency replenishment and small order sizes. Nanostores

do not usually give a wide choice to their customers because they sell only

one or two brands for every product. They do not have ICT systems to man-
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age the products or sharing informations because this investment is considered

not necessary in relation to the small quantity of goods and information to

be treated. It is possible to individuate di�erent strengths and challenges

in the Nanostores ' sector. Some strengths that ensure a long life cycle for

Nanostore in the emerging markets and mega-cities are listed below:

• customers perceive a total cost of purchase as lower, because for the

people is very di�cult to reach big retailers that are often located outside

the urban boundaries;

• customers perceive the shopping activity very rapid in Nanostore, this is

useful because people can do the daily shopping on their way home from

the work, without the necessity of driving;

• Nanostore presents lower barrier of entry, it is generally necessary a low

capital requirement for opening a store of this type and also easy licensing

provisions in lots of countries;

• Nanostore is featured by a friendly atmosphere that emphasizes the cus-

tomer loyalty. It is possible to build a trustworthy relationship between

the customer and the owner, that concedes informal credits if it is neces-

sary;

• the increased urbanisation on a global level and the high population den-

sity in the cities are potential for growth for the Nanostore segment.

Despite of lots of possibilities for growth in the Nanostore segment, this

type of shops is a�ected by di�erent challenges:

• as said before, Nanostores do not use ICT tools for analysing, interpret-

ing and sharing data, so they do not help the process of forecasting and

planning deliveries by the supplier;
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• Nanostores usually operate with a small availability of cash, for this

reason it is not possible to plan big deliveries if the cash is not available

for pay them;

• in relation with their own con�guration, Nanostores risk the out-of-

stock, this is a negative point for their business because the loyal cus-

tomer to the brand can decide to change store for shopping;

• Nanostores face low margins because they are not able to take advan-

tages from scale-economies and they usually resupply also from whole-

salers and distributors which already applied a mark-up on the products;

• Nanostores owners prefer to sell small cases of products taking into ac-

count the needs of their customers, but lots of time only big size products

are suitable for the market.

According to the new global channel de�nition, the Nanostore channel

is divided in 8 sub-channels: Kiosk, Open Market, Small Traditional,

Medium Traditional, Large Traditional, Convenience Stores, Small

Mini-Markets, Large Mini-Markets.

The smallest section of Nanostores is composed by Kiosk, Open Market and

Small Traditional. Open Markets are located in open areas and organized by

authorities, the seller usually paid for participation in it. Kiosks are the small-

est stores with a �xed structure where the decisions are taken by the owner.

Small Traditional shops reach up to the 20 m2 (sale area and storage) and

support daily or weekly consumption, but also immediate consumables. Their

structure is more complex than the other cases analysed and they sell predom-

inantly food categories.
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Figure 5.1: Small Nanostore types: from the left to the right an example of

Open Market, Kiosk and Small Traditional

The medium size section of Nanostores is made up of Medium and Large

Traditional and Convenience Store. They are generally centred on selling

food categories and sometimes they have also fresh products. In the case of

the Convenience Stores we can �nd also alcohol, impulse categories, cigarettes

and snacks. They can be self-service or counter service but typically they

present hand-written tags. The di�erence between them is given by their di-

mension: for Medium Traditional the surface covered is 20-40 m2; for the Large

Traditional it is around 40-100 m2 and for the Convenience Store up to 300 m2.

Figure 5.2: Medium Nanostore types: from the left to the right an example of

Medium Traditional, Large Traditional and Convenience Store

The large size section of Nanostores is composed by Small Mini Market

and Large Mini Market. They have usually a consolidate structure with

self service and scanners used at checkout, checkout lanes and counters, the
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presence of di�erent food categories, fresh products and multiple aisles and

they can be aggregate with a chain or independent. Also in this case the main

di�erence is the store size: total surface around 100-500 m2 for Small Mini

Markets and 500-1000 m2 for Large Mini Markets.

Figure 5.3: Large Nanostore types: on the left Small Mini Market and on the

right Large Mini Market

Nanostore is a fast growing and strategic channel, there are 24 million

Nanostores across the world, serving 5 billion consumers. It represents the

60% of developing markets business and for Company it represents up to 40%

of the business in relevant markets. This channel covers mainly 4 regions:

LA (Latin America), CEEMEA (Central and Easter Europe Middle East and

Africa), Greater China, AAI (Australia, ASEAN ans India). This is the reason

because the segments is so relevant and so interesting for the company.

Figure 5.4: Regions covered by Nanostores
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