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1

Introduction

1.1 Background and Motivations

An information society [17], such that we live in, is a sogiet which information
has a great impact on daily life. We are entering a new phasea@éty [17]: we
are moving from an industrial economy t&aowledge economyhereby wealth is
created through the economic exploitation of understandin

According tolnternet World Stafscurrently there are more than 1,966,514,816
internet users (June 30, 2010). These users generate aqgedity of data. Few
examples are (year 2009)

90 trillion - The number of emails sent on the Internet in 2009

247 billion - Average number of email messages per day.

234 million - The number of websites as of December 2009.

47 million - Added websites in 2009.

126 million - The number of blogs on the Internet.

350 million - People on Facebook.

4 billion - Photos hosted by Flickr (October 2009).

12.2 billion - Videos viewed per month on YouTube in the US y{Bimber 2009).

L http://www.internetworldstats.com/stats.htm
2 Website stats from Netcrafth{t p: // news. net craft. com archi ves/ 2009/
12/ 24/ decenber _2009_web_server _survey. htm ).

Email stats from Radicati Grouph{tp://wwv. radi cati.com ?p=3237).
Malware stats from Symantec ht(t p://eval . symant ec. conl nkt gi nf o/
enterprise/other_resources/b-sync_intelligence_quarterly_
oct - dec_2009_20949850. en- us. pdf) and McAfee htt p: // ww. ntaf ee.
conmlus/ | ocal _content/reports/7315rpt_threat_1009. pdf). Online
video stats from YouTubeh(t p://yout ube- gl obal . bl ogspot . com 2009/
10/ y000000000ut ube. ht m ).

Photo stats from Flickr Http://blog.flickr.net/en/2009/10/12/
4000000000/) and Facebook htt p://ww. f acebook. conl press/ i nf o.
php?st ati sti cs). Social media stats from BlogPulget ¢ p: / / www. bl ogpul se.
coni ) and Facebook
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e 2.6 million - Amount of malicious code threats at the start26D9 (viruses,
trojans, etc.).

These numbers highlight two increasing needs:

1. Information management, which consists in the creat@tribution, diffusion,
use, integration and manipulation of data.
2. Discovery of useful knowledge from this information.

In this scenario, new application contexts arise, whosetisols represent new
forms of economic gain for industry and new challenges feeaechers. Examples
are bioinformatics, fraud detection, collaborative filigr text analysis, spatial and
temporal data analysis, and so on. Each one of these cordagtto their own intrin-
sic difficulty, needs specific solutions aimed to effectivahd efficiently resolve the
related problems; very often solutions require a domaimkedge of the application
context environment.

The goal of the thesis is to study some of these contexts,entrewledge dis-
covery is needed, and to provide them formal and organidisok!

1.2 Main Contributions

The first effort, of the thesis, is to provide a formalizatfon the process of knowl-
edge discovery, through the definition of a formal languagelata mining [67].

This need arises from the fact that, although in recent ydata mining has
become increasingly in research, yet to date it has no starddemalization, rec-
ognized by the scientific community. This means that, urtlieerelated problem of
Query Answering [77], with its Relational Calculus [36], IBtonal Algebra [5] and
SQL [14], data mining is associated with no formal languagg o operational al-
gebra. The reason is rather obvious: data mining tasks areditly heterogeneous
(in the input data format, data structures, algorithmg, steit is very difficult to de-
fine basic operators that can support the birth of an algeidteat don't affect the
complexity of the operations (dealing with large amountdai, there are practical
constraints on the complexity of the algorithms).

The proposed language comes from the Object Oriented SQlaf@Penriches
its grammar with some operators that allow to express mipitngesses. The lan-
guage is based on a formally defined algebra, which aims te the world of data
and information with the world of concepts and knowledge.

After the definition of this inductive query language, thedis tries to analyze
some application contexts and tries to give them solutibasdould be competitive
with the current literature. The studied problems are thetsssification in hostile
environments, collaborative filtering and tree-based daténg.

Classification in hostile environments

Given a domain, whose elements can be grouped into knowgarads,classifica-
tion is defined as the process of assigning domain samples, whtsgocy (class)
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is not known, to one of the categories of the domain. Clasgifio consists of two
phases:

1. Generation of mathematical models (classifiers) froml@sesuof the domain
(called training set), whose elements exhibit the catetoey belong to.

2. Assignment to the categories of new domain elements wblesses are un-
known, exploiting the mathematical models defined in theipres phase.

Classification in hostile environments has mainly threédlikties: low occurrence
in the domain of cases of interest, low separability betwbercases of interest and
the rest of the samples, the presence of noise. The diffitiekyin the definition
of mathematical models, since in this context, the statistheory fails for lack of
sufficient samples and their common characteristics, anerfors in the data.

The thesis proposes two solutions. One solution is a hieiGatmodel based
on an associative classifier whose accuracy is improved leyiessof probabilistic
classifiers. The second solution is based on a maximum gntnoplel [20] whose
features are determined by association rules discovert idata.

Collaborative filtering

Recommender systems are applications born for that comgamat offer a range
of products/services to a user base. Their goal is to angatbig question: given a
specific user, which are the products/services that shedtaghpurchased, but for
which she may show a strong interest?

Giving an answer to this question is not simple, and in masgsathe currently-
in-use recommender systems answer by using collabordterfg techniques [97].
These techniques are a family of mathematical models tleabased on past pur-
chases of the users without considering additional inftionaThe basic assump-
tion is a principle of conservation of the users’ tastesraggo have shown similar
preferences in the past, most likely will continue to shomikir preferences in the
future.

All data in this case can be seen as a big matfixwhere theu-th row represents
the preferences of a user while thei-th column represents the set of preferences
given to an item (product or service)The preferences can be quantified with a real
or natural number. The biggest problem, associated withdhata structure, is the
sparsity ofM: not all users give a preference to all items, indeed thé notaber of
votes recorded i/ is considerably smaller than the size of the matrix.

The thesis proposes a model for collaborative filtering Baselatent factors. Its
scheme is hierarchical and differs from the state-of-thiexpproaches in the liter-
ature for its flexibility and for the reduction of imposed strnaints. The algorithm
is a coclustering (or biclustering) approach [25], whiclgito minimize the mean
square error of prediction procedure via an ExpectationiMeation Model [22].

Tree-based data mining

In some context, data mining tasks need of domain knowledgeder to get good
accuracies, hence, it's crucial to be able to manage thizletge. Today, with the so
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called Semantic Web and Internet of the Future, more and ofdhés knowledge is
stored in a format become a de facto standard: XML (Exteaditdrkup Language).

In these years, researches proposed new formulations andlipation of XML
mining. The difficulty lies in the fact that the XML format isste-structured and not
flat like the tuples in a database. It's essential to defing afeethe features on which
to base the techniques of mining. Moreover, given this eabfitree-like structure, it
becomes incredibly important to pay attention to the comfanal complexity of the
defined algorithms (since the structure of an XML documentlmvery complex).

The thesis proposes a model for the mining of tree structdagat its goal is to
show a hierarchical clustering that can be competitive Wighcurrent literature and
can simplify the complexity of the data analysis. The modklrasses the problem
in several steps:

1. first defines the features to separately analyze; in omi#s) edges and paths.
2. for each feature launches mining tasks.
3. returns the results of the entire analysis.

1.3 Organization

The the thesis is structured as follows.

Chapter 2 presents an overview of the aforesaid topicsesiudithis work;
Chapter 3 presents a framework for a definition of a languagth& knowledge
discovery process;

e Chapter 4 presents the two proposed algorithms for theifitag®on in imprecise
environments;
Chapter 5 proposes an hierarchical approach for collaberfitering;
Chapter 6 shows an algorithm for clustering of tree-base aéing (XML doc-
uments);

e Finally, Conclusions and Future Works are in chapter 7
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In this chapter, a view of the state-of-art of the literatwith regard to the aforesaid
topics is presented.

2.1 Languages for data mining

The development of suitable data mining query languagesbes lately investi-
gated from different perspectives, with two main objei{&3]. On the one hand,
focus is to provide an interface between data sources aaddaing tasks. Under
this perspective, a data mining query language is seen aa@ssti mean for specify-
ing data sources, patterns of interest and properties cieaizng them. On the other
hand, a data mining query language is meant to support thgndefsspecific proce-
dural workflows, which integrate reasoning on the miningiltssand possibly define
ad-hoc evaluation strategies and activations of the datanmtasks. The underlying
idea here is to embody data mining query languages in a maorergleframework,
where effective support to the whole knowledge discoveogess is provided.

An influential foundation for data mining is tH&W Model , originally intro-
duced into [64] and subsequently refined by [26], that iseweid next.

3W Model stands for Three Worlds for data mining: the D(ata)- worhg t
I(ntensional)-world, and the E(xtensional)-world. TReWbr | d represents the raw
data to be analyzed in terms of the basic entities of relatialyebra, i.e. relational
schemas and extensions. The attributes of such entitieasaceiated with corre-
sponding domains, that can be either categorical or numdost activities, carried
out in the preprocessing phase of a typical knowledge desyoapplication, can be
modeled by means of specific operators of an extended neddt@dgebra, that adds
to the usual algebraic operators.

Objects in thel - Wor | d represent, instead, a particular class of data mining
models, i.e. regions that can be defined as (sets of) commsadf linear inequality
constraints on the attributes of the entities in Bré\dr | d. Starting from a set of
basic regions, further regions can be formed via the dedmitif composition opera-
tors.
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In theE- Wor | d, a region is simply represented as an enumeration of allthe t
ples belonging to that region. Relations in this world argoted by combining the
relations of the two worlds previously defined, so that theesea of the resulting re-
lation is the union of the schemas of some relation inRh&ér | d and some other
relation in thel - Wor | d. Thus, the resultin@W Model can be specified as a set of
three worlds: thé® Wor | d (data world), the - Wor | d (intensional world), and the
E- Wor | d (extensional world). Entities in the three aforesaid wearddn be related
via suitable inter-world operators. Precisely, a genericimy operatorregionize
extracts regions in the- Wor | d from data in theD- Wor | d. These regions can be
iteratively refined by means of a mining loop from theWor | d to thel - Wor | d.
The population operatd?O P creates a relation in tHe Wor | d, starting from some
regions in thd - Wor | d and some other relations in tBe Wor | d. Finally, compos-
ite objects of thé=- Wor | d can be projected to the other two worlds via the operators
TrpA andw 4, that allow to return in thé - Wor | d andD- Wor | d, respectively, via
a simple selection of the proper attributes (data or coims&awithin theE- Wor | d
relation.

The3W Model is mightily interesting for many reasons. Foremost, it jles
a view of data mining in algebraic terms: a knowledge discppeocess is the appli-
cation of a sequence of operators in order to transform af¢ables. Furthermore,
it is also fascinating from a methodological point of viewetobject representa-
tion of 3W Model entities and the implementation of a suitable set of opesate
key elements in the design of a powerful tool for knowledgecdvery. However,
some major limitations affect tH@&W Model . In theD- Wor | d there is no possibil-
ity to express complex relations (i.e. cyclic relation)clese the nesting of this data
model has a fixed depth. Furthermore, a more serious limitéigs in thd - Wor | d,
where regions are expressed by linear inequality sets.fans that fundamental
mining models are not expressible, since their representatequire more complex
mathematic structures (i.e. SVM and clustering resultse tpoint series, surround-
ing regions and so forth). This thesis, in chapter 3, prop@sealgebra, nameBW
Mbdel , that avoids both the aforesaid limitations of B/ Mbdel . Indeed, it en-
ables the description of complex objects and their propemind also supports the
extraction all required patterns from raw data.

2.2 Classification in hostile environments

A wealth of approaches to learning classification modelkiwitmprecise domains
exists in the literature, whose emphasis is mainly at addrgshe issues related to
class imbalance and different misclassification costs.

Cost-sensitive learning methods [38, 85] have been exglfmeaccounting the
issues related to rare classes and different misclassficabsts. The idea is to bias
the learning process towards rare classes by assigningoaopaiately higher value
to the recognition of the minority class(es) with respecthi® identification of the
majority class(es). The resulting classification modeltesce broader decision re-
gions associated to the minority class(es), would bouedare suitably extended
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via the specification of misclassification costs to coverergarses from the minority
class(es), even if at the expense of an increased numbersti@issified) cases from
the majority class(es). Nonetheless, the domain-spenfticrnation on the individ-
ual misclassification costs is seldom known or hardly gtiable in an objective
manner whenever related to domain experts’ subjectiveness

Various specific evaluation metrics have been also invatgitjfor dealing with
rare classes and different misclassification costs. Thérgigoint here is that classi-
fication accuracy is not well-suited for imprecise domasisce it is strongly biased
against rare classes and assumes equal misclassificatitsm This has caused the
widespread use of some alternative metrics in impreciseatfenROC analysis is
commonly used in machine learning for visualizing and estiihg the performance
of classifiers. In particular, within an imprecise domaime ROC space allows to
decouple classifier performance from knowledge of bothscasl cost distributions.
The overall performance can be summarized into a singledjguamely the Area
Under the ROC Curve (AUC), which is not biased in favor of thagjarnty classes.
The approach in [89] proposes an elegant framework that ceealROC analysis,
decision analysis and computational geometry for robuwstsification in imprecise
domains. However, a disadvantage of the method is thatuinegjthe apriori identi-
fication of some classifiers, whose ROC curves are dominé&tingertain operating
conditions. This clearly involves the selection and expkion of different induction
schemes to learn as many classification models under vasjgerating conditions
as well as their experimental evaluation for the purposéeifiifying those areas of
the ROC space, in which the curve of one classifier dominatesstbe others. Such
a preliminary process also impacts the time efficiency ofdoug the ROC convex
hull.

Sampling involves altering the original class distribuatir the purpose of at-
tenuating or removing rarity. There two basic forms of santplin particular, un-
dersampling [73] aims at filtering cases from the majorityssks, while retaining
the initial population of the minority classes. Oversam@l[60] is instead devoted
to replicate examples from the minority classes. Both nighHwave disadvantages.
Precisely, undersampling wastes potentially significxangles from the majority
classes that may be useful to enforce class separatioepthbimdering the perfor-
mance of the resulting classifier. Oversampling prevems fmissing certain por-
tions of the data space, in which a very small number of cases the minority
classes are located. This leads to the formation of the edésdadecision regions.
Replication clearly involves augmenting the duration @& tbarning process. Also,
since no new information is injected into the training datsersampling is also sus-
ceptible to overfitting especially when data is noisy. In socircumstances, this
could lead to the formation of classification rules that cawee replicated case.

Advanced sampling methods have also been considered.tlaybar, undersam-
pling for majority classes is coupled in [29] with a speci@inh of oversampling for
the minority classes, that creates new synthetic casestfiese latter classes. The
technique is effective at inducing a stronger generabrator the minority classes
which neatly contrasts to the specialization induced by peplication. However, it
is still susceptible to overfitting.
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Progressive sampling [105] approximates the best classhbdison for learn-
ing by iteratively adding to some initial training data ate@r proportion of cases
from the majority and minority classes, by using a geomestiimpling schedule. The
method is empirically proven to converge towards a neartymogd class distribution
for training. Nonetheless, it assumes the existence osdostprocuring additional
training data and thus it is actually useful when procuretraeats are known.

Cost-sensitive boosting [98] has been considered for adihg two major char-
acteristics of imprecise environments, namely the rargsels.and the different mis-
classification costs. Boosting is an iterative meta-tephifor learning ensemble
classifiers, that associates a weight with each training. d&eights determine the
probability with which the corresponding training cases adaptively sampled at
each iteration for the purpose of forming a new dataset. @atterlis used to learn
a classifier through the application of some basic learnaige. Cost-sensitive
boosting lends to being used for improving the recognitibrminority classes
[49, 66, 30], since the latter are more error-prone w.rimagority classes and, hence,
their weights are suitably increased. While weight updangiform in pure boost-
ing, i.e. no focus is paid on differentiating between caresa incorrect predictions
of a certain kind, cost-sensitive boosting assigns varwiaeights to training cases on
the basis of their classifications (e.qg., in the two-clagmado, TP, FP, TN and FN).
The weight updating process in [49] incorporates a misiflaagon cost adjustment
function: the weights assigned to misclassified (respsiflad) cases from a minor-
ity class are more aggressively (resp. conservativelygamed (resp. decreased) with
respect to the ones associated to misclassified (respifiddssases from majority
classes. However, since no distinction is made betweers ¢asa a minority class
that are incorrectly classified into a majority class andviceversa, the approach
in [49] may overly favor recall at the expense of a much lowecgsion. The latter
limitation is avoided in [66] through a finer weight modifitat scheme.

A criticism to such approaches is that cost-sensitive liogstay incur into over-
fitting [103], by progressively increasing the weights fases of the minority classes
that are misclassified. For the purpose of avoiding over§jtind better catching the
minority class, synthetic creation of cases of the minali&gs and boosting are com-
bined in [30]. At each boosting iteration, a certain amodratrtficial cases from the
minority class are created. This allows to sample a higherbar of cases from such
a class, which ultimately enables the basic learning schenfiecus more on (i.e.
to learn more general decision regions for) the minoritgshaithout modifying the
weights of the training cases. However, it is not clear howstablish the appropri-
ate amount of synthetic minority-class cases to genera&sidBs the specific disad-
vantages of the enumerated methods, cost-sensitive bggstsents some general
weaknesses when used for learning classification models imprecise domain.
One such a weakness follows from the well-known inabilitypobsting at properly
working in the presence of noise. Additionally, there is geheral guarantee that it
can improve the recognition of the rare class(es) sinceeitfopmance is strictly de-
pendent on the performance of the basic learning schentee lirtderlying scheme
always achieves low recall or precision on the rare claysfes) imprecise domains,
the performance of boosting is also poor [65].
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Finally, segmentation [103] is another major method foclkaiy rare classes
in imprecise domains. The underlying idea is to suitablydéithe data space into
disjoint regions, wherein globally rare classes tend tobexless rare. Within each
such a region there are two possibilities. The density affyraa (much) higher w.r.t.
the density in the whole training data. This clearly allowsfdcus on the rarities
local to the region, which are also less affected by noisterAhtively, the density of
rarity is (much) lower than the corresponding density intth&ing data. In this cir-
cumstance, rarity becomes nearly unidentifiable in theipeegion. Nonetheless,
this is acceptable in practice, since most of the originas€lrarity is still captured
within other regions.

2.3 Collaborative Filtering Approaches

In this section a brief discussion of the most used techsidaerating prediction
in the collaborative filtering, nameBaseling Nearest NeighborandLatent Factor
models, is provided.

Baseline modelare basic techniques to compute a rating prediction andoare ¢
sidered a first step towards the rating personalization aed profiling. These first
approaches to rating prediction are summarized in tablevihére denotes the
overall mean of the ratings, is the average rating given on the itenand, sym-
metrically,7,, is the average of the ratings given by the useAnother simple and

Baseline Personalization Predictionr;*
OverallMean None o
ItemAvg Item-oriented T
UserAvg User-oriented Tu
WeightedCenteringtem&User orienteti 7; + (1 — )T,
0<a<l

Table 2.1.Baseline Approaches

effective baseline approach has been proposed in [16]hdg@scribes a set of global
effects that might influence user’s ratings. For examplmesasers might tend to as-
sign higher or lower ratings to items respect to their ratimgrage (which is known
asUser effec}, while some items tend to receive higher (or lower) ratinyes than
others (tem effeck

Neighborhood based approachkbased on explicit user feedback are the most
commonly used techniques for generating suggestions aictions. According
to the item-based version [94], the predicted rating is aatexh by aggregating the
ratings given by each user on the most similar items to theidered item. The
underlying assumption is that the user might prefer itemsensamilar to the ones
she liked before, because they might belong to the sameargteg might share
similar features. More formally:
Zje NE (iu) 55 i

o —
. =

Zje NE (43u) Sij
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where V'K (i;u) is the set ofK items rated by the user most similar toi, s;;

is the similarity coefficient between the itemand j, andr} is the rating given
by the usen to the item;. Similarity coefficients are compute on a global basis:
two products are considered similar if they have receivetlar preference values
from common users. Hence, this strategy fails in recoggifical item similarity
within a same user community. Some alternative and moretafeformulations

of the neighborhood based approach have been proposed,iiQ185]; the key
idea is to determine the interpolation weights simultaisgoaccording to a global
optimization schema, which better reflects intra neighbodhrelationships.

The assumption behindatent Factor modelss that the rating value can be ex-
pressed by considering a set of contributes which reprékerihteraction between
a user and the target item on a set of features. Assumingltees aire a set ok’
features which determine the user’s preference on an iteenptediction can be
generated as:

K

u

Ty = E Uy M,
z=1

whereU,, . is the response of the user u to the featurand M ; is the response

on the same feature by itemSeveral learning scheme have been proposed to over-
come the sparsity of the original rating matrix and to pradaccurate predictions.
The learning phase relies either ogradient descengrror-minimization [52, 7] or

a likelihood optimization procedure (based e.g., on Gibls3ing or Expectation
Maximization). The peculiarity of a probabilistic modeltiee capability of estimat-

ing either the joint probability”(r, u, ¢) (probability that a uset gives ratingr to

the item:) or the conditional probability?(r|u, i) (given a usen and an item,

the probability of rating =-). The identification of* for a pair(u, i) can hence be
computed as:

7 = Er|u,i] = Zr - P(r|u, i)

whereFE [.] is the expected value operator.

The pLSA(probabilistic latent semantic analysis,Aspect Modglproposed by
Hoffman in [58], is the reference probabilistic approaciCiaé The underlying as-
sumption is that the observed user preferences can be ndcakeke mixture of user
communities, and each user can be included into one or motggf58]. Introduc-
ing a latent variableZ (ranging overK possible states) and assuming that user
and item/ are conditionally independent given the stateZgfthe probability of
observing rating: for the pair(w, ¢) can be computed as:

K
P(rlu,i) = P(rli,Z = 2)P(Z = 2|u)

z=1

whereP(Z = z|u) represents the interest ofto topicz, and P(r|i, Z = z) is the
probability that a user belonging to pattergives ratingr on the itemi.
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The User Profile Modelextends this formulation by employing Dirichlet priors
which provide a full generative model at the user level [&; @ further adoption of
the Latent Dirichlet Allocation approach [24] which incksla response variable, in
this case the ratings on an item, has been proposed in [23].

Recently, novel probabilistic approaches [93, 2, 95] haaeniproposed to over-
come the need for regularization and in order to preventfittileg in matrix factor-
ization methods. In particular, tierobabilistic Matrix Factorization93] proposes
a generative gaussian model for ratings, in the low-rargntaspace of users and
items. Extensions of this model include bayesian prior$ §®l non-linear matrix
factorization with gaussian processes [74].

Other works focus on combining preference data and corgantifes [63, 3, 96]
to produce more accurate recommendations and to addresslthstart problem.
The underlying idea is to associate items and users witleatispecific latent factors
and thus to use this low-dimensional feature represengfmr regularization.

So far, co-clustering approaches exhibited limited pr@diacapability (cluster-
ing both items and users makes these approaches more prowertitting). In ad-
dition, the high computational burden make them unfeadinleealistic problems.
[54] proposes simultaneous clustering of users and iterasdban an adaptation
of theBregman coclusterir{@1]: given an initial co-clustering assignment, the user-
clusters (rows) and item-clusters (columns) are altelyafgtimized till convergence
is achieved. A probabilistic approach to determine usamimemberships follow-
ing a coclustering strategy has been discussed in [58]: skenaption behind the
Two-Sided Clustering Modéd that the rating value is independent of the user and
item identities given their respective cluster membershifhe clustering approach
is based on a standard EM likelihood maximization procedure

Both these co-clustering approaches assume the existéacenique partition
over the item-set and the number of user-communities. Withése models, each
user belongs to exactly a single user-community and eaohlilong to a single
groups of item. By contrast, thelexible Mixture Model (FMM)[62] extends the
two-sided model by allowing an individual (either a user onritem) to be included
in different clusters, with different degrees of membegusii novel approach to co-
clustering have been proposed in [88];the resulting mddelwn asBi-LDA, inte-
grates Dirichlet priors and discovers simultaneous grafipsers/items modeled via
LDA.

2.4 Tree-based data mining

Analyzing tree-based data has become a very importantratséiald, especially
because a lot of information is recorded within XML documehtt has become
a frequently used format in the web. The main feature of theLXbimat is its
structure, that allows to represent a lot of entities.

Hierarchical clustering has been widely adopted for grouping XML documents
by structure [41, 46, 43, 47], because of the high qualityofesults.
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However, a major criticism to such proposals is that hidviaal clustering is
impractical for processing large-scale databases of XMtudeents, being its time
complexity isO(N?), whereN represents the size of the available collectidwof
XML documents. This basic time requirement is further exaated in those ap-
proaches, such as [46], that compute similarity between XMEks or their struc-
tural summaries through some variant of the tree-edit 0ligtd108]. The latter es-
sentially involves computing the minimum-cost sequenaepefrations, necessary to
transform one entity into the other. This is prohibitivepensive in the aforesaid
setting, i.e., at least quadratic in the number of nodesimviibth entities [56].

As far as cluster summarization is concerned, the reprasemtintroduced
in [41] actually catches all structural properties in a tduf XML documents.
However, it is computationally expensive, both in time apdce. In particular, its
time complexity is proportional to the product of the numbg&nodes in the repre-
sentatives associated to the two least dissimilar clugidrs merged in the hierarchy.

A main limitation of [47] is the loose-grained similarity tched by the notion
of s-graph, which is exploited to summarize clusters of XMicdments. Indeed,
two XML documents can share the same prototype s-graph dintbse significant
structural differences, such as in the hierarchical retethip between nodes. This
has an undesirable effect, i.e., that structurally hetmegus XML documents may
be placed within a same cluster, with a consequent degraclasiéring quality.

No emphasis is paid in [46, 43] on providing an intelligiblesdription of the
discovered clusters.

XProj [39]is instead a partitioning method in whiéfclusters are formed around
their representatives. These are collections of subsirest with a fixed numbet
of nodes, that frequently occur in the respective clustedsreeed be recomputed at
each relocation of the XML documents.

A main shortcoming oXProj is the presence of many input parameters that re-
quire a careful tuning, namely the numbeof clusters, the size of the frequent
substructures in a cluster representative and the miniquénecy threshold for the
substructures themselves. An improper setting of thesenpeters makes the dis-
covery of clusters in the data problematic and too depenagietihe characteristics
of the available XML documents. Unfortunately, there is eoeral tuning for such
parameters: a setting may ensure an acceptable perforroegica dataset with cer-
tain structural properties and deliver very poor perforoesnon other datasets with
even small changes in their properties.

Also, in XProj, the notion of cluster representative is functional to salegree
of cohesiveness of the intermediate clusters of XML documeéhis not meant for
providing an understanding of their structural properfigss justifies two strong ap-
proximations: the inclusion in the representatives ofctties only with a fixed size
n (with a consequent loss of structural information from tberesponding clusters),
that may also be unrepresentative (i.e., such that theie sdguences are subse-
quences of the edge representations of the XML documentialtisters, although
the structures themselves are not substructures of the Xddurdents).
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Inductive Query Language

The thesis proposes a foundational model for the knowledgeodery process,
called the2W Model , that enables progressive data-mining workflows and, thus,
provides the underlying procedural semantics for datanmginuery languages. The
2W Model follows from the3W Model [64, 26].

Knowledge discovery is a multi-step process, that involdas preprocessing,
different pattern mining stages and pattern postprocgssinthe 2W Model the
essence of a knowledge discovery process is summarized agehaction between
two neatly divided worlds: thelata world and themodel world More precisely,
as shown in fig. 3.1, data pre-processing and model posegsory are viewed as
world-specific operations. Instead, each intermediateepatmining step is consid-
ered as a suitable interaction relating entities in the twdds.

Mining

Dala Filtering . '

Population

. Model Filteving

Fig. 3.1.The KDD process in the 2W Model

This allows to formalize any knowledge discovery procesaealgebraic expres-
sion, that is essentially a composition of operators regtsg (pseudo-)elementary
operations on the two worlds. There are three main kinds efaiprs for data and
models:
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e Filtering operators are self-injecting operations: irdig¢bey take a set of entities
as input and produce a new set of entities. Within the figimeDiata Filtering
andModel Filteringarrows denote such operations.

e Mining operators relate data entities to model entitiegoractice, such opera-
tions correspond to the application of a data mining alparito a given data
source. The result is a composite object, describing arpat@ding over such
data sources.

e Population operators are meant to model a sort of dual dparatr.t. mining
functions. In general, a model is a specification of a set operties holding
in the data. Applying a model to a data source essentiallynsiezaking such
properties explicit in extensional form: e.g., by assae@geach trajectory in a
table with the most likely target class according to the nhaaleby enumerating
the frequent patterns appearing within the trajectory

For the definition of the contours of the two worlds and thgierators, one has to
concentrate on which entities (i.e. which patterns) argstipd in the model world,

how data entities relate to model entities, and how comgtsmlving takes place.
The formalization of such aspects strictly depends on thereaf the underlying

applicative domain and pursued objectives. P Model is a general model for
the knowledge discovery process within any applicativérggt

3.1 The D-World

The D-World represents the entities to be analyzed, as wdheir properties and
mutual relationships. Raw data is organized in an objdatiomal format. The
D- Wor | d can be viewed as a databaBe= {ri(R1),...,m(R,)} of meaning-
ful entities. The generic entity(R) is a relation with schem®. Formally, R =
{Ay : Dom(Ay),..., A : Dom(Ap)}, whereA, ..., A correspond to descriptive
attributes of the data within(R) and Dom(A,), ..., Dom(Ay;) are their respec-
tive domains. Relatiom(R) is defined as'(R) C Dom(Al) x ... x Dom(Ah).
Attribute domains can be either primitive or object dataetypPrimitive types are
assigned to simple features of the data and divide into o&ted and numerical do-
mains. Instead, object data types abstractly represenple@meal-world entities as
objects, equipped with application-dependant operatidaseafter, the specification
of relation schema is omitted and it is used the resultingkfiad notation to indi-
cate an entity ofD. Furthermore, let denote biye r a tuple of relation- and, also,
exploit notationt[4;] to indicate the value of tupleover a schema attributé;. So
far, the description of th® Wor | d is general enough to be employed within any
applicative setting. Since this thesis aims at dealing wittvement data, hereafter
the D- Wor | d is assumed to be a repository of movement data. From thig pbin
view, relation schemas involve object data types, modedlmgaddressed moving
entities (such as points and regions).

Example 3.17To elucidate, the reference relatidrajectorieds introduced, that shall
be used throughout the thesis to describe pedestrian aradfimte routes. Its schema
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attribute comprise#D of type integer,Type which takes on the categorical values
(i.e. vehicle and pedestrian), afdajectorythat is of an object data type, named
Moving_Point [86]. The latter object actually models the notion of trapeg. More
precisely, given a tuple € Trajectories, t|Trajectory] represents a sequence of
object locations evolving over time and, also, providestatbasic operations, for
manipulating route data as well as answering topologicdldistance queries. O

3.1.1 D-World Operators

Data in theD- Wor | d is manipulated via the usual (unary and binary) operators of
traditional relational algebra, namelyo, 7, U, N,

andx. Also, aggregation functions (such®sM COUNT, AVERAGE, M NandVAX)

are allowed to operate on collections of domain elementsaiNg aggregates are
not relational algebra operators. In principle, they areduas parameters of some
suitable aggregate formation operator. In this formailimgtexpress queries involv-
ing aggregates are expressed by means of suitably extenojedtfpn operators, in
the spirit of the idea in [91], that allow the incorporatiohamgregation functions
into the algebra. Algebraic operators can be used to modabéel data preparation/
manipulation tasks.

Example 3.2The composite operator below

Ttrajectory (UType:”vehicle” (Trajectories))
represents a trivial reduction of data size and dimensitynal O

More complex preparation/manipulation tasks can be espoeBy incorporating
the basic operations of the (domain-specific) object-i@tal entities in the corre-
sponding algebraic formulation. This is shown below.

Example 3.3A basic operation of thé/oving_Point data type isintersectswhich
queries whether two trajectories encounter each otheh Sudanctionality can be
exploited to filter fromTrajectoriesand count all those vehicle routes that encounter,
somewhere and at any given point in time, the route followed keference moving
point (i.e. with a specified identifier). To this purpose, bgans of the expression

T = PRoute<Trajectory (UID=3 (TTaj€CtOTi€5))

one obtains a new answer relatidrconsisting of the route followed by the moving
point with D = 3. Here, for convenience, thEajectoryattribute of7" is renamed
as Route T' can now be joined with the whole content ®fajectoriesto find and
count the desired routes, i.e. those paths that intersectrile in7. This can be
expressed as

Tcount(Trajectory) (UTTajectory.intersects(Route) (T’raj ectories X T))

Wherem o nt(rrajectory) (-) is @an extended projection operator [91] that returns the
size of the columrirajectoryif it appears in the input relation), otherwise. Notice
that, the aforesaid extended projection operator can cortvea flavors, depending
on whether or not th@rajectorycolumn is viewed as a bag.



16 3 Inductive Query Language

3.2 The M-World

Movement patterns concerning data entities, their pragseend relationships are
modeled as suitable decision regions in the model worldclviprovides an ele-
gant and expressive framework for both exploratory analgsid reasoning. The
M Wor | d can be represented as a collectiBrof patterns, unveiled at the differ-
ent stages of the knowledge discovery process. Each pattermssociated with
an object-relational schemaand represents a (possibly infinite) relatioover R.
Intuitively, p represents a decision region over the schdinao that a decidable
operator- can be devised for bounding such a region.

Definition 3.4. A patternp is any (possibly infinite) s€ftty, ..., t,} of tuples inD
such that, for eaclr € D andt € r, the assertiont € p is decidable. The property
t € pisdenoted ap + ¢. ]

Different types of movement patterns can be defined to poptiteM Wor | d,
on the basis of the decision regions of interest. Henceguauefinitions are possible
for ther- operator. To elaborate on the latter aspect, the semarftics operator for
some models of fig. 3.2 is exemplified in the next. In particutee thesis focuses on
the identification of moving objects within thEajectoriesrelation of Example 3.1,
since this is generally a major target of investigation inveraent data analysis.

Predictive Descriptive
Model Model

aoe Location Cluster Dependency
( Classifier ) ( Predictor ) ( ) ( Model
Qutlier T-Pattern
Detector Model

Fig. 3.2.A taxonomy of abstract data types in the M-World

Example 3.5SINGLE-CLASS CLASSIFIER . Also, let the pattermp(Pedestrian)

be of the formspeed < 10Km/h, wherespeed is the instant speed of the moving
object at hand. Informally,(Pedestrian) represents all those tuples exhibiting instant
speed less thahOK m/h, which, according to the common sense, can be labeled
as "pedestrian”. Each moving objecte Trajectories can be equivalently repre-

speedy speedy, —1

sented by its explicit rout@ly, ts;) — ... =" (I, ts,), i.e. atime-ordered
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sequence of locatioris with respective time stamps;, wherespeed; is the instant
speed of the transition between locatidns, and/;. A generic moving object is
recognized byp(pedestrian) j g  plpedestrian) 4 if speed; < 10Km/h for all
ie{l,...,n—1}. O

Example 3.6T-Pattern Letp be a temporal annotated pattern [55] of the foﬁnﬁii

teng r,) (Wherer; is a spatial region antk; is a time constraint of the form
tmin < ¢ < ¢mar. Amoving objectt € Trajectories is recognized by, i.e.,p I- t,
if ¢ traverses all regions in sequence, and the traversal time betweeandr;, ; is
within the time constraintc;. O

Starting from the basic patterns i it is possible to define composite patterns
as suitable combinations of patterns from possibly diffepgototypes. The individ-
ual instance of a prototype enumerates only the raw datadkatts into a certain
outcome when related to the pattern. However, in genenal,data can originate
multiple outcomes. The notion of composite pattern is @&fnan abstraction that
allows to succinctly query multiple patterns of differenvfotypes for the recognized
raw spatio-temporal data.

Definition 3.7. COMPOSITE PATTERN. A composite patterp is defined as fol-
lows:

e p = pwithp € P is acomposite pattern and theoperator is straightforwardly
extended t@, sincep + ¢ coincides withp F ¢ in this basic definition;

e the disjunctiorp, V p, of two composite patterrs, andp, is still a composite
pattern and the- operator is defined ap, Vv p, - t if and only if eitherp, - ¢
orp, -t

e the conjunctiomp; A p, of two composite patterns, andp,, is still a composite
pattern and the- operator is defined ap, A py - ¢ if and only if bothp, + ¢

andp, - t;
e the negation-p of a composite pattern is still a composite pattern, whepe- ¢
if it is not the case thap + t. ]

In practice, a composite pattern is an abstraction for srng a new decision
region that follows from the ones associated to the indizighatterns.

Example 3.8Let p(redestrian) phe the predictor defined in Example 3.5 , and p»
two further temporal annotated patterns introduced in Eptar3.6. The compos-
ite patternp = p(Pedestrian) A (p, v/ p,) is a pattern characterizing all pedestrians
traveling with an instant speed less thd¥{m /h and traversing either, or p;. O

Definition 3.9. Let p be a composite pattern. The structural operatars), >(-)
and©(-) are defined as follows:

e The left and right operators op, namely<i(p) andt>(p), return, respectively,
the left and right component pf Formally, ifp = p; Ap, orp = p; V p, then
<(p) = p; and>(p) = po; otherwise<i(p) = >(p) = p.
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e The inside operator(p) on a composite patterp extracts the positive com-
ponent ofp. Precisely, ifp = —p;, then®(p) = p;; otherwise®(p) = p.
O

With an abuse of notation, in the following is assumed to be extended to con-
tain both singleton and composite patterns. The latter eafutther classified into
local or global patterns, depending on whether such patt@ra capable of recog-
nizing each tuple in the associated domain.

Definition 3.10. GLOBAL/LOCAL PATTERN. Letp be a (composite) pattern and
R an object-relational schema. is said a global pattern w.r.tR if and only if, for
each relationr over R and eacht € r, it holds thatp + t. Otherwisep is said a
local pattern. m|

Example 3.11Let us consider the pattepiv¢"i“!¢) which recognizes tuples repre-
senting trajectories exhibiting an instant speed gredt@m t0Km/h. The pattern
plvehicle) s p(pedestrian) s g global pattern fol rajectories, as it recognizes each
tuple in the relation.

As shown in fig. 3.2, a prototype can be associated to a given pattgrrde-
pending on whether the decision region characterizes ttierpaas a predictive or
descriptive spatio-temporal model. In practice, a prqgiefy enumerates a subset of
P, such that some attributeép), cee @SLP) n can be associated to each component
patternp in P. Formally, a prototype associates each pattern with aeakitschema,

where some specific pattern properties can be specified.

Definition 3.12. Let R be a relational schema. A pattern schefan R is defined
asP={Sxr|SCPreR} PecPisdefined gattern instance.

Example 3.13Assume thatD = {pedestrian, vehicle} is a set of class labels de-
noting two alternative types of moving-object routes. Thanassi fi er @ is any
subset ofP x O. In practice, each paip, ¢) € O assi fi er © represents a decision
region denoted by, whose tuples are associated to class

As a further abusg; € P and(p, ¢1, ..., ¢n) € P will be used interchangeably,
where the former notation is a shorthand for the latter.

Definition 3.14. INTRA-WORLD OPERATORS. The usual definitions of theand
m (relational) operators can be extended, and can be intreditbe three (structural)
operators,<i(-), >(-) and &(-), over a pattern schem® as follows. LetP be a
pattern instance oP. Then

e op(P)={(p,t) € P|E(t)} whereE is any boolean expression over the schema
R;
wx(P) = {(p,7x(t)) | (p,t) € 2P} whereX C R.
v(P) ={{v(p),t) | (p,t) € 2P}, wherey(-) corresponds to eithet(-), >>(-) or
o). O
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Example 3.15Assume that prototyp& - pattern is a pattern schema consist-
ing of three attributes, namely Pattern, Length and Typa,dksociates each tempo-
ral annotated pattern iR with two characteristic features, respectively the lerajth
the pattern in terms of consecutive spatial regions anditttedf routes that traverse
it. Given the below instanc® of P

Pattern|Length Type

1 5 vehicle

D2 2 pedestrian
D3 3 mixed

D4 4 vehicle

Ds 2 pedestrian
D6 3 mixed

p2 A ps|2 pedestrian
p3 V pe|3 mixed

the intra-world operatorsz(P) andwx (P) can be used to suitably manipulate
P. For instance,

O Length>4AType=""vehicle' (P>

selects those temporal-annotated patterr®,ine.,p; andp,, that consist of at least
4 spatial regions and are traversed only by vehicles. In tlezta fragment of,
the T'ype feature assumes a uniform value, thus becoming unintegedtican be
filtered by means of the projection operator

T Pattern,Length (ULengthzél/\Type:”'uehicle” (P))

Finally, the generic structural operatpfP) can used to decompose the composite
patterns inP into their constituents. Notice th&t contains the composite patterns
p2 V ps andps A pg. In general, depending on the required constituer(t®, can be
instantiated as eithex(-), >(-) or ©(-). O

Patterns are originated into tiv Wor | d from the raw data in th& Wor | d
via a mining operator. Such patterns are in turn used totimew raw data into the
D- Wor | d. Mining and populate operators formalize suitable inteoas between
raw data within théd- Wor | d and patterns in th& Wor | d. Such interactions are
the basic building-blocks in the definition of a knowledgsadivery workflow.

3.2.1 Mining and Population Operators

The population of thét Wor | d starting from the raw data in tHa Wor | d is per-
formed through the mining operatbr
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Definition 3.16. MINING OPERATOR. The inter-world mining operator is defined
ask : DF —127 k represents a generic mining scheme, that receives a certain
number of input relations and instantiates in eWor | d an instance (i.e., multiple
patterns) of a prototype (that is a pattern schema). m|

Example 3.17Assume thatD = {Trajectories}, whereTrajectories is the ref-
erence relation of Example 3.1.4frepresents the T-pattern mining scheme in [55],
k(Trajectories) results into an instancE — pattern of a prototypeT - pattern. O

Once accomplished the forward population of MeAbr | d with the required
patterns, these can be employed in the opposite directmrtpi backwardly popu-
late theD- Wor | d with further data. Interestingly, this does not involve theplicit
representation of further (composite) objects as irBhéor | d of the3W Model .
More simply, the raw data that falls within the decision oegbf a certain pattern
is accumulated in th® Wor | d as new data. The inter-world population operator
X: P x D — D, is the basic step of the population process.

Definition 3.18. BASIC POPULATION OPERATOR. Letp be a pattern inP and
r arelation in D over an object-relational schema The basic population operator
p X ryields a new relation including each tuples r within the decision region of
p. Formally,

eré{tedp}—t}
Clearly, the resulting relatiop X r is still an instance oRR. |

Example 3.19Let D and P be respectively th® Wor | d and M Wor | d of Ex-
ample 3.17. Ifp is a temporal annotated pattern over Thepattern prototype, the
expression

. LA . .
Trajectories; = p X T'rajectories

results intoD, = Trajectories, Trajectories;, whereTrajectories; IS a new

relation including those moving entities frofivajectories, whose routes traverse

the temporal annotated pattepnin practice,D; represents the population of the

original D- Wor | d with the new raw datd'rajectories;, whose schema is identical
to the one of th& rajectories relation.

The population operator can be straightforwardly gensedlto deal with a com-
posite pattern.

Definition 3.20. EXTENDED POPULATION OPERATOR. Letp be a composite
pattern andr a relation in D over an object-relational schemfa By abuse of nota-
tion, the extended population operater 27 — D is defined as follows

A
pXr=terptr

Relationp X r is again an instance aR. a
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The above expression yields an enumeration of all the tupleshat fall within
the composite decision regiqgn

Example 3.21Again, let D and P be respectively th® Wor | d andM Wor | d of
Example 3.17. Moreover, assume tpat= p; V p; is a composite pattern such that
bothp; andp; are two temporal annotated patterns from the Trajectoakzion.
The below expression

Trajectoriess = p X Trajectories

populates the originaD- Wr | d with a furtherT'rajectories, relation, that enu-
merates all moving objects @frajectories that traverse eithes; or p;. O

Besides the population operator, it is also defined a patlentification operator,
that is dual with respect to the former.

Definition 3.22. PATTERN IDENTIFICATION OPERATOR. Assume thaP is a
prototype andP an instance oP. LetS be any subset d?. The pattern identification
operatoro : 2P x D — 2% is defined as follows:

Sor={peS|Fter:tepr}
O

In practice, the pattern identification operator queriesomdgeneous pattern
collectionS for those models that recognize certain raw data.

Example 3.230ne may ask which are the temporal annotated patterns froespe
trian routes, that are also traversed by vehicles. To thigqae, let

TT’ajectoriesl = TType=""pedestrian’’ (Trajectories)

and
Trajectoriess = Trype=rvehicle” (ITajectories)

be the two required partitions of tHErajectories relation. If I' — pattern is an
instance of thd@ - pattern prototype, that consists of the temporal annotated pattern
in Trajectoriesy, the foregoing query can be expressed via the followingesgion

T — pattern o Trajectoriess
O

As a final remark, this work emphasizes that pattern-ideatifbn and population
operators can be suitably combined to express complextaalgueries.

Example 3.24With respect to the setting of Example 3.23, one may furtisr a
which are the individual vehicle trajectories that traeetise pedestrian T-patterns.
This query can be expressed as

(T — pattern o Trajectoriesy) X Trajectorys
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3.2.2 Discussion

The 2W Model introduces several meaningful differences w.r.t. 3w Model .
Firstly, entities in thevk Wr | d can represent any required patterns, even if with a
mathematically complex structure, wheréadhr | d models correspond to simple
regions, expressible via linear inequalities on the dat#bates. Secondly, in the
2W Model , k is not predefined and acts as a template to extract a modeltfrem
raw data. Thirdly, the composite Wor | d representation is avoided and the objects
of the 3W Model that reside within such a world are directly mapped, in 2vé
Mbdel , to simple raw data in thB- Wor | d. In particular, by the definition of the
population operator, the application of any model to theadata relation of the
D Wor | d always produces a further relation within tBeWbr | d. This ensures
that mining results can be progressively analyzed on a parraiv data via further
manipulations, as exemplified next.

Example 3.25KDD WORKFLOWS IN THE 2W MODEL.

Consider the case where one wishes to uncover the groupst®lfat move
close to each other within a certain temporal annotatecepa{b5]. In such a
case, temporal annotated patterns are first extractedhietbttWor | d via a spe-
cific mining operatot from theT'rajectories relation. This results into an instance
k(Trajectories), that groups all the unveiled patterns. The latter are thesated on
a par with raw data, to the purpose of identifying the trajaes inside the required
pattern, which is accomplished by means of the inter-woojolytation operator. For
instance, Moving clusters [84] are then discovered in tlygired pattern, by apply-
ing a second mining operatéy to the newly obtained raw data. In tB&/ Model ,
the algebraic formulation of the aforesaid knowledge discpworkflow is

k1 (p X Trajectories)

wherep € k(Trajectories) is the pattern to investigate for moving clusters,
that can be chosen by means of the structural operatGi$7'rajectories)) and

> (k(Trajectories)). The above expression reveals the fundamental role of the po
ulation operator in the definition of a knowledge discoveprkflow. Indeed, the op-
erator enables the progressive and seamless discoverstlodifypatterns in the raw
data resulting at the end of a previous analytical process. m|

Finally, the D- Wr | d operators contribute to the expressiveness of Zki¢
Model framework, by playing a twofold role. On the one hand, sucérars can
be used to represent preprocessing tasks, e.g. the reductgize and/or dimen-
sionality of the available data. On the other hand, they aefuli for postprocessing
purposes, such as in the act of filtering interesting pagtern

3.3 IMPLEMENTING THE 2W MODEL

The2W Mbdel is a natural foundation for the development of domain-djedata
mining query languages. Within a specific applicative dem#iis mainly involves
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the definition of appropriate mining and population operstas well as the spec-
ification of the basic object-relational entities. In thiesis, a data mining query
language is proposed. It is designed to support knowledsgodery from movement
data as an actual multi-step knowledge discovery procdssirftuition consists in
starting from the conventional SQL language, that proviolesic mechanisms for
interactively querying and manipulating the entities witthe D- Wor | d (i.e. both
original raw data and the outcome of population operatdnisgse are extended in
two major respects. Firstly, the introduction of a pattegfidtion statement, i.e.
CREATE MODEL for the specification of the required movement models, with
which to populate th&t Wor | d. Secondly, the capability of supporting generic pop-
ulation operators, which ultimately allows the applicatad models in thé/t Wor | d

to raw data within thé>- Wor | d. For this reason, the traditional join semantics in-
herent in theSELECT-FROM-WHEREtatement is revised, so that raw data and
unveiled patterns can be uniformly manipulated and joiredurther analysis.

3.3.1 Model Definition

The CREATE MODELstatement implements the mining operatorof the 2W
Model and builds a particular model in tihé Wor | d.

Definition 3.26. MODEL DEFINITION STATEMENT. The syntax of th€RE-
ATE MODEL statement is reported below.

CREATE MODEL <npdel _nane> AS M NE <mi ni ng_al gorithn
FROM <<t abl e>>
WHERE <mi ni ng_al gorithm. param =val ;1 ® ... ®
<mi ni ng_al gori t hn>. param, = val ,, O

The above statement specifies a pattern-discovery taslg, o#@l to some cor-
responding mining algorithm. In terms of ti#2&V Model algebra, the definition
creates a model object in tiv Wor | d named<nodel _name>, according to the
procedural semantidgtable), where the effect of the mining operators the appli-
cation of the<mi ni ng_al gori t hn® to table. In this respect, an important differ-
ence with respect to the traditional SQREATE statement is that the latter guaran-
tees closure by returning a table, so that further SQL statéstan be issued over it.
Instead, theCREATE MODEL statement results into a (singleton or composite) ob-
ject, that is an instance of some corresponding abstraztylae¢. Closure is enforced
by the possibility of manipulating both raw data and patteojects, as previously
said.

The CREATE MODEL statement enables the development of data mining query
languages, that meet users requirements in any given appdicetting. This chapter
focuses on data analysis and assumes that, hereafienj ng_al gori t hn® de-
notes any methods for discovering patterast abl e>> denotes the primary data
of theD- Wor | d, from which<nodel _nane> is extracted, that can be in the form
of either a materialized database table, a view, or a quég\VIHERE clause allows
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to properly specify the input parameters of the invokad ni ng_al gori t hie,
that involve algorithm-specific parameters, search biasesthresholds for inter-
estingness measures. Combinations of logical conditionsyput parameters are
expressed via any connectapsrom traditional SQL grammar.

Notice that, depending on themi ni ng_al gori t hn®, background knowl-
edge within some further table of i@ Wor | d can be directly taken into account
to assist pattern discovery, by either specifying furtladtes in the=FROMclause or
exploiting the relational organization of the trajectogtal This is useful for several
reasons, such as either enriching the data at hand, degeiog initial hypotheses
with which to start the search for patterns, defining prefeecbiases that prune the
pattern search space, or providing a reference for thepirgtation of the discovered
patterns. Furthermore, since it is often difficult to defide@uate statistical measures
for subjective concepts like novelty, usefulness, and tstdadability, background
knowledge can be also helpful in capturing such concepte mocurately.

Example 3.27The following CREATE MODEL statement exemplifies the definition
of a T-pattern mining task, which requires the availabiiitythe D- Wor | d of the
Trajectories table introduced in the previously section.

CREATE MODEL T_Patterns AS M NE Dynam c_TPattern_M ni ng
FROM Tr aj ectori es
VWHERE Dynami c_TPattern_M ni ng. density = 6 AND
Dynani c_TPatt ern_M ni ng. snr = ¢ AND
Dynamic_TPattern_Mning.tt =7

The T_Patterns composite object, as easy to see, is instantiated by ajppilyan
Dynami c_TPat t er n_M ni ng algorithm to the basic Trajectory data.

Algorithm-specific parameters appear in the above syntafeatsires of the
T_Patternsobject and are suitably set in tiiERE clause. Here, the minimum den-
sity threshold densi t y), spatial neighborhood radiusr{r ) and temporal thresh-
old (t t) are set to suitable values, respectively represented] byandr . Further
details on the T-pattern mining algorithm and the mentioimpait parameters are
provided in [55]. a

3.3.2 Data and Model Manipulation

The SELECT- FROM WHERE statement can be used to accomplish several different

tasks of the knowledge discovery process. The procedunsdustcs of the individ-

ual statement is defined as some suitable combinatiol®A\bivbdel operators.

In the following, the thesis elucidates tB&LECT- FROMt WHERE statement in the

manipulation of raw data as well as in the definition and ferrémnalysis of patterns.
Raw Data Manipulation. Data manipulation and querying represents the sim-

plest exploitation of the statement.

Example 3.28QueryQ, defines a simple preprocessing of trajectory data, before it
is used in any subsequent analytical task.
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SELECT Trajectories.id, Trajectories.Trajectory
FROM Tr aj ectori es
VWHERE Traj ectories.type="vehicle".

Clearly, Q, filters vehicle trajectories and projects them on attribut® and
Trajectory, deemed relevant for subsequent pattern discovery.

In terms ofD- Wor | d operators, the procedural semantics of the above statement
is

TID,Trajectory (Jtype:”vehicle” (Trajectories))

O

Hybrid Manipulation of Raw Data and Models. The manipulation of pattern
objects in thevt Wor | d enables more advanced uses of$kt ECT- FROM WHERE
statement. By suitably joining data within tBeWbr | d and models in thih Wor | d,
itis possible to find out the raw data that meets a particaastraint on some feature
of a certain pattern.

Example 3.29Consider the below quel®,, that asks for all trajectories within the
database that intersect a T-pattern.

CREATE MODEL T_Patterns AS M NE Dynani c_TPattern_M ni ng
FROM Tr aj ectori es
WHERE Dynami c_TPattern_M ni ng. density = § AND
Dynani c_TPatt ern_M ni ng. snr = ¢ AND
Dynanmi c_TPattern_M ning.tt = 7;
SELECT Trajectories.id
FROM Traj ectories, T_Patterns
WHERE T_Patterns.contains(Trajectories.id)

Procedurally, the above statement involves two stepsheddentification of the
required T-patterns and the hybrid manipulation of thetattith raw trajectory data.
In algebra:

TID (Uk(Trajectories) .contains(Trajectories.ID) (Trajectories))

O

Progressive Mining Tasks The possibility of specifying suitable population op-
erators allows multiple stages of analysis for the minirsphes.

Example 3.30For instance, to diagnose the causes of mobility congedtienuser
may wish to gain an insight into the collective movement efibhicles in the answer
to the lastQ, (example 3.29. In particular, she may focus on the onesnetlby

Q..

CREATE MODEL T_Patterns AS M NE Dynami c_TPattern_M ni ng
FROM Tr aj ectori es
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WHERE Dynami c_TPattern_M ni ng. density = § AND
Dynani c_TPattern_M ni ng. snr = ¢ AND
Dynanmi c_TPattern_M ning.tt = 7;
CREATE MODEL Moving_Clusters AS MNE MC
FROM ( SELECT *
FROM Traj ectories, T_Patterns
VWHERE T_Patterns.contains(Trajectories.id))

This pattern discovery task involves the execution of theving cluster algo-
rithm M C, that is one of the schemes in [84]. In algebra:

k]\lC (o—kTpamern (Trajectories).contains(Trajectories.1D) (TTCL]CCtOT‘ZGS))
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Classification in hostile environments

Various types of classifiers have been proposed in the titerathat meet several
different requirements in a wealth of distinct applicatsaitings, such as decision
trees, rule-based classifiers, neural networks, bayekiasifiers, support vector ma-
chines and statistical classifiers [37]. In particularerigarning is a method for in-
ducing minimal rule-based concept descriptions, that @aanded for classification.
Rule-based classifiers are a mainstay of research in matdaneing, because of
various desirable properties such as, e.g., their expersesss and intelligibility to
humans as well as their efficiency and effectiveness inifieestson. Such classifiers
have been empirically shown to be effective in processipgr&e) high-dimensional
training data with categorical attributes [99] and are caraple in performance with
other classification methods in several applicative dos8da]. Unfortunately, like
most classification models, rule-based classifiers exhilgbor classification per-
formance in imprecise (multi-class) learning environmsemthich are challenging
domains wherein cases and classes of primary interestdde#ining task are rare.
Besides, minority and majority classes can be hardly sepmemnd the cost of mis-
classifying a case of a minority class as belonging to a prédant class is much
higher than the cost of the dual error. Also, training datg becorrupted by noise,
which further obstacles the identification of rarities.

Imprecise domains are often encountered in practical egdins. Examples
include fraud detection [50, 87], intrusion detection, mifacturing line monitor-
ing [90], risk management, telecommunications manage&ht medical diagno-
sis [29], text classification [103] and oil-spill detectionsatellite images [72]. The
peculiarities of such settings pose several challengsugisto traditional algorithms
for learning rule-based classifiers, that essentially nila&eesulting models low sen-
sitive to rarities.

Rarity is clearly the major obstacle. Rare classes corregpto the well known
class imbalancéssue [60, 61], i.e. an evenly distribution of classes, shelt ma-
jority classes overwhelm minority ones. Instead, rare £ase very small portions
of the training data, that can be viewed as exceptional suicepts seldom occur-
ring within predominant or rare classes. As it is pointedinyfl03], rarity actually
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prevents conventional algorithms for rule induction fromdfing and reliably gener-
alizing the regularities within infrequent classes andegtional cases.

Indeed, class imbalance generally leads to classificatiodefs tending to ex-
hibit a high specificity (i.e. capability at recognizing rogfy classes), coupled with
a low sensitivity (i.e. capability at recognizing minoritiasses).

Rare cases, instead, tend to materialize within the ledassidication models as
small disjunctg59], i.e. rules covering very few training cases [102]. 8dizjuncts
were empirically shown to be a major cause of poor predig@réormance [104] and
cannot be easily removed without adversely affecting tmeaieing classification
rules.

The foregoing effects of rarity on rule learning are exaatl by noise. On one
hand, the latter may further skew class imbalance. On ther dthnd, it may also
appear to the learner as nearly indistinguishable fromaases.

Besides rarity and noise, different misclassificationsastwell as low class sep-
arability also have a role in making conventional rule lé@grschemes inadequate
within imprecise domains.

In the last decade, classification based on frequent paftelso known aasso-
ciative classificationhas emerged as a powerful enhancement of conventional rule
learning, based on converging research efforts in mackaming and data mining.
Precisely, the basic intuition behind associative clasifin is to substitute conven-
tional rule induction with an association-rule mining st€pe resulting classification
models, said associative classifiers, consist of class@s®Em rules, i.e. suitable as-
sociation rules meeting some specific constraints. Thecadénts of these rules are
co-occurrent attribute values, that frequently appeanszcthe training data, while
their consequents are suitable values of the target cla#suéd. Associative clas-
sification is in principle better suited for unsuperviseddictive modeling within
imprecise learning settings: it retains the advantagesaditional rule learning and
also tends to achieve a better performance for severalmsaBoremost, while rule
induction dilutes rarity and produces overly biased ruéssociative classification
yields rules with an appropriate degree of generality/dioétg, that summarize the
whole training data. Also, the individual class associatioles catch strong, i.e.
frequently occurring, associations between (combinatiof) data items and class
labels. This is a robust mechanism with which to handle nisgata. Addition-
ally, such associations reflect the inherent semanticseofrtining data and, thus,
have a high discriminative power. The resulting asso@atiassifiers are statisti-
cally significant and are hence deemed to properly generalizunseen data [31].
Furthermore, frequent patterns represent a more expegfesiture space, where the
original training data is likelier to be linearly separable

One limitation for associative classification, that is autarly relevant in impre-
cise learning settings, is borrowed from traditional r@darhing. More specifically,
the decision regions induced by a rule-based classifiertantiue distribution of the
classes in the space of data do not match. Indeed, classesdgions with irregular
and interleaved shapes, whereas the induced decisiomsagjie neatly separated by
boundaries parallel to the features of the data space. Aeseqaence, those cases
falling within and close to the boundary of a decision regioay be misleadingly
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predicted as belonging to the class associated with thasideaegion, even if the
true class membership in the surroundings of the boundaliffésent. This is prob-
lematic in imprecise applicative domains, wherein the ssplity between classes is
low, since these form true overlapping (or embedded) reggibnsuch cases, indeed,
the true regions formed by rare classes may be (partly or Eeip) overlapped by
the decision regions associated to the predominant classkshus, the recognition
of previously unseen cases of the rare classes becomes aanagern.

in this thesis, two approaches are proposed that look atiasise classification
from two dual perspectives.

From theglobal-to-localpoint of view, associative rule learning yields a global
(high level) classification model, whose class assignmardgshen refined locally
to the individual classifier rules. In this regard, one appfoessentially builds a
hierarchical classification framework, that combines eigdive rule learning and
probabilistic smoothing [34]. The underlying idea is to dle individual rules of
an associative classifier to divide the original trainingadato as many segments,
wherein itis likely that some globally rare cases/clasge®e less rare. The result-
ing segments are then used to build as many local probabijeherative models,
that better catch the forms of rarity local to their segmentese probabilistic gen-
erative models are then used to refine the predictions frencldssifier rules. Two
distinct schemes are proposed for tightly integrating eiaswe classification and
probabilistic smoothing, that decide the class of an uridabease by considering
multiple class association rules as well as their corregipgnprobabilistic genera-
tive models.

From thelocal-to-globalpoint of view, instead, associative rule learning provides
local data features, that determine global assignmentasd probabilities. Therein,
in the second approach, the individual rules of an assueiatassifier are used as
features. Given a data case, classification takes into at¢ba predictions from
all those rules that are local to the case (i.e. that covec#ise). The relevance of
a rule with respect to its targeted class determines thehweigthe corresponding
feature on the discrimination of that particular class.sTémables the recognition
of minority classes via those classification rules, thathaghly representative of
such classes (i.e. whose antecedent reflects item co-eoces that are inherently
characteristic of such classes). The maximum entropy finarieis used to elegantly
and seamlessly integrate associative classification vistrichinative learning.

4.1 Preliminaries

Here is an introduction of the notation used throughout tlauscript and some
basic notions. Le® be a relation storing the labeled training cases. Also,Het t
schema ofD be a setd = {A; : Dom(A;),..., A, : Dom(A,),L : L} of
descriptive attributes. In particular, featurds, ..., A,, are defined over as many
categorical or numeric domains, whereas the target clasbua¢ L is a categor-
ical feature. The generic labeled training case D is a structured tuple, i.e.
t € Dom(Ay1) x ... Dom(A,) x Dom(L). Each tuplet can also be equivalently
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represented in a transactional form. Therein, assumeMhat {i1,...,i,} is a
finite set of items denoting relationships between anytaite of A but L and a cor-
responding value. Precisely, the generic itamas the formd = v whereA € A— L.
In the proposed formulation, € Dom(A) if A is a categorical attribute. Otherwise,
if Ais a numeric attributey stands for the label of some suitable range of numeric
values, whose center is closest in Euclidean distance trifj@al value ofA (more
details on the discretization of numeric attributes arevigied within section 4.4).

Any unlabeled casé defined overd can be represented as some suitable subset
of items in M. Notice that there must be exactly one item/ifior each attribute
of the relational schema. This is concisely expressed by means of theperator,
whose meaning is revised as follows™ M = {i;,,...,4;, | ;, € MAattr(i;,) =
Ay, VR =1,...,n}, where notationuttr(-) indicates the attribute referred to by the
individual items of!. Viewed from this perspective, a labeled case adesimply
becomes an unlabeled case supplemented with its corraggoridss label. Lel
be a finite domain of class labels, the original datd3eatan thus be equivalently
expressed in transactional form ovet as a collectiorD = {t1,...,t,}, in which
the generic labeled case is represented asI U {class(t)}, whereI c M and
class(t) € L denotes the class label of

A number of definitions recalled in throughout the manudaip reported next.

Definition 4.1 (Class association rule)A class association rule (CAR): [ — cis
a pattern whose implicative catches the association (e .co-occurrence) i of
some subset of itemisC M with a class labet from£. O

The notions of support, coverage and confidence are typiealployed to define
the interestingness of a rute

Definition 4.2 (Support of a class association rule)Let D be a set of training
cases. A training casé € D is said tosupportrule » : I — c if it holds that

(I U{c}) C t. The support count af, denoted byr(r), is the overall number of
training cases that support i.e.,o(r) = |{t € D|(I U {c}) C t}|. The support of

a

r is instead the fraction of training cases supporting.e., supp(r) = Ig\)’ where
|D| indicates the cardinality gD. O

Support is useful to avoid spurious rules. Intuitively,erantecedents with high
support in the individual classes capture the inherent séosaof the underlying
data, rather than being artifacts.

Definition 4.3 (Coverage of a class association rulel.et D be a set of training
cases. Rule : I — cis said tocovera training caset € D (and, dually,t is said
to trigger or firer) if the condition/ C (¢ — {class(t)}) holds. The set of training
cases covered hyis denoted byD,. = {t € D|I C (¢t — {class(t)})}. Hence, the
coverage of- can be defined as the fraction of case€inthat are covered by, i.e.
coverage(r) = ‘l%l‘. Analogously, the aforesaid rule: I — c is said tocoveran

unlabeled training casé’ if it holds that/ C I’. O
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Definition 4.4 (Confidence of a class association ruleJhe confidence of a rube
denoted byconf (1), is the ratio of support to coverage, i.eanf(r) = _supp(r) _

coverage(r) "
O

Confidence measures the predictive strength of a CAR.

Although the traditional support and confidence framewdidne to effectively
discover all the required class association rules, it gtdlduces uninteresting rules
when the class distribution is imbalanced. The point is, thaguch cases, confidence
is not a reliable measure of the interestingness of a rutegst does not properly
take into account the actual implicative strength of the ruthose antecedent and
consequent can be negatively correlated [8, 6]. To overcaumh a limitation, it is
possible to consider the degree of positive correlatioméen the antecedent and
the consequent a rule.

Definition 4.5 (CAR correlation). The correlation of a ruler : I — ¢, denoted

by corr(r), measures the relationship between the anteceflant the consequent
c. Formally, it is defined agorr(r) = %, whereP (I U ¢) is the occurrence
frequencysupp(I U ¢) of I U ¢ across a seD of training cases. Analogously,(7)
and P(c) correspond to the occurrence frequencied @indc in D. If corr(r) < 1,

r is negatively correlated. Insteadyrr(r) = 1 denotes absence of correlation (i.e.
I and ¢ co-occur by chance), whereasrr(rr) > 1 represents positive correlation.
0

In highly imprecise learning settings, a class associatitey is interesting if it
is positively correlated and also meets certain minimunuiregnents on its support
and confidence. An associative classifier is a suitable miijopn of propositional
i f-then rules, that can be used for the classification of unlabeledsa

Definition 4.6 (Associative classifier)An associative classifi&t approximates the

(unknown) discrete-valued case labeling function belind he learnt approxima-

tion is represented as a disjunctiGn= {r, V. ..Vr;} of interesting class association
rules extracted fronD. O

An associative classifigf is used in section 4.2 to globally segment the whole
training data, for the purpose of bringing to the surfaceéhariginally rare data, that
becomes less rare within each resulting segment. Insteagction 4.3, the CARs
of C are viewed as properties local to each individual data case.

4.2 TheGlobal-to-Local Supervised Learning Framework

Here is a discussion on global-to-local approach aimed to learn a hierarchical
framework from the training casés, that consists of two classification levels. At
the higher level, an associative classifier is built suchitia@omponent CARs meet
some requirements on the minimum support and confidenceededr CARr € C,
the lower level of the framework includes a local probabiigenerative modeP (")
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that allows to confirm or rectify in the classification of an unlabeled case. The over-
all learning process is shown in algorithm. 1. Given a dagaaof training cases
(defined over a se#t of items and a sef of class labels), the algorithm begins (at
line 1) by extracting a seR of class association rules frof via the MINECARS
search strategy.

The rule sefR is subsequently sorted (at line 2) according to the tota¢iord
which is a refinement of the one in [75]. Precisely, given twesr;,r; € R, r;
precedes:;, which is denoted by; < r;, if (i) the confidence of; is greater than
that ofr;, or (i) their confidences are the same, but the suppor} if greater than
that ofr;, or (jii) both confidences and supports are the samey;lstshorter than
Tj.

The learning process proceeds (at line 3) to distil a clasgifiby pruningR,
which generally includes a very large number of CARs, thay merfit the train-
ing cases. For this purpose, the overfitting avoidanceegfyapresented in [27] is
exploited to reduce the complexity of the discovered CARSilavstill improving
their error rate. This is essentially accomplished via #raaval of individual items
and/or whole rules.

The resulting classifief may leave some training cases uncovered. Therefore, a
default rulery : ) — ¢* is appended t6 (at line 5), such that its antecedent is empty
andc* is the majority class among the uncovered training cases.

As aremark, notice that, due to the total ordeenforced oveiR, the associative
classifierC is actually a decision list: each training case is classHigthe first CAR
in C that covers it. In other words, the CARs ¢hare mutually exclusive, i.e. a
training case is covered by at most one rule of the classgea consequence, the
generic CARr : I — c hereinafter covers the set of all those training cases tieat a
not covered by any other CAR with higher precedence. Moreigedy, the definition
of the coverag®,. of CAR r is refined intoD, = {t € D|I C (t — {class(t)}) A
Bec:r <ry I — 1" C(t—{class(t)})}. Moreover, the addition to
C (at line 5) of the default rule,; ensures thaf is also exhaustive, i.e. that every
training case oD is covered by at least one CAR 6f

Finally, for each CARr € C other thanry, a local probabilistic modeP (")
is built (lines 7-9) overD, to catch a better generalization of those globally rare
cases/classes that become less rare withinThis allows to refine the prediction
from r with a local generative model that is better suited to de#i e local facets
of rarity.

The MINECARS procedure is covered in subsection 4.2.1. TRaNLOCAL-
CLASSIFIERStepis instead discussed in subsection 4.2.2, that algocthe classifi-
cation of unlabeled cases (not reported in algorithm 1) écibntext of two schemes
for a tight integration between associative and local podissic classification.

4.2.1 Mining the Class Association Rules

MINECARS is an Apriori-based algorithm, adopted to mine positivetyrelated
CARs from the available training dafa MINECARS combines into the basic Apri-
ori algorithm [4] two individually effective mechanismsamely multiple minimum
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Algorithm 1 HierarchicalLearningit,D,L,7)

Input: a finite setM of boolean attributes;

a training datasep;

a setl of class labels irD;

and a support threshotd
Output: An associative classifiét = {r; V...V r,} and a set of local classifié?, . ;
1: R + MINECARS(M, D, 7);
2: R <+ ORDERR);
3: C + PRUNER);
4: if there are cases iP that are not covered by any rule withitthen
5  C+« CU{ra};
6
7
8
9

s end if
: for each ruler € C, such that # r4 do
P < TRAINLOCALCLASSIFIER(r);
. end for
10: RETURNC andP(") for eachr € C

class support [76] and complement class support [8]. Algindaoth designed to deal
with rarity in data, to the best of the candidate’s knowlgdbe joint effectiveness
of such mechanisms has not yet been exploited. Algorithneghlks the scheme of
MINECARS algorithm, which divides into frequent itemset discovdiggs 1- 18)
and CAR generation (lines 19- 26).

Frequent itemset discovery starts (at line 3) with a set of candidate-itemsets,
including an item and a class label. At the generic iteratMmNECARS builds Ly,

a set of frequenk-itemsets, fromL,_;. Two steps are performed to this purpose.
Thejoin step(at line 14) involves joining.,_; with itself to yield C},, a collection

of candidatek-itemsets. Notice that this requires joining pairs of freuk — 1-
itemsets with identical class labels. The well-knotvpriori property, according to
which an infrequent itemset cannot have frequent supeglisdten used (at line 15)
to drop fromC;, thosek-itemsets with at least orle— 1-subset that is not i, ;.
The support counting steflines 5- 12) involves counting the occurrences of the
surveyed candidate itemsetqify by scanning the training dafa. Those candidates
whose support exceeds a class-specific threshold are eoaditb be frequent and
retained withinL,. The level-wise search halts when no more frequent itencsets
be discovered.

Multiple minimum class support [76] is employed at line 13te purpose of au-
tomatically adjusting the global minimum support thresholprovided by the user
to minimum support threshold specific for each class. Egdbnthe generic candi-
date itemset is frequent if its support is over - o(class(c)), the minimum support
threshold forclass(c). Multiple minimum class support implements a first stage of
focused pruning, that dynamically assigns a higher mininsuipport threshold to
majority classes (which prevents from yielding severalfitting rules) and a lower
minimum support threshold to minority classes (which ecdgrthe generation of an
appropriate number of rules).
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Complement class support [8] is instead used in the CAR g#inarstage, to
avoid the specification of a global minimum confidence tho&khin particular, a
specific property of complement class support (shown inig8gxploited at line 22
to automatically identify a class-specific minimum confidethreshold. According
to such a property, arute: I — cis such that/ andc are positively correlated if
and only if conf (I — ¢) > T(DCI)' whereo (c) is the overall number of occurrences
of classc in D. Therefore, the CARs whose confidence exceeds (at line 82pih-
imum threshold corresponding to their targeted class aaeagiieed to be positively
correlated. Thus, both confidence and positive correldigiween rule components
can be verified without additional parameters or furtherelation analysis.

The dynamic selection of a class-specific minimum confideheceshold acts
essentially a second stage of focused pruning, that entheekscovery of accurate
rules targeting the rare classes and still avoids the ggoeraf an overwhelming
number of rules from the predominant classes.

4.2.2 Training Local Classifiers

To improve the classification performance both in the surdings of decision
boundaries as well as within the inner areas of decisiororsg{wherein classes
other than the ones associated to the whole regions mayrn8ube classification
of nearby unlabeled cases), each CAR C is associated with a local probabilistic
generative modeP ("), trained over the regularities across the training cases lo
to D,.. In principle, such regularities are likely to be more dgsare of those glob-
ally rare cases/classes that become less rare withirHence, the individuaP (")
can be involved into the classification process for more i@tely dealing with the
corresponding forms of rarity.

In this thesis, it is adopted, as probabilistic generatiadeh, the néave Bayes
classification model. It, naturally, allows to incorpordke effects of locality on
classes and cases in terms of, respectively, class pridritean posteriors. To eluci-
date, an unlabeled cagec M is assigned by the generic generative madél to
the class: € £ with highest posterior probability

[Lics p(ile,r)p(clr)
> eer [ Lier pile, r)p(e|r)

Locality influences factorg(c|r)’s andp(i|c, r)'s, whose values are estimated by
computingp(c) andp(i|c) overD,., and allows to better value rare cases/classes. In-
deed, if a significant extent of some form of rarity falls viittD,., the corresponding
cases/classes are obviously less rare thdhamd, hence, factongc)’s andp(i|c)’s
are accordingly higher (w.r.t. their valuesir. Dually, p(c)'s andp(i|c)’s are sen-
sibly lower, if the density of that form of rarity withif®,. is much lower than irD.
However, this is acceptable, since most of that form ofyasitstill captured within
some other region(s). An inconvenient behind the adoptionaive Bayes as the
underlying model for local probabilistic classifiers is jtsrformance degrade (e.g.
accuracy loss) due to the attribute independence assumpoalleviate such an is-
sue, the weaker attribute independence assumption piestiteAODE [101] can be

ARCHESICIRE
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Algorithm 3 The process for mining class association rules from data naitty

Input: a finite set of boolean attribute's;

a training datasep;
and a support threshotd

Output: a setR of class association rules;

QoNOR~RWNE

/* Frequent itemset discovery */
I+ 0, k<+ 2

. Let £ be the set of class labels 1p;
: LetCs «+ {c|c = {l,i} wherel € L,i € M};
: while Cy, # () do

for each candidate itemset Cj, do

supp(c) < 0;
end for
for t € Ddo

for ¢ € Cy such that C t do

supp(c) + supp(c) + py;

end for
end for
Ly, < {c € Ci|supp(c) > 7 - supp(class(c))};
Chir < {ciUgjlei, ¢5 € Li A class(c;) = class(c;) Aei Uej| = k+ 1};
Cly1 < {c € C 1|V C csuchthaid| = k it holds thate’ € Ly };
k<+ k+1;

. end while
L+ UrLy;

/* CAR generation */

"R+ 0
. for each frequent itemséte 7 do

create rule : I — class(I) — class(I);
if conf(r) > % then
R+ RU{r};
end if
: end for
: RETURNR;

plugged into the above formulation, that simply refinetradayes by considering
each attribute dependent upon at mesther attributes in addition to the class. This
is more realistic in practical applications and is empiticahown in section 4.4 to
yield a better performance.

Two alternative approaches for refining the predictionsiftbe associative clas-

sifier C through the local probabilistic generative modB!$)’s are discussed next.

Local priors and local instance posteriors.

The idea is to reformulate a generative approach to claadit which spans into
local generative models. Given an unlabeled dadet 2 = {e,|r € C} a space of
events related to the classification/ofia an associative classifiér More precisely,
the individual event, corresponds to the coverage bthrough a corresponding
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CAR r € C. The exclusiveness and exhaustiveness of the CARdnmply, respec-
tively, the mutual exclusiveness and the collective extiaersess of the events if2.
Therefore, it is possible to employ the well-known law ofaigirobability to define
a joint probability distribution over unlabeled cases alag€ labels as shown below

ple, 1) = ple,I,r) =Y ple,d|r)p(r) = > PO (elD)p(I|r)p(r)

e €82 e €82 e €2

The interpretation of the terms within the above formulars/ried nextp(I|r)
represents the compatibility dfwith the ruler. p(I]r) is modeled as the relative
number of items that shares withr: intuitively, the number of (mis)matches repre-
sents the closeness bfo the region bounded by P(") (¢|I) denotes the probability
associated witl by the local nive Bayes classifieP (") trained overD,.. p(r) indi-
cates the supporupp(r) of CAR r and weights its contributions ta(c, I) by the
relative degree of rarity of its antecedent and consequent.

Finally, the probability of class given the unlabeled cadecan be formalized as
the following generative model

ple, I)

p(ell) = S D

Cumulative rule effect.

A stronger type of interaction between global and local@#ean be injected into
the classification process, if the predictions from a CA&d unrelated local gener-
ative modelP("") (with »  r’) are compared for selecting the most confident one.
The overall approach sketched in algorithm 4. Precisetygémeric unlabeled case
I C M is presented to the associative classifieand the first CAR" : I — ¢ (in
the precedence order enforced over) is chosen (at line 1). if does not cover,

it is skipped and the next rule is recursively taken into actdat line 20). Other-
wise,r is used for prediction. However, its target class not directly assigned té.
Rather, the local probabilistic generative mo@ét) corresponding te is exploited

to produce a possibly more accurate prediction (at line dinétests are performed
to identify the more confident prediction (lines 9- 15). Ith@ounterparts agree or
one is deemed to be more reliable than the other one, the pegdiction (in terms
of class-membership probability distribution) is retudri@nes 10 and 12). Other-
wise, in the absence of strong evidence to reject the piedifiom P(") (which is

in principle preferable te, being more representative of the local regularities that
may come from globally rare cases/classes that fall withjih » is skipped in favor
of the next CAR € C covering! (at line 14). To this point, ifP("") predicts/ more
confidently tharP(") (at line 5), the probability distribution from®("") replaces the
current best distribution yielded B§(") (at line 6) and the choice of a better predic-
tion is hence made betweehandP (™). In the opposite case, the choice involves
' and the current best distributid?(™). If no prediction is clearly eligible as the
most confident throughout the search, the process halts thietefault rule is met
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and the current best distribution is returned (at line 19tid¢ that the so far best
class-membership probability distribution is remembeatedughout the consecu-
tive stages of the search process via the input arguments. , p,. (such arguments
are individually set t@) at the beginning of the search process). A key aspect of the
overall search process is represented by the criteria@adépthoose the more confi-
dent prediction between the ones from a CARand a local probabilistic generative
modelP("). Accuracy is used as a discriminant between the alterrsatinepartic-
ular, the accuracyiec® (P(")) is the percent of cases (") correctly predicted
by P(") as belonging to class The accuracyicc®) (r,,) of a CAR 1, predicting
classc is its confidenceonf (1, ). When comparing the accuracies of a CARand
alocal probabilistic generative modgl”+) there four possible outcomes.

1. P4 is clearly deemed more reliable thgn(at line 9), if the weighted accuracy
of the formerp*, is greater than the accuracy of the latter.

2. ry, is preferred tgP (") (at line 11) if the accuracy of the former is greater than
or equal to the weighted accuracy of the latter and both aaymglow.

3. ry, is preferred toP("!) (again at line 11) if its accuracy is much greater than
the weighted accuracy @P("). Therein,% > px* is a prudential threshold,

that represents the normalized weighted accuracy Rt . In practice;, is
actually preferable t@ (") iff its accuracy exceed%.

4. There is no strong evidence (at line 16) to reject eitheor P(":) when the
accuracy ofry, lies in the interval(px, ﬁ). In such a case; is skipped and the
search proceeds to considering the next CAR in the assaxigtssifielC that
coversl (through the recursive call at line 14).

4.3 ThelLocal-to-Global Supervised Learning Framework

Here is proposed lacal-to-globallearning framework, that uses suitable features lo-
cal to a data case, for predicting the global conditionabphility of classes given the
case. Features are a sort of declarative mechanism fofpgaspects of data cases
that are relevant, to some extent, towards classificatitmthre individual classes.
The relevance of a feature with respect to a certain clagsrdetes the weight of
that feature on the discrimination of the particular clagsus, the recognition of
minority classes can be addressed by identifying specifitufes that are highly
representative of such classes.

The starting point is the observation that the training datgenerally provides
partial information on the associations between data casgéxorresponding class
labels. The latter is especially true in imprecise domagtsalise of rarity. This sug-
gests that the conditional probability distribution ofsdas should minimize com-
mitment, i.e. fit the evidence observablelinand still be as uniform as possible in
the prediction of whatever is not observabl€inSuch a conditional probability dis-
tribution represents the most unbiased assignment of plagmbilities complying
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Algorithm 4 Prediction(C,I,p, ..., pk)
Input: An associative classifiet;
an unlabeled caseC M;
Output: the class distribution fof;
1: select the firstrule : I’ — ¢, in sequence withid;
2: if r coversI (i.e.I’ C I) then
3:  if |C| > 1 (i.e.r is not the default rulejhen

4: letp, = P (ci|I) - ace'®? (P(T)) CVi=1,...,k;
5: if maz;(p;) > maz;(p;) then
6: letp; =p;, Vi=1,...,k;
7 end if
8: letp™ = maz;(p:) andi™ = argmaz,(p;) andp = Y=, pi;
9: if acc®n)(r) < p* then
10: RETURN the distributiottp1 /p, . . ., px/p);
11: else ifi* = h or acc“»)(r) > £* then
12: RETURN the distributioacc ) (r), . .., acc®¥) (r));
13: else
14: Prediction(C — {r}.I,p1, ..., pk);
15: end if
16: else
17: RETURN the distributiorip: /p, . . ., pr./p);
18: endif
19: else
20:  Predictior(C — {r}.I,p1,- .., Pk);
21: endif

with the observable evidence. Any other probabilistic gmsient would be biased,
i.e. would assume the availability of arbitrary informatithat is not present if.

To elucidate, consider an hypothetical four-class clasgibn setting, where
L = {c1,c2,c3,cq4}. Classes; andc, are rare, whereas; andc, are predomi-
nant. Assume that an exploratory analysi®ofeveals that a certain itemset- M
appears within classes andc, with a frequency that amounts to, respectivély;
and 30% of the overall number of its occurrencdscan be viewed as a data fea-
ture and the statistical observations concerrlirgn be stated as constraints for the
conditional probability distribution in order for the lattto agree with the empirical
evidence. When a newly arrived caBeis presented to the conditional probability
distribution for classification, there are two possikgléti If I’ includesI (i.e.I C I'),
the conditional probability distribution provides the igssnentsp(c; |I’) = 0.5 and
p(ea]I’) = 0.3. The remainind).2 of the probability mass is uniformly distributed
between classes andc, (in the absence of any further specific information on this
aspect), so thai(cs|I’) = 0.1 andp(c4|I’) = 0.1. Notably, I is inherently charac-
teristic of the rare classes andc, and its adoption as a data feature allows for a
proper discrimination of such classes. If instéadoes not contair, the conditional
probability distribution assumes (in the absence of anth&rrevidence observable
in D) maximal ignorance and, hence, predicts each of the fowsilplesclasses with
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uniform probability, i.ep(c1|I") = p(ea|I’) = p(es|I’) = p(eq]I”) = 0.25. In this
manner, the conditional probability distribution agreéthe observed evidence in
D and still avoids assumptions on whatever is unknown.

Thelocal-to-globalapproach relies on statistical modeling and learning ttét t
evidence inD. For this purpose, the training data is used to identify aofdea-
tures useful for classification. The individual features #iren employed to specify
as many constraints for the conditional probability dizition to learn. The generic
constraint essentially forces the expected value thatahdittonal probability dis-
tribution assigns to some corresponding feature to be tine s& the expected value
of that feature empirically observed . In general, the space of features can be
potentially very large. In these cases, computing the agtoanditional probability
distribution as a closed form solution that meets all thecijgel constraints is pro-
hibitive. Maximum entropy model [19] provides an expressand powerful mathe-
matical framework for iteratively computing the requiradtdbution. It is also used
to elegantly and seamlessly integrate two establishedadstiiom the fields of ma-
chine learning and data mining. On the machine learning sideriminative learn-
ing is used to directly compute the conditional probabititstribution of the classes,
given an unseen case. The main difference with respect ®rggvre learning, that
would instead model a joint probability distribution ovdagses and cases, is that
discriminative learning allows to better fit the trainingaldy carefully setting the
distribution parameters. On the data mining side, asseeialassification provides
the space of features to which the training and newly arrilegd is mapped.

4.3.1 Modeling Data Evidence through CARs, Features and Cotrsints

In the proposedocal-to-globallearning framework, features are associated to the
individual CARs of an associative classifier formed as dbedrin subsection 4.2.1
(no further post-pruning is applied to these CARs). ThereiC be an associative
classifier. The space of featur@s= { f,,|r; € C} is essentially a finite set of real-
valued indicator functiong,,, each of which is associated to a corresponding CAR
r; € C. Assume that the generig has the implicative structure : I’ — ¢/, with

I' ¢ Mandd € L. Moreover, letl C M denote a data case and L represent
any class label. The generic featyie is defined as the following indicator function

1ifI'CIANd =c
0 otherwise

f'r‘i:I’—>c’(I7c) - {

The individual featuref,,.; . is said to bedocal to I if f,,.;.—«(I,c) > 0.
Training and newly arrived cases can hence be represenseitaisle configurations
of local features, which are useful for classification. ititely, the interpretation of
CAR r; is thatI’ can be viewed as a sort of contrast set [13] for the targetesicl
d, i.e. as a co-occurrence of items that is inherently charistic of ¢/, since its
distribution inD is meaningfully associated with the classTherefore, ifr; covers
I (i.e. I’ C I) and the class considered foll coincides with the class targeted
by r;, ¢’ is an eligible class fof. Therein, a measure of the suitability @ffor I is
provided by the value of,,.;/ .
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Actually, features are normalized so that their sum amatantsHere, it is spec-
ified that the generic featurg..; (I, ¢) is normalized into the corresponding

e (1 C)
,,/ Iyl I,C = fT’LAI e ( ’
wle ( ) Z?”q‘, frizl’ﬁc’(ly C)

and additionally highlight that, for simplicity, the origal notationf,...; . (I,c) is
still maintained in the ongoing discussion to mefdn;, ,..(1,c).

Features are the basic building block for specifying caiiss. These are nec-
essary to make the required conditional probability distibn fit the observed evi-
dence inD. To elaborate, the empirical evidence relative to eachufedt., is sum-
marized intoE'p ( f,, ), which is the expected value ¢f, observed irD. Its definition
is

Ep(fr,) =Y _pp(t)fr,(t — class(t), class(t))
teD

wherepp is the observed occurrence frequencyt @f D, i.e. pp(t) = ﬁ. Con-
straints force the required conditional probability dimition 7 to agree with the
feature expectations observedZn In other words, for each featurg,, a corre-
sponding constraint is specified that equates the expeatad thatP assigns tof,,
to the expected valuEp( f,,) observed irD. With respect to the generic featufe,
the expected value ¢f., due toP can be approximated as shown below

E(fy)= > pU.)fr(,c)

ICM,cel

= 3 b)Y PN S (1.0)

IcM cel

S po(D) S PlelD i, (I, 0)

IcM ceLl

Q

where the (unknown) prior probability distribution of cagé:) is approximated by
the empirical distributiorpp(+). The termpp (1) approximates(I) by the occur-
rence frequency of in D.

Finally, restrictingP to have the same feature expectations as the ones observed
in D requires setting the following constraints

E(f.,) = Ep(f,,) foreachf,, € F

The above restrictions exclude from further considerashrthose conditional
probability distributions, that do not accord with the olveel feature expectations.

In principle, there are infinitely many conditional probaidistributions con-
sistent with the specified constraints. The maximum entgayciple suggests to
choose the conditional probability distributi@hthat fits the constraints (i.e. agrees
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with the observed evidence) and maximizes entropy for thases that are not sub-
ject to the constraints. These latter cases are hence @wedabe members of the
distinct classes with the most uniform probability distitibn.

The mathematical derivation of the required conditionatrihution” as well
as the estimation of its parameters are beyond the scopeasofmtmuscript. The
interested reader is referred to [19] for an exhaustive rame

4.4 Evaluation

It was conducted a systematical experimental study devotedderstand whether
the proposed hierarchical classification scheme exhibipgavement in classifica-
tion performance with respect to established competifrghis purpose, the com-
parative evaluation is carried out over some standard el@tals particular, some
datasets chosen from the UCI KDD repository [9], with highssl imbalance, are
used. Also, the approach is tested over the KDD99 intrusédeadion dataset, named
kdd99. The latter is a extremely unbalanced dataset, whereirfleguency classes
are characterized by noise. A further non-publicly avdddbst datasef,r aud, is a
real-life fraud detection dataset, with a very low classsability.

Experiments consists in comparisons against severallissiad rule-based and
associative classifiers. The selected rule-based comsetire Ripper [33] and
PART [51], while the associative ones include CBA [75] and ARI[106]. In par-
ticular, the implementations of CBA and CMAR in [32] were &ifed. All tests are
conducted on an Intel Titanium processor witBb of memory an®Ghz of clock
speed.

All numeric attributes in the selected datasets are syitdibtretized prior to the
application of the devised schemes. The adopted disctietizstrategy partitions the
values of each numeric attribute into natural clustersmadel-based clustering. The
idea is to view the values of a numeric attribute as the redaltstatistical generative
process, which is modeled through a mixture of univariatessen distributions.
For each numeric attribute, the choice of the most apprgpriamber of clusters
(i.e. distinct Gaussian distributions in the mixture mddsl|performed by letting
such number range frorh up to a certain maximum, which is fixed i@ in the
experimental setting. The discretization of each numeititbate into any number
of clusters in the aforesaid range is then assessed thipdgd cross validation.
More precisely4 folds of attribute values are used to estimate the valuefiof t
parameters in the hypothesized mixture model (i.e. the raadrstandard deviation
for each Gaussian distribution as well as the weights ofrid&vidual distributions)
by means of the well-known EM algorithm [80]. The remainimddfis employed
to evaluate discretization quality. This latter step imesl employing the estimates
of model parameters to compute the likelihood of the attebralues in the test
fold. Eventually, the number of clusters chosen to partitiee values of the generic
numeric attribute is the one with maximum average likeldhoo the test fold and,
thus, the values of the attribute are replaced by the labiseo€luster to which they
belong with highest probability.
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The execution of the selected classifiers is reiteratedakmes, under different
parameter configurations and the result of the individualcaiion were averaged
through leave-one-out method. For each classifier, thdtsesorresponding to the
best parameter configuration are reported.

Schemes simply require the specification of a global mininsupport. Due to
the adoption of minimum class support [75], such thresto&litomatically adjusted
to become a class specific threshold. In particular, theaglebpport threshold is
fixed to20%, which is transparently adjusted to be, within the indiabciass in the
data at hand, th20% of the frequency of that class. The exploitation of completme
class support [76] permits to avoid specifying a minimumfitance threshold.

The approaches are compared using accuracy, some meafi@fcurves and
the Area Under the Curve (AUC) relative to the minority clagsbles 4.1 and 4.2
display the results. Within the tables, competitors arelmenad from(1) to (4). Pre-
cisely, (1) indicates Ripper(2) corresponds to PART, whil€3) and (4) stand for
CBA and CMAR, respectively. Proposed schemes are insteabened from(5)
to (9). More specifically,(5) and (6) indicate naive Bayesian smoothing (respec-
tively through local priors or cumulative effect)7) and(8) are AODE smoothing
(respectively, through local priors or cumulative effe€inally, (9) represents the
maximum entropy approach.

Table 4.1. Classification accuracy

Dataset Q) @ G @ G © @) ©) (©
anneal 98.2698.2592.81196.3398.5398.5398.4398.43 66.70
balance-scale 80.3083.1768.8168.4981.4081.0480.2780.37 63.52
breast-cancer 71.4569.4169.2067.6770.3470.3472.3072.30 76.02
horse-colic 85.1084.3781.6283.9682.5682.5683.2083.20 85.21
credit-rating 85.1684.4581.7483.7680.4§80.44985.9085.90 85.32
germancredit 72.2170.5473.1073.3474.0374.0374.8774.87_69.67
pimadiabetes 75.1473.4577.8773.0373.3173.3175.0275.02 64.39
Glass 66.7668.7572.6974.2358.9459.1767.4867.15 67.32

cleveland-14-heart-diseg#9.9578.0082.1275.1281.2981.2981.1581.01 90.54
hungarian-14-heart-dised9.5781.1482.0679.6981.2481.2482.6282.38 86.70

heart-statlog 78.7077.3382.5984.1980.4180.41/78.9678.96 88.7(
hepatitis 78.1379.8(079.8981.0881.2281.2281.1081.1Q 80.63
ionosphere 89.1690.8387.8989.7482.8582.8588.3(088.30 75.21
labor 83.7077.7386.6788.7784.6084.6087.1387.13100.00
lymphography 76.3176.3781.1889.5978.3§78.38§78.0078.08 88.54
sick 98.2998.6297.5197.6498.2598.2598.3998.39 97.64
sonar 73.4077.4080.0082.7875.2875.2873.7973.79 96.63
fraud 93.0793.0280.8290.5291.7891.7992.6192.61 93.27
kdd99 96.61/96.9894.6594.6395.98§95.9896.6596.65 92.34

The results clearly state that the combination of asseeiatiassification and
probabilistic smoothing is at least as accurate as the s¢mifte-based classifiers
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Table 4.2. Area Under the Curve

Dataset (1) )] (B) 6) (M) (B) (9)
anneal 0.760.880.930.93/0.930.930.90
balance-scale 0.860.920.94/0.94{0.87/0.87/0.67
breast-cancer 0.600.590.67/0.67/0.690.690.75
horse-colic 0.830.860.850.85/0.880.880.95
credit-rating 0.87/0.880.880.88/0.930.930.94
germancredit 0.630.67/0.77/0.77/0.780.780.71
pimadiabetes 0.720.780.780.780.790.790.76
Glass 0.800.790.800.80/0.81/0.800.76

cleveland-14-heart-dise&®.81,0.800.880.880.900.890.97
hungarian-14-heart-dise@s780.86/0.880.880.900.900.92

heart-statlog 0.800.780.860.86/0.81,0.810.96
hepatitis 0.620.780.800.800.840.840.99
ionosphere 0.890.890.900.900.900.900.97|
labor 0.820.730.860.860.950.951.00
lymphography 0.400.64/0.56/0.56(0.980.890.94
sick 0.940.950.97/0.97/0.960.960.90
sonar 0.750.790.800.800.770.771.00
fraud 0.680.77,0.81]0.81/0.920.900.60
kdd99 0.980.990.990.990.990.990.92

chosen for the comparison. In many cases, howeggrand (9) achieve improve-
ments in accuracy, that are statistically significant adiomy to the t-test. In addition,

a deeper analysis reveals that the response versus thesct#Ssterest is strongly
improved. Such an improvement can be appreciated by loakitige details of the
individual datasets. To elucidate, in fig. 4.4 the confusimatrices originated byl1)
and(7) over theger man- cr edi t dataset are reported. Notice that the probabilistic
smoothing recoverd9 tuples to the minority class, thus allowing to achieve highe
precision.

Predi cted ->|good|bad| |Predicted ->|good|bad
good| 607 | 93 good| 611 | 89

bad| 155 |145 bad| 194 |106
AODE local priors(9) Ripper(1)

Fig. 4.1.A comparison between the confusion matrices yielded by AODE localgifigrand
Ripper(1) over theger man- cr edi t dataset

A further analysis of the results obtained overfth@ud and thekdd99 datasets
provides an in-depth into the effects of smoothing. Figudesthiows the ROC curves
relative to(1), (2), (5) and(7). There is an evident improvement in the underlying
area with respect to the competitqrs and (2), whose trends are plotted in red.
Results with th&kdd99 dataset are even more surprising, and in particular with the
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u2r class, as shown in figurg that represents the curves relative to the schemes
(1), (2) and (7). Theu2r class is made 056 tuples (out of 150K), and still the
probabilistic adjustment is capable of recovering soméleroatic cases.

Ripper
01 PART
! - - -NB {local priors)
i — AODE (local priors)
4] 0.1 02 0,3 04 0.5 06 0,7 08 09 1
Fig. 4.2.ROC curve for the minority class 6fr aud
1 —
B i
rlJ Tt
08 __ r..;,—-ﬂf;-e—:’-—a—-"—_""—‘):"'_'l.
!
08
07 A
06 1
05 A
0.4
03
021 — Ripper
01 | —--PART
' — ADDE (local priors)
0 T T T v T T
0 01 0,2 03 04 0.5 06 0.7 08 09 1

Fig. 4.3.ROC curve for the minority2r class within the&kdd99 dataset
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Finally, the ability of the approaches at dealing with thasskes is compared in
table 4.2, which tabulates the average of the AUC values thesrclasses within
the selected datasets. Overall, the devised schemes fautpehe competitors by
exhibiting a significantly improved performance (i.e. a siderable increase in the
area under the ROC curve) across all classes within thexdigtatasets and, in par-

ticular, withhepat i ti s, | ymphogr aphy andf r aud, where the improvement
is over10%.
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Collaborative Filtering

Collaborative filtering(CF) data exhibit global patterns (i.e. tendencies of some
products of being ‘universally’ appreciated) as well sfigaitive local patterns (i.e
tendency of users belonging to a specific community to espsansilar preference
indicators on the same items). Local preferences affegyéinormance of th&®ec-
ommender Syste(RS) especially when the number of users and items grows, and
their importance has been acknowledged by the current &fatitre.

Typically, local patterns can be better detected by mearsoaflustering ap-
proaches [54, 58, 62, 68, 83]. Unlike traditional CF techie} which try to discover
similarities between users or items using clustering teghes or matrix decom-
position methods, co-clustering approaches aim to pamtifiata into homogeneous
blocks enforcing a simultaneous clustering on both the dimas of the preference
data. This highlights the mutual relationships betweemsuged items: similar users
are detected by taking into account their ratings on sinitiéams, which in turn are
identified considering the ratings assigned by similarsiser

However, a main weakness of the current approaches to stedhy is the static
structure enforced by fixed row/column blocks where bothrsiaed items have to
fit. For example, the movies “Titanic” and “Avatar”, are tgplly associated with dif-
ferent categories: the former is about romance, wheredattiee can be considered
an action, sci-fi movie. Assuming a global and unique partitn the item-set, it is
expected to see the movies into different partitions. Hamethat structure would
fail to recognize a group of users who are really into the regvif James Cameron
(the director of both movies). Analogously, any method esgimg the two movies
with the same partition would fail in catching the differenio genre.

The issue in the previous example is that different usergg@an infer different
interpretations of item categories. A more flexible struetwhere item categories
are conditioned by user categories, would better model sitohtion, by e.g., al-
lowing “Titanic” and “Avatar” to be observed in the same iteategory within the
“Cameron” group, and in different categories outside. dithat traditional cluster-
ing approaches are not affected by this problem, as they aigentrate on local
patterns in one dimension of the rating matrix. The drawbholever, is that they
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ignore structural information in the other dimension, whiy the converse can be
exploited both for more accurate prediction and user pnofili

This thesis presents a probabilistic hierarchical apgraslich is able to dis-
cover both global and local trends in data, allowing différeser communities to
show different preference values on distinct groups of #efihe proposed schema
differs from the previously proposed coclustering apphescto CF data because it
does not assume the existence of a unique partition on timesi&éd: each user com-
munity is characterized by having its own set of topics imima items and user pref-
erences. Following a hierarchical clustering approacitially, user communities,
gathering together similar users, are determined. Them&goh user community the
clustering phase produces a mixture of topics upon whiclitéime set and the user
preferences are accommodated into categories. Each itaup ¢ characterized by
theintracluster consistency propertyith respect to the considered user community:
each item and its neighbors, associated by having recesmenon rating value in
the context of the community, will belong to the same clustith high probability.

The hierarchical coclustering model does not enforce aimpgtassumption on
the membership of users and items improving the flexibilitthe model itself. Each
user participates to different user communities with aatertlegree and, given a
user community, each item may belong to different item-gaties. As a result, the
proposed model summarizes the advantages of a flexible lghstia structure for
user profiling and a competitive prediction accuracy on ustngs.

5.1 Notation
A RS consists of a set d¥/ usersd = {uy,- - ,un }, which will be indicated for
short as theuser-seta set of N itemsZ = {4y, ---,iy}, Nnameditem-set and a

collection of rating values expressing the preference efuser on a corresponding
item. Such collection of preference indicators can be mepreed as &/ x N rating
matrix R, wherer} is the rating given by the useron the itemi. Ratings can be
integer values within a scale(low interest) tol” (strong interest). Even in the case of
a very dynamic system, the rating matrix is typically chéggzed by an exceptional
sparsity rate; if the rating for the pajrser, item) is unknown it will be assumed
ri = 0.

LetZ (i) the set of users who evaluated the iterwhile Z(u) will denote the set
of all the items for which the user has expressed her preference. An example of
rating matrix with\M = 7 users andV = 5 items is shown in Fig 5.1. The goal of
a RS is to learn a preference functipn{ x Z — {1,--- , V}, which associates to
each pai(user, item) a rating value within the admissible range. E8tdenote the
predicted rating for the paii, ). Considering the case of users and products which
have provided/received at least one preference valuesad@x@luation metrics have
been proposed to quantify the quality of a prediction athoni Denoting by/” a test-
set collection of tripleguser, item, rating), one of the most referenced methods
to measure the performance of a predictor is the Root Meaar8dLError, which
emphasizes large errors:
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Fig. 5.1.An example of rating matrix
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In a probabilistic settings, random variables/, andU are adopted, and denote a
rating, an item and a user respectively. ThBOR = r) will denote the probability to
observe a rating with value and analogously?(U = ) will denote the probability
that a given rating has been give by useWith an abuse of notation, the random
variable in the specification will be omitted. For exampiy, u, ¢) will denote the
joint probability P(R = r,U = u, I =1i).

5.2 A Hierarchical Co-Clustering Approach for Modeling User
Preferences

The starting point in the proposed approach is the observaliat different com-
munities can infer different evaluations of the same itepecHic groups of users
tend to be co-related according to different subsets olufeat However, though
semantically-related, two users with (possibly severdf@iénces in their item rat-
ings would hardly be recognized as actually similar by armbgl model imposing
a fixed structure for item categories. Individual user cannbended as a mixture
of latent concepts, each of which being a suitable collactibcharacterizing fea-
tures. Accordingly, two users are considered as actuathjlai if both represent at
least a same concept. Viewed in this perspective, the fitsiton oflocal patterns

i.e. of proper combinations of users and items, would leatthéodiscovery of nat-
ural clusters in the data, without incurring into the afaidsdifficulties. Consider
fig. 5.2. In this toy example, there are 7 users clusteredtimtomain communi-
ties. Community 1 is characterized by 3 main topics (withugi,; = {i1, 2,13},
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dia = {ia,i5,16,17} anddyz = {is,%9,%10}), Whereas community 2 includes 4
main tOpiCS (Wlth groupdgl = {il,i4, i5}, dog = {ig,i37i7}, d23 = {iﬁ, ilg} and
day = {is,19}). The novelty is that different communities group the satems dif-
ferently. This introduces a topic hierarchy which in prjsleiincreases the semantic
power of the overall model.

i |12 |13 |la |15 [Ig |1z |lg |lg |l

1 1 5 4 5 2 2 _fi i i
- || YU dy = {i.1.13}
£llu, |t |! O N O e A R A R
= 2 2 42t52 062107
=
£ 1 1 1 4 5 5 2 _fi i
= dy = {ig. 1}
o
Sy 1 1 5 4 5 4 2

rl

| us |5 4 5 5 1 4 3 1 dy = {i}.1s.15}
el - - -
Sy 4 1 5 5 1 4 3 3 1 dy = {iy,1s,1;}
E b d.={i i
5 5 4 5 1 4 3 3 s = {lssho}
=] - -
e Uz d, = {is, 15}

Fig. 5.2.Example of Local Pattern in CF Data

The generative model for the proposed scheme is shown fig3iark can be
summarized as follows:

1. Select a user community, according to the probability distributioty,;

2. select a user with probability P, (u) = P(ulci) and an itemi with probability
Py (i) = Piley);

3. Choose a topid;, with probability P(dy, |, ¢ ) P(dp |u, ci);

4. produce the rating with probability ¢, (r) = P(r|dy).

Formally, the probability of a tripletu, i, r) is

K
P(uyi,r) = Zkak(u)Pk(i)P(rﬁ, U, C) (5.1)
k=1
where .
P(rli,u,cx) =Y ¢n(r)Peldnli) Pe(dp|u) (5.2)
h=1

The latter correspond to a “local” probabilistic latent seric analysis, provided
that the user communities are known.

The idea, in the above formula, is learning latent commesifrom the data as
well as a collection of characterizing concepts for each roomity. In particular,
each rating can be seen as the outcome of a mixture of varomeepts, where some
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Fig. 5.3.Graphical Model for the Hierarchical Approach

concepts are more or less probable according to the clubenevthe user fits. Hence,
a data tuple can be thought as the outcome of the followingrg¢ime model: firstly
pick a distribution over latent clusters; next, choose thiecepts associated and fi-
nally generate the individual values. Also, notice the @i¢he 7y, &k = 1,..., K
prior probabilities in the generative process. In practibey model the assumption
that observing a paifu, i) is not totally random, but it is instead the result of the
grouping of users into communities.

Due to the strong coupling between the user community latemdblec and the
one corresponding to local patteryghe exact inference for the model characterized
by the joint probability in eq. 5.1, which would maximize hdahe user community
cohesion and the local topic similarity, is difficult to selanalytically. Hence, an
approximated solution is adopted, it is based on a hardeziast policy for user
communities, such that the inference of the parameters eg@etiormed efficiently
without compromising the generative semantic and the fiiyilof the model.

A hierarchical approach is devised to the estimation of tramonents involved
into eq. 5.1. In practice, the proposed approach consisispireliminary discovery
structure, where user communities are detected. Next,gch eser community, a
topic model is investigated, and the most prominent topiesdascovered and prop-
erly modeled.

The general scheme of the algorithm is shown in algorithm cbcauld be sum-
marized as follows: given a rating mat¥, discoverk user communities; then, for
each of those communities, according to an hard clusteppgoach, select fro¥
a subset of users that belong to the considered communitgemelate a set dfy,
topic models for their ratings.

The hierarchical model for users’ ratings consists in a &t aiser community
models and for each of them a set/@f, topic models which represent local pref-
erence patterns for the member of the considered commdiigyuser community
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Algorithm 5 HierarchicalModelbuild

Input: The set$/ = {ui,...,unp}andZ = {i1,...,in}
and the corresponding rating matigg

Output: asetC = {ci,...cx } of user community models

and a subseb” = {a{", ..., dgfi} for each user communitly
1: C + GenerateUserCommunities(R);
2: for all community modety, k =1,..., K do

3 letUy = {u € Ulp(ek|u) > plejlu),j = 1,..., K}, andRy the corresponding
submatrix ofR;

4. DF GenerateTopicModels(Ry);

5: end for

level specifies the probabilitieg,, = P(cx|u) with k = 1,..., K, which measure
how much the ratings given by the usefit the preference behavior underlined by
each of the communities.

The probability of observing the rating for the pair(u,i) can be computed
considering two schema, summarized in algorithm 6:

e Hard-Clustering Prediction:

Hy,
P(rli,u) = én(r)Pr(dnli) Pr(dnu) (5.3)
h=1
where
k= argmaz;—i. ... k(Vuj) (5.4)

is the cluster that better represents the previously obserating of the user
u. This prediction rule relies exclusively on the informatigiven by the topic
model corresponding to the user’s cluster; thus it mightipoe low quality pre-
dictions if the user's community is not identified with enbuzpnfidence.

e Soft-Clustering Prediction:

P(rli,u) = yuk - P(rli,u, i) (5.5)
k

where the probabilities, ;. act as mixture weights and the distribution over rating
values corresponding to the communityis computed taking into account both
global and local patterns:

P(r|i,u, ci) If u € Uy,

P(rfi,u, ex) = {P(r|i,ck) otherwise (5.6)

Note that ifu € U, then~,; is the dominant mixing weight and the distribu-
tion over ratings is refined by considering the correspagdet of topic models;
in the opposite case the distribution over ratings can benattd by consider-
ing the probability of observing each rating given an iterthini the considered
community.
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Algorithm 6 HierarchicalModelcomputeRatingsProbability
Input: a pair(u, )

Output: a probabilityP(R = r|u, ¢) for each rating value

1: letc = argmazxj—,... kp(cklu)

2: forall r=1toV do

3: if Hard-Clusteringthen

4: P(R = rlu,i) = 323, ¢n(r) Pe(dnl) P (dn|u)
5. else
6: for all community modet,, k =1,..., K do
7 if k= cthen
8: prob < D*.getRatingProbability(r, u, i)
9: else
10: prob < ci.getRatingProbability(r, 1)
11: end if
12: P(R =rlu,i) < P(R = r|u,i) + Yur X prob
13: end for
14:  endif
15: end for

5.2.1 Modeling User Communities.

The discovery of the communities is accomplished esséntiéd a model-fitting
procedure based on a maximume-likelihood estimation. lotpre, the rating matrix
R is modeled as a set of user vectors, where each vector isctbiarad by the
preferences of the user. Formally, this means that the piiitlyap(r, i|u) for each
triplet (r, i, u) can be modeled.

The corresponding probability of observing a user henceesponds to the joint
probability of observing all his ratings, that is

N V
P(ule.R) = T] (P(il6) - P(1i, €)1
i=1r=1
where
1 |f 7",7; =7r

O(usi,r) = {O otherwise
This modeling allows us to adopt a maximum likelihood applot the estimation
of the ©® parameters characterizing tf&:|©) and P(r|i, ©). For exampleP(i|©)
can be characterized via a bernoullian pdf parameterized; bgnd P(r|i, ©) as a
multinomial (with factorss,.;).
The componenP(r, u, i, ¢;) and the posteriors,;, can be estimated by assum-
ing the existence of a set of communities, where each contynomadels specific

user attitudes. In particular, the probability of obsegvanuser is given by the mix-
ture

K

P(ulC) =) P(ule;)m;

j=1
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Where a single communityis characterized by the parametess ando,.;;.
Estimating the parameters by means of an EM procedure yik&l$ollowing
equations:

o E-Step:
P N .
Yuj = Plcjlu) = — (ulej) - m;
Ej’zl P(U|CJ/) T
e M-Step:
M
i = M
! M
M \% .
o = Zuzl Yuj Zr:l 6(“7 2, T)
YoM SNV VooS(u. i
Zu:l Yuj Zi’:l Zr:l (’U/77, 77')
M )
_ Zu:l Yuj * 5(“’7 1, T)
Orij =

Sy Yooy Vi - Oy, 7)

A further advantage of the above formalization is the padksilof exploiting
the above model for prediction purposes as well as for farcttire discovery. A
prediction function in fact can be defined as

v
it =E[Rlud] =Y 1Y orik Yuk (5.7)
r=1 k

and used as a baseline for the special case described inGstdmlyorithm 6. The
resulting baseline function is even competitive with staft¢he art approaches.
The above formalization also allows an alternative ganssiadel

exp l_ (v, — Mij)2]

P(?"l?;,Cj) = N(UlT,;?/’l/lJ?Ulj) 20_2
i

1
B vV 27T0'ij
wherew;, is the Z-score normalization efwith regards to useu:
o' = 7= [y
Ou
and the means and the variances are estimated as propo8&Ql in [
The rating prediction for the pair, i) can be hence computed as:

K

k=1
and theM-Stepscan be rewritten as:
S S g - 0wy i) vl
S S b (u, i, r)
2 iy 00 Yak - O(usd 1) (0] — k)’
Yut X Yukd(u, i)

Hik =

S
=
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5.2.2 Local Community Patterns via Topic Analysis

The approach to the discovery of local community patterrmised again on a EM
procedure which aims at maximizing the likelihood of Re = {(r, u, 7)|p(ck|u) >
p(cjlu),7 = 1,..., K} rating matrix associated to a community modelIn prac-
tice, the expected log-likelihood is defined

M N V H,
QR W) =D D3> “hy(hiryi,u) -
u 7 T h
[log ¢p (1) 4 log Pr(dp|i) + log Py (dp|u)]

wherey (h;r,i,u) = P(dy|r, 4, u, ;). The EM algorithm can hence be defined in
terms of the following formulas:

e E-Step:
‘ &n(r) Py (dni) Py (dn|u)
her. —
N SN (SYACARTX A
e M-Steps:
. ZM ZV P (hyr,i,u)
P d — U T
M) = S S i)
YN (b u)
P- d — 7 r
k( h|u) Zh' va ZY ¢k(h';T7i,U)
P(r|dh) = N(T;Mdh’adh)
where

o Zgj ZZN Z:«/ wk(h;rvivu)(g(u7iar) T

- ny Ziv Zywk(h;ni,u)&(u,i,r)

g = Ziw Ziv ZX wk(h;r,i,u)é(u,i,r) : (7“ - ,udh)2
! Z'L]/\,/I Z"r/ va wk(h,r,z,u)(S(u,z,r)

Hdy,

5.2.3 Computational aspects

Once the parameters of the hierarchical model have beenatstd, the on-line com-
plexity for computing predictions scales with the numbeusér communities and
corresponding topics, while the off-line phase requiresemesources. In fact, the
complexity of the learning phase is determined by the coriglef discovering user
communities, which is linear with the number of observeths.

To avoid overfitting, which could deteriorate the predietskills of the models
on unobserved data &warly Stoppingcriterion is adopted: a fraction of the data has



56 5 Collaborative Filtering

been retained as held-out dataset and the models have bessuton the remaining
part of the data until the accuracy on the held-out data Isdgiincrease.

The estimation of the correct number of clusters is accahpll by resorting
to a Cross-Validation approach based on a penalized Loglihibod principle, as
described below. Given a sél of observations (in this case, the rating mafiix
and its subsetR}), the objective is to find the model parametérsnaximizing the
probability P(©|D). In logarithmic terms,

log(P(©|D)) x=log P(D|O) + log P(O)
= log(L(O|D)) + log P(O)

The idea in the above formula is to counterbalance two opgogiquirements: the
fitting of the data and the complexity of the model. By modglin©) can be mod-
eled as an exponential distribution w.r.t the sizé&pko

log(P(©|D)) = log(L(O|D)) — mlogn

wherem is the size of© (i.e., the number of model parameters), an the size
of D. The evaluation strategy hence consists in compuggP(©|D)) for each
possible®, and in choosing the model where it is maximal. In partigutee strategy
can be summarized as follows:

1. fix the valuess,,,;,, and K, 42
2. choose the numbér of cross-validation trials;
3. for each triak:
a) sample a subsél,..;, from D;
b) for k ranging fromK,,,;,, and K, 4
c) computeog(P(Ok| Diyain))®;
4. for eachK, average the valudsg(P(Oy|Diyain))¢ OVere;
5. choose the value* such thalog(P (O« | Dtrain )9 is maximal.

5.2.4 Discussion.

There are several major differences between the modelsildedén section 2.3 and
the above formalization. Considering pLSA, the hiddenalalg = there is used to
discover similar trends in the rating behavior and encoesagrouping users into
user communities. The prediction relies solely Bfv|i, z) and does not consider
item hierarchies and, hence boosted predictions triggeyesimilar items. By con-
trast, the proposed hierarchical approach aims to disd¢owal patterns for each user
community. Also, there are two further components whichdbdloe prediction ac-
curacy of the underlying user community model. First, thétimomial prior ; for
each user community, which helps in preventing overfitting by counterbalancing
the contribute of each userin v,,;. Ther; component can be interpreted as a lapla-
cian smoothing based on uniform Dirichlet priors. Cleaghplicit modeling of such
priors via Bayesian estimation, in the style of [78], can Beped. However, as dis-
cussed in the next section, the computational cost woukt#ge significantly. Also,
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the a;; component explicitly models the likelihood that itérhas been rated within
communityj. The latter also is a major difference, at the user commueNsi, with
respect to the multinomial mixture and the User Rating Rrafibdels, discussed in
[79].

Also, notice that the co-clustering techniques discussebé previous section,
like the Flexible Mixture Model, assume the existence of adipartition both for
user communities and for item categories. In the analyzed g@stead, each user
community is characterized by its own partition over theniteet with a flexible
number of topics. In addition, co-clustering models onlgdarce prediction on the
basis of local contributio?(r|cx, dy, ). By contrast, according to eq. 5.6, prediction
of the proposed model benefits from both local and globakin&dion.

A final remark is concerned with the possibility of considerthe proposed ap-
proach symmetrical. The proposed model starts with usermaamties and then gen-
erates topics. In theory a dual scheme could be viable as efirst generating
item categories and then specific user communities conéitido item categories.
However, duality only holds if the number of rows and colurohthe rating matrix
are of the same order of magnitude. In fact, the number of imml@ameters in an
item-based mixture grows linearly to the number of userthdfnumber of items is
significantly less than the number of users, this would caluseyeneration of few
categories characterized by too many parameters (and asaqueence the resulting
model would be prone to overfitting).

5.3 Evaluation

The effectiveness of the proposed approach is evaluatéaldn tlifferent respects:

e To measure the effectiveness of the EM algorithm adoptetiérfitst stage in
discovering communities fitting the training data. Sinceheeommunity should
be able to model a user’s preferences, it is interesting @some the prediction
accuracy of eq. 5.7 and eq. 5.8, which exploit the communiggures.

e To measure the overall prediction accuracy of the hieraatl@pproach, and to
compare it to other well-known approaches in the literature

e To inspect informative content of the structures discoddye the hierarchical
approach proposed so far. Essentially, the objective isspdct the communities
and the relevant topics discovered, and to find empiricalicoations concern-
ing the key ideas explained in the beginning of section 5.2.

Two popular benchmark datasets (Netflix and Movielens) seel dior rating pre-
diction and validation of the predictive performance of tireposed approach. In
short, Netflix dataset contains oved0 million of ratings given by480, 189 users
on a set ofl7, 770 movies, collected between OctobE98 and Decembe2005.
The Netflix Prize dataset has been the reference data forieaigiomparisons of
Collaborative Filtering algorithms during the last yeansiinly for 3 reasons: (i) size
of dataset and sparseness coefficient; (ii) availabilityestilts from competitive al-
gorithms; (iii) availability of a baseline score for the gietion error, achieved by a
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Netflix MovieLens
Training Set Test Set|Training SefTest Set
Users 435,656 | 389,305/ 6,040 6,040
Items 2,961 2,961 3,706 3,308

Ratings 5,714,427|3,773,781 800,168 {200,041
Avg ratings (user) 13.12 9.69 132,47 | 33,119
Avg ratings (item) 1929.90 | 1274.50, 215.91 | 60.47
Sparseness Cogff 0,9956 0,9643

Table 5.1.Summary of the Data used for validation.

real RS (the Netflix Cinematch algorithm) on the same datésstibsample of the
above data was exploited. The data is divided into trainimdj i@st set, where the
latter contains ratings given by a subset of the users inr#iging set over the same
set of items. Info about this dataset are summarized in tab. 5

fig. 5.4 shows the empirical cumulative densities for botbrwnd item ratings
within the subsample adopted here. There are some majeratiifes between the
original Netflix dataset and the subsample used here. Fon@gait can be see from
fig. 5.4(a) that ove60% of the users have less thanratings and the average number
of evaluations given by usersi8 (whereas the original dataset exhibits an average
200 ratings). In addition, figure 5.4(b) shows that o¥6%; of the items have received
less thar200 ratings, with an average value o929. Again, the average ratings in
the original dataset wer#00. In practice, the exploited subsample is more difficult
than the original datasét.

The MovieLens-1M dataset consists af 000, 209 ratings given by, 040 users
on approximately, 706 movies; each user in this dataset has at I2@satings. The
original data is randomly partitioned intty5 training and1/5 test set. Again, tab.
5.1 summarizes the values exhibited by the subsets. Morghas been a reference
dataset for several CF algorithms.

5.3.1 Predictive Accuracy.

The proposed approach is compared with most algorithmsiamert in section 2.3.
In particular, Regularized SVD [7], pLSA [57], FMM [62], Mtihomial Mixture
Model [79] and URP [78]. The summary of the results can be dowrntab. 5.1(a)
and tab. 5.1(b). The algorithms not listed here will be dised separately.

In a first set of experiments, the achieved performance imated by the User
Community Models, considering both the Multinomial and @eussian version and
performed a suite of experiments varying the number of usemaunities and com-
pared the obtained RMSE values with the ones achieved by élne<gan pLSA al-
gorithm on the same data.

! This also explains the difference between the values declared in the bpgjmers by the
competitors and the values reproduced on the subsample.
Zhttp://ww. groupl ens. org/ systeni fil es/n -data- 10MLOOK. tar. gz
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Experiments on the three models were performed by retaitiedg0% of the
training (user,item,rating) triplets as held-out dataalfyn10 attempts have been ex-
ecuted to determine the best initial configurations. Ptextis for the User Com-
munity Models are generated according to eq. 5.6, becaeseprary experiments
have shown that it outperforms the Hard-Clustering preéatiatule. Performance re-
sults of the two User Communities Models and pLSA are showrigures 5.5(a)
and 5.5(b).

Considering NetFlix, the multinomial User Community apgeb and the pLSA
do not produce a significant improvement over the Cinemaése bwhich is close
t0 0.95; for both these models the best RMSE values is achieved tsidenng150
user communities. The average RMSE for the pLSA mod&bi$74 and only minor
improvements on this result are observed varying the numbausters. The gaus-
sian User Community version outperforms both the multiredmmiodel and pLSA,
achieving the best RMSE value ©0280 when30 user communities are employed.
The learning phase corresponding to the best model takag abaminutes on a
INTEL XEON E5520 at2.27 Ghz, with an average df iterations needed to reach
convergence. It was not possible to extensively report oMFid URP here, due
essentially to the high computational resources needeldsetmodels. Tab. 5.1(a)
shows some partial results on FMM obtained with a limited hanof user clusters.
Surprisingly, the multinomial User Community model has gngicant worsening
on MovieLens. The z-score normalization, exploited in e§, plays an important
role in improving both the clustering and the predictive afzifities of the gaussian
model respect to the multinomial version.

Switching to the hierarchical schema allows us to obtainewefined results.
The Hierarchical approach has been evaluated by consideathn the multinomial
and the gaussian version on the first layer clustering (byicéag to a range of
user communities from0 to 100), and adopting the procedure for the dynamic esti-
mation of the number of topics described in section 5.2.35fig(d) and fig. 5.5(c)
show the performances achieved by the two version and treanigeved by a nat-
ural competitor based on latent factors: the regularize® 9% both the cases, the
hierarchical approach produces a significant improvemeet the first clustering
layer, outperforming the SVD model. On Netflix, hierarctiepproach produces
RMSE valued.9222 (multinomial model) and).9211 (gaussian model), while the
best result achieved by the SVD modeDi§275. This situation is also reflected in
MovieLens where the Reg. SVD produce®345. Again, it's a surprise to see that
in this case the multinomial hierarchical approa6t9%74) outperforms the Gaus-
sian hierarchical((9296). This result is even more surprising, especially because t
multinomial user communities didn’t perform very well iretfirst level. It seems that
the adoption of specific item categories boosts the perfocaaignificantly.

Figure 5.5(e) compares all the probabilistic approaches{dustering on Movie-
Lens data. Here there is a comparison of the proposed ap@meadth FMM, Breg-
man Co-clustering [54] and Block Mixture Model [83]. Agaiie hierarchical ap-
proaches outperform the other co-clustering approaches. dgives evidence that
conditioning item categories to user communities proviater structures. Finally,
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fig. 5.5(f) shows the execution times of these co-clusteaipgroaches. Heré() item
categories and vary the number of user communities are geghlo

A final validation qualitatively compares the proposed apph approach with
some among the most popular and effective approaches foinghakcommenda-
tions. Thesis focused on single techniques rather thamwises or combinations
of multiple predictors. Also, models, that directly modehtporal aspects, was not
taken into account, such as thiene Effechormalization [16] or th&VD withtempo-
ral dynamicg[71]: in fact they exploit temporal information about theefarence of
the users in a given period in order to refine predictions énsdiame period, while in
a typical setting a recommender system is asked to make stiggefor the future.

(a) NetFlix Data

Approaches Best RMSE Parameters

Overall Mean 1.0839

User Avg 1.0368

Item Avg 1.009

Knn Simple 1.0066 K =15

Scalable Coclustering 0.9862 #User Communities = 3 , #Item Categories =5
Weighted Centering 0.9707 a=0.6

Knn with Double Cen. Baseline 0.9637 K =20

Flexible Mixture Model 0.9540 #User Communities = 10 , #Item Categories = 70
Block Mixture model 0.9477 #User Communities = 30 , #Item Categories = 30
PLSA 0.9474 #Latent factors = 100

Knn with user effect baseline 0.9453 K =20

Multinomial Mixture Model 0.9434 # Latent factors = 10

User Communities Multinomial 0.9391 #Latent factors = 70

Regularized SVD 0.9275 #Latent factors = 100

User Communities Gaussian 0.9274 #Latent factors = 30

KNN Relationship model 0.9258 K =20

Hierarchical model Multinomial - Fixed 0.9251 #User Communities = 50 , #Item Categories = 100
Hierarchical model Multinomial - Flexible | 0.9222 #User Communities = 100

Hierarchical Model Gaussian - Fixed 0.9212 #User Communities = 50 , #Item Categories = 100
Hierarchical Model Gaussian - Flexible 0.9211 #User Communities = 30

(b) MovieLens-1M Data

Approaches Best RMSE Parameters
Overall Mean 1.1150
User Avg 1.0462
URP 0.9869 #Latent factors = 10
Item Avg 0.9862
User Communities Multinomial 0.9638 #Latent factors = 4
Multinomial Mix 0.9640 #Latent factors = 2
Weighted Centering 0.961 a=0.7
URP - Boosted 0.9568 #Latent factors =3
PLSA 0.9468 #Latent factors =2
Regularized SVD 0.9345 #Latent factors = 8
Block Mixture model 0.9467 #User Communities = 10 , #Item Categories =7
Scalable Coclustering 0.9416 #User Communities = 7, #I1tem Categories = 5
User Communities Gaussian 0.9359 #Latent factors = 2
Flexible Mixture Model 0.9335 #User Communities = 10, #Item Categories = 10
Hierarchical Model Gaussian - Fixed 0.9297 #User Communities = 2, #1tem Categories = 2
Hierarchical Model Gaussian - Flexible 0.9296 #User Communities = 2
Hierarchical model Multinomial - Fixed 0.9278 #User Communities = 2 , #Item Categories = 3
Hierarchical model Multinomial - Flexible 0.9274 #User Communities = 3
TABLE 11

COMPARATIVE ANALYSIS ON MOVIELENSIM

Table 5.2.Summary of the comparative analysis

Results on Netflix data show that the prediction accuracyeseld by proposed
model is competitive to the ones achieved by other poputameapproaches, such
asPMF [93], Bi-LDA [88] andSVD++ [70]: the first one is reported to achieve on a
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sample of 1M ratings of Netflix data an RMSE equal® #253; the latter achieves

0.9333 on the overall Netflix dataset. As far as tB¥¢D++ is concerned, although it

achieves an RMSE value904 on the considered dataset, the problem with such an

approach is that it takes advantage of implicit informationtained in the test-set.
The proposed model seems to be also competitiveflidih [3] and theRegression-

based latent factor mode[&], which integrate user/item features and o5&, —

25% split of the MovieLens-1M achieve RMSE values®$381 and0.9258.

5.3.2 Structure Discovery

The hierarchical model can be used for classical pattenodésy tasks for CF, such
as the identification of significant or the most appreciateohs for each user com-
munity, as well a new kind of analysis, in which focus is orfefiént topics and
their impacts on the rating behavior of users within the seaammunity. Table 5.3.2
shows a selection from the most significant itemsliouser communities and their
topics. Only5 communities are shown, and theanost relevant topics within them.
An item i is considered significant with respect to a topigvithin the community
kif Py(dpli) > Px(d}]i) VA’ # h. For each community, its prior probability (in
square brackets) and the a-posteriori interpretatiorsdbjpics are registered.

For instance, user community #2 is characterized by thesoffrantasy”, “Sci-
Fi”, “Live-Music Performance” “Action” and “Drama”. It is wrth noticing how the
informative content in the hierarchy allows to better disminate among topics and
tendencies. By focusing on the first level only, the same camity would exhibit a
global attitude towards action movies (as “Gladiator”, é@ard” and “Terminator
2" are the most probable items here).
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Collaborative Filtering

Community 1 [0.09]

Community 2 [0.05]

Community 3 [0.17]

Community 4 [0.06]

Community 5 [0.04]

Topic 1 Curb Your- Star Wars: EpIV| Gladiator The Best- It’s a-
Enthusiasm of Friends ‘Wonderful Life
The Office: Series 2 The Incredibles The Shield Friends: S6 Star Wars: EpIV
The Office Special The Princess Bride Star Wars: EpIV Gilmore Girls Ben-Hur
Monty Python’s Lord of the Rings: Saving- Friends: S5 Gone with-
Flying Circus The Two Towers Private Ryan the Wind
Tnterpr.: | Comedy Fantasy Action, war Sitcom Classic
Topic 2 | DBruce Springsteen: Doctor Who: Knowing Me- The Life and- Blue’s Clues:
Anthology 1978-2000 Pyramids of Mars Knowing You Times of Frida Kahlo Shapes and Colors
Karajan: Mozart: Doctor Who: Shag Birth of the- Yu-Gi-Oh!
Don Giovanni The Ribos Operation Blues / Blue Skies
Music of the Heart Battlestar Galactica Aladdin Julius Caesar Sesame Street
Music for Montserrat Last Exile Side Out American Dream Black Beauty
Interpr.: Music Sci-Fi Comedy Documentary For children
Topic 3 Glengarry- Harry Connick Jr.: The Secret- Reservoir Dogs Gone in-
Glen Ross Only You Lives of Dentists 60 Seconds
JFK Donna Summer: Live Proof of Life Get Shorty Intolerable Cruelty
Bataan Ben Harper: Live The Ice Storm The Naked Gun Confidence
Changing Lanes Mozart: Don Giovanni Body Story 8MM The Naked Gun
Interpr.: Drama Live performances Drama Crime Crime
Topic 4 Highlander Robin Hood: Equilibrium Amelie A Midsummer-
Prince of Thieves Night’s Dream
The Recruit Proof of Life Ladder 49 Victor / Victoria Chances Are
Ali Mission Impossible IT Bad Company Princess Mononoke Fools Rush In
Rambo: First Blood Vanilla Sky ‘Waking Life Sophie’s Choice Mighty Aphrodite
Tnterpr.: | Action Action, famous actors | Thriller Romance Comedy, Fantasy
Topic 5 Men in Black Love Story 13 Going on 30 All the Pretty Horses The Parallax View
Alien Resurrection Coffee and Cigarettes Planet of the Apes Romeo Must Die ‘Waterworld
Spider-Man 2 A Walk in the Clouds Men in Black Great Expectations Romeo Must Die
X-Men: Evolution Hannah and- Rosemary- The Manchurian- Swimming-
Her Sisters and Thyme Candidate with Sharks
Tnterpr.: | Action, Sci-Fi Drama, romance Fantasy, Comedy Drama Thriller

Table 5.3.User communities and relevant topics
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Tree-based data mining

XML is a popular model for data representation, in which twaimtypes of infor-
mation coexist, i.e., pure content and structural inforamatThe latter is a valuable
support for information management, since it allows thenitédin of irregular struc-
tures explaining the nested content.

Conventional approaches to information handling are nairmé&r exploiting
the structural information of XML data [42, 100], being &thdevoted to the man-
agement of highly structured data, such as relational dats) or too focused on
the textual nature of the data, such as in the case of infowmedtrieval techniques.
From this perspective, XML data is a challenging researahalio [39], that calls
for the development of suitable methods for informationdiizugy.

The analysis of the structural information enables moreagife processing of
XML data, since it allows both to understand the spectrumuefriggs answerable by
the available XML documents (i.e. the type of informatiomaedl as its organization)
and to identify XML documents with similar structures ase®&s of the same type
of contents.

In particular, clustering XML documents by their struclufeatures is useful
in several applicative contexts. For example, the deteatfostructural similarities
among documents can help to recognize different sourcegjomng the same kind of
information [18]. Also, it can support the extraction offieea or DTD) structures
from a collection of XML documents [44, 82], by enabling tkdeitification of more
accurate structures from structurally-homogeneous ssib§éhe original collection.
Yet, query processing can substantially benefit from therganization of the XML
documents on the basis of their structure [41, 47].

The problem of clustering XML documents by structure haseedensively in-
vestigated, with the consequent development of severabappes, such as [39, 41,
46, 43, 47]. Catching structural resemblance between XMédis a challenging re-
search issue, that has an impact on both the effectivendsffasiency of the cluster-
ing process. XML trees can share various forms of commortstral components,
ranging from simple node/edge and pairwise tags [56], toencomplex substruc-
tures such as groups of siblings, paths (either root-teeib@] or root-to-leaf [41]),
as well as subtrees or even summaries [47, 46]. Therefothe ibddressed form
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of structural patterns does not accord with the underlyiraperties of XML data,

valuable relationships of structural resemblance betwikerKML documents can
be missed, with a consequent degrade of clustering eféswiss. Moreover, judging
differences only in terms of one type of structural compasemay not suffice to ef-
fectively separate the available XML documents. Thereicar&ful investigation of

the resulting clusters is likely to reveal an extent of irthaster inhomogeneity, that
may be due to uncaught differences in the structures of thé Bdtuments within

the same clusters, ascribable to further unconsideredsfofrstructural patterns.

To address the aforesaid challenging issues, this thegi®pes a new hierarchi-
cal approach to clustering that considers various formgratsiral patterns in the
XML documents to progressively derive a hierarchy of nestiedters. The basic
idea is that, at any level in the hierarchy, clusters are &atioy grouping the XML
documents by some form of structural patterns. Other forfrractural patterns
are used to divide the resulting clusters into sub-clustetie subsequent levels of
the hierarchy, to highlight previously uncaught structuhiéferences. In addition,
the characterization of each cluster is accomplished bynsyxebnew summarization
method, aimed at subsuming the structural propertiesmvéhch cluster in terms of
strongly representative substructures.

As a result, an experimental evaluation over both real-avarld artificial XML
data reveals that the quality of the attained results, imseof effectiveness and
cluster summarization, is on a par and even better than thktyof established
competitors.

6.1 Preliminaries

The notation used throughout this chapter as well as sonie t@scepts are intro-
duced. The structure of XML documents without referencesoeamodeled in terms

of rooted ordered labeled tregthat represent the hierarchical relationships among
the document elements (i.e., nodes).

Definition 6.1. XML Tree. An XML tree is a rooted, labeled, ordered tree, repre-
sented as a tuplé = (r¢, Vi, E¢, At), whose individual components have the fol-
lowing meaningV,; C N is a set of nodes antt € Vi is the root node of, i.e.
the only node with no entering edgds, C V; x V is a set of edges, catching
the parent-child relationships between nodes.dfinally, \; : V — X is a node
labeling function and is an alphabet of node tags (i.e., labels)a

Let n; andn; be any two nodes fronVy. If (n;,n;) € E¢ n, is said to be
the parent of,;, which is instead a child of;. This type of parent-child structural
relationship is representedas < n;. If there is a path of any positive lengttfrom
n; 10 nj, n; is an ancestor ofi;, whereasy; is a descendant of;. The ancestor-
descendant structural relationship is indicatechas<, n;: clearly, if p = 1, the
ancestor-descendant relationship reduces to the panédtrelationship. Nodes in
V. divide into two disjoint subsets: the skt of leavesand the selV; — L; of
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inner nodesA leaf is a node with no children, whereas an inner node hésaat
one child. The children of each inner node are ordered [1]dIStinction is made
between elements and tags of an original XML documents: &@imapped to nodes
in the corresponding XML-tree representation.

Tree-like structures are also used to represent geneuictstal patterns occur-
ring across a collection of XML trees (such as individual esdedges and root-to-
leaf paths).

Definition 6.2. Substructure. Lett ands be two XML treess is said to be a sub-
structure oft, if there exists a total functiop : Vg — V4, that satisfies the following
conditions for each, n;, n; € V. Firstly, (n;,n;) € Eq iff ¢(n;) <, ¢(n;)int
with p > 1. Secondlyps(n) = A [p(n)]. O

The mappingp preserves node labels and hierarchical relationshiphigriétter
regard, depending on the valuegftwo definitions of substructures can be distin-
guished. In the simplest cage= 1 and a substructureis simply aninducedtree
pattern that matches a contiguous portiort,aince maps the parent-child edges
of s onto parent-child edges of This is indicated as C t. A refined definition
follows whenp > 1[40, 107]. In such a case,matches not necessarily contiguous
portions oft, sincep summarizes hierarchical relationships by mapping packitt-
edges ok into either parent-child or ancestor-descendant edgesIdfis is denoted
ass C t ands is also said to be aambeddediree pattern ot. The notion of embed-
ded substructure (i.€5) is useful to catch structural patterns, that may be misged b
exploiting the basic notion of induced substructure (&g.,.Embedded substructures
are exploited (in sec. 6.4.1) to mine representative subistres, that subsume a col-
lection of XML trees with common (i.e., characteristic)ugtiures intermixed with
infrequent (i.e., unrepresentative) structures. Heeeatthe notions of substructure,
(structural) component and tree pattern are used as syrsonym

Clustering by structure aims to divide a collectibn= {t;,...,ty} of N XML
trees in order to form a partitio® = {Cy,...,Cx} of nonempty cluster§;, with
1 =1,..., K. The clustering process generally attempts to maximizel&uygee of

structural resemblance exhibited by the XML trees in theesalaster and to mini-
mize the extent of structural similarity between XML treeside distinct clusters.

At the heart of the problem is the definition of structuralemablance. Ideally,
the clustering process should take into account the masttdeiforms of structural
components for the specific applicative domain. Moreowvéciency and scalability
should not suffer from the number and the structural conifyl@f the chosen com-
ponents, although more complex substructures could makéecing less efficient.

In order to accommodate the aforesaid requirements, a-staljie clustering
approach, that produces a hierarchy of nested clustersy@&aped. The devised ap-
proach substantially differs from conventional hieracethiclustering in that a same
basic partitioning algorithm is exploited at each stafye further separating the indi-
vidual clusters discovered at the previous stagé. Furthermore, cluster separation
at stage is performed with respect to some specific type of structtwatiponents,
that has not been taken into account up to stagel. Examples of structural com-
ponents for the generic stage of clustering include:
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1. The selection of one-node substructures modeling thigidhual nodes in the
XML trees, i.e.,

TW 2 {s|Vy = {rs},It € D,s C t}

In such a case, the generic substructurensists only of its roats, that matches
some corresponding node of an XML tree D.

2. The selection of one-edge substructures modeling tiHerelift parent-child
edges in the XML trees, i.e.,

T 2 {s|E; = {(rs,n)}, 3t € D,s C t}

Here, the individual substructuseonsists only of one eddes, n), that matches
some corresponding parent-child edge of an XML trée D.

3. The selection of one-path substructures modeling thimdisoot-to-node paths
in the XML trees, i.e.,

TW® 2 {spaths®) = {(rs,...,n)},Ft € Ds C t}

In the abovepaths indicates the set of all all root-to-node paths of a subsiirec
s. Eachs in 7(?) consists of only one such a path, matching some (root-t@-nod
or root-to-leaf) path of an XML treein D.

At any stage of clustering, the structural components ertdiel projection of the
XML trees into a high-dimensional space, wherein the o@nae of the individual
substructures within each XML tree is explicitly represehtMore precisely, lef (9
denote the collection of substructures selected at therigestage: of clustering.
The XML trees at this stage are modeled as transactions deature spacé’) £
{Fils € TW}. Here, the generic featur®, is a boolean attribute, whose value
indicates the presence/absence of the corresponding camizoof 7 (%) within the
individual XML trees.

Assume thak®) is the high-dimensional representation of an XML tteAlso,
let x(®) [F,] be the value assumed I in the context ofx(®*). x(*) [F,] is true if
s C t, otherwise it is false. Henc&*) can be modeled as a proper subses6t,
namelyx® 2 {F, € S¥|s C t}, with the meaning that the features explicitly
present ink(*) take value true, whereas the others assume value false teghlting
feature spac8(?), the cost for testing the presence of the selected compenéthin
the individual XML trees is independent of the structuraingexity of the same
components. However, the transactional representatien&¥) involves the non-
trivial discovery of meaningful clusters in large-scalg¢adeses of high-dimensional
transactions.

From this perspective, the proposed approach reformutate®riginal prob-
lem of groupingD by structure as that of progressively projectibginto high-
dimensional representatio®? = {x*) C S®|t € D} and then to exploit such
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representations throughout the various stages of clagteAis it has been antici-
pated, this is accomplished by forming a hierarchy of nestesters rooted ab("),
In this hierarchy, the structural homogeneity of each piackrsterC“—1) resulting
at the end of stage— 1 (over a feature spacg’—1) is refined by separating*—")
into an appropriate numbérof child cIustersCi’), e ,C,(j) (with respect to another
feature spac€(?) at the end of stage

6.2 Partitioning XML Trees

At a given stage, finding clusters in the high-dimensional feature sp&te is

a challenging issue for various reasons [28]. Foremogts#etions tend to form
different clusters on distinct subsets of features, whighgtizes the effectiveness of
clustering and exacerbates its time requirements. Alsor, pealability in both the
size and the dimensionality of the transactions is usuathagor limitation. Yet, an
underestimation (resp. overestimation) of the nunitexf child clusters for a parent
cluster misses (resp. uncovers) actual (resp. artifictal}gs in the XML data.

To best fit the peculiarities of the transactional settingeath stage of clustering,
the XML trees are partitioned by means of ieDC algorithm [28]. The latter is an
effective and parameter-free method for transactionateting, that autonomously
partitions each parent cluster into a natural numbef child clusters by isolating
groups of transactions with meaningful and discriminatmyoccurrences of struc-
tural featuresAT-DC was shown to outperform several established competitbrs.
achieves nearly-optimal results in terms of cluster homegg, compactness and
separation and, also, linearly scales with respect to Ihatlsize and the dimension-
ality of the underlying transactions. These properties endkDC an ideal basic
partitioning scheme to be used in the design of an overallirataige clustering pro-
cess as discussed in the next section.

AT-DC implements a top-down divisive clustering approach. Tige@thm ini-
tially maps the original seP of XML trees to a space of clustering featuresSiti).
This yields the transactional representatibfi). The algorithm hence starts with
a partition? containing a single cluster corresponding to the wholestational
dataset. The core of the algorithm is a loop, where an attergenerate a new clus-
ter is performed byif choosing a candidate node (corresponding to a cluster with
low quality); (i) splitting the candidate cluster into two subclusters; @yl eval-
uating whether the splitting allows a new partition extslietter quality than the
original partition. If this is the case, the partition is aped, by replacing the candi-
date cluster with the new subclusters. Viceversa, sularisisire discarded and a new
candidate cluster is considered for splitting.

The core of theAT-DC algorithm is the definition of local cluster quality: ideall
a cluster exhibits a good quality if it there is a core sub$etlevant features. Thus,
itis possible to measure the gain in feature strength wiheet to the whole dataset,
ie.,
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Quality(C) < Y [Pr(F|C)* — Pr(F|D)?] (6.1)
FeSsS®

wherePr(F|C)? corresponds to the relative strengthfvithin C. Features with
a high occurrence frequency, compared to the occurrengadrey in the original
dataset, define a subset of relevant features, as opposada-tcturrence features,
that are irrelevant for the purpose of clustering.

AT-DC is embedded in the main clustering procedure, as reportég.id. The
latter consists ofn stages of clustering (line 1). The end user incorporatds@il)
valuable domain knowledge and application semantics moctustering process,
by establishing the most appropriate set of structuralifeatS(*) for each stage as
well as the overall number. of stages.

The generic stagé (lines 4-19) consists of two phases: cluster separation and
summarization. Cluster separation expldd&DC to divide the individual clusters
belonging to the current partitioR with respect to the feature spasé&’ (lines 5
- 13). At the beginning, i.e. wheh = 1, the current partitior? includes a single
cluster, which coincides with the whole dataBenf XML trees (line 3). The partition
P resulting at the end of staggline 13) is itself a collection of partitions. More
precisely, at the current stageeach parent cluster from P~ is divided into an
appropriate number of child clusters (line 8), which togettorm the partitioriR of
the aforesaid’. At this point, each child clusta?’ in R is associated (lines 9-11)
with its siblingsC’ £ R — C (for the cluster summarization purpose) aRds then
added to the ongoing(").

Cluster summarization (lines 14-16) is applied to eachtehdsfrom the obtained
P 1t consists of a procedure, discussed in section 6.4, wissciates with a
setRep(C) of representative substructures, that subsume the stalidtformation
within C. P() becomes (at line 17) the current partitignfor the subsequent stage
i+ 1. At this stageAT-DC is re-applied to further divide every clus@re P with
respect to another set of structural features, &€,

The choice of a distinct feature space at each stage guasaatprogressively
increasing degree of structural homogeneity, since the Xidés (corresponding to
the transactions) within the generic clusteff) (that are already homogeneous ac-
cording to the so far considered sets of feat#€s, . .., S()) can still be separated
by isolating groups of such XML trees, which are stronglycdiminated by mean-
ingful co-occurrences of the (previously unconsidered)cstiral patterns relative to
S+1), Obviously, this also implies a significant differentiatim the representatives
of clusters at different stages. Indeed, at each distiagestrepresentatives provide
a summarization of the tree structures within the corredjmanclusters in terms of
(a combination of) the structural features considered aghdicular stage. Hence,
the representative of a subcluster highlights local pasterf structural homogeneity,
that are not caught by the representative of the parentclust
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Algorithm 7 Generate-Hierarchf)

Input: asetD = {ti,...,tx} of XML trees;
Output: a setU; P of multiple cluster partitions;

1: letS™ be the set of features at stagavith: = 1,...,m;
2: leti + 1;

3 letP <« {D};

4: while : < m do

5. while P # 0 do

6: letC be a cluster inP;

7: P+—P-C

8: R + Generate-Clusterg, S);

9: foreachC’ € R do
10: letC’ + R — {C’} be the set of siblings at’;
11: end for
12: PO« POUR;

13:  end while
14: foreachC € P do

15: Rep(C) + MineRefC, C, a);
16: end for

17: P« PY,;

18: i<+ i+ 1;

19: end while

20: RETURNU;P¥;

6.3 TheAT-DC Algorithm

In this section, is shown review of the fundamentals of AieDC algorithm and
show how it can be exploited to develop a cluster hierarchgistussion on the
convergence oAT-DC together with a comparative analysis of its empirical bébrav
against a wide variety of established competitors can bedau [28].

6.3.1 The Basic Partitioning Method

The key idea behindT-DC is to develop a clustering procedure which resembles
the general schema of a top-down decision-tree learningrighgn. It starts from

an initial partition containing a single cluster (repretdem the whole dataset), and
then iteratively tries to split a cluster within the paditiinto two subclusters. If sub-
clusters guarantee a higher homogeneity in the partitian the original cluster, the
latter is removed and the outcome of splitting is added tq#rétion. The approach

is based on the capability of splitting clusters on the baktheir homogeneity. Let
assume that a functioQuality (C) measures the degree of homogeneity of a cluster
C. In practice, clusters with high intra-homogeneity extitigh values ofQuality.

The general schema of th@-DC algorithm is specified in alg. &T-DC initially
maps (lines 1- 2) the original s&t of XML trees to a space of clustering features in
S. This yields the transactional representati®n The algorithm starts with a parti-
tion P containing a single cluster corresponding to the wholesaational dataset
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Algorithm 8 Generate-Clusters, S)

Input: AsetD = {t1,...,tn} of XML trees;
a set of clustering features
Output: A partition? = {Cu,...,Cx} of clusters;
1: letx®) « {F, € S|sC t;} foreachi = 1,..., N;
2: letD’ « {x*) C SJt, € D};

3 letP + {D'};
4: repeat
5:  Generate a new clustérinitially empty;
6. for eachclusterC; € P do
7 Partition-C uster(C;C);
8: P+ PU{C}
9: if Quality(P) < Quality(P’) then
10: P+ P
11: Stabilize-d usters(P);
12: break
13: else
14: Restore atk*i) € C into C;;
15: end if
16: end for

17: until no further cluste€ can be generated

(line 3). The core of the algorithm is the body of the loop begw lines 4-17. Within
the loop, an attempt to generate a new cluster is performdg) lmoosing a can-
didate node (corresponding to a cluster with low quality¥pdit (line 6); (i) split-
ting the candidate cluster into two subclusters (line 7} @in) evaluating whether
the splitting allows a new partition exhibits better quatitan the original partition
(lines 8-15). If this is the case, the loop can be stoppe@ (i) and the partition
is updated, by replacing the candidate cluster with the navelssters (line 10).
Viceversa, subclusters are discarded and a new candideseicis considered for
splitting.

The RARTITION-CLUSTER procedure at line 7 iteratively evaluates, for each
transactionk*) e C; U C, whether a membership reassignment improves the de-
gree of local homogeneity of the two clusters. The contiisubf x(*) to the local
quality is evaluated in two cases: both in the case #itis maintained in its orig-
inal cluster of membership and in the case thét is moved to the other cluster. If
movingx®) causes an improvement in the local quality, then the swagcisped.

Differently from the RRTITION-CLUSTER procedure, where the improvement
in quality is attempted locally to a cluster, theA®ILIzE -CLUSTERS procedure
tries to increase global quality, by finding, for each eletnéiie most suitable cluster
among the ones available in the partition. Precisely, theegaion of a new cluster
triggers the call to $ABILIZE-CLUSTERS 0N line 11, which aims at further im-
proving the overall quality by attempting relocations amdhe the clusters. Also,
clusters at line 6 are considered in increasing order ofityudhis guarantees that
the effects of splitting are evaluated first on clusters Wither quality. Indeed, if a
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cluster exhibits a lower degree of homogeneity, it is moigilgk for producing an
improvement in the overall quality, provided that it is peoly split.

6.3.2 Cluster and Partition Qualities

AT-DC exploits two different quality measures, namely one forltteal homogene-
ity within a cluster and the other for the global homogeneityhe partition. These
measures are employed with opposed objectives. Indeetipassn alg. 8, it can
be noticed that partition quality is used to establish wlethe insertion of a new
cluster is really convenient: in a sense, it is aimed at ragiiig compactness. By
the converse, cluster quality in procedureRPITION-CLUSTERat line 7 of alg. 8 is
aimed at the best localized splitting and, hence, at a goparagon.

Let S¢ be the subset of features that appear within the generitecldsi.e.,
Se £ {F|F € x® x®) ¢ C}. The quality ofC is defined as the gain in feature
strength with respect to the whole dataset, i.e.,

Quality(C) = Pr(C) Y [Pr(F|C)* — Pr(F|D)?]
FeSc

where Pr(F|C)? corresponds to the relative strength Bfwithin C, whereas
Pr(C) represents the relative strength@fThese two factors work in contraposi-
tion: singleton clusters exhibit strong features in a spaegion, whereas highly
populated clusters exhibit weaker features in a densenmegie above formula finds
an interpretation in terms of subspace clustering. Featexaibiting a high occur-
rence frequency compared to the occurrence frequency oritieal dataset, define
a subset of relevant features, as opposed to low-occurfeattees which are indeed
irrelevant for the purpose of clustering. Thus, clustetsitagxhigh quality whenever
a subspace of relevant features occurs whose frequenaynigicantly higher than
in the whole dataset.

The quality of a partitior is instead meant to measure both the homogeneity of
clusters and their compactness. Viewed in this respeditiparquality is defined as
the weighted sum of the qualities of the available clusters:

Quality(P) = Z Pr(C) Quality(C)
cep

The formula finds an interpretation in terms of average mseein quality obtained
by partitioning the dataset. Notice that the compon@atlity(C) is already pro-
portional to the contributiod’r(C). As a result, in the overall partition quality, the
contribution of each cluster is weighted By(C)?. This weighting has a major ef-
fect in the GENERATE-CLUSTERS procedure: splitting in extremely small clusters
is penalized. Indeed, the generated clusters are addee foattition only if their
contribution is really worth. Notice the different role dfet contributionPr(C) in
the two quality measures: a strong penalization on singletosters would not al-
low a proper splitting in the ARTITION-CLUSTER procedure. In particular, splitting
would suffer from the bottleneck of the initial reassignmesince in principle the
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possible loss in clustef; would not be counterbalanced by a proper gair€in
On the contrary, the (stable) result of therR?ITION-CLUSTER procedure has to be
accepted only if it yields a significant change in the aveidgster quality.

6.4 Cluster Summarization

The representative of a cluster of XML trees is modeled as afdeghly represen-
tative tree patterns, which provide an intelligible sumizetion of the most relevant
structural properties in the cluster. Notice that, as noeetdl before, a cluster is al-
ready characterized by a set of relevant features. Howmattres can be combined
further, and they do not necessarily allow to distinguistoagndifferent clusters.

A set of tree patterns is actually viewed as the represegatatia cluster of XML
trees, if the following two conditions are satisfied. Fiysgach tree pattern must
appear as a substructure of the XML trees in the cluster witttaurrence frequency
that is much higher than the one with which it occurs througttioe whole collection
of XML trees. Secondly, there must be a strong degree of letiva between the
individual tree pattern and the cluster of XML trees, whiclatantees that the former
is an actual summarization of specific structural propewighe latter.

An XML tree pattern is essentially a substructure that cagcbome common
structural properties of a collection of XML trees. The feas inS() are consid-
ered as the basic tree pattens within a cluster. Howeverpaitterns can be suitably
combined intocompositetree patterns. To avoid combinatory explosion, only two
types of composite tree pattern are admitted, narpalgnt-childandsibling tree
patterns.

Definition 6.3. Parent-child tree pattern. A parent-child tree pattern is an arrange-
ment of two basic tree patterns, in which one of the two trétepas is rooted at some
leaf node of the other tree pattern. Lgtands; be two generic tree patterns. Also,
assume that is some leaf node &f;. The operators; <; s; defines a new parent-
child tree patterrs, such that V| = |V, | + [V, | and [Eg| = [Eg,| + |Eg, | + 1,
wherein the roots; of s; is a child ofi. Formally,s; <; s; defines a tree patters
such that there exist two mappings : Vs, — Vg andy; : Vs, — V; satisfying
the following conditions:

wi(rs,) = rs (i.€.75, matches)

Vn € Vg, andVn' € Vg, it holds thaty; (n) # ¢;(n');

Vn € Vg, , As,, (n) = As(¢n(n)) for eachh € {i, j};

Vn,n' € Vg,, it holds that(n,n’) € Es, iff (¢n(n),on(n’)) € Eg for each
he{i,j};

o (pi(l),pj(rs;)) € Es (.., 0i(l) < ¢;(rs,) ins);

Given any two tree patterns; ands;, the set of all possible parent-child tree
patterns in which the root &f; is a child of the individual leaves &f is denoted as
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S; <18 £ U {Si < Sj}
I€L,

whereLs, represents the set of leavesspf O

A parent-child tree pattern is a vertical arrangement of ¢amponent tree pat-
terns. Instead, a sibling tree pattern follows from an hamial arrangement of its
components.

Definition 6.4. Sibling tree pattern. Given two tree patterns with a same label at
their roots, a sibling tree pattern is a composite structwose root-to-leaf paths
are the union of the root-to-leaf paths in the two componettepns. Lets; ands;

be two tree patterns such that, (rs,) = A, (rs;). The operators; A s; defines

a sibling tree patterrs, such that there exist two mappings : Vs, — Vg and

¢; : Vs, — Vg satisfying the following conditions:

wi(rs;) = Pj (rs]') =Ts,

Vn € Vg, As,, (n) = As(¢n(n)) for eachh € {i, j};

Vn,n' € Vg,, it holds that(n,n’) € Es, iff (¢n(n),on(n’)) € Eg for each
hed{ij}. O

6.4.1 Mining Representative XML Tree Patterns

The MINEREP procedure, illustrated in fig. 9, is an Apriori-based tecjuei to mine
arepresentative for a clustéiof XML trees. The latter is a set of discriminatory sub-
structures, obtained through progressive combinatioriketlementary structures
inC.

MINEREP receives three input parameters, namely the cluster be summa-
rized, the se€ of all siblings ofC (as defined at line 10 of fig. 7) and a significance
thresholda. The procedure starts (at line 3) by considering a sggcef features,
whose occurrence frequency in clusteis higher than in the whole partitiahU C.
These features are inherently characteristi€ @ind, according to the definition of
cluster quality in (6.1), are directly provided ®-DC without having to be re-
computed. It is worth to emphasize that focusing on suchecharistic features from
the beginning strongly prunes the search space into whiskarch for progressively
more-complex candidates.

The elementary structures from the feature sp@eare considered (at line 4)
as candidate tree patterns. Each such a candidiatassociated (lines 5-7) with a
bitmap B(s), that keeps trace of the transactions fr6r C exhibiting the corre-
sponding features. Notice that, in fig. 9, the generic bitmdfis) is represented as
a set for clarity. The interpretation is that the transatiexplicitly present ir3(s)
exhibit 75, whereas all others do not includg. Henceforth, the bitmaps associated
to the elementary structures allow to obtain the bitmap gf@mbination of such
structures, without scanning the transactiong in C again. This is accomplished
by intersecting the bitmaps associated to the combinedrsighisres (line 4 of the
CANDIDATE -GENERATION sub-procedure in fig. 10).
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At the heart of MNEREP is a loop (lines 8-20), whose purpose is twofold: dis-
tilling representative tree patterns fraffi*) and generating more-complex (parent-
child or sibling) candidates through structural combioasi of representative tree
patterns. The loop is reiterated until no more candidata® fivhich to distill repre-
sentative tree patterns.

At any generic iterationk, MINEREP computes the occurrence frequencies
Pr(s|C) andPr(s|C) of each candidate from C'*) within, respectivelyC andC.
This is accomplished by looking at the transactions in trs@@ated bitmas(s).
The latter, by construction (at line 4 of theA@DIDATE -GENERATION scheme in
fig. 10), includes all those transactionsdtu C that exhibit all and only the features
in s. However, at any iteratiok > 2 (tested at line 10), such transactions cannot
be directly exploited to compute the occurrence frequendiais is due to the fact
thats is not necessarily an embedded substructure of all the Xkkstassociated to
the transactions im, because of the possibility that, in some of these treedethe
tures ofs originate distinct structural combinations. Therefd$és) is inspected for
the purpose of identifying (at line 11) the sub%¥s) of those transactions, whose
corresponding XML trees do not actually contaias a substructuré(s) is then
removed fromB(s) (at line 12), which enables the computation of the occugenc
frequencie®r(s|C) andPr(s|C) (at lines 14 and 15) from the bitmap.

As a matter of fact, the identification @¥(s) is optimized. Precisely, the avail-
able XML trees are individually associated with revisedraphs [47]. These are
explicit representations of the parent-child and anced#tscendant hierarchical re-
lationships within the XML trees. Such representationsused to avoid the time-
expensive test (at line 11) on the embedding of a substristimr an XML treet,
whenever all edges sfare not included in the revised s-graph associated to

The representative tree patterns are distilled i (at line 17) from the set
C®) of candidates, by choosing the ones that satisfy the foligwivo conditions.
Firstly, the occurrence frequency of each representatdeegatters must be higher
in C than in the whole partition to whicti belongs, namelyPr(s|C) > Pr(s|C).
Both Pr(s|C) andPr(s|C) are computed (respectively at lines 14 and 15) after the
pruning phase. Secondly, there must be a strong degreerefatton betwees and
C. This is useful to establish whether the occurrenceiofC is statistically relevant
and, hence, structurally representative. Statisticabthgsis testing is used for this
purpose, as it shall be discussed hereafter. The resuéitdd’s of representative tree
patterns provides the basic structures for the generafioarwidate tree patterns at
the subsequent iteratidn+ 1.

MINEREP halts wherC'(*) is empty and, hence, no more representative tree pat-
terns can be discovered. In such a cas@®REP returns (line 22) all of the XML
tree patterns, that were found in the previous steps to badgir discriminatory of
the structural properties of clustér The candidate generation phase as well as the
exploitation of statistical hypothesis testing for thentiication of representative
substructures are analyzed next.
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Algorithm 9 MineRep(,C, a)

Input: asetC = {x(*1) ... x*n)} of XML trees;
the selC of siblings ofC as defined at line 10 of fig. 7;
a significance threshold;
Output: a setR of representative XML structures;
PR~ 0
k<« 1;
s letSe  {Fs|3x® e ¢, Fs € x®, Pr(Fs|C) > Pr(Fs|CUC)};
D letC™®  {s|Fs € Sc};
for eachs € C*) do
letB(s) « {x¥ e cUC|Fs € xV};
: end for
- while (C™® # 0) do
foreachs € ¢ do
if (k> 1)then
11: D(s) «+ {x € B(s)|s ¢ t};
12: B(s) < B(s) — D(s);
13: end if
14: Pr(slc) « LxMeBEno,

1. Pr(s|cuC) « LeBmI,

16: end for

17: L® « {s € C®|Pr(s|C) > Pr(s|CUC), x%(s,C) > Ta};
18: k<« k+1,

19: ™ « Candidate-Generatiai.*~1);

20: end while

21 R« U, L™,

22: return R;

o ©

Candidate generation

The CANDIDATE -GENERATION sub-procedure is fed with the current gebf fre-
quent and discriminative tree patternsANDIDATE -GENERATION is a tree-pattern
growth strategy, that considers each pair of distinct tegéepnss ands’ from L for
combination into further candidate (parent-child or sig)itree patterns. Precisely,
the setT" contains all possible parent-child tree patterns obtdn&bm s ands’.
The bitmapB (at line 4) is common to all of the parent-child tree pattem®. The
candidate generation strategy soon prufidéines 5-11): the height of each candi-
dates in T, denoted aseight(s), is tested (lines 6-10) against the maximum height
H of the XML trees in clustec. If heigh{s) does not to exceed, s is left in T’
and it is associated with the bitmdp(at line 7). Otherwises is removed fronil’

(at line 9). The distilledl” is added to the ongoing sét of candidates (at line 12).
At this point, CANDIDATE-GENERATION considers the sibling pattern obtainable
from s; ands;, if both are not tree-like representations of individuaties (tested
at line 13) and share a common root label (tested at line 14§. Sibling pattern
is retained (at lines 13-21) as a candidate withinf it passes the pruning condi-
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Algorithm 10 Candidate-Generatiohj
Input: a setL of discriminative tree patterns;
Output: a setC' of new (combined) candidate tree patterns;
1. C <« 0
2: for eachs;,s; € L do
3 T <+ s;<s; U s; <sq;
4 B(—B(Si)ﬁB(Sj);
5. foreachs € T'do
6:
7
8

if (heigh(s) < H) then

B(s) « B;
: else
9: T+ T—{s}h
10: end if
11:  end for

12:. C+ CUT;
13 if (|Vs,| > 1) and (] Vs;| > 1) then

14: if (Xs; (1s;) = Xs; (1s;)) then
15: S < s; A\'sj;

16: if (width(s) < W) then
17: B(s) + B;

18: C+ CU{s}

19: end if

20: end if

21: endif

22: end for

23: return C,

tion on its width (at line 16), that must not be greater thamrtreximum widthiv/

of the XML trees in the cluster. ANDIDATE -GENERATION halts by returning (at
line 23) the resulting set’ of new candidate tree patterns. The pseudo-code for the
CANDIDATE -GENERATION procedure is illustrated in fig. 10.

Representativeness of Candidate Tree Patterns

As to the use of statistical hypothesis testing inNEREP (at line 17), the non-
parametric chi-square test is used to establish whetherefhresentativeness of a
candidate tree pattemnis statistically grounded. This involves a decision betwee
two alternative hypothesesnaill hypothesis according to which the occurrence of
in C is a consequence of chance (and, thus, the representativeisenust necessar-
ily be considered as statistically groundless) andltarnativehypothesis, according
to which the occurrence afin C is statistically relevant (and, hengemust be rep-
resentative of some corresponding structural properfi@sinake a proper decision
between the two alternative hypotheses, the following &tatistics are considered
(that can be efficiently computed frofi(s) and D(s)): nsc, the number of XML
trees inC of which s is an embedded substructurg;-c, the number of XML trees,
within any cluster other thad, of whichs is an embedded substructure;sc, the
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number of XML trees withir€ of whichs is not an embedded subtree; and_,the
number of XML trees within all clusters bdtof whichs is not an embedded subtree.
The above statistics enable the computation of two margatals, namely, the
overall numbers,s andn_¢ of XML trees inC U C that contain, respectively, do not
contains as an embedded substructure. Marginal totals, in turmnyatbocompute
the expected values of the foregoing statistics, respygtivenoted a%isc, ns—c,
T-sc, -s—c, that represent those values that would be expected if thaseno

meaningful correlation betwearand(, i.e., if s occurred inC by chance. Precisely,
= & nslC| — 2 n-slCl = A nslC| = A n_.5|C|

isc = joog Mose = coe) _nsﬁc. = 1w M-s-c = Jeoe - Given both the
observed and expected statistics, it is possible to conthatealue of the following

test-statistic:

o= Y (we-mwe)
s’e{s,~s},C’'e{C,~C} Ns'cr
The null hypothesis is rejected in favor of a statisticaijewvant occurrence
of s in C if the difference between observed and expected statistibgh, i.e. if
x%(s,C) > 7., Wherer, is the threshold for the chi-square distribution with one
degree of freedom at a significance lewel

6.5 Evaluation

In this section, the behavior of the devised clustering @@gh is investigated through
an empirical evaluation with three main objectives: theasment of clustering qual-
ity, the evaluation of cluster-summarization and a pertomoe comparison.

All experiments were conducted on a Windows machine, withnéel Itanium
processor2Gb of memory an@Ghz of clock speed. Standard benchmark data sets
were employed for a direct comparison among the competi®esl-world data,
namedReal encompasses the following collections.

e Astronomy, 217 documents extracted from an XML-based metadata repository
that describes an archive of publications owned byAsigonomical Data Center
at NASA/GSFC.
Forum, 264 documents concerning messages sent by users of a Web forum.
News, 64 documents concerning press news from all over the worldy dal-
lected byPR Weba company providing free online press release distributio

e Sigmod, 51 documents concerning issues of SIGMOD Record. Such dodismen
were obtained from the XML version of the ACM SIGMOD Web siteguced
within the Araneusproject [35].

e Wrapper, 53 documents representing wrapper programs for Web siteainsiot
by means of th&ixto system [12].

The distribution of tags within the above documents is ghéterogeneous, due to
the complexity of the DTDs associated with the classes, anldet semantic differ-
ences among the documents. It is worth noticing thaSiigenod dataset consists of
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a larger collection of 988 documents, complying to threéedént DTDs (reported
in http://ww. si gnod. or g/ record/ xm /). This larger collection can be
exploited for testing the evaluating the generation of flaster hierarchy.

Three further synthetic data sets were generated from ay o@lections of
DTSs reported in [39]. The first synthesized data set, refeto asSynthl com-
prises1000 XML documents produced from a collection i heterogeneous DTDs
(illustrated in fig. 6 of [39]), that were individually used generatd 00 XML docu-
ments. These DTDs exhibit strong structural differencels hance, most clustering
algorithms can produce high-quality results.

A finer evaluation can be obtained by investigating the bieaf the compared
algorithms on a collection of XML documents, that are veryikr to one another
from a structural point of view. To perform such a test, a secsynthesized data set,
referred to asSynth2and consisting 08000 XML documents, was assembled from
3 homogeneous DTDs (illustrated in fig. 7 of [39]), individiyalised to generate
1000 XML documents. Experiments ov&ynth2clearly highlight the ability of the
competitors at operating in extremely-challenging aie-settings, wherein the
XML documents share multiple forms of structural patterns.

In addition, the collectio®ynth3Xonsisting of the synthesized documents in [41],
is used. It exhibits a 30% degree of overlap. Again, thissitallows us to compare
the effectiveness of the current proposed approach to #véqus approach proposed
in [41].

The generation of artificial data was performed by meanseXikL data gen-
erator described in [45]. The latter essentially acceptsipnt DTD and produces
a set of conforming documents, on the basis of suitablesttati models govern-
ing the occurrences of elements marked by operators|, and+. The generation
process was constrained as in [39]. Precisely, the maximumber of occurrences
of a child node in the context of its parent node is fixed tdhe actual number of
repetitions is, hence, randomly chosen in the intej¥a]. The maximum depth of
the synthetic XML trees was set To

GENERATE-HIERARCHY effectiveness is evaluated in multiple steps. B&b
be the partition of a data s& produced by GNERATE-HIERARCHY at levell of
the resulting cluster hierarchy.

One interesting aspect is to fixo 1, which reduces GNERATE-HIERARCHY to
GENERATE-CLUSTERS and assess the effectiveness of the basic partitionirenseh
at separating with respect to multiple forms™) ..., S(™) of structural patterns.

This involves a comparison of clustering quality acrossﬁhﬂitionsﬂ(l), with i =
1,...,m, whereP") is the outcome of GNERATE-CLUSTERYD, S0).

Clustering effectiveness is evaluated over each partmb]ﬁ = {Ci,...,C}
according to external criteria, i.e. some pre-specifiedcttire, that corresponds
to a meaningful explanation of the data at hand. More prigiiee XML docu-
ments within the generic data sBtcan be grouped into structurally-homogeneous
groups on the basis of the known conformity to some geney&ifD. Thus, exper-
iments aim to assess the effectiveness @NGRATE-HIERARCHY in recognizing
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such groups. Effectiveness is measured in terms of averagesipn and recall [10]

of partitionPi(l), as described follows.

LetCyq,...,Cy be the true classes that actually partitibni.e., such thaD =
U,C; andC; N C; = () for eachi # j. Also, IetPi(l) ={C,...,Cr} be a partition
of D into k clusters, wheré is automatically fixed by GNERATE-CLUSTERS 7?2.(1)
can be summarized into a contingency tablewhere columns represent discovered
clusters and rows represent true classes. Each enfyyindicates the number of
transactions, related to XML documentsTin that were associated with clustey,
with 1 < j < k, and actually belongs to clags;, with 1 < ¢ < h. The table
provides an immediate visual description of the degree ofeagent between the
results yielded by GNERATE-CLUSTERSand the actual class partition. The table
also permits a quantitative evaluation of such a degreeroéspondence, that can be
finely caught through two traditional measures from the fidlidformation retrieval,
namely precision and recall. Intuitively, each clusfercorresponds to the class;
that is best representedd, i.e., such thatn,; is maximal. For any clustef;, the
indexh(j) of the class with maximak;; is defined as(j) £ maz; m;;. Precision
P(C;) and recallR(C;) for clusterC; are, hence, defined as follows:

[{x € ¢jlt € Criy} {x®) € ¢jlt € Crip
P(C)) = C , R(Cj) = C
;] 1Chpl

Starting from the above measures, it is possible to defineatleeage preci-
sion P(V) and recallR™), respectively, aPP(M) = ﬁzcgm) P(C), R =
‘P—%)l > cep R(C). The average precision and recall for all other partitiBhig
with 7 > 1 are defined analogously.

Table 6.1 shows the results of clustering on such collestiBrecision and recall
are optimal, even for the collectidynth2of homogeneous documents.

Collection|N. of DocgClassesClusters|Precision/Recall Avg I"| Time
Real 649 5 5 1 1 ]0.955820.485
Synth1 1000 10 10 1 1 |0.945513.325

Synth2 3000 3 3 1 1 1]0.3833 7.5s
Synth3 1400 7 7 1 1 |0.7875 2.68s
Synth4 800 8 10 1 0.8 |0.7127 3.68s

Table 6.1.Evaluation of Separability and homogeneity

A second aspect to investigate is the effectiveness of tieeRATE-HIERARCHY
procedure when all of the: forms of structural patterns are progressively consid-
ered (in some meaningful sequence) to progressively jparti2. To this purpose, a
new synthetic dataset was produc®ghth4 with 800 documents complying to the
schema shown in fig. 6.1. Four separate classes of documeamtsecnoted, each
using a different subset of nodes (in particulaf,D1 and DTD2 share the nodes



82 6 Tree-based data mining

A1, ... A5, whereaDTD3 andDTD4 share nodess, . .., A10). The clustering pro-
cess was applied by considering node, edge and path featusegjuence.

DIDL DTD2 DID3 DID4
<IELEMENTAL(A2 | AS)> <IELEMENTAS (A2 A4)(A2AS)P> <IELEMENT A6 (A9.A10)> <IELEMENTA10 (A9)>
<IELEMENT A2 (A3.A4,A5)> <IELEMENTA2 (A4 A3)(Ad ALy <IELEMENT A9 (A10 ,A9)(AT)> <IELEMENT A9 (A6/(AT.A10)/(A7.A8,49))>
<IELEMENTAS (A3 |( A4.A3)P <[ELEMENT A4 (A1|A3[(ALA3P <[ELEMENTA10 (A7A8)> <IELEMENT A6 (*PCDATA}>
<IELEMENT A4 (ASp> </ELEMENT A1 ($PCDATAY> <IELEMENT A7 ($PCDATA)> <IELEMENT A7 ((PCDATA)>
<IELEMENT A3 (:PCDATA)> <IELEMENT A3 (#PCDATAY> <IELEMENT AS (+PCDATA)> <IELEMENT A8 (:PCDATA}>

DD DTD6 DID? DTDS
<IELEMENTAL1 (A12 |A15)> <IELEMENTAI5 ((A12 A14)(A12A15)> <IELEMENTA16 (A19.A20)> <IELEMENT A20 (A19)>
<IELEMENTAI2(AI3,A14,A15>  <ELEMENTAI2((Al4 AI5)(A14A11)> <IELEMENTAI9((A20 AI9)(A17)> <ELEMENTALO((AL7,A20)[(AL7,A18,A10)>
<IELEMENTAIS(A13 ( A14.A13)> <ELEMENTAI4(AIIAI3(AILAI3)>  <IELEMENTA20(A17.A18% <IELEMENT A17 (3PCDATA)>
<IELEMENTAL4 (AL5)> <IELEMENT A1l ({PCDATA)> <IELEMENT A17 ($PCDATA)> <IELEMENT A18 (:PCDATA)>
<IELEMENT A13 (*PCDATA)> </ELEMENTA13 (PCDATA)> <[ELEMENT A18 (PCDATA)>

Fig. 6.1.DTDs for theSynth3dataset

The DTDs capture substantial similarities and differendesparticular, all
dataset exhibit different paths (but they can share somespdgurther, the docu-
ments inDTD4 can further split, since they can exhibit trees with pathdirgin the
nodeA6. Also, node frequencies IDTD4 can substantially differ, thus differentiat-
ing this DTD from the others even at a node level. This siamis fully captured
by the clustering algorithm, as shown in fig. 60X.D4 is kept separate froldTD3
at a node level, and further split in two subclusters at thgeddvel, according to
whether edges contain or not ed@d®, A6). Also, the trees containing such an edge
can be further split according on whether they contain thh fram A10 to A6 or
not. Notice that, by contranpTD8 does not behave similarly, since there’s no such
a node likeA6 capable of differentiating the trees in the class.

' Root ‘

I | - 1
| DpTD1- DTD5- DTD7- |
‘ DTD2 w DIbs H DID ‘ [ DTD6 | l DTD8
l._‘| ) 'I_l_' : —

—
' DTD1 ‘d DTD2 d ci
"
‘ ci1z2 ‘

4 o 1 e

. \ " |
i c2 “ DTDS i DTD& ‘ DTD7 I OTD8 ‘

il
' Ccl11 ‘
Fig. 6.2.Cluster hierarchy for th8ynth3dataset

The evaluation of the multi-stage clustering is further foomed by experi-
menting onSigmod. As already mentioned, this dataset consists of documents
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complying with three different DTDs. In particular, the wlisution of the doc-
uments is unbalanced, since one of the DTDs, namedexTer msPage (see
http://ww. si gnod. org/ record/ xm / for details), contain®20 docu-
ments. Figure 6.3 shows thaE@GERATE-HIERARCHY separates all documents com-
plying to different DTDs and further splits the documentstlie class related to

I ndexTer nsPage, according to whether or not these documents contain the op-
tional elements described in the DTEt egor yAndSubj ect Descri pt or sTupl e,
cat egory, cont ent andt er n. In particular, the separation of such a class leads
to two subclasse§,; andGC,, that can be described by two DTDs, both subsumed by
I ndexTer nsPage. C; is a subclass of37 documents, in which the optional ele-
ments ofl ndexTer nsPage are absent. Instead, the remainit& documents in
which such optional elements occur are assembled into @sdxXc}, which finely
catches the overall degree of structural resemblance @by these additional

pieces of structures.
i Root

I
|

Proceedings IndexTermsPage
(17) (920)
ﬁj il
i c i c2 ‘

Fig. 6.3.Cluster hierarchy for th8ynth3dataset

Ordinarylssue
(51)

The evaluation of the accuracy of cluster summarizatiomspired to an idea
originally proposed in [39] for a different purpose, i.e easuring the structural ho-
mogeneity of a set of intermediate clusters obtained wralditpning a collection
of XML documents. Let be an XML tree andR a set of substructures. The repre-
sentativeness(R, t) of R with respect ta is the fraction of nodes ih matched by
the embedded substructuresyof

’V(R,t) A | UsE’R,sgt {n S V|Vs =V C Vt}|
Vi

where,V; andVy are the sets of nodes of, respectively, the XML treend the
generic substructure V is instead the subset of the nodes imatched by the nodes
of s (which is the meaning of notatioWs — V). Representativeness can be eas-
ily generalized to clusters. The representativenié§Rep(C)] of the representative
Rep(C) with respect to a clustet can be defined as the average representativeness
of the documents in the cluster.
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Cluster representativeness finds an interpretation ing@fmintra-cluster struc-
tural homogeneity. Indeed, [Rep(C)] is low if clusterC includes structurally het-
erogeneous XML trees and, hencel\NEREP (fig. 9) is unable to extract frequent-
occurring and statistically-representative substrestu®n the contrary, [Rep(C)]
is high if C contains structurally homogeneous XML trees, whose nogesiatched
in a high percentage by the variety of embedded substristteacted by MNEREP.
Table 6.1 shows the averadévalue exhibited in each experime&ynthlexhibits
the maximum value of " among the synthetic datasets, and by conteysith2ex-
hibits the lowest. Indeed, documents Siynth2share several features, and hence
the representative pattern trees only cover small fragentatt really discriminate
among clusters.

Scalability and Comparison

In order to evaluate the scalability of the algorithm, wesedithe DTDs foSynth1l
and produced respectively0, 1000, 10.000 and100.000 documents witf2, 4, and

8 clusters. The results are shown in fig. 6.4. The algorithrimeszlr both in the num-
ber of documents and in the number of clusters. This is mantigrited by the
intrinsic scalability of the cordT-DC algorithm, which is used for clustering. The
only possible issue of the algorithm is the computation ef ipresentative when
the documents are complex and the intra-similarity is higtis is shown in table
6.1, where the times are higher than all the others on syiatreslata. Clearly, a
levelwise approach to the computation of a representatigbtrauffer from the high
density of the substructures in the documents.

1200

——2Clusters
—+-4 Clusters
+ 8 Clusters

1000 do o

g
400 5 g
/

Data Size

Fig. 6.4.Performance results for datasets of different size
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At the end of this intensive empirical evaluation, the pregubapproach can be
compared against a state-of-the-art competitor, namel)XBroj approach [39]. Un-
fortunately, a direct comparative evaluation is not pdsssince, it was not possible
to obtain the latter framework from its authors. Notwitimstag, the exploitation of
the same data sets used in [39], nant&lymod Synthland Synth2 still enables an
indirect and robust comparison. By looking at the perforogaof XProj reported
in [39], it can be seen that the result of the proposed cligfexpproach attains the
same quality. However, two strong advantages of the prapagproach are: the de-
velopment of a hierarchy of nested clusters, that explaitiphei forms of structural
relationships in the data, that remain uncaught with XRta; summarization of a
cluster of XML documents, which provides an intelligibldosumption of its struc-
tural properties, which is not offered by XProj. Also, netihat the scalability of the
proposed approach is much higher than the one of XProj. Iiriak proposed ap-
proach is fully-automatic, parameter-free, whereas thiengb performance of XProj
on each dataset requires a complex parameter-settinggstoce
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Conclusions and FutureWork

This thesis has proposed formal solutions to complex prosleorn from needs of
the information society. Below are presented in detall thiaimed results.

7.1 Inductive Query Language

For the sake of formality, the thesis first proposed a languagformulating ana-
lytical statements with which to progressively mine andrgudata. The procedural
semantics of the language is founded on2Ne Mbdel algebraic framework, that
allows to accommodate and combine disparate mining tasksimulti-step knowl-
edge discovery process.

There are some challenging issues, that are worth furteeareh. Foremost, the
identification of a compac2W Model algebra, consisting of a fixed, minimal set
of operators. Analogously to the case of 8/ Mbdel framework, this is useful
in two respects, i.e. the possibility of expressing the megupatterns via suitable
combinations of such basic operators, rather than relymguo arbitrary number
of task-oriented mining operators, and the developmentsufiid theoretical back-
ground concerning expressiveness and complexity results.

The development of strategies for optimizing processiaggis also an interest-
ing task, because it would increase the overall performaheagyossible engine that
implements this language.

7.2 Classification in hostile environments

In this area the thesis proposed two novel schemes for aitigggration between
rule-learning and probabilistic learning [21], aimed tgimve the classification per-
formance on the classes of interest in imprecise envirotsndmmassive evaluation
revealed that the resulting learning framework is competiand often superior in
classification performance w.r.t. established rule-baseadpetitors. There are many
viable lines of research that may improve performance anckasses even further.
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The ongoing research efforts are geared towards the defimfia discriminative
model, based on the maximum entropy principle, that explienables the specifi-
cation of the features (i.e. the CAR antecedents) thatreithrecur to or prevent from
the individual class memberships.

Also, it's possible to pursue the improvement of the acopadche local proba-
bilistic generative models through the analysis of ROC esrThe point is that the
classification threshold typically used in the proposeth&aork assigns a class la-
bel when the associated probability is higher tiah However, the latter may not
necessarily be the best threshold, especially if the bimedoced by the CAR as-
sociated with the probabilistic classifier is consider@dgéneral, lower thresholds
produce improvements in recall, by contemporarily degrgdgirecision as a side
effect. However, as suggested by fig.4.4 where a betterhbiévalue can be ob-
tained in correspondence to the (0.8,0.01) pair (corredipgrio the threshold 0.2),
by automatically choosing the best class-specific threshpwbbabilistic smoothing
can still allow to remove some locality effects within the RAand maintain high
precision.

7.3 Collaborative filtering

In this field, the thesis proposed a probabilistic modellierdiscovery of both global
and local patterns from users’ preference data. Experahewmaluation showed that
both the User Community model (for the discovery of globdtgras) and the hierar-
chical topic detection model (for the discovery of localtpats) exhibits prediction
capabilities comparable to state-of-the art approachiss, Ahe proposed approach
exhibits high flexibility in discovering structural pattex capable of providing suit-
able interpretations of the users’ preference data.

The proposed approach is suitable for further investigatio several respects.
Foremost, the proposed strategy can be combined with tehipéormation in order
to better model user changes in preferences. Also, the pedbapproach allows
suitable integration of prior modeling for the "cold-staidsues. Finally, more in
general, the "local patterns” approach can be extendedtr approaches based on
ensembles.

7.4 Tree-Structured data mining

In this thesis a new approach to clustering of XML documerds wroposed, that
produces a hierarchy of nested clusters. Along the patims fhe@ root to the leafs
of the hierarchy, the approach progressively separateXthedata by looking at
the occurrence of different types of structural patternh@ir structures. Also, each
cluster in the hierarchy is subsumed, through a novel suizatam method, by a
set of representative substructures, that provide an stadeling of the structural
properties considered in the cluster. A comparative etiaingroved that the de-
vised approach is on a par and even better than establishggktitors in terms of
effectiveness, scalability and cluster summarization.



7.4 Tree-Structured data mining 89

In contrast to previous works, the devised approach doesehobn fixed ref-
erence structures (such as summaries and s-graphs) thopaXML documents.
Rather, it takes into account various (user-supplied) foafnstructural patterns in
the XML documents to guide the clustering process.

Multi-stage clustering is also a parameter-free methaat,dhly requires setting
a significance threshold for testing the statistical regméstiveness of the substruc-
tures during cluster summarization. No tuning is requitesiial settings correspond
to well-known values, e.g0.05, or 0.01.

Finally, multi-stage clustering efficiently processegéascale databases of XML
documents and provides an intelligible understanding efstiuctural properties of
the clusters in the hierarchy.
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