
�

�

���������	
����

�
�
���

������������
��
������������

�����������
�
������������

�

�

���������
��
�������
��

����������
���
�������
�
�����������

�����

����
��
���������

���������	
����������
	�	���

�������
!�""����

�

UNIVERSITÀ DELLA CALABRIA

Dipartimento d i Elettronica,
Informatica e Sistemistica

Dottorato di Ricerca in
Ingegneria dei Sistemi e Informatica

XX ciclo

Tesi di Dottorato

XML and W e b Data Management

Bettina Fazzinga

Coordinatore Supervisore
Prof. Domenico Talia Prof. Sergio. Flesca

DEIS

DEIS – Dipartimento di Elettronica, Informatica e Sistemistica
Novembre 2007

Settore Scientifico Disciplinare: ING–INF/05

To Simona and Alessandra

Acknowledgments

First of all, I wish to gratefully acknowledge my Ph.D. supervisor, Ser-
gio Flesca, the point of reference for my work, for his support, his valuable
suggestions and various insightful discussions. Special thanks go to my dear
friend and precious colleague Andrea Pugliese, for everything he taught me,
for the useful and funny discussions and for his patience when I was stressful.
I am deeply grateful to my dearest friend Fabio, for his constant support
and for having been always present during these years, even in the hardest
moments. A big thank you goes to Ale, for her moral support and for all
the funny moments spent together. Great thanks go to Filippo, for having
made my studies more pleasant and for having made friend with me. Finally,
I express my gratitude to all the friends of my department, that made my
Ph.D. course a special experience.

Contents

1 Introduction . 1

2 Preliminaries . 7
2.1 Semistructured data and XML . 7
2.2 Querying XML data . 10

2.2.1 XPath . 10
2.2.2 XQuery . 12

3 Schema-based web wrapping . 15
3.1 Introduction . 15

3.1.1 Related work . 18
3.2 Preliminaries . 26

3.2.1 XML DTDs . 26
3.2.2 Ordered regular expressions . 27

3.3 The schema-based wrapping framework . 29
3.3.1 XPath extraction rules . 30
3.3.2 Wrapper semantics . 34
3.3.3 Wrapper evaluation . 45

3.4 Wrapper generation . 52
3.4.1 The SCRAP system . 53
3.4.2 Wrapper generalization . 55

3.5 Experimental evaluation . 66
3.5.1 Data description . 67
3.5.2 Evaluation metrics . 68
3.5.3 Robustness evaluation . 70
3.5.4 Time performances . 74

4 Retrieving XML data from heterogeneous sources
through vague querying . 77
4.1 Introduction . 77
4.2 Related Work . 80

VIII Contents

4.2.1 Querying heterogeneous relational data 81
4.2.2 Querying heterogeneous semistructured data 84
4.2.3 Query Relaxation . 88

4.3 Vague Queries on Multiple Heterogeneous XML Data Sources . 93
4.3.1 VXQL Syntax . 96
4.3.2 Relaxing VXQL Expressions . 97
4.3.3 VXQL Queries . 98
4.3.4 Vague Join . 99
4.3.5 VXQL Semantics . 103

4.4 Vague Query Evaluation . 106
4.4.1 Local Evaluation . 106
4.4.2 Assessing “Semantic” Dissimilarity 109
4.4.3 Complexity of VXQL Query Evaluation 112

4.5 An Application Scenario . 115
4.5.1 Routing Strategy . 117
4.5.2 Experimental Evaluation . 118

5 Conclusions . 121

References . 123

List of Figures

1.1 A simple architecture of system for integrating/querying data . . 2

2.1 Example XML document. 8
2.2 Tree corresponding to the example document. 9
2.3 DTD of the example document. 10

3.1 Excerpt of a sample Amazon page . 16
3.2 Extraction schema for Amazon wrappers . 16
3.3 Sketch of the HTML parse tree of page in Fig. 3.1 37
3.4 Wrapper evaluation: The PreferredExtractionModel algorithm . 47
3.5 Wrapper evaluation: The buildElementContent function 48
3.6 Conceptual architecture of SCRAP . 53
3.7 Sample snapshots of SCRAP tools: (a) Schema Editor, (b)

Extraction Rule Generator . 55
3.8 Conceptual architecture of the SCRAP-based framework for

wrapper generalization . 56
3.9 Tree patterns . 59
3.10 A tree pattern and its atomic generalizations 61
3.11 The MostGeneralWrapper algorithm . 65
3.12 Excerpts of sample ANSA pages: (a) home page, (b) top-news

page, (c) local news page . 67
3.13 Extraction schemas associated with the test sites 69
3.14 Accuracy results on the test HTML sources during a 6-month

period . 72
3.15 Extraction rules of early wrappers for ANSA local news pages . . 73
3.16 Accuracy results on the test HTML sources after wrapper

generalization . 75

4.1 Motivating example . 78
4.2 Logical phases of vague query evaluation . 79
4.3 Example of weighted tree pattern query . 89

X List of Figures

4.4 Example of query plan . 90
4.5 An OptiThres Example . 92
4.6 VXQL query . 95
4.7 Elements describing the same book . 100
4.8 Definition of function ext . 108
4.9 Definitions of functions σrel and σdel . 108
4.10 Keys of the elements of Fig. 4.7 . 110
4.11 Key testing VXQL expression . 111
4.12 System architecture . 116
4.13 An example XSketch synopsis . 117
4.14 Correct answers returned . 119
4.15 Effect of the routing policy . 120

List of Tables

2.1 Main DTD attribute types and specification parameters. 10
2.2 Main XPath axes. 11
2.3 Some XPath functions. 12
2.4 Example XPath expressions. 12
2.5 Example XQuery queries. 14

3.1 Sample types of extraction and condition predicates 32
3.2 Extraction events and rules of a wrapper for Amazon pages . . . 38
3.3 SCRAP robustness: statistics on the test HTML sources

during a 6-month period . 71
3.4 Generalization of extraction rules of wrappers for ANSA local

news pages . 74
3.5 SCRAP time performances (in seconds) . 75

4.1 Queries used in the experiments . 119
4.2 Average precision, recall, and gain . 120

1

Introduction

Internet is a worldwide, publicly accessible series of interconnected computers.
It is a “network of networks” that consists of millions of smaller domestic,
academic, business, and government networks, which together provide various
information and services, such as electronic mail, online chat, file transfer, and
the interlinked web pages and other resources of the World Wide Web [108].

Nowadays, millions of persons and corporations exploit Internet and net-
works for several purposes, among which retrieving, divulging and sharing
information. From the company point of view, the development of network
related technologies has carried out several changes. Initially, corporate infor-
mation systems only managed local data. Therefore, as all analysis and re-
searches were limited to their own data, it was not possible to provide enough
information to support management decision. The proliferation of networks
has boosted the amount and the completeness of data available, thus compa-
nies have been stimulated to develop applications suitable for retrieving data
from other places of the world and handling them.

Since up to few years ago, all the information available in Internet was
codified using Hypertext Markup Language (HTML) [107], the first need was
the development of applications that retrieve data embedded in Web pages
and process them automatically. Unfortunately, HTML documents are not
suitable for being automatically processed by applications, since HTML is
mainly aimed at describing and displaying data, but it does not support the
use of a meta-linguistic level describing the semantics of Web documents.
HTML is not suitable for sharing data among applications in a network, as
HTML is a “human readable” format, whereas the automatic processing of
information requires a “machine readable” format. To this aim, the Extensible
Markup Language has been adopted [105]. XML is a general-purpose markup
language, classified as an extensible language because it allows its users to de-
fine their own tags. Differently from HTML, XML is a meta-language suitable
for documents wherein data are associated with a structure and a semantics.
Using XML for sharing data on the networks the process of collecting and
integrating data from several sources has been hastened, since XML is suit-

2 1 Introduction

able for automatic processing. However, other difficulties remain to be solved,
mainly due to the fact that data in the sources can be organized in different
way. Specifically, since in the general case sources are totally autonomous,
data stored in different sources can be in accordance with different schemas
and can be “partial”, in the sense that sources can be interested to the same
data, but from different point of views, thus storing only partial information.

For copying with these difficulties, several approaches have been pro-
posed, mostly aimed at building a mediator system that hides to the user
the amount of sources and the differences among them and interacts with
all sources for providing the user with a meaningful answer. Specifically, me-
diator systems provide uniform access to multiple data sources encapsulat-
ing proper mechanisms for handling the difference among the schemas of the
sources and for allowing the user to pose queries on the overall amount of data
[11, 14, 15, 24, 48, 49, 55, 56, 62, 66, 76, 94]. In Figure 1.1 a simple architecture
for retrieving data from several sources using a mediator is shown.

Wrapper Wrapper Wrapper

Data source Data source Data source

Mediator

Appli cation

Fig. 1.1: A simple architecture of system for integrating/querying data

In this architecture, wrappers are used for providing a unique format for
source data, i.e. data are extracted and translated from the original format to
a proper one uniform for all sources. Wrappers output data in a specific for-
mat, such as XML, and these data are further managed for answering queries
and collecting results. Several approaches have been proposed for providing a
uniform access to different data, but the most common is the usage of global
views over data. In such an approach, a virtual schema summarizing and rep-

1 Introduction 3

resenting all the data stored at the sources is available and users are allowed
to pose queries on it. Therefore, for these kinds of systems, it is required to:

• build proper wrappers for data extraction;
• build mappings between the schemas of the source data and global view;
• rewrite queries posed on the global view for being evaluated on source

data;

In the rest of this section, we discuss the main issues related to wrappers,
mappings and techniques for query rewriting.

The purpose of a wrapper is that of extracting the content of a particu-
lar information source and delivering the relevant content in a self-describing
representation. Although wrappers are not limited to handle Web data, most
of their current applications belong to this domain. In the Web environment,
a wrapper can be defined as a processor that converts information implicitly
stored in an HTML document into information explicitly stored in a proper
format for further processing. Web pages can be ranked in terms of their for-
mat from structured to unstructured. Structured pages follow a predefined
and strict, but usually unknown, format where information presents uniform
syntactic clues. In semistructured pages, some of these constraints are relaxed
and attributes can be omitted, multivalued or changed in its order of occur-
rence. Unstructured pages usually consist of free text merged with HTML
tags not following any particular structure. Most existing wrapping systems
are applied to structured or semistructured Web pages. Knowledge is encoded
in rules that are applied over the raw text (in a pattern matching process)
or over a more elaborated or enriched data source (sequence of tokens, set of
predicates, HTML tree, etc.). Generally, tokens include not only words but
also HTML tags. This fact has important consequences. On the one hand,
HTML tags provide additional information that can be used for extraction;
on the other hand, the presence of HTML tags makes it difficult to apply
linguistic based approaches to extraction.

The main problem in building Web wrappers is to make the wrapper design
process as automatized as possible, since each source does not only frequently
update its data but also its layout. Several wrapping systems have been pro-
posed (see Chapter 3 for details), classifiable in automatic, semi-automatic and
manual tools, according to the degree of automation in the wrapper design
phase. The main component of a wrapper is the set of extraction rules used
for extracting data. Existing wrapping systems can be classified in three main
categories: HTML-aware tools, NLP-based tools and wrapper induction tools.
The first essentially aim at analyzing the tree structure of the HMTL page and
generate extraction rules in a semi-automatically or automatically way. The
second usually apply techniques such as part- of-speech tagging and lexical se-
mantic tagging to build relationship between phrases and sentences elements,
so that extraction rules can be derived. Such rules are based on syntactic and
semantic constraints that help to identify the relevant information within a
document. The NLP-based tools are usually more suitable for Web pages con-

4 1 Introduction

sisting of grammatical text, possibly in telegraphic style, such as job listings,
apartment rental advertisements, seminar announcements, etc. Wrapper in-
duction tools generate delimiter-based extraction rules derived from a given
set of training examples. The main distinction between these tools and those
based on NLP is that they do not rely on linguistic constraints, but rather
in formatting features that implicitly delineate the structure of the pieces of
data found. This makes such tools more suitable for HTML documents than
the previous ones.

As regards the problem of building mappings between the schemas of the
source data and global view and the problem of rewriting queries posed on the
global view, various approaches have been proposed in the data integration
literature [11, 14, 15, 20, 24, 33, 34, 49, 55, 56, 62, 72, 74, 76, 92, 94, 102].
Data integration systems provide a uniform query interface to a multitude
of autonomous data sources, which may reside within an enterprise or on
the World-Wide Web. Data integration systems free the user from having to
locate sources relevant to a query, interact with each one in isolation, and
combine data from multiple sources. Users of data integration systems do not
pose queries in terms of the schemas in which the data is stored, but rather
in terms of a global schema. The global schema is designed for a specific
data integration application, and it contains the salient aspects of the domain
under consideration. This approach is used both in the relational and in the
semistructured context (see Chapter 4 for details). However, here we give
an overview of this technique without focusing on a specific context1. Data
represented in the global schema are not actually stored in the data integration
system. The system includes a set of source descriptions that provide semantic
mappings between concepts in the source schemas and concepts in the global
schema. Two main approaches are used for building mappings between global
schema and source schema: global-as-view (GAV) and local-as-view (LAV).
In the former, concepts in the global schema are defined as views over the
concepts in the sources, whereas in the latter concepts in the sources are
specified as views over the global schema. In the GAV approach, translating
the query on the global schema into queries on the local schemas is a simple
processing of unfolding. In the LAV approach, the query on the global schema
needs to be reformulated in the terms of the local sources schemas. This
process is known as “rewriting queries using views” and it is an NP-hard
problem [72], in the case that equivalent or maximally-contained rewritings
are desired. On the other hand, in a GAV architecture, to handle modifications
in local source schemas or insertion of new sources the global schema needs
to be redesigned.

In many applications, the schemas of the source data are so different from
one another that a global schema would be almost impossible to be built, and
very hard to maintain over time. Hence, a solution is to provide architectures
for decentralized data sharing. In this context, mappings between disparate

1 We use the term “concept” for intending relation or XML elements

1 Introduction 5

schemas are provided locally between pairs or small sets of sources. When a
query is posed at a source, relevant data from other sources can be obtained
through a semantic path of mappings. The key step in query processing in
this kind of architectures is reformulating a query over other sources on the
available semantic paths. Broadly speaking, the process starts from the query-
ing source and the query is reformulated over its immediate neighbors, then
over their immediate neighbors, and so on. In these architectures joining the
network can be done opportunistically, i.e., a source can provide a mapping
to the most convenient (e.g., similar) source(s) already in the network, and a
source can pose a query using its own schema without having to learn a dif-
ferent one. On the other hand, when a source joins the network it is necessary
to build mappings with several neighbors in order to be reachable through a
“chain” of semantic mappings for query processing. Therefore, the volatility
of sources and the dynamism of the network become a critical aspect, since
the building of mappings is not immediate and simple.

Finally, in all the discussed cases, sources are forced to provide information
about their own schemas in order to build mappings, thus source autonomy
is violated.

In this thesis, we address all the phases needed for providing a system for
querying heterogeneous multiple data sources, firstly tackling the problem of
extracting XML data from Web pages and secondly dealing with the problem
of retrieving XML data spread across several sources.

As the first issue, we propose a wrapping system using the schema of the
information to be extracted in both the design and evaluation steps. The
main advantages of this approach range from the capability of easily guiding
and controlling the extraction and integration of required data portions from
HTML documents, to the specification of structured yet simple extraction
rules.

As regards the second issue, we consider the scenario where the user is not
aware of the local data schemas and no global schema is provided, thus avoid-
ing all the problems regarding building and maintenance of mappings and
guaranteeing source autonomy. Our approach enables the retrieval of mean-
ingful answers from different sources with a limited knowledge about their
local schemas, by exploiting vague querying and approximate join techniques.
It essentially consists in first applying transformations to the original query,
then using transformed queries to retrieve partial answers and finally combin-
ing them using information about retrieved objects.

Plan of the thesis

The rest of this thesis is organized as follows. Chapter 2 briefly introduces
XML and describes the main characteristics of the most widely adopted XML
query languages. Chapter 3 describes our wrapping technique and presents

6 1 Introduction

some experimental results of our wrapping system. Finally, Chapter 4 in-
troduces our approach to the querying of XML heterogeneous sources and
describes a P2P system implementing the proposed techniques.

2

Preliminaries

2.1 Semistructured data and XML

Relational and object-oriented data models have been widely adopted for
modeling the large amounts of data managed by modern database systems.
Nowadays, less rigid data models are needed in order to deal with new kinds of
data that are irregular (also w.r.t. time), and self-describing, i.e., the schema is
embedded in data themselves. Data with the above-mentioned characteristics
are commonly used in Web systems, scientific databases, and data integration
systems.

Examples of data models suitable for these new data are semistructured
models [2, 3, 22, 25, 32, 99, 103]. In these models, data are node-labeled
trees. Nodes in the trees are viewed as objects, and carry along the concept
of identity; data values are associated with leaf nodes.

Nowadays, Extensible Markup Language (XML) [105] is considered the
standard format for semistructured data. Though XML was invented as a
syntax for data, its characteristics make it usable as a logical data model
as well. An XML document consists of nested elements, with ordered sub-
elements or value child nodes. Each element is delimited by a start- and end-
tag pair, has an associated name, and may have associated name-value pairs
called attributes (written in the start tag). An example XML document, drawn
from [112], is shown in Figure 2.1. In a well-formed XML document, tags are
always properly nested; thus, each element may correspond to a tree node,
and an XML document can be entirely mapped to a tree, as it is typical for
semistructured data. Figure 2.2 shows an extract of a tree corresponding to
the example document of Figure 2.1.

XML processing instructions are of the form “<?target data?>”, where
target is the application that is expected to process the enclosed data. The
XML prolog (“<?xml version="1.0"?>” in the example document) is a par-
ticular processing instruction that identifies the document as an XML one
and may specify the value of some pre-defined attributes (among which, the
attribute “version” reported in the example). Comments are delimited by

8 2 Preliminaries

<?xml version="1.0"?> <bib>

<book year="1994">

<title>TCP/IP Illustrated</title>

<author> <last>Stevens</last> <first>W.</first> </author>

<publisher>Addison-Wesley</publisher>

<price> 65.95</price>

</book>

<book year="2000">

<title>Data on the Web</title>

<author> <last>Abiteboul</last> <first>Serge</first> </author>

<author> <last>Buneman</last> <first>Peter</first> </author>

<author> <last>Suciu</last> <first>Dan</first> </author>

<publisher>Morgan Kaufmann Publishers</publisher>

<price>39.95</price>

</book>

<book year="1999">

<title>The Economics of Technology and

Content for Digital TV</title>

<editor>

<last>Gerbarg</last> <first>Darcy</first>

<affiliation>CITI</affiliation>

</editor>

<publisher>Kluwer Academic Publishers</publisher>

<price>129.95</price>

</book>

</bib>

Fig. 2.1: Example XML document.

special markers, “<!--” and “-->”, whereas “CDATA” sections, containing free
unparsed data (i.e., data that is directly forwarded to the application), are
delimited by markers “<![CDATA[” and “]]>”. Finally, empty elements may
follow the shortcut “<elementName/>”.

The main drawback of the flexibility of semistructured data is the loss of
schema. Schemas describe data, ease the formulation of queries, and allow for
efficient storage and querying. In general, adding a schema to semistructured
data means constraining the paths that can be found in the tree, and the type
of data values. Two different languages can be used for specifying the schema
of an XML document, namely the Document Type Definitions (DTD) [105]
and XMLSchema [109]; in both cases, a document is said to be valid w.r.t. a
given schema if it complies with the constraints stated in the schema. DTDs
express simple schemas for XML data; there is almost no distinction among
value types, and structural constraints may be specified for basic tree struc-
tures. XMLSchema is much more expressive: it embeds a richer set of scalar

2.1 Semistructured data and XML 9

book

1994

title author publisher price

TEXT TEXT TEXT

TCP/IP

Illustrated

Addison-

Wesley
65.95

year

last first

TEXT TEXT

Stevens W.

book

1999

title editor publisher price

TEXT TEXT TEXT

The

Economics…
Kluwer… 129.95

year

last first

TEXT TEXT

Gerbarg Darcy

affiliation

TEXT

CITI

bib

Fig. 2.2: Tree corresponding to the example document.

types, allows user-defined simple types, subtyping, and more expressive con-
straints on XML tree structures. However, we concentrate here on DTDs, that
are extensively used in this thesis.

A DTD is essentially a set of document and attribute declarations, allowing
to specify, for non-leaf nodes, the (ordered) structure of children, and for leaf
nodes, their type. For example, the declaration <!ELEMENT bib (book)*> dic-
tates that bib nodes may have an arbitrary number of book children, whereas
the declaration <!ELEMENT editor (last,first,affiliation)> constrains
editor nodes to have a sequence of a last, a first, and an affiliation
child nodes. Element structure declarations may also embed disjunction (“|”)
and cardinality constraints (“*” indicates any number of instances, “+” one or
more instances, and “?” zero or one instance). The special symbol “#PCDATA”
indicates textual content, whereas “EMPTY” constrains a node to be empty.

Attribute declarations constrain attributes, indicating the nodes they
must be associated with, their “type”, and default values. For instance, the
declaration <!ATTLIST book year CDATA #REQUIRED> associates a manda-
tory (“#REQUIRED”) year attribute to book elements, with textual content
(“CDATA”). The main attribute types and attribute specification parameters
are shown in Table 2.1; Figure 2.3 depicts a possible DTD for the bib docu-
ment of Figure 2.1.

Finally, two approaches are widely adopted for parsing XML data. Doc-
ument Object Model (DOM) [106] parsers build the XML tree in memory,
associating a list of children with every node. The DOM API supports nav-
igation in the tree and creation/modification of nodes. The main drawback
of the DOM approach is that it may be expensive to materialize whole trees
for large XML data collections. In contrast, Simple API for XML Parsing
(SAX) [93] is event-driven, that is an event is fired and notified to the appli-
cation for each node found during document scans; this obviously corresponds

10 2 Preliminaries

Attribute type Meaning Specification Meaning

(v1, ..., vn) Enumeration #REQUIRED Mandatory
CDATA Text string #IMPLIED Optional
ID Unique identifier "v" Default value is v

IDREF Reference to an ID #FIXED "v" Fixed value is v

IDREFS References to IDs

Table 2.1: Main DTD attribute types and specification parameters.

<!ELEMENT bib (book)*>

<!ELEMENT book (title,(author+|editor+),publisher,price?)>

<!ATTLIST book year CDATA #REQUIRED>

<!ELEMENT author (last,first)>

<!ELEMENT editor (last,first,affiliation)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT publisher (#PCDATA)>

<!ELEMENT price (#PCDATA)>

<!ELEMENT last (#PCDATA)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT affiliation (#PCDATA)>

Fig. 2.3: DTD of the example document.

to a preorder visit of the corresponding trees. The main advantage of SAX
parsing is that it consumes much less memory than DOM, and can be signifi-
cantly faster; moreover, full parsing is not needed, as XML data are read in a
“streaming” way. Obviously, with SAX it is not possible to create or modify
tree nodes; therefore, it is more used in conjunction with LIFO data structures
to support loading into storage systems or validation.

2.2 Querying XML data

The main query languages for XML data available today are XPath [110]
and XQuery [111]. The need for specific query languages for XML arises for
dealing with its specificities, e.g., its ordered hierarchical structure and the
potential absence of a schema. Both XPath and XQuery can be used in a
declarative fashion, and their semantics is described in terms of abstract data
models, independently of the physical data storage.

2.2.1 XPath

XPath is aimed at addressing parts of XML documents; the result of an XPath
query is indeed a sequence of XML nodes. From the point of view of XPath,
every element, comment, attribute, processing instruction or text string is a

2.2 Querying XML data 11

node in the XML tree; in particular, attributes are children of their corre-
sponding elements, and comments, PIs and text strings are children of their
enclosing elements.

During the XML tree traversal, moving from a “current” node, XPath al-
lows to choose among current node’s children as well as among other sequences
of nodes having a “structural” relationship with it. These sequences of nodes
are called axes. Axes are thus always referred to the current node, and the
child axis, comprising its direct children, is the default. Table 2.2 shows the
main XPath axes.

Axis Nodes addressed w.r.t. current node n

ancestor Parent of n, grandparent of n, etc.
ancestor-or-self As ancestor, but including n

attribute (also denoted as “@”) Attributes of n
child Children of n

descendant (also denoted as “/”) Children of n, grandchildren of n, etc.
descendant-or-self As descendant, but including n

parent Parent of n

Table 2.2: Main XPath axes.

To select particular nodes in an axis on the basis of their type and/or
name, XPath uses node tests. Node tests return subsequences of the current
axis. For instance, the element() test selects element nodes, whereas text()
and attribute() select text and attribute nodes, respectively. If the axis con-
tains elements, element() is the default type, and if it contains attributes, the
default is (obviously) attribute(). To identify subsequences of named nodes
(elements and attributes), the test is denoted by the name itself (“*” matches
all named nodes).

XPath filters, enclosed in “[” and “]” brackets, select in turn subsequences
of the nodes returned by node tests. Filters are built by combining XPath
expressions or constants by means of comparison, logic, mathematical and
set operators. A filters f is either a boolean or an arithmetic expression. In
the first case (f is a boolean expression), the result of applying f to a node
sequence s consist of those nodes n ∈ s such that f evaluates to true on n
(a node sequence is seen as boolean expressions itself, evaluating to true if it
is not empty). In the latter case (f is an arithmetic expression), the result of
applying f to a node sequence s is the node having the corresponding position
in s. A rich set of functions is available for expressing filters, mainly working
on node sequences, strings, and numerical/boolean values (see Table 2.3).

Finally, an XPath expression consists of a sequence of steps, each step
comprising an axis, a node test, and a sequence of filters (meant as a conjunc-
tion of filters). Steps are written in their order, separated by a “/”. Each step
operates on the node sequence obtained at the previous step. The first step

12 2 Preliminaries

Function Meaning

count(ns) Cardinality of sequence ns
last() Index of the last node in the current sequence

contains(s, t) true if string s contains string t
starts-with(s, t) true if string t is a prefix of string s

round(x) Integer nearest to x
sum(ns) Sum of numbers in ns
not(e) true iff e is false

Table 2.3: Some XPath functions.

operates on a context that is defined by the “environment”, or is the root of
a document (in this case, the expression begins with a “/”). Table 2.4 shows
some example XPath expression, referred to the document in Figure 2.1.

Expression Meaning

/bib/book/author Book authors

/bib/* Children of bib

/bib/book[title="Data on Year of the book
the Web"]/@year titled “Data on the Web”

/bib/book[@year="2000"]/author Authors of books in 2000

/bib/book[author Books having an author
and not(price)] and not a price

/bib/book[1]/title Title of first book

Table 2.4: Example XPath expressions.

2.2.2 XQuery

XQuery can express arbitrary XML queries. It includes XPath as a sub-
language, and guarantees logical/physical data independence. The abstract
model adopted in XQuery is based on item sequences, where items are
XML nodes or atomic values. XQuery is strongly typed; using types from
XMLSchema, it assigns a static type to every expression, and a dynamic type
to every XML instance. This strong typing brings several benefits: errors can
be detected statically, the type of results can be inferred, and the result of a
query can be guaranteed to be of a given type based on the input data type.

A query in XQuery is in the form of a (freely nested) for-let-where-order
by-return (FLWOR) expression. for and let clauses build variable bindings
to node sequences; the difference between the two is that the semantics of
the former additionally requires iteration through the sequences, that is a
result is produced for each node, instead that for each sequence. The where

2.2 Querying XML data 13

clause prunes variable bindings according to some selection criterion; finally,
the return clause builds outputs. For instance, the query

for $b in document("bib.xml")//book
order by $b/@year
return $b

returns the book nodes in document bib.xml (Figure 2.1), sorted by year,
whereas the query

for $b in document("bib.xml")//book
where $b/author/last="Stevens"
return <book-title>{$b/title}</book-title>

returns a sequence of book-title nodes, where each node contains the title
of a book in bib.xml written by an author whose last name is “Stevens”.
Moreover, XQuery allows users to define functions (user-defined functions),
using a very rich set of language primitives; a comprehensive set of operators
is also provided to work on expressions and item sequences. It is easy to see
that XQuery can also express joins. For instance, the query

for $b1 in document("bib1.xml")//book,
$b2 in document("bib2.xml")//book

where $b1/title=$b2/title
return <book><title>$b1/title</title>

<price1>{$b1/price}</price1>
<price2>{$b2/price}</price2>

</book>

yields a book element for each pair of books having the same title in documents
bib1.xml and bib2.xml, and pairs their prices. A sample set of XQuery queries
using other language features is shown in Table 2.5.

14 2 Preliminaries

Query Result

for $b in document(...)//book Authors who wrote a book
where contains($b/title/text(),"Web") about the Web
return $b/author

for $b in document(...)//book,

$t in $b/title, $a in $b/author All title-author pairs
return <result>{$t}{$a}</result>
for $a in distinct-values(

document(...)//book/author)

return <author last-name={$a/last}> For each book author,
{for $b in document(...)//book the author’s last name

[author=$a] and ordered book titles
order by $b/title

return $b/title}
</author>

for $y in document(...)//book/@year,
let $b:=document(...)//book

where $y=$b/@year Book sales per year
return <sales year={$y}>

{count($b)}
</sales>

Table 2.5: Example XQuery queries.

3

Schema-based web wrapping

3.1 Introduction

In this chapter we deal with the information extraction from HTML pages
by means of wrappers. Wrappers represent an effective solution to capture
information of interest from a source-native format and encode such informa-
tion into a machine-readable format suitable for further application-oriented
processing.

Domain-specific extraction patterns, or rules, represent the basic require-
ment shared between wrappers and traditional IE systems. However, wrap-
pers are designed for reliably extracting information from HTML documents
in a structured way. Moreover, in most cases, a wrapper is able to associate
an HTML page with an XML document. The wrapping task is typically ac-
complished by exploiting structural information and formatting instructions
within documents in order to define delimiter-based extraction rules.

The schema of the information contained in the XML document, called
extraction schema, is also considered in some wrapping approaches. However,
unlike extraction rules, the schema is typically seen as a minor aspect of
the wrapping task, since it is usually considered only in the wrapper design
phase. In particular, a schema specifies how the output of extraction rules is
to be mapped to some (XML) element types; mappings are usually defined
in a declarative way (e.g. [65, 73, 79]), or in some cases (e.g. [95]) using
a programmatic specification. However, in general, such element types are
constrained to the structure of the output provided by the extraction rules,
whereas the vice versa does not hold necessarily.

Most existing wrapping systems ignore the potential advantages coming
from the exploitation of the extraction schema during the extraction process.
The extraction schema can be used as both a guide and a means for rec-
ognizing, extracting and integrating semantically structured information. In
particular, using the extraction schema simplifies the identification and dis-
carding of irrelevant or noisy information and, most importantly, supports

16 3 Schema-based web wrapping

Fig. 3.1: Excerpt of a sample Amazon page

the design of extraction rules to improve the wrapper accuracy and robust-
ness. Furthermore, it simplifies the use of extracted information in several
application scenarios such as data integration.

As a running example, consider an excerpt of Amazon page displayed in
Fig. 3.1. We would like to extract the title, the author(s), the customer rate (if
available), the price proposed by the Amazon site, and the publication year,
for any book listed in the page. The relating schema is represented by the
DTD shown in Fig. 3.2.

<!ELEMENT doc (store)>
<!ELEMENT store (book+)>
<!ELEMENT book (title, author+, (customer_rate | no_rate), price, year)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT customer_rate (rate)>
<!ELEMENT no_rate EMPTY>
<!ELEMENT rate (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT year (#PCDATA)>

Fig. 3.2: Extraction schema for Amazon wrappers

Schema-based wrappers allow the extraction of structured information
with multi-value attributes (operator +), missing attributes (operator ?), and
variant attribute permutations (operator |). This is particularly useful for
Web wrapping, since page templates with disjunctions and optionals hold for
many collections of Web pages. Moreover, many documents that reflect differ-
ent semantics of data to be extracted may in principle be extracted from the

3.1 Introduction 17

same page conforming to the same extraction schema. For example, an XML
document conforming to the above DTD may have many elements author, or
an element customer_rate that occurs alternatively to element no_rate.

Exploiting the extraction schema not only enables an effective use of the
extracted documents for further successful processing, but also allows the
specification of structured, simple extraction rules. For instance, to extract
customer_rate from a book, a standard approach should express a rule ex-
tracting the third row of a book table only if this row contains an image
displaying the “rate”. The presence of the extraction schema enables the defi-
nition of two simple rules, one for customer_rate and one for its sub-element
rate: the former extracts the third row of the book table, while the latter
extracts an image.

The possibility of specifying simpler rules plays an important role with
respect to the issue of wrapper maintenance. Indeed, if the wrapper designer
is too tight in the specification of extraction rules, the resulting wrapper may
become sensitive to even small changes in the source HTML documents, and
frequent updates to the extraction rules are needed to guarantee that the
wrapper continues to work on the changed pages. Moreover, extraction rules
in the original wrapper may also contain redundant conditions. For example,
it may happen that the extraction rule for element book requires the pres-
ence of an emphasized heading, corresponding to the book title, whereas the
extraction rule for title selects all the emphasized headings. Removing the
above constraint from the extraction rule for book makes wrapper mainte-
nance easier, since changes in the layout of the book title only require to be
reflected in the extraction rule for title.

Maintaining wrappers may become a labor-intensive and error-prone task
when high human involvement is needed. Thus, the problem of wrapper main-
tenance could be overcome by making wrappers robust with respect to struc-
tural changes occurring in the source HTML documents. From this perspec-
tive, the main effort should be defining an inductive mechanism that auto-
matically produces extraction rules more “general” and, hence, resilient to
changes in the document layout.

We address the problem of extracting information from Web pages by
proposing a novel Web wrapping approach, which combines both extraction
rules and extraction schema in wrapper generation and evaluation.

Specifically, we propose:

- the notion of schema-based wrapper and a clean declarative semantics for
schema-based wrappers. Intuitively, this semantics guarantees that a part
of a document is extracted only if the information contained satisfies the
extraction schema.

- a wrapper evaluation algorithm, which runs in polynomial time with re-
spect to the size of a source document if the extraction schema is not
recursive. This algorithm is the core of a Web wrapping system, called
SCRAP - SChema-based wRAPper for web data [40, 42].

18 3 Schema-based web wrapping

- an inductive learning method to speed up the specification of schema-based
wrappers and improve their robustness with respect to structural changes
occurring in source HTML documents.

Experimental evaluation conducted on significant Web sites during a long-
term period gives evidence that SCRAP wrappers are not only able to accu-
rately extract data with the aid of extraction schema, but also resilient to
minor changes that may occur in source Web pages. Moreover, generalizing
SCRAP wrappers really improves the wrapper robustness to deal with more
evident changes in page layouts.

3.1.1 Related work

Since Web documents consist of a mixture of markup tags and natural lan-
guage text passages, extracting information from these documents is ever at-
tractive and has been recognized as a significant, non-trivial task for Web data
integration and management. Unfortunately, traditional IE tasks and meth-
ods are fit only for structure-free text. This has raised the need for extraction
mechanisms suitable for the semistructured or fairly structured nature of Web
sources.

Nowadays, the best way to perform information extraction from Web
sources is provided by wrappers [70]. A wrapper is a program designed to
extract specific contents of interest and deliver them in a structured repre-
sentation. Web wrappers hence represent an effective solution for capturing
information encoded into HTML pages and translate it into a (semi)structured
and self-describing format, like XML, suitable for further application-oriented
processing. Moreover, a Web environment imposes that wrappers are suffi-
ciently flexible to deal with dynamic and unstable sources, which may contain
ill-formed documents and frequently change their layout. Some applications
also require that wrappers are able to efficiently perform “on the fly” in re-
sponse to users’ queries.

Domain-specific extraction patterns represent the basic requirement
shared between wrappers and traditional IE systems. However, the latter use
linguistic patterns which are based on a combination of syntactic and seman-
tic constraints: such patterns are usually not sufficient, or even not applicable,
to Web documents. Indeed, Web sources often do not exhibit the rich gram-
matical structure linguistic patterns are designed to exploit. Moreover, NLP
techniques are too slow to allow for on-line extraction from possibly a large
number of documents.

In order to handle Web documents, wrapper generation systems exploit
structure information and formatting instructions within documents to de-
fine delimiter-based extraction patterns. This new kind of pattern usually
does not use linguistic knowledge, but in some cases—as we shall describe
later—syntactic and semantic constraints can be combined with delimiters
that bound the text to be extracted.

3.1 Introduction 19

Depending on the degree of human effort required, wrapper generation
can be accomplished by following three different approaches, namely manual,
semi-automatic, and automatic generation.

Manual wrapper generation

Manual wrapper generation involves a human expert to analyze the document
source and code ad-hoc extraction rules. Programming information extrac-
tion procedures by hand can be simpler for semistructured Web pages than
for structure-free text. One of the first examples of manual construction of
wrappers was provided by TSIMMIS (The Stanford-IBM Manager of Multi-
ple Information Sources) [49, 57], a historic framework for accessing multiple
information sources in an integrated fashion. In general, hand-coding implies
a high level of knowledge of the structure of the documents being wrapped,
thus may be tedious, time-consuming, and error-prone.

To speed up the manual construction of wrappers, there have been pro-
posed tools for generating extraction patterns based on expressive grammars
that describe the structure of a Web document. Unfortunately, the above
mentioned disadvantages are in practice transmitted to the grammar speci-
fication. Furthermore, manually generated Web wrappers would require high
maintenance costs, as the sources of interest are often in large number and
their content and structure may vary significantly.

Automatic wrapper generation

Fully automatic wrapper generation is really supported by only a few systems.
We mention here RoadRunner [30] and ExAlg [10]. By examining the struc-
ture of sample Web pages, these systems automatically generate a page tem-
plate for the data to be extracted. This is mainly accomplished by exploiting
methods for automatic structure detection and for separation of content from
structure. Specifically, RoadRunner works by comparing the HTML structure
of two (or more) given sample pages belonging to a same class, generating as
a result a schema for the data contained in the pages. From this schema, a
grammar is inferred which is capable of recognizing instances of the attributes
identified for this schema in the sample pages (or in pages of the same class).
To accurately capture all possible structural variations occurring on pages of a
same page class, it is possible to provide more than two sample pages. All the
extraction process is based on an algorithm that compares the tag structure
of the sample pages and generates regular expressions that handle structural
mismatches found between the two structures. In this way, the algorithm dis-
covers structural features such as tuples, lists, and variations.

Automatic wrappers rely strictly on syntactic constraints and, in general,
do not exploit any knowledge on the specific domain, thus they are not able to
semantically label the extracted data. Other drawbacks are specific of system.
For instance, RoadRunner may fail to generate the page template if HTML

20 3 Schema-based web wrapping

tags are contained in the source page as data values, and assumes that the page
template is union-free. Our approach, instead, does not pose any assumption
on the nature of textual data encoded in a page, and is able to specify an
extraction schema with optionals and disjunctions. ExAlg supports templates
with optionals and disjunctions, but handles only template-generated pages,
that is pages that are regularly rendered using a common structured template
by plugging-in values coming from a database source.

In general, fully automatic wrappers require a large number of sample
input pages, which are structurally almost identical. Therefore, automatic
wrapper generation approach is mainly justified for Web pages generated from
an on-line database and having little structural deviations.

Semi-automatic wrapper generation: Wrapper induction

Semi-automatic wrapper generation refers to the broadest class of wrapping
systems. In this class, the outstanding approach is represented by wrapper
induction, which aims to generate extraction rules by using machine learning
(ML) methods. In general, a wrapper induction method performs a search
through the space of possible wrappers (hypothesis space) until the wrapper
with the highest accuracy with respect to a training set of labeled examples is
found. Extraction rules are thus learned from these examples. The accuracy
of extraction rules usually relies on both the number and the “quality” of
the examples. It is worthy noticing that wrapper induction would be really
automatic if it did not require a training phase, which is typically human-
supervised.

In wrapper induction, the problem of wrapper generation is mapped to
one of inductive learning, which is accomplished through inductive inference
(i.e. reasoning from specific instances to generalized rules). The form of train-
ing data and the way a learned theory is expressed determine the type of
inductive learning method. Zero-order, or propositional, methods formulate
theories in the form of production rules or decision trees that relate the class
of an instance to its attribute values. However, these learners lack expressive-
ness as they cannot define hierarchical relationships, but can deal only with
instances represented by attribute-value pairs.

Inductive logic programming (ILP) [83] performs induction based on first-
order logic, and enables learning relational and recursive concepts, thus allow-
ing the extraction of information from documents with more complex struc-
tures. An ILP method adopts either a bottom-up (generalization) or a top-
down (specialization) approach to induction. A bottom-up method selects an
example set of instances and learns a hypothesis to cover those examples,
then generalizes the hypothesis to explain the remaining instances. A historic
system called GOLEM [82] performs a greedy covering based on the con-
struction of least general generalizations of more specific clauses. In general,
bottom-up methods fare well with a very small training set, but induce only a
restricted class of logic programs. By contrast, top-down methods can induce

3.1 Introduction 21

a larger class of programs, but need a relatively large number of (positive and
negative) training examples. These methods start with the most general hy-
pothesis available, making it more specific by introducing negative examples.
The well-known FOIL [90] searches for a clause that covers some positive ex-
amples and no negative examples, then all the covered instances are removed
from the training set until there are no positive examples in the training set.

Anyhow, independently from the kind of adopted inductive inference, ML-
based wrappers must be tailored with respect to the type and degree of struc-
ture of the target information source. In the following, we give a short descrip-
tion of relevant methods and systems for semi-automatic wrapper generation.

Several wrapping systems have been developed to extract data specifically
from Web pages that are generated on-line, and hence are regularly rendered
or, at worst, fairly structured. Such systems produce delimiter-based extrac-
tion rules that do not exploit syntactic or semantic information.

ShopBot [35] is an agent designed to extract information from pages avail-
able on e-commerce sites. ShopBot works in two main stages by combining
heuristic search, pattern matching, and inductive learning techniques. In the
first phase, a symbolic representation containing the product descriptions is
learned for each site. The induced formats of product description are then
subject to a ranking process to identify the best description format available.
As a main limitation, ShopBot is unable to semantically label the extracted
data.

WIEN (Wrapper Induction ENvironment) [68] is the earliest tool for in-
ductive wrapper generation. WIEN operates only on structured text contain-
ing information organized in a tabular fashion, thus it does not deal with
missing values or permutations of attributes. The system uses only delim-
iters that immediately precede or follow the data to be extracted (HLRT
organization), by applying a unique multi-slot rule on all the documents of
the source. In the attempt of automating the learning phase, WIEN exploits
domain-specific heuristics to label the training documents, then learns the
best covering HLRT wrapper using bottom-up induction.

SoftMealy [59] is a system based on non-deterministic finite-state au-
tomata, and it is conceived to induce wrappers for semistructured pages. In
contrast to WIEN, SoftMealy can handle missing values, allowing the use of
semantic classes and disjunctions. The system produces extraction rules by
means of a bottom-up inductive learning algorithm that uses labeled training
pages represented by an automaton defined on all the permutations of the
input data. The states and the state transitions of the automaton correspond
to the data to be extracted and the resulting rules, respectively. SoftMealy is
more expressive than WIEN, although it has an efficiency limit as it considers
each possible permutation of the input data.

Multi-slot rules are not suitable for extraction tasks on documents with
multiple levels of embedded data. STALKER [84] is a wrapper induction sys-
tem that addresses this issue by performing hierarchical extraction. The key
idea is the introduction of a formalism, called Embedded Catalog Tree (ECT),

22 3 Schema-based web wrapping

to describe the hierarchical organization of the documents. An ECT represents
the structure of a page as a tree in which the root corresponds to the com-
plete sequence of tokens and each internal node is associated with portions
of the complete sequence. Each node specifies how to identify the associated
subsequences, using Simple Landmark Grammars capable of recognizing the
delimiters of such sequences. Since the ECT is an unordered tree, STALKER
does not rely on the order of items, therefore can extract information from
documents containing missing items or items that may appear in varying or-
der. Despite its high flexibility, STALKER seems to suffer the generation of
complex extraction rules when, in many cases, a simple extraction rule based
on the order of items would be sufficient to extract the desired information.

More sophisticated systems for wrapper generation are able to work on
different types of text, including unstructured text. In this case, delimiter-
based patterns can be combined with linguistic ones. These systems are closely
related to ILP methods.

RAPIER [23] is a wrapper induction system for (semi)structured pages. It
works on pairs of pages and user-provided templates with the information to
be extracted. Then, it learns (using GOLEM) single-slot extraction patterns
that include constraints on syntactic information (e.g. the output of a part-
of-speech tagger) and semantic class information (e.g. hypernym links from
WordNet) of the items surrounding a candidate filler. An extraction pattern
is composed of a filler pattern, which describes the structure of the target
information, a pre- and a post-filler patterns, which play the role of left and
right delimiters, respectively.

SRV (Sequence Rules with Validation) [44, 45] is a top-down relational
learning algorithm that generates single-slot first-order logic extraction rules
for (semi)structured pages. Besides a training set of labeled pages, SRV takes
as input a set of simple and relational features, such that a simple feature
maps a token to a categorical value (e.g. length, orthography, part-of-speech,
lexical meaning), while relational features represent syntactic/semantic links
among tokens. The algorithm starts with the whole set of examples, including
negative examples (i.e. fragments that are not labeled as slot-filler instances).
Induction proceeds as in FOIL: iteratively, all positive examples that match
a currently learned rule—a rule that covers only positive examples or cannot
be further specialized—are removed from the training set. SRV generates ex-
traction rules using all the possible instances, regarded as sentences, in the
document. Each instance is presented to a classifier, and associated with a
score indicating its suitability as a filler for the target slot. Extracted rules
are highly expressive and can handle missing items and different item order-
ings.

Unlike all the above systems, the WHISK system [98] is able to deal also
with structure-free text when used in conjunction with a syntactic analyzer
and a semantic classifier. Given a training set of pages, WHISK generates,
in a top-down fashion, special regular expressions that are used to recognize

3.1 Introduction 23

the context of the relevant instances (sentences) and the delimiters of such
instances. Despite its completeness and ability in handling missing values,
WHISK needs to be trained on documents containing all the possible orderings
of fields.

In general, the wrapper induction approach suffers from the negative theo-
retical results on the expressive power of learnable extraction rules, which are
mostly specified by regular expressions. Moreover, this approach still requires
manual construction of training data for each information source, thus inher-
its some of the problems as the manual wrapper generation approach. Also,
using examples to generate wrappers relies often on an implicit knowledge
or a predefined description of the structure of the page containing the target
data.

Semi-automatic wrapper generation: Visual support tools

Another approach to semi-automatic wrapper generation consists in providing
support tools to assist wrapper designing. These tools are usually equipped
with demonstration-oriented graphical interfaces in which the user visually
specifies what information the system has to extract. This allows users having
even limited familiarity of HTML to easily work with the wrapper generator.

An example of wrapper generation with visual support is XWRAP [73, 58],
which can be classified both as unstructured and semistructured data wrapper
generation. A syntax tree describing the HTML structure of a target page is
presented to the user for browsing and selecting portions of interest. Heuristic
analysis of HTML is used to identify which parts of the page can be headings.
The extracted data is formatted using XML, but may derive structure from the
HTML source. XWRAP suffers from several disadvantages. It lacks powerful
semi-automatic generalization mechanisms for the specification of more similar
patterns at once while marking only a single pattern of the desired type. It does
not support sufficient facilities for imposing inherent or contextual conditions
to an extraction pattern. The employed levels of structure description and the
automatic hierarchical structure extractor severely limit the expressiveness of
extraction patterns. Finally, the XWRAP approach suffers from an explicit
use of the HTML syntax; by contrast, our approach allows a user to focus
on the target structure of interest without having concern of the structure
underlying a whole source HTML page.

W4F [95] is an advanced programming environment for an SQL-like
wrapper language, called HEL (HTML Extraction Language), designed for
semistructured documents. HEL query construction is supported by a special-
ized visual extraction wizard. However, except for certain trivial extraction
tasks, the wizard is not able to generate a full query, which instead must be
hand-coded by generalizing tree paths generated by the wizard and adding
further HEL language constructs. HEL is clearly more expressive than, for
example, the visual pattern definition method of XWRAP, but is a rather
complex language hard to use. W4F also contains a wizard that helps the

24 3 Schema-based web wrapping

user to define a translation of the query output into XML, and a visual inter-
face for testing and refining the wrapper interactively before its deployment.

In DEByE [69], information extraction is fully based on examples specified
by a user, which is guided by a graphical interface adopting a visual paradigm
based on nested tables. Extraction patterns, generated from the examples, are
used to perform bottom-up extraction which has been proved very effective
on some data collections. Extracted data is outputted in XML.

The most widely known tool for visual and interactive wrapper genera-
tion is perhaps Lixto [13]. In this system, extraction patterns operate on the
HTML parse tree of a page following two paradigms of tree and string extrac-
tion. For tree extraction, Lixto identifies elements with their corresponding
tree paths, which are generalized based upon visual example selection. For
extracting strings (from the text of leaf nodes), both regular expressions and
predefined concepts can be used. Lixto enables the generation of highly ex-
pressive wrappers, thanks to hierarchical extraction—based on surrounding
landmarks, HTML attributes, semantic and syntactic concepts—and a num-
ber of advanced features, such as disjunctive pattern definition, pattern spe-
cialization, pattern hierarchy construction by aggregating information from
various Web pages, and recursive wrapping [12].

The aforementioned features are internally reflected by a declarative ex-
traction language called Elog, which uses Datalog-like logic syntax and seman-
tics. It is ideally suited to represent and successively increase the knowledge
about extraction patterns described by designers. Elog is flexible, intuitive and
easily extensible. In [51], the expressive power of a kernel fragment of Elog has
been studied, and it has been demonstrated that it captures monadic second-
order logic, hence is very expressive while at the same time easy to use due
to visual specification.

The visual wrapper generation approach has recently attracted significant
attention mainly due to the increasingly availability of Web browser compo-
nents that allow users to highlight representative examples of an extraction
pattern. Moreover, expertise in wrapper coding is not required at this stage.
On the other hand, visual wrapper generators do not induce the structure
of a Web source, thus they must be updated according to eventual changes
occurring in the source.

Schema-based wrapping

Most existing wrapper designing approaches focus mainly on the specification
and use of powerful extraction languages, whereas they ignore that the target
structure for the data to be extracted, or extraction schema, could be prof-
itably exploited during wrapper designing as well as the extraction process.
For instance, a wrapper based on extraction schema is more likely to be ca-
pable of recognizing and discarding irrelevant or noisy data from extracted
documents, thus improving the extraction accuracy.

3.1 Introduction 25

Some full-fledged systems describe a hierarchical structure of the informa-
tion to be extracted [13, 84], and they are mostly capable of specifying con-
straints on the cardinality of the extracted sub-elements. However, no such
system allows complex constraints to be expressed.

Two preliminary attempts of exploiting extraction schema have been pro-
posed in the information extraction [65] and wrapping [79, 80] research areas.
In the latter work, schemas represented as tree-like structures do not allow
alternative subexpressions to be expressed. Moreover, a heuristic approach is
used to make a rule fit to other mapping rule instances: as a consequence,
rule refinement based on user feedback is needed. In [65], DTD-style extrac-
tion rules exploiting enhanced content models are used in both learning and
extracting phases.

In NoDoSE [4] the user may mark portions in the whole input document
and then visually map the contents to some output, possibly hierarchical,
structure. Actually, there is no need for a wrapper to understand the struc-
ture of the whole source page: what a user wants to extract from a Web
document should be carefully specified at the time of wrapper generation.
The most noticeable distinction between our system and all preexisting wrap-
ping systems, including NoDoSE, is the way the schema is used: not only as
the target structure of the extracted data but, most importantly, as a valu-
able, key means to guide and control both the wrapper design and evaluation
stages.

[16, 37, 36] are related to a particular direction of research: turning the
schema matching problem to an extraction problem based on inferring the
semantic correspondence between a source HTML table and a target HTML
schema. This approach differs from the previous ones related to schema map-
ping since it entails elements of table understanding and extraction ontologies.
In particular, table understanding strategies are exploited to form attribute-
value pairs, then an extraction ontology performs data extraction. However,
the approach relies on the manual creation of an ontology by a domain expert,
and may fail when dealing with Web sources related to a domain where an
ontology is hard to be created.

Wrapping maintenance

In comparison to wrapper design, wrapper maintenance has received less at-
tention. This is an important problem, because even slight changes in the
Web page layout can break a wrapper that uses landmark-based rules and
prevent it from extracting data correctly. Two major problems are relevant
to reduce the human effort required to maintain or repair a wrapper: i) au-
tomatically checking wrapper validity and ii) providing examples that allow
for automatically inducing a new correct wrapper.

[27] presents an automatic-maintenance approach to repair wrappers us-
ing content features of extracted information. Two sequential maintenance

26 3 Schema-based web wrapping

steps are distinguished: information extraction recovery and wrapper repair-
ing. The former aims at extracting as much information as possible from the
new pages; the latter is invoked only if the extraction went successfully, oth-
erwise the wrapper cannot be repaired automatically and it is necessary the
user intervention.

In [67] the “wrapper verification” problem is studied, which consists in
checking if a wrapper stops extracting correct data. To verify a wrapper, the
proposed system invokes it on a page returned in response to a given query,
and also on an earlier page obtained by the same query when the wrapper
was known to be correct. The system declares the wrapper is not broken if
the two outputs are similar with respect to a set of predefined features.

Among recent works dealing with the problem of repairing, or maintaining
wrappers, [78] is a schema-guided wrapping approach that proposes a mainte-
nance solution based on some assumptions on the features of extracted data.
More precisely, syntactic and hypertextual features and annotations of ex-
tracted data items are assumed to be preserved after page variations. Such
features are then exploited to recognize the desired information in the changed
pages and induce new rules.

In [71] both wrapper verification and wrapper maintenance problems are
addressed. Similarly in [67], a vector of features of earlier data (correct data)
and a vector of features of new data are compared, and the wrapper is judged
to be correct if the two vectors are statistically similar; otherwise, it is judged
broken and a wrapper maintenance phase is employed. The algorithm for
wrapper maintenance exploits patterns learned during the ordinary working
of the wrapper for identifying examples of data fields in the new pages. The
final step is to re-induce the wrapper using as training examples the data
fields discovered by the algorithm.

All described approaches are based on features of data extracted to be
used for detecting data fields in the new pages. However, such approaches
may fail if new data is heavily changed.

[91] proposes a strategy to identify previously wrapped examples in pages
whose structure has been updated. The authors assume that a good number
of unlabeled examples contained in the original page are still present in the
updated page. Actually, this is a major limitation of that approach; indeed,
a wrapper would fail with respect to sources where the above assumption
does not ever hold: this is the case of pages whose contents are time-changing
with respect to a fixed query, for example “Search for the top-n weekly sellers
books”.

3.2 Preliminaries

3.2.1 XML DTDs

Any XML document can be associated with a document type definition (DTD)
that defines the structure of the document and what tags might be used to

3.2 Preliminaries 27

encode the document. We provide a simplified formal definition of DTD, which
is sufficiently general and, at the same time, well-suited to meet most needs
in this thesis. In particular, we refer to DTDs that do not contain attribute
list; as a consequence, we consider a simplified version of XML documents,
whose elements have no attributes.

A DTD is a tuple D = 〈El, P, er〉 where: i) El is a finite set of element
names, ii) P is a mapping from El to element type definitions, and iii) er ∈ El
is the root element name. An element type definition α is a one-unambiguous
regular expression [21] defined as follows:1

• α → α1 || α2,
• α1 → (α1) || α1 |α1 || α1, α1 || α1? || α1∗ || e,
• α2 → ANY || EMPTY || #PCDATA,

where e ∈ El, #PCDATA is an element whose content is composed of character
data, EMPTY is an element without content, and ANY is an element with generic
content. An element type definition specifies an element-content model that
constrains the allowed types of the child elements and the order in which they
are allowed to appear.

The “one-unambiguous” property for a regular expression allows for de-
termining uniquely which position of a symbol in the expression should match
a symbol in a target word, without looking beyond that symbol in the target
word. For this reason, it is worth emphasizing that there is only one way by
which a string can be parsed using a content model.

Given a DTD D = 〈El, P, er〉, an element chain over D is a sequence of (not
necessarily distinct) elements e0, . . . , en belonging to El, such that e0 = er

and ei is a child of ei−1, for each i ∈ [1..n]. A DTD D is said to be recursive
if there exist an element chain e0, . . . , en and indexes i, j ∈ [0..n], with i 6= j,
such that ei = ej . Two elements e′, e′′ are said to be mutually recursive if there
exist an element chain e0, . . . , en and indexes i, j, k ∈ [0..n], with i ≤ k ≤ j
and i < j, such that e′ = ei = ej and e′′ = ek. An element chain e0, . . . , en is
said to be non-recursive if there not exist two indexes i, j ∈ [0..n], with i 6= j,
such that ei = ej . Let CD denote the set of all the non-recursive element
chains over D. The maximum nesting level of D (denoted as depth(D)) is the
maximum length of an element chain in C, that is depth(D) = maxc∈CD |c|.

Given a DTDD = 〈El, P, er〉 and an element e ∈ El, we denote as N(e) the
set of element names in P (e). Moreover, we denote as C(El) the maximum
number of child elements of an element belonging to El, that is C(El) =
maxe∈El|N(e)|.

3.2.2 Ordered regular expressions

The application of a wrapper to a source document may produce several
candidate extracted documents. However, an order among such candidates
1 Symbol || denotes different productions with the same left part. Here we do not

consider mixed content of elements [105].

28 3 Schema-based web wrapping

is required to identify the preferred extracted document. This requirement
can be successfully satisfied by exploiting an extension of regular expressions
where a partial order is defined among strings.

Definition 3.1 (Partially ordered language). A partially ordered lan-
guage on a given alphabet Σ is a pair 〈L,>L 〉, where L ⊆ Σ+ is a (standard)
language over Σ and >L is a partial order on the strings of L.

Partially ordered regular expressions [41] are defined by adapting classic
operations for standard languages to partially ordered languages. In particu-
lar, operations such as prioritized union, concatenation, and prioritized closure
can be defined for partially ordered languages.

Prioritized union. Let O1 = 〈L1, >L1 〉 and O2 = 〈L2, >L2 〉 be two
partially ordered languages. The prioritized union of O1 with O2, denoted by
O1 ⊕O2, is a language 〈L3, >L3 〉 such that L3 = L1 ∪ L2 and >L3 is defined
as follows:

• given two strings a, b ∈ L1, if a >L1 b then a >L3 b;
• given two strings a, b ∈ L2, if a >L2 b and b /∈ L1 then a >L3 b;
• given two strings a, b, if a ∈ L1, b ∈ L2 and b /∈ L1 then a >L3 b.

The rationale behind the prioritized union O1 ⊕ O2 is that the strings of
O1 are “preferred” with respect to the strings of O2. Note that the prioritized
union operator is not commutative (i.e. O1 ⊕O2 6= O2 ⊕O1).

Concatenation. Let O1 = 〈L1, >L1 〉 and O2 = 〈L2, >L2 〉 be two partially
ordered languages. The concatenation of O1 with O2, denoted by O1 O2, is a
language 〈L3, >L3 〉, such that L3 = L1 L2 and >L3 is defined as follows. Let
a and b be two strings; then, a >L3 b if, for each b1 ∈ L1 and for each b2 ∈ L2

such that b1b2 = b, there exist a1 ∈ L1 and a2 ∈ L2 such that a1a2 = a and
either i) a1 >L1 b1 or ii) a1 = b1 and a2 >L2 b2.

Prioritized closure. The prioritized (positive) closure of a partially ordered
language O, denoted by O., is defined by using concatenation and prioritized
union of ordered languages, that is O. =

⊕0
i=∞ Oi. Observe that

⊕
is not

commutative and O. is equal to (...⊕Oi+1 ⊕Oi ⊕ ...⊕O1 ⊕ {ε}). The main
difference between the standard closure operator + and operator . is that the
latter gives preference to longer strings.

Definition 3.2 (Ordered regular expression). Let Σ be an alphabet. The
ordered regular expressions over Σ and the sets that they denote are defined
recursively as follows:

1. ∅ is a regular expression and denotes the empty language 〈∅, ∅〉;
2. for each a ∈ Σ, a is a regular expression and denotes the language 〈{a}, ∅〉;
3. if α1 and α2 are regular expressions denoting the languages L(α1) and

L(α2), respectively, then α1+α2 denotes the language L(α1)⊕L(α2), α1α2

denotes the language L(α1)L(α2), and α.
1 denotes the language L(α1)..

Proposition 3.3. Let α be a one-unambiguous ordered regular expression.
The language L(α) is linearly ordered.

3.3 The schema-based wrapping framework 29

3.3 The schema-based wrapping framework

A schema-based wrapper is essentially composed of: i) an extraction schema
and ii) a set of extraction rules. Formally:

Definition 3.4 (Schema-based wrapper). Let D = 〈El, P, er〉 be a DTD,
R be a set of extraction rules, and w : El×El →R be a function that defines
a one-to-one correspondence between each pair of elements ei, ej ∈ El and a
rule r ∈ R. A schema-based wrapper is defined as WR = 〈D,R, w〉.

We assume any source HTML document is represented by its parse tree,
also called as XHTML document, although a tree-based model for HTML
data is not a strong requirement and could be easily relaxed. Our desired
extraction behavior is that each extraction rule applies to a (parent) sequence
of nodes to yield a (target) sequence of sequences of nodes.

Definition 3.5 (Extraction rule). Given an HTML parse tree doc and a
sequence sp of nodes in doc, an extraction rule r is a function associating sp

with a sequence S of node sequences in doc such that:

1. for each pair of sequences s′ = [n′1, . . . , n
′
k] and s′′ = [n′′1 , . . . , n′′h] in S,

there must be n′1 6= n′′1 or n′k 6= n′′h;
2. for each sequence s in S (s ∈ S), there not exist two nodes n, n′ ∈ s such

that n is an ancestor of n′;
3. for each sequence s ∈ S, there not exist two nodes n ∈ s and n′ ∈ sp such

that n′ is an ancestor of n.

The above notion of extraction rule is quite close to the notion of extraction
filter introduced in Lixto [13]. However, unlike Lixto, our extraction rules
allow non-contiguous portions to be extracted from a single HTML page.
This is particularly useful when semantically cohesive pieces of information are
scattered across the page and, instead of extracting them separately, we want
to put together them as a whole. HEL rules [95] permit to identify and extract
surrounding pieces in a structured way, but do not support disjunctions.

In Def. 3.5, condition (1) states that a rule cannot yield overlapping se-
quences, whereas condition (2) states that an extraction rule cannot yield a
sequence containing pairs of elements with an ancestor-descendant relation-
ship. Also, condition (3) states that the output of an extraction rule is limited
to the nodes that are descendants of the input nodes, i.e., it extracts infor-
mation in a hierarchical way. These restrictions are assumed by most of the
state-of-the-art wrapping approaches.

In the following, we refer to non-self extraction rule as an extraction rule
r such that, for each node sequence sp, there not exists a sequence s ∈ r(sp)
in which there is a node n ∈ s which belongs to sp as well.

It is worth emphasizing that our schema-based wrapping is substantially
conceived to be an extension of hierarchical wrapping in which the extraction
schema can be profitably exploited. That is, the extraction of the desired

30 3 Schema-based web wrapping

information proceeds in a hierarchical way (such as, e.g., [13, 84]) but under
the control of the extraction schema.

Roughly speaking, a wrapper associates the root element er of the extrac-
tion schema with the root of the HTML parse tree to be processed, then it
builds the content of er by exploiting the extraction rules to identify the se-
quences of nodes that should be extracted. In other terms, once an element e
has been associated with a sequence s of nodes of the source document, an ex-
traction rule r is applied to s to identify the sequences that can be associated
with the children of e.

3.3.1 XPath extraction rules

In principle, our schema-based wrapping approach does not rely on a spe-
cific form of extraction rules. Nevertheless, in order to make the approach
“XML-enabled” (i.e. extracted data is modeled as an XML document), we
propose an effective implementation of extraction rules based on the XPath
language [110].

The primary XPath syntactic construct is the expression. An expression is
evaluated to yield a sequence of nodes, that is an ordered collection of nodes
without duplicates. Nodes in the sequence are ordered according to the source
document parsing (document order).2

The evaluation of an XPath expression with variables occurs with respect
to a context and a variable binding. A context refers to a sequence of nodes,
and variable bindings represent mappings from variable names to sequences
of nodes. Given a variable binding θ and a variable name $v, we denote with
θ($v) the sequence associated to $v by θ. Moreover, given a variable binding
θ and a variable name $v, if θ does not associate $v to any sequence then the
application of θ to $v returns $v, i.e., θ($v) = $v. Finally, the application of a
variable binding θ to a sequence of nodes s returns s itself, i.e., θ(s) = s. Given
two disjoint variable bindings θ1 and θ2, we denote with θ1 ◦ θ2 the variable
binding obtained composing θ1, with θ2, i.e. θ1 ◦θ2 applied to a variable name
$s returns θ1(θ2($v)). Observe that, since θ1 and θ2 are disjoint, for each
variable name $v we have θ1(θ2($v)) = θ2(θ1($v)).

Given an XPath expression p, a set of variable names {$v1, . . . , $vn, $c, $t}
and a variable binding θ for {$v1, . . . , $vn, $c, $t}, the application of θ to p
(θ(p)) yields an XPath expression obtained from p by replacing every occur-
rence of a variable name $vi in p with θ($vi), for each i ∈ [1..n].

We can now define the evaluation of an XPath expression with variables
with respect to a variable binding θ and a node sequence (XPath context) s
in terms of the standard XPath semantics. Given an XPath expression p, an

2 In the standard XPath semantics, the evaluation of an XPath expression yields a
node-set (an unordered collection of nodes without duplicates). However, several
applications using XPath-based languages (e.g. XQuery) employ sequences of
nodes ordered with respect to the document order. We follow this behavior.

3.3 The schema-based wrapping framework 31

XHTML document doc, a sequence of nodes s, and a variable binding θ, we
denote with p(s, θ, doc) the sequence of nodes yielded by evaluating θ(p) on
doc, starting from s.

A key role in XPath extraction rules is played by XPath predicates. An
XPath predicate takes a context sequence, i.e. a sequence of nodes, as input
and applies an XPath expression to yield target node sequences. Specifically,
we distinguish two kinds of XPath predicates: sequence XPath predicates (→)
and subsequence XPath predicates (³). XPath predicates are used to define
XPath atoms, using an infix notation.

Definition 3.6 (XPath Atoms). Given a set {$v1, . . . , $vn, $c, $t} of vari-
ables and an XPath expression p using the variables $v1, . . . , $vn, a sequence
XPath predicate is denoted as $c : p → $t. Moreover, a subsequence XPath
predicate is denoted as $c : p ³ $t.
Given an XHTML document doc and a variable binding θ, an XPath predicate
$c : p → $t is true with respect to θ if θ($t) = p(θ($c), θ, doc). Analogously, a
subsequence XPath predicate $c : p ³ $t is true with respect to θ if θ($t) is a
subsequence of p(θ($c), θ, doc).

Given two node sequences s′ = [n′1, . . . , n
′
k] and s′′ = [n′′1 , . . . , n′′h], we say

that s′ precedes s′′ (s′ ≺ s′′) if there exists an index i such that n′i < n′′i and,
for each j < i, n′j = n′′j , or if s′ is a strict suffix of s′′.

Given an XHTML document doc, a variable binding θ, and a subsequence
XPath predicate $c : p ³ $u, we denote with eval($c : p ³ $u, θ) the sequence
of node sequences [s1, . . . , sk] such that si ≺ sj , for each i < j, and $c : p ³ $u
is true with respect to θ ◦ {$u/si}, for each i ∈ [1..k].

XPath predicates are the basis of extraction filters which, in turn, are the
constituent elements of extraction rules. An XPath extraction filter is defined
over a target predicate and a conjunction of atoms, referred to as condition
atoms, that act as filter conditions on the target predicate.

Definition 3.7 (XPath extraction filter). Given a set of variables
{$v1, . . . , $vn, $u}, an XPath extraction filter is defined as a tuple f = 〈tp,P〉,
where:

• tp is a target predicate, that is a subsequence XPath predicate defining
variable $u on the empty set of variables;

• P is a conjunction of condition atoms defined on variables {$v1, . . . ,
$vn, $u}.
Atoms in P allow the specification of conditions that reflect structural and

content constraints to be satisfied from subsequences obtained by applying f
to a sequence s, i.e. f(s). In principle, P may be formed by both XPath
and built-in atoms. The latter are particularly important as they capture the
designer needs for evaluating complex structural relations between elements,
or for manipulating regular expressions in order to extract specific substrings
within text elements. Several syntactic and semantic predicates have been

32 3 Schema-based web wrapping

Table 3.1: Sample types of extraction and condition predicates

predicate type arguments description

XPath predicate expr, context returns the result of evaluation of expr
applied to the context

After context, es, et returns the elements et placed
after es with respect to the context

Before context, es, et returns the elements et placed
before es with respect to the context

TextHandler regexpr, context returns the result of evaluation of regexpr
applied to the context

defined to be plugged in the schema-based wrapping framework, in order
to extend the expressiveness of extraction rules. Table 3.1 summarizes the
features of some main predicates used in our schema-based wrapping system.

Besides XPath extraction filters, our extraction rules may use filters that
specify restrictive constraints on the size of the extracted sequences, named
external filters. Before introducing such filters, we need to briefly explain how
inclusion between node sequences is here intended. Given two node sequences
s′ = [n′1, . . . , n

′
k] and s′′ = [n′′1 , . . . , n′′h], we say that s′′ includes s′ (s′ @ s′′) if

and only if

• n′′1 < n′1 and n′′h ≥ n′k, or
• n′′1 = n′1 and n′′h > n′k.

We consider two kinds of external filters:

• an absolute size condition filter as, which is specified by bounds
(min,max) on the size of a node sequence s, that is as(s) is true if
min ≤ size(s) ≤ max;

• a relative size condition filter rs, which is specified by policies {minimize,
maximize, all}. In the case rs = minimize (resp. rs = maximize) the meaning
is as follows: given a sequence S of node sequences and a sequence s ∈ S,
rs(s, S) is true if there not exists a sequence s′ ∈ S, s′ 6= s, such that s′ @ s
(resp. s′ A s). In the case rs = all, given a sequence S of node sequences
and a sequence of node s, rs(s, S) is true if s ∈ S.

Let EF = f1∨. . .∨fm be a disjunction of extraction filters and s be a node
sequence. The application of EF to s returns a sequence of node sequences
EF (s) = [s1, . . . , sk], such that

• k ≤ ∑m
i=1 |fi(s)|, where |f(s)| denotes the number of node sequences con-

tained in f(s),
• sh ≺ sh+1, for each h ∈ [1..k-1],
• sh 6= st, for each h, t ∈ [1..k], t 6= h,
• for each h ∈ [1..k] there exists i ∈ [1..m] such that sh ∈ fi(s).

3.3 The schema-based wrapping framework 33

Definition 3.8 (XPath extraction rule). An XPath extraction rule is de-
fined as r = 〈EF, as, rs〉, where EF = f1 ∨ . . . ∨ fm is a disjunction of
extraction filters, as and rs are external filters.

According to Def. 3.5, the application of an XPath extraction rule r =
〈EF, as, rs〉 to a node sequence s yields a sequence of node sequences r(s),
which is constructed as follows.

1. Each extraction filter f = 〈tp,P〉 ∈ EF applied to s possibly selects a
sequence S of node sequences. Specifically:
a) the XPath expression contained in tp is evaluated on s and a node

sequence s′ = [n1, . . . , nt] is obtained. Starting from s′ the sequence
S = [s1, . . . , sm] of node sequences is built, such that each node se-
quence si = [ni1, . . . , nin] ∈ S is contained in s′, that is there ex-
ists a subsequence [nh1, . . . , nhn] of s′ such that nij = nhj , for each
j ∈ [1..n];

b) for each sequence si ∈ S, condition atoms in P are evaluated and si is
removed from S if P is false on si. Specifically, P is true on a sequence
s if, for each condition atom p in P, there exists at least a node n ∈ s
such that p is true on n, otherwise P is false.

2. All the non-empty sequences of nodes selected by extraction filters are
merged, that is the ordered sequence EF (s) is computed.

3. A new sequence S′ = [s′1, . . . , s
′
h], with h ≤ |EF (s)|, is derived from EF (s)

by filtering out all the sequences si ∈ EF (s) such that as(si) is false.
4. All the sequences s′i ∈ S′ such that rs(s′i, S

′) is false are removed to finally
obtain r(s).

Observe that, in the respect of the first item of Def. 3.5, any two extrac-
tion filters should not be able to select two sequences, s′ = [n′1, . . . , n

′
k] and

s′′ = [n′′1 , . . . , n′′h], with n′1 = n′′1 and n′k = n′′h, that is two possibly different
sequences having identical nodes at their respective bounds: in fact, both ab-
solute and relative condition filters would not be sufficient to make a choice
between a sequence or the other one. An appropriate solution to this special
case can be provided by choosing the sequence s′ such that s′ ≺ s′′.

Example 3.9. Consider an extraction rule r = 〈f1 ∨ f2 ∨ f3, (1, 2), maximize〉,
where filters f1, f2 and f3 are defined respectively as:

f1 = 〈$c : //c ³ $t, {$t : [child::h]→ $v1, after($t,h,g)}〉,
f2 = 〈$c : //e ³ $t, {before($t,e,f)}〉.
f3 = 〈$c : /d ³ $t, {$t : [child::i]→ $v1}〉.

Suppose that r is applied to the node sequence s = [1, 7, 11] of the document
tree shown in the figure below.

34 3 Schema-based web wrapping

a

eb b

c c e

0

1 6 7 11

10 12 14

e

82

f

9

c

g

13 15

h

b

4

d d

5

i

3

The sequence of nodes yielded by the evaluation of the XPath expression of the
target predicate of f1 is [4, 10, 12], thus the sequence of node sequences out-
putted by the target predicate is [[4], [4, 10], [4, 10, 12], [10], [10, 12], [12]]. Con-
ditions in f1 narrow this sequence in [[4, 10, 12], [10, 12], [12]], as only node 12
satisfies the conditions, that is it is the only one having a child of type h fol-
lowed by a node g with respect to the context $t. The evaluation of the XPath
expression of target predicate of f2 produces [8, 14], thus the target predicate
of f2 yields [[8], [8, 14], [14]]. The outputted sequence becomes [[8, 14], [14]] by
applying the relating condition, as {before($t,e,f)} is true on node 14 and
it is false on node 8. The sequence of nodes yielded by the evaluation of the
XPath expression of the target predicate of f3 is [2, 5], thus the target predicate
of f3 produces [[2], [2, 5], [5]]. The relating condition narrows the sequence in
[[2], [2, 5]], as only node 2 has a child of type d.

Finally, the sequence associated with the disjunction of the filters is:
[[2], [2, 5], [4, 10, 12], [8, 14], [10, 12], [12], [14]]. The absolute external filter
yields the sequence [[2], [2, 5], [8, 14], [10, 12], [12], [14]], which is further sim-
plified in [[2, 5], [8, 14], [10, 12]] by the relative external filter.

Now, suppose that filter f3 in the example rule is replaced with the follow-
ing:

f3 = 〈$c : /*[child::d] ³ $t〉.
In this case, the evaluation of the target predicate of f3 would yield [[2]]. This
points out that the result obtained using a native XPath predicate may be quite
different from that obtained by using an XPath condition atom. 4

3.3.2 Wrapper semantics

In this section we introduce a clean declarative semantics for schema-based
wrappers. The key element is the notion of extraction model for source HTML
documents with respect to a given (i.e. already designed) wrapper. An extrac-
tion model is essentially a collection of information fragments hierarchically
organized as extraction events. Intuitively, an extraction event models the ex-
traction of a sequence of nodes by applying the appropriate extraction rule to
a certain context.

3.3 The schema-based wrapping framework 35

Actually, not all the possible extraction events turn out to be useful for
generating an XML document devoted to contain the extracted data. Extrac-
tion models enable the identification of those events that can be profitably
exploited to extract the required information.

Extraction models

We refer to information fragment as an atomic piece of information, available
from the source document, with an assigned semantic label. Formally, an
information fragment η is a pair (e, s), where e ∈ El is an element name and
s is a sequence of nodes of the source XHTML document.

As previously discussed, each extraction rule is associated to a specific pair
of element names, and applies to a node sequence to yield a sequence of node
sequences. Information fragments represent input and output information for
extraction rules. Given a wrapper WR = 〈D,R, w〉 and two information frag-
ments, ηp = (ep, sp) and ηt = (et, st), where et is a child element of ep, ηt is
extracted starting from ηp if and only if r(sp) yields a sequence of node se-
quences that contains st, where r = w(ep, et). We say that extracting a target
information fragment ηt from a parent information fragment ηp generates an
extraction event, denoted as ε = ηt ` ηp.

In order to make the construction of an output XML document easier, we
devise a schema-based wrapper working on a tree of information fragments. In
such a kind of tree, edges are just extraction events. A (well-formed) extraction
tree E is a tuple 〈E, <,`, ηr〉 such that:

• E is a partially ordered set of information fragments,
• < is a partial order on E,
• ηr is the root information fragment,
• ` is a binary relation representing extraction events that defines a tree of

information fragments, whose root is ηr, and
• given η1, η2 ∈ E, if η1 < η2 then there exists an information fragment η

such that η1 ` η and η2 ` η.

Observe that the root information fragment is unique since an HTML
parse tree has a unique root node (the document root). Moreover, as usual for
ordered trees, we assume that a total order between information fragments is
induced by the order between sibling information fragments in E , that is we
consider the order induced by the prefix visit of E .

Given an extraction tree E = 〈E, <,`, ηr〉 and an information fragment
η, we say that η belongs to E (η ∈ E) if η ∈ E. Moreover, we denote with
E(η) = {ηt | ηt ∈ E ∧ ηt ` η} the partially ordered set containing all the
information fragments in E that have η as parent information fragment.

An ordered extraction tree E = 〈E, <,`, ηr〉 is an extraction tree such that
< denotes a linear order on E(η), for each η ∈ E . Let us introduce now some
useful notations on ordered extraction trees.

36 3 Schema-based web wrapping

We denote linearly ordered sets by lists of the form [η1, . . . , ηn]. Given
an information fragment η and an ordered extraction tree E , we denote with
elnames(E(η)) the sequence of element names corresponding to E(η). For-
mally, let E(η) = [(e0, s0), . . . , (ek, sk)]; then elnames(E(η)) = [e0, . . . , ek].
Moreover, we denote with E∗(η) ⊆ E the subtree of E rooted in η.

Information fragments need to be characterized with respect to their con-
formance to a given regular expression specifying an element type. Given a
regular expression α on an alphabet of element names, and an information
fragment η, we say that E(η) is valid for α if elnames(E(η)) spells α, i.e. the
string formed by concatenating element names in elnames(E(η)) belongs to
language L(α).

Let D = 〈El, P, er〉 be a DTD and WR = 〈D,R, w〉 be a wrapper. An
ordered extraction tree E is valid for an element name e ∈ El if the following
conditions hold:

• P (e) = EMPTY, or P (e) = #PCDATA, or
• for each information fragment η=(e, s) ∈ E :

– E(η) is valid for P (e), and
– for each information fragment (et, st) ∈ E(η), st ∈ w(e, et)(s), and
– there not exist two information fragments (et, st) and (et, s

′
t) in E(η)

such that (et, st) < (et, s
′
t) and st does not precede s′t in w(e, et)(s).

An extraction model is an ordered extraction tree that conforms to the
definition of all the elements in the extraction schema.

Definition 3.10 (Extraction Model). Let D = 〈El, P, er〉 be a DTD,
WR = 〈D,R, w〉 be a wrapper, doc be an XHTML document, and E = 〈E, <
,`, ηr〉 be an ordered extraction tree. E is said to be an extraction model of
doc with respect to WR (for short, E is an extraction model of WR(doc)) if
and only if

• ηr = (er, sr), and
• for each information fragment η = (e, s) ∈ E, E(η) is valid for e.

Example 3.11. Consider the Amazon page displayed in Fig. 3.1, and suppose
that such a page is subject to a wrapper whose extraction schema is the DTD
shown in the Introduction. For the sake of simplicity, we focus on a portion of
the parse tree associated with the page (Fig. 3.3), thus we consider only some
extraction events, according to the portion of page we have chosen. Table 3.2
reports extraction events (parent and target information fragments) and as-
sociated extraction rules. We assume that (1, 1) and minimize are adopted as
default external filters.

Looking at the page, we find that books are stored into one table, which
is preceded by a simpler table containing a selection list. To extract the book
table, we define an appropriate filter, fstore, to compose the extraction rule that
triggers the extraction event for the book table. This event (ε1) occurs when

3.3 The schema-based wrapping framework 37

Fig. 3.3: Sketch of the HTML parse tree of page in Fig. 3.1

the information fragment defined on the book table (η1) is extracted from the
root information fragment (ηr).

Information about any book is stored into a separate table, which consists of
two parts: the first part contains a book picture, while the second part is another
table divided into a certain number of rows, one for each specific information
about the book. Let us consider the first book instance, whose subtree is rooted
in node 25 of the parse tree. The book, which is identified by event ε2 = η2 ` η1

using rule rbook, has information on title, (one) author, year, customer rate,
and price. The set of information fragments that are extracted from of η2

is built as E(η2) = {η3, η4, η5, η6, η8, η9}. Although information on customer
rate is available from the first instance of book, we can observe that event
ε8 = η8 ` η2 happens for element no rate: however, such an event cannot
appear in the model, because E(η2) would not be a valid content for an element
of type book.

It is worth noting that rules for extracting information on both availability
and unavailability of customer rate have been intentionally defined as identical
in this example. However, both kinds of extraction events occur only in books
having customer rate, while only event for element no rate is extracted from
books not having customer rate. This happens since it is not possible that an
event for rate occurs as a child of an event for no rate. 4

An extraction model is implicitly associated with one only XML document,
which is valid with respect to the extraction schema. Given a wrapper WR =
〈D,R, w〉, an XHTML document doc, and an extraction model E of WR(doc),
we define a function called buildDoc that takes E and an information fragment
η ∈ E as input and yields the XML document portion relative to η. Let text(s)

38 3 Schema-based web wrapping

Table 3.2: Extraction events and rules of a wrapper for Amazon pages
extrac. parent target extrac.
event info. fragment info. fragment rule

ε1 ηr = (doc, [0]) η1 = (store, [24]) fstore = 〈$doc : /table ³ $store,

{$store : preceding-sibling::*[1]//select → $list}〉
rstore = 〈fstore, (1, 1), minimize〉

ε2 η1 η2 = (book, [30]) fbook = 〈$store : /tr/table ³ $book,

ε10 η1 η10 = (book, [68]) {$book : preceding-sibling::*[1]//img → $image}〉
ε17 η1 η17 = (book, [106]) rbook = 〈fbook, (1, 1), minimize〉
...
ε3 η2 η3 = (title, [32]) ftitle = 〈$book : /tr/td ³ $title,

ε11 η10 η11 = (title, [70]) {$title : //a → $anchor text}〉
... rtitle = 〈ftitle, (1, 1), minimize〉
ε4 η2 η4 = (author, [36]) fauthor = 〈$book : /tr/td ³ $author,

ε12 η10 η12 = (author, [74]) {$author : .[contains(content.text(),‘author’)

... or contains(content.text(),‘editor’)] → $v}〉

... rauthor = 〈fauthor, (1,∞), maximize〉
ε5 η2 η5 = (year, [38]) fyear = 〈$book : /tr/td ³ $year,

ε13 η10 η13 = (year, [76]) {$year : .[contains(content.text(),‘year’)] → $y}〉
... ryear = 〈fyear, (1, 1), minimize〉
ε6 η2 η6 = (customer rate, [43]) fcrate = 〈$book : /tr[3]/td ³ $customer rate〉

ε21 η17 η21 = (customer rate, [120]) rcrate = 〈fcrate, (1, 1), minimize〉
...
ε7 η6 η7 = (rate, [44]) frate = 〈$customer rate : /img ³ $rate〉

ε22 η21 η22 = (rate, [121]) rrate = 〈frate, (1, 1), minimize〉
...
ε8 η2 η8 = (no rate, [43]) fnorate = 〈$book : /tr[3]/td ³ $no rate〉

ε15 η10 η15 = (no rate, [120]) rnorate = 〈fnorate, (1, 1), minimize〉
...
ε9 η2 η9 = (price, [61]) fprice = 〈$book : /tr/td ³ $price,

ε16 η10 η16 = (price, [99]) {$price : .[contains(content.text(),‘Buy new’)] → $p}〉
... rprice = 〈fprice, (1, 1), minimize〉

denote the concatenation of the string values of the nodes in a sequence s,
and let symbol ‘+’ indicate the concatenation of strings. For any information
fragment η = (e, s), buildDoc(E , η) is recursively defined as follows:

• if P (e) = EMPTY then buildDoc(E , η) = <e/>;
• if P (e) = #PCDATA then buildDoc(E , η) = <e>text(s)</e>;
• if P (e) is a regular expression then buildDoc(E , η) = <e>buildDoc(E , η1)+

... + buildDoc(E , ηk)</e>, where E(η) = [η1, . . . , ηk].

Moreover, we simply denote with buildDoc(E) the application of buildDoc to
the root information fragment in E .

Definition 3.12 (Extracted XML document). Let D = 〈El, P, er〉 be
a DTD, WR = 〈D,R, w〉 be a wrapper, and doc be an XHTML doc-
ument. An XML document xdoc is extracted from doc by applying WR
(hereinafter referred to as WR(doc) Ã xdoc) if there exists an extraction
model E of WR(doc) such that xdoc = buildDoc(E). Moreover, we denote
with XDoc(WR(doc)) the set of all the XML documents xdoc such that
WR(doc) Ã xdoc.

Observe that, given a wrapper WR and a document doc, it could be pos-
sible that an extraction model E of WR(doc) contains an infinite number
of information fragments. For instance, consider a wrapper WR∞ with the
extraction schema below

3.3 The schema-based wrapping framework 39

<!ELEMENT a (a | b)>
<!ELEMENT b (#PCDATA)>

Suppose that the rule to recursively extract a elements is 〈〈$a : .[body] →
$a1, {}〉, (1, 1), all〉. In the case that WR is applied to the root element of
an XHTML document, since it contains a body child, an infinite chain of
information fragments relating to a elements is yielded. In the rest of the
thesis, we shall refer to safe wrappers, that is wrappers that cannot yield
extraction models of infinite size.

Definition 3.13. Let D = 〈El, P, er〉 be a DTD and WR = 〈D,R, w〉 be a
wrapper. WR is said safe if, for each pair of mutually recursive elements e, e′

in D such that e′ appears in the definition of e, the extraction rule w(e, e′) is
a non-self extraction rule.

It is easy to see that the above describedWR∞ wrapper is not a safe wrap-
per. We now prove that every extraction model yielded by a safe wrapper is of
finite size. Specifically, we first introduce a preliminary result characterizing
the maximum number of sequences of node sequences which can be yielded
by an extraction rule, and next prove that every extraction model yielded by
a safe wrapper is of finite size.

Lemma 3.14. Let doc be an XHTML document, s a sequence of nodes in
doc, and r an extraction rule. The size of sequence r(s), |r(s)|, is bounded by
|doc|2, where |doc| is the number of nodes in doc.

Proof. It straightforwardly follows from the definition of extraction rule. ¤

Theorem 3.15. Let D = 〈El, P, er〉 be a DTD, WR = 〈D,R, w〉 be a
safe wrapper, and doc be an XHTML document. Each extraction model E
of WR(doc) is finite.

Proof. Reasoning by contradiction, assume there is an extraction model E
of WR(doc) such that the number of information fragments in E is not finite.
For any extraction rule r ∈ R and for each sequence of nodes s, Lemma 3.14
guarantees that the number of sequences in r(s) is bounded by |doc|2. Thus,
for each information fragment ε ∈ E the number of children of η is less then or
equal to |doc|2. Therefore, since E is not finite, the latter implies that the depth
of E must be infinite. It is easy to see that if the depth of E is infinite then
there is at least a pair of information fragments η1 = (e1, s1) and η2 = (e2, s2)
such that the following conditions hold:

1. η1 is an ancestor of η2;
2. e1 = e2;
3. the sequence of nodes associated to η1 and the sequence of nodes associ-

ated to η2 share a common node, i.e., there is a node n such that n ∈ s1

and n ∈ s2.

40 3 Schema-based web wrapping

The first condition implies that η2 is extracted from η1. Moreover, let
ηp = (ep, sp) be the parent information fragment of η2 (possibly coinciding
with η1). Since η2 is extracted from η1 and ηp is the parent information
fragment of η2, it holds that ep is mutually recursive with e2. As WR is a
safe wrapper, the latter implies that the extraction rule w(ep, e2) must be a
non-self extraction rule. As s2 is in w(ep, e2) it holds that no node appearing
in sp appears in s2. The latter implies that every node in s2 is a descendant
of a node in sp (it follows from the definition of extraction rule). Moreover,
since every node in sp is a descendant of a node in s1 or a node in s1, every
node in s2 is a descendant of a node in s1. As s1 does not contain two nodes
that are one descendant of the other, the latter implies that there is no node
n such that n ∈ s1 and n ∈ s2, thus contradicting that s1 and s2 share a
common node. ¤

We now characterize the cardinality of extraction models in the cases of
non-recursive DTD and safe wrapper.

Theorem 3.16. Let D = 〈El, P, er〉 be a DTD, WR = 〈D,R, w〉 be a wrap-
per, and doc be an XHTML document.

1. if D is not recursive then the cardinality of every extraction model E of
WR(doc) is O((C(El)× |doc|2)depth(D)).

2. if WR is a safe wrapper then the cardinality of every extraction model E
of WR(doc) is O((C(El) × |doc|2)depth(D)+H), where H is the depth of
doc.

Proof. Let E be an extraction model of WR(doc) and η = (e, s) be an
information fragment in E . The number of information fragments in E that
have η as parent fragment is |E(η)| ≤ ∑

e′∈N(e) |w(e, e′)(s)|.
According to Lemma 3.14, we have |E(η)| ≤ |N(e)| × |doc|2. Thus, each node
(information fragment) η = (e, s) in E has at most |N(e)| × |doc|2 nodes as
children. Therefore, the number of information fragments in E is less than
or equal to (C(El)×|doc|2)L+1−1

(C(El)×|doc|2)−1 , where L is the depth of E . We now consider
distinctly the cases of non-recursive DTD and safe wrappers, providing a
bound for the depth of E .

1. In this case, it is trivial to see that the depth of E is less than or equal to
depth(D). Therefore, the cardinality of E is O((C(El)× |doc|2)depth(D)).

2. We now prove that the maximum depth of an extraction model E of
WR(doc) is depth(D)+H, reasoning by contradiction. Assume that there
exists an extraction model E of WR(doc) such that the depth of E is
greater than depth(D) + H. Let p = η0, . . . , ηn be the longest root-to-leaf
path in E . Obviously, n is greater that 2 × depth(D) + H. Let p1, . . . , pk

and q1, . . . , qk−1 be sub-paths of p such that:
a) p is of form p1, q1, . . . , pk−1, qk−1, pk;

3.3 The schema-based wrapping framework 41

b) for each i ∈ [1..k-1], the first and the last information fragments in qi

are associated to the same element;
c) the element chain el(p1), el∗(q1), el(p2), . . . , el(pk−1), el∗(qk−1), el(pk)

is not recursive, where el(pi) is the element chain obtained by replac-
ing every information fragment in pi with its associated element and
el∗(qi) is the element associated to the first information fragment in
qi.

From the last condition, it follows that the size of the element chain
el(p1), el∗(q1), el(p2), . . . , el(pk−1), el∗(qk−1), el(pk) is less than or equal
to depth(D). Therefore, the length of p1, ηq1 , p2, . . . , pk−1, ηqk−1 , pk, where
ηq1 is the first information fragment in qi, is less than or equal to
depth(D). Therefore, contradiction hypothesis implies that the length of
q1, q2, . . . , qk−2, qk−1 is greater than H + (k − 1).
Let qi be of the form (ei

0, s
i
0), (e

i
1, s

i
1) . . . , (ei

hi , si
hi), where ei

0 = ei
hi , for

each i ∈ [1..k-1]. Let lh be the level of the shallowest node belonging to
si

hi and l0 be the level of the shallowest node belonging to si
1. From Def.

3.13, it follows that lh ≥ l0 + hi, since for each pair of mutually recursive
elements (ej , ej+1), nodes belonging to sj are at least children of the nodes
appearing in sj+1.
Considering that the extraction context for the first information fragment
of q1 could be the root of the document, each qi moves down the context
for the following extractions of a number of levels of the document that
is greater than or equal to hi − 1. Therefore, the sum of the size of all
qi cannot be greater than H since the context reaches the end of the
document, i.e.

∑k−1
i=1 hi ≤ H, that yields a contradiction.

Thus, the number of information fragments in E is bounded by
(C(El)×|doc|2)depth(D)+H+1−1

(C(El)×|doc|2)−1 , which completes the proof.

¤

Corollary 3.17. Let WR = 〈D,R, w〉 be a safe wrapper and doc be an
XHTML document. The set XDoc(WR(doc)) is finite.

Preferred extraction models

Extraction models provide a characterization of the set of XML documents
that encode information extracted by a wrapper WR from a source XHTML
document doc, that is the set XDoc(WR(doc)). Each document in this set
represents a candidate output of extraction from doc by means of WR. How-
ever, providing multiple extraction results is not a desirable property for a
wrapping framework. Therefore, we have to investigate the requirements for
identifying an extraction model that is preferred to all possible extraction
models of WR(doc). The preferred extraction model is the objective of the
wrapper evaluation task, as we shall discuss in Sect. 3.3.3, and consequently

42 3 Schema-based web wrapping

allows for computing a unique document that is preferred to all the candidate
XML extracted documents.

We assume that the notion of preferred extraction model is based on a
precedence relation between extraction models, and this, in turn, relies on
an order relation between lists of extraction events having the same parent
information fragment.

Definition 3.18 (Precedence between extraction models). Let WR =
〈D,R, w〉 be a safe wrapper, doc be an XHTML document, E1 and E2 be two
extraction models of WR(doc), and η = (e, s) be an information fragment such
that η ∈ E1 and η ∈ E2. We say that E1(η) precedes E2(η) (E1(η) ≺ E2(η)) if
and only if one of the following conditions holds:

1. elnames(E1(η)) precedes elnames(E2(η)) in language L(P (e)).
2. elnames(E1(η)) is equal to elnames(E2(η)), and there exists an integer

i ≥ 0 such that:
• E1(η) = [(e0, s0), . . . , (ei−1, si−1), (ei, s

(1)
i), . . . , (ek, s

(1)
k)], and

• E2(η) = [(e0, s0), . . . , (ei−1, si−1), (ei, s
(2)
i), . . . , (ek, s

(2)
k)], and

• s
(1)
i precedes s

(2)
i .

3. E1(η) = E2(η) = [η0, . . . , ηk], and there exists an integer i ≥ 0 such that,
for each j < i, E∗1(ηj) = E∗2(ηj) and E1(ηi) ≺ E2(ηi).

Moreover, let E1 = 〈E1, <1,`1, ηr〉 and E2 = 〈E2, <2,`2, ηr〉 be two extraction
models of WR(doc) having the same root information fragment. E1 precedes
E2 (E1 ≺ E2) if and only if E1(ηr) ≺ E2(ηr).

Definition 3.19 (Preferred extraction model). Let WR = 〈D,R, w〉 be a
safe wrapper, doc be an XHTML document, and E be an extraction model. E is
preferred with respect to WR(doc) if and only if there not exists an extraction
model E ′ of WR(doc) such that E ′ ≺ E.

Precedence relation between extraction models enables us to devise a simi-
lar relation between extracted documents. However, while an extraction model
is implicitly associated with one only XML document, an extracted document
may be in principle generated from multiple extraction models.

Definition 3.20 (Precedence between extracted XML documents).
Let WR = 〈D,R, w〉 be a safe wrapper, doc be an XHTML document, and let
xdoc1 and xdoc2 be two extracted XML documents in XDoc(WR(doc)). xdoc1

precedes xdoc2 (xdoc1 ≺ xdoc2) if and only if, for each model E2 of xdoc2,
there exists a model E1 of xdoc1 such that E1 ≺ E2.

Intuitively, the preferred extracted document is the favorite among all the
XML documents that can be generated from extraction models.

Definition 3.21 (Preferred extracted XML document). Let WR =
〈D,R, w〉 be a safe wrapper, doc be an XHTML document, and xdoc be an

3.3 The schema-based wrapping framework 43

XML document in XDoc(WR(doc)). xdoc is preferred in XDoc(WR(doc)) if
and only if xdoc ≺ xdoc′, for each document xdoc′ ∈ XDoc(WR(doc)), with
xdoc′ 6= xdoc.

Theorem 3.22. Let D = 〈El, P, er〉 be a DTD, WR = 〈D,R, w〉 be a safe
wrapper, and doc be an XHTML document. The preferred extracted XML doc-
ument in XDoc(WR(doc)) is unique.

Proof. Let 〈E,≺ 〉 be the (ordered) set of all the extraction models of
WR(doc). Since WR is a safe wrapper then it is easy to see that Theo-
rem 3.15 implies that 〈E,≺ 〉 is finite. Therefore, the uniqueness of the pre-
ferred extracted document can be shown by proving that ≺ is a total order
on E. We will have to prove that antisymmetry, transitivity, and compa-
rability hold for ≺.3 Let us denote the depth of an extraction model E as
depth(E), and ηr = (er, s). Let E1 = 〈E1, <1,`1, ηr〉, E2 = 〈E2, <2,`2, ηr〉,
and E3 = 〈E3, <3,`3, ηr〉 be extraction models of WR(doc). Let us show first
the comparability axiom for ≺.

Comparability. Reasoning by induction on the depth of E1 and E2, we
show that if E1 6= E2 then either E1 ≺ E2 or E2 ≺ E1.

1. Induction base. Assume that depth(E1) = depth(E2) = 1. Since E1(ηr) 6=
E2(ηr) then:
• if elnames(E1(ηr)) 6= elnames(E2(ηr)), since L(P (er)) is a lin-

early ordered language, then either elnames(E1(ηr)) >L(P (er))

elnames(E2(ηr)) or elnames(E2(ηr)) >L(P (er)) elnames(E1(ηr)), oth-
erwise

• if elnames(E1(ηr)) = elnames(E2(ηr)) then there exists an inte-
ger i such that E1(ηr) = [η0, . . . , ηi−1, η

(1)
i , . . . , η

(1)
k] and E2(ηr) =

[η0, . . . , ηi−1, η
(2)
i , . . . , η

(2)
k], where η

(1)
i 6= η

(2)
i . Let η

(1)
i = (e, s1) and

η
(2)
i = (e, s2). Assume without loss of generality that s1 precedes s2 in

the sequence w(er, e)(s); then E1(ηr) ≺ E2(ηr) holds due to the second
point of Def. 3.18.

2. Induction. Let depth(E1) = depth(E2) ≤ l. Because of the inductive
hypothesis, for each pair of extraction models E ′ and E ′′, with depth(E ′) <
l and depth(E ′′) < l, if E ′ 6= E ′′ then either E ′ ≺ E ′′ or E ′′ ≺ E ′.
If E1(ηr) 6= E2(ηr) then, by reasoning as in the induction base, we have
that either E1 ≺ E2 or E2 ≺ E1. Assume that E1(ηr) = E2(ηr) =
[η0, . . . , ηk]. Let i ∈ [0..k] be an integer such that, for each j < i, E∗1(ηj) =
E∗2(ηj) and E∗1(ηi) 6= E∗2(ηi). Since depth(E∗1(ηi)) < l, depth(E∗2(ηi)) < l,
and E∗1(ηi) 6= E∗2(ηi) then, according to the inductive hypothesis, either
E∗1(ηi) ≺ E∗2(ηi) or E∗2(ηi) ≺ E∗1(ηi). Thus, we must have either E1 ≺ E2

or E2 ≺ E1, which concludes the proof that comparability holds for ≺ in
WR(doc).

3 Actually, a total order should also satisfy the reflexivity axiom; however, since ≺
is defined as a strict inequality, the reflexivity property has no sense for ≺.

44 3 Schema-based web wrapping

Antisymmetry. The proof for antisymmetry can be straightforwardly de-
rived from the proof for comparability: indeed, the comparability proof states
it is not possible that, given two extraction models E1 and E2, E1 ≺ E2 and
E2 ≺ E1 hold at the same time, unless E1 is equal to E2.

Transitivity. Reasoning by induction on the depth of the extraction models
E1, E2 and E3, we show that if E1 ≺ E2 and E2 ≺ E3 then E1 ≺ E3. Let
E1(ηr) = [η(1)

0 , . . . , η
(1)
k1

], E2(ηr) = [η(2)
0 , . . . , η

(2)
k2

], and E3(ηr) = [η(3)
0 , . . . , η

(3)
k3

].
Induction base (depth(E1) = 1, depth(E2) = 1, and depth(E3) = 1). In

order to prove that if E1 ≺ E2 and E2 ≺ E3 then E1 ≺ E3, consider the
following cases:

1. elnames(E3(ηr)) >L(P (er)) elnames(E2(ηr)) and
elnames(E2(ηr)) >L(P (er)) elnames(E1(ηr)). Then,
elnames(E3(ηr)) >L(P (er)) elnames(E1(ηr)) since L(P (er)) is a lin-
early ordered language. Thus, E1(ηr) ≺ E3(ηr).

2. elnames(E3(ηr)) >L(P (er)) elnames(E2(ηr)) and elnames(E2(ηr)) =
elnames (E1(ηr)). Thus, since elnames(E3(ηr)) >L(P (er))

elnames(E1(ηr)), E1(ηr) ≺ E3(ηr) holds due to the first point of
Def. 3.18.

3. elnames(E2(ηr)) >L(P (er)) elnames(E1(ηr)) and elnames(E3(ηr)) =
elnames (E2(ηr)). The proof is analogous to that of the previous case.

4. elnames(E3(ηr)) = elnames(E2(ηr)) = elnames(E1(ηr)) and E1(ηr) 6=
E2(ηr) 6= E3(ηr). Then, there exist i1, i2 ≥ 0 such that:
a) for each j < i1, η

(2)
j = η

(1)
j and η

(2)
i1

6= η
(1)
i1

; let η
(1)
i1

= (e, s(1)
i1

) and

η
(2)
i1

= (e, s(2)
i1

), then s
(1)
i1

precedes s
(2)
i1

in the sequence w(er, e)(s) since
E1 ≺ E2;

b) for each h < i2, η
(3)
h = η

(2)
h and η

(3)
i2

6= η
(2)
i2

; let η
(3)
i2

= (e, s(3)
i2

) and
η
(2)
i2

= (e, s(2)
i2

), then s
(2)
i2

precedes s
(3)
i2

in the sequence w(er, e)(s) since
E2 ≺ E3.

Let i = min{i1, i2}, η
(1)
i = (e, s(1)

i), η
(2)
i = (e, s(2)

i), and η
(3)
i = (e, s(3)

i).
Then, for each j < i, η

(3)
j = η

(2)
j = η

(1)
j .

Assume that i = i1 (resp. i = i2). Since s
(1)
i precedes s

(2)
i in the sequence

w(er, e)(s), and s
(2)
i precedes s

(3)
i in the sequence w(er, e)(s) or s

(2)
i = s

(3)
i

(resp. s
(2)
i precedes s

(3)
i in the sequence w(er, e)(s), and s

(1)
i precedes s

(2)
i

in the sequence w(er, e)(s) or s
(1)
i = s

(2)
i), then s

(1)
i precedes s

(3)
i . Thus

E1(ηr) ≺ E3(ηr).
5. elnames(E3(ηr)) = elnames(E2(ηr)) = elnames(E1(ηr)), E1(ηr) =
E2(ηr) = [η(1,2)

0 , . . . , η
(1,2)
k1,2

] and E2(ηr) 6= E3(ηr). Then, there exists an

integer i ≥ 0 such that, for each j < i, η
(1,2)
j = η

(3)
j and η

(1,2)
i 6= η

(3)
i . Let

η
(1,2)
i = (e, s1,2) and η

(3)
i = (e, s3). Since s1,2 precedes s3 in the sequence

w(er, e)(s), E1(ηr) ≺ E3(ηr) holds due to the second point of Def. 3.18.

3.3 The schema-based wrapping framework 45

6. elnames(E3(ηr)) = elnames(E2(ηr)) = elnames(E1(ηr)), E1(ηr) 6= E2(ηr)
and E2(ηr) = E3(ηr) = [η(2,3)

0 , . . . , η
(2,3)
k2,3

]. The proof is analogous to that
of the previous case.

Induction (depth(E1) ≤ l ∧ depth(E2) ≤ l ∧ depth(E3) ≤ l). The inductive
hypothesis states that, for each triple of extraction models E ′, E ′′, E ′′′, with
depth(E ′) < l, depth(E ′′) < l, and depth(E ′′′) < l, if E ′ ≺ E ′′ and E ′′ ≺ E ′′′
then E ′ ≺ E ′′′.

In order to prove that if E1 ≺ E2 and E2 ≺ E3 then E1 ≺ E3, the above
cases (1)-(6) must be considered; however, the proof of such cases has been
already reported in the induction base, thus here is omitted. We have only to
consider the case when E1(ηr) = E2(ηr) = E3(ηr) = [η0, . . . , ηk]. Then, there
exist i1, i2 ≥ 0 such that:

1. for each j < i1, E∗2(η(2)
j) = E∗1(η(1)

j) and, since E1 ≺ E2, E1(η
(1)
i1

) ≺
E2(η

(2)
i1

);
2. for each h < i2, E∗3(η(3)

h) = E∗2(η(2)
h) and, since E2 ≺ E3, E2(η

(2)
i2

) ≺
E3(η

(3)
i2

).

Let i = min{i1, i2}. Then, E∗3(η(3)
j) = E∗2(η(2)

j) = E∗1(η(1)
j) holds for each j < i.

Consider the following cases:

• E1(η
(1)
i) ≺ E2(η

(2)
i) and E∗2(η(2)

i) = E∗3(η(3)
i). Then, E1(η

(1)
i) ≺ E3(η

(3)
i)

holds.
• E2(η

(2)
i) ≺ E3(η

(3)
i) and E∗1(η(1)

i) = E∗2(η(2)
i). Then, E1(η

(1)
i) ≺ E3(η

(3)
i)

holds.
• E1(η

(1)
i) ≺ E2(η

(2)
i) and E2(η

(2)
i) ≺ E3(η

(3)
i). Since depth(E1(η

(1)
i)) < l,

depth (E2(η
(2)
i)) < l, and depth(E3(η

(3)
i)) < l, by applying the inductive

hypothesis we derive that E1(η
(1)
i) ≺ E3(η

(3)
i).

Thus, we must have that if E1 ≺ E2 and E2 ≺ E3 then E1 ≺ E3, which
concludes the transitivity proof, and finally proves that ≺ is a total order for
WR(doc). ¤

Given a wrapper WR and an HTML document doc, the result of ap-
plying WR to doc is the unique preferred extracted XML document in
XDoc(WR(doc)). Hereinafter we denote xdocWR(doc) as the preferred ex-
tracted XML document in XDoc(WR(doc)).

3.3.3 Wrapper evaluation

In our setting, wrapper evaluation can be stated as follows: Given a wrapper
WR for an input XHTML document doc, compute the preferred extraction
model E of WR(doc). The output XML document containing the extracted
data can be directly obtained by applying the buildDoc function to the com-
puted extraction model E .

46 3 Schema-based web wrapping

Figure 3.4 shows the PreferredExtractionModel algorithm for wrapper
evaluation, which is devised into two main stages. In the first stage (function
buildTree) all the information fragments are computed in a top-down fashion:
starting from the root of the input XHTML document, an information frag-
ment is added to the extraction tree being constructed until there is a sequence
of nodes that can be constructed using the extraction rules specified by the
wrapper. This task is performed by the computeFragments function, which is
recursively invoked on an information fragment η = (e, s) adding to the input
extraction tree the information fragment (e1, s1) such that e1 and s1 appear in
P (e) and w(e, e1)(s), respectively. Finally, all the leaf information fragments
in E are marked as ready.

For the sake of presentation of the algorithm, we introduce the following
attributes for representing the order between information fragments during
the construction of the preferred extraction model. Given an extraction tree
E , any information fragment is associated with a position (pos), which follows
the partial order on E . All fragments are initially associated with an invalid
position (pos = −1). Information fragments in E are marked as either “ready”
(R) or “waiting” (W). An information fragment η is marked as “ready” when
all its children (i.e all fragments in E(η)) have a fully defined content in E . We
say that an information fragment has a fully defined content if all its children
have valid positions (i.e. pos 6= −1). Obviously, leaf fragments are “ready”
since they have no child.

The second stage is covered by the buildElements function. This exploits
the extraction schema and the fragments previously extracted to generate the
preferred extraction model, in a bottom-up fashion. The function iteratively
builds the content model of the element of an information fragment selected
from the current set of “waiting” fragments whose children are “ready”. This
set is computed by function childrenReady, which is used to control the main
loop in buildElements. Finally, an extraction model is returned only if all the
assigned information fragments are “ready”.

The buildElementContent function is devoted to the construction of the con-
tent of each element e such that η = (e, s) ∈ childrenReady(E). For this pur-
pose, the function exploits two structures: CM , initially empty, which rep-
resents all current information fragments already processed (i.e. information
fragments with a fully defined content model in E), and RCM , initialized to
E(η), which contains the remaining information fragments to be processed and
included in the resulting extraction model. Initially, the type α=P (e) of e is
checked. If α=et then an information fragment η for et is selected according
to the predefined partial order, associated with the next available position in
CM , and then inserted into CM (function assignNextPosition). Otherwise,
if α is a complex expression then it is divided in subexpressions: according
to the order of these subexpressions, buildElementContent checks whether they
are satisfiable and recursively calls itself on the first subexpression that is
recognized to be satisfiable.

3.3 The schema-based wrapping framework 47

Input:
A wrapper WR = 〈D,R, w〉, where D = 〈El, P, er〉;
An XHTML document doc.

Output:
An extraction model E of WR(doc).

Method:
E := buildTree(WR, doc);
E := buildElements(WR, E);
return unmark(E); /* returns E discarding marks */

Function buildTree(WR, doc) : E ;
Let E be an extraction tree containing only the root information

fragment ηr, where ηr = (er, [rdoc]) and ηr.state = W;
E := computeFragments(E ,WR, ηr);
LE := leafFragments(E);
for each η ∈ LE do

mark(E , η, R); /* identifies η as “ready” in E */

return E ;

Function buildElements(WR, E) : E ;
while (childrenReady(E) 6= ∅) do

let η=(e, s) ∈ childrenReady(E);
CM := ∅; /* information fragments already processed */

RCM := E(η); /* information fragments not yet processed */

buildElementContent(WR, P (e), ’’, CM, RCM);
if (CM 6= ∅) then
E := E − E(η) ∪ CM ;
mark(E , η, R);

else
E := remove(E , η); /* removes η and all its children */

if (ηr ∈ E ∧ ηr.state = W) then
return ∅;

return E ;

Fig. 3.4: Wrapper evaluation: The PreferredExtractionModel algorithm

Theorem 3.23. Let D = 〈El, P, er〉 be a DTD, WR = 〈D,R, w〉 be a safe
wrapper, and doc be an XHTML document.

(a) The PreferredExtractionModel algorithm computes the preferred extrac-
tion model in WR(doc).

(b) if D is not recursive then the PreferredExtractionModel algorithm works
in polynomial time with respect to the size of doc.

Proof. (Correctness)
We first prove that every extraction model in WR(doc) can be obtained from
the extraction tree E returned by buildTree by removing some information
fragments in E . Let E1 be an extraction model in WR(doc). We prove the

48 3 Schema-based web wrapping

Function buildElementContent(WR, α, αr, E ,NE);
Input:

A wrapper WR = 〈D,R, w〉, where D = 〈El, P, er〉;
Regular expressions α, αr;
Extraction trees E ,NE , with root η = (e, s).

Output:
E ,NE modified.

Method:
if (α = et) then

let η′=(et, s
′) ∈ NE , with ηr.state = R and ηr.pos = −1,

and there not exists η′′=(et, s
′′) ∈ NE such that s′ precedes

s′′ in w(e, et)(s);
assignNextPosition(η′, E);
NE := NE − {η′};

else if (α = α1|α2) then
if satisfiable(α1αr,NE) then

buildElementContent(α1, αr, E ,NE);
else if satisfiable(α2αr,NE) then

buildElementContent(α2, αr, E ,NE);
else
E := ∅; NE := ∅;

else if (α = α1α2) then
if not satisfiable(α1α2αr,NE) then
E := ∅; NE := ∅;

else
buildElementContent(α1, α2αr, E ,NE);
buildElementContent(α2, αr, E ,NE);

else if (α = α∗1) then
while satisfiable(α1αr,NE) do

buildElementContent(α1, αr, E ,NE);

Fig. 3.5: Wrapper evaluation: The buildElementContent function

above statement showing that every information fragment η in E1 appears at
the same level in E and the parent of η in E1 is the same parent of η in E . We
prove the last statement reasoning by induction on the level of η = (sη, eη).

- Base case: η is an information fragment at level 0 in E1. In this case η
is the root information fragment of E1, and thus has no parent. Here,
the property trivially holds, since all the extraction models in WR(doc)
have (sr, er) as root information fragment, where sr is a sequence of nodes
containing the root element of doc and (sr, er) is also the root information
fragment of E .

- Induction: η is an information fragment at level k in E1 (k > 0). Let
ηp = (eηp , sηp) be the parent of η in E1. From the induction hypothesis,
since the level of ηp is k − 1, it follows that ηp is in E , and that the level
of ηp in E is k− 1. Moreover, since ηp is the parent of η in E , it holds that

3.3 The schema-based wrapping framework 49

sη is in w(eηp , eη)(sηp). As ηp is in E , computeFragments has been invoked
on ηp. Since this implies, for each element e appearing in P (ep), all the
information fragments (e, s) such that s is in w(eηp , e)(sηp) are added to
E , then η is the child of ηp in E . This concludes the proof of the property
since η appears at the same level in E1 and E and the parent of η in E1 is
the same parent of η in E .

We prove that the tree of information fragments E yielded by buildElements

is the preferred extraction model. It is easy to see that it is an extraction
model, since for each information fragment η = (e, s) in E , it holds that
elnames(E(η)) belongs to the language defined by P (e), otherwise it will be
removed by buildElements; indeed, in this case CN will be equal to ∅ after
invoking buildElementContent.

Finally, we show that the extraction model E1 yielded by buildElements is
the preferred extraction model. Reasoning by contradiction, assume that E1

is not the preferred extraction model. From Theorem 3.22, it follows that E1

is not the preferred extraction model if and only if there exists an extraction
model E2 such that E2 ≺ E1. Let ηr = (er, sr) be the root information frag-
ment of E . Since every extraction model in WR(doc) can be obtained from
the extraction tree E by removing some information fragments in E , then ηr is
also the root information fragment of E1 and E2. Therefore, E2 ≺ E1 implies
that E2(ηr) ≺ E1(ηr), and then one of the conditions stated in Def. 3.18 is
satisfied for E1(ηr) and E2(ηr). We consider separately the following cases:

- E1(ηr) 6= E2(ηr):
In this case, since E2 ≺ E1 either it holds that elnames(E2(ηr)) precedes
elnames(E1(ηr)) or it holds that elnames(E2(ηr)) = elnames(E1(ηr)).
• elnames(E2(ηr)) precedes elnames(E1(ηr)): Since every information

fragments belonging to E2(ηr) or E1(ηr) also belongs to E(ηr),
elnames(E2(ηr)) precedes elnames(E1(ηr)) implies that, at one step of
the recursive invocation of buildElementContent, it is possible to create
a sequence of information fragments whose element names compose a
string which is preferred to elnames(E1(ηr)) and still E1(ηr) is selected.
It is easy to see that buildElementContent inserts an information frag-
ment η in the output according to the preference specified by P (er).
This contradicts the initial hypothesis that elnames(E2(ηr)) precedes
elnames(E1(ηr)).

• elnames(E2(ηr)) = elnames(E1(ηr)): In this case, E2(ηr) ≺ E1(ηr)
implies that there exists an integer i ≥ 0 such that:
– E1(ηr) = [(e0, s0), . . . , (ei−1, si−1), (ei, s

(1)
i), . . . , (ek, s

(1)
k)], and

– E2(ηr) = [(e0, s0), . . . , (ei−1, si−1), (ei, s
(2)
i), . . . , (ek, s

(2)
k)], and

– s
(2)
i precedes s

(1)
i .

Since function buildElementContent selects the information fragment
(ei, s

(1)
i) if and only if there not exists another information fragment

50 3 Schema-based web wrapping

η′ = (ei, s
′) such that s′ precedes s

(1)
i , then it cannot hold that s

(2)
i

precedes s
(1)
i , thus contradicting that E2(ηr) ≺ E1(ηr).

- E1(ηr) = E2(ηr):
In this case E1(ηr) = E2(ηr) = [η0, . . . , ηk], and there exists an integer
i ≥ 0 such that, for each j < i, E∗1(ηj) = E∗2(ηj) and E2(ηi) ≺ E1(ηi).
Applying inductively the same reasoning we applied to E1(ηr) and E2(ηr)
to E1(ηi) and E1(ηi) it is easy to show that it is not possible that E2(ηi) ≺
E1(ηi), thus contradicting the initial hypothesis.

(Complexity)
The cost of the PreferredExtractionModel algorithm is determined by the cost
of two functions, namely buildTree and buildElements.

• Function buildTree. Initially, the extraction tree E contains only the root
information fragment η = (er, sr), where sr is the context sequence that
equals the root of doc. By Theorem 3.15, we know that each information
fragment η = (e, s) in E has at most |Ele|×|doc|2 nodes as children, where
Ele is the set of element names in P (e), and the maximum number of in-
formation fragments in E is (E×|doc|2)L+1−1

(E×|doc|2)−1 , where E = max(e,s)∈E{|Ele|}
and L is the depth of E (i.e. the maximum nesting level of elements in D).
For each pair of information fragments, the parent ηp = (ep, sp) and the
target ηt = (et, st), a valid extraction rule r = w(ep, et) is applied to the
context sp. Let r = 〈EF, as, rs〉. The cost of evaluating r is bounded by
Cr = |EF | ×maxP∈f∈EF {|P|} × |doc|. Let R denote the maximum cost
of rule evaluation, that is R = maxr∈WR{Cr}. Thus, the cost of buildTree

is O(
(E × |doc|2 ×R)L

)
.

• Function buildElements. The main loop is repeated while the condition
evaluated by function childrenReady holds, that is at most L times, where
L is the depth of D. At each iteration (i.e. at each level l ∈ [0..L]), in
order to build the content of an element e, function buildElementContent

is (recursively) called at most |Ele| × |doc|2 times, since there may exist
elements in Ele having multiple occurrences in e.
Each recursive call for buildElementContent is preceded by a call for func-
tion satisfiable, which checks the satisfiability of a subexpression of P (e)
with respect to a set of information fragments not yet processed. Func-
tion satisfiable has a maximum cost of |Ele| × |doc|2. Thus, the cost of
buildElements is O(

(E × |doc|2)2L
)
, where E = max(e,s)∈E{|Ele|}.

This proves that the computation of the preferred extraction model in
WR(doc) runs in polynomial time with respect to the size of doc. ¤

Example 3.24. Consider again the HTML source, with its corresponding
parse tree, and the extraction rules from Example 3.11. The Preferre-
dExtractionModel algorithm starts from the root information fragment la-
beled as “waiting”, then generates all the remaining fragments with func-
tions computeFragments and leafFragments: E = {ηr, η1, η2, η3, η4, η5, η6,

3.3 The schema-based wrapping framework 51

η7, η8, η9}, LE = {η3, η4, η5, η7, η8, η9}. All the leaf fragments are assigned
with position −1 and marked as “ready”. At this point, the algorithm calls
buildElements, which performs the following steps.

• Calls childrenReady({ηr, η1, η2, η3, η4, η5, η6, η7, η8, η9}), which returns
{η6}, as this is the only fragment having all the children (η7) “ready”.
Then, buildElementContent(WR, ‘rate’, ‘ ’, ∅, {η7}) recognizes the α =
et case, so directly assigns the right valid position to η7 (i.e. η7 =
(rate, [44])) and sets its state to “ready”, while RCM becomes empty
and CM is set to be {η7}. Moreover, η6 becomes “ready” and E =
{ηr, η1, η2, η3, η4, η5, η6, η7, η8, η9}.

• Calls childrenReady({ηr, η1, η2, η3, η4, η5, η6, η7, η8, η9}), which returns
{η2}, then buildElementContent(WR, ‘title author+ (customer rate|no rate)

price year’, ‘ ’, ∅, {η3, η4, η5, η6, η8, η9}). The type of regular expression
here is α = α1α2, where α1 = ‘title’ while α2 equals the rest of the
expression. As a consequence, a recursive call of buildElementContent is
required.
– buildElementContent(WR, ‘title’, ‘author+ (customer rate|no rate)

price year’, ∅, {η3, η4, η5, η6, η8, η9}) sets η3 = (title, [32]) with pos =
1 and state “ready”, then CM = {η3} and RCM = {η4, η5, η6, η8, η9};

– buildElementContent(WR, ‘author+ (customer rate|no rate)

price year’, ‘ ’, {η3}, {η4, η5, η6, η8, η9}) requires a new recursive call:
· buildElementContent(WR, ‘author+’, ‘(customer rate|no rate)

price

year’, {η3}, {η4, η5, η6, η8, η9}) would require further recursive calls
until all the information fragments having author as element are
processed. In this example, however, there is one only fragment of
type author, so buildElementContent yields in one step the following:
η4 = (author, [36]), with pos = 2 and state “ready”, CM = {η3, η4}
and RCM = {η5, η6, η8, η9};

· buildElementContent(WR, ‘(customer rate|no rate) price year’,
‘ ’, {η3, η4}, {η5, η6, η8, η9}) recursively calls:
· buildElementContent(WR, ‘(customer rate|no rate)’, ‘price

year’, {η3, η4}, {η5, η6, η8, η9}), which involves a reg-
ular expression of type α = α1|α2. As the sat-
isfiable expression is α = α1, the new recursive
call buildElementContent(WR, ‘customer rate’, ‘price

year’, {η3, η4}, {η5, η6, η8, η9}) yields: η6 = (customer
rate, [43]), with pos = 3 and state “ready”, CM = {η3, η4, η6}
and RCM = {η5, η8, η9};

· buildElementContent(WR, ‘price year’, ‘ ’, {η3, η4, η6}, {η5, η8,
η9}), which requires other two recursive calls. The result is η5 =
(year, [38]), with pos = 4 and state “ready”, η9 = (price, [61]),
with pos = 5 and state “ready”, CM = {η3, η4, η5, η6, η9} and
RCM = {η8}.

52 3 Schema-based web wrapping

No other child of η2 is to be processed, so we have η2 = (book, [30]), with
pos = −1 and state “ready”, and E = {ηr, η1, η2, η3, η4, η5, η6, η7, η9}.

• Calls childrenReady({ηr, η1, η2, η3, η4, η5, η6, η7, η9}), which returns {η1}.
build-

ElementContent(WR, ‘book+’, ‘ ’, ∅, {η2}) yields in one step (i.e. there is
one book in the portion of document under consideration) η2 = (book, [30]),
with pos = 1 and state “ready”, and η1 = (store, [24]), with pos = −1 and
state “ready”.

• Calls childrenReady({ηr, η1, η2, η3, η4, η5, η6, η7, η9}), which returns ηr.
buildElementContent(WR, ‘store’, ‘ ’, ∅, {η1}) yields η1 = (store, [24]),
with pos = 1 and state “ready”, and ηr = (doc, [0]), with pos = 0 and
state “ready”.

All the assigned information fragments are now “ready”. The final result is the
preferred model E = {ηr, η1, η2, η3, η4, η5, η6, η7, η9}, which will be processed by
buildDoc in order to build the output extracted XML document. 4

3.4 Wrapper generation

As previously mentioned in Sect. 3.1.1, most Web wrapper generation sys-
tems fall into one of the following categories: wrapper generation based on
inductive learning methods, or wrapper generation based on visual support
tools. Both categories require human intervention, although with a substantial
difference: in the wrapper induction approach, a domain expert is usually re-
quired to perform the preliminary step of manually labeling as many examples
as possible (training data); differently, in the visual support based approach,
a user plays the role of wrapper designer as she/he employs tools (e.g. Web
browser components with content rendering and displaying capabilities) for
the specification of extraction rules.

It is worth emphasizing that, although semi-automatic wrapping ap-
proaches turned out to be more effective and flexible than fully automatic
ones (cf. Sect. 3.1.1), both labeling examples and visual selection of exem-
plary portions of the input pages to generate wrappers rely substantially on
an implicit knowledge or a predefined description of the structure of the page
containing the target data.

Our approach to Web wrapper generation can be seen as a “hybrid” ap-
proach, in that it features a double action. Indeed, the core of our schema-
based wrapping approach was implemented in a visual support based wrap-
ping system, named SCRAP, which offers visual tools to assist the wrapper
designer in specifying the extraction rules and the extraction schema. Never-
theless, an inductive learning method is also proposed to speed up the specifi-
cation of SCRAP wrappers and make them robust with respect to structural
changes occurring in source HTML documents.

3.4 Wrapper generation 53

Wrapper

Generator

HTML
Page

HTML

parse tree

Extraction
Rule

Evaluator

Extraction

Events

Extraction
Rules

Wrapper
Engine

Preferred
Model

DTD

XML

Preferred
Model
Builder

Extraction
Rule

Generator

XML doc
Builder

Schema
Editor

Fig. 3.6: Conceptual architecture of SCRAP

A major advantage of this hybrid approach is that the wrapper designer
is only required to correctly specify a wrapper for a given set of HTML docu-
ments, but she/he does not need to care about detailed specification of extrac-
tion rules; rather, possible redundancy in the initial wrapper can be overcome
by automatically generalize the early set of extraction rules. The generalized
wrapper turns out to be much lesser constrained to layout details of source
HTML documents and can be even effectively evaluated on documents struc-
turally modified with respect to an initial source set.

In the following, we firstly present the SCRAP system and the conceptual
framework for generalizing schema-based wrappers. In Sect. 3.4.2 we turn
attention on our method for learning robust (i.e. generalized) schema-based
wrappers.

3.4.1 The SCRAP system

The SCRAP (SChema-based wRAPper for web data) system is an XML-
enabled wrapping system, in that it wraps data extracted from a source HTML
page into an XML document [40, 42]. SCRAP is also able to allow text data
handling for string-based extraction, providing a full support for condition
atoms based on regular expressions.

The SCRAP architecture, depicted in Fig. 3.6, consists of two major com-
ponents: a Wrapper Engine and a Wrapper Generator tool.

The Wrapper Engine is the SCRAP’s core, as it provides a running envi-
ronment for wrapper evaluation. It takes three documents as input: the parse
tree of a source HTML page, a DTD representing the extraction schema, and
an XML document containing the extraction rules. DTD and extraction rules
can be specified using the Wrapper Generator tool. Wrapper Engine performs
the following steps:

54 3 Schema-based web wrapping

1. builds the tree of information fragments, in a top-down fashion, on the
basis of the subsequences resulting from the evaluation of each extraction
rule against the source HTML page;

2. computes the preferred extraction model conforming to the extraction
schema, performing a bottom-up analysis of the extraction tree;

3. builds the XML document containing the extracted data.

The Wrapper Generator consists of two visual tools: the Schema Edi-
tor and the Extraction Rule Generator. They are devoted to specify, respec-
tively, the extraction schema and the extraction rules for a source HTML page
(Fig. 3.7).

Schema Editor is essentially a visual DTD editor that allows the wrapper
designer to visually specify the extraction schema. This is represented as an
acyclic graph, whose nodes are DTD elements and edges represent mappings
from elements to element type definitions. Schema Editor also offers a simple
XML editor equipped with a syntax highlighting component.

Extraction Rule Generator provides visual wizards that guide the designer
through the specification of extraction rules and their constituents (i.e. filters
and conditions). The module embeds a Web browser component which allows
representative portions of page to be marked for the design of each extraction
rule. The designer is thus completely shielded from the formatting specifics of
the source page, since she/he is not required to know how a highlighted portion
of interest is specified in the page: indeed, the location path of a representative
instance of the target rule is automatically identified by accessing the parse
tree of the page.

Figure 3.8 shows the SCRAP-based framework for learning robust wrap-
pers. This framework is essentially composed of modules which are able to
perform four tasks, once defined a specific HTML source and specified the
relative extraction schema: 1) designing and evaluating an initial wrapper, 2)
producing candidate generalized wrappers (i.e. their sets of extraction rules),
3) validating candidate generalized wrappers, 4) selecting a most general wrap-
per.

Task 1 is accomplished by the SCRAP’s core (Wrapper Engine), with
the support of the Schema Editor and Extraction Rule Generator modules
previously described. The output is a set of extracted XML documents (named
as ‘early XML docs’ in Fig. 3.8) for a given source of HTML documents.

The Extraction Rule Generalizer module is in charge of producing can-
didate generalized wrappers (task 2), that is a collection of generalized sets
of extraction rules stored in the Generalized Rules repository. Each of such
generalized sets of extraction rules is given in input to the Wrapper Engine,
which correspondingly will produce a set of extracted XML documents. Thus,
evaluating candidate generalized wrappers is an iterative step, represented in
Fig. 3.8 by using bold dashed arrows.

Each candidate set of extracted XML documents is then compared to the
earlier set of extracted XML documents by the Wrapping Validator module

3.4 Wrapper generation 55

(a)

(b)

Fig. 3.7: Sample snapshots of SCRAP tools: (a) Schema Editor, (b) Extraction Rule
Generator

(task 3). This module marks the sets of generalized extraction rules corre-
sponding to valid wrappers, and collects them into the Valid Generalized
Rules repository. Finally, the Selector module selects non-deterministically a
valid set of generalized rules, which represents the most general wrapper.

3.4.2 Wrapper generalization

Wrapper generalization is here intended as a task for learning robust schema-
based wrappers. Given an example (initial) set of HTML documents and a

56 3 Schema-based web wrapping

early XML

docs

Wrapper

Engine

HTML

pages

Extraction

Rules

Extraction
Rule

Generator

Extraction
Rule

Generalizer

Generalized
Rules

Wrapping
Validator

test XML

docs

Valid
Generalized

Rules

Selector

DTD

Schema
Editor

Fig. 3.8: Conceptual architecture of the SCRAP-based framework for wrapper gen-
eralization

valid wrapper visually designed for such documents, the wrapper generaliza-
tion task automatically provides a new wrapper, with the same schema but
more general (less redundant) extraction rules than the early wrapper. The
generalized wrapper is required to behave in the same way as the early one,
i.e. it is able to produce the same set of extracted XML documents when
applied to the example set of HTML documents.

It is worth noticing that we do not need to perform time-consuming la-
beling of example documents, differently from traditional wrapper learning
approaches, such as e.g. [46, 59, 68, 84].

Before going into the details of our wrapper generalization approach, we
introduce useful definitions and notations. A set of extraction examples is
meant as a set of pairs 〈doc, xdoc〉, such that doc is an HTML document
and xdoc is an extracted XML document. Given a set S = {doc1, . . . , docn}
of HTML documents, the set of extraction examples defined by WR with
respect to S is the set of pairs ExSWR = {〈doc, xdocWR(doc)〉| doc ∈ S}. Let
WR be a wrapper and Ex be a set of extraction examples. We say that WR
is valid with respect to Ex if and only if for each pair 〈doc, xdoc〉 ∈ Ex it
holds that xdocWR(doc) is equal to xdoc. The set of wrappers that are valid
with respect to Ex is denoted as WREx.

3.4 Wrapper generation 57

Extraction rule and wrapper entailment

Our approach of wrapper generalization is meant as a specific-to-general learn-
ing task in a standard logic fashion. Thus, we are initially interested in devising
a suitable notion of wrapper entailment. The key idea is that a relationship of
entailment between two any wrappers lies on a comparison, in terms of pref-
erence, between the corresponding extracted documents. It is easy to see that
Def. 3.18 applies also to pairs of extraction models obtained using different
wrappers sharing the same extraction schema.

Definition 3.25 (Wrapper entailment). Let Ex be a set of extraction ex-
amples and WR′ = 〈D,R′, w′〉 and WR′′ = 〈D,R′′, w′′〉 be two wrappers
in WREx. WR′ entails WR′′ with respect to Ex (WR′ |=Ex WR′′) if and
only if, for each document doc 6∈ Ex, either xdocWR′′(doc) ≺ xdocWR′(doc)
or xdocWR′′(doc) = xdocWR′(doc).

Clearly, since the set of possible input documents is infinite, the above
notion of wrapper entailment cannot be directly exploited for the definition
of a wrapper generalization framework. In fact, checking whether a wrapper
WR is more general than an early one would require to check that, for each
possible input HTML document, the output of WR is preferred to the output
of the early wrapper.

An effective strategy for wrapper generalization can be devised by involv-
ing the constituents of a wrapper, that is its extraction schema and set of
extraction rules. However, the extraction schema is assumed to be fixed as it
represents the schema of information to be extracted. Thus, wrapper gener-
alization involves only the set of extraction rules.

We now introduce the notion of extraction rule entailment, which poses
the basis for wrapper generalization.

The notion of rule entailment lies on the containment of of node se-
quences containment. Given two node sequences s′ = [n′1, . . . , n

′
k] and s′′ =

[n′′1 , . . . , n′′h], we say that s′′ contains s′ (s′ ⊆ s′′) if and only if n′1 = n′′1 ,
n′k = n′′h and there exists a subsequence s′′k = [n′′i,1, . . . , n

′′
i,k] of s′′ such that

n′j = n′′i,j , ∀n′j ∈ s′ and n′′i,j < n′′i,j+1.

Definition 3.26 (Extraction rule entailment). Let r′ and r′′ be two ex-
traction rules. r′ entails r′′ (r′ |= r′′) if and only if, for each HTML docu-
ment doc and for each node sequence s of doc, it holds that for each sequence
s′ ∈ r′(s) there exists a sequence s′′ ∈ r′′(s) such that s′ ⊆ s′′.

Property 3.27. Let Ex be a set of extraction examples and WR′ = 〈D,R′, w′〉
and WR′′ = 〈D,R′′, w′′〉 be two wrappers in WREx. If it holds that
w′(e′, e′′) |= w′′(e′, e′′) for each pair of elements e′, e′′ appearing in D then
WR′ |=Ex WR′′.

Proof. We prove that for each document doc if, for each pair of elements
e′, e′′ appearing in D it holds that w′(e′, e′′) |= w′′(e′, e′′), then it holds that

58 3 Schema-based web wrapping

xdocWR′′(doc) ≺ xdocWR′(doc) or xdocWR′′(doc) = xdocWR′(doc), reasoning
by contradiction. Assume that it holds that w′(e′, e′′) |= w′′(e′, e′′) for each
pair of elements e′, e′′ appearing in D and there is a document doc such that
xdocWR′(doc) 6= xdocWR′′(doc) and xdocWR′′(doc) ⊀ xdocWR′(doc). Then,
the preferred extraction model E ′′ of WR′′(doc) is different from the pre-
ferred extraction model E ′ of WR′(doc) but E ′′ 6≺ E ′, that is E ′′(ηr) 6≺ E ′(ηr)
(Def. 3.18).

In this case, none of the conditions of precedence between extraction mod-
els in Def. 3.18 holds, that is one of the following cases occurs:

• elnames(E ′′(ηr)) = [e′′1 , . . . , e′′n] and elnames(E ′(ηr)) = [e′1, . . . , e
′
k] are dif-

ferent and the former does not precede the latter; thus, there exists an
integer i ≥ 0 such that e′j = e′′j , for each j < i, e′i 6= e′′i and e′′i does not
precede e′i, therefore e′i precedes e′′i . This implies that there not exists the
fragment η(e′i, s) in E ′′(ηr), that is there not exists a sequence produced by
w′′(e, e′i), where e is parent of e′i, otherwise E ′′ would not be the preferred
extraction model of WR′′.
Let s′ be the sequence associated with e′i in E ′(ηr). Since w′(e, e′i) |=
w′′(e, e′i), there exists a sequence s′′ produced by w′′(e, e′i) such that
s′ ⊆ s′′, thus yielding a contradiction.

• elnames(E ′(ηr)) is equal to elnames(E ′′(ηr)) and there exists an integer
i ≥ 0 such that:
– E ′(ηr) = [(e0, s0), . . . , (ei−1, si−1), (ei, s

(1)
i), . . . , (ek, s

(1)
k)], and

– E ′′(ηr) = [(e0, s0), . . . , (ei−1, si−1), (ei, s
(2)
i), . . . , (ek, s

(2)
k)], and

– s
(1)
i is different from s

(2)
i , but s

(2)
i does not precede s

(1)
i .

Let e be parent of ei. Since w′(e, e′i) |= w′′(e, e′i), there exists a sequence
s produced by w′′(e, e′i) such that si ⊆ s. However, since E ′′ is a preferred
extraction model, s

(2)
i precedes s, thus s

(2)
i precedes s

(1)
1 , which yields a

contradiction.
• E ′(ηr) = E ′′(ηr) = [η0, . . . , ηk], and there exists an integer i ≥ 0 such that,

for each j < i, E ′∗(ηj) = E ′′∗(ηj) and E ′′(ηi) 6= E ′(ηi), but E ′′(ηi) 6≺ E ′(ηi).
Applying inductively to E ′′(ηi) and E ′(ηi) the same reasoning applied to
E ′′(ηr) and E ′(ηr) it can be proved that it is not possible that E ′′(ηi) 6≺
E ′(ηi) holds.

Therefore, E ′′(ηr) ≺ E ′(ηr) and E ′′ ≺ E ′. It follows that, in the case
WR′(d) 6= WR′′(d), WR′′(d) ≺ WR′(d) holds, which concludes the proof.
¤

Extraction rule and wrapper subsumption

In order to define a generalization strategy for XPath extraction rules, we
seamlessly approximate wrapper entailment by exploiting the notion of sub-
sumption [83] to define an efficient algorithm for wrapper generalization.

3.4 Wrapper generation 59

a

db

c e

f

a

db

c

e

f

(I) (II)

Fig. 3.9: Tree patterns

Firstly, we introduce some generalization operations to be applied to XPath
expressions, secondly, we define the notion of atomic generalization between
XPath expressions and, finally, we define the concepts of rule subsumption
and wrapper subsumption.

Generalization steps.

In the following, we consider XPath expressions of the form ./s1/ . . . /sn.
Each si is an XPath steps of the form a :: nΠ, where a is an XPath axis, n
is an XPath node test and Π is a sequence of XPath predicates of the form
Π = [π1] . . . [πt].

An XPath expression can be generalized by removing individual steps
or applying relaxations to step components (i.e. node test, axis, predicates).
Specifically, we can delete a predicate or a node test, and we can transform a
child axis in a descendant one.

Moreover, we consider a transformation called subtree promotion as gener-
alization operation. This transformation was originally introduced in [7] for
relaxing a tree pattern query. Given a tree, a subtree promotion consists of
moving up a subtree of one level, that is a subtree rooted at t is promoted
if the edge between t and its parent p is removed and a descendant edge
connecting the parent of p to t is created. As an example, consider the tree
patterns shown in Fig. 3.9. Tree pattern 3.9(II) is obtained from tree pattern
3.9(I) by promoting the subtree rooted at e. Note that tree pattern 3.9(II)
is more general than tree pattern 3.9(I). Finally, since an XPath predicate is
also an XPath expression, all generalization operations can be applied to it.
Therefore, the generalization of a predicate is also an atomic generalization
step.

We consider the following operations as atomic generalization steps appli-
cable to XPath expressions:

• deletion of a step;

60 3 Schema-based web wrapping

• relaxation of a child axis;
• deletion of node test;
• deletion of a predicate;
• subtree promotion;
• generalization of a predicate.

Informally, an XPath expression l′ is said to be an atomic generalization
of an XPath expression l if and only if l′ is obtained from l by applying one
of the above atomic generalization steps.

Example 3.28. Consider the XPath expressions and the corresponding tree pat-
terns depicted in Fig. 3.10. The XPath expression l reported inside the box of
Fig. 3.10 is the expression to be generalized. Figure 3.10(1) shows the expres-
sion l1 obtained from l by deleting the second last step, whereas Figg. 3.10(2),
3.10(3) and 3.10(4) show expressions obtained from l by applying relaxations
to step components. Specifically, l2 is yielded by relaxing the child axis of the
second step, l3 is provided by deleting the node test of the first step, and l4 is
obtained by deleting the last predicate of the second step.

Furthermore, Figg. 3.10(5) and 3.10(6) illustrate two examples of appli-
cation of subtree promotion to l. Specifically, l5 is yielded by promoting the
subtree rooted at e, whereas l6 is provided by promoting the subtree rooted as
d. It can be noticed that the promotion performed in l5 concerns a step located
in the path conveying to the output node. Therefore, in order to not change
the output node, it is necessary that the step preceding the node to be promoted
becomes a predicate. We distinguish two cases of promotion: step subtree pro-
motion (used to provide l5) and predicate subtree promotion (employed to
obtain l6). The latter concerns the case when the node to be promoted is the
node test of the first step of an expression contained in a predicate, since it is
necessary to move the whole predicate to the previous step.

Finally, Fig. 3.10(7) shows the expression l7 obtained from l by applying
a generalization of a predicate, that is the application of one of the oper-
ations described above to the XPath expression contained in the predicate.
Specifically, l7 is provided by applying the deletion of a node test to the first
predicate of the second step of l. 4

We note two particular cases of application of step subtree promo-
tion and predicate subtree promotion. Consider the XPath expression
./a/b[./d[./c][./e/f]]/g. The promotion of the subtree rooted at f (step
subtree promotion) produces the XPath expression ./a/b[./d[./c][.[./e]//f]],
that has a redundant form since it can be simply expressed as
./a/b[./d[./c][.//f][./e]], wherein predicate [.[./e]//f]] has been “split” in the
two predicates [.//f] and [./e]. Furthermore, consider again the XPath ex-
pression ./a/b[./d[./c][./e/f]]/g and suppose to apply a promotion to the sub-
tree rooted at c (predicate subtree promotion). In this case, the expression
./a/b[.[.//c]/d[./e/f]]/g is obtained, which is the equivalent to the expression

3.4 Wrapper generation 61

a

c

(1)

d e

a

b

c fd

f

a

b

* d e

f

a

c d e

f

*

b

c d e

f

a

b

c e

f

a

b

c d

e

f

a

b

c e

f

d

(7)

(2)

(3) (4) (5)

(6)

l=./a/b[./c][. /d]/e /f l1=./a/b[./c][. /d]//f

l7=./a/b[./*][. /d]/e/f

l2=./a//b[./c][./d]/e/f

l3=./*/b[./c][./d]/e /f l4=./a/b[./c]/e/f l5=./a[./b[./c][./d]]//e /f

l6=./a[.//d]/b[. /c]/e /f

b b

Fig. 3.10: A tree pattern and its atomic generalizations

./a/b[.//c][./d[./e/f]]/g. In the following, whenever an expression of the form
[.[.l]l′] is obtained, we consider the equivalent form [.l][.l′].

In order to formally define the atomic generalization, we provide some no-
tation. Given an XPath expression l = ./s1/ . . . /sn, where s1 = a1 :: n1Π1,
we denote as desc(l) the XPath expression obtained from l by imposing a de-
scendant axis as axis of first step, i.e. desc(l) = ./descendant :: n1Π1/ . . . /sn.
Given two XPath predicates p = [./s1/ . . . /sn], p′ = [./s′1/ . . . /s′m], we de-
note as unite(p, p′) the XPath predicate [.[./s1/ . . . /sn]/s′1/ . . . /s′m]. Note that
unite(⊥, p′) = p′. Given an XPath expression l = ./s1/ . . . /sn, we consider
as s0 the step containing the self axis “.”, i.e. s0 = a :: nΠ, where a = self ,
n = node() and Π =⊥.

62 3 Schema-based web wrapping

Definition 3.29 (Atomic generalization). Given two XPath expressions
l = ./s1/.../sn and l̄ = ./s̄1/ . . . /s̄m, where si = ai :: niΠi and s̄j = āj :: n̄jΠ̄j

are XPath steps, with i ∈ [1..n] and j ∈ [1..m], l̄ is an atomic generalization
of l (l → l̄) if and only if one and only one of the following conditions holds:

* [deletion of a step]: m = n−1 and there exists k ∈ [1..n] such that s̄h = sh,
∀h ∈ [1..k − 1] and if k 6= n it holds that s̄k = descendant :: nk+1Πk+1

and s̄r = sr+1, ∀r ∈ [k + 1..m];
* [relaxations of step components]: n = m and there exists k ∈ [1..n] such

that for each h ∈ [1..n] with h 6= k it holds that s̄h = sh. Moreover, let
sk be the Xpath step a :: nΠ and s̄k be the XPath step ā :: n̄Π̄ with
Π = [π1] . . . [πy] and Π̄ = [π̄1] . . . [π̄z], exactly one of the following cases
must occur:
- [generalization of a predicate]: a = ā, n = n̄, and there exists g ∈ [1..y]

such that π̄r = πr, ∀r ∈ [1..y], r 6= g and either:
· z = y and πg → unite(⊥, [π̄g]) or
· z = y + 1 and πg → unite([π̄z], [π̄g]);

- [deletion of a predicate]: a = ā, n = n̄, z = y − 1 and there exists g ∈
[1..y] such that: π̄w = πw, ∀w ∈ [1..g − 1] and π̄v = πv+1, ∀v ∈ [g..z];

- [relaxation of child axis]: a = child, ā = descendant, n = n̄ and
Π = Π̄;

- [deletion of node test]: a = ā, n 6= ∗, n̄ = ∗, and Π = Π̄.
* [step subtree promotion]: there exists k ∈ [2..n] such that m = n − 1,

s̄h = sh for each h ∈ [1..k − 3], s̄k−2 = ak−2 :: nk−2Πk−2[./sk−1], s̄k−1 =
desc(sk) and s̄w = sw+1 for each w ∈ [k + 1..m];

* [predicate subtree promotion]:m = n and there exists k ∈ [1..n] such
that s̄h = sh for each h ∈ [1..k − 2], s̄z = sz for each z ∈ [k + 1..n],
sk = ak :: nk[π1

k] . . . [πr
k] and there exists g ∈ [1..r] such that:

– s̄k = ak :: nk[π̄1
k] . . . [π̄r−1

k], where π̄v
k = πv

k for each v ∈ [1..g − 1] and
π̄w

k = πw+1
k for each w ∈ [g..r − 1] and

– s̄k−1 = ak−1 :: nk−1Πk−1[desc(πg
k)].

Starting from an XPath expression and repeatedly applying atomic gen-
eralization steps, an XPath expression that is a generalization of the first one
is obtained. Given two XPath expressions l and l′, l′ is a generalization of
l (l →∗ l′) if and only if there exists a finite sequence of XPath expressions
l0, . . . , ln such that l = l0, l′ = ln and li−1 → li, ∀i ∈ [1..n].

We now introduce the concept of atomic generalization of an XPath atom
$c : l ³ $t, which essentially consists in an atomic generalization of l. For-
mally, given two XPath atoms p = $c : l ³ $t and p′ = $c′ : l′ ³ $t′, p is an
atomic generalization of p′ (p → p′) if and only if $c = $c′, $t = $t′ (p and p′

use the same variables) and l → l′ (l is an atomic generalization of l′).
The atomic generalization of an extraction filter is yielded by applying an

atomic generalization step to one of its components. Specifically, given two
extraction filters f = 〈tp,P〉 and f ′ = 〈tp′,P ′〉, f ′ is an atomic generalization
of f (f → f ′) if and only if one and only one of the following conditions holds:

3.4 Wrapper generation 63

1. tp → tp′ and P = P ′;
2. tp = tp′, |P| = |P ′| and there exist p ∈ P and p′ ∈ P ′ such that P−{p} =
P ′ − {p′} and p → p′;

3. tp = tp′ and there exists a condition atom p ∈ P such that P ′ = P − {p};
4. tp = tp′ and there exists a substitution θ such that P ′θ = P and:
• θ = {x/c}, such that c ∈ C(P), x ∈ V(P ′), or
• θ = {y/x, z/x} such that y, z ∈ V(P ′), x ∈ V(P),
where C(P) and V(P) denote the set of all constant and variable names,
respectively, appearing in atoms in P;

Let r = 〈EF, as, all〉 and r′ = 〈EF ′, as′, all〉 be two extraction rules4,
where EF = {f1 ∨ . . . ∨ fm}, EF ′ = {f ′1 ∨ . . . ∨ f ′m}, as = [min,max] and
as = [min ′,∞]. r′ is derived from r (r → r′) by applying an atomic step of
generalization if and only if one and only one of the following conditions holds:

1. there exist fj and f ′j such that fj → f ′j and fi = f ′i ,∀i ∈ [1..m], i 6= j;
2. EF = EF ′ and min ′ = min-1.

Definition 3.30 (Rule subsumption). Given two extraction rules r and r′,
r′ subsumes r (r′ ` r) if there exists a sequence of extraction rules r0, . . . , rn

such that r0 = r, rn = r′, and ri−1 → ri, ∀i ∈ [1..n].

Definition 3.31 (Wrapper subsumption). Given two wrappers WR1 =
〈D,R1, w1〉 and WR2 = 〈D,R2, w2〉, WR2 subsumes WR1 (WR2 ` WR1)
if and only if, for each pair of elements names e1, e2 in D, w2(e1, e2) `
w1(e1, e2).

Lemma 3.32. Let l and l′ be two XPath expressions. If l →∗ l′ then, for each
HTML document doc, the set of nodes obtained by applying l′ to doc contains
the set of nodes obtained by applying l to doc.

Proof. Let T and T ′ be the tree patterns corresponding to l and l′, respec-
tively. The statement is proved by showing that if l →∗ l′ then there exists a
homomorphism containment between T and T ′.5

We prove the existence of a homomorphism from T ′ to T in the case of
l → l′, since the general case l →∗ l′ is trivially deducible from it.

We first consider the case when l′ is obtained by applying a subtree promo-
tion generalization step to l. Assume without loss of generality that nT ∈ T
is the root of the subtree promoted in T ′. Let na

T ∈ T be parent of the nT ’s
parent. We denote as nT ′ ∈ T ′ the node corresponding to the root of the
promoted subtree and as na

T ′ ∈ T ′ the parent of nT ′ .

4 We only apply generalization steps to extraction rules having all as relative fil-
ter, since generalizing rules having other kinds of relative filters can yield non-
monotonic rules.

5 We recall that a homomorphism from a tree pattern T ′ to a tree pattern T is a
total mapping from the nodes of T ′ to the nodes of T , such that node types and
structural relationships are preserved [81].

64 3 Schema-based web wrapping

The mapping from na
T ′ to na

T and from nT ′ to nT (and from all the other
nodes of T ′ to the corresponding nodes in T) is a homomorphism since:

• the label of na
T ′ is equal to the label of na

T , and the label of nT ′ is equal
to the label of nT ;

• na
T ′ is connected to nT ′ by means of a descendant edge and nT is a de-

scendant of na
T .

The case of predicate subtree promotion is analogous. The deletion of a
step or a predicate from an expression l whose associated tree pattern is T
produces a tree pattern that is obviously contained in T , since the obtained
expression is a subexpression of l, then the existence of a homomorphism is
straightforward. Other cases are trivial. ¤

Theorem 3.33. Given two extraction rules r and r′, r′ ` r ⇒ r |= r′.

Proof. Let r be of the form 〈EF, as, all〉 and r′ be of the form
〈EF ′, as′, all〉. We only prove the statement in the case of r → r′, since the
case r →∗ r′ is deducible from it. We list all the ways to derive r′ from r by
applying an atomic generalization step and we prove the thesis for each case:

* [generalization of an internal filter]: Let f = 〈tp,P〉 be an internal filter
of EF and f ′ = 〈tp′,P ′〉 be an internal filter of EF ′ such that f → f ′. We
recall that each filter fi of EF with fi 6= f is equal to filter f ′i of EF ′ and
|EF | = |EF ′|.
- [generalization of the target predicate]: In this case it holds that tp →

tp′. From Lemma 3.32 it holds that the set of nodes extracted from
the XPath expression of tp is contained in the set of nodes extracted
from the XPath expression of tp′ for each document doc. Therefore, for
each sequence s yielded by evaluating tp on a sequence sc such that
s ∈ r(sc), there exists a sequence s′ yielded by evaluating tp′ on sc

such that s ⊆ s′. For construction s′ ∈ EF ′(sc) and it holds that P ′ is
true on s′, since P = P ′ and P is true on s. Since as′ = [min′,∞] and
|s′| ≥ |s|, it holds that as′(s′) is true, thus s′ ∈ r′(sc);

- [generalization of an XPath atom]: In this case it holds that P ′−{p′} =
P − {p} and p → p′. Since tp = tp′, the node sequences on which P ′
is evaluated are the same of that on which P is evaluated. Therefore,
for each s yielded by evaluating tp on a sequence sc such that p is true
on s and s ∈ r(sc), from Lemma 3.32 it holds that p′ is true on s, thus
s ∈ r′(sc);

- [deletion of a condition atom]: Since tp = tp′, the node sequences on
which P ′ is evaluated are the same of that on which P is evaluated.
Since P ′ = P − {p}, for each s yielded by evaluating tp on a sequence
sc such that P is true on s and s ∈ r(sc), it holds that for each p′ ∈ P ′
p′ is true on s, thus s ∈ r′(sc);

3.4 Wrapper generation 65

Input:
A wrapper WR=〈D,R, w〉;
A set S={doc1, . . . , docn} of example HTML documents.

Output:
A most general wrapper with respect to WR and S.

Method:
let X = {xdoc1, . . . , xdocn} be the set of XML documents extracted
by applying WR on S;
MW := WR;
repeat

NW := ∅; /* the set of generalized wrappers at the current step */
let MW = 〈D,R, w〉;
for each r ∈ R do

R′ := generalize(r);
for each r′ ∈ R′ do
WR′ := 〈D,R− {r} ∪ {r′}, ϕ(w, r, r′)〉;
if (valid(WR′,X ,S))

NW := NW ∪ {WR′};
if (NW 6= ∅)
MW := selectWrapper(NW);

until (NW = ∅)
return MW;

Fig. 3.11: The MostGeneralWrapper algorithm

- [variable substitution]: This case follows from the implication between
subsumption and entailment in the case of logic rules. Indeed, it is easy
to see that our notion of substitution is equivalent to the substitution
in subsumption between logic rules.

* [generalization of the absolute filter] Let as be of the form [min,max] and
as′ of the form [min′,∞]. In this case it holds that EF = EF ′ and, thus,
EF (sc) = EF ′(sc) for each sc. Since min′ ≤ min and max′ ≥ max, for
each s ∈ r(sc) it holds that as′(s) is true, thus s ∈ r′(sc).

¤

Let Ex be a set of extraction examples andWR andWR′ be two wrappers
in WREx. WR′ is said to be a most general generalization of WR (for short,
most general wrapper) if WR′ ` WR and, for each wrapper WR′′ ∈ WREx

it holds that WR′′ 6= WR′, WR′′ ` WR and WR′ ` WR′′.

An algorithm for wrapper generalization

The computation of a most general wrapper can be performed by repeat-
edly generalizing extraction rules, while guaranteeing that data are correctly
extracted from the given set of source documents.

Our MostGeneralWrapper algorithm (Fig. 3.11) takes a wrapper and a set
of example HTML documents as input and computes a most general wrap-
per. Function generalize computes the set of all extraction rules that can be

66 3 Schema-based web wrapping

obtained applying atomic generalization steps. We remark that, for any newly
generalized wrapper WR′, ϕ(w, r, r′) returns a function w′ defined as follows:

• w′(ei, ej) = r′ for each (ei, ej) ∈ El × El such that w(ei, ej) = r, and
• w′(ei, ej) = w(ei, ej) otherwise.

Function valid verifies that the set X ′ = {xdoc′1, . . . , xdoc′n} of XML
documents extracted by a new wrapper WR′ from the set S is such that
xdoc′i = xdoci, ∀ i ∈ [1..n], xdoc′i ∈ X ′, xdoci ∈ X . Finally, function se-
lectWrapper non-deterministically chooses a wrapper from the set NW of
general wrappers. The algorithm iterates until no generalized wrapper can
be generated anymore.

Proposition 3.34. Let WR be a wrapper. The MostGeneralWrapper algo-
rithm correctly computes a most general generalization of WR.

Proof. We prove the soundness of the algorithm reasoning by contradic-
tion. Let MW = 〈D,R, w〉 be the output wrapper, i.e. the wrapper returned
by the algorithm when NW = ∅. Suppose that MW is not a most general
wrapper with respect to the input wrapper WR. In this case, there exists
a wrapper WR′ = 〈D,R′, w′〉 valid with respect to S that subsumes MW,
that is for each pair of elements names e1, e2 in D w′(e1, e2) ` w(e1, e2).
For Def. 3.30 it follows that there exists a sequence of extraction rules
obtained by atomic generalization steps that provides w′(e1, e2) starting from
w(e1, e2). Therefore, wrapper MW cannot be the output wrapper since it
can be still generalized, i.e. NW cannot be empty, and then the hypothesis
is contradicted. ¤

It is easy to observe that the complexity of the MostGeneralWrapper al-
gorithm is exponential with respect to the size of the initial wrapper, since
evaluating a wrapper requires exponential time with respect to the size of the
wrapper itself. However, the algorithm turns out to be useful in practice, as it
performs a reasonable number of atomic steps of generalization in real cases.

3.5 Experimental evaluation

We devised experimental evaluation to pursue the following goals:

• assessing the ability of SCRAP wrappers in extracting data with the aid
of extraction schemas,

• demonstrating the robustness of SCRAP wrappers with respect to minimal
changes that may occur in Web pages,

• evaluating the impact of wrapper generalization to learn wrappers robust
to major changes in page layouts.

3.5 Experimental evaluation 67

(a) (b) (c)

Fig. 3.12: Excerpts of sample ANSA pages: (a) home page, (b) top-news page, (c)
local news page

It is worth emphasizing that, differently from the case of wrapper induc-
tion systems, experimental validation of an interactive wrapper generation
approach aims mainly at verifying its feasibility. Furthermore, the robustness
of any semi-automatic wrapper generation system is typically affected by the
human designer skills.

In the previous sections we have discussed an application of SCRAP on
Amazon, illustrating the computation of a preferred extraction model. Here we
gain an insight into interesting real case studies concerning the evaluation of
SCRAP against Web sites having different presentation and content features.

3.5.1 Data description

We conducted experiments using three data-intensive real-world Web sites.
Specifically, we monitored, during a 6-month period, pages available from
selected URLs or resulting from a query issued on a site search engine.

• Amazon [6]. Pages listing books available at the popular online store have
been chosen and discussed as our running example. For the experimental
analysis, we considered the URL of a page listing the Top-25 seller books
concerning a fixed subject (e.g. Computers & Internet-Programming), like
that of Fig. 3.1.

• IMDb [61]. The biggest searchable on-line information repository about
movies and TV shows. It offers reviews, plot summaries for movies, rec-
ommendation of top-movies as voted by users, filmographies, news about
celebrities and daily studio briefing. We monitored the URLs of all movie
pages referenced by the page listing the USA Weekly Top 50 Video
Rentals.6 This is an index page that points to movie pages changing ev-
ery week.7 We assumed to consider the following information in any movie

6
http://www.imdb.com/boxoffice/rentals.

7
http://www.imdb.com/title/.

68 3 Schema-based web wrapping

page: title, year, director, genre (sequence of one or more movie categories),
plot outline (a short movie summary), user comments (one or more long
texts), user rating (optional), and cast overview (a list of pairs actor name
and role).

• ANSA [9]. This is the site of an Italian news agency. We considered pages
that fall into three different categories: home page, including the most rel-
evant national and international news, top-news page,8 containing further
information about the most relevant news, and local-news page,9 present-
ing news about a specific geographical region. Example ANSA homepage
and top-news page are displayed in Fig. 3.12. Note that, besides heading
and content, news may have also either date/time or site, and even a more
complex schema including subheading or cross-heading.

Pages listing books on Amazon have typically a quite regular template,
whereas movie pages on IMDB alternate short data values with even long
texts and follow a template less regular than Amazon. The ANSA Web site
represents the hardest test, since ANSA pages contain news items that are
updated frequently and have irregular structure and different content features.
In particular, a news may have an associated image, the content of a news may
have formatting tags (elements) that could be not considered for extraction,
more news may be contained within the same cell of a table, or a news may
be structured over more table cells.

Figure 3.13 shows the extraction schemas used to design wrappers for
ANSA and IMDB pages, in addition to the schema for Amazon wrappers
previously introduced in Fig. 3.2.

3.5.2 Evaluation metrics

We adopted IR-based metrics, namely precision and recall, to evaluate the
effectiveness of SCRAP wrappers.

Precision is a measure of the fraction of the extracted information that is
correct, and recall is a measure of the fraction of information that has been
correctly extracted. Loosely speaking, precision quantifies the reliability of the
extracted information, whereas recall measures how much of the information
to be extracted has been really extracted. Extracted information clearly refers
to data items extracted by the wrapper, i.e. portions of the source HTML
document which are associated with some elements of the extraction schema.

Let EI be the set of data items that have been extracted, and RI be
the set of data items required to be extracted. Precision and recall are then
defined as:

P =
|EI ∩RI|
|EI| R =

|EI ∩RI|
|RI| ,

where |EI ∩RI| is the number of correctly extracted data items.
8
http://www.ansa.it/main/notizie/awnplus/topnews/topnews.html.

9
http://www.ansa.it/main/notizie/regioni/.

3.5 Experimental evaluation 69

<!ELEMENT ansa-homepage (news+)>
<!ELEMENT news (headline, content, cross-heading?)>
<!ELEMENT headline (#PCDATA)>
<!ELEMENT content (#PCDATA)>
<!ELEMENT cross-heading (#PCDATA)>

(a) ANSA homepage

<!ELEMENT ansa-topNews (news+)>
<!ELEMENT news (headline, subheading, (site | date-time), content?)>
<!ELEMENT headline (#PCDATA)>
<!ELEMENT subheading (#PCDATA)>
<!ELEMENT site (#PCDATA)>
<!ELEMENT date-time (#PCDATA)>
<!ELEMENT content (#PCDATA)>

(b) ANSA top news

<!ELEMENT ansa-localNews (news+)>
<!ELEMENT news (date-time, headline, subheading)>
<!ELEMENT headline (#PCDATA)>
<!ELEMENT subheading (#PCDATA)>
<!ELEMENT date-time (#PCDATA)>

(c) ANSA local news

<!ELEMENT movie (title, year, director, genre+, plot-outline,
user-comments*, user-rating?, cast-overview*)>

<!ELEMENT cast-overview (actor, role)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT director (#PCDATA)>
<!ELEMENT genre (#PCDATA)>
<!ELEMENT plot-outline (#PCDATA)>
<!ELEMENT user-comments (#PCDATA)>
<!ELEMENT user-rating (#PCDATA)>
<!ELEMENT actor (#PCDATA)>
<!ELEMENT role (#PCDATA)>

(d) IMDB movie page

Fig. 3.13: Extraction schemas associated with the test sites

The answer of any wrapper evaluation can be one of the following contin-
gencies:

• complete result (CR): the wrapper correctly extracts all the desired data;
• partial result (PR): the wrapper correctly extracts only some desired data,

but does not extract incorrect data;
• wrong result (WR): the wrapper extracts incorrect data;
• no result (NR): the wrapper does not work anymore.

70 3 Schema-based web wrapping

A CR case corresponds to optimal precision and recall, i.e. all the correct
data items that should be extracted from a page are really extracted by the
wrapper.

A failure in recall is obtained in a PR case, since some correct data items
have not been recognized. On the contrary, the wrapper fails in precision when
a WR case occurs, since some undesired data items have been recognized as
correct data items. It is worth emphasizing that, from the data extraction
viewpoint, lower precision should be considered as more negative than lower
recall: indeed, it is preferable to miss some correct data rather than extract
incorrect data.

Finally, an NR case means that the wrapper cannot provide any result
since it is not anymore able to compute an extraction model for a given source
page.

3.5.3 Robustness evaluation

For each test site, we early designed a wrapper with SCRAP, according to
the extraction schemas shown in Fig. 3.13. During the period of experimental
evaluation, the pages on the selected Web sites underwent several changes in
layout and content organization, therefore we planned the wrapper robustness
evaluation as follows.

At a first stage, we monitored the behavior of the original wrappers and
evaluated them on the newly fetched pages, whose structures could be changed
at different degrees. At a second stage, we then performed a task of general-
ization for those wrappers, using as input all the pages which never caused
a PR, WR or NR case during the monitoring period. Finally, we tried to
perform new evaluations on the same pages of the first stage using the gen-
eralized wrappers. This led us to assess the effect of the generalization task
on the wrapper robustness with respect to some kinds of changes occurring
in HTML sources.

Specifically, we distinguished two kinds of page changes:

• minor change (m-change), which refers to a marginal, not necessarily no-
ticeable change of the page layout, such as deletion or insertion of a leaf
node of the HTML tree. Moreover, a change is considered to be minor if
it replaces the content of a leaf node with new child nodes (i.e. format-
ting tags are inserted instead of plain text). Also, insertion (or deletion)
of fake internal HTML elements (e.g. div or span tags) is considered to
be a minor change.

• major change (M-change), which refers to any evident change of (a portion
of) the page layout. Typical major changes may involve complete restruc-
turing of an internal HTML node, for instance, the restructuring of an
HTML list as an HTML table is considered a major change.

Table 3.3 reports statistics on the tests we conducted during a 6-month
period. Specifically, for each HTML source, the table reports the following

3.5 Experimental evaluation 71

Table 3.3: SCRAP robustness: statistics on the test HTML sources during a 6-month
period

source page # URLs #fetches #pages #m-changes / CR NR PR WR

type monitored fetched #M-changes

ANSA homepage 1 3/day 540 5 / 1 3 / 0 0 / 0 2 / 1 0 / 0

ANSA top news 1 2/day 360 3 / 2 2 / 0 0 / 1 1 /0 0 / 1

ANSA local news 20 20/day 3,600 2 / 1 2 / 0 0 /0 0 / 1 0 / 0

IMDb movie list 51 51/week 1,224 3 / 1 3 / 0 0 / 0 0 / 1 0 / 0

Amazon book list 1 25/day 4,500 3 / 2 2 / 0 0 / 1 1 / 0 0 / 1

statistics on the pages chosen as input for the wrappers: the type of pages,
the number of page URLs monitored, the frequency of page fetching over the
monitored URLs, and the total number of pages fetched. For each monitored
URL in a source, the number and type of changes occurred and relating details
in terms of contingencies of wrapper answers are also reported.

As we can observe in the table, wrapper answers to change contingencies
mostly provided correct or partial results, suggesting that the designed wrap-
pers were able to still correctly extract data in most cases. However, when
pages underwent major changes in their structure, wrappers returned partial
results in some cases, but also wrong results or no results. The latter contin-
gencies occurred in ANSA top news pages and Amazon pages due to evident
changes to their layout. In particular, changes involving the location of entire
news or books caused usually NR or WR cases, whereas changes involving
portions of news or books (e.g. insertion and deletion of span, div or any
other paragraph formatting tags) caused PR cases at worst.

Accuracy results for the first stage of the experimental evaluation are
displayed in Fig. 3.14. For each source, we first computed the average precision
and recall obtained by the given wrapper over the set of pages fetched on a
per-week basis. As extracted data items, we considered the leaf elements of
news, movies and books respectively in ANSA, IMDb and Amazon. Each
plot in Fig. 3.14 finally displays the average cumulative precision and recall
during the 6-month period. It is worth noticing that NR cases resulted in
zero precision and recall, and PR cases (resp. WR cases) were reflected by a
decrease of recall (resp. precision).

At the end of the 6-month period, we started the second stage of the ex-
perimental evaluation in which the early designed wrappers were firstly gen-
eralized and then generalized wrappers are tested over the previously fetched
HTML pages. Clearly, pages which caused a failure in an original wrapper
were not used to learn the generalized wrappers. However, such pages were
reconsidered in the new wrapping evaluation.

For the sake of brevity, we give here only few details about generalization
of wrappers for ANSA local news page (Fig. 3.12 (c)). Figure 3.15 shows
encoded in an XML document the extraction rules used for such wrappers,

72 3 Schema-based web wrapping

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
week

precision
recall

1 minor change:
CR

1 minor change:
CR

1 minor change:
CR

1 major change:
PR

1 minor change:
PR

1 minor change:
PR

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
week

precision
recall

1 minor change:
CR

1 minor change:
CR

1 minor change:
PR

1 major change:
NR

1 major change:
WR

(a) ANSA homepage (b) ANSA top news

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
week

precision
recall

1 minor change:
CR

1 minor change:
CR

1 minor change:
PR

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
week

precision
recall

1 minor change:
CR

2 minor changes:
CR

1 major change:
PR

(c) ANSA local news (d) IMDb movies

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
week

precision
recall

1 minor change:
CR

1 minor change:
CR

1 minor change:
PR

1 major change:
WR

1 major change:
NR

(e) Amazon books

Fig. 3.14: Accuracy results on the test HTML sources during a 6-month period

and Table 3.4 reports a summary of the generalized wrappers. As we can see
in the table, rule generalization led to much simpler XPath expressions in
target predicates.

Figure 3.16 shows accuracy results obtained by the generalized wrappers
over the same input HTML pages used for the early wrappers. It is worth
noting that all the minor/major changes causing PR and NR answers in the
early wrappers did not cause any failure in the generalized wrappers. As we
expected, only WR cases occurred yet: indeed, generalized rules allow for
identifying larger portions in a page, thus reducing the probability of incurring

3.5 Experimental evaluation 73

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE extractionRules SYSTEM "extractionRules.dtd">
<extractionRules>

<rule>
<input>ansa-localNews</input>
<output>news</output>
<filters>
<filter>

<targetPredicate>
<binding-out>tg</binding-out>
<xpath>/html/body/center/table/tr[2]/td[4]/table[1]/tr/td[1]/

table/tr[1]/td[1]/table</xpath>
</targetPredicate>
<conditions />

</filter>
</filters>

</rule>
<rule>

<input>news</input>
<output>headline</output>
<filters>
<filter>

<targetPredicate>
<binding-out>tg</binding-out>
<xpath>./tr[2]//text()</xpath>

</targetPredicate>
<conditions />

</filter>
<as> <min>1</min> <max>100</max> </as>
<rs>maximize</rs>

</filters>
</rule>
<rule>

<input>news</input>
<output>subheading</output>
<filters>
<filter>

<targetPredicate>
<binding-out>tg</binding-out>
<xpath>./tr[3]//text()</xpath>

</targetPredicate>
<conditions />

</filter>
<as> <min>1</min> <max>100</max> </as>
<rs>maximize</rs>

</filters>
</rule>
<rule>

<input>news</input>
<output>date-time</output>
<filters>
<filter>

<targetPredicate>
<binding-out>tg</binding-out>
<xpath>./tr[1]/td[1]/node()</xpath>

</targetPredicate>
<conditions>

<conditionAfter>
<binding-in>tg</binding-in>
<binding-out>$y</binding-out>
<element>span</element>

</conditionAfter>
<conditionBefore>

<binding-in>tg</binding-in>
<binding-out>$f</binding-out>
<element>span</element>

</conditionBefore>
</conditions>

</filter>
<as> <min>1</min> <max>100</max> </as>
<rs>maximize</rs>

</filters>
</rule>

</extractionRules>

Fig. 3.15: Extraction rules of early wrappers for ANSA local news pages

74 3 Schema-based web wrapping

Table 3.4: Generalization of extraction rules of wrappers for ANSA local news pages

rule generalized parts

in: ansa-localNews in targetPredicate: <xpath>//td[4]//table//*//*//*[1]//table</xpath>

out: news

in: news in targetPredicate: <xpath>.//tr[2]//text()</xpath>

out: headline in as: <min>1</min> <max>2147483647</max>

in: news in targetPredicate: <xpath>.//tr[3]//text()</xpath>

out: subheading in as: <min>1</min> <max>2147483647</max>

in: news in targetPredicate: <xpath>.//tr[1]//*//node()</xpath>

out: date-time in as: <min>1</min> <max>2147483647</max>

in problems of partial extraction, but they do not provide any additional
mechanism besides the schema to filter out isolated wrong results.

3.5.4 Time performances

Besides wrapping effectiveness, data extraction time is a useful indicator to
characterize the behavior of a wrapper. Table 3.5 reports the times elapsed
for carrying out the wrapper evaluation steps (i.e. building the extraction
tree, computing the preferred extraction model, and generating the extracted
XML document) and the wrapper generalization task (i.e. computing the most
general wrapper). Specifically, wrapper evaluation times are averaged over the
pages of each test site, whereas wrapper generalization times refer to times
measured per page on average.10

As we can observe in the table, most of time for wrapper evaluation is
spent to parse the HTML tree and generate the extraction events. By contrast,
computing the preferred extraction model and generating the extracted XML
document take a few milliseconds on each test site. This suggests that SCRAP
is able to meet even tight time requirements for data extraction.

Wrapper generalization turns out to be a time-consuming task, as we ex-
pected, requiring a few minutes per page on average. However, this is a task
which should be requested much less frequently than the ordinary wrappings,
and it is usually performed off-line.

10 Experiments were conducted on a platform Intel Pentium IV 2.8GHz with 512MB
memory and running on Windows XP Pro.

3.5 Experimental evaluation 75

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
week

precision
recall

1 minor change:
CR

1 minor change:
CR

1 minor change:
CR

1 major change:
CR

1 minor change:
CR

1 minor change:
CR

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
week

precision
recall

1 minor change:
CR

1 minor change:
CR

1 minor change:
CR

1 major change:
CR

1 major change:
WR

(a) ANSA homepage (b) ANSA top news

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
week

precision
recall

1 minor change:
CR

1 minor change:
CR

1 minor change:
CR

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
week

precision
recall

1 minor change:
CR

2 minor changes:
CR

1 major change:
CR

(c) ANSA local news (d) IMDb movies

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
week

precision
recall

1 minor change:
CR

1 minor change:
CR

1 minor change:
CR

1 major change:
WR

1 major change:
CR

(e) Amazon books

Fig. 3.16: Accuracy results on the test HTML sources after wrapper generalization

Table 3.5: SCRAP time performances (in seconds)

site avg. page size parsing / buildElements buildDoc generalization

(bytes) buildTree

ANSA homepage 86,690 0.653 / 0.188 0.093 0.016 252.54

ANSA top news 74,143 0.537 / 0.142 0.087 0.013 202.76

ANSA local news 61,121 0.421 / 0.128 0.068 0.009 184.23

IMDb 51,016 0.305 / 0.11 0.052 0.005 140.35

Amazon 144,491 0.985 / 2.05 0.906 0.031 623.54

4

Retrieving XML data from heterogeneous
sources through vague querying

4.1 Introduction

In this chapter we address the problem of retrieving XML data spread across
different sources, each adopting its specific schema. For this context, many ap-
proaches require queries to be expressed with respect to a global schema which
is related to the local ones by means of mappings (see, e.g., [11, 76, 113]).
Therefore, queries expressed with respect to the global schema are trans-
lated to comply with the local schemas. Other approaches do not use a global
schema but require schema mappings to be specified between pairs of data
sources. Queries are expressed w.r.t. a local schema and then propagated
to other sources through proper translations [34, 100]. In general, however,
mapping-based approaches limit the autonomy of data sources, that in many
cases can be a fundamental requirement.

We consider the scenario where the user is not aware of the local data
schemas, and no inter-schema mapping is provided. This way, total autonomy
is guaranteed to data sources and the main problem to be dealt with is infor-
mation retrieval based on the specification of some properties of the objects
to be retrieved. Obviously, since the classical way of evaluating a query used
in traditional database systems is exact, it is expected to provide poor results
in this setting. Several approaches have been proposed for approximate XML
querying, that add flexibility to XPath by automatically adapting queries to
the available data. Each of these approaches adopts different semantics and
different sets of transformations for adapting queries [7, 8, 47, 97, 101].

Query transformation-based approaches proved useful to tackle the prob-
lem of query answering over single XML documents in the case that the
schema of each document is unknown. The problem gets more complicated
when different sources provide information on the same subject from different
points of view, i.e., by considering different properties of the same objects.
Here, besides isolating users from the possibly complex interaction with data
sources, query evaluation mechanisms must be capable of combining “partial”
information provided by the sources to obtain results as complete as possi-

78 4 Retrieving XML data from heterogeneous sources through vague querying

ble. Example 4.1 shows a possible scenario where the needed information is
available but spread across different sources.

Example 4.1. Fig. 4.1 shows a scenario where partial descriptions of books
are provided by 3 XML data sources D1, D2, and D3, and each source em-
ploys a different schema and focuses on different properties. In particular,
D1 focuses on book authors and titles, D2 looks at titles and prices, and
D3 has more details about authors’ names and surnames. In this scenario,

book

ISBN title authors

author

volume

ISBN title price

… …

… …

0-345-… Introduction to

automata theory...

Ullman
0-201-… Operating

system

concepts

75

book

author price

<70Ullman

volume

price

book

author

Ullman

book

author

Ullman

*

e
1

e
2

D1

q

q1

q4

q2

D2

D3

volume

ISBN title price

…

0-765-… Principles of

database and

knowledge-base...

58

e
3

volume

price

<70

q3

ISBN author

name surname

… …

0-345-…

Jeffrey Ullman

author

book

…

e
4

ISBN author

name surname

…

0-765-…

Jeffrey Ullman

book e
5

q5

…

book

author

Ullman

*

Fig. 4.1: Motivating example

a user interested in finding information about books written by Jeff Ullman
and having a price lower than 70 may issue an XPath query q of the form
//book[author=’Ullman’][price<70]. The query is depicted in Fig. 4.1 (in a
rounded box) as a tree pattern [81] where a box surrounds the output node.
The exact evaluation of q over the fragments yields no result, and even adapt-
ing q to the available data would retrieve a set of XML elements each of which

4.1 Introduction 79

does not provide enough information by itself. However, the sources provide
enough information to correctly characterize the searched books and therefore
answer q.

Our aim and strategy are thus different from past work on querying het-
erogeneous XML data. Our objective is twofold: besides coping with the dif-
ference between query and data schemas, we aim at enabling the retrieval of
objects that satisfy a query even if their descriptions are spread across differ-
ent sources. As said before, we aim at providing a querying mechanism that
does not require neither semantic schema mappings nor explicit knowledge of
the local schema used by each data source. Our proposed technique, whose
logical phases are depicted in Fig. 4.2 (for the scenario of Fig. 4.1), is based
on the idea of “vaguely” evaluating a query, i.e., relaxing some of the con-
ditions, executing these transformed versions, grouping the retrieved partial
answers (joining), and finally returning those groups which satisfy the query
(selection). We call this process vague query evaluation.

D1

q

joining

e4, e5

e1

e1

e3

e4

e5

{e1, e4}

{e3, e5}

selection

{e1, e4}

{e3, e5} {e1, e4}

{e3, e5}

{e3, e5}

D2

D3

e3

q4q

q1q

q2q

q5q

q3q

Fig. 4.2: Logical phases of vague query evaluation

The transformation process is performed locally at each data source and
is driven by the available data, in the sense that proper transformations are
chosen to match the data. Obviously, the transformation process should never
produce queries that retrieve elements too different from those required by
the user. Thus, costs can be associated with basic query transformation op-
erations, and an answer is considered valid only if the overall transformation
cost associated with the transformed query that retrieves it is under a certain
(local) threshold. In the example, it is assumed that the transformation cost
of query q2 is above the threshold, thus q2 is not actually executed on source
D2.

After evaluating transformed queries, retrieved elements that provide par-
tial information about the same real-world objects are grouped. As it will
be clearer in the following, this process is based on the evaluation of seman-
tic similarity among XML elements. In the example, elements e1 and e4 are
grouped, as well as elements e3 and e5.

Finally, the correspondence of the grouped elements with the original query
is assessed, by comparing their “overall” transformation cost with a global
threshold. In the example, it is assumed that the overall cost of {e1, e4} exceeds

80 4 Retrieving XML data from heterogeneous sources through vague querying

the global threshold (as neither e1 nor e4 contain information about the book
price), thus {e1, e4} is not part of the final query result.

This evaluation mechanism allows us to retrieve the desired information
even when disseminated over several sources. Indeed, by distinguishing two
levels at which to apply query relaxation, we are able to collect, from each
source, pieces of information that would not completely satisfy the query by
themselves, but that can be subsequently completed with information coming
from other sources. Therefore, it is reasonable to assume that the original
query is allowed to be more deeply modified when it is evaluated locally at
each source, although after joining the (partial) answers coming from each
source, the elements obtained this way should better satisfy the conditions
specified by users. Hence, the local threshold is assumed to be greater than
or equal to the global one.

We investigate the problem of retrieving XML data from multiple hetero-
geneous data sources that do not share a global schema and do not specify
schema mappings. Indeed, the main contribution of this proposal is the defi-
nition of an approximate querying approach based on XPath, which extends
previous work on approximate tree patterns [7, 97] for querying multiple het-
erogeneous XML data sources.

Specifically, we propose:

- a new technique to combine partial results coming from different XML
data sources, which uses approximate queries to check whether two XML
elements coming from different sources refer to the same object;

- a complete algorithm for computing query answers on multiple heteroge-
neous XML data sources, which works in polynomial time w.r.t. the size
of the data provided by each source, and in exponential time w.r.t. the
number of sources;

- an incomplete algorithm for computing query answers which works in poly-
nomial time w.r.t. both the size of the data and the number of sources.
The completeness of this algorithm is proved in restricted cases.

Furthermore, we characterize the complexity of the problem of answering
queries on multiple heterogeneous XML data sources and we present an exper-
imental validation in a medical application scenario. Specifically, the proposed
algorithms have been implemented in a P2P context, and queries have been
done against sources containing clinical and diagnostical data.

4.2 Related Work

A large number of approaches for the problem of querying heterogeneous data
sources focus on the differences between the schemas on which data are based,
providing some form of mediated schema [11, 14, 15, 24, 48, 49, 55, 56, 62,
66, 76, 94] or some kind of mappings between pairs of sources [18, 29, 43, 52,
100]. Other approaches use specific techniques for directly translating queries

4.2 Related Work 81

w.r.t. source data [26, 75, 86]. In the following, we briefly describe all these
solutions, both for relational data and for semistructured data. Finally, we
discuss previous works about approximate XML query evaluation [7, 8, 28,
31, 47, 63, 64, 97, 101], consisting in transforming a given query in order to
match data contained in an XML document.

4.2.1 Querying heterogeneous relational data

As far as the usage of a mediated schema is concerned, it is worth to note that
the mediated schema is virtual in the sense that it is used for posing queries,
but not for storing data. Mappings are established between the mediated
schema and the relations at the data sources, forming a two-tier architecture
in which queries are posed over the mediated schema and evaluated over
the underlying source relations. Two main formalisms have been proposed
for schema mediation on relational data. In the first, called global-as-view
(GAV)[14, 15, 49, 55], the relations in the mediated schema are defined as
views over the relations in the sources. In the second, called local-as-view
(LAV) [48, 56, 62], the relations in the sources are specified as views over the
mediated schema.

Example 4.2. Consider the following two sources storing relational data about
movies:

s1 : r1(Title, Y ear,Director), s2 : r2(Title, Critique)

where s1 stores data about directors of movies produced from 1960 on and s2

contains information about titles and reviews of movies produced from 1990
on. Suppose that the mediated schema contains the following relations:

movie(Title, Y ear,Director), european(Director), review(Title, Critique)

A GAV mapping is:

movie(T, Y, D) : −r1(T, Y, D); european(D) : −r1(T, Y, D); review(T, R) : −r2(T, R)

For providing a LAV mapping, we need to formulate relations in the sources
as views on the mediated schema, then we obtain:

r1(T, Y,D) : −movie(T, Y,D), european(D), Y >= 1960

r2(T, R) : −movie(T, Y, D), review(T,R), Y >= 1990

Suppose that a user interested in selecting titles and reviews of movies pro-
duced in 1998 formulates the following query against the mediated schema:

mr(T, R) : −movie(T, 1998, D), review(T, R)

Using the GAV mapping, the query is easily formulated in terms of sources:

82 4 Retrieving XML data from heterogeneous sources through vague querying

mr(T,R) : −r1(T, 1998, D), r2(T,R)

Using the LAV mapping, we can obtain the same formulation, but we need
some kind of mechanism to express atoms of the global schema in terms of
atoms of the sources.

The fundamental difference between the two formalisms is that GAV specifies
how to extract tuples for the mediated schema relations from the sources,
and hence query answering amounts to view unfolding. In contrast, LAV is
sourcecentric, describing the contents of the data sources. Query answering
requires algorithms for answering queries using views, but in exchange LAV
provides greater extensibility: the addition of new sources implies no change
of the mediated schema.

A mediator system for data integration that follows the GAV approach
is proposed in [15]. The result of the integration process is a global schema
obtained in a semi-automatically way, which provides a reconciled, integrated
and virtual view of the underlying sources. The system is formed by tree main
components: a common data model to describe source schemas for integration
purposes; some wrappers, placed over each source, for translating metadata
descriptions of the sources into the common representation, reformulating a
global query expressed in the global query language into queries expressed in
the sources languages and exporting query results; a mediator, which is com-
posed of two modules: the SI-Designer and the Query Manager (QM). The
SI-Designer module processes and integrates descriptions received from wrap-
pers to derive the integrated representation of the information sources. The
QM module performs query processing and optimization. The QM generates
queries to be sent to wrappers starting from each query posed by the user on
the global schema. QM automatically generates the translation of the query
into a corresponding set of sub-queries for the sources and synthesize a unified
global answer for the user.

SEWASIE system [14] is a multi-level agent-based architecture for query-
ing heterogeneous data sources integrated by means of ontologies. In this
system, each agent provides a the set of services to other agents, and there
is a set of actions that the agent can invoke in response to a service. There
are two main types of agents in the SEWASIE architecture: brokering agents
(BAs) and query agents (QAs). BAs are the nodes responsible for maintain-
ing a view of the knowledge handled by the network. This view is maintained
in ontology mappings, that are composed by the information on the specific
content of the SEWASIE Information Nodes (SINodes) which are under the
direct control of the BA, and also by the information on the content of other
BAs. QAs are the carriers of the user query from the user interface to the
SINodes, and have the task of solving a query by interacting with the BAs
network. Once a BA is contacted, it informs the QA a) which SINodes under
its control contain relevant information for the query, and b) which other BAs
may be further contacted. Therefore, the QA translates the query according
to the ontology mappings of the BA, and directly asks the SINodes for col-

4.2 Related Work 83

lecting partial results. Also, it decides whether to continue the search with
the other BAs. Once this process is finished, all partial results are integrated
into a final answer for the user. SINodes are mediator-based systems, each
including a global view of the overall information managed within. The man-
aged information sources are heterogeneous collections of structured, semi-
structured or unstructured data, e.g. relational databases, XML or HTML
documents. SINodes are accessed by QAs in order to obtain data, and also
by the managing BAs in order to build the ontology mappings. In order to
create and maintain a global view of its information sources, SINodes require
an ontology builder. This component performs in a semi-automatic way the
enrichment process to create the SINode ontology. In turn, this SINode ontol-
ogy is also integrated with other similar components into the BAs ontology
mappings. In other words, each SINode combines the data residing at differ-
ent sources, and provide the external user with a global schema representing
a unified view of these data. Mappings between the sources and the global
schema are obtained following the GAV approach.

In the Information Manifold [56], the user poses queries in terms of a global
schema whose mappings with data sources are obtained using LAV approach.
The system uses source descriptions to prune efficiently the set of information
sources for a given query and to generate executable query plans. Authors
present a practical mechanism to describe declaratively the contents and query
capabilities of information sources. In particular, the contents of the sources
are described as queries over a set of relations and classes. An algorithm that
uses the source descriptions to create query plans that can access several
information sources to answer a query is presented. The algorithm prunes the
sources that are accessed to answer the query, and considers the capabilities
of the different sources.

In [62] Tukwila data integration system is presented. A Tukwila user poses
queries in terms of a mediated relational schema, where data sources are re-
lated by means of LAV mappings. A query reformulator converts the user’s
query into a union of conjunctive queries referring to the data source schema
and a query optimizer takes a query from the reformulator and uses informa-
tion from a source catalog to produce query execution plans for the execution
engine. The optimizer does not always create a complete execution plan for
the query. If essential requirements are missing or uncertain, the optimizer
may generate a partial plan, deferring subsequent planning until sources have
been contacted and critical metadata obtained.

Approaches that do not rely on a mediated schema are also proposed
[1, 43, 52, 86].

Specifically, coDB [43] is a system for querying relational databases in P2P
networks. Data sources, possibly having different schemas, are interconnected
by means of coordination rules. Each node can be queried in its schema for
data, which the node can fetch from its neighbors (acquaintances), if a co-
ordination rule is involved. A global update in a P2P database network is a
process of updating nodes databases using all definitions of coordination rules

84 4 Retrieving XML data from heterogeneous sources through vague querying

they maintain. coDB system only implements queries by first doing a global
update and then by answering the query locally at the node at which the query
itself was posed. A global update is started when some node sends to all its
acquaintances global update requests, containing definitions of appropriate
coordination rules. These acquaintances computes the queries, respond with
the query results, and propagate the global update to their acquaintances,
and so on. The global update request propagation is stopped at some node if
that node has no acquaintances to propagate the request, or if that node has
already received this request message.

PeerDB [86]is a P2P-based system for distributed data sharing without
mediated schema. For each relation that is stored in a peer, associated meta-
data (schema, keywords, etc) are stored in a Local Dictionary. Meta-data are
essentially keywords provided by the users upon creation of the table, and
serve as a kind of synonymous names. When a certain name for an attribute
or a relation is asked in a query, each peer uses these keywords for trying to
match the specified name with one of the attribute or relation names stored
in its repository. There is also an Export Dictionary that reflects the meta-
data of objects that are sharable to other nodes. Thus, only objects that
are exported can be accessed by other nodes in the network. PeerDB adopts
mobile agents to assist in query processing in the following way. When a user
issues a query (SQL-like selection query), a master agent will be created to
oversee the evaluation of the query. The agent parses the query to extract
the list of relations and attributes names. The relation matching strategy is
applied on the local dictionary. Promising relations can then be returned to
the user immediately. At the same time, the master agent will clone relation
matching agents and dispatch them to all neighbors of the node. The master
agent will wait for the answers (relations schema) from remote nodes. Upon
receiving any answers, they will be returned to the users for selection. For each
relation selected by the user, the master agent will clone a data retrieval agent
for that relation. The latter agent reformulates the query so that it matches
the relation name and attributes at the target node and the answers will be
returned to the user peer.

4.2.2 Querying heterogeneous semistructured data

Several approaches addressing the problem of querying heterogeneous XML
data have been recently proposed [11, 18, 19, 24, 29, 34, 66, 75, 76, 87, 92,
94, 96, 100, 102, 113]. The classical LAV and GAV paradigms or some kinds
of mapping between pairs of sources or some other techniques for matching
involved schemas have been adopted.

[66] describes SQPeer middleware for routing and planning declarative
queries in peer RDF/S bases by exploiting the schema of peers. Queries are
formulated according to RDF/S schema known to each source; the active
schema indicates the parts of the schemas populated by a peer. For each

4.2 Related Work 85

query, the relative query pattern graph is extracted from the path expres-
sions in the FROM clause. Each pattern in the graph is compared with all
known active-schemas and, if an active-schema is subsumed by the selected
pattern, the owner of the active-schema is contacted to answer it. A routing
algorithm takes as input a query pattern and returns an annotated query pat-
tern containing information about the peers that can actually answer it. A
lookup service (i.e., function lookup), which strongly depends on the under-
lying P2P topology, is employed to find peer views relevant to the input pat-
tern. A query/view subsumption algorithm is employed to determine whether
a query can be answered by a peer view. Query planning in SQPeer is re-
sponsible for generating a distributed query plan according to the localization
information returned by the routing algorithm. Peers are contacted based on
the distributed query plan and results are collected.

[96] describes a zero-administration p2p system for sharing and querying
XML data (XPeer). The system allows users to share XML data and to pose
XQuery FLWR queries against them without any significant human inter-
vention. The system, based on a hybrid p2p architecture, self-organizes its
superpeer network, and allows for arbitrary changes in the network topology.
Peers provide their superpeers with a description of their XML data in the
form of a compact structure representing all the paths in the data. Super-peers
are organized hierarchically; each super-peer stores a list of children schemas,
and the union of the schemas in the list. When a user submits a query to a
peer, the latter sends the query to its super-peer, that identifies relevant data
sources using the schema list, and forwards the query to its own superpeer.
Once the root of the hierarchy is reached by the propagated query, all peers
containing the required data are discovered. After this, the issuing peer sends
the query to the relevant peers and joins partial results. It is worth to note
that no modifications of the original query are performed, i.e. peers are judged
as relevant for a query only if their data are exactly compatible with those
requested.

In [100] authors give an overview of Piazza, a peer data management sys-
tem for XML data. The Piazza project focuses on the use of schemata, and, in
particular, on the definition of schema integration and mapping techniques for
p2p systems. The architecture of Piazza is basically a hierarchical p2p archi-
tecture, where peers are fully autonomous. Each peer stores the XMLSchema
of its data and mappings between this schema and the ones of its neighbors;
the mappings are expressed in XQuery. Query processing relies on the propa-
gation of the reformulated query to the neighbors, according to the mappings.
If the propagated query reaches a source containing relevant data, the query
is evaluated there and the results are appended to the query result. Tech-
niques for pruning paths in the reformulation process and for minimizing the
reformulated query are also applied.

In [75] authors propose a new solution for approximate query evaluation
in heterogeneous web document bases of which source schemas are available
and are written using XMLSchema. In a preliminary schema matching pro-

86 4 Retrieving XML data from heterogeneous sources through vague querying

cess the similarities between the involved schemas are automatically identified
and, thus, a query written on a source schema is automatically rewritten in
order to be compatible with the other useful XML documents. This approach
has been implemented in XML S3MART system. This system supports a
proper phase wherein each term used in document schema is disambiguated
using WordNet [104], that is its meaning is made explicit as it will be used
for the identification of the semantical similarities between the elements and
attributes of the schemas. Term disambiguation is implemented by a semi-
automatic operation where the operator is required to annotate each term
used in each XML schema with the best candidate among the WordNet terms
and, then, to select one of its synonym sets. The matching computation phase
performs the actual matching operation between the annotated schemas made
available by the previous step. For each pair of schemas, the best matchings
between the attributes and the elements of the two schemas are identified by
considering both the structure of the corresponding trees and the semantics
of the involved terms. The involved schemas are first converted into directed
labelled graphs following the RDF specifications, where each entity represents
an element or attribute of the schema identified by the full path (e.g. /music-
Store/location) and each literal represents a particular name (e.g. location)
or a primitive type (e.g. xsd:string) which more than one element or attribute
of the schema can share. From the RDF graphs of each pair of schemas a
pairwise connectivity graph (PCG), involving node pairs, is constructed [77]
in which a labelled edge connects two pairs of nodes, one for each RDF graph,
if such labelled edge connects the involved nodes in the RDF graphs. Then an
initial similarity score is computed for each node pair contained in the PCG
using a linguistic approach. The initial similarities, reflecting the semantics
of the single node pairs, are refined by an iterative fixpoint calculation as in
the similarity flooding algorithm [77], which brings the structural information
of the schemas in the computation. The intuition behind this computation is
that two nodes belonging to two distinct schemes are the more similar the
more their adjacent nodes are similar. In other words, the similarity of two
elements propagates to their respective adjacent nodes. The fixpoint com-
putation is iterated until the similarities converge or a maximum number of
iterations is reached. Finally, a stable marriage filter which produces the best
matching between the elements and attributes of the two schemas is applied.
By exploiting the best matches provided by the matching computation, a
given query, written w.r.t. a source schema, is easily rewritten on the target
schemas. Each rewrite is assigned a score, in order to allow the ranking of the
results retrieved by the query. Note that matching is total for the query, then
no deletions are allowed.

[26] presents an inclusion mapping algorithm (using a compatibility fac-
tor) that decides how compatible the schema of the query and the schema
of the target XML documents are. If the schemas are not identical but com-
patible, the generated mapping is then used to translate the query according
to the target XML data schema. The query and data schemas are considered

4.2 Related Work 87

compatible if the compatibility factor of a mapping is above or equal to a
user specified or system default threshold. In order to estimate the compati-
bility between queries and data schemas, a tree similarity measure that takes
into account both the semantic similarity between element names and the
structural compatibility of the two schema structures is introduced. Specifi-
cally, given a query tree and a schema tree, the best match between them is
computed trying to match the query tree in a subgraph of the schema tree.
Semantic similarity of terms are taken in account by using WordNet [104]. It
is worth to note that the inclusion mapping induces a subgraph where each
node of the query tree is matched, then no deletions are allowed.

In [24] CXPath, an XPath based language for building queries over a con-
ceptual schema that is an abstraction of several XML sources, is defined. A
strategy for defining mapping information related to concepts and relation-
ships of the conceptual schema that is also based on XPath views is presented.
CXPath defines concepts and relationships between concepts. Two types of
concepts are supported in this model: lexical and non-lexical. A lexical concept
models information that has an associated textual content, like #PCDATA
elements and attributes. A non-lexical concept models information that is
composed by other information, like elements that have sub-elements. An
association relationship is a binary relationship with cardinality constraints.
Although CXPath is based on XPath, there several differences between the
two languages: 1)in CXPath concept names are used instead of element names
(a concept name refers to all instances of that concept in the conceptual base);
2)CXPath has not a root node, the navigation may start at any concept in
the conceptual base; 3)in CXPath the navigation operator / means “navi-
gate to the related elements” instead of “navigate to the child elements” and
all the other navigation operators of XPath do not appear in CXPath; 4) a
qualified navigation operator (relationship name) is introduced in CXPath,
as it is necessary the identification of a specific relationship to be navigated
when more than one relationship relates two concepts. Queries are formulated
against the conceptual schema and translated in XPath queries to be evalu-
ated on the sources by means of mappings. The CXPath to XPath translation
applies a rewriting strategy, i.e., each reference to a concept as well as each
relationship traversal found in the CXPath expression are replaced by their
corresponding mapping information to the considered XML source. In this
paper, the problem of query decomposition is not addressed, i.e., queries re-
quiring information that is not completely contained in a source, but spread
across multiple sources, are not discussed.

In [76] a methodology for integrating data sources of diverse formats, in-
cluding relational and XML, under an XML global schema obtained using
LAV approach is presented. The query language used for formulating queries
on the global schema is XQuery. The execution of an XQuery query consists in
a translation of the query into an SQL query on a virtual relational schema,
independently from the data sources, and, then, in a rewriting of the SQL
query into an other SQL query according to real data sources. The first step

88 4 Retrieving XML data from heterogeneous sources through vague querying

only gets the query across the language gap, whereas the second step pro-
vides a query executable on data sources using the LAV mappings. Not all
features of XQuery can be translated to SQL, thus the query translation can
fail is some cases. If the translation step succeeds, a query rewriting algorithm
searching for maximally contained rewritings is used to produce a query to
be sent to data sources, since it is reasonable to assume that not all required
data are available.

To the best of our knowledge, none of the existing proposals for heteroge-
neous XML querying employs techniques that properly combine query answers
obtained by applying query relaxations without schema knowledge to provide
the user with answers as complete as possible.

4.2.3 Query Relaxation

Some approaches for the approximate evaluation of XML query propose query
languages based on similarity conditions like those used in information re-
trieval, that is they only consider similarity between labels of node elements
or between textual contents [28, 101]. In [101] a similarity operator is proposed
for both element content (and also attribute value) comparisons, as well as
approximate matching of element names. A score is assigned to each compar-
ison by means of an ontology and the relevance assessments for all elemen-
tary conditions in a query are combined into an overall relevance of an XML
path, and the result ranking is based on these overall relevance measures. In
[28] a similarity operator is introduced for answering queries like “find books
and CDs having similar titles”. The proposed algorithm rewrites the original
query into a series of sub-queries that generate intermediate relational data,
and uses relational database techniques to evaluate the similarity operators
on this intermediate data, yielding final answers ranked by similarity.

Other approaches take also into account structural approximation in the
query evaluation [8, 31, 47, 63, 64]. [47] propose an XML query language,
named XIRQL, that is based on XPath and incorporates the information re-
trieval approach of vagueness and imprecision for XML retrieval. In addition
to features concerning similarity between textual content and node labels,
XIRQL provides structural relaxations, but only concerning the transforma-
tion of attributes in elements and viceversa and the generalization of a parent-
child relationship in an ancestor-descendant one. In [63] semi-flexible and flexi-
ble matching for a graph query on an XML document are defined. In the first,
parent-child relationships are allowed to be relaxed in ancestor-descendant
ones, and in the second it is also allowed the reversal of the parent-child rela-
tionship, but in both semantics no deletions are allowed, in the sense that all
nodes have to be matched. In [64] XML queries with incomplete answers are
investigated, allowing that not all the nodes of the query are matched on the
data, but no other relaxations are provided.

The most similar approaches to the approximate query evaluation pro-
posed in this thesis are [7, 97], that concern the tree pattern relaxation and

4.2 Related Work 89

use of transformation costs. In both approaches, a set of transformations ap-
plicable to a tree pattern query is defined and a strategy for evaluating the
relaxed versions of the query is proposed.

In [7], allowed transformations are node renaming, leaf deletion, edge re-
laxation and subtree promotion. The last kind of relaxation allows a query
subtree to be promoted so that the subtree is directly connected to its former
grandparent by an ancestor-descendant edge. For each node and each edge of
the query, user specifies two weights, an exact weight (denoted as ew) and a
relaxed weight, where the first one is greater than the second one. The former
is the score associated with an exact match of the node or the edge, whereas
the latter is the score associated when a relaxation is applied to the node or
the edge.

Book

Collection Editor

(7,1)

(2,1) (4,3)

(5,0)(6,0)

Address (4,0)

(3,0)(8,5)

Name(6,0)

Fig. 4.3: Example of weighted tree pattern query

The score associated with a query is obtained by summing relaxed weights
for nodes and edges on which some relaxations are applied and exact weights
for non-relaxed nodes and edges. This means that a relaxed version of a query
has an associated score that is lower than the score of the original one.

Example 4.3. For example, in the weighted tree pattern query of Fig.4.3, Book
can be generalized to Document, but in this case the associated score is 1
rather than 7. The edge between Book node and Editor node can be general-
ized, allowing for books that have a descendant editor (but not a child editor)
to be returned, with a score of 3. The leaf node Address can be promoted,
allowing for books that have a descendant address to be returned, even if
the address is not a descendant of the editor node. In this case, the score
associated with the match is 0. The score of exact matches of the weighted
query tree pattern in Fig.4.3 is equal to the sum of the exact weights of its
nodes and edges, i.e., 45. If Book is generalized to Document, the score of an
approximate answer that is a document (but not a book) is the sum of the
relaxed weight of Book and the exact weights of the other nodes and edges in
the weighted query, i.e., 39.

The key idea underlying this approach is to encode all possible query relax-
ations in a single query evaluation plan which is evaluated and only relevant

90 4 Retrieving XML data from heterogeneous sources through vague querying

d (Editor, Address)

OR

d (Document, Address)

(0)

c (Editor, Name)

OR

d (Editor, Name)

OR

d(Document, Name)

Address

(41)

Name

(39)

Editor

(40)

Collection

(39)

Document

(38)

c (Document, Editor)

OR

d (Document, Editor)

c (Document, Collection)

OR

d (Document, Collection)

(7)

(21)

(30)

Fig. 4.4: Example of query plan

answers are selected. Fig.4.4 shows a translation of the query of Fig.4.3 in
a left-deep join evaluation plan. An answer to a query is a tuple containing
a value (possibly empty) for every leaf node in the query evaluation plan.
Two predicates are used, c(n1, n2) and d(n1, n2), where the former checks for
a parent-child relationship between n1 and n2 and the latter checks for an
ancestor-descendant one.

Three algorithms are proposed: (1) Thres that takes a weighted query tree
pattern and a threshold and computes all approximate answers whose scores
are at least as large as the threshold; (2) OptiThres, an adaptive optimiza-
tion to Thres that uses scores of intermediate results to dynamically “undo”
relaxations encoded in the evaluation plan without compromising the set of
answers returned; (3) TopK, that takes a weighted query tree pattern and
finds the top-k approximate answers.

Algorithm Thres associates each node in the join evaluation plan with its
maximal weight, denoted as maxW, defined as the largest value by which the
score of an intermediate answer computed for that node can grow. Consider,
for example, the evaluation plan in Fig.4.4. The maxW of the Document node
is 38. This number is obtained by computing the sum of the exact weights of
all nodes and edges of the query tree pattern, excluding the Document node
itself. Similarly, maxW of the join node with Editor as its right child is 21.
This is obtained by computing the sum of the exact weights of all nodes and
edges of the query tree pattern, excluding those that have been evaluated as

4.2 Related Work 91

part of the join plan of the subtree rooted at that join node. By definition,
maxW of the last join node, the root of the evaluation plan, is 0 since the query
evaluation plan is executed in a bottomup fashion. At each node, intermediate
results, along with their scores, are computed. If the sum of the score of an
intermediate result and maxW at the node does not meet the threshold, this
intermediate result is eliminated. The algorithms we use for inner joins and
left outer joins are based on the structural join algorithms of [5].

The key idea behind OptiThres is that it is possible to predict, during
evaluation of the join plan, if a subsequent relaxation produces additional
matches that will not meet the threshold. In this case, this relaxation in
the evaluation plan is undone. Undoing this relaxation (e.g., converting a
left outer join back to an inner join, or reverting to the original node type)
improves efficiency of evaluation since fewer conditions need to be tested and
fewer intermediate results are computed during the evaluation. OptiThres uses
three weights at each join node of the query evaluation plan. The first weight,
relaxNode, is defined as the largest value by which the score of an intermediate
result computed for the left child of the join node can grow if it joins with a
relaxed match to the right child of the join node. This is used to decide if the
node generalization of the right child of the join node should be undone. The
second weight, relaxJoin, is defined as the largest value by which the score of
an intermediate result computed for the left child of the join node can grow if
it cannot join with any match to the right child of the join node. This is used
to decide if the join node should remain a left outer join, or should go back
to being an inner join. The third weight, relaxPred, is defined as the largest
value by which the sum of the scores of a pair of intermediate results for the
left and right children of the join node can grow if they are joined using a
relaxed structural predicate. This is used to decide if the edge generalization
and subtree promotion should be undone.

Example 4.4. Consider the weighted query tree pattern in Fig.4.5a. This query
looks for all Proceedings that have as children subelements a Publisher and
a Month. Exact and relaxed weights are associated with each node and edge
in the query tree pattern. Proceeding is relaxed to Document, Publisher is
relaxed to Person, the parent-child edges are relaxed to ancestor-descendant
ones, and nodes Person and Month are made optional. The threshold is set
to 14. First, weights are computed at each evaluation plan node statically.
For example, at the first join node in the evaluation plan, relaxNode = 11
(ew(Month) + ew((Proceeding, Month)) + ew((Proceeding, Publisher)) +
rw(Publisher)), relaxJoin = 8 (ew(Month) + ew((Proceeding, Month))), and
relaxPred = 9 (ew(Month) + ew((Proceeding, Month)) + rw((Proceeding,
Publisher))). Next, Algorithm OptiThres evaluates the annotated query eval-
uation plan in Fig.4.5b. Document is evaluated first. Assume that the maximal
score in the list of answers we get is 2, i.e., there are no Proceeding’s in the
database. At the next join, relaxNode = 11, relaxJoin = 8, and relaxPred =
9. The sum relaxNode +2 = 13 is smaller than the threshold. In this case,

92 4 Retrieving XML data from heterogeneous sources through vague querying

Proceeding

Publisher Month

(7,2)

(2,1) (6,2)

(2,0)(10,1)

(a) Query

c (Document, Month)

OR

d (Document, Month)

(-,0,2)

c (Document , Person)

OR

d (Document, Person)

Month

PersonDocument

(11,8,9)

(b) Query evaluation plan

c (Document, Month)

OR

d (Document , Month)

c (Document, Publisher)

OR

d (Document , Publisher)

Month

Publ isherDocument

(c) Actual evaluation

Fig. 4.5: An OptiThres Example

OptiThres decides to unrelax Person to Publisher, and the plan is modified
suitably. Next, Publisher is evaluated, and let the maximal score in the result
list be 10 (i.e., exact matches were obtained). The sum relaxJoin +2 = 10
is also smaller than the threshold, and OptiThres decides to unrelax the left
outer join to an inner join, since we cannot “afford to lose Publisher”. The
algorithm then checks whether to retain the descendant structural predicate.
Since the sum relaxPred +2 + 10 = 21 is larger than the threshold, Op-
tiThres decides to retain the relaxed structural join predicate d(Document,
Publisher). During the evaluation of the first join, join results are pruned us-
ing maxW, as in Algorithm Thres. Assume that the maximal score of answers
in the first join result is 14 (10+2+2). OptiThres then uses the weights at
the second join node to determine whether any other relaxations need to be
undone. Note that Month node has not been generalized, and this is reflected
in the fact that relaxNode at the second join is not specified. Next, Month
is evaluated, and matches have a score of 2. The sum relaxJoin +14 = 14,
which meets the threshold. So the outer join is not unrelaxed. Similarly, re-
laxPred +14 + 2 = 18, which meets the threshold. So the join predicate is not
unrelaxed. Finally, the second join is evaluated, and join results are pruned
using maxW, as in Algorithm Thres. The query plan that has been effectively
computed is shown in Fig.4.5c, where the dynamically modified portions of
the evaluation plan are highlighted.

4.3 Vague Queries on Multiple Heterogeneous XML Data Sources 93

TopK is similar to Thres, unless it does not rely on a fixed threshold but
on a dynamically computed one. At each step, intermediate results are ranked
by their score and the score of the kth answer is used as current threshold for
pruning purposes.

It is worth to note that the proposed querying mechanism only supports
node renamings w.r.t. fixed name hierarchies that must be provided.

[97] proposes a query language that allows node insertion, deletion, and re-
naming. Costs are associated with labels and only node renamings are allowed
that are chosen in advance and completely specified by the user, independently
of the available data.

Two polynomial-time algorithms that find the best n answers to the query
are presented: The first algorithm finds all approximate results, sorts them
by increasing cost, and prunes the result list after the nth entry. The second
algorithm is an extension of the first one. It uses the schema of the database
to estimate the best k transformed queries, sorts them by cost, and executes
them against the database to find the best n results. The evaluation of a
query is based on an expanded representation of the query that implicitly
includes all so-called semi-transformed queries. All embedding images of the
semi-transformed query are computed using a bottom-up algorithm based on
a list algebra.

4.3 Vague Queries on Multiple Heterogeneous XML
Data Sources

In this section we define a query language, named VXQL, whose flexibility
enables users to find the information they are interested in, even when such
information is disseminated in different XML data sources. The language is
essentially an extension of XPath; for the sake of conciseness, we do not con-
sider attributes and use the graphical formalism of tree patterns to represent
XPath expressions in the examples.

VXQL supports query relaxations similar to those proposed in [7, 97] and
introduces transformations concerning textual predicates. Differently from
these approaches, that adopt tree pattern formalisms to define query relax-
ations, our language is directly based on XPath. Let s be an XPath step of
the form axis::l[f]. The language supports the following basic transformations
applicable to the axis and to the node test l:

- node renaming : if l 6=’∗’, l is replaced with a different label l′;
- node deletion: s is replaced with descendant-or-self::∗[f];
- axis relaxation: if axis is child, s is replaced with descendant::l[f].

Moreover, transformations are also applicable to XPath predicates, which
appear in the leaf nodes of the corresponding tree pattern (comparison predi-
cates). Let f be an XPath predicate of the form text() op ’text’, where op is
a comparison operator; the language supports the following transformations:

94 4 Retrieving XML data from heterogeneous sources through vague querying

- ∗-node insertion: f is replaced by descendant-or-self::∗[f];
- relaxation of equality predicate: if the comparison operator used in f is =,

f is replaced with contains(text(),’text’);
- predicate deletion: f is deleted.

Example 4.5. In the scenario of Fig. 4.1 (where deleted nodes are not shown),
we can transform q in 5 different ways:

- q1 is obtained by relaxing the parent-child relationship between the book
and author elements to an ancestor-descendant one, and removing the
subtree rooted in the price element. This query captures element e1.

- q2 and q3 are obtained by renaming the root element from book to volume
and removing the subtree rooted in the author element. Moreover, the
textual predicate on the price element is removed in q2. These queries
capture elements e2 and e3.

- q4 and q5 are obtained by removing the subtree rooted in the price element
and adding a ∗-labeled descendant to the author element. These queries
capture elements e4 and e5.

The costs for node renamings, node deletions, and axis relaxations are
associated with query steps. In particular, a renaming cost represents the cost
of renaming a node with a label having the maximum semantic distance from
the original one. This cost is weighted by a semantic distance measure (such
as the one provided in [104]) that evaluates the dissimilarity of a label in the
query with respect to the labels in the data. The costs for the insertion of
∗-labeled nodes as descendants of leaf nodes, for the relaxation of equality
predicates, and for the deletion of predicates are associated with predicates.

Observe that the possibility of specifying the cost of each transformation
allows users to give “priority” to some of the conditions expressed in the
query. That is, specifying a high cost for a certain transformation t1 and a
low cost for another transformation t2 means that elements which satisfy t1
are preferred over those satisfying t2.

In general, transformation costs are expressed as natural numbers. Nev-
ertheless, since when evaluating a VXQL query the overall costs of its trans-
formed versions are compared with a given threshold, it is possible to define
the cost of each transformation with respect to this threshold , and vice-versa.
Therefore, we just assume three predefined cost levels, high (denoted as h),
medium (m), and low (l).

In some cases, besides associating costs with applicable transformations, it
can be useful to avoid that some of the allowed transformations, for instance
those removing or modifying important constraints of the original query, are
applied together, yielding query answers too different from the requested ones.
VXQL features this by allowing users to mark the more relevant transforma-
tions and specify a maximum number of marked transformations applicable
to the query.

4.3 Vague Queries on Multiple Heterogeneous XML Data Sources 95

Example 4.6. Query q of Fig. 4.1, augmented with transformation costs rep-
resented with labels attached to nodes and edges, takes the form of Fig. 4.6,
where the output node is surrounded by a solid box and marked transforma-
tions are surrounded by dashed boxes.

book

author price

<70Ullman

a Þ b : h

K : l x : m x : m

x : mx : m

¼ : l

Fig. 4.6: VXQL query

The allowed relaxations specified in the query in Fig. 4.6 are:

1. renaming of the book element;
2. transformation of the child axis between book and author in a descendant

one;
3. removal of the author and price elements;
4. insertion of a ∗-labeled node as a descendant of the author element;
5. deletion of the predicates on the content of author and price elements;

By specifying a low cost for transformations 2 and 4, a medium cost for
transformations 3 and 5, and a high cost for transformation 1, the user es-
sentially states that the queries obtained by relaxing the requirement that
the text Ullman is directly contained inside the author element, or the re-
quirement that the author element is a child of the returned book element,
are preferred over the queries that remove author or price elements or their
predicates. Moreover, the lowest preference is given to transformed queries
which return elements named differently from “book”. Since the deletions of
author predicate and price predicate are marked, if the maximum number of
allowed transformations is set to 1 the elements gathered from each document
must satisfy either the condition on the author name or the condition on the
book price.

VXQL allows a very fine-grained specification of transformation costs, e.g.,
a different cost can be specified for each transformation. In many practical
cases, less-detailed cost specifications are enough for expressing users’ needs.
Thus, we introduce three kinds of simplified queries:

- exact queries, where an infinite cost is assumed for all transformations;
- uniform-cost queries, where the same cost is assumed for all transforma-

tions, and no transformation is marked;

96 4 Retrieving XML data from heterogeneous sources through vague querying

- count-based queries, where the same cost is assumed for all transforma-
tions, but some of them are marked and a maximum number of marked
transformations applicable is specified.

4.3.1 VXQL Syntax

VXQL is based on the concept of weighted step, that is an expression of the
form s[f], where s is a pair (axis, node test), with axis being child, descendant,
or descendant-or-self; f is a predicate; both s and f have associated weights (we
call s a weighted simple step and f a weighted predicate).1 A weighted XPath
expression is an expression of the form ws1/ · · · /wsn where ws1, · · · , wsn are
weighted steps.

As discussed above, VXQL admits 6 different kinds of transformation:
axis relaxation (denoted as AR), node deletion (ND), node renaming (NR),
∗-node insertion (SD), relaxation of equality predicates (EQ), and predicate
deletion (PD). The syntax of a VXQL expression is given by extending the
Step nonterminal of the XPath grammar with the possibility to express the
cost of each transformation, obtaining the nonterminal WeightedStep defined
as follows:

WeightedStep := WeightedSimpleStep (“[”Predicate“]” PredCosts?)*

WeightedSimpleStep := AxisSpecifier ::NodeTest RelCosts?

RelCosts := “{” (ARCost “*”? “,”)? (NDCost “*”? “,”)?
(NRCost “*”?)? “}” | “{*}”

PredCosts := “{” (SDCost “*”? “,”)? (EQCost “*”? “,”)?
(PDCost “*”?)? “}” | “{*}”

ARCost := “AR[” Cost “]”
NDCost := “ND[” Cost “]”
NRCost := “NR[” Cost “]”
SDCost := “SD[” Cost “]”
EQCost := “ER[” Cost “]”
PDCost := “PD[” Cost “]”

where Cost is a natural number or one of the predefined constants h, m, and
l. Moreover, PredCosts can be specified only for “comparison” predicates of
the form text() op ‘text’ where op is a comparison operator. An infinite cost
is assumed if a transformation cost is not specified. The symbol “*” after a
transformation cost indicates that the transformation is marked. Moreover,
using symbol “*” instead of a list of cost specifications means that all trans-
formations are allowed (with all costs set to m) and marked.

A weighted XPath expression ws1/ · · · /wsn is said to be simple iff
ws1, · · · , wsn−1 are weighted simple steps. A VXQL expression is a weighted
simple XPath expression.
1 Note that assuming the presence of a single predicate does not limit the lan-

guage expressiveness because conjunctions and disjunctions of predicates can be
rewritten as a single predicate in XPath.

4.3 Vague Queries on Multiple Heterogeneous XML Data Sources 97

Example 4.7. In its textual form, the VXQL expression corresponding to the
query of Fig. 4.6 is expressed as

//book{NR[h]}

[author{AR[l],ND[m]}[text()=’Ullman’]{SD[l],PD[m]*}]

[price{ND[m]}[text()<70]{PD[m]*}]

Moreover, one of the simplified query types introduced before can be used.

Example 4.8. If in the query above we only want that at least one between
the conditions on author name and book price must be satisfied, the VXQL
expression can take the following form:

//book[author[text()=’Ullman’]{*}][price[text()<70]{*}]

requiring that only one among the marked transformations can be applied.

4.3.2 Relaxing VXQL Expressions

In this section we define the relaxed expressions obtainable from a VXQL
expression and the transformation cost corresponding to the application of
relaxations. The transformation cost incurred when relaxing a VXQL expres-
sion to capture an XML element e (that we will informally call cost of e) is
a quality measure of how much e satisfies the original VXQL expression.

The application of one or more basic transformations to a weighted step
ws yields a standard XPath step rs, called relaxed step. The cost of applying
basic transformations to a weighted step ws (except for renaming) is the cost
specified in ws for that transformation. For node renaming, if the renaming
cost specified in ws is c, the transformation cost for obtaining rs applying node
renaming is given by semDist(l, l′) · c, where semDist is a function evaluating
the semantic dissimilarity between label l used as node test in ws and label
l′ used as node test in rs. Function semDist either returns a value in [0..1], if
l is considered “similar enough” to l′, or ∞, if l is considered “too different”
from l′.

The relaxed step rs can in general be obtained from ws by applying differ-
ent sequences of basic transformations, each sequence entailing a cost equal
to the sum of the costs of the single transformations. We define function
cost(ws, rs) as the minimum among the costs entailed by all possible sequences
of transformations that yield rs from ws. The same applies to the number of
marked transformations, denoted as mrk(ws, rs).

Given a VXQL expression xp = ws1/ · · · /wsn, a relaxed expression rxp is
obtained from xp (denoted as xp Ã rxp) by relaxing each weighted step wsi

in xp. rxp is therefore a standard XPath expression of the form rs1/ . . . /rsn

where rsi, i ∈ [1..n], is a relaxed step obtained from wsi. The transformation
cost of rxp is defined as cost(xp, rxp) =

∑
i∈[1..n] cost(wsi, rsi). Analogously,

the number of marked transformations applied to xp in order to obtain rxp
is defined as mrk(xp, rxp) =

∑
i∈[1..n] mrk(wsi, rsi).

98 4 Retrieving XML data from heterogeneous sources through vague querying

The maximum cost of xp, given a maximum number of marked transfor-
mations applicable κ, is defined as follows. We denote as T (xp, κ) a function
returning the set of relaxed expressions obtainable from xp (with a transfor-
mation cost less than ∞) by applying a number of marked transformations
less than or equal to κ, i.e., T (xp, κ) = {rxp |xp Ã rxp, mrk(xp, rxp) ≤
κ, cost(xp, rxp) ≤ ∞}. The maximum cost of xp given κ is ηκ(xp) =
maxrxp∈T (xp,κ)cost(xp, rxp).

Example 4.9. Consider the VXQL expression xpq corresponding to query q of
Fig. 4.6 and the relaxed expressions xp1, . . . , xp5, corresponding to queries
q1, . . . , q5 of Fig. 4.1. The transformation costs entailed are: cost(xpq, xp1) =
l+2 ·m; cost(xpq, xp2) = 3 ·m+h; cost(xpq, xp3) = 2 ·m+h; cost(xpq, xp4) =
cost(xpq, xp5) = l + 2 · m. The marked transformations applied are:
mark(xpq, xp1) = mark(xpq, xp3) = mark(xpq, xp4) = mark(xpq, xp5) = 1;
mark(xpq, xp2) = 2. Assuming κ = 1, the maximum cost of xpq is ηκ(xpq) =
2 · l + 3 ·m + h.

Before defining the answer to a vague expression, we introduce some no-
tation. We denote as rxp(D) the set of answers obtained by applying a re-
laxed expression rxp to an XML document D. Given a VXQL expression
xp, a cost threshold τ , a maximum number of marked transformations ap-
plicable κ, and an XML document D, we denote as T D(xp, τ, κ) a function
returning the set of relaxed expressions obtainable from xp to capture ele-
ments in D, i.e., T D(xp, τ, κ) = {rxp |xp Ã rxp, rxp(D) 6= ∅,mrk(xp, rxp) ≤
κ, cost(xp, rxp) ≤ τ}. The application of function T to a single XML el-
ement e, denoted as T D(xp, τ, κ, e), returns the set of relaxed expressions
obtainable from xp to capture e, i.e., T D(xp, τ, κ, e) = {rxp |xp Ã rxp, e ∈
rxp(D),mrk(xp, rxp) ≤ κ, cost(xp, rxp) ≤ τ}, where D is the XML document
containing e.

Definition 4.10. (Vague expression answer) Let xp be a VXQL expres-
sion, D an XML document, τ a transformation threshold and κ a marked
transformation threshold. The vague expression answer of xp over D with
respect to τ and κ, denoted as xpτ,κ(D), is defined as

xpτ,κ(D) =
⋃

rxp∈T D(xp,τ,κ)

rxp(D)

4.3.3 VXQL Queries

As previously explained, the evaluation of a VXQL expression xp on a set
of (heterogeneous) XML data sources requires to evaluate xp on each source,
then to combine the (partial) answers obtained from this evaluation, and
finally to filter out combined answers which do not satisfy xp. To capture
this behavior, a VXQL query comprises, besides a VXQL expression, local
and global cost thresholds (τl and τg) and the maximum number of marked

4.3 Vague Queries on Multiple Heterogeneous XML Data Sources 99

transformations applicable locally and globally (κl and κg). Therefore, the
formal definition of a VXQL query is the following.

Definition 4.11. (VXQL query) A VXQL query is a tuple
〈xp, τg, τl, κg, κl〉, where xp is a VXQL expression, τg, τl ∈ R+ ∪ {0}
and κg, κl ∈ N.

In order to facilitate choosing global and local cost thresholds, denoted as
τg and τl, VXQL allows users to express them as percentages of the maximum
allowed cost of a transformed query. Moreover, we consider three predefined
(global) cost thresholds, low, medium, and high, corresponding to the 10%,
30%, and 50% of the maximum cost of a transformed query, respectively. The
user may also avoid specifying the local transformation threshold, as it can
be set by default by increasing the global value of a 25%. Therefore, κg can
be selected by the user, and κl may be set as the smallest integer such that
κl ≥ κg · 1.25.

The elements retrieved from different data sources can have a certain de-
gree of dissimilarity even if they represent the same object. Therefore, when
grouping them, we associate each group with a value representing the “overall
dissimilarity” of the elements contained in it. The meaning and importance of
this dissimilarity value will be made clearer in the following (see, in particular,
Section 4.3.4). A vague element is thus a pair v = 〈Ev, γv〉, where Ev is a set
of XML elements and γv is a dissimilarity value. Given an XML element e and
a vague element v = 〈Ev, γv〉, we say that e belongs to v (e ∈ v) iff e ∈ Ev.

Definition 4.12. (Vague query answer on a single data source) Given
an XML document D and a VXQL query q = 〈xp, τg, τl, κg, κl〉, the vague
query answer of q over D, denoted as q(D) is defined as

q(D) = {〈{e}, 0〉 | e ∈ xpτl,κl
(D)}.

Example 4.13. Consider again query q of Fig. 4.6 and the scenario depicted
in Fig. 4.1, and assume that τl = 3 · m + h and κl = 1. The vague query
answers obtained by evaluating q on the data sources are q(D1) = {〈{e1}, 0〉},
q(D2) = {〈{e3}, 0〉}, and q(D3) = {〈{e4}, 0〉, 〈{e5}, 0〉}. Note that element e2

of Fig. 4.1 is not part of the query answer because the number of marked
transformations to be applied to retrieve it would be greater than κl.

4.3.4 Vague Join

Before providing the formal definition of the semantics of VXQL, it is neces-
sary to investigate how answers coming from different sources are combined
together. This problem requires to address the following issues: (i) how to
check whether two XML elements (partial answers obtained by vaguely eval-
uating a VXQL expression on different sources) describe the same object; (ii)
how to construct sets of elements which describe the same object.

100 4 Retrieving XML data from heterogeneous sources through vague querying

As regards the first issue, in order to assess the dissimilarity between two
XML elements e′ and e′′, we employ a dissimilarity function δ(e′, e′′) that
measures the dissimilarity of the objects the two elements describe. Dissimi-
larity values range from 0 (e′ and e′′ definitely describe the same object) to ∞
(they do not refer to the same object). The particular dissimilarity function
currently adopted is described in Section 4.4.2.

Although the problem of constructing sets of elements describing the same
object could seem a generalization of the problem of checking dissimilarities,
it has some peculiarity that makes it different. In particular, it may happen
that two elements are actually a description of the same object, but to detect
this we need to consider them as part of a set. For instance, consider elements
e1, e2, e3 in Figure 4.7.

<book>
<ISBN>47</ISBN>
<reviews>

<review score= ‘‘10’’>
...

</review>
<review score= ‘‘7’’>
...

</review>
</reviews>

</book>

<book>
<ISBN>47</ISBN>
<title>T<title>
<authors>

<author>A1</author>
<author>A2</author>

</authors>
<price> 100 </price>

</book>

<book>
<title>T<title>
<authors>
<author>A1</author>
<author>A2</author>

</authors>
<references>
<reference>R1</reference>
<reference>R2</reference>

</references>
</book>

e1 e2 e3

Fig. 4.7: Elements describing the same book

e1, e2, and e3 describe different aspects of the same book. On one hand, by
comparing e1 and e3 there is no way of detecting that they describe the same
book, since their contents are completely different. On the other hand, e1 and
e3 can be recognized to describe the same book described by e2 since e1 and
e2 share the same ISBN and e2 and e3 share the same title and authors.

To correctly build sets of elements describing the same object we introduce
a vague join operator. This operator is essentially an outer join, where two
vague elements are joined if and only if they refer to the same object, i.e., if
their overall dissimilarity is under a join threshold λ. The overall dissimilarity
between two vague elements v′, v′′ is given by a function δ(v′, v′′), defined
in the following. Then, given two vague elements v′ and v′′, we denote with
v′] v′′ the vague element obtained by joining the elements in v′ and v′′, that
is v′] v′′ = 〈E′

v ∪ E′′
v , δ(v′, v′′)〉.

A simple approach for assessing the overall dissimilarity between two vague
elements v′ = 〈Ev′ , γv′〉 and v′′ = 〈Ev′′ , γv′′〉 is that of taking the maximum
dissimilarity between every pair of elements in Ev′ ∪Ev′′ . Unfortunately, this
definition fails to capture all significant answers when facing particular (e.g.,
intransitive) behaviors of the function evaluating dissimilarity between XML
elements. This case is discussed in the following example.

4.3 Vague Queries on Multiple Heterogeneous XML Data Sources 101

Example 4.14. Consider three vague elements v1 = 〈{e1}, 0〉, v2 = 〈{e2}, 0〉,
and v3 = 〈{e3}, 0〉 where e1, e2, and e3 are the XML elements reported in
Figure 4.7, and assume that δ is intransitive, that is δ(e1, e2) = δ(e2, e3) = 0
and δ(e1, e3) = ∞. If the overall dissimilarity is computed by taking the
maximum between each pair, we have δ(v1, v2) = 0 but δ(〈{e1, e2}, 0〉, v3) =
∞, although e1, e2, and e3 refer to the same object.

It is straightforward to see that choosing the minimum value among every
pair would join unrelated elements. The overall dissimilarity notion we adopt
solves these problems by adopting an ad-hoc approach. The dissimilarity be-
tween two vague elements v′ = 〈Ev′ , γv′〉 and v′′ = 〈Ev′′ , γv′′〉, denoted as
δ(v′, v′′), is computed as follows:

1. if ∃e′ ∈ v′ and e′′ ∈ v′′ such that e′ 6= e′′ and both e′ and e′′ come from
the same source, then δ(v′, v′′) = ∞;

2. otherwise, if Ev′ ∩Ev′′ = ∅, then δ(v′, v′′) is the maximum among γv′ , γv′′

and mine′ ∈ v′

e′′ ∈ v′′
δ(e′, e′′);

3. otherwise, δ(v′, v′′) = max(γv′ , γv′′).

Essentially, rule (1) states that vague elements containing different ele-
ments extracted from the same source do not refer to the same object. This is
motivated by the assumption that the same source does not represent twice
the same information. Rule (2) characterizes the dissimilarity of a vague el-
ement obtained by merging two disjoint vague elements according to the in-
tuition that, since the elements in v′ refer to an object o′ and the elements
in v′′ refer to an object o′′, it suffices that an element e′ ∈ v′ and an element
e′′ ∈ v′′ refer to the same object to conclude that o′ = o′′. Therefore, the
dissimilarity of two vague elements v′ and v′′ is computed as the maximum
among the dissimilarity of the elements in v′ and v′′, respectively, and the
minimum dissimilarity between every pair of elements in v′ and v′′. Finally,
rule (3) states that if v′ and v′′ contain a same element, then both refer to the
same object and the dissimilarity of the vague element obtained by merging
v′ and v′′ is the highest between γv′ and γv′′ , that is the maximum among
the precomputed dissimilarity of the elements in v′ and v′′, respectively. It is
worth noting that, if the XML element dissimilarity is correctly recognized by
function δ, this approach allows us to join two vague elements iff they refer
to the same object.

Example 4.15. Consider the vague elements of Example 4.14 and assume that
e1, e2, and e3 come from different sources. According to the definition of the
overall dissimilarity, δ(v1, v2) = 0 (rule (2)). Therefore v1 and v2 are joined
obtaining the vague element v4 = 〈{e1, e2}, 0〉. We also obtain δ(v4, v3) = 0 (as
δ(e2, e3) = 0), thus recognizing that the three XML elements can be grouped
together in a vague element 〈{e1, e2, e3}, 0〉.

However, the overall dissimilarity of a set of elements computed using
function δ may depend on the order elements are merged, that is (v1]v2)]v3

102 4 Retrieving XML data from heterogeneous sources through vague querying

has an overall dissimilarity value different from (v1] v3)] v2. The following
example shows this behavior.

Example 4.16. Consider the vague elements of Example 4.15 and the vague
element v5 = 〈{e1, e3},∞〉, obtained from δ(v1, v3) = ∞. It is easy to see that
v4] v3 = 〈{e1, e2, e3}, 0〉 while v5] v2 = 〈{e1, e2, e3},∞〉.

We thus define the vague join operator in such a way that it combines
vague elements in every possible way. Moreover, only vague elements whose
overall dissimilarity is under the desired threshold λ are considered. We first
introduce a “fusion operator” which works over a set of vague elements V ,
and expands it with the vague elements obtained by joining pairs of vague
elements in V , if the resulting overall dissimilarity is smaller or equal to λ.

Definition 4.17. (Fusion operator) Let V be a set of vague elements. We
define the fusion operator ∆ as

∆(V) = V ∪ {v′] v′′ | v′ ∈ V, v′′ ∈ V, δ(v′, v′′) ≤ λ}

The vague join operator is defined as the least fixpoint of the fusion oper-
ator.

Definition 4.18. (Vague join) Let V be a set of vague elements. We define
the vague join of V as the least fixpoint of operator ∆ applied to V , denoted
as ./v (V).

Obviously, since the fusion operator uses the join threshold, this threshold
is essential for guaranteeing correct behaviors of the vague join operator. A
possible choice is that of providing different thresholds that drive different
behaviors, ranging from strictly conservative (λ = 0) to very approximate.

Example 4.19. Applying the vague join operator with λ 6= ∞ to the set of
vague elements V = {〈{e1}, 0〉, 〈{e2}, 0〉, 〈{e3}, 0〉}, where e1, e2, and e3 are
the XML elements of Example 4.14, we obtain

./v (V) = {〈{e1, e2, e3}, 0〉, 〈{e1, e2}, 0〉, 〈{e2, e3}, 0〉,
〈{e1}, 0〉, 〈{e2}, 0〉, 〈{e3}, 0〉}

thus capturing the fact that elements e1, e2, and e3 refer to the same object.

Observe that, in general, the application of the vague join operator pro-
duces a set containing “redundant” vague elements that are strictly contained
inside other vague elements.

4.3 Vague Queries on Multiple Heterogeneous XML Data Sources 103

4.3.5 VXQL Semantics

The semantics of VXQL takes into account the quality of the vague elements
obtained, meant as their correspondence with the original query, as explained
below. Given a vague element v, as each element in v describes a certain object
o, it is reasonable to merge the elements in v to provide a single description of
o. This can be achieved by simply concatenating the content of the elements
in v. Function merge applied to a vague element v returns the concatenation
of the contents of the elements e ∈ v.2 Intuitively enough, the relevance of
a vague element v w.r.t. a VXQL query q can be assessed by executing q on
merge(v).

Specifically, in order to assess whether a vague element v belongs to the
answer of a VXQL query q, we define the transformation cost of v w.r.t. q.
Given a vague element v and a VXQL query q = 〈xp, τg, τl, κg, κl〉, we define
the cost of v w.r.t. q by considering separately, in xp = s1/s2/ . . . /sn[f], the
expression s1/s2/ . . . /sn, denoted as xps, and the predicate f . We evaluate
xps on the original elements 3 belonging to v, and f on merge(v).

The cost of v w.r.t. xps, denoted as cost(xps, v), is evaluated by taking
the minimum among the costs associated with the elements in v, i.e.,

cost(xps, v) = min e ∈ v
xp′s ∈ T D(xps, τg, κg, e)

cost(xps, xp′s)

The same applies for the number of marked transformations applied:

mrk(xps, v) = min e ∈ v
xp′s ∈ T D(xps, τg, κg, e)

mrk(xps, xp′s)

Moreover, as at least mrk(xps, v) transformations have been applied to
reach the elements in v, the cost associated with f considers only the relaxed
expressions obtainable from f by applying a number of marked transforma-
tions which is less than or equal to κ∗ = κg −mrk(xps, v). That is, the cost
of v w.r.t. f is defined as:

cost(f, v) = minrf∈ T D(f,τg,κ∗,merge(v))cost(f, rf)

Finally, the cost of v w.r.t. q is defined as cost(q, v) = cost(xps, v) +
cost(f, v). This function is employed to select the vague elements that satisfy
q, that is those whose cost is lower or equal to the specified threshold. The
set of satisfying elements is defined below.

2 Observe that the same information can be reported several times in merge(v)
and that the relative order among the content of the elements merged together
is irrelevant to compute their correspondence w.r.t. the original query.

3 In the evaluation of an XPath expression xps(e) we assume that xps is evaluated
on the original document containing e.

104 4 Retrieving XML data from heterogeneous sources through vague querying

Definition 4.20. (Satisfying elements) Let V be a set of vague elements,
and q = 〈xp, τg, τl, κg, κl〉 be a VXQL query. The set of elements in V satis-
fying q is

σq(V) = {v|v ∈ V, cost(q, v) ≤ τg}.
As observed before, during the construction of the overall result, the appli-

cation of the vague join operator may produce vague elements that are subsets
of others and thus needless in the final result. Moreover, the same set of XML
elements may correspond to one or more vague elements with different overall
dissimilarity (due to the definition of vague join). To remove the unneeded
vague elements, we employ the pruning operation defined below.

Definition 4.21. (Pruned set) Let V be a set of vague elements. The pruned
set of V is

ρ(V) = {v|v ∈ V, @ v′ ∈ V s.t. (Ev ⊂ Ev′) ,
@ v′′ ∈ V s.t. (Ev = Ev′′ , γv > γv′′)}.

The overall result is obtained by vaguely joining the answers coming from
different sources, selecting the vague elements whose cost is under the specified
threshold, and pruning the resulting set of vague elements.

Definition 4.22. (VXQL semantics) Let D be a set of XML data sources,
and q be a VXQL query. The application of q to D is

q(D) = ρ
(
σq

(
./v

(∪D∈D q(D)
)))

Example 4.23. Consider again query q of Fig. 4.6 in the scenario depicted in
Fig. 4.1 and assume that τg = l +m and κg = 0. The set V of vague elements
returned by the vague query evaluation process on the data sources (see Ex-
ample 4.3.3) contains a vague element for each of the XML elements e1, e3, e4,
and e5. Assuming that the employed function δ correctly identifies elements
describing the same object, the application of operator ./v on V adds to V two
new vague elements corresponding to the sets {e1, e4} and {e3, e5}, (with over-
all dissimilarity values γ14 and γ35, respectively). The transformation costs of
the vague elements in V w.r.t q are the following: cost(q, 〈{e1}, 0〉) = l+2 ·m,
cost(q, 〈{e3}, 0〉) = 2 ·m + h, cost(q, 〈{e4}, 0〉) = cost(q, 〈{e5}, 0〉) = l + 2 ·m,
cost(q, 〈{e1, e4}, γ14〉) = l + 2 · m, cost(q, 〈{e3, e5}, γ35〉) = l. Therefore, the
query answer provided by the application of q on D1, D2, and D3 is the vague
element corresponding to {e3, e5}.

The following theorem characterizes the complexity of VXQL query eval-
uation under this semantics.

Theorem 4.24. Let D be a set of XML data sources, and q a VXQL query.
The problem of checking whether q(D) is not empty is NP-complete.

4.3 Vague Queries on Multiple Heterogeneous XML Data Sources 105

Proof. (Sketch) Membership in NP is straightforward. NP hardness is proved
by showing a logspace reduction of SAT [50]. Let φ = φ1, · · · , φm be a boolean
formula in conjunctive normal form defined on variables x1, · · · , xn. We asso-
ciate φ with a set of XML data sources Dφ. The set contains n sources Di,
with i ∈ [1..n], each providing a document rooted by a vars tag with two data
elements. The first data element contains an xi subelement with value true
and the second one contains an xi subelement with value false. For instance,
the XML document exported by source D1 has the following structure:

<vars>

<data>

<x1>true</x1>

</data>

<data>

<x1>false</x1>

</data>

</vars>

Let q = 〈xp, τg, τl, 0,∞〉 be a VXQL query where τg, τl ≥ 0 and
xp =/vars/data[f(φ)]{PD[0]} with f(φ) defined as follows:

f(φ) =

8
>><
>>:

xi[text()=’’true’’]{PD[0]*} if φ = xi

xi[text()=’’false’’]{PD[0]*} if φ = ¬ xi

f(φ1) OR f(φ2) if φ = φ1 OR φ2

f(φ1) AND f(φ2) if φ = φ1 AND φ2

No cost is specified for the deletion of filter f(φ) from xp. However, as
predicate deletion is a marked transformation, vague elements in the final
result must satisfy f(φ), whereas partial answers coming from each source are
allowed to violate it. We use a function δ which always evaluates to 0.

Every vague element v in ./v
D∈D q(D) is composed by taking at most one

data element from each source in D. Since the vague elements that do not
contain at least one data element for each source cannot satisfy f(φ), q(D) is
not empty iff there is a truth assignment for x1, · · · , xn which satisfies φ.

We point out that Theorem 4.24 characterizes the complexity of VXQL
query evaluation w.r.t. the size of the query and the number of XML data
sources. Indeed, the problem of checking whether a query q returns a non-
empty answer is NP-hard even if every source returns at most 2 elements
as its partial answer to q. The problem is solvable in polynomial time if no
source contains duplicate elements (i.e., key constraints are satisfied) and
the dissimilarity function δ returns a value higher than the predefined join
threshold λ iff applied on a pair of elements that do not describe the same
object (see Section 4.4.3).

106 4 Retrieving XML data from heterogeneous sources through vague querying

4.4 Vague Query Evaluation

In this section we first outline an algorithm that evaluates a VXQL query q
on a set of XML data sources D. Then, we detail how local vague evaluation is
performed and the particular element dissimilarity function we adopt. Finally,
we characterize the complexity of VXQL query evaluation and identify cases
where it is tractable.

Algorithm 4.25, for each D ∈ D, evaluates q(D) (Step 1). Then, it com-
bines the partial answers by joining those elements which refer to the same
object (Step 2). Next, it eliminates the vague elements whose cost exceeds the
specified threshold (Step 3) and, finally, redundant vague elements are pruned
(Step 4).

Algorithm 4.25 (VXQL query evaluation)
Input: A VXQL query q = 〈xp, τg, τl, κg, κl〉 and a set of XML data sources
D.
Output: The set of vague elements q(D).

1. For each D ∈ D, evaluate q(D) (local evaluation);
2. V ← ./v

(∪D∈D q(D)
)

(joining);
3. V ← σq(V) (selection of satisfying elements);
4. V ← ρ(V) (pruning);
5. Return V .

4.4.1 Local Evaluation

In this section we describe our approach to the evaluation of a VXQL query
q = 〈xp, τg, τl, κg, κl〉 with respect to the local XML database of a source.
W.l.g. we assume that the XML database of each source (denoted as D) has
a unique root element rD. The evaluation of q(D) is performed by function
evQuery(q, D) and consists in evaluating xpτl,κl

(D).
We first introduce some notation. Given a weighted step ws and a trans-

formation t ∈ {AR, ND, NR}, we define a function ηt that, applied to ws,
returns the transformation cost specified in ws for t if t is allowed, and ∞
otherwise. Moreover, we define a function µt that evaluates to 1 if t is marked
in ws and 0 otherwise. Finally, given a weighted simple step s, we denote as
desc(s) the weighted simple step obtained from s by replacing the axis in s
with the descendant one, and denote as axis(s) and nTest(s) the axis and
the node test in s, respectively.

The intermediate results consist of sets of tuples representing node bind-
ings. Each tuple 〈n, cost, tr〉 means that node n has been bound through the
application of a certain set of basic transformations entailing a total cost equal
to cost, and applying tr marked transformations.

We now define operator ¯, which eliminates useless bindings from a set
B. More precisely, for each binding of an XML element n, it eliminates every

4.4 Vague Query Evaluation 107

other binding of n having worse associated costs. The formal definition of ¯
is:

¯(B) ={〈n, cost, tr〉 ∈ B |@〈n, cost′, tr′〉 ∈ B,
((cost′ < cost, tr′ ≤ tr) ∨
(cost′ ≤ cost, tr′ < tr))}.

Note that if one or both local thresholds are equal to ∞, the filtering
operation that in the general case is performed by operator ¯ is much simpler.
For instance, if τl = ∞, for each XML element, only one among the bindings
associated with it (the one having the minimum number of applied marked
transformations) must be kept in the set of current bindings.

Function evStep evaluates a weighted step w.r.t. a set of node bindings.
Let B be a set of node bindings, and ws a weighted step of the form s[f];
evStep(B, ws) is defined as

evStep(B, ws) = ¯(φ(σ(B, s), f))

where σ(B, s) is a function returning a new binding set which satisfies the
weighted simple step s starting from the bindings in B, and φ(B, f) is a func-
tion evaluating predicate f on a binding set, that is filtering out those bindings
which do not satisfy f w.r.t. κl and τl (the formal definition of σ and φ will
be given later on).

Function evExp evaluates a VXQL expression w.r.t. a set of node bindings.
Let B be a set of node bindings and xp a VXQL expression of the form
ws1/ · · · /wsn. Function evExp essentially invokes evStep on each weighted
step ws in xp; evExp is therefore recursively defined as follows:

evExp(B, xp) =
{

evStep(B, ws1) if n = 1
evStep(evExp(B, ws1/ · · · /wsn−1), wsn) if n > 1

To define function σ, we first introduce a function ext, which takes as
arguments a node binding 〈n, cost, tr〉 and a weighted simple step s, and
computes a new binding set by evaluating s starting from the XML element
n, considering a cost already paid equal to cost and a number of marked
transformations already applied equal to tr. Function ext also tries to apply
node renamings that do not violate the given thresholds. The XML database is
accessed by means of the function search(n, s), that returns a new set of XML
elements resulting from the evaluation of the XPath step s on the context XML
element n. The formal definition of function ext is given in Fig. 4.8, where LD

denotes the set of element names in the XML database D containing node n.
We now define function σ(B, s), which evaluates a weighted simple step

s from each binding b ∈ B, by applying all possible transformations that do
not exceed the thresholds. The function returns a new binding set obtained
by uniting the bindings yielded by the exact evaluation of s from each sin-
gle binding b, and those computed by functions σrel(b, s) and σdel(b, s), that
evaluate step s trying to apply axis relaxation and node deletion.

108 4 Retrieving XML data from heterogeneous sources through vague querying

ext(〈n, cost, tr〉, s) =

8
>><
>>:

l ∈ LD s.t. c′ = cost+
〈n′, c′, tr′〉 +semDist(nTest(s), l) · ηNR(s) ≤ τl,

n′ ∈ search(n, axis(s) :: l),
tr′ = tr + µNR(s) ≤ κl

9
>>=
>>;

Fig. 4.8: Definition of function ext

Specifically, function σrel calls function ext imposing a descendant step,
i.e., ext is invoked on desc(s). σdel invokes search with a step of the form
descendant-or-self::∗. The transformation cost and the number of applied
marked transformations are also updated. The formal definitions of functions
σrel and σdel are shown in Fig. 4.9.

σrel(〈n, cost, tr〉, s) =

8
>><
>>:

ext(n, c′, tr′, 〈desc(s)〉) if tr′ = tr + µAR(s) ≤ κl,
c′ = cost + ηAR(s) ≤ τl;

∅ otherwise.

σdel(〈n, cost, tr〉, s) =

8
>>>><
>>>>:

 〈n′, c′, tr′〉 |n′ ∈ search(n,
descendant-or-self ::∗)

ff
if tr′ = tr + µND(s) ≤ κl,

c′ = cost + ηND(s) ≤ τl;

∅ otherwise.

Fig. 4.9: Definitions of functions σrel and σdel

Finally, σ(B, s) is defined as

σ(B, s) = ¯
(⋃

b∈B
(σ∗(b, s))

)

where σ∗(b, s) = σrel(b, s) ∪ σdel(b, s) ∪ ext(b, s).
Function φ(B, f) filters out the bindings in B that do not satisfy filter

f . For a filter consisting of a single VXQL expression φ(B, f) is defined as
follows:

φ(B, f) = ¯
({

〈n, cost′, tr′〉
∣∣∣∣
〈n, cost, tr〉 ∈ B,
〈n′, cost′, tr′〉 ∈ evExp({〈n, cost, tr〉}, f)

})

For a filter of the form f = f1 AND f2, function φ is applied to B using
f1, then the result is filtered using f2:

φ(B, f1 AND f2) = φ(φ(B, f1), f2))

4.4 Vague Query Evaluation 109

whereas for a filter of the form f = f1 OR f2, function φ is applied to B using
the two subfilters separately, then the results are united:

φ(B, f1 OR f2) = ¯(φ(B, f1) ∪ φ(B, f2)).

For simplicity we do not detail the behavior of function φ when evaluating
a filter by trying to apply predicate relaxations.

Finally, the evaluation of a VXQL query q = 〈xp, τg, τl, κg, κl〉 on a source
exporting a document D is performed by function evQuery, which is defined
as follows:

evQuery(q, D) = evExp({〈rD, 0, 0〉}, xp).

4.4.2 Assessing “Semantic” Dissimilarity

The semantics of VXQL is in general independent of the particular technique
adopted to measure the semantic dissimilarity between two XML elements,
i.e., any technique which is able to assess whether two XML elements re-
fer to the same real-world object can be used. In this section we define the
dissimilarity function currently employed.

In general, since different information sources adopt different representa-
tions of the same information, it may be very difficult to establish whether
XML elements coming from different sources refer to the same object. For this
purpose, a naive strategy is to measure the structure or content dissimilarity
between (whole) elements. This approach is unsuitable since two elements can
be dissimilar from one another but still refer to the same object. For instance,
elements e1 and e2 in Fig. 4.7 are much different from each other, even if e1

and e2 definitely refer to the same book, as they share the ISBN’s.
A more suitable approach consists in evaluating the dissimilarity degree

between element’s keys, if key constraints are imposed. In this way, elements
e1 and e2 in Fig. 4.10, which have the same key (same ISBN subelement),
and thus refer to the same book, are recognized to be similar. Nevertheless,
since element’s keys are defined locally on each data source, it can happen
that elements referring to the same object are characterized by keys having
a different structure. For instance, a person element can be identified by its
name and surname subelements in a source, and by its fullname subelement
in another source. In such cases, techniques as those proposed in [114, 54] can
be employed to assess key dissimilarity. Specifically, in [114], the computation
of the edit distance between two trees is introduced, defined as the minimum
number of operations (node insertion, deletion, renaming) required to trans-
form one tree into the other. [54] presents a framework for approximate XML
joins based on tree-edit distance where upper and lower bounds are given for
the distance, and reference sets are used that reduce the number of distances
to compute in a join. It should be noted that, in general, evaluating the dis-
similarity between XML elements by looking at their keys makes sense only
if the elements refer to objects of the same type. Thus, this approach can be
used when no disjunction appears in the output nodes of the queries.

110 4 Retrieving XML data from heterogeneous sources through vague querying

Moreover, when comparing element’s keys, the possibility of two elements
referring to the same object but being identified by completely different keys
must be taken into account. For instance, elements e2 and e3 in Fig. 4.10 are
identified by different keys, but both describe the same book. In these cases,
any dissimilarity function that checks key dissimilarity, even by applying the
edit distances defined in [114, 54], fails in recognizing elements referring to
the same object.

A more effective approach is that of testing whether the information rep-
resented by the key of one element is contained in the second, or vice-versa.
The XML dissimilarity measure we adopt in VXQL is based on this idea. In
the absence of key constraints defined on the XML elements, the distance
measures proposed in [114, 54] can still be applied to estimate dissimilarity
degrees between whole elements.

Several alternative definitions of XML keys have been proposed in the lit-
erature, such as XSchema key constraints and XML functional dependencies.
Here we simply assume that the key of an XML element e is an XML element
K(e) obtained by possibly removing some of the subelements of e or some of
the attributes of e itself or of one of its subelements. For instance, the keys of
the elements in Fig. 4.7 are reported in Fig. 4.10.

<book>
<ISBN>47</ISBN>

</book>

<book>
<ISBN>47</ISBN>

</book>

<book>
<title>T<title>
<authors>

<author>A1</author>
<author>A2</author>

</authors>
</book>

K(e1) K(e2) K(e3)

Fig. 4.10: Keys of the elements of Fig. 4.7

We exploit VXQL expressions to measure the dissimilarity degree of the
objects described by two XML elements. Specifically, given two XML ele-
ments e′, e′′, our approach exploits VXQL expressions to check whether the
information contained in K(e′) is “represented” in e′′ and vice-versa. Indeed,
if either the information of K(e′) is represented in e′′, or the information of
K(e′′) is represented in e′, it is reasonable to say that e′ and e′′ refer to the
same object. For instance, consider elements e2 and e3 in Fig. 4.10. It can be
noted that the keys identifying the two elements are completely different, but
the information contained in K(e3) is fully contained in e2. In this case, we
conclude that e2 and e3 refer to the same book.

In order to check whether the information contained in K(e′) is represented
in e′′ we first translate K(e′) into a key testing VXQL expression and then
execute it on e′′ (named target element). Obviously, the VXQL expression
associated with K(e′) must represent every relevant information represented
in K(e′), while allowing that this information is somehow “rearranged” inside

4.4 Vague Query Evaluation 111

xpKe =

8
>>>>><
>>>>>:

en{AR[1],NR[r],ND[1+r+d]} if e = <en>e1 . . . en<en>

[xpKe1] . . . [xpKen
] where e1 . . . en are XML elements

en{AR[1],NR[r]} if e = <en/>

en{AR[1],NR[r],ND[1+r+d]} if e = <en>txt<en>
[text()=’txt’]{SD[1],EQ[1]} where txt is a string (#PCDATA)

Fig. 4.11: Key testing VXQL expression

e′′. Hence, the relative order of subelements in the key is disregarded in the
VXQL expression, since it is unlikely that key information is represented by
using the relative order of subelements (this feature is indeed not supported
by XML key constraint languages). Moreover, some flexibility is guaranteed
in the execution of the expression. Specifically, lower weights are associated
with transformations which alter only the “structure” of the key, retaining the
semantics of its information. The formal definition of the VXQL expression
associated with the key of an XML element e (denoted as xpKe) is reported in
Fig. 4.11.

Observe that xpKe does not permit the deletion of steps corresponding to
textual filters or leaf elements, since they are considered to be the most impor-
tant information in the recognition of dissimilarity between the key and the
target element. xpKe instead assumes a unitary cost for axis relaxation, *-node
insertion and relaxation of equality predicates, since these transformations
only modify the structure of the key. Moreover, xpKe assigns an higher cost
(r ≥ 1) to node renaming, since this transformation permits the modification
of the semantics of element names in the key. Finally, (internal) node deletion
essentially corresponds to applying both node renaming and axis relaxation.
Hence, the cost assigned to node deletion in xpKe is greater than the sum of the
costs assigned to node renaming and axis relaxation (1 + r + d, with d ≥ 0).

Example 4.26. The key testing VXQL expression associated with element e3

in Fig. 4.10 (xpKe3
) is the following (where we assume r = d = 1):

book{NR[1],ND[3]}

[title{AR[1],NR[1],ND[3]}[text()=’T’]{SD[1],EQ[1]}]

[authors{AR[1],NR[1],ND[3]}

[author{AR[1],NR[1],ND[3]}[text()=’A1’]{SD[1],EQ[1]}]

[author{AR[1],NR[1],ND[3]}[text()=’A2’]{SD[1],EQ[1]}]]

Given two XML elements e′ and e′′, and the minimum-cost relaxed version
rxp of xpKe′ such that e′′ satisfies rxp, we take the cost of rxp as a measure of
semantic dissimilarity between e′ and e′′. For instance, consider elements e2

and e3 of Fig. 4.10; since xpKe3
is satisfiable on e2 applying no transformation

at all, then e2 and e3 refer to the same book.

112 4 Retrieving XML data from heterogeneous sources through vague querying

Before introducing the formal definition of the dissimilarity function based
on key testing VXQL expressions, denoted as δK, we introduce some pre-
liminary definitions. Given a VXQL expression xp and an XML element
e, the function cost applied to xp and e returns the minimum cost of ob-
taining a relaxed expression rxp from xp such that e satisfies rxp, i.e.
cost(xp, e) = minrxp∈T D(xp,∞,∞)cost(xp, rxp), where D is the document hav-
ing e as its root element. As it will be clearer in the following, cost thresholds
are not needed in this computation. If a relaxed expression capturing e does
not exist, i.e. T D(xp,∞,∞) = ∅, we consider cost(xp, e) = ∞. In the fol-
lowing, given a VXQL expression xp and an XML element e, we denote as
cost(xp, e) the cost of applying xp to e.

Given two XML elements e′ an e′′, the dissimilarity function δK uses func-
tion cost to check whether the information contained in K(e′) is present in
e′′ and vice-versa, and thus if the two elements refer to the same object. The
formal definition of δK is the following:

δK(e′, e′′) = min

(
cost(xpKe′ , e

′′)
η∞(xpKe′)

,
cost(xpKe′′ , e

′)
η∞(xpKe′′)

)

Observe that function δK states that e′ and e′′ refer to the same object
if either the information of K(e′) is represented in e′′ or the information of
K(e′′) is represented in e′. For instance, function δK, applied to elements e1, e2

and e3 of Fig. 4.10, returns the following dissimilarity values: δK(e1, e2) = 0,
δK(e2, e3) = 0 and δK(e1, e3) = ∞.

4.4.3 Complexity of VXQL Query Evaluation

The complexity of the evaluation of a VXQL query is stated by the following
proposition.

Proposition 4.27. (Local evaluation complexity) Let q =
〈xp, τg, τl, κg, κl〉 be a VXQL query, and D an XML document. q(D)
can be computed in time O(|xp|2 · |D|2), where |D| is the number of elements
in D and |xp| is the number of steps in xp.

Proof. It is straightforward to see that evaluating q(D) requires at most |xp|
(recursive) invocations of function evStep, one for each weighted step appear-
ing in xp. Since the generic invocation of evStep on a set of bindings B and a
weighted step ws = s[f] computes ¯(φ(σ(B, s), f)), the complexity of evalu-
ating evStep(B, ws) is given by the sum of the complexities of computing:

1. B′ = σ(B, s) =
⋃

b∈B(σ∗(b, s));
2. B′′ = φ(B′, f);
3. ¯(B′′).

Since for each invocation of evStep B either derives from the execution of
another invocation of evStep or it is the initial set of bindings, the cardinality

4.4 Vague Query Evaluation 113

of B is bounded by m · |D|, where m is the number of marked transformations
in xp (thus m is O(|xp|)). Moreover, it is easy to see that every invocation
of function ext can be accomplished in time O(|D|), since it suffices to visit
the XML document (tree) starting from a context element. Hence, σ∗ can
be computed in time O(|D|) and computing B′ takes time O(m · |D|2); the
cardinality of B′ is O(m · |D|2) as well. Moreover, as φ filters out the bindings
which do not satisfy the filter f , the cardinality of B′′ is O(m · |D|2), too.
Operator ¯ filters out the unneeded bindings from B′′ in at most O(|B′′|) =
O(m · |D|2) = O(|xp| · |D|2) steps.

Computing B′′ either requires to invoke evExp (if f consists of an
XPath expression) or to compute φ(φ(B′, f1), f2)) (if f = f1 AND f2) or
¯(φ(B′, f1)∪φ(B′, f2)) (if f = f1 OR f2). Therefore, as |φ(B′, f1)∪φ(B′, f2)| ≤
2 · |B′|, B′′ can be computed in time O(|B′|) = O(m · |D|2) = O(|xp| · |D|2).

Finally, since Steps (1), (2) and (3) can be computed in time O(|xp| · |D|2),
q(D) can be computed in time O(|xp|2 · |D|2).

Given a set of XML data sources D, we denote as ∆D the maximum size
of the XML databases exported by the sources, i.e., ∆D = maxD∈ D(|D|).
The following proposition states the overall complexity of Algorithm 4.25.

Proposition 4.28. (VXQL evaluation complexity) Let D be a set of
XML data sources, and q = 〈xp, τg, τl, κg, κl〉 a VXQL query. Algorithm 4.25

invoked on q and D returns q(D) in time O
(
∆

3·|D|
D + |D| · |xp|2 ·∆2

D
)
.

Proof. Step 1 requires to evaluate q on each source, thus its complexity is
O(|D| · |xp|2 ·∆2

D) (Proposition 4.27).
Since for each D ∈ D the cardinality of q(D) is O(∆D) and no vague el-

ement can contain two XML elements coming from the same source, during
the whole execution of Algorithm 4.25 the cardinality of V is O(∆|D|

D). Since
computing the fixpoint of the fusion operator applied on V requires at most
∆
|D|
D joins, and each join can be performed in quadratic time w.r.t. the cardi-

nality of V , Step 2 is accomplishable in time O(∆3·|D|
D). Steps 3 and 4 perform

a selection on set V , and are thus feasible in time O(∆2·|D|
D). Therefore the

complexity of Algorithm 4.25 is O
(
∆

3·|D|
D + |D| · |xp|2 ·∆2

D
)
.

Proposition 4.28 states that the complexity of Algorithm 4.25 may be
exponential w.r.t. the number of XML data sources. Hence, running Algo-
rithm 4.25 may be impractical in the presence of many sources. The main
source of complexity is the cardinality of set V , i.e., the number of vague
elements in ./v

(∪D∈D q(D)
)
. However, since the number of different objects

represented in the set of XML data sources is at most |D| ·∆D, the number
of vague elements in ./v

D∈D q(D) should be at most |D| ·∆D if the vague join
operator correctly recognizes different elements describing the same object.

Definition 4.29. (Robust dissimilarity function) An XML element dis-
similarity function δ is said to be robust iff, given three XML elements e1, e2,

114 4 Retrieving XML data from heterogeneous sources through vague querying

and e3 such that e1 and e2 refer to the same object, and this object is different
from the one described by e3, it holds that δ(e1, e2) < δ(e1, e3).

If the dissimilarity function is robust, it is feasible to prune intermediate
results during the evaluation of the vague join. The pruned vague join operator
./∗ is defined by the following algorithm.

Algorithm 4.30 ./∗

Input: A set of vague elements V.
Output: The set of vague elements ./∗ (V).

1) V ′ ← V ;
2) while ∃v′, v′′ ∈ V ′ such that δ(v′, v′′) ≤ λ

2.a) select v1, v2 ∈ V ′ such that δ(v1, v2) = minv′,v′′∈V ′(δ(v′, v′′))
2.b) V ′ ← V ′ − {v1, v2} ∪ {v1] v2};

3) Return V ′.

Observe that the pruned vague join operator, at step 2.a, performs a greedy
selection of a pair of vague elements in the set. However, as shown in Propo-
sition 4.31, if δ is robust, the result of the operator contains all the vague
elements which refer to the same object and are contained in ρ(./v (V)).

Proposition 4.31. Let q be a VXQL query, and D a set of XML data sources.
If δ is a robust dissimilarity function, then ./∗ (∪D∈Dq(D)) contains all the
vague elements v ∈ ρ(./v (∪D∈Dq(D))) which refer to the same object.

Proof. Let V be ∪D∈Dq(D). We prove that ./∗ (V) contains all the vague
elements v ∈ ρ(./v (V)) which refer to the same object reasoning by contra-
diction. Assume that there is a vague element v ∈ ρ(./v (V)) which contains
only elements referring to the same object o and v /∈ ./∗ (V). Since v /∈ ./∗ (V),
it must be the case that there is a subset v′ of v such that there is a vague
element v′′ ∈ V with v′′ * v, δ(v′, v′′) ≤ λ and there is no vague element
v∗ ∈ V with v∗ ⊆ v − v′ such that δ(v′, v∗) < δ(v′, v′′). Observe that both
v∗ and v′′ consist of a single element since they belong to V . We show the
contradiction reasoning by cases.

- v′′ refers to o. In this case, since no XML element in v comes from the
same source of v′′, then v] v′′ belongs to V , thus contradicting that v ∈
ρ(./v (V)).

- v′′ does not refer to o. In this case, since δ is robust, for each vague element
v̂ ∈ v − v′ consisting of a single XML element, it holds that δ(v′, v̂) <
δ(v′, v′′). The latter is contradicted by v̂ ∈ V .

Example 4.32. The application of the pruned vague join operator to the set
of vague elements V = {〈{e1}, 0〉, 〈{e2}, 0〉, 〈{e3}, 0〉}, where e1, e2, e3 are the
XML elements of Fig. 4.10, provides ./∗ (V) = {〈{e1, e2, e3}, 0〉} indepen-
dently of the order of selection of pairs in the set.

4.5 An Application Scenario 115

In general, it holds that function δ is robust if it behaves correctly w.r.t.
the join threshold, i.e., it returns a dissimilarity value under the join threshold
if and only if the compared elements refer to the same object.

By applying ./∗ in Step 2 of Algorithm 4.25 instead of ./v, we obtain a
polynomial-time algorithm (VXQL query evaluation with boosted pruning) for
evaluating q(D).

Proposition 4.33. Let q = 〈xp, τg, τl, κg, κl〉 be a VXQL query, and D a set
of XML data sources. VXQL query evaluation with boosted pruning, invoked
on q and D, works in time O

(|D| · |xp|2 ·∆2
D + (|D| ·∆D|)3

)
, where |xp| is

the number of steps in xp.

Proof. As shown in the proof of Proposition 4.28, the first step of Algo-
rithm 4.25 can be done in time O(|D| · |xp|2 · ∆2

D). Moreover, by applying
boosted pruning, the size of V is O(D · ∆D). Therefore, Steps 3 and 4 can
be done in time O

(
(|D| ·∆D|)2

)
. Finally, ./∗ (V) can be computed in time

O
(
(|D| ·∆D|)3

)
, as the cycle in Algorithm 4.30 is executed at most |D| ·∆D|

times and every step of the cycle can be done in time O
(
(|D| ·∆D|)2

)
.

Observe that the bound stated by Proposition 4.33 is actually very con-
servative, as the answer of a query usually consists in only a fraction of the
XML elements in each source. Thus, VXQL query evaluation with boosted
pruning can be profitably exploited to evaluate a VXQL query even in the
case that the number of sources is high.

4.5 An Application Scenario

The techniques proposed in this paper have been implemented in a peer-to-
peer (P2P) application scenario [38, 39]. In particular, we considered a hybrid
P2P system [17, 85, 89], where some distinguished peers (super-peers) act
as resource information indices, that maintain meta-information about the
resources made available by the different peers, and are possibly organized in
P2P networks themselves.

The system implements the architecture shown in Fig. 4.12. In particular,
the left-hand side of the figure depicts the modules implemented by peers, and
its right-hand side depicts the modules implemented by super-peers. Each peer
is connected to a unique super-peer.

Besides the underlying database management subsystem, the architecture
of peers comprises four main modules: the P2P network sublayer, the Synop-
sis builder, the Querying API/User interface, and the Query engine. The P2P
network sublayer manages the interactions with the underlying network. The
synopsis builder computes concise representation of the stored XML data
(whose structure will be detailed in the following), and sends them to the
super-peer of reference, through the P2P network sublayer. The querying
API/user interface module manages the interactions with users. It provides an

116 4 Retrieving XML data from heterogeneous sources through vague querying

Querying API /

User interface

Local

query engine

Global

query engine

Query engine

Local

XML

repository

P2P network

sublayer

Peer

Network

Synopsis

builder

Super-peer

Data

Synopsis

repository P2P network

sublayer

Routing

module

Fig. 4.12: System architecture

API for submitting queries in their textual form and collecting results. A user
interface allows the user to (i) specify queries in both graphical and textual
form; (ii) obtain a graphical representation of the results as they are received
(as it will be clearer in the following, the systems aims at firstly contacting the
peers that are likely to provide results); (iii) decide, on the basis of his/her
degree of satisfaction, when to stop the process. The query engine implements
the query evaluation algorithm and the logic for combining partial answers
coming from different sources. These functionalities are managed separately
by two submodules:

- The Local query engine applies the vague query evaluation process over
the local XML database, producing partial answers. Such answers may
bring along the information which is subsequently used to evaluate the
degree of dissimilarity among different XML elements. The results of the
local query evaluation process are returned to the global query engine if
the query was submitted to the local peer, otherwise they are sent back
through the P2P network sublayer. The local query engine also connects to
an external ontology (not shown in the figure) that provides the semantic
distance function between two element names.

- The Global query engine is employed when a query is issued locally. It
forwards the query to the super-peer of reference and collects answers
through the P2P network sublayer, then completes the global query eval-
uation process by joining the partial results obtained and returning them
to the user through the querying API.

The architecture of super-peers comprises three main modules: the Synop-
sis repository, the P2P network sublayer, and the Routing module. The P2P
network sublayer receives data synopses from peers and stores them into the
repository. Moreover, it receives vague queries from peers and passes them
to the routing module. The routing module works in co-operation with the
other super-peers. It gathers data synopses from its local repository and from
the repositories of other super-peers, then it applies a routing strategy that,

4.5 An Application Scenario 117

by exploiting the information in the synopses, is capable of (i) reducing the
number of query issued on non-relevant peers, i.e., peers whose local schema
ensures that the local query evaluation would not provide results; (ii) giv-
ing priority to peers that will possibly provide more results. The strategy is
described in the next section.

4.5.1 Routing Strategy

Our proposed routing strategy uses the XSketch data synopses proposed
in [88]. The XSketch synopsis associated with an XML document is a graph
whose nodes represent sets of elements in the document that have the same
name. Each node in the synopsis is annotated with the cardinality and the
shared element name of the corresponding set. An edge between two nodes
n1, n2 represents a parent-child relationship between an element in n1 and an
element in n2. Moreover, the edge from n1 to n2 is labeled with F iff every
element in n1 has at least one child in n2; the edge is instead labeled with B
iff for every element in n2, its parent is in n1. For instance, in the document
represented by the synopsis in Fig. 4.13,4 (i) there are 2 book and 4 title
elements; (ii) each book and paper has a title; (iii) each book has an isbn,
and isbns are children of books only; (iv) the 4 authors elements are children
of both books and papers, but all of the 11 author elements are children of
authors elements.

book (2) conference (1)

DB (1)

isbn (2) title (4) year (1)name (1)paper (2)authors (4)

author (11)

B,F B,F

B,F

B,F

B,F
B,F

B,F
F

F

F

F

Fig. 4.13: An example XSketch synopsis

An XSketch synopsis can be exploited to estimate the selectivity of an
XPath expression, that is the number of XML elements that are selected by
the expression. In general, the selectivity estimation of an XPath expression xp
using a synopsis S is performed by first computing the whole set of embeddings
of xp in S, then summing up the selectivity associated with each embedding.
In particular, our algorithm uses the algorithm proposed in [88] to compute
the selectivity of an XPath expression xp w.r.t. a node n of the synopsis,
denoted as sel(xp, n).

Selectivity estimation is used by the query routing module to compute an
overall score given to a synopsis with respect to a VXQL query. This score
4 For the sake of readability, textual nodes are not represented in the figure.

118 4 Retrieving XML data from heterogeneous sources through vague querying

is then employed to drive routing decisions, i.e., more priority is given to the
peers whose synopses exhibit higher scores. For each node in the synopsis,
the selectivity of the transformed versions of the query w.r.t. the node is
computed. Since a transformed query may not represent all the original query
conditions, we weigh the selectivity associated with a node in the synopsis with
the “relative” cost of the transformed query which selects the node. Given a
VXQL query q = 〈xp, τg, τl, κg, κl〉 and a relaxed expression rxp obtained from
xp, the relative transformation cost of q is given by the cost for transforming
xp into rxp (cost(xp, rxp)) divided by the maximum transformation cost of
xp (ηκl

(xp)). The score given to a synopsis S w.r.t. a VXQL expression xp is
defined as follows:

score(q,S) =
∑

n∈S
maxrxp∈T S(xp,τl,κl,n)

(
sel(rxp, n) ∗

(
1− cost(xp, rxp)

ηκl
(xp)

))

Note that the formula correctly rules out non-output nodes as no trans-
formed query exists for them under the cost thresholds.

4.5.2 Experimental Evaluation

In this section we describe the experimental evaluation we performed to assess
the effectiveness of our proposed techniques in the previously-described P2P
scenario. Observe that, with respect to the preliminary experimental results
reported in [38, 39], new sources have been considered and some of them have
been used to replace data sources that in [38, 39] provided synthetical data.
The resulting set of sources is more heterogeneous as the schemas of the new
sources are different. The actual setting on which the experiments have been
carried on is described by the following parameters:

- the system was composed of a network of 104 Pentium IV machines, with
RAMs ranging from 512MB to 2GB;

- the peers provided clinical and diagnostical data;
- the peers in the system adopted 12 different schemas and differently-

structured keys comprising social security, fiscal, and personal data;
- 8 different (uniform-cost) queries, with different degrees of selectivity, were

issued against the system; the queries are reported in Table 4.1;
- 12 of the 104 peers acted as super-peers and were part of a fully-connected

network;
- the data had an overall size of 120MB;
- three different global cost thresholds were employed, corresponding to the

50% (high), 30% (medium), and 10% (low) of the maximum cost of the
transformed versions of the queries;

- the local cost threshold was set equal to the global one increased by a 25%;
- cost constants r and d (see Section 4.4.2) were set to 1.

4.5 An Application Scenario 119

Query ID Meaning

Q1 Patients who suffered from a specific disease
Q2 Patients who suffered from a specific disease in a certain year
Q3 Patients who suffered from two specific diseases
Q4 Patients with a specific treatment
Q5 Patients with a specific treatment in a certain year
Q6 Patients with two specific treatments
Q7 Patients with a specific surgery undergone
Q8 Patients with two specific surgeries undergone

Table 4.1: Queries used in the experiments

- the timeout was set to 2 minutes.

Fig. 4.14 shows the number of correct answers returned. Specifically, for
each of the 8 queries considered, the diagram reports the number of actual
objects satisfying the query, the number of correct answers retrieved through
vague evaluation when varying the cost threshold and the number of correct
answers retrieved through exact evaluation. The number of objects satisfying
the query has been computed by manually translating queries to the schemas
used by the sources. A vague element is assumed to be an incorrect answer if
either it contains an element describing an object that is not an answer to the
query, or if it contains two elements describing different objects. The figure
compares the number of correct answers with the baseline of exact evaluation.
The results show that in all cases relaxed queries allow the retrieval of more
answers than exact queries (45, 75% more on average).

0

20

40

60

80

100

120

140

160

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Objects

High threshold

Medium threshold

Low threshold

Exact

Fig. 4.14: Correct answers returned

Table 4.2 reports the average precision obtained, defined as the ratio be-
tween the number of correct answers and the total number of answers, and
recall, defined as the ratio between the number of correct answers and the

120 4 Retrieving XML data from heterogeneous sources through vague querying

number of objects satisfying the query. Note that, if more than one vague
element in query result refer to the same object, these vague elements are
not considered separately when computing the recall. The table also reports
a value that indicates the increase in the number of correct answers obtained
through vague evaluation. This value, called gain, is defined as ans/exAns−1
where ans is the number of correct answers to the query, and exAns is the
number of correct answers to the exact version of the query.

High threshold Medium threshold Low threshold Exact

Precision 95,75% 97,29% 98,95% 99,24%
Recall 82,94% 78,54% 72,90% 53,65%
Gain 55,10% 46,43% 35,71% –

Table 4.2: Average precision, recall, and gain

The experiments show that our approach is able to retrieve and properly
combine data from heterogenous sources, providing high precision (97.31% on
average) and recall (78, 13% on average).

We also evaluated our proposed scoring function by looking at how the
number of partial answers returned by peers is related to the score given to
their synopses. Fig. 4.15 reports the percentage of partial answers retrieved
as the evaluation proceeds; the X-axis reports the percentage of peers already
contacted (we recall that peers are contacted in decreasing score order). We
averaged the values over the 8 queries with medium threshold. The results
obtained show that the routing policy gives proper priority to the peers that
are more likely to contribute to the query results. Specifically, in the case
depicted in the figure, almost 80% of the total number of answers are returned
to the user after having accessed just 65% of the contributing peers.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

% of contacted peers

%
o

f
re

s
u

lt
s

re
tr

ie
v

e
d

Fig. 4.15: Effect of the routing policy

5

Conclusions

Given the increasing use of networks by people, organizations and companies
and, consequently, the substantial amount of resources available on the net-
works, the problem of sharing and retrieving data from several sources has
become an important issue.

As regards companies, they are stimulated to develop applications for re-
trieving information spread across the networks in order to extend their own
knowledge and manage data as complete as possible. In order to effectively
automate the process of retrieval of information by applications, data to be
shared have to be available in a “machine readable” format, such as XML
[105]. Therefore, first of all it is necessary to build proper mechanisms for
generating XML data, since the majority of data available in the networks
are embedded in HTML pages. Systems that extract data from Web pages
and convert them in a more structured format are called wrappers. The first
step in an architecture for sharing data among sources is the design of proper
wrappers that provide data in a unique format for all sources, such as XML.
The second step is the retrieval of the XML data spread across the sources. As
regards this aspect, it is necessary to take in account that sources store data
according to different schemas, since in the general case each source has total
autonomy in deciding the best organization for its own data. The classical
approach is based on a global view summarizing all the data stored in the
sources, allowing the user to pose queries on the global view and hiding the
differences among the schemas of the various sources. This solutions requires
to build and maintain mappings between source schemas and global view,
thus it does not face well the network dynamism and the volatility of sources
in the network.

In this thesis, we proposed proper techniques for the extraction of XML
data from Web pages and for the retrieval of XML data spread across several
sources without using a global view.

As the first issue, we posed the theoretical basis for extensively using the
schema of the information to be extracted in both the design and evaluation of
a wrapper. The main advantages of this approach range from the capability of

122 5 Conclusions

easily guiding and controlling the extraction and integration of required data
portions from HTML documents, to the specification of structured yet simple
extraction rules.

We provided a clean declarative semantics for schema-based wrappers,
and we introduced the notion of extraction model as a mapping between the
structure and the semantics of data to be extracted. We addressed the issue of
wrapper evaluation by developing an algorithm that works in polynomial time
with respect to the size of a source document. This algorithm computes the
preferred extraction model, which is further used to build the output extracted
XML document.

The schema-based wrapping approach has been implemented into SCRAP,
a visual support based wrapping system. We also presented an inductive learn-
ing method to speed up the specification of schema-based wrappers and im-
prove their robustness with respect to structural changes occurring in source
HTML documents. Empirical evidence argues that the SCRAP system is able
to make wrapper generation and maintenance rapid and simple.

An the second issue, the proposed approach enables the retrieval of mean-
ingful answers from different sources with a limited knowledge about their
local schemas, by exploiting vague querying and approximate join techniques.
It essentially consists in first applying transformations to the original query,
then using transformed queries to retrieve partial answers and finally combin-
ing them using information about retrieved objects.

We proposed a new technique to combine partial results coming from dif-
ferent XML data sources, which uses approximate queries to check whether
two XML elements coming from different sources refer to the same object.
We provided two algorithms for computing query answers on multiple het-
erogeneous XML data sources: a complete algorithm working in polynomial
time w.r.t. the size of the data provided by each source, and in exponential
time w.r.t. the number of sources; an incomplete algorithm working in poly-
nomial time w.r.t. both the size of the data and the number of sources. The
completeness of the latter algorithm has been proved in restricted cases.

Furthermore, we characterized the complexity of the problem of answering
queries on multiple heterogeneous XML data sources and we presented an
experimental validation in a medical application scenario. Specifically, the
proposed algorithms have been implemented in a P2P context, and queries
have been done against sources containing clinical and diagnostical data.

References

1. K. Aberer, P. Cudr-Mauroux, M. Hauswirth. “The Chatty web: emergent se-
mantics through gossiping”. Int. World Wide Web Conf. (WWW), 2003.

2. S. Abiteboul. “Querying Semistructured Data”. Int. Conf. on Database Theory
(ICDT), 1997.

3. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan-Kaufman, 2000.

4. B. Adelberg. “NoDoSE: A Tool for Semi-Automatically Extracting Semistruc-
tured Data from Text Documents”. ACM SIGMOD Conf. on Management of
Data (SIGMOD), 1998.

5. S. AlKhalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, and Y.
Wu. “Structural joins: Efficient matching of XML query patterns”. Int. Conf.
on Data Engineering (ICDE), 2002.

6. Amazon - Online store.
http://www.amazon.com.

7. S. Amer-Yahia, S. Cho, D. Srivastava. “Tree pattern relaxation”. Int. Conf. on
Extending Database Technology (EDBT), 2002.

8. S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava and D. Toman. “Structure
and Content Scoring for XML”. Int. Conf. on Very Large Databases (VLDB),
2005.

9. ANSA - Italian news agency.
http://www.ansa.it.

10. A. Arasu and H. Garcia-Molina. “Extracting Structured Data from Web
Pages”. ACM SIGMOD Conf. on Management of Data (SIGMOD), 2003.

11. C. K. Baru, A. Gupta, B. Ludscher, R. Marciano, Y. Papakonstantinou, P.
Velikhov and V. Chu. “XML-based information mediation with mix”. ACM
SIGMOD Conf. on Management of Data (SIGMOD), 1999.

12. R. Baumgartner, S. Flesca and G. Gottlob. “Declarative Information Extrac-
tion, Web Crawling, and Recursive Wrapping with Lixto”. Int. Conf. on Logic
Programming and Nonmonotonic Reasoning (LPNMR), 2001.

13. R. Baumgartner, S. Flesca, and G. Gottlob. “Visual Web Information Extrac-
tion with Lixto”. Int. Conf. on Very Large Databases (VLDB), 2001.

14. S. Bergamaschi, P. R. Fillottrani and G. Gelati. “The SEWASIE multi-agent
system”. Int. Work. on Agents and Peer-to-Peer Computing (AP2PC), 2004.

124 References

15. D. Beneventano, S. Bergamaschi. “The MOMIS methodology for integrating
heterogeneous data sources”. IFIP Congress Topical Sessions, 2004.

16. J. Biskup and D.W. Embley. “Extracting Information from Heterogeneous In-
formation Sources Using Ontologically Specified Target Views”. Information
Systems, 2003.

17. BitTorrent.
http://www.bittorrent.com.

18. A. Bonifati, E. Q. Chang, T. Ho, L. V. S. Lakshmanan and R. Pottinger. “HeP-
ToX: Marrying XML and heterogeneity in your P2P databases”. Int. Conf. on
Very Large Databases (VLDB), 2005.

19. A. Bonifati, U. Matrangolo, A. Cuzzocrea and M. Jain. “XPath lookup queries
in P2P networks”. ACM Int. Work. on Web Information and Data Management
(WIDM), 2004.

20. A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich and G. Summa. “Schema
Mapping Verification: The Spicy Way”. Int. Conf. on Extending Database Tech-
nology (EDBT), 2008.

21. A. Brüggemann-Klein and D. Wood. “One-Unambiguous Regular Languages”.
Information and Computation, 1998.

22. P. Buneman. “Semistructured Data”. ACM Symp. on Principles of Database
Systems (PODS), 1997.

23. M. E. Califf and R. J. Mooney. “Relational Learning of Pattern-Match Rules
for Information Extraction”. Conf. of the American Association for Artificial
Intelligence (AAAI), 1999.

24. S. D. Camillo, C. A. Heuser and R. S. Mello. “Querying heterogeneous XML
sources through a conceptual schema”. Int. Conf. on Conceptual Modeling
(ER), 2003.

25. S. Ceri, P. Fraternali, and S. Paraboschi. “XML: Current Developments and
Future Challenges for the Database Community”. Int. Conf. on Extending
Database Technology (EDBT), 2000.

26. C. X. Chen, G. A. Mihaila, S. Padmanabhan and I. Rouvellou. “Query trans-
lation scheme for heterogeneous XML data sources”. ACM Int. Work. on Web
Information and Data Management (WIDM), 2005.

27. B. Chidlovskii. “Automatic repairing of Web Wrappers”. ACM Int. Work. on
Web Information and Data Management (WIDM), 2001.

28. T. T. Chinenyanga, N. Kushmerick. “An expressive and efficient language for
XML information retrieval”. J. of the American Society for Information Science
and Technology (JASIST), 2002.

29. C. Comito, S. Patarin and D. Talia. “PARIS: A peer-to-peer architecture for
large-scale semantic data integration”. Int. Work. on Databases, Information
Systems and Peer-to-Peer Computing (DBISP2P), 2005.

30. V. Crescenzi, G. Mecca, and P. Merialdo. “RoadRunner: Towards Automatic
Data Extraction from Large Web Sites”. Int. Conf. on Very Large Databases
(VLDB), 2001.

31. E. Damiani and L. Tanca. “Blind queries to XML data”. Int. Conf. on Database
and Expert Systems Applications (DEXA), 2000.

32. A. Deutsch, M. Fernandez, D. Florescu, A. Y. Levy, D. Maier, and D. Suciu.
“Querying XML Data”. IEEE Data Engineering Bull., v. 22, n. 3, 1999.

33. H. Do and E. Rahm. “COMA - A system for flexible combination of schema
matching approaches”. Int. Conf. on Very Large Databases (VLDB), 2002.

References 125

34. A. Doan, P. Domingos, and A. Halevy. “Reconciling schemas of disparate data
sources: A machine-learning approach”. ACM SIGMOD Conf. on Management
of Data (SIGMOD), 2001.

35. R. B. Doorenbos, O. Etzioni and D. S. Weld. “A Scalable Comparison-
Shopping Agent for the World Wide Web”. Int. Conf. on Autonomous Agents
(AGENTS), 1997.

36. D. W. Embley, D. M. Campbell, Y. S. Jiang, S. W. Liddle, D. W. Lonsdale,
Y. -K. Ng, and R. D. Smith. “Conceptual-Model-Based Data Extraction from
Multiple-Record Web Pages”. Data and Knowledge Engineering, 1999.

37. D. W. Embley, C. Tao, and S. W. Liddl. “Automatically Extracting Ontologi-
cally Specified Data from HTML Tables of Unknown Structure”. Int. Conf. on
Conceptual Modeling (ER), 2002.

38. B. Fazzinga, S. Flesca and A. Pugliese. “Vague Queries on Peer-to-Peer XML
Databases”. Int. Conf. on Database and Expert Systems Applications (DEXA),
2007.

39. B. Fazzinga, S. Flesca and A. Pugliese. “Vague XML Querying in Peer-to-Peer
Networks”. Sistemi Evoluti per Basi di Dati (SEBD), 2006.

40. B. Fazzinga, S. Flesca and A. Tagarelli. “Learning Robust Web Wrappers”. Int.
Conf. on Database and Expert Systems Applications (DEXA), 2005.

41. S. Flesca and S. Greco. “Partially Ordered Regular Languages for Graph
Queries”. Int. Colloquium on Automata, Languages and Programming
(ICALP), 1999.

42. S. Flesca and A. Tagarelli. “Schema-Based Web Wrapping”. Int. Conf. on Con-
ceptual Modeling (ER), 2004.

43. E. Franconi, G. M. Kuper, A. Lopatenko, I. Zaihrayeu. “Queries and Updates in
the coDB Peer to Peer Database System”. Int. Conf. on Very Large Databases
(VLDB), 2004.

44. D. Freitag. “Information Extraction from HTML: Application of a General
Machine Learning Approach”. Conf. of the American Association for Artificial
Intelligence (AAAI), 1998.

45. D. Freitag. “Machine Learning for Information Extraction in Informal Do-
mains”. Machine Learning, 2000.

46. D. Freitag and N. Kushmerick. “Boosted Wrapper Induction”. Conf. of the
American Association for Artificial Intelligence (AAAI), 2000.

47. N. Fuhr and K. Grojohann. “XIRQL: An XML query language based on in-
formation retrieval concepts”. ACM Trans. on Information Systems (TODS),
2004.

48. A. Fuxman, P. G. Kolaitis, R. J. Miller and W. Chiew Tan. “Peer data ex-
change”. ACM Symp. on Principles of Database Systems (PODS), 2005.

49. H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J.
D. Ullman, V. Vassalos and J. Widom. “The TSIMMIS Approach to Mediation:
Data Models and Languages”. J. of Intelligent Information Systems, 1997.

50. M. R. Garey and David S. Johnson. “Computers and Intractability: A Guide
to the Theory of NP-Completeness”. W H Freeman & Co, 1979.

51. G. Gottlob and C. Koch. “Monadic Datalog and the Expressive Power of Lan-
guages for Web Information Extraction”. ACM Symp. on Principles of Database
Systems (PODS), 2002.

52. T. J. Green, G. Karvounarakis, N. E. Taylor, O. Biton, Z. G. Ives, V. Tannen.
“ORCHESTRA: facilitating collaborative data sharing”. ACM SIGMOD Conf.
on Management of Data (SIGMOD), 2007.

126 References

53. J-R. Gruser, L. Raschid, M. E. Vidal, and L. Bright. “Wrapper Generation for
Web Accessible Data Sources”. Int. Conf. on Cooperative Information Systems
(CoopIS), 1998.

54. S. Guha, H. V. Jagadish, Nick Koudas, Divesh Srivastava and Ting Yu. “Inte-
grating XML data sources using approximate joins”. ACM Trans. on Database
Systems (TODS), 2006.

55. L. M. Haas, D. Kossmann, E. L. Wimmers, J. Yang. “Optimizing Queries Across
Diverse Data Sources”. Int. Conf. on Very Large Databases (VLDB), 1997.

56. A. Y. Halevy, A. Rajaraman, J. J. Ordille. “Querying Heterogeneous Informa-
tion Sources Using Source Descriptions”. Int. Conf. on Very Large Databases
(VLDB), 1996.

57. J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo. “Extract-
ing Semistructured Information from the Web”. ACM SIGMOD Workshop on
Management of Semistructured Data, 1997.

58. W. Han, D. Buttler and C. Pu. “Wrapping Web Data into XML”. ACM SIG-
MOD Record, 2001.

59. C.-H. Hsu and M.-T. Dung. “Generating Finite-State Transducers for
Semistructured Data Extraction from the Web”. Information Systems, 1998.

60. G. Huck, P. Fankhauser, K. Aberer, and E. Neuhold. “Jedi: Extracting and
Synthesizing Information from the Web”. Int. Conf. on Cooperative Information
Systems (CoopIS), 1998.

61. IMDB - Internet Movie Database.
http://www.imdb.com.

62. Z. G. Ives, D. Florescu, M. Friedman, A. Y. Levy, D. S. Weld. “An Adap-
tive Query Execution System for Data Integration”. ACM SIGMOD Conf. on
Management of Data (SIGMOD), 1999.

63. Y. Kanza and Y. Sagiv. “Flexible Queries Over Semistructured Data”. ACM
Symp. on Principles of Database Systems (PODS), 2001.

64. Y. Kanza, W. Nutt and Y. Sagiv. “Queries with Incomplete Answers
over Semistructured Data”. ACM Symp. on Principles of Database Systems
(PODS), 1999.

65. D. Kim, H. Jung, and G. Geunbae Lee. “Unsupervised Learning of mDTD
Extraction Patterns for Web Text Mining”. Information Processing and Man-
agement, 2003.

66. G. Kokkinidis and V. Christophides. “Semantic query routing and processing in
P2P database systems: The ICS-FORTH SQPeer middleware”. EDBT Work-
shops, 2004.

67. N. Kushmerick. “Wrapper Verification”. World Wide Web Journal, 2000.
68. N. Kushmerick, D. S. Weld, and R. Doorenbos. “Wrapper Induction for Infor-

mation Extraction”. Int. Joint Conf. on Artificial Intelligence (IJCAI), 1997.
69. A. H. F. Laender, B. A. Ribeiro-Neto, and A. S. da Silva. “DEByE - Data

Extraction By Example”. Data and Knowledge Engineering, 2002.
70. A. H. F. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and J. S. Teixeira. “A

Brief Survey of Web Data Extraction Tools”. ACM SIGMOD Record, 2002.
71. K. Lerman, S. N. Minton, and C. A. Knoblock. “Wrapper Maintenance: A

Machine Learning Approach”. J. of Artificial Intelligence Research, 2003.
72. A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. “Answering queries

using views”. ACM Symp. on Principles of Database Systems (PODS), 1995.

References 127

73. L. Liu, C. Pu, and W. Han. “XWRAP: An XML-Enabled Wrapper Construc-
tion System for Web Information Sources”. Int. Conf. on Data Engineering
(ICDE), 2000.

74. J. Madhavan, P.A. Bernstein and E. Rahm. “Generic schema matching with
Cupid”. Int. Conf. on Very Large Databases (VLDB), 2001.

75. F. Mandreoli, R. Martoglia and P. Tiberio. “Approximate query answering for
a heterogeneous XML document base”. Int. Conf. on Web Information Systems
Engineering (WISE), 2004.

76. I. Manolescu, D. Florescu and D. Kossmann. “Answering XML queries on het-
erogeneous data sources”. Int. Conf. on Very Large Databases (VLDB), 2001.

77. S. Melnik, H. Garcia-Molina, E. Rahm. “Similarity Flooding: A Versatile Graph
Matching Algorithm and ist Application to Schema Matching”. Int. Conf. on
Data Engineering (ICDE), 2002.

78. X. Meng, D. Hu, and C. Li. “Schema-Guided Wrapper Maintenance for Web
Data Extraction”. ACM Int. Work. on Web Information and Data Management
(WIDM), 2003.

79. X. Meng, H. Lu, H. Wang, and M. Gu. “Data Extraction from the Web Based
on Pre-Defined Schema”. J. of Computer Science and Technology, 2002.

80. X. Meng, H. Lu, H. Wang and M. Gu. “SG-WRAP: A Schema-Guided Wrapper
Generator”. Int. Conf. on Data Engineering (ICDE), 2002.

81. G. Miklau, D. Suciu. “Containment and equivalence for a fragment of XPath”.
J. ACM, 2004.

82. S. Muggleton and C. Feng. “Efficient Induction of Logic Programs”. Int. Conf.
on Algorithmic Learning Theory (ALT), 1990.

83. S. Muggleton and L. De Raedt. “Inductive Logic Programming: Theory and
methods”. J. of Logic Programming, 1994.

84. I. Muslea, S. Minton, and C. Knoblock. “Hierarchical Wrapper Induction for
Semistructured Information Sources”. Autonomous Agents and Multi-Agent
Systems, 2001.

85. Napster.
http://www.napster.com.

86. W. S. Ng, B. C. Ooi, K. Tan, A. Zhou. “PeerDB: A P2P-based System for
Distributed Data Sharing”. Int. Conf. on Data Engineering (ICDE), 2003.

87. E. Pitoura, S. Abiteboul, D. Pfoser, G. Samaras and M. Vazirgiannis. “DB-
Globe: A service-oriented P2P system for global computing”. ACM SIGMOD
Record, 2003.

88. N. Polyzotis and M. N. Garofalakis. “Xsketch synopses for xml data graphs”.
ACM Trans. on Database Systems (TODS), 2006.

89. C. Qu, W. Nejdl. “Interacting the Edutella/JXTA Peer-to-Peer Network with
Web Services”. Symp. on Applications and the Internet (SAINT), 2004.

90. R. Quinlan. “Learning Logical Definitions from Relations”. Machine Learning,
1990.

91. J. Raposo, A. Pan, M. Alvarez, and J. Hidalgo. “Automatically Generating La-
beled Examples for Web Wrapper Maintenance”. IEEE/WIC/ACM Int. Conf.
on Web Intelligence (WI), 2005.

92. P. Rodriguez-Gianolli and J. Mylopoulos. “A semantic approach to XML-based
data integration”. Int. Conf. on Conceptual Modeling (ER), 2001.

93. The SAX Project. Simple API for XML Parsing.
http://www.saxproject.org/.

128 References

94. G. Saake, K.U. Sattler and S. Conrad. “Rule-based schema matching for
ontology-based mediators”. J. Applied Logic, 2005.

95. A. Sahuguet and F. Azavant. “Building Intelligent Web Applications Using
Lightweight Wrappers”. Data and Knowledge Engineering, 2001.

96. C. Sartiani, P. Manghi, G. Ghelli and G. Conforti. XPeer: A self-organizing
XML P2P database system. EDBT Workshops, 2004.

97. T. Schlieder. “Schema-driven evaluation of approximate tree-pattern queries”.
Int. Conf. on Extending Database Technology (EDBT), 2002.

98. S. Soderland. “Learning Information Extraction Rules for Semistructured and
Free Text”. Machine Learning, 1999.

99. D. Suciu. “Semistructured Data and XML”. Int. Conf. on Foundations of Data
Organization (FODO), 1998.

100. I. Tatarinov and A. Y. Halevy. “Efficient query reformulation in peer-data man-
agement systems”. ACM SIGMOD Conf. on Management of Data (SIGMOD),
2004.

101. A. Theobald, G. Weikum. “Adding Relevance to XML”. Int. Work. on the
Web and Databases (WebDB), 2000.

102. R. Vdovjak and G. Houben. “RDF-based architecture for semantic integration
of heterogeneous information sources”. Work. on Information Integration on
the Web (WIIW), 2001.

103. V. Vianu. “A Web Odissey: from Codd to XML”. ACM Symp. on Principles
of Database Systems (PODS), 2001.

104. WordNet.
http://wordnet.princeton.edu/.

105. The World Wide Web Consortium. Extensible Markup Language (XML).
http://www.w3.org/XML.

106. The World Wide Web Consortium. Document Object Model.
http://www.w3.org/DOM/.

107. The World Wide Web Consortium. Hyper Text Markup Language (HTML.
http://www.w3.org/html.

108. The World Wide Web.
http://www.w3.org/

109. The World Wide Web Consortium. XML Schema.
http://www.w3.org/XML/Schema.

110. The World Wide Web Consortium. XML Path Language.
http://www.w3.org/TR/xpath.

111. The World Wide Web Consortium. XML Query.
http://www.w3.org/XML/Query.

112. The World Wide Web Consortium. XML Query Use Cases.
http://www.w3.org/TR/xquery-use-cases/.

113. C. Yu and L. Popa. “Constraint-based XML query rewriting for data integra-
tion”. ACM SIGMOD Conf. on Management of Data (SIGMOD), 2004.

114. K. Zhang, R. Stgatman, and D. Shasha. Simple fast algorithm for the editing
distance between trees and related problems. SIAM J. on Computing, 1989.

