


 
 
 
 
 
 
 
 
 

to my family 

and 

the people I love 



Advanced Techniques and Systems for Data and
Process Management.

Luigi Granata

Dipartimento di Matematica,
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Sommario

Il lavoro di tesi viene suddiviso in due parti che trattano rispettivamente di tecniche
avanzate e sistemi per la gestione dei dati e per il mining deiprocessi. Sono state
affrontate problematiche relative all’efficienza della risposta alle interrogazioni su
una base di dati, l’integrazioni di più sorgenti di dati, e la progettazione di un
sistema per il mining di processi. In particolare, i principali contributi della tesi
sono:

(1) Un nuovo modo di calcolare alberi di decomposizione di una interrogazione
i cui query plangarantiscano un tempo di esecuzione al più di complessità
polinomiale.

(2) Lo studio di tecniche e metodologie innovative, basate su logica computazio-
nale, per i sistemi per l’integrazione di sorgenti informative e lo sviluppo di
un prototipo che le implementi.

(3) Lo studio di tecniche ed algoritmi per il mining di processi e lo sviluppo di
una suite che le implementi.

(1) Tecniche di risposta alle interrogazioni su basi di dati

Rispondere ad interrogazioni su una basa di dati può essereun processo molto cos-
toso da un punto di vista computazionale. Per far fronte a questa problematica, in
letteratura sono stati proposti vari approcci. Alcuni di essi sono basati su moduli
per l’ottimizzazione delle interrogazioni che sfruttino le informazioni quantita-
tive e statistiche sull’istanza della base di dati, mentre altre tecniche sfruttano le
proprietà strutturali degli ipergrafi delle interrogazioni.

I nostri sforzi si sono rivolti in quest’ultima direzione estendendo il metodo di
hypertree decomposition, considerato al momento il più potente tra quelli strut-
turali. Questa nuova versione, chiamataquery-oriented hypertree decomposition,
mira a gestire esplicitamente le variabili di output e gli operatori aggregati. Basan-
doci su queste nozioni, è stato implementato un ottimizzatore ibrido. Esso può es-
sere utilizzato dai DBMS correntemente disponibili per poter calcolare i piani di
esecuzione per le interrogazioni. Tale prototipo è stato integrato nel noto DBMS
open source PostgreSQL. In fine questa estensione è stata validata attraverso una
intensa fase sperimentale, portata avanti con PostgreSQL ed un noto DBMS com-
merciale, che mostra come entrambi i sistemi migliorino significativamente le loro
prestazioni utilizzando le hypertree decomposition per l’ottimizzazione delle in-
terrogazioni.
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(2) Tecniche per l’integrazione di sorgenti informative

Per integrazione di informazioni si intende il problema di combinare i dati resi-
denti in varie sorgenti informative, fornendo agli utenti una vista unificata di questi
dati, chiamataglobal schema.

Il nostro lavoro è stato svolto all’interno del progetto INFOMIX. Il suo scopo
principale è stato quello di fornire tecniche avanzate e metodologie innovative
per per gli information integration systems. In breve, il progetto ha sviluppato
una teoria, comprendente un modello esauriente ed algoritmi per l’integrazione
delle informazioni ed l’implementazione di un prototipo diun sistema knowledge
based traminte l’utilizzo della logica computazionale cheintegri i risultati della
ricerca sull’acquisizione e la trasformazione dei dati. Un’attenzione speciale è
stata dedicata alla definizione di un meccanismo per l’interazione dichiarativa da
parte dell’utente e alle tecniche per la gestione di dati semistrutturati e sorgenti di
dati incomplete o inconsistenti.

(3) Tecniche per il mining di processi

Nel contesto della enterprise automation, ilprocess mining̀e recentemente emerso
come uno strumento utilissimo per l’analisi e la progettazione di processi di busi-
ness complessi. Lo scenario tipico per il process mining è dato da un insieme di
tracce che registrano, tramite un sistema transazionale, le attività svolte durante
più esecuzioni di un processo e dall’obiettivo ricavare inmaniera (semi)automatica
un modello che possa spiegare tutti gli episodi registrati nelle tracce.

Noi abbiamo sviluppato una Suite per le applicazioni del process mining con
un’architettura aperta ed estendibile che introduce tre elementi innovativi per sod-
disfare i desiderata di flessibilità e scalabilità che sorgono negli scenari industriali
attuali.

• Il concetto di “flusso di mining”, i.e., essa permette di specificare delle
catene di mininig complesse basate sulla connessione di task elementari.

• La costruzione di applicazioni interattive basate sulla possibilità di person-
alizzare tipi di dati, algoritmi e l’interfaccia grafica utilizzata per l’analisi.

• Scalabilità su grandi moli di dati.
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Abstract

In this thesis, we deal with techniques for query answering exploiting structural
properties, with the integration of multiple data sources,and with the design and
the implementation of a suite for process mining. The main contributions of this
thesis are the following:

(1) A new algorithm that computes a hypertree decompositionof a query, by
accounting for grouping operators and statistics on the data. .

(2) The study of advanced techniques and innovative methodologies for infor-
mation integration systems and a prototype implementationof a knowledge
based system for advanced information integration, by using computational
logic and integrating research results on data acquisitionand transforma-
tion.

(3) The study of techniques and algorithms for process mining and a suite im-
plementing them.

(1) Techniques for query evaluation

Answering queries is computationally very expensive, and many approaches have
been proposed in the literature to face this fundamental problem. Some of them
are based on optimization modules that exploit quantitative information on the
database instance, while other approaches exploit structural properties of the query
hypergraph.

Our efforts were carried on this last direction extending the notion of hyper-
tree decomposition, which is currently the most powerful structural method. This
new version, called query-oriented hypertree decomposition, is a suitable relax-
ation of hypertree decomposition designed for query optimization, and such that
output variables and aggregate operators can be dealt with.Based on this no-
tion, a hybrid optimizer is implemented, which can be used ontop of available
DBMSs to compute query plans. The prototype is also integrated into the well-
known open-source DBMS PostgreSQL. Finally, we validate our proposal with
a thorough experimental activity, conducted on PostgreSQLand on a commer-
cial DBMS, which shows that both systems may significantly benefit from using
hypertree decompositions for query optimization.
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(2) Techniques for data integration systems

Information integration is the problem of combining the data residing at different
sources, and providing the user with a unified view of these data, calledglobal
schema. Our work was performed within of the INFOMIX project. Its principal
goal was to provide advanced techniques and innovative methodologies for infor-
mation integration systems. In a nutshell, the project developed a theory, compris-
ing a comprehensive information model and information integration algorithms,
and a prototype implementation of a knowledge based system for advanced infor-
mation integration, by using computational logic and integrating research results
on data acquisition and transformation. Special attentionwas devoted to the def-
inition of declarative user-interaction mechanisms, and techniques for handling
semi-structured data, and incomplete and inconsistent data sources.

(3) Techniques for process mining

In the context of enterprise automation,process mininghas recently emerged as
a powerful approach to support the analysis and the design ofcomplex business
processes. In a typical process mining scenario, a set of traces registering the
activities performed along several enactments of a transactional system is given
to hand, and the goal is to (semi)automatically derive a model explaining all the
episodes recorded in them.

We developed a novel Suite for Process Mining applications having an open
and extendable architecture and introducing three innovative designing elements
to meet the desiderata of flexibility and scalability arising in actual industrial sce-
narios.

• The concept of “flow of mining”, i.e., it allows to specify complex mining
chains based on interconnecting elementary tasks

• Building interactive applications based on the possibility of customizing
data types, algorithms, and graphical user interfaces usedin the analysis.

• Ensuring scalability over large volumes of data.
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Introduction

Advanced Techniques and Systems for Data Manage-
ment

Database Management Systems

The Data Base Management System (DBMS) is the foundation of almost every
modern business information system. Virtually every administrative process in
business, science or government relies on a data base. The rise of the Internet has
only accelerated this trend; today a flurry of database transactions powers each
content update of a major website, literature search, or internet shopping trip.

A data base management system is a very complex piece of system software.
A single DBMS can manage multiple data bases, each one usually consisting of
many different tables full of data. The DBMS includes mechanisms for applica-
tion programs to store, retrieve and modify this data and also allows people to
query it interactively to answer specific questions.

One of the most important features of the DBMS is its ability to shield the
people and programs using the data from the details of its physical storage. Be-
cause all access to stored data is mediated through the DBMS,a data base can
be restructured or moved to a different computer without disrupting the programs
written to use it. The DBMS polices access to the stored data,giving access only
to tables and records for which a given user has been authorized.

The data base concept originated around 1960, approximately ten years before
the idea of a DBMS gained general currency. It originated among the well-funded
cold war technologists of the military command and control,and so was associated
with the enormously complex and expensive technologies of on-line, real-time,
interactive computer applications.

9



Introduction 10

Querying: optimization and data integration

Query optimization is a function of many relational database management systems
in which multiple query plans for satisfying a query are examined and a good
query plan is identified. This may or not be the absolute best strategy because
there are many ways of doing plans. There is a trade-off between the amount of
time spent figuring out the best plan and the amount running the plan. Different
qualities of database management systems have different ways of balancing these
two. Cost based query optimizers evaluate the resource footprint of various query
plans and use this as the basis for plan selection.

The performance of a query plan is determined largely by the order in which
the tables are joined. For example, when joining 3 tables A, B, C of size 10 rows,
10,000 rows, and 1,000,000 rows, respectively, a query planthat joins B and C
first can take several orders-of-magnitude more time to execute than one that joins
A and C first.

A SQL query to a modern relational DBMS does more than just selections and
joins. In particular, SQL queries often nest several layersof SPJ blocks (Select-
Project-Join) , by means of group by, exists, and not exists operators. In some
cases such nested SQL queries can be flattened into a select-project-join query, but
not always. Query plans for nested SQL queries can also be chosen using the same
dynamic programming algorithm as used for join ordering, but this can lead to an
enormous escalation in query optimization time. So some database management
systems use an alternative rule-based approach that uses a query graph model.

Many approaches have been proposed in the literature to facethe problem
of choosing the optimal query plan. Some of them are based on optimization
modules that exploit quantitative information on the database instance, while other
approaches exploit structural properties of the query hypergraph.

On the other hand,the problem of combining the data residingat different
sources, and providing the user with a unified view of these data, calledglobal
schema, arise and is faced by Data integration techniques. The interest in data
integration systems has been continuously growing in the last years. Many orga-
nizations face the problem of integrating data residing at several sources. Com-
panies that build a Data Warehouse, a Data Mining, or an Enterprise Resource
Planning system must address this problem. Also, integrating data in the World
Wide Web is the subject of several investigations and projects nowadays. Finally,
applications requiring accessing or re-engineering legacy systems must deal with
the problem of integrating data stored in different sources.
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The design of a data integration system is a very complex task, which com-
prises several different issues such as dealing with heterogeneity of the sources,
the mapping between the global schema and the sources, data cleaning and recon-
ciliation, how to process queries expressed on the global schema and many other.

Advanced Techniques and Systems for Process Man-
agement

Process mining is a process management technique, that allow for the analysis of
business processes based on event logs. The basic idea is to extract knowledge
from event logs recorded by an information system. Process mining aims at im-
proving this by providing techniques and tools for discovering process, control,
data, organizational, and social structures from event logs. Moreover, it is pos-
sible to use process mining to monitor deviations (e.g., comparing the observed
events with predefined models or business rules in the context of SOX).

Process mining techniques are often used when no formal description of the
process can be obtained by other means, or when the quality ofan existing doc-
umentation is questionable. For example, the audit trails of a workflow manage-
ment system, the transaction logs of an enterprise resourceplanning system, and
the electronic patient records in a hospital can be used to discover models describ-
ing processes, organizations, and products.

Process mining is closely related to BAM (Business ActivityMonitoring),
BOM (Business Operations Management), BPI (Business Process Intelligence),
and data/workflow mining. Unlike classical data mining techniques the focus is
on processes and questions that transcend the simple performance-related queries
supported by tools such as Business Objects, Cognos BI, and Hyperion.

Main Contribution

In this thesis we address the following relevant issues in data and process man-
agement:

• Exploit structural query properties in order to build optimized query plan.

• Provide a formal framework for Data Integration and a prototype imple-
menting them.
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• Design process mining algorithms using a streaming approach and a suite
providing an extensible and interactive framework for them.

Query plan optimization

The database community has investigated many structure-driven methods, which
guarantee that large classes of queries may be answered in (input-output) polynomial-
time. However, despite their very nice computational properties, these methods
are not currently used for practical applications, since they do not care about out-
put variables and aggregate operators, and do not exploit quantitative information
on the data. In fact, none of these methods has been implemented inside any
available DBMS. This thesis aims at filling this gap between theory and practice.
First, we define an extension of the notion of hypertree decomposition, which is
currently the most powerful structural method. This new version, called query-
oriented hypertree decomposition, is a suitable relaxation of hypertree decom-
position designed for query optimization, and such that output variables and ag-
gregate operators can be dealt with. Based on this notion, a hybrid optimizer is
implemented, which can be used on top of available DBMSs to compute query
plans. The prototype is also integrated into the well-knownopen-source DBMS
PostgreSQL. Finally, we validate our proposal with a thorough experimental ac-
tivity, conducted on PostgreSQL and on a commercial DBMS, which shows that
both systems may significantly benefit from using hypertree decompositions for
query optimization.

Data Intgration

The work described in this thesis was carried on within the European Commu-
nity funded INFOMIX project. The main goal of the INFOMIX project was to
provide advanced techniques and innovative methodologiesfor information in-
tegration systems. In a nutshell, the project developed a theory, comprising a
comprehensive information model and information integration algorithms, and a
prototype implementation of a knowledge based system for advanced informa-
tion integration, by using computational logic and integrating research results on
data acquisition and transformation. Special attention was devoted to the def-
inition of declarative user-interaction mechanisms, and techniques for handling
semi-structured data, and incomplete and inconsistent data sources.

These objectives, which advanced the state of the art in several respects, are
detailed as follows.
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• Comprehensive Information Model. A comprehensive information model
has to be provided, which incorporates static and dynamic aspects of infor-
mation integration, and supports advancedhuman likereasoning, based on
a rich semantics. Current information integration systemsare rather poor in
this respect, and provide only limited support (if any) for expressing con-
straint relationships between the local sources and a global view of the data.

• Information Integration Algorithms. A host of efficient algorithms for
information integration must be provided, which can be applied to homog-
enized data from heterogeneous data sources.

• Usage of Computational Logic.Exploit advanced methodologies and tech-
niques from computational logic as a toolbox for information integration.

• Prototype System. Definition and implementation of a component-based
integration system prototype, and providing an infrastructure by using soft-
ware agent technology.

Process Mining

We aimed to develop a novel Suite for Process Mining applications having an open
and extensible architecture and introducing three innovative designing elements to
meet the desiderata of flexibility and scalability arising in actual industrial scenar-
ios. Indeed, the suite has been specifically conceived to support:

• the definition of complex mining applications, where various mining tasks
can be combined and automatically orchestrated at run-time.

• building interactive applications based on the possibility of customizing
data types, algorithms, and graphical user interfaces usedin the analysis.

• ensuring scalability over large volumes of data.
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Organization of the Thesis

This thesis consists in two parts. The first part deals with techniques and systems
for data management, while in the second part techniques andsystems for process
management are described. More in detail, the thesis is organized as follows:

• In the first chapter will introduce DBMS and the query evaluation problem.
After that, original results about Hypertree Decomposition are shown.

• The second chapter will show, after an introduction on Data integration, the
INFOMIX project and its original contribution.

• The third chapter will introduce Process Mining and show results obtained
with the implemented suite.



Part I

Advanced Techniques and Systems
for Data Management
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Chapter 1

Query Evaluation

Answering queries is computationally very expensive, and many approaches have
been proposed in the literature to face this fundamental problem. Some of them
are based on optimization modules that exploit quantitative information on the
database instance, while other approaches exploit structural properties of the query
hypergraph. For instance, acyclic queries can be answered in polynomial time,
and also query containment is efficiently decid able for acyclic queries.

In this chapter we will first describe the overall architecture of a data base
management system (DBMS), then we will surveyquantitative methodsfor query
plan optimization and finally we will show our studies on the way to exploit struc-
tural property for query answering.

1.1 DBMS Architecture

Database Management Systems are very complex, sophisticated software appli-
cations that provide reliable management of large amounts of data. To better un-
derstand general database concepts and the structure and capabilities of a DBMS,
it is useful to examine the architecture of a typical database management system.

There are two different ways to look at the architecture of a DBMS: the logical
DBMS architecture and the physical DBMS architecture. The logical architecture
deals with the way data is stored and presented to users, while the physical archi-
tecture is concerned with the software components that makeup a DBMS.

16
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1.1.1 Logical Architecture

The logical architecture describes how data in the databaseis perceived by users.
It is not concerned with how the data is handled and processedby the DBMS,
but only with how it looks. Users are shielded from the way data is stored on
the underlying file system, and can manipulate the data without worrying about
where it is located or how it is actually stored. This resultsin the database having
different levels of abstraction.

The majority of commercial Database Management Systems available today
are based on the ANSI/SPARC generalized DBMS architecture,as proposed by
the ANSI/SPARC Study Group on Data Base Management Systems.

The ANSI/SPARC architecture divides the system into three levels of abstrac-
tion: the internal or physical level, the conceptual level,and the external or view
level.

• The Internal or Physical Level. The collection of files permanently stored
on secondary storage devices is known as the physical database. The phys-
ical or internal level is the one closest to physical storage, and it provides
a low-level description of the physical database, and an interface between
the operating system’s file system and the record structuresused in higher
levels of abstraction. It is at this level that record types and methods of stor-
age are defined, as well as how stored fields are represented, what physical
sequence the stored records are in, and what other physical structures exist.

• The Conceptual Level.The conceptual level presents a logical view of the
entire database as a unified whole, which allows you to bring all the data in
the database together and see it in a consistent manner. The first stage in the
design of a database is to define the conceptual view, and a DBMS provides
a data definition language for this purpose.

It is the conceptual level that allows a DBMS to provide data independence.
The data definition language used to create the conceptual level must not
specify any physical storage considerations that should behandled by the
physical level. It should not provide any storage or access details, but should
define the information content only.

• The External or View Level. The external or view level provides a window
on the conceptual view which allows the user to see only the data of interest
to them. The user can be either an application program or an end user. Any
number of external schema can be defined and they can overlap each other.
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The System Administrator and the Database Administrator are special cases.
Because they have responsibilities for the design and maintenance for the
design and maintenance of the database, they, some times, need to be able
to see the entire database. The external and the conceptual view are func-
tionally equivalent for these two users.

• Mappings Between Levels.Obviously, the three levels of abstraction in the
database do not exist independently of each other. There must be some cor-
respondence, or mapping, between the levels. There are actually two map-
pings: the conceptual/internal mapping and the external/conceptual map-
ping.

The conceptual/internal mapping lies between the conceptual and internal
levels, and defines the correspondence between the records and the fields of
the conceptual view and the files and data structures of the internal view.
If the structure of the stored database is changed, then the conceptual/ in-
ternal mapping must also be changed accordingly so that the view from the
conceptual level remains constant. It is this mapping that provides physical
data independence for the database.

The external/conceptual view lies between the external andconceptual lev-
els, and defines the correspondence between a particular external view and
the conceptual view. Although these two levels are similar,some elements
found in a particular external view may be different from theconceptual
view. For example, several fields can be combined into a single (virtual)
field, which can also have different names from the original fields. If the
structure of the database at the conceptual level is changed, then the ex-
ternal/conceptual mapping must change accordingly so the view from the
external level remains constant. It is this mapping that provides logical data
independence for the database.

It is also possible to have another mapping, where one external view is
expressed in terms of other external views (this could be called an exter-
nal/external mapping). This is useful if several external views are closely
related to one another, as it allows you to avoid mapping eachof the similar
external views directly to the conceptual level.
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1.1.2 Physical Architecture

The physical architecture describes the software components used to enter and
process data, and how these software components are relatedand interconnected.
Although it is not possible to generalize the component structure of a DBMS,
it is possible to identify a number of key functions which arecommon to most
database management systems. The components that normallyimplement these
functions are shown in the diagram on the following page, which depicts the phys-
ical architecture for a typical DBMS. At its most basic levelthe physical DBMS
architecture can be broken down into two parts: the back end and the front end.

The back end is responsible for managing the physical database and provid-
ing the necessary support and mappings for the internal, conceptual, and external
levels described earlier. Other benefits of a DBMS, such as security, integrity, and
access control, are also the responsibility of the back end.

The front end is really just any application that runs on top of the DBMS.
These may be applications provided by the DBMS vendor, the user, or a third
party. The user interacts with the front end, and may not evenbe aware that the
back end exists.

Application and Utilities

Applications and utilities are the main interface to the DBMS for most users.
There are three main sources of applications and utilities for a DBMS: the vendor,
the user, and third parties.

Vendor applications and utilities are provided for workingwith or maintaining
the database, and usually allow users to create and manipulate a database without
the need to write custom applications. However, these are usually general-purpose
applications and are not the best tools to use for doing specific, repetitive tasks.

User applications are generally custom-made application programs written for
a specific purpose using a conventional programming language. This program-
ming language is coupled to the DBMS query language through the application
program interface (API). This allows the user to utilize thepower of the DBMS
query language with the flexibility of a custom application.

Third party applications may be similar to those provided bythe vendor, but
with enhancements, or they may fill a perceived need that the vendor hasn’t cre-
ated an application for. They can also be similar to user applications, being written
for a specific purpose they think a large majority of users will need.
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Figure 1.1: Physical Architecture of a DBMS

The most common applications and utilities used with a database can be di-
vided into several well-defined categories. These are:

• Command Line Interfaces: these are character-based, interactive inter-
faces that let you use the full power and functionality of theDBMS query
language directly. They allow you to manipulate the database and perform
ad-hoc queries and see the results immediately. They are often the only
method of exploiting the full power of the database without creating pro-
grams using a conventional programming language.

• Graphical User Interface (GUI) tools: these are graphical, interactive in-
terfaces that hide the complexity of the DBMS and query language behind
an intuitive, easy to understand, and convenient interface. This allows ca-
sual users the ability to access the database without havingto learn the query
language, and it allows advanced users to quickly manage andmanipulate
the database without the trouble of entering formal commands using the
query language. However, graphical interfaces usually do not provide the
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same level of functionality as a command line interface because it is not
always possible to implement all commands or options using agraphical
interface.

• Backup/Restore Utilities: these are designed to minimize the effects of
a database failure and ensure a database is restored to a consistent state
if a failure does occur. Manual backup/restore utilities require the user to
initiate the backup, while automatic utilities will back upthe database at
regular intervals without any intervention from the user. Proper use of a
backup/restore utility allows a DBMS to recover from a system failure cor-
rectly and reliably.

• Reporting/Analysis Utilities: these are used to analyze and report on the
data contained in the database. This may include analyzing trends in data,
computing values from data, or displaying data that meets some specified
criteria, and then displaying or printing a report containing this information.

The Application Program Interface

The application program interface (API) is a library of low-level routines which
operate directly on the database engine. The API is usually used when creating
software applications with a general-purpose programminglanguage such as Java
or C++. This allows you to write custom software applications to suit the needs
of your business, without having to develop the storage architecture as well. The
storage of the data is handled by the database engine, while the input and any
special analysis or reporting functions are handled by the custom application.

An API is specific to each DBMS, and a program written using theAPI of
one DBMS cannot be used with another DBMS. This is because each API usu-
ally has its own unique functions calls that are tied very tightly to the operation
of the database. Even if two databases have the same function, they may use dif-
ferent parameters and function in different ways, depending on how the database
designer decided to implement the function in each database. One exception to
this is the Microsoft Open Database Connectivity API, whichis designed to work
with any DBMS that supports it.

The Query Language Processor

The query language processor is responsible for receiving query language state-
ments and changing them from the English-like syntax of the query language to a
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form the DBMS can understand. The query language processor usually consists
of two separate parts: the parser and the query optimizer.

The parser receives query language statements from application programs or
command-line utilities and examines the syntax of the statements to ensure they
are correct. To do this, the parser breaks a statement down into basic units of
syntax and examines them to make sure each statement consists of the proper
component parts. If the statements follow the syntax rules,the tokens are passed
to the query optimizer.

The query optimizer examines the query language statement,and tries to choose
the best and most efficient way of executing the query. To do this, the query op-
timizer will generate several query plans in which operations are performed in
different orders, and then try estimate which plan will execute most efficiently.
When making this estimate, the query optimizer may examine factors such as:
CPU time, disk time, network time, sorting methods, and scanning methods.

The DBMS Engine

The DBMS engine is the heart of the DBMS, and it is responsiblefor all of the data
management in the DBMS. The DBMS engine usually consists of two separate
parts: the transaction manager and the file manager.

The transaction manager maintains tables of authorizationand currency con-
trol information. The DBMS may use authorization tables to allow the transaction
manager to ensure the user has permission to execute the query language state-
ment on the database. The authorization tables can only be modified by properly
authorized user commands, which are themselves checked against the authoriza-
tion tables. In addition, a database may also support concurrency control tables
to prevent conflicts when simultaneous, conflicting commands are executed. The
DBMS checks the concurrency control tables before executing a query language
statement to ensure that it is not locked by another statement.

The file manager is the component responsible for all physical input/output
operations on the database. It is concerned with the physical address of the data
on the disk, and is responsible for any interaction (reads orwrites) with the host
operating system.
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1.2 Query Answering

As we have seen, DBMSs have specialized modules, called query optimizers,
looking for good ways to deal with any given query. For the same query, there
are many execution plans that a DBMS can choose to compute itsanswer. All
these plans are equivalent in terms of output relation, however, the differences
among their execution times can be several orders of magnitude large. The query
optimizer examines the alternative plans and then choose the best one, according
to some cost model. Actually, the optimizer performs two main tasks. First, it
rewrites the query into an equivalent one that can be easily answered, by push-
ing selections and projections, replacing views by their definitions, flattening out
nested queries and so on. Then, it starts the planning phase,where it selects a
query execution plan, taking into account the actual query costs for the specific
database and DBMS. We call quantitative methods all these query planners based
on quantitative information about sizes of relations, indices, and so on. Note that
computing an optimal plan is an NPhard problem and hence it isunlikely to find an
efficient algorithm for selecting the best plans. Indeed, all the commercial DBMS
just compute approximations optimal query plans.

1.2.1 Quatitative Methods

One central component of a query optimizer is its search strategy or enumeration
algorithm. The enumeration algorithm of the optimizer determines which plans
to enumerate, and the clas sic enumeration algorithm is based on dynamic pro-
gramming. This algorithm was pioneered in IBM’s System R project, and it is
used in most query optimizers today. Dynamic pro gramming works very well
if all queries are standardSQL92queries, the queries are moderately complex,
and only simple textbook query execution techniques are used by the database
system. Dynamic programming, however, does not work well ifthese conditions
do not hold; e.g., if the database system must support very complex applications
whose queries often involve many tables or new query optimization and execution
techniques need to be integrated into the system in order to optimize queries in a
distributed and/or heterogeneous programming environment. In these situations,
the search space of query optimization can become very largeand dynamic pro-
gramming is not always viable because of its very high complexity. In general,
there is a tradeoff between the complexity of an enumerationalgorithm and the
quality of the plans generated by the algorithm. Dynamic programming repre-
sents one extreme point: dynamic programming has exponential time and space



Chapter 1. Query Evaluation 24

complexity and generates optimal plans. Other algorithms have lower complexity
than dynamic programming, but these algorithms are not ableto find as lowcost
plans as dynamic programming. Since the problem of finding anoptimal plan
is NPhard, implementors of query optimizers will probably always have to take
this fundamental tradeoff between algorithm complexity and quality of plans into
account when they decide which enumeration algorithm to use. Due to its im-
portance, a large number of different algorithms have already been developed for
query optimization in database systems. All algorithms proposed so far fall into
one of three different classes or are combinations of such basic algorithms. In
the following, we will briefly discuss each class of algorithms; a more complete
overview and comparison of many of the existing algorithms can be found in [67].

Exhaustive search

All published algorithms of this class have exponential time and space complexity
and are guaranteed to find the best plan according to the optimizer’s cost model.
The most prominent representative of this class of algorithms is (bottom-up) dy-
namic programming [65], which is currently used in most database systems. This
algorithm works in a bottom-up way as follows. First, dynamic programming
generates so-called access plans for every table involved in the query. Typically,
such an access plan consists of one or two operators, and there are several differ-
ent access plans for a table. In the second phase, dynamic programming considers
all possible ways to join the tables. First, it considers alltwo-way join plans by
using the access plans of the tables as building blocks and calling the joinPlans
function to build a join plan from these building blocks. From the two-way join
plans and the access plans, dynamic programming then produces three-way join
plans. After that, it generates four-way join plans by considering all combinations
of two two way join plans and all combinations of a three-way join plan with an
access plan. In the same way, dynamic programming continuesto produce five-
way, six-way join plans and so on up to n-way join plans. In thethird phase, the
n-way join plans are massaged so that they become complete plans for the query;
e.g., project, sort,or groupby operators are attached, if necessary. Note that in
every step of the second phase, dynamic programming uses thesame function to
produce more and more complex plans using simpler plans as building blocks.
Just as there are usually several alternative access plans,there are usually several
different ways to join two tables (e.g., nested loop joins, hash joins, etc.) and
the joinPlans function will return a plan for every alternative join method. The
beauty of dynamic programming is that it discards inferior building blocks after
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every step (pruning). While enumerating two-way join plans, for example dy-
namic programming would consider anA ./ B plan and aB ./ A plan, but only
the cheaper of the two plans would be retained, so that only the cheaper of the two
plans would be considered as a building block for three-way,four-way, ... join
plans involvingA andB. Pruning is possible because theA ./ B plan and the
B ./ A plan do the same work; if theA ./ B plan is cheaper than theB ./ A plan,
then any complete plan for the whole query that hasA ./ B as a building block
(e.g.,C ./ (A ./ B)) will be cheaper than the same plan withB ./ A as a building
block (e.g.,C ./ (B ./ A)). As a result of pruning, dynamic programming does
not enumerate inferior plans such asC ./ (B ./ A) and runs significantly faster
than a naive exhaustive search. Note tht such an algorithm enumerates all bushy
plans.

Heuristics

Typically, the algorithms of this class have polynomial time and space complexity,
but they they typically produce worse plans [67]. Representatives of this class of
algorithms are mini mum selectivity and other greedy algorithms , the KBZ algo-
rithm ; and the AB algorithm. Basically, at each step, a partially determined order
is extended by choosing the most promis ing relational operation to be executed,
according to some preference criterion. Obviously, the quality of plans produced
by the greedy algorithm strongly depends on the plan evaluation function that
guides the preference criterion.

Randomized algorithms

The big advantage of randomized algorithms is that they haveconstant space over-
head. The running time of most randomized algorithms cannotbe predicted be-
cause these algorithms are indeterministic; typically, randomized algorithms are
slower than heuristics and dynamic programming for simple queries and faster
than both for very large queries. The best known randomized algorithm is called
2PO and is a combination of applying iterative improvement and simulated an-
nealing. In many situations, 2PO produces good plans. However, there are situa-
tions in which 2PO produces plans that are orders of magnitude more expensive
than an optimal plan.



Chapter 1. Query Evaluation 26

Iterative Dynamic Programming

This technique is based on iteratively applying dynamic programming and can
be seen as a combination of dynamic and greedy programming. The essence of
this heuristic is that instead of fully enumerating all query processing plans, a
resource limit is established (defined by a parameterk). During each dynamic
programming stage, all query processing plans are enumerated up to k-way joins.
At that point, one or more of the best plans are chosen. These partial plans will
be used as building blocks to initiate the next stage of dynamic programming,
which also produces query-processing plans until the resource limit is reached.
The sequence of dynamic programming stages continues untila complete plan is
generated.

1.3 Query Answering Exploiting Structural Proper-
ties

A completely different approach to query answering is basedon structural proper-
ties of queries, rather than on quantitative information about data values. Exploit-
ing such properties is possible to answer large classes of queries efficiently, that
is, with a polynomial-time upper bound. The structure of a queryQ is best repre-
sented by itsquery hypergraphH(Q) = (V, H), whose setV of vertices consists
of all variables occurring inQ, and where the setH of hyperedges contains, for
each query atomA, the setvar(A) of all variables occurring inA. As an example,
consider the following query
Q0: ans← s1(A, B, D) ∧ s2(B, C, D) ∧ s3(B, E) ∧ s4(D, G) ∧s5(E, F, G) ∧

s6(E, H) ∧ s7(F, I) ∧ s8(G, J). Figure 1.2 shows its associated hypergraph
H(Q0).

1.3.1 Queries and Acyclic Hypergraphs

We will adopt the standard convention of identifying a relational database instance
with a logical theory consisting of ground facts. Thus, a tuple 〈a1, . . . ak〉, belong-
ing to relationr, will be identified with the ground atomr(a1, . . . , ak). The fact
that a tuple〈a1, . . . , ak〉 belongs to relationr of a database instanceDB is thus
simply denoted byr(a1, . . . , ak) ∈ DB.

A (rule-based)conjunctive queryQ on a database schemaDS = {R1, . . . , Rm}
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Figure 1.2: HypergraphH(Q0) (left), two hypertree decompositions of width 2 of
H(Q0) (right and bottom).

consists of a rule of the form

Q : ans(u)← r1(u1) ∧ · · · ∧ rn(un),

wheren ≥ 0; r1, . . . rn are relation names (not necessarily distinct) ofDS; ans is
a relation name not inDS; andu,u1, . . . ,un are lists of terms (i.e., variables or
constants) of appropriate length. The set of variables occurring in Q is denoted by
var(Q). The set of atoms contained in the body ofQ is referred to asatoms(Q).

Theanswerof Q on a database instanceDB with associated universeU , con-
sists of a relationans, whose arity is equal to the length ofu, defined as follows.
Relationans contains all tuplesuθ such thatθ : var(Q) −→ U is a substitution
replacing each variable invar(Q) by a value ofU and such that for1 ≤ i ≤ n,
ri(ui)θ ∈ DB. (For an atomA, Aθ denotes the atom obtained fromA by uni-
formly substitutingθ(X) for each variableX occurring inA.)

If Q is a conjunctive query, we define the hypergraphH(Q) = (V, E) associ-
ated toQ as follows. The set of verticesV , denoted byvar(H(Q)), consists of all
variables occurring inQ. The setE, denoted byedges(H(Q)), contains for each
atomri(ui) in the body ofQ a hyperedge consisting of all variables occurring in
ui. Note that the cardinality ofedges(H(Q)) can be smaller than the cardinality
of atoms(Q), because two query atoms having exactly the same set of variables
in their arguments give rise to only one edge inedges(H(Q)). For example, the
three query atomsr(X, Y ), r(Y, X), ands(X, X, Y ) all correspond to a unique
hyperedge{X, Y }.

A queryQ is acyclic if and only if its hypergraphH(Q) is acyclic or, equiv-
alently, if it has has a join forest. Ajoin forest for the hypergraphH(Q) is a
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forestG whose set of verticesVG is the setedges(H(Q)) and such that, for each
pair of hyperedgesh1 andh2 in VG having variables in common (i.e., such that
h1 ∩ h2 6= ∅), the following conditions hold:

1. h1 andh2 belong to the same connected component ofG, and

2. all variables common toh1 andh2 occur in every vertex on the (unique)
path inG from h1 to h2.

If G is a tree, then it is called ajoin treefor H(Q).
Intuitively, the efficient behavior of acyclic instances isdue to the fact that they

can be evaluated by processing any of their join trees bottom-up by performing
upward semijoins, thus keeping the size of the intermediaterelations small (while
it could become exponential, if regular join were performed).

Let us recall the highly desirable computational properties of acyclic queries:

1. Acyclic instances can be efficiently solved. Yannakakis provided a (sequen-
tial) polynomial time algorithm for Boolean acyclic queries1. Moreover, he
showed that the answer of a non-Boolean acyclic conjunctivequery can be
computedin time polynomial in the combined size of the input instanceand
of the output relation [86].

2. We have shown that answering queries is highly parallelizable on acyclic
queries, as this problem (actually, the decision problem ofanswering Boolean
queries) is complete for the low complexity class LOGCFL [36]. Efficient
parallel algorithms for Boolean and non-Boolean queries have been pro-
posed in [36] and [35]. They run on parallel database machines that exploit
theinter-operation parallelism[84], i.e., machines that execute different re-
lational operations in parallel. These algorithms can be also employed for
solving acyclic queries efficiently in a distributed environment.

3. Acyclicity is efficiently recognizable: deciding whether a hypergraph is
acyclic is feasible in linear time [68] and belongs to the class L (deter-
ministic logspace). The latter result is new: it follows from the fact that
hypergraph acyclicity belongs to SL [37], and from the very recent proof
that SL is in fact equal toL [59].

1Note that, since both the databaseDB and the queryQ are part of an input-instance, what we
are considering is thecombined complexityof the query [82].



Chapter 1. Query Evaluation 29

1.3.2 Hypertree Decompositions

We recall the formal definition and the most important results abouthypertree
widthandhypertree decompositions.

A hypertree for a hypergraphH is a triple〈T, χ, λ〉, whereT = (N, E) is
a rooted tree, andχ andλ are labeling functions which associate to each vertex
p ∈ N two setsχ(p) ⊆ var(H) andλ(p) ⊆ edges(H). Thewidth of a hypertree
is the cardinality of its largestλ label, i.e.,maxp∈N |λ(p)|.

We denote the set of vertices of any rooted treeT by vertices(T ), and its root
by root(T ). Moreover, for anyp ∈ vertices(T ), Tp denotes the subtree ofT
rooted atp. If T ′ is a subtree ofT , we defineχ(T ′) =

⋃
v∈vertices(T ′) χ(v).

Definition 1.3.1 [39]
Ageneralized hypertree decompositionof a hypergraphH is a hypertreeHD =

〈T, χ, λ〉 forH which satisfies the following conditions:

1. For each edgeh ∈ edges(H), all of its variables occur together in some
vertex of the decomposition tree, that is, there existsp ∈ vertices(T ) such
thath ⊆ χ(p) (we say thatp coversh).

2. Connectedness Condition: for each variableY ∈ var(H), the set{p ∈
vertices(T ) | Y ∈ χ(p)} induces a (connected) subtree ofT .

3. For each vertexp ∈ vertices(T ), variables in theχ labeling should belong
to edges in theλ labeling, that is,χ(p) ⊆ var(λ(p)).

A hypertree decompositionis a generalized hypertree decomposition that satisfies
the following additional condition:

4. Special Descendant Condition: for eachp ∈ vertices(T ), var(λ(p)) ∩

χ(Tp) ⊆ χ(p).

TheHYPERTREE width hw(H) (resp., generalized hypertree widthghw(H)) of
H is the minimum width over all its hypertree decompositions (resp., generalized
hypertree decompositions).

An edgeh ∈ edges(H) isstrongly coveredin HD if there existsp ∈ vertices(T )

such thatvar(h) ⊆ χ(p) andh ∈ λ(p). In this case, we say thatp strongly covers
h. A decompositionHD of hypergraphH is a complete decompositionof H if
every edge ofH is strongly covered inHD. From any (generalized) hypertree de-
compositionHD ofH, we can easily compute a complete (generalized) hypertree
decomposition ofH having the same width.
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Note that the notions of hypertree width and generalized hypertree width are
true generalizations of acyclicity, as the acyclic hypergraphs are precisely those
hypergraphs having hypertree width and generalized hypertree width one. In par-
ticular, as we will see in the next section, the classes of conjunctive queries hav-
ing bounded (generalized) hypertree width have the same desirable computational
properties as acyclic queries [38].

At first glance, a generalized hypertree decomposition of a hypergraph may
simply be viewed as a clustering of the hyperedges (i.e., query atoms) where the
classical connectedness condition of join trees holds. However, a generalized hy-
pertree decomposition may deviate in two ways from this principle: (1) A hyper-
edge already used in some cluster may be reused in some other cluster;(2) Some
variables occurring in reused hyperedges are not required to fulfill any condition.

For a better understanding of this notion, let us focus on thetwo labels as-
sociated with each vertexp: the set of hyperedgesλ(p), and the set ofeffective
variablesχ(p), which are subject to the connectedness condition (2). Notethat all
variables that appear in the hyperedges ofλ(p) but that are not included inχ(p)

are “ineffective” forv and do not count w.r.t. the connectedness condition. Thus,
theχ labeling plays the crucial role of providing a join-tree like re-arranging of
all connections among variables. Besides the connectedness condition, this re-
arranging should fulfill the fundamental Condition 1: everyhyperedge (i.e., query
atom, in our context) has to be properly considered in the decomposition, as for
graph edges in tree-decompositions and for hyperedges in join trees (where this
condition is actually even stronger, as hyperedges are in a one-to-one correspon-
dence with vertices of the tree). Since the only relevant variables are those con-
tained in theχ labels of vertices in the decomposition tree, theλ labels are “just”
in charge of covering such relevant variables (Condition 3)with as few hyperedges
as possible. Indeed, the width of the decomposition is determined by the largestλ
label in the tree. This is the most important novelty of this approach, and comes
from the specific properties of hypergraph-based problems,where hyperedges of-
ten play a predominant role. For instance, think of our database framework: the
cost of evaluating a natural join operation withk atoms (read:k hyperedges) is
O(nk), no matter of the number of variables occurring in the query.

Example 1.3.2 Consider the following conjunctive queryQ1:

ans ← a(S, X, X ′, C, F ) ∧ b(S, Y, Y ′, C ′, F ′)
∧ c(C, C ′, Z) ∧ d(X, Z) ∧
e(Y, Z) ∧ f(F, F ′, Z ′) ∧ g(X ′, Z ′) ∧
h(Y ′, Z ′) ∧ j(J, X, Y, X ′, Y ′).



Chapter 1. Query Evaluation 31

LetH1 be the hypergraph associated toQ1. SinceH1 is cyclic,hw(H1) > 1

holds. Figure 1.3 shows a (complete) hypertree decompositionHD1 ofH1 having
width 2, hencehw(H1) = 2.

In order to help the intuition, Figure 1.4 shows an alternative representation
of this decomposition, calledatom(or hyperedge) representation[38]: each node
p in the tree is labeled by a set of atoms representingλ(p); χ(p) is the set of all
variables, distinct from ‘’, appearing in these hyperedges. Thus, in this repre-
sentation, possible occurrences of the anonymous variable‘ ’ take the place of
variables invar(λ(p))− χ(p).

Another example is depicted in Figure 1.2, which shows two hypertree decom-
positions of queryQ0 in Section 1.3. Both decompositions have width two and are
complete decompositions ofQ0. �

{X′, Y ′, F, F ′, Z′} {j, f}{X, Y, C, C′, Z} {j, c}

{X′, Z′} {g} {Y ′, Z′} {h}{X, Z} {d}

{X, X′, Y, Y ′, S, C, C′, F, F ′} {a, b}

{J, X, Y, X′, Y ′} {j}

{Y, Z} {e}

Figure 1.3: A 2-width hypertree decomposition of hypergraph H1 in Exam-
ple 1.3.2

a(S, X, X′, C, F ), b(S, Y, Y ′, C′, F ′)

j(J, X, Y, X′, Y ′)

e(Y, Z)

j( , X, Y, , ), c(C, C′, Z) j( , , , X′, Y ′), f(F, F ′, Z′)

d(X, Z) g(X′, Z′) h(Y ′, Z′)

Figure 1.4: Atom representation of the hypertree decomposition in Figure 1.3



Chapter 1. Query Evaluation 32

Let k be a fixed positive integer. We say that a CQ instanceI hask-bounded
(generalized) hypertree width if(g)hw(H(I)) ≤ k. A class of queries has bounded
(generalized) hypertree width if there is somek ≥ 1 such that all instances in the
class havek-bounded (generalized) hypertree width.

Clearly enough, choosing a tree and a clever combination ofχ andλ label-
ing for its vertices in order to get a decomposition below a fixed threshold width
k is not that easy, and is definitely more difficult than computing a simple tree
decomposition, where only variables are associated with each vertex. In fact, the
tractability of generalized hypertree width is an interesting open problem, as no
polynomial time algorithm is known for deciding whether a hypergraph has gen-
eralized hypertree width at mostk, for any fixedk ≥ 2.

It is thus very nice and somehow surprising that dealing withthe hypertree
width is a very easy task. More precisely, for any fixedk ≥ 1, deciding whether
a given hypergraph has hypertree width at mostk is in LOGCFL, and thus it is
a tractable and highly parallelizable problem. Correspondingly, the search prob-
lem of computing ak-bounded hypertree decomposition belongs to the functional
version of LOGCFL, which isLLOGCFL [38]. See the Hypertree Decomposition
Homepage2, for available implementations of algorithms for computing hypertree
decompositions, and further links to heuristics and other papers on this subject.

Let us briefly discuss the only difference of hypertree decomposition with re-
spect to generalized hypertree decomposition, that is, thedescendant condition
(Condition 4 in Definition 1.3.1). Consider a vertexp of a hypertree decompo-
sition and a hyperedgeh ∈ λ(p) such that some variables̄X ⊆ h occur in the
χ labeling of some vertices in the subtreeTp rooted atp. Then, according to this
condition, these variables must occur inχ(p), too. This means, intuitively, that we
have to deal with variables in̄X at this point of the decomposition tree, if we want
to puth in λ(p). For instance, as a consequence of this condition, for the root r of
any hypertree decomposition we always haveχ(r) = var(λ(r)). However, once a
hyperedge has been covered by some vertex of the decomposition tree, any subset
of its variables can be used freely in order to decompose the remaining cycles in
the hypergraph.

To shed more light on this restriction, consider what happens in the related
hypergraph-based notions: in query decompositions [20], all variables are rele-
vant; at the opposite side, in generalized hypertree decompositions, we can choose
as relevant variables any subset of variables occurring inλ, without any limita-
tion; in hypertree decompositions, we can choose any subsetof relevant variables

2http://wwwinfo.deis.unical.it/ frank/Hypertrees/
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as long as the above descendant condition is satisfied. Therefore, the notion of
hypertree width is clearly more powerful than the (intractable) notion of query
width, but less general than the (probably intractable) notion of generalized hy-
pertree width, which is the most liberal notion.

For instance, look at Figure 1.4: the variables in the hyperedge corresponding
to atomj in H1 are jointly included only in the root of the decomposition, while
we exploit two different subsets of this hyperedge in the rest of the decomposition
tree. Note that the descendant condition is satisfied. Take the vertex at level 2,
on the left: the variablesJ, X ′ andY ′ are not in theχ label of this vertex (they
are replaced by the anonymous variable ‘’), but they do not occur anymore in
the subtree rooted at this vertex. On the other hand, if we were forced to take all
the variables occurring in every atom in the decomposition tree, it would not be
possible to find a decomposition of width 2. Indeed,j is the only atom containing
both pairsX, Y andX ′, Y ′, and it cannot be used again entirely, for its variable
J cannot occur below the vertex labeled bya andb, otherwise it would violate
the connectedness condition (i.e., Condition 2 of Definition 1.3.1). In fact, every
query decomposition of this hypergraph has width 3, while the hypertree width
is 2. In this case the generalized hypertree width is 2, as well, but in general it
may be less than the hypertree width. However, after a recentinteresting result by
Adler et al. [2], the difference of these two notions of widthis within a constant
factor: for any hypergraphH, ghw(H) ≤ hw(H) ≤ 3ghw(H) + 1. It follows
that a class of hypergraphs has bounded generalized hypertree width if and only
if it has bounded hypertree width, and thus the two notions identify the same set
of tractable classes.

Though the formal definition of hypertree width is rather involved, it is worth-
while noting that this notion has very natural characterizations in terms of games
and logics [39]:

• The robber and marshals game (R&Ms game).It is played by one robber
and a number of marshals on a hypergraph. The robber moves on variables,
while marshals move on hyperedges. At each step, any marshalcontrols an
entire hyperedge. During a move of the marshals from the set of hyperedges
E to to the set of hyperedgesE ′, the robber cannot pass through the vertices
in B = (∪E) ∩ (∪E ′), where, for a set of hyperedgesF , ∪F denotes the
union of all hyperedges inF . Intuitively, the vertices inB are those not
released by the marshals during the move. As in the monotonicrobber and
cops game defined for treewidth [66], it is required that the marshals capture
the robber by monotonically shrinking the moving space of the robber. The
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game is won by the marshals if they corner the robber somewhere in the
hypergraph. A hypergraphH hask-bounded hypertree width if and only if
k marshals win the R&Ms game onH.

• Logical characterization of hypertree width. Let L denote the existential
conjunctive fragment of positive first order logic (FO). Then, the class of
queries havingk-bounded hypertree width is equivalent to thek-guarded
fragment ofL, denoted by GFk(L). Roughly, we say that a formulaΦ be-
longs to GFk(L) if, for any subformulaφ of Φ, there is a conjunction of up
to k atoms jointly acting as a guard, that is, covering the free variables ofφ.
Note that this notion is related to theloosely guarded fragmentas defined
(in the context of fullFO) by Van Benthem [70], where an arbitrary number
of atoms may jointly act as guards.

Query Decompositions and Query Plans

In this section we describe the basic idea to exploit (generalized) hypertree de-
compositions for answering conjunctive queries.

Let k ≥ 1 be a fixed constant,Q a conjunctive query over a databaseDB, and
HD = 〈T, χ, λ〉 a generalized hypertree decomposition ofQ of width w ≤ k.
Then, we can answerQ in two steps:

1. For each vertexp ∈ vertices(T ), compute the join operations among rela-
tions occurring together inλ(p), and project onto the variables inχ(p). At
the end of this phase, the conjunction of these intermediateresults forms an
acyclic conjunctive query, sayQ′, equivalent toQ. Moreover, the decom-
position treeT represents a join tree ofQ′.

2. AnswerQ′, and henceQ, by using any algorithm for acyclic queries, e.g.
Yannakakis’s algorithm.

For instance, Figure 1.5 shows the treeJT1 obtained after Step 1 above, from
the queryQ1 in Example 1.3.2 and the generalized hypertree decomposition in
Figure 1.4. E.g. observe how the vertex labeled by atomp3 is built. It comes from
the join of atomsj andc (occurring in its corresponding vertex in Figure 1.4), and
from the subsequent projection onto the variablesX, Y, C, C ′, andZ (belonging
to theχ label of that vertex). By construction,JT1 satisfies the connectedness
condition. Therefore, the conjunction of atoms labeling this tree is an acyclic
query, sayQ′

1, such thatJT1 is one of its join trees. Moreover, it is easy to see that
Q′

1 has the same answer asQ1 [38].
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p2(X, X′, Y, Y ′, S, C, C′, F, F ′)

p1(J, X, Y, X′, Y ′)

p6(Y, Z)

p3(X, Y, C, C′, Z) p4(X′, Y ′, F, F ′, Z′)

p5(X, Z) p7(X′, Z′) p8(Y ′, Z′)

Figure 1.5: Join treeJT1 computed for queryQ′
1

Step 1 is feasible inO(m|rmax|
w) time, wherem is the number of vertices

of T , andrmax is the relation of having the largest size. For Boolean queries,
Yannakakis’s algorithm in Step 2 takesO(m|rmax|

w log |rmax|) time, and thus its
cost is an upper bound for the entire query evaluation process. For non-Boolean
queries, Yannakakis’s algorithm works in time polynomial in the combined size
of the input and of the output, and thus we should add to the above cost a term
that depends on the answer of the given query (which may be exponential w.r.t.
the input size). For instance, if we consider queryQ1, the above upper bound
is O(7|rmax|

2 log |rmax|), whereas typical query answering algorithms (which do
not exploit structural properties) would takeO(|rmax|

7) time, in the worst case.
It has been observed that, according to Definition 1.3.1, a hypergraph may

have some (usually) undesirable hypertree decompositions[38], possibly with a
large numberm of vertices in the decomposition tree. For instance, a decomposi-
tion may contain two vertices with exactly the same labels. Therefore, anormal
formfor hypertree decompositions has been defined in [38], and then strengthened
in [63], in order to avoid such kind of redundancies. Hypertree decompositions in
normal form having width at mostk may be computed in time polynomial in the
size of the given hypergraphH (but exponential in the parameterk). The number
m of vertices cannot exceed the number of variables inH, and is typically much
smaller. Moreover,H has a hypertree decomposition of widthw if and only if it
has a normal-form hypertree decomposition of the same widthw.

It follows that, for any fixedk ≥ 1, the class of all queries havingk-bounded
hypertree width may be answered in polynomial time (actually, in input-output
polynomial time, for non-Boolean queries). Indeed, given aqueryQ, both com-
puting a hypertree decompositionHD of width at mostk of H(Q), and then an-
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sweringQ exploitingHD are polynomial-time tasks.
As far as generalized hypertree decompositions are concerned, we currently

miss a polynomial-time algorithm for recognizing queries havingk-bounded gen-
eralized hypertree-width. However, there is a great deal ofinterest in these de-
compositions, and some first results are coming.

1.3.3 Weighted Hypertree Decompositions

As described in the previous section, given a queryQ on a databaseDB and a
small-width decompositionHD for Q, we know that there is a polynomial time
upper bound for answeringQ, while in general this problem is NP-hard and all
the available algorithms requires exponential time, in theworst case. However,
HD is not just a theoretical indication of tractability forQ. Rather, the above
two steps for evaluatingQ actually represent a query plan for it, though not com-
pletely specified. For instance, no actual join method (merge, nested-loop, etc.) is
chosen, but this final more physical phase can be easily implemented using well-
known database techniques. We remark that such optimizations are executed just
on relations belonging to the same vertex, and hence onw relations at most, ifw
is the width ofHD. Thus, also optimal methods based on dynamic programming
or sophisticated heuristics can be employed, as the size of the problem is small.

The remaining interesting problem is before this evaluation phase, where we
have to compute a decomposition forH(Q). Indeed, in general there is an ex-
ponential number of hypertree decompositions of a hypergraph. Every decom-
position encodes a way of aggregating groups of atoms and arranging them in a
tree-like fashion. As far as the polynomial-time upper bound is concerned, we
may be happy with any minimum-width decomposition. However, in practical
real-world applications we have to exploit all available information. In particu-
lar, for database queries, we cannot get rid of information on the databaseDB.
Indeed, looking only at the query structure is not the best wecan do, if we may
additionally exploit the knowledge of relation sizes, attribute selectivity, and so
on.

1.3.4 Minimal Decompositions

In this section, we thus consider hypertree decompositionswith an associated
weight, which encodes our preferences, and allows us to takeinto account fur-
ther requirements, besides the width. We will see how to answer queries more
efficiently, by looking for their best decompositions.
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Formally, given a hypergraphH, ahypertree weighting function(short:HWF)
ωH is any polynomial-time function that maps each generalizedhypertree decom-
positionHD = 〈T, χ, λ〉 ofH to a real number, called theweightof HD.

For instance, a very simpleHWF is the functionωw
H(HD) = maxp∈vertices(T ) |λ(p)|,

that weights a decompositionHD just on the basis of its worse vertex, that is the
vertex with the largestλ label, which also determines the width of the decompo-
sition.

In many applications, finding such a decomposition having the minimum width
is not the best we can do. We can think of minimizing the numberof vertices hav-
ing the largest widthw and, for decompositions having the same numbers of such
vertices, minimizing the number of vertices having widthw − 1, and continuing
so on, in a lexicographical way. To this end, we can define theHWF ωlex

H (HD) =∑w

i=1 |{p ∈ N such that|λ(p)| = i}| × Bi−1, whereN = vertices(T ), B =

|edges(H)|+ 1, andw is the width ofHD. Note that any output of this function
can be represented in a compact way as a radixB number of lengthw, which is
clearly bounded by the number of edges inH. Consider again the queryQ0 of
the Introduction, and the hypertree decomposition, sayHD′, ofH(Q0) shown in
Figure 1.2, on the right. It is easy to see thatHD′ is not the best decomposition
w.r.t. ωlex

H and the class of hypertree decompositions in normal form. Indeed,
ωlex
H (HD′) = 4 × 90 + 3 × 91, and thus the decompositionHD′′ shown on the

bottom of Figure 1.2 is better thanHD′, asωlex
H (HD′′) = 6× 90 + 1× 91.

Let k > 0 be a fixed integer andH a hypergraph. We define the classkHDH

(resp.,kNFDH) as the set of all hypertree decompositions (resp., normal-form
hypertree decompositions) ofH having width at mostk.

Definition 1.3.3 [63]Let H be a hypergraph,ωH a weighting function, andCH
a class of generalized hypertree decompositions ofH. Then, a decomposition
HD ∈ CH is minimalw.r.t. ωH andCH, denoted by [ωH, CH]-minimal, if there is
noHD′ ∈ CH such thatωH(HD′) < ωH(HD). �

For instance, the [ωw
H, kHDH]-minimal decompositions are exactly thek-

bounded hypertree decompositions having the minimum possible width, while
the [ωlex

H , kHDH]-minimal hypertree decompositions are a subset of them, corre-
sponding to the lexicographically minimal decompositionsdescribed above.

It is not difficult to show that, for general weighting functions, the computation
of minimal decompositions is a difficult problem even if we consider just bounded
hypertree decompositions [63]. We thus restrict our attention to simplerHWFs.

Let 〈R+,⊕, min,⊥, +∞〉 be asemiring, that is,⊕ is a commutative, associa-
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tive, and closed binary operator,⊥ is the neuter element for⊕ (e.g.,0 for +, 1 for
×, etc.) and the absorbing element formin, andmin distributes over⊕.3 Given a
functiong and a set of elementsS = {p1, ..., pn}, we denote by

⊕
pi∈S g(pi) the

valueg(p1)⊕ . . .⊕ g(pn).

Definition 1.3.4 [63]Let H be a hypergraph. Then, atree aggregation function
(short:TAF) is any hypertree weighting function of the form

F⊕,v,e
H (HD) =

⊕

p∈N

(vH(p) ⊕
⊕

(p,p′)∈E

eH(p, p′)),

associating anR+ value to the hypertree decompositionHD = 〈(N, E), χ, λ〉,
wherevH : N 7→ R

+ andeH : N × N 7→ R
+ are two polynomial functions

evaluating vertices and edges of hypertrees, respectively. �

We next focus on a tree aggregation function that is useful for query optimiza-
tion. We refer the interested reader to [63] for further examples and applications.

Given a queryQ over a databaseDB, let HD = 〈T, χ, λ〉 be a hypertree de-
composition in normal form forH(Q). For any vertexp of T , let E(p) denote the
relational expressionE(p) = onh∈λ(p)

∏
χ(p) rel(h), i.e., the join of all relations

in DB corresponding to hyperedges inλ(p), suitably projected onto the variables
in χ(p). Given also an incoming nodep′ of p in the decompositionHD, we define
v∗
H(Q)(p) ande∗H(Q)(p, p

′) as follows:

• v∗
H(Q)(p) is the estimate of the cost of evaluating the expressionE(p), and

• e∗H(Q)(p, p
′) is the estimate of the cost of evaluating the semi-joinE(p) n

E(p′).

Let costH(Q) be theTAF F+,v∗,e∗

H(Q) (HD), determined by the above functions. In-
tuitively, costH(Q) weights the hypertree decompositions of the query hypergraph
H(Q) in such a way that minimal hypertree decompositions correspond to “opti-
mal” query evaluation plans forQ overDB. Note that any method for computing
the estimates for the evaluation of relational algebra operations from the quanti-
tative information onDB (relations sizes, attributes selectivity, and so on) may be
employed forv∗ ande∗.

Clearly, all these powerful weighting functions would be oflimited practi-
cal applicability, without a polynomial time algorithm forthe computation of

3For the sake of presentation, we refer tomin and hence to minimal hypertree decompositions.
However, it is easy to see that all the results presented in this paper can be generalized easily to
any semiring, possibly changingmin, R

+, and+∞.



Chapter 1. Query Evaluation 39

minimal decompositions. Surprisingly, it turns out that, unlike the traditional
(non-weighted) framework, working with normal-form hypertree decompositions,
rather than with any kind of bounded-width hypertree decomposition, does mat-
ter. Indeed, computing such minimal hypertree decompositions with respect to
any tree aggregation function is a tractable problem, whileit has been proved that
the problem is still NP-hard if the whole class of bounded-width hypertree de-
composition is considered. A polynomial time algorithm forthis problem, called
minimal-k-decomp, is presented in [63].

1.3.5 Hypertree Decompositions for Queries

In this section, we describe a new extension of the notion of hypertree decom-
position specifically designed for the query evaluation purposes described in the
previous sections. In particular, we show how to compute decomposition trees
whose associated query plans guarantee a polynomial time upper bound with a
single bottom-up evaluation phase, and we improve the queryanswering exploit-
ing the hypertreee decomposition phase, by avoiding the naive construction of the
acyclic query equivalent instanceQ′.

Definition 1.3.5 A query-oriented hypertree decomposition(short: q-hypertree
decomposition) of a conjunctive queryQ is a hypertreeHD = 〈T, χ, λ〉 of the
hypergraphH(Q) which satisfies the following conditions:

1. For each edgeh ∈ edges(H), there existsp ∈ vertices(T ) such thath ⊆
χ(p).

2. There existsp ∈ vertices(T ) such thatout(Q) ⊆ χ(p).

3. Connectedness Condition: For each variableY ∈ var(H), the set{p ∈
vertices(T ) | Y ∈ χ(p)} induces a (connected) subtree ofT . �

In fact, a q-hypertree decompositionHD of a (non-Boolean) queryQ is a
(generalized) hypertree decomposition ofH(Q), except for the following impor-
tant features:

a) The decompositionHD is forced to have a vertexp that covers all the output
variables ofQ. Therefore, if we root the decomposition tree atp, the query may
be answered by performing only one bottom-up evaluation of the decomposition
tree. Indeed, at the end of this procedure, the relation at vertexp, projected onto
out(Q), directly provides the answer ofQ. Thus, steps (ii) and (iii) described
above are no longer needed.
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Figure 1.6:HD1 (a) andHD′
1 (b), in Example 1.3.6.

b) Condition 3 of Definition 1.3.1 is not required here, that is,some variables in
theχ labeling may be not covered by atoms in theλ labeling. This relaxation
allows us to perform an important optimization of decomposition-based query
plans: we may save join operations at a vertexp, as long as there are variables in
χ(p) whose sets of possible tuples are bounded by atoms in some child of p.

To evaluate a conjunctive queryQ on a databaseDB, given a q-hypertree
decompositionHD = 〈T, χ, λ〉 for it, we use an adaptation of the Yannakakis’s
algorithm described next.

A q-hypertree evaluatoris a procedure that, given as its input〈HD, Q, DB〉,
performs the following steps:(P ′) For each vertexp ∈ vertices(T ), compute the
join of the relations associated to atoms inλ(p), and project the result onto the
variables inχ(p); (P ′′) Following a topological order ofT , evaluate each vertex
p of the decomposition tree by taking the join of the relation at p with each one
of its children and projecting the result ontoχ(p)’s variables; (P ′′′) Output the
projection of the relation at the root ofT onto the variables inout(Q).

Example 1.3.6 Consider the following SQL queryQ1:

SELECT A, S, max(X) FROM a,b,c,d,e,f,g,h,i
WHERE a.B=b.B and b.C=d.C and d.T=e.T and e.R=f.R and

f.Y=c.Y and g.X=c.X and g.S=i.S and h.Z=i.Z
GROUP BY A,S

Figure 1.6 shows two q-hypertree decompositionHD1 andHD′
1 of CQ(Q1).

Note that both of them have width 2, thoughhw(H(Q1)) = 1, as the query hyper-
graph is acyclic. In fact this is the best we can do, because wewant to start from a
hypertree decomposition likeHD1 (to keep its nice properties), but we have to sat-
isfy also Condition 2 in Definition 1.3.5. Intuitively, thiscondition may introduce
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cycles in the hypergraph, through the connections involving output variables. This
is what we are going to pay, to avoid the additional top-down and its subsequent
bottom-up evaluation of the decomposition tree for non-Boolean queries (steps
(ii) and (iii) in Section 1.3.2).

Looking at the simpler hypertreeHD′
1 in Figure 1.6, we can see how the fea-

ture (b) of q-hypertree decompositions works, by allowing the optimizer to get
better plans. Compare the right subtrees of the roots ofHD1 andHD′

1: The atom
a in the first vertex, and the atomc in the subsequent three vertices do not occur
in the λ labels of their corresponding vertices inHD′

1. Hence, the preliminary
evaluation StepP ′ requires forHD′

1 only one join operation (at the root) instead
of 5, as it is for the hypertreeHD1. �

Note that, in general, there are different ways of evaluating Q on DB w.r.t.
HD, depending on the choice of the topological order of the decomposition tree.
Moreover, observe that, at StepP ′′, we take joins instead of semi-joins, because
some variables at a vertexp may be covered by its children, rather than by its
own atoms. In fact, differently from the corresponding StepS ′

2 described in Sec-
tion 1.3.2, the output of StepP ′ is not an acyclic query equivalent toQ. It follows
that, in principle, the size of such intermediate joins—andhence the cost ofP ′′—
may increase exponentially, even if the width is bounded by the constantk.

Thus, a key issue is the computation of a q-hypertree decomposition that can
be evaluated efficiently, that is, such that the size of intermediate relations can-
not blow-up, and the whole procedure has a polynomial-time upper bound in the
combined size of the input and of the output.

Definition 1.3.7 A q-hypertree decompositionHD of a conjunctive queryQ is
saidgood, if there is a q-hypertree evaluator that, given as its input〈HD, Q, DB〉,
takes polynomial-time in‖Q‖ + ‖DB‖ + ‖Q(DB)‖ to compute the answer ofQ
onDB. �

Putting it all together, given an SQL queryQ on a databaseDB, our algorithm
for evaluatingQ by exploiting hypertree decompositions consists of the follow-
ing steps: (1) we compute the conjunctive queryCQ(Q), as described in Sec-
tion 2.5.4; (2) we compute a good q-hypertree decompositionHD of CQ(Q); (3)
we compute the answer ofCQ(Q) onDB by means of a suitable q-hypertree eval-
uation ofQ on DB w.r.t. HD; and (4) we evaluate possible aggregate operators
(including group-by computations) working on the answer ofCQ(Q).

Step (4) is implemented in any standard way, as, by definition, variables in
out(Q) include all variables involved in such aggregate operators. It remains to
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Input: A conjunctive queryQ.
Output: A good q-hypertree decompositionHD = 〈T, χ, λ〉 of Q.

Computea “minimal” NF hypertree decompositionHD of H(Q) such that
Condition 2 in Definition 1.3.5 is satisfied, the width ofHD is at mostk,
and, for the rootr of HD, out(Q) ⊆ χ(r) holds;

If no such a decomposition exists,
Output “Failure”;

else
ExecuteOptimize(HD, r);
Output HD.

—————————————————————————————————
ProcedureOptimize(VAR HD, p ∈ vert(HD))
For eachhyperedgea ∈ λ(p) Do

If ∃q ∈ child(p) and b ∈ λ(q) such thata ∩ χ(p) ⊆ b ∩ χ(q)
Then Removea from λ(p);

For eachq ∈ child(p) Do Optimize(HD, q).

Figure 1.7:ALGORITHM q-HypertreeDecomp.

describe how to implement Step (2) and Step (3), that will be the subjects of the
following sections.

Computing good q-Hypertree Decompositions

An algorithm that given a conjunctive queryQ returns a good q-hypertree de-
composition ofQ is reported in Figure 1.7. This algorithm depends on a fixed
constantk, which bounds the width of the decompositions to be considered (typ-
ically, k = 4 is enough for database queries). Firstly, the algorithm computes
a width-k hypertree decompositionHD of H(Q) that satisfies Condition 2 in
Definition 1.3.5, if any. Note that in general there is an exponential number of
hypertree decompositions of a hypergraph, leading to different query-evaluation
performances. Therefore, we have implemented an algorithm(based on the ideas
in [63]) that evaluates different hypertrees according to acost model for physical
operators. Specifically, the cost model is based on a number of estimates about the
operations on the input database, computed with standard techniques described in
[33]. Then, rather than looking at all possible hypertree decompositions, we focus
on those hypertree decompositions in having the minimum associated cost, as they
correspond to “optimal” query evaluation plans forQ over . Notably, as shown
in [63], computing such a best query plan can be done efficiently, if we consider
normal form (NF) decompositions (again, it is feasible inLLOGCFL).

After the computation of this hypertree decomposition ofH(Q), we execute
theProcedure Optimize, which simplifies the hypertreeHD by removing hyper-
edges from theλ labels, in order to get a more efficient query plan for the query,
without giving up the guarantee on the polynomial-time upper bound on the eval-
uation ofCQ(Q).

Let k ≥ 1 be a fixed constant. Given a conjunctive queryQ, Algorithm q-
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HypertreeDecomp in Figure 1.7 runs in polynomial time, and outputs a good q-
hypertree decomposition ofQ, or “Failure”. The latter output is returned if and
only if there is no hypertree decomposition ofH(Q) having width at mostk that
satisfies Condition 2 in Definition 1.3.5.

For space limitations, we just give a rough idea on how the procedureOptimize
works, guided by the example in Figure 1.6. InHD1, consider the right childpr

of the root, where atoma is removed fromλ(pr). In principle, this atom is useful
here, because it provides a bound on the possible values for variableB coming
from the bottom of the tree (but non for variableA, that does not belong toχ(pr)).
However,B is also contained in the atomb in the child of this vertex. Then, we
may think of an equivalent hypertree decomposition wherea is replaced byb in
this vertex. Now, it is clear that, in any evaluation of the decomposition tree, there
is no sense in computing the join operation between the twobs in these adjacent
vertices. Indeed, the result of such an operation would be exactly the relation
corresponding to the atomb (possibly already filtered by previous join operations
executed in the bottom-up evaluation). Thus,a may be replaced byb, andb is
useless, whence we can just deletea from that vertex, as far as the polynomial-
time upper bound is concerned. Intuitively the bounding effect on the variables in
a ∩ χ(pr) (in this case, onlyB) is guaranteed by the atomb in the child ofpr.

It is worthwhile noting that, in more complex examples wheresuch a simpli-
fied atom has many children, the topological order used in theevaluation of the
join tree should take care of the children used for the simplification, that have
to be joined with their parent before the other siblings. Otherwise, intermediate
relations with exponentially many tuples can be temporary computed.

1.3.6 System Architecture

The structural approach described in so far has been implemented and integrated
into a prototype system, which can be used either as a stand-alone application, or
as a module plugged-in the open source PostgreSQL DBMS.

In the former case, the system rewrites the user query in a setof SQL views
(based on its structural decomposition), which can be evaluated on top of any
DBMS — in this case, possible statistical information aboutdata should be pro-
vided explicitly by the user, and the DBMS optimizer is responsible for the trans-
lation of the logical query plan into the physical one.

In the latter case, instead, the decomposition algorithms have been tightly
integrated in the PostgreSQL optimizer, so that(1) the optimization process is
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completely transparent to the user, and(2) additional information about data can
automatically be exploited, to find a good query plan.

Figure 1.8: System architecture.

Figure 1.8 illustrates a functional view of the system architecture. Basically,
it is formed by the following modules:

Sql Analyzer.It is responsible for preprocessing the query. First, theSql Parser
verifies its syntactical correctness, and then theConjunctive Query Isola-
tor computes the associated query hypergraph, which is the basis for the
structural optimization.

Statistics Picker.This module is responsible for collecting the statistics about
the relations involved in the query. When the system is coupled with Post-
greSQL, these statistics are directly accessible from the DBMS optimizer.
Otherwise, i.e., in the stand-alone usage, the user may optionally indi-
cate the cardinality of the involved relations, and the selectivity of their
attributes.

cost-k-decomp. This is the fundamental module of our architecture. It picks



Chapter 1. Query Evaluation 45

from theMetadata Repositorystatistics about data, together with the query
hypergraph generated by theSql Analyzer, and produces a q-hypertree de-
composition according to the ideas described in Section 1.3.5.

Query Manipulator. In the case of the direct integration in PostgreSQL, the
module produces a suitable data structure which is used to implement the
bottom-up strategy discussed in the paper. Otherwise, i.e., in the stand-alone
usage, the query plan is returned to the user in terms of a rewritten SQL
query, which can be evaluated on top of any DBMS (possibly, disabling its
internal optimizer).

Tight Coupling with PostgreSQL

Since our system is fairly the first attempt to integrate structural optimizations
into the core of standard (quantitative) query optimizers,it is relevant to discuss
in more details how this coupling has been practically achieved.

Figure 1.9: Integration in PostgreSQL.
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In PostgreSQL, queries are processed as follows (see Figure1.9). TheTcop
module intercepts user requests and forwards them toParser, which performs the
syntactical and semantical analysis and produces a structured representation called
Query tree. The Rewriter elaborates the query tree for optimization purposes
and sends the result to theOptimizer handler, which is in charge of selecting
the way the optimization has to be carried out. In the currentimplementation of
PostgreSQL, two distinct and alternative optimizers are available: one performing
anexhaustive search, and another using a genetic algorithm (GEQO).

To make the coupling possible, we modified theOptimizer handler, so that the
control is no longer directly passed to either of the optimizers. Rather, both the
CQ Isolatorand theStatistics pickerare invoked. In particular, statistics about
data are now collected from the PostgreSQLCommands Utility.

Then, theQuery Plan Generatoris invoked: first, theHDBQO ViewsBuilder
is responsible for building an optimized query tree based onthe q-hypertree de-
composition produced bycost-k-decomp, expressed in terms of nested SQL
subqueries; then, each subquery is processed by theHDBQO SubQueryHandler,
which is in charge of its execution on top of the built-in PostgreSQL optimizer.

1.3.7 Experimental Results

Compared Methods. Query plans for a number of queries were generated and
their performances were compared with those produced by a commercial DBMS,
that will be calledCommDB for license reason, and PostgreSQL. Specifically, we
usedCommDB to evaluate the performances of our stand-alone architecture, and
PostgreSQL to assess the advantages of a direct coupling inside a DBMS.

Benchmark Queries and Data. Tests included different kinds of queries. For
each of them, we varied the hypertree width, the number of involved relations,
their cardinality, and the selectivity of their attributes. Our attention was primarily
devoted to test the optimization strategies on the standardTPC-Hbenchmarks. In
addition, we considered the following kinds of query:

• Acyclic Queries.These are acyclic queries whose hypergraph has the form
of a line: q(y) ← p1(x1), p2(x2), ..., pn(xn), wherexi denotes the set of
variables occurring in the query atompi. We considered queries such that
xi∩xi+1 6= ∅, for any1 ≤ i < n, andxi∩xj = ∅, for anyi 6∈ {j+1, j−1}.
We experimented with queries whose lengthn ranges from2 to 10.
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Figure 1.10: Execution times w.r.t. number of body atoms: (a) and (b) for at-
tributes selectivity values 30, 60 and 90 — cardinality 500.(c) and (d) for
databases of 500, 750 and 1000 tuples — selectivity 30.

• Chain Queries.They are the simplest cyclic variation of the above lines,
where the first and the last query atoms have a variable in common (x1 ∩

xn 6= ∅).

TPC-H queries were evaluated over data generated by thedbgentool provided
by TPC. For the other kinds of queries, synthetic data were used, which has been
generated randomly by using an uniform distribution over a fixed range of values,
and setting the desired values for the cardinality of each relation and the selectivity
of each attribute.

All experiments were performed on a 2,66Ghz Pentium 4 laptop, equipped
with 512 Mb of ram and a 5400 rpm hard disk, running Windows XP Professional.

Experimenting with CommDB

We executed TPC-H queries onCommDB, both with and without its standard
optimizer, to execute queries according to the q-hypertreedecomposition method
(q-HD). In the latter case, we report thetotal execution time, i.e., the summation
of the stand-alone optimization time and of theCommDB evaluation time.

Figure 1.11 shows results for two TPC-H queries,Q5 andQ8, having hypertree
width 2 (that is, two cyclic queries). For these queries, theuse of statistics forq-
HD had no impact on the computed query plans, which means that, for these
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queries and according to our cost model, exploiting the structure was estimated
more important than exploiting the information on the database. Thus, the results
shown in this figure forq-HD, are in fact the same as those obtained without any
information on the data, that is, by usingq-HD as a purely structural method.

The picture is completely different forCommDB: standard execution time,
when it is not allowed to use statistics on the data, dramatically grows with the
database size, and the evaluation quickly becomes infeasible. Even whenCommDB

is allowed to exploit statistics on the data, the use of q-hypertree decomposition
(q-HD) improves the query evaluation performances. Of course, such good results
are closely related with the peculiarities of queriesQ5 andQ8, which are cyclic
and involve many join operations. In fact, on queries where the structure plays
instead a marginal role,q-HD used as a purely structural method is generally not
competitive withCommDB exploiting statistics.

Anyway, it is relevant to notice that gathering statistics is expensive (for 1GB,
800 seconds are needed) while building a structure-based query plan takes an
average time of 1.5 seconds—not affected by the database size, and usually leads
to good performances. Hence, besides the cases of long or cyclic queries likeQ5

andQ8, q-HD could be very useful in all those applications where statistics are
not available (or not yet).

Experimental results for Acyclic and Chain queries furtherconfirmed the above
intuitions. The results are depicted in Figure 1.10, which reports query execution

Figure 1.11: Execution time on TPCH-Queries:CommDB vscost-k-decomp.
Execution Times with database size ranging from 200mb to 1000mb: (a) Query
Q5. (b) QueryQ8.
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Figure 1.12: PostgreSQL: Execution times w.r.t. number of body atoms — selec-
tivity 60, cardinality 450.

times, varying the number of body atoms and with different values for cardinality
of relations and selectivity of attributes—whereCommDB is able to use statistics
on the data.

Notice that, for queries with 10 atoms in the body,CommDB executions do not
terminate after more than 10 minutes while theq-HD driven executions take just
a few seconds. This evidences that, when the size of the querygrows (especially
if combined with its its intricacy), current DBMS optimizers often fail in finding
good query plans and structural decomposition methods can significantly improve
their performances.

Experimenting with PostgreSQL

All the experiments described above have been repeated withour prototype di-
rectly implemented inside PostgreSQL 8.3. The relative gain turned out to be
even higher than for the tests withCommDB, since in this scenario query evalua-
tion can benefit of both the structural methods and the quantitative statistics about
data.

As an example, we reported in Figure 1.12 the execution timeson Acyclic and
Chain queries, for a synthetic database where each relationcontains 450 tuples
and whose attributes have selectivity 60 (by lowering the selectivity, the gain of
the structural approach is even more evident).

The reader may notice that the basic PostgreSQL optimizer performs quite
poorly when compared withCommDB, since evaluating an acyclic query with
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6 body atoms takes about 80 second in this scenario, while it is feasible in a few
seconds byCommDB (cf. Figure 1.10.(a)). However, when the structural methods
are integrated in PostgreSQL (q-HD), we get some quite surprising results, since
its query evaluation nicely scales up to 10 body atoms, whileCommDB (without
the use of structural optimizations) does not terminate after 10 minutes, even for
8 atoms only.

Finally, in the last set of experiments, we explore the benefits of using the pro-
cedureOptimizein Figure 1.7, and hence of exploiting feature (b) of q-hypertree
decompositions. The results for chain queries are shown in Figure 1.13 (over the
same dataset as in Figure 1.12).

Figure 1.13: Impact of ProcedureOptimize.
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Data Integration Systems

2.1 Data Integration Systems

Information integration is the problem of combining the data residing at different
sources, and providing the user with a unified view of these data, calledglobal
schema. The global schema is therefore a reconciled view of the information,
which can be queried by the user. It can be thought of as a set ofvirtual rela-
tions, in the sense that their extensions are not actually stored anywhere. A data
integration system frees the user from having to locate the sources relevant to a
query, interact with each source in isolation, and manuallycombine the data from
different sources.

The interest in this kind of systems has been continuously growing in the last
years. Many organizations face the problem of integrating data residing at several
sources. Companies that build a Data Warehouse, a Data Mining, or an Enterprise
Resource Planning system must address this problem. Also, integrating data in the
World Wide Web is the subject of several investigations and projects nowadays.
Finally, applications requiring accessing or re-engineering legacy systems must
deal with the problem of integrating data stored in different sources.

The design of a data integration system is a very complex task, which com-
prises several different issues, including the following:

1. heterogeneity of the sources,

2. mapping between the global schema and the sources,

3. limitations on the mechanisms for accessing the sources,

4. materialized vs. virtual integration,

51
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5. data cleaning and reconciliation,

6. how to process queries expressed on the global schema,

7. how to deal with integrity constraints.

Problem (1) arises because sources are typically heterogeneous, meaning that they
adopt different models and systems for storing data. This poses challenging prob-
lems in both representing the sources in a common format within the integration
system, and specifying the global schema. As for the first issue, data integration
systems make use of suitable software components, called wrappers, that present
data at the sources in the form adopted within the system, hiding the original
structure of the sources and the way in which they are modeled. With regard to
the specification of the global schema, the goal is to design such a schema so as
to provide an appropriate abstraction of all the data residing at the sources. One
aspect deserving special attention is the choice of the language used to express
the global schema. Since such a view should mediate among different represen-
tations of overlapping worlds, the language should provideflexible and powerful
representation mechanisms.

With regard to Problem (2), two basic approaches have been used to spec-
ify the mapping between the sources and the global schema. The first approach,
called query-centric orglobal-as-view(GAV), requires that the global schema is
expressed in terms of the data sources. More precisely, to every concept of the
global schema, a view over the data sources is associated, sothat its meaning is
specified in terms of the data residing at the sources. The second approach, called
source-centric orlocal-as-view(LAV), requires the global schema to be speci-
fied independently of the sources. The relationships between the global schema
and the sources are established by associating each elementof the sources with
a view over the global schema. Thus, in the local-as-view approach, we specify
the meaning of the sources in terms of the concepts in the global schema. It is
clear that the latter approach favors the extensibility of the integration system, and
provides a more appropriate setting for its maintenance. For example, adding a
new source to the system requires only to provide the definition of the source, and
does not necessarily involve changes in the global view. On the contrary, in the
global-as-view approach, adding a new source may in principle require changing
the definition of the concepts in the global schema. A different approach could
be to specify the mapping by combining LAV and GAV views together. This ap-
proach, calledglobal-local-as-view(GLAV), is quite recent and has so far drawn



Chapter 2. Data Integration Systems 53

little attention in the literature (see, e.g., [54]), thus it will not be discussed further
in this thesis.

Examples of LAV systems are Information Manifold [46], Infomaster [24],
and the systems presented in [53] and [17]. Information Manifold and the system
described in [17] express the global schema in terms of Description Logics [11,
7], and adopt the language of conjunctive queries to specifyboth user queries
and views in the mapping. The system described in [53] uses anXML global
schema, and adopts XML-based query languages for both the mapping and the
queries on the global schema. More powerful schema languages for expressing the
global schema are reported in [24, 42, 16, 15]. In particular, [24, 42] discuss the
case where various forms of relational integrity constraints are expressible in the
global schema, including functional and inclusion dependencies, whereas [16, 15]
consider a setting where the global schema is expressed in terms of Description
Logics, which allow for the specification of various types ofconstraints.

Examples of GAV systems are TSIMMIS [32], Garlic [18], COIN [34], MOMIS [9],
Squirrel [88], and IBIS [14]. These systems usually adopt simple languages for
expressing both the global and the source schemas. IBIS is the only system we
are aware of that takes into account integrity constraints in the global schema.

Problem (3) refers to the fact that, both in the local-as-view and in the global-
as-view approach, it may happen that a source presents some limitations on the
types of accesses it supports. A typical example is a web source accessible through
a form where one of the fields must necessarily be filled in by the user. This can
be modeled by specifying the source as a relation supportingonly queries with
a selection on a column. Suitable notations have been proposed for such situa-
tions [57], and the consequences of these access limitations on query processing
in integration systems have been investigated in several papers [57, 51, 30, 87, 50].

Problem (4) deals with a further criterion that one should take into account
in the design of a data integration system. In particular, with respect to the data
explicitly managed by the system, one can follow two different approaches, called
materializedandvirtual. In the materialized approach, the system computes the
extensions of the concepts in the global schema by replicating the data at the
sources. In the virtual approach, data residing at the sources are accessed during
query processing, but they are not replicated in the integration system. Obviously,
in the materialized approach, the problem of refreshing thematerialized views in
order to keep them up-to-date is a major issue [45]. Unless otherwise specified, in
the following we only deal with the virtual approach.

Whereas the construction of the global schema concerns the intentional level
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of the data integration system, Problem (5) refers to a number of issues arising
when considering integration at the extensional/instancelevel. A first issue in
this context is the interpretation and merging of the data provided by the sources.
Interpreting data can be regarded as the task of casting theminto a common
representation. Moreover, the data returned by various sources need to be con-
verted/reconciled/combined to provide the data integration system with the re-
quested information. The complexity of this reconciliation step is due to several
problems, such as possible mismatches between data referring to the same real
world object, possible errors in the data stored in the sources, possible inconsis-
tencies between values representing the properties of realworld objects in differ-
ent sources [31]. The above task is known in the literature asData Cleaning and
Reconciliation, and the interested reader is referred to [31, 17, 12] for more details
on this subject.

Problem (6) is concerned with one of the most important issues in a data inte-
gration system, i.e., the choice of the method for computingthe answer to queries
posed in terms of the global schema only on the basis of the data residing at
the sources. The main issue is that the system should be able to re-express such
queries in terms of a suitable set of queries posed to the sources, hand them to the
sources, and assemble the results into the final answer.

Finally, Problem (7) arises because the language adopted torepresent the in-
tegration domain should be powerful enough to cope with the issues highlighted
at point (1), i.e. should be based on integrity constraints.Generally, in data in-
tegration, data at the sources are assumed to be coherent with the integrity con-
straints specified over the sources to which they belong, thus such constraints can
be overlooked during query processing. On the other hand, data originally stored
in autonomous sources may not satisfy the integrity constraints expressed in the
global schema, and inconsistencies may arise in the integration system. Further-
more, integrity constraints represent fundamental knowledge about the real world
and important requirements that the reconciled data have torespect, so that they
cannot be neglected during query processing. Generally speaking, in the pres-
ence of some inconsistencies, traditional semantics for data integration systems
consider the entire system inconsistent and are unable to support query process-
ing even if most of the data at the sources satisfy the integrity constraints in the
global schema. More recent approaches [52, 4, 5, 40] consider different semantics
able to provide database instances for the global schema even in the presence of
inconsistencies, and define techniques to compute answers to queries in such a
scenario.
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2.2 The Infomix Project

The principal goal of the INFOMIX project was to provide advanced techniques
and innovative methodologies for information integrationsystems. In a nutshell,
the project developed a theory, comprising a comprehensiveinformation model
and information integration algorithms, and a prototype implementation of a knowl-
edge based system for advanced information integration, byusing computational
logic and integrating research results on data acquisitionand transformation. Spe-
cial attention was devoted to the definition of declarative user-interaction mech-
anisms, and techniques for handling semi-structured data,and incomplete and
inconsistent data sources.

These objectives, which advanced the state of the art in several respects, are
detailed as follows.

• Comprehensive Information Model. A comprehensive information model
has to be provided, which incorporates static and dynamic aspects of infor-
mation integration, and supports advancedhuman likereasoning, based on
a rich semantics. Current information integration systemsare rather poor in
this respect, and provide only limited support (if any) for expressing con-
straint relationships between the local sources and a global view of the data.
The source data are integrated in such systems under implicit assumptions
such as soundness and completeness; arising inconsistencies are handled at
low levels in a procedural manner, without a clear understanding to the user
about the effects on the semantics of the overall system. What we barely
need is a much richer information model in which knowledge about the
sources, their semantics and relationships can be declaratively expressed,
such that on the basis of a clear semantics, reasoning about the sources is
possible and can be exploited for meaningful integration. Furthermore, the
information model should be capable of expressing criteriasuch as source
preference, or strategies for data integration that the user might select. From
the declarative specification, the integration process maythen provide re-
sults which are transparently obtained by exploiting all available knowledge
in a meaningful way.

• Information Integration Algorithms. A host of efficient algorithms for
information integration must be provided, which can be applied to homog-
enized data from heterogeneous data sources. On the computational side,
we need a number of algorithms and techniques for advanced information
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integration, which cover different tasks. Besides general, high-level algo-
rithms for the integration process, we need particular algorithms for solv-
ing advanced reasoning tasks in the integration process, such as checking
consistency of source specifications, finding explanationsfor data inaccu-
racies and suggesting repairs etc. The design and development of such
algorithms which are useable in practice is a nontrivial andchallenging
task, since more advanced reasoning tasks require often higher computa-
tional resources, and, moreover, the volume of resource data may be large.
Thus, suitable optimization techniques for information integration must be
devised in order to ensure the scalability of the approach.

• Usage of Computational Logic.Exploit advanced methodologies and tech-
niques from computational logic as a toolbox for information integration.
In the recent years, research in computational logic has produced a number
of implemented systems by which various advanced reasoningproblems
such as diagnosis, configuration, etc can be declaratively solved in logic-
based languages. The underlying computational engines have been devel-
oped (mostly in Europe) with quite some effort, and comprisea body of
sophisticated tools and algorithms. Exploiting them for solving reasoning
tasks in advanced information integration is a natural approach, but will re-
quire extensions and adaptations as for the needs of this application. The
INFOMIX project, by its usage of computational logic, will contribute in
strengthening the leading role of Europe in this key technology for building
advanced reasoning systems.

• Integration of results on data acquisition and transformation. Selected
research results from the area of data source acquisition and transformation
should be integrated. Research on multi and federated database systems has
made available a number of techniques and systems for accessing heteroge-
neous data at a homogenized level. Any advanced informationintegration
system which should be used in a wider context must be capableof incor-
porating sources that provide data in different formats, such as relational
data, object-oriented data, or semi-structured data. One of the INFOMIX
objectives is to make use of selected existing results and techniques in the
area of heterogeneous data acquisition and transformation, and to integrate
them into the architecture of an advanced information integration system.
As a result, a much more powerful system for combining heterogeneous
data will be provided.
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• Prototype System. Definition and implementation of a component-based
integration system prototype, and providing an infrastructure by using soft-
ware agent technology. It is only a prototype system by whichwe may vali-
date the suitability of the methods and techniques developed. The prototype
will implement the architecture of an INFOMIX information integration
system and serve as a testbed for experimentation, from which conclusions
about the project results and further research goals will beobtained. Agent
technology will be used for system components, and in particular for in-
corporating heterogeneous data sources. Furthermore, theprototype system
plays an important role in dissemination of the foundational results to the
R&D industry.

The formal framework for data integration, that will be deeply investigated
in Section 2.3, was defined in terms of a global schema, which provides the uni-
fied and centralized view of the data, a source schema, comprising the schemas
of all sources involved in the integration application, andthe mapping that speci-
fies the relationship between the two. Generally speaking, the framework allows
for the specification of constraints of general form on both the global schema
and the sources, and the definition of complex forms of mappings between the
global schema and the source schema. More specifically, the mapping is given in
terms of a set of assertions where each assertion associatesa view over the global
schema to a view over the sources. Such an approach captures both LAV and
GAV mappings, and allows also for the specification of more complex dependen-
cies between elements of the global schema and elements of the sources.

With regard to the semantics, we deeply concentrated on the semantics of
the mapping, and analyzed several assumptions that can be adopted on mapping
assertions, in order to specify how to interpret data that can be retrieved at the
sources with respect to data that satisfy the correspondingportion of the global
schema. With this respect, we first considered classicalexact, sound, or complete
assertions, that correspond to the different situations inwhich data in the answer
to a view over the global schema are exactly the data in the answer to the corre-
sponding view over the sources, or are a superset or a subset of such data. Then,
we addressed the more general case in which data retrieved atthe sources do not
respect integrity constraints expressed over the global schema, and cannot be rec-
onciled in such a way that both integrity constraints and mapping assertions are
satisfied. Classical assumptions on mapping assertions do not allowed us to prop-
erly handle such inconsistencies, and generally they bringabout a situation where
no database instance exists for the global schema. In this respect, we proposed a
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more general approach in which the classical assumptions onmapping assertions
can be suitably relaxed.

It is worth noticing that the semantic problem that arises inthis context is
similar to the one underlying the notion ofdatabase repairintroduced by several
works in the area ofinconsistent databases. However, many of this studies basi-
cally apply to a single database setting [21, 10, 6], and the proposed techniques
can be employed in a data integration setting only by assuming an “exact” inter-
pretation of mapping assertions [52, 23].

Finally, based on our formal model of a data integration system, and on the
preliminary structure of the system outlined in the INFOMIXproposal, we have
identified the general functionalities that the system should provide, thus provid-
ing a functional specification of the data integration system. In particular, we have
divided the system features into four levels of capabilities:

• Final User Level, which comprises functionalities that allow users both to
pose their queries to the system and to suitably access the results computed
by the system.

• Information Service Level, which comprises functionalities that allow for
the modeling of the global schema, the source schema, and themapping,
and for the reformulation of queries expressed over the global schema in
terms of queries on the sources.

• Internal Integration Level , which comprises functionalities to optimize
and execute the query plan computed by the query reformulation process.

• Data Acquisition and Transformation Level, which comprises function-
alities to properly access the sources, retrieve data from them, and suit-
ably transform the acquired data into the internal homogeneous data format
adopted in the system.

2.3 Formal Framework

In this section we define a logical framework for data integration. The main com-
ponents of a data integration system are the sources, the global schema and the
mapping between the two. We first present the syntax, and thenthe semantics of
a data integration system.
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2.3.1 Syntax

We consider to have a fixed infinite alphabetΓ of constants representing real world
objects, and assume that the structures constituting the databases involved in our
framework are defined over the fixed interpretation domainΓ, i.e.,Γ represents all
the possible elements in a database instance.

Formally, a data integration systemI is a triple〈G,S,M〉, where:

• G is theglobal schema, expressed in the global languageLG over the al-
phabetAG. The alphabet comprises a symbol for each element ofG (i.e.,
relation ifG is relational, class ifG is object-oriented, etc.). The language
LG determines the expressiveness allowed for specifying the global schema,
i.e., the set of constraints that can be defined over it;

• S is thesource schema, composed by the schemas of the various sources
that are part of the data integration system.S is modeled in the source
languageLS over the alphabetAS. We request that,AS is disjoint from
the alphabet of the global schemaAG. As in the previous case, the alphabet
comprises a symbol for each element of the sources, andLS determines the
expressiveness allowed for specifying the source schema;

• M is themappingbetweenG andS, i.e., the specification of the relationship
between the sources and the global schema. It is constitutedby a set of
assertionsof the form

qS v qG,

qG v qS

whereqS andqG are two queries, respectively over the source schemaS,
and over the global schemaG. QueriesqS are expressed in a query lan-
guageLM,S over the alphabetAS, and queriesqG are expressed in a query
languageLM,G over the alphabetAG. Intuitively, an assertionqS v qG

specifies that the concept represented by the queryqS over the sources is
put in correspondence with the concept in the global schema represented
by the queryqG (similarly for an assertion of typeqG v qS). The exact
meaning of such a correspondence will be described in the next subsection.

Thus, from the syntactic viewpoint, the specification of an integration system
depends on the following parameters:
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• The form of the global schema, i.e., the formalism used for expressing data
and the global relationships between data.

• The form of the source schema, i.e., the formalism used for expressing data
at the sources. Moreover, we assume that the data at the sources satisfy
all constraints specified onS, thus, in the following we do not consider
anymore these constraints.

• The form of the mapping. In the data integration literature two possi-
ble forms for the mapping are studied, called respectivelyglobal-as-view
(GAV) andlocal-as-view(LAV). The GAV approach requires that the global
schema is defined in terms of the data sources: more precisely, every ele-
ment of the global schema is expressed as a view over the sources, so that
its meaning is specified in terms of the data residing at the sources. With re-
spect to the mapping syntax above defined, the GAV approach corresponds
to restricting the queriesqG to unary queries, i.e., queries containing a sin-
gle element of the global schema. In the LAV approach, the meaning of the
sources is specified in terms of the elements of the global schema: more
exactly, the mappingM between the sources and the global schema is
provided in terms of a set of views over the global schema, onefor each
source element. With respect to the mapping syntax above defined, the
LAV approach corresponds to restricting the queriesqS to unary queries,
i.e., queries containing a single element of the source schema. Therefore,
the above definition of mapping of our framework correspondsto a gener-
alized form that comprises LAV and GAV as special cases.

Finally, we considerqueriesposed to a data integration system and define their
syntax. Each such query is a formula that is intended to provide the specification
of which data to extract from the integration system, i.e.,q is intended to extract
a set of elements ofΓ. Each query is issued over the global schemaG, and is
expressed in a specific query language, denoted byLQ, over the global alphabet
AG.

2.3.2 Semantics

Intuitively, to specify the semantics of a data integrationsystem, we have to start
with a set of data at the sources, and, given such data at the sources, we have to
specify which are the data that satisfy the global schema. Thus, in order to assign
the semantics to a data integration systemI = 〈G,S,M〉, we start by considering
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asource databasefor I, i.e., a databaseD for the source schemaS. Given a query
q overS and a source databaseD, we denote asqD the set of objects in the answer
to q overD, i.e. the set of objects that satisfyq overD.

Based onD, we now specify which is the information content of the global
schemaG. We call any databaseB for G a global databasefor I. Furthermore,
given a queryq overG and a global databaseB, we denote asqB the set of objects
in the answer toq overB, i.e. the set of objects that satisfyq overB.

A global databaseB for I is said to belegalwith respect toD if:

1. B is coherent withG;

2. B satisfies the mappingMwith respect toD, namely the objects inB satisfy
the relationships between the global and the source elements defined by the
mapping. More precisely, we say thatB satisfiesM with respect toD if:

(a) for each assertion inM of the formqS v qG, each object inqDS is also
an element ofqBG , i.e.,qDS ⊆ qBG ;

(b) for each assertion inM of the formqG v qS , each object inqBG is also
an element ofqDS , i.e.,qBG ⊆ qDS .

Notice that, from the above semantics of the mappingM, it follows that in
our framework it is possible to express all the kinds of interpretations of the map-
ping assertions studied in data integration, namely the sound, complete, and exact
interpretation. In particular, if we want to formulate a generic mapping assertion
V defining a relationship between the query over the global schemaqG and the
query over the source schemaqS :

• a soundinterpretation ofV corresponds in our framework to the assertion
qS v qG;

• acompleteinterpretation ofV corresponds to the assertionqG v qS ;

• anexactinterpretation ofV corresponds to the pair of assertionsqS v qG,
qG v qS .

In an analogous way, one can express sound, complete or exactinterpretations of
a mapping assertion defining a relationship betweenqS andqG.

Given a source databaseD for I, the semantics ofI with respect toD, denoted
sem(I,D), is defined as follows:

sem(I,D) = { B | B is a legal global database for I w.r.t. D }
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Let us now turn our attention to queries. In order to define thesemantics of
a queryq over the global schemaG, we have to take into account all the global
databases legal forI with respect toD. We callcertain answers(or simplyan-
swers) of a queryq with respect toI andD, the setqI,D of objectst such that
t ∈ qDB for everydatabaseDB ∈ sem(I,D).

Furthermore, we callpossible answersof a queryq the setqI,D of objectst
such thatt ∈ qDB for somedatabaseDB ∈ sem(I,D).

From the above definitions, it is easy to see that, in data integration, answering
queries is essentially an extended form of reasoning in the presence of incomplete
information [79]. Indeed, when we answer the query, we know only the extensions
of the sources, and this provides us with only partial information on the global
database.

2.3.3 Dealing with inconsistent data sources

According to the semantics above defined, in which we adopteda first-order logic
interpretation of the mapping, it may be the case that the data retrieved from the
sources cannot be reconciled in the global schema in such a way that both the con-
straints of the global schema and the mapping are satisfied [48]. This happens, for
instance, in a relational context, when a key constraint specified for the relationr
in the global schema is violated by the tuples retrieved by the view associated to
r, since the assumption of sound views does not allow us to disregard tuples from
r with duplicate keys. If we do not want to conclude in this casethat no global
database exists that is legal forI with respect toD, we need a different charac-
terization of the mapping. In particular, we need a characterization that allows us
to support query processing even when the data at the sourcesare incoherent with
respect to the integrity constraints on the global schema.

A possible solution is to characterize the data integrationsystemI = 〈G,S,M〉

in terms of those global databases that:

1. satisfy the integrity constraints ofG, and

2. approximate at best the satisfaction of the assertions inthe mappingM, i.e.,
that areas close as possibleto the mappingM.

In other words, the integrity constraints ofG are considered “strong”, whereas the
mapping is considered “soft”.

We now propose a modified definition of the semantics for the integration
system that reflects the above idea. Given a source databaseD for I, we define a
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partial order (based on set-containment) between the global databases forI. If B1

andB2 are two databases that are legal with respect toG, we say thatB1 is better
thanB2 with respect toD, denoted asB1 �D B2, if:

1. for each assertionqS v qG inM, qB1
G ∩ qDS ⊇ qB2

G ∩ qDS ;

2. for each assertionqG v qS inM, qB1
G − qDS ⊆ qB2

G − qDS ;

3. at least one of the following conditions holds:

(a) there exists an assertionqS v qG inM such thatqB1
G ∩qDS ⊃ qB2

G ∩qDS ;

(b) there exists an assertionqG v qS inM such thatqB1
G −qDS ⊂ qB2

G −qDS .

Intuitively, this means that there is at least one assertionfor whichB1 satisfies
the sound mapping better thanB2, while for no other assertionB2 is better than
B1. In other words,B1 approximates the mapping better thanB2.

It is easy to verify that the relation�D is a partial order. With this notion in
place, we can now define the notion ofB satisfying the mappingMwith respect to
D in our setting: a databaseB that is legal with respect toG satisfies the mapping
M with respect toD if B is maximal with respect to�D, i.e., for no other global
databaseB′ that is legal with respect toG, we have thatB′ �D B.

The notion of legal database forI with respect toD, and the notions of an-
swers remain the same, given the new definition of satisfaction of mapping. It is
immediate to verify that, if there exists a legal database for I with respect toD
under the first-order logic interpretation of the mapping, then the new semantics
and the old one coincide, in the sense that, for each queryq, the setqI,D of certain
answers computed under the first-order semantics coincideswith the set of certain
answers computed under the new semantics.

2.4 The System

INFOMIX has been conceived as an extensible software environment, where new
modules can be easily added, e.g., for dealing with further kinds of data sources.
In the following a detailed description of the overall INFOMIX system archi-
tecture is specified, comprising information flows, data management tasks and
interactions between the various modules composing the system.

The general architecture of the INFOMIX system is quite complex. In order
to simplify the description of the several system components, we have identified
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two fairly independent components of the architecture, namely theDesign-Time
and theRun-Timesystem architecture. The former includes activities and features
involving the designphases of the data integration process; the latter refers to
querying activities carried out by the users during the system exploitation.

For each component introduced we give a general descriptionof the associated
architecture.

2.4.1 Design-Time System Architecture

The activities involved in the design of a data integration system are:

• the identification of the information sources to be considered in the data
integration tasks;

• the definition of suitable wrappers allowing to retrieve andsuitably trans-
form data residing at the sources;

• the design of a global scheme representing in a uniform and consistent way
all the information stored in the selected sources,

• the definition of mappings stating how data at the sources areto be trans-
formed and integrated in order to obtain global objects.

These activities are mostly performed during the initial steps of the data integra-
tion system definition. However, in order to cope with the dynamic nature of
the integration applications, designers have the possibility to modify previous set-
tings. The access to design activities is allowed only to designers and not to end
users.

In Figure 2.1 the INFOMIX system architecture relative to design activities is
illustrated. All the features provided by this part of the INFOMIX system are ac-
cessed by a graphical user interface. TheWrapper Generator Interfaceallows the
designer to specify the information sources that are involved in the data integration
system; once sources have been identified and specified, theWrapper Generator
module can be activated. It receives a set of sources to be wrapped and, for each of
them, generates suitable wrappers. Associations between sources and wrappers,
as well as information about the structure of the data which are present in the var-
ious sources are stored in theMeta Data Repository. The designer can monitor
the wrapper generation activities through theWrapper Generation Interfaceby
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Figure 2.1: Design-Time Architecture of the INFOMIX system
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displaying and managing the information stored in theMetadata Repositoryby
theWrapper Generator.

The global scheme is designed by using theGlobal Scheme Interface. In par-
ticular, this module gives the designer access to information about the schemes of
the sources participating in the system, in order to define global scheme objects
and constraints. While defining the global scheme, theGlobal Scheme Interface
shows an up to date version of the global scheme. Insertions and modifications
of global scheme objects and constraints are performed by the Global Scheme
Generator; it represents global scheme objects and constraints in a suitable lan-
guage and stores them in theMetadata Repository. Stored objects can be possibly
deleted.

Once the global scheme has been designed, mappings between the source
scheme objects and the global scheme objects can be specifiedby means of the
Mapping Generation Interface. This module shows to the designer both the global
scheme and the source schemes in order to facilitate the mapping definition phase.
Mapping creation or modification requests performed by the designer are given as
input to theMapping Generatormodule. This module translates mappings in a
suitable internal language, stores them in theMetadata Repositoryand handles
modifications and updates required by the designer in order to guarantee that the
Metadata Repositorystores always the up to date version of them.

Finally, the designer may activate theConsistency Checkerwhich verifies the
correctness and the consistency of global scheme and mapping definitions. If an
inconsistency is detected, the module informs the designerwho has to modify
global source objects and mapping definitions involved in the inconsistency loop.

In the following we give a detailed description of the functionalities and the
interfaces of the modules introduced above.

Wrapper Generation Interface

The Wrapper Generation Interfaceprovides the designer with a graphical inter-
face allowing to specify the information sources to be considered in the data inte-
gration system. This module provides the following functionalities:

• Specification of sources to be wrapped. This feature requires the designer to
provide as input the set of sources to be considered for the data integration
system. In particular, for each source, the designer specifies the source loca-
tion and the corresponding data format. The designer shouldalso be able to
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either provide the relational scheme which the source should be wrapped to,
or, supervise a scheme automatically proposed by the Wrapper Generator.

• Activation of theWrapper Generator. In this case, the input consists just in
an activation message prompt, provided by the designer, indicating that the
wrapping generation step can take place. The output is the set of sources
previously identified by the designer; these are given as input to theWrapper
Generatormodule.

• Visualization and browsing of the information about generated wrappers
and associated schemes. In order to perform this task, theWrapper Genera-
tion Interfaceretrieves from theData Repositorythe information produced
by theWrapper Generatorin the generation phase and shows it in a suitable
format to the designer.

Global Scheme Interface

TheGlobal Scheme Interfaceallows the designer to define the global scheme. In
particular, the designer can specify the objects belongingto the global scheme and
the constraints involving global scheme objects. In order to aid the definition task,
theGlobal Scheme Interfaceshows the characteristics of the sources involved in
the data integration system. The functionalities providedby this module are:

• Insertion of a global scheme object. This functionality requires the designer
to specify the new object to add to the global scheme. This is then given as
input to theGlobal Scheme Generator.

• Modification of a global scheme object. This functionality requires the de-
signer to specify the modifications to be performed on an existing global
scheme object. These are then given as input to theGlobal Scheme Gener-
ator.

• Deletion of a global scheme object. This functionality requires the designer
to specify the global scheme object to delete. This is then given as input to
theGlobal Scheme Generator.

• Insertion of a constraint. The designer can specify constraints holding among
objects of the global scheme. Also in this case constraints are given as input
to theGlobal Scheme Generator.
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• Modification of a constraint. By this functionality, the designer can modify
previously defined constraints. Modifications provided by the designer are
given as input to theGlobal Scheme Generator.

• Deletion of a constraint. This functionality requires the designer to specify
the existing constraint to delete. This is then given as input to theGlobal
Scheme Generator.

• Visualization of the source schemata. In order to simplify the definition
of the global scheme, source schemata participating in the data integration
system can be shown to the designer. Information about source schemata is
retrieved from theMetadata Repository.

• Visualization of the global schema. This functionality canbe exploited in
order to check the global schema definition status. Information on the global
schema is retrieved from theMetadata Repository.

Mapping Generation Interface

The Mapping Generation Interfaceprovides a graphical interface which allows
the designer to specify the mappings between global scheme objects and source
scheme objects. In order to simplify the definition task, theMapping Generation
Interfacecan show both the source and the global schemes. The functionalities
provided by this module are:

• Insertion of a mapping. This functionality requires the designer to specify
the new mapping to add. Necessary information for creating the involved
mapping is then sent to theMapping Generatorin a suitable format.

• Modification of a mapping. This functionality requires the designer to spec-
ify the modifications to be performed on an existing mapping.Necessary
information for modifying the involved mapping is then sentto theMapping
Generatorin a suitable format.

• Deletion of a mapping. This functionality requires the designer to specify
the mapping to delete. This is then sent to theMapping Generator.

• Visualization of the source schemes. In order to simplify the definition of
the mappings between source scheme and global scheme objects, source
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schemes participating in the data integration system are shown to the de-
signer. Information about source schemes is retrieved fromthe Metadata
Repository.

• Visualization of the global scheme. Analogously to the previous function-
ality, the global scheme is displayed to the user; necessaryinformation is
retrieved from theMetadata Repository.

• Visualization of the defined mappings. In order to allow the designer to
check the status of the mapping definition phase, the module can show the
set of mappings already defined. Information about mappingsis retrieved
from theMetadata Repository.

Consistency Checker

While global scheme, mappings and sources are being specified, it is important
to check whether the definitions provided are consistent. When theConsistency
Checkeris activated by the designer, it retrieves from theMetadata Repositoryall
the information relative to the source scheme objects, the global scheme objects,
the constraints involving global scheme objects, and the mappings between global
and local scheme objects. Then, theConsistency Checkermight either generate
from these data a disjunctive logic program which is then executed by aDisjunc-
tive Datalog Executoror perform some simpler computations; the choice of which
action to perform might be taken on the basis of the task complexity. TheDisjunc-
tive Datalog Executoris an external module implementing an existing program
which is incorporated in the INFOMIX system. The result of the computation de-
termines whether the definitions stored in theMetadata Repositoryare consistent
or not.

The result of this check is presented to the user which shouldmodify ill spec-
ified definitions.

Global Scheme Generator

The Global Scheme Generatorreceives from theGlobal Scheme Interfacemes-
sages about global scheme objects and constraints to be added or modified. This
module is in charge of the representation of the global scheme objects specified
by the user in theglobal languageLG, the representation of the constraints in a
suitable representation language and the management of insertions, modifications
and deletion of both scheme object and constraint in theMetadata Repository.
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The functionalities provided by this module are:

• Creation of a global scheme object. This functionality receives the infor-
mation on the global scheme object to create from theGlobal Scheme Inter-
face; it generates a representation of the object in theglobal languageLG

and stores it in theMetadata Repository.

• Modification of a global scheme object. This functionality receives the in-
formation relative to the global scheme object to modify andthe required
modifications from theGlobal Scheme Interface; it retrieves the object from
theMetadata Repositoryand performs the required modifications. Finally
it stores the modified global scheme object in theMetadata Repository.

• Deletion of a global scheme object. This functionality receives the informa-
tion on the global scheme object to delete from theGlobal Scheme Interface;
it removes it from theMetadata Repository.

• Creation of a constraint. This functionality receives the information relative
to the constraint to create from theGlobal Scheme Interface; it generates a
representation of the constraint in the associated language and stores it in
theMetadata Repository.

• Modification of a constraint. This functionality receives the information
relative to the constraint to modify and the required modifications from
theGlobal Scheme Interface; it retrieves the constraint from theMetadata
Repositoryand performs the required modifications. Finally it stores the
modified constraint in theMetadata Repository.

• Deletion of a constraint. This functionality receives the information relative
to the constraint to delete from theGlobal Scheme Interface; it removes the
constraint from theMetadata Repository.

TheMapping Generatorreceives from theMapping Generation Interfacein-
formation on the creation, modification or deletion of mappings between source
scheme objects and global scheme objects. This module represents the mappings
specified by the user as assertions of the form

qS v qG

qG v qS
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whereqS andqG are two queries, respectively over the source schemes, and over
the global scheme. QueriesqS are expressed in a query languageLM,S, and
queriesqG are expressed in a query languageLM,G. Intuitively, an assertion
qS v qG specifies that the concept represented by the queryqS over the sources is
put in correspondence with the concept in the global scheme represented by the
queryqG (similarly for an assertion of typeqG v qS). The way these assertions are
formulated, indicates the kind of interpretation of the mappings, i.e.exact, sound
or complete(see Section 2.3 for a formal definition of these interpretations).

TheMapping Generatormanages also storage and update of the mappings in
theMetadata Repository.

The functionalities provided by this module are:

• Creation of a mapping. This functionality receives the information on the
mapping to be created from theMapping Generation Interface; it gener-
ates a representation of the mapping as described above and stores it in the
Metadata Repository.

• Modification of a mapping. This functionality receives the information rel-
ative to the mapping to be modified and the required modifications from the
Mapping Generation Interface; it retrieves the mapping from theMetadata
Repositoryand performs the required modifications. Finally, it storesthe
modified mapping in theMetadata Repository.

• Deletion of a mapping. This functionality receives the information on the
mapping to be deleted from theMapping Generation Interface; it removes
it from theMetadata Repository.

Wrapper Generator

TheWrapper Generatormodule is in charge of both the generation of the wrap-
pers for the sources participating in the data integration system and the storage, in
theMetadata Repository, of source schemes and associations between source re-
lations and wrappers. In particular, the designer specifies, by means of theWrap-
per Generator Interface, the set of sources and the format of the data stored in
the sources; examples of data formats are relational database, XML document,
HTML Web page and so on. The designer might possibly specify also some
source schemes. Then, theWrapper Generatoris activated. For each source,
the wrapper generator checks the data format and activates asuitable wrapper
generation procedure. This procedure first identifies the relations stored in the
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source, then it generates a wrapper for each relation. The result of this procedure
is, therefore, a set of wrappers associated to the relationsexported by the source.
Each source is wrapped such as it is seen from the upper abstraction levels as a re-
lational table. Finally, theWrapper Generatorstores in theMetadata Repository:

• the information on the selected sources, i.e. source location, data format
and so on,

• the source schemes, employed in order to describe the sourceoriginal orga-
nization format in relational form.

• the associations between the source relations and the generated wrappers.

2.4.2 Run-Time System Architecture

Once the data integration system is designed, it can be exploited by the users for
querying activities. It is important to point out that, in general, the user may be
unaware of the sources participating in the system; therefore, the system has to
allow to pose queries on the objects of the global scheme.

Querying activities usually involve:

• Global scheme browsing; in this phase the user can identify which informa-
tion can be extracted from the system.

• Query formulation; in this phase the user is supported by thesystem in the
formulation of the query.

• Query re-formulation; the system rewrites the query posed by the user over
the global scheme into a set of queries over the local schemes.

• Wrapper execution, in which data from the sources involved in the query
are retrieved.

• Query evaluation; in this phase the system composes the results of single
source queries and takes into account possible data inconsistency and in-
completeness to obtain the answer to the user query.

The architecture of the INFOMIX system component devoted toquerying ac-
tivities is shown in Figure 2.2. The user can browse the global scheme by means
of theGlobal Scheme Browser; then she/he can pose the query through theQuery
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Figure 2.2: Architecture of INFOMIX system - Run-Time part
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Formulation Interface. The query is then transferred to theQuery Reformulator
module which is responsible of translating the query posed by the user into a set
of queries over the source schemes taking into account the constraints defined on
the global scheme objects. This module performs also some query optimization;
the result of this phase is a disjunctive datalog program. TheQuery Reformulator
activates both theWrapper Executor, in order to retrieve the data from the sources,
and theQuery Evaluator, in order to execute the query. TheWrapper Executor
stores the retrieved data into anInternal Data Store, whereas theQuery Evalu-
ator first performs some further optimization on the disjunctivedatalog program
received from theQuery Reformulator, then it decompose the query evaluation in
two parts: the first can be executed directly by aDBMSand is relative to the part
of the query which does not need complex reasoning; the second is submitted to
a Disjunctive Datalog Executorand is relative to the part of the query handling
constraints, data incompleteness and data inconsistencies. The results of these
two parts are then composed and presented to the user by theQuery Answer Pre-
sentationmodule. Finally, if the query does not return the expected results, the
designer might analyze the disjunctive datalog program generated by the query
reformulator to see if there are clues to what might be the problem and fix it.

In the following we describe the single modules in detail, one per subsection.

Global Scheme Browser

The Global Scheme Browserallows the final user to suitably inspect the global
scheme by means of graphical navigation facilities. This allows the user to exactly
understand the structure of the global scheme, and analyze the relationships and
dependencies holding among the global elements. In other words, theGlobal
Scheme Browsermakes the user understand which information can be extracted
from the system, and supports him in formulating queries.

Query Formulation Interface

The Query Formulation Interfaceallows users to define their queries over the
global scheme objects. A graphical interface makes this task easier. The user
should be able to specify which interpretation must be exploited for computing
the query answer; possible interpretations areexact, soundandcomplete.

Once the query has been defined, theQuery Formulation Interfacesends it to
theQuery Reformulatorwhich starts the query evaluation task.
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Query Answer Presentation

User queries are answered by means of theQuery Answer Presentationmodule.
This module cares about presenting and organizing queries results, produced by
the Query evaluator, in a suitable format. The user should be able to rearrange
results visualization in order to better carry out analysis. Moreover, the interaction
with a designer could be required, whenever a query does not return expected
results; in particular, a designer should be made able to analyze the disjunctive
datalog programs generated by the query reformulator in order to debug and fix
problems.

The functionalities provided by this module are, therefore, the following:

• Query answer presentation. This functionality receives asinput the query
answer from theQuery Evaluatorand arranges it in a suitable, graphical
way.

• Query answer rearrangement. In this case the user specifies how the query
answer must be presented and the system rearranges the visualization taking
into account user needs.

• Disjunctive Datalog Program Visualization. This functionality lets the de-
signer analyze the disjunctive datalog program generated by theQuery Re-
formulatorto have an insight in the query evaluation process. The disjunc-
tive datalog program is taken from theMetadata Repository.

Query Reformulator

Answers to user queries expressed in terms of the global scheme have to be com-
puted by the system only on the basis of data stored in the sources. For this
purpose, theQuery Reformulatormodule re-express each user query in terms of
a suitable set of queries posed to the sources. In this reformulation process, the
query is unfolded and integrity constraints are taken into account in the formu-
lation of the set of queries. Moreover, the kind of interpretation selected by the
user, i.e.certain answersor possible answersis considered to produce the cor-
rect rules for combining data from different sources possibly storing incomplete
or inconsistent data.

The query reformulator performs some query optimization activities which
aim at selecting a set of data as small as possible from the sources. This allows to
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both minimize source accesses and reduce the amount of data to be analyzed by
theQuery Evaluator.

The reformulated and optimized query is then represented asa disjunctive
datalog program which is given as input to theQuery Evaluator. At the same
time, the reformulated query allows to determine which sources are involved in
the query and which data must be loaded from them. This information is given as
input to theWrapper Executorthat performs suitable calls to the corresponding
wrappers and stores the data into theInternal Data Store.

Finally, the disjunctive datalog program produced in this phase is stored in the
Metadata Repositoryfor future analysis.

The functionalities provided by this module are the following:

• Query Reformulation. This functionality receives in inputthe user query
and a kind of interpretation. The outputs of this functionality are a query ex-
pressed only on the source schemes taking into account the constraints and
the kind of interpretation, and the source data to be loaded by theWrapper
Executor.

• Query Optimization. This functionality receives in input the query gen-
erated by the query reformulation task and produces an optimized query
expressed as a disjunctive datalog program. This program isstored in the
Metadata Repositoryand is given as input to theQuery Evaluator.

Wrapper Executor

The Wrapper Executormodule receives from theQuery Reformulatoran indi-
cation about the relations to be retrieved and, whenever possible, a statement
expressing which subsets of these relations must be retrieved from the sources.
The Wrapper Executoridentifies the wrappers to activate from the associations
between the sources and the wrappers stored in theMetadata Repository. Then,
it sends suitable data requests to each of these wrappers to retrieve needed data.
These data are finally stored in theInternal Data Store. The Wrapper Genera-
tor should be able to take advantage of caching methods in order to speed up its
activities.

Query Evaluator

TheQuery Evaluatormodule is responsible of the query answer generation. This
module receives a disjunctive datalog program from theQuery Reformulatorand
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is activated when theWrapper Executorhas loaded the source data involved in the
query into theInternal Data Store. TheQuery Evaluatoris subdivided in some
sub-modules, namely:

• The Query Evaluation Managerwhich coordinates and handles the other
sub-modules.

• TheDisjunctive Datalog Optimizerwhich performs some optimization tasks.

• TheDBMSwhich executes parts of the query directly on theInternal Data
Store.

• TheDisjunctive Datalog Executorwhich executes automatic reasoning tech-
niques for managing incomplete and inconsistent data.

Both theDBMSand theDisjunctive Datalog Executorare modules implementing
existing software which are incorporated in the INFOMIX system.

The query evaluation task is carried out as follows: theQuery Evaluation Man-
ager receives from theQuery Reformulatora disjunctive datalog program corre-
sponding to an unfolded user query, enriched with information on the constraints
and optimized. First it applies further optimization techniques, based on program
rewriting techniques (e.g. “Magic Set” techniques [8, 58, 61]), on the disjunctive
datalog program to further improve the efficiency of the evaluation task. Then it
singles out two parts of the query: one which does not need automatic reasoning
and that can be evaluated directly from a DBMS; the other one,which takes into
account problems arising in the management of both incomplete and inconsistent
data and constraint satisfaction; the evaluation of this part needs the support of a
disjunctive datalog executor. The two parts are then submitted to theDBMSand
the Disjunctive Datalog Executor, respectively, and their results are composed
by theQuery Evaluator Manager. Both theDBMSand theDisjunctive Datalog
Executorretrieve the data to operate upon from theInternal Data Store.

The final query results are then forwarded as input to theQuery Answer Pre-
sentationmodule.

2.4.3 The Metadata Repository

In both the Design-Time and Run-Time INFOMIX architecturesthe Metadata
Repositoryis exploited to store all information necessary for carrying out data
integration tasks. In particulare, theMetadata Repositoryhave to store:
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• information about sources participating in the data integration system, such
as source location and data format;

• the relations exported by each source and, therefore, source schemes;

• the associations between exported source relations and thecorresponding
wrappers;

• information on generated wrappers;

• the global scheme objects;

• the constraints defined on global scheme objects;

• the mappings between global scheme objects and source scheme objects;

• the disjunctive datalog programs generated during the query reformulation
tasks;

While this list covers all the information needed by the INFOMIX system devised
in this report, it might be not exhaustive; it will be refined as soon as the single
modules of the architecture are fully designed and specified.

DBMS

This module can be implemented by any of the available database management
systems which support full SQL and ODBC. In prototype implementation, among
the available free software products,POSTGRESwas chosen.

Disjunctive Datalog Executor

This module must be implemented by a system allowing to interpret and exe-
cute disjunctive datalog programs. Answer Set ProgrammingSystems (ASP) are
better suited than deductive database systems for data integration, most impor-
tantly because the latter miss the computational power to solve some hard (co-
NP-complete) tasks arising in data-integration. Moreover, among the most widely
used ASP systems, we have noticed that DLV [27] seems to be thebest-suited
computational logic system to be incorporated in a data integration platform, since
it is able to solve the computationally hard problems arising in the context of data
integration, while showing better performance than the other ASP systems over
large input data. Therefore, the INFOMIX system will exploit DLV as Disjunctive
Datalog Executor.
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2.5 Application and Experiments

In order to show the effectiveness of the INFOMIX prototype system, we set up an
application scenario referring to a university information system. Rather than to
invent an abstract academic example, we consider data sources which are available
at the University of Rome “La Sapienza”, and build an information integration
system on top of them. The choice of this application scenario has been driven by
the facts that, on the one hand, real data sources from an enterprise environment
should be used, including web pages, but that on the other hand, such data is very
sensible and companies are often not willing to release their data. Furthermore,
encryption and clearing efforts for such data might be high,and for the case that
technical issues concerning the data need to be resolved only little (if any) support
will be available.

Taking the view of a university as a service-oriented institution whose students
are customers, there is quite some resemblance with an enterprise, though. In the
modeling of the application scenario, we thus focus on data comprising students,
professors, and exams in the different faculties of the university.1

Our aim is to collect all the information dispersed either over many data
sources within the different secretary offices of the faculties or over the web pages
of “La Sapienza”, and to build a data integration systemI0 = 〈G0,S0,M0〉 pro-
viding transparent access to this information.

There are three legacy databases in relational format, eachof which comprises
a number of relations; in total, there are about 25 differentsuch relations, each of
which can be viewed as a logical source.

Besides these legacy databases, there are numerous web pages on the web
servers of “La Sapienza” which provide a wealth of informations on departments,
people, offices etc. These informations are either providedexplicitly on web pages
itself, or can be obtained through simple query interfaces (returning, e.g. as the one
onhttp://www.amm.uniroma1.it/elenco/, the phone number and the de-
partment in which a given person works). For this purpose, a number of wrappers
have been designed and developed using LiXto tools which extract interesting
informations from the web pages and provide them as virtual source data.

In the following three sections, we describe the componentsof the data inte-
gration systemI0 = 〈G0,S0,M0〉.

1Even for this application, encryption of sensitive personal data is required by Italian law.



Chapter 2. Data Integration Systems 80

2.5.1 Global Schema

The global schemaG0 = 〈H0, C0〉 which can be queried by an end user (e.g.,
administrative staff) comprises the following relations (inH0):

student(S ID, F irstName, SecondName, CityOfResidence,

Address, T elephone, HighSchoolSpecialization)
enrollment(S ID, FacultyName, Y ear)
course(C Code, Description)
professor(ProfF irstName, ProfSecondName)
university(U Name, City)
exam record(S ID, C Code, ProfF irstName, ProfSecondName,

Mark, Date, CourseY ear)
teaching(C Code, ProfF irstName, ProfSecondName,

AcademicY ear)
student course plan(SCP Code, S ID, P lanType, RequestDate,

Status)
plan data(SCP Code, C Code, CourseType)
faculty(FacultyName, deanF irstName, deanLastName)
department(DeptName)
university degree(Degree, FacultyName)
employee(EmpFirstName, EmpSecondName, Structure, Phone)
secretary office(FacultyName, P lace, Phone, Email)

Notice that the above schema models a situation in which there are a number
of Faculties each one having its own secretary’s office and its own dean. Each
faculty comprises a set of university degrees2. Finally, students enroll in a faculty
in a given year, and then, they may take some examinations.

The schemaG0 is also equipped with the setC0 of global constraints.C0 con-
tains

2University degree corresponds to the Italiancorso di laurea. For example, Computer Engi-
neering is a course degree of the faculty of Engineering
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• the following key constraints:

key(student) = {1}
key(enrollment) = {1}
key(course) = {1}
key(professor) = {1, 2}
key(university) = {1}
key(exam record) = {1, 2, 3, 4}
key(student course plan) = {1}
key(plan data) = {1, 2}
key(faculty) = {1}
key(department) = {1}
key(university degree) = {1}
key(employee) = {1, 2}
key(secretary office) = {1}.

• the following inclusion dependencies:

enrollment[1] ⊆ student[1]
enrollment[2] ⊆ faculty[1]
exam record[1] ⊆ student[1]
exam record[2] ⊆ course[1]

exam record[3, 4] ⊆ professor[1, 2]
teaching[2, 3] ⊆ professor[1, 2]
teaching[1] ⊆ course[1]

student course plan[2] ⊆ student[1]
plan data[1] ⊆ student course plan[1]
plan data[2] ⊆ course[1]

university degree[2] ⊆ faculty[1]
secretary office[1] ⊆ faculty[1]

professor[1, 2] ⊆ teaching[2, 3]
teaching[1] ⊆ exam record[2].

The last two dependencies impose that a professor has to teach at least one
course, and that for a course taught there must exist at leastone registered
exam, respectively. Other dependencies are classical foreign keys, as they
are produced by a standard design process for relational databases. We point
out that the inclusion dependencies specified on the schema forms cycles
(see for example the cycle involving relationteaching, professor,
andexam record). Nonetheless, the schema is non-key-conflicting [49].
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• the following exclusion dependencies

student[2, 3] ∩ professor[1, 2] 6= ∅,
employee[4] ∩ secretary office[3] 6= ∅,

which state that a student cannot be also a professor, and that phone numbers
of employees and secretary offices must be different.

2.5.2 Data Sources

The system integrates data coming from three legacy databases containing infor-
mation about students, professors and exams at the University “La Sapienza” of
Rome, and data retrieved from several web sites of the same university. In the
following, we separately describe these two main kinds of data sources.

Legacy Databases

We will denote in the following the three legacy databases with DB1, DB2 and
DB3. The specification of the source schema is reported below; the table names
and attributes are in Italian, as in the original sources.3

#source schema DB1

studente(MATRICOLA,COGNOME,NOME,DATA_NASCITA,LUOGO_NASCITA,PROVINCIA_NASCITA,
INDIRIZZO_RECAPITO,NUMERO_CIVICO_RECAPITO,CAP_RECAPITO,CITTA_RECAPITO,
PROVINCIA_RECAPITO,PREFISSO_RECAPITO,TELEFONO_RECAPITO,INDIRIZZO_RESIDENZA,
NUMERO_CIVICO_RESIDENZA,CAP_RESIDENZA,CITTA_RESIDENZA,PROVINCIA_RESIDENZA,
PREFISSO_RESIDENZA,TELEFONO_RESIDENZA,CODICE_FISCALE,TIPO_DIPLOMA,
VOTO_DIPLOMA)

diploma_maturita(CODICE,DESCRIZIONE)

carriera(MATRICOLA,ANNO_ACCADEMICO,ANNO_DI_CORSO,TIPO_ISCRIZIONE,FACOLTA,
CORSO_DI_LAUREA,UNIVERSITA,STATO_DI_CARRIERA,VALIDITA_ANNO_CARRIERA,
FASCIA_CONTRIBUTIVA,COMPONENTI_NUCLEO_FAMILIARE)

facolta(CODICE_UNIVERSITA,CODICE,DESCRIZIONE)

corso_laurea(SEDE_UNIVERSITA,FACOLTA,CODICE,DESCRIZIONE)

universita(CODICE,SEDE,DESCRIZIONE)

stato_carriera(CODICE,DESCRIZIONE)

iscrizione(CODICE,DESCRIZIONE)

3Notice that the three databases (for the sake of easiness implemented as a single relational
database) have been constructed from a set of original text files. Data cleaning has been manually
performed on the original files.
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regolarita_esame(CODICE,DESCRIZIONE)

esame(CODICE_FACOLTA,CODICE,DESCRIZIONE,ATTIVAZIONE)

insegnamento(CODICE_FACOLTA,CODICE,DESCRIZIONE)

insegnamento_esame(FACOLTA_INSEGNAMENTO,CODICE_INSEGNAMENTO,FACOLTA_ESAME,
CODICE_ESAME)

dati_esami(MATRICOLA,CODICE_INSEGNAMENTO,CODICE_ESAME,DATA,VOTO,REGOLARITA,
ANNO_ACCADEMICO)

laurea(MATRICOLA,TITOLO_TESI,DATA,VOTO,RELATORE)

#source schema DB2

esame_ingegneria(CODICE,DESCRIZIONE,TIPO,ANNO_ESAME)

tipo_esame(CODICE,DESCRIZIONE)

piano_studi(CODICE,MATRICOLA,ORIENTAMENTO,DATA_PRESENTAZIONE,STATO,NOTE,
PROPRESP,BASE,INDIRIZZO_A,INDIRIZZO_B)

stato(CODICE,DESCRIZIONE)

orientamento(CODICE,DESCRIZIONE)

dati_piano_studi(CODICE,CODICE_ESAME,NOME)

affidamenti_ing_informatica(CODICE_ESAME,CODICE_PROFESSORE,ANNO_ACCADEMICO)

dati_professori(CODICE,COGNOME,NOME)

#source schema DB3

verbali_esami_diploma(MATRICOLA,COGNOME,NOME,ESAME,DOCENTE,SESSIONE,APPELLO,
ANNO,MODALITA,VOTO,LODE,ANNO_ACCADEMICO)

modalita(CODICE,DESCRIZIONE)

sessione(CODICE,DESCRIZIONE)

professore(CODICE,NOME,COGNOME,MATERIA)

esame_diploma(CODICE,DESCRIZIONE)

Here we report the number of tuples stored in each source relation, specifying
to which database the source belongs.
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carriera 50,633 DB1

corso laurea 1,716 DB1

dati esami 19,827 DB1

diploma maturita 69 DB1

esame 17,144 DB1

facolta 511 DB1

insegnamento 4,722 DB1

insegnamento esame 7,204 DB1

iscrizione 5 DB1

laurea 397 DB1

regolarita esame 4 DB1

stato carriera 15 DB1

studente 16,082 DB1

universita 163 DB1

affidamenti ing informatica 402 DB2

dati piano studi 27,130 DB2

dati professori 67 DB2

esame ingegneria 67 DB2

orientamento 29 DB2

piano studi 1,089 DB2

stato 3 DB2

tipo esame 3 DB2

esame diploma 28 DB3

modalita 2 DB3

professore 146 DB3

sessione 4 DB3

verbali esami diploma 17,001 DB3

Web Sources

In addition, we have identified several relevant web pages provided by the uni-
versity and its faculties and departments. The main page of the university is
http://www.uniroma1.it/, from which all of these pages can be reached.
We will next describe the pages and data available from them in a concise way.

In particular, we will not report the INFOMIX Source Data Format (ISDF)
schema of these web sources in detail and refer to the appendix. Instead we re-
port the more concise Internal Integration Data Format (IIDF) schema of these
sources. Note that these web wrappers for technical reasonspossess a non-flat
ISDF schema (cf. Appendix). When applying the standard conversion from ISDF
to IIDF, as defined in [26], two relations are generated: One holds only newly cre-
ated IDs, which are then used as foreign keys in a second relation, which holds the
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real data. The first relation is clearly redundant and a technical artifact, and hence
we do not report it; only the second relation containing the mentioned foreign key
attribute is given below.

• http://www.uniroma1.it/facolta/default.htm

This web page contains a collection of some of the faculties of the univer-
sity. For each faculty, it contains its name, the URL of its web page, and
information on its dean (comprised of title, first name and surname). The
source schema in relational format is

facultyWeb__faculty(id_fk, facultyName, facultyURL,
deanTitle, deanFirstName, deanLastName)

• http://w3.ing.uniroma1.it/dip/elenco.htm

http://www.arc1.uniroma1.it/organizzazione/dipartimenti.

htm

http://www.eco.uniroma1.it/dipartimenti.htm

http://www.filosofia.uniroma1.it/dipartimenti/index.asp

http://www.comunicazione.uniroma1.it/dipartimenti.asp

http://www.scienzemfn.uniroma1.it/cdipa.htm

http://www.sta.uniroma1.it/strutture/dipartimenti.jsp

These are web pages of some faculties, each of them lists departments of the
respective faculty. A lot of information about departmentscan be wrapped,
such as the name of the department, the URL of its home page, its director,
its address, the faculty it belongs to, and contact information such as fax
and phone numbers and an email address. The source schema in relational
format is

departmentWeb__department(id_fk, deptName, faculty, deptURL,
deptFax, address, eMail, deptPhone, deptabbrname)

• http://www.uniroma1.it/dip\_ist/default.htm

This web page contains a university-wide list of departments. Here, only
the name of the department and the URL of its homepage are available, the
source schema in relational format is therefore much more restricted:

departmentWeb2__department_w00(id_fk, deptURL, deptName)

• http://www.uniroma1.it/studenti/corsi/default.htm

This web page contains a list of links to web pages, on which all the univer-
sity degrees of one faculty are listed. Note that in our terminology, “school”
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is equivalent to the term “university degree” of the global schema. One can
therefore identify the name of the school, the name of the associated faculty,
and the URL of the web page of the school. The source schema in relational
format is

schoolWeb__school(id_fk, schoolName, facultyName, schoolURL)

• http://w3.ing.uniroma1.it/ccl/elenco.htm

This web page contains a list of schools offered by the Facoltà di Ingegneria.
The source schema does not explicitly contain the faculty name.

schoolWeb2__school_w01(id_fk, schoolName, schoolURL)

• http://www.uniroma1.it/studenti/corsi/docenti.asp

This web page contains a listing of the professors of the university (first
name, surname, and a title). For each professor, there is also a link to its
personal home page, from which one can usually obtain further data, such
as an email address, phone and fax numbers. While the personal web pages
usually also include an address, it is much harder to identify, since the struc-
ture of the web page is unknown. The address is therefore not wrapped. The
source schema in relational format is

professorWeb__professor(id_fk, surName, firstName, title,
homePage, phone, fax, eMail, address)

• http://www.sociologia.uniroma1.it/offerta/ElencoDocenti.

asp?IdQualifica=3

http://w3.uniroma1.it/drsfp/docenti/index.shtml

http://w3.ing.uniroma1.it/\%7Espacedpt/docenti.html

http://www.dau.uniroma1.it/organizzazione/organizzazione.

htm

These web pages list professors of four faculties, obtaining similar informa-
tion as from the university-wide listing. An advantage hereis that contact
information need not be wrapped from personal web pages. Hence also the
address can be provided in the schema:

professorWeb2_professor_w00(id_fk, surName, firstName, title,
homePage, phone, fax, eMail, address)
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• http://www.amm.uniroma1.it/elenco/

This page is actually a form, and the wrapper proceeds by submitting values
for departments (stored in a resource local to the wrapper) and analyzing
the resulting web pages. These contain an entry for each employee of the
department, which is made up of the first and surname and an external and
internal phone number. The source schema in relational format is

employeeWeb__employee(id_fk, surName, firstName, department,
extPhone, intPhone)

• https://www.infostud.uniroma1.it/segreterie.asp

Also this page is a form. The wrapper submits values for faculty and ana-
lyzes the resulting data, which contains the location, phone, email address
and office hours of the respective secretary’s offices. The source schema in
relational format is

secretaryWeb__secretary(id_fk, faculty, place, phone, eMail,

• http://www2.unibo.it/infostud/fare/eurouni/itauni/italia.

htm

This web page is the only one which does not reside on a server of the Uni-
versity “La Sapienza” of Rome. It has a listing of all the universities of Italy,
containing its name, the city it is located, and the URL of itsweb page. The
source schema in relational format is

universityWeb__university(id_fk, name, city, homePage)

• http://www.dis.uniroma1.it/alphaindex.php?file=phdstud

A page with the PhD students of the DIS department. Apart fromthe name,
one can obtain further information, such as phone, email, homepage and at
which site the PhD student is at. The source schema in relational format is

studentWeb__student(id_fk, homePage, site, phone,
lastName, firstName, eMail)

• http://www.mat.uniroma1.it/persone/INDEX

A page with the PhD students of the mathematics department. Here, no
phone numbers and site information can be obtained, otherwise it is similar
to the previous wrapper. The source schema in relational format is
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doctorantWeb__doctorant(id_fk, eMail, firstName, lastName,
homePage)

Note that we do not use the last two sources at the moment, as noconcept of
PhD student currently exists in the global schema. However,we still report them
here, as they have been created already and could be used in a future version of
the scenario.

2.5.3 Mapping

In this section, we describe the mappingM0 of the integration systemI0.
We recall that in the general formal framework for information integration

underlying INFOMIX, the mapping comprises expressions of the form (1)qS v

qG and (2)qG v qS, respectively, whereqG andqS are queries over the global
schema and the source schema, respectively.

As for the first INFOMIX prototype, the mapping language consists of GAV
mappings, that is, expressions of the form (1) where in essence, qG is a single
global relation,rG, and such thatqS amounts to a union of conjunctive queries
(UOCs). In principle, for GAV integration no special constraints would need to
be imposed onqS to maintain the algorithmic feasibility of the approach apart
from decidability of the query language over the sources. However, on the one
hand, union of conjunctive queries constitute already an expressive fragment with
respect to practical applications and, on the other hand, seems more amenable
to effective optimization techniques than richer languages. Furthermore, this as-
sumption is no real limitation, since it is easily possible to transform any data inte-
gration system using general GAV mappings to one in which only GAV mappings
occur that use UOCs, by composing wrappers. Note that such a transformation
would not be feasible in a LAV setting.

We note that formally, in the GAV mappingqS v rG the queryqS maps data
over the source schemataS0, which are formulated in the INFOMIX Source Data
Format (ISDF), to data in the INFOMIX Global Data Format (IGDF), which is a
relational format. Since ISDF is a fragment of XML-Schema, this means that for
specifying queriesqS, a special-purpose XML query language might be defined,
or alternatively a suitable fragment of an arbitrary existing XML query language
might be used to map the XML data from the sources to the XML rendering of a
relation.

We refrain here from defining such a language or fragment of anexisting XML
query language. Instead, we report the mappings for the internal representation
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of the sources (IIDF) which is in relational format, in Datalog like syntax. We
recall that the internal representation is obtained by a simple mapping from ISDF
to IIDF, which in particular for relational raw data behind avirtual ISDF source
just recreates the respective relational schema (modulo type conversions). The
design of a data integration system is in the hands of an expert administrator, who
might

For the specification of the mappingM0 in the “La Sapienza” scenario, we
use here the following notation. Each assertion

qS v rG,

whereqS is of the form

q(~x)← q1(~x, ~y1) ∨ · · · ∨ qk(~x, ~yk),

and eachqi(~x, ~yi) is a conjunctive query, is represented by rules

r_G(X1,X2,...,Xm) :- q_1(X1,X_2,...,Xm,Y11,...,Y1m_1)
...

r_G(X1,X2,...,Xm) :- q_k(X1,X_2,...,Xm,Yk1,...,Ykm_k)

where~x = X1,...,Xm and~yi = Yi1,...,Yim i, for all i = 1, . . . , k.

In the bodies of rules, we use “” for anonymous variables, i.e., for variables
which occur only once in that rule.

The mappings are now defined as follows.

student(X1,X2,X3,X4,X5,X6,X7) :-
studente(X1,X3,X2,_,_,_,_,_,_,_,_,_,X6,X5,_,_,X4,_,_,_,_,Y,_),
diploma_maturita(Y,X7).

enrollment(X1,X2,X3) :- carriera(X1,X3,_,_,Y,_,_,_,_,_,_), facolta(_,Y,X2).

course(X1,X2) :- esame(_,X1,X2,_).
course(X1,X2) :- esame_diploma(X1,X2).

professor(X1,X2) :- professore(_,X1,X2,_).
professor(X1,X2) :- dati_professori(_,X1,X2).
professor(X1,X2) :- professorWeb__professor(_,X1,X2,_,_,_,_,_,_).
professor(X1,X2) :- professorWeb2__professor_w00(_,X1,X2,_,_,_,_,_,_).

university(X1,X2) :- universita(_,X2,X1).
university(X1,X2) :- universityWeb__university(_,X1,X2,_).

exam_record(X1,X2,Z,W,X4,X5,Y) :- dati_esami(X1,_,X2,X5,X4,_,Y),
affidamenti_ing_informatica(X2,X3,Y),
dati_professore(X3,Z,W).

teaching(X1,Z,W,X3) :- affidamenti_ing_informatica(X1,X2,X3),
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dati_professore(X2,Z,W).

student_course_plan(X1,X2,X3,X4,X5) :- piano_studi(X1,X2,Y1,X4,Y2,_,_,_,_,_),
orientamento(Y1,X3), stato(Y2,X5).

plan_data(X1,X2,X3) :- dati_piano_studi(X1,X2,_),
esame_ingegneria(X2,_,Y2,_), tipo_esame(Y2,X3).

faculty(X1,X2,X3) :- facultyWeb__faculty(_,X1,_,_,X2,X3).

department(X1) :- departmentWeb__department(_,X1,_,_,_,_,_,_,_).
department(X1) :- departmentWeb2__department_w00(_,_,X1).

university_degree(X1,X2) :- schoolWeb__school(_,X1,X2,_).
university_degree(X1,’Facolta di Ingeneria’) :-

schoolWeb2__school_w01(_,X1,_).

employee(X1,X2,X3,X4) :- employeeWeb_employee(_,X2,X1,X3,_,X4).

secretary_office(X1,X2,X3,X4) :- secretaryWeb__secretary(_,X1,X2,X3,X4,_).

2.5.4 Queries

We have tested the system with10 queries, which we describe below. Their nota-
tion is in the INFOMIX Query Language (IQL), which is a subsetof Datalog.

(Q1) This query asks for the exams in the exam plan of the student with ID
09089903.

q1(D) :- student_course_plan(C,’09089903’,_,_,_),

plan_data(C,E,ET), course(E,D).

(Q2) This query asks for the exams done by the student with ID 09089903.

q2(CD,D) :- exam_record(’09089903’,C,_,_,_,D,_),

course(C,CD).

(Q3) This query asks for the names of professors that teach a course.

q3(Pfn,Pln) :- teaching(_,Pfn,Pln,_).

(Q4) This query asks for the personal data of the student with ID 09089903. Such
queries are frequently posed by university authorities whohave to contact a
student.

q4(Sfn,Sln,Cor,Add,Tel,Hss) :-

student(’09089903’,Sfn,Sln,Cor,Add,Tel,Hss).
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(Q5) This query returns the information about students and theirexam plans with
status ”APPROVATO SENZA MODIFICHE”, for students who have as first
name ZNEPB4.

q5(SID,Sln,R) :-

student(SID,’ZNEPB’,Sln,Cor,Add,Tel,Hss),

student_course_plan(SCP,SID,T,R,

’APPROVATO SENZA MODIFICHE’).

(Q6) This query asks for Universities in ROMA.

q6(U) :- university(U,’ROMA’).

(Q7) This query retrieves the information about students livingin ROMA having
RETI LOGICHE in their their exam plans.

q7(F,S) :- student(SID,F,S,’ROMA’,A,T,H),

student_course_plan(SCID,SID,PT,R,ST),

plan_data(SCID,CID,CT),

course(CID,’RETI LOGICHE’).

(Q8) This query asks for professors who teach or have taught courses which were
not taught in 1990.

q8(Pfn,Pln) :- teaching(C,Pfn,Pln,_), not t90(C).

t90(C) :- teaching(C,Pfn,Pln,1990).

(Q9) This query asks for cities in which at least two universitiesare located.

q9(C) :- university(N,C),

#count{N1:university(N1,C)} >= 2.

4Student names have been encrypted for privacy reasons.
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Chapter 3

Process Mining

3.1 Workflow Mining

During the last decade workflow management technology [74, 71, 29, 44, 47]
has become readily available. Workflow management systems such as Staffware,
IBM MQSeries, COSA, etc. offer generic modeling and enactment capabilities
for structured business processes. By making process definitions, i.e., models de-
scribing the life-cycle of a typical case (workflow instance) in isolation, one can
configure these systems to support business processes. These process definitions
need to be executable and are typically graphical. Besides pure workflow man-
agement systems many other software systems have adopted workflow technol-
ogy. Consider for example ERP (Enterprise Resource Planning) systems such as
SAP, PeopleSoft, Baan and Oracle, CRM (Customer Relationship Management)
software, SCM (Supply Chain Management) systems, B2B (Business to Busi-
ness) applications, etc. which embed workflow technology. Despite its promise,
many problems are encountered when applying workflow technology. One of the
problems is that these systems require a workflow design, i.e., a designer has to
construct a detailed model accurately describing the routing of work. Modeling a
workflow is far from trivial: It requires deep knowledge of the business process at
hand (i.e., lengthy discussions with the workers and management are needed) and
the workflow language being used.

93



Chapter 3. Process Mining 94

To compare workflow mining with the traditional approach towards workflow
design and enactment, consider the four phases composing the traditionalwork-
flow life cycle:

(A) workflow design

(B) workflow configuration

(C) workflow enactment

(D) workflow diagnosis

In the traditional approach the design phase is used for constructing a workflow
model. This is typically done by a business consultant and isdriven by ideas
of management on improving the business processes at hand. If the design is
finished, the workflow system (or any other system that is “process aware”) is
configured as specified in the design phase. In the configuration phases one has to
deal with limitation and particularities of the workflow management system being
used. In the enactment phase, cases (i.e., workflow instances) are handled by the
workflow system as specified in the design phase and realized in the configuration
phase. Based on a running workflow, it is possible to collect diagnostic infor-
mation which is analyzed in the diagnosis phase. The diagnosis phase can again
provide input for the design phase thus completing the workflow life cycle. In
the traditional approach the focus is on the design and configuration phases. Less
attention is paid to the enactment phase and few organizations systematically col-
lect runtime data which is analyzed as input for redesign (i.e., the diagnosis phase
is typically missing).

The goal of workflow mining is to reverse the process and collect data at run-
time to support workflow design and analysis. Note that in most cases, prior to
the deployment of a workflow system, the workflow was already there. Also note
that in most information systems transactional data is registered (consider for ex-
ample the transaction logs of ERP systems like SAP). The information collected
at run-time can be used to derive a model explaining the events recorded. Such a
model can be used in both the diagnosis phase and the (re)design phase.

Modeling an existing process is influenced by perceptions, e.g., models are
often normative in the sense that they state what “should” bedone rather than
describing the actual process. As a result models tend to be rather subjective. A
more objective way of modeling is to use data related to the actual events that
took place. Note that workflow mining is not biased by perceptions or normative
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behavior. However, if people bypass the system doing thingsdifferently, the log
can still deviate from the actual work being done. Nevertheless, it is useful to
confront man-made models with models discovered through workflow mining.

Closely monitoring the events taking place at runtime also enablesDelta anal-
ysis, i.e., detecting discrepancies between the design constructed in the design
phase and the actual execution registered in the enactment phase.Workflow min-
ing results in an “a posteriori” process model which can be compared with the “a
priori” model. Workflow technology is moving into the direction of more opera-
tional flexibility to deal with workflow evolution and workflow exception handling
[74, 76, 3, 19, 28]. As a result workers can deviate from the prespecified workflow
design. Clearly one wants to monitor these deviations. For example, a deviation
may become common practice rather than being a rare exception. In such a case,
the added value of a workflow system becomes questionable andan adaptation is
required. Clearly, workflow mining techniques can be used tocreate a feedback
loop to adapt the workflow model to changing circumstances and detect imperfec-
tions of the design.

3.2 Process Mining

The goal of workflow mining is to extract information about processes from trans-
action logs. Instead of starting with a workflow design, we start by gathering in-
formation about the workflow processes as they take place. Weassume that it
is possible to record events such that (i) each event refers to a task (i.e., a well-
defined step in the workflow), (ii) each event refers to a case (i.e., a workflow in-
stance), and (iii) events are totally ordered. Any information system using trans-
actional systems such as ERP, CRM, or workflow management systems will offer
this information in some form. Note that we do not assume the presence of a work-
flow management system. The only assumption we make, is that it is possible to
collect workflow logs with event data. These workflow logs areused to construct
a process specification which adequately models the behavior registered.

The termprocess miningrefers to methods for distilling a structured process
description from a set of real executions. Because these methods focus on so-
called case-driven process that are supported by contemporary workflow manage-
ment systems, we also use the term workflow mining.

To illustrate the principle of process mining in more detail, we consider the
workflow log and a corresponding process model shown in Figure 3.1. This log
abstracts from the time, date, and event type, and limits theinformation to the
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s1 : abdelmo
s2 : achino
s3 : acihno
s4 : abdfmo
s5 : abdgmo

Figure 3.1: A workflow log and a corresponding model.

order in which tasks are being executed. The log contains information about 5
cases (i.e., workflow instances). Each case starts with the execution ofa and ends
with the execution ofo. It is possible to notice that there are some activities whose
execution prevents the execution of other ones in the same process instance (e.g.
b andc or e,f andg). Furthermore, ifb is executed, alsoh and i are executed in
any order, this let us hypotize thath andi can be considered as parallel activities.
Based on the information shown in the table and by making someassumptions
about the completeness of the log (i.e., assuming that the cases are representative
and a sufficient large subset of possible behaviors is observed), we can deduce, for
example, the shown process model. It is represented by aModel Graph1 consist-
ing in an oriented graph where nodes represent activities and contain information
about the flow management; edges connecting two activities show which activi-
ties can be executed after the execution of their source activity. In order to mark
starting and ending activities, a triangle pointing right (resp. left) can be used. A
boolean function, and eventually a numeric constraint, canbe associated to edges
outgoing (split), or incoming (join), from the same node. This filters the flow
stating which activities can be executed or waited (in case of incoming edges).
For example, edges outgoing froma have axor split condition stating that only
one activity amongb andc can be executed aftera. Otherwise, edges incoming
in n have anand join condition stating that bothh and i have to complete their

1Beside with Model Graph, other graphical representation formalism for workflow exist as
Petri nets[55, 75] andEvent-driven Process Chain(EPC) [73, 64].
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execution before startingn.
The table shown in Figure 3.1 contains the minimal information we assume to

be present. In many applications, the workflow log contains atime stamp for each
event and this information can be used to extract additionalcausality information.
In addition, a typical log also contains information about the type of event, e.g., a
start event (a person selecting an task from a worklist), a complete event (the com-
pletion of a task), a withdraw event (a scheduled task is removed), etc. Moreover,
we are also interested in the relation between attributes ofthe case and the actual
route taken by a particular case. For example, when handlingtraffic violations: Is
the make of a car relevant for the routing of the corresponding traffic violation?
(E.g., People driving a Ferrari always pay their fines in time.) For this simple
example, it is quite easy to construct a process model that isable to regenerate the
workflow log (e.g., Figure 3.1). For more realistic situations there are however a
number of complicating factors:

• For larger workflow models mining is much more difficult. For example,
if the model exhibits alternative and parallel routing, then the workflow
log will typically not contain all possible combinations. Consider 10 tasks
which can be executed in parallel. The total number of interleavings is 10! =
3628800. It is not realistic that each interleaving is present in the log. More-
over, certain paths through the process model may have a low probability
and therefore remain undetected.

• Workflow logs will typically contain noise, i.e., parts of the log can be in-
correct, incomplete, or refer to exceptions. Events can be logged incorrectly
because of human or technical errors. Events can be missing in the log if
some of the tasks are manual or handled by another system/organizational
unit. Events can also refer to rare or undesired events. Consider for example
the workflow in a hospital. If due to time pressure the order oftwo events
(e.g., make X-ray and remove drain) is reversed, this does not imply that this
would be part of the regular medical protocol and should be supported by
the hospital’s workflow system. Also two causally unrelatedevents (e.g.,
take blood sample and death of patient) may happen next to each other
without implying a causal relation (i.e., taking a sample did not result in the
death of the patient; it was sheer coincidence). Clearly, exceptions which
are recorded only once should not automatically become partof the regular
workflow.

• The table in Figure 3.1 only shows the order of events withoutgiving in-
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formation about the type of event, the time of the event, and attributes of
the event (i.e., data about the case and/or task). Clearly, it is a challenge to
exploit such additional information.

3.3 Existing Tools

In the last few years, several efforts have been spent by the research community
as well as by the industry to implement robust and scalable platforms for process
mining applications, where various mining techniques are integrated and made
available to the users. A breakthrough in the design of such kinds of systems
was represented by theProM framework [80]. Indeed, differently from earlier
approaches (see, e.g., [77, 83] and the references therein), ProM comes as an
open and extensible architecture, which enables users to write and import their
own mining algorithms into the framework as plug-ins. This capability tremen-
dously enriches the power of the entire system, which exports a virtually unbound
set of resources to complain a wide range of process mining applications (e.g.,
control-flow mining, decision tree induction, or clustering, to cite a few) and anal-
ysis tasks (e.g., verification of process models, performance analysis, or statistical
evaluations). Thanks to this valuable packaging,ProM is the most advanced tool
for process mining applications, and some successful industrial experiences ex-
ploiting its mining capabilities have already been discussed in the literature (see,
e.g.,[78, 69]).

3.3.1 The ProM Framework

In this section, we provide a minimal overview of the architecture of ProM Frame-
work. The basic module of the architecture is the Log filter component, which
is able to read process log encoded in XML format. This component exports a
wide range of capabilities to inspect a log (e.g., show statistical information orig-
inators, activities, data appearing) and perform cleaningtasks (e.g., remove all
events or traces with a specific event type) before the actualmining starts. Ad-
ditionally, ProM implements different plug-ins aimed to read and load log and
model coming from different transactional systems, which usually use different
representation formats. ProM exports facilities for importing data from manage-
ment systems such as Staffware, Oracle BPEL, Eastman Workflow, WebSphere,
InConcert, FLOWer, Caramba, and YAWL, simulation tools such as ARIS, EPC
Tools, Yasper, and CPN Tools, ERP systems like PeopleSoft and SAP, analysis
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tools such as AGNA, NetMiner, Viscovery, AlphaMiner, and ARIS PPM. On the
top of the above modules, ProM define a bunch of transactionalplug-in covering
different tasks. Four different transactional plug-ins are available:

• Mining plug-ins. ProM implements a rich bunch of mining plug-ins to an-
swer common tasks in process mining analysis. Notably, ProMprovides
plug-ins for each of the three process mining perspectives (i.e. process per-
spective, organization perspective, and case perspective). Additionally, sup-
port to data decision mining has been recently added. For theprocess per-
spective, various plug-ins are available. The following represent the most
relevant:

– α-algorithm. It implements the basicα-algorithm and all its exten-
sions as developed by the authors .

– Tshinghua-α-algorithm. This plug-in uses timestamps in the log files
to construct a Petri net.

– Genetic algorithm. This plug-in is based on a recent research guide-
line using genetic algorithms to tackle possible noise in the log file. Its
output format is a heuristics net (which can be converted into an EPC
or a Petri net).

– Heuristics Miner. This plug-in encodes strategies to deal with noise
and incompleteness in the log.

– Multi-phase mining. It implements a series of process mining algo-
rithms that use instance graphs (comparable to runs) as an intermediate
format. The two-phase approach resembles the aggregation process in
Aris PPM.

For the organizational perspective, some plug-ins are available. We focus
here on the following:

– Social network miner. which uses the log file to determine a social
network of people [72]. It requires the log file to contain thespecifi-
cation about the originators of activities.

– Semantic Organizational Miner. It uses the semantic information in
the log to mine groups of users based on task similarity.

– Role Hierarchy Miner. This plug-ins uses the information about
which originators have executed which tasks to identify whoare the



Chapter 3. Process Mining 100

specialist/generalist for a given process. The mined taxonomy can be
exported as a WSML[13] ontology with concepts, is-relationships and
instances.

Finally, for the decision mining perspective, also one plug-in is available:

– Decision Miner. plug-in determines the decision points contained in
a Petri net model (e.g., a task is performed only if a condition holds),
and specifies the possible decisions with respect to the log while being
able to deal with invisible and duplicate activities in the way described
in [60]. While the Decision Miner formulates the learning problem,
the actual analysis is carried out with the help of the J48 decision tree
classifier, which is the implementation of the C4.5 algorithm [62] pro-
vided by the Weka software library [85].

• Analysis plug-ins. These plug-ins implement further mining analysis on the
result produced by a mining plug-in. We cite here:

– LTL Checker. This plug-in checks a Linear Temporal Logic (LTL)
formula on a log (e.g., test if a given originator executes a specific task
of the process).

– Conformance Checker.It evaluates the conformance between a given
process model (encoded in terms of a Petri net) and a log.

– Performance Analysis with Petri net.This plug-in run statistical tests
on a Petri net model which exploit time-related aspects of the process
instances. As an example, this plug-in can evaluate the routing prob-
abilities for each split/join task, or the average/minimum/maximum
throughput time of cases.

• Export plug-ins. These plug-ins implement some “save as” functionality
for data objects (such as graphs). For example, facilities to export models
in EPCs, Petri nets (e.g., in PNML format), spreadsheets areprovided.

• Conversion plug-ins.These plug-ins implement basic conversions between
different data formats, e.g., from EPCs to Petri nets.

The results coming from applying transactional plug-ins are stored inResult Frame
objects, which can be used for visualization or conversion.
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PROMETHEUS

4.1 Introduction

In the context of enterprise automation,process mininghas recently emerged as
a powerful approach to support the analysis and the design ofcomplex business
processes [77]. In a typical process mining scenario, a set of traces registering
the activities performed along several enactments of a transactional system—such
as a Workflow Management (WFM), an Enterprise Resource Planning (ERP), a
Customer Relationship Management (CRM), a Business to Business (B2B), or a
Supply Chain Management (SCM) system—is given to hand, and the goal is to
(semi)automatically derive a model explaining all the episodes recorded in them.
Eventually, the “mined” model can be used to design a detailed process schema
capable to support forthcoming enactments, or to shed lights into its actual behav-
ior. Thus, process mining is particularly useful when no formal description of the
process is available beforehand, or when its observed enactment deviates from the
expected one (see, e.g., [41, 25]).

In this chapter, we move from the success story ofProM in order to develop
PROMETHEUS, a novel Suite for Process Mining applications that, whileshar-
ing with ProM the perspective of the open and extensible architecture, introduces
three innovative designing elements to meet the desiderataof flexibility and scal-
ability arising in actual industrial scenarios. Indeed, PROMETHEUS has been
specifically conceived to support:

(1) the definition of complex mining applications, where various mining tasks
can be combined and automatically orchestrated at run-time.

Process mining applications may involve dozens of different tasks, ranging
from data acquisition, to data manipulation, information extraction based

101
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on different mining algorithms, recombination of mining results, and visu-
alization. These different kinds of task can be well managedin the ProM
framework, but at the price of requiring human interventionin their coordi-
nation. Indeed,ProM supports the execution of one task at time, so that to
construct complex mining applications requires manually invoking the var-
ious tasks by collecting and storing each intermediate result (in the ProM
workspace) and by reusing them as the input for some further tasks. In or-
der to automatize and easily deploy mining applications involving different
tasks, PROMETHEUS introduces instead the concept of “flow of mining”,
i.e., it allows to specify complex mining chains based on interconnecting
elementary tasks. In fact, PROMETHEUS comes equipped with a run-time
engine that supports and monitors the execution of the mining flow and that
orchestrates the compositions of the various elementary bricks.

(2) building interactive applications based on the possibility of customizing data
types, algorithms, and graphical user interfaces used in the analysis.

A plug-in based architecture is a crucial factor to provide flexibility for ac-
tual applications. However, each plug-in is current viewedin the ProM
framework as a monolithic box, where interaction is limitedto the start up
phase in which users configure the execution environment of each algorithm
by setting all parameters. In addition, plug-ins can be defined to work over
a fixed set of data types only, and there is no way to modify their appearance
when executing them in the platform. PROMETHEUS extends the flexibil-
ity of each plug-in, by introducing the concept of “interactive” execution
(in addition to the standard “batch” execution), i.e., it support an approach
to process mining where users may continually interact withthe mining
algorithms and provide their feedback trough the graphicaluser interface.
Eventually, novel data types can be defined in addition to thestandard ones
pre-defined in the suite, and they can be transparently used by the vari-
ous plug-ins. Moreover, PROMETHEUS enables developers to define, for
each plug-in, a customizable set of graphical components that will be inte-
grated as a part of the main interface when using the plug-in at run-time.
For instance, developers can quickly define windowed components to guide
plug-in’s execution in the interactive mode, manipulate produced output,
and visualize multiple perspectives on results.
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(3) ensuring scalability over large volumes of data.

In real industrial environments, enormous volumes of data are available for
mining analysis. Yet, very few efforts (see [43], for a noticeable exception
focused on pre-processing data originating in ERP applications) have been
spent to provide an adequate support for data-intensive applications, mainly
because of the architectural design of current tools, whichare based on im-
porting the whole input into the main memory. This is in particular the case
of ProM. To avoid these scalability issues, PROMETHEUS, instead, adopts
a powerful data management subsystem based on a stream handling model
for data acquisition. Indeed, rather than building a complete in-memory
representation of data, this model stores statistical sketches only, while sup-
porting on-demand streaming access to the details that are kept resident on
disk.

Discussing the architectural design and the implementation issues arising when
providing support to the above three elements is the main aimof this paper. In
particular, in Section 4.2, we shall overview these functionalities, while deferring
the discussion of their technical design to Section 4.3.

Figure 4.1: Flow of mining in process mining applications
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4.2 An Overview ofPROMETHEUS

PROMETHEUS is as an extendable suite for process mining applications,entirely
programmed in JAVA. In this section, we overview its main functionalities and its
innovative designing elements.

4.2.1 Flow of Mining and Customization

The concept of flow of mining is a very natural and manageable way of designing
complex mining processes, which possibly involve different and heterogeneous
mining components. Indeed, in a traditional mining perspective, each computa-
tional module is an independent component with its own inputand output. How-
ever, to build a large-scale application often requires coordinating several compu-
tational modules, which is demanded to the user in current process mining plat-
forms. PROMETHEUS supports instead the deployment of mining applications in
their entity, by allowing to design mining process as complex flows of elementary
bricks. Each brick produces an output that may be used as input for other bricks
in the flow. Consequently, users may incrementally build thedesired flow, by
connecting existing blocks or adding new ones to manipulateproduced outputs.

A comparison between the traditional approach to define process mining ap-
plications, and the concept of flow of mining is graphically depicted in Figure 4.1.

To support this concept of flow of mining, at design-time, PROMETHEUS
provides the user with an intuitive graphical interface in which computational re-
sources can be dragged and dropped on a work area panel. Moreover, connections
between the nodes can be easily established to create the flowover the various the
computational steps of the analysis. In particular, data involved in the mining flow
(i.e., required in input or produced as output of some computational resource) can
be ofLog type, which is simply an abstraction of a log file, where the enactments
of a transactional system are stored, ofModel type, which represents the abstrac-
tion of a process model, and ofCustomtype, which allows users to define their
own data-types and to freely import their definition in the suite.

Computational resources in PROMETHEUS operates over the above kinds of
data type, and are coupled with it as importable plug-ins. Infact, PROMETHEUS
defines the hierarchy of plug-in templates depicted in Figure 4.2, where the fol-
lowing three main templates are actually defined (as an extension of the interface
FlowComponent):
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Figure 4.2: UML class diagram for plug-ins hierarchy.

Sources. A source is a plug-in class template conceived to access the input data
on which the mining analysis has to be performed. PROMETHEUS defines
three kinds of templates for this class. ALog Sourcetemplate is designed to
handle theLog type in input, and is indeed the most frequent kind of input
for process mining applications. AModel Sourcetemplate is designed to
handle mining models as input data, thereby enriching the capabilities of
the platform to design complex mining flows, where models mayserve as
the basis for further computation (e.g., comparison with some other model)
rather than for visualization only. Finally, aCustom Sourcetemplates is also
designed, in order to provide an abstract source template serving to handle
arbitraryCustomdata.

Mining Modules. A mining module template gives a high-level design of the
computational modules in the mining flow. These modules are responsible
of performing mining algorithms and statistical evaluations on the input
provided by source modules. PROMETHEUS supports five kinds of mining
modules templates. ALog Miner template is designed to manage a single
Log as input, and to produce as output one or more instances ofLog; thus,
this module is useful to pre-process input logs, even by complex mining
algorithm based, e.g., on clustering and outlier detection. For simpler kinds
of pre-processing (e.g., size reduction, or duplicates removing), theLog
Filter template is available which takes as input aLogand produces a novel
Log based on it. AModel Miner template works on a log data source as
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input, and produces a process model as output. AModel Filter template
is instead a plug-in operating over a process model and producing a novel
process model. Finally, aCustom Moduletemplate provides an abstract
mining module template to fit all the other kinds of needs emerging with
Customtypes.

Sinks. Sinks templates are intended to manage the final results of mining process.
These templates are useful for data visualization, analysis and storage of the
results. Three sink templates are supported. ALog Sinkis designed to work
on a log data source, aModel Sinkis designed to work on models, and
finally aCustom Sinkis also provided for custom data input.

Interestingly, plug-ins may be composed in high-level blocks of components
performing user-defined operations. In many occasions, in fact, it might be nec-
essary to perform the same operation many times in the same mining flow or
in different flows as well. In order to efficiently suite this need, PROMETHEUS
supports the grouping of connected plug-ins intomacrosthat can be used as or-
dinary plug-ins with their input and outputs. In practice, macros act as defining
sub-routines that frequently occur in mining applications.

Figure 4.3: Workspace oriented design in data customization.

We leave this section, by stressing that (as emerged from thediscussion above)
data type customization is a very relevant feature of PROMETHEUS, which makes
this platform suited to deal with arbitrary mining analysis, even not focused on
processes. As an example, users might be interested in performing text mining or
clustering over numerical data, and in creating mining flow chains for them. To
easily support such kinds of heterogeneous mining applications, PROMETHEUS
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introduces the concept ofworkspace, as a place where to conceptually store re-
lated data types, and computational modules (see Figure 4.3). Thus, users can
freely define sources, mining modules, sinks and data types,organize them in
custom workspaces of resources, and then transparently usesuch resources in
PROMETHEUS. Moreover, users can easily connect together resources belong-
ing to different workspaces to obtain mixed mining flows. As an example, users
can use a text mining ad-hoc module to extract a log source from a flat textual
description, and then use such source as an input for a process mining module.

4.2.2 Flow of Mining in Action: Interactive VS Batch Mode

PROMETHEUS offers two operational modes for supporting the mining analysis:
bachandinteractivemodes.

In the interactive mode, users control the enactment of the mining flow in a
supervised way. Basically, they can choose to execute the whole flow at once or
to execute portions of it, by selecting single tasks or groups of them. Additionally,
users can stop running tasks, or restart their execution if needed. Moreover, in the
interactive mode, users can quickly modify the flow of mining, by adding at any
time additional plug-ins and then recover the analysis fromthe point it was in-
terrupted. And, finally, users may interact with each singlemining algorithm via
the graphical user interface, by modifying its parameters and even by changing
its own execution logic when providing feedbacks on the current execution and
results. This kind of approach is particularly useful in thedesign of complex min-
ing applications, for debugging purposes, and for interactively and incrementally
build the mining flow.

When the application scenario is fully understood and the flow of mining
needed to obtain the desired process model is consolidated,users may save the
mining flow and use it for a batch execution. In this mode, there is no need to run
the graphical user interface, since PROMETHEUS comes equipped with a run-time
engine which is capable of coordinating the various tasks. This execution mode
allows to deploy the mining application as an independent JAVA library, which
can be easily coupled within larger kinds of application.

4.2.3 Stream Oriented Log-handling

Available process mining tools are often unsuited for real-world environments,
where mining applications have to face large amounts of data. The main fault
of such tools is related to the log handling subsystem, whichusually builds a
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Figure 4.4: Stream oriented log-handling.

complete in-memory representation of input data. Clearly enough, this approach
is unviable as far as the input data grow, and memory leaks usually represent the
most relevant source of errors while evaluating gigabytes of data.

Moving from these observations, PROMETHEUS implements an innovative
streaming approach for log-handling, whose target is to ensure scalability over
huge amounts of data. The conceptual idea behind this approach is the following.
Basically, acollector subdivides the input flow in small data-sketches and pro-
cesses each one of them separately. Each sketch produces only a partial result in
the overall mining process. Once a data sketch has been processed, the collector
demands for the next one. Using this approach, the whole mining process is car-
ried out in a step-by-step fashion, and only needed sketchesare stored in memory.
Note that the strategy above requires the use of ad-hoc mining techniques that
work on sketches of data only.

4.3 System Architecture

This section explores the architecture of PROMETHEUS, by highlighting some
relevant implementation issues. An overview of this architecture is reported in
Figure 4.5. The reader may notice that PROMETHEUS is implemented over four
distinct logic layers.

Starting from the bottom of Figure 4.5, thedatalayer is responsible of dealing
with physical input/output operations involved in data acquisition and storage. As
discussed in Section 4.2.1, data can be ofLog, Model, andCustomtype; in fact,
the secondAPI layer provides a transparent access to the physical operations over
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Figure 4.5: PROMETHEUS architecture.
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Figure 4.6: MXML data model.

these data types, by exporting several abstract primitivesfor their stream-oriented
manipulation (in particular, w.r.t. predefined data types)and by using some opti-
mized internal data-structures for efficient and compact data (sketches) representa-
tion. Above the API layer, it is placed the computational core of PROMETHEUS.
The core is constituted by the various plug-ins (sources, mining modules, and
sinks) that can be written on the basis of the primitives exported by the API layer.
These plug-ins are glued by aMediator, which manages communications between
plug-ins and theFront Officelater. The last layer is indeed constituted by aGUI
component to be used at design-time and at run-time in the interactive mode, and
by aWorkflow Engineto be used at run-time in the batch mode.

In the rest of the section, we discuss some relevant details for each of these
layers.

4.3.1 Data Layer

Regarding the model representation, PROMETHEUS natively supports a subset of
XPDL 2.0, which is considered to be the reference data representation for work-
flow models by W3C community [56].

Regarding input data representation, PROMETHEUS supports the MXML data
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model, which is an XML-based language considered as the standard de-facto for
process mining applications [81]. The UML specification forthe MXML data
model is reported in Figure 4.6. Basically, this data modelsviews a log for trans-
actional systems as a group of processes, each one associated with many instances
(ProcessInstance) corresponding to its actual enactments. In fact, each instance
consists of a sequence of entries (AuditTrailEntry) storing information about the
events occurred in the enactment (such as theOriginator and theTimeStamp).

For both process models and logs, PROMETHEUS provides at the data layer
I/O primitives and primitives for data manipulation. Theselow-level primitives
are transparently accessed by the API layer, where the basicdata types are repre-
sented at a higher level of abstraction.

4.3.2 API Layer

The API layer is responsible of carrying out two basic functionalities of PROMETHEUS.
On the one hand, it serves to provide support for the efficientinternal storage of
the data to be used in the analysis. Thus, it handles a main-memory repository
where two structures are stored, calledDependencyGraphand AbsoluteDepen-
dencyGraph. Both structures are directed graphs whose nodes representthe activ-
ities in the process log being analyzed, and whose edges represent the relationship
of precedence among them; in fact, the former structure stores the direct relation
of precedence, whereas the latter consider the transitive closure of such relation.
Note that these two structures are internally built by scanning once the input log
(i.e., by following the stream-approach), and serve to provide summary informa-
tion on the process model being mined, without the need of further I/O operations.

On the other hand, the API layer is responsible of providing transparent access
to the data layer. To this end, it implements three main modules:

LogManager. This component provides all the basic capabilities to iterate over a
disk-resident MXML log file. The main methods, whose name areintended
to be self explicative, arehasNextProcessInstanceandnextProcessInstance.
A facility to write a log file in the MXML standard is also provided.

DependenciesManager.This module supplies all APIs necessary to manage ac-
tivities and dependencies between them. The main methods for editing
dependency graphs areaddActivity, removeActivity, collapseActivity, and
setPrecedence. Furthermore, facilities to collapse an activity into another
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one, find cycles in precedence relations, and mine local constraints in the
precedence relations are also implemented.

ModelManager. This module supports all the facilities needed to create andman-
age process models conforming to the internal meta-model. In details, cre-
ation of processes and related elements like applications,data fields, activi-
ties and transitions are transparently complained. Once the model is created,
each model element can be translated in the correspondent XPDL element
by the use oftoXpdlmethod.

4.3.3 Computation Layer

Each plug-in may be implemented by using the primitives provided by the API
layer. Then, collaboration and message passing between them is supported at the
computation layer. Indeed, aMediator acts as a traffic cop, by processing and
messaging all the requests from the various plug-ins in the interactive as well as
in the batch mode.

In particular, during the batch execution mode, the mediator automatically
checks for the dependencies among the involved plug-ins, bykeeping updated a
map of consistency with the details of the state of the various executions and the
execute availability of their input. Indeed, a plug-in may be executed only when
all its input data are available, and hence only when they have been completely
produced by some antecedent plug-in in the flow of mining. In this scenario, the
crucial aim of the mediator is to give to each plug-in of the flow a global view
of the state of the plug-ins of interest for it, through a transparent communication
infrastructure. Basically, for a given configuration, the mediator chooses which
plug-ins are ready to run, executes them, and waits for some notification. When
a plug-in changes its state during its execution (e.g., completes the computation
of its output), it notifies the mediator through a one way system signal. Then,
the mediator propagates the update information about the plug-in state to all those
plug-ins whose execution strictly depends on it, and decides which to run, de-
pending on their states as well. Note that, in this approach,only mediator has a
global view over the plug-ins involved in the flow and no coupling between them
is explicitly needed. Beside these aspects, such design maydramatically improve
overall system performances in parallel architectures [22]. There, in fact, the me-
diator may run unrelated plug-ins at the same time, reducingthe overall time to
complete the flow of mining.

Importantly, the mediator plays a crucial role during the interactive mode as
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Figure 4.7: Message passing through the mediator.

well. In this execution mode, indeed, PROMETHEUS takes cares of the interac-
tion between the various graphical elements associated with the different plug-ins.
Basically, when the state of a component of a plug-in is modified, it generates an
event by anEventGeneratorobject. Any component interested in reacting to an
event has to implement an HANDLE method for it, further propagating a result
event if necessary. According to the observer pattern, the mediator listens all the
events generated in PROMETHEUS: When a plug-in graphical interface is modi-
fied by the user or by a system signal, the resulting event is notified to the mediator
(see Figure 4.7). As a result, only the mediator encapsulates how a given set of
GUI components interact together, ensuring loose couplingamong the graphical
components.

4.3.4 Front Office Layer

The most abstract layer in the architecture of PROMETHEUS is the Front Office
layer, which exports (in addition to the workflow engine serving in the batch ex-
ecution mode) functionalities related to the creation of a process mining flow, to
the configuration of execution environment parameters, andto the visualization of
analysis results.

All these functionalities involve the graphical interface, which consists of sev-
eral graphical elements, most of which are shown in Figure 4.8:
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Figure 4.8: Graphical elements.
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Workspaces Explorer. The workspace exploreris a graphical component de-
signed to show the available system workspaces. The default“process min-
ing” workspace is shown at the top of the sliding menu. Each workspace is
shown as an entry of a navigation menu, and reports all the plug-ins defined
in it, organized according their type (i.e., source, miningmodules or sinks).

Workarea and Plug-in Explorer. The workarea is a graphical component that
plays a crucial role in PROMETHEUS. Indeed, it offers a design panel on
which users can freely customize mining flow properties. Users can quickly
add/remove concrete instances of plug-in definitions (by dragging them
from the workspace explorer), edit connections between plug-ins, combine
input/outputs, control execution flow, and so on. Once a plug-in instance is
placed, users can configure its execution environment in three steps:

• Parameters Configuration: if the selected plug-in requires to set some
input parameters, users can proceed to their configuration by simply
double-clicking on the plug-in instance.

• Edge Configuration: users can edit edges (i.e., precedences between
tasks) by simply switching the system in the “edge mode”. Users can
insert a new connection between modules, can rearrange a defined
connection, or can remove it from the mining flow.

• Execution: once a suitable flow configuration is created, user can pro-
ceed to its execution. Runnable plug-ins are identified by a “ready
state” icon; users can decide to run all executable plug-insat once
simply selecting, or execute only selected ones.

The workarea provides a graph-based view of the flow of mining. In some
cases, it is instead desirable to have a tree-like view of such flow, which is
accomplished by theplug-in explorergraphical element. In particular, for
each concrete plug-in instance, it shows the input data and the tasks which
directly depends on it.

Inspectors. To visualize the actual value of input/output data, PROMETHEUS in-
troduces theinspectorgraphical component. An inspector is a very generic
data explorer able to produce a suitable representation of aspecific data
type. Inspector modules definition allows to create multiple different views
on the same data set, each one depicting some portion of the data informa-
tion of interest. PROMETHEUS comes equipped with default inspectors to
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analyzeLogandModeldata types. However, users are free to program their
own inspectors for custom data types.

Plug-ins Graphical Elements. Plug-ins can be equipped in PROMETHEUS with
various graphical components. In particular, each of them can be associated
with a munu, with a toolbar, with themain pane(intended to provide the
main graphical interface to support interactive execution), with thebottom
pane(intended to provide an interface for setting parameters),and with the
quick view(intended to provide a synthetic view of the status of the plug-in).



Chapter 5

Conclusion

In this thesis we have first presented an extension of the notion of hypertree de-
composition, which is currently the most powerful structural method. This new
version, called query-oriented hypertree decomposition,is a suitable relaxation of
hypertree decomposition designed for query optimization,and such that output
variables and aggregate operators can be dealt with. Based on this notion, a hy-
brid optimizer is implemented, which can be used on top of available DBMSs to
compute query plans. The prototype is also integrated into the well-known open-
source DBMS PostgreSQL. The experimental activity, conducted on PostgreSQL
and on a commercial DBMS, shows that both systems may significantly benefit
from using hypertree decompositions for query optimization proving that these
techniques can be successfully integrated in commercial products.

Then we have presented the INFOMIX project showing the advanced tech-
niques and innovative methodologies developed in it. We pointed out how it ad-
vanced the state of the art in several respects, in particular it provided:

• Comprehensive Information Model. A comprehensive information model
has to be provided, which incorporates static and dynamic aspects of infor-
mation integration, and supports advancedhuman likereasoning, based on
a rich semantics.

• Information Integration Algorithms. A host of efficient algorithms for
information integration must be provided, which can be applied to homog-
enized data from heterogeneous data sources.

• Usage of Computational Logic.Exploit advanced methodologies and tech-
niques from computational logic as a toolbox for information integration.

117



Chapter 5. Conclusion 118

• Prototype System. Definition and implementation of a component-based
integration system prototype, and providing an infrastructure by using soft-
ware agent technology.

Finally, we presented PROMETHEUS, a suite for Process Mining and shown
its open and extensible architecture and how it introduce some innovative design-
ing elements to meet the desiderata of flexibility and scalability arising in actual
industrial scenarios. In particular it supports:

• the definition of complex mining applications, where various mining tasks
can be combined and automatically orchestrated at run-time.

• building interactive applications based on the possibility of customizing
data types, algorithms, and graphical user interfaces usedin the analysis.

• scalability over large volumes of data.

As possible future extensions of this work, we think that some improvements
can be achieved further extending the Hypertree Decomposition techniques in or-
der to support also aggregate and other SQL features. Furthermore, we think that
it is possible to engineer the INFOMIX prototype and PROMETHEUS in order to
obtain industrial products.
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Appendix A

Relational Databases

In this appendix we illustrate here the basic notions of the relational model for
a data base. In the relational model, predicate symbols are used to denote the
relations in the database, whereas constant symbols denotethe objects and the
values stored in relations. We assume to have a fixed (infinite) alphabetΓ of
constants, and we consider only databases over such an alphabet. We adopt the
so-calledunique name assumption, i.e., we assume that different constants denote
different objects.

A relational schemaH is constituted by:

• An alphabetA of predicate(or relation) symbols, each one with an associ-
ated arity denoting the number of arguments of the predicate(or attributes
of the relation).

• A setC of integrity constraints, i.e., assertions on the symbols of the alpha-
betA that are intended to be satisfied in every database coherent with the
schema.

A relational database(or simply, database, DB)DB over a schemaH is sim-
ply a set of relations with constants as atomic values. We have one relation of
arity n for each predicate symbol of arityn in the alphabetA. The relationrDB

inDB corresponding to the predicate symbolR is constituted by a set of tuples of
constants, those that satisfy the predicateR. A databaseDB over a schemaH is
said to becoherentwithH if every constraint inC is satisfied byDB. The notion
of satisfaction depends on the type of constraints defined over the schema.

The integrity constraints that we consider are inclusion dependencies (IDs),
key dependencies (KDs) and exclusion dependencies (EDs). More specifically,
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• an inclusion dependency is an assertion of the formr1[A] ⊆ r2[B], where
r1, r2 are relations inA, A = A1, . . . , An(n ≥ 0) is a sequence of at-
tributes ofr1, andB = B1, . . . , Bn is a sequence of distinct attributes of
r2. Therefore, we allow for repetition of attributes in the left-hand side
of the inclusion. A databaseDB for H satisfies an inclusion dependency
r1[A] ⊆ r2[B] if for each tuplet1 ∈ rDB

1 there exists a tuplet2 ∈ rDB
2 such

thatt1[A] = t2[B], wheret[A] indicates the projection of the tuplet overA;

• a key dependency is an assertion the formkey(r) = A, wherer is a relation
in A, andA, A = A1, . . . , An is a sequence of distinct attributes ofr.
A databaseDB for H satisfies a key dependencykey(r) = A if for each
t1, t2 ∈ rDB with t1 6= t2 we havet1[A] 6= t2[A]. We assume that at most
one key dependency is specified for each relation;

• an exclusion dependency is an assertion of the form(r1[A] ∩ r2[B]) = ∅,
wherer1, r2 are relations inA, A = A1, . . . , An andB = B1, . . . , Bn are
sequences of attributes ofr1 andr2, respectively. A databaseDB for H
satisfies an exclusion dependency(r1[A] ∩ r2[B]) = ∅ if there do not exist
two tuplest1 ∈ rDB

1 andt2 ∈ rDB
2 such thatt1[A] = t2[B].

A relational query is a formula that specifies a set of data to be retrieved from
a database. In the sequel we mainly refer to the class of conjunctive queries, union
of conjunctive queries andDatalog queries. Aconjunctive query(CQ) q of arity
n over the schemaH is written in the form

q(~x) ← conj (~x, ~y)

where

• q belongs to a new alphabetQ (the alphabet of queries, that is disjoint from
bothΓ andA),

• q(~x) is theheadof the conjunctive query,

• conj (~x, ~y) is the body of the conjunctive query and is a conjunction of
atoms involving the variables~x = X1, . . . , Xn and~y = Y1, . . . , Yn, and
constants fromΓ,

• the predicate symbols of the atoms are inA,
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• the number of variables of~x is called thearity of q, and is the arity of the
relation denoted by the queryq.

Notice that, the body of the query may also contain atoms whose predicates are
arithmetic comparison predicates, i.e., built-in predicates, with the restriction that
variables involved in such predicates must appear also in atoms whose predicate
symbols are inA.

Given a databaseDB, the answer toq overDB, denotedqDB, is the set of
n-tuples of constants(c1, . . . , cn), such that, when substituting eachci for xi, the
formula

∃~y.conj (~x, ~y)

evaluates to true inDB.
A set of conjunctive queries with the same head predicate is aUnion of Con-

junctive Queries(UCQ). More formally, a UCQ is written in the form

q(~x) ← conj 1(~x, ~y1) ∨ · · · ∨ conjm(~x, ~ym)

The answer to a UCQq over a databaseDB, as usually denotedqDB, is the set
of n-tuples of constants(c1, . . . , cn), such that, when substituting eachci for xi,
the formula

∃~y1.conj 1(~x, ~y1) ∨ · · · ∨ ∃~ym.conjm(~x, ~ym)

evaluates to true inDB.
Finally aDatalog query is a collection of rules, each having the same form as a

conjunctive query, except that predicate symbols in the body of the rules can be in
Q as well. In aDatalog query, each head predicate of the rules refers to an inter-
mediate relation, and has not to contain predicates referring to database relations.
The intermediate predicates are calledIntensional DataBase(IDB) predicates,
whereas predicates referring to stored relations are called Extensional DataBase
(EDB) predicates. Given aDatalog queryq and a databaseDB, the answerqDB

of q overDB is the minimal fixpoint model ofq andDB [1].
Given a CQ, UCQ, orDatalog queryq, we also say thatqDB denotes the set

of tuples thatsatisfyq overDB.


