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Sommario

[l lavoro ditesi viene suddiviso in due parti che trattarspdttivamente di tecniche
avanzate e sistemi per la gestione dei dati e per il miningagessi. Sono state
affrontate problematiche relative all’efficienza dellsposta alle interrogazioni su
una base di dati, I'integrazioni di piu sorgenti di dati,eedrogettazione di un
sistema per il mining di processi. In particolare, i priradigcontributi della tesi
sono:

(1) Unnuovo modo di calcolare alberi di decomposizione @ imerrogazione
i cui query plangarantiscano un tempo di esecuzione al piu di complessita
polinomiale.

(2) Lo studio ditecniche e metodologie innovative, basategica computazio-
nale, per i sistemi per I'integrazione di sorgenti inforivae lo sviluppo di
un prototipo che le implementi.

(3) Lo studio di tecniche ed algoritmi per il mining di proses lo sviluppo di
una suite che le implementi.

(1) Tecniche di risposta alle interrogazioni su basi di dati

Rispondere ad interrogazioni su una basa di dati puo essgnecesso molto cos-
toso da un punto di vista computazionale. Per far fronte atgugoblematica, in
letteratura sono stati proposti vari approcci. Alcuni diies®no basati su moduli
per I'ottimizzazione delle interrogazioni che sfruttir® informazioni quantita-
tive e statistiche sull'istanza della base di dati, meniltre aecniche sfruttano le
proprieta strutturali degli ipergrafi delle interrogaziio

| nostri sforzi si sono rivolti in quest’ultima direzioneteadendo il metodo di
hypertree decompositipronsiderato al momento il piu potente tra quelli strut-
turali. Questa nuova versione, chiamgteery-oriented hypertree decomposition
mira a gestire esplicitamente le variabili di output e gkecgiori aggregati. Basan-
doci su queste nozioni, e stato implementato un ottimareabrido. Esso puo es-
sere utilizzato dai DBMS correntemente disponibili pergpatalcolare i piani di
esecuzione per le interrogazioni. Tale prototipo e stategirato nel noto DBMS
open source PostgreSQL. In fine questa estensione ¢ sld@aattraverso una
intensa fase sperimentale, portata avanti con Postgre8Qh roto DBMS com-
merciale, che mostra come entrambi i sistemi migliorinogigativamente le loro
prestazioni utilizzando le hypertree decomposition pettithizzazione delle in-
terrogazioni.



(2) Tecniche per I'integrazione di sorgenti informative

Per integrazione di informazioni si intende il problema dimbinare i dati resi-
denti in varie sorgenti informative, fornendo agli utemtawista unificata di questi
dati, chiamatalobal schema

Il nostro lavoro e stato svolto all’interno del progettoH@MIX. Il suo scopo
principale e stato quello di fornire tecniche avanzate ¢odwogie innovative
per per gli information integration systems. In breve, bgetto ha sviluppato
una teoria, comprendente un modello esauriente ed alggém’integrazione
delle informazioni ed I'implementazione di un prototipauth sistema knowledge
based traminte I'utilizzo della logica computazionale aftegri i risultati della
ricerca sull'acquisizione e la trasformazione dei dati.’dttenzione speciale e
stata dedicata alla definizione di un meccanismo per l'aziene dichiarativa da
parte dell’'utente e alle tecniche per la gestione di datistatturati e sorgenti di
dati incomplete o inconsistenti.

(3) Tecniche per il mining di processi

Nel contesto della enterprise automatioprdcess mining recentemente emerso
come uno strumento utilissimo per I'analisi e la progetiagidi processi di busi-
ness complessi. Lo scenario tipico per il process miningté da un insieme di
tracce che registrano, tramite un sistema transazioreakgtivita svolte durante
piu esecuzioni di un processo e dall'obiettivo ricavamnaniera (semi)automatica
un modello che possa spiegare tutti gli episodi registedteriracce.

Noi abbiamo sviluppato una Suite per le applicazioni detpss mining con
un’architettura aperta ed estendibile che introduce &mehti innovativi per sod-
disfare i desiderata di flessibilita e scalabilita chegsoo negli scenari industriali
attuali.

e Il concetto di “flusso di mining”, i.e., essa permette di spieare delle
catene di mininig complesse basate sulla connessionekdtl@amentari.

e La costruzione di applicazioni interattive basate sullasiuilita di person-
alizzare tipi di dati, algoritmi e I'interfaccia grafica litzata per I'analisi.

e Scalabilita su grandi moli di dati.
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Abstract

In this thesis, we deal with techniques for query answerkygagting structural
properties, with the integration of multiple data sour@eg] with the design and
the implementation of a suite for process mining. The mamtrdautions of this
thesis are the following:

(1) A new algorithm that computes a hypertree decomposiaioam query, by
accounting for grouping operators and statistics on tha. dat

(2) The study of advanced techniques and innovative metbgis for infor-
mation integration systems and a prototype implementati@knowledge
based system for advanced information integration, bygusomputational
logic and integrating research results on data acquisdioh transforma-
tion.

(3) The study of techniques and algorithms for process mgiaimd a suite im-
plementing them.

(1) Techniques for query evaluation

Answering queries is computationally very expensive, aadyrapproaches have
been proposed in the literature to face this fundamentddleno. Some of them
are based on optimization modules that exploit quantgatMormation on the
database instance, while other approaches exploit stelgioperties of the query
hypergraph.

Our efforts were carried on this last direction extending tiotion of hyper-
tree decomposition, which is currently the most powerfidcural method. This
new version, called query-oriented hypertree decompusits a suitable relax-
ation of hypertree decomposition designed for query o@tnon, and such that
output variables and aggregate operators can be dealt Bi#élsed on this no-
tion, a hybrid optimizer is implemented, which can be usedamof available
DBMSs to compute query plans. The prototype is also integratito the well-
known open-source DBMS PostgreSQL. Finally, we validateproposal with
a thorough experimental activity, conducted on Postgre8@d on a commer-
cial DBMS, which shows that both systems may significantlydsi: from using
hypertree decompositions for query optimization.
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(2) Techniques for data integration systems

Information integration is the problem of combining thealegsiding at different
sources, and providing the user with a unified view of thede,dzlledglobal
schema Our work was performed within of the INFOMIX project. Itsipcipal
goal was to provide advanced techniques and innovativeodetbgies for infor-
mation integration systems. In a nutshell, the project kbgpexl a theory, compris-
ing a comprehensive information model and informationgrdéon algorithms,
and a prototype implementation of a knowledge based sysieadizanced infor-
mation integration, by using computational logic and iné&img research results
on data acquisition and transformation. Special attertias devoted to the def-
inition of declarative user-interaction mechanisms, aahniques for handling
semi-structured data, and incomplete and inconsisteatstatrces.

(3) Techniques for process mining

In the context of enterprise automatigrpcess mininghas recently emerged as
a powerful approach to support the analysis and the desigoraplex business
processes. In a typical process mining scenario, a set cédreegistering the
activities performed along several enactments of a traioset system is given
to hand, and the goal is to (semi)automatically derive a rhexiglaining all the
episodes recorded in them.

We developed a novel Suite for Process Mining applicatiawrig an open
and extendable architecture and introducing three inn@vdesigning elements
to meet the desiderata of flexibility and scalability argsin actual industrial sce-
narios.

e The concept of “flow of mining”, i.e., it allows to specify cgiex mining
chains based on interconnecting elementary tasks

¢ Building interactive applications based on the possipitif customizing
data types, algorithms, and graphical user interfaces indbe analysis.

e Ensuring scalability over large volumes of data.
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Introduction

Advanced Techniques and Systems for Data Manage-
ment

Database Management Systems

The Data Base Management System (DBMS) is the foundatiomudst every
modern business information system. Virtually every adstiative process in
business, science or government relies on a data base.sehaf the Internet has
only accelerated this trend; today a flurry of database aetiens powers each
content update of a major website, literature search, ernet shopping trip.

A data base management system is a very complex piece ofrsgsféwvare.
A single DBMS can manage multiple data bases, each one ysimaitisting of
many different tables full of data. The DBMS includes medkias for applica-
tion programs to store, retrieve and modify this data and albws people to
query it interactively to answer specific questions.

One of the most important features of the DBMS is its abila@yshield the
people and programs using the data from the details of itsipalystorage. Be-
cause all access to stored data is mediated through the DBMSta base can
be restructured or moved to a different computer withoutghng the programs
written to use it. The DBMS polices access to the stored datang access only
to tables and records for which a given user has been augiboriz

The data base concept originated around 1960, approxiyateyears before
the idea of a DBMS gained general currency. It originatedragrtbe well-funded
cold war technologists of the military command and conant] so was associated
with the enormously complex and expensive technologiesndfre, real-time,
interactive computer applications.
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Querying: optimization and data integration

Query optimization is a function of many relational databamnagement systems
in which multiple query plans for satisfying a query are ekad and a good
query plan is identified. This may or not be the absolute beategy because
there are many ways of doing plans. There is a trade-off ertvlee amount of
time spent figuring out the best plan and the amount runnieglén. Different
gualities of database management systems have differgstatdalancing these
two. Cost based query optimizers evaluate the resourcpriobdf various query
plans and use this as the basis for plan selection.

The performance of a query plan is determined largely by tderan which
the tables are joined. For example, when joining 3 tables,AC Bf size 10 rows,
10,000 rows, and 1,000,000 rows, respectively, a query fhlanjoins B and C
first can take several orders-of-magnitude more time towgrgban one that joins
A and C first.

A SQL query to a modern relational DBMS does more than jusicieins and
joins. In particular, SQL queries often nest several lapérSPJ blocks (Select-
Project-Join) , by means of group by, exists, and not exig&saiors. In some
cases such nested SQL queries can be flattened into a sedgsttgoin query, but
not always. Query plans for nested SQL queries can also ls=ohsing the same
dynamic programming algorithm as used for join orderind,this can lead to an
enormous escalation in query optimization time. So somaldet management
systems use an alternative rule-based approach that usesyagyaph model.

Many approaches have been proposed in the literature totfi@cproblem
of choosing the optimal query plan. Some of them are basedptmization
modules that exploit quantitative information on the dassbinstance, while other
approaches exploit structural properties of the query fgraeh.

On the other hand,the problem of combining the data residindifferent
sources, and providing the user with a unified view of theda,dzalledglobal
schemaarise and is faced by Data integration techniques. Thedsitén data
integration systems has been continuously growing in thieykears. Many orga-
nizations face the problem of integrating data residingesesal sources. Com-
panies that build a Data Warehouse, a Data Mining, or an pmser Resource
Planning system must address this problem. Also, integyatata in the World
Wide Web is the subject of several investigations and ptejecwadays. Finally,
applications requiring accessing or re-engineering keggstems must deal with
the problem of integrating data stored in different sources
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The design of a data integration system is a very complex taklch com-
prises several different issues such as dealing with hgeeity of the sources,
the mapping between the global schema and the sources |eténg and recon-
ciliation, how to process queries expressed on the glolb&nea and many other.

Advanced Technigues and Systems for Process Man-
agement

Process mining is a process management technique, thatfallthe analysis of
business processes based on event logs. The basic ideaxisatct &nowledge
from event logs recorded by an information system. Processighaims at im-
proving this by providing techniques and tools for discavgmprocess, control,
data, organizational, and social structures from everg.ldgoreover, it is pos-
sible to use process mining to monitor deviations (e.g., gamng the observed
events with predefined models or business rules in the coot&SOX).

Process mining techniques are often used when no formatigtsc of the
process can be obtained by other means, or when the quakiy existing doc-
umentation is questionable. For example, the audit tréigsworkflow manage-
ment system, the transaction logs of an enterprise resplaicaing system, and
the electronic patient records in a hospital can be usedstwder models describ-
ing processes, organizations, and products.

Process mining is closely related to BAM (Business Activifipnitoring),
BOM (Business Operations Management), BPI (Business Bsdceelligence),
and data/workflow mining. Unlike classical data mining teiciues the focus is
on processes and questions that transcend the simplemparfoe-related queries
supported by tools such as Business Objects, Cognos Bl, gperidn.

Main Contribution

In this thesis we address the following relevant issues ta dad process man-
agement:

e Exploit structural query properties in order to build optaed query plan.

e Provide a formal framework for Data Integration and a prgtetimple-
menting them.
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e Design process mining algorithms using a streaming appraad a suite
providing an extensible and interactive framework for them

Query plan optimization

The database community has investigated many structiwerdmethods, which
guarantee that large classes of queries may be answeragut-Gutput) polynomial-
time. However, despite their very nice computational proeg, these methods
are not currently used for practical applications, sin@y ttho not care about out-
put variables and aggregate operators, and do not explantdative information
on the data. In fact, none of these methods has been implethergide any
available DBMS. This thesis aims at filling this gap betwdsoty and practice.
First, we define an extension of the notion of hypertree dgamiion, which is
currently the most powerful structural method. This newsiar, called query-
oriented hypertree decomposition, is a suitable relaratibhypertree decom-
position designed for query optimization, and such thapouvariables and ag-
gregate operators can be dealt with. Based on this notiogbadhoptimizer is
implemented, which can be used on top of available DBMSs topude query
plans. The prototype is also integrated into the well-kn@pen-source DBMS
PostgreSQL. Finally, we validate our proposal with a thgfoexperimental ac-
tivity, conducted on PostgreSQL and on a commercial DBMS¢clwkhows that
both systems may significantly benefit from using hypertresodhpositions for
query optimization.

Data Intgration

The work described in this thesis was carried on within theogean Commu-
nity funded INFOMIX project. The main goal of the INFOMIX gext was to
provide advanced techniques and innovative methodoldgremformation in-
tegration systems. In a nutshell, the project developecearyh comprising a
comprehensive information model and information integratlgorithms, and a
prototype implementation of a knowledge based system fearazkd informa-
tion integration, by using computational logic and intéggresearch results on
data acquisition and transformation. Special attentios devoted to the def-
inition of declarative user-interaction mechanisms, aahniques for handling
semi-structured data, and incomplete and inconsisteatstatrces.

These objectives, which advanced the state of the art ira@esspects, are
detailed as follows.
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e Comprehensive Information Model. A comprehensive information model
has to be provided, which incorporates static and dynanpieas of infor-
mation integration, and supports advanteahan likereasoning, based on
a rich semantics. Current information integration systamegather poor in
this respect, and provide only limited support (if any) fapeessing con-
straint relationships between the local sources and a ladya of the data.

¢ Information Integration Algorithms. A host of efficient algorithms for
information integration must be provided, which can be egablo homog-
enized data from heterogeneous data sources.

e Usage of Computational Logic.Exploit advanced methodologies and tech-
niques from computational logic as a toolbox for informatintegration.

e Prototype System. Definition and implementation of a component-based
integration system prototype, and providing an infragtrieeby using soft-
ware agent technology.

Process Mining

We aimed to develop a novel Suite for Process Mining appdinathaving an open
and extensible architecture and introducing three inmexaesigning elements to
meet the desiderata of flexibility and scalability arisingctual industrial scenar-
ios. Indeed, the suite has been specifically conceived tpastp

¢ the definition of complex mining applications, where vasanining tasks
can be combined and automatically orchestrated at run-time

¢ building interactive applications based on the possibitit customizing
data types, algorithms, and graphical user interfacesindbé analysis.

e ensuring scalability over large volumes of data.
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Organization of the Thesis

This thesis consists in two parts. The first part deals withneques and systems
for data management, while in the second part techniquesyesteims for process
management are described. More in detail, the thesis isimeas follows:

¢ In the first chapter will introduce DBMS and the query evalaproblem.
After that, original results about Hypertree Decompositioe shown.

e The second chapter will show, after an introduction on Datiagration, the
INFOMIX project and its original contribution.

e The third chapter will introduce Process Mining and showhssobtained
with the implemented suite.
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Chapter 1

Query Evaluation

Answering queries is computationally very expensive, aadyrapproaches have
been proposed in the literature to face this fundamentddleno. Some of them
are based on optimization modules that exploit quantgaitiformation on the
database instance, while other approaches exploit stelgioperties of the query
hypergraph. For instance, acyclic queries can be answarpdlynomial time,
and also query containment is efficiently decid able for Acypieries.

In this chapter we will first describe the overall architeetof a data base
management system (DBMS), then we will surgepantitative method®r query
plan optimization and finally we will show our studies on thawto exploit struc-
tural property for query answering.

1.1 DBMS Architecture

Database Management Systems are very complex, soptestisaftware appli-
cations that provide reliable management of large amourdata. To better un-
derstand general database concepts and the structuregatilities of a DBMS,
it is useful to examine the architecture of a typical databaanagement system.

There are two different ways to look at the architecture oBM3: the logical
DBMS architecture and the physical DBMS architecture. Tuggdal architecture
deals with the way data is stored and presented to users thieilphysical archi-
tecture is concerned with the software components that malkeDBMS.

16
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1.1.1 Logical Architecture

The logical architecture describes how data in the datalsgserceived by users.
It is not concerned with how the data is handled and procelsgdetie DBMS,
but only with how it looks. Users are shielded from the wayadatstored on
the underlying file system, and can manipulate the data withvorrying about
where it is located or how it is actually stored. This resurtthe database having
different levels of abstraction.

The majority of commercial Database Management Systemkableatoday
are based on the ANSI/SPARC generalized DBMS architecag@roposed by
the ANSI/SPARC Study Group on Data Base Management Systems.

The ANSI/SPARC architecture divides the system into thegels of abstrac-
tion: the internal or physical level, the conceptual leagld the external or view
level.

e The Internal or Physical Level. The collection of files permanently stored
on secondary storage devices is known as the physical g&talbhe phys-
ical or internal level is the one closest to physical storagel it provides
a low-level description of the physical database, and aarfate between
the operating system'’s file system and the record structiges in higher
levels of abstraction. Itis at this level that record typed methods of stor-
age are defined, as well as how stored fields are represerttatiphysical
sequence the stored records are in, and what other physisetises exist.

e The Conceptual Level.The conceptual level presents a logical view of the
entire database as a unified whole, which allows you to bilitbeadata in
the database together and see it in a consistent mannerr3itstdge in the
design of a database is to define the conceptual view, and a@blides
a data definition language for this purpose.

Itis the conceptual level that allows a DBMS to provide datéeipendence.
The data definition language used to create the conceptedli®ist not

specify any physical storage considerations that shouldapelled by the
physical level. It should not provide any storage or accessild, but should
define the information content only.

e The External or View Level. The external or view level provides a window
on the conceptual view which allows the user to see only tkee afdanterest
to them. The user can be either an application program or cuuser. Any
number of external schema can be defined and they can ovedapéher.



Chapter 1. Query Evaluation 18

The System Administrator and the Database Administragspecial cases.
Because they have responsibilities for the design and eraantce for the
design and maintenance of the database, they, some tinezstbe able
to see the entire database. The external and the concepguatre func-
tionally equivalent for these two users.

e Mappings Between LevelsObviously, the three levels of abstraction in the

database do not exist independently of each other. Therebaw®me cor-
respondence, or mapping, between the levels. There arallgdivo map-
pings: the conceptual/internal mapping and the exteroteptual map-
ping.
The conceptual/internal mapping lies between the coneépiud internal
levels, and defines the correspondence between the recatdsesfields of
the conceptual view and the files and data structures of tieenia view.
If the structure of the stored database is changed, thenotineeptual/ in-
ternal mapping must also be changed accordingly so thatémefvom the
conceptual level remains constant. It is this mapping thatides physical
data independence for the database.

The external/conceptual view lies between the externatandeptual lev-
els, and defines the correspondence between a particudsnakview and
the conceptual view. Although these two levels are simdame elements
found in a particular external view may be different from twnceptual
view. For example, several fields can be combined into a sifigttual)
field, which can also have different names from the origirelt8. If the
structure of the database at the conceptual level is chariged the ex-
ternal/conceptual mapping must change accordingly so idve from the
external level remains constant. It is this mapping thavtidies logical data
independence for the database.

It is also possible to have another mapping, where one exteraw is

expressed in terms of other external views (this could bledan exter-
nal/external mapping). This is useful if several externaimg are closely
related to one another, as it allows you to avoid mapping eétte similar

external views directly to the conceptual level.
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1.1.2 Physical Architecture

The physical architecture describes the software compgsnesed to enter and
process data, and how these software components are ratatedterconnected.
Although it is not possible to generalize the componentcsime of a DBMS,
it is possible to identify a number of key functions which ammmon to most
database management systems. The components that nommaléynent these
functions are shown in the diagram on the following page cWwiiepicts the phys-
ical architecture for a typical DBMS. At its most basic letle¢ physical DBMS
architecture can be broken down into two parts: the back eddte front end.

The back end is responsible for managing the physical ds¢assad provid-
ing the necessary support and mappings for the internateptnal, and external
levels described earlier. Other benefits of a DBMS, suchag#g integrity, and
access control, are also the responsibility of the back end.

The front end is really just any application that runs on tépghe DBMS.
These may be applications provided by the DBMS vendor, tlee, ws a third
party. The user interacts with the front end, and may not &eaware that the
back end exists.

Application and Utilities

Applications and utilities are the main interface to the D8Nbr most users.
There are three main sources of applications and utiliiea DBMS: the vendor,
the user, and third parties.

Vendor applications and utilities are provided for workimigh or maintaining
the database, and usually allow users to create and mat@utiatabase without
the need to write custom applications. However, these arglygeneral-purpose
applications and are not the best tools to use for doing Bpe@petitive tasks.

User applications are generally custom-made applicatiograms written for
a specific purpose using a conventional programming lareguddis program-
ming language is coupled to the DBMS query language throhghapplication
program interface (API). This allows the user to utilize treever of the DBMS
query language with the flexibility of a custom application.

Third party applications may be similar to those providedhsy vendor, but
with enhancements, or they may fill a perceived need thatéhdar hasn’t cre-
ated an application for. They can also be similar to usenegbns, being written
for a specific purpose they think a large majority of user$ makd.
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Figure 1.1: Physical Architecture of a DBMS

The most common applications and utilities used with a degalrtan be di-
vided into several well-defined categories. These are:

e Command Line Interfaces: these are character-based, interactive inter-
faces that let you use the full power and functionality of Bi#MS query
language directly. They allow you to manipulate the datalzasl perform
ad-hoc queries and see the results immediately. They asae die only
method of exploiting the full power of the database withowgating pro-
grams using a conventional programming language.

e Graphical User Interface (GUI) tools: these are graphical, interactive in-
terfaces that hide the complexity of the DBMS and query laggubehind
an intuitive, easy to understand, and convenient interfates allows ca-
sual users the ability to access the database without hvlagrn the query
language, and it allows advanced users to quickly managenamipulate
the database without the trouble of entering formal commearging the
query language. However, graphical interfaces usuallyaqrovide the
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same level of functionality as a command line interface beeat is not
always possible to implement all commands or options usiggaghical
interface.

e Backup/Restore Utilities: these are designed to minimize the effects of
a database failure and ensure a database is restored to ist@onstate
if a failure does occur. Manual backup/restore utilitieguiee the user to
initiate the backup, while automatic utilities will back tipe database at
regular intervals without any intervention from the useroger use of a
backup/restore utility allows a DBMS to recover from a sgstailure cor-
rectly and reliably.

¢ Reporting/Analysis Utilities: these are used to analyze and report on the
data contained in the database. This may include analyzengl$ in data,
computing values from data, or displaying data that meatsesspecified
criteria, and then displaying or printing a report contagnthis information.

The Application Program Interface

The application program interface (API) is a library of Iéewel routines which
operate directly on the database engine. The API is usuaig when creating
software applications with a general-purpose programiainguage such as Java
or C++. This allows you to write custom software applicasid@o suit the needs
of your business, without having to develop the storageitciure as well. The
storage of the data is handled by the database engine, \kilsput and any
special analysis or reporting functions are handled by tis¢orn application.

An API is specific to each DBMS, and a program written using A of
one DBMS cannot be used with another DBMS. This is becaude &Bt usu-
ally has its own unique functions calls that are tied verjtligto the operation
of the database. Even if two databases have the same funitigynrmay use dif-
ferent parameters and function in different ways, dependmhow the database
designer decided to implement the function in each datab@se exception to
this is the Microsoft Open Database Connectivity API, whicHesigned to work
with any DBMS that supports it.

The Query Language Processor

The query language processor is responsible for receivilegydanguage state-
ments and changing them from the English-like syntax of thergjlanguage to a
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form the DBMS can understand. The query language processaily consists
of two separate parts: the parser and the query optimizer.

The parser receives query language statements from ajpmtigaograms or
command-line utilities and examines the syntax of the statés to ensure they
are correct. To do this, the parser breaks a statement dderbasic units of
syntax and examines them to make sure each statement soofstbie proper
component parts. If the statements follow the syntax ruilestokens are passed
to the query optimizer.

The query optimizer examines the query language stateshtries to choose
the best and most efficient way of executing the query. To o the query op-
timizer will generate several query plans in which operagiare performed in
different orders, and then try estimate which plan will ekecmost efficiently.
When making this estimate, the query optimizer may examag#ofs such as:
CPU time, disk time, network time, sorting methods, and scanmethods.

The DBMS Engine

The DBMS engine is the heart of the DBMS, and itis respongdlall of the data
management in the DBMS. The DBMS engine usually consistsvofseparate
parts: the transaction manager and the file manager.

The transaction manager maintains tables of authorizainohcurrency con-
trol information. The DBMS may use authorization tablesltovathe transaction
manager to ensure the user has permission to execute thelgoguage state-
ment on the database. The authorization tables can only dédietbby properly
authorized user commands, which are themselves checketsatie authoriza-
tion tables. In addition, a database may also support cogracy control tables
to prevent conflicts when simultaneous, conflicting comnsaaré executed. The
DBMS checks the concurrency control tables before exeguwiquery language
statement to ensure that it is not locked by another statemen

The file manager is the component responsible for all phiysigait/output
operations on the database. It is concerned with the pHyaicess of the data
on the disk, and is responsible for any interaction (readsrides) with the host
operating system.
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1.2 Query Answering

As we have seen, DBMSs have specialized modules, called/ quotimizers,
looking for good ways to deal with any given query. For the sajuery, there
are many execution plans that a DBMS can choose to compusastser. All
these plans are equivalent in terms of output relation, kewehe differences
among their execution times can be several orders of matmiarge. The query
optimizer examines the alternative plans and then cho@sbkdst one, according
to some cost model. Actually, the optimizer performs two maisks. First, it
rewrites the query into an equivalent one that can be easgyweared, by push-
ing selections and projections, replacing views by thefinit@ns, flattening out
nested queries and so on. Then, it starts the planning pivdmsee it selects a
guery execution plan, taking into account the actual questscfor the specific
database and DBMS. We call quantitative methods all thesg/qulanners based
on quantitative information about sizes of relations, @edi and so on. Note that
computing an optimal plan is an NPhard problem and henceiitligely to find an
efficient algorithm for selecting the best plans. Indeeldha& commercial DBMS
just compute approximations optimal query plans.

1.2.1 Quatitative Methods

One central component of a query optimizer is its searchestysor enumeration
algorithm. The enumeration algorithm of the optimizer detiees which plans
to enumerate, and the clas sic enumeration algorithm isdbaselynamic pro-
gramming. This algorithm was pioneered in IBM’s System Rjgeh and it is
used in most query optimizers today. Dynamic pro grammingks/@ery well
if all queries are standar8QL92queries, the queries are moderately complex,
and only simple textbook query execution techniques ard bgethe database
system. Dynamic programming, however, does not work wetiete conditions
do not hold; e.g., if the database system must support venplex applications
whose queries often involve many tables or new query opétida and execution
techniques need to be integrated into the system in ordestimize queries in a
distributed and/or heterogeneous programming envirohnierthese situations,
the search space of query optimization can become very &ardgaelynamic pro-
gramming is not always viable because of its very high coripleIn general,
there is a tradeoff between the complexity of an enumeratigarithm and the
quality of the plans generated by the algorithm. Dynamigpronming repre-
sents one extreme point: dynamic programming has exp@h¢intie and space
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complexity and generates optimal plans. Other algorithave flower complexity
than dynamic programming, but these algorithms are nottalfied as lowcost
plans as dynamic programming. Since the problem of finding@imal plan
is NPhard, implementors of query optimizers will probablways have to take
this fundamental tradeoff between algorithm complexitg goality of plans into
account when they decide which enumeration algorithm to e to its im-
portance, a large number of different algorithms have diréeeen developed for
query optimization in database systems. All algorithmsppsed so far fall into
one of three different classes or are combinations of suelt l@gorithms. In
the following, we will briefly discuss each class of algonits; a more complete
overview and comparison of many of the existing algorithansloe found in [67].

Exhaustive search

All published algorithms of this class have exponentiaktiamd space complexity
and are guaranteed to find the best plan according to the iaptisixcost model.
The most prominent representative of this class of algmstis (bottom-up) dy-
namic programming [65], which is currently used in most date systems. This
algorithm works in a bottom-up way as follows. First, dynamrogramming
generates so-called access plans for every table invotvdeeiquery. Typically,
such an access plan consists of one or two operators, ardareeseveral differ-
ent access plans for a table. In the second phase, dynangi@prming considers
all possible ways to join the tables. First, it considerswab-way join plans by
using the access plans of the tables as building blocks dhdgcthe joinPlans
function to build a join plan from these building blocks. Rrdhe two-way join
plans and the access plans, dynamic programming then msdiiee-way join
plans. After that, it generates four-way join plans by cdaging all combinations
of two two way join plans and all combinations of a three-waiyn jplan with an
access plan. In the same way, dynamic programming contioug®duce five-
way, six-way join plans and so on up to n-way join plans. Intthied phase, the
n-way join plans are massaged so that they become compéets far the query;
e.g., project, sort,or groupby operators are attachedegessary. Note that in
every step of the second phase, dynamic programming useanhe function to
produce more and more complex plans using simpler plans i&ingublocks.
Just as there are usually several alternative access fhans,are usually several
different ways to join two tables (e.g., nested loop joinastnjoins, etc.) and
the joinPlans function will return a plan for every alteimatjoin method. The
beauty of dynamic programming is that it discards inferioiiding blocks after
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every step (pruning). While enumerating two-way join plaftes example dy-
namic programming would consider an B plan and aB i1 A plan, but only
the cheaper of the two plans would be retained, so that oelghikeaper of the two
plans would be considered as a building block for three-i@y-way, ... join
plans involvingA and B. Pruning is possible because tHe< B plan and the
B <1 A plan do the same work; if thé o< B plan is cheaper than thie < A plan,
then any complete plan for the whole query that Hast B as a building block
(e.g.,C = (A B)) will be cheaper than the same plan wigh< A as a building
block (e.g.,C > (B < A)). As a result of pruning, dynamic programming does
not enumerate inferior plans such@sx (B 1 A) and runs significantly faster
than a naive exhaustive search. Note tht such an algoritumerates all bushy
plans.

Heuristics

Typically, the algorithms of this class have polynomial¢iand space complexity,
but they they typically produce worse plans [67]. Represtargs of this class of
algorithms are mini mum selectivity and other greedy alpons , the KBZ algo-
rithm ; and the AB algorithm. Basically, at each step, a péytidetermined order
is extended by choosing the most promis ing relational djperéo be executed,
according to some preference criterion. Obviously, thdityuaf plans produced
by the greedy algorithm strongly depends on the plan evaludtinction that
guides the preference criterion.

Randomized algorithms

The big advantage of randomized algorithms is that they bamstant space over-
head. The running time of most randomized algorithms cahaqgiredicted be-
cause these algorithms are indeterministic; typicallgdoamized algorithms are
slower than heuristics and dynamic programming for simpierigs and faster
than both for very large queries. The best known randomiiggatigthm is called
2P0 and is a combination of applying iterative improvemert aimulated an-
nealing. In many situations, 2PO produces good plans. Hexvdwere are situa-
tions in which 2PO produces plans that are orders of magaituore expensive
than an optimal plan.
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Iterative Dynamic Programming

This technique is based on iteratively applying dynamioggpranming and can
be seen as a combination of dynamic and greedy programmimg.e3sence of
this heuristic is that instead of fully enumerating all querocessing plans, a
resource limit is established (defined by a paramgjerDuring each dynamic
programming stage, all query processing plans are enueteugtto k-way joins.
At that point, one or more of the best plans are chosen. Thaslgplans will
be used as building blocks to initiate the next stage of dyagrogramming,
which also produces query-processing plans until the resodumit is reached.
The sequence of dynamic programming stages continuesauctinplete plan is
generated.

1.3 Query Answering Exploiting Structural Proper-
ties

A completely different approach to query answering is basestructural proper-
ties of queries, rather than on quantitative informatioowlilata values. Exploit-
ing such properties is possible to answer large classeseavfaguefficiently, that
Is, with a polynomial-time upper bound. The structure of argu) is best repre-
sented by itgjuery hypergraptt{(Q) = (V, H), whose set’ of vertices consists
of all variables occurring i), and where the séf of hyperedges contains, for
each query atom, the setwar(A) of all variables occurring inl. As an example,
consider the following query

Qo: ans «— s1(A, B, D) N sy(B,C, D) ANs3(B,E) Nsy(D,G) Nss(E, F,G) A
se(E,H) N s7(F,1) N ss(G,J). Figure 1.2 shows its associated hypergraph
H(Qo).

1.3.1 Queries and Acyclic Hypergraphs

We will adopt the standard convention of identifying a rielaal database instance
with a logical theory consisting of ground facts. Thus, deyp,, .. . ax), belong-
ing to relationr, will be identified with the ground atom(a,, ..., a;). The fact
that a tuple(ay, ..., ax) belongs to relatiom of a database instanB is thus
simply denoted by'(ay, ..., a;) € DB.

A (rule-basedgonjunctive query) on a database schem = { Ry, ..., R,,}
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Figure 1.2: Hypergraph{(Q,) (left), two hypertree decompositions of width 2 of
H(Qo) (right and bottom).

consists of a rule of the form
Q: ans(u) — ri(ug) A - Ary(ay),

wheren > 0; r1,...r, are relation names (not necessarily distinctpdf; ans is

a relation name not i S; andu, uy, . .., u, are lists of terms (i.e., variables or
constants) of appropriate length. The set of variablesroioguin @ is denoted by
var( Q). The set of atoms contained in the bodypfs referred to agatoms(Q).

Theanswerof () on a database instanbPd with associated univerdeé, con-
sists of a relatiorns, whose arity is equal to the length af defined as follows.
Relationans contains all tuplesf such that) : var(Q) — U is a substitution
replacing each variable inar( Q) by a value ofU and such that fot < i < n,
ri(u;)0 € DB. (For an atomA, A0 denotes the atom obtained framby uni-
formly substitutingd(X') for each variableX occurring inA.)

If @ is a conjunctive query, we define the hypergrdpt)) = (V, E) associ-
ated toQ) as follows. The set of verticdg, denoted byar(H (Q)), consists of all
variables occurring id). The setr, denoted byedges(H(Q)), contains for each
atomr;(u;) in the body ofQ) a hyperedge consisting of all variables occurring in
u;. Note that the cardinality ofdges(H(Q)) can be smaller than the cardinality
of atoms(Q) because two query atoms having exactly the same set oblesia
in their arguments give rise to only one edgecifyes(H(Q)). For example, the
three query atoms(X,Y), »(Y, X), ands(X, X,Y") all correspond to a unique
hyperedgg X, Y'}.

A query @ is acyclic if and only if its hypergrapl/ (@) is acyclic or, equiv-
alently, if it has has a join forest. foin forestfor the hypergraphf/ (Q) is a
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forestG whose set of verticey; is the setedges(H (Q)) and such that, for each
pair of hyperedge$, andh, in Vi having variables in common (i.e., such that
hi N hy # 0), the following conditions hold:

1. hy; andh, belong to the same connected componertt odnd

2. all variables common th; andh, occur in every vertex on the (unique)
path inG from hy to hs,.

If G is atree, then it is calledjain treefor H(Q).

Intuitively, the efficient behavior of acyclic instanceslige to the fact that they
can be evaluated by processing any of their join trees bettprioy performing
upward semijoins, thus keeping the size of the intermede#tions small (while
it could become exponential, if regular join were perforimed

Let us recall the highly desirable computational propsrtitacyclic queries:

1. Acyclic instances can be efficiently solved. Yannakakivjled a (sequen-
tial) polynomial time algorithm for Boolean acyclic quesieMoreover, he
showed that the answer of a non-Boolean acyclic conjungtingy can be
computedn time polynomial in the combined size of the input instaand
of the output relation [86].

2. We have shown that answering queries is highly paradiblez on acyclic
queries, as this problem (actually, the decision probleamsivering Boolean
gueries) is complete for the low complexity class LOGCFL][3bfficient
parallel algorithms for Boolean and non-Boolean querieseHaeen pro-
posed in [36] and [35]. They run on parallel database masttimeg exploit
theinter-operation parallelisnj84], i.e., machines that execute different re-
lational operations in parallel. These algorithms can ke amployed for
solving acyclic queries efficiently in a distributed enviroent.

3. Acyclicity is efficiently recognizable: deciding whetha hypergraph is
acyclic is feasible in linear time [68] and belongs to thessla (deter-
ministic logspace). The latter result is new: it followsrrdhe fact that
hypergraph acyclicity belongs to SL [37], and from the vezgent proof
that SL is in fact equal td. [59].

INote that, since both the databd3B and the query) are part of an input-instance, what we
are considering is theombined complexityf the query [82].
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1.3.2 Hypertree Decompositions

We recall the formal definition and the most important resalbouthypertree
width andhypertree decompositions

A hypertree for a hypergraplt is a triple (T, x, \), whereT = (N, E) is
a rooted tree, ang and )\ are labeling functions which associate to each vertex
p € N two setsy(p) C var(H) andA(p) C edges(H). Thewidth of a hypertree
is the cardinality of its largest label, i.e.,max,cn|A(p)|.

We denote the set of vertices of any rooted tfeley vertices(T'), and its root
by root(T"). Moreover, for anyp € vertices(T'), T, denotes the subtree @f
rooted ap. If 7" is a subtree of", we definex(7") = U,c,ertices(r) X(V)-

Definition 1.3.1 [39]

Ageneralized hypertree decompositaia hypergrapli{ is a hypertreeiD =
(T, x, \) for H which satisfies the following conditions:

1. For each edgé < edges(H), all of its variables occur together in some
vertex of the decomposition tree, that is, there existsvertices(T') such
thath C x(p) (we say thap coversh).

2. Connectedness Condition: for each variablec var(H), the set{p €
vertices(T) | Y € x(p)} induces a (connected) subtreelaf

3. For each vertey € vertices(T'), variables in they labeling should belong
to edges in the labeling, that is,x(p) C var(A(p)).

A hypertree decompositias a generalized hypertree decomposition that satisfies
the following additional condition:

4. Special Descendant Condition: for eaghe wertices(T), var(A(p)) N
X(Tp) € x(p)-

The HYPERTREE width hw(H) (resp., generalized hypertree widgthw (7)) of
H is the minimum width over all its hypertree decompositioasy., generalized
hypertree decompositions).

An edgé: € edges(H) isstrongly covereth HD if there exist € vertices(T)
such thatvar(h) C x(p) andh € A(p). In this case, we say thatstrongly covers
h. A decompositiorHD of hypergraphH is a complete decompositioof H if
every edge of{ is strongly covered itHD. From any (generalized) hypertree de-
compositionHD of H, we can easily compute a complete (generalized) hypertree
decomposition of{ having the same width.
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Note that the notions of hypertree width and generalizecehype width are
true generalizations of acyclicity, as the acyclic hypapirs are precisely those
hypergraphs having hypertree width and generalized hyggewtidth one. In par-
ticular, as we will see in the next section, the classes ojucmtive queries hav-
ing bounded (generalized) hypertree width have the samealEsscomputational
properties as acyclic queries [38].

At first glance, a generalized hypertree decomposition of@efgraph may
simply be viewed as a clustering of the hyperedges (i.e ryqa®ms) where the
classical connectedness condition of join trees holds. é¥ew a generalized hy-
pertree decomposition may deviate in two ways from thisqgpie: (1) A hyper-
edge already used in some cluster may be reused in some htbrg2) Some
variables occurring in reused hyperedges are not requoradfill any condition.

For a better understanding of this notion, let us focus ontweelabels as-
sociated with each vertex the set of hyperedges(p), and the set oéffective
variablesy(p), which are subject to the connectedness condition (2). tatsall
variables that appear in the hyperedges @f) but that are not included ig(p)
are “ineffective” forv and do not count w.r.t. the connectedness condition. Thus,
the x labeling plays the crucial role of providing a join-treedike-arranging of
all connections among variables. Besides the connectedimeslition, this re-
arranging should fulfill the fundamental Condition 1: evayperedge (i.e., query
atom, in our context) has to be properly considered in the@mosition, as for
graph edges in tree-decompositions and for hyperedgesninrges (where this
condition is actually even stronger, as hyperedges are mead@one correspon-
dence with vertices of the tree). Since the only relevanabées are those con-
tained in they labels of vertices in the decomposition tree, tabels are “just”
in charge of covering such relevant variables (Conditioni#l) as few hyperedges
as possible. Indeed, the width of the decomposition is deterd by the largest
label in the tree. This is the most important novelty of thpp@ach, and comes
from the specific properties of hypergraph-based problerere hyperedges of-
ten play a predominant role. For instance, think of our dadalframework: the
cost of evaluating a natural join operation withatoms (read* hyperedges) is
O(n*), no matter of the number of variables occurring in the query.

Example 1.3.2 Consider the following conjunctive quet:

ans — a(S, X, X', C,F) AN b(S,Y,Y' C' F)
Ne(C,C' Z) N d(X,Z) N
(Y, Z) A f(F,F,Z) A g(X', Z) A
hY', Z') A (], X,Y, X', Y").
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Let H, be the hypergraph associateddq. SinceH, is cyclic,hw(H;) > 1
holds. Figure 1.3 shows a (complete) hypertree decompaditD; of H; having
width 2, hencéuw(H;) = 2.

In order to help the intuition, Figure 1.4 shows an alternatrepresentation
of this decomposition, callemtom(or hyperedggrepresentatiof88]: each node
p in the tree is labeled by a set of atoms represenfiyg); x(p) is the set of alll
variables, distinct from_’, appearing in these hyperedges. Thus, in this repre-
sentation, possible occurrences of the anonymous variabtake the place of
variables invar(A(p)) — x(p)-

Another example is depicted in Figure 1.2, which shows tvpefiyee decom-
positions of queryy, in Section 1.3. Both decompositions have width two and are
complete decompositions @f. O

{1, X, 7, X", Y'Y {j}

{X,X'",Y,Y',5,C,C'",F,F'} {a,b}

{X,v,C,¢", 2} {j, e} XY, FF', 2"}y {jf}

(X2 @] vz o) fxizy e o2y o

Figure 1.3: A 2-width hypertree decomposition of hyperdwdp, in Exam-
ple 1.3.2

i, X, Y, X" Y")

a(S,X,X',C,F), b(S,Y,Y' C' F)

iGX,Y, L0, oC.C 2y |i(oL XY, f(F,F', 2"

‘ d(X, Z) ‘ e(Y, 2) ‘ ‘ g(X', 2" ‘ ‘ n(Y’,Z")

Figure 1.4: Atom representation of the hypertree decontiposin Figure 1.3
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Let k& be a fixed positive integer. We say that a CQ instahbask-bounded
(generalized) hypertree width(i§) hw(H (1)) < k. Aclass of queries has bounded
(generalized) hypertree width if there is some 1 such that all instances in the
class havé:-bounded (generalized) hypertree width.

Clearly enough, choosing a tree and a clever combinatiop afid \ label-
ing for its vertices in order to get a decomposition below adixhreshold width
k is not that easy, and is definitely more difficult than compgita simple tree
decomposition, where only variables are associated with eartex. In fact, the
tractability of generalized hypertree width is an interggiopen problem, as no
polynomial time algorithm is known for deciding whether gobygraph has gen-
eralized hypertree width at moktfor any fixedk > 2.

It is thus very nice and somehow surprising that dealing whth hypertree
width is a very easy task. More precisely, for any fixed 1, deciding whether
a given hypergraph has hypertree width at most in LOGCFL, and thus it is
a tractable and highly parallelizable problem. Correspaylyg, the search prob-
lem of computing &-bounded hypertree decomposition belongs to the fundtiona
version of LOGCFL, which id.L'0%CFL [38]. See the Hypertree Decomposition
Homepagé, for available implementations of algorithms for compgthypertree
decompositions, and further links to heuristics and otlagreps on this subject.

Let us briefly discuss the only difference of hypertree deoosition with re-
spect to generalized hypertree decomposition, that isgéseendant condition
(Condition 4 in Definition 1.3.1). Consider a vertg»of a hypertree decompo-
sition and a hyperedgk € \(p) such that some variable§ C h occur in the
x labeling of some vertices in the subtrégrooted atp. Then, according to this
condition, these variables must occuxifp), too. This means, intuitively, that we
have to deal with variables i at this point of the decomposition tree, if we want
to puth in A(p). For instance, as a consequence of this condition, for thte-rof
any hypertree decomposition we always hgve) = var(\(r)). However, once a
hyperedge has been covered by some vertex of the deconopds#e, any subset
of its variables can be used freely in order to decomposedimaining cycles in
the hypergraph.

To shed more light on this restriction, consider what happarthe related
hypergraph-based notions: in query decompositions [ADyagiables are rele-
vant; at the opposite side, in generalized hypertree deositigns, we can choose
as relevant variables any subset of variables occurring without any limita-
tion; in hypertree decompositions, we can choose any sobselievant variables

2http://wwwinfo.deis.unical.it/ frank/Hypertrees/
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as long as the above descendant condition is satisfied. foheréhe notion of
hypertree width is clearly more powerful than the (intré&t notion of query
width, but less general than the (probably intractablejomodf generalized hy-
pertree width, which is the most liberal notion.

For instance, look at Figure 1.4: the variables in the hyggeecorresponding
to atomj in H; are jointly included only in the root of the decompositiorhile
we exploit two different subsets of this hyperedge in theé oéthe decomposition
tree. Note that the descendant condition is satisfied. Takedrtex at level 2,
on the left: the variabled, X’ andY”’ are not in they label of this vertex (they
are replaced by the anonymous variabl¢, ‘but they do not occur anymore in
the subtree rooted at this vertex. On the other hand, if we Waerced to take all
the variables occurring in every atom in the decompositiea,tit would not be
possible to find a decomposition of width 2. Indegds the only atom containing
both pairsX,Y and X', Y’, and it cannot be used again entirely, for its variable
J cannot occur below the vertex labeled dyndb, otherwise it would violate
the connectedness condition (i.e., Condition 2 of Definitila3.1). In fact, every
query decomposition of this hypergraph has width 3, whike hilgpertree width
is 2. In this case the generalized hypertree width is 2, a§ e in general it
may be less than the hypertree width. However, after a restaresting result by
Adler et al. [2], the difference of these two notions of widkhwithin a constant
factor: for any hypergraph, ghw(H) < hw(H) < 3ghw(H) + 1. It follows
that a class of hypergraphs has bounded generalized hggpevidth if and only
if it has bounded hypertree width, and thus the two notioestifly the same set
of tractable classes.

Though the formal definition of hypertree width is ratherdalwed, it is worth-
while noting that this notion has very natural characteiozre in terms of games
and logics [39]:

e The robber and marshals game (R&Ms game)ltis played by one robber
and a number of marshals on a hypergraph. The robber movexiables,
while marshals move on hyperedges. At each step, any marshixbls an
entire hyperedge. During a move of the marshals from thef$stperedges
E to to the set of hyperedgéds, the robber cannot pass through the vertices
in B = (UE) N (UE"), where, for a set of hyperedgés UF’ denotes the
union of all hyperedges id'. Intuitively, the vertices inB are those not
released by the marshals during the move. As in the monotobheer and
cops game defined for treewidth [66], it is required that tlaeshals capture
the robber by monotonically shrinking the moving space efrttbber. The
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game is won by the marshals if they corner the robber somanihethe
hypergraph. A hypergrapi hask-bounded hypertree width if and only if
k marshals win the R&Ms game dr.

e Logical characterization of hypertree width. Let L. denote the existential
conjunctive fragment of positive first order logiE@®). Then, the class of
gueries having:-bounded hypertree width is equivalent to thguarded
fragment ofL,, denoted by GHL). Roughly, we say that a formulh be-
longs to Gk (L) if, for any subformulap of ®, there is a conjunction of up
to k£ atoms jointly acting as a guard, that is, covering the fre@ttes ofe.
Note that this notion is related to theosely guarded fragmerats defined
(in the context of fullFO) by Van Benthem [70], where an arbitrary number
of atoms may jointly act as guards.

Query Decompositions and Query Plans

In this section we describe the basic idea to exploit (gdized hypertree de-
compositions for answering conjunctive queries.

Let k£ > 1 be a fixed constant) a conjunctive query over a databd3B, and
HD = (T, x,\) a generalized hypertree decomposition(pbf width w < k.
Then, we can answép in two steps:

1. For each vertex € vertices(T), compute the join operations among rela-
tions occurring together in(p), and project onto the variables yt{p). At
the end of this phase, the conjunction of these intermedéstdts forms an
acyclic conjunctive query, say’, equivalent to). Moreover, the decom-
position tre€l’ represents a join tree 6f .

2. Answer()’, and hence), by using any algorithm for acyclic queries, e.g.
Yannakakis’s algorithm.

For instance, Figure 1.5 shows the trHg obtained after Step 1 above, from
the query@, in Example 1.3.2 and the generalized hypertree decomeposiii
Figure 1.4. E.g. observe how the vertex labeled by gigra built. It comes from
the join of atomg andc (occurring in its corresponding vertex in Figure 1.4), and
from the subsequent projection onto the variabte¥’, C, C’, and Z (belonging
to the y label of that vertex). By construction/; satisfies the connectedness
condition. Therefore, the conjunction of atoms labeling tinee is an acyclic
query, sayQ’, such that/T; is one of its join trees. Moreover, it is easy to see that
@} has the same answer @s [38].
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p1(J, X, Y, X", Y")

p2(X, X', Y, Y',S,C,C', F,F')

T

p3(X,Y,C,C’, Z) pa(X', Y, F, F', Z)

p6 (Y, Z) ‘ p7(X',2") ps(Y', Z")

Figure 1.5: Join tredl; computed for query)

p5(X, Z) ‘

Step 1 is feasible i (m|rm,q..|") time, wherem is the number of vertices
of T', andr,,., is the relation of having the largest size. For Boolean @qseri
Yannakakis's algorithm in Step 2 takésm|r,,q.|" log |rma.|) time, and thus its
cost is an upper bound for the entire query evaluation peodésr non-Boolean
qgueries, Yannakakis’s algorithm works in time polynomratihe combined size
of the input and of the output, and thus we should add to theeabost a term
that depends on the answer of the given query (which may benexyial w.r.t.
the input size). For instance, if we consider quély, the above upper bound
iS O(7|7maz|? 10g |Tmaz| ), Whereas typical query answering algorithms (which do
not exploit structural properties) would tak¥|r,,..|”) time, in the worst case.

It has been observed that, according to Definition 1.3.1, getgraph may
have some (usually) undesirable hypertree decompositd@jspossibly with a
large numbern of vertices in the decompaosition tree. For instance, a dposim
tion may contain two vertices with exactly the same labelser&fore, anormal
formfor hypertree decompositions has been defined in [38], asrdgtrengthened
in [63], in order to avoid such kind of redundancies. Hypsgtdecompositions in
normal form having width at mogt may be computed in time polynomial in the
size of the given hypergragh (but exponential in the parametey. The number
m of vertices cannot exceed the number of variableX jrand is typically much
smaller. MoreoverH has a hypertree decomposition of widthf and only if it
has a normal-form hypertree decomposition of the same width

It follows that, for any fixedk > 1, the class of all queries havirigbounded
hypertree width may be answered in polynomial time (acpual input-output
polynomial time, for non-Boolean queries). Indeed, givequary (), both com-
puting a hypertree decompositidfiD of width at mostt of H (), and then an-
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swering( exploiting HD are polynomial-time tasks.

As far as generalized hypertree decompositions are coadewme currently
miss a polynomial-time algorithm for recognizing queriesing k-bounded gen-
eralized hypertree-width. However, there is a great deahtefest in these de-
compositions, and some first results are coming.

1.3.3 Weighted Hypertree Decompositions

As described in the previous section, given a qu@rgn a databas®B and a
small-width decompositio®/D for (), we know that there is a polynomial time
upper bound for answerin@, while in general this problem is NP-hard and all
the available algorithms requires exponential time, inwloest case. However,
HD is not just a theoretical indication of tractability f6). Rather, the above
two steps for evaluating@ actually represent a query plan for it, though not com-
pletely specified. For instance, no actual join method (mengsted-loop, etc.) is
chosen, but this final more physical phase can be easily megaéd using well-
known database techniques. We remark that such optimmzagie executed just
on relations belonging to the same vertex, and hence oglations at most, ifv
is the width of HD. Thus, also optimal methods based on dynamic programming
or sophisticated heuristics can be employed, as the sizegfrbblem is small.
The remaining interesting problem is before this evalumfibase, where we
have to compute a decomposition faf((). Indeed, in general there is an ex-
ponential number of hypertree decompositions of a hypplgrd&very decom-
position encodes a way of aggregating groups of atoms aadgng them in a
tree-like fashion. As far as the polynomial-time upper liisrconcerned, we
may be happy with any minimum-width decomposition. Howgwuipractical
real-world applications we have to exploit all availabléomation. In particu-
lar, for database queries, we cannot get rid of informationthee databasBB.
Indeed, looking only at the query structure is not the bestaredo, if we may
additionally exploit the knowledge of relation sizes, iatite selectivity, and so
on.

1.3.4 Minimal Decompositions

In this section, we thus consider hypertree decompositwaiis an associated
weight, which encodes our preferences, and allows us toita&eaccount fur-
ther requirements, besides the width. We will see how to answeries more
efficiently, by looking for their best decompositions.
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Formally, given a hypergrapH, ahypertree weighting functiofshort: H\F)
wy Is any polynomial-time function that maps each generalisgzbrtree decom-
position HD = (T, x, \) of H to a real number, called tiveeightof HD.

For instance, a very simpl®/F is the functionvy,(HD) = maxXpcuertices(r) |A(D)],
that weights a decompositidiiD just on the basis of its worse vertex, that is the
vertex with the largesk label, which also determines the width of the decompo-
sition.

In many applications, finding such a decomposition haviegrimimum width
is not the best we can do. We can think of minimizing the nunolbeertices hav-
ing the largest widthw and, for decompositions having the same numbers of such
vertices, minimizing the number of vertices having width- 1, and continuing
so on, in a lexicographical way. To this end, we can defind-tNe w's*(HD) =
S {p € NsuchthaiA(p)| = i}| x B!, where N = vertices(T), B =
ledges(H)| + 1, andw is the width of HD. Note that any output of this function
can be represented in a compact way as a r&dnumber of lengthu, which is
clearly bounded by the number of edgesHin Consider again the query, of
the Introduction, and the hypertree decomposition, &y, of H () shown in
Figure 1.2, on the right. It is easy to see t#&D’ is not the best decomposition
w.r.t. wi® and the class of hypertree decompositions in normal forndeéd,
wier(HD') = 4 x 9 4 3 x 91, and thus the decompositidiiD” shown on the
bottom of Figure 1.2 is better thafD’, asw!;”(HD") = 6 x 9° 4+ 1 x 9.

Let £ > 0 be a fixed integer an#il a hypergraph. We define the clag$D,
(resp.,kNFD4,) as the set of all hypertree decompositions (resp., nofanai-
hypertree decompositions) &f having width at mosk.

Definition 1.3.3 [63]Let H be a hypergraphy;; a weighting function, and’;,
a class of generalized hypertree decompositiong/ofThen, a decomposition
HD € Cy is minimalw.r.t. wy, andCy, denoted bydy, Cx]-minimal, if there is
no HD' € Cy, such thatuy (HD') < wy(HD). O

For instance, thed}), kHD]-minimal decompositions are exactly thie
bounded hypertree decompositions having the minimum bplassridth, while
the [wi®, kHD4]-minimal hypertree decompositions are a subset of them, corre-
sponding to the lexicographically minimal decompositidescribed above.

Itis not difficult to show that, for general weighting funatis, the computation
of minimal decompositions is a difficult problem even if wensaler just bounded
hypertree decompositions [63]. We thus restrict our attartb simplerH\Fs.

Let (R*, ®, min, 1, +00) be asemiring that is,® is a commutative, associa-
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tive, and closed binary operatar,is the neuter element fep (e.g.,0 for +, 1 for
x, etc.) and the absorbing element foin, andmin distributes overp.® Given a
functiong and a set of elements = {py, ...,p, }, we denote b¥p s g(p:) the
valueg(p1) ® ... ® g(pn).

Definition 1.3.4 [63]Let H be a hypergraph. Then,teee aggregation function
(short: TAF) is any hypertree weighting function of the form

Fo“(HD) = @ (vn(p) & €D en(p. 1)),

peEN (pp)EE

associating afR* value to the hypertree decompositiéfD = ((N, E), x, ),
wherevy : N — RT andey : N x N — R* are two polynomial functions
evaluating vertices and edges of hypertrees, respectively O

We next focus on a tree aggregation function that is usefujdery optimiza-
tion. We refer the interested reader to [63] for further eghles and applications.

Given a query over a databasBB, let HD = (T, x, ) be a hypertree de-
composition in normal form fok(Q). For any vertex of 7', let E(p) denote the
relational expressiol(p) = Xuenp) [, rel(h), i.e., the join of all relations
in DB corresponding to hyperedges/ifp), suitably projected onto the variables
in x(p). Given also an incoming nogé of p in the decompositio/D, we define
v;‘{@)(p) ande;‘{@)(p,p’) as follows:

* v}, ) (p) is the estimate of the cost of evaluating the expresgigr), and

° e;‘{(Q)(p,p') is the estimate of the cost of evaluating the semi-jbip) x
E(p).

Let costy(q) be theTAF ;" (HD), determined by the above functions. In-
tuitively, costy () Weights the hypertree decompositions of the query hypplgra
H(Q) in such a way that minimal hypertree decompositions comedo “opti-
mal” query evaluation plans f@p overDB. Note that any method for computing
the estimates for the evaluation of relational algebra atpmrs from the quanti-
tative information orDB (relations sizes, attributes selectivity, and so on) may be
employed for* ande*.

Clearly, all these powerful weighting functions would beliofited practi-
cal applicability, without a polynomial time algorithm fdhe computation of

3For the sake of presentation, we refentim and hence to minimal hypertree decompositions.
However, it is easy to see that all the results presentedsrptper can be generalized easily to
any semiring, possibly changingin, R+, and+oo.
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minimal decompositions. Surprisingly, it turns out thatlike the traditional

(non-weighted) framework, working with normal-form hypree decompositions,
rather than with any kind of bounded-width hypertree decositpn, does mat-
ter. Indeed, computing such minimal hypertree decompmstwith respect to
any tree aggregation function is a tractable problem, whilas been proved that
the problem is still NP-hard if the whole class of boundedtWihypertree de-
composition is considered. A polynomial time algorithm flois problem, called

m ni mal - k- deconp, is presented in [63].

1.3.5 Hypertree Decompositions for Queries

In this section, we describe a new extension of the notionypkhree decom-
position specifically designed for the query evaluatiorppses described in the
previous sections. In particular, we show how to computengosition trees
whose associated query plans guarantee a polynomial tiper ygpund with a
single bottom-up evaluation phase, and we improve the gaeswering exploit-
ing the hypertreee decomposition phase, by avoiding theerwainstruction of the
acyclic query equivalent instancg.

Definition 1.3.5 A query-oriented hypertree decompositighort: g-hypertree
decompositionof a conjunctive query) is a hypertreeHD = (T, x, \) of the
hypergrapi# (@) which satisfies the following conditions:

1. For each edgé € edges(H), there exist® € vertices(T') such thath C
x(p)-
2. There existp € vertices(T') such thabut(Q) C x(p).

3. Connectedness Condition: For each varidblec var(H), the set{p €
vertices(T) | Y € x(p)} induces a (connected) subtreelof O

In fact, a g-hypertree decompositidgfiD of a (non-Boolean) query) is a
(generalized) hypertree decompositior+fc)), except for the following impor-
tant features:

a) The decompositio/D is forced to have a vertexthat covers all the output
variables of@). Therefore, if we root the decomposition treepathe query may
be answered by performing only one bottom-up evaluatioh@ftiecomposition
tree. Indeed, at the end of this procedure, the relationrééxg, projected onto
out(Q), directly provides the answer @¢J. Thus, steps (ii) and (iii) described
above are no longer needed.
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| {AB.X.S} a(AB), gX.9)| | {ABX.S} a(A,B), g(X.9) |

15.2}i8,2)] | (BYX}aAB).c(Y.X) | [{8Z1i(8,2)] | (BY.X} o(Y.X)]
\ \ \ \

\ \ \
[zM}hzM) | | (BLCY}bBO), c(V.X) | [(ZM} hzZM)| | (B,CY} bB,O)]

[ (CTY} dCT), (YY) | {CLY} d(CT)
[

\
[ {TRY} &(T,R), c(Y.X) | {T.R,Y} e(T,R)
\ \
@ {R,Y} f(R,Y) (b) (R.Y} fRY)

Figure 1.6:HD, (a) andHD; (b), in Example 1.3.6.

b) Condition 3 of Definition 1.3.1 is not required here, thatsisime variables in
the x labeling may be not covered by atoms in théabeling. This relaxation
allows us to perform an important optimization of decomposibased query
plans: we may save join operations at a veyteas long as there are variables in
x(p) whose sets of possible tuples are bounded by atoms in soideo€hi

To evaluate a conjunctive query on a databas®B, given a g-hypertree
decompositiorHD = (T, x, A) for it, we use an adaptation of the Yannakakis’s
algorithm described next.

A g-hypertree evaluatois a procedure that, given as its ingufD, (), DB),
performs the following steps:P’) For each vertex € vertices(T), compute the
join of the relations associated to atoms)ifp), and project the result onto the
variables iny(p); (P") Following a topological order of’, evaluate each vertex
p of the decomposition tree by taking the join of the relatiop avith each one
of its children and projecting the result onidp)’s variables; f"’) Output the
projection of the relation at the root @f onto the variables inut( Q).

Example 1.3.6 Consider the following SQL query;:

SELECT A, S, max(X) FROM a, b,c,d, e, f, g, h,i
WHERE a. B=b.B and b.C=d.C and d. T=e. T and e. R=f. R and
f.Y=c.Y and g.X=c. X and g.S=i.S and h.Z=i.Z

GROUP BY A'S

Figure 1.6 shows two g-hypertree decompositii; and HD} of CQ(Q1).
Note that both of them have width 2, though(H(Q1)) = 1, as the query hyper-
graphis acyclic. In fact this is the best we can do, becauseave to start from a
hypertree decomposition likéD, (to keep its nice properties), but we have to sat-

isfy also Condition 2 in Definition 1.3.5. Intuitively, thegendition may introduce
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cycles in the hypergraph, through the connections invgleutput variables. This
is what we are going to pay, to avoid the additional top-dowd &s subsequent
bottom-up evaluation of the decomposition tree for noni&mo queries (steps
(i) and (iii) in Section 1.3.2).

Looking at the simpler hypertre€D/ in Figure 1.6, we can see how the fea-
ture (b) of g-hypertree decompositions works, by allowing the aggémto get
better plans. Compare the right subtrees of the rootdbf and HD/: The atom
a in the first vertex, and the atomin the subsequent three vertices do not occur
in the \ labels of their corresponding vertices D). Hence, the preliminary
evaluation Steg”’ requires forHD] only one join operation (at the root) instead
of 5, as it is for the hypertreé&D;. O .

Note that, in general, there are different ways of evalgatinon DB w.r.t.
HD, depending on the choice of the topological order of the dgamsition tree.
Moreover, observe that, at Stéff, we take joins instead of semi-joins, because
some variables at a vertgxmay be covered by its children, rather than by its
own atoms. In fact, differently from the corresponding S$¢mlescribed in Sec-
tion 1.3.2, the output of Stef’ is not an acyclic query equivalent €. It follows
that, in principle, the size of such intermediate joins—hadce the cost aP’—
may increase exponentially, even if the width is boundedieyconstank.

Thus, a key issue is the computation of a g-hypertree decsitnpothat can
be evaluated efficiently, that is, such that the size of mestiate relations can-
not blow-up, and the whole procedure has a polynomial-tipgeu bound in the
combined size of the input and of the output.

Definition 1.3.7 A g-hypertree decompositioBD of a conjunctive query) is
saidgood if there is a g-hypertree evaluator that, given as its ifpii?, ), DB),
takes polynomial-time ifi@|| + ||DB|| + ||Q(DB)|| to compute the answer 6f
onDB. U

Putting it all together, given an SQL queiyon a databasBB, our algorithm
for evaluatingy by exploiting hypertree decompositions consists of thivol
ing steps: (1) we compute the conjunctive quérg(()), as described in Sec-
tion 2.5.4; (2) we compute a good g-hypertree decomposiiibrof CQ(Q); (3)
we compute the answer 6fQ)(Q)) onDB by means of a suitable g-hypertree eval-
uation of@Q on DB w.r.t. HD; and (4) we evaluate possible aggregate operators
(including group-by computations) working on the answe€6f(Q).

Step (4) is implemented in any standard way, as, by definitranables in
out( Q) include all variables involved in such aggregate operattireemains to
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Input: A conjunctive queryQ.
Output: A good g-hypertree decompositidiiD = (T, x, A) of Q.
Compute a “minimal” NF hypertree decompositioHD of H(Q) such that

Condition 2 in Definition 1.3.5 is satisfied, the width &D is at mostk,
and, for the root of HD, out([Q) C x(r) holds;
If no such a decomposmon exists

Output “Failure”;
else

Executeo tlmlze(HD r);
Output H.

Procedure Optimiz§VAR HD, p € vert(HD))

For each hypered e € \(p) Do
If Jg € child(p) and b € A(q) such thata N x(p) € bN x(q)
Then Removeg from 2
For eachq € child(p) Do Optimiz€ HD, q).

Figure 1.7.ALGORITHM g-HypertreeDecomp.

describe how to implement Step (2) and Step (3), that willHeestubjects of the
following sections.

Computing good g-Hypertree Decompositions

An algorithm that given a conjunctive que€y returns a good g-hypertree de-
composition ofQ) is reported in Figure 1.7. This algorithm depends on a fixed
constant:, which bounds the width of the decompositions to be constiéyp-
ically, £ = 4 is enough for database queries). Firstly, the algorithmmdes

a width4 hypertree decompositio/D of H(Q) that satisfies Condition 2 in
Definition 1.3.5, if any. Note that in general there is an exgrgial number of
hypertree decompositions of a hypergraph, leading toréiffiequery-evaluation
performances. Therefore, we have implemented an algo(ilased on the ideas
in [63]) that evaluates different hypertrees according tost model for physical
operators. Specifically, the cost model is based on a nunfilestimates about the
operations on the input database, computed with standanditpies described in
[33]. Then, rather than looking at all possible hypertresoaepositions, we focus
on those hypertree decompositions in having the minimuwcasted cost, as they
correspond to “optimal” query evaluation plans fgrover . Notably, as shown
in [63], computing such a best query plan can be done effigightve consider
normal form (NF) decompositions (again, it is feasibl&.hYSCFL),

After the computation of this hypertree decompositionf)), we execute
the Procedure Optimizewhich simplifies the hypertreED by removing hyper-
edges from the labels, in order to get a more efficient query plan for the guer
without giving up the guarantee on the polynomial-time uggmind on the eval-

uation of C' :
Let & >Q§%e a fixed constant. Given a conjunctive quéryAlgorithm g-
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HypertreeDecomp in Figure 1.7 runs in polynomial time, antpats a good g-
hypertree decomposition @f, or “Failure”. The latter output is returned if and
only if there is no hypertree decompositionZf@) having width at mosk that

satisfies Condition 2 in Definition 1.3.5.
For space limitations, we just give a rough idea on how thegutareOptimize

works, guided by the example in Figure 1.6. A, consider the right chilg,

of the root, where atora is removed from\(p,). In principle, this atom is useful
here, because it provides a bound on the possible valueaf@ble B coming
from the bottom of the tree (but non for variablethat does not belong tg(p,.)).
However, B is also contained in the atomin the child of this vertex. Then, we
may think of an equivalent hypertree decomposition wheirgreplaced by in
this vertex. Now, itis clear that, in any evaluation of thea®position tree, there
IS no sense in computing the join operation between thebsna these adjacent
vertices. Indeed, the result of such an operation would laetBxthe relation
corresponding to the atoin(possibly already filtered by previous join operations
executed in the bottom-up evaluation). Thuspay be replaced by, andb is
useless, whence we can just deletsom that vertex, as far as the polynomial-
time upper bound is concerned. Intuitively the boundingefbn the variables in
a N x(p.) (in this case, onlyB) is guaranteed by the atobrin the child ofp,..

It is worthwhile noting that, in more complex examples whaneh a simpli-
fied atom has many children, the topological order used iretladuation of the
join tree should take care of the children used for the siiicplion, that have
to be joined with their parent before the other siblings. édthise, intermediate
relations with exponentially many tuples can be temporamguted.

1.3.6 System Architecture

The structural approach described in so far has been implesend integrated
into a prototype system, which can be used either as a stand-application, or
as a module plugged-in the open source PostgreSQL DBMS.

In the former case, the system rewrites the user query in of QL views
(based on its structural decomposition), which can be ewatlion top of any
DBMS — in this case, possible statistical information abdata should be pro-
vided explicitly by the user, and the DBMS optimizer is resgible for the trans-
lation of the logical query plan into the physical one.

In the latter case, instead, the decomposition algoritheve tbeen tightly
integrated in the PostgreSQL optimizer, so tfBtthe optimization process is
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completely transparent to the user, g@jladditional information about data can
automatically be exploited, to find a good query plan.

Stand Alone Execution
. Query
DBMS Execution DBMS ———p
Results
User Query
Quer Plan
y Generator optimized
Query
External Layer | / 77777 \ - =

Sql Analyzer

rrrrrrrrrrr cost-K-decomp

Hypertree
Decomposition

Query
Manipulator

Statistics
Picker

Data Flow T~ .

Execution Flow Execution Flow

with Statistics without Statistics

Figure 1.8: System architecture.

Figure 1.8 illustrates a functional view of the system aeatture. Basically,
it is formed by the following modules:

Sql Analyzerlt is responsible for preprocessing the query. First,3heParser
verifies its syntactical correctness, and then @omjunctive Query Isola-

tor computes the associated query hypergraph, which is the basthe
structural optimization.

Statistics Picker.This module is responsible for collecting the statisticeutb
the relations involved in the query. When the system is cediplith Post-
greSQL, these statistics are directly accessible from tB&IS optimizer.
Otherwise, i.e., in the stand-alone usage, the user mapraly indi-
cate the cardinality of the involved relations, and the celgy of their

attributes.
cost - k- deconp. This is the fundamental module of our architecture. It picks
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from theMetadata Repositorgtatistics about data, together with the query
hypergraph generated by tisgl Analyzerand produces a g-hypertree de-

composition according to the ideas described in Sectio’1.3

Query Manipulator. In the case of the direct integration in PostgreSQL, the
module produces a suitable data structure which is usedptement the
bottom-up strategy discussed in the paper. Otherwisgin e stand-alone
usage, the query plan is returned to the user in terms of atrewSQL
query, which can be evaluated on top of any DBMS (possiblalaling its

internal optimizer).

Tight Coupling with PostgreSQL

Since our system is fairly the first attempt to integrate dtrral optimizations
into the core of standard (quantitative) query optimizérs, relevant to discuss
in more details how this coupling has been practically acde

Rewrited Query tree

Subquery
tree

Exahustive
Search

Executor

»| Optimizer
Handler
v
User SQL query Statisti » Commands
CQ Isolator tatistics ™,
Q Picker Utility
v \ v
Tco
P cost-k-decomp
v Data  definitions A
Parser - HDBQO
Data representation | Yiew Builder
Query tree Optimized
\ 4 query tree
— |  Rewriter > Subquery >
Subquery Handler Optimized
path plan tree

GEQO

Query Plan Generator

Figure 1.9: Integration in PostgreSQL.
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In PostgreSQL, queries are processed as follows (see Flgaye TheTcop
module intercepts user requests and forwards thelPatser, which performs the
syntactical and semantical analysis and produces a stedatepresentation called
Query tree The Rewriter elaborates the query tree for optimization purposes
and sends the result to tl@ptimizer handler which is in charge of selecting
the way the optimization has to be carried out. In the cunmpiementation of
PostgreSQL, two distinct and alternative optimizers aglalle: one performing
anexhaustive seargtand another using a genetic algorith@HQO).

To make the coupling possible, we modified Metimizer handlerso that the
control is no longer directly passed to either of the optersz Rather, both the
CQ Isolatorand theStatistics pickerare invoked. In particular, statistics about
data are now collected from the PostgreSQhmmands Utility

Then, theQuery Plan Generatois invoked: first, theHDBQO ViewsBuilder
is responsible for building an optimized query tree basetheng-hypertree de-
composition produced byost - k- deconp, expressed in terms of nested SQL
subqueries; then, each subquery is processed WEHEQO SubQueryHandler
which is in charge of its execution on top of the built-in RpeSQL optimizer.

1.3.7 Experimental Results

Compared Methods. Query plans for a number of queries were generated and
their performances were compared with those produced bynanewcial DBMS,

that will be calledCommDB for license reason, and PostgreSQL. Specifically, we
usedCommDB to evaluate the performances of our stand-alone archrescind
PostgreSQL to assess the advantages of a direct couplidg m®BMS.

Benchmark Queries and Data. Tests included different kinds of queries. For
each of them, we varied the hypertree width, the number alwed relations,
their cardinality, and the selectivity of their attribut€ur attention was primarily
devoted to test the optimization strategies on the stantl@Hbenchmarks. In
addition, we considered the following kinds of query:

e Acyclic QueriesThese are acyclic queries whose hypergraph has the form
of aline: q(y) < pi1(x1), p2(X2), ..., pn(Xn), Wherex; denotes the set of
variables occurring in the query atomn We considered queries such that
x;Nx;41 # 0, foranyl <i < n,andx;Nx; = 0, foranyi ¢ {j+1,j—1}.

We experimented with queries whose lengtranges fron? to 10.
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Figure 1.10: Execution times w.r.t. number of body atomg:afad (b) for at-
tributes selectivity values 30, 60 and 90 — cardinality 50@&) and (d) for
databases of 500, 750 and 1000 tuples — selectivity 30.

e Chain Queries.They are the simplest cyclic variation of the above lines,
where the first and the last query atoms have a variable in @m{® N

Xn # 0).

TPC-H queries were evaluated over data generated hipentool provided
by TPC. For the other kinds of queries, synthetic data weed,ushich has been
generated randomly by using an uniform distribution ovexedirange of values,
and setting the desired values for the cardinality of ealehiom and the selectivity
of each attribute.

All experiments were performed on a 2,66Ghz Pentium 4 Igptopipped
with 512 Mb of ram and a 5400 rpm hard disk, running Windows X&féssional.

Experimenting with CommDB

We executed TPC-H queries diommDB, both with and without its standard
optimizer, to execute queries according to the g-hypedss®mposition method
(¢-HD). In the latter case, we report thetal execution time, i.e., the summation
of the stand-alone optimization time and of ttenmDB evaluation time.

Figure 1.11 shows results for two TPC-H queri@s andQg, having hypertree
width 2 (that is, two cyclic queries). For these queries,ube of statistics fog-
HD had no impact on the computed query plans, which means thrathése
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queries and according to our cost model, exploiting thecaire was estimated
more important than exploiting the information on the dath Thus, the results
shown in this figure for-HD, are in fact the same as those obtained without any
information on the data, that is, by usipg{D as a purely structural method.

The picture is completely different faflommDB: standard execution time,
when it is not allowed to use statistics on the data, dramltigrows with the
database size, and the evaluation quickly becomes infea&ten wherCommDB
is allowed to exploit statistics on the data, the use of gelnype decomposition
(¢-HD) improves the query evaluation performances. Of coursd# gaod results
are closely related with the peculiarities of querigsand()s, which are cyclic
and involve many join operations. In fact, on queries whaeedtructure plays
instead a marginal role; HD used as a purely structural method is generally not
competitive withCommDB exploiting statistics.

Anyway, it is relevant to notice that gathering statistesxpensive (for 1GB,
800 seconds are needed) while building a structure-baseds guian takes an
average time of 1.5 seconds—not affected by the databaseasid usually leads
to good performances. Hence, besides the cases of longlar gyeries likeQs
andQs, ¢-HD could be very useful in all those applications where statisdre
not available (or not yet).

Experimental results for Acyclic and Chain queries furit@nfirmed the above
intuitions. The results are depicted in Figure 1.10, whighorts query execution
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Figure 1.11: Execution time on TPCH-Queri€ammDB vscost - k- deconp.
Execution Times with database size ranging from 200mb t®d®0 (a) Query

Q5. (b) QueryQs.
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Figure 1.12: PostgreSQL: Execution times w.r.t. numberaolybatoms — selec-
tivity 60, cardinality 450.

times, varying the number of body atoms and with differeh&s for cardinality
of relations and selectivity of attributes—whe&remmDB is able to use statistics
on the data.

Notice that, for queries with 10 atoms in the bo@ymmDB executions do not
terminate after more than 10 minutes while thé/D driven executions take just
a few seconds. This evidences that, when the size of the guews (especially
if combined with its its intricacy), current DBMS optimizeoften fail in finding
good query plans and structural decomposition methodsigarfisantly improve
their performances.

Experimenting with PostgreSQL

All the experiments described above have been repeatedowitprototype di-
rectly implemented inside PostgreSQL 8.3. The relative gained out to be
even higher than for the tests witommDB, since in this scenario query evalua-
tion can benefit of both the structural methods and the quading statistics about
data.

As an example, we reported in Figure 1.12 the execution tonescyclic and
Chain queries, for a synthetic database where each relediotains 450 tuples
and whose attributes have selectivity 60 (by lowering tHecswity, the gain of
the structural approach is even more evident).

The reader may notice that the basic PostgreSQL optimizéompes quite
poorly when compared witkommDB, since evaluating an acyclic query with
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6 body atoms takes about 80 second in this scenario, whideaaisible in a few
seconds by ommDB (cf. Figure 1.10.(a)). However, when the structural meghod
are integrated in PostgreSQd- (D), we get some quite surprising results, since
its query evaluation nicely scales up to 10 body atoms, wiilemDB (without
the use of structural optimizations) does not terminater &® minutes, even for

8 atoms only.

Finally, in the last set of experiments, we explore the bé&nefiusing the pro-
cedureOptimizein Figure 1.7, and hence of exploiting feature (b) of q-hyyeer
decompositions. The results for chain queries are showigur€& 1.13 (over the
same dataset as in Figure 1.12).

O no Optimize @ g-HD

Total Execut:
N Ao ® DR
88583888

m “‘

~

@

9 10

Figure 1.13: Impact of Procedu@ptimize
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Data Integration Systems

2.1 Data Integration Systems

Information integration is the problem of combining thealegsiding at different
sources, and providing the user with a unified view of thedea,dzlledglobal
schema The global schema is therefore a reconciled view of thermétion,
which can be queried by the user. It can be thought of as a settoél rela-
tions, in the sense that their extensions are not actuahgdtanywhere. A data
integration system frees the user from having to locate tlieces relevant to a
guery, interact with each source in isolation, and manuaynbine the data from
different sources.

The interest in this kind of systems has been continuousiyigg in the last
years. Many organizations face the problem of integratatg desiding at several
sources. Companies that build a Data Warehouse, a Datagjorian Enterprise
Resource Planning system must address this problem. Ategyrating data in the
World Wide Web is the subject of several investigations argjgets nowadays.
Finally, applications requiring accessing or re-engiimggtegacy systems must
deal with the problem of integrating data stored in différgources.

The design of a data integration system is a very complex taklch com-
prises several different issues, including the following:

1. heterogeneity of the sources,
2. mapping between the global schema and the sources,
3. limitations on the mechanisms for accessing the sources,

4. materialized vs. virtual integration,

51
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5. data cleaning and reconciliation,
6. how to process queries expressed on the global schema,
7. how to deal with integrity constraints.

Problem (1) arises because sources are typically hetegogepnmeaning that they
adopt different models and systems for storing data. Thesgepchallenging prob-
lems in both representing the sources in a common formatrwitie integration
system, and specifying the global schema. As for the firsieisdata integration
systems make use of suitable software components, calkgabers, that present
data at the sources in the form adopted within the systemndidhe original
structure of the sources and the way in which they are modénéth regard to
the specification of the global schema, the goal is to desigh a schema so as
to provide an appropriate abstraction of all the data ragidit the sources. One
aspect deserving special attention is the choice of theukgg used to express
the global schema. Since such a view should mediate amofegedhit represen-
tations of overlapping worlds, the language should profledable and powerful
representation mechanisms.

With regard to Problem (2), two basic approaches have beet tasspec-
ify the mapping between the sources and the global schemafifBhapproach,
called query-centric oglobal-as-viem(GAV), requires that the global schema is
expressed in terms of the data sources. More precisely, ey @oncept of the
global schema, a view over the data sources is associatédatsiss meaning is
specified in terms of the data residing at the sources. Tmdeapproach, called
source-centric ofocal-as-view(LAV), requires the global schema to be speci-
fied independently of the sources. The relationships betwlee global schema
and the sources are established by associating each elefrtéet sources with
a view over the global schema. Thus, in the local-as-viewagh, we specify
the meaning of the sources in terms of the concepts in theabkuhema. It is
clear that the latter approach favors the extensibilithefihtegration system, and
provides a more appropriate setting for its maintenance.ekample, adding a
new source to the system requires only to provide the defimdf the source, and
does not necessarily involve changes in the global view. @rcontrary, in the
global-as-view approach, adding a new source may in piliecgguire changing
the definition of the concepts in the global schema. A difiespproach could
be to specify the mapping by combining LAV and GAV views tdget This ap-
proach, callegylobal-local-as-view(GLAV), is quite recent and has so far drawn
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little attention in the literature (see, e.g., [54]), thuwill not be discussed further
in this thesis.

Examples of LAV systems are Information Manifold [46], Infaster [24],
and the systems presented in [53] and [17]. Information kdéhand the system
described in [17] express the global schema in terms of & Logics [11,
7], and adopt the language of conjunctive queries to spdmfin user queries
and views in the mapping. The system described in [53] usesMin global
schema, and adopts XML-based query languages for both tppingaand the
gueries on the global schema. More powerful schema langdagexpressing the
global schema are reported in [24, 42, 16, 15]. In partic(iat, 42] discuss the
case where various forms of relational integrity consteaare expressible in the
global schema, including functional and inclusion depeedss, whereas [16, 15]
consider a setting where the global schema is expresseds & Description
Logics, which allow for the specification of various typescohstraints.

Examples of GAV systems are TSIMMIS [32], Garlic [18], COIB4], MOMIS [9],
Squirrel [88], and IBIS [14]. These systems usually adopipse languages for
expressing both the global and the source schemas. IBI® isrtly system we
are aware of that takes into account integrity constramtle global schema.

Problem (3) refers to the fact that, both in the local-aswaad in the global-
as-view approach, it may happen that a source presents soitegibns on the
types of accesses it supports. A typical example is a welts@acessible through
a form where one of the fields must necessarily be filled in leyuer. This can
be modeled by specifying the source as a relation suppootihg queries with
a selection on a column. Suitable notations have been pedpios such situa-
tions [57], and the consequences of these access limisatiomuery processing
in integration systems have been investigated in sevepairpd57, 51, 30, 87, 50].

Problem (4) deals with a further criterion that one shouletanto account
in the design of a data integration system. In particulathwespect to the data
explicitly managed by the system, one can follow two diff¢r@pproaches, called
materializedandvirtual. In the materialized approach, the system computes the
extensions of the concepts in the global schema by repigdtie data at the
sources. In the virtual approach, data residing at the ssuace accessed during
qguery processing, but they are not replicated in the integraystem. Obviously,
in the materialized approach, the problem of refreshingriagerialized views in
order to keep them up-to-date is a major issue [45]. Unldssratise specified, in
the following we only deal with the virtual approach.

Whereas the construction of the global schema concernsitdetional level
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of the data integration system, Problem (5) refers to a nurabessues arising
when considering integration at the extensional/instdecel. A first issue in
this context is the interpretation and merging of the dateipled by the sources.
Interpreting data can be regarded as the task of casting thiema common
representation. Moreover, the data returned by variousceswneed to be con-
verted/reconciled/combined to provide the data integnatiystem with the re-
guested information. The complexity of this reconciliatistep is due to several
problems, such as possible mismatches between data mgf¢orihe same real
world object, possible errors in the data stored in the smyrpossible inconsis-
tencies between values representing the properties ofvagéd objects in differ-
ent sources [31]. The above task is known in the literatuf@ata Cleaning and
Reconciliationand the interested reader is referred to [31, 17, 12] folerdetails
on this subject.

Problem (6) is concerned with one of the most important issua data inte-
gration system, i.e., the choice of the method for computieganswer to queries
posed in terms of the global schema only on the basis of the giding at
the sources. The main issue is that the system should beaatsdeskpress such
gueries in terms of a suitable set of queries posed to thessunand them to the
sources, and assemble the results into the final answer.

Finally, Problem (7) arises because the language adoptegptesent the in-
tegration domain should be powerful enough to cope with $kaeas highlighted
at point (1), i.e. should be based on integrity constrai@enerally, in data in-
tegration, data at the sources are assumed to be coherartheiintegrity con-
straints specified over the sources to which they belong, shiah constraints can
be overlooked during query processing. On the other hand,atginally stored
in autonomous sources may not satisfy the integrity comsgr@xpressed in the
global schema, and inconsistencies may arise in the irttegrsystem. Further-
more, integrity constraints represent fundamental kndgdeabout the real world
and important requirements that the reconciled data hawesgect, so that they
cannot be neglected during query processing. Generallgkspg in the pres-
ence of some inconsistencies, traditional semantics fta iidegration systems
consider the entire system inconsistent and are unablepmosiquery process-
ing even if most of the data at the sources satisfy the irtieganstraints in the
global schema. More recent approaches [52, 4, 5, 40] cardiifierent semantics
able to provide database instances for the global schenmaietbe presence of
inconsistencies, and define techniques to compute answepgeries in such a
scenario.
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2.2 The Infomix Project

The principal goal of the INFOMIX project was to provide adead techniques
and innovative methodologies for information integratsystems. In a nutshell,
the project developed a theory, comprising a comprehemsigemation model
and information integration algorithms, and a prototypplementation of a knowl-
edge based system for advanced information integrationslng computational
logic and integrating research results on data acquissitahtransformation. Spe-
cial attention was devoted to the definition of declaratigertinteraction mech-
anisms, and techniques for handling semi-structured @atd,incomplete and
inconsistent data sources.

These objectives, which advanced the state of the art ira@esspects, are
detailed as follows.

e Comprehensive Information Model. A comprehensive information model
has to be provided, which incorporates static and dynanpeds of infor-
mation integration, and supports advantednan likereasoning, based on
a rich semantics. Current information integration systaregather poor in
this respect, and provide only limited support (if any) fapeessing con-
straint relationships between the local sources and a bladya of the data.
The source data are integrated in such systems under itrgg®iimptions
such as soundness and completeness; arising inconsest@neihandled at
low levels in a procedural manner, without a clear undedstagto the user
about the effects on the semantics of the overall system.tWaédarely
need is a much richer information model in which knowledgeuwdtihe
sources, their semantics and relationships can be dectdya¢xpressed,
such that on the basis of a clear semantics, reasoning dimgbtirces is
possible and can be exploited for meaningful integratiamtifermore, the
information model should be capable of expressing critenich as source
preference, or strategies for data integration that theragght select. From
the declarative specification, the integration process thag provide re-
sults which are transparently obtained by exploiting adliable knowledge
in @ meaningful way.

¢ Information Integration Algorithms. A host of efficient algorithms for
information integration must be provided, which can be egablo homog-
enized data from heterogeneous data sources. On the cdropataide,
we need a number of algorithms and techniques for advanéednation
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integration, which cover different tasks. Besides gendrgh-level algo-
rithms for the integration process, we need particularralgms for solv-

ing advanced reasoning tasks in the integration procesh, & checking
consistency of source specifications, finding explanatfonslata inaccu-
racies and suggesting repairs etc. The design and devetbphesuch

algorithms which are useable in practice is a nontrivial ahdllenging

task, since more advanced reasoning tasks require oft&rerhapmputa-
tional resources, and, moreover, the volume of resour@erday be large.
Thus, suitable optimization techniques for informatiotegration must be
devised in order to ensure the scalability of the approach.

e Usage of Computational Logic.Exploit advanced methodologies and tech-
niques from computational logic as a toolbox for informatiategration.
In the recent years, research in computational logic hasdymexd a number
of implemented systems by which various advanced reasqmoigiems
such as diagnosis, configuration, etc can be declaratioded in logic-
based languages. The underlying computational engines leen devel-
oped (mostly in Europe) with quite some effort, and compasaody of
sophisticated tools and algorithms. Exploiting them fdwsg reasoning
tasks in advanced information integration is a natural @g@gn, but will re-
quire extensions and adaptations as for the needs of thicafign. The
INFOMIX project, by its usage of computational logic, wilbtribute in
strengthening the leading role of Europe in this key tecbgfor building
advanced reasoning systems.

¢ Integration of results on data acquisition and transformation. Selected
research results from the area of data source acquisitwtramsformation
should be integrated. Research on multi and federatedakaystems has
made available a number of techniques and systems for augésteroge-
neous data at a homogenized level. Any advanced informattegration
system which should be used in a wider context must be capélnbeor-
porating sources that provide data in different formatshsas relational
data, object-oriented data, or semi-structured data. @tleedNFOMIX
objectives is to make use of selected existing results asithiques in the
area of heterogeneous data acquisition and transformatnahto integrate
them into the architecture of an advanced information rraggn system.
As a result, a much more powerful system for combining hegmeous
data will be provided.
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e Prototype System. Definition and implementation of a component-based
integration system prototype, and providing an infragtrieeby using soft-
ware agent technology. It is only a prototype system by whietmay vali-
date the suitability of the methods and techniques developlee prototype
will implement the architecture of an INFOMIX informationtegration
system and serve as a testbed for experimentation, fromhveoieclusions
about the project results and further research goals witldtained. Agent
technology will be used for system components, and in pdaidor in-
corporating heterogeneous data sources. Furthermonerdtegype system
plays an important role in dissemination of the foundatioraults to the
R&D industry.

The formal framework for data integration, that will be dgejpvestigated
in Section 2.3, was defined in terms of a global schema, whigtighes the uni-
fied and centralized view of the data, a source schema, cem@rihe schemas
of all sources involved in the integration application, &nel mapping that speci-
fies the relationship between the two. Generally speakirgframework allows
for the specification of constraints of general form on bdtd global schema
and the sources, and the definition of complex forms of maygpbetween the
global schema and the source schema. More specifically, dipgimg is given in
terms of a set of assertions where each assertion assacia®s over the global
schema to a view over the sources. Such an approach capttret A/ and
GAV mappings, and allows also for the specification of monmplex dependen-
cies between elements of the global schema and elements sbtinces.

With regard to the semantics, we deeply concentrated onehmeustics of
the mapping, and analyzed several assumptions that camopéddon mapping
assertions, in order to specify how to interpret data thatlmaretrieved at the
sources with respect to data that satisfy the correspormbnigon of the global
schema. With this respect, we first considered classixatt sound or complete
assertions, that correspond to the different situatiomghich data in the answer
to a view over the global schema are exactly the data in theear® the corre-
sponding view over the sources, or are a superset or a sutmettodata. Then,
we addressed the more general case in which data retrietled sburces do not
respect integrity constraints expressed over the gloleme, and cannot be rec-
onciled in such a way that both integrity constraints and piragp assertions are
satisfied. Classical assumptions on mapping assertionstddlowed us to prop-
erly handle such inconsistencies, and generally they laiooyt a situation where
no database instance exists for the global schema. In gpecg we proposed a
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more general approach in which the classical assumptionsa@ping assertions
can be suitably relaxed.

It is worth noticing that the semantic problem that ariseshis context is
similar to the one underlying the notion database repaimtroduced by several
works in the area oihconsistent databaseslowever, many of this studies basi-
cally apply to a single database setting [21, 10, 6], and tbpgsed techniques
can be employed in a data integration setting only by assgiarn‘exact” inter-
pretation of mapping assertions [52, 23].

Finally, based on our formal model of a data integrationeystand on the
preliminary structure of the system outlined in the INFOMpkoposal, we have
identified the general functionalities that the system &hptovide, thus provid-
ing a functional specification of the data integration syst particular, we have
divided the system features into four levels of capabditie

e Final User Level, which comprises functionalities that allow users both to
pose their queries to the system and to suitably accessdhiksreomputed
by the system.

¢ Information Service Level, which comprises functionalities that allow for
the modeling of the global schema, the source schema, anuapping,
and for the reformulation of queries expressed over theajlsbhema in
terms of queries on the sources.

¢ Internal Integration Level, which comprises functionalities to optimize
and execute the query plan computed by the query reforrulatiocess.

e Data Acquisition and Transformation Level, which comprises function-
alities to properly access the sources, retrieve data fleemf and suit-
ably transform the acquired data into the internal homogeséata format
adopted in the system.

2.3 Formal Framework

In this section we define a logical framework for data intégra The main com-

ponents of a data integration system are the sources, thalgilohema and the
mapping between the two. We first present the syntax, andthesemantics of
a data integration system.
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2.3.1 Syntax

We consider to have a fixed infinite alphabeif constants representing real world
objects, and assume that the structures constituting tladases involved in our
framework are defined over the fixed interpretation donhaire., " represents all
the possible elements in a database instance.

Formally, a data integration systefris a triple(G, S, M), where:

e G is theglobal schemaexpressed in the global language over the al-
phabetA49. The alphabet comprises a symbol for each elemet @fe.,
relation if G is relational, class it is object-oriented, etc.). The language
L determines the expressiveness allowed for specifyingltimfschema,
I.e., the set of constraints that can be defined over it;

e S is thesource schemacomposed by the schemas of the various sources
that are part of the data integration systesi.is modeled in the source
languagels over the alphabetd®. We request thatA® is disjoint from
the alphabet of the global sche4. As in the previous case, the alphabet
comprises a symbol for each element of the sources artktermines the
expressiveness allowed for specifying the source schema,

e M isthemappingoetweery ands, i.e., the specification of the relationship
between the sources and the global schema. It is constibytedset of
assertion®f the form

qs
qg

qg,
qs

M

wheregs andgg are two queries, respectively over the source sch&ma
and over the global schenta Queriesgs are expressed in a query lan-
guagel v s over the alphabetls, and queriegg are expressed in a query
languagel v, ¢ over the alphabe#lg. Intuitively, an assertiogs T ¢g
specifies that the concept represented by the quever the sources is
put in correspondence with the concept in the global scheapeesented
by the queryqg (similarly for an assertion of typge; C ¢s). The exact
meaning of such a correspondence will be described in thiesadsection.

Thus, from the syntactic viewpoint, the specification of mtegration system
depends on the following parameters:
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e The form of the global schema, i.e., the formalism used fpressing data
and the global relationships between data.

e The form of the source schema, i.e., the formalism used foressing data
at the sources. Moreover, we assume that the data at theesosatisfy
all constraints specified off, thus, in the following we do not consider
anymore these constraints.

e The form of the mapping. In the data integration literatus® {possi-
ble forms for the mapping are studied, called respectigéipal-as-view
(GAV) andlocal-as-view(LAV). The GAV approach requires that the global
schema is defined in terms of the data sources: more precesesy ele-
ment of the global schema is expressed as a view over theesyse that
its meaning is specified in terms of the data residing at theces. With re-
spect to the mapping syntax above defined, the GAV approaceésponds
to restricting the querieg; to unary queries, i.e., queries containing a sin-
gle element of the global schema. In the LAV approach, thennegeof the
sources is specified in terms of the elements of the globamah more
exactly, the mappingU between the sources and the global schema is
provided in terms of a set of views over the global schema,foneach
source element. With respect to the mapping syntax aboveedefthe
LAV approach corresponds to restricting the querigdo unary queries,
I.e., queries containing a single element of the sourcensahéherefore,
the above definition of mapping of our framework correspcids gener-
alized form that comprises LAV and GAV as special cases.

Finally, we considequeriesposed to a data integration system and define their
syntax. Each such query is a formula that is intended to geothe specification
of which data to extract from the integration system, ias intended to extract
a set of elements df. Each query is issued over the global schaymand is
expressed in a specific query language, denotedfyover the global alphabet
A9,

2.3.2 Semantics

Intuitively, to specify the semantics of a data integrasgstem, we have to start
with a set of data at the sources, and, given such data at tineesp we have to
specify which are the data that satisfy the global schemas;Tih order to assign
the semantics to a data integration system (G, S, M), we start by considering
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asource databastr 7, i.e., a databasP for the source schem@ Given a query
g overS and a source databaBe we denote ag” the set of objects in the answer
to g overD, i.e. the set of objects that satisfyoverD.

Based orD, we now specify which is the information content of the glloba
schemaj. We call any databasB for G a global databasdor Z. Furthermore,
given a query; overG and a global databad® we denote ag” the set of objects
in the answer t@ overB, i.e. the set of objects that satisfyover 5.

A global databas#® for 7 is said to bdegal with respect tdD if:

1. Bis coherent withg;

2. B satisfies the mappingt with respect t@, namely the objects I8 satisfy
the relationships between the global and the source elsndefined by the
mapping. More precisely, we say thasatisfiesM with respect tdD if:

(a) for each assertion iv of the formgs C ¢g, each objectin? is also
an element of3, i.e.,q% C q5;

(b) for each assertion iV of the formgg C ¢s, each object irq_g is also
an element ofZ, i.e.,¢5 C ¢5.

Notice that, from the above semantics of the mappig it follows that in
our framework it is possible to express all the kinds of iptetations of the map-
ping assertions studied in data integration, namely thagatomplete, and exact
interpretation. In particular, if we want to formulate a gen mapping assertion
V' defining a relationship between the query over the globaémety; and the
guery over the source schema

e asoundinterpretation ofi” corresponds in our framework to the assertion
gs & qg;

e acompletanterpretation ofl” corresponds to the assertigh C gs;
e anexactinterpretation ofl” corresponds to the pair of assertieRsC qg,
7 T gs.

In an analogous way, one can express sound, complete orietexprretations of
a mapping assertion defining a relationship betwgeandqg.

Given a source databa®xfor Z, the semantics af with respect tdD, denoted
sem(Z, D), is defined as follows:

sem(Z,D) = { B | Bis alegal global database for Z w.r.t. D }
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Let us now turn our attention to queries. In order to definesérantics of
a queryq over the global schem@, we have to take into account all the global
databases legal f&f with respect taD. We callcertain answergor simply an-
swerg of a queryq with respect taZ and D, the setg?'P of objectst such that
t € ¢PP for everydatabas®B € sem(Z, D).

Furthermore, we calbossible answersf a queryq the setg?? of objectst
such that € ¢P5 for somedatabas@®B € sem(Z, D).

From the above definitions, it is easy to see that, in datgiat®n, answering
gueries is essentially an extended form of reasoning inriegmce of incomplete
information [79]. Indeed, when we answer the query, we knoly the extensions
of the sources, and this provides us with only partial infation on the global
database.

2.3.3 Dealing with inconsistent data sources

According to the semantics above defined, in which we adagpfedt-order logic
interpretation of the mapping, it may be the case that the ddtieved from the
sources cannot be reconciled in the global schema in sucly thagboth the con-
straints of the global schema and the mapping are satis@dThis happens, for
instance, in a relational context, when a key constraintifipd for the relation-
in the global schema is violated by the tuples retrieved leyibw associated to
r, since the assumption of sound views does not allow us teghsd tuples from
r with duplicate keys. If we do not want to conclude in this ctss no global
database exists that is legal torwith respect taD, we need a different charac-
terization of the mapping. In particular, we need a charaazgon that allows us
to support query processing even when the data at the saneexoherent with
respect to the integrity constraints on the global schema.

A possible solution is to characterize the data integratysten? = (G, S, M)
in terms of those global databases that:

1. satisfy the integrity constraints ¢f and

2. approximate at best the satisfaction of the assertiah®imapping\, i.e.,
that areas close as possibte the mapping\1.

In other words, the integrity constraints@fare considered “strong”, whereas the
mapping is considered “soft”.

We now propose a modified definition of the semantics for thegiration
system that reflects the above idea. Given a source dat@bfseZ, we define a
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partial order (based on set-containment) between the blisl@bases far. If B;
andB, are two databases that are legal with respe@, twe say that3; is better
thanB, with respect tdD, denoted a$8; >p B, if:

1. for each assertiogs = gg in M, g5' N ¢% 2 g5 N q5;
2. for each assertiop; = gs in M, 5" — 5 C 5 — q5;
3. atleast one of the following conditions holds:

(a) there exists an assertign = qg in M such thayg' N5 O ¢5>Nq%;

(b) there exists an assertign C ¢s in M such thayg' — ¢ C g5 —q5.

Intuitively, this means that there is at least one asseftiowhich 3, satisfies
the sound mapping better th#a, while for no other assertiofi, is better than
B;. In other words 3, approximates the mapping better than

It is easy to verify that the relatiop> is a partial order. With this notion in
place, we can now define the notion®gatisfying the mapping1 with respect to
D in our setting: a databadethat is legal with respect tg satisfies the mapping
M with respect td if B is maximal with respect to>p, i.e., for no other global
databasés’ that is legal with respect tg, we have that3’ >p B.

The notion of legal database f@rwith respect toD, and the notions of an-
swers remain the same, given the new definition of satisfacf mapping. Itis
immediate to verify that, if there exists a legal databaseZfwith respect taD
under the first-order logic interpretation of the mappirngn the new semantics
and the old one coincide, in the sense that, for each qyehe set”'? of certain
answers computed under the first-order semantics coinaitleshe set of certain
answers computed under the new semantics.

2.4 The System

INFOMIX has been conceived as an extensible software emviemt, where new
modules can be easily added, e.g., for dealing with furthetskof data sources.
In the following a detailed description of the overall INFO¥Msystem archi-
tecture is specified, comprising information flows, data agament tasks and
interactions between the various modules composing ttersys

The general architecture of the INFOMIX system is quite claxplin order
to simplify the description of the several system composient have identified
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two fairly independent components of the architecture, elgrthe Design-Time
and theRun-Timesystem architecture. The former includes activities aatlies
involving the designphases of the data integration process; the latter refers to
querying activities carried out by the users during theeaypséxploitation.

For each componentintroduced we give a general descriptithe associated
architecture.

2.4.1 Design-Time System Architecture

The activities involved in the design of a data integratigsiem are:

e the identification of the information sources to be consdan the data
integration tasks;

¢ the definition of suitable wrappers allowing to retrieve aoitably trans-
form data residing at the sources;

¢ the design of a global scheme representing in a uniform ansis@nt way
all the information stored in the selected sources,

¢ the definition of mappings stating how data at the sourcesoabe trans-
formed and integrated in order to obtain global objects.

These activities are mostly performed during the initiapstof the data integra-
tion system definition. However, in order to cope with the @ymc nature of
the integration applications, designers have the poggitnl modify previous set-
tings. The access to design activities is allowed only toghess and not to end
users.

In Figure 2.1 the INFOMIX system architecture relative tside activities is
illustrated. All the features provided by this part of theFHBIMIX system are ac-
cessed by a graphical user interface. Whapper Generator Interfacallows the
designer to specify the information sources that are iraela the data integration
system; once sources have been identified and specifie/rdnygper Generator
module can be activated. It receives a set of sources to hgpedaand, for each of
them, generates suitable wrappers. Associations betweenes and wrappers,
as well as information about the structure of the data whieltpaesent in the var-
ious sources are stored in tMeta Data Repository The designer can monitor
the wrapper generation activities through theapper Generation Interfacky
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displaying and managing the information stored in khetadata Repositorpy
theWrapper Generatar

The global scheme is designed by using 8lebal Scheme Interfacén par-
ticular, this module gives the designer access to infomnabout the schemes of
the sources participating in the system, in order to definbajlscheme objects
and constraints. While defining the global scheme,Gl@bal Scheme Interface
shows an up to date version of the global scheme. Insertiothsrendifications
of global scheme objects and constraints are performed édtbbal Scheme
Generator it represents global scheme objects and constraints imtabe lan-
guage and stores them in thietadata RepositoryStored objects can be possibly
deleted.

Once the global scheme has been designed, mappings betinesource
scheme objects and the global scheme objects can be spdwifraéans of the
Mapping Generation Interface his module shows to the designer both the global
scheme and the source schemes in order to facilitate theingpggfinition phase.
Mapping creation or modification requests performed by #sgher are given as
input to theMapping Generatomodule. This module translates mappings in a
suitable internal language, stores them in khetadata Repositorgnd handles
modifications and updates required by the designer in ocdguarantee that the
Metadata Repositorgtores always the up to date version of them.

Finally, the designer may activate t@@nsistency Checkavhich verifies the
correctness and the consistency of global scheme and ngageimitions. If an
inconsistency is detected, the module informs the desigier has to modify
global source objects and mapping definitions involved @ititonsistency loop.

In the following we give a detailed description of the fulctalities and the
interfaces of the modules introduced above.

Wrapper Generation Interface

The Wrapper Generation Interfacerovides the designer with a graphical inter-
face allowing to specify the information sources to be coex®d in the data inte-
gration system. This module provides the following funictbties:

e Specification of sources to be wrapped. This feature regjtiiedesigner to
provide as input the set of sources to be considered for ttaeigkzgration
system. In particular, for each source, the designer spetlie source loca-
tion and the corresponding data format. The designer slasidbe able to
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either provide the relational scheme which the source shweilvrapped to,
or, supervise a scheme automatically proposed by the Wr&pgeerator.

e Activation of theWrapper Generatarin this case, the input consists just in
an activation message prompt, provided by the designecatdg that the
wrapping generation step can take place. The output is thef seurces
previously identified by the designer; these are given agtitoqtheWrapper
Generatormodule.

¢ Visualization and browsing of the information about getedawrappers
and associated schemes. In order to perform this taskythpper Genera-
tion Interfaceretrieves from théata Repositoryhe information produced
by theWrapper Generatoin the generation phase and shows it in a suitable
format to the designer.

Global Scheme Interface

The Global Scheme Interfacalows the designer to define the global scheme. In
particular, the designer can specify the objects belongitige global scheme and
the constraints involving global scheme objects. In ordeid the definition task,
the Global Scheme Interfacghows the characteristics of the sources involved in
the data integration system. The functionalities providgthis module are:

¢ Insertion of a global scheme object. This functionalityuiegs the designer
to specify the new object to add to the global scheme. Thises given as
input to theGlobal Scheme Generator

e Modification of a global scheme object. This functionaligguires the de-
signer to specify the modifications to be performed on antiejgylobal
scheme object. These are then given as input té&lbbal Scheme Gener-
ator.

¢ Deletion of a global scheme object. This functionality regsithe designer
to specify the global scheme object to delete. This is theargas input to
theGlobal Scheme Generator

¢ Insertion of a constraint. The designer can specify comt¢raolding among
objects of the global scheme. Also in this case constraretgigen as input
to theGlobal Scheme Generator
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e Modification of a constraint. By this functionality, the dgser can modify
previously defined constraints. Modifications provided g tlesigner are
given as input to th&lobal Scheme Generator

e Deletion of a constraint. This functionality requires thesijner to specify
the existing constraint to delete. This is then given astinpuhe Global
Scheme Generator

¢ Visualization of the source schemata. In order to simplifg tefinition
of the global scheme, source schemata participating inakeeidtegration
system can be shown to the designer. Information about s@aftemata is
retrieved from theMletadata Repository

¢ Visualization of the global schema. This functionality daeexploited in
order to check the global schema definition status. Infaomain the global
schema is retrieved from tiMetadata Repository

Mapping Generation Interface

The Mapping Generation Interfacprovides a graphical interface which allows
the designer to specify the mappings between global schéjeets and source
scheme objects. In order to simplify the definition task, Megpping Generation
Interfacecan show both the source and the global schemes. The fualities
provided by this module are:

¢ Insertion of a mapping. This functionality requires theigeer to specify
the new mapping to add. Necessary information for creatwegrvolved
mapping is then sent to tiapping Generatom a suitable format.

e Moadification of a mapping. This functionality requires thestyner to spec-
ify the modifications to be performed on an existing mappiNgcessary
information for modifying the involved mapping is then semtheMapping
Generatorin a suitable format.

e Deletion of a mapping. This functionality requires the desir to specify
the mapping to delete. This is then sent to Mepping Generatar

¢ Visualization of the source schemes. In order to simplify definition of
the mappings between source scheme and global schemesolgeuatce
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schemes participating in the data integration system asesho the de-
signer. Information about source schemes is retrieved tteMetadata
Repository

¢ Visualization of the global scheme. Analogously to the pes function-
ality, the global scheme is displayed to the user; necessfaymation is
retrieved from theMletadata Repository

¢ Visualization of the defined mappings. In order to allow tlesigner to
check the status of the mapping definition phase, the moduliekow the
set of mappings already defined. Information about mappmgstrieved
from theMetadata Repository

Consistency Checker

While global scheme, mappings and sources are being sppkdtfis important
to check whether the definitions provided are consistentemtheConsistency
Checkeiris activated by the designer, it retrieves from Metadata Repositoral|
the information relative to the source scheme objects, kbleadjscheme objects,
the constraints involving global scheme objects, and thepmngs between global
and local scheme objects. Then, tBensistency Checkenight either generate
from these data a disjunctive logic program which is therceted by aDisjunc-
tive Datalog Executoor perform some simpler computations; the choice of which
action to perform might be taken on the basis of the task cexityl TheDisjunc-
tive Datalog Executors an external module implementing an existing program
which is incorporated in the INFOMIX system. The result a¢ tomputation de-
termines whether the definitions stored in Metadata Repositorgre consistent
or not.

The result of this check is presented to the user which shooldify ill spec-
ified definitions.

Global Scheme Generator

The Global Scheme Generatoeceives from th&lobal Scheme Interfacmes-
sages about global scheme objects and constraints to bd addedified. This
module is in charge of the representation of the global seheljects specified
by the user in thglobal languagel, the representation of the constraints in a
suitable representation language and the managementeofiams, modifications
and deletion of both scheme object and constraint irMbtadata Repository
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The functionalities provided by this module are:

e Creation of a global scheme object. This functionality reee the infor-
mation on the global scheme object to create fromGhabal Scheme Inter-
face it generates a representation of the object inglobal languagelg
and stores it in thdletadata Repository

¢ Modification of a global scheme object. This functionaliégeives the in-
formation relative to the global scheme object to modify #melrequired
modifications from th&lobal Scheme Interfacé retrieves the object from
the Metadata Repositorgnd performs the required modifications. Finally
it stores the modified global scheme object in kiietadata Repository

e Deletion of a global scheme object. This functionality iees the informa-
tion on the global scheme object to delete from@iebal Scheme Interface
it removes it from théMetadata Repository

e Creation of a constraint. This functionality receives thi@rmation relative
to the constraint to create from tkkdobal Scheme Interfac# generates a
representation of the constraint in the associated laregaad stores it in
the Metadata Repository

e Modification of a constraint. This functionality receivdgetinformation
relative to the constraint to modify and the required modtf@mns from
the Global Scheme Interfacé retrieves the constraint from tHdetadata
Repositoryand performs the required modifications. Finally it stofes t
modified constraint in th&letadata Repository

e Deletion of a constraint. This functionality receives thivrmation relative
to the constraint to delete from tii&@obal Scheme Interfacé removes the
constraint from théMetadata Repository

The Mapping Generatoreceives from théMapping Generation Interface-
formation on the creation, modification or deletion of maygs between source
scheme objects and global scheme objects. This modulesexpieethe mappings
specified by the user as assertions of the form

gs L qg
9 T gs
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wheregs andgg are two queries, respectively over the source schemes,\amd o
the global scheme. Querigg are expressed in a query languagg s, and
queriesqg are expressed in a query languagg,¢. Intuitively, an assertion
gs C qg specifies that the concept represented by the queoyer the sources is
put in correspondence with the concept in the global schepeesented by the
queryqg (similarly for an assertion of typg; = ¢s). The way these assertions are
formulated, indicates the kind of interpretation of the miags, i.e.exact, sound
or completgsee Section 2.3 for a formal definition of these interpretes).

TheMapping Generatomanages also storage and update of the mappings in
theMetadata Repository

The functionalities provided by this module are:

e Creation of a mapping. This functionality receives the infation on the
mapping to be created from tiapping Generation Interfacat gener-
ates a representation of the mapping as described aboveaaed & in the
Metadata Repository

¢ Modification of a mapping. This functionality receives téormation rel-
ative to the mapping to be modified and the required modiboatfrom the
Mapping Generation Interfaget retrieves the mapping from tidetadata
Repositoryand performs the required modifications. Finally, it states
modified mapping in th#etadata Repository

e Deletion of a mapping. This functionality receives the mf@tion on the
mapping to be deleted from tidapping Generation Interfacet removes
it from the Metadata Repository

Wrapper Generator

The Wrapper Generatomodule is in charge of both the generation of the wrap-
pers for the sources participating in the data integratysiesn and the storage, in

the Metadata Repositoryof source schemes and associations between source re-
lations and wrappers. In particular, the designer specligseans of th&Vrap-

per Generator Interfacethe set of sources and the format of the data stored in
the sources; examples of data formats are relational dsgabdL document,
HTML Web page and so on. The designer might possibly speddy some
source schemes. Then, thirapper Generators activated. For each source,
the wrapper generator checks the data format and activasegable wrapper
generation procedure. This procedure first identifies thetioms stored in the
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source, then it generates a wrapper for each relation. Hut i&f this procedure
is, therefore, a set of wrappers associated to the relagignsrted by the source.
Each source is wrapped such as it is seen from the upper eimtreevels as a re-
lational table. Finally, th&Vrapper Generatostores in théMetadata Repository

e the information on the selected sources, i.e. source lmtatata format
and so on,

¢ the source schemes, employed in order to describe the smugasal orga-
nization format in relational form.

¢ the associations between the source relations and theagedevrappers.

2.4.2 Run-Time System Architecture

Once the data integration system is designed, it can beigegbloy the users for
guerying activities. It is important to point out that, inngeal, the user may be
unaware of the sources participating in the system; thexetbe system has to
allow to pose queries on the objects of the global scheme.

Querying activities usually involve:

e Global scheme browsing; in this phase the user can identifgiwinforma-
tion can be extracted from the system.

e Query formulation; in this phase the user is supported bgystem in the
formulation of the query.

e Query re-formulation; the system rewrites the query poseithé user over
the global scheme into a set of queries over the local schemes

e Wrapper execution, in which data from the sources involvethe query
are retrieved.

e Query evaluation; in this phase the system composes thésedisingle
source queries and takes into account possible data irstensy and in-
completeness to obtain the answer to the user query.

The architecture of the INFOMIX system component devotegiierying ac-
tivities is shown in Figure 2.2. The user can browse the dlstlaeme by means
of theGlobal Scheme Browsgthen she/he can pose the query throughQoery
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Formulation Interface The query is then transferred to tQeiery Reformulator
module which is responsible of translating the query posethé user into a set
of queries over the source schemes taking into account thetreants defined on
the global scheme objects. This module performs also soraey gqytimization;
the result of this phase is a disjunctive datalog prograne. Qirery Reformulator
activates both thé&/rapper Executqrin order to retrieve the data from the sources,
and theQuery Evaluatoyin order to execute the query. Thérapper Executor
stores the retrieved data into &mternal Data Storewhereas th&uery Evalu-
ator first performs some further optimization on the disjuncthaalog program
received from th&uery Reformulatqgrthen it decompose the query evaluation in
two parts: the first can be executed directly bpBMSand is relative to the part
of the query which does not need complex reasoning; the sessubmitted to
a Disjunctive Datalog Executoand is relative to the part of the query handling
constraints, data incompleteness and data inconsistendiee results of these
two parts are then composed and presented to the user Quidry Answer Pre-
sentationmodule. Finally, if the query does not return the expectedilts, the
designer might analyze the disjunctive datalog progranegegad by the query
reformulator to see if there are clues to what might be thélpro and fix it.

In the following we describe the single modules in detaik per subsection.

Global Scheme Browser

The Global Scheme Browseallows the final user to suitably inspect the global
scheme by means of graphical navigation facilities. THana the user to exactly
understand the structure of the global scheme, and andlgzelationships and
dependencies holding among the global elements. In othedsyoheGlobal
Scheme Browsanakes the user understand which information can be extracte
from the system, and supports him in formulating queries.

Query Formulation Interface

The Query Formulation Interfacallows users to define their queries over the
global scheme objects. A graphical interface makes this ¢éasier. The user
should be able to specify which interpretation must be atgrofor computing
the query answer; possible interpretationsexact soundandcomplete

Once the query has been defined, @wery Formulation Interfaceends it to
theQuery Reformulatowhich starts the query evaluation task.
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Query Answer Presentation

User queries are answered by means ofQuery Answer Presentatianodule.
This module cares about presenting and organizing quergests, produced by
the Query evaluatorin a suitable format. The user should be able to rearrange
results visualization in order to better carry out analySlsreover, the interaction
with a designer could be required, whenever a query doesetoinr expected
results; in particular, a designer should be made able tlyzan#he disjunctive
datalog programs generated by the query reformulator irradebug and fix
problems.

The functionalities provided by this module are, thereftie following:

e Query answer presentation. This functionality receivempst the query
answer from theQuery Evaluatorand arranges it in a suitable, graphical
way.

e Query answer rearrangement. In this case the user speafiethk query
answer must be presented and the system rearranges thiezaisoia taking
into account user needs.

¢ Disjunctive Datalog Program Visualization. This funcidity lets the de-
signer analyze the disjunctive datalog program generatgddQuery Re-
formulatorto have an insight in the query evaluation process. Thermdisju
tive datalog program is taken from tiMetadata Repository

Query Reformulator

Answers to user queries expressed in terms of the globaiszhave to be com-
puted by the system only on the basis of data stored in thecesurFor this
purpose, th&®uery Reformulatomodule re-express each user query in terms of
a suitable set of queries posed to the sources. In this refation process, the
query is unfolded and integrity constraints are taken imwoant in the formu-
lation of the set of queries. Moreover, the kind of interptiein selected by the
user, i.e.certain answer®or possible answers considered to produce the cor-
rect rules for combining data from different sources pdgssboring incomplete
or inconsistent data.

The query reformulator performs some query optimizatiotivies which
aim at selecting a set of data as small as possible from threesurhis allows to
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both minimize source accesses and reduce the amount ofodlageanalyzed by
the Query Evaluator

The reformulated and optimized query is then representea @disjunctive
datalog program which is given as input to tQeery Evaluator At the same
time, the reformulated query allows to determine which sesirare involved in
the query and which data must be loaded from them. This irdtion is given as
input to theWrapper Executothat performs suitable calls to the corresponding
wrappers and stores the data into thiernal Data Store

Finally, the disjunctive datalog program produced in thhiage is stored in the
Metadata Repositoror future analysis.

The functionalities provided by this module are the follogi

e Query Reformulation. This functionality receives in inghé user query
and a kind of interpretation. The outputs of this functidtyare a query ex-
pressed only on the source schemes taking into account tiséramts and
the kind of interpretation, and the source data to be loagetid\Wrapper
Executor

e Query Optimization. This functionality receives in inplietquery gen-
erated by the query reformulation task and produces an @admuery
expressed as a disjunctive datalog program. This progratoied in the
Metadata Repositorgnd is given as input to th@uery Evaluator

Wrapper Executor

The Wrapper Executomodule receives from th@uery Reformulatoan indi-
cation about the relations to be retrieved and, whenevesilples a statement
expressing which subsets of these relations must be retrii'om the sources.
The Wrapper Executordentifies the wrappers to activate from the associations
between the sources and the wrappers stored iM#tadata RepositoryThen,

it sends suitable data requests to each of these wrappestitye needed data.
These data are finally stored in th@ernal Data Store The Wrapper Genera-
tor should be able to take advantage of caching methods ar todspeed up its
activities.

Query Evaluator

The Query Evaluatomodule is responsible of the query answer generation. This
module receives a disjunctive datalog program fromQuery Reformulatoand
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is activated when thé&/rapper Executohas loaded the source data involved in the
qguery into thelnternal Data Store The Query Evaluatoiis subdivided in some
sub-modules, namely:

e The Query Evaluation Managewhich coordinates and handles the other
sub-modules.

e TheDisjunctive Datalog Optimizewhich performs some optimization tasks.

e The DBMSwhich executes parts of the query directly on theernal Data
Store

e TheDisjunctive Datalog Executawhich executes automatic reasoning tech-
niques for managing incomplete and inconsistent data.

Both theDBMSand theDisjunctive Datalog Executaire modules implementing
existing software which are incorporated in the INFOMIX teys.

The query evaluation task is carried out as follows:@uery Evaluation Man-
agerreceives from th&®uery Reformulatoa disjunctive datalog program corre-
sponding to an unfolded user query, enriched with inforaratin the constraints
and optimized. First it applies further optimization teicfues, based on program
rewriting techniques (e.g. “Magic Set” techniques [8, 58])6on the disjunctive
datalog program to further improve the efficiency of the eatibn task. Then it
singles out two parts of the query: one which does not neezhzatic reasoning
and that can be evaluated directly from a DBMS; the other whé;h takes into
account problems arising in the management of both incampled inconsistent
data and constraint satisfaction; the evaluation of this peeds the support of a
disjunctive datalog executor. The two parts are then subchib theDBMSand
the Disjunctive Datalog Executomespectively, and their results are composed
by the Query Evaluator ManagerBoth theDBMSand theDisjunctive Datalog
Executorretrieve the data to operate upon from thieernal Data Store

The final query results are then forwarded as input toaQhery Answer Pre-
sentatiormodule.

2.4.3 The Metadata Repository

In both the Design-Time and Run-Time INFOMIX architectutke Metadata
Repositoryis exploited to store all information necessary for cargyout data
integration tasks. In particulare, tMetadata Repositorgave to store:
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e information about sources participating in the data irdégn system, such
as source location and data format;

¢ the relations exported by each source and, therefore, ssahemes;

e the associations between exported source relations ancbthesponding
wrappers;

¢ information on generated wrappers;

¢ the global scheme objects;

¢ the constraints defined on global scheme objects;

¢ the mappings between global scheme objects and source sdigetts;

¢ the disjunctive datalog programs generated during theygqeéormulation
tasks;

While this list covers all the information needed by the INFX system devised
in this report, it might be not exhaustive; it will be refinesl soon as the single
modules of the architecture are fully designed and specified

DBMS

This module can be implemented by any of the available datab@nagement
systems which support full SQL and ODBC. In prototype impéemation, among
the available free software produdB)STGRES®vas chosen.

Disjunctive Datalog Executor

This module must be implemented by a system allowing to pnétrand exe-

cute disjunctive datalog programs. Answer Set Programi8ygiems (ASP) are
better suited than deductive database systems for datgratitsn, most impor-

tantly because the latter miss the computational power lice some hard (co-
NP-complete) tasks arising in data-integration. Moreoaerong the most widely
used ASP systems, we have noticed that DLV [27] seems to bbeds$tesuited

computational logic system to be incorporated in a datgnateon platform, since
it is able to solve the computationally hard problems agsimthe context of data
integration, while showing better performance than thelohSP systems over
large input data. Therefore, the INFOMIX system will expBLV as Disjunctive

Datalog Executor.
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2.5 Application and Experiments

In order to show the effectiveness of the INFOMIX prototypstem, we set up an
application scenario referring to a university informatgystem. Rather than to
invent an abstract academic example, we consider dataesowtach are available
at the University of Rome “La Sapienza”, and build an infotima integration
system on top of them. The choice of this application scertaas been driven by
the facts that, on the one hand, real data sources from arpgséeenvironment
should be used, including web pages, but that on the othet, sach data is very
sensible and companies are often not willing to release tsa. Furthermore,
encryption and clearing efforts for such data might be hagid for the case that
technical issues concerning the data need to be resolvedittiel(if any) support
will be available.

Taking the view of a university as a service-oriented in§ith whose students
are customers, there is quite some resemblance with arpasggrthough. In the
modeling of the application scenario, we thus focus on damageising students,
professors, and exams in the different faculties of theamsity?

Our aim is to collect all the information dispersed eitheerowmany data
sources within the different secretary offices of the faeslobr over the web pages
of “La Sapienza”, and to build a data integration syst&m-= (G, Sy, M) pro-
viding transparent access to this information.

There are three legacy databases in relational format,afachich comprises
a number of relations; in total, there are about 25 diffeserch relations, each of
which can be viewed as a logical source.

Besides these legacy databases, there are numerous webqrate web
servers of “La Sapienza” which provide a wealth of inforraat on departments,
people, offices etc. These informations are either provéagticitly on web pages
itself, or can be obtained through simple query interfacstsi{ning, e.g. as the one
onhttp://ww. anm uni romal.it/el enco/,the phone number and the de-
partment in which a given person works). For this purposeimaber of wrappers
have been designed and developed using LiXto tools whicta&xinteresting
informations from the web pages and provide them as virtuaice data.

In the following three sections, we describe the componehtise data inte-
gration systent, = (Go, Sp, M).

'Even for this application, encryption of sensitive perdatada is required by Italian law.
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2.5.1 Globhal Schema

The global schem&, = (H,,C,) which can be queried by an end user (e.g.,
administrative staff) comprises the following relations’*{):

student(S_I D, FirstName, SecondName, CityO f Residence,
Address, Telephone, HighSchool Specialization)

enrollment(S_ID, FacultyName,Year)

course(C_Code, Description)

professor(Prof FirstName, ProfSecondName)

university(U_Name, City)

exam_record(S_ID,C _Code, Prof FirstName, ProfSecondName,
Mark, Date, CourseY ear)

teaching(C_Code, Prof FirstName, ProfSecondName,
AcademicY ear)

student_course_plan(SCP_Code, S_ID, PlanType, Request Date,
Status)

plan data(SCP_Code, C_Code, CourseType)

faculty(FacultyName,deanFirst Name, deanLastName)

department (Dept Name)

university.degree(Degree, FacultyName)

employee(EmpFirstName, EmpSecondName, Structure, Phone)

secretary_office(FacultyName, Place, Phone, Email)

Notice that the above schema models a situation in whictether a number
of Faculties each one having its own secretary’s office andwn dean. Each
faculty comprises a set of university degreddnally, students enroll in a faculty
in a given year, and then, they may take some examinations.

The schem&), is also equipped with the sé} of global constraintsC, con-
tains

2University degree corresponds to the Ital@orso di laurea For example, Computer Engi-
neering is a course degree of the faculty of Engineering
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e the following key constraints:

key(student) = {1}
key(enrollment) = {1}
key(course) = {1}
key(professor) = {1,2}
key(university) = {1}
key(exam record) = {1,2,3,4}
key(student_course plan) = {1}
key(plan_data) = {1, 2}
key(faculty) = {1}
key(department) = {1}
key(university_degree) = {1}
key(employee) = {1,2}
key(secretary_office) = {1}.

¢ the following inclusion dependencies:

enrollment[l] C student[l]
enrollment[2] C facultyl[l]
exam record[l] C student|l]
exam record[2] C course[l]
exam record[3,4] C professor|l,?2]
teaching[2,3] C professor][l,?2]
teachlng[l] C coursel[l]
student_course plan[2] C student[l]
plan data[l] C student course plan][l]
plan_datal2] C course[l]
university_degree[2] C faculty[l]
secretary_office[l] C faculty[l]
professor|l,2] C teaching]2,3]
teachlng[l] C exam record[2].

The last two dependencies impose that a professor has toaeézast one
course, and that for a course taught there must exist atdeastegistered
exam, respectively. Other dependencies are classicaffokeys, as they
are produced by a standard design process for relatioredases. We point
out that the inclusion dependencies specified on the schemes fcycles
(see for example the cycle involving relatioreachi ng, pr of essor,
andexamr ecor d). Nonetheless, the schema is non-key-conflicting [49].
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¢ the following exclusion dependencies

student[2,3] N professor|l,2] # (),
employee[4] N secretary office[3] # 0,

which state that a student cannot be also a professor, aruhitiae numbers
of employees and secretary offices must be different.

2.5.2 Data Sources

The system integrates data coming from three legacy datalzastaining infor-
mation about students, professors and exams at the Uny#rai Sapienza” of
Rome, and data retrieved from several web sites of the samersity. In the
following, we separately describe these two main kinds ¢d daurces.

Legacy Databases

We will denote in the following the three legacy databaseb WiB,, DB, and
DBj3. The specification of the source schema is reported bel®vathle names
and attributes are in Italian, as in the original sourtes.

#sour ce schema DBl

st udent e( MATRI COLA, COGNOVE, NOVE, DATA_NASCI TA, LUCGO NASCI TA, PROVI NCI A_NASCI TA,
I NDI Rl ZZO_RECAPI TO, NUMERO_ClI VI CO_RECAPI TO, CAP_RECAPI TO, Cl TTA_RECAPI TO,
PROVI NCI A_RECAPI TO, PREFI SSO_RECAPI TO, TELEFONO_RECAPI TO, | NDI Rl ZZO_RESI DENZA,
NUMERO_ClI VI CO_RESI DENZA, CAP_RESI DENZA, Cl TTA_RESI DENZA, PROVI NCI A_RESI DENZA,
PREFI SSO_RESI DENZA, TELEFONO_RESI DENZA, CODI CE_FI SCALE, TI PO_DI PLOVA,
VOTO_DI PLOVA)

di pl oma_mat urit a( CODI CE, DESCRI ZI ONE)

carriera( MATRI COLA, ANNO ACCADEM CO, ANNO DI _CORSO, Tl PO_| SCRI ZI ONE, FACOLTA,
CORSO DI _LAUREA, UNI VERSI TA, STATO DI _CARRI ERA, VALI DI TA_ANNO_CARRI ERA,
FASCI A_CONTRI BUTI VA, COVPONENT! _NUCLEO_FAM LI ARE)

facol t a( CODI CE_UNI VERSI TA, CODI CE, DESCRI ZI ONE)

corso_| aur ea( SEDE_UNI VERSI TA, FACOLTA, CODI CE, DESCRI ZI ONE)

uni ver si t a( CODI CE, SEDE, DESCRI ZI ONE)

stato_carriera(CODl CE, DESCRI ZI ONE)

i scrizi one(CODI CE, DESCRI ZI ONE)

3Notice that the three databases (for the sake of easinessnapted as a single relational
database) have been constructed from a set of original ket fbata cleaning has been manually
performed on the original files.
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regol ari ta_esanme( CODI CE, DESCRI ZI ONE)
esane( CODI CE_FACOLTA, CODI CE, DESCRI ZI ONE, ATTI VAZI ONE)
i nsegnanent o( CODI CE_FACCOLTA, CODI CE, DESCRI ZI ONE)

i nsegnament o_esame( FACOLTA_| NSEGNAVENTO, CODI CE_| NSEGNAVENTO, FACOLTA ESAME,
CODI CE_ESAME)

dati_esami (MATRI COLA, CODI CE_| NSEGNAVENTO, CODI CE_ESAME, DATA, VOTO, REGOLARI TA,
ANNO_ACCADEM CO)

| aur ea( MATRI COLA, TI TOLO TESI , DATA, VOTO, RELATORE)

#source schema DB2
esane_i ngegneri a( CODI CE, DESCRI ZI ONE, Tl PO, ANNO_ESANME)
ti po_esane( CODI CE, DESCRI ZI ONE)

pi ano_st udi ( CODI CE, MATRI COLA, ORI ENTAMVENTO, DATA_PRESENTAZI ONE, STATO, NOTE,
PROPRESP, BASE, | NDI Rl ZZO_A, | NDI Rl ZZO _B)

st at o( CODI CE, DESCRI ZI ONE)

ori ent ament o( CODI CE, DESCRI ZI ONE)

dati _pi ano_st udi ( CODI CE, CODI CE_ESAME, NOVE)

af fi damenti _i ng_i nformati ca( CODl CE_ESAME, CODI CE_PROFESSORE, ANNO_ACCADEM CO)

dati _prof essori (CODI CE, COGNOVE, NOVE)

#sour ce scherma DB3

ver bal i _esani _di pl oma( MATRI COLA, COGNOVE, NOVE, ESAME, DOCENTE, SESSI ONE, APPELLO,
ANNO, MODALI TA, VOTO, LCODE, ANNO_ACCADEM CO)

nodal i t a( CODI CE, DESCRI ZI ONE)
sessi one( CODI CE, DESCRI ZI ONE)
pr of essor e( CODI CE, NOVE, COGNOVE, VATERI A)

esane_di pl oma( CODI CE, DESCRI ZI ONE)

Here we report the number of tuples stored in each sourciorlapecifying
to which database the source belongs.
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carriera 50,633| DB,
corso_l aurea 1,716| DB,
dati _esamni 19,827| DB,
di pl oma_maturita 69| DB,
esane 17,144| DB,
facolta 511| DB,
I nseghanent o 4,722 | DB,
I nsegnanent o_esane 7,204| DB,
i scrizione 5| DB,
| aur ea 397 | DB,
regol arita_esane 4| DB,
stato_carriera 15| DB,
st udent e 16,082| DB,
universita 163 | DB,
af fi danenti i ng.informatica 402 | DB,
dati _pi ano_st udi 27,130| DB,
dati _prof essori 67| DB,
esane. ngegneri a 67| DB,
ori entanento 29| DB,
pi ano_st udi 1,089| DB,
stato 3| DBy
ti po_esane 3| DB,
esane_di pl oma 28 | DB3
nodal i ta 2| DBs
pr of essore 146 | DB;3
sessi one 4| DB;
ver bal i _,esam _di pl oma 17,001| DBj3

Web Sources

In addition, we have identified several relevant web pagesiged by the uni-
versity and its faculties and departments. The main pagéefuniversity is
http://ww. uni romal.it/, from which all of these pages can be reached.
We will next describe the pages and data available from timeancioncise way.

In particular, we will not report the INFOMIX Source Data Roat (ISDF)
schema of these web sources in detail and refer to the appeimdiead we re-
port the more concise Internal Integration Data FormatK)iBchema of these
sources. Note that these web wrappers for technical regsmssess a non-flat
ISDF schema (cf. Appendix). When applying the standard exsiwn from ISDF
to IIDF, as defined in [26], two relations are generated: Galdsonly newly cre-
ated IDs, which are then used as foreign keys in a seconébrelathich holds the
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real data. The first relation is clearly redundant and a teahartifact, and hence
we do not report it; only the second relation containing tlemtioned foreign key
attribute is given below.

e http://wwv uniromal.it/facolta/default.htm
This web page contains a collection of some of the facultfébeuniver-
sity. For each faculty, it contains its name, the URL of itsdoweage, and
information on its dean (comprised of title, first name anchame). The
source schema in relational format is

facultyweb_ faculty(id _fk, facultyNane, facultyURL,
deanTitl e, deanFirstName, deanlLast Nane)

e http://w3.ing.uniromal.it/dip/elenco. htm
http://ww. arcl. uniromal.it/organi zzazi one/ di partinmenti.
ht m
http://ww. eco. uniromal.it/dipartinmenti.htm
http://ww. filosofia.uniromal.it/dipartinmenti/index.asp
http://ww. comuni cazi one. uni ronmal.it/di partinenti.asp
http://ww. sci enzenf n. uni romal.it/cdipa. ht m
http://ww. sta.uniromal.it/strutture/dipartinenti.jsp
These are web pages of some faculties, each of them liststdegrds of the
respective faculty. A lot of information about departmecdas be wrapped,
such as the name of the department, the URL of its home pagéreictor,
its address, the faculty it belongs to, and contact infoilmnasuch as fax
and phone numbers and an email address. The source schestational
format is

department Web__departnent (i d_fk, deptNane, faculty, deptURL,
dept Fax, address, eMil, deptPhone, deptabbrnane)

e http://wwv. uniromal.it/dip\ _ist/default.htm
This web page contains a university-wide list of departseitere, only
the name of the department and the URL of its homepage arallagithe
source schema in relational format is therefore much mateiceed:

depart ment Wb2__departnent _w0O(id_fk, dept URL, dept Nane)

e http://wwv. uniromal.it/studenti/corsi/default.htm
This web page contains a list of links to web pages, on whideluniver-
sity degrees of one faculty are listed. Note that in our tagtagy, “school”
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is equivalent to the term “university degree” of the globa&iema. One can
therefore identify the name of the school, the name of thecated faculty,
and the URL of the web page of the school. The source scherséational
format is

school Web__school (i d_fk, school Narme, facultyName, school URL)

e http://w3.ing.uniromal.it/ccl/elenco.htm
This web page contains a list of schools offered by the Facihlingegneria.
The source schema does not explicitly contain the facultyena

school Web2___school _w01(i d_fk, school Name, school URL)

e http://wwv. uniromal.it/studenti/corsi/docenti.asp

This web page contains a listing of the professors of theaxsity (first
name, surname, and a title). For each professor, theredsadisk to its
personal home page, from which one can usually obtain fudht, such
as an email address, phone and fax numbers. While the pérgeln@ages
usually also include an address, it is much harder to idgrsiifice the struc-
ture of the web page is unknown. The address is thereforenapped. The
source schema in relational format is

prof essorWeb__professor(id_fk, surName, firstNane, title,
homePage, phone, fax, eMiil, address)

e http://ww. soci ol ogia.uniromal.it/offertal El encoDocenti
asp?l dQualifica=3
http://w3. unironmal.it/drsfp/docenti/index.shtm
http://w3.ing.uniromal.it/\%Espacedpt/docenti . htn
http://ww. dau. uni ronmal. it/ organi zzazi one/ or gani zzazi one.
ht m
These web pages list professors of four faculties, obtgisimilar informa-
tion as from the university-wide listing. An advantage hisréhat contact
information need not be wrapped from personal web pagescédHaiso the
address can be provided in the schema:

pr of essor Web2_pr of essor _w00(i d_fk, surName, firstNane, title,
honePage, phone, fax, eMiil, address)
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e http://wwv. amm uni romal.it/el enco/
This page is actually a form, and the wrapper proceeds by sthgnvalues
for departments (stored in a resource local to the wrappet)amalyzing
the resulting web pages. These contain an entry for eachogegpbf the
department, which is made up of the first and surname and amexiand
internal phone number. The source schema in relationaldbisn

enpl oyeeWeb__enpl oyee(id_fk, surNane, firstNane, departnent,
ext Phone, i nt Phone)

e https://ww. infostud.unironal.it/segreterie.asp
Also this page is a form. The wrapper submits values for tggcamd ana-
lyzes the resulting data, which contains the location, phemail address
and office hours of the respective secretary’s offices. Thecesschema in
relational format is

secretaryWb__secretary(id_fk, faculty, place, phone, eMil,

e http://ww2. uni bo.it/infostud/fare/eurouni/itauni/itali a.
ht m
This web page is the only one which does not reside on a seirtlee ni-
versity “La Sapienza” of Rome. It has a listing of all the wamsities of Italy,
containing its name, the city it is located, and the URL ofveb page. The
source schema in relational format is

uni versityWb__university(id_fk, name, city, honePage)

e http://wwv di s.uniromal.it/al phai ndex. php?fil e=phdst ud
A page with the PhD students of the DIS department. Apart fteemame,
one can obtain further information, such as phone, emamdpage and at
which site the PhD student is at. The source schema in reldtiormat is

student Web__student (i d_fk, honePage, site, phone,
| ast Name, firstName, eMil)

e http://ww. mat. uniromal.it/persone/ | NDEX
A page with the PhD students of the mathematics departmeate, Hho
phone numbers and site information can be obtained, otkeriis similar
to the previous wrapper. The source schema in relationaddors
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doctorant Wb__doctorant (id_fk, eMail, firstNanme, |astNane,
honePage)

Note that we do not use the last two sources at the moment, esmeept of
PhD student currently exists in the global schema. Howewesstill report them
here, as they have been created already and could be usedtureversion of
the scenario.

2.5.3 Mapping

In this section, we describe the mapping, of the integration systef,.

We recall that in the general formal framework for infornoatiintegration
underlying INFOMIX, the mapping comprises expressionshefform (1)gs C
gc and (2)gz C qs, respectively, whergs; andqs are queries over the global
schema and the source schema, respectively.

As for the first INFOMIX prototype, the mapping language dastssof GAV
mappings, that is, expressions of the form (1) where in egsegn is a single
global relation,r¢, and such thags amounts to a union of conjunctive queries
(UOCs). In principle, for GAV integration no special coraiits would need to
be imposed onys to maintain the algorithmic feasibility of the approach pa
from decidability of the query language over the sourceswéi@r, on the one
hand, union of conjunctive queries constitute already gmessive fragment with
respect to practical applications and, on the other hareinsenore amenable
to effective optimization techniques than richer langsadeurthermore, this as-
sumption is no real limitation, since it is easily possildéransform any data inte-
gration system using general GAV mappings to one in whicl @AV mappings
occur that use UOCs, by composing wrappers. Note that suansformation
would not be feasible in a LAV setting.

We note that formally, in the GAV mapping C r¢ the querygs maps data
over the source schematg, which are formulated in the INFOMIX Source Data
Format (ISDF), to data in the INFOMIX Global Data Format (I§Dwhich is a
relational format. Since ISDF is a fragment of XML-Schenfas ineans that for
specifying queriegg, a special-purpose XML query language might be defined,
or alternatively a suitable fragment of an arbitrary exigtKkML query language
might be used to map the XML data from the sources to the XMideeing of a
relation.

We refrain here from defining such a language or fragment ek&ting XML
guery language. Instead, we report the mappings for theniateepresentation
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of the sources (IIDF) which is in relational format, in Daigllike syntax. We
recall that the internal representation is obtained by gEmapping from ISDF
to IIDF, which in particular for relational raw data behindigtual ISDF source
just recreates the respective relational schema (modpk ¢pnversions). The
design of a data integration system is in the hands of an eageninistrator, who
might

For the specification of the mappinyl(, in the “La Sapienza” scenario, we
use here the following notation. Each assertion

qs & ra,
wheregs is of the form
q(Z) — (T, 5) V-V @, i),

and eacly; (¥, y;) is a conjunctive query, is represented by rules

roG(XL, X2, ..., Xm - q_1(X1, X 2,...,XmVY11,...,YIm1)
r_G(X1, X2,...,Xm :—”q._k(Xl,X_Z,...,XmYkl,...,Ykm_k)
wherer =X1, ..., Xmandy; =Yi 1,...,Yimi,forall:=1,... k.

In the bodies of rules, we use”for anonymous variables, i.e., for variables
which occur only once in that rule.
The mappings are now defined as follows.

st udent ( X1, X2, X3, X4, X5, X6, X7) : -
studente( X1, X3, X2, _, ., ., ., ., ., 4 _,_, X6, X5, , _, X4, , ., ., Y, ),
di pl oma_maturita(y, X7).

enrol I ment (X1, X2, X3) :- carriera(XL, X3, _, ,Y, , ., ., _,_,_ ), facolta(_,Y, X2).
course( X1, X2) :- esane(_, X1, X2, ).
course( X1, X2) :- esane_di pl oma( X1, X2).

prof essor (X1, X2) :
prof essor ( X1, X2) :
prof essor (X1, X2) :
prof essor ( X1, X2) :

prof essore(_, X1, X2, ).
dati _professori(_, X1, X2).
prof essorWeb__professor(_, X1, X2, , , _,_,_, ).

uni versity(X1, X2) :- universita(_, X2, X1).
uni versity(X1, X2) :- universityWb__university(_, X1, X2, _).

exam record( X1, X2,Z, WX4,X5,Y) :- dati_esam (X1, _, X2, X5, X4, _,VY),
af fidamenti _i ng_i nformati ca(X2, X3,Y),
dati _professore(X3,2Z W.

teachi ng( X1, Z, WX3) :- affidamenti_ing_informatica(Xl, X2, X3),
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dati_professore(X2,2Z,W.

student _course_pl an( X1, X2, X3, X4, X5) :- piano_studi (X1, X2, VY1, X4,Y2, , , ,_,_ ),
orientamento( Y1, X3), stato(Y2, X5).

pl an_dat a( X1, X2, X3) :- dati_piano_studi (X1, X2, _),
esanme_i ngegneria(X2, _,Y2,_), tipo_esane(Y2, X3).

facul ty(X1, X2, X3) :- facultyWb_ faculty(_, X1, _, _, X2, X3).

department (X1) :- departnentWb__departnent(_, X1, _, , _,_,_,_, _ ).
department (X1) :- departnent Wb2__depart nent _w00(_, _, X1).

uni versity_degree(X1, X2) :- school Wb__school (_, X1, X2, ).
uni versity_degree(Xl1,’ Facolta di |Ingeneria’) :-
school Web2__school _wO1(_, X1, ).
enpl oyee( X1, X2, X3, X4) :- enpl oyeeWeb_enpl oyee(_, X2, X1, X3, _, X4) .

secretary_office(Xl1, X2, X3, X4) :- secretaryWb__secretary(_, X1, X2, X3, X4, ).

2.5.4 Queries

We have tested the system with queries, which we describe below. Their nota-
tion is in the INFOMIX Query Language (IQL), which is a subs&Datalog.

(Q1) This query asks for the exams in the exam plan of the studetfit i
09089903.

gl(D) :- student_course_plan(C,’ 09089903, , , ),
pl an_data(C, E, ET), course(E, D).

(®Q2) This query asks for the exams done by the student with ID 09089

g2(CD, D) :- examrecord(’'09089903 ,C, _, , ,D ),
course(C, CD).

(®Qs) This query asks for the names of professors that teach aeours
q3(Pfn,PIn) :- teaching(_,Pfn,Pln, ).

(Q4) This query asks for the personal data of the student with [89903. Such
queries are frequently posed by university authorities twnee to contact a
student.

g4(Sfn, Sl n, Cor, Add, Tel , Hss) : -
st udent (* 09089903’ , Sf n, Sl n, Cor, Add, Tel , Hss) .
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(@Qs)

(Qs)

(@)

(@s)

(@)

This query returns the information about students and ghe&m plans with
status "APPROVATO SENZA MODIFICHE”, for students who hafast
name ZNEPB,

g5(SID, SIn, R :-
student (SI D,’ ZNEPB' , Sl n, Cor, Add, Tel , Hss),
student _course_plan(SCP, SID, T, R,
" APPROVATO SENZA MODI FI CHE' ) .

This query asks for Universities in ROMA.
g6(U) :- university(U, ROW).

This query retrieves the information about students livmBOMA having
RETI LOGICHE in their their exam plans.

g7(F,S) :- student(SID F, S, ROWA' ,A T, H,
student _course_plan(SCl D, SI D, PT, R, ST),
pl an_dat a( SCI D, CI D, CT),
course(CID, ' RETI LOG CHE' ) .

This query asks for professors who teach or have taughteswiich were
not taught in 1990.

g8(Pfn,PIn) :- teaching(C Pfn,PIn, ), not t90(C).
t90(C) :- teaching(C, Pfn, Pl n,1990).

This query asks for cities in which at least two universiies located.

g9(C :- university(N O,
#count { N1: uni versity(N1, C)} >= 2.

4Student names have been encrypted for privacy reasons.
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Chapter 3

Process Mining

3.1 Workflow Mining

During the last decade workflow management technology [14,29, 44, 47]
has become readily available. Workflow management systaoisas Staffware,
IBM MQSeries, COSA, etc. offer generic modeling and enactnoapabilities
for structured business processes. By making processtaaisii.e., models de-
scribing the life-cycle of a typical case (workflow instapaeisolation, one can
configure these systems to support business processe® froegss definitions
need to be executable and are typically graphical. Besides\workflow man-
agement systems many other software systems have adoptkfiowaechnol-
ogy. Consider for example ERP (Enterprise Resource Plghsystems such as
SAP, PeopleSoft, Baan and Oracle, CRM (Customer RelatipManagement)
software, SCM (Supply Chain Management) systems, B2B (Bssi to Busi-
ness) applications, etc. which embed workflow technologgsite its promise,
many problems are encountered when applying workflow tdoggoOne of the
problems is that these systems require a workflow designai.@esigner has to
construct a detailed model accurately describing the mguif work. Modeling a
workflow is far from trivial: It requires deep knowledge ofthusiness process at
hand (i.e., lengthy discussions with the workers and manageare needed) and
the workflow language being used.
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To compare workflow mining with the traditional approach éods workflow
design and enactment, consider the four phases comporigathtionalwork-
flow life cycle

(A) workflow design
(B) workflow configuration
(C) workflow enactment

(D) workflow diagnosis

In the traditional approach the design phase is used fortwantmg a workflow
model. This is typically done by a business consultant andriieen by ideas
of management on improving the business processes at hénlde dlesign is
finished, the workflow system (or any other system that is ¢pss aware”) is
configured as specified in the design phase. In the configarphases one has to
deal with limitation and particularities of the workflow megement system being
used. In the enactment phase, cases (i.e., workflow ingpace handled by the
workflow system as specified in the design phase and reahzbe iconfiguration
phase. Based on a running workflow, it is possible to colléatjabstic infor-
mation which is analyzed in the diagnosis phase. The diagpbsise can again
provide input for the design phase thus completing the wakiife cycle. In
the traditional approach the focus is on the design and amatfiign phases. Less
attention is paid to the enactment phase and few organimasgstematically col-
lect runtime data which is analyzed as input for redesign, tihe diagnosis phase
is typically missing).

The goal of workflow mining is to reverse the process and cbtlata at run-
time to support workflow design and analysis. Note that intnsases, prior to
the deployment of a workflow system, the workflow was alredwdyd. Also note
that in most information systems transactional data issteggd (consider for ex-
ample the transaction logs of ERP systems like SAP). Thenmdtion collected
at run-time can be used to derive a model explaining the svecbrded. Such a
model can be used in both the diagnosis phase and the (gndesase.

Modeling an existing process is influenced by perceptiorgs, enodels are
often normative in the sense that they state what “shouldddiee rather than
describing the actual process. As a result models tend tatherrsubjective. A
more objective way of modeling is to use data related to theah@vents that
took place. Note that workflow mining is not biased by perweyst or normative
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behavior. However, if people bypass the system doing thiliiferently, the log
can still deviate from the actual work being done. Nevedsg| it is useful to
confront man-made models with models discovered throughkfieav mining.

Closely monitoring the events taking place at runtime alsthéeelta anal-
ysis i.e., detecting discrepancies between the design canstiun the design
phase and the actual execution registered in the enactrhasé Workflow min-
ing results in an “a posteriori” process model which can bmgared with the “a
priori” model. Workflow technology is moving into the diréat of more opera-
tional flexibility to deal with workflow evolution and workfl@ exception handling
[74,76, 3, 19, 28]. As aresult workers can deviate from tlespecified workflow
design. Clearly one wants to monitor these deviations. kamgle, a deviation
may become common practice rather than being a rare exoeticuch a case,
the added value of a workflow system becomes questionablaraadaptation is
required. Clearly, workflow mining techniques can be usedéate a feedback
loop to adapt the workflow model to changing circumstancesiatect imperfec-
tions of the design.

3.2 Process Mining

The goal of workflow mining is to extract information aboubpesses from trans-
action logs. Instead of starting with a workflow design, waertsby gathering in-
formation about the workflow processes as they take place.as8§ame that it
is possible to record events such that (i) each event redeastask (i.e., a well-
defined step in the workflow), (ii) each event refers to a case & workflow in-
stance), and (iii) events are totally ordered. Any inforimrasystem using trans-
actional systems such as ERP, CRM, or workflow managemetarsgsvill offer
this information in some form. Note that we do not assume thsgnce of a work-
flow management system. The only assumption we make, isttisghassible to
collect workflow logs with event data. These workflow logs ased to construct
a process specification which adequately models the betra@gstered.

The termprocess miningefers to methods for distilling a structured process
description from a set of real executions. Because theskangtfocus on so-
called case-driven process that are supported by contemypworkflow manage-
ment systems, we also use the term workflow mining.

To illustrate the principle of process mining in more detaieé consider the
workflow log and a corresponding process model shown in Eigut. This log
abstracts from the time, date, and event type, and limitsrtftemation to the
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s; : abdel no
sy : achi no
s3 : aci hno
sy, : abdf mo
s5 : abdgno

Figure 3.1: A workflow log and a corresponding model.

order in which tasks are being executed. The log contairgnmdtion about 5
cases (i.e., workflow instances). Each case starts with<éh@uiéion ofa and ends
with the execution 0b. Itis possible to notice that there are some activities whos
execution prevents the execution of other ones in the saowegs instance (e.g.
b andc or ef andg). Furthermore, ib is executed, alsh andi are executed in
any order, this let us hypotize thlatandi can be considered as parallel activities.
Based on the information shown in the table and by making sassamptions
about the completeness of the log (i.e., assuming that gesce representative
and a sufficient large subset of possible behaviors is obdgrwe can deduce, for
example, the shown process model. It is represented\bydel Graph! consist-
ing in an oriented graph where nodes represent activitidsantain information
about the flow management; edges connecting two activities svhich activi-
ties can be executed after the execution of their sourceitgctin order to mark
starting and ending activities, a triangle pointing riglesp. left) can be used. A
boolean function, and eventually a numeric constraint,amassociated to edges
outgoing éplit), or incoming {oin), from the same node. This filters the flow
stating which activities can be executed or waited (in cdsaapming edges).
For example, edges outgoing fraerhave axor split condition stating that only
one activity amond andc can be executed after Otherwise, edges incoming
in n have anand join condition stating that both andi have to complete their

1Beside with Model Graph, other graphical representatiomédism for workflow exist as
Petri netg[55, 75] andEvent-driven Process ChgBPC) [73, 64].
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execution before starting

The table shown in Figure 3.1 contains the minimal infororatve assume to
be present. In many applications, the workflow log contaitisia stamp for each
event and this information can be used to extract additicaasality information.
In addition, a typical log also contains information abd type of event, e.g., a
start event (a person selecting an task from a worklist) naptete event (the com-
pletion of a task), a withdraw event (a scheduled task is weah) etc. Moreover,
we are also interested in the relation between attributéiseofase and the actual
route taken by a particular case. For example, when hanttlffge violations: Is
the make of a car relevant for the routing of the correspanthiaffic violation?
(E.g., People driving a Ferrari always pay their fines in tymgor this simple
example, it is quite easy to construct a process model tladiésto regenerate the
workflow log (e.g., Figure 3.1). For more realistic situasdhere are however a
number of complicating factors:

e For larger workflow models mining is much more difficult. Fowenple,
if the model exhibits alternative and parallel routing, rtitbe workflow
log will typically not contain all possible combinationso@sider 10 tasks
which can be executed in parallel. The total number of iatarings is 10! =
3628800. Itis not realistic that each interleaving is pnégethe log. More-
over, certain paths through the process model may have arobapility
and therefore remain undetected.

o Workflow logs will typically contain noise, i.e., parts ofeliog can be in-
correct, incomplete, or refer to exceptions. Events caodgdd incorrectly
because of human or technical errors. Events can be migsithgilog if
some of the tasks are manual or handled by another systeanipagjonal
unit. Events can also refer to rare or undesired events.i@emer example
the workflow in a hospital. If due to time pressure the ordetwaf events
(e.g., make X-ray and remove drain) is reversed, this doesmdy that this
would be part of the regular medical protocol and should lppstted by
the hospital's workflow system. Also two causally unrelagzents (e.g.,
take blood sample and death of patient) may happen next to eher
without implying a causal relation (i.e., taking a sample ot result in the
death of the patient; it was sheer coincidence). Clearlgeptions which
are recorded only once should not automatically becomeop#ne regular
workflow.

e The table in Figure 3.1 only shows the order of events witlgiing in-
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formation about the type of event, the time of the event, ahibates of
the event (i.e., data about the case and/or task). Cleamdyaichallenge to
exploit such additional information.

3.3 Existing Tools

In the last few years, several efforts have been spent byeearch community
as well as by the industry to implement robust and scalalatéqsms for process
mining applications, where various mining techniques ategrated and made
available to the users. A breakthrough in the design of suictiskof systems
was represented by tHeroM framework [80]. Indeed, differently from earlier
approaches (see, e.g., [77, 83] and the references theReoi)yl comes as an
open and extensible architecture, which enables usersite and import their
own mining algorithms into the framework as plug-ins. Thagpability tremen-
dously enriches the power of the entire system, which esovirtually unbound
set of resources to complain a wide range of process minipicagions (e.g.,
control-flow mining, decision tree induction, or clusteyjmo cite a few) and anal-
ysis tasks (e.g., verification of process models, perfoonaamalysis, or statistical
evaluations). Thanks to this valuable packagiPgmM is the most advanced tool
for process mining applications, and some successful tndlusxperiences ex-
ploiting its mining capabilities have already been disedss the literature (see,
e.g.,[78, 69]).

3.3.1 The ProM Framework

In this section, we provide a minimal overview of the arctiitee of ProM Frame-
work. The basic module of the architecture is the Log filtemponent, which
is able to read process log encoded in XML format. This conepbexports a
wide range of capabilities to inspect a log (e.g., showstiat! information orig-
inators, activities, data appearing) and perform cleatas$fs (e.g., remove all
events or traces with a specific event type) before the aotuzhg starts. Ad-
ditionally, ProM implements different plug-ins aimed tadeand load log and
model coming from different transactional systems, whishally use different
representation formats. ProM exports facilities for intpay data from manage-
ment systems such as Staffware, Oracle BPEL, Eastman WaorkiYebSphere,
InConcert, FLOWer, Caramba, and YAWL, simulation toolslsas ARIS, EPC
Tools, Yasper, and CPN Tools, ERP systems like PeopleSdftS&P, analysis
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tools such as AGNA, NetMiner, Viscovery, AlphaMiner, and ISRFPPM. On the
top of the above modules, ProM define a bunch of transactogtin covering
different tasks. Four different transactional plug-ins available:

e Mining plug-ins. ProM implements a rich bunch of mining plug-ins to an-
swer common tasks in process mining analysis. Notably, Poodtides
plug-ins for each of the three process mining perspectivesgrocess per-
spective, organization perspective, and case perspgactdditionally, sup-
port to data decision mining has been recently added. Fqortteess per-
spective, various plug-ins are available. The followingresent the most
relevant:

— a-algorithm. It implements the basia-algorithm and all its exten-
sions as developed by the authors .

— Tshinghua-«-algorithm. This plug-in uses timestamps in the log files
to construct a Petri net.

— Genetic algorithm. This plug-in is based on a recent research guide-
line using genetic algorithms to tackle possible noise @ldly file. Its
output format is a heuristics net (which can be convertea amt EPC
or a Petri net).

— Heuristics Miner. This plug-in encodes strategies to deal with noise
and incompleteness in the log.

— Multi-phase mining. It implements a series of process mining algo-
rithms that use instance graphs (comparable to runs) asaamiediate
format. The two-phase approach resembles the aggregatoags in
Aris PPM.

For the organizational perspective, some plug-ins ardablei We focus
here on the following:

— Social network miner. which uses the log file to determine a social
network of people [72]. It requires the log file to contain 8pecifi-
cation about the originators of activities.

— Semantic Organizational Miner. It uses the semantic information in
the log to mine groups of users based on task similarity.

— Role Hierarchy Miner. This plug-ins uses the information about
which originators have executed which tasks to identify ahe the
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specialist/generalist for a given process. The mined tamgncan be
exported as a WSML[13] ontology with concepts, is-relasioips and
instances.

Finally, for the decision mining perspective, also one glugs available:

— Decision Miner. plug-in determines the decision points contained in
a Petri net model (e.qg., a task is performed only if a conditiolds),
and specifies the possible decisions with respect to the holg Wweing
able to deal with invisible and duplicate activities in thayndescribed
in [60]. While the Decision Miner formulates the learningpplem,
the actual analysis is carried out with the help of the decision tree
classifier, which is the implementation of thé.€algorithm [62] pro-
vided by the Weka software library [85].

e Analysis plug-ins. These plug-ins implement further mghamalysis on the
result produced by a mining plug-in. We cite here:

— LTL Checker. This plug-in checks a Linear Temporal Logic (LTL)
formula on a log (e.qg., test if a given originator executegecsic task
of the process).

— Conformance Checker.lt evaluates the conformance between a given
process model (encoded in terms of a Petri net) and a log.

— Performance Analysis with Petri netThis plug-in run statistical tests
on a Petri net model which exploit time-related aspects @ftocess
instances. As an example, this plug-in can evaluate théngpptob-
abilities for each split/join task, or the average/minimmaximum
throughput time of cases.

e Export plug-ins. These plug-ins implement some “save as” functionality
for data objects (such as graphs). For example, facilibesxport models
in EPCs, Petri nets (e.g., in PNML format), spreadsheetpranaded.

e Conversion plug-ins.These plug-ins implement basic conversions between
different data formats, e.g., from EPCs to Petri nets.

The results coming from applying transactional plug-iresstored irResult Frame
objects, which can be used for visualization or conversion.
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PROMETHEUS

4.1 Introduction

In the context of enterprise automatigrpcess minindnas recently emerged as
a powerful approach to support the analysis and the desigoraplex business
processes [77]. In a typical process mining scenario, afseaces registering
the activities performed along several enactments of géctional system—such
as a Workflow Management (WFM), an Enterprise Resource Rign(&RP), a
Customer Relationship Management (CRM), a Business tonBasi(B2B), or a
Supply Chain Management (SCM) system—is given to hand, bedoal is to
(semi)automatically derive a model explaining all the egdiss recorded in them.
Eventually, the “mined” model can be used to design a detgtecess schema
capable to support forthcoming enactments, or to shedsligh its actual behav-
ior. Thus, process mining is particularly useful when nanfal description of the
process is available beforehand, or when its observedraeattdeviates from the
expected one (see, e.g., [41, 25]).

In this chapter, we move from the success stor{?aM in order to develop
PROMETHEUS, a novel Suite for Process Mining applications that, whilar-
ing with ProM the perspective of the open and extensible architecturegunces
three innovative designing elements to meet the desidefdfaxibility and scal-
ability arising in actual industrial scenarios. Indee®RORIETHEUS has been
specifically conceived to support:

(1) the definition of complex mining applications, whereieas mining tasks
can be combined and automatically orchestrated at run-time

Process mining applications may involve dozens of diffetasks, ranging
from data acquisition, to data manipulation, informatiottr&ction based
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on different mining algorithms, recombination of mininguéts, and visu-
alization. These different kinds of task can be well managetie ProM
framework, but at the price of requiring human intervenimtheir coordi-
nation. IndeedProM supports the execution of one task at time, so that to
construct complex mining applications requires manualyking the var-
ious tasks by collecting and storing each intermediateltr@suthe ProM
workspace) and by reusing them as the input for some furésist In or-
der to automatize and easily deploy mining applicationsliing different
tasks, ROMETHEUS introduces instead the concept of “flow of mining”,
I.e., it allows to specify complex mining chains based orerobnnecting
elementary tasks. In factRBMETHEUS comes equipped with a run-time
engine that supports and monitors the execution of the mithinv and that
orchestrates the compositions of the various elementazigdor

(2) building interactive applications based on the podgipof customizing data
types, algorithms, and graphical user interfaces used énahalysis.

A plug-in based architecture is a crucial factor to proviegibility for ac-
tual applications. However, each plug-in is current viewedhe ProM
framework as a monolithic box, where interaction is limitedhe start up
phase in which users configure the execution environmeraaf algorithm
by setting all parameters. In addition, plug-ins can be éefito work over
a fixed set of data types only, and there is no way to modify tqgpearance
when executing them in the platformRBMETHEUS extends the flexibil-
ity of each plug-in, by introducing the concept of “interaet execution
(in addition to the standard “batch” execution), i.e., ippart an approach
to process mining where users may continually interact wigh mining
algorithms and provide their feedback trough the graphisar interface.
Eventually, novel data types can be defined in addition tethedard ones
pre-defined in the suite, and they can be transparently ugetiebvari-
ous plug-ins. Moreover, ROMETHEUS enables developers to define, for
each plug-in, a customizable set of graphical componeatsihl be inte-
grated as a part of the main interface when using the plug-qoratime.
For instance, developers can quickly define windowed corapizto guide
plug-in’s execution in the interactive mode, manipulateduced output,
and visualize multiple perspectives on results.
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(3) ensuring scalability over large volumes of data.

In real industrial environments, enormous volumes of deg¢aagailable for
mining analysis. Yet, very few efforts (see [43], for a neable exception
focused on pre-processing data originating in ERP appdies} have been
spent to provide an adequate support for data-intensiMecapipns, mainly
because of the architectural design of current tools, warelbased on im-
porting the whole input into the main memory. This is in pautar the case
of ProM. To avoid these scalability issuesRBMETHEUS, instead, adopts
a powerful data management subsystem based on a streanmigandbel
for data acquisition. Indeed, rather than building a coneple-memory
representation of data, this model stores statisticatbkstonly, while sup-
porting on-demand streaming access to the details thaegtaésident on
disk.

Discussing the architectural design and the implememtasisues arising when
providing support to the above three elements is the mainadithis paper. In

particular, in Section 4.2, we shall overview these furr@idies, while deferring

the discussion of their technical design to Section 4.3.

One-way mining approach
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Figure 4.1: Flow of mining in process mining applications
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4.2 An Overview of PROMETHEUS

PROMETHEUS is as an extendable suite for process mining applicaterisely
programmed in JAVA. In this section, we overview its maindtianalities and its
innovative designing elements.

4.2.1 Flow of Mining and Customization

The concept of flow of mining is a very natural and managealalg ot designing
complex mining processes, which possibly involve différend heterogeneous
mining components. Indeed, in a traditional mining persgeceach computa-
tional module is an independent component with its own irgmat output. How-
ever, to build a large-scale application often requiresdioating several compu-
tational modules, which is demanded to the user in currestgss mining plat-
forms. ROMETHEUS supports instead the deployment of mining applications in
their entity, by allowing to design mining process as comfli@vs of elementary
bricks. Each brick produces an output that may be used as fiopather bricks
in the flow. Consequently, users may incrementally build dbsired flow, by
connecting existing blocks or adding new ones to manipyedduced outputs.

A comparison between the traditional approach to definegg®mining ap-
plications, and the concept of flow of mining is graphicalgpetted in Figure 4.1.

To support this concept of flow of mining, at design-time&kdMETHEUS
provides the user with an intuitive graphical interface imeth computational re-
sources can be dragged and dropped on a work area panel.\Mgreannections
between the nodes can be easily established to create theviawhe various the
computational steps of the analysis. In particular, datalied in the mining flow
(i.e., required in input or produced as output of some coatpurial resource) can
be ofLogtype, which is simply an abstraction of a log file, where thactments
of a transactional system are storedMwdeltype, which represents the abstrac-
tion of a process model, and Qlustomtype, which allows users to define their
own data-types and to freely import their definition in théesu

Computational resources irRBMETHEUS operates over the above kinds of
data type, and are coupled with it as importable plug-inga¢tt, PROMETHEUS
defines the hierarchy of plug-in templates depicted in Fegu@, where the fol-
lowing three main templates are actually defined (as an sxterf the interface
FlowComponent
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Figure 4.2: UML class diagram for plug-ins hierarchy.

Sources. A source is a plug-in class template conceived to accessthe data
on which the mining analysis has to be performedOMETHEUS defines
three kinds of templates for this classLAg Sourcaemplate is designed to
handle thd_og type in input, and is indeed the most frequent kind of input
for process mining applications. Model Sourcgemplate is designed to
handle mining models as input data, thereby enriching tipaloéties of
the platform to design complex mining flows, where models s&ye as
the basis for further computation (e.g., comparison withesother model)
rather than for visualization only. Finally@Gustom Sourceemplates is also
designed, in order to provide an abstract source templatengego handle
arbitraryCustomdata.

Mining Modules. A mining module template gives a high-level design of the
computational modules in the mining flow. These modules @spansible
of performing mining algorithms and statistical evaluaoon the input
provided by source modulesRBMETHEUS supports five kinds of mining
modules templates. Aog Minertemplate is designed to manage a single
Log as input, and to produce as output one or more instancesgyfthus,
this module is useful to pre-process input logs, even by ¢exnmining
algorithm based, e.g., on clustering and outlier detectan simpler kinds
of pre-processing (e.g., size reduction, or duplicatesokeng), thelLog
Filter template is available which takes as inpuicg and produces a novel
Log based on it. AModel Minertemplate works on a log data source as
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input, and produces a process model as outputMatlel Filter template
is instead a plug-in operating over a process model and progla novel
process model. Finally, @ustom Modulgemplate provides an abstract
mining module template to fit all the other kinds of needs emer with
Customtypes.

Sinks. Sinks templates are intended to manage the final resultswhgyprocess.
These templates are useful for data visualization, arséysl storage of the
results. Three sink templates are supportetiog Sinkis designed to work
on a log data source, lslodel Sinkis designed to work on models, and
finally a Custom Sinks also provided for custom data input.

Interestingly, plug-ins may be composed in high-level kéoof components
performing user-defined operations. In many occasionsap ft might be nec-
essary to perform the same operation many times in the sami@griow or
in different flows as well. In order to efficiently suite thised, ROMETHEUS
supports the grouping of connected plug-ins intacrosthat can be used as or-
dinary plug-ins with their input and outputs. In practiceaaros act as defining
sub-routines that frequently occur in mining applications

typet

Plug-ins Data types Hped

Process Mining Te Mining

Figure 4.3: Workspace oriented design in data customizatio

We leave this section, by stressing that (as emerged frontishassion above)
data type customization is a very relevant featurerROM ETHEUS, which makes
this platform suited to deal with arbitrary mining analysesen not focused on
processes. As an example, users might be interested impanfptext mining or
clustering over numerical data, and in creating mining flvains for them. To
easily support such kinds of heterogeneous mining appitsit ROMETHEUS
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introduces the concept eforkspaceas a place where to conceptually store re-
lated data types, and computational modules (see Figuje #Fl@us, users can
freely define sources, mining modules, sinks and data typegnize them in
custom workspaces of resources, and then transparentlgucderesources in
PROMETHEUS. Moreover, users can easily connect together resour¢esgse
ing to different workspaces to obtain mixed mining flows. Asexample, users
can use a text mining ad-hoc module to extract a log source &dlat textual
description, and then use such source as an input for a grauesg module.

4.2.2 Flow of Mining in Action: Interactive VS Batch Mode

PROMETHEUS offers two operational modes for supporting the miningdyaist
bachandinteractivemodes.

In the interactive mode, users control the enactment of timengn flow in a
supervised way. Basically, they can choose to execute tlodevilow at once or
to execute portions of it, by selecting single tasks or gsafithem. Additionally,
users can stop running tasks, or restart their executiogeiflad. Moreover, in the
interactive mode, users can quickly modify the flow of minibg adding at any
time additional plug-ins and then recover the analysis ftbepoint it was in-
terrupted. And, finally, users may interact with each simgieing algorithm via
the graphical user interface, by modifying its parametad even by changing
its own execution logic when providing feedbacks on theenirexecution and
results. This kind of approach is particularly useful in tlesign of complex min-
ing applications, for debugging purposes, and for intéralst and incrementally
build the mining flow.

When the application scenario is fully understood and the b mining
needed to obtain the desired process model is consolidaseds may save the
mining flow and use it for a batch execution. In this mode,¢hemo need to run
the graphical user interface, since®M ETHEUS comes equipped with a run-time
engine which is capable of coordinating the various taskss &xecution mode
allows to deploy the mining application as an independel®JMbrary, which
can be easily coupled within larger kinds of application.

4.2.3 Stream Oriented Log-handling

Available process mining tools are often unsuited for mgatld environments,
where mining applications have to face large amounts of. datee main fault
of such tools is related to the log handling subsystem, whsially builds a
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Figure 4.4: Stream oriented log-handling.

complete in-memory representation of input data. Cleantyugh, this approach
is unviable as far as the input data grow, and memory leakallysepresent the
most relevant source of errors while evaluating gigabytemta.

Moving from these observationsRBMETHEUS implements an innovative
streaming approach for log-handling, whose target is tarenscalability over
huge amounts of data. The conceptual idea behind this agpre#he following.
Basically, acollector subdivides the input flow in small data-sketches and pro-
cesses each one of them separately. Each sketch produges manttial result in
the overall mining process. Once a data sketch has beensgeatethe collector
demands for the next one. Using this approach, the wholengnioiocess is car-
ried out in a step-by-step fashion, and only needed sketnieestored in memory.
Note that the strategy above requires the use of ad-hoc gnteichniques that
work on sketches of data only.

4.3 System Architecture

This section explores the architecture cfdMETHEUS, by highlighting some
relevant implementation issues. An overview of this aegttiire is reported in
Figure 4.5. The reader may notice tha&dMETHEUS is implemented over four
distinct logic layers.

Starting from the bottom of Figure 4.5, thatalayer is responsible of dealing
with physical input/output operations involved in data@sgion and storage. As
discussed in Section 4.2.1, data can béaj, Model andCustomtype; in fact,
the second\PI layer provides a transparent access to the physical opesatver
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Figure 4.5: ROMETHEUS architecture.
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Figure 4.6: MXML data model.

these data types, by exporting several abstract primitovetheir stream-oriented
manipulation (in particular, w.r.t. predefined data typ@as) by using some opti-
mized internal data-structures for efficient and compaizt (kketches) representa-
tion. Above the API layer, it is placed the computationalecof PROMETHEUS.
The core is constituted by the various plug-ins (sourcesingimodules, and
sinks) that can be written on the basis of the primitives etgqubby the API layer.
These plug-ins are glued byMediator, which manages communications between
plug-ins and thé-ront Officelater. The last layer is indeed constituted b4l
component to be used at design-time and at run-time in tkeedctive mode, and
by aWorkflow Engindo be used at run-time in the batch mode.

In the rest of the section, we discuss some relevant detailséfch of these
layers.

4.3.1 Data Layer

Regarding the model representatiorRdMETHEUS natively supports a subset of
XPDL 2.0, which is considered to be the reference data reptason for work-
flow models by W3C community [56].

Regarding input data representatiorRdMETHEUS supports the MXML data
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model, which is an XML-based language considered as thelstdrde-facto for
process mining applications [81]. The UML specification ftoe MXML data
model is reported in Figure 4.6. Basically, this data mogw/s a log for trans-
actional systems as a group of processes, each one assogisitenany instances
(Processinstangecorresponding to its actual enactments. In fact, eaclamost
consists of a sequence of entridauditTrailEntry) storing information about the
events occurred in the enactment (such agxhginator and theTimeStamp

For both process models and logRAMETHEUS provides at the data layer
I/O primitives and primitives for data manipulation. Thdew-level primitives
are transparently accessed by the API layer, where the Basdypes are repre-
sented at a higher level of abstraction.

4.3.2 API Layer

The API layer is responsible of carrying out two basic fumcélities of ROMETHEUS.
On the one hand, it serves to provide support for the efficr@etnal storage of
the data to be used in the analysis. Thus, it handles a mammenyerepository
where two structures are stored, callBdpendencyGraphand AbsoluteDepen-
dencyGraphBoth structures are directed graphs whose nodes reptégseauttiv-
ities in the process log being analyzed, and whose edgesseapirthe relationship
of precedence among them; in fact, the former structurestibre direct relation
of precedence, whereas the latter consider the transitrgeie of such relation.
Note that these two structures are internally built by scanonce the input log
(i.e., by following the stream-approach), and serve to pi®@gummary informa-
tion on the process model being mined, without the need diéuil/O operations.

On the other hand, the API layer is responsible of providiaggparent access
to the data layer. To this end, it implements three main mexiul

LogManager. This component provides all the basic capabilities to teecwer a
disk-resident MXML log file. The main methods, whose nameistiended
to be self explicative, arleasNextProcessinstanaadnextProcessinstance
A facility to write a log file in the MXML standard is also praled.

DependenciesManager.This module supplies all APIs necessary to manage ac-
tivities and dependencies between them. The main methadsditing
dependency graphs aegldActivity removeActivity collapseActivity and
setPrecedenceFurthermore, facilities to collapse an activity into dmat
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one, find cycles in precedence relations, and mine localt@nss in the
precedence relations are also implemented.

ModelManager. This module supports all the facilities needed to createnaaa
age process models conforming to the internal meta-modeletails, cre-
ation of processes and related elements like applicataata,fields, activi-
ties and transitions are transparently complained. Oremthdel is created,
each model element can be translated in the correspondddit XRment
by the use ofoXpdimethod.

4.3.3 Computation Layer

Each plug-in may be implemented by using the primitives jgled by the API
layer. Then, collaboration and message passing betwesnish&upported at the
computation layer. Indeed, Mediator acts as a traffic cop, by processing and
messaging all the requests from the various plug-ins inrttexactive as well as
in the batch mode.

In particular, during the batch execution mode, the mediatdomatically
checks for the dependencies among the involved plug-ingebping updated a
map of consistency with the details of the state of the varexecutions and the
execute availability of their input. Indeed, a plug-in magydxecuted only when
all its input data are available, and hence only when they len completely
produced by some antecedent plug-in in the flow of mininghls $cenario, the
crucial aim of the mediator is to give to each plug-in of thenfla global view
of the state of the plug-ins of interest for it, through a g@arent communication
infrastructure. Basically, for a given configuration, thedrator chooses which
plug-ins are ready to run, executes them, and waits for satigcation. When
a plug-in changes its state during its execution (e.g., ¢etap the computation
of its output), it notifies the mediator through a one way syssignal. Then,
the mediator propagates the update information about tigeiplstate to all those
plug-ins whose execution strictly depends on it, and decudlich to run, de-
pending on their states as well. Note that, in this approacly, mediator has a
global view over the plug-ins involved in the flow and no conglbetween them
is explicitly needed. Beside these aspects, such desigrdraayatically improve
overall system performances in parallel architecture§ [PRere, in fact, the me-
diator may run unrelated plug-ins at the same time, reduitiagverall time to
complete the flow of mining.

Importantly, the mediator plays a crucial role during theeractive mode as
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Figure 4.7: Message passing through the mediator.

well. In this execution mode, indeedRBMETHEUS takes cares of the interac-
tion between the various graphical elements associatédhatdifferent plug-ins.
Basically, when the state of a component of a plug-in is medjfit generates an
event by arEventGeneratoobject. Any component interested in reacting to an
event has to implement an HANDLE method for it, further prggieng a result
event if necessary. According to the observer pattern, thaiator listens all the
events generated ilRBMETHEUS: When a plug-in graphical interface is modi-
fied by the user or by a system signal, the resulting eventiBatbto the mediator
(see Figure 4.7). As a result, only the mediator encapsutaies a given set of
GUI components interact together, ensuring loose couaingng the graphical
components.

4.3.4 Front Office Layer

The most abstract layer in the architecture a@oRIETHEUS is the Front Office
layer, which exports (in addition to the workflow engine segvin the batch ex-
ecution mode) functionalities related to the creation of@pss mining flow, to
the configuration of execution environment parametersadtite visualization of
analysis results.

All these functionalities involve the graphical interfaeghich consists of sev-
eral graphical elements, most of which are shown in Figue 4.
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Workspaces Explorer. The workspace explorers a graphical component de-
signed to show the available system workspaces. The défaattess min-
ing” workspace is shown at the top of the sliding menu. Eaclksmace is
shown as an entry of a navigation menu, and reports all trgipkidefined
in it, organized according their type (i.e., source, mimmgdules or sinks).

Workarea and Plug-in Explorer. The workareais a graphical component that
plays a crucial role in ROMETHEUS. Indeed, it offers a design panel on
which users can freely customize mining flow properties.reJsan quickly
add/remove concrete instances of plug-in definitions (lyggmng them
from the workspace explorer), edit connections betweeg-pig, combine
input/outputs, control execution flow, and so on. Once a-ougstance is
placed, users can configure its execution environment eetbteps:

e Parameters Configurationf the selected plug-in requires to set some
input parameters, users can proceed to their configuratiginoply
double-clicking on the plug-in instance.

e Edge Configurationusers can edit edges (i.e., precedences between
tasks) by simply switching the system in the “edge mode”.rElsan
insert a new connection between modules, can rearrange reedefi
connection, or can remove it from the mining flow.

e Execution once a suitable flow configuration is created, user can pro-
ceed to its execution. Runnable plug-ins are identified byeady
state” icon; users can decide to run all executable plugtnsnce
simply selecting, or execute only selected ones.

The workarea provides a graph-based view of the flow of miningsome
cases, it is instead desirable to have a tree-like view df flow, which is
accomplished by thplug-in explorergraphical element. In particular, for
each concrete plug-in instance, it shows the input datalatbsks which
directly depends on it.

Inspectors. To visualize the actual value of input/output dateORIETHEUS in-
troduces thenspectorgraphical component. An inspector is a very generic
data explorer able to produce a suitable representationspkaific data
type. Inspector modules definition allows to create mudtgtifferent views
on the same data set, each one depicting some portion of thenflarma-
tion of interest. ROMETHEUS comes equipped with default inspectors to
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analyzd_ogandModeldata types. However, users are free to program their
own inspectors for custom data types.

Plug-ins Graphical Elements. Plug-ins can be equipped ilRBMETHEUS with
various graphical components. In particular, each of thembe associated
with a muny with atoolbar, with the main pane(intended to provide the
main graphical interface to support interactive execytianth the bottom
pane(intended to provide an interface for setting parameters),with the
quick view(intended to provide a synthetic view of the status of thgpi).
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Conclusion

In this thesis we have first presented an extension of themati hypertree de-
composition, which is currently the most powerful struatunethod. This new
version, called query-oriented hypertree decomposittoa suitable relaxation of
hypertree decomposition designed for query optimizataord such that output
variables and aggregate operators can be dealt with. Bas#dsonotion, a hy-
brid optimizer is implemented, which can be used on top oilavke DBMSs to
compute query plans. The prototype is also integrated imeavell-known open-
source DBMS PostgreSQL. The experimental activity, cotetlion PostgreSQL
and on a commercial DBMS, shows that both systems may signtficbenefit
from using hypertree decompositions for query optimizatooving that these
technigues can be successfully integrated in commeraalymts.

Then we have presented the INFOMIX project showing the ackhrech-
niques and innovative methodologies developed in it. Watediout how it ad-
vanced the state of the art in several respects, in parntitydeovided:

e Comprehensive Information Model. A comprehensive information model
has to be provided, which incorporates static and dynanpieas of infor-
mation integration, and supports advanteahan likereasoning, based on
a rich semantics.

¢ Information Integration Algorithms. A host of efficient algorithms for
information integration must be provided, which can be egablo homog-
enized data from heterogeneous data sources.

e Usage of Computational Logic.Exploit advanced methodologies and tech-
niques from computational logic as a toolbox for informatintegration.
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e Prototype System. Definition and implementation of a component-based
integration system prototype, and providing an infragtrieeby using soft-
ware agent technology.

Finally, we presented ®OMETHEUS, a suite for Process Mining and shown
its open and extensible architecture and how it introduosesmnovative design-
ing elements to meet the desiderata of flexibility and sclthalarising in actual
industrial scenarios. In particular it supports:

¢ the definition of complex mining applications, where vasanining tasks
can be combined and automatically orchestrated at run-time

e building interactive applications based on the possibitit customizing
data types, algorithms, and graphical user interfaces indbe analysis.

e scalability over large volumes of data.

As possible future extensions of this work, we think that eamprovements
can be achieved further extending the Hypertree Decompngéchniques in or-
der to support also aggregate and other SQL features. Fontine, we think that
it is possible to engineer the INFOMIX prototype anedMETHEUS in order to
obtain industrial products.
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Appendix A

Relational Databases

In this appendix we illustrate here the basic notions of #ational model for
a data base. In the relational model, predicate symbols sed to denote the
relations in the database, whereas constant symbols démtebjects and the
values stored in relations. We assume to have a fixed (infialghabetl” of
constants, and we consider only databases over such arbatph&e adopt the
so-calledunique name assumptipire., we assume that different constants denote
different objects.

A relational schem&{ is constituted by:

e An alphabetA of predicate(or relation) symbols, each one with an associ-
ated arity denoting the number of arguments of the predicatattributes
of the relation).

e A setC of integrity constraintsi.e., assertions on the symbols of the alpha-
bet.A that are intended to be satisfied in every database coherénthe
schema.

A relational databasdor simply, database, DBy over a schema{ is sim-
ply a set of relations with constants as atomic values. We loame relation of
arity n for each predicate symbol of arityin the alphabetd. The relation?5
in DB corresponding to the predicate symlbbis constituted by a set of tuples of
constants, those that satisfy the predidateA databasé B over a schema&{ is
said to becoherentwith H if every constraint irC is satisfied byD5. The notion
of satisfaction depends on the type of constraints definedttre schema.

The integrity constraints that we consider are inclusiopeselencies (IDs),
key dependencies (KDs) and exclusion dependencies (EO®e Bpecifically,
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an inclusion dependency is an assertion of the ferfd] C r,[B], where
r1, 7o are relations ind, A = A;,...,A,(n > 0) is a sequence of at-
tributes ofr, and B = By, ..., B, is a sequence of distinct attributes of
ry. Therefore, we allow for repetition of attributes in thetib&nd side
of the inclusion. A databasPB for ‘H satisfies an inclusion dependency
r1[A] C ro[B] if for each tuplet; € rPP there exists a tuplg, € rP5 such
thatt, [A] = t5[B], wheret[A] indicates the projection of the tupl®ver 4;

a key dependency is an assertion the féem(r) = A, wherer is a relation
in A, and A, A = A,,..., A, is a sequence of distinct attributes 1af
A databaseDB for H satisfies a key dependenkyy(r) = A if for each
t1,to € rPB with t; # 2 we havet,[A] # t,[A]. We assume that at most
one key dependency is specified for each relation;

an exclusion dependency is an assertion of the forfd] N ry[B]) = 0,
wherery, r, are relations ind, A = A,,..., A, andB = B4,..., B, are
sequences of attributes of andr,, respectively. A databasBB for ‘H
satisfies an exclusion dependeriey A] N r»[B]) = () if there do not exist
two tuplest; € rP8 andt, € rP5 such that,[A] = t,[B].

A relational query is a formula that specifies a set of dateetoetrieved from
a database. In the sequel we mainly refer to the class of cotiye queries, union
of conjunctive queries anbatalog queries. Aconjunctive queryCQ) ¢ of arity
n over the schem® is written in the form

q(X) — conj(X,y)

where

q belongs to a new alphabéX (the alphabet of queries, that is disjoint from
bothT" and.A),

q(X) is theheadof the conjunctive query,

conj(X,y) is the body of the conjunctive query and is a conjunction of
atoms involving the variableg = X;,..., X,, andy = Y;,...,Y,, and
constants front’,

the predicate symbols of the atoms aredin
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e the number of variables of is called thearity of ¢, and is the arity of the
relation denoted by the quegy

Notice that, the body of the query may also contain atoms wposdicates are
arithmetic comparison predicates, i.e., built-in prethsawith the restriction that
variables involved in such predicates must appear alscomsivhose predicate
symbols are inA.

Given a databas®B, the answer tg; over DB, denotedsP?, is the set of
n-tuples of constantg, .. ., ¢,), such that, when substituting eagffor z;, the
formula

3y.conj (X, ¥)
evaluates to true i 5.

A set of conjunctive queries with the same head predicatdJsian of Con-
junctive QueriegUCQ). More formally, a UCQ is written in the form

q(}z) — Conjl(i7 il) VeV Conjm(iv y’m)

The answer to a UCQover a databasP3, as usually denotegP?, is the set
of n-tuples of constanté, . .., ¢,), such that, when substituting eachfor ;,
the formula

3y 1.conj (R, F1) V - - -V Ifm.conj, (X, §m)

evaluates to true iV 5.

Finally aDatalog query is a collection of rules, each having the same form as a
conjunctive query, except that predicate symbols in the/loddhe rules can be in
Q as well. In aDatalog query, each head predicate of the rules refers to an inter-
mediate relation, and has not to contain predicates rafgta database relations.
The intermediate predicates are callatensional DataBas€lDB) predicates,
whereas predicates referring to stored relations areccBh¢ensional DataBase
(EDB) predicates. Given Batalog queryq and a databasPB, the answen?5
of ¢ overDJ is the minimal fixpoint model of andD15 [1].

Given a CQ, UCQ, obatalog queryq, we also say thaj”? denotes the set
of tuples thasatisfyq overDE.



