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Abstract

Plasma turbulence is a ubiquitous phenomenon that characterizes the universe.
From black holes to fusion devices, complex plasma effects are present to a variety
of scales. In this PhD thesis, some relevant aspects of astrophysical plasmas will
be covered, tackling long-standing problems via synergistic, different approaches.
We will make use of (I) plasma theory, (II) numerical simulations, and (III) space
data analysis. Theoretical models are necessary to understand the basic ingredi-
ents of interesting phenomena. Though sometimes, the mathematical approach
becomes either too difficult or requires too strong approximations to be carried on.
The invaluable tool of numerical simulations pushed forward our understanding of
plasma turbulence, as it is our only way to directly observe it. Simulations also al-
low preparing ad-hoc experiments to test analytical theories. Finally, observations
– either Earth-based or in-situ – are the playground where analytical theories and
numerical simulations face reality.

During my itinerary, I used all the methods above to approach different plasma
turbulence problems at very small (kinetic) and very large (magnetohydrodynam-
ics) scales. At kinetic scales, I investigated the problems of particle diffusion and
acceleration. A novel theory that describes diffusion has been derived from the
Nonlinear Guiding Center Theory and tested with self-consistent numerical simu-
lations. The results obtained from simulations also allowed studying acceleration
phenomena. Conducting a vast campaign of simulations with different techniques
set the stage to understand how different algorithms and approximations can affect
the physical results at these small scales.

At magnetohydrodynamics (MHD) scales, the focus was on equilibrium and
transient coherent structures, which are persistent features in space plasmas. Us-
ing well-established theory for MHD equilibria and the detection of small-scale
discontinuities, numerical algorithms were used to reveal the texture of the solar
wind, finding precise patterns of such structures. Subsequently, a novel tech-
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nique for the identification of more general equilibrium structures was developed
and tested with numerical simulations and in-situ measurements, which led to a
deeper understanding of the solar wind.

Last but not least, using this recently developed technique, large scales were
coupled back to small scales, finding a close correlation between MHD equilibrium
structures and energetic particles using in-situ measurements of the most recent
space missions.

iv



Abstract

La turbolenza nei plasmi è un fenomeno estremamente diffuso che caratterizza
l’intero universo. I complessi fenomemi relativi ai plasmi sono presenti a tutte
le scale, dai buchi neri ai laboratori per la fusione. In questa tesi di dottorato
saranno discussi diversi aspetti rilevanti per i plasmi astrofisici, la trattazione di
annosi problemi sarà effettuata con la sinergia di diversi approcci. Si farà uso di
(I) teoria del plasma, (II) simulazioni numeriche, e (III) analisi di dati spaziali.
I modelli teorici sono necessari per comprendere gli ingredienti fondamentali dei
fenomeni d’interesse, anche se alle volte la trattazione matematica può diventare
troppo complessa o richiedere approssimazioni troppo stringenti per essere portata
avanti. Le simulazioni numeriche diventano quindi uno strumento inestimabile per
far avanzare la nostra conoscenza della turbolenza nei plasmi, poiché sono il nostro
unico mezzo per averne una visualizzazione diretta. Le simulazioni permettono di
preparare esperimenti ad hoc per testare le teorie matematiche. Infine, le osser-
vazioni – sia da terra che in situ – diventano lo scenario in cui sia le teorie che le
simulazioni si scontrano con la realtà

Nel mio percorso, ho utilizzato tutte le metodologie appena descritte per ap-
procciarmi a diversi problemi della turbolenza nei plasmi, dalle scale molto piccole
(cinetiche) a quelle molto grandi (magnetoidrodinamiche). Alle scale cinetiche, ho
investigato i problemi della diffussione e dell’accelerazione delle particelle. A par-
tire dalla Nonlinear Guiding Center Theory è stata derivata una nuova teoria per
la descrizione della diffusione, che è stata successivamente testata con simulazioni
numeriche autoconsistenti. I risultati ottenuti da queste simulazioni hanno anche
permesso di investigare i fenomeni di accelerazione. Inoltre, aver condotto una
vasta campagna di simulazioni con diversi algoritmi, ha permesso di capire come
le diverse approssimazioni possono influire sui risulati fisici alle piccole scale.

Alle scale magnetoidrodinamiche (MHD), l’attenzione è stata focalizzata sulle
strutture coerenti, di equilibrio e transienti, che sono ricorrenti nei plasmi spaziali.
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Utilizzando teorie consolidate per gli equilibri MHD e per la localizzazione di dis-
continuità a piccola scala, si sono utilizzati algoritmi per rivelare la trama del
vento solare che ha mostrato schemi ricorrenti di queste strutture. Successiva-
mente, è stata sviluppata una nuova tecnica per l’identificazione di più generiche
(meno specifiche) strutture di equilibrio. Questo algoritmo è stato testato con sim-
ulazioni numeriche e applicato a misure in situ, conducendo ad una comprensione
più profonda della struttura del vento solare.

Infine, utilizzando questa nuova tecnica, siamo riusciti a congiungere il mondo
delle grandi scale con quello delle piccole, trovando una forte correlazione tra le
strutture di equilibrio MHD e le particelle energetiche utilizzando misure in situ
delle più recenti missioni spaziali.
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Introduction

One can consider plasma the vast majority of matter in our observable universe.
Because of this, plasma states in nature are both very common but also very
diverse. Among several examples, one can mention the solar wind (the continuous
flow originating from the Sun), planetary magnetospheres, the interstellar medium,
the matter around black holes and around galaxies. All these examples consist
basically of charged particles (ionized gas) moving in turbulent electromagnetic
fields. Because of this vast diversity, plasmas can be described at various levels of
detail, from microscopic to gargantuan scales. The heliosphere, the cavity formed
by the Sun in the surrounding interstellar medium, is filled by plasma embedded
into a turbulent magnetic field originating from the Sun. Its rotating motion,
together with fully developed turbulence, magnetic reconnection, and wave-like
activity produce complex topological structures that propagate away, filling the
solar wind (Jokipii, 1966; Jokipii & Parker, 1969; Velli et al., 1989; Poedts et al.,
1997). The solar wind is extremely relevant for our understanding of the universe
since it is our only reachable natural laboratory. The dynamical description of
astrophysical plasmas is a very challenging problem that needs to be addressed
via a comprehensive use of all the tools available to the scientific community:
ground-based observations, in-situ spacecraft measurements, adequate theoretical
models, and numerical simulations.

Spacecraft observations reveal the presence of multi-scale turbulence (Horbury
et al., 2005; Alexandrova et al., 2008; Dudok de Wit et al., 2013; Matthaeus et
al., 2015; Bruno, 2019), where kinetic physics is at work and the plasma is lo-
cally far from thermodynamic equilibrium (Marsch, 2006). This non-Maxwellian
state of plasmas suggests that self-consistent, weakly-collisional models need to
be adopted for more realistic description (Servidio et al., 2015; Schekochihin et
al., 2016; Howes, 2017). Turbulence, diffusion and particle acceleration are ubiqui-
tous both in astrophysical and laboratory plasmas. In astrophysics, understanding
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particle diffusion is of fundamental importance in order to characterize the distri-
bution of the charged gas in the universe and, more specifically, in the heliosphere.
Analogously, it is important to understand the extreme acceleration and energiza-
tion events, relevant for hazardous phenomena in the framework of space weather.
In principle, it could be possible to predict the trajectory of a bunch of energetic
particles originating from a localized source region, being it also an explosive event
such as a solar flare or a coronal mass ejection, and how it propagates out through
the heliosphere (Chhiber et al., 2021). These energetic particles could run over an
astronaut, a Mars colonist, or a satellite, with severe consequences. Additionally,
the distribution of heavy ions in the Earth’s magnetosphere can have effects on
climate changes (Luo et al., 2017). These nonlinear processes are equally impor-
tant for laboratory devices since they might prevent maintaining particles strictly
confined inside the machine. Understanding what affects particle turbulent diffu-
sion might help solve the confinement problem - the last step to achieve controlled
fusion on Earth. The acceleration and energization problems are also related to
the unsolved problem of coronal heating, to the origin of cosmic rays and solar
energetic particles (Velli et al., 2015).

At the same time, charged particle distribution is known to be affected by the
presence of coherent structures (Dudok de Wit et al., 1995; J. A. Tessein et al.,
2015, 2016). This is also true for the less magnetized and more energetic cosmic
rays, of which a reduction is measured during strong solar activity (Usoskin et al.,
2005). Because of the multi-scale nature of turbulence, such coherent structures
are present at various scales, but they are also of different nature. Small-scale
coherent structures can be identified with current sheets and magnetic disconti-
nuities that can be readily detected with techniques such as the Partial Variance
of Increments (PVI) (Greco et al., 2008). The interaction of particles with these
structures can lead to local acceleration and runaway phenomena (Osman et al.,
2010; Khabarova et al., 2015). On the other hand, large-scale coherent structures
can act as “boundaries” that confine particles either inside or outside the structure
itself (Kittinaradorn et al., 2009; Trenchi et al., 2013).

In this thesis work, we will present diverse analyses of plasma turbulence based
on mathematical models, numerical simulations and in situ measurements. In
particular, in Chap. 1 we will describe different algorithms for plasma turbulence
simulations, and present the campaign of simulations we performed that has been
used to derive the following results; in Chap. 2, particle diffusion and small-scale
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acceleration phenomena will be tackled. We will describe several diffusion theories
and present the derivation of a novel one that has been tested with the performed
auto-consistent simulations. With the large number of simulations at our dis-
posal, we will also investigate the effects of different numerical parameters on the
description of micro-physics; in Chap. 3 we will describe the techniques used to
identify coherent structures of turbulence. We will reconstruct the 2D topology
of flux ropes and develop synergistic use of well-established techniques. We will
also present a novel method for the detection of helical structures. Also, observa-
tional evidence of energetic particle modulation from flux ropes will be presented.
Finally, in the Conclusions, there will be a review of the results achieved during
this PhD work and future perspectives.
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Chapter 1

Turbulence simulations of
collisionless plasmas

We focus our attention on collisionless plasmas, which are plasmas in which
Coulomb collisions between particles are so rare to be negligible. Because of the
absence of collisions, the plasma is locally far from thermodynamic equilibrium
(described by Maxwellian velocity distribution functions). This condition is ex-
tremely common in the universe, but it also makes the analytical description quite
difficult. The solar wind is a very interesting medium since it offers the best (and
unique) opportunity to collect information about collisionless plasma phenomena
in a turbulent regime thanks to in-situ spacecraft. Indeed, the average mean free
path for a charged particle in the heliosphere is of the order of an astronomical
unit (Sun-Earth distance). On the other hand, studying plasma on Earth is a
challenging issue since plasma devices (such as tokamaks and stellarators) have
confinement problems due to the growth of nonlinear instabilities, which rapidly
make the system unpredictable and uncontrollable.

Besides observations and analytical theories, one formidable tool used to de-
scribe turbulent plasmas are numerical simulations. Depending on the scales and
phenomena that one wants to study, the equations to solve are different, and dif-
ferent can be the techniques to solve them. If the focus of the study are large-scale
phenomena, one can rely on MHD equations. They provide a set of fluid equations
which is not influenced by particle collective motion. Because particle motion is
not taken into account, solving the MHD equations is less computationally ex-
pensive and systems as large as the whole heliosphere or as a supernova can be
described (Odstrcil, 2003; Mignone et al., 2007; Pomoell, J. & Poedts, S., 2018).
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Chapter 1

Such MHD fields can also provide the starting point for test-particle simulations.
In this approximation, the fields are not intended to be influenced by particle
motion, hence it is possible to use the fields provided by an MHD simulation and
solve the Lagrangian equation of motion for particles in these prescribed fields
(Ambrosiano et al., 1988; Dmitruk et al., 2003; Dmitruk et al., 2004; Zhdankin et
al., 2019).

Going to a finer level of description, we find particle-in-cell (PIC) codes that
can be either hybrid or full (Markidis et al., 2010; Lapenta, 2012; Franci et al.,
2018). Hybrid-particle-in-cell (hybrid-PIC or HPIC) codes are used when the
scales of interest lie in between the MHD range and the sub-ion lengths. Indeed,
with the hybrid approach ions and electrons are treated differently: the former are
present as macro-particles (see below) whereas the latter are modeled as a massless
fluid that neutralizes the plasma and provides an appropriate pressure term. This
separation of scales retains ion kinetic effects at the price of neglecting those of
the electrons, granting a reduced computational cost (Winske, 1985; Matthews,
1994). The Lagrangian equations of motions are not applied to “actual” particles,
but rather to “slices” of the distribution function, the so-called macro-particles.
The drawback is that a very large number of particles per cell is needed to collect
a smooth distribution function at one spatial location. If both ions and electrons
have to be described as Lagrangian macro-particles, the scheme to use is the full-
PIC (FPIC). In this case, the separation of scales is retained between the species,
though the actual mass ratio can rarely be used (e.g. Haynes et al. (2014)). The
stratagem here is to give electrons a “fictitious” larger mass, thanks to which
the separation of scales becomes less pronounced so that effects due to different
species can be described. Though, one shall expect some impact on the physical
results of the simulation. Several works (Melzani et al., 2014; Rowan et al., 2017;
Verscharen et al., 2020) aim at understanding the effects of a nonrealistic ion-to-
electron mass ratio in order to give some prescription on when it is possible to use
this compromise depending on the physical quantities of interest.

The last, but not least, scheme generally used is the Vlasov-Maxwell (VM).
This method solves the coupled Vlasov and Maxwell equations in hybrid or full
approximation (Califano et al., 2006; Valentini et al., 2007, 2014; Servidio et al.,
2015). In this case, since the Vlasov equation is solved, instead of the Lagrangian
evolution of distribution function slices, the drawback of needing a lot of particles
to avoid noise is no longer present. Instead, the problem now is to have enough
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1.1. The Hybrid-Vlasov model

computational resources to advance the entire distribution function (which can
weigh many terabytes) at each time step.

As it should be clear by now, each method has its own advantages and disad-
vantages, and the choice of which to use depends on the phenomena one wants to
describe. In the following, we will describe more thoroughly the aforementioned
numerical schemes and compare how the choice of different approaches can affect
physical results.

1.1 The Hybrid-Vlasov model

The fundamental set of equations to describe the dynamics of ionized matter
coupled with electromagnetic fields is given by the Vlasov-Maxwell system. The
self-consistent equations read

∂fα
∂t

+ v ·∇fα +
qα
mα

(
E +

1

c
v ×B

)
·∇vfα = 0, (1.1)

∇ ·E = 4π
∑
α

qα

∫
fα(r,v, t)dv, (1.2)

∇ ·B = 0, (1.3)

∇×E +
1

c

∂B

∂t
= 0, (1.4)

∇×B − 1

c

∂E

∂t
=

4π

c

∑
α

qα

∫
vfαdv, (1.5)

where fα = fα(r,v, t) is the velocity distribution function of the α-th specie,
qα and mα its charge and its mass. Generally, α indicates ions (i) and electrons
(e), v and r are the velocity and spatial coordinates respectively, t is time, c is
the speed of light, E and B are the electric and magnetic fields.

As already stated, solving the Vlasov-Maxwell system, Eqs. 1.1–1.5, in an
Eulerian frame is numerically expensive, even for just two species (electrons and
ions). It is therefore convenient to define two different scales: the ion scale di =

c/Ωi and the electron scale de = c/Ωe, where Ωi and Ωe are ion and electron
gyration frequencies respectively. The separation of scales given by Ωe � Ωi, is
the basis of the hybrid approach.

We now reduce the Vlasov-Maxwell system of Eqs. 1.1–1.5 to the hybrid ap-
proximation with the condition of massless electrons. Assuming no displacement
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Chapter 1

current (i.e. ∂E/∂t = 0) and plasma quasi neutrality (i.e. ni ∼ ne ≡ n), the
Ampere’s law Eq. 1.5 becomes

∇×B =
4π

c
j =

4π

c
ne(ui − ue), (1.6)

where n and u are the zeroth and the first velocity distribution function mo-
ments, defined as

n(x, t) =

∫
f(x,v, t) dv, (1.7)

nuα(x, t) =

∫
vfα(x,v, t) dv, (1.8)

with α = electrons or ions. The electron momentum equation is

∂(nue)

∂t
+ ∇ · (nueue) = − 1

me

∇Pe −
ne

me

(
E +

ue ×B
c

)
(1.9)

where Pe is the scalar electron pressure term. The first term of Eq. 1.9, using
quasi neutrality assumption and Ampere’s and Faraday’s equations, can be written
as:

∂

∂t
(nue) =

∂

∂t

(
nui −

j

e

)
=

=
∂

∂t
(nui)−

1

e

∂

∂t

( c

4π
∇×B

)
=

=
∂

∂t
(nui) +

c2

4πe
∇× (∇×E)

whereas its second term is

∇ · (nueue) = ∇ ·
[
n

(
ui −

j

ne

)(
ui −

j

ne

)]
=

= ∇ · (nuiui)−
1

e
∇ · (uij)− 1

e
∇ · (jui) + ∇ ·

(
jj

ne2

)
.

Therefore, the equation of momentum for the electrons is:
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1.1. The Hybrid-Vlasov model

∂

∂t
(nui) +

c2

4πe
∇× (∇×E) + ∇ · (nuiui)−

1

e
∇ · (uij)− 1

e
∇ · (jui) +

+ ∇ ·
(
jj

ne2

)
= − 1

me

∇Pe −
ne

me

(
E +

ue ×B
c

)
.

(1.10)

Analogously, the ion momentum equation is

∂(nui)

∂t
+ ∇ · (nuiui) = − 1

mi

∇ ·Π +
ne

mi

(
E +

ui ×B
c

)
(1.11)

with Π =
∫

(v −ui)(v −ui)fi(x,v, t)dv being the ion pressure tensor defined
as the second moment of the ion distribution function. By subtracting (1.11) from
(1.10) we obtain an equation without time derivatives

c2

4πe
∇× (∇×E)− 1

e
∇ · (uij)− 1

e
∇ · (jui) + ∇ ·

(
jj

ne2

)
=

= − 1

me

∇Pe +
1

mi

∇ ·Π− ne

me

(
E +

ue ×B
c

)
+
ne

mi

(
E +

ui ×B
c

) (1.12)

and we can rewrite the terms

ne

me

(
E +

ue ×B
c

)
+
ne

mi

(
E +

ui ×B
c

)
=

= −µneE − ne

c

(
ue
me

+
ui
mi

)
×B =

= −µneE − ne

c

(
ue
me

+
ui
mi

+
ui
me

− ui
me

)
×B =

= −µneE − ne

cme

(ue − ui)×B −
ne

c

(
ui
mi

− ui
me

)
×B =

= −µneE +
1

cme

(j ×B)− µne

c
(ui ×B)

where µ = 1/me + 1/mi, and substituting them into (1.12) we obtain

µneE +
c2

4πe
∇× (∇×E) =

1

mi

∇ ·Π− 1

me

∇Pe+

+
1

cme

(j ×B)− µne

c
(ui ×B) +

1

e
∇ · (uij)− 1

e
∇ · (jui) + ∇ ·

(
jj

ne2

)
.
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Chapter 1

Finally, if we say µ ∼ 1/me and use the quasi neutrality assumption, ∇×(∇×
E) ∼ −∇2E, we obtain the Ohm’s law

E − mec
2

4πne2
∇2E =

me

nemi

∇ ·Π− 1

ne
∇Pe +

1

cne
(j ×B)− ui ×B

c
+

+
me

ne2
[ne∇ · (uij + jui)−∇ · (jj)] .

(1.13)

Since we consider electrons as a massless fluid we can drop all terms depending
onme, forme → 0, obtaining the Ohm’s law in Hall MHD (HMHD) approximation
(Büchner et al., 2003; Birdsall & Langdon, 2004; Valentini et al., 2007)

E = −ui ×B
c

+
j ×B
cne

− 1

ne
∇Pe. (1.14)

Neglecting the displacement current in Maxwell’s equations means that the
electric field does not depend explicitly on time. It is explicitly determined by the
magnetic field B, the electron pressure Pe, the numerical density n and the ion
bulk velocity ui (Matthews, 1994).

For the electron pressure term, an appropriate equation of state (e.g. isother-
mal or adiabatic) can be used. Since the system is highly nonlinear, to prevent
numerical errors, we introduce a resistive term ηj in Ohm’s law, with η being the
resistivity. So the corrected Ohm’s law for the electric field becomes

E = −ui ×B
c

+
j ×B
cne

− 1

ne
∇Pe + ηj. (1.15)

This resistive term ηj is important since it models, somehow, the very small-
scale dissipative terms. We can write now the hybrid Vlasov-Maxwell system that
reads:

∂f

∂t
+ v ·∇f +

e

m

(
E +

v

c
×B

)
·∇vf = 0, (1.16)

∂B

∂t
= −c∇×E, (1.17)

E = −ui ×B
c

+
j ×B
cne

− 1

ne
∇Pe + ηj. (1.18)

Finally, we can rescale the equations using the following plasma characteristic
quantities:
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1.2. The PIC algorithm

v = v′v
A
,

ω = ω′Ωci ,

x = x′di = x′c/ωpi = x′v
A
/Ωci ,

B = B′v
A

√
4πnmi = B′micΩci/e,

E = E′mivA
Ωci/e,

Pe = P ′enmiv
2
A
,

ω2
pi

= 4πne2/mi,

where v
A

= B/
√

4πnmi is the Alfvén velocity, Ωci is the ion cyclotron fre-
quency, di is the ion skin depth, ωpi is the ion plasma frequency, n is the ion
numerical density and mi is the ion mass. The normalized system of equations,
getting rid of primes for the new variables and of the i subscript for ion quantities,
finally reads

∂f

∂t
+ v ·∇f + (E + v ×B) ·∇vf = 0, (1.19)

∂B

∂t
= −∇×E, (1.20)

E = −(u×B) +
1

n
j ×B − 1

n
∇Pe + ηj. (1.21)

As follows, we describe a numerical technique to solve Eqs. 1.19–1.21.

1.2 The PIC algorithm

Solving Eqs. 1.19–1.21 in an Eulerian fashion implies solving seven equations in
a seven-dimensional space (3D in space, 3D in the velocity space, plus time evo-
lution). This procedure, although pretty straightforward, is very expensive. The
drawbacks of the Vlasov-Eulerian approach are the long execution times and the
huge computational resources needed to store and advance the distribution func-
tion over the whole phase space (Valentini et al., 2007). Moreover, the algorithm
does not provide information on particle trajectories, but only on the velocity dis-
tribution function f(x,v, t). An alternative (and more practical) approach is given
by the PIC method. In PIC algorithms, particles are free to move in the continuous
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Figure 1.1: Schematic representation of the PIC method. (Left) Particles are free
to move over the continuous computational domain, while fields and distribution
function moments are defined only on grid points. The back reaction between field
and particles is obtained by mutual interpolation (right). Adapted from Ebersohn
et al. (2014).

phase space and their Lagrangian equations of motion are solved by interpolating
the fields from grid points to particles positions (Winske, 1985). Conversely, the
distribution function moments and the self-consistent fields are computed inter-
polating charge and current source terms on the defined grid points in the cycle
depicted in Fig. 1.1.

In PIC codes, particles are actually macro-particles (Matthews, 1994), that
represent fractions of f(x,v, t). This is formally consistent with a picture where
particles represent δ-functions in the continuous phase-space, implying that they
occupy a finite volume (Klimontovich, 1997). The utility of PIC algorithms is that
each particle is followed individually through the Lagrangian approach solving its
equations of motion. While in the Eulerian treatment one has few equations in
a huge phase-space, in PIC codes one has few equations for a huge number of
particles. A large number of macro-particles is required in order to have a sta-
tistically valuable description of the system. Moreover, the wider the distribution
function, the more macro-particles are needed for a less noisy description. Con-
trary to test-particle algorithms, particles and fields are now nonlinearly coupled,
interacting and exchanging information. The self-consistent approach is funda-
mental when treating transport problems in low-collisionality plasmas where the
distribution function departs from the thermal Maxwellian (Servidio et al., 2016),
as it happens in the solar wind (Marsch, 2006). When distribution functions are
non-Maxwellian, they are prone to develop instabilities and the plasma generates
waves, that may induce heating (Poedts & Goedbloed, 1997), to restore its thermal
equilibrium.
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1.2. The PIC algorithm

Some of the physical systems we want to describe have a mean (guiding) mag-
netic field, such as coronal loops (Einaudi et al., 1996), the solar wind (Bieber
et al., 1996) and also plasma fusion devices (Ongena et al., 2016). It is well-
established that, when the plasma is sufficiently magnetized, fluctuations mainly
lie in the plane perpendicular to the average field B0 and the variations along the
mean field can be neglected (Shebalin et al., 1983; Matthaeus & Lamkin, 1986;
Dmitruk et al., 2004; Servidio et al., 2015; Wan et al., 2016). This approximation
is commonly referred to as 2.5D geometry, where fields have all three components,
but depend only on the coordinates perpendicular to B0. This approximation
allows neglecting z-variations, and simulate the time evolution of the quantities
in 2D, sparing some computational time. In this geometry, the in-plane magnetic
field is B⊥ = ∇az× ẑ, where az is the magnetic potential and ẑ is the out-of-plane
unit vector. The current in the axial direction is jz = (∇×B⊥) · ẑ = −∇2az. In
the following, we will describe the codes used to obtain the results presented in
the next Chapters.

1.2.1 Hybrid-PIC simulations of turbulence

The equations that are directly solved for the HPIC simulations are:

ẋ = v, (1.22)

v̇ = E + v ×B, (1.23)
∂B

∂t
= −∇×E, (1.24)

E = −u×B +
1

n
j ×B − 1

n
∇Pe + ηj. (1.25)

These are formally equivalent to the Vlasov-Maxwell system in Eqs. 1.19–
1.21. In the above equations, x is the particle position, v the velocity, E is
the electric field, B is the magnetic field, n =

∫
fdv is the ion number density,

u = (1/n)
∫
v fdv is the proton bulk velocity, and j = ∇ × B is the current

density. In the above definitions f(x,v, t) is the velocity distribution function of
the ions.

The adiabatic electron pressure term is Pe = βnγ with γ = 5/3, and η = 0.006

is the resistivity that introduces a small scale dissipation for numerical stability.
The choice of a particular equation of state (in this case adiabatic), is not always
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ID Nx ×Ny ppc β
H1 512× 512 1500 0.1
H2 512× 512 1500 0.5
H3 512× 512 1500 5

Table 1.1: Parameters of the HPIC simulations. The first column is the label
identifying the simulation, Nx and Ny are the number of cells in the x and y
directions respectively, ppc is the number of particles per cell, and in the last
column we report the plasma β.

completely justified when simulations of the complex, collisionless, multi-species
solar wind are carried out. However, to be able to describe the puzzling problem
of plasma turbulence, one has to assume some simplifications (Parashar et al.,
2014). Despite this assumption, the above model represents a step further in
plasma description with respect to classical MHD treatment. The main unjustified
assumptions remain (I) the use of resistivity (for purely numerical reasons) and
(II) the choice of the electron equation of state. Regarding the assumption (I), we
verified that the resistive term acts only at very small, grid-size scales. Regarding
the (II), it will be fully overcome with the use of the full-PIC model, as described
in the next Section.

The electric field is given by the generalized Ohm’s law. Distances are normal-
ized to the ion skin depth di = c/ωpi , where c is the speed of light and ωpi is the
ion plasma frequency. The time is normalized to Ω−1

ci , that is the ion cyclotron
frequency. Finally, velocities are normalized to the Alfvén speed v

A
= cΩci/ωpi .

We performed three hybrid-PIC simulations in 2.5D approximation, varying the
ion plasma β, defined as the ratio between thermal and magnetic pressure, namely
β = Pcin/PB = 2v2

th/v
2
A, with vth and vA being the initial thermal and the Alfvén

speeds (related to the mean field B0), respectively. The plasma β is equal for ions
and electrons. We performed three runs with β = 5, 0.5, and 0.1, to cover a wide
range of relevant environments. These values are such that high β is typical of
plasmas found in the Earth’s magnetosheath; the value of β = 0.5 is close to the
typical solar wind conditions, whereas the lowest β is appropriate for solar corona
and laboratory devices. The details are summarized in Table 1.1.

The three simulations have the same initial conditions: uniform density and
a Maxwellian distribution of particles velocities with uniform temperature. We
impose random fluctuations with a power law spectrum for both the magnetic field
and the ion bulk velocity field. The Eqs. 1.22–1.25 are solved on a square grid of
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1.2. The PIC algorithm

Figure 1.2: Current density jz (color shading) together with vector potential az
(contour lines), at different times of the turbulent evolution. (Top left) The initial
state is composed of large structures and tenuous axial current. As turbulence
develops in time, coherent structures such as small vortices and intense current
sheets appear. The most intense current sheets are located in between reconnecting
magnetic islands.

size L = 2π× 20di discretized with 5122 points, and periodic boundary conditions
(in the following, the subscripts i and p will be used interchangeably as protons
are the only present species of ions). The initial state consists of a 2D spectrum of
fluctuations, perpendicular to the main field B0 (the latter chosen along z). The
fluctuations’ amplitude is δb/B0 ∼ 0.3. To dampen the statistical noise of the PIC
method, we use 1500 particles per cell (about 4× 108 total particles). This set of
simulations is also described in Servidio et al. (2016); Pecora et al. (2018); Pecora,
Pucci, et al. (2019).

To ensure statistical invariance of the following analyses, they were performed
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Figure 1.3: Zooms into small-scale structures of Fig. 1.2. In between magnetic
islands it is possible to observe intense current sheets, whose typical dimension is
on the order of the ion skin depth.

in steady state turbulence. To achieve this state, we borrow ideas from hydro-
dynamics (S. Chen et al., 1993), and let the system initially evolve unperturbed.
Then, we introduce a forcing at the peak of nonlinearity (roughly the peak of
〈j2
z 〉). The forcing consists of “freezing” the amplitude of the large-scale modes

of the in-plane magnetic field, with 1 ≤ m ≤ 4, leaving the phases unchanged.
This corresponds to a large-scale input of energy as described in Servidio et al.
(2016). The evolution of the simulation is shown in Fig. 1.2, where the color
shading indicates the out-of-plane current density jz and contour lines represent
the magnetic potential az. The initial state is formed by a few big and tenuous
vortices starting to interact. After a few times (the peak of nonlinearity is reached
at tΩcp ∼ 25), large eddies start to interact and fragment into smaller ones also
creating localized strong gradients (Matthaeus & Montgomery, 1980; Servidio et
al., 2015). The global appearance of the system remains unchanged, in a sta-
tistical sense, after the peak of nonlinearity has been reached. These regions of
small, intense current sheets, appear in between interacting magnetic islands (flux
tubes in 3D). They are possibly associated with magnetic reconnection that is a
fundamental process for which the magnetic field changes topology. This process
leads to the conversion of magnetic energy into particle kinetic energy (Parker,
1957; Drake et al., 2006; Ono et al., 1996; Hayashi & Sato, 1978; Yoo et al., 2013),
as will be investigated in the following Chapter. Figure 1.3 shows a blow-up over
these small intense structures developing in the simulations.

The approach to statistical invariance of turbulence can also be observed with
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Figure 1.4: Power spectra of (a) electric and (b) magnetic fields as a function of
the wavenumber (normalized with the proton skin depth dp), at different times
for HPIC simulations. While turbulence develops, energy is transferred from the
large to the small scales.

the Fourier spectra, as a function of the wavenumber |k|, of both the electric
and magnetic fields. The power spectra for the trace of the correlation tensor,
|B̃(k, t)|2, where B̃(k, t) are the respective Fourier coefficients, are reported in
Fig. 1.4. These spectra exhibit the classical scenario of MHD turbulence, in which
energy flows from large to small scales as Fig. 1.2 shows in configuration space.
This cascade of energy occurs over the so-called inertial range, where the en-
ergy spectrum scales as k−5/3 (Bruno & Carbone, 2016). Figure 1.4 shows how
turbulence develops transferring energy from low to high k’s. For these HPIC
simulations, the state of fully developed turbulence is achieved after ∼ 50Ω−1

cp .
After this time, the spectra are almost stationary. It is important to note that,
as observed in the solar wind (Bale et al., 2005), the power in the electric fields is
higher, at k’s that correspond to characteristic ion lengths. This is in agreement
with previous studies and simulations of plasma turbulence (Howes et al., 2008;
Matthaeus et al., 2008; Schekochihin et al., 2009; TenBarge et al., 2013; Franci et
al., 2015).

1.2.2 Full-PIC simulations of turbulence

We will also use full kinetic simulations that were performed with an implicit PIC
algorithm implemented in a 3D parallel code, called iPIC3D (Markidis et al., 2010;
Lapenta, 2012). The governing equations, in code units, are:
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∂fs
∂t

+ v · ∂fs
∂x

+
qs
ms

(E + v ×B) · ∂fs
∂v

= 0,

∇2E − ∂2E

∂t2
= 4π

∂j

∂t
+ 4π∇ρ,

∂B

∂t
= −∇×E.

In this case, lengths are normalized to di, times to di/c, and velocities to c,
that is set to 1 in code units. The mass ratio used is mi/me = 25, and v

A
/c =

B0 = 10−2. (qs/ms) is the charge-to-mass ratio of the species s, normalized to
the physical ion charge-to-mass ratio. ρ =

∑
s qs
∫
fsdv and j = qs

∫
vfsdv are

the charge density and the current density computed over the two species s. The
electric and magnetic fields are given by the Maxwell equations whose solution
is computed implicitly, meaning that, with respect to a time step n, the charge
density ρ is evaluated at time n+ 1 and the current density j at an intermediate
step n + 1/2 (Markidis et al., 2010). The time step is ∆t = (1/8π) τge, with
τge = 2π/Ωce being the electron cyclotron frequency. The implicit scheme allows
using a larger time-step (not restricted to follow a stability condition imposed by
the smallest scales) so it is possible to follow the simulation for longer times, at the
price of more computational resources needed to invert the matrix for variables
computed at intermediate steps.

Figure 1.5: Magnetic field magnitude at (left) initial and (right) final times of K1
simulation. Refer to Table 1.2 for K1 details.
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1.2. The PIC algorithm

Figure 1.6: Trajectories of some ions (orange) and electrons (green) in an FPIC
simulation. In the x − y plane a color map of jz is reported. The z direction
represents the time axis and the direction of the mean magnetic field.

This new campaign of simulations has been conducted with the same values of
plasma β and box size as those of the HPIC simulations presented in the previous
Section. Some variations on the number of cells (and hence on resolution) and the
number of particles per cell have been included to study the convergence. The
full list of simulations and parameter details is reported in Table 1.2. Turbulence
evolution for one of the simulations is shown in Fig. 1.5. In Fig. 1.6, we show
the trajectories of some ions and electrons, as FPIC simulations allow to describe
both species from a kinetic point of view, over a map of the current density jz.

Energy conservation

One of the major issues that arises when dealing with simulations is the conser-
vation of total energy. We define a measure of the conservation of the energy,
as

Ψ(t) =
E(t)− E(0)

E(0)
, (1.26)

where E is the total plasma energy. The energy is given by magnetic EB =∫
drB2/8π and electric EE =

∫
drE2/8π contributions, and the particles total
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Figure 1.7: Total energy conservation for the FPIC simulations. All of them
conserve energy within 3% of the initial value. Only run 7 and run 9 go down to
∼ 14% and ∼ 10%, respectively. From (Pecora, Pucci, et al., 2019).

kinetic energy EK = 1/2
∑

α

∑
pmαv

2
α,p, where the index p runs over all the parti-

cles and α over the two species (ions and electrons).

Figure 1.7 shows the energy conservation parameter Ψ, for all the FPIC simu-
lations. The general behavior is very good since eight runs out of ten do conserve
energy within ∼ 3% of the initial value. All the losses are due to the semi-implicit
method (Lapenta & Markidis, 2011; Lapenta, 2017). Only two runs go down to
∼ 10% and ∼ 14%. In these latter two cases, βtot = 10, suggesting that less
magnetized plasmas need to be treated more carefully. In fact, higher β means
larger excursions in the velocity subspace, and therefore the number of particles
should increase to correctly reconstruct the VDF. This means that the wider the
distribution (the less magnetized the plasma), the more particles are needed to
sample the distribution accurately. As it can be seen from Fig. 1.7, run 7 is the
worst simulation regarding energy conservation, and doubling both the resolution
and the number of particles does not imply a noticeable improvement (run 9).
Instead, a huge improvement in energy conservation is achieved when the number
of particles per cell is increased by one order of magnitude, even with lower reso-
lution (run 8). When the plasma β is average or low, the energy conservation is

20



1.2. The PIC algorithm

ID Nx ×Ny ppc βe = βi βtot Ψmax

run1 512× 512 400 0.1 0.2 -1.8%
run2 (K1) 512× 512 4000 0.1 0.2 -1.4%

run3 1024× 1024 1000 0.1 0.2 -1.2%
run4 512× 512 400 0.5 1 -3.0%

run5 (K2) 512× 512 4000 0.5 1 -0.3%
run6 1024× 1024 1000 0.5 1 -2.5%
run7 512× 512 400 5 10 -13.5%

run8 (K3) 512× 512 4000 5 10 -1.9%
run9 1024× 1024 1000 5 10 -9.6%

Table 1.2: Parameters used for the FPIC simulations. ID is the label identifying
the simulation, Nx and Ny are the number of cells in the x and y directions
respectively, ppc is the number of particles per cell, βe and βi are the plasma β
for electrons and ions respectively and βtot is the total plasma β = βi + βe. Ψmax

is the maximum energy variation of the run as defined in Eq. 1.26 and reported
in Fig. 1.7.

excellent and quite similar among all the runs.
The best energy conservation is achieved in run 5 - large number of ppc and

low β. This leads us straightforwardly to the choice of run 5 and run 8 as the best
candidates to look at the physical effects, along with run 2. In the next Chapter,
the FPIC runs K1 (β = 0.1), K2 (β = 0.5), and K3 (β = 5), are going to be
compared with the HPIC runs H1 (β = 0.1), H2 (β = 0.5) and H3 (β = 5).
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Particle diffusion and acceleration in
plasma turbulence

The description of the motion of charged particles in astrophysics dates back
to the approaches of Bohm (1949); Longmire and Rosenbluth (1956); Morrison
(1956); Meyer et al. (1956); Parker (1965); Taylor and McNamara (1971). Steps
forward have been made since then, new theories have been developed, numer-
ical simulations have evolved far beyond early imaginations, modern spacecraft
have unprecedented resolutions, but the problem of charged particles diffusing in
a turbulent magnetic field is still waiting to achieve closure. Longmire and Rosen-
bluth (1956) started solving the problem with smooth magnetic field lines, so the
guiding center of the motion remains fixed on the same field line. Collisions have
then been introduced, as scattering centers, to allow random diffusion across the
magnetic field. Later on, the discussion moved to non-collisional plasmas with the
description of cosmic-ray penetration in the heliosphere. In this case, the scat-
tering centers are magnetic field irregularities that cause particles to deviate from
their free streaming along field lines (Morrison, 1956; Meyer et al., 1956; Parker,
1965; Jokipii & Parker, 1969). The close correlation between particle diffusion
and magnetic field irregularities sets the stage for other fundamental phenomena
happening in plasma turbulence: particle acceleration and energization. Several
mechanisms are involved in this process, ranging from interaction with large-scale
magnetic structures (Fermi, 1949, 1954) to smaller-scale events such as magnetic
reconnection (Ambrosiano et al., 1988; Drake et al., 2009, 2010; Blasi, 2013; Guo
et al., 2015). In this Chapter, some of the most recent and valuable theories will
be described, along with developments and results obtained during the PhD.
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Chapter 2. Particle diffusion and acceleration in plasma turbulence

2.1 Ideal single-particle motion

The motion of plasma’s charged particles is, in principle, difficult to describe
mathematically in a self-consistent way because particles and fields influence each
other. A simple description of the trajectory of a charged particle moving through
electric and magnetic fields can be obtained by neglecting its feedback on the
external fields. To have a basic picture of particle motion, we make one more
approximation, imposing that the external electric and magnetic fields are static
and spatially uniform. The equation of motion is given by the Lorenz force

mr̈ = q(E + ṙ ×B), (2.1)

where r = (x, y, z) is the particle position vector, E and B the electric and
magnetic fields. Without loss of generality, we can impose the magnetic field along
z, namely B = (0, 0, B), and the electric field is in the xz plane, E = (E⊥, 0, E‖).
The equation of motion can be decomposed in the three directions as

mẍ = q(E⊥ + ẏB), (2.2)

mÿ = −qẋB, (2.3)

mz̈ = qE‖. (2.4)

Equation 2.4 can be readily solved since it is decoupled from the others. It
proves that particles accelerate along the magnetic field, given that there is a
parallel component of the electric field. This point will be recalled in future
Sections. The equations for the in-plane components can be solved using the
Landau variable w = ẋ+ iẏ. Combining Eqs. 2.2–2.3, one gets

ẇ + iΩw =
q

m
E⊥, (2.5)

where Ω = qB/m. To solve this inhomogeneous differential equation, we have
to look for the solution of the related homogeneous equation and the particular
integral. The related homogeneous equation is ẇ = −iΩw and its solution is

w(t) = w0e
−iΩt, (2.6)

where w(t = 0) = w0 and w0 = ẋ0 + iẏ0 ≡ v⊥e
−iφ, v⊥ =

√
ẋ2

0 + ẏ2
0 and

24



2.1. Ideal single-particle motion

φ = atan(ẋ0/ẏ0) is the phase. Finally, substituting back the position of the Landau
variable in Eq. 2.6, one gets

vx(t) = v⊥ cos(Ωt+ φ), (2.7)

vy(t) = −v⊥ sin(Ωt+ φ), (2.8)

i.e. in the absence of an electric field, the particle moves in a circular motion
in the xy plane, as it is well known. To find the particular integral we notice that
the inhomogeneous term is a constant, so we can say the particular solution is a
constant too, say wp = A, and by substituting this solution in Eq. 2.5, one obtains
wp = −iE⊥/B. The complete solution is then

w = v⊥e
−i(Ωt+φ) − iE

B
,

and, the velocity components are vx(t) = v⊥ cos(Ωt+φ), and vy(t) = −v⊥ sin(Ωt+

φ)− E⊥
B

. The electric field perpendicular to the magnetic field causes a drift mo-
tion in the direction perpendicular to both the fields, independent of the nature
of the particle. By integration, the particle orbit in 2D is given by

x(t) =
v⊥
Ω

sin(Ωt+ φ), (2.9)

y(t) =
v⊥
Ω

cos(Ωt+ φ)− E⊥
B
t. (2.10)

These are the equations describing a trochoid – a more general form of the
cycloid – that is shown in Fig. 2.1 (Kivelson & Russell, 1995). The ratio

v⊥
Ω
≡ R

L
(2.11)

is the radius of the particle’s orbit, commonly known as the Larmor radius.

In the following Sections, we will study and describe the motion of charged par-
ticles in the self-consistent, time-dependent, non-uniform, simulations of plasma
turbulence we have described in the previous Chapter.
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Figure 2.1: Schematic picture of the trajectories of charged particles in a uniform
magnetic field B, when a perpendicular electric field E is present. The motion
along the magnetic field is not represented as it would have only the effect of
bending the trajectories along B for the ions, and along −B for the electrons.
The geometric shape of the motion is a trochoid (a generalization of the cycloid).
Adapted from (Kivelson & Russell, 1995).

2.2 Single-particle motion

The analytical solution for charged particle trajectories in electromagnetic fields is
usually limited to the case above and a few other particular examples. The reason
becomes evident when looking at the trajectories of charged particles in simula-
tions of plasma turbulence. Figure 2.2 shows the motion of some particles in the
HPIC simulation described in Sec. 1.2.1. As the reader can notice, trajectories are
pretty far from the idealized case described before. The perpendicular diffusion
envisioned by early approaches becomes evident, with magnetic field irregulari-
ties and discontinuities taking the place of particle-particle collisions as scattering
points. This evidence arises from the presence of “break-points” along the trajec-
tories – sudden and unpredictable changes in their direction when encountering
such irregularities. On the other hand, trapping phenomena also occur. Some-
times, the gyrating motion is confined within large magnetic structures and is not
heavily disturbed by magnetic irregularities or discontinuities. This behavior is
found both in small- and large-β simulations (between which the average Larmor
radius size changes as Fig. 2.2 shows, and as will be discussed in the following).
The overall motion seems to be almost random: particles scatter and diffuse as
they move, while also having the chance to be trapped for a certain amount of
time.
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Figure 2.2: Particle trajectories in (a) low- and (b) high-β plasmas. The differ-
ence in gyration radii size is due to high-β particles having higher energies (recall
that β = 2v2

th/v
2
A). Also, the unpredictability of the motion is evident. Particles

trapped in magnetic islands show closed orbits, while those that encounter mag-
netic irregularities display sharp turns of their trajectories. From Pecora et al.
(2018).

Depending on the time-scale of interest, particle-to-turbulence scales ratio (see
below), and different geometries, one can focus on different diffusive regimes, which
are “anomalous” in the sense that they deviate from normal diffusion (Verkhoglyadova
& Le Roux, 2005; Zimbardo et al., 2006). Generally, these regimes are of tran-
sient nature and some features may be recognized in the following analyses when
looking at trapping (subdiffusion) and initial transients of the diffusion coefficient
(ballistic). Also in 3D geometries (of which the 2.5D can be considered as a limit
case), when the simulation is axisymmetric and anisotropic, the normal diffusive
behavior is recovered for asymptotic times (Pommois et al., 2007). In the next
Sections, we will focus on the normal diffusive motion, quantifying diffusion, and
deriving analytical forms for the diffusion coefficient.

2.2.1 The Brownian diffusive motion

From the pictures of trajectories in Fig. 2.2, we have seen that particles do not
follow an ideal trochoid, rather their motion seems quite stochastic (though corre-
lated to magnetic field properties in some way that will be clarified in the following
Sections). Because of the complexity and unpredictability of each singular trajec-
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tory, it is important to provide a global, statistical description of the phenomenon;
this implies large ensemble-averages, over particles, volume, and time. The tur-
bulent, stochastic nature of fluctuations acting on plasma particles suggests that
their motion can be described within the class of Brownian diffusion phenomena.

We start from the equation of diffusion and find its solution, following Ein-
stein’s approach (Einstein, 1905; Chandrasekhar, 1943; Abe & Thurner, 2005).
Consider a group of particles whose motion is independent of one another. Let
φ(∆) be the probability for a particle to move from its position x to x + ∆ in a
single time step τ , then φ(∆) satisfies

∫ +∞

−∞
φ(∆)d∆ = 1, (2.12)

φ(∆) = φ(−∆). (2.13)

Let P (x, t) be the probability of finding a particle at the position x, at the
time t; one can write

P (x, t+ τ) =

∫ +∞

−∞
P (x+ ∆, t)φ(∆)d∆. (2.14)

For small τ and ∆, one can expand in Taylor series

P (x, t+ τ) = P (x, t) +
∂P (x, t)

∂t
τ, (2.15)

P (x+ ∆, t) = P (x, t) +
∂P (x, t)

∂x
∆ +

1

2

∂2P (x, t)

∂x2
∆2, (2.16)

and, recalling the properties in Eqs. 2.12–2.13 of φ(∆), one obtains

∂P

∂t
τ =

1

2

∂2P

∂x2

∫ +∞

−∞
∆2φ(∆)d∆. (2.17)

The above equation is a diffusion equation with the diffusion coefficient D
defined as

D =
1

2τ

∫ +∞

−∞
∆2φ(∆)d∆. (2.18)

Equation 2.17 can be finally written in the more usual form:
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2.2. Single-particle motion

∂P

∂t
= D

∂2P

∂x2
. (2.19)

A solution of Eq. 2.19 is

P (x, t) =
N√

4πDt
e−x

2/4Dt, (2.20)

with N normalization constant that can be determined by imposing that∫
P (x, t)dx = 1. In this case N = 1. Since the solution is the normal distri-

bution, as expected since we are treating random displacements, one can evaluate
the mean squared displacement by translating the solution, so that x becomes
the displacement ∆x rather than the absolute position, and t becomes the time
interval τ . The width of the normal distribution defined in Eq. 2.20 is

2σ2 = 4Dτ, (2.21)

which is equivalent to
〈(∆x)2〉 = 2Dτ. (2.22)

Equation 2.22 is the well-known equation that describes the mean motion of
elements moving in stochastic fields (Chandrasekhar, 1943; Batchelor, 1976; Wang
et al., 2012). ∆x is the element’s displacement with respect to the initial position
x0 = x(t0), 〈. . . 〉 is an appropriate ensemble average, τ is the time interval for
which ∆x = x(t0 + τ)− x(t0) and D is the diffusion coefficient. This equation is
of primary importance in describing mixing in a wide variety of natural phenom-
ena. The physical quantities that influence the random motion are gathered (and
hidden) into the diffusion coefficient. The diffusion theories that will be presented
look for an explicit form of D.

2.2.2 The diffusive behavior in plasma simulations

In this Section, we build some statistics based on the description given above,
using HPIC simulation results, to quantify plasma charged particle diffusion. To
verify the diffusive limit, a probability function P (∆x, τ) was built for particles
having displacement ∆x in a time interval τ . We can focus on displacements
along one direction, say x, for the isotropy of the plane perpendicular to the mean
field. These distributions show Gaussian cores with small tails (almost completely
absent in the low-β plasma), as can be seen in Fig. 2.3. It is evident that the
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Chapter 2. Particle diffusion and acceleration in plasma turbulence

Figure 2.3: Measured probability for a particle having displacement ∆x in a time
interval τ , for different values of τ , for (left) β = 0.1 and (right) β = 5. As expected
from the Brownian diffusion theory, this probability has a Gaussian shape (dashed
lines are Gaussian fits for the experimental data of the same color).

behavior depends on β. This dependence can be explained by saying that high-
β particles can have bigger displacement because they have higher energies, and
they are weakly magnetized (they are less affected by the presence of magnetic
field patterns). Low-β particles, instead, have lower energies their wandering is
more limited. In any case, the common feature is that the longer the time interval
τ , the farther particles spread.

We can measure the diffusive coefficient D, at different times, evaluating the
width of the Gaussian functions that fit the accumulated probability functions,
as shown in Fig. 2.3. The numerical values of the diffusion coefficients have been
evaluated using Eq. 2.21 and are listed in Table 2.1. As we have already noticed by
the shapes of the distribution functions, the diffusion coefficient is larger for high-β
particles and smaller for low-β particles. Moreover, regardless of β, the diffusion
coefficient grows in time until an asymptotic value is reached after ∼ 50 − 60

cyclotron times.

Another measure for the diffusion coefficient can be obtained averaging the
displacement over all particles and using Eq. 2.22 to fit the mean squared dis-
placement shown in Fig. 2.4. The experimental diffusion coefficient values we
obtain are D(β = 0.1) = 1.10 and D(β = 5) = 1.45. The linear fits have been
performed after sufficiently long time intervals (τ & 80Ω−1

cp ), when particles un-
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2.2. Single-particle motion

τΩcp σ2 D

β = 0.1

4 2.51 0.31
32 47.34 0.74
64 112.14 0.88
96 195.85 1.02

τΩcp σ2 D

β = 5

4 12.88 1.61
32 182.22 2.85
64 456.31 3.57
96 621.53 3.24

Table 2.1: Diffusion coefficient D calculated for different times, and for different
β’s applying Eq. 2.21 to the Gaussian fits of Fig. 2.3.

Figure 2.4: Mean squared displacement in the x direction, averaged over all parti-
cles in (left) β = 0.1 and (right) β = 5 plasmas, as a function of the time interval
τ (cyclotron units). For short time intervals the motion is ballistic (∝ τ 2). For
asymptotic times, the Brownian diffusion is attained (∝ τ).

dergo Brownian diffusion. For short time intervals, particle motion cannot be
stochastic for there exists a field correlation time during which particles sample
a correlated field. This correlation time can be thought of as the time a particle
needs to experience uncorrelated vortices. Only after this correlation time has
elapsed the motion can become stochastic. There is a good agreement between
the diffusion coefficients estimated using the probability function and the mean
squared displacement at low and β while there is some discrepancy at large β.

So far, we have performed averages over all the particles. This means also
averaging over all the energies and found that the diffusion coefficient reaches an
asymptotic value after a certain transient, and depends on the plasma β – i.e. on
particles’ energy. To begin understanding more in detail the dependence of the
diffusion coefficient on particles’ energy, we divide particles into energy ranges and
evaluate the running diffusion coefficient for every range using the time derivative
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Chapter 2. Particle diffusion and acceleration in plasma turbulence

Figure 2.5: Running diffusion coefficient, computed via Eq. 2.23, for three different
energy ranges for (left) low- and (right) high-β simulations. For a given β, the
diffusion coefficient D explicitly depends on the parallel energy.

v2
z/2 D

β = 0.1
0.11 0.83
0.33 1.12
1.56 1.10

v2
z/2 D

β = 5.0
1.21 0.97
3.62 1.5
6.04 2.2

Table 2.2: Diffusion coefficients evaluated as the asymptotic values of Fig. 2.5 when
particles achieve stochastic diffusion. Particles have been divided into different
energy ranges (v2

z/2 is the kinetic energy in the z direction).

of Eq. 2.22,

D =
1

2

∂〈(∆x)2〉
∂t

. (2.23)

The above is known as the “running” diffusion coefficient. Figure 2.5 shows
this diffusion coefficient as a function of the time interval, for different energy
ranges, for the low- and high-β plasmas. Energy ranges are based on the parallel
kinetic energy (namely v2

z/2). The choice of using this quantity rather than the
total kinetic energy will be explained in Sec. 2.6. The asymptotic values are the
Brownian diffusion coefficients, reported in Table 2.2. From Fig. 2.5 we can see,
again, the same behavior suggested by previous analyses: the diffusion coefficient
is proportional to β. More interestingly, for a given β, one can notice that the
diffusion coefficient depends explicitly on energy (Ruffolo et al., 2012).

In the following Sections, we will describe some of the most common diffusion
theories that look for an explicit form of the diffusion coefficient in different ap-
proximations, as well as deriving a new analytical form for the diffusion coefficient
that depends on plasma properties.
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2.3. The field line random walk theory

2.3 The field line random walk theory

One of the first diffusion theories developed for plasmas is the field line random
walk theory (FLRW), owed to Jokipii and Parker (1969). This theory is valid for
high-energy particles, moving in a turbulent magnetic field with a mean compo-
nent. The focus on high-energy particles maintains the approach to a relatively
easy mathematical level. Indeed, trajectories of high-energy particles are less af-
fected by magnetic discontinuities and can be strictly related to the motion of
magnetic field lines themselves. Figure 2.6 (Jokipii & Parker, 1969) is a schematic
representation of the process of magnetic field lines being mixed by the random
horizontal (parallel to Sun’s surface) velocity field that produces this random walk.

Figure 2.6: Adapted from Jokipii and Parker (1969).

This correlation between the velocity and large-scale magnetic field can be
directly seen from Faraday’s law

∂B

∂t
= −∇×E

with the large-scale electric field E given by the MHD term E = −u×B, so
that

∂B

∂t
= ∇× (u×B).

This means that magnetic field lines displacement is as stochastic as that of
the velocity field. This transfer of stochastic properties – from the velocity field
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Chapter 2. Particle diffusion and acceleration in plasma turbulence

to the magnetic field – results in the perpendicular (with respect to the mean
magnetic field) diffusion of energetic particles. The explicit form of the perpen-
dicular diffusion coefficient is now obtained following the classical derivation, with
the approximations stated above. The magnetic field can be written as composed
by a mean component B0êz, and a fluctuating part δB(r) with zero average, and
amplitude δB � B0,

B(r) = δB(r) +B0êz.

Magnetic field lines are defined by the equations

dx

Bx

=
dy

By

=
dz

Bz

, (2.24)

and we focus on solving

dx

Bx

=
dz

Bz

,

which means

dx = δBx
dz

B0

,

and integrating both sides we have

∆x =
1

B0

∫ ∆z

0

dz δBx.

It is interesting to notice that, since 〈Bx〉 = 〈By〉 = 0 (as they are zero-average
fluctuations by definition) it is also 〈∆x〉 = 〈∆y〉 = 0. What is different from zero
is the mean squared displacement 〈∆x2〉, that is

〈∆x2〉 =
1

B2
0

∫ ∆z

0

dz′
∫ ∆z

0

dz′′〈δBx(x0, y0, z
′)δBx(x0, y0, z

′′)〉. (2.25)

Defining the two-point correlation tensor

Cij(η, ψ, ζ) = 〈Bi(x, y, z)Bj(x+ η, y + ψ, z + ζ)〉,

and making the position z′′ = z′ + ∆z, Eq. 2.25 becomes
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2.4. The Bieber and Matthaeus theory

〈∆x2〉 =
1

B2
0

∫ ∆z

0

dz′
∫ ∆z−z′

−z′
dζ Cxx(0, 0, ζ).

Since the diffusive behavior is achieved for large scales, the two-point correla-
tion tensor can be safely integrated from −∞ to +∞ giving the expression

〈∆x2〉 =
1

B2
0

∆z

∫ +∞

−∞
dζ Cxx(0, 0, ζ). (2.26)

In the original work, the authors were interested in time variations while par-
ticles move in a 3D space, as in the case of solar wind expansion. Equation 2.26
can depend explicitly on time since ∆z = vz∆t, where vz is the particle velocity
along the z direction. The FLRW diffusion coefficient can be expressed as

DFLRW =
〈∆x2〉

∆t
=

vz
B2

0

∫ +∞

−∞
dζ Cxx(0, 0, ζ) ' vzλC

B2
0

δB2
x, (2.27)

where λ
C
is the correlation length along the z direction. The above expression

has been successfully used in the past decades to describe the diffusion of mag-
netic field lines in the solar wind. Unfortunately, this expression of the diffusion
coefficient is of little to no use for our purposes since the HPIC simulations have
been performed in a 2.5D geometry and it is not possible to evaluate a correlation
length in the parallel direction. In fact, the correlation length is defined as the
length ` at which the correlation function C(`) drops at 1/e, with

C(`) =
1

〈|B(r)|2〉

∫
B(r + `) ·B(r) dr, (2.28)

and in the 2.5D case, the increment ` cannot have a z component. In the
following, we will present a theory that uses Lagrangian properties to determine
the diffusion coefficient.

2.4 The Bieber and Matthaeus theory

The next theory we want to describe has been proposed by Bieber and Matthaeus
(1997) and is commonly referred to as the BAM theory. A new sight on the
perpendicular scattering theory is needed, as the FLRW is valid only for very
high-energy particles restricted to turbulent systems with fluctuation amplitudes
small compared to mean values. Like several diffusion theories, BAM derives the
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Chapter 2. Particle diffusion and acceleration in plasma turbulence

perpendicular diffusion coefficient using the Taylor-Green-Kubo (TGK) formula-
tion that is based on the velocity autocorrelation function (G. I. Taylor, 1922;
Green, 1951; Kubo, 1957). The diffusion coefficient defined with TGK is

Dij =

∫ ∞
0

〈vi(t0) · vj(t0 + τ)〉dτ ≡
∫ ∞

0

Cvij(τ)dτ. (2.29)

This deceptively simple starting point involves explicitly particles velocity, that
can be related to other fields (as it can be seen from Eqs. 1.22–1.25). The hard
problem is to figure out the right expression for the velocity correlation function
Cvij .

Note that particle transverse velocities are gyro-periodic if particles would move
in a fluctuation-free field, but fluctuations make the two-time correlation function
no longer perfectly recurrent. The simplest modeling of this phenomenon is the
following approximation (say in the x direction)

Cvxx(τ) ∝ cos(Ωτ)e−τ/τc , (2.30)

where the proportionality constant is v2/3, with v being the particle (perpen-
dicular thermal) velocity, Ω is the gyration frequency and τc is the correlation
(or Lagrangian) time. As we have seen in previous Sections, this particular time
is important since it separates two different kinds of motion. The transient mo-
tion, for times shorter than the correlation time, is the so-called “ballistic” regime
during which particles spread quickly (〈∆x2〉 ∝ t2). The stationary regime of
Brownian diffusion, at which each particle experience an uncorrelated field, is
achieved for intervals longer than τc. This time can be estimated by means of the
auto-correlation function (Servidio et al., 2016). The Lagrangian time is

τc =
1

〈vx(t0)2〉

∫ ∞
0

〈vx(t0)vx(t0 + τ)〉dτ. (2.31)

In the above definition, the operation 〈. . . 〉 is the average over all particles.
Evaluating this time lag in HPIC simulations suggest that particles with higher
energies reach the diffusive behavior sooner than their less energetic counterpart
that, instead, experience longer trapping times
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2.4. The Bieber and Matthaeus theory

Figure 2.7: Two-time velocity correlation function for (left) β = 0.1 and (right)
β = 5 in the HPIC simulations. Dashed lines are the best fits with the approximate
form of Eq. 2.30.

τc(β = 5.0) = 0.95Ω−1
cp ,

τc(β = 0.5) = 4.13Ω−1
cp ,

τc(β = 0.1) = 9.64Ω−1
cp .

We find the form in Eq. 2.30 to describe quite well the correlation function for
high β’s, reasonably well for intermediate β, while, for our simulations, fails at
low β, as can be seen in Fig. 2.7.

By integrating Eq. 2.30, using the TGK formulation, one obtains the perpen-
dicular diffusion coefficient as

Dxx =
v2

3

∫ ∞
0

dτ cos(Ωτ)e−τ/τc =
v2

3

τc
1 + Ω2τ 2

c

,

that can be made dependent on the Larmor radius R
L

= v/Ω as

Dxx =
vR

L

3

Ωτc
1 + Ω2τ 2

c

. (2.32)

This prediction has been evaluated by calculating the average thermal per-
pendicular velocity, the average Larmor, and the correlation time using Eq. 2.31.
The results are reported in Table 2.3. The comparison of the numerical values
of the diffusion coefficient obtained with the BAM theory with the experimental
values obtained before (Table 2.2) shows that this theory underestimates the dif-
fusion coefficient, as already found in literature (Matthaeus et al., 2003). This
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Chapter 2. Particle diffusion and acceleration in plasma turbulence

β Dxx

0.1 0.005
0.5 0.043
5 0.790

Table 2.3: Perpendicular diffusion coefficients for the HPIC simulations evaluated
using the BAM theory at different β’s. Recall that, from HPIC simulation analysis
reported in Table 2.2, Dxx(β = 0.1) ∼ 0.8–1.1 and Dxx(β = 5) ∼ 1.0–2.2.

can be due to the modeling used for the correlation function in Eq. 2.30. The
description is that of orbits that become non-perfectly recurrent because of any
non-energy-changing random fluctuations, no properties of the system are explic-
itly present. As will be shown below, when considering actual fluctuations of a
turbulent magnetic field, the description of the diffusion coefficient becomes more
accurate; especially when considering low-β plasmas in which particles have lower
energies and are more affected by turbulent fluctuations.

In the following Section, we will obtain an analytical form of the diffusion
coefficient using a more refined theory.

2.5 The nonlinear guiding center theory

The last theory we are going to explore is the nonlinear guiding center (NLGC)
theory (Matthaeus et al., 2003). This theory solves the main problems of the two
previous approaches: it can treat particles in a wide range of energies, and it also
takes into account the spectral distribution of the magnetic field. This is a 3D the-
ory in which the transverse turbulent structures decorrelate particle trajectories
after parallel scattering. The starting point of the theory is again the TGK formu-
lation, with a new model for the two-time velocity correlation function. The idea
is to focus on particles’ gyrocenters as they are scattered while following magnetic
field lines (Shalchi & Dosch, 2008; Shalchi, 2015). Assuming that particles’ gyro-
centers follow magnetic field lines, their velocity can be estimated using Eqs. 2.24.
The velocity of the gyrocenters, e.g. in the x direction, is given by

vgx = avz
Bx

B0

, (2.33)

where a is a proportionality constant and vz is the particle velocity in the z
direction. The form of the velocity in Eq. 2.33 transforms the two-time correla-
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tion function into a fourth-order correlator, and the diffusion coefficient in the x
direction is

Dxx =
a2

B2
0

∫ ∞
0

dτ〈vz(0)Bx(x(0), 0)vz(τ)Bx(x(τ), τ)〉,

where Bx(x(τ), τ) is the Lagrangian magnetic field, i.e. the magnetic field
measured at particle position x(τ). Assuming that velocity and magnetic field
fluctuations are uncorrelated, the fourth-order correlation function can be split in
the product of two second-order correlation functions

Dxx =
a2

B2
0

∫ ∞
0

dτ〈vz(0)vz(τ)〉〈Bx(x(0), 0)Bx(x(τ), τ)〉. (2.34)

The two-time velocity correlation function can be modeled by the isotropic
assumption

〈vz(0)vz(τ)〉 =
v2

3
e−vτ/λ‖ ,

where v is the particle speed and λ‖ is the mean free path in the z direction.
The Lagrangian magnetic autocorrelation tensor can be rewritten using Corrsin’s
independence hypothesis that is very common in astrophysical studies. It can
be used when long time intervals or, equivalently, when distances larger than
a correlation length are considered. With this approximation, it is possible to
separate the statistics of the magnetic field from that of particles. This means
that it is possible to write the Lagrangian correlation function as the Eulerian
one using the displacement probability density as a weight (Corrsin, 1959; Salu &
Montgomery, 1977; McComb, 1990; Ruffolo et al., 2004; Tautz & Shalchi, 2010),
obtaining

〈Bx(x(0), 0)Bx(x(τ), τ)〉 =

∫
dr Rxx(r, τ)P (r, τ),

where Rxx(r, τ) is the Eulerian two-point two-time magnetic field correlation
tensor, and P (r, τ) is the probability function of the particle having displacement
r after a time interval τ (same as in the previous Sections, except here we used
r instead of ∆x). The Eulerian two-point two-time magnetic field correlation can
be written in terms of its Fourier transform Rxx(r, τ) =

∫
dkSxx(k, τ)eik·r and,

for convenience, the dependencies of the spectral amplitude can be separated as
Sxx(k, τ) = Sxx(k)Γ(k, τ). The term Γ(k, τ) represents the time-propagator of
the spectrum. Usually, this functional form is described via the so-called sweeping
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decorrelation mechanism, namely Γ(k, τ) ∼ e−τ/τc(k), where τc(k) is a character-
istic decorrelation time. The latter is usually thought to be the the “sweeping
decorrelation time” (Chen & Kraichnan, 1989; Nelkin & Tabor, 1990), in anal-
ogy with fluid turbulence. With these positions, the integral in Eq. 2.34 can be
rewritten as

Dxx =
a2

B2
0

∫ ∞
0

dτ
v2

3
e−vτ/λ‖

∫
dr P (r, τ)

∫
dk Sxx(k)e−τ/τc(k)eik·r. (2.35)

Knowing that the probability function P (r, τ) is normal, and taking into ac-
count the isotropy of the perpendicular plane, it can be written as P (r, τ) =

e−r
2
⊥/Dxxτe−z

2/D‖τ , with r2
⊥ = x2 + y2, and the r integration can be readily solved,

giving

Dxx =
a2v2

3B2
0

∫
dk

Sxx(k)
v
λ‖

+ (k2
x + k2

y)Dxx + k2
zD‖ + 1

τc(k)

. (2.36)

A comparison of the diffusion coefficient evaluated with these three theories, as
a function of the energy, has been made in previous test-particles works. Adapted
from Matthaeus et al. (2003), we report here this result in Fig. 2.8.

The NLGC approach is able to describe test-particle simulations with remark-
able precision. The FLRW is an upper limit since it describes high-energy particles
via the magnetic field random motion. The BAM underestimates the diffusion co-
efficient, especially at low energies as also found with HPIC simulation in the
previous Sec. 2.4. In the next Section, we will develop a 2D version of the NLGC
theory to describe diffusion in 2.5D simulations of plasma turbulence.

2.6 2D nonlinear guiding center theory

All the theories described in previous Sections were developed for 3D systems
and have been validated via test-particle simulations, and observations (Bieber
et al., 2004; Shalchi et al., 2004). Among them, NLGC provides an accurate
prediction of the diffusion coefficient as Fig. 2.8 shows. In the current Section,
the analytical derivation of a 2D version of NLGC is presented. The necessity of
this complementary version arises because 3D simulations are quite expensive, and
not always indispensable since solar wind turbulence can be very often described
with 2D approximation (Dasso et al., 2005; Oughton et al., 2015; Servidio et al.,
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2.6. 2D nonlinear guiding center theory

Figure 2.8: Comparison of the diffusion coefficient κxx (Dxx in our notation) nor-
malized to the Alfvén speed VA and the correlation length λc in the z direction as
a function of the Larmor radius r

L
i.e. as a function of the particle magnetization.

The NLGC approach is the one that fits better the numerical data obtained in 3D
simulations with test particles. Adapted from Matthaeus et al. (2003)

2015). In this Section, it will also be presented the validation with the HPIC self-
consistent plasma turbulence simulations described in Sec. 1.2.1. The comparison
with FPIC simulations described in Sec. 1.2.2 will be presented in Sec. 2.8.

The starting point is, as for the 3D version, the TGK formulation of the dif-
fusion coefficient when particle gyromotion is considered. With the hypothesis of
homogeneous turbulence, one can write the diffusion coefficient along one direc-
tion without loss of generality. For instance, along the x direction, the diffusion
coefficient Dxx, can be expressed as

Dxx =
1

B2
0

∫ ∞
0

dτ〈vz(0)Bx(x(0), 0)vz(τ)Bx(x(τ), τ)〉,

We assume that the magnetic field fluctuations in the perpendicular plane
are totally uncorrelated with the velocity in the z direction, and this allows the
separation of the terms in the averaging operation as

Dxx =
1

B2
0

∫ ∞
0

dτ〈vz(0)vz(τ)〉〈Bx(x(0), 0)Bx(x(τ), τ)〉.

Here the derivation separates from that of the 3D case. We assume that the

41



Chapter 2. Particle diffusion and acceleration in plasma turbulence

 0⋅10
0

 2⋅10
3

 4⋅10
3

 6⋅10
3

 8⋅10
3

 1⋅10
4

 0  30  60  90  120  150  180

 〈
 ∆

z2
 〉

τ Ωcp

Figure 2.9: Mean squared displacement in the z direction averaged over all par-
ticles as a function of τ . The dashed line is the parabolic fit (∝ τ 2). This same
behavior is recovered for all simulations at different β’s (only one case shown here),
confirming the assumption of particles free-streaming along the mean magnetic
field to be solid.

velocity correlation function in the z direction can be modeled as

〈vz(0)vz(τ)〉 ∼ v2
z . (2.37)

This assumption has been directly proved valid by measuring the quantity
〈vz(0)vz(τ)〉 in our simulations. Figure 2.9 shows that particles are essentially
free-streaming in the z direction, hence 〈∆z2〉 ∝ t2, and therefore the velocity vz
is, on average, constant.

Using this approximation, we can estimate the diffusion coefficient, neglecting
the parallel scattering, as

Dxx =
v2
z

B2
0

∫ ∞
0

dτ 〈Bx(x(0), 0)Bx(x(τ), τ)〉.

Again, we use Corrsin’s independence hypothesis to transform the integrand
function as

〈Bx(x(0), 0)Bx(x(τ), τ)〉 =

∫
dr Rxx(r, τ)P (r, τ).

The diffusion coefficient is then
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Dxx =
v2
z

B2
0

∫ ∞
0

dτ

∫
dr Rxx(r, τ)P (r, τ),

where Rxx(r, τ) is the Eulerian two-point two-time correlation tensor and
P (r, τ) is the probability function of the particle having spatial displacement r
after a time interval τ . Now, we make use of the same transformations used in
the previous Section to express Rxx(r, τ) using its Fourier transform

Rxx(r, τ) =

∫
dk Sxx(k, τ)eik·r.

We model Sxx(k, τ) = Sxx(k)Γ(k, τ), and Γ(k, τ) ∼ e−τ/τc(k), where τc(k) is the
characteristic sweeping decorrelation time (see below). At this point, we can
proceed with the derivation of the diffusion coefficient, given by

Dxx =
v2
z

B2
0

∫ ∞
0

dτ

∫
dk Sxx(k)Γ(k, τ)

∫
dr P (r, τ)eik·r. (2.38)

Since P is Gaussian, then∫
dr P (r, τ)eik·r = e−(k2xDxx+k2yDyy)τ .

In axisymmetric turbulence Dxx = Dyy ≡ D, Sxx = Syy ≡ S, since we have
only in-plane structures (i.e. kz = 0) k2

x + k2
y ≡ k2, and the diffusion coefficient is

D =
v2
z

B2
0

∫
dk S(k)

∫ ∞
0

dτ e−k
2Dτe−τ/τc(k).

Finally, integrating over τ , one gets

D =
v2
z

B2
0

∫
dk

S(k)

[τc(k)]−1 + k2D
. (2.39)

Note that this prediction is only a small modification to the original NLGC
theory, having suppressed the z-dependence by using the free streaming behavior
of particles along z (Eq. 2.37).

It is possible to obtain a first estimate of the diffusion coefficient assuming that
the sweeping decorrelation time is long (as in the case of large scale slow driving,
for example), therefore the term τc(k)−1 in Eq. 2.39 can be neglected to obtain
the approximate form
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Figure 2.10: Mean squared displacement in the perpendicular plane as a function
of the time interval τ (cyclotron units), for several ranges of particles’ energy (nor-
malized to the square of Alfvén velocity v2

A), indicated in the label, for the three
different β values. Normal diffusion is achieved for τ & 60Ω−1

ci , where we extrap-
olate the values of the perpendicular diffusion coefficient via linear fits (dashed
lines). From Pecora et al. (2018).

D∗ =

√
v2
z

B2
0

∫
dk
S(k)

k2
. (2.40)

To estimate the theoretical values of the diffusion coefficient via Eqs. 2.39–2.40,
we computed the average power spectrum S(k), of magnetic fluctuations. The
experimental values of the diffusion coefficient have been obtained in a similar
fashion to Fig. 2.4. Because of the isotropy of the perpendicular plane already
invoked before, now instead of measuring ∆x2 we measure ∆s2 = ∆x2 + ∆y2.
Moreover, particles have been divided into energy bins and a few of them (for
clarity’s sake) are shown in Fig. 2.10.

Figure 2.11 shows the experimental values of D obtained by fitting particles
mean squared displacements in Fig. 2.10 with Eq. 2.22 (〈∆s2〉 = 2Dτ) . The
theoretical values of the 2D-NLGC, evaluated via both the exact (Eq. 2.39) and
the approximated (Eq. 2.40) formulas, are reported as a function of the particles’
energies. The simulations results follow very well the theoretical prediction at low
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Figure 2.11: The 2D-NLGC diffusion coefficient as a function of the parallel energy
v2
z . The theoretical exact (orange dashed from Eq. 2.39) and approximated (black
dotted from Eq. 2.40) display a monotonic behavior. Experimental measures follow
the predictions very well for low- and mid-β plasmas. The large β shows systematic
underestimation, though retaining the same monotonic increase. From Pecora et
al. (2018).

β. The theory slightly deviates at large β, although the functional monotonic
behavior is very similar. Departures of experimental data from the theoretical
expectations can be expected when considering technical issues on the classifica-
tion of particles. As will be shown in the following, lower-energy particles are
those which are more prone to gain energy (changing their velocity modulus),
thus generating some ambiguity when energy binning is performed. Also, higher-
energy classes (especially for low-β plasmas) are less populated and become less
statistically relevant.

Lastly, we briefly investigate the decorrelation mechanism in self-consistent
plasma turbulence. We performed a Fourier transform in time of magnetic fluctu-
ations, computing the propagator Γ(k, τ), as described in Servidio, Carbone, et al.
(2011); Perri et al. (2017). As in fluid, MHD, and Hall MHD models of turbulence,
this time-dependent correlation of turbulence strongly depends on the amplitude
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Figure 2.12: (a) Propagator of the magnetic field spectrum, computed for several
(perpendicular) k modes in the inertial range of plasma turbulence. (b) Decor-
relation time as a function of k (blue bullets), computed as the e-folding time of
the functional form in (a). The sweeping prediction is reported with the solid teal
line.

of k, as reported in Fig. 2.12. The decorrelation mechanism depends on k and
drops quickly in time (only a few inertial range modes are reported). From this
functional form, we computed the decorrelation time τc(k), represented in panel
(b) of the same figure. The decorrelation time scales as ∼ 1/k, indicating a clear
dominance of the sweeping effect (Servidio, Carbone, et al., 2011). To be more
quantitative in computing the diffusion coefficient for our experiment, we found
that τc(k) ∼ 3/(δb⊥kdp), where δb⊥ is the root-mean-square (rms) of the in-plane
magnetic fluctuations.

The effect of large eddies is to randomly sweep the inertial range fluctuations
through the Eulerian probe, resulting in a local Taylor (frozen in) effect. Together
with the Alfvén propagation effect, these are the main causes of time-decorrelation.

This conclusion is complementary to earlier observations and computations in
hydrodynamics (Orszag & Patterson, 1972; Sanada & Shanmugasundaram, 1992;
Zhou et al., 1993). The shape of large eddies is not expected to be strongly
influenced by sweeping motion or straining at inertial-range scales. Indeed, as
Fig. 2.12 shows, smaller k’s have longer correlation times. In the diffusion (large-
scale) regime, this is consistent with the fact that the term 1/τc, appearing at the
denominator of the diffusion coefficient expression in Eq. 2.39, can be neglected.
The sweeping therefore becomes a correction, producing very small differences, as
shown by the two theoretical curves in Fig. 2.11 and confirming that diffusion is
effectively modulated by large-scale structures.
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2.7. Particle Acceleration

2.7 Particle Acceleration

In the previous Sections, in agreement with existing literature (Jokipii & Parker,
1969; Matthaeus et al., 2003), we have shown that diffusivity depends on particles’
energy, and can be well described by the 2D-NLGC theory. In this Section, we in-
vestigate the possible mechanisms responsible for the acceleration and energization
of charged particles in plasma turbulence.

Again, we start from a statistical description of our ensemble of 105 parti-
cles. We computed the distribution of the Lagrangian acceleration, a = ∂v/∂t

(evaluated using a 6th order finite difference centered method), of all particles
at different times for all HPIC simulations. The initial condition for Lagrangian
quantities is to be normally distributed. Therefore, we can take advantage of the
χ2 distribution that is defined as

PDF (χ2
k) =

1

2kΓ(k/2)
xk/2−1e−x/2

where Γ(x) is the gamma function, and k, commonly referred to as “degrees
of freedom”, represents the number of elements of a set of independent normally
distributed variables {x1, x2, . . . , xk} . The sum of the squares of these k vari-
ables distributes according to the χ2

k PDF. In our case, the three independent
variables are the acceleration components {ax, ay, az}, and the square modulus
of the acceleration |a|2 = a2

x + a2
y + a2

z distributes according to PDF (χ2
3) with 3

degrees of freedom. The distributions of |a|2 perfectly overlap with PDF(χ2
3) at

initial times, as reported in Fig. 2.13, confirming that acceleration is a normally
distributed variable. The time evolution for low- and high-β plasmas is different.
The latter shows no appreciable sign of time evolution during the simulation; the
initial and final distributions are indistinguishable. The former, instead, develops
a well-noticeable tail that grows in time, separating from the initial distribution.
This means that the number of particles experiencing “anomalous” acceleration is
larger for the low-β plasma, suggesting that a physical process that depends on
plasma conditions is at work (Chandran & Maron, 2004).

A straightforward acceleration mechanism can be due to an electric field par-
allel to the local magnetic field, namely E‖ = E·B

|B| (as we have also seen in the
simple model of Sec. 2.1). We define “anomalous” particles as those with accelera-
tion values exceeding the variance of their distribution (see below). Such particles
are correlated with E‖ and magnetic structures as Fig. 2.14 shows. Anomalous
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Figure 2.13: PDFs of the acceleration, for β = 0.1 and β = 5. Both initial and final
times of the simulations are reported, together with the corresponding probability
distributions (dashed black lines). In the lowβ plasma, “anomalous” acceleration
processes are observed.

particles are, indeed, non-uniformly distributed on the color map of E‖. They tend
to cluster within magnetic islands, evidenced by the contour plot of the magnetic
potential az, at whose boundaries it is known that reconnection electric field is
large and strong magnetic discontinuities are present (Ambrosiano et al., 1988;
J. Tessein et al., 2013).

To establish a more quantitative link between the electric field and possible
local acceleration effects, we compared the PDFs of separate contributions to the
electric field (see Eq. 1.21). We focus on those terms that can be parallel to the
local magnetic field (∇Pe and ηj), on the total parallel electric field itself (E||),
and the total inductive electric field (Eind = |u × B|). To make an association
with particles’ acceleration, we divide them into low- and high-acceleration pop-
ulations. The two populations were distinguished by thresholds with respect to
the global acceleration distribution: the high-acceleration population is defined by
acceleration values larger than three standard deviations of the global distribution
(“anomalous”), the other population has acceleration values lower than one stan-
dard deviation (“normal”). We build up the distributions of the above-mentioned
fields at particles position indicating with superscript “↑” those measured at the
positions of “anomalous” ions, whereas the fields with superscript “↓” are related
to “normal” particles. Note that the above conditioned statistics would give the
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2.7. Particle Acceleration

Figure 2.14: Particles with very high acceleration (magenta squares), superim-
posed on the shaded contour of the parallel electric field in (left) low- and (right)
high-β plasmas. These particles are localized at the boundaries of magnetic struc-
tures (evidenced by the contour plot of magnetic potential az) where E‖ is large.

same distribution only if acceleration and fields are uncorrelated.

The localization of anomalous particles on the flanks of magnetic islands sug-
gests that, along with the parallel electric field, magnetic field discontinuities can
also play a role in the acceleration process. To reveal the presence of small-scale
gradients of the magnetic fields, we use the PVI technique (Greco et al., 2008;
Greco, Matthaeus, Servidio, Chuychai, & Dmitruk, 2009; Greco et al., 2018).

Generally, the detection of discontinuities can be achieved via several method-
ologies such as those based on wavelets (Farge, 1992; Farge & Schneider, 2015) as
the local intermittency measure (LIM) (Bruno et al., 2001), or distinct techniques
such as the phase coherence index (Hada et al., 2003), and multifractal analysis
(Sorriso-Valvo et al., 2017). Among these, we chose the PVI (that is a particular
case of wavelet transform) for its utility, ease of implementation, and good time
localization despite the scarce scale localization. This technique has few-to-no as-
sumptions on the discontinuity type it can detect, and has been extensively tested
in simulations (Greco et al., 2018), and has been demonstrated to give similar
results as LIM analysis (Greco & Perri, 2014).

These regions of discontinuities are indeed usually found at the boundaries of
magnetic islands where, possibly, reconnection, heating, and particle acceleration
are taking place (J. Tessein et al., 2013; Osman et al., 2014; Khabarova et al.,
2016; Pecora et al., 2018). The PVI is defined as
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Chapter 2. Particle diffusion and acceleration in plasma turbulence

PVI(s, `) =
|∆B(s, `)|√
〈|∆B(s, `)|2〉

, (2.41)

where ∆B(s, `) = B(s + `) − B(s) are the increments evaluated at scale `
and the averaging operation 〈. . . 〉 is performed over a suitable interval (Servidio,
Greco, et al., 2011). The function can be computed spatially in simulations or in
magnetic field time series by assuming the Taylor hypothesis. The structures iden-
tified by large PVI values contribute to non-Gaussian statistics and therefore to
intermittency (Matthaeus et al., 2015; Bruno, 2019). Applying the PVI technique,
we found that the regions of larger E|| occur in correspondence of magnetic discon-
tinuities and not in smooth regions, as the PDF of E|| conditioned on PVI values
clearly evidences in the inset of panel (a) of Fig. 2.15 (Greco, Matthaeus, Servidio,
& Dmitruk, 2009). In the Figure, we see that the distribution of each electric field
contribution is enhanced at the positions of highly accelerated particles, indicating
that anomalous particles are more likely to be associated with larger electric field
values. This supports the idea that accelerating particles cluster close to regions
where dynamical activity is occurring, notably along boundaries of interacting flux
tubes, and near the associated current sheets, suggesting involvement of magnetic
reconnection. In general, the conditioned PDFs of Fig. 2.15 further confirm the
relation between the parallel electric field and the stochastic acceleration mecha-
nisms in 2.5D turbulence.

This acceleration in the out-of-plane direction has a global effect of elongating
the ion velocity distribution function (VDF) in this same direction. To see if this
typical alignment effect is present in our numerical experiments, we computed the
PDFs of the angles that particles’ velocity forms with both the local and mean
magnetic fields (along z) as:

cos(θ) =
v ·B
|v||B| , cos(ψ) =

vz
|v| (2.42)

In Fig. 2.16 we report the distributions of the cosine of both these angles, at
the initial and final times of the simulation, for different values of β. At the initial
time, when turbulence has not developed yet, the distributions are quite flat, as
evidence of the initially isotropic particle distribution. As turbulence develops,
particles tend to align with the mean magnetic field in the z direction. This effect
is much more evident for the low-β plasma, the more magnetized one. Another
feature one can notice in the low-β plasma is that particles orient themselves more
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Figure 2.15: PDFs of electric field terms (see Eq. 1.21) conditioned to particles’
acceleration. PDFs designated by ↑ (blue squares) are the PDFs collected at posi-
tions of anomalous particles, defined as particle with acceleration value exceeding
three standard deviations of the total acceleration distribution. Likewise, PDFs
for normal particles, indicated by ↓, (red circles) are collected at the positions of
particles with acceleration below one standard deviation. The cases shown are (a)
total parallel electric field |E‖|; (b) parallel resistive electric field |ηj‖|; (c) parallel
electron pressure |∇Pe‖|; and (d) total inductive electric field Eind = |u×B|. The
parallel components are defined relative to the local magnetic field vector. The
inset of panel (a) shows the total parallel electric field component conditioned over
PVI values. Red circles are the parallel electric field values computed along the
whole PVI path, whereas blue squares are the parallel electric field values com-
puted in the regions where the PVI exceeds a threshold value. From Pecora et al.
(2018).

on the local magnetic field rather than its z component (cos(θ) distribution has
slightly larger values than that of cos(ψ)), although the z component is its main
one and the difference is not statistically relevant.

It is crucial to see now whether this acceleration mechanism, locally related
to intense parallel electric fields, can actually increase particles’ energy. This
correspondence is not trivial since particles with anomalous acceleration are only
a small fraction of the plasma. The distribution of energy in time, shown in
Fig. 2.17, exhibits a different behavior at different β’s. In low-β plasma, the

51



Chapter 2. Particle diffusion and acceleration in plasma turbulence

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1 -0.5  0  0.5  1

(a)  (b)  

β = 0.1 β = 5

P
D

F

cos(α)

θ, tΩcp = 60 

θ, tΩcp = 240

ψ, tΩcp = 60

ψ, tΩcp = 240

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1 -0.5  0  0.5  1

(a)  (b)  

β = 0.1 β = 5

P
D

F

cos(α)

θ, tΩcp = 60 

θ, tΩcp = 240

ψ, tΩcp = 60

ψ, tΩcp = 240

Figure 2.16: PDFs of the cosine of the angle between particles’ velocity and the
magnetic field for (a) low- and (b) high-β plasmas, before maximum turbulence
activity and at the end of the simulation. Both plasma β’s start with an isotropic
distribution of the velocities (orange and green lines). At the end of the simu-
lations, particles align to the magnetic field (red and blue lines). The effect is
more evident for more magnetized particles (low-β), and less pronounced for less
magnetized particles (high β).
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Figure 2.17: PDF of particles energy, for the (left) low- and (right) high-β sim-
ulations, at different times of the simulation. Particles in low-β plasma have a
substantial energy gain because of resonance with turbulence small-scale struc-
tures. The distribution of particles in high-β plasma does not experience any
significant evolution.

PDF develops a power-law tail, consistent with previous findings in literature
(Guo et al., 2016). On the other hand, high-β plasma is less prone to developing
high-energy tails, and the distribution at later times is rather indistinguishable
from that of the initial, Maxwellian equilibrium condition. This suggests that the
acceleration mechanisms can energize particles and that the process depends on
the plasma β.
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2.7.1 Magnetic trapping

We have seen that the acceleration mechanism involves the parallel electric field.
However, there must be something else that makes this field preferably energize
particles in low- rather than in high-β plasmas. In Fig. 2.14 it is shown that
anomalous particles lie within magnetic islands, in agreement with previous dis-
cussions. The acceleration mechanism possibly occurs in association with mag-
netic reconnection. Particles temporarily trapped inside small flux tubes or in
the dynamically active region of larger flux tubes experience coherent acceleration
processes. In the region near current sheets, particles can experience almost con-
tinuous energization (Ambrosiano et al., 1988; Hoshino et al., 2001; Drake et al.,
2010; Haynes et al., 2014). Moving from a statistical description to single-case
observation, we followed the trajectory of one of the most energetic particles and
monitored its energy, acceleration, and the parallel current density it experiences
along its journey (the parallel pressure term is not shown because it is too noisy
for non-statistical treatment). This particle and the above-mentioned quantities
are shown in Fig. 2.18. The trajectory is plotted over the color map of E‖ with
contour plot of the magnetic potential. Fields evolution is slower than particle
motion so that large-scale structures can be considered quasi-stationary during
this time interval. This individual trajectory confirms the discussion carried on
in previous Sections: particles can be confined within magnetic islands and be
effectively energized interacting with a coherent electric field, as the color code
of the trajectory – indicating the energy of the particle – suggests. Eventually,
the energy grows up to a value that allows the particle to escape the magnetic
confinement.

Analogously to Fig. 2.18, Fig. 2.19 shows a proton, in FPIC simulations, in-
teracting with a strong current sheet. The particle gets energized passing through
this intermittent structure, as the increase of its orbit radius suggests.

To estimate global escaping times we calculated the Lagrangian auto-correlation
time using Eq. 2.31 (reported here for convenience),

Tesc =
1

〈vx(t0)2〉

∫ ∞
0

〈vx(t0)vx(t0 + τ)〉dτ.

This quantity roughly represents the time interval up to which a particle expe-
riences a correlated field. In the above definition, the averaging operation 〈. . . 〉 is
performed over a suitable ensemble of particles. We first averaged over all particles
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Figure 2.18: One of the most energetic particles, in HPIC simulations, followed
along its path. (Left) Particle trajectory, starting at the blue triangle, superim-
posed on the map of E‖ (color shading), and magnetic potential az (contour lines)
that evidences magnetic structures. The map of E‖ is a snapshot at tΩci = 160,
when the particle encounters the peak of E‖ (indicated with the green star). The
color code of the trajectory measures the kinetic energy that grows while the
particle is trapped in a magnetic island. (Top right) Particle energy (blue line),
and acceleration (red line). (Bottom right) Lagrangian E‖ – measured along the
particle’s trajectory. Both the energy and the acceleration show an increase in
correspondence to a peak in the parallel current density. After the boost in accel-
eration and energy, these quantities, although oscillating, remain almost constant.

β T allesc(Ω
−1
ci ) T anomesc (Ω−1

ci )
0.1 9.6 5.7
0.5 4.1 3.0
5 0.9 0.8

Table 2.4: Correlation times of all particles (T allesc) and of anomalous particles
(T anomesc ) for the three β values of HPIC simulations.

and then compared the values with the average performed only over anomalous
particles. Numerical values are reported in Table 2.4.

For the isotropy of the perpendicular plane, we computed the escaping times
also using vy correlation function obtaining similar results. The determined es-
caping times are consistent with the fact that particles in low-β plasmas develop
high energy tails since they are confined within magnetic islands for longer peri-
ods, experiencing a coherent acceleration from the parallel electric field. On the
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Figure 2.19: Interaction of a proton with a current sheet in FPIC simulations. The
x−y plane is the simulation domain, the z axis represents the time. Strong current
sheets are indicated with iso-surfaces (red for positive, and blue for negative jz).
Trajectories of some ions (green) and electrons (magenta) are shown. In particular,
the blow-up shows a proton passing through an intense current sheets and becomes
energized (notice the increase in the orbit radius and in the velocity component
parallel to the mean magnetic field in the z direction).

other hand, particles in high-β plasmas easily escape from magnetic islands and
are not efficiently energized since they are subject to stochastic values of E‖ which
are less prone to provide coherent acceleration. The comparison of trapping times
values at the same β for the different populations supports this view. Indeed,
the escaping times calculated over all the particles are longer than those of the
anomalous particles suggesting that more energetic particles are more likely to es-
cape from magnetic islands while lower-energy particles remain trapped for longer
periods and experience coherent energization. This coherent acceleration process
due to stochastic reconnection electric field, invoked in small scale reconnection
(Ambrosiano et al., 1988), is now quantitatively observed in large scale plasma
turbulence. It is interesting now to further characterize the energization process
by looking at the characteristic parameters of these anomalous particles.
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2.7.2 Magnetic moment (non) conservation

We now further inspect the acceleration process by looking at the magnetic mo-
ment µ, defined as

µ =
mv2
⊥

2B
, (2.43)

wherem is the particle mass and v⊥ its velocity (perpendicular to the magnetic
fieldB measured at the particle’s position). IfB is slowly varying, particles’ orbits
are like closed circles and the flux of magnetic field passing through them is almost
constant, namely:

ΦB = ΣB = πR2
LB = π

(
mv⊥
qB

)2

B =
πm2

q2

v2
⊥
B

.
=

2πm

q2
µ,

where Σ is the surface enclosed within the circular orbit and RL is the radius of
the orbit. This flux is constant if the ratio v2

⊥/B = 2µ is constant. This suggests
that the magnetic moment might not be a constant of the motion in a turbulent
system where magnetic field changes are not negligible nor adiabatic (Dalena et
al., 2012). This phenomenon however depends on the characteristic scales, as we
will see in a little. A first visual inspection of magnetic moment variations can be
obtained evaluating a normalized version for each particle p:

µ̃p =
µp(t)− µp(0)

µp(0)
. (2.44)

This measure gives information about the variation of the particle magnetic
moment with respect to its initial value. Figure. 2.20 shows µ̃p as a function of
time, for some randomly selected particles, for two values of plasma β. Particles
that move in the low-β plasma have the highest magnetic moment excursions;
in the high-β plasma, where particles are not so energized in time, the magnetic
moment is much more conserved.

To see whether the magnetic moment is a constant of the motion in a more
quantitative way, we calculated the standard deviation σµ(p). This can be inter-
preted as the dispersion of the magnetic moment, for each particle, and is defined
as

σµ(p) =

√
1

T

∫ t0+T

t0

(µp(t′)− 〈µp〉T )2 dt′, (2.45)
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Figure 2.20: Normalized magnetic moment as a function of time, for a group of
11 randomly selected particles, for (a) β = 0.1, and (b) β = 5. The violation of
magnetic moment conservation is much more pronounced in the case of β = 0.1.
In the low-β plasma, particles have smaller gyro-radii and they can interact with
local strong inhomogeneities. On the other hand, in the high-β plasma particles
keep their magnetic moment better conserved as small-scale local sharp variations
are averaged out over large orbits.

where µp(t) is the magnetic moment of the p-th particle at the time t, and
the average in the integral is calculated over an appropriately long time interval
T . In the case of perfectly conserved magnetic moment, this quantity is null. To
better visualize the dispersion of the magnetic moment, we built the PDF of the
quantity

ε =
σµ(p)

〈µp〉T
, (2.46)

that indicates how much the magnetic moment deviates from its mean value
– how much the magnetic moment is “broken”. The PDF(ε) is shown in panel
(a) of Fig. 2.21, for the whole ensemble of 105 particles. The violation of the
magnetic moment is much more pronounced in the case of β = 0.1, for which
the distribution is broader. Low-β particles have small gyro-radii and they can
actively interact with local sharp inhomogeneities, while high-β particles keep their
magnetic moment better conserved as they average out small-scale intermittent
events.

For a direct comparison of magnetic moment violation with small-scale struc-
tures, we inspect both Lagrangian and Eulerian quantities. About the former, the
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typical size is that of the Larmor radius, whose distribution is shown in panel (b)
of Fig. 2.21, and reveals what is expected: low-β particles have a narrow distri-
bution about small values; large-β particles, instead, have a broader distribution
centered about larger values. In the same panel, we also report the Taylor length
defined as λT =

√
δb2⊥
〈j2z 〉

, and the average current sheets’ width δc. The former is
the scale at which the resistive term is no longer negligible, and it is about the size
of the largest current sheet in the simulation; the latter is the average thickness
of current sheets cores – where the current density is more intense. In our simu-
lations. λT ∼ 1.7di and δc ∼ 0.3di. The positioning of these two important scales
supports the description of the dynamics given before. The emerging picture is
that of a scale resonance between particles and turbulence. When the orbit is
much larger than the average current sheets’ size δc, and of the order of the dis-
sipative scale λT , particles cannot resonate with and gain energy from turbulence
small-scale structures. On the other hand, particles with orbits of the order of
δc “feel” the presence of sharp discontinuities and experience magnetic moment
non-conservation and coherent energization.

The obvious limits in drawing these conclusions are the physical size and the
spatial resolution of the simulation domain. The β-dependence of magnetic mo-
ment conservation may not be so distinct in domains where coherent structures
(e.g. current sheets) can develop on a wider range of scale and provide coherent
interaction with particles of lower and higher energies. A saturation of such inter-
action, possibly due to approaching the dissipative scale or reaching energies high
enough to include energy losses caused by radiative processes, is out of the scope
of the present description.

2.7.3 Approaching velocity space diffusion

In Sec. 2.2, we investigated spatial diffusion. Then, we concentrated on the pos-
sibility of particles to modify their velocity (to accelerate). Acceleration can be
interpreted as “motion” in velocity space, i.e. v-diffusion (Subedi et al., 2017). In
this last Section, we will briefly mention this aspect. As for spatial diffusion, it
is instructive to observe particles trajectories in the velocity space. In particular,
we represent these trajectories in a 2D space whose coordinates are vz (parallel to
the global magnetic field) and the in-plane velocity (v2

x + v2
y)

1/2. The trajectories
in this subset of the velocity space are shown in Fig. 2.22.

Velocity space trajectories show, from another point of view, the same behavior
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Figure 2.21: (a) PDF of the dispersion of the magnetic moment defined in Eq. 2.46.
These PDFs show that particles are more likely to “break” their magnetic moment
in the low-β case. (b) PDF of the Larmor radius for different β’s. High-β particles
have a wide distribution, reaching values up to one order of magnitude larger than
in the low-β case. The Taylor length λT and the average current sheets width δc
are also indicated.

Figure 2.22: Velocity space trajectories for the same particles of Fig. 2.20, at (a)
low, and (b) high β’s. Particles moving in the high-β plasma are more energetic
and do not undergo energization processes. They diffuse in pitch angle and move
on quasi-isoenergetic shells. Differently, in the low-β plasma, particles manifest
more complex (almost ergodic) trajectories: they are not locked on isoenergetic
shells since they can effectively gain/lose energy throughout their turbulent jour-
ney.
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Chapter 2. Particle diffusion and acceleration in plasma turbulence

we have seen in the previous Sections. In the high-β plasma, particles can be
slightly accelerated but not effectively energized. Indeed, they diffuse only in
pitch-angle and gyrophase moving on isoenergetic shells varying only the angle
the velocity forms with the magnetic field. In the low-β plasma, particles are
coherently accelerated and decelerated by current sheets and magnetic structures
(recall, however, that the percentage of high-energy particles is very low). The
combined acceleration, deceleration, and energization phenomena make particles
trajectories in the velocity space more complex, almost ergodic, since particles can
diffuse both in pitch-angle and momentum-amplitude. The ergodicity domain is
bounded by the upper limit of energy a particle can gain before escaping a vortex
and run into a decelerating (de-energizing) electric field. This interesting aspect
of velocity diffusion will be further inspected in future works.

2.8 HPIC & FPIC: similarities and differences

In this Section, we present a comparison between Hybrid- (Sec. 1.2.1) and Full-PIC
(Sec. 1.2.2) simulations. We recall that the former (HPIC) can describe the kinetics
only of the heavy species (protons) which is treated as Lagrangian particles while
the electrons are described as a massless fluid. The latter (FPIC) solves Lagrangian
equations for both the species composing the plasma. Small-scale phenomena,
such as diffusion and acceleration, can be affected by the approximations that are
used. In the following, we will highlight similarities and differences between the
two approaches, conducting analyses similar to those of the previous Sections. It is
important to recall that also inaccuracies may influence the results. For instance,
an inadequate spatial resolution might affect energization phenomena as well as
the diffusion of particles (Lapenta & Markidis, 2011).

2.8.1 Power spectra

Both the HPIC and FPIC simulations show important features in the power spec-
tra of magnetic and electric fields, as shown in Fig. 2.23. The magnetic field
spectrum manifests, for scales larger than the ion skin depth, an inertial range
consistent with Kolmogorov’s prediction of fluid-like turbulence, for which the
power spectrum scales as k−5/3 (where k is the wavenumber). At smaller scales,
the spectral slope is steeper, consistent with the index −8/3, typical manifestation
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Figure 2.23: Comparison of the (top) magnetic and (bottom) electric field power
spectra for the hybrid- (H1, H2, H3) and the full-PIC (K1, K2, K3) simulations.
In both cases, the spectra present a range that follows Kolmogorov’s prediction
k−5/3 (the so-called inertial range for k’s smaller than the ion skin depth) and
the magnetic field spectrum approaches a k−8/3 power law at smaller scales. The
dashed and dot-dashed lines serve the purpose of guiding the eye. From Pecora,
Pucci, et al. (2019).

of dispersive-kinetic physics (Alexandrova et al., 2009; Franci et al., 2015). Mag-
netic field spectra obtained from the two numerical experiments compare quite
well in the inertial range, but there are some small differences at sub-ion scales.
In particular, in the high-β plasma, the magnetic field is steeper for the FPIC
simulation. This may be due to electron physics, where electron resonances and
damping might interact with small-scale magnetic fluctuations. Note also that for
the hybrid case, at very small scales (almost the grid size), there is a flattening
of the spectrum, due to particle noise which has not been treated with numerical
filters (see below). This is indeed more evident for the high-β simulation H3, at
kdi & 3. The different behavior between the two codes at the very small scales
is therefore due to the different ways of handling the noise. In the hybrid sim-
ulations, there is no artificial small-scale filter. In the FPIC algorithm, a local
smoothing technique, described in previous literature (Olshevsky et al., 2018),
has been introduced.
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run7 run8 (K3) run9
v2
z D v2

z D v2
z D

0.6 2.0 0.7 2.1 0.6 2.1
1.9 4.0 2.0 4.3 1.8 4.0
3.1 5.4 3.3 6.0 3.1 5.3
4.3 6.3 4.6 7.1 4.3 6.5
5.6 7.1 5.9 7.7 5.5 7.3

Table 2.5: Particle energy values and the corresponding diffusion coefficient. The
energy values do not change by increasing the number of particles from 400 to
4000 meaning that particles are accelerated and energized in the same way. More-
over, the diffusion coefficients are comparable among the runs suggesting that also
spatial diffusion is not affected by an increase in the number of particles.

To better highlight small-scale differences between the hybrid and the full PIC
approaches, we also computed the power spectrum of the electric field, also shown
in Fig. 2.23. Qualitatively, these spectra are all in agreement with spacecraft ob-
servations (Bale et al., 2005), for which the slopes of the two fields are similar in
the inertial range, whereas at sub-ion scales the electric field spectrum is higher
than that of the magnetic field. There are some small differences between the two
numerical methods, which are due to both physical and numerical reasons. Re-
garding the numerical reason, the noise has a role, in the hybrid case, at kdi & 3,
as discussed before. The electric field is more sensitive to small-scale fluctuations
and more directly to the noise of particles’ momentum, since E ∼ u×B. There-
fore, the noise induced by low ppc is more evident in its spectrum. Regarding
the physical reasons, at scales close to (and smaller than) the ion skin depth, it is
interesting to notice that, for low β, there is more electric power in the FPIC case.
This is very likely due to the fact that, generalizing Ohm’s law, many contribu-
tions are missing in the hybrid approximation (such as the divergence of the whole
electron pressure tensor contribution and other smaller electron inertial terms).

For the hybrid runs, Servidio et al. (2016) previously verified statistical con-
vergence by varying the number of particles per cell. For the FPIC case, we did a
convergence study for the high-β case (that is the most sensitive to noise) in which
we found that: (I) the power spectrum of the magnetic field is consistent going
from 400 ppc to 4000 ppc (Fig. 2.24), and (II) the diffusion coefficient is consis-
tent between these cases with different models and resolutions (Table. 2.5). The
latter is not surprising, since the diffusion coefficient depends mostly on energy-
containing and inertial scales of the magnetic spectrum (kdi � 1)
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Figure 2.24: Magnetic field power spectra for FPIC run7 and run8 (K3) with 400
and 4000 particles per cell respectively. The spectra show the statistical converged
achieved already at 400 ppc since the large scales are quite similar and the inertial
ranges have the same slopes.

2.8.2 Ion diffusion

This Section is focused on the motion of the macro-particles. Again, to have a
look at the collective general motion of the ions, we computed the mean squared
displacement in the xy plane, namely ∆s2 = ∆x2 + ∆y2, with ∆x and ∆y the dis-
placements calculated after a time interval τ in the x and y directions respectively,
defined as ∆x = x(t0 + τ) − x(t0) and ∆y = y(t0 + τ) − y(t0). For convenience,
we recall Eq. 2.22 that links the mean squared displacement with the diffusion
coefficient as

〈∆s2〉 = 2Dτ,

As reported in the previous Section, we divide particles in energy ranges and
their mean squared displacements are shown in Fig. 2.25 for the two algorithms
at different β’s (only a few energy classes are plotted for a matter of clarity).

In all cases, the linear trend expected for normal diffusion is achieved after
long time intervals. The partitioning of particles in parallel energy (v2

z/2) bins
has been performed to control whether it influences perpendicular diffusion as
predicted by the 2D-NLGC derived in Sec. 2.6. As expected from the theory, the
diffusion coefficient is proportional to the energy of the particles in the parallel
direction and to the presence of magnetic turbulence. We also computed the
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Chapter 2. Particle diffusion and acceleration in plasma turbulence

Figure 2.25: Ion mean squared displacement for the HPIC and FPIC simulations
for the low- and high-β plasmas. For each β, the particles class energy is reported
in the label. From Pecora, Pucci, et al. (2019).

running diffusion coefficient for each energy class, for all simulations

D =
1

2

∂〈∆s2〉
∂τ

. (2.47)

The above quantity, computed over the appropriate ensembles of particles,
achieves a plateau after the diffusive limit is reached. This classical procedure
gives a measure of the diffusion coefficients for each class of parallel energy. The
measured values are reported in Fig. 2.26, for β = 0.1 and 5, for both types of nu-
merical experiments. A quite good agreement between both numerical approaches
and the 2D-NLGC theory is found.
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Figure 2.26: Perpendicular diffusion coefficient measured for the low- and high-
β plasma, for both HPIC and FPIC runs. The solid black line represents the
theoretical prediction of 2D-NLGC. From (Pecora, Pucci, et al., 2019).

Though a slightly better agreement is evident in the case of FPIC simulations,
the overall behavior is similar, suggesting that smaller-scale resolution is a higher-
order correction for the problem of particle diffusion (as also evidenced by the
convergence study).

2.8.3 Particle energization

The last process to compare is that of particle energization. It is important to
establish whether there are substantial differences for particle energization mech-
anisms, comparing the HPIC and FPIC approaches. Figure 2.27 shows the distri-
bution of the kinetic energy of particles Ekin = (v2

x + v2
y + v2

z)/2 at the beginning
of the turbulence steady state (tΩci = 50) and at the final time of the simulations
(tΩci = 200).

PDF comparison suggests, as evidenced in the previous Section, that in the
hybrid case, at high β, there is a very small deviation between the two times,
indicating a lack of energization. This is because particles, in the case of large β
(and large Larmor radius), do not effectively gain energy by interacting with the
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Figure 2.27: Particles kinetic energy evolution. The distributions of the energy
(normalized to the ion thermal velocity vthi) are shown for (left) HPIC and (right)
FPIC simulation at two different times. In both cases, the energy in high-β plas-
mas (green and) does not grow in time; for the low β (red and orange), instead,
HPIC ions gain much more energy with respect to those in FPIC simulations.
From Pecora, Pucci, et al. (2019).

turbulence structures such as current sheets. This scenario changes when one looks
at the low-β case, where an extended tail develops at later times. This confirms
the picture of small energy particles being able to actively interact with current
sheets, because their scales are comparable, and be effectively energized (Chandran
et al., 2010). This view is almost maintained in the full kinetic simulations, though
some differences appear, and highlight the importance of describing both species
(ions and electrons) when considering energization phenomena. In low-β plasmas,
the tail of energy distribution is less developed in the case of FPIC simulations
indicating that, when electrons are also treated kinetically, the ions gain less energy
from the turbulent fields. This suggests that, very likely, the electrons participate
more effectively in this turbulence-particle interaction. Electrons may interact
more synergistically with the structures generated by turbulence, such as current
sheets and reconnection events (Drake et al., 2010; Haynes et al., 2014).

The comparison between two different numerical approaches carried out in
this Section, sheds light on the consistency of our studies, especially concerning
power spectra and particle diffusion dynamics. We found that a fully kinetic
description of the plasma does not considerably affect diffusion properties. This
was somewhat expected, as we have shown that diffusion is mostly influenced by
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large-scale structures. Conversely, a noticeable difference came out when looking
at particle energization. Possible competition mechanisms between species seem
to arise in the presented FPIC simulations, even with an ion-to-electron mass
ratio much smaller than the actual one. The fully kinetic description might open
different channels for energy partitioning and therefore needs to be taken into
consideration. In the next Section, we present full PIC 3D simulations and describe
ongoing work on a self-consistent investigation of plasma turbulence.

2.9 Ongoing work: pair diffusion in 3D plasma tur-

bulence

The 2D description given in the previous Sections, is extremely valuable since it
provides realistic results, compatible with observations, with the advantage of a
reduced computational cost for simulations, and reduced complexity for analytical
treatment. Naturally, the 2D description carries along with some approximations
that are not always appropriate for solar wind conditions. In this Section, we
present a preliminary analysis of diffusion properties of particle pairs in 3D tur-
bulence. In particular, we focus on the different diffusive properties in the case in
which charged particles are moving in an anisotropic plasma (with a preferential
direction along a mean field B0). To investigate the properties of turbulence in
the inertial range and for time intervals that are not asymptotic, we make use of
particle pairs rather than single particles, as particle pairs provide an excellent tool
for measurements of inertial range laws of turbulence (Boffetta & Celani, 2000;
Boffetta & Sokolov, 2002; Biferale et al., 2005).

The goal is to link the Eulerian properties of fields to the Lagrangian properties
of pairs. In the following Section, this intimate relationship will be derived.

2.9.1 Anisotropic Fokker-Planck equation

We concentrate on extending the Richardson law of turbulence (Richardson, 1926),
that was developed for isotropic turbulence, to an anisotropic medium. We start
from the idea that pair-particle motion is sensitive to inertial range fluctuations
of turbulence when particle separation lies in this range as well, namely di �
r12 � λc – where r12 =

√
|x1 − x2|2 + |y1 − y2|2 + |z1 − z2|2 is the separation

between the two particles, of coordinates ri = (xi, yi, zi), composing the pair.
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Following Richardson work, it is useful to define the quantity P (r12, t) which is
the probability of having two particles, initially arbitrarily close, at a distance r12

after a time t (hereafter we will omit the subscript “12”). In the case of isotropic
medium, P (r, t) satisfies a Fokker-Planck equation written in spherical symmetry

∂P (r, t)

∂t
=

1

r

∂

∂r

[
rD(r)

∂P (r, t)

∂r

]
(2.48)

with the diffusion coefficient of the form

D(r) ∝ r2−γ, (2.49)

where γ is the exponent of the turbulent field second-order structure function
(Servidio et al., 2016). For anisotropic turbulence, one can expect P (r, t) to be
anisotropic as well. Therefore, in analogy with the above definitions, we write a
Fokker-Planck equation in the case of an anisotropic medium, in the absence of
external forces, and independent directions, in the configuration space as

∂P

∂t
=

3∑
i=1

∂

∂xi

{
Dii

∂P

∂xi

}
, (2.50)

where P is the probability density function and Dii is the diffusion coefficient
along the i-th direction. As we learned in the previous Sections, the analytical
form of the diffusion coefficient can vary and depends on the characteristics of the
system in general. In our case, since we want to relate diffusion to anisotropic tur-
bulence properties, we model the diffusion coefficient following the prescriptions of
turbulence theory. As already mentioned, turbulence develops a power-law energy
spectrum for the “cascading” fields, with a well-defined exponent in the so-called
inertial range, say E(k) ∝ k−n. The second-order structure function is related
to the exponent of the spectral power law as S2(`) ∝ `n−1 when the increment `
falls in the inertial range, namely λd � ` � λc, where λd is the dissipative scale
and λc is the energy-containing scale (Frisch, 1995). By dimensional analysis, the
diffusion coefficient can be written as D ∝ u` and u can be related to spectral
properties by the second-order structure function, for which u2 ∝ `n−1, finally
giving

D ∝ `
n+1
2 (2.51)

where `, again, is the increment in a specific direction (Frisch, 1995). With
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these prescriptions for the diffusion coefficient (Eq. 2.49 and Eq. 2.51), the link to
Eulerian properties of the field in which particles move is immediate since γ is the
exponent of the second-order structure function, and n is the scaling of the power
spectrum. Moreover, Eq. 2.49 is consistent with the prediction of Eq. 2.51 as if
we expect the Kolmogorov scaling, 2 − γ = 4/3 and the obtained spectral index
is n = 5/3.

Now we want to be more specific and apply these general statements to the
case of turbulent anisotropic plasmas. As already shown before, when a mean
field is present, turbulence has a preferential direction along the direction of the
mean field (say ẑ), while the perpendicular plane can be considered isotropic. In
this case, Eq. 2.50 can be written as (neglecting y-diffusion term without loss of
generality)

∂P

∂t
=

∂

∂x

{
Dxx

∂P

∂x

}
+

∂

∂z

{
Dzz

∂P

∂z

}
, (2.52)

and the diffusion coefficients in the two directions can be written, using Eq. 2.51,
as Dxx = x

n+1
2 and Dzz = z

m+1
2 , where n and m are the slopes of the energy spec-

tra in the x and z directions respectively. A solution to Eq. 2.52 is here found to
be

P (x, z, t) = At−k exp
(
− x

α

α2t

)
exp

(
− zβ

β2t

)
(2.53)

with α = 3−n
2
, β = 3−m

2
, and k = α+β

αβ
.

Again, as in Richardson (1926), P (x, z, t) is the probability of having two
particles with perpendicular separation x and parallel separation z (with respect to
the mean field) after a time t. Now, we shall see if this relation can be qualitatively
found in plasma turbulence simulations.

2.9.2 Lagrangian and Eulerian properties correlation

The above-mentioned analysis is carried out in novel simulations of 3D plasma tur-
bulence that have been performed with the iPIC3D code described in Sec. 1.2.2.
The box size is 40× 2πdi in each direction, discretized with 5123 points. A mean
magnetic field B0 is present along the z direction. To reduce the numerical noise of
the PIC algorithm we use 401 particles per cell resulting in 55×109 total particles.
We tracked and saved position and velocity information of about 130×106 to per-
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Figure 2.28: Time evolution of the (left) perpendicular and (right) parallel separa-
tion of proton pairs. The very narrow initial distribution develops non-Maxwellian
tails, a symptom of extremely rapid diffusion processes.

form the following statistical analyses. Among these particles, we have identified as
pairs those that have a separation |r12| =

√
|x1 − x2|2 + |y1 − y2|2 + |z1 − z2|2 =

0.1di at the initial time set by the turbulence peak. Figure 2.28 shows the dis-
tribution of the separation of the above-determined pairs of particles. The initial
distribution is extremely narrow, but it greatly grows in time also developing
non-Maxwellian tails – a symptom of super-diffusive extreme events. The distri-
butions are accumulated for proton separations (recall that iPIC3D is an FPIC
algorithm, but electron analysis has still to be performed), in the perpendicular
r⊥ =

√
|x1 − x2|2 + |y1 − y2|2 and parallel rz = |z1 − z2| directions. The possibil-

ity to incorporate x and y in a generic perpendicular separation comes from the
isotropy of the perpendicular plane when a mean magnetic field is present.

In analogy with previous Sections, we measured the mean squared separation
〈r2〉, shown in Fig. 2.29, where the brackets indicate average over all pairs, as a
function of the time interval τ .

Because of the presence of the guiding field, the parallel separation rz has
the same “free-streaming” behavior as the single-particle displacement depicted in
Fig. 2.9. On the other hand, the perpendicular separation shows two regimes. The
first is for separations lying in the inertial range, namely d2

i . 〈r2〉 . λ2
c , with

λ2
c ∼ 102d2

i . The scaling exponent of the mean squared separation in this range is
. 2 as pointed out by Servidio et al. (2016) and depends on the spectral properties
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Figure 2.29: Mean squared separation of particle pairs in the perpendicular (red
squares) and parallel (blue squares) directions. Lines proportional to τ (dotted)
and τ 2 (dashed) are reported for reference.

of turbulence as Eq. 2.53 infers, and as we qualitatively show in the following. In
Fig. 2.30, we plot the distribution of the separation at two separate times. One can
notice the development of anisotropy at later times. This anisotropy is modulated
by the magnetic field since it develops in the parallel direction and produces non-
Gaussian features.

Magnetic field structure function, defined as S2
B(`, t∗) = 〈|B(r+`, t∗)−B(r, t∗)|2〉

is shown in Fig. 2.31 at the same times of the separation distribution of Fig. 2.30.

The structure function shows the same anisotropy development of the separa-
tion distribution, suggesting a strong correlation between field Eulerian properties
and particle Lagrangian behavior. The importance of this study arises from two
complementary perspectives: (I) the impossibility of Lagrangian measurements
from spacecraft. In this way, such properties could be inferred from the already
available field data. The high-resolution measurements of the magnetic field al-
low precise evaluation of inertial range properties both in spectral (through the
Fourier analysis) and configuration (using e.g. the structure function) spaces. As
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Figure 2.30: Distribution of pair separations in the parallel and perpendicular di-
rections. At later times, the initially Gaussian distribution develops an anisotropy
in the parallel direction.

Figure 2.31: Magnetic field second order structure function with increments cal-
culated in the perpendicular and parallel directions at initial and later times. The
same behavior of pair separation is found, with anisotropy developing in the par-
allel direction.

described before, the presence of anisotropic structures in these analyses is re-
flected in particle Lagrangian properties. (II) Vice versa, observations of plasma
dispersion from imaging instruments (DeForest et al., 2015; Ruffolo et al., 2020)
may grant the chance to infer properties of plasma turbulence in regions that are
not possible to reach with in-situ missions.
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Chapter 3

Coherent structures in space
plasmas

In the previous Chapter, in our journey through the properties of astrophysical
plasma turbulence, we have investigated the microscopic effects that happen at
the termination of the cascade. We have also inferred that larger scales might
influence some properties of particle transport. In the following, we will focus on
the mesoscopic structures of the magnetic field.

We know that the basic shape of the magnetic field permeating the helio-
sphere is that of an outward propagating spiral originating at the Sun’s surface
(Parker, 1958; Borovsky, 2010; Schwadron & McComas, 2021). There is a lot of
observational evidence about the complex, structured texture of the Parker spiral
at smaller scales. Some of these features arising from plasma turbulence at dif-
ferent scales have been depicted with simulations in the previous Chapters, and
are widely described in literature (Schatten, 1971; Bruno et al., 2001; Borovsky,
2008; Khabarova & Zank, 2017; Malandraki et al., 2019; Verscharen et al., 2019).
These characteristics have also been inferred through direct in-situ measurements
and indirect effects, despite the impossibility to have an actual map or volume
rendering of magnetic field topology, being it global or local. Standard methods
of time series and spectral analysis provide only limited information from single-
spacecraft measurements. Clusters of satellites provide additional information
employing multispacecraft correlation techniques (Chhiber et al., 2018), including
“wave telescope” (Glassmeier et al., 2001; Narita et al., 2010) and spacetime en-
semble approaches (Matthaeus et al., 2016), though the visual information is still
far from that obtainable from simulations.
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In studying the nature of magnetic fields in the solar wind, a recurrent view
is to describe it in terms of flux tubes. The presence of these structures, on av-
erage aligned with the Parker spiral, was initially suggested by McCracken and
Ness (1966). This paradigm originated a number of so-called “spaghetti models”
which are a particular class of observation-based flux tube models (Schatten, 1971;
Bruno et al., 1999; Borovsky, 2008; Hu, 2017). These structures are found in the
solar wind at a wide variety of scales. At 1 au, flux ropes of duration ranging from
a few minutes to a few hours have been identified from in-situ spacecraft data and
studied for decades (Moldwin et al., 1995, 2000; Feng et al., 2008; Cartwright &
Moldwin, 2010; Yu et al., 2014). Despite the amount of literature regarding these
magnetic field configurations, their origin is still debated. It is not clear yet if
such structures originate close to the Sun and are then advected in the interplan-
etary space, or generate locally due to magnetic reconnection and instabilities, or
both (e.g., Pegoraro et al. (1997); Khabarova et al. (2015); Lapenta et al. (2015);
Khabarova et al. (2016); Khabarova and Zank (2017); Malandraki et al. (2019);
Khabarova et al. (2020)). On the other hand, their large-scale counterparts, such
as magnetic clouds, have a clear solar origin related to coronal mass ejections
(Gosling, 1990; Webb et al., 2000; Jacobs et al., 2009; Verbeke et al., 2019).

Along with these structures at large scales, also those at small scales are a
ubiquitous feature of turbulence, as seen in previous Chapters. Despite the very
different typical sizes, they both are coherent structures that are typical solutions
of MHD equations, characterized by a finite duration in time, and can be proven
uncorrelated with random/stochastic fluctuations of plasma quantities (Greco et
al., 2008; Greco, Matthaeus, Servidio, Chuychai, & Dmitruk, 2009; Dudok de Wit
et al., 2013; Matthaeus et al., 2015). The abundant presence of flux tubes and cur-
rent sheets does not make it an easier task to detect them, despite the large efforts
of the community (Perri et al., 2012; Zheng et al., 2017; Hu et al., 2018; Zheng
& Hu, 2018; Telloni et al., 2020; Zhao et al., 2020). In this Chapter, the focus
is given to new methods useful to extract additional topological information from
measurements recorded as single-spacecraft time series. Because multi-spacecraft
missions are fewer and more expensive than single-spacecraft ones, and because
the latest missions – Parker Solar Probe (Fox et al., 2016) and Solar Orbiter
(Müller, D. et al., 2020) – will reach unexplored regions as single satellites, the
need of extracting as much information as possible from the provided data streams
is compelling.
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The first method is a novel combination of two well-established techniques that
use single-spacecraft 1D measurements: the Grad-Shafranov (GS) reconstruction
(Hau & Sonnerup, 1999; Hu, 2017), that provides two-dimensional information
about magnetic field topology, and the PVI technique (Greco, Matthaeus, Ser-
vidio, Chuychai, & Dmitruk, 2009; Greco et al., 2018), that identifies coherent
magnetic structures such as current sheets. In Pecora, Greco, et al. (2019), the
GS method was enhanced by synergizing it with the PVI technique, providing ad-
ditional observational evidence of the complex structure of the solar wind. In fact,
the large-scale texture reconstructed with the GS method, at about 105− 106 km,
shows flux tubes that are filamentary or “spaghetti-like”. The additional informa-
tion provided by the PVI technique reveals where strong small-scale gradients of
the magnetic fields are located. These regions are found at the boundaries of flux
ropes/plasmoids where, possibly, reconnection, heating, and particle acceleration
are taking place.

The second is a novel method to readily identify flux tubes in data streams, ex-
ploiting their helical nature. This novel technique, based on real-space evaluation
of magnetic helicity, was developed in Pecora et al. (2020). The signal produced
by this quantity shows clustered regions of high helicity that can be associated
with the presence of flux tubes. Because Hm signal is related to large-scale struc-
tures, it is not dedicated to detecting sharp small-scale boundaries. To identify
the discontinuities usually found at the borders of flux tubes, we use again the
PVI technique. This method is not intended to distinguish among all the possi-
ble classes of helical structures or discontinuities. It rather detects magnetic field
topology properties, and this generality grants few-to-no assumptions and ease of
implementation.

Last but not least, we will present the results of a yet unpublished work that
directly correlates energetic particles with helical structures and high-PVI regions.

3.1 The PVI technique

Here we briefly recall and expand the definition of PVI (Eq. 2.41) introduced in
Sec. 2.7.

PVI(s, `) =
|∆B(s, `)|√
〈|∆B(s, `)|2〉

,
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where ∆B(s, `) = B(s + `) − B(s) are the increments evaluated at scale `
and the averaging operation 〈. . . 〉 is performed over a suitable interval (Servidio,
Greco, et al., 2011). Note that if s is in the time domain, the lag ` will be a
temporal interval; conversely, if s is in configuration space, ` will be a spatial
increment – the transition between the two domains is always possible when the
Taylor hypothesis holds.

In its basic form, PVI is applied to a one-dimensional signal, as would be
measured by a spacecraft in the solar wind, or by a fixed probe in a wind tunnel.
PVI is essentially a time series of the magnitude of a vector increment with a
selected time lag, normalized by its average over an appropriate interval of time
(Servidio, Greco, et al., 2011; Greco et al., 2018). It is a “threshold” method,
and once a threshold has been imposed on the PVI time series, a collection, or
hierarchy, of “events” can be identified. It has been shown that the probability
distribution of the PVI statistic derived from a non-Gaussian turbulent signal
strongly deviates from that of PVI computed from a Gaussian signal for values of
PVI greater than about 3. As PVI increases to values of 4 or more, the recorded
“events” are extremely likely to be associated with coherent structures (those which
exhibit sharp dipolar patterns, for a broader detection of all types of structures
one should use a combination of methods) and therefore inconsistent with a signal
having random phases (Dudok de Wit et al., 2013; Matthaeus et al., 2015). The
method is intended to be quite neutral regarding the issue of what mechanism
generates the coherent structures it detects. Indeed, the method is sensitive to
directional and magnitude changes, and any form of sharp gradients in the vector
magnetic field B. A comprehensive review of the properties of the PVI method
providing a broad view of its applications can be found in Greco et al. (2018). In
the following, we will concentrate on large scales.

3.2 Derivation of the Grad-Shafranov equation

The Grad-Shafranov equation (Grad & Rubin, 1958; Shafranov, 1966) describes
an ideal quasi-static MHD equilibrium for plasmas with a preferential direction of
symmetry, such as axisymmetric toroidal plasma in tokamaks or flux ropes in the
interplanetary space. The set of MHD equations used to obtain the GS equation
is
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∇ ·B = 0, (3.1)

∇×B = µ0j, (3.2)

∇p = j ×B, (3.3)

where Eq. 3.3 is the momentum equation with stationarity hypothesis with
respect to both time and convective derivatives. The equations contain the mag-
netic field B, the current density j, the vacuum permeability µ0, and the pressure
p = nkT with n being the number density, k the Boltzmann constant, and T the
temperature. The invariance along one direction, say ẑ, is equivalent to saying
that ∂/∂z = 0. In this configuration, the vector potential A = (0, 0, A) and the
magnetic field can be written as

B =

(
∂A

∂y
,−∂A

∂x
,Bz(x, y)

)
, (3.4)

or, analogously,

B = ∇A× ẑ +Bzẑ. (3.5)

With these conditions, both the vector potential A and the kinetic pressure p
are constant along magnetic field lines, as their gradients are always orthogonal
to them. Since ∂p/∂z = (j ×B)z = 0, the equilibrium condition in Eq. 3.3 can
be rewritten as

∇p = jz(ẑ ×B⊥) + j⊥ × ẑBz. (3.6)

Writing the componentsB⊥ = ∇A×ẑ, and j⊥ = ∇Bz×ẑ/µ0, Eq. 3.6 becomes

∇p = jz [ẑ × (∇A× ẑ)] +
1

µ0

(∇Bz × ẑ)× ẑBz. (3.7)

Using triple product rules ẑ×(∇A×ẑ) = ∇A, and (∇Bz × ẑ)×ẑBz = −∇Bz.
From Eq. 3.2, jz = −∇2A/µ0 and

∇p = − 1

µ0

∇2A∇A− 1

µ0

Bz∇Bz. (3.8)

Since p and Bz are constant along magnetic field lines, they can be expressed
as p = p(A) and Bz = Bz(A) and spatial gradients become ∇ = (d/dA)∇A.
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Finally, Eq. 3.8 becomes the well-known GS equation

∇2A = −µ0
d

dA

(
p+

B2
z

2µ0

)
. (3.9)

3.3 GS reconstruction algorithm

In literature, a lot of effort has been devoted to the development of an efficient and
precise algorithm for the reconstruction of 2D cross-sections of magnetic flux ropes
encountered in the solar wind by single spacecraft. In the overwhelming number
of research associated with this topic in the last decades (Sonnerup et al., 1987;
Sonnerup & Guo, 1996; Hau & Sonnerup, 1999; Möstl et al., 2009; González et al.,
2015; Hu, 2017), some common steps can be recovered that are necessary for the
reconstruction algorithm. First of all, the possible flux rope has to be identified
with available data of magnetic field, plasma temperature, and density. Indeed,
such structures have peculiar properties such as the rotation of the magnetic field,
or particle density showing a deviation from that of the ambient solar wind. Then,
from the selected interval, a set of M measurements of the magnetic field, plasma
velocity, density, and temperature is extracted.

3.3.1 The deHoffmann-Teller frame

As a first step, it is convenient to calculate the deHoffmann-Teller (HT) frame of
reference, which refers to the Galilean frame of reference in which the electric field
vanishes (De Hoffmann & Teller, 1950). The existence of such a reference frame
implies that the structure the spacecraft is traversing is stationary (at least to a
zero-order extent). When the HT frame exists, it moves at a certain velocity VHT
such that the electric field E′ in this frame is

E′ = E + VHT ×B = 0, (3.10)

where E is the electric field measured by the spacecraft in its own frame of refer-
ence. The stationariety of the structure follows immediately by writing Faraday’s
law in the HT frame: ∇ × E′ = −∂B/∂t = 0. For a set of M spacecraft mea-
surements of plasma bulk velocity vm and magnetic field Bm, m = 1, . . . ,M , the
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HT velocity can be found as the velocity V that minimizes the quantity

D(V ) =
1

M

M∑
m=1

|E′m|2 =
1

M

M∑
i=1

| (vm − V )×Bm|2. (3.11)

Since D(V ) is a quadratic form of its vector argument, it must have a unique
minimum that can be found with the minimization condition ∇VD = 0.

This condition can be expressed as (Paschmann & Daly, 1998)

K0VHT = 〈Kmvm〉, (3.12)

where each Km is proportional to the projection matrix Pm into a plane per-
pendicular to Bm, namely

Km,ij = B2
m

(
δij −

Bm,iBm,j

B2
m

)
≡ B2

mPm,ij (3.13)

and K0 = 〈Km〉, where the operation 〈. . . 〉 represents an average over the set of
M measured quantities. Assuming K0 to be non-singular, the HT velocity can be
readily found with a simple matrix inversion

VHT = K−1
0 〈Kmvm〉. (3.14)

At this point, the system is moved into the HT reference frame, that is the ref-
erence frame with such a velocity. In this system, the spacecraft passes through the
structure with velocity −VHT . In general, the above analysis provides a “proper”,
but not unique, frame of reference. The goodness of the obtained HT frame
can be quantified by correlating the components of the measured electric field
(Em = −vm ×Bm) with the ones in the HT frame (E′ = −VHT ×Bm). A corre-
lation coefficient of 1 corresponds to the perfect HT frame (D(VHT ) = 0). In the
following treatment, VHT is considered constant throughout the whole encounter,
but it is possible to determine a time-varying velocity VHT (t) = VHT (0) + aHT t

(Hu & Sonnerup, 2002).

Negligible convective inertia terms

The HT frame, when it exists, is not unique, and it is a good practice to check
if the frame obtained with Eq. 3.14 is acceptable. Indeed, when VHT is found,
any residual velocity in the HT frame should be aligned with the magnetic field
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(Hu & Sonnerup, 2002). A measure of the deviation from this assumption can be
evaluated with cross-field velocity components. Specifically, the flow velocities in
the HT frame, should be much lower than the Alfvén speed. Indeed, the time-
stationary momentum equation needs to get rid of the convective derivative to let
GS equation to be derived from ∇p = j ×B. The convective derivative can be
written as

(v ·∇)v = ∇
(
v2

2

)
= ∇

(
M2

A

v2
A

2

)
, (3.15)

where vA = B/
√

4πnmi is the Alfvén speed, and MA is the Alfvénic Mach
number, namelyM2

A = v2/v2
A. Therefore, to neglect this term, it has to beMA � 1

or equivalently |v| � |vA|. A historical way to check this constraint is the so-called
Walén plot, namely a scatter-plot of v′ = vm − VHT versus vA for each direction.
When the regression line of such a scatter plot has small values, the inertia term
can be safely neglected (Sonnerup & Guo, 1996).

3.3.2 Reconstruction frame

Once the HT frame has been found, the next step is to determine the proper
frame in which the cross-section of the structure can be reconstructed. This is a
trial-and-error process that has to be repeated until a certain control parameter
is small enough. Let S = (x̂, ŷ, ẑ) be the final reconstruction frame and S′ =

(x̂′, ŷ′, ẑ′) the first-guess coordinate system that is continuously adjusted in the
system S′′ = (x̂′′, ŷ′′, ẑ′′) until the proper frame is found.

First guess

The trial-and-error process starts with a first guess of the S′ frame that will be
adjusted by small steps. The direction x̂′ is placed along −V̂HT , with V̂HT being
the unit vector in the direction of the HT velocity. At this point, x̂′ is directed
along the spacecraft trajectory, ŷ′ must be orthogonal and can be found through a
constrained eigenvalue problem. In fact, the first estimate for the ŷ′ axis coincides
with the direction of maximum variance obtained as the eigenvector corresponding
to the largest eigenvalue of the matrix PMP where M is the variance matrix
defined as Mij = 〈Bm,iBm,j〉 − 〈Bm,i〉〈Bm,j〉 and P is the projector Pij = δij −
V̂HT,iV̂HT,j. The eigenvalue problem for PMP returns the eigenvalues λ1 > λ2 >

λ3, and the corresponding eigenvectors ê1, ê2, ê3. Hence, the direction ŷ′ = ê1.
This decision is based on the assumption that a flux rope is characterized by
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one component (here By by construction) flipping sign and the magnetic variance
is likely to be larger in this direction (Hu & Sonnerup, 2002). The direction ẑ′

completes the right-handed orthonormal triad. At this point, the iteration process
begins, and is described as follows.

Iterative steps

In the above determined triad S′, the ẑ′ direction is rotated over a hemisphere of
radius one, obtaining the temporary direction ẑ′′ (at zeroth step coinciding with
ẑ′). The temporary x̂′′ direction is along the projection of −V̂HT onto the plane
perpendicular to ẑ′′ and ŷ′′ completes the right-handed orthonormal system. The
vector potential A(x, 0), along the x̂′′ direction, is calculated using Eq. 3.4, with
the measured magnetic field rotated in the S′′ frame and sampled over a uniform
grid in x̂′′. Namely,

A(x, 0) =

∫ x

0

∂A

∂ξ
dξ = −

∫ x

0

By(ξ, 0) dξ (3.16)

with the spatial increment

dξ = −VHT · x̂′′ dt. (3.17)

At this point, it is possible to verify the GS condition, for which the transverse
pressure Pt(x, 0) = p(x, 0) + B2

z (x, 0)/(2µ0) (rhs of Eq. 3.9) is a function of the
vector potential alone. For topological reasons, the center of a magnetic island
is either a local maximum or minimum of the vector potential (Servidio et al.,
2010). Moreover, since the pressure is constant along field lines, it should have a
symmetric profile with respect to the island’s center. With these prescriptions, the
scatter plot of Pt(A) is expected to have two overlapping branches, one for each half
of the crossed island. This double folding behavior is natural to be expected since
the spacecraft crosses the same magnetic field lines in the two halves of the island.
This property can be exploited to: (I) determine magnetic island boundaries, and
(II) construct a measure of the goodness of the reference frame. It can be safely
assumed that magnetic field measurements belonging to the same magnetic island
are those limited to the overlapping branches, the so-called double folding behavior
(see Fig. 3.1). Indeed, if any of the two branches extends more than the other, it
means that the spacecraft encountered some magnetic field lines only on one of
the two sides. Hence, the measurements to take into account for reconstruction
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Figure 3.1: (Left) Cross-section of a flux rope centered at (x, y) = (0, 0.5) with
the line at y = 0 representing the spacecraft trajectory. (Right) Scatter plot of
Pt(A) along y = 0. Measurements on the left half (x < 0) are reported with circles
and those of the second half (x > 0) with asterisks. The two branches (first and
second halves) are not perfectly overlapping, indicating an incorrect choice of the
reference frame. Moreover, they also show one branch (second half) that is more
extended than the other. The two measurements of the second half with A < 0
are not considered when computing the functional form of Pt(A). Adapted from
Hu and Sonnerup (2002).

are only the ones that show the aforementioned double folding behavior. From the
scatter plot of Pt(A) it is possible to determine the minimum and maximum value
of A over which the island expands and discard the possible single-branched values.
An example from Hu and Sonnerup (2002) is reported in Fig. 3.1. Following figure
notation, the only acceptable values for the magnetic potential are Al ≤ A ≤ Am.
A uniform grid is defined between these values (as indicated on the horizontal axis)
and pressure measurements are interpolated over these points. Now it is possible
to retrieve an analytical form for Pt(A) that can be derived with respect to A, to
get the complete r.h.s of Eq. 3.9. Appropriate functions to accomplish this task
are exponentials and polynomials when monotonic behavior can be ensured (Hau
& Sonnerup, 1999; Hu & Sonnerup, 2002; Möstl et al., 2009; Hu, 2017).

The “goodness” of the reference frame can be measured, as suggested in Hu
and Sonnerup (2002), computing the point-wise distance of the pressure values
belonging to the two branches, normalized to the total pressure variation. Such
residual is defined as
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R =

√√√√ N∑
i=1

(
P 1st
t,i − P 2nd

t,i

)2

|max{Pt} −min{Pt}|
, (3.18)

where N is the total number of points in which the interval [Al, Am] is di-
vided, and P 1st

t,i , P
2nd
t,i are the pressure values at the i-th point on the left and right

branches respectively. The denominator is the difference between the maximum
and minimum values of the pressure within the double-folding portion of data.
This normalization condition ensures that minimum residual directions are not
short-branched. The direction of minimum residual, of all the directions on the
hemisphere that ẑ′′ points to, is the optimal frame of reference for the reconstruc-
tion, namely S = S′′(min{R}).

3.3.3 GS solver

Once the optimal frame S has been found, it is finally possible to solve the full
GS equation (Eq. 3.9) to reveal the cross-section of the flux rope. The grid is
chosen such that the separation in the x direction belongs in the MHD range; in
the orthogonal direction, the step has to be small enough to capture interesting
features of the cross-section, but not too much in order to avoid early exponential
growth of irregularities or distorted shapes. The vector potential A(x, y) at y val-
ues away from the spacecraft trajectory (x, y = 0) is calculated with the following
second-order Taylor expansion (Sonnerup & Guo, 1996; Hu & Sonnerup, 2002)

A(x, y + ∆y) ' A(x, y) +

(
∂A

∂y

)
x,y

∆y +
1

2

(
∂2A

∂y2

)
x,y

(∆y)2, (3.19)

where each term on the rhs is known at any given (x, y) position, and steps are
taken at ±|∆y| away from y = 0. The second-order derivative is calculated from
Eq. 3.9 as

∂2A

∂y2
= −∂

2A

∂x2
− µ0

dPt
dA

. (3.20)

The second-order derivative in the x direction can be computed with a central
finite-difference scheme
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(
∂2A

∂x2

)
i

=
Ai−1 − 2Ai + Ai+1

(∆x)2
; i = 2, . . . ,M − 1 (3.21)

with the error O(∆x2). The first and the last point of the grid are calculated
with forward and backward schemes with the same precision as the central scheme(

∂2A

∂x2

)
1

=
2A1 − 5A2 + 4A3 − A4

(∆x)2
, (3.22)

(
∂2A

∂x2

)
M

=
−AM−3 + 4AM−2 − 5AM−1 + 2AM

(∆x)2
. (3.23)

If the first and last points are not computed, the reconstruction domain will
be rhombus-shaped due to the progressive restriction of the reconstructed line
(Sonnerup & Guo, 1996; Hau & Sonnerup, 1999). The magnetic field component
Bx is advanced at farther y positions, using a first-order Taylor expansion and
exploiting the vector potential second-order derivative calculated above

Bx(x, y + ∆y) = Bx(x, y) +

(
∂2A

∂y2

)
x,y

∆y. (3.24)

As pointed out by Hau and Sonnerup (1999), solving the GS equation with
boundary conditions is formally equivalent to integrating a Laplace’s equation as
a Cauchy problem, and these problems are prone to developing singularities after
a finite amount of integration steps. The reason lies in the numerical scheme
intercepting spurious exponential solution of the equation, associated with small
wavelengths in the x direction. The growth rate of these solutions along the
transverse direction (y), is larger the shorter the characteristic wavelength of the
“anomaly”. The development of such singularities can be suppressed with a running
three-point average of the vector potential at each step of integration. Namely,

Ā1 = w(y)A1 +
1− w(y)

2
(A1 + A2) , (3.25)

Āi = w(y)Ai +
1− w(y)

2
(Ai−1 + Ai+1) , i = 2,M − 1, (3.26)

ĀM = w(y)AM +
1− w(y)

2
(AM−1 + AM) , (3.27)
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where w(y) is a weight function defined as

w(y) = 1− 1

3

|y|
|Ly|

, (3.28)

and Ly is the total length to which the reconstruction domain is extended to
(Hau & Sonnerup, 1999; González et al., 2015).

3.4 The GS and PVI method in space data

As already depicted, turbulent plasmas can be imagined as a carpet of large-scale
structures, bounded by intermittent, dynamical small-scale regions (Kraichnan &
Panda, 1988; Servidio et al., 2008). To confirm this view, in Pecora, Greco, et
al. (2019) we proposed a novel technique for describing and visualizing the local
topology of the magnetic field using single-spacecraft data. The approach merges
two established techniques: the GS reconstruction method, described in previ-
ous Sections, which provides a plausible two-dimensional map of the magnetic
field surrounding the spacecraft; and the PVI technique, described in Sec. 3.1,
that identifies small-scale coherent structures, such as current sheets. Our view,
supported not only by observational analysis but also extensively by numerical
simulations over a wide range of scales (Greco, Matthaeus, Servidio, Chuychai, &
Dmitruk, 2009; Greco, Matthaeus, Servidio, & Dmitruk, 2009; Servidio, Greco,
et al., 2011), maintains that the presence of small-scale magnetic flux ropes or is-
lands is intrinsic to strictly 2D-MHD turbulence. Small-scale quasi-2D flux ropes
are believed to be the byproduct of the solar wind turbulence dynamic evolu-
tion process, resulting in the generation of coherent structures including small
random current, current cores, and current sheets over the inertial range length
scales (Matthaeus & Montgomery, 1980; Veltri, 1999; Greco, Matthaeus, Servidio,
Chuychai, & Dmitruk, 2009).

For this work, the GS equation has been solved with an automated numerical
solver to quicken the procedure of finding GS equilibrium structures and recon-
structing their topology. A detailed description of the steps of this method is
given in previous Section and in Hu and Sonnerup (2002) and Hu (2017) (see also
recent different applications in the Magnetospheric Multiscale Mission (MMS)
community; Sonnerup et al. (2016); Hasegawa et al. (2019)). The output of the
GS method that we analyzed provides the magnetic field and the electric current
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density over a rectangular domain surrounding the spacecraft path.

We employed in situ measurements of the interplanetary magnetic field and
plasma parameters from the Wind spacecraft. Specifically, for 2016 January,
we use 1-minute cadence data sets from the Magnetic Field Investigation (MFI;
Lepping et al. (1995)) and the Solar Wind Experiment (SWE; Ogilvie et al. (1995))
instruments. All data are accessed via the NASA Coordinated Data Analysis Web
(CDAWeb). For this period, we obtained ∼ 400 magnetic islands, or flux tube
cross-sections, via the GS reconstruction and ∼ 400 PVI events, calculated with a
time lag τ = 2 minutes, applying a typical threshold θ = 3.7 on the PVI signal that
is more likely to detect coherent structures (Greco et al., 2018; Chhiber, Goldstein,
et al., 2020). The average that appears in the denominator of Eq. 2.41 has been
computed over an appropriately long dataset (Servidio, Greco, et al., 2011). In
Fig. 3.2 we show an example of how the PVI and the GS methods work in synergy.
The plot is a 2-day-long time series of solar wind speed and magnetic field mea-
surements. The occurrence of flux ropes is indicated with horizontal lines, each
above-threshold PVI event extends within consecutive star and circle. The vertical
arrows point to the more extreme PVI events that clearly appear at the borders
of the magnetic islands. The inset provides an expanded view of a shorter period
of about 9 hours. Applying both methods simultaneously enables plausible iden-
tification of both flux tubes and coherent current structures at their boundaries,
and it can be done in any single (or multiple) spacecraft measurements.

Some examples of reconstructed flux ropes (in 2D grids of 21 × 141 points),
and magnetic discontinuities detected with the PVI method are shown in Fig. 3.3.
Cross-sections of flux tubes are represented with color shading of the out-of-plane
current density (top panels) and magnetic field (bottom panels), along with vector
potential contour lines. PVI events extensions are delimited with stars (beginning)
and circles (end). For larger structures, PVI events are quasi point-wise (stars and
circles are overlapped) since their extension is not appreciable. The cross-sections
of the flux ropes are represented in the local reconstruction frame (x, y, z), with
the z-axis representing the symmetry axis of the flux rope.

Three cases are shown: (I) left panels show a large magnetic island with strong
PVI events, probably X-points, localized at the borders. The perpendicular extent
of this island is about 2×106 km. Its z-axis is mainly in the GSE x−y plane. (II)
Within the large structure shown in middle panels, we found PVI events at the
external boundaries – as in the previous case –, but also at internal boundaries
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Figure 3.2: Short time window of the 2016 January data set (approximately 2
days). The two top panels display the solar wind bulk speed and magnetic field
components. The green horizontal lines represent the duration of the reconstructed
flux ropes, the red stars and the blue circles (indicated in the inset) are the start
and end times of PVI events respectively. The black arrows indicate locations of
larger PVI values. From Pecora, Greco, et al. (2019).

between two smaller structures enclosed within the larger one, showing a more
complex magnetic field texture. The internal PVI could be interpreted as a core
current; however, since it is located between two secondary islands, it could also
be associated with a reconnection event. Here, the local z and GSE z-axes almost
coincide. (III) The right panels show a PVI event found within the core of a
small magnetic island – about 3× 104 km across. This is probably a current sheet
internal to the flux tube, associated with the bunching of magnetic flux near the
central axis, which can be classified as an O-point. In this case, the axis of the
flux rope points along the GSE y-axis.

In the GS method, the boundaries of a given flux tube are determined by the
double-folding requirement on Pt(A). In contrast, the PVI method identifies a
boundary as a local condition on the magnetic field vector increment. The bound-
aries are therefore determined independently in the two cases, and the finding
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Figure 3.3: Reconstructed flux ropes for Wind 2016 January in the local frame
(x, y), with the z-axis representing the cylindrical axis of the flux rope. Magnetic
potential contour lines with filled color plots of Jz (top panels) and Bz (bottom
panels). The dashed lines at y = 0 are the projection of the spacecraft path
on the flux rope cross-section. The yellow stars and the green circles represent
the start and endpoints of the PVI events, respectively. The distances in the
transverse directions are in km, and they may be considered directly proportional
to the magnetic flux across the flux rope. The x-axis of the figures represents the
observation period, which we transformed into spatial dimensions (indicated by
the insets with the rulers) applying the Taylor hypothesis. From Pecora, Greco,
et al. (2019).

that they frequently occur at the same or similar positions (see Figs. 3.2 and 3.3)
indicates a good synergy between the GS and the PVI methods. One should be
cognizant of the fact that current sheets in weakly 3D turbulence (Wan et al.,
2014) may also appear within flux tubes but separated both from the magnetic
axis (core) and the X-points that may be found at the boundary. We are not aware
that such current configurations have been reported as emerging in the purely 2D
geometry assumed in the GS method. Evidently, at least a generalization to a
weakly 3D reduced MHD model is required (Rappazzo & Velli, 2011; Wan et al.,
2014). Nevertheless, the GS method may detect signatures of such currents in
the solar wind, even if this cannot emerge in a purely 2D dynamical model. The
reconstruction method assumes a local 2D geometry that is organized by a strong
local, out-of-plane guide field Bz (Oughton et al., 2015); this state is characterized
by spatial derivatives along the z direction that are weak relative to those com-
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3.4. The GS and PVI method in space data

Figure 3.4: Histograms of PVI events classified as X (striped red), O (plain green),
and N (crossed blue). The histogram bins have the same width equal to 2, starting
from PVI = 3.7. From Pecora, Greco, et al. (2019).

puted in the perpendicular plane. Consequently, a measure of the goodness of the
reconstruction may be given by the quantity

A =

√
〈B2
⊥〉

Bz

(3.29)

where the averaging operation 〈. . . 〉 is made over a moving window. By re-
quiring that this quantity is less than 1 we may exclude some of the reconstructed
flux ropes. Typical values of A are of the order of 0.1 − 0.2 for the “good cases”.
However, in a few cases, we also found values of A around 0.6−0.8 for good recon-
structions. At this point, it is interesting to examine the statistics of the location
of PVI events with respect to the magnetic islands. For example, are the more
intense current sheets occurring at the boundaries of the islands (X-points)? To
answer this question, we classified the PVI events as X (possibly associated with
reconnection events), O (core currents), or N (no classification). One explanation
for N-events could be that the spacecraft moving in the solar wind may not come
directly across the X- or O-points, and the resulting topology cannot be clearly
distinguished. The statistical analysis of over 150 classified events is shown in
Fig. 3.4.

The histogram confirms that the events with the highest PVI values are located
at the borders of magnetic islands (where one expects tangential discontinuities
and possible X-points); instead, the cores of the flux ropes (O-points) are charac-
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terized by smaller PVI values. The unclassified events are fewer and at relatively
small PVI values. This observational evidence is in agreement with the numeri-
cal results obtained from the 2D compressible MHD simulation shown in Greco,
Matthaeus, Servidio, Chuychai, and Dmitruk (2009). A physically appealing in-
terpretation emerged: very low values of current lie mainly in wide regions (lanes)
among magnetic islands. These are associated with local small-amplitude nonlin-
earities, and possibly wave-like activity (Howes et al., 2018) and other transient
random currents (Greco et al., 2016; Franci et al., 2017). Moderate currents, re-
quired by Ampere’s law for any flux tube carrying nonzero current, populate the
central regions of magnetic islands (or flux tubes). And, finally, strong current
sheet-like structures form narrow regions (sharp boundaries) between magnetic
islands (Bruno et al., 2001). Current sheets represent the well-known small-scale
coherent structures of MHD turbulence that are linked to magnetic field intermit-
tency. This classification provides a real-space picture of the nature of intermit-
tent MHD turbulence, and it also found confirmation in the observational data
(Matthaeus & Montgomery, 1980; Veltri, 1999; Servidio et al., 2008).

We now turn to a comparison of the electric current densities implied by the
GS and the PVI methods. The GS method, within the parameters of its approx-
imations, returns directly, and at each point, a value of the current density. For
the PVI method, we can use the empirical result shown in Fig. 7 of Greco et al.
(2018) as a basis for estimating the current density magnitude at sharp discon-
tinuities. The quoted result demonstrates a statistical relationship between the
normalized current density, estimated with the curlometer technique (Dundovic et
al., 2020), and the multispacecraft PVI index computed from MMS measurements
in the Earth’s magnetosheath. The relationship is found employing normalization
of the current by its rms value σ

J
, a procedure needed to compare current mea-

surements with the PVI that is a non-dimensional quantity. What Greco et al.
(2018) suggested, is a correlation between PVI and current density values that can
be expressed as

J

σ
J

' 2 PVI. (3.30)

We suppose that this statistical relationship also applies to the Wind data in
the solar wind, and we can use Eq. 3.30 to obtain a measure of J . To be useful, this
procedure requires the estimation of σ

J
in the absence of a direct measure of the

current (otherwise, one would not need to use Eq. 3.30). A reasonable estimate of
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σ
J
may be obtained based on computing the rms value of the (single-spacecraft)

measured vector magnetic field increments |∆B|. To convert this value in units
of current, one divides by the magnetic permeability µ0 and a length L ∼ 104 km,
which may be the typical scale of the current sheets. This estimate comes from the
statistical distribution of PVI event duration multiplied by the solar wind speed,
and it is consistent with existing values in literature (e.g. Gosling and Szabo
(2008)). In this approximation σ

J
(Am−2) = rms(|∆B|/(Lµ0)), where the average

has been computed over the whole data set. Having σ
J
∼ 15 × 10−11Am−2, and

the entire PVI signal, J values come from the empirical expression in Eq. 3.30:

JPV I (Am−2) ∼ 2 PVI σ
J

(Am−2). (3.31)

The current density values obtained in this way may be compared with those of
the current obtained from the GS reconstruction, say JGS, within each flux rope,
sampled along the spacecraft path (y = 0). The PDFs of JPV I and JGS are shown
in Fig. 3.5. We emphasize that the currents computed from the two methods
are not expected to agree, given that the GS current is effectively based on island
cores, while that related to PVI is based on the boundaries. Indeed, Fig. 3.5 shows
that the JPV I distribution is shifted toward considerably larger values than the
JGS distribution. The most probable GS current occurs at a value that is about
two orders of magnitude smaller than the most probable PVI current. The PVI
current distribution also exhibits a noticeable extended tail at large values. This
finding is consistent with the typical scale of application of the two methods. The
PVI looks for small intense gradients, while the GS reconstruction is focused on
necessarily smoother MHD structures.

In the next Section, we will present a novel technique developed for the detec-
tion of more general equilibrium structures.

3.5 Detection of flux ropes via magnetic helicity

Despite the peculiar common signatures that flux tubes show, such as the rotation
of one magnetic field component accompanied by large magnetic field magnitude
and density lower than the surrounding, ambient solar wind, their identification
is not an easy task. Previous studies used the aforementioned properties to find
flux tubes (or flux ropes or filaments) in the solar wind beginning with very de-
tailed approaches that examine a number of parameters (McCracken & Ness, 1966;
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Figure 3.5: Probability density function of the current density evaluated with the
GS method (red line) and from the PVI signal (blue line). From Pecora, Greco,
et al. (2019).

Burlaga, 1969; Borovsky, 2008). These approaches allow a precise classification of
different types of magnetic flux structures. For example, the magnetic fields can be
fitted to a Lundquist model to identify relaxed force-free states in magnetic clouds
(Burlaga, 1988). Other techniques also enable the identification of other classes
of flux tubes or flux ropes. Small-scale flux ropes, such as “plasmoids” associated
with byproducts of magnetic reconnection (Matthaeus & Lamkin, 1986), can be
implicated in particle energization (Ambrosiano et al., 1988; Drake et al., 2006;
Khabarova et al., 2016) and frequently occur in turbulence (Wan et al., 2014).
The detection of these structures has been proposed based on cross helicity, resid-
ual energy, and magnetic helicity evaluated using a wavelet analysis (Zhao et al.,
2020). In the realm of more elaborate techniques, one may also identify flux ropes
for special cases that are near-equilibrium and quasi-two-dimensional. Then, the
reconstruction methods based on Grad-Shafranov equilibrium (Sonnerup & Guo,
1996; Hu & Sonnerup, 2002) provide a pathway to visualize a 2D map of flux tube
cross-sections. It is important to bear in mind that the application of a technique
such as GS reconstruction requires the special conditions mentioned in the pre-
vious Sections. A “good reconstruction,” and therefore a reasonable detection of
a GS flux tube, will be possible only when such auxiliary conditions are fulfilled
(Y. Chen et al., 2020). On the other hand, if a precise classification of the struc-
ture is not needed, one may look for more general properties with which flux tubes
in the solar wind can be associated. In particular, MHD equilibrium states can be
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found from Eqs. 3.1–3.3 both in the force-free and force-balanced approximations
(the latter leading to GS equation). Force-free MHD equilibria can be described
by the condition

∇×B = αB, (3.32)

where α is a scalar function. By taking the divergence of Eq. 3.32, it turns out
that B ·∇α = 0. Hence, magnetic field lines lie on constant-α surfaces. Using
Hopf’s theorem (Alexandroff & Hopf, 2013), it can be shown that the simplest
allowed shape for such constant-α surfaces is a torus, and the vector field has
helix-like lines of force that wind about the toroidal surface. The result can be
generalized in the case of force-balanced equilibria noticing that the surfaces at
constant pressure play the same role of the surfaces at constant α. In fact, Eq. 3.3
implies B ·∇P = 0. The helix-like shape of magnetic field lines that arises as a
solution of MHD equilibrium configurations, suggests that magnetic helicity is a
good candidate to be used for the identification of flux tubes in the solar wind.

3.5.1 The Hm and PVI method

In the previous Sections, we described the GS method employed in conjunction
with the PVI technique to identify near-equilibrium flux tubes and nearby discon-
tinuities (Pecora, Greco, et al., 2019). The result was that magnetic discontinuities
are often found to populate both peripheral boundaries of GS flux tubes as well
as, in some cases, internal boundaries within the flux tubes when more complex
topologies are present (Bruno et al., 2001). In these recent studies, one begins to
find verification of the original conjectures that the interplanetary magnetic field
consists of filamentary tubes bounded by discontinuities (McCracken & Ness, 1966;
Burlaga, 1969), while recent advances provide much more detail to this picture
(Khabarova et al., 2016). At this point, it may be useful to distinguish between
detection and identification methods. The latter are more complex and involve
specialized assumptions, such as the GS methodologies or the quantitative inter-
pretation of fitting to Lundquist states. These more elaborate methods, which one
might also call reconstruction methods, typically provide more advanced informa-
tion about the identified structures when they work; however, they do not always
work. While reconstruction methods can provide more information, detection
methods can be more versatile and easier to implement. Moreover, reconstruction
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methods can also benefit from a preliminary detection step. We will focus on this
point.

In this Section, we show the employment of two complementary methods that
characterize both the large- and small-scale coherent structures of the turbulent
solar wind. This time, instead of GS reconstruction, we use a quantitative eval-
uation of the magnetic helicity (Hm) to detect the presence of flux tubes, again
in synergy with the PVI technique to estimate the position of their boundaries.
The evaluation of local magnetic helicity employs the novel real-space method,
developed in Pecora et al. (2020), that has been shown to readily detect heli-
cal flux tubes. The PVI technique is used to detect magnetic discontinuities as
potential, both internal and external, boundaries of magnetic flux tubes. We ex-
ploit the frequently encountered helical nature of flux tubes to suggest a relatively
straightforward alternative to the assumptions of two-dimensionality and equi-
librium conditions that are adopted in Grad-Shafranov methods. We may thus
understand the Hm and PVI methods to provide complementary information. The
proposed technique identifies a certain class of self-organized magnetic structures,
with a minimum of hypotheses, and no claim of exhaustive identification.

The approach is based on the assumption that magnetic flux tubes carry a
finite amount of current density along their magnetic axis – as we also found in
the previous Section. These flux ropes are necessarily characterized by helical
magnetic field lines near their magnetic axis, as a consequence of Ampere’s law,
in a case in which there is a non-null parallel (to the current) magnetic field
component. Typically, in simplified representations these structures are treated
as 2.5D, with spatial gradients that mainly develop in the 2D plane perpendicular
to the electric current density. In addition, a net magnetic field component may lie
along the current axis. In envisioning (and simplifying) turbulence as an ensemble
of quasi-parallel, large-scale flux tubes, those with the same polarity are often
bounded by steep gradients such as small-scale, tangential discontinuities. In
anisotropic turbulence, these represent regions of dynamical interactions between
adjacent tubes, and they are often observed in simulations (e.g., Matthaeus and
Montgomery (1980); Servidio et al. (2009)). When present, these boundaries can
be readily identified by a method such as the PVI. The starting point is the
magnetic helicity, a rugged invariant of MHD turbulence, defined as

Hm = 〈a · b〉, (3.33)
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where a is the magnetic potential associated to the fluctuating magnetic field b,
and 〈. . . 〉 represents an average over a very large volume, or over a whole isolated
system (Woltjer, 1958; J. B. Taylor, 1974; Matthaeus & Goldstein, 1982). This
invariant can be estimated by single-spacecraft, 1D measurements, as the out-of-
diagonal part of the autocorrelation tensor (Matthaeus et al., 1982), namely

Hm =

∫ 0

∞
dsi εijk Rjk(γ(s)). (3.34)

Here Rjk(γ) = 〈bj(r)bk(r + γ)〉 is the correlation tensor evaluated at vector
spatial lag γ, and the fluctuations are assumed to be well described by spatially
homogeneous statistics, up to the second order correlations. The line integral is
evaluated along a specified curve, parameterized as γ(s), from a specified origin
at γ = 0, to infinity. The differential line element along γ is ds = ds dγ(s)/ds,
where s is the scalar displacement along the curve and dγ(s)/ds is a unit vector
tangent to the curve.

Generally, helicity measurement has been implemented using wavelet trans-
forms (Farge, 1992; Bruno et al., 1999, 2001; Telloni et al., 2012; Zhao et al.,
2020). The alternative approach, implemented here, is based on the consideration
of the real-space formulation of Eq. 3.34. This defining equation may be arbitrarily
decomposed as

Hm =

∫ `

∞
ds êi εijk Rjk(s) +

∫ 0

`

ds êi εijk Rjk(s) = (3.35)

= H+
m(`) +H−m(`), (3.36)

where the integral is now specialized to the case integration path in a fixed
direction ê with scalar lag s. The obvious interpretation is that H+

m(`) is the con-
tribution to helicity from structures larger than `, while H−m(`) is the contribution
to helicity from structures smaller than `. The method employed below is the
direct evaluation of the special case

H−m(`) =

∫ 0

`

ds êi εijk Rjk(s), (3.37)

where the integral was again calculated in the direction ê with scalar lag s.
Hereafter, we refer to H−m as Hm when not stated otherwise. It is important to
emphasize that this approach provides a cumulative measurement for the helicity
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of the fluctuations that have spatial scales less than `, for which the principle
assumption is that the turbulence is spatially homogeneous.

Implementation

In the usual way, the above mathematical formulation requires a practical inter-
pretation of the ensemble average (usually accomplished by averaging in space or
time), which relies on an ergodic theorem (Panchev, 1971). Assuming that single
spacecraft measurement is available and that the measurement point is fixed in
space, averaging is done in one Cartesian direction, using the Taylor hypothesis
(Jokipii, 1973). In this familiar approximation, a spatial lag s is inferred by com-
puting a convected distance in a given time lag, assuming no distortion during
this time interval. Therefore, with solar wind speed V = V ê, one approximates
s = −V τ , where τ is the time lag.

With these assumptions, the magnetic helicity of the fluctuations, and other
derived quantities, such as its reduced one-dimensional spectrum, may be derived
from interplanetary spacecraft data (Matthaeus & Goldstein, 1982). Here we
propose a procedure to calculate a local estimate of Eq. 3.37. To obtain an estimate
of the requisite elements of the correlation matrix at the point x, we averaged the
local correlator (symbolically, “b2b

′
3 − b3b

′
2”) over a region of width w0 centered

about x. To avoid effects of large fluctuations at the edges of the investigated
data interval, a window was employed to smoothly let the estimates reach zero
at the edges, which is a common procedure in correlation analysis (Matthaeus &
Goldstein, 1982). Specifically, in the first step, the raw helicity was estimated as

C(x, l) =
1

w0

∫ x+
w0
2

x−w0
2

[b2(ξ)b3(ξ + l)− b3(ξ)b2(ξ + l)] dξ. (3.38)

This was followed by windowing the correlation function C(x, l) as

Hm(x, `) =

∫ `

0

dl C(x, l)h(l) (3.39)

where h(l) = 1
2

[
1 + cos

(
2πl
w0

)]
is the Hann window. The interval of local

integration w0 is arbitrary, but we typically chose it as an order unity multiple
of the scale `, such as w0 = 2`. The above formulas convert directly to the time
domain directly by using the Taylor hypothesis. The boundaries of high-helicity
regions will be inferred through the PVI as described in previous Sections. In
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the following, we will present some examples of identification with this combined
technique, in both simulations and spacecraft measurements using the PSP data.

3.5.2 Identification in turbulence simulations

We tested our novel technique by using direct numerical simulations of compress-
ible MHD. We solved the equations (see below) in 2.5D, in a periodic square box
of length 2πL0. All the quantities were normalized to classical Alfvén units. The
simulations were performed in the x-y plane and a mean magnetic field B0 = 1

is present along the z axis. The velocity and magnetic field fluctuations have all
three Cartesian components. The code, based on a very accurate pseudo-spectral
method (Gottlieb & Orszag, 1977; Ghosh et al., 1993), as described in Perri et
al. (2017), makes use of logarithmic density. In order to preserve the solenoidal
condition of the magnetic field, the algorithm solves equations for the magnetic
potential a and parallel variance bz directly, so that the total magnetic field is de-
composed as B = Bzẑ+∇a× ẑ. Here, Bz = B0 + bz is the out-of-plane magnetic
field, and ∇ = (∂/∂x, ∂/∂y, 0) is the in-plane gradient. The equations that are
solved are thoroughly described in Vásconez et al. (2015); Perri et al. (2017), and
read:

∂ρ

∂t
= −∇ · (ρu) , (3.40)

∂u

∂t
= − (u ·∇)u+

1

ρ
(∇×B)×B − β

2ρ
∇ (ρT )− ν4∇4u, (3.41)

∂B

∂t
= ∇× (u×B)− η4∇4B, (3.42)

∂T

∂t
= − (u ·∇)T − (γ − 1)(∇ · u)T − χ4∇4T, (3.43)

where ρ is the mass density, u the bulk velocity, B the total magnetic field,
T the temperature, γ = 5/3 the adiabatic index. The algorithm is stabilized via
hyperviscous dissipation with the coefficients ν4, η4, χ4 of the order of 10−9. The
fourth-order hyperviscosity prevents spurious numerical effects at very small scales
(very high k-vectors).

The numerical tool described by Eqs. 3.40–3.43 has extensively been tested
and used in the past decade for the study of 2D plasma turbulence (Servidio et
al., 2009), and also for the study of solar wind discontinuities (Matthaeus et al.,
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ID Nx Ny β B0

ML03 4096 4096 1.0 1.0
ML04 2048 2048 1.0 1.0
ML05 4096 4096 1.0 1.0
ML06 4096 4096 1.0 1.0
ML07 4096 4096 0.5 1.0
ML08 4096 4096 0.2 1.0
ML09 4096 4096 3.0 1.0
ML10 4096 4096 0.5 1.0

Table 3.1: Numerical and physical parameters used for the compressive MHD
simulations. ID is the run identifying label, Nx and Ny are the number of grid
points in x and y directions, β is the ratio between plasma kinetic and magnetic
pressures, and B0 is the magnitude of the mean magnetic field.

2015). The parameters we use are, for the most, close to solar wind conditions
with a few being closer to those of the magnetosphere and solar corona. Parameter
details are listed in Table 3.1.

The initial fluctuations were chosen with random phases, for both magnetic and
velocity fields in a shell of Fourier modes with 3 ≤ |k| ≤ 5, where the components
of wave vector are in units of 1/L0. The decaying MHD simulations quickly de-
velop turbulence and small-scale dissipative structures. The magnetic field power
spectrum manifests a power-law typical of Kolmogorov turbulence, with a scaling
of P (k) ∝ k−5/3.

The turbulent pattern that arises from the evolution of the system is reported
in Fig. 3.6, where we show the current density jz (color shading) with superim-
posed 2D contour lines of constant magnetic potential a (black solid lines), which
are readily identified with the in-plane projection of the magnetic field lines. The
typical features of 2D turbulence are evident, with large-scale coherent structures
and narrow, discontinuous contact regions, where one frequently finds that re-
connection is occurring (Servidio et al., 2009). These magnetic islands are also
the regions where magnetic helicity, computed as Hm = a bz (the 2.5D version
of Eq. 3.33), is concentrated and retained throughout the whole simulation, as
Fig. 3.7 shows. The visual inspection of Hm maps confirms that magnetic helicity
is conserved in our simulations of fully developed turbulence, as expected from
(Matthaeus & Goldstein, 1982). In the following, we will look for these helical
structures in simulations (to test the technique) and in the solar wind.

Though Fig. 3.7 shows that magnetic helicity concentration is unambiguously
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Figure 3.6: Current density (color shading) in the out-of-plane direction along
with the vector potential (iso-contours) for ML04 simulation. The time sequence
evidences the evolution of turbulence and the generation of strong current sheets
in between magnetic islands.

correlated to the presence of magnetic islands, we use an independently developed
method to test the technique. In Fig. 3.8, we report, as shaded areas, magnetic
flux tubes and reconnecting current sheets that were identified using a cellular
automaton (CA) procedure described in Servidio, Greco, et al. (2011). This CA
was built on the topological properties of the magnetic potential. First, it iden-
tifies the critical points (maxima, minima, and X-points), and then propagates
information away from these critical points, thus identifying the strongest, large-
scale islands (starting from the O-points) and the reconnection regions (starting
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Figure 3.7: Magnetic helicity (color shading) along with the vector potential (iso-
contours) for ML04 simulation. The time sequence evidences that Hm is concen-
trated and maintained within magnetic islands.

from the X-points). The result of this procedure is a cellularization of turbulence
(Matthaeus et al., 2015), as it is clear from the figure.

On this magnetic skeleton, we tested our 1D algorithm, based on the combi-
nation of the local magnetic helicity in Eqs. 3.38–3.39 and the PVI in Eq. 2.41.
In order to test the method and to establish a direct comparison between plasma
simulations and the PSP data, we sent a virtual spacecraft through the periodic
domain. Its trajectory is represented in Fig. 3.8 with oblique blue lines, which
intersects both large-scale helical structures (cyan) and small-scale discontinuities
(orange).
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Figure 3.8: 2D line contours of the magnetic potential a (black solid) at the maxi-
mum of the turbulent activity of the analyzed MHD simulation. The shaded areas
in cyan and orange are magnetic islands and strong current sheets, respectively,
individuated by the CA algorithm. The oblique blue lines represent the trajectory
of a virtual satellite that sweeps through turbulence. Yellow and green crosses
indicate the maxima and minima of the local magnetic helicity, respectively, while
red stars are strong PVI events. From Pecora et al. (2020).

In Fig. 3.9–(a), we report the turbulent magnetic field, as observed along the
virtual satellite trajectory. The 1D signals are shown over the entire trajectory
along the oblique coordinate s measured in units of L0. In (b) we show the out-
of-plane current jz which is very intermittent, indicating the presence of magnetic
discontinuities. To identify these intermittent spots using the magnetic field (that
has to be interpolated from grid points to the oblique trajectory), we computed the
PVI signal, as described in Eq. 2.41. We used very small increment lags, namely
PVI(s, ` = λT/10), where λT =

√
δb2
rms/j

2
rms is the magnetic Taylor microscale

(already mentioned in Sec. 2.7.2). At these lengths, the time series generated
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Figure 3.9: Measurements and analyses along the virtual spacecraft trajectory
shown in Fig. 3.8. (a) Magnetic field components and magnitude. (b) Current
density jz in the out-of-plane direction. (c) Time series of PVI(s, ` = λT/10).
(d) Filtered magnetic helicity evaluated at a correlation scale Hm

(
s, ` = λc

2

)
. The

horizontal red lines in (c) and (d) represent the thresholds of the method, and the
symbols represent over-threshold peaks. From Pecora et al. (2020).

by the PVI method becomes a good surrogate for the current density, as is sug-
gested by comparing panel (b) and panel (c) of the same figure (for more on this
comparison, see Greco et al. (2018)).

To complete the analysis, we computed the filtered magnetic helicity in Eqs. 3.38–
3.39. First, we rotated the magnetic field b from the Cartesian (bx, by, bz) frame
to the trajectory coordinates (b1, b2, b3), where b1 is the component along the tra-
jectory direction ê, b3 remains along z, and b2 completes the right-handed frame.
Second, from this rotated field, we computed the Hm signal at the (cumulative)
scale ` = λc/2, where λc is the correlation length described in Sec. 2.3.

By using both the surrogate Hm measurement and the PVI signals, we estab-
lished a threshold-based method in order to identify the most significant events.
For the Hm, we identified as strong flux tubes the events with helicity values
larger than one standard deviation of the Hm distribution. For the PVI method,
we chose a typical threshold of PVI = 2. It has been shown that the probabil-
ity distribution of the PVI statistic derived from a non-Gaussian turbulent signal
strongly deviates from the probability density function of the PVI computed from
a Gaussian signal for values of PVI that are greater than about 2. As PVI in-
creases, the recorded “events” are extremely likely to be associated with coherent
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structures and therefore inconsistent with a signal having random phases (Greco
et al., 2018).

The selected peaks are reported for both Hm and PVI in panel (c) and (d) of
Fig. 3.9, respectively. At this point, we have a list of events, namely the position
of the possible flux ropes (peaks of the filtered magnetic helicity signal) and the
reconnection events (peaks of the PVI signal). The position of these events is
reported over the full 2D map in Fig. 3.8, and one may observe a very good
qualitative agreement of these events with the magnetic potential and the CA
painting. Magnetic helicity peaks are located well inside helical islands, close to
their cores. A few are located outside and coincide with PVI events, indicating
the presence of complex structures in between islands, which is possibly due to
a reconnection-induced reorganization of magnetic field topology. On the other
hand, red stars – the PVI events – are found at the boundaries of magnetic islands.
This precise positioning of magnetic helicity and PVI peaks suggests that the core
of a magnetic island can be identified, with noteworthy precision, by a magnetic
helicity extremum, and its boundaries coincide well with the closest PVI events
on either side. The new method is therefore able to identify the strongest helical
flux tubes and the more intermittent magnetic structures, which are likely to be
reconnection events.

Fig. 3.10 shows a close-up of the relevant quantities measured along the first
segment of the synthetic trajectory. From this 1D information, the identification
of magnetic islands is rather straightforward: the oscillations of the PVI signal
tend to drop in magnitude near a local extremum of Hm, and the boundaries of
the islands are well-defined by a sharp increase in PVI. Moreover, inside island
cores, it is evident that the total current is smaller in general, but not zero, in view
of Ampere’s law. The net magnetic helicity in a flux rope is indicated by a nonzero
component of the out-of-plane magnetic field fluctuation bz. It is interesting to
notice how well the Hm peaks fall in a PVI-quiet region in between two strong
PVI events.

3.5.3 Identification in Parker Solar Probe data set

We applied the Hm–PVI technique to magnetic field measurements obtained from
the Fluxgate Magnetometer on the PSP FIELDS instrument suite (Bale et al.,
2016). In particular, we analyzed the results obtained from the first perihelion
(Bale et al., 2019), which will be further discussed in comparison with other iden-
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Figure 3.10: Zoom on (a) magnetic field, (b) current density, (c) PVI, and (d) Hm

for the first segment of the trajectory, where three peaks of helicity and twelve
PVI events have been identified. Shaded cyan and orange areas represent the CA
structures reported in Fig. 3.8. The Hm peaks fall in PVI-quiet regions, in between
consecutive, strong PVI clusters. From Pecora et al. (2020).

tification techniques (Zhao et al., 2020; Y. Chen et al., 2020). The FIELDS mag-
netic data were resampled from full resolution to 1-second cadence. Moreover, the
first encounter data were divided into 8-hour-long subsets, so that each contains
several correlation times. The correlation time τc, in the spacecraft frame, is about
10− 40 minutes at radial distances of 0.17− 0.25 au (Parashar et al., 2020).

The correlation time, which will also be used in the following, is intended to
only provide a rough estimate of local large-scale structure duration. The large
uncertainties that affect the determination of the correlation time are still an open
issue and prevent the application to rigorous treatments (Krishna Jagarlamudi et
al., 2019).

We analyzed several such intervals in the first encounter; however, to make close
contact with the above-mentioned published works (Zhao et al., 2020; Y. Chen
et al., 2020), we concentrate below on the following particular interval: 2018
November 13 from 8:00 to 16:00 UTC. Figure 3.11 shows (a) the magnetic field
time series in the RTN coordinate system, (b) the PVI computed at 1s lag, and
(c) the magnetic helicity evaluated at the scale of one correlation time. In this
interval, the average plasma β ∼ 1 (Chhiber, Goldstein, et al., 2020; Zhao et al.,
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Figure 3.11: (a) PSP FIELDS Fluxgate Magnetometer (MAG) data in RTN co-
ordinates resampled at 1s on 2018 November 13 from 8:30 to 15:30 UTC. In this
interval, the correlation time τc ∼ 25 minutes. (b) PVI signal and (c) Hm com-
puted at one correlation time. From Pecora et al. (2020).

2020; Y. Chen et al., 2020).

Figure 3.12 shows the analysis of two subintervals of the data shown in Fig. 3.11,
specifically from 9:15 to 12:45 (left panels) and from 13:00 to 13:45 (right panels).
Each column shows stacked plots of the magnetic field time series, PVI, and local
magnetic helicity, which was computed with different maximum lags. The spatial
increment used in the definition of Eq. 2.28 can be converted in temporal incre-
ments using the Taylor hypothesis – for which time evolution of structures can be
neglected as they sweep through the satellite –, one can revert back the temporal
lag to spatial lag using the average solar wind speed in the considered interval,
namely ` = Vswτ . The largest lag was chosen to be one correlation time τc, while
the smallest was t/τc = 1/3. Regions of high helicity are shaded in cyan, while
nearby PVI events in orange, in analogy with the procedure employed in the sim-
ulation. Pairs of PVI events that bound helical regions are also highlighted with
dashed vertical lines. It is evident that the Hm time series suggest a multi-scale
nature of helical structures. We recall that the helicity diagnostic incorporates
contributions from all scales smaller than the maximum lag.

The left panels of Fig. 3.12 show two helical structures that are bounded by
two strong PVI events each (cyan lines for the first event and magenta lines for
the second). At scales smaller than one correlation time (panels (d) and (e)), the
Hm signal shows a fragmentation of the structures, highlighting smaller features
within the larger helical structure. Moreover, the two identified cores (cyan shaded
regions) might be enclosed within a larger helical structure, possibly bounded by
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Figure 3.12: Two close-ups of Fig. 3.11 (left panels) from 9:15 to 12:45 and (right
panels) from 13:00 to 13:45. The figure reports the magnetic field (a) and (f);
the PVI signal (b) and (g); and the magnetic helicity evaluated at one correlation
time (c), (h), 1/2 correlation time (d), (i), and 1/3 of the correlation time (e)
and (j). It is interesting to notice that the Hm shape heavily depends on the
chosen window, suggesting a multi-scale nature of helical structures. The vertical
cyan and magenta lines highlight the position of strong PVI events edging high-
helicity regions (cyan shaded regions). The left panels show two structures that are
bounded by two strong PVI events each (cyan lines for the first event and magenta
lines for the second). At scales smaller than one correlation time, the Hm signal
shows a fragmentation of the structure, highlighting sub-features within the helical
structure. Moreover, the two identified cores might be enclosed within a larger
helical structure, possibly bounded by the leftmost cyan and rightmost magenta
lines. This description is also consistent with the GS reconstruction performed in
Y. Chen et al. (2020) (their Fig. 4), which shows a large island with two inner
structures. The right panels, instead, show a smaller structure at t/τc = 1, clearly
bounded by PVI events, which has no internal features. From Pecora et al. (2020).

the leftmost cyan and rightmost magenta lines. This description is also consistent
with the GS reconstruction performed in Y. Chen et al. (2020), which shows a
large island with two inner structures at about the same period. The right panels,
instead, show a single structure at t/τc = 1, which is clearly bounded by PVI events
(panel (h)). At smaller scales, t/τc = 1/2 (panel (i)), t/τc = 1/3 (panel (j)), and
the Hm signals suggest the absence of relevant internal structures, envisioning a
“pristine” flux rope.

We have found that flux tubes, identified in several independent ways in sim-
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ulations, have a precise pattern of the Hm–PVI signals. The same patterns have
been recovered in the application to the PSP measurements, confirming that the
Hm–PVI method can be a reliable tool for the detection of such structures. In
the following Section, we present an ongoing work for the development of an al-
gorithm that automatically detects flux tubes with the above Hm–PVI technique,
and performs local GS reconstructions.

3.5.4 GS solver with Hm support in MHD simulations

In this Section, we will show the application of our novel GS solver to the simula-
tions of MHD turbulence described in Sec. 3.5.2. The preliminary results shown
here are of great interest since, as far as we know, it is the first time a GS solver
is applied to numerical simulations of plasma turbulence. Simulations grant the
unique opportunity for visual comparison and analytical estimation of the error
in the reconstruction. Our GS solver was enhanced by adding a first automatic
detection step based on the helical properties of flux tubes shown in previous Sec-
tions. Each reconstruction is also performed automatically and guided by physical
parameters. Given a 1D trajectory in the simulation, Hm extrema are individuated
as described previously. In Fig. 3.13 we show the magnetic potential az (dashed
black lines) that outlines magnetic structures. The virtual trajectory along which
the analysis is performed is the oblique line, and the over-threshold magnetic helic-
ity extrema are also indicated. The reported values of magnetic field components
along the virtual satellite path show the typical behavior of flux ropes, with the
rotation of one component and an enhancement of magnetic field magnitude. Also,
the current density becomes smoother as large gradients are expected to take place
mostly at the boundaries of the flux tubes (recall that the PVI is a good surrogate
of the current).

After the identification of the potential flux tube cores (as over-threshold Hm

extrema), the algorithm passes to the GS solver an interval of measurements that
extends for one correlation length and is centered about each local Hm extremum.
Recall that the correlation length is about the typical size of magnetic islands (in
these simulations λc ∼ 0.5). For each of these sets, the algorithm performs the
steps described in Sec. 3.3. Figure 3.14 shows the relevant quantities in the final
optimal reconstruction frame (x̂, ŷ, ẑ). The magnetic field component show the
typical features of flux tubes, with one that is small and almost constant, one
that flips sign and the latter that is bell-shaped (Sonnerup & Guo, 1996; Hau &
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Figure 3.13: (Left) Magnetic potential iso-contours (black dashed lines) for ML02
simulation (for details refer to Table 3.1). The blue oblique line is the virtual
satellite trajectory. Over-threshold magnetic helicity extrema are indicated with
yellow (positive) and green (negative) cross marks. (Top right) Magnetic field
components and (bottom right) current density measured along the trajectory
direction s. The vertical yellow and green dashed lines mark the position of the
corresponding Hm extrema.

Sonnerup, 1999). The transverse pressure has a maximum at the center of the
island, and the magnetic potential is a symmetric parabola. The requirement for
GS equilibrium that the pressure is a function of the vector potential alone is
well respected. The values of Pt(A) are very well overlapping between the two
branches (the two halves of the island) and a numerical fit returns the analytical
exponential form of this correlation. Notice that only the first and the last point
of this scatter plot are considered non-overlapping by the algorithm.

Once the analytical form of Pt(A) is obtained, the rhs of GS equation is com-
pletely determined and the reconstruction in the perpendicular direction can be
performed. The “local” plane in which reconstruction is performed is indicated
as xrec − yrec. As mentioned before, once a peak of magnetic helicity has been
individuated, the length of the xrec axis is set to be one correlation length (of
the magnetic field), centered at the peak. Along this direction, original data is
re-sampled at a cadence of λT/2, where λT is the in-plane magnetic field Taylor
length and for these simulations is λT ∼ 0.05 ∼ λc/10. The reconstruction step
in the perpendicular direction, yrec, is also a fraction of the Taylor length (in par-
ticular, it is chosen ∆y = λT/10). Numerical simulations allow to estimate the
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Figure 3.14: Quantities in the reconstruction optimal frame. (Top left) Magnetic
field components. The component along the projected satellite path is close to
zero, that in the perpendicular direction shows a smooth rotation, and the third
indicates the presence of a strong mean field. (Top right) kinetic (red dashed),
magnetic (blue crossed) and transverse (black) pressures. (Bottom left) magnetic
potential along the projected satellite trajectory; the peak identifies the center of
the island. (Bottom right) the double folding of the pressure in the two branches
of the island that are almost perfectly overlapping. A fit is performed through an
exponential function so to have the complete rhs of the GS equation.

deviation of the reconstructed field from the exact ones, and we defined an error
as

ε =

√
|Arec − Aex|2

Nx Ny

, (3.44)

where Arec−Aex is the point-wise (on the numerical grid) difference between the
reconstructed and exact vector potential, over the reconstructed domain composed
of Nx ×Ny points. Figure 3.15 shows ε as a function of the increasing number of
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Figure 3.15: Deviation of reconstructed vector potential from the exact one. The
error grows exponentially as a function of the increasing extension of the recon-
struction domain.

Ny points used for the reconstruction. As expected, the farther the reconstruction
is performed, the larger the deviation from the exact values.

The optimal extent of the reconstruction in the perpendicular direction is then
inferred through physical quantities rather than imposed numerically. At each
step of reconstruction away from yrec = 0 line, a sort of Taylor length for the
magnetic potential is calculated as:

λT (A) =

√
〈|A− 〈A〉|2〉
〈|∂A/∂x|2〉 , (3.45)

where the averages 〈. . . 〉 are taken over the horizontal axis, at the current y
position, and A is the reconstructed vector potential. The meaning of this length
can be described as follows: while the reconstruction algorithm spans regions
farther away from satellite trajectory (yrec = 0), spurious scales are formed. As
soon as this length keeps growing, the smallest describes scale is growing too, so
no additional fictitious information is added. When this length starts decreasing,
scales smaller than the previous ones are created, so non-physical information is
added in the reconstruction and the algorithm can stop. Figure 3.16 shows this
procedure at work.

The panel on the left shows the Taylor length for the vector potential as a
function of the increasing reconstruction position in the upward direction (at this
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Figure 3.16: (Left) Vector potential Taylor length as a function of the increasing
distance of reconstruction. The vertical blue line indicates the position where
numerical spurious glitches start to appear. (Right) Reconstruction domain (color
shading is vector potential magnitude) cropped at the so-determined y-position.

point it is assumed to be symmetric in both directions, but it is possible to measure
different λT (A) for both the upward and downward directions). As stated above,
this length increases up to a certain position and then starts decreasing when
numerical instabilities start to grow and add nonphysical information at smaller
scales. The vertical blue lines indicates the maximum extension in the y direction
determined by the algorithm. On the right, the domain of a reconstructed island,
cropped at the distance where λT (A) starts decreasing. Using a non-symmetric
domain would prevent the appearance of the small glitches that are present, in
this case, at far negative yrec values. As one would expect, when the starting
sampling line is closer to the island center, the reconstruction domain can be
extended farther away. The more the island is sampled close to the edges, the
sooner numerical glitches appear resulting in a reduced reconstructed domain as
Fig. 3.17 shows.

Figure 3.17 also suggests a possible application to multi-spacecraft mission as a
synergistic work between any spacecraft close (or distant) enough. In fact, if a flux
tube sweeps through different spacecraft at different positions, a reconstruction can
be performed with the measurements taken at each of them. The final result can
be a larger reconstructed domain composed of the overlapping single ones. Also,
fields magnitudes obtained by reconstruction at one satellite can be compared to
the values measured by the others confirming the “goodness” of the result (e.g.
Möstl et al. (2009)). Finally, Fig. 3.18 shows the consecutive reconstructions
performed in the simulation along the oblique line.
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Figure 3.17: Reconstructions performed starting from different trajectories. The
reconstruction domain can expand farther when the sampling trajectory is closer to
the island center. In the reconstructed domains are reported simulation (dashed)
and reconstructed (solid) vector potential, along with its magnitude (color shad-
ing). The figure also suggests that application to multi-spacecraft mission is pos-
sible in order to expand the total reconstructed domain by overlapping different
local reconstructions.

This automatic detection-reconstruction algorithm shows promising results
even in its not yet final version. Also, using physical constraint rather than numer-
ical parameters lets the algorithm adaptively adjust to obtain the best possible
reconstruction based on local properties. In the following, we present another
application of the Hm–PVI technique on the PSP orbit 5 data.

3.6 Flux tubes and energetic particles

In this last Section, using the Hm−PVI technique described in Sec. 3.5.1, we show
an ongoing work that gives observational evidence about the influence of helical
flux tubes on the modulation of energetic particle populations. Energetic particle
transport in the interplanetary medium is known to be affected by magnetic struc-
tures. This has been demonstrated in various near-Earth orbit studies for solar
energetic particles (SEPs) (Klein, K.-L. et al., 2008; Trenchi et al., 2013), as well
as for more energetic galactic cosmic rays, whose modulation depends on solar
activity (Van Allen, 2000). A variety of indications, both theoretical (Ambrosiano
et al., 1988; Drake et al., 2006; Dalena et al., 2012) and observational (Mazur et
al., 2000; J. Tessein et al., 2013; J. A. Tessein et al., 2016; Khabarova & Zank,
2017) build a case that interactions of particles with turbulence is structured and
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Figure 3.18: Consecutive automated reconstructions (color shaded regions) per-
formed by the algorithm. The figure is organized in the same fashion as Fig. 3.13.
The discrete marks on magnetic field and current density plots represent the re-
sampled values used for the reconstructions.

inhomogeneous. These interactions may involve temporary trapping (Ruffolo et
al., 2003), as well as exclusion from certain regions of space (Kittinaradorn et al.,
2009), generally controlled by the topology and connectivity of the magnetic field.
In some cases, such as SEPs “dropouts”, the influence of the magnetic structure is
dramatic (Mazur et al., 2000); in other cases, it is more subtle, as in edge effects in
SEP confinement (J. A. Tessein et al., 2016; Khabarova et al., 2016). With PSP
now closer to the Sun that any previous mission, novel opportunities are available
for examining the relationship between magnetic flux structures and energetic par-
ticle populations. In particular, IS�IS energetic particle (EP) (McComas et al.,
2016) along with FIELDS magnetic field (Bale et al., 2016), and SWEAP plasma
moments (Kasper et al., 2016) measurements, are enabling the characterization of
EPs observations closer to their sources than ever before possible.

During PSP orbit 5, from 2020 May 23rd to 2020 June 3rd, a sequence of five
energetic particle events have been measured and have been the subject of several
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studies (Cohen et al., 2020; Chhiber, Matthaeus, et al., 2020). We analyzed
selected properties of these events using several PSP data products. We employ
magnetic field data from the MAG instrument on the FIELDS suite, resampled
from the original 4 samples per cycle (4Hz) to a 1-second resolution. PVI is
calculated at this scale. Magnetic helicity is calculated using Eq. 3.39 – replacing
spatial lag with temporal lag –, at different window sizes scaled to multiples of the
correlation time τc. Its normalized version is H̃m = Hm/(〈δb2〉τc), where 〈δb2〉 is
the rms fluctuating energy in the considered interval. Particle measurements are
obtained from the IS�IS EPI-Lo and EPI-Hi instruments. The IS�IS instruments
EPI-Lo and EPI-Hi measure ions in energy ranges 20 keV/nucleon – 15 MeV total
energy, and 1 – 100 MeV/nucleon respectively. Electrons are measured in the
interval 25 keV – 1 MeV for EPI-Lo, and 0.5 – 6 MeV for EPI-Hi. We use EPI-
Lo ChanP and ChanE for proton and electron count rates. For EPI-Hi we show
the end A of both the High Energy Telescope (HET A), and the Low Energy
Telescope 1 (LET1 A). All public data are available from the IS�IS database and
on Coordinated Data Analysis Web (CDAWeb). Priority buffer (PBUF) rates
measurements are not public as they are uncalibrated (engineering) data. These
are integrated counts measured at different stopping depths within the telescope
and cannot be calibrated to fluxes. In the following, we do not intend to use these
measurements to obtain quantitative estimates, rather they are used to show a
more resolved envelop of the hourly-averaged fluxes ( panels (j) and (k) of the
following Figures).

An overview of the five events occurring during the selected period is shown in
Fig. 3.19. Even at this scale of 11 days, the sets of measurements show interesting
behavior and a correlation between energetic particles (both protons and electrons)
and magnetic field helical properties. In particular, it is possible to notice that
the large helical structure appearing around May 28th encloses both the energetic
electrons (panels (g) and (i)), and the higher-energy portion of the energetic proton
population (panels (f) and (k)). On the other hand, the lower-energy portion of
the energetic proton population is less confined and more dispersed (panels (e)
and (j)). We will focus on the first three events – identifiable with the sudden
onsets (before May 29th) of energetic fluxes in panels (j) of Fig. 3.19.

Figure 3.20 shows the same quantities of Fig. 3.19, but the analysis is performed
over the restricted time interval from May 24th 00:30 to 23:30 UTC during which
τc ∼ 38 minutes. The restriction to a shorter time-scale enhances the smaller-scale
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Figure 3.19: Period from 2020 May 24th, to June 2nd, during which τc ∼ 6 hours.
The stacked panels show (a) magnetic field measured by FIELDS resampled at
1-second cadence, (b) the PVI signal computed with a time lag of 60 seconds, (c)
the magnetic helicity of fluctuations, and (d) its normalized version, (e) EPI-Hi
LET1 proton count rate at 60-second resolution, (f) EPI-Hi HET proton count
rate at 60-second resolution, (g) EPI-Hi HET A electron count rate in the energy
range 0.4-1.2 MeV at 1-hour resolution, (h) EPI-Lo proton count rate in the energy
range 80-200 keV at 300-second resolution, (i) EPI-Lo electron count rate in the
energy range 30-550 keV at 300-second resolution, (j) EPI-Hi LET1 A proton flux
at 1-hour resolution, and (k) EPI-Hi HET A proton flux at 1-hour resolution.

helical structures that were obscured before. In this case, the energetic proton
population appearing from 9:00 to 15:00 is confined between – and excluded from
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Figure 3.20: 2020 May 24th from 00:30 to 23:30 UTC, τc ∼ 38 minutes. The
panels are arranged in the same fashion as in Fig. 3.19. The energetic proton
population is confined between and excluded from the two negative helicity peaks.

– the two helical structures. During this event, the helical field lines appear to act
as excluding boundaries for the particles which have suppressed transport across
the structures. We may imagine this population to be squeezed and advected
between these flux ropes. This kind of exclusionary behavior is reminiscent of the
phenomenon of SEP dropouts that have been associated with topological strictures,
and that are frequently observed at 1 au and in simulations (Mazur et al., 2000;
Ruffolo et al., 2003; Tooprakai et al., 2016). The exclusion of the energetic protons
from regions to the left of 08:00 is likely associated with the onset of the SEP event,
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Figure 3.21: Period from 2020 May 27th 04:30 to 29th 08:00, during which τc ∼ 4
hours. The panels are arranged in the same fashion as in Fig. 3.19.

but could also possibly provide information about the flux tubes through which the
earliest particles in the event are transported. The spreading of particles following
onset is typically associated with diffusive transport (e.g., Dröge et al. (2016)).
In this case the helical structure near 16:00 may be inhibiting diffusion into the
relatively quiet region (in terms of PVI) that resides between the helical structures
at 16:00 and 22:00. Phenomena such as this have been observed in simulations and
have been interpreted as temporary topological trapping (Tooprakai et al., 2016)
possibly accompanied by suppressed diffusive transport (Chuychai et al., 2005).

The picture given by Fig. 3.21 examines an approximately 2-day period be-
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ginning on 2020 May 27th, and is complementary to the one of Fig. 3.20. Events
3 and 4 shown here, can be better distinguished in the HET signal of EPI-Hi, in
which two separated populations clearly appear. In LET1, the signal of the first
event does not fully decline before the onset of the second one. This local analysis
shows that there are two adjacent flux tubes of opposite-sign helicity. One can
notice that the abrupt onset of EP coincides with the appearance of the flux tube,
suggesting that the spacecraft has suddenly experienced a different environment,
passing from the ambient solar wind to a confined plasma. In this case, contrary to
the previous, each energetic population is confined within a different helical struc-
ture. The lower-energy counterparts (panels (h) and (i)) are not concentrated in
the positive helicity flux rope between 05-27 16:00 and 05-28 04:00, nor in the
negative-helicity flux rope between 05-28 04:00 and 05-28 20:00. Rather, one sees
an enhancement of EPi-Lo 80–200 keV protons in association with the trailing
edge of the negative-helicity flux tube.

The two different, but complementary, descriptions emerging from the events
in Fig. 3.20 and Fig. 3.21 are not in contrast one another, rather they confirm the
same vision. The analysis of the two periods suggests that helical flux tubes act as
difficult-to-penetrate boundaries for particles in either directions. Particles that
are outside have difficulty breaking into the region of helical field lines and populate
the core of the flux rope. As in the moss model (Kittinaradorn et al., 2009),
particles can impinge at flux rope boundaries and get energized by discontinuities
and reconnection events. On the other hand, particles that are originally confined
within the structure can experience coherent energization processes due to inner
reconnection events or flux rope topological evolution (le Roux et al., 2015; le
Roux et al., 2015; le Roux et al., 2018; Du et al., 2018).

We therefore find evidence for existence of transport boundaries at or near
edges of solar energetic particle enhancements, where the boundaries are charac-
terized by helical flux ropes accompanied at their edges by clusters of enhanced
PVI events. This elaborates on previous findings near 1 au (J. A. Tessein et al.,
2016) and indicates that the channeling of SEPs occurs closer to the Sun than has
been previously observed.
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Discussion and conclusion

In the works done during this PhD, different problems of astrophysical plasmas
have been investigated with different approaches. The synergistic use of theo-
ries, simulations, and observations granted a deeper understanding of the physical
phenomena of interest.

In the first Chapter, we described and compared two of the most commonly
used approaches for plasma physics simulations: (I) the hybrid and (II) the full
kinetic PIC algorithms. We used three different values of the plasma β, in order
to describe relevant scenarios for heliospheric plasmas: the solar atmosphere (β .

0.1), the outer regions such as the fast/slow solar wind (β ' 1), and the turbulent
magnetosheath (β � 1). We used three HPIC simulations and performed several
with the FPIC algorithm. With the latter, we investigated how different numerical
parameters (with same physical conditions) affect the energy conservation and
the spectral properties of turbulence. We found that, increasing the number of
particles per cell gives better results, for what concerns energy conservation, than
increasing the resolution (the number of cells used to discretize the computational
domain). The power spectra of electric and magnetic fields are consistent with
the Kolmogorov prediction in the inertial range S(k) ∼ k−5/3. The magnetic field
spectrum exhibits a steeper power law at smaller (kinetic) scales, with a scaling
S(k) ∼ k−8/3. The results were comparable within the two codes. Regarding the
electric field, the differences between the two algorithms are more appreciable.
At smaller scales (kdi > 1), and at low β, the electric field spectrum of the full
PIC simulation is larger than that of the corresponding hybrid simulation. This is
probably due to the fact that in the full kinetic case, the electric field retains the
contribution of small-scale effects, such as the electron pressure-divergence term.

In the second Chapter, we focused on the description of diffusion and accel-
eration of ions in plasma turbulence, using the above-mentioned self-consistent
simulations. First, we have observed the motion of ions moving self-consistently
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in the turbulent electromagnetic field, and found that it is very erratic. Particles
can be trapped in magnetic vortices or scattered away by current sheets, wander-
ing like a pollen in the atmosphere, or field lines in the solar corona (Rappazzo
et al., 2017). We have then proved that this type of motion, achieved after long
time intervals, can be described in the realm of the Brownian diffusion theory.
Subsequently, a number of diffusion theories have been described in the search
for an analytical form of the diffusion coefficient that is not provided by that of
the Brownian motion. The investigated theories give a functional form of the dif-
fusion coefficient, each in its own field of application. The NLGC theory is the
most precise in giving an estimate for the diffusion coefficient. We simplified the
problem using a 2.5D geometry, which can be a valid approximation to understand
the nature of strongly anisotropic (magnetized) fluctuations (Shebalin et al., 1983;
Dmitruk et al., 2004; Matthaeus & Lamkin, 1986). We have then “reduced” the
NLGC theory to the 2D case. This 2D-NLGC theory has been found to be valu-
able in describing the diffusion coefficient of particles moving in self-consistent
turbulent fields.

For what concerns the acceleration process, the PDFs show that acceleration
nature depends on the plasma β. Acceleration is a stochastic variable for high-β
plasmas, whereas it is distributed with power-law tails for low β. We have found
that the electric field component parallel to the magnetic field is correlated with
particle acceleration. The “anomalously” accelerated particles, i.e. the particles
with non-Gaussian acceleration values, are connected to regions with large par-
allel electric field. This has been seen, qualitatively, by spotting these particles
over the parallel electric field map and, quantitatively, by computing conditional
statistics. It is worth noting that only a small percentage of particles is anomalous
and affected by the acceleration mechanism. Therefore, this result is consistent
with the average free-streaming behavior in the out-of-plane direction. The distri-
bution of particles kinetic energy shows interesting features. In low-β plasmas the
originally thermal distribution develops power-law tails contrary to that of high-β
which does not significantly evolve in time. We further analyzed the energization
process and found that particles moving in the low-β plasma experience a break of
their magnetic moment that, instead, remains a constant of the motion for high-β
particles. Additional investigation pointed out a sort of resonance between parti-
cles and turbulence characteristic lengths. Indeed, when the Larmor radius is of
the order of the current sheets thickness, particles can actively interact with small-
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scale intense structures and undergo a coherent acceleration process that result in
net energy gain. The resonant interaction between particles and turbulence is the
responsible for magnetic moment non-conservation. On the other hand, high-β
particles have gyration radii much larger than current sheets and therefore, they
do not spend considerable time interacting with them. Their acceleration process
is stochastic rather than coherent, and no net energy gain is measured. This ob-
servation led us to introducing the concept of diffusion in the velocity space. We
have shown that energized particles roam in the velocity space in a more ergodic
fashion; particles that are accelerated but not energized, instead, have trajectories
confined on isoenergetic shells. Unfortunately, we still lack a fundamental theory
to determine the diffusion coefficient in velocity space (Miller et al., 1990; Miller
& Roberts, 1995), and we leave this work for future studies.

Finally, we compared diffusion and acceleration processes using the HPIC and
FPIC algorithms. Ions, in both cases, and at each β, reach a diffusive behavior
at asymptotic times and always follows the 2D-NLGC prescription. The similar-
ity between the hybrid and the full PIC code is not surprising, since diffusion is
mostly governed by large, energy-containing scales, and is less sensitive to micro-
physics. In both approaches we found that particles are better energized in low-β
simulations because of the scale-resonance process. The difference lies in the effec-
tive overall energy gain. Energy distribution of ions in (low-β) HPIC simulations
develops much higher tails than in FPIC. This could be due to some “competi-
tion” between ions and electrons (that are treated kinetically in FPIC) resulting
in a different partitioning of the energy. Indeed, it is important to notice that, in
FPIC, other mechanisms might preferentially heat the electrons rather than the
ions, even though the unphysical mass ratio used here cannot clarify completely
the possible competition taking place between the two species (Daughton et al.,
2011). We, therefore, restricted our comparison to the ion and sub-ion scales and
will treat the sub-electron scales in future works.

In this complex, collisionless environment, the interaction between particles
and coherent structures such as magnetic islands, reconnecting regions and waves
patterns, play a fundamental role (Velli et al., 1989; Marsch, 2006; Kasper et al.,
2008; Osman et al., 2010). The turbulent heating might help explain the larger-
than-expected temperature of the solar wind as it expands through the heliosphere
(Smith et al., 2001), as well as the diffusion of solar energetic particles (Jokipii &
Levy, 1977; Isenberg, 2005; J. Tessein et al., 2013).
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These results are also particularly relevant for recent observations of non-
Maxwellian velocity distribution functions in the turbulent magnetosheath (Burch
et al., 2016; Servidio et al., 2017; Yamada et al., 2018), where it has been suggested
that the interaction with coherent structures produces non-thermal features. Par-
ticle diffusion due to turbulence is particularly relevant in the higher corona, where
turbulence enhances the diffusivity of plasma elements, as observed for cometary-
tail particles (DeForest et al., 2015). In future and ongoing works we plan to
study diffusion and acceleration phenomena in 3D simulations. The 2.5D assump-
tion might affect the power spectrum of the magnetic fluctuations, in particular
at (and beyond) the typical proton scales, especially for high β. As evidenced in
the last Section of the second Chapter, the spectral properties, and the scaling of
turbulent field have direct influence on particle distributions. Through the inves-
tigation of fully 3D simulations, we will be able to create a direct link between
the Eulerian properties of the fields with the Lagrangian ones of particles. Using
Eulerian field measurements, we might infer Lagrangian properties of particles
that are not possible to measure in space plasmas; also conversely, using imag-
ing instruments, it might be possible to observe Lagrangian quantities and obtain
information on turbulence properties in regions that cannot be accessed (yet) by
spacecraft.

In the last Chapter, we investigated coherent structures in space plasmas at
different scales. We extensively used the PVI technique that has been largely ap-
plied in the past decade to detect small-scale magnetic discontinuities (Greco et
al., 2008; Servidio, Greco, et al., 2011; Chhiber, Goldstein, et al., 2020). Large-
PVI events have been demonstrated to be associated with coherent structures
such as current sheets that contribute to the intermittent properties of turbu-
lence (Dudok de Wit et al., 2013; Matthaeus et al., 2015). With a novel study,
we demonstrated the possibility to use this technique in conjunction with Grad-
Shafranov reconstruction algorithms (Sonnerup et al., 1987; Hau & Sonnerup,
1999; Hu, 2017). Because of the different scales the two techniques focuses on,
the GS reconstruction and the PVI provide complementary information when im-
plemented together with a single-spacecraft time record of magnetic field. The
results obtained demonstrate that these two methods can be employed together,
and their synergistic use reveals an overall finer description of flux tube structures.
The GS method is sensitive to the large-scale magnetic flux tube structure, i.e.,
the core currents and O-points, but is not very sensitive to the sharp boundaries,
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mostly current sheets and X-points. The PVI method has the opposite sensitivity,
providing, principally, information about localized structures that contribute to
intermittency, i.e., the flux tube boundaries and associated current sheets. The
two methods identify structure boundaries independently, so the result of this pro-
cedure provides a reasonable interpretation of the local topology of the magnetic
field in the region surrounding the observed data. An important issue related to
single-spacecraft is the estimate of electric current density. This quantity can be
measured using the curlometer technique (Dunlop et al., 2002) in closely-spaced
multispacecraft missions that are equipped with highly sensitive instruments such
as MMS/Fast Plasma Investigation instrument (FPI) (Pollock et al., 2016). It is
not possible to apply the curlometer to single spacecraft data as it requires spatial
directional derivatives. However, using the presented method, one may estimate
currents based on these combined approaches: GS reconstruction provides a 2D
picture of the weaker flux tube core currents, while the PVI can be used to esti-
mate the most intense currents. Through the combined GS/PVI method, we have
provided additional observational evidence that solar wind discontinuities are co-
herent structures associated with the interaction of adjacent magnetic flux tubes
(Greco et al., 2008). In particular, this type of strong-current structures at small
scales is readily interpreted as a manifestation of the intermittent nature of fully
developed MHD turbulence (Dudok de Wit et al., 2013; Matthaeus et al., 2015).

In the search for large-scale coherent structures in the solar wind, the GS
method is one of the many that look for particular kinds of equilibria. Guided
by the basic solution of MHD equation that predict equilibrium magnetic field
lines to arrange in helix-like configurations, and by magnetic helicity to be an
invariant of turbulent systems (Matthaeus & Goldstein, 1982), we have developed
a new technique for flux tube detection. It can be classified as a “detection” rather
than “identification” technique since it is not devoted to any particular class of
equilibria, but rather it exploits the helical nature of such structures. We, again,
chose to employ the PVI method for the detection of discontinuities and to use
it in conjunction with a real-space method to systematically evaluate magnetic
helicity concentrations – which may be recognized as signatures of helical flux
ropes. The presented combination has the advantage of being relatively free of
assumptions concerning the types of structures that are being identified. PVI is
unbiased concerning discontinuity types, and readily detects tangential and rota-
tional discontinuities, shocks, etc. Likewise, the only assumption in developing the
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real-space helicity approach is that the statistics of the fluctuations are spatially
homogeneous (or, for a time series, time stationary). No assumptions about two-
dimensionality or other spatial symmetry are required, in contrast to the standard
GS method. We have then conducted a campaign of MHD simulations where
the technique has been tested. The simulations provided experimental proof of
magnetic helicity to be conserved in turbulence and to concentrate in flux tube
cores. The technique has then been applied to PSP data where we found the same
results obtained in the simulations. We may conclude that the proposed pair of
methods also has the practical advantages in the lack of assumptions and ease of
implementation for locating flux ropes and their boundaries in data streams, such
as typical single spacecraft solar wind data, as well as in the analysis of very large
simulation data sets. We have then developed a GS solver that makes use of this
detection technique. The solver exploits the helicity property as a first stage of
analysis to locate possible flux ropes and then locally performs a GS reconstruc-
tion. The algorithm has been tested in the MHD simulations and preliminary
results show that it is able to work on continuous streams of data performing both
detection and local reconstruction efficiently.

For future work, it will be desirable to carry out statistical surveys of helical
flux ropes and their boundaries using the combined Hm–PVI method. There
would be considerable scientific value, for example regarding issues of relevance
to space weather, in carrying out such surveys at 1 au using extensive data sets
such as those available from the ACE and Wind spacecraft. Likewise, surveys of
helical flux ropes using additional PSP and Solar Orbiter data will be useful in
characterizing the magnetic field helical structure of the inner heliosphere, where
this information may be of value in understanding the origin of the solar wind.
Such surveys may be facilitated using the present approach due to its simplicity
of implementation.

At last, we wanted to conclude this journey, merging the large-scale structure
of plasma turbulence with the small-scale kinetic physics described at the begin-
ning. We combined PSP measurements of magnetic field (from FIELDS) and
energetic particles (from IS�IS EPI-Hi and EPI-Lo) from 2020 May 24th to June
3rd. During this interval, it is present a series of consecutive energetic particles
events. We perform the Hm–PVI analysis to correlate particle populations with
helical structures. A global overview suggests the presence of large-scale helical
structures overlapping with the most energetic events. More local analyses re-
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vealed two complementary but consistent scenarios. The event of May 24th shows
the energetic population to be located in the region of space between two heli-
cal structures. On the other hand, the events during May 27th-28th are trapped
within two adjacent (and possibly interacting) helical structures. Both events sug-
gest that helical field lines act as “hard” walls for energetic particles. By applying
the novel detection technique, we were able to identify structured flux tubes that
can provide conduits for energetic particle transport and possible trapping and
acceleration (Dudok de Wit et al., 1995; J. Tessein et al., 2013; Khabarova et al.,
2016).

The work presented in this thesis aims to contribute to the understanding of
plasma turbulence in our neighboring space and possibly extend the gained knowl-
edge to the unexplorable (for the moment) universe. We started describing the
micro-physics of charged particle that diffuse in the interplanetary space and are
accelerated by explosive events. We developed an analytical theory that describes
diffusion taking into account the properties of the turbulent medium. The inves-
tigation of acceleration processes shed some light on the possible events that can
make particles gain energy. At the other end of the spectrum, we investigated the
large-scale structures that populate our heliosphere. We used the GS method to
reveal the 2D topology of the magnetic field and developed a synergistic approach
to describe these structures at a finer level. We also developed a novel technique
that can detect flux ropes with ease in large databases. Finally, large scales and
small scales were joined with the observational evidence of energetic particle pop-
ulations that are modulated by the presence of large- and small-scale coherent
structures.
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