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Sommario

La tesi esplora l’uso del metodo delle opzioni reali nella risoluzio-
ne di vari problemi. Obiettivo del lavoro è sviluppare una metodologia
per la valutazione delle opzioni reali, che consenta l’analisi, la pianifica-
zione e la gestione degli investimenti realizzati in condizioni di elevata
incertezza. Oggetto della ricerca sono i progetti di investimento delle
imprese, realizzati in condizioni di incertezza e in differenti condizioni
di mercato. La ricerca è incentrata nella determinazione del valore delle
opzioni di azioni alternative e l’impatto della flessibilità gestionale sul
valore degli investimenti. I metodi di ricerca includono: analisi logica e
comparativa, l’approccio sistemico, modelli economici e matematici. I
principali risultati della tesi comprendono la determinazione delle con-
dizioni di applicabilità dei modelli di opzioni reali e l’individuazione di
nuove direzioni nell’applicazione del metodo delle opzioni reali relative
alla pianificazione degli investimenti e alla gestione del rischio. I risulta-
ti della ricerca possono essere utilizzati per analizzare investimenti che
sono caratterizzati da un alto livello di rischio e consentono di adeguare
la strategia di investimento alle condizioni di mercato.



Abstract

The dissertation explores the use of the real options method in solv-
ing various problems. The aim of the work is to develop a tool kit for
evaluating real options, which allows for the analysis, planning, and man-
agement of investments realised in conditions of high uncertainty. The
object of the research is the investment projects of enterprises, imple-
mented in conditions of uncertainty and for different market conditions.
The subject of the research is the value of alternative options for action
and the impact of managerial flexibility on the value of investments.
Research methods include logical and comparative analysis, systems ap-
proach, economic and mathematical modelling. The main results of
the dissertation include determining the conditions of applicability of
models of real options and identifying new directions in the application
of the method of real options related to investment planning and risk
management. The research results can be used to analyse investments
characterised by a high level of risk and allow adjustments to the original
strategy in different market conditions.
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Introduction

Criticism of traditional methods of evaluating investment projects began
in the 1950s. Projects with flexibility in the 1980s began to be priced
similarly to financial options. The term "real option" was coined in 1977
by Myers, who was the first to propose the pricing of real investments
by analogy with financial options. A real option is a right, but not an
obligation, to make specific investment decisions at specific points in
time. Dixit and Pindyck (1994) noticed that most investment decisions
have three important characteristics in terms of real options:

- First, the investment is partially or completely irreversible.

- Second, there is uncertainty over the future rewards from the in-
vestment.

- Third, investors have some leeway about the timing of investment.

There are a large number of real options, and different projects may
have them. The present dissertation illustrates the application of the
real options approach in three different areas.

The first chapter discusses applications in the energy sector. In a real
options framework, we analyse the behaviour of a large energy producer
who can invest in a portfolio of Renewable Energy Source (RES) and
dirty energy source. Competitive fuel prices challenge the investments
in RES. Given a budget constraint, the agent allocates the optimal ca-
pacities of both energy instalments and selects the optimal investment
time. We use the model to compare the effectiveness of classical sup-
port schemes such as Feed-in Tariffs or Green Certificate with respect to
forms of taxation of dirty technology such as Carbon Taxes or Carbon
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Permits. This chapter proposes a conceptual framework and qualitative
analysis to understand which support system enhances the attractive-
ness of renewable energy investments. The novelty of the chapter lies in
the introduction of the dirty option, a fact that the previous literature
has ignored so far.

The second chapter investigates the joint effect of uncertainty, com-
petition, and risk-aversion on the optimal time and size of firms in a
duopoly. As risk-aversion increases, the leader’s alternatives between
deterring and accommodating the follower’s entry become equivalent.
When the leader’s role is assigned exogenously, risk-aversion reduces
both equilibrium investment sizes and timing. In equilibrium, the leader
is always the largest firm in the market. When the leader’s role is de-
termined in equilibrium, risk-aversion delays the rent equalization point.
At high levels of risk-aversion, both firms invest in the same capacity.

In the third chapter, we investigate the literature on the swing option.
Researchers use different approaches to analysis swing options that allow
flexibility in planning the supply of oil, gas, electricity, and petroleum
products under conditions of uncertainty. The variety of models, as well
as the lack of aggregated analysis in this area, suggest the need for a
critical review of swing option methodologies and structures. This chap-
ter describes the directions, trends, and designs that we can found in the
current academic literature on this topic. The results provide a compre-
hensive picture of the relevant research, thereby providing researchers
with a solid foundation for additional research and guidance for future
development.

Each chapter itself is an independent working paper addressing one
specific issue encompassing real options and the introduction with the
conclusion of the dissertation, which combines the chapters into the
holistic dissertation.
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Chapter 1

Renewable energy
investments, support schemes
and the dirty option

1.1 Introduction

The decarbonization of the energy sector, by means of stimuli of in-
vestments in Renewable Energy Sources (RES), is a central issue in the
agenda of governments worldwide.

According to the International Energy Agency (IEA), renewable elec-
trical capacity increases 50 % (1 220 GW) by 2024, from 2 502 GW in
2018 (IEA, 2019). Nearly two-thirds (64%) of net installations in 2018
were from renewable sources of energy, according to the latest annual
Renewables Global Status Report (REN21, 2019). Nevertheless, one
cannot deny the fact that fossil fuels made up 82 % of global primary
energy in 2015 (Newell et al., 2019). Besides, the Global Energy Out-
look (Newell et al., 2019) forecasts that the global energy demand will
continue to rise, and most of the demand will be satisfied by fossil-based
fuels. In this regard, carbon dioxide emissions from the global energy
system are on a path to far exceed international targets of the Paris
Agreement.

Due to the fact that the profitability of RES cannot compete with
that of traditional fossil-based energy generators, policymakers have
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been implementing a variety of mechanisms to boost investments in
RES. Broadly speaking, such policy mechanisms can be classified into
two classes. The first class, which we refer to as subsidies, aims at reduc-
ing dioxide emission directly by giving monetary incentives to the energy
produced with RES. The second class, which we refer to as carbon pric-
ing, tries to boost investments in RES indirectly by fixing a price on
emissions of fossil fuels.

Among the bundle of subsidies implemented worldwide, two promi-
nent examples are Feed-in Tariffs (FiT) and the combination of the quota
system and Green Certificates (GC). A FiT is a price-based policy mech-
anism with which a policymaker offers a fixed price to energy producers
per unit of green power sold in the market for a given period of time.
Launched for the first time in 1978 with the US National Energy Acts,
these support schemes are still prevalent in many countries, and they
are widely analysed in the academic literature. The combination of the
quota system and green certificates is a quantity-based support scheme
also active in many countries, especially Europe. A GC is a tradable
asset, whose value fluctuates according to supply and demand, attesting
that one unit of power (conventionally 1 MWh) has been generated by
RES. Within the scheme, energy producers sell GCs to energy suppliers,
who are required to buy a given number of GCs according to the quota
system.

According to a recent article in the New York Times (Plumer and
Popovich, 2019), as for February 2019, more than 40 countries have set
some price on carbon. Important examples of implementations of carbon
pricing around the world are Carbon Taxes (CT) and Carbon Emission
Trading system, which we refer to simply as Carbon Permits (CP). A
CT is a price-based tax for unit of emission of fossils’ fuels. A CP is
an asset that gives the right to emit one ton of dioxide. CPs are issued
by the regulator, who also sets the maximum tons of emissions possible.
Once issued, a CP is traded privately, and their value depends on current
market conditions.

A recent ongoing debate is which of the two classes of decarbonization
mechanisms is preferable in terms of effectiveness, implementation costs,
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and social fairness. While subsidies are still active in a large part of the
world, economists are starting to ask whether or not a shift towards
carbon pricing might provide a better decarbonization strategy. Two
prominent examples are Bassi et al. (2017) and the Economist’ Statement
on Carbon Dividends, signed by dozens of economists (including 27 Nobel
Laureate Economists, 4 former chairs of the Federal Reserve, 15 Former
Chairs of the Council of Economic Advisers, and 2 Former Secretaries
of the US Department of Treasury) and appeared on the Wall Street
Journal in February 2019, in which carbon pricing is described as "the
most cost-effective lever to reduce carbon emissions at the scale and
speed that is necessary."

In this chapter, we use the Real Options approach of Dixit and
Pindyck (1994) to provide a comparative analysis of the effectiveness
of carbon pricing and RES subsidies. In addition to the previous book,
it is worth mentioning two more works, Trigeorgis (1993) and Trigeorgis
(1996), that have firmly entrenched the literature on real options. To do
so, we put ourselves on the side of a price-taker energy producer who,
given a budget, has to decide the optimal time to invest and the opti-
mal allocation of her budget on power generators based on two different
technologies: the green and the dirty technology. We first analyse the
baseline case in which no decarbonization schemes are active. Then we
examine how the different carbon pricing schemes and RES subsidies
affect the optimal allocation and the investment timing of the energy
producers. More precisely, we provide two distinct comparisons: the
case in which the effectiveness of Feed-in Tariffs is compared with that
of carbon taxes; and the case in which green certificates are compared
with carbon permits. The choice of these two different comparisons
comes from the nature of uncertainty involved in different decarboniza-
tion schemes. In fact, while FiT and CT are mainly subject to policy
uncertainty (PU), that is, uncertainty deriving from a possible sudden
shift in the government’s policy, GC and CP are both tradable assets
subject to market risk. We focus on two main aspects that are described
as follows. From a business perspective, we aim to provide guidance on
the evolution of the profitability of RESs. On the other hand, from a reg-
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ulation point of view, we aim to support regulators in drafting incentive
plans in renewable energies.

This chapter belongs to the literature that studies the analysis of
investors’ behaviour in response to the introduction of decarboniza-
tion schemes using the Real Options methodology, recently reviewed
in Kozlova (2017) and Trigeorgis and Tsekrekos (2018). In this context,
Boomsma et al. (2012) build a model with multiple sources of uncer-
tainty to analyse optimal capacity and investment timing under Feed-in
Tariffs and green certificates. They find that while under green cer-
tificates, firms invest in larger projects, Feed-in Tariffs promote earlier
investments. Also using a setup with various sources of uncertainty,
Boomsma and Linnerud (2015) and Adkins and Paxson (2016) analyse
investment timing under different subsidies. They both focus on policy
uncertainty and use quasi-analytical methods to solve their model. Pol-
icy uncertainty is also studied in Dalby et al. (2018), where the authors
study a model of Bayesian learning for policy uncertainty. The focus of
this prominent stream of the literature is on governments’ incentive to
RES. Kitzing et al. (2017) valued investments in offshore wind energy
in the Baltic Sea amid uncertainties regarding FiT, Feed-In Premiums
and tradable GC, and Zhang et al. (2017) focus on the optimal design
of subsidies. However, we observe that comparisons between subsidies
and carbon pricing are absent and that the mentioned studies ignore the
possibility of investing in traditional energy.

Some papers incorporate fuel price uncertainty into the valuation
design by analysing various aspects. Siddiqui and Fleten (2010) use a
Real Options model to show how a policymaker should allocate funds
to boost the development of new technologies. Martinez Cesena and
Mutale (2011) analyse a Real Options model for the design of an off-grid
photovoltaic generator. In a model with random evolution of fuel prices,
Fuss and Szolgayova (2010) analyse how technological uncertainty affects
the optimal time of replacement of traditional technologies with new
less fuel-intensive power generators. Along the same line, but without
technological uncertainty, Li et al. (2015), Xian et al. (2015) build a real
options model to analyse the optimal investment time in new fuel-based

13



technologies. This piece of literature recognizes fuel price as an essential
factor driving investors’ choices, although the focus on decarbonization
schemes is absent.

With this chapter, we aim to complement the literature on Real Op-
tions for energy investments in two aspects. First, we give the decision-
maker the option of investing not only in renewable energy but also in
conventional energy, thus giving more flexibility to the decision-makers.
We refer to this additional flexibility as the Dirty Option. To the best
of our knowledge, this is done for the first time in the described con-
text, bringing the analysis closer to real investment problems. Last, we
provide a comparative analysis of the effectiveness of subsidies and car-
bon pricing. Consequently, we aim to determine at what point the RES
become so attractive (or profitable) as conventional energy. Besides, we
intend to present a practical model for the evaluation of the project that
is convenient and understandable for both researchers and practitioners.

The chapter is organized as follows. In section 2, we describe our
model. We explore the investment timing and capacity selection options
in Section 3. In Section 4, we discuss the results of sensitivity analysis.
Finally, in section 5, we conclude.
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1.2 Model’s setup

We use a continuous-time infinite-horizon real options framework, in
which a price-taking energy producer contemplates the installation of
new energy production plants. Two alternative technologies are avail-
able: the traditional (dirty) fossil-based technology, denoted by D and
the renewable (green) technology such as wind or solar power, denoted
by G. Given an available budget B, the firm’s problem consists in deter-
mining the optimal capacity in dirty (D) and green (G) energy source,
denoted by xD and xG, respectively, and the optimal time to expand the
production capacity. We measure capacity in terms of power, that is
one unit of capacity corresponds to one Megawatt (MW). Let Ih be the
cost of installation of one unit of power of technology h, h = D,G. The
equation IDxD + IGxG = B describes the budget constraint faced by the
producer. Without loss of generality, we assume for simplicity that once
installed, both technologies are capable of producing energy for T years.
After T years of use, the power plants do not produce efficiently and are
dismissed.

The production function of dirty technology is QD(xD) = AD · hD ·
xD, where AD is total hours in a year, hD is the capacity factor1 for
traditional technology. The production function of green technology
is QG(xG) = AG · hG · xγG, where AG is total hours in a year, hG is the
capacity factor for renewable technology and γ ∈ (0, 1). Our assumption
about the concavity of the production function of green technology is in
line with the literature. For instance, Boomsma et al. (2012) justify
diminishing marginal production resulting from increasing capacities by
wake effects. We refer to Boomsma et al. (2012) for further details.

Following the literature on Real Options, we assume that electricity
prices (Et) and fuel prices (Ft) follow two GBM 2:

1The net capacity factor is the unitless ratio of actual electrical energy output
over a given period of time to the maximum possible electrical energy output over
that period. The capacity factor is defined for any electricity-producing installation,
such as a fuel-consuming power plant or one using renewable energy, such as wind
or the sun.

2For the sake of brevity, we later suppress the subscript t for both the price of
electricity (Et) and the price of fuel (Ft) whenever suitable.
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dEt
Et

= µEdt+ σEdW
E(t);

dFt
Ft

= µFdt+ σFdW
F (t),

(1.1)

where µE, µF and σE, σF are the corresponding instantaneous rates of
return and volatilities, respectively. WE(t) and W F (t) are two standard
correlated Brownian motions, with correlation coefficient ρEF .

1.2.1 Decarbonization schemes
We denote by Gt the instantaneous value of a generic subsidy and use
two different stochastic representations to distinguish between FiTs and
GCs. The stochastic process that models a FiT is indeed a piecewise
constant process, reflecting the fact that a FiT is subject to changes
only in response to a change in the support policy. We follow the rele-
vant real options literature and specify the model for a FiT under pol-
icy risk by means of a continuous-time Markov chain with two states,
{GGood, GBad}, of which GBad is absorbing and transition rate λG. For
additional details about the computation of the relevant quantities, we
refer to the Appendix A.2. Conversely, given that GCs are freely traded,
their value changes continuously over time according to the prevalent
market conditions. Thus, we use a GBM to model the firm’s income due
to green certificates, that is

dGt = µGGtdt+ σGGtdW
G
t ,

with µG, σG being the instantaneous rate of return and the volatility,
respectively. The Brownian motion governing the dynamics is correlated
to WE,W F , with correlation coefficients ρGE, ρGF , respectively.

In the same way, we denote by Ct the cost of a generic carbon price
and use two different probabilistic models to differentiate between CTs
and CPs. Carbon taxes are subject to policy risk only: they change
values only due to a policy change. We use a continuous-time Markov
chain again with state-space {CGood, CBad}, starting in CGood, with CBad
as an absorbing state and transition rate λC from CGood to CBad. Finally,
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the value of carbon permits fluctuates according to market conditions.
Thus, we model CPs by means of a different GBM:

dCt = µCCtdt+ σCCtdW
C
t ,

with the usual interpretation of parameters µC , σC and driving Brow-
nian motion WC correlated to WE,W F , with correlation coefficients
ρCE, ρCF , respectively.

1.2.2 The decision problems
Let us define the instantaneous profits as usual, by:

π(E,F,G,C;xG, xD) = QG(xG)(E +G) +QD(xD)(E − F − C). (1.2)

The decision problem of the investor consists of choosing the optimal ca-
pacities, xG, xD, and the optimal time to invest, τ , so as to maximize the
net present value of the future profits. The optimal capacities must lie in
the admissible set I = {xG, xD ≥ 0, IGxG+xDID = B}, which describes
the budget constraint. Different types of decarbonization schemes imply
a different decision problem to be solved. In particular, we have several
cases.

The first case, which we refer to as the Baseline case, is the one in
which no decarbonization scheme is active in the country. In this case,
we set Gt = 0 and Ct = 0 and the decision problem is:3

V B(E,F ) =

max
τ≥0

max
xG,xD∈I

EE,F
[∫ τ+T

τ
e−rsπ(Es, Fs, 0, 0;xG, xD)ds

]
−B =

max
τ≥0

max
xG,xD∈I

EE,F
[
e−rτ

] (
LB(E,F ;xG, xD)−B

)
,

(1.3)

3We use Ey(·) to denote the conditional expectation of a stochastic process starting
at y.
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where the net present value of future profits is given by:

LB(E,F ;xG, xD) = (QG(xG) +QD(xD))Er̄T (µE, 0)−
QD(xD)F r̄T (µF , 0),

(1.4)

and r̄T (µ, λ) = 1−e−(r−µ+λ)T

r−µ+λ . Next, we consider the case in which a Feed-
in tariff is active. In this case, we imposeGt to follow the continuous-time
Markov chain described in the previous subsection and set Ct = 0:

V FiT (E,F ) =

max
τ≥0

max
xG,xD∈I

EE,F,GGood

[∫ τ+T

τ
e−rsπ(Es, Fs, Gs, 0;xG, xD)ds

]
−B =

max
τ≥0

max
xG,xD∈I

EE,F,GGood
[
e−rτ

] (
LFiT (E,F ;xG, xD)−B

)
,

(1.5)
where

LFiT (E,F ;xG, xD) =
(QG(xG) +QD(xD))Er̄T (µE, 0)−QD(xD)F r̄T (µF , 0)+
QG(xG) (GGoodr̄(0, λG) +GBad (r̄(0, 0)− r̄(0, λG))) .

(1.6)

Next, we consider Green certificates, by setting dGt = µGGtdt +
σGGtdW

G(t) and Ct = 0:

V GC(E,F,G) =

max
τ≥0

max
xG,xD∈I

EE,F,G
[∫ τ+T

τ
e−rsπ(Es, Fs, Gs, 0;xG, xD)ds

]
−B =

max
τ≥0

max
xG,xD∈I

EE,F,G
[
e−rτ

] (
LCG(E,F,G;xG, xD)−B

)
,

(1.7)

where

LGC(E,F,G;xG, xD) =
(QG(xG) +QD(xD))Er̄T (µE, 0)−QD(xD)F r̄T (µF , 0)+
QG(xG)Gr̄T (µG, 0).

(1.8)

Next, we consider the case in which a Carbon Tax. In this case, we
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impose Ct to follow the continuous-time Markov chain described in the
previous subsection and set Gt = 0:

V CT (E,F ) =

max
τ≥0

max
xG,xD∈I

EE,F,CGood

[∫ τ+T

τ
e−rsπ(Es, Fs, 0, Cs;xG, xD)ds

]
−B =

max
τ≥0

max
xG,xD∈I

EE,F,CGood
[
e−rτ

] (
LCT (E,F ;xG, xD)−B

)
,

(1.9)
where

LCT (E,F ;xG, xD) =
(QG(xG) +QD(xD))Er̄T (µE, 0)−QD(xD)F r̄T (µF , 0)−
QD(xD) (CGoodr̄(0, λG) + CBad (r̄(0, 0)− r̄(0, λG))) .

(1.10)

Finally, we consider Carbon Permits for the last case, thus setting dCt =
µCCtdt+ σCCtdW

C(t) and Gt = 0:

V CP (E,F,C) =

max
τ≥0

max
xG,xD∈I

EE,F,C
[∫ τ+T

τ
e−rsdsπ(Es, Fs, 0, Cs;xG, xD)

]
= −B

max
τ≥0

max
xG,xD∈I

EE,F,C
[
e−rτ

] (
LCP (E,F,C;xG, xD)−B

)
,

(1.11)

where

LGC(E,F,C;xG, xD) =
(QG(xG) +QD(xD))Er̄T (µE, 0)−QD(xD)F r̄T (µF , 0)−
QD(xD)Gr̄T (µC , 0).

(1.12)
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1.3 Numerical study

In this section, we perform a series of numerical comparisons between
the two philosophically different ways of boosting investments in green
energy sources: RES subsidies and carbon pricing. To do so, we focus
on an energy producer’s the point of view, who observes the market
conditions and makes investment decisions.

We consider an investment in two types of energy where the project
life is 20 years. The investment costs of wind power plants installa-
tion are set equal to IG = 1600 T euros/MW years and IC = 900 T
euros/MW. These numbers are the median cost for Europe. The risk-
adjusted real discount rate is set to r = 5.0 %, reflecting an inflation rate
of 2, 5%. We use µE=µF=0 in the price processes, which implies that
these prices likewise grow with the general price level. The electricity
price volatility and the fuel price volatility equal 0.06; the corresponding
correlation coefficient is estimated to 0.7. The values of the remaining
parameters are presented in Appendix A.1.

We first study the base case, that is a situation in which investors
have not incentives. We then examine how investors change their deci-
sion if some support scheme is present. As far as the numerical tech-
niques are concerned, we use Monte Carlo simulation in conjunction
with Least-Square regression to obtain investment values. Besides, for
all two-dimensional problems we use a finite difference scheme to visu-
alize investment regions.

1.3.1 Baseline
Our base case assumes no regulation, such as subsidy payments or carbon
pricing. Figure 1.1 shows the investment decision of an energy producer
for all possible combinations of electricity and fuel prices. We restrict
attention to the cases in which energy prices are higher than fuel costs.
This means that the part of the graphs where E < F is not taken into
consideration.4 Figure 1.1 is divided into three sub-regions. The white

4In our setup, this assumption seems to be reasonable. However, we acknowledge
that in a real energy market, energy price can be lower than fuel costs. This is due
to the so called marginal pricing, for which the energy price is the maximum cost
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area represents the no-investment region. The colored area of the graphs
indicates combinations of energy prices and fuel costs in which the pro-
ducer invests. The color of the sector responsible for investment answers
the question of how much green energy needs to be invested. Green color
indicates investments in green energy only, while the saturation of the
shade of blue speaks of the predominance of investments in dirty energy.

Figure 1.1: The base case.

We emphasize that we get a graph relative to electricity and fuel
prices, each point of which corresponds to the optimal value of xG. To
better explain Figure 1.1, we take two extreme points into consideration.
We will consider the investor’s decisions when electricity prices equal to
40 and 80 euros. At a low price of electricity, if the fuel cost is sufficiently
high, the investor does not invest. Upon reaching a sufficiently low fuel
price, the producer invests most of the budget in dirty energy. When
electricity price is high (in our case, 80 euros), the investment decision-
making system changes. If the fuel cost is high enough, the entire budget
is invested exclusively in RES.

We observe a region where the investor finds optimal not to invest
at all. The colorless part of the graph represents that. Given the level
of energy price, the fuel cost is not low enough; in this area, the pro-
ducer does not make any investment but wait for more favorable market

for producing a given amount of power. Handling such situations requires a setup
in which energy price is endogenous as in Aïd et al. (2013) and goes far beyond the
scope of the present chapter.
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Table 1.1: Investment values of base case for different levels of prices, T
euros

F
E 0.05 0.06 0.07

0.01 21110.60 29331.12 37559.98
0.02 11404.14 19485.98 27632.68
0.03 3115.89 10223.31 18104.92
0.04 815.05 3129.99 9358.30
0.05 449.30 1339.24 3485.56

conditions. Such regions are typical of a real option framework. It is
also worth to note that there is a gap between the zones of investment
in both types of energy and only green. In such area, energy prices
are very high. However, fuel cost is neither sufficiently low to justify a
huge investment in dirty energy, nor high enough to boost investments
in green energy sources.

In Table 1.1, we present the value of the investments in some rep-
resentative cases. The table shows that the investment values decrease
with increasing fuel prices and increase with increasing electricity prices.

1.3.2 Feed-in Tariff versus Carbon Taxes
Capacity choice. We define

W (xG, xD) =Er̃TE(QD(xD) +QG(xG))− F r̃TFQD(xD)+
Gr̃QG(xG)− Cr̃QD(xD)−B.

The problem of maximizing W (xG, xD) under the budget and the non-
negativity constraint posses a unique solution given by (x∗G, B−IGxGID

),
where

x∗G =


min(( AGγID(Er̃TE+Gr̃)

ADIG(Er̃TE−F r̃
T
F−Cr̃)

)
1

1−γ , B
IG

) E >
Cr̃+F r̃TF

r̃TE
B
IG

E ≤ Cr̃+FrTF
rTE

(1.13)

We investigate how each support scheme or carbon pricing affects
the behaviour of an energy producer. The similarity between FiT and
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CT is noted because both are price-based instruments. We take Feed-in
Tariff and carbon tax equal to either 10 or 15 euros/MW Hour.

(a) (b)

Figure 1.2: Feed-in tariff equal to: (a) 10 euros/MW Hour; (b) 15 eu-
ros/MW Hour.

(a) (b)

Figure 1.3: Carbon Tax equal to: (a) 10 euros/MW Hour; (b) 15 eu-
ros/MW Hour.

We first analyse the effects of FiT and CT on the investment region,
via a visual comparison with the baseline investment region in Figure
1.1. Figures 1.2(a) and 1.2(b) depict the investment region when a FiT
of 10 and 15 euro, respectively, is active. When compared with the
baseline case, in both panels, we observe an enlargement of the green
area. In such cases, the firm invests in green energy only at lower energy
prices, provided that the fuel cost is low enough. On the other hand,
the remaining part of the colored area of the graph remains basically
unchanged. Figures 1.3(a) and 1.3(b) depict the investment region when
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a CT of 10 and 15 euro, respectively, is active. In this case, we observe
a restriction of the area in which the firm invests predominantly in dirty
energy. Carbon taxes discourages investments in dirty technology but
does not boost investments in green energy.

Table 1.2: Investment values under Feed-in Tariff, percentage change of
investment value

Feed-in
Tariff

10 euros/MW Hour 15 euros/MW Hour

F
E 0.05 0.06 0.07 0.05 0.06 0.07

0.01 -7.69 -5.79 -4.65 -11.11 -8.43 -6.82
0.02 -10.36 -7.09 -5.44 -14.50 -10.17 -7.89
0.03 -10.23 -8.47 -6.30 -11.27 -11.56 -8.97
0.04 34.41 1.75 -5.93 113.62 15.94 -7.66
0.05 124.56 97.45 27.75 287.53 164.89 53.60

Table 1.3: Investment values under Carbon Tax, percentage change of
investment value

Carbon
Tax

10 euros/MW Hour 15 euros/MW Hour

F
E 0.05 0.06 0.07 0.05 0.06 0.07

0.01 -32.55 -23.96 -18.99 -48.82 -35.94 -28.48
0.02 -48.83 -31.25 -23.17 -70.41 -46.88 -34.76
0.03 -54.71 -44.27 -29.32 -69.85 -63.78 -43.99
0.04 -33.94 -40.04 -37.23 -44.22 -53.83 -54.53
0.05 -9.72 -12.66 -21.14 -12.35 -15.55 -24.14

Feed-in-Tariffs and Carbon Taxes impact differently also in terms
of the value of the investment. In Table 1.2, we report the percentage
changes - with respect to the base case - of the investment values when a
FiT is present in the market. We note that for the FiT to have a positive
impact on the value of the investment it is necessary to have a sufficiently
high marginal profit, that is the difference between energy prices and fuel
cost. However, the percentage change of the investment values decreases
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as the marginal profit increase. In Table 1.3, we report the percentage
change of the investment value in the presence of a Carbon Tax. The
introduction of a CT reduces the value of the investment in all the cases
considered.

1.3.3 Green certificates versus Carbon permits
Capacity choice. We define

W (xG, xD) =Er̃TE(QD(xD) +QG(xG))− F r̃TFQD(xD)+
Gr̃TGQG(xG)− Cr̃TCQD(xD)−B.

The problem of maximizing W (xG, xD) under the budget and the non-
negativity constraint posses a unique solution given by (x∗G, B−IGxGID

),
where

x∗G =


min(( AGγID(Er̃TE+Gr̃TG)

ADIG(Er̃TE−F r̃
T
F−Cr̃

T
C))

1
1−γ , B

IG
) E >

Cr̃TC+F r̃TF
r̃TE

B
IG

E ≤ Cr̃TC+FrTF
rTE

(1.14)

Here we compare the investment value in the presence of green cer-
tificates and carbon permits. For GC, we use starting values of the
certificate equal to either G0 = 10 or G0 = 15. For CP, we use C0 either
equal to 10 or 15. In Tables 1.4 and 1.5, we report percentage changes
of investment values with respect to the baseline case.

Table 1.4: Investment values under Green certificates, percentage change
of investment value

Green
certifi-
cates

G0 =10 euros/MW Hour G0 = 15 euros/MW Hour

F
E 0.05 0.06 0.07 0.05 0.06 0.07

0.01 -7.84 -6.01 -4.82 -11.25 -8.65 -6.98
0.02 -10.51 -7.28 -5.60 -14.64 -10.35 -8.05
0.03 18.45 -8.42 -6.44 14.81 -11.34 -9.10
0.04 112.65 31.12 -5.56 141.90 35.80 -7.22
0.05 181.89 99.39 42.67 310.52 164.51 57.66
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Table 1.5: Investment values under Carbon permits, percentage change
of investment value

Carbon
permits

C0 = 10 euros/MW Hour C0 = 15 euros/MW Hour

F
E 0.05 0.06 0.07 0.05 0.06 0.07

0.01 -46.03 -33.71 -26.56 -67.24 -49.73 -39.40
0.02 -65.35 -47.56 -34.60 -78.07 -67.35 -50.83
0.03 -52.93 -60.35 -48.30 -66.24 -73.33 -65.32
0.04 -13.64 -41.34 -55.00 -28.33 -52.04 -65.88
0.05 21.32 1.22 -21.61 29.06 -0.43 -23.75

The main difference between green certificates and carbon permits is
what they offset. Where CP help reduce greenhouse gas emissions, GC
offset electricity use from renewable sources. Carbon permits provide
certainty of abatement quantity but render the price per unit of abate-
ment uncertain. Green certificates significantly increase investment val-
ues at low electricity prices and high fuel prices, while in the opposite
situation (high electricity prices and low fuel prices), the investment val-
ues are lower than in the baseline. Carbon permits, on the other hand,
reduce the investment value of the firm. This seems in line with the
results of the previous subsection about the Carbon Tax.
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1.4 Sensitivity analysis

In this section, we verify the robustness of the previous results with
respect to change in some crucial parameters. More specifically, we are
interested in two main factors: policy risk and the budget available to the
firm. We proceed as usual, by looking at the differences between Feed-
in Tariffs versus Carbon Taxes and Green Certificates versus Carbon
Permits.

1.4.1 Feed-in tariff versus carbon taxes
Introducing policy risk In section 1.3, we examined the case where
neither the support scheme nor the carbon pricing could be altered dur-
ing the life of the facilities installed. Here, we introduce policy uncer-
tainty by allowing for a random revision of the support schemes. This
seems to be reasonable, given the high speed of technological develop-
ment in renewable energy sources. We assume that such revisions arrive
at intensity λ = 0.1, implying on average a shift in the scheme every
10 years. We take the initial value of the FiT equal to 15 euros/MW
Hour (the good state) and assume that this value can be lowered to 10
euros/MW Hour (the bad state) at some random point in time. For Car-
bon Taxes, we take the initial value to 10 euros/MW Hour (the good
state). Such value is subject to a change to 15 euros/MW Hour at a
random point in time.

Table 1.6 presents the investment values obtained in this new setup.
The results are qualitatively similar to the case without policy uncer-
tainty, providing robustness of our analysis with respect to policy un-
certainty. However, we see that policy uncertainty prejudices investors’
readiness to invest in RES and consequently reduces the effect of decar-
bonization schemes. At the same time, the penalizing effects of a Carbon
Tax in terms of appeal of the investment are slightly reduced.

Increasing the budget Here, we are interested in considering an in-
crease in investment up to 100 million to analyse changes in the optimal
patterns. Tables 1.8 and 1.9 present percentage changes of investment
values in such cases, with respect to the base case, whose investment
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Table 1.6: Investment values under FiT and Carbon Tax with policy
uncertainty (λ = 0.1), percentage change of investment value

Support
schemes

FiT Carbon Tax

F
E 0.05 0.06 0.07 0.05 0.06 0.07

0.01 -9.44 -7.14 -5.75 -40.67 -29.94 -23.73
0.02 -12.52 -8.67 -6.69 -60.78 -39.05 -28.95
0.03 -11.23 -10.11 -7.68 -63.11 -54.89 -36.64
0.04 64.47 6.99 -6.90 -39.67 -47.56 -46.34
0.05 193.23 131.24 40.67 -11.22 -14.38 -23.84

values are in Table 1.7. We consider no policy uncertainty (λ = 0).

Table 1.7: Investment values of base case for different levels of prices,
B = 100 million

Investment values, T euros

F
E 0.05 0.06 0.07

0.01 319091.03 424306.66 529530.62
0.02 212389.46 317466.41 422608.22
0.03 106685.80 211208.63 316085.35
0.04 27204.38 106364.16 210343.62
0.05 7904.62 32639.31 106487.02

Once again, the results are qualitatively consistent with those pre-
sented in Section 1.3. However, the effects of FiT -both positive and
negative- are dramatically reduced. This highlights the fact that the
smaller the firm, the less pronounced the effect of Feed-in-Tariffs, at least
in terms of investment values. On the other hand, the loss of investment
value in the presence o a Carbon Tax is much more pronounced.

1.4.2 Green certificates versus carbon permits
Increasing the budget We set the budget available equal to 100
million. The effects of a higher budget when Green Certificates are active
on the markets is highlighted in Table 1.10. As in the case of Section
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Table 1.8: Investment values under Feed-in Tariff, percentage change of
investment value, B = 100 million

Feed-in
Tariff

10 euros/MW Hour 15 euros/MW Hour

F
E 0.05 0.06 0.07 0.05 0.06 0.07

0.01 -0.51 -0.40 -0.33 -0.73 -0.58 -0.48
0.02 -0.56 -0.44 -0.36 -0.78 -0.62 -0.52
0.03 -0.30 -0.41 -0.36 -0.30 -0.56 -0.51
0.04 0.80 0.12 -0.26 1.63 0.34 -0.34
0.05 4.54 1.57 0.54 9.17 2.98 0.97

Table 1.9: Investment values under Carbon Tax, percentage change of
investment value, B = 100 million

Carbon
Tax

10 euros/MW Hour 15 euros/MW Hour

F
E 0.05 0.06 0.07 0.05 0.06 0.07

0.01 -32.55 -24.52 -19.66 -48.83 -36.77 -29.50
0.02 -48.29 -32.47 -24.47 -72.44 -48.71 -36.70
0.03 -89.43 -48.07 -32.37 -121.98 -72.10 -48.55
0.04 -201.68 -88.98 -47.77 -151.72 -116.43 -71.65
0.05 -193.52 -146.53 -85.86 -162.72 -119.05 -108.58

1.3, we note that GCs are particularly able to stimulate investment in
RES. In fact, the results are qualitatively similar. In addition, Table
1.10 shows that a higher budget increases the incentive of the firm to
invest in RES, as the loss in investment value in the cases observed in
Section 1.3 is much less pronounced than the case of a lower budget. On
the other hand, the negative effects of Carbon Permits already observed
in the previous section are more pronounced when the firm is willing to
invest more, as shown in Table 1.11.

29



Table 1.10: Investment values under Green certificates, percentage
change of investment value, B = 100 million

Green
certifi-
cates

G0 =10 euros/MW Hour G0 =15 euros/MW Hour

F
E 0.05 0.06 0.07 0.05 0.06 0.07

0.01 -0.69 -0.57 -0.51 -0.96 -0.75 -0.70
0.02 -0.70 -0.67 -0.53 -0.93 -0.77 -0.68
0.03 -0.19 -0.60 -0.55 0.00 -0.75 -0.68
0.04 69.16 1.83 -0.47 66.76 1.10 -0.50
0.05 173.28 66.60 7.95 157.18 63.69 7.22

Table 1.11: Investment values under Carbon permits, percentage change
of investment value

Carbon
permits

C0 =10 euros/MW Hour C0 =15 euros/MW Hour

F
E 0.05 0.06 0.07 0.05 0.06 0.07

0.01 -33.55 -25.29 -20.36 -50.12 -37.82 -30.41
0.02 -49.81 -33.52 -25.29 -69.21 -50.15 -37.85
0.03 -61.18 -49.00 -33.55 -73.98 -67.05 -49.96
0.04 -35.76 -54.31 -47.81 -58.00 -68.52 -62.38
0.05 -7.43 -30.37 -48.60 -35.89 -51.38 -63.01
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1.5 Conclusion

This chapter presents a real options framework to value investment tim-
ing and capacity choice of investments in energy facilities. Our main
focus is on contributing to the debate on which renewable energy sup-
port scheme does the best job in boosting investment in renewable energy
sources.

On the modelling side, our study differs from the relevant literature
in one major aspect: We give the investor the opportunity to invest also
in traditional energy sources. We call this opportunity the Dirty Option.

In our analysis, we observe the effectiveness of FiT in driving green
energy investment. At the same time, CT is holding back investment
in RES. Difficulties and complexities in the development of GC and CP
may explain why these incentives are not so common. However, the
incentive effect of a green certificate is comparable to FiT.
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Chapter 2

Strategic capacity choice with
risk-averse firms

2.1 Introduction

In a world where new investment possibilities arrive at rates never expe-
rienced, studying and understanding investment problems assume high
practical relevance. For instance, in the telecommunication sector, the
fifth-generation mobile technology (usually know as 5G) has been just
launched, opening up new investment opportunities and dilemmas for
both services and hardware providers. As auctions for national’s band
spectrum open, telecommunication services providers engage in costly
races to achieve a future strategic advantage over competitors. For ex-
ample, the Italian Government earned almost e6.5 billion against e2.5
billion planned. However, the automobile sector exhibits a different in-
vestment pattern. The industry has been experiencing only recently
investments in electrical engines and a variety of hybrid vehicles though
Toyota launched its first hybrid car over twenty years ago.

Since the seminal works of McDonald and Siegel (1986), Dixit and
Pindyck (1994), the new paradigm of investments under uncertainty has
inspired an enormous number of theoretical and applied papers on real
options. Strategic real options theory, the sub-field of real options theory
dealing with investment under uncertainty and competition, originated
with Smets (1991), Trigeorgis (1991), is among the most successful and
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currently most active streams of research. Recent advances add to the
classical investment problem not only competition but also a new strate-
gic decision variable, namely the scale of the investment, that extends
the range of the predictions of real options theory.

The majority of real options models makes predictions based on the
assumption that agents are risk-neutral. Working in a risk-neutral setup
gives the double advantage of simplifying the problems involved and
obtaining a result that is comparable with the literature. However, in
reality, we observe a variety of behavioural patterns that seem to favor
the risk-aversion hypothesis. This assertion is based not only on anecdo-
tal evidence. Recent empirical investigations test predictions based on
real options theory and study when agents exercise American options,
finding that observed investment practice might contrast predicted be-
haviour. For instance, Linnerud et al. (2014) test the effects of policy
uncertainty on investments on small hydropower projects. In contrast
to what real option predicts, authors find that non-professionals did not
recognize the possibility of waiting to increase the project value. They
conclude that, concerning that specific class of investors, the assumptions
made by real options theory with respect to investors’ preferences, char-
acteristics, and behaviour are less realistic. Although not in the context
of pure investment behaviour, the recent paper of Carpenter et al. (2015)
provides further evidence. In that paper, authors analyse the exercise
of Employees Stock Options in a unique database of over 100 firms and
find the behaviour of professionals in sharp contrast with risk-neutrality.

The present chapter studies the joint effect of uncertainty, competi-
tion, and risk-aversion on the equilibrium timing and capacity choice.
Two firms contemplate the possibility of investing in a single-product
production plant. Instantaneous Hyperbolic Absolute Risk Aversion
(HARA) utility functions model the risk-averse propensity of the two
firms. Each firm has to decide both the optimal time to invest and the
capacity of the plant. Following the current literature, we distinguish
between two cases: First, we fix a priori which firm is the first to invest.
In this case, the resulting equilibrium is said to be non-preemptive. Then
we analyse the case in which the question concerning which of the two
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firms is the first to invest is part of the problem itself. In this case, both
firms have economic incentives to invest first due to the presence of a
first-mover advantage. The resulting equilibrium is said to be preemp-
tive.

The interaction between uncertainty, competition, and risk-aversion
produces the following results. First, risk-aversion reduces equilibrium
capacities (in both preemptive and non-preemptive equilibria).

Second, as risk-aversion increases, the incentive of the leader to de-
lay follower’s investment as much as possible diminishes. Two forces
contribute to this effect. First, the follower’s investment threshold is a
decreasing function of the player’s attitude toward risk (see Chronopou-
los et al., 2013). Thus, as risk-aversion increases, deterring the follower’s
entry becomes less appealing, because of the exogenous reduction of the
leader’s extra profit during the period of temporary monopoly. Third, a
risk-averse leader reduces the size of the investment. This reduces further
the leader’s benefit due to the temporary monopoly. In the end, for a
sufficiently high level of risk-aversion, deterring and accommodating the
follower’s investment become almost indistinguishable. Consequently,
the two strategies available produce the same investment size.

Forth, when firms’ roles are preassigned, the large investment re-
quired by the deterrence strategy increases the probability of invest-
ment failure, due to the sunk costs of entry. The extra-utility from
profits during the period of monopoly is not sufficient to compensate
for the loss of utility the leader suffers from her risk exposure. As the
players’ risk-aversion increases, the latter effect becomes dominant. The
leader becomes less aggressive, thus reducing the over-investment effect
found in Huisman and Kort (2015). Moreover, investing a lower amount
of money reduces the market size necessary to enter the market. As
a result, the higher the risk-aversion, the lower the leader’s investment
threshold. Further, higher risk-aversion makes the follower willing to
invest earlier. In equilibrium, the leader is always the largest firm in the
market.

Fifth, when firms’ roles are determined in equilibrium, we observe
the following patterns. The preemption point is increasing with risk-
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aversion. Thus, risk-aversion has a positive relationship with investment
delay. The question for which firm is the largest in equilibrium has no
definitive answer but depends on the parametrization used. However,
when risk-aversion is high, both firms choose the same investment size.

Lastly, in one of the asymmetric case we consider, we find a region
in which the leader cannot implement the available strategies. In this
region, the Leader only alternative is to wait until the value of the state
variable allows the implementation of the strategies.

The rest of the chapter is structured as follows. In subsection 2.1.1,
we review the literature related to this chapter. Section 2.2 introduces
the basic setup and firms’ preferences and solves the combined optimal
stopping problems with endogenous capacity choice involved in the sub-
sequent analysis. Section 2.3 focuses on the equilibrium solution when
the role assigned to each player in the market is given ex-ante, while
Section 2.4 analyses the case in which the role played by the firm is part
of the equilibrium solution. Finally, in Section 2.5, we conclude.

2.1.1 Related literature
The literature on real options games is so broad that a complete review
of the topics studied is outside the objective of this chapter. We limit
the discussion to the streams of research that are most relevant for the
present chapter and refer to Azevedo and Paxson (2014) for comprehen-
sive literature reviews.

This chapter is related to several research lines. The first line deals
with capacity and timing decisions in investments under uncertainty
originated from Dangl (1999), Bar-Ilan and Strange (1999). In this
context, recent papers analyse different aspects. Chronopoulos et al.
(2013) look at the effects of operational flexibility; Hagspiel et al. (2016),
De Giovanni and Massabò (2018) focus on the impact of volume flexibil-
ity. Koussis et al. (2007) focus on time-to-learn and learning-by-doing,
while Chronopoulos and Siddiqui (2015) analyse the replacement of old
technologies. The analysis provided in the present chapter does not con-
sider either operational nor volume flexibility. However, it adds to this
stream of the literature by introducing the combined effect of competi-
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tion and risk-aversion in a capacity decision problem.
The second research line analyses the effect of risk-aversion on the

classical real options paradigms. In this vein, Hugonnier and Morellec
(2007) is the first paper to show that risk-aversion causes a dramatic
reduction of the investment value due to a delay in the optimal time
to invest. Chronopoulos et al. (2011) suggest that operational flexibil-
ity alleviates the effects of risk-aversion. Chronopoulos and Lumbreras
(2017) contribute to this stream by analysing the impact risk-aversion
on sequential investments in new technologies. The present study adds
to this stream of literature by providing novel predictions on the effect
of risk-aversion in a strategic setup under endogenous capacity choice.

The present study is also related to the recent and fast-growing
stream of the literature that focuses on the strategic investment problem
under endogenous capacity selection, originated by the seminal paper of
Huisman and Kort (2015). Under this line of research, Lavrutich et al.
(2016) analyse the joint effect of uncertainty about both market growth
and additional market players. Aïd et al. (2017) consider a game of ca-
pacity investment in power generation. Lavrutich (2017) also add exit
to the basic model. The contribution that the present chapter offers to
this line of research is twofold. On the one hand, investment models
with competition, endogenous capacity choice and endogenous product
pricing are particularly difficult to analyse due to the intrinsic coupled
nature of such problems. In this direction, in the proof of Proposition 3,
we show how the implicit function theorem can transform the problem
of finding optimal capacities into a nonlinear equation. On the other
hand, the present chapter introduces a more general framework where
firms are characterized by varying degrees of risk-aversion. Under this
setup, most of the effects that the study highlights are, to the best of
our knowledge, new.

The two papers most related to the present study are Chronopoulos
et al. (2014), Huisman and Kort (2015). Chronopoulos et al. (2014)
analyse the impact of risk-aversion on the classical strategic investment
problem, taking capacity as given. Huisman and Kort (2015) consider
the capacities of both players as a decision variable in a risk-neutral
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setup. The present study examines both risk-aversion and endogenous
capacity decision at the same time, thus providing a bridge between the
existing research gap.
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2.2 Model and strategies

We consider an industry consisting of two firms. Both firms contemplate
undertaking an investment in a production facility. The decision problem
of both firms involves the timing of the investment and the capacity
of the production plant. Firms start production only after installing
capacity. We suppose that investment costs are linear in capacity size,
with marginal cost denoted by c, sunk and symmetric to both firms.
Firms are supposed to produce always up to capacity.

The price at time t of the product is given by:

p(Q,Xt) = Xt(1− ηQ), (2.1)

where Q is the total capacity of the industry, while the exogenous process
{Xt} models random fluctuations and it is assumed to follow a geometric
Brownian motion:

dXt = µXtdt+ σXtdWt. (2.2)

One may think at the stochastic process {Xt} as the factor driving the
market growth. In this sense, the parameter µ measures the expected
instantaneous growth rate while the parameter σ is a measure of the
riskiness of the investment.

Following Hugonnier and Morellec (2007), the utility a firm gets from
the stream of cash-flow {π(Xt)} is described by:1

V (x) = Ex

[∫ ∞
0

e−ρtU (π(Xt)) dt
]
,

being ρ the subjective discount rate common to both firms, and U(·)
the instantaneous utility function. For analytical tractability, in this
chapter, we restrict attention to the class HARA instantaneous utility
functions, which are defined, for x > 0, by:

Ui(x) = x1−γ

1− γ ,

where we restrict attention to γ ∈ [0, 1) since it turns out that relevant
1Ex [g(Xt)] = E [g(Xt) | X0 = x].
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optimal quantities are not defined for γ ≥ 1.
In the sequel, we formulate and solve the decision problem faced

by both firms. As it is standard in strategic real options game theory,
throughout this chapter, we shall indicate the first firm investing in
the market as the leader and the firm investing after the leader as the
follower. We study two cases: in the former, the role each firm plays in
the game is preassigned, which gives rise to a sequential game; in the
latter, the role of each firm is part of the solution, which results in a
preemption game. Both cases are solved backward in time by solving
first the decision problem of the follower for a given capacity choice of
the leader.

To take into account different risk-aversion configurations, we will
consider three cases:

1. the symmetric case, where the risk aversion of market participants
is the same (γL = γF = γ > 0);

2. the follower is risk-averse (γF > 0 and γL = 0);

3. the leader is risk-averse (γL > 0 and γF = 0).

2.2.1 Follower’s strategy
The follower’s combined entry-capacity choice problem does not depend
on the type of game under consideration. Assume the leader entered the
market with capacity QL and denote by QF the follower’s investment
size. At the random investing time TF , the follower enters the market
by exchanging the lump sum cQF , which represents the cost required
to undertake the investment with the stochastic stream of cash flow
{πF (QF , Xt)} = {p (QF +QL, Xt)QF}. Therefore, the decision problem
of the follower is:

VF (x) = max
TF ,QF≥0

Ex[
∫ ∞
TF

e−ρtU(QFp(QF +QL, Xt))dt]− U(cQF ).
(2.3)

We use backward induction to solve the follower’s problem. First,
suppose that the firm invests as soon as the leader. For any initial
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level x of the random process {Xt}, we determine the optimal capacity
Q̂F (x,QL) = arg max

QF≥0
F (x,QF , QL), where:

F (x,QF , QL) := Ex[
∫ ∞

0
e−ρtU(QFXt(1− η(QF +QL)))dt]− U(cQF ).

(2.4)
This gives the optimal capacity level in terms of a nonlinear implicit

equation. After that, we derive the investment threshold using standard
methods in real options. The following proposition gives the follower’s
optimal strategy:

Proposition 1. Define parameters B and β as

BF = 2
(γF − 1) (2µ− γFσ2) + 2ρ (2.5)

β =
σ2 − 2µ+

√
(σ2 − 2µ)2 + 8ρσ2

2σ2 . (2.6)

1. The follower’s optimal capacity when investing at level x, Q̂F (x,QL),
solves:

BFx
1−γF (1−2ηQ̂F (x,QL)−ηQL)(1−η(Q̂F (x,QL)+QL))−γF = c1−γF ;

(2.7)

2. The utility-maximizing investment strategy of the follower consists
in the pair

(
Q̂F (QL), T̂F (QL)

)
, where:

T̂F (QL) = inf
t≥0

{
t : Xt ≥ X̂F (QL)

}
,

and

X̂F (QL) =c(1 + β − γF )
1− ηQL

(
BF (β + γF − 1)

βγF

) 1
γF−1

, (2.8)

Q̂F (QL) =(1− γF )(1− ηQL)
η(β − γF + 1) . (2.9)
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3. The follower’s value function is given by:

V̂F (x,QL) =
AF (QL)xβ if x < X̂F (QL)
F̂ (x,QL) if x ≥ X̂F (QL),

(2.10)

where F̂ (x,QL) = max
QF≥0

F (x,QF , QL) and AF (QL) = F̂ (X̂F (QL),QL)
X̂F (QL)β

.

The investment threshold and capacity level of follower under three
cases are defined in B.1 and are the risk-averse generalization of the
formulas obtained in Huisman and Kort (2015).

2.2.2 Leader’s strategies
Having the advantage to be the first to enter the market, the leader solves
the decision problem taking into account the strategy of the follower.
Two possible alternatives are available to the leading firm, as the leader
might prefer either to deter the follower’s entry as much as possible or
to let the follower enter as soon as the leader has invested. Adopting
the terminology of Huisman and Kort (2015), we call entry deterrence
strategy a pair (QD

L , X
D
L ), consisting of the leader’s capacity size and

investment threshold, such that the leader invests strictly before the
follower, that is XD

L < X̂F (QD
L ). Alternatively, an entry accommodation

strategy is a pair (QA
L , X

A
L ) such that the follower invests at the same

time as the leader, which is XA
L = X̂F (QA

L).

Leader’s deterrence strategy

An entry deterrence strategy allows the leading firm to enjoy a period
of monopoly, from the leader’s time of entry until the follower invests.
This sequential investment pattern generates the following utility maxi-
mization problem:

V D
L (x) = max

TL,QL≥0
Ex[

∫ ∞
TL

e−ρtU(QLp(QL, Xt))dt]− U(cQL)

+ Ex[
∫ ∞
T̂F (QL)

e−ρt(U(QLp(Q̂F (QL) +QL, Xt))− U(QLp(QL, Xt)))dt]
(2.11)

The rationale of equation (2.11) is as follows. The leader enjoys a
period of monopoly until time T̂F (QL) > TL when the follower enters the
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market with capacity Q̂F (QL). At that time, the leader loses her monop-
olist position and is forced to exchange the profit flow {p(QL, Xt)QL}
with the profit flow {p(QL + Q̂F (QL), Xt)QL}.

The problem is solved again with the help of backward induction.
First, suppose that the leader invests at time t = 0. For any initial
level x of the random shock, we determine the optimal capacity that
maximizes the leader value under entry deterrence strategy, given by:

LD(x,QL) = Ex[
∫ ∞

0
e−ρt(U(QLp(QL, Xt))dt

+
∫ ∞
T̂F (QL)

e−ρt(U(QLp(Q̂F (QL) +QL, Xt))− U(QLp(QL, Xt)))dt]

− U(cQL)).
(2.12)

Define Q̂D
L (x) = arg max

QL≥0
LD(x,QL). To generate an entry deterrence

strategy, Q̂D
L (x) must be such that X̂F

(
Q̂D
L (x)

)
< x, otherwise the fol-

lower’s entry threshold is at least equal to the current level of the state
and this makes the follower enter immediately, thus preventing the strat-
egy to be of entry deterrence type. Inverting the previous relation, an
entry deterrence strategy is possible if Q̂D

L (x) > Q̄(x), where:

Q̄(x) = 1
η

1− c(β − γF + 1)
x

(
βγF

BF (β + γF − 1)

) 1
1−γF

. (2.13)

Next proposition summarizes the relevant results for the leading firm
under entry deterrence:

Proposition 2. Consider the parameter β as defined in equation (2.6)
and the parameter BL = 2

(γL−1)(2µ−γLσ2)+2ρ .

1. Entry deterrence is a feasible strategy whenever x ∈ (xD1 , xD2 ). Un-
der entry deterrence, the optimal leader’s capacity, Q̂D

L (x), implic-
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itly solves

X̂1−β−γL
F (Q̂D

L (x)) =
(γL − 1)(−β + γF − 1)c−γLx−β−γL(β−βηQ̂

D
L (x)

β−γF+1 )γL

BL(γL + (β + 1)ηQ̂D
L (x)− γLηQ̂D

L (x)− 1)
·

BLxc
γL(2ηQ̂D

L (x)− 1) + cxγL(1− ηQ̂D
L (x))γL(

(β − γF + 1)(β−βηQ̂
D
L (x)

β−γF+1 )γL − β(1− ηQ̂D
L (x))γL

) .
(2.14)

The cumbersome expression of xD1 and xD2 are relegated in B.2.

2. The leader’s utility-maximizing investment strategy under entry de-
terrence consists in the pair (Q̂D

L , T̂
D
L ), where

T̂DL = inf
t≥0

{
t : Xt ≥ X̂D

L

}
and

X̂D
L =c(β − γL + 1)

β

(
BL(β + γL − 1)

β

) 1
γL−1 (2.15)

Q̂D
L = 1− γL

η(β − γL + 1) . (2.16)

3. The value function of the leader under entry deterrence is

V̂ D
L (x) =

A
D
Lx

β if x < X̂D
L

L̂D(x) if x ≥ X̂D
L

(2.17)

where L̂D(x) = max
QL≥0

LD(x,QL) and ADL = L̂D(X̂D
L )

(X̂D
L )β

.

Corollary 1. Consider the deterrence strategy under three cases. The
corresponding equations for principal parameters are given in the table
below:
Parameters γL = γF = γ > 0 γF > 0, γL = 0 γF = 0, γL > 0

X̂D
L

c(β−γ+1)
β

(
B(β+γ−1)

β

) 1
γ−1 c(β+1)

BL(β−1)
c(β−γL+1)

β

(
BL(β+γL−1)

β

) 1
γL−1

Q̂D
L

1−γ
η(β−γ+1)

1
η(β+1)

1−γL
η(β−γL+1)

xD1 eq. (B.10) eq. (B.14) eq. (B.16)
xD2 eq. (B.11) eq. (B.15) eq. (B.17)
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Leader’s accommodation strategy

Under entry accommodation, the leader chooses her strategic variables
so that the follower invests immediately after the leader. For an accom-
modation strategy to be feasible, it is necessary that QA

L(x) ≤ Q̄(x), that
is the capacity chosen by the leader must be such that X̂F (QA

L(x)) ≥ x.
This requires a level of the random shock at least equal to xA. Then,
the follower finds it convenient to enter the market immediately. The
leader’s decision problem under accommodation strategy reads:

V A
L (x) = Ex[

∫ ∞
TL

e−ρt(U(QLp(QL + Q̂F (x,QL), Xt))dt]− U(cQL)).
(2.18)

We again make use of backward induction. Suppose the leader invests
at time t = 0. For any initial level x, we need to determine Q̂A

L(x) =
arg max

QL≥0
LA(x,QL), where:

LA(x,QL) = Ex[
∫ ∞

0
e−ρt(U(p(QL + Q̂F (x,QL), Xt)QL)dt]− U(rcQL)).

(2.19)
We note that the problem of finding Q̂A

L(x) has a complicated structure
since the function Q̂F (x,QL) is itself an implicit function of QL and x.

Proposition 3. Under entry accommodation, the optimal capacity of the
leader when entry at the level of the random shock x, which we denote
by Q̂A

L(x), and that of the follower are implicitly defined by (2.7) and

(1− η(QF (QL) +QL))1−γL

xγL−1c1−γLB−1
L

= γF (η (2QF (QL) +QL)− 1)− 2 (1− η(QF (QL) +QL))
γF (η (2QF (QL) +QL)− 1)− η (2QF (QL) + 3QL) + 2 .

(2.20)
The symmetric case in which γF = γL = γ decouples the system. The
following explicit function defines the follower’s optimal capacity:

QF (x) = Ψ
(
QA
L(x)

)
, (2.21)
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where QA
L(x) solves the following expression:

(1− η(QF (QL) +QL))1−γ

xγ−1c1−γB−1 = γ (η (2QF (QL) +QL)− 1)− 2 (1− η(QF (QL) +QL))
γ (η (2QF (QL) +QL)− 1)− η (2QF (QL) + 3QL) + 2 .

(2.22)
The expression of the function Ψ(Q) is relegated in B.3. The asymmetric
case in which γF > 0, γL = 0, the optimal capacity of the follower at the
same level of the random shock is defined by (B.26). The asymmetric
case in which γL > 0, γF = 0, the optimal capacity of the follower at the
same level of the random shock is defined by (B.29).

Proposition 3 reduces the problem of finding the optimal capacity of
the leader under entry accommodation, which depends on the optimal
capacity the follower chooses, into an implicit equation to be solved.
From these results, the function Q̂A

L(x), together with the optimal value
function V̂ A(x), can be approximated straightforwardly. Details of the
entry accommodation strategy of the leader see in B.3.
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2.3 Strategic capacity choice under risk-aversion:
Exogenous leadership

2.3.1 Symmetric case
The leader problem is solved as explained in Huisman and Kort (2015).
The solution of the leader’s problem, consisting of choosing whether to
deter or to accommodate the follower’s entry, depends on the relative
location between xD2 and xA. Although in our setup it is not possible
to compare the boundaries analytically, numerical evidence based on an
extensive set of experiments shows that, in case of symmetric games,
xA ≤ xD2 . With this relationship, it is possible to determine the leader’s
optimal strategy, as follows. For x ≤ xA, only the deterrence strategy is
feasible, while for x ≥ xD2 , entry accommodation is the only possibility.
In the region (xA, xD2 ), where both strategies are feasible, the leader
chooses to have the highest possible value. To describe the leader’s
choice in that region, we make use of the function M(x), defined by:

M(x) =

D if V̂ D
L (x) ≥ V̂ A

L (x)

A otherwise,

which returns the leader’s optimal strategy for each x ∈ (xA, xD2 ). We
summarize the leader’s equilibrium quantities in Table 2.1.

Region Strategy V̂L(x) X̂L Q̂L(x){
x ∈ (xD1 , xA]

}
Deterrence V̂ D

L (x) max
{
x, X̂D

L

}
Q̂D
L

(
X̂L

){
x ∈ (xA, xD2 ]

}
Both V̂

M(x)
L (x) max

{
x, X̂

M(x)
L

}
Q̂
M(x)
L

(
X̂L

){
x ∈ (xD2 ,∞)

}
Accommodation V̂ A

L (x) max
{
x, X̂A

L

}
Q̂A
L

(
X̂L

)
Table 2.1: Summary of the relevant leader’s equilibrium quantities under
exogenous leadership. V̂L(x): equilibrium value function; X̂L: equilib-
rium investment threshold; Q̂L(x): equilibrium capacity. The function
M(x) returns strategy D if the value of applying deterrence is higher
than the value of applying accommodation, and vice versa.
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c ρ µ η
0.1 0.1 0.06 0.05

Table 2.2: Parameter values used in the analysis.

Unless otherwise stated, we use the set of parameters’ values provided
in Table 2.2.
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Figure 2.1: Leader’s optimal capacity choice: deterrence versus accom-
modation strategy under risk-aversion. Entry deterrence is a feasible
strategy for x ∈ (xD1 , xD2 ). Entry accommodation is a feasible strategy
for x ≥ xA. Panel 2.1(a) shows a case of low risk-aversion (γ = 0.1);
Panel 2.1(b) shows a case of high risk-aversion (γ = 0.8). The remaining
parameter values are those in Table 2.2.

Figure 2.1 presents two examples of the functions Q̂D
L (·) and Q̂A

L(·)
with different levels of risk-aversion. The figure highlights the typical
effects of risk-aversion on the optimal strategies available to the leader.
First, increased risk-aversion reduces the optimal investment scale. As
risk-aversion increases, so does the leader’s willingness to protect the
business against markets’ breakdown. This effect creates an incentive
for the leader to reduce the amount invested. However, the example of
Figure 2.1 also shows an apparently unexpected effect. As risk-aversion
increases, the difference, in terms of optimal investment size, between
deterrence and accommodation strategy tends to disappear. Put dif-
ferently, in a market characterized by two highly risk-averse firms, the
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optimal investment size of the non-preemptive leader does not depend on
whether she chooses to accommodate or deter investment of the follower.
This effect is clearly visible when comparing panels 2.1(a) and 2.1(b).
An increase of risk-aversion reduces both xD2 and xA, the reduction of
xA occurring at a higher speed. As γ approaches to 1, both boundaries
assume the same value. This enlarges the accommodation region and,
at the same time, reduces the size of the deterrence region.

More importantly, as risk-aversion increases, Q̂A
L(x) approaches Q̂D

L (x).
This effect is more pronounced in the region in which deterrence is feasi-
ble. Economic intuition suggests that two forces cause this phenomenon.
First, independently on the strategy used by the leader, an increase in
risk-aversion causes the follower to invest earlier.2 This means the period
of monopoly the leader enjoys is exogenously reduced when risk-aversion
increases, thus reducing the appealing of a deterrence strategy. Second, a
deterrence strategy implies investing in a significant production plant to
delay the follower’s entry into the market. This undoubtedly increases
the investment risk profile. As the leader becomes more risk-averse,
the incentive to make a large investment is less pronounced. This, in
turn, makes the follower invest earlier, thus reducing the leader’s extra
profits due to a temporary monopoly. In the end, when risk-aversion
is sufficiently high, entry deterrence and entry accommodation become
indistinguishable in terms of the size of the investment.

High risk-aversion reduces the leader’s incentive to over-invest in or-
der to delay follower’s entry (compare, for instance, both panels of Fig-
ure 2.2). By over-investing in the deterrence region, the leader obtains
a gain in utility due to the delay of the follower’s entry. On the other
hand, since entry costs are sunk, the risk of facing investment losses
due to unfavorable future market conditions increases with the size of
the investment. Thus over-investment also causes a loss in the leader’s
utility. As risk-aversion increases the latter effect becomes predomi-

2Chronopoulos et al. (2013), the first to document this effect, show that the more
risk-averse the monopolist, the lower the investment size. Due to the increased con-
cern about risk, the monopolist adjusts the risk profile of the investment by investing
less. This reduces the value of the option to wait since a lower amount invested
requires a lower level of market size to maximize the investment’s profitability.
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Figure 2.2: Equilibrium capacity choice when firms’ roles are preas-
signed: effects of risk-aversion. Panel 2.2(a) shows a case of low risk-
aversion (γ = 0.1); Panel 2.2(b) shows a case of high risk-aversion
(γ = 0.8). In both panels, entry deterrence is applied for x < x̄ while
entry accommodation is applied for x ≥ x̄. The remaining parameter
values are those in Table 2.2.

nant, thus making the leader less willing to delay her competitor’s entry.
In terms of investment timing, this phenomenon implies that increased
risk-aversion reduces the values of the leader’s option value to wait. By
investing in a smaller production plant, the leader requires a lower level
of market size to maximizes the profitability of her investment. This is
shown in Figure 2.3. From that figure, it is also evident that the period
of time in which the leader benefits from a temporary monopoly position
(which can be measured, in Figure 2.3, by intersecting vertical lines with
the relevant curves) decreases with risk-aversion.
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Figure 2.4: Leader’s optimal capacity choice: case of low risk-aversion
(γF = 0.1).

With increasing risk-aversion, the follower invests earlier, and his op-
timal scale of investment decreases. If the follower will tend to be more
risk-averse (γF = 0.7), the possibility of implementing a deterrent strat-
egy disappears (see Fig. 2.5). When γF approaching 1, the deterrence
region decreases drastically. Increasing risk aversion by the leader de-
creases both xD2 and xA. In a market that characterizes a follower with
a high degree of risk-aversion, the leader does not have the opportu-
nity to take advantage of the monopoly period. Over-investing costs are
very high, which makes it impossible to implement a deterrence strat-
egy. High risk-aversion of the follower increase the leader’s incentives to
under-invest.

As risk aversion increases, over-investing leads to a loss in the leader’s
utility, making the leader less likely to delay the entry of a competitor.
So with γF = 0.7, this effect becomes predominant, and the leader alto-
gether does not delay the entry of the follower into the market. If increase
risk-aversion of the followers, it reduces the values of the leader’s option
value to wait.
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Figure 2.5: Leader’s optimal capacity choice: case of high risk-aversion
(γF = 0.7).

2.3.3 Asymmetric case: the leader is risk-averse
In this section, we consider the case opposite to the one described above,
when the follower is risk-neutral (γF = 0). Figure 2.6 presents two exam-
ples of the functions Q̂D

L (·) and Q̂A
L(·) with different levels of risk-aversion

by a leader. In the case when the follower is risk-neutral, then with an
increase in risk aversion the leader increases his optimal investment scale.
As the leader increases risk aversion, the difference, from the point of
view of the optimal investment size, between deterrence and accommo-
dation strategies tends to increase sharply. When γL approaching 1, the
deterrence region increases. Increasing risk aversion by the leader in-
creases both xD2 and xA. It is worth noting that an increase in xD2 occurs
at a faster rate than xA.

(a) (b)

Figure 2.6: Leader’s optimal capacity choice: under different levels of
risk-averse. Panel 2.6(a) shows a case of low risk-aversion (γL = 0.1);
Panel 2.6(b) shows a case of high risk-aversion (γL = 0.7).
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With increasing risk aversion, Q̂A
L(·) is moving away from Q̂D

L (·),
especially in a region where a deterrence strategy is feasible. Once again,
we observe that risk-aversion increases, investing earlier. We can observe
if the leader begins to be risk-averse (γL = 0.7), the duration of his
monopolistic period increases.

(a) (b)

Figure 2.7: Equilibrium capacity choice when firms’ roles are preas-
signed: effects of leader’s risk-aversion. Panel 2.7(a) shows a case of low
risk-aversion (γL = 0.1); Panel 2.7(b) shows a case of high risk-aversion
(γL = 0.7). In both panels, entry deterrence is applied for x < x̄ while
entry accommodation is applied for x ≥ x̄.

High risk-aversion increases the leader’s incentive for over-invest in
order to delay follower’s entry (compare both panels of Figure 2.7). The
leader with high risk-aversion (γL = 0.7) obtains a gain in utility due
to the delay of the follower’s entry. By over-investment causes a benefit
in the leader’s utility. As a leader’s risk-aversion increases, this effect
becomes predominant, thus making the leader more willing to delay her
competitor’s entry.
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2.4 Strategic capacity choice under risk-aversion:
Endogenous leadership

In this section, we analyse the case in which the role each firm plays
in the game is not given ax-ante. In this situation, each firm should
decide whether to become the leader and get the value function V̂L(x)
in Table 2.1, or the follower, and get the value function V̂F (x,QL) in
(2.10). Panel 2.8(a) gives a graphical representation of the game at
hand, which posses the features of a preemption game: each firm is
willing to become the leader, for there is a first-mover advantage due to
the period of temporary monopoly the leader enjoys. Preemption games
in continuous time are studied in the seminal paper of Fudenberg and
Tirole (1985) in the deterministic case and extended to the stochastic
case in Thijssen et al. (2012). According to this literature, the principle
of rent equalization must be used to solve the game. Each firm, for fear
to be preempted, is willing to invest just before its rival. The incentive
to preempt each other vanishes at the so-called preemption thresholds
X̂P , defined by:

V̂L
(
X̂P

)
= V̂F

(
X̂P , Q̂L

(
X̂P

))
. (2.23)

At the preemption threshold, the value of being the leader is equal to
the value of being the follower. Any further attempt to invest before
this threshold makes the leader’s value lower than the follower’s value,
and the leader’s advantage vanishes. In mixed strategies, with the same
probability, one of the two firms enters the market exactly when the pro-
cessXt touches the preemption threshold, with capacity Q̂P = Q̂L

(
X̂P

)
.

The rival assumes the role of the follower, entering the market at the
threshold X̂F,P = X̂F

(
Q̂P

)
, with capacity Q̂F,P = Q̂F

(
Q̂P

)
.

2.4.1 Symmetric case
Panel 2.8(b) illustrates the effects of risk-aversion on the equilibrium
investment thresholds when firms’ roles are endogenously determined.
The panel signals the dramatic reduction of the first-mover advantage in
the preemption game as risk-aversion increases. This effect is particu-
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larly pronounced at the highest admissible values of risk-aversion, as for
those value both firms invest almost at the same time. The economic
explanation of this reduction lies in the expression of the follower’s entry
threshold, (2.8). The preemption threshold, which defines the leader’s
optimal investment time, is slightly increasing in risk-aversion, thus sig-
nalling a light increment of the option value to wait for the leader’s point
of view. However the leader’s optimal capacity is a decreasing function
of risk-aversion. Indeed, increased risk-aversion makes the leader willing
to lower the capacity of the production plant in order to reduce invest-
ment riskiness. This, in turn, eliminates the possibility, for the leader
side, to over-invest to delay the follower investment.3
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Figure 2.8: Panel 2.8(a) shows the value functions for the leader and
the follower when firms’ roles are endogenously determined. The risk-
aversion parameter is set to γ = 0.75(σ = 0.2) ; Panel 2.8(b) plots
leader’s and follower’s investment threshold as a function of γ (σ = 0.2).
The remaining parameter values are those in Table 2.2.

Next, we analyse the effects of risk-aversion in the equilibrium ca-
pacity size. Our main concern here is to understand whether one firm
invests in a capacity size larger than its rival. Figure 2.9 displays four
possible patterns, depending on the particular risk-return profile of the

3Due to space limitation, we present only one example of this phenomenon. How-
ever, we have run an extensive set of numerical experiments, all confirming the ro-
bustness of this result concerning changes in value of different parameters.
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Figure 2.9: Equilibrium capacity sizes as a function of risk-aversion:
endogenous firms’ role. Panel 2.9(a) γ = 0.1 µ = 0.06; Panel 2.9(b)
γ = 0.2 µ = 0.06; Panel 2.9(c) γ = 0.1 µ = 0.09. Panel 2.9(d) γ = 0.2
µ = 0.09; The remaining parameter values are those in Table 2.2.
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investment. All panels present a common feature: when risk-aversion is
very high, both firms invest, in equilibrium, in the same capacity size.
However, for low to moderate levels of risk-aversion, the risk-return pro-
file of the investment matters. Panels 2.9(a) and 2.9(b) present a sit-
uation where the expected instantaneous growth rate is relatively low
(µ = 0.06). In such situations, the leader’s willingness to protect the
business is reflected by the fact that in almost all the case the follower
equilibrium capacity size is larger than that of the leader. Particularly
interesting is the change of the leader’s qualitative behaviour from very
low to moderate levels of risk-aversion when the investment risk is high
(panel 2.9(b)). A leader characterized by a low concern about risk-
aversion is willing to over-invest as much as possible in order to delay
its rival’s entry, thus enjoying a longer period of monopoly. This makes
the leader the largest firm in the market. However, as risk-aversion in-
creases, the leader’s fear of future market crashes prevails, and the effect
is reversed. Panels 2.9(c) and 2.9(d) present a situation where the ex-
pected instantaneous market growth rate is relatively high. Here, for low
to moderate levels of risk-aversion, the incentive to over-invest is strong
enough to prevail, no matters the riskiness of the investment, and the
leader is always the largest firm in the market.

2.4.2 Asymmetric case: the follower is risk-averse
As in paragraph 2.3.2, we also have the leader who is risk-neutral. There
is a period of "No invest," in connection with which we get a graphic in
the form of piecewise. We observe the value of the preemption threshold
increase increases with the follower’s level of risk-aversion. The first
thing we observe when comparing two panels 2.10(a) and 2.10(b) is a
significant reduction in investment value.

Investment is not profitable for small values of the random shock x.
Then no firm wants to invest first, which is why the follower curve lies
above the leader curve. For larger values than the preemption thresholds
X̂P , each firm wants to be the first investor. When γF approaching 1,
the preemption thresholds X̂P slightly increases. Increased risk-aversion
γF forces the leader to reduce the capacity of the production plant in
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(a) (b)

Figure 2.10: The figure shows the value functions for the leader and
the follower when firms’ roles are endogenously determined. The risk-
aversion parameter (γF ) is set to 0.1 and 0.7 at panels 2.10(a) and
2.10(b), respectively.

order to reduce the riskiness of investments. When passing a certain
level of γF , a leader is willing to over-invest as much as possible, in order
to delay its rival’s entry.

2.4.3 Asymmetric case: the leader is risk-averse

(a) (b)

Figure 2.11: The figure shows the value functions for the leader and
the follower when firms’ roles are endogenously determined. The risk-
aversion parameter (γL) is set to 0.1 and 0.6 at panels 2.11(a) and
2.11(b), respectively.

As in paragraph 2.3.3, we also have the follower is risk-neutral. Recall
that the dashed curve corresponds to the outcome if the entrant takes the
leader position, where the pay-off of immediate investment is depicted. If
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the firm takes the position of the follower, one arrives at the solid curve.
As in the previous paragraph, we observe a reduction in investment value
is observed with increasing risk aversion.

When γL approaching 1, the preemption thresholds X̂P drastically
decreases. With γF = 0, there is a significant permanent advantage to
the second player. Increased risk aversion by the leader above a certain
level causes the leader not to make investments. As the leader’s risk-
aversion increases, the leader’s fear of future market crashes prevails.
This fear makes the leader the smallest firm in the market. The fol-
lower capacity is always bigger than the leader capacity. The follower is
delayed before xA and invests immediately for x > xA.
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2.5 Conclusion

In this chapter, we discussed the joint role of uncertainty, competition,
and risk-aversion in determining the equilibrium capacities and invest-
ment timing of firms in a symmetric duopoly. Despite its simplicity, our
setup produces a set of novel predictions. Nevertheless, due to space
limitations and tractability issues, the present chapter does not explore
several aspects that deserve more attention.

The first limitation of the present chapter is that we do not pursue
issues due to market incompleteness. We believe that introducing id-
iosyncratic risk and risk-aversion in a capacity-setting real options game
along the lines of Hugonnier and Morellec (2017), Bensoussan et al.
(2010), Henderson (2007), Hugonnier and Morellec (2007) is a promis-
ing avenue for future research. Also, we believe that analysing the role
of incomplete information (see, for instance, Lambrecht and Perraudin,
2003) in a real options game with endogenous capacity is an important
aspect that needs to be studied.
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Chapter 3

Swing option valuation in
literature: Research focus,
trends and design

3.1 Introduction

In energy industries, exist many derivatives which are instruments to
manage and reduce risk. The need for these tools is currently due to
the multidimensionality of risks, restrictions of various nature (includ-
ing technological), difficulties associated with electricity storage, and
electricity price instability (for example, jumps, spikes, volatility, and
seasonality). Traditional forward contracts often have some degree of
flexibility, but this is still insufficient given the specifics’ electricity mar-
ket. The derivatives that have allowed the most flexibility have been
known as "swing options" (also known as "swing contracts," "take-and-
pay options," or "variable base-load factor contracts"). With the deregu-
lation of energy markets, there is an increased interest in understanding
and assessing the value of the optionality inherent in these contracts.

A standard swing contract is an agreement between a supplier and
a buyer for a daily supply of a variable amount of electricity. This
volume must be within a fixed range of allowable rates at a defined set
of contract prices for a particular period of time. There are various
possible additions to this typical contact; the market crises cause these
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additions to the standard version of the swing option.
Several published reviews explicitly demonstrate some models and

approaches to swing options evaluation design (see, Løland and Lindqvist
(2008), Lempa (2014) and Aïd (2015)). These papers, however, provide
an incomplete overview, limiting their sample to a few selected studies.
Moreover, these reviews lack a significant number of articles published
in recent years.

Therefore in order to provide a full image of current studies and
trends, the purpose of this chapter is to provide a more in-depth analysis
of the scientific papers dealing with swing options. The chapter aims to
review the scientific literature dealing with swing options, general outline
directions for research and developments in this field, provide a detailed
overview of the design of price models and numerical methods used, and
characterize cutting-edge research areas.

The chapter is structured as follows. A brief description of the the-
oretical basis follows this introductory part, after which the research
methodology is described. At the end of the chapter, we conclude with
a summary of the main findings. The appendix contains a summary
table of the main characteristics of the reviewed documents.
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3.2 Theoretic context

Volumetric risk, i.e. the risk of a discrepancy between the predicted and
actual volumes, together with the property of non-storage of electricity,
necessitates the use of specific insurance instruments. These instruments
include the swing contracts discussed below.

Considering article of Jaillet et al. (2004) as fundamental, it is worth
noting the definition from this work:

A swing contract is often bundled together with a standard
base-load forward contract that specifies, for a given period
and a predetermined price, the amount of the commodity to
be delivered over that period.

So we can say the swing option is right to receive (or purchase) a
given volume of energy. The buyer has the right to buy every day the
amount of gas in the range from min daily contract quantity (DCQ)
to the maximum DCQ at a given execution price K. However, it is
necessary globally (for example, within a year) cumulative amount is in
the range from the minimum annual contract quantity (ACQ) to maxima
ACQ. It is worth noting that the strike price can be fixed, variable, or
random. In general, swing options are often seen as multiple exercise
American options. Without a penalty for overall consumption, the swing
will be exercised in a "bang-bang" fashion (see Jaillet et al., 2004); that
is, the lowest or highest limit of the permitted local constraint is met.
If the number of rights (N) is equal to the number of exercise dates (n),
the swing option’s value is equal to the value of a strip of European
options. To facilitate future discussion, we describe the most common
characteristics of a swing option, including the following aspects:

• Delivery period (L): duration of one or more contract years

• Exercise time (J): can be exercised monthly (J = 12), weekly
(J = 52) or daily (J = 365)

• Risk-free rate (r)
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• Contractual price (Ki,j): Contracting parties can agree either on
a fixed price or on an indexed price. In real contracts, the strike
price is set based on the indexation principle under which the strike
price is called the index.

• Gas (or electricity) price (Si,j): Sn = e−r∆tF S(tn; tn+1)

• Quantity (qti,j):

mDCQ 6 qti,j 6MDCQ, where DCQ is daily contract quantity

• Consumption policy (q = {qti,j})

• Cumulative amount (Qti,j): Qti,j = ∑j−1
k=1 qti,k

mACQ 6 QT 6MACQ, where ACQ is annual contract quantity

• Payoff: qti,j(Si,j −Ki,j)

• Penalty: ηKi,J min{QTi − mACQi, 0}, where η ∈ [0; 1] is the
penalty coefficient

• Make-up bank (Mi):

Mi+1 = (Mi −mi) + max{mACQi − ci −QTi ; 0}

MRLi - the make-up bank recovery limit
mi - the usage of gas in the make-up bank in year i

• Carry-forward bank (Ci):

Ci+1 = (Ci − ci) + max{QTi −max{mACQi +mi;CBi}}

CRLi - the carry-forward bank recovery limit
CBi - the carry-forward base
ci - the usage of gas in the carry-forward bank in year i

An essential part of the swing option valuation is identifying sources
of uncertainty and modelling their possible development. Among the
main sources of uncertainty are electricity or fuel prices. To solve this
problem, exist a wide variety of techniques can be applied. However,
researchers most often use stochastic modelling, including geometric
Brownian motion (GBM) or mean-reverting processes (MR). Certain
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specific types of uncertainty require specific models. We will highlight
six main pricing models: Black and Scholes (BS), mean-reverting pro-
cesses, mean-reversion with jumps (MRJ), regime-switching (RS), Lévy,
and geometric Brownian motion.

This chapter draws attention to the widely used methods that can
be found in the reviewed literature. There are usually five main formu-
lations:

• Dynamic programming (DP)

• Variational inequality (VI)

• Partial differential equation (PDE)

• Partial integro-differential equation (PIDE)

• Backward stochastic differential equation (BSDE)

The valuation of swing options other than modelling the underlying
electricity (or gas) pricing process involves solving the complex early
exercise problem. However, these two aspects are, in principle, indepen-
dent of each other.

The numerical method used in early swing options work is trees or
lattices (TR). The Monte Carlo regression (MCR) is also the prevalent
numerical method for pricing swing options, as proposed by Longstaff
and Schwartz (2001) (originally used for Bermuda options). Not less
common are the finite difference (FD) and the finite element (FE). Other
numerical methods that researchers use in their work neural network
(NN), quantisation (Q), and Malliavin calculus (Mal), either alone or in
addition to the above methods.

3.2.1 Methodology
Most of the literature focuses on an overview of swing options. However,
it is also worth noting that articles about hydroelectric reservoir also
fall under this category, and only some articles are included about gas
storage and multiple stopping-time problems.
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This analysis incorporates the strengths of previously published lit-
erature reviews in this area. Initial searches in the SCOPUS database
were limited to the following keyword phrase: "swing option." With a
language restriction, the query returned one hundred and two results.
Eighteen articles were excluded based on an abstract scan, resulting in
eighty-four candidates selected for the review. Backtracking included
link analysis from selected articles and case reviews. In total, 92 articles
were selected for further study.

The review lacks studies that swing option pricing problem formu-
lated as a bilevel decision problem, such as Pflug and Broussev (2009),
Vayanos et al. (2011), Kovacevic and Pflug (2013), Kovacevic and Pflug
(2014), Gross and Pflug (2016) and O’Malley et al. (2019). Besides, re-
search related to game theory is excluded; for example, Iron and Kifer
(2011) and Dolinsky et al. (2011) where introduced the concept of the
multi-stopping Dynkin game.

The detailed results of this analysis are presented in a table in Ap-
pendix C. The credibility of the study was ensured only by reviewing
academic articles from indexed scientific journals, conference proceed-
ings and textbooks. The following section summarizes and discusses the
key findings.
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3.3 Valuation of commodity-based swing options

The first papers in the literature studying swing contracts date back to
the nineties (see, for instance, Thompson (1995), Barbieri and Garman
(1996), Pilipovic and Wengler (1998)). For example, Thompson (1995)
applies the lattice-based method extended from Hull andWhite (1993) to
determine the optimal exercise strategy for path-dependent conditional
requirements. The work had its shortcomings, among which it is only
provided for two special types of take-or-pay contracts; later, the work
was expanded by other authors.

Before considering the current study results, we provide a brief criti-
cal summary of reviews of scientific papers on the valuation of swing op-
tions and discuss their observations. One of the earliest reviews of swing
option pricing is a 2008 review by Løland and Lindqvist that summa-
rizes existing research, divided into simulation and non-simulation based
swing option valuation. The findings only confirm the attractiveness of
swing options and the considerable scope for further research with make-
up right and carry forward.

Later, in 2014, Lempa performed a fairly extensive survey of math-
ematical theories and techniques used to study swing options. This
review focuses entirely on the martingale and Markovian methods. The
complete review of energy derivatives was carried out in 2015 by Aïd,
including storage and swings. There are 32 articles in comparison, which
are included in our list with some exceptions. The paper presents obser-
vations on general thematic trends.

As we can see, the existing reviews, while providing valuable informa-
tion on the subject, give only a fragmentary picture of approaches to the
valuation of swing options, and their volume is limited to a small num-
ber of studies. This review attempts to build on predecessors’ strengths
and expand the sample size to advance research.

The earliest article mentioned in our summary table is Lari-Lavassani
et al. (2001), where a discrete forest methodology is developed for swing
options as a dynamically coupled system of European options. The
swing option valuation is focused on the swing component. The swing
part can be considered as a multi-exercise American-style option giving
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the holder multiple opportunities to exercise the swing actions. The
valuation algorithms of the swing option are generalizations of those used
for pricing American-style options. The lattice tree methods belong to
a type of efficient algorithms for swing option valuation. For example,
Clewlow et al. (2001) discuss optimal exercise decisions with a trinomial
tree method.

The contribution describing in detail the valuation of standard swing
options is Jaillet et al. (2004), where the authors develop a framework
based on the dynamic programming with a trinomial tree. They use a
well-known technique called "backward induction" to solve the pricing
problem. This method starts from the contract’s endpoint and works
backwards in time by considering a mean-reverting spot price model.
The proof of the convergence of the procedure can be found in (Lari-
Lavassani et al., 2001), mentioned above. Keppo (2004) studies the
hedging of a swing option using this model under a liquid forward con-
tract and European call options market. In Barrera-Esteve et al. (2006),
the authors propose and summarize several methods to evaluate swing
options with penalty using both simulations and dynamic programming
techniques. Bardou et al. (2009) use the so-called optimal quantization
method to price swing options with the spot price following a mean-
reverting process.

Various publications begin discussing of the "bang-bang" strategy
(i.e., an all-or-nothing clause), where only the minimum or maximum
consumption allowed by all the constraints is selected on each delivery
day. Keppo (2004) proves that the optimal exercise policy in the case
of the no-load penalty is bang-bang and derives explicit hedging strate-
gies involving standard derivatives such as forwards and vanilla options.
Among the early works, two articles are worth mentioning. Ross and
Zhu (2008) show that the optimal strategy is the bang-bang style, and
Bardou et al. (2010) got a similar result. However, these two papers
are working with swing options that only allow local volume and global
volume constraints without constraints on the number of exercise rights.

Wahab et al. (2010) e Wahab and Lee (2011) use the dynamic pro-
gramming principle and take the maximum of two values when pricing
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an option at every time instance. It is worth mentioning that they do
not show that the "bang-bang" strategy maximizes the profit of a holder
of a swing option. For the discussion of the bang-bang consumption in
swing options, we refer interested readers to Barrera-Esteve et al. (2006),
Becker (2010) and Edoli et al. (2013).

Hinz (2006) is the scientist dealing with classical no-arbitrage models
in the energy market price modelling, suggesting a framework where a
flow commodity market converts into a market consisting of zero bonds
and some additional risky asset. The model implementation points out
how the agent’s forecasting demand level plays an essential role in the
equilibrium price definition.

Since 2008 there has been an increase in research into swing options.
Swing options have become widespread, although pricing standard swing
options are not trivial and even complicated with non-linear pay-offs and
uncertain volumes. Breslin et al. (2008a) described and clarified several
specific features of a standard gas swing contract. In their model, the
volatility is a deterministic function of both the current time and the
time-to-maturity. However, there is ample evidence that volatility in
the gas markets is stochastic. Breslin et al. (2008b) discuss the risks and
hedging of swing contracts.

Developments in the application of the tree method are two papers
from 2009, Haarbrücker and Kuhn (2009) and Steinbach and Vollbrecht
(2009). Haarbrücker and Kuhn advanced the valuation of swing options
with ramping constraints on a scenario tree. Steinbach and Vollbrecht
suggested the valuation technique by reducing a scenario tree and using
a scenario fan. At the same time, Geman and Kourouvakalis (2008)
proposed a method based on the quantization tree method.

Monte Carlo methods have been developed to price swing options and
are one of the most common methods. These mainly include regression-
based approaches Dörr (2003), duality methods Meinshausen and Ham-
bly (2004), and those that parameterize the set of exercise level curves
Ibánez (2004).

Another method used to evaluate the swing option is the finite ele-
ment method, based on which the corresponding algorithm was devel-
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oped in the article by Wilhelm and Winter (2008). When comparing
their results with those obtained using the lattice method and Monte
Carlo simulations, it was concluded that the finite element method
showed promising results.

The impulse control was applied to the pricing of a multiple exercise
American option, the pricing of swing options on the commodity market,
and an investigation of sale strategies in an illiquid market. A limited
amount of work used impulse control; see Dahlgren and Korn (2005) and
Bernhart et al. (2012).

Barrera-Esteve et al. (2006) describing the stochastic control prob-
lem, where the delivery strategy is also analysed using neural networks.
It is worth noting that this article uses forward contracts with different
maturities. Also, documents on valuing swing options by DP include
Baldick et al. (2006), where they construct a structural model in which
the spot price of electricity is determined by supply and demand.

Carmona and Touzi (2008) formulated the valuation of swing op-
tions estimation as an optimal multiple-stopping problem, reduced to a
compound single stopping problem. Moreover, they analysed this prob-
lem within a continuous-time Black-Scholes market and introduced the
Malliavin calculus based Monte Carlo algorithm. Based on the previ-
ous article, Carmona and Dayanik (2008) examine the same problem
and propose approximation formulas for more one-dimensional time-
homogeneous diffusions.

The viscosity solution approach has been used for pricing swings in
Basei et al. (2014) and Latifa et al. (2015). Indeed, Basei et al. only
discusses the value function’s characterization as a viscosity solution
of a Hamilton-Jacobi-Bellman (HJM) equation with suitable boundary
conditions in this framework. Instead, Latifa et al. generalize the results
of Carmona and Touzi (2008) when the price process is allowed to jump
and solved the optimal multiple stopping problem as the unique viscosity
solution of HJM variational inequality.

Numerical partial differential equations e partial integro-differential
equations approaches can give rise to more accurate prices, but they are
mathematically complex. Consequently, we can see that the numerical
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resolution of the PDE approach with finite elements or finite differences
has been carried out in Wegner (2002), Dahlgren (2005), and Wilhelm
and Winter (2008). Whereas numerically solving PIDEs are developed
by Kjaer (2008), Nguyen and Ehrhardt (2012), and Kudryavtsev and
Zanette (2013). Of particular note is the works of Calvo-Garrido et al.
(2017) and Calvo-Garrido et al. (2019), where they propose numerical
methods based on the semi-Lagrangian sampling method.

In the literature, Fourier-based methods have been employed to treat
the swing option valuation problem Jaimungal and Surkov (2011), Zhang
and Oosterlee (2013), and Biagini et al. (2015).

Few articles are dedicated to analysing backwards stochastic differ-
ential equations; like this, we may find a study of BSDEs with jumps
related to swing options in Bernhart et al. (2012). Another work is Ro-
dríguez (2011), which presents a BSDE model to value monthly, daily
and hourly. Included the representations of how can use forward con-
tracts and European calls to hedge spot electricity price risks.

A simple fixed price annual swing contract can be viewed as a special
case of a gas storage contract in our study we we analysed: Boogert and
De Jong (2008), Bardou et al. (2009), Carmona and Ludkovski (2010),
Boogert and De Jong (2011), Warin (2012). The curious reader can refer
to Warin (2012) devoted to the efficient computation of the deltas to
simulate hedging strategies. This article is one of the few that regarding
the computation of the hedge on swing options.

Make-up and carry forward describe only a few works, as these as-
pects further complicate the situation and introduce additional compli-
cations. Løland and Lindqvist (2008) describe the make-up right and
argue that the buyer has no benefit in speculation on make-up.

Instead, Holden et al. (2011) present an algorithm to evaluate a swing
contract with the carry-forward clause and conclude that this right is
a substantial increase in the value of the contract. They considered
the contract with a fixed number of swing rights and fixed number of
carry forward rights. Although the authors only estimate the cost of
the contract and do not extract optimal solutions. The paper by Edoli
et al. (2013) introduces a new mathematical pricing model for a make-up
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clause and some instances of a carry-forward clause that can be inserted
in a gas swing contract. In their work, the authors treated a 3-years
swing contract in discrete time.

The authors’ considered the rights separately while Chiarella et al.
(2016) evaluate Gas Sales Agreements (GSAs) with both make-up and
carry-forward banks in a regime-switching forward price curve model.
Dong and Kang (2019) proposes a two-dimensional trinomial tree frame-
work for pricing multiple-year GSAs with make-up, carry forward, and
indexation, given knowledge of forward price dynamics of both gas and
index. Given the complication of the problem in the presence of make-
up and carry forward clauses, it can be concluded that the quantitative
literature is limited.
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3.4 Conclusion

In conclusion, we note that the use of energy derivatives, such as swing
contracts, is primarily due to specific features of the electric power mar-
ket, such as storage problems of the electricity, volume risks, and high
market volatility. These instruments meet complex production, specula-
tive and hedging objectives and requirements of the parties, which allows
efficient planning and implementation of transactions in the electricity
market.

This study is a review of the academic literature on the valuation of
swing options. The studies reviewed to demonstrate the relevance of the
swing option valuation. Overall, there is a strong positive trend in the
number of articles published over the years. Simultaneously, the growing
instability in the consumption of energy resources worldwide makes us
expect even more research attention to this topic in the future.

This review contributes to the current literature by providing a com-
plete picture of research into swing options and other variations.
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Conclusion

This dissertation focuses on real options and their application. This re-
search aims to analyse energy investments, as well as, to enhance existing
real options methods to better decision making. We managed to solve
the determined research tasks and questions. Below, we will describe
the contribution and results of this research and discussed limitations
and future research directions.

Firstly, this research contributes to the renewable support and car-
bon pricing policies studies by introducing and analysing the support
mechanism from a previously not considered side. To the best of our
knowledge, the "dirty" option procedure has been presented here for the
first time. This research is also the first to numerically analyse the ef-
fects of the different support mechanisms on investment decisions with
the possibility of investing in traditional energy.

Secondly, the model is presented in the design of a usable algorithm,
and its use is illustrated with a numerical example. The method exam-
ines both risk-aversion and endogenous capacity decisions at the same
time. Although the model has been created without context, its applica-
tion is not limited to the energy sector but can be extended to investment
profitability analysis in general.

Thirdly, the literature review conducted within this research includes
more than 100 scientific papers. State-of-the-art swing option research
directions are revealed and guide researchers in focusing their future
work.

This study creates significant new knowledge for different stakehold-
ers in real options valuation and related areas such as swing options. Any
research is limited by the focus taken and by the methods selected - this
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also applies to this dissertation. One essential issue to recognize when
examining this thesis is that the numerical results have been achieved by
using a stylised investment case that may or may not apply to the plan-
ning of real-world investments. The numerical assumptions made are not
necessarily completely reflecting the unfolding future states; however,
this limitation is to some extent neutralised by the sensitivity analysis
and the uncertainty embedded into modelling.

The models selected are a subset of all real option analysis methods
available. Using a more extensive selection of models may bring addi-
tional insight that has not come out in this dissertation. The validity
of the conclusions made is, to some extent, supported by the already
existing articles.

This work can serve as a basis for future research directions. Among
the main extensions, we consider using more sophisticated (mathemati-
cally speaking) models for the underlying variables. To go one step ahead
from Chapter 1, we can consider another price model for valuation that
is more suitable for electricity and fuel prices. Thus, the model could be
able to fit better the market data. However, it might be more challeng-
ing to apply the numerical approach proposed here. From Chapter 2,
we can add idiosyncratic risk and risk-aversion in a capacity-setting real
options game that is a promising direction for future investigation. We
believe that analysing the role of incomplete information in a real op-
tions game with endogenous capacity is an important aspect that needs
to be studied. From Chapter 3, by analysing the vast amount of swing
options literature and understanding the gap in the literature, it is pos-
sible to analyse swing options valuation as an impulse control problem,
with the ability to create a model that will be more competitive than
the classical approach.
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Appendix A

Renewable energy
investments

A.1 Supplementary data

Symbol Description Value Unit of measure
B Budget 10000 Thousands of EUR
T Project’s life 20 years
M Time to maturity of option 30 years
ID Marginal cost of installation

of dirty energy
900 Thousands of EUR per MW

IG Marginal cost of installation
of green energy

1600 Thousands of EUR per MW

hD Annual capacity factor of D 95 %
AD ∗ hD Production coefficient of D 8076 * 0.95 MW*h per MW
hG Annual capacity factor of G 34 %
AG ∗ hG Production coefficient of G 8076 * 0.34 MW*h per MW
γ Diseconomies of scale of G 0.9 -
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Symbol Description Value Unit of measure
r Discount rate 0.05 -
µE=µF Trend parameter E e F 0 -
µG=µC Trend parameter green cer-

tificates e carbon permits
0 -

σE=σF Volatility parameter E e F 0.06 -
σG=σC Volatility parameter green

certificates e carbon permits
0.07 -

ρEF Correlation coefficient E F 0.7 -
ρEG=ρFC Correlation coefficient 0.6 -
ρFG=ρEC Correlation coefficient 0.5 -
Ggood FiT in the good state 0.015 Thousands of EUR per MW*h
Gbad FiT in the bad state 0.01 Thousands of EUR per MW*h
Cgood Carbon tax in the good

state
0.01 Thousands of EUR per MW*h

Cbad Carbon tax in the bad state 0.015 Thousands of EUR per MW*h
λG Instantaneous transition

rate for FiT
0 or 0.1, 0.2 1/years

λC Instantaneous transition
rate for Carbon tax

0 or 0.1, 0.2 1/years
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A.2 Market and policy uncertainty

Let’s fix a two dimensional model1:

πt = QG(xG)(Et +Gt) +QD(xD)(Et − Ft − Ct) =
Et(QG(xG) +QD(xD))− FtQD(xD) +GtQG(xG)− CtQD(xD),

(A.1)

where Et and Ft are GBMs, Gt and Ct are continuous-time Markov
chains.

We assume that αt be time-homogeneous continuous-time Markov
with transition intensities λα and two states: αGood and αBad. αt = Gt, Ct

αt =

αBad if there was any change of policy in (0, t]

αGood otherwise

One should note here that αBad is absorbing state (once reached, the
system where leaves).
P (αt+dt = αBad|αt = αGood) = λαdt+ o(dt)
P (αt+dt = αGood|αt = αGood) = 1− λαdt+ o(dt)
P (αt+dt = αBad|αt = αBad) = 1
P (αt+dt = αGood|αt = αBad) = 0

We have a generator matrix of the Markov chain A =
−λλ

0 0

.
The Kolmogorov forward equations can be written as the matrix

differential equations P ′(t) = P (t)A. The system can be solved P (t) =
P (0)etA = etA. We can decompose A into A = QDQ−1, where Q consists
of the eigenvectors of A and D consists of the eigenvalues of A. In
this case, we get eAt = QeDtQ−1, where eDt is a diagonal matrix. The

transition matrix is P (t) =
e−λt 1− e−λt

0 1

.
EαGood(

∫ T

0
e−rtαtdt) =

∫ T

0
e−rtEα(αt)dt, (A.2)

where EαGood(αt) = (1, 0)
e−λt 1− e−λt

0 1

 αGood
αBad

 =

1Do not consider green certificates and carbon permits
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= (e−λt, 1− e−λt)
αGood
αBad

 = αGoode
−λt + αBad(1− e−λt).

So we have

αGood
1− e−(r+λ)T

r + λ
+ αBad[

1− e−rT
r

− 1− e−(r+λ)T

r + λ
] (A.3)

We get general pay-off equation for 2D models (E0 = E, F0 = F ):

E(QG(xG) +QD(xD))1− e−(r+µE)T

r − µE
− FQD(xD)1− e−(r+µF )T

r − µF
+

QG(xG)[GGood
1− e−(r+λG)T

r + λG
+GBad[

1− e−rT
r

− 1− e−(r+λG)T

r + λG
]]+

QD(xD)[CGood
1− e−(r+λC)T

r + λC
+ CBad[

1− e−rT
r

− 1− e−(r+λC)T

r + λC
]]

(A.4)

To summarize, replace on r̃h(µh, λ) = 1−e−(r+λ−µh)T

r+λ−µh
,

G = GGoodr(0, λG) +GBad(r(0, 0)− r(0, λG)), and
C = CGoodr(0, λC) + CBad(r(0, 0)− r(0, λC)).
In the end, we have general pay-off with policy uncertainty:

QG(xG)[Er(µE, 0) +G] +QD(xD)[Er(µE, 0)− Fr(µF , 0) + C] (A.5)
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Appendix B

Proofs

B.1 Proof of Proposition 1

We first rewrite (2.4) as follows:

F (x,QF , QL) = BFU(QFx(1− η(QF +QL)QF ))− U(cQF )

= BFQ
1−γF
F x1−γF (1− η(QF +QL))1−γF

1− γF
− c1−γFQ1−γF

F

1− γF
(B.1)

where the first equality can be derived by either guessing and veri-
fying that the function BFU(·) solves the differential equation satisfied
by the conditional expected value or, more elegantly, by using theorem
9.18 in Karatsas and Shreve, Methods of Mathematical Finance. First
order condition for optimal capacity gives (2.7):

BFx
1−γF (1− η(2QF +QL))(1− η(QF +QL))−γF = c1−γF . (B.2)

Let QF be the solution of (B.2) and define XF as the entry threshold,
that is:

XF = arg max
x≥0

F (x,QF )
xβ

(B.3)
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Solving the maximization problem (B.3) gives XF as a function of QF :

XF (QF ) = c

1− η(QF +QL)

(
BF (β + γF − 1)

β

) 1
γF−1

(B.4)

Now, we insert (B.4) into (B.2) and simplify, to obtain:

γF + η(βQF +QF +QL)− γFη(QF +QL)− 1 = 0,

from which the (2.9) follows. Inserting (2.9) into (B.4) gives (2.8). Fi-
nally, the function AF (QL) is obtained by imposing continuity of the
follower’s value function at the entry threshold (2.8).

Consider the follower’s strategy under three cases. It is worth noting
that in the first and second cases, the follower’s strategy values do not
change. While in the third case, when the leader is a risk-averse, there
are changes, since γF = 0. The corresponding equations for principal
parameters are given in the table below:

Parameters γL = γF = γ > 0 γF > 0, γL = 0 γF = 0, γL > 0

X̂F (QL) c(1+β−γ)
1−ηQL (B(β+γ−1)

βγ
)

1
γ−1 c(1+β−γF )

1−ηQL (BF (β+γF−1)
βγF

)
1

γF−1 c(1+β)
(1−ηQL)BF (β−1)

Q̂F (QL) (1−γ)(1−ηQL)
η(β−γ+1)

(1−γF )(1−ηQL)
η(β−γF+1)

(1−ηQL)
η(β+1)

Table B.1: Summary of X̂F (QL) and Q̂F (QL) under three cases.
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B.2 Proof of Proposition 2

Using theorem 9.18 of Karatsas Shreve again, we rewrite (2.12) as fol-
lows:

LD(x,QL) = BLU(x(1− ηQL)QL))− U(cQL) + ( x

X̂F

)β

BL(U(x(1− η(QL + Q̂F ))QL)− U(x(1− ηQL)QL))

= BLQ
1−γL
L x1−γL(1− ηQL)1−γL

1− γL
− c1−γLQ1−γL

L

1− γL
+
(
x

X̂F

)β
BL(Q1−γL

L X̂1−γL
F (1− η(Q̂F +QL))1−γL −Q1−γL

L X̂1−γL
F (1− ηQL)1−γL)

1− γL
,

(B.5)

where X̂F and Q̂F are defined in (2.8) and (2.9), respectively. First
order condition for maximization with respect to QL gives (B.7).

Now define XD
L as the utility-maximizing threshold, that is the value

that solves
max
x≥0

LD(x,QL(x))
xβ

, (B.6)

where QL(x) is implicitly defined by (2.14). First order condition for
maximization in x reads:

BLX̂
1−β−γL
F (β−βηQL(x)

β−γF+1 )−γL

β − γF + 1 (γL + η(β − γL + 1)QL(x)− 1)·

Q′L(x)((β − γF + 1)(β − βηQL(x)
β − γF + 1 )γL − β(1− ηQL(x))γL) =

c−γLx−β−γL−1(−cxγL(1− ηQL(x))γL((γL − 1)xQ′L(x) + βQL(x))−
BLxc

γL((γL − 1)x(2ηQL(x)− 1)Q′L(x) + (β + γL − 1)QL(x)(ηQL(x)− 1)))
(B.7)

We now insert (2.14) into (B.7) and rearrange terms to obtain

x =
(
BL(β + γ − 1)cγL−1(1− ηQL(x))1−γL

β

) 1
γL−1

. (B.8)
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To obtain the desired Q̂D
L , X̂

D
L , insert (B.8) into (2.14), rearrange terms

and solve for QL. Then insert the solution obtained into (B.8).
Finally, we determine the interval in which the entry deterrence strat-

egy can be applied. xD1 is the lowest value of the random shock for
which the leader invests in positive capacity. To derive xD1 , it is we in-
sert QL = 0 into (2.14) and obtain that xD1 solves the following implicit
equation:

c1−γL

BL

=(xD1 )1−γL + (xD1 )βX̂F (0)1−β−γL

( β

β − γF + 1

)1−γL
− 1

.
(B.9)

xD2 is the highest value which makes the follower invest later than
the leader. It can be derived by inserting (2.13) into (2.14).

In the symmetric case, we obtain:

X̂D
L =

c(β − γ + 1)
(
B(β+γ−1)

β

) 1
γ−1

β
,Q̂D

L = 1− γ
η(β − γ + 1).

xD1 is defined as follows:

c1−γ

BL

=(xD1 )1−γ +
(

β

β − γ + 1

)1−γ

(
(−β + γ − 1)( β

β−γ+1)γ + β
)

(xD1 )βX̂F (0)1−β−γ

β
.

(B.10)
Cumbersome but straightforward algebra leads to:

xD2 =

cr(β − γ + 1)2 (βγ(β − γ + 1)γ(β + γ − 1)− β) (Bρβ−γ(β + γ − 1))
1

γ−1

βγ(β + γ − 1)(β − γ + 1)γ−1 − β2 + (γ − 1)(β + γ − 1)(β − γ + 1)2γ .

(B.11)
Equation (B.11) gives xD2 in the symmetric case. Consider changes in
the values of the leader’s threshold and quantity, as well as xD1 and xD2
for the asymmetric case.

In the asymmetric case, when the follower is risk-averse (γF > 0),
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and the leader is risk-neutral (γL = 0). We rewrite (B.5) as follows:

LD(x,QL) = BLQLx(1− ηQL)− cQL +
(
x

X̂F

)β
BL(QLX̂F (1− η(Q̂F +QL))−QLX̂F (1− ηQL)),

(B.12)

where X̂F and Q̂F are defined in (2.8) and (2.9), respectively.
Repeating the process of deriving the formulas described above, we

obtain the following values of X̂D
L and Q̂D

L :

X̂D
L = c(β + 1)

BL(β − 1),Q̂
D
L = 1

η(β + 1). (B.13)

Finally, we determine the interval in which the entry deterrence strat-
egy can be applied for this case:

c

BL

=xD1 + (xD1 )βX̂F (0)1−β
(

γF − 1
β − γF + 1

)
. (B.14)

xD2 =

c (β − γF + 1)
(
BL (β + (β − 1)γF + 1)

(
BF (β+γF−1)

βγF

) 1
γF−1 − 1

)
BL ((β − 1)γF + 1) .

(B.15)
In the asymmetric case, when the leader is risk-averse (γL > 0), and

the follower is risk-neutral (γF = 0), we have equation (B.5) without
change, but X̂F and Q̂F are defined in TableB.1.

We obtain the same values of X̂D
L and Q̂D

L are defined in (2.15) and
(2.16), respectively. After that, we determine the interval in which the
entry deterrence strategy can be applied. xD1 is defined as follows:

c1−γL

BL

=(xD1 )1−γL + (xD1 )βX̂F (0)1−β−γL

( β

β + 1

)1−γL
− 1

. (B.16)
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And xD2 is defined as follows:

xD2 =
c (1− γL) βγL(β + 1)γL+1 ((β − 1)BF ) 1−γL

BFBL ((1− β)β2(β + 1)γL + (β2 − 1) (β + γL − 1) βγL)+

(β + 1)c ((β + 1)βγL (β + γL − 1)− β(β + 1)γL (β − γL + 1))
BF ((1− β)β2(β + 1)γL + (β2 − 1) (β + γL − 1) βγL) .

(B.17)
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B.3 Proof of Proposition 3

The function to be optimized over QL in (2.18) reads:

LA(x,QL) = BLQ
1−γL
L x1−γL(1− η(QF (QL) +QL))1−γL

1− γL
− c1−γLQ1−γL

L

1− γL
.

(B.18)

where we stress that QF depends on QL. First order conditions for
maximization over QL reads:

c1−γLQ−γLL = BLQ
−γL
L x1−γL(1− η(QF (QL) +QL))1−γL

−BLηQ
1−γL
L x1−γL(Q′F (QL) + 1)(1− η(QF (QL) +QL))−γL .

(B.19)

Equation (B.2) defines the optimal response of the follower QF when the
leader chooses capacity QL. For each level of the random shock x, the
optimal capacities solve (B.2) and (B.19) simultaneously.

By using the implicit function theorem, we can compute Q′F (QL) in
its implicit form:

Q′F (QL) = Φ(QL) = γF + γFη(−(2QF (QL) +QL)) + η(QF (QL) +QL)− 1
γF (2ηQF (QL) + ηQL − 1)− 2η(QF (QL) +QL) + 2

(B.20)
By inserting (B.20) into (B.19) and rearranging terms, we obtain (2.20).

In the symmetric case, set γL = γF = γ. First order conditions for
maximization over QL reads:

c1−γQ−γL = BQ−γL x1−γ(1− η(QF (QL) +QL))1−γ

−BηQ1−γL
L x1−γ(Q′F (QL) + 1)(1− η(QF (QL) +QL))−γ.

(B.21)

The implicit form of Q′F (QL) is:

Q′F (QL) = Φ(QL) = γ + γη(−(2QF (QL) +QL)) + η(QF (QL) +QL)− 1
γ(2ηQF (QL) + ηQL − 1)− 2η(QF (QL) +QL) + 2

(B.22)
Now, insert (B.22) into (B.21) and put the resulting expression in (B.2).
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After rearranging terms, we get:

2(γ− 1)ηQF (QL)2 +QF (QL)(−γ + (γ− 1)ηQL + 2) +QL(ηQL− 1) = 0,
(B.23)

which is a quadratic equation in the unknown QF . Among the two roots
of this equation, the smallest is not admissible, since (1− η(QF (QL) +QL))−γ

is not defined. The largest root gives the explicit expression:

QF (QL) = Ψ(QL) =γ − γηQL + ηQL − 2
4(γ − 1)η +√

(−γ + (γ − 1)ηQL + 2)2 − 8(γ − 1)ηQL(ηQL − 1)
4(γ − 1)η

(B.24)

gives the function Ψ(·) in (2.21). To obtain the implicit equation defined
by (2.7) and (2.20), use the function Φ(·) defined (B.20) into (B.19).

In the asymmetric case, when the follower is risk-averse (γF > 0),
and the leader is risk-neutral (γL = 0). First order conditions for maxi-
mization over QL reads:

c

BLx
= (1− η(QF (QL) +QL))− ηQL(Q′F (QL) + 1). (B.25)

We insert (B.20) into (B.25) and, among the two roots, the smallest is not
admissible since (1− η(QF (QL) +QL)) and QF (QL) are not positive.
The largest root gives the explicit expression:

QF (QL) = Ψ(QL) = ηxBL (3γF (1− ηQL) + 5ηQL − 4)− 2cη(γF − 1)
4η2xBL(γF − 1) +(

4cxBL(γF − 1) (γF (ηQL − 1)− ηQL) + x2B2
L (γF (ηQL − 1) + ηQL)2 + 4c2(γF − 1)2

) 1
2

4ηxBL(γF − 1) ,

(B.26)
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where

0 < QL <
γF − 2

η (γF − 3),

x >
c (2− γF )

BL (γF (ηQL − 1)− 3ηQL + 2).

In the asymmetric case, when the leader is risk-averse (γL > 0),
and the follower is risk-neutral (γF = 0). In this case, (B.20) is equal
Q′F (QL) = −1

2 . By inserting Q′F (QL) = −1
2 into (B.19) and rearranging

terms we obtain:

xγL−1 = −1
2BLc

γL−1(η(2QF (QL) + 3QL)− 2)(1− η(QF (QL) +QL))−γL .

(B.27)

Now, we insert (B.27) into (B.2), we obtain:

(1− η(QF (QL) +QL))−γL = 2B1−γL
F (η(2QF (QL) +QL)− 1)(1− η(2QF (QL) +QL))−γL

BL(η(2QF (QL) + 3QL)− 2)
(B.28)

By inserting (B.28) into (B.27) and rearranging terms we obtain:

QF (QL) =
1− ηQL − c

xBF

2η . (B.29)

where

0 < QL <
1− c

xBF

η
,

x >
c

BF

.
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Appendix C

Swing option: Tabulated
summary of reviewed papers

№ Authors Year Price
model

Formulation Numerical
method

Reference

1 Ahmadi, Z., Hosseini,
S.M., Bastani, A.F.

2021 MRJ DP MCR, TR (2)

2 Bernal, F., Gobet, E.,
Printems, J.

2020 MR PDE MCR (26)

3 De Donno, M.,
Palmowski, Z., Tu-
milewicz, J.

2020 BS, Lévy DP Optimal
stopping

(57)

4 Dong, W., Kang, B. 2020 MR DP MCR, TR (62)
5 Calvo-Garrido,

M.C., Ehrhardt,
M., Vázquez, C.

2019 MRJ PIDE Semi-
Lagrangian
method

(39)

6 Lars Kirkby, J., Deng,
S.-J.

2019 MR, Lévy DP Optimal
stopping,
Fourier
techniques

(105)

7 Dong, W., Kang, B. 2019 MR DP TR (61)
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8 Kohrs, H., Mühlichen,
H., Auer, B.R., Schuh-
macher, F.

2019 GBM DP MCR (96)

9 Shao, L., Xiang, K. 2019 MR, RS DP TR (136)
10 Berger, B., Dietrich,

M., Döttling, R., Hei-
der, P., Spanderen, K.

2018 GBM Dual
method

MCR (25)

11 De Angelis, T., Kitap-
bayev, Y.

2018 BS, GBM Optimal
stopping

(56)

12 Fanelli, V., Ryden,
A.K.

2018 MR MCR (66)

13 Kao, E. P. C., Wang,
M.

2018 BS DP FE (89)

14 Shao, L., Xiang, K.,
Song, Y.

2018 MR, RS VI (137)

15 Bender, C.,
Dokuchaev, N.

2017 BSPDE Optimal
stopping

(21)

16 Calvo-Garrido,
M.C., Ehrhardt,
M., Vázquez, C.

2017 MR PDE Semi-
Lagrangian
method

(38)

17 Bender, C.,
Dokuchaev, N.

2016 BS BSPDE Stochastic
optimal
control

(20)

18 Chiarella, C.,
Clewlow, L., Kang, B.

2016 MR, RS DP TR (44)

19 Klimešová, A., Vá-
clavík, T.

2016 MCR (95)

20 Latifa, I.B., Bonnans,
J.F., Mnif, M.

2016 Lévy DP, VI Q (107)

21 Li, L., Qu, X., Zhang,
G.

2016 DP Eigenfunction
expansion

(112)

22 Naouara, N. J. B.,
Trabelsi, F.

2015 DP Optimal
stopping

(124)
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23 Kulikov, A., Malykh,
N.

2015 Cox-Ross-
Rubinstein

TR (102)

24 Naouara, N. J. B.,
Trabelsi, F.

2015 GBM DP Optimal
stopping

(125)

25 Latifa, I.B., Bonnans,
J.F., Mnif, M.

2015 MRJ VI Optimal
stopping

(106)

26 Biagini, F., Bregman,
J., Meyer-Brandis, T.

2015 Lévy Fourier
techniques

(28)

27 Bender, C., Schoen-
makers, J., Zhang, J.

2015 Dual
method

MCR (22)

28 Müller, J., Hirsch, G.,
Müller, A.

2015 MCR (122)

29 Li, H., Ware, A., Guo,
L., Chen, W.N.

2014 MR VI Wavelet
collocation
method

(111)

30 Eriksson, M., Lempa,
J., Nilssen, T.K.

2014 MD 1 Lévy DP, PDE FD (65)

31 Basei, M., Cesaroni,
A., Vargiolu, T.

2014 VI AT 2 (15)

32 Kitapbayev, Y., Mo-
riarty, J., Mancarella,
P., Blochle, M.

2013 MR DP MCR (92)

33 Aydın, N.S., Rainer,
M.

2013 MR TR (7)

34 Zhang, B., Oosterlee,
C.W.

2013 MR, Lévy DP Fourier
techniques

(159)

35 Kudryavtsev, O.,
Zanette, A.

2013 Lévy DP, PIDE FD,
Wiener–Hopf
factoriza-
tion

(101)

1Multidimensional
2Approximate techniques
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36 Edoli, E., Fiorenzani,
S., Ravelli, S., Vargi-
olu, T.

2013 MR DP TR (64)

37 Turboult, F., Youlal,
Y.

2012 DP MCR (149)

38 Bernhart, M., Pham,
H., Tankov, P., Warin,
X.

2012 BS BSDE MCR (27)

39 Wiebauer, K. 2012 GBM MCR (155)
40 Bian, Q., Lu, Z. 2012 MR DP TR (29)
41 Nguyen, M.H.,

Ehrhardt, M.
2012 GBM PIDE FD (127)

42 Benth, F. E., Lempa,
J., Nilssen, T. K.

2012 MR PDE FD (24)

43 Warin, X. 2012 2-MR PDE MCR (153)
44 Jaimungal, S., Surkov,

V.
2011 MRJ, Lévy PIDE MCR,

Fourier
techniques

(88)

45 Bender, C. 2011 MR Dual
method

MCR (19)

46 Marshall, T.J.,
Reesor, R.M., Cox,
M.

2011 GBM DP TR (118)

47 Wahab, M.I.M., Lee,
C.-G.

2011 RS (GBM) DP TR (151)

48 Rodríguez, J.F. 2011 2-GBM BSDE (134)
49 Holden, L., Løland,

A., Lindqvist, O.
2011 MR MCR (78)

50 Bender, C. 2011 MR Dual
method

MCR (18)

51 Tashiro, Y. 2011 MR MP 3 TR (141)
52 Marshall, T.J.,

Reesor, R.M.
2011 5-GBM DP TR (117)

3Mathematical programming
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53 Boogert, A., De Jong,
C.

2011 3-GBM DP MCR (32)

54 Pages, G., Wilbertz,
B.

2010 2-MR DP Q, TR (129)

55 Bronstein, A.L.,
Pagés, G., Wilbertz,
B.

2010 DP Q (37)

56 Wahab, M.I.M.,
Yin, Z., Edirisinghe,
N.C.P.

2010 RS DP TR (152)

57 Bardou, O.,
Bouthemy, S., Pagès,
G.

2010 2-MR DP Q, TR (13)

58 Aleksandrov, N.,
Hambly, B.M.

2010 MR DP, Dual
method

MCR (6)

59 Becker, M. 2010 Variance
gamma
process

Difference-
of-gammas
bridge
sampling

MCR (17)

60 Kiesel, R., Gernhard,
J., Stoll, S.-O.

2010 MR VI FD, MCR (91)

61 Carmona, R., Lud-
kovski, M.

2010 RS DP, VI MCR (41)

62 Bardou, O.,
Bouthemy, S., Pagès,
G.

2009 2-MR DP Q (12)

63 Haarbrücker, G.,
Kuhn, D.

2009 2-MRJ
(Forward
price
model)

Stochastic
DP

TR (72)
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