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Abstract

Integrating heterogeneous data in a Data Warehouse is a crucial step for
extracting knowledge able to support critical decisions. Here, the resolution
of systematic differences and conflicts pertaining both the structure and the
values of data is essential. In particular, recognizing that two syntactically
different tuples, with or without identical schema, refer to the same real-
world entity is one of the most important integration issues, hardly affecting
the quality of consolidated data. This problem is known in literature with the
name of Entity Resolution.
The objective of this thesis is to define a complete path towards the resolution
of entities by facing two main tasks: (i) Schema Reconciliation, consisting in
the identification of a common field structure for the information extracted
from a generic data source, and (ii) Data Reconciliation, that is the act of
discovering synonymies (i.e., duplicates) in the data. In particular, we intend
to deal with Entity Resolution in a more complicate scenario where very large
volumes of data are involved. In this case, efficiency and scalability become
not negligible considerations, thus imposing severe constraints on the design
of data structures and algorithms for Entity Resolution.
Under the described setting, we propose three approaches dealing with both
schema and data reconciliation. We first provide a rule-based, supervised clas-
sifier able to reconcile, in a fixed attribute schema, information extracted from
unstructured data source as free text. Then, we illustrate the way for efficiently
solving the synonymies in the data, by exploiting a scalable and incremental
clustering approach, which core is the usage of a suitable hash-based index-
ing technique tailored to the Jaccard similarity. Finally, we overcome some
drawbacks of the previous hash-based schema, by exploiting a more refined
key-generation technique obtained by resorting to a family of locality-sensitive
hashing functions (LSH).
For all the proposed approaches, an extensive experimental evaluation both
on synthetic and real datasets, shows the effectiveness and efficiency of our
proposals when compared against some state-of-the-art techniques in litera-
ture.
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1

Introduction

1.1 Background and Motivations

The transformation of disparate data sources into knowledge to support crit-
ical decisions is essential in today’s fast-growing market. Information sharing
among organizations can help achieve important public benefits such as in-
creased productivity, improved policy-making, and integrated public services.
A large number of data sources are available in organizations in a variety of
formats, such as flat-text files or databases. Moreover, all these data can be
derived from different sources either in one organization or across multiple
organizations.

The analysis of available data often influences important business deci-
sions, and thus, its accuracy becomes a crucial aspect [49]. To this purpose,
it is usually required to consolidate information from heterogeneous sources
in a Data Warehouse: a historical, summarized collection of data aimed at
enabling the knowledge worker (executive, manager, analyst) to make better
and faster decisions.

By definition, a Data Warehouse is a “subject-oriented, integrated, time-
varying, non-volatile collection of data that is used primarily in organizational
decision making”. Typically, a data warehouse is maintained separately from
the organization’s operational databases. There are many reasons for doing
this: the data warehouse supports on-line analytical processing (OLAP), the
functional and performance requirements of which are quite different from
those of the on-line transaction processing (OLTP) applications traditionally
supported by the operational databases.

However, in the act of integrating data from different data sources to
implement a data warehouse, organizations become aware of potential sys-
tematic differences or conflicts. Data quality can be compromised by many
factors: data entry errors, missing integrity constraints and multiple conven-
tions for recording information. To make things worse, in independently man-
aged databases, not only the values but even the structure, semantics and
underlying assumptions about the data may differ as well.
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Such problems fall under the umbrella-term data heterogeneity [23], data
cleaning [124], or data scrubbing [152]. More in detail, the heterogeneity in
the data can be distinguished into structural and lexical :

- Structural heterogeneity occurs when the fields of the tuples are structured
differently in different databases. For instance, in one database, the cus-
tomer address might be recorded in one field named addr, while in another
database the same information might be stored in multiple fields such as
street, city, state, and zipcode. A more general version of this problem
deals with the integration of unstructured information (such as free text)
in structured databases.

- Lexical heterogeneity occurs when the tuples have identically structured
fields across databases, but data use different representations to refer to the
same real-world object. For instance, StreetAddress= “44 E. 5th Street”
vs. StreetAddress = “44 East Fifth Street”.

Unfortunately, when information from disparate information sources must
be combined, it is required to deal with both such heterogeneities. The task
able to accomplish such a challenge is known with the name of Entity Res-
olution. The notion of Entity Resolution [31, 67, 153] denotes a complex,
multi-steps process for these information integration problems that embraces
two main tasks:

- Schema Reconciliation consists in the identification of a common field
structure for the information in a generic data source.

- Data Reconciliation is the act of discovering synonymies (duplicates) in
the data, i.e., apparently different records that, as a matter of fact, refer
to a same real-world entity.

Typically, the Schema Reconciliation step is preparatory for the next Data
Reconciliation step and thus may strictly affect its effectiveness.

Interest in Entity Resolution has grown rapidly in recent years, side by side
with its applicability to a wide range of cases spanning from classical databases
area to WWW. As witness of such an interest, the Entity Resolution problem
has been studied across several research areas in which it has also taken mul-
tiple names: record linkage or record matching problem [109, 108, 143, 50, 107]
in the statistics community. Merge-purge [74], data de-duplication [125], and
instance identification [149] in the database community. In the AI community,
it is described as database hardening [35] and name matching [12]. Moreover,
the names identity uncertainty, and duplicate detection are also commonly
used to refer the same task.

Many of the approaches in literature deal with the Entity Resolution prob-
lem just from an accuracy viewpoint. However, efficiency and scalability issues
tend to assume a predominant role in all the contexts where very large vol-
umes of data are involved. For instance, consider a banking scenario where
information collected on daily basis typically consists of 500,000 instances,
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representing credit transactions performed by customers throughout various
agencies. These large collections of data inevitably impose severe constraints
to be considered on the the design of data structures and algorithms for Entity
Resolution.

Under the described scenario, the goal of this thesis is to provide a complete
path towards the resolution of entities by facing both the schema and data
reconciliation steps. In this sense, its contribution is twofold:

1. providing a technique able to reconcile in a fixed attribute schema infor-
mation extracted from an unstructured data source as text.

2. solving the synonymies in the tuples by exploiting a scalable and incre-
mental approach able to deal with large volumes of data.

1.2 Main Contributions of the Thesis

The subject of this thesis is a systematic study of the overall Entity Resolution
process when it deals with large volumes of data.

The scenario in which we move is particular in this sense:

- the source of data to de-duplicate is unstructured, i.e., the tuples are stored
as free text.

- the extracted tuples are identified as (small) sequences of strings, where the
set of possible string is high. If the strings represent dimensions along which
the information contained in a tuple is mapped, tuples can be considered
as vectors in a high-dimensional space.

- the large volume of data involved imposes scalable and incremental ap-
proaches disqualifying each non-linear (in the number of tuples) algorithm.

Actually, that above described, it does not represents the only possible
scenario. For instance, the reference disambiguation problem arises when en-
tities in a database contain references (links) to other entities. This problems
is strictly related to the problem of record de-duplication. The differences
between the two can be intuitively viewed using the relational terminology
as follows: while the de-duplication problem consists of determining when
two records are the same, reference disambiguation corresponds to ensuring
that references in a database point to the correct entities. Further, when we
draw some extensions of this thesis (see Chapter 7), we will briefly describe
a link-based approach that systematically exploits not only features but also
relationships among entities for the purpose of improving data reconciliation.

Ultimately, the main contributions of this thesis can be summarized as in
the following:

1. We cope with the Schema Reconciliation problem viewed as the typi-
cal information extraction task of segmenting (restructuring) in a fixed
attribute schema tuples stored as free text. We first analyze the most im-
portant proposals in literature in this field, with a particular attention at
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some state-of-the-art stochastic segmenting approaches: Hidden Markov
Models [1, 15, 127], Maximum Entropy Markov Models [96] and Condi-
tional Random Fields [88] representing our sparring partners in the evalu-
ation phase. Our contribution consists in providing a new methodological
approach in which a strict cooperation between ontology-based generaliza-
tion and rule-based classification is envisaged, which allows to reliably as-
sociate terms in a free text with a corresponding semantic category. A key
feature is the introduction of progressive classification, which iteratively
enriches the available ontology, thus allowing to incrementally achieve ac-
curate schema reconciliation. This ultimately differentiates our approach
from previous works in the current literature, which adopt schemes with
fixed background knowledge, and hence hardly adapt to capture the multi-
faceted peculiarities of the data under investigation.

2. We introduce a general framework for formally characterizing the prob-
lem of discovering and merging duplicate objects, essentially in terms of
a specific clustering problem. According to this framework, we then de-
scribe an efficient technique which is able to discover clusters containing
duplicate tuples in an incremental way. The core of this approach is the
usage of a suitable indexing technique tailored to a set-based distance
function (Jaccard distance), which, for any newly arrived tuple, allows
to efficiently retrieve the set of its most similar tuples in the database
(and hence likely referring to the same real-world entity). This indexing
schema is based on a hashing technique assigning highly similar objects
to the same buckets on the basis of the sharing of a certain number of
common relevant features. Our approach is compared with a different,
state-of-the-art, indexing technique (M-tree [30]), which allows for search-
ing in general metric spaces, thus demonstrating a considerable efficiency
improvement at the cost of a limited accuracy loss.

3. We extend and improve the above hashing proposal in both effectiveness
and efficiency. First, we gain a direct control over the number of features
used for indexing any tuple, which is the major parameter that critically
impacts on the overall cost of the approach. Moreover, we tune the ap-
proach to be less sensitive to little differences between tokens of duplicate
tuples. To this purpose, still in the setting of previous indexing schema,
we exploit a more refined key-generation technique which, for each tuple
under consideration, guarantees a direct control on the degree of granu-
larity needed to properly discover its actual duplicates. In particular, we
resort to a family of locality-sensitive hashing functions (LSH) [77, 20, 62],
which are guaranteed to assign any two objects to the same buckets with
a probability which is directly related to their degree of mutual similarity.

1.3 Thesis Organization

We proceed as follows.
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In Chapter 2 we discuss the Schema Reconciliation problem by placing it
in the wide area of Information Extraction. We give a general description of
the typical stages constituting an IE process, and we itemize some typical IE
tasks. Then, we provide a detailed overview of the main current approaches
in the IE scenario. A particular attention is devoted to techniques coping
with a particular IE task that aims to segment continuous text in a reference
attribute schema.

In Chapter 3 we present RecBoost, our supervised, rule-based approach to
Schema Reconciliation problem. Here, we discuss the reasons for the intro-
duction of a new text segmentation tool, and the peculiarities making them
particularly tailored to the Entity Resolution setting. Moreover, we provide
an intensive experimental evaluation aiming at demonstrating (i) the effec-
tiveness of the basic rule-based classifier and (ii) the improvement in accuracy
obtained by means of the adoption of progressive classification. We also com-
pare our results with other state-of-the-art text segmentation systems.

In Chapter 4 we focus on Data Reconciliation problem. We provide an
extensive overview of the approaches in literature organized as follows. We first
briefly discuss the typical steps in the data cleaning/merging process, before
the duplicate record detection phase starts. Next, we describe techniques used
to match individual fields in a record, and techniques for matching records
containing multiple fields. Moreover, we present methods for improving the
efficiency of de-duplication phase, and finally, we review some commercial
standard tools used in industry for data reconciliation purposes.

In Chapter 5 we introduce our framework that copes with the de-duplication
essentially in terms of a specific incremental clustering problem. To this pur-
pose, we present a suitable hash-based indexing technique able to efficiently
deal with the duplicate record detection when large volumes of data are in-
volved. Moreover, we compare our approach with different indexing structures
proposed in literature on synthesized and real data, by showing a consider-
able improvement in efficiency essentially avoiding a wasteful reduction of
accuracy.

In Chapter 6 we extend and improve, in both effectiveness and efficiency,
the hash-based approach proposed in the previous chapter. More in detail, we
present a more refined key-generation technique based on a family of locality-
sensitive hashing functions, which, in a probabilistic manner, guarantee to
assign duplicates to a same bucket by considering their similarity degree.

In Chapter 7 we summarize our contribution and highlight still open prob-
lems that are worth further investigations.





2

Approaches to Schema Reconciliation

2.1 Introduction

As introduced in Chapter 1, Entity Resolution process consists of two tasks:
Schema Reconciliation, and Data Reconciliation. In this chapter, we are in-
terested to review some well-known solutions for the Schema Reconciliation
problem when it deals with unstructured or loosely structured text.

Nowadays, several useful data sources exist as continuous text, primarily
because humans find easier to create them that way. Examples are postal
addresses, bibliography records, classified ads, and phone lists. Such sources
could be more effectively queried and analyzed when imported into a struc-
tured relational table. Building and maintaining large data warehouses by
integrating data from sources requires automatic conversion of text into struc-
tured records of the target schema before loading them into relations. This
task is typically called Information Extraction (IE).

Starting from the 1980’s, information extraction research has been largely
encouraged and driven by the series of Message Understanding Conference
(MUCs). The MUC extraction tasks ranged from parsing naval dispatches
(MUC-1), to terrorist attacks in Latin America (MUC-3), to joint ventures
and company acquisitions (MUC-5) as well as corporate management (MUC-
7).

In general, information extraction refers to automatic methods for creat-
ing a structured representation of selected information drawn from natural
language text. More specifically, information extraction systems can identify
particular types of entities (such as drug names) and relationships between
entities (such adverse interactions between medical drugs) in natural language
text for storaging and retrieving purposes in a structured database [56]. In
particular, if the input of the IE process is a string obtained by concatenat-
ing structured elements with limited reordering and some missing fields (e.g.
addresses, bib records), the IE task can also be referred as text segmentation.

Informally, the problem of segmenting input strings into a structured
record with a given n-attribute schema is to partition the string into n con-
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tiguous sub-strings and to assign each sub-string to a unique attribute of
the schema. For instance, segmenting the input string “Mining reference ta-
bles for automatic text segmentation E. Agichtein, V. Ganti KDD” into a
bibliographic record with latent schema [Authors, T itle, Conference, Y ear]
requires the assignment of the sub-string “E. Agichtein, V. Ganti” to the
Authors attribute, the sub-string “Mining reference tables for automatic text
segmentation” to the Title attribute, “KDD” to the Conference attribute, and
the NULL value to the Year attribute.

Current techniques for the IE task can be broadly classified into rule-based
and stochastic approaches.

This chapter is organized as follows: in the Section 2.2 the Information Ex-
traction scenario is presented. In Section 2.3 rule-based approaches for IE are
explained. More in details, in Section 2.3.1 hand-coded approaches whereas
in the Section 2.3.2 rule-based learning techniques are surveyed. Finally, Sec-
tion 2.4 shows state-of-the-art stochastic approaches, and in Section 2.5 some
conclusions are drawn.

2.2 The Information Extraction problem

Information extraction has long been a rich subject of research. An informa-
tion extraction system typically examines every document in a collection and
attempts to extract “interesting” information (concepts) for a given tabular
format, by filling each attribute of the relation from the text of the document.
Following the MUC nomenclature, we define an event as a complex relation
(with multiple arguments) between entities, and a scenario as the task of
extracting events from the data source. Moreover, we shall refer to the final
tabular output as a template (i.e., a template entity, a template relation, and
a event or scenario template).

As an example of a typical IE task, consider extracting the Compa-
nyHeadquarters(Organization:ORGANIZATION, Location:LOCATION) re-
lation, which contains a tuple (o, l) if organization o has headquarters in
location l. More precisely, the relation CompanyHeadquarters represents the
specific semantic relationship between companies and their locations, while
an instance of CompanyHeadquarters contains a set of tuples (i.e., pairs) of
individual company and location entities related as specified above [117].

Figure 2.1 shows the basic stages in the extraction of a tuple from a docu-
ment fragment. As one of the first stages of extraction, the input documents
are typically passed through a named-entity tagger, which is able to recognize
entities such as organizations, locations, and persons. Named-entity tagging
is a well studied problem, with tools publicly available for the most com-
mon entity types [42]. These entities are potential values of attributes in the
target relation. To find related entities, the tagged documents are generally
processed by applying extraction patterns or IE rules in the pattern matching
step. These patterns may be manually constructed or automatically learned
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Input: Documents

Named Entity Tagging

Pattern Marching

Output:Tables

Information Extraction System

Fig. 2.1. Typical IE stages

(see Section 2.3). Each pattern is applied to each text fragment, instantiating
appropriate slots in the pattern with entities from the document. These enti-
ties are combined into candidate tuples, and after filtering and post-processing
are returned as extracted tuples.

The most general and complex extraction task is the event or scenario
extraction. For instance, for a terrorist attack event, we expect to extract the
time, location, perpetrator, target, damage, victims, etc. An event often spans
several sentences, so we may need inference to figure out all the slots of an
event. Many of rule-based systems are devoted to face this task.

Although rule-based techniques are the most common ones for IE, sev-
eral approaches explore the use of well-known stochastic machine learning
methods. We will discuss some of these approaches in Section 2.4.

2.3 Rule-based Approaches

In the typical IE setting, the rules useful for the extraction task are clas-
sified as single-slot rules and multi-slot rules, given that a concept can be
represented as a template. A single-slot rule is able to extract document frag-
ments related to one slot within a template, while a multi-slot rule extracts
tuples of document fragments related to the set of slots within a template.
As introduced above, these rules can be either manually-engineered or (the
greater part) learned from large amount of text (annotated and otherwise)
when available.

2.3.1 Hand-crafted Information Extraction Systems

At the beginning, IE systems were customized manually to a given task. Due
to the very high manual effort for tuning these systems, the attention was
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focused on automating the IE approaches. Anyhow, the best performance
are still obtained by hand-crafted systems. In the following, two of the most
famous systems, in which the pattern recognition phase is completely hand-
coded, are proposed.

FASTUS

FASTUS [6], developed in the early 1990s, is a (slightly permuted) acronym
for Finite State Automaton Text Understanding System, although it does not
deal with text understanding but IE. It is a cascaded, nondeterministic finite
state automaton (FSA). More specifically, FSA’s are used both for the phrasal
decomposition and for the recognition of domain-specific phrases.

FASTUS performs the IE task in four steps:

1. Triggering takes place based on the search of a set of predefined keywords
(trigger words) specific to each extraction pattern.

2. Phrasal decomposition takes a relevant sentence and breaks it into noun
groups, name groups, verb groups, and several classes of critical words
(e.g., prepositions, pronouns, conjunctions, etc.).

3. Pattern recognition is performed based on a predefined, completely hand-
coded set of rules. For instance, “killing of <victim>” and “Bomb was
placed by <perpetrator> on <target>” are example of valid FAS-
TUS patterns.

4. the incident merging phase combines into a single incident the information
extracted into several complementary incidents.

The basic system is relatively small, although the dictionary used is very
large. The manually developed rules were very effective and performed very
well.

PROTEUS

PROTEUS [159] is a core extraction engine consisting of seven modules: (1)
lexical analysis, (2) name recognition, (3) partial syntactical analysis, (4) sce-
nario pattern analysis, (5) reference resolution, (6) discourse analysis, and (7)
output generation.

The lexical analysis module splits the document into sentences and tokens.
Each token is assigned a reading using dictionaries. Optionally, a parts-of-
speech tagger can be invoked to eliminate unlikely readings from tokens. The
name recognition, partial syntax, and scenario patterns modules use determin-
istic, bottom-up, partial parsing, or pattern matching. Patterns are regular
expressions. Patterns for name recognition identify proper names. The par-
tial syntax module finds noun phrases and verb phrases. The scenario pat-
terns module finds higher-level syntactic constructions. The reference resolu-
tion module links anaphoric pronouns or their antecedents and merges other
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co-referring expressions. The discourse analysis module builds more complex
event structures using higher-level inference rules. Thereby, several clauses
contain information about a single complex fact. The template generation
module performs a transformation of the gathered information into the final
template structure.

The pattern acquisition consists of several steps. First, the user enters
a sentence containing an event and selects an available template. Then, the
system applies current patterns to the example to obtain an initial analysis.
Thereby, it identifies noun/verb groups and their semantic types and applies
a minimal generalization. The system presents the result to the user, who can
modify each pattern element (e.g., choose the appropriate level of generaliza-
tion, make the element optional, remove it). The user then has to specify how
pattern elements are used to fill slots in the template. Now the system builds a
new pattern to match the example and compiles the associated action, which
will fire when the pattern matches and will fill the slots of the template. The
new pattern is added to the pattern base.

2.3.2 Learning-based Information Extraction Systems

A hand-crafted pattern is writing by domain knowledge experts in order to
extract useful information from a particular domain. For instance, in the
terrorism domain, a possible pattern would be formed as “<target> was
bombed”. This pattern could be applied onto the sentence “A public building
was bombed in Oklahoma City last year”, and “A public building” can be
extracted as target. Thus, if we were informed beforehand about the event,
event structure and its domain, an IE system, well customized for the partic-
ular target event structure, could be developed.

However, because of the wide availability of textual documents and the
diversity of needs for information extraction, it seems impractical to develop
an IE system for each domain. Thus, the focus of the studies of information
extraction was concentred toward its portability across domains.

Hence, the motivation of exploiting learning-based models is to reduce hu-
man effort in building or shifting an IE system. Instead of creating patterns by
hand, these models derive rules via generalization of examples. The learning
process starts with patterns from specific examples (tagged text segments) and
the syntactic structure of the surrounding text. Then, it tries to generalize the
patterns inductively by relaxing constraints and merging patterns. This pro-
cess continues until no more generalization can be done without introducing
too many errors. The result is a set of generalized patterns.

Categorizing the learn-based approaches is a task not easy to fulfill. Such
approaches are in literature classified from different points of view: the degree
of supervision, the kind of rules learned, the learning paradigm (e.g., propo-
sitional or relational), and so on. In this section, some of state-of-the-art IE
rule learning systems are classified according to these criteria. For the sake of
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simplicity, the degree of supervision they need has been taken as the starting
point for the comparison.

Supervised Approaches

Under the inductive learning paradigm, supervised approaches are the most
common ones for learning IE rules. In general, a learning method is supervised
if some intervention is required from the user for the learning process. Some
approaches require the user to provide training examples. This supervision
can be carried out as a preprocess (i.e., appropriately tagging the examples
occurring in the training set) or as an online process (i.e., dynamically tagging
the examples as needed during the learning process). Some of these learning
approaches focus on propositional learning (e.g., AutoSlog, PALKA, CHRYS-
TAL) while others focus on relational learning (e.g., SRV, RAPIER, WHISK).

Propositional learning is based on representing the examples of a concept
in terms of either zero order logic or attribute-value logic. Relational learning
is based on representing the examples of a concept in terms of first order logic.

- AutoSlog
AutoSlog [119] generates single-slot rules, named concept nodes, by ap-
plying a heuristic-driven specialization strategy. An AutoSlog concept has
three key componenents:
– the conceptual anchor that activates it.
– the linguistic pattern and the set of enabling conditions that guarantee

its applicability.
The conceptual anchor is a triggering word, while the enabling conditions
represent constraints on the components of the linguistic pattern. The gen-
eration of concept nodes is based on the specialization of a set of predefined
heuristics in the form of general linguistic patterns. The generation pro-
cess is carried out by examining each example in an annotated corpus only
once. Such linguistic patterns contain syntactic constraints which generate
a concept node when a specialization occurs.
For instance, in Figure 2.2, the linguistic pattern <subject> passive-verb
is specialized into <target> bombed when examining the training example
“The Parliament was bombed by the guerrillas”. As a consequence, a con-
cept node for the <target> slot of a bombing template is generated with
bombed as trigger and constraining the slot-filler value to be subject (i.e.,
*S*) within the training example. The resulting set of concept nodes is
proposed to the user, in order to be reviewed. This is due to the fact that
AutoSlog makes no attempt to generalize examples, and, consequently,
generates very specific slot-filler definitions (i.e., rules with low coverage).
AutoSlog uses a predefined set of 13 linguistic patterns, and the informa-
tion to be extracted can fall under one of the following categories:
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– the subject of the sentence (e.g., “<subject> passive verb” for
“<target> was bombed”).

– the direct object (e.g., “gerund <dobj>” for “bombing <target>”.
– a noun phrase (e.g., “noun prep <np>” for “bomb against <target>”).
In general, the triggering word is a verb, but if the information to be
extracted is a noun phrase, the triggering word also may be a noun.

CONCEPT NODE
Name: target-subject-passive-verb-bombed
Trigger: bombed
Variable Slots: (target (*S* 1))
Constraints: (class phys-target *S*)
Constant Slots: (type bombing)
Enabling Conditions: ((passive))

Fig. 2.2. A concept node induced by AutoSlog

In Figure 2.2, the complete definition of a sample concept node is showed.
The Name slot is a concise, human readable description of the concept,
and it is composed of the information to be extracted (i.e., the target of
a terrorist attack), the linguistic pattern “subject passive-verb”, and
the triggering word bombed. The Trigger slot defines the triggering word,
while the Variable Slot specifies the information to be extracted (in the
example, the subject of the sentence). Finally, the sample concept requires
that the subject is a physical target and that the verb is used at its passive
form. It is easy to see that the above concept can be used to extract the
target of the terrorist attack in the sentence “The Parliament was bombed
by the guerrillas” but we need an active-verb-based concept to perform
the same task for the sentence “The guerrillas bombed the Parliament”.

- PALKA
PALKA [83] is based on a candidate-elimination algorithm able to learn
both single-slot and multi-slot rules. PALKA learns extraction patterns
that are expressed as Frame-Phrasal pattern structures or, shortly, FP-
structures. As shown in Figure 2.3, an FP-structure consists of a meaning
frame and a phrasal pattern. Each slot in the meaning frame defines an
item-to-be-extracted together with the semantic constraints associated to
it (e.g., the target of a bombing event must be the type PHYSICAL-
OBJECT). The phrasal pattern represents an ordered sequence of lexical
entries and/or sematic categories. PALKA generalizes and specializes such
semantic classes by using an ad-hoc semantic hierarchy until the resulting
FP-structures cover all the initial specific ones. The use of the semantic
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hierarchy allows PALKA to learn rules that are more general than Au-
toSlog’s.

The Meaning Frame:
(BOMBING

agent: ANIMATE
target: PHYSICAL-OBJECT
instrument: PHYSICAL-OBJECT
effect: STATE)

The Phrasal Pattern:
((PHYSICAL-OBJECT) was bombed by (TERRORIST-GROUP))

FP-structure = MeaningFrame + PhrasalPattern
(BOMBING

target: PHYSICAL-OBJECT
agent: TERRORIST-GROUP
pattern:( (target) was bombed by (agent) )

Fig. 2.3. Example of FP-structure

The FP-structure combines the meaning frame and the phrasal pattern
by linking the slots of the former to the elements of the latter. Applying
an FP-structure to a sentence represents a straightforward process: if the
phrasal pattern matches the sentence, the FP-structure is activated, and
then the corresponding meaning frame is used to actually extract the data.

- CRYSTAL
CRYSTAL [134] generates concept node extraction patterns that are sim-
ilar in nature, but significantly more expressive than the ones used by
AutoSlog. CRYSTAL allows both semantic and exact word constraints in
any component phrases. Furthermore, CRYSTAL also allows the use of
multi-slot extraction patterns.
In order to better illustrate the expressivity of the CRYSTAL concept
node, we will consider a slightly modified version of the previously used
target-sentence. The extraction pattern shown in Figure 2.4 can be used to
extract both the target and the name of the perpetrator from the sentence
“The Parliament building was bombed by Carlos”.
As we can see in Figure 2.4, the concept definition includes semantic con-
straints on both the subject and the prepositional phrase, and it also
imposes exact word matching for the verb and the preposition. Further-
more, the “Terms include:” construct introduces an additional exact
word matching for the subject of the sentence.
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Concept type: BUILDING BOMBING
Subtype: Known-Individual-Perpetrator
Constraints:

SUBJECT:
Classes include: <Physical Target>
Terms include: BUILDING
Extract: target

VERB:
Root: BOMB
Mode: passive

PREPOSITIONAL PHRASE:
Preposition: BY
Classes include: <Person Name>
Extract: perpetrator name

Fig. 2.4. Example of concept node generated by CRYSTAL

- RAPIER
RAPIER [22] is the first relational learning system that we review. It uses
a bottom-up compression algorithm in which rules are iteratively merged,
instead of generalized, from training examples. RAPIER considers training
examples as specific rules. At each iteration, two rules (specific or not) are
selected to be compressed into a new one. Rules used in this process are
discarded and the resulting rule is added to the set of possible ones.
More in detail, the RAPIER system learns unbounded ELIZA-like pat-
terns [151] that use limited syntactic information (e.g., the output part
of a part-of-speech tagger) and semantic class information (e.g., hypernim
links from WordNet [101]). In order to understand how RAPIER works,
an example of target text, extracted information, and extracted pattern is
presented in Figure 2.5. Here, it is possible to see that RAPIER extrac-
tion pattern consists of three distinct slots: the “Pre-filler pattern” and
the “Post-filler pattern” play the role of left and right delimiters, while
the “filler pattern” describes the structure of the information to be ex-
tracted.
Each filler pattern consists of a (possibly empty) list of pattern items or
pattern lists. The former, matches exactly one word/symbol from the doc-
ument, while the latter specifies a maximum length N and matches 0 to
N word/symbols from the document. The constraints imposed by pattern
items/lists consist of exact match words, parts of speech, and semantic
classes. For instance, in the example of Figure 2.5, the pre-filler and the
post-filler patterns specify that information to be extracted is immedi-
ately preceded by the word “leading” and is immediately followed either
by “firm” or by “company”. The filler-pattern imposes constraints on the
structure of the information to be extracted: it consists of at most two
words that were labeled “nn” or “nns” by the POS tagger [17] (i.e., one
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Telecommunications. SOLARIS System Information to be extracted:
Admin. 38-44K. Immediate need. ---------------------------

computer-science-job
Leading telecommunication firm in title: SOLARIS System Admin
need of an energetic individual to salary: 38-44K
fill the following position: area: telecommunications

AREA extraction pattern:

Pre-filler pattern: 1) word: leading
Filler pattern: 1) list: len: 2

tags: [nn, nns]
Post-filler pattern: 1) word: [firm, company]

Fig. 2.5. RAPIER: sample text, desired output, and extraction pattern

or two singular or plural common nouns).

- SRV
SRV [52] is an ILP (Indictive Logic Programming) system that generates
first-order logic extraction patterns on the basis of attribute-value tests and
the relational structure of the documents. SRV transforms the problem of
learning IE rules into a classification problem: is a document fragment a
possible slot value? The input of this system is a training set of documents,
and a set of attributive and relational features related to tokens T (e.g.,
capitalized(T), next(T1; T2)) that control the generalization process. SRV
uses a top-down covering algorithm to learn IE rules from positive and
negative examples.
In Figure 2.6, a rule learned by SRV to extract the course number from
HTML pages containing class description, is showed.

1: CourseNumber:-
2: length( =2 ),
3: every( in-title false ),
4: some( ?A [] all upper-case true ),
5: some( ?B [] tripleton true )

Example:

<title> Course Information</title> <h1> CS 231 C++ Programming </h1>

Fig. 2.6. Example of SRV extraction pattern
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This sample extraction pattern has the following meaning: the course num-
ber (line 1) consists of two tokens (line 2). No token between <title> and
</title> is part of the course number (line 3). One of the tokens in the
course number, say “?A”, is all in upper-case (line 4), and the other token
to be extracted, say “?B”, consists of three characters (line 5).

- WHISK
A more flexible system within the relational learning paradigm is WHISK.
WHISK [133] generates extraction patterns for a wide variety of online
information ranging from structured text (i.e., rigidly formatted) to free
text. Following a different approach, WHISK represents documents as se-
quences of tokens and allows learning of both single-slot and multi-slot
rules to extract slot values.
The WHISK extraction patterns have two distinct components: one that
describes the context that makes a phrase relevant, and one that specifies
the exact delimiters of the phrase to be extracted. Depending of the struc-
ture of the target text, WHISK generates patterns that rely on either of
the components (i.e., context-based patterns for free text, and delimiters-
based patterns for structured text) or both on them (i.e., for documents
that lay in between structured and free text).
In Figure 2.7, a sample WHISK extraction task from online texts, is
showed. Concretely, rules are represented as pairs <pattern, output>, in
which pattern is meant to be matched by documents and output is required
to be the output template when a match occurs. The pattern is a regu-
lar expression that represents possible slot fillers and their boundaries.
For instance, the target text in Figure 2.7, is taken from an apartment
rental domain that consists of ungrammatical constructs, which, without
being rigidly formatted, obey some structuring rules that make them hu-
man understandable. The information to be extracted consists of a pairs
<NumberOfBedrooms, Price>. The sample pattern showed in this fig-
ure 2.7 has the following meaning: ignore all characters in the text until
a digit followed by “BR” string is found. Extract this digit and use it to
fill the “Bedrooms” slot. Then, ignore again all the remaining characters
(“*”) until a “$” immediately followed by a number is reached. Finally,
extract the number and use it to fill the “Price” slot.
A more sophisticated version of the pattern could replace the “BR” string
by the semantic class “<Bedroom>”, which is defined as:

< Bedroom >::= (brs||br||bds||bdrm||bd||bedroooms||bedrooom||bed)

In practice, the semantic class “<Bedroom>” represents a placeholder for
any of the abbreviations above.
The rules so far described are learned in a top-down fashion from a training
set of positive examples. An unusual selective sampling approach is used
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Capitol Hill - 1 br twnhme. fplc RENTAL: Bedrooms: 1
D/W W/D. Undrgrnd pkg incl $675. Price: 675
3BR, upper flr on turn of ctry HOME.
incl gar.grt N. Hill loc $995 RENTAL: Bedrooms: 3
(206) 999-9999 <br> Price: 995

EXTRACTION PATTERN: * (<Digit>) ’BR’ * ’$’’ (<Number>)

Fig. 2.7. WHISK: sample text, desired output, and extraction pattern

by WHISK. Initially, a set of unannotated documents is randomly selected
as training input out of those satisfying a set of key words. These docu-
ments are presented to the user who tags the slot-fillers. WHISK starts by
learning a rule from the most general pattern (e.g., ‘*(*)*’ for single-slot
rules). The growth of the rule proceeds one slot at a time. This is done
by adding tokens just within the slot-filler boundaries as well as outside
them. The growth of a rule continues until it covers at least the training
set. After a rule set has been created, a new set of unannotated documents
can be selected as a new training input from those satisfying the rule set.
Although WHISK is the most flexible state-of-the-art approach, it can-
not generalize on semantics when learning from free text, as CRYSTAL,
PALKA, SRV and RAPIER do. Another limitation of WHISK is that no
negative constraints can be learned.

Towards Unsupervised Approaches

The main bottleneck of the supervised pattern discovery methods is the cost
of the preparation of training data. Many of the surveyed systems need a large
amount of annotated document for a particular extraction task, and hence the
cost for manual annotation cannot be ignored. This also leads to the lack of
portability of an IE system: one needs to get the annotated data for each task.

Therefore, studies on information extraction have frequently focused on
these drawbacks by requiring a lower degree of supervision. In the follow-
ing, we first review a system representing an evolution of AutoSlog, and then,
some approaches all related to certain form of learning known as bootstrapping.

- AutoSlog-TS
AutoSlog-TS by Riloff [120] is a new version of AutoSlog where the user
only has to annotate documents containing text as relevant or non-relevant
before learning. The strategy of AutoSlog-TS consists of two stages. In
the first, it applies the heuristic-driven specialization used by AutoSlog in
order to generate all possible rules (concept nodes, see Figure 2.2) with the
relevant documents. This is done by matching a set of general linguistic
patterns against the previously parsed sentences of the relevant documents.
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In the second stage, a relevance rate is computed for each one of the
resulting rules as the conditional probability that a text is relevant given
that it activates the particular rule. The relevance formula is the following:

Pr(relevant text|text contains rulei) =
rel freqi

total freqi

where rel freqi is the number of matches of rulei found in the relevant
documents, and total freqi is the total number of matches of rulei found
in the whole set of documents. Finally, each rule is ranked according to
the formula:

{
relevance rate(rulei) ∗ log2(freqi) if relevance rate(rulei) > 0.5
0 otherwise

(2.1)
and the n best ranked rules (n according to the user criteria) are selected.
Riloff assumes that the corpus is 50% relevant and, consequently, when
the relevance rate is lower or equal to 0.5, the rule is negatively correlated
with the domain.
The author presented a comparison between AutoSlog and AutoSlog-TS,
related to the learning of single-slot rules to extract three slots in ter-
rorist domain (perpetrator, victim, and target). The main conclusion was
that AutoSlog-TS can extract relevant information with comparable per-
formance to AutoSlog’s, but requiring significantly less supervision and
being more effective at reducing spurious extractions. However, the rele-
vance rate formula tends to rank many useful rules at the bottom and to
rank high frequency rules at the top. The author justifies that behavior
with the necessity of a better ranking function.

- Bootstrapping approaches
Some research groups have been focusing on the use of a certain form of
learning known as bootstrapping. Bootstrapping is a general framework for
improving a learner using unlabeled data [81]. Typically, bootstrapping
is an iterative process where labels for the unlabeled data are estimated
at each round in the process, and the labels are then incorporated as
training data into the learner. All the approaches exploiting bootstrapping
are based on the use of a set of either seed examples or seed patterns
from which they learn some context conditions that then enable them to
hypothesize new positive examples, from which they learn new context
conditions, and so on. In general, all the information extraction methods
following such approach use a bottom-up covering algorithm to learn rules.
In the following we review some of these bootstrap-based techniques.
DIPRE (Dual Iterative Pattern Expansion) [18] is a system for acquiring
patterns, similar to co-training [14], which is able to extract binary rela-
tions from web documents. Very simple patterns are learned from a set
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of seed word pairs that fulfil the target relation (for example, Company
- Location). The seed word pairs are used to search web pages for text
fragments where one word appears very close to the other. In this case, a
pattern is created which expresses the fact that both semantic categories
are separated by the same lexical items that separate the example seed
words in the text fragment found. A pattern is composed by five string
fields: prefix, category1, middle, category2, suffix. A text fragment matches
the pattern if it can be split to match each field. For instance, to learn the
relation (Author, Book Title) from web pages, DIPRE learned the pattern
“<LI><B>title</B> by author”, where the text preceding the title
is the prefix, the text between the title and the author is the middle and
the suffix consists of the text following the author. The set of patterns
obtained from the example relations are used to find new pairs of related
words by matching the patterns with the present set of web pages and the
process is repeated.
Mutual bootstrapping is one form of co-training used in Riloff and
Jones [121] for lexical discovery. Lexicons and extraction patterns are used
as two separate features. Given a handful of lexical entries as initial data,
patterns are discovered that extract the initial lexicon. The extracted pat-
terns are ranked and the most reliable are used to extract more lexical
items. The assumption of using mutual bootstrapping is the duality that a
good pattern can find a good lexicon and a good lexicon can find a good
pattern. Thus, a set of lexicons would find the extraction patterns that can
reliably extract them, and, in turn, the extraction patterns can find an-
other set of lexicons, while keeping the relevancy of the lexicons. A strong
limitation of mutual bootstrapping is that a minor error can cause a large
amount of errors during the following iteration. A touching up process was
introduced by meta-bootstrapping. In meta-bootstrapping, each iteration
takes only the five best noun phrases for adding to the extracted lexicons,
thus trying to be conservative rather than taking all the lexical entries
that are extracted by the patterns.
ExDISCO [157, 158] is another interesting extraction strategy with mu-
tual bootstrapping. Here, extraction patterns in the form of subject-verb-
object (SVO) are learned from an initial set of SVO patterns manually
built. The application of these initial patterns in a text indicates that the
text is suitable for extracting a target event or a part of it. The motiva-
tion behind the mutual bootstrapping of ExDISCO is the circularity where
the presence of the relevant documents indicates good patterns and good
patterns can find relevant documents.
ExDISCO requires only an unannotated corpus and a handful of seed
patterns. First the document set is divided into a relevant document set
that contains at least one instance of patterns and non-relevant document
set that do not contain any seed patterns. The candidate patterns are
generated from the clauses in the documents and ranked in correlation
with the relevant documents. The score of pattern pt is calculated by:
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score(pt) =
docR(pt)
doc(pt)

· log(docR(pt))

where docR(pt) is the number of relevant documents that contain pt.
ExDISCO adds the highest pattern to the pattern set that initially con-
tains only seed patterns. Then, ExDISCO re-ranks each document using
the newly obtained pattern set. At the (i + 1) − th iteration, the score of
each document d is calculated by:

scorei+1(d) = max

⎛
⎝scorei(d),

1
|DOC(PTd)|

·
∑

d∈DOC(PTd)

scorei(d)

⎞
⎠

where PTd is a set of patterns that match document d and DOC(PTd) is
a set of documents that all patterns in PTd match. This score calculates
the sum of the normalized scores of the documents which contain all the
patterns that now are found in the document in question. Thus, having
all the documents updated score, ExDISCO again spits the entire set of
documents into relevant and non-relevant and keeps iterating.
SNOWBALL [2] is a system able to learn local relations between entities.
SNOWBALL approach is based on DIPRE algorithm (see above in this
section). The main algorithm of SNOWBALL, first, induces and ranks
the extraction patterns given a handful of initial relation instances; a set
of pairs of location and organization. The algorithm applies the patterns
onto the source text and tries to find other relations that the patterns can
cover. From the newly found relations, the patterns are re-ranked. The
metrics of the patterns and relations used for each iteration are important
since a tiny error would extract more erroneous patterns/relations in the
later stages. The confidence of a pattern is calculated by similar method
to AutoSlog-TS [120], where the score is a multiplication of the relevance
of the pattern and the logarithm of the frequency of the pattern (see
equation (2.1)). Then, the confidence of each relation is calculated by the
probability that all the patterns that extract the relation were triggered
incorrectly.

2.4 Stochastic Approaches

Although rule learning techniques have been the most common ones used
for IE, several approaches explore the use of well-known statistical machine
learning methods which have not been previously applied to this area. These
methods include Hidden Markov Models (HMMs), Maximum Entropy Models
(MEMs), and Conditional Random Fields (CRFs). This section is devoted
to a description of these approaches when applied to information extraction
tasks.
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2.4.1 Hidden Markov Models

Hidden Markov Models (HMMs) are a type of probabilistic finite state
machine, and a well-developed probabilistic tool for modeling sequences
of observations. They have been applied with significant success to many
language-related tasks, including part-of-speech tagging [87], and speech
recognition [116]. Instead, relatively recent is the exploitation of the HMMs
in the IE scenario. Several are the reasons for which the HMMs are used in
the information extraction. First of all, they have a strong statistical founda-
tions, and showed to be well-suited to natural language domains. Moreover,
the HMMs are able to handle new data robustly, and they are computational
efficient to develop. However, as in the case of many machine learning ap-
proaches, large amounts of training data are required to learn a model that
generalizes well and has high accuracy.

Hidden Markov Models for Information Extraction

A HMM is a finite state automaton with stochastic state transitions and
symbol emissions [116]. The automaton models a probabilistic generative pro-
cess whereby a sequence of symbols is produced by starting at a designed
start state, transitioning to a new state, emitting a symbol selected by that
state, transitioning again, emitting another symbol, and so until a designed
final state is reached. Associated with each set of states S = {s1, . . . , sn},
is a probability distribution over the symbols in the emission vocabulary
V = {w1, . . . , wm}. The probability that state sj will emit the vocabulary
item w is indicated with P (w|sj). Similarly, associated with each state is a
distribution over its set of outgoing transitions. The probability of moving
from the state si to state sj is indicated with P (sj |si). Model transition and
emission probabilities can be learned from training data (training phase of a
HMM). Training data consists of several sequences O of observed emissions,
one of which would be written as {o1, . . . , ok}. In practice, {o1, . . . , ok} repre-
sents a generic document from which extracting the interesting information.

In order to practically understand the way a HMM may be used for infor-
mation extraction purpose, consider the next example, in which the objective
consists in extracting information from research paper headers. A model that
can be used in this scenario is the following: each state is associated with a
class that must be extracted, such as title, author or affiliation. In order to
label a new header with classes, the words from the header are considered
as observations, and the most-likely state sequence is recovered. The state
that produces each word is the class tag for that word. In the Figure 2.8, an
example of HMM annotated with class labels and transition probabilities is
showed.

In general, given a HMM model M and all its parameters, information
extraction is performed by determining the sequence of states that is most
likely to have generated the entire document, and extracting the symbols that
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Fig. 2.8. Example of a HMM in a typical IE scenario

are associated with such states. This phase is also known as testing phase of
a HMM. To perform extraction we therefore require an algorithm for finding
the most likely state sequence given a model M and a sequence of symbols.

Intuitively, the probability that an output sequence o = {o1, . . . , ok} (i.e.,
a string) being emitted by a HMM model M is computed as a sum over all
possible paths by:

P (o|M) =
∑

s1,...,sk∈Sk

k+1∏
i=1

P (si|si−1)P (oi|si)

where s0 and sk+1 are restricted to be the initial and final states respectively,
and ok+1 is an end-of-string token. The Forward algorithm can be used to
calculate this probability [116]. The state sequence S∗(o|M) that has the
highest probability of having generated an observation sequence o can be
stated as:

S∗(o|M) = arg max
s1,...,sk∈Sk

k+1∏
i=1

P (si|si−1)P (oi|si)

Although a näıve approach to find the most likely sequence would take
O(kn), a dynamic programming solution, called Viterbi algorithm [148], solves
this problem in just O(kn2) time.

In the above proposed example, a single HMM is used to extract a set
of fields from quite-structured texts (e.g. paper headers), taking into account
field sequence. The fields are close to each other, and thus this approach is
also referred as “dense extraction” task. A different IE task could consist in
extracting relevant data from documents containing a lot of irrelevant text and
thus referred as “sparse extraction” task. Some works (e.g., [53, 54]) propose
a possible HMM model able to deal with the sparse extraction task.
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The training of a HMM has two phases: the choice of its structure (the
topology), and the learning of transition/emission probabilities.

Usually, building a HHM it implies the necessity of an a priori notion of its
topology (the number of states and the transitions between the states). This is
one of main drawbacks of HMMs, although recently techniques were developed
to automatically identify a good task-specific topology [54]. In general, it is
difficult to get the optimal number of states in the HMM. In literature, several
are the possible topologies. Fully-connected model, näıve model, and left-right
model are only some possible structures. However, once the model is chosen,
it is possible to subsequently refine the topology of a HMM. To this purpose,
some techniques exist:

- The Neighbor-Merging technique combines all states that share a transition
and have the same class label. For instance, by newly referring to the
header extraction task, the sequence of adjacent title states from a single
header are merged into a single title state. As multiple neighbor states
with the same class label are merged into one, a self-transition loop is
introduced, whose probability represents the expected state duration for
that class.

- The V-merging technique merges any two states that have the same label
and share transitions from or to a common state.

- The Bayesian model merging [137] technique seeks to find the model struc-
ture that maximizes the probability of the model M given some training
data D. This is achieved by iteratively merging states until an optimal
tradeoff between fit to the data and model size has been reached.

Once a model structure has been selected, the transition and emission
probabilities need to be estimated from training data. When the training
sequences are sufficiently labeled so as to be associated with a unique path
of states, the probabilities can be calculated straightforwardly with ratios
of counts (maximum likelihood) or smoothed ratio of counts (maximum a
posteriori). Accordingly, the probability of making a transition from a state
si to state sj , can be calculated as follows:

P (sj |si) =
Number of transition from state i to state j
Total number of transitions out of state i

The emission probabilities are computed similarly. The probability of emitting
symbol w in state sj can be written as:

P (w|sj) =
Number of times the w symbol emitted at state j

Total number of symbols emitted at state j

However, the above formula for emission probabilities needs to be refined
when the training data are insufficient. Often, during testing, it is possible to
encounter words that have not been seen during training. When the emission
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vocabulary is large with respect to the number of training examples, maximum
likelihood estimation of emission probabilities will lead to poor estimates, with
many words inappropriately having zero probability. Hence, assigning a cor-
rect probability to the unknown words is important. The use of a well-chosen
prior in conjunction with maximum a posteriori or Bayes optimal estimation
will prevent zero-probability estimates and improve estimation overall.

For instance, Bayes optimal parameter estimation in conjunction with a
uniform Dirichlet prior results in the widely used Laplace smoothing, in which
the count of every word in the vocabulary is incremented by a single extra
“priming” occurrence. This is also known as additive smoothing. An alterna-
tive smoothing technique that performs better when the number of zero-count
words varies widely from state to state is absolute discounting. This method
subtracts a fixed discount, 0 < d < 1 from all words with count greater
than zero. The resulting available probability mass is then distributed over all
words that have zero count according to some prior distribution.

HMM-based approaches

Several recent researches have demonstrated the effectiveness of hidden Markov
models for information extraction. HMMs can be applied successfully to sub-
domains of information extraction as (i) the task of segmenting structured
data sources provided as continuous, unordered, and non delimited text [15, 1]
(e.g., addresses or bibliographic records), (ii) the task of recovering the se-
quence of a set of entries occurring in close proximity (e.g., headers of re-
search papers) [127], and (iii) the “template-filling” task in which the objec-
tive is to extract relevant phrases from document containing much irrelevant
text [53, 54]. In many cases, the accuracy of HMMs applied to these tasks
is state-of-the-art and often significantly better than alternative learning ap-
proaches.

- Estimating parameters with shrinkage
Freitag and McCallum [53] assume that for every document in a corpus
there is a corresponding relational record (template), each field of which
is either empty or is filled with a fragment of text from the document. For
instance, an electronic seminar announcement might contain the title of
the talk, the name of the speaker, the starting time, etc. In the proposed
methodology, a separate HMM is constructed by hand for each target slot
(e.g., seminar speaker) to be extracted. Each model contains two types
of states, target states that produce the tokens to extract and non-target
states. The structure of each HMM focuses on modeling the immediate
prefix, suffix, and internal structure of each slot. For each HMM, both the
state transition and word emission probabilities are learned from labeled
data. However, they integrate a statistical technique called shrinkage in
order to be able to learn more robust HMM emission probabilities when
dealing with data-sparseness in the training data (large emission vocab-
ulary with respect to the number of training examples). More in detail,
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parameter estimates from sparse states in a complex model are “shrinked”
towards estimates from related states of simpler models where more train-
ing data is available for each state (because the number of states is lower).
All target states are considered as related, as are all non-target states. A
weighted average learned through Expectation-Maximization [44] is used to
combine the estimates of different models. The smoothed, shrinkage-based
probability of state s emitting word w is:

λ1P (w|s) + λ2P (w|a(s)) + λ3

(
1
K

)

where the last term represents the uniform distribution, a(s) is the “par-
ent” state of s (a state combining all target states if s is a target state, a
state combining all non-target states otherwise) in the shrinkage hierarchy,
and λ1 + λ2 + λ3 = 1.
In fact, the type of shrinkage used, which averages among different HMM
states (the ones with poor data versus the data-rich ones), is the one
known in speech recognition as deleted interpolation. The method has been
evaluated on the domains of on-line seminar announcements and newswire
articles on corporate acquisitions, in which relevant data must be recovered
from documents containing a lot of irrelevant text.
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Fig. 2.9. Part of the HMM structure for extracting the speaker field

Figure 2.9 shows part of the structure of an HMM for extracting the
speaker field in the on-line seminar announcement domain. The ellipti-
cal nodes represent the prefix/suffix states of the field to be extracted,
whereas the polygonal nodes represent the field states themselves. In both
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types of nodes, the top 5 most probable tokens to be emitted by that
state are shown. Only those transition probabilities greater than 0.1 are
depicted. The authors claim better results than the SRV system (see Sec-
tion 2.3.2), although they need the a priori definition of the topology of
the model.

- Learning the structure using stochastic optimization
In an extension of the previous approach, Freitag and McCallum [54] tackle
again the sparse extraction task, but this time the work focuses on robustly
learning a HMM structure for each target slot from limited specific training
data.
For learning a suitable HMM structure, non-target states are further dif-
ferentiated as either prefix or suffix (preceding resp. following a target
phrase) or background states (anything else). The most simple HMM fit-
ting this structure has four states (one of each kind) and considers exactly
one prefix + suffix around each target state1. Starting from this model,
a stochastic hill-climbing process is performed in the space of possible
structures. Related models are generated by lengthening a prefix, suffix,
or target string (adding a new state of the same kind that must be tra-
versed before the model can proceed to the next kind of state), by splitting
a prefix/suffix/target string (creating a duplicate where the first and last
states of the duplicated prefix/suffix/target have the same connectivity as
in the original), or adding a background state. Model variations are eval-
uated on a hold-out set or via 3-folds cross-validation. It is worth noticing
that, in this approach, the parameter estimation is performed as well as
in their previous work [53].
In order to evaluate the goodness of this approach, the score used is F1

(the harmonic mean of precision and recall), evaluated on the training
data from the same two domains as their previous work [53], along with
the semi-structured domains of job announcements and Call for paper
announcements. Training data must be labeled. Experimental results show
a higher accuracy than the one achieved by their previous approach, as
well as the ones from SRV and RAPIER systems (see Section 2.3.2).

- Learning structure and parameters from training data
In contrast to the previous approach, Seymore et al. [127] presents a
method for both learning the HMM’s topology and training the HMM
(estimating the probabilities of both the transitions between the states
and the emission of class-specific words from each state) from the data.
The approach uses a single HMM to extract a set of fields from quite-
structured texts (e.g. computer science research paper headers), taking
into account field sequence. The fields are close to each other (“dense ex-
traction”). While the selection of the model structure needs, in order to

1 The background state is connected to itself and to the prefix state which is in
turn connected to the target state; the target state is connected to itself and to
the suffix state which is connected to the background state.
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be accomplished, data labeled with information about the target-slot to
be extracted, the HMM parameters can be estimated either from labeled
data (via maximum likelihood estimates) or from unlabeled data (using the
widely known Baum-Welch training algorithm [8]). A good step towards
portability is the introduction of the concept of distantly-labeled data (la-
beled data from another domain whose labels partially overlap those from
the target domain), whose use improves classification accuracy. On the
other hand, a clear drawback is the need of large amounts of training data
in order to maximize accuracy.

- DATAMOLD
An approach strictly related to the work of Seymore et al. [127] is DATA-
MOLD [15]. The main goal of this system is to automatically segment
structured data sources provided as continuous text (addresses princi-
pally) into known elements or classes (House No., City, State, Zip code
etc.). The used model is a single HMM in which each state is associated
with one element, and hence the state that produces each word is the ele-
ment tag for that word. Several are the improvements introduced respect
to the approach in [127], regarding essentially the structure of the model,
the introduction of a taxonomy for the symbols, and the exploitation of
information in external databases to optimize the model.
The first attempt of DATAMOLD to improve the robustness of HMMs
consists in overtaking too simple HMM topologies as the classical näıve
structure. In the näıve structure, as many states (completely connected
between them) as the number of elements are considered. This simple
model is able to capture the ordering relationship amongst elements, but,
because it has just one state per element, it ignores any sequential relation-
ship amongst words in the same element. For instance, most road names
end with words like “Road”, “Street” or “Avenue”. Treating an element
as a single state does not capture this structure. Also, for country names
like “New Zealand”, both the “New” and “Zealand” will be outputs of
the same state. The other problem is that it learns only a limited kind
of distribution on the number of words per element. To face these draw-
backs, a nested HMM (inner HMM ) for each element is proposed in order
to capture its internal structure. The outer HMM captures the sequencing
relationship amongst elements, treating each inner HMM as single state.
The “overall” HMM is learnt in a hierarchical manner in two stages. In
the first stage the outer HMM is learnt. In this phase, the training data is
treated as a sequence of elements ignoring all details concerning the length
of each element and the words it contains. In the second stage, the inner
HMMs are learnt. Here, the training data for each element is the sequence
of all distinct tokens (word, delimiter, digit) in the element.
An element typically has a variable number of tokens. For instance, city-
names most frequently have one but sometimes two or more tokens. Having
a inner HMM as in Figure 2.10, such a variability can be handled by
choosing the path of length one, two or more, respectively.
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start end

Fig. 2.10. An example of inner HMM in DATAMOLD

In order to deal with sequences containing unknown tokens, a non trivial
issue in the training phase, is the choice of the symbols in the dictionaries
of the states. The usual approach typically consists in treating each word,
number or delimiter in the text as a token. However, in an address such
as “145 Sunset Blvd Los Angeles CA 90027”, it is interesting to recognize
“145” as a number and not as a word, or recognize “90027” as a five-digit
number in order to assign it the Zip code as element. To automate this
choice, DATAMOLD uses a hierarchical arrangement of the features. An
example of taxonomy is showed in Figure 2.11 where at the top most level
there is no distinction amongst symbols; at the next level they are divided
into “Numbers”, “Words”, and “Delimiters”; and so on. The right level
of generalization of symbols in the training data can affect the selection
of the correct path in the HMM, and hence it is a critical task. The level
of generalization is chosen in a bottom-up manner with a process similar
to the way the decision trees are pruned using cross-validation to avoid
overfitting.

Fig. 2.11. An example taxonomy on symbols used in DATAMOLD
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Finally, in DATAMOLD a further possible optimization of the model is
proposed. Essentially, in order to make more accurate the HMM, DATA-
MOLD exploits additional external knowledge when it is available. This
knowledge could be, for instance, in the form of a database of richer se-
mantic relationship amongst symbols of different elements.
For the address data, a hierarchical database of countries, the state in each
country, and cities in each state, can be available. In order to understand
the way this database can be exploited, let consider the usual case where
a city name is followed by either a state or a country name. Solving this
ambiguity it becomes easy: it suffices to verify in the database if a certain
state/country has a city with such a name.
In practice, such information constraints the combination of values that
are allowed in different elements, and could be useful in order to find the
right assignment of symbols to states.
To incorporate dependency information in HMMs, a variant of the Viterbi
algorithm [148] is implemented. The original formulation is modified in
order to restrict the exploration of paths that are invalid given the database
of semantic relationships amongst symbols of different elements.

- CRAM
An unsupervised approach to text segmentation is introduced in [1]. The
basic idea here is to exploit reference relations for building segmentation
models. The notion of reference relation denotes a collection of structured
tuples, that are specific to a domain of interest and exemplify clean records
for that domain. However, it is not possible to directly adapt existing su-
pervised approaches (e.g., DATAMOLD) to the “learn from reference table
only” scenario. First, because from the reference relations is unknown the
order in which the class values (or attribute values, since a relation context
is considered) would be observed in test input sequences. Second, because
data in reference tables is usually clean, whereas input data typically is
dirty.
The proposed segmentation system CRAM (Combination of Robust At-
tribute Models) consists of a two-steps process. Let assume R a reference
relation with an attribute schema {A1, . . . , An}. Each column of R is con-
sidered as a dictionary of basic values for the corresponding attribute.
In the first step, a preprocessing phase is performed for building an at-
tribute recognition model (ARM) for each attribute of the reference re-
lation schema. The generic ARMi is a HMM that allows the evaluation
of the probability with which a subsequence of tokens in an input string
belongs to the domain of the corresponding schema attribute Ai. Improve-
ments in the instantiation of ARMs are proposed both in the building of
structure and in the estimation of parameters. The topology of each ARM ,
since it is trained on “reference data”, must assure less sensitivity respect
to the order of tokens in an attribute value. To this purpose, these tokens,
and therefore the states of an ARM , are classified into three categories:
beginning, middle, and trailing positions/states. The parameter estimation
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phase of each ARM is optimized by exploiting a feature hierarchy (sim-
ilar to that in DATAMOLD) helping to recognize tokens that have not
been encountered previously. Once the ARM for each attribute value is
built, all these ARMs can be exploited to determine the best segmen-
tation of an input string at the second segmentation step. This involves,
first, to learn the total order of attributes from a batch of input strings
and, subsequently, to segment the individual input strings with respect to
the detected attribute order. More specifically, the identification of a total
attribute order requires the previous computation of pairwise precedence
probabilities. These are probabilistic estimates of precedences between all
pairs of attributes, that are provided by their corresponding ARMs. A to-
tal ordering among all of the attributes is hence discovered by choosing the
best sequence of attributes, i.e. the sequence that maximizes the product of
precedence probabilities of consecutive attributes with respect to the given
order. Finally, an exhaustive search is employed to determine the best seg-
mentation of an input string s into n token subsequences s1, . . . , sn, such
that the reconciliation of each si with the corresponding schema attribute
Asi maximizes the overall reconciliation quality

∏n
i=1{ARMsi(si)} among

all possible segmentations.
Notice that the exploitation of reference tables is a natural way of auto-
matically building training sets for the text segmentation problem. There-
fore, although declared as an unsupervised approach, this technique suf-
fers from two general weaknesses, that are inherent of supervised methods.
Foremost, a reference relation may not exist for a particular applicative
scenario. Also, whenever the overall number of tuples involved is not suffi-
ciently large, the columns of the employed relations may not be adequately
rich dictionaries of basic domain tokens. This would affect the construction
of ARMs and, hence, the overall segmentation effectiveness.

- Other approaches
Skounakis et al. [130] use hierarchical hidden Markov models (HHMMs) [51]
for IE. HHMMs combine several levels of states to describe a sequence at
different granularity levels. A two-levels HHMM is used. The top level
models phrase segments (noun, verb, and prepositional phrases) provided
by a shallow parser, the lower level models individual words (including
their POS tags) within a phrase. The Viterbi, Forward, and Backward
algorithms are adapted to ensure that the embedded word model reaches
the end state exactly at the end of a each phrase and to ensure the typing
of the phrase model (each state has a type that corresponds to the type
of the phrase segment it emits).
Context hierarchical hidden Markov models (CHHMMs) are an extended
variant that incorporate additional sentence structure information in each
phrase. The word model is extended to consider the left and right neigh-
bor of each word, generating a sequence of overlapping trigrams. To reduce
the number of possible observations, individual features (words and tags)
are combined under the assumption of conditional independence. Evalua-
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tion shows superior results for hierarchical models, especially CHHMMs,
compared with flat HMMs.

2.4.2 Maximum Entropy Models

Maximum Entropy models (MEMs) are introduced to integrate heterogeneous
and possibly overlapping information from different sources. This information
is represented in the model as binary or real valued feature functions defined
over the combined space of data points and labels. Given a training set of
labeled examples, the set of possible models is constrained to be the models
where the expected value of each feature equals the average value of that
feature in the training data. Out of this set of possible models, the principle
of Maximum Entropy dictates that the model is chosen that has the highest
entropy. The intuition behind this is that this model makes no assumptions
beyond those dictated by the empirical data, since it is the most uniform
model possible given the constraints derived from that data.

More formally, assume to model a distribution P ∈ P (P is the space
of all conditional probability distributions) over a set of events X consisting
of labeled observations drawn from the event space E = O × L, where O
is the observation space and L the label space. Moreover, suppose that a d-
dimensional feature function f : O × L → R

d that characterizes these events
is given. Taking P̃ (·) to denote the empirical distribution of the operand in
the training data, and P (·) to denote the probability of the operand assigned
by the model, the above cited constraint can be reformulated as follows:∑

o,l

P̃ (o, l)f(o, l) =
∑
o,l

P̃ (o)P (l|o)f(o, l) (2.2)

From the subset of models satisfying Equation (2.2), Maximum Entropy
requires to choose the model that is most uniform, using conditional entropy
as definition of uniformity:

HP (L|O) = −
∑
o,l

P̃ (o)P (l|o) log P (l|o)

Thus, the problem of finding the Maximum Entropy model, given the
empirical distribution P̃ (L, O) is a constrained optimization problem. Defining
C to be the set of constrained models satisfying Equation (2.2), this problem
can be formulated as:

P̂ = arg max
P∈C

HP (L|O) (2.3)

Introducing Lagrangian multipliers for each of the constraints imposed by
the features, Berger et al. [10] show that the model P̂ is the model of the
parametric form Pλ below:
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Pλ(l|o) =
1

Zλ(o)
exp

(∑
i

λifi(o, l)

)
(2.4)

where {λ1 . . . λd} are the parameters to be learned, and Zλ(o) is a normalizing
factor determined by the requirement that

∑
l Pλ(l|o) = 1.

Essentially, the parameter estimation problem for the maximum entropy
models consists in finding the λ parameters that satisfy the constrained opti-
mization problem posed in Equation (2.3). As the entropy is concave in the
parameter space, there is a single global optimum, and the different estimation
methods proposed are all iterative (hill-climbing) methods that differ only in
convergence speed and ultimate proximity to the global maximum, not in the
quality of the solution found. However, as the estimation problem can be quite
daunting computationally due to the high number of free parameters, the rate
of convergence can be of great practical value.

Traditionally, parameter estimation is done using an implementation of
Iterative Scaling, either Generalized Iterative Scaling (GIS) [40] or Improved
Iterative Scaling (IIS) [43]. Both are iterative methods that scale the proba-
bility distribution by a factor proportional to the ratio of the estimated values
of the features under the current estimated parameters to the estimated value
of the features under the empirical distribution.

Maximum Entropy Markov Models for Information Extraction

As previously discussed (see Section 2.4.1), in the HMM traditional approach
the emission probabilities are typically represented as a multinomial distribu-
tion over a discrete, finite vocabulary of words. However, in some extraction
tasks, this approach could be reductive. As a matter of fact, many tasks would
benefit from a richer representation of observations in terms of many overlap-
ping features, such as capitalization, word endings, part of speech, formatting
and so on. As an example, consider the task of segmenting the questions and
the answers of a FAQ list. The features that are indicative of the segmenta-
tion are not just the individual words themselves, but features such as the
line length, indentation or the total amount of whitespace or grammatical
features. Moreover, in the HMM traditional approach the parameters are set
in order to maximize the likelihood of the observation sequence. However, in
most text applications (including the FAQ example above), the task is to pre-
dict the state sequence given the observation sequence. In other words, the
traditional approach in a inappropriate manner uses a generative joint model
in order to solve a conditional problem in which the observations are given. In
order to address such concerns a new model called Maximum Entropy Markov
Models (MEMMs) [96] is introduced.

As viewed in Section 2.4.1, traditional hidden Markov model is given by
a finite set of states S, a set of possible observations O, and two probability
distributions: the transition probability gives the probability of going to a new
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state s ∈ S given the current state s′ ∈ S (P (s′|s)), and the emission proba-
bility gives the probability of an observation o ∈ O based on the current state
s ∈ S (P (o|s)). In the HMMs, the observation is conditionally independent
of all other variables given the state it belongs to. In contrast, the MEMMs
are governed by a single probability distribution Ps′(s|o) = P (s|s′, o) that
provides the probability of the current state s given the previous state s′, and
the current observation o.

The use of state-observation transition functions rather than the separate
transition and observation functions in HMMs, it allows to model transitions
Ps′(s|o) in terms of multiple, non-independent features of observations (e.g.,
POS tags, capitalizations, positions in the document, etc.) from which they
could benefit. To this purpose, exponential models fitted by maximum entropy
can be exploited.

The above introduction on MEMs recalled that maximum entropy is a
framework for estimating probability distribution from data. It is based on
the principle that the best model for the data is the one that is consistent
with certain constraints derived from training data, and is that which is clos-
est to the uniform distribution or, in other words, that with highest entropy.
Essentially, such constraints indicate some characteristic of the training data
that should be also present in the learned distribution, and in the MEMMs
are based on binary features. Examples of such features might be “the obser-
vation is the word apple” or “the observation is a capitalized word” or, if the
observations are whole lines of text at time, “the observation is a line of text
that has two noun phrases”.

If the applied constraints request that the expected value of each feature
in the learned distribution must be same as its average on the training obser-
vation {o1, . . . , om} (corresponding to the state sequence {s1, . . . , sm}), then
the probability distribution Ps′ (s|o) has maximum entropy and an exponential
form as in Equation (2.4).

The Generalized Iterative Scaling algorithm is used to train the λ param-
eters of the model, and the most probable state sequence, given an obser-
vation sequence, is found using a variation of Viterbi algorithm adjusted for
MEMMs. Instead, a variation of the Baum-Welch algorithm can be used to
estimate missing states during training, so the model can be trained from
partially labeled or even unlabeled documents.

Tested on a text segmentation task, MEMM has showed to perform sig-
nificantly better than both classical HMMs and a stateless maximum entropy
model. However, MEMMs present also some drawbacks.

The main weakness of MEMMs is the label bias problem [88]: the probabil-
ity mass arriving at a state must be distributed among the successor states,
thus outgoing transitions from a state compete only against each other, not
against other transitions. This results in a bias in favor of states with fewer
outgoing transitions. The Conditional Random Fields (CRFs) [88, 97, 95]
overcome this problem.
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A classification-based approach

Chieu and Ng [29] make use of the maximum entropy framework, like Mc-
Callum et al. [96], but instead of basing their approach on Markov models,
they use a classification-based approach. A set of features are defined for each
domain of application, from which the probability distribution is estimated
that both satisfies the constraints between features and observations in the
training corpus and makes as few additional assumptions as possible (accord-
ing to the maximum entropy principle). They develop two techniques, one for
single-slot information extraction on semi-structured domains and the other
for multi-slot extraction on free text. The first one is applied to the Seminar
Announcements domain. A trained classifier distributes each word into one of
the possible slots to be filled (classes). The more complex multi-slot extrac-
tion task is applied to the Management Succession domain (using the same
training and test data as WHISK ). A series of classifiers is used to identify
relations between slot fillers within the same template. The parameters of the
model are estimated using the GIS algorithm.

2.4.3 Conditional Random Fields

Conditional random fields (CRFs) [88] are another type of conditional-
probability finite state model for labeling and segmenting sequential data.
CRFs represent a sequence modeling framework that has all the advantages
of MEMMs but also solves the label bias problem.

The main difference between CRFs and MEMMs is that a MEMM uses
per-state exponential models for the conditional probabilities of next states
given the current state, while a CRF has a single exponential model for the
joint probability of the entire sequence of labels given the observation se-
quence.

Conditional Random Fields for Information Extraction

Conditional Random Fields are undirected graphical models used to calculate
the conditional probability of values on designated output nodes, given values
assigned to other designated input nodes.

In the special case in which the designated output nodes of the graphical
model are linked by edges in a linear chain, CRFs make a first-order Markov
independence assumption among output nodes, and thus correspond to finite
state machines (FSMs). In this case, CRFs can be roughly understood as
conditionally-trained hidden Markov models. CRFs of this type are a globally-
normalized extension to MEMMs that avoid the label-bias problem, and are
particularly suitable for sequence labeling.

Let o = {o1, o2, . . . , oT } be an observed input sequence. Let S be a
set of FSM states, each of which is associated with a label l ∈ L. Let
s = {s1, s2, . . . , sT } be a state sequence. A linear-chain CRF with parameters
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Λ = {λ, . . .} defines the conditional probability of a state sequence, given an
input sequence as:

PΛ(s|o) =
1

Zo
exp

(
T∑

t=1

∑
k

λkfk(st−1, st,o, t)

)
(2.5)

where Zo is a normalization factor over all state sequences, fk(st−1, st,o, t)
is a feature function which is often binary-valued (but can be real-valued),
and λk is a learned weight associated with feature fk. A feature function, in a
research paper extraction task, for instance, can be defined to have value 0 in
most cases, and have value 1 if and only if st−1 is state #1 (which may have
label TITLE), and st is state #2 (which may have label AUTHOR), and the
observation at position t in o is a word appearing in a lexicon of people’s first
names. Large positive values for λk indicate a preference for such an event,
while large negative values make the event unlikely.

CRFs define the conditional probability of a label sequence based on total
probability over the state sequences,

PΛ(l|o) =
∑

s:l(s)=l

PΛ(s|o)

where l(s) is the sequence of labels corresponding to the labels of the states
in sequence s.

Note that, the normalization factor Zo (also known in statistical physics as
the partition function) is the sum of the “scores” of all possible state sequences:

Zo =
∑
s∈ST

exp

(
T∑

t=1

∑
k

λkfk(st−1, st,o, t)

)

and that the number of state sequences is exponential in the input sequence
length, T . In arbitrarily-structured CRFs, calculating the partition function
in closed form is intractable, and approximation methods such as Gibbs sam-
pling, or loopy belief propagation must be used. In linear-chain-structured
CRFs (in use here for sequence modeling), the partition function can be cal-
culated efficiently by dynamic programming.

The Λ = {λ, . . .} weights of a CRF can be estimated by maximum like-
lihood, maximizing the conditional probability of a set of label sequences,
each given their corresponding input sequences. Maximum likelihood training
chooses parameter values such that the logarithm of the likelihood, known as
log-likelihood, is maximized. For a CRF, the log-likelihood L of a training set
D = {(o, l)(1), . . . , (o, l)(N)} is given by:

L =
N∑

i=1

log PΛ(l(i)|o(i))
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It is worth noticing that CRFs share many of the advantageous properties
of standard maximum entropy models, including their convex likelihood func-
tion, which guarantees that the learning procedure converges to the global
maximum. It is not, however, straightforward to find it quickly.

Parameter estimation in CRFs requires an iterative procedure, and some
methods require fewer iterations than others. Although the original presen-
tation of CRFs [88], described training procedures based on iterative scaling
(GIS or IIS), it is significantly faster to train CRFs and other “maximum
entropy”- style exponential models by a quasi-Newton method, such as L-
BFGS [93, 128, 21] . This method approximates the second-derivative of the
likelihood by keeping a running, finite window of previous first-derivatives.
Sha and Pereira [128] show that training CRFs by L-BFGS is several orders
of magnitude faster than iterative scaling.

To avoid overfitting, log-likelihood is often penalized by some prior distri-
bution over the Λ parameters. Three prior distribution are used in literature:
Gaussian prior [28], exponential prior [63], and hyperbolic-L1 prior [115].

MALLET: an implementation of CRFs

CRFs are widely used in information extraction task because they offer a
unique combination of properties: discriminatively trained models for sequence
segmentation and labeling; combination of arbitrary, overlapping and agglom-
erative observation features; efficient training and decoding based on dynamic
programming, and parameter estimation guaranteed to find the global opti-
mum.

The main disadvantage of CRFs is the computational expense of training.
Although CRF training is feasible for many real-world problems, the need to
perform inference repeatedly during training becomes a computational burden
when: there are a large number of training instances, the graphical structure
is complex, there are latent variables, or the output variables have many
outcomes.

Although some drawbacks, CRFs are the state-of-the-art approach in text
segmentation task, and thus they represent the reference opponent for each
segmentation system. In Chapter 3, a classification-based approach to text
segmentation is proposed and its effectiveness is tested (not just) against a
Java implementation of CRFs named MALLET [95].

Actually, MALLET is an integrated collection of Java code useful for sta-
tistical natural language processing, document classification, clustering, infor-
mation extraction, and other machine learning applications to text. In partic-
ular, Simple Tagger is a command line interface to the MALLET Conditional
Random Field class.

The use of Simple Tagger is really easy. The input file should be in the
format as in Figure 2.12 where each line represents one token, and has the
format [feature-1, feature-2,...,feature-n, label ].
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Bill CAPITALIZED noun
slept non-noun
here LOWERCASE STOPWORD non-noun

Fig. 2.12. An excerpt of input file in MALLET

Then, a CRF using Simple Tagger can be trained. This produces a trained
CRF in the file “nouncrf” that can be finally used on a non-labeled test file
in order to obtain the right segmentation.

2.5 Conclusions

In this chapter, an extensive (but not exhaustive) survey on techniques used
for the Schema Reconciliation problem when it deals with text-related sce-
narios are provided. In this case, the Schema Reconciliation problem can be
conducted to the wide area of Information Extraction.

As previously viewed, Information Extraction approaches can broadly sep-
arate in two large categories: rules-based and stochastic approaches. Moreover,
the rules can be hand-coded or automatically learned from the documents.

The need of adaptive approaches originates from the endeavor to reduce
the amount of hand-coded domain knowledge. However, this approaches still
require human contribution in various forms depending on their class. Human
knowledge is utilized as explicit knowledge sources, examples specifying what
to extract by identifying relevant content in training text, or in form of hu-
man supervision interacting directly with the system during correction of the
extraction proposals. While statistical and machine learning approaches rely
on the latter, hand-coded approaches focus mainly on the former. Arguably,
the annotation of texts is often less costly than the explicit formalization of
knowledge, which makes statistical or machine learning approaches more at-
tractive for adaptation to domains where no explicit knowledge sources are
available. However, on the other hand, the hand-coded approaches allow easier
re-use of existing formalizations.

Basically, rule-based approaches try to exploit the regularity in expres-
sions of certain information to find common linguistic patterns that match
these expressions. As discussed, the majority of approaches use rule learning
techniques to acquire the patterns.

Statistical approaches reduce the IE task to the prediction problem. In
the simple case, every text token is classified as some attribute of the target
structure or not relevant. Thereby, they utilize training data very effectively
being able to learn the correct prediction even from quite limited numbers of
examples.
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Obviously, it is difficult to determine which technique is best suited for
any IE task and domain. There are many parameters that affect this decision,
and the choice must be made with respect to the task to accomplish.





3

A Supervised Approach to Text Segmentation

3.1 Introduction

The extraction of “interesting information” from unstructured or loosely
structured text is an actual and challenging problem. Indeed, nowadays large
quantities of available data are stored in textual format. In many cases, this
information has a latent schema consisting of a set of attributes, that would
in principle allow to fit such textual data into some field structure, so that to
exploit the mature relational technology for more effective information man-
agement. Yet in Chapter 2, an extensive review of the main techniques used
in several information extraction tasks are showed.

In this chapter we propose RecBoost, a novel approach to that particular
sub-task of the wide IE area named Text Segmentation. RecBoost adopts clas-
sification as an effective mechanism for segmenting free text into tuples, and
further reconciling them into a common attributes structure. More in detail,
RecBoost works by performing two macro-steps, namely preprocessing and
reconciliation. The former step is primarily thought for formatting the indi-
vidual lines of text, with potentially-different encoding format, into a uniform
representation. Domain-specific ontologies and dictionaries are then exploited
to associate each token with a label denoting its ontological or syntactic cate-
gory. The latter step (reconciliation phase) is eventually accomplished in terms
of progressive classification, i.e., a multi-stage classification scheme where, at
each intermediate stage, a classifier is learnt from the previous classification
outcome, thus being specifically targeted at handling with those textual frag-
ments not reconciled yet.

The main contribution of the proposed approach is the introduction of
a methodology realizing a strict cooperation between ontology-based gen-
eralization and rule-based classification. A key feature is the introduction
of progressive classification, which iteratively enriches the available ontology,
thus allowing to incrementally achieve accurate reconciliation. This ultimately
differentiates RecBoost from previous works in the current literature, which
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adopt schemes with fixed background knowledge, and hence hardly adapt to
capture the multi-faceted peculiarities of the data under investigation.

Still, the approach is further strengthened by the adoption of local rule-
based classification models, i.e., patterns of term co-occurrence associated with
specific class labels. Local models work practically well in combination with
progressive classification, since they only handle the local specificities they are
able to cope with, and postpone the unknown cases to subsequent classification
stages. By contrast, traditional approaches from the literature exploit global
classification models, which are more prone to overfitting when dealing with
the several contrasting specificities occurring across individual sequences.

The outline of the chapter is as follows. Section 3.2 introduces the basic
notation for the problem we face; next, it continues by covering details on the
process adopted to learn a generic rule-based classifier and, then, proceeds
to examine the RecBoost methodology. The architecture of RecBoost is dis-
cussed in Section 3.3. The overall RecBoost methodology is then elucidated in
Section 3.4. Section 3.5 presents the results of an intensive experimental eval-
uation. Section 3.6 exposes a qualitative comparison with some approaches
from the literature that are closely related to our study. Finally, Section 3.7
draws some conclusions and highlights a number of interesting directions, that
are worth further research.

3.2 Text Segmentation with RecBoost

First of all, in order to formalize the RecBoost approach, let assume the fol-
lowing basic definitions. An item domain M = {a1, a2, . . . , aM} is a collection
of items. Let s be a sequence a1, . . . , am where ai ∈ M. The set of all possible
sequences is denoted by M∗. In general, an item ak belongs to a sequence s
(denoted by ak∈s) if s = a1, a2, . . . , ak, . . . , an. Moreover, we denote the sub-
sequence a1, a2, . . . , ak−1 as pres(ak), and the subsequence ak+1, ak+2, . . . , an

as posts(ak).
A descriptor R = {A1, . . . , An} is a set of attribute labels. A descriptor cor-

responds to a database schema, with the simplification that, for each attribute
label Ai, domain information is omitted. Thus, our specific problem can be
viewed as follows: given a descriptor (database relation) R = {A1, . . . , An},
and a data set of sequences (free text) S = {s1, . . . , sm}, we want to segment
each sequence si into subsequences s1

i , . . . , s
k
i , such that each token a∈sh

i is
associated with the proper attribute Aj .

For instance, we may want to fit an unstructured collection of personal
demographic information representing names, addresses, zip codes and cities,
in a proper schema with specific fields for each category, as exemplified in
Figure 3.1.

Text reconciliation can be profitably employed in several contexts. In
Chapter 2, some of such contexts were considered: the harmonization of unfor-
matted postal addresses collected from different data source, the processing
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s1 Harry Hacker Northern Boulevard 3001 London

s2 C Cracker Salisbury Hill Flushing

s3 Tony Tester Brooklyn Johnson Avenue 2

(a)

NAME ADDRESS ZIP CODE CITY

s1 Harry Hacker Northern Boulevard 3001 London

s2 C Cracker Salisbury Hill Flushing

s3 Tony Tester Johnson Avenue 2 Brooklyn

(b)

Fig. 3.1. (a) Unstructured data. (b) Reconciled data.

of bibliographic records, collections of information about products, medical
sheets, and so forth.

RecBoost represents an approach for contextualized reconciliation, that
moves away from probabilistic modeling. The idea is to first foresee a segmen-
tation of textual sequences into tokens and, then, to perform a token-by-token
classification, that involves the analysis of the surrounding context. This ba-
sic task is at the heart of progressive classification, i.e., a strategy for text
reconciliation, consisting in the exploitation of multiple, consecutive stages of
classification. At each intermediate stage, a classifier learns from the outcome
of its antecedent how to deal with those tokens, that were not reconciled at
the end of the previous stage. This ensures reconciliation effectiveness even
on unknown terms.

3.2.1 The RecBoost Methodology

The reconciliation of a set S = {s1, . . . , sm} of sequences with an attribute
schema R = {A1, . . . , An} consists in the association of each token a within
the generic sequence s ∈ S with an appropriate attribute of R.

RecBoost pursues text reconciliation via term generalization. Precisely,
two types of generalizations are involved, namely syntactic/ontological analy-
sis, and contextual generalization. The former aims at labelling textual tokens
with their syntactic or ontological categories. The latter employs knowledge
of the relationships among textual tokens, ontological categories and schema
attributes, for assigning each token to a proper schema attribute.

As an example, a token a composed by multiple consecutive digits may
be ontologically denoted as a number. Subsequently, the contextual presence
on the same sequence containing a of two further ontological labels, such as
city and street (respectively following and preceding a), may determine the
reconciliation of a with an attribute address of the schema descriptor.
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Syntactic and Ontological Analysis

RecBoost exploits a user-defined domain ontology, in the style of [1, 15], in
order to preprocess sequences within S. In practice, a domain ontology is
specified as G = 〈L, �,A〉, where L is a set of categories, � is a precedence
relation defined on L, and A is a set of rules whose structure is sketched below:

if Condition
then Action

Intuitively, L represents a set of ontological concepts, which can be exploited in
order to generalize tokens within a sequence. Such concepts are structured in a
concept hierarchy, specified by the � relation. Figure 3.2 shows an exhaustive
set of concepts and their hierarchical relationships.

Fig. 3.2. A concept hierarchy for personal information in a banking scenario

Rules in A are useful to specify background knowledge about the domain
under consideration, and are meant to provide a transformation of a set of
tokens appearing in a sequence. It is worth noticing that, typically, the prior
definition of a number of rules allows to properly deal with several tokens in
a wide variety of applicative settings, thus not requiring a substantial human
effort.

More specifically, Condition specifies a pattern-matching expression de-
fined over the tokens of a sequence, and Action specifies some actions to take
on such tokens. We here focus on two main actions, shown in the following
illustration:

r1:
if a is a four-digits token
then replace a with ZIP-CODE

r2:
if ai is a four-digits token

and ai+1 is a token containing digits
then merge ai and ai+1 into a token a

Relabelling actions, such as r1 substitute a token (or a set of tokens) with a
concept in L. Restructuring actions, such as r2, operate on a set of tokens
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by applying basic transformation operations (such as deleting, merging or
segmenting).

We also assume that some rules can exploit user-defined dictionaries. As
an example, rule r3 specifies that each token appearing in the set Dictionary
of all known toponyms (which comprise, e.g., street, road, blvd, etc.) can
be generalized by the category TOPONYM in L.

r3:
if a ∈ Dictionary
then replace a with TOPONYM

By exploiting G, syntactic generalization performs two steps. First, it trans-
forms the original sequences in S = {s1, . . . , sn} into a new set S′ =
{s′1, . . . , s′n}, where each sequence s′i is obtained from si by applying the rules
in A1. Second, the available tokens in each sequence are further generalized
by an ad-hoc exploitation of the hierarchy described by the � relation. The
exploitation is a direct result of a cooperation with contextual analysis, which
reconciles tokens in S′ as described in the next subsubsection.

Contextual Analysis

This step is meant to associate tokens in S with their corresponding attributes
in R. We approach the problem from a supervised learning perspective. For-
mally, we assume that there exists a partial function λ : M∗ �→ M �→ R
that, for each sequence s ∈ M∗, labels a token a into a schema attribute Aj ,
namely λs(a) = Aj ∈ R. Hence, the problem can be stated as learning λ from
a training set T such that, for each sequence s ∈ T and for each token ai ∈ s,
the label λs(ai) is known.

In order to correctly classify each token ai∈s, we exploit information about
its context. The “context” of a generic token ai ∈ s, is the set of all the items
preceding and following ai in s. Thus, we hold the context of ai introducing
the notation:

features(ai) = 〈pres(ai), ai , posts(ai)〉

1 Notice that multiple matching preconditions can hold for the same set of tokens.
This potential ambiguity is solved via a user-defined order over the rules in A:
when multiple rules can be applied, the first rule is chosen, and the others are
ignored. In the above example, both rules r1 and r2 can be potentially applied
to a sequence of digits. However, a token containing 4 digits can be interpreted
as a zip code if and only if it is not followed by a new number (in which case,
the former token has to be interpreted as an area code within a phone number).
Thus, in order to disambiguate rule selection, r2 is given a precedence on r1, so
that to initially favor the attempt at generalizing longer digit sequences.
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The set T = {〈features(a), λs(a)〉|s ∈ T, a∈s} represents the training set
for our classification problem.

The idea beyond contextual analysis is to examine the context features(a)
of each token a within any sequence s, in order to learn meaningful asso-
ciations among groups of tokens of S. These associations can be then ex-
ploited to learn a rule-based classifier, that associates each individual token
in S with an attribute in R. In practice, our objective is to build a classifier
C : (M∪L∪ R)∗ �→ M �→ R, specified by rules such as the one sketched
below:

if Condition
then λs(a)=Class

Here, a and s represent, respectively, token and sequence variables. More-
over, Condition represents a conjunction of terms, and Class represents an
attribute in R. Terms in Condition can be specified in three different forms:
either as a = v, v ∈ pres(a) or v ∈ posts(a), where v is any constant in
M∪L ∪ R.

In the process of distilling a rule-based classifier from a training set T , a
holdout approach is adopted to partition T into a validation set V and an
actual training set D = T − V . The goal is learning a classifier from D that
has highest accuracy on V . In principle, any rule-based classifier could be used
here. However, we found that classification based on association rules is more
effective in this setting than, e.g., traditional algorithms based on decision-
tree learning. The intuition behind the above statement is that association
rules are better suited to detect local patterns which hold “locally” on small
subsets of D. This is especially true when D is large, and contains many con-
trasting specificities across individual sequences. By contrast, decision trees
represent global models, which are hardly able to capture such specificities
without incurring into the overfitting phenomenon. In addition, the intrinsic
unstructured nature of the feature space to analyze does not allow an immedi-
ate application of decision-tree learning techniques, whereas association rule
mining techniques naturally fit the domains under consideration.

A variant of the Apriori algorithm [136] is exploited to extract from the
explicit representation of token contexts, D = {〈features(a), A〉|s ∈ D, a ∈
s, A ∈ R}, a set of association rules that meet pre-specified requirements on
their support and confidence values and whose consequents are narrowed to
individual schema attributes. A classifier can hence be built on the basis of
such discovered rules, by selecting the most promising subset, i.e, the subset of
rules which guarantees the maximal accuracy. To this purpose, we adopted the
CBA-CB method [92], which allows an effective heuristic search for the most
accurate association rules. Succinctly, its basic idea is to sort the extracted
associations by exploiting a precedence operator ≺. Given any two rules ri

and rj , ri is said to have a higher precedence than rj , which is denoted by
ri ≺ rj , if (i) the confidence of ri is greater than that of rj , or (ii) their
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confidences are the same, but the support of ri is greater than that of rj , or
(iii) both confidences and supports are the same, but ri is shorter than rj .
Hence, a classifier can be formed by choosing a set of high precedence rules
such that:

1. each case in the training set D is covered by the rule with the highest
precedence among those that can actually cover the case.

2. every rule in the classifier correctly classifies at least one case in D, when
it is chosen.

The resulting classifier can be modelled as 〈r1, r2, . . . , rn〉, where ri ∈ D,
ra ≺ rb if b > a. While considering an unseen case of D, the first rule that
covers the case also classifies it. Clearly, if no rule applies to a given case, the
case is unclassified.

We revised the scheme of [92] by implementing a post-processing strategy,
which aims at (1) further improving the classification accuracy of the discov-
ered rules, and at (2) reducing the complexity of the discovered rules. The
postprocessing is mainly composed by attribute and rule pruning. The idea
behind attribute pruning consists in removing items from classification rules,
whenever this does not worsen the error rate of the resulting classifier. The
validation set V is exploited to assess classification accuracy.

Precisely, let r be a generic classification rule containing at least two terms
in the antecedent. Also, assume that s denotes a generic sequence in V and
that x represents a token within s. The error rx of rule r on x is a random
variable:

rx =
{

1 if r misclassifies x
0 otherwise

Hence, the overall error of r on V can be defined as follows:

E(r) =
1

nV

∑
x,s/x∈s,s∈V

rx

where nV indicates the overall number of tokens within V . A new rule r′ can
now be generated by removing from the antecedent of r any of its terms. We
replace r by r′ if two conditions hold, namely E(r′) < E(r) and the discrep-
ancy E(r) − E(r)′ is statistically relevant. To verify this latter condition, we
exploit the fact that for nV large, the distribution of E(r) approaches the nor-
mal distribution. Hence, we compute a τ% confidence interval [α, β], whose
lower and upper bounds are respectively given by:

α = E(r) − cτ

√
E(r)[1 − E(r)]

nV

and
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β = E(r) + cτ

√
E(r)[1 − E(r)]

nV

where, constant cτ depends on the confidence threshold τ . The above interval
represents an estimate for the actual error of rule r. Finally, we retain r′

instead of r, if it holds that E(r′) < α. In such a case, we analogously proceed
to attempt at pruning further items from the antecedent of r′. Otherwise, we
reject r′.

Rule pruning instead aims at reducing the number of rules in a classifier.
As in the case of attribute pruning, the idea consists in removing rules from a
classifier, whenever this does not worsen the accuracy of the resulting classifier.

To this purpose, all rules in a classifier are individually evaluated on the
basis of their precedence order. A generic rule r is removed, if one of the
following conditions holds:

- r does not cover a minimum number of cases in V .
- the accuracy of r on V is below a minimum threshold.
- the removal of r from the classifier increases its overall accuracy on V .

3.3 RecBoost Anatomy

Association rules for classification allow to tune the underlying classification
model to a local sensitivity. However, in principle their adoption can yield a
high number of unclassified tokens, i.e., tokens for which no rule precondition
holds. In a reconciliation scenario, this is due to the presence of unknown
or rare tokens, as well as errors in the text to segment. The adoption of
a concept hierarchy mitigates such a drawback and, indeed, it has already
been adopted in traditional approaches based on HMM [1, 15]. The novelty
in the RecBoost reconciliation methodology relies on a finer cooperation be-
tween synthactic/ontological analysis and contextual analysis. The reiteration
of the process of transforming tokens and learning a rule-based classifier allows
progressive classification, i.e., the adoption of multiple stages of classification
for more effective text reconciliation. Precisely, a pipeline C = {C1, . . . , Ck}
of rule-based classifiers is exploited to this purpose. At the generic step i,
i = 2, . . . , k, a classifier Ci is specifically learnt to classify all those tokens,
that were not reconciled at the end of step i − 1. The length k of the classi-
fication pipeline is chosen so that to achieve accurate and exhaustive classi-
fication. Conceptually, this requires to minimize the overall number of both
misclassified and unclassified tokens. In practice, a further classification stage
is added to P whenever such values do not meet application-specific require-
ments, such as in the case where the misclassification rate is acceptable, but
the unclassification rate is not satisfactory.

The generic classifier Ci can be formally described as a partial mapping
Ci : (M∪L ∪ R)∗ �→ M �→ R, and its construction relies on a specific training
set Ti, that is obtained from Ti−1 by adding domain information provided by
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Ci−1. Given any sequence s ∈ Ti−1, Ci is learnt from the evaluation of the set
Xs of unknown tokens, i.e., the set of those tokens in s, that are not covered
by any rule of Ci−1. This is accomplished by enriching the domain information
in G with a new set of rules directly extracted from the set of classification
rules in Ci−1. Specifically, each classification rule r ∈ Ci−1 such as the one
below:

if Condition
then λs(a) =Class

is transformed into a labelling rule r′, having the following structure:

if Condition
then replace a with Class

The new rule r′ is then added to the set A of rules available for syntactic
analysis. Then, syntactic analysis is applied to each sequence s in Ti−1, and
the resulting transformed sequences are collected in Ti. A new training set Ti is
then generated by collecting, for each sequence s ∈ Ti and each token a ∈ Xs,
the tuples 〈features(a), λs(a)〉. Notice that there is a direct correspondence
between the context features(a) computed at step i and the context computed
at step i − 1. Indeed, the new context features(a) follows from the context of
a within Ti−1 by replacing each token b 
∈ Xs of s with its corresponding
attribute Ci−1(b).

The above detailed methodology is supported by three main components,
namely a preprocessor (tokenizer), a classifier learner and a postprocessor.
The components cooperate both in the training and in the classification
phases, as detailed in Figure 3.3. In the following, we explain the role played
by each of the aforementioned modules.

3.3.1 Preprocessor

A cleaning step is initially performed by this component, to the purpose of en-
coding the initial data sequences of a free text S into a uniform representation.
This phase involves typical text-processing operations, such as the removal of
stop-words, extra blank spaces, superfluous hyphens and so forth. The pre-
processor then proceeds to split free text into tokens. The main goal of this
phase is to recognize domain-dependent symbol-aggregates (e.g. acronyms,
telephone numbers, phrasal construction, and so on) as single tokens. As an
example, aggregates such as ‘I B M ’, ‘G. m. b. H.’ or ‘as well as ’ are more
significant as a whole, rather than as sequences of characters in the text.
The identification of symbol aggregates as well as domain/specific cleaning
steps are accomplished by using domain-specific transformation rules suitably
defined in G.
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(a)

(b)

Fig. 3.3. Training (a) and Classification (b) phases in the RecBoost methodology.

3.3.2 Classifier Learner

The classifier learner is responsible for producing an optimal set of classifi-
cation rules, as shown in Figure 3.3(a). It consists of four main elements: a
generalizer, an association rule miner, a filter for classification rules and a
classifier pruner. In particular, the generalizer performs ontological general-
ization, by exploiting the labelling rules and the � relationship defined in G.
Its role is mainly to enable the discovery of accurate association/classification
rules, by providing an adequate degree of generalization among the data. To
accomplish this task, the generalizer employs the labelling rules in A. Next,
for each label replacing a token somewhere in a textual sequence, the related
concept hierarchy is inspected and the textual sequence is extended to also
include the ancestors of the specific label. The latter operation is performed
by the association rule miner, that extracts generalized association rules from
the above extended sequences. The classification rules filtered by the classifi-
cation rules filter, which in principle could contain several redundancies (due
to the exploitation of the hierarchy in the association mining step), are fur-
ther postprocessed by the classifier pruner. The latter attempts to reduce the
overall size of the discovered rules by exploiting the aforementioned attribute
and rule pruning techniques.
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3.3.3 Postprocessor

The postprocessor rebuilds the sequences reconciled by a rule-based classi-
fier, at any stage of progressive classification, by fitting them into a relational
structure with schema R, as shown in Figure 3.3(b). This is accomplished by
interpreting each (partially) reconciled sequence as a structured tuple, and or-
ganizing the tokens that have been so far reconciled as values of corresponding
schema attributes.

Postprocessing enables progressive reconciliation: at any stage, a classifier
is specifically learnt for dealing with those sequence tokens, that were not rec-
onciliated at the end of the previous stage. The postprocessor is also exploited
during the training phase, as shown in Figure 3.3, to yield the i-th training set
Ti, by generalizing the tokens in each sequence s ∈ Ti−1 via the application
of the rules in Ci−1.

3.4 An Illustrative Example

Here, we elucidate the overall RecBoost methodology, by exemplifying the rec-
onciliation of a collection of personal demographic information, shown below,
in compliance with the attribute descriptor R = {NAME, ADDRESS, ZIP, CITY}.

s1 Harry Hacker 348.2598781 ”Northern - Boulevard” (3001) London

s2 C. Cracker ... Salisbury Hill, Flushing

s3 Tony Tester Johnson Avenue 2 -Brooklyn- 323-45-4532

In particular, we assume to exploit a dictionary D, containing all known to-
ponyms, and a domain-specific ontology G = 〈L, �,A〉, such that A consists
of the following ontological rules:

r1:
if a is a four-digits token
then replace a with ZIP-CODE

r2:
if a is a token of more that four digits
then replace a with PHONE-NUMBER

r3:
if a is a token of type ddd − dd − dddd,
and d is a digit
then replace a with SSN

r4:
if a ∈ Dictionary
then replace a with TOPONYM

The example data collection is corrupted by noise, i.e. by the absence of a uni-
form representation for all of its constituting sequences. Indeed, a comparative
analysis of their formatting encodings reveals that:
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- there is a telephone number in sequence s1 that has to be discarded, since
it is not expected by the descriptor R.

- character ‘-’ is employed in sequence s1 as a separator between the words
Northern and Boulevard, that are in turn delimited by double quotes.

- brackets are exploited to separate the zip-code information in sequence s1.
- three non-relevant dots precede the address information in sequence s2.
- two hyphens in sequence s3 demarcate the word Brooklyn.
- there is a social security number (SSN) in sequence s3 that has to be

discarded, since it is not expected by the descriptor R.

The identification of a uniform representation format for all of the indi-
vidual sequences in the textual database enables an effective segmentation of
such sequences into tokens and, hence, a reliable reconciliation. A preprocess-
ing step is performed to this purpose.

3.4.1 Preprocessing

The input textual sequences are suitably tokenized. This is accomplished by
exploiting the presence in the original text of domain-specific delimiters such
as single or double quotes, hyphens, dots, brackets and blanks. After segmen-
tation, such delimiters become spurious characters, i.e. play no further role in
the reconciliation process, and are hence ignored.

The output of this step, with respect to the hypothesized data, is repre-
sented below:

s1 Harry Hacker 3482598781 Northern Boulevard 3001 London

s2 C Cracker Salisbury Hill Flushing

s3 Tony Tester Johnson Avenue 2 Brooklyn 323-45-4532

The fragmented text is now subjected to a pipeline of rule-based classifiers,
that reconciliate groups of tokens across the individual sequences s1, s2, s3

with the attributes in R.
For the sake of convenience, we assume that two stages of classification

allow the accomplishment of an actual reconciliation. Furthermore, since pro-
gressive classification involves a similar processing for each sequence in the
tokenized text, we proceed to exemplify the sole reconciliation of s1.

3.4.2 Progressive Classification

Progressive classification divides into syntactic and contextual analysis.
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Syntactic Analysis

This step performs token generalization. Here, the exploitation of the above
ontological rules allow the generalization of a number of tokens in s1 as shown
below, where labels denoting ontological categories are enclosed between stars.

Harry Hacker *PHONE* *TOPONYM* Boulevard *ZIP* London

To this point, s1 undergoes two levels of contextual analysis, where at each
level, a suitable set of rules is applied.

First-level Classifier

A classifier is generally distilled from the analysis of the relationships among
textual tokens, ontological categories and, also, attributes in the context of
each token within the generalized sequences at hand. In particular, we suppose
that the classifier resulting from the learning phase includes the classification
rules listed below:

r5:
if pres(a) = ∅ ∧

{∗TOPONY M∗, ∗ZIP∗} ∈ posts(a)
then λ(a) = NAME

r6:
if a = ∗TOPONY M∗
then λ(a) = ADDRESS

r7:
if {∗TOPONY M∗} ∈ pres(a) ∧

{∗ZIP∗} ∈ posts(a)
then λ(a) = ADDRESS

r8:
if a = ∗ZIP∗
then λ(a) = ZIP

r9:
if {∗TOPONY M∗, ∗ZIP∗} ∈ pres(a) ∧

posts(a) = ∅
then λ(a) = CITY

The first-level classification hence starts by classifying the tokens of s1,
according to their features. In particular, being s1 composed of six to-
kens, a first-level classifier is applied against the six context representations
features1

(a) = 〈pres1
(a), a , posts1

(a)〉, shown below, where a is any token of
s1.
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PRE WORD POST

- Harry Hacker TOPONYM Boulevard ZIP London

Harry Hacker TOPONYM Boulevard ZIP London

Harry Hacker TOPONYM Boulevard ZIP London

Harry Hacker TOPONYM Boulevard ZIP London

Harry Hacker TOPONYM Boulevard ZIP London

Harry Hacker TOPONYM Boulevard ZIP London -

Notice that, at this stage of contextual analysis, s1 does not include at-
tribute labels. Hence, reconciliation takes into account relationships among
ontological labels and textual tokens. These enable the reconciliation of the
entities *TOPONYM*, Boulevard, London and *ZIP*, but fail in dealing with *PHONE*

and Hacker. In particular, this latter token is not covered by the rule that
classified Harry, since pres1

(Hacker) = {Harry} 
= ∅. At the end of this step of
classification, sequence s1 assumes the following form:

[NAME] Hacker *PHONE* [ADDRESS] [ADDRESS] [ZIP] [CITY]

where reconciliated tokens are replaced by their corresponding attribute la-
bels, enclosed between square brackets.

Second-level classifier

Contextual analysis is reiterated to reconciliate those tokens that were not
associated with a schema attribute at the end of the previous step. Again, we
assume that a second-level classifier is learnt from the training data, and it is
composed by the sole rule:

r10:
if {NAME} ∈ pres(a) ∧

{ADDRESS,ZIP} ∈ posts(a)
then λ(a) = NAME

There are only two tokens in s1 that were not associated with a schema
attribute and, hence, the above classifier is applied against two context rep-
resentations:

PRE WORD POST

[NAME] Hacker *PHONE* [ADDRESS] [ADDRESS] [ZIP] [CITY]

[NAME] Hacker *PHONE* [ADDRESS] [ADDRESS] [ZIP] [CITY]

As a result, the classifier further generalizes s1 into the following sequence:

[NAME] [NAME] *PHONE* [ADDRESS] [ADDRESS] [ZIP] [CITY]

Notice that *PHONE* is still not reconciliated, since no classification rule applies
to it.
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3.4.3 Postprocessor

The postprocessor rebuilds the original sequence s1, by fitting its corre-
sponding tokens in a suitable structure defined by the descriptor R =
{NAME, ADDRESS, ZIP, CITY}:

NAME ADDRESS ZIP CITY

Harry Hacker Northern Boulevard 3001 LONDON

Notice that the structure above, exactly complies with R. However, in some
cases, it may be useful to add an extra column NOISE, to the purpose of
tracing all the original tokens. This would correspond to the following tuple:

NAME ADDRESS ZIP CITY (NOISE)

Harry Hacker Northern Boulevard 3001 London 3482598781

3.5 Experimental Evaluation

In this section, we describe the experimental evaluation we performed on
the proposed methodology. Experiments were mainly aimed at evaluating the
effectiveness of the proposed methodology in segmenting strings. To this pur-
pose, we accomplish the following tasks:

1. We evaluate the effectiveness of the basic rule-based classifier systems pro-
posed in Section 3.2.1. Since the classification methodology represents the
basic infrastructure upon which the RecBoost system bases, it is impor-
tant to assess its effectiveness in the domain at hand. In particular, we
evaluate two main aspects: (i) its dependency from the parameters which
are needed to tune the system, and (ii) the effectiveness of the pruning
strategy introduced.

2. Next, we evaluate classification accuracy obtained by the progressive clas-
sification methodology nested in the RecBoost approach, as described in
Section 3.3. Our aim here is to investigate in which respect the envisaged
pipeline boosts the performance of a basic classifier. We also compare our
results with other state-of-the art text segmentation systems.

3.5.1 Experimental setup

In order to accomplish the above tasks, we considered the following datasets:

- Addresses, a real-life demographic database consisting of information
about the issue-holders of credit situations in a banking scenario. Such
a dataset is of particular interest, since it contains several fragments of
noisy data. The dataset is of 24,000 sequences, with an average of 8 to-
kens per sequence. The schema to reconcile consists of the fields: Name,
Address, Zip, State/Province, and City.
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- BigBook, a publicy-available dataset2 consisting of a set of business ad-
dresses. Each business description consists of the 6 items Name, Address,
City, State, AreaCode, and Phone. The dataset consists of 4,224 sequences,
with 10 tokens per sequence in the average. The dataset is of particular
interest, since the relatively small size of the available dataset allows us to
evaluate whether RecBoost is sensitive to the number of training tuples.

- dblp, a collection of articles extracted from the DBLP website3. Each entry
refers to an article appeared in a Computer Science Journal, and contains
information about author, title, journal, volume, year. We extracted 19,401
sequences, with an average sequence length of 20 tokens.

The evaluation of Recboost effectiveness requires the design of a domain-
specific ontology for each of the aforementioned datasets. Specifically, the
concept hierarchy devised for the Addresses dataset is shown in Figure 3.2.
This consists of 11 concepts for token generalization, suitably organized into
a compact hierarchical structure. The ontological rules include rules r1, r2, r3

and r4 at Section 3.4 (as relabelling rules) and rule r2 at Section 3.2.1 (as a
restructuring rule).

The ontology employed for the BigBook dataset, shown in Figure 3.4,
embraces 9 concepts.

LOCATION

STREET NUMBERTOPONYM AREA CODE

NUMBER

PHONE

BUSINESS

NAME

ANY

Fig. 3.4. The concept hierarchy for the BigBook dataset

In such a context, no use is made of restructuring actions, so that back-
ground knowledge reduces to the relabelling rules shown next:

2 http://www.isi.edu/info-agents/RISE/repository.html
3 http://www.informatik.uni-trier.de/˜ley/db/
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r1:
if a ∈ Dictionary
then replace a with TOPONYM

r2:
if a is a token of type ddd-dddd
then replace a with PHONE NUMBER

r3:
if a is a token of type (ddd)
then replace a with AREA-CODE

r4:
if a is a digit-sequence followed by TH or ST or ND or RD
then replace a with STREET NUMBER

r5:
if a is a digit-sequence
then replace a with NUMBER

Finally, the ontology for the dblp dataset is shown in Figure 3.5.

DELIMITER

ARTICLE PREPOSITION

AUTHOR

VOLUME

TITLE

YEAR

ANY

NUMBER JOURNAL

Fig. 3.5. The concept hierarchy for the dblp dataset

Again, background knowledge only involves relabelling rules, that are re-
ported below:

r1:
if a ∈ Journal Dictionary
then replace a with JOURNAL

r2:
if a is a four-digits token
and a ∈ [1950, 2006]
then replace a with YEAR

r3:
if a is a digit-sequence
then replace a with NUMBER

r4:
if a ∈ Delimiter Dictionary
then replace a with DELIMITER

r5:
if a ∈ Grammatical-Article Dictionary
then replace a with ARTICLE

r6:
if a ∈ Preposition Dictionary
then replace a with PREPOSITION

Notice that the definition of the above rules relies on a number of
domain-specific dictionaries. In particular, JOURNAL DICTIONARY in-
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cludes several alternative ways of denoting a journal article, such as j., jour-
nal, trans. and transaction. GRAMMATICAL-ARTICLE DICTIONARY
groups English-language articles a, an and the. Similarly, PREPOSITION
DICTIONARY collects commonly used prepositions, such as by, to, with
and via. DELIMITER DICTIONARY is a set of token delimiters, that
comprises ’, ”, ;, ,, -, ., and *.

It is worth noticing that the analysis of the above domain-specific ontolo-
gies reveals a key feature of RecBoost methodology. Roughly speaking, it can
be easily employed for pursuing text reconciliation in a wide variety of applica-
tive settings, by simply providing a domain-specific concept hierarchy along
with a corresponding compact set of ontological rules. The overall process of
ontology design is rather intuitive and does not require substantial effort by
the end user.

The evaluation of the results relies on the following standard measures
which are customized to our scenario. Given a set N of tokens to classify, we
define:

- the number of tokens, which were classified correctly, TP .
- the number of tokens, which were misclassified, FP .
- the number of tokens, which were not classified, FN - notice that this is a

different meaning with respect to the standard literature.

In the following, we shall report and illustrate the above measures over the
mentioned datasets. Two further important measures, however, can give an
immediate and summarizing perception of the capabilities of our classification
system. In particular, Precision (or Accuracy) can be defined as the number
of correctly classified tokens, w.r.t. the classification behavior of the system:

P =
TP

TP + FP

Analogously, Recall can be defined as the number of correctly classified tokens,
w.r.t. the tokens to classify:

R =
TP

TP + FN

Intuitively, Recall describes the locality issues which affect the system: if a
classifier contains rules which can cover all the examples, then it has 100%
recall (i.e., no locality effect). Precision, by the converse, describes the accu-
racy of the rules contained: the higher is the error rate of a rule, the lower is
its precision.

A measure which summarizes both precision and recall is the F measure,
defined as:

F =
(β2 + 1)PR

P + β2R

The F represents the harmonic mean between Precision and Recall. The β
term in the formula assigns different weights to the components: when β = 1
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both the components have the same importance. The tuning of the β pa-
rameter is application-dependent. Here, we are interested in the cases where
β > 1 (which assigns higher importance to Precision than to Recall). This
is a crucial requirement of many application domains where text segmenta-
tion applies. Tuple disambiguation can be accomplished either by exploiting
exact matching techniques based on specific segments of the strings, or fuzzy
techniques based on the entire string. Clearly, exact matching is more reli-
able, provided that the original text is correctly segmented. Consider, e.g.,
the strings:

s1 Jeff, Lynch, Maverick, Road, 181, Woodstock
s2 Jeff, Alf., Lynch, Maverick, Rd, Woodstock, NY

which clearly represent the same entity. A correct segmentation of the strings
would eventually ease the task of recognizing the similarity:

NAME ADDRESS CITY STATE
s1 Jeff, Lynch Maverick, Road, 181 Woodstock

s2 Jeff, Alf., Lynch Maverick, Rd Woodstock NY

However, a wrong segmentation would make things rather complicated,

NAME ADDRESS CITY STATE
s1 Jeff, Lynch Maverick Road 181 Woodstock
s2 Jeff, Alf. Lynch Maverick, Rd Woodstock NY

whereas simpler fuzzy techniques, which do not consider segmentation, could
still resolve the ambiguity in an acceptable way.

It is clear that classification systems exhibiting high precision, even at
the cost of low recall, can be safely embedded into the application scenarios
described so far. Hence, in the following we shall study the situations where
β > 1, and in particular we are interested in the cases where β ranges into
the interval (1, 10].

3.5.2 Evaluating The Basic Classifier System

In an initial set of experiments, we classified the data without exploiting on-
tologies and multiple classification stages. In these trials, support was fixed
to 0.5%, with ranging values of confidence. Figure 3.6 shows the outcome of
classification for the three datasets. Each bar in the graph describes the per-
centage of correctly classified tokens, together with the percentages of misclas-
sified and unclassified tokens. As we can see, the effectiveness of the classifiers
strongly relies on the confidence value. In particular, low confidence values (up
to 40% in both Addresses and dblp, and 60% in BigBook) allow to classify
all the tokens, but the percentage of misclassified is considerably high. This is
somehow expected, since low confidence values induce rules exhibiting a weak
correlation between the antecedent and the consequent.
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By contrast, higher confidence levels lower the misclassification rate, but
the degree of unclassified tokens raises considerably. It is worth noticing that,
in all the examined cases a confidence rate of 100% guarantees a percentage
of misclassified data which is nearly zero. This is the locality effect : high
confidence values produce extremely accurate rules that, as a side effect, apply
only to a limited number of tokens. By lowering the confidence, we relax the
locality effect (the resulting rules apply to a larger number of tokens), but the
resulting rules are less accurate.

The dblp dataset is particularly interesting to investigate in this context,
since it exhibits the worst performances. The best we can obtain in this dataset
is with confidence set to 40%, which guarantees a significantly high percent-
age (30.52%) of misclassified tokens. A “safer” confidence value leverages the
number of unclassified tokens considerably.

Figure 3.7 describes the accuracy of the classifier with the adoption of
domain-specific concept hierarchies. We exploited the hierarchies described
in Figures 3.2, 3.4 and 3.5 respectively. The benefits connected with the ex-
ploitation of such simple ontologies are evident: the generalization capabilities
of the classification rules are higher, thus lowering the number of unclassified
tokens. Notice how the dblp dataset still exhibits unacceptable performances.

Results in Figure 3.7 were obtained also by exploiting the pruning steps
detailed in Section 3.2.1. Indeed, the contribution of the classifier pruner to
the misclassification rate is investigated in Table 3.1, which describes how the
error rate changes if pruning is not applied. The effectiveness of the classifier
pruner can be appreciated at lower confidence values: there, the classifier
produces weaker rules, which clearly benefit of a re-examination.

Confidence 100 90 80 70 60 50 40

FP

Addresses
Unpruned 0.11% 1.73% 3.93% 5.52% 6.45% 7.69% 8.05%
Pruned 0.09% 1.53% 3.77% 5.32% 5.94% 6.47% 6.24%

BigBook
Unpruned 0.25% 1.47% 1.50% 1.53% 1.94% 1.94% 1.95%
Pruned 0.21% 0.70% 0.70% 0.72% 0.98% 0.98% 0.98%

Dblp
Unpruned 0.01% 3.30% 3.81% 7.13% 14.55% 17.02% 17.12%
Pruned 0.01% 3.26% 3.77% 7.09% 14.38% 16.06% 16.20%

Table 3.1. Pruning effectiveness

3.5.3 Evaluating Multiple Classification Stages

The above analysis allows us to test the effectiveness of the progressive classi-
fication methodology. We recall the underlying philosophy: starting from the
following observations,

- ontological analysis eases the classification task (as testified by the com-
parison between graphs in Figures 3.6 and 3.7).
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(b) BigBook
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Fig. 3.6. Classification results, single stage of classification
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Fig. 3.7. Classification results with the exploitation of concept hierarchy
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- a richer set of relabeling rules should in principle boost the results of
classification.

the adoption of multiple classification stages, where at each stage the rela-
beling rules of the previous stage are enriched by exploiting the results of
classification at earlier stages, should boost the performance of the overall
classification process.

And indeed, Figure 3.8 describes the results obtained by applying a second-
level classifier to the unclassified cases of the first stage of classification. In
detail, the input to the second-level classifier is the output of the first-level
classifier, built by fixing support to 0.5% and a confidence to 100% (described
by the first bar of each graph in Figure 3.7). Again, support was set to 0.5%
and confidence was ranged between 100% and 80%.

As shown in this figure, the second-level classifier is in general able to
correctly classify a portion of the data, that were unlabelled at the end of the
previous stage. For example, in the Addresses dataset, a 95% threshold allows
to classify a further 62% of the (originally unclassified) data. By combining
such a result with the outcome of the first-level classifier, we obtain nearly 91%
of correctly classified data, less than 1% of misclassified data and nearly 8%
of unclassified data. Table 3.2 summarizes the the cumulative results achieved
by two levels of classification over the employed datasets.

Confidence Addresses BigBook dblp

P R P R P R

100 99,13% 87,87% 99,78% 94,95% 99,73% 41,40%
95 99,06% 91,44% 99,68% 96,30% 97,51% 55,52%
90 98,74% 92,96% 99,57% 97,13% 94,59% 66,75%
85 97,95% 95,26% 99,56% 97,17% 93,92% 69,72%
80 97,24% 97,45% 99,39% 97,93% 91,89% 76,80%

Table 3.2. Precision and recall at varying degrees of confidence over the selected
datasets

The effectiveness of the second stage of classification is even more evident
in the graphs of Figure 3.9. The graphs depict the trend of F for different
values of β. The graphs compare a selection of 2-level classifiers with the
single-level classifier (among those shown in Figure 3.7) exhibiting the best
performance in terms of TP . In all the cases shown, the 2-level classifiers
exhibit better performances for β > 2.

Since each classification level boosts the performance of the system, two
important questions raise, that are worth further investigation in the following:

1. how many levels allow to achieve an adequate performance?
2. how should the parameters at each level be tuned?
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Fig. 3.8. Classification results at the second stage of classification
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Fig. 3.9. Trends of F-measures compared

The dblp dataset is particularly interesting in this context, since the accuracy
of RecBoost is still low after two classification levels. We start our study by
investigating the number of needed classifiers. Figures 3.10(a) and (b) describe



66 3 A Supervised Approach to Text Segmentation

an experiment performed by allowing a hypothetical infinite number of levels,
where at each level, support was set to 1% and confidence to 100%. Roughly,
the strategy implemented is the following: since high confidence values bound
the number of misclassified tokens, and further levels allow to recover unclas-
sified tokens, just allow any number of levels, until the number of unclassified
tokens is nearly 0.

As we can see from Figure 3.10(b), however, this strategy does not neces-
sarily work: although the number of misclassified tokens is kept low, the ca-
pability of each classifier to recover tokens unclassified in the previous stages
decreases. The 5th level looses the capability to further classify tokens, thus
ending de-facto the classification procedure. Figure 3.10(a) shows the cumu-
lative results at each level.

Thus, an upper bound, in the number of stages, can be set by the classifi-
cation capability of the stages themselves. A smarter tuning of the parameters
which rule the performance of each single stage, allows to achieve best classifi-
cation accuracy. Figures 3.10(c) and (d) report a different classifier, generated
by fixing the following constraints: each classification stage should classify at
least 30% of the available tokens, and should misclassify at most 10% (if pos-
sible). The methodology adopted for achieving this, was to perform several
tuning trials at each stage, by starting from the value 100% of confidence and
progressively lowering it until the criterion is met. Figure 3.10(d) describes
the tuning occurred at each classification stage. The constraint over the classi-
fication percentage clearly boosts the performance of each single classification
stage: as a result, the overall number of classified tokens is 86.7%, with a
misclassification rate of 10.2% and 3.1% unclassified tokens.

Notice that further effective strategies can be employed, by fixing, e.g.,
different constraints: in Figure 3.10(e), for example, each classification stage
should classify at least 20% of the available tokens, and should misclassify
at most 5% of them. Figure 3.11(a), reports a different experiment, where
the number of stages is fixed to 4: here, confidence is progressively lowered,
and the last stage is tuned to minimize the number of unclassified. Again,
Figure 3.11(b) describes the tuning occurred at each stage.

Similar conclusions can be drawn with the other datasets: Figure 3.12,
e.g., describes the results on both BigBook and Addresses. In particular, we
adopted three levels (with confidence fixed to 100% in the first two levels) for
BigBook and four levels (with thresholds 100%, 100%, 85% in the first three
levels) for Addresses. The bars report the cumulative classification results
when different confidence levels are applied in the last classification level.

The adoption of multiple classification stages over BigBook deserves fur-
ther discussion about the relation between the size of the labelled data and the
number of classification levels which can be defined. Each classification level
should build on a separate training set (preprocessed by the preceding levels).
Clearly, given a dataset D, the amount of unclassified tokens of D diminishes
at subsequent levels. Hence, the size of the training set Ti, required for learn-
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Fig. 3.10. Effects of five classification levels on dblp
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Fig. 3.11. Effects of four classification levels on dblp

ing rules at level i, should be large enough to guarantee that an adequate
number of unclassified tokens are available at that level.

Thus, the size of the training has an influence over the number of clas-
sification levels which can be defined: the larger the training set, the higher
the number of significant levels. In other words, a small dataset saturates the
potential of progressive classification within few levels, and adding further
levels does not yield any improvements. This is what happens in the case of
the BigBook dataset. As already mentioned, the available training set here
is quite small. Thus, a classifier exhibiting 100% confidence in the last level,
would produce at most 2500 unclassified tokens. This amount would not allow
to learn a further meaningful set of rules, since such tokens distribute over
different sequences and different attributes.

The conclusion we can draw is that the adoption of multi-stage classifica-
tion allows to increase recall, by contemporarily controlling the decrease in the
overall classification accuracy. The Figures 3.13 and 3.14 show how a proper
manipulation of the confidence threshold value over each classification stage
allows to achieve this. The contribution of the support threshold is less restric-
tive for two main reasons: first, it should anyway be kept at very low levels,
in order to enable a significant amount of rules; second, small variations are
of little significance, and at most at the first level. We here provide details on
a set of tests performed on a pipeline of three classifiers, over the Addresses
datastet. In particular, for brevity sake, we investigate the effects of vary-
ing support and confidence for the first-level classifier, whereas the remaining
two stages have instead both parameters fixed to respectively 0.5% and 98%.
Specifically, in Figures 3.13(a) and 3.13(b) confidence is fixed to 98% and
support varies, whereas in Figures 3.14(a) 3.14(b) support is set to 0.5% and
confidence varies. Figures 3.13(a) and 3.13(b) show that classification accu-
racy and recall do not significantly change, especially at higher levels. By the
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Fig. 3.12. Effects of multiple classification levels

converse, even small variations in the confidence cause significant changes, as
testified by Figures 3.14(a) and 3.14(b).

It is interesting to see that, in the above described experiments, the av-
erage number of rules which are exploited is nearly stable even on different
values of support and confidence (which instead affect the number of discov-
ered rules). Figures 3.15(a) and 3.15(b) depict such a situation. In general,
a decrease in support or confidence causes an increase in the overall number
of discovered classification rules. However, from experimental evaluations, it
emerges that the average number of rules actually applied in the classification
process does not significantly vary. This is testified by the bold hatched line
in both subfigures, which represents such an average value. As we can see, the
number of rules applied fluctuates around 50% of the total number of rules
obtained in correspondence of the maximum values of support and confidence.
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Fig. 3.13. Stability of Precision and Recall with fixed confidence

3.5.4 Comparative Analysis

The exploitation of the “recursive boosting” strategy proposed in this ap-
proach is quite new, as it relies on the capability of recovering unclassified
tokens in the next stages. To this purpose, the former experiments aimed es-
sentially at checking whether this strategy is effective. In order to asses the
practical effectiveness of RecBoost, we here compare the behavior of the Rec-
Boost methodology with consolidated approaches from the literature. To this
purpose we preliminarily observe that, although many results are available
in the literature, a direct comparison is often difficult, as different data col-
lections and/or different ways of tuning the algorithm parameters have been
used. For example, although bibliographic citations extracted from the DBLP
database have been extensively used in the literature, the datasets used for
the analysis were not made publicly available.
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Fig. 3.14. Stability of Precision and Recall with fixed support

In the following we provide a comparison by exploiting the datasets de-
scribed in the previous sections. We compare our system with the MAL-
LET system [95], which provides the implementation of Conditional Random
Fields [88] and with the DATAMOLD system [15]. We refer the reader to
Chapter 2 for a detailed description of the techniques underlying such sys-
tems. Both MALLET and DATAMOLD are equipped with the same ontology
and preprocessing used in RecBoost. In addition, contextual information in the
CRFs implemented by MALLET was provided by resorting to the Pre/Post
information.

An overall comparison is shown in the graphs of Figure 3.16, which plot
the F values obtained by MALLET, DATAMOLD, and several different in-
stantiation of the RecBoost system. In particular, we consider the classifiers
of Figures 3.10, 3.11 and 3.12, and choose, for each dataset, the three in-
stantiations which guarantee the lowest (constrained) value of FN , the lowest
(constrained) value of FP , and a ”middle” value. The constraint refers to the
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Fig. 3.15. Size of classifiers and average number of rules applied

possibility of maintaining an acceptable value of TP . For the dblp dataset,
we also show an instantiation

As we can see from the Figure 3.16, the gain in the F value is evident for
β > 2. Table 3.3 details the results. Here we compare with MALLET, DATA-
MOLD and the version of RecBoost (RecBoost1 in the tables), relative to a
single stage of classification which achieves the highest value of TP in Fig-
ure 3.7. MALLET (and in some cases even DATAMOLD) typically achieves
a high rate of correctly classified tokens at the expense of a higher misclassi-
fication rate. Also, RecBoost1 may achieve a higher TP than the approaches
with multiple classification stages. However, the latter exhibit a higher afford-
ability (which is even higher than that of MALLET and DATAMOLD). In
practice, the adoption of multiple stages allows to achieve a higher precision,
at the expense of a lower recall. Clearly, a proper tuning at the higher levels
makes the RecBoost system highly competitive: in Addresses, for example,
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the performance of the more conservative classifier (the one which tries to
minimize FN ) is even better than MALLET.

In practice, the recursive boosting offered by progressive classification al-
lows to maintain a higher control over the overall misclassification rate, by
forcing stronger rules which, as a side effect, exhibit a higher “locality”. Thus,
RecBoost is more reliable in scenarios where misclassifying is worst than avoid-
ing to classify.

Methods Addresses

TP FP FN P R

DATAMOLD 96.23% 3.77% 0% 96.23% 100%
MALLET 96.96% 3.04% 0% 96.96% 100%
RecBoost1 93,74% 6,24% 0,02% 93,76% 99,98%
RecBoost� 96,96% 2,86% 0,18% 97,14% 99,81%
RecBoost+ 95,53% 1,95% 2,52% 98,00% 97,43%
RecBoost© 92,21% 1,09% 6,70% 98,83% 93,23%

Methods BigBook

TP FP FN P R

DATAMOLD 97.97% 2.03% 0% 97.97% 100%
MALLET 99,37% 0,63% 0% 99,37% 100%
RecBoost1 99,01% 0,98% 0,01% 99,02% 99,99%
RecBoost� 99,21% 0,65% 0,14% 99,35% 99,83%
RecBoost+ 97.55% 0.28% 2.17% 99.71% 97.82%

RecBoost© 96,31% 0,25% 3,44% 99,74% 96,55%

Methods dblp

TP FP FN P R

DATAMOLD 81,55% 18,45% 0% 81,55% 100%
MALLET 89,83% 10,17% 0% 89,83% 100%
RecBoost1 83,80% 16,20% 0% 83,80% 100%
RecBoost� 88,20% 10,66% 1,14% 89,22% 98,73%
RecBoost+ 85,69% 9,74% 4,57% 89,80% 94,94%

RecBoost© 81,53% 7,10% 11,37% 91,98% 87,76%

Table 3.3. Comparison against MALLET and DATAMOLD

3.6 Qualitative Comparison

In Chapter 2, we already faced the text segmentation by reviewing several
(rule-based or stochastic) approaches dealing with such a problem. Therefore,
in this section, we limit ourself just to highlight some differences between
RecBoost and some direct challenging approaches.
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Amongst these approaches we do not intentionally consider algorithms
just relying on HTML separator tags (wrappers), since are not effective in
domains where data do not necessarily adhere to a fixed schema. Indeed,
instances in our problem are more irregular, since the order of fields is not
fixed, not all attributes are present, etc. The classification of an item is better
performed according to its neighboring words, absolute/relative position in the
string, numeric/alphanumeric characters, and so on. To our knowledge, few
exceptions are capable of effectively dealing with such features. For instance,
WHISK [133] can deal with missing values and permutations of fields, but
it requires a “complete” training set, i.e. a set of examples including all the
possible occurrences of values.

Conversely, state-of-the-art approaches (e.g., [1, 15, 88, 96, 127]) rely
on stochastic models: Hidden Markov Models (HMMs), Maximum Entropy
Markov Models (MEMMs) and Conditional Random Fields (CRFs).

In particular, HMMs are widely used models. Schema reconciliation with
HMMs can be accomplished by learning the structure of a HMM and applying
it to unknown examples. Let just recall (for more details see Section 2.4.1)
that, a HMM consists of a set of states and directed edges among such states.
Two particular states are the initial and the final states, where the former has
no incoming edges, whereas the latter has no outgoing edges. Every state of
the HMM, except from the initial and the final ones, represents a class label
and is associated with a dictionary, grouping all the terms in the training set
that belong to the class. Edges among states are associated with transition
probabilities. A textual sequence can be classified if its constituting terms can
be associated to states of the HMM, that form a path between the initial
and final states. Precisely, the classification is pursued by associating a single
term to all those states, whose corresponding dictionaries include the term.
Hence, a sequence of textual terms is mapped to multiple paths throughout
the HMM. Transition probabilities are then exploited to identify the most
probable path and, hence, to accordingly classify the terms in the sequence
at hand. Clearly, those sequence, whose tokens do not form any path between
the initial and final states, cannot be classified.

The effectiveness of the approaches based on HMMs strongly depends
on the number of distinct terms occurring in the training set. Furthermore,
the classification of individual term sequences in one step, i.e., subjected to
the existence of corresponding paths throughout the automaton, is a major
limitation of HMMs. Indeed, depending on the outcome of the training phase,
these cannot undertake the reconciliation process, whenever a path for the
sequence at hand does not exist. Also, the existence of one or more paths for
a given input sequence may not determine a proper reconciliation.

Worst, HMMs represent “global classification models”, since they tend to
classify each term of the sequence under consideration, and hence are quite
sensitive to unknown tokens.

In other approaches, emphasis have been paid to the analysis of token
context (i.e. of the tokens following and preceding the one at hand) for more
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accurate reconciliation. In particular, MEMMs [96], i.e. conditional models
that represent the probability of reaching a state given an observation and
the previous state, can be seen as an attempt at contextualizing token recon-
ciliation. However, as discussed in Section 2.4.2, MEMMs suffer from the well
known label-bias problem [88].

Conditional random fields (CRFs) [88, 95] are another probabilistic model
for text labeling and segmentation (see Section 2.4.3). The underlying idea
is to define a conditional probability distribution over label sequences, given
a particular observation sequence, rather than a joint distribution over both
label and observation sequences. CRFs provide two major advantages. First,
their conditional nature relaxes the strict independence assumptions required
by HMMs to guarantee tractable inference. Second, CRFs avoid the label bias
problem.

It is worth noticing that, despite the improvements introduced by MEMMs
and CRFs to the HMM technology, they still represent global classification
models, since they tend to classify each term into the sequence under con-
sideration, and hence do not prevent the problem of misclassifying unknown
tokens.

An attempt towards an unsupervised approach to text reconciliation is
proposed by CRAM system in [1] (see Section 2.4.1). The basic idea here is to
exploit reference relations for building segmentation models. Let recall that,
the reference relation denotes a collection of structured tuples that are specific
to a domain of interest, and exemplify clean records for that domain.

It is easy to observe that, the exploitation of reference tables is a natural
way of automatically building training sets for the text reconciliation problem
described beforehand. And indeed, although declared as an unsupervised ap-
proach, this technique suffers from two general weaknesses that are inherent
of supervised methods. Foremost, a reference relation may not exists for a
particular applicative scenario. Also, whenever the overall number of tuples
involved is not sufficiently large, the columns of the employed relations may
not adequately rich dictionaries of basic domain tokens. This would affect the
overall segmentation effectiveness.

As to a more specific comparison with our contribution, the reference ta-
ble approach requires to initially learn the order with which attributes appear
within the input data. By contrast, though being a supervised approach, Rec-
Boost does not rely on learning attribute order from training data. This is due
to the adoption of classification rules, that allow the reconciliation of a given
token on the sole basis of the relationships among the entities (i.e. further tex-
tual tokens, ontological categories and attributes) in the context surrounding
the token at hand. Moreover, segmentation with respect to a given attribute
order relies on the underlying assumption that such an ordering is fixed across
input sequences. This may make reconciliation problematic when, instead, the
tokens of two or more attribute values are interleaved (rather than being con-
catenated) in the data to segment.
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Finally, the reference table approach adopts basically HMMs (the so called
ARMs) for reconciliating individual attribute values, and hence suffer from
its aforementioned limitations. Roughly speaking, ARMs are global classifica-
tion models and, hence, overly specific in attribute recognition as far as three
aspects are concerned, namely positional, sequential and token specificity.
These aspects impose suitable generalizations for the ARMs: the adoption
of a fixed three-layered topology capable of dealing with positional and se-
quential specificities and the exploitation of token hierarchies for mitigating
token specificity. On the contrary, RecBoost relies on association rules for at-
tribute value reconciliations. Association rules are better suited at detecting
local patterns, especially when the underlying data to segment contain many
contrasting specificities. Moreover, a natural generalization of classifiers, i.e.,
the improvement of their classification accuracy, is trivially obtained by at-
tempting to reduce classifier complexity, via attribute and rule pruning.

3.7 Conclusions

In this chapter we presented RecBoost, a novel approach to schema recon-
ciliation, that fragments free text into tuples of a relational structure with
a specified attribute schema. Within RecBoost, the most salient features are
the combination of ontology-based generalization with rule-based classifica-
tion for more accurate reconciliation, and the adoption of progressive classifi-
cation, as a major avenue towards exhaustive text reconciliation. An intensive
experimental evaluation on real-world data confirms the effectiveness of our
approach.

There are some directions that are worth further research. First, notice
that the proposed methodology is, in some sense, independent from the un-
derlying rule-generation strategy. In this respect, it is interesting to investigate
the adoption of alternative strategies for learning local classification models.
This line is also correlated with the effort for identifying a fully-automated
technique for setting the parameters of progressive classification, in terms of
required classification stages. Since parameters are model-dependent, two al-
ternate strategies can be either to investigate different, parameter-free models,
or to detect ways to enable a natural way of fixing the parameters of the sys-
tem, on the basis of the inherent features of the text at hand, rather than
relying on pre-specified estimates. The experimental section already contains
some pointers in the latter direction: however, more robust methods need
in-depth investigation.

In addition, interesting would be investigate the development of an un-
supervised approach to the induction of an attribute descriptor from a free
text. This would still allow reconciliation, even in the absence of any actual
knowledge about the textual information at hand.
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Approaches to Data Reconciliation

4.1 Introduction

In this chapter, we focus on surveying some well-known techniques to solve the
problem of Data Reconciliation (or lexical heterogeneity) regarding tuples in a
single o multiple databases. This problem occurs when tuples have identically
structured fields across databases, but the data use different representations
to refer to the same real-world object (e.g., StreetAddress=75 S. 5th Avn. vs.
StreetAddress=75 South Fifth Avenue). The goal of data reconciliation is to
identify records in the same or different databases that refer to the same real
world entity, even if the records are not identical.

More in detail, we focus on the case where the input is a set of structured
and properly segmented records (database records). Hence, in this chapter, we
do not cover solutions for other problems such as anaphora resolution [102],
in which the problem is to locate different mentions of the same entity in free
text.

This chapter is organized as follows. In Section 4.2, we briefly discuss the
necessary steps in the data de-duplication process, before the duplicate record
detection phase starts. Then, Section 4.3 describes techniques used to match
individual fields, and Section 4.4 presents techniques for matching records
containing multiple fields. Section 4.5 describes methods for improving the
efficiency of the duplicate record detection process, and Section 4.6 presents
some commercial tools used in industry for duplicate detection purpose. Fi-
nally, Section 4.7 concludes the chapter.

4.2 Data Preparation

Duplicate record detection is the process of identifying different or multiple
records that refer to a unique real world entity. In the product space of two
tables, a match is a pair that represents the same entity and a non-match is a
pair that represents two different entities. Within a single table, a duplicate is a
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record that represents the same entity as another record in the same database.
Common record identifiers such as names, addresses and code numbers (e.g.,
SSN, object identifier) can be used to identify matches. The final goal in
record matching is to determine whether a comparison record corresponds
to a matched or a non-matched pair of database records. Unfortunately, the
presence of errors in the identifying information makes this problem hard.

Typically, the process of duplicate detection is preceded by a data prepa-
ration stage. In this phase, data entries are stored in a uniform manner in the
database, resolving (at least partially) the structural heterogeneity problem.
The data preparation stage includes a parsing, a data transformation, and
a standardization step. The approaches that deal with data preparation are
also described under the “umbrella name” ETL (Extraction, Transformation,
Loading). These steps improve the quality of the in-flow data and make the
data comparable and more usable. A complete collection of papers related to
various data transformation approaches can be found in [123]. More in detail:

- Parsing or Segmentation (according to the terminology used in the pre-
vious chapters) is the first critical component in the data preparation stage.
Segmentation locates, identifies and isolates individual data elements in
the source files. Segmentation makes easier to correct, standardize and
match data because it allows the comparison of individual components,
rather than of long complex string of data. For example, the appropriate
segmentation of name and address component into consistent packets of
information is a crucial part in the record matching process. Several seg-
mentation methods have been proposed in literature (e.g., [96, 15, 1, 88])
and we reviewed them in Chapter 2.

- Data Transformation refers to simple conversions that can be applied
to the data in order to conform them to the data types of their corre-
sponding domains. In other words, this type of conversion focuses on ma-
nipulating one field at a time, without taking into account the values in
related fields. The most common form of data transformation is the con-
version of a data element from one data type to another. Renaming a field
from one name to another is considered data transformation as well. En-
coded values in external data is another problem addressed at this stage.
This conversion is relevant in order to consent that records from differ-
ent sources can be compared in a uniform manner. Range checking is yet
another kind of data transformation which ensures that data in a field
falls within an expected range, usually a numeric or date range. Finally,
dependency checking compares the value in a particular field to the values
in another field in order to ensure a minimal level of consistency in the
data.

- Data Standardization refers to the process of standardizing the infor-
mation represented in certain fields to a specific content format. Without
standardization, many duplicate entries could erroneously be designated
as non-duplicates, based on the fact that common identifying information
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cannot be compared. One of the most common standardization applica-
tions involve address information. Indeed, there is no one standardized
way to capture addresses: the same address can be represented in many
different ways. Data and time formatting and name and title formatting
pose other standardization difficulties in a database. Data standardization
is a rather inexpensive but a very important step in the de-duplication pro-
cess because it can lead to fast identification of duplicates. For example, if
the only difference between two records is the differently recorded address
(55 West Fifth Street vs. 55 W 5th St.), then the data standardization
step would make the two records identical, alleviating the need for more
expensive approximate matching approaches, that we describe further in
this chapter.

After the data preparation phase, data are typically stored in tables hav-
ing comparable fields. The next step is to identify which fields should be
compared. For example, it would not be meaningful to compare the contents
of the field FirstName with the field Address. In [111] a supervised technique
for understanding the “semantics” of the fields contained in web databases
is presented. Moreover, in [41] this concept is significantly extended and a
“signature” from each field in the database is extracted. This signature sum-
marizes the content of each column in the database. Then, the signatures are
used to identify fields with similar values, fields whose contents are subsets of
other fields and so on.

Despite parsing, data standardization and identification of similar fields,
it is not trivial to match duplicate records. Misspellings and different con-
ventions for recording the same information still result in different, multiple
representations of a unique object in the database.

4.3 Field Matching and String Matching Techniques

One of the most common sources of mismatches in database entries is the ty-
pographical variations of string data. Therefore, duplicate detection typically
relies on string comparison techniques to deal with typographical variations.
Multiple methods have been developed for this task, and each method works
well for particular types of errors. Instead, if errors appear in numeric fields,
the related research is still in its initial phase. In this section we review some
techniques that have been applied for matching string fields. Next, we briefly
introduce some common approaches to deal with errors in numeric data.

4.3.1 Character-based similarity metrics

The character-based similarity metrics are designed to deal with typographical
errors. The following similarity metrics we cover here:

- Edit distance.
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- Smith-Waterman distance.
- Affine gap distance.
- Jaro distance metric.
- Q-gram distance.

Edit distance

The Edit distance between two string s and t is the minimum number of edit
operations that convert s to t. There are four types of edit operations:

- Copy the next letter in s to the next position in t.
- Insert a new letter in t that does not appear in s.
- Substitute a different letter in t for the next letter in s.
- Delete the next letter in s ; that is, don’t copy it to t.

In the simplest form of edit distance, the copy operation has cost zero,
whereas all other operations have cost one. This version of edit distance is
also referred in literature as Levenshtein distance [90]. In order to understand
how the edit distance is computed, let consider mapping the string s = “Will-
laim” to t = “William” using the edit operations above introduced. Table 4.1
shows one possible sequence of these operations (the vertical bar represents a
“cursor” in s or t indicating the next letter).

s t Operation

|Willlaim |
W|illlaim W| Copy “W”

Wi|lllaim Wi| Copy “i”

Wil|llaim Wil| Copy “l”

Will|laim Will| Copy “l”

Willl|aim Will| Delete “l”

Willla|im Willi| Substitute “i” for “a”

Willlai|m Willia| Substitute “a” for “i”

Willlaim| William| Copy “m”

Table 4.1. Example of an edit-distance computation

According to the costs of edit operations in the Levenshtein version of edit dis-
tance, this is the least expensive sequence for s and t. Then, the edit distance
between “Willlaim” and “William” is 3.

A fairly efficient scheme exists for computing the lowest-cost edit sequence
for these operations. The trick consists in considering a slightly more complex
function D(s, t, i, j) which is the edit distance between the first i letters in s
and the first j letters in t. Let si denote the i-th letter of s, and similarly,
let tj be the j -th letter of t. Then D(s, t, i, j) can easily recursively defined,
where D(s, t, 0, 0) = 0 and
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D(s, t, i, j) = min

����
���

D(s, t, i− 1, j − 1) if si = tj , and you copy si to tj

D(s, t, i− 1, j − 1) + 1 if you substitute tj for sj

D(s, t, i, j − 1) if you insert the letter tj

D(s, t, i− 1, j) if you delete the letter si

(4.1)

This recursive definition can be efficiently evaluated by using dynamic
programming techniques [105]. Specifically, for a fixed s and t, the D(s, t, i, j)
values can be stored in a matrix that is filled in a particular order. The total
computation effort for D(s, t, |s|, |t|) (the edit distance between s and t) is
approximately O(|s| · |t|). Landau and Vishkin [89] presented an algorithm for
detecting in O(max{|s|, |t|} ·k) whether two strings s and t have edit distance
less than k. To this purpose, notice that if ||s| − |t|| > k, then, by definition,
the two strings do not match within distance k, so:

O(max{|s|, |t|} · k) ∼ O(|s| · k) ∼ O(|t| · k)

Edit distance metrics are widely used, not only for text processing but
also for biological sequence alignment, and many variations are possible. The
Needleman-Wunsch distance [106] is a natural extension to Levenstein dis-
tance that introduces additional parameters defining each possible charac-
ter substitution’s cost and the cost of insertions and deletions. For instance,
the cost of replacing O with 0 might be chosen smaller than the cost of re-
placing f with q. This variation can be simply implemented by modifying
Equation (4.1) replacing the second term of the min with something such
as D(s, t, i − 1, j − 1) + substitutionCost(si, tj). Ristad and Yiannilos [122]
presented a method for automatically determining such costs from a set of
equivalent words that are written in different ways.

The edit distance metrics work well for catching typographical errors, but
they are typically ineffective for other types of mismatches.

Smith-Waterman distance

Smith and Waterman [132] described an extension of edit distance in which
mismatches at the beginning and the end of strings have lower costs than mis-
matches in the middle. Therefore, this distance metric works well for matching
strings that have been truncated or shortened (e.g., “Stanford U.” vs. “Stan-
ford University”). The distance between two strings can be computed using a
dynamic programming technique, based on the Needleman and Wunsch algo-
rithm [106], which seeks to locate the best alignment between the two strings.

Pinheiro and Sun [114] proposed an analogue similarity measure, which
tries to find the best character alignment for two compared strings, so that
the number of character mismatches is minimized. For instance, the strings
s = ABcDeFgF and t = AxByDzFH can be aligned as in Figure 4.1.
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Fig. 4.1. The Pinheiro and Sun similarity metric alignment

This metric is similar to the Smith-Waterman distance and to the Affine
gap distance, which next will be discussed.

Affine gap distance

While the Smith-Waterman distance modifies the Levenshtein metric in order
to discount mismatching text at the beginning and at the ending of strings, it
places stronger penalties on mismatches in the middle. When the errors are in
the middle (e.g., “John R. Smith” vs. “Johnathan Richard Smith”) this can
create a problem. The Affine gap distance offers a solution to this issue by
introducing two extra edit operations:

• Open gap that is the cost for inserting the first character.
• Extend gap that is the cost for inserting additional characters.

The cost of extending the gap is usually smaller than the cost of opening
a gap. This results in smaller cost penalties for gap mismatches than the
equivalent cost under the edit distance metric. Bilenko et al. [12], similarly to
what Ristad and Yiannilos [122] proposed for edit distance, describe how to
train an edit distance model with affine gaps.

Jaro distance metric

Jaro [78] introduced a string comparison algorithm mainly used for comparing
last and first names. Essentially, this metric is based on the number and order
of common characters between two strings. The basic algorithm for computing
the Jaro metric for two string s and t includes the following steps:

1. Compute the string lengths |s| and |t|.
2. Find common characters c in the two strings. By definition, a character

ai in s is “in common” with t iff there is a bj = ai in t such that
i − H ≤ j ≤ i + H , where H = min{|s|, |t|}/2.

3. Find the number of transposition k. The number of transpositions is com-
puted as follows: the i-th common character in s is compared with the
i-th common character in t and each non-matching character is a trans-
position.
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Then, the Jaro metric for s and t is:

Jaro(s, t) =
1
3
·
(

c

|s| +
c

|t| +
c − k/2

c

)

To better understand the intuition behind this metric, consider the matrix
M in Table 4.2, which compares the string s=“WILLLAIM” and t=“WILLIAM”.

W I L L I A M

W 1 0 0 0 0 0 0

I 0 1 0 0 1 0 0

L 0 0 1 1 0 0 0

L 0 0 1 1 0 0 0

L 0 0 1 1 0 0 0

A 0 0 0 0 0 1 0

I 0 1 0 0 1 0 0
M 0 0 0 0 0 0 1

Table 4.2. The Jaro metric

The boxed entries are the main diagonal, and M(i, j) = 1 if and only
if the i-th character of s equals the j-th character of t. As discussed above,
the Jaro metric is based on the number of characters in s that are in com-
mon with t. Within M, the i-th character of s is in common with t if
M(i, j) = 1 for some entry (i, j) that is “sufficiently close” to the main di-
agonal of M. Sufficiently close means that |i − j| < min{|s|, |t|}/2 (shown in
bold in the matrix). In Table 4.2, it is easy to see that the number of char-
acters in common c are 7 and the number of transpositions k are 2. Then,
Jaro(“WILLLAIM”, “WILLIAM”) = 0.333 · (7

8 + 1 + 6
7 ) = 0.910

Winkler and Thibaudeau [154] proposed a variant of the Jaro metric that
also uses the length P of the longest common prefix of s and t. Letting P ′ =
max(P, 4), then

Jaro − Winkler(s, t) = Jaro(s, t) + (P ′/10) · (1 − Jaro(s, t))

This emphasizes matches in the first few characters, since prefix matches
are generally more important for surname matching.

Q-gram distance

The q-grams are short character substrings of length q of the database
strings [146, 145]. Letter q-grams, including trigrams, bigrams, and/or uni-
grams, have been used in a variety of ways in text recognition and spelling cor-
rection [86]. One natural extension of q-grams are the positional q-grams [138],
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which also record the position of the q-gram in the string. The q-grams ap-
proach is widely used in the string matching scenario. In particular, Gravano
et al. [65, 64] showed how to use positional q-grams to locate efficiently similar
strings within a relational database.

Given a string s, its positional q-grams are obtained by “sliding” a window
of length q over the characters of s. Since q-grams at the beginning and the
end of the string can have fewer than q characters from s, the strings are
conceptually extended. More in detail, the string s is padded by prefixing or
suffixing it with q − 1 occurrences of a special padding character (e.g., # and
*) not included in the original alphabet. Thus, each q-gram contains exactly
q characters, though some of these may not be from the original alphabet.

The main intuition behind the use of q-grams as a foundation for approx-
imate string matching is that, when two strings s and t are similar (e.g., are
within a small edit distance of each other), they share a large number of q-
grams in common [138, 145]. The following example illustrate this observation.

Consider the string s=john smith and the string t=john a smith. The
positional q-grams of length q=3 for the string s are {(1,##j), (2,#jo), (3,joh),
(4,ohn), (5,hn ), (6,n s), (7, sm), (8,smi), (9,mit), (10,ith), (11,th*), (12,h**)}.
Similarly, the positional q-grams of length q=3 for the string t (which is
at an edit distance of two from s) are {(1,##j), (2,#jo), (3,joh), (4,ohn),
(5,hn ), (6,n a), (7, a ), (8,a s), (9, sm), (10,smi), (11,mit), (12,ith), (13,th*),
(14, h**)}. By ignoring the position information, the two q-gram sets have
11 q-grams in common. Interestingly, only the first five positional q-grams
of the string s are also positional q-grams of the string t. However, an addi-
tional six positional q-grams in the two strings differ in their position by just
two positions. This illustrates that, in general, the use of positional q-grams
for approximate string matching involves comparing position of “matching”
q-grams within a certain “band”.

4.3.2 Token-based similarity metrics

As discussed above, character-based similarity metrics works well for typo-
graphical errors. However, it is often the case that typographical conventions
lead to rearrangement of words. For instance, the strings “John Smith” and
“Smith, John” are likely to be duplicates, even if they aren’t close in edit
distance. Then, it is clear that, in such cases, character-level metrics fail to
capture the similarity of the entities. Token-based metric try to compensate
for this problem. In this approach, two string s and t are previously converted
in token multisets S and T (where each token is a word) and then some metrics
on these multisets are applied.

Jaccard similarity

One simple and often effective token-based metric is the Jaccard similarity.
By considering two string s and t, if S and T are respectively their word sets,
the Jaccard similarity is simply defined as
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Jaccard(s, t) =
|S ∩ T |
|S ∪ T |

For instance, consider the strings s=“Comput. Sci. Dept. California Uni-
versity San Diego” and t=“Department Computer Science Univ. Calif. San
Diego”. It is easy to see that the size of intersection (number of matching
words) between S and T is 2, whereas the size of union (number of distinct
words) between S and T is 12. Then, the Jaccard(s, t) = 0.166.

Atomic Strings

Monge and Elkan [103] proposed a basic algorithm for matching text fields
based on atomic strings. By definition, an atomic string is a sequence of
alphanumeric characters delimited by punctuation characters. Two atomic
strings match if they are the same string or if one is a prefix of the other. A
simple definition of the similarity degree of two strings is the number of their
matching atomic strings divided by their average number of atomic strings.

For instance, consider the strings s=“Comput. Sci. & Eng. Dept., Uni-
versity of California, San Diego” and t=“Department of Computer Science,
Univ. Calif., San Diego”. After removing stop words (e.g., and, in, for, the,
of, on, &), k = 6 atomic strings in s match atomic strings in t, namely
Comput., Sci., San, Diego, Univ., Calif.. Then, the overall matching score is
k/(|S| + |T |)/2) = 0.8.

TF-IDF

The term frequency-inverse document frequency or cosine similarity, which
the IR community widely uses, is defined as:

TF − IDF (S ,T ) =
∑

w∈S∩T

V (w, S) · V (w, T )

If TFw,S is the frequency of word w in S and IDFw is the inverse of the
fraction of names in the corpus that contain w, then:

V ′(w, S) = log(TFw,S + 1) · log(IDFw)

and

V (w, S) =
V ′(w, S)√∑
w′ V ′(w, S)2

where the sum is over the entire set of words.
Cohen [33] described a system named WHIRL, that adopts the cosine

similarity combined with tf-idf weighting scheme to compute the similarity of
two strings.
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The cosine similarity metrics works well for a large variety of entries, and
is insensitive to the location of words, thus allowing natural word moves and
swaps (e.g., “John Smith” is equivalent to “Smith, John”). Also, introduction
of frequent words affects only minimally the similarity of the two strings due to
the low IDF weight of frequent words. Unfortunately, this similarity metric
does not capture word spelling errors, especially if they are pervasive and
affect many of the words in the strings. For example, the corrupted strings
“Compter Science Departement” and “Deprtment of Computer Science” will
have similarity zero under this metric.

To solve this problem, Bilenko et al. [12] suggest to combine token-based
and character-based methods in a hybrid approach named SoftTF-IDF. In
the SoftTF-IDF metric, the similarity is affected not only by tokens that
appear both in S and T but also by token in S such that a “similar” to-
ken (according to some metrics) appears in T . More in detail, let sim be a
secondary similarity function that performs well on short strings (e.g., Jaro-
Winkler). Let CLOSE(θ, S, T ) be the set of words w ∈ S such that some
v ∈ T exists for which sim(w, v) > θ. Moreover, for w ∈ CLOSE(θ, S, T ), let
N = maxv∈T sim(w, v), then

SoftTF − IDF (S ,T ) =
∑

w∈CLOSE(θ,S,T )

V (w, S) · V (w, T ) · N(w, T )

Gravano et al. [66] extended the WHIRL system to handle spelling errors
by using tf-idf similarity on q-grams rather on words. Indeed, in this setting,
a spelling error minimally affects the set of common q-grams of two strings.
Then, the strings “Gteway Communications” and “Comunications Gateway”
have higher similarity under this metric, despite the swap and the spelling
errors in both words.

4.3.3 Numeric Similarity Metrics

So far, we have dealt only with string attributes. However, there are many
data types that are commonly encountered in practice. Numeric data is of
particular interest. The conventional approach of finding fuzzy matches with
respect to a given numeric value is to issue a range query against the corre-
sponding field. But this non take advantage of the data distribution to return
a better result [85].

Again, many search engines work with just the string representation of
numeric values. This approach is inadequate for flexible matching purposes.
For instance, by trying to perform a google search on “186000”, the engine
returns few pages mentioning the speed of light, but a search on “185900” does
not find any such pages. Part of the reason is that the string representation
of numbers which are very close may not have enough tokens in common. To
this purpose, the extension of cosine similarity metrics to non-string data type
is a very interesting research direction [3].
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4.4 Detecting Duplicate Records

In the previous section, we surveyed some approaches that can be used to
match individual fields of a record. However, in most real-life situations, the
records consist of multiple fields, making the duplicate detection problem
much more complicated. In this section, we review methods that are used for
matching records with multiple fields. The presented methods can be broadly
divided into two categories:

- Approaches that rely on training data to “learn” how to match the records.
This category includes some probabilistic approaches and supervised ma-
chine learning techniques.

- Approaches that rely on domain knowledge or on generic distance metrics
to match records. This category includes approaches that use declarative
languages for matching, and approaches that devise appropriate distance
metrics for duplicate detection task.

The section is organized as follows: initially, in Section 4.4.1 we present
the probabilistic approaches for solving the duplicate detection problem. In
Section 4.4.2 we survey approaches using supervised machine learning tech-
niques, and in Section 4.4.3 we describe variations based on active learning
methods. Section 4.4.4 shows distance-based techniques, and Section 4.4.5
describes declarative approaches to the duplicate record detection. Finally,
Section 4.4.6 covers unsupervised learning techniques.

4.4.1 Probabilistic Matching Models

Firstly, let introduce some helpful concepts and the notation used to treat the
probabilistic models.

Notation

Let A and B denote the tables that we want to match and let assume, without
loss of generality, that A and B have n comparable fields. In the duplicate
detection problem, each tuple pair 〈α, β〉 where α ∈ A and β ∈ B, is assigned
to one of two classes M and U . The class M contains record pairs that repre-
sent the same entity (“match”) and the class U contains the record pairs that
represent two different entities(“non-match”).

Many matching problems are more constrained than this statement of the
problem. For instance, if each record in data source B refers a distinct entity,
a record in data source A cannot be matched to two records at the same time
in data source B. Cohen called this the constrained matching problem [37].
It is more generally referred to as 1-1 linkage in comparison to the alterna-
tive 1-many linkage. 1-1 linkage, since it has more constraints, is a harder
optimization problem [37].
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The generic j-th (with j = 1 . . . |A × B|) tuple pair 〈α, β〉 can be repre-
sented as a random vector xj = [x1, ..., xn]T in X , where X denotes the space
of all possible comparison vectors and T denotes the transpose of the vector.
The n components in x corresponds to the n comparable fields of A and B.
Each xj

i shows the level of agreement of the i-th field for the j-th record pair.
Many approaches use binary values for the xi’s and set xi = 1 if the field i
agrees and set xi = 0 otherwise. In order to have a less heavy notation, in the
following we often drop the superscript from the random vector x when its
sense is clear from the context.

A random vector may be characterized by a distribution probability func-
tion P (x) or by a density function p(x). In the record matching problem
we deal with random vectors drawn from the two classes M and U , each
of which is characterized by its own density function. This density function
is called conditional density and is expressed as p(x|M) and p(x|U) for the
classes M and U respectively. The a-priori probability is denoted with πM

and πU for the classes at hand. Since there are only two classes, the follow-
ing equality holds πM + πU = 1. The unconditional density function of a
comparison vector x, sometimes called mixture density function, is given by
p(x) = πM · p(x|M) + πU · p(x|U). Finally, the a-posteriori probabilities are
expressed as p(M |x) and p(U |x), and can be computed by using the Bayes
theorem.

Newcombe et al. [109] were the first to formalize duplicate detection as a
Bayesian inference problem. Essentially, the comparison vector x is the input
to a decision rule that assign x to U or M . The main assumption is that
x is a random vector whose conditional density functions and the a-priori
probabilities are assumed to be known.

In the following, we will discuss various techniques that have been devel-
oped for addressing this (general) decision problem.

The Bayes Decision Rule for Minimum Error

Let x be a comparison vector, randomly drawn from the comparison space that
corresponds to the pair 〈α, β〉. The goal is to determine whether 〈α, β〉 ∈ M or
〈α, β〉 ∈ U . To this purpose, the decision rule, based simply on probabilities,
can be written as follows:

〈α, β〉 ∈
{

M if p(M |x) ≥ p(U |x)
U otherwise (4.2)

This decision rule indicates that if the probability of the match class M
is larger than the probability of the non-match class U , then x is classified as
M , and viceversa. The Bayes theorem postulates that:

p(C|x) =
πC · p(x|C)

p(x)
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where C can take on the values of M or U . By using it, equation (4.2) can be
expressed as

〈α, β〉 ∈
{

M if l(x) = p(x|M)
p(x|U) ≥ πU

πM

U otherwise
(4.3)

The ratio:

l(x) =
p(x|M)
p(x|U)

(4.4)

is called likelihood ratio. The term πU

πM
denotes the threshold value of the

likelihood ratio for the decision. The decision rule that is described in (4.3)
is called Bayes test for minimum error.

In general, any decision rule which is based on probabilities, does not lead
to perfect classification. In order to evaluate the “performance” of a decision
rule, the probability of error (the probability for a sample to be assigned to a
wrong class) must be calculated. It can be easily shown [72] that the Bayes test
results in the smallest probability error, and thus it is an optimal classifier.

As discussed above, this method holds only when the conditional densities
and the a-priori probabilities are known. Unfortunately, this is a very rare
case. To this purpose, a common way consists in resorting to the Näıve Bayes
approach. It allows to compute the conditional densities on the base of a
conditional independence assumption. In practice, the probabilities p(xi|M)
and p(xj |M) are independent if i 
= j (similarly for p(xi|U) and p(xj |U)). In
that case, trivially we have:

p(x|M) =
n∏

i=1

p(xi|M)

p(x|U) =
n∏

i=1

p(xi|U)

The values of p(xi|M) and p(xi|U), the so-called marginal probabilities, can be
easily estimated by using a training set of pre-labeled record pairs. However,
the probabilistic model can also be used without resorting to training data.
For instance, Jaro [79] suggested using an Expectation-Maximization (EM)
algorithm [44] to estimate this conditional probabilities.

The Bayes Decision Rule for Minimum Cost

Often, in practice, the minimization of the probability of error, is not the best
criterion for creating decision rules, as the misclassifications of M and U may
have different consequences. Therefore, it is appropriate to assign a cost cij

to each situation, which is the cost of deciding that x belongs to the class i
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when x actually belongs to the class j. Then, the expected costs rM (x) and
rU (x) of deciding that x belongs to the class M and U respectively, are:

rM (x) = cMM · p(M |x) + cMU · p(U |x)
rU (x) = cUM · p(M |x) + cUU · p(U |x)

In that case, the decision rule for assigning x to M becomes:

〈α, β〉 ∈
{

M if rM (x) < rU (x)
U otherwise (4.5)

It can be easily proved [46], that the minimum cost decision rule for the
problem at hand, can be stated as:

〈α, β〉 ∈
{

M if l(x) > (cMU−cUU )·p(U)
(cUM−cMM)·p(M)

U otherwise
(4.6)

Comparing the minimum error and the minimum cost decision rule, we
notice that the two decision rules become the same for the special setting of
the cost functions to cUM −cMM = cMU −cUU . In this case, the cost functions
are termed symmetrical. For a symmetrical cost function, the cost becomes the
probability of error and the Bayes test for minimum cost specifically addresses
and minimizes this error. Different cost functions are generally used when a
wrong decision for one class is more critical than a wrong decision for the
other class.

Fellegi-Sunter Model (Decision with a Reject Region)

Using the Bayes decision rule when the distribution parameters are known,
leads to optimal results. However, even in this ideal scenario, when the like-
lihood ratio l(x) is close to the threshold, the error (or cost) of any decision
is high [46]. Based on this well-known and general idea on decision theory,
Fellegi and Sunter [50], suggested adding an extra “reject” class in addition
to the class M and U . This reject class contains record pairs for which it is not
possible to make any definite inference, and a “clerical review” is necessary.
In practice, these pairs need to be examined manually by experts to decide
whether they are true matches or not.

Fellegi and Sunter, making rigorous concepts introduced by Newcombe [109],
formalized this idea by defining a linkage rule that labels the pair into the
comparison space as:

- designated matches or links (in set A1).
- designated potential matches or potential links (in set A2).
- designated non-matches or non-links (in set A3).
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For the seek of simplicity, let m(x) indicate the conditional probability of
observing the comparison vector x in X given that the record pair 〈α, β〉 is a
true match. That is:

m(x) = p(x|M)

Similarly, let:

u(x) = p(x|U)

denote the conditional probability of observing x given that the record pair
is a true non-match.

There are two kinds of possible misclassification errors: false matches or
Type I error (the linkage rule places 〈α, β〉 ∈ M in A3), and false non-matches
or Type II error (the linkage rule places 〈α, β〉 ∈ U in A1). The probability of
a false match can be written as:

p(A1|U) =
∑
x∈X

u(x) · p(A1|x)

and a probability of a false non-match:

p(A3|M) =
∑
x∈X

m(x) · p(A3|x)

For fixed values of false match rate μ and false non-match rate λ, Fellegi
and Sunter define the optimal linkage rule on X at levels μ and λ, denoted by
L(μ, λ, X) as the rule for which P (A1|U) = μ, P (A3|M) = λ, and P (A2|L) ≤
P (A2|L′) for all other rules L′. Essentially, as stated in a theorem in [50], the
decision rule is optimal in the sense that, for any pair of fixed upper bounds on
the rates of false matches and false non-matches, the manual/clerical review
region is minimized over all decision rules on the same comparison space X .
By considering the likelihood ratio l(x) = p(x|M)

p(x|U) = m(x)
u(x) , the Fellegi-Sunter

linkage rule L(μ, λ, X) takes the form:

〈α, β〉 ∈

⎧⎨
⎩

A1 if l(x) > Tμ

A2 if Tλ ≤ l(x) ≤ Tμ

A3 if l(x) < Tλ

(4.7)

The cutoffs Tλ and Tμ are determined by the desired error rate bounds μ and
λ on the false match rates and false non-match rates, respectively. Figure 4.2
illustrates these three regions in terms of the degree of agreement of record
pair.

Under the assumption of the conditional independence of the components
of the comparison vector x, and by using a computationally convenient func-
tion for the likelihood ratio in (4.4) (e.g., the log2 function), the decision rule
above can be written as:
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Fig. 4.2. The three regions of the Fellegi-Sunter model

W = W (x) = log2

(
m(x)
u(x)

)
=

n∑
i=1

wi

where

wi = log2

(
m(xi)
u(xi)

)
= log2

(
p(xi|M)
p(xi|U)

)

W is called the total comparison weight associated with a generic pair 〈α, β〉,
and wi (i = 1, . . . , n) the individual comparison weights.

The optimality of the decision rule (4.3), and hence the goodness of the
Fellegi-Sunter probabilistic model, heavily depends on the accuracy of the
estimates of the weights wi, or more generally, of the probabilities m(x) and
u(x). These probabilities are also called matching parameters.

To this purpose, Fellegi and Sunter [50] were the first to observe that the
parameters needed for the decision rule in (4.3), could be obtained directly
from observed data if certain simplifying assumption were made. For each
x ∈ X , they considered:

p(x) = p(x|M) · p(M) + p(x|U) · p(U) (4.8)

and noted that the proportion of pairs having representation x ∈ X could be
computed directly from available data. If x consists of a simple agree/disagree
pattern associated with three variables satisfying the conditional indepen-
dence assumption that there exist vector constants (marginal probabilities)
m ≡ (m1, m2, . . . , mn) and u ≡ (u1, u2, . . . , un) such that, for all x ∈ X ,

p(x|M) =
n∏

i=1

mxi

i (1 − mi)(1−xi) (4.9)
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p(x|U) =
n∏

i=1

uxi

i (1 − ui)(1−xi) (4.10)

then, Fellegi and Sunter provide the seven solutions for the seven distinct
equations associated with (4.8).

However, if x ∈ X represents more than three variables, then it is pos-
sible to apply general equation-solving techniques such as the “method of
moments” [76]. Because the “method of moments” has shown numerical in-
stability in some record linkage applications [79] and with general mixture dis-
tributions [144], maximum-likelihood-based methods such as the Expectation-
Maximization (EM) algorithm [44, 100] is often used.

4.4.2 Supervised Learning

The probabilistic model uses a Bayesian approach to classify record pairs
into two classes M and U . This model was widely used for duplicate de-
tection tasks, usually as an application of the Fellegi-Sunter model. While
the Fellegi-Sunter approach dominated the field for more than two decades,
the development of new classification techniques in the machine learning and
statistics communities prompted the development of new de-duplication ap-
proaches. The supervised learning systems rely on the existence of training
data in the form of record pairs, pre-labeled as matching or not.

One set of supervised learning techniques treat each record pair 〈α, β〉 in-
dependently, similarly to the probabilistic approaches in Section 4.4.1. Cochin-
wala et al. in [32] describe a complete data reconciliation methodology to be
used for approximate record matching. Their approach relies on the incorpora-
tion of machine learning and statistical techniques for reducing the matching
complexity for large data sets. Fundamentally, this approach is based on select-
ing a machine learning algorithm to generate matching rules. After a specific
algorithm has been selected, parameters are pruned to yield a matching rule
of low complexity. Once the improved matching rule has been developed on
a sample data set, it can be applied to the original data set. The authors
in [32] experimented with three different learning techniques: the well-known
CART algorithm [16], which generates classification and regression trees, a
linear discriminant algorithm [72], which generates linear combination of the
parameters for separating the data according to their classes, and a “vector
quantization” approach, which is a generalization of nearest-neighbors algo-
rithms. The experiments that were conducted indicate that CART has the
smallest error percentage.

Bilenko et al. [12] use the SVM-light [80] to learn how to merge the match-
ing results for the individual fields of the records. In this paper, the authors
showed that the SVM approach usually outperforms simpler approaches, such
as treating the whole record as one large field.

A typical post-processing step for the techniques so far discussed (includ-
ing the probabilistic ones of Section 4.4.1) is to construct a graph for all the
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records in the database, linking together the matching records. Then, by using
the transitivity assumption, all the records that belong to the same connected
component are considered identical [104]. However, the transitivity assump-
tion can sometimes result in inconsistent decisions. For example, 〈α, β〉 and
〈α, γ〉 can be considered matches, but 〈β, γ〉 not. Partitioning such “incon-
sistent” graphs with the goal of minimizing inconsistencies is known as an
NP -complete problem [7]. Bansal et al. [7] propose a polynomial approxi-
mation algorithm that partitions such a graph, identifying automatically the
cluster and the number of cluster in the data set.

Cohen and Richman [37] proposed a supervised approach in which the sys-
tem learns from training data how to cluster together records that refer to the
same real-world entity. The main contribution of this approach is the adaptive
distance function which is learned from a given set of training examples.

Probabilistic supervised models that take into account interaction between
different entity resolution decisions have been proposed for named entity
recognition in natural language processing and for citation matching. Mc-
Callum and Wellner [99] employ conditional random fields (CRFs) for noun
co-reference. Their technique is equivalent to a graph partitioning technique
that tries to find the min-cut and the appropriate number of clusters for a
given data set, similarly to the work [7].

The supervised clustering techniques described above, have records as
nodes for the graph. Singla and Domingos [129] observed that by using at-
tribute values as nodes, it is possible to propagate information across nodes
and improve the duplicate record detection. For instance, if the records
(Google, Mountain View, CA) and (Google Inc., Mountain View, Califor-
nia) are deemed equal, then “CA” and “California” are also equal, and this
information can be useful for other record comparisons. The underlying as-
sumption is that the only differences are due to different representations of
the same entity (e.g., “Google” and “Google Inc.”) and that there is no erro-
neous information in the attribute values (e.g., by mistake someone entering
“Bismarck, ND” as the location of Google headquarter). Pasula et al. [110]
propose a formal relational approach that can handle a set of transformations.
This technique uses a type of Bayesian network called Relational Probabilistic
Model [55]. While this model can handle a large number of duplicate detection
problems, the use of exact inference results in a computationally intractable
model. To avoid the intractability issue, the authors propose to use a Markov
Chain Monte Carlo (MCMM) sampling algorithm.

4.4.3 Active Learning-Based Techniques

One of problems with the supervised learning techniques is the requirement
for a large number of training examples. While it is easy to create a large
number of training pairs that are either clearly non-duplicates or clearly du-
plicates, it is very difficult to generate ambiguous cases that would help to
create a highly accurate classifier. Based on this observation, some duplicate
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detection systems used active learning techniques [38] to automatically locate
such ambiguous pairs. Unlike an “ordinary” learner that is trained using a
static training set, an “active” learner actively picks subsets of instances from
unlabeled data, which, when labeled, will provide the highest information gain
to the learner.

Sarawagi and Bhamidipaty [125] designed ALIAS, a learning based du-
plicate detection system, that uses the idea of a “reject region” (see Sec-
tion 4.4.1) to significantly reduce the size of the training set. The main idea
behind ALIAS is that most duplicate and non-duplicate pairs are clearly dis-
tinct. For such pairs, the system can automatically categorize them in U and
M without the need of manual labeling. ALIAS requires humans to label pairs
only for cases where the uncertainty is high. This is similar to the “reject re-
gion” in the Fellegi-Sunter model, which marked ambiguous cases as cases
for a successive clerical review. Essentially, ALIAS works in this way. ALIAS
starts with small subsets of record pairs designed for training, which have
been characterized as either matched or unique. This initial set of labeled
data forms the training data for a preliminary classifier. Next, the initial clas-
sifier is used for predicting the status of unlabeled pairs of records. The initial
classifier will make clear determinations on some unlabeled instances but it
will lack determination on most. The goal is to seek out from the unlabeled
data, those instances which, when labeled, will improve the accuracy of the
classifier at the fastest possible rate. Pairs whose status is difficult to deter-
mine serve to strengthen the integrity of the learner. Conversely, instances in
which the learner can easily predict the status of the pairs do not have much
effect on the learner. Using this technique, ALIAS can quickly learn the pecu-
liarities of a data set and rapidly detect duplicates using only a small number
of training data.

Tejada et al. [141, 142] used a similar strategy and employed decision
trees to learn rules for matching records with multiple fields. Their method
suggested that, by creating multiple classifier trained by using slightly differ-
ent data or parameters, it is possible to detect ambiguous cases and then ask
the user for feedback. The key innovation in this work is the creation of sev-
eral redundant functions and the concurrent exploitation of their conflicting
actions in order to discover new kinds of inconsistencies among duplicates in
the data set.

4.4.4 Distance-Based Techniques

Probabilistic models require an accurate estimate of the probability parame-
ters. As so far discussed, a possible way consists in using the training data.
Indeed, for instance, when manually matched training data are available, these
probability parameters can be estimated in relatively straightforward manner.
However, in the absence of such training data, this estimate is not a trivial
task. As a result, the probabilistic decision models can be not suitable in
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such situations. To this purpose, in the following we review some interesting
distance-based techniques for comparing two records.

Monge and Elkan [103, 104] proposed a string matching algorithm for de-
tecting highly similar or potentially duplicate database records. The basic idea
was to apply a general purpose field matching algorithm (especially one that
is able to account for gaps in the strings) to play the role of duplicate detec-
tion algorithm. Cohen [34], instead, suggested the use of the tf-idf weighting
scheme from IR, together with the cosine similarity metric to measure the
similarity of records.

Ananthakrishna et al. [5] describe a similarity metric that uses not only
the textual similarity, but the “co-occurrence” similarity of two entries in a
database. For instance, the entries in the state column “CA” and “Califor-
nia” have small textual similarity. However, the city entries “San Francisco”,
“Los Angeles”, “San Diego” and so on, often have foreign keys pointing both
to “CA” and “California”. Therefore, it is possible to infer that “CA” and
“California” are equivalent. Ananthakrishna et al. show that by using “co-
occurrence” information, they can substantially improve the quality of dupli-
cate detection in databases that use multiple tables to store the entries of a
record. This approach is conceptually similar to the works [111, 41], which
examine the content of fields to locate the matching fields across two tables.

Guha et al. [70] propose a distance metric that is based on ranked list
merging. The main idea is that if only a field is used, the matching algorithm
can easily find the best matches and rank them according to their similar-
ity, putting the best matches first. By applying the same principle for all the
fields, n ranked lists of records, one for each field, are obtained. The goal is
then to create a rank of records that has minimum aggregate rank distance
when compared to all the n lists. In [70], the authors map the problem into
the minimum cost perfect matching problem, and develop efficient solutions
for identifying the top-k matching records. The first solution is based on the
Hungarian Algorithm [4], a graph-theoretic algorithm that solves the mini-
mum cost perfect matching problem. Still in [70], the authors also present the
Successive Shortest Paths algorithm that works well for smaller values of k
and it is based on the idea that it is not required to examine all potential
matches to identify the top-k matches.

Finally, Chaudhuri et al. [25] proposed a new framework for distance-based
duplicate detection, observing that the distance thresholds for detecting real
duplicate entries is different from each database tuple. In order to detect the
appropriate threshold, the authors observed that entries that correspond to
the same real world entity but have different representation in the database,
tend to have small distances from each other (compact set property), and to
have only a small number of other neighbors within a small distance (sparse
neighborhood property). Furthermore, Chaudhuri et al. propose an efficient al-
gorithm for computing the required threshold for each object in the database.
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4.4.5 Equational Theory Model

Wang and Madnick [149] proposed a rule-based approach for the duplicate
detection problem. For cases in which there is no global key, the authors
suggest the use of rules developed by expert to derive a set of attributes that
collectively serve as “key” for each record. For instance, an expert might define
rules such as:

if age<18 then driving license = no
else driving license = yes

if distance<5 then vehicle = bike
else vehicle = bus

Hopefully, by using such rules are obtained unique keys that can cluster multi-
ple records representing the same real-world entity. Lim et al. [91] also used a
rule-based approach, but with the extra restriction that the result of the rules
must always be correct. Therefore, the rules should not be heuristically-defined
but should reflect absolute truths and serve as functional dependencies.

Hernández and Stolfo [74] further developed this idea and derived an equa-
tional theory that dictates the logic of domain equivalence (not simply value
or string equivalence). The comparison of records to determine their equiva-
lence is a complex inferential process that consider much more information in
the compared records than the keys. For instance, if two person have similar
name spellings, and these persons have same address, we might infer that
they are the same person. On the other hand, let suppose that two records
have exactly the same SSN (social security number), but the names and the
addresses are completely different. Then, it could be either assumed that the
records represent the same person who changed his name or moved, or the
records represent different person and the SSN field is incorrect for one of
them. Without any further information, perhaps the latter can be assumed.
Obviously, the more information there is in the records, the better inference
can be made. A natural approach to specify such an inference in the equational
theory is the use of a declarative rule language. For instance, the following is
a rule that exemplifies one axiom of the equational theory developed for an
employee database:

for all (r1, r2) in EMPLOYEE do
if r1.name is similar to r2.name AND r1.address = r2.address
then

r1 matches r2;
end if

end for

Note that “similar to” is measured by one of the string comparison tech-
niques surveyed in Section 4.3, and “matches” means that those two records
represent the same person.
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AJAX [57] is a prototype system that provides a declarative language for
specifying data cleaning programs, consisting of SQL statements enhanced
with a set of primitive operations to express various cleaning transformations.
AJAX provides a framework wherein the logic of a data cleaning program is
modeled as a direct graph of data transformations starting from some input
source data. Four types of data transformations are provided: (1) the map-
ping transformations standardizes the data, (2) the matching transformations
finds pairs of records that probably refer to the same real-world entity, (3) the
clustering transformation groups together matching pairs with a high similar-
ity value, and finally (4) the merging transformation collapses each individual
cluster into a tuple of the resulting data source.

It is worth noticing that such rule-based approaches, which require a hu-
man expert to devise matching rules, typically result in systems with high
accuracy. However, this approach requires an high manual effort, by making
its deployment difficult in practice. Therefore, a possible approach can consist
in using a system that automatically generates matching rules from training
data (supervised and active learning techniques) and then manually tune the
generated rules.

4.4.6 Unsupervised Learning

As earlier discussed, the comparison space consists of comparison vectors
which contain information about the differences between fields in a pair of
records. Unless some information exists about which comparison vectors cor-
respond to which category (match, non-match, and possible match), the label-
ing of the comparison vectors in the training data set should be done manually.
One way to avoid manual labeling of the comparison vectors is to use cluster-
ing algorithms in order to group together similar comparison vectors. The key
idea behind most unsupervised learning approaches for duplicate detection is
that similar comparison vectors correspond to the same class.

The idea of using unsupervised approaches in the de-duplication task,
has its root in the probabilistic model proposed by Fellegi and Sunter [50](see
Section 4.4.1). As there discussed, when there are no training data to compute
the probability estimates, it is possible to use variations of the EM algrithm
to identify appropriate clusters in the data.

In some approaches, the use of bootstrapping techniques based on clus-
tering to learn matching models are proposed. The basic idea, also known
as co-training [14], is to use very few labeled data, and then use unsuper-
vised learning techniques to label appropriately the data with unknown labels.
In [147], the authors treat each entry of the comparison vector (which corre-
sponds to the result of a field comparison) as continuous, real variable. Then,
they partition the comparison space into clusters by using the AutoClass [27]
clustering tool. AutoClass uses probability models for describing the classes,
and it supports two kinds of models. The one was the multi-normal model
that implements a likelihood term representing a set of real valued attributes
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(each with constant measurement error and without missing values) which
are, given the class, conditionally independent of other attributes. The basic
premise is that each cluster contains comparison vectors with similar char-
acteristics. Therefore, all the record pairs in the cluster belong to the same
class (matches, non-matches, and possible-matches). Thus, by knowing the
real class of only a few vectors in each cluster, it is possible to infer the class
of all vectors in the cluster, and thus mark the corresponding record pairs as
matching or non-matching record pairs. Elfeky et al. [47] implemented this
method in TAILOR, a toolbox for detecting duplicate entries in data sets (for
further details see Section 4.6).

Ravikumar and Cohen [118] propose a hierarchical, graphical model in or-
der to discover matching record pairs. The idea behind this approach is to
model each field of the comparison vector as a latent binary variable which
shows whether the two fields match or not. Then, the latent variable defines
two probability distributions for the values of the corresponding “observed”
comparison variable. Ravikumar and Cohen show that it is easier to learn the
parameters of a hierarchical model than to attempt to directly model the dis-
tributions of the real-valued comparison vectors. Battacharya and Getoor [11]
propose to use the Latent Dirichlet Allocation generative model to perform
duplicate detection. In this model, the latent variable is a unique identifier for
each entity in the database.

4.5 Improving the Efficiency of Duplicate Detection

In our previous discussion about methods for detecting whether two records
refer to the same real entity, we focused mainly on the quality of the compar-
ison techniques. Instead, in this section we are interested in the efficiency of
the duplicate detection process.

A trivial technique for discovering matching entries in table A and B is to
execute a “nested-loop” comparison, i.e., to compare every record of table A
with every record in table B. Unfortunately, such a strategy requires a total
of |A| × |B| comparisons. Such an approach of quadratic order (in the overall
number of the input records) is prohibitively expensive even for moderately-
sized tables. To this purpose, in the following we describe some techniques
aiming at substantially reduce the number of required comparisons.

4.5.1 Blocking

One traditional method for identifying identical records in a database table
is to scan the table and compute the value of a hash function for each record.
The value of this hash function detects the “bucket” to which this record is
assigned. By definition, two records that are identical will be assigned to the
same bucket. Therefore, in order to locate duplicates, it suffices to compare
only the records that fall into the same bucket for matches. The “classic”
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hashing technique cannot be used directly for approximate duplicates, since
there is no guarantee that the hash value of two similar records will be the
same. However, in Section 4.5.3 we study a family of hashing functions able
to deal with the approximate matching problem.

An interesting counterpart of this method is named blocking. The term
blocking typically refers to the procedure of subdividing files into a set of mu-
tually exclusive subsets (blocks) under the assumption that no matches occur
across different blocks. Possible approaches to achieve these blocks involve
the usage of particular functions (e.g., the phonetic encodings) on highly dis-
criminating fields (e.g., last name) and then compare only records that have
similar, but not necessarily identical, fields.

Although blocking can increase the speed of the comparison process, it
can lead to an increased number of false mismatches due to the failure of
comparing records that not agree on the blocking field. Moreover, it can also
lead to an increased number of missed matches due to possible errors in the
blocking step that placed entries in wrong buckets.

Phonetic Encoding

Character-level and token-based similarity metrics, as viewed in Section 4.3,
focus on the string-based representation of the database records. However,
strings may be phonetically similar even if they are not similar in a character
or token level. Therefore, the idea behind the phonetic encoding is that words
phonetically similar share the same encode.

The most common coding scheme is known as the Russell Soundex code1.
Soundex is based on the assignment of identical code digits to phonetically
similar groups of consonants and is used mainly to match surnames. The rules
of Soundex code are as follows:

1. The first letter of the surname is not coded and serves as the prefix letter.
W and H are ignored completely.

2. Other letters are coded as follows:

- B, F, P, V → 1.
- C, G, J, K, Q, S, X, Z → 2.
- D, T → 3.
- L → 4.
- M, N → 5.
- R → 6.

3. A, E, I, O, U and Y are not coded but serve as separators (see below).

1 U.S. patents 1,261,167 and 1,435,663. Available at
http://patft.uspto.gov/netahtml/srchnum.htm.
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4. The sequences of identical codes are consolidated by keeping only the first
occurrence of the code.

5. Separators are dropped.
6. The letter prefix and the three first codes are kept. It there are fewer than

three codes, zeros are added.

The code is designed primarily for Caucasian surnames, but works well for
names of many different origins. However, when the names are principally of
east-asian origin, this code deteriorates because much of the discriminating
power of these names resides in the vowel sounds, which the code ignores.

New York State Identification and Intelligent System (NYSIIS), proposed
by Taft [139], differs from Soundex in that it retains information about the
position of vowels in the encoded word, by converting most vowels to the letter
A. Furthermore, NYSIIS does not use numbers to replace letters; instead it
replaces consonants with other phonetically similar letters, thus returning a
purely alphabetic code (no numeric component). Taft compared Soundex with
NYSIIS, using a name database of New York State and concluded that NYSIIS
is 98.72% accurate, while Soundex is 95.99% accurate for locate surnames.

Oxford Name Compression Algorithm (ONCA) [60] is a two stage tech-
nique, designed to overcome most of unsatisfactory features of pure Soundex
algorithm. In the first step, ONCA uses a British version of the NYSIIS
method of compression. Then, in second step, the transformed and partially
compressed name is “Soundexed” in the usual way. This two-stage technique
has been used successfully for blocking similar names together.

Philips [112] proposed the Metaphone algorithm as a better alternative
to Soundex. Philips suggested using 16 consonant sounds that can describe a
large number of sounds used in many English and non-English words.

Double Metaphone [113] is a better version of Metaphone, improving some
encodings choices made in the initial Metaphone and allowing multiple encod-
ings for names that have several pronunciations. For such cases, all possible
encodings are tested when trying to retrieve similar names. The introduction
of multiple phonetic encodings greatly enhances the matching performances,
with rather small overhead.

4.5.2 Sorted Neighborhood Approach

In [73] the authors describe the so-called sorted neighborhood approach. The
idea behind this approach consists in sorting the entire data-set in order to
bring all duplicate records close together. Indeed, after the sort, the compari-
son of records can be restricted to a small neighborhood within the sorted list.
The effectiveness of this approach is strictly related to the quality of the cho-
sen key used in the sorting. Choosing a few discriminant key will cause that
there is a very small possibility that a record will end up close to a matching
records after the sorting. Essentially, the sorted neighborhood method can be
summarized in three phases:
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1. Create key A key for each record in the list is computed by extracting
relevant fields or portions of fields.

2. Sort data The records in the database are sorted by using the key found
in the first step. A sorting key is defined as a sequences of attributes, or
a sequence of substrings within the attributes, appropriately chosen from
the record. Attributes that appear first in the key have higher priority
than those that appear subsequently.

3. Merge A fixed size window is moved through the sequential list of records
in order to limit the comparisons for matching records to those records in
the window. If the size of the window is w records, then every new record
entering the window is compared with the previous w − 1 records to find
“matching” records. The first record in the window slides out of it.

The sorted-neighborhood approach can be viewed as an extension, able to
identify approximate duplicates, of the standard method of detecting exact
duplicates in a database table described in [13]. Here, the idea is simply to
sort the table and then to check if neighboring tuples are identical.

Sorting and then matching within a window is the essential approach of a
Sort Merge Band Join as described in [45]. In this paper, the sort and merge
phase can be combined in one step. The main difference between [73] and [45]
resides in the use of a complex domain-dependent function (the equational
theory, see Section 4.4.5) to determine if records under consideration match.

Although, sorting the data may not be the dominant cost of the sorted
neighborhood approach, the authors, still in [73], consider an alternative tech-
nique, called clustering method, for sorting the entire databases. They propose
to partition the data-set into independent clusters using a key extracted from
the data. Then, for each one of the cluster generated in that way, the sorted
neighborhood method can be applied.

In order to improve the accuracy of the sorted neighborhood method,
the authors in [74] describe a multi-pass approach. The multi-pass strategy is
based on the execution of several independent runs of the sorted neighborhood
method, each time using a different key and a relatively small window. Each
independent run will produce a set of pairs of records that can be merged. The
transitive closure is then applied to those pairs of records. Therefore, the final
result will be a union of all pairs discovered by all independent runs (with no
duplicates), plus all those pairs inferred by means of the application of the
transitive closure to the records matched in the different passes.

4.5.3 Locality Sensitive Hashing Functions

The Locality Sensitive Hashing (LSH) functions were introduced by Indyk and
Motwani [77] for efficiently answering approximate nearest neighbor queries
on a collection of objects.

By definition, a locality sensitive hashing function H for a generic set S
equipped with a distance function D, is a function which bounds the prob-
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ability of collisions to the distance between elements. Formally, given H , for
each pair 〈α, β〉 ∈ S and value ε, there exists values P ε

1 and P ε
2 such that:

- if D(α, β) ≤ ε then Pr[H(α) = H(β)] ≥ P ε
1

- if D(α, β) > ε then Pr[H(α) = H(β)] > P ε
2

The key idea behind this approach that make it helpful in the de-
duplication scenario, is that two similar objects (according to a similarity
metric) “processed” with the same locality sensitive function H , probably
tend to have the same hashing encode. Intuitively, the LSH functions can be
exploited to build hash-based indexing schemes able to put similar records
into the same bucket.

The min-wise independent permutations [19] represent a particular in-
stance of the LSH function family. The theory of min-wise independent permu-
tations became popular since it is essential to the algorithm used by AltaVista
web index software to detect and filter near duplicate documents [20].

Formally, an exactly min-wise independent permutation is a coding func-
tion π of a set X of generic items, such that, for each x ∈ X :

Pr[min(π(X)) = π(x)] =
1
X

(4.11)

In other words, is required that all items of any fixed set X have equal chance
to become the minimum element of the image of X under π. A randomly
chosen min-wise independent permutation π, for each two set X and Y , ensure
that:

Pr[min(π(X)) = min(π(Y ))] =
|X ∩ Y |
|X ∪ Y | (4.12)

On the basis of this property, it becomes clear that two records α and β
sharing much fields (i.e., with a high Jaccard similarity), in a probabilistic
manner tend to have the same hashing encode and then to fall into the same
bucket.

In order to implement such a bucketing scheme, the key point is the defi-
nition of a proper family of min-wise independent permutations. However, in
practice we have to deal with the sad consideration that is hard to define a
family of exactly min-wise independent permutations. Thus, we are led to al-
low certain relaxations and to consider smaller families of permutations that
still satisfy the min-wise independence condition given by Equation (4.11),
since min-wise independence is necessary and sufficient for Equation (4.12)
to hold. Essentially, small relative errors can be accepted, and a family of
approximatively min-wise independent permutations with relative error δ can
be defined as: ∣∣∣∣Pr[min(π(X)) = π(x)] − 1

X

∣∣∣∣ ≤ δ

X
(4.13)
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In other words is required that all the elements x ∈ X have only almost equal
chance to become the minimum element of the image of X under π.

Subsequently, in the Chapter 6, we exploit a family of “practically” min-
wise independent permutations (already used by Broder et al. in [20]) in order
to build an effective hashing scheme able to cluster duplicate records in a
database.

4.5.4 Clustering and Canopies

Priority Queue Algorithm

The authors in [104] try to improve the performance of a basic “nested-loop”
record comparison, by assuming that duplicate detection is transitive. This
means that if the record α is deemed duplicate of the record β and β is deemed
duplicate of the record γ, then α and γ are also duplicates. Under the assump-
tion of transitivity, the problem of detecting duplicates in a database can be
described in terms of determining the connected components of an undirected
graph. At any time, the connected components of this graph correspond to the
transitive closure of the “is a duplicate of” relationships discovered so far. The
main idea behind this approach consists in querying the graph before to apply
any expensive pairwise record matching algorithm to two records. Indeed, if
both records are in the same connected component, then it has been previ-
ously determined that they are duplicate, and the comparison is not needed. If
they belong to different components, then it is unknown whether they match
or not. If comparing the two records results in a match, a new edge between
the vertices that corresponds to the records compared, is inserted.

There is a well-known data structure that efficiently solves the problem
of determining and maintaining the connected components of an undirect
graph: the union-find data structure [140, 39]. This data structure provides
two operations:

- Union(x, y) combines the sets that contain node x and node y (Sx and Sy

respectively) into a new set that is their union Sx ∪ Sy. A representative
for the union is chosen and the new set replaces Sx and Sy in the collection
of disjoint sets.

- Find(x) returns the representative of the unique set containing x.

The proposed algorithm uses two passes. The first one, treats each record
as one long string and sorts all the records lexicographically, reading from
left to right. The second pass does the same reading from right to left. The
algorithm uses a priority queue of sets of records belonging to the last few clus-
ters detected. The algorithm scans the database sequentially and determines
whether each scanned record is or is not a member of a cluster represented
in the priority queue. To determine cluster membership, the algorithm uses
the Find operation above described. If the record is already a member of
any cluster kept in the priority queue, then the next record is scanned. If the
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record is not a member of any cluster, then the record is compared with the
representative of each cluster in the priority queue using the Smith-Waterman
matching algorithm (see Section 4.3.1). If one of this comparisons succeeds,
then the record belongs to this cluster and the Union operation is performed
on the two sets. On the other hand, if all comparisons fail, then the record
must be a member of a new cluster not currently represented in the priority
queue. Essentially, the concept behind this approach is that if a record α is not
similar to a record β already in the cluster, then it will not match the other
members of the cluster either. Therefore, it is clear that the total number of
record comparisons will be reduced.

Canopies

In [98] the authors propose a new efficient clustering technique for speeding
up the duplicate detection process. The key idea of the canopy algorithm is
that one can greatly reduce the number of distance computations required
for clustering, by first cheaply partitioning the data into overlapping subsets,
and then only measuring distances among pairs of records that belong to a
common subset.

More in detail, this approach works in two stages. In the first stage, a
cheap distance measure that divides the data into overlapping subsets called
“canopies” is used. A canopy is simply a subset of records that, according
to the approximate similarity measure, are within some distance threshold
from a “central point”. Significantly, a record may appear under more than
one canopy, and every element must appear in at least one canopy. This is
in contrast with the blocking strategy that requires hard, non-overlapping
partitions. In the second stage, a traditional clustering algorithm (e.g., Greedy
agglomerative clustering or K-means) using a more expensive similarity metric
is executed. However, significant computation is saved by eliminating all of
distance comparisons among records that do not fall within a common canopy.

Essentially, the assumption behind the use of this method is that there is
an inexpensive similarity function that can compensate for another, more ex-
pensive function. Therefore, very important is the choice of this cheap distance
metric. In some cases, this choice could be trivial. For example, if the data
consists of a large number of hospital patient records including diagnoses and
payment histories, a cheap measure of similarity between the patients might
be “1” if they have a diagnosis in common and “0” if they do not. In this case
canopy creation is very easy: people with a common diagnosis fall in the same
canopy.

In the following, a brief review of some well-known approaches in litera-
ture, regarding the choice of an approximate distance to build canopies, will
be described. In [37] the authors propose the tf-idf similarity metric as a
canopy distance, and then use multiple (expensive) similarity metrics to infer
whether two records are duplicates. Gravano et al. in [65] propose to use the
string lengths and the number of common q-grams of two strings as canopies
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for the edit distance metric, which is expensive to compute in a relational
database. The advantage of this technique is that the canopy functions can
be evaluated efficiently using vanilla SQL statements. In a similar fashion,
Chaudhuri et al. [24] propose using an indexable canopy function for easily
identifying similar tuples in a database. Baxter et al. [9] perform an experi-
mental comparison of canopy-based approaches with traditional blocking and
show that the flexible nature of canopies can significantly improve the quality
and speed of duplicate detection process.

4.5.5 Set Joins

Another direction towards efficiently implementing data de-duplication oper-
ations is to speed-up the execution of set operations. Large number of similar-
ity metrics, discussed in Section 4.3, use set operations as part of the overall
computation. Running set operations on all pair combinations is a computa-
tionally expensive operation and is typically unnecessary. For de-duplication
applications, the interesting pairs are only those in which the similarity value
is high. Many techniques use this property and suggest algorithms for fast
computation of set-based operations on a set of records.

Cohen [34] proposed using a set of in-memory inverted indexes with a
search algorithm to locate the top-k most similar pairs, according to the co-
sine similarity metric. Soffer et al. [135], mainly in the context of informa-
tion retrieval, suggest pruning the inverted index, removing terms with low
weights since they do not contribute much to the computation of the tf-idf
cosine similarity. Gravano et al. [66] present an SQL-based approach that
is analogous to the approach in [135], and allows fast computation of cosine
similarity within an RDBMS. Mamoulis [94] presents techniques for efficiently
processing a set join in a database, focusing on the containment and non-zero-
overlap operators. Mamoulis shows that inverted indexes are tipically superior
to the approaches based on signature files, confirming earlier comparison stud-
ies [160]. The authors in [126] extend the set joins approach to a large number
of similarity predicates that use set joins. The Probe-Cluster approach here
proposed, works well in environments with limited main memory, and can be
used to compute efficiently a large number of similarity predicates, in contrast
to the previous approaches which were tuned for a small number of similarity
predicates (e.g., set containment or cosine similarity). Furthermore, Probe-
Cluster returns exact values for the similarity metrics, in contrast to previous
approaches which use approximation techniques.

4.6 Systems

Recently, several industrial tools for de-duplicating data was developed. In
this section we review some of such tools.
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The Febrl system2 (Freely Extensible Biomedical Record Linkage) is an
open-source data cleaning toolkit, and it has two main components: the first
component deals with data standardization and the second perform the ac-
tual duplicate detection. The data standardization relies mainly on hidden
Markov models (HMMs). Therefore this system typically requires a training
phase to correctly parse the database entries. For the actual duplicate detec-
tion phase, Febrl implements a variety of string similarity metrics: Jaro, Edit
distance, and q-gram distance (see Section 4.3.1). Moreover, Febrl supports
phonetic encodings (Soundex, NYSIIS, and Double Metaphone reviewed in
Section 4.5.1) to detect similar names. Since phonetic similarity is sensitive
to errors in the first letter of a name, Febrl also computes phonetic similarity
using the reversed version of the name string, then avoiding the “first-letter”
sensitivity problem.

TAILOR [47] is a felxible record matching toolbox, which allows the users
to apply different duplicate detection methods on the data sets. The flexibility
of using multiple models is useful when the users do not know which dupli-
cate detection model will perform most effectively on their particular data.
TAILOR follows a layered design, separating comparison functions from the
duplicate detection logic. Furthermore, the execution strategies, which aim
is to improve the efficiency, are implemented in a separate layer, making the
system more extensible than systems that rely on monolithic designs. Finally,
TAILOR report statistics such as estimated accuracy and completeness, which
can help the users understand how a duplicate detection model performs over
a data set.

WHIRL3 is a duplicate detection system freely available for academic and
research purposes. WHIRL uses the tf-idf token-based similarity metric to
identify similar strings within two lists. The Flamingo project4 is a similar
tool that takes as input two string lists and returns the strings pair that are
within a fixed edit distance threshold.

WizSame by WizSoft is a product (not freely available) that allows the
discovery of duplicate records in a database. The matching algorithm used
in this tool is very similar to SoftTF − IDF (see Section 4.3.2): two records
match if they contain a significant fraction of identical or similar words, where
similar are the words that are within an edit distance of 1.

BigMatch [155] is the duplicate detection program used by the U.S. Census
Bureau. It relies on several blocking strategies to identify potential matches
between the records of two relations, and scales well for very large data sets.
The only requirements is that one of the two relations should fit in memory.
This is possible even for relations with 100 million records. More specifically,
the purpose of the BigMatch tool is to function as a preprocessor,that is
rather than performing sophisticated duplicate detection, it generates a set of

2 available at http://sourceforge.net/projects/febrl
3 available at http://www.cs.cmu.edu/˜wcohen/whirl/
4 available at http://www.ics.uci.edu/˜flamingo/
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candidates pairs that should be then processed by more appropriate record
linkage algorithms.

Finally, to the best of our knowledge, no database vendors provide suffi-
cient tools for duplicate record detection task. Until now, most of the efforts
are focused on creating easy-to-use ETL (Extraction, Transformation, Load-
ing) tools, that can standardize database records and fix min errors, mainly in
the context of address data. Today, another typical function of the tools is the
ability to use reference tables and standardize entities having multiple well-
known representations. For instance, the computer science journal “TODS”
is also frequently referred as “ACM TODS” or as “Transactions on Database
Systems”. A very recent positive step is the insertion of multiple data clean-
ing operators within Microsoft SQL Server Integration Services, which is part
of Microsoft SQL Server 2005. For instance, SQL Server 2005 consents to
perform “fuzzy matches” and implements “error-tolerable indexes” allowing
for fast execution of such approximate lookups. In order to discover possible
matching records, the SoftTF − IDF similarity metric is adopted.

4.7 Conclusions

In this chapter, we presented a survey of the existing techniques used for de-
tecting non-identical duplicate entries in database records. As database sys-
tems are becoming more and more pervasive, data de-duplication is going to be
the cornerstone for managing systems which accumulate vast amounts of er-
rors on daily basis. However, several issues are still open in the de-duplication
scenario.

First of all, it is unclear which metrics and techniques should be used
for a given duplicate detection task. Some studies exist in literature that
compare the effectiveness of the various distance metrics so far presented.
For instance, Yancey [156] shows that the Jaro-Winkler metric works well in
name matching tasks for data coming from U.S. Census. Bilenko et al. [12],
by comparing the effectiveness of character-based and token-based similarity
metrics, showed that the SoftTF − IDF metric works better than any other
metric. Actually, no single metric is suitable for all data sets. Metrics that
demonstrate robustness and high-performances when deal with some data
sets, can perform poorly on others. Therefore, the duplicate record detection
can be considered as a highly data-dependent task. Under this perspective,
the problem of choosing the best method for duplicate record detection is very
similar to the problem of model selection and performance prediction for Data
Mining.

Currently, two main research areas study the duplicate detection problem.
The research on databases tends towards relatively simple and fast “ad-hoc”
duplicate detection techniques able to deal with millions of records. Such
approaches typically rely on the existence of training data, and emphasize
efficiency over effectiveness. On the other hand, research in machine learning
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and statistics aims to develop more sophisticated matching techniques relying
on probabilistic models. However, probabilistic inference techniques are prac-
tical today only for data sets that are one or two orders of magnitude smaller
than the data sets handled by ad-hoc techniques.

A promising direction for the future research could consist in devising
techniques that combine the best of both worlds.





5

An Incremental Clustering Approach to Data

Reconciliation

5.1 Introduction

Recognizing similarities in large collections of data is a major issue in the
context of information integration systems. An important challenge in such a
setting is to discover and properly manage duplicate tuples, i.e., syntactically
different tuples which are actually identical from a semantical viewpoint, for
they referring to the same real-world entity. There are several application
scenarios involving this important task. A typical example consists in the
reconciliation of demographic data sources in a data warehousing setting.
Names and addresses can be stored in rather different formats, thus raising the
need for an effective reconciliation strategy which could be crucial for effective
decision making. In such cases the problem is the analysis of a (typically
large) volume of small strings, in order to reconstruct the semantic information
on the basis of the few syntactic information available. Let consider, e.g., a
banking scenario, in which the main interest is to rank the credit risk of a
customer by looking at the past insolvency history. Since information about
payments may come from different sources, each of which using a possibly
different format for storing the data, de-duplicating demographic tuples is
crucial in order to correctly monitor customer behavior.

In such application scenarios, there is in general little syntactic information
associated with each tuple. A tuple is usually obtained from a legacy system,
and is represented by a (small) sequence of strings, and no typing information
is available. Thus, by assuming that each possible string represents a dimen-
sion along which the information contained in a tuple can projected, tuples
represent a small informative content in a high-dimensional space.

In the literature, the problem of tuple de-duplication has been dealt with
mainly from an accuracy viewpoint, by taking care to the minimization of in-
correct matchings (for a detailed analysis of the current literature, see Chap-
ter 4). However, efficiency and scalability issues do play a predominant role in
many application contexts where large data volumes are involved, especially
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when the object-identification task is part of an interactive application, calling
for short response times.

Consider again the banking scenario: data collected on a daily basis typically
consists of 500,000 instances, representing credit transactions performed by
customers throughout the various agencies. In such a case the simple solution
of comparing all database instances in a pairwise way, according to some given
similarity measure, is clearly impractical. For example, for a set of 30,000,000
tuples (i.e., data collected in a 2 months-monitoring), this simple method
would require O(1015) (a quadrillion) comparisons. This is clearly infeasible.

In general, the large volume of involved data imposes severe restrictions
on the design of data structures and algorithms for data de-duplication, and
disqualifies any approach requiring quadratic time in the database size or pro-
ducing many random disk accesses and continuous paging activities. Thus, in
this chapter our main objective is to devise a scalable method for duplicate
detection that can be profitably applied to large databases. We approach
the problem from a clustering perspective: given a set of tuples, recogniz-
ing subsets (clusters) of tuples such that intra-cluster similarity is high, and
inter-cluster similarity is low. Three main features make the problem at hand
significantly different from traditional approaches:

- tuples are represented as (small) sequences of tokens, where the set of
possible tokens is high;

- the number of clusters is too high to allow the adoption of traditional
clustering techniques, and

- the streaming (constantly increasing) nature of the data imposes linear-
time algorithms for clustering.

The solution we propose essentially relies on an efficient clustering tech-
nique that allows to discover all clusters containing duplicate tuples in an
incremental way. The core of the approach is the usage of a suitable indexing
technique which, for any newly arrived tuple μ, allows to efficiently retrieve
a set of tuples in the database which are likely mostly similar μ, and hence
are expected to refer to the same real-world entity associated with μ. The
proposed indexing technique is based on a hashing scheme, which tends to
assign objects with high similarity to the same buckets.

More in detail, in this chapter we propose an indexing scheme tailored to a
set-based distance function, and the management of each tuple was faced at a
coarser granularity. In Chapter 6, we next extend and improve this proposal in
both effectiveness and efficiency, by allowing for a direct control on the degree
of granularity needed to properly discover the actual neighbors (duplicates)
of a tuple.

This chapter is organized as follows. In Section 5.2, we first formalize the dis-
covery of duplicate objects as a specific clustering problem. Then, Section 5.3
illustrates an efficient technique that is able to discover all clusters containing
duplicate tuples in an incremental way. The core of this approach is the effec-
tive hash-based indexing technique proposed in Section 5.4. In Section 5.5, we
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show experimental results demonstrating that the hash-based method allows
to obtain considerable improvement in efficiency w.r.t. a state-of-art indexing
approach (M-tree). In Section 5.6, we shortly perform a qualitative compari-
son with some relevant proposals in literature mostly related to our approach.
Finally, in Section 5.7 some conclusions are drawn.

5.2 Problem statement

In the following we introduce the basic notation and some preliminary defini-
tions. An item domain M = {a1, a2, . . . , am} is a collection of items. We as-
sume m to be very large: typically, M represents the set of all possible strings
available from a given alphabet. Moreover, we assume that M is equipped
with a distance function distM(·, ·) : M×M �→ [0, 1], expressing the degree
of dissimilarity between two generic items ai and aj .

A tuple μ is a subset of M. An example tuple is:

{Alfred, Whilem, Salisbury, Hill, 3001, London}
representing registry information about a subject. Notice that, a more ap-
propriate representation can take into account a relational schema in which
each tuple fits. For example, in the above schema, a more informative set-
ting requires to segment the tuples into the fields NAME, ADDRESS, CITY,
and to associate an itemset to each field: μ[NAME] = {Alfred, Whilem},
μ[ADDRESS] = {Salisbury, Hill, 3001}, μ[CITY] = {London}.

For ease of presentation, we shall omit such details: the results which follow
can be easily generalized to such a similar context.

We assume that the set of all tuples is equipped with a distance function,
dist(μ, ν) ∈ [0, 1], which can be defined for comparing any two tuples μ and
ν, by suitably combining the distance values computed through distM on the
values of matching fields. In the following, we assume that both dist(μ, ν) and
distM are defined in terms of the Jaccard coefficient.

The core of de-duplication problem can be roughly stated also in this form:
detecting, within a database DB = {μ1, . . . , μN} of tuples, a suitable parti-
tioning {C1, . . . , CK} of the tuples, such that for each group Ci, intra-group
similarity is high and extra-group similarity is low. For example, the dataset:

μ1 Jeff, Lynch, Maverick, Road, 181, Woodstock

μ2 Anne, Talung, 307, East, 53rd, Street, NYC

μ3 Jeff, Alf., Lynch, Maverick, Rd, Woodstock, NY

μ4 Anne, Talug, 53rd, Street, NYC

μ5 Mary, Anne, Talung, 307, East, 53rd, Street, NYC

can be partitioned into C1 = {μ1, μ3} and C2 = {μ2, μ4, μ5}.
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This is essentially a clustering problem, but it is formulated in a specific
situation, where there are several pairs of tuples in DB that are quite dissimilar
from each other. This can be formalized by assuming that the size of the set
{〈μi, μj〉 | dist(μi, μj) � 1 } is O(N2): thus, we can expect the number K of
clusters to be very high – typically, O(N). Moreover, we intend to cope with
the clustering problem in an incremental setting, where a new database DBΔ

must be integrated with a previously reconciled one DB. Practically speaking,
the cost of clustering tuples in DBΔ must be (almost) independent of the size
N of DB.

5.3 A Clustering Approach to Data Reconciliation

The key issue in the problem described above, is the capability of detecting
cluster membership for a generic tuple μi by means of a minimal number of
comparisons. This can be achieved by exploiting a proper k-Neirest Neigh-
bor technique, in which the k nearest neighbors of μi are efficiently extracted
from the given database. Algorithm 5.1 summarizes our solution to the data
reconciliation problem. Notably, the clustering method is parametric w.r.t.
the distance function used to compare any two tuples, and is defined in an
incremental way, for it allowing to integrate a new set of tuples into a previ-
ously computed partition. In fact, the algorithm receives a database DB and
an associated partition P , besides the set of new tuples DBΔ; as a result, it
will produce a new partition P ′ of DB ∪ DBΔ, obtained by adapting P with
the tuples from DBΔ. To this purpose, each tuple in DBΔ is associated with a
cluster in P , detected through a sort of nearest-neighbor classification scheme.
The basic intuition in the proposed approach is that, since the number of clus-
ters is high (typically O(N)), then it suffices to compare few “close” neighbors
in order to obtain the appropriate cluster membership.

In more detail, for each tuple μi in DB to be clustered, the neighbors of μi

are retrieved by means of procedure kNearestNeighbor, which performs a
search for the k most prominent neighbors and using μi as query object. The
cluster membership for μi is determined by calling the MostLikelyClass
procedure, which estimate the most likely cluster among the ones associated
with the neighbors of μi. Such an estimation is carried out via a voting strat-
egy, where each neighbor μj of μi votes for the cluster it belongs to, by adding
a contribution 1

dist (μi,μj)
to the score of its cluster.

The score of each cluster is normalized by dividing it by the number of tuples
that voted for the cluster; tuple μi is then assigned to the cluster receiving the
highest normalized score, provided that this is greater than a given threshold
(in our usual setting we use 0.5 as threshold). If such a cluster does not exist,
μi is estimated not to belong to any of the existing clusters with a sufficient
degree of certainty, and hence it is assigned to a newly generated cluster.
Finally, procedure Propagate is meant to scan the neighbors of μi in order



5.3 A Clustering Approach to Data Reconciliation 117

Generate-Clusters(P ,DBΔ,k)

Output: A partition P ′ of DB ∪DBΔ;

1: P ′ ← P ; DB′ ← DB;

2: Let P ′ = {C1, . . . , Cm} and DBΔ = {μ1, . . . , μn};
3: for i = 1 . . . n do

4: neighbors ← kNearestNeighbor(DB′, μi, k);

5: Cj ←MostLikelyClass(neighbors ,P ′);

6: DB′ ← DB′ ∪ {μi};
7: if Cj = ∅ then

8: create a new cluster Cm+1 = {μi};
9: P ′ ← P ′ ∪ {Cm+1};
10: else

11: Cj ← Cj ∪ {μi};
12: Propagate(neighbors,P ′);

13: end if

14: end for

Propagate(S,P)

P1: for all μ ∈ S do

P2: neighbors ← kNearestNeighbor(DB, μ, k);

P3: C ←MostLikelyClass(neighbors ,P);

P4: if μ �∈ C then

P5: C ← C ∪ {μ};
P6: Propagate(neighbors,P);

P7: end if

P8: end for

Fig. 5.1. Clustering algorithm

to possibly revise their cluster memberships, since in principle they could be
affected by the insertion of μi. In particular, for each tuple μj in its input
set, the membership of μj is estimated again by MostLikelyClass, and,
if it does not agree with the cluster actually containing μj , the membership
of μj is updated, and Propagate is recursively applied to the neighbors of
μj . In principle, this task might be iterated over each reassigned tuple, and
could then be of linear complexity w.r.t. the size of DB. Notice that, in typical
Entity Resolution settings, where clusters are quite distant from each other,
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the propagation affects only a reduced number of tuples, and ends in a low
number of iterations.

It is worth remarking that the complexity of Algorithm 5.1, given the size
N of DB and M of DBΔ, depends on the three major tasks: the search for
neighbors (line 4, having cost n), the voting procedure (line 5, with a cost
proportional to k), and the propagation of cluster labels (line 12, having a
cost proportional to n, based on the discussion above). As they are performed
for each tuple in DBΔ, the overall complexity is O(M(n + k)). Since k is
O(1), it follows that the main contribution to the complexity of the clustering
procedure is due to the cost O(n) of the kNearestNeighbor procedure.
Therefore, the main efforts towards computational savings are to be addressed
in designing an efficient method for neighbor search. Our main goal is doing
this task by minimizing the number of accesses to the database, and avoiding
the computation of all pair-wise distances.

5.4 Optimizing the Search for Neighbors

As above described, the procedure kNearestNeighbor plays a fundamental
role in the performance of the algorithm specified in Figure 5.1. Therefore,
in order to efficiently retrieve the neighbors of the current tuple, we need
to resort to an indexing scheme that can support the execution of similarity
queries, and can be incrementally populated with new tuples. In the follow-
ing we describe two main indexing schemes which have been investigated for
being embedded in our approach: the M-tree index, specifically designed for
searching in metric spaces, and a novel index based on hashing. Both these
structures support an efficient implementation on secondary memory, in order
to ensure the scalability of the overall approach even in presence of large data
volumes.

5.4.1 Exploiting an M-Tree

An M-tree [30] is an original index/storage structure, which looks like a n-ary
tree, and exhibits the following major features:

- it is a paged, balanced, and dynamic secondary-memory structure able to
index data sets from generic metric spaces.

- similarity range and nearest-neighbor queries can be performed and results
can be ranked with respect to a given query object.

- query execution is optimized to reduce both the number of pages read and
the number of distance computations.

The tree structure is capable of indexing generic objects, provided that a
suitable distance metric is defined for comparing them. The interesting point
of the M-tree structure is that it represents a balanced hierarchical clustering
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structure, in which each cluster has a fixed size (related to the size of a page to
be stored on disk). Thus, a similarity search can be accomplished by traversing
the tree, and ignoring subtrees reputed uninteresting for the search purpose.
Indeed, each entry in a non-leaf node stores a pointer to a node t at the
next lower level along with summary information about the contents of the
subtree rooted in t. In particular, entries store routing objects, i.e., database
objects representing that are given a routing role by some specific promotion
algorithm. Each routing object Or is associated with a pointer referencing the
root of a sub-tree T (Or), named the covering tree of Or , and with a covering
radius r(Or), guaranteeing that all objects in the covering tree of Or are
within the distance r(Or) from Or.

A similarity search with a given object query q and a search-radius ε, can be
efficiently performed on the M-tree with a straightforward traversal. Indeed,
at each non-leaf node storing a routing object Or, the comparison between
distance(q, Or) and r(Or) allows to decide whether the corresponding subtree
T (Or) contains candidate neighbors (and hence whether it has to be explored
or not). It is worth noticing that the values actually stored for covering radii,
hence, strongly affect the performances of the index: the smaller the radii, the
more selective and effective will be a search.

The above described peculiarities, combined with its generality, make the
M-tree particularly worthwhile to consider in our setting. However, the bene-
fits of this indexing structure is likely to degrade in a typical entity resolution
scenario. Notably, in such a setting, most of the internal nodes in the tree
tend to correspond to a quite “heterogeneous” set of tuples, and hence a high
number of levels, i.e., nearly linear in the number of distinct entities, is re-
quired to suitably partition the whole dataset. In other words, the presence
of several heterogenous objects raises the size of the covering radii, especially
at higher levels. This causes a general degradation in the performance of the
tree structure.

5.4.2 Hash-based Indexing Schema

A substantial improvement to the performance of the Generate-Clusters
algorithm can be achieved by exploiting a hash-based indexing scheme, which
could guarantee the execution of neighbor searches in a time that does not
depend on the number of database tuples, and can be incrementally updated
with new tuples.

The basic idea is to map any tuple to a proper set of features, so that the
similarity between two tuples can be evaluated by simply looking at their
respective features. Under this perspective, the role of the hashing schema is
to maintain the association between tuples and the corresponding features,
so that the neighbors of a tuple μ can be efficiently computed, by simply
retrieving the tuples that appear in the same buckets which correspond to μ.
To this purpose, a hash-based index structure, simply called Hash Index, was
introduced, which consists of a pair H = 〈FI, ES〉, where:
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- ES, referred to as External Store, is a storage structure devoted to manage
a set of tuple buckets through an optimized usage of disk pages: each
bucket gathers tuples that are estimated to be similar to each other, for
they sharing a relevant set of properly defined features;

- FI, referred to as Feature Index, is an indexing structure which, for each
given feature s, allows to efficiently recognize all the buckets in ES that
contain tuples exhibiting s.

Figure 5.2 illustrates how such an index can be exploited for performing
nearest-neighbor searches, and then supporting the whole clustering approach
previously described. The algorithm works according to the number k of de-
sired neighbors.

kNearestNeighbors(DB,μ,k)

1: Let S = {s | s is a relevant feature of μ};
2: N ← ∅;
3: while S �= ∅ do

4: x = S.Extract();

5: h ← FI .Search(x);

6: if (h = 0) then

7: h ← FI .Insert(x);

8: else

9: while ν = ES .Read(h) do

10: if N .size < k or dist(μ, ν) < N .MaxDist() then

11: N .Insert(ν,dist(μ, ν));

12: end if

13: end while

14: end if

15: ES .Insert(μ, h);

16: end while

17: return N ;

Fig. 5.2. The kNearestNeighbor procedure

The algorithm uses two auxiliary structures, namely the set S of features
to be generated, and the set N of neighbor tuples to return as an answer.
For convenience, tuples in N are sorted according to their distance from the
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query tuple μ. More in detail, lines 3-16 specify how the set N is filled. First,
a feature x is extracted (line 4), and the FI.Search method is exploited to
retrieve the logical address of the bucket associated with x. For each of these
buckets, lines 9-13 iteratively extract the tuples it contain (using ES.Read)
and try to insert them into N . Specifically, a tuple ν can be inserted within
N in two cases: (i) the size of N does not exceed its capacity, or (ii) N
capacity is k, but it contains an element whose distance from μ is higher
than the distance between ν and μ – actually, N .MaxDist() here denotes
the maximum distance between μ and any tuple in N . If needed, the element
least similar to μ is removed from N , in order to make room for ν. As a side
effect, the algorithm updates FI and ES, in order to correctly refer to the
novel tuple μ.

Hashing based on Exact Matching

A major point in kNearestNeighbor procedure is the choice of features
for indexing tuples, which will strongly impact on the effectiveness and ef-
ficiency of the whole method, and should be carefully tailored to the crite-
rion adopted for comparing tuples. To this purpose, we describe an indexing
scheme which is meant to retrieve similar tuples, according to a set-based dis-
similarity function, namely the Jaccard distance: for any two tuples μ, ν ⊆ M,
distJ (μ, ν) = 1−|μ∩ν|/|μ∪ν|. In practice, we assume that distM corresponds
to the Dirichlet function, and that, consequently, the dissimilarity between two
itemsets is measured by evaluating their degree of overlap.

In this case, a possible strategy for indexing a tuple μ simply consists in ex-
tracting a number of non-empty subsets of μ, named subkeys of μ, as indexing
features. As the number of all subkeys for a given tuple is exponential in the
cardinality of the tuple itself, the method was tuned to produce a minimal
set of “significant” subkeys, which yet allow to retrieve all the tuples whose
distance from μ is lower than a specified threshold δ.

In particular, a subkey s of μ is said δ-significant if distJ(μ, s) ≤ δ. Clearly
enough, all the δ-significant subkeys of μ have size |s| such that:

�|μ| × (1 − δ)� ≤ |s| ≤ |μ|
Notably, any tuple ν such that distJ(μ, ν) ≤ δ must contain at least one

of the δ-significant subkeys of μ. Therefore, searching for tuples that exhibit
at least one of the δ-significant subkeys derived from a tuple μ constitutes
a strategy for retrieving all the neighbors of μ without scanning the whole
database. Such a strategy also guarantees an adequate level of selectivity:
indeed, if μ and ν contain a sensible number of different items, then their
δ-significant subkeys do not overlap. As a consequence, the probability that
μ is retrieved for comparison with ν is low.

In order to understand how the retrieving phase of our nearest neighbor
approach works, we propose the following example.
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A Simple Illustrative Example

Let consider the index structure exemplified in Figure 5.3. The index already
contains the tuples μ = {a, b, c, d}, ν = {a, b, c, h} and ω = {a, c, f}, which are
inserted by fixing δ = 0.1 as distance threshold. It is easy to observe that each
subkey is associated with a bucket containing the tuples sharing this subkey:
for example, the bucket linked by the {a, b, c} subkey contains both μ and ν,
whereas the bucket linked by {a, c, f} contains ω.

Hash Index
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Fig. 5.3. Hash Index structure

When searching for the neighbors of a new tuple ρ = {a, b, c, f}, the algorithm
generates the δ-significant subkeys of ρ, listed in the left of the figure. By
querying the index structure with the subkeys, we obtain μ and ν (by means
of {a, b, c}), and ω (by means of {a, c, f}).

5.5 Experimental Evaluation

In this section we study the behavior of the Generate-Clusters algorithm
proposed in Figure 5.1. Experiments are aimed at evaluating whether the pro-
posed indexing method allows substantial improvement in the clustering task,
and whether an appropriate number of clusters is generated. In particular, we
equip the proposed algorithm with the index structures studied in Section 5.4,
and compare the results of the algorithm in the two cases. Since both indexes
are stored on secondary memory, from a computational cost viewpoint it is
important to evaluate the number of read and write operations as well. Thus,
the efficiency of an index scheme is evaluated by three parameters:
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- The number of distances computed during the selection of the neighbors.
This is an effective evaluation parameter, which represents how many com-
parisons are performed during an insert/select operation and provides for
an estimation of the CPU overhead.

- The number of disk pages read during the selection of objects. In prin-
ciple, the hash-based approach could cause continuous leaps in the read
operations, even if a small number of comparisons is needed.

- The number of disk pages written during the updating of the index. Since
the index has to be incrementally maintained, it is important to evaluate
the cost of such a maintenance.

We applied the algorithm to the task of de-duplicating tuples representing
demographic information in a banking scenario. The instances of the algo-
rithm were tested against a real-world data set consisting of 105,140 tuples,
representing information about customers of an Italian bank. Data was firstly
reconciled by exploiting the technique described in Chapter 3. Each tuple ex-
hibited an average of 8 relevant neighbors, and in general distances exhibit
high values.

Figures 5.4-5.10 compare the performance of the clustering algorithm,
equipped with both the M-Tree and the hash index structure described. We
adopted the M-Tree implementation available on the Web.1 The tree was
tuned by setting a node size of 4K and a Random split policy. In both tech-
niques we fixed δ = 0.2 and k = 10.

The graphs represent the performances of the approaches w.r.t. the data
size. In particular, the horizontal axis represents the portion of data exam-
ined thus far. The evaluation of the incremental behavior of the approach can
be made by observing whether the increase of the measure under considera-
tion is bounded. This clearly does not happen in Figures 5.4(a) and 5.5(a),
representing the number of distances and I/O reads of the M-Tree approach
respectively. In the average, the number of comparisons and I/O reads are
low, as testified by the percentiles shown in Table 5.1. Nevertheless, a search
in the M-Tree exhibits a substantially linear behavior in the number of objects
stored in the tree. This is also testified by Figures 5.7 and 5.8. In these graphs,
the performances of the approaches have been averaged on 5,000 tuples.

On the other side, the hash approach exhibits a performance which is
bounded by a constant factor, as expected. In particular, 90% of the tuples
retrieve their neighbors by exploiting less than 41 comparisons and 15 disk
reads, as shown in Table 5.1. Also, graphs in Figures 5.7, 5.8, 5.9 and 5.10
show a substantial difference in the performance of the approach based on
hashing w.r.t. the one based on the M-Tree.

An opposite trend can be seen in the number of disk writes (see Figure 5.6).
This is mainly due to the different philosophy underlying the two structures.
The number of disk writes, in the hash method, depends on the number of
δ-relevant subkeys. The larger is the set of subkeys, the higher is the number

1 Details can be found at http://www-db.deis.unibo.it/Mtree/.
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Fig. 5.4. Distances Performances

of writes needed in order to update the index. On the contrary, the M-Tree is a
balanced structure whose update causes (at most) a number of writes which is
proportional to the depth of the tree. Indeed, in order to update its structure,
the M-Tree has to select the most appropriate position of the current tuple.
After a suitable node has been selected (which does not necessarily correspond
to the most suitable node), the tree inserts the tuple in the node and writes the
node back to the disk. An overhead is possible only in case that the insertion
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Fig. 5.5. IO Read Performances

causes a node overflow. In such a case, the node is split and the insertion is
propagated upward in the tree.

Effectiveness can be evaluated by measuring the overlap between the ex-
pected number of clusters and the actual number of clusters computed.
Clearly, the latter depends from the k and δ values. Since such values di-
rectly influence an indexing scheme in performing neighbor searches, the im-
portant issue is whether the neighbors retrieved from the index suffice to
perform a correct classification. To this purpose, we introduce one measure,
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namely FP-rate. More precisely, given a tuple μ, and a database DB, let
neighbors(μ,DB) denote the set of relevant tuples for classifying μ, and let
retrieved(μ,DB) denote the set of tuples actually retrieved when performing
a search by using the index structure built for DB. Then, FP-rate(μ,DB),
represents the rate of (False Positives) tuples in DB which are retrieved but
are not relevant for μ, i.e.:

FP-rate(μ,DB) =| retrieved(μ,DB) − neighbors(μ,DB) |
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Distances
M-Tree 0 15 57 121 201 298 425 620 1013 1956 8719

Hash 0 0 0 1 5 11 24 28 32 41 291

I/O Reads
M-Tree 1 2 8 12 16 22 30 47 74 139 633

Hash 2 5 5 6 6 8 8 10 11 15 232

I/O Writes
M-Tree 0 0 0 1 1 1 1 1 2 2 12

Hash 2 4 5 5 5 6 6 7 8 10 232

Table 5.1. Percentiles of the performances of the approaches
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Fig. 5.7. No of distances on real data

The global FP-rate hence can be computed by averaging the FP-rates
locally to each tuple μi and the pertaining database portion (i.e., the dataset
{μ1, . . . , μi−1}).

Instead, we do not evaluate in this setting the FN-rate i.e., the rate of
(False Negatives) tuples in DB, which are relevant for a tuple but are not
retrieved. Indeed, the proposed indexing method has been studied to work
in combination with Jaccard similarities, and hence does not provide false
negatives. In Chapter 6 we will treat how the method can be modified in
order to deal with different dissimilarity measures which in principle could
report false negatives.

Effectiveness was measured over synthetic data. Here, tuples were generated
according to the following parameters:

- the average size T of itemsets constituting the tuples.
- the size of M.
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- the number of clusters C.
- the number of tuples N .

More in detail, each cluster was generated by randomly choosing a subset
of the items in M. Then, each tuple in the cluster was generated by choosing
items from the subset associated with the cluster. In order to guarantee the
right degree of overlap, each new tuple was generated as a variation of a
previously generated one.
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The synthetic data sets, used to test the effectiveness of the hashing ap-
proach, was generated according to the following parameters: T = [5, 10, 20],
N = 100, 000, C = 20, 000, and M = 400, 000.

We tested the hash-based approach for increasing values of T . Figure 5.10
summarizes the values of FP-rate. Notice that, the rate is constant (fairly low)
except in the case T = 5. The latter exhibits higher values mainly because the
size of the itemsets contained in the tuples causes the generation of 1-subkeys,
which cause a large number of false positives.

5.6 Qualitative Comparison

In the following, we shortly perform a qualitative comparison of our approach
with some relevant proposals for the detection and management of duplicated
data already reviewed in Chapter 4. As there discussed, this problem has
given rise to a large body of work in several research communities, and under a
variety of names (such as, e.g., Merge/Purge, Record Linkage, De-duplication,
Entity-Name Matching, Object Identification).

In most of these approaches, a central issue is the definition of a method
for comparing objects, especially when information on object identity is car-
ried by textual fields (indeed, the latter are subject to various kinds of het-
erogeneity and mismatches across different information sources). To this pur-
pose, in addition to classical string (dis)similarity functions [71], several meth-
ods [103, 104, 36, 12, 125] were defined, which allow to effectively compare
textual information in the context of duplicated data.

Many approaches to the de-duplication problem essentially attempt to
match or cluster duplicated records [37, 103], based on suitable similarity
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functions. Unfortunately, most of these approaches mainly focus on effective-
ness issues, while paying minor attention to scalability, and end up being
inadequate under stronger efficiency requirements. It is worth noticing that
resorting to consolidated clustering algorithms [73, 48, 69, 68, 58], could not
guarantee an adequate level of scalability either. Indeed, even these algorithms
would not work adequately in a situation where far too many clusters are ex-
pected to be found, as it does happen in a typical de-duplication scenario,
where the number of clusters can be of the same order as the size of the
database. To the best of our knowledge, the only suitable approach appear
to be the one proposed in [98]. Here, the authors avoid costly pairwise com-
parisons by grouping objects in “canopies”, i.e., subsets containing objects
suspected to be similar according to a given similarity function, and then
computing pairwise similarities only within canopies. Since in a typical dupli-
cate detection scenario there are several canopies, and an object is shared in a
very few number of canopies, the main issue in the approach is the creation of
canopies. The authors proposed an effective solution to this issue: neverthe-
less the approach they propose does not cope with incrementality issues. In a
sense, our approach also builds canopies (which are collected within the same
buckets in the index), the main difference being that our approach allows to
approximately detect such canopies incrementally.

There is a plenty of approaches for distance-based search in metric spaces
(see, e.g., [26, 75] for a survey). Again, these approaches suffer from the high
dimensionality of the space where search is performed, as described in [150]:
indeed, high dimensionality causes too sparse regions to analyze, and thus
invalidate the proposed index methods.

In Section 5.4.1 we faced the above phenomenon by introducing the M-tree
index structure [30]. The M-tree is a paradigmatic example, being particularly
suitable to perform searches in general metric spaces (and even in spaces
equipped with edit-distance). However, while in “dense” domains it allows to
simultaneously reduce the number of distance evaluations and the amount of
I/O performed, its performances are expected to degrade when applied to a
typical de-duplication application.

Recently, some approaches have been proposed [65, 5, 24] which exploit
efficient indexing schemes based on the extraction of relevant features from
the tuples under consideration. Such approaches could be adapted to deal with
the problem of de-duplication, even though they are not specifically designed
to approach the problem from an incremental clustering perspective, as we
instead did here.

5.7 Conclusions

In this chapter, we addressed the problem of recognizing duplicate informa-
tion, specifically focusing on scalability and incrementality issues. The core
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of the proposed approach is an incremental clustering algorithm, which aims
at discovering clusters of duplicate tuples, based on a novel hashing-based
indexing technique. An empirical analysis, both on synthesized and real data,
showed the validity of the approach, which does exhibit a considerable im-
provement in performance with respect to a traditional, state-of-the- art, in-
dex structure (M-tree).

The proposed approach is expected to efficiently recognizing duplicate tu-
ples which are similar according to set-based similarity functions. In particu-
lar, the effectiveness of the approach is based on the adoption of the Jaccard
distance, which does not exploit the dissimilarity distM between tokens. Ex-
periments on real data, show that the above dissimilarity works well in prac-
tical cases. Nevertheless, the approach could in principle fail in cases where a
more refined dissimilarity functions is needed [12, 36].

To this purpose, in Chapter 6 we introduce a more refined key-generation
technique for the algorithm in Figure 5.3, which allows a controlled level of
approximation in the search for the nearest neighbors of a tuple. More in
detail, we will exploit the family of Locality-Sensitive hashing functions (see
Section 4.5.3), which are guaranteed to assign two any objects to the same
buckets with a probability which is directly related to their degree of mutual
similarity.





6

Incremental Clustering with Improved Hashing

6.1 Introduction

In Chapter 5, we proposed some basic ideas to cope with the duplicate de-
tection problem from an incremental perspective. Specifically, we proposed
an indexing scheme tailored to a set-based dissimilarity function, where each
tuple was regarded as sets of tokens, and a number of relevant subsets were
exploited for indexing it. For the sake of simplicity, in this chapter we also
refer the previous hash-based method as näıve hashing approach.

Despite its simplicity, the näıve indexing scheme was proven to work quite
well in practical cases (see Section 5.6). Notwithstanding, two main drawbacks
can be observed:

1. The cost of the approach critically depends on the number of δ-significant
subkeys: the larger is the set of subkeys, the higher is the number of writes
needed to update the index.

2. More importantly, the proposed key-generation technique suffers from a
coarse grain dissimilarity between itemsets, which does not take into ac-
count a more refined definition of distM. Indeed, the proposed approach is
subject to fail, in principle, in cases where likeliness among single tokens
are to be recognized as well. As an example, the tuples:

μ1 Jeff, Lynch, Maverick, Road, 181, Woodstock

μ2 Jef, Lync, Maverik, Rd, 181, Woodstock

are not recognized as similar in the näıve approach (even though they
clearly refer to the same entity), due mainly to a dissimilarity between
single tokens which is not kept by a simple matching between tokens.
Notice that, lowering the degree δ of dissimilarity, partially alleviates such
an effect, but at the cost of worsening the performances of the index
considerably.
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In this chapter, we extend and improve the proposal in Chapter 5 both in
effectiveness and efficiency. First, we gain a direct control over the number of
features used for indexing any tuple, which is a major parameter that critically
impacts on the overall cost of the approach. Moreover, we tune the approach
to be less sensitive to little differences between matching tokens.

In practice, we exploit a refined key-generation technique which, for each
tuple under consideration, guarantees a controlled level of approximation in
the search for the nearest neighbors of such a tuple. To this purpose, we resort
to a family of Locality-Sensitive hashing functions [77, 20, 19, 62], which are
guaranteed to assign any two objects to the same buckets with a probability
which is directly related to their degree of mutual similarity.

The rest of this chapter is organized as follows. In Section 6.2, the new key-
generation technique is proposed. In Section 6.3 an extensive evaluation about
the effectiveness of the proposed approach is performed. Finally, in Section 6.4
some considerations are drawn.

6.2 Hierarchical Approximate Hashing based on q-grams

Our objective in this section is to define a hash-based index which is capable
of overcoming the above described drawbacks. In particular, we aim at defin-
ing a key-generation scheme which allows a constant number of disk writes
and reads, being simultaneously capable of keeping a fixed (low) rate of false
negatives.

To overcome these limitations, we have to generate a fixed number of sub-
keys, which, however, are capable of reflecting both the differences among
itemsets, and those among tokens. To this purpose, we define a key-generation
scheme by combining two different techniques:

- the adoption of hash functions based on the notion of minwise independent
permutation [62, 19], for bounding the probability of collisions.

- the use of q-grams (i.e., contiguous substrings of size q) for a proper ap-
proximation of the similarity among string tokens [65].

As introduced in Section 4.5.3, a locally sensitive hash function H for a
set S equipped with a distance function D, is a function which bounds the
probability of collisions to the distance between elements. Formally, given H ,
for each pair p, q ∈ S and value ε, there exists values P ε

1 and P ε
2 such that:

- if D(p, q) ≤ ε then Pr[H(p) = H(q)] ≥ P ε
1 , and

- if D(p, q) > ε then Pr(H(p) = H(q)] > P ε
2 .

Clearly, such a function H provides a simple solution to the problem of
false negatives described in the previous chapter. Indeed, for each μ, we can



6.2 Hierarchical Approximate Hashing based on q-grams 135

define a representation rep(μ) = {H(a)|a ∈ μ}, and fill the hash-based index
by exploiting δ-significant subkeys from such a representation.

To this purpose, we can exploit the theory of minwise independent permu-
tations [19]. Let recall that, a minwise independent permutation is a coding
function π of a set X of generic items such that, for each x ∈ X , the probabil-
ity of the code associated with x being the minimum is uniformly distributed,
i.e.:

Pr[min(π(X)) = π(x)] =
1
|X |

A minwise independent permutation π naturally defines a locally sensitive
hash function H over an itemset X , defined as H(X) = min(π(x)). Indeed,
for each two itemsets X and Y , it can be easily verified that

Pr[min(π(X)) = min(π(Y ))] =
|X ∩ Y |
|X ∪ Y |

This suggests that, by approximating distM(ai, aj) with the Jaccard sim-
ilarity among some given features of ai and aj , we can adopt the above en-
visaged solution to the problem of false negatives. When M contains string
tokens (as it usually happens in a typical entity resolution setting), the fea-
tures of interest of a given token a can be represented by the q-grams of a.
It has been shown in [65, 145] that the comparison of the q-grams provides a
suitable approximation of the Edit distance, which is typically adopted as a
classical tool for comparing strings.

In the following, we show how minwise functions can be effectively exploited
to generate suitable keys. Let consider the example tuples:

μ1 Jeff, Lynch, Maverick, Road, 181, Woodstock

μ2 Jef, Lync, Maverik, Rd, Woodstock

Clearly, the tuples μ1 and μ2 refer to the same entity (and hence should
be associated with the same key). The detection of such a similarity can be
accomplished by resorting to the following observations:

1. some tokens in μ1 are strongly similar to tokens in μ2. In particular, Jeff
and Jef, Lynch and Lync, Road and Rd, and Maverick and Maverik. Thus,
the tuples can be represented as:

μ1 a1, a2, a3, a4, 181,Woodstock

μ2 a1, a2, a3, a4, Woodstock

where a1, a2, a3, and a4 represent the four “approximately common”
terms.

2. the postprocessed tuples exhibit only a single mismatch. If a minwise
permutation is applied to both, with high probability the resulting key
shall be the same.
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Thus, a minwise function can be applied over the “purged” representation of
a tuple μ, in order to obtain an effective key. The purged version of μ should
guarantee that tokens exhibiting high similarity with tokens in other tuples,
change their representation towards a “common approximate” token.

Again, the approximate representation of a token, described in point 1 of the
example above, can be obtained by resorting to minwise functions. Given two
tokens ai and aj , recall that their dissimilarity dM(ai, aj) is defined in terms
of the Jaccard coefficient. In practice, if feat(a) represents a set of features of
token a, then:

dM(ai, aj) = 1 − |feat(ai) ∩ feat(aj)|
|feat(ai) ∪ feat(aj)|

The set feat(a) can be defined in terms of q-grams. The latter represent the
simplest yet effective information contents of a token and indeed, they have
been widely used and demonstrated fruitful in estimating the similarity of
strings [65, 145]. Hence, by applying a minwise function to the set of q-grams
of a, we again have the guarantee that similar tokens collapse to a unique
representation.

Thus, given a tuple μ to be encoded, the key-generation scheme we propose
works in two different hierarchical levels:

- In the first level, each element a ∈ μ is encoded by exploiting a minwise
hash function H l. This guarantees that two similar but different tokens
a and b are with high probability associated with a same code. As a side
effect, tuples μ and ν sharing “almost similar” tokens are purged into two
representations where such tokens converge towards unique representa-
tions.

- In the second level, the set rep(μ) obtained from the first level is encoded
by exploiting a further minwise hash function Hu. Again, this guarantees
that purged tuples sharing several codes are associated with a same key.

The key resulting from the final, second-level coding can be effectively
adopted in the indexing structure described in Section 5.4.2.

A key point is the definition of a proper family of minwise independent per-
mutations upon which to define the hash functions. A very simple idea is to
randomly map a feature x of a generic set X to a natural number. Then, pro-
vided that the mapping is truly random, the resulting probability of mapping
a generic x ∈ X to a minimum number is uniformly distributed, as required.
However, in practice, it is hard to obtain a truly random mapping. Hence, we
exploit a family of “practically” minwise independent permutations [19], i.e.,
the functions:

π(x) = (a · c(x) + b) mod p

where a 
= 0 and c(x) is a unique numeric code associated with x (such as, e.g.
the code obtained by the concatenation of the ASCII characters it includes).
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Provided that a, b, c(x) and p are sufficiently large, the behavior of π is
practically random, as we expect.

We further act on the randomness of the encoding, by combining several
alternative functions (obtained choosing different values of a, b and p) as shown
in Figure 6.1.

Recall that a hash function on π is defined as Hπ(X) = min(π(X)), and
that Pr[Hπ(X) = Hπ(Y )] = |X ∩ Y |/|X ∪ Y | = ε. Notice that the choice of
a, b and p in π introduces a probabilistic bias in Hπ, which can in principle
leverage false negatives.

Let us consider the events A ≡“sets X and Y are associated with the same
code”, and B = ¬A. Then, pA = ε and pB = 1 − ε. By exploiting h dif-
ferent encodings H l

1, . . . , H
l
h (which differ in the underlying π permutations),

the probability that all the encodings exhibit a different code for X and Y
is (1 − ε)h. If ε > 1/2 represents the average similarity of items, we can ex-
ploit the h different encodings for computing h alternative representations
rep1(μ), . . . , reph(μ) of a tuple μ. Then, by exploiting all these representa-
tions in a disjunctive manner, we lower the probability of false negatives to
(1 − ε)h.

hash(μ = {a1, . . . , an}, k, h, q)

1: for each ai ∈ μ do

2: compute the q-gram representation qi of ai;

3: compute h encodings H l
1(qi), . . . H

l
h(qi);

4: end for

5: for i = 1 to h do

6: repi(μ)← {H l
i(qj)|aj ∈ μ};

7: for j = 1 to k do

8: ej
i ← Hu

j (repi(μ));

9: end for

10: key i ← e1
i ∧ e2

i ∧ . . . ∧ ek
i ;

11: end for

12: return {key1, . . . , keyh};

Fig. 6.1. The key-generation procedure

In general, allowing several trials generally flavors high probabilities. Con-
sider the case where ε < 1/2. Then, the probability that, in k trials (corre-
sponding to k different choices of a, b and p) at least one trial is B, is 1− εk.
We can apply this to the second-level encoding, where, conversely from the
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previous case, the probabilistic bias can influence false positives. Indeed, two
dissimilar tuples μ and ν could in principle be associated with the same token,
due to a specific bias in π which affects the computation of minimum random
code both in repi(μ) and in repi(ν). If, by the converse a key is computed as a
concatenation of k different encodings Hu

1 , . . . , Hu
k , the probability of having

a different key for μ and ν is 1− εk, where ε is the Jaccard similarity between
repi(μ) and repi(ν).

6.3 Experimental Evaluation

The discussion in the previous section shows that the effectiveness of the
approach relies on proper values of h and k. Essentially, low values of h leverage
false negatives, whereas high values leverage false positives. Analogously, low
values of k leverage false positives, whereas high values should, in principle,
leverage false negatives.

Thus, this section is devoted to study suitable values of these parameters
that fix a high correspondence between the retrieved and the expected neigh-
bors of a tuple. To this purpose, for a generic tuple μ we are interested in
evaluating some well-known measures as:

- the number TPμ of true positives (i.e., the tuples which are retrieved and
that belong to the same cluster of μ)

,and compare it to:

- the number of false positives FPμ (i.e., tuples retrieved without being
neighbors of μ).

- the number of false negatives FNμ (i.e., neighbors of μ which are not
retrieved).

Moreover, as global indicators we exploit the average precision and recall
per tuple:

precision =
1
N

∑
μ∈DB

TPμ

TPμ + FPμ

recall =
1
N

∑
μ∈DB

TPμ

TPμ + FNμ

where N denotes the number of tuples in DB.
The values of such quality indicators influence the effectiveness of the clus-

tering scheme in Figure 5.1. In general, high values of precision allows for
correct de-duplication: indeed, the retrieval of true positives directly influ-
ences the MostLikelyClass procedure which assigns each tuple to a cluster.
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When precision is low, the clustering method can be effective only if recall is
high.

Notice that low precision may cause a degradation of performances, if the
number of false positives is not bounded. Thus, we also evaluate the efficiency
of the indexing scheme, in terms of the number of tuples retrieved by each
search. This value depends on h and k, and is clearly related to the rate of
false positives.

Experiments were conducted on both real and synthesized data. For the
real data, we newly exploited the collection of about 105,140 tuples, repre-
senting information about customers of an Italian bank. Synthetic data was
produced, according to the parameters described in Section 5.5, by generating
C = 50, 000 clusters, N = 1, 000, 000 tuples (i.e., an average of 20 tuples per
cluster), and each tuple containing T = 20 tokens in the average.

Each cluster was obtained by first generating a representative of the cluster,
and then producing the desired duplicates as perturbations of the representa-
tive. The perturbation was accomplished either by deleting, adding or mod-
ifying a token from the cluster representative. The number of perturbations
was governed by a gaussian distribution having p as mean value. This further
parameter p was exploited to study the sensitivity of the proposed approach
to the level of noise affecting the data, and due, for example to misspelling
errors. It is worth noticing that, since the näıve hashing approach is insensi-
tive to the dissimilarity between single tokens, then in Section 5.5 we do not
consider the perturbation percentage p (or, analogously we set p = 0).

Figures 6.2 and 6.3 illustrate results of some tests we conducted on this
synthesized data, in order to analyze the sensitivity of the retrieval to the
parameters q, h and k (relative to the indexing scheme), and p (relative to the
noise in the data). In particular, the values of q ranged over 2, 3, 1-2 (both
1-grams and 2-grams) and 1-2-3 (q-grams with sizes 1, 2 and 3).

Figures 6.2(a) and (b) show the results of precision and recall for different
values of h and k, and p = 2. We can notice that precision raises on increasing
values of k, and decreases on increasing values of h. The latter statement does
not hold when q-grams of size 1 are considered. In general, stabler results are
guaranteed by using q-grams of size 3. As to the recall, we can notice that,
when k is fixed, increasing values of h correspond to improvements as well.
If h is fixed and k is increased, the recall decreases only when q = 3. Here,
the best results are guaranteed by fixing q=1-2-3. In general, when h ≥ 3 and
k ≥ 3, the indexing scheme exhibits good performances.

Figures 6.3(a) and (b) are useful to check the robustness of the index. As
expected, the effectiveness of the approach tends to degrade when higher val-
ues of the perturbation factor p are used to increase intra-cluster dissimilarity.
However, the proposed retrieval strategy keeps on exhibiting values of preci-
sion and recall that can still enable an effective clustering. In more detail,
the impact of perturbation on precision is clearly emphasized when tuples are
encoded by using also 1-grams, whereas using only either 2-grams or 3-grams
allows for making precision results stabler. Notice that for q = 3 a nearly
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Fig. 6.2. Results on synthetic data w.r.t. q-gram size (q) and nr. of hash functions

(h,k)

maximum value of precision is achieved, even when a quite perturbed data
set is used.



6.3 Experimental Evaluation 141

0%

20%

40%

60%

80%

100%

2 4 8
perturbation factor

pr
ec

is
io

n q=1-2
q=2
q=1-2-3
q=3

(a) precision vs. perturbation and q

0%

20%

40%

60%

80%

100%

2 4 8
perturbation factor

re
ca

ll

q=1-2
q=2
q=1-2-3
q=3

(b) recall vs. perturbation and q

Fig. 6.3. Results on synthetic data w.r.t. q-gram size (q) and perturbation



142 6 Incremental Clustering with Improved Hashing

Figure 6.4 provides some details on the progress of the number of retrieved
neighbors (indicated as Retrievals), TP , FP , and FN when an increasing
number of tuples, up to 1,000,000, is inserted in the index. For space reasons,
only some selected combinations of h and k, and q are considered, which were
deemed as quite effective in previous analysis. Anyway, we pinpoint that some
general results of the analysis illustrated here also apply to other cases. Let
observe that the values plotted in Figure 6.4 are averaged on a window of
5,000 tuples.
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Fig. 6.4. Scalability w.r.t. the data size

In general, it is interesting to observe that the number of retrievals for each
tuple is always bounded, although for increasing values of the data size the
index grows. This general behavior, which we verified for all configurations of
h, k and q, clearly demonstrates the scalability of the approach. In particular,
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we observe that for q = 3 the number of retrievals is always very low and
nearly independent of the number of tuples inserted (see Figures 6.4(c) and
(d)). More in general, the figures confirm the conceptual analysis that the
number of I/O operations directly depends on the parameter h, the latter
determining the number of searches and updates against the index.

All these figures also agree with the main outcomes of the analysis on ef-
fectiveness we previously conducted with the help of Figure 6.2. In particular,
notice the quick decrease of FP and FN when both k and h turn from 3 to 5,
in the case of q = 2 (Figure 6.4(a) and (b)), that motivates the improvement
in both precision and recall observed in these cases. Moreover, the high preci-
sion guaranteed by using our approach with q-grams of size 3, is substantiated
by Figures 6.4(c) and (d), where the number of retrieved tuples is very close
to TP ; in particular, for k = 5 (Figure 6.4(d)) the FP curve definitely flatten
on the horizontal axis.

The above considerations are confirmed by experiments on real data. Fig-
ure 6.5(a) shows the results obtained for precision and recall by using different
values of q, whereas figure 6.5(b) summarizes the average number of retrievals
and quality indices. As we can see, recall is quite high even if precision is low
(thus allowing for a still effective clustering). Notice that the average number
of retrievals is low, thus guaranteeing a good scalability of the approach.

6.4 Conclusions

In this chapter, we tackle again the problem of recognizing duplicate informa-
tion in a scenario where scalability and incrementality issues are not negligible.
The approach is still based on the incremental clustering algorithm analyzed
in Section 5.3, which aims at discovering clusters of duplicate tuples. How-
ever, here we propose a more refined hashing technique, which, by overcoming
the drawbacks showed by our previous approach (see Section 6.1), it allows a
controlled level of approximation in the search for the nearest neighbors of a
tuple. In this novel hashing approach, the key-generation technique exploits
the theory of locality sensitive hashing functions (LSH).

It is worth noticing that, the theory of LSH in not new in literature [62,
19, 20], and its application to the retrieval of nearest neighbors in high-
dimensional spaces has been thoroughly studied: [62, 61], in particular, adopt
a hierarchical combination of LSH functions similar to ours. However, their
objective is rather different: given a distance d, an object q and a threshold δ,
retrieve the set S = {p | d(q, p) < δ} in O(|S|). By contrast, in a de-duplication
scenario the value δ is unknown, and is in general parametric to the similar-
ity function to be adopted. This also explains why the efforts, in the current
literature, mainly concentrate on the definition of a proper distance function.

Thus, applying LSH in this context raises some novel, specific issues, which
have not yet been studied. In particular, since the level of mismatch (e.g., mis-
pelling errors) actually affecting duplicate tuples is an application-dependent



144 6 Incremental Clustering with Improved Hashing

0%

20%

40%

60%

80%

100%

1-2 2 1-2-3 3

q-gram size

Precision

Recall

(a) precision and recall

-

1

2

3

4

5

6

7

8

9

1-2 2 1-2-3 3

q-gram size

Retrievals (avg)

TP (avg) 

FP (avg)

FN (avg)

(b) average number of retrievals, TP, FP and FN

Fig. 6.5. Results on real data using different q-gram sizes

parameter, it is not clear how to tune the h and k parameters governing our
hierarchical approach. On the other hand, the extraction of q-grams from
input strings introduces a further degree of freedom in the method, since
determining a proper value for q-gram sizes is not a trivial task, in general.

Notice that our experimental evaluation in this respect is crucial, as it allows
to get insight on the issue of optimally setting the above parameters. Thus,
the experimental work showed in Section 6.3 constitutes a relevant, yet novel,
contribution in itself. However, the way to optimally tune these parameters is
still an open and interesting problem to further investigate.

The proposed approach has showed a quite effective behavior when the
available information is based solely on strings, and Jaccard similarity is
adopted to compare the features two tuples exhibit. We remark here that
the described technique does not consider the database schema, whose adop-
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tion (and the consequent separation of the available string into fields) would
likely allow to obtain a more refined de-duplication strategy: as an example,
two tuples with the same “name” are more likely to be duplicates than two
tuples with the same “city”. Nevertheless, the approach we presented here can
be easily and effectively adapted to such a situation as well: the overall dissim-
ilarity among tuples can be expressed as a combination of the dissimilarities
relative to single fields, and consequently the retrieval of similar tuples can be
accomplished by combining the keys relative to different fields and exploiting
them within the index.

Clearly, when strings are too small or too different to contain enough in-
formative content, the de-duplication task cannot be properly accomplished
by the proposed clustering algorithm. To this purpose, as further direction,
can be thought to study the extension of the proposed approach to different
scenarios, where more informative similarity functions can be exploited. An
example is the adoption of link-based similarity: recently, some techniques
were proposed [82] which have been proved effective but still suffer from the
incrementality issues which are the focus of our approach.





7

Conclusions

7.1 Summary of the Results

Identifying distinct records that refer to the same entity is an important in-
formation integration problem that has been studied for many years across
several research communities, and known with the name (amongst others)
of Entity Resolution. More in detail, Entity Resolution indicates a complex,
multi-steps process embracing two main tasks: Schema Reconciliation and
Data Reconciliation, aiming at addressing the structural and lexical hetero-
geneities respectively.

This thesis focused on Entity Resolution and its main contribution consisted
in a systematic study of this overall process and the issues related with the
severe constraints occurring when large volumes of data are involved. In the
development of this thesis we followed three main directions:

1. We started by facing the preparatory Schema Reconciliation step as a typi-
cal Information Extraction problem of segmenting information in free text
into a fixed attribute schema. Hence, we analyzed some state-of-the-art
proposals in literature. In particular, we treated three stochastic classifi-
cation approaches representing “global classification models” in the sense
they ever tended to assign a class label to each term of text sequence
under consideration, and hence they were unable to prevent the problem
of misclassifying unknown tokens characterizing typical Entity Resolution
settings. We overcame such a drawback by introducing RecBoost, a super-
vised “local” rule-based classifier that, in conjunction with a multi-stage
classification scheme, it only handled the local specificities that was able to
cope with, by postponing the unknown cases to subsequent classification
stages. The effectiveness of our approach was demonstrated in an inten-
sive experimental analysis where RecBoost was compared against some
well-known text segmentation systems.

2. We approached the Data Reconciliation task as the problem of discover-
ing duplicate tuples in a very large database from a clustering perspective:
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given a set of tuples, our objective was to recognize subsets (clusters) of
tuples such that intra-cluster similarity was high, and inter-cluster sim-
ilarity was low. To this purpose, we presented an incremental algorithm
based on a k–Nearest Neighbor schema. The core of this approach was the
usage of a suitable indexing technique which, for any newly arrived tuple,
allowed to efficiently retrieve a set of tuples in the database which were
likely mostly similar, and hence were expected to refer to the same real-
world entity. The proposed indexing technique was based on a hashing
scheme, which tended to efficiently recognizing duplicate tuples according
to the set-based Jaccard similarity function. Experiments, both on synthe-
sized and real data, showed the validity of the approach which exhibited
a considerable improvement in performance with respect to the M-tree, a
traditional index structure able to perform searches in metric spaces.

3. We presented an extension of the previous proposal by allowing for a di-
rect control on the degree of granularity needed to properly discover the
actual neighbors (duplicates) of a tuple. To this purpose, we exploited a
new key-generation approach, hierarchically obtained by combining two
different techniques: (i) the adoption of hash functions based on the no-
tion of min-wise independent permutation for bounding the probability of
collisions, and (ii) the use of q-grams for a proper approximation of the
similarity among string tokens in the tuples. By resorting to the min-wise
independent permutations, we were guaranteed to assign any two tuples
to a same bucket with a probability which was directly related to their
degree of mutual similarity. Finally, a detailed evaluation analysis demon-
strated, in both effectiveness and efficiency, the improvement respect to
our first approach.

Several are the novelties introduced by our proposals respect to the classical
approaches in literature, both for schema and data reconciliation. Some (main)
differences can be summarized as follows:

- RecBoost pursued a new methodological approach in which a strict cooper-
ation between ontology-based generalization and rule-based classification
was envisaged, which allowed to reliably associate terms in a free text with
a corresponding attribute in a fixed descriptor. The key feature of our ap-
proach was the introduction of progressive classification, which iteratively
enriched the available ontology, thus allowing to incrementally achieve ac-
curate schema reconciliation. This ultimately differentiated our approach
from previous works in the current literature (e.g., [15, 1]), which adopted
schemes with fixed background knowledge, and hence unlikely able to cap-
ture the multi-faceted peculiarities of the data under investigation.

- As our proposal for de-duplicating a dataset, other approaches in litera-
ture attempted to match or cluster duplicated records [37, 103] based on
suitable similarity functions. However, most of these approaches mainly fo-
cused on effectiveness issues by paying minor attention to scalability, thus
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ended up being inadequate under stronger efficiency requirements. Actu-
ally, we founded an adequate approach in [98]. Here, the authors avoided
costly pairwise comparisons by grouping objects in “canopies” (i.e., subsets
containing objects suspected to be similar according to a given similarity
function), and then computing pairwise similarities only within canopies.
However, the approach they proposed was unable to cope with incremen-
tality issues as our approach, instead, has done.

- As stated in the Chapter 6, also the theory of LSH was not new in liter-
ature [62, 19, 20], and its application to the retrieval of nearest neigh-
bors in high-dimensional spaces has been thoroughly studied. In par-
ticular, in [62, 61], the authors adopted a hierarchical combination of
LSH functions similar to ours. However, their objective was rather dif-
ferent: given a distance d, an object q and a threshold δ, retrieve the set
S = {p | d(q, p) < δ} in O(|S|). By contrast, in a de-duplication scenario
the value δ was unknown, and was in general parametric to the similarity
function to be adopted. This also explained why the efforts in the current
literature mainly were concentrated on the definition of a proper distance
function. Thus, by applying LSH in this context raised some novel, specific
issues, which have not yet been studied. In particular, since the level of
mismatch (e.g., mispelling errors) actually affecting duplicate tuples is an
application-dependent parameter, was unclear how to tune the parameters
governing our hierarchical approach. The related experimental evaluation
(see Section 6.3) in this respect was crucial, as it allowed to get insight
on the issue of optimally setting these parameters, thus representing a
relevant, yet novel, contribution in itself.

7.2 Open Issues and Further Research

There are some issues that are worth further investigations in the approaches
we proposed:

- Automatically inducing a descriptor from free text. RecBoost aims to rec-
oncile free text in a fixed attribute schema. It is interesting to investigate
the development of an unsupervised approach for the induction of an at-
tribute descriptor from free text. This would still allow reconciliation, even
in the absence of any actual knowledge about the textual information at
hand.

- Analyzing new classification models and automatizing the setting of pa-
rameters in RecBoost. The most salient features of RecBoost were the
combination of ontology-based generalization with rule-based classifica-
tion, and the adoption of progressive classification. In this respect, it is
interesting to investigate the adoption of alternative strategies for learn-
ing local classification models. This line is also related with the effort for
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identifying a fully-automated technique for setting the parameters of pro-
gressive classification, in terms of required classification stages.

- Exploiting more informative similarity functions for Data Reconciliation.
The de-duplication approach was proved to be quite effective when the
available information is based solely on strings, and Jaccard similarity is
adopted to compare the features two tuples exhibit. However, when strings
are too small or too different to contain enough informative content, the
de-duplication task cannot be properly accomplished by the proposed clus-
tering algorithm. To this purpose, we plan to study the extension of the
proposed approach to different scenarios, where more informative similar-
ity functions can be exploited. An example is the adoption of the link-
based similarity. Recently, there has been significant interest in the use
of links for improving the reconciliation of data [59]. The central idea is
to consider, in addition to the attributes of the tuples to be compared,
other possible references to which these are potentially linked. The links
may be, for example, co-author links between author references in bibli-
ographic data, hierarchical links between spatial references in geo-spatial
data, or co-occurrence links between name references in natural language
documents. In a recent approach, Kalashnikov et al. [82] enhanced feature-
based similarity between an ambiguous attribute value and the many entity
choices available for it, with linkage analysis between the entities (such as
affiliation and co-authorship). It is worth noticing that this approach only
ensures that references (i.e., “foreign keys”) in a database point to the cor-
rect entities or analogously, that a feature of a record in a relation exactly
matches a feature of a record in a different relation. Moreover, although
the proposed technique has been proved effective, it still suffers from the
incrementality issues which, instead, are the focus of our data reconcilia-
tion technique.

- Optimizing the setting of parameters in the hierarchical hashing approach.
As previously discussed in this thesis, our refined hashing approach de-
pends on some parameters: the number of min-wise functions at the first
and second level of encoding, and the size of q-grams. In the experimental
section of Chapter 6, we deeply analyzed how setting these parameters.
However, the way to optimally tune them is still an open and interesting
problem to further investigate.
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