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Introduction

Integrity constraints are conditions on databases. If a database violates integrity con-
straints, it needs to bepairedso that the integrity constraints hold again. Often there
are several ways to enforce integrity constraints. To illustrate the problem of database
repair with respect to integrity constraints, let us consider the datdbas€a, b}

and the integrity constraintot a VV not b stating that the database does not contain

a or it does not contairb. Clearly,Z does not satisfy the integrity constraint and
needs to beepaired— replaced by a database that satisfies the constraint. Assuming
that the possible facts that the database could contaifuabec, d}, the databasef

{a}, {b}, {a, c} are examples of databases that could be considered as replacements
for Z. Since the class of replacementsZaf quite large, the question arises whether
there is a principled way to narrow it down. One of the most intuitive and commonly
accepted postulates is that the change between the initial database and the revised da-
tabase be minimal. In our case, the minimality of change narrows down the class of
possible revisions t§a} and{b}. The minimality of change leads to the concept of
repair, a minimal set of update actionmg$ertionsanddeletionsof facts) that makes

the database consistent.

In some cases, the minimality of change is not specific enough and may leave too
many candidate solutions. The problem can be addressed by formalisms that allow
the database designer to formulate integrity constraints and, in addition, to state pre-
ferred ways for enforcing them. In this thesis, we study two such formaliaative
integrity constraintandrevision programming

Essentially, an active integrity constraint is an integrity constraint that specifies the
update actions that can be performed when it is violated. It is composed by a con-
junction of literals, thebody, that represents eonditionthat should bdalseand by

a disjunction of update actions, tihead that can be performed when the body is
true (that is when the constraint is violated). The active integrity constraints work
in a domino-like manner as the satisfaction of one of them may trigger the violation
and therefore the activation of another one. The first semantics for active integrity
constraints here introduced, allows us to identify, among all possible repairs, those
whose actions arspecifiedin the head of some active integrity constraint og-
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portedby the database or by other updates. These repairs are fralteded repairs

We show that the computation of founded repairs can be done by rewriting the con-
straints into a Datalog program and then computing its stable models; each stable
model will represent a founded repair.

Next, we comparective integrity constraint&ind revision programminganother
formalisms designed to describe integrity constraints on databases and to ppecify
ferred ways to enforce them. The original semantics proposed for these formalisms
differ. The semantics for revision programs defines the concegpstfied revision

The thesis shows that despite the differences in the syntax, and the lack of a simple
correspondence between justified revisions and founded repairs, the two frameworks
are closely related.

A justified revision is a set afevision literals an alternative way to model updates
over a database, that can be inferred by means of the revision program and by the set
of all atoms that do not change their stat@mfsencdin) or absencéout) during the
update process. We show that each founded repair corresponds to a justified revision,
but not vice-versa. Next, we broaden the class of semantics for the two formalisms
by introducing a different semantics for active integrity constraints and a different
semantics for revision programs. The first one allows us to compute a smaller set of
repairs, thgustified repairs that correspond to justified revisions. The second one
allow us to compute a wider set of revision, foended revisionghat correspond to
founded repairs. The introduction of these new semantics aligns the two formalisms
showing that each of them is a notational variants of the other. We show that for each
semantics thehifting propertyholds. Shifting consists of transforming an instance of

a database repair problem to another syntactically isomorphic instance by changing
active integrity constraints or revision programs to reflect the “shift” from the original
database to the new one.

Finally, the thesis defines a formal declarative semantics for view updating in the
presence of existentially derived predicates and non-flat integrity constraints, that
translates an update request against a view into an update of the underlying database.
The new semantics allows to identify, among the set of all possible repairs, the subset
of supported repairsthat is repairs whose actions are validated by the database or
by other updates. Given a deductive database and an update request, the computation
of supported repairs is performed by rewriting the update request and the deductive
database in the form of active integrity constraints.
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Preliminaries

Summary. In this chapter we introduce some basic concepts on logic programming and com-
putational complexity. For a detailed treatment see [10, 11, 86, 105, 106, 117, 125, 142]. We
briefly introduce syntax of (disjunctive) logic programs and present the stable model seman-
tics. Moreover, after introducing complexity measures, we survey complexity results of vari-
ous forms of logic programming.

1.1 Introduction

The theory of deductive databases begins with Codd’s paper [41] in which the for-
mal definition of therelational modelwas given. A relational database consists of

a set offactswhose contents can be used to answer queries. The need for deduct-
ing new information from the facts already present in the database and the necessity
to deal with incomplete information leads to the concepdeductive databases
deductive database, in addition to storing individual facts (extensional data), stores
deductive rules (intensional data) that are used to answer queries.

Logic programmingvas introduced by Kowalski [86] and the first Prolog interpreter
was implemented by Roussel in 1972 [42]. Logic programming introduced the con-
cept ofdeclarativecontrast tgproceduralprogramming. Ideally, based on Kowalski’'s
principle of separation of logic and contri88], a programmer should only be con-
cerned with thaleclarative meaningf the program, while the procedural aspects of
the execution should be handled automatically. The formal definition of logic pro-
gramming starts with the classical paper by Van Emden and Kowalski on the least
model semantics [142], Reiter's paper on the closed world assumption [126] and
Lloyd’s “Foundations of Logic Programming{105].

The connection between logic programming and deductive databases [106, 125]
quickly became clear and leads tdogical approachto knowledge representation

This approach is based on the idea of providing intelligent machines vidthical
specificationof the knowledge they possess; hence a pravisaningor semantics
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has to be associated with any logic or database program in order to give its declarative
specification.

Finding a suitable semantics of deductive databases and logic programs is one of the
most important and difficult research problems.

1.2 Logic Programs

Syntax

By an alphabet’ of a first order language we mean a (finite or countably infinite)
set ofvariables, predicates and constants. In the following, we use the letters
p,q,r,... for predicate symbolsX, Y, Z, ... for variables and, b, c, ... for constants.

A terma constant or a variable. Aatomover X' is a formulap(t4, . . ., t,), wherep

is a predicate symbol of arity andt¢;’s are terms.

Thefirst order languageC over the alphabeY is defined as the set of all well-formed
first order formulae that can be built starting from the atoms and using connectives,
quantifiers and punctuation symbols in a standard way.

A literal L is an atomA or a negated atomot A; in the former case, it ipositive

and in the lattenegative Two literals aredual, if they are of the formA andnot A4,

for some atomA. Given a literalL, we write L? for its dual. The dual operator is
extended to sets of literals as appropriate.

A (disjunctive Datalog) rule- is a clause of the forrh

P m n
\/ A~ A\B;, \ notBjo p+n>0 (1.1)
i=1 j=1 j=m+1

whereA,,..., Ay, By,..., B, areatomsandy is a conjunction of built-in atoms

of the formw 6 v such that andv are terms and is a comparison predicate. The
set{A,,..., A,} is theheadof r (denoted byread(r)), while the se{ By, ..., By,

not By11, . . ., not By, ¢} is thebodyof r (denoted bybody(r)). It is assumed that
each rule isafe[139], i.e. that a variable appearing in the head or in a negative literal
also appears in a positive body literal.

A rule with a ground atom in the head and an empty body and is cttdin this
case the symbol-’ can be omitted. The expressiéh«— B; V- --V B,, can be used
as shorthand for the rulé¢ — Bq,..., H <« B,,.

If arule isnot-free (respyv-free) itis calledpositive(resp.normal). A logic program
‘P consists of afinite set of rules. Itgositive(resp.normal) if all its rules are positive
(resp. normal).

1 A literal can appear in a conjunction or in a disjunction at most once. The meaning of the
symbols A’ and ‘;" is the same.
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Given a progranP, some of the predicate symbols are defined by a number of facts
and do not occur in the head of any other rule. They are calisgor £DB predi-
cates The other predicate symbols are caltetivedor 7D predicates

The Herbrand Universel/r of a programP is the set of all constants appearing
in P, and itsHerbrand BaseBp is the set of all ground atoms constructed from
the predicates appearing 7 and the constants froitip. A term (resp. an atom,

a literal, a rule or a program) iground if no variables occur in it. A rule’ is a
ground instancef a ruler, if r’ is obtained from- by replacing every variable in
with some constant itVp; ground(P) denotes the set of all ground instances of the
rules inP. We assume thatround(P) does not contain built-in atoms in the body
of rules, adrue built-in atoms can be deleted and rules wihsebuilt-in atoms are
deleted fronyround(P).

Stable Model Semantics

An interpretation ofP is any subset oB3p. The value of a ground atord with
respect to an interpretatidh, valuez(A), is true if A € 7 and false otherwise.
The value of a ground negated literadt A is true if A ¢ Z and false otherwise.
Given a sefS of ground literals,

and( gy — {min({valueI(L) | LeSHifS#0

valueT frue if S =0

and
, orran | maz({valuez(L) | L € S})if S #0
valuey (S) = { False if 5 — 0

A ground ruler is satisfieddy 7 if value$” (head(r)) > value? ¢ (body(r)). Thus, a

rule r with empty body is satisfied by if valueg” (head(r)) = true. In the follow-

ing the existence of rules with an empty head which defimeialsis also assumed,

that is rules which are satisfied only if the bodyfase (value2*?(body(r)) =
false). An interpretationM for P is a model of P if M satisfies all rules in
ground(’P). The (model-theoretic) semantics for positiveassigns taP the set of

its minimal modelsMM (P), where a modelM for P is minimal, if no proper sub-

set of M is a model forP. The more generalisjunctive stable model semantaso
applies to programs with (unstratified) negation [66]. Disjunctive stable model se-
mantics generalizes stable model semantics, previously defined for normal programs
[65]. For any interpretation, denote withtP*! the ground positive program derived
from ground(P) by 1) removing all rules that contain a negative litetat A in the

body andA € M, and 2) removing all negative literals from the remaining rules. An
interpretationM is a stable model oP if and only if M € MM (PM). For general

P, the stable model semantics assign®tthe setSM (P) of its stable modelsit is

well known that stable models are minimal models (th&/Ag(P) C MM (P)) and

that for negation free programs, minimal and stable model semantics coincide (that
is SM(P) = MM(P)). Observe that stable models are minimal models which are
“supported”, that is their atoms can be derived from the program. For instance, the
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program consisting of the ruteVv b < not ¢ has three minimal model$t; = {a},
My = {b} and M3 = {c}. However, onlyM; andM,, are stable.

Stratified Programs

A normal logic progran® is said to bestratified[9, 64, 99] if it is possible to decom-
pose the sef of its predicate symbols into disjoint s&fs, S5, ..., S,,, calledstrata,
so that for every clause

r: C«— Ay, - Ap,not By,- - ,not B, (n>0)
in P, whereA’s, B's andC are atoms, we have that:

1. for everyi, stratum(A;) < stratum(C) and
2. for everyj, stratum(B;) < stratum(C),

wherestratum(A) = «, if the predicate symbol oft belongs toS,,. Any particular
decompositiorby, Ss, ..., S,, satisfying the above conditions is calledteatification
of P. A programP is calledstratifiedif it has a stratification.

Stratification assigns relative priorities between ground atoms so that priority con-
flicts (cycles) can be avoided and meaningless semantics are discarded. Stratified
programs allow a disciplined form of negation, that is when using negation we can
refer to an already defined relation, so that the definition is not circular, or as Van
Gelder puts it, negation through recursion is avoided.

Stratifiability is easy to check by constructing ttiependency graplGiven a pro-
gramP the dependency gragi» consists of the predicate names as the vertices
(pi, pj, 5); there is a labeled edge My iff there is a ruler in D with p; in its head
andp; in its body and the label € {4, —} denoting whethep, appears in a pos-
itive or a negative literal body af. A cycle in the dependency graph is said to be a
negative cycle if it contains at least one edge with a negative label. A normal logic
programpP is stratified if its dependency grafih» does not contain any negative cy-
cle. Stratified programisave a unique stable modehlledperfect modelObviously,

for positive logic programs the perfect model is equivalent to the least model.

Moreover, a program is callegbmipositivéf negation is only applied to base atoms.
Clearly, semipositive programs are also stratified.

1.3 Queries

Given a databasg, a progran and a predicate symbg| P+ denotes the program
derived from the union ofP with the facts inZ, that isPz = P UZ andZ(g)
denotes the set gffacts inZ that is the facts if whose predicate symbol is The
semantics ofP7 is given by the set of its stable models by considering either their
union (possible semantiay brave reasoningor their intersectiongertain semantics
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or cautious reasoning A disjunctive DatalogqueryQ is a pair(g, P) whereg is a
predicate symbol, called thguery goal andP is a disjunctive Datalog program.
The answer to a disjunctive Datalog qu&py= (g, P) over a databasg, denoted
asQ(Z), under the possible (resp. certain) semantics, is givei by whereZ’ =

Unmesmpr) M (respI’ = M yiespps) M-

1.4 Complexity Classes

We assume that the reader is familiar with the basic notions of complexity classes
[80,117]. In this section we give a brief survey of the standard complexity classes,
following the notation given in [80]. A complete account can be found in [117].

Turing machines.

A Turing machinds a device consisting of a semi-infinitapewhich can be read
and write. Formally, adeterministic Turing machinéD7 M ) T is a quadruple

(S, X,0,s0), whereS is a finite set of states) is a finite alphabet o§ymbols §

is thetransition functionandsy, € S is theinitial state The alphabet contains a
special symbol calletllankand represented as The transition functio is a map:

d: SxX— (SU{halt,yes,no}) x ¥ x {-1,0,1}

where halt, yes and no denote three additional states not occurrifigviiereas
{-1,0,1} denote thenotion directionsThe tape is divided intoellscontaining sym-
bols of X, and acursormay move along the tape. The input stribgs written on the
input tape. The machine takes successtemsof computation according té, and
when any of the states halt, yes or no is reached. We sayl thatepts the inpuf

if it halts in ‘yes’, rejects it if it halts in ‘no‘, while if the halt state is reached we say
that the output of is computed.

A non deterministic Turing machin® D7 M is a quadrupléS, X, A, so), where
S, X, sp are the same as before, while the possible operations the machine can per-
form are described no longer by a function, but by the relation:

A C SxXx(SU{halt,yes,no}) x ¥ x {—1,0,1}

In contrast to &7 M , now the definition of acceptance and rejection is asymmetric.
We say that &VD7 M acceptsan input if there is at least one sequence of choices
leading to the state ‘yes', andrgjectsan input if no sequence of choices can lead to

‘yes'.

Time and space bounds.

Thetime expended by &7 M T on an inputZ is defined as the number of steps
taken byT onZ from the start to the halting. Note thatTifdoes not halt ofT, then
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the time is considered to be infinite. Ttime expended by &V"D7 M on an input

Zis 1if T does not accept thg, otherwise it is defined as the minimum over the
number of steps in any accepting computatioif oThespacerequired by aD7 M

T on an input? is defined as the number of cells visited by the cursor during the
computation. For av' DT M the space is defined as 1Tifdoes not accept the,
otherwise it is defined as the minimum over the number of cells on the tape over all
accepting computations af.

Let T be aDTM or aNDTM andf a function from the positive integers to
themselves, we say that:

e T haltsintimeO(f(n)) if there exist positive integersandn, such that the time
the time expended by on any input of length is not greater thanf (n) for all
n > ng.

e T haltswithin spaceO(f(n)) if the space required by on any input of lengtt:
is not greater thanf (n) for all n > ng, wherec andng are positive integers.

Let X' be a finite alphabet containing let ¥’ = X'\ {U}, andL C X'+ alanguage

in ¢/, that is a set of finite strings ovet’. Let T be aD7 M or aNDT M such
that (i) if z € £ thenT acceptsy; (i) if © ¢ L thenT rejectsz. Then we say that
T decidesC. Moreover (i) if T halts in timeO(f(n)) we sayT decides. in time
O(f(n)), (ii) if T halts within spac®( f(n)) we sayT decides’ within space O(f(n))
Given a functionf on positive integers the set of languages are defined as follows:

TIME(f(n)) = {L | Lis decided by some DT M in time O(f(n)) }
NTIME(f(n)) = {L| L is decided by some NDT M in time O(f(n)) }
SPACE(f(n)) = {L| Lis decided by some DT M within space O(f(n)) }
NSPACE(f(n)) = {L | Lis decided by some NDT M within space O(f(n)) }

All the previous sets areomplexity classe§ he complexity classes of most interest
are not classes corresponding to particular functions, but their union. The following
abbreviations denote the main complexity classes:

P =, TIME(n?)

NP = {J .o NTIME(n?)
e EXPTIME = |J,., TIME(2"")

NEXPTIME = {J,. NTIME(2"")

PSPACE = {J,., SPACE(n%)

EXPSPACE = J,,., SPACE(2"")

L = U, SPACE(logn)
e NL =J,.,NSPACE(logn)

Note that the clasEXPTIME and NEXPTIME can be viewed as EXPTIME
and 1NEXPTIME respectively, wheré means the first level of the exponentiation.

Double exponents are captured by the classEXP-TIME , 3-EXPTIME and so
on, defined as:

W,d nd
U TIME(22" ), | TIME@2® ), ...
d>0 a>0

The relations among the complexity classes are as follows:
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. TIME(f(n)) € NTIME(f(n))
. SPACE(f(n)) € NSPACE(f(n))
NTIME(f(n)) C SPACE(f(n))
NSPACE(f(n)) C TIME(k!9(m+/(n))
. NSPACE(f(n)) C SPACE(f?(n))
. TIME(f(n)) C TIME((f(2n + 1))*) (Theorem of the temporal hierarchy
. SPACE(f(n)) C SPACE(f(n) - log(n)) (Theorem of the spatial hierarchy

NoO U WNE

From the above properties the following hierarchy holds:

L CNLCPCNPCPSPACE
Note that at least one of the four inclusions is strict for the theorem of the spatial
hierarchy.

Any classC has itscomplementary clastenotes as c6rand defined as follows: for
any language in X', let £ denote itcomplementthatis co€is{L | £L € C}.

Let £; and£L, be languages. Assume that there ®aM T such that

e For all input stringsZ, we haveZ € £, if and only if T(Z) € Lo, whereT(Z)
denotes the output df on inputZ.

e T halts within spac®(log n).

ThenT is called alogarithmic-space reductiofrom £; to £, and we say that;
is reducibleto £,. Let C be a set of languages. A languagas calledC-hard if
any languageC’ in C is reducible toL. If £ is C-hard andZ € C then/ is called
C-complete

The polynomial hierarchy.

In order to define the polynomial hierarchy we introduce the oracle Turing machines.
Given a languagd anoracleD7 M T#, also called DT M with oracle A, is an
ordinaryD7 M augmented by an additionqliery tapeand additional three states:
query, €, ¢. WhenT? is in the statejuery the computation proceeds as usil,
changes its state froguery to € or ¢ depending whether the string present on the
query tape belongs tA or not; whenT* reaches the state or ¢ the query tape is
instantaneously erased.

Thus letC be a set of languages, the complexity cla®desandNPC are defined as
follows. For a languagé€, itis £ € PC (or £ € NP) iff there is some language
A € C and some polynomial-time orac®7 M (or NDT M ) T# such thafT#
decides’.

The polynomial hierarchy consists of the classgs X}, II} (conk > 0) defined

as follows:

AP = 5P = I} = P;

Fork > O:

AP =P XP = NPY ; IIP, = co-XF, .

Thus,Ai’Jr1 is the set of languages decided in polynomial time by sdpaem

with an oracle forZF problems. Analogousl)ﬂ,{_ﬁrl is the set of languages decided
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in polynomial time by somé&/D7 M with an oracle for>F problems. Finally, the
classIIf contains all the languages whose complement i§4h Note thatA! =

PP = P, ¥F = NP” = NP andIl’ = co-X} = co-NP. MoreoverAL = PNP,
thatisAY is the set of languages that can be decided by calling polynomial times an
oracleNP.

Previous classes define a polynomial hierarchy in which the following properties
hold:

L AP D (ZF, UIIE,);
2. AP C (2P N 1IP).

The set of classes in the polynomial hierarchy is denotgdid@gpolynomial hierar-
chy) and is defined a®H=J,~, *} -

1.5 Complexity of Datalog Queries

We refer to a queryy) = (A, P) over a databas& under possible (resp. certain)
semantics, asking whether an atehbelongs to some stable model (resp. all stable
models) ofP UZ. There are two main kinds of complexity connected to this problem
[144]:

e Thedata complexity is the complexity of the problem whem is fixedwhile 7
and A are theinput

e Theprogram complexity is the complexity of the problem whehand A are
fixedwhile P is theinput

The complexity of this problem depends B44]. If we consider data complexity,
the problem is:

e P-complete for both semanticsAfis normal and positive
e P-complete for both semanticsfifis normal and stratified

e NP-complete (resp. coNP-complete) under possible semantics (resp. certain se-
mantics) ifP is normat

e XP-complete (resplli-complete ) under possible semantics (resp. certain se-
mantics) if P is disjunctive
While if we consider program complexity, the problem is:

e EXPTIME-complete for both semantics# is normal and positive

e EXPTIME-complete for both semantics® is normal and stratified

e NEXPTIME-complete (resp. c&"EXPTIME-complete) under possible se-
mantics (resp. certain semanticspifis normal

e NEXPTIMENP-complete (resp. cFEXPTIMEN? -complete) under possible
semantics (resp. certain semanticspifs disjunctive
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Techniques for Repairing and Querying

Summary. This chapter gives an informal description of the main techniques for repairing
and querying inconsistent databases proposed in the literature. After a brief introduction to
these techniques, some of them will be described in more details.

2.1 Introduction

Logic programming based approaches enabling the computation of repairs and con-
sistent answers in a possibly inconsistent database have been proposed in [12, 13, 39,
40,70,71,145].

In [13] a logical characterization of the notion of consistent answer in a possibly in-
consistent database is introduced. The technique is based on the computation of an
equivalent query, obtained by using the notion of residue developed in the context
of semantic query optimization, derived from the original source query. In [12] an
approach consisting in the use of a Logic Program with Exceptions (LPe) for ob-
taining consistent query answers is proposed. The semantics of a LPe is obtained
from the semantics for Extended Logic Programs, by adding extra conditions that
assign higher priority to exceptions. The method, given a set of integrity constraints
and an inconsistent database instance, consists in the direct specification of database
repairs in a logic programming formalism. Both the techniques in [13] and [12] have
been shown to be complete for universal binary integrity constraints and universal
quantified queries.

In [70, 71] a general framework for computing repairs and consistent answers over
inconsistent databases with universally quantified variables has been proposed. The
technique is based on the rewriting of constraints into extended disjunctive rules
with two different forms of negation (negation as failure and classical negation). The
disjunctive program can be used for two different purposes: to compute ‘repairs’ for
the database, and to produce consistent answers. The technique has been shown to
be sound and complete and more general than previously proposed techniques. A
detailed description of this approach will be provided in Chapter 3.
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In [145] a general framework for repairing databases consisting in correcting faulty
values within the tuples, without actually deleting them (value-based approach), is
proposed. Repairs are represented by usimgable tableadhat allows conjunctive
queries to be answered efficiently.

In [40] a practical framework for computing consistent query answers for large, pos-
sibly inconsistent relational databases is proposed. The proposed framework han-
dles union of conjunctive queries and can effectively (and efficiently) extract indef-
inite disjunctive information from an inconsistent database. In [39] the problem of
minimal-change integrity maintenance in the context of integrity constraints (denial
constraints, general functional and inclusion dependencies, as well as key and for-
eign key constraints) in relational databases, has been investigated.

The recent literature on consistent query answering is reviewed in [37]. Specifically,
the paper discusses some computational and semantic limitations of consistent query
answering, and summarizes selected research directions in this area.

Other works have investigated the updating of data and knowledge bases through
the use of nonmonotonic formalisms [7, 8, 109, 111]. In [7] the problem of updating
knowledge bases represented by logic programs has been investigated. More specif-
ically, the authors introduce the notion of updating a logic program by means of
another logic program and a new paradigm, catlgdamic logic programmingo

model dynamic program update. The new paradigm has been further investigated in
[8], where the language LUPS (Language for Dynamic Updates), designed for speci-
fying changes to logic programs, has been proposed. Given an initial knowledge base
(in the form of a logic program) LUPS provides a way for sequentially updating it.
The declarative meaning of a sequence of sets of update actions in LUPS is defined
using the semantics of the dynamic logic program generated by those actions.

In [109, 111] revision programming, a logic-based framework for describing con-
straints on databases and providing a computational mechanism to enforce them, is
introduced. Revision programming, based on the extension of the logic programming
paradigm, captures those constraints that can be stated in terms of the membership
(presence or absence) of atoms in a database. Such a constraint is represented by a
revision rulea — aj, ..., a; wherea and allo; are of the formin(a) andout(b).

A revision programis a collection of revision rules whose semantics, cgllstified
revision semanticsassigns to any databagen (possibly empty) collection géisti-

fied revisionof Z. A justified revision models a set advision literalsupdates over

the inconsistent database that can be inferred by means of the revision program and
by the set of all atoms that do not change their state of presence or absence during
the update process.

A detailed description of this approach will be provided in Chapter 4.

In [110] the work of Fitting [60] that assigns annotations to revision atoms so that
providing a way to quantify the confidence (probability) that a revision atom holds is

re-examined. In particular, starting from the observation that this semantics does not
always provide results consistent with intuition, an alternative treatment of annotated
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revision programs is proposed by changing both the notion of a model of a program
and the notion of a justified revision.

Postulates for update and revision operators for knowledge bases have been dis-
cussed in [81], whereas the problem of belief revision has been addressed in [79, 98].
In such a framework update consists in bringing the knowledge base up to date when
the world described by it changes, whereas revision is used when new information is
obtained about a static world. The computational complexity of several update op-
erators, proposed in the literature, has been discussed in [50] (see also [19] for the
special problem of updating the knowledge of agents). All these works do not take
into account the possibility of indicating the update operations to make the database
consistent.

Another category of approaches proposed in the literature, for the automatic main-
tenance of databases, uses ECA (Event-Condition-Action) rules for checking and
enforcing integrity constraints. The application of the ECA paradigm of active data-
bases to policies—collection of general principles specifying the desired behavior of
systems—has been investigated in [38]. A framework for enforcing constraints by
issuing actions to be performed to correct violations has been proposed in [32] and
[33]. Policies for database maintenance using situation calculus have been studied in
[22], whereas the problem of maintaining integrity constraints in database systems
has been considered in [114] where an algorithm for automatically transforming an
integrity constraint into a set of active rules has been proposed.

In the rest of this chapter we will provide an informal description of the main tech-
nigues for repairing and querying inconsistent databases.

2.2 Computing Repairs

An interesting technique has been proposed in [13]. The technique introduces a log-
ical characterization of the notion of consistent answer in a possibly inconsistent
database. Queries are assumed to be given in prefix disjunctive normal form.

A queryQ(X) is a prenex disjunctive first order formula of the form:

m; ng

K\ (A PijU)A N\ ~Rij(Vij) NT)]

i=1 j=1 j=1

where K is a sequence of quantifierg; contains only built-in predicates and

denotes the list of variables in the formula.

Given a queryQ(X) and a set of integrity constrainisa tuplet is a consistent
answerto the queryQ(X) over a database instan€ewritten (Q,7) =, ¢, if tisa
substitution for the variables iX such that for each repalf’ of Z, (Q,Z') . t.
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Example 2.1Consider the relatio§tudent with schemgCode, Name, Faculty)
with the attributeC'ode as key. The functional dependencies:

Code — Name
Code — Address

can be expressed by the following two constraints:

V(X,Y,Z,U, V) [Student(X,Y, Z) A Student(X,U,V) DY = U]
Y(X.Y, Z,U,V) [Student(X,Y, Z) A Student(X,U,V) > Z = V]

Assume to have the following inconsistent instance of the reldiamlent:

Code| Name| Faculty
s1 | Mary |Engeneering
so | John Science
s2 |Frank|Engeneering

Student

The previous inconsistent database admits two different repairskseyir, and
Repairs, which are reported in the following.

Code|Name| Faculty Code| Name| Faculty
s1 | Mary|Engeneering s1 | Mary |Engeneering
s2 | John Science s2 |Frank|Engeneering
Repairy Repaira

The consistent answers to the quéry (Student(s1,Y, Z)) is “Engineering”, while
there is no consistent answer to the quety(Student(sq, Y, Z)). O

General approach.

The technique is based on the computation of an equivalent queiy) derived
from the source quer§). The definition ofT,(Q) is based on the notion of residue
developed in the context of semantic query optimization.

More specifically, for each literdB, appearing in some integrity constraint, a residue
Res(B) is computed. IntuitivelyRes(B) is a universal quantified first order formula
which must be true, because of the constraintB, i true. Universal constraints can
be rewritten as denials.

Let A be a literaly- a denial of the form— By A...AB,, , B; (forsomel <i <n)a
literal unifying with A and@ the most general unifier fot andB; such that variables
in A are used to substitute variables i), but they are not substituted by other
variables. Then, the residue dfwith respect to- and B; is:
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Res(A,r,Bi) =not(By A...ANBi_1 ABjy1 A...By) 0
=not B16 V...V not B;_1 0V not B;11 6V ...not B,0
The residue ofd with respect to is Res(A,r) = A, 4_y,9 Res(A,r, B;) consist-
ing of the conjunction of all the possible residues/bin r, whereas the residue of
A with respect to a set of integrity constraintss Res(A4) = A\, ., Res(4,7).

Thus, the residue of a literd is a first order formula which must be trueAfis true.
The operatof, (@) is defined as follows:

o TH(Q)=0Q;
e T(Q)=T;,—1(Q) A RwhereR is a residue of some literal {fi,_.

The operatofl,, represents the fixpoint &f.

It has been shown that the operator T has a fixpoint for universal quantified queries
and universal binary integrity constraints, that is constraints, which written in dis-
junctive format, are of the formy X (B; V B, V 0) whereB;, B are literals and

is a conjunctive formula with built-in operators.

Example 2.2Consider the database databZse
T = {Supply(cy,dy,i1), Supply(cs,ds,iz), Class(iy,t),Class(iz, t)}
with the integrity constraint, defined by the following first order formula:
Y(X,Y, Z)[Supply(X,Y, Z) A Class(Z,t) D X = ¢1]
stating that only supplier; can supply items of type The databasé is inconsistent

because the integrity constraint is not satisfied (an item of typalso supplied by
suppliercs). The constraint can be rewritten as:

— Supply(X,Y, Z) AN Class(Z,t) N X # 1

where all variables are (implicitly) universally quantified. The residue of the literals
appearing in the constraint are:

Res(Supply(X,Y,Z)) =not Class(Z,t) VX = ¢
Res(Class(Z,t)) = not Supply(X,Y,Z)vX =

The iteration of the operatdr to the query goallass(Z,t) gives:

o Ty(Class(Z,t)) = Class(Z,t),
o T1(Class(Z,t)) = Class(Z,t) A (not Supply(X,Y,Z)V X = ¢1),
o Ty(Class(Z,t)) = Class(Z,t) A (not Supply(X,Y,Z)V X = ¢1),

At Step 2 a fixpoint is reached since the litefdliss(Z, t) has been ‘expanded’ and
the literalnot Supply(X,Y, Z) does not have a residue associated to it. Thus, to
answer the query) = Class(Z,t) with the above integrity constraint, the query
T.(Q) = Class(Z,t) A (not Supply(X,Y,Z) Vv X = ¢;) is evaluated. The com-
putation ofT,, (@) over the above database gives the regui ;. |
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The following example shows a case in which the technique proposed is not com-
plete.

Example 2.3Consider the integrity constraint
(XY, 2)[p(X,Y)Ap(X,Z) DY = Z]

the databas& = {p(a,b),p(a,c)} and the query) = Ip(a,U) (we are using the
formalism used in [13]). The technique proposed generates the new query

T,(Q) = U[p(a,U) A Z(—p(a, Z) V Z = U)]

which is not satisfied contradicting the expected answer whitrués

This technique has also been shown to be complete for universal binary integrity
constraints and universal quantified queries. Moreover the detection of fixpoint con-
ditions is, generally, not easy. ]

2.3 Querying Database using Logic Programs with Exceptions

The new approach proposed by Arenas-Bertossi-Chomicki in [12] consists in the use
of a Logic Program with Exceptions (LPe) for obtaining consistent query answers.
An LPe is a program with the syntax of an extended logic program (ELP), that is, in

it we may find both logical (or strong) negation)(and procedural negation (not). In

this program, rules with a positive literal in the head represent a sort of general de-
fault, whereas rules with a logically negated head represent exceptions. The semantic
of an LPe is obtained from the semantics for ELP’s, by adding extra conditions that
assign higher priority to exceptions. The method, given a set of integrity constraints
n s and an inconsistent database instance, consists in the direct specification of data-
base repairs in a logic programming formalism. The resulting program will have both
negative and positive exceptions, strong and procedural negations, and disjunctions
of literals in the head of some of the clauses; that is it will be a disjunctive extended
logic program with exceptions. As in [13] the method considers a set of integrity
constraints) written in the standard format

wherep is a formula containing only built-in predicates, and there is an implicit
universal quantification in front. This method specifies the repairs of the database
that violater, by means of a logical program with exceptiafig. In 117 for each
predicateP a new predicaté”’ is introduced and each occurrencefdfs replaced

by P’. More specifically,JI is obtained by introducing:

1. Persistence DefaultsFor each base predicalg the method introduces the per-
sistence defaults:
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P'(z) — P(x)
—P’'(z) « not P(x)
The predicateP’ is the repaired version of the predica®e so it contains the
tuples corresponding tB in a repair of the original database.

2. Stabilizing Exceptions.From each integrity constraint and for each negative
literal not Q;, in ic, the following negative exception clause is introduced:

_‘ng(yio) — /\ _‘Pi/('ri)’ /\ Q;(yz)7<,0/

i=l..n i#io

wherey’ is a formula that is logically equivalent to the logical negatiopof

Similarly, for each positive literaP;, in the constraint it is generated the follow-
ing positive exception clause:

iy i=1..m
The meaning of the Stabilizing Exceptions is to make the integrity constraints be
satisfied by the new predicates. These exceptions are necessary, but not sufficient
to ensure that the changes the original subject should be subject to, in order to
restore consistency, are propagated to the new predicates.

3. Triggering Exceptions. From the integrity constraint in standard form it is pro-
duced the following disjunctive exception clause:

\V Pl@)v \/ =Qiw)— A not Pi(x:), )\ Qi(vi).¢'

1=1..n 1=1..m i=1l..n i=1..m

The programiIZ constructed as shown above is a ‘disjunctive extended repair logic
program with exceptions for the database instaficdn II7 positive defaults are
blocked by negative conclusions, and negative defaults, by positive conclusions.

Example 2.4Consider the databage= {p(a), ¢(b)} with the inclusion dependency
n:

p(X) 2 q(X)

In order to specify the database repairs the new predigatasdq’ are introduced.
The resulting repair program has four default rules expressingtlaaidq’ contain
exactly whatp and q contain, resp.:
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two stabilizing exceptions :

¢ (z) —p'(x)
—p'(2) — =¢'(x)

and the triggering exception:
—p'(z) V ¢'(z) — p(x), not q(z)

The e-answer sets are:

{r(a),q(b),p'(a),q'(b), p'(a)}
{p(a),q(b),p'(a),q'(b),q'(b)}

that correspond to the two expected database repairs. O

The method can be applied to a set of domain independent binary integrity con-
straints, that is a set that can be checked with respect to satisfaction by looking to the
active domain, and such that in each constraint appear at most two literals.

2.4 Query Answering in the Presence of Constraints

In[27,28,92,93] itis proposed a framework for data integration that allows the spec-
ification of a general form of integrity constraints over the global schema, and it is
defined a semantics for data integration in the presence of incomplete and inconsis-
tent information sources. Moreover a method for query processing under the above
semantics, when key and foreign key constraints are defined upon the global schema,
is proposed.

Formally, the data integration systéhis a triple(G, S, Mg_s) whereg is the global
schemas is the source schema atld g s is the mapping betweef andS. More
specifically, theglobal schemas expressed in the relational model with both key
and foreign key constraints, t®urce schema expressed in the relational model
without integrity constraints, and the mapping is defined between the global and
source schema, that is each relatiorgiis associated with a view, that is a query
over the sources.

Example 2.5An example of a data integration system, reported in [27]] is=
(G, S, Mg s) whereg is constituted by the following relation symbols:

student(Scode, Sname, Scity)
university(Ucode, Uname)
enrolled(Scode,Ucode)

and the constraints:
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key(student) = Scode
key(university) = Ucode
key(enrolled) = Scode,Ucode
enrolled[Scode] C student[Scode]
enrolled[Ucode] C university[Ucode]

S consists of the three sources; of arity 4, containing information about students
with their code, name, city and date of birtky, of arity 2, containing codes and

names of universities; ang, of arity 2, containing information about enroliment of
students in universities.

The mappingMg s is defined by:

p(student) = student(X,Y,Z) «— s1(X,Y,Z, W)
p(university) = university(X,Y) «— s2(X,Y)
p(enrolled) = enrolled(X,Y) «— s3(X,Y)

O

The semantics of a data integration system is given by considering a source database
D for Z, that is a database for the source schéhtantaining a relation® for each
sourcer in S. Any database fog, sayB, is aglobal databasdor Z, and it is said to
belegal with respect tdD if it:

e satisfies the integrity constraints defined@n

e satisfies the mapping with respectp that is for each relationin G, the set of
tuplesr® thatB assigns to- contains of the set of tuplegr)” computed by the
associated queny(r) overD:

p(r)P CrB

Note that each view is considersdund that is the data provided by the sources are
not necessary complete. It is possible to formulate other assumption on views [2], in
particular a view may beomplete that is for each view irg it is p(r)? 2 5 or

exact that is for each view i itis p(r)? = r5.

Definition 2.6. Given a source databage for Z, the semantics of with respect to
D, denoted byemP (Z, D) is the set of database defined as follows:

semP (I, D) = {B | Bis a legal global database fér with respect taD}

If semP(Z, D) # (), thenZ is said to beconsistent with respect taD. ]

Thus, the semantics of a data integration system is given in terms of a set of data-
bases.

A query g to a data integration systeff is a conjunctive query over the global
schema, whose atoms have symbol§ ias predicates. A tuple, ..., c,) is con-
sidered an answer to the query only if it i€@rtainanswer, that is if it satisfies the
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query in every database that belongs to the semantics of the data integration system.
More formally, acertain answenf a queryqg with arity n with respect t& andD is
the set:

&P ={(ey1,...,cn)|for each DB € sem(Z, D), (ci,...,c,) € ¢PB}

whereqPB denotes the result of evaluatigpdn the databas®B.

Theretrieved global databaselenoted by-et(Z, D) is obtained by computing, for
each relation- of the global schema, the relatiof?; this is done by evaluating

the queryp(r) over the source databage Note that theetrieved global database
satisfies all the key constraints éh as it is assumed tha{r) does not violate the

key constraints, thus ifet(Z, D) also satisfies the foreign key constraints then the
answer to a query can be done by simply evaluating it ovett(Z, D). If it is the

case thatet(Z, D) violates the foreign key constraints then tuples have to be added
to the relations of the global schema in order to satisfy them. Obviously in general
there are an infinite number of legal databases that are coherent with the retrieved
global database, even if it is shown that there exists onecdhenical database
denoted byan(Z, D), that represents all the legal databases that are coherent with
the retrieved global database.

Thus, formally the answer to a quegycan be given by evaluating it amn(Z, D).
Anyhow, the computation of the canonical database is impractical as, generally, the
number of databases can be infinite, thus in [27] it is defined an algorithm that
computes the certain answers of a conjunctive guewithout actually building
can(Z, D).

The algorithm transforms the original querynto a new query, called thexpansion

of q with respect t¢j, denoted aszpg (q), over the global schema, so that the answer
expg(q) over the (virtual) retrieved global database is equal to the answeover

the canonical database, thatigyg (¢) is independent of the source datab@se

Roughly speaking, the algorithm is based on the idea of expressing foreign key con-
straints in terms of rules of a logic prografRy with functional symbols (used as
Skolem functions).

In order to build the progra®g:
e A new relation’, called primed relation, is added for each relatign G.
T'/(Xl, . ,Xn) — T(Xl, . 7AX»,I)

o for each foreign key, [A] C r,[B] in G whereA andB are sets of attributes and
B is a foreign key for the rule:

Té(le'"7XfL7f}L+1(X17~"7Xh)7"'7f7l(X17"'7X}L)) <_T/1(X17"'7Xh7'~~7XTl)

is added, wherg; are Skolem functions and it is assumed, for simplicity, that
the firsth attributes are involved in the foreign key.

The prograniPg is then used to generate the quéeypg(q)) associated t@. In
particularPg is used to generate thpartial evaluation treeof the queryg, whose
non-empty leaves constitute the reformulatienpg(¢)) of the queryq.
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Example 2.7Suppose the global schergeof a data integration system consists of
the following three relations:

person(Pcode, Age, Cityof Birth)
student(Scode, Univerisity)
enrolled(Scode, Ucode)

with the constraints:

key(person) = Pcode
key(student) = Scode
key(city) = Name
person|[Cityof Birth] C city[Name]
city[Major] C person[Pcode]
student[SCode] C person[Pcode]

The logic progranPg uses the predicaggerson of arity 3, studentwith arity 1 and
city with arity 2 and constitutes the following program:

person’(X,Y, Z) — person(X,Y, Z)
student’ (X,Y) — student(X,Y)
city' (X,Y) — city(X,Y)

city’ (X, f1(X)) — person/ (Y, Z, X)
peT‘SOﬂl(Y, f2 (Y)7 f3(Y)) — City/ (X7 Y)
person’ (Y, f4(X), f5(X)) < student’'(X,Y)

Suppose we have the query

q(X) «— person(X,Y, Z)

The non-empty leaves of the partial evaluation treg fovide the following expan-
sionq’ = expg(q) of the query:

¢/(X) — person(X.Y, 2)
¢ (X) « student(X, W)
q' (W2) « city(Z,W2)

Thus the expanded query searches for codes of persons not only in the relation

person, but also instudent andcity, where, due to the integrity constraints, it is
known that codes of persons are stored. a

The above approach is further extended in [92] where the query answer problem in
the same setting, but under a loosely-sound semantics of the mapping is investigated.
The difference with respect to the previous case can be seen in a situation in which

there is no global database that is both coherent@ihd satisfies the mapping with
respect taD. In this caseret(Z, D) violates the constraints i6, that is there exists
r € G andty, ty € ret(Z,D) such thatkey(r) = X, 61[X] = t2[X], andt; # to.
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Under the strictly-sound semantics this means that there are no legal datab&ses for
with respect tdD.

In order to avoid this problem it is defined a loosely-sound semantics that allows to
always have a coherent database by restricting the set of tuples to those satisfying
the constraints. The semantics allows the elimination of tuples frettZ, D), in
particular it implies that the legal databases are the ones that are “as sound as possi-
ble”, thus it considers only databases coherent with the constraints that “minimize”
the elimination of tuples fromet(Z, D).

The method for computing a certain answer identifies the legal databases with re-
spect to taZ’, obtained fromZ by eliminating all the foreign key constraints ¢h
Obviously, each of such databadgss contained inet(Z, D). Then he legal data-
bases are used in the query reformulation technique for the strictly-sound semantics
previously illustrated.

2.5 Complete Answers from Incomplete Databases

In [94] the problem of answering queries from databases that may be incomplete is
considered. A databaseirscompleteor partial if tuples in each relation are only a
subset of the tuples thahouldbe in the relation and, generally, only a part of each
relation is known to be complete. Formally, this situation can be modeled as having
two sets of relations, thertual and theavailablerelations. The virtual relations are

R = Ry,..., R, while the available relations a®’ = R}, ..., R, and for every

i € {1..n} the extension of the available relati@j contains asubsebf the tuples

in the extension of the virtual relatiaR;.

The important question addressed in [94] is &émswer completenegsoblem, that

is deciding whether an answer to a given query is guaranteed to be complete even if
the database is incomplete or in other words if the answer is guaranteed to contain all
the tuples we would have obtained by evaluating the query over the virtual relations.
Clearly, if it is known thatR, C R, for eachi, 1 < i < n, then the answer to the
query may be incomplete; however, it is often the case that an available relation, say
R} has the property of beirpartially completethat is some parts dt; are identical

to R;. The local completeness property guarantees that if the answer to the query just
depends on the complete portion it is guaranteed to be complete.

Local completeness for a relatid®l is specified by a constraint on the tuplesif
that areguaranteedo be inR’.

More formally:

Definition 2.8. (Constraintg Let R be a relation of arityn, and X4, . . ., X, be vari-
ables standing for its attributes. A constraifiton the relationR is a conjunction

of atoms that includes constants, variables fréf, ..., X,, and other variables.
The relations used i’ can be either database relations or comparison predicates,
but notR itself. A tuple(as, ..., a,) satisfiesC with respect to a database instance
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if the conjunction resulting from substituting for X; in C' is satisfied inZ. The
complement of’ is denoted by-C'. m|

Definition 2.9. (Local CompletenegsLet C' be a constraint on the relatio®. A
database instancg that includes the relation® and R’ is said to satisfy the local-
completeness statemeb€(R’, R, C) if v’ contains all the tuples oR that satisfy
C, that is if the results of the following two queries are identical drer

¢1(X1,.., Xpn) « R(X1,..,X,),C
qQ(Xla 7Xn) — R/(le "aXn)vc

O

The solution to the answer-completeness problem is given by showing that this prob-
lem is equivalent to the one of detecting the independence of a query from an inser-
tion update, that is the problem of determining whether the answer to a query changes
as a result of an insertion to the database. In particulap le¢ a union of conjunc-

tive queries over the virtual relatioddand comparison predicates, andligbe a set

of local completeness statements of the fdii( R}, R;,C;), whereR) € R’ and

R; € R.The queryQ is answer-complete w.rft if and only if In* (Q, (R;, — C;))

holds for every statement if. In*(Q, (R;, ~ C;)) states that the quelg is inde-
pendent from the insertion upddtg;, — C;), that is for any database instaritand

any database instanZé that results fron¥ by adding toR some tuples that satisfy

=05, Q) = QT).

Theorem 2.10.Let Q be a union of conjunctive queries over the virtual relatidhs
and comparison predicates, and |Etbe a set of local completeness statements of
the formLC(R), R;, C;), whereR) € R’ andR; € R. The queny is answer-
complete w.r.f” if and only if In™ (Q, (R;, = C;)) holds for every statement ifi.
whereIn™*(Q, (R;,— C;)) states the querg) is independent from the insertion up-
date(R;, - C;), that is for any database instan@eand any database instan@

that results fronZ by adding toR some tuples that satisfy C;, Q(Z) = Q(Z'). O

With the previous theorem the problem of detecting independence can be solved by
using one of the algorithms studied in the literature.

The equivalence problem is undecidable for recursive queries [132], while it is de-
cidable in the following cases:

o if each of theC';’s contains only arguments @t; or constants, or

¢ if the head ofQ contains all the variables of the body @f and neither the€’;’s
or @ use the comparison predicates.

Generally, the problem of deciding answer-completenessislin The best known
algorithm for the independence problem and therefore for the answer completeness
problem is exponential, even if it has been shown that if updates are described using
a conjunction of comparison predicates the independence problem can be decided in
polynomial time.
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2.6 Condensed Representation of Database Repairs for
Consistent Query Answering

In [145] a general framework for repairing databases is proposed. In particular the
author stressed that an inconsistent database can be repaired without deleting tu-
ples (tuple-based approach), but using a finer repair primitive consisting in correct-
ing faulty values within the tuples, without actually deleting them (value-based ap-
proach).

Example 2.11Suppose to have the following set of tuples reporting the dioxin levels
in food samples:

Sample|SampleDate| Food |AnalysisDate| Lab |DioxinLevel
110 |17 Jan 2002 |poultry| 18 Jan 2002 |ICI| mnormal
220 |17 Jan 2002 |poultry| 18 Jan 2002 [IC'B| alarming
330 |18 Jan 2002 | beef | 18 Jan 2002 [ICB| normal

Dioxin Database

and the constraints :
vV S,D1,F,D2, L, D(Dioxin(S,D1,F,D2,L,D) > D1 < D2)

that imposes that the date of analyzing a given sample cannot precede the date the
sample was taken.

The first tuple in the Dioxin Database says that the sample was taken on

17 Jan 2002 and analyzed the day after at thhi€'l lab, and that the dioxin level

of this sample was normal. While sampal&0 respects the constraint, samp{z0
violates it. An inconsistency is present in the database and the author claitearto

it in a way that avoids deleting the entire tuple, that is acting at the attribute level and
not at the tuple level. m|

Given an inconsistent database a consistent answer can be obtained by leaving the
database in its inconsistent state, and by propagating the consistent portion of the
database in the answer, that is the set of tuples matching the query and satisfying
the constraints. Since the repair work is deferred until query time this approach is
called late-repairing Given a satisfiable set of constraintsthat is a set of finite
constraints, and a relatiah apply a database transformatibp such that for every
query@, Q(h,(I)) yields exactly the consistent answerjoon input/ andn.

Observe that,(I) is not necessarily a repair fdrand», and can be thought as

a condensed representatiar all possible repairs fof andn that is sufficient for
consistent query answering. The practical intuition is that an inconsistent database
| is firstly transformed througlh,, in such a way that the subsequent queries on
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the transformed database retrieve exactly the consistent answer . Since database is
modified prior to query execution, this approach is caéady-repairing

General Repair Framework

Before formally introducing the framework let’s give some preliminaries. The frame-
work focuses on a unirelational database, and the set of constraints, denated
expressed in a first-ord€¢F'O) language using a simpleary predicate symbol. A
substitutiord is a set of pair§ X /t1, ..., X /tx } whereX,, ..., X}, are distinct vari-
ablesty, ..., ¢, are terms and no variablg; appears in any terrty. The application

of a substitutior® to a set of literals, written S0, is the set of literals derived froti

by the simultaneous replacing of all the variables appearidgwith the associated
terms. A substitutiod is a unifier for a set of literal§' if S is a singleton. We say

that a set of literal$' unify if there exists a unifief for S. A unifier 6 for S is called
amost general unifier (mgudr S if, for each unifiers of S, ¢ is an instance of,

i.e. there is a substitutiohsuch thatr = 6. A tableauis a relation that can contain
variables. A tableau T is said tb— subsume a tableaus, here denoted” = S, if

there exists a substitutighsuch that/(S) C T. Thef — subsumption, commonly

used between clauses, is here used between tableaux representing the negation of
a clause: the tablea{t, ..., ¢,,}, can be treated a$*(¢; A ... A t,,,), that is as the
negation of the clause*(t; A ... A t,,). Clearly, T O S impliesT = S; hence

0 — subsumption weakens the ordep. If G is a tableau, theprd(T") denotes the
smallest relation that contains every ground tuple of T. A valuation is a mapping
from variables to constants, extended to be the identity on constants, a substitution
is a mapping from variables to symbols, extended to be the identity on constants.
Valuation and substitution are extended to tuples and tableaux in a natural way. We
write id for the identity function on symbol; andl, = ¢, wherep andgq are not

two distinct constants, for a substitution that identifiégdg and that is the identity
otherwise. That is ip is a variable ang a constant, thefi,,—, = {p/q} . If p andg

are variables, thefi, = ¢ can be eithefp/q} or {¢/p}. Given two tableau” and

S, of the same given arity, we writ€ = 7' iff there exists a substitutiof such that

0(T) C S. We writeS ~ T'iff S = T andT > S; we write.S > T'iff S = T and

it S ~ T does not hold. A relatiord” (a tableau in this contexfubsatis fies n if

there exists a relatioff > F' such that/ |= 1.

Fixing (or repairing) a relationl with respect to a sef of integrity constraints
means modifying in order to bring it in accordance with) by ensuring theninimal
changeprinciple, that is the result of fixing has to be as close as possible to the initial
relation. In particular fixing a relation is an operation consistingl@in fizing
followed byup fixing.

Downfixingmeans that we pass frointo F', calledfix, so that/ > F andF' sub-
satisfies. Upfixingmeans that we subsequently pass frbrto a relationM > F

such thatM = n, whereM is calledmend In fixing a relation it is required that the
result of fixing is as close as possible to the initial relation.
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In this framework the minimal change principle is settled by usingrth&imal con-
tent preservation criteriondownfixing retains as much as possible from the original
relation, and upfixing consists of a minimal completiéhshould be such that there
exists noF” that also subsatisfiesand such thaf > F’ >~ F, thatisF” is closer

to I thanF'. Next, for a givenF’, M should be such that there exists W6 such that

M = M’ » F andM’ |= . This criteria only relies on the order.

For the order- the D or thef-subsumption could be chosen. Anyhow, the author
points out that both prove to be inadequate. In particolas too strongfor repair-

ing as it does not allow to differentiate between tuples that agree on most attributes
and tuples that disagree on all attributes: the tuples are simply treated as unequal in
both cases, thus the repairing is tuple-based. On the other-siddoo weak for
downfixing as it can produce mends with spurious tuples.

Therefore, the author claims downfixing has to be based on a relation, déndted
betweenD and > . More formally, given two tableauX’ and S, of the same given
arity, S C T iff there exists a substitutiofl such tha®(7") C S and|0(T)| C |T.
The latter condition ensures thtatloes not identify distinct tuples @f.

Related to the chosen ordet,, fix and mend are defined as follows. Given a relation
1, of arity n, and a set of constraings

e afixfor I andn is a tableaur’ such that/ C F', F' subsatisfieg;, and for every
tableaur” if I J F’ > F, thenF’ does not subsatisfy.

e amendfor I andS is a relationM with M = » such that there exists a fiX for
I andq satisfying : ()M = F and (ii) for every relatiom{’, if M = M’ = F,
then M’ does not satisfy).

Note that the requiremerit = F' in the above definition implies the existence of a
substitutiond such thaty(F) C I and|f(F)| = |F|, thus for a given tuple € I
there can be at most one repairing tugfle F such tha#(t’) = t.

Trustable Query Answers

Obviously, for a given relation and a given set of constraints, the number of mends is
generally infinite. Thus the author investigates the problem of querying these mends
in order to obtain a consistent answer, here caditadtable answerthat is answer
satisfying the set of constraints.

More formally given a unirelational database consisting of a relakjoof arity n,
and a set of constraintsand a query;, the ground tuple is a trustable answer tp
on inputy iff ¢ € ¢(M) for every mendV/ for I ands).

Example 2.12Continuing the previous example. Let us consider the query:

Answer(S) « Dioxin(S, D1, F, D2, L,” alarming”)
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asking for samples with an alarming dioxin level. The identifica#i®his a trustable
answer, but it is not a trustable answer for the query asking for a sample date of
17 Jan 2002. In fact, many mends show a different sample date for the sa?@ple

A class(@ of queries isearly-repairablewith respect to a class of constrair@@s if

for every satisfiable set of constrainise C and for every relatior?, there exists

a computable relatiod’ such that for every query € Q, ¢(I') is exactly the set

of trustable answers tpon input/ andn. After formally defining the trustable an-

swer the author focuses on the classes of queries and constraints for which trustable
answers can be effectively computed, examining conjunctive queries and full depen-
dencies.

Tableau Queries and Full Dependencies

A tableau queryis a pair(B, h) whereB is a tableau and is a tuple (calledsum-
mary) such that every variable ihalso occurs in3; b andh need not have the same
arity. LetT = (B, h) be a tableau query, arid a tableau of the same arity & A
tuplet is ananswerto 7 on inputT iff there exists a substitutiof for the variables
in B such that(B) C T andf(h) = t. The set of all answers to on inputT is
denotedr (7).

A full dependencyis either a fulltuple-generating dependengytgd) or a full
equality-generating dependen¢yegd). A ftgd takes the form of a conjunctive
query (B, h) where B and h have the same arity. Thétgd 7 = (B, h) is satis-
fied by a tablead’, denotedI’ = 7, iff T U 7(T) ~ T. A fegd is of the form
(B,p = q) whereB is a tableau ang andq are symbols such that every variable
in {p,q} also occurs inB. The fegd ¢ = (B,p = q) is satisfied by a tableall,
denotedl" = «, iff for every substitutior?, if 6(B) C T thenf(p), 8(q) are not two
distinct constants an@l ~ idg)—g(q)(T)-

Example 2.13Consider a relatioManufacturewith four attributes denotingate,
product, color andquantity respectively. For example a tup|&2 Jan 2002, lock,
green, 1000)neans that 000 green locks were manufactured on 12 Jan 2002
production line is subject to the constraints reported in Figure 2.13

In particular, thefegd's ¢; andey express that the date and the product uniquely
identify tuples inManufacture e captures the fact tha Jan 2002 was a day of
strike, on which no products were manufactured (0 and 1 can be replaced by any
two distinct constants). Finally thétgd 7, expresses that each production of a lock
involves the simultaneous production of a key in the same color.

The author shows that given two tabledlixand.S and a set of full dependencies
if T ~SandT = S, thenS = 1.

It is known that every finite sef of tableaux has a greatest lower bound under
More formally a tablead. is alower boundof a finite setS of tableaux iff for each
T € S, T = L. Alower boundG of S is called thegreatest lower boun€yyib) of S
iff G > L for every lower bound. of S.
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1[2[3[4]  [2[2[3]4]
xyz/u/ €1 a:yz,ul €2
T|Y|z |u T|y|z |u

[ S— e R

€3 x|lock|z|u|| Tt
B JanuargéQ()OlQ[y[Z[“H | key |2|u

0=1

The construction ofyib and tableau query commute up 4a In fact, given two
tableaux7’, S, a tableau query = (B, h), aglb {T, S} and aglb of {r(T'), 7(5)},
thent(G) ~ F.

Chasing Fixes

Thechaseoriginally introduced for deciding logical implication is used for repairing
databases. In particular, some results are generalized to tableaux that can contain
constants, need not be typed and in these equality is replaced by

An artificial top element, denoted , is introduced to the semi-ordet’, O). Let
T # O andS be tableaux ang a set of full dependencies. We wrife |=,, S if S
can be obtained frori’ by a single application of one of the following chase rules:

e If 7= (B,h)isaftgdonn,thenT =, T UT(T).

e Let(B,p=q)beafegd of n, andd a substitution such th&{B) C T.

e If §(p) and6d(q) are two distinct constants, théh |=, O; otherwise,T' =,
idg(p)=0(q)(T)-

A chase of" by S is amaximal(with respect to length) sequen¢e= Ty, T1,, T,

of tableaux such that for eveiye {1, ...,n}, T;_1 =, T; andT; # T;_;.

Requiring that chases be maximal tacitly assumes that chases are finite.

Given a tablead’ £ O and a set of full dependencies, then

e If Tisatableauin achase @t by n, thenT = F.
e Each chase of by S is finite.
e If T # Ois the last element of a chase Bfby ), thenT = 1.

e If T = Ois the last element of a chase Bfby n, andé is a valuation mapping
distinct variables to new distinct constants not occurring elsewhereg{ién=

.
The author shows that given a set of full dependengiasd a tablea#’ # O, then

F subsatisfies iff chase(F,n) # O. Thus a set of full dependencigss satisfiable
iff chase((), S) # O.
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Example 2.14Let’s continue the previous Example. The Figure 5.1 showaa-
ufacturerelation together with fixes and chase results. The integrity constraints are
violated: no items can have been produceddoan 2002and the production of 100

blue locks must entail 100 blue keys. Moreover red and blue keys cannot have been
manufactured on the same day.

HSample[SampleDate[ Food [AnalysisDate[ Lab [Diom'nLevelH

110 | 17Jan2002 |poultry| 18Jan2002 |ICI| mnormal
220 17Jan2002 |poultry| 18Jan2002 |ICB| alarming
330 | 18Jan2002 | beef 18Jan2002 |ICB| mnormal

Manufacture

f2[3[4] [[2]3]4]
x|lock|blue|110[| F1 x|lock[blue|110]| chase(F1,n)
z|key| z |110 x| key |blue|110

If2]3[4] [[2]3]4]

zllock| z [110]| F2 zllock|red|110]] chase(Fz,n)

x| key |red|110 x| key|red|110
f2[3]4] [U2]3[4]
x|lock|blue|110]| F3 z|key[red|110]| chase(F3,n)
x| key|red|110 x|key|blue|110

s T L 2I3 4]
zl314] —
z| y |red|110
x| key |blue|110

8

chase(Fu,n)

[[2]3[4]
x[ y [blue[110]|F5  chase(Fs,n) ~ Fs
z|key|red|110

Fig. 2.1.Manufactures Databases with fixes and chase results

Fy and F;, assume that the date 8fJan 2002and either color (red or blue) were
mistaken.Fy and F5 assume that the date 8fJan 2002and either product (key
or lock) were mistaken. Finallyt; assumes that the date ®Jan 2002should be
replaced by different dates in either tupleMdinufacture It is easy to verify that any
other fix is equivalent under to one of the five fixes shown.

The formal definition oftrustable tableaus as follows: letF be a minimal set of
tableaux (with respect t@&) such that for every fixt’ for I andn, there exists
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some tableau?”’ such thatF” ~ F. Let S be a minimal (with respect t@) set
of tableaux such that for evely € F, there exists some tabledu € S such that
T € chase(F,n). LetG be aglb of S, thenG is called a trustable tableau férand
S.

Computation of trustable tableau is shown to be computable for unirelation databases
with a set of full dependencies. The computation is quite complex as it involves
solving N P-complete problems, like deciding the- subsumption for determining

the fixing.

2.7 Using Views

Recent research on databases has been concerned with the problem of answering
queries when only materialized views are available as base relations [35, 36,47,
95,96, 122, 141]. This problem is becoming more and more important in many ar-
eas such as query optimization, database design, data integration, data warehouse,
mobile computing and others. The many applications of the problem of answering
queries using views has spurred a flurry of research, which also led to the design and
implementation of several commercial system.

Informally speaking, given a general quepyover a database schema, and a set of
view definitionsVy, ...V, over the same schema, the problems are the following: is

it possible to answer the que€y usingonly the answer to the views,, ...V,,; and

what is the maximal set of tuples in the answerpthat we can obtain from the
views?

The treatment of the problem differs mainly depending on whether it is concerned
with query optimization, database design or with data integration. The main distinc-
tion is essentially between works on query optimization and maintenance of physical
data independence and works concerning data integration. In particular, in the con-
text of query optimization and database design, the focus has been on producing
a query execution plan that involves the views, and hence the effort has been on
extending query optimizers to accommodate the presence of views; whereas in the
context of database integration, the focus has been on translating queries, formulated
in terms of the mediated schema into queries formulated in terms of the data sources.
Thus the key difference between these two classes of works is the output of the al-
gorithm for answering queries using views. In the former case, given a @Quexyd

a set of views)y, ...V, the goal of the algorithm is to produce an expressign

that references the views and is either equivalent to or contain€d whereas in

the latter case the algorithm must go further and produce a query execution plan for
answering) using the views.

A data integration system exposes to the user a mediated schema, which consists of
a set ofvirtual relations, in the sense that they are not actually stored anywhere. To
be able to answer queries the system must contain a seueote descriptionghat
describe the contents of the source, the attribute that can be found in the source, and
the constraints on the content of the source. One of the preeminent approaches for
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specifying source description, adopted in several systems, [49, 91, 97] is to describe
the contents of a data source as a view over the mediated schema. This approaches
allows easily to add new data sources and to specify constraints on the contents of
the sources.

Therefore, an interesting problem is to find a rewriting whicbdgrect that is only
atoms derived from the original query are derived from the rewritten one, and, pos-
sibly, optimal that is it gives the best approximation of the original query.

In this environment the concepts qfiery containmenand of query equivalence

are essential as they provide a semantic basis for comparison between queries and
between different reformulations of queries, and can be used to test the correctness
of a rewriting. In the following we denote the result of computing the qugigver

the databasg by Q(Z).

Definition 2.15. A query(Q) is said to becontainedn a queryQ,, denoted by), C
Q2, if for all database instancesg, the set of all tuples computed f@); is a subset
of those computed fap-, that isQ1(Z) C Q2(Z). The two queries are said to be
equivalenif @, C Q2 and Qs C Q. |

The problem of answering queries using views has also to take into account the dif-
ferent properties of the data sources; as an example it has been shown that if data
sources are assumed to templete that is they include all the tuples that satisfy
their definition, then the problem of answering queries using views becomes compu-
tationally harder. Intuitively this is due to the fact that when a source is complete it
is also possible to infer negative information as a result of a query to the source. This
led to a more complex question: given a general qugnyver a database schema,
and a set of view definitiong, ...}, over the same schema what is the complexity

of finding the maximal set of tuples in the answer@drom V1, ...V,,. From what
previously stated, it is necessary to distinguish between two types of query rewriting:
equivalent rewriting@ndmaximally contained rewritings

Definition 2.16. Equivalent rewritingLet Q; be a query and’=Vy, ..., V,, be a set
of view definitions. The quel’ is anequivalent rewritingof Q usingV if Q' refers
only to the views i) andQ’ is equivalent ta). m|

Definition 2.17. Maximally contained rewritingLet ), be a query andV=Vy,...V,,
be a set of view definitions antibe a query language. The quety is amaximally
contained rewritingf @ using)’ with respect toC if (i) Q' is a query in that refers
only to the views irY; (i) @' is contained inQ and there is no rewriting); < L,
such that)’ C Q; C @Q andQ; is not equivalent ta@)’. m|

Obviously unlike the case of equivalent rewritings, the maximally contained rewrit-
ing may differ depending on the query language, moreover the algorithm for query
containment and equivalence provide methodsdstingwhether a candidate rewrit-

ing is an equivalent or a contained rewriting, but do not formally provide a solution to
the problem of answering queries using views. Another important question stressed
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in this context is how to find, given a set of view definitions and their extensadins,

the possible answers to the query. A maximally contained rewriting does not always
provide all the possible answers that can be obtained from the views as the rewriting
in this case is specific with respect to a specific language.

Formally, the problem of finding all the answers to a query is formalized by the
notion of certainanswers, introduced in [2] in which it is distinguished the case in
which the view extension is complete (closed-world assumption) from the case in
which the views may be partial (open-world) [2, 35, 68]. The intuition behind the
concept of certain answer is that the extensions of a set of views do not define a
unique database instance, thus given the extensions of the views we have only partial
information about the real state of the database. A tuple is a certain answer of a query
Q ifitis an answer folanyof the possible database instances that are consistent with
the given extensions of the views.

Definition 2.18. Certain answerd_et (); be a query and’=V,...V,,, be a set of
view definitions over the database scheRga ...R,,. Let the sets of tuples,, ...v,,
be extensions of the views, ...V, respectively. The tuple is a certain answeto
the query@ under the closed-world assumption given...v, if a € Q(D) for all
database instances such thatV;(Z) = v; for everyi, 1 < i < m. The tuplea is
a certain answeto the query under the open-world assumption given ...v,, if
a € Q(D) for all database instance&such thad’;(Z) O v, for everyi, 1 < i < m.
a

Thus, in order to answer a query using views it is necessary to translate the query,
formulated over the mediated schema into a query that directly refers to the schema
of the data sources.

Many techniques used to answer queries by means of materialized views have been
proposed in the literature, the interested reader can refer to [141] and [48] for a
general introduction on the argument, to [49] for the rewriting of positive conjunctive
views and to [61] for the rewriting of general views.

Many algorithms for query rewriting have been proposed. In [141] the query posed
upon the mediated schema is a conjunctive qué@)( that is a rule with subgoals
having EDB predicates. ACQ is applied to the€ DB relations by considering all
possible substitutions of values for the variables in the body. As an example we can
consider the query:

p(X,Z) — a(X,Y),a(Y,2)

where thinking ofa as an “arc” predicate defining a graph, the rule states that
“p(X, Z) is trueif there is an arc from the nod¥ to Y and an arc from the nodé

to X7, that is there is a path of length two frofi to Z.

For conjunctive queries the containment first studied by Chandra and Merlin [34] is

tested following the approach used in [124]. In more detalils, to test wh@ther Q-
the following steps are performed:
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e freezethe body of@; by turning each of its subgoals into facts in the database.
This can be achieved by replacing each variable in the body by a distinct constant
and by treating the resulting subgoals as the only tuples in the database ;

e apply@- to thiscanonicaldatabase;
o ifthe frozen head of), is derived by, then@; C Q-. otherwise not.

If the test is negative then the canonical database is a counterexample to the con-
tainment, as surely); derives its frozen head from this database; whereas if it is
positive there is an homomorphism from the variable®efto the variables of);.
Containment od'Q'’s has been proved to bgP-complete in [34] although in [130]

it is shown that in the common case where no predicate appears more than twice in
the body, then there is a linear-time algorithm for containment.

Example 2.19Let’s consider the following twa’'Q's [141]:

Q1 p(X,Z2) —a(X,Y),a(Y,Z)
Q2 : p(X>Z) H(],(X,U%Q(VZZ)

where @, looks for paths of length two, whil€), looks only for nodesX and Z

such thatX has an arc out to elsewhere addhas an arc in from elsewhere. The
procedure for testing the containment informally described previously supports the
intuition that@, C Q-. O

An important extension of'Q’s consists in allowing negated subgoals in the body.
The effect of applying &'Q to a database is as before, but in this case when con-
stants are substituted to variables the atoms in the negated subgoals must be false,
rather than true (that is the negated atom itself must be true). In the presence of
negated subgoals the containment test is slightly more complex, in particular it is
II}-complete.

The query is expressed in terms of #B predicates. The problem is that of finding
avalid solutionS for the queryQ, that is an expression of the query in terms of the
views, that is such that it is possible to replace the viewS by their definitions,
saidexpansionE, of the query which results to be equivalent to the original query

Q.

Example 2.20Let’s suppose to have a singfDB predicatep(X,Y") which states
thatY is parent taX. Let there be two views, defined as follows[141]:

Ul(}/a Z) <_p(X7Y)7p(Y7 Z)
'U2(X7 Z) <—p(X, Y)vp(yv Z)

where the first views; produces a subset of the relation fgrthat is those chield-
parent pairgY, Z) such that the child is also a parent of some individ&alThe
second view, models a grandparent relation from the parent relation. The query

q(c) < p(0,A),p(A, B),p(B,C)
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asking for the great grandparents of a particular individual, can be rewritten by the
following expansion using only the predicateandv,:

s1(¢) < v2(0, D), v1 (D, C)

By replacing each of the subgoals gf with the definition of the views we obtain
the expansion:
61(0) <_p(O7E)ap(E7D)7p(Dvc)

Using the containment test in both directions it can be provedehat ¢. Obvi-
ously there are other solutions that, when expanded are containedbin are not
equivalent to it. a

From the previous example it results clear that one can only guess potential solutions
for a query and then test them using the containment test. However there are theorems
that limit the search and show that the problem of expressing a query in terms of
views is no worse tha/P-complete. The idea is that any view used in a solution
must serve some function in the query; a view without a function must be deleted
from the solution.

A solution S for a query@ is minimalif :

e SCQ;

e there is no solutiofl” for @ such that:
- SCcTCQand
— T has fewer subgoals thath

Both in [95] and in [123] are defined theorems that offer nondeterministic polynomial-
time algorithm to find either:

e asingle solution equivalent to the quepy

e a set of solution whose union is containedjrand that contains any other solu-
tion that is contained i).

In each case one searches “only” an exponential number of minimal queries. If what
we are looking for is a solution equivalent € then we may stop if we find one;
whereas we can conclude there is none if we have searched all solutions and found
none.

A technique for answering Datalog queries using views restricted to being positive
and conjunctive was presented in [49]. Before presenting the proposed technique we
recall the concepts of retrievable program, containment and maximal containment
among programs.

Definition 2.21. LetP be a program and’ a set of views. We s& is retrievableif

the only€DJB5 predicates appearing if? are materialized views af.

Given two retrievable program®’ and P*, thenP’ is containedin P”, written

P’ C P, if for all databaseZ, P'(V(Z)) Cc P”(V(T)) whereC is the set of all
constants ir?.
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Given a Datalog progran® and a retrievable prograr®’, we say tha?’ is max-
imally containedn P, if P’ C P and there is no retrievable progra@” such that
P'CP’CP. |

In [49] it was shown that given a Datalog progréhand a set of conjunctive views

V itis undecidable whether there is a retrievable prog/anequivalent taP. More-

over, it was also shown that for Datalog programs and conjunctive views it is possible
to generate a retrievable progrdfy which is maximally contained if®. The tech-
nique consists of two steps. In the first step a program that might contain function
symbols is built, and in the second step the program is rewritten to eliminate function
symbols.

The first step is based on the inversion of rules defining views. Given awafthe
form v(X) « b1 (Y1), ..., bn(Y3,), the inverse of), denotedv—1, is a set ofn rules
of the formb; (Y;) — v(X) whereY; is derived fromY; by replacing every variable
y € (Y; — X) with the functionf, ,, (X) wherev identifies the view ang identifies
a distinguished variable in the view. Given a set of viéwy3’' denotes the union of
all inversesy—! of all view definitionsuv in V, that isV! = U,cy v'.

Example 2.22Assume to have three base relations having the following schema
supplier(S#, NameS, City), product(P#, NameP, Type, Price) and supply(S#,
P#). Consider the viewswade andprice defined by the following two rules:

1: made(P,C) « supplier(S,NS,C), supply(S, P).
2 : price(P, Pr) < product(P, NP,T, Pr).

where a tuplép, ¢) in the materialized viewnade means that the product with code
p was made by a supplier of city whereas the materialized view-ice consists
of the projection of the base relatigmoduct on the attributeP# and Price. The
inverse of the two views is given by the following set of rules:

Supplier(fl/S(P7 C)a fl/NS(Pv C)v C) — made(P7 C)
supply(f1/s(P,C), P) <+ made(P,C).
pTOdU'Ct(P7 fQ/NP(P7PT)5f2/T(P7 PT),P?”) <—pTiC€(P, PT‘)

O

Now, given a Datalog prograr®® and a set of view®’, Py,—1 denotes the program
derived from the union oP andV~*. AlthoughP,,—: contains function symbols it
has a unique finite minimal model since function symbols only appear in the body of
nonrecursive rules. Therefore, its fixpoint evaluation is guaranteed to terminate.

Essentially, every tuple derived from the inverted views is associated with a tuple
of the materialized views which, in turn, can be derived from more than one in-

stance of the view. Thus, a tuple derived from the inverted views has associated
a set of tuples in the original definition of the predicate. Consider for instance

the definition ofmade in the above example and the rules definingplier and
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supply derived from the inversion of the viemade. Assuming that the definition of
supply in the database consists of the two tuplesply(s1, pl) andsupply(s2, pl),

and the definition ofsupplier consists of the two tuplegsl,ibm,rome) and

(s2, sun, rome), the materialized viewnade contains only the tuplépl, rome)

and, from the inverted view, we derive the two tuplegply(fi,s(pl,rome),pl)

and supplier(fi,5(pl,rome), fi1,ns(pl,rome), rome).

Therefore, each tuple with function symbols has associated a set of database tu-
ples having the same flat terms. In our example the tupleplier( fi/s(pl,
rome), f1/ns(pl,rome),rome) has associated two tuples in the source da-
tabase, namelysl,ibm,rome) and(s2, sun,rome). This means that the body of

a ground view is satisfied by using database tuples if and only if it is also satisfied
by using corresponding tuples with possible function terms. The database built by
using materialized views will be called rebuilt database. Moreover, for each#tuple
derived from the application of a prografon the rebuilt database, there is a tuple

u derived from the application dP to the source database coinciding witbn the

flat terms oft.

The second step proposed in [49] is the elimination of function symbols by deriving
an equivalent Datalog version of the rewritten program. Here we do not consider
this rewriting since any rewritten program has a finite unique minimal model which

coincides with its fixpoint.

In[20, 61] itis considered the problem of answering queries using materialized views
in the presence of negative goals. The solution is carried out by ‘inverting’ views to
derive new knowledge. In order to derive both positive and negative knowledge, are
generated ‘rules’ having also, in addition to negation-as-failure, classical negation.
The main difference of this framework with respect to previous works is that are con-
sidered not only positive conjunctive views, but also negation and disjunctive views;
moreover functional dependencies are also analyzed in order to derive additional
information.

Essentially, the technique extends the one presented in [49], allowing the existence of
negated atoms in both queries and views and derive, by inverting views, both positive
and negative knowledge.

The rewriting of the query is performed in two steps. In the first step, given a set
of conjunctive views), we derive an extended semipositive Datalog program

extracting information about base atoms from view atoms. In the second step we
rewrite the rules in the query by generating an extended positive Datalog program,
that is a program whose rules contain classical negation but not negation-as-failure.

The rewriting of views produces three groups of rules:

1. The rules in the first group are used to derive positive information and they co-
incide with the rules described in the previous section. These rules are generated
according to the idea that, if the head of the view is true then all literals in the
body must also be true since we are considering conjunctive views, that is for
each view predicate there is only one rule defining it. Variables appearing in
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the body literals and not appearing in the head have unknown values and are
replaced by functions.

2. The rules in the second group are used to derive negative information. The idea
here is that a body literal must be false if the head of the view is false and all
other body literals are true. Moreover, since view atoms contain only ground
flat terms, for each variabl& appearing in a negated view atoms, a predicate
dom(X) is added in the body.

3. The rules in the third group define the predicéie:, that is the database do-
main.

The following example shows how our technique works.

Example 2.23Consider the following view
o(Y) — emp(X, S), mgr(X,Y).

The first group of rules, used to derive positive information, consists of one rule for
each body literal:

emp(fo)x(Y), foys(Y)) < v(Y).
mgr(fv/X(Y)v Y) — U(Y)
where variables not appearing in the head of views are replaced by function terms.

The second group of rules is used to derive negative information. Thus, a new rule is
generated for each body literal.

—emp(X,_) «— mgr(X,Y), not v(Y), dom(Y).
“mgr(X,Y) « emp(X, S), not v(Y), dom(Y).

where the database variahlenifies with all possible ground terms. The last group
of rules are used to define the database dondaim:(Y") — v(Y). =

The second step of the rewriting modifies the query program by replacing each base
literal B with ev(B), whereev(B) denotes extended version of a litefa) that is
ev(B) is derived fromB by replacing the negatiomot with —.

Given a set of view®’, and a semipositive Datalog progrdmwve denote withP,,_,

the program derived from the union 8 andV !, wherey ! are the rules derived
in the first step of the technique ai™ the program rewritten in the second step.
Moreover, for a given program®, P,,_, (V(D)) denotes the application @1, to
the materialized views.

Let P be a semipositive Datalog prograi,be a set of conjunctive views with
possible negation in the body afich database. Then, B),_, (V(D)) has a perfect
minimal model which is finite and consistentZZ;_1 Uy LCcp.

Although the program generated by the above technique gives a good approximation
of the original program, generally it is not maximal. However, for conjunctive views
with at most one negation for each rufg;,_, is maximally contained ir°. The
framework is extended by considering the inversion of disjunctive views [61].
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2.8 Minimal Change Integrity Maintenance using Tuple Deletions

In [40] a practical framework for computing consistent query answers for large, pos-
sibly inconsistent relational databases is proposed. The proposed framework handles
union of conjunctive queries and can effectively (and efficiently) extract indefinite
disjunctive information from an inconsistent database. The paper also describes a
number of novel optimization techniques applicable in this context and summarize
experimental results validating the proposal.

The problem of minimal-change integrity maintenance in the context of integrity
constraints (denial constraints, general functional and inclusion dependencies, as
well as key and foreign key constraints) in relational databases, has been investigated
in [39]. The paper discusses the different interpretation of minimal change based on
whether the information in the database is assumed toobrect and complete If

the information is complete, but not necessarily correct (it may violate integrity con-
straints), the only way to fix the database is to delete some part of it. If the informa-
tion is both incorrect and incomplete, then both insertions and deletions should be
considered. The notion eépair pursued in the paper reflects the assumption that the
database is complete, therefore the paper assumes that integrity-restoration actions
are limited to tuple deletions. This scenario is common in data warehousing applica-
tions were dirty data coming from many sources is cleaned in order to be used as a
part of the warehouse itself.

Given a set of denial constrainfs and an instance, all the repairs for- can be
succinctly represented ascanflict hypergraphGr ¢ that is an hypergraph whose
set of vertices is the se¥'(r) of facts of the instance and whose set of edges
consists of all the sets

{Pi(t1) .. Po(tn)}

such that

Pl(t1)7P2(t2),P3(t3) . Pn(tn) € E(T)
and there is a constraint
V$1,$27 e 7l'n_\[P1(t1) A PQ(tQ) ARER /\B(tl) A\ (b(iCl,lIJQ, . .,(El)]

in F' such thatP; (t1) A Py(t2) A --- A Py(t;) violate this constraint, which means
that there exists a substitutiarsuch that

o(xy) =t1, o(x2) =ta,...,0(x1) =1

and thatp(ty, ta, . .., t,) IS true.

The paper shows that each repairrafiith respect toF’ corresponds to a maximal
independent set iG'r 5.

The paper studies two basic problemepair checkingandconsistent query answer-

ing within this setting. Repair checking consists in checking whether a given database
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is a repair of the original database. Consistent query answer consists in providing an-
swers that are true in every repair of the database.

The paper shows that repair checking (but not consistent query answers) are in
PTIME for arbitrary FDs and acyclic IDs. The obtained results are tight in the sense
that relaxing any of the above restrictions leads to co-NP hard problems. Moreover,
the paper also shows that for arbitrary sets of FDs and INDs repair checking jis
complete and consistent query answering/is-complete.

These results shed lights on the computational feasibility of minimal-change in-
tegrity maintenance. The tractable cases should lead to practical implementations,
whereas the intractability results highlight the inherent limitations of any integrity
enforcement mechanism, e.g., triggers or referential constraint actions, as ways of
performing minimal-change integrity maintenance using tuple deletions.
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Active Integrity Constraints

Summary. This chapter presengtive integrity constraints (AICsan extension of integrity
constraints for consistent database maintenance. An active integrity constraint is a special
constraint whose body contains a conjunction of literals which mu&lbeand whose head
contains a disjunction of update actions representing actions (insertions and deletions of tu-
ples) to be performed if the constraint is not satisfied (that is its bottyés The AICs work

in a domino-like manner as the satisfaction of one AIC may trigger the violation and therefore
the activation of another one. The chapter also introdfmesded repairsthat are minimal

sets of update actions that make the database consistent and are specified and “supported”
by active integrity constraints. The chapter presents i) a formal declarative semantics allow-
ing the computation of founded repairs, ii) a characterization of this semantics obtained by
rewriting active integrity constraints into disjunctive logic rules, so that founded repairs can
be derived from the answer sets of the derived logic program. Finally, the chapter studies the
computational complexity of computing founded repairs.

3.1 Introduction

Integrity constraints are logical assertions on acceptable or consistent database states,
and specify properties of data that need to be satisfied by valid database instances [1].
In the database world it is not unusual to have the presence of data that fail to satisfy
integrity constraints. For this reason the management of inconsistent data plays a key
role in all the areas in which duplicate or conflicting information is likely to occur,
such as data and knowledge bases [81, 83,101, 134, 146].

Violation of constraints, that may occur for example, during or at the end of the
execution of a transaction, is classically managed by performing a “repair” of the
database state that is usually limited to fixed reversal actions, such as rolling back
the current operation or the entire transaction [33]. In any case, in many applications
there is no way to associate the cause of the inconsistency to a specific update action.
Let's consider, for example, the violation that occurs after performing the integration
of multiple independent sources; in this case the updates are typically already com-
mitted and a single update operation leading to constraint violation does not exist.
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An improved approach to constraints enforcement allows to define compensating ac-
tions that correct the violation of constraints according to a well-defined semantics
(database repairspr to computeconsistent answerdnformally, the computation

of repairs is based on the application of minimal sets of insertions and deletions of
tuples so that the resulting databases satisfy all constraints, whereas the computa-
tion of consistent answers is based on the identification of tuples satisfying integrity
constraints and on the selection of tuples matching the goal.

The following example shows a situation in which inconsistencies occur.

Example 3.1Consider the relation schemagr(Name, Dept, Salary) with the
functional dependencyept — Name which can be defined through the first order
formula

V(N7 Nl? D7 S7 S/)[ mgT(N’ D’ S)? mgT(N/7 D7 Sl) D N = N/ ]

Consider now the inconsistent instange= {mgr(john, cs, 1000), mgr(frank,
¢s,2000)}. A consistent (repaired) database can be obtained by applying a mini-
mal set of update operations; in particular it admits two repaired dataliAses:
{mgr(frank,cs,2000)} obtained by applying the repaR, = {—mgr(john,cs,
1000)} (that is by deleting the tupleigr(john, cs, 1000)) andZ,={mgr(john, cs,
1000)} obtained by applying the repaRy = {—mgr(frank, cs,2000)} (that is by
deleting the tuplengr(frank, cs,2000)). O

The problem with such a semantics is that the repairing strategy is not defined by the
database administrator, and all possible repairs are computed. Thus, in this chapter
we consider a special form of integrity constraint, caldetive integrity constraint

(AIC), whose body consists of a conjunction of literals which shouldalee and

the head contains the actions which have to be performed if the bddyeigthat

is the constraint is violated). The following example illustrates the notion of active
integrity constraint.

Example 3.2Consider the database of Example 3.1 and the active constraint:

V(N,N', D, S, S")[mgr(N,D,S),mgr(N',D,S"),N #N',S >S5 >
—-mgr(N, D, S)].

Basically, it models the same functional dependency reported in the previous exam-
ple, but, in addition, it states that in the case of conflicting tuples, the one with the
higher salary has to be removed from the database. In this case, the constraint sug-
gests to update the database by deleting the tugld frank, cs, 2000). This action

leads only one of the two repairs, nam@y, to be taken into account. |

Active integrity constraints arproduction rulesexpressed by means of first order
logic formulas with a declarative semantics that allows us to comijputeded re-
pairs, that is minimal sets of update actions making the database consistent and
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whose update actions are explicitly specified and supported. In some sense, active
integrity constraints represent a restricted fornacfive rulessufficient to (declar-
atively) express database repairs, but without the typical problems of procedural in-
terpretations such as tltenfluenceand thetermination

3.1.1 Contribution

The contribution of this chapter consists in the formal definition of active integrity
constraints and in the introduction their declarative semantics. Essentially, an active
integrity constraint is an integrity constraint that specifies the update actions that
can be performed when it is violated. It is composed by a conjunction of literals,
calledbody, and by a disjunction of update actions, callehd The body repre-

sents aconditionthat should bdalse whereas the head sets the actions that can be
performed when the body tsue (that is when the constraint is violated). An incon-
sistent database can be repaired by means of minimal sets of update actions, called
repairs The semantics here introduced allows us to identify, among all possible re-
pairs, those whose actions aecifiedn the head of some active integrity constraint
andsupportedby the database or by other updates. These repairs are fmlleded
repairs The chapter studies the properties of active integrity constraints and shows
that, under the proposed semantic, each update action occurring in the head of an
active integrity constraint that cannot falsify the corresponding body is useless and
can be deleted. Next, it shows that the computation of founded repairs can be done
by rewriting the constraints into a Datalog program and computing its stable models
[66]; each stable model will represent a founded repair. As the existence of founded
repairs is not guaranteed, the chapter investigates a different semantics where update
actions defined by active integrity constraints are interpreted as preference condi-
tions on the set of possible repaipéferablesemantics). Finally, the computational
complexity is analyzed and it is shown that the complexity of computing founded
repairs, preferred repairs and answers is not harder than comptdimiardrepairs

and answers.

3.1.2 Plan of the Chapter

The rest of the chapter is organized as follows. Section 3.2 recalls the formal de-
finition of integrity constraint, repair and consistent answer and briefly reviews a
general approach for the computation of repairs and consistent answers. Section 3.3
introduces active integrity constraints, presents their declarative semantics and im-
portant results about their structure. Section 3.4 shows how founded repairs can be
computed by rewriting active integrity constraints into a logic program and provides
results on the computational complexity of computing founded repairs and queries.
This section also introduces a different interpretation of active integrity constraints
(preferablesemantics), where preferred repairs are those performing specific actions
with respect to other alternative repairs, and studies the computational complexity of
computing preferred founded repairs.
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3.2 Databases and Integrity constraints

Database schemata defines the structure of data and restrictions on the form the data
could have. The relationship among data are generally defined by integrity con-
straints such as functional dependencies and inclusion dependencies. In particular,
integrity constraints are used to restrict the state a database can take and to prevent
the insertion or deletion of data which could produce incorrect states.

A databasé has an associated scheffiaS, ) defining its intentional properties:

DS defines the structure of the relations, that is their names and their attributes, and
7 contains the set of integrity constraints expressing semantic information over data.
MoreoverZ has an associated domditvm containing the values an attribute can
assume. The extension that associates to each attributes a different domain is trivial.

3.2.1 Integrity Constraints

An integrity constraint- is a formula of the first order predicate calculus of the form;

VXA b(X), o(X0) D> \/ (3Z)b;(X;, 7)) ]
j=1 Jj=m+1

where, letX = L, X; andZ = U}_,, ., Z;, Xi € X, fori € [0..n], all
variables inZ occur oncep(Xy) is a conjunction of built-in atoms and;, for
j € [1..n], are base predicates. The conjunction preceding the implication sym-
bol is thebodyof the constraint, whereas the disjunction succeeding the implication
symbol is itshead A database satisfiesf for each X, it makes the bodfalseor the
headtrue. More formally, letZ be a database arfebm its domain. ThetT satisfies:,
denoted ag |= r, if for eachz € Dom!*, eitherZ j= A\, b;(x;), ¢(x0) or there
existsz € Dom!?! such thatf |= \/"_, ., b;(z;,2;), wherex;, fori € [0..n], are
the corresponding instancesX®f andz;, fori € [m + 1..n], are the corresponding
instances ofZ;. Moreover,Z is consistent w.r.t. a set of integrity constraints, de-
noted asZ = 7, if it satisfies all integrity constraints in. Each integrity constraint
can be rewritten in the following form, obtained by moving literals from the head to
the body:

n

(v X[ /\ b;i(X;): N\ (BZ)b;(X;,Z;), o(Xo) D. (3.1)

j=m+1

3.2.2 Repairing and Querying Inconsistent Databases

In this section the formal definition of consistent database and repair is first recalled
and then a mechanism for computing repairs and consistent answers for inconsistent
databases is presented.
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An update action is of the formra(X) or —a(X). The update actionsa(X) and
—a(X) aredualsof each other. We write.” to denote the update action dual to an
update actiorv. The dual operator is extended to sets of update actions as appropri-
ate. A ground update actioha(t) states thai(¢) will be inserted into the database,
whereas—a(t) states that(¢) will be deleted from the database. The symoill

be used as a placeholder for eitheor —. Given an update actian = +a(X) (resp.

a = —a(X)), lit(«) denotesu(X) (resp.not a(X)) and comp () denotes the lit-
eralnot a(X) (resp.a(X)). Clearly,comp(a) = lit(a)”. The operatorsit(-) and
comp(-) are extended to sets of update actions in the standard way. We also define
the inverse operatorsmyp(-) ~! andlit(-)~!. Given a set/ of ground update actions

we define the seld™ = {a(t) | +a(t) e U}, U™ = {a(t) | —a(t) € U}. We say
that!/ is consistentf it does not contain two update actions:(¢t) and—a(t) (thatis

if TN U™ = (). Given a databasE and a consistent set of update actibhg o/
denotes the databageupdated by means of, thatisZ ot = (Z U UT) \U™.

Definition 3.3. (REPAIRS) LetZ be a database ang a set of integrity constraints.
Arepairfor (Z,n) is a consistent sét of update actions such that

e 7 olU = n (constraint enforcememnt).
e foreveryld’ C U suchthatZ oU’ =7, U’ = U (minimality of change).

The set of all repairs fofZ, n) is denoted aR(Z, n). O

Repaired databases are consistent databases, derived from the source database by
means of a minimal set of update operations. Observe that for constraints containing
existentially quantified variables the set of possible repairs could be infinite in the
case the domain of the database is infinite. Thus, in the rest of this sentie@rsally
quantifiedor full integrity constraints are considered. They are of the form:

VX)L AbX), N\ notbi(X;)), (Xo) O] (3:2)
j=1 j=m+1

Given a set of universally quantified constraintsan integrity constraint € n» and

a databasé&, a ground instance of with respect tdZ can be obtained by replacing
variables with constants iPom and eliminating the universal quantification. The
set of all ground instances ofis denoted byyround(r), whereasground(n) =
U,e, ground(r) denotes the set of ground instances of constraintg iGlearly,
for any set of universally quantified constraimisthe cardinality ofground(n) is
polynomial in the size oDom. A further restriction is that we disallow integrity
constraints that admit instances with inconsistent bodies (i.e. bodies alalags

In other words we disallow ground constraints whose body contains a litewrad a
literal not a.

Fact 3.4 LetZ be a database; a set of full integrity constraints an® a repair for
(Z,n). Then, for eachy € R there exists iyround(n) an integrity constraint of the
form ¢ A comp(a) D such thatZ o (R\{a}) E ¢.
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Proof. Straightforward from Definition 3.3. IR contains an update action then
R\{a} is not a repair. Thus, there must begiround(n) at least an integrity con-
straint of the form ¢ A comp(a) D such thatZ o R\{a} = ¢. This integrity
constraint is satisfied by o R and violated byZ o (R\{a}). O

The above fact states that each update action of a repa@cessaryto satisfy at
least a ground integrity constraint.

Definition 3.5. Given a databas& and a set of integrity constraintg an atomA is
true (resp.false with respect taZ, n) if A belongs to all repaired databases (resp.
there is no repaired database containiag. The atoms which are neithé&tue nor
falseare undefined |

Thus, true atoms occur in all repaired databases, whereas undefined atoms appear in
a non empty proper subset of repaired databases. Now we can provide the definition
of consistent answer to a query.

Definition 3.6. Given a databasé&, a set of integrity constraints and a query
Q = (g,P), theconsistent answef Q w.r.t. (Z, ), denoted ag)(Z,n), gives three
sets, denoted a9(Z,n)*, Q(Z,n)~ andQ(Z, n)“. These contain, respectively, the
sets ofg-facts which ardrue that is belonging tcﬂReR(I,n) Q(Z oR), false that

is not belonging tQJz gz, @(Z © R) andundefinedthat is the facts which are
neithertruenor false |

3.2.3 Repairing and Querying through Stable Models

As shown in [70], the set of repairs for a database with respect to a set of full integrity
constraints can be computed by rewriting the constraints into disjunctive rules. More
specifically, given a databageand a set of integrity constraints the technique
derives a disjunctive prografP(n) so that the repairs fdf can be obtained from

the stable models AP (n) UZ.

Definition 3.7. Given a full integrity constraint of the form (¥ X)[ A’_, L;, ¢ D],

whereL; is a literal, for j € [1..n], and¢ is a conjunction of built-in atomsij(r)
denotes the expression:

\/ comp™H(L;) /\(Lj V. comp~t(not L)), ¢
j=1 Jj=1

Given a setn of full integrity constraints,DP(n) = {dj(r) | r € n} U {«
—b(X),+b(X) | bis a predicate symbél m|

The expression presented in the above definition is used as shorthand for a set of
disjunctive rules.
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Given an interpretatioiM, Update Atoms(M) denotes the set of update actions in
M. The definition of this operator is exended to sets of interpretations.

The following theorem, showing that the technique is correct and complete, has been
proved in [70].

Theorem 3.8.Given a databas& and a sety of full integrity constraints,

R(Z,n) = Update Atoms(SM(DP(n) UT)) O

The previous theorem states that for each databamed set of full integrity con-
straintsn:

o for every stable modeM of DP(n) UZ, Update Atoms(M) is a repair forZ,
7) (soundness

o for every repaifR for (Z,n) there exists a stable mod&l for DP(n) U Z such
thatR = Update Atoms(M) (completenegs

This technique can be used to compute consistent answers to queries. Given a da-
tabaseZ, a set of integrity constraints and a query@ = (g,P), the consis-

tent answer of) w.r.t. (Z,n) can be computed by considering the stable models of
MP(g,P) UDP(n)UZ, where MP(g,P) is obtained fromP by replacing every

base predicate symbplwith p’ and by adding a rule of the forpi(X) «— (p(X) A

not —p(X))V+p(X). Moreover, the rulg’ (X) « (g(X)Anot —g(X))V+g(X)

is added. We have that

o Q" =Npmesmmpg.puprmur M),
e QZ,n)"= UMQSM(MP(g,P)uDP(n)Uz) M(q') — QZ,n)*.

3.3 Active Integrity Constraints

In this section we preseictive integrity contraintsan extension of integrity con-
straints that allows a specification of the actions to be performed to make the database
consistent.

Definition 3.9. A (full) Active Integrity ConstrainfAlC) is of the form

m n p
(VLA b (XG), N\ ot bi(X)), ¢(Xo) 5\ +a: ()] (33)
=1 j=m+1 i=1
where, letX = J/, X;, X; C X, fori € [0..n], andY; C X, fori € [1..p].
i
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Given an active integrity constraintof the form 4.1 we denote the sgt; (X3), .. .,

b (Xm), not b1 (Xmsg1), .- ., not by (X,,)} asbody(r) and the sefta(Y7),. ..,
+a(Y,)} ashead(r). As in the case of integrity constraints, we disallow AICs that
admit instances with inconsistent bodies.

Example 3.10The active integrity constraint of Example 3.2 states that in the case

of conflicting tuples (there are two different managers managing the same depart-
ment), we prefer to repair the database by deleting the one with the higher salary,
whereas the constraint(N, N, D, S, S")[mgr(N, D, S),mgr(N',D,S"),N #

N’ D —mgr(N,D,S")V —mgr(N’, D, S")] states that between two different man-
agers of the same department we do not have any preference and, therefore, one of
them, selected nondeterministically, can be deleted. m|

An active integrity constraint is an integrity constraint that specifies the update ac-
tions that can be performed when it is violated. The conjunction of literals in its
body represents eonditionthat should bdalse whereas update actions in its head
represents the possible updates that can be performed when the constraint is violated.

Given an active integrity constrainof the form (4.1),ic(r) denotes the correspond-

ing integrity constraint of the form (3.2) obtained frarby removing the disjunction

of update action. The definition of this operator is extended to sets of active integrity
constraints. A databasesatisfies an active integrity constrain{Z = r) if it sat-

isfies the corresponding integrity constraiatr) (Z |= r). The operatoground(-)

for active integrity constraints is defined in the standard way.

Definition 3.11. Given a databas#& and a set of active integrity constrainisa re-
pair for (Z,7) is any repair for(Z, ic(n)). The set of all repairs fofZ, n) is denoted
byR(Z, 7). |

From the previous definition, for each datab@sand set; of active integrity con-
straintsR(Z, n) = R(Z, ic(n)).

Not all repairs contain atoms which can be derived from the active integrity con-
straints. Thus, we identify a class of repairs, calleadnded whose actions can be
derived from the active integrity constraints.

Example 3.12Consider the databasg& = {movie(Marshall, Chicago, 2002),
director(Stone)} and the active integrity constraint

Y(D, T, A) [movie(D, T, A), not director(D) D +director(D) ]

There are two repair®, = {—movie(Marshall, Chicago,2002)} and R, =
{+director(Marshall)}, but only R, contains updates “supported” by the active
integrity constraint. a

Definition 3.13. (FOUNDED REPAIR) LetZ be a database; a set of active integrity
constraints andR a repair for (Z, ).
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e An update actiomv € R is foundedwith respect to/Z, n) and R if there exists
r € ground(n) such thatn € head(r) andZ o (R\{a}) | body(r).
We say that supportsa.

e TR is foundedwith respect to(Z,n) if all its update actions ardoundedwith
respect toZ,n) andR.

The set of founded repairs fdZ, n) is denoted byFR.(Z, ). m|

In the previous definition, the update actiarns founded if two conditions are veri-
fied: i) it belongs to the head of an active integrity constraiand; ii) if we discard

it, the database updated by means of the remaining update adienSR(\{«a})),
violatesr. This means that is inferred byr (because it belongs to its head) and it
is necessaryo repair the database in order to satisffbecause if we discard it, the
database violates.

Clearly, the set of founded repairs is contained in the set of repairs R(F, 1) C
R(Z,n).

We introduce some additional notation useful in the following. The set of founded
update actions ifk with respect taZ, n) is denoted ag'ounded(R,Z,n), whereas
Unfounded(R,Z,n) = R\Founded(R,Z, n). The set of active integrity con-
straints inground(n) supporting update actionsRiis denoted aglpplied(R,Z,n),
wheread/napplied(R,Z,n) = ground(n)\Applied(R,Z,n).

Example 3.14Consider the following sei of active integrity constraints:

V(E, P, D)[mgr(E, P),prj(P, D),not emp(E, D) D +emp(E, D) ],
Y(E,D,D")[ emp(E, D),emp(E,D"), D # D" > —emp(E, D)V —emp(E, D’) |

The first constraint states that every manag@eof a project P, carried out by

a departmentD, must be an employee dP, whereas the second one says that
every employee must be in only one department. Consider now the datdbase
{mgr(e1,p1),prj(p1,di), emp(ei,d2)}. There are three repairs fof: R; =
{=mgr(e1,p1)}, Ro = {—prj(p1,d1)}and R3 = {+emp(e1,d1), —emp(e1,da)}.
Rs is the only founded repair as only the update atomsmp(e;,d;) and
—emp(eq,dy) are derivable from. O

Proposition 3.15.Let 7 be a database; a set of active integrity constraints aril
a founded repair fokZ, n). For each ground active integrity constraint= ¢ D ¢ €
Applied(R,Z,n), T o head(r) = ¢ (thatisZ o head(r) = r).

Proof. Letr = ¢ D 1 be a ground AIC indpplied(R,Z,n). By definition,« is in

the form ofvy’ Vv «, with ¢’ a (possibly empty) disjunction of ground update actions
anda a ground update action supportediby

Asr is applied, we have thdto (R\{«a}) = ¢. Moreover, sinc€ o R |~ ¢ we have
that¢ must be of the form o’ A comp(a), with ¢" a (possibly empty) conjunction
of ground literals.
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As « € head(r) and¢ = ¢’ A comp(«), it follows thatZ o head(r) £ ¢. O

The above proposition states that for each ground applied constraint there must be
among the true update head atoms, at least one atarhich is used to repair the
database with respect to the body of the rule, that is the body must contain a literal
comp(head(r)). Observe that, if for each ground Al& head(r) is such thatZ o
head(r) | ¢ (thatisZ o head(r) I~ r), no founded repair exists.

Now we start our analysis of the structure of active integrity constraints by introduc-
ing the concept o€ore

Definition 3.16. Given a ground AlG = ¢ D v, Core(r) denotes the ground AIC
¢ D ', where' is obtained by deleting frony any update actiorv such that
comp(a) & body(r). a

The definition ofCore(-) is extended to sets of ground AICs. Moreover, given a
non-ground set) of AICs, Core(n) = Core(ground(n)). The following theorem
shows the equivalence between a set of active integrity constraints @arés

Theorem 3.17.Given a databas& and a set; of active integrity constraints,
FR(Z,n) = FR(Z,Core(n)).

Proof. As FR(Z,n) = FR(Z,ground(n)) we prove thatFR(Z, ground(n))
= FR(Z, Core(n)).

1. Firstly we prove thaER(Z, ground(n)) C FR(Z, Core(n)).

Letr = ¢ D v be a constraint iyround(n). Let ¢’ be the disjunction of
update actions: occurring int such that the literatomp(«) occurs ing and
" the disjunction of remaining update actions appearing.ifhenr is of the
form¢ D ¢ v¢”. Letr = ¢ D ¢ andn’ = (ground(n)\{r}) U {r'}.
We prove thatFR(Z, ground(n)) C FR(Z,7’), that is that for eactR <
FR(Z, ground(n)), alsoR € FR(Z,n’) holds. Asic(ground(n)) = ic(n’),
and soR(Z, ground(n)) = R(Z,7’), it follows thatR € R(Z,7’). Therefore,
we have just to prove tha& is founded with respect ¥, '). For eachn € R,
there exists iyround(n) an AIC g supportingw, that is such that € head(g)
andZ o (R\{a}) E body(g). There are two cases: either£ r org = r. If
g # rtheng € ' and it supportse. If g = r theng & »/, butr’ = ¢ D¢’ € 7/,
AsZToR [£ ¢pandZ o R' |= ¢, it follows thatg = ¢’ A comp(a) whereg' is
a (possibly empty) conjunction of ground literals such thatR = ¢'. Thus,
a occurs iny’ and it is supported by’. This step can be repeated to obtain
Core(n) from ground(n).

2. Now we prove thaFR(Z, Core(n)) C FR(Z, ground(n)).
Let R € FR(Z,Core(n)). We will prove thatR € FR(Z, ground(n)). ASR
is a repair for(Z, ground(n)), it is sufficient to prove thaR is founded. Let
r = ¢ D 1 be a constraint ilCore(n) andr’ = ¢ D 9 V «, wherea is an
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update action. Ley’ = (ground(n)\{r})U{r'}. Obviously, each update action
in R is again founded.Thug is a founded repair fo{Z, n’). This step can be
repeated to obtaigiround(n) from Core(n). O

The above Theorem state that every update actioncurring in the the head of an

AIC r that cannot repair directly the body of that is such that the body does not
contain a literakomp(«), is useless and can be deleted. This is an important result as

it shows that production rules with the declarative semantics proposed here, should
have a specific form: the head update actions must repair databases so that the body
of the corresponding active constraintsrise.

Example 3.18Consider the databage= {a,b} and the set) = { a D —b, b D
—a } of active integrity constraints. The unique repair {8t n) is R = {—a, —b},
but it is not founded. Intuitively, if we apply > —b, b is deleted fron¥, sob O —a
cannot be applied. If we apply > —a, a is deleted froniZ, soa > —b cannot be
applied. O

Thus, in the following, only ground AICs where for each head update aatitimere
exists in the body a corresponding complementary litesalp(«), are considered.

Theorem 3.19.Let 7 be a databasey a set of active integrity constraints arfd

a founded repair forZ,n). Then for eachn € R, there exists an active integrity
constraintr € Core(n) such thatx is the unique update action iR supported by
r. O

Proof. (by contradiction)

Leta € R. As« is founded, there exists at least one AlQare(n) supportinga.
Let G be the set of AICs iCore(n) supportinga and let us suppose, by contradic-
tion, that each of these AICs supports at least two update actidRsTine AICs in

G are of the form

g1 : comp(a), comp(ar), 1 D aVag Vi

gn : comp(a), comp(an), P D @V ap V Py

where, fori € [1..n], ¢, is a disjunction of ground update actiogs,is a conjunction
of ground literals andy; is a ground update action iR supported by);. We observe
that, fori € [1..n], Z o (R\{o}) £ body(g;) asa € R andcomp(«) € body(g;),
thusq; is not supported by;. ]

Normalization

Definition 3.20. Given an active integrity constraintof the form (4.1)Normalized(r)
denotes the set of active integrity constraints
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n

(VX) [ /\ b;(X;), \ motbi(X;), ¢(Xo) D +a;(V;) ]

j=m+1

for ¢ € [1..p]. The operatorNormalized(-) is extended to sets of active integrity
constraints in the standard way. |

Given a databasé and a set of active integrity constrainisthe set of repairs for
(Z,n) coincides with the set of repairs fdf, Normalized(n)) (i.e. R(Z,n) =
R(Z, Normalized(n))) asic(Z) = ic(Normalized(Z)). This property is pretty
obvious; however it can be extended to the case of founded repairs.

Proposition 3.21.Given a databas& and a set; of active integrity constraints,

FR(Z,n) = FR(Z, Normalized(n)).

Proof.

1. Firstly we prove thaER(Z,n) C FR(DB, Normalized(n)).
Let R € FR(Z,n). Obviously,R € R(DB, Normalized(n)). Thus, we have
to prove that it is founded with respect t@, Normalized(n)). By defini-
tion, for eachta(t) € R, there exists inground(n) a ground active in-
tegrity constraintg A comp(a) D @ V a such thatZ o (R\{a}) = ¢.
Thus,ground(Normalized(n)) contains the ground active integrity constraint
¢ A comp(a) D o which supportsy.

2. Now we prove thaFR(Z, Normalized(n)) C FR(Z,n).

Let R € FR(Z, Normalized(n)). Obviously,R € R(Z,n). Thus, we have
to prove that it is founded with respect {@, ). By definition, for eachy €
R there exists iyround(Normalized(n)) a ground active integrity constraint
¢ A comp(a) D « such thatZ o (R\{a}) & ¢. Thus,ground(n) contains a
ground active integrity constraigtA comp(a) D ¢ V « which supportg.. O

This theorem states that each active integrity constraint havinmglate atoms in the
head, can banpackednto p active integrity constraints having a single update atom
in the head. Therefore, there is no loss of generality in considering active integrity
constraints having just one update atom in the head.

Conditioned Active Integrity Constraints

As in the ground set of active integrity constraints we only consider actions which
make the bodyalse every non ground active integrity constraint can be seen as an
active constraint where actions have associated a condition defining its applicability.

Definition 3.22. A (full) Conditioned Active Integrity ConstraifCAIC) is of the
form
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VXA, A notb(X,), ¢(Xo) 5\ wilZ) A+ai(¥)]  (34)
j=1 j=m+1 i=1

where, letX = U;.”:lXj,Xi C Xforie[0..n],Y;,Z; C X fori € [1..p] and
vi(Z;),fori € [0..p], is afirst order formula of built-in atoms. O

Every conjunctionp;(Z;) A +a;(Y;) appearing in the head of the constraint is called
conditioned update atomnd its intuitive meaning is that the actigu;(Y;) can be
performed only if the conditiorp;(Z;) is true.

Definition 3.23. Given an AIC

r=VX)® >\ ()],
i=1

Conditioned(r) denotes the CAIC

P
(VX)[ ) \/(\/comp(iai(Z))Ebody(r) }/z = Z) A iaz(}/z) }

i=1

The operatoilConditioned(-) is extended to sets of active integrity constraints in the
standard way. m|

Thus,Conditioned(r) replaces every update actigi; (Y;) with a conditioned up-
date action(Z, = Y;) V---V (Zr = Y;)) A +a;(Y;) so that the update action can
be applied only if the body of contains a literatomp(+a;(Z)) andZ;, =Y;, for

h e [1..k].

Example 3.24Given the AICr = p(a, X), ¢(Y) D —p(Y,b),

Conditioned(r) = p(a, X),q(Y) D ((Y,b) = (a, X)) A —p(Y,b) 0
We observe that a ground instance of a CAIC is a ground AIC as the evaluation of
the conditions in the head does not depend on the database instance. Therefore, for
any ground CAICr, every (ground) conditioned head update action o can be
deleted ify is falseor replaced by if ¢ istrue.

Proposition 3.25.Given a set) of active integrity constraints, for each database

ground(Conditioned(n)) = Core(n)

Proof.

e Firstly, we prove thayround(Conditioned(n)) C Core(n). Lets = & D
P_, «; a ground AIC belonging tground(Conditioned(n)) andr € n such
thats € ground(Conditioned(r)). From Definition 3.23 it follows that for each
i € [1..p], the literal comp(«;) occurs in®. Therefore, from Definition 3.16,

s € Core(r).
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e Now, we prove tha€ore(n) C ground(Conditioned(n)).
Lets =& D \/5.’:1 a; a ground AIC belonging t6'ore(rn) andr € 7 such that
s € Core(r). From Definition 3.16 it follows that for eache [1..p], the literal
comp(cy;) oceurs ind. Therefore, from Definition 3.23; € Conditioned(r).O

Essentially, the previous proposition shows a direct wapusghingthe syntactic
restriction of the Core into nonground AICs.

Example 3.26Given the active integrity constraint
r=p(X,a),q(Y) > —p(X,Y)
and the database= {q(a), q(b)}, Conditioned(r) is
p(X,a),q(Y) 5 ((X,Y) = (X,a)) A —p(X,Y).

The AICs inground(Conditioned(r)) are
p(av a’)7 q(a’) ) _p(a7 a’)
p(a,a),q(b) D
p(b,a), q(b) D
p(b7 CL), Q(a) 2 _p(ba a)
This set of active integrity constraints coincides withre(r). O

Given a set) of conditioned active integrity constraints and a dataligsee define
the founded repairs fafZ, ) as the founded repairs f¢Z, ground(n)). Therefore,
the following fact holds.

Fact 3.27 Given a set) of active integrity constraints and a database
FR(Z,n) = FR(Z, Conditioned(n)).

3.4 Computation and Complexity

As shown before, a general approach for the computation of repairs for a database
7 with respect to a set of full integrity constrainfshas been proposed in [71]. The
technique is based on the generation of a disjunctive pro@vé@ty)) derived from

7 so that the repairs can be derived from the stable modéh§if)) U 7.

Such a technique cannot be easily adapted to active integrity constraints by simply
putting in the head aofj () only the atoms appearing in the head of the corresponding
active constraint. To intuitively show this, consider the database= {a,b} and

the set of active integrity constraings= {a D —a, a,b D —b}. The databasg is
inconsistent and the unique founded repaiRis= {—a}. Moreover, considering the
rewriting functionDP’ which puts in the head of logic rules only the update actions
appearing in the head of integrity constraints, we have that the pro@Rnhn)
consists of the rules-a «— (a V +a) and—b < (a V +a), (b vV +b). The program
DP’(n) UZ has a unique stable mod&t = {—a, —b,a, b} from which we derive

the set of updateS pdate Atoms(M) = {—a, —b} which is not a repair.
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3.4.1 Rewriting into Logic Programs

A different technique, which generalizes the one proposed in [70,71], so that
founded repairs can be computed by logic programs derived from active integrity
constraints, will be now presented. It is worth noting that the presence of existen-
tially quantified variables in negated body literals, does not allow the generation of

a possibly infinite number of repairs as the logic rules derived from the rewriting
of constraints arsafe[139]. Moreover, for the sake of simplicity we only consider
universally quantified constraints.

Definition 3.28. Letc be a (range restricted) AIC of the form
n p
VX[ NALje2 \ il
j=1 i=1

we denote agp(c) the set of constraints
— comp~(L;), not compil(Lj) jel.n]

and of rules

of — /\ (Lj A (not comp™ (L;) V o = comp™ *(L;)) V comp™ (not L;)), ¢ i € [1..p]
j=1

where letcomp~(L;) = a(X), for j € [1..n], comp~'(L}) = +a’ (X). Given a
set of active integrity constraints we define#P(n) = U,.,, fp(c), andFDP(n) =
DP(ic(n)) U FP(n). O

Observe that in the above definition, tetand comp~'(L;) be equal, respectively,
to +a,(X;) and £b;(Y;), the equalityta;(X;) = =£b;(Y;) is just shorthand for
X; =Y if £a; = £b; and false otherwise.

Example 3.29Given the databasg = {p(a), p(b), ¢(a)} and the AIC
r=p(a),p(b), ¢(X) D> —p(X)
ThenDP(St(r)) consists of the rules
—p(a) v —p(b) V —¢(X) — (p(a) V +p(a)), (p(b) V +p(b)), (¢(X) V +¢(X))

— —p(X) A +p(X)
— —q(X) A +q(X)

whereas, the sefP(r) is equal to the set of rules

— —p(a), not —p’(a);
— —p(b), not 7pf(b)>
— —q(X), not — ¢’ (X);
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—p/(X) — ((p(a) A (not — p(a) V X = a)) V +p(a)),
((p(b) A (not —p(b) vV X = b)) V +p(b)),
((¢(X) Anot — q(X)) V +¢(X))

Next theorem shows that the rewriting technique is sound and complete.
Theorem 3.30.Given a databasé& and a set; of active integrity constraints,

FR(Z,n) = UpdateAtoms(SM(FDP(n) UI))

Proof.

e (Soundness) Firstly, we prove th&tpdate Atoms(SM(FDP(n) UZ)) C
FR(Z,n), that is that for each\ € SM(FDP(n) U ) there exists a repair
R € FR(Z, n) such that/pdate Atoms(M) = R.

Let M be a stable model af DP(n) UZ, M" = Update Atoms(M) U T

and M/ = M\M" (the set of atoms defined hfP(1)). M" is a stable
model of DP(ic(n)) U Z. This holds because update actions can be inferred
just from rules inDP(ic(n)) U Z and the body of these rules do not contain
primed atoms. A&/ pdate Atoms(M") is a repair for(Z, ic(n)) (Theorem 3.8),
Update Atoms(M) is also a repair fofZ, n). Therefore, we have to prove that
Update Atoms(M) is founded.

Let a € UpdateAtoms(M), ground(FP(n)) contains the constraint- a,

not of, thus M contains the atona/. As of is supportedground(FP(n))
contains a rule = of — @, with ¢ of the form

/\;:11(([4 A not comp™(L;)) V comp~t(not L)),
(comp(a) V comp™L (not comp(v)))

such thatM |= @. As® does not contain any atom in the forma/ (t), M” |= &.
The rulep belongs to a sefp(r), wherer is a ground active integrity constraint
belonging toground(n) and is in the form

n—1 p—1
/\ L;, comp(a) D \/ o; Voo
i=1 j=1

Observe that? is true iff body(r), evaluated over the databage (R\{«a}),
is true. Thus, as(UpdateAtoms(M) U Z) = body(p), it follows thatZ o
(Update Atoms(M)\{a}) = body(r), that is the atona appearing in the head
of r is founded.

e (Completeness) Now, we prove theR(Z, ) C Update Atoms(SM(FDP(n)U
7)), thatis that for eac® € FR(Z, n) there is a stable modak € SM(FDP(n)
UZ) such thal/pdate Atoms(M) = R.
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LetR € FR(Z,n). As R is a repair,R U T is a stable model cDP (ic(n)) UL
(Theorem (5.6)). We show thatt = R UZ U {af|a € R} is a stable model for
FDP(n) U Z, thatis that for everyd € R there is a rule in ground(FP(n))
such thatiead(p) = {a/} and(R U Z) |= body(p).

Let r € ground(n) a ground active integrity constraint supporting the update
actiona € R of the form

n—1 p—1

/\ L;, comp(A) D \/ o Va

i=1 j=1

We have thaf o (R\{a}) = body(r) thatisToR = AP~} L, fori € [1.n—1],
andZ o (R\{a}) = comp(a). This means that ifl is in the form—a(x), a(z) €
T or +a(z) € R whereas, ifx is in the form+a(z), a(x) &€ Z or —a(z) € R.
Moreover, for each positive literdl; = i(y) (¢ € [1.n — 1]), l(y) € T and
—l(y) € R or +l(y) € R whereas, for each negative literB}] = not I(y)
(1€ l.n—1]),l(y) €Z and+i(y) € Ror—I(y) € R.

Therefore, the conjunctioh = A’ ((L; A not comp™*(L;))Vcomp ! (not L;)),
(comp(a) V comp™! (not comp(c))) istruein R UZ.

Moreover, the programround(FDP(n)) contains a rule of the form/ «— &
whose body igruein R U Z. This is exactly the rule supportingx/ . m|

Example 3.31Consider again Example 3.29. The unique stable mod&l@P(n)
UZis M = {p(a), p(b),q(a), —p(a), —p’ (a)} corresponding to the founded repair
R ={-pla)}. O

3.4.2 Data Complexity

Given a (standard) integrity constrainof the form 3.2,Ext(r) denotes the AIC

n

(VX) [ /\ b;i(X;), N\ motb(X;), p(Xo) D \/ —b;(X)Vv ) A(X))]

j=m+1 j=m+1

The definition ofExt(-) is extended to sets of AICs in the standard way.

Theorem 3.32.Let7Z be a database ang a set of active integrity constraints. The
problem of deciding whether there exists a founded repai{Fon) is X -complete.

Proof.

Membershipln [54] it has been shown that the problem of deciding whether there
exists a stable model for a disjunctive Datalog progranvjscomplete. As every
founded repair can be derived from a stable model of the disjunctive Datalog program
FDP(n)UDB, the problem consists in checking whether there exists a stable model
for FDP(n) U DB.
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Hardnessln [70] it has been shown that, for a given database set of standard
integrity constraints; and set of update constrairi#”, the problem of checking if
there exists a repai for (Z, n) such that every update constraintid’ is satisfied
is X¥-complete. An update constraint is of one of the following two forms

—insert(q(ty,...tn))
— delete(q(th tn))

and states that every atoftu, ..., u,,) unifying with ¢(¢4, ...t,,) cannot be inserted
or deleted, respectively.

Consider the set of active integrity constraints= ground(Exzt(n)) and the set

7’ obtained by deleting from the head of rulessh all update actions of the

form +a(t) such that— insert(a(t)) is in ground(UC') (resp.—a(t) such that

— delete(a(t)) is in ground(U4C)). Clearly, the set of ground constrainf§ is
equivalent toground(Ext(n)) U ground(UC) as it is obtained by deleting from

the head of the active integrity constraintsjiround(Ext(n)) update actions which
cannot be derived. After the deletion of the useless head update actions, update con-
straints are not necessary any more and the problem consists in deciding whether
there exists a founded repair (). |

The consistent founded answer to a relational qégry¢ (g, P) over a databasé
with active integrity constraintg (denoted byQ(Z, n)), is obtained by first comput-
ing the sefR.(Z, n) of founded repairs fof and, then, considering the intersection

ﬂReFR(z,n) Q(ZoR).

Theorem 3.33.Let7 be a database ang a set of active integrity constraints. The
problem of deciding whether a ground atgyft) belongs to all repaired databases
obtained by means of founded repairs {@t 1) is I15-complete.

Proof.

MembershipAs every founded repair fofZ, ) can be derived from a stable model
of FDP(n) UZ, itis sufficient to check that the ground atgyt{t) belongs to each
stable model of the disjunctive Datalog program

FDP(n) UZU{g(t)" — (g(t) Anot — g(t)) V +g(t)}.

This is a well knowniI%-complete problem.

HardnesslIn [70] it has also been shown that, for a given dataliase set of full
(standard) integrity constrainisand set of update constrairit&”, the problem of
checking if all repaired databases contain an agothis I15-complete.

In the proof of Theorem 5.28 it has been shown that for every set of full (standard)
integrity constraints) and set of update constrairife” there exists a set of “equiv-
alent” active integrity constraintg’, that is for every databasethe set of repairs
satisfyingn andi/C is equivalent to the set of founded repairs satisfyjigThere-
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fore, the problem of checking whether a ground atgft) belongs to all repaired
databases obtained by means of founded repai igard. O

In a similar way it is possible to prove that for not disjunctive active integrity con-
straints the complexity is in the first level of the polynomial hierarchy.

3.4.3 Preferred Repairs and Answers

A founded repair for a set of active integrity constraints is not guaranteed to exist.
Nevertheless, it is often necessary to provide a repair, even if no founded repair exists,
or to compute consistent answers to queries. Thus, in this section we define an ap-
proach that always permits us to obtain a consistent repaired database. In particular,
we interpret the actions in the head of constraints as an indication of the operations
the user prefers to perform to make the database consistent. Moreover, as the pres-
ence of existentially quantified variables, could produce a possibly infinite number of
repairs, we only consider universally quantified active integrity constraints. Firstly,
we introduce a partial order on the repairs.

Definition 3.34.Let 7 be a databasey a set of active integrity constraints and
R1,Ro two repairs for for(Z,n). Then,R, is preferableto R, (R1 O Ro2) if
Unfounded(R1,Z,n) C Unfounded(R2,Z,n). A set of update action® is a
preferred repair for(Z,n) if it is a repair for (Z,#) and there is no repaifR’ for
(Z,n) suchthatR’ O R. O

Example 3.35Consider the integrity constraint of Example 3.2 with the database
T = {mgr(john,b,1000), mgr(frank, b, 2000), mgr(mary, ¢, 1000), mgr(rosy,

¢, 2000)}. There are four repair®,; = {—mgr(john,b,1000), —mgr(mary,
¢,1000)}, Ro = {—mgr(john,b,1000), —mgr(rosy, c,2000)}, Rs = {—mgr(
frank,b,2000), —mgr(mary,c,1000)} and Ry = {—mgr(frank,b,2000),
—mgr(rosy, ¢, 2000)}. The order relation iSR: O Ry, R3 O R, R4 I Ro
andR, 1 R3. Therefore, we have only one preferred repair which is also founded
(namelyR,). Assume now we also have the constraint

not mgr(rosy, ¢, 2000) D

declaring that the tuplewgr(rosy, ¢, 2000) must be irZ. In such a case we only have
the two repairsk; andR3 and the preferred one #83 which is not founded. O

The relatiort is apartial order as it is irreflexive, antisymmetric and transitive. The
set of all preferred repairs for a databdsand a set of active integrity constraints

is denoted byPR.(Z, 7).

Clearly, the relation between preferred, founded and standard repairs is as follows:
FR(Z,n) € PR(Z,n) € R(Z,n). The next proposition states the precise relation
between preferred, founded and general repairs.

Fact3.36 Let 7 be a database and) a set of AICs. IfFR(Z,n) # 0 then
PR(Z,n) = FR(Z,n) o
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Obviously, as the existence of a repair is guaranteed, the existence of a preferred
repair is guaranteed too. We conclude by presenting a result on the computational
complexity of computing preferred repairs and answers.

Theorem 3.37.LetZ be a database ang a set of active integrity constraints, then
1. deciding whether there exists a preferred repair {orn) is X% -complete;

2. deciding whether a ground atogiit) belongs to all repaired databases obtained
by means of preferred repairs I8} -complete.

Proof.

1. MembershipFrom Theorem 3.36 to check BR(Z,n) # 0 it is sufficient to
check ifR(Z,n) # 0 (which is aX%-complete problem).
HardnessConsider the databagé = Z U {a} and the set of constraintg =
nU {a D} wherea is a new atom not appearing h The problem of deciding
whetherR(Z,n) # 0 (which is X5-complete) is equivalent to the problem of
deciding whethePR(Z',7') # 0, as(Z’,n’) does not admit a founded repair.
2. Mempership.‘l’o decide whethey(t) < ﬂRng(Ln)I oRitis sufficier.1t to
checking whethey(t) € Nreprz,y L ° R if FR(Z,n) # ¢ and to deciding
whetherg(t) € NzerezyZ © R if FR(Z,n) = 0 (both problems arély-
complete).
Hardness.The problem of deciding whethei(t) € (zcg(z,,)Z © R (Which
is I15-complete) is equivalent to the problem of deciding whethglt) <

Nreprz Lo R, whereZ’” andn’ are the ones used in the proof of Part
1). ]

The above theorem states that computing preferred repairs and answers is not harder
than computing standard or founded repairs and answers.
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Active Integrity Constraints and Revision
Programming

Summary. We compareactive integrity constraint$29] and revision programmindg108],

two formalisms designed to describe integrity constraints on databases and to gpecify
ferredways to enforce them. The original semantics proposed for these formalisms differ. The
semantics for active integrity constraints defines the concefatunfded repair Intuitively, a
founded repair is a minimal set apdate actionginsertionsanddeletion3, defined and sup-
ported by active integrity constraints, to be performed over the database in order to make it
consistent. The semantics for revision programs defines the congagtifi€d revisionA jus-

tified revision is a set ofevision literals an alternative way to model updates over a database,
that can be inferred by means of the revision program and by the set of all atoms that do not
change their state qiresencdin) or absencdgout) during the update process. We show that
each founded repair corresponds to a justified revision, but not vice-versa. We introduce two
new semantics: one for active integrity constraints and one for revision programs. The first one
allows us to compute a smaller set of repairs,jtistified repairs that correspond to justified
revisions. The second one allow us to compute a wider set of revision, the founded revisions,
that correspond to founded repairs. The introduction of these new semantics for the two for-
malisms shows that each of them can be ported to the other one, and that once it is done, both
frameworks become equivalent under a certain simple syntactic transformation. We show that
for each semantics th&hifting propertyholds. Shifting consists of transforming an instance

of a database repair problem to another syntactically isomorphic instance by changing active
integrity constraints or revision programs to reflect the “shift” from the original database to
the new one.

4.1 Introduction

Active integrity constraintgxplicitly encode both integrity constraints and preferred
way to enforce them in the case they are violated. To specify a precise meaning of
sets of active integrity constraints in the previous chapter the concdpunéied

repair has been presented. Founded repairs are change-minimal and satisfy a certain
groundedness condition.

Revision programs consist @dvision rules Each revision rule represents an integrity
constraint, andmplicitly encodes preferred ways to enforce it by means of a certain
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syntactic convention. Following intuitions from logic programming, [108] proposed
two semantics for revision programs: the semantigsistifedrevisions and the se-
mantics ofsupportedrevisions. Each semantics reflects preferences on the ways to
repair a database with respect to a revision program. In general, neither semantics
satisfies the minimality of change principle. Justified revisions generalize the answer
set semantics of Lifschitz-Woo programs [100].

4.1.1 Contribution

The original semantics of active integrity constraints and revision programming
seemingly cannot be related in any direct way. They have different computational
properties. For instance, the problem of the existence of a founded repair for normal
active integrity constraints i&'%-complete, while the same problem for justified re-
visions of normal revision programs is NP-complete. Furthermore, the semantics for
revision programming do not have the minimality of change property, while founded
repairs with respect to active integrity constraints do.

In this chapter, we demonstrate that despite the differences in the syntax, and the
lack of a simple correspondence between justified revisions and founded repairs, the
formalisms of revision programs and active integrity constraints are closely related.
There are two keys to the relationship. First, we need a certain syntactic restriction
on revision programs. Specifically, we introduce the class qfrtaper revision pro-
grams and show that restricting to proper programs does not affect the expressive
power.

Second, we need to broaden the families of the semantics for each formalism so
that the two sides could be aligned. To this end for active integrity constraints we
introduce new semantics by dropping the minimality of change condition, which
results in the semantics wfeak repairsaandfounded weak repairdVe also adapt to

the case of active integrity constraints the semantics of justified revisions (justified
weak revisions), which leads us to the semantigastffied weak repairandjustified
repairs For revision programs, we modify the semantics of revisions and justified
revisions by imposing on them the minimality condition. Moreover we introduce
the semantics dbunded revisiongfounded weak revisiohghat corresponds to the
semantics of founded repairs (founded weak repairs). We show that under a simple
bijection between proper revision programs and active integrity constraints, founded
(weak) revisions correspond to founded (weak) repairs and justified (weak) revisions
correspond to justified (weak) repairs. This result demonstrates that both formalisms,
even though rooted in different intuitions, can be “completed” so that to become
notational variants of each other.

Both in the case of active integrity constraints and revision programs, the concepts
of “groundedness” we consider do not imply, in general, the property of the mini-
mality of change. However, in each case, there are theories when it is the case. We
present two broad classes of sets of active integrity constraints (revision programs,
respectively) for which groundedness based on the notion of being justified implies
minimality.
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A fundamental property of semantics describing database updates is the invariance
undershifting (we introduce it formally later in the chapter). The semantics of revi-
sion programming have this property [108, 118]. In this chapter we extend it to the
semantics of active integrity constraints.

4.1.2 Plan of the Chapter

The chapter is organized as follows. In the next section, we introduce the concepts of
weak repairs and founded weak repairs. In the following section we present justified
weak repairs and justified repairs. We discussrtbamalizationof active integrity
constraints in Section 4.4. It leads to an additional semantics for active integrity con-
straints, arguably best grounded in an initial database and active integrity constraints.
In Section 4.5, we establish the invariance under shifting for the semantics of active
integrity constraints. We then study the complexity of problems for the semantics of
justified (weak) repairs.

Next, we recall basic concepts of revision programming. We then introduce some
new semantics for revision programs, and show that they are invariant under shifting.
In the main result of this section, we establish a precise connection between active
integrity constraints and revision programs.

4.2 Weak Repairs and Founded Weak Repairs

For the sake of simplicity, in this chapter we will discuss only the propositional case.
However, definitions and results can be lifted to the predicate case. We consider a
finite setAt of propositional atoms. We represent databases as subséts dhe
concept of weak repair is obtained by removing the minimality of change property
from the concept of repair (Definition 3.3).

Definition 4.1. (WEAK REPAIR) LetZ be a database ang a set of integrity con-
straints. Aweak repaifor (Z,7) is a consistent sé{ of update actions such that

o ({+alaeZ}U{-alac AA\NI}HNU=T
(U consists of “essential” update actions only), and
e 7 oU [ n(constraint enforcememnt). ]

Observe that the first property in the previous definition is not imposed explicitly in
Definition 3.3 as it is ensured by the minimality of change.

Most applications require the minimality of change. Thus, for the most part, we
are interested in properties of repairs. However, weak repairs have also interesting
properties and offer a broader perspective. Therefore, in this chapter we consider
them explicitly.

We recall that dground) active integrity constrairis an expression of the form
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r=~L1, ..., Ly, Daq|...|ax (4.2)
whereL; are literals such that,, # LY for eachh # k, ; are update actions, and

{lit(a)?,. .. lit(an)PY C{L1,..., Ly} (4.2)

The role of the condition (4.2) is to ensure that an active integrity constraint supports
only those update actions that can “fix” it (executing them ensures that the resulting
database satisfies the constraint). The condition can be stated concisely as follows:
[lit(head(r))]P C body(r). We call literals inlit(head(r))]” updatableby r. They

are precisely those literals that can be affected by an update actieadir). We

call every literal inbody(r) \ [lit(head(r))]” non-updatabledy ». We denote the

set of literals updatable by as up(r) and the set of literals non-updatable bwas
nup(r).

To formalize the notion of “support” and translate it into a method to select “pre-
ferred” repairs, in the previous chapter we proposed the concegboahded repair

— a repair that iggrounded(in some sensemplied) by a set of active integrity
constraints. Now we introduce an alternative definition of founded repair which is
equivalent to Definition 3.13 but more useful for the proofs presented in this chapter.
In addition, we introduce the semanticsfofinded weak repairs

Definition 4.2. (FOUNDED (WEAK) REPAIR) LetZ be a database; a set of active
integrity constraints, and/ a consistent set of update actions.

1. An update actiony is foundedwith respect to(Z,n) and/ if there isr € ¢
such thate € head(r), Z oU | nup(r), andZ oU = BP, for everys €
head(r) \ {a}.

2. The set/{ is foundedwith respect tdZ, n) if every element df is founded with
respect toZ, n) andi{.

3.U is afounded (weak) repafior (Z,n) if U is a (weak) repair fo{Z, n) andi/
is foundedwith respect toZ, 7). O

We observe that the foundedness does not imply the constraint enforcement nor the
minimality of change. LefZf = § andn consist of the following active integrity

constraints:
ry=nota D +a

ro = notb,c D +b
rg = b, notc D +c.

The unique founded repair fdiZ,n) is {+a}. The set{+a,+b,+c} is founded,
guarantees constraint enforcement (and so, it is a founded weak repair), but it it is
not change-minimal. The sét+b, +c} is founded but does not guarantee constraint
enforcement. Therefore, in the definition of founded (weak) repairs, the property of
being a (weak) repair must be enforced explicitly. We also note that foundedness
properly narrows down the class of repairsy = {a,b D —b}, andZ = {a,b} (an
example we considered earliet),= {—a} is a repair for(Z, ) but not a founded
repair.
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In some cases, founded repairs, despite combining foundedness with change-minimality,
are still not grounded strongly enough. The problem is the circularity of support.

Example 4.3Let Z = {a,b} andn consist of the following active integrity con-
straints:

ry =a,b D —al—b

ro = a,notb D —a

rs = nota,b D —b.

We note that/ = {—a, —b} is a founded repair fofZ, ). Indeed,—a is founded
with respect taZ, n) andi{, with r5 providing the necessary support. Similarhj
is founded with respect ¢, ) andi{ because of.

The active integrity constraint; is the only constraint violated ¥ and so, it is the
one that forces the need for a repair. Howeveitself provides no support fora or

—b. It follows that the support for foundedness-ed is provided solely by and it
requiresthat —b be included in the repair. Similarly, the support for foundedness of
—bis provided solely by; and it depends ora being included in the repair. Thus,
the foundedness df-a, —b} is “circular”: —a is founded (and so included i) due

to the fact that-b has been included ¥, and—b is founded (and so included i)

due to the fact that-a has been included i#1, O

To summarize this section, the semantics of founded repairs gives preference to some
ways of repairing active integrity constraints over others. It only considers repairs

whose all elements are founded. However, foundedness may be circular and so the
associated concept of groundedness is weak. We revisit this issue in the next section.

On the computational side, the complexity of the semantics of repairs is lower than
that of founded repairs. The problem of the existence of a repair is NP-complete,
while the problem of the existence of a founded repalf'jscomplete (see previous
chapter). For the sake of completeness, we also note that the problem of the existence
of a founded weak repair is again “only” NP-complete (the proof is simple and we
omit it).

4.3 Justified Repairs

In this section, we will introduce another semantics for active integrity constraints
that captures a stronger concept of groundedness than the one behind founded re-
pairs. The goal is to disallow circular dependencies like the one we discussed in
Example 4.3.

We start by defining when a set of update actionslisedunder active integrity
constraints. Lef) be a set of active integrity constraints andliebe a set of update
actions. Ifr € n, and for everynon-updatablditeral L € body(r) there is an update
actiona € U such thatlit(ar) = L then, after applyin@/ or any of its consistent
supersets to the initial database, the result of the updateRsaatisfies all non-
updatable literals ihody(r). To guarantee thaR satisfies:, R mustfalsify at least
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one literal inbody(r). To ensure thal{ should contain at least one update action
from head(r).

Definition 4.4. (CLOSED SETS OF UPDATE ACTION}

A setl/ of update actions islosedunder an active integrity constraintif nup(r) ¢
lit(U), or head(r) NU # 0.

A setl/ of update actions islosedunder a set; of active integrity constraints if it is
closed under every € 7. O

If a set of update actions is not closed under a;s#tactive integrity constraints, ex-
ecuting its elements is not guaranteed to enforce constraints representethieye-
fore closed sets of update actions are important. We reg@ménal such sets as
“forced” by n, as all elements in a minimal set of update actions closed updes
necessary (no nonempty subset can be dropped).

Another key notion in our considerations is thatraf-effect actionsLet Z be a
database an® a result of updating. An update actionta (respectively—a) is a
no-effectaction with respect t¢Z, R) if a € iN R (respectivelya ¢ iU R). We
denote byne(Z, R) the set of all no-effect actions with respect(fh R). We note
the following two simple properties.

Proposition 4.5.LetZ be a database. Then

1. For every databas®, R o ne(Z,R) =R

2. For every sef of update actions such thtUne(Z,Zo&) is consistentf o & =
Zo(EUne(Z,Z0E)).

Proof: (1) Sincene(Z,R) = {+a |a € iINR}U{—a|a ¢ iUR}, Rone(Z,R) =
(RUZNR)N(ZUR)=TR.

(2) Since€ Une(Z,Zo&) is consistent, Proposition 4.5 imply thab (£ U ne(Z,Z o
E)=(Zo&)one(Z,Io&)=TI0¢&. O

Our semantics of justified repairs is based on the knowledge-representation principle
(a form of the frame axiom) that remaining in the previous state requires no reason
(persistence by inertia). Thus, when justifying update actions necessary to ransform
7 into R based o we assume the sete(Z, R) as given. This brings us to the
notion of a justified weak repair.

Definition 4.6. (JUSTIFIED WEAK REPAIRS

LetZ be a database ang a set of active integrity constraints. A consistentiget
of update actions is a justified action set f@r, n) if ¢/ is a minimal set of update
actions containingue(Z,Z o ) and closed undep.

If U is a justified action set fo{Z, n), then€ = U \ ne(Z,Z o U) is a justified weak
repair for (Z, n). m|

Intutitively, a set/ of update actions is a justified action set, if it is precisely the set
of update actions forced gustifiedby n and the no-effect actions with respectzto
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andZ o U. This “fixpoint” aspect of the definition is reminiscent of the definitions

of semantics of several nonmonotonic logics, including (disjunctive) logic program-
ming with the answer set semantics. The connection can be made more formal and
we take advantage of it in the section on the complexity and computation.

We will now study justified action sets and justified weak repairs. We start with an
alternative characterization of justified weak repairs.

Theorem 4.7.Let 7 be a databasey a set of active integrity constraints arftla
consistent set of update actions. THers a a justified weak repair fofZ, n) if and
onlyif€ENne(Z,Zo€&)=0and€ Une(Z,7 o &) is ajustified action set fofZ, n).

Proof: (=) Sincef is a justified weak repair folZ, n), £ = U\ ne(Z,Zold) for some
consistent s/ of update actions such thatis minimal containingne(Z,Z o U)

and closed undey. By Proposition 4.5(2)f ol = Zo&.Thus,ENne(Z,Zo&) = .

Moreover, sincewe(Z,Zold) CU,U =EUne(Z,Z0&). HenceE Une(Z,Z0E)

is a justified action set fo{Z, 7).

(<) LetUd = EUne(Z,Zo&). We will show thatne(Z, Zold) = ne(Z,ZoE). To this
end, let+a € ne(Z,Z oU). Then,a € i and—a ¢ U (the latter property follows by
the consistency af). It follows that—a ¢ £ and, consequentla € ne(Z,Zo&).
Similarly, we show that if-a € ne(Z,Z oU), then—a € ne(Z,Z o £). Thus, we
obtain thatne(Z,Z oU) C ne(Z,Z o &).

Conversely, letra € ne(Z,Z0&). Thena € i and+a € U. Sincel{ is consistent (it
is a justified action set fofZ, 7)), Z o U is well defined andta € ne(Z,Z oU). The
case—a € ne(Z,Zo &) is similar. Thuspe(Z,Z o &) C ne(Z,Z oU) and the claim
follows.

Since€ N ne(Z,Z o £) = B, we obtain that = U \ ne(Z,Z o U). Sinceld is a
justified action set fofZ, n), £ is a justified weak repair fo{Z, 7). O

Justified weak repairs have two key properties for the problem of database update:
constraint enforcement (hence the term “weak repair”) and foundedness.

Theorem 4.8.Let Z be a databasey a set of active integrity constraints, aidda
justified weak repair foKZ, ). Then

1. For every atonu, exactly one ofta or —aisinEUne(Z,Zo &)
2.Z0&FEn
3. & is founded forZ, n).

Proof: Throughout the proof, use the notatidn= € U ne(Z,Z o £).

(1) Sincel{ is consistent (cf. Theorem 4.7), for every atamat most one ofta,
—aisinU. If +a € ne(Z,Z o &) or —a € ne(Z,Z o £) then the claim follows.
Otherwise, the status afchanges as we move framto Z o £. That is, either-a or
—a belongs tof and, consequenly, i@, as well.

(2) Let us consider € 7. Sincel/ is closed under) (cf. Theorem 4.7), we have
nup(r) € lit(EUne(Z,Z0&)) or head(r)N(EUne(Z,Z0&)) # (. Let us assume
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the first possibility, and leL be a literal such that € nup(r) andua(L) ¢ U. By
(1), ua(LP) € U. ConsequentlyZ o U [~ L. By Proposition 4.5(2)Z o £ (~ L.
SinceL € body(r),To & [=r.

Thus, let us assume thatad(r) NU # 0 and leta € head(r) NU. Thena €
head(r) and sojit(a)P € body(r). Furthermoreq € U and soZ ol |= lit(a). By
Proposition 4.5(2)7 o £ k= lit(«). Thus,Z o £ = r in this case, too.

(3) Leta € £. By Theorem 4.7q ¢ ne(Z,Z o ). Thus,ne(Z,Zo &) C U\ {a}.
Sincel{ is a minimal set closed underand containingne(Z,Z o &), U \ {a} is
not closed under. That is, there is* € n such thatnup(r) C lit(U \ {a}) and
head(r) N (U \ {a}) = 0.

We have

ToU\{a})=To(ne(Z,Zo&)U(E\{a}))=(ZTone(Z,I0o&))o(E\{a}).

By Proposition 4.5 (and the fact that(Z,R) = ne(R,Z), for every databases
andR),

ToU\{a}) =To(E\{a}). (4.3)
From nup(r) C lit(U \ {a}), it follows thatZ o (U \ {a}) = nup(r). By (4.3),
T o (E\{a}) & nup(r). Sincea € head(r), lit(aP) ¢ nup(r). Thus,I o & |=
nup(r).
The inclusionnup(r) C lit(U \ {a}) also impliesnup(r) C lit(U). Sinceld is
closed unden, head(r) NU # B and sohead (r) NU = {a}.
Let us consideB € head(r) such thap3 # a. It follows thats ¢ U. By (1), 8 € U
and, consequently, o U/ = 3. SinceZ oU = T o £ (Proposition 4.5), it follows
thata is founded with respect t(Z, ) and€. m|

Theorem 4.8 directly implies that justified weak repairs are founded weak repairs.

Corollary 4.9. LetZ be a databasey a set of active integrity constraints, aidda
justified weak repair fofZ, n). Then£ is a founded weak repair fafZ, n).

The converse to Corolary 4.9 does not hold. That is, there are founded weak repairs
that are not justified weak repairs.

Example 4.10Let Z = {a,b} andn consist of the following active integrity con-
straints:

ry =a,b,notc D +cV —a

ro =a,notb DO —a

r3 = nota,b D —b.

We note thatF = {—a, —b} is a founded repair and so, also a founded weak repair,
for (Z,n). However,F is not a justified weak repair fdeZ, n) asF Une(Z,ZoF) =
{—a, —b, —c} is not a minimal set containinge(Z,Z o F) and closed undey. One
can check thaf—c} also has these two properties. O

While stronger property than foundedness, being a justified weak repair still does not
guarantee change-minimality (and so, the tereakcannot be dropped).
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Example 4.11Let us consider the setof active integrity constraints

ry =nota,b D> +aV —b
ro =a,notb > —aV +b

and the set of update actiofis= {+a, +b}. It is easy to verify thaf is a justified
weak repair off = (). Therefore, it ensures constraint enforcement and it is founded.
However,& is not minimal asZ = ( is consistent with;, and the empty set is its
only repair. a

Thus, to define justified repairs, as in the case of founded repairs, we need to impose
change-minimality explicitly.

Definition 4.12. (JUSTIFIED REPAIR)

LetZ be a database ang a set of active integrity constraints. A sgtof update
actions is gustified repaiffor (Z, n) if £ is a justified weak repair fo(Z, ), and for
every’ C EsuchthatZ o &' =1, &' = €. O

Theorem 4.8 has yet another corollary, this time concerning justified and founded
repairs.

Corollary 4.13. For each databas€ and set of active integrity constraints if a
set& of update actions is a justified repair féZ, ) then¢ is a founded repair for
(Z.n).

Proof: Let € be ajustified repair fo{Z, ). It follows by Theorem 4.8 thafo & | 1.
Moreover, by the definition of justified repair§,is change minimal. Thus; is a
repair. Again by Theorem 4.8, is founded. ThusS is a founded repair fofZ, n). O

Example 4.41 shows that the inclusion asserted by Corollary 4.13 is proper.

As illustrated by Example 4.11, in general, justified weak repairs form a proper sub-
class of justified repairs. However, in some cases the two concepts coincide. One
such case is identified in the next theorem. The other important case is discussed in
the next section.

Theorem 4.14.LetZ be a database angl a set of active integrity constraints such
that for each update action € {J, ., head(r), I = lit(aP). If £ is a justified weak
repair for (Z, n), then& is a justified repair for(Z, 7).

Proof: Let € be a justified weak repair fgfZ, n) and let€’ C £ be suchthal o€’ |=
n.

We defineld = £ U ne(Z,Z o £). By Theorem 4.7 and Proposition 4.5(24,is
a minimal set of update actions containing(Z,Z o £) and closed undey. Let
U = E'Une(Z,Io&)andletr € nbe such thatia(nup(r)) CU'. SinceZo&’ = 1,
T o &' B~ body(r). Thus, it follows that there i€ € up(r) such thatZ o &’ [~ L.
SinceL € up(r), there isa € head(r) such thatl = lit(a”). By the assumption,
T = L, thatis,Z = lit(aP). SinceZ o &' = L, T o &' |= lit(a). Thus,a € &
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and, consequentlyy € U’. It follows thati/’ is closed under and, since- was an
arbitrary element of), unders. too. Thus/' = U, that is,£’ U ne(Z,Z o ) =
EUne(Z,Z0€&).Sinceg’ C Eandé Nne(Z,Zo&)=10,& = E&. Itfollows that€
is a minimal set of update actions such that& = 1. ]

4.4 Normal Active Integrity Constraints and Normalization

An active integrity constraint is normalif |head(r)| = 1. We will now study prop-
erties of normal active integrity constraints. First, we will show that for that class of
constraints, updating by justified weak repairs guarantees the minimality of change
property and so, the explicit reference to the latter can be omited from the definition
of justifed repairs.

Theorem 4.15.Let7 be a database angla set of normal active integrity constraints.
If £ is ajustified weak repair fo{Z, ) then& is a justified repair for(Z, ).

Proof: Let £ be a justified weak repair fdZ, ). We have to prove that is minimal
with respect to constraint enforcement. To this end, let us con&ider€ such that
Io& E=n.

We defindf = EUne(Z,Zo&) andt’ = &' Une(Z,ZoE). We will show thats’ is
closed under). Letr € n be such thata(nup(r)) C U'. Leta be an update action
such thatiead(r) = {a}. Thenbody(r) = {lit(aP)} U nup(r).

SinceZ o &' |=1r,Z o &' [~ body(r). By our assumptionya(nup(r)) € U’'. Thus,
T oU" = nup(r). Sinceld’ is consistent, Proposition 4.5(2) implies tHab &' =
ZolU'.Thus,Z o & |~ lit(aP) and, consequently, o & = lit(a).

Sincelt’ C U, ua(nup(r)) C U. By Theorem 4.7/ is closed unden. Thus,o € U.
SinceZ oU = 7 o £ (Proposition 4.5(2)) o £ E lit(«).

If T |= lit(a) then, asL o € = lit(a), we haver € ne(Z,Z0&) C U IF T }~ lit(«)
then, asZ o &' | lit(«), we have thatv € £ C U'. Thus,{’ is closed under and
so, also unden. Consequently{’ = U. SinceE N ne(Z,Z o £) = (), it follows that
&' = €. Thus,€ is a minimal set of update actions such that & = 7. O

Next, we introduce the operation abrmalizationof active integrity constraints,
which consists of eliminating disjunctions from the heads of rules. For an active
integrity constraint = ¢ D a1 V -+ V ay, by r™ we denote the set aformal
active integrity constraint$¢ > «i,...,¢ D «,}. For a sety of active integrity
constraints, we set” = UTG?7 r™. Itis shown in [29] that is founded for(Z, n) if

and only if€ is a founded foKZ, n™). Thus,€ is a founded (weak) repair fdZ, n)

if and only if £ is a founded (weak) repair fdZ, n™). For justified repairs, we have

a weaker result. Normalization may eliminate some justified repairs.

Theorem 4.16.LetZ be a database angl a set of active integrity constraints.

1. If a set& of update actions is a justified repair fdZ, ™), then& is a justified
repair for (Z,n)
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2. If a set€ of update actions is a justified weak repair f(f, "), then€ is a
justified weak repair fo(Z, n).

Proof: Let £ be a justified repair fokZ,n™). We defineld = £ U ne(Z,Z o £).
By Corollary 4.13,¢ is a founded repair fofZ,n™). By a result from [29]€ is a
founded repair foZ, ) and, consequently, a repair f&f, n).

Sincef is, in particular, a justified weak repair f@Z, ™), U is a justified action
set for(Z,n™) (Theorem 4.7). Thug/ is a minimal set of update actions containing
ne(Z,Z o £) and closed undey™. To prove that is a justified repair foKZ, n), it
suffices to show that is a minimal set of update actions containing(Z,Z o &)
and closed undey.

Let us consider an active integrity constraint
r=lit(al),.. . lit(a?), ¢ Da1 V- Va,

in n such thatua(nup(r)) C U (we note thatwup(r) consists precisely of the literals
that appear im). It follows thatl olf = nup(r). Sincef is arepairZo& [~ body(r).

By Proposition 4.5(2)7 o £ = Z oU. Thus,Z o U [~ body(r). It follows that there
isi, 1 <i < n,suchthatZ ol [ lit(a?P). Thus,a” ¢ U. By Theorem 4.8(1),

a; € U. ThusU is closed under and, consequently, undgy as well.

We will now show thai/ is minimal in the class of sets of update actions containing
ne(Z,Zo&) and closed undey. Leti/’ be a set of update actions such thatZ,Z o

&) CU’' C U andi/’ is closed under. Let us consider an active integrity constraint
in s € n™ such thatua(nup(s)) CU’.

By the definition ofy™, there is an active integrity constraint n such that

r=lit(a?),... lit(a?),... lit(a2), 6 Dar V-V V- Va,

and
s = lit(al),... lit(aP), ... lit(a?), ¢ D ;.

Sinceua(nup(s)) C U’, uwa(nup(r)) C U'. AsU'’ is closed under), there isj,
1 < j <mn,suchthaty; € U’. Foreveryk suchthat < k <nandk #i,af €U’
By the consistency dff’, we conclude thad; € U’. Thus,{’ is closed undes and,
consequently, undey®. Sinceld’ C U/ andl/ is minimal containingue(Z,Z o &) and
closed unden™ it follows that{’ = ¢/. Thus/ is minimal containingre(Z,Z o &)
and closed undey. Consequenthy¢ is a justified repair fofZ, 7).

(2) If £ is a justified weak repair fofZ, ™) then, by Theorem 4.1%; is a justified
repair for(Z,n™). By (1), £ is a justified repair fofZ, n) and so, a justified weak
repair for(Z, n). O

The following example shows that the inclusions in the previous theorem are, in
general, proper.

Example 4.17Let us consider an empty databaBethe setn of active integrity
constraints
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r1 = nota,notb O +aV +b
ro = a,notb D +b
r3 = nota,b D +a

its normalized version™

r11 = nota,notb D +a
r1,2 = nota,notb O +b
r21 = a,notb D +b
r31 = nota,b D +a

and the set of update actiofis= {+a, +b}. It is easy to verify that is a justified
repair for (Z,n). However,£ is not a justified weak repair fofZ,n™) (and so a
justified repair fofZ, n™)). Indeed, itis not a minimal set containing(Z,Zo&) =
and closed undey™ as{ is also closed undey". ]

4.5 Shifting Theorem

In this section we study the concept of shifting [108]. Shifting consists of transform-

ing an instanc€Z, n) of the database repair problem to a syntactically isomorphic
instance(Z’, ') by changing integrity constraints to reflect the “shift"Dinto Z'.

A semantics for database repair problem hasttifting propertyif the repairs of the
“shifted” instance of the database update problem are precisely the results of mod-
ifying the repairs of the original instance according to the shift fibro Z’. The

shifting property is important. If a semantics of database updates has it, the study of
that semantics can be reduced to the case when the input database is the empty set. In
many cases it allows us to relate a semantics of database repairs to some semantics
of logic programs with negation.

Example 4.18LetZ = {a, b} and lety = {a,b D —aV —b}. There are two founded
repairs for(Z,n): &, = {—a} and&; = {-b}. LetW = {a}. We will now “shift”

the instancéZ, n) with respect taV. To this end, we will first modifyZ by changing
the status irZ of elements inW, in our case, ofi. Sincea € Z, we will remove

it. Thus,Z “shifted” with respect to/V becomesZ’ = {b}. Next, we will modify

n correspondingly, replacing literals and update actions involvitny their duals.
Thatresults iny’ = {nota,b D +aV —b}. One can check that the resulting instance
(Z',n') of the update problem has two founded repajrsu} and{—b}. Moreover,
they can be obtained from the founded repairs(fyrn) by consistently replacing
—a with +a and+a with —a (the latter does not apply in this example). O

The situation presented in Example 4.18 is not coincidental. In this section we will
show that the semantics of (weak) repairs, founded (weak) repairs and justified
(weak) repairs satisfy the shifting property.

We start by observing thahiftinga databas# to a databasg’ can be modeled by
means of the symmetric difference operator. Namely, we Fave 7 =+ W, where
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W = T +1’. This identity shows that one can shift any dataliag&to any database

T’ by forming a symmetric difference af with some set of atoriV (specifically,

W = T +i’). We will now extend the operation of shifting a database with respect
to W to the case of literals, update actions and integrity constraints. To this end, we
introdce ashiftingoperatorTyy .

Definition 4.19. Let W be a database anda literal or an update action. We define

Tow(£) = (P if the atom of? is in W
W= ¢ if the atom of is notinWW

and we extend this defnition to sets of literals or update actions, respectively.

Furthermore, ifop is an operator on sets of literals or update actions (such as con-
junction or disjunction), for every sét of literals or update actions, we define

Tw(op(X)) = op(Tw (X))
Finally, for an active integrity constraint = ¢ D 1, we set
Tw(r) =Tw(¢) > Tw(v)

and we extend the notation to sets active integrity constraints in the standard way.
O

To illustrate the last two parts of the definition, we note that whyestands for the
conjunction of a set of literals andl = {L4,..., L, }, where everyL; is a literal,
Tw(op(X)) = op(Tw (X)) specializes to

Ty (L1, ..., Ly) = Ty (L), ..., Ty (Ly).
Similarly, for an active integrity constraint
r=L,...,L, D1 V...Vay,
we obtain
Tw(r) =Dw(L1), ..., Dw(Lyn) D Dwy(ar) V-V Ty(am).

Clearly, we overload the notatidR, and interpret it based on the type of the argu-
ment. We will now present several useful properties of the opetigtor

Proposition 4.20.Let W be a database.

1. For every update action, Ty (lit(«)) = lit(Tw(a))

2. For every setd of literals (update actions, active integrity constraints, respec-
tively) Ty (Tw(A)) = A

3. For every consistent set of literals (update actions, respectivelfij, (A) is
consistent
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4. For every databasesandR, Tyy (ne(Z,R)) = ne(Z ~ W, R + W)
5. For every active integrity constraimt nup (T (1)) = T (nup(r)).

Proof: (1) - (3) follow directly from the definitions. We omit the details.

(4) Leta € ne(Z + W, R +W). If @ = +aq, then it follows thata € (Z +~ W) N
(R + W). Let us assume that € W. Thena ¢ iU R and, consequently-a €
ne(Z,R). Sincea € W, +a = Tyy(—a). Thus,a € Tyy(ne(Z, R)). The case when
a = —a can be dealt with in a similar way. It follows that(Z ~ W, R + W) C
Tw(ne(Z,R)).

letZ =T +~WandR' = R+-W.ThenI =7' =W, R = R =W and, by
applying the inclusion we just proved 16 andR’, we obtain

ne(Z,R) = ne(Z' + W,R' =+ W) C Tiy(ne(Z', R")).
Consequently,
Tw(ne(Z,R)) C Tw(Tw(ne(Z',R))) = ne(T ~ W, R =+ W).

Thus, the claim follows.

(5) LetL € nup(Tyy(r)). Itfollows thatL € body (T (r)) andL? ¢ lit(head (T (r)).
Clearly, head (T\w (1)) = Tw(head(r)) and body(Tw(r)) = Tw(body(r)). Thus,

L € Tyw(body(r)) and LP ¢ Ty (head(r)). Consequentlyliy (L) € body(r).
Moreover, sincelyy (LP) = (Tyw(L)P, (T (L)P ¢ head(r). It follows that
Tw(L) € nup(r) and so,L € Ty, (nup(r)). Hencenup(Tw(r)) C Ty (nup(r)).
Applying this inclusion to an active integrity constraint= Tyy(r), we obtain
nup(r) C Tw(nup(Tw(r))), whichimpliesTyy, (nup(r)) € Tw(Tw (nup(Tw(r)))) =
nup(Tw (r)). Thus, the equalityup(Tyy (1)) = Tw (nup(r)) follows. m|

Proposition 4.21.Let Z and VW be databases and Igi be a literal or an update
action. TherZ = Lifand only ifZ + W |= Ty (L).

Proof: (=) Let us assume th&t = L. If L = a, wherea is an atom, them € 7.
There are two cases:€ W anda ¢ W. In the first caseg ¢ Z +~ W andTyy (a) =
not a. Inthe second case,c i+ andTyy(a) = a. In each cas€,+~W = Tyy(a),
thatis,Z +~ W = Tw(L).

The casel = not a, wherea is an atom, is similar. First, we have that¢ i. If
a € Wthena € i+ W andTyy(nota) = a. If a ¢ W thena ¢ i + W and
Tw(not a) = not a. In each case] + W = Tyy(not a), thatis,Z + W | Ty (L).
(<) Let us assume thal ~ W = Tw(L). Then,(I + W)+~ W = T and
Tw(Tw(L)) = L. Thus,Z |= L follows by the implication £-). O

Proposition 4.22.LetZ and}V be databases, and lét be a consistent set of update
actions. ThedZ o) + W = (Z = W) o T (U).
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Proof: We note that sinc# is consistentTyy (i) is consistent, too. Thubpthsides
of the identity are well defined.

Leta € (ZolU) = W. If +a € T (U), thena € (Z + W) o Tyy(U). Thus, let us
assume that-a ¢ Ty (U). We have two cases.

Case lia ¢ W. From the definition oflyy, +a ¢ U. Sincea € (ZolU) + W,
a € iolU and, consequently, € i and—a ¢ U. Thus,a € (Z + W) and—a ¢
Tw(U) (otherwise, asy(—a) = —a, we would have—a € Uf). Consequently,
a € (I% W) o Tw(U)

Case 2u € W. From the definition ofyy, —a ¢ U. Sincea € (Zold)=W, a ¢ iold.
Thus,a ¢ iand+a ¢ U. It follows thata € i+ W and—a ¢ Ty, (U) (otherwise we
would haveta € U, asTyy(—a) = +a, in this case). Hence, € (Z+W)o Ty (U).
If a ¢ (Zold)+WW, wereason similarly. lf-a € Ty (U), thena ¢ (Z-+-W)oTw (U).
Therefore, let us assume that ¢ Ty, (U). As before, there are two cases.

Case lu ¢ Wandthus-a ¢ U. Sincea ¢ (Zold)+W, a ¢ iold and, consequently,
a ¢ iand+a ¢ U. Thus,a ¢ (Z +~ W) and+a ¢ Ty (U). Consequentlyq ¢
(I+ W) o Tw(U)

Case 2u € W and thusta ¢ U. Inthis caseq € Z oU. Thus,a € i and—a ¢ U.
It follows thata ¢ i+ W and+a ¢ T\ (U). Hencea ¢ (Z + W) o Ty (U). O

Corollary 4.23. LetZ and )V be database$/ a consistent set of update actions, and
L aliteral or an action update. Theho U |= L if and only if (Z +~ W) o Tw(U) =
Tw(L)

Proof: By Proposition 4.21Z oY = Lifand only if (Z o U) + W | Tw(L).
By Proposition 4.22, the latter condition is equivalent to the conditibr- W) o
Tyw(U) = Tw(L). o

Theorem 4.24.(SHIFTING THEOREM FOR(WEAK) REPAIRS AND FOUNDED(WEAK)
REPAIRS)

LetZ and W be databases. For every setof active integrity constraints and for
every consistent sétof update actions, we have

1. £ is a weak repair for(Z,n) if and only if Ty, (€) is a weak repair for(Z +
W, Ty (n))

2. & is arepair for (Z, n) if and only if Ty (€) is a repair for (Z +~ W, Ty, (1))

3. £ is founded forZ, i) if and only if Ty, (€) is founded forZ +~ W, Ty (n)).

4. ¢ is afounded (weak) repair fofZ, n) if and only ifTyy,(€) is a founded (weak)
repair for (Z ~ W, Ty (n)).

Proof. (1) Let us assume thétis a weak repair fofZ, ). It follows thaté is consis-
tent. SinceZ o € |= 0, by Corollary 4.23(7 +~ W) o T\ (€) = Ty (n). The converse
implication follows from the one we just proved by Proposition 4.20(2).

(2) As before, it suffices to show only one implication. I&ebe a repair foZ, ).
Then,& is a weak repair fofZ, ). By (1), £ is a weak repair fotZ ~ W, Ty, (n)).
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Let & C Tw(€) be such thafZ +~ W) o & = Tyy(n). It follows that Ty, () C
Tw(Tw(E)) = E. Since is consistent}y(E’) is consistent, too. By Corollary
4.23 and Proposition 4.20(2), sinEE ~ W) o &’ = Tw(n), thenZ o Ty, (&') E 7.
Since€ is a repair andly (&) C &, Tw(&') = €. Thus, & = Ty, (€) and so,
Tw(€) is arepair foKZ +~ W, Ty (n)).

(3) As in two previous cases, we show only one implication. Thus, let us assume that
¢ is founded for(Z, n). Let o € Ty (E). It follows that there is3 € £ such that
a = Tw(fB). Sincef is founded with respect tdZ, n), there is an active integrity
constraint- such thap? € head(r), Zo€ = nup(r), and for everyy € head(r)\{8},
Zo& EAP.

Clearly, the active integrity constraiffiy () belongs tdl)y (n) anda = Ty (5) is
an element ofiead (Tyy (r)). By Proposition 4.20(5)pup(r) = nup(Tw(r)). Thus,
by Corollary 4.23(Z +~ W) o Ty (E) | nup(Tw(r)). Next, lety € head (T (r)) \
{a}. Then, there i$ € head(r) \ {3} such thaty = Ty (d). SinceZ o £ = ~P, it
follows that(Z ~ W) o Tw (€) | Tw(dP), thatis,(Z+W)oTw(€) E +P. Thus,a
is founded with respect t - W, Ty (n)) andTy, (€) andTyy, (€) is founded with
respet toZ ~ W, Tw(n)).

(4) This property is a direct consequence of (1), (2), and (3). |
We will now turn our attention to justified repairs. We need one more auxiliary result.

Lemma 4.25.Let Z and W be databases. For every sgtof active integrity con-
straints and for every sét of update actiond/ is a justified action set fofZ, n) if
and only ifTy, (i) is a justified action set fofZ +~ W, Ty (n)).

Proof: (=) We have to prove thaly (i) is consistent, and minimal among all
supersets ofie(Z +~ W, (Z + W) o Ty (U)) that are closed undéhy (7).

Sincel/ is a justified action set fo{Z, i), U is consistent ande(Z,Z olUd) C U. The
former implies thaff},, (i) is consistent (cf. Proposition 4.20(1 )). The latter implies
thatne(Z ~ W, (Z + W) o T\ (U)) C Ty (U) (cf. Propositions 4.20(2) and 4.22).
Next, we prove thafyy (/) is closed undefyy (n). Letr be an active integrity con-
straint inTyy (n) such thatody(r) is consistentpup (r) C lit(Tyy (U)). Then, there
existss € n such that = Ty, (s). By Proposition 4.20(5yup(r) = Ty (nup(s)).

As Ty (nup(s)) C ULt(TwU)), we have thatnup(s) C lLit(U). Sinceld is
closed undes, there existsy € head(s) such thate € U. Thus, we obtain that
Tw(a) € Ty (head(s)) = head(r), and thatTiy () € Ty (U). Consequently,
head(r) N Tyw(U) # 0. It follows thatTyy, (U) is closed under and so, also under
Tw(n).

Finally, let us consider a sét of update actions such thae(Z =~ W, (Z + W) o
Tw(U)) € V C Tyw(U) and closed undefyy(n). By Propositions 4.20(2) and
4.22,ne(T +W,(Z +W)oTw(U)) = Tyw(ne(Z,Z oUd)). Thus,ne(Z,Z oU) C
Tw(V) C U. From the fact thaV is closed undefyy (n) it follows thatTyy (V) is
closed under (one can show it reasoning similarly as in the previous paragraph). As
U is minimal in the class of supersets@f(Z,Z o U) closed undef), Ty, (V) = U
and soV = Ty, (U). This completes the proof of the implicatios-(.
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(<) If Tw(U) is a justified action set fotZ ~ W, Ty (n)), the implication(=-)
yields thatlyy (Tyy (U)) = U is a justified action set fof(Z ~ W) +~W =TI,n). O

This reslt implies the shifting property for the semantics of justified revisions.

Theorem 4.26.(SHIFTING THEOOREM FOR(WEAK) JUSTIFIED REPAIRY LetZ
andV be databases. For every sgebf active integrity constraints and for every set
£ of update actionsf is an justified (weak) repair fofZ, n) if and only if Ty, (€) is

a justified (weak) repair fofZ, Ty (n)).

Proof: (=) If £ is a justified weak repair fo{Z, 1), then€ N ne(Z,Z o £) = h and
EUne(Z,7 o ¢&) is ajustified action set fofZ,n) (Theorem 4.7). It follows that
Tw(E)NTw(ne(Z,Zo&)) = (. Moreover, by Lemma 4.25)y,(E Une(Z,Z0¢&))

is a justified action set fo{Z ~ W, Ty (n)).

We havelyy (ne(Z,Zo€)) = ne(Z=-W, (Z+W)oTw(E)). Thus, again by Theorem
4.7, () is ajustified weak repair fofZ +~ W, Tw (n)).

If £ is ajustified repair fofZ, n), then our argument shows tHAf, (£) is a justified
weak repair foZ + W, Tyy(n)). Moreover, since is a repair forZ, by Theorem
4.24(2) we have thdy, (£) is a repair forZ +W. It follows thatT)y (€) is a justified
repair for(Z +~ W, Ty (n)).

(<) This implication follows from the other one in the same way as in several other
similar cases in the chapter. |

Theorems 4.24 and 4.26 imply that in the context of (weak) repairs, founded (weak)
repairs or justified (weak) repairs, an instari€en) of the database update problem
can be shifted to the instance the empty initial database. That property simplifies
studies of these semantics as it allows us to eliminate one parameter (the initial data-
base) from considerations.

Corollary 4.27. LetZ be a database angla set of active integrity constraints. Then

£ is a weak repair (repair, founded weak repair, founded repair, justified weak repair,
ustified repair, respectively) fafZ, n) if and only if 7;(€) is a weak repair (repair,
founded weak repair, founded repair, justified weak repair, ustified repair, respec-
tively) for (0, T'7(n)). |

4.6 Complexity and Computation

We noted earlier that the problem of the existence of a (weak) repair is NP-complete,
and the same is true for the problem of the existence of founded weak repairs. On the
other hand, the problem of the existence of a founded repaif.isomplete [29]. In

this section, we study the problem of the existence of justified (weak) repairs.

For our hardness results, we will use problems in logic programming. We will con-
sider disjunctive and normal logic programs that satisfy some aditional syntactic
constraints. Namely, we will consider only programs without rules which contain
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multiple occurrences of the same atom (that is, in the head and in the body, negated
or not; or in the body — both positively and negatively). We call such programs
simple It is well known that the problem of the existence of a stable model of a
normal logic program is NP-complete [107], and of the disjunctive logic program
— XP-complete [51]. The proofs in [51, 107] imply that the results hold also under
the restriction to simple normal and simple disjunctive programs, respectively (in
the case of disjunctive logic programs, a minor modification of the construction is
required).

Let p be a logic programming rule, say

p=aV...Vag < (.

We define
aic(p) = notay,...,notag, 3D +ay V-V +ag.

We extend the operatafic(-) to logic programs in a standard way. We note that if a
rule p is simple therbody (aic(p)) is consistent andup (aic(p)) = body(p).

We recall that a sed/ of atoms is an answer set of a disjunctive logic progf@m
if M is a minimal set closed under the rediY , where PM consists of the rules
obtained by dropping all negative literals from those rule®ithat do not contain a
literal not a in the body, for anys € M (we refer to [66] for details). Our first two
lemmas establish a result needed for hardness arguments.

Lemma 4.28.Let P be a simple disjunctive logic program add’, M sets of atoms
such thatM’ C M. ThemM' is a model ofPM if and only if {+a |a € M’} U
{—a |a ¢ M} is closed undetic(P).

Proof: Let us defind/ = {+a |a € M’} U{—a |a ¢ M}. We note that/ is
consistent.

(=) Letr € aic(P), p € P be arule such that = aic(p), andp’ be the rule
obtained by eliminating frorp all negative literals.

SinceP is simple,nup(r) = body(p). Let us assume thatup(r) C U. It follows
thatp’ € PM and thatM’ |= body(p'). Thus,head(p') N M’ # 0. Sincehead(p) =
head(p') andhead(r) = head(aic(p)) = ua(head(p)), head(r) NU # (. That is,
U is closed under and, since- was chosen arbitrarily, undeic(P), too.

(<) Let us considep’ € PM. There isp € P such that for every negative literal
nota € body(p), a ¢ M, and dropping all negative literals fromresults inp’.
If body(p’) C M’, thenbody(p) C lit(U). Thus,nup(aic(p)) C U. It follows that
head(aic(p))NU # 0. Thus,head(p) N1lit(U) # 0. Sincehead(p) consists of atoms
andhead(p’) = head(p), head(p’) N M’ # . Thatis,M’ = p’ and, consequently,
M' | PM. O

Lemma 4.29.Let P be a simple disjunctive logic program. A det of atoms is an
answer set of if and only ifua(M) is a justified weak repair fo(, aic(P)).
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Proof: (=) Let M be an answer set d?. That is,M is a minimal set closed under
the rules in the reducP. By Lemma 4.28{+a |a € M} U {—a |a ¢ M} is
closed undenic(P). LetU’ be a set of update actions such thata |a ¢ M} C
U C{+alae M}U{—a |a ¢ M}. We defineM’ = {a | + a € U'}. Then
M' C M.ByLemma 4.28M' = PM. SinceM is an answer set aP, M’ = M
andU/’ = U. It follows that{+a |a € M} U {—a |a ¢ M} is a minimal set closed
underaic(P) and containing—a |a ¢ M}. Sinceua(M) = {+a |a € M} and
ne(0,0 o ua(M)) = {—a |a ¢ M}, Theorem 4.7 implies thata(M) is justified
weak repair for((), aic(P)).

(<) By Theorem 4.7{+a |a € M} U{—a |a ¢ M} is a minimal set containing
{—a|a ¢ M} and closed underic(P). By Lemma 4.28)M is a model ofPM. Let

M’ C M be amodel oM. Again by Lemma 4.28+a |a € M'}U{—a |a ¢ M}

is closed undetiic(P). It follows that{+a |a € M'}U{—a|a ¢ M} ={+a|a €
M}U{—a|a ¢ M}.Thus,M’ = M and so,M is a minimal model of"*, that is,

an answer set aP. O

We now move on to results concerning upper bounds (membership) and derive the
main results of this section.

Lemma 4.30.Let n, be a finite set of normal active integrity constraints andiet
be a finite set of update actions. There is a least set of update adtibegch that
U C W andW is closed under;. Moreover, this least séty can be computed in
polynomial time in the size gfandi/.

Proof: We prove the result by demonstrating a bottom-up process comptirighe
process is similar to that applied when computing a least model of a Horn program.
We start withWW, = U, Assuming thatV; has been computed, we identify in

every active integrity constraint such thatnup(r) C lit(V;), and add the head

of each such rule to W;. We call the resulWV; 1. If W;11 = W;, we stop. Itis
straightforward to prove that the last set constructed in the process is closed under
7, containgd/, and is contained in every set that is closed ungand containg/{.
Moreover, the construction can be implemented to run in polynomial time. O

Lemma 4.31.Letn be a finite set of normal active integrity constraints andZfét
andU” be sets of update actions. The problem whether there is & sétupdate
actions such that/ is closed under; andi/’ C U C U" isin NP.

Proof: Once we nondeterministically guelds checking all the required conditions
can be implemented in polynomial time. O

Lemma 4.32.Letn be a finite set of normal active integrity constrainfsa data-
base, andE be a set of update actions. The problem whether there is & set€ of
update actions such thgto £’ = nisin NP.

Proof: Once we nondeterministically gueSschecking all the required conditions
can be implemented in polynomial time. O
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Theorem 4.33.LetZ be a database angla set of normal active integrity constraints.
Then checking if there exists a justified repair (justified weak repair, respectively) for
(Z,n) is an NP-complete problem.

Proof: By Theorem 4.15, it is enough to prove the result for justified weak repairs.

(MeEMBERSHIP) The following algorithm decides the problem: (1) Nondeterminis-
tically guess a consistent set of update actién§2) Computene(Z,Z o £). (3) If
ENne(Z,Zo&) # Breturn NO. Otherwise, compute the leastidéof update actions
that is closed undey and containsie(Z,Z o &). (4) f W =E Une(Z,Z 0 &), then
return YES. Otherwise, return NO. From an earlier observation, it follows that the
algorithm runs in polynomial time. From Theorem 4.7, it follows that the algorithm
is correct.

(HARDNESS) The problem of the existence of an answer set of a simple normal logic
programP is NP-complete. By Theorem 4.15 and Lemma 42%as an answer set

if and only if there exists a justified weak repair f{f}, aic(P)). Sinceaic(P) can

be constructed in polynomial time in the sizef®fthe result follows. O

Theorem 4.34.Let7 be a database ang a set of active integrity constraints. The
problem of the existence of a justified weak repair({fbrn) is a X4’ -complete prob-
lem.

Proof: (MEMBERSHIP) The problem can be decided by a nondeterministic polynomial-
time Turing Machine with an NP-oracle. Indeed, in the first step, one needs to
guess (nondeterministically) a consistent Sebf update actions. Settiny =
EUne(Z,To&), one needs to verify that

1. ENne(Z,Zo&)=1
2. U is closed unden

3. foreachi/’ such thate(Z,Zo &) C U’ C U andlt’ closed unden, U’ = U (by
Lemma 4.31, one call to an NP-oracle suffices)

(HARDNESS) The problem of the existence of an answer set of a simple disjunctive
logic programP is X' -complete. By Lemma 4.2% has an answer set if and only
if there exists a justified weak repair f#, aic(P)). Thus, the result follows. O

Theorem 4.35.Let7 be a database ang a set of active integrity constraints. The
problem of the existence of a justified repair {@, n) is a ¥’ -complete problem.

Proof: (MEMBERSHIP) The problem can be decided by a nondeterministics polynomial-
time Turing Machine with an NP-oracle. Indeed, in the first step, one needs to
guess (nondeterministically) a consistent Sebf update actions. Settiny =
EUne(Z,To&), one needs to verify that

1. ENne(Z,Zo&)=1
2. U is closed unden
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3. foreachi/’ such thate(Z,Z0o&) C U’ C U andit’ closed unden, U’ = U (by
Lemma 4.31, one call to an NP-oracle suffices)

4. for each&’ such that’ C £, 70 & = n (By Lemma 4.32, one call to an
NP-oracle suffices).

(HARDNESS) Since for the class of instancé aic(P)) justified weak repairs co-
incide with justified repairs (Theorem 4.14), the result follows. |

4.7 Some Implications of the Results Obtained so far

We recall that given a databageand a set) of active integrity constraints, the goal
is to replaceZ with 7’ so thatZ’ satisfiesn. The set of update actions needed to
transformZ into Z' must at least be a repair f¢E, ). However, it should also obey
preferences captured by the heads of constraings in

Let us denote byR(Z,n) (FR(Z,n), JR(Z,n), respectively) the class of repairs
(founded repairs, justified repairs, respectively){brn). The results of the chapter
imply that

JR(Z,7n"™) CJIR(Z,n) CFR(Z,n) C R(Z,n).

Thus, given an instandg, ) of the database repair problem, one might first attempt

to select a repair fofZ, n) from the most restricted set of repairs IR(Z, n™). Not

only these repairs are very strongly tied to preferences expressegdthy related
computational problems are relatively easy. The problem to decide whether this set
is empty is NP-complete. However, the cld§§Z, n™) is narrow and it may be that
JR(Z,n™) = 0.

If it is so, as the next resort one might try to repaiby selecting a repair from
JR(Z,n). This class of repairs fafZ, ) reflects the preferences capturedppince

itis broader than the previous one, the chance of success is higher. However, the com-
putational complexity grows — the existence problemX8(Z, n) is X%-complete.

If also JR(Z,n) = 0, it still may be that founded repairs exist. Moreover, decid-

ing whether a founded repair exists is not harder than the previous step. Finally, if
there are no founded repairs, one still may consider just a repair. This is not quite
satisfactory as it ignores the preferences encodegdnyd concentrates only on the
constraint enforcement. However, deciding whether a repair exists is “only” NP-
complete. Moreover, this class subsumes all other ones and so, the chance of success
at this step is the largest.

We note that if we fail to find a justified or founded repair in the process described
above, we may decide that respecting preferences encoded in active integrity con-
straints is more important than the minimality of change postulate. In such case, we
have also an option to consider justified weak repair&of)), where the existence
problem is¥)’-complete and, then founded weak repairs(fbrn,), where the exis-
tence problem is NP-complete.
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4.8 Connections between Revision Programs and Active Integrity
Constraints

In this section we relate active integrity constraints to revision programs [108], an
earlier formalism for expressing integrity constraints and prescribing preferred ways
to enforce them.

4.8.1 Revision Programming — an Overview

A revision literalis an expression of the forin(a) or out(a), wherea is an atom

(a € At). Revision literalsn(a) andout(a) aredualsof each other. It is a revision

literal, we denote its dual by”. We extend this notation to sets of revision literals.

We say that a set of revision literalsdensistentf it does not contain a pair of dual
literals (or, in our notation, &/ NUP = ).

Reuvision literals represent elementary updates one can apply to a database. We define
the result of applying aonsistensetl/ of revision literals to a databageas follows:

IToU=(ZU{alin(a) eU})\ {a|out(a) € U}.
A revision ruleis an expression of the form
r=aiV...Var<— B1,...,0m, (4.4)

wherek + m > 1, anda; and 3; are revision literals. Arevision programis a
collection of revision rules.

The set{ay,...,ax} is theheadof the rule (4.4); we denote it byead(r). Simi-

larly, the set{31, ..., O} is thebodyof the rule (4.4); we denote it byody(r). If

Vhead(r)v < 1, we callr anormalrevision rule. Moreover, ifhead(r)| = 0, we
call » arevision constraintFinally, a revision program isiormalif all its rules are
normal.

We say that a databasksatisfiesa revision literalin(a) (out(b), respectively), if

a € d (b ¢ d, respectively). A databasksatisfiesa revision rule (4.4) if there ig,

1 < j < m, such thad does not satisfy;, or if there isi, 1 < ¢ < k, such thatl
satisfiesw;. Finally, a databaseé satisfies a revision program, if d satisfies every
rule in P. We use the symbdk to denote the satisfaction relation. We often write
“is a model of” instead of “satisfies.”

For a propositional literall, if L = a, we definerl(L) = in(a). If L = nota,
we definerl(L) = out(a). Conversely, for a revision literak = in(a), we set
lit(a) = a and fora = out(a), lit(a) = not a. Finally, we extend the notation
introduced here to to sets of literals and sets of revision literals, as appropriate.

We note that every database interpretes revision literals and the corresponding propo-
sitional literals in the same way.

Proposition 4.36.Let 7 be a database. Then, for every detof revision literals,
T = Lifandonly ifZ = lit(L). m|
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It follows that with respect to this satisfaction relation and the corresponding concept
of a model, a revision rule (4.4) is simply an integrity constraint equivalent to the
propositional formula:

lit (1), ... Uit (Bm) O lit(ar), ..., lit(ay).

However, a revision rule functions not only as an integrity constraint. It also encodes
a preference on how to “fix" it, when it does not hold. Not satisfying a revision rule
means satisfying all revision literals in the bodyrofnd failing to satisfy any of

the revision literals in the head of Thus, fixing the constraint means constructing a
database that (1) does not satisfy some revision literal in the badyo{2) satisfies

at least one revision literal in the headrof

Let P, be arevision program consisting of a rolet(b) < in(a), and letZ = {a, b}

be a database. Clearly,does not satisfy?;. The progranmP; has three modelgb},

{a} andf. The first model violates the body of the rule, the second one satisfies the
head of the rule, the third one has both properties. These models can be obtained
by updatingl with ¢; = {out(a)}, U2 = {out(a)} andUs = {out(a),out(b)},
respectively.

Definition 4.37. (WEAK REVISIONS AND REVISIONS A setl/ of revision literals is
aweak revisiorof Z with respect to a revision prograi if

1.Zn{a]in(a) e U} = hand{a |out(a) € U} C i (thatis, all revision literals
in U actually change?)
2.7 ®U = P (constraint enforcement)

A setl/ of revision literals is aevisionof Z with respect to a revision prograif if

1.7 ® U E P (constraint enforcement)
2. forevenl’ CU,Z U’ = P implies thatd’ = U (minimality of change)

Due to the minimality of change requirement, revisions are weak revisions (that is,
consist of “status-changing” literals only). Furthermore, we note that thé/setsd

U- in the example considered above are revisions. Th&-sit a weak revision but

not a revision.

To narrow down the class of acceptable (weak) revisions, [108] proposed the seman-
tics of justified revisionsSpeaking informally, that semantics gives preferencdo
models of a revision rule that satisfy its head over those models that do not satisfy its
body. Thus, in our example, the datab&aé is preferred over the databage.

We will now present a formal definition of justified revisions. The original definition
from [108] dealt with the case of normal revision programs and did not explicitly
mention the minimality of change requirement (it was implicit in the definition). The
extension to disjunctive revision programs [118] also did not require the minimal-
ity of change. In analogy with the semantics of active integrity constraints, in this
chapter we call justified revisions of [108] and [118], justifigelakrevisions.
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A setlU{ of revision literals isclosedunder P if for every ruler € P, whenever
body(r) C U, thenhead(r) NU # 0. If U is closed under” and for every set
U’ C U closed undeP, we havet’ = U, then/ is aminimal closedset for P.

If a revision programP has no revision constraints, minimal closed sets exist. In
general, a revision program may have no closed sets and so, no minimal closed sets,
either (cf. the program consisting of the following two rules:in(a) andin(a) <).

By itself, a minimal closed set for a revision progrds not sufficient to determine

the change that needs to be applied to a database to ensure it sRtisfoesnstance,

the programP; = {out(b) — in(a)} has exactly one minimal closed set, namiély

But applying it to{a, b} does not result in any change. Of course, it is to be expected.
When determining changes to be made we must take into account the initial and the
revised databases.

LetZ be a database aritla result of revisin@ . We define thénertia setwith respect
toZ andR, denoted/ (Z, R), by setting

I(Z,R)={in(a) la cinR}U{out(a) |a ¢ iUR}.

In other words,J(Z,R) is the set of all revision literals that have no effect when
revisingZ into R. Thus, when using® to justify a transformation fronT to R, we
may assume all revision literals I{Z, R ).

Definition 4.38. (JUSTIFIED UPDATES AND JUSTIFIED WEAK REVISION}

Let P be a revision program and I&t be a database. A sét of revision literals is a
P-justified updatdor Z if

1. U is consistent, and
2.U is a minimal set closed undét U I(Z,Z & U).

If U is a P-justified update fof, theni/ \ I(Z,Z & U) is a P-justified weak revision
forZ. |

While not self-evident from the definition, justified weak updates and justified weak
revisions, when applied to an initial database yield a database satisfying the program
(cf. [108, 118]).

For normal revision programs, justified weak revisions are minimal [108]. However,
in general, the condition (2) in Definition 4.38 is insufficient to enforce the minimal-
ity of P-justifed weak revisions. Le®P, = {out(a) Vin(a) < } and letZ = (). One

can check that botfi; = () and&, = {in(a)} are P-justified weak revisions faE.

Definition 4.39. (JUSTIFIED REVISIONS)

Let P be a revision program and lét be a database. &-justified weak revisio&
for 7 is a P-justified revisionfor Z if for every se’ C £ such thatZ ¢ £’ = P,
& =E¢. O

As we will see, justified (weak) revisions correspond to justified (weak) repairs. We
will now introduce a new semantics for revision programs motivated by intuitions
behind the semantics of founded repairs of active integrity constraints.
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Definition 4.40. (FOUNDED (WEAK) REVISIONS) LetZ be a databaseP a revision
program and, and a consistent set of revision literals.

1. A revision literala is P-foundedwith respect toZ and £ if there isr € P
such thate € head(r), Z & € = body(r), andZ & & = B2, for everys ¢
head(r) \ {a}.

2. The set is P-foundedwith respect td if every element of is P-founded with
respect tdZ and €.

3. £ is a P-founded (weak) revisiofor 7 if £ is a (weak) revision df with respect
to P and¢ is P-foundedwith respect tZ. m|

There are examples showing that, in general, (weak) revisions are not founded (weak)
revisions, and founded weak revisions are not founded revisions.

Example 4.41Let 7 = () and P be the revision program containing the following
revision rules:

r1 = 1in(c) — out(d)

ro = in(b) < in(a)

rg =in(a) < in(b)

The set{in(d)} is a revision off with respect taP. Therefore it is a weak revision of
7 with respect taP. However it is not a8P-founded weak revision faf. Therefore, it
is not aP-founded revision fof . The set{in(c),in(a),in(b)} is a P-founded weak
revision forZ but not aP-founded revision fof. O

Proposition 4.42.Let P be a revision program and leéf be a database. If is a
P-justified weak revision df, then it is aP-founded weak revision df.

Proof: We know thatZ @ £ = P (cf. [108, 118]) that i<£ is a weak revision of
with respect toP. Therefore, we need to prove théais P-founded with respect to
Z. As ¢ is a P-justified weak revision of there exists &-justified updateé/ of 7
such tha = U \ I(Z,Z & U). We know that/ is consistent and is a minimal set
closed unde? U I(Z,Z & U). Leta € € C U. AsU is minimal, i/’ = U \ {a}
is not closed undeP U I(Z,Z @ U). Asa & I(Z,Z & U) there must be a revision
ruler € P such thatody(r) C U" andhead(r) NU’ = 0. AsU’ C U we have that
body(r) C U. Therefore, a#f is closed under, head(r) NU = {«a}. It follows that
IToU=T®E k= body(r) and for eacts € head(r) \ {a} we have thapp & U.
Therefores ¢ £ andi & I(Z,Z @ U). We have two cases: eith&r= 5 orZ |~ 5.
In the first case a8 ¢ I1(Z,Z @ U) thenB? ¢ £ while in the second case @sZ £
we have thaf @ & [~ 3. In each casg& & € = 3P. ]

Proposition 4.43.Let P be a revision program and lef be a database. If is a
P-justified revision ofZ, then it is aP-founded revision of .

Proof: We know that€ is a P-justified weak revision of . Therefore, it is a a weak
revision ofZ with respect taP. Moreover a< is a P-justified revision off for every
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seté’ C EsuchthatZ ® &' = P, &' = £. Thusé is a revision ofZ with respect
to P. As by Proposition 4.42 we have thétis a P-founded weak revision df it
follows that€ is a P-founded revision of. O

The converse implications do not hold in general. Pet {in(b) < in(a), in(b) «—
out(a), in(a) «+ in(b)} and letZ = (. One can check th& = {in(a),in(b)} is a
P-founded revision of (and so, aP-founded weak revision df, too). However, it
is not aP-justified weak revision of (and so, also not -justified revision off).

To summarize our discussion, revision programs can be assigned the semantics of
(weak) revisions, justified (weak) revisions and founded (weak) revisions. The sim-
ilarities to active integrity constraints are striking. We will establish the precise con-
nection in the next two sections.

4.8.2 Proper Revision Programs

To relate revision programs and active integrity constraints, we first note that we can
restrict the syntax of revision programs without affecting their expressivity.

A proper revision ruleis a revision rule that satisfies the following condition: the
literal in the head of the rule is not the dual of any literal in the body of the rule.

Let P be a revision program with constraints andrigtndr, be revision rules
aVaiV...Va, —aP,p,...,0m

and
D
a1 V...Vag «—« 7ﬁ1;~~-7ﬂm7

respectively (that is;, differs fromry in that it dropsa from the head).

Lemma 4.44.Let 7 be a database. Under the notation introduced above, a set of
revision literals is a (weak) revision @ with respect taP U {ry } (P U {r; }-founded
(weak) revisionP U {r; }-justified (weak) revision df, respectively) if and only if

U is a (weak) revision of with respect toP U {ry}) (P U {ry}-founded (weak)
revision, P U {rs }-justified (weak) revision cf, respectively).

Proof: The claim is evident for the case of weak revisions and revisions. The case
of justified (weak) revisions follows from the observation that a consisteidt sét
revision literals is a closed set fétu {r1 } UI(Z,Z & U) if and only if/{ is a closed
setforPU{r} UI(Z,Z®U).

For the case of founded (weak) revisions, it is enough to prove thataafetvision
literals is founded with respect (&, P U {r1}) if and only if / is founded with
respect toZ, P U {r2}). Let 8 € U be founded with respect &, P U {r,}) and
U, and letr € P U {ry} be the rule providing support . If » # r1, r € P and so,
@ is founded with respect &, P U {ry}) andi{. Thus, let us assume that= r;.
If B =a,thena € U, Tol | a.SinceZ oU [ body(r1), ZolU E oP, a
contradiction. Thusj # «. It is easy to see that in such casesupportss (given
U). Thus,g is founded with respect tZ, P U {r2}) in this case, too.
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Conversely, let3 € U be founded with respect tZ, P U {r,}) andl{, and let
r € P U {ry} be the rule providing support te@. As before, ifr # r, the claim
follows. If r # ro, thens # «. Sincer, supports3, one can check that supports,
3, too. 0O

Theorem 4.45.Let P be a revision program. There is a proper revision progrén
such that for every database (weak) revisions of with respect taP (P-founded
(weak) revisionsP-justified (weak) revisions @f, respectively) coincide with (weak)
revisions ofZ with respect toP’ (P’-founded (weak) revisiong}’-justified (weak)
revisions ofZ, respectively).

Proof: Lemma 4.44 implies that the prografti obtained fromP by repeated appli-
cation of the process decribed above (replacement of rules of therfomith the
corresponding rules of the form) has the required property. O

4.8.3 Revision Programs as Sets of Active Integrity Constraints
Definition 4.46. Given a revision rule- of the form

a1 V...Vag— B1,...0m

we denote byl 7C(r) the active integrity constraint
lit(By), ... lit(Bm), lit(cn)”, ... lit(ca)® D ua(an) V...V ua(oy). 0

We note that ifr is a revision constrainti{ = 0), AIC(r) is simply an integrity
constraint. The operato/C(-) is extended to revision programs in the standard
way. It is easy to show that for each databdsé = P if and only ifd = AIC(P).

The following lemma establishes a direct connection between the concepts of closure
under active integrity constraints and revision programs.

Theorem 4.47.Let P be a proper revision program. A sétof revision literals is
a weak revision off with respect toP if and only if ua(€) is a weak repair for
(Z,AIC(P)).

Proof: By the definition £ is a weak revision of with respect taP if and only if

1. Zn{alin(a) € £} =0,{a|out(a) € £} CZ;and
2.T®EEP.

Similarly, ua(€) is a weak repair fofZ, AIC(P)) if and only if
LZIn{a|l+acu(&)}=0,{a| —a€cua(€)} CZ;and
2. Towa(€) E AIC(P).

By our earlier comments, for every databd38, DB |= P if and only if DB |=
AIC(P). SinceZ @ £ =T o ua(&), the assertion follows. O
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Theorem 4.48.Let P be a proper revision program. A set of revision liter&lss a
revision ofZ if and only ifua(€) is a repair for(Z, AIC(P)).

Proof: By Theorem 4.47, we have thétis a weak revision of if and only if ua(£)
is a weak repair fofZ, AIC(P)). Moreover£ is such that for each’ C £ the fact
Ia& = Pimpliesé’ = £ifand only if ua(€) is such that for eacha(E’) C ua(€)
the factZ o ua(&’) | P (thatisZ o ua(&’) = AIC(P)) impliesua(&’) = ua(€).
O

Lemma 4.49.Letr be a proper revision rule. A sét of revision literals is closed
under P if and only ifua(€) is closed under IC(r).

Proof: First, we observe that asis proper,nup(AIC(r)) = lit(body(r)). More-
overhead(AIC(r)) = ua(head(r)). We know that is closed under if and only if
body(r) € € or head(r) N E # (). This holds if and only ifit(body(r)) € lit(€) =
lit(ua(&)) or ua(head(r)) N ua(€) # 0, which is equivalent towup(AIC(r)) €
lit(ua(&)) or head(AIC(r)) N wa(E) # (. This, however, is the definition of
AIC(r) closed undena(&)). |

Corollary 4.50. Let P be a proper revision program. A sétof revision literals is
a minimal set closed undeP if and only if ua(€) is a minimal set closed under
AIC(r).

Proof: Straightforward from Lemma 4.49. m|

Theorem 4.51.Let P be a proper revision program. A set of revision literglss
a P-justified weak revision df if and only if ua(€) is a justified weak repair for
(I,AIC(P)).

Proof: (=) The setf is a P-justified revision ofZ and so it is aP-justified weak
revision of Z. Therefore, there exists B-justified weak update of, sayl, s.t.
E=U\I(Z,TaU).By definition,{ is consistent and it is a minimal set containing
I(Z,ZaU) and closed undeP. It follows that the action seta(l{) is consistent and,
by Corollary 4.50, it is a minimal set containing(I(Z,Z & U)) and closed under
AIC(P). Now we observe thata(I(Z,Z & U)) = ne(Z,Z o ua(Uf)). Thus,ua(U)
is a justified action set fofZ, AIC'(P)) andua(U) \ ne(Z,Z o ua(Ud)) = ua(€) is
a justified weak repair fofZ, AIC(P)).

(<) The setua(€) is a justified repair fokZ, AIC(P)) and so it is a justified weak
repair for(Z, AIC(P)). Thus, there exists a justified action setdr AIC(P)), say
U,s.tua(€) =U\ne(Z,Zol). The action self is consistent, containse(Z, Zolf)
and it is closed undeAIC(P). It follows that the set/(i/) is consistent and, by
Corollary 4.50, it is a minimal set containing(ne(Z,Z o U{)) and closed undeP.
Now we observe that (ne(Z,Zold)) = I(Z,Z®rl(U)). Thus-I(U) is a P-justified
weak update fof andri(U) \ I(Z,Z & rl(U)) = £ is a P-justified weak revision
for Z. O

Theorem 4.52.Let P be a proper revision program. A set of revision liter&lss a
P-justified revision of if and only ifua(€) is a justified repair foZ, AIC(P)).
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Proof: (=) The setf is a P-justified revision ofZ and so it is aP-justified weak
revision ofZ. By Theorem 4.51ua(€) is a justified weak repair fofZ, AIC(P)).
As & is a P-justified revision ofZ, for every sett’ C £ such thatZ ¢ &’ = P,
E'=E. AST®E =17Toua(') and for each databadeB, DB = P if and only
if DB = AIC(P), we have that for eacha(£’) C wa(€) such thatZ o ua(&’) =
AIC(P), ua(&") = ua(€) thatisua(€) is a justified repair foZ, AIC(P)).

(<) The setua(€) is ajustified repair fokZ, AIC(P)) and so it is a justified weak
repair for(Z, AIC(P)). By Theorem 4.51¢ is a P-justified weak revision fof.
Following a reasoning similar to that of pget-), it can be proved the minimality of
£ i.e. thatf is a P-justified revision forZ. O

The following theorem establishes the correspondence between founded (weak) re-
visions and founded (weak) repairs.

Theorem 4.53.Let P be a proper revision program. A set of revision liter&lss a
P-founded (weak) revision & if and only ifua(€) is a founded (weak) repair for
(Z,AIC(P)).

Proof: (=) Let £ be aP-founded (weak) revision df. By Theorem 4.47ya(€) is
a (weak) repair foZ, AIC(P)). Therefore we have to show that(€) is founded
with respect toZ, AIC(P)). Let us consider an arbitrary elementwaf(&). It is of
the formua(«), for some revision literak € €.

Since¢ is P-founded with respect t@, there exists- € P such thatZ @ £ =
body(r), andZ & £ = P, for everyy € head(r) different froma. Let p be the
corresponding active integrity constraint &VC'(P), that is,p = AIC(r). Since
r is proper,lit(body(r)) = nup(p). Thus,Z o ua(€) = nup(p). Moreover, since
head(p) = ua(head(r)), for everys € head(p) other thanua (o), Z o ua(E) | §7.

Thus, ua(«a) is founded with respect t¢Z, AIC(P)) andua(€) and so,ua(€) is
founded with respect t(Z, AIC(P)).

(<) This implication can be proved by ia similar argument. We omit the details.

The results of this section show that proper revision programs can be interpreted as
sets of active integrity constraints so that the corresponding semantics match. How-
ever, it is easy to see that the mappiAgC(-) is a one-to-one and onto mapping
between the collection of revision programs and the collections of sets of active in-
tegrity constraints. Thus, also conversely, sets of active integrity constraints can be
interpreted as revision programs.

4.8.4 Shifting Theorem for Revision Programs

The concept of of “shifting” presented in Section 4.5 can be reformulated for revi-
sion programming. Many results about shifting properties of revision programs are
presented in [109]. In this section we derive these and further results indirectly from
the shifting properties of active integrity constraints using the equivalence results
presented in Section 5.12. The operafpy(-) presented in Section 4.5 can be ex-

tended to revision literals, revision rules and revion programs. Its formal definition
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and many properties are presented in [109]. Here we present further properties and
use them to establish the shifting theorem for revision programs.

Proposition 4.54.LetZ andV be databaseg; a set of revision literals(z a revision
program andP a proper revision program. Thefy, (prop(G)) = prop(Tw(Q)),
Tw(ua(&)) = ua(Tw(€)) andTyy (AIC(P)) = aic(Tw(P)).

Proof. Straightforward from the definitions @fop(-), Ty (-), ua(-) andAIC(-). O

Theorem 4.55.(SHIFTING THEOREM FOR REVISION PROGRAM§Let Z and W
be databases. For every revision prograimand every consistent sétof revision
literals, we have

1. £ is a (weak) revision fof with respect taG if and only if 73y (€) is a (weak)
revision forZ with respect tdly (G)

2. £ is aG-justified (weak) revision fdf if and only ifT)y (£) is aTyy, (G)-justified
(weak) revision fofZ

3. £ is aG-founded (weak) revision fdF if and only if Ty, (£) is aT\y (G)-founded
(weak) revision fofZ

Proof: Let P = prop(G) (that is the “properized” version af). The following
properties are equivalent:

1. £ is a (weak) revision foZ with respect ta& (respectivelyG-justified (weak)
revision forZ, G-founded (weak) revision fdr)

2. £ is a (weak) revision fof with respect taP (respectively,P-justified (weak)
revision forZ, P-founded (weak) revision fdr)

3. wa(€) is a (weak) repair (respectively, justified (weak) repair, founded (weak)
repair) for(Z, AIC(P))

4. Tyw(ua(€)) is a (weak) repair (respectively, justified (weak) repair, founded
(weak) repair) fokZ ~ W, Ty (AIC(P)))

5. Tw(€) is a (weak) revision foZ ~ W with respect tdl}y (P) (respectively,
T\ (P)-justified (weak) revision fo = W, Ty, (P)-founded (weak) revision
forZ = W)

6. Tw (&) is a (weak) revision fofZ + W with respect tdl)y (G) (respectively,
Tw (G)-justified (weak) revision fof ~ W, T)y(G)-founded (weak) revision
forZ - W).

Indeed, (1) and (2) are quivalent by Theorem 4.45, (2) and (3) are equivalent by
Theorems 4.47 - 4.53, (3) and (4) — by Theorems 4.24 and 4.26. Next, (4) and (5)
are equivalent by Theorems 4.47 - 4.53, as well as Proposition 4.54, and (5) and (6)
— by Theorem 4.45 and Propositon 4.54. Thus, the assertion follows. m|
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4.9 Computation and Complexity Results for Revision
Programming

Thanks to the equivalence properties reported in Section 5.12 we can derive the re-
sults about computation and complexity for revision programming from the corre-
sponding results for active integrity constraints presented in Section 4.6.

Let p be a logic programming rule, say
p=ayV...Va, — S

We define
rp(p) = ri(ar) V...V ri(ag) < rl(5).

We extend the operatop(-) to logic programs in a standard way. We observe that
if a logic programP is simple then the corresponding revision programP) is
proper.

Lemma 4.56.Let P be a simple disjunctive logic program. A get of atoms is an
answer set of if and only if ri(M) is a rp(P)-justified weak revision fof.

Proof. Straightforward from Lemma 4.29 and Theorem 4.51. m|
Theorem 4.57.LetZ be a database an#® a normal proper revision program. Then
checking if there exists B-justified revision P-justified weak revision, respectively)
for Z is an NP-complete problem.

Proof. Straightforward from Theorems 4.33, 4.51 and 4.52. |

Theorem 4.58.LetZ be a database ang& a proper revision program. Then checking
if there exists aP-justified revision P-justified weak revision, respectively) foris
a XF’-complete problem.

Proof. Straightforward from Theorems 4.34, 4.35, 4.51 and 4.52. |
Theorem 4.59.Let7 be a database ang&t a proper revision program. Then checking
if there exists aP-founded revision P-founded weak revision, respectively) fors

a Xr-complete (NP-complete, respectively) problem.

Proof. Straightforward from complexity results in [29] and Theorem 4.53. O






5

View Updating through Active Integrity Constraints

Summary. This chapter presents a declarative semantics for view updating in the presence
of existentially derived predicates and non-flat integrity constraints, that translates an update
request against a view into an update of the underlying database. The novelty of the framework
consists in the definition of a formal declarative semantics for view updating that allows to
identify, among the set of all possible repairs, the subsetipported repairsthat is repairs

whose actions are validated by the database or by other updates. Given a deductive database
and an update request, the computation of supported repairs is performed by rewriting the
update request and the deductive database in the form of active integrity constraints. The
proposed approach will be shown to prevent the anomalies previous approaches suffer from,
limiting the wide range of translations to those that are justified by the deductive database.

5.1 Introduction

Current database systems are often large and complex and the case that a user or an
application has full access to the entire database is rare. It is more likely to occur that
access is granted via windows of the entire systems, caitats A view, usually

virtual, is defined by giving a query on the whole database and at any point the con-
tent of the view is just the outcome of this query. Applications query a base relation

or a view in the same way. Therefore, querying a view does not represent a seri-
ous conceptual problem. In contrast, the issugiedv updatings problematic and

of paramount importance: it refers to the problem of translating an update request
against a view into an update request involving the base of data. The basic problem
underlying view updating is that a translation from a view update into corresponding
updates over the extensional database does not always exist or several translations
could be performed in order to satisfy the update request. The complexity of the
view update problem arises even in the case of a simple update operation, such as
inserting a tuple in a view. Current commercial DBMS, e.g. Access, MySql, Oracle,
SQLServer accept an update against a view, and propagate it to the stored relation,
only in the simple case in which the view is defined from one database relation, and
reject any update request against a view if this is defined by joining more than one re-
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lation. This rigid behavior ensures the acceptance of an update request if and only if a
unigue translation exists and solves, albeit drastically, the ambiguity of more transla-
tions. This chapter focuses on view updating in the presenegistentially derived
predicate$ andnon-flat integrity constraint$ and proposes a logic framework that
translates a view updating into an update of the underlying database. Specifically,
given a deductive database consisting of a set of base facts, a set of integrity con-
straints and a set of deductive rules and given an update request, consisting of a set
of insert and delete operations of base and derived facts, it allows us to determine
how the update request can be translated into a minimal set of updates of the stored
base facts, while ensuring integrity constraint maintenance and performing “smaller
change”. The benefits of this proposal, evident in the presence of existential derived
predicates, will be intuitively introduced by a few examples.

Example 5.1Consider the update request’(a) asking for thensertion of the fact
P(a) and the deductive database

Q(a,b). r: P(X)—QX,)Y),R(X,Y,Z)

The request, not allowed by commercial DBMS, could be translated, as proposed
in [113, 136], in the translationg+R(a, b, val;) }, for each possible value efl;,

and {+Q(a, val;), +R(a, val;, val;)} for each possible value afal; and each
possible value obal; # b. However, this seems us to be a “bigger change” to the
database that is not strictly necessary for performing the desired update. The solution,
proposed in this chapter, retrieves in this case, the unique trans{atiBfa, b, L)}.

The existential variableZ is fixed to the valuel (the NULL value), that suffices,

in the absence of any additional information specifyiigto perform the desired

view update. Intuitively@(a, b), thought of as a ‘trustable’ fact, as it belongs to the
extensional database, is used to ‘justify’ the construction of the translation. O

This chapter is a contribution to support view updating, consisting of insertion and
deletion operations in deductive database, preventing the anomalies previous ap-
proaches suffer from. In fact, as shown before, existing approaches satisfy the update
request by generating as many translations as the different values that can be assigned
to the existential variables, whereas, intuitively, the approach proposed in this chap-
ter, that could be definechutiously libera) limits the wide range of translations to
those that are “supported” or validated by the deductive database.

Example 5.2Consider the deductive database, obtained by extending the Exam-
ple 5.1:

1 An existential derived predicate is defined by a deductive rule containing variables in the
body that do not occur in the head of the rule. Note that this situation is likely to occur in
many real cases, e.g the simple case of a database view defined as a projection of a base
relation.

2 A flat integrity constraint is defined only in terms of base predicates, i.e. its definition does
not contain view.
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Q(a,b). P(X) — Q(X,Y),R(X,Y,2)
S(a,b,c). R(X,Y,Z) — S(X,Y,2),T(X,Y, Z)

and the update requestP(a). In this case the unique repair B = {+7T(a,b,

¢)}. The proposed strategy implements a process that takes advantage of the initial
knowledge, i.e. the set of extensional facts and the set of intensional facts derived
through views of the deductive database. In this specific case, it recognizes that due
to the insertion of'(a, b, ¢) the intensional facR(a, b, ¢) can be derived and, conse-
quently, the update request asking for the insertion of thef4e} can be justified.

O

Previous discussion of still very simple cases introduces the serious conceptual
problem underlying view update and justifies the flurry of research addressing this
topic [14, 15, 21, 33,43, 45,55-57,62, 77,78, 85,112,113, 133, 136, 137]. However,
the majority of these proposals work for restricted kinds of constraints, i.e flat-
integrity constraints and in addition do not allow existential derived predicates. A
detailed comparison with the few approaches, facing the same problem will be pro-
vided in Section 5.5.

5.1.1 Contribution

The novelty of the framework proposed here, consists in the definition of a formal
declarative semantics for view updating that allows the identification, among the
set of all possible repairs, of the subsetsapported repairsi.e. the repairs whose
actions are “supported” by the database or by other updates. Given a deductive da-
tabase and an update request, the computation of supported repairs is performed by
rewriting the update request and the deductive database in the form of active in-
tegrity constraints. This chapter, that proposes a declarative semantics for view up-
dating in the presence of existentially derived predicates and non-flat integrity con-
straints, avoids the anomaly previous approaches suffer from, that is the generation
of as many translations as the different values that can be assigned to the existential
variables. Specifically, the proposed repair semantics, to the best of our knowledge,
considers, systematically and for the first time, the possible introduction of null val-
ues in the form they are present and treated in commercial DBMS: null values of the
same type are used to restore consistency in the presence of desired view update if no
additional (supported) information is available. Intuitively, the pragmatic solution en-
capsulated in this strategy limits the wide range of repairs, to those that are validated
by the deductive database and recommends our approach be effectively implemented
in commercial DBMS. Finally, the chapter proves the soundness and completeness
of the proposal and presents some results on the complexity of computing supported
repairs.
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5.1.2 Plan of the Chapter

The remainder of this chapter is organized as follows. Section 5.2 formally intro-
duces the problem of view updating and formalizes the proposal of a declarative
semantics for view updating in deductive databases. Section 5.3 shows how “sup-
ported” repairs can be computed by rewriting the deductive database and the update
request into active integrity constraints. Section 5.4 provides results on the complex-
ity of computing supported repairs and introduces the main results of soundness and
completeness. Section 5.5 surveys the related works, and provides some comparisons
with the proposed approach.

5.2 A Declarative Semantics for View Updating

We briefly review the basic concept of deductive database [1, 105].

Definition 5.3. A deductive databas# is a tuple(Z, P, n), whereT is a databas&?
is a locally stratified logic program representing a set of viewsrgaset of integrity
constraints O

Given the deductive databage= (Z, P, n), P is the unique stable model 3fUZ
3. It represents thenowledgestored by.7, that is the facts belonging tband those
derived throughP. 7 is consistentf Pz = n, that is if all integrity constraints i
are satisfied bPz, otherwise it isnconsistent

Predicate symbols that occur in the head of a viewWiare calledderived predi-
catesand are denoted a3 Pred(J). Predicate symbols that appearZirare base
predicatesand are denoted a8 Pred(J). Moreover,Pred(J) = BPred(J) U
DPred(J). Abase fact is also calld&DB fact and a derived fact is also callédB

fact Given a set of update actiotsand a deductive databage we define the sets
Ugpp = {£a(t) | £a(t) €U N a € BPred(J)}, Urps = {£a(t) | £a(t) €

U N a€ DPred(J)}.

In order to allow the expression of each possible condition, the proposed framework
allows the management of non-flat integrity constraints (that is integrity constraints
also defined over derived predicates).

Now we formally introduces the problem of view updating and formalizes the pro-
posal of a declarative semantics for insertion and deletion operations in deductive
databasé's

Definition 5.4. REQUEST SETA request sef is a set of ground literals. Moreover,
S™ = {a(t) | a(t) € S} andS°"* = {a(t) | not a(t) € S}. O

3 Observe that a® is locally stratified, it admits just one stable models
4 The replacement of a fact is not directly managed. Obviously, it can be obtained by applying
first a delete request and then an insert request.
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Therefore S denotes the set of atoms that is requested tousewhereasS"’ de-

notes the set of atoms that is requested tfals® A request sef against a deductive
database7 is, intuitively, accomplished by performing a minimal set of insert and
delete operations of the stored base facts and in all the consequent update operations
of the derived predicates.

Definition 5.5. KNOWLEDGE UPDATE Given a deductive databagg aknowledge
updatel{ is a consistent set of ground update atoms suchRiab U = Provpp s
O

Previous definition states that updates have to be consistently derived starting from
updates over the extensional part of the deductive database. In other words the effect
of applying a set of ground update atoms both extensional and intenstonali/,

is consistent if it can be simulated by just considering its extensional patjopg,

and then deducing all the consequences Y& 7o/, 1 -

Definition 5.6. KNOWLEDGE REPAIR Given a deductive databageéand a request
setS, a knowledge upda®@ for 7 is aknowledge repaiwith respect taS if:

1. it guarantees consistencPz o U = ;
2. it confirms the request set

e ProlUNS" =S8

o ProldN S =

3.it is minimat there is no knowledge updal&’ C U/ such thatWy guarantees
consistency and confirms the request set.

The set of knowledge repairs fof with respect taS is denoted aKR.(7,S). O

Definition 5.7. REPAIR. Let U be a knowledge repair for a deductive databgse
with respect to a request st The sel/gpp is arepair for 7 with respect taS.
The set of repairs fof7 with respect taS is denoted aR.(7, S). |

Previous definition retrieves all the repairs or translations that satisfy the update re-
quest, ensuring minimality and constraints satisfaction. Therefore, the translations
provided by the approaches in [113, 136] for the Example 5.1 are repairs. However,
as also stated in introduction we do not consider satisfactory this solution as in the
presence of existentially derived predicates the knowledge repair may contain insert
operations not supported by the database. In order to provide the definition of sup-
ported atom, that intuitively states for an atom validated by the initial knowledge or
by other supported update atoms, we refer to a knowledge @@aid tol/* C U™,
wherel/® states for the set of update atoms for which a certificate of quality has
already been provided, i.e. the subset of known supported atoms

® The recursive construction of this set will be formally provided in Definition 5.9.
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Definition 5.8. SUPPORTED ATOM Let 7 = (Z,P,n) be a deductive database and
U* a set of facts. Leti(tx) be a ground instance of an atomiX) and~(ty) a
ground instance of a conjunction of literal§Y"). We denote withl = X NY the
common variables.e. variables appearing inand~y and withA = X — Y thefree
variablesof a. (a(ta,ta),a(A, A)) is supportedby (v(ty),v(Y)) with respect to
(T, U5 if:

1. Free variables are instantiated to null
ta =1 and

2. Common variables are instantiated by the initial knowledge or by ato¥'in
~(Y") contains a conjunction(A, Z) of positive literals s.t. the corresponding
ground conjunction ir(ty ) is in the formn(t4,tz) and foreacd in n(t4,t2)

e AcPpgor
o AcU”. O

Therefore, intuitively, asupported knowledge repais a knowledge repair in which
each insert update atom is supported @i/&. = ¢/°). A formal definition of this
concept requires an in depth analysis of the structure of a deductive database.

Definition 5.9. SUPPORTED KNOWLEDGE REPAIRGIiven a deductive databage=
(Z,P,n) and a request s&, a knowledge repaif is asupported knowledge repair
if U+ = U, whereif? is defined as follow’s a facta(tx) € U7 iff a(tx) € UT
anda(tx) satisfies at least one of the following conditions:

1.a(tx) € 8™
2.3r € P of the forma(X) «— (V) and
3 g € ground(r) of the form a(tx) < B(ty) such that
e Prold = f(ty)and
o (a(tx),a(X)) is supported by3(ty), 3(Y)) with respect to 7, U*)
3.3r € Poftheform b(H) « a(X),5(Y) and
g € ground(r) of the formb(ty) «— a(tx), 3(ty) such that
e Prold = pB(ty)and
e b(ty) €U and
e (a(tx),a(X)) is supported by(b(ty) A B(ty),b(H) A 5(Y)) with respect
to (J,U")
4.3 r € P ofthe form b(H) «— not a(X), 5(Y") and
3 g € ground(r) of the formb(ty) « not a(tx), 3(ty) such that
e Prol =pP(ty)and
e Prold Eb(ty)and
o (a(tx),a(X)) is supported by3(ty), 3(Y)) with respect to 7, U*)

5 Observe that the definition 8° is recursive.



5.2 A Declarative Semantics for View Updating 99

5.3 r € n of the formnot o(X), 8(Y) D and
3 g € ground(r) of the formnot a(tx), 3(ty) D such that

e Prol = B(ty)and
e (a(tx),a(X)) is supported by 3(ty), 8(Y)) with respect ta 7, U*).

The set of supported knowledge repairs {@r with respect taS is denoted as
JKR(J, S). O

Example 5.10Consider the Example 5.2 and the knowledge refaie {+P(a),
+T(a,b, c),+R(a,b,c)}. The set/* is recursively constructed as followB(a) €

U® as it belongs taS™ (item 1). R(a,b,c) € U° as there is a ground instance
R(a,b,c) — S(a,b,c),T(a,b,c) st.Prold E S(a,b,c),T(a,b,c) and(R(a, b, c),
R(X,Y, Z)) is supported byS(a,b,c) AT (a,b,c), S(X,Y,Z) NT(X,Y,Z)) as
S(a,b,c) € Ppp (item 2). Finally, the same ground instance is used to validate
the justification ofT'(a,b,c) (item 3). Therefore, by recursively applying Defini-
tion 5.9 we obtair/* = {P(a), R(a,b,c),T(a,b,c)}. AsU® = U™, it follows
that/ is a supported knowledge repair. Suppose now we add the integrity con-
straintT'(X,Y, Z),not V(X, Y) D. In this case, in order to guarantee integrity
constraint maintenance the update operatidri(a,b) has to be performed, and
U has to be extended by adding/ (a,b). V(a,b) € U as there is a ground in-
stancel (a, b, c),not V(a,b) D s.t. ProlU = T(a,b,c) and(V(a,b), V(X,Y))

is supported by(T(a,b,¢), T(X,Y, Z)) asT(a,b,c) € U° (item 5). ThusYf =
{+P(a),+R(a,b, ¢),+T(a,b,c),+V(a,b)} is a supported knowledge repair. The
knowledge repaiWV = {+P(a), +Q(a,val;), +R(a,val;,val;), +S(a, val;, val;),
+T(a,val;, val;)}, whereval; andval; are generic constants, is not a supported
knowledge repair. |

Definition 5.11. SUPPORTEDREPAIR. Letl/ be a supported knowledge repair for a
deductive databasg with respect to a request s&t The sel/gpp is asupported
repair for 7 with respect taS. The set of supported repairs fgrwith respect taS

is denoted adR.(J, S). |

Therefore, the concept of supported repair refines the concept of repair. In fact, note
that the translations provided by the approaches in [113, 136] for the Example 5.1
albeit are repairs, are not supported repairs.

Given the deductive databasés= (Z, P,n) andJ’ = (Z, P',n’), J' is astandard
versionof 7 if:

e 7P’ is obtained by rewriting each € P into a set ofstandard view®f the fol-
lowing four types?’

7 Afirst-order query can be expressed, without loss of generality, by using selection, projec-
tion, join and negation [1]. As an example the deductive rule reported in Example 5.1 can
be rewritten into:P’ (X, Y, Z) — Q(X,Y), R(X,Y, Z) and P(X) « P'(X,Y, Z).
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PROJECTION VIEW:  a(X) « b(X,Y)

NEGATION VIEW : a(X) — b(X),not ¢(X)

JOIN VIEW : a(X,Y,Z) — b(X,Y),c(Y,Z)
SELECTION VIEW : a(X) — b(X), p(X)

whereX, Y andZ are lists of variables or constants anés a built-in predicate
used to evaluate a condition ovEr.

e 1/ is obtained, by rewriting eacfe € n into a astandard integrity constraindf
the forma(X) D and a set of standard views.

Proposition 5.12.Given the deductive databas@sand.7’, where7' is a standard
version of 7, and a request s&, for each/’ € JKR(J', S),U € JKR(J, S),
whereld =U' — {xa(t) | £a(t) eU' A a & Pred(J)}.

Proof sketch.

It is possible to prove the proposition showing that by collapsing two generic views
of the standard deductive databage= (Z,P’,n’) we obtain a (non standard) de-
ductive databasg” = (Z,P",n") such that the sét”” = U’ — {£a(t) | £a(t) €

U' N a ¢ Pred(J")} is a supported knowledge repair fof’ with respect taS.
Iteratively, an analogous reasoning can be applied, so that finally obtajhiagd

the corresponding set of update atdrs.t.i/ ™ is supported. m|

As a consequence of the above result, in the rest of this chapter we just consider
deductive databases in standard version.

5.3 Rewriting into Active Integrity Constraints

The tool for performing view updating based on the semantics presented in Section
5.2, consists in the transformation of a deductive database and a request set into a set
of AICs. The basic idea is to extract from a deductive dataiyaaad a request s&,

a set of AICs whose purpose is to react to the updates undedyibg modifyingZ

in order to justify the updated knowledge. More formally, our goal is to find a set of
AICs, Rew(T, S), such that theupported knowledge repairs gfwith respect tes,
JKR(J,S), can be derived from the setf@funded repairs of the original knowledge
Ppp with respect to these active integrity constrajiR (Pz, Rew(J,S)).

In the following, we will use the special constant’‘(placeholde}. Intuitively, it

states for a generic value, i.e. a constant value oxthea value (L). Given the lists

of terms (variables or constant®) = Xq,...,X,, andY = Y7,...,Y,,

1. X # _ is shorthand fof\"_, (X, # _)

8 As an example the foreign key constraf(X), (3Y) Q(X,Y) D can be rewritten into
the standard constraifit (X)) O the projection viewP(X) — Q(X,Y) and the negation
viewV(X) «— R(X),not P(X).
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2. X 2Y (X is notmore definedhanY’) is shorthand for
ANi_ (X; =Y;)V(X; = A Y; 1S NOT NULL) V (X; IS NULL A Y; IS NULL))
3. X <Y (X isless definedhanY’) is shorthand foX <Y AY #£ _

As an example(2,_,_ 1) < (2,3,_ 1), whereag2,3,_ 1) < (2,3,1,1). We

say that a facp(x) is fully-definedif = # _, andpartially-definedotherwise.

Given a deductive databageand a set of update atof#&R, FullyDe fined(FR) =
{zxa(t)| £a(t)eU N a€ Pred(T) A aft)is fully-defined.

The rest of this section reports the rewriting into active integrity constraints of a
request sef and a deductive databage= (Z, P, n).

Definition 5.13. REWRITING OF S. Given a request s&t, Rew(S) is the set of the
AICs:

Req; : not a(x) D +a(x) for eacha(z) € S™
Reqs : a(z) D —a(z) for eacha(z) € S°* O

A set of auxiliary active integrity constraints is needed in order to ensure the compu-
tation of supported knowledge repairs.

Definition 5.14. AUXILIARY AICs. Given a deductive databasg, Auxz(J) is
the set of the AICs:

Aux; : a(X),a(X), X < X', not fized*(X) D + fized*(X)
for each predicate of 7 and
Auxs : a(X,-),not fized*(X,_),not a(X, L) D +a(X, 1)
if a is a base predicate or
Auxs : a(X),not fized*(X) D
if a is a derived predicate. a

Each AIC in the sefAux; states that a partially-defined factfiged if it is sup-

ported by a fully-defined fact. The AICAux, replaces each * occurring in EDB

facts with L. Finally the AICs inAuxg (observe that these are simple integrity con-
straints as their heads are empty) assert that each IDB fact must be fixed, otherwise
no founded repair is computed. The reason for these auxiliary rules, will be made
clear considering the generating mechanism encapsulated in the rewriting process.
Anyhow, it should be stressed that they are necessary to guarantee the computation
of the reliable repairs, i.e. the supported knowledge repairs only. Intuitively, the set
of AICs, obtained from the rewriting, propagate the placeholder stating for a
generic value during the attempt to compute a founded repair, with the final aim of
having it instantiated to a fixed value. Whenever this is not the case and we are in the
presence of a not fixed IDB fact, then the attempt to generate a founded repair fails
9. on the other hand.” is converted intoL in the case of an EDB fact. Note that

9 This guarantees that only supported repairs are computed so avoiding the problem of gen-
erating a wide range of repairs one for each possible instantiation.
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this pragmatic solution recommends our approach for implementation in commercial
DBMS.

In the following, we provide the rewriting ¢®. For the sake of simplicity, we assume
that each derived predicate is defined by a view. However, a simple extension allows
to handle the union operator.

Definition 5.15. REWRITING OF PROJECTION VIEWSGiven a projection view of
the forma(X) — b(X,Y), Rew(v) is the set of the AICs:

ri:not a(X),b(X,Y), X #_ D +a(X)V —b(X,Y)

ro: b(X,Y), X # _ not supported®(X) D +supported®*(X)

r3: a(X), X # _, not supported®(X) D —a(X)

rq:a(X),notb(X,.) D +b(X,-) |

The AICr, states that if the body of the viet( X, Y), istrue, and its headz(X), is
falsethen, in order to guarantee the consistency of the updated knowledge, either the
action of inserting:(X) or the action of deleting(X,Y") has to be performed. The
AIC r, states that if the updated knowledge contains a#@&t V), with X # _,

then the fact(X) is supported{upported®(X) is true), while the AlCr3 ensures
that the updated knowledge does not contain amgupportedact a(X). Finally,

the meaning ofr4 is that if the updated knowledge contain€X ), then it must
contain the facb(X, _ ). Note that, the auxiliary AICs, previously presented, infer
from b(X, _ ) the unique fach(X, L ) if b is a base predicate and no other fact
b(X,Y), withY #£.1, is inferred in the updated knowledge; whereas they reject the
repair ifb is a derived predicate adX, _ ) is not fixed by a fully-defined fact.

Example 5.16Consider the deductive databage= (0, {a(X) «— b(X,Y)},0),
and the request sé&t= {a(1)}. Consider the set of AICs constituted Byw(S) =
{not a(1) D +a(1)}, Rew(P) (consisting ofry,re andrs defined as above) and
the set of auxiliary AICs idux (), reported in the following:

b(X,Y),b(X",Y"), XY < X'Y' not fized’(X,Y) D +fized’(X,Y)
b(X,Y),not fired’(X,Y),Y = _,not b(X, L) D +b(X, L)
a(X),a(X"), X < X', not fized®(X) D + fized*(X)

a(X),not fized®(X) D

The unique founded repair foPz with respect to this set of AICs iFR =
{+a(1),+b(1,_ ), +b(1, L), +supported®(1),+ fized®(1),+fized®(1, L)} cor-
responding to the unique supported knowledge repaigffownith respect toS:
FullyDefined(FR) = {+a(l), +b(1, L)} and to the supported repakiully
Defined(FR)gps = {+b(1,L1)}. Consider now the deductive databage=
{b(1, L)}, {a(X) « b(X,Y)},0) and the request s& = {not b(1, L)}. The
new founded repair iFR = {—b(1, L), —a(1)}. O
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Definition 5.17. REWRITING OF NEGATION VIEWS

Given a negation view of the forma(X) « b(X), not ¢(X), Rew(v) is the set of
the AICs:

ry:not a(X),b(X),not ¢(X), X # - D 4a(X)V =b(X) V +c(X)
ra : b(X),not ¢(X), X # _,not supported®(X) D +supported®(X)
rs3:a(X), X # _, not supported®(X) D —a(X)
rq:a(X),b(X"), X < X', not supportable® (X, X') D +supportable® (X, X'),
rs : supportable® (X, X'), supported®(X),X < X, X' # X,
not unnecessary® (X, X') D +unnecessary® (X, X')
re : supportable® (X, X'), not unnecessary® (X, X"),c¢(X") D —e(X')
r7 :a(X), X # _,not supportablet, _.(X) D +supportable};, _.(X)
rg : supportablet, . (X),not b(X) D +b(X)
rg : supportable}, . (X),c(X) D —c(X) O

The meaning of the AICs;, ro andrjz is similar to the one discussed for projection
views. The AlCr, states that ifi(X) is present in the updated knowledge and exists
an atomb(X'), with X < X', thena(X) can be supported by (eventually) deleting
c(X') (supportable® (X, X') istrue). The AlCrj5 states that if it is possible to sup-
porta(X) by acting onc(X’), buta(X) is fixed by another atom(X), already sup-
ported, is unnecessary to suppefi ) by acting ore(X’) (unnecessary® (X, X')
istrue). The AlCrg states that we can suppeftX ) throughce(X’) if this is possible
and not unnecessary, wheragsstates that if:(X') belongs to the updated knowl-
edge and it is fully-defined, it must be supported by ensuring the presen¢& pf
and the absence ef X). The AICsrs andrg (eventually) inserb(X) and delete
c(X).

Example 5.18Consider the deductive database = ({b(1), ¢(1)},{a(X) «
b(X),not c(X)},0) and the request s& = {a(1)}. Consider the set of AICs
constituted byRew(S), Rew(P) and Auxz(J). The unique founded repair of
Pz with respect to this set of AICs i$R = {+a(l), +supportable® .(1,1),
+supportable?, (1), —c(1), +supported®(1), +fized®(1)} corresponding to
the supported knowledge repaifullyDefined(FR) = {+a(1), —c(1)} and

to the supported repaifullyDefined(FR)gps = {—c(1)}. Suppose now the
request set isS = {d} andP also contains the projection rutt — a(X). Ob-
viously, now the set of AICs also contains the AICs obtained from the rewriting
of this projection rule (see Definition 5.15). The fatis present in the knowledge
base only if the relatiom is not empty. The founded repair &7 with respect to
the new set of AICS iS"R = {+d, +a(-), +supported?, +supportable® (-, 1),
—c(1), +a(1), +-supported®(1), +-supportable? .(1,1), +supportablet, _.(1,1),
+fized® (1), +fized?, + fized®(1)}. This founded repairs corresponds to the sup-
ported knowledge repaifullyDefined(FR) = {+d,+a(l), —c(1)} and to the
supported repaif'ullyDe fined(FR)gpp = {—c(1)}. O
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Definition 5.19. REWRITING OF JOIN VIEWS Given a join viewwv of the form
a(X,Y,Z) — b(X,Y),c(Y, Z), Rew(v) is the set the AlCs:

r1 ot a(X,Y, Z),b(X,Y),e(Y, Z),Y #_5
+a(X,Y, Z)V —b(X,Y)V —c(Y, Z)
ro:b(X,Y),c(Y,2),Y # _, not supported®(X,Y,Z) D
+ supported®(X,Y, Z)
r3:a(X,Y,2),XYZ # _, not supported®(X,Y,Z) D —a(X,Y, Z)
ra:a(X,Y,2),b(X" Y, X < X',Y <Y,
not supportable® .(X,Y, Z, X', Y") D +supportables .(X,Y, Z, X", Y")
r5 : supportablel (X,Y,Z, X', Y"), supported®(X,Y, Z),
XZ=<XZY <Y,X'Y'Z +XYZ,
not unnecessary$ . (X,Y,Z, X", Y") D 4unnecessarys (X,Y, Z, X', Y")
rg : supportable? .(X,Y, Z, X', Y"), not unnecessary (X,Y, Z, X', Y"'),
not ¢(Z,Y") D +c(Z,Y’)
vr:a(X,Y,2),e(Y', 2'),Z < Z.Y <Y,
not supportablel,(X,Y, Z,Y", Z") O +supportables ,(X,Y, Z,Y', Z")
rg : supportable®, (X,Y, Z,Y', Z"), supported® (X,Y,Z),
XZ<XZY <Y,XY'Z +XYZ,
not unnecessarys, (X,Y,Z,Y', Z') O +unnecessary®,(X,Y, Z,Y', Z')
rg : supportable?,(X,Y, Z,Y', Z'), not unnecessary$,(X,Y, Z,Y', Z'),
not b(X,Y") D +b(X,Y’)
rio: a(X,Y,2),Y # _, not supportableib’+c(X, Y, Z) D
+ supportable?, , (X,Y,Z)
ri1 1 supportable}, | (X,Y,Z),not b(X,Y) D +b(X,Y)
riz : supportablet, . (X,Y,Z),not c(Y,Z) D +c(Y, Z) m]

The description of the intuitive meaning of the AICs, obtained from the rewriting of
a join view, is left out as it is very similar to the one reported for negation views.

Example 5.20Consider the deductive databage= (0, {a(X,Y,Z) « b(X,Y),
(Y, 2)}, 0, the request se§ = {a(1,2,3)} and the set of AICsRew(S),
Rew(P) andAuz (7). The unique founded repair f@t; with respect to the AICs is
FR = {+a(1,2,3), +supportablet .(1,2,3,1,2), +supportable? .(1,2,3,2,3),
+supp07°tableib7+c(17 2,3), +b(1,2),4+¢(2,3), +supported®(1,2,3), + fixed* (1,
2,3), + fized®(1,2), +c’*e4(2,3)} corresponding to the supported knowledge re-
pair FullyDefined(FR) = {+a(1,2,3), +b(1,2),+¢(2,3)} and to the sup-
ported repaitF'ullyDe fined(FR)gpp = {+b(1,2), If P also contains the view
d(X,Z) — a(X,Y, Z) and the request setds= {d(1, 3)}, no founded repair exist.
Consider now7 = ({b(1,2),¢(2,3)},{a(X,Y, Z) « b(X,Y),c(Y,Z)},0) and
S = {not a(1,2,3)}. Inthis case there are two founded repali®, = {—a(1, 2, 3),
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—b(1,2), +fired®(2,3)} andFRy = {—a(1,2,3), —c(2,3), + fized®(1,2)}, that
correspond respectively to the supported knowledge repaits De fined( FR1) =
{—a(1,2,3), —b(1,2)} and Fully Defined(FRz2) = {—a(1,2,3),—c(2,3)} and
to the supported repairg’ully Defined( FR1)eps = {—b(1,2)} andFully
Defined(FR2)gps = {—c(2,3)}.

Definition 5.21. REWRITING OF SELECTION VIEWS Given a selection view of
the forma(X) «— b(X), ¢(X), Rew(v) is the set of the AICs

ri:not a(X),b(X),d(X), X # - D 4a(X) V —b(X)

ro: b(X),d(X), X # _, not supported®(X) D +supported®(X)

r3:a(X),X # _, not supported®(X) D —a(X)

rg:a(X),0(X), X # _, not b(X) D +b(X) O

Definition 5.22. REWRITING OF 7. Given a constraintic of the forma(X) D,
Rew(ic) denotes the set containing the AlCu(X), X # - D —a(X). O

Example 5.23Consider the request sét = {a(1,2)} and the deductive database
= ({a(1, D)}, {b(X,Y1,Ys) — a(X, Y1), a(X,Y2); ¢(X, Y1, Ys) — b(X, Y1, Ys),
Y1 # Yo}, {¢(X,Y1,Y,) D}). Observe that the views iR and the integrity con-
straint inn express the key constraint X, Y1), a(X,Y3),Y; # Y, D. Intuitively,
as the request set requires the presenceg bf2) conflicting witha(1, 1) the atom
a(1,1) has to be deleted. Indeed, the supported repditig1,2), —a(1,1)}. O

Definition 5.24. REWRITING OF J AND S. Given a deductive databas&
(Z,P, n) and a request sef, we denote aRew (7, S) the set of AICRew(S)
Rew(P) U Rew(n) U Auxz(J) where Rew(P) = U, p Rew(v) and Rew(n)

Uiceze Rew(ic).

Fact 5.25 Given a deductive databasg = (Z, P, n) and a request sef, the com-
plexity of constructingRew (7, S) is polynomial time. m|

ol cl

5.4 Soundness, Completeness and Complexity Results

Theorem 5.26.(Soundness). Lef = (Z,P,n) be a deductive database asca
request set. For every founded rep&iR for (Pz, Rew(J,S)), FullyDe fined(FR)
is a supported knowledge repair fgf with respect taS.

Proof sketch.Let i/ = FullyDefined(FR). We show that 1}/ is a knowledge
update, 2}/ is a knowledge repair and 8) is a supported knowledge repair.

1. To prove that/ is a knowledge update, suppose by contradiction #hat) <
ProUst. Ag : a(t) «— Bly) € ground(Pz) | Pz oU B~ B(y).The atom
+supported®(t) is not derived as the Al@. of Rew(g) is not violated and,
consequentially s is violated. So,FR is not a repair.
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2. U is a knowledge repair becausegitarantees consistendye. Pz olf =1 as
FR(Pz) = Rew(n).U confirms the request sas for eachu(t) € S™, Prold
contains(t). In fact, the AlCnot a(t) O +a(t), obtained by the rewriting af,
is satisfied by¥R(Pz) and byPz o Y. Similarly, it can be shown that for each
literal not a(t) € S°, a(t) ¢ Pz o U. Finally, minimality of ¢/ is guaranteed
by minimality of 7 R.

3. U is a supported knowledge repair as the structure of the AlQ3cim(7,S)
ensures that each atom it c FR™ is supported. In fact, the AICs in
Rew(J,S) that allow to infer insert update atoms are of two forms: (i)
not a(t) D +a(t); (i) B(X,Y),not a(X) D +a(X) V @, whered is even-
tually empty. When, an atoma(t) is inserted by the first AIC it is supported as
it belongs toS™. An atoma(ty) is inserted by the second AIC only X is
instantiated bys, i.e. only if (a(tx), a(X)) is supported by(5(ty ), 5(Y)). O

Theorem 5.27.(Completeness). Lef = (Z,P,n) be a deductive database and
S a request set. For every supported knowledge repaifor 7 with respect
to S there exists a founded repaifR for (Pz, Rew(J,S)) such thatid =
FullyDefined(FR).

Proof sketch. This proof can be done by construction. It can be created a
setFR by adding tal/ all insert update atoms of the forma(t, _ ), + fized®(t),
+supported®(t), +supportable? .(t), +unnecessary? .(t), +supportable, .(t),
+supportabled .(t), +unnecessarys.(t), +supportable, , .(t)necessary to
satisfy the AICs inground( Rew(J,n)). Obviously,FR is a repair. Moreover, it
can be shown that it is founded. a

Theorem 5.28.Let .7 be a deductive database alsch request set, then the problem
of checking (i) if there exists a supported knowledge repaior 7 with respect to
S is XF-complete; (ii) whether a ground atony belongs to all repaired deductive
databases obtained by means of supported knowledge repdit&-ismplete.

Proof sketch.Both (i) and (ii) straightforward respectively from Theorem 5.28 and
3.33. O

5.5 Related Works

Over the years, a substantial amount of research has been devoted to the various is-
sues surrounding view updating and not surprisingly a wide selection of approaches
to the view update problem has evolved [14, 15, 21, 33,43, 45,55-57, 62,77, 78, 85,
112,113,133, 136]. See [62, 112] for surveys of methods for view updating. In [77],
the extremes are calledosedandopenupdate strategy. The first are very conserva-

tive and systematic [78] and are mainly based on the seminal work of Bancilhon and
Spyratos in [15], whereas open strategies are very liberal and allow us to obtain as
many solutions as possible.
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View updating in definite deductive database, i.e. database where view predicates
can only be defined by means of function free Horn rules and without negation, is
investigated in [14]. In [57] an interesting model theoretic approach to view updates

in deductive databases which encompasses a wide class of Herbrand semantics is
proposed, including the perfect and stable model semantics for disjunctive databases
with negation. In [85] the update of a single view is obtained by extending the rela-
tional model with identifiers on the values; whereas in [133] the view update problem

is translated into a constraint satisfaction problem.

In the rest of this section we concentrate on the few works facing the view update
problem, within the same dimension, i.e. considering deductive database, non-flat
integrity constraints, the two basic update operations of insertion and deletion and
that explicitly treat the case of existentially derived predicates [56, 113, 136]. As also
stated in the introduction, our approach differs from the proposals in [113, 136] as in
the presence of existential variables these techniques generate as many translations
as the different values that can be assigned to them, whereas we only produce re-
pairs supported by the deductive database. The alternative recent proposa&pf Ferr
Teniente and Urpi in [56], associates to an update request a sahofical transla-
tions[140], each defined as a pdif, C), whereT is a set of base event facts, whose
arguments may be either constants or skolem constant§’dad set of inequal-

ity constraints that skolem constantsZinmust satisfy. There are some similarities
between the approach proposed here and the one in [56]: they both search for an
effective update strategy in the presence of existential derived predicates and over-
come the drawbacks of previously proposed methods avoiding the computation of all
instantiations. However, as will be made clear in the rest of this section, they are sig-
nificantly different in the case of existentially derived predicates. For the Example 5.1
the approach in [56] produces the two canonical translatigfisR(a, b,0)}, {0})
and{({+Q(a,0),+R(a,0,1)},{0 # b}), whereas we obtain the unique translation
{+R(a,b, L)}. Therefore, in the absence of any additional information specifying
an existential variable, the approach in [56] introduces skolem constants that prop-
agate through rules and constraints and generate canonical translations containing
patternsof the variable instantiations that are relevant for the update request, rather
than taking into account all the possible instantiations; in any case, each canonical
translation represents several extensional translations obtained by replacing skolem
constants with values satisfying the inequality constraints. On the contrary, our ap-
proach adopts a solution similar to that of commercial DBMS, assigning to an exis-
tential variable, in the absence of any additional (supported) information, a unique
null value.
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Conclusions

The main contributions of the thesis can be summarized as following:

Chapter 3 has introduceattive integrity constraintsa simple and powerful form

of active rules with declarative semantics, well suited for computing database
repairs and consistent answers. The novelty of the approach proposed consists
in the definition of a formal declarative semantics which allows us to identify,
among the set of all possible repairs, the subsdbofded repairsvhose ac-

tions are specified in the head of rules andsarpportedby the database or by
other updates. It has been shown that the computation of founded repairs can
be done by rewriting the constraints into an (extended) Datalog program and
computing the stable models of the program; the founded repairs are obtained
by selecting, for each stable model, the set of “update actions”. We have also
studied the properties of active integrity constraints and shown that for each pro-
duction ruler update head atoms not making the conjunction of body literals
falsewith respect to the repaired database (that is such that the body integrity
constraint is satisfied), are useless. The thesis has also studied the computational
complexity of computing founded repairs and consistent answers, showing that
the complexity is not harder than computing “standard” repairs and answers.

Chapter 4 comparexctive integrity constraintandrevision programminganother

formalisms designed to describe integrity constraints on databases and to specify
preferredways to enforce them. We demonstrated that despite the differences in
the syntax, and the lack of a simple correspondence between justified revisions
and founded repairs, the two frameworks are closely related. The semantics for
revision programs defines the concepfjudtified revision A justified revision

is a set ofrevision literals an alternative way to model updates over a data-
base, that can be inferred by means of the revision program and by the set of
all atoms that do not change their statgpafsencdin) or absencdout) during

the update process. We shown that each founded repair corresponds to a justified
revision, but not vice-versa. We introduced two new semantics: one for active
integrity constraints and one for revision programs. The first one allows us to
compute a smaller set of repairs, tustified repairs that correspond to justi-
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fied revisions. The second one allow us to compute a wider set of revision, the
founded revisions, that correspond to founded repairs. The introduction of these
new semantics aligns the two formalisms showing that each of them is a nota-
tional variants of the other. We show that for each semanticstifigng property
holds. Shifting consists of transforming an instance of a database repair problem
to another syntactically isomorphic instance by changing active integrity con-
straints or revision programs to reflect the “shift” from the original database to
the new one.

Chapter 5 has proposed a declarative semantics for view updating in the presence
of existentially derived predicates and non flat integrity constraints, that pre-
vents some of the anomalies previous approaches suffer from limiting the wide
range of translations to those that are validated by the deductive database. More
specifically, the novelty of the framework consists in the definition of a formal
declarative semantics for view updating that allows to identify, among the set
of all possible repairs, theupported repairsthat is the repairs whose actions
are validated by the database or by other updates. In addition, the proposed re-
pair semantics based on the rewriting of the deductive database and the update
request into active integrity constraints, as specified in Chapter 3, considers, sys-
tematically and for the first time, the possible introduction of null value in the
form they are present and treated in commercial DBMS. We have provided re-
sults on the soundness and completeness of the proposed approach and have
also investigated the complexity of computing justified repairs showing that this
is not harder than computing standard repairs. Two important issues, that could
actually translate our research into practical applications, are left for further re-
search. First, extensions may be introduced in order to select, in the presence of
multiple justified repairs, the preferred ones, i.e. those that better satisfy some
preference or quality criteria specified by the user. Moreover, further research is
planned to investigate particular types of integrity constraints, implemented and
maintained in commercial DBMS, such as primary keys and foreign key con-
straints for which the complexity of computing justified repairs is expected to
reduce.
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