

UNIVERSITÀ DELLA CALABRIA

Dipartimento di Elettronica,
Informatica e Sistemistica

Dottorato di Ricerca in
Ingegneria dei Sistemi e Informatica

XX ciclo

Tesi di Dottorato

Declarative Semantics for
Consistency Maintenance

Luciano Caroprese

UNIVERSITÀ DELLA CALABRIA

Dipartimento di Elettronica,
Informatica e Sistemistica

Dottorato di Ricerca in
Ingegneria dei Sistemi e Informatica

XX ciclo

Tesi di Dottorato

Declarative Semantics for
Consistency Maintenance

Coordinatore
Prof. Domenico Talia

Supervisore

DEIS

To my family...

“If the facts don’t fit the theory, change the facts.”

Albert Einstein

Acknowledgements

I would like to thank my advisor Prof. Ester Zumpano for her guidance and conti-
nuous support during these three years.

I would also like to thank Prof. Sergio Greco for his valuable advice and suggestions.

I would like to express my gratitude to Prof. Mirosław Truszczyński who has been so
deeply involved in our research and who, at the same time, has helped me to explore
those aspects of the work which I found particularly interesting.

I wish to thank my parents for their patience and affection.

Finally, special thanks to all my friends for the various forms of help and encourage-
ment that they have given me.

Contents

1 Preliminaries . 3

1.1 Introduction . 3

1.2 Logic Programs . 4

1.3 Queries . 6

1.4 Complexity Classes . 7

1.5 Complexity of Datalog Queries . 10

2 Techniques for Repairing and Querying . 11

2.1 Introduction . 11

2.2 Computing Repairs . 13

2.3 Querying Database using Logic Programs with Exceptions 16

2.4 Query Answering in the Presence of Constraints 18

2.5 Complete Answers from Incomplete Databases. 22

2.6 Condensed Representation of Database Repairs for Consistent
Query Answering . 24

2.7 Using Views . 30

2.8 Minimal Change Integrity Maintenance using Tuple Deletions 38

3 Active Integrity Constraints . 41

3.1 Introduction . 41

3.1.1 Contribution . 43

3.1.2 Plan of the Chapter . 43

3.2 Databases and Integrity constraints . 44

3.2.1 Integrity Constraints . 44

3.2.2 Repairing and Querying Inconsistent Databases 44

3.2.3 Repairing and Querying through Stable Models 46

X Contents

3.3 Active Integrity Constraints . 47

3.4 Computation and Complexity . 54

3.4.1 Rewriting into Logic Programs . 55

3.4.2 Data Complexity . 57

3.4.3 Preferred Repairs and Answers . 59

4 Active Integrity Constraints and Revision Programming 61

4.1 Introduction . 61

4.1.1 Contribution . 62

4.1.2 Plan of the Chapter . 63

4.2 Weak Repairs and Founded Weak Repairs . 63

4.3 Justified Repairs . 65

4.4 Normal Active Integrity Constraints and Normalization 70

4.5 Shifting Theorem. 72

4.6 Complexity and Computation . 77

4.7 Some Implications of the Results Obtained so far 81

4.8 Connections between Revision Programs and Active Integrity
Constraints . 82

4.8.1 Revision Programming — an Overview 82

4.8.2 Proper Revision Programs . 86

4.8.3 Revision Programs as Sets of Active Integrity Constraints . . 87

4.8.4 Shifting Theorem for Revision Programs 89

4.9 Computation and Complexity Results for Revision Programming . . 91

5 View Updating through Active Integrity Constraints 93

5.1 Introduction . 93

5.1.1 Contribution . 95

5.1.2 Plan of the Chapter . 96

5.2 A Declarative Semantics for View Updating . 96

5.3 Rewriting into Active Integrity Constraints . 100

5.4 Soundness, Completeness and Complexity Results 105

5.5 Related Works . 106

6 Conclusions . 109

References. 111

Introduction

Integrity constraints are conditions on databases. If a database violates integrity con-
straints, it needs to berepairedso that the integrity constraints hold again. Often there
are several ways to enforce integrity constraints. To illustrate the problem of database
repair with respect to integrity constraints, let us consider the databaseI = {a, b}
and the integrity constraintnot a ∨ not b stating that the database does not contain
a or it does not containb. Clearly,I does not satisfy the integrity constraint and
needs to berepaired– replaced by a database that satisfies the constraint. Assuming
that the possible facts that the database could contain are{a, b, c, d}, the databases∅,
{a}, {b}, {a, c} are examples of databases that could be considered as replacements
for I. Since the class of replacements ofI is quite large, the question arises whether
there is a principled way to narrow it down. One of the most intuitive and commonly
accepted postulates is that the change between the initial database and the revised da-
tabase be minimal. In our case, the minimality of change narrows down the class of
possible revisions to{a} and{b}. The minimality of change leads to the concept of
repair, a minimal set of update actions (insertionsanddeletionsof facts) that makes
the database consistent.

In some cases, the minimality of change is not specific enough and may leave too
many candidate solutions. The problem can be addressed by formalisms that allow
the database designer to formulate integrity constraints and, in addition, to state pre-
ferred ways for enforcing them. In this thesis, we study two such formalisms:active
integrity constraintsandrevision programming.

Essentially, an active integrity constraint is an integrity constraint that specifies the
update actions that can be performed when it is violated. It is composed by a con-
junction of literals, thebody, that represents aconditionthat should befalseand by
a disjunction of update actions, thehead, that can be performed when the body is
true (that is when the constraint is violated). The active integrity constraints work
in a domino-like manner as the satisfaction of one of them may trigger the violation
and therefore the activation of another one. The first semantics for active integrity
constraints here introduced, allows us to identify, among all possible repairs, those
whose actions arespecifiedin the head of some active integrity constraint andsup-

2 Contents

portedby the database or by other updates. These repairs are calledfounded repairs.
We show that the computation of founded repairs can be done by rewriting the con-
straints into a Datalog program and then computing its stable models; each stable
model will represent a founded repair.

Next, we compareactive integrity constraintsand revision programming, another
formalisms designed to describe integrity constraints on databases and to specifypre-
ferred ways to enforce them. The original semantics proposed for these formalisms
differ. The semantics for revision programs defines the concept ofjustified revision.
The thesis shows that despite the differences in the syntax, and the lack of a simple
correspondence between justified revisions and founded repairs, the two frameworks
are closely related.

A justified revision is a set ofrevision literals, an alternative way to model updates
over a database, that can be inferred by means of the revision program and by the set
of all atoms that do not change their state ofpresence(in) or absence(out) during the
update process. We show that each founded repair corresponds to a justified revision,
but not vice-versa. Next, we broaden the class of semantics for the two formalisms
by introducing a different semantics for active integrity constraints and a different
semantics for revision programs. The first one allows us to compute a smaller set of
repairs, thejustified repairs, that correspond to justified revisions. The second one
allow us to compute a wider set of revision, thefounded revisions, that correspond to
founded repairs. The introduction of these new semantics aligns the two formalisms
showing that each of them is a notational variants of the other. We show that for each
semantics theshifting propertyholds. Shifting consists of transforming an instance of
a database repair problem to another syntactically isomorphic instance by changing
active integrity constraints or revision programs to reflect the “shift” from the original
database to the new one.

Finally, the thesis defines a formal declarative semantics for view updating in the
presence of existentially derived predicates and non-flat integrity constraints, that
translates an update request against a view into an update of the underlying database.
The new semantics allows to identify, among the set of all possible repairs, the subset
of supported repairs, that is repairs whose actions are validated by the database or
by other updates. Given a deductive database and an update request, the computation
of supported repairs is performed by rewriting the update request and the deductive
database in the form of active integrity constraints.

1

Preliminaries

Summary. In this chapter we introduce some basic concepts on logic programming and com-
putational complexity. For a detailed treatment see [10, 11, 86, 105, 106, 117, 125, 142]. We
briefly introduce syntax of (disjunctive) logic programs and present the stable model seman-
tics. Moreover, after introducing complexity measures, we survey complexity results of vari-
ous forms of logic programming.

1.1 Introduction

The theory of deductive databases begins with Codd’s paper [41] in which the for-
mal definition of therelational modelwas given. A relational database consists of
a set offactswhose contents can be used to answer queries. The need for deduct-
ing new information from the facts already present in the database and the necessity
to deal with incomplete information leads to the concept ofdeductive databases. A
deductive database, in addition to storing individual facts (extensional data), stores
deductive rules (intensional data) that are used to answer queries.

Logic programmingwas introduced by Kowalski [86] and the first Prolog interpreter
was implemented by Roussel in 1972 [42]. Logic programming introduced the con-
cept ofdeclarativecontrast toproceduralprogramming. Ideally, based on Kowalski’s
principle of separation of logic and control[88], a programmer should only be con-
cerned with thedeclarative meaningof the program, while the procedural aspects of
the execution should be handled automatically. The formal definition of logic pro-
gramming starts with the classical paper by Van Emden and Kowalski on the least
model semantics [142], Reiter’s paper on the closed world assumption [126] and
Lloyd’s “Foundations of Logic Programming”[105].

The connection between logic programming and deductive databases [106, 125]
quickly became clear and leads to alogical approachto knowledge representation.
This approach is based on the idea of providing intelligent machines with alogical
specificationof the knowledge they possess; hence a precisemeaningor semantics

4 1 Preliminaries

has to be associated with any logic or database program in order to give its declarative
specification.

Finding a suitable semantics of deductive databases and logic programs is one of the
most important and difficult research problems.

1.2 Logic Programs

Syntax

By an alphabetΣ of a first order language we mean a (finite or countably infinite)
set ofvariables, predicates and constants. In the following, we use the letters
p, q, r, ... for predicate symbols,X,Y, Z, ... for variables anda, b, c, ... for constants.
A terma constant or a variable. AnatomoverΣ is a formulap(t1, . . . , tn), wherep
is a predicate symbol of arityn andti’s are terms.

Thefirst order languageL over the alphabetΣ is defined as the set of all well-formed
first order formulae that can be built starting from the atoms and using connectives,
quantifiers and punctuation symbols in a standard way.

A literal L is an atomA or a negated atomnot A; in the former case, it ispositive,
and in the latternegative. Two literals aredual, if they are of the formA andnot A,
for some atomA. Given a literalL, we writeLD for its dual. The dual operator is
extended to sets of literals as appropriate.

A (disjunctive Datalog) ruler is a clause of the form1

p∨
i=1

Ai ←
m∧

j=1

Bj ,
n∧

j=m+1

not Bj , ϕ p+ n > 0 (1.1)

whereA1, . . . , Ap, B1, . . . , Bn areatomsandϕ is a conjunction of built-in atoms
of the formu θ v such thatu andv are terms andθ is a comparison predicate. The
set{A1, . . . , Ap} is theheadof r (denoted byhead(r)), while the set{B1, . . . , Bm,
not Bm+1, . . . ,not Bn, ϕ} is thebodyof r (denoted bybody(r)). It is assumed that
each rule issafe[139], i.e. that a variable appearing in the head or in a negative literal
also appears in a positive body literal.

A rule with a ground atom in the head and an empty body and is calledfact. In this
case the symbol ‘←’ can be omitted. The expressionH ← B1∨· · ·∨Bn can be used
as shorthand for the rulesH ← B1, . . . ,H ← Bn.

If a rule isnot-free (resp.∨-free) it is calledpositive(resp.normal). A logic program
P consists of a finite set of rules. It ispositive(resp.normal) if all its rules are positive
(resp. normal).

1 A literal can appear in a conjunction or in a disjunction at most once. The meaning of the
symbols ‘∧’ and ‘,’ is the same.

1.2 Logic Programs 5

Given a programP, some of the predicate symbols are defined by a number of facts
and do not occur in the head of any other rule. They are calledbaseor EDB predi-
cates. The other predicate symbols are calledderivedor IDB predicates.

The Herbrand UniverseUP of a programP is the set of all constants appearing
in P, and itsHerbrand BaseBP is the set of all ground atoms constructed from
the predicates appearing inP and the constants fromUP . A term (resp. an atom,
a literal, a rule or a program) isground if no variables occur in it. A ruler′ is a
ground instanceof a ruler, if r′ is obtained fromr by replacing every variable inr
with some constant inUP ; ground(P) denotes the set of all ground instances of the
rules inP. We assume thatground(P) does not contain built-in atoms in the body
of rules, astrue built-in atoms can be deleted and rules withfalsebuilt-in atoms are
deleted fromground(P).

Stable Model Semantics

An interpretation ofP is any subset ofBP . The value of a ground atomA with
respect to an interpretationI, valueI(A), is true if A ∈ I andfalse otherwise.
The value of a ground negated literalnot A is true if A 6∈ I andfalse otherwise.
Given a setS of ground literals,

valueand
I (S) =

{
min({valueI(L) | L ∈ S}) if S 6= ∅
true if S = ∅

and

valueor
I (S) =

{
max({valueI(L) | L ∈ S}) if S 6= ∅
false if S = ∅

A ground ruler is satisfiedby I if valueor
I (head(r)) ≥ valueand

I (body(r)). Thus, a
rule r with empty body is satisfied byI if valueor

I (head(r)) = true. In the follow-
ing the existence of rules with an empty head which definedenialsis also assumed,
that is rules which are satisfied only if the body isfalse (valueand

I (body(r)) =
false). An interpretationM for P is a model ofP if M satisfies all rules in
ground(P). The (model-theoretic) semantics for positiveP assigns toP the set of
its minimal modelsMM(P), where a modelM for P is minimal, if no proper sub-
set ofM is a model forP. The more generaldisjunctive stable model semanticsalso
applies to programs with (unstratified) negation [66]. Disjunctive stable model se-
mantics generalizes stable model semantics, previously defined for normal programs
[65]. For any interpretationM, denote withPM the ground positive program derived
from ground(P) by 1) removing all rules that contain a negative literalnot A in the
body andA ∈M, and 2) removing all negative literals from the remaining rules. An
interpretationM is a stable model ofP if and only ifM∈MM(PM). For general
P, the stable model semantics assigns toP the setSM(P) of its stable models. It is
well known that stable models are minimal models (that isSM(P) ⊆MM(P)) and
that for negation free programs, minimal and stable model semantics coincide (that
is SM(P) =MM(P)). Observe that stable models are minimal models which are
“supported”, that is their atoms can be derived from the program. For instance, the

6 1 Preliminaries

program consisting of the rulea ∨ b← not c has three minimal modelsM1 = {a},
M2 = {b} andM3 = {c}. However, onlyM1 andM2 are stable.

Stratified Programs

A normal logic programP is said to bestratified[9, 64, 99] if it is possible to decom-
pose the setS of its predicate symbols into disjoint setsS1, S2, ..., Sn, calledstrata,
so that for every clause

r : C ← A1, · · · , Am, not B1, · · · , not Bn (n ≥ 0)

in P, whereA’s,B’s andC are atoms, we have that:

1. for everyi, stratum(Ai) ≤ stratum(C) and

2. for everyj, stratum(Bj) < stratum(C),

wherestratum(A) = α, if the predicate symbol ofA belongs toSα. Any particular
decompositionS1, S2, ..., Sn satisfying the above conditions is called astratification
of P. A programP is calledstratifiedif it has a stratification.

Stratification assigns relative priorities between ground atoms so that priority con-
flicts (cycles) can be avoided and meaningless semantics are discarded. Stratified
programs allow a disciplined form of negation, that is when using negation we can
refer to an already defined relation, so that the definition is not circular, or as Van
Gelder puts it, negation through recursion is avoided.

Stratifiability is easy to check by constructing thedependency graph. Given a pro-
gramP the dependency graphDP consists of the predicate names as the vertices
〈pi, pj , s〉; there is a labeled edge inDP iff there is a ruler in D with pi in its head
andpj in its body and the labels ∈ {+,−} denoting whetherpj appears in a pos-
itive or a negative literal body ofr. A cycle in the dependency graph is said to be a
negative cycle if it contains at least one edge with a negative label. A normal logic
programP is stratified if its dependency graphDP does not contain any negative cy-
cle. Stratified programshave a unique stable model, calledperfect model. Obviously,
for positive logic programs the perfect model is equivalent to the least model.

Moreover, a program is calledsemipositiveif negation is only applied to base atoms.
Clearly, semipositive programs are also stratified.

1.3 Queries

Given a databaseI, a programP and a predicate symbolg, PI denotes the program
derived from the union ofP with the facts inI, that isPI = P ∪ I andI(g)
denotes the set ofg-facts inI that is the facts inI whose predicate symbol isg. The
semantics ofPI is given by the set of its stable models by considering either their
union (possible semanticsorbrave reasoning) or their intersection (certain semantics

1.4 Complexity Classes 7

or cautious reasoning). A disjunctive DatalogqueryQ is a pair(g,P) whereg is a
predicate symbol, called thequery goal, andP is a disjunctive Datalog program.
The answer to a disjunctive Datalog queryQ = (g,P) over a databaseI, denoted
asQ(I), under the possible (resp. certain) semantics, is given byI ′(g) whereI ′ =⋃
M∈SM(PI)M (resp.I ′ =

⋂
M∈SM(PI)M).

1.4 Complexity Classes

We assume that the reader is familiar with the basic notions of complexity classes
[80, 117]. In this section we give a brief survey of the standard complexity classes,
following the notation given in [80]. A complete account can be found in [117].

Turing machines.

A Turing machineis a device consisting of a semi-infinitetapewhich can be read
and write. Formally, adeterministic Turing machine(DTM) T is a quadruple
(S,Σ, δ, s0), whereS is a finite set of states,Σ is a finite alphabet ofsymbols, δ
is the transition functionands0 ∈ S is the initial state. The alphabet contains a
special symbol calledblankand represented ast. The transition functionδ is a map:

δ : S ×Σ → (S ∪ {halt, yes, no})×Σ × {−1, 0, 1}

where halt, yes and no denote three additional states not occurring inS, whereas
{-1,0,1} denote themotion directions. The tape is divided intocellscontaining sym-
bols ofΣ, and acursormay move along the tape. The input stringI is written on the
input tape. The machine takes successivestepsof computation according toδ, and
when any of the states halt, yes or no is reached. We say thatT accepts the inputI
if it halts in ‘yes‘, rejects it if it halts in ‘no‘, while if the halt state is reached we say
that the output ofT is computed.

A non deterministic Turing machineNDTM is a quadruple(S,Σ,∆, s0), where
S, Σ, s0 are the same as before, while the possible operations the machine can per-
form are described no longer by a function, but by the relation:

∆ ⊆ S ×Σ × (S ∪ {halt, yes, no})×Σ × {−1, 0, 1}

In contrast to aDTM , now the definition of acceptance and rejection is asymmetric.
We say that aNDTM acceptsan input if there is at least one sequence of choices
leading to the state ‘yes‘, and itrejectsan input if no sequence of choices can lead to
‘yes‘.

Time and space bounds.

The timeexpended by aDTM T on an inputI is defined as the number of steps
taken byT onI from the start to the halting. Note that ifT does not halt onI, then

8 1 Preliminaries

the time is considered to be infinite. Thetimeexpended by aNDTM on an input
I is 1 if T does not accept theI, otherwise it is defined as the minimum over the
number of steps in any accepting computation ofT. Thespacerequired by aDTM
T on an inputI is defined as the number of cells visited by the cursor during the
computation. For aNDTM the space is defined as 1 ifT does not accept theI,
otherwise it is defined as the minimum over the number of cells on the tape over all
accepting computations ofT.

Let T be aDTM or aNDTM and f a function from the positive integers to
themselves, we say that:

• T haltsin timeO(f(n)) if there exist positive integersc andn0 such that the time
the time expended byT on any input of lengthn is not greater thancf(n) for all
n ≥ n0.

• T haltswithin spaceO(f(n)) if the space required byT on any input of lengthn
is not greater thancf(n) for all n ≥ n0, wherec andn0 are positive integers.

LetΣ be a finite alphabet containingt, letΣ′ = Σ \ {t}, andL ⊆ Σ′∗ a language
in σ′, that is a set of finite strings overΣ′. Let T be aDTM or aNDTM such
that (i) if x ∈ L thenT acceptsx; (ii) if x /∈ L thenT rejectsx. Then we say that
T decidesL. Moreover (i) if T halts in timeO(f(n)) we sayT decidesL in time
O(f(n)), (ii) if T halts within spaceO(f(n)) we sayT decidesLwithin space O(f(n)).
Given a functionf on positive integers the set of languages are defined as follows:

• TIME(f(n)) = {L | L is decided by some DTM in time O(f(n)) }
• NTIME(f(n)) = {L | L is decided by someNDTM in time O(f(n)) }
• SPACE(f(n)) = {L | L is decided by some DTM within space O(f(n)) }
• NSPACE(f(n)) = {L | L is decided by someNDTM within space O(f(n)) }

All the previous sets arecomplexity classes. The complexity classes of most interest
are not classes corresponding to particular functions, but their union. The following
abbreviations denote the main complexity classes:

• P =
S

d>0 TIME(nd)

• NP =
S

d>0 NTIME(nd)

• EXPTIME =
S

d>0 TIME(2nd

)

• NEXPTIME =
S

d>0 NTIME(2nd

)

• PSPACE =
S

d>0 SPACE(nd)

• EXPSPACE =
S

d>0 SPACE(2nd

)
• L =

S
d>0 SPACE(logn)

• NL =
S

d>0 NSPACE(logn)

Note that the classEXPTIME andNEXPTIME can be viewed as 1-EXPTIME
and 1-NEXPTIME respectively, where1 means the first level of the exponentiation.
Double exponents are captured by the classes 2-EXPTIME , 3-EXPTIME and so
on, defined as: ⋃

d>0

TIME(22nd

),
⋃
d>0

TIME(222nd

), ...

The relations among the complexity classes are as follows:

1.4 Complexity Classes 9

1. TIME(f(n)) ⊆ NTIME(f(n))
2. SPACE(f(n)) ⊆ NSPACE(f(n))
3. NTIME(f(n)) ⊆ SPACE(f(n))
4. NSPACE(f(n)) ⊆ TIME(klog(n)+f(n))
5. NSPACE(f(n)) ⊆ SPACE(f2(n))
6. TIME(f(n)) ⊂ TIME((f(2n + 1))3) (Theorem of the temporal hierarchy)
7. SPACE(f(n)) ⊂ SPACE(f(n) · log(n)) (Theorem of the spatial hierarchy)

From the above properties the following hierarchy holds:
L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE

Note that at least one of the four inclusions is strict for the theorem of the spatial
hierarchy.

Any classC has itscomplementary classdenotes as co-C and defined as follows: for
any languageL in Σ′, letL denote itscomplement, that is co-C is {L | L ∈ C}.
LetL1 andL2 be languages. Assume that there is aDTM T such that

• For all input stringsI, we haveI ∈ L1 if and only if T(I) ∈ L2, whereT(I)
denotes the output ofT on inputI.

• T halts within spaceO(log n).

ThenT is called alogarithmic-space reductionfrom L1 to L2 and we say thatL1

is reducibleto L2. Let C be a set of languages. A languageL is calledC-hard if
any languageL′ in C is reducible toL. If L is C-hard andL ∈ C thenL is called
C-complete.

The polynomial hierarchy.

In order to define the polynomial hierarchy we introduce the oracle Turing machines.
Given a languageA anoracleDTM TA, also called aDTM with oracleA, is an
ordinaryDTM augmented by an additionalquery tapeand additional three states:
query, ∈, /∈. WhenTA is in the statequery the computation proceeds as usual,TA

changes its state fromquery to ∈ or /∈ depending whether the string present on the
query tape belongs toA or not; whenTA reaches the state∈ or /∈ the query tape is
instantaneously erased.

Thus letC be a set of languages, the complexity classesPC andNPC are defined as
follows. For a languageL, it is L ∈ PC (or L ∈ NPC) iff there is some language
A ∈ C and some polynomial-time oracleDTM (or NDTM) TA such thatTA

decidesL.

The polynomial hierarchy consists of the classes∆P
k , ΣP

k , ΠP
k (conk ≥ 0) defined

as follows:

∆P
0 = ΣP

0 = ΠP
0 = P;

Fork > 0:

∆P
k+1 = PΣP

k ; ΣP
k+1 = NPΣP

k ; ΠP
k+1 = co-ΣP

k+1.

Thus,∆P
k+1 is the set of languages decided in polynomial time by someDTM

with an oracle forΣP
k problems. AnalogouslyΣP

k+1 is the set of languages decided

10 1 Preliminaries

in polynomial time by someNDTM with an oracle forΣP
k problems. Finally, the

classΠP
k contains all the languages whose complement is inΣP

k . Note that∆P
1 =

PP = P, ΣP
1 = NPP = NP andΠP

1 = co-ΣP
1 = co-NP. Moreover∆P

2 = PNP,
that is∆P

2 is the set of languages that can be decided by calling polynomial times an
oracleNP.

Previous classes define a polynomial hierarchy in which the following properties
hold:

1. ∆P
k ⊇ (ΣP

k−1 ∪ΠP
k−1);

2. ∆P
k ⊆ (ΣP

k ∩ΠP
k).

The set of classes in the polynomial hierarchy is denoted asPH (polynomial hierar-
chy) and is defined asPH=

⋃
k≥0Σ

P
k .

1.5 Complexity of Datalog Queries

We refer to a queryQ = (A,P) over a databaseI under possible (resp. certain)
semantics, asking whether an atomA belongs to some stable model (resp. all stable
models) ofP∪I. There are two main kinds of complexity connected to this problem
[144]:

• Thedata complexity is the complexity of the problem whenP is fixedwhile I
andA are theinput.

• The program complexity is the complexity of the problem whenI andA are
fixedwhileP is theinput.

The complexity of this problem depends onP [44]. If we consider data complexity,
the problem is:

• P-complete for both semantics ifP is normal and positive;

• P-complete for both semantics ifP is normal and stratified;

• NP-complete (resp. coNP-complete) under possible semantics (resp. certain se-
mantics) ifP is normal;

• ΣP
2 -complete (resp.ΠP

2 -complete) under possible semantics (resp. certain se-
mantics) ifP is disjunctive;

While if we consider program complexity, the problem is:

• EXPTIME-complete for both semantics ifP is normal and positive;

• EXPTIME-complete for both semantics ifP is normal and stratified;

• NEXPTIME-complete (resp. co-NEXPTIME-complete) under possible se-
mantics (resp. certain semantics) ifP is normal.

• NEXPTIMENP-complete (resp. co-NEXPTIMENP-complete) under possible
semantics (resp. certain semantics) ifP is disjunctive.

2

Techniques for Repairing and Querying

Summary. This chapter gives an informal description of the main techniques for repairing
and querying inconsistent databases proposed in the literature. After a brief introduction to
these techniques, some of them will be described in more details.

2.1 Introduction

Logic programming based approaches enabling the computation of repairs and con-
sistent answers in a possibly inconsistent database have been proposed in [12, 13, 39,
40, 70, 71, 145].

In [13] a logical characterization of the notion of consistent answer in a possibly in-
consistent database is introduced. The technique is based on the computation of an
equivalent query, obtained by using the notion of residue developed in the context
of semantic query optimization, derived from the original source query. In [12] an
approach consisting in the use of a Logic Program with Exceptions (LPe) for ob-
taining consistent query answers is proposed. The semantics of a LPe is obtained
from the semantics for Extended Logic Programs, by adding extra conditions that
assign higher priority to exceptions. The method, given a set of integrity constraints
and an inconsistent database instance, consists in the direct specification of database
repairs in a logic programming formalism. Both the techniques in [13] and [12] have
been shown to be complete for universal binary integrity constraints and universal
quantified queries.

In [70, 71] a general framework for computing repairs and consistent answers over
inconsistent databases with universally quantified variables has been proposed. The
technique is based on the rewriting of constraints into extended disjunctive rules
with two different forms of negation (negation as failure and classical negation). The
disjunctive program can be used for two different purposes: to compute ‘repairs’ for
the database, and to produce consistent answers. The technique has been shown to
be sound and complete and more general than previously proposed techniques. A
detailed description of this approach will be provided in Chapter 3.

12 2 Techniques for Repairing and Querying

In [145] a general framework for repairing databases consisting in correcting faulty
values within the tuples, without actually deleting them (value-based approach), is
proposed. Repairs are represented by usingtrustable tableauthat allows conjunctive
queries to be answered efficiently.

In [40] a practical framework for computing consistent query answers for large, pos-
sibly inconsistent relational databases is proposed. The proposed framework han-
dles union of conjunctive queries and can effectively (and efficiently) extract indef-
inite disjunctive information from an inconsistent database. In [39] the problem of
minimal-change integrity maintenance in the context of integrity constraints (denial
constraints, general functional and inclusion dependencies, as well as key and for-
eign key constraints) in relational databases, has been investigated.

The recent literature on consistent query answering is reviewed in [37]. Specifically,
the paper discusses some computational and semantic limitations of consistent query
answering, and summarizes selected research directions in this area.

Other works have investigated the updating of data and knowledge bases through
the use of nonmonotonic formalisms [7, 8, 109, 111]. In [7] the problem of updating
knowledge bases represented by logic programs has been investigated. More specif-
ically, the authors introduce the notion of updating a logic program by means of
another logic program and a new paradigm, calleddynamic logic programming, to
model dynamic program update. The new paradigm has been further investigated in
[8], where the language LUPS (Language for Dynamic Updates), designed for speci-
fying changes to logic programs, has been proposed. Given an initial knowledge base
(in the form of a logic program) LUPS provides a way for sequentially updating it.
The declarative meaning of a sequence of sets of update actions in LUPS is defined
using the semantics of the dynamic logic program generated by those actions.

In [109, 111] revision programming, a logic-based framework for describing con-
straints on databases and providing a computational mechanism to enforce them, is
introduced. Revision programming, based on the extension of the logic programming
paradigm, captures those constraints that can be stated in terms of the membership
(presence or absence) of atoms in a database. Such a constraint is represented by a
revision ruleα ← α1, . . . , αk whereα and allαi are of the formin(a) andout(b).
A revision programis a collection of revision rules whose semantics, calledjustified
revision semantics, assigns to any databaseI a (possibly empty) collection ofjusti-
fied revisionsof I. A justified revision models a set ofrevision literalsupdates over
the inconsistent database that can be inferred by means of the revision program and
by the set of all atoms that do not change their state of presence or absence during
the update process.

A detailed description of this approach will be provided in Chapter 4.

In [110] the work of Fitting [60] that assigns annotations to revision atoms so that
providing a way to quantify the confidence (probability) that a revision atom holds is
re-examined. In particular, starting from the observation that this semantics does not
always provide results consistent with intuition, an alternative treatment of annotated

2.2 Computing Repairs 13

revision programs is proposed by changing both the notion of a model of a program
and the notion of a justified revision.

Postulates for update and revision operators for knowledge bases have been dis-
cussed in [81], whereas the problem of belief revision has been addressed in [79, 98].
In such a framework update consists in bringing the knowledge base up to date when
the world described by it changes, whereas revision is used when new information is
obtained about a static world. The computational complexity of several update op-
erators, proposed in the literature, has been discussed in [50] (see also [19] for the
special problem of updating the knowledge of agents). All these works do not take
into account the possibility of indicating the update operations to make the database
consistent.

Another category of approaches proposed in the literature, for the automatic main-
tenance of databases, uses ECA (Event-Condition-Action) rules for checking and
enforcing integrity constraints. The application of the ECA paradigm of active data-
bases to policies—collection of general principles specifying the desired behavior of
systems—has been investigated in [38]. A framework for enforcing constraints by
issuing actions to be performed to correct violations has been proposed in [32] and
[33]. Policies for database maintenance using situation calculus have been studied in
[22], whereas the problem of maintaining integrity constraints in database systems
has been considered in [114] where an algorithm for automatically transforming an
integrity constraint into a set of active rules has been proposed.

In the rest of this chapter we will provide an informal description of the main tech-
niques for repairing and querying inconsistent databases.

2.2 Computing Repairs

An interesting technique has been proposed in [13]. The technique introduces a log-
ical characterization of the notion of consistent answer in a possibly inconsistent
database. Queries are assumed to be given in prefix disjunctive normal form.

A queryQ(X) is a prenex disjunctive first order formula of the form:

K[
s∨

i=1

(
mi∧
j=1

Pi,j(Ui,j) ∧
ni∧

j=1

¬Ri,j(Vi,j) ∧ Ψi)]

whereK is a sequence of quantifiers,Ψi contains only built-in predicates andX
denotes the list of variables in the formula.

Given a queryQ(X) and a set of integrity constraintsη a tuplet is a consistent
answerto the queryQ(X) over a database instanceI, written (Q, I) |=c t, if t is a
substitution for the variables inX such that for each repairI ′ of I, (Q, I ′) |=c t.

14 2 Techniques for Repairing and Querying

Example 2.1.Consider the relationStudent with schema(Code, Name, Faculty)
with the attributeCode as key. The functional dependencies:

Code→ Name
Code→ Address

can be expressed by the following two constraints:

∀(X,Y, Z, U, V) [Student(X,Y, Z) ∧ Student(X,U, V) ⊃ Y = U]
∀(X,Y, Z, U, V) [Student(X,Y, Z) ∧ Student(X,U, V) ⊃ Z = V]

Assume to have the following inconsistent instance of the relationStudent:

Code Name Faculty

s1 Mary Engeneering
s2 John Science
s2 Frank Engeneering

Student

The previous inconsistent database admits two different repairs, sayRepair1 and
Repair2, which are reported in the following.

Code Name Faculty

s1 Mary Engeneering
s2 John Science

Repair1

Code Name Faculty

s1 Mary Engeneering
s2 Frank Engeneering

Repair2

The consistent answers to the query∃Z(Student(s1, Y, Z)) is “Engineering”, while
there is no consistent answer to the query∃ Z(Student(s2, Y, Z)). 2

General approach.

The technique is based on the computation of an equivalent queryTω(Q) derived
from the source queryQ. The definition ofTω(Q) is based on the notion of residue
developed in the context of semantic query optimization.

More specifically, for each literalB, appearing in some integrity constraint, a residue
Res(B) is computed. Intuitively,Res(B) is a universal quantified first order formula
which must be true, because of the constraints, ifB is true. Universal constraints can
be rewritten as denials.

LetA be a literal,r a denial of the form← B1∧ . . .∧Bn ,Bi (for some1 ≤ i ≤ n) a
literal unifying withA andθ the most general unifier forA andBi such that variables
in A are used to substitute variables inBi, but they are not substituted by other
variables. Then, the residue ofA with respect tor andBi is:

2.2 Computing Repairs 15

Res(A, r,Bi) = not(B1 ∧ . . . ∧Bi−1 ∧Bi+1 ∧ . . . Bn) θ
= not B1θ ∨ . . . ∨ not Bi−1 θ ∨ not Bi+1 θ ∨ . . . not Bnθ

The residue ofA with respect tor isRes(A, r) =
∧

Bi|A=biθ
Res(A, r,Bi) consist-

ing of the conjunction of all the possible residues ofA in r, whereas the residue of
A with respect to a set of integrity constraintsη isRes(A) =

∧
r∈η Res(A, r).

Thus, the residue of a literalA is a first order formula which must be true ifA is true.

The operatorTω(Q) is defined as follows:

• T0(Q) = Q;

• Ti(Q) = Ti−1(Q) ∧R whereR is a residue of some literal inTi−1.

The operatorTω represents the fixpoint ofT .

It has been shown that the operator T has a fixpoint for universal quantified queries
and universal binary integrity constraints, that is constraints, which written in dis-
junctive format, are of the form:∀ X(B1 ∨ B2 ∨ θ) whereB1, B2 are literals andθ
is a conjunctive formula with built-in operators.

Example 2.2.Consider the database databaseI:

I = {Supply(c1, d1, i1), Supply(c2, d2, i2), Class(i1, t), Class(i2, t)}

with the integrity constraint, defined by the following first order formula:

∀(X,Y, Z)[Supply(X,Y, Z) ∧ Class(Z, t) ⊃ X = c1]

stating that only supplierc1 can supply items of typet. The databaseI is inconsistent
because the integrity constraint is not satisfied (an item of typet is also supplied by
supplierc2). The constraint can be rewritten as:

← Supply(X,Y, Z) ∧ Class(Z, t) ∧X 6= c1

where all variables are (implicitly) universally quantified. The residue of the literals
appearing in the constraint are:

Res(Supply(X,Y, Z)) = not Class(Z, t) ∨X = c1
Res(Class(Z, t)) = not Supply(X,Y, Z) ∨X = c1

The iteration of the operatorT to the query goalClass(Z, t) gives:

• T0(Class(Z, t)) = Class(Z, t),
• T1(Class(Z, t)) = Class(Z, t) ∧ (not Supply(X,Y, Z) ∨X = c1),
• T2(Class(Z, t)) = Class(Z, t) ∧ (not Supply(X,Y, Z) ∨X = c1),

At Step 2 a fixpoint is reached since the literalClass(Z, t) has been ‘expanded’ and
the literalnot Supply(X,Y, Z) does not have a residue associated to it. Thus, to
answer the queryQ = Class(Z, t) with the above integrity constraint, the query
Tω(Q) = Class(Z, t) ∧ (not Supply(X,Y, Z) ∨ X = c1) is evaluated. The com-
putation ofTω(Q) over the above database gives the resultZ = i1. 2

16 2 Techniques for Repairing and Querying

The following example shows a case in which the technique proposed is not com-
plete.

Example 2.3.Consider the integrity constraint

(X,Y, Z)[p(X,Y) ∧ p(X,Z) ⊃ Y = Z]

the databaseI = {p(a, b), p(a, c)} and the queryQ = ∃p(a, U) (we are using the
formalism used in [13]). The technique proposed generates the new query

Tω(Q) = ∃U [p(a, U) ∧ Z(¬p(a, Z) ∨ Z = U)]

which is not satisfied contradicting the expected answer which istrue.

This technique has also been shown to be complete for universal binary integrity
constraints and universal quantified queries. Moreover the detection of fixpoint con-
ditions is, generally, not easy. 2

2.3 Querying Database using Logic Programs with Exceptions

The new approach proposed by Arenas-Bertossi-Chomicki in [12] consists in the use
of a Logic Program with Exceptions (LPe) for obtaining consistent query answers.
An LPe is a program with the syntax of an extended logic program (ELP), that is, in
it we may find both logical (or strong) negation (¬) and procedural negation (not). In
this program, rules with a positive literal in the head represent a sort of general de-
fault, whereas rules with a logically negated head represent exceptions. The semantic
of an LPe is obtained from the semantics for ELP’s, by adding extra conditions that
assign higher priority to exceptions. The method, given a set of integrity constraints
η s and an inconsistent database instance, consists in the direct specification of data-
base repairs in a logic programming formalism. The resulting program will have both
negative and positive exceptions, strong and procedural negations, and disjunctions
of literals in the head of some of the clauses; that is it will be a disjunctive extended
logic program with exceptions. As in [13] the method considers a set of integrity
constraintsη written in the standard format

n∨
i=1

Pi(Xi) ∨
m∨

i=1

¬Qi(Yi) ∨ ϕ

whereϕ is a formula containing only built-in predicates, and there is an implicit
universal quantification in front. This method specifies the repairs of the databaseI
that violateη, by means of a logical program with exceptionsΠI . In ΠI for each
predicateP a new predicateP ′ is introduced and each occurrence ofP is replaced
by P ′. More specifically,ΠI is obtained by introducing:

1. Persistence Defaults.For each base predicateP , the method introduces the per-
sistence defaults:

2.3 Querying Database using Logic Programs with Exceptions 17

P ′(x) ← P (x)
¬P ′(x)← not P (x)

The predicateP ′ is the repaired version of the predicateP , so it contains the
tuples corresponding toP in a repair of the original database.

2. Stabilizing Exceptions.From each integrity constraintic and for each negative
literal not Qi0 in ic, the following negative exception clause is introduced:

¬Q′i0(yi0)←
∧

i=1..n

¬P ′i (xi),
∧
i 6=i0

Q′i(yi), ϕ′

whereϕ′ is a formula that is logically equivalent to the logical negation ofϕ.

Similarly, for each positive literalPi1 in the constraint it is generated the follow-
ing positive exception clause:

P ′i1(xi1)←
∧
i 6=i1

¬P ′i (xi),
∧

i=1..m

Q′i(yi), ϕ

The meaning of the Stabilizing Exceptions is to make the integrity constraints be
satisfied by the new predicates. These exceptions are necessary, but not sufficient
to ensure that the changes the original subject should be subject to, in order to
restore consistency, are propagated to the new predicates.

3. Triggering Exceptions.From the integrity constraint in standard form it is pro-
duced the following disjunctive exception clause:∨

i=1..n

P ′i (xi) ∨
∨

i=1..m

¬Q′i(yi)←
∧

i=1..n

not Pi(xi),
∧

i=1..m

Qi(yi), ϕ′

The programΠI constructed as shown above is a ‘disjunctive extended repair logic
program with exceptions for the database instanceI ′. In ΠI positive defaults are
blocked by negative conclusions, and negative defaults, by positive conclusions.

Example 2.4.Consider the databaseI = {p(a), q(b)}with the inclusion dependency
η:

p(X) ⊃ q(X)

In order to specify the database repairs the new predicatesp′ andq′ are introduced.
The resulting repair program has four default rules expressing thatp′ andq′ contain
exactly whatp and q contain, resp.:

p′(x)← p(x)
q′(x)← q(x)
¬p′(x)← not p(x) and
¬q′(x)← not q(x)

18 2 Techniques for Repairing and Querying

two stabilizing exceptions :

q′(x)← p′(x)
¬p′(x)← ¬q′(x)

and the triggering exception:

¬p′(x) ∨ q′(x)← p(x), not q(x)

The e-answer sets are:

{p(a), q(b), p′(a), q′(b),¬p′(a)}
{p(a), q(b), p′(a), q′(b), q′(b)}

that correspond to the two expected database repairs. 2

The method can be applied to a set of domain independent binary integrity con-
straints, that is a set that can be checked with respect to satisfaction by looking to the
active domain, and such that in each constraint appear at most two literals.

2.4 Query Answering in the Presence of Constraints

In [27, 28, 92, 93] it is proposed a framework for data integration that allows the spec-
ification of a general form of integrity constraints over the global schema, and it is
defined a semantics for data integration in the presence of incomplete and inconsis-
tent information sources. Moreover a method for query processing under the above
semantics, when key and foreign key constraints are defined upon the global schema,
is proposed.

Formally, the data integration systemI is a triple〈G,S,MG,S〉whereG is the global
schema,S is the source schema andMG,S is the mapping betweenG andS. More
specifically, theglobal schemais expressed in the relational model with both key
and foreign key constraints, thesource schemais expressed in the relational model
without integrity constraints, and the mapping is defined between the global and
source schema, that is each relation inG is associated with a view, that is a query
over the sources.

Example 2.5.An example of a data integration system, reported in [27], isI =
〈G,S,MG,S〉 whereG is constituted by the following relation symbols:

student(Scode, Sname, Scity)
university(Ucode, Uname)
enrolled(Scode, Ucode)

and the constraints:

2.4 Query Answering in the Presence of Constraints 19

key(student) = Scode
key(university) = Ucode
key(enrolled) = Scode, Ucode
enrolled[Scode] ⊆ student[Scode]
enrolled[Ucode] ⊆ university[Ucode]

S consists of the three sources:s1, of arity 4, containing information about students
with their code, name, city and date of birth;s2, of arity 2, containing codes and
names of universities; ands3, of arity 2, containing information about enrollment of
students in universities.

The mappingMG,S is defined by:

ρ(student) = student(X,Y, Z)← s1(X,Y, Z,W)
ρ(university) = university(X,Y)← s2(X,Y)
ρ(enrolled) = enrolled(X,Y)← s3(X,Y)

2

The semantics of a data integration system is given by considering a source database
D for I, that is a database for the source schemaS containing a relationrD for each
sourcer in S. Any database forG, sayB, is aglobal databasefor I, and it is said to
be legalwith respect toD if it:

• satisfies the integrity constraints defined onG;

• satisfies the mapping with respect toD, that is for each relationr in G, the set of
tuplesrB thatB assigns tor contains of the set of tuplesρ(r)D computed by the
associated queryρ(r) overD:

ρ(r)D ⊆ rB

Note that each view is consideredsound, that is the data provided by the sources are
not necessary complete. It is possible to formulate other assumption on views [2], in
particular a view may becomplete, that is for each view inG it is ρ(r)D ⊇ rB or
exact, that is for each view inG it is ρ(r)D = rB.

Definition 2.6. Given a source databaseD for I, the semantics ofI with respect to
D, denoted bysemD(I, D) is the set of database defined as follows:

semD(I, D) = {B | B is a legal global database forI, with respect toD}

If semD(I, D) 6= ∅, thenI is said to beconsistent with respect toD. 2

Thus, the semantics of a data integration system is given in terms of a set of data-
bases.

A query q to a data integration systemI is a conjunctive query over the global
schema, whose atoms have symbols inG as predicates. A tuple(c1, . . . , cn) is con-
sidered an answer to the query only if it is acertainanswer, that is if it satisfies the

20 2 Techniques for Repairing and Querying

query in every database that belongs to the semantics of the data integration system.
More formally, acertain answerof a queryq with arity n with respect toI andD is
the set:

qI,D = {(c1, . . . , cn)|for each DB ∈ sem(I,D), (c1, . . . , cn) ∈ qDB}

whereqDB denotes the result of evaluatingq in the databaseDB.

The retrieved global database, denoted byret(I,D) is obtained by computing, for
each relationr of the global schema, the relationrD; this is done by evaluating
the queryρ(r) over the source databaseD. Note that theretrieved global database
satisfies all the key constraints inG, as it is assumed thatρ(r) does not violate the
key constraints, thus ifret(I,D) also satisfies the foreign key constraints then the
answer to a queryq can be done by simply evaluating it overret(I,D). If it is the
case thatret(I,D) violates the foreign key constraints then tuples have to be added
to the relations of the global schema in order to satisfy them. Obviously in general
there are an infinite number of legal databases that are coherent with the retrieved
global database, even if it is shown that there exists one, thecanonical database,
denoted bycan(I, D), that represents all the legal databases that are coherent with
the retrieved global database.

Thus, formally the answer to a queryq can be given by evaluating it oncan(I,D).
Anyhow, the computation of the canonical database is impractical as, generally, the
number of databases can be infinite, thus in [27] it is defined an algorithm that
computes the certain answers of a conjunctive queryq without actually building
can(I,D).
The algorithm transforms the original queryq into a new query, called theexpansion
of q with respect toG, denoted asexpG(q), over the global schema, so that the answer
expG(q) over the (virtual) retrieved global database is equal to the answer toq over
the canonical database, that isexpG(q) is independent of the source databaseD.

Roughly speaking, the algorithm is based on the idea of expressing foreign key con-
straints in terms of rules of a logic programPG with functional symbols (used as
Skolem functions).

In order to build the programPG :

• A new relationr′, called primed relation, is added for each relationr in G.

r′(X1, . . . , Xn)← r(X1, . . . , Xn)

• for each foreign keyr1[A] ⊆ r2[B] in G whereA andB are sets of attributes and
B is a foreign key forr2 the rule:

r′2(X1, . . . , Xh, fh+1(X1, . . . , Xh), . . . , fn(X1, . . . , Xh))← r′1(X1, . . . , Xh, . . . , Xn)

is added, wherefi are Skolem functions and it is assumed, for simplicity, that
the firsth attributes are involved in the foreign key.

The programPG is then used to generate the query(expG(q)) associated toq. In
particularPG is used to generate thepartial evaluation treeof the queryq, whose
non-empty leaves constitute the reformulation(expG(q)) of the queryq.

2.4 Query Answering in the Presence of Constraints 21

Example 2.7.Suppose the global schemaG of a data integration system consists of
the following three relations:

person(Pcode,Age, CityofBirth)
student(Scode, Univerisity)
enrolled(Scode, Ucode)

with the constraints:

key(person) = Pcode
key(student) = Scode
key(city) = Name
person[CityofBirth] ⊆ city[Name]
city[Major] ⊆ person[Pcode]
student[SCode] ⊆ person[Pcode]

The logic programPG uses the predicateperson, of arity 3,student, with arity 1 and
city with arity 2 and constitutes the following program:

person′(X,Y, Z) ← person(X,Y, Z)
student′(X,Y) ← student(X,Y)
city′(X,Y) ← city(X,Y)
city′(X, f1(X)) ← person′(Y, Z,X)
person′(Y, f2(Y), f3(Y)) ← city′(X,Y)
person′(Y, f4(X), f5(X))← student′(X,Y)

Suppose we have the queryq:

q(X)← person(X,Y, Z)

The non-empty leaves of the partial evaluation tree ofq provide the following expan-
sionq′ = expG(q) of the query:

q′(X)← person(X,Y, Z)
q′(X)← student(X,W1)
q′(W2)← city(Z,W2)

Thus the expanded query searches for codes of persons not only in the relation
person, but also instudent andcity, where, due to the integrity constraints, it is
known that codes of persons are stored. 2

The above approach is further extended in [92] where the query answer problem in
the same setting, but under a loosely-sound semantics of the mapping is investigated.
The difference with respect to the previous case can be seen in a situation in which
there is no global database that is both coherent withG and satisfies the mapping with
respect toD. In this caseret(I,D) violates the constraints inG, that is there exists
r ∈ G andt1, t2 ∈ ret(I,D) such thatkey(r) = X, t1[X] = t2[X], andt1 6= t2.

22 2 Techniques for Repairing and Querying

Under the strictly-sound semantics this means that there are no legal databases forI
with respect toD.

In order to avoid this problem it is defined a loosely-sound semantics that allows to
always have a coherent database by restricting the set of tuples to those satisfying
the constraints. The semantics allows the elimination of tuples fromret(I,D), in
particular it implies that the legal databases are the ones that are “as sound as possi-
ble”, thus it considers only databases coherent with the constraints that “minimize”
the elimination of tuples fromret(I,D).
The method for computing a certain answer identifies the legal databases with re-
spect to toI ′, obtained fromI by eliminating all the foreign key constraints inG.
Obviously, each of such databasesB is contained inret(I,D). Then he legal data-
bases are used in the query reformulation technique for the strictly-sound semantics
previously illustrated.

2.5 Complete Answers from Incomplete Databases

In [94] the problem of answering queries from databases that may be incomplete is
considered. A database isincompleteor partial if tuples in each relation are only a
subset of the tuples thatshouldbe in the relation and, generally, only a part of each
relation is known to be complete. Formally, this situation can be modeled as having
two sets of relations, thevirtual and theavailablerelations. The virtual relations are
R̄ = R1, . . . , Rn while the available relations arēR′ = R′1, . . . , R

′
n and for every

i ∈ {1..n} the extension of the available relationR′i contains asubsetof the tuples
in the extension of the virtual relationRi.

The important question addressed in [94] is theanswer completenessproblem, that
is deciding whether an answer to a given query is guaranteed to be complete even if
the database is incomplete or in other words if the answer is guaranteed to contain all
the tuples we would have obtained by evaluating the query over the virtual relations.
Clearly, if it is known thatR′i ⊆ Ri for eachi, 1 ≤ i ≤ n, then the answer to the
query may be incomplete; however, it is often the case that an available relation, say
R′i has the property of beingpartially complete, that is some parts ofR′i are identical
toRi. The local completeness property guarantees that if the answer to the query just
depends on the complete portion it is guaranteed to be complete.

Local completeness for a relationR′ is specified by a constraint on the tuples ofR
that areguaranteedto be inR′.

More formally:

Definition 2.8. (Constraints) LetR be a relation of arityn, andX1, . . . , Xn be vari-
ables standing for its attributes. A constraintC on the relationR is a conjunction
of atoms that includes constants, variables fromX1, . . . , Xn and other variables.
The relations used inC can be either database relations or comparison predicates,
but notR itself. A tuple(a1, . . . , an) satisfiesC with respect to a database instance

2.5 Complete Answers from Incomplete Databases 23

if the conjunction resulting from substitutingai for Xi in C is satisfied inI. The
complement ofC is denoted by¬C. 2

Definition 2.9. (Local Completeness) Let C be a constraint on the relationR. A
database instanceI that includes the relationsR andR′ is said to satisfy the local-
completeness statementLC(R′, R, C) if r′ contains all the tuples ofR that satisfy
C, that is if the results of the following two queries are identical overI:

q1(X1, .., Xn)← R(X1, .., Xn), C
q2(X1, .., Xn)← R′(X1, .., Xn), C

2

The solution to the answer-completeness problem is given by showing that this prob-
lem is equivalent to the one of detecting the independence of a query from an inser-
tion update, that is the problem of determining whether the answer to a query changes
as a result of an insertion to the database. In particular letQ be a union of conjunc-
tive queries over the virtual relations̄R and comparison predicates, and letΓ be a set
of local completeness statements of the formLC(R′j , Rj , Cj), whereR′j ∈ R̄′ and
Rj ∈ R̄. The queryQ is answer-complete w.r.tΓ if and only if In+(Q, (Rj ,¬ Cj))
holds for every statement inΓ . In+(Q, (Rj ,¬ Cj)) states that the queryQ is inde-
pendent from the insertion update(Rj ,¬ Cj), that is for any database instanceI and
any database instanceI ′ that results fromI by adding toR some tuples that satisfy
¬ Cj ,Q(I) = Q(I ′).

Theorem 2.10.LetQ be a union of conjunctive queries over the virtual relationsR̄
and comparison predicates, and letΓ be a set of local completeness statements of
the formLC(R′j , Rj , Cj), whereR′j ∈ R̄′ andRj ∈ R̄. The queryQ is answer-
complete w.r.tΓ if and only ifIn+(Q, (Rj ,¬ Cj)) holds for every statement inΓ .

whereIn+(Q, (Rj ,¬ Cj)) states the queryQ is independent from the insertion up-
date(Rj ,¬ Cj), that is for any database instanceI and any database instanceI ′
that results fromI by adding toR some tuples that satisfy¬ Cj ,Q(I) = Q(I ′). 2

With the previous theorem the problem of detecting independence can be solved by
using one of the algorithms studied in the literature.

The equivalence problem is undecidable for recursive queries [132], while it is de-
cidable in the following cases:

• if each of theCj ’s contains only arguments ofRj or constants, or

• if the head ofQ contains all the variables of the body ofQ, and neither theCj ’s
orQ use the comparison predicates.

Generally, the problem of deciding answer-completeness is inΠP
2 . The best known

algorithm for the independence problem and therefore for the answer completeness
problem is exponential, even if it has been shown that if updates are described using
a conjunction of comparison predicates the independence problem can be decided in
polynomial time.

24 2 Techniques for Repairing and Querying

2.6 Condensed Representation of Database Repairs for
Consistent Query Answering

In [145] a general framework for repairing databases is proposed. In particular the
author stressed that an inconsistent database can be repaired without deleting tu-
ples (tuple-based approach), but using a finer repair primitive consisting in correct-
ing faulty values within the tuples, without actually deleting them (value-based ap-
proach).

Example 2.11.Suppose to have the following set of tuples reporting the dioxin levels
in food samples:

Sample SampleDate Food AnalysisDate Lab DioxinLevel
110 17 Jan 2002 poultry 18 Jan 2002 ICI normal
220 17 Jan 2002 poultry 18 Jan 2002 ICB alarming
330 18 Jan 2002 beef 18 Jan 2002 ICB normal

Dioxin Database

and the constraints :

∀ S,D1, F,D2, L,D(Dioxin(S,D1, F,D2, L,D) ⊃ D1 ≤ D2)

that imposes that the date of analyzing a given sample cannot precede the date the
sample was taken.

The first tuple in the Dioxin Database says that the sample110 was taken on
17 Jan 2002 and analyzed the day after at theICI lab, and that the dioxin level
of this sample was normal. While sample110 respects the constraint, sample220
violates it. An inconsistency is present in the database and the author claims toclean
it in a way that avoids deleting the entire tuple, that is acting at the attribute level and
not at the tuple level. 2

Given an inconsistent database a consistent answer can be obtained by leaving the
database in its inconsistent state, and by propagating the consistent portion of the
database in the answer, that is the set of tuples matching the query and satisfying
the constraints. Since the repair work is deferred until query time this approach is
called late-repairing. Given a satisfiable set of constraintsη, that is a set of finite
constraints, and a relationI, apply a database transformationhη such that for every
queryQ,Q(hη(I)) yields exactly the consistent answer toQ on inputI andη.

Observe thathη(I) is not necessarily a repair forI andη, and can be thought as
a condensed representationof all possible repairs forI andη that is sufficient for
consistent query answering. The practical intuition is that an inconsistent database
I is firstly transformed throughhη in such a way that the subsequent queries on

2.6 Condensed Representation of Database Repairs for Consistent Query Answering 25

the transformed database retrieve exactly the consistent answer . Since database is
modified prior to query execution, this approach is calledearly-repairing.

General Repair Framework

Before formally introducing the framework let’s give some preliminaries. The frame-
work focuses on a unirelational database, and the set of constraints, denotedη, are
expressed in a first-order(FO) language using a simplen-ary predicate symbol. A
substitutionθ is a set of pairs{X1/t1, ..., Xk/tk} whereX1, ..., Xk are distinct vari-
ables,t1, ..., tk are terms and no variableXi appears in any termtj . The application
of a substitutionθ to a set of literalsS, writtenSθ, is the set of literals derived fromS
by the simultaneous replacing of all the variables appearing inθ with the associated
terms. A substitutionθ is a unifier for a set of literalsS if Sθ is a singleton. We say
that a set of literalsS unify if there exists a unifierθ for S. A unifier θ for S is called
a most general unifier (mgu)for S if, for each unifierσ of S, σ is an instance ofθ,
i.e. there is a substitutionδ such thatσ = θδ. A tableauis a relation that can contain
variables. A tableau T is said toθ − subsume a tableauS, here denotedT � S, if
there exists a substitutionθ such thatθ(S) ⊆ T . Theθ − subsumption, commonly
used between clauses, is here used between tableaux representing the negation of
a clause: the tableau{t1, ..., tm}, can be treated as∃∗(t1 ∧ ... ∧ tm), that is as the
negation of the clause∀∗(t1 ∧ ... ∧ tm). Clearly,T ⊇ S implies T � S; hence
θ − subsumption weakens the order⊇. If G is a tableau, thengrd(T) denotes the
smallest relation that contains every ground tuple of T. A valuation is a mapping
from variables to constants, extended to be the identity on constants, a substitution
is a mapping from variables to symbols, extended to be the identity on constants.
Valuation and substitution are extended to tuples and tableaux in a natural way. We
write id for the identity function on symbol; andidp = q, wherep andq are not
two distinct constants, for a substitution that identifiesp andq and that is the identity
otherwise. That is ifp is a variable andq a constant, thenidp=q = {p/q} . If p andq
are variables, thenidp = q can be either{p/q} or {q/p}. Given two tableauxT and
S, of the same given arity, we writeS � T iff there exists a substitutionθ such that
θ(T) ⊆ S. We writeS ∼ T iff S � T andT � S; we writeS � T iff S � T and
it S ∼ T does not hold. A relationF (a tableau in this context)subsatisfies η if
there exists a relationJ � F such thatJ |= η.

Fixing (or repairing) a relationI with respect to a setη of integrity constraints
means modifyingI in order to bring it in accordance withη, by ensuring theminimal
changeprinciple, that is the result of fixing has to be as close as possible to the initial
relation. In particular fixing a relation is an operation consisting ofdownfixing
followed byupfixing.

Downfixingmeans that we pass fromI to F , calledfix, so thatI � F andF sub-
satisfiesη. Upfixingmeans that we subsequently pass fromF to a relationM � F
such thatM |= η, whereM is calledmend. In fixing a relation it is required that the
result of fixing is as close as possible to the initial relation.

26 2 Techniques for Repairing and Querying

In this framework the minimal change principle is settled by using themaximal con-
tent preservation criterion: downfixing retains as much as possible from the original
relation, and upfixing consists of a minimal completion:F should be such that there
exists noF ′ that also subsatisfiesη and such thatI � F ′ � F , that isF ′ is closer
to I thanF . Next, for a givenF ,M should be such that there exists noM ′ such that
M �M ′ � F andM ′ |= η. This criteria only relies on the order�.

For the order� the⊇ or theθ-subsumption could be chosen. Anyhow, the author
points out that both prove to be inadequate. In particular⊇ is toostrongfor repair-
ing as it does not allow to differentiate between tuples that agree on most attributes
and tuples that disagree on all attributes: the tuples are simply treated as unequal in
both cases, thus the repairing is tuple-based. On the other side� is too weak for
downfixing as it can produce mends with spurious tuples.

Therefore, the author claims downfixing has to be based on a relation, denotedv, in
between⊇ and� . More formally, given two tableauxT andS, of the same given
arity, S v T iff there exists a substitutionθ such thatθ(T) ⊆ S and|θ(T)| ⊆ |T |.
The latter condition ensures thatθ does not identify distinct tuples ofT .

Related to the chosen order,≤ , fix and mend are defined as follows. Given a relation
I, of arity n, and a set of constraintsη:

• a fix for I andη is a tableauF such thatI v F , F subsatisfiesη, and for every
tableauF ′ if I w F ′ � F , thenF ′ does not subsatisfyη.

• amendfor I andS is a relationM with M |= η such that there exists a fixF for
I andη satisfying : (i)M � F and (ii) for every relationM ′, if M � M ′ � F ,
thenM ′ does not satisfyη.

Note that the requirementI v F in the above definition implies the existence of a
substitutionθ such thatθ(F) ⊆ I and |θ(F)| = |F |, thus for a given tuplet ∈ I
there can be at most one repairing tuplet′ ∈ F such thatθ(t′) = t.

Trustable Query Answers

Obviously, for a given relation and a given set of constraints, the number of mends is
generally infinite. Thus the author investigates the problem of querying these mends
in order to obtain a consistent answer, here calledtrustable answer, that is answer
satisfying the set of constraints.

More formally given a unirelational database consisting of a relationI, of arity n,
and a set of constraintsη and a queryq, the ground tuplet is a trustable answer toq
on inputη iff t ∈ q(M) for every mendM for I andη.

Example 2.12.Continuing the previous example. Let us consider the query:

Answer(S)← Dioxin(S,D1, F,D2, L, ”alarming”)

2.6 Condensed Representation of Database Repairs for Consistent Query Answering 27

asking for samples with an alarming dioxin level. The identification220 is a trustable
answer, but it is not a trustable answer for the query asking for a sample date of
17 Jan 2002. In fact, many mends show a different sample date for the sample220.

A classQ of queries isearly-repairablewith respect to a class of constraintsC, if
for every satisfiable set of constraintsη ∈ C and for every relationI, there exists
a computable relationI ′ such that for every queryq ∈ Q, q(I ′) is exactly the set
of trustable answers toq on inputI andη. After formally defining the trustable an-
swer the author focuses on the classes of queries and constraints for which trustable
answers can be effectively computed, examining conjunctive queries and full depen-
dencies.

Tableau Queries and Full Dependencies

A tableau queryis a pair(B, h) whereB is a tableau andh is a tuple (calledsum-
mary) such that every variable inh also occurs inB; b andh need not have the same
arity. Let τ = (B, h) be a tableau query, andT a tableau of the same arity asB. A
tuplet is ananswerto τ on inputT iff there exists a substitutionθ for the variables
in B such thatθ(B) ⊆ T andθ(h) = t. The set of all answers toτ on inputT is
denotedτ(T).
A full dependencyis either a full tuple-generating dependency(ftgd) or a full
equality-generating dependency(fegd). A ftgd takes the form of a conjunctive
query (B, h) whereB andh have the same arity. Theftgd τ = (B, h) is satis-
fied by a tableauT , denotedT |= τ , iff T ∪ τ(T) ∼ T . A fegd is of the form
(B, p = q) whereB is a tableau andp andq are symbols such that every variable
in {p, q} also occurs inB. Thefegd ε = (B, p = q) is satisfied by a tableauT ,
denotedT |= ε, iff for every substitutionθ, if θ(B) ⊆ T thenθ(p), θ(q) are not two
distinct constants andT ∼ idθ(p)=θ(q)(T).

Example 2.13.Consider a relationManufacturewith four attributes denotingdate,
product, color andquantity respectively. For example a tuple(12 Jan 2002, lock,
green, 1000)means that1000 green locks were manufactured on 12 Jan 2002. The
production line is subject to the constraints reported in Figure 2.13

In particular, thefegd’s ε1 and ε2 express that the date and the product uniquely
identify tuples inManufacture. ε2 captures the fact that8 Jan 2002 was a day of
strike, on which no products were manufactured (0 and 1 can be replaced by any
two distinct constants). Finally theftgd τ1 expresses that each production of a lock
involves the simultaneous production of a key in the same color.

The author shows that given two tableauxT andS and a set of full dependenciesη,
if T ∼ S andT |= S, thenS |= η.

It is known that every finite setS of tableaux has a greatest lower bound under�.
More formally a tableauL is a lower boundof a finite setS of tableaux iff for each
T ∈ S, T � L. A lower boundG of S is called thegreatest lower bound(glb) of S
iff G � L for every lower boundL of S.

28 2 Techniques for Repairing and Querying

1 2 3 4

x y z u
x y z′ u′

ε1

z = z′

1 2 3 4

x y z u
x y z′ u′

ε2

u = u′

1 2 3 4

8 January 2002 y z u
ε3

0 = 1

1 2 3 4

x lock z u
x key z u

τ1

0 = 1

The construction ofglb and tableau query commute up to∼. In fact, given two
tableauxT , S, a tableau queryτ = (B, h), aglb {T, S} and aglb of {τ(T), τ(S)},
thenτ(G) ∼ F .

Chasing Fixes

Thechase, originally introduced for deciding logical implication is used for repairing
databases. In particular, some results are generalized to tableaux that can contain
constants, need not be typed and in these equality is replaced by∼.

An artificial top element, denoted2 , is introduced to the semi-order〈T,2〉. Let
T 6= 2 andS be tableaux andη a set of full dependencies. We writeT |=η S if S
can be obtained fromT by a single application of one of the following chase rules:

• If τ = (B, h) is aftgd onη, thenT |=η T ∪ τ(T).
• Let (B, p = q) be afegd of η, andθ a substitution such thatθ(B) ⊆ T .

• If θ(p) and θ(q) are two distinct constants, thenT |=η 2; otherwise,T |=η

idθ(p)=θ(q)(T).

A chase ofT by S is amaximal(with respect to length) sequenceT = T0, T1, , Tn

of tableaux such that for everyi ∈ {1, ..., n}, Ti−1 |=η Ti andTi 6= Ti−1.

Requiring that chases be maximal tacitly assumes that chases are finite.

Given a tableauF 6= 2 and a set of full dependencies, then

• If T is a tableau in a chase ofF by η, thenT � F .

• Each chase ofF by S is finite.

• If T 6= 2 is the last element of a chase ofF by η, thenT |= η.

• If T 6= 2 is the last element of a chase ofF by η, andθ is a valuation mapping
distinct variables to new distinct constants not occurring elsewhere, thenθ(T) |=
η.

The author shows that given a set of full dependenciesη and a tableauF 6= 2, then
F subsatisfiesη iff chase(F, η) 6= 2. Thus a set of full dependenciesη is satisfiable
iff chase(∅, S) 6= 2.

2.6 Condensed Representation of Database Repairs for Consistent Query Answering 29

Example 2.14.Let’s continue the previous Example. The Figure 5.1 shows aMan-
ufacturerelation together with fixes and chase results. The integrity constraints are
violated: no items can have been produced on8 Jan 2002, and the production of 100
blue locks must entail 100 blue keys. Moreover red and blue keys cannot have been
manufactured on the same day.

Sample SampleDate Food AnalysisDate Lab DioxinLevel

110 17Jan2002 poultry 18Jan2002 ICI normal
220 17Jan2002 poultry 18Jan2002 ICB alarming
330 18Jan2002 beef 18Jan2002 ICB normal

Manufacture

1 2 3 4

x lock blue 110
x key z 110

F1

1 2 3 4

x lock blue 110
x key blue 110

chase(F1, η)

1 2 3 4

x lock z 110
x key red 110

F2

1 2 3 4

x lock red 110
x key red 110

chase(F2, η)

1 2 3 4

x lock blue 110
x key red 110

F3

1 2 3 4

x key red 110
x key blue 110

chase(F3, η)

1 2 3 4

x lock blue 110
x y red 110

F4

1 2 3 4

x lock blue 110
x y red 110
x key blue 110

chase(F4, η)

1 2 3 4

x y blue 110
x key red 110

F5 chase(F5, η) ∼ F5

Fig. 2.1.Manufactures Databases with fixes and chase results

F1 andF2 assume that the date of8 Jan 2002and either color (red or blue) were
mistaken.F4 andF5 assume that the date of8 Jan 2002and either product (key
or lock) were mistaken. Finally,F3 assumes that the date of8 Jan 2002should be
replaced by different dates in either tuple ofManufacture. It is easy to verify that any
other fix is equivalent under∼ to one of the five fixes shown.

The formal definition oftrustable tableauis as follows: letF be a minimal set of
tableaux (with respect to⊆) such that for every fixF for I and η, there exists

30 2 Techniques for Repairing and Querying

some tableauF ′ such thatF ′ ∼ F . Let S be a minimal (with respect to⊆) set
of tableaux such that for everyF ∈ F, there exists some tableauT ∈ S such that
T ∈ chase(F, η). LetG be aglb of S , thenG is called a trustable tableau forI and
S.

Computation of trustable tableau is shown to be computable for unirelation databases
with a set of full dependencies. The computation is quite complex as it involves
solvingNP -complete problems, like deciding theθ−subsumption for determining
the fixing.

2.7 Using Views

Recent research on databases has been concerned with the problem of answering
queries when only materialized views are available as base relations [35, 36, 47,
95, 96, 122, 141]. This problem is becoming more and more important in many ar-
eas such as query optimization, database design, data integration, data warehouse,
mobile computing and others. The many applications of the problem of answering
queries using views has spurred a flurry of research, which also led to the design and
implementation of several commercial system.

Informally speaking, given a general queryQ over a database schema, and a set of
view definitionsV1, ...Vn over the same schema, the problems are the following: is
it possible to answer the queryQ usingonly the answer to the viewsV1, ...Vn; and
what is the maximal set of tuples in the answer ofQ that we can obtain from the
views?

The treatment of the problem differs mainly depending on whether it is concerned
with query optimization, database design or with data integration. The main distinc-
tion is essentially between works on query optimization and maintenance of physical
data independence and works concerning data integration. In particular, in the con-
text of query optimization and database design, the focus has been on producing
a query execution plan that involves the views, and hence the effort has been on
extending query optimizers to accommodate the presence of views; whereas in the
context of database integration, the focus has been on translating queries, formulated
in terms of the mediated schema into queries formulated in terms of the data sources.
Thus the key difference between these two classes of works is the output of the al-
gorithm for answering queries using views. In the former case, given a queryQ, and
a set of viewsV1, ...Vn, the goal of the algorithm is to produce an expressionQ1

that references the views and is either equivalent to or contained inQ; whereas in
the latter case the algorithm must go further and produce a query execution plan for
answeringQ using the views.

A data integration system exposes to the user a mediated schema, which consists of
a set ofvirtual relations, in the sense that they are not actually stored anywhere. To
be able to answer queries the system must contain a set ofsource descriptions, that
describe the contents of the source, the attribute that can be found in the source, and
the constraints on the content of the source. One of the preeminent approaches for

2.7 Using Views 31

specifying source description, adopted in several systems, [49, 91, 97] is to describe
the contents of a data source as a view over the mediated schema. This approaches
allows easily to add new data sources and to specify constraints on the contents of
the sources.

Therefore, an interesting problem is to find a rewriting which iscorrect, that is only
atoms derived from the original query are derived from the rewritten one, and, pos-
sibly, optimal, that is it gives the best approximation of the original query.

In this environment the concepts ofquery containmentand of query equivalence
are essential as they provide a semantic basis for comparison between queries and
between different reformulations of queries, and can be used to test the correctness
of a rewriting. In the following we denote the result of computing the queryQ over
the databaseI byQ(I).

Definition 2.15.A queryQ1 is said to becontainedin a queryQ2, denoted byQ1 v
Q2, if for all database instancesI, the set of all tuples computed forQ1 is a subset
of those computed forQ2, that isQ1(I) ⊆ Q2(I). The two queries are said to be
equivalentif Q1 v Q2 andQ2 v Q1. 2

The problem of answering queries using views has also to take into account the dif-
ferent properties of the data sources; as an example it has been shown that if data
sources are assumed to becomplete, that is they include all the tuples that satisfy
their definition, then the problem of answering queries using views becomes compu-
tationally harder. Intuitively this is due to the fact that when a source is complete it
is also possible to infer negative information as a result of a query to the source. This
led to a more complex question: given a general queryQ over a database schema,
and a set of view definitionsV1, ...Vn over the same schema what is the complexity
of finding the maximal set of tuples in the answer toQ from V1, ...Vn. From what
previously stated, it is necessary to distinguish between two types of query rewriting:
equivalent rewritingsandmaximally contained rewritings.

Definition 2.16.Equivalent rewriting: LetQ1 be a query andV=V1, ...,Vm be a set
of view definitions. The queryQ′ is anequivalent rewritingofQ usingV if Q′ refers
only to the views inQ andQ′ is equivalent toQ. 2

Definition 2.17.Maximally contained rewriting: Let Q1 be a query andV=V1, ...Vm

be a set of view definitions andL be a query language. The queryQ′ is amaximally
contained rewritingofQ usingV with respect toL if (i) Q′ is a query inL that refers
only to the views inQ; (ii) Q′ is contained inQ and there is no rewritingQ1 ∈ L,
such thatQ′ v Q1 v Q andQ1 is not equivalent toQ′. 2

Obviously unlike the case of equivalent rewritings, the maximally contained rewrit-
ing may differ depending on the query language, moreover the algorithm for query
containment and equivalence provide methods fortestingwhether a candidate rewrit-
ing is an equivalent or a contained rewriting, but do not formally provide a solution to
the problem of answering queries using views. Another important question stressed

32 2 Techniques for Repairing and Querying

in this context is how to find, given a set of view definitions and their extensions,all
the possible answers to the query. A maximally contained rewriting does not always
provide all the possible answers that can be obtained from the views as the rewriting
in this case is specific with respect to a specific language.

Formally, the problem of finding all the answers to a query is formalized by the
notion ofcertainanswers, introduced in [2] in which it is distinguished the case in
which the view extension is complete (closed-world assumption) from the case in
which the views may be partial (open-world) [2, 35, 68]. The intuition behind the
concept of certain answer is that the extensions of a set of views do not define a
unique database instance, thus given the extensions of the views we have only partial
information about the real state of the database. A tuple is a certain answer of a query
Q if it is an answer foranyof the possible database instances that are consistent with
the given extensions of the views.

Definition 2.18.Certain answers: Let Q1 be a query andV=V1, ...Vm be a set of
view definitions over the database schemaR1, ...Rn. Let the sets of tuplesv1, ...vn

be extensions of the viewsV1, ...Vm respectively. The tuplea is a certain answerto
the queryQ under the closed-world assumption givenv1, ...vn if a ∈ Q(D) for all
database instancesI such thatVi(I) = vi for everyi, 1 ≤ i ≤ m. The tuplea is
a certain answerto the queryQ under the open-world assumption givenv1, ...vn if
a ∈ Q(D) for all database instancesI such thatVi(I) ⊇ vi for everyi, 1 ≤ i ≤ m.
2

Thus, in order to answer a query using views it is necessary to translate the query,
formulated over the mediated schema into a query that directly refers to the schema
of the data sources.

Many techniques used to answer queries by means of materialized views have been
proposed in the literature, the interested reader can refer to [141] and [48] for a
general introduction on the argument, to [49] for the rewriting of positive conjunctive
views and to [61] for the rewriting of general views.

Many algorithms for query rewriting have been proposed. In [141] the query posed
upon the mediated schema is a conjunctive query (CQ), that is a rule with subgoals
havingEDB predicates. ACQ is applied to theEDB relations by considering all
possible substitutions of values for the variables in the body. As an example we can
consider the query:

p(X,Z)← a(X,Y), a(Y, Z)

where thinking ofa as an “arc” predicate defining a graph, the rule states that
“p(X,Z) is true if there is an arc from the nodeX to Y and an arc from the nodeY
toX”, that is there is a path of length two fromX toZ.

For conjunctive queries the containment first studied by Chandra and Merlin [34] is
tested following the approach used in [124]. In more details, to test whetherQ1 ⊆ Q2

the following steps are performed:

2.7 Using Views 33

• freezethe body ofQ1 by turning each of its subgoals into facts in the database.
This can be achieved by replacing each variable in the body by a distinct constant
and by treating the resulting subgoals as the only tuples in the database ;

• applyQ2 to thiscanonicaldatabase;

• if the frozen head ofQ1 is derived byQ2, thenQ1 ⊆ Q2. otherwise not.

If the test is negative then the canonical database is a counterexample to the con-
tainment, as surelyQ1 derives its frozen head from this database; whereas if it is
positive there is an homomorphism from the variables ofQ2 to the variables ofQ1.
Containment odCQ’s has been proved to beNP-complete in [34] although in [130]
it is shown that in the common case where no predicate appears more than twice in
the body, then there is a linear-time algorithm for containment.

Example 2.19.Let’s consider the following twoCQ’s [141]:

Q1 : p(X,Z)← a(X,Y), a(Y, Z)
Q2 : p(X,Z)← a(X,U), a(V,Z)

whereQ1 looks for paths of length two, whileQ2 looks only for nodesX andZ
such thatX has an arc out to elsewhere andZ has an arc in from elsewhere. The
procedure for testing the containment informally described previously supports the
intuition thatQ1 ⊆ Q2. 2

An important extension ofCQ’s consists in allowing negated subgoals in the body.
The effect of applying aCQ to a database is as before, but in this case when con-
stants are substituted to variables the atoms in the negated subgoals must be false,
rather than true (that is the negated atom itself must be true). In the presence of
negated subgoals the containment test is slightly more complex, in particular it is
Π2

P -complete.

The query is expressed in terms of theEDB predicates. The problem is that of finding
a valid solutionS for the queryQ, that is an expression of the query in terms of the
views, that is such that it is possible to replace the views inS by their definitions,
saidexpansionE, of the query which results to be equivalent to the original query
Q.

Example 2.20.Let’s suppose to have a singleEDB predicatep(X,Y) which states
thatY is parent toX. Let there be two views, defined as follows[141]:

v1(Y,Z)← p(X,Y), p(Y,Z)
v2(X,Z)← p(X,Y), p(Y, Z)

where the first viewv1 produces a subset of the relation forp, that is those chield-
parent pairs(Y, Z) such that the child is also a parent of some individualX. The
second viewv2 models a grandparent relation from the parent relation. The queryq

q(c)← p(0, A), p(A,B), p(B,C)

34 2 Techniques for Repairing and Querying

asking for the great grandparents of a particular individual, can be rewritten by the
following expansion using only the predicatev1 andv2:

s1(c)← v2(0, D), v1(D,C)

By replacing each of the subgoals ofs1 with the definition of the views we obtain
the expansion:

e1(C)← p(0, E), p(E,D), p(D,C)

Using the containment test in both directions it can be proved thate1 ≡ q. Obvi-
ously there are other solutions that, when expanded are contained inq, but are not
equivalent to it. 2

From the previous example it results clear that one can only guess potential solutions
for a query and then test them using the containment test. However there are theorems
that limit the search and show that the problem of expressing a query in terms of
views is no worse thanNP-complete. The idea is that any view used in a solution
must serve some function in the query; a view without a function must be deleted
from the solution.

A solutionS for a queryQ is minimal if :

• S ⊆ Q;

• there is no solutionT for Q such that:

– S ⊆ T ⊆ Q and

– T has fewer subgoals thanS

Both in [95] and in [123] are defined theorems that offer nondeterministic polynomial-
time algorithm to find either:

• a single solution equivalent to the queryQ

• a set of solution whose union is contained inQ and that contains any other solu-
tion that is contained inQ.

In each case one searches “only” an exponential number of minimal queries. If what
we are looking for is a solution equivalent toQ then we may stop if we find one;
whereas we can conclude there is none if we have searched all solutions and found
none.

A technique for answering Datalog queries using views restricted to being positive
and conjunctive was presented in [49]. Before presenting the proposed technique we
recall the concepts of retrievable program, containment and maximal containment
among programs.

Definition 2.21.LetP be a program andV a set of views. We sayP is retrievableif
the onlyEDB predicates appearing inP are materialized views ofV.

Given two retrievable programsP ′ and P“, thenP ′ is containedin P”, written
P ′ v P”, if for all databaseI, P ′(V(I)) ⊆C P”(V(I)) whereC is the set of all
constants inI.

2.7 Using Views 35

Given a Datalog programP and a retrievable programP ′, we say thatP ′ is max-
imally containedin P, if P ′ v P and there is no retrievable programP” such that
P ′ < P” v P. 2

In [49] it was shown that given a Datalog programP and a set of conjunctive views
V it is undecidable whether there is a retrievable programPV equivalent toP. More-
over, it was also shown that for Datalog programs and conjunctive views it is possible
to generate a retrievable programPV which is maximally contained inP. The tech-
nique consists of two steps. In the first step a program that might contain function
symbols is built, and in the second step the program is rewritten to eliminate function
symbols.

The first step is based on the inversion of rules defining views. Given a viewv of the
form v(X) ← b1(Y1), ..., bn(Yn), the inverse ofv, denotedv−1, is a set ofn rules
of the formbi(Y ′i)← v(X) whereY ′i is derived fromYi by replacing every variable
y ∈ (Yi −X) with the functionfv/y(X) wherev identifies the view andy identifies
a distinguished variable in the view. Given a set of viewsV, V1 denotes the union of
all inversesv−1 of all view definitionsv in V, that isV1 = ∪v∈V v

1.

Example 2.22.Assume to have three base relations having the following schema
supplier(S#, NameS,City), product(P#, NameP, Type, Price) and supply(S#,
P#). Consider the viewsmade andprice defined by the following two rules:

1 : made(P,C)← supplier(S,NS,C), supply(S, P).
2 : price(P, Pr)← product(P,NP, T, Pr).

where a tuple〈p, c〉 in the materialized viewmade means that the product with code
p was made by a supplier of cityc, whereas the materialized viewprice consists
of the projection of the base relationproduct on the attributeP# andPrice. The
inverse of the two views is given by the following set of rules:

supplier(f1/S(P,C), f1/NS(P,C), C)← made(P,C).
supply(f1/S(P,C), P)← made(P,C).
product(P, f2/NP (P, Pr), f2/T (P, Pr), P r)← price(P, Pr).

2

Now, given a Datalog programP and a set of viewsV, PV−1 denotes the program
derived from the union ofP andV−1. AlthoughPV−1 contains function symbols it
has a unique finite minimal model since function symbols only appear in the body of
nonrecursive rules. Therefore, its fixpoint evaluation is guaranteed to terminate.

Essentially, every tuple derived from the inverted views is associated with a tuple
of the materialized views which, in turn, can be derived from more than one in-
stance of the view. Thus, a tuple derived from the inverted views has associated
a set of tuples in the original definition of the predicate. Consider for instance
the definition ofmade in the above example and the rules definingsupplier and

36 2 Techniques for Repairing and Querying

supply derived from the inversion of the viewmade. Assuming that the definition of
supply in the database consists of the two tuplessupply(s1, p1) andsupply(s2, p1),
and the definition ofsupplier consists of the two tuples〈s1, ibm, rome〉 and
〈s2, sun, rome〉, the materialized viewmade contains only the tuple〈p1, rome〉
and, from the inverted view, we derive the two tuplessupply(f1/S(p1, rome), p1)
and supplier(f1/S(p1, rome), f1/NS(p1, rome), rome).
Therefore, each tuple with function symbols has associated a set of database tu-
ples having the same flat terms. In our example the tuplesupplier(f1/S(p1,
rome), f1/NS(p1, rome), rome) has associated two tuples in the source da-
tabase, namely〈s1, ibm, rome〉 and〈s2, sun, rome〉. This means that the body of
a ground view is satisfied by using database tuples if and only if it is also satisfied
by using corresponding tuples with possible function terms. The database built by
using materialized views will be called rebuilt database. Moreover, for each tuplet
derived from the application of a programP on the rebuilt database, there is a tuple
u derived from the application ofP to the source database coinciding witht on the
flat terms oft.

The second step proposed in [49] is the elimination of function symbols by deriving
an equivalent Datalog version of the rewritten program. Here we do not consider
this rewriting since any rewritten program has a finite unique minimal model which
coincides with its fixpoint.

In [20, 61] it is considered the problem of answering queries using materialized views
in the presence of negative goals. The solution is carried out by ‘inverting’ views to
derive new knowledge. In order to derive both positive and negative knowledge, are
generated ‘rules’ having also, in addition to negation-as-failure, classical negation.
The main difference of this framework with respect to previous works is that are con-
sidered not only positive conjunctive views, but also negation and disjunctive views;
moreover functional dependencies are also analyzed in order to derive additional
information.

Essentially, the technique extends the one presented in [49], allowing the existence of
negated atoms in both queries and views and derive, by inverting views, both positive
and negative knowledge.

The rewriting of the query is performed in two steps. In the first step, given a set
of conjunctive viewsV, we derive an extended semipositive Datalog programV−1

extracting information about base atoms from view atoms. In the second step we
rewrite the rules in the query by generating an extended positive Datalog program,
that is a program whose rules contain classical negation but not negation-as-failure.

The rewriting of views produces three groups of rules:

1. The rules in the first group are used to derive positive information and they co-
incide with the rules described in the previous section. These rules are generated
according to the idea that, if the head of the view is true then all literals in the
body must also be true since we are considering conjunctive views, that is for
each view predicate there is only one rule defining it. Variables appearing in

2.7 Using Views 37

the body literals and not appearing in the head have unknown values and are
replaced by functions.

2. The rules in the second group are used to derive negative information. The idea
here is that a body literal must be false if the head of the view is false and all
other body literals are true. Moreover, since view atoms contain only ground
flat terms, for each variableX appearing in a negated view atoms, a predicate
dom(X) is added in the body.

3. The rules in the third group define the predicatedom, that is the database do-
main.

The following example shows how our technique works.

Example 2.23.Consider the following viewv

v(Y)← emp(X, S), mgr(X, Y).

The first group of rules, used to derive positive information, consists of one rule for
each body literal:

emp(fv/X(Y), fv/S(Y))← v(Y).
mgr(fv/X(Y), Y)← v(Y).

where variables not appearing in the head of views are replaced by function terms.
The second group of rules is used to derive negative information. Thus, a new rule is
generated for each body literal.

¬ emp(X,)← mgr(X, Y), not v(Y), dom(Y).
¬mgr(X,Y)← emp(X, S), not v(Y), dom(Y).

where the database variableunifies with all possible ground terms. The last group
of rules are used to define the database domain:dom(Y)← v(Y). 2

The second step of the rewriting modifies the query program by replacing each base
literal B with ev(B), whereev(B) denotes extended version of a literalB, that is
ev(B) is derived fromB by replacing the negationnot with ¬.

Given a set of viewsV, and a semipositive Datalog programP we denote withP−V−1

the program derived from the union ofP− andV−1, whereV−1 are the rules derived
in the first step of the technique andP− the program rewritten in the second step.
Moreover, for a given programP, P−V−1(V(D)) denotes the application ofP−V−1 to
the materialized views.

Let P be a semipositive Datalog program,V be a set of conjunctive views with
possible negation in the body andI a database. Then, 1)P−V−1(V(D)) has a perfect
minimal model which is finite and consistent 2)P−V−1 ∪ V v P.

Although the program generated by the above technique gives a good approximation
of the original program, generally it is not maximal. However, for conjunctive views
with at most one negation for each rule,P−V−1 is maximally contained inP. The
framework is extended by considering the inversion of disjunctive views [61].

38 2 Techniques for Repairing and Querying

2.8 Minimal Change Integrity Maintenance using Tuple Deletions

In [40] a practical framework for computing consistent query answers for large, pos-
sibly inconsistent relational databases is proposed. The proposed framework handles
union of conjunctive queries and can effectively (and efficiently) extract indefinite
disjunctive information from an inconsistent database. The paper also describes a
number of novel optimization techniques applicable in this context and summarize
experimental results validating the proposal.

The problem of minimal-change integrity maintenance in the context of integrity
constraints (denial constraints, general functional and inclusion dependencies, as
well as key and foreign key constraints) in relational databases, has been investigated
in [39]. The paper discusses the different interpretation of minimal change based on
whether the information in the database is assumed to becorrect andcomplete. If
the information is complete, but not necessarily correct (it may violate integrity con-
straints), the only way to fix the database is to delete some part of it. If the informa-
tion is both incorrect and incomplete, then both insertions and deletions should be
considered. The notion ofrepair pursued in the paper reflects the assumption that the
database is complete, therefore the paper assumes that integrity-restoration actions
are limited to tuple deletions. This scenario is common in data warehousing applica-
tions were dirty data coming from many sources is cleaned in order to be used as a
part of the warehouse itself.

Given a set of denial constraintsF and an instancer, all the repairs forr can be
succinctly represented as aconflict hypergraph, GF,f that is an hypergraph whose
set of vertices is the setΣ(r) of facts of the instancer and whose set of edges
consists of all the sets

{P1(t1) . . . Pn(tn)}

such that

P1(t1), P2(t2), P3(t3) . . . Pn(tn) ∈ Σ(r)

and there is a constraint

∀x1, x2, . . . , xn¬[P1(t1) ∧ P2(t2) ∧ · · · ∧ Pl(tl) ∧ φ(x1, x2, . . . , xl)]

in F such thatP1(t1) ∧ P2(t2) ∧ · · · ∧ Pl(tl) violate this constraint, which means
that there exists a substitution% such that

%(x1) = t1, %(x2) = t2, . . . , %(xl) = tl

and thatφ(t1, t2, . . . , tn) is true.

The paper shows that each repair ofr with respect toF corresponds to a maximal
independent set inGF,f .

The paper studies two basic problems:repair checkingandconsistent query answer-
ingwithin this setting. Repair checking consists in checking whether a given database

2.8 Minimal Change Integrity Maintenance using Tuple Deletions 39

is a repair of the original database. Consistent query answer consists in providing an-
swers that are true in every repair of the database.

The paper shows that repair checking (but not consistent query answers) are in
PTIME for arbitrary FDs and acyclic IDs. The obtained results are tight in the sense
that relaxing any of the above restrictions leads to co-NP hard problems. Moreover,
the paper also shows that for arbitrary sets of FDs and INDs repair checking iscoNP

complete and consistent query answering isΠP
2 -complete.

These results shed lights on the computational feasibility of minimal-change in-
tegrity maintenance. The tractable cases should lead to practical implementations,
whereas the intractability results highlight the inherent limitations of any integrity
enforcement mechanism, e.g., triggers or referential constraint actions, as ways of
performing minimal-change integrity maintenance using tuple deletions.

3

Active Integrity Constraints

Summary. This chapter presentsactive integrity constraints (AICs), an extension of integrity
constraints for consistent database maintenance. An active integrity constraint is a special
constraint whose body contains a conjunction of literals which must befalseand whose head
contains a disjunction of update actions representing actions (insertions and deletions of tu-
ples) to be performed if the constraint is not satisfied (that is its body istrue). The AICs work
in a domino-like manner as the satisfaction of one AIC may trigger the violation and therefore
the activation of another one. The chapter also introducesfounded repairs, that are minimal
sets of update actions that make the database consistent and are specified and “supported”
by active integrity constraints. The chapter presents i) a formal declarative semantics allow-
ing the computation of founded repairs, ii) a characterization of this semantics obtained by
rewriting active integrity constraints into disjunctive logic rules, so that founded repairs can
be derived from the answer sets of the derived logic program. Finally, the chapter studies the
computational complexity of computing founded repairs.

3.1 Introduction

Integrity constraints are logical assertions on acceptable or consistent database states,
and specify properties of data that need to be satisfied by valid database instances [1].
In the database world it is not unusual to have the presence of data that fail to satisfy
integrity constraints. For this reason the management of inconsistent data plays a key
role in all the areas in which duplicate or conflicting information is likely to occur,
such as data and knowledge bases [81, 83, 101, 134, 146].

Violation of constraints, that may occur for example, during or at the end of the
execution of a transaction, is classically managed by performing a “repair” of the
database state that is usually limited to fixed reversal actions, such as rolling back
the current operation or the entire transaction [33]. In any case, in many applications
there is no way to associate the cause of the inconsistency to a specific update action.
Let’s consider, for example, the violation that occurs after performing the integration
of multiple independent sources; in this case the updates are typically already com-
mitted and a single update operation leading to constraint violation does not exist.

42 3 Active Integrity Constraints

An improved approach to constraints enforcement allows to define compensating ac-
tions that correct the violation of constraints according to a well-defined semantics
(database repairs)or to computeconsistent answers. Informally, the computation
of repairs is based on the application of minimal sets of insertions and deletions of
tuples so that the resulting databases satisfy all constraints, whereas the computa-
tion of consistent answers is based on the identification of tuples satisfying integrity
constraints and on the selection of tuples matching the goal.

The following example shows a situation in which inconsistencies occur.

Example 3.1.Consider the relation schemamgr(Name,Dept, Salary) with the
functional dependencyDept→ Name which can be defined through the first order
formula

∀(N,N ′, D, S, S′)[mgr(N,D, S),mgr(N ′, D, S′) ⊃ N = N ′]

Consider now the inconsistent instance:I = {mgr(john, cs, 1000),mgr(frank,
cs, 2000)}. A consistent (repaired) database can be obtained by applying a mini-
mal set of update operations; in particular it admits two repaired databases:I1=
{mgr(frank, cs, 2000)} obtained by applying the repairR1 = {−mgr(john, cs,
1000)} (that is by deleting the tuplemgr(john, cs, 1000)) andI2={mgr(john, cs,
1000)} obtained by applying the repairR2 = {−mgr(frank, cs, 2000)} (that is by
deleting the tuplemgr(frank, cs, 2000)). 2

The problem with such a semantics is that the repairing strategy is not defined by the
database administrator, and all possible repairs are computed. Thus, in this chapter
we consider a special form of integrity constraint, calledactive integrity constraint
(AIC), whose body consists of a conjunction of literals which should befalseand
the head contains the actions which have to be performed if the body istrue (that
is the constraint is violated). The following example illustrates the notion of active
integrity constraint.

Example 3.2.Consider the database of Example 3.1 and the active constraint:

∀(N, N ′, D, S, S′)[mgr(N, D, S), mgr(N ′, D, S′), N 6= N ′, S ≥ S′ ⊃
−mgr(N, D, S)].

Basically, it models the same functional dependency reported in the previous exam-
ple, but, in addition, it states that in the case of conflicting tuples, the one with the
higher salary has to be removed from the database. In this case, the constraint sug-
gests to update the database by deleting the tuplemgr(frank, cs, 2000). This action
leads only one of the two repairs, namelyR2, to be taken into account. 2

Active integrity constraints areproduction rulesexpressed by means of first order
logic formulas with a declarative semantics that allows us to computefounded re-
pairs, that is minimal sets of update actions making the database consistent and

3.1 Introduction 43

whose update actions are explicitly specified and supported. In some sense, active
integrity constraints represent a restricted form ofactive rulessufficient to (declar-
atively) express database repairs, but without the typical problems of procedural in-
terpretations such as theconfluenceand thetermination.

3.1.1 Contribution

The contribution of this chapter consists in the formal definition of active integrity
constraints and in the introduction their declarative semantics. Essentially, an active
integrity constraint is an integrity constraint that specifies the update actions that
can be performed when it is violated. It is composed by a conjunction of literals,
calledbody, and by a disjunction of update actions, calledhead. The body repre-
sents aconditionthat should befalse, whereas the head sets the actions that can be
performed when the body istrue (that is when the constraint is violated). An incon-
sistent database can be repaired by means of minimal sets of update actions, called
repairs. The semantics here introduced allows us to identify, among all possible re-
pairs, those whose actions arespecifiedin the head of some active integrity constraint
andsupportedby the database or by other updates. These repairs are calledfounded
repairs. The chapter studies the properties of active integrity constraints and shows
that, under the proposed semantic, each update action occurring in the head of an
active integrity constraint that cannot falsify the corresponding body is useless and
can be deleted. Next, it shows that the computation of founded repairs can be done
by rewriting the constraints into a Datalog program and computing its stable models
[66]; each stable model will represent a founded repair. As the existence of founded
repairs is not guaranteed, the chapter investigates a different semantics where update
actions defined by active integrity constraints are interpreted as preference condi-
tions on the set of possible repairs (preferablesemantics). Finally, the computational
complexity is analyzed and it is shown that the complexity of computing founded
repairs, preferred repairs and answers is not harder than computingstandardrepairs
and answers.

3.1.2 Plan of the Chapter

The rest of the chapter is organized as follows. Section 3.2 recalls the formal de-
finition of integrity constraint, repair and consistent answer and briefly reviews a
general approach for the computation of repairs and consistent answers. Section 3.3
introduces active integrity constraints, presents their declarative semantics and im-
portant results about their structure. Section 3.4 shows how founded repairs can be
computed by rewriting active integrity constraints into a logic program and provides
results on the computational complexity of computing founded repairs and queries.
This section also introduces a different interpretation of active integrity constraints
(preferablesemantics), where preferred repairs are those performing specific actions
with respect to other alternative repairs, and studies the computational complexity of
computing preferred founded repairs.

44 3 Active Integrity Constraints

3.2 Databases and Integrity constraints

Database schemata defines the structure of data and restrictions on the form the data
could have. The relationship among data are generally defined by integrity con-
straints such as functional dependencies and inclusion dependencies. In particular,
integrity constraints are used to restrict the state a database can take and to prevent
the insertion or deletion of data which could produce incorrect states.

A databaseI has an associated schema〈DS, η〉 defining its intentional properties:
DS defines the structure of the relations, that is their names and their attributes, and
η contains the set of integrity constraints expressing semantic information over data.
MoreoverI has an associated domainDom containing the values an attribute can
assume. The extension that associates to each attributes a different domain is trivial.

3.2.1 Integrity Constraints

An integrity constraintr is a formula of the first order predicate calculus of the form:

(∀ X)[
m∧

j=1

bj(Xj), ϕ(X0) ⊃
n∨

j=m+1

(∃Zj)bj(Xj , Zj)]

where, letX =
⋃m

j=1Xj andZ =
⋃n

j=m+1 Zj , Xi ⊆ X, for i ∈ [0 . .n], all
variables inZ occur once,ϕ(X0) is a conjunction of built-in atoms andbj , for
j ∈ [1 . .n], are base predicates. The conjunction preceding the implication sym-
bol is thebodyof the constraint, whereas the disjunction succeeding the implication
symbol is itshead. A database satisfiesr if for eachX, it makes the bodyfalseor the
headtrue. More formally, letI be a database andDom its domain. ThenI satisfiesr,
denoted asI |= r, if for eachx ∈ Dom|X|, eitherI 6|=

∧m
j=1 bj(xj), ϕ(x0) or there

existsz ∈ Dom|Z| such thatI |=
∨n

j=m+1 bj(xj , zj), wherexi, for i ∈ [0 . .n], are
the corresponding instances ofXi andzi, for i ∈ [m+ 1 . .n], are the corresponding
instances ofZi. Moreover,I is consistent w.r.t. a setη of integrity constraints, de-
noted asI |= η, if it satisfies all integrity constraints inη. Each integrity constraint
can be rewritten in the following form, obtained by moving literals from the head to
the body:

(∀ X)[
m∧

j=1

bj(Xj),
n∧

j=m+1

(6 ∃Zj)bj(Xj , Zj), ϕ(X0) ⊃]. (3.1)

3.2.2 Repairing and Querying Inconsistent Databases

In this section the formal definition of consistent database and repair is first recalled
and then a mechanism for computing repairs and consistent answers for inconsistent
databases is presented.

3.2 Databases and Integrity constraints 45

An update action is of the form+a(X) or−a(X). The update actions+a(X) and
−a(X) aredualsof each other. We writeαD to denote the update action dual to an
update actionα. The dual operator is extended to sets of update actions as appropri-
ate. A ground update action+a(t) states thata(t) will be inserted into the database,
whereas−a(t) states thata(t) will be deleted from the database. The symbol± will
be used as a placeholder for either+ or−. Given an update actionα = +a(X) (resp.
α = −a(X)), lit(α) denotesa(X) (resp.not a(X)) andcomp(α) denotes the lit-
eralnot a(X) (resp.a(X)). Clearly,comp(α) = lit(α)D. The operatorslit(·) and
comp(·) are extended to sets of update actions in the standard way. We also define
the inverse operatorscomp(·)−1 andlit(·)−1. Given a setU of ground update actions
we define the setsU+ = {a(t) | + a(t) ∈ U}, U− = {a(t) | − a(t) ∈ U}. We say
thatU is consistentif it does not contain two update actions+a(t) and−a(t) (that is
if U+∩ U− = ∅). Given a databaseI and a consistent set of update actionsU , I ◦U
denotes the databaseI updated by means ofU , that isI ◦ U = (I ∪ U+) \ U−.

Definition 3.3. (REPAIRS) Let I be a database andη a set of integrity constraints.
A repairfor 〈I, η〉 is a consistent setU of update actions such that

• I ◦ U |= η (constraint enforcememnt).

• for everyU ′ ⊆ U such thatI ◦ U ′ |= η, U ′ = U (minimality of change).

The set of all repairs for〈I, η〉 is denoted asR(I, η). 2

Repaired databases are consistent databases, derived from the source database by
means of a minimal set of update operations. Observe that for constraints containing
existentially quantified variables the set of possible repairs could be infinite in the
case the domain of the database is infinite. Thus, in the rest of this sectionuniversally
quantifiedor full integrity constraints are considered. They are of the form:

(∀ X) [
m∧

j=1

bj(Xj),
n∧

j=m+1

not bj(Xj), ϕ(X0) ⊃] (3.2)

Given a set of universally quantified constraintsη, an integrity constraintr ∈ η and
a databaseI, a ground instance ofr with respect toI can be obtained by replacing
variables with constants inDom and eliminating the universal quantification. The
set of all ground instances ofr is denoted byground(r), whereasground(η) =⋃

r∈η ground(r) denotes the set of ground instances of constraints inη. Clearly,
for any set of universally quantified constraintsη, the cardinality ofground(η) is
polynomial in the size ofDom. A further restriction is that we disallow integrity
constraints that admit instances with inconsistent bodies (i.e. bodies alwaysfalse).
In other words we disallow ground constraints whose body contains a literala and a
literal not a.

Fact 3.4 LetI be a database,η a set of full integrity constraints andR a repair for
〈I, η〉. Then, for eachα ∈ R there exists inground(η) an integrity constraint of the
form φ ∧ comp(α) ⊃ such thatI ◦ (R\{α}) |= φ.

46 3 Active Integrity Constraints

Proof. Straightforward from Definition 3.3. IfR contains an update actionα, then
R\{α} is not a repair. Thus, there must be inground(η) at least an integrity con-
straint of the form φ ∧ comp(α) ⊃ such thatI ◦ R\{α} |= φ. This integrity
constraint is satisfied byI ◦ R and violated byI ◦ (R\{α}). 2

The above fact states that each update action of a repair isnecessaryto satisfy at
least a ground integrity constraint.

Definition 3.5. Given a databaseI and a set of integrity constraintsη, an atomA is
true (resp.false) with respect to〈I, η〉 if A belongs to all repaired databases (resp.
there is no repaired database containingA). The atoms which are neithertruenor
falseareundefined. 2

Thus, true atoms occur in all repaired databases, whereas undefined atoms appear in
a non empty proper subset of repaired databases. Now we can provide the definition
of consistent answer to a query.

Definition 3.6. Given a databaseI, a set of integrity constraintsη and a query
Q = (g,P), theconsistent answerofQ w.r.t. 〈I, η〉, denoted asQ(I, η), gives three
sets, denoted asQ(I, η)+, Q(I, η)− andQ(I, η)u. These contain, respectively, the
sets ofg-facts which aretrue, that is belonging to

⋂
R∈R(I,η) Q(I ◦ R), false, that

is not belonging to
⋃
R∈R(I,η)Q(I ◦ R) and undefined, that is the facts which are

neithertruenor false. 2

3.2.3 Repairing and Querying through Stable Models

As shown in [70], the set of repairs for a database with respect to a set of full integrity
constraints can be computed by rewriting the constraints into disjunctive rules. More
specifically, given a databaseI and a set of integrity constraintsη, the technique
derives a disjunctive programDP(η) so that the repairs forI can be obtained from
the stable models ofDP(η) ∪ I.

Definition 3.7. Given a full integrity constraintr of the form(∀X)[
∧n

j=1 Lj , ϕ ⊃],
whereLj is a literal, for j ∈ [1..n], andϕ is a conjunction of built-in atoms,dj(r)
denotes the expression:

n∨
j=1

comp−1(Lj) ←
n∧

j=1

(Lj ∨ comp−1(not Lj)), ϕ

Given a setη of full integrity constraints,DP(η) = {dj(r) | r ∈ η} ∪ {←
−b(X),+b(X) | b is a predicate symbol}. 2

The expression presented in the above definition is used as shorthand for a set of
disjunctive rules.

3.3 Active Integrity Constraints 47

Given an interpretationM, UpdateAtoms(M) denotes the set of update actions in
M. The definition of this operator is exended to sets of interpretations.

The following theorem, showing that the technique is correct and complete, has been
proved in [70].

Theorem 3.8.Given a databaseI and a setη of full integrity constraints,

R(I, η) = UpdateAtoms(SM(DP(η) ∪ I)) 2

The previous theorem states that for each databaseI and set of full integrity con-
straintsη:

• for every stable modelM of DP(η) ∪ I, UpdateAtoms(M) is a repair for〈I,
η〉 (soundness);

• for every repairR for 〈I, η〉 there exists a stable modelM for DP(η) ∪ I such
thatR = UpdateAtoms(M) (completeness).

This technique can be used to compute consistent answers to queries. Given a da-
tabaseI, a set of integrity constraintsη and a queryQ = (g,P), the consis-
tent answer ofQ w.r.t. 〈I, η〉 can be computed by considering the stable models of
MP(g,P) ∪ DP(η) ∪ I, whereMP(g,P) is obtained fromP by replacing every
base predicate symbolp with p′ and by adding a rule of the formp′(X)← (p(X) ∧
not −p(X))∨+p(X). Moreover, the ruleg′(X)← (g(X)∧not −g(X))∨+g(X)
is added. We have that

• Q(I, η)+ =
⋂
M∈SM(MP(g,P)∪DP(η)∪I)M(g′),

• Q(I, η)u =
⋃
M∈SM(MP(g,P)∪DP(η)∪I)M(g′) − Q(I, η)+.

3.3 Active Integrity Constraints

In this section we presentactive integrity contraints, an extension of integrity con-
straints that allows a specification of the actions to be performed to make the database
consistent.

Definition 3.9. A (full) Active Integrity Constraint(AIC) is of the form

(∀ X)[
m∧

j=1

bj(Xj),
n∧

j=m+1

not bj(Xj), ϕ(X0) ⊃
p∨

i=1

±ai(Yi)] (3.3)

where, letX =
⋃m

j=1Xj ,Xi ⊆ X, for i ∈ [0 . .n], andYi ⊆ X, for i ∈ [1 . .p].
2

48 3 Active Integrity Constraints

Given an active integrity constraintr of the form 4.1 we denote the set{b1(X1), . . . ,
bm(Xm),not bm+1(Xm+1), . . . ,not bn(Xn)} asbody(r) and the set{±a(Y1), . . . ,
±a(Yp)} ashead(r). As in the case of integrity constraints, we disallow AICs that
admit instances with inconsistent bodies.

Example 3.10.The active integrity constraint of Example 3.2 states that in the case
of conflicting tuples (there are two different managers managing the same depart-
ment), we prefer to repair the database by deleting the one with the higher salary,
whereas the constraint∀(N,N ′, D, S, S′)[mgr(N,D, S),mgr(N ′, D, S′), N 6=
N ′ ⊃ −mgr(N,D, S′)∨−mgr(N ′, D, S′)] states that between two different man-
agers of the same department we do not have any preference and, therefore, one of
them, selected nondeterministically, can be deleted. 2

An active integrity constraint is an integrity constraint that specifies the update ac-
tions that can be performed when it is violated. The conjunction of literals in its
body represents aconditionthat should befalse, whereas update actions in its head
represents the possible updates that can be performed when the constraint is violated.

Given an active integrity constraintr of the form (4.1),ic(r) denotes the correspond-
ing integrity constraint of the form (3.2) obtained fromr by removing the disjunction
of update action. The definition of this operator is extended to sets of active integrity
constraints. A databaseI satisfies an active integrity constraintr (I |= r) if it sat-
isfies the corresponding integrity constraintic(r) (I |= r). The operatorground(·)
for active integrity constraints is defined in the standard way.

Definition 3.11.Given a databaseI and a set of active integrity constraintsη, a re-
pair for 〈I, η〉 is any repair for〈I, ic(η)〉. The set of all repairs for〈I, η〉 is denoted
byR(I, η). 2

From the previous definition, for each databaseI and setη of active integrity con-
straints,R(I, η) = R(I, ic(η)).
Not all repairs contain atoms which can be derived from the active integrity con-
straints. Thus, we identify a class of repairs, calledfounded, whose actions can be
derived from the active integrity constraints.

Example 3.12.Consider the databaseI = {movie(Marshall, Chicago, 2002),
director(Stone)} and the active integrity constraint

∀(D,T,A) [movie(D,T,A), not director(D) ⊃ +director(D)]

There are two repairsR1 = {−movie(Marshall, Chicago, 2002)} andR2 =
{+director(Marshall)}, but onlyR2 contains updates “supported” by the active
integrity constraint. 2

Definition 3.13. (FOUNDED REPAIR) LetI be a database,η a set of active integrity
constraints andR a repair for 〈I, η〉.

3.3 Active Integrity Constraints 49

• An update actionα ∈ R is foundedwith respect to〈I, η〉 andR if there exists
r ∈ ground(η) such thatα ∈ head(r) andI ◦ (R\{α}) |= body(r).
We say thatr supportsα.

• R is foundedwith respect to〈I, η〉 if all its update actions arefoundedwith
respect to〈I, η〉 andR.

The set of founded repairs for〈I, η〉 is denoted byFR(I, η). 2

In the previous definition, the update actionα is founded if two conditions are veri-
fied: i) it belongs to the head of an active integrity constraintr and; ii) if we discard
it, the database updated by means of the remaining update actions (I ◦ (R\{α})),
violatesr. This means thatα is inferred byr (because it belongs to its head) and it
is necessaryto repair the database in order to satisfyr (because if we discard it, the
database violatesr).

Clearly, the set of founded repairs is contained in the set of repairs that isFR(I, η) ⊆
R(I, η).
We introduce some additional notation useful in the following. The set of founded
update actions inR with respect to〈I, η〉 is denoted asFounded(R, I, η), whereas
Unfounded(R, I, η) = R\Founded(R, I, η). The set of active integrity con-
straints inground(η) supporting update actions inR is denoted asApplied(R, I, η),
whereasUnapplied(R, I, η) = ground(η)\Applied(R, I, η).

Example 3.14.Consider the following setη of active integrity constraints:

∀(E, P, D)[mgr(E, P), prj(P, D), not emp(E, D) ⊃ +emp(E, D)],
∀(E, D, D′)[emp(E, D), emp(E, D′), D 6= D′ ⊃ −emp(E, D) ∨ −emp(E, D′)]

The first constraint states that every managerE of a projectP , carried out by
a departmentD, must be an employee ofD, whereas the second one says that
every employee must be in only one department. Consider now the databaseI =
{mgr(e1, p1), prj(p1, d1), emp(e1, d2)}. There are three repairs forI: R1 =
{−mgr(e1, p1)},R2 = {−prj(p1, d1)} and R3 = {+emp(e1, d1),−emp(e1, d2)}.
R3 is the only founded repair as only the update atoms+emp(e1, d1) and
−emp(e1, d2) are derivable fromη. 2

Proposition 3.15.LetI be a database,η a set of active integrity constraints andR
a founded repair for〈I, η〉. For each ground active integrity constraintr = φ ⊃ ψ ∈
Applied(R, I, η), I ◦ head(r) 6|= φ (that isI ◦ head(r) |= r).

Proof. Let r = φ ⊃ ψ be a ground AIC inApplied(R, I, η). By definition,ψ is in
the form ofψ′ ∨ α, with ψ′ a (possibly empty) disjunction of ground update actions
andα a ground update action supported byr.

As r is applied, we have thatI ◦ (R\{α}) |= φ. Moreover, sinceI ◦R 6|= φ we have
thatφ must be of the form ofφ′ ∧ comp(α), with φ′ a (possibly empty) conjunction
of ground literals.

50 3 Active Integrity Constraints

As α ∈ head(r) andφ = φ′ ∧ comp(α), it follows thatI ◦ head(r) 6|= φ. 2

The above proposition states that for each ground applied constraint there must be
among the true update head atoms, at least one atomα which is used to repair the
database with respect to the body of the rule, that is the body must contain a literal
comp(head(r)). Observe that, if for each ground AICr, head(r) is such thatI ◦
head(r) |= φ (that isI ◦ head(r) 6|= r), no founded repair exists.

Now we start our analysis of the structure of active integrity constraints by introduc-
ing the concept ofCore.

Definition 3.16.Given a ground AICr = φ ⊃ ψ, Core(r) denotes the ground AIC
φ ⊃ ψ′, whereψ′ is obtained by deleting fromψ any update actionα such that
comp(α) 6∈ body(r). 2

The definition ofCore(·) is extended to sets of ground AICs. Moreover, given a
non-ground setη of AICs, Core(η) = Core(ground(η)). The following theorem
shows the equivalence between a set of active integrity constraints and itsCore.

Theorem 3.17.Given a databaseI and a setη of active integrity constraints,

FR(I, η) = FR(I, Core(η)).

Proof. As FR(I, η) = FR(I, ground(η)) we prove that FR(I, ground(η))
= FR(I, Core(η)).

1. Firstly we prove thatFR(I, ground(η)) ⊆ FR(I, Core(η)).
Let r = φ ⊃ ψ be a constraint inground(η). Let ψ′ be the disjunction of
update actionsα occurring inψ such that the literalcomp(α) occurs inφ and
ψ′′ the disjunction of remaining update actions appearing inψ. Thenr is of the
form φ ⊃ ψ′ ∨ ψ′′. Let r′ = φ ⊃ ψ′ and η′ = (ground(η)\{r}) ∪ {r′}.
We prove thatFR(I, ground(η)) ⊆ FR(I, η′), that is that for eachR ∈
FR(I, ground(η)), alsoR ∈ FR(I, η′) holds. Asic(ground(η)) = ic(η′),
and soR(I, ground(η)) = R(I, η′), it follows thatR ∈ R(I, η′). Therefore,
we have just to prove thatR is founded with respect to〈I, η′〉. For eachα ∈ R,
there exists inground(η) an AICg supportingα, that is such thatα ∈ head(g)
andI ◦ (R\{α}) |= body(g). There are two cases: eitherg 6= r or g = r. If
g 6= r theng ∈ η′ and it supportsα. If g = r theng 6∈ η′, butr′ = φ ⊃ ψ′ ∈ η′.
As I ◦ R 6|= φ andI ◦ R′ |= φ, it follows thatφ = φ′ ∧ comp(α) whereφ′ is
a (possibly empty) conjunction of ground literals such thatI ◦ R |= φ′. Thus,
α occurs inψ′ and it is supported byr′. This step can be repeated to obtain
Core(η) from ground(η).

2. Now we prove thatFR(I, Core(η)) ⊆ FR(I, ground(η)).
Let R ∈ FR(I, Core(η)). We will prove thatR ∈ FR(I, ground(η)). AsR
is a repair for〈I, ground(η)〉, it is sufficient to prove thatR is founded. Let
r = φ ⊃ ψ be a constraint inCore(η) andr′ = φ ⊃ ψ ∨ α, whereα is an

3.3 Active Integrity Constraints 51

update action. Letη′ = (ground(η)\{r})∪{r′}. Obviously, each update action
in R is again founded.Thus,R is a founded repair for〈I, η′〉. This step can be
repeated to obtainground(η) fromCore(η). 2

The above Theorem state that every update actionα occurring in the the head of an
AIC r that cannot repair directly the body ofr, that is such that the body does not
contain a literalcomp(α), is useless and can be deleted. This is an important result as
it shows that production rules with the declarative semantics proposed here, should
have a specific form: the head update actions must repair databases so that the body
of the corresponding active constraints istrue.

Example 3.18.Consider the databaseI = {a, b} and the setη = { a ⊃ −b, b ⊃
−a } of active integrity constraints. The unique repair for〈I, η〉 isR = {−a,−b},
but it is not founded. Intuitively, if we applya ⊃ −b, b is deleted fromI, sob ⊃ −a
cannot be applied. If we applyb ⊃ −a, a is deleted fromI, soa ⊃ −b cannot be
applied. 2

Thus, in the following, only ground AICs where for each head update actionα, there
exists in the body a corresponding complementary literalcomp(α), are considered.

Theorem 3.19.Let I be a database,η a set of active integrity constraints andR
a founded repair for〈I, η〉. Then for eachα ∈ R, there exists an active integrity
constraintr ∈ Core(η) such thatα is the unique update action inR supported by
r. 2

Proof. (by contradiction)
Let α ∈ R. Asα is founded, there exists at least one AIC inCore(η) supportingα.
Let G be the set of AICs inCore(η) supportingα and let us suppose, by contradic-
tion, that each of these AICs supports at least two update actions inR. The AICs in
G are of the form

g1 : comp(α), comp(α1), φ1 ⊃ α ∨ α1 ∨ ψ1

. . .
gn : comp(α), comp(αn), φn ⊃ α ∨ αn ∨ ψn

where, fori ∈ [1..n],ψi is a disjunction of ground update actions,φi is a conjunction
of ground literals andαi is a ground update action inR supported bygi. We observe
that, fori ∈ [1..n], I ◦ (R\{αi}) 6|= body(gi) asα ∈ R andcomp(α) ∈ body(gi),
thusαi is not supported bygi. 2

Normalization

Definition 3.20.Given an active integrity constraintr of the form (4.1),Normalized(r)
denotes the set of active integrity constraints

52 3 Active Integrity Constraints

(∀ X) [
m∧

j=1

bj(Xj),
n∧

j=m+1

not bj(Xj), ϕ(X0) ⊃ ±ai(Yi)]

for i ∈ [1..p]. The operatorNormalized(·) is extended to sets of active integrity
constraints in the standard way. 2

Given a databaseI and a set of active integrity constraintsη, the set of repairs for
〈I, η〉 coincides with the set of repairs for〈I, Normalized(η)〉 (i.e. R(I, η) =
R(I, Normalized(η))) as ic(I) = ic(Normalized(I)). This property is pretty
obvious; however it can be extended to the case of founded repairs.

Proposition 3.21.Given a databaseI and a setη of active integrity constraints,

FR(I, η) = FR(I, Normalized(η)).

Proof.

1. Firstly we prove thatFR(I, η) ⊆ FR(DB, Normalized(η)).
Let R ∈ FR(I, η). Obviously,R ∈ R(DB, Normalized(η)). Thus, we have
to prove that it is founded with respect to〈I, Normalized(η)〉. By defini-
tion, for each±a(t) ∈ R, there exists inground(η) a ground active in-
tegrity constraintφ ∧ comp(α) ⊃ ψ ∨ α such thatI ◦ (R\{α}) |= φ.
Thus,ground(Normalized(η)) contains the ground active integrity constraint
φ ∧ comp(α) ⊃ α which supportsα.

2. Now we prove thatFR(I, Normalized(η)) ⊆ FR(I, η).
Let R ∈ FR(I, Normalized(η)). Obviously,R ∈ R(I, η). Thus, we have
to prove that it is founded with respect to〈I, η〉. By definition, for eachα ∈
R there exists inground(Normalized(η)) a ground active integrity constraint
φ ∧ comp(α) ⊃ α such thatI ◦ (R\{α}) |= φ. Thus,ground(η) contains a
ground active integrity constraintφ ∧ comp(α) ⊃ ψ ∨ α which supportsα. 2

This theorem states that each active integrity constraint havingp update atoms in the
head, can beunpackedinto p active integrity constraints having a single update atom
in the head. Therefore, there is no loss of generality in considering active integrity
constraints having just one update atom in the head.

Conditioned Active Integrity Constraints

As in the ground set of active integrity constraints we only consider actions which
make the bodyfalse, every non ground active integrity constraint can be seen as an
active constraint where actions have associated a condition defining its applicability.

Definition 3.22.A (full) Conditioned Active Integrity Constraint(CAIC) is of the
form

3.3 Active Integrity Constraints 53

(∀ X)[
m∧

j=1

bj(Xj),
n∧

j=m+1

not bj(Xj), ϕ(X0) ⊃
p∨

i=1

ϕi(Zi) ∧ ±ai(Yi)] (3.4)

where, letX =
⋃m

j=1Xj , Xi ⊆ X for i ∈ [0 . .n], Yi, Zi ⊆ X for i ∈ [1 . .p] and
ϕi(Zi), for i ∈ [0 . .p], is a first order formula of built-in atoms. 2

Every conjunctionϕi(Zi)∧±ai(Yi) appearing in the head of the constraint is called
conditioned update atomand its intuitive meaning is that the action±ai(Yi) can be
performed only if the conditionϕi(Zi) is true.

Definition 3.23.Given an AIC

r = (∀X)[Φ ⊃
p∨

i=1

±ai(Yi)],

Conditioned(r) denotes the CAIC

(∀X)[Φ ⊃
p∨

i=1

(∨comp(±ai(Z))∈body(r) Yi = Z) ∧ ±ai(Yi)]

The operatorConditioned(·) is extended to sets of active integrity constraints in the
standard way. 2

Thus,Conditioned(r) replaces every update action±ai(Yi) with a conditioned up-
date action((Z1 = Yi) ∨ · · · ∨ (Zk = Yi)) ∧ ±ai(Yi) so that the update action can
be applied only if the body ofr contains a literalcomp(±ai(Zh)) andZh = Yi, for
h ∈ [1..k].

Example 3.24.Given the AICr = p(a,X), q(Y) ⊃ −p(Y, b),

Conditioned(r) = p(a,X), q(Y) ⊃ ((Y, b) = (a,X)) ∧ −p(Y, b)
2

We observe that a ground instance of a CAIC is a ground AIC as the evaluation of
the conditions in the head does not depend on the database instance. Therefore, for
any ground CAICr, every (ground) conditioned head update actionϕ ∧ α can be
deleted ifϕ is falseor replaced byα if ϕ is true.

Proposition 3.25.Given a setη of active integrity constraints, for each databaseI

ground(Conditioned(η)) = Core(η)

Proof.

• Firstly, we prove thatground(Conditioned(η)) ⊆ Core(η). Let s = Φ ⊃∨p
i=1 αi a ground AIC belonging toground(Conditioned(η)) andr ∈ η such

thats ∈ ground(Conditioned(r)). From Definition 3.23 it follows that for each
i ∈ [1..p], the literalcomp(αi) occurs inΦ. Therefore, from Definition 3.16,
s ∈ Core(r).

54 3 Active Integrity Constraints

• Now, we prove thatCore(η) ⊆ ground(Conditioned(η)).
Let s = Φ ⊃

∨p
j=1 αi a ground AIC belonging toCore(η) andr ∈ η such that

s ∈ Core(r). From Definition 3.16 it follows that for eachi ∈ [1..p], the literal
comp(αi) occurs inΦ. Therefore, from Definition 3.23,s ∈ Conditioned(r).2

Essentially, the previous proposition shows a direct way ofpushingthe syntactic
restriction of the Core into nonground AICs.

Example 3.26.Given the active integrity constraint

r = p(X, a), q(Y) ⊃ −p(X,Y)

and the databaseI = {q(a), q(b)}, Conditioned(r) is

p(X, a), q(Y) ⊃ ((X,Y) = (X, a)) ∧ −p(X,Y).

The AICs inground(Conditioned(r)) are

p(a, a), q(a) ⊃ −p(a, a)
p(a, a), q(b) ⊃
p(b, a), q(b) ⊃
p(b, a), q(a) ⊃ −p(b, a)

This set of active integrity constraints coincides withCore(r). 2

Given a setη of conditioned active integrity constraints and a databaseI, we define
the founded repairs for〈I, η〉 as the founded repairs for〈I, ground(η)〉. Therefore,
the following fact holds.

Fact 3.27 Given a setη of active integrity constraints and a databaseI

FR(I, η) = FR(I, Conditioned(η)).

3.4 Computation and Complexity

As shown before, a general approach for the computation of repairs for a database
I with respect to a set of full integrity constraintsη has been proposed in [71]. The
technique is based on the generation of a disjunctive programDP(η) derived from
η so that the repairs can be derived from the stable models ofDP(η) ∪ I.

Such a technique cannot be easily adapted to active integrity constraints by simply
putting in the head ofdj(r) only the atoms appearing in the head of the corresponding
active constraintr. To intuitively show this, consider the databaseI = {a, b} and
the set of active integrity constraintsη = {a ⊃ −a, a, b ⊃ −b}. The databaseI is
inconsistent and the unique founded repair isR = {−a}. Moreover, considering the
rewriting functionDP ′ which puts in the head of logic rules only the update actions
appearing in the head of integrity constraints, we have that the programDP ′(η)
consists of the rules−a ← (a ∨ +a) and−b ← (a ∨ +a), (b ∨ +b). The program
DP ′(η) ∪ I has a unique stable modelM = {−a,−b, a, b} from which we derive
the set of updatesUpdateAtoms(M) = {−a,−b} which is not a repair.

3.4 Computation and Complexity 55

3.4.1 Rewriting into Logic Programs

A different technique, which generalizes the one proposed in [70, 71], so that
founded repairs can be computed by logic programs derived from active integrity
constraints, will be now presented. It is worth noting that the presence of existen-
tially quantified variables in negated body literals, does not allow the generation of
a possibly infinite number of repairs as the logic rules derived from the rewriting
of constraints aresafe[139]. Moreover, for the sake of simplicity we only consider
universally quantified constraints.

Definition 3.28.Let c be a (range restricted) AIC of the form

(∀ X)[
n∧

j=1

Lj , ϕ ⊃
p∨

i=1

αi]

we denote asfp(c) the set of constraints

← comp−1(Lj), not comp−1(Lf
j) j ∈ [1..n]

and of rules

αf
i ←

n̂

j=1

(Lj ∧ (not comp−1(Lj)∨αi = comp−1(Lj))∨ comp−1(not Lj)), ϕ i ∈ [1..p]

where letcomp−1(Lj) = ±a(X), for j ∈ [1..n], comp−1(Lf
j) = ±af (X). Given a

set of active integrity constraintsη, we defineFP(η) =
⋃

c∈η fp(c), andFDP(η) =
DP(ic(η)) ∪ FP(η). 2

Observe that in the above definition, letαi andcomp−1(Lj) be equal, respectively,
to ±ai(Xi) and±bj(Yj), the equality±ai(Xi) = ±bj(Yj) is just shorthand for
Xi = Yj if ±ai = ±bj andfalse otherwise.

Example 3.29.Given the databaseI = {p(a), p(b), q(a)} and the AIC

r = p(a), p(b), q(X) ⊃ −p(X)

ThenDP(St(r)) consists of the rules

−p(a) ∨ −p(b) ∨ −q(X)← (p(a) ∨+p(a)), (p(b) ∨+p(b)), (q(X) ∨+q(X))

← −p(X) ∧+p(X)
← −q(X) ∧+q(X)

whereas, the setFP(r) is equal to the set of rules

← −p(a), not − pf (a);
← −p(b), not − pf (b);
← −q(X), not − qf (X);

56 3 Active Integrity Constraints

−pf (X)← ((p(a) ∧ (not− p(a) ∨X = a)) ∨+p(a)),
((p(b) ∧ (not− p(b) ∨X = b)) ∨+p(b)),
((q(X) ∧ not− q(X)) ∨+q(X))

2

Next theorem shows that the rewriting technique is sound and complete.

Theorem 3.30.Given a databaseI and a setη of active integrity constraints,

FR(I, η) = UpdateAtoms(SM(FDP(η) ∪ I))

Proof.

• (Soundness) Firstly, we prove thatUpdateAtoms(SM(FDP(η) ∪ I)) ⊆
FR(I, η), that is that for eachM ∈ SM(FDP(η) ∪ I) there exists a repair
R ∈ FR(I, η) such thatUpdateAtoms(M) = R.

Let M be a stable model ofFDP(η) ∪ I, Mr = UpdateAtoms(M) ∪ I
andMf = M\Mr (the set of atoms defined byFP(η)). Mr is a stable
model ofDP(ic(η)) ∪ I. This holds because update actions can be inferred
just from rules inDP(ic(η)) ∪ I and the body of these rules do not contain
primed atoms. AsUpdateAtoms(Mr) is a repair for〈I, ic(η)〉 (Theorem 3.8),
UpdateAtoms(M) is also a repair for〈I, η〉. Therefore, we have to prove that
UpdateAtoms(M) is founded.

Let α ∈ UpdateAtoms(M), ground(FP(η)) contains the constraint← α,
not αf , thusM contains the atomαf . As αf is supported,ground(FP(η))
contains a ruleρ = αf ← Φ, with Φ of the form∧n−1

i=1 ((Li ∧ not comp−1(Li)) ∨ comp−1(not Li)),
(comp(α) ∨ comp−1(not comp(α)))

such thatM |= Φ. AsΦ does not contain any atom in the form±af (t),Mr |= Φ.
The ruleρ belongs to a setfp(r), wherer is a ground active integrity constraint
belonging toground(η) and is in the form

n−1∧
i=1

Li, comp(α) ⊃
p−1∨
j=1

αi ∨ α.

Observe thatΦ is true iff body(r), evaluated over the databaseI ◦ (R\{α}),
is true. Thus, as(UpdateAtoms(M) ∪ I) |= body(ρ), it follows that I ◦
(UpdateAtoms(M)\{α}) |= body(r), that is the atomα appearing in the head
of r is founded.

• (Completeness) Now, we prove thatFR(I, η) ⊆ UpdateAtoms(SM(FDP(η)∪
I)), that is that for eachR ∈ FR(I, η) there is a stable modelM∈ SM(FDP(η)
∪I) such thatUpdateAtoms(M) = R.

3.4 Computation and Complexity 57

LetR ∈ FR(I, η). AsR is a repair,R ∪ I is a stable model ofDP(ic(η)) ∪I
(Theorem (5.6)). We show thatM = R∪I ∪ {αf |α ∈ R} is a stable model for
FDP(η) ∪ I, that is that for everyA ∈ R there is a ruleρ in ground(FP(η))
such thathead(ρ) = {αf} and(R∪ I) |= body(ρ).
Let r ∈ ground(η) a ground active integrity constraint supporting the update
actionα ∈ R of the form

n−1∧
i=1

Li, comp(A) ⊃
p−1∨
j=1

αj ∨ α

We have thatI◦(R\{α}) |= body(r) that isI◦R |=
∧n−1

i=1 Li, for i ∈ [1..n−1],
andI ◦(R\{α}) |= comp(α). This means that ifA is in the form−a(x), a(x) ∈
I or +a(x) ∈ R whereas, ifα is in the form+a(x), a(x) 6∈ I or−a(x) ∈ R.
Moreover, for each positive literalLi = l(y) (i ∈ [1..n − 1]), l(y) ∈ I and
−l(y) 6∈ R or +l(y) ∈ R whereas, for each negative literalLi = not l(y)
(i ∈ [1..n− 1]), l(y) 6∈ I and+l(y) 6∈ R or−l(y) ∈ R.

Therefore, the conjunctionΦ =
∧n

i=1((Li ∧ not comp−1(Li))∨comp−1(not Li)),
(comp(α) ∨ comp−1(not comp(α))) is true inR∪ I.

Moreover, the programground(FDP(η)) contains a rule of the formαf ← Φ
whose body istrue inR∪ I. This is exactly the ruleρ supportingαf . 2

Example 3.31.Consider again Example 3.29. The unique stable model ofFDP(η)
∪ I isM = {p(a), p(b), q(a),−p(a),−pf (a)} corresponding to the founded repair
R = {−p(a)}. 2

3.4.2 Data Complexity

Given a (standard) integrity constraintr of the form 3.2,Ext(r) denotes the AIC

(∀X) [
m∧

j=1

bj(Xj),
n∧

j=m+1

not bj(Xj), ϕ(X0) ⊃
m∨

j=1

−bj(Xj)∨
n∨

j=m+1

+bj(Xj)]

The definition ofExt(·) is extended to sets of AICs in the standard way.

Theorem 3.32.Let I be a database andη a set of active integrity constraints. The
problem of deciding whether there exists a founded repair for〈I, η〉 isΣp

2 -complete.

Proof.
Membership.In [54] it has been shown that the problem of deciding whether there
exists a stable model for a disjunctive Datalog program isΣp

2 -complete. As every
founded repair can be derived from a stable model of the disjunctive Datalog program
FDP(η)∪DB, the problem consists in checking whether there exists a stable model
for FDP(η) ∪ DB.

58 3 Active Integrity Constraints

Hardness.In [70] it has been shown that, for a given databaseI, a set of standard
integrity constraintsη and set of update constraintsUC, the problem of checking if
there exists a repairR for 〈I, η〉 such that every update constraint inUC is satisfied
isΣp

2 -complete. An update constraint is of one of the following two forms

← insert(q(t1, ...tn))
← delete(q(t1, ...tn))

and states that every atomq(u1, ..., un) unifying with q(t1, ...tn) cannot be inserted
or deleted, respectively.

Consider the set of active integrity constraintsη′ = ground(Ext(η)) and the set
η′′ obtained by deleting from the head of rules inη′ all update actions of the
form +a(t) such that← insert(a(t)) is in ground(UC) (resp.−a(t) such that
← delete(a(t)) is in ground(UC)). Clearly, the set of ground constraintsη′′ is
equivalent toground(Ext(η)) ∪ ground(UC) as it is obtained by deleting from
the head of the active integrity constraints inground(Ext(η)) update actions which
cannot be derived. After the deletion of the useless head update actions, update con-
straints are not necessary any more and the problem consists in deciding whether
there exists a founded repair forI(η′′). 2

The consistent founded answer to a relational queryQ = (g,P) over a databaseI
with active integrity constraintsη (denoted byQ(I, η)), is obtained by first comput-
ing the setFR(I, η) of founded repairs forI and, then, considering the intersection⋂
R∈FR(I,η)Q(I ◦ R).

Theorem 3.33.Let I be a database andη a set of active integrity constraints. The
problem of deciding whether a ground atomg(t) belongs to all repaired databases
obtained by means of founded repairs for〈I, η〉 isΠp

2 -complete.

Proof.
Membership.As every founded repair for〈I, η〉 can be derived from a stable model
of FDP(η) ∪ I, it is sufficient to check that the ground atomg′(t) belongs to each
stable model of the disjunctive Datalog program

FDP(η) ∪ I ∪ {g(t)′ ← (g(t) ∧ not− g(t)) ∨+g(t)}.

This is a well knownΠp
2 -complete problem.

Hardness.In [70] it has also been shown that, for a given databaseI, a set of full
(standard) integrity constraintsη and set of update constraintsUC, the problem of
checking if all repaired databases contain an atomg(t) isΠp

2 -complete.

In the proof of Theorem 5.28 it has been shown that for every set of full (standard)
integrity constraintsη and set of update constraintsUC there exists a set of “equiv-
alent” active integrity constraintsη′′, that is for every databaseI the set of repairs
satisfyingη andUC is equivalent to the set of founded repairs satisfyingη′′. There-

3.4 Computation and Complexity 59

fore, the problem of checking whether a ground atomg(t) belongs to all repaired
databases obtained by means of founded repairs isΠp

2 -hard. 2

In a similar way it is possible to prove that for not disjunctive active integrity con-
straints the complexity is in the first level of the polynomial hierarchy.

3.4.3 Preferred Repairs and Answers

A founded repair for a set of active integrity constraints is not guaranteed to exist.
Nevertheless, it is often necessary to provide a repair, even if no founded repair exists,
or to compute consistent answers to queries. Thus, in this section we define an ap-
proach that always permits us to obtain a consistent repaired database. In particular,
we interpret the actions in the head of constraints as an indication of the operations
the user prefers to perform to make the database consistent. Moreover, as the pres-
ence of existentially quantified variables, could produce a possibly infinite number of
repairs, we only consider universally quantified active integrity constraints. Firstly,
we introduce a partial order on the repairs.

Definition 3.34.Let I be a database,η a set of active integrity constraints and
R1,R2 two repairs for for 〈I, η〉. Then,R1 is preferableto R2 (R1 = R2) if
Unfounded(R1, I, η) ⊂ Unfounded(R2, I, η). A set of update actionsR is a
preferred repair for〈I, η〉 if it is a repair for 〈I, η〉 and there is no repairR′ for
〈I, η〉 such thatR′ = R. 2

Example 3.35.Consider the integrity constraint of Example 3.2 with the database
I = {mgr(john, b, 1000), mgr(frank, b, 2000), mgr(mary, c, 1000), mgr(rosy,
c, 2000)}. There are four repairsR1 = {−mgr(john, b, 1000), −mgr(mary,
c, 1000)}, R2 = {−mgr(john, b, 1000), −mgr(rosy, c, 2000)}, R3 = {−mgr(
frank, b, 2000), −mgr(mary, c, 1000)} and R4 = {−mgr(frank, b, 2000),
−mgr(rosy, c, 2000)}. The order relation isR2 = R1, R3 = R1, R4 = R2

andR4 = R3. Therefore, we have only one preferred repair which is also founded
(namelyR4). Assume now we also have the constraint

not mgr(rosy , c, 2000) ⊃

declaring that the tuplemgr(rosy, c, 2000) must be inI. In such a case we only have
the two repairsR1 andR3 and the preferred one isR3 which is not founded. 2

The relation= is apartial orderas it is irreflexive, antisymmetric and transitive. The
set of all preferred repairs for a databaseI and a set of active integrity constraintsη
is denoted byPR(I, η).
Clearly, the relation between preferred, founded and standard repairs is as follows:
FR(I, η) ⊆ PR(I, η) ⊆ R(I, η). The next proposition states the precise relation
between preferred, founded and general repairs.

Fact 3.36 Let I be a database andη a set of AICs. IfFR(I, η) 6= ∅ then
PR(I, η) = FR(I, η) 2

60 3 Active Integrity Constraints

Obviously, as the existence of a repair is guaranteed, the existence of a preferred
repair is guaranteed too. We conclude by presenting a result on the computational
complexity of computing preferred repairs and answers.

Theorem 3.37.LetI be a database andη a set of active integrity constraints, then

1. deciding whether there exists a preferred repair for〈I, η〉 isΣp
2 -complete;

2. deciding whether a ground atomg(t) belongs to all repaired databases obtained
by means of preferred repairs isΠp

2 -complete.

Proof.

1. Membership.From Theorem 3.36 to check ifPR(I, η) 6= ∅ it is sufficient to
check ifR(I, η) 6= ∅ (which is aΣp

2 -complete problem).

Hardness.Consider the databaseI ′ = I ∪ {a} and the set of constraintsη′ =
η ∪ {a ⊃} wherea is a new atom not appearing inI. The problem of deciding
whetherR(I, η) 6= ∅ (which isΣp

2 -complete) is equivalent to the problem of
deciding whetherPR(I ′, η′) 6= ∅, as〈I ′, η′〉 does not admit a founded repair.

2. Membership.To decide whetherg(t) ∈
⋂
R∈PR(I,η) I ◦ R it is sufficient to

checking whetherg(t) ∈
⋂
R∈FR(I,η) I ◦ R if FR(I, η) 6= ∅ and to deciding

whetherg(t) ∈
⋂
R∈R(I,η) I ◦ R if FR(I, η) = ∅ (both problems areΠp

2 -
complete).

Hardness.The problem of deciding whetherg(t) ∈
⋂
R∈R(I,η) I ◦ R (which

is Πp
2 -complete) is equivalent to the problem of deciding whetherg(t) ∈⋂

R∈PR(I′,η′) I ◦ R, whereI ′ andη′ are the ones used in the proof of Part
(1). 2

The above theorem states that computing preferred repairs and answers is not harder
than computing standard or founded repairs and answers.

4

Active Integrity Constraints and Revision
Programming

Summary. We compareactive integrity constraints[29] and revision programming[108],
two formalisms designed to describe integrity constraints on databases and to specifypre-
ferredways to enforce them. The original semantics proposed for these formalisms differ. The
semantics for active integrity constraints defines the concept offounded repair. Intuitively, a
founded repair is a minimal set ofupdate actions(insertionsanddeletions), defined and sup-
ported by active integrity constraints, to be performed over the database in order to make it
consistent. The semantics for revision programs defines the concept ofjustified revision. A jus-
tified revision is a set ofrevision literals, an alternative way to model updates over a database,
that can be inferred by means of the revision program and by the set of all atoms that do not
change their state ofpresence(in) or absence(out) during the update process. We show that
each founded repair corresponds to a justified revision, but not vice-versa. We introduce two
new semantics: one for active integrity constraints and one for revision programs. The first one
allows us to compute a smaller set of repairs, thejustified repairs, that correspond to justified
revisions. The second one allow us to compute a wider set of revision, the founded revisions,
that correspond to founded repairs. The introduction of these new semantics for the two for-
malisms shows that each of them can be ported to the other one, and that once it is done, both
frameworks become equivalent under a certain simple syntactic transformation. We show that
for each semantics theshifting propertyholds. Shifting consists of transforming an instance
of a database repair problem to another syntactically isomorphic instance by changing active
integrity constraints or revision programs to reflect the “shift” from the original database to
the new one.

4.1 Introduction

Active integrity constraintsexplicitlyencode both integrity constraints and preferred
way to enforce them in the case they are violated. To specify a precise meaning of
sets of active integrity constraints in the previous chapter the concept offounded
repair has been presented. Founded repairs are change-minimal and satisfy a certain
groundedness condition.

Revision programs consist ofrevision rules. Each revision rule represents an integrity
constraint, andimplicitly encodes preferred ways to enforce it by means of a certain

62 4 Active Integrity Constraints and Revision Programming

syntactic convention. Following intuitions from logic programming, [108] proposed
two semantics for revision programs: the semantics ofjustifedrevisions and the se-
mantics ofsupportedrevisions. Each semantics reflects preferences on the ways to
repair a database with respect to a revision program. In general, neither semantics
satisfies the minimality of change principle. Justified revisions generalize the answer
set semantics of Lifschitz-Woo programs [100].

4.1.1 Contribution

The original semantics of active integrity constraints and revision programming
seemingly cannot be related in any direct way. They have different computational
properties. For instance, the problem of the existence of a founded repair for normal
active integrity constraints isΣ2

P -complete, while the same problem for justified re-
visions of normal revision programs is NP-complete. Furthermore, the semantics for
revision programming do not have the minimality of change property, while founded
repairs with respect to active integrity constraints do.

In this chapter, we demonstrate that despite the differences in the syntax, and the
lack of a simple correspondence between justified revisions and founded repairs, the
formalisms of revision programs and active integrity constraints are closely related.
There are two keys to the relationship. First, we need a certain syntactic restriction
on revision programs. Specifically, we introduce the class of toproperrevision pro-
grams and show that restricting to proper programs does not affect the expressive
power.

Second, we need to broaden the families of the semantics for each formalism so
that the two sides could be aligned. To this end for active integrity constraints we
introduce new semantics by dropping the minimality of change condition, which
results in the semantics ofweak repairsandfounded weak repairs. We also adapt to
the case of active integrity constraints the semantics of justified revisions (justified
weak revisions), which leads us to the semantics ofjustified weak repairsandjustified
repairs. For revision programs, we modify the semantics of revisions and justified
revisions by imposing on them the minimality condition. Moreover we introduce
the semantics offounded revisions(founded weak revisions) that corresponds to the
semantics of founded repairs (founded weak repairs). We show that under a simple
bijection between proper revision programs and active integrity constraints, founded
(weak) revisions correspond to founded (weak) repairs and justified (weak) revisions
correspond to justified (weak) repairs. This result demonstrates that both formalisms,
even though rooted in different intuitions, can be “completed” so that to become
notational variants of each other.

Both in the case of active integrity constraints and revision programs, the concepts
of “groundedness” we consider do not imply, in general, the property of the mini-
mality of change. However, in each case, there are theories when it is the case. We
present two broad classes of sets of active integrity constraints (revision programs,
respectively) for which groundedness based on the notion of being justified implies
minimality.

4.2 Weak Repairs and Founded Weak Repairs 63

A fundamental property of semantics describing database updates is the invariance
undershifting (we introduce it formally later in the chapter). The semantics of revi-
sion programming have this property [108, 118]. In this chapter we extend it to the
semantics of active integrity constraints.

4.1.2 Plan of the Chapter

The chapter is organized as follows. In the next section, we introduce the concepts of
weak repairs and founded weak repairs. In the following section we present justified
weak repairs and justified repairs. We discuss thenormalizationof active integrity
constraints in Section 4.4. It leads to an additional semantics for active integrity con-
straints, arguably best grounded in an initial database and active integrity constraints.
In Section 4.5, we establish the invariance under shifting for the semantics of active
integrity constraints. We then study the complexity of problems for the semantics of
justified (weak) repairs.

Next, we recall basic concepts of revision programming. We then introduce some
new semantics for revision programs, and show that they are invariant under shifting.
In the main result of this section, we establish a precise connection between active
integrity constraints and revision programs.

4.2 Weak Repairs and Founded Weak Repairs

For the sake of simplicity, in this chapter we will discuss only the propositional case.
However, definitions and results can be lifted to the predicate case. We consider a
finite setAt of propositional atoms. We represent databases as subsets ofAt . The
concept of weak repair is obtained by removing the minimality of change property
from the concept of repair (Definition 3.3).

Definition 4.1. (WEAK REPAIR) Let I be a database andη a set of integrity con-
straints. Aweak repairfor 〈I, η〉 is a consistent setU of update actions such that

• ({+a | a ∈ I} ∪ {−a | a ∈ At \ I}) ∩ U = ∅
(U consists of “essential” update actions only), and

• I ◦ U |= η (constraint enforcememnt). 2

Observe that the first property in the previous definition is not imposed explicitly in
Definition 3.3 as it is ensured by the minimality of change.

Most applications require the minimality of change. Thus, for the most part, we
are interested in properties of repairs. However, weak repairs have also interesting
properties and offer a broader perspective. Therefore, in this chapter we consider
them explicitly.

We recall that a(ground) active integrity constraintis an expression of the form

64 4 Active Integrity Constraints and Revision Programming

r = L1, . . . , Lm ⊃ α1| . . . |αk (4.1)

whereLi are literals such thatLh 6= LD
k for eachh 6= k, αj are update actions, and

{lit(α1)D, . . . , lit(αk)D} ⊆ {L1, . . . , Lm} (4.2)

The role of the condition (4.2) is to ensure that an active integrity constraint supports
only those update actions that can “fix” it (executing them ensures that the resulting
database satisfies the constraint). The condition can be stated concisely as follows:
[lit(head(r))]D ⊆ body(r). We call literals in[lit(head(r))]D updatableby r. They
are precisely those literals that can be affected by an update action inhead(r). We
call every literal inbody(r) \ [lit(head(r))]D non-updatableby r. We denote the
set of literals updatable byr asup(r) and the set of literals non-updatable byr as
nup(r).
To formalize the notion of “support” and translate it into a method to select “pre-
ferred” repairs, in the previous chapter we proposed the concept of afounded repair
— a repair that isgrounded(in some sense,implied) by a set of active integrity
constraints. Now we introduce an alternative definition of founded repair which is
equivalent to Definition 3.13 but more useful for the proofs presented in this chapter.
In addition, we introduce the semantics offounded weak repairs.

Definition 4.2. (FOUNDED (WEAK) REPAIR) Let I be a database,η a set of active
integrity constraints, andU a consistent set of update actions.

1. An update actionα is foundedwith respect to〈I, η〉 andU if there isr ∈ η
such thatα ∈ head(r), I ◦ U |= nup(r), andI ◦ U |= βD, for everyβ ∈
head(r) \ {α}.

2. The setU is foundedwith respect to〈I, η〉 if every element ofU is founded with
respect to〈I, η〉 andU .

3. U is a founded (weak) repairfor 〈I, η〉 if U is a (weak) repair for〈I, η〉 andU
is foundedwith respect to〈I, η〉. 2

We observe that the foundedness does not imply the constraint enforcement nor the
minimality of change. LetI = ∅ and η consist of the following active integrity
constraints:

r1 = not a ⊃ +a
r2 = not b, c ⊃ +b
r3 = b,not c ⊃ +c.

The unique founded repair for〈I, η〉 is {+a}. The set{+a,+b,+c} is founded,
guarantees constraint enforcement (and so, it is a founded weak repair), but it it is
not change-minimal. The set{+b,+c} is founded but does not guarantee constraint
enforcement. Therefore, in the definition of founded (weak) repairs, the property of
being a (weak) repair must be enforced explicitly. We also note that foundedness
properly narrows down the class of repairs. Ifη = {a, b ⊃ −b}, andI = {a, b} (an
example we considered earlier),U = {−a} is a repair for〈I, η〉 but not a founded
repair.

4.3 Justified Repairs 65

In some cases, founded repairs, despite combining foundedness with change-minimality,
are still not grounded strongly enough. The problem is the circularity of support.

Example 4.3.Let I = {a, b} andη consist of the following active integrity con-
straints:

r1 = a, b ⊃ −a| − b
r2 = a,not b ⊃ −a
r3 = not a, b ⊃ −b.

We note thatU = {−a,−b} is a founded repair for〈I, η〉. Indeed,−a is founded
with respect to〈I, η〉 andU , with r2 providing the necessary support. Similarly,−b
is founded with respect to〈I, η〉 andU because ofr3.

The active integrity constraintr1 is the only constraint violated byI and so, it is the
one that forces the need for a repair. However,r1 itself provides no support for−a or
−b. It follows that the support for foundedness of−a is provided solely byr2 and it
requiresthat−b be included in the repair. Similarly, the support for foundedness of
−b is provided solely byr3 and it depends on−a being included in the repair. Thus,
the foundedness of{−a,−b} is “circular”:−a is founded (and so included inU) due
to the fact that−b has been included inU , and−b is founded (and so included inU)
due to the fact that−a has been included inU , 2

To summarize this section, the semantics of founded repairs gives preference to some
ways of repairing active integrity constraints over others. It only considers repairs
whose all elements are founded. However, foundedness may be circular and so the
associated concept of groundedness is weak. We revisit this issue in the next section.

On the computational side, the complexity of the semantics of repairs is lower than
that of founded repairs. The problem of the existence of a repair is NP-complete,
while the problem of the existence of a founded repair isΣ2

P -complete (see previous
chapter). For the sake of completeness, we also note that the problem of the existence
of a founded weak repair is again “only” NP-complete (the proof is simple and we
omit it).

4.3 Justified Repairs

In this section, we will introduce another semantics for active integrity constraints
that captures a stronger concept of groundedness than the one behind founded re-
pairs. The goal is to disallow circular dependencies like the one we discussed in
Example 4.3.

We start by defining when a set of update actions isclosedunder active integrity
constraints. Letη be a set of active integrity constraints and letU be a set of update
actions. Ifr ∈ η, and for everynon-updatableliteralL ∈ body(r) there is an update
actionα ∈ U such thatlit(α) = L then, after applyingU or any of its consistent
supersets to the initial database, the result of the update, sayR, satisfies all non-
updatable literals inbody(r). To guarantee thatR satisfiesr,R mustfalsify at least

66 4 Active Integrity Constraints and Revision Programming

one literal inbody(r). To ensure thatU should contain at least one update action
from head(r).

Definition 4.4. (CLOSED SETS OF UPDATE ACTIONS)

A setU of update actions isclosedunder an active integrity constraintr if nup(r) 6⊆
lit(U), or head(r) ∩ U 6= ∅.
A setU of update actions isclosedunder a setη of active integrity constraints if it is
closed under everyr ∈ η. 2

If a set of update actions is not closed under a setη of active integrity constraints, ex-
ecuting its elements is not guaranteed to enforce constraints represented byη. There-
fore closed sets of update actions are important. We regardminimal such sets as
“forced” by η, as all elements in a minimal set of update actions closed underη are
necessary (no nonempty subset can be dropped).

Another key notion in our considerations is that ofno-effect actions. Let I be a
database andR a result of updatingI. An update action+a (respectively,−a) is a
no-effectaction with respect to(I,R) if a ∈ i ∩ R (respectively,a /∈ i ∪ R). We
denote byne(I,R) the set of all no-effect actions with respect to(I,R). We note
the following two simple properties.

Proposition 4.5.LetI be a database. Then

1. For every databaseR,R ◦ ne(I,R) = R
2. For every setE of update actions such thatE ∪ne(I, I ◦E) is consistent,I ◦E =
I ◦ (E ∪ ne(I, I ◦ E)).

Proof: (1) Sincene(I,R) = {+a | a ∈ i∩R}∪{−a | a /∈ i∪R},R◦ne(I,R) =
(R∪ (I ∩ R)) ∩ (I ∪ R) = R.

(2) SinceE ∪ne(I, I ◦E) is consistent, Proposition 4.5 imply thatI ◦ (E ∪ne(I, I ◦
E)) = (I ◦ E) ◦ ne(I, I ◦ E) = I ◦ E . 2

Our semantics of justified repairs is based on the knowledge-representation principle
(a form of the frame axiom) that remaining in the previous state requires no reason
(persistence by inertia). Thus, when justifying update actions necessary to ransform
I into R based onη we assume the setne(I,R) as given. This brings us to the
notion of a justified weak repair.

Definition 4.6. (JUSTIFIED WEAK REPAIRS)

Let I be a database andη a set of active integrity constraints. A consistent setU
of update actions is a justified action set for〈I, η〉 if U is a minimal set of update
actions containingne(I, I ◦ U) and closed underη.

If U is a justified action set for〈I, η〉, thenE = U \ ne(I, I ◦ U) is a justified weak
repair for 〈I, η〉. 2

Intutitively, a setU of update actions is a justified action set, if it is precisely the set
of update actions forced orjustifiedby η and the no-effect actions with respect toI

4.3 Justified Repairs 67

andI ◦ U . This “fixpoint” aspect of the definition is reminiscent of the definitions
of semantics of several nonmonotonic logics, including (disjunctive) logic program-
ming with the answer set semantics. The connection can be made more formal and
we take advantage of it in the section on the complexity and computation.

We will now study justified action sets and justified weak repairs. We start with an
alternative characterization of justified weak repairs.

Theorem 4.7.Let I be a database,η a set of active integrity constraints andE a
consistent set of update actions. ThenE is a a justified weak repair for〈I, η〉 if and
only if E ∩ ne(I, I ◦ E) = ∅ andE ∪ ne(I, I ◦ E) is a justified action set for〈I, η〉.

Proof: (⇒) SinceE is a justified weak repair for〈I, η〉, E = U\ne(I, I◦U) for some
consistent setU of update actions such thatU is minimal containingne(I, I ◦ U)
and closed underη. By Proposition 4.5(2),I ◦U = I ◦E . Thus,E∩ne(I, I ◦E) = ∅.
Moreover, sincene(I, I ◦ U) ⊆ U , U = E ∪ ne(I, I ◦ E). Hence,E ∪ ne(I, I ◦ E)
is a justified action set for〈I, η〉.
(⇐) LetU = E∪ne(I, I◦E). We will show thatne(I, I◦U) = ne(I, I◦E). To this
end, let+a ∈ ne(I, I ◦ U). Then,a ∈ i and−a /∈ U (the latter property follows by
the consistency ofU). It follows that−a /∈ E and, consequently,+a ∈ ne(I, I ◦ E).
Similarly, we show that if−a ∈ ne(I, I ◦ U), then−a ∈ ne(I, I ◦ E). Thus, we
obtain thatne(I, I ◦ U) ⊆ ne(I, I ◦ E).
Conversely, let+a ∈ ne(I, I ◦ E). Thena ∈ i and+a ∈ U . SinceU is consistent (it
is a justified action set for〈I, η〉), I ◦ U is well defined and+a ∈ ne(I, I ◦ U). The
case−a ∈ ne(I, I ◦ E) is similar. Thus,ne(I, I ◦ E) ⊆ ne(I, I ◦ U) and the claim
follows.

SinceE ∩ ne(I, I ◦ E) = ∅, we obtain thatE = U \ ne(I, I ◦ U). SinceU is a
justified action set for〈I, η〉, E is a justified weak repair for〈I, η〉. 2

Justified weak repairs have two key properties for the problem of database update:
constraint enforcement (hence the term “weak repair”) and foundedness.

Theorem 4.8.Let I be a database,η a set of active integrity constraints, andE a
justified weak repair for〈I, η〉. Then

1. For every atoma, exactly one of+a or −a is in E ∪ ne(I, I ◦ E)
2. I ◦ E |= η

3. E is founded for〈I, η〉.

Proof: Throughout the proof, use the notationU = E ∪ ne(I, I ◦ E).
(1) SinceU is consistent (cf. Theorem 4.7), for every atoma, at most one of+a,
−a is in U . If +a ∈ ne(I, I ◦ E) or −a ∈ ne(I, I ◦ E) then the claim follows.
Otherwise, the status ofa changes as we move fromI to I ◦ E . That is, either+a or
−a belongs toE and, consequenly, toU , as well.

(2) Let us considerr ∈ η. SinceU is closed underη (cf. Theorem 4.7), we have
nup(r) 6⊆ lit(E ∪ne(I, I ◦ E)) or head(r)∩ (E ∪ne(I, I ◦ E)) 6= ∅. Let us assume

68 4 Active Integrity Constraints and Revision Programming

the first possibility, and letL be a literal such thatL ∈ nup(r) andua(L) /∈ U . By
(1), ua(LD) ∈ U . Consequently,I ◦ U 6|= L. By Proposition 4.5(2),I ◦ E 6|= L.
SinceL ∈ body(r), I ◦ E |= r.

Thus, let us assume thathead(r) ∩ U 6= ∅ and letα ∈ head(r) ∩ U . Thenα ∈
head(r) and so,lit(α)D ∈ body(r). Furthermore,α ∈ U and so,I ◦U |= lit(α). By
Proposition 4.5(2),I ◦ E |= lit(α). Thus,I ◦ E |= r in this case, too.

(3) Letα ∈ E . By Theorem 4.7,α /∈ ne(I, I ◦ E). Thus,ne(I, I ◦ E) ⊆ U \ {α}.
SinceU is a minimal set closed underη and containingne(I, I ◦ E), U \ {α} is
not closed underη. That is, there isr ∈ η such thatnup(r) ⊆ lit(U \ {α}) and
head(r) ∩ (U \ {α}) = ∅.
We have

I ◦ (U \ {α}) = I ◦ (ne(I, I ◦ E) ∪ (E \ {α})) = (I ◦ ne(I, I ◦ E)) ◦ (E \ {α}).

By Proposition 4.5 (and the fact thatne(I,R) = ne(R, I), for every databasesI
andR),

I ◦ (U \ {α}) = I ◦ (E \ {α}). (4.3)

From nup(r) ⊆ lit(U \ {α}), it follows thatI ◦ (U \ {α}) |= nup(r). By (4.3),
I ◦ (E \ {α}) |= nup(r). Sinceα ∈ head(r), lit(αD) /∈ nup(r). Thus,I ◦ E |=
nup(r).
The inclusionnup(r) ⊆ lit(U \ {α}) also impliesnup(r) ⊆ lit(U). SinceU is
closed underη, head(r) ∩ U 6= ∅ and so,head(r) ∩ U = {α}.
Let us considerβ ∈ head(r) such thatβ 6= α. It follows thatβ /∈ U . By (1),βD ∈ U
and, consequently,I ◦ U |= βD. SinceI ◦ U = I ◦ E (Proposition 4.5), it follows
thatα is founded with respect to〈I, η〉 andE . 2

Theorem 4.8 directly implies that justified weak repairs are founded weak repairs.

Corollary 4.9. Let I be a database,η a set of active integrity constraints, andE a
justified weak repair for〈I, η〉. Then,E is a founded weak repair for〈I, η〉.

The converse to Corolary 4.9 does not hold. That is, there are founded weak repairs
that are not justified weak repairs.

Example 4.10.Let I = {a, b} andη consist of the following active integrity con-
straints:

r1 = a, b,not c ⊃ +c ∨ −a
r2 = a,not b ⊃ −a
r3 = not a, b ⊃ −b.

We note thatF = {−a,−b} is a founded repair and so, also a founded weak repair,
for 〈I, η〉. However,F is not a justified weak repair for〈I, η〉 asF ∪ne(I, I ◦F) =
{−a,−b,−c} is not a minimal set containingne(I, I ◦ F) and closed underη. One
can check that{−c} also has these two properties. 2

While stronger property than foundedness, being a justified weak repair still does not
guarantee change-minimality (and so, the termweakcannot be dropped).

4.3 Justified Repairs 69

Example 4.11.Let us consider the setη of active integrity constraints

r1 = not a, b ⊃ +a ∨ −b
r2 = a,not b ⊃ −a ∨+b

and the set of update actionsE = {+a,+b}. It is easy to verify thatE is a justified
weak repair ofI = ∅. Therefore, it ensures constraint enforcement and it is founded.
However,E is not minimal asI = ∅ is consistent withη, and the empty set is its
only repair. 2

Thus, to define justified repairs, as in the case of founded repairs, we need to impose
change-minimality explicitly.

Definition 4.12. (JUSTIFIED REPAIR)

Let I be a database andη a set of active integrity constraints. A setE of update
actions is ajustified repairfor 〈I, η〉 if E is a justified weak repair for〈I, η〉, and for
everyE ′ ⊆ E such thatI ◦ E ′ |= η, E ′ = E . 2

Theorem 4.8 has yet another corollary, this time concerning justified and founded
repairs.

Corollary 4.13. For each databaseI and set of active integrity constraintsη, if a
setE of update actions is a justified repair for〈I, η〉 thenE is a founded repair for
〈I, η〉.

Proof: LetE be a justified repair for〈I, η〉. It follows by Theorem 4.8 thatI◦E |= η.
Moreover, by the definition of justified repairs,E is change minimal. Thus,E is a
repair. Again by Theorem 4.8,E is founded. Thus,E is a founded repair for〈I, η〉. 2
Example 4.41 shows that the inclusion asserted by Corollary 4.13 is proper.

As illustrated by Example 4.11, in general, justified weak repairs form a proper sub-
class of justified repairs. However, in some cases the two concepts coincide. One
such case is identified in the next theorem. The other important case is discussed in
the next section.

Theorem 4.14.Let I be a database andη a set of active integrity constraints such
that for each update actionα ∈

⋃
r∈η head(r), I |= lit(αD). If E is a justified weak

repair for 〈I, η〉, thenE is a justified repair for〈I, η〉.

Proof: LetE be a justified weak repair for〈I, η〉 and letE ′ ⊆ E be such thatI ◦E ′ |=
η.

We defineU = E ∪ ne(I, I ◦ E). By Theorem 4.7 and Proposition 4.5(2),U is
a minimal set of update actions containingne(I, I ◦ E) and closed underη. Let
U ′ = E ′∪ne(I, I◦E) and letr ∈ η be such thatua(nup(r)) ⊆ U ′. SinceI◦E ′ |= η,
I ◦ E ′ 6|= body(r). Thus, it follows that there isL ∈ up(r) such thatI ◦ E ′ 6|= L.
SinceL ∈ up(r), there isα ∈ head(r) such thatL = lit(αD). By the assumption,
I |= L, that is,I |= lit(αD). SinceI ◦ E ′ 6|= L, I ◦ E ′ |= lit(α). Thus,α ∈ E ′

70 4 Active Integrity Constraints and Revision Programming

and, consequently,α ∈ U ′. It follows thatU ′ is closed underr and, sincer was an
arbitrary element ofη, underη. too. Thus,U ′ = U , that is,E ′ ∪ ne(I, I ◦ E) =
E ∪ ne(I, I ◦ E). SinceE ′ ⊆ E andE ∩ ne(I, I ◦ E) = ∅, E ′ = E . It follows thatE
is a minimal set of update actions such thatI ◦ E |= η. 2

4.4 Normal Active Integrity Constraints and Normalization

An active integrity constraintr is normal if |head(r)| = 1. We will now study prop-
erties of normal active integrity constraints. First, we will show that for that class of
constraints, updating by justified weak repairs guarantees the minimality of change
property and so, the explicit reference to the latter can be omited from the definition
of justifed repairs.

Theorem 4.15.LetI be a database andη a set of normal active integrity constraints.
If E is a justified weak repair for〈I, η〉 thenE is a justified repair for〈I, η〉.

Proof: Let E be a justified weak repair for〈I, η〉. We have to prove thatE is minimal
with respect to constraint enforcement. To this end, let us considerE ′ ⊆ E such that
I ◦ E ′ |= η.

We defineU = E ∪ne(I, I ◦E) andU ′ = E ′∪ne(I, I ◦E). We will show thatU ′ is
closed underη. Let r ∈ η be such thatua(nup(r)) ⊆ U ′. Letα be an update action
such thathead(r) = {α}. Thenbody(r) = {lit(αD)} ∪ nup(r).
SinceI ◦ E ′ |= r, I ◦ E ′ 6|= body(r). By our assumption,ua(nup(r)) ⊆ U ′. Thus,
I ◦ U ′ |= nup(r). SinceU ′ is consistent, Proposition 4.5(2) implies thatI ◦ E ′ =
I ◦ U ′. Thus,I ◦ E ′ 6|= lit(αD) and, consequently,I ◦ E ′ |= lit(α).
SinceU ′ ⊆ U , ua(nup(r)) ⊆ U . By Theorem 4.7,U is closed underη. Thus,α ∈ U .
SinceI ◦ U = I ◦ E (Proposition 4.5(2)),I ◦ E |= lit(α).
If I |= lit(α) then, asI ◦E |= lit(α), we haveα ∈ ne(I, I ◦E) ⊆ U ′. If I 6|= lit(α)
then, asI ◦ E ′ |= lit(α), we have thatα ∈ E ′ ⊆ U ′. Thus,U ′ is closed underr and
so, also underη. Consequently,U ′ = U . SinceE ∩ ne(I, I ◦ E) = ∅, it follows that
E ′ = E . Thus,E is a minimal set of update actions such thatI ◦ E |= η. 2

Next, we introduce the operation ofnormalizationof active integrity constraints,
which consists of eliminating disjunctions from the heads of rules. For an active
integrity constraintr = φ ⊃ α1 ∨ · · · ∨ αn, by rn we denote the set ofnormal
active integrity constraints{φ ⊃ α1, . . . , φ ⊃ αn}. For a setη of active integrity
constraints, we setηn =

⋃
r∈η r

n. It is shown in [29] thatE is founded for〈I, η〉 if
and only ifE is a founded for〈I, ηn〉. Thus,E is a founded (weak) repair for〈I, η〉
if and only if E is a founded (weak) repair for〈I, ηn〉. For justified repairs, we have
a weaker result. Normalization may eliminate some justified repairs.

Theorem 4.16.LetI be a database andη a set of active integrity constraints.

1. If a setE of update actions is a justified repair for〈I, ηn〉, thenE is a justified
repair for 〈I, η〉

4.4 Normal Active Integrity Constraints and Normalization 71

2. If a setE of update actions is a justified weak repair for〈I, ηn〉, thenE is a
justified weak repair for〈I, η〉.

Proof: Let E be a justified repair for〈I, ηn〉. We defineU = E ∪ ne(I, I ◦ E).
By Corollary 4.13,E is a founded repair for〈I, ηn〉. By a result from [29],E is a
founded repair for〈I, η〉 and, consequently, a repair for〈I, η〉.
SinceE is, in particular, a justified weak repair for〈I, ηn〉, U is a justified action
set for〈I, ηn〉 (Theorem 4.7). Thus,U is a minimal set of update actions containing
ne(I, I ◦ E) and closed underηn. To prove thatE is a justified repair for〈I, η〉, it
suffices to show thatU is a minimal set of update actions containingne(I, I ◦ E)
and closed underη.

Let us consider an active integrity constraint

r = lit(αD
1), . . . , lit(αD

n), φ ⊃ α1 ∨ · · · ∨ αn

in η such thatua(nup(r)) ⊆ U (we note thatnup(r) consists precisely of the literals
that appear inφ). It follows thatI◦U |= nup(r). SinceE is a repair,I◦E 6|= body(r).
By Proposition 4.5(2),I ◦ E = I ◦ U . Thus,I ◦ U 6|= body(r). It follows that there
is i, 1 ≤ i ≤ n, such thatI ◦ U 6|= lit(αD

i). Thus,αD
i /∈ U . By Theorem 4.8(1),

αi ∈ U . Thus,U is closed underr and, consequently, underη, as well.

We will now show thatU is minimal in the class of sets of update actions containing
ne(I, I ◦E) and closed underη. LetU ′ be a set of update actions such thatne(I, I ◦
E) ⊆ U ′ ⊆ U andU ′ is closed underη. Let us consider an active integrity constraint
in s ∈ ηn such thatua(nup(s)) ⊆ U ′.
By the definition ofηn, there is an active integrity constraintr ∈ η such that

r = lit(αD
1), . . . , lit(αD

i), . . . , lit(αD
n), φ ⊃ α1 ∨ · · · ∨ αi ∨ · · · ∨ αn

and
s = lit(αD

1), . . . , lit(αD
i), . . . , lit(αD

n), φ ⊃ αi.

Sinceua(nup(s)) ⊆ U ′, ua(nup(r)) ⊆ U ′. As U ′ is closed underη, there isj,
1 ≤ j ≤ n, such thatαj ∈ U ′. For everyk such that1 ≤ k ≤ n andk 6= i, αD

k ∈ U ′.
By the consistency ofU ′, we conclude thatαi ∈ U ′. Thus,U ′ is closed unders and,
consequently, underηn. SinceU ′ ⊆ U andU is minimal containingne(I, I ◦E) and
closed underηn it follows thatU ′ = U . Thus,U is minimal containingne(I, I ◦ E)
and closed underη. Consequently,E is a justified repair for〈I, η〉.

(2) If E is a justified weak repair for〈I, ηn〉 then, by Theorem 4.15,E is a justified
repair for〈I, ηn〉. By (1), E is a justified repair for〈I, η〉 and so, a justified weak
repair for〈I, η〉. 2

The following example shows that the inclusions in the previous theorem are, in
general, proper.

Example 4.17.Let us consider an empty databaseI, the setη of active integrity
constraints

72 4 Active Integrity Constraints and Revision Programming

r1 = not a,not b ⊃ +a ∨+b
r2 = a,not b ⊃ +b
r3 = not a, b ⊃ +a

its normalized versionηn

r1,1 = not a,not b ⊃ +a
r1,2 = not a,not b ⊃ +b
r2,1 = a,not b ⊃ +b
r3,1 = not a, b ⊃ +a

and the set of update actionsE = {+a,+b}. It is easy to verify thatE is a justified
repair for 〈I, η〉. However,E is not a justified weak repair for〈I, ηn〉 (and so a
justified repair for〈I, ηn〉). Indeed, it is not a minimal set containingne(I, I◦E) = ∅
and closed underηn as∅ is also closed underηn. 2

4.5 Shifting Theorem

In this section we study the concept of shifting [108]. Shifting consists of transform-
ing an instance〈I, η〉 of the database repair problem to a syntactically isomorphic
instance〈I ′, η′〉 by changing integrity constraints to reflect the “shift” ofI into I ′.
A semantics for database repair problem has theshifting propertyif the repairs of the
“shifted” instance of the database update problem are precisely the results of mod-
ifying the repairs of the original instance according to the shift fromI to I ′. The
shifting property is important. If a semantics of database updates has it, the study of
that semantics can be reduced to the case when the input database is the empty set. In
many cases it allows us to relate a semantics of database repairs to some semantics
of logic programs with negation.

Example 4.18.Let I = {a, b} and letη = {a, b ⊃ −a∨−b}. There are two founded
repairs for〈I, η〉: E1 = {−a} andE2 = {−b}. LetW = {a}. We will now “shift”
the instance〈I, η〉with respect toW. To this end, we will first modifyI by changing
the status inI of elements inW, in our case, ofa. Sincea ∈ I, we will remove
it. Thus,I “shifted” with respect toW becomesI ′ = {b}. Next, we will modify
η correspondingly, replacing literals and update actions involvinga by their duals.
That results inη′ = {not a, b ⊃ +a∨−b}. One can check that the resulting instance
〈I ′, η′〉 of the update problem has two founded repairs:{+a} and{−b}. Moreover,
they can be obtained from the founded repairs for〈I, η〉 by consistently replacing
−a with +a and+a with −a (the latter does not apply in this example). 2

The situation presented in Example 4.18 is not coincidental. In this section we will
show that the semantics of (weak) repairs, founded (weak) repairs and justified
(weak) repairs satisfy the shifting property.

We start by observing thatshiftinga databaseI to a databaseI ′ can be modeled by
means of the symmetric difference operator. Namely, we haveI ′ = I ÷W, where

4.5 Shifting Theorem 73

W = I ÷ i′. This identity shows that one can shift any databaseI into any database
I ′ by forming a symmetric difference ofI with some set of atomW (specifically,
W = I ÷ i′). We will now extend the operation of shifting a database with respect
toW to the case of literals, update actions and integrity constraints. To this end, we
introdce ashiftingoperatorTW .

Definition 4.19.LetW be a database and̀a literal or an update action. We define

TW(`) =
{
`D if the atom of̀ is inW
` if the atom of̀ is not inW

and we extend this defnition to sets of literals or update actions, respectively.

Furthermore, ifop is an operator on sets of literals or update actions (such as con-
junction or disjunction), for every setX of literals or update actions, we define

TW(op(X)) = op(TW(X)).

Finally, for an active integrity constraintr = φ ⊃ ψ, we set

TW(r) = TW(φ) ⊃ TW(ψ)

and we extend the notation to sets active integrity constraints in the standard way.
2

To illustrate the last two parts of the definition, we note that whenop stands for the
conjunction of a set of literals andX = {L1, . . . , Ln}, where everyLi is a literal,
TW(op(X)) = op(TW(X)) specializes to

TW(L1, . . . , Ln) = TW(L1), . . . , TW(Ln).

Similarly, for an active integrity constraint

r = L1, . . . , Ln ⊃ α1 ∨ . . . ∨ αm

we obtain

TW(r) = TW(L1), . . . , TW(Ln) ⊃ TW(α1) ∨ · · · ∨ TW(αm).

Clearly, we overload the notationTW and interpret it based on the type of the argu-
ment. We will now present several useful properties of the operatorTW .

Proposition 4.20.LetW be a database.

1. For every update actionα, TW(lit(α)) = lit(TW(α))
2. For every setA of literals (update actions, active integrity constraints, respec-

tively)TW(TW(A)) = A

3. For every consistent setA of literals (update actions, respectively),TW(A) is
consistent

74 4 Active Integrity Constraints and Revision Programming

4. For every databasesI andR, TW(ne(I,R)) = ne(I ÷W,R÷W)
5. For every active integrity constraintr, nup(TW(r)) = TW(nup(r)).

Proof: (1) - (3) follow directly from the definitions. We omit the details.

(4) Letα ∈ ne(I ÷ W,R ÷W). If α = +a, then it follows thata ∈ (I ÷ W) ∩
(R ÷ W). Let us assume thata ∈ W. Thena /∈ i ∪ R and, consequently,−a ∈
ne(I,R). Sincea ∈ W, +a = TW(−a). Thus,α ∈ TW(ne(I,R)). The case when
α = −a can be dealt with in a similar way. It follows thatne(I ÷ W,R ÷W) ⊆
TW(ne(I,R)).
Let I ′ = I ÷ W andR′ = R ÷ W. ThenI = I ′ ÷ W, R = R′ ÷ W and, by
applying the inclusion we just proved toI ′ andR′, we obtain

ne(I,R) = ne(I ′ ÷W,R′ ÷W) ⊆ TW(ne(I ′,R′)).

Consequently,

TW(ne(I,R)) ⊆ TW(TW(ne(I ′,R′))) = ne(I ÷W,R÷W).

Thus, the claim follows.

(5) LetL ∈ nup(TW(r)). It follows thatL ∈ body(TW(r)) andLD /∈ lit(head(TW(r)).
Clearly,head(TW(r)) = TW(head(r)) andbody(TW(r)) = TW(body(r)). Thus,
L ∈ TW(body(r)) andLD /∈ TW(head(r)). Consequently,TW(L) ∈ body(r).
Moreover, sinceTW(LD) = (TW(L))D, (TW(L))D /∈ head(r). It follows that
TW(L) ∈ nup(r) and so,L ∈ TW(nup(r)). Hence,nup(TW(r)) ⊆ TW(nup(r)).
Applying this inclusion to an active integrity constraints = TW(r), we obtain
nup(r) ⊆ TW(nup(TW(r))), which impliesTW(nup(r)) ⊆ TW(TW(nup(TW(r)))) =
nup(TW(r)). Thus, the equalitynup(TW(r)) = TW(nup(r)) follows. 2

Proposition 4.21.Let I andW be databases and letL be a literal or an update
action. ThenI |= L if and only ifI ÷W |= TW(L).

Proof: (⇒) Let us assume thatI |= L. If L = a, wherea is an atom, thena ∈ I.
There are two cases:a ∈ W anda /∈ W. In the first case,a /∈ I ÷W andTW(a) =
not a. In the second case,a ∈ i÷W andTW(a) = a. In each case,I÷W |= TW(a),
that is,I ÷W |= TW(L).
The caseL = not a, wherea is an atom, is similar. First, we have thata /∈ i. If
a ∈ W thena ∈ i ÷ W andTW(not a) = a. If a 6∈ W thena /∈ i ÷ W and
TW(not a) = not a. In each case,I ÷W |= TW(not a), that is,I ÷W |= TW(L).

(⇐) Let us assume thatI ÷ W |= TW(L). Then, (I ÷ W) ÷ W = I and
TW(TW(L)) = L. Thus,I |= L follows by the implication (⇒). 2

Proposition 4.22.LetI andW be databases, and letU be a consistent set of update
actions. Then(I ◦ U)÷W = (I ÷W) ◦ TW(U).

4.5 Shifting Theorem 75

Proof: We note that sinceU is consistent,TW(U) is consistent, too. Thus,bothsides
of the identity are well defined.

Let a ∈ (I ◦ U) ÷W. If +a ∈ TW(U), thena ∈ (I ÷ W) ◦ TW(U). Thus, let us
assume that+a /∈ TW(U). We have two cases.
Case 1:a /∈ W. From the definition ofTW , +a /∈ U . Sincea ∈ (I ◦ U) ÷ W,
a ∈ i ◦ U and, consequently,a ∈ i and−a /∈ U . Thus,a ∈ (I ÷ W) and−a /∈
TW(U) (otherwise, asTW(−a) = −a, we would have−a ∈ U). Consequently,
a ∈ (I ÷W) ◦ TW(U).
Case 2:a ∈ W. From the definition ofTW ,−a /∈ U . Sincea ∈ (I◦U)÷W, a /∈ i◦U .
Thus,a /∈ i and+a /∈ U . It follows thata ∈ i÷W and−a /∈ TW(U) (otherwise we
would have+a ∈ U , asTW(−a) = +a, in this case). Hence,a ∈ (I÷W)◦TW(U).
If a /∈ (I◦U)÷W, we reason similarly. If−a ∈ TW(U), thena /∈ (I÷W)◦TW(U).
Therefore, let us assume that−a /∈ TW(U). As before, there are two cases.
Case 1:a /∈ W and thus−a /∈ U . Sincea /∈ (I◦U)÷W, a /∈ i◦U and, consequently,
a /∈ i and+a /∈ U . Thus,a /∈ (I ÷ W) and+a /∈ TW(U). Consequently,a /∈
(I ÷W) ◦ TW(U).
Case 2:a ∈ W and thus+a /∈ U . In this case,a ∈ I ◦ U . Thus,a ∈ i and−a /∈ U .
It follows thata /∈ i÷W and+a /∈ TW(U). Hence,a /∈ (I ÷W) ◦ TW(U). 2

Corollary 4.23. LetI andW be databases,U a consistent set of update actions, and
L a literal or an action update. ThenI ◦ U |= L if and only if(I ÷W) ◦ TW(U) |=
TW(L)

Proof: By Proposition 4.21,I ◦ U |= L if and only if (I ◦ U) ÷ W |= TW(L).
By Proposition 4.22, the latter condition is equivalent to the condition(I ÷ W) ◦
TW(U) |= TW(L). 2

Theorem 4.24.(SHIFTING THEOREM FOR(WEAK) REPAIRS AND FOUNDED(WEAK)
REPAIRS)

Let I andW be databases. For every setη of active integrity constraints and for
every consistent setE of update actions, we have

1. E is a weak repair for〈I, η〉 if and only if TW(E) is a weak repair for〈I ÷
W, TW(η)〉

2. E is a repair for〈I, η〉 if and only ifTW(E) is a repair for〈I ÷W, TW(η)〉
3. E is founded for〈I, η〉 if and only ifTW(E) is founded for〈I ÷W, TW(η)〉.
4. E is a founded (weak) repair for〈I, η〉 if and only ifTW(E) is a founded (weak)

repair for 〈I ÷W, TW(η)〉.

Proof. (1) Let us assume thatE is a weak repair for〈I, η〉. It follows thatE is consis-
tent. SinceI ◦E |= η, by Corollary 4.23,(I ÷W)◦TW(E) |= TW(η). The converse
implication follows from the one we just proved by Proposition 4.20(2).

(2) As before, it suffices to show only one implication. LetE be a repair for〈I, η〉.
Then,E is a weak repair for〈I, η〉. By (1),E is a weak repair for〈I ÷W, TW(η)〉.

76 4 Active Integrity Constraints and Revision Programming

Let E ′ ⊆ TW(E) be such that(I ÷ W) ◦ E ′ |= TW(η). It follows thatTW(E ′) ⊆
TW(TW(E)) = E . SinceE is consistent,TW(E ′) is consistent, too. By Corollary
4.23 and Proposition 4.20(2), since(I ÷W) ◦ E ′ |= TW(η), thenI ◦ TW(E ′) |= η.
SinceE is a repair andTW(E ′) ⊆ E , TW(E ′) = E . Thus,E ′ = TW(E) and so,
TW(E) is a repair for〈I ÷W, TW(η)〉.
(3) As in two previous cases, we show only one implication. Thus, let us assume that
E is founded for〈I, η〉. Let α ∈ TW(E). It follows that there isβ ∈ E such that
α = TW(β). SinceE is founded with respect to〈I, η〉, there is an active integrity
constraintr such thatβ ∈ head(r), I◦E |= nup(r), and for everyγ ∈ head(r)\{β},
I ◦ E |= γD.

Clearly, the active integrity constraintTW(r) belongs toTW(η) andα = TW(β) is
an element ofhead(TW(r)). By Proposition 4.20(5),nup(r) = nup(TW(r)). Thus,
by Corollary 4.23,(I ÷W) ◦TW(E) |= nup(TW(r)). Next, letγ ∈ head(TW(r)) \
{α}. Then, there isδ ∈ head(r) \ {β} such thatγ = TW(δ). SinceI ◦ E |= γD, it
follows that(I÷W)◦TW(E) |= TW(δD), that is,(I÷W)◦TW(E) |= γD. Thus,α
is founded with respect to〈I ÷W, TW(η)〉 andTW(E) andTW(E) is founded with
respet to〈I ÷W, TW(η)〉.
(4) This property is a direct consequence of (1), (2), and (3). 2

We will now turn our attention to justified repairs. We need one more auxiliary result.

Lemma 4.25.Let I andW be databases. For every setη of active integrity con-
straints and for every setU of update actions,U is a justified action set for〈I, η〉 if
and only ifTW(U) is a justified action set for〈I ÷W, TW(η)〉.

Proof: (⇒) We have to prove thatTW(U) is consistent, and minimal among all
supersets ofne(I ÷W, (I ÷W) ◦ TW(U)) that are closed underTW(η).
SinceU is a justified action set for〈I, η〉, U is consistent andne(I, I ◦U) ⊆ U . The
former implies thatTW(U) is consistent (cf. Proposition 4.20(1)). The latter implies
thatne(I ÷W, (I ÷W) ◦ TW(U)) ⊆ TW(U) (cf. Propositions 4.20(2) and 4.22).

Next, we prove thatTW(U) is closed underTW(η). Let r be an active integrity con-
straint inTW(η) such thatbody(r) is consistent,nup(r) ⊆ lit(TW(U)). Then, there
existss ∈ η such thatr = TW(s). By Proposition 4.20(5),nup(r) = TW(nup(s)).
As TW(nup(s)) ⊆ lit(TW(U)), we have thatnup(s) ⊆ lit(U). Since U is
closed unders, there existsα ∈ head(s) such thatα ∈ U . Thus, we obtain that
TW(α) ∈ TW(head(s)) = head(r), and thatTW(α) ∈ TW(U). Consequently,
head(r) ∩ TW(U) 6= ∅. It follows thatTW(U) is closed underr and so, also under
TW(η).
Finally, let us consider a setV of update actions such thatne(I ÷ W, (I ÷ W) ◦
TW(U)) ⊆ V ⊆ TW(U) and closed underTW(η). By Propositions 4.20(2) and
4.22,ne(I ÷W, (I ÷W) ◦ TW(U)) = TW(ne(I, I ◦ U)). Thus,ne(I, I ◦ U) ⊆
TW(V) ⊆ U . From the fact thatV is closed underTW(η) it follows thatTW(V) is
closed underη (one can show it reasoning similarly as in the previous paragraph). As
U is minimal in the class of supersets ofne(I, I ◦ U) closed underη, TW(V) = U
and so,V = TW(U). This completes the proof of the implication (⇒).

4.6 Complexity and Computation 77

(⇐) If TW(U) is a justified action set for〈I ÷ W, TW(η)〉, the implication(⇒)
yields thatTW(TW(U)) = U is a justified action set for〈(I ÷W)÷W = I, η〉. 2

This reslt implies the shifting property for the semantics of justified revisions.

Theorem 4.26.(SHIFTING THEOOREM FOR (WEAK) JUSTIFIED REPAIRS) Let I
andW be databases. For every setη of active integrity constraints and for every set
E of update actions,E is an justified (weak) repair for〈I, η〉 if and only ifTW(E) is
a justified (weak) repair for〈I, TW(η)〉.

Proof: (⇒) If E is a justified weak repair for〈I, η〉, thenE ∩ ne(I, I ◦ E) = ∅ and
E ∪ ne(I, I ◦ E) is a justified action set for〈I, η〉 (Theorem 4.7). It follows that
TW(E)∩ TW(ne(I, I ◦ E)) = ∅. Moreover, by Lemma 4.25,TW(E ∪ ne(I, I ◦ E))
is a justified action set for〈I ÷W, TW(η)〉.
We haveTW(ne(I, I◦E)) = ne(I÷W, (I÷W)◦TW(E)). Thus, again by Theorem
4.7,TW(E) is a justified weak repair for〈I ÷W, TW(η)〉.
If E is a justified repair for〈I, η〉, then our argument shows thatTW(E) is a justified
weak repair for〈I ÷ W, TW(η)〉. Moreover, sinceE is a repair forI, by Theorem
4.24(2) we have thatTW(E) is a repair forI÷W. It follows thatTW(E) is a justified
repair for〈I ÷W, TW(η)〉.

(⇐) This implication follows from the other one in the same way as in several other
similar cases in the chapter. 2

Theorems 4.24 and 4.26 imply that in the context of (weak) repairs, founded (weak)
repairs or justified (weak) repairs, an instance〈I, η〉 of the database update problem
can be shifted to the instance the empty initial database. That property simplifies
studies of these semantics as it allows us to eliminate one parameter (the initial data-
base) from considerations.

Corollary 4.27. LetI be a database andη a set of active integrity constraints. Then
E is a weak repair (repair, founded weak repair, founded repair, justified weak repair,
ustified repair, respectively) for〈I, η〉 if and only ifTi(E) is a weak repair (repair,
founded weak repair, founded repair, justified weak repair, ustified repair, respec-
tively) for 〈∅, TI (η)〉. 2

4.6 Complexity and Computation

We noted earlier that the problem of the existence of a (weak) repair is NP-complete,
and the same is true for the problem of the existence of founded weak repairs. On the
other hand, the problem of the existence of a founded repair isΣ2

P -complete [29]. In
this section, we study the problem of the existence of justified (weak) repairs.

For our hardness results, we will use problems in logic programming. We will con-
sider disjunctive and normal logic programs that satisfy some aditional syntactic
constraints. Namely, we will consider only programs without rules which contain

78 4 Active Integrity Constraints and Revision Programming

multiple occurrences of the same atom (that is, in the head and in the body, negated
or not; or in the body — both positively and negatively). We call such programs
simple. It is well known that the problem of the existence of a stable model of a
normal logic program is NP-complete [107], and of the disjunctive logic program
— ΣP

2 -complete [51]. The proofs in [51, 107] imply that the results hold also under
the restriction to simple normal and simple disjunctive programs, respectively (in
the case of disjunctive logic programs, a minor modification of the construction is
required).

Let ρ be a logic programming rule, say

ρ = a1 ∨ . . . ∨ ak ← β.

We define
aic(ρ) = not a1, . . . ,not ak, β ⊃ +a1 ∨ · · · ∨+ak.

We extend the operatoraic(·) to logic programs in a standard way. We note that if a
ruleρ is simple thenbody(aic(ρ)) is consistent andnup(aic(ρ)) = body(ρ).
We recall that a setM of atoms is an answer set of a disjunctive logic programP
if M is a minimal set closed under the reductPM , wherePM consists of the rules
obtained by dropping all negative literals from those rules inP that do not contain a
literal not a in the body, for anya ∈ M (we refer to [66] for details). Our first two
lemmas establish a result needed for hardness arguments.

Lemma 4.28.LetP be a simple disjunctive logic program andM ′,M sets of atoms
such thatM ′ ⊆ M . ThemM ′ is a model ofPM if and only if {+a | a ∈ M ′} ∪
{−a | a /∈M} is closed underaic(P).

Proof: Let us defineU = {+a | a ∈ M ′} ∪ {−a | a /∈ M}. We note thatU is
consistent.

(⇒) Let r ∈ aic(P), ρ ∈ P be a rule such thatr = aic(ρ), andρ′ be the rule
obtained by eliminating fromρ all negative literals.

SinceP is simple,nup(r) = body(ρ). Let us assume thatnup(r) ⊆ U . It follows
thatρ′ ∈ PM and thatM ′ |= body(ρ′). Thus,head(ρ′)∩M ′ 6= ∅. Sincehead(ρ) =
head(ρ′) andhead(r) = head(aic(ρ)) = ua(head(ρ)), head(r) ∩ U 6= ∅. That is,
U is closed underr and, sincer was chosen arbitrarily, underaic(P), too.

(⇐) Let us considerρ′ ∈ PM . There isρ ∈ P such that for every negative literal
not a ∈ body(ρ), a /∈ M , and dropping all negative literals fromρ results inρ′.
If body(ρ′) ⊆ M ′, thenbody(ρ) ⊆ lit(U). Thus,nup(aic(ρ)) ⊆ U . It follows that
head(aic(ρ))∩U 6= ∅. Thus,head(ρ)∩ lit(U) 6= ∅. Sincehead(ρ) consists of atoms
andhead(ρ′) = head(ρ), head(ρ′) ∩M ′ 6= ∅. That is,M ′ |= ρ′ and, consequently,
M ′ |= PM . 2

Lemma 4.29.LetP be a simple disjunctive logic program. A setM of atoms is an
answer set ofP if and only ifua(M) is a justified weak repair for〈∅, aic(P)〉.

4.6 Complexity and Computation 79

Proof: (⇒) LetM be an answer set ofP . That is,M is a minimal set closed under
the rules in the reductPM . By Lemma 4.28,{+a | a ∈ M} ∪ {−a | a /∈ M} is
closed underaic(P). Let U ′ be a set of update actions such that{−a | a /∈ M} ⊆
U ′ ⊆ {+a | a ∈ M} ∪ {−a | a /∈ M}. We defineM ′ = {a | + a ∈ U ′}. Then
M ′ ⊆ M . By Lemma 4.28,M ′ |= PM . SinceM is an answer set ofP , M ′ = M
andU ′ = U . It follows that{+a | a ∈ M} ∪ {−a | a /∈ M} is a minimal set closed
underaic(P) and containing{−a | a /∈ M}. Sinceua(M) = {+a | a ∈ M} and
ne(∅, ∅ ◦ ua(M)) = {−a | a /∈ M}, Theorem 4.7 implies thatua(M) is justified
weak repair for〈∅, aic(P)〉.

(⇐) By Theorem 4.7,{+a | a ∈ M} ∪ {−a | a /∈ M} is a minimal set containing
{−a | a /∈M} and closed underaic(P). By Lemma 4.28,M is a model ofPM . Let
M ′ ⊆M be a model ofPM . Again by Lemma 4.28,{+a | a ∈M ′}∪{−a | a /∈M}
is closed underaic(P). It follows that{+a | a ∈M ′}∪{−a | a /∈M} = {+a | a ∈
M} ∪ {−a | a /∈M}. Thus,M ′ = M and so,M is a minimal model ofPM , that is,
an answer set ofP . 2

We now move on to results concerning upper bounds (membership) and derive the
main results of this section.

Lemma 4.30.Let η be a finite set of normal active integrity constraints and letU
be a finite set of update actions. There is a least set of update actionsW such that
U ⊆ W andW is closed underη. Moreover, this least setW can be computed in
polynomial time in the size ofη andU .

Proof: We prove the result by demonstrating a bottom-up process computingW. The
process is similar to that applied when computing a least model of a Horn program.
We start withW0 = U , Assuming thatWi has been computed, we identify inη
every active integrity constraintr such thatnup(r) ⊆ lit(Wi), and add the head
of each such ruler toWi. We call the resultWi+1. If Wi+1 = Wi, we stop. It is
straightforward to prove that the last set constructed in the process is closed under
η, containsU , and is contained in every set that is closed underη and containsU .
Moreover, the construction can be implemented to run in polynomial time. 2

Lemma 4.31.Let η be a finite set of normal active integrity constraints and letU ′
andU ′′ be sets of update actions. The problem whether there is a setU of update
actions such thatU is closed underη andU ′ ⊆ U ⊂ U ′′ is in NP.

Proof: Once we nondeterministically guessU , checking all the required conditions
can be implemented in polynomial time. 2

Lemma 4.32.Let η be a finite set of normal active integrity constraints,I a data-
base, andE be a set of update actions. The problem whether there is a setE ′ ⊂ E of
update actions such thatI ◦ E ′ |= η is in NP.

Proof: Once we nondeterministically guessE , checking all the required conditions
can be implemented in polynomial time. 2

80 4 Active Integrity Constraints and Revision Programming

Theorem 4.33.LetI be a database andη a set of normal active integrity constraints.
Then checking if there exists a justified repair (justified weak repair, respectively) for
〈I, η〉 is an NP-complete problem.

Proof: By Theorem 4.15, it is enough to prove the result for justified weak repairs.

(MEMBERSHIP) The following algorithm decides the problem: (1) Nondeterminis-
tically guess a consistent set of update actionsE . (2) Computene(I, I ◦ E). (3) If
E∩ne(I, I◦E) 6= ∅ return NO. Otherwise, compute the least setW of update actions
that is closed underη and containsne(I, I ◦ E). (4) IfW = E ∪ ne(I, I ◦ E), then
return YES. Otherwise, return NO. From an earlier observation, it follows that the
algorithm runs in polynomial time. From Theorem 4.7, it follows that the algorithm
is correct.

(HARDNESS) The problem of the existence of an answer set of a simple normal logic
programP is NP-complete. By Theorem 4.15 and Lemma 4.29,P has an answer set
if and only if there exists a justified weak repair for〈∅, aic(P)〉. Sinceaic(P) can
be constructed in polynomial time in the size ofP , the result follows. 2

Theorem 4.34.Let I be a database andη a set of active integrity constraints. The
problem of the existence of a justified weak repair for〈I, η〉 is aΣP

2 -complete prob-
lem.

Proof: (MEMBERSHIP) The problem can be decided by a nondeterministic polynomial-
time Turing Machine with an NP-oracle. Indeed, in the first step, one needs to
guess (nondeterministically) a consistent setE of update actions. SettingU =
E ∪ ne(I, I ◦ E), one needs to verify that

1. E ∩ ne(I, I ◦ E) = ∅
2. U is closed underη

3. for eachU ′ such thatne(I, I ◦E) ⊆ U ′ ⊆ U andU ′ closed underη, U ′ = U (by
Lemma 4.31, one call to an NP-oracle suffices)

(HARDNESS) The problem of the existence of an answer set of a simple disjunctive
logic programP isΣP

2 -complete. By Lemma 4.29,P has an answer set if and only
if there exists a justified weak repair for〈∅, aic(P)〉. Thus, the result follows. 2

Theorem 4.35.Let I be a database andη a set of active integrity constraints. The
problem of the existence of a justified repair for〈I, η〉 is aΣP

2 -complete problem.

Proof: (MEMBERSHIP) The problem can be decided by a nondeterministics polynomial-
time Turing Machine with an NP-oracle. Indeed, in the first step, one needs to
guess (nondeterministically) a consistent setE of update actions. SettingU =
E ∪ ne(I, I ◦ E), one needs to verify that

1. E ∩ ne(I, I ◦ E) = ∅
2. U is closed underη

4.7 Some Implications of the Results Obtained so far 81

3. for eachU ′ such thatne(I, I ◦E) ⊆ U ′ ⊆ U andU ′ closed underη, U ′ = U (by
Lemma 4.31, one call to an NP-oracle suffices)

4. for eachE ′ such thatE ′ ⊂ E , I ◦ E ′ 6|= η (By Lemma 4.32, one call to an
NP-oracle suffices).

(HARDNESS) Since for the class of instances〈∅, aic(P)〉 justified weak repairs co-
incide with justified repairs (Theorem 4.14), the result follows. 2

4.7 Some Implications of the Results Obtained so far

We recall that given a databaseI and a setη of active integrity constraints, the goal
is to replaceI with I ′ so thatI ′ satisfiesη. The set of update actions needed to
transformI into I ′ must at least be a repair for〈I, η〉. However, it should also obey
preferences captured by the heads of constraints inη.

Let us denote byR(I, η) (FR(I, η), JR(I, η), respectively) the class of repairs
(founded repairs, justified repairs, respectively) for〈I, η〉. The results of the chapter
imply that

JR(I, ηn) ⊆ JR(I, η) ⊆ FR(I, η) ⊆ R(I, η).

Thus, given an instance〈I, η〉 of the database repair problem, one might first attempt
to select a repair for〈I, η〉 from the most restricted set of repairs —JR(I, ηn). Not
only these repairs are very strongly tied to preferences expressed byη, the related
computational problems are relatively easy. The problem to decide whether this set
is empty is NP-complete. However, the classJR(I, ηn) is narrow and it may be that
JR(I, ηn) = ∅.
If it is so, as the next resort one might try to repairI by selecting a repair from
JR(I, η). This class of repairs for〈I, η〉 reflects the preferences captured byη. Since
it is broader than the previous one, the chance of success is higher. However, the com-
putational complexity grows — the existence problem forJR(I, η) isΣ2

P -complete.

If also JR(I, η) = ∅, it still may be that founded repairs exist. Moreover, decid-
ing whether a founded repair exists is not harder than the previous step. Finally, if
there are no founded repairs, one still may consider just a repair. This is not quite
satisfactory as it ignores the preferences encoded byη and concentrates only on the
constraint enforcement. However, deciding whether a repair exists is “only” NP-
complete. Moreover, this class subsumes all other ones and so, the chance of success
at this step is the largest.

We note that if we fail to find a justified or founded repair in the process described
above, we may decide that respecting preferences encoded in active integrity con-
straints is more important than the minimality of change postulate. In such case, we
have also an option to consider justified weak repairs of〈I, η〉, where the existence
problem isΣP

2 -complete and, then founded weak repairs for〈I, η〉, where the exis-
tence problem is NP-complete.

82 4 Active Integrity Constraints and Revision Programming

4.8 Connections between Revision Programs and Active Integrity
Constraints

In this section we relate active integrity constraints to revision programs [108], an
earlier formalism for expressing integrity constraints and prescribing preferred ways
to enforce them.

4.8.1 Revision Programming — an Overview

A revision literal is an expression of the formin(a) or out(a), wherea is an atom
(a ∈ At). Revision literalsin(a) andout(a) aredualsof each other. Ifα is a revision
literal, we denote its dual byαD. We extend this notation to sets of revision literals.
We say that a set of revision literals isconsistentif it does not contain a pair of dual
literals (or, in our notation, ifU ∩ UD = ∅).
Revision literals represent elementary updates one can apply to a database. We define
the result of applying aconsistentsetU of revision literals to a databaseI as follows:

I ⊕ U = (I ∪ {a | in(a) ∈ U}) \ {a |out(a) ∈ U}.

A revision ruleis an expression of the form

r = α1 ∨ . . . ∨ αk ← β1, . . . , βm, (4.4)

wherek + m ≥ 1, andαi andβj are revision literals. Arevision programis a
collection of revision rules.

The set{α1, . . . , αk} is theheadof the rule (4.4); we denote it byhead(r). Simi-
larly, the set{β1, . . . , βm} is thebodyof the rule (4.4); we denote it bybody(r). If
∨head(r)∨ ≤ 1, we callr a normal revision rule. Moreover, if|head(r)| = 0, we
call r a revision constraint. Finally, a revision program isnormal if all its rules are
normal.

We say that a databased satisfiesa revision literalin(a) (out(b), respectively), if
a ∈ d (b /∈ d, respectively). A databased satisfiesa revision rule (4.4) if there isj,
1 ≤ j ≤ m, such thatd does not satisfyβj , or if there isi, 1 ≤ i ≤ k, such thatd
satisfiesαi. Finally, a databased satisfies a revision programP , if d satisfies every
rule in P . We use the symbol|= to denote the satisfaction relation. We often write
“is a model of” instead of “satisfies.”

For a propositional literalL, if L = a, we definerl(L) = in(a). If L = not a,
we definerl(L) = out(a). Conversely, for a revision literalα = in(a), we set
lit(α) = a and forα = out(a), lit(α) = not a. Finally, we extend the notation
introduced here to to sets of literals and sets of revision literals, as appropriate.

We note that every database interpretes revision literals and the corresponding propo-
sitional literals in the same way.

Proposition 4.36.Let I be a database. Then, for every setL of revision literals,
I |= L if and only ifI |= lit(L). 2

4.8 Connections between Revision Programs and Active Integrity Constraints 83

It follows that with respect to this satisfaction relation and the corresponding concept
of a model, a revision rule (4.4) is simply an integrity constraint equivalent to the
propositional formula:

lit(β1), . . . , lit(βm) ⊃ lit(α1), . . . , lit(αk).

However, a revision rule functions not only as an integrity constraint. It also encodes
a preference on how to “fix” it, when it does not hold. Not satisfying a revision rule
means satisfying all revision literals in the body ofr and failing to satisfy any of
the revision literals in the head ofr. Thus, fixing the constraint means constructing a
database that (1) does not satisfy some revision literal in the body ofr, or (2) satisfies
at least one revision literal in the head ofr.

LetP1 be a revision program consisting of a ruleout(b)← in(a), and letI = {a, b}
be a database. Clearly,I does not satisfyP1. The programP1 has three models:{b},
{a} and∅. The first model violates the body of the rule, the second one satisfies the
head of the rule, the third one has both properties. These models can be obtained
by updatingI with U1 = {out(a)}, U2 = {out(a)} andU3 = {out(a),out(b)},
respectively.

Definition 4.37. (WEAK REVISIONS AND REVISIONS) A setU of revision literals is
a weak revisionof I with respect to a revision programP if

1. I ∩ {a | in(a) ∈ U} = ∅ and{a |out(a) ∈ U} ⊆ i (that is, all revision literals
in U actually changeI)

2. I ⊕ U |= P (constraint enforcement)

A setU of revision literals is arevisionof I with respect to a revision programP if

1. I ⊕ U |= P (constraint enforcement)

2. for everyU ′ ⊆ U , I ⊕ U ′ |= P implies thatU ′ = U (minimality of change)

Due to the minimality of change requirement, revisions are weak revisions (that is,
consist of “status-changing” literals only). Furthermore, we note that the setsU1 and
U2 in the example considered above are revisions. The setU3 is a weak revision but
not a revision.

To narrow down the class of acceptable (weak) revisions, [108] proposed the seman-
tics of justified revisions. Speaking informally, that semantics gives thepreferenceto
models of a revision rule that satisfy its head over those models that do not satisfy its
body. Thus, in our example, the database{a} is preferred over the database{b}.
We will now present a formal definition of justified revisions. The original definition
from [108] dealt with the case of normal revision programs and did not explicitly
mention the minimality of change requirement (it was implicit in the definition). The
extension to disjunctive revision programs [118] also did not require the minimal-
ity of change. In analogy with the semantics of active integrity constraints, in this
chapter we call justified revisions of [108] and [118], justifiedweakrevisions.

84 4 Active Integrity Constraints and Revision Programming

A set U of revision literals isclosedunderP if for every rule r ∈ P , whenever
body(r) ⊆ U , thenhead(r) ∩ U 6= ∅. If U is closed underP and for every set
U ′ ⊆ U closed underP , we haveU ′ = U , thenU is aminimal closedset forP .

If a revision programP has no revision constraints, minimal closed sets exist. In
general, a revision program may have no closed sets and so, no minimal closed sets,
either (cf. the program consisting of the following two rules:← in(a) andin(a)←).

By itself, a minimal closed set for a revision programP is not sufficient to determine
the change that needs to be applied to a database to ensure it satisfiesP . For instance,
the programP1 = {out(b)← in(a)} has exactly one minimal closed set, namely∅.
But applying it to{a, b} does not result in any change. Of course, it is to be expected.
When determining changes to be made we must take into account the initial and the
revised databases.

LetI be a database andR a result of revisingI. We define theinertia setwith respect
to I andR, denotedI(I,R), by setting

I(I,R) = {in(a) | a ∈ i ∩R} ∪ {out(a) | a /∈ i ∪R}.

In other words,I(I,R) is the set of all revision literals that have no effect when
revisingI intoR. Thus, when usingP to justify a transformation fromI toR, we
may assume all revision literals inI(I,R).

Definition 4.38. (JUSTIFIED UPDATES AND JUSTIFIED WEAK REVISIONS)

LetP be a revision program and letI be a database. A setU of revision literals is a
P -justified updatefor I if

1. U is consistent, and

2. U is a minimal set closed underP ∪ I(I, I ⊕ U).

If U is aP -justified update forI, thenU \ I(I, I ⊕U) is aP -justified weak revision
for I. 2

While not self-evident from the definition, justified weak updates and justified weak
revisions, when applied to an initial database yield a database satisfying the program
(cf. [108, 118]).

For normal revision programs, justified weak revisions are minimal [108]. However,
in general, the condition (2) in Definition 4.38 is insufficient to enforce the minimal-
ity of P -justifed weak revisions. LetP2 = {out(a) ∨ in(a)← } and letI = ∅. One
can check that bothE1 = ∅ andE2 = {in(a)} areP -justified weak revisions forI.

Definition 4.39. (JUSTIFIED REVISIONS)

LetP be a revision program and letI be a database. AP -justified weak revisionE
for I is aP -justified revisionfor I if for every setE ′ ⊆ E such thatI ⊕ E ′ |= P ,
E ′ = E . 2

As we will see, justified (weak) revisions correspond to justified (weak) repairs. We
will now introduce a new semantics for revision programs motivated by intuitions
behind the semantics of founded repairs of active integrity constraints.

4.8 Connections between Revision Programs and Active Integrity Constraints 85

Definition 4.40. (FOUNDED (WEAK) REVISIONS) LetI be a database,P a revision
program and, andE a consistent set of revision literals.

1. A revision literalα is P -foundedwith respect toI and E if there is r ∈ P
such thatα ∈ head(r), I ⊕ E |= body(r), andI ⊕ E |= βD, for everyβ ∈
head(r) \ {α}.

2. The setE isP -foundedwith respect toI if every element ofE isP -founded with
respect toI andE .

3. E is aP -founded (weak) revisionfor I if E is a (weak) revision ofI with respect
to P andE is P -foundedwith respect toI. 2

There are examples showing that, in general, (weak) revisions are not founded (weak)
revisions, and founded weak revisions are not founded revisions.

Example 4.41.Let I = ∅ andP be the revision program containing the following
revision rules:

r1 = in(c) ← out(d)
r2 = in(b) ← in(a)
r3 = in(a)← in(b)

The set{in(d)} is a revision ofI with respect toP . Therefore it is a weak revision of
I with respect toP . However it is not aP -founded weak revision forI. Therefore, it
is not aP -founded revision forI. The set{in(c), in(a), in(b)} is aP -founded weak
revision forI but not aP -founded revision forI. 2

Proposition 4.42.Let P be a revision program and letI be a database. IfE is a
P -justified weak revision ofI, then it is aP -founded weak revision ofI.

Proof: We know thatI ⊕ E |= P (cf. [108, 118]) that isE is a weak revision ofI
with respect toP . Therefore, we need to prove thatE is P -founded with respect to
I. As E is aP -justified weak revision ofI there exists aP -justified updateU of I
such thatE = U \ I(I, I ⊕ U). We know thatU is consistent and is a minimal set
closed underP ∪ I(I, I ⊕ U). Let α ∈ E ⊆ U . As U is minimal,U ′ = U \ {α}
is not closed underP ∪ I(I, I ⊕ U). As α 6∈ I(I, I ⊕ U) there must be a revision
rule r ∈ P such thatbody(r) ⊆ U ′ andhead(r) ∩ U ′ = ∅. AsU ′ ⊆ U we have that
body(r) ⊆ U . Therefore, asU is closed underr, head(r) ∩ U = {α}. It follows that
I ⊕ U = I ⊕ E |= body(r) and for eachβ ∈ head(r) \ {α} we have thatβ 6∈ U .
Therefore,β 6∈ E andβ 6∈ I(I, I ⊕ U). We have two cases: eitherI |= β or I 6|= β.
In the first case asβ 6∈ I(I, I ⊕ U) thenβD ∈ E while in the second case asβ 6∈ E
we have thatI ⊕ E 6|= β. In each caseI ⊕ E |= βD. 2

Proposition 4.43.Let P be a revision program and letI be a database. IfE is a
P -justified revision ofI, then it is aP -founded revision ofI.

Proof: We know thatE is aP -justified weak revision ofI. Therefore, it is a a weak
revision ofI with respect toP . Moreover asE is aP -justified revision ofI for every

86 4 Active Integrity Constraints and Revision Programming

setE ′ ⊆ E such thatI ⊕ E ′ |= P , E ′ = E . ThusE is a revision ofI with respect
to P . As by Proposition 4.42 we have thatE is aP -founded weak revision ofI it
follows thatE is aP -founded revision ofI. 2

The converse implications do not hold in general. LetP = {in(b)← in(a), in(b)←
out(a), in(a)← in(b)} and letI = ∅. One can check thatR = {in(a), in(b)} is a
P -founded revision ofI (and so, aP -founded weak revision ofI, too). However, it
is not aP -justified weak revision ofI (and so, also not aP -justified revision ofI).

To summarize our discussion, revision programs can be assigned the semantics of
(weak) revisions, justified (weak) revisions and founded (weak) revisions. The sim-
ilarities to active integrity constraints are striking. We will establish the precise con-
nection in the next two sections.

4.8.2 Proper Revision Programs

To relate revision programs and active integrity constraints, we first note that we can
restrict the syntax of revision programs without affecting their expressivity.

A proper revision ruleis a revision rule that satisfies the following condition: the
literal in the head of the rule is not the dual of any literal in the body of the rule.

Let P be a revision program with constraints and letr1 andr2 be revision rules

α ∨ α1 ∨ . . . ∨ αk ← αD, β1, . . . , βm

and
α1 ∨ . . . ∨ αk ← αD, β1, . . . , βm,

respectively (that is,r2 differs fromr1 in that it dropsα from the head).

Lemma 4.44.Let I be a database. Under the notation introduced above, a set of
revision literals is a (weak) revision ofI with respect toP ∪{r1} (P ∪{r1}-founded
(weak) revision,P ∪ {r1}-justified (weak) revision ofI, respectively) if and only if
U is a (weak) revision ofI with respect toP ∪ {r2}) (P ∪ {r2}-founded (weak)
revision,P ∪ {r2}-justified (weak) revision ofI, respectively).

Proof: The claim is evident for the case of weak revisions and revisions. The case
of justified (weak) revisions follows from the observation that a consistent setU of
revision literals is a closed set forP ∪{r1}∪ I(I, I ⊕U) if and only ifU is a closed
set forP ∪ {r2} ∪ I(I, I ⊕ U).
For the case of founded (weak) revisions, it is enough to prove that a setU of revision
literals is founded with respect to〈I, P ∪ {r1}〉 if and only if U is founded with
respect to〈I, P ∪ {r2}〉. Let β ∈ U be founded with respect to〈I, P ∪ {r1}〉 and
U , and letr ∈ P ∪ {r1} be the rule providing support toβ. If r 6= r1, r ∈ P and so,
β is founded with respect to〈I, P ∪ {r2}〉 andU . Thus, let us assume thatr = r1.
If β = α, thenα ∈ U , I ◦ U |= α. SinceI ◦ U |= body(r1), I ◦ U |= αD, a
contradiction. Thus,β 6= α. It is easy to see that in such case,r2 supportsβ (given
U). Thus,β is founded with respect to〈I, P ∪ {r2}〉 in this case, too.

4.8 Connections between Revision Programs and Active Integrity Constraints 87

Conversely, letβ ∈ U be founded with respect to〈I, P ∪ {r2}〉 andU , and let
r ∈ P ∪ {r2} be the rule providing support toα. As before, ifr 6= r2, the claim
follows. If r 6= r2, thenβ 6= α. Sincer2 supportsβ, one can check thatr1 supports,
β, too. 2

Theorem 4.45.LetP be a revision program. There is a proper revision programP ′

such that for every databaseI, (weak) revisions ofI with respect toP (P -founded
(weak) revisions,P -justified (weak) revisions ofI, respectively) coincide with (weak)
revisions ofI with respect toP ′ (P ′-founded (weak) revisions,P ′-justified (weak)
revisions ofI, respectively).

Proof: Lemma 4.44 implies that the programP ′ obtained fromP by repeated appli-
cation of the process decribed above (replacement of rules of the formr1 with the
corresponding rules of the formr2) has the required property. 2

4.8.3 Revision Programs as Sets of Active Integrity Constraints

Definition 4.46.Given a revision ruler of the form

α1 ∨ . . . ∨ αk ← β1, . . . βm

we denote byAIC(r) the active integrity constraint

lit(β1), . . . , lit(βm), lit(α1)
D
, . . . , lit(αk)D ⊃ ua(α1) ∨ . . . ∨ ua(αk).

2

We note that ifr is a revision constraint (k = 0), AIC(r) is simply an integrity
constraint. The operatorAIC(·) is extended to revision programs in the standard
way. It is easy to show that for each databased, d |= P if and only if d |= AIC(P).
The following lemma establishes a direct connection between the concepts of closure
under active integrity constraints and revision programs.

Theorem 4.47.Let P be a proper revision program. A setE of revision literals is
a weak revision ofI with respect toP if and only if ua(E) is a weak repair for
〈I, AIC(P)〉.

Proof: By the definition,E is a weak revision ofI with respect toP if and only if

1. I ∩ {a | in(a) ∈ E} = ∅, {a |out(a) ∈ E} ⊆ I; and

2. I ⊕ E |= P .

Similarly, ua(E) is a weak repair for〈I, AIC(P)〉 if and only if

1. I ∩ {a | + a ∈ ua(E)} = ∅, {a | − a ∈ ua(E)} ⊆ I; and

2. I ◦ ua(E) |= AIC(P).

By our earlier comments, for every databaseDB, DB |= P if and only if DB |=
AIC(P). SinceI ⊕ E = I ◦ ua(E), the assertion follows. 2

88 4 Active Integrity Constraints and Revision Programming

Theorem 4.48.LetP be a proper revision program. A set of revision literalsE is a
revision ofI if and only ifua(E) is a repair for〈I, AIC(P)〉.

Proof: By Theorem 4.47, we have thatE is a weak revision ofI if and only if ua(E)
is a weak repair for〈I, AIC(P)〉. Moreover,E is such that for eachE ′ ⊆ E the fact
I⊕E ′ |= P impliesE ′ = E if and only ifua(E) is such that for eachua(E ′) ⊆ ua(E)
the factI ◦ ua(E ′) |= P (that isI ◦ ua(E ′) |= AIC(P)) impliesua(E ′) = ua(E).
2

Lemma 4.49.Let r be a proper revision rule. A setE of revision literals is closed
underP if and only ifua(E) is closed underAIC(r).

Proof: First, we observe that asr is proper,nup(AIC(r)) = lit(body(r)). More-
overhead(AIC(r)) = ua(head(r)). We know thatE is closed underr if and only if
body(r) 6⊆ E or head(r) ∩ E 6= ∅. This holds if and only iflit(body(r)) 6⊆ lit(E) =
lit(ua(E)) or ua(head(r)) ∩ ua(E) 6= ∅, which is equivalent tonup(AIC(r)) 6⊆
lit(ua(E)) or head(AIC(r)) ∩ ua(E) 6= ∅. This, however, is the definition of
AIC(r) closed underua(E)). 2

Corollary 4.50. Let P be a proper revision program. A setE of revision literals is
a minimal set closed underP if and only if ua(E) is a minimal set closed under
AIC(r).

Proof: Straightforward from Lemma 4.49. 2

Theorem 4.51.Let P be a proper revision program. A set of revision literalsE is
a P -justified weak revision ofI if and only if ua(E) is a justified weak repair for
〈I, AIC(P)〉.

Proof: (⇒) The setE is aP -justified revision ofI and so it is aP -justified weak
revision of I. Therefore, there exists aP -justified weak update ofI, sayU , s.t.
E = U \ I(I, I ⊕U). By definition,U is consistent and it is a minimal set containing
I(I, I⊕U) and closed underP . It follows that the action setua(U) is consistent and,
by Corollary 4.50, it is a minimal set containingua(I(I, I ⊕ U)) and closed under
AIC(P). Now we observe thatua(I(I, I ⊕ U)) = ne(I, I ◦ ua(U)). Thus,ua(U)
is a justified action set for〈I, AIC(P)〉 andua(U) \ ne(I, I ◦ ua(U)) = ua(E) is
a justified weak repair for〈I, AIC(P)〉.
(⇐) The setua(E) is a justified repair for〈I, AIC(P)〉 and so it is a justified weak
repair for〈I, AIC(P)〉. Thus, there exists a justified action set for〈I, AIC(P)〉, say
U , s.t.ua(E) = U \ne(I, I◦U). The action setU is consistent, containsne(I, I◦U)
and it is closed underAIC(P). It follows that the setrl(U) is consistent and, by
Corollary 4.50, it is a minimal set containingrl(ne(I, I ◦ U)) and closed underP .
Now we observe thatrl(ne(I, I◦U)) = I(I, I⊕rl(U)). Thus,rl(U) is aP -justified
weak update forI andrl(U) \ I(I, I ⊕ rl(U)) = E is aP -justified weak revision
for I. 2

Theorem 4.52.LetP be a proper revision program. A set of revision literalsE is a
P -justified revision ofI if and only ifua(E) is a justified repair for〈I, AIC(P)〉.

4.8 Connections between Revision Programs and Active Integrity Constraints 89

Proof: (⇒) The setE is aP -justified revision ofI and so it is aP -justified weak
revision ofI. By Theorem 4.51,ua(E) is a justified weak repair for〈I, AIC(P)〉.
As E is aP -justified revision ofI, for every setE ′ ⊆ E such thatI ⊕ E ′ |= P ,
E ′ = E . As I ⊕ E ′ = I ◦ ua(E ′) and for each databaseDB, DB |= P if and only
if DB |= AIC(P), we have that for eachua(E ′) ⊆ ua(E) such thatI ◦ ua(E ′) |=
AIC(P), ua(E ′) = ua(E) that isua(E) is a justified repair for〈I, AIC(P)〉.
(⇐) The setua(E) is a justified repair for〈I, AIC(P)〉 and so it is a justified weak
repair for〈I, AIC(P)〉. By Theorem 4.51,E is aP -justified weak revision forI.
Following a reasoning similar to that of part(⇒), it can be proved the minimality of
E i.e. thatE is aP -justified revision forI. 2

The following theorem establishes the correspondence between founded (weak) re-
visions and founded (weak) repairs.

Theorem 4.53.LetP be a proper revision program. A set of revision literalsE is a
P -founded (weak) revision ofI if and only ifua(E) is a founded (weak) repair for
〈I, AIC(P)〉.

Proof: (⇒) Let E be aP -founded (weak) revision ofI. By Theorem 4.47,ua(E) is
a (weak) repair for〈I, AIC(P)〉. Therefore we have to show thatua(E) is founded
with respect to〈I, AIC(P)〉. Let us consider an arbitrary element ofua(E). It is of
the formua(α), for some revision literalα ∈ E .

SinceE is P -founded with respect toI, there existsr ∈ P such thatI ⊕ E |=
body(r), andI ⊕ E |= γD, for everyγ ∈ head(r) different fromα. Let ρ be the
corresponding active integrity constraint inAIC (P), that is,ρ = AIC (r). Since
r is proper,lit(body(r)) = nup(ρ). Thus,I ◦ ua(E) |= nup(ρ). Moreover, since
head(ρ) = ua(head(r)), for everyδ ∈ head(ρ) other thanua(α), I ◦ua(E) |= δD.

Thus,ua(α) is founded with respect to〈I, AIC(P)〉 andua(E) and so,ua(E) is
founded with respect to〈I, AIC(P)〉.
(⇐) This implication can be proved by ia similar argument. We omit the details.2

The results of this section show that proper revision programs can be interpreted as
sets of active integrity constraints so that the corresponding semantics match. How-
ever, it is easy to see that the mappingAIC (·) is a one-to-one and onto mapping
between the collection of revision programs and the collections of sets of active in-
tegrity constraints. Thus, also conversely, sets of active integrity constraints can be
interpreted as revision programs.

4.8.4 Shifting Theorem for Revision Programs

The concept of of “shifting” presented in Section 4.5 can be reformulated for revi-
sion programming. Many results about shifting properties of revision programs are
presented in [109]. In this section we derive these and further results indirectly from
the shifting properties of active integrity constraints using the equivalence results
presented in Section 5.12. The operatorTW(·) presented in Section 4.5 can be ex-
tended to revision literals, revision rules and revion programs. Its formal definition

90 4 Active Integrity Constraints and Revision Programming

and many properties are presented in [109]. Here we present further properties and
use them to establish the shifting theorem for revision programs.

Proposition 4.54.LetI andW be databases,E a set of revision literals,G a revision
program andP a proper revision program. ThenTW(prop(G)) = prop(TW(G)),
TW(ua(E)) = ua(TW(E)) andTW(AIC (P)) = aic(TW(P)).

Proof. Straightforward from the definitions ofprop(·), TW(·), ua(·) andAIC (·). 2

Theorem 4.55.(SHIFTING THEOREM FOR REVISION PROGRAMS) Let I andW
be databases. For every revision programG and every consistent setE of revision
literals, we have

1. E is a (weak) revision forI with respect toG if and only ifTW(E) is a (weak)
revision forI with respect toTW(G)

2. E is aG-justified (weak) revision forI if and only ifTW(E) is aTW(G)-justified
(weak) revision forI

3. E is aG-founded (weak) revision forI if and only ifTW(E) is aTW(G)-founded
(weak) revision forI

Proof: Let P = prop(G) (that is the “properized” version ofG). The following
properties are equivalent:

1. E is a (weak) revision forI with respect toG (respectively,G-justified (weak)
revision forI,G-founded (weak) revision forI)

2. E is a (weak) revision forI with respect toP (respectively,P -justified (weak)
revision forI, P -founded (weak) revision forI)

3. ua(E) is a (weak) repair (respectively, justified (weak) repair, founded (weak)
repair) for〈I, AIC(P)〉

4. TW(ua(E)) is a (weak) repair (respectively, justified (weak) repair, founded
(weak) repair) for〈I ÷W, TW(AIC(P))〉

5. TW(E) is a (weak) revision forI ÷ W with respect toTW(P) (respectively,
TW(P)-justified (weak) revision forI ÷ W, TW(P)-founded (weak) revision
for I ÷W)

6. TW(E) is a (weak) revision forI ÷ W with respect toTW(G) (respectively,
TW(G)-justified (weak) revision forI ÷ W, TW(G)-founded (weak) revision
for I ÷W).

Indeed, (1) and (2) are quivalent by Theorem 4.45, (2) and (3) are equivalent by
Theorems 4.47 - 4.53, (3) and (4) — by Theorems 4.24 and 4.26. Next, (4) and (5)
are equivalent by Theorems 4.47 - 4.53, as well as Proposition 4.54, and (5) and (6)
— by Theorem 4.45 and Propositon 4.54. Thus, the assertion follows. 2

4.9 Computation and Complexity Results for Revision Programming 91

4.9 Computation and Complexity Results for Revision
Programming

Thanks to the equivalence properties reported in Section 5.12 we can derive the re-
sults about computation and complexity for revision programming from the corre-
sponding results for active integrity constraints presented in Section 4.6.

Let ρ be a logic programming rule, say

ρ = a1 ∨ . . . ∨ ak ← β.

We define
rp(ρ) = rl(a1) ∨ . . . ∨ rl(ak)← rl(β).

We extend the operatorrp(·) to logic programs in a standard way. We observe that
if a logic programP is simple then the corresponding revision programrp(P) is
proper.

Lemma 4.56.LetP be a simple disjunctive logic program. A setM of atoms is an
answer set ofP if and only ifrl(M) is a rp(P)-justified weak revision for∅.

Proof. Straightforward from Lemma 4.29 and Theorem 4.51. 2

Theorem 4.57.LetI be a database andP a normal proper revision program. Then
checking if there exists aP -justified revision (P -justified weak revision, respectively)
for I is an NP-complete problem.

Proof. Straightforward from Theorems 4.33, 4.51 and 4.52. 2

Theorem 4.58.LetI be a database andP a proper revision program. Then checking
if there exists aP -justified revision (P -justified weak revision, respectively) forI is
aΣP

2 -complete problem.

Proof. Straightforward from Theorems 4.34, 4.35, 4.51 and 4.52. 2

Theorem 4.59.LetI be a database andP a proper revision program. Then checking
if there exists aP -founded revision (P -founded weak revision, respectively) forI is
aΣP

2 -complete (NP-complete, respectively) problem.

Proof. Straightforward from complexity results in [29] and Theorem 4.53. 2

5

View Updating through Active Integrity Constraints

Summary. This chapter presents a declarative semantics for view updating in the presence
of existentially derived predicates and non-flat integrity constraints, that translates an update
request against a view into an update of the underlying database. The novelty of the framework
consists in the definition of a formal declarative semantics for view updating that allows to
identify, among the set of all possible repairs, the subset ofsupported repairs, that is repairs
whose actions are validated by the database or by other updates. Given a deductive database
and an update request, the computation of supported repairs is performed by rewriting the
update request and the deductive database in the form of active integrity constraints. The
proposed approach will be shown to prevent the anomalies previous approaches suffer from,
limiting the wide range of translations to those that are justified by the deductive database.

5.1 Introduction

Current database systems are often large and complex and the case that a user or an
application has full access to the entire database is rare. It is more likely to occur that
access is granted via windows of the entire systems, calledviews. A view, usually
virtual, is defined by giving a query on the whole database and at any point the con-
tent of the view is just the outcome of this query. Applications query a base relation
or a view in the same way. Therefore, querying a view does not represent a seri-
ous conceptual problem. In contrast, the issue ofview updatingis problematic and
of paramount importance: it refers to the problem of translating an update request
against a view into an update request involving the base of data. The basic problem
underlying view updating is that a translation from a view update into corresponding
updates over the extensional database does not always exist or several translations
could be performed in order to satisfy the update request. The complexity of the
view update problem arises even in the case of a simple update operation, such as
inserting a tuple in a view. Current commercial DBMS, e.g. Access, MySql, Oracle,
SQLServer accept an update against a view, and propagate it to the stored relation,
only in the simple case in which the view is defined from one database relation, and
reject any update request against a view if this is defined by joining more than one re-

94 5 View Updating through Active Integrity Constraints

lation. This rigid behavior ensures the acceptance of an update request if and only if a
unique translation exists and solves, albeit drastically, the ambiguity of more transla-
tions. This chapter focuses on view updating in the presence ofexistentially derived
predicates1 andnon-flat integrity constraints2 and proposes a logic framework that
translates a view updating into an update of the underlying database. Specifically,
given a deductive database consisting of a set of base facts, a set of integrity con-
straints and a set of deductive rules and given an update request, consisting of a set
of insert and delete operations of base and derived facts, it allows us to determine
how the update request can be translated into a minimal set of updates of the stored
base facts, while ensuring integrity constraint maintenance and performing “smaller
change”. The benefits of this proposal, evident in the presence of existential derived
predicates, will be intuitively introduced by a few examples.

Example 5.1.Consider the update request+P (a) asking for theinsertion of the fact
P(a)and the deductive database

Q(a, b). r1 : P (X)← Q(X,Y), R(X,Y, Z)

The request, not allowed by commercial DBMS, could be translated, as proposed
in [113, 136], in the translations:{+R(a, b, vali)}, for each possible value ofvali,
and {+Q(a, vali),+R(a, vali, valj)} for each possible value ofvalj and each
possible value ofvali 6= b. However, this seems us to be a “bigger change” to the
database that is not strictly necessary for performing the desired update. The solution,
proposed in this chapter, retrieves in this case, the unique translation{+R(a, b,⊥)}.
The existential variableZ is fixed to the value⊥ (the NULL value), that suffices,
in the absence of any additional information specifyingZ, to perform the desired
view update. Intuitively,Q(a, b), thought of as a ‘trustable’ fact, as it belongs to the
extensional database, is used to ‘justify’ the construction of the translation. 2

This chapter is a contribution to support view updating, consisting of insertion and
deletion operations in deductive database, preventing the anomalies previous ap-
proaches suffer from. In fact, as shown before, existing approaches satisfy the update
request by generating as many translations as the different values that can be assigned
to the existential variables, whereas, intuitively, the approach proposed in this chap-
ter, that could be definedcautiously liberal, limits the wide range of translations to
those that are “supported” or validated by the deductive database.

Example 5.2.Consider the deductive database, obtained by extending the Exam-
ple 5.1:

1 An existential derived predicate is defined by a deductive rule containing variables in the
body that do not occur in the head of the rule. Note that this situation is likely to occur in
many real cases, e.g the simple case of a database view defined as a projection of a base
relation.

2 A flat integrity constraint is defined only in terms of base predicates, i.e. its definition does
not contain view.

5.1 Introduction 95

Q(a, b). P (X)← Q(X,Y), R(X,Y, Z)
S(a, b, c). R(X,Y, Z)← S(X,Y, Z), T (X,Y, Z)

and the update request+P (a). In this case the unique repair isR = {+T (a, b,
c)}. The proposed strategy implements a process that takes advantage of the initial
knowledge, i.e. the set of extensional facts and the set of intensional facts derived
through views of the deductive database. In this specific case, it recognizes that due
to the insertion ofT (a, b, c) the intensional factR(a, b, c) can be derived and, conse-
quently, the update request asking for the insertion of the factP (a) can be justified.
2

Previous discussion of still very simple cases introduces the serious conceptual
problem underlying view update and justifies the flurry of research addressing this
topic [14, 15, 21, 33, 43, 45, 55–57, 62, 77, 78, 85, 112, 113, 133, 136, 137]. However,
the majority of these proposals work for restricted kinds of constraints, i.e flat-
integrity constraints and in addition do not allow existential derived predicates. A
detailed comparison with the few approaches, facing the same problem will be pro-
vided in Section 5.5.

5.1.1 Contribution

The novelty of the framework proposed here, consists in the definition of a formal
declarative semantics for view updating that allows the identification, among the
set of all possible repairs, of the subset ofsupported repairs, i.e. the repairs whose
actions are “supported” by the database or by other updates. Given a deductive da-
tabase and an update request, the computation of supported repairs is performed by
rewriting the update request and the deductive database in the form of active in-
tegrity constraints. This chapter, that proposes a declarative semantics for view up-
dating in the presence of existentially derived predicates and non-flat integrity con-
straints, avoids the anomaly previous approaches suffer from, that is the generation
of as many translations as the different values that can be assigned to the existential
variables. Specifically, the proposed repair semantics, to the best of our knowledge,
considers, systematically and for the first time, the possible introduction of null val-
ues in the form they are present and treated in commercial DBMS: null values of the
same type are used to restore consistency in the presence of desired view update if no
additional (supported) information is available. Intuitively, the pragmatic solution en-
capsulated in this strategy limits the wide range of repairs, to those that are validated
by the deductive database and recommends our approach be effectively implemented
in commercial DBMS. Finally, the chapter proves the soundness and completeness
of the proposal and presents some results on the complexity of computing supported
repairs.

96 5 View Updating through Active Integrity Constraints

5.1.2 Plan of the Chapter

The remainder of this chapter is organized as follows. Section 5.2 formally intro-
duces the problem of view updating and formalizes the proposal of a declarative
semantics for view updating in deductive databases. Section 5.3 shows how “sup-
ported” repairs can be computed by rewriting the deductive database and the update
request into active integrity constraints. Section 5.4 provides results on the complex-
ity of computing supported repairs and introduces the main results of soundness and
completeness. Section 5.5 surveys the related works, and provides some comparisons
with the proposed approach.

5.2 A Declarative Semantics for View Updating

We briefly review the basic concept of deductive database [1, 105].

Definition 5.3. A deductive databaseJ is a tuple〈I,P, η〉, whereI is a database,P
is a locally stratified logic program representing a set of views andη aset of integrity
constraints. 2

Given the deductive databaseJ = 〈I,P, η〉,PI is the unique stable model ofP ∪I
3. It represents theknowledgestored byJ , that is the facts belonging toI and those
derived throughP. J is consistentif PI |= η, that is if all integrity constraints inη
are satisfied byPI , otherwise it isinconsistent.

Predicate symbols that occur in the head of a view inP are calledderived predi-
catesand are denoted asDPred(J). Predicate symbols that appear inI arebase
predicatesand are denoted asBPred(J). Moreover,Pred(J) = BPred(J) ∪
DPred(J). A base fact is also calledEDB fact, and a derived fact is also calledIDB
fact. Given a set of update actionsU and a deductive databaseJ , we define the sets
UEDB = {±a(t) | ± a(t) ∈ U ∧ a ∈ BPred(J)}, UIDB = {±a(t) | ± a(t) ∈
U ∧ a ∈ DPred(J)} .

In order to allow the expression of each possible condition, the proposed framework
allows the management of non-flat integrity constraints (that is integrity constraints
also defined over derived predicates).

Now we formally introduces the problem of view updating and formalizes the pro-
posal of a declarative semantics for insertion and deletion operations in deductive
databases4.

Definition 5.4. REQUEST SET. A request setS is a set of ground literals. Moreover,
Sin = {a(t) | a(t) ∈ S} andSout = {a(t) | not a(t) ∈ S}. 2

3 Observe that asPI is locally stratified, it admits just one stable models
4 The replacement of a fact is not directly managed. Obviously, it can be obtained by applying

first a delete request and then an insert request.

5.2 A Declarative Semantics for View Updating 97

Therefore,Sin denotes the set of atoms that is requested to betrue; whereasSout de-
notes the set of atoms that is requested to befalse. A request setS against a deductive
databaseJ is, intuitively, accomplished by performing a minimal set of insert and
delete operations of the stored base facts and in all the consequent update operations
of the derived predicates.

Definition 5.5. KNOWLEDGE UPDATE. Given a deductive databaseJ , aknowledge
updateU is a consistent set of ground update atoms such thatPI ◦ U = PI◦UEDB

2

Previous definition states that updates have to be consistently derived starting from
updates over the extensional part of the deductive database. In other words the effect
of applying a set of ground update atoms both extensional and intensional,PI ◦ U ,
is consistent if it can be simulated by just considering its extensional portion,UEDB ,
and then deducing all the consequences overI, PI◦UEDB

.

Definition 5.6. KNOWLEDGE REPAIR. Given a deductive databaseJ and a request
setS, a knowledge updateU for J is aknowledge repairwith respect toS if:

1. it guarantees consistency: PI ◦ U |= η;

2. it confirms the request set:

• PI ◦ U ∩ Sin = Sin;

• PI ◦ U ∩ Sout = ∅;
3. it is minimal: there is no knowledge updateW ⊂ U such thatW guarantees

consistency and confirms the request set.

The set of knowledge repairs forJ with respect toS is denoted asKR(J ,S). 2

Definition 5.7. REPAIR. Let U be a knowledge repair for a deductive databaseJ
with respect to a request setS. The setUEDB is arepair for J with respect toS.
The set of repairs forJ with respect toS is denoted asR(J ,S). 2

Previous definition retrieves all the repairs or translations that satisfy the update re-
quest, ensuring minimality and constraints satisfaction. Therefore, the translations
provided by the approaches in [113, 136] for the Example 5.1 are repairs. However,
as also stated in introduction we do not consider satisfactory this solution as in the
presence of existentially derived predicates the knowledge repair may contain insert
operations not supported by the database. In order to provide the definition of sup-
ported atom, that intuitively states for an atom validated by the initial knowledge or
by other supported update atoms, we refer to a knowledge repairU and toUS ⊆ U+,
whereUS states for the set of update atoms for which a certificate of quality has
already been provided, i.e. the subset of known supported atoms5.

5 The recursive construction of this set will be formally provided in Definition 5.9.

98 5 View Updating through Active Integrity Constraints

Definition 5.8. SUPPORTED ATOM. LetJ = 〈I,P, η〉 be a deductive database and
US a set of facts. Leta(tX) be a ground instance of an atoma(X) andγ(tY) a
ground instance of a conjunction of literalsγ(Y). We denote withΛ = X ∩ Y the
common variables, i.e. variables appearing ina andγ and with∆ = X − Y thefree
variablesof a. 〈a(tΛ, t∆), a(Λ,∆)〉 is supportedby 〈γ(tY), γ(Y)〉 with respect to
〈J ,US〉 if:

1. Free variables are instantiated to null:
t∆ =⊥ and

2. Common variables are instantiated by the initial knowledge or by atoms inUS :
γ(Y) contains a conjunctionη(Λ,Z) of positive literals s.t. the corresponding
ground conjunction inγ(tY) is in the formη(tΛ, tZ) and for eachA in η(tΛ, tZ)
• A ∈ PDB or

• A ∈ US . 2

Therefore, intuitively, asupported knowledge repairis a knowledge repair in which
each insert update atom is supported (i.e.U+ = US). A formal definition of this
concept requires an in depth analysis of the structure of a deductive database.

Definition 5.9. SUPPORTED KNOWLEDGE REPAIR. Given a deductive databaseJ =
〈I,P, η〉 and a request setS, a knowledge repairU is asupported knowledge repair
if U+ = US , whereUS is defined as follows6: a facta(tX) ∈ US iff a(tX) ∈ U+

anda(tX) satisfies at least one of the following conditions:

1. a(tX) ∈ Sin

2. ∃ r ∈ P of the forma(X)← β(Y) and
∃ g ∈ ground(r) of the form a(tX)← β(tY) such that

• PI ◦ U |= β(tY) and

• 〈a(tX), a(X)〉 is supported by〈β(tY), β(Y)〉 with respect to〈J ,US〉
3. ∃ r ∈ P of the form b(H)← a(X), β(Y) and
∃ g ∈ ground(r) of the formb(tH)← a(tX), β(tY) such that

• PI ◦ U |= β(tY) and

• b(tH) ∈ US and

• 〈a(tX), a(X)〉 is supported by〈b(tH) ∧ β(tY), b(H) ∧ β(Y)〉 with respect
to 〈J ,US〉

4. ∃ r ∈ P of the form b(H)← not a(X), β(Y) and
∃ g ∈ ground(r) of the formb(tH)← not a(tX), β(tY) such that

• PI ◦ U |= β(tY) and

• PI ◦ U 6|= b(tH) and

• 〈a(tX), a(X)〉 is supported by〈β(tY), β(Y)〉 with respect to〈J ,US〉
6 Observe that the definition ofUS is recursive.

5.2 A Declarative Semantics for View Updating 99

5. ∃ r ∈ η of the formnot a(X), β(Y) ⊃ and
∃ g ∈ ground(r) of the formnot a(tX), β(tY) ⊃ such that

• PI ◦ U |= β(tY) and

• 〈a(tX), a(X)〉 is supported by〈β(tY), β(Y)〉 with respect to〈J ,US〉.

The set of supported knowledge repairs forJ with respect toS is denoted as
JKR(J , S). 2

Example 5.10.Consider the Example 5.2 and the knowledge repairU = {+P (a),
+T (a, b, c),+R(a, b, c)}. The setUS is recursively constructed as follows.P (a) ∈
US as it belongs toSin (item 1).R(a, b, c) ∈ US as there is a ground instance
R(a, b, c)← S(a, b, c), T (a, b, c) s.t.PI ◦U |= S(a, b, c), T (a, b, c) and〈R(a, b, c),
R(X,Y, Z)〉 is supported by〈S(a, b, c) ∧ T (a, b, c), S(X,Y, Z) ∧ T (X,Y, Z)〉 as
S(a, b, c) ∈ PDB (item 2). Finally, the same ground instance is used to validate
the justification ofT (a, b, c) (item 3). Therefore, by recursively applying Defini-
tion 5.9 we obtainUS = {P (a), R(a, b, c), T (a, b, c)}. As US = U+, it follows
that U is a supported knowledge repair. Suppose now we add the integrity con-
straintT (X,Y, Z), not V (X, Y) ⊃. In this case, in order to guarantee integrity
constraint maintenance the update operation+V (a, b) has to be performed, and
U has to be extended by adding+V (a, b). V (a, b) ∈ US as there is a ground in-
stanceT (a, b, c), not V (a, b) ⊃ s.t. PI ◦ U |= T (a, b, c) and〈V (a, b), V (X,Y)〉
is supported by〈T (a, b, c), T (X,Y, Z)〉 asT (a, b, c) ∈ US (item 5). Thus,U =
{+P (a),+R(a, b, c),+T (a, b, c),+V (a, b)} is a supported knowledge repair. The
knowledge repairW = {+P (a),+Q(a, vali),+R(a, vali, valj),+S(a, vali, valj),
+T (a, vali, valj)}, wherevali andvalj are generic constants, is not a supported
knowledge repair. 2

Definition 5.11. SUPPORTEDREPAIR. LetU be a supported knowledge repair for a
deductive databaseJ with respect to a request setS. The setUEDB is asupported
repair for J with respect toS. The set of supported repairs forJ with respect toS
is denoted asJR(J ,S). 2

Therefore, the concept of supported repair refines the concept of repair. In fact, note
that the translations provided by the approaches in [113, 136] for the Example 5.1
albeit are repairs, are not supported repairs.

Given the deductive databasesJ = 〈I,P, η〉 andJ ′ = 〈I, P ′, η′〉, J ′ is astandard
versionof J if:

• P ′ is obtained by rewriting eachv ∈ P into a set ofstandard viewsof the fol-
lowing four types:7

7 A first-order query can be expressed, without loss of generality, by using selection, projec-
tion, join and negation [1]. As an example the deductive rule reported in Example 5.1 can
be rewritten into:P ′(X, Y, Z)← Q(X, Y), R(X, Y, Z) and P (X)← P ′(X, Y, Z).

100 5 View Updating through Active Integrity Constraints

PROJECTION VIEW: a(X)← b(X,Y)
NEGATION VIEW : a(X)← b(X), not c(X)
JOIN VIEW : a(X,Y, Z)← b(X,Y), c(Y,Z)
SELECTION VIEW : a(X)← b(X), φ(X)

whereX, Y andZ are lists of variables or constants andφ is a built-in predicate
used to evaluate a condition overX.

• η′ is obtained, by rewriting eachic ∈ η into a astandard integrity constraintof
the forma(X) ⊃ and a set of standard views.8

Proposition 5.12.Given the deductive databasesJ andJ ′, whereJ ′ is a standard
version ofJ , and a request setS, for eachU ′ ∈ JKR(J ′, S), U ∈ JKR(J , S),
whereU = U ′ − {±a(t) | ± a(t) ∈ U ′ ∧ a 6∈ Pred(J)}.

Proof sketch.
It is possible to prove the proposition showing that by collapsing two generic views
of the standard deductive databaseJ ′ = 〈I,P ′, η′〉 we obtain a (non standard) de-
ductive databaseJ ′′ = 〈I,P ′′, η′′〉 such that the setU ′′ = U ′ − {±a(t) | ± a(t) ∈
U ′ ∧ a 6∈ Pred(J ′′)} is a supported knowledge repair forJ ′′ with respect toS.
Iteratively, an analogous reasoning can be applied, so that finally obtainingJ and
the corresponding set of update atomsU s.t.U+ is supported. 2

As a consequence of the above result, in the rest of this chapter we just consider
deductive databases in standard version.

5.3 Rewriting into Active Integrity Constraints

The tool for performing view updating based on the semantics presented in Section
5.2, consists in the transformation of a deductive database and a request set into a set
of AICs. The basic idea is to extract from a deductive databaseJ and a request setS,
a set of AICs whose purpose is to react to the updates underlyingS, by modifyingI
in order to justify the updated knowledge. More formally, our goal is to find a set of
AICs,Rew(J ,S), such that thesupported knowledge repairs ofJ with respect toS,
JKR(J ,S), can be derived from the set offounded repairs of the original knowledge
PDB with respect to these active integrity constraints, FR(PI , Rew(J ,S)).
In the following, we will use the special constant ‘’ (placeholder). Intuitively, it
states for a generic value, i.e. a constant value or theNULL value (⊥). Given the lists
of terms (variables or constants)X = X1, . . . , Xn andY = Y1, . . . , Yn,

1. X 6= is shorthand for
∧n

i=1(Xi 6=)

8 As an example the foreign key constraintR(X), (6 ∃Y) Q(X, Y) ⊃ can be rewritten into
the standard constraintV (X) ⊃ the projection viewP (X)← Q(X, Y) and the negation
view V (X)← R(X), not P (X).

5.3 Rewriting into Active Integrity Constraints 101

2. X � Y (X is notmore definedthanY) is shorthand for∧n
i=1((Xi = Yi)∨ (Xi = ∧ Yi IS NOT NULL)∨ (Xi IS NULL ∧ Yi IS NULL))

3. X ≺ Y (X is less definedthanY) is shorthand forX � Y ∧ Y 6=

As an example,(2, , ⊥) � (2, 3, ⊥), whereas(2, 3, ⊥) ≺ (2, 3,⊥,⊥). We
say that a factp(x) is fully-definedif x 6= , andpartially-definedotherwise.

Given a deductive databaseJ and a set of update atomsFR,FullyDefined(FR) =
{±a(t) | ± a(t) ∈ U ∧ a ∈ Pred(J) ∧ a(t) is fully-defined}.
The rest of this section reports the rewriting into active integrity constraints of a
request setS and a deductive databaseJ = 〈I,P, η〉.

Definition 5.13. REWRITING OFS. Given a request setS, Rew(S) is the set of the
AICs:

Req1 : not a(x) ⊃ +a(x) for each a(x) ∈ Sin

Req2 : a(x) ⊃ −a(x) for each a(x) ∈ Sout 2

A set of auxiliary active integrity constraints is needed in order to ensure the compu-
tation of supported knowledge repairs.

Definition 5.14. AUXILIARY AICS. Given a deductive databaseJ , Aux(J) is
the set of the AICs:

Aux1 : a(X), a(X ′), X ≺ X ′, not fixeda(X) ⊃ +fixeda(X)
for each predicatea ofJ and

Aux2 : a(X,), not fixeda(X,), not a(X,⊥) ⊃ +a(X,⊥)
if a is a base predicate or

Aux3 : a(X), not fixeda(X) ⊃
if a is a derived predicate. 2

Each AIC in the setAux1 states that a partially-defined fact isfixed if it is sup-
ported by a fully-defined fact. The AICsAux2 replaces each ‘’ occurring in EDB
facts with⊥. Finally the AICs inAux3 (observe that these are simple integrity con-
straints as their heads are empty) assert that each IDB fact must be fixed, otherwise
no founded repair is computed. The reason for these auxiliary rules, will be made
clear considering the generating mechanism encapsulated in the rewriting process.
Anyhow, it should be stressed that they are necessary to guarantee the computation
of the reliable repairs, i.e. the supported knowledge repairs only. Intuitively, the set
of AICs, obtained from the rewriting, propagate the placeholder ‘’, stating for a
generic value during the attempt to compute a founded repair, with the final aim of
having it instantiated to a fixed value. Whenever this is not the case and we are in the
presence of a not fixed IDB fact, then the attempt to generate a founded repair fails
9; on the other hand ‘’ is converted into⊥ in the case of an EDB fact. Note that
9 This guarantees that only supported repairs are computed so avoiding the problem of gen-

erating a wide range of repairs one for each possible instantiation.

102 5 View Updating through Active Integrity Constraints

this pragmatic solution recommends our approach for implementation in commercial
DBMS.

In the following, we provide the rewriting ofP. For the sake of simplicity, we assume
that each derived predicate is defined by a view. However, a simple extension allows
to handle the union operator.

Definition 5.15. REWRITING OF PROJECTION VIEWS. Given a projection viewv of
the forma(X)← b(X,Y),Rew(v) is the set of the AICs:

r1 : not a(X), b(X,Y), X 6= ⊃ +a(X) ∨ −b(X,Y)
r2 : b(X,Y), X 6= , not supporteda(X) ⊃ +supporteda(X)
r3 : a(X), X 6= , not supporteda(X) ⊃ −a(X)
r4 : a(X), not b(X,) ⊃ +b(X,) 2

The AICr1 states that if the body of the view,b(X,Y), is true, and its head,a(X), is
falsethen, in order to guarantee the consistency of the updated knowledge, either the
action of insertinga(X) or the action of deletingb(X,Y) has to be performed. The
AIC r2 states that if the updated knowledge contains a factb(X,Y), with X 6= ,
then the facta(X) is supported (supporteda(X) is true), while the AICr3 ensures
that the updated knowledge does not contain anyunsupportedfact a(X). Finally,
the meaning ofr4 is that if the updated knowledge containsa(X), then it must
contain the factb(X,). Note that, the auxiliary AICs, previously presented, infer
from b(X,) the unique factb(X,⊥) if b is a base predicate and no other fact
b(X,Y), with Y 6=⊥, is inferred in the updated knowledge; whereas they reject the
repair if b is a derived predicate andb(X,) is not fixed by a fully-defined fact.

Example 5.16.Consider the deductive databaseJ = 〈∅, {a(X) ← b(X,Y)}, ∅〉,
and the request setS = {a(1)}. Consider the set of AICs constituted byRew(S) =
{not a(1) ⊃ +a(1)}, Rew(P) (consisting ofr1, r2 andr3 defined as above) and
the set of auxiliary AICs inAux(J), reported in the following:

b(X,Y), b(X ′, Y ′), XY ≺ X ′Y ′, not fixedb(X,Y) ⊃ +fixedb(X,Y)
b(X,Y), not fixedb(X,Y), Y = , not b(X,⊥) ⊃ +b(X,⊥)
a(X), a(X ′), X ≺ X ′, not fixeda(X) ⊃ +fixeda(X)
a(X), not fixeda(X) ⊃

The unique founded repair forPI with respect to this set of AICs isFR =
{+a(1),+b(1,),+b(1, ⊥),+supporteda(1),+fixeda(1),+fixedb(1,⊥)} cor-
responding to the unique supported knowledge repair forJ with respect toS:
FullyDefined(FR) = {+a(1), +b(1,⊥)} and to the supported repairFully
Defined(FR)EDB = {+b(1,⊥)}. Consider now the deductive databaseJ =
〈{b(1,⊥)}, {a(X) ← b(X,Y)}, ∅〉 and the request setS = {not b(1,⊥)}. The
new founded repair isFR = {−b(1,⊥),−a(1)}. 2

5.3 Rewriting into Active Integrity Constraints 103

Definition 5.17. REWRITING OF NEGATION VIEWS.

Given a negation viewv of the forma(X) ← b(X), not c(X), Rew(v) is the set of
the AICs:

r1 : not a(X), b(X), not c(X), X 6= ⊃ +a(X) ∨ −b(X) ∨+c(X)
r2 : b(X), not c(X), X 6= , not supporteda(X) ⊃ +supporteda(X)
r3 : a(X), X 6= , not supporteda(X) ⊃ −a(X)
r4 : a(X), b(X ′), X ≺ X ′, not supportablea

−c(X,X
′) ⊃ +supportablea

−c(X,X
′),

r5 : supportablea
−c(X,X

′), supporteda(X), X ≺ X,X ′ 6= X,

not unnecessarya
−c(X,X

′) ⊃ +unnecessarya
−c(X,X

′)
r6 : supportablea

−c(X,X
′), not unnecessarya

−c(X,X
′), c(X ′) ⊃ −c(X ′)

r7 : a(X), X 6= , not supportablea
+b,−c(X) ⊃ +supportablea

+b,−c(X)
r8 : supportablea

+b,−c(X), not b(X) ⊃ +b(X)
r9 : supportablea

+b,−c(X), c(X) ⊃ −c(X) 2

The meaning of the AICsr1, r2 andr3 is similar to the one discussed for projection
views. The AICr4 states that ifa(X) is present in the updated knowledge and exists
an atomb(X ′), with X ≺ X ′, thena(X) can be supported by (eventually) deleting
c(X ′) (supportablea

−c(X,X
′) is true). The AICr5 states that if it is possible to sup-

porta(X) by acting onc(X ′), buta(X) is fixed by another atoma(X), already sup-
ported, is unnecessary to supporta(X) by acting onc(X ′) (unnecessarya

−c(X,X
′)

is true). The AICr6 states that we can supporta(X) throughc(X ′) if this is possible
and not unnecessary, whereasr7 states that ifa(X) belongs to the updated knowl-
edge and it is fully-defined, it must be supported by ensuring the presence ofb(X)
and the absence ofc(X). The AICsr8 andr9 (eventually) insertb(X) and delete
c(X).

Example 5.18.Consider the deductive databaseJ = 〈{b(1), c(1)}, {a(X) ←
b(X), not c(X)}, ∅〉 and the request setS = {a(1)}. Consider the set of AICs
constituted byRew(S), Rew(P) and Aux(J). The unique founded repair of
PI with respect to this set of AICs isFR = {+a(1), +supportablea

−c(1, 1),
+supportablea

+b,−c(1), −c(1),+supporteda(1), +fixeda(1)} corresponding to
the supported knowledge repairFullyDefined(FR) = {+a(1), −c(1)} and
to the supported repairFullyDefined(FR)EDB = {−c(1)}. Suppose now the
request set isS = {d} andP also contains the projection ruled ← a(X). Ob-
viously, now the set of AICs also contains the AICs obtained from the rewriting
of this projection rule (see Definition 5.15). The factd is present in the knowledge
base only if the relationa is not empty. The founded repair ofPI with respect to
the new set of AICs isFR = {+d,+a(),+supportedd, +supportablea

−c(, 1),
−c(1),+a(1),+supporteda(1),+supportablea

−c(1, 1),+supportablea
+b, −c(1, 1),

+fixeda (),+fixedd,+fixeda(1)}. This founded repairs corresponds to the sup-
ported knowledge repairFullyDefined(FR) = {+d,+a(1), −c(1)} and to the
supported repairFullyDefined(FR)EDB = {−c(1)}. 2

104 5 View Updating through Active Integrity Constraints

Definition 5.19. REWRITING OF JOIN VIEWS. Given a join view v of the form
a(X,Y, Z)← b(X,Y), c(Y, Z),Rew(v) is the set the AICs:

r1 : not a(X,Y, Z), b(X,Y), c(Y,Z), Y 6= ⊃
+ a(X,Y, Z)∨ −b(X,Y) ∨ −c(Y, Z)

r2 : b(X,Y), c(Y, Z), Y 6= , not supporteda(X,Y, Z) ⊃
+ supporteda(X,Y, Z)

r3 : a(X,Y, Z), XY Z 6= , not supporteda(X,Y, Z) ⊃ −a(X,Y, Z)
r4 : a(X,Y, Z), b(X ′, Y ′), X � X ′, Y ≺ Y ′,

not supportablea
+c(X,Y, Z,X

′, Y ′) ⊃ +supportablea
+c(X,Y, Z,X

′, Y ′)

r5 : supportablea
+c(X,Y, Z,X

′, Y ′), supporteda(X,Y , Z),

XZ � XZ, Y ≺ Y ,X ′Y ′Z 6= XY Z,

not unnecessarya
+c(X,Y, Z,X

′, Y ′) ⊃ +unnecessarya
+c(X,Y, Z,X

′, Y ′)
r6 : supportablea

+c(X,Y, Z,X
′, Y ′), not unnecessarya

+c(X,Y, Z,X
′, Y ′),

not c(Z, Y ′) ⊃ +c(Z, Y ′)
r7 : a(X,Y, Z), c(Y ′, Z ′), Z � Z ′, Y ≺ Y ′,

not supportablea
+b(X,Y, Z, Y

′, Z ′) ⊃ +supportablea
+b(X,Y, Z, Y

′, Z ′)

r8 : supportablea
+b(X,Y, Z, Y

′, Z ′), supporteda(X,Y , Z),

XZ � XZ, Y ≺ Y ,XY ′Z ′ 6= XY Z,

not unnecessarya
+b(X,Y, Z, Y

′, Z ′) ⊃ +unnecessarya
+b(X,Y, Z, Y

′, Z ′)
r9 : supportablea

+b(X,Y, Z, Y
′, Z ′), not unnecessarya

+b(X,Y, Z, Y
′, Z ′),

not b(X,Y ′) ⊃ +b(X,Y ′)
r10 : a(X,Y, Z), Y 6= , not supportablea

+b,+c(X,Y, Z) ⊃
+ supportablea

+b,+c(X,Y, Z)
r11 : supportablea

+b,+c(X,Y, Z), not b(X,Y) ⊃ +b(X,Y)
r12 : supportablea

+b,+c(X,Y, Z), not c(Y, Z) ⊃ +c(Y, Z) 2

The description of the intuitive meaning of the AICs, obtained from the rewriting of
a join view, is left out as it is very similar to the one reported for negation views.

Example 5.20.Consider the deductive databaseJ = 〈∅, {a(X,Y, Z) ← b(X,Y),
c(Y, Z)}, ∅〉, the request setS = {a(1, 2, 3)} and the set of AICsRew(S),
Rew(P) andAux(J). The unique founded repair forPI with respect to the AICs is
FR = {+a(1, 2, 3), +supportablea

+c(1, 2, 3, 1, 2),+supportablea
+c(1, 2, 3, 2, 3),

+supportablea
+b,+c(1, 2, 3),+b(1, 2),+c(2, 3), +supporteda(1, 2, 3),+fixeda(1,

2, 3),+fixedb(1, 2), +cfixed(2, 3)} corresponding to the supported knowledge re-
pair FullyDefined(FR) = {+a(1, 2, 3), +b(1, 2),+c(2, 3)} and to the sup-
ported repairFullyDefined(FR)EDB = {+b(1, 2), If P also contains the view
d(X,Z)← a(X,Y, Z) and the request set isS = {d(1, 3)}, no founded repair exist.

Consider nowJ = 〈{b(1, 2), c(2, 3)}, {a(X,Y, Z) ← b(X,Y), c(Y, Z)}, ∅〉 and
S = {not a(1, 2, 3)}. In this case there are two founded repairs,FR1 = {−a(1, 2, 3),

5.4 Soundness, Completeness and Complexity Results 105

−b(1, 2), +fixedc(2, 3)} andFR2 = {−a(1, 2, 3),−c(2, 3),+fixedb(1, 2)}, that
correspond respectively to the supported knowledge repairsFullyDefined(FR1) =
{−a(1, 2, 3), −b(1, 2)} andFully Defined(FR2) = {−a(1, 2, 3),−c(2, 3)} and
to the supported repairsFully Defined(FR1)EDB = {−b(1, 2)} andFully
Defined(FR2)EDB = {−c(2, 3)}. 2

Definition 5.21. REWRITING OF SELECTION VIEWS. Given a selection viewv of
the forma(X)← b(X), φ(X),Rew(v) is the set of the AICs

r1 : not a(X), b(X), φ(X), X 6= ⊃ +a(X) ∨ −b(X)
r2 : b(X), φ(X), X 6= , not supporteda(X) ⊃ +supporteda(X)
r3 : a(X), X 6= , not supporteda(X) ⊃ −a(X)
r4 : a(X), φ(X), X 6= , not b(X) ⊃ +b(X) 2

Definition 5.22. REWRITING OF η. Given a constraintic of the forma(X) ⊃,
Rew(ic) denotes the set containing the AIC:a(X), X 6= ⊃ −a(X). 2

Example 5.23.Consider the request setS = {a(1, 2)} and the deductive database
J = 〈{a(1, 1)}, {b(X,Y1, Y2)← a(X,Y1), a(X,Y2); c(X,Y1, Y2)← b(X,Y1, Y2),
Y1 6= Y2}, {c(X,Y1, Y2) ⊃}〉. Observe that the views inP and the integrity con-
straint inη express the key constrainta(X,Y1), a(X,Y2), Y1 6= Y2 ⊃. Intuitively,
as the request set requires the presence ofa(1, 2) conflicting witha(1, 1) the atom
a(1, 1) has to be deleted. Indeed, the supported repair is{+a(1, 2),−a(1, 1)}. 2

Definition 5.24. REWRITING OF J AND S . Given a deductive databaseJ =
〈I,P, η〉 and a request setS, we denote asRew(J ,S) the set of AICsRew(S) ∪
Rew(P) ∪ Rew(η) ∪ Aux(J) whereRew(P) =

⋃
v∈LP Rew(v) andRew(η) =⋃

ic∈IC Rew(ic). 2

Fact 5.25 Given a deductive databaseJ = 〈I,P, η〉 and a request setS, the com-
plexity of constructingRew(J ,S) is polynomial time. 2

5.4 Soundness, Completeness and Complexity Results

Theorem 5.26.(Soundness). LetJ = 〈I,P, η〉 be a deductive database andS a
request set. For every founded repairFR for 〈PI , Rew(J ,S)〉,FullyDefined(FR)
is a supported knowledge repair forJ with respect toS.

Proof sketch.Let U = FullyDefined(FR). We show that 1)U is a knowledge
update, 2)U is a knowledge repair and 3)U is a supported knowledge repair.

1. To prove thatU is a knowledge update, suppose by contradiction that∃ a(t) ∈
PI ◦ U s.t. 6 ∃ g : a(t) ← β(y) ∈ ground(PI) | PI ◦ U 6|= β(y).The atom
+supporteda(t) is not derived as the AICr2 of Rew(g) is not violated and,
consequentially,r3 is violated. So,FR is not a repair.

106 5 View Updating through Active Integrity Constraints

2. U is a knowledge repair because itguarantees consistency, i.e.PI ◦U |= η as
FR(PI) |= Rew(η).U confirms the request setas for eacha(t) ∈ Sin,PI ◦U
containsa(t). In fact, the AICnot a(t) ⊃ +a(t), obtained by the rewriting ofS,
is satisfied byFR(PI) and byPI ◦ U . Similarly, it can be shown that for each
literal not a(t) ∈ Sout, a(t) 6∈ PI ◦ U . Finally, minimalityof U is guaranteed
by minimality ofFR.

3. U is a supported knowledge repair as the structure of the AICs inRew(J ,S)
ensures that each atom inU+ ⊂ FR+ is supported. In fact, the AICs in
Rew(J ,S) that allow to infer insert update atoms are of two forms: (i)
not a(t) ⊃ +a(t); (ii) β(X,Y), not a(X) ⊃ +a(X) ∨ Φ, whereΦ is even-
tually empty. When, an atoma(t) is inserted by the first AIC it is supported as
it belongs toSin. An atoma(tX) is inserted by the second AIC only ifX is
instantiated byβ, i.e. only if 〈a(tX), a(X)〉 is supported by〈β(tY), β(Y)〉. 2

Theorem 5.27.(Completeness). LetJ = 〈I,P, η〉 be a deductive database and
S a request set. For every supported knowledge repairU for J with respect
to S there exists a founded repairFR for 〈PI , Rew(J ,S)〉 such thatU =
FullyDefined(FR).

Proof sketch.This proof can be done by construction. It can be created a
setFR by adding toU all insert update atoms of the form+a(t,), +fixeda(t),
+supporteda(t), +supportablea

−c(t), +unnecessarya
−c(t), +supportablea

+b,−c(t),
+supportablea

+c(t), +unnecessarya
+c(t), +supportablea

+b,+c(t) necessary to
satisfy the AICs inground(Rew(J , η)). Obviously,FR is a repair. Moreover, it
can be shown that it is founded. 2

Theorem 5.28.LetJ be a deductive database andS a request set, then the problem
of checking (i) if there exists a supported knowledge repairU for J with respect to
S is Σp

2 -complete; (ii) whether a ground atomg belongs to all repaired deductive
databases obtained by means of supported knowledge repairs isΠp

2 -complete.

Proof sketch.Both (i) and (ii) straightforward respectively from Theorem 5.28 and
3.33. 2

5.5 Related Works

Over the years, a substantial amount of research has been devoted to the various is-
sues surrounding view updating and not surprisingly a wide selection of approaches
to the view update problem has evolved [14, 15, 21, 33, 43, 45, 55–57, 62, 77, 78, 85,
112, 113, 133, 136]. See [62, 112] for surveys of methods for view updating. In [77],
the extremes are calledclosedandopenupdate strategy. The first are very conserva-
tive and systematic [78] and are mainly based on the seminal work of Bancilhon and
Spyratos in [15], whereas open strategies are very liberal and allow us to obtain as
many solutions as possible.

5.5 Related Works 107

View updating in definite deductive database, i.e. database where view predicates
can only be defined by means of function free Horn rules and without negation, is
investigated in [14]. In [57] an interesting model theoretic approach to view updates
in deductive databases which encompasses a wide class of Herbrand semantics is
proposed, including the perfect and stable model semantics for disjunctive databases
with negation. In [85] the update of a single view is obtained by extending the rela-
tional model with identifiers on the values; whereas in [133] the view update problem
is translated into a constraint satisfaction problem.

In the rest of this section we concentrate on the few works facing the view update
problem, within the same dimension, i.e. considering deductive database, non-flat
integrity constraints, the two basic update operations of insertion and deletion and
that explicitly treat the case of existentially derived predicates [56, 113, 136]. As also
stated in the introduction, our approach differs from the proposals in [113, 136] as in
the presence of existential variables these techniques generate as many translations
as the different values that can be assigned to them, whereas we only produce re-
pairs supported by the deductive database. The alternative recent proposal of Ferré,
Teniente and Urpi in [56], associates to an update request a set ofcanonical transla-
tions[140], each defined as a pair〈T,C〉, whereT is a set of base event facts, whose
arguments may be either constants or skolem constants andC is a set of inequal-
ity constraints that skolem constants inT must satisfy. There are some similarities
between the approach proposed here and the one in [56]: they both search for an
effective update strategy in the presence of existential derived predicates and over-
come the drawbacks of previously proposed methods avoiding the computation of all
instantiations. However, as will be made clear in the rest of this section, they are sig-
nificantly different in the case of existentially derived predicates. For the Example 5.1
the approach in [56] produces the two canonical translations:〈{+R(a, b, 0)}, {∅}〉
and〈{+Q(a, 0),+R(a, 0, 1)}, {0 6= b}〉, whereas we obtain the unique translation
{+R(a, b,⊥)}. Therefore, in the absence of any additional information specifying
an existential variable, the approach in [56] introduces skolem constants that prop-
agate through rules and constraints and generate canonical translations containing
patternsof the variable instantiations that are relevant for the update request, rather
than taking into account all the possible instantiations; in any case, each canonical
translation represents several extensional translations obtained by replacing skolem
constants with values satisfying the inequality constraints. On the contrary, our ap-
proach adopts a solution similar to that of commercial DBMS, assigning to an exis-
tential variable, in the absence of any additional (supported) information, a unique
null value.

6

Conclusions

The main contributions of the thesis can be summarized as following:

Chapter 3 has introducedactive integrity constraints, a simple and powerful form
of active rules with declarative semantics, well suited for computing database
repairs and consistent answers. The novelty of the approach proposed consists
in the definition of a formal declarative semantics which allows us to identify,
among the set of all possible repairs, the subset offounded repairswhose ac-
tions are specified in the head of rules and aresupportedby the database or by
other updates. It has been shown that the computation of founded repairs can
be done by rewriting the constraints into an (extended) Datalog program and
computing the stable models of the program; the founded repairs are obtained
by selecting, for each stable model, the set of “update actions”. We have also
studied the properties of active integrity constraints and shown that for each pro-
duction ruler update head atoms not making the conjunction of body literals
falsewith respect to the repaired database (that is such that the body integrity
constraint is satisfied), are useless. The thesis has also studied the computational
complexity of computing founded repairs and consistent answers, showing that
the complexity is not harder than computing “standard” repairs and answers.

Chapter 4 comparesactive integrity constraintsandrevision programming, another
formalisms designed to describe integrity constraints on databases and to specify
preferredways to enforce them. We demonstrated that despite the differences in
the syntax, and the lack of a simple correspondence between justified revisions
and founded repairs, the two frameworks are closely related. The semantics for
revision programs defines the concept ofjustified revision. A justified revision
is a set ofrevision literals, an alternative way to model updates over a data-
base, that can be inferred by means of the revision program and by the set of
all atoms that do not change their state ofpresence(in) or absence(out) during
the update process. We shown that each founded repair corresponds to a justified
revision, but not vice-versa. We introduced two new semantics: one for active
integrity constraints and one for revision programs. The first one allows us to
compute a smaller set of repairs, thejustified repairs, that correspond to justi-

110 6 Conclusions

fied revisions. The second one allow us to compute a wider set of revision, the
founded revisions, that correspond to founded repairs. The introduction of these
new semantics aligns the two formalisms showing that each of them is a nota-
tional variants of the other. We show that for each semantics theshifting property
holds. Shifting consists of transforming an instance of a database repair problem
to another syntactically isomorphic instance by changing active integrity con-
straints or revision programs to reflect the “shift” from the original database to
the new one.

Chapter 5 has proposed a declarative semantics for view updating in the presence
of existentially derived predicates and non flat integrity constraints, that pre-
vents some of the anomalies previous approaches suffer from limiting the wide
range of translations to those that are validated by the deductive database. More
specifically, the novelty of the framework consists in the definition of a formal
declarative semantics for view updating that allows to identify, among the set
of all possible repairs, thesupported repairs, that is the repairs whose actions
are validated by the database or by other updates. In addition, the proposed re-
pair semantics based on the rewriting of the deductive database and the update
request into active integrity constraints, as specified in Chapter 3, considers, sys-
tematically and for the first time, the possible introduction of null value in the
form they are present and treated in commercial DBMS. We have provided re-
sults on the soundness and completeness of the proposed approach and have
also investigated the complexity of computing justified repairs showing that this
is not harder than computing standard repairs. Two important issues, that could
actually translate our research into practical applications, are left for further re-
search. First, extensions may be introduced in order to select, in the presence of
multiple justified repairs, the preferred ones, i.e. those that better satisfy some
preference or quality criteria specified by the user. Moreover, further research is
planned to investigate particular types of integrity constraints, implemented and
maintained in commercial DBMS, such as primary keys and foreign key con-
straints for which the complexity of computing justified repairs is expected to
reduce.

References

1. ABITEBOUL, S., HULL , R., VIANU , V. (1995) Foundations of Databases. Addison-
Wesley Publishing Co.

2. ABITEBOUL, S., DUSCHKA, O. M.(1998) Complexity of Answering Queries Using
Materialized Views. Symposium on Principles of Database Systems, 254-263.

3. ABITEBOUL, S., VIANU , V.(1991) Datalog Extensions for Databases Queries and Up-
dates. Journal of Computer and System Science, 43: 62-124.

4. ABITEBOUL, S., SIMON E., VIANU , V.(1990) Non-Deterministic Language to Express
Deterministic Transformation. ACM Symposium on Principles of Database Systems,
215-229.

5. AFRATI, F., COSMADAKIS, S.S., YANNAKAKIS M.(1991) On Datalog vs. Polynomial
Time. ACM PODS Conference, Delphi, Greece, 13-254.

6. AGARWAL , S., KELLER, A.M., WIEDERHOLD, G., SARASWAT, K.(1995) Flexible
Relation: an approach for integrating data from multiple, possibly inconsistent databases.
International Conference on Database Engineering, 495-504.

7. ALFERES, J. J., LEITE, J. A., PEREIRA, L. M., PRZYMUSINSKA, H., PRZYMUSINSKI,
T. C.(2000) Dynamic updates of non-monotonic Knowledge Bases. Journal of Logic
Programming45,1-3, 43-70.

8. ALFERES, J. J., PEREIRA, L. M., PRZYMUSINSKA, H., PRZYMUSINSKI, T. C.(2002)
Lupsa language for updating logic programs. Journal of Logic Programming 138, 1-2,
87-116.

9. APT, K.R., BLAIR , H.A., WALKER , A.(1998) Towards a Theory of Declarative Knowl-
edge. Foundations of Deductive Databases and Logic Programming, 89-148.

10. APT, K.R.(1990) Logic Programming. Handbook of Theoretical Computer Science,
Volume B: Formal Models and Semantics, 93-574.

11. APT, K.R., BOL, R.N.(1994) Logic Programming and Negation: A Survey. Journal of
Logic programming, 19(20): 9-71.

12. ARENAS, M., BERTOSSI, L., CHOMICKI , J.(2000) Specifying and querying database re-
pairs using logic programs with exceptions. International Conference on Flexible Query
Answering, 27-41.

13. ARENAS, M., BERTOSSI, L. E., CHOMICKI , J.(1999) Consistent query answers in
inconsistent databases. Symposium on Principles of Database Systems, ACM Press, 68-
79.

14. ATZENI, P., TORLONE, R.(1992) Updating Intensional Predicates in Datalog. Data and
Knowledge Engineering , 8:1-17.

112 References

15. BANCILHON , F., SPYRATOS, N.(1981) Update Semantics of Relational Views. ACM
Transaction on Database Systems, 6(4): 557-575.

16. BARAL , C.(1997) Embedding revision programs in logic programming situation calcu-
lus. Journal of Logic Programming 30, 1, 83-97.

17. BARAL , C., KRAUS, S., MINKER, J.(1991) Combining Multiple Knowledge Bases.
IEEE-Trans. on Knowledge and Data Engineering, 3(2):208-220.

18. BARAL , C., KRAUS, S., MINKER, J., SUBRAHMANIAN ,V.S.(1991) Combining Knowl-
edge Bases Consisting of First Order Theories. International Symposium on Methodolo-
gies for Intelligent Systems, 92-101.

19. BARAL , C., ZHANG, Y. (2001) On the semantics of knowledge update. International
Joint Conferences on Artificial Intelligence, 97-102.

20. BASTA, S., FLESCA, S., GRECO, S., ZUMPANO, E. (1999) A System Prototype for the
Evaluation of Queries on Materialized Views, 291-306.

21. BENTAYEB, F., LAURENT, D. (1998) View Updates Translations in Realational Data-
bases. Database and Expert Systems Applications, 322-331, 1998.

22. BERTOSSI, L., PINTO, J. (2000) Specifying active rules for database maintenance. Lec-
ture Notes in Computer Science 1773, 112-119.

23. BRAVO, L., BERTOSSI, L.(2006) Semantically Correct Query Answers in the Presence
of Null Values. Extending Database Technology Workshops, 336-357.

24. BRASS, S., DIX , J.(1995) Disjunctive Semantics based upon Partial and Bottom-Up
Evaluation International Conference on Logic Programming, 199-213.

25. BRASS, S., DIX , J., NIEMELÄ, I.,PRZYMUSINSKI, T.C.(2001) On the Equivalence of
the STATIC and disjunctive Well-founded Semantics and their Computation. Theoretical
Computer Science, 258(1-2):523-553.

26. F. BRY(1997) Query Answering in Information System with Integrity Constraints. IFIP
WG 11.5 Working Conf. on Integrity and Control in Information System.

27. CAL Ì , A.,CALVANESE,D.,DE GIACOMO,G.,LENZERINI,M.(2002) Data Integration
under Integrity Constraints. International Conference on Advanced Information Systems
Engineering, 262-279.

28. CAL Ì , A.,DE GIACOMO,G.,LENZERINI,M.(2002) Models for information integration:
Turning local-as-view into global-as-view. International Workshop on Foundations of
Models for Information Integration.

29. CAROPRESE, L., GRECO, S., SIRANGELO, C., ZUMPANO, E.(2006) Declarative se-
mantics of production rules for integrity maintenance. International Conference on Logic
Programming, 26-40.

30. CAROPRESE, L., GRECO, S., SIRANGELO, C., ZUMPANO, E..(2006) Declara-
tive Semantics of Production Rules for Integrity Maintenance. Techical Report.
http://wwwinfo.deis.unical.it/∼ zumpano.

31. CAROPRESE, L., ZUMPANO, E.(2006) A Framework for Merging, Repairing and Query-
ing Inconsistent Databases. Advances in Databases and Information Systems, 383-398.

32. CERI, S., FRATERNALI , P., PARABOSCHI, S., TANCA , L.(1994) Automatic genera-
tion of production rules for integrity maintenance. ACM Transaction on Database Sys-
tem 19, 3, 367-422.

33. CERI, S., WIDOM , J.(1990) Deriving Production Rules for Constraint Maintenance.
International Conference on Very Large Data Bases, D. McLeod, R. Sacks-Davis, and
H. Schek, Eds. Brisbane, Australia, 566-577.

34. CHANDRA , A. K., MERLIN, P. M.(1977) Optimal implementation of conjunctive
queries in relational data bases. ACM Symposium on Theory of Computing, 77-90.

References 113

35. CHAUDHURI , S., KRISHNAMURTHY, R.,POTAMIANOS, S., SHIM , K.(1995) Optimiz-
ing queries with materialized views. International Conference on Data Engineering, 190-
200.

36. CHEKURI, C., RAJARAMAN , A.(1997) Conjunctive Query Containment Revisited. In-
ternational Conference on Databse Theory, 56-70.

37. CHOMICKI , J.(2006) Consistent query answering: Opportunities and limitations. In-
ternational Conference on Database and Expert Systems Applications, IEEE Computer
Society, Washington, DC, USA, 527-531.

38. CHOMICKI , J., LOBO, J., NAQVI , S.(2003) Conflict resolution using logic program-
ming. IEEE Transactions on Knowledge and Data Engineering 15, 1, 244-249.

39. CHOMICKI , J., MARCINKOWSKI, J., Minimal-change integrity maintenance using tuple
deletions. Information and Computation 197, 1/2, 90-121, 2005.

40. CHOMICKI , J., MARCINKOWSKI, J., STAWORKO, S.(2004) Computing consistent
query answers using conflict hypergraphs. ACM International Conference on Informa-
tion and Knowledge Management, ACM Press, New York, NY, USA, 417-426.

41. CODD, E.F.(1970) A Relational Model of Data for Large Shared Data Banks. Commu-
nications of the ACM, 13(6):377-387.

42. COLMERAUER, A.,ROUSSEL, A.(1993) The Birth of Prolog. IHOPL Preprints, 37-52.
43. COSMADAKIS, C.C., PAPADIMITRIOU , C.H.(1983) Updates of Relaional Views, Sym-

posium on Principles of Database Systems, 317-331.
44. DANTSIN, E., EITER, T., GOTTLOB, G., VORONKOV, A.(1997) Complexity and Ex-

pressive Power of Logic Programming. IEEE Conference on Computational Complexity,
82-101.

45. DAYAL , U., BERNSTEIN, P.A.(1998) On the Correct Translations of Update Operations
on Relational Views. ACM Transactions on Database Systems, 13(4):486-524.

46. DUNG, P.M.(1996) Integrating Data from Possibly Inconsistent Databases. International
Conference on Cooperative Information Systems, 58-65.

47. DUSCHKA, O. M., GENESERETH, M.R.(1997) Answering recursive queries using
views”, Symposium on Principles of Database Systems, 109-116.

48. DUSCHKA, O. M.(1997) Query Planning and Optimization in Information Integration.
PhD Thesis.

49. DUSCHKA, O. M., GENESERETH, M.R.(1997) Query planning in infomaster. Sympo-
sium on Applied Computing.

50. EITER, T., GOTTLOB, G.(1992) On the complexity of propositional knowledge base
revision, updates and counterfactuals. Symposium on Principles of Database Systems,
261-273.

51. EITER, T., GOTTLOB, G.(1995) On the computational cost of disjunctive logic pro-
gramming: propositional case. Annals of Mathematics and Artificial Intelligence15,
289-323.

52. EITER, T., LEONE, N., SACCÀ , D.(1998) Expressive Power and Complexity of Partial
Models for Disjunctive Deductive Databases. Theoretical Computer Science, 206(1-2):
181-218.

53. EITER, T., LEONE, N., MATEIS, C., PFEIFER, G., SCARCELLO, F. (1998) A Deduc-
tive System for Non-Monotonic Reasoning. Logic Programming and Non-monotonic
Reasoning, 364-375.

54. EITER, T., GOTTLOB, G., MANNILA , H.(1997) Disjunctive Datalog. ACM Transac-
tions on Database Systems 22, 3, 364-418.

55. FAGIN , R., ULLMAN , J.D., VARDI , M.(1983) On the Semantics of Updates in Data-
bases. Symposium on Principles of Database Systems, 352-365.

114 References

56. FARRÉ, C., TENIENTE, E.,URPI, T.(2003) Handling Existential Derived Predcates in
View Updating, International Conference on Logic Programming, 148-162.

57. FERNANDEZ, J.A., GRANT, J., MINKER, J.(1996) Model Theoretic Approach to View
Updates in Deductive Databases. Journal of Automated Reasoning, 17(2): 171-197.

58. FITTING , M.(1985) A Kripke-Kleene Semantics for Logic Programs. Journal of Logic
Programming, 2(4):295-312.

59. FITTING , M. (1994) On prudent bravery and other abstractions, Fitting, M. C., On
prudent bravery and other abstractions.

60. FITTING , M.(1995) Annotated revision specification programs. Logic Programming and
Non-monotonic Reasoning, 143-155.

61. FLESCA, S., GRECO, S.(2002) Answering queries using views. IEEE-Trans. on Knowl-
edge and Data Engineering, 13(6):980-995.

62. FRATERNALI , P., PARABOSCHI, S.(1993) A Review of Repairing Tenchniques for In-
tegrity Maintenance. Rules in Database Systems, 333-346.

63. FRIEDMAN , M., WELD, D.(1997) Efficient execution of information gathering plans”,
Proc. Int. IJCAI.

64. VAN GELDER, A.(1998) Negation as Failure Using Tight Derivations for General Logic
Programs. Foundations of Deductive Databases and Logic Programming, 149-176.

65. GELFOND, M., L IFSCHITZ, V.(1988) The stable model semantics for logic program-
ming. International Conference on Logic Programming, R. A. Kowalski and K. Bowen,
Eds. The MIT Press, Cambridge, Massachusetts, 1070-1080.

66. GELFOND, M., L IFSCHITZ, V.(1991) Classical negation in logic programs and disjunc-
tive databases. New Generation Computing9,365–385

67. GIANNOTTI , F., PEDRESCHI, D., SACCÀ , D., ZANIOLO ,C.(1991) Nondeterminism in
deductive databases. International Conference on Deductive and Object-Oriented Data-
bases, 129-146.

68. GRAHNE, G., MENDELZON, A.O.(1999) Tableau Techniques for Querying Information
Sources through Global Schemas. Lecture Notes in Computer Science, 1540, 332-347.

69. GRANT, J., SUBRAHMANIAN , V. S.(1995) Reasoning in inconsistent knowledge bases.
IEEE Transactions on Knowledge and Data Engineering 7, 1, 177-189.

70. GRECO, G., GRECO, S., ZUMPANO, E.(2003) A logical framework for querying and
repairing inconsistent databases. IEEE Transactions on Knowledge and Data Engineer-
ing 15, 6, 1389-1408.

71. GRECO, S., ZUMPANO, E.(2000) Querying inconsistent databases. International Con-
ference on Logic for Programming and Automated Reasoning, 308-325.

72. GRECO, S., ZUMPANO, E.(2000) Computing Repairs for Inconsistent Databases. Inter-
national Symposium on Cooperative Database System for Advanced Applications,33-40.

73. GRECO, G., GRECO, S., ZUMPANO, E.(2001) A Logic Programming Approach to the
Integration Repairing and Querying of Inconsistent Databases. Logic Programming, 17th
International Conference, 348-364.

74. GRECO, G., SACCÀ , D.(1990) Negative Logic Programs. North American Conference
on Logic Programming, 480-497.

75. GRECO, G., SACCÀ , D.(1995) Datalog Queries with Stratified Negation and Choice:
from P to DP . International Conference on Database Theory, 82-96.

76. GRECO, G., SACCÀ , D.(1999) Complexity and Expressive Power of Deterministic Se-
mantics for Datalog¬. Information and Computation, 153(1):81-98.

77. HEGNER, S.J.(1990) Foundations of canonical update support for close database views.
International Conference on Database Theory, 422-436.

78. HEGNER, S.J.(2002) Uniqueness of Update Strategies for Database Views. Foundations
of Information and Knowledge Systems, 230-249.

References 115

79. HERZIG, A., RIFI , O.(1999) Propositional belief base update and minimal change. Ar-
tificial Intelligence 115, 1, 107-138.

80. JOHNSON, D.S.(1990) A Catalog of Complexity Classes. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, A(2):67-161, Elsevier Science..

81. KATSUNO, H., MENDELZON, A. O.(1991) Propositional knowledge base revision and
minimal change. Artificial Intelligence 52, 3, 263-294.

82. KANELLAKIS , P. C.(1991) Elements of Relational Database Theory. J. van Leewen.
Vol. 2.

83. KIFER, M. L I , A.(1988) On the semantics of rule-based expert systems with uncertainty.
International Conference on Database Theory, Springer-Verlag, 102-117.

84. KOLAITIS , P.(1990) The Expressive Power of Stratified Logic Programs. Information
and Computation, Vol. 90, 50-66.

85. KOTIDIS, Y., SRIVASTAVA , D., VELEGRAKIS, Y.(2006) Updates Through Views: A
New Hope. International Conference on Data Engineering, 2.

86. KOWALSKI , R. A.(1974) Predicate Logic as Programming Language. IFIP Congress,
569-574.

87. KOWALSKI , R. A.(1977) Logic for Data Description. Logic and Data Bases, 77-103.
88. KOWALSKI , R. A.(1979) Algorithm = Logic + Control. Communications of the ACM

(CACM), 22(7): 424-436.
89. KOWALSKI , R. A., SADRI , F.(1990) Logic programs with exception. International

Conference on Logic Programming, 598-613.
90. KRISHNAMURTHY, R., NAQVI , S.(1988) Non-deterministic Choice in Datalog. ACM

Symposium on Principles of Database Systems, 416-424.
91. KWOK, C.T. WELD, D.S.(1996) Planning to Gather Information. AAAI National Conf.

on Artificial Intelligence, 32-39.
92. LEMBO, D., LENZERINI, M., ROSATI, R.,(2002) Source Incompleteness and inconsis-

tency in information integration. International Workshop on Knowledge Representation
meets Databases.

93. LENZERINI,M.(2002) Data Integration: A Theoretical Perspective. Symposium on Prin-
ciples of Database Systems, 233-246.

94. LEVY, A.(1996) Obtaining Complete Answers from Incomplete Databases. International
Conference on Very Large Data Bases, 402-412.

95. LEVY, A.Y., MENDELZON, A.O., SAGIV, Y., SRIVASTAVA , D.(1995) Answering
Queries Using Views. Symposium on Principles of Database Systems, 95-104.

96. LEVY, A.Y., RAJARAMAN , A., ULLMAN , J.D.(1996) Answering queries using limited
external query processors. Symposium on Principles of Database Systems, 227-237.

97. LEVY, A.Y., RAJARAMAN , A., ORDILLE , J.J.(1996) Querying Heterogeneous Infor-
mation Sources Using Source Descriptions. International Conference on Very Large
Databases, 251-262.

98. LIBERATORE, P.(2000) The complexity of belief update. Artificial Intelligence 119, 1-2,
141-190.

99. LIFSCHITZ, V.(1988) On the Declarative Semantics of Logic programs with negation.
Foundations of Deductive and Logic Programming, Morgan Kaufmann, Los Altos, CA,
J. Minker, 177-192.

100. LIFSCHITZ, V., WOO, T.(1992) Answer sets in general nonmonotonic reasoning. In-
ternational conference on principles of knowledge representation and reasoning, KR ’92,
San Mateo, CA, Morgan Kaufmann, 603-614.

101. LIN , J.(1996) A semantics for reasoning consistently in the presence of inconsistency.
Artificial Intelligence 86, 1, 75-95.

116 References

102. LIN , J.(1996) Integration of Weighted Knowledge Bases. Artificial
Intelligence,83(2):363-378.

103. LIN , J., MENDELZON,A. O.(1998) Merging Databases Under Constraints. Interna-
tional Journal of Cooperative Information Systems, 7(1):55-76.

104. LIN , J., MENDELZON,A. O.(1999) Knowledge Base Merging by Majority. Dynamic
Worlds: from the frame problem to knowledge management, Kluwer.

105. LLOYD , J.W.(1987) Foundations on Logic Programming.2nd Edition, Springer.
106. LLOYD , J.W., TOPOR, R. W.(1985) A Basis for Deductive Database Systems. Journal

of Logic Programming, 2(2): 93-109.
107. MAREK, V. W., TRUSZCZYŃSKI, M.(1991) Autoepistemic logic. Journal of the ACM,

38, 588-619.
108. MAREK, V. W.,TRUSZCZYŃSKI, M.(1998) Revision programming. Theoretical Com-

puter Science190, 241-277.
109. MAREK, V. W., PIVKINA , I.,TRUSZCZYŃSKI, M.(1998) Revision programming =

logic programming + integrity constraints. Computer Science Logic, 73–89.
110. MAREK, V. W., PIVKINA , I.,TRUSZCZYŃSKI, M.(2002) Annotated revision programs.

Artificial Intelligence 138, 1-2, 149-180.
111. MAREK, V. W.,TRUSZCZYŃSKI, M.(1998) Revision programming. Theoretical Com-

puter Science 190, 2, 241-277.
112. MAYOL , E., TENIENTE, E.(1999) A Survey of Current Methods for Integrity Con-

straints Maintenance and View Updating. International Conference on Conceptual Mod-
eling / the Entity Relationship Approach Workshop, 62-73.

113. MAYOL , E., TENIENTE, E.(2003) A Review of Integrity Constraints Maintenance and
View Updating Techniques. Data and Knowledge Engineering, 61-103.

114. MEDEIROS, C., ANDRADE, M.(1994) Implementing integrity control in active data-
bases, Journal of Systems and Software, 27(3):171-181.

115. MINKER, J.(1982) On Indefinite Data Bases and the Closed World Assumption. Con-
ference on Automated Deduction, 292-308, 1982.

116. MINKER, J.(1988) Perspectives in Deductive Databases. Journal of Logic Program-
ming, 5(1):33-60.

117. PAPADIMITRIOU , C. H.(1994) Computational Complexity. Addison-Wesley.
118. PIVKINA , I.(2001) Revision programming: a knowledge representation formalism. PhD

thesis, Department of Computer Science, University of Kentucky.
119. PRZYMUSINSKI, T.C.(1990) Well-founded Semantics Coincides with Three-valued

Stable Semantics. Foundamenta Informaticae, 13:445-463.
120. PRZYMUSINSKI, T.C.(1991) Stable Models and Non-Determinism in Logic Programs

with Negation. Special issue of the New Generation Computing Journal, 9(3):401-424.
121. PRZYMUSINSKI, T.C.(1995) Static Semantics for Normal and Disjunctive Logic Pro-

grams. Annals of Mathematics and Artificial Intelligence, 12(2-4):323-357.
122. QIAN , X.(1996) Query Folding. International Conference on Data Engineering, 48-55.
123. RAJARAMAN , A., SAGIV, Y., ULLMAN , J.D.(1995) Answering queries using templates

with binding patterns. ACM Symposium on Principles of Database Systems, 105-112.
124. RAMAKRISHNAN , R., SAGIV, Y., ULLMAN , J. D.,VARDI , M. Y.(1989) Proof-Tree

Transformation Theorems and Their Applications. Symposium on Principles of Database
Systems, ACM Press, 172-181.

125. REITER, R.(1982) Towards a Logical Reconstruction of Relational Database Theory.
On Conceptual Modelling (Intervale), 191-233.

126. REITER, R.(1978) On Closed World Data Bases. In H. Gallaire and J. Minker, editors,
Logic and Data Bases, 55-76.

References 117

127. SACCÀ , D.(1997) The Expressive Powers of Stable Models for Bound and Unbound
Datalog Queries. Journal of Computer and System Science, 54(3):441-464.

128. SACCÀ , D., ZANIOLO , C.(1990) Stable models and non-determinism in logic programs
with negation. ACM Symposium on Principles of Database Systems, 205-217.

129. SACCÀ , D., ZANIOLO , C.(1997) Deterministic and Non-Deterministic Stable Models.
Journal of Logic and Computation, 7(5):555-579.

130. SARAIYA , Y.(1991) Subtree elimination algorithms in deductive databases. PhD Thesis,
Stanford University.

131. SHMUELI , O.(1987) Decidability and expressiveness aspects of logic queries. ACM
Symposium on Principles of Database Systems, 237-249.

132. SHMUELI , O.(1993) Equivalence of Datalog Queries is Undecidable. Journal of Logic
Programming, 15(3):231-241.

133. SHU, H.(2000) Using Constraint Satisfaction for View Update. Journal of Intelligent
Information Systems, 15(2): 147-173.

134. SUBRAHMANIAN , V. S.(1994) Amalgamating knowledge bases. ACM Transaction on
Database Systems 19, 2, 291-331.

135. TARSKI, A.(1955) A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, Vol.5, 285-309.

136. TENIENTE, E., OLIV É, S.(1995) Updating knowledge bases while maintaining their
consistency. VLDB Journal, 4(2):193-421.

137. TODD, S.(1977) Automatic constraint Maintenance and updating defined relations. IFIP
Congress, 145-148.

138. TORLONE, R., ATZENI, P.(1991) Updating Deductive Databases with Functional De-
pendencies. International Conference on Deductive and Object-Oriented Databases, 278-
291.

139. ULLMAN , J. D.(1988) Principles of Database and Knowledge-Base Systems. Vol. 1-2.
Computer Science Press, Potomac, Maryland.

140. ULLMAN , J. D.(1997) Information Integration Using Logical Views. International
Conference on Database Theory, 19-40.

141. ULLMAN , J.D.(2000) Information integration using logical views. Theoretical Com-
puter Science, 239(2): 189-210.

142. VAN EMDEN, M.H. KOWALSKI , R. A.(1976) The Semantics of Predicate Logic as a
Programming Language. Journal of the ACM, 23(4):733-742.

143. VAN GELDER, A., ROSS, K., SCHLIPF, J. S.(1991) The Well-Founded Semantics for
General Logic Programs. Journal of the ACM, 38(3):620-650.

144. VARDI , M.Y.(1982) The Complexity of relational query languages. ACM Symposium
on Theory of Computing, 137-146.

145. WIJSEN, J.(2003) Condensed representation of database repair for consistent query.
International Conference on Database Theory, 378-393.

146. WINSLETT, M.(1990) Updating logical databases. Cambridge University Press, New
York, NY, USA.

