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Abstract

In the lava flow mitigation context, the determination of areas exposed to

volcanic risk is crucial for diminishing consequences in terms of human causal-

ities and damages of material properties. In order to mitigate the destructive

effects of lava flows along volcanic slopes, the building and positioning of ar-

tificial barriers is fundamental for controlling and slowing down the lava flow

advance.

In this thesis, a decision support system for defining and optimizing vol-

canic hazard mitigation interventions is proposed. The Cellular Automata

numerical model SCIARA-fv2 for simulating lava flows at Mt Etna (Italy)

and Parallel Genetic Algorithms (PGA) for optimizing protective measures

construction by morphological evolution have been considered.

In particular, the PGA application regarded the optimization of the po-

sition, orientation and extension of earth barriers built to protect Rifugio

Sapienza, a touristic facility located near the summit of the volcano.

A preliminary release of the algorithm, called single barrier approach

(SBA), was initially considered. Subsequently, a second GA strategy, called

Evolutionary Greedy Strategy (EGS), was implemented by introducing multi-

barrier protection measures in order to improve the efficiency of the final

solution. Finally, a Coevolutionary Cooperative Strategy (CCS), has been

introduced where all barriers are encoded in the genotype and, because all

the constituents parts of the solution interact with the GA environment, a

mechanism of cooperation between individuals has been favored. Solutions

provided by CCS were extremely efficient and, in particular, the extent of

the barriers in terms of volume used to deviate the flow thus avoiding that

the lava reaches the inhabited area was less than 72% respect to the EGS
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and 284% respect to the SBA. It is also worth to note that the best set of

interventions provided by CCS was approximately eighteen times more ef-

ficient than the one applied to divert the lava flow away from the facilities

during the 2001 Mt.Etna eruption.

Due to the highly intensive computational processes involved, General-

Purpose Computation with Graphics Processing Units (GPGPU) is applied

to accelerate both single and multiple simultaneous running of SCIARA-

fv2 model using CUDA (Compute Unified Device Architecture). Using four

different GPGPU devices, the study also illustrates several implementation

strategies to speedup the overall process and discusses some numerical re-

sults obtained. Carried out experiments show that significant performance

improvements are achieved with a parallel speedup of 77.

Finally, to support the analysis phase of the results, an OpenGL and

Qt extensible system for the interactive visualization of lava flows simula-

tions was also developed. The System showed that it can run the combined

rendering and simulations at interactive frame rate.

The study has produced extremely positive results and represents, to

our knowledge, the first application of morphological evolution for lava flow

mitigation.



Sommario

Nel contesto realtivo alla mitigazione del rischio vulcanico, la determinazione

di aree esposte al rischio è di fondamentale importanza per la valutazione

della pericolosità per l’uomo e le infrastrutture. La costruzione e l’opportuno

posizionamento di barriere artificali è cruciale per il controllo e il rallenta-

mento del fronte lavico.

Nella presente tesi viene definito un sistema di supporto alle decisioni per

la realizzazione ed ottimizzazione di opere di protezione da colata lavica. Per

la simulazione di flussi lavici è stato utilizzato il modello ad Automi Cellu-

lari SCIARA - fv2 e per l’evoluzione morfologica di opere protettive sono

state applicate tecniche di ottimizzazione basate su Algoritmi Genetici Par-

alleli (AGP). In particolare, gli esperimenti sono stati condotti considerando

l’evento lavico del 2001 avvenuto sul Mt.Etna che ha minacciato il rifugio

Sapienza, una nota struttura turistica situata ad oltre 1800 metri di quota.

La prima versione del modello implementato, definita come approccio a

barriera singola (ABS), fornisce opere di protezione costituite da due nodi.

Le limitazioni relative all’approccio basato su singola barriera hanno portato,

successivamente, alla realizzazione di una seconda strategia , definita come

strategia evolutiva golosa (SEG), che introduce opere multibarriera al fine di

rendere più efficienti le soluzioni finali. Il terzo e ultimo approccio è, invece,

definito come strategia cooperativa evolutiva (SCC), dove l’insieme di bar-

riere che costituisce la soluzione finale è interamentente codificato all’interno

del genotipo. Per promuovere l’interazione delle parti costituenti all’interno

dell’ambiente dell’AG, inoltre, è stato favorito un meccanismo di cooper-

azione fra individui. Le soluzioni fornite dall’algoritmo in questione sono

state estremamente efficienti, a considerazione del fatto che il volume to-
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tale utilizzato dalla migliore soluzione evoluta dall’algoritmo evolutivo per

difendere l’Area di Protezione è risultato essere inferiore del 72% rispetto

alla tecnica golosa e del 284% rispetto all’approccio a singola barriera. È,

inoltre, importante notare come la migliore soluzione fornita dalla strate-

gia SCC sia risultata approssimativamente 18 volte più efficiente rispetto

all’insieme di interventi (13 barriere) applicati per deviare i flussi lavici dal

Rifugio Sapieza durante l’eruzione etnea del 2001.

La valutazione della funzione di fitness, durante il processo evolutivo

dell’algoritmo genetico, ha richiesto un uso massiccio del simulatore numerico

mediante l’esecuzione di migliaia di simulazioni concorrenti. Tale processo,

dato l’elevato carico computazionale, ha suggerito l’utilizzo del calcolo ad

alte prestazioni. A tal fine, tecniche di GPGPU (General-Purpose Compu-

tation with Graphics Processing Units) sono state applicate per accelerare

simulazioni singole e simultanee del modello SCIARA-fv2 in ambiente e lin-

guaggio CUDA (Compute Unified Device Architecture). Diverse strategie

sono state sviluppate per ridurre il tempo totale di esecuzione. I risultati ot-

tenuti, in riferimento a quattro differenti dispositivi grafici, hanno mostrato

dei significativi miglioramenti nelle prestazioni, rispetto alla versione sequen-

ziale del modello, ottenendo uno speedup di 77.

Inoltre, per supportare la fase di analisi dei risultati, in questo lavoro

è stato sviluppato un sistema di visualizzazione interattiva di simulazioni

di flussi lavici implementato in liguaggio C++ e OpenGL ed integrato in

interfaccia Qt. Il framework implementato è stato applicato con successo per

la visualizzazione di simulazioni di flussi lavici e l’utilizzo di server multi-

GPU dedicati ha, inoltre, offerto la possibilità di accelerare il processo di

visualizzazione, garantendo, di fatto, di eseguire visualizzazione e simulazione

in real-time.

Lo studio in questione, che rappresenta la prima applicazione di evoluzione

morfologica per la mitigazione del rischio indotto da flussi lavici, ha prodotto

risultati estremamente positivi.
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Chapter 1

Introduction

Among several approaches for modelling natural complex phenomena pro-
posed in the literature, Cellular Automata (CA) represent a possible solution
when the phenomena to be simulated evolve on the basis of local interactions
of their constituent parts. CA are dynamical systems, discrete in space and
time. They can be thought of as a lattice of cells, each one embedding an
identical finite automaton, interacting only with a small set of neighboring
cells. The state of each finite automaton is changed by applying the transi-
tion function, which defines local rules of evolution for the cell. The overall
CA global dynamic emerges from the simultaneous application of the local
rules to each cell. CA have been applied with success to different fields such
as pattern recognition [111, 50], cryptography [163, 148, 93] or image pro-
cessing [142, 143]. However, major interest for CA is regarding their use
to model Complex Systems in various fields like Physics, Engineering and
Biology [24, 2, 36, 45, 56, 97].

As regards the modeling of natural complex phenomena, Complex Cellu-
lar Automata (CCA) can represent a valid methodology to model numerous
complex non-linear phenomena [57], such as lava and debris flows. CCA are
an extension of classical CA, developed for overcoming some of the limita-
tions affecting conventional CA frames such as the modelling of large scale
complex phenomena. Due to their particulate nature and local dynamics,
CCA are very powerful in dealing with complex boundaries, incorporating
microscopic interactions and parallelization of algorithms.

In the risk assessment of lava flow context, the use of thematic maps of
volcanic hazard is of importance in supporting policy managers and admin-
istrators in effective land use planning and in taking proper actions that are
required during an emergency phase. In particular, hazard maps are a key
tool for emergency management since they descibe the threat that can be
expected at a certain location for future eruptions. At Mt. Etna (Italy), the
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2 1. INTRODUCTION

most active volcano in Europe, the majority of events that have occurred
in the last four centuries report damage to human properties in numerous
towns on the volcano flanks [10]. Notwithstanding, the susceptibility of the
Etnean area to lava invasion has increased due to continued urbanization
[60], the inevitable consequence that new eruptions may involve even greater
risks. Current efforts for hazard evaluation and contingency planning in vol-
canic areas draw heavily on hazard maps and numerical simulations for the
purpose of individuating affected areas in advance.

Although many computational modelling methods for lava flow simulation
[88, 117, 2, 52] and related techniques for the compilation of susceptibility
maps are already known to the international scientific community, the prob-
lem of defining a standard methodology for the construction of protection
works, in order to mitigate volcanic risk, remains open. Techniques to slow
down and divert lava flows, caused by collisions with protective measures
such as artificial barriers [6, 29, 109] or dams [7], are now to be consid-
ered empirical, exclusively based on past experiences. In order to mitigate
the destructive effects of lava flows along volcanic slopes, the building of
artificial barriers is fundamental for controlling and slowing down the lava
flow advance. Such protective interventions were trialled during a few recent
eruptions of Etna: in 1983, 1991-1993, 2001 and in 2002, when earthen bar-
riers were built to control lava flow expansion with different levels of success.
The proper positioning of protective measures in the considered area may de-
pend on many factors (viscosity of the magma, output rates, volume erupted,
steepness of the slope, topography, economic costs). As a consequence, in
this context, one of the major scientific challenges for volcanologists is to
provide efficient and effective solutions.

Morphological evolution is a recent development within the field of en-
gineering design, by which evolutionary computation techniques are used to
tackle complex design projects. This branch of evolutionary computation is
also known as evolutionary design and is a multidisciplinary endeavour that
integrates concepts from evolutionary algorithms, engineering and complex
systems to solve engineering design problems [12]. Morphological evolution
has been largely explored in evolutionary robotics, both for the design of
imaginary 3D robotics bodies [149] and for the efficient and autonomous de-
sign of adaptive moving robots [17, 108]. Principles of evolutionary design
have been also applied in structural engineering at a different level of the
design process, from the structural design itself to the logistics involved in
the construction [96].

While Genetic Algorithms (GAs) have been applied several times in the
past for optimizing CA models [46, 45], this thesis work describes the appli-
cation of Parallel Genetic Algorithms (PGAs) for optimizing earth barriers
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construction by morphological evolution to control lava flows. GAs [84] are
general-purpose iterative search algorithms inspired by natural selection and
genetics. They simulate the evolution of a population of candidate solutions
to a specific problem by favouring the reproduction of the best individuals
and have been applied, with good results, in many different fields: for the
solution of difficult combinatorial problems [76] in the study of the interac-
tion between evolution and learning [81]; in evolutionary robotics [124, 63].
GAs have also been used for improving the performance of CA in resolving
difficult computational tasks: cellular-automata based solution of binary clas-
sification problem by applying GAs [129]; asynchronous CA evolution to face
similar problems [164]. GAs based methods have also been applied to CA for
modelling bioremediation of contaminated soils [58] and for the optimisation
of lava and debris flow simulation models (e.g., [152, 87, 141, 44, 43]).

For the morphological evolution of protective works by PGAs, the lat-
est release of the lava flows simulation CA model SCIARA was adopted.
SCIARA is a family of bi-dimensional CCA lava flow models, successfully
applied to the simulation of many real cases such as the 2001 Mt. Etna
(Italy) Nicolosi lava flow [36] and the 1991 Valle del Bove (Italy) lava event
[8], which occurred on the same volcano and was employed for risk mitigation.

To evaluate the effectiveness and efficiency of the methodology developed
in this thesis, the 2001 Mt Etna eruption case study was considered. The
2001 eruption of Mt. Etna, which began on July 17th, caused damage and
threatened some important facilities and infrastructure. Despite the con-
struction of thirteen artificial barriers during the eruption, the flow emitted
from the lower vent iterrupted the SP92 road and invaded a wide parking
area located between MTs. Silvestri and the Sapienza zone.

The GA fitness evaluation has implied a massive use of the numerical
simulator running thousands of concurrent simulations for every generation
computation. Depending on the adopted computer framework, such an op-
eration may require several hours or even months. Due to the high com-
putational complexity of the algorithm, a CPU/GPU library was developed
to accelerate the GA running. A Master-Slave model was adopted in which
the Host-CPU (Master) executes the GA steps (selection, population re-
placement and mutation), while GPU cores (slaves) evaluate the individuals
fitness.

Furthermore, to support the interactive visualization and analysis phase
of the results, a Visualization System, based on OpenGL and C++ and
integrated into Qt interface was developed.

This thesis is organized as follows: Genetic Algorithms and Cellular Au-
tomata are presented in the second and third Chapter, respectively. Their
most important theoretical results and some applications are also discussed.
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The fourth Chapter concerns the application of Cellular Automata for mod-
elling and simulating some natural complex phenomena. In this same Chap-
ter the algorithm for the minimisation of differences [57] and the latest re-
lease of the lava flows simuation model SCIARA are presented. The fifth
Chapter focuses on different CUDA approaches to accelerate simultaneous
simulation of a large number of lava simulations using GPU. The overview
of GPGPU paradigm together with the CUDA framework, implementations
and performance analysis, referred to different benchmark simulations of a
real event, are reported. An extensible system for the analysis and inter-
active visualization of Cellular Automata based simulations is discussed in
the sixth Chapter. The System Architecture and a framework overview are
also descripted. In the seventh Chapter, the application of Parallel Genetic
Algorithms for the morphological evolution of protective works is presented.
After a brief description of the case study adopted for the experiments, the
main characteristics of three different strategies are discussed and results are
presented. For each developed version, a study of GA dynamics, with ref-
erence to emergent behaviors and general considerations are also discussed.
Final comments and future works are presented in the same Chapter. The
closing Chapter concludes with general discussions and directions for future
work.



Chapter 2

Genetic Algorithms

Among Artificial Intelligence models, such as cellular automata, artificial
neural networks, fuzzy systems, multiagent systems, and swarm intelligence,
genetic algorithms (GAs) [83] have proved to be an effective and robust
support tool for the prediction and modeling of complex phenomena. GAs
belong to the family of evolutionary algorithms (EAs) and can be considered
as general-purpose search algorithms. GAs have been employed for optimiz-
ing a broad variety of problems for which standard optimization techniques
require excessive computational resources and time to return the result or,
simply, for those problems for which specific optimization procedures do not
exist.

GAs are increasingly being considered by the scientific community for
their simplicity and effectiveness. In fact, GAs do not require in-depth or
specific knowledge in order to be applied, and a wide class of problems can
be straightforwardly formulated to fit with the GAs requirements. Moreover,
GAs are both employable as so-called embarrassingly parallel algorithms and
can be easily adapted for solving problems that involve more than one ob-
jective to be optimized simultaneously.

Regarding parallel issues, many examples of parallel GAs (PGAs) have
been proposed in the literature for both speeding up and improving the al-
gorithms search ability. For instance, a mere parallelization of a standard
panmictic (i.e., single population based) GA can be considered in case the
application of the same algorithm would require too much time to converge
toward a good solution in a sequential computational environment. Fur-
thermore, even in the case the problem needs to be tractable on sequential
architectures, a parallel nonpanmictic GA model can be adopted in order to
allow a better exploration of the search space, by favoring the convergence
toward solutions of higher quality.

GAs, when used as multiobjective search algorithms, unlike other multi-
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6 2. GENETIC ALGORITHMS

objective optimization procedures, are able to provide a set of nondominated
Pareto optimal solutions in a single run, which makes them particularly ap-
pealing in real world applications. The application of multiobjective GAs
(MOGAs) is currently growing and, besides those of single-objective GAs,
applications are starting to be used in geomorphology. Actually, applica-
tions of GAs in geomorphology are relatively new, starting in the late 1990s,
with respect to other fields, for which applications started in the 1980s.

This Chapter is organized as follows. After a general overview, a brief
history of GAs introduces the description of the original Holland’s model and
some of its most used variants in practical applications. After an introduction
of the theoretical foundations of GAs, sequentially, a brief presentation of
applications in different research brances is presented. General discussion
about perspectives and new trends of the field conclude the Chapter.

2.1 Overview

Genetic Algorithms [84] are search algorithms based on mechanisms of bio-
logical evolution in order to solve problems and to model evolutionary sys-
tems. The basic idea behind the GA approach is to simulate the evolution of
a population of candidate solutions to a specific search problem, promoting
the survival and reproduction of the fittest. Individuals, also called genotypes
or chromosomes, typically are represented by a data structure (e.g., string
array or tree) which is conveniently chosen to encode candidate solutions.
Elements of the chosen data structure are called genes, each one may assume
a given number of values, called alleles.

The search operates by processing populations of genotypes, generation
by generation, promoting the survival and reproduction of the best solutions.
In this context, an individual is considered to be better than others if its en-
coded solution is more efficient than others. In the first generation P (t = 0),
randomly generated, the members are evaluated through a fitness function,
which assigns a score (fitness) depending on how well every chromosome
solves the problem at hand. Best individuals have higher probabilities to be
selected and copied in the so-called mating pool for the reproduction process.
The new population P (t+ 1) replaces the old one thanks the introduction
of new individuals generated through genetic operators, inspired by sexual
reproduction. The phases of evaluation, selection, reproduction and muta-
tion are iterated until a given stopping criteria such as reaching a prefixed
threshold value for the fitness function or running a maximum number of GA
steps. Algorithm 1 shows the iterative scheme of the GA.
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Algorithm 1: Pseudocode of the iterative scheme of a basic genetic
algorithm.

GA run{
t = 0;
initialize pupulation P (t) //random generation
evaluate pupulation P (t) //fitness evaluation
while NOT(stopping criteria) do

t = t + 1;
create mating pool MP (t) from P (t− 1) //selection
create pupulation P (t) from MP (t) //crossover, mutation

}

2.2 A brief history of GAs

The initial studies on GAs go back to the 1960s, when a growing number of re-
searchers began to consider natural systems as a source of inspiration for the
development of optimization algorithms for engineering problems. Among
these, John Holland, who is universally recognized as the father of GAs,
was interested in the principles governing the evolution of adaptive natural
systems, speculating that competition and innovation were the key mecha-
nisms through which individuals acquire the ability to adapt themselves to
the environment [82]. In the mid-1960s, the first examples of computational
algorithms with characteristics similar to GAs were proposed, in which a
population of individuals was considered and made to evolve. Furthermore,
simple abstractions of genetic operators were employed as derivation mecha-
nisms. However, the official birth of GAs dates back to 1975, when Holland
published his book entitled Adaptation in Natural and Artificial Systems [83].

Despite the initial perplexities within the artificial intelligence community,
Holland continued his work on GAs by introducing the notions of schema,
implicit parallelism, and demonstrating the fundamental theorem of GAs
[83]. Briefly such theoretical results state that the GA is able to rapidly
concentrate the search toward the most-promising region of the search space
(i.e., toward the region in which the fittest individuals are found during the
first step of the algorithm) due to the mechanism of selection and, at the
same time (i.e., in parallel), to continue to explore other regions, due to
the mechanisms of sexual reproduction and mutation. Moreover, if a bet-
ter individual is found outside the above-mentioned, most- promising search
region, the algorithm is able to rapidly move the major search effort in the
new region where the fittest individual has been found. Differently to what
happened for other EAs, such as evolutionary strategies [136] or evolutionary
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programming [69], Holland, thus, laid significant theoretical foundations for
GAs, which has probably been one of the key factors of their success. The in-
terested reader could refer to Holland [83] or Goldberg [74] for further details
on theoretical foundations of GAs. Thereafter, De Jong [48] demonstrated
that GAs can be fruitfully employed for the optimization of mathematical
functions, highlighting that these artificial models of natural evolution can
also be used as powerful search algorithms. The interest in GAs continued
to grow slowly until 1989, when David Goldberg published his book enti-
tled Genetic Algorithms in Search Optimization and Machine Learning [74].
Goldberg’s textbook, which is today considered a classic of GAs literature,
obtained the effect of catalyzing the attention of the scientific community, as
it presented theory and applications of GAs in a clear, precise, and easily in-
telligible form [47]. The period from 1990 up to the present has been marked
by the tremendous growth of the community of GAs and applications have
affected a large number of new areas of research.

2.3 Elements of GA in the Holland’s Model

The Holland’s Model [83] is an iterative algorithm that operates on a popu-
lation of N chromosomes encoded as bit strings of length l (l, N ∈ N) where
each string (genotype) represents a candidate solution (phenotype) of a given
research problem. For example, the genotype can encode specific values of
a pair of coodinates π = {ci‖i = 1, 2} where each coordinate ci is allowed to
vary into a prefixed range [αi, βi] ⊂ R. The cardinality of the set of binary
string of length l grows exponentially with l (2l elements) and represents the
GA search space, that is, the domain of the function to be optimized.

The objective function f , assigns a fitness value fi = f(gi) to each geno-
type gi(i = 1, , N) of the GA. In order to assign a score to each individual
of the GA, the fitness function decodes the genotype in the corresponding
phenotype and tests it on the specific context (search problem). Usually the
value generated by the fitness function represents the ability, for a genotype,
to solve the problem. The graph of fitness values plotted against the search
space points is called fitness landscape. Figure 2.1 shows a possible fitness
landscape for a genetic algorithm with binary genotypes of length l = 2.

The Holland’s model replaces all N individuals with as many offspring
using a proportional selection method to dertermine the individuals to be re-
produced and genetic operators, such as crossover and mutation, are after also
applied. The selection operator selects chromosomes for reproduction pur-
pose. The crossover exchanges subsequences of two chromosomes to generate
two offspring and the mutation randomly flips some bits in a chromosome.
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Figure 2.1: Example of fitness landscape for a binary genetic algorithm. In
the specific case, the point (1,0,0.4) represents the fitness value associated to
the point (1,0) if f(1, 0) = 0.4

A simple Holland’s GA executes the following steps:

1. Start with a randomly generated population of N chromosomes.

2. Calculate the fitness f(x) of each chromosome x in the population.

3. Repeat the steps (4-5-6) until N offspring have been created.

4. Select a pair of parent chromosomes from the current generation on the
base of a probability selection depending of the fitness values.

5. Crossover (with a crossover probability pc) the pair at a randomly cho-
sen cut point to form two offspring.

6. Apply mutation (with a mutation probability pm) to the two offspring
and place the resulting chromosomes in the new population.

7. Replace the current population with the new population.

8. Go to step 2.

Each iteration of the algorithm is called generation and the entire set of
generations is called a run.
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0.30 = 0.12 + 0.18 

0.75 = 0.3 + 0.45 

1 = 0.75 + 0.25 

Figure 2.2: Example of proportional selection.The four individuals A1, A2,
A3, and A4 hold portions of the roulette proportionally to their selection
probabilities,which are set to 0.12, 0.18, 0.45, and 0.25, respectively.

2.3.1 Proportional selection

For every genotype gi, proportionally to the fitness value fi, the probability
pselection,i defined as:

pselection,i =
fi∑N
j=1 fj

(2.1)

is associated to it and used to construct a roulette of probability for the
selection process. For example, if the GA population is composed by the
n = 4 individuals A1, A2, A3 and A4 and the probability for each of them is
pselection,1 = 0.12, pselection,2 = 0.18, pselection,3 = 0.45 and pselection,4 = 0.25 the
roulette will be like the one in Figure 2.2. After the roulette construction,
the selection operator takes place. A random number c ∈ [0, 1] is generated
and the individual associated with the roulette portion containing the value
c is selected to be copied and inserted into the so-called maiting pool. For
instance, if c = 0.58, the individual A3 is selected because the c falls within
the range [0.3, 0.75]. Once the mating pool reaches a size of N elements,
thanks to the copies of individuals of the population P (t), members of the
new population P (t+ 1) are obtained as their offspring by means the genetic
operators application. Following the Darwinian Natural Selection, the GA
selection operator favors the selection of individuals with higher fitness and,
therefore, determines which individuals of the old population have the chance
to generate offspring.
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Figure 2.3: (a) Example of single-point crossover for a binary geneti algo-
rithm. (b) Example of mutation for a binary genetic algorithm.

2.3.2 Crossover

During the crossover procedure, two parent individuals in the mating pool
are randomly chosen and a cutting point selected. Portions, of the right of
the cut, of the genotypes are exchanged, generating two offspring. Figure
2.3(a) shows an example of crossover beetween two binary genotypes.

The crossover is applied N/2 times, according to a prefixed probability,
pcrossover, in order to generate N offspring. If crossover and mutation are
not applied, offspring coincide with parents. As the selection operator plays
in the GA framework the role of natural selection, crossover is a metaphor
of sexual reproduction in which genetic material of offspring results in a
recombination of those of the parents. Once N offspring are obtained by
crossover, mutation is applied.

2.3.3 Mutation

According to a prefixed and usually small probability, pmutation, a bit value
of each individual is simply changed from 0 to 1, or viceversa (see Figure
2.3(b)). The mutation operator represents the genetic phenomenon of the
rare variation of genotypes elements in living beings during evolution.

After crossover and mutation are applied to the individuals of the mating
pool, the new GA population, P (t+ 1), is obtained.
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2.4 Variants of the Holland’s Model

The first theoretical studies and application of GAs were inspired by Hol-
land’s model. However, in some cases, depending on the problem to opti-
mize, it is not convenient to use bit string encoding and Holland’s genetic
operators [116]. An other Holland’s Model weakness is that, during the evo-
lution process, the best individuals can be replaced. For this reason, elitism
principle can improves performance in GAs [144] and from 1980s new models
have been proposed in literature which differ from the Hollands model in the
genotype encoding, in the adopted genetic operators and selection strategies.

2.4.1 Encoding and genetic operators

The way of candidate solutions, for GAs and any other search methods, are
encoded is fundamental. Most GA applications use fixed-length bit strings
to encode GA individuals but, in recent years, different experiments have
been carried out with different encodings.

In theory, it is always possible to encode candidate solutions of a search
problem through binary strings. However, for the resolution of some prob-
lems, it is more natural to use higher-level representations and define crossover
and mutation operators that can properly work on these representations. In
practical applications, the most common schemes are the binary and that
based on real numbers.

Binary encoding

Binary encoding is the most widely used in GA applications, both for histori-
cal reasons and because the most important theoretical results were obtained
from it [83]. In this case, the employed data structure is a bit vector of length
l, to which corresponds a search space of 2l possible solutions. The use of
binary encoding requires the specification of a function that decodes the geno-
type in the corresponding phenotype. For example, the following equation
decodes a binary genotype g of length l in the corresponding floating point
value x:

x = xmin +
xmax − xmin

2l − 1
(

l∑
i=1

g [i]l−i) (2.2)

where [xmin, xmax] defines the variation range for x, while g[i] is the i-th
binary allele of the genotype g.

An alternative to the classical binary encoding is represented by gray code
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Integer value binary code gray code
0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101

Table 2.1: Comparison beetween binary code and gray code representations

where adjacent numbers have a single digit differing by 1. Table 2.1 shows a
comparison beetween binary code and gray code.

The most widely used crossover operator with binary encoding is the
n point crossover, which differs from the classical Holland’s single point
crossover for the use of n cutting points. Another frequently used opera-
tor is the uniform crossover, which randomly exchanges corresponding bits
of parents. The mutation operator, for binary encodings, is that proposed
by Holland.

Encoding based on real numbers

Encoding based on real numbers (floating point numbers), as well as natural
numbers, is the most natural for optimization problems. The adopted data
structure to represent an individual g is a vector of length l where each
element, g[i], is a real number which can vary in a prefixed range [αi, βi] ∈ R.
The representation based on real numbers does not pose particular problems
for the crossover operator and the classical one adopted for binary-coded GA
can be used.

Regarding the mutation operator, for real-valued genotypes, it alters the
genes of the individual by replacing elements with a vector M = (m1, ...,ml) :
g′ = M where the elements of M can be generated in various ways, for
instance, through a uniform distribution U(αi, βi). Thus, each mi ∈ M is a
value chosen randomly in the interval [αi, βi].

Tree Encodings

The application of tree econding can lead to several advantages such as the
fact that it allows the seach space to be open-ended because crossover and
mutation make the tree size limitless. However, this aspect also leads to
some potential pitfalls because the resulting trees, being large, can be very
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Figure 2.4: Example of single-point crossover beetween two trees. For each
tree, one cut point is selected and two subtrees are exchanged.

difficult to analyze and semplify[101]. Tree encoding is used mainly for evolv-
ing programs or expressions in genetic programming and the employed data
structure is a hierarchical tree structure, with a root value and subtrees of
children, represented as a set of linked nodes. In this case, the crossover
and mutation operators are different than the classical ones. Regarding the
crossover beetween two genotypes, in both parent cut point is selected, par-
ents are divided in that point and exchange part below crossover point to
produce new offspring. Figure 2.4 shows an example of crossover beetween
two trees. To apply the mutation, selected nodes are changed according to
the problem search.

2.4.2 Selection methods and elitism

Selection is one of the fundamental processes of a GA because it eliminates
individuals with lower fitness and creates one or more copies of individuals
with higher fitness from which individuals of the new population are gener-
ated. The selection operator has a substantial effect on the dynamics of GA:
too much selective pressure may result in an overly rapid convergence, by
entrapping the algorithm in a local optimum from which it will be unable
to exit; on the other hand, weak selective pressure can lead to an excessive
increase in the amount of time required to find an acceptable solution.

Selection operators can replace the entire population or only part of it.
Furthermore, a steady-state GA is obtained if at most a few individuals are
replaced. In addition, the operator can select an individual once or more
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than once. The first case refers to a selection operator without replacement,
in the sense that the selected individual is not reinserted back into the old
population after mating and, therefore, cannot be selected again. To the
contrary, in the second case, the chosen individual is reinserted in the old
population and can, therefore, be selected again, by producing more offspring.

In steady-state it may happen that the best individuals are lost in the
transition to the subsequent generation. The models that ensure the survival
of best individuals are called elitist (or k-elitist, where k is the number of the
best individuals that are preserved and copied in the new population).

Besides the proportional selection operator proposed by Holland, the
tournament selection is one of the most used in practical applications. The
latter, as well as other selection operators (e.g., the Boltzmann and the rank-
based ones), was introduced in order to have less selective pressure with
respect to the proportional one [116].

Boltzmann Selection

Boltzmann Selection keeps the selection pressure variable during the GA
evolution. An initial low pressure allows less fit individuals to reproduce and
a lot of variation in the population can be mantained in the first generations.
Later, when the pressure become stronger and the population reached a
certain level of diversity, only highly fit individuals are privileged for the
reproduction process and this allows the algorithm to find the right part
of the search space. In the Boltzman selection approach the concept of
temperature is present. Temperature value starts out high (it means that
selection pressure is low) and it is gradually lowered.

A typical application of Boltzmann selection is to assign to each individual
gi an expected value,

ExpV al(gi, t) =
ef(i)/T

〈ef(i)/T 〉t
(2.3)

where T is the temperature and 〈〉t is the average over the population at time
t. The effects of Boltzmann Selection have been studied by Prügel-Bennett
and Shapiro [133, 131].

Rank Selection

Rank selection purpose, as well as Boltzmann selection, is to prevent quick
convergence to local optima. Ranking reduces the selection pressure when
the fitness variance is high. In the Rank Based Selection each individual is,
first, ranked in increasing order depending of its fitness, from 1 to N. The
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users choose the expected value Max >= 0 on the individual with rank N
and for each individual gi in the population the expected value at time t is:

ExpV al(gi, t) = Min+ (Max−Min)
rank(i, t)− 1

N − 1
(2.4)

where Min is the expected value associated to the individual with rank 1.
The effects of Rank Selection have been studied by Blickle [16] and Rogers
[138].

Tournament selection

In the most common type of tournament selection, two individuals are chosen
at random from the current population and a number c ∈ [0, 1] is randomly
generated. If c is less than a prefixed parameter r ∈ [0, 1] the most fit
individual wins the tournament and is selected, otherwise the less fit is the
winner. In addition, if the scheme with replacement is applied, the two
individuals are reintegrated in the old population and maybe selected again.

2.5 Multiobjective GAs

Problems characterized by a single objective consist in finding the best-
possible solution or, at least, a good approximation of it, and the problem
to evolve protective works to divert lava flows, proposed in this thesis, can
be fruitfully employed for their optimization. However, problems that have
more than one (often-conflicting) objective to be simultaneously optimized
are common in real-world applications. When dealing with multiobjective
optimization problems, the concept of optimality is generally extended ac-
cording to the notion originally proposed by Vilfredo Pareto [128]. This no-
tion is called Edge-worth-Pareto optimality, or simply Pareto optimality, and
refers to finding good tradeoff solutions among all the objectives, because the
latter are commonly in conflict with each other. In fact, multiobjective opti-
mization problems generally do not have one single optimal solution (global
optimum) but a set of feasible solutions, each one better with respect to one
particular objective and not as good with respect to others. In a multiobjec-
tive optimization problem, a set of non-dominated Pareto optimal solutions
is, thus, found instead of one single solution.

Informally, a solution x to the multiobjective search problem dominates
another solution x if and only if it is at least as good as x with respect
to all objectives and better in at least one objective. A solution which is
nondominated by no other is said Pareto optimal and represents one of the
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best possible trade-off solutions among search objectives. In other words,
a solution is said to be Pareto optimal if no other feasible solution can be
found which would decrease some criterion without causing a simultaneous
increase in at least one other criterion. The image of the Pareto optimal set
under the objective functions is called the Pareto front [174].

Due to their flexibility in dealing with a great variety of multiobjective
problems and to their simplicity, evolutionary algorithms are the most widely
used multiobjective search methods in practice. Also, EAs can be easily
adjusted in order to generate several nondominated solutions in a single run.
For these reasons, multiobjective EAs (MOEAs) have become popular for the
optimization of complex real-world multiobjective problems [28, 20, 9, 62].
It is worth noting, however, that finding a set of Pareto optimal solutions is
only a part of the overall multiobjective optimization process, because the
choice of one particular solution to use in practice is of fundamental relevance
in the subsequent decision-making task. Decision is generally guided by the
relevance that users assign to the specific optimization objectives, which help
in narrowing down their choice.

The first implementation of a MOEA dates back to the mid-1980s [146].
However, the direct incorporation of the concept of Pareto optimality into an
EA was first alluded to by Goldberg [74], who suggested the use of nondom-
inated ranking and selection to move a population toward the Pareto front
in a multiobjective optimization problem. The basic idea is to find the set of
nondominated solutions, to which is assigned the highest rank. The optimal
set is, therefore, momentarily set aside and another set of Pareto optimal
solutions is determined from the remaining population. The next highest
rank is assigned to the individuals belonging to this newly formed set. This
process continues until the entire population is ranked according to Pareto
optimality.

Goldberg also suggested the use of some kind of niching technique to keep
the GA from converging to a single point on the front. A niching mechanism,
such as fitness sharing among individuals belonging to the same front [75],
would allow the EA to maintain a good spreading of the individuals along the
nondominated frontier. Apart from the best individuals, such kind of feature
allows the algorithm to preserve also average and worse individuals in order
to sustain diversity within the population. This behavior represents one of
the major differences of MOEAs with respect to single-objective EAs where,
for instance in the case of GAs, the diversity of the population generally
decreases over the generations, until almost all solutions are majorly the
same; a small number of individuals are, however, kept different thanks to
the action of genetic operators.

The first examples of MOEA [71, 85, 154] suffered from the fact of not
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using an elite preservation mechanism, which is able to ensure a monoton-
ically nondegrading performance. On the contrary, all the most important
algorithms that were proposed successively implemented an elite preserving
operator. Among these, it is possible to find Strength Pareto Evolution Al-
gorithm (SPEA)[176] and SPEA2 [175], Pareto Archived Evolution Strategy
(PAES) [99], Pareto Envelope-based Selection Algorithm (PESA) [31] and
PESA2 [30], and NSGA-II [51]. Even though new algorithms that optimize
directly for the hypervolume (i.e., the area under the Pareto front) have been
recently developed within the EA community which outperform the above
algorithms in many cases (see, e.g., [13]), NSGA-II nowadays represents the
most widely used MOGAs in engineering and scientific fields and is still
widely considered the state of the art for practical applications.

2.6 Theoretical foundations of Genetic Algo-

rithms

Even if the GA model is simple to define, its behavior can be complicated and
very hard to be formalized. Among different works done on the foundation of
GAs [74, 135, 169] the theory of GAs [82, 84] is based on the idea that GAs
work, in implicit parallel way, by discovering, emphasizing and recombining
good candidate solutions called building blocks.

The notion of schema formalizes the abstract concept of building block.
A schema is a set of bit strings made up of a set of 1, 0, and *, where *
represents any possible sequence of 1/0. The schema s = 1 ∗ ∗ ∗ ∗0, for
example, is the set of all 6-bit strings where the first and the last position
are fixed. The instances of s are all the strings that fit on the schema s
(e.g, 111100 or 100000). Furthermore, the schema s has order 2 because
it contains exactly two defined bits. The distance, in term of number of
bits, between the outermost defined bits is called defining length. In a set of
length-L bit strings there are 2L (every bit can be 1 or 0) possible bit strings
of length L and 3L (every bit can bit 1, 0 or *) possible schemas. In the GA
theory, schemas are considered the building blocks that the GA processes
during the genetic operators application.

Any length-L bit string is an instance of 2L different schemas. For exam-
ple, the string 01 is an instance of **, *1, 0*, and 01, thus, any population
of N strings contains instances of between 2L and N × 2L different schemas.
This means that, for every generation, while the GA is evaluating the fitness
function of the N members in the population, it is implicitly estimating the
average fitness of all possible instances of a much larger number of schemas.
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For example, by considering a population of N strings, on average N/2 will
be instances of 1 ∗ ∗...∗ and N/2 will be instances of 0 ∗ ∗...∗ and the evalu-
ation of the N strings give an estimate of the average fitness of that schema
because the instances evaluated are only example of all possible instances.
This consideration is known as implicit parallelism [83].

To calculate the approximate dynamics of the example discussed before,
it is important to introduce the Schema Theorem. Let s be a schema with
at least one instance present in the population at time t, let N(s, t) be the
number of instances of s at time t and let ū(s, t) the average fitness of s at
time t. The goal of the theorem is to to obtain E(N(s, t+ 1)), the expected
number of instances of s at time t+ 1. By considering the selection operator
as proportional to fitness, the number of copies of a string x is (F (x))/(F̄ (t))
where F (x) is the fitness value associated to the string x and F̄ (t) is the
average fitness of the population at time t. Then,

E(N(s, t+ 1)) =
∑
x∈s

F (x)/F̄ (t) (2.5)

and since ū(s, t) = (
∑

x∈s F (x))/N(s, t),

E(N(s, t+ 1)) =
ū(s, t)

F̄ (t)
N(s, t) (2.6)

Since Genetic operators (crossover and mutation) can delete and generate
instances of s, it is possibile to consider a lower bound of E(N(s, t + 1)).
First, the effect of crossover is taken into account. Let pc the probability
to apply a single-point crossover to a given string and suppose to choose
an instance of s like a parent for the reproduction process. Schema s is
preserved if, after the crossover apply, one of the offspring belongs to s. The
lower bound on the probability of a schema s surviving under single-point
crossover is

Sc(s) >= 1− pc(
d(s)

L− 1
) (2.7)

where d(s) is the defining length of s and L is the length of bit strings in
the search space. The function shows how the probability of survival for the
schema s, under crossover, is higher for shorter schemas.

To quantify the effect of mutation, it is important to introduce Sm(s),
the probability that schema s will survive after the mutation process, as
following:

Sm(s) = (1− pm)o(s) (2.8)
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where pm is the probability of any bit being mutated and o(s) is the order of
s (number of fixed bits in s). For each bit in the string, the probability that it
will not be modified is 1− pm and the probability that no bits of the schema
s will me mutated is this value multiplied by itself o(s) times. It means that
the probability of survival under mutation is higher for lower-order schemas.

Finally, it is possible to introduce the genetic operators effects to the eq.
2.6 in order to evaluate the probability for the schema s to survive:

E(N(s, t+ 1)) >=
ū(s, t)

F̄ (t)
N(s, t)

[
1− pc

d(s)

L− 1

] [
(1− pm)o(s)

]
(2.9)

This is know as the Schema Theorem introduced by Holland [83].
It can be interpreted as follow: low-order schemas whose average fitness

remains above the mean will obtain exponentially increasing numbers of in-
stances during the evolution. This is because instances of those schemas that
survive remain above average in fitness increases by a factor of ū(s, t)/F̄ (t)
at each generation.

2.7 Application of GAs

When considering GAs as search algorithms, it is worth noting that standard
optimization techniques, when they exist, generally perform better than GAs.
However, GAs can represent the best choice for those problems for which
specific techniques require an excessive computational time or where such
techniques do not exist. In fact, with the exception of particular cases, these
problems are NP-complete and, thus, no deterministic algorithm is known to
solve them in polynomial time. This means that the execution time of the
fastest algorithm grows exponentially with the problems dimension, making
it often impossible to deal with problems of practical interest. In fact, the
success of GAs in combinatorial optimization regards applications to large
dimension problems.

Gas have been used in a large number of scientific problems and mod-
els: for the solution of difficult combinatorial problems [76]; in the study of
the interaction between evolution and learning [81]; in evolutionary robotics
[124, 63]. GAs based methods have also been applied to CA for modelling
bioremediation of contaminated soils [58] and for the optimisation of lava
and debris flow simulation models (e.g., [152, 87, 141, 44, 43]).

Evolutionary optimization is today at its peak, and thus it is difficult to
keep track of every single theoretical and applied research. Please refer to
international conferences on the topic, for example, the genetic and evolu-
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tionary computation conference (GECCO), the evolutionary multi-criterion
optimization (EMO), or the more general parallel problem solving from na-
ture (PPSN), in addition to specific scientific journals, for an up-to-date state
of the art of the field. Applications of GAs in geomorphology are discussed
in the next session.

2.8 GAs in Geomorphology

Among EAs, GAs met the wider scientific communitys approval, and appli-
cations rapidly spread in different fields of science and engineering. This is
probably due to their suggestive inspiration from Darwinian evolution and ge-
netics and theoretical foundations. The effectiveness of such algorithms was
immediately clear, especially in those fields where no standard optimization
techniques existed. This favorable context also stimulated the development
of new research trends: at first PGAs were proposed for the improvement
of both performance and quality of obtained solutions, whereas MOGAs, of
the broader family of MOEAs, were proposed in order to treat problems
involving more than one objective to be optimized simultaneously.

Applications of GAs in geomorphology, as well as in similar fields such
as hydrology, have established themselves relatively late, starting from the
late 1990s. One of the first applications [119] relates to the application of
a GA as an alternative to back propagation, for the training of an artificial
neural network for flow and soil transport simulations. Further applications
exist in rainfall-runoff, erosion and sedimentation models [110, 123, 11, 95],
in debris flow prediction [21] and simulation [87, 46, 45], as well as in lava
flows simulation [152, 3].

As in other research fields, GAs were initially applied to calibrate sim-
ulation models in geomorphology in their simplest form, with the goal of
obtaining the best possible match between observed and expected values for
single-objective optimization problems. Subsequently, applications of PGAs
were proposed, in particular for improving computational efficiency and, as a
consequence, for permitting a better exploration of the search space. Already
in this first period, besides the undeniable advantages, some early studies
indicated the risks associated with the use of GAs in calibrating models in
geomorphology [120], whereas others indicated that the search algorithm con-
vergence can be significantly improved by including more objectives in the
fitness function [46]. This latter example represents one of the simplest forms
of multiobjectivization, because a single-objective EA is in any case applied.
The application of MOEAs is the natural evolution of these first attempts
to improve search convergence. In fact, MOGAs allow for a more natural



22 2. GENETIC ALGORITHMS

and favorable formulation of problems that involve more than one goal to be
achieved, besides providing a set of optimal (also known as nondominated or
Pareto optimal) solutions. Furthermore, both theoretical studies and appli-
cations to specific optimization problems in other fields demonstrated how
the use of more objectives can smooth the fitness landscape by reducing the
presence of local optima and, thus, favoring the convergence of the algorithm
toward better solutions [98, 90, 20, 78, 89]

The use of MOGAs [51, 28] certainly represents the most-promising trend
in the field of application of EAs in geomorphology, even if few examples can
today be found in the specific literature [11, 3] and more studies must be
performed to assess their effective advantage with respect to single-objective
EAs.

2.9 Conclusions

The application of GAs today extends to a broad range of scientific and
engineering disciplines. Its application in geomorphology, however, is rela-
tively new, having started in the late 1990s, thereby making it a novelty in
the field of geophysics. Nevertheless, the first applications in geomorphology
demonstrate the potential of GAs, and their usefulness in finding good solu-
tions for the calibration of parameter dependent models of complex natural
phenomena.

This Chapter has provided a general overview of both single and multiob-
jective GAs, focusing on applications in geomorphology through the descrip-
tion of four meaningful works. Specifically, regarging the complex phenomena
that depend on a set of paramenters GAs showed the ability to find solutions
that significantly out-perform those obtained by manual calibration, which
is still a widespread optimization practice in the modeling of processes in
geomorphology.

Among different GA applications with success, a novel approach in the
geomorphology field is represented by the work disussed in this thesis where
PGAs have been considered for optimizing the position, the extension and
the orientation of earth barriers to control lava flows.

As previously stated, GAs have only recently been discovered in geo-
morphology and, probably for this reason, their use is not yet widespread.
However, it is expected that the field grows significantly in the next few
years and the application of GAs to spread to a wide range of problems in
geomorphology.



Chapter 3

Cellular Automata

Cellular Automata (CA) are computational models whose evolution is regu-
lated by laws which are purely local.

In its essential definition, a CA can be described as a d -dimensional space
composed by regular cells. Each cell can be in a finite number of states and
embeds a finite automaton (fa), that is one of the most simple and well
known computational model in Computer Science; it can be seen as a system
to which is associate a state that could change in consequence of an input.
At time t = 0, cells are in an arbitrary state and the CA evolves by changing
the states of the cells in discrete steps of time and by applying simultaneously
to each of them the same law, or transition function. The input for each cell
is given by the states of neighboring cells and the neighborhood conditions
are determined through a geometrical pattern, which is invariant in time and
space.

Despite their simple definition, CA may give rise to extremely complex
behavior[171] at microscopic level. In fact, even if local laws that regulate the
dynamics of the system are known, the global behavior of the system is very
hard to be predicted [24]. In other words, the dynamics of the system emerges
in a nontrivial manner by the mutual interaction of its basic components.

CA are considered universal computation models because of their equiv-
alence with the Turing Machine [35, 171], as it has been demonstrated by
Codd [27] and Thatcher [158].

CA are adapt to model and simulate systems characterized by interaction
of numerous elementary constituents and they have been largely employed in
several fields of study as pattern recognition [111, 50], image processing [142,
143, 132], cryptography [163, 18] and so on. An example of CA application
is the study of the fluids behavior (considered at the microscopic level as
particles systems) through Reticular Gas[156]. Other important studies are
related to the consideration of CA as parallel computing systems [159, 37,

23
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157]. In this chapter afer a brief history of CAs, a quick overview, with the
introduction of informal and formal definition of the model, is presented.
Some theoretical aspects of CA are also reported and a brief description of
some examples of CA applications in different areas conclude the chapter.

3.1 A brief history of Cellular Automata

CA developed as the course of a study started in 1947 by Von Neumann, who
tried to find the features and the complexity of a self-reproducing system.
The Hungarian mathematician prematurely died in 1957 and his work was
published later in 1966, edited and completed by A.Burks [167].

The best-known way in which cellular automata were introduced was
through work by John von Neumann in trying to develop an abstract model
of self-reproduction in biology.

Immediately after the von Neumann’s work, two immediate threads emerged.
The first, mostly in the 1960s, was increasingly whimsical discussion of build-
ing actual self-reproducing automata and the second was an attempt to cap-
ture more of the essence of self-reproduction by mathematical studies of
detailed properties of cellular automata.

By the end of the 1950s it had been noted that cellular automata could
be viewed as parallel computers, and particularly in the 1960s a sequence of
increasingly detailed and technical theorems, often analogous to ones about
Turing machines, were proved about their formal computational capabilities.
At the end of the 1960s there then began to be attempts to connect cellular
automata to mathematical discussions of dynamical systems.

However, CA started to be famous in the 70s through one of the easiest
CA application, the well-known Game of Life defined by the English mathe-
matician John Horton Conway and descrived by Martin Gardner in his work
[73].

3.2 Informal definition of Cellular Automata

It is possible to indentify an informal definition of cellular automaton by
simply listing it main properties:

• it is formed by a d-dimensional space (the cellular space), partitioned
into cells of uniform size (triangles, squared, hexagons, cubes) or by a
d -dimensional regular lattice (see Figure 3.1);

• the number of cell states is finite;
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(a) (b) (c) (d)

Figura 3.1: Esempi di spazi cellulari (a) unidimensionale, (b) bidimensionale con

celle quadrate, (c) bidimensionali con celle esagonali e (d) tridimensionale con celle

cubiche.

• l’evoluzione avviene a passi discreti;

• ogni cella cambia di stato simultaneamente a tutte le altre in accordo alla

stessa regola di transizione;

• la regola di transizione dipende dallo stato della cella stessa e dallo stato delle

celle vicine;

• la relazione di vicinanza è locale, uniforme e invariante nel tempo.

3.3.1 Dimensione e geometria dell’Automa Cellulare

La definizione di Automa Cellulare richiede, dunque, la discretizzazione dello spazio

in celle. Per gli automi cellulari unidimensionali l’unica possibilità è una sequen-

za di celle allineate una a fianco all’altra, ovvero un reticolo unidimensionale. Per

automi cellulari di dimensioni superiori esistono diverse alternative; per automi cel-

lulari bidimensionali, per esempio, si possono adottare reticoli triangolari, quadrati

o esagonali, mentre per automi cellulari tridimensionali si scelgono, solitamente,

celle cubiche. La figura 3.1 illustra alcuni esempi di spazi cellulari in una, due e

tre dimensioni.

Per quanto riguarda gli automi cellulari bidimensionali, sebbene la tassellazione

quadrata sia facilmente rappresentabile attraverso una matrice e non presenti pro-

blemi nella rappresentazione grafica (per esempio ogni elemento della matrice può

essere visualizzato utilizzando un pixel della matrice dello schermo), in alcune ap-

plicazioni può presentare problemi di anisotropia (l’argomento è ripreso più nei

dettagli nel paragrafo 3.6.2). Quando questo si verifica si preferisce adottare una

tassellazione esagonale che, per AC bidimensionali, è quella con anisotropia più

Figure 3.1: Example of cellular spaces: (a) one-dimensional, (b) two-
dimensional with square cells, (c) two-dimensional with hexagonal cells, (d)
three-dimensional with cubic cells.

• the evolution occurs through discrete steps;

• each cell evolves by simultaneously changing its state by applying the
same transition function to the cellular space;

• the transition function depends on the state of the central and neigh-
boring cells;

• the relationship of closeness that defines the neighborhood of a cell is
local, uniform and invariant over time.

3.2.1 Dimension and geometry of Cellular Automata

The definition of Cellular Automata requires the discretization of the space
in cells. In the simplest situation (one-dimensional Cellular Automata), the
CA space is one-dimensional and cells are aligned next to each other. Regard-
ing multi-dimensional Cellular Automata the CA space can be discretized in
different ways; two-dimensional CA can be represented, for example, with
triangle, square or exagonal tessellation while for three-dimensional cellu-
lar automata cubic cells are usually chosen. Figure 3.1 shows examples of
different cellular spaces.

Even if square tessellation, for two-dimensional cellular automata, can be
easily represented by a matrix structure (both for graphics and computation
representation), by considering some applications it can be lead to anisotropic
problems. In these cases, it is preferable to adopt an exagonal tesselation.

3.2.2 Number of states of a cell

Number of states of a cell is finite and it is based on the study or application
context. In first theoretical studies in which CA were considered as abstract
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(a) (b)

r=1 r=2

Figura 3.2: Esempio di vicinato con raggio (a) r = 1 e (b) r = 2 per un automa

cellulare unidimensionale. Le celle in grigio scuro identificano la cella centrale,

quelle in grigio chiaro le vicine.

(a) (b) (c)

Figura 3.3: Vicinati di von Neumann (a) e di Moore (b) per un automa cellu-

lare bidimensionale con tassellazione quadrata e vicinato esagonale (c) per un au-

toma cellulare bidimensionale con tassellazione esagonale. Le celle in grigio scuro

identificano la cella centrale, quelle in grigio chiaro le vicine.

sud, sud-ovest e nord-ovest. La figura 3.3 illustra (a) il vicinato di von Neumann

e (b) quello di Moore per automi cellulari con tassellazione quadrata e (c) il tipico

vicinato per automi cellulari con tassellazione esagonale. Ovviamente è possibile

definire relazioni di vicinanza differenti da quelle illustrate. Nella simulazione della

diffusione di gas in un ambiente, ad esempio, è possibile utilizzare la relazione di

vicinanza di Margolus1 [176].

3.3.4 Funzione di transizione di stato della cella

A ogni passo dell’AC, la funzione di transizione è applicata simultaneamente a tutte

le celle dello spazio cellulare, determinando il nuovo stato di ognuna in funzione

1La relazione di vicinanza di Margolus non gode della proprietà d’invarianza temporale. Infatti

il vicinato della cella cambia a seconda del passo, pari o dispari, dell’AC. Ai passi pari il vicinato

è formato dalla cella centrale e dalle celle a nord, est, e nord-est; ai passi pari, invece, il vicinato

è formato dalla cella centrale e dalle celle a sud, ovest, e sud-ovest. Si noti, tuttavia, che un AC

che utilizzi tale relazione di vicinanza è perfettamente “legale”. E’ infatti possibile dimostrare

che, dato un AC con relazione di vicinanza di Margolus, si può costruire un AC perfettamente

equivalente che soddisfi tutte le proprietà richieste dalla definizione.

Figure 3.2: Example of neighborood with radius (a) r = 1 and (b) r = 2 for
uni-dimensional cellular automata.

models [27, 158] the number of states of a cell was, usually, quite small.
When the CA is adopted to describe particle systems, it is not necessary

a large number of states to model the interactions [155, 168]. In contrast,
when studying systems with a continuum of possible states, they may require
a large number of states [57].

3.2.3 Relationship of closeness

The cell’s relationship of closeness depends on the geometry of cells and it
has to have the following properties:

1. it must be local because only a limited number of cells near the central
one are involved;

2. it must be homogeneous because it is the same for each cell of the
cellular space;

3. it must be invariant over time;

For one-dimensional CA, usually, the neighborhood is considered in terms of
radius, r, which defines a neighborhood consisting of n = 2r + 1 cells [170].
For example, a radius r = 1 consists of n = 2r+ 1 = 3 cells: the central cell,
the aligned left one and the aligned right one. Figure 3.2 shows two different
examples of neighborood for an uni-dimensional CA.

In the case of two-dimensional CA with square tesselation, the neighbor-
hoods most commonly used are those of von Neumann and Moore. the first
one comprises the four cells orthogonally surrounding a central cell (north,
east, south, west) while the second also contains the north-west, north-east,
south-west and south-east cells.

For exagonal two-dimensional cellular automata a typical neighborood is
composed by north, north-east, south-east, south, south-west and north-west
cells.
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Figura 3.2: Esempio di vicinato con raggio (a) r = 1 e (b) r = 2 per un automa

cellulare unidimensionale. Le celle in grigio scuro identificano la cella centrale,

quelle in grigio chiaro le vicine.
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Figura 3.3: Vicinati di von Neumann (a) e di Moore (b) per un automa cellu-

lare bidimensionale con tassellazione quadrata e vicinato esagonale (c) per un au-

toma cellulare bidimensionale con tassellazione esagonale. Le celle in grigio scuro

identificano la cella centrale, quelle in grigio chiaro le vicine.

sud, sud-ovest e nord-ovest. La figura 3.3 illustra (a) il vicinato di von Neumann

e (b) quello di Moore per automi cellulari con tassellazione quadrata e (c) il tipico

vicinato per automi cellulari con tassellazione esagonale. Ovviamente è possibile

definire relazioni di vicinanza differenti da quelle illustrate. Nella simulazione della

diffusione di gas in un ambiente, ad esempio, è possibile utilizzare la relazione di

vicinanza di Margolus1 [176].

3.3.4 Funzione di transizione di stato della cella

A ogni passo dell’AC, la funzione di transizione è applicata simultaneamente a tutte

le celle dello spazio cellulare, determinando il nuovo stato di ognuna in funzione

1La relazione di vicinanza di Margolus non gode della proprietà d’invarianza temporale. Infatti

il vicinato della cella cambia a seconda del passo, pari o dispari, dell’AC. Ai passi pari il vicinato

è formato dalla cella centrale e dalle celle a nord, est, e nord-est; ai passi pari, invece, il vicinato

è formato dalla cella centrale e dalle celle a sud, ovest, e sud-ovest. Si noti, tuttavia, che un AC

che utilizzi tale relazione di vicinanza è perfettamente “legale”. E’ infatti possibile dimostrare

che, dato un AC con relazione di vicinanza di Margolus, si può costruire un AC perfettamente

equivalente che soddisfi tutte le proprietà richieste dalla definizione.

Figure 3.3: von Neumann (a) and Moore (b) neighboroods for a two-
dimensional cellular automata with square cells and with exagonal ones (c).

Figure 3.3 shows (a) the von Neumann neighborhood and (b) the Moore
one for square tesselation and (c) the one adopted for exagonal tesselation.

It is worth to note that different relationship of closeness can be applied
such as, for example, the Margolus neighborood widely used in simulations
of gas diffusion [160].

3.2.4 State-transition function

At each CA step, the transition function is simultaneously applied to all cells
of the cellular space, by determining the new state of each cell in function
of the state of the neighborhood cells. Parallelism and decentralization are
characteristics of the CA computation.

When the number of states is small, usally the transition rules are defined
through a look-up table which specifies the new state of the central cell for
each possible configuration of the neighborhood [171]. Differently, when the
number of CA states is too large, the transition function is usually defined
by an algorithm [57].

3.3 Formal definition of Cellular Automata

The homogeneous cellular automata is a quadruple:

A =< Zd, Q,X, σ > (3.1)

where:

• Zd = {i = (i1, i2, ...., id)|ik ∈ Z ∀k = 1, 2, ..., d} is the d-dimensional
cellular space;

• Q is the finite set of states of the cellular automata;
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Cell 0 Cell 1 Cell N –1 

Cell 0 Cell N –1 

Figure 3.4: Example of one-dimensional cellular automata with periodic
boundary conditions. First and last cells are adjacent.

• X = {ξ0, ξ1 ...ξm−1} is the finite set of m d-dimensional vectors

ξj = {ξj1, ξj2, ...ξjd}
that define the set

V (X, i) = {i+ ξ0, i+ ξ1, ..., i+ ξm−1}

of coordinates of cells close to the generic cell i with coordintates
(i1, i2, ...id).

X is the geometrical pattern that specifies the neighbourhood relation-
ship;

• σ : Qm −→ Q is the transition function for the CA

3.4 Theory of Cellular Automata

In this section, some theoretical aspects of cellular automata are reported.
In particular, results on reversibility, conservation laws, universality and

topological dynamics of CA are discussed. Because most of them are related
to one-dimensional CA is important to introduce some definitions.

3.4.1 One-dimensional Cellular Automata

The simplest CAs are the elementary CAs [170]. They are one-dimensional
CAs with N cells, k = 2 states (0 and 1), neighborhood radius r = 1 and
periodic boundary conditions (one-dimensional cellular space is toroidal, seen
as a ring where first and last cells are adjacent). Figure 3.4 shows an example
of one-dimensional CA with periodic boundary conditions. Representing a
CA as a ring allows to define an unlimited space in which the CA can evolve.
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The transition function σ is defined through a look-up table. For example,
by considering the generic neighborhood’s configuration η (the number of
neighborhood’s configuration is k2r+1 and for one-dimensional CA is 23 = 8),
the following transition function determines the central cell new state, s =
σ(η):

η 000 001 010 011 100 101 110 111
s 0 0 1 1 0 1 1 0

By adopting this convention, any transition rule for the elementary CA
elementary can be defined by listing the central cell new states as follow:

η 000 001 010 011 100 101 110 111
σ00110110 =

s 0 0 1 1 0 1 1 0

Each possible transition rule can be identified through the decimal number
corresponding to the binary number that defines the same rule(σ000000000 =
σ0, σ000000001 = σ1, ..., σ000000001 = σ255).

If r > 1 the number of possible configuration grows rapidly. For example,
by considering (k, r) = (2, 2) the number ot total transition rules is 232 =
4294967296 because k2r+1 = kn = 25 = 32, making impossible a comprehen-
sive analysis.

3.4.2 Universality and complexity in Cellular Automata

Wolfram [170, 171] proposed a classification of the one-dimensional CA based
on their qualitative behaviour, identifying four different complexity classes:

• class 1 the class 1 CA, nearly all initial patterns, evolve quickly into a
uniform final state. Any randomness in the initial pattern disappears;

• class 2 the class 2 CA evolve into final state with stable or oscillating
structures. Some of the randomness in the initial pattern remains;

• class 3 the class 3 CA are characterized by an extremely pseudo-
random or chaotic behaviour. Structures that appear are quickly de-
stroyed;

• class 4 the class 4 CA are characterized by both uniform an chaotic
behaviour. In this class structures can interact with each other in
extremely complex ways;
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Figure 3.5: First 250 CA calculation steps with k = 3 and r = 1 for (a)σc=1014,
(b)σc=1008, (c)σc=1020, (d)σc=2043. The illustrated CA belong respectively to
the complexity classes 1, 2, 3 and 4. The initial configuration consists of
250 cells and it is randomly generated so that each cell can assume state 0
(white), 1 (gray) or 2 (black).

Although other classifications have been proposed [23, 77, 114], the Wol-
fram one is certainly the most known. Examples of CA belonging to the
Wolfram four complexity classes are illustrated in Figure 3.5.

The class 4 proved to be particularly interesting for the presence of struc-
tures (glider) able to propagate in space and time. For this reason Wolfram
hypothesized that CA belonging to the class 4 can be capable of universal
computation. The CA proposed by Wolfram can be seen as calculators; the
initial configurations encode data and program, and final configuration (after
several calcultation steps) encode the computation result. This means that
it is possible to represent with a CA and an appropriate transition function
every possible computational program. The hypothesis of universality for
simple CA comes from the observation that the glider can act as elaborator
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of information encoded into the initial configuration. By means of the glider,
the state of a cell in a particular position of the cellular space can influence
over time the states of cells in arbitrarily distant locations. Furthermore,
the glider can interact among themselves in an extremely complex way and,
theoretically, can play as demonstrated for the Game of Life by John Horton
Conway [73] the logic gates of an universal computer.

3.4.3 Chaos theory

Class 4 automata are considered as at the the edge of chaos and give a good
mathaphor for the idea that the interesting complexity is in equilibribrium
between stability and chaos. The hypothesis of Wolfram that the simple
one-dimensional CA are capable of universal computation was, subsequently,
studied by Chris Langton. He has shown that an appropriate parameteriza-
tion of the space of rules allows to identify both the relationship between the
complexity classes and the regions of that space.

Langton in his paper [107] introduced the parameter λ as the fraction of
the entries in the transition rule table that are mapped do the quiescent state
qs. Langton’s major finding was that a simple measure such as correlates
with the system behavior: as goes from 0 to 1, the average behavior of the
systems goes from freezing to periodic patterns to chaos and functions with
an avarage λ ≈ 1/2 (please refer to [107] for a more general discussion) are
being on the edge.

In particular, the parameter λ was defined as:

λ =
kn − nq
kn

= 1− nq
kn

(3.2)

where k is the number of states of the cell, n = 2r + 1 is the number of
neighborood cells and nq is the number of transitions that terminate in the
quiescent state. If nq = kn, all the transitions of the look-up table go to the
quiescent state and λ = 0; if nq = 0 there are no transitions that terminate
in the quiescent state and λ = 1; finally, λ = 1 − 1λ when in the look-up
table when all the states are represented by the same misure.

Langton has analyzed the behaviour of several totalistic CA with k = 4
and r = 1 whith a variation range for λ of [0,0.75]. The results showed that for
small values of λ the CA behaviour is uniform, typical of complexity classes
1 and 2, while for large values the observed behaviours is chaotic, typical of
class 3. Between these two zones (order and chaos), however, Langton has
observed a very small third zone near to the value λ = 0.45. In this zone,
defined as edge of chaos, the CA dynamics is able to generate both static
and dynamics structures that can be propagated in space and time, typical
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Figure 3.6: Examples of CA at the edge of chaos. Figures (a) and (b) show
the evolution of the same CA with k = 4 states and r = 1 with two different
initial conditions. The shades of gray represent the four possible states of
the cell, from with for the state 0 to black for the state 3.

of the class 4 of Wolfram.

Figure 3.6 shows an example of an CA at the edge of chaos. Only in the
edge of chaos zone the encoded information in the CA intial configuration
can propagate over long distances, which is a necessary condition for the
concept of computation.

3.4.4 Other theoretical works on Cellular Automata

The studies discussed in this chapter are only a part of the whole set of
theoretical research on CA and many different contributions have come from
researchers from all parts of the world. For example, the problem of re-
versibility of CA has been studied by Moore [118], Myhill [121], Di Gregorio
and Trautteur [59], Kari [94], and Toffoli and Margolus [160].

Jiménez-Morales has adopted an evolutionary approach based on GA for
the study of non-trivial collective behavior in CA [91].

Other interesting studies regard, the selfreproduction problem in the CA.
Among them, Azpeitia and Ibáñez [5] and Bilotta et al. [14] worked in this
direction.

Finally, Roli and Zambolli [139] studied the emergence of macro spatial
structures in dissipative CA seen as open systems where the environment can
influence the dynamics.
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3.5 CA applications

CA are particularly suited to modeling and simulation of some classes of
complex systems characterized by the interaction of a large numebr of ele-
mentary components. The assumption that if a system behaviour is complex,
the model that describes it must necessarily be of the same complexitiy is
replaced by the idea that its behavior can be described, at least in some
cases, in very simple terms [171].

In some areas, the CA application gave results comparable to those ob-
tained from traditional approaches. A particularly significant example is the
CA application to modeling turbulent flows behaviour through lattice gas and
lattice Boltzmann models. Another important field of CA application is the
Artificial Life, a discipline that deals with the examination of systems related
to life, its processes, and its evolution. Moreover, in recent years, CA have
been applied with success in the modeling of natural complex phenomena.

A brief description of some examples of CA applications in Artificial Life,
Reticular Gas and lattice Boltzmann models is described below. CA ap-
plication to modeling natural complex phenomena is discussed in the next
chapter.

3.5.1 Artificial life with CA

Artificial life can be defined as the discipline that deals with the life and the
behavior of artificial systems that live in an artificial environments. It seeks
to study life not out in nature or in the laboratory, but in the computer.
Langton suggested that CAs could be an extremely effectiveness model to
study artificial life[106]. In fact, John von Neuman since 40’s studied the
reproduction in living organims by adopting an artificial approach besed on
the CA paradigm.

Subsequentely, Codd at the end of the 60’s and then Langton in the
mid-80’s, have proposed a simplified model compared to the von Neumann
original one for the self-reproduction with self-replicating structures.

von Neumann was convinced that the self-reproduction should incorpo-
rate the property of universal computability; for this reason his model was
very complex. Cood even if shared the von Neuman hypothesis proposed an
alternative model with 8 states [27].

However, Langton proposed a model with self-replicating structures (Lang-
ton’s loops) not computational equivalent to the Turing Machine, thus he has
shwon that the universal computability property is a sufficient condition for
self-reproduction but not a necessary condition [105].

Chou and Reggia [26] have demonstrated, for the first time, that it is
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possible to implement CA with ‘general’ transition functions in order to
emerge self-replicating structures with initial configurations completely ran-
dom. These structures may have different characteristics and shapes and
they interact with other structures that simultaneously emerge in the cellu-
lar space.

Other interesting works that reflect the original von Neumann study re-
garding the self-reproduction problem were conducted by Azpeitia and Ibáñez
[5] and Bilotta [14].

As it can be seen from the research brach related to the sellf-reproduction,
the Artificial life has producted hypothesis and original results of extreme
interest, both from the theoretical point of view and from that of the possible
applications and, in this context, CA have played a very important role.

3.5.2 Lattice Gas Cellular Automata and Lattice Boltz-
man Models

The fluid dynamics is the branch of physics that deals with the behavior of
gases and liquids. The classical fluid dynamics is based on the Navier-Stokes
equations that formalize the laws of conservation of mass and momentum.

The non-linearity of such equations is the main cause of the difficulty to
apply them for not idealized cases [155] and for this reason an alternative
approach to the study of fluid dynamics based on CA, namely Lattice Gas,
emerged.

3.5.2.1 Lattice Gas cellular automata

The basic idea of lattice gas is to model a fluid through a system of particles
that can move, with constant velocity, only along the directions of a discrete
lattice. Local laws are defined in order to ensure the invariance of the number
of particles (conservation of mass) and the conservation of momentum.

More formally, a Lattice Gas Auotmaton (LGA) is a lattice of cells ~r.
Each cell ~r contains z + 1 quantities ni(~r, t), i = 0, ...z where z is the coor-
dination number. Neighbors of ~r are obtained as ~r + ~vi, where ~vi are given
vectors and by convention ~v0 = 0. The LGA dynamics consist of two steps.
The first one is the interaction step where the quantities ni locally collide and
new values n

′
i are computed according a predefined collision operator Ωi(n).

The second step regards the propagation by sendind the quantity n
′
i(~r) to

the neighboring site along lattice direction ~vi.
The first lattice-gas cellular automata (LGCA) was proposed in 1973

[79], for the first time, by Hardy, Pomeau and de Pazzis. It is named HPP
and represents the simplest LGCA. In particular, HPP is a two-dimensional
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Figure 3.7: Example of LGA on a square lattice. In this example ni ∈ 0, 1.
The arrows directions indicate the sites with ni = 1. The lattice direction
are ~v1 = (1, 0), ~v2 = (0, 1), ~v3 = (−1, 0), ~v4 = (0,−1).

lattice-gas cellular automata model over a square lattice. The vectors ci(i =
1, 2, 3, 4) connecting nearest neighbors are called lattice vectors. At each
node there are four cells (see Figure 3.7) each associated to a link with the
nearest neighbor. Cells may be empty or occupied by at most one particle
(exclusion principle). The evolution in time is deterministic and proceeds
with local collisions and propagation along links to the nearest neighbors.
The collision conserves mass and momentum while changing the occupation
of the cells and when two particles enter a node from opposite directions and
the other two cells are empty a head-on collision takes place which rotates
both particles by 90o in the same sense.

The first LGA reproducing a correct hydrodynamic behavior has been
introduced in 1986. Frish, Hasslacher and Pomeau showed that an LGCA
over a lattice with a larger symmetry group than for the square lattice yelds
the Navier-Stokes equation in the macroscopic limit. This model, named
FHP, presents an hexagonal symmetry.

In particular, the properties of FHP lattice can described as following:

• The lattice shows hexagonal symmetry (the lattice is composed of tri-
angles).

• Nodes are linked to six nearest neighbors located all at the same dis-
tance with respect to the central node.
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• ci is the lattice vectors and it links the neighbor nodes.

ci = (cos
π

3
i, sin

π

3
i), i = 1, ..., 6 (3.3)

• A cell is associated with each link at all nodes.

• Cells can be empy or occupied by at most one particle(exclusion prin-
ciple)

• All particles have the same mass.

• The evolution proceeds by collissions C and streaming S (propagation)
as:

ε = S ◦ C (3.4)

where ε is the evolution operator.

• The collisions are local.

As for HPP there are 2-particle head-on collisions but in contrast to HPP the
FHP model encompasses nondeterminitisc rules. A pseudo-random choice is
used where the rotational sense changes by chance for the whole domain from
time step to time step or the sense of rotation changes from node to node
but is constant in time.

The basic FHP model defines only two- and three-particle collisions, but it
turns out that this is sufficient to yield the desired behavior. If two particles
travelling in opposite directions meet at a node, then the particle pair is
randomly rotated either clockwise or counterclockwise by sixty degrees. If
three particles meet at a node in a symmetric configuration, then they collide
in such a way that this configuration is inverted.

Please refer to [54] for a more detailed description of the FHP model.

3.5.2.2 Lattice Boltzmann Models

Lattice Boltzmann Models (LBM) have been introduced because the LGA
are plagued by several diseases for Navier-Stroker equations computation.
Lattice Boltmann equations have been applied by Frisch et al [54] in 1987 to
calculate the viscosity of LGCA.

In 1988 LBM have been used by McNamara and Zanetti as numerical
method for hydrodynamic simulations [115]. LGCA have been replaced with
LBM because the authors decided to completely eliminates the statistical
noise that plagues the usual lattice-gas simulations so the boolean fields were
replaced by continous distributions over the FHP lattices.
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Figure 3.8: Simulation of a flow around a thin plate with a Boltzmann Lattice
model. Figures 1 to 6 illustrate the evolution of the system.

Higuera and Jiménez introduced an alternative simulation procedure for
lattice hydrodynamics [80], based on the lattice Boltzmann equation instead
of on the microdynamical evolution. In particular, in this work the collision
operaton is expressed in terms of its linearized part with the introducion of
few paramaters to decrease viscosity.

Koelman [100], Qian et al. [134] and others replaced the collision operator
with the Bhatnagar-Gross-Krook (BGK) approximation. This new model,
compared to lattice gases, is noise-free and collissions are not anymore defined
explicitly.

Lattice Boltzmann models are most popular today. A significant advan-
tage of the LBM, compared to the Reticular Gas, is that only the density of
particles is taken into account so the number of components of the system is
considerably reduced.

The dynamics of a LBM [134] can be described as follows:

fi(~r + τ ~vi, t+ τ)− fi(~r, t) = Ωi(fi(~r, t)) =
1

ξ
(fi

(eq)(~r, t)− (fi(~r, t)) (3.5)

where fi(~r, t) represents the density of particles that at time t are in the cell
~r with velocity ~vi; fi

(eq)(~r, t) is the local equilibrium distribution and ξ is the
number of calculation steps to reach the equilibrium at local neighborhood
level.

The fi
(eq)(~r, t) function specifies the conditions of local equilibrium of the
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system in function of density, ρ =
∑
fi and of momentum, ρ~u =

∑
fi~vi, of

fluid in the cell. The parameter ξ expresses how the system is dependent of
the fluid viscosity v = K(ξ − 1/2) where K is a constant that depends on
the lattice geometry.

Unlike Lattice Gas Automaton, the viscosity becomes an explicit param-
eter of the model. Figure 3.8 illustrates the dynamics of the BKG model
[134] in the simulation of a flow around a thin plate.



Chapter 4

Modelling Macroscopic
phenomenas with Cellular
Automata

As discussed in the previous chapter, CAs have been applied with success for
modelling and simulating complex systems, whose dynamics can described
in term of local interations. Among different fields, fluid-dynamics is one
of most important field of application for CA and, in this research branch,
many different CA-based methods were used to simulate fluid flows. Lat-
tice Gas Automata models [53] were introduced for describing the motion
and collision of particles on a grid and it was shown that such models can
simulate fluid dynamical properties. The continuum limit of these models
leads to the Navier-Stokes equations. Lattice Gas models can be regarded
as microscopic models, as they describe the motion of fluid particles which
interact by scattering.

An advantage of Lattice Gas models is that the simplicity of particles,
and of their interactions, allow for the simulation of a large number of them,
making it therefore possible to observe the emergence of flow patterns. Fur-
thermore, since they are cellular automata systems, it makes easily to run
simulations with parallel computing. A different approach to LGA is repre-
sented by Lattice Boltzmann models [115] in which the state variables can
take continuous values, as they are supposed to represent the density of fluid
particles, endowed with certain properties, located in each cell (here space
and time are discrete, as in lattice gas models). Both Lattice Gas and Lattice
Boltzmann Models have been applied for the description of fluid turbulence
[25, 156].

Because many complex natural phenomena evolve on very large areas,
they are therefore difficult to be modelled at a microscopic level of descrip-

39
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tion. Among these, lava flows can be considered, at the same time, one of
the most dangerous and difficult phenomena to be modelled as, for instance,
temperature drops along the path by locally modifying the magma dynam-
ical behaviour (because of the effect of the strong temperature-dependence
of viscosity). Furthermore, lava flows generally evolve on complex topogra-
phies that can change during eruptions, due to lava solidification, and are
often characterised by branching and rejoining of the flow. Complex Cellu-
lar Automata (CCA) represent a valid alternative to classical CA regarding
macroscopic phenomena.

This chapter focuses on CCA approach and its application to SCIARA-
fv2, the latest release of the SCIARA family models for simulating lava flows.
After a briefly description of CCA, the algorithm to model surface flows
is, afterwards, introduced. The SCIARA-fv2 model is also illustrated with
results of its appliaction to a real case occurred on Mt Etna. Final discussions
conclude the chapter.

4.1 Complex Cellular Automata

As regards the modeling of natural complex phenomena, Crisci and co-
workers proposed a method based on an extended notion of homogeneous
CA, firstly applied to the simulation of basaltic lava flows [35], which makes
the modeling of spatially extended systems more straightforward and over-
comes some unstated limits of the classical CA, such as having few states and
look-up table transition functions [57]. Mainly for this reason, the method
is known as Complex Cellular Automata, even though it was also known as
Macroscopic Cellular Automata [151] or Multicomponent Cellular Automata
[4].

CCA were in fact adopted for the simulation of many macroscopic phe-
nomena, such as lava flows [2], debris flows [45], density currents [145], water
flux in unsaturated soils [70], soil erosion/degradation by rainfall [39] as well
as pyroclastic flows [2], bioremediation processes [58] and forest fires [165].

Informally, CCA, compared to classical CA, are different because of the
following reasons:

• the state of the cell must account for all the characteristics, which are
assumed to be relevant to the evolution of the system: these refer to the
space portion of the cell. Each characteristic corresponds to a substate.
The state of the cell is divided into substates and permitted values for
a substate must form a finite set. The set of the possible states of a
cell represents the global state of the cell and is given by the Cartesian
product of the sets of the substates.
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• the state of the cell can be decomposed in substates and the transition
function may be split into local interactions: the elementary processes.
Each of them represents a particular aspect that rules the dynamic
of the considered phenomenon. Differrent elementary processes may
involve different neighborhoods. The CA neighborhood is given by the
union of all the neighborhoods associated to each processes. If the
neighborhood of an elementary process is limited to a single cell, such
process is considered as an internal transformation.

• a set of global parameters to reproduce the several different dynamic
behaviors of the considered phenomenon is defined .

• a subset of the cells is also influenced by external influences, represented
by a function. External influences are used to model those features that
are difficul to describe as local interactions.

Formally, a CCA is a 7-tuple:

A =< Zd, Q,X, P, τ, E, γ > (4.1)

where:

• Zd is the d-dimensional cellular space;

• Q = Q1 ×Q2 × ....×Qn is the set of states of the cell obtained as the
Cartesian product of substates Q1×Q2× ....×Qn each one representing
a particular feature of the phenomenon to be modelled;

• X is the geometrical pattern that specifies the neighbourhood relation-
ship;

• P = p1, p2, ...., pp is the set of CA parameters.They allow to tune
the model for reproducing different dynamical behaviours of the phe-
nomenon of interest;

• τ : Qm −→ Q is the transition function for the CA and it is splitted
in elementary processes τ1, τ2, ..., τs, each one describing a particular
aspect that rules the dynamic of the considered phenomenon.

• E = E1 ∪ E2 ∪ ... ∪ El ⊆ Zd is the set of cells of Zd that are subject
to external influences. External influences were introduced in order to
model features which are not easy to be described in terms of local
interactions;

• γ = {γ1, γ2, ..., γt} is the finite set of functions that define the external
input for the CA.
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4.2 Modelling surface flows throug CA

Many geological processes like lava or debris flows can be described in terms
of local interactions and thus modelled by CCA. By opportunely discretizing
the surface on which the phenomenon evolves, the dynamics of the system
can be in fact described in terms of flows of some quantity from one cell
to the neighbouring ones. Moreover, as the cell dimension is a constant
value throughout the cellular space, it is possible to consider characteristics
of the cell (i.e. substates), typically expressed in terms of volume (e.g. lava
volume), in terms of thickness. This simple assumption permits to adopt
a straightforward but efficacious strategy that computes outflows from the
central cell to the neighbouring ones in order to minimize the non-equilibrium
conditions.

In the CCA approach, by considering the third dimension (the height) as
a property of the cell, outflows ca been computed by procedures based on one
of distribution algorithms as the Minimisation Algorithm of the Differences
[57], briefly described in the next Section.

4.2.1 The Minimization Algorithm of the Differences

The Minimisation Algorithm of the Differences (MAD), proposed by Di Gre-
gorio and Serra [57], reduces the non-equilibrium conditions by minimizing
quantities between central cell and its neighbours. In other words, outflows
from the central cell to the other n neighbouring cells must be determined
in order to minimise the differences of a quantity q in the neighbouring cells.

The MAD is based on the following assumptions:

• two parts of the considered quantity must be identified in the central
cell: these are the unmovable part, u(0), and the mobile part, m;

• only m can be distributed to the adjacent cells. Let f(x, y) denote the
flow from cell x to cell y; m can be written as:

m =

#X∑
i=0

f(0, i) (4.2)

where f(0, 0) is the part which is not distributed, and #X is the number
of cells belonging to the X neighbourhood. It is worth to note that
this definition preserves the principle of conservation of mass for the
distribuible quantity m.
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• the quantities in the adjacent cells, u(i)(i = 1, 2, ...,#X) are considered
unmovable;

• let c(i) = u(i) + f(0, i)(i = 0, 1, ...,#X) be the new quantity content
in the i-th neighbouring cell after the distribution and let cmin be the
minimum value of c(i)(i = 0, 1, ...,#X). The outflows are computed in
order to minimise the following expression:

m =

#X∑
i=0

(c(i)− cmin) (4.3)

Basically, the MAD operates as follows:

1. the following average is computed:

a =
m+

∑
i ∈ Au(i)

#A

where A is the set of not eliminated cells (i.e. those that can receive a
flow); note that at the first step #A = #X;

2. cells for which u(i) ≥ a(i = 0, 1, ...,#X) are eliminated from the flow
distribution and from the subsequent average computation;

3. the first two points are repeated until no cells are eliminated; finally,
the flow from the central cell towards the i-th neighbour is computed
as the difference between u(i) and the last average value a:

f(0, i) =

{
a− u(i) i ∈ A
0 i /∈ A

An example of MAD application is reported in Figure 4.1.
Note that the simultaneous application of the minimization principle to

each cell gives rise to the global equilibrium of the system. The correctness
of the algorithm is stated in [57].

4.3 The Cellular Automata Model SCIARA-

fv2

As reported in [151], SCIARA is a family of bi-dimensional CCA lava flow
models, successfully applied to the simulation of many real cases such as
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Figure 4.1: Example of application of the Minimization Algorithm of the
Differences by considering a bidimensional CA with square cells and Von
Neumann neighborhood.

the 1991 Valle del Bove (Italy) lava event [8] and the 2001 Mt. Etna (Italy)
Nicolosi lava flow [36], which occurred on the same volcano and was employed
as a case study in this thesis.

In the lastest model of the SCIARA family, a Bingham-like rheology has
been introduced for the first time, in spite of the previous simplified rhe-
ological model in which viscosity effects and critical height were modelled
in terms of lava adherence. Regarding the previous implementation of the
model, depending on temperature, a fixed amount of lava cannot flow out
from the cell, while the part that moves is determined by a version of the
Minimization Algorithm of the Differences that does not consider the effect of
viscosity. Conversely, the rheology here adopted is inspired to the Bingham
model and therefore the concepts of critical height and viscosity are explic-
itly considered. In particular, lava can flow out if and only if its thickness
overcomes a critical value (critical height), so that the basal stress exceeds
the yield strength. Moreover, viscosity is accounted in terms of flow relax-
ation rate, being this latter the parameter of the distribution algorithm that
influences the amount of lava that actually leaves the cell.

In formal terms, the SCIARA-fv2 model is defined as:

SCIARA− fv2 =< R,L,X,Q, P, τ, γ > (4.4)

where:

• R is the set of square cells covering the bi-dimensional finite region
where the phenomenon evolves;

• L ⊂ R specifies the lava source cells (i.e. craters);
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Parameter Meaning Unit Best value

w Cell side [m] 10

t CA clock [s] 120

Tsol Temperature of solidification [K] 1143

Tvent Temperature of extrusion [K] 1360

rTsol Relaxation rate at the temperature of solidification - 0.5

rTvent Relaxation rate at the temperature of extrusion - 0.95

hcTsol Critical height at the temperature of solidification [m] 40

hcTvent Critical height at the temperature of extrusion [m] 1.5

δ Cooling parameter - 2.8

ρ Lava density [Kgm−3] 2600

ε Lava emissivity - 0.9

σ Stephan-Boltzmann constant [Jm−2s−1K−4] 5.68 · 10−8

cv Specific heat [Jkg−1K−1] 1150

Table 4.1: List of SCIARA-fv2 parameters with values related to the simu-
lation of the 2006 Etnean lava flows

• X = {(0, 0), (0, 1), (−1, 0), (1, 0), (0,−1), (−1, 1), (−1,−1), (1,−1), (1, 1)}
is the set that identifies the pattern of 8 cells influencing the cell state
change (i.e., the Moore neighborhood);

• Q = Qz × Qh × QT × Q8
f is the finite set of states, considered as a

Cartesian product of substates. SCIARA-fv2 substates, which describe
relevant quantities representing a particular feature of the phenomenon
to be modeled are: cell elevation a.s.l., cell lava thickness, cell lava
temperature, and lava thickness outflows from the central cell toward
neighbours, respectively;

• P = {w, t, Tsol, Tvent, rTsol, rTvent, hcTsol, hcTvent, δ, ρ, ε, σ, cv} is the fi-
nite set of parameters (invariant in time and space) which affect the
transition function (refer to Table 4.1 for their specifications);

• τ : Q9 → Q is the cell deterministic transition function, applied to
each cell at each time step, which describes the dynamics of lava flows,
such as cooling, solidification and lava outflows from the central cell
towards neighbouring ones. The elementary processes are described in
the following Sections;

• γ : Qh × N → Qh specifies the emitted lava thickness, h, from the
source cells at each step k ∈ N (N is the set of natural numbers).
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4.3.1 The lava flows coumputation (elementary pro-
cess τ1)

Viscosity computation

In the SCIARA-fv2 model the viscosity is modeled in terms of flow relaxation
rate, r, according to the following power law:

log r = a+ bT (4.5)

where T ∈ QT (cf. Table 4.1) is the lava temperature and a and b are coeffi-
cients determined by solving the system:{

log rTsol = a+ bTsol

log rTvent = a+ bTvent

Critical height computation

Critical height computation is similar to the viscosity one and mainly depends
on lava temperature according to power law of the kind:

log hc = c+ dT (4.6)

where c and d are obtained by solving the system:{
log hcTsol = c+ dTsol

log hcTvent = c+ dTvent

Lava outflows computation

Before applying the Minimisation Algorithm of the Differences to compute
lava outflows from the central cell (with index 0) towards the i-th neighbour,
a control is performed to eliminate cells that are not able to receive lava due
their state condition. Let z̄i ∈ Qz be the topographic altitude and hi ∈ Qh

the lava thickness, for the generic cell i the conditions to partecipate to the
lava distribution are:

1. z̄0 > z̄i ∧ h0 ≥ hi

2. (z̄0 + h0 > z̄i + hi) ∧ ¬(z̄0 > z̄i ∧ h0 ≥ hi)

In the case 1, the generic cell i is not eliminated if both the topographic
altitude of the central cell is greater than that of the neighbouring cell and
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Figure 4.2: Reference schema for cells altitude determination in the Moore
neighbourhood. Altitudes of cells along the von Neumann neighbourhood
correspond to DEM values. Those along diagonals are taken at the intersec-
tion between the diagonal line and the circle with radius w (cf. Table 4.1),
so that the distance with respect to the centre of the central cell is constant
for each adjacent neighbour

the debris thickness of the central cell is greater than or equal to that of the
neighbouring cell. The second condition (case 2) for the central cell to not
be eliminated is that the total heigh of the central cell overcomes that of the
neighbouring cell.

In the latest model of SCIARA family the anisotropic problem was solved
by introducing a fictitious topographic alteration along diagonal cells. In a
standard situation of non-altered heights, cells along diagonals result in a
lower elevation with respect to the remaining ones (which belong to the von
Neumann neighbourhood), even in case of constant slope. This is due to the
fact that the distance between the central cell and diagonal neighbours is
greater than of the distance between the central cell and orthogonal adja-
cent cells (cf. Figure 4.2). This introduces a side effect in the distribution
algorithm, which operates on the basis of height differences. If the algorithm
perceives a greater difference along diagonals, it will erroneously privilege
them by producing greater outflows. In order to solve this problem, it was
considered the height of diagonal neighbours taken at the intersection be-
tween the diagonal line and the circle with radius w (cf. Table 4.1) with
center in the central cell. This solution permits to have constant differences
in level in correspondence of constant slopes, and the distribution algorithm
can work properly even on the Moore neighbourhood. According to this
strategy, the topographic altitude conditions is:
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Figure 4.3: Cases in which the generic neighbour (cell i) is not eliminated
by the Minimisation Algorithm of the Difference and can thus receive a flow
by the central cell (cell 0). Note that the slope angle θ , considered in the
critical height computation, depends on the particular case.

z̄i =

{
zi i = 0, 1, ..., 4

z0 − (z0 − zi)/
√

2 i = 5, 6, ...,#X
(4.7)

In Figure 4.3 there are three different cases in which the generic neighbour
i is not eliminated during the MAD computation. The case 1 indicates
the situation in which lava moves downslope and a lower amount of lava is
found in the neighbouring cell. In this case, lava in the neighbour does not
represent an obstacle. Consequently, the distribution algorithm considers
only the topographic elevation of the neighbour as unmovable part u(i) and
the slope angle, θ , is computed accordingly (cf. Figure 4.3 - CASE 1). The
case 2 indicates the situation in which lava moves down or up-slope and lava
in the neighbouring cell represents an obstacle. In fact, if z̄0 > z̄i (lava moves
downslope), hi > h0 must hold, which can indicate a situation where lava
motion is slowing down, for instance due to cooling or because a counter-
slope begins (cf. Figure 4.3 - CASE 2a). Still, if z0 < zi , lava moves upslope
and both neighbouring altitude and lava content oppose to lava motion (cf.
Figure 4.3 - CASE 2b). In these cases, the distribution algorithm considers
both the topographic elevation and lava content of the neighbours as u(i)
and the slope angle, θ, is computed accordingly (cf. Figure 4.3 - CASE 2a
and CASE 2b).

The Minimisation Algorithm of the Differences application considers the
following quantities:

u(0) = z̄0;
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m = h0;

ūi =

{
z̄i for case 1

z̄i + hi for case 2

According to the Bingham-like rheology here adopted, actual lava outflows,
h(0, i), are computed as:

h(0, i) =

{
f(0, i) · r h0 > hc · cos θ

0 h0 ≤ hc · cos θ

where θ is the slope angle as shown in Figure 4.3.The relaxation rate factor,
r, computed according to equation 4.5, plays the role of the viscosity in
the context of the Minimization Algorithm, while the critical height, hc,
computed according to equation 4.6, has the same meaning as that of a
Bingham fluid.

4.3.2 Temperature variation and lava solidification com-
putations (elementary process τ2)

The temperature, for each CA cell, is determined by two process steps. In the
first step, the temperature in calculated as the weighted average of residual
lava inside the cell and lava inflows from neighboring cells:

Tavg =
hrT0 +

∑9
i=1 h(i, 0)Ti

hr +
∑9

i=1 h(i, 0)
(4.8)

where hr ∈ Qh is the residual lava thickness in the central cell after the
outflow distribution, T ∈ QT is the lava temperature and h(i, 0) is the outflow
lava from the i-th neighboring cell towards the central one. The second step,
to calculate the final temperature, considers the thermal energy loss due to
lava surface radiation:

T =
Tavg

3

√
1 +

3T 3
avgεσtδ

ρcvw2

(4.9)

where ε, σ, t, δ, ρ, cv and w are specified in Table 4.1.

When the lava temperature drops below the threshold Tsol, lava solidifies
and the cell altitude increases by an amount to solidified lava thickness.
Consequently, in the same cell the lava thickness is set to zero.
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4.4 SCIARA-fv2 model applications

In general, deterministic CA for the simulation of macroscopic fluids present
a strong dependence on the cell geometry and directions of the cellular space.
Due to the discretization of the surface where the phenomenon evolves, di-
agonal cells can be greatly privileged in flow distribution and thus lava can
spread preferentially in these directions. In order to solve the problem, dif-
ferent solutions have been proposed in literature, such as the adoption of
hexagonal cells (e.g. [36, 40]) or Monte Carlo approaches (e.g. [166]). The
first solution, however, does not solve perfectly the problem on ideal surfaces,
while the second one has the disadvantage of giving rise to nondeterministic
simulation models.

Ideal surfaces

This applications of SCIARA shows how the model does not present the
anisotropic problem on an ideal surface, represented by an octagonal-base
pyramid having faces inclined by an angle α = 5o. The pyramid is represented
by a 10m cell size DEM of 203 columns and 203 rows. By locating the lava
source at the top of the structure, both flows along diagonals and orthogonal
directions of the square cellular space are observed. Figure 4.5 shows the
results of two test cases in which a constant effusion rate, equal to 1 m3s−1, is
emitted for a total of 6 days, and no temperature loss is considered. The first
simulation is obtained by considering the actual topographic heights of the
cells, while the second by taking into account the topographic corrections.
As it can be seen, the anisotropic problem is quite significant in the first
case, in which diagonal flows, as expected, reach the base of the pyramid
more rapidly with respect to those on the orthogonal directions. In the
second case, in which topographic alteration are considered, the problem is
practically absent and all flows reach the base of the pyramid at the same
moment.

The 2006 Valle del Bove Lava Flow case study

Etna’s July 2006 eruption began during the night of 14 July, when a fissure
opened on the east flank of the South- East Crater. Two vents (cf. key 4 of
Figure 4.4) fed lava flow towards east into the Valle del Bove. The effusion
rate trend here adopted is in agreement with that considered by Neri et
al.[122] and is shown in Figure 4.4.

A preliminary calibration allowed to individuate values for models pa-
rameters, which are listed in Table 4.1. The corresponding CA simulation,
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Figure 4.4: Simulation of the 2006 Etnean lava flow by the CA model
SCIARA. Key: 1) simulated event; 2) real event; 3) overlapping area be-
tween real and simulated events; 4) lava vents sources. The effusion rate is
shown in the upper right corner of the figure.

performed on a 10m cell size DEM of 797 columns and 517 rows, is shown in
Figure 4.4.

In order to quantitatively evaluate the goodness of the simulation, the e1

fitness function was adopted, which provides a measure of the overlapping
(in terms of areal extent) between the real and simulated event. By consid-
ering R and S the sets of CA cells affected by the real and simulated event,
respectively. Let m(R∩S) and m(R∪S) be the measure of their intersection
and union, respectively. The fitness function e1 is defined as follows:

e1 =

√
m(R ∩ S)

m(R ∪ S)
(4.10)

Note that the function e1 gives values belonging to the interval [0, 1]. Its
value is 0 if the actual and simulated events are completely disjoint, being
m(R∩S) = 0; it is 1 in case of a perfect overlap, being m(R∩S) = m(R∪S).
As the Figure 4.4 shows, the simulation does not differ significantly from
the real case, as confirmed by the more than satisfying value of the fitness
function, e1 = 0.8. The goodness of the simulation is also confirmed in terms
of runout, as the travelled distance from the sources of the simulated event
is practically the same as the real one.
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Figure 4.5: SCIARA simulations on an octagonal-base pyramid with faces
inclined by an angle θ = 5o, performed for evaluating the anisotropic flow
direction problem: a) case in which actual cell topographic elevations are
considered; b) case in which equation 4.7 is applied and topographic correc-
tions along diagonals considered. Note that the square lattice in both figures
is only indicative of the cellular space orientation and does not correspond
to the actual cellular space in terms of number of rows and columns.

The July 2001 Etnean eruption

The SCIARA-fv2 model was also used in the Etnean eruptive crisis of Ju-
ly/August 2001, in particular by focusing on the lava low emitted by the
fracture of Mount Calcarazzi, 2100 m a.s.l. This emission, which started on
18 July, created the main danger for the towns of Nicolosi and Belpasso and
it was, in its maximum extension, only 4 km away from Nicolosi. As reported
in [36], a grid of hypothetical vents was considered above the towns of Ni-
colosi and Belpasso and lava flow rates were generated on the documented
low rates of the previous Etnean eruptions [33]. Some hypothised scenarios
were proven to be similar to the 2001 real event and in the second day of the
crisis simulations are prepared, considering the positions of vents and lava
ow rates of the first day.

The simulation with the better areal comparison beetween the real and
simulated ones of the first day is selected. Several scenarios are developed
by considering different flow rates. In the successive days the protocol of the
previous days is replicated.

When simulations show that lava advance threaten inhabited areas, mor-
phology alterations (embankments or canalisations) are introduced in the
simulation in order to evaluate the possibility effects to divert lava lows.

Figure 4.6 illustrates the first 10 days of the real and simulated evetn,
respectively.
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Figure 4.6: The observed (a) and simulated (b) event of the first 10 days lava
flow from Mount Calcarazzi fracture (July 2001 Event).

Finally, the obtained simulations (numerous events carried out by using
high rates) showed how the town of Belpasso was in a safe situation, while
Nicolosi could have been threatened in many events.

4.5 Discussion

In this chapter, the CCA approach and its application to SCIARA-fv2, the
latest release of the SCIARA family models for simulating lava flows, were
presented.

As discussed, when the main features of the phenomena to be simulated
can be directly described at a macroscopic level thus disregarding microscopic
aspects, CCA represent an alternative to classical CA.

SCIARA-fv2 considers a Bingham-like rheology and introduces a square
tessellation of the cellular space instead of the previously adopted hexagonal
one, which was considered in the earlier versions to limit the effect of the
anisotropic flow direction problem. As shown, the model is able to solve the
problem on an ideal inclined surface. This result is particularly significant,



54 4. MODELLING MACROSCOPIC PHENOMENAS WITH CELLULAR AUTOMATA

being SCIARA a deterministic model, as all the previously proposed solutions
refer to probabilistic CA simulation models. A preliminary calibration also
allowed to reproduce two real cases of study, namely the 2001 and 2006 lava
flows at Mt Etna (Italy), with a great level of accuracy. In fact, a high degree
of overlapping between the real and the simulated event and a perfect fitting
in terms of run-out were obtained.



Chapter 5

Accelerating Cellular Automata
simulations of lava flows

Nowadays, parallel computing is seen as a cost-effective method for the fast
and efficient resolution of computationally large and data-intensive problems
[104]. The great expansion of High Performance Computing (HPC) in dif-
ferent scientific and engineering fields has permitted the use of numerical
simulations as a tool for solving complex equation systems which rule the
dynamics of complex real phenomena, through which researchers can study
the modelling of, for instance, a lava flow, fire spreading or traffic simulation.
Usually, the modeler has to implement proper optimization strategies and
when possible, parallelize the program. The type of parallelization needed
in this latter phase depends on the kind of available parallel architecture.
For instance, in the case of a distributed memory machine (such as Beowulf
clusters), this can be accomplished by means of MPI - Message Passing In-
terface [150]. On the contrary, in the case of a multicore architectures, a
shared-memory or multithread implementation based on OpenMP [22] can
result in a better and more efficient solution.

In recent years however, parallel computing has undergone a significant
revolution with the introduction of GPGPU technology (General-Purpose
computing on Graphics Processing Units), a technique that uses the graphics
card processor (the GPU) for purposes other than computer graphics. Cur-
rently, GPUs outperform CPUs on floating point performance and memory
bandwidth, both by a factor of roughly 100. Although the incredible pro-
cessing power of graphic processors may be used for general purpose compu-
tations, a GPU may not be suitable for every computational problem: only
a parallel program that results optimized for GPU architectures can fully
take advantage of the performance of GPUs. In fact, the performance of
a GPGPU program that does not sufficiently exploit a GPU’s capabilities

55
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can often be worse than that of a simple sequential one running on a CPU,
such as when data transfer from main memory to video memory results cru-
cial. Nevertheless, GPU applications to the important field of Computational
Fluid Dynamics (CFD) are increasing both for quantity and quality among
the Scientific Community [162, 172, 49].

Among the different methodologies used for modelling geological pro-
cesses, such as numerical analysis, high order difference approximations and
finite differences, Cellular Automata [167] have proven to be particularly
suitable when the behaviour of the system to be modelled can be described
in terms of local interactions. As seen in Chapter 3, originally introduced by
von Neumann in the 1950s to study self-reproduction issues, CA are discrete
computational models widely utilized for modeling and simulating complex
systems. Well known examples are the Lattice Gas Automata and Lattice
Boltzmann methods [156] which are particularly suitable for modelling fluid
dynamics at a microscopic level of description. However, many complex phe-
nomena (e.g. landslides or lava flows) are difficult to be modeled at such
scale, as they generally evolve on large areas, thus needing a macroscopic
level of description. Moreover, as discussed in chapter 4, since it may be
difficult to model these phenomena through standard approaches such as
differential equations (cf. [113], for the case of lava flows), Complex Cellular
Automata [57] can represent a valid alternative.

Several successful attempts have been carried out regarding solutions for
parallelizing CCA simulation models. Among others, CAMELot [56] and
libAuToti [153] represent valid solutions for implementing and automatically
parallelizing CCA models on distributed memory machines while for shared
memory architectures, some effective OpenMP parallelizations have been im-
plemented for CA-like models, such as for fire spread simulation [86], Lattice
Boltzmann models [64]or lava flow modelling [127]. However, only some ex-
amples of GPGPU applications for CA-like models do exist [161, 173, 61]
and none regarding the CCA approach.

This chapter illustrates several different implementation strategies, by
adopting four different GPGPU devices, to accelerate both single and multi-
ple simultaneous running of SCIARA-fv2 model using CUDA. The first part
of the chapter focuses on parallel implementation, in GPGPU enviroment,
of the single lava episode, whereas the second part of the chapter regards a
CUDA approach to accelerate simultaneous simulation of a large number of
lava simulations using GPU. In the following sections, after a brief overview
of GPGPU paradigm together with the CUDA framework, implementations
and performance analysis referred to different benchmark simulations of a
real event are reported. Conclusions and possible outlooks are shown at the
end of the chapter.
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5.1 The NVIDIA CUDA programming ap-

proach: a quick overview

The principle aim of parallel computing, when referred to computational sci-
ence, is to reduce the processing time of particularly complex simulations,
owing to the use of more processing units that collaborate to simultaneously
solve the problem. Among others, M.J. Flynn has provided a comprehen-
sive classification of parallel architectures where the category of a specific
parallel computer depends on its ability to manage, in parallel, the instruc-
tion and/or data stream [68]. Another classification of parallel computers
may be based on the kind of memory architecture, whether shared or dis-
tributed [104]. In distributed memory architectures, each processor unit has
access to a different memory. In this case, it is necessary to have some kind
of communication between the various processing units. In shared-memory
architectures, all processing units access the same memory, even simultane-
ously.

As alternative to standard parallel architecture, the term GPGPU (General-
Purpose computing on Graphics Processing Units) refers to the use of the
card processor (the GPU) as a parallel device for purposes other than graphic
elaboration. In recent years, mainly due to the stimulus given by the increas-
ingly demanding performance of gaming and graphics applications in general,
graphic cards have undergone a huge technological evolution, giving rise to
highly parallel devices, characterized by a multithreaded and multicore ar-
chitecture and with very fast and large memories.

In general, a GPU consists in a number of SIMD (Single Instruction,
Multiple Data) multiprocessors with a limited number of floating-point pro-
cessors that access a common shared-memory within the multiprocessor. To
better understand the enormous potential of GPUs, some comparisons with
the CPU are noticeable: a medium-performance GPU (e.g. the NVIDIA
Geforce GT200 family) is able to perform nearly 1000 GFLOPS (Giga Float-
ing Point Operations per Second), while a mid-range Intel Core i7 processor
has barely 52 GFLOPS. In addition, the most interesting aspect still is the
elevated parallelism that a GPU permits. For instance, the NVIDIA GeForce
GTX 680 has 8 Streaming Multiprocessor’s (SMX) each with 192 processors
for a total of 1536 basic cores, while a standard multi-core CPU has few,
though highly-functional, cores.

Another motivation of GPUs increasing utilization as parallel architecture
regards costs. Until a few years ago, in order to have the corresponding com-
puting power of a medium range GPU of today, it was necessary to spend tens
of thousands of Euros. Thus, GPGPU has not only led to a drastic reduction
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of computation time, but also to significant cost savings. Summarizing, it is
not misleading to affirm that the computational power of GPUs has exceeded
that of PC-based CPUs by more than one order of magnitude while being
available for a comparable price. The two leading world producers of video
cards, ATI and NVIDIA, have developed programming frameworks which
permit, by means of an application programming interface (API), the full
exploitation of all the processing capabilities of these devices. ATI’s CTM
(Close-to-Metal) allows the programming and interaction with the GPU in
a lower-level manner than what is offered by NVIDIAs CUDA and thus an
implementation with the former usually is more difficult to realize. However,
recently ATI (acquired in 2006 by AMD, the world’s leading microprocessor
manufacturer together with Intel) after the development of its Stream SDK
high-level programming environment, has completely switched to OpenCL
(Open Computing Language), the standard for parallel programming of het-
erogeneous systems developed by the Khronos consortium [102]. On the
other hand, the NVIDIA CUDA technology [126], supported on Windows
and Linux Operating systems, permits software development of applications
by adopting the standard C language, libraries and drivers. The CUDA pro-
gramming model provides three key abstractions: the hierarchy with which
the threads are organized, the memory organization and the functions that
are executed in parallel, called kernels. These abstractions allow the program-
mer to partition the problem into many sub-problems that can be handled
and resolved individually.

5.1.1 CUDA Threads and Kernels

A GPU can be seen as a computing device that is capable of executing an
elevated number of independent threads in parallel. In addition, it can be
thought of as an additional coprocessor of the main CPU (called in the CUDA
context Host). In a typical GPU application, data parallel-like portions of the
main application are carried out on the device by calling a function (called
kernel) that is executed by many threads. Host and device have their own
separate DRAM memories, and data is usually copied from one DRAM to
the other by means of optimized API calls.

CUDA threads can cooperate together by sharing a common fast shared-
memory, implemented using fast DRAM memory similar to first level cache,
eventually synchronizing in some points of the kernel, within a so-called
thread-block, where each thread is identified by its thread ID as illustrated
by Figure 5.1. In order to better exploit the GPU, a thread block usually
contains from 64 up to 1024 threads, defined as a three-dimensional array
of type dim3 (containing three integers defining each dimension). A thread
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Figure 5.1: Grid of thread blocks

can be referred to within a block by means of the built-in global variable
threadIdx. While the number of threads within a block is limited, it is pos-
sible to launch kernels with a larger total number of threads by batching
together blocks of threads by means of a grid of blocks, usually defined as a
two-dimensional array, which is also of type dim3 (with the third component
set to 1). In this case, however, thread cooperation is reduced since threads
that belong to different blocks do not share the same memory and thus can-
not synchronize and communicate with each other. As for threads, a built-in
global variable, blockIdx, can be used for accessing the block index within
the grid. Threads in a block are synchronized by calling the syncthreads()
function: once all threads have reached this point, execution is resumed nor-
mally. As previously reported, one of the fundamental concepts in CUDA
is the kernel. This is nothing but a C function, which once invoked is per-
formed in parallel by all threads that the programmer has defined. To define
a kernel, the programmer uses the global qualifier before the definition
of the function. This function can be executed only by the device and can
be only called by the host. To define the dimension of the grid and blocks
on which the kernel will be launched on, the user must specify an expression
of the form <<< Grid Size, Block Size >>>, placed between the kernel
name and the argument list, such as in the following simple example:
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1 // Kernel definition

2 __global__ void VecAdd(float* A, float* B, float* C)

3 {

4 int i = threadIdx.x;

5 C[i] = A[i] + B[i];

6 }

7 int main()

8 {

9 ...

10 // Kernel invocation with N threads

11 VecAdd<<<1, N>>>(A, B, C);

12 }

The above code first defines a kernel called VectAdd which will run on
all N threads, with the aim to compute in the i-th position of the vector C,
the sum of vectors A and B. Assuming that all three vectors have dimension
N, each thread in parallel will be the sum of a position. For example, the
thread with ID = 2 will calculate the sum of A[2] +B[2] and store the result
in C[2].

5.1.2 Memory hierarchy

In CUDA, threads can access different memory locations during execution.
Each thread has its own private memory, each block has a (limited) shared
memory that is visible to all threads in the same block and finally all threads
have access to global memory. In addition to these memory types, two other
read-only, fast on-chip memory types can be defined: texture memory and
constant memory. In CUDA, memory usage is crucial for the performance.
For example, the shared memory is much faster than the global memory
and the use of one rather than the other can dramatically increase or de-
crease performance. By adopting variable type qualifiers, the programmer
can define variables that reside in the global memory space of the device
(with device ) or variables that reside in the shared memory space (with
shared ) that are accessible only from threads within a block. Typical

latency for accessing global memory variables is 200-300 clock cycles, com-
pared with only 2-3 clock cycles for shared memory locations. In addition,
global memory suffers from coalesced access problems, meaning that access
to data should be performed in a particular fashion in order to fetch (or
store) the data in the fewest number of transactions [125]. For these reasons,
global memory access should be replaced by shared memory access when-
ever possible. A CUDA C program can allocate global memory of the device
in two different ways: through the linear memory or by means of CUDA
arrays. CUDA arrays are types of memory optimized for texture manage-
ment and were not exploited in this work. The more common adopted linear
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Figure 5.2: Typical memory architecture of a Graphic Processing Unit

memory type is allocated using the cudaMalloc() function for allocating and
cudaFree() function for memory de-allocation. Once allocated, it is possi-
ble to transfer data from the Host memory to the global device memory,
and vice-versa, by means of a special call to the cudaMemcpy() function.
Specifically, cudaMemcpy() takes as parameters four kinds of memory type
transfers: Host to Host, Host to Device, Device to Host and Device to De-
vice. Note that all of the previous functions can only be called on the host.
Figure 5.2 illustrates the GPU typical memory architecture. As shown, the
fast on-chip shared memory is shared by all threads of a block.

As expected, to improve performance, variable access should be carried
out in the shared memory rather than global memory, wherever possible. Un-
fortunately, as Figure 5.2 shows, each variable or data structure allocated in
shared memory must first be initialized in the global memory, and afterwards
transferred in the shared one. This means that to copy data in the shared
memory, global memory access must be first performed. So, the more this
type of data is accessed, the more convenient is to use this type of memory,
while for few accesses it is evident that shared memory might be somewhat
degrading. As a consequence, a preliminary analysis of data access of the
considered algorithm should be performed in order to evaluate the tradeoff
and thus, convenience of using shared memory and how. As reported later
in this work, the implementation with a hybrid allocation of variables results
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in an optimal performance, despite a total shared-memory version as it may
be expected.

5.1.3 Programming with CUDA C

CUDA C is an extension of C language that permits to write programs for
NVIDIA GPUs. With additional constructs and API functions, the program-
mer is able to allocate and de-allocate memory on the video card (the device),
transfer the data from the host device (host), launch kernels, etc. The CUDA
C extension is built on the basis of the CUDA API driver, a low-level library
that allows one to perform all the above steps, but which of course is much
less user-friendly. On the other hand, the CUDA API driver offers a higher
degree of control and is independent of the particular language (e.g., C, For-
tran, Java), being written in assembly language. A typical CUDA program
can exploit the computing power of both the host (CPU and RAM) and the
device (the GPU and memory devices). What follows is a classic pattern of
a CUDA application:

1. Allocation and initialization of data structures in RAM memory;

2. Allocation of data structures in the device and transfer of data from
RAM to the memory of the device;

3. Definition of the block and thread grids;

4. Performing one or more kernel;

5. Transfer of data from the device memory to Host memory.

In addition, a CUDA application has parts that are normally performed in
a serial fashion, and other parts that are performed in parallel.

5.2 Implementation of the SCIARA-fv2 model

As previously stated, Cellular Automata models, such as SCIARA, can be
straight-forwardly implemented on parallel computers due to their underly-
ing parallel nature. In fact, since Cellular Automata methods require only
next neighbor interaction, they are very suitable and can be efficiently im-
plemented even on GPUs. In literature, no examples of Complex Cellular
Automata modeling with GPUs can be found. Regarding the considered CA
model, three different versions of SCIARA were implemented: a first straight-
forward version, called All Global Approach (AGA), which uses only global
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memory for the entire CA space partitioning, a second called Hybrid Memory
Approach (HMA), more performing, which adopts (also) shared memory for
CA space substates allocation and, finally, a third strategy called Dynamic
Grid Approach (DGA) where the CUDA kernel grid is dynamically adapted
to the active cells of the CA space.

5.2.1 The Naive implementation: all global memory
usage

To develop the first, basic, implementation of the model, the first issue to
decide on is what thread mapping should be adopted to better exploit the
fine-grain parallelism of the CUDA architecture. For example, one might
consider using a thread for each row or each column, as occurs in a typical
data-parallel implementation [127]. However, when working in CUDA with
arrays, the most widely adopted is the one thread - one cell technique, where
each cell of the array is matched with a thread [161]. In addition, in order to
achieve maximum performance [125] threads should be executed in groups of
multiples of 16 and thus blocks of size 16× 16 were built in order to obtain
square blocks. What follows is an excerpt for defining the grid of blocks that
was considered for SCIARA-fv2:

1 #define BLOCK_SIZE 16

2 ...

3 ...

4 int dimX; // CA x dimension

5 int dimY; // CA y dimension

6

7 dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);

8 int n_blocks_x = dimX/dimBlock.x;

9 int n_blocks_y = dimY/dimBlock.y;

10

11 dim3 dimGrid(n_blocks_x, n_blocks_y);

12 ...

13 kernel<<<dimGrid, dimBlock>>>(...); // invoke kernel function

Once that the grid of blocks (and threads) are defined, the kernels must
be managed so that each cell (i, j) of the cellualar automata space is asso-
ciated to each thread (i, j). This is simply done, for each invoked kernel
(i.e., calc flows, calc width, calc temperature and calc quote), by associat-
ing each row and column of the CA with the corresponding thread as in this
simple scheme:

1 __global__ void kernel(...) {

2 int col = blockIdx.x * blockDim.x + threadIdx.x;

3 int row = blockIdx.y * blockDim.y + threadIdx.y;

4 // decide what memory allocation to use - shared or global

5 /** transition function for cell[row][col] **/

6 ...

7 }



64 5. ACCELERATING CELLULAR AUTOMATA SIMULATIONS OF LAVA FLOWS

The basic steps of the CA model CUDA implementation are briefly re-
ported in the following, together with some code excerpts.

• Allocation and initialization the CA space matrix in Host RAM mem-
ory:

1 float *h_substates;

2 size_t size = number_of_substates * NR * NC * sizeof(float);

3 h_substates = (float*)malloc(size);

4 updateSubstates(substates);

Here, the cellular automata matrixes (h substates) are represented as a
single linearized one-dimensional vector. NR and NC represent the dimen-
sions of the cellular space.

• Allocation of arrays in device memory and data transfer from Host to
Device:

1 float *d_substates_R; // double matrix CA space...

2 float *d_substates_W;

3 cudaMalloc(&d_substates_R, size);

4 cudaMalloc(&d_substates_W, size);

5 cudaMemcpy(d_substates_R, h_substates, size, cudaMemcpyHostToDevice);

6 cudaMemcpy(d_substates_W, h_substates, size, cudaMemcpyHostToDevice);

The cudaMalloc() function permits to allocate linear memory on the de-
vice, while cudaMemcpy() transfers data from host memory to the device
one, thanks to the cudaMemcpyHostToDevice tag.

• Thread grid definition is performed as follows:

1 dim3 dimBlock(BLOCK_SIZER, BLOCK_SIZEC); //no. of threads per block

2 // manage also not-divisible dimensions

3 int n_blocks_x = NC / dimBlocs.x + (NC % dimBlock.x == 0 ? 0:1);

4 int n_blocks_y = NC / dimBlocs.y + (NC % dimBlock.y == 0 ? 0:1);

5 dim3 dimGrid(n_blocks_x, n_blocks_y);

The block size of threads is determined by the values (BLOCK SIZER,
BLOCK SIZEC). The size of the global grid depends, however, from the
size of the cellular space and of blocks.

• SCIARA transition function execution is defined as a sequence of ker-
nels, each representing an elementary process (cf. SCIARA model def-
inition presented in chapter 4):
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1 for(int step=0; step< Nstep; step++) {

2 // first CA step: add lava at crater cells

3 crater <<< 1 , num_craters >>>(d_substates_R,d_substates_W);

4 //elem. proc. sigma_1

5 calc_flows <<< dimGrid, dimBlock >>> (d_substates_R, d_substates_W);

6 //elem. proc. sigma_2

7 calc_width <<< dimGrid, dimBlock >>> (d_substates_R, d_substates_W);

8 //elem. proc. sigma_3

9 calc_temperature <<< dimGrid, dimBlock >>> (d_substates_R, d_substates_W);

10 //elem. proc. sigma_4

11 calc_quote <<< dimGrid, dimBlock >>> (d_substates_R, d_substates_W);

12 }

13 // swap matrixes

14 copy <<< dimGrid, dimBlock >>> (d_substates_R, d_substates_W);

15 }

In the time loop, four basic kernels (calc flows, calc width, calc temperature
and calc quote) are launched referred to the elementary processes of SCIARA-
fv2, σ1, σ2, σ3 and σ4, respectively. The crater kernel refers to the crater
cell(s), which is obviously invoked on a smaller grid than the previous ones.
The model was implemented by adopting a system of double matrixes for the
CA space representation: one (d substates R) for reading cell neighbor sub-
states and a second (d substates W ) for writing the new substate value. This
choice has proven to be efficient, since it allows separation of the substates
reading phase from the update phase after the application of the transition
function, thus ensuring data integrity and consistency in a given step of
the simulation. After applying the transition function to all the cell space,
the main matrix must be updated, replacing values with the corresponding
support matrix ones. In order to preserve data consistency, a CA step is
simulated by more logical substeps where, after crater cells are updated (by
means of the crater kernel), lava outflows are calculated according to the σ1
elementary process. When all outflows are computed, and therefore all out-
flow substates are consistent, the actual distribution takes place, producing
the new value of the quantity of lava in each cell of the CA. Subsequently,
each cell reads from a neighbour cell the associated outflow substate corre-
sponding to the quantity of inflowing lava (σ2 elementary process). In this
phase, the σ3 and σ4 elementary processes are applied to the new quantity
of lava of the cell. Note that this solution respects the CA formal definition
where the transition function determines a status change exclusively for the
central cell.

• The last step transfers data from device memory to the host memory
for displaying the results:

1 cudaMemcpy(h_substates, d_substates_R, size, cudaMemcpyDeviceToHost);

2 printSubstates(h_substates);
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3 cudaFree(d_substates_R);

4 cudaFree(d_substates_W);

5 free(h_substates);

5.2.2 Shared Memory Usage

Some performance improvements have been reached by implementing a ver-
sion which adopts a hybrid (both shared and global) memory allocation. As
known, access to a location in shared memory of each multiprocessor has
a much lower latency than that carried out on the global device memory
(cf. Memory hierarchy Section) and can reduce redundant global memory
accesses. On the other hand, an access to a shared-memory location neces-
sary needs a first access to global memory to retrieve data to process and a
second access to copy the result. For this reason, an accurate analysis was
carried out in determining how much memory accesses each thread performs
for each CA substate matrix, in order to evaluate the convenience of using
shared memory, as described previously. This investigation gave rise to a hy-
brid memory access pattern, where shared memory allocation was adopted
in those kernels accessing CA substate matrixes at least a threshold number
of times (cf. Table 5.1).

On this basis, the data matrixes corresponding to altitude and thickness
CA substates in the calc flows() kernel (σ1) and the matrixes corresponding
to temperature and flows CA substates for the calc temperature() kernel (σ3)
were allocated in the shared memory, while all of the other matrixes for the
remaining elementary processes were allocated in the device global memory.
For illustrative purposes, Figure 5.3 shows how shared memory is used in the
context of this implementation.

In order to better understand how the shared memory was used, the
following is an excerpt of code of the calc flows kernel for the calculation of
the outgoing flows from a generic (central) cell towards neighbor cells, which
adopts shared memory. As shown in Table 5.1, shared memory is adopted

Substate/Kernel calc flows calc width calc temperature calc quote
altitude 5 0 0 1

thickness 5 1 1 1
temperature 1 0 5 1

flows 1 2 3 0

Table 5.1: Number of memory accesses performed by each SCIARA kernel
to substate matrixes
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Figure 5.3: Memory mapping of the CA space allocated in global mem-
ory with a portion of shared memory. Shaded areas represent portions of
neighbouring block areas which need to swapped at each CA to ensude data
consistenty.

for the Qz and Qt substates.

1 __global__ void calc_flows (float* d_substates_R, float* d_substates_W){

2

3 int col = blockIdx.x * blockDim.x + threadIdx.x; // global column index

4 int row = blockIdx.y * blockDim.y + threadIdx.y; // global row index

5 // shared memory in device for Qz and Qt substates

6 __shared__ float shared_quote[BLOCK_SIZER+2][BLOCK_SIZEC+2];

7 __shared__ float shared_width[BLOCK_SIZER+2][BLOCK_SIZEC+2];

8 int rowShared = row % BLOCK_SIZER + 1; // local row index (shared)

9 int colShared = row % BLOCK_SIZEC + 1; // local column index (shared)

10 // global values copied in shared memory except ghost cells

11 shared_quote[rowShared][colShared] = d_substates_R[row*NC + col*NR*NC*

QUOTE];

12 shared_width[rowShared][colShared] = d_substates_R[row*NC + col*NR*NC*

WIDTH];

13 // ghost cells global values copied in shared memory

14 // last row of shared block

15 if (rowsShared-1 == BLOCK_SIZER-1 && row < NR){

16 shared_quote[rowShared+1][colShared] = d_substates_R[(row+1)

17 * NC + col + NR*NC*QUOTE];

18 shared_width[rowShared+1][colShared] = d_substates_R[(row+1)

19 * NC + col + NR*NC*WIDTH];

20 }

21 // first row of shared block

22 if(rowsShared -1 == 0 && row>0) {

23 shared_quote[rowsShared-1][colShared] = d_substates_R[(row-1)*NC+

col

24 + NR*NC*QUOTE];

25 shared_width[rowsShared-1][colShared] = d_substates_R[(row-1)*NC+

col

26 + NR*NC*WIDTH];

27 }



68 5. ACCELERATING CELLULAR AUTOMATA SIMULATIONS OF LAVA FLOWS

28 ...

29 ...

30 // synchronize all threads before proceeding ...

31 _syncthreads();

32 //

33 Compute flows according to Minimization algorithm of differences ...

34 ...

35 Copy resutls in Global Memory

36 }

Each thread block is responsible for allocating a shared memory of size
(BLOCKSIZER+ 2)(BLOCKSIZEC + 2). Every thread has the task to
copy the cell value to be managed by it to the shared global memory. Note
that the copy of ghost cells is performed by threads that manage external
cells to each block of the grid (cf. Figure 5.3).

5.2.3 Dynamic extension of the kernels grid

A critical aspect of CA implementations that can improve performance,
which is also related to CA sequential versions, is that the application of
the transition function can be restricted to the only active cells where com-
putation is actually taking place. When considering a phenomenon topolog-
ically connected (i.e., a simulation starts from few active cells and evolves
by activating neighbour cells), the CA space can be conned within a rectan-
gular bounding box (RBB). This optimization drastically reduces execution
times, since the sub-rectangle is usually quite smaller than the original CA
space. For this reason a GPU optimized CA version called, DGA, has been
tested that takes into account, at each CA step, the RBB that includes all
active cells (i.e., cells containing lava) of the automaton. However, while in
the same sequential version of the algorithm the CA space matrix is simply
scanned by considering the RBB boundaries instead of the whole CA, the
DGA must consider the rectangular grid bounding box (RGBB) containing
active cells, which in general includes the traditional RBB of active cells (cf.
Figure 5.5). While still considering a one-thread-one-cell approach, the grid
of blocks on which the RBB is activated grows dynamically as the simulation
expands, giving rise defacto to a one-thread-one-active-cell strategy. At the
subsequent CA step, the grid of threads readapts itself on the basis of the
fixed dimensions of each block (e.g., 16 x 16), activating an adjacent block
as soon as it’s interested by an active cell (cf. Figure 5.4).

As expected, since the number of overall number of launched kernels is
reduced, the computational performance of the algorithm improves signi-
cantly. The fundamental steps of the CUDA SCIARA-fv2 execution phase is
briefly reported hereafter. After the host memory CA space allocation, data
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Figure 5.4: An example of dynamic RGBB (rectangular grid bounding box)
expansion, referred to a 5 x 5 block size grid. As lava expands, blocks intere-
setd by active cells are activated.

structures transfer in the device and denition of the initial block and thread
grids, the main CA loop is launched. Firstly, the actual RBB on which the
transition function kernels will be launched on, specified by an array of 4
integers (RBB in the following code) representing the 4 coordinates delimit-
ing it, is computed in device memory and transferred in host memory. The
new dynamic thread grid (RGBB), which includes the standard RBB, is
determined as follows:

1 void determineRGBB(dim3 *dynamicGrid, int *RBB)

2 {

3 //Dynamic Grid calculation...

4 h_ymax = RBB[3]; h_ymin = RBB[1];

5 h_xmax = RBB[2]; h_xmin = RBB[0];

6 MRcolsNumber = h_ymax - h_ymin + 1; // RBB columns

7 MRrowsNumber = h_xmax - h_xmin + 1; // RBB rows

8 // new RGBB dimensions (i.e., the dynamicGrid)

9 dynamicGrid.x = (MRcolsNumber + dimBlock.x - 1)/dimBlock.x;

10 dynamicGrid.y = (MRrowsNumber + dimBlock.y - 1)/dimBlock.y;

11 }

Subsequently, kernels are launched by considering the newly computed
RGBB. The core of the CUDA SCIARA-fv2 algorithm is:

1 // CA loop

2 for(int currentStep=0; currentStep < NSTEPS; currentStep++){

3 // calculate new kernel grid based on RGBB (host memory code)

4 updateGrid(dynamicGrid, RBB);

5 // add lava at craters

6 crater <<< 1, num_craters >>>(updatedCA, currCA);

7 // launch kernels on the RGBB

8 calc_flows <<< dynamicGrid, dimBlock >>>(updatedCA, currCA);

9 calc_width <<< dynamicGrid, dimBlock >>>(updatedCA, currCA);

10 calc_temp <<< dynamicGrid, dimBlock >>>(updatedCA, currCA);

11 calc_solid <<< dynamicGrid, dimBlock >>>(updatedCA, currCA);

12 // determine the RBB atomically

13 determineRBB <<< dinamicGrid, dimBlock >>>(currCA);

14 // swap matrixes (in device memory)
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Figure 5.5: Two different ways of mapping the CA transition function into a
CUDA grid of threads. In the AGA and HMA cases, a CUDA kernel iterating
over the whole automaton. In the DGA approach, kernels operate on each
cell belonging to the current RGBB.

15 copyMatrix <<< dynamicGrid, dimBlock >>>(updatedCA,currCA);

16 //copy RGBB array from device to host

17 cudaMemcpyFromSymbol(RGBB, d_RGBB, size_RGBB,cudaMemcpyDeviceToHost);

18 } // CA loop end

19 // copy data to Host

20 cudaMemcpy(A, currCA, size, cudaMemcpyDeviceToHost);

In the time loop, after the determination of the new kernel grid di-
mensions, four basic kernels, calc flows, calc width, calc temperature and
calc solid are launched which regard the σ1, σ2, σ3 and σ4 SCIARA-fv2 el-
ementary processes, respectively. After applying the transition function to
the cell space confined by RGBB, the main matrix must be updated, replac-
ing values with the corresponding support matrix ones (i.e., swap matrixes
phase). After crater cells are updated (i.e. by the crater kernel), lava outows
are calculated according to the σ1 elementary process. When all outows are
computed, and thus all outow substates are consistent, the actual distribu-
tion takes place, producing the new value of the quantity of lava in each
cell of the CA. Subsequently, each cell reads from a neighbour cell the as-
sociated outflow substate corresponding to the quantity of inlowing lava (σ2
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elementary process). In this phase, the σ3 and σ4 elementary process are
applied to the new quantity of lava of the cell in order to calculate the new
cell lava temperature and eventual lava solidication, respectively. At the end
of each CA step, a specic kernel, determineRBB, updates concurrently (and
atomically) the values of the smallest RBB containing active cells, which are
stored in the RGBB array and copied back to the host memory, by the cu-
daMemcpyFromSymbol function. At the end of the CA loop, data is copied
to the Host memory in order to be processed.

5.2.4 Tests and performance results

Three parallellisation strategies and different graphic hardware were adopted
in all experiments that are reported in the following. In particular, four
CUDA devices were used: a nVidia Tesla C2075 and three nVidia Geforce
graphic cards, namely the GTX480, GTX 580 and the GTX 680. The latter
belongs to the new nVidia’s Kepler GPU architecture while the former are
endowed with the older Fermi GPUs. Some relevant characteristics of the
used devices are reported in Table 5.2. Also, in order to quantify the achieved
parallel speedup, sequential version of the algorithms parallelised for the
GPU were run on a workstation equipped with a 2-Quadcore Intel Xeon
E5472 (3.00 GHz) CPU. Specifically, the C-language and same optimization
approaches used in the corresponding GPGPU versions were adopted in the
sequential implementations in all experiments.

Many tests have been performed considering the different implemented
strategies and for the verification of the correctness of the results for evalu-
ating the precision of results using GPUs. The simulation of a well known
and documented real lava flow event, The Mt Etna Nicolosi Event occurred
in July 2001, was considered to test the efficiency of the GPUs algorithms.
Table 5.3 reports the results of tests carried out for this experiment where
the CA space considered for the real event is a 819×382 two-dimensional grid
representing the topography of the interested area, considering one crater for

Tesla C2075 GTX470 GTX580 GTX 680
SM count 14 14 16 8
CUDA cores 448 448 512 1536
Clock rate [MHz] 1150 1215 1544 1006
Bandwidth [GB/s] 144.0 133.9 192.4 102.3
GFLOPs 1030.4 1088.6 1581.1 3090.4

Table 5.2: Major characteristis of adopted GPGPU hardware for all carried
out experiments
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16 x 16 32 x 16
AGA HMA DGA AGA HMA DGA

CPU 1150.00 1150.00 544.60 1150.00 1150.00 544.60
Tesla C2075 45.21 38.92 16.08 38.75 34.75 16.59
GTX 470 37.45 31.50 13.58 33.95 28.70 14.68
GTX 580 24.94 22.16 9.45 23.35 19.30 10.26
GTX 680 25.50 23.21 10.80 22.44 20.16 11.63

Table 5.3: Elapsed times (in seconds) for the computation of 2001 lava flow
event by adopting different block dimensions

lava flow emission and 35000 simulating steps.
As a confirm of the vadility of the assumption regarding the hibrid mem-

ory usage approach, results have shown an improving in performance up to
19% in the hybrid memory version, with respect to the implementation that
considers only global memory for CA space. This confirms the importance of
data access analysis when implementing GPGPU applications. As expected,
the best results have regarded versions which adopt the dynamic block opti-
mization. Results show how the use the dynamic block (DGA) can improve
performances up to 181% (considering the Tesla C2075 device and blocks of
dimension 16x16), with respect to the GPU implementation that considers
the entire CA space allocation(AGA). Nevertheless, all GPU timings outper-
form, as expected, the corresponding carried out CPU versions.

Timings reported in all experiments for the considered GPU devices (see
also Figure 5.6) indicate their full suitability for parallelizing Cellular Au-
tomata models. Performance results show the impressive computational
power of the considered GPUs in terms of execution time reduction, signif-
icantly outperforming CPUs up to 58x by adopting the DGA in conjuction
with the GTX580 device.

5.2.4.1 Numerical verification of experiments

As already mentioned, GPUs are specialized for single-precision calculations
even though, since NVIDIA Tesla products, double precision floating point
operations are fully supported at the expense of an obvious decrease in per-
formance. All versions up to here considered were implemented in single-
precision, in order to fully exploit the graphic hardware in their original na-
ture. To test if single-precision data can be considered sufficient for SCIARA
simulations, other tests were carried out on the 2001 lava flow event (10000
CA steps) and results produced by the GPU version compared with those
of the CPU (sequential) version with single precision data (i.e., C float type
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Figure 5.6: Speedup results on different strategy approaches and devices.

variables), and those produced still by the same GPU version against a dou-
ble precision CPU implementation (i.e., C double type variables). In each
case, comparison results were satisfactory, since the areal extensions of simu-
lations resulted the same, except for few errors of approximation in a limited
number of cells. In particular, comparing the GPU version with the CPU
single-precision version, approximation differences at the third significant
digit were only present in 4% of cells, while differences were even less for
remaining cells. Differences were even minor compared to the previous case
by considering the single precision GPU version and a CPU version which
adopts double-precision variables.

5.3 Efficient GPGPU application for large num-

ber of concurrent lava flow simulations

Results, discussed in the previous sections, regarding the CUDA parallel im-
plementation of the SCIARA model were considered positive and extremely
encouraging. However, the most important applications of the SCIARA
model require the concurrent simulation of more than a single lava event
episode. Implementation of Volcanic Hazard Maps [140], Parallel genetic
algorithms for optimizing set of parameters for CA models [46, 45] or evo-
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lutionary application for risk mitigation [112, 66] are just a few examples of
SCIARA applications that can exploit a CUDA Multisimulator.

The use of thematic maps of volcanic hazard is of fundamental relevance
to support policy managers and administrators in taking the most correct
land use planning and proper actions that are required during an emergency
phase. In particular, hazard maps are a key tool for emergency management,
describing the threat that can be expected at a certain location for future
eruptions. The methodology for defining high detailed hazard maps is based
on the application on the application of the SCIARA lava flows computa-
tional model for simulating an elevated number of events on topographic
data.

By considering the application of parallel genetic algorithms to the SCIARA-
fv2 model, to evaluate a GA individual, an entire CA simulation has to be
performed and, depending on the adopted computer framework, such an op-
eration may require several hours (or months). Because of the required high
number of explicit lava flow simulations, these applications often results in a
highly intensive computational process. For these reasons, in order to develop
and test CUDA strategy to run large number of simultaneous simulations,
GPGPU is applied for mitigation and assessment purposes, to the process
of lava flow simulation model. Different GPGPU strategies, that give rise
to different overall execution times, are presented. In the following sections,
two different GPGPU approach implementation and performance analysis re-
ferred to simulations are reported, while conclusions and outlooks are shown
at the end of the chapter.

5.4 The methodology for defining hazard maps

Volcanic hazard maps are fundamental for determining locations that are
subject to eruptions and their related risk. Typically, a volcanic hazard map
divides the volcanic area into a certain number of zones that are differently
classified on the basis of the probability of being interested by a specific vol-
canic event in future. Mapping both the physical threat and the exposure
and vulnerability of people and material properties to volcanic hazards can
help local authorities to guide decisions about where to locate critical infras-
tructures (e.g. hospitals, power plants, railroads, etc) and human settlements
and to devise mitigation measures that might be appropriate. This could be
useful for avoiding the development of inhabited areas in high risk areas, thus
controlling land use planning decisions.

A lava flow simulation model can represent an effective instrument for
analyzing volcanic risk in an area by simulating possible single episodes with
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different characteristics (e.g. vent locations, effusion rates) [33]. However,
the methodology for defining high detailed hazard maps here presented is
based on the application of the SCIARA lava flows computational model for
simulating an elevated number of events on present topographic data. In
particular, the methodology requires the analysis of the past behavior of the
volcano, for the purpose of classifying the events that historically interested
the region. In such a way, a meaningful database of plausible simulated lava
flows can be obtained, by characterizing the study area both in terms of
areal coverage, and lava flows typologies. Data is subsequently processed by
considering a proper criterion of evaluation. A first solution could consist in
considering lava flows overlapping, assigning a greater hazard to those areas
interested by a higher number of simulations. However, a similar choice
could be misleading since, depending on the events particular volcanological
characteristics (e.g., location of the main crater, duration and amount of
emitted lava, or effusion rate trend), different events can occur with different
probabilities, which should be taken into account in evaluating the actual
contribution of performed simulations with respect to the definition of the
overall hazard of the study area. In most cases, such probabilities can be
properly inferred from the statistical analysis of past eruptions, allowing for
the definition of a more refined evaluation criterion. Accordingly, in spite of
a simple hitting frequency, a measure of lava invasion hazard can be obtained
in probabilistic terms.

The methodology, well described in [34] and [140] consists in an elabo-
rate approach in the numerical simulation of Etnean lava flows, based on the
results of an elevated number of simulations of flows erupted from a grid of
hypothetical vents covering the entire volcano. Firstly, based on documented
past behavior of the volcano, the probability of new vents forming was de-
termined, resulting in a characterization (a probability density function map
- pdf) of the study region into areas, that represent different probabilities of
new vents opening. Then, flank eruptions of Etna since 1600 AD were classi-
fied according to duration and lava volume and a representative effusion rate
trend considered to characterize lava temporal distribution for the considered
representative eruptions, reflecting the effusive mean behavior of Etnean lava
flows. An overall probability of occurrence for each lava event, pe, was thus
defined, by considering the product of the individual probabilities of its main
parameters:

pe = ps · pc · pt (5.1)

where ps denotes the probability of eruption from a given location (i.e., based
on the pdf map), pc the probability related to the events membership class
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(i.e., emitted lava and duration), and pt the probability related to its effusion
rate trend. Once representative lava flows were devised as above, a set of
simulations were planned to be executed in the study area by means of the
SCIARA lava flows simulation model. For instance, in [140] a grid composed
by 4290 craters, equally spaced by 500m, was defined as a covering for Mt
Etna, from where the simulations have been carried out. This choice allowed
to both adequately and uniformly cover the study area, besides considering a
relatively small number of craters. Specifically, a subset of event classes which
define 6 different effusion rates probabilities, derived from historical events
considered in [45] were taken into account for each crater, thus resulting in a
total of 25740 different simulations to be carried out. Owing to the elevated
number of SCIARA simulations to be executed, Parallel Computing was
necessary and each scenario simulated for each of the vents of the grid. Lava
flow hazard was then punctually (i.e. for each cell) evaluated by considering
the contributions of all the simulations which affected a generic cell in terms
of their probability of occurrence.

5.5 GPGPU-Based Lava Flow Risk Assess-

ment

A natural approach for dealing with the high computational effort related
to the construction of hazard maps or multiple simultaneous running of lava
flow simulations, due to the elevated number of simulations to be executed,
is the use of parallel computing techniques. As stated previously, GPGPU
has recently attracted researchers due to its efficacy exploiting the computa-
tional power provided by graphic cards through a fine grained data parallel
approach, especially when the same computation can be independently car-
ried out on different elements of a dataset, such as in the case of CA models.
CA models can be straightforwardly implemented on parallel computers due
to their underlying parallel nature. In fact, since CA methods require only
next neighbor interaction, they are very suitable and can be efficiently im-
plemented even on GPUs. This results in: (i) computing the next state
of all the cells in parallel; (ii) accessing only the current neighbour states
during each cells update, thereby giving the chance to increase the efficiency
of the memory accesses. As in the sequential case, the typical CA paral-
lel implementation involves two memory regions, which will be called CAcur
and CAnext, representing the current and next states for the cell respectively.
For each CA step, the neighbouring values from CAcur are read by the local
transition function, which performs its computation and writes the new state
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value into the appropriate element of CAnext.
In several GPGPU parallel implementations of the CA based procedure

illustrated above, most of the CA data was stored in the GPU global mem-
ory (e.g., [130, 137, 177, 42, 55]). This involves: (i) initialising the current
state through a CPU-GPU memory copy operation (i.e. from host to device
global memory) before the beginning of the simulation and (ii) retrieving
the final state of the CA at the end of the simulation through a GPU-CPU
copy operation (i.e. from device global memory to host memory). At the
end of each CA step a device-to-device memory copy operation is used to
re-initialise the CAcur values with the CAnext values. In order to speed up
the access to memory, the CA data in device global memory should be or-
ganised in a way to allow coalescing access. To this purpose, a best practice
recommended by nVidia is to use of structures of arrays rather than arrays of
structures in organising the memory storage of cells properties [125]. Even if
further memory optimizations are possible, a complete contiguous structure
access results difficult due to the presence of cell neighbours. As a compro-
mise, an array with the size corresponding to the total number of cells was
allocated in the CPU memory for each of the CA substates and, for every
simultaneous run, allocated in the GPU memory, together with some addi-
tional auxiliary arrays (e.g. for storing the neighbourhood structure and the
model parameters). Since all of the neighbouring cells have to access each
others substates, a CA step involves repeated accesses to the same portions
of the global memory. While the use of faster (but limited) shared memory
as in the single simulation strategy could be exploited to efficiently cache the
CA substates needed to all the threads of the same block (e.g., [67, 42]), the
recent automatic exploitation of caching levels (L1 and L2) for global mem-
ory access in recent nVidia hardware was here adopted in spite of shared
memory implementation (e.g., [15]).

A key step in the parallelisation of a sequential code for the GPU ar-
chitecture according to the CUDA approach, consists of identifying all the
sets of instructions (e.g., the CA transition function) that can be executed
independently of each other on different elements of a dataset (e.g., on the
different cells of the CA). As mentioned before, such sequences of instructions
are grouped in CUDA kernels, each transparently executed in parallel by the
GPU threads. However, a critical aspect of the GPGPU parallelisation ob-
ject of this study is related to the fact that only the transition function of
the CA active cells (i.e., cells containing lava) do actual computation. Hence,
launching one thread for each of the CA cells would result in a certain amount
of dissipation of the GPU computational power. For this reason, besides the
straightforward parallel algorithm in which the above mentioned kernels are
mapped to the whole CA, a second, more optimized implementation, has
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been developed. In the following, such approaches are described in detail.
Using a significant test case (for benchmark purposes) and four recent GPU
devices, their computational performances are empirically investigated.

5.5.1 A case study and performed simulations

To evaluate the implementation strategies, a landscape benchmark case study
was initially considered, modeled through a Digital Elevation Model com-
posed of 200 x 318 square cells with a side of 10 m. Over the area, a regular
grid of 38 x 60 craters was superimposed, leading to a total of 2280 simu-
lations to be performed. From each crater of the grid, a typical lava flow
with a 20m3s emission rate was considered, for a duration of 5000 CA steps.
Two parallellisation strategies and different graphic hardware were adopted
in all experiments that are reported in the following. In particular, as for
the single simulation GPU version, four CUDA devices were used in the ex-
periments: a nVidia Tesla C2075 and three nVidia Geforce graphic cards,
namely the GTX480, GTX 580 and the GTX 680. Also, in order to quantify
the achieved parallel speedup, sequential versions of the algorithms paral-
lelised for the GPU were run on a workstation equipped with a 2-Quadcore
Intel Xeon E5472 (3.00 GHz) CPU. Specifically, the C-language and same
optimization approaches used in the corresponding GPGPU versions were
adopted in the sequential implementations in all experiments.

5.5.2 A Naive implementation: the Whole Cellular
Space Implementation

A first, straightforward parallel implementation, labeled as WCSI (Whole
Cellular Space Implementation) was considered where the CUDA kernels op-
erate on the whole CA. Since during a lava flow simulation only the transition
function of the currently active cells do significant computation, simulating
only one simulation at a time would imply a high percentage of uselessly
scheduled threads. In addition, given the small size of most simulations (in
average, 20% of cells of the entire CA are active during a single simulation),
the number of active threads would be too low to allow the GPU to effec-
tively activate the latency-hiding mechanism. For these reasons, in the WCSI
approach more than a single lava episode are simultaneously executed. This
means that the main CUDA kernel is executed over a number of simulations
which are propagated at the same CA step. In particular, each performed
simulation is mapped on a different value of z and on a grid of threads com-
posed of 16×16 blocks. That is, the grid of threads used for the CA transition
function is three-dimensional, with the base representing the considered CA
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Figure 5.7: Elapsed time as a function of simultaneus lava events using the
WCSI approach on different considered GPGPU hardware.

space and the vertical dimension corresponding to the simulations. Accord-
ing to the general lava hazard GPGPU computation Algorithm 2, in the
hazard map computation phase, clusters (ns) of simulations are simulated
over the entire area under study up to cover the total number of required
simulations (nt). Before starting the hazard map construction (from Line 4),
a pre-processing sequential phase takes place for compute the thread kernel
grid on the basis of the dimensions of blocks and of the CA space.

When the computation begins, configureCA resets the ns simulations at
the beginning of each cluster computation phase and time duration for each
simulation initialized. After, the function transitionFunctionInParallel (line
10) activates the kernel implementing the simulation propagation mechanism
on a 3D grid as described above. Such kernel iterates over the simulations
that are the simultaneously propagated. Subsequently, a device-to-device
memory copy operation is used to re-initialise the CAcur values of the sub-
states with the values of CAnext (line 11). At the end of the computation,
the current CA time step CAstep is updated.

For a fair comparison, the sequential version of the same algorithm was
used and clearly, only one simulation at a time was propagated since the
advantages of simulating multiple simulations are not significant. Here, the
elapsed time achieved by the CPU was 61312s. Using the adopted GPU
devices, the algorithm was solved with the WCSI approach and a variable
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Algorithm 2: The GPGPU procedure for building lava hazard
maps.

1 nc ← 0;
2 nt ← 0;
3 ns ← x;
4 while nc < nt do
5 configureCA(CAcur,ns);
6 CAtime ← 0;
7 while notTerminated(CAtime) do
8 grid← updateDynamicGrid(∆CRBB);
9 vent <<< 1, n s >>>(CAcur, CAnext, emittedLava);

10 transitionFunctionInParallel <<< grid, n s >>>(CAcur, CAnext);
11 updateNextFromCurrent <<< grid, n s >>>(CAcur, CAnext);
12 update∆CRBB <<< grid, n s >>>(CAcur);
13 CAtime ← CAtime + 1;

14 nc ← nc + ns;

number of simultaneous lava simulations. According to the results shown in
Figure 5.7, the GTX 680 achieved the lowest elapsed time of 1529s, concur-
rently simulating 228 lava events. The gain provided by the parallelisation
in terms of computing time was significant and corresponded to a parallel
speedup of 40 over the used CPU. As can be seen, the simultaneous execu-
tion of more lava simulations was beneficial since it allowed a computing time
decrement that ranged from about 27% for the GTX 580, 31% for the GTX
680, 36% for the Tesla 2075 and nearly 40% for the GTX 480. However,
even if computing times decrease as the number of concurrent simulations
increase, for all the GPUs simulating more than about 25 simulations simul-
taneously did not lead to significant advantages. In fact, once the number
of computationally relevant threads is sufficient for enabling latency mit-
igation, a further increment in the number of simulations is unnecessary.
Interestingly, even if characterized by substantial different peak performance
in single-precision floating point operations, the best elapsed times of GTX
580 and GTX 680 were quite similar. This is due to the fact that the used
kernels are definitely memory bound and that the two GPUs have the same
memory bandwidth. In fact, especially considering that most substates are
pre-computed once in the pre-processing phase, the CA transition function
is characterized by a relatively low computational load. In addition, to apply
the lava flow spread mechanism each cell must access its own substates and
most of the substates of its neighbouring cells.
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5.5.3 The Rectangular Bounding Box Strategy: the
Dynamic Grid Implementation

The main weakness of the above WCSI approach is due to the difficulty of
having a high percentage of computationally active threads in the CUDA
grid. For this reasons, an alternative approach was developed in which the
grid of threads is dynamically computed during the simulation in order to
keep low the number of computationally irrelevant threads. In such an ap-
proach, labelled as DGI (Dynamic Grid Implementation), a number of lava
flow simulations are simultaneously executed as in the WCSI procedure. In
addition, at each CA step the procedure involves the computation of the
smallest common rectangular bounding box (CRBB) that includes any ac-
tive cells in every concurrent simulation. As shown in Figure 5.9, all the
kernels required by the CA step in Algorithm 2 are then mapped on such
CRBB, reducing the number of useless threads and improving significantly
the computational performance of the algorithm. Since the present study ex-
ploits relatively recent GPU devices, the CRBB computation was efficiently
carried out using the atomicMin and atomicMax CUDA primitives in the
same kernel implementing the transition function.

A further enhancement introduced in the DGI approach concerns the
device-to-device memory copy operation used to re-initialise CAcur with
CAnext (line 11 of Algorithm 2). In particular, instead of involving the en-
tire CA, a specific kernel was developed to re-initialise the substates of each
concurrent simulation only for the cells lying in the CRBB.

In order to perform a fair comparison, an analogous strategy based on the
bounding box has been developed for the sequential version of the DGI algo-
rithm. Using the reference CPU, such sequential procedure required 47521 s
for the case study adopted. Figure 5.8 shows the corresponding times taken
by the parallel DGI approach as a function of the number of concurrent sim-
ulations. As seen, the GTX 680 achieved the lowest elapsed time of 617.348
s, corresponding to a parallel speedup of 77. As expected, the simultaneous
execution of many simulations was much more beneficial than in the WCSI
case, for all considered hardware. For example, with the GTX 680 card the
best elapsed time is less than a half of that obtained by simulating only
one simulation at a time. The reason is that, having available a relatively
limited number of concurrent simulations, the percentage of active cells is
higher in a small CRBB than in the entire CA. However, at the contrary of
the WCSI approach, there is a critical value of the number of simultaneous
lava episodes to be executed (i.e., 20 for all adopted hardware), after which
the overall computing time increases. At the basis of this behavior is the
CRBB mechanism, where a certain number of inactive cells are present for
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Figure 5.8: Elapsed time as a function of simultaneus lava events usign the
DGI approach on different considered GPGPU hardware.

each simulation. As a consequence, when the number of computationally
active threads is high enough for the latency hiding mechanism , any further
increment of simultaneous lava events brings to the unnecessary scheduling of
inactive threads, producing an overall decline in computational performance.
Furthermore, atomic operations necessary for calculating CRBB that de-
pends on the number of simultaneous simulations are factors that may affect
the execution time of the algorithm.

The techniques applied for the DGI approach for building lava flows haz-
ard maps were applied to the area of Mt Etna volcano (Italy) [140]. A subset
of the original grid of vents (1006 craters in total) was considered and only
one typology of lava effusion rate of 32× 106m3 taken into account, emitted
in 15 days, corresponding to the most common type of eruption recorded in
the past 400 years of activity of the volcano (see [34] for further details).
This gave rise to 1006 simulations in spite of the over 25000 carried out in
[140]. Figure 5.10 shows the map obtained by the application of the DGI
procedure.

In particular the GTX 680 hardware was adopted, by running 20 concur-
rent simulations (i.e., the ns parameter of Algorithm 2). The overall com-
puting time was 805 s, while the map obtained by the same configuration
(i.e., same number of grids and simulations), executed as in a previous work
[140] with standard MPI Message Passing techniques on a 80-core cluster,
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Figure 5.9: Mapping of the CA transition function into a CUDA grid of
threads (right) in case of the simultaneous lava flows (left). As it can be
seen, computation takes place only for threads that are within the CRBB of
active cells of the two lava events.

was processed after 23432 s.

5.6 Conclusions

Results reported in this chapter have indeelconfirmed the full suitability of
GPGPU architectures for implementing CA models. Regarding the imple-
mentation of the single lava episode, as seen, the CUDA technology, in com-
bination with an efficient memory management, can produce very efficient
version of the SCIARA-fv2 CA lava flow model. The different strategies have
demonstrated the advantage of this approach which can have important ap-
plications also in the field of risk/hazard mitigation.

In the second part of this chapter, starting from the problem of lava haz-
ard map computation, this study discussed some approaches for executing
a large number of concurrent lava simulations using GPGPU. One of the
advantages of the presented solutions lies in enabling the building of haz-
ard maps for large areas, which otherwise may not be possible by adopting
traditional sequential computation. The parallel speedups attained through
the proposed approaches and by considering GPGPU hardware, were indeed
significant.
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Figure 5.10: Lava-flow invasion scenario at Mount Etna resulting from the
simulations of 1006 lava flows originated from a uniform square grid, by
considering 1 simulation per vent. Legend indicates different probability
classes of areas that could be interested by a lava event in the future.

In addition to the construction of lava risk maps, the presented strate-
gies were initially adopted for carrying out extensive sensitivity analysis to
model parameters. Also, the fast simulation of a number of lava simulations
gives the opportunity, for the interactive visualization, to run the combined
rendering and simulations at interactive frame rates.

Future work will also regard the adoption of multiple kernels, permitted
by the recent Fermi architecture, where different streams of kernels can be
simultaneously activated which can evidently permit a better management
of simulations. Eventually, the same presented techniques are currently be-
ing exploited in the application of evolutionary algorithms, which require an
extensive simulation phase due to the numerous evaluations of possible can-
didate solutions, for the morphological evolution of protection works for lava
flow stream deviation.



Chapter 6

An Interactive Visualization
System for Lava Flows Cellular
Automata Simulations

The increase in the calculation speed of computers allows to obtain more
accurate scientific simulations, through the generation of huge amounts of
numerical data: it would be impossible to analyse them or understand their
meaning without a valid tool.

Scientific Visualisation can assist scientists by providing processes, tech-
niques and tools that transform data into images that can be analysed with-
out intermediaries. The easiest way to define scientific visualisation is to
consider it as the process of transformation of experimental data into images
that can be readily analysed, by what is currently the most powerful computr
in the world: the human brain.

In this Chapter, CCAFramework, an extensible system for the analy-
sis and interactive visualisation of Cellular Automata Based simulations is
presented. Due to the adoption of CCAFramework, a software tool was sub-
sequently developed for the interactive visualisation and the analysis phase
of the results for the morphological evolution of protective works by Parallel
Genetic Algorithms. The core of the system is SCIARA-fv2. It is the latest
release of the SCIARA Cellular Automata family and resides in a remote
multi-GPU node which provides a multilayered GPU implementation in or-
der to compute single or multiple simultaneous simulations. Experiment re-
sults are interactively visualised in real-time by means of a three-dimensional
graphics engine implemented in C++ and VTK and integrated in Qt GUI.

The first Section of this Chapter briefly introduces the visualisation sys-
tem architecture and its main features are described in Section 2. Finally,
Section 3 concludes the Chapter with a general discussion about the per-
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Figure 6.1: CCAFramework System Overview. As shown The CA model
implementation resides in a remote high-performance cluster and data trasfer
takes place using a socket communication.

formed work.

6.1 The CCAFramework System Architecture

CCAFramework is a framework for analysis and interactive visualisation of
simulations of complex phenomena modelled by Cellular Automata. The
visualisation system is based on a three-dimensional graphics engine imple-
mented in C++ and VTK/OpenGL [147, 32] and integrated into Qt Graphi-
cal User Interface(Qt GUI). The System architecture is scalable and modular.
Interaction between the GUI and the visualisation system is guaranteed by
Qt’s Signal/Slot communication mechanism and results are accessible in real-
time by means of the graphics engine module that establishes a connection
with the remote SCIARA model via socket protocol. In Figure 6.2 is showed
an example of application of the CCAFramewok for lava flows simulations.
As presented in Figure 6.1, the architecture is composed of three different
layers.
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Figure 6.2: SCIARA Software main window. The application adopts the
CCAFramework Visualisation System as Graphics Engine.

The CA Model implementation is the layer of the generic numerical model
to simulate. It resides in a remote high-performance cluster and the interac-
tion with the visualisation module is possible due to a socket communication.
The output generated by the CA Model is the input for the Visualisation Sys-
tem. The CA Model resides in a Multi-GPU cluster and provides a double
CUDA SCIARA-fv2 implementation layer: one relative to a CUDA acceler-
ated version for the single simulation (Data Analysis) of lava flow event and
the one for a large number of simultaneous simulations (Risk Maps, Genetic
Algorithms). The 3D/2D Graphics Engine Module is the visualisation system
layer. It is the software core, implemented in VTK/OpenGL. It coordinates
the rendering process, manages lights, cameras and tridimensional objects
within the scene. The last layer, the GUI module, concerns the System User
Interface by integrating the visualisation system. It is Qt based and provides
several tools to manage the CA graphical modelling and to interact with the
numerical model.

6.2 Overview of CCAFramework

The software features can be divided into three categories: Modelling tools,
Visualisation tools and Real-Time interaction tools.

Modeling tools The software offers the possibility to model the cellular
automata substates due to the combination of objects within the scene ren-
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Figure 6.3: Double visualisation system of CCAFramework. The framework
provide both prospective (left) and orthogonal (right) views.

dering by creating and customizing 3D/2D typed models. The technique of
three-dimensional representation of a substate is based on the use of a struc-
ture with topology and geometry property and the meshing model used for
this type of object is a triangle strip meshing. The 2D model, however, is
represented by a color mapping technique that makes it possible to match
a colour point of the three-dimensional structure based on a colorimetric
default table. Moreover, The user can customize the scene by introducing
the system of rendering contours, textures, models or generic labels(such as
water or trees).

Visualisation tools CCAFramework offers a double visualisation system
(see Figure 6.3) including a 3D view for the prospective view of the simulated
phenomena and a 2D view for the orthogonal visualization.

Real-time interaction tools Real-time interaction tools provide several
scene interaction styles in order to manage the cameras with rotation, zoom
and translation operations. The data analysis is allowed by cell picking tool
(see Figure 6.4), through wich the user can select, view and edit the set of
cell substates values. The user can also control the execution of the simu-
lation with the play,stop and pause buttons or by editing of the simulation
parameters.

6.3 Discussion

In this Chapter, an efficient Visualization System for Cellular Automata
model simulations has been presented. A modular system architecture so-
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Figure 6.4: Cell Picking tool allows to get the coordinates of the Cellular
Auotmata Cell selected and the its substates values.

lution was adopted to guarantee a clear separation of the interactive GUI
process (client) and the computation process (server). Among the different
advantages of the considered approach, one of the most interesting consists
in the possibility to easily change the computational model without the need
to carry out substantial modifications to the overall application.

CCAFramework was successfully applied for the rendering of lava flow
simulations and commencing from the issue of of accelerating the real-time vi-
sualization, the usage of a dedicated server with multiple GPUs was adopted.
The System showed that it can run the combined rendering and simulations
at interactive frame rates.

CCAFramework has proved to be of extraordinary importance for the
analysis of data and emergent behaviors concerning to the experiments dis-
cussed in Chapter 7.
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Chapter 7

A new methodology for
mitigation of lava flow invasion
hazard

The determination of areas exposed to be interested by new eruptive events
in volcanic regions is crucial for diminishing consequences in terms of human
causalities and damages of material properties. Nevertheless, urbanized ar-
eas, cultural heritage sites or even important infrastructures, such as power
plants, hospitals and schools can be protected by diverting the flow towards
lower interest regions.

In order to mitigate the destructive effects of lava flows along volcanic
slopes, the building of artificial barriers is a fundamental for controlling and
slowing down the lava flow advance. Such protective interventions were tri-
alled during a few recent eruptions of Etna: in 1983, 1991-1993, 2001 and in
2002, when earthen barriers were built to control lava flow expansion with
different level of success.

The proper positioning of protective measures may depend on many fac-
tors and hazard mitigation interventions plans, in this context, are empirical
because no standard methodologies exist.

In this Chapter a decision support system for defining and optimising
volcanic hazard mitigation interventions is proposed. In particular, this work
describes the application of Parallel Genetic Algorithms for optimizing earth
barriers construction by morphological evolution, to divert a case study lava
flow that is simulated by the numerical Cellular Automata model SCIARA-
fv2 at Mt Etna (Sicily, Italy). The GA application regards the optimization
of the position, orientation and extension of earth barriers built to protect
Rifugio Sapienza, a touristic facility located near the summit of the volcano.
The study has produced extremely positive results and represents the first
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application of morphological evolution for lava flow mitigation.

Therefore, the GPGPU implementation techniches presented in Chapter
5 were applied to accelerate the GA execution and the visualization system
presented in Chapter 6 was extended to allows interactive analysis of the
results. A study of GA dynamics, with reference to emergent behaviors, is
also discussed.

The Chapter is organized as follows: after a brief description of the the
case study adopted for the experiments, the main characteristics of three dif-
ferent strategies were discussed and results are presented. For each developed
version, a study of GA dynamics, with reference to emergent behaviors, and
general considerations are also discussed. Last Section concludes the Chapter
with final comments and future works.

7.1 A brief history of mitigation actions in

Mt.Etna

The technique to divert lava flows by means artificial barriers or channels
it is due to idea that lava encountering natural morphological obstacles can
divert its path. These mitigations interventions can represent a valid solution
to delay and divert lava flows toward uninhabited areas.

The first documented mitigation action adopted to delay the lava flows
advance has been applied during the most destructive Mt. Etna eruption
occurred in 1669 [1].

In the 1983, explosives has been used as intervention against lava flow
invasion by excavating a diversion channel in order to thin a levee. Because of
the numerous difficulties and time delays, only 20% of the flow was diverted
out of the main channel and several rubble barriers were constructed to
protect the main tourist complex on Etna. The barriers prevented lateral
spreading of the flow field into developed areas. For the first time, earthen
barriers, considered as actively direct intervention during a volcanic event,
showed their effectiveness to divert lava.

During the 1991-1993 eruption, main interventions to protect Zafferana
regarded the building of four earth barriers and attemps to plug the lava
tube by throwing blocks, steel hedgehogs and large fragments of solid lava
into a skylight close to the vent [7].

The 2001 eruption of Mt.Etna caused damage and lava emitted from the
lowermost vents threatened some important facilities of the Rifugio Sapienza
area [6]. Thirteen earth barriers were built, during the July-August 2001, to
protect the area. The first five upper barriers were almost totally buried by
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Figure 7.1: Effusion rates at the main vents of the 2001 eruption of Mt Etna
[10]

the lava floowing, whereas the four barriers erected close to Rifugio Sapienza
for diverting the approaching flow worked propertly.

The 2002-2003 eruption produced two lava flows which partially covered
the tourist facilities of Piano Provenzana. On the South flank the effusion
lasted until 28 January 2003 threatening once again the Rifugio Sapienza
area. Six barriers (five on the south and one on the north-east flank), oriented
about 30 degree with respect to the main direction of the flow, were erected
to contain the flow. Unfortunately, the lava overflowed from the barrier
destroying two buildings and cutting the “SP92” road before stopping soon
after.

7.2 The Case Study: The 2001 Mt Etna Erup-

tion

As reported in [6](see also [10]) the 2001 eruption of Mt. Etna began on
July 17 and was characterized by lava emission from several vents on the
southern flank of the volcanoat elevations of 2100 m, 2550 m, 2600 m, 2700
m, 2950 m, 3050 m (see Figure 7.2). Only lava flows emitted from the
lowermost vents (2100 m, 2550 m, 2700 m) caused damage and threatened
some important facilities and infrastructure, which were protected by earthen
barriers. Effusion rates at the main eruptive vents were estimated daily by
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Figure 7.2: Set of interventions carried out during the 2001 eruption event at Mt

Etna. Black lines are related to the case study adopted in the SBA(Ms. Silvestri

zone), contrariwise, red lines define the input for the second case study(Sapienza

zone). Furthermore, in both cases, the dashed perimeters represent the Rifugio

(security area), wich delimitates the area that has to be protected by the flow.

The solid line perimeters specifies the area in wich the earth barriers can be lo-

cated.(base figure taken from [6])

[10] from the volume/time ratio and were obtained by careful mapping of the
flow area and estimating its mean thickness (Figure 7.1).

The facilities of the Sapienza zone were undoubtedly at risk because of
their short distance from the 2700-m and 2550-m effusive vents (respectively
3 and 2.5 km) and thirteen artificial barriers were built during the JulyAugust
2001 Mt. Etna eruption. Their locations are shown in the map of Figure 7.2.
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Barrier Length(m) Height(m) Base Width(m) Volume (m3)
A 145 10 25 14000
C2 375 6 12 13300
C3 190 6 10 6800
C4 300 10-12 15 25000

Table 7.1: Dimensions of the four largest barriers built to control lava flows

Mts. Silvestri Zone

The flow emitted from the lower vent, the 2100-m fissure, interrupted the
road SP92 and invaded the adjacent wide parking area located between Mts.
Silvestri and the Sapienza zone (1900 m a.s.l.). A large barrier, on the eastern
flank of the flow, was built to protect two tourist facilities. This barrier
worked effectively and the two buildings were saved (Barrier A in Figure 7.2
and in Table 7.1). Three additional barriers were built (B6-B7-B8 in Figure
7.2) but they were successively buried by the lava descending from 2250-m
vent.

Barriers uphill from Sapienza Zone

The tourist facilities of the Sapienza zone were threatened by the lava because
of the flow descending from vent located at 2550 m elevation. To protect the
facilities, nine earthen barriers were built (Figure 7.2). Five barriers (B1-B2-
B3-B4-B5 in Figure 7.2), 70-150 m in length and 6-8 m in height, were built
from the 21st to 23rd July. They were almost totally buried by the lava flow
emitted, from 25th July, from the 2550m vent. After the 25th July, the most
important intervention was actioned to protect the Sapienza zone by erecting
four barriers , facing in a mainly NW−SE direction(C1-C2-C3-C4), to divert
the lava flow toward the southeast where there was the park area, thus to
minimize the damages. The majority of the Barrier C2 worked effectively
and diverted the flow toward the southwest, except the southern part, which
was buried by the lava. Barrier C3 partially diverted the flow but, because
of the subsequent advance of the flow thickness, lava started to overflow the
barrier threatening the facilities located 150 m from the lava front. Some
parts of the barrier previously built were removed to obtain a new barrier
(C4 in Figure 7.2) placed at a distance of 70 m from the facilities. C4 was
the last barrier erected and its northern part represented the last defense for
Sapienza. During the evening of the same day, the effusion rate at the 2550m
vent decreased and continued to decline during the following days (Figure
7.1) so the lava flow did not further threaten the Sapienza zone.
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7.3 Morphological Evolution of protective works

through Parallel Genetic Algorithms

By considering the 2001 Nicolosi case-study, GAs were adopted in conjunc-
tion with the SCIARA-fv2 CA model for the morphological evolution of pro-
tective works to control lava flows. The numerical model finite set of states
was extended by introducing two substates defined as:

Z ⊆ R (7.1)

where Z is the set of cells of the cellular automaton that specifies the Safety
Zone, which delimitates the area that has to be protected by the lava flow;
and

P ⊆ R,P ∩ Z = � (7.2)

where P is the set of cells of the cellular automaton that specifies the Pro-
tection Measures Zone that identifies the area in which the protection works
can be located. The Protection work W = B1, B2, ..., Bn was represented as
a set of barriers, where every barrier Bi = Ni1, Ni2 is composed by a pair
of nodes Nij = xij, yij, zij, where xij, yij represent CA coordinates for the
generic node j of the barrier i, and zij the height (expressed in m).

The solutions were encoded into a GA genotype, directly as integer values
(Figure 7.3), and a population of 100 individuals, randomly generated inside
the Protection Measures Zone, was considered.

The choice of an appropriate fitness function is essential to evaluate the
goodness of a given solution. In the present study, two different fitness func-
tions were considered: f1, based on the areal comparison between the sim-
ulated event and the Safety Zone (in terms of affected area) and f2, which
considers the total volume of the protection works in order to reduce inter-
vention costs and environmental impact. More formally, the f1 objective
function is defined as:

f1 =
µ(S ∩ Z)

µ(S ∪ Z)
(7.3)

where S and Z respectively identify the areal extent of the simulated lava
event and the Safety Zone area, with µ(S∩Z) e µ(S∪Z) being the measures
of their intersection and union. The function f1, assumes values within the
range [0, 1]: it is 0 when simulated event and Safety Zone Area are completely
disjointed (best possible simulation); it is 1 where simulated event and Safety
Zone Area perfectly overlap (worst possible simulation).
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Figure 7.3: Example of barriers encoding into a GA genotype. The height of
the intermediate points of each barrier is obtained by connecting the work
protections extremes through a linear function.

The f2 objective function is defined as:

f2 =

∑|W |
i=1 pc · d(Bi) · h(Bi)

Vmax
(7.4)

where d(Bi) and h(Bi) represent the lenght (in meters) and the average
height of the i-th barrier, respectively. The parameter pc is the cell side
and Vmax ∈ R is a threshold parameter (i.e., the maximum building volume)
given by experts, for the function normalization.

Since the barriers are composed of two nodes, the function can be written
as:

f2 =

∑|W |
i=1 pc · d(Ni1, Ni2) · h̄(Ni1, Ni2)

Vmax
(7.5)

where h̄(Ni1, Ni2) = |zi1+zi2|
2

is considered as the average height value between

two different nodes and d(Ni1, Ni2) =
√

(xi1 − xi2)2 + (yi1 − yi2)2 identifies
the Euclidean distance between them. The final fitness function f2 can be
written as:

f2 =

∑|W |
i=1 pc ·

√
(xi1 − xi2)2 + (yi1 − yi2)2 · |zi1+zi2|

2

Vmax
(7.6)

The function f2, assumes values within the range [0, 1]: it is nearly 0 when
the work protection is the cheapest possible, 1 otherwise.
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Figure 7.4: Representation of GA mutation phase.

For the genotype fitness evaluation, a composite (aggregate) function f3

was also introduced as follows:

f3 = f1 · ω1 + f2 · ω2 (7.7)

where ω1, ω2 ∈ R and (ω1 + ω2) = 1, represent weight parameters associated
to f1 and f2. The goal for the GA is to find a solution that minimizes the
considered objective function f3 ∈ [0, 1]. In order to classify each genotype in
the population, at every generation run, the algorithm executes the following
steps:

1. CA cells elevation a.s.l. are increased/decreased in height on the basis
of the genotype decoding (i.e, the barrier cells). To complete this step,
an extending Bresenhams original algorithm [19] is applied to determine
the cells “inside” the segments between the work protections extremes.
f2 is, subsequently, computed.

2. A SCIARA − fv2 simulation is performed (about 40000 calculation
steps) and the impact of the lava thickness on Z area (f1 computation)
is evaluated. A SCIARA− fv2 simulation is performed (about 40000
calculation steps) and the impact of the lava thickness on Z area (f1

computation) is evaluated.

3. f3 is computed and individuals are sorted according to their fitness.
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GA parameters Specification Value
gl Genotypes length [2-10]
ps Population size 100
ng Number of generations [100-500]
pmc Coord. gene mutation probability 0.5
xmax Gene x position variation radius 10
ymax Gene y position variation radius 10
pmh Height gene mutation probability 0.5
hmin height min variation range -5
hmax height max variation range 10
pc Crossover probability 0.05
ch+ Cost to build 1
ch− Cost to dig 1
ωf1 f1 weight parameter 0.95
ωf2 f2 weight parameter 0.05

nmax−h node max height 20
nmax−l node max length [40-500]

Table 7.2: List of parameters of the adopted GA

7.3.1 Parallel implementation and performance

The adopted GA is a rank based and k-elitist model, as at each step only
the best genotypes generate off-spring. The 20 individuals which have the
highest fitness generate five off-spring each and the 20 × 5 = 100 offspring
constitute the next generation. After the rank based selection, the mutation
operator is applied with the exception of the first 5 individuals. The complete
list of GA characteristics and parameters (with values related to the single-
barrier solutions experiments) is reported in Table 7.2. Each gene mutation
probability depends on its representation: pmc for genes corresponding to
coordinates value and pmh for genes corresponding to heights. Therefore,
if during the mutation process, a coordinate gene is chosen to be modified,
the new value will depend on the parameters xmax and ymax that define the
cell radius in which the node position can vary (Figure 7.4). The interval
[hmin, hmax] is the range within which the values of height nodes are allowed to
vary. This strategy ensures the possibility for the GA to provide, as output,
either protective barriers or ditches. In this first approach, crossover has not
been applied due to the high probability of generating inefficient candidate
solutions.

To evaluate a given GA individual, an entire CA simulation has to be
performed. Depending on the adopted computer framework, such an oper-
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Figure 7.5: Elapsed time as a function of simultaneus lava events using the
WCSI (a) and DGI (b) approaches on different considered GPGPU hardware.

ation may require several seconds, or even several hours. For example, on
a 2-Quadcore Intel Xeon E5472, 3.00 GHz CPU such evaluation, by consid-
ering the first case study (Mts. Silvestri Zone), requires approximately 600
seconds, as at least 40000 CA steps are required for a simulation. Thus, if
the GA population is composed of 100 individuals, the time required to run
one seed test (100 steps) exceeds 69 days. Moreover, the GA execution can
grow, depending on both the extent of the considered area and the number
of different tests to run. Due to the high computational complexity of the
algorithm, the CPU/GPU library presented in Chapter 5 was adopted to
accelerate the GA running. In particular a Master-Slave model was used in
which the Host-CPU (Master) executes the GA steps (selection, population
replacement and mutation), while GPU cores (slaves) evaluate the individuals
fitness. In order to test and evaluate the different implementation strategies
with the GA realized, a landscape benchmark case study was considered,
modelled through a Digital Elevation Model composed of 200 × 318 square
cells with a side of 10 m. A set of 50 hypothetical barriers placed with 2
different inclinations (135o, 225o) to the lava flow direction was considered
leading to a total of 100 simulations to be performed.

Two parallelisation strategies and different graphic hardware were adopted
in all experiments reported below. In particular, four CUDA devices were
used in the experiments: one nVidia Tesla C2075 and three nVidia Geforce
graphic cards, namely the GTX480, GTX 580 and the GTX 680. Also, in
order to quantify the achieved parallel speedup, sequential versions of the
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Figure 7.6: Temporal evolution of the composite f3 fitness of best individual
(in black) and of average fitness of whole population (in gray). Fitness values
were obtained as an average of 10 GA runs, carried out by adopting different
seeds for generation of random numbers.

same GPU strategies were run on a workstation equipped with a 2-Quadcore
Intel Xeon E5472 (3.00 GHz) CPU.

As reported in Chapter 5, a first straightforward parallel implementation,
labeled as WCSI (Whole Cellular Space Implementation) was initially con-
sidered where the CUDA kernels operate on the whole automaton. For a fair
comparison, the sequential version of the same algorithm was used and the
elapsed time achieved by the CPU was 26039 s. Using the adopted GPU
devices, the algorithm was solved with the WCSI approach and a variable
number of simultaneous lava simulations. According to the results shown in
Figure 7.5(a), the GTX 680 achieved the lowest elapsed time of 650,96 s, con-
currently simulating 50 lava events. The gain provided by the parallelisation
in terms of computing time was significant and corresponded to a parallel
speedup of 40 over the used CPU.

The second strategy used is based on the alternative approach in which
the grid of threads is dynamically computed during the simulation in order
to keep low the number of computationally irrelevant threads.Using the ref-
erence CPU, such sequential procedure required 20180 s for the case study
adopted. Figure 7.5(b) shows the corresponding times taken by the parallel
DGI approach as a function of the number of concurrent simulations. As
seen, the GTX 680 achieved the lowest elapsed time of 301,18 s, correspond-
ing to a parallel speedup of 67.
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Figure 7.7: Temporal evolution of average fitness f1 (in red) and f2 (in
green) of whole population. Fitness values were obtained as an average of 10
GA runs, carried out by adopting different seeds for generation of random
numbers.

7.3.2 Single Barrier Approach: experiments and re-
sults

In the Single Barrier Approach (SBA), ten GA runs (based on different ran-
dom seeds) of 100 generation steps each were carried out, each one with
different initial populations. In order to test the effectiveness of this first
version of genetic algorithm realized, the Mts. Silvestri case study, discussed
in Section 7.2 was adopted.

The elapsed time achieved for the ten GA runs, by considering the first
case study, was less than nine hours of computation on a 10 multi-GPU
GTX 680 GPU Kepler Devices Cluster (note that the same experiment, on
a sequential machine, would had lasted more than seven months).

Furthermore, during the running, a Visualization System Software (pre-
sented in Chapter 6), based on OpenGL and C ++ and integrated into Qt
interface, allowed the interactive visualization and analysis phases of the re-
sults. By using the SBA as a preliminary approach, only solutions with two
nodes were considered (|W | = 1), while Z and P were chosen as in Figure
7.2. The cardinality of W (Protection work) and the gene values in which
they are allowed to vary (depending of Z area), define the search space Sr
for the SBA GA:

Sr−SBA = {[Pxmin
, Pxmax ]× [Pymin

, Pymax ]× [(hmin · ng) , (hmax · ng)]}2 (7.8)
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Barrier Length Height Base Volume Inclination

(m) (m) Width(m) (m3) (degrees)
[134, 173, 18][114, 158, 35] 250 26,5 10 66250 143

[135, 178, 8][114, 157, 43] 297 25,5 10 75731 135

[133, 172, 19][115, 155, 37] 247 28 10 69324 137

[113, 158, 45][132, 177, 9] 269 27 10 72549 135

[115, 154, 44][133, 171, 14] 248 29 10 71800 137

[133, 172, 12][115, 155, 42] 248 27 10 66848 137

[114, 159, 40][133, 171, 10] 225 25 10 56180 148

[115, 156, 48][134, 173, 9] 255 28,5 10 72661 138

[134, 173, 8][114, 157, 41] 256 24,5 10 62750 141

[115, 152, 38][134, 172, 18] 276 28 10 77241 134

Table 7.3: Dimensions of the ten best barriers carried out by GA run

Regarding the first case study adopted, the temporal evolution of the f3 fit-
ness is graphically reported in Figure 7.6, in terms of average results over the
ten considered experiments. The study, though preliminary, has produced
quite satisfying results. Among different best individuals generated by the
GA for each seed test (Table 7.3), the best one consists of a barrier with an
average height of 25 m and 225 m in length with an inclination angle of 148o

with respect to the direction of the lava flow. The barrier (row 7 in Table
7.3) completely deviates the flow avoiding that the lava reaches the inhabited
area. The relative elevated height of the barrier is due to the adopted GA
experiment parameter values are also listed in Table 7.3. The related CA
simulation, obtained by adopting the best individual is shown in Figure 7.9.

Figure 7.8: Nodes distribution of the best 100 solutions generated by the
GA. Scale values indicates occurrence of nodes.
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Figure 7.9: SCIARA-fv2 simulation visualization adopting the SBA GA best
solution. As seen, the devised barrier (in blue) completely diverts the lava
flow from the Safety Area (in red)

7.3.2.1 Consideration on the GA dynamics and emergent behav-
iors

In the GA experiments that have been performed, individuals with high fit-
ness evolved rapidly, even if the initial population was randomly generated
and the search space was quite large (Equation 7.8). By analyzing several
individuals evolved in ten different GA executions, similar solutions were
observed. This behavior is due to the presence of problem constraints (e.g.
morphology, lava vent, emission rate, Z and P areas) that lead the GA to
search in a region of the solution space characterized by a so called local opti-
mum. In particular, f1 reaches the minimum value (0) around the twentieth
GA generation and the remaining 80 runs are used by GA for the f2 opti-
mization (cf. Figure 7.7). In any case, the evolutionary process has shown,
in accordance with the opinion of the scientific community (e.g., [6, 72]),
the ineffectiveness of barriers placed perpendicular to the lava flow direction
despite diagonally oriented solutions (130 − 160) (see Table 7.3).

Furthermore, a systematic exploitation of topographical characteristics by
GA, during the evolutionary process, has emerged. To better investigate such
GA emergence behavior, a study of nodes distribution was conducted(Figure
7.8).

By considering the 100 solutions provided by GA, each node was classified
on the basis of the slope proximity calculation, as the average of altitude
differences between node neighborhood cells (radius = 10) and the central
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Figure 7.10: Temporal evolution of average slope proximity values for the
best individuals.

cell. More formally, the function that assigns to each generic node Nij a slope
proximity value is defined as:

spij =

∑|X|
i=1 z̄i − z̄0

|X| (7.9)

where X is the set of cells that identifies the neighborood of the cell i,j and
z̄i ∈ Qz is the topographics altitude (index 0 represents the central cell). As
shown in Figure 7.10, starting from the tenth GA generation, the evolutionary
process has shown an increase in slope proximity values. Therefore, after
the f1 optimization (cf. Figure 7.7), in order to minimize f2, there is a
specific evolutionary temporal phase (i.e., up to the 25th generation) where
the algorithm generates solutions that are located in the proximity of elevated
slopes.

7.3.3 Evolving multiple barrier solutions

The SBA, discussed in the previous paragraph, has produced encouraging
results. However, considering two-nodes barriers is a strong limitation and a
critical aspect of GA implementations that can improve the efficiency of the
final solution is the possibility to provide multi-barrier protection measures.
For these reasons the GA model has been reengineered and two different
strategies have been adopted.

In order to compare the final result provided by GA with the real case,
only the case study regarding the barriers in the uphill Sapienza zone, de-
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scribed in Section 7.2, was taken into account. The first straightforward
implementation is a Evolutionary Greedy Strategy (EGS) based on the iter-
ative execution of the original algorithm (SBA), with the application of di-
mensional constraints to the barriers, until reaching a stop criteria (f1 = 0).
Note that by using EGS, the number of sub-solution that will compose the
final solution is not known a priori. In the second adopted strategy, called
Coevolutionary Cooperative Strategy (CCS), all barriers are encoded in the
genotype and because all the constituents parts of the solution interact with
the GA environment, a mechanism of cooperation between individuals has
been favored.

After a brief description of the main characteristics of the two imple-
mented strategies, experiments and results are presented. Some considera-
tions of the GA dynamics and emergent behaviors are also discussed. This
Chapter terminates with a comparison of efficiency between the two models
and with final comments.

7.3.3.1 Evolutionary Greedy Strategy

The first implemented strategy to generate multi-barrier solution is an Evo-
lutionary Greedy Technic. The number of barriers belonging to the final
solution is implicitly determined on the basis of the genotypes dimensional
constraints and on the number of iterations required to reach the stop crite-
ria. The algorithm operates, at each stage of advancement, on the best single
protection works generated in the previous step and iterates until Safety Zone
Area and simulated event are completely disjointed (f1 = 0).

The strategy approach can be represented by a tree data structure (Figure
7.11), where child nodes denote the best genotypes evolved by using the
parameters (morphological changes) of the parent node. In particular, each
node nij represents the best solution (single barrier) evolved during the run
i with seed j (i is the level of the tree and represents i-th barrier inserted
on the morphology). The vertex V ([i, j], [k,m]) represents the state of the
morphology that depends of the parents nodes for all the previous run. By
considering f ∗2 the temporary best value of f2 (with f1 = 0) reached from
the algorithm and f ij2tot the accumulate fitness value for the node ij, for each
node to process, the algorithm operates as the follows:

• if(f1 > 0.0)


if(f2tot < f ∗2 )→ generates three child nodes

if(f2tot >= f ∗2 )→ terminates





7.3. MORPHOLOGICAL EVOLUTION OF PROTECTIVE WORKS THROUGH PARALLEL
GENETIC ALGORITHMS 107

 f1= 0.5 

 f2= 0.0 

 f1= 0.32 

 f2= 0.11 

 f1= 0.35 

 f2= 0.12 

 f1= 0.29 

 f2= 0.15 

0.0 0.0 0.0 

X 

0.11 0.11 0.11 

 f1= 0.00 

 f2= 0.20 

 f1= 0.10 

 f2= 0.25 

 f1= 0.12 

 f2= 0.10 

 f1= 0.10 

 f2= 0.21 

 f1= 0.00 

 f2= 0.10 

 f1= 0.00 

 f2= 0.31 

 f1= 0.01 

 f2= 0.31 

 f1= 0.05 

 f2= 0.03 

 f1= 0.10 

 f2= 0.21 

X 

f2
*= ∞  

 
f2

*= ∞  

f2
* = 0.22 

 f2 tot= 0.31 

X X 

 f1= 0.00 

 f2= 0.06 

 f1= 0.00 

 f2= 0.03 

 f1= 0.00 

 f2= 0.02 

X 

 f1= 0.00 

 f2= 0.02 

 f1= 0.09 

 f2= 0.08 

 f1= 0.00 

 f2= 0.05 

0.12 0.12 0.12 

X 

 f2 tot= 0.22 

0.15 0.15 0.15 

f2
* = 0.20 

X X X 

 f2 tot= 0.27  f2 tot= 0.24  f2 tot= 0.23 

0.10 0.10 0.10 

X 

 f2 tot= 0.20 

X 

0.03 0.03 0.03 

X 

 f2 tot= 0.23 

X 

 f2 tot= 0.43 

1,0 1,1 1,2 

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 

3,0 3,1 3,2 3,3 3,4 3,5 

W *=  {n1,2 , n2,7 , n3,3} 

B1 

B2 

B3 

0,0 

Figure 7.11: Tree representation of an evolutionary greedy strategy algorithm
run. Each node represents a GA run and, at the end of the process, it
contains and transfers information about the best partial solution evolved to
each children node. The process is iterative and each children node operates
on an updated morphology according to the best solution evolved by the
parent node. When all nodes reach a termination condition (represented by
the “x” label in the figure) the best set of barriers is determined by the path
from the root node to the one with the best f2tot value (red nodes in the
figure).

• if(f1 == 0.0)


if(f2tot < f ∗2 )→ f ∗2 = f2tot, terminates

if(f2tot >= f ∗2 )→ terminates


The algorithm terminates when all the tree nodes are in a termination con-
dition and the best solution is obtained from the set of partial solutions (tree
nodes) of the unique path starting from the root node to the final node with
f2−tot = f ∗2 .

Experiment and results Six EGS trials based on different dimensional
constraints for each barrier were carried out. For each GA run, a population
of 100 individuals and 100 generation steps were considered. The set of
constraints has been chosen on the basis of the results obtained on the single
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Constraints Barrier Length Height Base Volume Inclination

(m) (m) Width(m) (m3) (degrees)

nolimits [193,88,-2] [238,122,13] 564 5.5 10 26700 143

140× 12 [162,93,11] [169,104,7] 130 9 10 10800 122

[236,110,3] [243,112,5] 73 4 10 3200 164

total 14000

120× 12 [173,104,4] [169,93,12] 117 8 10 9600 110

[175,98,10] [174,107,1] 91 5.5 10 5500 180

[245,110,2] [238,111,3] 71 2.5 10 2000 180

total 17100

100× 12 [160,93,10] [166,101,7] 100 8.5 10 7650 127

[211,109,12] [209,105,3] 45 7.5 10 3750 117

[237,111,3] [246,110,2] 91 2.5 10 2500 174

total 13900

80× 12 [162,99,8] [157,93,3] 78 5.5 10 3850 130

[212,108,6] [205,105,3] 76 4.5 10 3600 157

[172,98,0] [173,97,5] 14 2.5 10 500 135

[236,110,5] [243,112,5] 73 5.0 10 4000 164

total 11950

60× 12 [170,93,4] [173,96,1] 42 2.5 10 1000 135

[213,104,12] [214,109,11] 51 11.5 10 6900 101

[242,113,5] [237,110,10] 58 7.5 10 4500 149

total 12400

Table 7.4: Dimensions of the best barriers evolved after the EGS GA runs

barrier approach in such a way that there exists no feasible solution consisting
of a single barrier.

Even if at the end of the computation, a multi-barrier solution is provided
by the algorithm, because of its iterative strategy, the search space for EGS
is:

Sr−EGS =
n∑
i=1

{[Pxmin
, Pxmax ]× [Pymin

, Pymax ]× [(hmin · ng) , (hmax · ng)]}2

(7.10)

where n is the three depth reached from the EGS algorithm to find the best
solution.

Final results are summarized in Table 7.4. The best final solution among
six different runs, obtained by using a max length of 80 m and a max height
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Figure 7.12: f2 fitness value in the variation of dimensional constraints asso-
ciated to the single barrier with EGS.

of 12 m for each barrier, consists of four different barriers that completely
deviate the flow so that the lava avoids reaching the inhabited area. Figure
7.12 shows different f2 build cost values, by varying dimensional constraint
for each single barrier.

Considerations

The use of the greedy strategy, in combination with the application of dimen-
sional constraints to genotypes, has allowed the generation of more efficient
results than those of the first algorithm version (SBS) based on single bar-
rier strategy. In particular, all the solutions provided by EGS were better
than the original single-barrier version and in the best case (see Table 7.4) the
build cost of the best solution was 123% lower than in the single-barrier case.
As showed in Figure 7.12, in general, the total volume of construction used to
divert the lava flows from the area to be protected is inversely proportional
to the dimensional constraints associated to the single barrier. On the other
hand, the algorithm is very computationally expensive and decreases the di-
mensional constraints for the single barriers implies that the algorithm to
terminate reaches a greater depth in the computation tree. Since to process
n levels with EGS might require

∑n
i=1 x

n different runs, where x is the num-
ber of seed tests, the total execution time grows exponentially with the graph
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Figure 7.13: Example of n-point crossover beetween two genotypes. Two
cutting points are choosen randomly and corresponding portions of parents
recombined in order to obtain two offspring.

depth and the algorithm is applicable only for a limited set of constraints.

Another limitation of this approach is linked with the final solution op-
timality. In fact, this strategy does not guarantee that at the end of the
procedure the optimal solution is found. It is worth to note that greedy
algorithms make a series of myopic decisions, each of which, alone, solves
some sub-problems optimally, but that together may not be optimal for the
problem as a whole. For these reasons, a further strategy was developed,
based on genotype multi-barrier encoding.

7.3.3.2 Cooperative Co-evolutionary Strategy

One of the weaknesses of the EGS approach lies in the evaluation of each solu-
tion separately. Some improvement might be obtained by introducing several
barriers directly encoded in the genotype. However, this is made difficult by
the fact that each sub-solution encoded in the genotype evolves without pro-
moting an efficient cooperation with the other barriers. In fact, based on
the experiments carried out during the first tests, the GA evolution focuses
on the expansion of a single substructure making the final result inefficient.
For these reasons, an alternative strategy was developed by introducing some
modifications to the original approach.

The introduction of constraints related to the size of protective structures
has allowed, however, a forced collaboration between the candidate solutions,
thus avoiding the competitiveness between them. Moreover, to promote co-
evolution and avoid greediness phenomenona, a lifecycle value has been asso-
ciated to each barrier and it represents the number of consecutive generations
in which a solution is unable to divert lava flow. Barriers with the lifecycle
value greater than the threshold are regenerated. As shown in Figure 7.14,
this strategy avoids the survival of members within the genotype, which are
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Figure 7.14: Temporal evolution of the average lifecycle value of whole pop-
ulation for best seed test evolved with the CCS strategy by adopting the
lifecycle threshold parameter = 3 (a) and the same run by adopting no limit
for the lifecycle threshold parameter (b).

quite ineffective for the mitigation lava flow purpose.

To ensure a better exploration of the search space and to avoid a fast
convergence of solutions to local optima, with CCS, a n point crossover op-
erator (see Figure 7.13) has been introduced. Two parent individuals are
randomly chosen from the mating pool and two different cutting points for
each parents are selected. Cut points always coincide with the first gene of a
sub-solution and after the selection portions of the sub-solution chosen in the
genotype, they are exchanged. The crossover operator is applied according
to a prefixed probability, pc, for each sub-solution coded in the genotype.
Figure 7.13 shows an example of crossover between two genotypes.

Experiments and results

Experiments were carried out by varying from the number of barriers adopted
to their different dimensional constraints. For each GA run a population of
100 individuals and 500 generation steps were considered. By considering
the CCS, the search space grows rapidly and depends on the cardinality of
the final solution and the dimensional constraints. Equation 7.11 shows the
search space without taking into account barriers length constraints.
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m3 ×Barrier 2 Barriers 3 Barriers 4 Barriers 5 Barriers
40000 NA 12100 NA NA
60000 NA 8650 13320 10725
80000 13750 12030 10411 8150
100000 12283 12977 13689 13164
120000 16250 11742 16042 12372
140000 15849 13241 17526 17187
160000 27162 16887 19400 22065
180000 26354 19553 18423 24314
200000 24354 16639 17416 24388
no limits NA 66000 82733 117333

Table 7.5: Total volume (in average on 10 seed tests) used to protect the
Safety Zone, by varying number of barriers into the final solution and dimen-
sional constraint for each single barrier.

Sr−CCS = {[Pxmin
, Pxmax ]× [Pymin

, Pymax ]× [(nmin−h) , (nmax−h)]}2|W |

(7.11)

For example, regarding the specific case study adopted, by using 5 barriers
encoded into the genotype and a prefixed height limit for each barrier, the
search space is as follows:

Sr−CCS = {[164, 316]× [0, 169]× [(−20) , (20)]}2×5 ∈ N60 (7.12)

The final results are summarized in the Table 7.5. The Maximum volume
available (in m3) for all the protection works belonging to the final solution
can vary in the range [40000-200000]. The number of barriers encoded into
genotype chosen is from 2 up to 5. The best final solution, among several
runs, was obtained by using 4 barriers, each of them with a size limitation
of 125m of max length and 20m of max height. The best solution provided
by CCS is extremely efficient and, in particular, the total volume used to
deviate the flow avoiding that the lava reaches the inhabited area is less
than 72% respect on the EGS and 284% respect on the SBS. Regarding
the experiment in which the most efficient solution evolved, the temporal
evolution of lifecycle values is graphically reported in Figure 7.14. Figure
7.15 shows different results, by only considering the f2 build cost (in average
on 10 seed tests) fitness function obtained by varying dimensional constraint
for each single barrier.
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Figure 7.15: f2 build cost fitness function, by varying dimensional constraint
for each single barrier.

Considerations

By analysing the graph 7.15, it emerges that for every different number of
barriers, there is a variation range of total available volume in which the final
fitness is efficient and outside this range, the f2 value rapidly grows. This is
due to the fact that in these regions the presence of a local minimum is very
high. In fact, for all the values that exceed this range, solutions are ineffi-
cient because they have too much freedom to evolve, which means that the
cooperation is not applicable because of the lack of co-evolution. For those
values above, the mutation range can vary (see the mutation operator 7.4)
in a very small radius which is a limitation for the search space exploration.

Although the more barriers used, the more efficient the final solution
should be, there is a limit of barriers encoded in the genotype due to the
fact that it implies the presence of a larger number of schemas (huge search
space) and the approximation provided by the GA becomes inaccurate.

If Vtot(n), n ∈ N is considered as the total volume used to succefully
protect the Protection Area by using exactly n barriers, Vtot(n) - Vtot(n+ 1)
is the benefit, in terms of final solution efficiency, due to the use of one more
barrier than n with the same available total volume used. So, Vtot(1) - V (n∗)
is the efficiency contributor, to the final solution, given by the cooperation
of several barriers, where n∗ represents the number of barriers used to reach
the best solution. The average total volume saving, by adding a barrier to
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Figure 7.16: SCIARA-fv2 simulations adopting the best solution evolved with
three different stategies (Single Barrier Approach (a), Evolutionary Greedy
Strategy (b) and Coevolutionary Cooperative Strategy (c)). Lookup table
refers to the lava thickness with a range between 0 m3 (white) to 20 (blue)
m3.

the final solution is:∑n
i=1 Vtot(i)− Vtot(i+ 1)

n
=
Vtot(1)− Vtot(n)

n
(7.13)

and by considering the results obtained from the experiments it is:

(26700− 8150)

5
= 3710 (7.14)

This means that, on average, the introduction of a new barrier to the final
solution brings an advantage in terms of efficiency of 3710 m3 of construction.
The total savings volume, by adopting the best multi-barriers algorithm than
the single barrier approach is:

Vtot(1)− Vtot(4) = (26700− 6950) = 19746 (7.15)

Following the studies carried out for the first experiments, regarding the
exploitation of morphological characteristic by GA, it was investigated when
cooperation can play a very important role in leading the simulation towards
to efficient solutions.

The possibility to manage the final solution by composing several barriers,
essentially offers two advantages: the ability to generate multi-node barriers
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Figure 7.17: Total CCS volume solutions variation on the vary of number
of barriers adopted to codify the final solution with the cooperative strategy
using Mt. Etna morphology (a) and the inclined plane ideal case (b).

and the ability to create routes to divert the lava. The hypothesis is that
cooperation between barriers is more important if the morphology can be
exploited, which is possible if within the Protection Measures Zone a set of
disjoint clusters of high slope proximity values can be found. This is because
they can mark hypothetical lava paths and the barriers can be used to connect
them, thus define and complete it.

To test this hypothesis, the numeric model input was modified by intro-
ducing a particular case of morphology, where for each CA cell the slope
proximity value is null: an inclined plane. By considering the function 7.9
and an inclined plane (any degree of inclination), for each CA cell the average
of altitude differences between node neighborhood cells and the central one
is zero.

The same set of experiments were carried out for the inclined plane tests.
The best final solution, among several runs, was obtained by using 1 barrier
without size limitations. The final scenario, in this case, was completely
different and results showed that there is no benefit, in terms of final solution
efficiency, in using multi-barrier solutions. This is due to the fact that the
morphology is not exploitable because of the total absence of clusters of cells
with high slope proximity value. In this case, the average total volume saving
value by adding a barrier to the final solution confirms the initial hypothesis:

Vtot(1)− Vtot(n)

n
=

(2609− 5738)

5
= −625 < 0 (7.16)

This means, as also confirmed in results reported in Figure 7.17(b) that,
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on average, that there is no gain in introducing a new barrier to the final
solution when the morphology is not exploitable by the GA. In other words,
the principle of cooperation is useless in this case.

7.3.4 Qualitative analisys of the results

Results in Figure 7.17(a) shows that instances of CCS algorithm that encode
more barriers in the genotype produce better results than those than encode
less.

In order to evaluate which of the strategies best fits into the problem to
optimize earth barriers construction to divert lava flows for the 2001 Nicolosi
case study, extensive experiments have been performed. In particular, results
obtained in twenty independents executions (seed tests) for the four variants
of the CCS algorithm have been analyzed by focusing on the best fitness
value reached by the search process of any GA run. The Kruskal-Wallis
non-parametric statistical test [103] with a significance of 95% has been used
(p-value < 0.05). The purpose of this test is to verify whether the four inde-
pendent samples (CCS2, CCS3, CSS4, CCS5) are from the same population.
When the Kruskal-Wallis test leads to significant differences in the distri-
butions then at least one of the samples is different from the other samples
and, for this reason, multiple comparisons test to determine which pairs of
strategies are signicantly different and which are not, have performed.

The p-value returned by the Kruskal-Wallis test is 0.0075, for the data
obtained with the CCS algorithm with number of barriers n = 2, 3, 4 and
5. So, the null-hypothesis is rejected and it is possible to conclude that
the Kruskal-Wallis test confirmed that at least one strategy is significantly
different.

Figure 7.18 shows the behaviour of the best fitness for each algorithm in-
stance by varing the adopted number of barriers encoded into the genotype.
Algorithms are sorted according to the median of the distribution (horiz-
zontal red line). The SBA instance obtained the worst results, sign that
this version does not exploit the search space sufficiently. This is also due, as
discussed before, to the limitation of the solution that the algorithm can gen-
erate (only two nodes). On the contrary, the instances of algorithm that use
the maximum number of protection work (in this case 5) (C05) find the lower
values. This is because, even if the search space become huge, the algorithm
can better exploit the morphology by using more protection measures.

As it can be seen in the Fiure 7.18, the values of the medians decrease
inversely proportionally with the number of barriers adopted.

Since significative difference between ranks emerged, the Bonferroni mul-
tiple comparison test has been performed, in order to get information about
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Figure 7.18: Best fitness obtained by each algorithm by varing the number
of barriers n= 1(SBA), 2,3,4 and 5.

which pairs of means are significantly different, and which are not.

A conservative familywise significance threshold of pT < 0.005 (i.e., pT
= 0.05/10 where 10 is the number of total comparisons by considering all
the possible combinations) was applied and all pairwise comparisons were
performed. Each comparison is considered statistically significant if the p-
value obtained is less than or equal to the pT value.

As shown in Table 7.6, in the results of multiple tests, the SBA distribu-
tion has statistically significant different with respect to all other algorithms.
The results of multicompare test also show a relevant difference between

SBA CCS2 CCS3 CCS4 CCS5

SBA - - - - -
CCS2 0.0021* - - - -
CCS3 0.0021* 0.6456 - - -
CCS4 0.0021* 0.0850 0.1441 - -
CCS5 0.0020* 0.0031* 0.0087 0.0935 -

Table 7.6: Table of pairwise comparisons beetween different strategies
adopted. Values with * represent that the comparison is considered sta-
tistically significant
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CCS2 and CCS5; the rest of versions have similar behavior.
In particular, high p-values were encoutered by comparing algorithm that

use a similar number of barriers (e.g. CCS2-CCS3). In contrast, when the
difference between encoded barriers by two different versions increases, the
p-value decreases (e.g. CCS2-CCS5).

7.3.5 Conclusions

In this Chapter, a novel approach for devising protective measures to di-
vert lava flows has been presented. Starting from the problem of the high
computational complexity of the GA algorithm, a library was developed for
executing a large number of concurrent lava simulations using GPGPU. The
parallel speedups attained through the proposed approaches and by consid-
ering GPGPU hardware, were indeed significant. In fact, the adoption of
PGAs permitted to perform, in reasonable times, a greater number of tests
shortening the execution by a factor of 67. In addition to the GA algo-
rithm acceleration implementation, an interaction visualization system was
also developed for the analysis phases of the results.

A preliminary release of the algorithm called SBA, based on two nodes
solutions, was initially considered and evaluated on the basis of two fitness
functions. The first fitness function guarantees the goodness of the solution
in terms of security, the second one minimizes the environmental impact.

First observations of the GA results permitted to conjecture the presence
of local optima in the search space, probably due to problem constraints. To
better investigate GA dynamic characteristics, a study of nodes distribution
was also conducted and a systematic exploitation of morphological character-
istics by GA during the evolutionary process emerged. PGAs experiments,
carried out by considering the Nicolosi case-study, demonstrated that arti-
ficial barriers can successfully change the direction of lava flow in order to
protect predefined point of interests. In particular, by performing extensive
experiments, simulations demonstrated that protective works are more effec-
tive when placed nearly parallel to the flow direction, while a barrier placed
perpendicular to the flow direction can only stop the flux temporarily, ul-
timately allowing the solidified crust to accumulate, causing the following
mass to go over the barrier.

Because of the strong limitation related to single barrier solutions pro-
vided by the SBA, a second GA strategy was implemented in order to improve
the efficiency of the final solution by introducing multi-barrier protection
measures. An Evolutionary Greedy Strategy (EGS) was introducted and
evaluated. Based on the iterative execution of the original algorithm (SBA),
the use of the greedy strategy, in combination with the application of dimen-
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Figure 7.19: Comparison between earthworks built during the 2001 Mt.Etna
event (in black) and those provided by the Genetic Algorithms (in red) to
divert lava flows.

sional constraints to genotypes, has allowed the generation of more efficient
results than those of the first algorithm version (SBS) based on single barrier
strategy. However, this strategy does not guarantee that at the end of the
procedure the optimal solution is found because of the limitation related to
the Greedy Algorithms and because of no presence of coevolution beetween
the GA individuals.

For these reasons, an alternative approach (called Coevolutionary Coop-
erative Strategy (CCS)) has been introducted where all barriers are encoded
in the genotype and because all the constituents parts of the solution interact
with the GA environment, a mechanism of cooperation between individuals
has been favored.

Solutions provided by CCS were extremely efficient and, in particular,
the total volume used to deviate the ow avoiding that the lava reaches the
inhabited area was less than 72% respect on the EGS and 284% respect on
the SBA. SCIARA-fv2 simulations by adopting the best solutions provided
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by the three different strategies are shown in Figure 7.16.
It is also worth to note that the best set of interventions provided by CCS

(a set of 5 protection barriers with a maximum length of 80 m, average height
of 3, 5m, base width of 10 m and total volume of 6250 m3) is approximately
eighteen times more efficient than the one applied, consisting of thirteen
earthen barriers, to divert the lava flow away from the facilities during the
2001 Mt. Etna eruption. Figure 7.19 show the differences and similarities
between earthworks built during the real event and those provided by the
genetic algorithm.

Furthermore, inspired by the slope proximy study conducted for the SBA,
experiments showed also when cooperation beetween subsolutions can play a
very important role in leading the simulation towards to efficient solutions.
In particular, a GA emergent behaviour during the evolutionary process,
has emerged and results showed that cooperation between barriers is more
important if the morphology can be exploited, which is possible if within the
Protection Measures Zone a set of disjoint clusters of high slope proximity
values can be found.

Finally, the present study has produced extremely positive results and
simulations have demonstrated that GAs can represent a valid tool to de-
termine protection works construction in order to mitigate the lava flows
risk.



Chapter 8

Conclusions

This thesis has contributed to defining a novel approach for the volcanic risk
mitigation, by devising protective measures to divert lava flows. The context
in which this work is located is multidisciplinary because the implemented
decision support system has required the application of techniques belong-
ing to different branches such as Computer Science, Artificial Intelligence,
Physics and Geology. However, the main contribution in these contexts, was
particularly significant during the phase of parallelization, real-time visual-
ization and optimization, through genetic algorithms, of the adopted CA
model.

The model adopted to evaluate the intermediate choices of the genetic
algorithm was the latest release fv2 of the SCIARA CA model for simulating
lava flows. SCIARA-fv2 (presented in Chapter 4) is a reliable CCA lava flow
model, successfully applied to the simulation of many real events that have
occurred on Mt.Etna. This release considers a Bingham-like rheology and
introduces a square tessellation of the cellular space instead of the previously
adopted hexagonal one, which was considered in the earlier versions to limit
the effect of the anisotropic flow direction problem. A preliminary calibration
also allowed for the reproduction of a real case of study, namely the 2001 and
2006 lava flows at Mt Etna (Italy), with a great level of accuracy. In effect,
a high degree of overlapping between the real and the simulated events and
a perfect fitting, in terms of run-out, were obtained.

The reduction of the overall GA execution time, due to parallel computing
adoption, allowed dynamics and emergent behaviours of the GA to be better
understood by running several seed tests. To evaluate a given GA individual
an entire CA simulation has to be performed and, depending on the adopted
computer framework, such an operation may require several hours or even
months. Starting from the problem of the high computational complexity
of the GA algorithm fitness evaluation, a CPU/GPU library was developed

121



122 8. CONCLUSIONS

for executing a large number of concurrent lava simulations. As discussed in
Chapter 5, different strategies were implemented and evaluated. The most
efficient one, based on a dynamical CUDA kernel grid, enabled the use of a
high percentage of computationally active threads and for this reason was
adopted to implement a master-slave parallel genetic algorithm in which
the CPU (Master) executes the GA steps, while GPU cores evaluate the
individuals fitness. The parallel speedups, attained through the proposed
approaches and considering GPGPU hardware, were indeed significant. The
adoption of PGAs permitted a greater number of tests to be performed in
reasonable times, shortening the execution by a factor of 67. The parallel
acceleration of both single and multiple CA based simulations was the object
of several publications in proceedings of international conferences [67, 38] and
international journals [42, 41, 55].

Understanding the meaning of huge amounts of numerical data produced
by the GA without a valid tool would be impossible. In addition to the GA
algorithm acceleration implementation, an interaction visualisation system
was also developed for the analysis phases of the results and to better under-
stand GA dynamics and emergent behaviors. Furthermore, the importance
of this tool lies in the possibility for the user to interact with the GA model
during the evolution process in order to eventually modify candidate solu-
tions by promoting the fittest ones. The Interactive Visualization System
for Lava Flows Cellular Automata Simulations using CUDA, discussed in
Chapter 6, was presented at the GPGPU Technology Conference [65], the
NVIDIA’s annual research event.

Since GAs, as discussed in Chapter 2, have been applied with success
in Geomorphology and in particular in the recent past for optimizing CA
models, in this work GAs were adopted as an optimization method, in con-
juction with the SCIARA-fv2 CA model for the morphological evolution of
protective works to control lava flows. In order to model the GA, two fitness
functions were considered. The first one, f1, considers the effectiveness of the
protection measure and is based on the areal comparison between the simu-
lated event and the zone which delimitates the area that has to be protected
by the lava flow. The second one, f2, considers the efficiency of the solution
provided by the GA because it minimizes the total volume of the protection
works in order to reduce intervention costs and environmental impact.

A preliminary release of the algorithm called SBA, based on two nodes so-
lutions, was initially considered. First observations of the GA results permit-
ted to conjecture the presence of local optima in the search space, probably
due to problem constraints. To better investigate GA dynamic character-
istics, a study of nodes distribution was also conducted and a systematic
exploitation of morphological characteristics by GA during the evolutionary
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process emerged. PGAs experiments, carried out by considering the 2001 Ni-
colosi case-study, demonstrated that artificial barriers can successfully change
the direction of lava flow in order to protect predefined point of interests. In
particular, by performing extensive experiments, simulations demonstrated
that protective works are more effective when placed nearly parallel to the
flow direction, while a barrier placed perpendicular to the flow direction can
only stop the flux temporarily, ultimately allowing for the solidified crust to
accumulate, causing the following mass to go over the barrier.

Due to the strong limitation related to single barrier solutions provided
by the SBA, a second GA strategy was implemented by introducing multi-
barrier protection measures in order to improve the efficiency of the final
solution. An Evolutionary Greedy Strategy (GES) was introduced and eval-
uated. Based on the iterative execution of the original algorithm (SBA), in
combination with the application of dimensional constraints to the barriers
until reaching a stop criteria, the use of the greedy strategy has allowed the
generation of more efficient results than those of the first algorithm version
(SBA). However, this strategy does not guarantee that at the end of the
procedure the optimal solution is found because of the limitation related to
the Greedy Algorithms and because of no presence of coevolution between
the GA individuals.

For these reasons, an alternative approach, defined as Coevolutionary
Cooperative Strategy (CCS), has been introduced where all barriers are en-
coded in the genotype and, because all the constituents parts of the solution
interact with the GA environment, a mechanism of cooperation between indi-
viduals has been favored. Solutions provided by CCS were extremely efficient
and, in particular, the total volume used to deviate the flow thus avoiding
that the lava reaches the inhabited area was less than 72% respect to the
EGS and 284% respect to the SBA. It is also worth to note that the best
set of interventions provided by CCS was approximately eighteen times more
efficient than the one applied to divert the lava flow away from the facilities
during the 2001 Mt.Etna eruption.

Furthermore, inspired by the slope proximity study conducted for the
SBA, experiments showed also when cooperation between subsolutions can
play a very important role in leading the simulation towards to efficient
solutions. In particular, a GA emergent behaviour during the evolutionary
process, has emerged and results showed that cooperation between barriers
is more important if the morphology can be exploited, which is possible if
within the Protection Measures Zone a set of disjoint clusters of high slope
proximity values can be found.

The present study has produced extremely positive results and simula-
tions have demonstrated that GAs can represent a valid tool to determine
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protection works construction in order to mitigate the lava flows risk.
The validity of the obtained results was also confirmed by the presenta-

tion of the methodology for mitigation of lava flow invasion hazard proposed
in this thesis as refereed publication in International Conferences [66] and
abstracts [112].

Because no standard optimization methodology to slow down and divert
lava flows exist today, this methodology, if it is possible to determine the
effectiveness on other case studies, can be adopted as a decision support
system by applying interventions both during a lava episode and after a
volcano risk assessment. Future work regarding the possible extensions of
model parameters will consider the introduction of lava cooling by water
jets.

By considering the hazard evaluation context, an important application
of the methodology could be to consider as an event to be mitigated a grid
of hypothetical vents defined as the source for the simulations to be carried
out. In this case, protection measures provided by the GA can represent a
preventive solution to assess the effect of possible human interventions.

Furthermore, it will be very important to evaluate the extension of this
method to other different complex natural phenomena such as a debris flow
models.
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