Please use this identifier to cite or link to this item: https://hdl.handle.net/10955/577
Title: Post-buckling behaviour of transversely stiffened plate girders
Authors: Presta, Francesco
Aristodemo, Maurizio
Turco, Emilio
Keywords: Meccanica non lineare
Dinamica
Travi metalliche
Issue Date: 28-May-2014
Series/Report no.: ICAR/08;
Abstract: Many investigations have been carried out to date into the behaviour of transversely stiffened web panels in bending and shear and many different theories have been proposed. Different code rules have been developed based on these theories. The British steel bridge code, BS 5400 Part 3, based its design rules for transverse stiffeners on the work of Rockey, while early drafts of Eurocode prEN 1993-1-5 were based on the work of Höglund. The former's tension field theory places a much greater demand on stiffener strength than does the latter's rotated stress field theory. Due to a lack of European agreement, EN 1993-1-5 was modified late on its drafting to include a stiffener force criterion more closely aligned to that in BS 5400 Part 3. The rules for stiffener design in EN 1993-1-5 are thus no longer consistent with the rotated stress field theory and lead to a greater axial force acting in the stiffener. The rules for the design of the web panels themselves in shear however remain based on Höglund's rotated stress field theory, creating an inconsistency. Recent investigations have suggested that the rules in BS 5400 Part 3 and, to a lesser extent, in the current version of EN 1993-1-5 can be unduly pessimistic. This thesis investigates the behaviour of transversely stiffened plate girders in bending and shear using non-linear finite element analyses. It considers slender symmetrical steel girders with and without axial force and also steel-concrete composite plate girders (which are therefore asymmetric). It discusses the observed web post-buckling behaviour, compares it with the predictions of other current theories and recommends modified design rules. It includes investigation into whether a stiffness-only approach to stiffener design can be justified, rather than a combined stiffness and force approach. The shear-moment interaction behaviour of the girders as a whole are also investigated a
Description: Dottorato di Ricerca in Meccanica Computazionale CICLO XIX SSD,a.a.2007
URI: http://hdl.handle.net/10955/577
Appears in Collections:Dipartimento di Ingegneria Civile - Tesi di Dottorato

Files in This Item:
File Description SizeFormat 
Tesi Francesco Presta.pdf4,05 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.