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Introduction

A fundamental assumption of the adiabatic theory is that magnetic field variations
are negligible within a particle gyroperiod. This is generally not the case in the
presence of a sharp field reversal, like for the most part of the Earth’s magneto-
tail or near reconnection sites (Speiser, 1968; Sonnerup, 1971; Gray & Lee, 1982;
Delcourt et al., 1994). The condition for violation of the adiabatic invariant is that
particle sees either temporal field variations on the time scale of its gyroperiod or
spatial field variations on the order of its gyroradius. In the Earth’s magnetotail, the
field line curvature may be so strong that the Larmor radii of thermal ions (≈ 1−10

keV) exceed the curvature radius many times. Ions, as well as other particles, are
not magnetized anymore and this can lead to interesting behaviors.

Motivated by the many observations of ionospheric oxygen, O+, in the
Earth’s magnetotail (Sauvaud et al., 2004; Wilber et al. , 2004; Kistler et al., 2005;
Cai et al., 2008; Echer et al., 2008), we have considered the dynamics of protons
and oxygen ions in the magnetotail current sheet, both in the presence and in the
absence of magnetic turbulence. Cluster observations in the near-Earth’s magne-
totail have shown that sometimes the current sheet is bifurcated, i.e., it is divided
in two layers (Sergeev et al., 1993; Runov et al., 2003b). In order to reproduce this
bifurcation, observed in the current profiles, the ion motion has been studied by test
particle simulations, where particles are injected in a magnetic quasi-neutral sheet
with superimposed magnetic fluctuations. Indeed, the magnetotail current sheet
is modeled as a magnetic field reversal with a normal magnetic field component,
Bn, plus a three-dimensional spectrum of magnetic fluctuations, δB, which repre-
sents the observed magnetic turbulence. The dawn-dusk electric field, Ey, is also
included. Test particle simulations are performed using different values of δB and
Ey for the two different species of particles injected, O+ ions and protons. Several
runs have been made in order to understand the differences between the proton
and the oxygen behavior, with emphasis of the possibility to obtain a bifurcated
current sheet. When protons are injected in the simulation box, a clear bifurcation
of the current profile is obtained for turbulence levels δB/B0 ≥ 0.3 (Greco et al.,
2002), where B0 is the constant magnetic field in the magnetospheric lobes. Con-
versely, one of the most intriguing results concerning the oxygen behavior is the
appearance of a double hump in the current profile both for the case of no magnetic
turbulence, δB/B0 = 0.0, and for relatively high levels of magnetic fluctuations,
δB/B0 ≥ 0.4. We showed that this effect is essentially related to the non-adiabatic
motion of oxygen ions during their interaction with the current sheet (Dalena et al.,
2010). Indeed we found that, in absence of magnetic fluctuations, δB/B0=0.0, the
distance between the two peaks in the current profiles is of the same order of the
typical excursion in z observed in the oxygen ions trajectories.

In a more general context, we further investigated the conservation of charged
particle magnetic moment, µ, in presence of turbulent magnetic fields. From the
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particle orbit theory, for slow temporal and spatial magnetic field variations (i.e.
if their characteristic length and time scales are greater than the particle orbit
diameter and the time spent by a particle to execute one orbit, respectively), the
magnetic moment, defined as µ = v⊥2/B, averaged over the particle gyroperiod,
is an adiabatic invariant and remains constant during particle motion. But in the
presence of well developed magnetic turbulence, µ might undergo rapid variations
and in any case can no longer be expected to be constant. Of course, this fact could
influence particle acceleration and could have a considerable implications in many
astrophysical problems, such as coronal heating, cosmic ray transport or temperature
anisotropies in the solar wind.

In order to reproduce and to extend some of the result obtained by
Karimabadi et al. (1992), we started to study the resonant interaction between ions
and a single parallel propagating electromagnetic wave, to understand in this very
simple case the limit for magnetic moment conservation. During the interaction with
a single finite amplitude fluctuation, a resonant particle undergoes a finite amplitude
nonlinear oscillation, given by half peak-to-peak difference in the particle parallel
velocity component, the so-called trapping width, ∆v‖. The period of this oscillation
is the so-called bounce time, τb = 1/ωb, where ωb is the bounce or trapped frequency.
We specialized the expressions for ∆v‖ and ωb, given by Karimabadi et al. (1992),
in the case of a single circularly polarized wave and we wrote a similar expression
for the magnetic moment trapping width, ∆µ (Dalena et al 1., in prep.). Finally, we
studied the behavior of many particles interacting with a broad band slab spectrum.
For this case we analyzed the diffusion coefficients and the distribution function, f ,
of particles pitch angle, α, magnetic moment, µ, and parallel position, z. We found
that the behavior of magnetic moment is strictly related to pitch angle behavior for
a low level of magnetic fluctuation, i.e., δB/B0 = 0.001, 0.01 (where, in this case,
B0 is the steady, uniform, background magnetic field). It undergoes the same finite
amplitude nonlinear oscillation during the interaction with a single finite amplitude
fluctuation and its distribution half-width is directly related to pitch angle distri-
bution. When stochasticity arises (as a consequence of overlapping resonances in
the interaction with a single wave or as an effect of the perturbation due to the
neighboring uncorrelated waves in the case of a turbulent spectrum), its effect on
pitch angle is the isotropization of the distribution function. This is a transient
regime during which magnetic moment exhibits a one-sided long-tail distribution
and starts to be influenced by the onset of spatial parallel diffusion. When f(α)

completely isotropizes, spatial diffusion sets in and f(µ) behavior is closely related to
the sampling of varying magnetic field strength associated with that spatial diffusion
(Dalena et al 1., in prep.).

In addition, using the analytical result for the trapping width in velocity space
and for the bounce frequency, it is shown how the quasilinear diffusion coefficient
can be written in a physically illuminating form (Mace et al., in prep.). The con-
cept of an effective trapping width in velocity space for the turbulence modified
resonance structure is introduced. It is shown how this effective resonance width
implies a condition on the density of wavemodes in Fourier space, in the vicinity of
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the resonant wavenumber. The implications of this condition for simulations incor-
porating discrete fields is discussed in detail and examples of simulations violating
this condition are presented.

This thesis is organized according to the research line followed during the three
PhD years:

• In Chapter 1 we study oxygen and proton motion in a Harris-like current
sheet in the Earth’s magnetotail, paying attention to the non-adiabaticity
contribution in the formation of bifurcated current sheet (Dalena et al., 2010).

• Chapter 2 is a brief review of the basic theories associated with the conserva-
tion of magnetic moment, such as single particle motion in varying magnetic
field, wave-particle interaction, general view about diffusion, chaotic behavior
in quasi-linear approximation and resonance overlapping.

• In Chapter 3 the magnetic field model and the basic equation used to study
the magnetic moment conservation, with direct application to the solar wind
case, are described.

• In Chapter 4 the results concerning magnetic moment conservation during
the interaction between particles and one circularly polarized electromagnetic
wave, as well as a broad band slab turbulent spectrum, are shown (Dalena et

al 1., in prep.).

• In Chapter 4.2, the main conclusion are given.

• Appendix A is related with the work about oxygen ions motion and their con-
tribution in the formation of bifurcated current sheet. It contains a description
of the spectrum and the velocity injection used in the study.

• Appendix B is related with the second part of the thesis. It contains the
accuracy test of the new code used during the research, some of the results
obtains in the study of the particle interaction with two waves and a slab
spectrum, valid as additional test of the code (Dalena et al 2., in prep.), and,
finally, some discussions about velocity space diffusion and the discretization
of the field (Mace et al., in prep.).





Chapter 1

Non-adiabatic motion in the

near-Earth magnetotail

1.1 Introduction: Oxygen ions and bifurcated current

sheets

The magnetotail current sheet, which separates the northern from the southern
lobe, is one of the key regions of magnetospheric physics. In the simplest 1-D ap-
proximation, it may be described by the Harris solution, an equilibrium solution of
the Vlasov equation, in which the current density maximum is near the center of
the sheet, z = 0, where the magnetic field is equal to zero. Although spacecraft
observations confirmed the Harris model as a zero-order description of the current
sheet, later studies and observations by spacecraft revealed a more complex struc-
ture. The observed current sheets can be divided into three different classes, as
shown in Figure 1.1: central sheets (type A), with a single peak localized at the
center of the sheet, asymmetric off-center current sheets (type B), with the current
density maximum shifted from the equatorial plane, bifurcated current sheets (type
C), with two off-equatorial maxima of the current density and local minimum of
the current density between them. Previously, current density profiles with a dou-
ble peak were observed in the near-Earth’s tail by ISEE 1 and 2 (Sergeev et al.,
1993) and were deduced by a statistical analysis of Geotail data in the distant tail
(Hoshino et al., 1996). More recently, bifurcated current sheets have been reported
with Cluster data at 20 RE downtail(Nakamura et al., 2002; Runov et al., 2003b).
In some of the analyzed events, the formation of the current double layer was associ-
ated with magnetic reconnection, as shown by Runov et al. (2003a) and Asano et al.

(2004). Observations of 29 August 2001 and 26 September 2001, analyzed respec-
tively by Runov et al. (2004) and Sergeev et al. (2003), reported on a bifurcated
current sheet during apparent flapping motion of the plasma sheet, that lasted for
15 min. The authors concluded that the bifurcation was not associated with recon-
nection process but was the result of an aging process of a thin current sheet, in
which non-adiabatic motion of ions results in a weaker current in the central plasma
sheet, as demonstrated theoretically by Zelenyi et al. (2002). However, the physical
origin of bifurcated current sheets remain controversial.

Contemporary to the observations, many theoretical models have been proposed.
Zelenyi et al. (2002, 2003) considered the structure of a thin current sheet in pres-
ence of non-adiabatic particles, which reduces the current at the center of the current
sheet and the bifurcation has scale size of an ion gyroradius (hundreds of kilometers
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in the magnetotail). Sitnov et al. (2003) obtained bifurcated current sheets in the
case of ion temperature anisotropy, T⊥ > T‖, (where T⊥(T‖) is the ion temperature
perpendicular (parallel) to the magnetic field), together with relatively flat current
density profiles. Ricci et al. (2004) developed a kinetic simulation of a Harris cur-
rent sheet, in which the lower-hybrid drift instability causes the current sheet to
bifurcate. Delcourt et al. (2004) examined the behavior of charged particles when
the adiabaticity parameter, κ, is equal to unity in a simple current sheet model and
found that nonlinear dynamics lead to bifurcated current sheets on the scale of ion
gyroradius. The adiabaticity (or curvature) parameter, k, was introduced for the
first time by Büchner & Zelenyi (1989):

k =

√
Rmin

ρmax
, (1.1)

where Rmin is the minimum curvature radius of the field, reached at the reversal
plane and ρmax is the maximum particle gyroradius. In a field reversal, these quan-
tities occurs at the equatorial plane, z = 0, where a particle rotating with its total
velocity, v0, directed perpendicular to the minimum field, Bmin = Bnêz, has the
maximum Larmor radius equal to:

ρmax = ρn = v0Ω
−1
n =

mv0
eBn

=
ρ0

(Bn/B0)
,

in which Ωn = eBn/m is the Larmor frequency in the field B = Bnêz and ρ0 =

v0/Ω0, with Ω0 = eB0/m. The curvature radius at the reversal plane equals

Rmin =

{(
d2X

dZ2

)−1 [
1 +

(
dX

dZ

)]−3/2
}
|z=0 = Bn

λ

B0
,

where X(Z) represents the equation of a field line of the magnetotail-like field
reversal. The k ≫ 1 case corresponds to the usual adiabatic case, for which
particle magnetic moment, µ, is a first-order invariant of motion. As k de-
creases toward unity, particle motion becomes stochastic, due to deterministic chaos
(Lichtenberg & Lieberman, 1983) caused by non-linear resonances overlapping be-
tween the bounce-motion and the gyro-motion. For k ≃ 1, particle behavior becomes
strongly chaotic. For a sharply curved field reversal, k ≪ 1, particle motion is quasi-

adiabatic, i.e., the jumps of the adiabatic invariant are smaller than the value of the
invariant itself. Both a new kind of adiabaticity, characterized by ring-type particle
orbits, and a partially adiabatic but weakly chaotic type of motion, in which par-
ticles follow cucumber-like orbits, appear. Both types of orbits are closely related
with fast oscillations perpendicular to the reversal plane. However, particles tra-
jectories are adiabatic only if they permanently remain crossing the reversal plane.
Instead, the result of the slower process of the weak but finite jumps of the adiabatic
invariant is a gradual particle trapping in the current sheet. Quasi-trapped parti-
cles, that perform cucumber-like orbits, are related with the transient regime due to
non-adiabatic scattering. Usually, for realistic ion parameters in the magnetotail, k
is less than unity.
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Figure 1.1: From Runov et al. (2005). Three

different types of current sheet structure ob-

served in the near-Earth magnetotail: central

sheet (type A), asymmetric current sheet (type

B) and bifurcated sheets (type C)

In most previous studies, the pres-
ence of magnetic turbulence in the near
and distant magnetotail was not con-
sidered. Although magnetic turbulence
is stronger during active geomagnetic
periods, it is non-negligible even dur-
ing quiet times. Usually, the turbu-
lence level is stronger in the center of
the plasma sheet (Bauer et al., 1995;
Hoshino et al., 1996), while a more or-
dered magnetic configuration is found
in the vicinity of the magnetospheric
lobes. Veltri et al. (1998) investigated
the effect of turbulent magnetic fields
on the proton dynamics for the distant
magnetotail, where the normal compo-
nent of the unperturbed magnetic field,
B0z = Bn, is statistically negligible (in
the GSM coordinate system). By a
test particle simulation, they found that
magnetic fluctuations play the role of
effective scattering mechanism and the
current sheet splits in two layers for per-
turbation levels δB/B0 > 0.2. Subse-

quently, Greco et al. (2002) and Zimbardo et al. (2003), analyzing the near-Earth’s
magnetotail, where the average Bn is not zero and northward oriented, found that
the normal magnetic field component, Bn, and magnetic fluctuations, δB/B0, have
opposite effects on the current structure and on the proton heating. Indeed, a large
value of Bn inhibits the y-motion in the quasi-neutral sheet, while magnetic fluc-
tuations favor the y motion at some distance from the center; the strong magnetic
turbulence in the center of the current sheet slows down the proton motion and
causes the double humped profiles of the current and ion velocity. More recently,
Greco et al. (2007) have studied the equilibrium of the Earth’s magnetotail, inject-
ing protons and electrons. A stationary three-dimensional kinetic-fluid code, with
protons represented by particles and electrons by a massless fluid, was developed.
For a specific set of magnetotail parameters, the electron finite Larmor radius and
the electron drift term are responsible for the formation of a double peak in the
total current density, even in those case where the proton current density does not
display any bifurcated structure and without turbulence.

A number of experimental studies show that in many cases the electrons are
the main current carriers (Kistler et al., 2005; Runov et al., 2006; Israelevich et al.,
2008). However, some Geotail observations show that in some periods the ion current
prevails, while, in other periods, the electron current prevails (Asano et al., 2003).
Keeping in mind that under different magnetotail conditions the main current car-
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Figure 1.2: From Kistler et al. (2005). Sketch of executed motion of large gyroradius particles

in a thin current sheet.

riers can be either ions or electrons, here we try to assess the relative contribution
to the cross tail current of different ions species, like protons and oxygen ions. The
principal motivation to study O+ ions dynamics is the observation of rather en-
ergetic population of such ions, that shows a drift motion from dawn to dusk in
the magnetic tail. The same observations (Wilber et al. , 2004; Kistler et al., 2005;
Cai et al., 2008) have shown that the O+ behavior is very different from that of the
protons H+, analyzed till now, because of the different Larmor radius (ρO+ = 4ρH+ ,
considering same initial energies), so that non-gyrotropic effects become more im-
portant for heavy ions. Out of the neutral sheet, O+ ions and protons perform
circular orbits around the magnetic field lines. Nevertheless, since their Larmor
radius is greater than the half thickness of the current sheet, O+ ions can reenter
in the neutral sheet, performing meandering orbits, as shown in Figure 1.2. An
interesting situation arises where there is a thin current sheet and the plasma sheet
is dominated by ionospheric oxygen, for example during magnetospheric active peri-
ods: these are the most likely cases to find the plasma sheet dynamics dominated by
non-adiabatic ions, that may also carry a large fraction of the current. In this pre-
vious work, we investigate the dynamics of ionospheric O+ ions in the near-Earth’s
magnetotail in the presence and in the absence of magnetic turbulence. We find
that O+ ions can support the formation of double peaked current sheets even in the
absence of magnetic fluctuations, as well as for relatively large values.

1.2 Overview of oxygen observations

Measurements have confirmed the presence of out-flowing O+, H+, He+ and other
ions in every magnetospheric region; these ions have low energy in the ionosphere
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19 20

Figure 1.3: From Runov et al. (2006). Bifurcation in the current density profiles at 09:48UT and

at 09:50UT on 1 October 2001.

and high energy in the magnetosphere, thanks to several acceleration mechanisms.
It is known that the outflow of heavy ions from the ionosphere is strongly dependent
on geomagnetic and substorms activity (Yau et al., 1985; Wilson et al., 2004). In
particular O+ ions are not just significant in the inner magnetosphere, but actually
the dominant ion species during magnetic storms (Daglis, 1991; Kistler et al., 2005):
they are observed to stream from dawn to dusk across the tail, carrying about
(5 − 10)% of the cross-tail current. Indeed, during storm times, O+ can dominate
both the pressure and the density in the plasma sheet, that is already oxygen-rich
because of the contribution from ion-outflow.

Inspection of Cluster data shows that often the formation of the double current
sheet is in association to the increase of the oxygen amount in the near magnetotail,
for example during the events on 1 October 2001 (Runov et al., 2003a; Wilber et al. ,
2004; Wygant et al., 2005; Kistler et al., 2005), 17 August 2001 (Sauvaud et al.,
2004; Echer et al., 2008) and 15 September 2001 (Cai et al., 2008). Generally, these
layers are very thin, with typical thickness ranging between 2000 km and 5000 km.

On 1 October 2001 at (0947-0951)UT, during a storm-time substorm, Cluster
was located at [−16.5; 8.0; 0.5] RE (GSM coordinates). During this interval the
Cluster barycenter crossed the neutral sheet 11 times; at 09:48UT and at 09:50UT
the current density exhibited a bifurcated structure (Runov et al., 2003a), as shown
in Figure 1.3. At the same time a declining trend in proton density from 0.3 to 0.02

cm−3 is observed, that results in O+ dominance (nO+ ≃ 0.07cm−3) (Wygant et al.,
2005; Wilber et al. , 2004). As evident in Figure 1.4, a very thin current sheet was
observed, with an half thickness of about 2500 km; O+ dominates the pressure
and density in the plasma sheet and its contribution to the current was as high as
10%. This situation is rather common: Korth et al. (2002) have shown that the
O+/H+ energy density ratio of storm-time substorms exceeds 100%; for non-storm
substorms the ratio is less and amounts to (15 − 65)%. The magnetic field in the
magnetospheric lobes, B0, and the normal component in the equatorial pleane, Bn,
measure approximately 20 nT and 5 nT, respectively. We have also estimated a
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Figure 1.4: From Kistler et al. (2005). Data from Cluster S/C 4 on 1 October 2001 from 8:30

to 10:30. (a) Total pressure (plasma plus magnetic field), (b) H+ differential flux versus energy

and time, (c) O+ differential flux versus energyand time, (d) H+ velocity in Xgse, (e) current sheet

thickness, (f) H+ (black) and O+ (blue) pressure,(g) O+/H+ pressure ratio, (h) H+ (black) and

O+ (blue) density, and (i) O+/H+ density ratio.
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magnetic fluctuations level, δB, of around 10 nT. The current sheet half-thickness
measures approximately 2500 km (Kistler et al., 2005).

The event of 17 August 2001 is another example in which the Cluster spacecraft
were in the plasma sheet during a geomagnetic storm and observed the O+ out-
flow from the ionosphere into the tail (Sauvaud et al., 2004; Echer et al., 2008). In
addition, during the storm main-phase, a substorm occurred. Oxygen beams were
present in both the lobe and plasma sheet prior to this substorm, so this is an event
where the plasma sheet is oxygen rich prior the substorm onset. After the substorm
onset at 16:00 UT, the H+ density and pressure decreased significantly, while O+

pressure remained high. From 16:36 to 16:46 UT, O+ was the dominant ion species
in the plasma sheet and showed a duskward motion.

During the Cluster spacecraft crossing on 15 September 2001, both an embed-
ded proton (that manifests a pressure anisotropy mainly with p‖ > p⊥) and a bifur-
cated oxygen ion thin current sheet (that exhibits a pressure anisotropy mainly with
p‖ < p⊥ and nongyrotropy) were observed (Cai et al., 2008). Indeed, in the time
interval (04:57:45-05:00:25)UT, a localized self-consistent current sheet equilibrium
of oxygen ions was observed by C1 and C4, although in this very thin sheet the
current contribution from oxygen ions is minor. Magnetic field value in the magne-
tospheric lobes and normal component of magnetic field are approximately 25 nT
and 3 nT. The estimation of the oxygen thin current sheet thickness is about 2500
km.

1.3 Magnetic field model

The considered magnetic field model consists of three terms,

B = B0x(z) +Bn + δB(r),

where B0x(z) is an unperturbed, sign reversing component, directed along the Earth-
Sun axis, Bn is the unperturbed, constant, magnetic field component perpendicular
to the current sheet and δB(r) represents the 3D stationary magnetic fluctuations,
having a power law spectrum. The coordinate system used in the description is
the Geocentric Solar Magnetospheric system, GSM, that is Earth centered. In this
system the x-axis points from the Earth towards the Sun; the y-axis is defined to
be perpendicular to the Earth’s magnetic dipole, so that the xz-plane contains the
dipole axis. The positive z-axis is chosen to be in the same sense as the northern
magnetic pole. This system is useful for displaying magnetopause and shock bound-
ary positions, magnetosheath and magnetotail magnetic fields and magnetosheath
solar wind velocities because the orientation of the magnetic dipole axis alters the
otherwise cylindrical symmetry of the solar wind flow. It is also used in models
of magnetopause currents. It reduces the three dimensional motion of the Earth’s
dipole in other coordinate systems, i.e., GEI (Geocentric Equatorial Inertial), GSE
(Geocentric Solar Ecliptic), etc., to motion in a plane (the xz-plane). In the GSM
system, the reversing magnetic field component, B0z, is positive in the upper part
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(northern) lobe of the tail and negative in the lower (suthern) lobe. In a first ap-
proximation, this field component could be represented by the magnetic field of the
Harris current sheet model,given by Eq. 1.2 (Harris, 1962):

B0(z) = B0x(z)ex = B0 tanh
z

λ
ex. (1.2)

However, because the Harris equilibrium may be not effectively achieved, instead of
Eq. 1.2 we use the expression of a modified Harris magnetic field reversal, Eq. 1.3,
setting it in such a way that the asymptotic value B0 is reached smoothly at the
edges of the simulation box, z = ±0.5L, where also the derivative of the field with
respect to z becomes zero (Veltri et al., 1998):

B0x = B0
tanh

(
z
λ

)
−
(
z
λ

)
cosh−2

(
L
2λ

)

tanh
(
L
2λ

)
−
(
L
2λ

)
cosh−2

(
L
2λ

) (1.3)
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Figure 1.5: Projection of the magnetic field

structure on the xz plane, for Bn = 0.1B0 and

(a) δb = 0, (b) δb = 0.1, and (c) δb = 0.3. Mag-

netic islands are obtained even for δb = 0.1, since

the magnetic perturbation can be, locally, larger

than the RMS value. Also note that some field

lines cross each other: this is because the pertur-

bations are three-dimensional (δBy 6= 0).

where B0 is the constant magnetic field
in the magnetospheric lobes, λ = 0.25L

is the current sheet half thickness and L
is the thickness of the considered mag-
netic field configuration (i.e. of the sim-
ulation box). We emphasize that the
above magnetic field model is adopted
as a reasonable, smooth, magnetic field
profile, having the main features of a
magnetic field reversal, but we do not
assume that the Harris equilibrium ac-
tually holds (see also Veltri et al., 1998).
Indeed, the main results of our study
are unchanged if a different magnetic
field reversal is assumed. Note that our
study will be performed in a local sim-
ulation box in the magnetotail, which
does not take into account the magne-
totail large scale variations, for instance
in x and y.

The unperturbed components de-
scribes the parabolic field line geome-
try, which is found in the Earth’s tail
from approximately 10 to 60 RE down-
tail, and is shown for Bn = 0.1B0 in
the top panel of Figure 1.5. Since usu-
ally Bn ≪ B0 (where B0 is the (nor-
malization) magnetic field observed in
the magnetospheric lobes), this config-
uration is referred to as quasi-neutral



1.3. Magnetic field model 13

current sheet. This normal component goes to zero in the distant magnetotail
(xGSM < −100RT ).

The power law spectrum of the magnetic fluctuations, regularly observed by
the Geotail (Hoshino et al., 1994), AMPTE/IRM (Bauer et al., 1995), ISEE 2
(Borovsky et al., 1997) and Interball (Zelenyi et al., 1998) satellites in this region of
the magnetotail, has well-defined, "reproducible" features, like the spectral shape,
the frequency range, and the fluctuation level for given geomagnetic activity levels.
This suggests that magnetic turbulence is in a steady state, in statistical sense. In
our model the observed magnetic fluctuations are represented as the sum of static
magnetic perturbations (Zimbardo et al., 1995; Veltri et al., 1998):

δB(r) =
∑

k,σ

δB(k)eσ(k) exp [i (k · r+ φσk)],

where δBσ(k) represents the amplitude associated with the wavevector k, eσ(k) are
the polarization unit vectors and φσ

k
are random phases fixed in a way to concen-

trate the magnetic fluctuations in the quasi-neutral sheet, in agreement with the
observations. The condition ∇·B = 0 implies that k ·eσ(k) = 0, so the unit vectors
are given respectively by:

e1(k) = i
k×B0

|k×B0|

e2(k) = −i k|k| × e1(k)

and the amplitude of magnetic fluctuations depends on the wavevector, k, according
to a power law:

δBσ(k) =
C

(
k2xl

2
x + k2y l

2
y + k2z l

2
z + 1

)α/4+1/2
,

where C is a normalization constant and lx, ly and lz are the turbulence correlation
lengths in the x, y and z directions, respectively. The spectral index α for the
near-Earth’s magnetotail is chosen as α = 2.3 (e.g. Zimbardo et al., 2010). The
correlation lengths are fixed in terms of the thickness of simulation box and, as
lx = ly = 0.25L and lz = 0.05L, in order to mimic the geometry of the magnetotail
(i.e. lz ≪ lx, ly and lx ∼ ly).

In some cases the magnetic fluctuations can be interpreted as tearing mode tur-
bulence. Streaming instabilities, like the kink-drift instability, have recently received
considerable attention, too. For the present study, the fluctuating field components
have the tearing and sausage mode parity with respect to the z direction, that is
δBz is even in z, i.e., δBz(x, y, z) = δBz(x, y,−z), and δBx and δBy are odd in z,
e.g., δBx(x, y, z) = −δBx(x, y,−z). This corresponds to the formation of magnetic
islands during the growth of reconnection instabilities in the current sheet (details of
how the parity rules determine some specific relations between the random phases
are given in Appendix A.1). This parity also corresponds to that of the oblique
modes recently considered by Lapenta et al. (2000). The ion dynamics in the pres-
ence of magnetic turbulence with kink-drift mode parity will be considered in a
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Figure 1.6: Sample x-profiles, Fig 1.6(a), and z-profiles, Fig 1.6(b), of the three magnetic field

components, for bn = 0.05, and δb = 0.1 (solid line) and δb = 0.3 (dashed line).
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future work. For the runs presented here, the wave vector components are chosen
on a grid such that ki = 2πni/li, i = x, y, z, where ni are integers number identi-
fying the wave modes, satisfying (n2x + n2y + n2z) < 144, and (n2x + n2y) > 6. While
the high wave number cutoff is dictated by computer memory requirements, the low
wave number cutoff is introduced in order to have a well discretized representation
of turbulence (e.g. Pommois et al., 2007).

Figure 1.5 shows the magnetic field structure in the quasi-neutral sheet for in-
creasing values of the fluctuations level, δB/B0. Hereinafter, δB =

√
〈δB · δB〉,

with the average made over the simulation box. We also introduce δb = δB/B0

and bn = Bn/B0. We note that the elegant method of plotting the contours of the
magnetic flux function to obtain the magnetic structure is not viable in the case of
a 3D configuration. In the present case, field lines are traced integrating the field
line equations, starting both at z = ±0.5 L, to have the "parabolic" field lines, and
at z = 0, to have the magnetic islands. The middle and bottom panels of Figure 1.5
show magnetic islands formation when δB 6= 0. Note, however, that the magnetic
topology at the boundaries of the simulation box is determined by Bn, that is the
flux tubes, which are parabolic when δb = 0, are distorted but still closed when
δb 6= 0.

Figure 1.6(a) and Figure 1.6(b) show the horizontal and the vertical profiles,
respectively, of the various magnetic field components for δb = 0.1 − 0.3 and bn =

0.05. Such "cuts" of the model magnetic field mimic the signal which would be
observed by a spacecraft crossing the current sheet in the corresponding directions.
Of course, much finer structures are found in the data because the actual turbulence
has a much longer spectrum than that which can be represented numerically. The
relevant parity in z is clearly seen in Figure 1.6(b). In particular, the fluctuating
component δBx has the same parity of B0x, which also contributes to the plot of
Bx. In the lower panel, it can be seen that Bz is positive for z ∼ 0 and negative
(positive but less than Bn) for z ∼ ±0.5L for δb = 0.3 (δb = 0.1). In both cases
Bn = 0.05B0 is present. Of course, the details of Figure 1.6(a) and Figure 1.6(b)
would be modified by changing the position of the line along which the fields are
evaluated.

1.4 Test particle simulations

In addition to the above magnetic field configuration, we consider a constant cross
tail electric field in the dawn to dusk direction, Ey = Eyey, that cannot be removed
by transforming to the de Hoffman-Teller frame for the presence of three-dimensional
magnetic fluctuations. Since we are considering static magnetic perturbations, the
fluctuating electric field is not included in the present runs. We may show that
the fluctuating electric field, produced by realistic magnetic perturbations, has a
minor impact on particle dynamics, because the ratio vA/vth ≪ 1. Indeed, as
was demonstrated by Veltri et al. (1998), the ratio of the electric component of the
Lorentz force over the magnetic one can be estimated as vφ/v, where v is the particle
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Physical quantity Normalization Typic value
Length L 4000 km
Time Ω−1

0i 2 s
Electric field E0 0.2 mV/m
Magnetic field B0 20 nT
Current density B0/µ0L 4000 nA/m2

Velocity VE = cE0/B0 10 km/s
Temperature mpV

2
E/kB 1.2× 104 K

Ion density n∗ = cB0/4πeLVE 0.5 cm−3

Table 1.1: Normalization quantities.

velocity and vφ is the phase velocity of magnetic oscillations. Very few studies have
been done to date for the identification of the eigenmode velocity in the neutral
sheet, so it is reasonable to assume that vφ is close to the Alfvén velocity, vA, in the
center of the current sheet given by vAn ≃ Bn/

√
4πρm, where ρm is the mass density.

This yields vφ ∼ 20 − 30 km/s for Bn = 1 − 2 nT, which is considerably less than
the ion thermal velocity. However, even for the "slow" particles with v ≤ 30 km/s
the overall effect on acceleration of the constant dawn-dusk electric field, Ey, will be
more pronounced than the average, diffusive-type acceleration due to the fluctuating
electric fields, δE, which have a random distribution of phases. Of course, in the
case of monochromatic wave packets, such waves could provide strong acceleration
to a small group of resonant particles with v ≃ vφ, see for example Vainshtein et al.

(1999), but this case is now beyond our consideration. A study of time dependent
fluctuations and the associated energization has been carried out by Greco et al.

(2009); Perri et al. (2009). Instead, in this work we are interested in studying the
particles dynamic and its role in the formation of the double current layer, rather
than the acceleration mechanism to which these particles could be subject.

The equations of motion for ions is:

mi
dv

dt
= e

(
E+ v × B

c

)
; (1.4)

this can be written in a dimensionless form by normalizing all length scales to
the unit length L, velocities to electric drift velocity VE = cEy/B0, magnetic and
electric fields to B0 and Ey, respectively, and time to ion gyrofrequency Ω0i =

eB0/mic. In Table 3.1, normalizations and typical values of the physical quantities,
inferred from observations (Runov et al., 2006; Wygant et al., 2005; Kistler et al.,
2005), are shown. For brevity, we introduce δbj = δBj/B0 and b0x = B0x/B0. The
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dimensionless equations of motion for particles now are:

dvx
dt

= vy(bn + δbz)− vzδby (1.5)

dvy
dt

= −vx(bn + δbz) + vz(b0x + δbx) + 1 (1.6)

dvz
dt

= vxδby − vy(b0x + δbx) (1.7)

(1.8)

We consider that the source of the particles, that are entering the current sheet
from the lobes at z = ±0.5L, is located somewhere in the magnetospheric mantle.
The relatively cold ion distribution in the mantle magnetic field can be described as
a shifted Maxwellian (e.g., Ashour-Abdalla et al., 1994):

f(v‖, v⊥) =
(√

2πv3th

)−1
exp

(
−
(v‖ − u)2 + v2⊥

2v2th

)
, (1.9)

where u is the streaming velocity along the unperturbed magnetic field and vth is the
thermal velocity. In the present simulation we assume bn = 0.1 for the normal mag-
netic field. Typically, 500000 particles are injected for each run with temperature
Ti = 0.5 keV, in agreement with the values observed in the magnetospheric lobes.
The corresponding ion injection velocities are vth(O+)= 56 km/s and vth(H+)= 224

km/s (Vaisberg et al., 1996). Besides, we assume u = vth for both species. We
require that particles are injected with random velocity components in such a way
to reproduce a distribution function given by Eq. 1.9. Consequently, the flux of
particles crossing the simulation box through the surfaces at z = ±0.5L has to be
proportional to F (vx, vy, vz) ∝ vzf(v‖, v⊥). The details of the injection scheme in
velocity space are given in Appendix A.2. Note that, because of the E × B drift,
the injected particles will reach the neutral sheet even in the case Bn = 0 (Alfvén,
1968; Veltri et al., 1998).

1.5 Numerical Results

In Figure 1.7, we show the projection on the yz plane of four sample trajectories of
H+ and O+ ions, for different values of magnetic fluctuations, δb. The corresponding
values of the adiabaticity parameter k (Büchner & Zelenyi, 1989), see Eq. 1.1, are
kp ≃ 0.09 and kO+ ≃ 0.04, so that ion motion in the quasi-neutral sheet is in
the quasi-adiabatic regime characterized by k ≪ 1, as expected for ions in the
magnetotail thin current sheet (see also the proton trajectory, red line, in Figure 1.8).
Once entered in the simulation box, in total absence of magnetic fluctuations (panel
(A)), both types of particles move toward the central region, z = 0, following the
magnetic field lines, while being subjected to the (E×B) drift. Inside of the quasi-
neutral sheet, particles begin to perform the typical meandering orbits, under the
action of the unperturbed magnetic field, while being accelerated by the electric
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Figure 1.7: Projection on the plane of four sample trajectories of O+ ions (black line) and protons

(red line) for bn = 0.1, Ey = 1E0 and δb = 0 (panel (A)), δb = 0.1 (panel (B)), δb = 0.2 (panel

(C)), δb = 0.6 (panel (D)).

field, Ey. It is clear that O+ has larger Larmor radius than protons of the same
energy and they can carry a large fraction of the current away from the center, z = 0.
The non-zero Bn plays the role of a guiding channel for particles and causes them to
exit the quasi-neutral sheet in the z direction (Speiser, 1965). Typically particles,
after traversing variable distances in y, stop meandering and travel towards the
lobes with larger Larmor radius, since they gained energy being accelerated by Ey

(this effect is more apparent in the panels B-D). Increasing the values of magnetic
fluctuations, δb, (panels (B), (C) and (D)), the performed orbits are perturbed and
the trajectories become more intricate, especially for H+ ions (see the blow up in
Figure 1.8). In the regions of meandering motion, different deflections are observed,
which slow down the motion along y and make the trajectory more tangled, although
this effect is more evident for protons. Starting from the same initial conditions, the
O+ ions interact less with the magnetic turbulence than the protons H+, because of
their greater Larmor radius: for T = 0.5 keV and for B = 0.1B0 (e.g. in the neutral
plane), ρ(H+) ≃ 1130 km and ρ(O+) ≃ 4600 km. The turbulence characteristic
lengths are λmax = L/kmin = 4000 km and λmin = L/kmax = 333 km, where
kmax = 12 and kmin = 1 are the maximum and minimum wave number in each
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direction, respectively. The O+ ions are not influenced by the magnetic turbulence so
much as protons; besides oxygen ions are able to transport current out of the neutral
sheet, because of the performed orbits amplitude. A similar difference in the proton
and oxygen interaction with magnetic turbulence was reported by Taktakishvili et al.

(2007), with regard to plasma transport across the magnetopause current sheet.
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Figure 1.8: Blow up of O+ ions (black line)

and protons (red line) trajectories for bn = 0.1,

Ey = 1E0 and δb = 0.2.

In order to gain understanding in
the ion dynamics, we inject many parti-
cles in the simulation box and numer-
ically integrate their equation of mo-
tion. Then, we compute the distribu-
tion function moments as density, n,
current density, j and temperature, T ,
on a three-dimensional grid with 1 grid
point in x (many grid points in x could
be used; however for the present runs
we set this to 1, since x is a statistically
ignorable coordinate in our model), 601
in y and 40 in z. Then, the distribution
function moments have been averaged
over y, the dependence on which is usu-

ally weak, to show the characteristic dependence on the z coordinate. In a test
particle simulation the normalization for the number density is, to good extent, ar-
bitrary. Here, it is based on the consideration that the ion current, Iy, has to be
strong enough to reproduce the unperturbed magnetic field, B0x(z), introduced in
our model. Indeed, Ampere’s law leads to 2B0Lx = 4πIy/c, with Iy =

∫
jydxdz the

total current across a section of the current sheet of length Lx. On the other hand,
velocity is expressed in units of VE, so that the normalization for density is obtained
an n∗ = Iy/[e

∫
Vydxdz], with Iy constant for all the runs (this implies that, when

the average value of Vy is large, the density is low).
In Figures 1.9(a) and 1.9(b), we report the vertical profiles of oxygen tem-

perature, T, and current density, Jy, for different values of electric field, Ey =

(1, 2, 3, 4)E0 (Cattell and Mozer, 1982), magnetic fluctuations, δb = 0.0 (black line),
0.1 (red line), 0.2 (blue line), 0.4 (purple line), 0.6 (green line) and for bn = 0.1,
which corresponds to a variety of observations in the near-Earth’s magnetotail. In
Figures 1.10(a) and 1.10(b), we show the vertical profiles of proton temperature,
T, and current density, Jy, for Ey = (1, 2, 3, 4)E0 , bn = 0.1 and only for two val-
ues of the magnetic fluctuations, δb = 0.0 (black line), 0.6 (green line) (results for
more values of δb have been given by Greco et al., 2002). Given the abundance of
previous work on protons, we restricted to show for this species only runs in which
the oxygen shows a bifurcated current sheet, to be able to get the total current.
The oxygen temperature in Figure 1.9(a) increases with the electric field, but there
is no clear influence of magnetic fluctuations on heating. Indeed, in each panel,
different color lines are at same level. A different situation arises with protons. In
this case, turbulence succeeds in scrambling the ordered velocity gained because of
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Figure 1.9: Vertical profiles for O+ ions temperature, Figure 1.9(a), and current density, Fig-

ure 1.9(b), for Ey = (1, 2, 3, 4)E0 and bn = 0.1. Here δb = 0.0 (black line), δb = 0.1 (red line) e

δb = 0.2 (blue line), δb = 0.4 (purple line), δb = 0.6 (green line).
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Figure 1.10: Vertical profiles for H+ ion temperature, Figure 1.10(a), and current density, Fig-

ure 1.10(b), for Ey = (1, 2, 3, 4)E0 and bn = 0.1. Here δb = 0.0 (black line) and δb = 0.6 (green
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Figure 1.11: Total current density profiles for Ey = (1, 2, 3, 4)E0, bn = 0.1.Here δb = 0.0 (black

line) and δb = 0.6 (green line). The right column is for k = 5, the left one is for k = 2 (see text).

Ey into all directions, leading to an effective thermalization of the potential drop
(Greco et al., 2002). The temperature profiles are larger in the center of the simula-
tion box, where the energization from the electric field is favored and the magnetic
fluctuations are stronger. Finally, oxygen and proton temperatures are of the same
order (∼ 3− 5 keV) in the case of Ey = 4E0 and δb = 0.6 (green line), in agreement
with observations.

From Figure 1.9(b), it is clear that oxygen current profile is peaked and thin for
zero to low fluctuation levels and becomes progressively broader as the fluctuation
level is increased, while, at the same time, the maximum current value decreases.
Indeed, an obvious effect of magnetic fluctuations is to reduce the bulk velocity
(and current density), by inducing random motions, which spread all around single
particle velocities. Besides, oxygen current density assumes values which grow with
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the electric field. In the absence of magnetic fluctuations (black line), the oxygen
ions are able to produce the double current layer, more and more evident when
the electric field value grows. We argue that this is due to the velocity increase,
caused by the electric field acceleration, so that the oxygen gyroradius and the
effect of meandering orbits increases. The double peak disappears for δb = 0.05 (not
shown), 0.1 (red line), 0.2 (blue line), and appears again for levels δb ≥ 0.4 (purple
and green line). The proton behavior is similar in some aspects and opposite in
other ones. We can see from Figure 1.10(b) that the proton current density is larger
than that of the oxygen one and, in contrast with the preceding case, it decreases
with increasing electric field. This is due to the presence of the negative wings, that
are more evident for small values of the electric field. Indeed, since the integral Iy
of the ion current must remain constant, if the contribution of negative wings is
big, the positive current must increase. A small hint of a double peak, in absence
of magnetic fluctuations (black line), is present only for high values of electric field;
instead, in presence of high magnetic fluctuations (δb = 0.6 (green line)), protons
support the formation of double layer for all Ey values, the bifurcation being more
evident with increasing of the electric field. Moreover, negative values in the current
density profiles are observed: they are the so-called diamagnetic currents, due to
the magnetization current −c∇× (P⊥

B

|B|), proportional to v2⊥ (Zelenyi et al., 2000).
If the anisotropy is weak (v‖ ≃ v⊥), particles will give a substantial contribution to
the formation of the diamagnetic wings; conversely, if there is a strong anisotropy
(v‖ ≫ v⊥), this contribution is small (Greco et al., 2002; Zimbardo et al., 2004).

In order to assess the oxygen contribution in the formation of a bifurcated current
sheet in the total current density, we define the density ratio k = n(O+)/n(H+).
Then, we use two different k values, which are close to the real values observed
in the near-Earth’s magnetotail, when the oxygen is the most abundant species,
to find the total current density. If k = 2, Jtot = (2/3)JO+ + (1/3)Jp; if k = 5,
Jtot = (5/6)JO+ + (1/6)Jp. As we can see in Figure 1.11 , we found that the double
peak is present in the total current density profiles, also when it is not present in
the proton current density, that is for Ey = 2E0 and δb = 0 (black line).

1.6 Discussion and Conclusions

Motivated by the many observations of ionospheric oxygen O+ in the Earth’s mag-
netotail, we have considered the dynamics of protons and oxygen ions in the magne-
totail current sheet, both in the presence and in the absence of magnetic turbulence.
The ion motion has been studied by a test particle simulation, where particles are
injected in a magnetic quasi-neutral sheet with superimposed magnetic fluctuations.
Several runs have been made in order to understand the differences between the pro-
ton and the oxygen behavior, with emphasis of the possibility to obtain a bifurcated
current sheet.

When protons are injected in the simulation box, a clear bifurcation of the cur-
rent profile is obtained for turbulence levels δB/B0 ≥ 0.3 (see also Greco et al.,
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2002). Conversely, because of the non-adiabatic meandering motion, oxygen ions
are able to support a bifurcated current sheet also in the absence of magnetic
fluctuations. One of the most intriguing results concerning the oxygen behav-
ior is the appearance of a double hump in the current profile both for the case
of no magnetic turbulence and for relatively high levels of magnetic fluctuations.
The explanation for this behavior can be found in the interaction between oxy-
gen ions and the current sheet. Looking at Figure 1.12, which shows a typical
oxygen trajectory for δb = 0 and Ey = 1E0, we can notice that the orbit is
very smooth and that oxygen ion probes regions of the current sheet far from the
neutral plane (because of its large Larmor radius) during its meandering motion
along y. Therefore, this effect is essentially related to the non-adiabatic motion
of oxygen ions. If a great number of this kind of trajectories are statistically
added, there will be a concentration of particles with high vy at those distances,
obtaining a current density, Jy, which displays two peaks away from the neutral
sheet (Delcourt and Belmont, 1998). The distance between the two peaks should
be of the same order of the typical excursion in z, that is d ∼

√
ρ0λ, where ρ0

is the oxygen Larmor radius in the lobes magnetic field, B0 (Greco et al., 2002).
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Figure 1.12: Projection on the plane of a sample trajec-

tory of O+ ions for bn = 0.1, Ey = 1E0 and δb = 0.

From Figure 1.9(b), the sepa-
ration between the two bumps
for the case δb = 0 (black lines)
is ∼ 0.2L = 800 km. If we con-
sider that a typical oxygen Lar-
mor radius, in a magnetic field
of 20 nT and with a tempera-
ture of 0.5 keV, is of the order of
800 km, we obtain for d a value
of the order of 900 km, which
is comparable with the distance
between the two humps com-
puted in the vertical profile of
the current density. The influ-
ence of magnetic turbulence on
Jy is twofold: on the one hand,
relatively low levels of magnetic perturbations, δb < 0.4, cause the two peaks to
decrease and smear because fluctuations scatter the oxygen ions around. On the
other hand, when the level of magnetic perturbations is high enough, the presence
of fluctuations bends the field lines also in y direction, and allows cross field motion
away from the central plane.

Another important difference between the proton and the oxygen behavior is
found in the temperature profiles. While the proton temperature grows with the
magnetic turbulence level, the oxygen temperature does not. More precisely, the
oxygen temperature appears to be uniformly large (that is, independently of δB/B0),
in the sense that most of the potential drop, due to the electric field, is transformed
into heat. This means that, thanks to their larger Larmor radius, O+ ions are able to
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gain a large fraction of the potential drop. This is converted into disordered motion
by the chaotic dynamics in the quasi-neutral sheet, while the influence of turbulence
is evident mostly in the outer part of the simulation box, see Figure 1.9(a). Once
again, the comparison of proton and oxygen dynamics shows that the former interact
more with turbulence than the latter. To some degree, we can say that the turbulent
fluctuations are averaged along the gyroorbit, a behavior which is also found in the
studies of plasma transport in the presence of turbulence (e.g., Zimbardo et al.,
2006; Pommois et al., 1998). Finally, when realistic ratios of oxygen to proton are
assumed, it is found that a bifurcated current sheets is obtained even in absence of
magnetic fluctuations. This suggests that the presence of oxygen ions as the main
current carriers can help to explain the observations of bifurcated current sheets
in the magnetotail. On the other hand, a complete description of the magnetotail
current should take into account the electron contribution (e.g., Greco et al., 2007),
as we plan to do in a future work.





Chapter 2

Theoretical background

2.1 Introduction

The present work concerns the study of charged particle magnetic moment conser-
vation in presence of a single or few electromagnetic waves, as well as in presence
of turbulent magnetic fields, with direct applications to the solar wind. From the
particle orbit theory, for slow temporal and spatial magnetic field variations (i.e.,
if their characteristic length and time scales are greater than the particle orbit di-
ameter and the time spent by a particle to execute one orbit, respectively), the
magnetic moment, defined as µ = v⊥2/B, averaged over the particle gyroperiod, is
an adiabatic invariant and remains constant during particle motion. However, in
presence of a well-developed magnetic turbulence, µ might undergo rapid variations
and in any case can no longer be expected to be constant. Of course, this fact
could influence particle acceleration and could have a considerable implications in
many astrophysical problems, such as coronal heating, cosmic rays transport and
temperature anisotropies in the solar wind.

Theoretical attempts to describe the velocity space diffusion of charged parti-
cles in electromagnetic plasma turbulence have centered on quasilinear theory, QLT
(Kennel & Petschek, 1966; Hall & Sturrock, 1967; Lerche, 1968). The basic assump-
tion is that the turbulence level is sufficiently weak that plasma particles trajectories
closely resemble those in the mean background magnetic field, i.e., without the ad-
dition of turbulence, in the intervals between wave-particle interactions that lead
to velocity diffusion. Under these assumptions, it is possible to derive a diffusion
equation in velocity space, that describes the temporal evolution of the lowest order
velocity distribution. The diffusion coefficients depend on the spectral density and
polarizations of the turbulent wave modes. In attempts to better understand the
underlying wave-particle interactions for higher levels of turbulence, more dynamical
approaches have been undertaken by Karimabadi et al. (1990), Ginet & Heineman

(1990), Karimabadi & Menyuk (1991), Karimabadi et al. (1992). These authors ex-
plored single particle motion in intermediate amplitude wave fields, employing a per-
turbation expansion of the single particle Hamiltonian about the resonance point.
If the wave electromagnetic field is sufficiently large and it is propagating obliquely
to the background magnetic field, particle motion can become stochastic even in
the presence of a single wave. Such stochasticity is fundamentally different from
quasilinear theory. In the case of a single oblique wave, the source of stochasticity
is nonlinear in nature: it is intrinsic to the resonance process and can be traced to
the overlapping of adjacent primary resonances (Karimabadi et al., 1990). In quasi-
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linear theory the phase space structure of the wave-particle resonance interaction
is perturbed by extrinsic stochastic forces (Lichtenberg & Lieberman, 1983) in the
form of randomly phased neighboring (in frequency and wavenumber space) plane
waves. The timescales governing the onset of stochasticity in each case are different
too. In the quasilinear theory this timescale is the autocorrelation time, τac, the typ-
ical time for an initial distribution of wave phases to phase mix to a uniform phase
distribution. Instead, in the single wave case, the nonlinear mixing of orbits occurs
on a timescale inversely proportional to the Kolmogorov entropy (whose inverse is
deemed very large in quasilinear theory).

In order to reproduce and extend some of the result obtained by
Karimabadi et al. (1992), we started to study the interaction between ions and a
single or few electromagnetic wave, in order to understand in this very simple case
the limit for magnetic moment conservation. The dynamics of charged particles in
resonance with parallel propagating electromagnetic waves are investigated numeri-
cally and compared with analytical results for the trapping width in velocity space,
∆v‖, and the bounce frequency, ωb, specialized for this simple case. In addition,
we found that the magnetic moment and the pitch angle behaviors are related to
each other and we wrote an analogous formula for the magnetic moment trapping
width, ∆µ. Then, we studied the behavior of many particles interacting with a
broad band slab spectrum. For this case we analyzed the diffusion coefficients and
the distribution function of particles pitch angle and magnetic moment.

It is demonstrated how the understanding of the basic resonance phenomenon
can lead to a better understanding of the validity regions of the quasilinear theory.
It is shown, using analytical results for the bounce frequency, ωb, and trapping width
in velocity space, ∆v‖, that the quasilinear diffusion coefficient can be written in a
physically illuminating form. The concept of an effective trapping width in velocity
space for the turbulence modified resonance structure is introduced. It is shown
that this effective resonance width implies a condition on the density of wavemodes
in Fourier space, in the vicinity of the resonant wavenumber. The implications of
this condition for simulations incorporating discrete fields is discussed in detail and
examples of simulations violating this condition are presented too. Other issues
pertinent to the simulation of velocity diffusion in turbulent electromagnetic fields
are discussed, paying attention to the discretization of the fields in Fourier and
configuration space and the temporal discretization of the dynamical equations.

It is worthwhile noting that recent studies of velocity space scattering have
frequently concentrated on the large amplitude strong turbulence case, beginning
with the assumption that the system resides deeply within this regime, thus in-
validating certain features quasilinear theory at the onset (Matthaeus et al., 2003;
Shalchi et al., 2004; Qin et al., 2006; Shalchi, 2009). The present approach is very
different, attempting to develop physical understanding of the breakdown of simple
orbit theory in relatively simple models of magnetic fluctuations. Our motivation
is again the potential for gaining insight into more realistic and complex cases that
will not be explored in this context.
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2.2 General theory for magnetic moment conservation

As we know from the classical particle motion theory, a particle with charge q,
moving with a velocity v = v‖+v⊥ in a uniform magnetic field B0, experiences the
Lorentz force, FL, perpendicular to both the particle velocity, v, and the magnetic
field B0 (see Figure 2.1(a)), so that it does no work on the particle,

FL =
q

c
(v ×B)

In a uniform magnetic field, the Lorentz force, FL, can change only the direction

(a) The Lorentz force applied on particle. (b) Particle pitch angle α.

Figure 2.1: Motion of a positively charged particle in a uniform magnetic field B0

of the particle velocity component, v⊥, perpendicular to B0: the charged particle
moves on a circle around the magnetic field, B0, while the parallel velocity com-
ponent, v‖, carries the particle along the magnetic field lines, creating an helical
trajectory. The gyration radius or Larmor radius, is given by rL = mv⊥/qB0 and,
for a given gyroradius, the corresponding gyration frequency, the well-known cy-
clotron frequency, is Ω = qB0/mc = v⊥/rL. Thus a positively charged particle,
moving parallel to the mean magnetic field, B0, as shown in Figure 2.1, moves in
a left-hand spiral motion along the magnetic field (see Figure 2.1(a)). This hand-
edness is important for resonant interactions. The central field line around which
the particle gyrates in Figure 2.1 is called its guiding center. If the field oscillates
slowly, the particle will follow the guiding center accordingly.

The pitch angle θ of a particle is defined as the angle between the direction
of the magnetic field line and the particle’s spiral trajectory (see Figure 2.1(b)).
Sometimes is more convenient consider the cosine of pitch angle, α, directly related
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with the particle parallel velocity,

θ = arctan

(
v⊥
v‖

)
α = cos θ =

v‖
|vtot|

In a uniform magnetic field, since there are no forces acting in the parallel direction,
the particle moves unimpeded with a constant velocity, v‖, along B0; in addition,
although the direction change, the magnitude of v⊥ remains unchanged, i.e., the
pitch angle θ is constant in a uniform magnetic field. The spiraling motion of the
charge q represents an average current I = q/τg around the particle orbit, where τg
is the period of one gyration about the line of force, τg = 2π/Ω. Since the area of
the orbit is S = πr2L, the gyratory motion has a magnetic moment, µ, given by:

µ = (I/c)S = πr2L
qΩ

2π
=
mv2⊥
2|B| , (2.1)

where m is the particle mass, B is the magnetic field and v⊥ is the particle velocity
perpendicular to the mean magnetic field. This definition is precise when all the
parameters are constant. The magnetic flux through the particle orbit is directly
proportional to µ, since Ω is directly proportional to B.

If the particle moves in a nonuniform slowly changing magnetic field, the rate of
change of B is sufficiently small so that B remains practically constant during one
gyration period, τg, i.e., defining a time constant T by

1

T
∼
∣∣∣∣
1

B

∂B

∂t

∣∣∣∣ and assuming that T ≫ τg

the magnetic moment is an adiabatic invariant of particle motion,
〈
dµ

dt

〉

τg

= 0 −→ µ = const

Hereafter, when we refer to magnetic moment conservation, it is understated to
mean the gyro-averaged quantity, unless stated otherwise.

2.2.1 Demonstration of µ conservation

Let us consider how µ changes when B changes with time, but is uniform throughout
space. The change of B will induce an electromotive force, E , around the orbit of
the particle. From Faraday’s law we have:

E =

∮
E · ds = −

∫
∂B

dt
∂S, (2.2)

where ds is a line element around the path and dS is an element of the surface
enclosed by the path. The change of kinetic energy per unit time is the product of
E and the effective current I = qΩ/2π. It is readily shown that I and E are in the
same direction, if B is increasing. Hence

d

dt

(
1

2
mv2⊥

)
=
qΩ

2π
πr2L

dB

dt
= µ

dB

dt
. (2.3)
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The rate of change of µ may be found from Eq. 2.1: on multiplication through by
B and differentiation with respect to time we find:

d

dt
(µB) =

d

dt

(
1

2
mv2⊥

)
(2.4)

Combination of Eq. 2.3 and Eq. 2.4 shows that dµ/dt vanishes, a result valid only for
non-relativistic energies. This results would be exact if the charge were distributed
uniformly around its circle of gyration. Whether µ tends to be constant depends
on the rate at which B changes. It is obvious physically that if all the change in B
occurs while the particle is moving over a small arc of its circle of gyration, the line
integral of E around the circle in Eq. 2.2 is irrelevant and dµ/dt does not vanish.
However, if we assume dB/dt ∝ ωB and solve the equations of motion to first order
in ω/Ω, then dµ/dt does in fact vanish.

Figure 2.2: Motion of a charged particle in a converging lines of magnetic force.

Next we consider the change of µ when B varies along the particle path, but is
constant with time at each point. Let us suppose that the gyrating particle is moving
into a region of greater field. In such case, the lines of force will be convergent and
the magnetic field will have a component Br directed toward the line of force along
which the guiding center is moving (see Figure 2.2). This component produces a
retarding force in the direction of particle’s motion. Following the original derivation
made by Alfvén (Alfvén, 1950), we shall let the magnetic field in which particle is
moving parallel to the z axis at the guiding center. In cylindrical coordinates r, θ,
z, the magnetic field is independent of θ; the condition ∇ ·B = 0 gives:

1

r

∂

∂r
(rBr) +

∂Bz

∂z
= 0 (2.5)

If we assume that ∂Bz/∂z is constant over the cross section of particle’s orbit and
essentially equal to ∂B/∂z, we may integrate Eq. 2.5 to find Br = −r∂B/2∂z.
Setting r equal to the radius of gyration rL and taking the z component of the
particle equation of motion, (mdv/dt = v ×B/c), we obtain with use of Eq. 2.1:

m
dv‖
dt

= −µ∇‖B (2.6)

where the symbol ∇‖ denotes the component of the gradient in the direction of
B. Eq. 2.6 is exactly what one would anticipate for a diamagnetic particle. From
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Eq. 2.6 and the conservation of the kinetic energy, we can deduce the variation of µ
with position. On multiplication of Eq. 2.6 by v‖, we obtain:

d

dt

(
1

2
mv2‖

)
= −µdB

dt
(2.7)

where d/dt represents the time derivative take along the path of the particle. By
the conservation of energy and Eq. 2.1, we have

d

dt

(
1

2
mv2‖

)
= − d

dt

(
1

2
mv2⊥

)
= − d

dt
(µB) (2.8)

From Eq. 2.7 and Eq. 2.8 it follows again that µ is a constant of the motion, a
conclusion valid here for particles of relativistic energies too. Again, this result is
approximate and does not hold if B changes markedly over a distance equal to the
radius of gyration.

2.2.2 Cosequences of µ invariance

The adiabatic invariance of the magnetic moment requires that, as a particle moves
into a stronger field region, mv⊥2/2 must increase linearly with |B|. Since the
magnetic force that acts on the charged particle does no work, particle’s kinetic
energy is exactly conserved in the absence of laboratory frame electric fields, E.
This means that as mv⊥2/2 increases, mv‖2/2 must decrease such that the sum of
the two is a constant. We can also express magnetic moment in terms of particle’s
pitch angle:

µ =
v2 sin2 θ

2B
The magnetic moment invariance implies that the pitch angle, θ, increases as the

particle moves toward regions of higher magnetic fields and decreases as it moves
toward regions of weaker field. If a strong magnetic field gradient exists, the parti-
cle can be "mirrored" or reversed in direction by the Lorentz force. The so-called
magnetic mirror is the effect exhibited by charged particles spiraling into a converg-
ing magnetic field. Because of the magnetic moment conservation, higher magnetic
field requires larger perpendicular velocities and, consequently, because of the en-
ergy conservation, smaller parallel velocities. If in a certain region of space the
magnetic field lines are converging, the particle will move in a region of higher mag-
netic field and his parallel velocity can go to zero, causing the particle reflection or
"mirroring". However, depending on the initial pitch angle, the parallel velocities
at the highest magnetic field region could be also different from zero and this allows
particle to exit the mirror. A particle in correspondence of the minimum B0 has
a velocity v0 = (v‖0, v⊥0); in contrast, at the maximum, Bm, where the reflection
occurs, vm = (0, vm⊥). Because of the energy and magnetic moment conservation,
we have v2m⊥ = v20 and v2⊥0/B0 = v2⊥m/Bm = v20/Bm. After some simple algebra
and with the pitch angle definition, we can define the loss-cone angle,

θc = arcsin

[(
B0

Bm

)1/2
]
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The exact location at which this mirroring occurs depends only upon the initial
pitch angle describing its helical path. Particles with θ > θc are trapped in the
magnetic mirror; contrary, particles with θ < θc are in the loss cone. In this case
particle can undergo pitch angle scattering not because of resonant processes but
because of mirroring.

2.2.3 Poincaré invariant and adiabatic invariant

The constancy of magnetic moment comes from an exact invariant for Hamiltonian
motion, the Poincaré invariant. However, it is important to say that Poincaré in-
variant involves many particles rather than single one. The point is that, because
an ion hardly moves in phase space during one cycle, it can be simulated by a ring of
ions arranged around the gyration orbit and the Poincaré constant associated with
them leads to the magnetic moment conservation of a single ion.

The Poincaré invariant is defined following Goldstein (1980). Consider a closed
circle of gyration about the guiding center of the ion and place a collection of ion,
labelled by a parameter λ, about this circle. Each of these ions has the same v⊥
and v‖ as the ion they are simulating, but they differ from it in gyration angle. As
these ions move, the integral over λ,

P =

∮
p · dq

dλ
dλ (2.9)

is invariant. In fact, if we differentiate this integral with respect to time making use
of the Hamiltonian equations

dp

dt
= −dH

dq

dq

dt
=
dH

dp

for each particle of fixed λ, we find that the time derivative of the quantity P , based
on this class of ion orbits, is zero. H is the Hamiltonian describing ion motion in
presence of an electromagnetic field:

H =
1

2m

(
p− eA

c

)2

+ eΦ, (2.10)

where A and Φ are the vector potential and the electrostatic potential, respectively,
and p = m(v− eA/mc) is the canonical momentum of the particle. Let us evaluate
P :

P =

∫
p
dq

dλ
dλ =

∫
mv⊥dq⊥ − e

c

∫
Adq⊥

= 2πmv⊥rL − e

c
B(πr2L) =

(
2π
mc

e

)
µ

where the Stoke’s theorem is used to reduce the second integral to the magnetic
flux. Because the Poincaré invariant is the product between µ and a constant term,
µ is a constant.
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By assumption, the nonuniform magnetic field is always nearly constant over a
gyroorbit. The ions representing P can be choosen to be in the same place as the ion
would be if it were slightly delayed in its orbit and the resultant position projected
onto the circle perpendicular to B. There is no guarantee that the ring of ions will
form an exact circle, as the slight inhomogeneity of the field will produce a slight
distortion of the circle, so, in this case, there will be a first-order difference between
P and (2πmc/e) times mv2⊥/2B. The point is that this description is valid only if
the distorsion is small, so µ always differs by less than a first-order quantity from a
constant.

2.3 From the guiding center approximation to the quasi-

linear theory

Division of particle motion into the motion of the guiding center and the gyromo-
tion around it, is called guiding center approximation (Rossi & Olbert, 1970). When
analyzing charged particle motion in nonuniform electromagnetic fields, we may ne-
glect the rapid and, relatively, uninteresting gyromotion and focus, instead, on the
far slower motion of the guiding centre. Clearly, what we need to do in order to
achieve this goal is to somehow average the equation of motion over gyrophase, so
as to obtain a reduced equation of motion for the guiding centre. This means that
one is not interested in the actual trajectory of the particle, but rather on the tra-
jectory of its guiding center, rGC(t). This approximation is valid if the lowest scale
lengths of the electromagnetic fields are much larger than the Larmor radius of the
particles, i.e., when particle magnetic moment is a constant of motion. This kind of
description for particle motion in nonuniform magnetic field is also useful from the
point of view of numerical simulations. Indeed, direct simulations of kinetic equa-
tions (Vlasov, Boltzmann) with large magnetic field require the numerical resolution
of small position and time scales induced by the gyration along the magnetic field.
The guiding center approximation, as well as the gyrokinetic approximation, are
approximate models, well describing particle motion in presence of strong magnetic
field, i.e., rL → 0.

The guiding center motion can be broken into the components parallel and per-
pendicular to the local magnetic field. In the non-relativistic case, the equation of
motion parallel to the magnetic field reads

dp‖
dt

= −µ∇‖B + qE‖, (2.11)

where µ is the particle magnetic moment and ∇‖ = (B/B)·∇ is the spatial derivative
in the field direction.
In the perpendicular direction, the guiding center is drifting with a velocity

vD =
F×B

qB2
, (2.12)
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where F = qE − µ∇B − (mv2‖)∇‖B is the total force acting on the guiding center,
averaged over a gyroperiod, in the (non-inertial) frame co-moving with the guiding
center.

We can now easily understand the motion of a charged particle as it moves
through slowly varying electric and magnetic fields. The guiding centre behaves
exactly like a particle with a conserved magnetic moment, µ, which is always aligned
with the magnetic field.

To arrive at the guiding center approximation, we made the assumption that the
scale length of the fields is much larger than the Larmor radius of the particle. Apart
from some localized regions, which can be treated separately in a simulation, this
assumption is typically valid in an astrophysical plasma, apart from one component
of the electromagnetic field: the turbulence. According to observations, turbulent
magnetic fluctuations, δB, at all scales, from global to kinetic, permeate the space
plasmas in practically all environments. Thus, it would seem invalid to resort to
guiding center theory. However, it can be shown rather easily that, if the amplitude
of the magnetic fluctuations at a given time scale is clearly lower than the mean
magnetic field (averaged over the time scale of the fluctuation), a perturbation
approach called the quasilinear approximation is applicable (Jokipii, 1966; Urch,
1977; Jones et al., 1998). Then, the guiding center reaction to the fluctuations
turns out to be a resonant one, so that only fluctuations fulfilling certain resonance
conditions contribute to the motion of the particle. Thus, the random turbulent
fluctuations of the electromagnetic field cause scattering of the charged particle,
which can be modeled with an additional, stochastic term in the particle equation
motion. Solving such stochastic differential equations of guiding center motion is
then the final task of the modeler of particle acceleration in an astrophysical plasma.

2.4 Overview on wave-particle interaction

In space plasma the collision time between charged particles is generally very long
in comparison with the characteristic time scale of the system, namely, the inverse
of the plasma frequency or cyclotron frequencies and, therefore, plasma can be
treated as collisionless. MHD time scales are typically much longer than this, but
the collision time in the solar wind is usually much longer still. This would imply
that there is virtually no dissipation in space plasmas, as particle-particle collisions
are infrequent. This statement is correct provided that there are no wave-particle
interactions. The presence of waves in collisionless plasma can introduce finite dis-
sipation in the system: charged particles are scattered by the wave fields, changing
their momenta and energies through this process.

Charged particles interacting with weak plasma turbulence, viewed as a field of
waves, diffuse in velocity space, i.e., the variance 〈(∆α)2〉(t) increases, in the case
of normal diffusion, linearly in time for times exceeding the autocorrelation time,
τac, of the fields. In the expression the angle brackets 〈· · · 〉 denote the ensemble
average. The autocorrelation time is defined in (e.g. Karimabadi et al., 1992), as
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τac = 1/|∆(ω−k‖v‖)|. From the particle’s point of view, it is the time for any initially
smooth initial distribution of wave phases to relax to a uniform phase distribution
through dispersion. Alternatively, it can be interpreted as the reciprocal of the
spread in Doppler shifted wave frequencies in a frame moving with velocity, v‖,
parallel to B0.

The systematic treatment of the transport of charged particles in disordered
magnetic fields has been the subject of an extensive amount of work (Jokipii,
1966; Hall & Sturrock, 1967; Urch, 1977; Schlickeiser, 1989; Jones et al., 1998;
Giacalone & Jokipii, 1999; Minnie et al., 2009). Typically one derives a Fokker-
Planck equation for the time evolution of the particle distribution function by a
method that is commonly referred to as the quasilinear theory (QLT). One of the
primary assumptions of this theory is that between the velocity increments, arising
from wave-particle resonant interactions, particle dynamics are adequately modelled
by their helical trajectories in the mean or zeroth order field, i.e., their unperturbed
trajectories. This assumption can only hold on timescales (in the periods between
such nonlinear interactions) during which nonlinear effects may be considered to
be relatively unimportant. Thus, the typical quasilinear timescale, τac, and the
timescale for the onset of nonlinear orbit effects, τnl, must be well-separated (cf.
Weinstock, 1969; Davidson, 1972):

τac ≪ τnl ∼
1

ωb
, (2.13)

where ωb is the bounce frequency. This means that the turbulent spectrum should
be broad enough that the typical timescale for a charged particle to interact with a
resonant wave-packet must be much less than its typical bounce time, τb = 2π/ωb, in
a monochromatic wave at the characteristic wavenumber and frequency of the wave-
packet. The bounce time, ωb, for a particle in resonance with an electromagnetic
wave is proportional to its oscillation period in the pseudo potential well governing
the resonant wave-particle interaction. Frequently this interaction can be approx-
imated by an Hamiltonian pendulum in the vicinity of the resonance point (e.g.,
Karimabadi et al., 1990).

Under these assumptions energy exchange between waves and particles occurs
only at discrete resonances:

ω − k‖v‖ = nΩ, (2.14)

where ω is the wave frequency, k‖ and v‖ are the wavevector and the particle velocity
along the mean magnetic field, B0, respectively, and Ω = qB/mc is the particle
gyrofrequency.

Depending on the value that the integer n assumes, we can distinguish between
two different kind of resonances: the n = 0 is the so-called Landau resonance (see
Section 2.4.1); the n = ±1, ±2, ... are the cyclotron resonances (see Section 2.4.2).
If n = 0, resonance occurs when ω = k‖v‖, so particles surf along the wave. Landau.

(1946) showed that plasma waves in unmagnetized collisionless plasma suffer damp-
ing due to wave-particle interactions, or Landau damping. Instead, if a particle
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is moving in a perpendicular wave field in presence of a strong magnetic field,
B0 = B0ez, it will interact strongly with the wave when its streaming velocity
is such that the particle senses the Doppler-shifted wave at its cyclotron frequency
or its harmonics, under the assumed steady conditions. The particle response to
the perturbation is always periodic, except if the Doppler-shifted frequency in the
frame moving with the particle parallel velocity is exactly equal to the cyclotron
frequency: ω− k‖v‖ = Ω. In this case the perpendicular electric force due to a wave
remains in phase with the rotating particle cyclotron motion and particle response
is secular and, over short times, non-oscillatory.

In linear theory these resonances are represented by delta functions; of course,
in presence of a well-developed magnetic turbulence, at least we expect the discrete
resonances to be significantly broadened, due to the rapid decorrelation of the waves
phases in strong turbulence. During resonant wave-particle interaction, the secular
force acting on a given particle, due to the waves effects, is constant over a particle
gyroperiod; thus the magnetic moment conservation is broken. Then interacting
particles undergo pitch angle diffusion in the presence of time varying wave fields.

2.4.1 Landau Resonance

If n = 0, resonance occurs when ω = k‖v‖, so particles surf along the wave. Let
us consider the simple case of a particle interacting with a single plasma wave. We
have to solve the particle’s equation of motion:

m
dv

dt
= qE cos (kx− ωt)

dx

dt
= v

where m and q are the particle’s mass and charge, x and v are its position and
velocity, E is the electric field amplitude and k and ω are the wavevector and angular
frequency of the wave. If the wave’s amplitude is small, |E| ≪ 1, the trajectory of
particle will remain close to where it was in absence of the wave (the subscript 0

indicates unperturbed motion, the subscript i indicates an initial value):

m
dv0
dt

= 0; v0 = vi; x0 = xi + vit

This allows computing the first-order perturbation of the velocity, replacing x by x0
in the right-hand side of the equation of motion:

m
dv1
dt

= qE cos [(kvi − ω)t+ kxi]

The first-order velocity perturbation is then obtained by a simple quadrature:

v1 =
qE

m

sin [(kvi − ω)t+ kxi]− sin [kxi]

(kvi − ω)
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This particle’s response is always oscillatory except if the particle’s velocity is exactly
equal to the wave’s phase velocity. In that case, the particle is constantly accelerated
and

v1 =
qE

m
cos (kxi)t

This monotonic particle response to the perturbation is called secular, as opposed
to the periodic one. It is important to notice that, instead of an electrostatic wave,
one can consider a magnetic wave, modulating a large straight magnetic field and
propagating along its direction. This interaction is completely similar to the Landau
one and is called transit time magnetic pumping (Stix, 1992).

2.4.1.1 QL diffusion in the Landau case

It is also possible to approach the resonance problem from a statistical point of view,
using Vlasov’s equation for the same 1D problem:

∂f

∂t
+ v

∂f

∂z
+
qE1

m

∂f

∂v
= 0 (2.15)

Linearizing this equation, assuming that the field E1 is a first-order perturbation
and that f = f0 + f1+.... , averaging over the fast time scale 〈〉f of Eq. 2.15, we
obtain an equation for the slowly varying f0:

∂f0
∂t

+
q

m

〈
E1
∂f1
∂v

〉

f

= 0 (2.16)

Extraction of the first-order terms from Eq. 2.15, followed by Fourier transform in
space and Laplace transform in time, gives the spectrum of the perturbed distribu-
tion function:

f1 =
iqE1

m(ω − kv)

∂f0
∂v

(2.17)

Inserting this expression in Eq. 2.16 and taking into account that the average value
of two real oscillating quantities, u and w, is expressed in terms of their Fourier
transforms, û and ŵ is given by 〈uw〉 = Re(ûŵ∗)/2, we obtain:

∂f0
∂t

= − q

m

1

2
Re

[
E1

∗ ∂
∂v

−iqE1

m(ω − kv)

∂f0
∂v

]
= −q

2|E1|2
2m2

∂

∂v
Im

[
1

ω + iǫ− kv

]
∂f0
∂v
(2.18)

where the small imaginary part +iǫ (ǫ > 0) comes from the inverse Laplace trans-
formation rules (causality). It is possible to rewrite Eq. 2.18 as:

∂f0
∂t

=
∂

∂v

(
D
∂f0
∂v

)
; D =

q2|E1|2
2m2|k| πδ

(
v − ω

k

)
(2.19)

Eq. 2.19 has a form similar to the Fourier heat transfer equation or, more general
speaking, a diffusion equation, except that in this case diffusion takes place in veloc-
ity space. This is called the quasilinear diffusion equation, where D is the quasilinear
diffusion coefficient. The δ-function appearing in this coefficient implying that only
resonant particles participate in the diffusion process.
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2.4.2 The cyclotron interaction

In the same way as for the Landau case, we can look at the linearized motion of a
particle in a perpendicular wave field in presence of a strong magnetic field, B0 =

B0ez (in this case non-subscripted quantities are first order in the field perturbation):

dv

dt
=

q

m
(E+ v ×B0 + v0 ×B)

Because iωB ≈ kE, the last term in the right parenthesis is smaller than the first
one, E, by the ratio v0/(ω/k); so, it can be neglected. In the z direction, parallel
to the mean magnetic field, vz = v‖ = const and z = v‖t + z0. Instead, in the
perpendicular direction the equations of motion are given by:

d

dt

(
vx
vy

)
= Ω

(
vy
−vx

)
+

q

m

(
Ex

Ey

)

Defining the complex velocity u = vx + ivy and separating the electric field into its
left-hand polarized component (rotating in the same sense of ions) of amplitude E+

and the right-hand one E−, we obtain the complex equation of motion:

du

dt
= −iΩu+

q

m

[
E+e

i(k‖z−ωt) + E−e
−i(k‖z−ωt)

]

In order to simplify the discussion, we look just at the ion motion, expected to be in
resonance with the left-hand polarized component, E+. The particle unperturbed
motion can be written as:

u = v⊥e
−i(Ωt); ρ = x+ iy = ρ0 + i

v⊥
Ω
e−(iΩt) = ρ0 + irLe

−(iΩt),

where v⊥ is the constant, 0th order, perpendicular velocity, ρ0 is the (complex)
guiding center position and rL = v⊥/Ω is the particle gyroradius. In general the
electric field amplitude depends on the transverse coordinates: E+ = E+(x, y) =

E+(ρ, ρ
∗). If in a first step we assume that E+ = const, the particle response to the

left-hand component is:

u = u0e
−(iΩt) +

q

m

e−(iΩt)E+

[
ei(k‖v‖−ω−Ω)t+ik‖z0 − eik‖z0

]

i(k‖v‖ − ω +Ω)

Again this response is always periodic, except if the Doppler-shifted frequency in the
frame moving with the particle’s parallel velocity is exactly equal to the cyclotron
frequency: ω − k‖v‖ = Ω. In this case, the perpendicular velocity grows linearly
with times:

u = u0e
−(iΩt) +

qE+

m
e(−iΩt+ik‖z0)t

The perpendicular electric force due to a wave remains in phase with the rotating
particle cyclotron motion and particle response is secular.
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2.4.2.1 QL diffusion in uniform magnetized plasmas

The derivation of the quasilinear equation for the general case of a uniform plasma
immersed in a constant and uniform magnetic field, B0, follows exactly the same
steps of the previous case. Starting from the full Vlasov’s equation with collisions:

∂fs
∂t

+ v · ∇fs +
qs
ms

(E+ v ×B) · ∂fs
∂v

=
∑

s′

C(fs, fs′) (2.20)

linearizing f → f0 + f1 and B → B0 + B1, solving for the first-order distribution
function and inserting the latter in the averaged Eq. 2.20, one obtains the quasilinear
diffusion equation:

∂fs0
∂t

=

(
1

v⊥

∂

∂v⊥
v⊥,

∂

∂v‖

)
D̄s

(
∂

∂v⊥
∂

∂v‖

)
fs0 +

∑

s′

C(fs0, fs′0) + Ss + Ls (2.21)

where

D̄s =
qs

2k‖
2

2m2
sω

2v⊥2

∞∑

p=−∞
πδ(ω − k‖v‖ − nΩs)

∣∣∣Ẽ∗wsnw̃
∗
snE

∣∣∣uũ

ũ =

(
ω

k‖
− v‖, v⊥

)
; w̃∗

sn =

(
Ωs

k⊥
nJn, iv⊥J

′
n, v‖Jn

)
; J = J

(
k⊥v⊥
Ωs

)

Here n is the cyclotron harmonic number.
Although more complicated and acting in the 2D velocity space, this equation

exhibits the same characteristics as in the Landau case, in particular the fact that
only resonant particles participate in the diffusion process. In this equation collisions
are incorporated, as well as source term S (beam-injected particles, alpha particles,
etc) and loss term L (finite confinement, fusion reactions, etc). The u vector deter-
mines the directions in velocity-space along which diffusion is taken place. One also
notices the presence of the Bessel functions Jn, which argument is the ratio of the
Larmor radius to the perpendicular wavelength.

2.5 What is Diffusion?

Diffusion usually occurs if there is a spatial difference in concentration (particles,
heat, etc...) and it usually acts to reduce these spatial inhomogeneities. The time
dependence of the statistical distribution in space is given by the diffusion equation.
The motion of a particle undergoing diffusion is sometimes described as a random
walk, a discrete process, that has a striking connection to Brownian motion, gov-
erned in the continuous limit by the diffusion equation. The mathematics of random
walks is often studied using simple models. In the simplest model the random walker
takes steps of equal size in any direction. Before each step, he chooses a new random
direction and takes a step. Imagine a large number of random walkers all starting
out from the same place at the same time. As time proceeds, the initial high con-
centration of random walkers spreads out, invading regions of lower concentration.
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There are two important questions concerning this process: What is the distribution
of random walkers as function of time? What is the average distance that a single
walker is expected to go in a given time?

2.5.1 Historical remarks

The stochastic formulation of transport phenomena in terms of a random walk pro-
cess as well as the description through the deterministic diffusion equation are the
two fundamental concepts in the theory of both normal and anomalous diffusion.
Indeed, the history of this dual description basing on erratic motion and on a dif-
ferential equation for the probability density function is quite interesting and much
worth a short digression.

Small flickering of coal dust particles on the surface of alcohol was observed by the
Dutch physician Jan Ingenhousz as early as in 1785. In 1827, the Scottish botanist
Robert Brown (Brown, 1828) observed similar irregular movement of small pollen
grain under a microscope. At about the same time, in 1822, Joseph Fourier (Fourier,
1822) came up with the heat conduction equation, on the basis of which A. Fick set
up the diffusion equation in 1855 (Fick, 1955a,b). Subsequently, the detailed exper-
iments by Gouy proved the kinetic theory explanation given by C. Weiner in 1863.
After attempts of finding a stochastic footing like the collision model by von Nagëli
and John William Strutt, Lord Rayleigh’s results, it was Albert Einstein (Einstein.,
1905) who, in 1905, unified the two approaches in his treatises on the Brownian
motion, a name coined by Einstein although he reportedly did not have access to
Brown’s original work. Note that a similar description of diffusion was presented by
the French mathematician Louis Bachelier in his 1900 thesis (Bachelier, 1900), in
terms of stock values instead of physical quantities. An important application of Ein-
stein’s results was the independent measurement of the Avogadro number by Jean
Baptiste Perrin (Nobel Prize in 1926) (Perrin, 1908, 1909), A. Westgren and Eugen
Kappler (Kappler, 1931), to a rather high accuracy. The random walk, which can be
experimentally observed, represents therefore a link between the microscopic dynam-
ics of small atoms, bombarding a larger particle in suspension, and macroscopic ob-
servables like the diffusion coefficient, or the Avogadro number. Einstein’s ideas also
set the scene for Langevin’s treatment of Brownian motion with the assumption of
an external erratic force, and the Fokker Planck (Fokker, 1914; Planck, 1917), Smolu-
chowski (Smoluchowski, 1915) and Klein-Kramers theories (Klein, 1922; Kramers,
1940), which culminated in the treatises of Ornstein and Uhlenbeck, Chandrasekhar
(Selected Papers on Noise and Stochastic Processes, 1954) and others, and later in
the works of Elliott Montroll and collaborators (Montroll, 1956; Montroll et al.,
1969, 1973) .The mathematical treatment of Brownian motion is mainly due to
Norbert Wiener (Wiener, 1923, 1924, 1930, 1938), who proved that the trajectory
of a Brownian particle is (almost) everywhere continuous but nowhere differentiable.
This observation is related to the self-affine nature of the diffusion process whose
resulting spatial trajectory is self-similar.
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2.5.2 Random walk

(a) The drunkard walk. (b) Schematic representation of a Brown-

ian random walk. The walker jumps at

each time step t = 0,∆t, 2∆t, ..., n∆t, ...

to a randomly selected direction, thereby

covering the distance ∆x.

Figure 2.3: Random walk representation

We consider a random walk in one dimension and assume that the particles’
steps, ∆z, are random and equally likely to either side, left or right, and of constant
length l (see Figure 2.3(b)). The position, zN , of a particle starting at z0 after N
steps is:

zN = ∆zN +∆zN−1 + ....+∆z1 =

N∑

i=1

∆zi,

so that the squared length of the path equals

z2n =




N∑

j=1

∆zj



(

N∑

k=1

∆zk

)
=

N∑

j=1,k=j

∆z2j+
N∑

j,k=1,k 6=j

∆zj∆zk = Nl2+
N∑

j,k=1,k 6=j

∆zj∆zk.

When averaging over a large number of particles, we find the mean squared path
length as

〈z2N 〉 = Nl2 +

〈
N∑

j,k=1,k 6=j

∆zj∆zk

〉
.

Each step of the walk is equally likely to the left or to the right, so that the dis-
placements, ∆zi, are random variables with zero mean. The products ∆zj∆zk are
also random variables, and, since we assume that ∆zj and ∆zk are independent of
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each other, the mean value of the products is zero, so that the expectation value of
the mixed term is zero. Thus, we obtain:

〈z2〉 = Nl2. (2.22)

The root-mean square displacement after N steps of constant length l (mean free
path) is: √

〈z2N 〉 = l
√
N.

The mean free path, l, can be estimated with a simple model. Assuming that a
particle is moving inside a gas with a mean speed 〈v〉, the distance traveled between
two successive collisions is l = 〈v〉τ , where τ is called collision time. We may thus
conclude that the number of steps a particle executes inside a gas during a time
t is N = t/τ , and, with Eq. 2.22 and the above relation for l, the mean squared
distances it travels is:

〈z2〉 = Nl2 = (t/τ)(〈v〉τ)l = (〈v〉l)t.

Assuming that the random walk takes place in 3D and that the gas is in equilibrium
and isotropic, we expect that 〈x2〉 = 〈y2〉 = 〈z2〉 = 〈r2〉/3, and the mean square
path length in 3D is:

〈r2〉 = 3〈v〉lt = Dt

where D = 3〈v〉l is called the diffusion coefficient, which is a useful parameter to
characterize particle diffusion in the normal case. Important, here, is to note the
linear scaling relation between 〈r2〉 and time t, typical of normal diffusion.

To see the connection between random walks and and the macroscopic diffusion
equation, consider the probability, p(m,n), that a walker is at position m after n
steps. To get to position, m, the walker must be at position m− 1 or position m+1
at the previous step. In either case, the probability that it moves to position m is
0.5. Hence,

p(m,n) =
1

2
[p(m+ 1, n− 1) + p(m− 1, n − 1)] .

Subtracting p(m,n− 1) from both sides gives:

p(m,n)− p(m,n− 1) =
1

2
[p(m+ 1, n − 1)− 2p(m,n − 1) + p(m− 1, n− 1)] .

The left hand side is the change in p over one time step and the right hand side has
the form of a second derivative with respect to the position (the step size is unity).
Letting the time step and the spatial step become infinitesimally small leads to a
diffusion equation:

∂p

∂t
= D

∂2p

∂x2
,

where D is the diffusion coefficient.
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2.5.3 Modeling Diffusion with Fick’s Law

Let us consider particle diffusion along the z direction in 3D space and let us assume
that two elementary areas perpendicular to the flow (in the xy plane) are a distance
∆z apart. Particle conservation implies that the time variation of the density, n(z, t),
inside the elementary volume, ∆x∆y∆z, equals the inflow minus the outflow of
particles, so that, if J(z, t) denotes the particle flux,

∂n(z, t)

∂t
∆x∆y∆z = J(z)∆x∆y − J(z +∆z)∆x∆y =

∂J

∂z
∆x∆y∆z,

which leads to the diffusion equation in its general form:

∂n(z, t)

∂t
=
∂J(z, t)

∂z
. (2.23)

The problem that remains is to determine the particle flux, J . From its physical
meaning, it obviously holds that J(z, t) = n(z, t)v(z, t), where v(z, t) is an average
particle flow velocity. Using this expression in Eq. 2.23 leads to a closure problem, we
would need to find ways to determine v(z, t). It is well documented experimentally
that the flux of particles, J , crossing a certain area (again, say in the xy plain), is
proportional to the density gradient along the z axis (Fick’sLaw):

Jz = −D(z)
∂n

∂z
, (2.24)

where D is the diffusion coefficient discussed already in the previous sections and
which generally may also depend on z. With Eq. 2.24, the diffusion equation takes
the classical form:

∂n(z, t)

∂t
= − ∂

∂z
D(z)

∂n(z, t)

∂z
or (2.25)

∂n(z, t)

∂t
= −D∂

2n(z, t)

∂z2
for D=const (2.26)

In infinite space, if all particles start initially from z = 0, the solution of Eq. ?? is:

n(z, t) =
N0√
4πDt

e−z2/4Dt, (2.27)

where N0 is the total number of particles inside the volume under consideration.
The solution obviously is identical to a Gaussian distribution with zero mean and
variance 2Dt. The variance is defined as:

σ2 = 〈z2(t)〉 =
∫
z2n(z, t)dz = 2Dt, (2.28)

which is just identical to the mean square displacement, so that the results ob-
tained earlier, using the simple version of the random walk in Section 2.5.2, is again
confirmed. Diffusion obeying Eq. 2.28 is called normal diffusion and is character-
istic for the diffusion processes in systems that are in equilibrium or very close to
equilibrium.
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2.5.4 The Fokker-Planck Equation

The Fokker-Planck (FP) equation is a more general diffusion equation than the sim-
pler equations introduced in Section 2.5.2 and Section 2.5.3. The basic difference
between the FP equation and the simple diffusion equation in Eq. 2.26 is the ap-
pearance of a drift term and that both the drift velocity and the diffusion coefficient
are allowed to be spatially dependent (Fick’s law also allows a spatially dependent
diffusion coefficient, see Eq. 2.26). These differences allow the FP equation to model
more complex diffusive behavior. We can write the FP equation as:

∂tn(z, t) = −∂z [V (z)n(z, t)] + ∂2z [D(z)n(z, t)] , (2.29)

where V (z) = µ∆z(z)/∆t is a drift velocity and D(z) = 〈∆z2〉(z)/2∆t is the diffu-
sion coefficient. The FP equation is also applied to velocity space, e.g., in plasma
physics in order to treat collisional effects or to position and velocity space together.

2.5.5 Anomalous diffusion

Figure 2.4: Random walk in dynamical systems close to equilibrium (normal diffusion: trajec-

tory on the left); random walk in dynamical systems far from equilibrium (anomalous diffusion:

trajectory on the right).

Normal diffusion has as basic characteristic the linear scaling of the mean square
displacement of the particles with time, 〈r2〉 ∝ Dt. Howeve, many different exper-
iments reveal deviations from normal diffusion, in that diffusion is either faster or
slower and which is termed anomalous diffusion. A useful characterization of the
diffusion process is again through the scaling of the mean square displacement with
time, where now we are looking for a more general scaling of the form

〈r2〉 ∝ tγ (2.30)
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Diffusion is then classified through the scaling index, γ.

1. γ = 1 particles follow a Gaussian distribution: this is the normal or brownian

diffusion.

2. γ 6= 1 particles perform Levy flights. This is the case of anomalous diffusion

• If γ > 1 we have the family of superdiffusive processes

• If γ < 1 we have the family of subdiffusive processes

The case γ = 2, which is called ballistic motion or "free streaming", is a particular
case of superdiffusive process: let us consider a particle that is moving with constant
velocity, v, and undergoes no collisions and experiences no friction forces. It then
obviously holds that r = vt, so that 〈r2〉 ∝ t2. Free particles are thus superdiffu-
sive in the terminology used here. The difference between normal and anomalous
diffusion is also illustrated in Figure 2.4, where in the case of anomalous diffusion
(trajectory on the right) long "flights" are followed by efficient "trapping" of par-
ticles in localized spatial regions, in contrast to the more homogeneous picture of
normal diffusion (trajectory on the left).

2.6 Quasilinear Theory and Diffusion Coefficients

The elementary notion of particles following field lines emerges in single particle orbit
theory (e.g., Rossi & Olbert, 1970), where the gyrocenter of charged particle motion
remains on a certain magnetic field line, when that field is uniform and constant and
the electric field is negligible. When constant (or slowly varying) magnetic field gra-
dients and constant electric fields are present, (gyroperiod-averaged) drift velocities
provide a correction to the simplest picture and, in the same limit, adiabatic invari-
ants (e.g., magnetic moment) provide useful constraints on possible particle motions.
Even in these idealized circumstances, gyrocenter trajectories can become undefined
when the field lines themselves become ambiguous, for example when neutral points
or separatrices of the magnetic field are present. Moreover, when symmetries of the
magnetic field are imposed (Jokipii et al., 1993; Jones et al., 1998) the idea that
"particles remain on a specific field line" can be replaced by "particles remain on
a flux surface", that is, somewhere on a set of equivalent field lines. The situation
becomes more complicated when classical (hard sphere or Coulomb) scattering is
introduced and conditions for the drifting gyrocenter picture can be strongly vio-
lated. It is in the midst of this already complex landscape that one seeks to develop
transport theories for charged particles in a low-collisionality turbulent medium.

The wave-particle interaction formalism has been developed in the last years in
numerous theoretical papers concerned with weak turbulence in plasma. The special
problem of charged particles diffusion in interplanetary space through weak inter-
actions with random electromagnetic fields has been considered by Jokipii (1966,
1967); Hasselmann & Wibberenz (1968); Klimas & Sandri (1971); Fisk et al. (1974);
Jones et al. (1973); Bieber & Matthaeus (1997); Zank (1998); Giacalone & Jokipii
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(1999). These theories are derived by using both the quasilinear and the adiabatic
approximations. In the adiabatic approximation the particles distribution function
is assumed to vary on a time scale longer than and distinct from the time scale over
which a particle experiences a significant interaction with the random magnetic field.

Quasilinear (QL) or Fokker-Planck (FP) approaches (Jokipii, 1966;
Jokipii & Parker, 1968, 1969; Forman et al., 1974; Schlickeiser, 1989) develop
perturbation schemes in which random forces on particles are computed along
unperturbed trajectories. Here, one begins to see how problems interpreting
the beads-on-a-string picture arise: pitch angle scattering changes the particle
magnetic moment and, in fully three dimensional cases, changes the bundle of
field lines encircled by the gyro-orbit. For stronger scattering (Lingenfelter et al.,
1971; Urch, 1977; Rechester & Rosenbluth, 1978), the parallel and perpendicular
scattering processes are no longer independent. Scattering parallel to the mean
magnetic field can cause a reversal of the particle velocity along the magnetic field,
a subsequent reduction of perpendicular random displacement and the possibility
of subdiffusion. This process is observed in simulations (Qin et al., 2002b). Also
seen in some cases is the restoration of diffusive transport (Qin et al., 2002a), when
the particles effectively change which field line they are following and the magnetic
turbulence exhibits sufficient spatial complexity. In such cases a diffusive limit
can also be established, once the displacements become uncorrelated, although the
reasons for the decorrelation are different from the case of particles simply following
field lines. This phenomenon of second diffusion, which replaces perpendicular
subdiffusion at longer time intervals for spatially complex turbulence, is reasonably
well described by the Nonlinear Guiding Center Theory (NLGC; Matthaeus et al.,
2003; Bieber et al., 2004) and its offspring (e.g., Shalchi et al., 2004). In this picture
one can say that the particle guiding centers locally follow field lines over a distance
determined by the mean free paths of parallel scattering and the field line random
walk. After that, the particle switches to a different field line. The guiding center
motion is taken to be randomized, with no "backtracking" along the same field line.

2.6.1 Description of particle motion in a random magnetic field

As explained in the original derivation of Jokipii (1966), the goal is not to obtain a
complete description of the trajectory of each particle, but instead to find a statisti-
cal equation governing the evolution of the particle distribution function. Thus, the
behavior of a large number of particles will be assumed to follow the probability dis-
tribution of a single particle. This approach is very similar to the ordinary random
walk problem, except that here we are tracing the random walk of a particle trajec-
tory under the influence of an irregularly fluctuating magnetic field. If the magnetic
field were uniform, the particle would travel in a helical orbit along the field. The
irregularities perturb this orbit and cause, among other things, a scattering in pitch
angle. If the irregularities were all of a given shape, δB(x), but occurred, say, with
random sign, one could compute an "elementary" scattering, ∆θ ≪ 1, and then
compute the net change after N scatterings (∆θN ≃ N−1/2|∆θ|), because of the
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random sign. This then leads to a relaxation of the angular distribution toward
isotropy in a characteristic time, τc, which can be computed from ∆θ. Hence, the
diffusion coefficient k ≃ w2τc/3 can be obtained. But, in actuality, the irregularities
do not all have the same shape and a more general treatment is necessary.

Suppose a particle of velocity v and mass γm0 propagates in the magnetic field
B(r), where γm = (1− v2/c2). The equation of motion is:

dv

dt
=
qv×B

γmmoc
= v ×ω(r), (2.31)

with ω = qB/γmmoc. The goal is to find a differential equation governing the
distribution of particles subject to Eq. 2.31, in terms of the correlation functions of
the magnetic field defined as follow:

Rij...k(r1, t1, r2, t2, ...., rn, tn) = 〈Bi(r1, t1)Bj(r2, t2).......Bk(rn, tn)〉 , (2.32)

where 〈Bi(r, t)〉 is the magnetic vector. In this approach the magnetic field is de-
scribed statistically, in the sense of random function theory (Yaglom, 1962): speci-
fication of a hierarchy of correlation functions constitutes a complete statistical de-
scription of the field. For example, for n = 1 in Eq. 2.32, one has simply 〈Bi(r, t)〉,
the average magnetic vector, and so on. One can easily see that the general descrip-
tion would involve the entire infinite family of correlations and is thus impractical.
To avoid this difficulty, one approach is to define

ω0êz = 〈ω〉 and ω1(r) = ω(r) − ω0êz (2.33)

and to assume
〈
ω

2
1

〉
/ω2

0 ≪ 1, so that the orbit is only slightly perturbed in a
coherence length of the field. Then, only the lowest-order correlations of ω1 need
be retained to obtain a reasonable approximation to the particle motion.

At this point one may proceed in one of two distinct directions to find
the equation for the particle distribution. The original approach (Jokipii, 1966;
Hasselmann & Wibberenz, 1968) proceeds by means of Fokker-Planck coefficients
in a manner first used by Sturrock (1965) in a different problem. After that
Hall & Sturrock (1967); Dolginov et al. (1968); Roelof (1968), pointed out that the
same equations could be obtained from a more general approach by means of Li-
ouville’s equation. In this context, the Fokker-Planck approach of Jokipii (1966)
will be followed because of its comparative algebraic simplicity. The unperturbed
particle trajectory in the uniform field ω0êz is the usual helix determined by its
instantaneous position and velocity. It is assumed that the average cyclotron fre-
quency, ω0, is large compared with any other frequencies, so that all quantities may
be averaged over the phase of gyration. Hence, the orbit is completely characterized
by the pitch angle, θ = cos−1 vz/v, and position at a given velocity v. It proves
convenient to define the complex variables:

x+ = x+ iy

v+ = vx + ivy

ω+ = ω1x + iω1y
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in the plane normal to the average magnetic field. The unperturbed or zero-order
orbit (u subscript) is then given by:

zu = z0 + vz0t (2.34)

x+u = x+0 + i
(
v+0 + e−iω0t/ω0

)
(2.35)

with |v+0|2 + v2z0 = v2 = const. The fluctuating field, ω1, causes perturbations in
this zero-order orbit: the orbit parameters x, y, z, vz0, execute a random walk under
its influence. Define the cosine of pitch angle α = vz/v. Then, let

n(r, α, t)drdα (2.36)

be the probability of finding a particle in r to r+dr, α to α+dα at time t. Hence, n
is a probability density that may be identified with the measured density in position
and pitch angle. If the orbit changes caused by the random field, ω1, are small in
a correlation time of the fluctuations as seen by a particle, then the evolution of
n is governed by a Fokker-Planck equation, as outlined by Chandrasekhar (1943).
That is, the evolution of n is caused by a succession of small, random, increments
and the particles may be regarded as random-walking, or diffusing, in pitch angle
and position. The process is a straightforward generalization to more variables of
the ordinary particle diffusion due to a spatial random walk, as given in Eq 2.26. If
r and α are replaced by the four parameters Xi, then the Fokker-Planck equation
reads formally:

∂n

∂t
= −

4∑

i=1

∂

∂Xi

[〈∆Xi〉
∆t

n

]
+

1

2

4∑

i=1

∂2

∂X2
i

[〈
∆X2

i

〉

∆t
n

]
+ (2.37)

+
∑

i<j

∂2

∂Xi∂Xj

[〈∆Xi∆Xj〉
∆t

n

]

The problem is to evaluate the various FP coefficients,
〈
∆X2

i

〉
/∆t, etc., appearing

in Eq. 2.37. To calculate these coefficients, one considers the perturbations about
the unperturbed orbit given in Eq. 2.34 and Eq. 2.35. Setting

z(t) = zu(t) + z1(t) + z2(t) + ... (2.38)

x+(t) = x+u(t) + x+1(t) + x+2(t) + ... (2.39)

where z1(t) and x+1(t) are linear in ω1 and z2 and x+2(t) are of the second order,
substituting Eq. 2.38 and Eq. 2.39 into the equation of motion, Eq. 2.31, one obtains,
to first order in ω1:

z̈1 = − i

2

[
ω+(zu, x+u)v

∗
+0e

iω0t − ω∗
+(zu, x+u)v+0e

−iω0t
]

(2.40)

ẍ+1 + iω0x+1 = ivz0ω+(zu, x+u)− iv+0e
−iω0tω1z(zu, x+u) (2.41)

and so on, where the superscript ∗ indicates complex conjugate.
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Consider first the scattering in pitch angle. From the definition of α and the
Eq. 2.40,

〈
(∆α)2

〉
=

〈
1

v2
ż21

〉
= − 1

4v2
〈
∫ ∆τ

0
dτ

∫ ∆τ

0
dτ ′×

×
[
ω+(zu, x+u)v

∗
+0e

iω0t − ω∗
+(zu, x+u)v+0e

−iω0t
]
×

×
[
ω+(zu, x+u)v

∗
+0e

iω0t′ − ω∗
+(zu, x+u)v+0e

−iω0t′
]
〉 (2.42)

correct to second order in ω1. Define

ζ = vz0(τ
′ − τ)

ρ+1 = x+u(τ
′)− x+u(τ) = i

v+0

ω0
e−iω0t

(
e−iω0ζ/αv − 1

)

Then, because of the symmetry:

〈
ω+ [zu(τ), x+u(τ)]ω

∗
+

[
zu(τ

′), x+u(τ
′)
]〉

= 2b(ζ, ρ1) + ρ21a(ζ, ρ1)〈
ω+ [zu(τ), x+u(τ)]ω+

[
zu(τ

′), x+u(τ
′)
]〉

= a(ζρ1)ρ
2
+1

where

ρ1(ζ) = |ρ+1| =
[
2
(1− α2v2)

ω2
0

(
1− cos

ω0

αv
ζ
)]1/2

. (2.43)

Substituting these relations into Eq. 2.42 and remembering that 〈ω1〉 = 0, one
eventually obtains:

〈
(∆α)2

〉
=

1− α2

|α|v

∫ ∆t

0
dτ

∫ vz0(∆t−τ)

−vz0τ
dζ × (2.44)

×
{
b[ζ, ρ1(ζ)]e

−iω0ζ/αv +
(1− α2)v2

2ω2
0

a[ζ, ρ1(ζ)]
(
1− e−2iω0ζ/αv

)}
.

If we further make the usual assumption that vz0∆t is much greater than the cor-
relation length along z, the ζ-integration can be taken from −∞ to +∞ and the
integrand with respect to τ becomes independent of τ . Thus,
〈
(∆α)2

〉

∆t
=

1− α2

|α|v

∫ +∞

−∞
× (2.45)

× dζ

{
b[ζ, ρ1(ζ)]e

−iω0ζ/αv +
(1− α2)v2

2ω2
0

a[ζ, ρ1(ζ)]
(
1− e−2iω0ζ/αv

)}
.

Eq. 2.45 is the general expression for the Fokker-Planck coefficient, if the fluctuations
are statistically axially symmetric. It gives the rate of relaxation toward isotropy.

By following this same general procedure, one may compute the remaining FP
coefficients. However, this may circumvented noting that scattering in pitch angle
must lead to isotropy (n is independent of α); that is, scattering must cause sim-
ple diffusion in pitch angle. If scattering did not tend toward isotropy, a spatially
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uniform, isotropic distribution would relax toward anisotropy, in violation of Liou-
ville’s theorem (the steady-state configuration is isotropic). Hence, 〈(∆α)〉 /∆t and〈
(∆α)2

〉
/∆t must be related by (Jokipii, 1966):

1

2

∂2

∂α2




〈
(∆α)2

〉

∆t
n


− ∂

∂α

[〈∆α〉
∆t

n

]
=

1

2

∂

∂α




〈
(∆α)2

〉

∆t

∂n

∂α


 , (2.46)

which is zero for an isotropic distribution. This result also arises in the alternate
approach using Liouville’s theorem. Similarly, the symmetry about the z axis leads
to:

〈∆x〉 /∆t = 〈∆y〉 /∆t = 0 (2.47)

〈∆x∆y〉 /∆t = 0 (2.48)

〈∆x∆α〉 /∆t = 〈∆y∆α〉 /∆t = 0 (2.49)

The equation for x+1(t) may be integrated, precisely as was done for z1(t) to obtain:
〈
(∆x)2

〉

∆t
=

〈
(∆y)2

〉

∆t

=
1

2ω2
0|α|v

∫ ∞

−∞
dζ{{α2v2

{
2b[ζ, ρ1(ζ)] + ρ21a[ζ, ρ1(ζ)]

}
+

+ (1− α2)v2Rzz[ζ, ρ1(ζ)]e
−iω0ζ/αv+

+
2iα(1 − α2)v3

ω0
{a[ζ, ρ1(ζ)]ζ + d[ζ, ρ1(ζ)]} e−iω0ζ/αv}}. (2.50)

The motion in the xy plane is a simple random walk. Note that, in addition to the
resonant terms (∝ Rzz), the guiding center motion normal to the field depends on
simple integrals of a and b: the guiding center follows the random walk of a given
field line in the xy plane, as the particle moves in the z direction.

Finally, consider the motion along the z axis. This is qualitatively different
from the motion normal to the field, because α is assumed to change only a small
amount in a correlation length. Thus, the particle simply moves along the z axis at
a rate αv and only gradually does this rate change. So, considering 〈(∆z)〉 /∆t and〈
(∆z)2

〉
/∆t one finds further that

〈(∆z)〉 /∆t = αv (2.51)〈
(∆z)2

〉
/∆t = 0(∆t) (2.52)

Here, 0(∆t) means that the right side if Eq. 2.52 goes to 0 as ∆t→ 0 Thus, the full
Fokker-Planck equation in this approximation becomes:

∂n

∂t
= −αv∂n

∂t
+
1

2

∂

∂α




〈
(∆α)2

〉

∆t

∂n

∂α


+1

2

∂

∂x




〈
(∆x)2

〉

∆t

∂n

∂x


+1

2

∂

∂y




〈
(∆y)2

〉

∆t

∂n

∂y




(2.53)
with the FP coefficients given by Eq. 2.45 and Eq. 2.50.
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2.6.2 The diffusion limit

Eq. 2.53 contains a great deal of information concerning the particle distribution,
including the pitch angle distribution and its evolution. Quite often the scattering
in pitch angle is rapid compared to other rates of change, so that the pitch angle
distribution may be taken to be isotropic and we may approximate the z motion as
diffusion, with a mean free path, λz, of the order of this scattering distance. Since
the motion in the xy plane is already simple diffusion, one may approximate Eq. 2.53
by a diffusion equation. n(r, α, t) may be expended in Legendre polynomials:

n(r, α, t) =
1

2

[
Ur, t) +

∞∑

l=1

nl(r, t)Pl(α)

]
, (2.54)

where U is the particle density (or probability density) averaged over pitch angle at
a given energy, T . At this point it is necessary to assume that the scattering is such
that nl+1 decays faster than nl (the nl must all decay due to the scattering). Then,
to lowest order for slow variations,

n(r, α, t) ≃ 1

2
[U + n1α], (2.55)

where n1 ≪ U . Substituting Eq. 2.55 into the FP Eq. 2.53 and integrating over α
from α = −1 and α = 1 yields

∂U

∂t
+
v

3

∂n1
∂z

=
1

2

[
∂2U

∂x2
+
∂2U

∂y2

] ∫ +1

0

〈
(∆x)2

〉

∆t
dα. (2.56)

Substituting again, multiplying by α and integrating again yields:

v

3

∂U

∂z
= −n1

2

∫ +1

0

〈
(∆α)2

〉

∆t
dα. (2.57)

Finally, combining Eq. 2.56 and Eq. 2.57 yields the diffusion equation for U :

∂U

∂t
= k‖

∂2U

∂z2
+ k⊥

[
∂2U

∂x2
+
∂2U

∂y2

]
, (2.58)

where

k‖ =
2v2

9



∫ +1

0

〈
(∆α)2

〉

∆t
dα



−1

(2.59)

k⊥ =
1

2

∫ +1

0

〈
(∆x)2

〉

∆t
dα (2.60)

are the parallel and the perpendicular diffusion coefficient, respectively.
A different derivation of the parallel diffusion coefficient in terms of〈

(∆α)2
〉
/∆t was first put forth by Jokipii (1966) and subsequently emphasized
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by Hasselmann & Wibberenz (1968). In this derivation the Legendre expansion is
not used. Instead, it is assumed that ∂n/∂t ≪ αv(∂n/∂z) in Eq. 2.53. By carrying
through appropriate manipulations while still regarding the anisotropy to be small,
one arrives at:

k‖ = v2
∫ 1

−1
α′



∫ α′

0

(1− α2)〈
(∆α)2

〉
/∆t

dα


 dα′. (2.61)

This is the same of Eq. 2.59 only in certain case (Earl, 1974).
If the fluctuating field ω1 depends only on z, as shown by Jokipii (1971), its

possible to obtain an approximate expression of Eq. 2.45 and Eq. 2.50:
〈
(∆α)2

〉

∆t
=

ω2
0

vB2
0

(1− α2)

|α| Pxx

(
k =

ω0

αv

)
(2.62)

〈
(∆x)2

〉

∆t
=

〈
(∆y)2

〉

∆t
=

|α|v
B2

0

[
Pxx(k = 0) +

1− α2

2α2
Pzz

(
k =

ω0

αv

)]
(2.63)

At low energies the resonant term is very small compared with the nonresonant
one, since the power spectrum falls off as a power law toward high energies. Thus,
defined the particle rigidity ǫ = zL/λc, for ǫ < 1

k⊥ =

〈
(∆x)2

〉

2∆t
=

〈
(∆y)2

〉

2∆t
≃ 1

2

|α|v
B2

0

Pxx(k = 0) ≃ 1

4

v

B2
0

Pxx(k = 0), (2.64)

which is called field line random walk limit (FLRW) limit of perpendicular diffusion,
where the perpendicular spread of particles occurs at a rate proportional to the
spatial rate of spreading of field lines themselves.

2.7 Trapping width and resonance overlapping

Generally, wave-particle interaction problems involve multiple resonances. Particle
motion is qualitatively different depending on weather these resonances overlap and
can become very complicated. Numerical simulations of the motion of such systems
show a complexity, which clearly cannot be described analytically, for example it
is not possible to write an equation describing the evolution of the particles dis-
tribution when two resonances overlap (Smith & Kaufman, 1978). The term which
has come into use to describe motion in the presence of overlapping resonances is
stochastic. It is important at this point to distinguish between two different kind of
stocasticity. The problem of wave-particle interaction in presence of perturbations
in the form of uncorrelated small amplitude electromagnetic waves ("plasma turbu-
lence") is termed extrinsically diffusive. In this case, the regular phase space struc-
ture for a charged particle interacting resonantly with an electromagnetic wave is
perturbed by neighboring uncorrelated waves (or generically, external noise), which
leads to extrinsic stochasticity and extrinsically diffusive behavior. This contrasts
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with nonlinear systems, such as particle interacting resonantly with a large ampli-
tude obliquely propagating (with respect to B0) electromagnetic plasma wave, which
can exhibit intrinsic stochasticity. Once the nonlinear bounce frequency, ωb, exceeds
the stochasticity threshold given by approximately Ω/4, where Ω = |q|B0/γmc is
the relativistic gyrofrequency of the particle, the resonances at the harmonics of the
gyrofrequency are sufficiently broadened that they can overlap with adjacent pri-
mary resonances and hence particles, interacting even with a single monochromatic
wave, exhibit intrinsically stochastic and diffusive behavior (Karimabadi & Menyuk,
1991). This is the regime of nonlinear diffusion and irreversible chaotic mixing of
orbits.

The trapping half width and bounce frequency for a nonrelativistic particle in-
teracting resonantly with an electromagnetic wave are given by Karimabadi et al.

(1992) as,

∆p
(n)
‖ = 2|MZn|1/2 and ω

(n)
b = k‖

∣∣∣∣
Zn

M

∣∣∣∣
1/2

, (2.65)

where M = m/(1 − 1/N2
‖ ), the parallel refractive index is N‖ = k‖c/ω and

Zn = mc2
{
v⊥
2c

[(
ǫ2 −

k‖
k
σǫ1

)
Jn−1(k⊥ρ)−

(
ǫ2 +

k‖
k
σǫ1

)
Jn+1(k⊥ρ)

]
(2.66)

+ σ

(
v‖
c

k⊥
k
ǫ1 + ǫ3

)
Jn(k⊥ρ)

}
.

The charge sign is σ = q/|q|, the normalized components of the wave polarization
vector are ǫ1 = |q|A1/mc

2 = |q|E1/mcω, ǫ2 = |q|A2/mc
2 = |q|E2/mcω, ǫ3 =

|q|φ0/mc2 = −|q|E3/mc
2k and the particle gyroradius is given by ρ = v⊥/Ω. The

Ei are the components of the electric field polarization vector and the Ai refer to
the components of the polarization vector for the magnetic vector potential:

A = A1

k‖
k
sinψex +A2cosψey +

− A1
k⊥
k
sinψez + xB0ey = Aem + xB0ey (2.67)

in which ψ = k⊥x+ k‖z−ωt. The subscripts 1, 2 and 3 refer to vector components
relative to a Cartesian coordinate system with basis vectors defined by:

e1 =
k× (k×B)

|k× (k×B)| ; e2 = − k×B

|k×B| ; e3 =
k

|k| , (2.68)

hence, the ei form a natural basis for the specification of the polarization relative
to k.

Particles in resonance with a single finite amplitude fluctuation undergo a finite
amplitude nonlinear oscillation, given by half peak-to-peak difference in the particle
velocity parallel component, v‖. The trapping associated with each resonance is
proportional to δb1/2 , where δb is the normalized wave amplitude, δB/B0 = δb.

We can distinguish between two different cases:
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• δb ≪ 1: neighboring resonances are well separated and the particle motion is
periodic.

• δb ∼ 1: adjacent resonances overlap and the motion becomes random or
chaotic. The particle can then sample several resonances and gain large ener-
gies in the process.

In the derivation of Eq. 2.65 and Eq. 2.66, it is also assumed that each res-
onance, n, is well separated from adjacent resonances, which is not always the
case when relativistic effects and oblique wave propagation are taken into account.
Furthermore, the trapping width is independent of wave phase, which is also an ap-
proximation. The full trapping width, including wave phase, can only be obtained
by numerical simulation (Ginet & Heineman, 1990). Nevertheless, as discussed by
Karimabadi et al. (1992), the trapping half width and the bounce frequency as given
by Eq.(2.65) with Eq.(2.66) are useful estimates even when these conditions are not
rigorously satisfied. For example, when used in conjunction with the quasilinear dif-
fusion coefficient, they yield considerable physical insight into the diffusion process.





Chapter 3

Model and Basic Equations

The aim of this work is to study the behavior of charged particles in presence of
one or more resonant waves, as well as of a broad band slab spectrum, in order to
understand the conditions for magnetic moment conservation and the nature of its
change, when it is not conserved. We assume that there are no electric fields and that

(a) Left-hand circularly polarized electromag-

netic wave.

(b) Right-hand circularly polarized electro-

magnetic wave.

(c) Cyclotron Resonance between ion and left-

hand circularly polarized wave.

(d) Cyclotron Resonance between electron

and right-hand circularly polarized wave.

Figure 3.1: Schematic representation of wave polarizations (Fig. 3.1(a) and Fig. 3.1(b)) and their

interaction with ion (Fig. 3.1(c)) and electron(Fig. 3.1(d)).

our test particles are in resonance with a single or more circularly polarized Alfvén
waves, propagating in the direction parallel to a steady background magnetic field,
B0 = B0ez. Figure 3.1(a) and Figure 3.1(b) illustrate the spatial variation of the
wave (perturbation) magnetic vector as a function of distance along the magnetic
field. Here, we illustrate circularly polarized, parallel-propagating, electromagnetic
waves. There are two basic types of polarization, left-handed (Figure 3.1(a)) and
right-handed (Figure 3.1(b)). Elliptical or linear polarizations are combinations of
these two fundamental polarizations. The wave polarization is defined by the sense
of rotation of the wave field with time at a fixed location.The sense is with respect
to the ambient magnetic field and is independent of the direction of propagation.
Figure 3.1(c) and Figure 3.1(d) schematize the normal cyclotron resonance between
waves and charged particles. Left-hand positive ions, Figure 3.1(c), interact with
left-handed waves, while right-hand negative electrons, Figure 3.1(d), interact with
right-handed waves. Since waves and particles approach each other, k · v has a
negative sign. Thus, the Doppler shift term, - k · v, in Eq. 2.14 is a positive one.

Because we are looking at the proton motion (Ω = qB/m > 1) and because
resonance occurs for the wave component rotating in the same sense as ions, we use
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the left-hand polarized component of the field (see also discussion in Section 2.2).
To give an example, when only a single wave is present, the resulting magnetic field
is given by:

B = B⊥ +B0 = δBx cos (k0z)− δBy sin (k0z) +B0ez, (3.1)

where the mean magnetic field, B0, is chosen in the z-direction, δBx and δBy are
the amplitudes of the wave in the x and y directions, respectively, and k0 is the
wave number. Because in a circularly polarized wave the x and y component of the
field must have the same amplitude, we also assume δBx = δBy = δB.

First, the fields are assumed to be magnetostatic (see for more details Sec-
tion 3.1.1). This amounts to the auxiliary assumption that the average particle
speed is well in excess of the phase speed of the underlying linear wave mode. We
ignore nonlinear wave-wave couplings in the spirit of quasilinear theory (see e.g.,
Kennel & Petschek, 1966; Swanson, 1989; Stix, 1992), which, for our purposes, shall
be assumed to be magnetohydrodynamic (MHD) Alfvén waves, propagating with
ω/k = ω/k‖ ≃ ±va. With this assumption the magnetostatic approximation can
be translate as |v| ≫ vA (strictly |v‖| ≫ vA). Since particle energy is conserved in
a frame moving at the parallel component of the phase velocity of the wave, ω/k‖,
through (Kennel & Petschek, 1966):

(v‖ − ω/k‖)
2 + v⊥

2 = const,

this assumption, which sets ω/k‖ = 0, guarantees particle energy conservation, i.e.,
it prohibits diffusion in energy and limits the resonant interaction in velocity space
to diffusion in pitch angle and gyrophase only. Finally, we ignore all interparti-
cle correlations that might come about through mutual interaction through their
microfields (essentially Coulomb collisions, Debye shielding, and polarization) and,
moreover, the contribution to the overall macroscopic fields from the charged par-
ticles is ignored. That is, we consider only test particles in prescribed macroscopic
magnetostatic fields.

The behavior of a test particle is described by its time dependent position r(t)

and three dimensional velocity v(t), that are advanced according to dr/dt = v and
the Lorentz force equation:

m
dv

dt
= q

[
E+

1

c
(v ×B)

]
(3.2)

The essence of test particle simulations is that the electric E and the magnetic B

field are not influenced by the particle motion.
Normalization quantities used in this case are listed in Table (3.1). The quantity

τA is called the Alfvén crossing time and, if the particle is interacting with a turbulent
wave spectrum, is defined as τA = λ/vA, where vA is the linear speed in the Alfvén
background plasma and λ is of the order of the turbulence correlation length, λc.
In other words, τA is the time it takes for an Alfvén wave to travel approximately
one turbulence correlation length. This is an important time, especially when there
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Table 3.1: Normalization quantities.

Arbitrary length scale L̂ = λ

Characteristic Alfvén speed v̂ = vA
Unit transit time t̂ = τA = λ/VA
Magnetic field B̂ =

√
4πρvA

Electric field Ê = (VA/c)B̂ = V 2
A/(c

√
4πρ)

is time dependence and dynamics of the turbulence. For the static case, one could
as well normalize to another speed, e.g., the light speed (Minnie et al., 2005). If a
diffusive random walk has to occur, this could be a critical timescale in determining
this behavior. Instead, if we consider a particle interacting with a single or few
Alfvén waves, of course it is not possible to define a turbulence correlation length
and our typical length scale is totally arbitrary.

At first sight, the introduction of an Alfvén speed into our test particle model,
when the waves are treated as magnetostatic, seems somewhat artificial. However,
the magnetostatic assumption is valid here provided that |v‖| ≫ vA and this mere
fact warrants the introduction of the Alfvén speed as a base unit of velocity. The
background plasma plays a passive role in that it is the background plasma, which
determines vA. Thus, a particular turbulent plasma state is specified, in our abstract
model, by the two quantities δB/B0 and vA. In addition, we introduce vA here in
anticipation of future work, where we will drop the magnetostatic assumption. With
our choice of normalization quantities, Table (3.1), the dimensionless equations of
motion of our charged test particles become:

dr

dt
= v (3.3)

dv

dt
= β(E + v×B) (3.4)

The parameter β = ΩτA, which arises in Eq.(3.3) as a consequence of our choice of
normalizations (α parameter in Ambrosiano et al., 1988), has a number of impor-
tant physical interpretations. Indeed, it couples particle and field relative spatial
as well as temporal scales and provides a particularly useful means to relate our
abstract numerical experiment to real space and astrophysical plasma situations.
For example:

β = ΩτA = 2π
τA
τg

=
ωpiλ

c
= ωpiτc (3.5)

where τg = 2π/Ω is the test particle gyroperiod; ωpi = (4π0iqi
2/mi)

1/2 is the ion
plasma frequency in the background plasma, where qi and mi are, respectively, the
charge and mass of a background ion; τc = λ/c, where c is the speed of light. Other
important test particle parameters can be expressed in terms of β in a easy way.
For example, the test particle gyroradius ρL and maximal gyroradius rL (or Larmor
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radius) are, respectively, given by

ρL =
v⊥
Ω

=
v⊥/vA
β

λ, rL =
v

Ω
=
v/vA
β

λ.

We can also express the resonant condition for the static case, ω = 0, in terms of
the β parameters as follow,

kresλ =
nβ

α(v/vA)
=

nβ

(v‖/vA)
(3.6)

In general, in a turbulent collisionless plasma, the bandwidth of the inertial range
fluctuations may extend from large fluctuations near the correlation scale, λc, to
small fluctuations near the ion inertial scale. In this case one expects that β ≫ 1.
This also means that the turbulent time scales are much slower than the typical
particle gyroradius (Goldstein et al., 1986).

The particles are moved using a Runge-Kutta fourth-order time integration
method, with an adaptive time step calculation (pp. 708-716, Press et al., 1992).
The entire simulation run was broken down into a number of substeps, each with
time interval δt ≪ Tmax, where Tmax is the total length of the run. The routine
stepped each particle in turn through the time interval, dt, while maintaining a local
relative accuracy of racc = 10−9 at each step. This process was repeated until the
run ended and all particles had been stepped through the time interval for the entire
run, Tmax.

The numerical code that we use was developed by the group of Prof. William
H. Matthaeus at Bartol Research Institute, University of Delaware. This code is
a parallel implementation of a versatile algorithm for computation of streamlines,
magnetic field lines, or charged particle trajectories, based on the Portable MPI
(Message Passing Interface) standard. The code works by programming the master
node to pass out jobs to the worker nodes. Each job includes the initial data and
some parameters. Load balancing is achieved in a standard way: when a node has
finished a job, it asks the master if there is another job to do. The results of each
job are written to disk. Test of the code are shown in Appendix B.2. The same
Appendix contains some of the results obtained in the study of particle interaction
with one circularly polarize waves as well as a flat wave spectrum, that can be
considered ad additional test for the code (Dalena et al 2, in prep).

3.1 The slab model

A particularly simple model of plasma turbulence is the so-called slab model (Jokipii,
1966; Bieber et al., 1994). Turbulence is assumed to be a sum of right and left hand
circularly polarized, parallel propagating, nondispersive plane Alfvén waves. In this
model the wave vector is parallel to the direction of the mean field and the magnetic
field fluctuations in this component are perpendicular to both the parallel wave
vector and the mean field, as shown in Figure 3.2(a). This is motivated by Alfvénic
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or slab-like waves in the solar wind propagating along the mean field. From the
definition of the slab field, the fluctuation depends only on z component, not on
x- or y-components, as evident in Figure 3.2(b), where trajectories of two different
field lines in a pure slab turbulence are shown. Therefore, if we consider the slab
fluctuation in the x − y plane at each z, bslab is the same along that plane but
different from the field on other planes, as shown in Figure 3.2(a). For this study
it is assumed that the turbulence is static in time for all practical purposes. This
yields a turbulence spectrum that has finite width in k but zero width in ω.

(a) Illustration of the slab fluctuation,

which depends only on the z coordinate.

The arrows demonstrate the slab fluctua-

tion bslab

(b) Example of two trajectories of mag-

netic field lines in pure slab turbulence.

Figure 3.2: Illustration of the slab model

3.1.1 The magnetostatic assumption

If the Alfvén waves are all propagating in the same direction, the magnetostatic
assumption is uniformly valid. Indeed, since all the waves have the same phase
velocity, it is possible to transform to the wave frame moving with ω/k‖ = vA, for
all k‖. Turbulence is static in this frame, independently of the transformed particle
velocity. This approach has been used mainly in studies of the pitch angle diffusion
of cometary newborn ions, where the upstream MHD waves are assumed to be
propagating in one direction only (Ziebell, 1990). It is important to mention that,
for large wavenumbers, Alfvén and magnetosonic waves become dispersive and the
rigorous application of this model must impose some upper cutoff on the allowable
wavenumber.

However, in some problem, for example cosmic ray studies, the waves are as-
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sumed to be propagating both parallel and antiparallel to the background magnetic
field, B0. In this case, the assumption that permits to treat the turbulence as static
is |v‖| ≫ vA. This condition is not uniformly valid for all particle velocities and,
when a particle moves with |v‖| < vA, no matter how relativistic it might be, the
assumption of magnetostatic fields breaks down. Such particles are characterized
by pitch angles θ ≃ π/2, relative to the mean field, B0. Coincidentally, this is the
regime where the quasilinear theory of pitch angle diffusion in magnetostatic fields
breaks down (Jones et al., 1973; Voelk, 1975; Jones et al., 1978).

It is our point of view that the slab model, applied to particles diffusion, is
fundamentally flawed at v‖ ≃ 0. Instead of trying to fix the vanishing of the diffusion
coefficient, Dαα, as θ → π/2, it is our opinion that the actual underlying model must
be changed in this regime. The magnetostatic assumption must be relaxed because
there will always be particles with |v‖| < vA in the vicinity of θ ≃ π/2. To add
further support to this view, it is to be noted that particles with v‖/v ≃ 0 resonate
with higher wavenumbers. In high beta plasmas, as the solar wind, Alfvén waves
exhibit significant dispersion at larger wavenumbers, kc/ωpi ∼ 1, as we have already
mentioned. There is, therefore, no frame of reference where all wave parallel phase
velocities vanish simultaneously. Thus, the magnetostatic assumption is violated
not only from the particle perspective, but also from the wave perspective.

Notwithstanding these comments, the slab model, applied in the first sense men-
tioned above, is useful from the point of view of numerical simulations. It is limited
to wavenumbers |k‖| < Ω/vA = ωpi/c, that rules out particles with pitch angles
close to π/2. Alternatively, one may adopt a model that sets the wave power to zero
above k‖ = Ω/vA = ωpi/c, whence the diffusion coefficient becomes rigorously zero
for |α| < vA/v, obviating the discussion of resonance gap effects due to the break-
down of quasilinear orderings (Ziebell, 1990). Hereinafter, we shall be concerned
primarily with the slab model in the first interpretation.

Since the turbulence is viewed as static in the Alfvén frame, the electric field
vanishes. The dispersionless assumption rules out phase mixing and, hence, phase
decorrelation due to this process. Consequently, the only way for a particle to
see a “wavepacket” decorrelate in phase is to transit an autocorrelation length of
the turbulent spectrum (Kaiser et al., 1978). The autocorrelation time in this case
reduces to

τac =
1

|∆(ω − k‖v‖)|
=

1

|v‖∆k‖|
≃ λc

|v‖|
, (3.7)

where λc is the turbulence correlation length. One immediately notices a problem
at v‖ ≃ 0, because the autocorrelation time tends to infinity. In this limit, the slow
transit of a stationary wavepacket leads to behavior that can violate the quasilinear
assumption, Eq. 2.13, as we noted above. Dispersive effects cure this pathological
behavior of τac, so they really should be included when modelling diffusion at v‖ ≃ 0.
Dynamical turbulence models have a similar effect (see also, Bieber et al., 1994).
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3.1.2 Correlation function and power spectrum

The MHD turbulence spectrum is important because it is a characteristic property
of turbulent fluid. In MHD turbulence each component (x, y, z) of the magnetic
field can be written as the sum of a mean term plus a fluctuating part with zero
mean:

Bi = 〈Bi〉+ bi for i = x, y, z. (3.8)

An important statistical quantity, that give us important information about the
spatial structure of the turbulent magnetic field, is the two-point correlation or

function, defined as:
Ri,j(x, r) = 〈bi(x)bj(x+ r)〉 , (3.9)

where i and j represents the x, y and z components. For homogeneous turbulence,
the correlation function is independent of x, so we can write:

Ri,j(r) = 〈bi(0)bj(r)〉 , (3.10)

The correlation function Ri,j tell us how the magnetic field at two different points
is correlated. Because the magnetic field at a given point, x, should correlate more
highly with itself than with that at other points, if we consider the correlation
function of the x component, the highest value is:

Rx,x(0) =
〈
b2x(0)

〉
, (3.11)

The Fourier transform of the correlation function, Ri,j(r), is called the power spec-

trum, Pi,j(k):

Pi,j(k) =
1

(2π)3

∫ ∞

−∞
Ri,j(r)e

ik·rd3r, (3.12)

where k is the wave vector. The correlation function can be written as the inverse
Fourier transform:

Ri,j(r) =
1

(2π)3

∫ ∞

−∞
Pi,j(k)e

−ik·rd3k. (3.13)

We can define the correlation function for the slab fluctuations as:

Rslab
i,j (z) =

〈
bslabi (0)δbslabj (z)

〉
. (3.14)

Other important quantities, related to the correlation function and the power
spectrum, are the correlation length, λc, for the slab turbulence and the parallel
coherence length, lz. The slab correlation length is defined as:

λc =

∫∞
0 Rslab

xx dz

Rslab
xx (z = 0)

= (from Eq. 3.11) =

∫∞
0 Rslab

xx dz

〈b2x,slab〉
=

∫∞
0 Rslab

xx dz

δb2x,slab
, (3.15)

where δb2x,slab is the mean square fluctuation. One interpretation of Eq. 3.15 is that
the area of the rectangle λc ×Rslab

xx (0) equals the area under the λc ×Rslab
xx (z) plot,

as shown in Figure 3.3.
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Figure 3.3: The correlation function Rslab
xx and its relationship with the correlation length λc.

The power spectrum for the slab model and the correlation function can be
written as:

P slab
xx (kz) =

1

2π

∫ ∞

−∞
Rslab

xx (z)eikzzdz (3.16)

Rslab
xx (kz) =

1

2π

∫ ∞

−∞
P slab
xx (kz)e

−ikzzdkz (3.17)

The function we use for the slab power spectrum in numerical simulation is:

P slab
xx =

Cslab

[1 + (kzlz)2]
ν , (3.18)

where ν is the spectral index; lz is the coherence length associated with klz =

1/lz , where the spectrum bends over to the inertial range; Cslab is a normalization
constant, chosen to ensure that 〈δB2〉/B0 took on the desired value, e.g., 0.01, 0.1,
etc, and can be determined by the turbulence energy. From Eq. 3.15, rewriting the
correlation function in terms of the power spectrum, we have:

λc =
1

2π

∫∞
0

∫∞
−∞ P slab

xx (z)e−ikzzdkzdz

δb2x,slab

Integrating over z (using δ(k) = (
∫∞
−∞ exp−ikxdx)/2π), we get:

λc =
1

2

∫∞
−∞ P slab

xx (kz)δ(kz)dkz

δb2x,slab
=

=
P slab
xx (0)

2δb2x,slab
(3.19)

Now, we can set P slab
xx (0) = Cslab in Eq. 3.18. In order to find the relation between

λc and lz and write the constant Cslab in terms of lz, let substitute the function
P slab
xx , as in Eq. 3.18, in Rslab

xx (0) :

Rslab
xx (0) = δb2x,slab =

∫ ∞

−∞
P slab
xx (kz)dkz =

1

2π

∫ ∞

−∞

Cslab

[1 + (kzlz)2]
ν dkz
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From this equation we obtain:

Cslab =
2πδb2x,slab∫∞

−∞ [1 + (kz lz)2]
−ν dkz

. (3.20)

From Gradshteyn & Ryzhik (1980, pag. 341),

∫ ∞

0

xµ−1

(p+ qxγ)n+1
dx =

1

γpn+1

(
p

q

)µ
γ Γ

(
µ
γ

)
Γ
(
1 + n− µ

γ

)

Γ(1 + n)
,

where 0 < µ/γ < n + 1, p 6= 0, q 6= 0. Using µ =, γ = 2, n + 1 = ν (the spectral
index), p = 1 and q = l2z , the integral in Eq. 3.20 becomes:

∫ ∞

−∞

1

[1 + (kzlz)2]
ν dkz =

1

lz

Γ
(
1
2

)
Γ
(
ν − 1

2

)

Γ(ν)
.

Then, using the fact that Γ(1/2) =
√
π, we obtain:

Cslab = 2
√
π

Γ(ν)

Γ(ν − 1/2)
δb2x,slablz (3.21)

Finally, substituing P slab
xx = Cslab in Eq. 3.15 we find:

λc =

√
πΓ(ν)

Γ(ν − 1/2)
lz (3.22)

Set ν = 5/6 provides P slab
xx ∝ k−5/3 Kolmogorov inertial range, for |k| ≫ 1/lz ,

consistent with the solar wind observations. For this case we obtain

λc = 0.747lz . (3.23)

3.2 Slab magnetostatic turbulent fields generation

The test particle simulations are carried out in a unidimensional box of length
L = 10000lz . The magnetic field, B(z), is stored on a grid of spacing ∆z = L/Nz ,
where Nz is an even integer which we fixed at Nz = 228 = 268, 435, 456. The
magnetic field configuration is generated through a spectrum P (k) in k space. The
field grids in real space are then produced via inverse fast Fourier transform (FFT).

For our one-dimensional field configuration, the turbulent magnetic field satisfied
δBx(z)êx + δBy(z)êy , with the full magnetic field given by:

B(z) = B0êz + δB(z), (3.24)

and clearly ∇ ·B(z) = 0, identically.
The vectors denoting the FFT of δB(zm) (m = 1, 2, 3, ..., Nz ) are generated

through

δBx(kn) = [P (kn)]
1/2eiΦn

δBy(kn) = [P (kn)]
1/2eiΨn
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Table 3.2: Characteristic scales in the spectrum.

Number of grid points Wave vector value
Nkmin = 1 kmin = 6.28 × 10−4

Nklz = 1600 klz = 1

Nkdiss = 1.6× 106 kdiss = 103

NkMAX
= 6.7× 107 kMAX = 4.2× 104

NkMAX1
= 1.3× 108 kMAX1 = 8.4 × 104

where kn = 2πn/L is the discrete wavenumber with spacing ∆k = 2π/L; Φn and
Ψn are randomly selected phases; P (k) is the spectral shape function given by:

P (kn) =




P slab(kn) = Cslab[1 + (knlz)

2]−5/6, for kn < kdiss

P diss(kn) = Cdiss

(
kn

kdiss

)−7/3
, for kn ≥ kdiss

(3.25)

where Cslab is the constant for the slab model given by Eq. 3.21; kdiss is the wavenum-
ber at the beginning of the dissipation range; Cdiss is the constant for the part of
the spectrum corresponding to the dissipation range, determined by the fact that
the spectrum must not have discontinuities in k-space:

P slab(kdiss) = P diss(kdiss) −→ Cdiss = Cslab[1 + (kdisslz)
2]−5/6.

The vectors of Fourier coefficients are zero-padded from Nmax + 1 to Nz, providing
an extra level of smoothness to the fields by an effective trigonometric interpolation.
In all the simulations, we set Nmax = 6.7× 107. With this high level of smoothness
in the fields, we used simple linear interpolation to evaluate the fields at the test
particle position. The actual δBx(zm) and δBy(zm) are generated from the above
discrete Fourier transforms through use of the inverse one-dimensional FFT.

3.2.1 Importance of scale separation

The spectrum generated by our numerical simulation is shown in Figure 3.4 As
evident from the figure, there are several scales of importance, characterized by
different wavenumber, labeled in Figure 3.4 as: kmin, klz , kdiss, kmax, kNz . As we
showed in the previous section, in the model the discrete wavenumber are given by
kn = 2πn/L, where L = 10000lz is the boxlength, lz = 1 is the coherence length for
the slab spectrum, used as the characteristic length of the system, n = Nk are the
number of points for the considered kn. We have:

kn =
2πn

L
= (6.28 × 10−4)n and n = Nk =

L

2π
k = 1600k (3.26)

From the above relations, in Table 3.2 are summarized the values for k and Nk used
in our simulations.
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Figure 3.4: Power spectrum from numerical simulation of our magnetic field turbulent mode. k

is normalized to the coherence length, lz.

• kmin = 2π/L is the minimum wave vector of the spectrum, corresponding with
Nk = Nkmin = 1.

• klz = 1/lz = 1 is the threshold wave vector of the spectrum, corresponding
with lz, that mark the beginning of the inertial range. Three decades of the
energy containing scale, from kmin to klz , ensure turbulence homogeneity. lz
(or λc = 0.747lz) is also the typical scale for pitch angle diffusion. It is really
important that there is power before λc, that means λc must be not at the
beginnings of the spectrum. This condition, for example, rules out flat-like
spectrum, where the same amount of energy is distributed for each wavevector,
for a good descriptions of diffusion. Indeed, because λc ∝ P (0)/R(0), if P (0) =
0 λc = 0, too, and there can not be α-diffusion. Three decades of the inertial
range, characterized by P (k) ∝ k−5/3, well represent the solar wind case.

• kdiss is the wavevector corresponding to the beginning of the dissipation range.
After kdiss we could set P (k) = 0, but the problem in this case is that kdiss is
strictly related with the resonance gap of pitch angle diffusion coefficient, Dαα,
predicted by QLT (δb ≪ 1) for αmin = 0. Indeed, αmin = 1/(rLkdiss) and,
if there is a sharp cut-off of the spectrum at a scale corresponding to kdiss,
there will be a sharp cut-off in Dαα, too. There are different ways to cross
the αmin barrier and to allow that particles fill both the α-hemispheres. One
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way is to use time dependent model for the magnetic field, so that the barrier
is crossed thanks to ∆α time-variation. Another possibility is to overtake the
QL approximation and use large δb values; in this way the barrier is crossed
thanks to the resonance broadening effects. The last possible solution, that
we used in our model, is to extent the spectrum after kdiss with P (k) ∝ k−7/3.
Because kdiss = 1/λii = ωpi/c (where λii is the ion inertial length, ωpi is the
ion plasma frequency and c is the speed of light) and because typically in the
solar wind at 1A.U. λii ≃ 1000km and λc ≃ 106km, kdisslz ∼ λz/λii ≃ 103.

• After other two decades, kMAX determines the end of the dissipation range:
kMAX =

√
mi/mekdiss.

• After that there are almost other two decades, from kMAX = 4.2 × 104 to
kMAX1 = 8.4× 104, of zero-padding, important for the trigonometric interpo-
lations and for the smoothness of the field.

• In addition, another important scale in the model (not labeled in Figure 3.4
because depends on test-particle velocity) is the wavevector corresponding to
zmax = vTtot, the maximum trajectory of a test charged particle, moving at
a speed v, in the simulation running time Ttot. It is really important that
the boxlength, L, is large enough so that each particle trajectory is limited
to a small fraction of the full length, in order to avoid periodicity effects.
That means L ≫ zmax or kmin ≪ zmax. Indeed, one of the most important
characteristic of 1D field lines is periodicity. In slab-like field, periodicity could
have some bad repercussion on field lines diffusion, that means it is possible
to find ’fake’ diffusion due to periodicity of the field.

3.3 Velocity space diffusion coefficient Dαα for slab model

For static slab turbulence the spectral density is zero unless the frequency ω is
zero, so all frequencies are set to zero through the term δ(ω). Because there are no
perpendicular (oblique) waves, the terms δ(kx) and δ(ky) are included. Thus, the
spectral density is given by:

lim
V,T→+∞

〈bx(k, ω)b∗x(k, ω)〉 = 2πδ(kx)2πδ(ky)2πS(kz)2πδ(ω) (3.27)

where S(kz) = Pxx(kz)/2π, V and T are the total volume and time, respectively,
where there is turbulence 〈b2〉 = 〈b2x〉 + 〈b2y〉. Because of the symmetry in x and y

directions, we furthemore assume

lim
V,T→+∞

〈
by(k, ω)b

∗
y(k, ω)

〉
= lim

V,T→+∞
〈bx(k, ω)b∗x(k, ω)〉 = (2π)4δ(kx)δ(ky)δ(ω)

(3.28)
We have normalized so that

lim
V,T→+∞

1

V T

∫
d3k

(2π)3

∫
dω

2π
〈bx(k, ω)b∗x(k, ω)〉 =

1

2

〈
δb2
〉
. (3.29)
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It is not difficult to show, starting for example from Eq. (1) of Lee & Voelk (1975),
which is valid in the resonant limit (Imω → 0) that in the magnetostatic limit,
setting k⊥ → 0, one obtains

(
∂

∂t
+ v‖

∂

∂t

)
f(x,p, t) = lim

V,T→+∞
π

4

(
q

γmc

)2 1

V T

∫
d3k

(2π)3

∫
dω

2π

∂

∂α
[
〈
b−(k, ω)b

∗
−(k, ω)

〉
δ(−k‖v‖ +Ω)

+
〈
b+(k, ω)b

∗
+(k, ω)

〉
](1− α2)

∂

∂α
f(x,p, t),

where b−(k, ω) = bx(k, ω)− iby(k, ω) and b+(k, ω) = bx(k, ω)+ iby(k, ω). Assuming
zero helicity,

〈
bx(k, ω)b

∗
y(k, ω)

〉
= 〈b∗x(k, ω)by(k, ω)〉 = 0, we obtain the equation for

the velocity diffusion coefficient Dαα:

Dαα =
π

4

(
q

γmc

)2

lim
V,T→+∞

∫
d3k

(2π)3

∫
dω

2π
[
(
〈bx(k, ω)b∗x(k, ω)〉 +

〈
by(k, ω)b

∗
y(k, ω)

〉) 1

|v‖|
δ

(
k‖ −

Ω

v‖

)
+

+
(
〈bx(k, ω)b∗x(k, ω)〉 +

〈
by(k, ω)b

∗
y(k, ω)

〉) 1

|v‖|
δ

(
k‖ +

Ω

v‖

)
].

Finally, using Eq. 3.27 and Eq. 3.28, we arrive at:

Dαα = π

(
q

γmc

)2 (1− α2)

v‖
S(kz)|kz=kres=Ω/v‖ . (3.30)

Using our expression for the turbulent spectrum, we have:

Dαα =





√
π
2

Γ(ν)
Γ(ν−1/2)Ω

2 lz
vT

(1−α2)
|α|

〈b2〉
B2

0

(1 + k2resl
2
z)

−ν , for k < kdiss
√
π
2

Γ(ν)
Γ(ν−1/2)Ω

2 lz
vT

(1−α2)
|α|

〈b2〉
B2

0

(1 + k2dissl
2
z)

−ν
(

kres
kdiss

)−ξ
, for kn ≥ kdiss

(3.31)
with ν = 5/6 and ξ = 7/3. Putting ν = 1 reduces Dαα for k < kdiss to Eq. (13) of
Kaiser et al. (1978).





Chapter 4

Analytical and numerical results

for magnetic moment conservation

4.1 Interaction between particles and a single wave

In order to understand the basic features of the non-conservation of particles mag-
netic moment, we start to study the ions motion in presence of a constant magnetic
field, B0, plus a perpendicular circularly polarized wave. We use the left-hand po-
larized component of the field, rotating in the same sense as ions. In this case the
resulting magnetic field is given by:

B = B⊥ +B0 = δBx cos (k0z)− δBy sin (k0z) +B0ez, (4.1)

where the mean magnetic field, B0, is chosen in the z direction, δBx and δBy are the
amplitudes of the wave in the x and y directions and k0 is the wavevector assumed to
lie only in the z-direction. We also assume δBx = δBy = δB for the r.m.s. average
values.

4.1.1 Expected behavior at resonance

In the quasilinear approximation particle motion is well described by the unper-
turbed motion. Thus, particle velocity is given by:

v = v⊥ + v‖ =
(
v⊥ sin(Ωt)ex, v⊥ cos(Ωt)ey, v‖ez

)
(4.2)

If the particle is in resonance with the wave:

• vx should be in phase with −By

• vy should be in phase with Bx

We are looking at the changes in the cosine of pitch angle α:

dα

dt
≃
dv‖
dt

=
q

m
E‖ =

q

m
Ez, (4.3)

where E‖ is the induced electric field parallel component to the mean field. Let us
calculate this component. First of all we have to insert the expression of the particle
velocity, Eq. 4.2, in the expression of our magnetic field, Eq. B.8, in order to obtain
the magnetic field seen by the particle, H(t):

H(t) =
{
δB cos

[
(k0v‖ − ω0)t+ k0z0

]
ex,−δB sin

[
(k0v‖ − ω0)t+ k0z0

]
ey, B0ez

}
(4.4)
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Using Eq. 4.2 and Eq. 4.4 for particle velocities and for the magnetic field, respec-
tively, we obtain the parallel component of the induced electric field:

Ez = (v ×H)z = vxBy − vyBx =

= −v⊥δB cos
{
Ωt−

[
(k0v‖ − ω0)t+ k0z0

]}
(4.5)

Of course, in absence of perturbations δB = 0, this electric field is zero. The
argument of the cosine in Eq. 4.5 is exactly the resonance condition plus a constant
term, k0z0. Thus, resonant particles should also have Ez ∼ (v⊥δB) ∼ const. At
resonance, i.e. during the intervals in which Ez ∼ const, particle cosine of pitch
angle, α, and magnetic moment, µ, must show secular changes. Of course, for
particles out of resonance, the cosine of pitch angle, α, the magnetic moment, µ,
and the parallel component of the induced electric field, Ez, exhibit an oscillating
behavior.

4.1.2 Trapping width derivation for a single circularly polarized

wave

Starting from Eq. 2.65 and Eq. 2.66, we were able to derive a simplified expression
for the trapping half width and the bounce frequency in the case of an Alfvén static
wave. Thus, in our case, k⊥ = 0 and φ = 0. We can rewrite Eq. 2.66 as,

Zn = mc2
{v⊥
2c

[(ǫ2 − σǫ1 cosα) Jn−1(k⊥ρ)− (ǫ2 + σǫ1 cosα) Jn+1(k⊥ρ)](4.6)

+ σ
(v‖
c
ǫ1 sinα+ ǫ3

)
Jn(k⊥ρ)

}
,

with cosα = 1 and sinα = 0. Because k ‖ B0, we can choose e3 = B0/|B0|, e2 is
any arbitrary direction perpendicular to e3 and e1 = e2 × e3. The vector potential
could be obtained from the magnetic field, ∇×B⊥ = Bxex +Byey. In the Fourier
space ∇ → (ikzez) so we obtain:

Ax = − i

k‖
By

Ay =
i

k‖
Bx (4.7)

Now, we assume that there is a single circularly polarized wave in space, considering
separately the two different possible helicities:

B± = (B±e±) exp [i(k‖z)] where

B± =
1√
2
(Bx ∓ iBy) are the complex amplitudes and

e± =
1√
2
(ex ∓ iey) are the orthogonal polarization unit vectors

The +(−) polarization state is the positive (negative) helicity, i.e. the vector B is
rotating counter-clockwise (clockwise). At first, let’s consider only the left-handed
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Table 4.1: Wave polarization and resonance contribution to trapping width.

Polarization η resonance n
B+ left-handed 1 parallel −1

B− right-handed −1 anti-parallel 1

B+ left-handed −1 parallel 1

B− right-handed 1 parallel −1

polarized wave, B+. Assuming B+ =
√
2δBe−iπ/2, we can write the x and y com-

ponent of the wave magnetic field as,

Bx = δB exp [i(k‖z − π/2)]

By = δB exp (ik‖z) (4.8)

Inserting this two expressions into Eq. 4.7, we find:

Ax =
δB

k‖
exp [i(k‖z − π/2)]

Ay =
δB

k‖
exp (ik‖z)

Comparing the real parts of these equations with Eq. 2.67, we obtain an expres-
sion for the coefficients A1 and A2 and for the normalized components of the wave
polarization vector, ǫ1, ǫ2 and ǫ3:

A1 = η
δB

k‖
A2 =

δB

k‖
where η =

k‖
|k‖|

ǫ1 =
|q|ηδB
mc2k‖

ǫ2 =
|q|δB
mc2k‖

ǫ3 = 0 (4.9)

Similarly, for a right-handed circularly polarized wave, B−, we have:

A1 = −η δB
k‖

A2 =
δB

k‖
where η =

k‖
|k‖|

ǫ1 = −|q|ηδB
mc2k‖

ǫ2 =
|q|δB
mc2k‖

ǫ3 = 0 (4.10)

In case of a single circularly polarized wave propagating parallel (or antiparallel)
to the magnetic field, there is only one resonance present and particle motion is
integrable Karimabadi et al. (1992): indeed, Jn(0) = 0, unless n = 0. So, depending
on the sense of polarization and of the wave and on its direction of propagation,
η, only l = 1 or l = −1 resonances contribute to the trapping width, as shown
in Table 4.1. Thus, considering Eq. 2.65, Eq. 4.6 and Eq. 4.9, with knowledge
J0(0) = 1, we find a specialized formula for the trapping half width and bounce
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frequency applied to the case of a circularly polarized wave propagating parallel,
k‖ > 0 and n = −1, or antiparallel, k‖ > 0 and n = 1 to B0:

∆v‖
(−1) = 2v

[
(1− α2)1/2|α|δB

B0

]1/2

ωb
(−1) = Ω0

[
(1− α2)1/2

|α|
δB

B0

]1/2
(4.11)

if k‖v‖ > 0 and zero otherwise, in which α = cos θ is the cosine of pitch angle.

Exactly the same set of equations hold for ∆v
(+1)
‖ and ω

(+1)
b by using Eq. 2.65,

Eq. 4.6 and Eq. 4.10, but the condition for their being nonzero is reversed, i.e.,
k‖v‖ > 0. Below we shall omit the superscripts (±1) because of this degeneracy.

The pitch angle trapping half width can be obtained from these equations as:

∆α =
∆v‖
v

= 2

[
(1− α2)1/2|α|δB

B0

]1/2
(4.12)

Recall that the particle magnetic moment, µ, is related to the particle pitch
angle by the relation:

µ ≃ v2⊥
|B| =

v2

|B|(1− α2) (4.13)

For this reason it is clear that the behavior of magnetic moment may be strongly
related to the pitch angle behavior, i.e., when particle is in resonance with a single
finite amplitude fluctuation its magnetic moment should undergo a finite ampli-
tude nonlinear oscillation. Considering Eq. 4.13, we can relate the trapping width
expected for the magnetic moment with that predicted for pitch angle as follows,

∆µ = 2α∆α (4.14)

This formula is correct for a circularly polarized wave. Constant magnetic moment
requires a lack of resonance or else interaction with extremely small wave amplitude.
If we consider the static case, that is ω = 0, the resonance condition takes the form:

kr =
n

αrL
=
nΩ

vα
=
nΩ

v‖
(4.15)

The minimum value of the wavevector, kmin, required to have resonance, is obtained
for α = 1 or, equivalently, for θ = 0.

4.1.2.1 The quasilinear diffusion coefficient

Making use of Equations 4.28, the quasilinear diffusion coefficient derived for our
particular spectrum, Eq. 3.30, can be cast in a particularly physically illuminating
form. First, let us write

δB2
res =

1

4
〈δB2〉(1 + k2‖λ

2)−ν
|k‖=kres

, (4.16)
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that corresponds roughly to the power density in the Fourier resonant wave mode,
with the particle characterized by v‖ = αv. Using this expression to define δB, i.e.,
setting δB = δBres in Equations 4.28, we obtain

ω2
b (∆v‖)

2 = 4v2⊥Ω
2 δB

2
res

B2
0

= 4v2Ω2(1− α2)
δB2

res

B2
0

. (4.17)

Introducing Eq. 4.16 and Eq. 4.17 in Eq. 3.30, it is simple to show that Dαα can be
expressed as:

Dαα =
ω2
bτ

2
ac(∆α)

2

2τac
≡ (∆αeff)

2

2τac
, (4.18)

where we have defined the trapping width in α-space as ∆α ≡ (∆v‖)/v, with ∆v‖
given by Eq. 4.28, and the effective trapping width as ∆αeff ≡ ωbτac∆α. To the
best of our knowledge the pitch angle diffusion coefficient in magnetostatic slab
turbulence has not previously been cast in these forms.

Eq. 4.18 has an obvious Fokker-Planck form and provides a physical interpreta-
tion of the process of pitch angle diffusion, that builds on ideas already presented in
the previous sections. The numerator defines an effective trapping width in α due
to the resonance with a finite length wave packet. The length of this wavepacket is
determined by the spectral characteristics of the turbulence. This effective trapping,
or interaction, half width is given by ωbτac∆α, where ∆α is the (nonlinear) trapping
width for interaction with a single wave mode. Thus, the nonlinear trapping width,
reduced by the factor ωbτac ≪ 1, accounts for the rapid decorrelation of the particle
with the resonant wavepacket, on timescales of the order of τac = λc/|v‖|. Because
ωbτac ≪ 1, the particle typically completes only a small part of its regular resonant
bounce motion, i.e., unperturbed by the noise induced by neighboring wavemodes,
in the time it takes to transit a wavepacket, τac, and consequently it undergoes only
a small “kick” in v‖ (or α). The magnitude of this kick is of the order of the inter-
action width in parallel velocity, ∆veff‖ = v∆αeff . Conversely, when ωbτac ≃ 1 the
particle will on average have time to complete its regular bounce motion without
the disturbance of noise,during its transit of a resonant wavepacket. That is, it will
behave largely as if trapped by a resonant wave mode and the diffusion picture be-
gins to break down. Indeed, the parameter regime ωbτac > 1 violates the quasilinear
assumption. As has been pointed out previously, this is most likely to occur at small
v‖ ≃ 0 or µ ≃ 0, where the condition ωbτac ≪ 1 is difficult to satisfy. Oscillatory
behavior without the decay of parallel velocity correlations has been observed in
simulations of pitch angle diffusion in the vicinity of α ≃ 0 (Kaiser et al., 1978).

4.1.3 Resonant vs non resonant particles

Particles are loaded randomly in space at t = 0 throughout a one-dimensional sim-
ulation box of length L, where the fields are as described in Chapter 3. Their initial
velocities are generated through the standard spherical coordinate transformations,
where the pole of the spherical coordinate system corresponds with the Cartesian
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basis vector ez,

vx = v sin θ cosφ

vy = v sin θ sinφ (4.19)

vz = v cos θ = αv (4.20)

where φ is the gyrophase randomly distributed between [0 : 2π]; the velocity mag-
nitude v and the cosine of pitch angle α = cos θ are determined by the particular
type of experiment designed.

In our simulations β = 103, according to the solar wind parameters at 1A.U.
Because of the magnetostatic approximation, we use typical velocities of v = 100vA.
In each simulations all particles are injected with the same cosine of pitch angle,
α = 1/8, that corresponds to an initial pitch angle θ ≃ 82◦. In order to have these
particles in resonance with the wave, following the resonance condition, Eq. 3.6, we
fixed the wavevector k0 = 80/λ. Obviously, particles at different pitch angle will
not be in resonance with this wave and they will show a different behavior. To
make a comparison between resonant and non resonant particles, we also performed
some simulations in which particles, interacting with the same wave, have an initial
cosine of pitch angle α = 1/2 (θ = 60◦), so they are non-resonant. We follow the
test-particles until they complete a total number of gyroperiods equal to Nτg = 100.
We also define δb = δB/B0.

Figure 4.1 shows the cosine of pitch angle, α, particle magnetic moment, µ, and
the parallel component of the induced electric field, Ez, for a resonant particle with
v = 100vA and α0 = 1/8. Different columns corresponds to different values of the
wave amplitude: δb = 0.001 (first column), δb = 0.01 (second column), δb = 0.1

(third column) and δb = 1.0 (fourth column). Magnetic moment and electric field
are expressed in units of µn = v2/B0 and En = vB0, respectively. Magnetic moment
results are averaged on a particle gyroperiod. During periods in which the parallel
component of the induced electric field is almost constant and equal to Ez ∼ −v⊥δb,
it is immediately apparent that µ and α show secular variations. Of course, this
is more evident for small wave amplitudes, i.e., δb = 0.001 and δb = 0.01. The
resonant interaction produces a complicated periodic variations in both α and µ.
The period of these variations is termed the bounce period, τb = 2π/ωb, where ωb is
the bounce frequency discussed above. The bounce period τb = 2π/ωb is the typical
timescale over which the velocity, and hence particle trajectory, exhibits significant
deviations from its linear v‖ = const and v⊥ = const counterparts.

In Figure 4.2, particle trajectory in the x−y plane, particle vx and vy velocities,
the z-coordinate, x and y component of the magnetic field seen by the particle versus
t, are shown. For δb = 0.001 (Figure 4.2(a)), as predicted by QLT, particle motion
is the same of that we should observe without the wave. Indeed, particle trajectory
form a circle in the x − y plane and the z-coordinate grows linearly with time.
Particle and wave are perfectly in resonance: vx (vy) component of the particle
velocity is in phase with −By (Bx) component of the magnetic field seen by the
particle. Increasing the wave amplitude, δb = 0.01 (Figure 4.2(b)), particle starts
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Figure 4.1: Gyroresonant interaction between a circularly polarized wave and a particle with

v = 100vA and α = 1/8: cosine of pitch angle α on the top, particle magnetic moment µ in the

middle, parallel component of the induced electric field on the bottom. Four different values of

wave amplitude are used: δb = 0.001 (first column), δb = 0.01 (second column), δb = 0.1 (third

column) and δb = 1.0 (fourth column).
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(a) vp = 100vA and δb = 0.001.
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(b) vp = 100vA and δb = 0.01.
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(c) vp = 100vA and δb = 0.1.

Figure 4.2: Top raw (from left to right): particle trajectory in x − y plane, x component of

particle velocity vx, versus time; y component of particle velocity, vy versus time. Bottom raw

(from left to right): z particle position versus time; x component of magnetic field seen by the

particle, Bx, versus time; y component of magnetic field seen by the particle, By, versus time.
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Table 4.2: α and µ trapping width values: comparison between theory and numerical simulations.

δb ∆αth ∆αsim ∆µth ∆µsim
0.001 0.022 0.02 0.0056 0.0055

0.01 0.07 0.075 0.0176 0.02

0.1 0.2227 0.2 0.0556 0.055

1.0 0.704 0.6 0.176 0.175

to spread in x− y plane and, after 2 or 3 gyroperiods, the z coordinate shows some
irregular changes, that we encounter at the same times in the x and y component
of the magnetic field. For δb = 0.1 (Figure 4.2(c)), we are moving away from the
quasilinear approximation: the particle spread in x − y plane is more and more
evident and a lot of irregular changes in the z coordinate are observed. The same
irregularities are encountered at the same times in the x and y component of the
magnetic field. Looking at the behavior of the parallel component of the induced
electric field, Ez, particle magnetic moment, µ, and cosine of pitch angle, α, (Figure
4.1), these are the time intervals during which µ and α show secular changes and
the parallel component of the induced electric field is almost constant. We derived
previously, in Section 4.1.2, the analytical expression for the half trapping width
of magnetic moment for a particle interacting with a left or right hand circularly
polarized wave. Explicitly:

∆µ = 4α

[
(1− α2)1/2|α|δB

B0

]1/2
(4.21)

For each of the cases analyzed, we calculated the values of the half peak-to-peak
difference in α and µ, ∆α = (αmax − αmin)/2 and ∆µ = (µmax − µmin)/2, for the
resonant interaction. These values, compared with the theoretical ones obtained
by Eq. 4.12 and Eq. 4.29, are listed in Table 4.2. The excellent agreement between
theory and simulations confirms the formula 4.12 for the trapping width, specialized
for the case of a single circular polarized wave and our guess that magnetic moment
behavior is strictly related to the pitch angle one.

In order to have a direct comparison between resonant and non-resonant behav-
iors, Figure 4.3 shows the cosine of pitch angle, α (first row), magnetic moment,
µ (third row), and their distribution function, f(α) (second row) and f(µ) (fourth
row), for a resonant particle, α = αres = 1/8 (left column), and a non-resonant one,
α = αnon−res = 1/2 (right column). Again magnetic moment values are averaged
over a particle gyroperiod. In contrast with the resonant case, in which α and µ

exhibit the well-known secular variations with typical period equal to τb, the cosine
of pitch angle and magnetic moment for a non-resonant particle show a regular os-
cillating behavior, a distinctive signature of regular particle motion characterized
by linear v‖ = const and v⊥ = const. The values of the half peak-to-peak differ-
ence in α and µ from the simulation, ∆αsim = 0.0025 and ∆µsim = 0.003, are also
smaller and smaller in comparison to the theoretical values expected from Eq. 4.12
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Figure 4.3: Resonant vs non resonant behavior: two particles with v = 100vA, αres = 1/8

(left column) and αnon−res = 1/2 (right column), in the field of a circularly polarized wave with

δb = 0.01. Cosine of pitch angle α (first line) and its distribution function f(α) (second line),

magnetic moment µ (third line) and its distribution function f(µ) (fourth line) are shown for both

particles.
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and Eq. 4.14 for δb = 0.01 and α = 1/2, ∆αth = 0.1316 and ∆µth = 0.1316. Also
the distribution functions f(α) and f(µ) for a single particle are really different in
the two considered cases. For a resonant particle, f(α) and f(µ) start to have a
Gaussian shape, typical of normal diffusion, around the initial values, α0 = 1/8

and µ0/µn = 0.98. In the non-resonant case f(µ) is peaked at the initial value,
that means the magnetic moment remains constant during particle motion and the
variations in α are of the order of 10%, that is a small variation considering that, in
the other case, variations of the order of 40% are observed.
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Figure 4.4: Resonant vs non resonant behavior: f(α) (first line) f(µ) (second line), for an initial

distribution of 1000 resonant (left column) and non-resonant (right column) particles randomly

loaded in the simulation box. δb = 0.01.

To make an additional comparison between resonant and non-resonant particle
dynamics, in Figure 4.4 the distributions functions, f(α) and f(µ), of 1000 reso-
nant and non-resonant particles, injected with random position and random phase
in the simulation box, are shown. For an initial distribution of non-resonant parti-
cles, f(α) and f(µ) have the same tendency to remain peaked around their initial
values, α0 = 1/2 and µ0/µn = 0.75, and have high tails at their side. For the
resonant distribution, f(α) exhibits a Gaussian shape centered around the initial
value, α0 = 1/8. In addition, the spread in the distribution function, ∼ 0.1, is equal
to the total value of the trapping width for the single particle, shown in Figure 4.3,



82

Chapter 4. Analytical and numerical results for magnetic moment

conservation

2∆α = 0.014. The magnetic moment distribution for the resonant distribution has
a shape that we found characteristic for µ in the range in which pitch angle exhibits
a Gaussian behavior and the density distribution function is still isotropic (parti-
cle free-streaming regime). Instead, increasing δb, f(α) becomes isotropic and the
density distribution function exhibits a Gaussian shape, signature of spatial parallel
diffusion. In this regime f(µ) has a Gaussian shape too. As in the pitch angle
case, the spread in the distribution function, ∼ 0.03, is equal to the total value of
the trapping width for the single particle, shown in Figure 4.3, 2∆µ = 0.00352 (see
Eq. 4.21).

4.1.4 Resonance overlap

In order to study the effect of resonances overlap, we designed a particular experi-
ment in which four different particles are loaded in the simulation box with random
initial position. All particles have the same initial velocity, v0tot = 100vA, but
different values of cosine of pitch angle, α, at the injections and, consequently, dif-
ferent parallel velocity: α1 = 1/2, α2 = 1/2, α3 = 1/4, α4 = 1/32. Setting again
β = 103 and following the resonance condition for the static case in dimesionless
units, Eq. 3.6, these particles will be in cyclotron resonance n = 1 with four dif-
ferent waves, that means same amplitude, δB/B0, but different wave numbers k:
k1 = 201/λ, k2 = 401/λ, k3 = 801/λ, k4 = 3201/λ. If we now allow resonance broad-
ening effects, then all particles in the velocity distribution with parallel velocities in
the range

v‖ −∆v‖ < v‖ < v‖ +∆v‖ (4.22)

can potentially resonate with a wave, whose wave number is k‖ = Ω/v‖. As found by
Chirikov (1978), the direct evidence of resonances overlapping is the disappearance
of constants of motion, i.e., the onset of stochasticity, in the Hamiltonian formalism.
In order to study the resonance overlap effects, the magnetic field is given by,

B = B0ez +

4∑

i=1

δb cos[k(i)z]ex −
4∑

i=1

δb sin[k(i)z]ey . (4.23)

We make simulations for four different waves amplitudes, δb = (0.001, 0.01, 0.1, 1.0).
As in the previous case, test-particles are followed until they complete a total number
of gyroperiods equals to Nτg = 100. The values of the trapping half-widths, ∆v‖,
calculated using our specialized formula, Eq. 4.28, for α1 = 1/2, α2 = 1/2, α3 =

1/4, α4 = 1/32 are listed in Table 4.3 for all the δb values used in the experiment.
In Figure 4.5, α (left column) and µ (right column) profiles varying the waves

amplitude, δb = 0.001 (first row), δb = 0.01 (second row), δb = 0.1 (third row),
δb = 0.001 (fourth row), are shown. At a first sight, it is again visible the similar
behavior of particles pitch angle and magnetic moment that focus of our study.
When the wave amplitude is small, δb = 0.001, the four different resonances are
well-recognized both in pitch angle and magnetic moment profiles and there are
not overlapping resonances, since they are well separated. Increasing the wave
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Table 4.3: Values of ∆v‖ for the α = (1/2, 1/4, 1/8, 1/32) resonances at different δb.

δb α = 1/2 α = 1/4 α = 1/8 α = 1/32

0.001 4.16 3.1 2.227 1.3

0.01 13.1 9.85 7.042 3.583

0.1 41 31.1 22.27 11.33

1.0 131 98.3 70.42 35.83
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Figure 4.5: Transition from non-overlapping to overlapping resonances: α (left column) and µ

(right column) profiles varying the waves amplitude: δb = 0.001 (first row), δb = 0.01 (second

row), δb = 0.1 (third row), δb = 1.0 (fourth row).
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amplitude, δb = 0.01, we start to observe the overlap of the resonances for α3 = 1/8

and α4 = 1/32; indeed, in this case, the initial parallel velocity of the particle
injected at the smallest pitch angle, v‖,4 = 3.125vA, lies in the range of velocities
(see Eq. 4.22) in possible resonance with k‖ = k3, because of the broadening effects.
For the other two cases considered, δb = 0.1 and δb = 1.0, the condition (4.22) is
satisfied by all particles velocities. Indeed, it is not possible to distinguish anymore
the different resonances in both pitch angle and magnetic moment profiles, because
the stochasticity arises.
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Figure 4.6: Demonstration of transition from non-overlapping to overlapping resonances: distri-
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waves amplitude: δb = 0.001 (first row), δb = 0.01 (second row), δb = 0.1 (third row), δb = 1.0

(fourth row).

For this experiment, we also analyzed the distribution functions of pitch angle,
f(α), magnetic moment, f(µ) and relative position f(δz), where δz = z− z0. They
are shown in Figure 4.6 at various δb: δb = 0.001 (first row), δb = 0.01 (second
row), δb = 0.1 (third row), δb = 1.0 (fourth row). Also from the distribution
functions, it is clear when the resonances are well separated and when the particles
motion starts to become stochastic. Indeed, for δb = 0.001 (first line), pitch angle
and magnetic moment distributions exhibit four different peaks, in correspondence
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of their initial values, as consequence of the good separation between the different
resonances. Looking at f(δz), it is also evident that particles free-streaming in
the parallel direction and, depending on their initial parallel velocity, they cover
shorter or longer distances in z. For δb = 0.01, the pitch angle distribution function
is not peaked anymore around the four initial values but, in correspondence of
them, the distribution spreads, because particle are resonant interacting with a
wave of bigger amplitude. In addition, the effect of the overlapping resonances,
n = 1 and n = 4, discussed previously, for α < 1/4 appears too. The same
effects are also present in f(µ), confirming the fact the for small δb the resonant
interaction affects magnetic moment and pitch angle in an analogous ways. Particles
continue to free-stream in the direction parallel to B0. Larger changes start to
appear for δb = 0.1, with the arising of stochasticity. Pitch angle distribution starts
to isotropize and magnetic moment exhibits a one-sided long tail distribution in
the direction of smaller µ, in what appears to be a signature of magnetic moment
behavior in the regime of overlapping resonances. This is the regime discussed
previously in the single wave experiment: when f(α) is nearly isotropic but particles
do not diffuse in the parallel direction (f(δz) is still typical of free-streaming), the
magnetic moment distribution displays this characteristic shape. This transient
regime for intermediate levels of wave amplitude will be present also when particles
move in a large turbulent spectrum, so it is a typical magnetic moment feature. For
δb = 1.0, f(α) is completely isotropic, but f(δz) starts to become more Gaussian, as
spatial diffusion begins to set-in. In this regime f(µ) loses its long-tail and exhibits
a more Gaussian behavior as well.

In conclusion we can say that the behavior of magnetic moment is strictly related
to pitch angle behavior for a low level of magnetic fluctuation, i.e., δb = 0.001, 0.01.
It undergoes the same finite amplitude nonlinear oscillation during the interaction
with a single finite amplitude fluctuation and its distribution half-width is directly
related to pitch angle distribution. When stochasticity arises, as a consequence of
overlapping resonances, its effect on pitch angle is the isotropization of the distri-
bution function. This is a transient regime during which magnetic moment exhibits
a one-sided long-tail distribution and starts to be influenced by the onset of spatial
parallel diffusion. When f(α) completely isotropizes, spatial diffusion sets in and
f(µ) behavior is closely related to the sampling of spatially varying magnetic field
strength associated with that spatial diffusion. Thus, we have identified, depending
on particle properties, that there are three distinct regimes of magnetic moment
statistical behavior with increasing turbulence level (Dalena et al 1, in prep).

4.2 Interaction with the slab spectrum

In this section, the results concerning the interaction of a particles distribution with
a broad band slab spectrum (see Eq. 3.25 and Figure 4.7) are shown. In order to gain
some insight of magnetic moment conservation, different simulations are performed
varying both particles velocity, vp, and the amplitude of magnetic field fluctuations,
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δb. We fixed the value of the β parameter (see Eq. 3.5) equal to 104, in agreement
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Figure 4.7: Power spectrum in numerical simulations. k is normalized to the ion inertial length,

λii.

with the solar wind observations at 1A.U. Indeed, from Eq. 3.5, it is possible to
write:

β =
λc
λii
, (4.24)

where λc is the turbulence correlation length and λii = c/ωpi =
(
c2mp/4πnpe

2
)1/2

is the ion inertial length. If ni = ne, λii = (mp/me)
1/2ρie. Because the solar

wind density at 1AU is, approximately, n ∼ (1 − 10) particles cm−3, on average
λii(1A.U.) ∼ 1000km. At the same distance, the turbulence correlation length, λc,
measures approximately 106km (Matthaeus et al., 1986); thus, β ≃ 104. Typically
1000 particles are injected in the simulation with initial random positions; their
initial velocities are given by Eq. 4.20. Particles are loaded from a cold ring beam
distribution (see discussion in Section 2.2.3) wherein the velocity magnitude is held
constant, sin θ is set equal to (1− α2

0)
1/2, where α0 is the initial pitch angle cosine

with respect to the background field, B0, identical for each particle; the initial
gyrophase, φ, is chosen randomly. For all the simulations we set α0 = 0.125. From
the previous section, we know that the behavior of magnetic moment is strictly
related to pitch angle behavior for a low level of magnetic fluctuation. Pitch angle
and magnetic moment are characterized by Gaussian distribution functions, typical
of normal diffusion process. Increasing the turbulence level, pitch angle distribution
approaches isotropization and a transient regime is observed for magnetic moment,
that starts to be influenced by the onset of spatial parallel diffusion. When f(α)
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Table 4.4: Typical values used in the simulations.

Vp[vA] rL[lz] kres ǫ tc[τA]

1 10−4 8× 104 1.33 × 10−4 0.747

10 10−3 8× 103 1.33 × 10−3 0.0747

100 10−2 8× 102 1.33 × 10−2 0.00747

completely isotropizes, spatial diffusion sets in and f(µ) behavior is closely related to
the sampling of varying magnetic field strength associated with that spatial diffusion.
From quasilinear theory we know that velocity and real space diffusion occur at two
different time scale. Typically, velocity space diffusion takes place at a time scale,
τc = λc/vp, shorter than the typical time scale at which parallel diffusion occurs,
t‖ = λ‖/v, where λparallel = 3D‖‖/v is the parallel mean free path. For this reason
we follow test particles in the simulation box for a time T greater than the velocity
space diffusion time scale, τc, in order to investigate the effect of spatial diffusion
on the magnetic moment distribution too. Usually, T = 20τc. Typical particles
parameters used in the simulations are listed in Table 4.4.

An important parameter for particles description is ǫ = rL/λc, that is related
with the bend over scale of the spectrum, kbo, and with the minimum resonant
wavenumber, kmin

res . Indeed, because kmin
res = 1/rL and kbo = 1/λc, (kmin

res )/kbo = ǫ−1;
for example, if rL ≫ λc, in few gyroperiods particles experience all the possible k
mode, starting to resonate from the energy containing scale (kmin

res ≪ kbo). Con-
sidering our turbulent spectrum, Figure 4.7, depending on their initial energy, our
test particles will start to resonate at different positions: in the dissipation range,
vp = 1vA (rL1), at the end of the inertial range, vp = 10vA (rL2)and in the middle
of the inertial range, vp = 100vA (rL3). In addition, as explained in Section 3.2.1,
the condition kmin ≪ zmax, necessary to avoid ’fake’ diffusion behavior (including
possibly subdiffusive behavior) related with the periodicity of the field, is satisfied
for all the cases considered.

From the classical definition, the statistic analysis of particle magnetic moment
must be done averaging on a particle gyroperiod, τg = 2π/Ω. If the wave amplitude
is small, (0.1 < δb ≤ 0.001), particle cyclotron frequency is given by: Ω ≃ Ω0 =

eB0/mc. On the contrary, if the wave amplitude is great, δb ≥ 0.1, the wave
contribute at the strength of the total magnetic field is not negligible and Ω =

Ω(t) = eB(t)/mc and τg = 2π/Ω(t). Because in the performed simulations δb
values in the range [0.001 ÷ 1.0] are used, it becomes important for δb ≥ 0.1 to
calculate the effective number of gyroperiod, Nτg , that particles performed in a
given magnetic field configuration, in order to well-average magnetic moment values.
A given time t in the simulation can be written as t = Nτgτg(Nτg ); so, dNτg =

dt/τg(t) = dtΩ(t)/2π. In this way we obtain the correct value of the total number
of gyroperiods that particle performs in the simulation when δb ≥ 0.1:

Nτg =

∫ t

0

dt

2π

eB(t)

mc
. (4.25)
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Figure 4.8 shows pitch angle f(α) (left column), magnetic moment f(µ) (central
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Figure 4.8: Distribution functions f(α) (left column), f(µ) (central column) and f(δz) (right

column) varying the waves amplitude: δb = 0.001 (first row), δb = 0.01 (second row), δb = 0.1

(third row), δb = 0.5 (fourth row), δb = 1.0 (fifth row). Particle parameters at injection: votot =

10vA and α0 = 0.125.

column) and particle position f(δz) (right column) distribution function, for a dis-
tribution of particles, moving with an initial velocity vp = 10vA, interacting with
a slab turbulent spectrum. Because particles are injected at different positions, it
is convenient to define the quantity δz = z(j) − z(0), where j is a temporal index.
In this way it is possible to take out from the distribution function f(δz) both the
drift effect, vDt, and particle diffusion relative to their own positions, ∆zi. Indeed,
the general expression for the z position of the i-th particle is given by

zi = zi(0) + vDt+∆zi = zi(0) + δzi. (4.26)

In Figure 4.9(a) the same distribution functions are shown, with the corresponding

variances, Figure 4.11(b),
〈
(∆α)2

〉
(first row),

〈
(∆µ)2

〉
(second row) and

〈
(∆z)2

〉

(third row). In Figure 4.8 blue line and green line indicate the initial value and
the mean value (at the end of the simulation) of each distribution. As in the pre-
vious section, magnetic moment values are expressed in units of µn = v2/B0. For
δb = 0.001, pitch angle distribution f(α) has the usual Gaussian shape, typical of
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Figure 4.9: Statistics for vp = 10vA. Distribution functions in Figure4.9(a) and variances in
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Table 4.5: Statistic for particles with vp = 10vA and α = 0.125, interacting with a broad band

slab spectrum. Magnetic moment data are averaged on particle gyroperiod.

δb ᾱ µ̄ δ̄z τα τµ τz σ(α) σ(µ) σ(z) Nτg

0.001 0.130 0.982 1.725 22.78 18.33 2.055 0.031 0.008 1.063 3182

0.01 0.418 0.760 4.845 5.07 5.61 5.145 0.273 0.263 4.111 3182

0.1 0.007 0.665 0.202 0.63 0.109 25.99 0.574 0.265 2.361 3195

0.5 −9.6× 10−4 0.604 −0.012 0.013 0.035 24.15 0.576 0.129 0.360 3449

1.0 −4.4× 10−4 0.506 −0.001 0.003 0.029 25.17 0.576 0.112 0.173 4055
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normal diffusion. An analogous behavior is observed for magnetic moment distri-
bution, f(µ), while particles free-stream in the z-direction. However, from f(δz)

is obvious that there are few particles that cover greater distance in z and that
are more scattered in pitch angle and, consequently, in µ. It is important to no-
tice that in this case f(α) and f(µ) are centered around their initial values. If we
consider the variances in Figure 4.11(b) for δb = 0.001, solid line, our discussion
regarding the distribution function are confirmed. Indeed, it is evident the super-
diffusive behavior of particles that typically free-stream along z and the scaling ∝ t

in
〈
(∆α)2

〉
and

〈
(∆µ)2

〉
, characteristic of normal diffusion. For δb = 0.01 particles

cover one side of the α hemisphere, continuing to free-stream along z, as evident
in Figure 4.11(b) (dashed line). This is the transient regime, already observed in
Figure 4.6, during which f(µ) exhibits a one-sided long tail distribution in the direc-
tion of smaller µ. For δb = 0.1 pitch angle distribution is completely isotropic and
spatial diffusion starts to set in, as evident from the change of the slope of

〈
(∆z)2

〉

in Figure 4.11(b) (three dot-dashed line). At the same time, f(µ) shows the same
long-tail distribution, but the influence of spatial diffusion starts to appear. Indeed,
the well-pronounced peak observed in f(µ) for δb = 0.01 is substantially reduced
and the mean value of magnetic moment distribution is moving towards the center
of the µ-space (µ[µn] can assume values in the range [0 ÷ 1]). Magnetic moment
behavior is diffusive, however the Gaussian shape is not reached yet, probably be-
cause the spatial diffusion is just at the beginning. For δb = 0.5 and δb = 1.0,
f(α) is isotropic, particle motion is completely diffusive in the real space (as the

different slope in
〈
(∆z)2

〉
in Figure 4.11(b) (dotted line) shows) and f(µ) behavior

is closely related to the sampling of varying magnetic field strength associated with
that spatial diffusion, displaying a Gaussian distribution centered at the middle of
µ-space.

Figure 4.10 shows the distribution functions, Figure 4.10(a), and the variances,
Figure 4.10(b), for pitch angle (first row), magnetic moment (second row) and parti-
cle position (third row) for a distribution of particles, moving with an initial velocity
vp = 1vA, and, as in the previous case, for many δb levels. For δb = 0.001, both〈
(∆α)2

〉
and

〈
(∆µ)2

〉
exhibit initial transient oscillations similar to those seen by

Kaiser et al. (1978) before it settles at t = 1τc. Kaiser et al. (1978) offered no ex-
planation for these initial transient oscillations. However, in a detailed analysis of
the resonance integrals appearing in magnetostatic quasilinear theory, Jones et al.

(1973) showed that Dαα actually possesses an oscillatory part (with frequency Ω)
that damps away exponentially on the timescale λc/v‖. Mace et al. (2000), noticing
that the observed oscillations have a period almost equal to the particle gyroperiod,
offered the following explanation. Since particles are loaded with an initial pitch an-
gle, θ0, relative to the average field, B0, the actual pitch angle measured relative to
the true field at the particle position can be expected to be θ ∼ θ0±δ, where δ is the
mean angle of deflection of the actual field about B0. Since tan δ ≃ 〈δB2〉1/2/B0 and
δ ≪ 1, we have δ ≃ 〈δB2〉1/2/B0. This means that, on the average, the helical orbit
about the local magnetic field is inclined at an angle ∼ δ with respect to a helical
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Table 4.6: Statistic for particles with vp = 1vA and α = 0.125, interacting with a broad band

slab spectrum. Magnetic moment data are averaged on particle gyroperiod.

δb ᾱ µ̄ δ̄z τα τµ τz σ(α) σ(µ) σ(z) Nτg

0.001 0.125 0.985 1.670 19.22 12.84 2.56 0.004 7× 10−4 0.964 31824

0.01 0.126 0.984 1.681 4.11 3.12 2.60 0.012 0.003 0.978 31826

0.1 0.019 0.956 0.381 5.19 4.46 25.8 0.194 0.038 1.638 31842

0.5 −6.6× 10−4 0.624 0.008 0.072 0.094 22.24 0.564 0.277 0.780 31938

1.0 4.2× 10−4 0.514 3.4 × 10−4 0.002 0.002 24.27 0.572 0.255 0.255 31955

orbit about the mean field B0. This gives rise to an oscillating pitch angle, relative
to the mean field, whose period of oscillation is equal to the gyroperiod. As time
progresses, the particle distribution evolves by pitch-angle diffusion toward a partial
shell distribution and ultimately, given sufficient wave power at large wavenumbers,
a complete shell distribution forms. When the pitch angle distribution is broad-
ened sufficiently by this relaxation, so that 〈(θ − 〈θ〉)2〉 exceeds 〈δB2〉1/2/B0, then
the effect of these oscillations is diminished and eventually quenched. This can
be seen in Figure 4.10(b) for δb = 0.001 (solid line), where the oscillations are
rapidly diminishing for t = τc, the autocorrelation time of the field as seen by the
particles. Furthermore, taking the typical amplitude of the pitch angle oscillation
about the initial θ0 to be ∼ δ and defining α = cos(θ ± δ), α0 = 〈α〉 = 0.125 and

δ = δb = 0.001, the quantity
〈
(∆α)2

〉
= (α − 〈α〉)2 ∼ 10−6, which agrees very

well with the initial oscillation amplitude seen in Figure 4.10(b). The oscillations
will persist longer when the initial pitch angle is near π/2. Indeed, the diffusion
coefficient, Dαα is small and, consequently, the timescale for the formation of a
shell distribution is longer. Indeed, although f(α) and f(µ) have a typical gaussian
distribution for both δb = 0.001 and δb = 0.1, their standard deviation σ(α) and
σ(µ), see Table 4.6, are smaller in comparison with that obtained for vp = 10vA,
see Table 4.5. In this range, particles simply free-stream in z, as clear from both
the distribution functions and the mean square displacement. Increasing δb, spatial
diffusion start to set in (three-dott-dashed line), but f(α) is not still completely
isotropic and f(µ) is in the transient regime of long tail one-side distribution. For
δb = 1.0, f(α) is isotropic, spatial diffusion occurs and f(µ) starts to recovery a
Gaussian shape.

The results obtained for vp = 100vA, Figure 4.9, confirm the tendency of particles
magnetic moment to follow pitch angle behavior, as long as f(α) becomes isotropic.
Until the total isotropization in pitch angle is not reached, also if particles start
to diffuse in real space, f(µ) is in the transient regime of long tail distribution.
When particles cover uniformly both sides of the α hemisphere and spatial diffusion
occurs, f(µ) recover a Gaussian shape, as evident in this case for δb = 1.0. In
this specific case, the persistent tail in the distribution are a possible effect of the
average on particle gyroperiod. Indeed, increasing particle speed, the total number
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Figure 4.10: Statistics for vp = 1vA. Distribution functions in Figure4.9(a) and mean square

displacement in Figure 4.11(b) for α (first row), µ (second row) and δz (third row), at different

δb level: δb = 0.001, solid line, δb = 0.01, dashed line, δb = 0.1, three dot-dashed line, δb = 1.0,

dotted line
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of gyroperiods, Nτg , that particle performs decreases, so slower particles sample
more variation in magnetic field strength, that successfully scrambles particle orbits
leading to a faster diffusion.
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Figure 4.11: Statistics for vp = 100vA. Distribution functions in Figure4.9(a) and mean square

displacement in Figure 4.11(b) for α (first row), µ (second row) and δz (third row), at different

δb level: δb = 0.001, solid line, δb = 0.01, dashed line, δb = 0.1, three dot-dashed line, δb = 1.0,

dotted line

In Figure 4.12 variance for pitch angle,
〈
(∆α)2

〉
, and magnetic moment,

〈
(∆µ)2

〉
, are compared for δb = 0.1, varying particle velocity: vp = 1vA (solid line),

vp = 10vA (dashed line), vp = 100vA (dotted line). More than the relation widely
discussed between α and µ, from these plots it is possible to notice the different
behavior of particles distribution moving at different velocities and, consequently,
resonating in different part of the spectrum.The oscillating behavior, already dis-
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Table 4.7: Statistic for particles with vp = 100vA and α = 0.125, interacting with a broad band

slab spectrum. Magnetic moment data are averaged on particle gyroperiod.

δb ᾱ µ̄ δ̄z τα τµ τz σ(α) σ(µ) σ(z) Nτg

0.001 0.132 0.981 1.744 21.95 18.65 2.97 0.043 0.012 1.133 318

0.01 0.092 0.974 1.461 8.77 1.36 11.21 0.132 0.022 1.453 318

0.1 0.006 0.936 0.050 0.35 1.84 24.11 0.244 0.045 1.262 319

0.5 0.003 0.747 0.168 0.36 4.05 23.85 0.421 0.126 2.260 344

1.0 0.004 0.549 0.306 0.2 2.18 22.95 0.529 0.168 2.772 419
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Figure 4.12: Variance of pitch angle, Figure 4.12(a), and magnetic moment, Figure 4.12(b), for

δb = 0.1 and vp = 1vA (solid line), vp = 10vA (dashed line), vp = 100vA (dotted line).
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cussed for vp = 1vA, persists, but is less pronounced, for vp = 10vA and completely
disappears for vp = 100vA, an effect probably related again with the different sam-
pling of magnetic field irregularities of particle moving at different speed. Because
of this oscillations, pitch angle and magnetic moment diffusion, takes place after
longer time. As predicted from QLT (see Eq. 3.31), Dαα is inversely proportional
to vp, for particle resonating at the same part of the spectrum, i.e., 10vA and 100vA
(both in the inertial range).
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Figure 4.13: Standard deviation of pitch angle σα and magnetic moment σµ/µin versus δb, for

vp = 1vA (red squares), vp = 10vA (green circles)and vp = 100vA (blue triangles)

Figure 4.13 shows the standard deviations (listed in Table 4.6, Table 4.5, Ta-
ble 4.7), relative to the distributions already shown, σα (left panel) and σµ/µin (right
panel), versus the turbulence level δb for vp = 1vA, red squares, vp = 10vA, green
circles, and vp = 100vA, blue triangles. These quantities represent the spread of the
distribution relative to the mean values and are closely related with the diffusion
coefficients. As for the variance, for particles resonating in the same range of the
spectrum, these quantities are inversely proportional to the particles velocity. In
addition, they increase with increasing δb, as one expects from QLT, for δb ≤ 0.1.
Both of them converges at a single value, when δb ≥ 0.5, i.e., when f(α) reaches the
isotropization and f(µ) loses the characteristic one-side long tail form and recovers
the original Gaussian shape.

In Table 4.6, Table 4.5, Table 4.7 the typical correlation time, τα, τµ, τz, are
listed. In order to calculate these values, first the autocorrelation functions (Cαα,
Cµµ, Czz) relative to each quantities are computed, then the corresponding cor-
relation time are calculated using two different methods, depending on when the
functions C reach the value 1/e or not. The correlation function measures how the
value of the order parameter at one point is correlated to its value at some other
point, so it is a measure of the order of the system. It decreases very fast with dis-
tance, then far away points are relatively uncorrelated and the system is dominated
by its microscopic structure and short-ranged forces. Given a generic quantity A, it
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can be written as the sum of a mean value, Ā, plus a fluctuating part δA with zero
mean (〈δA〉 = 0 by definition).

CδAδA ≡ CAA = 〈δAδA〉 = 〈(A− Ā)(A′ − Ā)〉 =
〈
[A(t0)− Ā][A(t0 + τ)− Ā]

〉
=

= 〈AA′ −AĀ− ĀA′ + Ā2〉 ≃ 〈AA′〉 − 〈A〉2

which just measures the fluctuations in the quantity A. From the above defini-
tion, we can define the correlation function for pitch angle and magnetic moment,
respectively, as:

Cαα(τ) = 〈δαδα〉 = 〈(α− ᾱ)(α′ − ᾱ)〉
Cµµ(τ) = 〈δµδµ〉 = 〈(µ − µ̄)(µ′ − µ̄)〉

with the property
Cαα(0) = 〈α2〉 − 〈α〉2 = 〈δα2〉

and
Cµµ(0) = 〈µ2〉 − 〈µ〉2 = 〈δµ2〉

In Figure 4.14 an example of the correlation functions, Cαα (left panel) and Cµµ
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Figure 4.14: Correlation functions Cαα (left panel) and Cµµ (right panel) for vp = 10vA and

δb = 0.1.

(right panel), is given, for vp = 10vA and δb = 0.1. For a generic quantity A the
correlation time is defined as:

τAc =

∫ ∞

0

[
CAA(t

′)
CAA(0)

]
dt′ (4.27)

Let suppose CAA(t) = 〈δA2〉e−t/τc , then

CAA(t)

CAA(0)
= et/τc =

1

e
⇐⇒ t = τc

However, it could happen that the function CAA(t) does not reach the value 1/e.
To have a good estimation of the correlation time, the best fit method is used, that
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consists to fit the data points with the best line that minimizes the mean square
error relative to the data sample. This method is based on the assumption that, if
data points follow C ∼ exp−t/τc, plotting lnC = −t/τc, a straight line with slope
−1/τc will result. Considering the data series : {Cj , tj‖j = 1, N} : (tj , Cj), where
Cj = lnCj. The best line Ĉ = mt + b is the one who minimizes the mean square
error relative to the data sample, defined as:

E =
N∑

j=1

(Cj − Ĉj)
2 =

N∑

j=1

(Rj −mtj − b)2

From ∂E/∂m = 0 we obtain m =
∑N

j=1(tjRj/
∑N

j=1 t
2
j) and τc = −1/m. In Fig-
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Figure 4.15: Correlation times τα
c (left panel) and τµ

c (right panel) versus δb for vp = 1vA (red

square), vp = 10vA (green circle) and vp = 100vA (blue triangle).

ure 4.15 the correlation times, ταc (left panel) and τµc (right panel), versus δb are
shown for vp = 1vA, red square, vp = 10vA, green circle, and vp = 100vA, blue
triangle. For a good understanding of the figure it is necessary to consider the
corresponding distribution function. For vp = 1vA (red square, distribution func-
tion in Figure 4.10), τalpha and τµ decrease with increasing δb for δb ≤ 0.01, when
f(α) and f(µ) follow a Gaussian distribution and for δb > 0.1, when f(α) com-
pletely isotropizes and f(µ) is influenced by spatial diffusion and starts to recover
the Gaussian shape. For δb = 0.1, τα and τµ increase: this is the δb value for which
f(α) is almost isotropic, covering uniformly the α-space from 0.5α to −0.5α and
f(µ) shows a well-pronounced long-tail distribution. For vp = 10vA (green circle,
distribution function in Figure 4.9), one can immediately notice that τα is always
decreasing; indeed, in contrast with the previous case, there are not δb value for
which f(α) is almost isotropic, but it is localized in one-side of the α hemisphere,
for δb = 0.001 − 0.01 and it is completely isotropic for δb = 0.1 − 0.5 − 1.0. If
we consider τµ, one immediately notice the same trend until the value δb = 0.1 is
reached. Looking at the distribution functions f(µ), we would expect an increases
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in τµ, passing from δb = 0.001 to δb = 0.01, as for vp = 1vA when the distribution
takes the long-tail shape. However, in contrast with this case for δb = 0.001, f(µ) as
a Gaussian-like form, but already shows a tail longer in the side of smaller µ. The
successive change evident for δb = 0.5 corresponds to the recover of Gaussianity
in f(µ). For vp = 100vA (blue triangle, distribution function in Figure 4.11), τα
decreases till δb = 0.1. For this value and for δb = 0.5, f(α) is almost isotropic,
as in the 1vA case for δb = 0.1. For δb = 1.0 f(α) reaches the isotropization, that
corresponds to the final decreasing trend in τα. For δb = 0.001 − 0.1, f(µ) is a
Gaussian-like distribution and τµ is a decreasing function of δb. For δb = 0.1 − 0.5

f(µ) shows long tail at which corresponds an increase in τµ. Notice that greater
τµ corresponds to longer tail in µ-space. Finally, for δb = 1.0 magnetic moment
behavior in influenced by spatial diffusion and τµ eturns to decreasing behavior.



Conclusions

In this thesis work, we studied the effects related to non-adiabatic particle mo-
tion in two different physical contexts: the near-Earth’s magnetotail and the solar
wind. Final discussion and conclusions regarding the first part of this study, Non-

adiabatic particle motion in the near-Earth magnetotail, have already been given in
Section 1.6.

In a more general context, we start to investigate the conservation of charged
particle magnetic moment in presence of turbulent magnetic fields. Generally, for
slow spatial and temporal changing magnetic field, the magnetic moment, µ, is
an adiabatic invariant of particle motion. But in the presence of well developed
magnetic turbulence, µ might undergo rapid variations and in any case can no longer
be expected to be constant. Of course, this fact could influence particle acceleration
and could have a considerable implications in many astrophysical problems, such
as coronal heating, cosmic rays transport or temperature anisotropies in the solar
wind.

We have re-analyzed the problem of charged particle diffusion in static turbu-
lent one-dimensional magnetic fields from a semi-dynamical point of view, using
the analytical results of Karimabadi et al. (1992) for the trapping width in velocity
space, ∆v‖ and the bounce frequency, ωb, of a particle in resonance with an elec-
tromagnetic wave. In order to reproduce and to extend some of the result obtained
by Karimabadi et al. (1992), we started to study the resonant interaction between
ions and a single parallel propagating electromagnetic wave, to understand in this
very simple case the limit for magnetic moment conservation. During the interac-
tion with a single finite amplitude fluctuation, a resonant particle undergoes a finite
amplitude nonlinear oscillation, given by half peak-to-peak difference in the particle
parallel velocity component, the so-called trapping width, ∆v‖. The period of this
oscillation is given by τb = 1/ωb, where ωb is the bounce or trapped frequency. We
specialized the expressions for ∆v‖ and ωb, given by Karimabadi et al. (1992), in
the case of a single circularly polarized wave:

∆v‖
(−1) = 2v

[
(1− α2)1/2|α|δB

B0

]

ωb
(−1) = Ω0

[
(1− α2)1/2

|α|
δB

B0

]
(4.28)

and we wrote a similar expression for the magnetic moment trapping width, ∆µ

(Dalena et al., in prep).

∆µ = 4α

[
(1− α2)1/2|α|δB

B0

]
(4.29)

Results from different simulations are shown, varying both particle velocity and the
amplitude of the wave. For each of them we compared the values of ∆µ and ∆v‖
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resulting from numerical simulations, with the value obtained using our specialized
expression. A good agreement between theory and simulations is obtained. More-
over, analyzing the distribution functions of particles pitch angle, f(α), magnetic
moment, f(µ) and z-position f(z) in a particular experiment designed to study the
effects of resonances overlapping, three regimes of behavior of the magnetic moment
distribution. First, for a low level of magnetic fluctuation, i.e., δb = 0.001, 0.01, the
magnetic moment distribution half-width is directly related to pitch angle distribu-
tion. Second, when stochasticity arises as a consequence of overlapping resonances,
its effect on pitch angle is the isotropization of the distribution function. This is a
transient regime during which magnetic moment exhibits a one-sided long-tail dis-
tribution, in what appears to be a signature of magnetic moment behavior in the
regime of overlapping resonances, and starts to be influenced by the onset of spatial
parallel diffusion. Finally, when f(α) completely isotropizes, spatial diffusion sets
in and f(µ) behavior is closely related to the sampling of varying magnetic field
strength associated with that spatial diffusion.

Other studies, regarding particles interaction with two electromagnetic waves as
well as a flat turbulent spectrum, are also conducted and they confirmed this general
view.

Motivated by these preliminary results, we studied the behavior of many particles
interacting with a broad band slab spectrum. One of the goal of our simulations
is the direct applicability of the results obtained here to the solar wind physical
system. Indeed, our slab spectrum is generated in order to reproduce some of the
major features of the solar wind (see Figure 3.4), considering three decades of energy

containing scale, to ensure turbulence homogeneity, three decades of the inertial
range, characterized by:

P (kn) = P slab(kn) = Cslab[1 + (knlz)
2]−5/6, for kn < kdiss

that well represent the solar wind case, other two decades of the dissipation range,
characterized by:

P (kn) = P diss(kn) = Cdiss

(
kn
kdiss

)−7/3

, for kn ≥ kdiss

in order to cross the αmin barrier, related with the problem of the resonance gap

predicted by quasilinear theory. After that there are almost other two decades of
zero-padding, important for the trigonometric interpolations and for the smoothness
of the field. The resulting magnetic field is stored on a grid of spacing ∆z = L/Nz ,
where Nz is an even integer fixed at Nz = 228 = 268, 435, 456.

In order to gain some insight of magnetic moment conservation, different simu-
lations are performed varying both particles velocity, vp, and the amplitude of mag-
netic field fluctuations, δB/B0 = (0.001−0.01−0.1−0.5−1.0). Particles injected at
different velocities, vp = (1−10−100)vA , start to resonate at different points of the
spectrum (see Figure 4.7); thus, the related effects are also analyzed. For this case
we analyzed the variance and the distribution function of particles pitch angle α,
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magnetic moment µ and parallel position z, the corresponding standard deviation
σ and the correlation time τc. From the experiment of resonances overlapping, we
understood that magnetic moment behavior is related to pitch angle for low level
of magnetic fluctuations or for shorter time. On the contrary, increasing δb or the
integration time, spatial diffusion sets in, pitch angle distribution isotropizes and
magnetic moment is influenced by diffusion that takes place in real space. Because
velocity and real space diffusion occur at different time scale, in order to investi-
gate the effects of both processes on magnetic moment distribution, we followed
test-particles in the simulation box for time T greater than the velocity space diffu-
sion time scale. We found that, for low level of magnetic fluctuations, pitch angle
distribution, f(α), assumes a Gaussian shape, usual of normal diffusion. An anal-
ogous behavior is observed for magnetic moment distribution, f(µ), while particles
free-stream in the z-direction. In this case f(α) and f(µ) are centered around their
initial values. Generally, for δB/B0 = 0.01 particles start to cover completely one
side of the α hemisphere, continuing to free-stream along z. This is the transient
regime, during which f(µ) exhibits a one-sided long tail distribution in the direction
of smaller µ, that appears to be a typical feature of magnetic moment distribution,
during which the distribution of particles nearly conserves its magnetic moment.
Increasing the δB/B0 value, as spatial diffusion starts to take place, f(µ) recovers
the typical Gaussian shape, centered in the middle of µ-space, related to the sam-
pling of varying magnetic field strength associated with that spatial diffusion. This
general view is also confirmed from the analysis of the magnetic moment correlation
times, τµc , versus δB/B0, that are decreasing when a Gaussian shape in f(µ) is
observed and tend to assume greater values when f(µ) shows the one-side long tail
distribution, that means that µ values at different times are more correlated and µ is
more conserved. Of course, we suppose that these transitions in magnetic moment
behavior are related not just with the variation of the turbulence level, δB/B0, but
also with the different time scale at which magnetic moment conservation is studied,
in the sense that if we performed longer simulation for δB/B0 = 0.1, we should find
an initial regime characterized by normal diffusion, as a consequence of pitch angle
diffusion, a transient regime in which f(α) starts to isotropize and f(µ) shows is
typical long-tail distribution, and a third regime during which spatial diffusion sets
in, causing the recovering of the Gaussian shape in f(µ).

Finally, making use of the for ∆v‖ and ωb, it was shown that the diffusion
coefficient for velocity space diffusion in v‖ can be written in the physically intuitive
forms

Dαα =
ω2
bτ

2
ac(∆α)

2

2τac
=

(∆αeff)
2

2τac
,

where the effective trapping width ∆αeff = ∆veff‖ /v characterizes the trapping width
of the potential well in the extrinsically stochastic system of the resonant wave
plus the perturbations induced by randomly phased neighboring wavemodes in the
resonant wave packet. The trapping width is also of the order of the magnitude
of the kick in pitch angle cosine that the particle experiences during this resonant
interaction. The timescale for the particle to interact resonantly with the wavepacket
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is given by the autocorrelation time of the fields as seen by the particle, which, in
the simplified magnetostatic model considered here, is simply the transit time for
the wavepacket in the particle frame of reference, τac = λc/|v‖|. To the best of the
author knowledge, it is the first time that the diffusion coefficient for pitch angle
diffusion in magnetostatic turbulence has been written in this physically appealing
form. It is shown how this effective resonance width implies a condition on the
density of wavemodes in Fourier space, in the vicinity of the resonant wavenumber.
The implications of this condition for simulations incorporating discrete fields is
discussed in detail and examples of simulations violating this condition are presented
too.
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Appendix A

Details of the model used in

Chapter 1

A.1 Parity of Magnetic Perturbations

As usual, reality of δB(r) implies δBσ(k) = δBσ(−k) and φσ
k
= −φσ

k
. Since the

assumed amplitude δBσ(k) is independent of the sign of k and of the polarization,
that is δBσ(k) = δB(k), for the components of perturbed magnetic field δBi(r) we
get:

δBx(r) =
∑

kx,ky,kz≥0

2δB(k)

[
k⊥
k
gk(r)

]
(A.1)

δBy(r) =
∑

kx,ky,kz≥0

2δB(k)

[
kykx
k⊥k

gk(r) +
kz
k⊥
hk(r)

]
(A.2)

δBz(r) =
∑

kx,ky,kz≥0

2δB(k)

[−kxkz
k⊥k

gk(r) +
ky
k⊥
hk(r)

]
(A.3)

where
gk(r) = cos (k · r+ φ2

k
), hk(r) = sin (k · r+ φ1

k
)

and k⊥ =
√
k2x + k2y, k =

√
k2x + k2y + k2z .

In order to describe the formation of magnetic islands in the vicinity of the
neutral sheet during the tearing mode development, in addition to reality, we have
to impose further restrictions in the random phases. Such restrictions inpose parity
rules for the perturbed magnetic field of a given tearing mode with wave vector
k. In particular, the x component of the perturbed magnetic field has to hace odd
parity with respect to the z = 0 plane, i.e.,

δBx(x, y, z) = −δBx(x, y,−z) (A.4)

and the z component of δB has to have even parity:

δBz(x, y, z) = δBz(x, y,−z). (A.5)

Taking the sum of the perturbed x and z components with the same kx and ky but
opposite kz in Eq. (A.2) - (A.3) and imposing the above parity relations, we obtain
the following conditions that random phases have to satisfy:

φ1kx,ky,kz = φ1kx,ky,−kz (A.6)

φ2kx,ky,kz = φ2kx,ky,−kz + π (A.7)
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Figure A.1: The z dependence of the perturbed components of the magnetic field at a sample

position x, y inside the simulation box for δB/B0 = 0.5: δBx, dotted line, δBy , dashed line and

δBz,thin solid line. Also plotted is the unperturbed component, B0x(z), thick solid line.

The δBy component has automatically odd parity from these conditions, as evident
in Figure A.1. At the same time, to represent the concentration of the perturba-
tions in the vicinity of the plane z = 0, as the tearing mode turbulence requires
(White et al., 1977), we will take phases φ1 and φ2 as randomly chosen for the
different kx and ky but independent of |kz|.

Figure A.1 shows a vertical profile of the three δB components. The dotted line
reprensents δBx, the dashed line corresponds to δBy,and the thin solid line to δBz .
Also plotted, using a thick solid line, is the unperturbed component, B0x(z). The
requested parity of δB and the typical spatial variations are evident in the figure.

A.2 Velocity Space Injection

Particles are injected at the boundaries of the simulation box, z = ±0.5L, with a
distribution corresponding, in velocity space, to the flux of a shifted Maxwellian,
see Eq. 1.9. Since the particles are entering the simulation box by moving along z,
this yields F (vx, vy, vz) ∝ vzf(v‖, v⊥). We express v‖ and v⊥ through vx, vy and vz
to have:

v‖ =
v ·B
|B| =

vxBx + vyBy + vzBz√
B2

x +B2
y +B2

z

(A.8)

v⊥ = v2 − v2‖ = v2x + v2y + v2z (A.9)



A.2. Velocity Space Injection 107

The unperturbed magnetic field components at the z = ±0.5L surfaces are equal
to |Bx| = B0, By = 0, Bz = Bn. We introduce the components of the unit vector
along B at z = ±0.5L:

b̂x =
B0√

B2
0 +B2

n

≡ 1√
1 + b2n

(A.10)

b̂z =
Bn√

B2
0 +B2

n

≡ bn√
1 + b2n

(A.11)

As far as injection is concerned, only the nonfluctuating magnetic field is considered.
Inserting these expressions into Eq. 1.9, we finally come to the equation that has
to be solved for the variables vx, vy and vz, distributed according to a shifted
Maxwellian:

exp (−u2/2v2th)
(
√
2πv3th)

exp

(
−v

2
x − 2ub̂xvx

2v2th

)
exp

(
−
v2y
2v2th

)

× vz exp

(
−v

2
z − 2ub̂zvz

2v2th

)
dvxdvydvz = Cdξdηdζ,

where ξ, η and ζ are random numbers evenly distributed in the interval [0, 1],
and Cis a constant calculated from the conditions specified below. The coefficient(√

2πv3th
)−1

exp
(
−u2/2v2th

)
depends only on the constant parameters u and vth and

hereinafter can be included in the constant C. We will also assume for this Ap-
pendix that all velocities are normalized to thermal velocity vth and drop vth in
what follows. As it is clear from Eq. A.12, the dependence on each of the velocity
components is factorized, and we can solve independently three different equations,
namely:

exp
[
−
(
v2x − 2ub̂xvx

)
/2
]
dvx = Cξdξ (A.12)

exp
[
−v2y/2

]
dvy = Cηdη (A.13)

vz exp
[
−
(
v2z − 2ub̂zvz

)
/2
]
dvz = Cζdζ (A.14)

Clearly, vy is distributed according to a Maxwellian and we can use the Central
Limit Theorem for vy (Veltri et al., 1998).

For vx and vz we have to take into account the asymmetry introduced by the
streaming velocity u. Assuming that x varies in the interval 0 < x < 1 with uniform
probability, and integrating Eq. A.13 from −∞ to vx on the l.h.s. and from 0 to ξ
on the r.h.s., we easily obtain the equation to be solved for vx:

1 + erf
[(
vx − ub̂x

)
/
√
2
]
= Cξξ (A.15)

where the coefficient (
√
π/2) exp u2b̂x

2
/2 can again be assumed to be included in Cξ

and erf(x) is the well known Error function: erf(x) = (2/
√
π)
∫ x
0 exp (−t2)dt. It

is evident that, for ξ = 0, vx = −∞ (erf(−∞) = −1). The coefficient Cξ is fixed
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by the condition that vx = +∞ for ξ = 1. Thus for Cξ we obtain from Eq. A.15:
Cξ = 1+ erf(+∞). Finally, to get the distribution of vx corresponding to function
given by Eq. A.13, we have to solve for each random number ξ (0 < ξ < 1) the

equation: 1 + erf
[
(vx − ub̂x)/

√
2
]
= 2ξ.

The integral in Eq. A.13 for vx is positively defined over all the interval of
integration. This is not the case for vz component (see Eq. A.14), where we have to
consider separately positive and negative vz for particles entering into the current
sheet from the lower (z = −0.5L) and upper (z = 0.5L) boundaries, respectively, of
the simulation box. Integrating Eq. A.14 for z > 0 in the interval −∞ < vz < 0 we
obtain:

I−(vz, u) = − exp
[(
v2z − u2b̂z

2
)
/2
]
+ αerf

[(
vz − ub̂z

)
/
√
2
]

(A.16)

where α =
√
π/2ub̂z exp

(
u2b̂z

2
/2
)
. For vz = 0 we will have

I−(vz, u) = −1 + α (1−Ψ) ≡ C− (A.17)

where Ψ = erf
(
ub̂z/

√
2
)
. Here we have used the antisymmetric property of the

Error function, erf(−x) = −erf(x). C− defines the weight of negative velocities vz
in the distribution. Now, integrating equation for vz in Eq. A.14 for z < 0, in the
interval 0 < vz < ∞, it is easy to show that the corresponding integral on the left
side is equal to I+(vz, u) = −I−(−vz,−u). Introducing the coefficient C+ as the
weight of positive vz in the distribution, we will obtain:

C+ ≡ I+(0, u) = 1 + α (1 + Ψ) . (A.18)

Now, the interval [0, 1] for the random number z has to be divided, according to the
corresponding weights, in two intervals: 0 < ζ < ζ1 for negative vz and ζ1 < ζ < 1

for positive vz, where ζ1 is equal to:

ζ1 =
|C−|

|C+|+ |C−| =
1− α(1 −Ψ)

2(1 + αΨ)
. (A.19)

Here we have used the fact, that C− is negative and C+ positive for any positive
u. Integrating now Eq. A.14 for the proper intervals, we will have for negative
and positive vz the following relations: I−(vz, u) = C−

ζ ζ and I+(vz, u) = C+
ζ (1 −

ζ), respectively, where the coefficients C−
ζ and C+

ζ have to satisfy the following
conditions:

C−
ζ ζ1 = I−(0, u) ≡ C−, C+

ζ (1− ζ1) = I+(0, u) ≡ C+. (A.20)

From this system of equations and the expressions for C− and C+, given by Eq. A.17
and Eq. A.18 we will obtain for the coefficients C−

ζ and C+
ζ :

C−
ζ = −2(1 + αΨ), C+

ζ = 2(1 + αΨ). (A.21)

When u = 0, ζ1 is equal to 0.5 and we recover the results obtained by citeVel-
triEA98 for a Maxwellian distribution of the inflowing particles. Solving Eq. A.20
and Eq. A.21 for each random number ζ in the corresponding interval we will obtain
the required particle distribution.
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B.1 About test particle simulations & Streamline code

Plasma consists of positive charged ions and negatice charged electrons. Since mi ≫
me, there are many intrinsic spatial and time scales in a plasma system, even if
a uniform background environment is considered. For time scale smaller than the
intrinsic time scales, it is hard for the system to reach a thermal dynamic equilibrium
state and kinetic effect might become important. These also means that the typical
length scale of the system L is comparable to the characteristic legth scale of a given
species (ions and/or electrons), i.e. the Larmor radius, rL = vth/Ω, in which vth is
the particle thermal velocity and Ω = mv/qB is the particle gyrofrequency.

Generally, two different numerical approaches may be considered in order to
study plasma evolution: kinetic approach and fluid approach. Kinetic simulations
are used to study the non-linear evolutions of wave-particle interactions in the phase-
space on spatial and time scale on wich kinetic effects are not negligible. On the other
hand, a fluid simulation code can provide reasonable and relatively quick results,
when the kinetic effects become unimportant. Depending on their resolutions in
phase-space, we can classified the most common plasma simulations as follows:

• Fluid Simulations

– MHD code: L ≥ 103rLi

– Two-Fluid code: 103rLi ≥ L ≥ 10rLi

• Kinetic Simulations

– Hybrid code (fluid electrons & kinetic ions): 10rLi ≥ L ≥ rLi

– Full partcile code: rLi ≥ L ≥ rLe

– Test particle code: when a strong magnetic field is present

– Vlasov code: rLi ≥ L ≥ rLe

where L is the typical length scale of the system and rLi,e are the typical ion/electron
gyroradius. When L approaches the ion thermal gyroradius, ions become demagne-
tized and the plasma can no longer behave as a simple fluid. As a consequence, the
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usual MHD description breaks down in favor of a more complex (kinetic) plasma
description.

In this paper we concentrate our discussion on the test-particle methods, that
means the electromagnetic fields are treated as prescribed and particles can be
treated fully independently from each other in the simulation. In the absence of it-
erations and feedback from calculated particle trajectories, the results are generally
not self-consistent. Test-particle calculations can be used to study a broad class of
problems in space physics and astronomy, such as particle transport, energization
and dynamics in complex systems, for which a fully consistent kinetic calculation
is not practical. Indeed test-particle simulations represent a complementary ap-
proach between fluid and fully kinetic models. Fluid models are powerful tools for
modelling complex systems while accounting for realistic geometry together with
multiple physical processes. However, they are limited to the description of macro-
scopic properties of plasmas in terms of the local distribution functions momenta.
On the other hand, kinetic models provide detailed information on particle dynam-
ics but, because of their complexity, they are limited to relatively simple geometries
in the range of physical processes that they can account for. In that context test-
particles provide a useful bridge between the two approaches. Using approximate
fields obtained from macroscopic models or analytical field expressions, they can be
applied to assess kinetic effects in complex systems under realistic conditions.

This latest version of Streamline is part of a succession of programs developed
at the University of Delaware within Dr. Matthaeus’s group in the Department
of Physics and Astronomy and Bartol Research Institute. Replacement of working
and tested code is generally frowned upon, but the main ordinary differential equa-
tions (ODE) integration (in all versions) relied on modified code from Numerical
Recipes. Thus, the ODE integration is performed using published routines that are
operationally unchanged from their documented source code. Streamline has the
ability calculate static field-lines, particle trajectories, or more generally solve the
first order ODE:

dx

ds
= f(x), (B.1)

where x = (x1, x2, ..., xN ) is an N -dimensional generalized position, s is a general-
ized arc length parameterization, and f(x) = (f1(x), f2(x), ..., fN (x)) is vector field
determinable at every generalized position x. As an illustration, consider a particle
with mass m moving under the time-dependent force F(x, t). In this case, s ≡ t,
and we have:

x = (x, y, z, vx, vy, vz), (B.2)

f = (vx, vy, vz, ax, ay, az) (B.3)

where a = F/m and N ≡ 6. This system is usually written as two coupled ODE’s:

dx

dt
= v(x, t), (B.4)

dv

dt
= a(x, t). (B.5)
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This code is a MPI parallel implementation of a versatile algorithm for compu-
tation of streamlines, magnetic field lines or charged particle trajectories. Each of
these has in common that a set of generalized "trajectories" is generated, beginning
from a set of specified initial conditions. The trajectories are generated by integrat-
ing a set of ODE’s, either three (for streamlines and field lines) or six (for charged
particle orbits). In each case one or more vector fields, appearing as coefficients in
the ODE’s, must be specified. Physically what is required for each different case is:

• Streamlines: specify a velocity field and an initial position;

• Magnetic Field Lines: specify a magnetic field and an initial position;

• Charged Particle Orbits: specify a magnetic field, and electric field, and an
initial position and velocity.

The ODE’s are integrated using an adaptive step fourth order Runge-Kutta method
with a fifth order error estimate (Press et al., 1992, pp. 708-716). The entire sim-
ulation run is broken down into a number of substeps, each with time interval
δt ≪ Tmax, where Tmax is the total length of the run. The routine steps each parti-
cle in turn through the time interval dt, while maintaining a local relative accuracy
of racc = 10−9 at each step. This process is repeated until the run ends and all
particles are stepped through the time interval for the entire run, Tmax. Several
standard cases are built in at present, choicing of ODE’s (field line or charged par-
ticle orbit equations) and the magnetic field input model (slab, slab plus 2D, data
read from file). Several test cases are also installed in the code. Provisions are
made for user-supplied ODE’s (routine DERIVS) and user-supplied electromagnetic
fields (routine EMFIELDS) that are externally linked and communicate with the
internal routines through standard data structures. Streamline version 4 is capable
of handling analytic fields, tabulated fields read and interpolated from file, or no
fields at all, so long as Eq. B.1 is fully defined. These fields are expected to be
electromagnetic fields, but this is not assumed.

This piece of software is a very versatile field generation code, with lot of features
that gives the advanced users all the power through the various input files. This also
has the provision for extending e/o adding new programs and algorithms. The whole
MPI part could be used as wrapper around different versions of electromagnetic
fields and various derivatives. This is done by considering the whole setup as a
black-box and writing customized "emflds" and "derivs" subroutines by following
the interfaces provided in this program. The code works programming the master
node to pass out "jobs" to the worker nodes. Each job includes the initial data and
some other parameters. Load balancing is achieved in a standard way: when a node
is done a job, it asks the master if there is another job to do. Results of each job
are written to disk.
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B.2 Test of Accuracy of Streamline Code

In order to substantiate the accuracy of numerical results coming from more complex
electromagnetic field configurations, we test the stremline code for different and
simplier cases:

• Particles moving in a constant magnetic field B = B0ez

• Particles moving in a constant magnetic field B = B0ez plus a constant electric
field E = E0ex.

• Particles moving in a circulary polarized wave field

• Particles moving in two circulary polarized waves field

For the firts to cases, the exact solution of the problem is known. Thus, is possible
to compare directly the analytical solution with the numerical results. For the last
two cases the condition that guarantees the accuracy of our simulations is the energy
conservation. Indeed, because no electric fields are present in the system the energy
of a given particle must be conserved.

1. Particles moving in a constant magnetic field B = B0ez.

As we know from the classical particle motion theory, a particle with charge q,
moving with a velocity v = v‖+v⊥ in a uniform magnetic field B0 experiences
a force, the so-called Lorentz force FL, perpendicular to both the particle
velocity v and the magnetic field B0, so that it does no work on the particle.
The Lorentz force FL can change only the direction of the particle velocity
component v⊥ perpendicular to B0. The analytic solution of this problem is
given by:

vx(t) = vx0 cos (Ωt) + vy0 sin (Ωt)

vy(t) = vy0 cos (Ωt)− vx0 sin (Ωt)

vz(t) = vz0 = const (B.6)

where Ω = mv/qB and vx0, vy0 and vz0 are the initial velocities in x, y and z
respectively. Thus, the charged particle moves on a circle in the x − y plane
around the magnetic field B0, while the parallel velocity component v‖ carries
the particle along the magnetic field lines, creating an helical trajectory.

2. Particles moving in a constant magnetic field B = B0ez plus a constant electric

field E = E0ex.

The analytic solution for this case is:

vx(t) = vx0 cos (Ωt) +

(
vy0 +

E0

B0

)
sin (Ωt)

vy(t) =

(
vy0 +

E0

B0

)
cos (Ωt)− vx0 sin (Ωt)−

E0

B0

vz(t) = vz0 (B.7)
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Since an electric field is present in the x direction, particles drift in the y

direction and their trajectories assume a cycloidal shape. In this case the
energy is oscillating and not constant, as in the previous case.

We define the relative error as:

Relative Error =

∣∣v2num − v2an
∣∣

v2an
,

where van and vnum are the magnitude of velocity from analytical solution
and from numerical results, respectively. We test 10 particles injected with
random initial points and initial velocities given by vx0 = 10vA, vy0 = 0 and
vz0 = 0. Thus, vnum is the average velocity for 10 particles.

For the two cases described above we collect results at various racc values.
When particles move in a uniform magnetic field, the relative error increases
linearly with time in a log-log scale with a slope= 1, as shown in Figure B.1(a).
For the second case, particles moving in uniform magnetic and electric field,
results at various racc are shown in Figure B.1(b). The accuracy oscillates a
bit and, for racc = 10−16, round-off effects appears. The error grows with the
same slope of the previous case.

From the accuracy tests, we can see that the relative error depends on the
parameter racc and increases linearly with time at the beginning of the simu-
lation. For the two tested cases, at 105 gyroperiods, a time longer than all the
simulations that we performed to study realistic physical problem, we get a
relative error of order10−4 for racc = 10−9. Thus, racc = 10−9 can be chosen
as best balue for the accuracy parameter of our numerical simulations.

Once fixed racc = 10−9 for all the simulations, additional test are done in
order to verify if the relative error remains of the same order also when some
typical parameters, as particles velocity, v, and β are varied. In Figure B.2
the relative error of particle trajectories in a uniform magnetic field is shown
for different values of particle velocities, vp = (1− 10− 1000)vA (top row) and
for different values of the β parameter, β = (1− 10− 104) (bottom row). It is
evident that after 105 particle gyroperiods the relative error is always of the
order of 10−4 for all the cases.

3. Particles moving in a circulary polarized wave field.

Now we consider the ions motion in presence of a constant magnetic field
B0 = B0ez plus a perpendicular circularly polarized wave. We use the left-
hand polarized component of the wave field, rotating in the same sense as
ions. The handness is important to properly study the resonance wave-particle
interaction. Indeed, left-hand positive ions interact with left-handed waves,
while right-hand negative electrons interact with right-handed waves. The
resulting magnetic field is given by:

B = δBx cos (k0z)− δBy sin (k0z) +B0ez, (B.8)
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(a)

(b)

Figure B.1: Accuracy of particle orbits in a uniform magnetic field B.1(a) and in a uniform

magnetic and electric field B.1(b) at various racc.
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Figure B.2: Accuracy of particle orbits in a uniform magnetic field for racc = 10−9 for different

values of β = Ω/τA parameter (on the top in the row: β = 1 black line, β = 10 blue line, β = 104

red line) and for different particle velocities (on the bottom in the row: vp = 1vA black line,

vp = 10vA blue line, vp = 103vA red line,).

where the mean magnetic field B0 is chosen in the z direction, δBx and δBy are
the amplitudes of the wave in the x and y directions and k0 is the wavevector
assumed to lie only in the z-direction. We also assume δBx = δBy = δB for
the r.m.s. average values. In this case a different type of analysis is used to
test the accuracy of the numerical results. Because a static magnetic field does
not work on a charged particle, the energy will be conserved. Therefore, it is
possible to compare the magnitude of velocity at each simulation time with
its initial value. Thus, in this case the relative error is defined as:

Relative Error = v2in − v2,

Both vin and v are averaged over 10 particles. The results are shown in
Figure B.3 for different values of wave amplitude, δB/B0 = 0.001 (Fig. B.3(a)),
δB/B0 = 0.01 (Fig. B.3(b)) and δB/B0 = 0.1 (Fig. B.3(c)), two values of
particles velocity, vp = (1−103)vA, and for β = (1−104). When the β value is
unchanged and equal to 104 (top row), tests are performed varying the velocity
value: v = 1vA is shown with the black line and v = 103vA with red line. On
the other hand, when we fixed v = 103 (bottom row), two different β values
are used in the test simulation, that are β = 1, black line, and β = 104, red
line. Although for this cases the simulations last for 103 particle gyroperiods,
the relative error for all the considered cases is of the order of 2 × 10−6, that
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Figure B.3: Accuracy of particle orbits in a circularly polarized electromagnetic wave, for racc =

10−9 and for δB/B0 = 0.001 (Fig. B.3(a)), δB/B0 = 0.01 (Fig. B.3(b)), δB/B0 = 0.1 (Fig. B.3(c)).

When β = 104 is fixed, v = 1vA, black line, and v = 103vA, red line. When v = 103 is fixed, β = 1,

black line, and β = 104, red line.
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corresponds to the relative error obtained in the previous analysis after only
103 gyroperiods. These additional tests confirm that our results are valid with
an accuracy of 10−9.

B.3 Particles moving in two circularly polarized waves

field

In this section, the resonant interaction between ions and two perpendicular cir-
cularly polarized waves is analyzed in details. For this reason, just the left-hand
polarized component of the waves, rotating in the same sense of ions, is considered.
In addition, the fields are assumed to be static and a constant background magnetic
field, B0ez, is also present. The waves magnetic fields can be written as:

B1 = δB1x cos (k1z)− δB1y sin (k1z) for the first wave

B2 = δB2x cos (k2z)− δB2y sin (k2z) for the second wave

where δBix and δBiy (i = 1, 2) are waves amplitudes in x and y directions, ω0 is the
wave frequency, ki (i = 1, 2) are the wavevectors components parallel to the mean
field, B0ez:

k1 = |k0| cos θ1 and k2 = |k0| cos θ2,

in which θ1 and θ2 are the angles between the wavevector, k, and the constant
magnetic field, B0. We also assume δB1x = δB1y = δB1, δB2x = δB2y = δB2 and
δB1 = δB2 = δB. The resulting magnetic field is given by:

B = 2δB cos

[
(k1 + k2)

2
z

]
cos

[
(k1 − k2)

2
z

]
+

− 2δB sin

[
(k1 + k2)

2
z

]
cos

[
(k1 − k2)

2
z

]
+B0ez (B.9)

For two waves moving parallel to each other, θ1 = θ2 so k1 = k2 = k0, the resulting
magnetic field is equal to that associated with a single wave but with a double
amplitude:

Bx = 2δB cos (k0z) and By = −2δB sin (k0z)

As for the single wave case, in order to study the changes in the cosine of pitch
angle, α (see Eq. 4.3), we calculate the parallel component of the induced elec-
tric field, E‖ = Ez. Inserting the solution obtained for particle velocity, Eq. 4.2,
in the expression for the magnetic field, Eq. B.9, the magnetic field seen by the
particle,H(t), is:

H(t) = 2δB cos

[(
(k1 + k2)

2
v‖ − ω0

)
t+

(k1 + k2)

2
z0

]
cos

[
(k1 − k2)

2
(v‖t+ z0)

]
ex,

− 2δB sin

[(
(k1 + k2)

2
v‖ − ω0

)
t+

(k1 + k2)

2
z0

]
cos

[
(k1 − k2)

2
(v‖t+ z0)

]
ey,

+ B0ez (B.10)
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Using Eq. 4.2 and Eq. B.10, the parallel componet of the induced electric field for
the two waves case is given by:

Ez = (v ×H)z = vxBy − vyBx =

= −2v⊥δB cos

[
(k1 − k2)

2
(v‖t+ z0)

]
cos

{
(Ωt) +

[
(k1 + k2)

2
v‖ − ω0

]
t+

(k1 + k2)

2
z0

}

As in the single wave case, the cosine argument in the expression for Ez is the
resonance condition plus a constant term. Here, k‖ = (k1+k2)/2 and it replaces k0 in
the constant term, k0z0, obtained for the single wave case. Of course, considering two
parallel propagating waves, θ1 = θ2 −→ k1 = k2 = k0, we obtain again ω0−k‖v‖ = Ω

and the induced electric field is exactly that one associated with a single wave but
with a double amplitude:

Ez = −2v⊥δB cos
[
(Ωt) + (k0v‖ − ω0)t+ k0z0

]

B.3.1 Results from numerical simulations

In this case, our aim is to study the different particle behavior variyng both waves
amplitudes, δB/B0, and orientations, θ1 and θ2. Particles are injected in the simu-
lation box with an initial velocity v = 4vA and β = 10.

Figure B.4 and Figure B.5 show x and y components of particle velocity (vx,
top left, and vy, top right) and x and y components of magnetic field seen by the
particle (By, bottom left, and Bx, bottom right), for two different waves amplitudes,
δb = 0.001 and δb = 0.1, respectively, using four different waves orientations:

1. θ1 = 0◦ and θ2 = 0◦,

2. θ1 = 0◦ and θ2 = 15◦,

3. θ1 = 0◦ and θ2 = 30◦,

4. θ1 = 0◦ and θ2 = 180◦.

The inital value of cosine of pitch angle is α = 1/4, so the resonance condition,
Eq. 3.6, is satisfied. When the waves amplitude is small, Figure B.4, and the waves
are moving parallel to each other, Figure B.4(a), vx and vy are perfectly in phase with
the x and y components of magnetic field seen by the particle. Instead, considering
two antiparallel waves, Figure B.4(d), the y component of particle velocity is still
in phase with −Bx, but the other two component are not in phase anymore. This
behavior is easily understood from Bx and By:

Bx = 2δB cos (kz)

By = −2δB sin (kz) (B.11)

for two parallel waves,

Bx = 2δB cos (kz)

By = 2δB sin (kz)− cos (kz) (B.12)
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Figure B.4: Particle vx (top left) and vy (top right) velocities and By (bottom left) and Bx

(bottom right) component of magnetic field seen by the particle. Particle initial total velocity and

wave amplitude are v = 4vA and δb = 0.001 respectively. Four different pannels corrispond to four

different waves orientations: B.4(a) for θ1 = 0◦ and θ2 = 0◦, B.4(b) for θ1 = 0◦ and θ2 = 15◦,

B.4(c) for θ1 = 0◦ and θ2 = 30◦, B.4(d) for θ1 = 0◦ and θ2 = 180◦.
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for two antiparallel waves.
Bx in the parallel case is the same of that one obtained for the antiparallel case.
However, this is not true for By: the minus sign disappears for the antiparallel case;
indeed, particle and waves are not in resonance anymore.
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Figure B.5: Same of Figure(B.4) but for δb = 0.1 .

When the second wave is not parallel or antiparallel to the first one (θ2 = 15◦,
Figure B.4(b), and θ2 = 30◦, Figure B.4(c)), after some particle gyroperiods the
magnetic field amplitude is modulated by the presence of the term (k1 ± k2) in the
cosine and sine arguments of Eq. B.9.

Increasing the waves amplitudes, δb = 0.1 (Figure B.5), irregular changes are
observeded in the x and y component of the magnetic field. These changes occur at
regular intervals only for two parallel waves. Looking at the behavior of the parallel
componet of the induced electric field, Ez , particle magnetic moment, µ, and cosine
of pitch angle, α, as in the single wave case, during these time intervals µ and α

show secular changes and the parallel component of the induced electric field is
almost constant. These three quantities are shown in Figure B.6 and Figure B.7, for
δb = 0.001 (left column), δb = 0.01 (central column) and δb = 0.1 (right column),
and for the different orientations considered:
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Table B.1: v‖ values at resonances for different θ values for l = ±1 resonances.

θ k‖ = k0 cos θ v‖ = ∓(β/k‖)
0◦ k0 ∓1

30◦
√
3
2 k0 ∓1.154

180◦ −k0 ±1

210◦ −
√
3
2 k0 ±1.154

• θ1 = 0◦ and θ2 = 0◦, Figure B.6(a),

• θ1 = 0◦ and θ2 = 15◦, figure B.6(b),

• θ1 = 0◦ and θ2 = 30◦, Figure B.7(a),

• θ1 = 0◦ and θ2 = 180◦, figure B.7(b).

In the first two cases (Figure B.6(a) and Figure B.6(b)) Ez, α and µ profiles are really
similar, as we observed for x and y components of particle velocities and magnetic
field. For all δb, periods of constant Ez are clearly evident and α and µ show secular
changes. Increasing the angle of the second wave, θ2 = 30◦ (Figure B.7(a)), Ez, α
and µ start to show an oscillating behavior and not a resonant one, that is more
evident for θ2 = 180◦ (Figure B.7(b)): indeed there are not period of constant Ez,
that is oscillating around zero.

To gain some insight into the nature of gyroresonant interaction, we show parti-
cles motion in v‖ − v⊥ space, varying both the initial value of cosine of pitch angle,
α, and waves amplitudes, δb, for different waves orientations. Different resonances
are associated with different values of the angle between the wavevector and the
mean constant magnetic field, B0ez. Following the resonance condition, Eq. 3.6,
different resonances are obtained for different values of particle parallel velocity, i.e.,
different α, if particles are loaded with the same initial velocity, v:

Resonance l = 0 : v‖ =
β

k‖

Resonances l = ±l : v‖ =
lΩ

k‖

The l = 0 resonance corresponds to v‖ = 0; instead, other resonances are obtained
for different v‖, depending on k‖. These velocities are listed in Table B.1 for different
angles and for l = ±1. In Figure B.8 particles orbits in v‖ − v⊥-space are shown,
for δb1 = δb2 = 0.1, Figure B.8(a), and for δb1 = 0.1 and δb2 = 0.2, Figure B.8(b),
using four different values of waves orientations:

• θ1 = 0◦ and θ2 = 0◦ (top left),

• θ1 = 0◦ and θ30 = 0◦ (top right),
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Figure B.6: Particle cosine of pitch angle α on the top, particle magnetic moment µ in the

middle, parallel component of the induced electric field, E‖, on the bottom. Initial total velocities

v = 4vA and initial cosine of pitch angle α = αres = 1/4. Three different values of wave amplitude

are used: δb = 0.001 (left column), δb = 0.01 (central column) and δb = 0.1 (right column). Two

pannels corrispond to two different waves orientations: B.6(a) for θ1 = 0◦ and θ2 = 0◦, B.6(b) for

θ1 = 0◦ and θ2 = 15◦.



B.3. Particles moving in two circularly polarized waves field 123

     
0.250

0.255

0.260

0.265

0.270

α

δ b = 0.001

     
0.15

0.20

0.25

0.30

0.35

0.40
δ b = 0.01

     
-0.2

0.0

0.2

0.4

0.6

0.8
δ b = 0.1

     
14.80

14.85

14.90

14.95

15.00

µ

     
13.5

14.0

14.5

15.0

15.5

16.0

     
8

10

12

14

16

0 1 2 3 4
t

-0.006
-0.004
-0.002
0.000
0.002
0.004
0.006
0.008

E
z

0 1 2 3 4
t

-0.10

-0.05

0.00

0.05

0.10

0 1 2 3 4
t

-1.0

-0.5

0.0

0.5

1.0

(a)

     
0.250
0.255

0.260

0.265

0.270

0.275
0.280

α

δ b = 0.001

     
0.15

0.20

0.25

0.30

0.35
δ b = 0.01

     
-0.6
-0.4

-0.2

0.0

0.2

0.4
0.6

δ b = 0.1

     
14.75

14.80

14.85

14.90

14.95

15.00

µ

     
14.0

14.5

15.0

15.5

16.0

     
10
11

12

13

14

15
16

0 1 2 3 4
t

-0.010

-0.005

0.000

0.005

0.010

E
z

0 1 2 3 4
t

-0.10

-0.05

0.00

0.05

0.10

0 1 2 3 4
t

-1.0

-0.5

0.0

0.5

1.0

(b)

Figure B.7: Same of Figure B.6, but for different waves orientations: B.7(a) for θ1 = 0◦ and

θ2 = 30◦, B.7(b) for θ1 = 0◦ and θ2 = 180◦.
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Figure B.8: Particle orbits in v‖−v⊥ space for v = 4vA and δb = 0.1. Differet pannels correspond

to four different values of the waves orientations: θ1 = 0◦, θ2 = 0◦ (top left), θ1 = 0◦, θ30 = 0◦

(top right), θ1 = 0◦, θ2 = 180◦ (bottom left), θ1 = 30◦, θ2 = 210◦ (bottom right). Different colors

in each panel corrispond to particle injected at different cosine of pitch angle: α = 1 (red line),

α = 1/2 (green line), α = 1/4 (blue line), α = 1/8 (purple line), α = 1/16 (light blue line) and

α = 1/16 (yellow line)
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• θ1 = 0◦ and θ2 = 180◦ (bottom left),

• θ1 = 30◦ and θ2 = 210◦ (bottom right).

Particles are injected at six different initial cosine of pitch angle, α, close to the
resonant value, αres = 1/4. Because the amplitude of the wave is big, adjacent
resonances overlap and particles with an initial cosine of pitch angle different from
αres = 1/4 can also cover a big portion of the v‖ − v⊥ space, although the most
spread is associated with α = 1/4 (blue line). From Figure B.8(a) it is possible
to notice that, when these particles interact with two parallel wave (top left), the
motion in centered around v‖ = 1vA, the point at which corresponds the l = −1

resonance for both waves. If the particles are moving in the field of two obliquely
propagating waves, they can cover a larger portion of v‖ − v⊥ space, depending
on their relative orientation. These behavior is evident in the other three plots of
Figure B.8.

• θ1 = 0◦ and θ2 = 30◦ (top right): particles starts to spread a bit more;
moreover, the motion is localized just in the positive side of v‖ − v⊥ space,
because resonances width due to both waves is stronger on one side of the
circle.

• θ1 = 0◦ and θ2 = 180◦ (bottom left): the second wave is moving in the opposite
direction with respect to the first one. The second resonance allows particles
to go complitely around the circle. The motion now is centered at v‖ ∼ 0,
because two opposite resonances and two waves with the same amplitude are
considered.

• θ1 = 30◦ and θ2 = 210◦ (bottom right): this situation is similar to the previous
one, expect for the fact that in this case the motion is centered at v‖ ∼ 0.57vA
, because resonances occur at v‖ = ∓l ∗ 1.154vA .

When waves with different amplitudes are considered, depending on which wave is
stronger, the center of particles motion can move to the left or to the right of the
circle, as evident in the Figure B.8(b). In this case the second wave has a double
amplitude respect to the first one, so the motion moves on the portion of the circle
where resonances associated with the second wave are localized.

B.4 Diffusion in velocity space: nonlinear effects and im-

plications for simulations.

Because this Appendix section is part of a work different from the study of magnetic
moment conservation, that is velocity space diffusion of charged particles in slab-like
magnetic field, a different notation is used. Indeed, following the quasi-linear theory
and other studies of velocity space diffusion of charged particle in random magnetic
field, from here until the end of the section µ is referred to particle cosine of pitch
angle and Dµµ indicates pitch angle diffusion coefficient.
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B.4.1 Finite wavenumber spacing ∆k

The finite effective width in velocity space, ∆veff‖ = v∆µeff = ωbτac∆v‖, for the
gyro-resonance interaction naturally gives rise to a finite spacing in Fourier space.
That is, for a particle to resonate with a wave, the wavenumber must lie between k
and k +∆k, where ∆k depends on ∆v‖.

First of all let us consider a single wave mode in the magnetostatic slab model,
interacting with a distribution of particles. In the magnetostatic slab model a par-
ticle with velocity component v‖ can resonate with only two possible wavenumbers,
k±1 = ∓Ω/v‖, assuming zero resonance width broadening. If we now allow nonlinear
resonance broadening effects, all particles in the velocity distribution, with parallel
velocities in the range v‖ −∆v‖ < v‖ < v‖ +∆v‖ (where ∆v‖ is the effective width
of the resonance in v‖ the superscript “eff” is omitted for brevity), can potentially
resonate with a wave whose wavenumber is k+1. A similar argument holds for a
wave with wavenumber k−1.

Let us now reverse the situation and consider a broad continuous spectrum of
waves and a single particle with velocity v‖. According to the resonance condition,
this particle will select from the spectrum a wave with wavenumber either k+1 or
k−1. However, since the spectrum is broad in k space and the resonance width in
velocity space is finite, it could, in fact, resonate with a range of wavenumbers given
by k2−k1, where k1 = Ω/(v‖−∆v‖) and k2 = Ω/(v‖+∆v‖). The difference between
these two wavenumbers yields the equivalent half width in wavenumber space

∆k‖ =

∣∣∣∣∣
Ω

v2‖ −∆v2‖
∆v‖

∣∣∣∣∣ =
(

∆v‖/v‖
1− (∆v‖/v‖)2

)
kres, (B.13)

where we again omit the sub-superscript “eff” for brevity. This equation says that,
given a sufficiently broad spectrum, a particle with parallel velocity v‖ can resonate
with any wavenumber in the range k‖ −∆k‖ < k‖ < k‖ +∆k‖.

In the discrete wavenumber space of the numerical experiment, Eq. B.13, gov-
erning the finite width of the resonance in wavenumber space, serves as a guide in
the choice of a suitable box length. Since the discrete wavenumber is kn = 2πn/L,
with spacing ∆k = 2π/L, one must choose a box length (or periodicity length)
sufficiently large that the effective resonance trapping width is well resolved in k‖-
space, so that particles may be successively captured by adjacent resonances and
diffuse stochastically. On the other hand, a longer box length means that the res-
onant wavenumber, and hence n, increases and can become closer to the Nyquist
wavenumber, kNyq = πN/L = π/∆z. This can lead to poorer energy conservation
properties, primarily due to field interpolation errors; hence a compromise must be
sought.

B.4.2 Numerical results

In order to show the validity of our numerical model, we give an example of a
well-resolved simulations for particle pitch angle diffusion in random slab magnetic
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Figure B.9: Evolution of 〈∆µ2〉/2 as a function of time (solid curve) for β = 50, µ0 = 0.6,

v = 10vA, δB/B0 = 0.01 and a box length of L = 1000λ. The dot dashed curve is Dµµt from the

quasilinear prediction.

fields. Particles are loaded from a ring beam distribution in velocity space, with
an initial cosine of pitch angle µ0 = 0.6. Other parameters used in the simulation
are v/vA = 10, δB/B0 = 0.01 and β = 50, so ωbτac ≃ 0.16. Figure B.9 shows
the mean square displacement of cosine of pitch angle 〈(∆µ)2〉 for this simulation.
This figure demonstrates very good agreement between our simulations and the
quasilinear theory over the full duration of the simulations, about 80 correlation
times τac. Indeed, 〈∆µ2〉 evolves linearly with time, according to 〈∆µ2〉/2 = Dµµt,
plotted in the same figure with a dot-dashed line.

B.4.2.1 Effects related to box size

As we already mentioned, one of the most important parameter in the simulation is
the box size. It must be chosen so that: (i) the simulated turbulent wave spectrum
adequately approximates a continuum; (ii) the extent of the spectrum in wavenum-
ber space is sufficient to have wave power at the resonant wavenumber; (iii) any
effects due to periodicity are minimized.

The first condition can be thought as follows. Let us call the typical width of
the Fourier spectrum k0 ≃ kcorr, where kcorr is the correlation wavenumber. In our
simulations kcorr = 1/λ, where λ is of the order of the turbulence correlation length,
that typically defines the length over which a group of waves remains correlated in
space, i.e., the length of a wave packet. In order to have the continuum approxi-
mation, this group of waves must consist of a large number of Fourier modes. This
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implies the following condition

∆k ≪ kcorr or 2π
λ

L
≪ 1. (B.14)

These inequalities tell us immediately that, in order to approach the continuum
limit, the box length should be many correlation scales. The ratio, kcorr/∆k gives
a rough estimate of the number of Fourier modes in a typical wave group. Fur-
thermore, the inequality (B.14) can be thought as a condition on the smoothness of
the distribution of phases in a wavepacket: the smaller is ∆k relative to kcorr, the
smoother the distribution of wave phases.

However, as discussed in Section B.4.1, there is another potentially more re-
strictive criterion that limits the choice of the wavenumber spacing: ∆k must be
less than the effective trapping width translated into wavenumber space through
Eq. B.13. So the second condition on ∆k is:

∆k ≪ ∆ktrap or
2π

L
≪ ∆ktrap, (B.15)

where ∆ktrap = ∆k‖ of Eq. B.13. This criterion can be interpreted as a necessary
condition for the resonance structure of the unperturbed Hamiltonian of a parti-
cle resonantly interacting with a wave mode, in order to be sufficiently perturbed
by wave noise (extrinsic stochasticity due to neighboring wavemodes with random
phases) so that the orbits in phase space lead to stochastic behavior instead of reg-
ular elliptic orbits around the resonance point. Thus, it is not simply sufficient that
the resonances overlap in k-space, but there must be a sufficiently large number of
neighboring randomly phased wavemodes to guarantee stochastic behavior in the
vicinity of the resonance point.

In order to illustrate some effects associated with a short length box, we per-
form different simulations starting with the same initial conditions but different box
lengths: L = 50λ, 150λ, 500λ, 1000λ. As in the previous case, particles are loaded
from a ring beam distribution with µ0 = 0.6. Other parameters used in the sim-
ulations are: v/va = 10, δB/B0 = 0.001 and β = 500. The bounce frequency
determined from Eq. 4.28 is ωb = 2.04/τA and, since τac = 0.124τA, this yields
ωbτac = 0.25, that satisfies the assumptions of quasilinear theory. The effective
trapping half width in k-space is ∆ktrap = 0.17/λ = 0.17kcorr, a value smaller than
the correlation wavenumber. This guarantees the validity of the condition (B.14) and
hence the condition (B.15) is relevant in the simulation. Figure B.10 shows the pitch
angle mean square displacement, 〈(∆µ)2〉/2, as a function of time for the four differ-
ent cases: L = 50λ is shown with (· · · ) line, L = 150λ with (−−) line; L = 500λ with
(− ·−) line and L = 1000λ with (− · · · −) line. The numerical results are compared
with the quasi-linear theory result, 〈(∆µ)2〉/2 ≃ Dµµt, plotted in the same figure
with the solid line. The curve that shows the best agreement with the quasi-linear
theory prediction is the case with largest box length (L = 1000λ, (− · · · −) line), i.e.,
the highest k-space density of Fourier modes (∆k = 0.0063kcorr ≪ 0.17kcorr) and
consequently the smoothest distribution of wave phases. For all the other cases, the
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Figure B.10: Temporal evolution of 〈(∆µ)2〉 for δB/B0 = 0.001, varying the box lenght: L = 50λ

(· · · ); L = 150λ (−−); L = 500λ (−·−) and L = 1000λ (− · · · −). The solid line is the quasi-linear

prediction, Dµµt.

agreement of the simulation result with the quasi-linear prediction is relatively poor.
We believe that the main source of error for the shorter box lengths comes from the
wider spacing of their Fourier components in k-space. Once the particles begin to
spread in v‖ and hence decorrelate with their initial resonant wavenumber, they
need to encounter other resonant k-modes, so that their motion become stochastic
and leads to diffusion in velocity. In the continuum case, a given particle will always
find another wavenumber with which to resonate, provided there is finite power in
a neighborhood of its original resonant wavenumber. This is expected to be typical
of very large homogenous systems with essentially continuum wavenumber distribu-
tions of wave energy. However, in the finite case, decreasing the density of discrete
Fourier modes, the likelihood that a particle find a matching k and increases the im-
portance of nonlinear effects, such as resonance broadening and trapping, decreases.
So, when nonlinear trapping widths are sufficiently reduced, the discreteness of the
Fourier spectrum of the simulated turbulence is plainly exposed and manifests itself
in very poor agreement of the simulation results with the quasi-linear theory, when
∆k ≪ min{kcorr,∆ktrap} is not well satisfied. This disagreement can manifest itself
as either a subdiffusive (L = 50λ) or superdiffusive (e.g., L = 150λ, 500λ) trend
relative to the quasilinear theory. Furthermore, since the case for L = 500 does not
agree with the quasilinear diffusion theory and, on average, the distance travelled by
a particle down the simulation box is about 60λ ≪ 500λ, this rules out periodicity
effects associated with the fields as the possible cause.
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Figure B.11: Temporal evolution of the variance of the pitch angle cosine (top panel) and

〈(∆y)2〉 (bottom panel) for a box length of L = 10λ. Other parameters were β = 500, µ0 = 0.6

and v = 10vA.
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In order to study the effects of box periodicity in velocity space diffusion, i.e.,
the periodicity of the magnetic field configuration, we consider extremely short box
lengths, so that the particles make many box transits during a run. Figure B.11
illustrates the mean square displacement for both pitch angle, 〈(∆µ)2〉 (top panel),
and particle position 〈(∆y)2〉 (bottom panel), in an extreme case, L = 10λ and v‖ =
6vA, so that particles make more than 5 transits through the simulation box during
the total duration of the simulation, 10τA. The numerical curve for 〈(∆µ)2〉 exhibits
oscillations with a frequency equal to the box-crossing frequency. Each successive
box crossing is depicted by a peak in the curve of 〈(∆y)2〉. At the beginning these
peaks are coherent because particle velocity in the parallel direction is strongly
peaked around the initial value, v‖ = µ0v = 6. As the particles diffuse in pitch
angle, the distribution in v‖ broadens and the trajectories begin to decorrelate,
yielding a lack of coherence evident in the spatial variance after t ≃ 5.5τA. After
t = 4τA, 〈(∆µ)2〉 deviates from the theoretical curve: this regime could be termed
diffusive too, but the diffusion coefficient is quite different from that one predicted
by the quasilinear theory. At the same time the spatial coherence is lost and the
spatial oscillations are less pronounced.

There is a another subtle, numerically important effect related with the box
size: the index of the Fourier component/coefficient corresponding to the resonant
wavenumber depends on the normalized box length, L/λ. Indeed

|kres| =
Ω

|v‖|
=

α

µ(v/vA)λ
or nres =

1

2π

α

µ(v/vA)

L

λ
(B.16)

where nres is the index of the resonant Fourier coefficient. Thus, varying the box
length has the property of proportionally varying nres and varying the wavenumber
spacing ∆k = 2π/L in inverse proportion. Indeed, a shorter box length is advan-
tageous from the point of view that it lowers the ratio nres/nNyq, where nNyq is
the n corresponding to the Nyquist wavenumber. Consequently it ensures plenty of
wave power above the resonant wavenumber and that the sinusoidal Fourier mode
corresponding to the resonant wavenumber is well resolved spatially, reducing inter-
polation errors. The high spatial resolution of the resonant mode gives rise to good
energy conservation and consequently high fidelity in the particle orbit dynamics.
The ’Hamiltonicity’ of the problem is thus very nearly conserved.

Indeed, although the theory of pitch angle diffusion in magnetostatic fields rig-
orously predicts no diffusion in particle energy, i.e., particles are confined to a par-
ticular H-surface for all time, finite diffusion in energy is difficult to avoid in the
discrete model. We illustrate the good energy conservation for low L/λ in Fig-
ure B.12: energy is conserved much better in the L/λ = 25 case (lower curve)
respect to the other case studied, L/λ = 1000 (upper curve). Thus a compromise
must be sought whereby the resonant wavenumber is placed in a region of k-space
where (i) the Fourier mode corresponding to the resonant wavenumber is sufficiently
well resolved spatially that the drift across H surfaces is minimized, and (ii) the in-
terwavenumber spacing should be small enough so that the resonance condition is
easily satisfied, allowing particles to diffuse stochastically along their constant H
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Figure B.12: 〈E(t)−E0〉/E0 as a function of time for runs with a box length of L = 25λ (lower

curve) and L = 1000λ (upper curve).

surface.

B.4.2.2 Violation of the quasilinear assumption

We have tried to emphasize the importance of the quasilinear assumption, τac ≪
τNL ≃ τb. In practice, even if this inequality is violated, in our simulations the quasi
linear prediction appears to be quite accurate. Figure B.9 is an example where
the inequality is only marginally satisfied but the agreement between theory and
simulation is very good. Figure B.13 illustrates a simulation where δB/B0 = 0.001

and µ0 = 0.1. Hence τac = 0.7468τA and ωb = 2.65/τA, yielding ωbτac ≃ 1.98

in complete violation of the quasilinear ordering of timescales. For reference, we
note that the effective trapping width in k space is very large: ∆ktrap ≃ 10.5kcorr.
Nevertheless, the agreement between the quasilinear result and the experiment is
surprisingly good. It appears that around t = 11τA, 17τA, 22τA and 30τA, the
variance differs quasi-periodically from the quasilinear prediction, but during the
short intervals (typically one to a few τac) between these deviations, the overall
trend approaches the expected one. The initial large deviation from the quasilinear
trend occurs at t ≃ 8τA, i.e., about 11τac. Prior to this time the agreement with
quasilinear theory is excellent. Subsequent returns to the quasilinear curve occur at
intervals of ∼ 5τac. At t = 27τA there is a large deviation and a slow return after
nearly 20τA ≃ 3τac.

A possible interpretation of this behavior is that we are evidencing successive in-
teractions of particles with resonant wavepackets. As the particles traverse each suc-
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Figure B.13: Temporal evolution of 〈(∆µ)2〉/2 for a simulation with δB/B0 = 0.001, µ0 = 0.1,

β = 500, L = 1000λ and ns = 1657864.

cessive stationary wavepacket, their parallel velocities begin to decorrelate through
gyroresonance and 〈(∆µ)2〉 approaches the behavior expected from quasilinear the-
ory. However, because of the finite spatial extent (∼ λc) of the wavepacket, the
resonance is rapidly destroyed within a time of about τac and particles are once
more subjected to enhanced nonlinear effects such as trapping, that tend to destroy
diffusive behavior unless primary resonances overlap. So 〈(∆µ)2〉 rather rapidly de-
cays away from the quasilinear prediction. In effect, this situation is similar to the
case in which the experiment is interrupted and re-started again at intervals of the
order of several autocorrelation times τac. Indeed, this is the same behavior observed
decreasing the box lenght, e.g. Figure B.11, so that particles make many box tran-
sits during a run (note the striking similarity between Figure B.11 and Figure B.13).
The decreased box length increases the importance of nonlinear trapping through a
widely spaced Fourier spectrum. As particles cross the box each time, they begin
to transit and resonate with the same wavepacket due to field periodicity. After an
autocorrelation time, they decorrelate with the wavepacket and their parallel veloc-
ities will remain correlated until they encounter another resonant wavepacket and
the process begins anew. This oscillatory deviation from quasilinear theory appears
in this way to be very similar to that seen in Figure B.13.

B.4.2.3 Grid spatial resolution: interpolation errors

In order to illustrate the effect of field grid resolution, we perform two simulations
with the same initial conditions (β = 500, L = 1000λ, v/vA = 10 and µ0 = 0.6),
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Figure B.14: Simulations with the same number, 65535, of nonzero Fourier components, but

the curve that shows better agreement with the quasilinear prediction (− · −) has had its Fourier

coefficient array padded with zeros up to n = 4194304.

but using a different number N of grid points, N = N1 = 216 = 65536 in the first
case and N = N2 = 222 = 4194304 in the seconde one. The resonant mode number
in each case is nres ≃ 13263 and kres = 2πnres/L. Both simulations have the same
number of non-zero Fourier components, that is n = N1 = 216 = 65536, but in
the second case the Fourier coefficient array is zero-padded up to n = N2 = 222 =

4194304. That is, in the second run the vector of Fourier coefficients is of length 222,
but there is nonzero power only in 216 coefficients. Thus, the difference between these
two runs is the actual spatial resolution, or smoothness, of the fields. The run with
the zero padded coefficient array has effectively a higher degree of ’trigonometric
interpolation’ and much smoother fields. Results are shown in Figure B.14 with
solid line: the upper solid line is for the case of N = N2 = 222, the lower one is
for N = N1 = 216. The quasi-linear prediction is also plotted in the figure with
the dot-dashed line. It is evident that the run with the poorest spatial resolution
of the fields deviates strongly from the theory. Note that the spacing in k-space
between adjacent Fourier modes, ∆k = 2π/L, is the same for each run. This rules
out any effects related to the density of Fourier modes in k-space. However, by
zero padding the Fourier array to a larger n, we obtain, after the inverse transform,
better resolved fields. In effect we can ’restrict’ (or bandwidth-limit) the largest
wavenumber in the system to be ks = 2πns/L, but the effective sampling rate is
increased by increasing the Nyquist wavenumber kNyq ≡ πN/L = π/∆z, where
N/2 ≫ ns. Thus, the smallest spatial variations of the fields occur on scale lengths
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of the order of lmin ∼ L/ns, but the fields are resolved down to scale lengths of the
order of ∆z = L/N = (ns/N)lmin.

In other words we are using the inverse of the sampling theorem (Press et al.,
1992): if a function h(z), sampled in space at an interval ∆z, is known to be
bandwidth limited to wavenumbers smaller in magnitude than ks and if it turns out
that the Fourier coefficients for k > ks are all identically zero, then the function
is completely determined by its discrete samples hn(n∆z). Indeed, in this case we
have (Press et al., 1992)

h(z) = ∆z
∞∑

n=−∞
hn

sin[kNyq(z − n∆z)]

π(z − n∆z)
.

At first sight, the idea of bandwidth limit the signal might seem artificial, but has
a valid physical reason. Indeed, at least within the context of MHD turbulence,
frequencies and wavenumbers are bandwidth limited by the basic assumptions gov-
erning the validity of MHD. These are ω < Ωi and kρi < 1, where Ωi is the ion
gyrofrequency and ρi = vth,i/Ω is the ion thermal gyroradius. A left hand circularly
polarized mode, whose electric field vector has the same sense of gyration about the
mean magnetic field as an ion, has a resonance at Ωi, so it is bandwidth limited
physically through ion cyclotron damping at ω(k‖) = k‖vA ≃ Ωi (that inverted gives
the maximum parallel wavenumber).

The smoother fields, as a result of these extra zero Fourier coefficients, allow us
to use safely simple linear interpolation to evaluate the electromagnetic fields at the
particle positions. The advantage of the approach, from the point of view of CPU
cycles, is the speed. The disadvantage is, of course, the extra computer memory
required.

B.4.2.4 Increasing the extent of the Fourier spectrum kN

Casting our attention back to Figure B.9 we observe, in comparison with Fig-
ure B.14, the effects of increasing both the spatial resolution of the fields and the
number of Fourier modes, kn = 2πn/L. In the run rappresented by Figure B.9 we
set the largest wavenumber to correspond to n = 1657864. In this case, the agree-
ment with the quasi-linear theory is even more convincing than the better of the two
curves in Figure B.14. The likely reason is the broader ’spectral width’ and hence
the larger degree of stochasticity in the fields. It is to be recalled that one of the
basic assumptions of the quasi-linear theory is a broad band turbulence spectrum.
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