UNIVERSITA DELLA CALABRIA

DIPARTIMENTO DI ELETTRONICA, INFORMATICA E SISTEMISTICA

UNIVERSITA CALABRIA
I I

I =

— — 4

]

Dipartimento di ELETTRONICA,
INFORMATICAE SISTEMISTICA

Dottorato di Ricerca in
Ingegneria dei Sistemi e Informatica

XXIV Ciclo

Tesi div Dottorato

High-level Frameworks for the
Development of Wireless Sensor
Network Applications

Antonio Guerrieri

UNIVERSITA DELLA CALABRIA

Dottorato di Ricerca in
Ingegneria dei Sistemi e Informatica

XXIV Ciclo

Test di Dottorato

High-level Frameworks for the
Development of Wireless Sensor
Network Applications

Antonio Guerrieri ‘ :

Coordinatore Supervisore

Prof. Luigi Palopoli m

DIPARTIMENTO DI ELETTRONICA, INFORMATICA E SISTEMISTICA
Novembre 2011

Settore Scientifico Disciplinare: ING-INF /05

Abstract

Wireless Sensor Networks (WSNs) are emerging as powerful platforms for
distributed embedded computing supporting a variety of high-impact appli-
cations. A WSN is a group of small devices (nodes) capable to sample the
real world through sensors, actuate commands through actuators, elaborate
data on the node, and send messages to other nodes through radio communi-
cation. However, programming WSN applications is a complex task that re-
quires suitable paradigms and technologies capable of supporting the specific
characteristics of such networks which uniquely integrate distributed sensing,
computation and communication.

This thesis aims at providing new paradigms to support the development
of WSN applications through both a domain-specific and a general-purpose
approach. In particular, this thesis provides three main contributions. The first
is related to the analysis, design and realization of a domain-specific frame-
work for heterogeneous WSNs for flexible and efficient distributed sensing and
actuation in buildings called Building Management Framework (BMF). BMF
provides fast WSN reconfiguration, in-node processing algorithms, multi-hop
networks, and multi-platform support, a programming abstraction to dynami-
cally catch the morphology of buildings, actuators support, and an extensible
human computer interface. The second contribution refers to the analysis,
design and realization of a general-purpose mobile agent system for WSN,
namely MAPS (Multi Agent Platform for SunSPOT). MAPS allows an effec-
tive Java-based development of agents and agent-based applications for WSNs
by integrating agent oriented, event-driven and state-based programming pa-
radigms. Finally, the third contribution regards the analysis, design and re-
alization of a domain-specific framework for rapid prototyping of platform
independent Wireless Body Sensor Network (WBSN) applications, namely
SPINE2 (signal processing in-node environment version 2). SPINE2 aims at
supporting the development of WSN applications raising the level of the used
programming abstractions by providing a task-oriented programming model.

iii

Riassunto

Le Wireless Sensor Networks (WSNs), o reti di sensori wireless, stanno emer-
gendo come potenti piattaforme di calcolo distribuito capaci di supportare
una grande varieta di applicazioni ad alto impatto tecnologico. Una WSN &
un gruppo di piccoli dispositivi (nodi) capaci di campionare il mondo reale
tramite sensori, attuare comandi tramite attuatori, elaborare dati sui nodi e
spedire messaggi ad altri dispositivi tramite comunicazione radio. Program-
mare applicazioni per WSN & un lavoro complesso che richiede paradigmi e
tecnologie adeguati in grado di sostenere le caratteristiche di tali reti che esi-
gono di integrare assieme tecniche di sensing, computazione e comunicazione
distribuite.

Questa tesi si propone di fornire nuovi paradigmi per supportare lo
sviluppo di applicazioni per WSN sia tramite un approccio domain-specific,
che tramite un approccio general-purpose. In particolare, questa tesi proporra
tre contributi principali. Il primo riguarda ’analisi, la progettazione e la realiz-
zazione di un framework domain-specific per WSN eterogenee per la gestione
efficiente, flessibile e distribuita di edifici, chiamato Building Management
Framework (BMF). BMF offre la possibilita di riconfigurare dinamicamente
una WSN e di eseguire algoritmi di elaborazione direttamente sui nodi, sup-
porta attuatori, reti multi-hop e multi-platform, fornisce un’astrazione di pro-
grammagzione appositamente concepita per catturare la morfologia degli edifici
e una interfaccia facilmente estensibile. Il secondo contributo si riferisce alla
progettazione, analisi e realizzazione di un sistema general-purpose ad agenti
mobili per WSN; chiamato MAPS (Multi Agent Platform for SunSPOT).
Tale sistema permette lo sviluppo efficace di agenti e di applicazioni basate
su agenti Java. MAPS integra i paradigmi di programmazione agent oriented,
event-driven e state-based. Infine, il terzo contributo consiste nella proget-
tazione, analisi e realizzazione di un framework domain-specific per la prototi-
pazione rapida di applicazioni per Wireless Body Sensor Network (WBSN),
chiamato SPINE2 (signal processing in-node environment version 2). SPINE2
mira a supportare lo sviluppo di applicazioni innalzando il livello delle as-
trazioni di programmazione fornendone un modello task-oriented.

I have learned to work hard.
I have grown as an individual.

Thanks to those who have supported me in this process.

Contents

Abstract iii
Riassunto. v
List of Figures i xiii
List of Tables xvii
1 Motivation, Objectives and Organization of the Thesis. 1
1.1 Motivation i 1

1.2 Objectives of the Thesis o i 1

1.3 Organization of the Thesis.......... ot 3

2 Background: State-of-the-art of WSNs............... 5
2.1 Hardware...........c.ii 6
2.1.1 Microcontroller 6

2.1.2 TransCeiver 7

2.1.3 External memory........... 7

2.1.4 POWET SOUICEottt e 7

2. 1.5 SENSOTS vttt ettt e 7

2.2 Communicationot 8
2.2.1 IEEE 802.15.4 8

222 ZigBee 8

2.2.3 WirelessHART 9

2.2.4 TISAT00.11a ..o 9

2.2.5 6LOoWPAN 9

2.2.6 TEEE 802.15.3 9

2.3 Operating Systemsovit it 10
2.3.1 TinyOS ..o 10

2.3.2 Contiki ... 10

2.3.3 MANTIS ..o 11

ix

Contents

234 Nano-RK...... 12
2.3.5 LiteOS . o 13
2.4 Frameworks and Middleware 14
2.4.1 Virtual Machines approaches.................. 15
2.4.2 Databases Approaches 16
2.4.3 Agents Approaches 16
2.4.4 Application Driven (Domain Specific) Approaches 16
2.4.5 Message-Oriented Approaches....................... 17
2.5 Applications 17
3 Building Management Framework 21
3.1 Imtroduction 21
3.2 Requirements 23
3.3 State-of-the-Art and Related Work 25
3.4 The Building Management Framework 29
3.4.1 Sensor Network Organization and Programming 32
3.4.2 Software Architecture 34
3.4.2.1 High Level Processing (HLP)................ 35
3.4.2.2 The BMF Management GUI 36
3.4.2.3 Low Level Processing (LLP) 38
3.4.2.4 The Building Management Framework
Communication Protocol 40
3.4.3 BMF-enabled Application Scenarios 46
3.5 A case study: the SmartEnLab 47
3.5.1 Off-line Energy Analysis........... 50
3.5.2 Performance Evaluation 51
3.5.3 Lifetime estimation of the BMF-enabled Network. 54
4 Mobile Agent Platform for Sun SPOT - MAPS 59
4.1 Introductiont 59
4.2 Mobile agents in WSNs i 61
4.3 State-of-the-Art and Related Work 63
4.4 MAPS Architecture and Programming Model 66
4.4.1 Requirementst 66
4.4.2 Agent server architecture......... 67
4.4.3 Agent programming model 68
4.5 The Software Framework 70
4.5.1 A programming example: mobile agent-based remote
sensor monitoring i i 75
4.6 Performance Evaluation 77
4.7 A case study: Monitoring Smart Buildings through embedded
AZEIES o 78
4.7.1 Agent-based Architecture......... 80
4.7.2 MAPS-Based Implementation 83
4.8 AFME/MAPS compariSonueeuueeeeeeeeeeo.. 87

Contents

4.8.1 Agent Factory Micro Edition (AFME) 88
4.8.2 Programming and architectural features comparison
between MAPS and AFME 91

4.8.3 Performance comparison between MAPS and AFME ... 93
4.8.4 A case study: mobile agent-based remote monitoring ... 94

4.8.4.1 Agent definition in MAPS 96

4.8.4.2 Agent definition in AFME 99

4.8.4.3 Performance evaluation..................... 104

5 A Timer-Driven Framework for WBSN 111
5.1 Introduction 111

5.2 State-of-the-art and Related Work 112

5.3 From SPINE to SPINE2......., 115
5.3.1 SPINE 1.2. 115

5.3.2 SPINE 1.3. 116

5.3.3 Heterogeneous Programming 117

5.4 Platform-Independent Development of WSN Applications119

5.5 SPINE2 ... 120
5.5.1 SPINE2 Programming Model 123

5.5.2 A Timer Driven Architecture 125

5.5.3 Implementation 128

5.6 A Case Study: Activity Monitoring on Heterogencous WBSNs. 132

6 Conclusions, Publications and Future Directions........... 137
6.1 ConcluSions. 137

6.2 Publications Related with this Thesis 139
6.2.1 Journal Articles 139

6.2.2 Book Chapters............ooiiuiiiineniiannnan.. 140

6.2.3 Conference Papers........... 141

6.2.4 Conference Poster 144

6.3 Future Directions. i 144
References 147

xi

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10
3.11
3.12
3.13
3.14

3.15

4.1
4.2
4.3
4.4
4.5

The typical architecture of a sensor node. 6
Simplified TinyOS Architecture............. 10
Contiki Architecture. 12
MANTIS OS Architecture. 12
Nano-RK Architecture., 13
LiteOS Architecture......... ... 14
Overview of sensor applications. 18
The BMF layered architecture. 31
Examples of groups and compound groups. 33
OSGi Core Bundles of the BMF. 36
BMF Management GUI Application......................... 38
The LLP Component Diagram. 39
The LLP Architectural Layers. 40
Sequence Diagram of the interactions between BS and Nodes. .. 45
A 3D-rendered snapshot of the SmartEnLab testbed. 49
Energy and occupancy profiles over a 24 hour period for (a)

User A, (b) User Band (¢) User C.oooian.n. 52
Temperature in the office and at the radiators pipes........... 53
Packet loss evaluation. i 54
Transmission energy evaluation. 55
The (a) Mean and the (b) Max radio energy spent. 56
The (a) Mean and the (b) Min network durations considering

only the radio consumption. 56
The (a) Mean and the (b) Min network durations. 57
A general mobile-agent-oriented sensor node architecture. 64
The sensor node architecture. 67
The mobile agent architecture. 69
The prototypal core primitives............ 71
A simplified class diagram of the MAPS framework. 73

xiii

List of Figures

4.6

4.7
4.8
4.9
4.10
4.11

4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30

4.31

4.32

4.33

4.34

4.35

5.1
5.2
5.3
0.4
9.5

The M-UML sequence diagram of the interactions among the

ageNtS. ... 76
The DataCollectorAgent behavior composed of one plane. 77
Agent communication: request /reply time. 79
Agent creation time. L L 79
Agent migration: ping-pong time......... 79

Agent-based architecture for decentralized and embedded
management of buildings based on wireless sensor and

actuator networks. L 81
The layered organization of BMA, CAand SA................ 82
Sequence Diagram of the interactions between CA and SA. 84
The SA’s Manager plane., 88
The MAPS actions of the SA’s Manager plane................ 89
The SA’s Sensing Request plane. 90
The MAPS action of the SA’s Sensing Request plane. 91
The architecture of AFME. 92
Agent communication time comparison. 94
Agent migration time comparison. 95
M-UML sequence diagram for agents interactions. 96
MAPS-based DataCollectorAgent behavioral model. 97
Java code of the actions of the DataCollectorAgent plane. 98

Architecture of the MAPS-based DataCollectorAgent model. ... 98
Architecture of the AFME-based DataCollectorAgent model. .. 100

Code excerpt of the SharedDataModule component. 102
Code of the NumDataSampledPerc perceptor................. 103
Code of the ActivateSensorsAct actuator. 103
Memory usage comparison by varying the sampling time. 106
Timing performance for high sampling rate without

considering agent migration. o il 107
Timing performance for high sampling rate considering agent
MIGration.t 108
Timing performance for sampling rates of 100ms and 300ms
without considering agent migration......................... 108
Timing performance for sampling rates of 100ms and 300ms
considering agent migration. L . 109
Timing performance for sampling rates of 1000ms and 2000ms
without considering agent migration......................... 110
Timing performance for sampling rates of 1000ms and 2000ms
considering agent migration. oo i 110
Activity Recognition Systems. 113
The SPINE 1.2 node side framework. 116
The SPINE 1.3 node side framework. 117
A SPINE heterogeneous network. 118
SPINE2 based on the MDD approach. 121

xiv

List of Figures

5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

SPINE2 based on the VM approach. 121
SPINE2 based on the SL approach. 122
Data-flow-based model. 124
Event-driven SPINE2-based model. 125
Timer-driven SPINE2-based model.......................... 125
The SPINE2 component diagram. 126
The Activity Monitoring application. 133
The SPINE 2 Activity Monitoring system. 134

XV

List of Tables

3.1
3.2

3.3

3.4

3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1

5.2

5.3

Comparison between the BMF and some academic related work. 27
Comparison between the Crossbow Ecowizard System, the

EpiSensor SiCA for Building Management and the BMF. 30
All the packets of the Building Management Framework
Communication Protocol with their parameters. 42
Predefined values of the parameters in the Building

Management Framework Communication Protocol packets. 43

Configuration of the building sensor network of SmartEnLab. .. 50

Comparison between Agilla, actorNet, AFME and MAPS. 66
Event types for functions and components. 74
Defined building management events. 85
Additional parameters of the building management events. 86
Dispatcher rules. 87
Comparison between MAPS and AFME features.............. 93
RAM and Flash usage in MAPS and AFME. 95

RAM occupation and code dimension of the application agents. 105
RAM and Flash usage of the whole application

(platform+application agents). 105
Performance comparison between TelosB (SPINE 1.2) and

Z-Stack (SPINE 1.3) sensor nodes.............ccooovvuaa.... 119
Comparison of feature processing times (ms) through

SPINE1.2 and SPINE2 in TinyOS on TelosB sensor nodes.132
Classification accuracy for classifiers based on K-Nearest

Neighbor and J48 Decision Tree. 135

xvii

1

Motivation, Objectives and Organization of the
Thesis

1.1 Motivation

Due to recent advances in electronics and communication technologies, Wire-
less Sensor Networks (WSNs) have been introduced and are currently emerg-
ing as a disruptive technology enabling and supporting next generation ubig-
uitous and pervasive computing scenarios. WSNs have a high potential to
support a variety of high-impact applications such as disaster / crime preven-
tion and military applications, environmental applications, health-care appli-
cations and smart spaces. However, programming WSNs is a complex task due
to the limited capabilities (processing, memory and transmission range) and
energy resources of each sensor node as well as the lack of reliability of the
radio channel. Moreover, WSN programming is usually application-specific
(or more generally domain-specific) and requires tradeoffs in terms of task
complexity, resource usage and communication patterns.

A problem of the WSN development is the lack of methodologies and
programming tools to support a fast prototyping of applications on top of
them. So, designing and programming applications for such networks is tedious
and error prone because the need to integrate together in an application:
network logics, signal processing algorithms, sensor and actuator drivers and
logics, always paying attention to the limited resources of the nodes.

Thus, to support rapid development and deployment of WSN applications
flexible, WSN-aware programming paradigms are needed. They can allow re-
ducing design time through modularity and reuse while offering solutions that
are optimized for the target domain.

1.2 Objectives of the Thesis

The aim of the proposed thesis is the definition of high level frameworks and
tools dealing with the above mentioned issues and supporting rapid develop-
ment of WSN applications. In particular:

Chapter 1. Motivation, Objectives and Organization of the Thesis

e The first contribution is related to the requirements analysis, the de-
sign, the implementation and experimentation of a Building Management
Framework (BMF). The BMF is a domain-specific framework implemented
for both heterogeneous Wireless Sensor and Actuator Networks (WSAN)
nodes and more capable base station (PC, plug computer, smartphone,
PDA, etc.) for flexible and efficient distributed sensing and actuation in
buildings. BMF addresses specific building requirements that are not ad-
dressed in general-purpose frameworks for WSNs. In particular, BMF pro-
vides fast WSAN reconfiguration, in-node processing algorithms, multi hop
networks and multi-platform support, a building programming abstraction
to dynamically catch the morphology of buildings, actuators support and
an extensible human computer interface. The main application of the BMF
is the building indoor management and, in particular: the energy moni-
toring, analysing data coming from the sensors to understand the energy
spent in a building; the behavioral monitoring, understanding the behavior
of people in building; the space monitoring, understanding the use of the
spaces in building; intelligent actuation, using actuators to achieve specific
aims (e.g. energy saving, maximization of the comfort in the building).

e The second contribution refers to the design, implementation and exper-
imentation of MAPS (Mobile Agent Platform for Sun SPOT), an inno-
vative Java-based framework for wireless sensor networks based on Sun
SPOT technology. MAPS enables an effective Java-based development of
agents and agent-based applications by integrating agent oriented, event-
driven and state-based programming paradigms. Performance evaluation
of MAPS has been carried out to evaluate not only MAPS per se but
also the degree of maturity of the Sun SPOT technology for supporting
(mobile) agent-based applications and systems. Finally, MAPS has been
used for the development of several real case studied in the health-care
and building management domains.

e The third contribution regards the definition of the requirements, the de-
sign, the implementation and experimentation of SPINE2, an evolution
of the SPINE (Signal Processing In-Node Environment) framework based
on the C-language, which aims at supporting the development of sensor
platform-independent WSN applications. The goal of SPINE2 is to reach
a very high platform independency for C-like programmable sensor plat-
forms (e.g. TinyOS, Ember, ZStack) and raise the level of the provided
programming abstractions from platform-specific to platform-independent.
SPINE2 offers a task-oriented model for programming the sensor nodes of
a collaborative WSN. In particular tasks can be dynamically discovered,
created, activated, scheduled and controlled by the coordinator on each
sensor node in order to fulfill a goal-directed overall task of the distributed
system implemented by the network of sensor nodes.

1.3. Organization of the Thesis

1.3 Organization of the Thesis

This thesis is organized as follows:

Chapter 2 defines WSNs illustrating the hardware used, the most common
communication protocols, operating systems and programming languages.
Moreover, the chapter introduces the principal existing frameworks and
middlewares and shows some existing applications for WSNs.

Chapter 3 lists the main requirements for a building management sys-
tem, introduces the Building Management Framework (BMF) describing
its main components and processing levels and compares BMF with some
related work. Moreover, the chapter presents the SmartEnLab case study
and discusses an off-line energy data analysis, a performance evaluation
of the BMF-based building wireless sensor networks, and an estimation of
the duration of a WSAN running the BMF.

Chapter 4 explains the deep correlation between mobile agents and WSNs,
presents the requirements, architecture, agent programming model and
implementation of MAPS and compares it with some related work. More-
over, the chapter shows the performance evaluation of MAPS carried out
through micro-benchmarks and illustrates a real case study developed
through MAPS for the real-time monitoring in smart buildings.

Chapter 5 analyzes the evolution of the SPINE framework and compares
it with some related work. Moreover, the chapter categorizes and discusses
interesting approaches which can effectively support platform-independent
development of WSN applications and shows the current efforts towards
the definition of SPINE2 which aims at supporting the development of
platform-independent WSN applications. Finally, the chapter presents a
case study that tests the effectiveness of the SPINE2 framework.

Finally, Chapter 6 presents a summary of the main results of this thesis,
along with some concluding remarks. Afterwards, a list of the publications
related to the thesis, and possible future research works that can derive
from the work here presented are shown.

2

Background: State-of-the-art of WSNs

Wireless sensor networks (WSNs) [1] have gained worldwide attention in re-
cent years, particularly with the proliferation in Micro-Electro-Mechanical
Systems (MEMS) [2] technology which has facilitated the development of
smart sensors. These sensors are small, with limited processing and comput-
ing resources, and they are inexpensive compared to traditional sensors. These
sensor nodes can sense, measure, and gather information from the environ-
ment and, based on some local decision process, they can transmit the sensed
data to the user.

Smart sensor nodes (also called motes) are low power devices equipped
with one or more sensors, a processor, memory, a power supply, a radio, and an
actuator. A variety of mechanical, thermal, biological, chemical, optical, and
magnetic sensors may be attached to the sensor node to measure properties
of the environment. Since the sensor nodes have limited memory and are
typically deployed in difficult-to-access locations, a radio is implemented for
wireless communication to transfer the data to a base station (e.g., a laptop,
a personal handheld device, or an access point to a fixed infrastructure).

WSNs have great potential for many applications in scenarios such as mili-
tary target tracking and surveillance, natural disaster relief, biomedical health
monitoring, and hazardous environment exploration and seismic sensing. In
military target tracking and surveillance, a WSN can assist in intrusion detec-
tion and identification [3]. Specific examples include spatially-correlated and
coordinated troop and tank movements. With natural disasters, sensor nodes
can sense and detect the environment to forecast disasters before they occur.
In biomedical applications, surgical implants of sensors can help monitor a
patient’s health [4]. For seismic sensing, ad hoc deployment of sensors along
the volcanic area can detect the development of earthquakes and eruptions [5].

Unlike traditional networks, a WSN has its own design and resource con-
straints. Resource constraints include a limited amount of energy, short com-
munication range, low bandwidth, and limited processing and storage in each
node. Design constraints are application dependent and are based on the mon-

Chapter 2. Background: State-of-the-art of WSNs

itored environment. The environment plays a key role in determining the size
of the network, the deployment scheme, and the network topology. The size
of the network varies with the monitored environment.

Research in WSNs aims to meet the above constraints by introducing
new design concepts, creating or improving existing protocols, building new
applications, and developing new algorithms.

In this chapter, an overview, that is not intended to be exhaustive, on
WSNs is given. In particular, Section 2.1 analyzes the main components of
a sensor node, Section 2.2 shows some of the available communication stan-
dards, Section 2.3 points out the most important operating systems for WSN,
Section 2.4 shows a classification of Middlewares/Frameworks to support the
development, maintenance, deployment and execution of applications over
WSN. Finally, Section 2.5 gives an overview on applications for WSN.

2.1 Hardware

A sensor node is a node in a wireless sensor network that is capable of per-
forming some processing, gathering sensory information and communicating
with other connected nodes in the network.

The main components of a sensor node are microcontroller, transceiver,
external memory, power source and one or more sensors (Figure 2.1).

Transceiver

A

Y

Micro-controller

A
\]

|Extema| Memoryl

321N0G Jamogd

Sensor 2

Fig. 2.1. The typical architecture of a sensor node.

2.1.1 Microcontroller

The microcontroller performs tasks, processes data and controls the function-
ality of other components in the sensor node. Most of the microcontroller used
in WSNs are produced by Atmel [6], Cypress [7], and Texas Instruments [8].

2.1. Hardware

Alternatives that can be used as a controller are general purpose desktop
microprocessors, digital signal processors, FPGAs and ASICs. Anyway, mi-
crocontrollers are used in most of embedded systems such as sensor nodes
because of its low cost, flexibility to connect to other devices, ease of pro-
gramming, and low power consumption. A general purpose microprocessor
generally has a higher power consumption than a microcontroller, therefore it
is often not considered a suitable choice for a sensor node.

2.1.2 Transceiver

Sensor nodes often make use of ISM (industrial, scientific and medical) band
which gives free radio, spectrum allocation and global availability. The possi-
ble choices of wireless transmission media are Radio frequency (RF), Optical
communication (Laser) and Infrared. Radio frequency based communication
is the most relevant that fits most of the WSN applications. WSNs tend to
use license-free communication frequencies: 173 MHz, 433 MHz, 868 MHz,
915 MHz, and 2.4 GHz. The functionality of both transmitter and receiver
are combined into a single device known as transceivers.

2.1.3 External memory

From an energy perspective, the most relevant kind of memory for a WSN
node is the on-chip memory of a microcontroller. However, many sensor nodes
are equipped with specific flash memories. Flash memories are used due to
their cost and storage capacity.

2.1.4 Power source

The sensor node consumes power for sensing, communicating and data pro-
cessing. More energy is required for data communication than any other pro-
cess. Power is stored either in batteries or capacitors. Batteries, both recharge-
able and non-rechargeable, are the main source of power supply for sensor
nodes. Current studies are creating sensors that are able to renew their energy
by ambient energy harvesting. The main sources of ambient energy consid-
ered suitable for use with WSNs are solar, mechanical (vibration or strain)
and thermal energy [9].

2.1.5 Sensors

Sensors are hardware devices that produce a measurable response to a change
in a physical condition like temperature or pressure. Sensors measure physical
data of the parameter to be monitored. The continual analog signal produced
by the sensors is digitized by an analog-to-digital converter and sent to con-
trollers for further processing. Sensors are classified into three categories:

Chapter 2. Background: State-of-the-art of WSNs

e passive, omni-directional sensors;
e Dpassive, narrow-beam sensors;

e active sensors.

Passive sensors sense the data without actually manipulating the environ-
ment by active probing. They are self powered; that is, energy is needed only
to amplify their analog signal. Active sensors actively probe the environment,
for example, a sonar or radar sensor, and they require continuous energy from
a power source. Narrow-beam sensors have a well-defined notion of direction
of measurement, similar to a camera. Omni-directional sensors have no notion
of direction involved in their measurements.

2.2 Communication

Wireless sensor networks communication standards have been developed with
the key design requirement for low power consumption. The standard defines
the functions and protocols necessary for sensor nodes to interface with a
variety of networks. Some of these standards include IEEE 802.15.4 [10], Zig-
Bee [11], WirelessHART [12], ISA100.11 [13], IETF 6LoWPAN [14], IEEE
802.15.3 [15]. The following subsections describe these standards in more de-
tail.

2.2.1 TEEE 802.15.4

IEEE 802.15.4 [10] is the proposed standard for low rate wireless personal
area networks (LRWPANSs). IEEE 802.15.4 focuses on low cost of deploy-
ment, low complexity, and low power consumption. IEEE 802.15.4 is designed
for wireless sensor applications that require short range communication to
maximize battery life. The standard allows the formation of the star and peer-
to-peer topology for communication between network devices. Devices in the
star topology communicate with a central controller while in the peer-to-peer
topology ad hoc and self-configuring networks can be formed.

The physical layer supports 868/915 MHz low bands and 2.4 GHz high
bands.

Wireless sensor applications using IEEE 802.15.4 include residential, in-
dustrial, and environment monitoring, control and automation.

2.2.2 ZigBee

ZigBee [11] defines the higher layer communication protocols built on the
IEEE 802.15.4 standards for LR-PANs. ZigBee is a simple, low cost, and

low power wireless communication technology used in embedded applications.
ZigBee devices can form mesh networks connecting hundreds to thousands of

2.2. Communication

devices together. ZigBee devices use very little power and can operate on a
cell battery for many years. The ZigBee standard was publicly available on
June 2005.

2.2.3 WirelessHART

The WirelessHART [12] standard provides a wireless network communication
protocol for process measurement and control applications. The standard is
based on IEEE 802.15.4 for low power 2.4 GHz operation. WirelessHART
is compatible with all existing devices, tools, and systems. WirelessHART
standards were released to the industry in September 2007.

2.2.4 ISA100.11a

ISA100.11a [13] standard is designed for low data rate wireless monitoring
and process automation applications. It defines the specifications for the OSI
layer, security, and system management. The standard focuses on low en-
ergy consumption, scalability, infrastructure, robustness, and interoperability
with other wireless devices. ISA100.11a networks use only 2.4 GHz radio and
channel hopping to increase reliability and minimize interference.

2.2.5 6LoWPAN

IPv6-based Low power Wireless Personal Area Networks [14] enables IPv6
packets communication over an IEEE 802.15.4 based network. Low power de-
vice can communicate directly with IP devices using IPbased protocols. Using
6LoWPAN, low power devices have all the benefits of IP communication and
management. 6LoWPAN standard provides an adaptation layer, new packet
format, and address management. Because IPv6 packet sizes are much larger
than the frame size of IEEE 802.15.4, an adaptation layer is used. The adap-
tation layer carries out the functionality for header compression. With header
compression, smaller packets are created to fit into an IEEE 802.15.4 frame
size. Address management mechanism handles the forming of device addresses
for communication. 6LoWPAN is designed for applications with low data rate
devices that requires Internet communication.

2.2.6 IEEE 802.15.3

IEEE 802.15.3 [15] is a physical and MAC layer standard for high data rate
WPAN. 1t is designed to support real-time multi-media streaming of video
and music. IEEE 802.15.3 operates on a 2.4 GHz radio and has data rates
starting from 11 Mbps to 55 Mbps.

Chapter 2. Background: State-of-the-art of WSNs

2.3 Operating systems

As already stated, sensor nodes are generally low-cost, resources constrained
devices with limitations in memory size and computational capability; all these
restricted characteristics have to be considered when designing an application
and mainly when designing an operating system. In the following, the most
important operating systems for WSNs are reported with a brief description
of their features. A more complete survey about operating systems for WSNs
can be found in [16] and [17].

2.3.1 TinyOS

TinyOS [18] [19] is an open source, flexible, component based, and application-
specific operating system designed for sensor networks. TinyOS can support
concurrent programs with very low memory requirements. The OS has a foot-
print that fits in 400 bytes. The TinyOS component library includes network
protocols, distributed services, sensor drivers, and data acquisition tools.

TinyOS uses the component model and, according to the requirements of
an application, different components are glued together with the scheduler to
compose a static image that runs on the mote. A component is an indepen-
dent computational entity that exposes one or more interfaces. Components
have three computational abstractions: commands, events, and tasks. Mech-
anisms for inter-component communication are commands and events. Tasks
are used to express intra-component concurrency. A command is a request to
perform some service, while the event signals the completion of the service.
TinyOS provides a single shared stack and there is no separation between ker-
nel space and user space. Figure 2.2 shows a simplified version of the TinyOS

architecture.
Main (includes Scheduler) Ui

Application (User Components)

Active Message
Actuating | Sensing
Communication

Fig. 2.2. Simplified TinyOS Architecture.

2.3.2 Contiki

Contiki [20], is a lightweight open source OS written in C for WSN sensor
nodes. Contiki is a highly portable OS and it is build around an event-driven

10

2.3. Operating systems

kernel. Contiki provides preemptive multitasking that can be used at the
individual process level. A typical Contiki configuration consumes 2 kilobytes
of RAM and 40 kilobytes of ROM. A full Contiki installation includes features
like: multitasking kernel, preemptive multithreading, proto-threads, TCP/IP
networking, IPv6, a Graphical User Interface, a web browser, a personal web
server, a simple telnet client, a screensaver, and virtual network computing.

The Contiki OS follows a modular architecture. At the kernel level it fol-
lows the event driven model, but it provides optional threading facilities to in-
dividual processes. The Contiki kernel comprises of a lightweight event sched-
uler that dispatches events to running processes. Process execution is triggered
by events dispatched by the kernel to the processes or by a polling mechanism.
The polling mechanism is used to avoid race conditions. Any scheduled event
will run to completion, however, event handlers can use internal mechanisms
for preemption.

Two kinds of events are supported by Contiki OS: asynchronous and syn-
chronous events. The difference between the two is that synchronous events
are dispatched immediately to the target process that causes it to be sched-
uled. On the other hand asynchronous events are more like deferred procedure
calls that are en-queued and dispatched later to the target process.

The polling mechanism used in Contiki can be seen as high-priority events
that are scheduled in between each asynchronous event. When a poll is sched-
uled, all processes that implement a poll handler are called in order of their
priority.

All OS facilities e.g., sensor data handling, communication, and device
drivers are provided in the form of services. Each service has its interface
and implementation. Applications using a particular service need to know the
service interface. An application is not concerned about the implementation of
a service. Figure 2.3 shows the block diagram of the Contiki OS architecture,
as given in [21].

2.3.3 MANTIS

The MultimodAl system for NeTworks of In-situ wireless Sensors (MANTIS)
provides a new multithreaded operating system for WSNs. MANTIS is a light-
weight and energy efficient operating system. It has a footprint of 500 bytes,
which includes kernel, scheduler, and network stack. The MANTIS Operating
System (MOS) key feature is that it is portable across multiple platforms,
i.e., MOS applications can be tested on a PDA or a PC [22]. Afterwards,
the application can be ported to the sensor node. MOS also supports remote
management of sensor nodes through dynamic programming. MOS is written
in C and it supports application development in C.

MOS follows a layered architectural design as shown in Figure 2.4. Services
provided by the OS are implemented in layers. Each layer acts as an enhanced
virtual machine to the layers above.

11

Chapter 2. Background: State-of-the-art of WSNs

Contiki Operating Node Management
System _
S = 5
g & B
- [« |[2 = 5 S g
= = - 8 ‘% = 5
sl e| & 3 2 8 S
8 8 8 5 > 5 5
E s = = 3 B 2
< < £ & S & 2
Contiki Core
| ulP | | Loader | | ProtoThreads |
Driver
| Radio || CPU || Sensors || Oscillator
Hardware
A 4 h 4
| Radio || CPU || Sensors || Oscillator |[
Fig. 2.3. Contiki Architecture.
Network [d
Stack Sorver
A Y
A 4 \ 4
MANTIS system API
A A A
\ 4 A4 \ 4
Kernel/Scheduler COMM DEV

Hardware

Fig. 2.4. MANTIS OS Architecture.

2.3.4 Nano-RK

Nano-RK [23] is a fixed, preemptive multitasking real-time OS for WSNs. The
design goals for Nano-RK are multitasking, support for multi-hop networking,
support for priority-based scheduling, timeliness and schedulability, extended
WSN lifetime, application resource usage limits, and small footprint. Nano-RK
uses 2 Kb of RAM and 18 Kb of ROM. Nano-RK provides support for CPU,
sensors, and network bandwidth reservations. Nano-RK supports hard and

12

2.3. Operating systems

soft real-time applications by the means of different real-time scheduling al-
gorithms, e.g., rate monotonic scheduling and rate harmonized scheduling [24].

Nano-RK follows the monolithic kernel architecture model. Due to its real-
time nature, the authors of Nano-RK emphasis the use of a static design time
framework i.e., task priorities, deadlines, period, and their reservations should
be assigned offline, so that admission control procedures can be applied ef-
ficiently. By choosing this static approach, one can determine whether the
task deadlines can be met in the overall system design or not. Application
programmers can change different parameters (deadline, period, CPU reser-
vation, and network bandwidth reservation) associated with the tasks to arrive
at a configuration that meets the overall objectives. Nano-RK also provides
APIs through which task parameters can be configured at run-time, but its
use is discouraged, especially when a task represents hard real-time jobs. Fig-
ure 2.5 shows the Nano-RK architecture.

App. App. - App. App.
Task Task Task Task
IPC |

Real-Time Scheduler

Port

Reservations Synchronization
1 CPU Socket
Energy | [, Network
Reservation Sensor Drivers
1 Sensor Network
Temp l Light Sound‘
Acceleration PIR ‘ Stack
Task Management Ultrasonic
[Timer | [_abc]
GPIO | CC2420
Microcontroller 802.15.4 Radio

Fig. 2.5. Nano-RK Architecture.

2.3.5 LiteOS

LiteOS [25] is a Unix-like operating system designed for WSNs at the Univer-
sity of Illinois at Urbana-Champaign. The motivations behind the design of
LiteOS are to provide a Unix-like OS for WSN, provide system programmers
with a familiar programming paradigm (thread-based programming mode,
although it provides support to register event handlers using callbacks), a hi-
erarchical file system, support for object-oriented programming in the form
of LiteC++, and a Unix-like shell. The footprint of LiteOS is small enough
to run on nodes having an 8 MHz CPU, 128 bytes of program flash, and 4
Kbytes of RAM.

LiteOS follows a modular architecture design. LiteOS is partitioned into
three subsystems: LiteShell, LiteFS, and the Kernel. LiteShell is a Unix-like

13

Chapter 2. Background: State-of-the-art of WSNs

shell that provides support for shell commands for file management, process
management, debugging, and devices. LiteF'S mounts all neighboring sensor
nodes as a file. LiteF'S mounts a sensor network as a directory and then lists
all one hop sensor nodes as a file. The LiteOS kernel provides concurrency in
the form of multithreading, provides support for dynamic loading, uses round
robin and priority scheduling, allows programmers to register event handlers
through callback functions, and provides synchronization support. Figure 2.6
shows the architecture of LiteOS.

[" \
User Environment Flle_System Kernel
Installed on BS LiteFS Sensor Node
Network View

LiteShell
Multi-
threaded
Kernel

Device
Drivers

A
\i

I
8

Data
Files

Binary
Installer

Command
Processor

System Call
Applications Services
Session

State

A
\4

Fig. 2.6. LiteOS Architecture.

2.4 Frameworks and Middleware

Wireless Sensor Networks have found more and more applications in a variety
of pervasive computing environments. However, how to support the devel-
opment, maintenance, deployment and execution of applications over WSNs
remains to be a nontrivial and challenging task, mainly because of the gap be-
tween the high level requirements from pervasive computing applications and
the underlying operation of WSNs. Middlewares and Frameworks for WSN
can help bridge the gap and remove impediments. In recent years, research
has been carried out to study these instruments from different aspects and for
different purposes. Most of the proposed solutions fit into one of the following
categories:

e virtual machines approaches;

e databases approaches;

14

2.4. Frameworks and Middleware

e agents approaches;
e application driven (domain specific) approaches;

e message-oriented approaches.

2.4.1 Virtual Machines approaches

Virtual machines (VMs) are an approach useful to virtualize real hardware,
intermediate program representation or bytecode interpretation. Several works
are developed using virtual machine approach.

Maté [26] is probably the first virtual machine for resource constrained
sensor nodes. Its stack-based bytecode interpreter was introduced as an alter-
native way to program and reprogram WSNs based on TinyOS. As Maté uses
a specific bytecode (named tinyscript), that is dense and concise, it means
that complex programs could be written in a few lines of tinyscript, saving
resources like memory and energy, especially during transmission over the air.
In order to reprogram (infect) the network, Maté implements a viral program
mechanism.

MagnetOS [27] is a distributed operating system for sensor and ad hoc
networks that abstracts the whole network as a single, unified Java Virtual
Machine, exposing a runtime environment for java programs. MagnetOS ap-
plications are specified as regular Java programs. An application partition-
ing tool takes the monolithic Java application and converts it into compo-
nents. Then the components are automatically and transparently distributed
through the network, based on components communication/interaction, to
reduce energy consumption and increase network longevity. The components
use Java Remote Method Invocation (JRMI) for inter-component communi-
cation. As MagnetOS needs Java heavy mechanisms, like JRMI, it targets
devices with better resources than the standard motes.

Squawk VM [28] [29] is a small Java virtual machine written mostly in Java
that runs without an operating system on a wireless sensor platform. Squawk
translates standard class file into an internal pre-linked, position independent
format that is compact and allows for efficient execution of bytecodes that
have been placed into a read-only memory. In addition, Squawk implements
an application isolation mechanism whereby applications are represented as
object and are therefore treated as first class objects (i.e., they can be reified).
Application isolation also enables Squawk to run multiple applications at once
with all immutable state being shared between the applications. Mutable state
is not shared. The combination of these features reduce the memory footprint
of the VM, making it ideal for deployment on small devices. Squawk pro-
vides a wireless API that allows developers to write applications for WSNs.
Authentication of deployed files on the wireless device and migration of ap-
plications between devices is also performed by the VM. The Squawk VM

15

Chapter 2. Background: State-of-the-art of WSNs

was specifically designed for the Sun Small Programmable Object Technology
(SunSPOT) wireless device, a device developed at Sun Microsystems Labora-
tories for experimentation with wireless sensor and actuator applications.

2.4.2 Databases Approaches

The database programming support virtualizes the WSNs as a distributed
database, where user can use SQL like languages to interact with the network.
Examples of solutions that adopt this approach are COUGAR [30], SINA [31],
TinyDB [32] and SwissQM [33]. Some of the work in this area has been on
pure sensor database systems, which essentially provide a distributed database
solution appropriate for resource-constrained sensor networks, focusing on ef-
ficient query routing and processing. COUGAR, TinyDB and SwissQM fall
into this category. SINA differs in that it uses an SQL-like language for ex-
pressing queries, but also provides other functions which are outside the scope
of traditional database systems.

A functional comparison of TinyDB and SwissQM with reference to the
Building domain is explained in Section 3.3.

2.4.3 Agents Approaches

The agent approach promotes the modular programming in order to facilitate
the distribution of code through mobile agents.

Due to the currently available resource-constrained sensor nodes and re-
lated operating systems, building flexible and efficient agent systems for WSNs
is a very complex task. Very few systems for WSNs have to date been proposed
and actually implemented. The most significant ones are SensorWare [34], Ag-
illa [35] and actorNet [36]

The mentioned works are described in Section 4.3 and compared to a novel
Java-based Agent framework for wireless sensor networks, that is presented
in chapter 4.

2.4.4 Application Driven (Domain Specific) Approaches

Application driven is another programming support approach that focuses on
tuning the network in order to support the application requirements given by
a domain specific domain.

Novel domain specific frameworks are presented in the following. In par-
ticular, a domain specific framework for Building domain is presented in chap-
ter 3 while a domain specific framework for wireless body sensor networks is
described in chapter 5.

16

2.5. Applications

2.4.5 Message-Oriented Approaches

The message-oriented approach constitutes a communication model to facil-
itate the message passing between nodes and the sink nodes. This approach
applies the publish-subscribe mechanism to a distributed sensor network. It
can support asynchronous communication by allowing a loose coupling be-
tween the sender and the receiver. This approach is particularly suitable in
pervasive environments where most applications are based on events.

Mires [37] proposes an asynchronous communication model that is suitable
for WSN applications where event driven environments are quite common.
Mires incorporates characteristics of message-oriented approach by allowing
applications communicate in a publish/subscribe way.

2.5 Applications

With reference to the survey from Yick, Mukherjee and Ghosal [38], WSN ap-
plications can be classified into two categories: monitoring and tracking (see
Figure 2.7). Monitoring applications include indoor/outdoor environmental
monitoring, health and wellness monitoring, power monitoring, inventory lo-
cation monitoring, factory and process automation, and seismic and structural
monitoring. Tracking applications include tracking objects, animals, humans,
and vehicles. While there are many different applications, below a few exam-
ple applications that have been deployed and tested in the real environment
are described.

PinPtr [3] is an experimental counter-sniper system developed to detect
and locate shooters. The system utilizes a dense deployment of sensors to
detect and measure the time of arrival of muzzle blasts and shock waves from
a shot. Sensors route their measurements to a base station (e.g., a laptop or
PDA) to compute the shooter’s location.

Macroscope of redwood [39] is a case study of a WSN that monitors and
records the redwood trees in Sonoma, California. Each sensor node measures
air temperature, relative humidity, and photo-synthetically-active solar radi-
ation. Sensor nodes are placed at different heights of the tree. Plant biologists
track changes of spatial gradients in the microclimate around a redwood tree
and validate their biological theories.

Underwater monitoring study in [40] developed a platform for underwa-
ter sensor networks to be used for longterm monitoring of coral reefs and
fisheries. The sensor network consists of static and mobile underwater sen-
sor nodes. The nodes communicate via point-to-point links using high speed
optical communications.

17

Chapter 2. Background: State-of-the-art of WSNs

Sensor
Network
Tracking Monitoring

Ene%king Ani mking Security Detection Animal Monitoring
(Zebra, birds, Cane toad)

Ruci Publi¢/Industrial Publi¢/Industrial
. Traffic Tracking N Structural Monitoring

Human tracking Car/Bus Tracking Business st i

Inventory Monitoring

Inventory Monitoring
Machine Monitoring
Chemical Monitoring

Health
Patient monitoring

Environmental Monitoring
(weather, temperature, pressure)

Fig. 2.7. Overview of sensor applications.

Cyclops [41] is a small camera device that bridges the gap between
computationally-constrained sensor nodes and complimentary metal-oxide
semiconductor (CMOS) imagers. This work provides sensor technology with
CMOS imaging. With CMOS imaging, humans can (1) exploit a different
perspective of the physical world which cannot be seen by human vision, and
(2) identify their importance. Cyclops attempts to interface between a cam-
era module and a lightweight sensor node. Cyclops contains programmable
logic and memory circuits with high speed data transfer. It contains a micro-
controller to interface with the outside world. Cyclops is useful in a number
of applications that require high speed processing or high resolution images.

Volcanic monitoring [5] with WSN can help accelerate the deployment,
installation, and maintenance process. WSN equipments are smaller, lighter,
and consume less power. The challenges of a WSN application for volcanic
data collection include reliable event detection, efficient data collection, high
data rates, and sparse deployment of nodes. Given these challenges, a net-
work consisting of 16 sensor nodes was deployed on Volcan Reventador in
northern Ecuador. Each sensor node was equipped with an external omni-
directional antenna, a seismometer, a microphone, and a custom hardware
interface board. 14 sensor nodes were equipped with a single axis Geospace
Industrial GS-11 Geophone with corner frequency of 4.5 Hz while the other
two sensor nodes carried triaxial Geospace Industries GS-1 seismometers with
corner frequencies of 1 Hz. Sensor nodes are placed approximately 200400 m
apart from each other. Nodes relay data via multi-hop routing to a gateway

18

2.5. Applications

node. The gateway node connected to a long-distance FreeWave radio modem
transmits the collected data to the base station. During network operation,
each sensor node samples two or four channels of seismo-acoustic data at 100
Hz. The data is stored in local flash memory. When an interesting event oc-
curs, the node will route a message to the base station. If multiple nodes
report the same event, then data is collected from the nodes in a round-robin
fashion. When data collection is completed, the nodes return to sampling and
storing sensor data locally. study.

Health monitoring applications [42] using WSN can improve the existing
health care and patient monitoring. Many prototypes have been developed
for applications such as infant monitoring, alerting the deaf, blood pressure
monitoring and tracking, and fire-fighter vital sign monitoring. In the following
some examples are reported.

Because many infants die from sudden infant death syndrome (SIDS) each
year, Sleep Safe [43] is designed for monitoring infants while they sleep. It
detects the sleeping position of an infant and alerts the parent when the
infant is lying on its stomach. Sleep Safe consists of two sensor motes. One
node is attached to an infant’s clothing and a node is connected to base
station computer. The former node has a three-axis accelerometer for sensing
the infant’s position relative to gravity. This node periodically sends packets
to the base station for processing. Based on the size of the sensing window
and the threshold set by the user, the data is processed to determine if the
infant is on his back.

Baby Glove [43] prototype is designed to monitor vitals. Baby Glove is a
swaddling baby wrap with sensors that can monitor an infant’s temperature,
hydration, and pulse rate. A mote is connected to the swaddling wrap to
transmit the data to the base station. Like Sleep Safe, an alert is sent to the
parent if the analyzed data exceeds the health settings.

FireLine [42] is a wireless heart rate sensing system. It is used to monitor
a fire fighter’s heart rate in real-time to detect any abnormality and stress.
FireLine consists of a mote, a custom made heart rate sensor board, and
three re-usable electrodes. All these components are embedded into a shirt
that a fire fighter will wear underneath all his protective gears. The readings
are taken from the mote and then transferred to the base station. If the fire
fighter’s heart rate is increasing too high, an alert is sent.

Heart@Home [42] is a wireless blood pressure monitor and tracking system.
Heart@Home uses a mote located inside a wrist cuff which is connected to a
pressure sensor. A user’s blood pressure and heart rate is computed using
the oscillometric method. The mote records the reading and sends it to a
basestation. A software application processes the data and provides a graph
of the user’s blood pressure and heart rate over time.

LISTSENse [42] enables the hearing impaired to be informed of the audible
information in their environment. A user carries the base station with him.

19

Chapter 2. Background: State-of-the-art of WSNs

The base station consists of a vibrator and LEDs. Transmitter motes are place
near objects (e.g., smoke alarm and doorbell) that can be heard. Transmitter
motes consist of an omni-directional condenser microphone. They periodically
sample the microphone signal at a rate of 20 Hz. If the signal is greater than
the reference signal, an encrypted activation message is sent to the user. The
base station receiving the message actives the vibrator and its LED lights to
warn the user. The user must press the acknowledge button to deactivate the
alert.

Finally, among tracking applications of animals, ZebraNet [44] system is
a mobile wireless sensor network used to track animal migrations. ZebraNet
is composed of sensor nodes built into the zebra’s collar. The node consists
of a 16-bit TI microcontroller, 4 Mbits off-chip flash memory, a 900 MHz
radio, and a GPS unit. Positional readings are taking using the GPS and
sent multi-hop across zebras to the base station. The goal is to accurately log
each zebra’s position and use them for analysis. A total of 610 zebra collars
were deployed at the Sweetwaters game reserve in central Kenya. A set of
movement data was collected during this study. From the data, the biologists
can better understand the zebra movements during the day and night.

20

3

Building Management Framework

Future buildings will be constantly monitored and managed through intelli-
gent systems that allow having information about the building health, keeping
a good comfort level for the building inhabitants and optimizing the energy
spent. Despite many WSN programming frameworks have been to date devel-
oped and, in some cases, applied to support monitoring of buildings, none of
them possesses all the specific features needed to develop WSN-based building
applications. In this chapter a multi-platform domain specific framework based
on Wireless Sensor and Actuator Networks (WSANs) for enabling efficient
and effective management of buildings is presented. The proposed Building
Management Framework (BMF) provides powerful abstractions that capture
the morphology of buildings to allow for the rapid development and flexible
management of pervasive building monitoring applications. The functional-
ities of the framework are shown in an emblematic case study concerning
the SmartEnergyLab that is an effective operating scenario related to the
monitoring of the usage of workstations in laboratories and offices. Finally, a
performance evaluation of a WSAN running the BMF in terms of bandwidth
usage and system lifetime is shown.

3.1 Introduction

Nowadays, as buildings inhabitants are growing their awareness about tech-
nology, they expect that future buildings will be “smart” in supporting their
need [45]. In particular, the inhabitants of a building would be sure about
the structural health of their buildings, they would require the presence of
mechanisms supporting building automation for increasing the comfort levels
and monitoring of the building energy usage to automatically actuate energy
saving strategies. This would be possible only with the pervasive and intel-
ligent control of all the spaces in a building carried out through sensors and
actuators deployed inside buildings and on the building structure.

21

Chapter 3. Building Management Framework

To achieve this goal, the use of wireless sensor and actuator networks
(WSANS) [46] to audit buildings and control equipment represents a viable
and more flexible solution to traditional building monitoring and actuating
systems (BMAS), which require retrofitting the whole building and therefore
are difficult to implement in existing structures. In contrast, WSAN-based so-
lutions for monitoring buildings and controlling equipment, such as electrical
devices, heating, ventilation and cooling (HVAC), can be installed in existing
structures with minimal efforts. This should enable a more effective monitor-
ing of building structure condition, and building space and energy (electricity,
gas, water) usage while facilitating the design of techniques for intelligent ac-
tuation of devices in buildings. In order to achieve this, WSAN-based building
auditing necessitates devising a dedicated management framework for: (1) the
management of a range of cooperating networked entities in the different parts
of the structure; (2) the capture of the morphology of the buildings to corre-
late sensed data to a portion of the building; (3) the adaptive management
of sensing and actuation; (4) the management of networks communication to
allow different duty cycle for nodes powered through the mains; (5) the low
and high level programmability of the network; (6) the fast deployment of
concurrent applications at runtime.

Several academic works in literature can be modified to work with such
requirements. In fact, research proposals like TinyDB [32], SwissQM [33], Ab-
stract Regions (AR) [47] and FiGaRo [48] can be used to monitor buildings,
provide a simplified way to query data from the nodes, use in-network process-
ing, and multi-hop support for large networks. However, existing frameworks
have significant drawbacks and miss key features that hinder the applicability
in a smart building context. In particular, they do not implement methods to
capture the morphology of buildings, do not provide multi-platform support,
and do not allow using actuators. In addition, they provide users with features
like SQL-like query interpreters, in-network data fusion, and shared variables
that in a Building Management domain could be unnecessary and charge the
nodes with complex and onerous algorithms.

On the other hand, there are some specific industrial solutions for Building
Management; such as the Crossbow Ecowizard System [49] or the EpiSensor
SiCA for Building Management [50] that are fixed frameworks but lack of
adaptability and advanced features such as data filtering and processing and,
especially, they do not provide customizability of the system.

This chapter proposes BMF, Building Management Framework [51] [52],
which is a domain-specific framework based on WSANs (Wireless Sensor and
Actuator Networks) for enabling proactive monitoring of spaces and control of
devices/equipments. The aim of the BMF is to overcome the limits of existing
frameworks by providing: (i) flexible and efficient management of large sets
of cooperating networked sensors and actuators; (ii) abstractions for logical
and physical node group organization to specifically capture the morphology
of buildings; (iii) intelligent sensing and actuation techniques; (iv) integration

22

3.2. Requirements

of heterogeneous WSANS; (v) flexible system programming at low- and high-
level; (vi) fast deployment of different applications through message exchange.

BMF is organized in two processing layers: Low-Level Processing (LLP)
and High-Level Processing (HLP). LLP resides at sensor node level and pro-
vides sensor-based services, while HLP resides at the basestation level and
provides application based services.

The contribution of the framework is twofold: through the HLP the BMF
assists the application developer with an extensible set of OSGi Bundles [53]
that facilitate the management of an heterogeneous WSAN spanned in build-
ings and the collection of data from the network. Through the LLP the BMF
is a network practitioner in the sense that facilitates the deployment of hetero-
geneous nodes, management of network operations, and network maintenance.
This is achieved by providing a set of embedded functionalities and a corre-
sponding APT at PC side, namely high-level processing. At the LLP side, BMF
is currently implemented in TinyOS [19] specifically supporting the interop-
eration of several types of TelosB such as Crossbow, Moteiv, KMotes [54], as
well as Tyndall [55] and Epic [56] platforms with heterogeneous sensing capa-
bilities, and in Java (J2ME) for the SunSPOT [57] platform. The use of BMF
is demonstrated through SmartEnLab, a BMF-based application for energy
monitoring in computer laboratory environments. SmartEnLab is useful not
only to highlight the advantages provided by BMF in terms of application pro-
gramming effectiveness, deployment flexibility, run-time reconfiguration and
system performance, but also shows the usefulness of WSAN in the context
of energy profiling in office environments.

The rest of the chapter is organized as follows: section 3.2 introduces the
main requirements for a building management system. Section 3.3 analyses
related work to the BMF highlighting the unsuitability of some existing frame-
works when used in the context of building monitoring. Section 3.4 introduces
the BMF and describes its main components and processing levels. Section 3.5
presents the SmartEnLab application and discusses an off-line energy data
analysis, a performance evaluation of the BMF-based building wireless sensor
networks, and an estimation of the duration of a WSAN running the BMF.

3.2 Requirements

This section analyses all the requirements of a Building Management System
(BMS) based on WSANs and used as comparison parameters:

1. Fast Reconfiguration. While some frameworks allow to quickly configure
nodes in a WSN through packets sent over the air, some other works re-
quire the user to write embedded code for sensors that is difficult to realize
and requires an expensive and slow deployment phase. We believe that a
dynamic network requires tools for a fast (re)configuration to switch over

23

Chapter 3. Building Management Framework

different applications at runtime. Moreover, the packets sent to configure
the nodes have to be optimized to save communication bandwidth and
carry out a fast reconfiguration. Moreover, an effective query language for
node programming has to be defined for WSAN programming at run-time.

2. In-node Processing. Performing in-node processing allows computing and
sending synthetic data on the network giving the opportunity to send
less raw data packets so saving both bandwidth and energy on the nodes
(as the radio is the sensor component that wastes more energy) and also
allowing more nodes to join the network. In a Building WSAN, the in-
node processing is more useful than the in-network processing (data fusion,
shared variables, and so forth) which provides functionalities that are most
of the time useless in a Building Management domain, charges the nodes
with onerous algorithms and increases configuration data exchange among
nodes.

3. Multi-hop Support. To cover whole buildings, a framework must provide
support for multi-hop networks relying for example on specific data centric
or hierarchical protocols [58].

4. Multi-platform Support. Using different platforms together in a network
allows to take advantage of different types of sensor nodes with different
and more suitable features (e.g. the use of sensor boards already developed
for different platforms).

5. Methods to dynamically capture the morphology of buildings (Building Pro-
gramming Abstraction). In a building, the nodes of a WSAN can be de-
ployed everywhere. It is very important to design a Building Programming
Abstraction that allows to store where the nodes are placed in a building
in terms of room (e.g. kitchen, sitting room, and bathroom) and function
(e.g.: ambient temperature, lighting system, and radiator monitoring). A
Building Programming Abstraction allows to capture the morphology of
a building at basestation side and allows to make a node conscious about
its position in the building.

6. Support for actuators. In order to apply policies to achieve some goals like
comfort or energy saving in a building, it’s of primary importance for some
nodes of the network the control of actuators. Through actuators, a user
can remotely send commands to objects (appliances, lights, radiators) or
a software can intelligently apply some rules.

7. Deploy management through Human Computer Interface (HCI). A user-
friendly graphical interface to easily configure the network is fundamental.
In particular, it allows saving programming time and effectively visualizing
data from the WSANs. Moreover, the interface has to be extensible to
allow users to add high-level functionalities without programming a new
interface or re-implementing the one provided.

24

3.3. State-of-the-Art and Related Work

3.3 State-of-the-Art and Related Work

This section focuses on existing works discussing the applicability in the con-
text of buildings. We first overview the main characteristics and functionalities
of TinyDB [32], SwissQM [33], Abstract Regions (AR) [47] and FiGaRo [48],
which are the four most interesting academic proposals related to BMF, and
then compare them and BMF on the basis of the identified requirements.

TinyDB is defined as a distributed query processing system for extracting
information from a network of sensors. TinyDB has many of the features of a
traditional query processor (e.g.,the ability to select, join, project, and aggre-
gate data), but also incorporates a number of other features designed to min-
imize power consumption via acquisitional techniques. SwissQM is intended
as the “next generation architecture for data acquisition and data processing
in sensor networks”. It is a query executor with optimized performance and is
based on a specialized virtual machine (specialized in data processing rather
than a generic platform for application development) that runs optimized byte
code rather than queries. AR is a programming model with the goal of sim-
plifying the application design by providing a set of programming primitives
for sensor networks that abstract the details of low-level communication, data
sharing, and collective operations. Finally, FiGaRo is a programming model
supported by an efficient run-time system and distributed protocols, collec-
tively enabling a fine-grained control over what is being reconfigured, and
where.

TinyDB and SwissQM give support to node reconfiguration at runtime.
While AR and FiGaRo require users to write embedded code for the nodes
and support an expensive configuration phase, TinyDB and SwissQM provide
functionalities to set requests to nodes through queries. In particular, TinyDB
uses long configuration packets (50 bytes) because nodes receive the whole
query whereas SwissQM requests are shorter because a bytecode representing
the query is sent to the nodes (36 bytes). In contrast, BMF avoids SQL-like
queries and uses optimized request messages where configuration packets sent
on the network are significantly shorter and optimized, between 9 and 22 bytes
+ 10 bytes of multi-hop protocol header.

TinyDB, SwissQM, AR and FiGaRo support multi-hop and give the pos-
sibility to use standard in-node processing algorithms on sampled data (e.g.
average, variance, RMS).They provide in-network algorithms that are hardly
used in a building context because they strongly increase exchange of packets
(making node execution heavier) for the algorithm execution without having
significant benefits. In particular, TinyDB implements an in-network process-
ing optimized to merge data from different nodes when possible, SwissQM
follows the idea used in TinyDB aggregating data during the route to the
base station and AR provides in-network services like data sharing and data
reduction where the reduction operator takes a shared variable key and an
associative operator (such as sum, max, or min) and reduces the shared vari-
able across nodes in the region, storing the result in a shared variable. These

25

Chapter 3. Building Management Framework

features are useful for WSN applications that allow trading data precision
and communication responsivity for a reduction of packet transmitted. How-
ever, in the context of building such features are less important while the
framework should maximize data precision and responsiveness, for example
to actuate appliances or report an anomaly somewhere in the building. In
addition, system extensibility to several kinds of sensor platforms is key as
sensors will likely be from several vendors and with different capabilities.

Among the considered works, only the BMF offers a multi-platform sup-
port. In particular, TinyDB only works on Mica motes with TinyOS 1.1, an
old version of SwissQM can only use Mica2 motes with TinyOS 1.1 while a
new one supports only TelosB with TinyOS 2.0.2, AR exclusively runs on
Mica motes, FiGaRo was only tested on TelosB with the Contiki OS. BMF
has been designed to be fully extensible and platform-independent; it already
supports TelosB, Tyndall25 and Epic motes with TinyOS 2.1 and SunSPOT
nodes with Java.

The provision of methods to dynamically capture the morphology of build-
ings is a limited, sometimes missing, feature in the works under examination.
For example, TinyDB and SwissQM do not explicitly support Building Pro-
gramming Abstractions. In AR the concept of Regions of nodes in a neighbour-
hood defined as radio hops and useful to exchange information among neigh-
bours, is implemented. However, program the network taking into account the
morphology of a building can be hardly achieved considering that radio range-
based neighborhood. FiGaRo allows to define groups using boolean predicates
over nodes attributes. Although this can be used to define a building morphol-
ogy, in FiGaRo groups are defined statically before deployment and cannot
be updated at runtime. This represents a significant drawbacks for building
applications as sensor nodes are often relocated and belong to several groups
(e.g. a node can be both in the group of heat monitoring and in the group of
the corridor monitoring).

In contrast, BMF supports a Building Programming Abstraction to ex-
plicitly capture the morphology of a building based on high-level dynamic
groups. Groups can be used to address the nodes through their logical or
physical characteristics (place in which the node is positioned, type of sensor
available on the node, appliance which the node is monitoring, and so forth).
In such a way, many nodes can be simply addressed by the same packet and,
consequently, there is no need to explicitly send the same request to many
addressees. If this type of aggregation is dynamic and the network changes, a
request will be transparently sent to the updated group of nodes.

Moreover, BMF is the only work that allows to control actuators such as
ACme actuator nodes [56] or Tyndall REAM nodes [59].

Among the analysed works, only SwissQM and the BMF provide an in-
terface allowing users not only to simply configure the WSAN (like TinyDB
does) but also to add high-level functionalities without programming a new
interface or re-implementing the one provided.

26

3.3. State-of-the-Art and Related Work

In conclusion, considering the analysed requirements together with the
domain specific nature of BMF, the proposed framework results to be the
best option to manage a Building WSAN while the related works show some
limitations in the context of buildings as they have been originally designed
with general-purpose features for WSN-based monitoring applications which
do not specifically fit the considered context.

In Table 3.1, a comparison summary between the BMF and the analysed
academic related work is reported.

Table 3.1. Comparison between the BMF and some academic related work.

. . Abstract .
TinyDB SwissQM BMF . FiGaRo
Regions
VM on nodes +
gateway which .
Query Processor . . Programming Model
Description for Sensor | PA3S quenies Al NGl (Abstraction Layer | Programming Model
written in | Framework -
Networks . on TinyOS)
different
lan; es.
YES YES NO NO
by sending SQL by sending YES users have to write | users have to write
Fast Reconfiguration 1i]{e uerigs ove; bytecode by sending Request-4- | embedded code and | embedded code and
the ai? representing Tuple packets deploy it in a | deploy it in a
queries configuration phase | configuration phase
In-node processing YES YES YES YES YES
Multi Hop Support YES YES YES. YES YES
YES
NO NO fully support for NO NO
. only supported | only supported | TelosB. Tyndall25, . .
Multi-platform Support Mica motes with | Mica2 motes with | Epic motes with oulzf supported Mica gstetcilk?né)é on TelosB with
TinyOS 1.1 TinyOS 1.1 TinyOS 2.1, and for | MO on
SunSPOT
Methods tfo dynamically
capture the morphology
of buildings (Building NO NO YES NO NO
Programming
Abstraction)
Not explicitly "
Support for actuators NO NO YES sl Not explicitly supported
NO YES YES
. Human Computer | OSGi Bundles- .
Effective Human e sl e OSGi Bundles-based NO NA
Computer Interface : 2o Human Computer
provided, but it’s | Computer
. Interface
not extensible Interface

With regards to industrial solutions for building management that can be
correlated to BMF, the most representative are briefly described as follows:

e The Arch Rock Energy Optimizer [60] is an Energy Optimizer that provides
easy-to-install wireless submetering hardware and a rich web application
that helps users to tune and improve building energy usage. Arch Rock
wireless sensing nodes enable the real-time monitoring of electricity, gas
and water usage as well as ambient indoor or outdoor conditions such as
temperature, humidity and light.

27

Chapter 3. Building Management Framework

e The Delta Dore Building Management Systems [61] offers solutions suit-
able for any type of building. It addresses both service buildings (large
office buildings, health establishments, medium and large stores, local gov-
ernments, hotels, schools, leisure parks, museums) and industrial buildings
(agri-food industry, aeronautics industry, quarries, laboratories, electronics
industry). The Delta Dore monitoring systems are user-friendly, upgrade-
able, and provide comprehensive, real-time data. The systems regulate
technical equipment while optimizing energy.

e The Trend IQ Assured [62] is Trend’s commitment to provide building
owners with the capability to manage their energy usage and environmen-
tal conditions - reducing energy wastage and associated cost, whilst main-
taining optimum comfort conditions and maximising plant availability. De-
signed to deliver immediate benefits, IQ) ASSURED is a structured pro-
gram of optimising, upgrading and maintaining a Building Energy Man-
agement System. They provide an on-line software package that automati-
cally collects and analyses utility meter readings and other data monitored.
It is able to constantly compare actual and expected energy usage profiles
and generate exception reports identifying incidences of energy waste. The
system also allows clients to directly access energy performance data over
Internet.

e The Sentilla Energy Manager 3.0 [63] is a non-invasive, software-only so-
lution for managing energy in data centers. By providing a holistic view,
Sentilla Energy Manager bridges the IT and facilities gap, providing the
world’s first comprehensive view of where, when, and why energy is used
in the data center.

e The EpiSensor SiCA for Building Management [50] system can be used to
track electricity, water and natural gas usage in commercial buildings via
the web. The system can also remotely control loads and monitor environ-
mental parameters such as ambient temperature and humidity using easy
to install wireless nodes. The data produced by these nodes can be used to
improve building energy efficiency by identifying areas of wasteful energy
usage. Using EpiSensor’s SICA software, wireless nodes can be remotely
controlled and monitored from anywhere in the world via the web.

e The Crossbow EcoWizard System [49] enables users to analyse and mon-
itor energy consumption in real-time using intuitive visualization tools
allowing intelligent and efficient energy conservation. Using leading-edge
wireless sensor networking technology, EcoWizard offers various energy
measurement modes while significantly reducing the installation costs as-
sociated with current solutions. The developed data viewer provides sim-
ple graphical displays of past and present energy consumption (electricity,

28

3.4. The Building Management Framework

temperature, etc.). The system uses sensors for electric power consump-
tion, water, gas, temperature, humidity, light, etc. including pulse input
wireless nodes enabling data acquisition from typical gas or water gauges.

Network reconfiguration is very limited for industrial solutions. While
EcoWizard nodes send the values from the sensors once turned on, SiCA
and BMF nodes can be fast reconfigured at runtime by specific queries which
are respectively called “commands” and “Request 4-Tuple” (see Section 3.4
for details).

Both EcoWizard and the SiCA execute no data aggregation on node while
the BMF can perform in-node processing of the sensed data. They all support
multi-hop network, in particular EcoWizard uses Xmesh protocol, SICA makes
use Zigbee Pro protocol and BMF relies on Collection and Dissemination
TinyOS protocols or on SunSPOT proprietary protocol.

BMF is the only one to be multi-platform which is key in building context
and recognized by Episensor that is working with some third part vendors to
integrate other nodes in SiCA.

Likewise BMF, SiCA allows to manage the network by dynamic groups to
catch the morphology of buildings. In SICA groups can be declared and nodes
can be joined to them. EcoWizard nodes have no prevision for functionalities
to allow managing of the network.

Furthermore, the EcoWizard System does not support actuators that in-
stead can be used in SICA and in BMF. Both EcoWizard and SiCA provides
no API to allow developers to build custom user interfaces. In stark contrast
BMF can be extended using specific Java APIs or OSGi Bundles. Table 3.2
summarizes the comparison between EcoWizard, SiCA and BMF.

In conclusion, this analysis underlines that some commercial systems have
some functions similar to BMF. A major difference is that BMF can be simply
extended not only at the basestation side but also at the node side. BMF
optimizes the amount of data sent over the network and allows to use platforms
from different vendors. Some other systems, like EcoWizard from Crossbow,
are very useful to monitor a building but they have no mechanism to reduce
communication overhead, capture the morphology of buildings, and to provide
an extensible interface for system reconfiguration at runtime.

3.4 The Building Management Framework

The Building Management Framework (BMF) is a domain-specific framework
implemented for both WSAN nodes and more capable devices at basestation
side such as PC, plug computer, smartphone, PDA. It allows flexible and ef-
ficient distributed sensing and actuation in buildings. BMF fully addresses
all the requirements identified in Section 3.2, which are not comprehensively
addressed in currently available general-purpose application frameworks for

29

Chapter 3. Building Management Framework

Table 3.2. Comparison between the Crossbow Ecowizard System, the EpiSensor
SiCA for Building Management and the BMF.

Crossbow EpiSensor
. SiCA for Building BMF
Ecowizard System Management
Description Building Monitoring System Building Management System Application Level Framework
f;mt 1 ti il i beNgconﬁgured‘ sy sendin; “commangsEti the nodes™ sending Request Z-]":l'?,l le packets
econjiguration just send the data they sample e & Req Pl p
In-node processing NO NO YES
YES
Maulti Hop Support YES YES using Collection and Dissemination
P SUpp using Xmesh protocol using Zigbee Pro TinyOS protocols or the SunSPOT
proprietary protocol
NO YES
JVuIn-platfarm NO ity o g oo Fem alr\?ady supporleleelos]}, Tyndall25,
support A Epic motes with TinyOS 2.1,
different vendors SunSPOT
Methods to
dynamically catch
the morphology of NO YES YES
buildings (Building based on high level dynamic groups
Programming
Abstraction)
Support Sfor NO YES YES
actuators
Effective Human = o
Computer Interface RO RS I

WSNs. In particular, BMF provides fast reconfiguration, in-node processing
algorithms, multi hop networks and multi-platform support, a building pro-
gramming abstraction to dynamically catch the morphology of buildings, ac-
tuators support and an extensible interface.

In Figure 3.1 are shown the main functionalities of the BMF through a
layered representation divided into BS-Side and Node-Side layers.

The BS-side component includes the following layers:

e Heterogeneous Platform Support layer incorporates a set of adapters that
allow interfacing the system with different types of sensor / actuator plat-
forms. An adapter is linked to a specific hardware device able to commu-
nicate with a specific sensor platform in the network.

o WSAN Management layer allows to fully manage a WSAN cluster. This
layer supports packet coding / decoding according to the BMF application-
level protocol (see Section 3.4.2.4 for details) and packet transmission /
reception to / from the WSAN cluster. Moreover, this layer supports device
discovery within the cluster.

e Group Organization layer provides group-based programming of sensors
and actuators, tracking of nodes, groups in the system, management of
node configurations and group compositions. Node organization in groups
is specifically defined to capture the morphology of buildings. Nodes belong
to groups depending on their physical (location) or logical (operation type)
characteristics.

30

3.4. The Building Management Framework

BS-Side Layers

Request Scheduling

Group Organization ‘ .

Applications

WSAN Management

Heterogeneous Platform Support

iBM F Communication Protocol

Node-Side Layers

DynamicGroup || In-node Signal || Multi Request
Management Processing Scheduling

Node Management

Sensing and Actuation

WSAN Management Management

Hardware Sensor Platform

Fig. 3.1. The BMF layered architecture.

Request Scheduling layer allows the support for higher-level application-
specific requests. Through this layer, a BS can ask for the execution of
specific tasks to single or multiple nodes or groups of nodes. Moreover,
this layer keeps track of the requests submitted to the system, waits for
data from the nodes and passes them to the requesting applications. An
application can be implemented on top of this layer to fully manage a
WSAN using the BMF.

The Node-side part of the BMF is designed around the following layers:

Hardware Sensor Platform layer allows to access the hardware sensor /
actuator platform. In particular, this layer facilitates the configuration of
the platform specific drivers and the use of the radio.

WSAN Management layer manages the communication between the node
and the reference BS according to the BMF application-level protocol and
among the nodes in the neighbourhood through the multi-hop network
protocol provided by the node sensor platform.

Sensing and Actuation Management layer allows to acquire data from
sensors and execute on actuators. In particular, this layer allows to control
and plugin sensors / actuators from different vendors.

Node Management layer is the core of the Node-side BMF and allows to
coordinate all the layers for task execution. In particular, on one side it

31

Chapter 3. Building Management Framework

handles events from the lower layers every time that a network packet
arrives or data from sensor / actuator are available, and on the other side
it manages events from the upper layers every time that data are processed
or a stored request has to be executed.

e Dynamic Group Management layer provides node grouping functionalities.
A node can belong to several groups at the same time and its membership
can be dynamically updated on the basis of requests from the user.

e In-node Signal Processing layer allows the node to execute signal process-
ing functions on data acquired from sensors [64]. It can compute simple
aggregation functions (e.g. mean, min, max, variance, RMS) and more
complex user-defined functions on buffers of acquired data.

o Multi Request Scheduling layer allows the scheduling of sensing and ac-
tuation requests. In particular, it stores the requests from the user and
schedules them according to their execution rate.

The BMF is implemented and tested on TelosB, Tyndall25, and Epic sen-
sor platforms based on TinyOS and on the Java SunSPOT platforms.

In the following subsections the BMF is detailed. In particular, sec-
tion 3.4.1 explains the dynamic organization of the BMF network using
groups; Section 3.4.2 analyses the two processing levels composing the BMF,
namely Low-Level Processing (LLP) and High-Level Processing (HLP), shows
the BMF Management GUI explaining its functionalities, and presents the
Building Management Framework Communication Protocol (BMFCP), an
application level communication protocol that supports the communication
between HLP and LLP; finally, Section 3.4.3 analyses the application scenar-
ios in which BMF can be successfully applied.

3.4.1 Sensor Network Organization and Programming

Sensor Network Organization and Programming
The BMF dynamically organizes the nodes in groups. Formally, a group
is defined as a non-empty set of nodes, as highlighted in Expression 3.1.

G; = {nodel, nodes, . .. ,node’} # 0 (3.1)

In particular, a group formalizes either logical or physical properties of
nodes. Examples of properties are: location (e.g. dining room, bedroom,
kitchen), monitoring activity (e.g. heater monitoring), the presence of a spe-
cific sensing device onboard (e.g. all the nodes with passive infrared detector).
Indeed, a node can belong to more than one group. Each node knows its group
membership through the reception of configuration packets sent by the user
through the BS. This allows a group membership be dynamically changed at
any time.

32

3.4. The Building Management Framework

Operating on groups properties yields high flexibility when addressing
nodes. In particular, BMF uses dynamic node addressing scheme to send pack-
ets to a specific node, a group of nodes or a compound group. Packet transmis-
sion to several nodes at the same time can be very useful to save bandwidth.
The node-addressing scheme is formalized with the Expression 3.2, where NV
is an element of the set of nodes in the building sensor network (N7V is a
sequence of nodes), G is an element from the set of the groups, STO is a set
theory operator (e.g. union, intersection, difference) and NOT is the negation
operator. After node configuration, through the dynamic node addressing,
BMF allows submitting queries to single nodes or (compound) groups.

N*|([NOT|G[STO[NOT|G]") (3.2)

Figure 3.2 provides examples of addressing based on the scheme in Expres-
sion 3.2. In particular, the left column of the legend shows the symbols used
in the map and representing nodes and groups. The right column shows ex-
amples of compound groups realized using Intersection, Union and Negation
operators.

(O BMF Node %Living Room N Lamps

<> Lamps Group

AWindows Group l:] (Windows U Lamps) N Living Room
G Living Room Group O NOT(Windows) N NOT(Lamps)

— A A
o

Living Room N Windows

Fig. 3.2. Examples of groups and compound groups.

Sensing and actuation activity of the building sensor network can be pro-
grammed through queries, namely 4-tuple-requests, sent from the BS to nodes.
A request R is formalized as the quadruple in Expression 3.3 where OBJECT

33

Chapter 3. Building Management Framework

is a specific sensor or actuator belonging to a node, ACTION is the ac-
tion to be executed on OBJECT, RATE is the frequency of each executed
ACTION, LIFETIME is the length of time over which these actions are to
be reiterated. In particular: (i) if OBJECT is a sensor, ACTION can be a
request for either raw sensed data or threshold notification (e.g. if the sensed
data overtakes a given threshold, a notification is sent); (ii) if the OBJECT is
an actuator, ACTITON represents the actuation of a specific parameter of the
actuator (e.g. in case of a led, ACTION can activate the led toggling). The
4-tuple-requests have been introduced and chosen so to cover the majority of
request types for building management apps.

R=<OBJECT,ACTION,RATE,LIFETIME > (3.3)

3.4.2 Software Architecture

BMF is organized into two levels of processing logics: Low-Level Processing
(LLP) and High-Level Processing (HLP). While the LLP resides on sensor
nodes, HLP resides at the BS side, which is usually a laptop, a workstation, a
PDA, a plug computer or a smartphone. LLP and HLP communicate accord-
ing to an application-level Building Management Framework Communication
Protocol (BMFCP). The BMFCP is described in detail in Section 3.4.2.4.

The implementation of BMF has been carried out on the TinyOS [19]
operating system through the nesC language [65] due to its availability for
many sensor platforms and flexibility to meet specific application needs and on
the SunSPOT [57] sensor platform that allows the programming of a WSAN
through the flexible and more user-friendly Java language. The BS side of
the framework is fully implemented in Java according to the OSGi Frame-
work [53] mainly due to its programming effectiveness, modularity and possi-
bility to plugin applications at runtime. The OSGi Framework is a modular
system and service platform for Java that implements a complete dynamic
component model. Building application components, called bundles, can be
remotely installed, started, stopped, updated and uninstalled without requir-
ing a reboot of the application. A service registry allows bundles to know other
bundles and their state. Bundles can use services offered by other bundles and
explicitly depend on them. Implementing the OSGi framework means imple-
menting a modularized environment. Some of the benefits that OSGi provides
are: (i) Reuse: the OSGi component model makes it very easy to use many
third party components in an application; (ii) suitable for the Real World: the
OSGi framework is dynamic. It can update bundles on the fly and services can
come and go; (iii) Dynamic Updates, the OSGi component model is a dynamic
model. Bundles can be installed, started, stopped, updated, and uninstalled
without bringing down the whole system; (iv) Secure, OSGi inherits Java
security and makes it simpler to be used.

LLP, HLP and BMFCP are described in detail in the following subsections.

34

3.4. The Building Management Framework

3.4.2.1 High Level Processing (HLP)

The HLP logic of BMF is implemented at the base station side and consists
of a set of OSGi bundles.

The HLP has a strong modularity that permits to implement all the ser-

vices needed in different bundles that communicate through the OSGi Frame-
work [66]. This allows to change functions or part of them just stopping a
bundle and starting a new one implementing the same services of the former.
As shown in Figure 3.3, the defined core bundles are:

The Platform Bundle (PB) represents a set of bundles that allow to inter-
face the system with different types of platforms. Every PB is linked to a
hardware component so to communicate with a specific WSAN platform.
For example, in a building WSAN consisting of TinyOS and Sun SPOT
nodes there will be two PBs to communicate with TinyOS and Sun SPOT
platforms.

The Communication Bundle (CB) uses specific platform services published
by the PBs, to allow sending and receiving packets and enabling commu-
nication between bundles and a WSAN.

The Groups and Nodes Management Bundle (GNMB) keeps track of nodes
and groups in a WSAN and stores nodes configurations and groups com-
positions. GNMB is useful to save in one place data about a WSAN and
share it among several bundles.

The Packet Manager Bundle (PMB) allows the creation and the interpre-
tation of low-level packets according to the Building Management Frame-
work Communication Protocol (BMFCP) introduced and described in de-
tail in Section 3.4.2.4.

The Network Manager Bundle (NMB) allows to fully manage a WSAN
through the use of CB, GNMB, and PMB. NMB can build, send, receive
and interpret packets to/from a WSAN, manage the status of nodes and
the membership of groups as requested by the high level bundles.

The Data Saving Bundle (DSB) listens to all the data forwarded by the
NMB from the network. The DSB is designed to save data to files or a
database in order to track the evolution of a WSAN and to store data for
future requests.

The Aggregation Bundle (AB) is responsible for executing aggregations
on data from the network. AB is useful to calculate, on the base station
side, aggregated synthetic data on sensor values from different nodes of a
WSAN.

The BMF Management GUI Bundle (MGUIB) is a graphical user interface
to allow the user to manage a WSAN, submitting requests, waiting for and
visualizing data from the network and displaying charts about sensing
operations (application details are in Section 3.4.2.2).

35

Chapter 3. Building Management Framework

Besides the GUI Configuration application implemented in the MGUIB,
a new application can be built using the listed service bundles that allow
exploiting the WSAN, configuring, sending and receiving packets to/from it.

Network
5 .| Manager Bundle | -
X 4 B
| Packet Manager | - :
: Bundle

T
Groups and Nodes
Management Bundle |

Communication
Bundle
Platform
Bundle

Aggregation
Bundle

______________________ ;I_ Data Saving
Bundle
BMF Management
GUI Bundle]

OSGi
JAVA
0S

(hw]
—

Fig. 3.3. OSGi Core Bundles of the BMF.

3.4.2.2 The BMF Management GUI

In order to demonstrate the capability of the framework, this section describes
a BMF management interface to allow total control of a WSAN in a build-
ing. The interface, namely BMF Management GUI, is included in the BMF
Management GUI Bundle and is shown in Figure 3.4.

The application is organized in five main sections supporting all the func-
tionalities provided by the BMF at low and high level:

e Nodes and groups management. When a new BMF node appears in the
network, it is automatically detected and added to the Node list tree.
Once a node is detected, the GUI allows to visualize its properties, set its
membership to groups, send a new request or reset it. In particular, the
GUI features a few panels and functions to allow operating on the node:

36

3.4. The Building Management Framework

— the Node Properties panel shows an image of the node, all the sensors
on its sensorboard and the groups which the node belongs to;

— the Set Membership panel allows to add or delete a group to the mem-
bership of a node. A node membership can be updated anytime. A
node can be also associated to a group by dragging and dropping the
node icon on the corresponding group icon. If a membership changes,
a packet is sent to the interested nodes to update their state;

— the New Request panel allows sending specific requests to a destina-
tion node. The destination is preset to the selected node but it can be
changed to a single node, a sequence of nodes, a group or a compo-
sition of groups (according to what is explained in Section 3.4.1). For
each request, destination, name, rate of execution, duration, action to
execute (sensing or actuation) and some action parameters can be set;

— the Reset Node panel just asks to confirm if the node has to be reset.

The group tree is organized similarly to the node tree with the difference
that a group has to be explicitly created. The group functions that can
be enabled are: visualization of nodes’ group properties to see and change
group belonging; sending of a new request; resetting of the group belong-
ing; deleting a group.

Request management. The request management panel allows displaying
details of running or elapsed requests, reschedule them and print charts.
In particular, all requests are logged in a “combo box”. In addition, the
“details” dialog box, allows a request to be re-scheduled or unscheduled.
There is also the possibility to show all the request charts together or all
the request details.

Maps and real time charts visualization. The maps and real time charts
panel is divided into two sections: (1) the first section is used to visualize a
set of maps uploaded as image files to represent the space in which sensors
are located; (2) the second section is used to visualize the charts related
to the scheduled requests. The panel allows several maps to be loaded and
nodes dragged and dropped from the node tree onto a map. Once a node
is placed in a map, it can be deleted and moved and, also, context menu
functions are still present.

Real-time data visualization console. The console of the application allows
visualizing the activity of the building sensor network in real-time. In
particular, it displays when packets are sent to the WSAN and when ACKs
or data packets are received from the nodes.

File and Saving menus. These are used to close the application and manage
saving options such as where to save and how, e.g. csv files, database, etc.
By default, all the data from the network are saved in csv files which can
be loaded and displayed on the GUIL

37

Chapter 3. Building Management Framework

Fle Swang
'HODES MANAGEMENT CAOLPS MANAGEMENT
(B womponrecons | [amen — ol 1EW =l
© o TN 6 LIGHT
| g MDY |/ NEWREQUESTIDZ =le-
) o TEPERATLRE
< NEW REQUEST ID2
800
750
700
650
600
550
500
a0
T 8w
Request: NEWREQE... » [Cwt | [Dewt | =]
£
7] Show M Graghs | Al Requests Detais -
cosoe. -
DATA RECEIVED FROM 4 Request:NEW R+
DATA RECEIVED FROM 4 Request:NEW R 200
CONFIG EXPIRED: WEW REQUEST Destin -
DATA RECEIVED FROM 4 Request:NEW &
DATA RECEIVED FROM 4 Request:NEW & 100
DATA RECEIVED FROM 4 Request:NEW &
DATA RECEIVED FROM 4 RequestiNEW & =
DATA RECEIVED FROM 4 Request:NEW &
CONFIG EXPIRED: NEW REQUEST Destin) o 1 2 3 a s & 7
DATA RECEIVED FROM 4 Request:NIW R | Time (SEC)
- 0

Fig. 3.4. BMF Management GUI Application.

3.4.2.3 Low Level Processing (LLP)

LLP is the node-level part of BMF and is implemented both in TinyOS 2.1, for
TinyOS-based nodes, and in Java, for SunSPOT nodes. For space reason this
paper focuses on the LLP for TinyOS, while the SunSPOT implementation has
similar functionalities and components. As shown in Figure 3.5, LLP supports
two types of logics:

e Node Logic, which provides acquisition of data from sensors, control of
actuators, in-node signal processing; store and scheduling of requests;

e Network Logic, which provides downstream and upstream communication,
packet parsing, packet formation, transmission handling, dynamic node
addressing; group management.

The modular structure of LLP allows separating all key functions. This is
useful in case of improvements of a single component, which would solely in-
volve the replacement of the structure independently from other components.
In particular:

e The PacketManager (PaM) handles packets of the BMF application level
protocol, parses downstream packets and builds upstream packets to the
BS.

e The GroupManager (GM) manages the group membership of a node. As
a node can belong to several groups simultaneously, its membership can
be dynamically updated on the basis of downstream packets sent.

e The CommunicationManager (CM) manages node’s communication through
downstream and upstream routing protocols. The current protocols used

38

3.4. The Building Management Framework

RequestManager CommunicationManager
A event A event
command command
command
ProcessingManager event . | BMFManager
Lol
A I T
command
c<uses>> | l<<uses>>
“ event w \V
Sensing&ActuatingManager GroupManager PacketManager
A
command
command
v event event | Platform Specific

SAPA (Sensor, Actuator
& Platform Abstraction) "l_l command

event

J Sensor Driver

Platform Specific
Sensor Driver

Fig. 3.5. The LLP Component Diagram.

by the CM are the TinyOS standars Collection and Dissemination proto-
cols [67].

The BMFManager (BMFM) is the broker component of the framework.
BMFM receives events every time a packet arrives from the network and
every time some data to be sent is ready. In the first case, it interprets
the packet by means of PaM and dispatches the packet to the handling
component (GM or PM); in the latter case, it builds the packet through
PaM and dispatches it to CM to send it to the BS.

The RequestManager (RM) stores the BS requests and schedules them
according to their execution rate and lifetime.

The SensingéActuatingManager (SAM) is a dispatcher that forwards sen-
sor reading and actuation requests to the right sensor / actuator driver. It
addresses sensors and actuators in a generic way, as it communicates with
a generic platform version of the drivers.

The Sensor, Actuator & Platform Abstraction (SAPA) is a layer that al-
lows addressing different types of sensors/actuators in a platform inde-
pendent way. SAPA guarantees interoperability between TinyOS-based
platforms and sensing/actuation devices by creating a common APT used
to abstract from different low-level hardware sensor and actuator drivers.
SAM exploits SAPA when a sensor is to be addressed. Thus, SAM only
needs to request for a generic sensor, which is linked to the platform spe-
cific one at compilation time.

39

Chapter 3. Building Management Framework

e The ProcessingManager (PM) manages all the requests for sensing and /or
actuation coming from the network or from internal components. In par-
ticular, PM handles an internal queue of one-shot requests. According to
the request type, PM can (i) interact with RM to schedule the request
if it is periodical; (ii) interact with SAM to read a sensor or actuate a
command; (iii) compute some function on the acquired data; (iv) check
the sampled values to fire an alarm if set. Moreover, when data is ready
to be sent to the BS, PM forwards them to the BMFM through an event.

In Figure 3.6 the components of LLP are shown according to a layered
architectural style. It is worth noting that only RM, SAPA and CM are based
on TinyOS components while SAM, PaM, PM, GM and BMFM are built
on top of the other components. This means that the higher layers are also
independent of the TinyOS components so that they can be easily ported to
non-TinyOS platforms.

BMF Manager
Processing Manager Group
Manager

Sensing & Actuating Packet Manager

Request Manager
Manager Communication

SAPA
Manager
TinyOS
HW

Fig. 3.6. The LLP Architectural Layers.

3.4.2.4 The Building Management Framework Communication
Protocol

LLP and HLP interact through an application level communication proto-
col, namely Building Management Framework Communication Protocol (BM-
FCP). BMFCP supports the communication between HLP and LLP to con-
figure and monitor the building sensor network in an effective manner. The
packets exchanged are called BMFPackets that can be formed, depending on
the specific request sent from the BS or the specific data sent from the sensor
nodes, by different fields having a different amount of bytes. The BMFCP is

40

3.4. The Building Management Framework

developed to transmit variable length packets containing only the meaningful
bits of the significant fields. By doing so, the BMFCP optimizes transmissions
saving battery of nodes and network bandwidth so allowing an improved shar-
ing of the radio channel.

Table 3.3 shows all the packets with their parameters separated in Node-
to-BS and BS-to-Node packets. Table 3.4 shows the predefined values of packet
parameters. All Node-to-BS packets have a PKT_TYPE and a SENDER_ID
field which shows the sender of the packet. Node-to-BS packets have no explicit
destination fields because all upstream packets are implicitly addressed to the
BS.

The BS-to-Node packets have a shared variable length header beginning
with a PKT_TYPE field. Later in this section we will describe some fields
representing what is formalized in Expression 3.2. An ADDRESSEE_TYPE
field tells if the ADDRESSEE field is filled with node IDs or groups. Finally,
groups can be combined in the ADDRESSEE field with the associative rules
explained in Section 3.4.1.

As shown in Table 3.3, the framework implements eight different packets:

e The Advertisement Packet (AD-PKT) is a Node-to-BS packet with vari-
able length sent when nodes are switched on. The AD-PKT is sent several
times at random intervals until a packet from the BS is received so to
ensure that the BS is online and received an AD-PKT from the current
node. The purpose of this packet is to inform the BS about the presence
of node in the network, the sensing/actuating abilities of the node itself,
and the analytic available at the node in the case sensing devices are pro-
vided. The AD-PKT, besides the PKT_TYPE and SENDER_ID fields,
has a SENSOR_-TYPE/ACTUATOR_TYPE code that can be repeated to
show all sensors and actuators connected to the node, and a FUNCTION
field repeated as many times as the number of different functions that are
available.

e The Sensor Schedule Packet (SS-PKT) is a BS-to-Node packet with vari-
able length sent to configure the available sensing devices. The sensing can
be matched with some analytic functions on node, as explained in section
3.1. The packet presents a field indicating the REQUEST_ID, namely the
code of the request, and two couples of fields, PERIOD_TIMESCALE and
PERIOD_VALUE, LIFETIME_TIMESCALE and LIFETIME_VALUE.
These indicate timescale / value of the period at which a data is requested
and the timescale / value of the duration of the current request respec-
tively. Following are a SENSOR_TYPE with the code of the sensor re-
quired and a DATA_TYPE, indicating if the packet is asking for all the
sensed (and eventually calculated) data or only for data that verifies a
threshold. The THRESHOLD_TYPE field indicates if the packet requests
for values over or under a THRESHOLD_VALUE or for all the times the
THRESHOLD_VALUE is passed from up to down or vice versa.

41

Chapter 3. Building Management Framework

Table 3.3. All the packets of the Building Management Framework Communication

Protocol with their parameters.

Packet Name Direction

Parameters <KEY, VALUE>

Advertisement Packet | Node-to-BS

(AD-PKT).

<PKT_TYPE, AD-PKT>

<SENDER_ID, VALUE>

<SENSOR_TYPE, VALUE>*

<ACTUATOR_TYPE, VALUE>*

if exists(<SENSOR_TYPE, VALUE>*)
<FUNCTION, VALUE>*

Sensor Schedule Packet | BS-to-Node

(SS-PKT).

<PKT_TYPE, SS-PKT>
<ADDRESSEE_TYPE, VALUE>
<ADDRESSEE, VALUE>
<REQUEST_ID, VALUE>
<PERIOD_TIMESCALE, VALUE>
<PERIOD_VALUE, VALUE>
<LIFETIME_TIMESCALE, VALUE>
<LIFETIME_VALUE, VALUE>
<SENSOR_TYPE, VALUE>
<DATA_TYPE, VALUE>
<SYNTHETIC_DATA_TYPE, VALUE>
if DATA_TYPE.VALUE == THRESHOLD_NOTIFICATION
<THRESHOLD_TYPE, VALUE>
<THRESHOLD_VALUE, VALUE>

Actuator Schedule
Packet (AS-PKT).

BS-to-Node

<PKT_TYPE, AS-PKT>
<ADDRESSEE_TYPE, VALUE>
<ADDRESSEE, VALUE>
<REQUEST_ID, VALUE>
<PERIOD_TIMESCALE, VALUE>
<PERIOD_VALUE, VALUE>
<LIFETIME_TIMESCALE, VALUE>
<LIFETIME_VALUE, VALUE>
<ACTUATOR_TYPE, VALUE>
<ACTUATOR_PARAM, VALUE>*

Unschedule Packet (U- | BS-to-Node

PKT)

<PKT_TYPE, U-PKT>
<ADDRESSEE_TYPE, VALUE>
<ADDRESSEE, VALUE >
<REQUEST_ID, VALUE>

Group Management | BS-to-Node

Packet (GM-PKT)

<PKT_TYPE, GM-PKT>
<ADDRESSEE_TYPE, VALUE >
<ADDRESSEE, VALUE>
<MEMBERSHIP_TYPE, VALUE>
<MEMBERSHIP_COUNT, VALUE>
If MEMBERSHIP_TYPE.VALUE != RESET
<MEMBERSHIP_GROUPS, VALUE>
endlIf

Reset Packet (R-PKT) BS-to-Node

<PKT_TYPE, R-PKT>
<ADDRESSEE_TYPE, VALUE >
<ADDRESSEE, VALUE >

Data Packet (D-PKT) Node-to-BS

<PKT_TYPE, D-PKT>
<SENDER_ID, VALUE>
<TIMESTAMP, VALUE>
<REQUEST_ID, VALUE>
<RESULT, VALUE>

Ack Packet (A-PKT) Node-to-BS

<PKT_TYPE, A-PKT>
<SENDER_ID, VALUE>
<PKT_TYPE_TO_ACK, VALUE>
<ACK_PARAM, VALUE>

42

3.4. The Building Management Framework

Table 3.4. Predefined values of the parameters in the Building Management Frame-
work Communication Protocol packets.

Additional Parameter
<KEY>

Description

PREDEFINED VALUEs

ADDRESSEE_TYPE

The type of addressee in
the following

Node, List of Nodes, GROUP, GROUP_COMPOSITION

ADDRESSEE The addressee of the | N+ | ([NOT] G [STO [NOT] G]*)
packet

REQUEST_ID The unique identifier of a | No predefined value. Eight bit Integer
request

PERIOD_TIMESCALE The timescale of the | MSEC, SEC, MIN, HOUR, DAY
period

PERIOD_VALUE

The period of the request
execution

No predefined value. Six bit Integer

LIFETIME_TIMESCALE

The lifetime of the request

MSEC, SEC, MIN, HOUR, DAY

LIFETIME_VALUE

The timescale of the
request

No predefined value. Six bit Integer

SENSOR_TYPE

The specific sensor type

ACC_X, ACC_Y, ACC_Z, HUMIDITY, IR, LIGHT,
MAGNETIC_X, MAGNETIC_Y, SOUND,
TEMPERATURE, ELECTRICITY, INTERNAL_VOLTAGE

ACTUATOR_TYPE

The specific actuator type

LED

ACTUATOR_PARAM

An actuator parameter

If ACTUATOR_TYPE == LED
LED_O_TOGGLE,
LED_1_TOGGLE,
LED_2_TOGGLE

aggregation can be set.

DATA_TYPE The data type of sensor | SENSED_DATA, THRESHOLD_NOTIFICATION
readings

SYNTHETIC_DATA_TYPE | The synthetic data type of | NO_SYNTHETIC (RAW DATA), AVERAGE, MIN, MAX
sensor readings. Data

THRESHOLD_TYPE

The threshold type applied
on sensor reading

LOWER, BIGGER, TRANSITION

MEMBERSHIP_TYPE

The type of membership
operation

UPDATE, ADD, DELETE, RESET

MEMBERSHIP_COUNT

The counter of the
membership configuration
sent

No predefined value. Eight bit Integer

FUNCTION The type of in-node | ELABORATION_AND_THRESHOLD_STANDARD,
function computed on the | ELABORATION_STANDARD, THRESHOLD_STANDARD,
sampled data AVERAGE, MIN, MAX, THRESHOLD_TYPE_LOWER,

THRESHOLD_TYPE_BIGGER,
THRESHOLD_TYPE_TRANSITION

TIMESTAMP Timestamp of the | No predefined value. Eight bit Integer
transmitted data

RESULT Transmitted data No predefined value. Variable length 8, 16 or 32 bit

Integer

PKT_TYPE_TO_ACK

The packet type to ack

SS-PKT, AS-PKT, U-PKT, GM-PKT

ACK_PARAM

Type of ack

if PKT_TYPE_TO_ACK == SS-PKT || AS-PKT || U-PKT
REQUEST_ID.VALUE

if PKT_TYPE_TO_ACK == GM-PKT
MEMBERSHIP_COUNT.VALUE

43

Chapter 3. Building Management Framework

e The Actuator Schedule Packet (AS-PKT) is a BS-to-Node packet of vari-
able length sent to configure actuation on them. In the packet there are
the same timing fields as in the SS-PKT. Afterwards, there are an AC-
TUATOR_TYPE field with the code of the actuator and an ACTUA-
TOR_PARAM which is filled with a value linked to the actuator type.

e The Unschedule Packet (U-PKT) is a BS-to-Node packet of variable length
sent to unschedule an active sensing or actuation request on them. Apart
from the header, the only field of this packet is the REQUEST_ID to
request an unscheduling.

e The Group Management Packet (GM-PKT) is a BS-to-Node packet with
variable length that is sent to set the groups to which the addressees have
to belong to. In the packet, there is a MEMBERSHIP_TYPE field which
indicates if the groups in the following have to be added to the actual
membership, if the membership has to be completely updated, if some
groups have to be deleted or if the group membership has to be reset. The
field MEMBERSHIP _COUNT represents the counter of the GM-PKTs
sent. MEMBERSHIP_GROUPS is a list of nodes which is present in the
packet if the MEMBERSHIP_TYPE is different from “reset”.

e The Reset Packet (R-PKT) is a BS-to-Node packet with variable length
sent to restore addressees’ initial state. This packet has no fields apart
from the header.

e The Data Packet (D-PKT) is a Node-to-BS packet with variable length
sent when some sensed and elaborated or just sensed data is ready. The
SENDER._ID field reports the producer of the following data, the TIMES-
TAMP is a progressive number saying the amount of data sent from the
SENDER_ID, the REQUEST_ID indicates what is the request the RE-
SULT data refers to.

e The Ack Packet (A-PKT) is a Node-to-BS packet sent when nodes have
to confirm the reception and elaboration of a packet from the BS. Besides
the PKT_TYPE and the SENDER_ID fields, this packet contains a field,
PKT_TYPE_TO_ACK, which reports the packet type that is acknowledged
and an ACK_PARAM that reports a field of the acknowledged packet (e.g.
in the case of acknowledging a SS-PKT, the REQUEST_ID is provided).

In order to understand the interactions between BS and sensor nodes
through the BMFCP, Figure 3.7 shows a sequence diagram of example. Once
a node is started, it periodically emits AD-PKTs until the BS sends a con-
figuration packet (group management or request scheduling). Through the
GM-PKT, the BS manages the membership of target nodes. After the node
processes the received packet, it sends the A-PKT to acknowledge the packet
received to the BS. The SS-PKT (or AS-PKT) allows to request a specific
sensing (or actuation) operation to target nodes. The node transmits sensed

44

3.4. The Building Management Framework

(processed) data to the BS through the D-PKT. The BS can unschedule pre-
viously scheduled requests through the U-PKT. Finally the BS sends out the
R-PKT to reset target nodes that start again to send AD-PKTs.

BsS Node
T T
) 1
o AD-PKT [
Vo AD-PKT
new SA() I_T_l
{ ‘
L GM-PKT L update
|j_| - A-PKT T’jybwbership()
I::l S’;S-:::rl' — _schedule
L - JRequest()
] | =
' _:_ sample
. "‘]Sensor()
process ' D-PKT P
Dataol T
I;I)}:i; =T unschedule
[= - |_IRequest()
T . -
. R-PKT -
' aqeset()
' AD-PKT =
: AD-PKT [:I
1

Fig. 3.7. Sequence Diagram of the interactions between BS and Nodes.

BMFCP relies on standard network protocols. Actually, in the TinyOS im-
plementation of the framework, the downstream communication (from BS to
nodes) is based on the Dissemination protocol [67]. Dissemination is a service
for establishing eventual consistency on a shared variable. Every node in the
network stores a copy of this variable. The dissemination service tells nodes
when the value changes, and exchanges packets so it will reach eventual consis-
tency across the network. At any given time, two nodes may disagree, but over
time the number of disagreements will shrink and the network will converge
on a single value. Eventual consistency is robust to temporary disconnections
or high packet loss. Unlike flooding protocols, which are discrete efforts that
terminate and not reach consistency, dissemination assures that the network
will reach consensus on the value as long as it is not disconnected. So, using

45

Chapter 3. Building Management Framework

the Dissemination protocol in the BMF, every node receives any packet sent
from the BS and, by simply analyzing the packet destination field (in the ap-
plication level protocol) representing target nodes or groups, the node decides
if the packet is to be handled (the node belongs to the destination field) or
discarded (the node does not belong to the destination field). The upstream
communication relies on the Collection Tree Protocol (CTP) [67]. CTP is a
tree-based collection protocol. In CTP, some number of nodes in a network
advertise themselves as tree roots. Nodes form a set of routing trees to these
roots. CTP is address-free in that a node does not send a packet to a partic-
ular root; instead, it implicitly chooses a root by choosing a next hop. Nodes
generate routes to roots using a routing gradient. In the case of BMF, the
only node set as root is the BS, so that all the packets are implicitly directed
to the BS itself.

3.4.3 BMF-enabled Application Scenarios

The BMF was specifically designed for dense WSANs based on a wide range
of heterogeneous platforms with numerous application scenarios. The BMF is
mainly targeted to building indoors, however, its versatility would allow the
framework to be effectively reused in different contexts (e.g. building outdoor
monitoring, area monitoring, industrial monitoring, agriculture monitoring).
In particular, the BMF has been used for:

1. energy monitoring, analysing data coming from the sensors to understand
the energy spent in a building;

2. behavioural monitoring, understanding the behaviour of people in build-
ing;
3. space monitoring, understanding the use of the spaces in building;

4. intelligent actuation, using actuators to achieve specific aims (e.g. energy
saving, maximization of the comfort in the building).

In literature, there are several cases of energy monitoring through WSNs
which can be more effectively re-engineered through BMF. In particular,
in [68] low power cameras are used to monitor the occupancy of several rooms
through the capture of small images that are elaborated on the node through
processing algorithms. To allow controlling the HVAC (Heating, Ventilation
and Air Conditioning) system for those rooms by using BMF, such cameras
could be dynamically grouped and controlled so to seamlessly manage the
application deployment in several building without the need to reprogram the
nodes individually; similarly, the system to monitor, schedule, and manage
energy in conference rooms proposed in [69] could also be greatly enhanced
through the BMF; in [70] authors show a system to monitor office occupancy
detection, ambient light and the state of lighting system in order to under-
stand the waste of energy of the lighting system. In this case waste of energy

46

3.5. A case study: the SmartEnLab

is intended like the energy used to power on the lights if the ambient light
from the windows was enough or if there are no people in the office. In the
system all nodes were programmed to periodically send every few seconds the
data of ambient lighting, lighting state and presence detection.

The realization with the BMF of the cases exposed above would be effective
and straightforward due to the flexibility of the framework that allows to set
over the air the proper nodes to produce the data requested at the target rate.
The BMF autonomously collects data from the WSAN, stores it in files or
database and allows to elaborate it in real time through a specifically created
OSGi-Bundle which can be designed, for example, to process data and actuate
actions on the network. The possibility to introduce new and dynamic OSGi-
Bundles on the BS side is very important and represents a major improvement
with respect to other existing frameworks which provide monolithic BSs that
can be extended only stopping and restarting a network.

The applicability of BMF is elucidated in the next section through a com-
plete and representative energy management case study, namely SmartEnLab.

3.5 A case study: the SmartEnLab

To show the functionalities and the effectiveness of the BMF to support the
monitoring of the inhabitants’ behaviour in a building and energy auditing,
we deployed sensors in a so called smart energy laboratory use case, namely
SmartEnLab. This consists of heterogeneous nodes scattered within computer
laboratory / office environments used to collect information of how the en-
ergy is used in several parts of the structure. In the SmartEnLab the sensor
nodes are distributed throughout the office space to collect the appropriate
data while BMF is responsible for the management of the network and the
configuration of the nodes. The SmartEnLab demonstrates how BMF facili-
tates the management of a heterogeneous WSAN and the collection of data
from the network. SmartEnLab monitors all aspects of energy use and space
usage within the office space. This includes the monitoring of energy spent
in several workstations and utilities such as lighting and heating. These cover
the majority of the energy used in an office space so allowing to attribute
energy cost for each service down to a workstation level.

Providing energy usage patterns is useful for several reasons including:

e To raise awareness of energy costs, which can increase motivation for in-
dividuals to lower their own energy use [71];

e To allow decision making polices for dynamic energy management sys-
tems [72];

e To facilitate a more efficient/greener office space design [73];

47

Chapter 3. Building Management Framework

e To allow intelligent space and energy apportionment, which yields further
reductions in energy use [74].

The testbed consists of heterogeneous nodes scattered within the CLAR-
ITY office space (including 40 workstations) at UCD (University College
Dublin). In the attempt to identify energy usage per workstation, lighting
and heating can be considered as shared entities while electrical sockets can
be attributed to individual workstations. In fact, wall-mounted radiators pro-
vide heating while the office space is provided with a standard lighting array
covering the whole space. Each monitored workstation was provided with a
PC or a laptop and was occupied by a full time employee. The office and
sensor layout is shown in Figure 3.8. Each workstation is furnished with two
types of sensor, an infra-red (IR) presence detector for the occupancy, and an
electricity monitor to measure the electrical energy used by the workstation.
Several light sensors placed above PVC ceiling panels determine the activity of
the lighting array while avoiding exposure to ambient light in the laboratory.
Each radiator is provided with two temperature sensors - one sensor on the
inflow and one on the outflow pipe - used to monitor the radiated energy. In
particular, the SmartEnLab included: (1) ACme Electricity monitors [56] used
to measure the electricity at each workstation; (2) Wieye IR sensor board [75]
on top of Crossbow TelosB motes [54] to measure occupancy and light uti-
lization; (3) Tyndall 25mm motes [55] equipped with temperature sensor for
the radiator activity.

In the context of SmartEnLab, the absence of a BMF would imply that
each node should be programmed individually according to the sensors onto
the node, the rate of sampling from sensors, and the computation to exe-
cute on the sampled data. In addition, the user has the cumbersome issue of
keeping notes of node locations, monitoring period and task synchronization
during deployment. The BMF greatly facilitates this by allowing to set sepa-
rate or joint tasks, group nodes according to certain properties, and initiate
synchronous data collection tasks for individual or multiple groups. SmartEn-
Lab creates a separate group for each destination of use of the nodes and for
each workstation. Nodes are joined to groups as soon as they are deployed in
the laboratory and switched on. Here are the groups that are basically set:

e The workstation group consists of an electricity monitor and an occupancy
monitor. A workstation group is set for each workstation.

e The light array group contains a single node to determine the state of
the lighting array. To save on node transmissions, the BMF allows setting
simple and yet effective aggregation mechanisms such as threshold-driven
transmission used for the lighting array group to identify on/off lighting
state.

e The ambient lighting and temperature group contains a number of nodes
distributed throughout the office to measure the light level and the temper-

48

3.5. A case study: the SmartEnLab

Fig. 3.8. A 3D-rendered snapshot of the SmartEnLab testbed.

ature. A task of average value on light and temperature sensors calculated
over a minute was set for this group.

The electricity group contains the ACme electricity monitors. A task of
average value on electricity sensor calculated over a minute was set on the
nodes of this group.

The presence group contains the presence detectors for each workstation.
SmartEnLab necessitates to set a workstation occupancy state for each
minute. To facilitate this, a task to send the max sensor reading, over a
minute is set to all the nodes belonging to this group.

The radiators group contains nodes equipped with temperature sensor to
sample radiators activity.

All the listed requests were set through the BMF Management GUI Appli-

cation (provided by the BMF Management GUI Bundle) shown in Figure 3.4.
The data coming from the WSAN are automatically stored by the Data Sav-
ing Bundle as soon as it is started (it is started by default). New Bundles
can be dynamically implemented and added to the core set of Bundles to
collect data from the network (as done by the Data Saving Bundle and the
BMF Management GUI Bundle) and elaborate, correlate and visualize it in
different ways.

49

Chapter 3. Building Management Framework

Table 3.5 reports the complete configuration of the building sensor network
set-up.

Table 3.5. Configuration of the building sensor network of SmartEnLab.

SAMPLING | AGGREGATION
GROUP #NODES | SENSING TYPE SELECTION
(sample/s) |(calculation/min)

LIGHT Threshold
1 Light [l 1 1/4
SYSTEM ight[Ix] Transition /
AMBIENTAL 2 Light [Ix] & 1 Aver: 2/4
Temperature [°C] verage
PRESENCE 40 IR 1 Max 1/4
ELECTRICITY 40 Power [W] 1 Average 1/4
RADIATORS 10 Temperature [°C] 60 NONE 1/4

Following, we describe an off-line analysis of the expended energy, the
overall performance evaluation of the BMF, and an estimation of the duration
of a BMF network.

3.5.1 Off-line Energy Analysis

The SmartEnLab approach allowed collecting a large amount of auditing in-
formation from the office space. This section presents the analysis results and
discusses how these can be used to identify source of energy waste prior to
implementing user-personalized energy reduction strategies.

Firstly, we analyse energy and occupancy profiles over a 24-hour period
for each of the monitored workstations. Figure 3.9 reports data for 3 users
within the office showing that each user displays a dissimilar usage/energy
pattern, which requires personalised strategies of energy reductions. User A
is the least efficient using 2000 W/h while spending 3.45 hours at the work-
station. As shown in Figure 3.9, User A uses a high power desktop PC, which
is energy inefficient as not required for the tasks performed by the employee.
In addition, User A shows a tendency to leave the PC on at night, which has
a major contribution to the energy cost, also identified in previous work such
as [76]. User B shows the greatest efficiency of the 3 studied cases. This user
uses 59 W/h of energy and spends 6.6 hours at the workstation with a total
of 8.9 W/h used per hours occupied. User B uses a low-power laptop, which
is switched off over long periods of inactivity. User C uses a laptop to per-
form general office tasks and activate a more powerful desktop PC only when
higher computational needs are required. User C spends 550 W /h of energy

50

3.5. A case study: the SmartEnLab

and spends 2.33 hours at the workstation. These preliminary indications sug-
gest some energy reducing schemes such as informing users that laptops are
preferred for all general purpose computing needs, while the employees can
avail of a shared server to run more demanding tasks not suitable for laptops.

It is interesting to note that sampling rate, node positioning and grouping
could not be identified prior to WSAN deployment. Therefore, BMF has been
key to configure the WSAN at runtime so to allow the achievement of such
results.

In a second instance, the SmartEnLab allowed understanding how pro-
ductivity is correlated with occupancy. Naturally, this has a new purpose to
demonstrate the BMF potential while the correlation between occupancy and
productivity is a complex matter that involves many aspects and recommen-
dations based on workstation occupancy that have to carefully be considered
with several considerations in mind such as job typology and habits of the
employees.

Figure 3.10 depicts the dynamics associated with the heating of the office.
The graph shows the ambient temperature of the room as well as the in-flow
and out-flow temperature on the pipes of one of the radiators in the office.
These temperatures are important to understand the dynamics of the heating
in the office and, as highlighted in [77], are fundamental for determining the
power used by radiators.

Furthermore, by monitoring occupancy, light state and ambient lighting,
the SmartEnLab has automated the development of Light Wise-type energy-
saving strategies - as demonstrated in [70] - to be applied to the lighting
system.

To conclude, the SmartEnLab case study demonstrated the potential of
BMF is easily employed to enable a detailed profiling of the energy spent down
to an individual level in an office space scenario. Thorough building monitor-
ing is a stepping-stone towards achieving building carbon foot-printing [78]
and personalised strategies to achieve high energy-efficiency taking into ac-
count individual needs and personal habits. The next section provides energy
performance evaluation for the BMF in the context of the SmartEnLab, high-
lighting results from energy-saving techniques used to prolong the lifetime of
the network and increase transmission reliability.

3.5.2 Performance Evaluation

BMF sits on top of standard routing mechanisms and therefore its transmis-
sion reliability is inherently dependent on the performance of the underlying
layers. However, BMF can be effectively evaluated by looking at the aggre-
gation mechanisms, which help reducing the number of superfluous packets
across the network, aiming to improve transmission reliability and node life-
time. Hence, the aim of this performance evaluation is to compare four differ-
ent operating modes of the BMF used for the SmartEnLab:

o1

Chapter 3. Building Management Framework

120 B T T T T T
Presence w
100 M Power © !” L
g 80 H o -
]
S 60 1
o
o
40 | 1
20 | E
0 1 1 1 1 1 1 1 1 I I 1
20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00
Time
(a)
T T T T T T T T T T T
50
Presence
Power ©
40
% 30 f)
o)
3
<)
o
20 | B
10 - B
0 ; : : : : : : 1 | |
20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00
Time
T T T T T T T T T T T
140 - Presence ——— H
Power ©
120 H L
100
=
5 80F
2
o
o 60 H
40 H
20 H lJ_,
0 T T T T T T 1 il \.\ 1 1
20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00
Time

()

Fig. 3.9. Energy and occupancy profiles over a 24 hour period for (a) User A, (b)
User B and (c) User C.

92

3.5. A case study: the SmartEnLab

42—
40

T T T T T T T T T T T T T T T T T T T T

In flow temperature [-]
Out flow temperature
Ambiental Temperature A

38 |-
36 -
34
32
30 -
28 - -
26
24
22

Temperature [°C]

20 L | L | L | L | L | I | L | L | L | L | L | L
20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00
Time

Fig. 3.10. Temperature in the office and at the radiators pipes.

(i) SADL (Selection and Aggregation with Dynamic Length), where selec-
tion, aggregation and the ad-hoc communication scheme of BMF based
on dynamic packet length (DL) are activated,;

(ii) ADL (Aggregation with Dynamic Length), where only aggregation and
DL are activated so each sensor node sends data from all the sensors
available;

(i) DL, where only the DL mechanism is activated so raw sensed data are
sent according to the sampling time;

(iv) FL, where a conventional protocol based on fixed-length packets (here-
after referred as Fixed Length - FL scheme) is used to enable raw sensed
data transmission without any selection and aggregation.

In particular, for each experiment, the considered performance metrics -
packet loss and transmission energy - have been experimentally evaluated over
a monitoring period of 30 minutes. The experiments have been executed by
varying the sensor node radio duty-cycle (DC) values in 2%, 1%, 0.5%, 0.3%. It
is worth noting that a DC set to less than 1% can guarantee network longevity
of more than a month. Moreover, in the FL operating mode, the high level
packets are all set to 10 bytes whereas in the DL-based operating modes high
level packet length ranges from 7 to 10 bytes. The building sensor network
parameters (sampling, selection and aggregation) are set as in Table 3.5.

Figure 3.11 reports packet loss computed for the four different schemes
by varying DC. Results demonstrate how the aggregation mechanism can

93

Chapter 3. Building Management Framework

be effectively traded-off with an increase of duty-cycle to achieve a signif-
icant reduction of packet loss and a decrease of node energy consumption.
In particular, the technique yields an average increase of more than 10% in
transmission reliability with respect to the DL and FL, while reducing signif-
icantly the energy consumption in transmission. In node aggregation allows
to appreciably reduce the radio channel usage, too. In sum, by leveraging on
the in-node and dynamic length packet mechanisms, BMF can achieve lower
duty-cycle therefore saving energy against classic FL transmission mecha-
nisms. Figure 3.12 shows the transmission energy. This evaluation is carried
out by using a software-based Energy component [79] which allows to know
how long the radio is sending and listening to the radio channel by monitoring
the right pins of the microcontroller. It is worth noting that the average en-
ergy spent can be approximated as constant and the SADL and ADL schemes
outperform the DL and FL schemes, which are not based on in-node aggre-
gation. In-node aggregation benefits are mainly network traffic reduction and
transmission energy saving as also highlighted in [80].

SADL —3—

50 - ADL —X - ¥ A
DL - -

45 - FL —& - 1

% Packet Loss

Fig. 3.11. Packet loss evaluation.

Next section provides an estimation of the duration of a network both
running the BMF and applying only some of the energy-saving techniques
used to prolong the lifetime of the network.

3.5.3 Lifetime estimation of the BMF-enabled Network

The same experiments explained in Section 3.5.2 were performed to estimate
the WSAN life in terms of energy spent while running the BMF. For these

o4

3.5. A case study: the SmartEnLab

06 - . ¥

%‘\\\\ - T —
05 - & - ,
S 04 K -
E SADL —3—
3 ADL —X -
g 93 DL - ¥~ 1
S FL —© -
202 .
01 ,
e e — i

2% 1% 0.5% 0.3%

DC

Fig. 3.12. Transmission energy evaluation.

experiments the Energy component introduced in the previous section was
set to detect not only the period the radio was transmitting data but also
the period in which the radio was receiving and in sleep mode. Once the
duration for each radio mode was known, it was possible to calculate the
mean and the max radio energy spent (by using data from the used radio
chip datasheet [81]) by the nodes in our deployment for each experiment type
described in Section 3.5.2. Figure 3.13(a) and Figure 3.13(b) show respectively
the mean and the max radio energy spent in mW for each experiment.

Considering each battery powered node equipped with two 1.2V recharge-
able batteries of 2700 mAh and considering no supplemental energy consump-
tions in the nodes, the mean and the min network durations, represented in
Figure 3.14(a) and Figure 3.14(b), would be respectively between 31 and 110
days and between 18 and 105 days depending on the operating modes and the
duty cycle.

Since sensor nodes are working with very low duty cycles, consumptions
derived from the microcontrollers and the sensors on the nodes have to be
considered because they are comparable to the energy spent by the radio chip
while it is in the sleep mode. So, considering the CPU active at 30% of the
time, the estimated mean and min network durations decrease respectively
to an amount between 47 and 22 days and between 46 and 15 days (see
Figure 3.15(a) and Figure 3.15(b)) depending on the operating modes and
the duty cycle.

95

Chapter 3. Building Management Framework

16 T T 16 T T T T
SADL —H— SADL —H—
ADL —X - ADL —X - N
14 | DL - A- . 14 L DL - A- A
FL —& - FL —& -
12 F e 12 F e

Energy [mJ/s]
(o]
T
1
Energy [mJ/s]
(o]
T

4t . 4t .
2+ . 2+ -
0 1 1 1 1 0 1 1 1 1
2% 1% 0.5% 0.3% 2% 1% 0.5% 0.3%
DC DC
(a) (b)
Fig. 3.13. The (a) Mean and the (b) Max radio energy spent.
120 T T 120 — T T T
SADL —F—
ADL —X -
DL - A-
100 - . 100 -
2 2
© 80 q c 80
k=) K=)
c c
i K}
© ©
5 60 1 S 60
a a
=< =<
E E
2 4a0r . 2 40r
z z
20 - . 20 -
0 1 1 1 1 0 1 1 1 1
2% 1% 0.5% 0.3% 2% 1% 0.5% 0.3%
DC DC

(a) (b)

Fig. 3.14. The (a) Mean and the (b) Min network durations considering only the
radio consumption.

o6

3.5. A case study: the SmartEnLab

Network Duration [days]

50

40

30

20

2% 1% 0.5% 0.3%

Fig. 3.15. The (a) Mean and the (b) Min

o7

Network Duration [days]

50

40

30

20

T T

SADL ——

ADL —X -
DL - A-

FL —& -

2%

1% 0.5%

network durations.

0.3%

4

Mobile Agent Platform for Sun SPOT - MAPS

In this chapter the design, implementation and experimentation of MAPS
(Mobile Agent Platform for Sun SPOT), an innovative Java-based framework
for wireless sensor networks based on Sun SPOT technology which enables
agent-oriented programming of WSN applications is presented. The MAPS
architecture is based on components that interact through events. Each com-
ponent offers a minimal set of services to mobile agents that are modeled
as multi-plane state machines driven by ECA rules. In particular, the offered
services include message transmission, agent creation, agent cloning, agent mi-
gration, timer handling and easy access to the sensor node resources (sensors,
actuators, input switches, flash memory and battery).

Agent programming with MAPS is presented through both a simple exam-
ple related to mobile agent-based monitoring of a sensor node and a more com-
plex case study for realtime monitoring in smart buildings. Moreover, a perfor-
mance evaluation of MAPS carried out by computing micro-benchmarks, re-
lated to agent communication, creation and migration, is illustrated and a de-
tailed comparison between MAPS and Agent Factory Micro Edition (AFME)
is shown.

4.1 Introduction

Among the programming paradigms proposed for the development of WSN
applications [82] [83], the mobile agent based paradigm [84] [85], which has
already demonstrated its effectiveness in conventional distributed systems as
well as in highly dynamic distributed environments, can effectively deal with
the programming issues that WSNs have posed. In particular, a mobile agent
is a software entity encapsulating dynamic behavior and able to migrate from
one computing node to another to fulfill distributed tasks. We believe that
mobile agents can provide more benefits in the context of WSNs than in con-
ventional distributed environments. In particular, mobile agents can support

99

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

the programming of WSNs at the application, middleware and network levels.
At the application level, mobile agents can be used as design and programming
abstractions through which WSN applications can be effectively designed and
implemented. At the middleware level, mobile agents can be used for imple-
menting WSN core services such as data aggregation/fusion/dissemination
and query-based information retrieval, and for dynamically deploying new
services through efficient code dissemination. At the network level, mobile
agents can be used as the mobile capsules in active networks for smart multi-
hop routing and other network services. A few trials have to date been devoted
to the development of mobile agent systems (MASs) for wireless sensor net-
works (Agilla [35], actorNet [36], SensorWare [34]); however, none of them has
been specifically developed for the Sun SPOT sensor platform [57], which is
completely programmable in Java, supported by the SquawkVM [29] and com-
patible with J2ME. Indeed, a noteworthy agent-based framework for J2ME
devices, agent factory micro edition (AFME) [86], has been recently ported
on Sun SPOT; however, not being conceived specifically for Sun SPOT tech-
nology, AFME does not completely exploit its functionality.

In this chapter, we propose MAPS (Mobile Agent Platform for Sun
SPOT) [87], an innovative Java-based framework for wireless sensor networks
based on Sun SPOT technology which enables agent-oriented programming of
WSN applications. The architecture of MAPS is component-based and offers
a minimal set of services to mobile agents, including message transmission,
agent creation, agent cloning, agent migration, timer handling and easy ac-
cess to the sensor node resources (sensors, actuators, input switches, flash
memory and battery). The dynamic behavior of mobile agents is modeled as
multi-plane ECA-based state machines. MAPS therefore enables a highly ef-
fective application programming through an integration of three of the most
important paradigms for WSN programming: agent-oriented, event-based and
state-based programming. The effectiveness of MAPS is demonstrated by the
development of simple example applications (e.g. mobile agent-based remote
monitoring of sensors) as well as a more complex case study. While the for-
mer aims at testing MAPS and describing how to program an application
with MAPS, the latter highlights the effectiveness and suitability of MAPS
for developing a real-time monitoring in smart buildings. However, great effec-
tiveness usually implies performance penalties; to address such issues a per-
formance evaluation of the basic mechanisms of MAPS and Sun SPOT (e.g.
communication and migration) has been carefully carried out to quantify the
unavoidable overhead introduced by MAPS.

The contributions that this work offers to the WSN programming research
area are the following:

e A novel Java-based agent platform for Sun SPOT that allows an effec-
tive Java-based development of agents and agent-based applications by
integrating agent oriented, event-driven and state-based programming pa-
radigms. Moreover, being based on a component based approach, which

60

4.2. Mobile agents in WSNs

clearly separates component interfaces from their implementations, MAPS
is easily portable on other Java sensor platforms (e.g. Sentilla JCreate sen-
sors [88]).

e The performance evaluation carried out allows evaluating not only MAPS
per se but also the degree of maturity of the Sun SPOT technology for
supporting (mobile) agent-based applications and systems. An interesting
result is that migration is still an open issue since Sun SPOT mechanisms
supporting migration still need to be improved (e.g. lack of dynamic class
loading) and optimized (hibernation and serialization of Isolates are too
time-consuming operations).

e The development of a real case study concerned with testing the effective-
ness and the suitability of the agent based approach featured by MAPS
for the development of a complex application for the real-time monitoring
in smart buildings [89)].

The rest of the chapter is organized as follows. Section 4.2 explains the deep
correlation between mobile agents and WSNs [90]. Section 4.3 discusses related
work and, in particular, currently available (mobile) agent systems/platforms
for WSNs. Section 4.4 presents the requirements, architecture and the agent
programming model of MAPS. Section 4.5 describes the implementation of
MAPS based on the Java Sun SPOT library and shows a simple example
for exemplifying the agent based application programming with MAPS. Sec-
tion 4.6 shows the performance evaluation of MAPS carried out through
micro-benchmarks, whereas Section 4.7 proposes a real case study developed
through MAPS for the real-time monitoring in smart buildings. Finally, Sec-
tion 4.8 illustrates a detailed comparison between MAPS and Agent Factory
Micro Edition (AFME) [91].

4.2 Mobile agents in WSNs

Mobile agents are a distributed computing paradigm particularly suitable for
supporting the development of distributed applications, services, and proto-
cols in conventional distributed systems as well as in highly dynamic dis-
tributed environments [82] [92]. A mobile agent is a software process able to
migrate from one computing node to another by retaining its execution state.
As advertised by Lange and Oshima in their seminal paper [93], there are at
least seven good reasons to use mobile agents; in the following we elucidate
them by proposing examples in the WSN context:

1. Network load reduction. Mobile agents can access remote resources (e.g.
databases, data repositories, sensors) or communicate with remote mo-
bile/stationary agents or with other software components, by moving to
their locations and interacting with them locally so saving network re-
sources such as bandwidth during the interaction phase. As an example,

61

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

the following scenario is considered: “A sensor node periodically transmits
the sensed data to a sink node which, in turn, processes them to extract
some aggregated information”. The transmission of the sensed data from
the sensor node to the sink node consumes bandwidth in the path from
the sensor node to the sink node (this effect is much more remarkable in
multi-hop paths than in single-hop paths). A mobile agent incorporating
the data processing algorithm can migrate to the sensor node and locally
apply this algorithm so reducing bandwidth consumption. Finally, the mo-
bile agent should also transmit the aggregated data to the sink node but,
in this case, the consumed bandwidth is much lower than the bandwidth
needed for the transmission of raw sensed data.

2. Network latency overcoming. Mobile agents can move to remote nodes
and locally apply real-time control logic for regulating physical/logical
devices/components so avoiding remote control which is heavily affected
by the network latency. An example scenario is as follows: “A remote ac-
tuator/sensor should be calibrated for performing a given task and, then,
controlled in real-time for successfully completing this task”. A mobile
agent equipped with the calibration and control logic can move to the
actuator/sensor node location and locally calibrate and control this ac-
tuator/sensor. In this way, network latency will not affect the real-time
control operations which can be continued to be performed also in case of
lack of network connectivity with the base station.

3. Protocol encapsulation. Mobile agents can encapsulate protocols and dy-
namically deploy them so overcoming standardization or upgrading issues.
Protocols can therefore evolve dynamically or be modified on-demand to
be more efficient. In the following an example in the routing domain is
provided: “A specific routing protocol supporting multi-hop paths should be
deployed in a given zone of a WSN”. A task force of cooperating mobile
agents implementing the routing protocol (e.g. rumor routing [94]) can be
created and migrated into the sensor nodes of the target WSN zone. When
a new protocol version is defined, a new task force implementing the new
protocol is launched for replacing the previous task force at run-time.

4. Asynchronous and autonomous execution. Asynchrony and autonomy are
distinctive properties of mobile agents. Once injected into the network,
mobile agents can autonomously carry out the programmed tasks and
support disconnected operations by operating asynchronously with re-
spect to the process or device that has generated them. These properties
are very important in dynamic environments where the network topol-
ogy rapidly changes and connections are not stable so that they can be
established only for short time periods. In the following an example of
asynchronous and autonomous computing in WSN is given: “Periodically
the WSN manager queries all the nodes (or a node subset) of its WSN
to have a snapshot of the energy consumption”. To this purpose, a mo-
bile agent, spawn by the manager, can autonomously travel across the

62

4.3. State-of-the-Art and Related Work

network to gather the requested information “node by node” and, finally,
asynchronously report this information to its owner.

. Dynamic adaptation. Mobile agents can sense their execution environ-
ment and react autonomously to changes. Moreover task forces of mo-
bile agents can distribute themselves among the nodes in the network to
solve particular problems in a cooperative and coordinated way. Dynamic
adaptation can support autonomic behavior of a WSN; in fact, WSN are
long-running systems in which device failures are overwhelmingly likely
to occur. Adaptation around failed devices becomes yet another pressing
feature. An example is provided in point 7.

. Orientation to heterogeneity. Mobile agents can be used as integrators of
heterogeneous systems. They can act as wrappers or mediators among
systems based on different hardware and software. They can even be con-
verted to cross the border among heterogeneous systems. An interesting
scenario is “the integration of a WSN with IP-based networks”. A mobile
agent can be sent to the gateway between the WSN and an IP-based net-
work to act as wrapper of the WSN. Any information to be gathered from
the WSN is requested to the mobile agent from components residing in the
IP-based network. The mobile agent, in turn, will translate such requests
into specific requests and submit them to the WSN and, once obtained
the responses, will send them back to the requesting components.

. Robustness and fault-tolerance. As mobile agents possess the ability to re-
act dynamically to unfavorable situations and unexpected events, they can
support the construction of robust and fault tolerant distributed systems.
A frequent fault tolerance scenario in WSNs is the following: “A sensor
node is going to be shut down due to uncharged batteries so the sensing
activity should be activated on a neighbor sensor node at runtime”. All the
mobile agents executing on the uncharged sensor node can (autonomously
or passively) migrate to another equivalent node (already present or newly
introduced) so continuing their activity after migration.

4.3 State-of-the-Art and Related Work

Mobile agents are supported by MASs, which basically provide an agent server,
an Application Programming Interface (API) for mobile agent programming
and, sometimes, supporting programming and administration tools. In par-
ticular, the agent server is able to execute agents by providing them with
basic services such as migration, communication and resource access. In the
last decade, a significant number of MASs for IP-based distributed computing
systems have been developed [84]. The majority of them are Java-based (e.g.
Aglets, Voyager, Ajanta, JADE etc.) and few others rely on other languages
(D’Agents, ARA etc.).

63

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

In the context of WSNs it is challenging to develop MASs for supporting
mobile agent-based programming [95]. Due to the currently available resource-
constrained sensor nodes and related operating systems, building flexible and
efficient MASs is a very complex task. Very few MASs for WSNs have to date
been proposed and actually implemented. The most significant ones are: Sen-
sorWare [34], Agilla [35] and actorNet [36]. A general mobile-agent-oriented
sensor node architecture to which such MASs adhere is shown in Figure 4.1.
The MAS relies on the services offered by the OS and the mobile agents are
executed within the MAS, which supports their inter-node migrations, sensing
capabilities and resource access, and inter-agent communications.

lMA Agent Migration MAI
MAS MAS
oS I OS |

HW abstraction HW abstraction
layer layer
HW HW

. 1 1 .

Fig. 4.1. A general mobile-agent-oriented sensor node architecture.

SensorWare [34] is a general middleware framework based on agent tech-
nology, where the mobile agent concept is exploited. Mobile control scripts
in Tcl model network participants’ functionalities and behaviors, and rout-
ing mechanisms to destination areas. Agents migrate to destination areas
performing data aggregation reliably. The script can be very complex and
diffusion gets slower when it reaches destination areas. The replication and
migration of such scripts in several sensor nodes allows the dynamic deploy-
ment of distributed algorithms into the network. SensorWare defines, creates,
dynamically deploys and supports such scripts. SensorWare is designed for
iPAQ devices with megabytes of RAM. The verbose program representation
and on-node Tcl interpreter can be acceptable overheads; however, they are
not yet on a sensor node.

Agilla [35] is an agent-based middleware where each node supports mul-
tiple agents and maintains a tuple space and neighbor list. The tuple space
is local and shared by the agents residing on the node. Special instructions
allow agents to remotely access another node’s tuple space. The neighbor list
contains the address of all one-hop nodes. Agents can migrate carrying their

64

4.3. State-of-the-Art and Related Work

code and state, but do not carry their own tuple spaces. Agilla is currently
implemented on MICA2, MICAZ and TelosB motes.

While both Agilla and SensorWare rely on mobile agents they employ a dif-
ferent communication model: Agilla’s agent interaction is based on local tuple
spaces, whereas SensorWare’s agent interaction is based on direct communi-
cation based on network messages. In [96] another mobile agent framework is
proposed. The framework is implemented on Crossbow MICA2DOT motes.
In particular, it provides agent migration and agent interaction based both
on local shared memory and network messages. In [97] the authors propose
an extension of Agilla to support direct communication based on messages.
In particular, to establish direct communications, agents are mediated by
a middle component (named landmark) that interacts with agents through
zone-based registration and discovery protocols.

In [36] actorNet, a mobile agent platform for WSNs based on the Actor
model is proposed. In particular, it provides services such as virtual memory,
context switching and multi-tasking to support a highly expressive yet efficient
agent functional language. Currently, the sensor node actorNet platform is
specifically designed for TinyOS on Mica2 sensors.

The above described MASs for WSNs [35] [36] [96] [97] are all imple-
mented for TinyOS-based sensor platforms and use ad hoc languages for agent
programming (Agilla uses a micro-programming language, whereas actorNet
employs a functional-oriented language). Although some supported opera-
tions (e.g. migration) are very efficient, programming complex tasks is not so
straightforward and, moreover, developers need to learn another very specific
language.

Finally, the Java-based AFME [98], a lightweight version of the agent
factory framework purposely designed for wireless pervasive systems and im-
plemented in J2ME, has been recently ported onto Sun SPOT and purposely
used for exemplifying agent communication and migration in WSNs [86]. How-
ever, AFME was not specifically designed for WSNs and, particularly, for Java
Sun SPOT. MAPS, the Java-based agent platform proposed in this chapter, is
conversely specifically designed for WSNs and fully uses the release 4.0 (blue)
of the Sun SPOT library to provide advanced functionality of communication,
migration, sensing/actuation, timing and flash memory storage. Moreover, it
allows developers to program agent-based application in Java according to
the rules of the MAPS framework, and thus no translator and/or interpreter
need to be developed and no new language has to be learnt. In Table 4.1 a
comparison between Agilla, actorNet, AFME and MAPS is shown.

A deeper comparison between AFME and MAPS is shown in Section 4.8.

65

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

Table 4.1. Comparison between Agilla, actorNet, AFME and MAPS.

Agilla actorNet MAPS AFME
Migration Yes Yes Yes Yes
Multitasking Yes Yes Yes Yes
Commmimiziios tuple space | messages messages messages
Model
Programming PIOPICAIY | g0 heme-like Java Java
Language ISA

Assembler- . Finite State
Agent Model like Functional Machine BDI
iﬁentlonal No No No Yes
gents

Sensor Mica2,

MicaZ, Mica2 Sun SPOT | Sun SPOT
Platforms

TelosB

4.4 MAPS Architecture and Programming Model

In this section requirements, architecture (at system and agent level) and
programming model of MAPS are described.

4.4.1 Requirements

The MAPS framework has been appositely defined for resource-constrained
sensor nodes; in particular its requirements are the following:

1. Lightweight agent server architecture. The agent server architecture must
be lightweight, which implies the avoidance of heavy concurrency models
and, therefore, the exploitation of cooperative concurrency to run agents.

2. Lightweight agent architecture. The agent architecture must also be light-
weight so that agents can be efficiently executed and migrated.

3. Minimal core services. The main core services must be: agent migration,
sensing capability access, agent naming, agent communication and tim-
ing. The agent migration service allows an agent to be moved from one
sensor node to another by retaining the code, data and execution state.
The sensing capability access service allows agents to access the sensing
capabilities of the sensor node and, more generally, its resources (actua-
tors, input signalers, flash memory). The agent naming service provides
a region-based namespace for agent identifiers and agent locations. The
agent communication service allows local and remote one-hop/multi-hop
message-based communications among agents. The timing service allows
agents to set timers for timing their actions.

66

4.4. MAPS Architecture and Programming Model

4. Plug-in-based architecture extensions. Any other service must be defined
in terms of one or more dynamically installable components (or plug-ins)
implemented as single mobile agents or cooperating mobile agents.

5. Layer-oriented mobile agents. Mobile agents may be natively characterized
on the basis of the layer to which they belong: application, middleware
and network layer. They should also be able to locally interact to enable
cross-layering.

4.4.2 Agent server architecture

The designed sensor node architecture is shown in Figure 4.2. The architecture
is based on components that interact through events. The choice to design the
architecture according to a component- and event-based approach is motivated
by the effectiveness that such a kind of architecture has demonstrated for
sensor node programming. In fact, the TinyOS operating system [65], the de
facto standard for motes, relies on this kind of architecture.

MA
MAEE MAMM
RM ™ MAN MACC
VM/OS
MA - Mobile Agent — Events

MAEE - Mobile Agent Execution Engine
MAMM - Mobile Agent Migration Manager
MACC - Mobile Agent Communication Channel
MAN - Mobile Agent Naming

RM - Resource Manager

TM - Timer Manager

Fig. 4.2. The sensor node architecture.

In particular, the main components are the following:

67

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

1. Mobile agent (MA). The MAs are computing components which are differ-
entiated on the basis of the layer (application, middleware and network) at
which they perform tasks. Application layer MAs incorporate application-
level logic performing sensor monitoring, actuator control, data filter-
ing/aggregation, high-level event detection, application-level protocols
etc. Middleware layer MAs perform middleware-level tasks such as dis-
tributed data fusion, discovery protocols for agents, data and sensors,
scope management etc. Network layer MAs mainly implement transport
(e.g. data dissemination) and network (e.g. multi-hop routing) protocols.
Agents at different layers can locally interact to implement cross-layering.

2. Mobile agent execution engine (MAFEE). The MAEE is the component
that supports the execution of agents by means of an event-based sched-
uler enabling cooperative concurrency. The MAEE handles each event
emitted by or to be delivered at MAs through decoupling event queues.
The MAEE interacts with the other core components to fulfill service re-

quests (message transmission, sensor reading, timer setting etc.) issued by
the MAs.

3. Mobile agent migration manager (MAMM). The MAMM component sup-
ports the migration of agents from one sensor node to another. In par-
ticular, the MAMM is able to: (i) serialize an MA into a message and
send it to the target sensor node and (ii) receive a message containing a
serialized MA, deserialize and activate it. The agent serialization format
includes the code, data and execution state.

4. Mobile agent communication channel (MACC). The MACC component
enables inter-agent communications based on asynchronous messages.
Messages can be unicast, multicast or broadcast.

5. Mobile agent naming (MAN). The MAN component provides agent nam-
ing based on proxies and regions [47] to support the MAMM and MACC
components in their operations. The MAN also manages the (dynamic)
list of the neighbor sensor nodes.

6. Timer manager (TM). The TM component provides the timer service that
allows for the management of timers to be used for timing MA operations.

7. Resource manager (RM). The RM component provides access to the sen-
sor node resources: sensors/actuators, battery and flash memory.

4.4.3 Agent programming model

The architecture of an MA is modeled as a multi-plane state machine com-
municating through events (see Figure 4.3). This architecture allows exploit-
ing the benefits derived from three paradigms for WSN programming: event-
driven programming [65], state-based programming [99] and agent based pro-
gramming [35]. Moreover, it enables role-based programming, an important

68

4.4. MAPS Architecture and Programming Model

paradigm for agents, as agents behave differently according to the role they
can assume during their lifecycle [100].

Ep

\Z
MPSM :r<_>

Plane;

@ \ @
<<GF>>®Ee D

core primitives 0

Fig. 4.3. The mobile agent architecture.

<<GV>>|=—=

In particular the architecture consists of:

1. Global variables (GV). The GV component represents the data of the MA
including the MA identity.

2. Global functions (GF). The GF component consists of a set of supporting
functions which can access GV but can invoke neither core primitives nor
other functions.

3. Multi-plane state machine (MPSM). The MPSM component consists of
a set of planes. Each plane may represent the behavior of the MA in a
specific role. In particular a plane is composed of:

e Local variables (LV). The LV component represents the local data of
a plane.

e Local functions (LF). The LF component consists of a set of local plane
supporting functions which can access LV but can invoke neither core
primitives nor other functions.

e FECA-based automata (ECAA). The ECAA component represents the
dynamic behavior of the MA in that plane and is composed of states
and mutually exclusive transitions among states. Transitions are la-

beled by ECA rules: E[C]/A, where E is the event name, [C] is a

69

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

boolean expression based on the GV and LV variables, and A is the
atomic action. A transition t is triggered if t originates from the cur-
rent state (i.e. the state in which the ECAA component is), the event
with the event name E occurs and [C] holds. When the transition fires,
A is first executed and, then, the state transition takes place. In par-
ticular, the atomic action can use GV, GF, LV and LF for performing
computations and, particularly, invoking the core primitives (see Fig-
ure 4.4) to asynchronously emit one or more events. The delivery of
an event is asynchronous and can occur only when the ECAA is idle,
i.e. the handling of the last delivered event (ED) is completed.

4. Event dispatcher (ED). The ED component dispatches the event delivered
by the MAEE to one or more planes according to the events that the planes
are able to handle. In particular, if an event must be dispatched to more
than one plane, the event dispatching is appositely serialized.

4.5 The Software Framework

The implementation of MAPS is a real challenge due to the constrained re-
sources of the current sensor nodes. Nevertheless, due to recent advances in
operating systems and virtual machines as well as sensor technologies, an ac-
tual implementation could be done in nesC/TinyOS on TelosB motes or in
Java on Sun SPOT nodes [57]. Although the implementations of the currently
available mobile agent frameworks for WSN (see Section 4.3) have to date been
carried out in nesC/TinyOS, by also using the Maté virtual machine [26], we
believe that the object-oriented features offered by the Sun SPOT technology
could provide more flexibility and extendability as well as easiness of devel-
opment for an efficient implementation of the proposed framework. The Sun
SPOT sensor nodes are based on the SquawkVM [29] which is fully Java com-
pliant and CLDC 1.1-compatible. In particular, the offered features are the
following:

1. Java programming language. Sensor node software is programmed in the
Java language by using Java standard libraries and specific Sun SPOT
libraries such as main Sun SPOT board classes, sensor board transducer
classes and Squawk operating environment classes.

2. NetBeans IDFE for software development. The IDE fully supports code
editing, compilation, deployment and execution for Sun SPOTs. This en-
ables a more rapid software prototyping.

3. Single-hop/multi-hop and reliable/unreliable communications. The cur-
rent version of the Sun SPOT SDK uses the GCF (Generic Connection
Framework) to provide radio communication between SPOTSs, routed via
multiple hops if necessary. Two protocols are available: the radiostream

70

4.5. The Software Framework

send (SourceMA, TargetMA, EventName, Params, Local)
[SourceMA = i1d of the transmitting MA
[TargetMA = id of the MA target |

id of the Group target

ALL for event broadcast to neighbors
EventName = name of the event to be sent

[Params = set of event parameters encoded
as pairs <attribute, value>
[Local = local (true) or remote (false) scoped event

create (SourceMA, MAId, MAType, Params, NodeLoc)

MATA = id of the MA to be created
[MAType = type of the MA to be created
Params = agent creation parameters

[NodeLoc = node location of the created agent

clone (SourceMA, MAId, NodeLoc)
[MATA = 1d of the cloned MA
[NodeLoc = node location of the cloned agent

Imigrate (SourceMA, NodeLoc)
[NodeLoc = target location of the MA | ALL neighbors

lsense (SourceMA, IdSensor, Params, BackEvent)
IdSensor = id of the sensor

[Params = parameters for sensor readings
BackEvent = notifying event containing the readings

lactuate (SourceMA, IdActuator, Params)
IdActuator = id of the actuator
[Params = parameters for actuator writings

input (SourceMA, BackEvent, Params)

[Params = parameters for switch selection

BackEvent = event notifying the input captured from the
selected switch(es)

flash(SourceMA, Params, BackEvent)

[Params = flash memory access parameters

BackEvent = event notifying the completion of the flash
memory operation (if it is a read operation, it contains
the read data)

isetTimer (SourceMA, Params, BackEvent)
[Params = timer parameters
BackEvent = event notifying the timer firing

resetTimer (SourceMA, IdTimer)
IdTimer = 1d of the timer to reset

Fig. 4.4. The prototypal core primitives.

protocol and the radiogram protocol. The radiostream protocol provides
reliable, buffered, stream-based communication between two devices. The
radiogram protocol provides datagram-based communication between two
devices and broadcast communications. This protocol provides no guaran-
tees about delivery or ordering. Datagrams sent over more than one hop
could be silently lost, be delivered more than once and be delivered out
of sequence. Datagrams sent over a single hop will not be silently lost or
delivered out of sequence, but they could be delivered more than once.

71

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

The protocols are implemented on top of the MAC layer of the 802.15.4
implementation.

4. Easy access to the sensor node devices (sensors, flash memory, timer,
battery). The Sun SPOT device libraries contains drivers to easily access
and use the following: the on-board LED, the PIO, AIC, USART and
Timer-Counter devices in the AT91 package, the CC2420 radio chip (in
the form of an IEEE 802.15.4 Physical interface), an IEEE 802.15.4 MAC
layer, an SPI interface (used for communication with the CC2420 and
off-board SPI devices) and an interface to the flash memory.

5. Code migration support. An Isolate is a mechanism by which an appli-
cation is represented as an object. In Squawk, one or more applications
can run in the single JVM. Conceptually, each application is completely
isolated from all other applications. The Squawk implementation has the
interesting feature of Isolate migration, i.e. an Isolate running on one
Squawk VM instance can be paused, serialized to a file or over a network
connection and restarted in another Squawk VM instance.

MAPS is implemented on the basis of the aforementioned Java Sun SPOT
features which fully provide support to the implementation of each compo-
nent introduced in Section 4.4.2. In the following subsections the main MAPS
classes (see Figure 4.5) and related functionalities are described (more imple-
mentation details as well as the MAPS framework code ver. 1.1 can be found
in [101]).

The sensor node components are threads that can be instantiated through
a Factory class based on the Singleton pattern [102]. Such components are
actually created at the node bootstrap when the MobileAgentServer is in-
stantiated by the main application MIDlet. The MobileAgentServer creates
the MobileAgentExecutionEngine which, in turn, creates all the other com-
ponents. As soon as the MobileAgentExecutionEngine starts, it activates an
InterIsolateServer to communicate with mobile agent components and broad-
casts a discovery publish event to announce itself to the neighbor agent-based
sensor nodes. After the creation of the MobileAgentServer, mobile agent com-
ponents can be added to it by the addAgent method.

The MobileAgentExecutionEngine is the core component which exposes
the interface for supporting all the primitives defined in Section 4.4.3 (see
Figure 4.4). The communication among agents, between agents and system
components and, sometimes, among components are based on Event objects.
An Event object is composed of:

e sourcelD, which is the agent / component identifier of the event source;
e targetID, which is the agent / component identifier of the event target;

e typeName, which represents the name of the event types that are grouped
according to their specific function/component (see Table 4.2 for the most
important ones);

72

4.5. The Software Framework

<<interface>>
<<uses>>

1
AppMIDLet IMobile AgentServer

<<interface>>

I !
IMobileAgen tExecutionEngine [<““*>~ MobileAgentServer

H lﬂ|* Plane |

MobileAgentExecutionEngine Agent

1

EventQueue
Isolate

A/

l<<from Sun Spot lib>>

Dispatcher RequestSend | Event |

InterlsolateServe r

<<interface>> <<interface>> <<interface>>
IMACCSender | | IMACCRecciver | | IMANaming |
1 [12 [¢ | 4
MACCSender | MA CCReceiver | | MANaming |
1
1 T

mertacess merfacess
IMAMigrationM an ITimerManager |

[[4 [£

| MA MigrationMan | | TimerManager H”T}Tﬂ"

1

1 <<interface>>
ISensorBoardMan
A
— e |
| SensorManager | | IOManager |

| ISensorBoardComponent | ISensorBoardComponentListener |

PrT——— T _—. —

s I
Rl s [P
LightSensor _ LightListener 1

q

Battery

Fig. 4.5. A simplified class diagram of the MAPS framework.

73

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

e params, which include the event data organized as a chain of pairs <key,

value>;

e durationType, which specifies the event duration. It can assume the fol-

lowing three values:

— NOW, for instantaneous events;

— FIRST_.OCCURRENCE, for events that wait for the first occurrence
of a specific value;

— PERMANENT. In this case, the event is sent every time values set in
the event parameters are met.

Table 4.2. Event types for functions and components.

Function/Component Types Usage description

Agent management AGN_CREATION Request an agent creation
AGN_ID Signal the ID of the created agent
AGN_START Start an agent

Migration

SPOT discovery

Message send/receive

Timer
Execution Engine

Led

Switch

Temperature sensor
Light sensor
Accelerometer sensor

Flash

Battery

AGN_TERMINATED
MGR_EXECUTED
MGR_REQUEST

MGR_ACK

DSC_PUBLISH
DSC_ANSWER
DSC_REFRESH

MSG
MSG_TO_BASESTATION
TMR_EXPIRED
EXE_GET_LOCAL_AGENTS
EXE_GET_NEIGHBORS
LED_ON

LED_OFF

LED_BLINK
SWT_PRESSED_RELEASED
TMP_CURRENT
LGH_CURRENT
ACC_CURRENT

ACC_TILT

FLS_ADD

FLS_GET
BTR_CURRENT_LEVEL

Terminate an agent

Reactivate a migrated agent

Request Migration an agent migration
Signal an accomplished migration
Publish a node discovery message
Signal a discovered node

Refresh the neighbor nodes

Request a msg transmission

Request a msg transmission to the BS
Signal a timer expiration

Request the IDs of the local agents
Request the IDs of the neighbor agents
Request a led to be turned on

Request a led to be turned off
Request a led to blink

Prepare a reading from a switch
Request the current temp value
Request the current light value
Request the current acceleration value
Request the current tilt value

Request to write byte to the flash
Request to read byte from the flash
Request the current battery level

A mobile agent runs in a thread supported Isolate that is instantiated
at agent creation time. It is composed of an event queue which contains the
Event objects delivered to the agent by the Dispatcher but not yet processed,
and the multi-plane state machine containing the dynamic agent behavior.
Interaction between mobile agents and the MobileAgentExecutionEngine is
made possible by the InterIsolate server and enabled by its RequestSender

component (based on the Sun SPOT library).

Remote inter-agent communication is enabled by MACCSender and MAC-
CReceiver component which, respectively, allows transmitting and receiving
network messages according to the radiogram protocol.

The MANaming component allows managing the list of neighbor sensor
nodes and agents by means of a lightweight beaconing-based announcement

74

4.5. The Software Framework

protocol based on broadcast messages supported by the radiogram protocol.
Moreover, agent proxy components [97] are used to route network messages
to migrated mobile agents.

The MAMigrationMan component manages the migration process of a
mobile agent from one sensor node to another. To this purpose, it uses the
methods provided by the SquawkVM to hibernate/dehibernate and serial-
ize/deserialize an isolate. However, as dynamic class loading is not yet sup-
ported by the current version (v4.0 blue) of the Sun SPOT libraries, the agent
code should reside at the destination node. In particular, the migration pro-
cess, which is single-hop and reliable, is implemented as follows: (i) the agent
destination node is contacted through a specific message which causes the
opening of a socket waiting for an incoming request based on the radiostream
protocol; (ii) the agent destination node sends an ACK back to the agent
source node; (iii) the source node therefore establishes a radiostream connec-
tion with the destination node; (iv) the mobile agent is paused, hibernated,
serialized into a byte array and sent over the connection to the destination;
and (v) at the destination node, the mobile agent is received, deserialized,
dehibernated and reactivated.

The TimerManager component handles Timer objects which can be re-
quested by mobile agents to time their operations. Timers can be one-shot or
periodic.

Finally the SensorManager component manages available sensors (ac-
celerometer, light and temperature) and actuators (e.g. LEDs), whereas the
IOManager component manages input from switches and the flash memory.

4.5.1 A programming example: mobile agent-based remote sensor
monitoring

The example agent-based application for monitoring remote sensors is struc-
tured in three agents:

1. DataCollectorAgent, which collects data sensed from the temperature,
light and accelerometer sensors, and the battery of the Sun SPOT node;

2. DataMessengerAgent, which carries collected sensed data from the sensing
node to the base station;

3. DataViewerAgent, which displays the received collected data.

After application deployment and execution, the DataViewerAgent sends
a message to the DataCollectorAgent to start its activity as soon as the user
presses a switch on the Sun SPOT on which the DataViewerAgent is running.
The DataCollector Agent therefore begins its collecting activity and as soon as
the user pushes a switch on the Sun SPOT on which the DataCollector Agent
is running, it creates the DataMessengerAgent with the collected data that
migrates to the DataViewerAgent node for data visualization. Finally, the

75

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

monitoring activity terminates when the user presses again a switch of the Sun
SPOT on which the DataViewerAgent is running. The sequence of interactions
among the three defined agents is shown in Figure 4.6 through an M-UML
sequence diagram [103]. This simple yet effective application, deployed on just
two sensor nodes, allows for testing the most important mechanisms provided
by MAPS.

d va: DataVie werA gent DataCoﬂ%Eﬁ)rA gent

|
Start

T
|
|
MSG(Go=True) | Scnsing
|
I | Switch_Pressing -
|_| | <<create>> J
I |
| | |
I | |
| | i
|
|
|
|

User
|

ima:
DataMessengerAgent

Visualizing MSG.CollectedData M
Data <<localized>> M MSG
M
|
Stop
Sensing
Switch_Pressing D:r
MSG(Go=False)

Fig. 4.6. The M-UML sequence diagram of the interactions among the agents.

For the sake of illustrating MAPS-based programming, the state machine
of the DataCollectorAgent plane along with the action code, which uses the
MAPS library, is shown in Figure 4.7 and briefly explained in the follow-
ing. The AGN_Start event causes the transition from the creation state to the
StartTimer state and the execution of an example operation on the flash mem-
ory (action A0), i.e. adding some data to the flash space of the agent. In the
StartTimer state, when the network message (MSG) sent by the DataView-
erAgent arrives and the guard [go == true] holds, a timer timing the sensing
operations is set up to fire after 3 s, some actuation on the LEDs is requested
and some input from the switches is ready to be read (action Al). When the
timer fires (see TMR_Expired event), the sensing operations are requested (ac-
tion A2). When such operations are completed (see actions A5AR), the guard
[dataColl == numData] holds so that data are collected and, as a visual signal,
an LED is actuated to blink blue (see action A9). When the switch is pressed
by the user, a DataMessengerAgent is created (action A3) and the collected
data are passed to it (action A10) when the AGN_Id event, containing the

76

4.6. Performance Evaluation

agent ID of the created agent, is received. When the event MSG is received
and the guard [go == false] holds, the agent is terminated (action A4).

Ly
String data;
int dataColl;

MSG[go==false]/A 4

AGN_Star/A0 MSG[go==true]/A 1 [dataColl==num Data]/A9

TMR_Expired/A2

TMP_Current/AS

SWT_Pre ssedReleased/A3

SEND
COLLECTED
DATA

DATA
COLLECTED

SWT_PressedRelease d/A3

LGH_Current/A7

ACC_TilvA6 BTR_Current_Level/A8

Actions

A0: byte [] fls = new byte[]{12,13,14,15,16};
Event 1 = new Event(agent.getId(), agent.getId(), Event.FLS_ADD, Event.NOW);
agent.flash(l, fls);

Al: Event timer =new Event(agent.getId(), agent.getId(), Event.TMR_EXPIRED, Event.NOW);
timerID = agent.setTimer (true, 3000, timer);
Event blink = new Event (agent.getId(), agent.getId(), Event.LED_BLINK, Event.NOW);

blink.setParam(ParamsLabel.LED_INDEX, "0");
blink.setParam(ParamsLabel.LED_COLOR, "blue");
agent.actuate(blink) ;
Event swtPressed = new Event (agent.getId(),agent.getId(),Event.SWT_PRESSED_RELEASED, Event.PERMANENT) ;
swtPressed.setParam(ParamsLabel.SWT_PRESSED, "false");
swtPressed.setParam(ParamsLabel.SWT_RELEASED, "true");
swtPressed.setParam(ParamsLabel.SWT_INDEX, "2");
agent.input (swtPressed) ;

A2: Event temp = new Event(agent.getId(), agent.getId(), Event.TMP_CURRENT, Event.NOW);
temp.setParam(ParamsLabel.TMP_CELSIUS, "true");
agent.sense(temp) ;

Event accel = new Event(agent.getId(), agent.getId(), Event.ACC_TILT, Event.NOW);
agent.sense (accel) ;

Event light = new Event (agent.getId(), agent.getId(), Event.LGH_CURRENT, Event.NOW);
agent.sense(light);

Event battery = new Event(agent.getId(), agent.getId(), Event.BTR_CURRENT_LEVEL, Event .NOW);

agent.sense (battery) ;
A3: agent.create("test.Messenger", null, agent.getMyIEEEAddress().asDottedHex());
A4: this.terminateAgent();
A5: data+=event.getParam(ParamsLabel.TMP_TEMPERATURE_VALUE) + "-";
dataColl++;
A6: data+=event.getParam(ParamsLabel.ACC_TILT_X_VALUE) + "-";
dataColl++;
A7: data+=event.getParam(ParamsLabel.LGH_LIGHT_VALUE) + "-";

dataColl++;
A8: data+=event.getParam(ParamsLabel.BTR_BATTERY_VALUE) + "-";
dataColl++;
A9: data+="|";
Event blink = new Event (agent.getId(), agent.getId(), Event.LED_BLINK, Event.NOW);

blink.setParam(ParamsLabel.LED_INDEX, "0");
blink.setParam(ParamsLabel.LED_COLOR, "blue");
agent.actuate(blink);

dataColl = 0

Al0:Event msg = new Event(agent.getId(), messengerAgentID, Event.MSG, Event.NOW);
msg.setParam("collectedData", data);
agent.send(agent .getId(), messengerAgentID, msg, true);
data = "";

Fig. 4.7. The DataCollectorAgent behavior composed of one plane.

4.6 Performance Evaluation

The used testbed for testing and evaluation consists of a Sun SPOT kit (two
sensor nodes and one base station) with the SDK 4.0 version (blue). The
MAPS framework has a memory occupation (without any running agent) of
about 70 kB in central memory, keeping free a space of 378 kB. Such space

7

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

can be exploited for agent execution. The agent developed for the agent mi-
gration benchmarking (see below) needs 22 kB of central memory. The space
occupied by the jar of MAPS on the flash memory is 92 kB out of the 4
MB available [57]. To evaluate the performance of MAPS three micro-kernel
benchmarks have been defined according to [104] for the following mecha-
nisms:

1.

Agent communication. The agent communication time is computed
for two agents running onto different nodes and communicating in a
client /server fashion (request/reply). Two different request/reply schemes
are used: (i) Data BE&F, in which both request and reply contain the
same amount of data and (ii) Data B, in which only the reply contains
data. Results are shown in Figure 4.8. By increasing the amount of data,
communication times linearly increase. The noticed overhead of MAPS
communication with respect to the cases without MAPS is mainly due
to the message format of MAPS which contains event parameters (see
Section 4.5).

Agent creation. The agent creation time is computed for agents having
different number of planes ranging from 1 to 51. Figure 4.9 reports the
results which show that the creation time is linear with respect to the
number of planes.

Agent migration. The agent migration time is calculated for an agent ping-

pong among two single-hop-distant sensor nodes. It has been computed
in the following two cases: (i) with MAPS, which uses the complete func-
tionality of MAPS and (ii) without MAPS, which does not use the MAPS
engine and migration manager but just the Java SunSPOT library. This
allows highlighting the overhead introduced by the framework for having
complete migration reliability. Migration times are computed by varying
the data cargo of the ping-pong agent. Although migration performances
without MAPS are better, complete reliability of agent migration is not
guaranteed. The obtained migration times (see Figure 4.10) are high due
to the slowness of the SquawkVM operations supporting the migration
process. In particular, serialization is a very costly operation: serialization
of the ping-pong agent on an average takes 4.5 s. Moreover, radiostream
connections are very slow to guarantee reliability.

4.7 A case study: Monitoring Smart Buildings through
embedded agents

We believe that agent-based computing [85] can be exploited to implement
the concept of intelligent buildings due to the agent features of autonomy,

78

4.7. A case study: Monitoring Smart Buildings through embedded agents

1800
1600 /
I
g 1400 . L _-o-—-0
2 12001 — == ==
E = —&—Data B&F with MAPS
.§ 1000 —DO— Data B with MAPS
S 800 —&— Data B&F without MAPS
c
g 600 =X = Data B.without MAPS.
£
S 400 Y -t
— —A — A —X ==X
200 . -——% Xommm Xz =2 X— == X = "
XE =X e = X — - X
0
100 200 300 400 500 600 700 800 900 1000
Message data (byte)
Fig. 4.8. Agent communication: request/reply time.
700
600 /
< 500
z /
o
g 400
S
s
£ 300
©
L
© 200
100
0 T T T T T \
1 11, 21 31 41 51
Number of agent planes
Fig. 4.9. Agent creation time.
12000
10000 /’/‘/,/k——/e/,/o’"
m
~..—0
%3000 — o ._o-—-o
E B
£ . — O
c 6000 —
o —-r- —— WITH MAPS
=} o - 4
e —O = WITHOUT MAPS
2 4000
=
2000
0 T T T T T T T T T T |

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Agent cargo (byte)

Fig. 4.10. Agent migration: ping-pong time.

79

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

proactiveness, reactiveness, learnability, mobility and social ability. Specifi-
cally agents can continuously monitor building indoors and their living in-
habitants to gather useful data from people and environment and can coop-
eratively achieve even conflicting specific goals such as personalized people
comfort and building energy efficiency. A few research efforts based on agents
have been to date proposed to design and implement intelligent building sys-
tems [105] [106] [107]. However, none of them provide agents embedded in the
sensor and actuator devices that would introduce intelligence decentralization
and improve system efficiency. This is due to the exploitation of conventional
sensing and actuation systems that do not offer distributed computing de-
vices for sensing and actuation. To overcome this limitation, wireless sensor
and actuator networks (WSAN) [46] can be adopted.

In this section we propose a decentralized and embedded management
architecture for intelligent buildings that is based on WSANs [108] and over-
comes the limitations of the aforementioned solutions [105] [106] [107]. In
particular, the aim of our architecture is to optimize and fully decentralize
the sensing and actuation operations through distributed cooperative agents
both embedded in sensor/actuator devices and running on more capable co-
ordinators (PC, plug computers, PDA /smartphones). The proposed architec-
ture can be easily programmed to support a wide range of building manage-
ment applications integrating comfort, energy efficiency, emergency, safety,
and context-aware information exchange aspects.

4.7.1 Agent-based Architecture

The agent-based architecture (see Figure 4.11) for decentralized and embed-
ded building management is composed of a building manager agent (BMA),
which is installed in the control workstation, coordinator agents (CAs), which
run in the basestations, and sensor agents (SAs), which are executed in
the sensor/actuator nodes. Specifically, the architecture relies on a multi-
basestation approach to allow for large buildings composed of multiple floors
and diversified environments. Thus, the architecture is purposely hybrid: hi-
erarchical and peer-to-peer. Interaction between CAs is peer-to-peer whereas
interactions between CAs and their related SAs (or SA cluster) and between
BMA and CAs are usually master/slave. Moreover, SAs of the same cluster
coordinate to dynamically form up a multi-hop ad-hoc network rooted at the
master CA.

In Figure 4.12 the main functionalities of BMA, CA and SA are shown
according to a layered organization that is partially derived from the Building
Management Framework (BMF) seen in the Chapter 3 [51].

The BMA makes it available the monitoring and control GUI through
which the building manager can issue requests to configure/program the
agent-based building network and visualize its status and the monitored data.
Moreover, the BMA can be purposely extended to incorporate goal-directed

80

4.7. A case study: Monitoring Smart Buildings through embedded agents

| ows [ws | [ows |
j{lnteraction /Interaction linteraction,
4 \| |
SA,1 SAin1| | SAi4 SAini| [SAn1| [SAngnn
T 7 T 1 7
y id Y 4 Y v

L !
(M ulti-hop SA C:‘uster) (M ulti-hop SA C.'uﬂer) (Mu.'ti-hop SA C:‘usterD

Fig. 4.11. Agent-based architecture for decentralized and embedded management
of buildings based on wireless sensor and actuator networks.

behaviors for implementing specific building monitoring and control strate-
gies. The CA includes the following layers:

Heterogeneous Platform Support incorporates a set of adapters that allow

interfacing the system with different type of sensor/actuator platforms.
An adapter is linked to a specific hardware device able to communicate
with a specific sensor platform in the network.

WSAN Management allows to fully manage a WSAN cluster. This layer
supports packet coding/decoding according to the BMF application-level
protocol and packet transmission/reception to/from the WSAN cluster.
Moreover, this layer supports device discovery within the cluster.

Group Organization provides group-based programming of sensors and
actuators, tracking of nodes and groups in the system, and management of
node configurations and group compositions. Node organization in groups
is specifically defined to capture the morphology of buildings. Nodes belong
to groups depending on their physical (location) or logical (operation type)
characteristics.

Request Scheduling allows the support for higher-level application-specific
requests. Through this layer, a CA can ask for the execution of specific
tasks to single or multiple SAs or groups of SAs. Moreover, this layer
keeps track of the requests submitted to the system, waits for data from
the nodes and passes them to the requesting applications. A request is
formalized through the following tuple: R = <Obj, Act, R, LT>, where

81

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

BMA's Layers

Monitoring & Control
GuUI

Goal-directed Behaviors

System Programming

CA Communication

CA's Layers

Inter-CA Coordination BMA Communication

Request Scheduling

Group Organization

WSAN Management

Heterogeneous Platform Support

SA's Layers
DynamicGroup || In-node Signal || Multi Request
Management Processing Scheduling

Node Management

Sensing and Actuation

WSAN Management Management

Hardware Sensor Platform

Fig. 4.12. The layered organization of BMA, CA and SA.

Obj is a specific sensor or actuator belonging to a node, Act is the action
to be executed on Obj, R is the frequency of each executed Act, LT is the
length of time over which these actions are to be reiterated. Moreover, a
request can target a single node or a group of nodes having Obj.

o Inter-CA Coordination offers efficient mechanisms for coordination be-
tween CAs. Specifically, CAs cooperate for submitting queries and retriev-
ing data spanning multiple SA clusters.

The SA is designed around the following layers:

e Hardware Sensor Platform allows to access the hardware sensor/actuator
platform. In particular, the layer facilitates the configuration of the plat-
form specific drivers and the use of the radio.

82

4.7. A case study: Monitoring Smart Buildings through embedded agents

WSAN Management manages the node communication with the reference
CA according to the BMF application protocol and among the cluster
nodes through the network protocol provided by the node sensor platform.

e Sensing and Actuation Management allows to acquire data from sensors
and execute actions on actuators. In particular, this layer allows to address
different types of sensors/actuators in a platform independent way.

e Node Management is the core of the SA and allows to coordinate all
the layers for task execution. In particular, it handles events from the
lower layers every time that a network packet arrives or data from sen-
sor/actuator are available, and from the upper layers every time that data
are processed or a stored request has to be executed.

e Dynamic Group Management provides group management functionalities
to the SA. A node can belong to several groups at the same time and its
membership can be dynamically updated on the basis of requests from

CAs.

e In-node Signal Processing allows the SA to execute signal processing
functions on data acquired from sensors [64]. It can compute simple ag-
gregation functions (e.g. mean, min, max, variance, R.M.S.) and more
complex user-defined functions on buffers of acquired data.

o Multi Request Scheduling allows the scheduling of sensing and actuation
requests. In particular, it stores the requests from CAs and schedules them
according to their execution rate.

4.7.2 MAPS-Based Implementation

The agent-based building management architecture is currently implemented
through MAPS. In this section we present the MAPS-based implementation
of the proposed building management architecture at sensor-node side, specif-
ically behavior and event-based interactions of the SA.

The MAPS-based SA (hereafter simply named SA) interacts with its clus-
ter CA through events as sketched in the sequence diagram of Figure 4.13.
Once the SA is created, it periodically emits the BM_SA_ADVERTISEMENT
event until the CA sends a configuring event (group management or re-
quest scheduling). Through the BM_.GROUP_MANAGEMENT event, the
CA manages the membership of target SAs (see 4.7.1). After the SA pro-
cesses the received event, it sends the BM_ACK event to the CA. The
BM_SENSOR_SCHEDULE (or BM_ACTUATOR_SCHEDULE) event allows
to request a specific sensing (or actuation) operation to target SAs. The
SA transmits sensed (processed) data to the CA through the BM_DATA
event. The CA can unschedule previously scheduled requests through the
BM_UNSCHEDULE event. Finally the CA sends out the BM_SA_RESET
event to reset target SAs.

83

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

CA SA

I 1
. _ BM_SA_ADVERTISEMENT D
: . BM_SA_ADVERTISEMENT D

new SA(:
{ |
/\l' | BM_GROUP_MANAGEMENT |

3 update
- BMACK [[Membership()

[] BM_SENSOR_SCHEDULE :

T BM ACK =T schedule
|:'| = L | Request()

i L sample

] | \sensor()

process ! BM_DATA | |~

Data()-
|

BM_UNSCHEDULE

=T unschedule
BM_ACK | /Request()
g %
BM_SA_RESET !
| |-reset()
_ BM_SA_ADVERTISEMENT <

1
. BM_SA_ADVERTISEMENT I::I
1

~g-g--0-0-01

Fig. 4.13. Sequence Diagram of the interactions between CA and SA.

Tables 4.3 and 4.4 report the defined MAPS-based building management
events and the predefined values of their parameters. In particular, an event is
defined by its standard parameters: EventSender ID, EventTarget 1D, Event
Type, Event Occurrence. The defined events are of two possible super types:
MSG (sent by CA to SA) and MSG_TO_BASESTATION (sent by SA to CA).
Both types are further specialized in the defined BM events as reported in the
pairs <MSG_TYPE, BM _event>of the 3rd column of Table 4.3. Moreover,
each event type has its own additional parameters, which are described in Ta-
ble 4.4. It is worth noting that the ADDRESSEE value can be set through the
regular expression formalized in Expression 4.1 where SA is a sensor agent of
the building management architecture, G is an element from the set of defined
groups, STO is a set theory operator (e.g. union, intersection, difference) and
NOT is the negation. Thus, the addressee of an event can be either one or
more SAs, or SAs belonging to groups or complex compositions of groups.

SAT|([NOT|G[STO[NOT|G]") (4.1)

84

4.7. A case study: Monitoring Smart Buildings through embedded agents

Table 4.3. Defined building management events.

Event Name Standard Parameters Additional Parameters
<KEY, VALUE>
BM_SA_ ID_SA; <MSG_TYPE, BM_SA_ADVERTISEMENT>
ADVERTISEMENT ID_CA; <SENSOR_TYPE, VALUE>*
Event.MSG_TO_BASESTATION; | <ACTUATOR_TYPE, VALUE>*
Event.NOW if exists(<SENSOR_TYPE, VALUE>*)
<FUNCTION, VALUE>*
BM_SENSOR_ ID_CA; <MSG_TYPE, BM_SENSOR_SCHEDULE>
SCHEDULE ID_SA; <ADDRESSEE_TYPE, VALUE>
Event.MSG; <ADDRESSEE, VALUE>
Event.NOW <REQUEST_ID, VALUE>
<PERIOD_TIMESCALE, VALUE>
<PERIOD_VALUE, VALUE>
<LIFETIME_TIMESCALE, VALUE>
<LIFETIME_VALUE, VALUE>
<SENSOR_TYPE, VALUE>
<DATA_TYPE, VALUE>
<SYNTHETIC_DATA_TYPE, VALUE>
if DATA_TYPE.VALUE == THRESHOLD_NOTIFICATION
<THRESHOLD_TYPE, VALUE>
<THRESHOLD_VALUE, VALUE>
BM_ACTUATOR_ ID_CA; <MSG_TYPE, BM_ACTUATOR_SCHEDULE>
SCHEDULE ID_SA; <ADDRESSEE_TYPE, VALUE>
Event.MSG; <ADDRESSEE, VALUE>
Event.NOW <REQUEST_ID, VALUE>
<PERIOD_TIMESCALE, VALUE>
<PERIOD_VALUE, VALUE>
<LIFETIME_TIMESCALE, VALUE>
<LIFETIME_VALUE, VALUE>
< ACTUATOR_TYPE, VALUE>
<ACTUATOR_PARAM, VALUE>*
BM_ ID_CA; <MSG_TYPE, BM_UNSCHEDULE>
UNSCHEDULE ID_SA; <ADDRESSEE_TYPE, VALUE>
Event.MSG; <ADDRESSEE, VALUE >
Event.NOW <REQUEST_ID, VALUE>
BM_ ID_CA; <MSG_TYPE, BM_GROUP_MANAGEMENT>
GROUP_ ID_SA; <ADDRESSEE_TYPE, VALUE >
MANAGEMENT Event.MSG; <ADDRESSEE, VALUE>
Event.NOW <MEMBERSHIP_TYPE, VALUE>
<MEMBERSHIP_COUNT, VALUE>
If MEMBERSHIP_TYPE.VALUE != RESET
<MEMBERSHIP_GROUPS, VALUE>
BM_ ID_CA; <MSG_TYPE, BM_SA_RESET>
SA_RESET ID_SA; <ADDRESSEE_TYPE, VALUE >
Event.MSG; <ADDRESSEE, VALUE >
Event.NOW
BM_DATA ID_SA; <MSG_TYPE, BM_DATA>
ID_CA; <TIMESTAMP, VALUE>
Event.MSG_TO_BASESTATION; <REQUEST_ID, VALUE>
Event.NOW <RESULT, VALUE>
BM_ACK ID_SA; <MSG_TYPE, BM_ACK>
ID_CA; <MSG_TYPE_TO_ACK, VALUE>
Event.MSG_TO_BASESTATION; | <ACK_PARAM, VALUE>
Event.NOW

The SA agent behavior consists of two types of planes: Manager plane
and Request plane. While the Manager plane is created at the SA creation
time and handles all node targeting events, a Request plane is created by
the Manager plane every time that a new request schedule is received. This
type of plane is removed when it completes its task or due to the reception of

85

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

Table 4.4. Additional parameters of the building management events.

Additional Parameter Description PREDEFINED VALUEs
ADDRESSEE_TYPE The type of event target SA, List of SAs, GROUP, GROUP_COMPOSITION
ADDRESSEE The event target SA+ | ([NOT] G [STO [NOT] G*)

REQUEST_ID The unique identifier of a request no predefined int value

PERIOD_VALUE

The period of the request execution

no predefined int value

PERIOD_TIMESCALE

The timescale of the period

MSEC, SEC, MIN, HOUR, DAY

LIFETIME_TIMESCALE

The lifetime of the request

MSEC, SEC, MIN, HOUR, DAY

LIFETIME_VALUE

The timescale of the request

no predefined int value

SENSOR_TYPE

The specific sensor type

ACC_X, ACC_Y, ACC_Z, HUMIDITY, IR, LIGHT,
MAGNETIC_X, MAGNETIC_Y, SOUND, TEMPERATURE,
ELECTRICITY, INTERNAL_VOLTAGE

ACTUATOR_TYPE

The specific actuator type

LED

ACTUATOR_PARAM

An actuator parameter

|f ACTUATOR_TYPE == LED
LED_O_TOGGLE,
LED_1_TOGGLE,
LED_2_TOGGLE

DATA_TYPE

The data type of sensor readings

SENSED_DATA, THRESHOLD_NOTIFICATION

SYNTHETIC_DATA_
TYPE

The synthetic data type of sensor
readings. Data aggregation can be
set.

NO_SYNTHETIC (RAW DATA), AVERAGE, MIN, MAX

THRESHOLD_TYPE

The threshold type applied on
sensor reading

LOWER, BIGGER, TRANSITION

MEMBERSHIP_TYPE

The type of membership operation

UPDATE, ADD, DELETE, RESET

MEMBERSHIP_COUNT

The counter of the membership
configuration sent

no predefined int value

FUNCTION The type of in-node function | ELABORATION_AND_THRESHOLD_STANDARD,
computed on the sampled data ELABORATION_STANDARD, THRESHOLD_STANDARD,
AVERAGE, MIN, MAX, THRESHOLD_TYPE_LOWER,
THRESHOLD_TYPE_BIGGER,
THRESHOLD_TYPE_TRANSITION
TIMESTAMP Timestamp of the transmitted data no predefined int value
RESULT Transmitted data no predefined int value

MSG_TYPE_TO_ACK

The message type to ack

BM_SENSOR_SCHEDULE, BM_ACTUATOR_SCHEDULE,
BM_UNSCHEDULE,
BM_GROUP_MANAGEMENT

ACK_PARAM

Type of ack

if MSG_TYPE_TO_ACK == BM_SENSOR_SCHEDULE | |

BM_ACTUATOR_SCHEDULE | | BM_UNSCHEDULE
REQUEST_ID.VALUE

if MSG_TYPE_TO_ACK == BM_GROUP_MANAGEMENT
MEMBERSHIP_COUNT.VALUE

an unschedule event. Agent planes receive events from the MAPS dispatcher
component that is programmed to deliver the events fetched from the agent
queue to the plane in charge to process them. The dispatcher rules are reported

in Table 4.5.

The Manager plane is reported in Figure 4.14. In particular, after agent
creation, the Manager plane starts a periodic timer to advertise the agent
presence along with its sensor/actuator available functions and waits for an
incoming event from the CA. When it receives the first event, the timer is reset.

86

4.8. AFME/MAPS comparison

Table 4.5. Dispatcher rules.

Event Plane

BM_ SENSOR SCHEDULE MANAGER
BM ACTUATOR SCHEDULE MANAGER
BM_ UNSCHEDULE MANAGER
BM_GROUP _MANAGEMENT MANAGER
BM SA RESET MANAGER
Event. TMR_EXPIRED MANAGER
<ID, IDfMXNAGERiPLANE>

Event. TMR_EXPIRED, REQUEST
<ID, REQUEST PLANE ID>

Event.SENSOR _CURRENT READING, | REQUEST
<ID, REQUEST PLANE ID>

Each received event is filtered against the current SA’s group membership. If
the filtered event is for the current SA, it is processed according to its type.
A more detailed description of each action of the Manager plane is provided
using both a self-explanatory pseudocode (see Figure 4.14) and the MAPS
code (intended for MAPS programmers; see Figure 4.15).

In Figure 4.16 the Sensing Request plane is portrayed. This plane is created
every time that the agent receives a BM_SENSOR_SCHEDULE event. In
particular, after the Sensing Request plane creation, the plane creates and
submits the MAPS sensing event formalizing the sensing request. A sensing
request can be either one-shot or periodic with a given lifetime. The request
is scheduled until LIFETIME_ELAPSED==true after the expiration of the
periodic timer driving the submission of the sensing event. A more detailed
description of each action of the Sensing Request plane is provided using both
a self-explanatory pseudocode (see Figure 4.16) and the MAPS code (intended
for MAPS programmers; see Figure 4.17).

4.8 AFME/MAPS comparison

This section proposes an in-depth analysis of the only two available Java-
based mobile agent platforms for WSNs: Mobile Agent Platform for Sun SPOT
(MAPS) and Agent Factory Micro Edition (AFME) [98]. In particular, the
architecture, programming model and basic performance of MAPS and AFME
are described and compared.

Moreover, a simple yet effective case study concerning a mobile agent-
based monitoring system for remote sensing and aggregation is proposed. This
case study is developed both in MAPS and AFME on Sun SPOTs so as
to allow both an analysis of efficacy of their programming models and an
evaluation of their performances.

87

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

[msgType ==
AGN| Start /AQ BM_SA_RESET] /A8
: MSG /A2
WAITING FOR = MSG
_ FILTERING
WSG I8 NOT
A) FOR THIS SA 7=
VR EXPIRED A1 @ O
&)
PROCESSING
MESSAGE
<
= =
< o s
o = =
= 2 .E El
12 y & ce &
g5 a0 z 2 4
= ‘:(‘J)' =9 23 ;L g
P 'E; % g ‘E >
£ % g = C 5
= = [l 1] E
w =2 m o
2 & B = 8
= < o @
o | W [0]
[sevoackTome| B
/A9

AQ:

Al:
A2:

4.8.1 Agent

AFME [109] [86] [98] is an open-source lightweight J2ME MIDP compliant
agent platform based upon the pre-existing Agent Factory framework [110]
and intended for wireless pervasive systems. Thus, AFME was not specifically
designed for sensor networks but, thanks to a recent support of J2ME onto
the Sun SPOT sensor platform, it can be adopted for developing agentbased

firstProcessedEvent=FALSE
Start a periodic Event. TMR_EXPIRED to send the BM_SA_ADVERTISEMENT
Send BM_SA_ADVERTISEMENT to CA
if the MSG isforthis SA
firstProcessedEvent=TRUE && resetTimer (ID_TIMER)

: msgType = msgEvent.getParam(ParamsLabel MSG_TYPE)
: Create a new Sensor Plane:

PlanelD = ID_REQUEST, the Request as parameter and start it.

: Create a new Actuator Plane:

PlanelD = ID_REQUEST. the Requesd asparameter and start it

: Unschedule the Request deallocating the Plane with ID = ID_REQUEST
: Update current SA Group Membership
: Reset the SA and deallocate all the Requed Planes

firstProcessedEvent=FALSE

: Send BM_ACK to CA

Fig. 4.14. The SA’s Manager plane.

Factory Micro Edition (AFME)

WSN applications.

AFME is strongly based on the Belief-Desire-Intention (BDI) paradigm
[111], in which agents follow a sense-deliberate-act cycle. To facilitate the cre-
ation of BDI agents the framework supports a number of system components

88

4.8. AFME/MAPS comparison

AO: addDispatcherRule (msgTypelList ());

firstProc edEvent=FALSE;
3 t timer = new Event(agent.getld{}, agent.getld(), Event.TMR_EXPIRED, Event.NOW);
timerID = agent.setTimer (true, advertisementTime(), timer);
addDispatcherRule (timer) ;

Al: Event msg = new Event(agent.getld(), agent.getCAId(), Event.MSG_TO_BASESTATION, Event.NCW);
msg.setParam(ParamsLabel .MSG TYPE, BM SA ADVERTISEMENT) ;

setAd

isementParams (msg);
gent.getCAId({), msg, true);

tParam(ParamsLabel.ADDRESSEE),

ent.getParam(ParamsLab
rstProcessedEvent=TR
removeDispatcherRule (timer);

agent.resetTimer (agent.getId(), timerID);
A3 3 msgEvent.getParam(ParamsLabel .MSG TYPE);
A4 = createSenscorPlane (msgEvent.getParam(ParamsLabel. REQU _ID), msgEvent];
Ab: plane = createActuatorPlane(msgEvent.getParam(ParamsLabel. [ST ID), msgEvent);
A6: agent.removePlane (msgEvent.getParam{ParamsLabel.REQUEST_ID)};
ATz teMembership (msgEvent);
A8: r i = agent.getPlaneList ();

while (i.hasNext()){

plane = (Plane)i.next();
if(plane.getID() != this.getID())

agent.removePlane (plane.getID(]));

firstProcessedEvent=FALSE;

imer = new Event(zgent.getId(), agent.getId(), Event.TMR_EXPIRED, Event.NOW };
timerID = agent.setTimer (true, advertisementTime(), timer);
addDispatcherRule (timer);

A9: Event msg = new Event({agent.getId(), agent.getCAId(), Event.MSG TO BASESTATION, Event.NOW);
T setParam(ParamsLabel .MSG TYPE, BM ACK]);

tAckParams (msqg) ;

agent.send{agent.getId(), agent.getCAId(), msg, true);

Fig. 4.15. The MAPS actions of the SA’s Manager plane.

which developers have to extend when building their applications: perceptors,
actuators, modules, and services. Perceptors and actuators enable agents to
sense and to act upon their environment respectively. Modules represent a
shared information space between actuators and perceptors of the same agent,
and are used, for example, when a perceptor may perceive the resultant ef-
fect of an actuator affecting the state of an object instance internal to the
agent. Services are shared information space between agents used for agent
data exchange.

The agents are periodically executed using a scheduler, and four functions
are performed when an agent is executed (BDI-cycle). First, the perceptors
are fired and their sensing operations generate beliefs, which are added to the
agents belief set. A belief is a symbolic representation of information related to
the agents state or to the environment. Second, the agents desires are identified
using resolution-based reasoning, a goal-based querying mechanism commonly
employed within Prolog interpreters. Third, the agents commitments (a subset
of desires) are identified using a knapsack procedure. Fourth, depending on
the nature of the commitments adopted, various actuators are fired.

In AFME, agents are defined through a mixed declarative/imperative pro-
gramming model. The declarative Agent Factory Agent Programming Lan-
guage (AFAPL), based on a logical formalism of beliefs and commitments,
is used to encode an agents behavior by specifying rules that define the con-

89

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

(AQ_ SCHEDULE
REQUEST THE REQUEST IS
PERIODIC /A2
THE REQUEST IS
ONE SHOT /A1

: TMR_EXPIRED &&
LIFETIME_ELAPSED == FALSE /A1

SENSING =

o
5
=R
5i° THE REQUEST IS PERIODIC &&
THE REQUEST Vi SYNTHETIC_DATA_TYPE == Y
NO SYNTHETIC/A4 ¢
~| WAIT FOR TIMER
EXPRATION
___ /THE REQUEST IS PERIODIC &&\

x SYNTHETIC DATA_TYPE= |\
Ui NO_SYNTHETIC &&

storedDataCounter<dataToStore

THE REQUEST IS PERIODIC &&
SYNTHETIC_DATA_TY PE = NO_SY NTHETIC &&
storedDataCounter==dataToStore /A5

TVR_EXPIRED &&
LIFETIME_ELAPSED == TRUE

AQ: Process Request
A1: Create and Submit a Sensing Event on the Sensor Requested
A2: Inizialize and Submit a TMR_EXPIRED Event with the Params PERIOD and LIFETIME
Set dataToStore
A3: Store sensed data and increase the sforedDataCounter
A4: if DATA_TYPE.VALUE == "threshold notification”
Send sensed data fo CA if the threshold isverified and reset the storedDataCounter
else Send sensed data to CA and resst the storedDataCounter
AS5: Calculate the SYNTHETIC_DATA_TYPE requested
if DATA_TYPE.VALUE == "threshold notification”
Send synthetic data to CA if the threshold isverified and reset the stored DataCounter
else Send synthetic data to CA and reset the storedDataCounter

Fig. 4.16. The SA’s Sensing Request plane.

ditions under which commitments are adopted. The imperative Java code is
instead used to encode perceptors and actuators. A declarative rule is ex-
pressed in the following form:

b1,b2,...,bn > doX;

where bl,...,bn represent beliefs, whereas doX is an action. The rule
is evaluated during the agent execution, and if all the specified beliefs are
currently included into the agents beliefs set, the imperative code enclosed
within the actuator associated to the symbolic string doX is executed.

The AFME platform architecture is shown in Figure 4.16. It comprises a
scheduler, a group of agents, and several platform services needed for sup-
porting, among the others, agents communication and migration. To improve
reuse and modularity, actuators, perceptors, and services are prevented from

90

4.8. AFME/MAPS comparison

<Idl), agent.getldi), request.getParam(ParamsLabel.SE

ent.getId{}, agent.getId{), Event.TMR ZX
quest)
ineTimer [requ ;
SLIFETIME _SLAPSHD, "false");

., period, lifetime, timer);

RED, Event.NOW];

period = gelP
lifetime - getl
timer.setPara
LimerlID

Id{}), acent.getCAId(),
PE, BM DATA};
I8l

nt.send(agent.getld(], acent.getCAId(), msg, true};

Event.MSG TO BASCESTATION, Event.NOW];

storedlataCounter = 0;
alculateSyntheticData(getStoredbatai), reques
3 NOQTTFIC

zram{ParamsLabel.SYNTHETIC_DATA_TYPE));
TON™ ||

etic)
etCATd(}, Event.MSG_TO_BASESTATION, Zvent.NOW);

t.getId(], acent.getCAId(), msg, true);:

storedbataCounter 0;

Fig. 4.17. The MAPS action of the SA’s Sensing Request plane.

containing direct object references to each other. Actuators and perceptors
developed for interacting with a platform service in one application can be
used, without any changes to their imperative code, to interact with a different
service in a different application. In the other way round, the implementation
of platform services can be completely changed without having to modify the
actuators and the perceptors. Additionally, the same platform service may
be used within two different applications to interact with a different set of
actuators and perceptors. So, all system components of the AFME platform
are interchangeable because they interact without directly referencing one
another.

4.8.2 Programming and architectural features comparison between
MAPS and AFME

In this subsection, a comparison of the features provided by the two platforms
is presented. In particular, in Table 4.6, MAPS and AFME are compared with
respect to eight characteristics: agent behavior model, intentional agent sup-
port, agent behavior definition language, basic programming language, migra-
tion type, migration mechanism, agent communication model, and dynamic
agent creation.

The most important difference between the two platforms is represented
by the way through which agent-based applications are designed. Both plat-
forms exploit the same basic programming language, but the agent model
is quite different. In fact, MAPS uses a finite state machine model to de-
fine agent behavior whereas AFME employs a more complex BDI-like model.

91

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

AFME AFME L. AFME
Agent Agent Agent

A A A

Y Y

K SCHEDULER N

WIRELESS MESSAGE
TRANSPORT SERVICE

[WIRELESS MIGRATION SERVICE]

[PEER-TO-PEER SERVICE]

\ PLATFORM SERVICES /

Fig. 4.18. The architecture of AFME.

Intentional agents are therefore only offered by AFME. As a consequence,
the development of MAPS and AFME applications is based on different ap-
proaches. MAPS uses state machines to model the agent behavior and directly
the Java language to define events, guards and actions. AFME uses a more
complex model centered on perceptors, actuators, modules, and services which
are developed in Java but have to be strictly correlated to the declarative rules
provided for modeling the agent behavior. Both approaches are effective for
developing agent-based applications even though MAPS is more straightfor-
ward as it relies on a programming style based on state machines widely known
by programmers of embedded systems.

Agent migration, in terms of data and state of agents, is supported by
both systems, but neither MAPS nor AFME allow for the migration of code
due to the fact that CLDC-compliant devices (like Sun SPOT) cannot support
dynamic class loading. In particular, MAPS uses a migration mechanism based
on hibernation and serialization of the isolate within which an agent lives
whereas AFME uses a proprietary agent descriptor to capture and transmit
agent data and state.

The agent communication model adopted by both architectures for ex-
changing information is based on message passing (unicast and broadcast)
which is the communication paradigm mostly used in agent-oriented frame-
works.

The ability to create an agent at runtime could be an important feature
for application in which the number of necessary agents cannot be determined
a priori and simply fixed at compile-time. MAPS allows for such capability

92

4.8. AFME/MAPS comparison

Table 4.6. Comparison between MAPS and AFME features.

MAPS AFME
Agent Behavior Model Finite State Machine Belief/Desire/Intension
Intentional Agent Support No Yes
Agent Behavior Definition Java declarative rules
Language (AFAPL)
Basic Programming Language Java Java
Migration Type Weak Weak

Agent descriptor

Migration Mechanism Sun SPOT Isolate .
transmission

Agent Communication Model Message passing Message passing

Dynamic Agent Creation Yes No

whereas AFME needs agents to be created only in a static way so providing
more flexibility for the creation of dynamic distributed applications.

Finally, differently from AFME, MAPS is specifically designed for WSNs
and fully exploits the release 5.0 red of the Sun SPOT library to provide ad-
vanced functionality of communication, migration, sensing/actuation, timing,
and flash memory storage.

4.8.3 Performance comparison between MAPS and AFME

This subsection is devoted to show the basic performance differences of the
two agent platforms. In particular, the typical communication capabilities of
agent architectures (data exchange among agents and agent migration) have
been evaluated. Furthermore, the usage of the memory resource (both RAM
and flash) has been measured.

To evaluate and compare the communication/migration performance of
MAPS and AFME two benchmarks have been defined according to [104] for
the following mechanisms:

o Agent communication. The agent communication time is computed for two
agents running onto different nodes and communicating in a client /server
fashion (request/reply). Two different request/reply schemes are used: (i)
data Back and Forward (data BF), in which both request and reply contain
the same amount of data; (ii) data Back (data B), in which only the reply
contains data. Comparison results are shown in 4.19. For agents with light
data payload, AFME performs better than MAPS; however, when the
agent data payload overtakes 700 bytes MAPS starts performing better in
the case data BF.

93

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

e Agent migration. The agent migration time is calculated for an agent ping-
pong between two single-hop-distant sensor nodes. Migration times are
computed by varying the data cargo of the ping-pong agent. The obtained
migration times are high due to the slowness of the Squawk VM operations
supporting the migration process. Comparison results are shown in 4.20.
AFME retains a higher performance migration mechanism, as it is not
based on the heavy isolate hibernation/serialization mechanisms of the
Squawk VM.

" AFME - data B —— ' ' '
AFME - data BE —¥—
2000 MAPS - dataB —6— 7
g MAPS - data BF —&—
g
= 1500 f .
(=]
S
Z
g
2 1000 | 1
£
o
S
g
B 500 1
0 1 1 1 1 1 1

0 200 400 600 800 1000
Agent Data Payload (bytes)

Fig. 4.19. Agent communication time comparison.

In Table 4.7 a comparison among the sensor-node-side agent-based run-
time platform of MAPS and AFME with respect to RAM and Flash usage is
reported. As can be seen, MAPS requires a bit less memory resources than
AFME but both platforms show a relatively low usage of them. In particular,
the used RAM is one of the most important parameter for an agent-based ar-
chitecture atop a WSN node, so that the remaining memory can be exploited
for the instantiation of the user-defined agents.

4.8.4 A case study: mobile agent-based remote monitoring

To analyze the effectiveness and performance of MAPS and AFME to support
the programming of WSN applications, an agent-based remote monitoring ap-
plication has been developed both in MAPS and AFME. The developed appli-
cation involves two sensor nodes and consists of the following three interacting
agents:

94

4.8. AFME/MAPS comparison

AFME —+—

14000 | MAPS —6 1

12000 | 1
é
5 10000 | |
E
H
5 8000 1
=
5
€ 6000 :
g
2 4000 1

2000 | 1

0 1 1 1 1 1 1
0 200 400 600 800 1000

Agent Data Payload (bytes)

Fig. 4.20. Agent migration time comparison.

Table 4.7. RAM and Flash usage in MAPS and AFME.

MAPS AFME
RAM (platform memory occupation)
used (KB) / available (KB) 85.8/512 96.5/512
memory usage 16.76% 18.85%
Flash (platform code dimension)
used (KB) / available (KB) 76.8 / 4096 81.8 /4096
memory usage 1.87% 2%

e DataCollectorAgent, which collects data related to the Sun SPOT node
sensors (accelerometer, temperature, and light data);

e DataMessengerAgent, which carries collected sensed data from the sensing
node to the basestation;

e DataViewerAgent, which displays the received collected data.

The sequence of interactions among the three defined agents is shown in
Figure 4.21 through an M-UML sequence diagram [103].

The application execution is driven by the User that presses a switch on
the Sun SPOT on which the DataViewerAgent is running. Upon the User
event, the DataViewerAgent sends a remote message to the DataCollectorA-
gent (running on the sensing node) for starting its sensing operations. The

95

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

dva: DataViewerAgen:

User

Switch_Pressing

D MSG(Go=True)

b

[timer_expiration]
Acquire& Collect

1

[dataColl=numData)
alculate features

<<create>>

1

Ima
DataMessengerAgent.

MSG
Visualizing MSG Features M

Dat localized
ata D ocali .

M
7

Switch_Pressing
Visualizing MSGlastFeatures)

Dnm D

Switch_Pressing

D MSG(Go=False)

1]
g ©

Fig. 4.21. M-UML sequence diagram for agents interactions.

agent therefore starts an internal timer to a particular value to begin its col-
lecting activity: on timer expiration the agent acquires data from the onboard
node sensors and collects them. As soon as the agent has acquired numData
samples, it calculates one or more features (e.g. max, min and mean) for
each of the sensor data types. Afterwards, the DataCollectorAgent creates
the DataMessengerAgent that, with the computed features, migrates to the
DataViewerAgent node (or basestation node) for data visualization. In case
the User presses the switch on the node where the DataCollectorAgent is run-
ning, the agent sends an instantaneous message having the values of the last
computed features. Finally, the remote monitoring activity terminates when
the User presses again a switch of the Sun SPOT on which the DataViewer-
Agent is running.

In the following subsections we first describe the implementation of the
DataCollectorAgent in MAPS and AFME and, then, discuss the results ob-
tained from the performance evaluation of the MAPS and AFME implemen-
tations.

4.8.4.1 Agent definition in MAPS

As described in Section 4.4, MAPS agents are modeled through a multi-plane
state machine. In Figure 4.22 the plane of the DataCollectorAgent is shown
whereas the code of the actions (A0-A10) is reported in Figure 4.23. The

96

4.8. AFME/MAPS comparison

AGN_START event causes the transition from the agent creation state to
the IDLE state with the execution of an initializing code represented by the
action A0 (e.g. data structure initialization). In the IDLE state, when the net-
work message sent by the DataViewerAgent arrives (see MSG event) and the
guard [go==true] holds (i.e. the parameter go of the event is true), action Al
is executed and the agent transits to the WAITSENSING state. The action
A1l is in charge of configuring and starting the timer for timing the sensor
readings, and for configuring the agent plane so that it can be signaled by
the SWT_PRESSED_RELEASED event when the user presses and releases
(see the parameters setting) the switch identified by index “2”. When the
timer fires, the TMR_EXPIRED event is received and the sensing operations
are requested (action A2) to the three onboard sensors. When each of the
three sensor data is available (through the ACC_TILT, TMP_CURRENT and
LGH_CURRENT events), their corresponding actions (A5, A6, A7) store the
values on appropriate buffers. If numData samples for each sensor type have
not been collected yet, the guard [dataColl!l=numData] holds so that the agent
returns to the WAITSENSING state waiting for the next sensing operations on
timer expiration. On the contrary, if the necessary sample number is reached,
sensor data are ready for being manipulated and results transmitted to the
basestation node. So, the set of the features are computed and the DataMes-
sengerAgent is created (action A9). When the AGN_ID event, containing the
agent id of the created agent, is received the set of the features values are
passed to it (action A10). Regarding the WAITSENSING and the DATA-
COLLECTING states, if the user presses and releases the switch (notified by
the SWT_PRESSED_RELEASED event), the last set of computed features
are immediately sent to the DataViewerAgent through a remote message (ac-
tion A3). Finally, when the event MSG is received and the guard [go==false]
holds, the agent is terminated (action A4).

MSG[go==false]/Ad
SWT_PRESSED_RELEASED/A3

AGN_START/A0
WAIT
SENSING

ACC_TILT/AS
TMP_CURRENT/AG
VR_EXPIRED/A2 | GH_CURRENT/A7

PRESSED_RELEASED/A3

5

[dataColl = numData

DATA
\COLLECTING

COMPUTED
FEATURES |«

[dataColl == numD

Fig. 4.22. MAPS-based DataCollectorAgent behavioral model.

In Figure 4.24, the architecture of the DataCollector Agent is depicted. The
simplicity of this architecture reflects the simplicity in developing a MAPS
agent. The user-defined components, represented in grey color, are the Data-

97

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

AQ: dataColl= 0;
data= new double[3] [numData];

o

Al: Event timer = new Event(this.agent.getId(),this.agent.getId(), Event.TMR_EXPIRED, Event.NOW) ;
timerID = this.agent.setTimer (true, SAMPLING_TIME, timer);
Event switchPressed= new Event(this.agent.getId(), this.agent.getId(),

Event.SWT_PRESSED_RELEASED, Event.PERMANENT) ;

switchPressed.setParam(ParamsLabel.SWT_PRESSED, "false");
switchPressed.setParam(ParamsLabel.SWT_RELEASED, "true");
switchPressed.setParam(ParamsLabel.SWT_INDEX, "2");
this.agent.input (switchPressed) ;

A2: Event temperature = new Event(this.agent.getId(), this.agent.getId(), Event.TMP_CURRENT,
Event.NOW) ;
temperature.setParam(ParamsLabel.TMP_CELSIUS, "true") ;
this.agent. sense (temperature) ;

Event accel = new Event(this.agent.getId(), this.agent.getId(), Event.ACC_TILT, Event.NOW);
this.agent.sense (accel) ;
Event light = new Event(this.agent.getId(), this.agent.getId(), Event.LGH_CURRENT, Event.NOW) ;

this.agent.sense(light) ;
A3: Event msg = newEvent(this.agent.getId(), dataViewerAgentID,Event.MSG, Event.NOW) ;
msg.setParam("lastFeatures", this.computedFeatures) ;
this.agent.send(this.agent.getId(), dataViewerAgentID, msg, true);
A4: this.terminateAgent() ;
A5: data[0] [dataColl]= Double.parseDouble (event.getParam(ParamsLabel.ACC_TILT X VALUE)) ;
A6: data[l] [dataColl]= Double.parseDouble (event.getParam(ParamsLabel.TMP_TEMPERATURE VALUE)) ;
A7: data[2] [dataColl]= Double.parseDouble (event.getParam(ParamsLabel.LGH LIGHT_VALUE)) ;
A8: dataColl++;
A9: computeFeatures (data) ;

this.agent.create("applications.demo.Messenger", null,
this.agent.getMyIEEEAdd () .asDotted 0):

dataColl= 0;
Al0: Event msg = new Event(this.agent.getId(), messengerAgentID, Event.MSG, Event.NOW) ;

msg.setParam("features", this.features);
this.agent.send(this.agent.getId (), messengerAgentID, msg, true);

Fig. 4.23. Java code of the actions of the DataCollectorAgent plane.
CollectorAgent, which inherits from the basic Agent class of MAPS, and its

only associated DataCollectorPlane, derived from the basic MAPS Plane class
and modeling the agent behavior driven by (1 or more) Event objects.

Agent Plane
DataCollector
Agent ! DataCollector 7
Event
Plane

Fig. 4.24. Architecture of the MAPS-based DataCollectorAgent model.

98

4.8. AFME/MAPS comparison

4.8.4.2 Agent definition in AFME

As described in Section 4.8.1, AFME agents have to be defined by providing
both a declarative code (i.e. a set of rules declared into a script file), rep-
resenting the agent behavior, and a set of Java classes strictly correlated to
these rules and constituting the preceptor, actuator and module components.

The set of rules defining the DataCollectorAgent behavior are defined as
follows:

1. message (inform, sender(dataViewer, addresses(?addr), ?7content)),
!goTrue > par(timerActivatorAct, adoptBelief(always(goTrue)));

2. timerExpired, goTrue > par(timerActivatorAct, activateSensorsAct);

3. numDataSampled (?nSamples), #?nSamples>9 > computeFeaturesAct;

4. featuresComputed(?computedFeatures) > inform(agentID(messenger,
addresses("radiogram://"+ DataMessengerAgentNodeAddr)),
?computedFeatures) ;

5. switchPressed(?computedFeatures) > inform(agentID(dataViewer,
addresses("radiogram://"+ DataViewerAgentNodeAddr)),
?computedFeatures) ;

6. message (inform, sender(dataViewer, addresses(?addr), 7content)),
goTrue > retractBelief (always(goTrue));

Rule 1 enables the timer for sensing (through the timerActivatorAct
actuator) and creates the goTrue belief upon the reception of the message
coming from the DataViewerAgent (see the message belief) and if goTrue
is not yet an agent belief. The par instruction is an AFME construct to be
adopted when more actuators have to be executed in parallel, whereas the
always construct defines a belief that has to be maintained into the beliefs set
of the agent throughout its execution, until it will be retracted (see rule 6).

Rule 2 states that the sensor reading operations are activated (activate-
SensorsAct actuator) and also the timer is reactivated (timerActivatorAct
actuator) after timer expiration (timerExpired belief).

Rule 3 checks if 10 samples have been acquired for each sensor type. When
the numDataSampled belief is adopted, it returns the number of samples sensed
into the ?nSamples variable value of which is tested for confirming if the com-
putation of features has to be started through the execution of the compute-
FeaturesAct actuator.

Rule 4 verifies that features have been correctly computed (i.e. the
featuresComputed belief is adopted) and if this holds, the content of the
?computedFeatures variable returned along with the belief is sent to the
DataMessengerAgent through a radio message generated by the AFME in-
form actuator.

Rule 5 states that if the switchPressed belief is adopted (i.e. the user
presses the switch) a message with the last computed features (the ?computed-
Features variable returned by the belief) is sent to the DataViewerAgent.

99

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

Rule 6 is for checking the reception of a message from the DataViewerA-
gent and, since the goTrue belief is still adopted by the agent (see rule 1), the
timer, which paces the sensing operations, is disabled by simply retracting the
goTrue belief.

After the definition of the agent behavior by means of the declarative
code, several Java components have to be specified with the purpose of giving
support to the execution of these rules at run-time. In Figure 4.25 the archi-
tecture of the AFME-based DataCollectorAgent is depicted, which contains
the supporting perceptor, actuator and module components.

BasicRunnable —{> AgentRunnable SIHIHTCARaT
Features
ComputedPerc
NumData
5 n Perceptor
| TimeractivatorAct | DataCollector / SampledPerc P
l ActivateSensorsAct | LT
l EeeE—— |
Perceptor
Manager
1.*
- ‘SharedDataModule }—4>{ Module ‘
TerImplication
Actuator “

Affect

RadioGramMTS
Manager

Fig. 4.25. Architecture of the AFME-based DataCollectorAgent model.

The white-colored components are basic classes of the AFME framework,
whereas the grey ones represent the Java-based supporting components that
have been specifically developed in this application. In particular, such com-
ponents are:

e Four perceptors. Perceptors are responsible for generating the proper be-
liefs by monitoring the agent status and its environment. NumDataSam-
pledPerc is needed for retrieving the number of sensor data samples that
have been already collected whereas FeaturesComputedPerc checks that
all features have been computed on the collected sensor samples. Finally,
TimerPerc checks when the timer expires and SwitchPressedPerc recog-
nizes the switch pressing by the user.

o Three Actuators. Actuators are in charge of generating the proper ac-
tions in response of the generation of beliefs. TimerActivatorAct is used
to activate a timer of the sensor node for timing the sensor acquisition

100

4.8. AFME/MAPS comparison

operations. The ActivateSensorsAct is needed to enable sensors reading
after timer expiration. ComputeFeaturesAct is responsible for the actual
feature computation on the collected sensor data and for reinitializing all
necessary data structure after a completed processing operation.

e One Module. SharedDataModule has been defined as a shared memory
space which not only stores the data samples sensed from the node sensors
(accelerometer, temperature, light) but also all other necessary data to be
shared among perceptors and actuators.

Finally, it is worth noting that the TerImplication component represents
the auto-generated Java code provided as output of the AFME pre-compiler
that is executed on the script files containing the agent behavior rules and
specifying the agent platform (see below).

In the following, we describe the SharedDataModule (Figure 4.26) mod-
ule, the NumDataSampledPerc perceptor (Figure 4.27) and the ActivateSen-
sorsAct actuator (Figure 4.28) of the DataCollectorAgent to provide some
examples of module, perceptor and actuator programming.

The SharedDataModule (see Figure 4.26) is developed with the purpose of
offering a common memory space for storing information shared among pre-
ceptors and actuators. In particular, the data structure needed for collecting
the sensor data, for counting the acquired samples and for storing the feature
extraction results are managed through this component.

In its constructor method, the module registers itself with the “shared-
data” identifier so that it can be indirectly referenced by the other compo-
nents (actuators and perceptors). Moreover, it provides two different methods:
processPer and processAction. The former processes requests coming from the
preceptors whereas the latter processes requests coming from the actuators. In
both cases, the proper operation to accomplish is determined by an id value
identifying the requesting operations. For the sake of space, not the whole
module code is shown but only those parts devoted to managing requests
coming from the NumDataSampledPerc perceptor and the ActivateSensors-
Act actuator, which are discussed later. The excerpt of the processPer method
shown in Figure 4.26 is configured to return the current sample counts related
to the accelerometer, light or temperature sensors, depending on which op-
eration id (5, 8 or 9) is passed as actual parameter. The code excerpt of the
processAction is, conversely, devoted to sensor data acquisition, storing and
counter update related to the accelerometer (id=6), light (id=9) or temper-
ature (id=10) sensors. It is worth noting that, the FOS objects are used in
AFME for representing a generic kind of information, be it a simple value or
a more complex object like a belief.

The AFME perceptors are in charge of generating the appropriate beliefs
on the basis of the agent status information through the perceive method,
which is called every BDI-cycle execution. In particular, the NumDataSam-
pledPerc perceptor (see Figure 4.27) first requires the SharedDataModule

101

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

public class SharedDataModule extends Module({

private long activationTimerInstant, timerSampling;

private int temperatureSensorActivated, lightSensorActivated,
accSensorActivated,

accSensorValuesXCounter, temperatureSensorValuesCounter,

lightSensorValuesCounter;

private double [] temperatureSensorValues, lightSensorValues, accSensorValuesX;

private double temperatureSensorExtractedValues,

lightSensorExtractedValues, accSensorExtractedValuesX;
private int dataReady, outputCount;

public SharedDataModule (AgentName name) {
super ("shareddata") ;
//code for data structure initialization has been omitted
//for shortness

}

public FOS processPer (int id)throws MalformedLogicException{

lelse if(id == 5){
return FOS.createFOS(""+taccSensorValuesXCounter);
lelse if(id == 8){
return FOS.createFOS(""+lightSensorValuesCounter);
telse 1f(id == 9){
return FOS.createFOS (""+temperatureSensorvValuesCounter) ;

}

return null;

}

public FOS processAction(int id, FOS data) throws MalformedLogicException{
lelse if(id==6){
accSensorValuesX[this.accSensorValuesXCounter] =
Double.parseDouble (data.toString());
this.accSensorvValuesXCounter++;
return null;
lelse if(id==9){
lightSensorValues[this.lightSensorValuesCounter] =
Double.parseDouble (data.toString());
this.lightSensorvValuesCounter++;
return null;
Jelse if (id==10) {
temperatureSensorValues[this.temperatureSensorValuesCounter] =
Double.parseDouble (data.toString());
this.temperatureSensorValuesCounter++;
return null;

}

return null;

Fig. 4.26. Code excerpt of the SharedDataModule component.

(identified by the shareddata identifier used as first parameter of the per-
Manage method) to return the samples counter value related to each of the
three different sensor types, through method calls having as differences the
operation id passed as second parameter. The return values are represented as
FOS object. Afterwards, if all the three counters hold a same value (meaning
that a sensing operation for each sensor is completed), the numDataSampled
belief is adopted and the counter value is assigned to the ?nSamples variable
(see Rule(3)).

102

4.8. AFME/MAPS comparison

public class NumDataSampledPerc extends Perceptor{

private PerceptionManager manager;

public NumDataSampledPerc (PerceptionManager manager) {
super (manager) ;
this.manager=manager;

}

public void perceive () {
FOS contAccXFOS = manager.perManage ("shareddata™, 5);
FOS contLightFOS = manager.perManage ("shareddata”, 8);
FOS contTempFOS = manager.perManage ("shareddata™, 9);

int contAccX = Integer.parselnt(contAccXFOS.toString());
int contLight = Integer.parselnt(contLightFOS.toString());
int contTemp = Integer.parselnt(contTempFOS.toString());

1f(contAccX!=0 && (contAccX==contLight)
&& (contLight==contTemp)) {
this.adoptBelief ("numDataSampled ("+ contAccX +")");

Fig. 4.27. Code of the NumDataSampledPerc perceptor.

public class ActivateSensorsAct extends Actuator {
private AffectManager m;
public ActivateSensorsAct (AffectManager manager) {
super (manager, "activateSensorsAct");
m=manager;
}
public boolean act(FOS arg0) {

String valueX= ""; String valueLight= ""; String valueTemp= "";
try {
valueX = Double.toString(
EDemoBoard.getInstance () .getAccelerometer () .getTiltX ());
valueLight = Double.toString(
EDemoBoard.getInstance () .getLightSensor () .getValue());
valueTemp= Double.toString (
EDemoBoard.getInstance () .getADCTemperature () . .getCelsius());

} catch (IOException e) {
e.printStackTrace () ;
}
FOS fX= FOS.createFOS (
valueX.substring (0, Math.min(5,valueX.length())));
FOS fL= FOS.createFOS(
valueLight.substring (0, Math.min(5,valueLight.length())));
FOS fT= FOS.createFOS(
valueTemp.substring (0, Math.min(5,valueTemp.length())));
m.actOn ("shareddata", 6, fX);
m.actOn ("shareddata", 9, fL);
m.actOn ("shareddata", 10, fT) ;
return true;

Fig. 4.28. Code of the ActivateSensorsAct actuator.

103

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

The ActivateSensorsAct component (see Figure 4.28) is defined to perform
the sensing operations and store acquired data into the SharedDataModule.
In particular, the Sun SPOT EdemoBoard object is employed to acquire a
sample data from each of the three different onboard sensors. Each value is
then converted to string, trimmed to max 5 characters and stored into the
SharedDataModule through the actOn method having the following param-
eters: the identifier of the module component (shareddata), the id operation
that has to be performed by the module and the FOS object containing the
data string to be stored.

4.8.4.3 Performance evaluation

The aim of the performance evaluation is to analyze memory usage and time
parameters related to the developed MAPS- and AFME-based applications
and to compare the results obtained from the analysis of the two different
implementations. Memory and time are, of course, the two most critical com-
putational resources that should be carefully analyzed to evaluate the effi-
ciency of the agent frameworks to manage the agent lifecycle through their
own run-time system based on the Sun SPOT platform.

The evaluation involves: (i) the analysis of the memory usage, both RAM
(the occupation of memory at run-time in both static and dynamic conditions)
and Flash (the agent code dimension); (ii) the timing analysis of the operation
sequence (sensing, feature computation and mobile agent migration) of the
agent-based application.

The RAM occupation and the code dimension are first evaluated with re-
spect to the agents (DataViewer, DataCollector and DataMessenger) defined
in the application and then added to those of their supporting framework to
obtain the RAM and Flash usage in both sensors (basestation and sensing
sensor) under static conditions (i.e. at application initialization). In partic-
ular, the sensing node is the one executing the DataCollector agent and on
which the Messenger agent is initially resident, whereas the basestation node
is the one executing the DataViewer agent. For both sensors, the amount of
memory occupation, RAM and Flash, has been evaluated at application start-
up, by excluding one at a time the definition / creation code of each of agents
constituting the application. The evaluation results are reported in Table 4.8
and Table 4.9. Results show that MAPS performs slightly better than AFME
for both RAM and Flash resources.

An evaluation of the RAM usage under specific dynamic conditions can
provide important information on the efficiency of the agent frameworks. To
this purpose, the RAM usage at the sensing sensor node is evaluated (see
Figure 4.29) by varying the sampling time for data acquisition from low (25ms)
to high values (5s). The variation of the sampling time not only affects the
rate of the sensing operation but also the rate of feature computation and

104

4.8. AFME/MAPS comparison

Table 4.8. RAM occupation and code dimension of the application agents.

DataViewer DataCollector Messenger
)) MAPS 1.76 3.09 1.3
Code dimension
(KB)
AFME 1 2.1 1.6
. MAPS 2.8 2.76 254
RAM occupation
(KB)
AFME 10.6 25.19 23.6

Table 4.9. RAM and Flash usage of the whole application (platform-+application
agents).

MAPS AFME
. 81.19 /4096 85.5 /4096
Flash usage Sensing node 1.98% 2.08%
used (KB) / available (KB) 8.56/ 4096 2.8/ 4096
% Basestation node 192% 202 %
. 88.6/512 107.1/512
RAM usage Sensing node 173% 2092 %
used (KB) /available (KB) 11366/ 512 12529/512
% Basestation node 2'2 2% Zé 38 %

transmission so increasing (at high rates) or decreasing (at low rates) the
application computational workload

The obtained results show that both MAPS and AFME provide a quite
constant RAM usage; this demonstrate that memory management is not af-
fected by heavy workloads. Moreover, MAPS performs better than AFME; in
fact, RAM usage in MAPS is about 20% lower.

The purpose of the timing analysis is to identify parameters leading to
bottlenecks possibly affecting the execution of the agent-based application.
As the application consists in a continuous cycle of the following sequence of
operations (sensor data collection, feature computation and migration of the
agent carrying the computed features), the time of each cycle (hereafter called
application iteration) can be calculated and its trend over the iterations an-
alyzed. In particular, three different execution profiles have been considered:
(i) high sampling rate (25ms and 50ms) to analyze systems in which very
frequent sensor data acquisition and computation are needed; (ii) medium
sampling rate (100m and 300ms) to analyze systems with moderate dynam-
ics; (iii) low sampling rate (1s and 2s) to take into account systems that need
slow sensing operations. For each of the defined execution profiles, the eval-
uation has been carried out both considering and not considering the time
needed for agent migration. Moreover, each test is carried out by executing

105

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

100 T T T T T T T
MAPS —x—
AFME —H—
~ 80 r 1
é [H\E——E\—E‘E\E/E—E*E]
&
S 60 1
4 e
>
5 40t 1
=
=
20 r 1
O 1 1 1 1 1 1 1

25 50 100 200 300 400 500 1000 2000 5000
Sampling Time (ms)

Fig. 4.29. Memory usage comparison by varying the sampling time.

the application for 100 iterations and considering numData samples (acquired
from sensors before feature computation) = 10. Finally, results are obtained
by averaging over 15 runs for each test.

Figure 4.30 shows the performance of the application running on MAPS
and AFME for high sampling rates (25ms and 50ms) without considering
agent migration. The results are quite interesting because it is evident that
both platforms experience high times (from 4 to 10 times the estimated ex-
pected time) for completing an application cycle. The expected time could be
estimated by considering the expression: expected_time = sampling_time %
samples + feature_computation_time_estimation.

Moreover, considering the pair of curves related to a same platform, only
a slight time difference can be appreciated. Indeed, this experimental result
highlights that the Sun SPOT device suffers from an intensive computational
workload due to too frequent requests of the sampling operation. Thus, the
poor performance results do not mainly derive from the run-time architec-
tures of the agent frameworks but rather from the Sun SPOTs. However,
the decreasing time performance over time is more visible in MAPS, which
is more affected by the problems that the sensor device shows on high sam-
pling requests, i.e. a relevant time delay that cumulatively impacts the next
application iteration.

If agent migration is considered (see Figure 4.31), the migration opera-
tion implies a progressive worsening of the application iteration time during
the application execution for both platforms, independently from the actual
migration mechanism adopted. On one hand, the absolute difference in time

106

4.8. AFME/MAPS comparison

3000 T T T T T T T T T
AFME-50ms —+—
MAPS-50ms —e—
AFME-25ms —*—
MAPS-25ms —=—
2500 i

2000

Time (ms)

1500

1000 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 8 90 100

Iteration

Fig. 4.30. Timing performance for high sampling rate without considering agent
migration.

between MAPS and AFME is imputable to the low performance of the isolate-
based agent migration; on the other hand, the time drift only depends on the
high sample rates.

In Figure 4.32 higher sampling times (100ms and 300ms) have been consid-
ered. Also in these cases, both platforms show a percentage of time overhead
in completing an application iteration. This is much less evident in MAPS
than in AFME, especially at a sampling time of 100ms (with more than 50%
of average overhead above the expected time for MAPS, and more than 100%
for AFME). Consequently, the agent-based application developed for MAPS
performs better than the one based on AFME.

As a confirmation of the discussed motivation related to Figure 4.31, in
Figure 4.33 a significant better situation for both platforms is reported as
a consequence of higher sampling times when agent migration is considered.
In particular, the performance degradation over cycle iterations is much less
evident in MAPS than in AFME, despite the fact that AFME shows lower ab-
solute values than MAPS. Moreover, AFME shows a worse drift than MAPS,
so that on long application execution it will have higher absolute application
cycle completion times than MAPS.

The timing overhead becomes less and less evident with the increasing of
the sampling time, as it is shown in Figure 4.34, where the performance results
are demonstrated to be very similar to the expected values.

The decreasing of overhead, not in percentage but in absolute value,
demonstrates that this is not due to a fixed performance cost, but that it

107

Chapter 4. Mobile

Agent Platform for Sun SPOT - MAPS

11000

10000 -

9000

8000

Time (ms)

7000

6000

AFME-50ms
MAPS-50ms
AFME-25ms
MAPS-25ms —=— T

5000 L
0

50
Iteration

70 80 90 100

Fig. 4.31. Timing performance for high sampling rate considering agent migration.

6000 T T T T T T T T T
AFME-300ms —+—
MAPS-300ms —e—
AFME-100ms —»—
5000 MAPS-100ms —=— 4
~ 4000
E ~ O A
= Seepead QPRSP Ree
E
& 3000 + .
2000 r ik
1000 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Iteration

Fig. 4.32. Timing performance for sampling rates of 100ms and 300ms without
considering agent migration.

108

4.8. AFME/MAPS comparison

13000

12000

11000

10000

9000

Time (ms)

8000

7000

6000

5000

AFME-300ms
MAPS-300ms
AFME-100ms
MAPS-100ms

40 50

60 70 80 90 100

Iteration

Fig. 4.33. Timing performance for sampling rates of 100ms and 300ms considering

agent migration.

actually depends on a periodic little overhead cumulated for each sensor sam-

pling operation.

Finally, when considering agent migration, for higher sampling times (see
Figure 4.35), MAPS maintains a practically constant cycle completion time
during application running, meaning that migration operations do not affect
execution performance. On the contrary, AFME is still affected by an in-
creasingly performance degradation, showing that a little cumulating delay

continues to be present over time.

109

Chapter 4. Mobile Agent Platform for Sun SPOT - MAPS

AFME-2000ms —+—
MAPS-2000ms —e—
AFME-1000ms —*— i
MAPS-1000ms —=—

25000

4P HAR MR e Ry Ry bt
[©

~ 20000

g

Q

=

F
15000 - R
10000 m A o,

0 10 20 30 40 50 60 70 8 90 100
Iteration

Fig. 4.34. Timing performance for sampling rates of 1000ms and 2000ms without
considering agent migration.

AFME-2000ms ——

35000 MAPS-2000ms —e—]
AFME-1000ms —»—
MAPS-1000ms —=—
30000]
£ 25000 [,
Qo
£
H
20000]

10 < — o

1 0000 1 1 1 1 1 1 1 1 Il
0 10 20 30 40 50 60 70 80 90 100

Iteration

Fig. 4.35. Timing performance for sampling rates of 1000ms and 2000ms consider-
ing agent migration.

110

5

A Timer-Driven Framework for WBSN

Wireless sensor networks (WSNs) are a novel technology enabling new classes
of applications and systems for ubiquitous and pervasive computing. In par-
ticular, WSNs for the human body, also known as Wireless Body Sensor Net-
works (WBSNs), will enable not only continuous, multi-purpose monitoring
of people but also will support social interaction among people coming into
physical contact. In these contexts, applications demand a wide range of func-
tionalities, in terms of sensor types, processing performance, communication
capabilities. Moreover the development of such applications has to deal with
the issue of handling heterogeneous WBSNs since different kinds of sensor
node architectures could be necessary to fulfill all the application require-
ments. This chapter proposes an approach based on the SPINE framework
for the programming of signal processing applications on heterogeneous wire-
less sensor platforms.

5.1 Introduction

Wireless body sensor networks (WBSNs) have great potential to enable a
broad variety of assisted living applications such as health and activity mon-
itoring, and emergency detection. It is therefore important to provide design
methodologies and programming frameworks which enable rapid prototyping
of collaborative WBSN applications [112]. Although several effective appli-
cation development frameworks already exist for WBSNs based on specific
sensor platforms (e.g. CodeBlue [113], SPINE [80] [64], Titan [114]), effective
methods for platform-independent development of WBSN applications which
would enable rapid development of multi-platform applications and fast ap-
plication porting from one platform to another, are still missing or in their
infancy. In fact, the aforementioned frameworks can be only used to effec-
tively develop WBSN applications for TinyOS-based sensor platforms. Thus,
to develop applications for new sensor platforms, such frameworks should be

111

Chapter 5. A Timer-Driven Framework for WBSN

implemented for each new sensor platform to be exploited. This not only in-
creases development efforts but also enforces developers to become skilled on
the low-level programming abstractions provided by a new employed sensor
platform.

This chapter is organized as follows: (Section 5.2) introduces some WBSN
related work; Section 5.3 analyzes the evolution of SPINE; Section 5.4 cat-
egorizes and discusses interesting approaches which can effectively support
platform-independent development of WSN applications [115]; Section 5.5
shows the current efforts (design and current implementation status) towards
the definition of SPINE2, an evolution of the SPINE (Signal Processing In-
Node Environment) framework [80] [64] based on the C-language, which aims
at supporting the development of platform independent assisted living appli-
cations. The goal is to reach a very high platform independency for C-like
programmable sensor platforms (e.g. TinyOS [19], Ember [116], ZStack [117])
and raise the level of the provided programming abstractions from platform-
specific to platform-independent. Finally, Section 5.6 presents a case study
that tests the effectiveness of the SPINE2 framework.

SPINE2 [118] offers a task-oriented model for programming the sensor
nodes of a collaborative WBSN. In particular tasks (e.g. sensing, feature ex-
traction, aggregation, data transmission) can be dynamically discovered, cre-
ated, activated, scheduled and controlled by the coordinator on each sensor
node in order to fulfill a goal-directed overall task of the distributed system
implemented by the network of sensor nodes. Dynamic distribution of tasks
allows among the others preprocessing of sensed data directly on the node,
a significant reduction of data transmission and battery consumption, and
an overall increase of the network lifetime. Different tasks can be assigned to
each node and tasks can be controlled at execution time via proper message
exchange; in this way the network can overall adapt to changes in context,
overall goals, state of each single node, and it can better balance load and
task types between each element of the network. Such a task-oriented model
enables a holistic approach where the WBSN capability becomes higher than
the sum of the capabilities of each element.

Aim of the chapter is the discussion of how such a model was implemented
in resource-constrained environments, and what architecture and approach
was selected in order to achieve platform independency and provide high level
programming abstractions that reduce time-to-market for tiny environments.

5.2 State-of-the-art and Related Work

Several research projects in the academia and the industry have recently fo-
cused on the use of WBSNs including sensors such as pulse monitors, ac-
celerometers, gyroscopes, and pulse oxymeters. Common to most WBSN ap-
plications is a network architecture composed of a coordinator node and sensor

112

5.2. State-of-the-art and Related Work

nodes connected in a star topology. Sensor nodes transmit raw or interpreted
data to the coordinator node, which may include algorithms for data analysis
and interpretation. In remote monitoring applications the WBSN is connected
through a gateway to a wide area network to allow doctors and caregivers ac-
cess the patients’ data. Requirements vary greatly depending on the scenario
being considered, and may include: 1) reliability, especially for applications
monitoring vital parameters; 2) privacy and security to ensure that only au-
thorized people, e.g. relatives and caregivers, can access information on per-
sonal health or activities; 3) latency, especially in life emergency scenarios; 4)
low power consumption to maximize battery lifetime; 5) wearability to allow
patients carry sensor nodes in their daily life; 6) extensibility to other sensors
and services, e.g. when new health care needs arise; 7) provisioning of service
across locations to support continuous monitoring.

Health care and assisted living systems often require sophisticated algo-
rithms to analyze the sensor data and extract higher-level information rele-
vant to the user. For example, WBSNs are commonly used for the recogni-
tion of physical activities or health conditions of a patient. Figure 5.1 shows
the block diagram of a typical recognition system that consists of offline
training, runtime sensor data collection, feature extraction and classification
steps [119] [120].

Offline Training

g

Sensor Data Collection

g

Feature Extraction

g

Classification

Fig. 5.1. Activity Recognition Systems.

113

Chapter 5. A Timer-Driven Framework for WBSN

Classification and pattern recognition techniques [119] have been proposed
and used in several application domains. However, their real-time implementa-
tion on WBSNs adds additional challenges because WBSNs are very resource-
limited in terms of battery power, memory, and computing power. To meet
the requirements, designers must carefully evaluate implementation tradeoffs
for example before allocating tasks across nodes. This requires a flexible de-
sign environment based on proper abstractions that hide low-level details to
application developers and at the same time allow to easily quantify the per-
formance of the system.

Hence, an important issue to be addressed is how to develop applications
for WBSNs by minimizing application development efforts. An effective so-
lution, which is being currently proposed by several research efforts, is the
exploitation of domain-specific frameworks which facilitate application devel-
opment in specific application domains [121]. It is in fact difficult incorpo-
rating application knowledge into the design of general-purpose middleware
or into general purpose application frameworks. By focusing on a particular
application domain (e.g. activity monitoring), these challenges are somehow
mitigated by limiting the scope of applications to be built using the frame-
work. In addition, this usually leads to the creation of frameworks that are
more lightweight and therefore better fit the constrained resources of WBSNs.

In [122] a signal-processing-oriented framework, called Titan (Tiny Task
Network), is proposed. The goal of Titan is to provide a mechanism to define
and dynamically configure a network of data processing tasks on a WSN.
In particular, Titan, which is developed atop TinyOS, allows to define a set
of tasks, each of which implements some signal processing function, linked
through connections, which transport the data from one task to another, to
form a task network, which describes the application to be run on the WSN.
Titan has been applied for activity recognition based on SensorButton devices
equipped with accelerometers [114].

In [113] the CodeBlue framework for developing WBSN based health
care monitoring applications is described. CodeBlue, which is implemented
in nesC/TinyOS at the sensor-side and in Java at the base station-side, pro-
vides protocols for device discovery, publish/subscribe multihop routing, and
a simple query interface allowing caregivers to request data from groups of
patients.

Several other research efforts on developing WBSN applications for human
activity monitoring have been to date proposed [120] [123] [124]; however most
of them are not based on flexible frameworks providing in-node processing
functions but mainly rely on raw data acquisition from sensors and on the
application of feature extractors and classifiers for activity recognition at the
base station-side.

114

5.3. From SPINE to SPINE2

5.3 From SPINE to SPINE2

SPINE (Signal Processing in Node Environment) [80] [125] is a software frame-
work for the design of collaborative Wireless Body Sensor Network (WBSN)
applications. It provides programming abstractions, APIs and libraries of pro-
tocols, utilities and data processing functions which simplify development of
distributed signal processing algorithms for the analysis and the classification
of sensor data. SPINE is distributed in Open Source under the LGPL license
to facilitate establishing a broad community of users and developers that con-
tribute to the scientific evolution of the framework with new capabilities and
applications.

SPINE framework is constituted by two distinctive parts: a node side run-
time system residing on the sensor nodes and a Java application, the coordina-
tor, residing on a PC and having functionalities such as nodes configuration,
data gathering and data analysis.

To date, two releases of SPINE are available:

e The version 1.2 which supports different kinds of sensor platforms running
the TinyOS [19] operating system (supported platforms are TelosB, MicaZ,
Shimmer).

e The version 1.3 which provides support for Z-Stack [117] so allowing the
development of WBSN applications according to the ZigBee standard [11].
In particular, ZStack is the implementation of the ZigBee stack carried out
by Texas Instruments.

In the following subsections the characteristics of each version of SPINE
and the feasibility of integrating both of them into a single heterogeneous
WBSN are explained in details.

5.3.1 SPINE 1.2

The software architecture of the node side part of the framework is reported
in Figure 5.2. It is composed of a set of nesC components forming the runtime
system which relies on the components provided by TinyOS for accessing the
hardware resources, such as radio, sensors and timers. More specifically, the
SPINEApplication is the core of the framework and is responsible for man-
aging the overall system. The PacketManager allows the reception/parsing
and the formatting/sending of application-level messages over the network
through the RadioController that, in turn, relies on the communication inter-
faces of TinyOS. The SensorsBoardController provides accessing to the inte-
grated sensors of the node, whereas the FunctionManager provides processing
capabilities for data pre-elaborations useful for avoiding battery consumption
due to the excessive raw data transmission. This component manages a set of
functions already implemented in the release [125], but it is possible to easily
extend the framework with other ones, on the basis of the user application
requirements.

115

Chapter 5. A Timer-Driven Framework for WBSN

TinyOS environment

:SPINE 1.2 runtime system

SPINEApplication

. ///7/ T—
PacketManager SensorsBoard FunctionManager
Controller
RadioController \\ Functions
L S S ecaececnecaecaecaenaaan .
™ N
Radio Interface Sensors Interface Timers Interface

I:l SPINE 1.2 nesC components

D TinyOS nesC components

Fig. 5.2. The SPINE 1.2 node side framework.

5.3.2 SPINE 1.3

In the SPINE 1.3 architecture, shown in Figure 5.3, most of the components
have similar functionalities as the ones in the version 1.2. However, the imple-
mentation of these components, in C language, is dependent on the Z-Stack.
One of the principal differences from the previous version is related to the com-
munication management. In fact, in order to be executed on the Z-Stack envi-
ronment, the framework has to be ZigBee compliant. So, all the application-
level messages have to be encapsulated in a message packet formatted accord-
ing to the protocol stack specifications. This is performed through the use of
APIs provided by the ZigBee Device Object of the Z-Stack system.

Another difference is that the SensorManager does not access sensors
through some system interface, but by using the Driver module which pro-
vides direct access to the hardware sensors. Every application developed for
the Z-Stack architecture has to be implemented as a set of tasks, so the Sen-
sorManger relies on the Task Creation System to create the necessary sensing
tasks. The FunctionManager manages the processing functions on the node
and makes use of the Task Synch System to request result transmission to an
appropriate communication task. The BufferPool takes charge of providing a
set of buffers in which sensed data and function results are stored.

It should be specified that Task Creation System, Task Synch System,
Timers and Memory Management are not real Z-Stack components but func-

116

5.3. From SPINE to SPINE2

tionalities provided by the OSAL (Operating System Abstraction Layer) APIs
of the Z-Stack system [117].

Z-Stack environment

ESPLNE 1.3 runtime system
SPINEApplication

¢+ | Communication

SensorManager FunctionManager | BufferPool | :
. fo
. \
/ \

SN OO L,

/) ‘

ZigBee Device Timers Task Creation | | Task Synch. Memory
Object System System Management

I:I SPINE 1.3 components (C language)

I:l Z-Stack components

Fig. 5.3. The SPINE 1.3 node side framework.

5.3.3 Heterogeneous Programming

The SPINE coordinator, which runs at the base station side, is able to inter-
act both with TinyOS sensor nodes and Z-Stack sensor nodes (as shown in
Figure 5.4). This allows to build a WBSN composed of heterogeneous nodes
which however should be programmed by using the node side SPINE im-
plementation for each specific node. So, while this approach allows to use
heterogeneous sensors in the same WBSN, different types of sensors must be
differently programmed [126].

In order to perform its functionalities, the coordinator has to be interfaced,
via USB cable, to one of each sensor type (TinyOS and Z-Stack) getting the
appropriate radio communication capabilities for communicating with two
different parts of the WBSN (it is worth noting that TinyOS sensor platforms
supported by SPINE 1.2 use the IEEE 802.15.4 standard while Z-Stack uses
the ZigBee standard). Nevertheless the high-level communication service is
the same as it uses a unique format for application-level messages used for
nodes configuration and information exchange.

Furthermore, the coordinator can be either local or remote; in fact, the
SPINE 1.3 implementation of the coordinator supports multi-user remote ap-
plication control through RMI technology.

117

Chapter 5. A Timer-Driven Framework for WBSN

SPINE
Coordinator

SPINE
programming
forZ-Stack

programming
forTiny0S

EI TinyOS node (TelosB,MicaZ, Shimmer)

Fig. 5.4. A SPINE heterogeneous network.

When it is needed using different types of sensor within a WBSN appli-
cation, it is important to know how much the framework performs differently
on them. A performance comparison between SPINE 1.2 on TelosB nodes
and SPINE 1.3 on Z-Stack nodes, concerning the processing of specific fea-
tures computed on different sizes (50, 100) of data samples, is reported in
Table 5.1.

As can be noted, a Z-Stack node provides better performance than TelosB
(obviously, because of its different and higher performance hardware), so
it is more desirable to use Z-Stack nodes to accomplish complex and time-
consuming processing task.

The SPINE2 framework [127] is an evolution of SPINE based on the
C-language for reaching a very high platform independency for C-like pro-
grammable sensor platforms (e.g. TinyOS, Ember [116], Z-Stack) and so rais-
ing the level of the provided programming abstractions from platform-specific
to platform-independent.

In the next section several approaches to develop platform-independent
WSN applications are described.

118

5.4. Platform-Independent Development of WSN Applications

Table 5.1. Performance comparison between TelosB (SPINE 1.2) and Z-Stack
(SPINE 1.3) sensor nodes.

Time (ms)
Feature 100 samples 50 samples
TelosB Z-Stack Node TelosB Z-Stack Node

Max 0.88 0.27 0.49 0.15
Mean 1.63 0.53 1.07 0.32
Vector Magnitude 3.13 1.29 2.14 0.76
Pitch Roll 18.40 1.13 17.9 0.85
Standard Deviation 16.7 0.96 10.07 0.55

5.4 Platform-Independent Development of WSN
Applications

To develop platform-independent WSN applications several approaches, de-
fined for platform-independent software development in conventional dis-
tributed platforms, can be effectively adopted, as described in the followings.

Model-driven Development (MDD). MDD is an approach which provides a
set of guidelines for structuring specifications expressed as models and, then,
translating such models into platform-dependent code [128]. In particular,
MDD defines system functionality using a platform-independent model (PIM)
through an appropriate domain-specific language (DSL); then, given a plat-
form definition model (PDM) corresponding to CORBA, .NET, the Web, etc.,
the PIM is transformed into one or more platform-specific models (PSMs) that
computers can run. The PSM may use different DSLs, or a general purpose
language like Java, C#, PHP, Python, etc. Moreover, automated tools gener-
ally perform this transformation. In [129], an MDD framework to manage the
complexity of application development for WSNs is proposed. This framework
consists of a UML profile for WSN applications and a UML virtual machine,
named Matilda. The proposed UML profile abstracts the low-level details of
WSNs and provides higher abstractions for application developers to graphi-
cally design and maintain their applications. Matilda is a runtime engine used
to design, validate, deploy and execute WSN applications consistently at the
modeling layer. In [130], it is argued that current software development of
wireless sensor networks not only imposes much work on low-level program-
mers but also prevents domain experts from directly contributing parts of
the software. The proposed solution is based on the exploitation of domain
specific languages which are inexpensive to define, have a syntax that domain
experts understand, and creating simulations for them is easy. An application
modeled through a domain-specific language could be translated into (low-
level) platform-dependent code or into bytecode for a virtual machine (see
VM approach below). Finally in [131], a framework based on Simulink, State-

119

Chapter 5. A Timer-Driven Framework for WBSN

flow and Embedded Coder which follows the MDD approach is presented.
By using such framework, an engineer can create sensor network components
(both at the application and at the protocol level) that can be used as build-
ing blocks to model, simulate and automatically generate code for different
underlying platforms and operating systems (TinyOS and MantisOS).

Virtual Machine (VM). A VM runs as a normal application inside an OS.
Its purpose is to provide a platform-independent programming environment
that abstracts away details of the underlying hardware or operating system,
and allows a program to execute in the same way on any platform. Several
efforts have been devoted to the definition of VMs for the programming of
WSN application (Mat, Deluge, SOS, Agilla, etc). In particular, Mat [26] is
a byte code interpreter (VM) running on TinyOS, that provides safe pro-
gram execution environments, runtime re-programming, and an event-driven
stack-based architecture. Applications running in Mat use instructions that
are interpreted by virtual processors programmed onto network nodes. The
performance penalty of the interpretation of the instructions can be alleviated
by adding application-specific instructions to the virtual machine. Mat also
supports dynamic reconfigurability of nodes through code diffusion.

Software Layering (SL). Software layering has been largely used for the
development of communication protocol suites to hide network heterogene-
ity; TCP/IP is the most notable example. Therefore to hide heterogeneity of
different sensor platforms a basic software layer (or core framework), which
provides basic functionality, is defined for a set of sensor platforms based on a
similar programming language and adapted to each different sensor platform
through platform specific modules. Code development is carried out through
such common programming language according to the defined core framework.
In the context of WSNs, this approach is still scarcely used; however, due to
its specific characteristics, it is adopted for the definition of SPINE2 (see next
section).

5.5 SPINE2

The subject of this section is the new on-going developments to release version
2 of SPINE which aims to become independent on the low level details and
operating systems of the used sensor platform. In order to fulfill this goal,
each of the approaches introduced in Section 5.4 might be used.

According to the MDD approach (see Figure 5.5) platform independent
models developed through the SPINE language, defined as a DSL, are trans-
lated into platform specific code through platform specific translators. Al-
though this approach is very flexible and effective for platform-independent
software development, a major problem is that automatic translation may
introduce overhead in terms of generated code size and execution speed.

120

5.5. SPINE2

SPINE
LANGUAGE

:> SPINE
MODELS

TinyOS
Translator

EmberZNet
Translator

Z-Stack
Translator

TinyOS
(TelosB, MicaZ)

EmberZNet

Z-Stack
(Tl Z-Stack)

Fig. 5.5. SPINE2 based on the MDD approach.

According to the VM approach (see Figure 5.6) a SPINE VM pro-
grammable through a SPINE programming language should be defined and
implemented for each sensor platform to be used. Although this approach is
effective for providing platform independence, the deployment of a VM on
node able to execute the SPINE language can be very expensive in terms of
execution speed and used resources (e.g. memory).

SPINE VM LANGUAGE

I

SPINE PROGRAMS

SPINE VM
TinyOS EmberZNet Z-Stack
Porting Interface Porting Interface Porting Interface

Fig. 5.6. SPINE2 based on the VM approach.

According to the SL approach (see Figure 5.7) a SPINE core framework is
defined through a language used by the majority of sensor platform and, then,

121

Chapter 5. A Timer-Driven Framework for WBSN

adapted to such different platforms through platform specific software mod-
ules. With this approach the core framework can be accurately defined and
implemented and kept highly efficient. However it fits only sensor platforms
programmed through compatible languages.

SPINE LANGUAGE (C-Language)

!

SPINE PROGRAMS

SPINE CORE FRAMEWORK

TinyOS EmberZNet Z-Stack
Adaptation Adaptation Adaptation
Modules Modules Modules

Fig. 5.7. SPINE2 based on the SL approach.

Considered that our requirements were the followings:

e execution on commercial resource-constrained sensor platforms, such as
TinyOS [19], Ember [116] or Texas [117], each one having a different op-
erating system;

e minimization of the amount of code that should be replicated for each
specific implementation;

e enabling C-developers (eventually C++) to extend the SPINE framework
without having to learn low-level details of specific sensor platforms or
without having to learn new programming languages, such as nesC [19];

e enabling compiling and simulating the code by using normal ANSI C tools;

we selected the SL approach founded on the C language, which is the lan-
guage used by the sensor platforms we selected and, as a matter of fact, by
the majority of resource-constrained environments. In the next three subsec-
tions the programming model, the architecture and the some implementation
details of SPINE2 are described.

122

5.5. SPINE2

5.5.1 SPINE2 Programming Model

In SPINE2 a task-oriented programming model was implemented on the nodes
in order to best fit the requirements of collaborative distributed applications
in a resource constrained environment: an agent is executed on each sensor
node that via proper message exchange can discover, create, activate, sched-
ule and control tasks. Distributed and collaborative applications can then be
programmed as a dynamically schedulable and reconfigurable set of tasks.
Different tasks can be assigned to each node of the network and tasks can
be controlled at execution time via proper message exchange; in this way the
network can overall adapt to changes in context, in overall goals, in the state
of each single node, and it can better balance load and task types between
each element of the network. Dynamic distribution of tasks allows among the
others preprocessing of sensed data directly on the node, a significant reduc-
tion of data transmission and battery consumption, and an overall increase of
the network lifetime.

Application developers do not need to program in tiny environments. A
SPINE agent is installed on each node that allows interacting with the base
station for the task assignment and control. An application is simply a recipe
listing the set of tasks to be assigned to each node; the recipe can be executed
via the Java API of the base station and, via the same API, the recipe can
also be changed at execution time in order to implement different states and
intentions of the system.

So far, the following types of tasks have been implemented:

o SensingTask, which allows defining a sensing operation on a given sensor.
The sensing operation can be one-shot or periodic.

e TimingTask, which allows defining timers for timing other tasks. Timers
can be one shot or periodic.

e FunctionalTask, which refers to the functional tasks defined through pro-
gramming;:

— ProcessingTask, which allows to elaborate data. A specific type of pro-

cessing is the feature extraction (or simply feature), a data processing

algorithm which is carried out on a set of values that can be taken from
a data buffer of the BufferPool.

— AggregationTask, which allows aggregating data calculated by different
functions.

— TransmissionTask, which allows transmitting data produced by sens-
ing, processing and/or aggregation tasks.

An example of task-oriented programming is shown in Figure 5.8 by means
of a data-flow-based model. In this example, the sensed data generated by
the Sensing task (by acquiring data from a 3-axis accelerometer) are fed to

123

Chapter 5. A Timer-Driven Framework for WBSN

the Split task that, in turn, splits the data for the computation of three
features. Each feature is implemented as a Task and fed with different data: the
Mean task uses data from all three axes (XYZ), the Min and Maz tasks uses
data from the X axis. Each triple of computed features (<Mean(AccXYZ),
Min(AccX), Max(AccX)>) are aggregated by the Aggregation task (Aggr)
and sent to the destination node by the data transmission task (Sender). The
reader can easily guess the variety of complex tasks which can be created by
using such a task composition formalism.

- <Max(AccX),
peC *:(D/\\ Min(AccX),

o Mean(AccXYZ)>
Acc (XYZ) N

Sensing
Accelerometer

Fig. 5.8. Data-flow-based model.

The SPINE task-oriented programming model is not dataflow driven but
event-driven. Thus, the data-flow model of Figure 5.8, which can be seen
as a model at a higher-level of abstraction, can be defined according to the
event-driven model of SPINE2 as in Figure 5.9. In particular, data, which are
sensed by the Sensing task driven by a Timerl set to a given sampling rate,
are stored into decoupling buffers for the three axes channels (AccX, AccY,
AccZ). Buffers are managed by the BufferPoolManager component which is
based on the event-based publish subscribe paradigm. It accepts subscrip-
tions coming from the FunctionTasks and as soon as events related to such
subscriptions occur, it notifies, through the AcqNotify, the FunctionTask sub-
scriber which, in turn, can fetch the data which it is interested in. In the
proposed example, the ProcessingTasks are notified by the BufferPoolMan-
ager when S sensed data samples have been acquired; where S is the shift
parameter of the ProcessingTasks which compute their function on a sam-
ple window (W) equals to n % S samples. The processed data are passed to
the AggregrationTask (Aggr) which, after aggregation, passes them to the
TransmissionTask (Sender). In Figure 5.10 a timer-driven model of the same
example is shown. It simplifies the architecture supporting SPINE2 models
by avoiding the introduction of the BufferPoolManager active component. In
particular, the FunctionTasks are not driven by events sent by the BufferMan-
agerPool but by timers appositely set upon the timer driving the SensingTask.
Timer2, Timer3, and Timer4 are therefore set to .S « Timerl. Moreover, also
the Aggr& SendTask (a task which jointly aggregates and transmits) is timer
driven. Timerb = Timer2 + 0.1 « Timer2.

124

5.5. SPINE2

AcNotify

{ g S\ <Max(AccX),
11T aeex) -2etAeeX2) Mean) e

TIILTIT] Accy | AcaNotity Mean(AccXYZ)>
Accz | getAcey) | Min]—\ Aggr HSenderJ

BufferPool Manager | AcqNotify .
(notifier))

Il
il

Sensing |
Accelerometer]

<Max(AccX),
Min(AccX),
Mean(AccXYZ)>

Aggr&Send

Sensing ||
ccelerometer]

Timer2=Tim er3=Tim er4=S*Timer1
Timer5=Tim er2+0.1*Timer2

[TTTTTTTTT] AseY |-

BufferPool

Fig. 5.10. Timer-driven SPINE2-based model.

5.5.2 A Timer Driven Architecture

The timer-driven architecture of SPINE2 (Figure 5.11) consists of a SPINE
core framework which is to be adapted to platform specific components (sen-
sor drivers, application lifecycle, timers, communication). The SPINE core
framework currently implements the task execution logics according to the
timer driven programming model.

The platform-independent components of the SPINE2 framework are:

e The SPINEApplication is the core component of a SPINE2 application. It
reacts to external events, like messages, and to internal events. It provides
three functions:

— nit for application initialization;
— handleIncomingMessage for handling an incoming network message;
— handleFiredTask for handling fired tasks.

e The TaskDescriptionPool component is a dynamic list of the tasks created
in the node.

125

Chapter 5. A Timer-Driven Framework for WBSN

TimedTaskSheduler MessageHandler RadioController
TaskDescriptionPool
CommManager
SPINEBoot SPINEApplication
\ -
SensorList
+init()
" +handleIncomingMessage(message)
MessagePacketizer ™ | handje FiredTask(activeTask) f
/ \ SensorManager
AggBuffer BufferPool
FunctionManager e
0..* 0..*
Function FunctionList AsyncSensor

|:| Platform Specific l:, Platform Independent

Fig. 5.11. The SPINE2 component diagram.

e The BufferPool component consists of a set of data buffer needed to store
data produced by sensing tasks and aggregate data computed by functions.

e The FunctionManager component, which acts as a Dispatcher managing
the available list of functions (FunctionList), is called by the SPINEAppli-
cation to execute ProcessingTasks, AggregationTasks and Transmission-
Tasks.

e The AggrBuffer component, which allows to temporary store computed
features for aggregating them.

e The SensorManager component is connected to platform specific compo-
nents, which are specific drivers for the Sensors components. The Sen-
sorManager manages a list of sensors (SensorList) which can be of syn-
chronous and asynchronous type. While synchronous sensors are read
through a synchronous primitive, asynchronous sensors are based on (i)
an asynchronous primitive for requesting a sensor read and (ii) the related
notification of the read value, which is done by the sensor driver, when
data is available, so that the sensor manager can fetch it.

126

5.5. SPINE2

The MessageHandler component contains the handling code of the SPINE2
protocol packets.

The MessagePacketizer component allows building packets according to
the SPINE2 protocol.

The aforementioned platform-independent components are to be appo-

sitely adapted to the following platform-dependent components which drive
their execution:

The SPINEBoot component is the application entry-point which provides
the application lifecycle. It contains platform specific initializations and
wirings, and drives the SPINEApplication by calling its init() method.

The TimedTaskScheduler component manages timed tasks by using plat-
form-specific timers.

The AsyncSensor/SyncSensor components are the sensor drivers, which
can be synchronous or asynchronous, through which real sensors can be
accessed.

The CommManager component contains the platform-specific radio com-
munication logic. CommManager can receive messages from the Radio-
Controller and pass them to the SPINEApplication through the handleln-
comingMessage method which uses the MessageHandler component. In
particular, the RadioController allows to handle the sensor radio for re-
ceiving and transmitting packets and for putting the radio in stand-by for
energy saving.

The SPINE 1.2 communication protocol which enables communication be-

tween the base station and the sensor node is function-oriented. As the pro-
gramming model of SPINE 2.0 is task oriented, the SPINE2 communication
protocol was redesigned. Nevertheless, to maintain backward compatibility,
a SPINE1.2/SPINE2 software communication bridge was also implemented.
The SPINE2 communication protocol is task-oriented and, in particular, pro-
vides the following packet types:

create Task, which allows to create a task with the associated parameters;
startTask, which starts a created task or restart a paused task;
pauseTask, which pauses a started task;

update Task, which reconfigures a paused task;

delete Task, which stops and/or cancel a task;

getTasksDescription, which returns the list of the created tasks of the
node and their status;

startNode, which starts all the tasks created on the node;

127

Chapter 5. A Timer-Driven Framework for WBSN

e getNodeConfiguration, which returns the configuration of the node in
terms of available sensors, functions and tasks;

e data, which contains data sent from the node to the coordinator.

5.5.3 Implementation

SPINE2.0 architecture as described in Figure 5.11 easily allows supporting
different platforms since the platform specific components are well defined.
The parts to be implemented include the application lifecycle, the communi-
cation part, the timer related stuff and the low level access, that are all the
OS specific parts as previously described. SPINE2.0 currently supports two
software sensor platforms, TinyOS 2.1 and Texas Instruments Z-Stack 1.2.

Although these platforms are all based on a C-like programming language,
they differ not only in terms of operating systems but also in terms of pro-
gramming abstractions and communication protocols.

While TinyOS was designed as a general purpose open source operating
system for wireless sensor networks, Texas Instrument Z-Stack is a software
platform certified to be ZigBee compliant. On the other hand, while being
more flexible in terms of applications and modules to be inserted, TinyOS
brings another complexity due to the programming paradigm and language.
Therefore such two platforms are very good candidates for evaluating the
flexibility of the SPINE2.0 architecture.

Z-Stack environment defines not only an operating system but also stan-
dard related logics that must be preserved to maintain the standard compli-
ance. ZigBee standard [11] defines not only the low level communication layers
(IEEE 802.15.4 as MAC protocol, ZigBee network, management and security
layers) and standard application profiles (such as the Home Automation one)
but also basic rules to be followed when building a proprietary profile.

As an application level framework, SPINE2.0 on TinyOS has been imple-
mented as an application module whereas on the Z-Stack platform has been
designed to be a proprietary ZigBee profile with respect to all the ZigBee
related rules.

In particular, the parts to be added into the different platforms are the
followings:

e SPINEBoot takes care of the system initialization:

— in the Z-Stack it defines all the ZigBee standard descriptors as well as
sets up the ZigBee communication part;

— in TinyOS this is simply the application entry point from where the
TinyOS application is compiled and started and does not include any
logic rather than the SPINE related one.

128

5.5. SPINE2

e CommManager/RadioController takes care of all the communication
related operations:

— in the Z-Stack this part takes care of the communication through prim-
itives defined by the standard for the application protocol data units
transport between peer application entities (ZigBee APS Data Service).

— in TinyOS it uses send/receive low level APIs for communicating with
other devices in the network.

e TimedTaskScheduler schedules the timed tasks created in the sensor node:

— in the Z-Stack implementation this part takes care of all the timed event
through an extensive usage of the utilities provided by the Z-Stack OS
(OSAL, Operating System Abstraction Layer) such as task allocation,
timer settings and so on. It is important to notice that SPINE2.0 task
oriented architecture run without any modification even into a task
oriented OS as the OSAL is;

— the timer interface already defined in the OS is used in the TinyOS
version to manage timer related events

e Sensor drivers which are platform specific since they have to access to
low level functionalities.

Moreover each platform will need specific configuration files setting all the
tunable parameters.

The Timer-driven SPINE2.0 release has been successfully implemented
and tested on both mentioned platforms. In the following we elucidate the
structure and programming of the available tasks.

A timed task is defined as a C-struct as follows:

typedef struct timedTaskDescriptor{

unsigned char taskID;

unsigned char taskType;

unsigned char status;

unsigned long timer;

unsigned char timerScale;

unsigned char isPeriodic;

unsigned char parameters[TASK_PARAMETER_LENGTH] ;
} timedTaskDescriptor;

where, taskID is the unique task identifier, taskType is the type of task,
status holds information about the task status (created, active, paused), timer
contains the task firing time, timerScale contains the measurement unit of
the timer, isPeriodic signals if the timed task is periodic or one-shot, and
parameters contains parameters specific to the taskType.

The currently available taskTypes are sensing, feature extraction, and ag-
gregation and sending:

129

Chapter 5. A Timer-Driven Framework for WBSN

enum taskTypes{
TASKTYPE_FEATURE_EXTRACTION = 0xO01,
TASKTYPE_SENSING = 0x02,
TASKTYPE_AGGR_AND_SEND = 0x03

s

In particular the parameters of task types are defined as follows:

enum sensing_TaskType{
SENS_SENSOR_ID = O, //id of the sensor
SENS_CHANNEL_BITMASK = 1, //bitmask for Ch selection
SENS_BUFFER_ID_1 = 2, //buffer associated to Chil
SENS_BUFFER_ID_2 = 3, //buffer associated to Ch2
SENS_BUFFER_ID_3 = 4, //buffer associated to Ch3
SENS_BUFFER_ID_4 = 5 //buffer associated to Ch4

};

enum feature_extraction_TaskType{

FEX_FEATURE = O, //id of the feature
FEX_CHANNEL_BITMASK = 1, //bitmask for Ch selection
FEX_WINDOW = 2, //data window
FEX_BUFFER_ID_1 = 3, //buffer associated to Chil
FEX_BUFFER_ID_2 = 4, //buffer associated to Ch2
FEX_BUFFER_ID_3 = 5, //buffer associated to Ch3
FEX_BUFFER_ID_4 = 6, //buffer associated to Ch4
FEX_SENSOR_ID = 7, //id of the sensed sensor
FEX_AGGR_ID = 8 //id of the aggr&send task

};

enum aggregation_and_sending_TaskType{

AGG_ID = O, //id of the aggr&send task
AGG_FEATURES_TO_WAIT_FOR = 1, // aggr feature number
AGG_TIMER = 2, //reference aggr timer
AGG_DEF_COUNTER = 6 //number of aggr trials

The example of Figure 5.10 is implemented and successfully tested on
TelosB motes [132] and TT ZStack sensor nodes both equipped with specific
3-axial accelerometer sensor boards. In particular the defined timed tasks
(sensing from accelerometer, calculation of mean, and aggregation and send-
ing) are the following:

e TASKTYPE_SENSING
(sensTask)->taskID = 1;

(sensTask)->taskType = TASKTYPE_SENSING;

130

5.5. SPINE2

(sensTask)->timer = 25;

(sensTask)->timerScale = 1; //ms

(sensTask)->isPeriodic = 1; //true
(sensTask)->parameters [ACQ_SENSOR_ID]=1; //accelerometer
(sensTask)->parameters [ACQ_CHANNEL_BITMASK]=e; //Ch XYZ
(sensTask)->parameters [ACQ_BUFFER_ID_1] = O;
(sensTask)->parameters [ACQ_BUFFER_ID_2] 1;
(sensTask)->parameters [ACQ_BUFFER_ID_3] 2;

TASKTYPE_FEATURE_EXTRACTION_1

(featExtTask)->taskID = 2;

(featExtTask)->taskType = TASKTYPE_FEATURE_EXTRACTION;
(featExtTask)->timer = 1000; //40 samples
(featExtTask)->timerScale = 1;
(featExtTask)->isPeriodic = 1;
(featExtTask)->parameters [FEX_FEATURE] = 5; //MEAN
(featExtTask)->parameters [FEX_CHANNEL_BITMASK] = e;
(featExtTask)->parameters [FEX_WINDOW] = 80;
(featExtTask)->parameters [FEX_BUFFER_ID_1] 0;
(featExtTask)->parameters [FEX_BUFFER_ID_2] =
(featExtTask)->parameters [FEX_BUFFER_ID_3] = 2;
(featExtTask)->parameters [FEX_SENSOR_ID] = 1;
(featExtTask)->parameters [FEX_AGGR_ID]=1;

|
—

TASKTYPE_AGGR_AND_SEND

(aggrSendTask)->taskID = 5;

(aggrSendTask)->taskType = TASKTYPE_AGGR_AND_SEND;
(aggrSendTask) ->timer = 1100;

(aggrSendTask) ->timerScale = TIMER_SCALE_MSEC;
(aggrSendTask)->isPeriodic = FALSE;

(aggrSendTask) ->parameters [AGG_ID] = 1;

(aggrSendTask) ->parameters [AGG_FEATURES_TO_WAIT_FOR]=3;
(aggrSendTask) ->parameters [AGG_TIMER] = 1000;
(aggrSendTask) ->parameters [AGG_DEF_COUNTER] = 0;

Tasks can be created and started either by explicit node programming or

by the base station through the SPINE2 protocol.

To experiment with SPINE2, the sensor-node side application presented

in [80], which allows the activity monitoring of individuals (standing, lying,

walking and sitting), is now based on sensor nodes supported by SPINE2.0

(See Section 5.6).

Experimentation with SPINE2 was also carried out to demonstrate that
the platform independency of SPINE2 does not introduce performance penal-
ties with respect to SPINE1.2. To this purpose, an evaluation of the data

processing performances of the TinyOS versions of SPINE1.2 and SPINE2 on

131

Chapter 5. A Timer-Driven Framework for WBSN

the TMote SKY TelosB sensor platform [132] has been carried out. The per-
formance evaluation results are reported in Table 5.2. In particular, selected
features (max, mean, standard deviation, vector magnitude, pitch & roll, and
entropy) were computed on different sample sizes (50, 100, 200) acquired from
a 3-axial accelerometer sensor board. As can be noted, SPINE2 feature pro-
cessing performances are higher than those computed with SPINE1.2. This
performance improvement is mainly due to the different methods of calling
processing functions in SPINE1.2 and SPINE2: in SPINE1.2 a processing func-
tion is executed by means of a call to a nesC command whereas in SPINE2 a
simple call to a C function of an included file is done.

Table 5.2. Comparison of feature processing times (ms) through SPINE1.2 and
SPINE2 in TinyOS on TelosB sensor nodes.

50 samples 100 samples 200 samples

SPINE1.2 SPINE2 SPINE1.2 SPINE2 SPINE1.2 SPINE2
MAX 0,488 0,488 0,883 0,886 1,696 1,679
MEAN 1,069 1,038 1,627 1,556 2,714 2,625
STANDARD
DEVIATION 10,070 7,450 16,703 13,823 28,617 26,054
VECTOR
MAGNITUDE 2,136 1,741 3,126 2,501 4,564 3,997
PITCH & ROLL 17,894 16,967 18,401 17,428 19,461 18,552
ENTROPY 239,291 235,848 488,185 481,167 1016,392 1001,735

5.6 A Case Study: Activity Monitoring on
Heterogeneous WBSNs

To test the effectiveness of the SPINE2 framework and its capability on
managing an heterogeneous network, a physical Activity Monitoring System
(AMS [80]) has been reverse engineered and made heterogeneous.

AMS is able to recognize postures (e.g. lying, sitting or standing still) and
a few movements (e.g. walking and jumping) of a person; furthermore it can
detect if the monitored person has fallen and unable to stand up.

The system consists of a user application and two node applications. The
former is implemented in Java and runs on top of the SPINE Manager (in-
cluded in the coordinator part of the SPINE framework) which can access
distinctive communication modules for interacting with different types of sen-
sor. The latter consists of two different applications designed following the

132

5.6. A Case Study: Activity Monitoring on Heterogeneous WBSNs

SPINE2 task oriented approach and running on top of the SPINE2 node run-
time system (the node part of the SPINE2 framework). The entire software
design related to the activity monitoring system is depicted in Figure 5.12.

THIGH Node
Sensing on AccXYZ in
Accelerometer
Min(AccX)
Sending to
Coordinator
v
COORDINATOR
Application on SPINE
SPINE Manager
SPINE Listener
A
<Max(AccX), WAIST Node
Mean(AccXYZ),
Sending to Min(AccX)>
Coordinator
Max(AccX i)
Min
Sensing on AccXYZ
Accelerometer

Fig. 5.12. The Activity Monitoring application.

133

Chapter 5. A Timer-Driven Framework for WBSN

In Figure 5.13 the complete Activity Monitoring system is shown. The net-
work architecture is composed of a TelosB node placed on a thigh of a person
and a Z-Stack node placed on the waist of the same person. The different types
of nodes run the same SPINE2 core runtime system plus the particular adap-
tation code related to the particular node platforms. We already discussed on
the possibility of having different types of sensor in the same SPINE net and
this real application demonstrates the feasibility in managing a heterogeneous
WBSN.

Z-Stack BaseStation

Z-Stack node
SPINE2
) . &
£,
1

(3
' 4
g e /
Tiny OS node i
SPINE2 p

Tiny OS BaseStation

Fig. 5.13. The SPINE 2 Activity Monitoring system.

The coordinator (running on a notebook) has been interfaced with the
wireless sensors network through other two nodes connected via USB cable
and providing the necessary radio communication capability.

The user application on the coordinator is responsible for gathering pre-
elaborated data taken from the accelerometer sensors of the nodes and relies
on a classifier that recognizes postures and movements defined in a training
phase.

The application integrates two different classifiers. One based on the
K-Nearest Neighbor algorithm [133] and the other based on J48 Decision
Tree [134]. They were setup through a training phase and tested considering
the following settings for the data acquisition from sensors: the sample rate
was set to 50ms, the window to 20, whereas the shift to 10. This means that
the features in Figure 5.13 (Min, Max and Mean) are evaluated on 20 sam-
pled data and computed every new 10 samples acquired by the sensors. See
Table 5.3 for the obtained classification accuracy results.

134

5.6. A Case Study: Activity Monitoring on Heterogeneous WBSNs

Table 5.3. Classification accuracy for classifiers based on K-Nearest Neighbor and
J48 Decision Tree.

Walking Sitting Standing Lying
K-NN 94,0% 96,0% 92,0% 98,0%
J48 D Tree 92,0% 98,0% 94,0% 94,0%

135

6

Conclusions, Publications and Future
Directions

6.1 Conclusions

Throughout this thesis, several contributions have been made to the Wireless
Sensor Networks research community.

In particular, this thesis has introduced two domain-specific frameworks
and a general-purpose mobile agent system that provide an effective support
to the development of WSN.

The first contribution of the thesis consists of the Building Management
Framework (BMF), a domain-specific framework for effective management
of Wireless Sensor and Actuator Networks (WSAN) which enables proactive
monitoring of spaces and control of devices / equipments. BMF is specifically
designed to provide flexible and efficient management of networked sensors
and actuators and abstractions for logical and physical node grouping to ex-
pressively capture the morphology of buildings. The overall goal is to provide
a versatile platform to allow intelligent sensing and actuation techniques, in-
tegration of heterogeneous WSANSs, flexible system programming at low- and
high-level, fast deployment of different applications through message-based
programming. BMF is the only framework specifically conceived to address
Building Management that fulfils all the requirements identified by build-
ing applications. The effectiveness of BMF has been demonstrated through
SmartEnLab, a BMF-based application for energy monitoring in computer
laboratory / office environments. SmartEnLab has shown not only flexibility
in terms of monitoring (request schedule and data reception) and simplicity in
the extraction of information, but also an interesting demonstrator of energy
profiling application in building environments. SmartEnLab has been useful
for: (i) the profiling of the workstation usage through the data gathered from
the WSAN. In particular, energy and occupancy profiles over a 24 hour pe-
riod were shown for some workstations; (ii) a performance evaluation of the
BMF-based building wireless sensor network that shows some advantages in
the use of the BMF. In particular, the use of aggregation and selection mech-

137

Chapter 6. Conclusions, Publications and Future Directions

anisms yields an average increase of more than 10% in transmission reliability
with respect to raw data transmission schemes, while reducing significantly
the energy consumption in transmission. In node aggregation allows to appre-
ciably reduce the radio channel usage, too; (iii) a WSAN lifetime estimation
of a network running the BMF that shows the increased lifetime allowed by
BMF with respect to WSAN with no support framework. In particular, BMF
doubles the duration of the expected life of a WSAN still keeping low the
packet loss rate.

As second contribution, the thesis has proposed mobile agents as an ef-
fective paradigm to program WSN applications and, in particular, presented
MAPS, a Java-based framework for the development of agent-based applica-
tions for Sun SPOT sensor platforms. By using MAPS, a WSN application
can be structured as a set of stationary and mobile agents distributed on
sensor nodes supported by a component-based agent execution engine that
provides basic services such as message transmission, agent creation, agent
cloning, agent migration, timer handling and easy access to the sensor node
resources. MAPS programming has been exemplified through a simple yet ef-
fective example that shows how to program the dynamic behavior of agents
in terms of state machines on the basis of the MAPS library. An evaluation
of MAPS has been presented according to micro-kernel benchmarks (agent
communication, migration and creation) usually employed for mobile agent
systems. Evaluation shows some performance penalties mainly due to very
time-consuming operations (Isolate hibernation/serialization and radiostream
based communications) provided by the Sun SPOT libraries and SquawkVM
on which MAPS relies. Moreover, a case study concerning a decentralized and
embedded management architecture for intelligent buildings that is based on
WSANS has been described. It is emblematic of the effectiveness and suitabil-
ity of MAPS to deal with the programming of complex applications. Finally,
MAPS has been compared in depth with the AFME (Agent Factory Micro
Edition) agent platform.

As third contribution, SPINE2 has been presented. SPINE2 is a domain-
specific framework for the platform-independent development of collaborative
WBSN applications. SPINE2 consists of two parts: (i) the core which is writ-
ten in C and is independent from any C-like sensor platform on which it can
be ported on; (ii) a set of platform-dependent components (sensors, commu-
nications, timers, application lifecycle) through which the core can be easily
adapted. The task-oriented programming model of SPINE2 enables a flexible
development of WBSN applications in terms of a star-based network of col-
laborative and dynamically reconfigurable tasks which concur to carry out an
overall distributed task. SPINE2 (specifically the timerdriven architecture) is
currently implemented for TinyOS sensor platforms (in particular for TelosB
motes) and ZStack Zigbee sensor nodes, and was successfully applied to the
realization of a multi-platform WBSN application for activity monitoring of

138

6.2. Publications Related with this Thesis

individuals. Moreover, SPINE2 increases performances of feature calculation
with respect to SPINE1.2.

6.2 Publications Related with this Thesis

The research work related to this thesis has resulted in 18 publications. Among
them, there are 4 journal articles, 2 book chapters, 11 conference papers, and
1 conference poster.

In the following, brief description of each publication is provided.

6.2.1 Journal Articles

A Java-based agent platform for programming Wireless Sensor
Networks [87]:

F. Aiello, G. Fortino, R. Gravina, and A. Guerrieri. A Java-based agent platform for pro-
gramming Wireless Sensor Networks. The Computer Journal, 54(3):439-454, 2011.

This paper presents the design, implementation, and experimentation of
MAPS (Mobile Agent Platform for SunSPOT), an innovative Java-based
framework for WSNs based on SunSPOT technology which enables agent-
oriented programming of WSN applications. Agent programming with
MAPS is presented through both a simple example related to mobile agent-
based monitoring of a sensor node and a more complex case study for real-
time human activity recognition based on BSNs. Moreover, a performance
evaluation of MAPS carried out by computing micro-benchmarks, related
to agent communication, creation and migration, is illustrated.

SPINE-based application development on Heterogeneous Wire-
less Body Sensor Networks [115]:

G. Fortino, S. Galzarano, R. Giannantonio, R. Gravina, and A. Guerrieri. SPINE-based appli-
cation development on heterogeneous Wireless Body Sensor Networks. International Journal
of Computing, 9(1):80-89, 2010.

This paper proposes an approach based on the SPINE frameworks (SPINE-
1.x and SPINE2) for the programming of signal processing applications on
heterogeneous wireless sensor platforms. In particular, it presents two in-
tegrable approaches, based on the proposed frameworks, that allow for the
development of applications for BSNs constituted by heterogeneous sensor
nodes.

SPINE: A domain-specific framework for rapid prototyping of
WBSN applications [64]:

F. Bellifemine, G. Fortino, R. Giannantonio, R. Gravina, A. Guerrieri, and M. Sgroi. SPINE:
A domain-specific framework for rapid prototyping of WBSN applications. Software: Prac-
tice & Experience, 41(3):237-265, March 2011.

This paper is a significant extension of [80]. It presents in detail the core

139

Chapter 6. Conclusions, Publications and Future Directions

SPINE framework, and describes its unique features through the devel-
opment of a case study which consists of a BSN system for monitoring
human physical activities in real-time.

An analysis of Java-based mobile agent platforms for Wireless
Sensor Networks [91]:

F. Aiello, G. Fortino, S. Galzarano, R. Gravina, and A. Guerrieri. An analysis of Java-based
mobile agent platforms for Wireless Sensor Networks. Multi-Agent and GRID Systems, to
appear:1-30, 2011.

This paper proposes an in-depth analysis of the only two available Java-
based mobile agent platforms for WSNs: Mobile Agent Platform for
SunSPOT (MAPS) and Agent Factory Micro Edition (AFME). In par-
ticular, the architecture, programming model and basic performance of
MAPS and AFME are described and compared. Moreover, a simple yet
effective case study concerning a mobile agent-based monitoring system
for remote sensing and aggregation is proposed.

6.2.2 Book Chapters

Signal processing in-node frameworks for Wireless Body Sensor
Networks: from low-level to high-level approaches [135]:

F. Aiello, G. Fortino, S. Galzarano, R. Gravina, and A. Guerrieri. Wireless Body Area Net-
works: Technology, Implementation and Applications, chapter 5 - Signal processing in-node
frameworks for Wireless Body Sensor Networks: from low-level to high-level approaches,
pages 1-23. Pan Stanford publishing, 2011.

This book chapter proposes a high-level approach based on the agent-
oriented programming model to flexibly design and efficiently implement
signal processing in-node environments supporting WBAN applications.
The approach is exemplified through a case study concerning a real-time
human activity monitoring system which is developed through two dif-
ferent agent-based frameworks: MAPS and AFME. A comparison of the
effectiveness and efficiency of the developed systems is finally presented.

A WSN-based Building Management Framework to Support
Energy-Saving Applications in Buildings [51]:

A. Guerrieri, G. Fortino, A. Ruzzelli and G. O’Hare. Advancements in Distributed Com-
puting and Internet Technologies: Trends and Issues, chapter 12 - A WSN-based Building
Management Framework to Support Energy-Saving Applications in Buildings, pages 161-174.
Hershey, PA, USA: IGI Global, 2011.

This book chapter defines the specific requirements for applications of en-
ergy management in the building context and proposes a novel framework
for building management (BMF) to support heterogeneous platforms. To
allow flexible node activity grouping, BMF defines roles and operations de-
rived from the mathematical set theory, while it optimizes transmissions

140

6.2. Publications Related with this Thesis

through a mechanism of adaptive packet size. BMF has been implemented
and tested in TinyOS. Results show an increase in reliability with respect
to existing transmission schemes that can be traded off to reduce energy
consumption.

6.2.3 Conference Papers

MAPS: A Mobile Agent Platform for WSNs based on Java Sun
Spots [90]:

F. Aiello, G. Fortino, R. Gravina, and A. Guerrieri. MAPS: a mobile agent platform for Java
Sun Spots. In Proceedings of the 3rd Workshop on Agent Technology for Sensor Networks,
jointly held with the 8th International Conference on Autonomous Agents and Multi-Agent
Systems, ATSN 2009. Budapest, Hungary, May 2009.

This paper emphasizes the importance of the mobile agents approach in
the WSN domain. Due to their intrinsic characteristics mobile agents may
provide more benefits in the context of WSNs than in conventional dis-
tributed environments. The discussion is supported through the descrip-
tion, analysis, and evaluation of a case study application of the MAPS
framework.

SPINE2: developing BSN applications on heterogeneous sensor
nodes [118]:

G. Fortino, A. Guerrieri, F. Bellifemine and R. Giannantonio.SPINE2: developing BSN ap-
plications on heterogeneous sensor nodes. In Proceedings of IEEE Symposium on Industrial
Embedded Systems, SIES’09. Losanna, Svizzera, July 2009.

This paper presents SPINE2, an evolution of SPINE, which aims at reach-
ing a very high platform independency and raising the level of the used pro-
gramming abstractions by providing a task-oriented programming model.
Furthermore, SPINE2 is exemplified through a case study related to hu-
man activity monitoring.

Programming signal processing applications on heterogeneous
wireless sensor platforms [126]:

L. Buondonno, G. Fortino, S. Galzarano, R. Giannantonio, A. Giordano, R. Gravina, and
A. Guerrieri. Programming signal processing applications on heterogeneous wireless sensor
platforms. In Proceedings of the 5th IEEE International Workshop on Intelligent Data Ac-
quisition and Advanced Computing Systems: Technology and Applications, IDAACS 2009,
pages 682-687. IEEE Press, Rende, Cosenza, Italy, September 2009.

This paper presents SPINE2, a framework for the programming of sig-
nal processing applications on heterogeneous wireless sensor platforms.
The approach is exemplified through a human activity recognition system
based on a BSN composed of two types of sensor nodes, heterogeneous
with respect to base software and hardware.

141

Chapter 6. Conclusions, Publications and Future Directions

e Platform-independent development of collaborative Wireless
Body Sensor Network applications: SPINE2 [127]:
G. Fortino, A. Guerrieri, F. Bellifemine, and R. Giannantonio. Platform-independent devel-
opment of collaborative Wireless Body Sensor Network applications: SPINE2. In Proceedings
of the 2009 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2009,
pages 3144-3150. IEEE, San Antonio, TX, USA, October 2009.
This paper discusses issues related to platform-independent development
of collaborative WBSN applications and, specifically, describes the require-
ments, architecture and first implementation experiences of SPINE2 which
aims at reaching a very high platform independency and raising the level
of the used programming abstractions by providing a task-oriented pro-
gramming model. The paper also discusses how such a task-oriented model
enables dynamic task assignment and holistic collaborative task execution
also for resource-constrained environments such as tiny sensor nodes.

e An agent-based signal processing in-node environment for real-

time human activity monitoring based on Wireless Body Sensor
Networks [136]:
F. Aiello, F. Bellifemine, G. Fortino, R. Gravina, and A. Guerrieri. An agent-based signal
processing in-node environment for real-time human activity monitoring based on Wireless
Body Sensor Networks. In Proceedings of the 1st International Workshop on Infrastructures
and Tools for Multiagent Systems, jointly held with the 9th International Conference on
Autonomous Agents and Multi-Agent Systems, ITMAS 2010, Toronto, Canada, May 2010.
This paper proposes an application of MAPS for the development of a real-
time WBSN-based system for human activity monitoring. The experimen-
tation phase of the prototype is also described, along with a performance
evaluation analysis.

e ANNOT: Automated Electricity Data Annotation Using Wire-
less Sensor Networks [137]:
A. Schoofs, A. Guerrieri, D. T. Delaney, G. M. P. O’Hare, and A. Ruzzelli. ANNOT: Auto-
mated Electricity Data Annotation Using Wireless Sensor Networks. In Proceedings of the
Tth Annual IEEE Communications Society Conference on Sensor Mesh and Ad Hoc Com-
munications and Networks, SECON 2010, pages 244-252. Boston, MA, USA, June 2010.
This paper proposes ANNOT, a system to automate energy data annota-
tion leveraging cheap wireless sensor nodes. Characteristic sensory stim-
uli captured by sensor nodes using the Building Management Framework
(BMF) are translated into appliance operating state and correlated to the
energy data, autonomously generating the annotation of energy data with
appliance activity. The system is able to generate appliance signatures,
training data and validate the monitoring output.

e Decentralized and Embedded Management of Smart Buildings
[108]:

G. Fortino, and A. Guerrieri. Decentralized and Embedded Management of Smart Buildings.

142

6.2. Publications Related with this Thesis

In Proceedings of the Workshop on Applications of Software Agents, WASA 2011, pages
3-7. Novi sad, Serbia, July 2011.

This paper proposes a decentralized and embedded architecture based on
agents and wireless sensor and actuator networks for enabling efficient
and effective management of buildings. The main purpose of the agent-
based architecture is to efficiently support distributed and coordinated
sensing and actuation operations. The high modularity of the proposed
architecture allows for easy adaptation of higher-level application-specific
agents that can therefore exploit the architecture to implement intelligent
building management policies.

Agent-based development of Wireless Sensor Network applica-
tions [92]:

G. Fortino, S. Galzarano, R. Gravina, and A. Guerrieri. Agent-based development of Wireless
Sensor Network Applications. In Proceedings of the 12th Workshop on Objects and Agents,
WOA 2011. CEUR Workshop Proceedings, Rende, Cosenza, Italia, July 2011.

This paper promotes the use of the agent paradigm for the development of
WSN applications. It provides motivations about synergies between agents
and WSNs, and a brief overview about agent technology for WSNs. Re-
quirements, and guidelines for the design of full-fledged agent-oriented
methodologies for programming WSN applications are also provided.

Continuous, Real-time Monitoring of Assisted Livings through
Wireless Body Sensor Networks [138]:

D.L. Carni, G. Fortino, D. Grimaldi, R. Gravina, A. Guerrieri, and F. Lamonaca. Con-
tinuous, real-time monitoring of assisted livings through Wireless Body Sensor Networks. In
Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications, IDAACS 2011. IEEE Press,
Prague, Czech Republic, September 2011.

This paper proposes the BSNs as an enabling technology for a rich variety
of application domains, from e-Health to e-Factory. The paper describes
reference network architectures, effective programming frameworks and
novel applications in important application domains for BSNs.

Monitoring Building Indoors through Clustered Embedded A-
gents [89]:

G. Fortino, and A. Guerrieri. Monitoring Building Indoors through Clustered Embedded
Agents. In Proceedings of Workshop on Agent Based Computing: from Model to Imple-
mentation jointly held with FedCSIS Conference, ABC 2011. Szczecin, Poland, September
2011.

This paper proposes the real implementation of an architecture based on
agents and wireless sensor and actuator networks (WSANS) for enabling
efficient and effective management of buildings. The building management
architecture is implemented in MAPS (Mobile Agent Platform for Sun
SPOTs), an agent-based framework for programming WSN applications

143

Chapter 6. Conclusions, Publications and Future Directions

based on the Sun SPOT sensor platform. The proposed architecture is
demonstrated in a simple yet effective operating scenario related to mon-
itoring workstation usage in computer laboratories.

e Pervasive Monitoring of Building Indoors through Heteroge-
neous Wireless Sensor Networks [52]:
G. Fortino, and A. Guerrieri. Pervasive Monitoring of Building Indoors through Heteroge-
neous Wireless Sensor Networks. In Proceedings of Networking and Electronic Commerce
Research Conference, NAEC 2011. Riva Del Garda, Italy, October 2011.
This paper proposes a multi-platform domain specific framework based on
Wireless Sensor and Actuator Networks (WSAN) for enabling efficient and
effective management of buildings. The proposed Building Management
Framework provides powerful abstractions that capture the morphology
of buildings to allow for the development of pervasive building monitoring
applications. Moreover, the functionalities of the framework are shown in
a simple yet effective operating scenario related to monitoring workstation
usage in university offices and laboratories.

6.2.4 Conference Poster

¢ An OSGi Dynamic Framework To Support Sensor Network Ap-
plications In Buildings [66]:
A. Guerrieri, G. Fortino, A. Ruzzelli, and G. O’Hare. An OSGi Dynamic Framework To Sup-
port Sensor Network Applications In Buildings. In Proceedings of the 6th ACM Workshop
on Hot Topics in Embedded Networked Sensors, HotEMNETS 2010. Killarney, Ireland, June
2010.
This poster resents the design of the Building Management Framework, a
domain specific framework based on Wireless Sensor and Actuator Net-
works, and provides an overview on its features.

6.3 Future Directions

In the development of this thesis several issues emerged which deserve further
examination in the future.

With regards to the first contribution of the thesis, future work will inves-
tigate the coordination of multiple BS aiming to manage a group of buildings.
In fact, a limitation of the current implementation of the BMF, is the scal-
ability to hundreds of nodes, which causes overloading with the loss of too
many packets and significant delays of a tens of seconds, which may prevent
the implementation of real-time actuation of critical appliances. In this case,
a multi-BS system can significantly reduce the packet transmission delay and

144

6.3. Future Directions

would allow nodes to work on a lower duty cycle to reduce the energy spent
in the network extending its lifetime. Future work will also design a high-level
OSGi based architecture for Smart Buildings atop the proposed architecture
to trade off inhabitants’ personal comfort and building energy expenditure.
In fact, while the proposed framework is effective to manage WSAN in build-
ings, it requires data mining techniques to infer information about habits and
preferences of inhabitants of the building and merge them with energy saving
techniques.

Regarding the second contribution, future research efforts are being de-
voted to: further optimizing the communication and migration mechanisms
of MAPS; porting MAPS onto the Sentilla JCreate pervasive computers
which are compliant to Java ME CLDC 1.1; developing real applications
through MAPS in the context of human activity monitoring for e-health
(re-implementing through agents the SPINE2 framework). Future research
will also focus on the definition of high-level (based on application gateways)
and low-level (based on the IEEE 802.15.4 layer) solutions for agent commu-
nication interoperability between MAPS and AFME that would enable the
development of heterogeneous agent-based WSN applications.

With respect to the third contribution, future work will be devoted to
complete the implementation of SPINE2 for the Ember sensor platform and
design a version for ContikiOS; develop a SPINE2 coordinator based on a
task-oriented protocol to program and control SPINE2 sensor nodes; design a
flexible event-based architecture for SPINE2 to increase programming effec-
tiveness and avoid an excessive use of timers; and extend SPINE2 for more
general collaborative WSN applications (not only centered on star-based net-
works).

145

References

ot

© ® N

10.

11.

12.

13.

14.

. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: a survey. Computer Networks: The International Journal of Com-
puter and Telecommunications Networking, 38:393-422, 2002.

K. J. Gabriel. Microelectromechanical systems (MEMS) tutorial. In Proceed-
ings of the 1998 IEEE International Test Conference, ITC ’98, pages 432—441,
Washington, DC, USA, 1998. IEEE Computer Society.

G. Simon, M. Mardti, A. Lédeczi, G. Balogh, B. Kusy, A. Nadas, G. Pap,
J. Sallai, and K. Frampton. Sensor network-based countersniper system. In
Proceedings of the 2nd international conference on Embedded networked sensor
systems, SenSys ’04, pages 1-12. ACM, 2004.

H. J. Yoo and C. van Hoof. Bio-Medical CMOS ICs. Springer, 2011.

G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz, and
J. Lees. Deploying a Wireless Sensor Network on an Active Volcano. IEEE
Internet Computing, 10:18-25, 3 2006.

Atmel Corporation. http://www.atmel.com, 2011.

Cypress Semiconductor Corporation. http://www.cypress.com, 2011.

Texas Instruments. http://www.ti.com/, 2011.

W. K. G. Seah, Z. A. Eu, and H. Tan. Wireless Sensor Networks Powered
by Ambient Energy Harvesting (WSN-HEAP) Survey and Challenges. In
Proceedings of the 1st International Conference on Wireless Communication,
Vehicular Technology, Information Theory and Aerospace & Electronic Systems
Technology (Wireless VITAE 2009), pages 1-5, 2000.

I. Howitt and J. A. Gutierrez. IEEE 802.15.4 low rate - wireless personal
area network coexistence issues. In 2003 IEEE Wireless Communications and
Networking, 2003. WCNC' 2003., pages 1481-1486. IEEE, 2003.

ZigBee: wireless control that simply works ZigBee Alliance.
http://www.zigbee.org/, 2011.

HART The Logical Wireless Solution.

http://www.hartcomm.org/protocol /wihart/wireless_technology.html, 2011.
ISA100.11a.
http://www.isa.org/mstemplate.cfm?micrositeid=1134&committeeid=6891,
2011.

6LoWPAN. http://6lowpan.net/, 2011.

147

References

15.

16

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

IEEE 802.15 WPAN Task Group 3 (TG3).
http://www.ieee802.0org/15/pub/tg3.html, 2011.

. M. O. Farooq and T. Kunz. Operating Systems for Wireless Sensor Networks:
A Survey. Sensors, 11(6):5900-5930, 2011.

A.M. Reddy, P. Kumar, G.A. Kumar, and D. Janakiram. Operating Systems
for Wireless Sensor Networks: A Survey Technical Report. International Jour-
nal of Sensor Networks (IJSNet), 5(4):236-255, 2009.

P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler. TinyOS: An Operating Sys-
tem for Sensor Networks Ambient Intelligence. Springer Berlin Heidelberg,
Berlin/Heidelberg, 2005.

TinyOS Web Site. http://www.tinyos.net, 2011.

A. Dunkels, B. Gronvall, and T. Voigt. Contiki - A Lightweight and Flexible
Operating System for Tiny Networked Sensors. In Proceedings of the 29th
Annual IEEE International Conference on Local Computer Networks, LCN
'04, pages 455-462, Washington, DC, USA, 2004. IEEE Computer Society.

A. K. Dwivedi, M. K. Tiwari, and O. P. Vyas. Operating systems for tiny
networked sensors: A survey. Int. Journal of Recent Trends in Engineering,
1:152-157, 2009.

S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gru-
enwald, A. Torgerson, and R. Han. MANTIS OS: an embedded multithreaded
operating system for wireless micro sensor platforms. Mobile Networks and
Applications, 10:563-579, 8 2005.

A. Eswaran, A. Rowe, and R. Rajkumar. Nano-RK: An Energy-Aware
Resource-Centric RTOS for Sensor Networks. In Proceedings of the 26th IEEE
International Real-Time Systems Symposium, pages 256—265. IEEE Computer
Society, 2005.

A. Rowe, K. Lakshmanan, H. Zhu, and R. Rajkumar. Rate-Harmonized
Scheduling for Saving Energy. In Proceedings of the 2008 Real-Time Systems
Symposium, pages 113-122. IEEE Computer Society, 2008.

Q. Cao, T. Abdelzaher, J. Stankovic, and T. He. The LiteOS Operating System:
Towards Unix-Like Abstractions for Wireless Sensor Networks. In Proceedings
of the Tth international conference on Information processing in sensor net-
works, IPSN 08, pages 233-244. IEEE Computer Society, 2008.

P. Levis and D. Culler. Maté: a tiny virtual machine for sensor networks.
In Proceedings of the 10th international conference on Architectural support
for programming languages and operating systems, ASPLOS-X, pages 85-95.
ACM, 10 2002.

R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T. W. D. Kim, B. Zhou, and E. G.
Sirer. On the need for system-level support for ad hoc and sensor networks.
ACM SIGOPS Operating Systems Review, 36:1-5, 4 2002.

D. Simon and C. Cifuentes. The Squawk Java Virtual Machine: Java on the
Bare Metal. In Proceedings of the 20th Object-Oriented Programming, Systems,
Languages and Applications, OOPSLA 2005, pages 150-151. ACM, 2005.

D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White. Java on the bare
metal of wireless sensor devices: the squawk Java virtual machine. In Proceed-
ings of the 2nd international conference on Virtual execution environments,
VEE ’06, pages 78-88. ACM, 2006.

148

References

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

P. Bonnet, J. Gehrke, and P. Seshadri. Towards Sensor Database Systems. In
Proceedings of the Second International Conference on Mobile Data Manage-
ment, MDM ’01, pages 3—14, London, UK, 2001. Springer-Verlag.

C. Srisathapornphat, C. Jaikaeo, and C. Shen. Sensor Information Networking
Architecture. In Proceedings of the 2000 International Workshop on Parallel
Processing, ICPP ’00, pages 23—, Washington, DC, USA, 2000. IEEE Computer
Society.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: an
acquisitional query processing system for sensor networks. ACM Transactions
on Database Systems (TODS) - Special Issue: SIGMOD/PODS 2003, 30:122—
173, 3 2005.

R. Mueller, G. Alonso, and D. Kossmann. SwissQM: Next Generation Data
Processing in Sensor Networks. In Proceedings of the 3rd Biennial Conference
on Innovative Data Systems Research, pages 1-9, 2007.

A. Boulis, C. Han, and M. B. Srivastava. Design and implementation of a
framework for efficient and programmable sensor networks. In Proceedings of
the 1st international conference on Mobile systems, applications and services,
MobiSys ’03, pages 187-200. ACM, 2003.

C. Fok, G. Roman, and C. Lu. Rapid Development and Flexible Deployment
of Adaptive Wireless Sensor Network Applications. In Proceedings of the 25th
IEEFE International Conference on Distributed Computing Systems, ICDCS 05,
pages 653-662, Washington, DC, USA, 2005. IEEE Computer Society.

Y. Kwon, S. Sundresh, K. Mechitov, and G. Agha. ActorNet: an actor platform
for wireless sensor networks. In Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems, AAMAS 06, pages
1297-1300. ACM, 2006.

E. Souto, G. Guimaraes, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz, and
J. Kelner. Mires: a publish/subscribe middleware for sensor networks. Journal
Personal and Ubiquitous Computing, 10:37—44, 12 2005.

J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey. Com-
puter Networks: The International Journal of Computer and Telecommunica-
tions Networking, 52:2292-2330, 8 2008.

G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess,
T. Dawson, P. Buonadonna, D. Gay, and W. Hong. A macroscope in the
redwoods. In Proceedings of the 3rd international conference on Embedded
networked sensor systems, SenSys 05, pages 51-63. ACM, 2005.

I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke. Data collection,
storage, and retrieval with an underwater sensor network. In Proceedings of the
8rd international conference on Embedded networked sensor systems, SenSys
’05, pages 154-165. ACM, 2005.

M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D. Estrin, and
M. Srivastava. Cyclops: in situ image sensing and interpretation in wireless
sensor networks. In Proceedings of the 3rd international conference on Embed-
ded networked sensor systems, SenSys ’05, pages 192—204. ACM, 2005.

C. R. Baker, K. Armijo, S. Belka, M. Benhabib, V. Bhargava, N. Burkhart,
A. D. Minassians, G. Dervisoglu, L. Gutnik, M. B. Haick, C. Ho, M. Koplow,
J. Mangold, S. Robinson, M. Rosa, M. Schwartz, C. Sims, H. Stoffregen, A. Wa-
terbury, E. S. Leland, T. Pering, and P. K. Wright. Wireless Sensor Networks
for Home Health Care. In Proceedings of the 21st International Conference on

149

References

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Advanced Information Networking and Applications Workshops - Volume 02,
AINAW 07, pages 832-837. IEEE Computer Society, 2007.

L. Zhang, L. Lao, K. Wu, Q. Liu, and X. Wu. Research in Development on
Wireless Health Care of Infants. In Yi Peng, Xiaohong Weng, and Ratko Mag-
jarevic, editors, Proceedings of the 7th Asian-Pacific Conference on Medical
and Biological Engineering, volume 19 of IFMBE Proceedings, pages 580-583.
Springer Berlin Heidelberg, 2008.

P. Zhang, C. M. Sadler, S. A. Lyon, and M. Martonosi. Hardware design
experiences in ZebraNet. In Proceedings of the 2nd international conference on
Embedded networked sensor systems, SenSys 04, pages 227-238. ACM, 2004.
D. Snoonian. Control systems: smart buildings. IEEE Spectrum, 40:18-23, 8
2003.

J. Stankovic. When sensor and actuator cover the world. ETRI Journal,
30(5):627-633, 2008.

M. Welsh and G. Mainland. Programming sensor networks using abstract
regions. In Proceedings of the 1st conference on Symposium on Networked
Systems Design and Implementation - Volume 1. USENIX Association, 2004.
L. Mottola, G. P. Picco, and A. A. Sheikh. FiGaRo: fine-grained software
reconfiguration for wireless sensor networks. In Proceedings of the 5th Furo-
pean conference on Wireless sensor networks, EWSN’08, pages 286-304, Berlin,
Heidelberg, 2008. Springer-Verlag.

Crossbow Ecowizard System.
http://www.xbow.com/pdf/ecowizard_introduction_pressrelease.pdf, 2011.
EpiSensor SiCA for Building Management.
http://episensor.com/solutions/building-management/, 2011.

A. Guerrieri, G. Fortino, A. Ruzzelli, and G. O’'Hare. A WSN-based Building
Management Framework to Support Energy-Saving Applications in Buildings.
Hershey, PA, USA: IGI Global, 2011.

G. Fortino and A. Guerrieri. Pervasive Monitoring of Building Indoors through
Heterogeneous Wireless Sensor Networks. In Proceedings of Networking and
Electronic Commerce Research Conference, NAEC 2011, Riva Del Garda, Italy,
10 2011.

documents Open System Gateway Initiative (OSGi) and software.
http://www.osgi.org, 2011.

J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power wire-
less research. In Proceedings of the 4th international symposium on Information
processing in sensor networks, IPSN 05, Piscataway, NJ, USA, 2005. IEEE
Press.

J. Barton, G. Hynes, B. O’Flynn, K. Aherne, A. Normana, and A. Morrissey.
25mm sensor-actuator layer: A miniature, highly adaptable interface layer.
Sensors € Actuators: A. Physical, 132:362-369, 11 2006.

X. Jiang, S. Dawson-Haggerty, P. Dutta, and D. Culler. Design and imple-
mentation of a high-fidelity AC metering network. In Proceedings of the 2009
International Conference on Information Processing in Sensor Networks, IPSN
’09, pages 253264, Washington, DC, USA, 2009. IEEE Computer Society.
Sun Small programmable object technology (Sun SPOT).
http://www.sunspotworld.com/, 2011.

K. Akkaya and M. Younis. A survey on routing protocols for wireless sensor
networks. Ad Hoc Networks, 3:325-349, 5 2005.

150

References

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

S. O’Connell, J. Barton, E. O’Connell, B. O’Flynn, E. M. Popovici, S. C.
O’Mathuna, A. Schoofs, A. G. Ruzzelli, and G. M. P. O’Hare. Remote Elec-
tricity Actuation and Monitoring mote. In Proceedings of International Con-
ference on Distributed Computing in Sensor Systems and Workshops, DCOSS,
pages 1-6. IEEE, 2011.

Arch Rock Energy Optimizer. http://www.archrock.com/products/areo.php,
2011.

DELTA DORE Building Management Systems solutions

(BMS). http://www.deltadore.com/accueil /gestion-technique-des-
batiments/var/lang/en/rub/9141.html, 2011.
TREND IQ ASSURED. https://www.trendcontrols.com/en-

gb/support/pages/default.aspx, 2011.

SENTILLA Energy Manager 3.0.
http://www.sentilla.com/products/datacenter /why-sentilla, 2011.

F. Bellifemine, G. Fortino, R. Giannantonio, R. Gravina, A. Guerrieri, and
M. Sgroi. SPINE: a domain-specific framework for rapid prototyping of WBSN
applications. Software Practice & Experience, 41:237-265, 03 2011.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC
language: A holistic approach to networked embedded systems. In Proceedings
of the ACM SIGPLAN 2003 conference on Programming language design and
implementation, PLDI '03, pages 1-11. ACM, 2003.

A. Guerrieri, G. Fortino, A. Ruzzelli, and G. O’Hare. An OSGi Dynamic
Framework To Support Sensor Network Applications In Buildings. In Proceed-
ings of the 6th ACM Workshop on Hot Topics in Embedded Networked Sensors,
HotEMNETS 2010, 6 2010.

P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: a self-regulating algo-
rithm for code propagation and maintenance in wireless sensor networks. In
Proceedings of the 1st conference on Symposium on Networked Systems Design
and Implementation - Volume 1, NSDI ’04, Berkeley, CA, USA, 2004. USENIX
Association.

V. L. Erickson, Y. Lin, A. Kamthe, Brah R., A. Surana, A. E. Cerpa, M. D.
Sohn, and S. Narayanan. Energy efficient building environment control strate-
gies using real-time occupancy measurements. In Proceedings of the First ACM
Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings,
BuildSys ’09, pages 19-24, New York, NY, USA, 2009. ACM.

K. Padmanabh, V. A. Malikarjuna, S. Sen, S. P. Katru, A. Kumar, S. Pawanku-
mar, S. K. Vuppala, and S. Paul. iSense: a wireless sensor network based con-
ference room management system. In Proceedings of the First ACM Workshop
on Embedded Sensing Systems for Energy-Efficiency in Buildings, BuildSys ’09,
pages 37-42, New York, NY, USA, 2009. ACM.

D. T. Delaney, G. M. P. O’Hare, and A. G. Ruzzelli. Evaluation of energy-
efficiency in lighting systems using sensor networks. In Proceedings of the
First ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in
Buildings, BuildSys ’09, pages 61-66, New York, NY, USA, 2009. ACM.

J. E. Petersen, V. Shunturov, K. Janda, G. Platt, and K. Weinberger. Dormi-
tory residents reduce electricity consumption when exposed to real-time visual
feedback and incentives. International Journal of Sustainability in Higher Ed-
ucation, 8:16—-33, 2007.

151

References

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

H. Doukas, K.D. Patlitzianas, K. latropoulos, and J. Psarras. Intelligent build-
ing energy management system using rule sets. Building and Environment,
42(10):3562-3569, 2007.

P. Eichholtz, N. Kok, and J. M. Quigley. Doing Well by Doing Good: Green
Office Buildings. American Economic Review, 100(6):2494-2511, 2010.

U. Gneezy, E. Haruvy, and H. Yafe. The inefficiency of splitting the bill. The
Economic Journal, 114:265-280, 2004.

WiEye Sensor board for wireless surveillance and security applications.
http://www.easysen.com/wieye.htm, 2011.

S. Karayi. Pc energy report 2009,
www.climatesaverscomputing.org/docs/le_pc_energy_report_2009_us.pdf,

2009.

CIBSE. Heating, Ventilating, Air Conditioning and Refrigeration: CIBSE
Guide B. CIBSE, 2005.

B. K. Sovacool and M. A. Brown. Twelve metropolitan carbon footprints: A
preliminary comparative global assessment. The International Journal of the
Political, Economic, Planning, Environmental and Social Aspects of Energy,
38(9):4856-4869, 2010.

A.G. Ruzzelli, M. Dragone, R. Jurdak, C. Muldoon, A. Barbirato, and G. M. P.
O’Hare. Poster Abstract: An Extensible Dashboard for Sensor Networks Con-
trol and Visualisation. In Proceedings of 6th FEuropean Workshop on Sensor
Networks, EWSN 2009, 2 20009.

R. Gravina, A. Guerrieri, G. Fortino, F. Bellifemine, R. Giannantonio, and
M. Sgroi. Development of Body Sensor Network Applications using SPINE.
In Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics (SMC 2008), 10 2008.

CC2420: Single-Chip 2.4 GHz IEEE 802.15.4 Compliant and ZigBee Ready RF
Transceiver. http://www.ti.com/product/cc2420, 2011.

E. Yoneki and J. Bacon. A survey of Wireless Sensor Network technologies: re-
search trends and middleware’s role. Technical Report UCAM-CL-TR-646,
University of Cambridge, Computer Laboratory, 15 JJ Thomson Avenue -
Cambridge CB3 OFD - United Kingdom, 09 2005.

Min Chen, S. Gonzalez, and V. C. M. Leung. Applications and design issues for
mobile agents in wireless sensor networks. Wireless Communications, IEEE,
14(6):20-26, 2007.

A. R. Silva, A. Roméao, D. Deugo, and M. M. Da Silva. Towards a Reference
Model for Surveying Mobile Agent Systems. Autonomous Agents and Multi-
Agent Systems, 4:187-231, 09 2001.

M. Luck, P. McBurney, and C. Preist. A Manifesto for Agent Technology:
Towards Next Generation Computing. Autonomous Agents and Multi-Agent
Systems, 9:203-252, 11 2004.

C. Muldoon, G. M. P. O’Hare, M. J. O’Grady, and R. Tynan. Agent Migration
and Communication in WSNs. In Proceedings of the 2008 Ninth International
Conference on Parallel and Distributed Computing, Applications and Technolo-
gies, pages 425-430, Washington, DC, USA, 2008. IEEE Computer Society.
F. Aiello, G. Fortino, R. Gravina, and A. Guerrieri. A Java-Based Agent
Platform for Programming Wireless Sensor Networks. The Computer Journal,
54(3):439-454, 2010.

The Sentilla labs. http://labs.sentilla.com/, 2010.

152

References

89. G. Fortino and A. Guerrieri. Monitoring Building Indoors through Clustered
Embedded Agents. In Proceedings of Workshop on Agent Based Computing:
from Model to Implementation jointly held with FedCSIS Conference, ABC
2011, 9 2011.

90. F. Aiello, G. Fortino, A. Guerrieri, and R. Gravina. MAPS: A Mobile Agent
Platform for WSNs based on Java Sun Spots. In Proceedings of the 3rd Work-
shop on Agent Technology for Sensor Networks, jointly held with the 8th Inter-
national Conference on Autonomous Agents and Multi-Agent Systems, ATSN
2009, 5 2009.

91. F. Aiello, G. Fortino, S. Galzarano, R. Gravina, and A. Guerrieri. An analysis
of Java-based mobile agent platforms for Wireless Sensor Networks. Multi-
Agent and GRID Systems, to appear:1-30, 2011.

92. G. Fortino, S. Galzarano, R. Gravina, and A. Guerrieri. Agent-based Devel-
opment of Wireless Sensor Network Applications. In Proceedings of the 12th
Workshop on Objects and Agents, WOA 2011, Rende, Cosenza, Italia, 7 2011.

93. D. B. Lange and M. Oshima. Seven good reasons for mobile agents. Magazine
Communications of the ACM, 42:88-89, 3 1999.

94. D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks.
In Proceedings of the 1st ACM international workshop on Wireless sensor net-
works and applications, WSNA ’02, pages 22-31. ACM, 2002.

95. F. Aiello, G. Fortino, and A. Guerrieri. Using Mobile Agents as Enabling
Technology for Wireless Sensor Networks. In Proceedings of the 2008 Second
International Conference on Sensor Technologies and Applications, pages 549—
554, Washington, DC, USA, 2008. IEEE Computer Society.

96. L. Szumel, J. LeBrun, and J. D. Owens. Towards a mobile agent framework
for sensor networks. In Proceedings of the 2nd IEEE workshop on Embedded
Networked Sensors, pages 79-87, Washington, DC, USA, 2005. IEEE Computer
Society.

97. S. Suenaga and S. Honiden. Enabling Direct Communication Between Mobile
Agents in Wireless Sensor Networks. In Proceedings of the 1st Int. Workshop
on Agent Technology for Sensor Networks (ATSN-07), jointly held with the 6th
Int. Joint Conf. Autonomous Agents and Multiagent Systems (AAMAS-07),
Honolulu, HI, USA, 2007.

98. Agent Factory Micro Edition (AFME).
http://sourceforge.net/projects/agentfactory /files/, 2011.

99. O. Kasten and K. Romer. Beyond event handlers: programming wireless sen-
sors with attributed state machines. In Proceedings of the 4th international
symposium on Information processing in sensor metworks, IPSN ’05. IEEE
Press, 2005.

100. H. Zhu and R. Alkins. Towards Role-Based Programming. In Proceedings of
CSCW 06, pages 4-8. ACM, 11 2006.

101. Mobile Agent Platform for Sun SPOT (MAPS). http://maps.deis.unical.it,
2011.

102. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements
of reusable object-oriented software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

103. K. Saleh and C. El-Morr. M-UML: an extension to UML for the modeling
of mobile agent-based software systems. Information & Software Technology,
46(4):219-227, 2004.

153

References

104.

105.

106.

107.

108.

109.

110.
111.

112.

113.

114.

115.

116.
117.
118.

119.

M. D. Dikaiakos, M. Kyriakou, and G. Samaras. Performance Evaluation of
Mobile-Agent Middleware: A Hierarchical Approach. In Proceedings of the 5th
International Conference on Mobile Agents, MA 01, pages 244—259. Springer-
Verlag, 2002.

B. Qiao, K. Liu, and C. Guy. A Multi-Agent System for Building Control.
In Proceedings of the IEEE/WIC/ACM international conference on Intelligent
Agent Technology, IAT 06, pages 6563—659. IEEE Computer Society, 2006.

B. A. Huberman and S. H. Clearwater. A Multi-Agent System for Controlling
Building Environments. In Victor R. Lesser and Les Gasser, editors, Pro-
ceedings of the International Conference on Multiagent Systems (ICMAS-95),
pages 171-176. The MIT Press, 1995.

P. Davidsson and M. Boman. Distributed monitoring and control of office
buildings by embedded agents. Information Sciences-Informatics and Com-
puter Science: An International Journal - Special issue: Intelligent embedded
agents, 171:293-307, 05 2005.

G. Fortino and A. Guerrieri. Decentralized and Embedded Management of
Smart Buildings. In Proceedings of the Workshop on Applications of Software
Agents, WASA 2011, pages 3-7, Novi sad, Serbia, 7 2011.

C. Muldoon, G. M. P. O’Hare, R. Collier, and M. J. O’Grady. Agent Factory
Micro Edition: A Framework for Ambient Applications. In Proceedings of In-
telligent Agents in Computing Systems Workshop (held in Conjunction with
International Conference on Computational Science (ICCS)) Reading, UK.
Lecture Notes in Computer Science (LNCS), pages T727-734. Springer-Verlag
Publishers, 2006.

Agent Factory. http://www.agentfactory.com, 2011.

A. S. Rao and M. P. Georgeff. BDI Agents: From Theory to Practice. In
In Proceedings of the First International Conference on Multi-Agent Systems
(ICMAS95), pages 312-319, 1995.

O. Gama, C. Figueiredo, P. Carvalho, and P. M. Mendes. Towards a Reconfig-
urable Wireless Sensor Network for Biomedical Applications. In Proceedings of
the 2007 International Conference on Sensor Technologies and Applications,
SENSORCOMM ’07, pages 490-495. IEEE Computer Society, 2007.

V. Shnayder, B. Chen, K. Lorincz, T.R.F. Fulford-Jones, and M. Welsh. Sensor
networks for medical care - Technical Report TR-08-05. Technical Report TR-
08-05, Division of Engineering and Applied Sciences, Harvard University, 2005.
C. Lombriser, N. B. Bharatula, D. Roggen, and G. Troster. On-body activity
recognition in a dynamic sensor network. In Proceedings of the ICST 2nd in-
ternational conference on Body area networks, BodyNets 07, pages 17:1-17:6.
ICST (Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering), 06 2007.

G. Fortino, S. Galzarano, R. Giannantonio, R. Gravina, and A. Guerrieri.
SPINE-based application development on Heterogeneous Wireless Body Sensor
Networks. International Journal of Computing, 9(1):80-89, 2010.

Ember Web Site. http://www.ember.com, 2011.

ZStack website. http://www.ti.com/tool/z-stack, 2011.

G. Fortino, A. Guerrieri, F. Bellifemine, and R. Giannantonio. SPINE2: de-
veloping BSN applications on heterogeneous sensor nodes. In Proceedings of
IEEE Symposium on Industrial Embedded Systems, STES’09, 7 2009.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley
Interscience, New York, 2. edition, 2001.

154

References

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.
133.

134.

135.

N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman. Activity recognition
from accelerometer data. In Proceedings of the 17th Conference on Innovative
Applications of Artificial Intelligence (IAAI 2005) - Volume 8, pages 1541—
1546. AAAT Press, 2005.

Y. Yu, B. Krishnamachari, and V. K. Prasanna. Issues in designing middleware
for wireless sensor networks. IEEE Network Magazine, 18(1):15-21, 2004.

C. Lombriser, D. Roggen, M. Stéger, and G. Troster. Titan: A Tiny Task
Network for Dynamically Reconfigurable Heterogeneous Sensor Networks. In
15. Fachtagung Kommunikation in Verteilten Systemen (KiVS), pages 127—
138, 02 2007.

B. Najafi, K. Aminian, A. Paraschiv-Ionescu, F. Loew, C. J. Bula, and
P. Robert. Ambulatory system for human motion analysis using a kinematic
sensor: monitoring of daily physical activity in the elderly. IEEE transactions
on bio-medical engineering, 50(6):711-723, 6 2003.

B. P. L. Lo and G. Z. Yang. Key Technical Challenges and Current Implemen-
tations of Body Sensor Networks. In Proceedings of the International Workshop
on Wearable and Implantable Body Sensor Networks, 04 2005.

SPINE documents and software. http://spine.tilab.com, 2011.

L. Buondonno, G. Fortino, S. Galzarano, R. Giannantonio, A. Giordano,
R. Gravina, and A. Guerrieri. Programming signal processing applications on
heterogeneous wireless sensor platforms. In 5th IEEE International Workshop
on Intelligent Data Acquisition and Advanced Computing Systems: Technology
and Applications, IDAACS 2009, pages 682-687. IEEE Press, 2009.

G. Fortino, A. Guerrieri, F. Bellifemine, and R. Giannantonio. Platform-
independent development of collaborative Wireless Body Sensor Network ap-
plications: SPINE2. In Proceedings of the 2009 IEEE International Conference
on Systems, Man, and Cybernetics, SMC 2009, pages 3144-3150. IEEE, 10
2009.

B. Selic. The Pragmatics of Model-Driven Development. IEEFE Software, 20:19—
25, 09 2003.

H. Wada, P. Boonma, J. Suzuki, and K. Oba. Modeling and executing adap-
tive sensor network applications with the Matilda UML virtual machine. In
Proceedings of the 11th IASTED International Conference on Software Engi-
neering and Applications (SEA), pages 216-225. ACTA Press, 11 2007.

D. A. Sadilek. Prototyping Domain-Specific Languages for Wireless Sensor
Networks. In Proceedings of the 4th International Workshop on Software Lan-
guage Engineering, 2007.

M. M. R. Mozumdar, F. Gregoretti, L.. Lavagno, L. Vanzago, and S. Olivieri.
A Framework for Modeling, Simulation and Automatic Code Generation of
Sensor Network Application. In Proceedings of the 5th Annual IEEE Com-
munications Society Conference on Sensor Mesh and Ad Hoc Communications
and Networks, pages 515-522. leee, 2008.

Tmote SKY TelosB. http://www.sentilla.com/moteiv-transition.html, 2011.
T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transac-
tions on Information Theory, 13(1):21-27, 1 1967.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

Aiello F., Fortino G., Galzarano S., Gravina R., and Guerrieri A. Signal pro-
cessing in-node frameworks for Wireless Body Sensor Networks: from low-level
to high-level approaches. Pan Stanford publishing, 2011.

155

References

136.

137.

138.

F. Aiello, F. Bellifemine, G. Fortino, R. Gravina, and A. Guerrieri. An agent-
based signal processing in-node environment for real-time human activity mon-
itoring based on Wireless Body Sensor Networks. In Proceedings of the 1st
International Workshop on Infrastructures and Tools for Multiagent Systems,
jointly held with the 9th International Conference on Autonomous Agents and
Multi- Agent Systems, ITMAS 2010, 5 2010.

A. Schoofs, A. Guerrieri, D. T. Delaney, G. M. P. O’Hare, and A. G. Ruzzelli.
ANNOT: Automated Electricity Data Annotation Using Wireless Sensor Net-
works. In Proceedings of the Tth Annual IEEE Communications Society Con-
ference on Sensor Mesh and Ad Hoc Communications and Networks, SECON
2010, pages 244-252. IEEE, 6 2010.

D. L. Carni, G. Fortino, D. Grimaldi, R. Gravina, A. Guerrieri, and F. Lam-
onaca. Continuous, Real-time Monitoring of Assisted Livings through Wireless
Body Sensor Networks. In Proceedings of the 6th IEEE International Confer-
ence on Intelligent Data Acquisition and Advanced Computing Systems: Tech-
nology and Applications, IDAACS 2011, 9 2011.

156

