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Introduction

The standard model (SM) of the fundamental interactions and particles
represents the framework of our present knowledge about the world. So far
it passed all the experimental tests, but there are some sectors of the model
which still wait for an experimental confirmation. The Large Hadron Collider
(LHC) not only will give us the possibility to test the SM at energies never
reached before, but also provided the possibility to investigate with good pre-
cision parton-parton scattering in a regime where the energy of hard partonic
subprocess is much bigger than the hard scale involved. This corresponds to
the kinematics where produced hadrons are separated by the large interval of
rapidity, ∆y � 1.
The understanding of the parton dynamics in this, semihard kinematic region
is an important issue in strong interaction physics, it is also essential for the
control over multijet background in the Higgs and electroweak boson produc-
tion physics at LHC.

At αs∆y ≥ 1 (αs is a strong coupling) the cross sections of the partonic sub-
processes receives large higher order corrections ∼ αns (∆y)n, which can be ac-
counted for in the Balitsky-Fadin-Kuraev-Lipatov (BFKL) approach.
The γ∗γ∗ total cross section in e+e− scattering is considered to be the gold-
plated BFKL measurement, but also LHC can provide an ideal opportunity to
test BFKL-driven observable.
The candidate processes for this purpose are both central production processes,
such as heavy quark productions and forward production of different systems
such as high transverse momentum jets, heavy quark pairs or Drell-Yan pairs.
In the case of two tagged forward/backward jets with a rapidity gap between
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them, there could be no particular production between them (“Mueller-Tang”)
or not (“Mueller-Navelet”). These jet events allow then to test the forward
(Mueller-Navelet) and non-forward (Mueller-Tang) BFKL kernel. In particu-
lar the Mueller-Navelet jets are one of the most famous testing ground for the
BFKL and different description are proposed. For the Mueller-Tang jets so far
we have at NLO accuracy the non-forward BFKL kernel, while impact factors
are known only at leading order (LO). The limitation to LO impact factors is
currently one of the main drawbacks of BFKL phenomenology. A promising
tool to overcome this limitation is given by Lipatov’s effective action. So far
this action has been mainly applied for the determination of LO transition ker-
nels.

The thesis is organized as follows. In the first two Chapters there is a brief
overview on the BFKL approach and the Lipatov’s effective action, respectively.
In the second Chapter we will present the work in progress on the calculation
of Mueller-Tang impact factor.
The last two Chapters are devoted to the derivation of impact factor for Mueller-
Navelet jets and for the cross section of the process p(p1) + p(p2) → J(kJ1) +

J(kJ2) +X.
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Chapter 1

The BFKL approach

1.1 Regge theory

In 1959 Regge [1] showed that, when discussing solutions of the Schrödinger
equation for non-relativistic potential scattering, it is useful to regard the an-
gular momentum, l, as a complex variable. He proved that for a wide class of
potentials the only singularities of the scattering amplitude in the complex l

plane were poles, now called “Regge poles” [2, 3]. If these poles occur for posi-
tive integer values of l they correspond to bound states or resonances, and they
are also important for determining certain technical aspects of the dispersion
properties of the amplitudes. They are located at values defined by a relation
of the kind

l = α (k) , (1.1)

where α (k) is a function of the energy called Regge trajectory. Each family of
bound states or resonances corresponds to a single trajectory like (1.1). The
energies of these states are obtained from Eq. (1.1), assigning physical (i.e.,
integer) values to the angular momentum l.
The extension of Regge’s technique to high-energy particle physics is originally
due to Clew and Frautschi [4] (1961) and Gribov [5] (1961), but many more
authors contributed to the theory and its applications. Under some hypotheses
and using the general properties of the S-matrix, the relativistic partial wave
amplitude Al (t) can be analytically continued to complex l values in a unique
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way. The resulting function, A (l, t), has simple poles at

l = α (t) .

Each pole contributes to the scattering amplitude with a term which behaves
asymptotically (i.e. for s→∞ and t fixed) as

A(s, t) ∼ sα(t) , (1.2)

where s and −t are the square of the centre-of-mass energy and of the momen-
tum transferred, respectively.
The leading singularity (i.e. the singularity with the largest real part) in the
t-channel determines the asymptotic behavior of the scattering amplitude in
the s-channel.
What is surprising is the wide success of Regge theory in its simplest form,
namely the fact that a large class of processes is accurately described by such
simple predictions as (1.2). That is why people tend to believe that Regge
theory must contain at least a grain of truth.

1.1.1 The Pomeron

Regge theory belongs to the class of the so-called t-channel models. These
models describe hadronic processes in terms of the t-channel exchange of “some-
thing”.
In the simplest case of t-channel models, this “something” is a virtual particle.
In the Regge theory is a Regge trajectory, i.e. a whole family of resonances.
The large s-limit of a hadronic process is determined by the exchange of one
or more Regge trajectories in the t-channel which are often called Reggeons.
Exchanging Reggeons instead of particles leads to scattering amplitudes of the
type of (1.2).
Via the optical theorem and from (1.2) the total cross sections in the Regge
theory is:

σtot '
1

s
ImA (s, t = 0) ∼ sα(0)−1 . (1.3)

It is experimentally known that hadronic total cross sections, as a function of
s, are rather flat around

√
s ∼ (10− 20) GeV and increase at higher energies.
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In order to account for asymptotically constant total cross sections, Chew,
Frautschi and Gribov (1961) introduced a Regge trajectory with intercept one.
This Reggeon was named Pomeron, after I.Ya. Pomeranchuk [6], and is denoted
by P. The Pomeron trajectory [7] does not correspond to any known particle; it
results from a complicated exchange of gluons (at least two). It is the dominant
trajectory in the elastic and diffractive processes, which are known to proceed
via the exchange of vacuum quantum numbers in the t-channel.
Evidently the power growth of cross sections (1.3) violates the Froissart bound [8]
σtot < const (ln s)2, which follows from unitarity. The violation of Froissart
bound cannot be removed by calculation of relative corrections at any fixed
order. A general approach to the unitarization problem is the reformulation of
QCD in terms of a gauge-invariant affective field theory for the Reggeized gluon
interactions [9, 10] (see Chapter 2).

1.2 BFKL equation

The BFKL equation [11, 12, 13, 14] became famous when the rapid growth
of the γ∗p cross section at increasing energy, predicted by Balitsky, Fadin, Ku-
raev and Lipatov (BFKL), was discovered at HERA. Therefore this equation
is usually associated with the evolution of the unintegrated gluon distribution.
The parton distributions serve as the inherent part in the theoretical descrip-
tion of hard QCD processes.
Evolution of the parton distributions with τ = ln

(
Q2/Λ2

QCD

)
is determined by

the DGLAP equations [15, 16, 17, 18, 19]. These equations permit to sum the
perturbation series by powers of collinear logarithms lnQ2 so called because
they are picked up from the region of small angles between parton momenta.
There is another kind of logarithms: soft logarithms come from the ratios of
parton energies. These logarithms are present both in parton distributions and
in partonic cross sections. At small values of the ratio x = lnQ2/s soft loga-
rithms appear to be even more important than collinear ones.
For small values of x, large s, and fixed momentum transfer t, s � |t| (Regge
region), with various color states in the t-channel, the BFKL approach gives
the description of QCD scattering amplitudes. The evolution equation for the
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unintegrated gluon distribution appears in this approach as a particular result
for the imaginary part of the forward scattering amplitude (t = 0 and vacuum
quantum numbers in the t-channel). This approach was developed, and is more
suitable, for the description of processes with only one hard scale, such as γ∗γ∗

scattering with both photon virtualities of the same order, where the DGLAP
evolution (i.e. evolution in Q2) is not appropriate.
The basis of the BFKL approach is the gluon reggeization, which can be de-
scribed in oversimplified terms as the appearance of a modified propagator of
the form (in Feynman gauge) (see, for instance, Ref. [7])

Dµν

(
s, q2

)
= −ıgµν

q2

(
s

s0

)αg(q2)−1

,

where αg (q2) = 1 + ε (q2) is the Regge trajectory of the gluon.

1.2.1 Gluon reggeization

The reggeization of an elementary particle (with spin j0 and mass m ) in
perturbative theory was introduced in [20] and it means [21] that at large s and
fixed t Born amplitudes with exchange of this particle in the t-channel acquire
a factor sj(t)−j0 , with j(m2) = j0. This phenomenon was discovered originally
in QED in the backward Compton scattering [20]. It was called reggeization
because just such form of amplitudes is given by the Regge poles (moving poles
in the complex angular momentum plane, j-plane, introduced by Regge [1]).
In contrast to QED, where the electron does reggeize in perturbation theory [20],
but the photon remains elementary [22], in QCD the gluon does reggeize [11,
12, 23, 24, 25] as well as the quark [26, 27, 28, 29]. Therefore QCD is the unique
theory where all elementary particles reggeize.

The reggeization is very important for the theoretical description of high-energy
processes with fixed momentum transfer. Especially important is the gluon
reggeization, because cross sections non-decreasing with energy are provided
by gluon exchanges and it determines the form of QCD amplitudes at large
energies and limited transverse momenta.
The simplest realization of the gluon reggeization is in the elastic process A +
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pA

pB

pA′

pB′

Figure 1.1: Diagrammatical rappresentation of the process A + B → A′ + B′ with
color octet in the t-channel. The zig-zag line represent the Reggeized
gluon exchange.

B → A′ + B′, where amplitudes with a color octet t-channel exchange and
negative signature (schematically represented by the diagram of Fig. 1.1) take
the form

(A8)A
′B′

AB = ΓcA′A
s

t

[(
s

−t

)ω(t)

+

(−s
−t

)ω(t)
]

ΓcB′B , (1.4)

where
s = (pA + pB)2 , t = q2 , q = pA − pA′

and ω (t) is the gluon trajectory, instead c is a color index and ΓcP ′P are the
Particle-Particle-Reggeon (PPR) vertices which do not depend on s.
This factorization (1.4) represents correctly the analytical structure of the scat-
tering amplitude, which is quite simple in the elastic case. It is valid in the lead-
ing logarithmic approximation (LLA), which means resummation of all terms
(αs ln(s))n, and in the next-to-leading logarithmic approximation (NLA), which
means resummation of all terms αs(αs ln(s))n. In particular it remains valid also
for the case when any of the particles A′, B′ is replaced by a jet.
In general the PPR vertex can be written in the form ΓcP ′P = g〈P ′|T c|P 〉ΓP ′P ,
where g is the QCD coupling and 〈P ′|T c|P 〉 stands for a matrix element of the
color group generator in the fundamental (adjoint) representation for quarks
(gluons).
In the LLA this form of amplitude has been rigorously proved [11, 12, 13, 14].
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In this approximation the helicity λp of the scattered particle P is conserved,
so Γ

(0)
P ′P is given by δλP ′λP and the Reggeized gluon trajectory is calculated with

1-loop accuracy (see, for instance, Ref. [30]),

ω (t) ' ω(1) (t) =
g2t

(2π)(D−1)

Nc

2

∫
dD−2k⊥

k2
⊥ (q − k)2

⊥
= −g

2NcΓ (1− ε)
(4π)D/2

Γ2 (ε)

Γ (2ε)

(
~q 2
)ε

where t = q2 ≈ q2
⊥, D = 4+2ε is the space-time dimension and Nc is the number

of QCD colors. The ε parameter has been introduced in order to regularize the
infrared divergences and the integration is performed in a (D − 2)-dimensional
space, orthogonal to the momenta of the initial colliding particles pA and pB.
The gluon reggeization determines also inelastic amplitudes in the multi-Regge-
kinematics (MRK) where all particles are strongly ordered in the rapidity
space with limited transverse momenta and the squared invariant masses sij =

(ki + kj)
2 of any pair of produced particles i and j are large (increasing with s).

In QCD processes this kinematic gives dominant contributions to cross section.
In the LLA, there are exchanges of vector particles (i.e. gluons) in all channels.
In NLLA, contrary to LLA, MRK is not a single kinematic that contributes.
Any pair, but only one, of the produced particles can have a fixed (not increas-
ing with s) invariant mass, i.e. components of this pair can have rapidities of
the same order. This kinematics was called [31] quasi-multi-Regge-kinematics
(QMRK).

In the next-to-leading-logarithm approximation the form (1.4) has been checked
in the first three orders of perturbative theory and is only assumed to be valid
to all orders [32, 33, 34, 35, 36]. A rigorous proof of gluon reggeization does
not exist in the NLLA, but it is possible impose and prove some stringent
self-consistency conditions (bootstrap conditions [37]).

1.2.2 The 2→ 2 scattering amplitude in multi-Regge kine-
matics.

The gluon reggeization determines amplitudes with color octet states and
negative signature in the t-channels. Amplitudes with other quantum numbers
are found in the BFKL approach using s-channel unitarity. In the unitarity
relations the contribution of order s is given by the MRK. Large logarithms
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pA

pB

k0

k1

ki−1

ki

kn

kn+1

}
si = (ki−1 + ki)

2

Figure 1.2: Schematic representation of the s-channel unitarity relation.

come from integration over longitudinal momenta of the produced particles.
In an elastic process A+B → A′+B′, from the Cutkosky rule [38], the imaginary
part of the elastic scattering amplitude AA′B′

AB can be presented as (s-unitarity
relation)

ImsAA
′B′

AB =
1

2

∞∑

n=0

∑

{f}

∫
AÃB̃+n
AB

(
AÃB̃+n
A′B′

)∗
dΦÃB̃+n , (1.5)

where AÃB̃+n
AB is the amplitude of the production of n + 2 particles (Figs. 1.2

and 1.3) with momenta ki , i = 0, 1, ..., n, n+1 in the process A+B → Ã+B̃+n,
while dφÃB̃+n is the element of intermediate state phase space and

∑
{f} means

sum over the discrete quantum numbers of intermediate particles.
We assume that the momenta of the initial particles A and B are equal to
pA = p1 +(m2

A/s) p2 and pB = p2 +(m2
B/s) p1, respectively. For any momentum

ki the Sudakov decomposition is given by

ki = βip1 + αip2 + ki⊥ , (1.6)

where p1 and p2 are light-like vectors (p2
1 = p2

2 = 0) and (p1 + p2)2 = 2p1 ·p2 = s,

sαiβi = k2
i − k2

i⊥ = k2
i + ~k 2

i ,
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+ −

pA

pB

pA′

pB′

Σn

{n}
Figure 1.3: Schematic representation of the s-channel unitarity relation.

where ~ki⊥ denotes the transverse momentum and k2
i⊥ ≡ −~k 2

i .
With this decomposition we obtain for the phase space

dΦÃB̃+n =
2

s
(2π)D δ

(
1 +

m2
A

s
−

n+1∑

i=0

αi

)
δ

(
1 +

m2
B

s
−

n+1∑

i=0

βi

)
(1.7)

×δD−2

(
n+1∑

i=0

ki⊥

)
dβn+1

2βn+1

dα0

2α0

n∏

i=1

dβi
2βi

n+1∏

i=0

dD−2ki⊥

(2π)D−1
,

with the denotations
pÃ = k0 , pB̃ = kn+1 .

In the unitarity condition (1.5) the dominant contribution (of order of s) in the
LLA is given by the region of limited (not growing with s) transverse momenta
of produced particles.
As we said, large logarithms come from the integration over longitudinal mo-
menta of the produced particles. In particular we have a logarithm of s for ev-
ery particle produced in a particular kinematics called multi-Regge-kinematics
(MRK). By definition, in this kinematics transverse momenta of the produced
particles are limited and their Sudakov variables αi and βi are strongly ordered
in rapidity space. That means,

αn+1 � αn � αn−1...� α0 , β0 � β1 � β2...� βn+1 . (1.8)
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Eqs. (1.6) and (1.8) ensure the squared invariant masses of neighboring parti-
cles,

si = (ki−1 + ki)
2 ≈ sβi−1αi =

βi−1

βi

(
k2
i + ~k 2

i

)
,

to be large compared with the squared transverse momenta:

si � ~k 2
i ∼ |ti| = q2

i ,

where
ti = q2

i ≈ q2
i⊥ = −~q 2

i ,

and their product is proportional to s:

n+1∏

i=1

si = s

n∏

i=1

(
k2
i + ~k 2

i

)
.

In order to obtain the large logarithm from the integration over βi for each
produced particle in the phase space (1.7), the amplitude in the r.h.s. in (1.5)
must not decrease with the growth of the invariant masses. This is possible
only in the case where there are exchanges of vector particles (i.e. gluons) in
all channels with momentum transfers qi, i = 1÷ n+ 1 with

qi = pA−
i−1∑

j=0

kj = −
(
pb −

n+1∑

l=i

kl

)
' βip1−αi−1p2−

i−1∑

j=0

kj⊥, q
2
i ' q2

i⊥ = −~q 2
i .

The amplitudes dominant in each order of perturbative theory can be repre-
sented as in Fig. 1.4 . Multi-particle amplitudes have a complicated analytical
structure. They are not simple even in MRK (see, for instance, Refs. [39, 40,
41, 42]). Fortunately, only real parts of these amplitudes are used in the BFKL
approach in NLA as well as in LLA. Restricting ourselves to the real parts we
can write (see Ref. [43])

AÃB̃+n
AB = 2sΓc1

ÃA

(
n∏

i=1

γPi
cici+1

(qi, qi+1)

(
si
sR

)ω(ti) 1

ti

)

× 1

tn+1

(
sn+1

sR

)ω(tn+1)

Γ
cn+1

B̃B
, (1.9)

where sR is some energy scale, which is irrelevant in LLA; ω(t) and ΓaP ′P are
the gluon Regge trajectory and the PPR, as in (1.5); γPi

cici+1
(qi, qi+1) are the
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A

B

Ã

B̃

q1

qi

qi+1

qn+1

g1

gi

gn

γGi
cici+1

(qi, qi+1) −→

Figure 1.4: Schematic representation of the amplitude AÃB̃+n
AB .

Reggeon-Reggeon-Particle (RRP) vertices, i.e. the effective vertices for the
production of particles Pi with momenta qi − qi+1 in collisions of Reggeons
(i.e. Reggeized gluons) with momenta qi and −qi+1 and color indices ci and
ci+1, respectively. In the LLA only one gluon can be produced in the RRP
vertex; therefore, the masses of the produced particles are equal to zero. The
Reggeon-Reggeon-Gluon (RRG) vertex has the form [11, 12, 13, 14]

γGi
cici+1

(qi, qi+1) = gT dicici+1
e∗µ (ki)C

µ (qi+1, qi) ,

where T dicici+1
are the matrix elements of the SU (Nc) group generators in the

adjoint representation, di is the color index of the produced gluon, e∗µ (ki) its
polarization vector, ki = qi − qi+1 its momentum and

Cµ (qi, qi+1) = −qµi − qµi+1 + pµ1

(
q2
i

ki · p1

+ 2
ki · p2

p1 · p2

)

− pµ2

(
q2
i+1

ki · p2

+ 2
ki · p1

p1 · p2

)
. (1.10)

The Eq. (1.10) has the important property corresponding to the current con-
servation

(ki)µC
µ (qi+1, qi) = 0 ,
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which gives the possibility to choose an arbitrary gauge for each of the produced
gluons. For example a possible choice can be the left (l) light-cone gauge,
in which pAe

l (k) = 0 that allows, together with kel (k) = 0, to write the
polarization vector el (k) as

el = el⊥ −
k⊥el⊥
kpA

pA .

Introducing in this gauge the complex components e = ex + ıey, e∗ = ex + ıey

and k = kx + ıky , k∗ = kx− ıky for transverse vectors el⊥ and k⊥ [44], the RRP
vertex takes a simple form

Γ1
2,1 = Ce∗ + C∗e , with C =

q∗1q2

k∗1
.

Let us introduce now the following decomposition

T dicici+1

(
Tc′ic′i+1

)∗
=
∑

R

cR〈cic′i|P̂R|ci+1c
′
i+1〉 , (1.11)

where P̂R is the projection operator of the two-gluon color states on the irre-
ducible representation R of the color group.
For the singlet (vacuum) and antisymmetrical octet (gluon) representations we
have

〈cic′i|P̂0|ci+1c
′
i+1〉 =

δcic′iδci+1c′i+1

N2
c − 1

〈cic′i|P̂8|ci+1c
′
i+1〉 =

facic′ifaci+1c′i+1

Nc

,

respectively, where fabc are the SU (Nc) structure constant. So it easy to find

c0 = Nc, c8 =
Nc

2
.

Using the decomposition (1.11)
∑

Gi

γGi
cici+1

(qi, qi+1)
(
γGi

c′ic
′
i+1

(qi, qi+1)
)∗

=
∑

R

〈cic′i|P̂R|ci+1c
′
i+1〉 (1.12)

×2 (2π)D−1K(R)
r (~qi, ~qi+1; ~q ) ,

where the sum is taken over color and polarization states of the produced gluon
and K(R)

r (~qi, ~qi+1; ~q ) will be called real part of the kernel.
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pA pA′

ΦA′A

q1 q1 − q

q2 q2 − q

G

pB pB′
ΦB′B

Figure 1.5: Schematic representation of the imaginary part of the BFKL elastic am-
plitude.

The BFKL equation It is obtained using the amplitude (1.9) in the uni-
tarity relation (1.5) for the s-channel imaginary part of the elastic scattering
amplitude.
Corrisponding to the decomposition (1.11), the elastic scattering amplitude
AA′B′
AB in (1.5) assumes the following form:

AA′B′
AB =

∑

R
(AR)A

′B′
AB ,

where (AR)A
′B′

AB is the part of the scattering amplitude corresponding to a defi-
nite irreducible representation R of the color group in the t-channel.
Using the amplitude (1.9) in the unitarity relation (1.5) for the s-channel imag-
inary part of the elastic scattering amplitude, we get an expression that can be
factorized [30] in the following way (see Fig. 1.5):

Ims (AR)A
′B′

AB =
s

(2π)D−2

∫
dD−2q1

~q 2
1 (~q1 − ~q)2

∫
dD−2q2

~q 2
2 (~q2 − ~q)2

∑

ν

Φ
(R,ν)
A′A (~q1; ~q; s0)

×
∫ δ+ı∞

δ−ı∞

dω

2πı

[(
s

s0

)ω
G(R)
ω (~q1, ~q2, ~q)

]
Φ

(R,ν)
B′B (−~q2;−~q; s0) ,

(1.13)

Here ~q1 and ~q2 are the transverse momenta of the Reggeized gluons, while s0 is
the energy scale (which can be, in principle, arbitrary) introduced in order to de-
fine the partial wave expansion of the scattering amplitudes through the Mellin
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transform, the index ν enumerates the state in the irreducible representation
R, Φ

(R,ν)
P ′P (~q1; ~q; s0) are the so-called impact factors, that are the convolution of

two PPR vertex. G(R)
ω , which can be called Green function for scattering of two

Reggeized gluons, is a Mellin transform. This function is the only quantity that
determines the s-dependence of the scattering amplitude and it is universal, i.e.
it does not depend on the particular process.
On the other hand, the impact factors are related to the particles on the external
lines. They can be expressed through the imaginary part of the particle-Reggeon
scattering amplitudes. They take the form [43]

Φ
(R,ν)
P ′P (~qR; ~q; s0) =

∫
dsPR
2πs

ImA(R,ν)
P ′P (pP , qR; ~q; s0) θ (sΛ − sPR) (1.14)

−1

2

∫
dD−2q′

~q ′2 (~q ′ − ~q)2 Φ
(R,ν)B
P ′P

(
~q

′
, ~q
)
K(R)B
r

(
~q

′
, ~qR

)
ln

(
s2

Λ

(~q ′ − ~qR) s0

)
,

where sPR = (qp − qR)2 is the squared particle-Regeon invariant mass while
ImA(R,ν)

P ′P is the sPR-channel imaginary part of the scattering amplitude of the
particle P with momentum pP off Reggeon with momentum −qR, ~q being the
momentum transfer. It can be shown that this definition is valid both in the
LLA and in the NLLA.
In the former case, the second terms in the right hand side of the above equa-
tion as well as the θ function in the first term are not active. The parameter
sΛ, which limits the integration over sPR is introduced in order to separate the
contributions from multi-Regge and quasi-multi-Regge kinematics and is to be
considered as tending to infinity. In this way the second term in the R.H.S. of
(1.14) behaves as a counterterm for the large sPR and it will be attribute to the
quark-gluon intermediate state.

The Green’s function obeys the integral equation called generalized BFKL equa-
tion (Fig. 1.6)

ωG(R)
ω (~q1, ~q2; ~q) = ~q 2

1 (~q1 − ~q)2 δ(D−2) (~q1 − ~q2) +

∫
dD−2q

′
1

~q
′2

1

(
~q

′
1 − ~q

)2

× K(R) (~q1, ~q2; ~q)G(R)
ω (~q1, ~q2; ~q) , (1.15)
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q1

q2

q1 − q

q2 − q

q1 q1 − q

q1

q′
1

q2

q1 − q

q′
1 − q

q2 − q

= +G
(R)
ω

G
(R)
ω

Figure 1.6: Schematic representation of integral equation for G(R)
ω .

Figure 1.7: Schematic representation or real part of kernel at Born approximation.

where K(R) is the kernel of the integral function and consists of two parts: a
virtual part, which is expressed in terms of the gluon Regge trajectory and
the real part K(R)

r related to the real particle production in Reggeon-Reggeon
collisions. It has the following expression:

K(R) (~q1, ~q2; ~q) =
[
ω
(
~q 2

1⊥
)

+ ω
(
(q1 − q)2

⊥
)]
~q 2

1 (~q1 − ~q)2 δ(D−2) (~q1 − ~q2)

+ K(R)
r (~q1, ~q2; ~q) ,

where K(R)
r (~q1, ~q2; ~q) is the real part (see Fig. 1.7) and it reads

K(R)
r (~qi, ~qi+1; ~q ) = − g2cR

2 (2π)D−1
Cµ (qi+1, qi)Cµ (qi+1 − q, qi − q) (1.16)

=
g2cR

(2π)D−1

(
~q 2
i (~qi+1 − ~q )2 + ~q 2

i+1 (~qi − ~q )2

(~qi − ~qi+1)2 − ~q 2

)
.

If R = 0 the equation (1.15) is called BFKL equation.
The integral equation (1.15) is an iterative equation; in fact, knowing the kern
at Born level, it allows to obtain all the LLA terms of the Green’s function. In
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the same way knowing all the NLLA correction to the gluon trajectory and to
the real part of the kernel, it is possible to obtain all the NLLA terms of the
Green’s function.
In order to obtain a full amplitude what remains to be calculated is the impact
factors, which are in most cases non-perturbative objects for real processes.

The BFKL equation in NLLA In the NLLA, where all terms of the type
αs [αs ln (s)]n have to be collected, the PPR vertex in (1.4) assumes the following
expression

ΓP ′P = δλP ,λP ′Γ
(+)
PP + δλP ′ ,−λP Γ

(−)
PP .

In this approximation here appears a term in which the helicity of the scattering
particle P is not conserved.
To obtain production amplitudes in the NLLA it is sufficient to take one of
the vertices or the trajectory in (1.9) in the NLO. In the LLA, the Reggeized
gluon trajectory is needed at 1-loop accuracy and the only contribution to the
“real” part of the kernel is from the production of one gluon at Born level in
the collision of two Reggeons (KBRRG) [30]. In the NLLA the gluon trajectory is
taken in the NLO (2-loop accuracy [32, 33, 34, 35, 36]) and the real part includes
the contributions coming from one-gluon (K1

RRG [45]), two-gluon (KBRRGG [46,
47, 48, 49]) and quark-antiquark pair (KB

RRQQ̄
[50, 51, 52, 53]) production at

Born level [30].

Cross section Due to the Optical Theorem (for instance [7]), the total cross
section is related to the imaginary part of the forward scattering amplitude
(~q = 0) and in particular it can be expressed by

σAB (s) =
ImAABAB

s
, (1.17)

where the ImAABAB is given in (1.13), and one can find:

σAB (s) =
1

(2π)D−2

∫
dD−2qA

(~q 2
A )

2 ΦA (~qA)

∫ δ+ı∞

δ−ı∞

dω

2πı

(
s

s0

)ω
Gω (~qA, ~qB)

×
∫
dD−2qB

(~q 2
B )

2 ΦB (−~qB) . (1.18)
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From this equation it is possible to see that if the Green’s function Gω (~qA, ~qB)

has a pole at ω′, the cross section takes the form

σLLAtot ∼
sω

B
P

√
ln s

, ω′ ≡ ωBP ,

where ωBP is the intercept at t = 0 of the Regge trajectory that rules the
asymptotic behaviour in s of the amplitude with exchange of vacuum quantum
numbers in the t-channel. It is equal to 4Nc (αs/π) ln 2 which signifies violation
of the Froissart bound [8].

The NLO corrections to the BFKL resummation of the energy logarithms were
calculated, see Refs. [54, 55] and references therein.
We do not know the eigenfunctions of the kernel at NLO, but it is possible to
find its action on the eigenfunctions |ν〉 of the Born kernel

K̂|ν〉 = ᾱs(µR)χ(ν)|ν〉+ ᾱ2
s(µR)

(
β0

4Nc

χ(ν) ln(µ2
R)χ(1) (ν)

)
|ν〉

+ ᾱ2
s (µR)

β0

4Nc

χ (ν)

(
i
∂

∂ν

)
|ν〉 , (1.19)

where the first term represents the action of LLA kernel, the second and the
third ones stand for the diagonal and the non-diagonal parts of the NLA BFKL
kernel (for more details, see Section 4.2). In particular the last term comes from
the renormalization of the coupling constant.
In the symmetrical case, when ν = 0, corresponding to the eigenfunction of
the LLA kernel with the largest eigenvalue, the correction is very large. In
particular, for the Pomeron intercept, is possible to obtain (see Refs. [54, 55]
and references therein)

ωP ' ωBP
(
1− 2.4 ωBP

)
. (1.20)

The NLO corrections to the eigenvalue of the BFKL equation turn out to be
negative and even larger than the LO contribution for αs > 0.157.
This problem has been addressed in many papers, which suggested several
ways..... We mention here only two of them: the “rapidity veto” approach [56,
57] and the “collinear improvement” method [58].
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1.3 Summary

The BFKL approach [11, 12, 13, 14] is the most suitable framework for the
theoretical description of the high-energy limit of hard or semi-hard processes.
It provides indeed a systematic way to perform the resummation of the energy
logarithms, both in the leading logarithmic approximation (LLA), which means
resummation of all terms (αs ln(s))n, and in the next-to-leading logarithmic
approximation (NLA), which means resummation of all terms αs(αs ln(s))n.
The total cross section is given by

σ (s) =
ImsA
s

(1.21)

where ImsA is the imaginary part of forward scattering amplitude and in the
BFKL approach at NLA it reads

ImsA =
s

(2π)D−2

∫
dD−2qA

(~q 2
A )

2 ΦA (~qA)

∫ δ+ı∞

δ−ı∞

dω

2πı

(
s

s0

)ω
Gω (~qA, ~qB)

×
∫
dD−2qB

(~q 2
B )

2 ΦB (−~qB) . (1.22)

The energy scale parameter s0 is arbitrary, the amplitude, indeed, does not de-
pend on its choice within NLA accuracy due to the properties of NLO impact
factors.
The Gω (~qA, ~qB) is called Green’s function and obeys the BFKL equation (1.15),
while ΦA (~qA) and ΦB (~qB) are called impact factors (1.14).
The Green’s function is process-independent so, in order to obtain a full am-
plitude, we have to calculate the process-dependent impact factors. So far only
very few have been calculated in the NLA and in particular:

• colliding partons [59, 60, 61, 62]

• the γ∗ → γ∗ transition [63, 64, 65, 66, 67, 68, 69]

• the γ∗ to light vector meson transition at leading twist [70, 71]

• forward jet production [72, 73, 74, 75].
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Chapter 2

Lipatov’s high-energy effective
action

The BFKL approach (see Chapter 1) is applied to describe the hadronic scat-
tering amplitudes in the Regge kinematic (s→∞, s� −t) and the high-energy
behavior of the total cross sections for semi-hard QCD processes (Q2 � Λ2

QCD).
In the leading logarithmic approximation (LLA), the BFKL equation predicts
a power-like rise of cross sections with energy, which violates the Froissart con-
straint σt < c ln2 s being a consequence of the s-channel unitarity. One possible
method to overcome this difficulty is to take into account the multiple Pomeron
exchanges in the eikonal approximation [76]. A more consistent approach is
based on the solution of the BKP (Bartels, Kwiecinski, Praszalowicz) equa-
tion [77, 78] which is a generalization of the BFKL equation for the case of
composite states of several Reggeized gluons [77, 78].
For the unitarization purpose, it is also possible to use an effective Lagrangian
written for the Multi-Regge-Kinematics of gluons in intermediate states of the
direct s- and u-channels [44, 79]. The most general approach consists in re-
formulating QCD in terms of a gauge-invariant effective field theory for the
Reggeized gluon interactions: this is the effective action [9, 10], which is based
on the QCD action with the addition of an induced term.
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2.1 Effective action approach

Due to the gluon reggeization it is natural to expect that QCD, at high
energies, can be reformulated as an interaction theory for physical particles
(quarks and gluons) and Reggeized gluons. This reformulation is given [9] by
the effective action which is valid at high energies for interactions of particles
having their rapidities y in a certain interval η around the rapidity y0,

y =
1

2
ln
Ek + |k|
Ek − |k|

, |y − y0| < η , η � ln s . (2.1)

This means that particles which are produced in direct channels can be ar-
ranged in groups (clusters) consisting of gluons within some rapidity intervals
(y − η/2, y + η/2), where η is an auxiliary parameter, smaller than the relative
rapidity of colliding particles Y = ln s,

1� η � Y . (2.2)

This parameter represents an infrared or ultraviolet cut-off in the relative lon-
gitudinal momenta for interactions between the neighbouring groups and for
interactions among particles inside each group, respectively.
The η-dependence should disappear in the final result analogously to the case of
the normalization point dependence in hard processes. In the (LLA) all trans-
verse momenta k⊥ of gluons in the Feynman diagrams are of the same order as
transverse momenta p⊥ of partons inside of colliding hadrons [11, 12, 14, 25].
This means that the center-of-mass pair energy

√
si of the neighbouring gluons

in the Multi-Regge-Kinematics is significantly bigger than p⊥ and the effective
parameter of the perturbation theory is g2 ln (s/p2

⊥). Beyond LLA one should
introduce the above parameter η in the analogous inequality for the pair energies
of the neighbouring clusters of particles

ln
si
p2
⊥
. (2.3)

In order to write the high-energy effective action we introduce the gluon and
quark fields

vµ (x) = −ıT avaµ (x) , ψ (x) , ψ̄ (x) ,
[
T a, T b

]
= ıfabcT

c . (2.4)
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and new fields A±

A± = A∓ = A0 ± A3 , pµAAµ =

√
s

2
A− , pµBAµ =

√
s

2
A+ , (2.5)

which describe the production and annihilation of the Reggeized gluons in the
t-channel.
Under the global color group rotations the fields are transformed in the standard
way

δvµ (x) = [vµ (x) , χ] , δψ (x) = −χψ (x) , δA (x) = [A (x) , χ] , (2.6)

but under the local gauge transformations with χ (x)→ 0 at x→∞ we have

δvµ (x) =
1

g
[Dµ, χ (x)] , δψ (x) = −χ (x)ψ (x) , δA± (x) = 0 , (2.7)

where Dµ is the covariant derivative and χ the parameter of the gauge trans-
formations.

2.1.1 Explicit form of the effective action

We consider the parton-parton collisions at high-energy
√
s in the center-

of-mass system. In Multi-Regge-Kinematics the final state particles contains
several groups (clusters) with an arbitrary number of gluons or/and quarks
with a fixed mass Mi (i = 1, 2, ..., n) of each group and significantly different
rapidities corresponding to the Multi-Regge asymptotics,

pA + pB = k0 + k1 + k2 + ...+ kn + kn+1 , (2.8)

s = (pA + pB)2 � sr = (ki−1 + ki)
2 � q2

r ,

with kr = qr+1 − qr and qr the momentum transfers in the various t-channels
which are all of the same order of magnitude (Fig. 1.2).

Introducing the light-cone vectors

n+ = 2pb/
√
s , n− = 2pa/

√
s , n+ · n− = 2 ,

(
n±
)2

= 0 (2.9)

the light-cone projections of momenta and derivatives read respectively

k± =
(
n±
)
µ
· kµ , ∂± =

(
n±
)
µ
· ∂µ . (2.10)
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Moreover the derivatives that act on the particle v (p) and Reggeon A (p) fields
in the momentum representation are the following:

∂±v (p) = −ıp±v (p) ,
1

∂±
v (p) =

ı

p±
v (p) , ∂2A (p) = −q2A (q) , q2 = −q2

⊥ .

(2.11)
Strong ordering of longitudinal momenta in high-energy factorized amplitudes
leads to the kinematical constraint of the Reggeized gluon fields,

∂∓A± = 0 , ∂± = nµ±∂µ , nµ± = δµ0 ± δµ3 , (2.12)

which is always implied.

In QCD the gauge-invariant effective action local in the rapidity y is given
as the sum of two terms [9]

Seff =

∫
d4x (L0 + Lind) , (2.13)

in which L0 represents the usual Yang-Mills Lagrangian, while Lind is the in-
duced Lagrangian.
The action of the latter Lagrangian can be written:

Sind. [vµ, A±] =

∫
d4xtr [(W+ [v (x)]− A+ (x)) jreg− ] (2.14)

+

∫
d4xtr [(W− [v (x)]− A− (x)) jreg+ ] ,

where jreg± = jreg± (A±) are Reggeon currents satisfying the kinematical con-
straints ∂∓jreg± = 0 (see Eq. 2.12) which are important for the gauge invariant
of action (2.14). The two functionals W± [v] are defined through the following
operator

W± [v] = v±
1

D±
∂± where D± = ∂± + gv± . (2.15)

The effective action (2.14) describes the coupling of the Reggeized gluon field
A± (x) to the gluonic field vµ (x), local in rapidity. In terms of the amplitude
(Fig.1.2) locality in rapidity means that the interactions between particles and
Reggeized gluons is always restricted to a single rapidity cluster, whereas the
interaction between clusters is mediated by Reggeized gluons alone.
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2 The high energy effective action

The effective action adds to the QCD action an induced term, Seff = SQCD + Sind., which
describes the coupling of the reggeized gluon field A±(x) = −itaAa

±(x) to the usual gluonic
field vµ(x) = −itava

µ(x). This induced term reads

Sind.[vµ, A±] =

�
d4x tr

��
W+[v(x)] − A+(x)

�
∂2
⊥A−(x)

�

+

�
d4x tr

��
W−[v(x)] − A−(x)

�
∂2
⊥A+(x)

�
. (1)

The infinite number of couplings of the gluon field to the reggeized gluon field are encoded in
two functionals W±[v] = v± 1

D±
∂± where D± = ∂± + gv±. Note that the reggeized gluon fields

are special in the sense that they are invariant under local gauge transformations, while they
transform globally in the adjoint representation of the SU(Nc) gauge group. In addition, strong
ordering of longitudinal momenta in high energy factorized amplitudes leads to the kinematical
constraint of the reggeized gluon fields,

∂+A−(x) = ∂−A+(x) = 0, (2)

which is always implied. Quantization of the gluonic field requires to add gauge fixing and ghost
terms, which we have included in the QCD action. Feynman rules have been derived in [21]. We

q, a,±

k, c, ν

= −iq2δac(n±)ν ,

k± = 0.

+ a

− b

q = δab i/2
q2

q, a,±

k2, c2, ν2k1, c1, ν1

= gf c1c2a q2

k±
1

(n±)ν1(n±)ν2 ,

k±
1 + k±

2 = 0

(a) (b) (c)

Figure 1: The direct transition vertex (a), the reggeized gluon propagator (b) and the order g induced
vertex (c)

show them using curly lines for the conventional QCD gluon field and wavy (photon-like) lines
for the reggeized gluon field. There exist an infinite number of higher order induced vertices. For
the present analysis only the order g induced vertex in fig. 1.c is needed. In the determination
of loop corrections we must fix a regularization of the light-cone singularity present in fig. 1.c.
As suggested by one of us in [22] this pole should be treated as a Cauchy principal value.

3 NLO quark jet impact factors

When calculating quantum corrections new divergences in longitudinal components appear. As
it was demonstrated in [19, 23] these can be regularized by deforming the light cone using a
parameter ρ which is considered in the limit ρ → ∞. In this new setup, the Sudakov projections
take place on the vectors na = e−ρn+ + n− and nb = n+ + e−ρn−. To obtain the virtual

2 DIS 2012

Figure 2.1: The direct transition vertex (a), the Reggeized gluon propagator (b) and
the order g induced vertex (c)

2.1.2 Feynman rules of the effective action

Feynman rules of the high-energy effective have been determined in [80] and
they are given by the conventional QCD Feynman rules and an infinity number
of induced vertices.
In the following we state them explicitly up to O (g), which covers all induced
vertices that will need in this thesis. We show them using curly lines for the
conventional QCD gluon field and wavy (photon-like) lines for the Reggeized
gluon field.

• Induced vertex of the zero order, which describes the direct transition of
a QCD-gluon into a Reggeized gluon (Fig. 2.1 (a) ).

• From the effective action we also obtain a new element: the propagator
of the bare Reggeized gluon (Fig. 2.1 (b) ).

• For the induced vertex of the first order (Fig. 2.1 (c) ).

Here q2 = −q2
⊥ denotes the Euclidean, two-dimensional squared momentum

of the Reggeized gluon and ν the polarization of the gluon.
An explicit expression for the O (g2) induced vertex can be found in [80].
All of these vertices obey Bose-symmetry, i.e. symmetry under simultaneous
exchange of color, polarization and momenta of the external gluons of the order
gn vertex.
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2.2 Summary

The effective action[81] can be used to determine tree amplitudes with
Quasi-Multi-Regge-Kinematics to arbitrary accuracy. In particular the pro-
duction vertices needed for the derivation of the BFKL-equation at NNLA have
been derived in [80] and they have been used for the construction of real cor-
rections in [82].
This action is a powerful tool that allows also for the determination of the vir-
tual corrections in the Regge-limit. In particular it enables us to determine loop
corrections to the Regge-trajectory and to the vertices describing coupling of
the Reggeized gluons to QCD-particles, which are required for the determina-
tion of high-order corrections to the BFKL equation.
Using the Feynman rules [80] of the effective action, a number of complications
is introduced. In particular the evaluation of loop diagrams within the effective
action approach leads to a new type of longitudinal divergences, which are not
present in conventional quantum corrections to QCD amplitudes. As it was
demonstrated in [83, 84], a convenient way to regularize these divergencies is to
introduce a parameter ρ which deforms the light-like four vectors of the effective
action (the Sudakov projections) in the form [83]

n− → na = e−ρn+ + n− (2.16)

n+ → nb = n+ + e−ρn− .

The deformation of the original reference momenta is considered to be asymp-
totically small (ρ → ∞) and ρ can be given the interpretation of a logarithm
of the center-of-mass energy.

Mueller-Tang impact factor The effective action can be used to calculate
next-to-leading order (NLO) corrections to cross-sections in the high-energy
limit. In particular we calculated [85, 86] NLO corrections for the forward jet
impact factor from the effective action and real NLO corrections to the Mueller-
Tang [87] impact factor.
The determination of the Mueller-Tang impact factor requires to consider dia-
grams where two Reggeized gluons couple to the quark induced jet, see Fig. 2.2
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corrections we are seeking for it is needed to calculate the one-loop self energy corrections to
the reggeized gluon propagator. Diagrammatically, these are

1 loop = + + + + + . (3)

The 1-loop corrections to the quark-quark-reggeized gluon vertex are

= + + + + + + , (4)

from which it is needed to subtract the factorizing contribution

= − . (5)

The one-loop quark-quark scattering amplitude in the high energy limit is then given by the
following sum

+ + . (6)

The sum of this three contributions is finite in the limit ρ → ∞ and the dependence on the
regulator vanishes. The result is in agreement with calculations using more standard techniques,
performed in [24] and confirmed in [25]. A similar result holds for the real corrections, see [19]
for details. All of these results are needed for Mueller-Navelet jets. The determination of the
Mueller-Tang impact factor requires to consider diagrams where two reggeized gluons couple to
the quark induced jet, see Fig. 2.a. Due to the condition Eq. (2), the integration over the minus
component of the loop momentum of the reggeized gluon loop is absorbed into the definition
of the impact factor. With the virtual NLO corrections already known [26], we focus on the
real NLO corrections. The relevant diagrams split into two groups: the two reggeized gluon

(a) (b) (c)

Figure 2:

state couples either to a single parton (Fig. 2.b) or to two different partons (Fig. 2.c). While
the integration over the longitudinal loop momentum is divergent for individual diagrams, this
divergence is found to cancel for their sum.

DIS 2012 3

Figure 2.2

(a). With the virtual NLO corrections already known [60], we focus on the
real NLO corrections. The relevant diagrams split into two groups: the two
Reggeized gluon state couples either to a single parton (Fig. 2.2 (b)) or to two
different partons (Fig. 2.2 (c)).
The calculation is still in progress, but we will get it as soon as.
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Chapter 3

The NLO jet vertex for
Mueller-Navelet and forward jets

3.1 Introduction

The large center of mass energy of hadron colliders like the Tevatron and the
Large Hadron Collider (LHC) is not only useful for the production of possible
new heavy particles, but also allows to investigate the high-energy regime of
Quantum Chromodynamics (QCD). An especially interesting situation is the
production of Mueller-Navelet jets.

Jet Mueller-Navelet The Mueller-Navelet jet production process [88] was
suggested as an ideal tool to study the Regge limit of perturbative QCD in
proton-proton (or proton-antiproton) collisions. It is an inclusive process

p(p1) + p(p2)→ J1(kJ,1) + J2(kJ,2) +X , (3.1)

where two hard jets J1 and J2 are produced. Their transverse momenta are
much large than the QCD scale, ~k2

J,1 ∼ ~k2
J,2 � Λ2

QCD, so that it is possible
to use perturbative QCD. Moreover, they are separated by a large interval of
rapidity, ∆y � 1, which means large center of mass energy

√
s of the proton

collisions, s = 2p1 · p2 � ~k2
J 1,2, since ∆y ∼ ln s/~k2

J 1,2.
Since large logarithms of the energy compensate the small QCD coupling, they
must be resummed to all orders of perturbative theory.
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The BFKL approach (see Chapter 1) is the most suitable framework for the
theoretical description of the high-energy limit of hard or semi-hard processes.
It provides a systematic way to perform the resummation in the leading logarith-
mic approximation (LLA), which means resummation of all terms (αs ln(s))n,
and in the next-to-leading logarithmic approximation (NLA), which means re-
summation of all terms αs(αs ln(s))n.
The only ingredient for the complete description of a process in the BFKL ap-
proach (see Chapter 1) is the impact factors of the colliding particle.

We recalculate, within the BFKL approach and at the next-to-leading order,
the jet vertex relevant for the production of Mueller-Navelet jets in proton col-
lisions and of forward jets in DIS.
Even if recently the results of a complete NLA analysis of the process (3.1) were
reported [89], which incorporates NLO corrections to both the BFKL Green’s
function and the jets impact factors, calculated earlier in [72, 73], in our opinion,
it would be important to have an independent calculation of Mueller-Navelet
jet observables in NLA. The aim of this work [74] is the calculation of NLO
correction to the jet impact factor in order to have an independent check of the
results of [72, 73].
In many technical steps we follow closely the method used in [72, 73], but we
will take advantage of starting from the general definition for the impact factors
at NLO Eq. (1.14), see Ref. [43], which allows us to come to the results more
shortly.

3.2 General framework

It is possible to describe a state of jets by their rapidities, y1 and y2, their
transverse momenta, ~kJ,1 and ~kJ,2, and their azimuthal angles of the produced
jets φ1 and φ2. It is convenient to define the Sudakov decomposition for the jets
momenta. For a jet in the fragmentation region of the proton with momentum
p1, one has

kJ,1 = xJ,1p1 +
~k2
J,1

xJ,1s
p2 + kJ,1⊥ , k2

J,1⊥ = −~k2
J,1 , (3.2)
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where we assume p2
1 = p2

2 = 0 neglecting the proton mass and the longitudinal
fraction xJ,1 = O(1) is related to the jet rapidity in the center of mass system
by

y1 =
1

2
ln
x2
J,1s

~k2
J,1

, dy1 =
dxJ,1
xJ,1

.

In QCD collinear factorization the cross section of the process reads

dσ

dxJ,1dxJ,2d2~kJ,1d2~kJ,2
(3.3)

=
∑

i,j=q,q̄,g

1∫

0

1∫

0

dx1dx2fi(x1, µ)fj(x2, µ)
dσ̂i,j(x1x2s, µ)

dxJ,1dxJ,2d2~kJ,1d2~kJ,2
,

where the i, j indices specify parton types (quarks q = u, d, s; antiquarks q̄ =

ū, d̄, s̄; or gluon g), fi(x, µ) denotes the initial proton parton density function
(PDF), the longitudinal fractions of the partons involved in the hard subprocess
are x1,2, µ is the factorization scale and dσ̂i,j(x1x2s, µ) is the partonic cross
section for the production of jets, and ŝ = x1x2s is the energy of parton-parton
collision.
At lowest order each jet is represented by a single parton having high transverse
momentum, and the partonic subprocess is given by an elementary two-to-
two scattering. In the discussed Mueller-Navelet kinematics the higher-order
contributions to the partonic cross section have to be resummed using BFKL
approach. Such resummation at NLA accuracy depends on the details of jet
definition (jet algorithm) and will be specified later.

3.2.1 Parton impact factors

We can write the LO impact factor for the quark case as

Φ(0)
q (~q ) =

∑

{a}

∫
dM2

a

2π
Γ(0)
aq (~q )

[
Γ(0)
aq (~q )

]∗
dρa , (3.4)

where ~q is the Reggeon transverse momentum, and Γ
(0)
aq denotes the Reggeon-

quark vertices in the LO or Born approximation. The sum {a} is over all
intermediate states a which contribute to the q → q transition. The phase
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space element dρa of a state a, consisting of particles with momenta `n, is (pq
is initial quark momentum)

dρa = (2π)D δ(D)

(
pq + q −

∑

n∈a
`n

) ∏

n∈a

dD−1`n
(2π)D−12En

, (3.5)

while the remaining integration in (3.4) is over the squared invariant mass of
the state a,

M2
a = (pq + q)2 .

In the LO the only intermediate state which contributes is a one-quark state,
{a} = q. The integration in Eq. (3.4) with the known Reggeon-quark vertices
Γ

(0)
qq is trivial and the quark impact factor reads [60]

Φ(0)
q (~q ) = g2

√
N2
c − 1

2Nc

, (3.6)

where g is QCD coupling, αs = g2/(4π), Nc = 3 is the number of QCD colors.

In the NLO the expression (3.4) for the quark impact factor has to be changed
in two ways. First one has to take into account the radiative corrections to the
vertices,

Γ(0)
qq → Γqq = Γ(0)

qq + Γ(1)
qq . (3.7)

Second, in the sum over {a} in (3.4), we have to include more complicated
states which appear in the next order of perturbative theory. For the quark
impact factor this is a state with an additional gluon, a = qg. However, the
integral over M2

a becomes divergent when an extra-gluon appears in the final
state. The divergence arises because the gluon may be emitted not only in the
fragmentation region of initial quark, but also in the central rapidity region.
The contribution of the central region must be subtracted from the impact
factor, since it is to be assigned in the BFKL approach to the Green’s function.
Therefore the result for the forward quark impact factor, see Ref. [60] and
Fig. 3.1, reads [60]
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Figure 1. Schematic representation of the forward parton impact factor. Here p1 is the proton

momentum, x1 is the fraction of proton momentum carried by the parton and !q is the transverse

momentum of the incoming Reggeized gluon.

where the Green’s function obeys the BFKL equation

ω Gω(!q1, !q2) = δ(D−2)(!q1 − !q2) +

∫
dD−2!q K(!q1, !q) Gω(!q, !q1) , (2.5)

and ΦP,1(!q1, s0), ΦP,2(−!q2, s0) are the parton impact factors calculated separately for the

cases of massless quark and gluon in [11–13]. Here !q1, !q2 are the transverse momenta of

the Reggeized gluons, the energy scale parameter s0 is arbitrary, the amplitude, indeed,

does not depend on its choice within NLA accuracy.

2.1 Parton impact factors

In this subsection we review the definition of the impact factors in NLO.

Both the kernel of the equation for the Green’s function and the parton impact factors

can be expressed in terms of the gluon Regge trajectory,

j(t) = 1 + ω(t) , (2.6)

and the effective vertices for the Reggeon-parton interaction.

To be more specific, we will give below the formulae for the case of forward quark

impact factor. We start with the LO, where the quark impact factors are given by

Φ(0)
q (!q ) =

∑

{a}

∫
dM2

a

2π
Γ(0)

aq (!q ) [Γ(0)
aq (!q )]∗ dρa , (2.7)

where !q is the Reggeon transverse momentum, and Γ
(0)
aq denotes the Reggeon-quark vertices

in the LO or Born approximation. The sum {a} is over all intermediate states a which

contribute to the q → q transition. The phase space element dρa of a state a, consisting of

particles with momenta &n, is (pq is initial quark momentum)

dρa = (2π)D δ(D)

(
pq + q −

∑

n∈a

&n

) ∏

n∈a

dD−1&n

(2π)D−12En
, (2.8)

while the remaining integration in (2.7) is over the squared invariant mass of the state a,

M2
a = (pq + q)2 .

– 4 –

Figure 3.1: Schematic representation of the forward parton impact factor. Here p1 is
the proton momentum, x1 is the fraction of proton momentum carried by
the parton and ~q is the transverse momentum of the incoming Reggeized
gluon.

Φq(~q , s0) =

(
s0

~q 2

)ω(−~q 2) ∑

{a}

∫
dM2

a

2π
Γaq(~q ) [Γaq(~q )]∗ dρa θ(sΛ −M2

a )

−1

2

∫
dD−2k

~q 2

~k 2
Φ(0)
q (~k)K(0)

r (~k, ~q ) ln

(
s2

Λ

(~k − ~q )2s0

)
. (3.8)

For the description of the object in the R.H.S. of Eq. (3.8), see the discussion
after Eq. (1.14).

The gluon impact factor Φg (~q ) is defined similarly. In the gluon case only
the single-gluon intermediate state contributes in the LO, a = g, wich result
in [59]

Φ(0)
g (~q ) =

CA
CF

Φ(0)
q (~q ) , (3.9)

with CA = Nc and CF = (N2
c − 1) / (2Nc). Whereas in NLO additional two-

gluon, a = gg, and quark-antiquark, a = qq̄, intermediate states have to be
taken into account in the calculation of the gluon impact factor.

3.3 Jet impact factor

In the BFKL approach the resummed cross section of the hard subprocess is
represented as the convolution of the jet impact factors of the colliding particles
with the Green’s function Gω, see Eq. (1.22),
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dσ̂

dJ1dJ2

=
1

(2π)D−2

∫
dD−2q1

~q 2
1

dΦJ,1(~q1, s0)

dJ1

∫
dD−2q2

~q 2
2

dΦJ,2(−~q2, s0)

dJ2

×
δ+i∞∫

δ−i∞

dω

2πi

(
ŝ

s0

)ω
Gω(~q1, ~q2) . (3.10)

where we introduce jet impact factors dΦJ,i(~qi,s0)

dJi
differential with respect to the

variables parameterizing the jet phase space,

dJ1 ≡ dxJ,1d
D−2kJ,1 , dJ2 ≡ dxJ,2d

D−2kJ,2 . (3.11)

Here ~q1, ~q2 are the transverse momenta of the Reggeized gluons and the en-
ergy scale parameter s0 is arbitrary, since the amplitude does not depend on its
choice within NLA accuracy.

Following [72] we consider our process in the frame of a generic and infrared-
safe jet algorithm. In practice, this is done by introducing into the integration
over the partonic phase space a suitably defined function which identifies the
jet momentum with the momentum of one parton or with the sum of the two
or more parton momenta when the jet is originated from the a multi-parton
intermediate state.
In our accuracy the jet can be formed by one parton in LO and by one (virtual
corrections) or two (real corrections) partons when the process is considered in
NLO.

Jet Function In the simplest case, the jet momentum is identified with the
momentum of the parton in the intermediate state k by the following jet func-
tion [90, 91]:

S
(2)
J (~k;x) = δ(x− xJ)δ(D−2)(~k − ~kJ) . (3.12)

In this way, having the results for the lowest order parton impact factors
Eqs. (3.6) and (3.9), the jet impact factor at the LO is given as the sum of
the gluon and all possible quark and antiquark PDFs contributions:

dΦ
(0)
J (~q )

dJ
= g2

√
N2
c − 1

2Nc

∫ 1

0

dx

(
CA
CF

fg(x) +
∑

a=q,q̄

fa(x)

)
S

(2)
J (~q;x) . (3.13)
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In the more complicated case when the jet originates from a state of two partons
with momenta k1 and k2, we need another function S

(3)
J , whose explicit form

is specific for the chosen jet algorithm. An example of jet selection function in
the case of the cone algorithm is the following [90, 91]:

S
(3,cone)
J (~k2, ~k1, xβ1;x) (3.14)

= S
(2)
J (~k2;x(1− β1))Θ


[∆y2 + ∆φ2

]
−
[
|~k1|+ |~k2|

max(|~k1|, |~k2|)
Rcone

]2



+ S
(2)
J (~k1;xβ1)Θ


[∆y2 + ∆φ2

]
−
[
|~k1|+ |~k2|

max(|~k1|, |~k2|)
Rcone

]2



+ S
(2)
J (~k1 + ~k2;x)Θ



[
|~k1|+ |~k2|

max(|~k1|, |~k2|)
Rcone

]2

−
[
∆y2 + ∆φ2

]

 ,

where the Sudakov decomposition of the parton momenta

k1 = xβ1p1 +
~k 2

1

xβ1s
p2 + k1⊥ , k2

1 = 0 , (3.15)

k2 = xβ2p1 +
~k 2

2

xβ2s
p2 + k2⊥ , k2

2 = 0 , (3.16)

is used, with β1 + β2 = 1 and ~k1 + ~k2 = ~q, owing to momentum conservation
in the partonic subprocess. Rcone in (3.14) is the cone-size parameter, ∆y and
∆φ are the difference of rapidity and azimuthal angle in the two parton state,
respectively:

∆y = ln

(
1− β1

β1

|~k1|
|~k2|

)
, ∆φ = arccos

~k1 · ~k2√
~k 2

1
~k 2

2

. (3.17)

The three terms in S(3,cone)
J represent the case in which the jet is formed by the

parton k2 or the parton k1 or both, respectively.
In the generic case, the following relations for the jet function must be fulfilled
in order the jet algorithm be infrared safe:
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S
(3)
J (~k2, ~k1, xβ1;x) −→ S

(2)
J (~k2;x) , ~k1 → 0 , β1 → 0 , (3.18)

S
(3)
J (~k2, ~k1, xβ1;x) −→ S

(2)
J (~k1 + ~k2;x) , ~k1β2 → ~k2β1 , (3.19)

S
(3)
J (~k2, ~k1, xβ1;x) −→ S

(2)
J (~k2;x(1− β1)) , ~k1 → 0 , (3.20)

S
(3)
J (~k2, ~k1, xβ1;x) −→ S

(2)
J (~k1;xβ1) , ~k2 → 0 . (3.21)

Such reduction of S(3)
J → S

(2)
J is required in order that the singular contributions

generated by the real emission be proportional to the lowest order cross section.
These contributions are canceled with the soft and collinear singularities arising
from the virtual corrections and the collinear counterterms coming from the
PDFs renormalization.
Besides, we assume that the jet selection function S(3)

J is symmetric under the
exchange of the final state parton kinematic variables, β1 ↔ β2 and ~k1 ↔ ~k2,

S
(3)
J (~k2, ~k1, xβ1;x) = S

(3)
J (~k1, ~k2, xβ2;x) . (3.22)

3.3.1 Counterterms

The collinear counterterms appear due to the replacement of the bare PDFs
by the renormalized physical quantities which obey DGLAP evolution equa-
tions, in the MS factorization scheme:

fq(x) = fq(x, µF ) (3.23)

− αs
2π

(
1

ε̂
+ ln

µ2
F

µ2

) 1∫

x

dz

z

[
Pqq(z)fq(

x

z
, µF ) + Pqg(z)fg(

x

z
, µF )

]
,

fg(x) = fg(x, µF ) (3.24)

− αs
2π

(
1

ε̂
+ ln

µ2
F

µ2

) 1∫

x

dz

z

[
Pgq(z)fq(

x

z
, µF ) + Pgg(z)fg(

x

z
, µF )

]
,

(3.25)

where 1
ε̂

= 1
ε

+ γE − ln(4π) ≈ Γ(1−ε)
ε(4π)ε

and the DGLAP splitting functions are
(see, for instance, Ref. [92]):
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Pqq(β) = CF

(
1 + β2

1− β

)

+

= CF

[
1 + β2

(1− β)+

+
3

2
δ(1− β)

]
, (3.26)

Pqg(β) = TR
[
β2 + (1− β)2

]
, with TR =

1

2
, (3.27)

Pgg(β) = 2CA

(
β

(1− β)+

+
(1− β)

β
+ β(1− β)

)
(3.28)

+
(11CA − 4NFTR)

6
δ(1− β) ,

Pgq(β) = CF
[1 + (1− β)2]

β
; (3.29)

here the plus-prescription is defined by
∫ 1

a

dx
F (x)

(1− x)+

=

∫ 1

a

dx
F (x)− F (1)

1− x −
∫ a

0

dx
F (1)

1− x . (3.30)

The other counterterm is related with QCD charge renormalization, in the MS

scheme:

αs = αs(µR)

[
1 +

αs(µR)

4π

(
11CA

3
− 2NF

3

)(
1

ε̂
+ ln

µ2
R

µ2

)]
. (3.31)

Substituting in the LO jet impact factor the bare QCD coupling and bare
PDFs by the renormalized ones, we obtain the following expressions for the
counterterms:

dΦJ(~q )|charge c.t.

dJ
=
αs
2π

(
1

ε̂
+ ln

µ2
R

µ2

)(
11CA

6
− NF

3

)
Φ(0)
q

×
∫ 1

0

dx

(
CA
CF

fg(x) +
∑

a=q,q̄

fa(x)

)
S

(2)
J (~q;x) (3.32)

for the charge renormalization, and

dΦJ(~q )|collinear c.t.

dJ
= −αs

2π

(
1

ε̂
+ ln

µ2
F

µ2

)
Φ(0)
q

1∫

0

dxS
(2)
J (~q ;x) (3.33)

×
1∫

x

dβ

β

[∑

a=q,q̄

(
Pqq(β)fa

(
x

β

)
+ Pqg(β)fg

(
x

β

))

+
CA
CF

(
Pgg(β)fg

(
x

β

)
+ Pgq(β)

∑

a=q,q̄

fa

(
x

β

))]
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for the collinear counterterm. The latter can be rewritten in the form

dΦJ(~q )|collinear c.t.

dJ
= −αs

2π

(
1

ε̂
+ ln

µ2
F

µ2

)
Φ(0)
q

1∫

0

dβ

1∫

0

dxS
(2)
J (~q ; βx)

×
[∑

a=q,q̄

(Pqq(β)fa (x) + Pqg(β)fg (x)) +
CA
CF

(
Pgg(β)fg (x) + Pgq(β)

∑

a=q,q̄

fa (x)

)]
.

(3.34)

Finally, we present the expression for the BFKL counterterm which, in accor-
dance to the second line of Eq. (3.8), provides the subtraction of the gluon
radiation in the central rapidity region:

dΦJ(~q )|BFKL c.t.

dJ
= −Φ(0)

q

CA g
2

(2π)D−1

∫ 1

0

dx

(
CA
CF

fg(x) +
∑

a=q,q̄

fa(x)

)

×
∫
dD−2k

~q 2

~k 2(~k − ~q )2
ln

(
s2

Λ

s0
~k2

)
S

(2)
J (~q − ~k;x) .

(3.35)

Now we have all the necessary ingredients to perform our calculation of the
NLO corrections to the jet impact factor. As a starting point for our consider-
ation we will use the results of [59, 60] for the partonic amplitudes obtained in
the calculation of partonic impact factors, introducing there the appropriate jet
functions: S(2)

J for the amplitudes with one-parton state in the case of one-loop
virtual corrections and S

(3)
J for the cases with two partons in the final state

(real emission), in order to define the corresponding contribution to jet cross
sections.
For shortness we will present intermediate results for V structures defined al-
ways as

dΦ
(1)
J (~q )

dJ
≡ αs

2π
Φ(0)
q V (~q ) . (3.36)

We will consider separately the subprocesses initiated by the quark and the
gluon PDFs and denote

V = Vq + Vg . (3.37)
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Figure 2. Schematic representation of the jet vertex for the case of quark in the initial state. Here

p1 is the proton momentum, x is the fraction of proton momentum carried by the quark, xJp1 is the

longitudinal jet momentum, !kJ is the transverse jet momentum and !q is the transverse momentum

of the incoming Reggeized gluon.

Here and in what follows we put the arbitrary scale of dimensional regularization equal to

unity, µ = 1. We expand (3.1) in ε and get

V (V )
q (!q ) = −Γ[1 − ε]

ε (4π)ε

Γ2(1 + ε)

Γ(1 + 2ε)

(
!q 2

)ε
∫ 1

0
dx

∑

a=q,q̄

fa(x) S
(2)
J (!q ; x)

×
[
CF

(
2

ε
− 3

)
− NF

3
+ CA

(
ln

s0

!q 2
+

11

6

)

+ ε

{
8 CF +

5NF

9
− CA

(
85

18
+

π2

2

)}]
+ O(ε) . (3.2)

3.2 Real corrections

For the incoming quark case, real corrections originate from the quark-gluon intermediate

state. We denote the momentum of the gluon by k, then the momentum of the quark is

q − k; the longitudinal fraction of the gluon momentum is denoted by βx. Thus, the real

contribution has the form [11–13, 37]

V (R)
q (!q ) =

1

(4π)ε

∫ 1

0
dx

∑

a=q,q̄

fa(x)

∫
dD−2!k

π1+ε

∫ 1

β0

dβ Pgq(ε, β)

× !q 2

!k 2(!q − !k)2(!k − β!q )2

{
CF β2(!q − !k)2 + CA(1 − β)!k · (!k − β!q )

}

×S
(3)
J

(
!q − !k,!k, xβ; x

)
, (3.3)

where

β0 =
!k 2

sΛ
, Pgq(ε, β) =

1 + (1 − β)2 + εβ2

β
.

The low limit in the β-integration appears due to the restriction on the invariant mass of

intermediate state, which enters the definition (2.10) of NLO impact factor. Since

M2
qg =

!k2

β
+

(!q − !k)2

1 − β
− !q 2 , M2

qg ≤ sΛ ,

– 10 –

Figure 3.2: Schematic representation of the jet vertex for the case of quark in the
initial state. Here p1 is the proton momentum, x is the fraction of proton
momentum carried by the quark, xJp1 is the longitudinal jet momentum,
~kJ is the transverse jet momentum and ~q is the transverse momentum of
the incoming Reggeized gluon.

3.4 NLA jet impact factor: the quark contribu-
tion

We start with the case of incoming quark (see Fig. 3.2).

3.4.1 Virtual correction

Virtual corrections are the same as in the case of the inclusive quark impact
factor [60, 61]:

V (V )
q (~q ) = −Γ[1− ε]

ε (4π)ε
Γ2(1 + ε)

Γ(1 + 2ε)

(
~q 2
)ε
∫ 1

0

dx
∑

a=q,q̄

fa(x)S
(2)
J (~q ;x)

×
{
CF

(
2

ε
− 4

1 + 2ε
+ 1

)
−NF

1 + ε

(1 + 2ε)(3 + 2ε)
+ CA

(
ln
s0

~q 2
+ ψ(1− ε)

−2ψ(ε) + ψ(1) +
1

4(1 + 2ε)(3 + 2ε)
− 2

ε(1 + 2ε)
− 7

4(1 + 2ε)
− 1

2

)}
. (3.38)

Here and in what follows we put the arbitrary scale of dimensional regularization
equal to unity, µ = 1. We expand (3.38) in ε and get

V (V )
q (~q ) = −Γ[1− ε]

ε (4π)ε
Γ2(1 + ε)

Γ(1 + 2ε)

(
~q 2
)ε
∫ 1

0

dx
∑

a=q,q̄

fa(x)S
(2)
J (~q ;x)

×
[
CF

(
2

ε
− 3

)
− NF

3
+ CA

(
ln
s0

~q 2
+

11

6

)
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+ ε

{
8CF +

5NF

9
− CA

(
85

18
+
π2

2

)}]
+O(ε) . (3.39)

3.4.2 Real corrections

For the incoming quark case, real corrections originate from the quark-gluon
intermediate state. We denote the momentum of the gluon by k, then the mo-
mentum of the quark is q−k; the longitudinal fraction of the gluon momentum
is denoted by βx. Thus, the real contribution has the form [60, 61, 93]

V (R)
q (~q ) =

1

(4π)ε

∫ 1

0

dx
∑

a=q,q̄

fa(x)

∫
dD−2k

π1+ε

∫ 1

β0

dβ Pgq(ε, β)

× ~q 2

~k 2(~q − ~k)2(~k − β~q )2

{
CFβ

2(~q − ~k)2 + CA(1− β)~k · (~k − β~q )
}

× S
(3)
J

(
~q − ~k,~k, xβ;x

)
, (3.40)

where

β0 =
~k 2

sΛ

, Pgq(ε, β) =
1 + (1− β)2 + εβ2

β
.

The low limit in the β-integration appears due to the restriction on the invariant
mass of intermediate state, which enters the definition (3.8) of NLO impact
factor. Since

M2
qg =

~k2

β
+

(~q − ~k)2

1− β − ~q 2 , M2
qg ≤ sΛ ,

and assuming sΛ →∞, we obtain that β ≥ β0.
We consider separately the term proportional to CF and to CA.

The CF -term is not singular for β → 0, therefore the limit sΛ →∞, or β0 → 0,
can be safely taken. We get

V (R)(CF )
q (~q ) =

CF
(4π)ε

∫ 1

0

dx
∑

a=q,q̄

fa(x)

∫
dD−2k

π1+ε

∫ 1

0

dβ Pgq(ε, β)

× ~q 2β2

~k 2(~k − β~q )2
S

(3)
J

(
~q − ~k,~k, xβ;x

)
. (3.41)

In order to isolate all divergences, it is convenient to perform the change of
variable ~k = β~l and to present the integral in the form
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V (R)(CF )
q (~q ) =

CF
(4π)ε

∫ 1

0

dx
∑

a=q,q̄

fa(x)

∫ 1

0

dβ Pgq(ε, β)β2ε (3.42)

×
∫
dD−2l

π1+ε

~q 2

~l 2 + (~l − ~q )2

[
1

(~l − ~q )2
+

1

~l 2

]
S

(3)
J

(
~q − β~l, β~l, xβ;x

)
.

The soft divergence appears for β → 0; in this region we can introduce the
counterterm

V (R)(CF ,soft)
q (~q ) =

CF
(4π)ε

∫ 1

0

dx
∑

a=q,q̄

fa(x)

∫ 1

0

dβ
2

β1−2ε
(3.43)

×
∫
dD−2l

π1+ε

~q 2

~l 2 + (~l − ~q )2

[
1

(~l − ~q )2
+

1

~l 2

]
S

(2)
J (~q;x) ,

which equals (see Eq. (A.1))

V (R)(CF ,soft)
q (~q ) =

2CF
ε

Γ[1− ε]
ε (4π)ε

Γ2(1 + ε)

Γ(1 + 2ε)

(
~q 2
)ε
∫ 1

0

dx
∑

a=q,q̄

fa(x)S
(2)
J (~q ;x) .

(3.44)
Collinear divergences arise for ~l − ~q = 0 and for ~l = 0; in these regions we can
isolate the two following counterterms:

V (R)(CF ,coll1)
q (~q ) =

CF
(4π)ε

∫
dD−2l

π1+ε(~l − ~q )2
Θ(Λ2 − (~l − ~q )2) (3.45)

×
∫ 1

0

dββ2ε

[
Pgq(ε, β)− 2

β

] ∫ 1

0

dx
∑

a=q,q̄

fa(x)S
(2)
J (~q ;x) ,

V (R)(CF ,coll2)
q (~q ) =

CF
(4π)ε

∫
dD−2l

π1+ε~l 2
Θ(Λ2 −~l 2)

∫ 1

0

dx
∑

a=q,q̄

fa(x) (3.46)

×
∫ 1

0

dβ β2ε

[
S

(2)
J (~q ;x(1− β))Pgq(ε, β)− 2

β
S

(2)
J (~q ;x)

]
,

where we made use of the Eq. (3.19) for the Eq. (3.45) and Eq. (3.20) for (3.46).
In both these expressions we have introduced an arbitrary cutoff parameter Λ

and subtracted the soft divergence. After a simple calculation we obtain (see
Eq. (A.2))
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V (R)(CF ,coll1)
q (~q ) =

Γ[1− ε]
ε (4π)ε

Γ2(1 + ε)

Γ(1 + 2ε)

(
Λ2
)ε
∫ 1

0

dx
∑

a=q,q̄

fa(x)S
(2)
J (~q ;x)

× CF

[
−3

2
+ 4ε

]
+O(ε) . (3.47)

The term V
(R)(CF ,coll2)
q can be rewritten in the following form:

V (R)(CF ,coll2)(~q ) = (3.48)
Γ[1− ε]
ε (4π)ε

Γ2(1 + ε)

Γ(1 + 2ε)

(
Λ2
)ε
∫ 1

0

dx
∑

a=q,q̄

fa(x)

{
−3

2
CFS

(2)
J (~q ;x)

+

∫ 1

0

dβ

[
Pqq(β) + 2ε(1 + β2)

(
ln(1− β)

1− β

)

+

CF + εCF (1− β)

]

× S(2)
J (~q ;xβ)

}
+O(ε) , (3.49)

where we performed the change of variable β → 1−β, used the plus-prescription
(3.30) and the expansion

(1− β)2ε−1 =
1

2ε
δ(1− β) +

1

(1− β)+

+ 2ε

(
ln(1− β)

1− β

)

+

+O(ε2) .

Finally, we can define the term

V (R)(CF ,finite)
q = V (R)(CF )

q − V (R)(CF ,soft)
q − V (R)(CF ,coll1)

q − V (R)(CF ,coll2)
q , (3.50)

which can be calculated at ε = 0. We remark that V (R)(CF ,finite)
q and V (R)(CF ,cool1,2)

q

depend on the cutoff Λ, but in the total expression V
(R)(CF )
q this dependence

disappears.

The part proportional to CA in the r.h.s. of Eq. (3.40) reads

V (R)(CA)
q (~q ) =

1

(4π)ε

∫ 1

0

dx
∑

a=q,q̄

fa(x)

∫
dD−2k

π1+ε

∫ 1

β0

dβ Pgq(ε, β)

× ~q 2CA
(1− β)~k · (~k − β~q )

~k 2(~q − ~k)2(~k − β~q )2
S

(3)
J

(
~q − ~k,~k, xβ;x

)
.

(3.51)
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The collinear singularity appears at ~k− ~q → 0; in this region we can introduce
the counterterm and making use of Eq. (3.21) we have

V (R)(CA,coll)
q (~q ) =

CA
(4π)ε

∫
dD−2k

π1+ε(~q − ~k)2
Θ
(

Λ2 − (~k − ~q )2
)

(3.52)

×
∫ 1

0

dx
∑

a=q,q̄

fa(x)

∫ 1

0

dβ Pgq(ε, β)S
(2)
J (~q ;xβ) ,

where β0 has been set equal to zero since the expression is finite in the β → 0

limit and, again, the cutoff Λ was introduced.
Making use of Eq. (A.2) we found

V (R)(CA,coll)
q (~q ) =

Γ[1− ε]
ε (4π)ε

Γ2(1 + ε)

Γ(1 + 2ε)

(
Λ2
)ε
∫ 1

0

dx
∑

a=q,q̄

fa(x) (3.53)

×
∫ 1

0

dβ

[
CA
CF

Pgq(β) + εCA β

]
S

(2)
J (~q ;xβ) +O(ε) .

Another singularity appears when β → 0, actually at any value of gluon trans-
verse momentum ~k. In this region S(3)

J

(
~q − ~k,~k, xβ;x

)
→ S

(2)
J

(
~q − ~k;x

)
and

it is convenient to introduce the counterterm

V (R)(CA,soft)
q (~q ) =

CA
(4π)ε

∫ 1

0

dx
∑

a=q,q̄

fa(x)

∫
dD−2k

π1+ε

∫ 1

β0

dβ
2

β

× ~q 2 (1− β)~k · (~k − β~q )

~k 2(~q − ~k)2(~k − β~q )2
S

(2)
J

(
~q − ~k;x

)

=
CA

(4π)ε

∫ 1

0

dx
∑

a=q,q̄

fa(x)

∫
dD−2k

π1+ε

∫ 1

β0

dβ
2

β

× ~q 2Θ[(1− β)|~k| − β|~q − ~k|]
~k2(~q − ~k)2

S
(2)
J

(
~q − ~k;x

)
, (3.54)

where the averaging over the relative angle between the vectors ~k and ~q − ~k
has been performed (see Eq. (A.3)). The integration over β gives the following
result for the counterterm:

V (R)(CA,soft)
q (~q ) =

CA
(4π)ε

∫ 1

0

dx
∑

a=q,q̄

fa(x)

∫
dD−2k

π1+ε

~q 2

~k2(~q − ~k)2

× ln
s2

Λ

~k2(|~k|+ |~q − ~k|)2
S

(2)
J

(
~q − ~k;x

)
. (3.55)
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The finite part of the real corrections proportional to CA is therefore defined by

V (R)(CA,finite)
q = V (R)(CA)

q − V (R)(CA,coll)
q − V (R)(CA,soft)

q . (3.56)

When the quark part of BFKL counterterm, given in (3.35),

V (C)
q (~q ) = − CA

(4π)ε

∫ 1

0

dx
∑

a=q,q̄

fa(x)

∫
dD−2k

π1+ε
ln

(
s2

Λ

s0
~k2

)
(3.57)

× ~q 2

~k 2(~q − ~k)2
S

(2)
J

(
~q − ~k ; x

)
,

is combined with V (R)(CA,soft)
q given in (3.55), we see that the dependence on sΛ

disappears, as expected, and we get

V (R)(CA,soft)
q (~q ) + V (C)

q (~q ) =
CA

(4π)ε

∫ 1

0

dx
∑

a=q,q̄

fa(x) (3.58)

×
∫
dD−2k

π1+ε

~q 2

~k 2(~k − ~q )2
ln

(
s0

(|~k|+ |~q − ~k|)2

)
S

(2)
J (~q − ~k;x) .

3.4.3 Final result for the quark in the initial state

We collect first the contributions given in (3.39), (3.44), (3.47), (3.48) and
(3.53):

V (1)
q (~q ) ≡

(
V (V )
q + V (R)(CF ,soft)

q + V (R)(CF ,coll1)
q + V (R)(CF ,coll2)

q + V (R)(CA,coll)
q

)
(~q )

=
Γ[1− ε]
ε (4π)ε

Γ2(1 + ε)

Γ(1 + 2ε)

∫ 1

0

dx
∑

a=q,q̄

fa(x) (3.59)

×
{[(

~q 2
)ε
(
NF

3
− CA ln

(
s0

~q 2

)
− 11CA

6

)
+ ε

(
CA

(
85

18
+
π2

2

)

− 5

9
NF + CF

(
3 ln

~q 2

Λ2
− 4

))]
S

(2)
J (~q ;x)

+
(
Λ2
)ε
∫ 1

0

dβ

[
Pqq(β) +

CA
CF

Pgq(β)

]
S

(2)
J (~q ;xβ) + ε

∫ 1

0

dβ
[
2(1 + β2)

×
(

ln(1− β)

1− β

)

+

CF + CF (1− β) + CAβ

]
S

(2)
J (~q ;xβ)

}
+O(ε) .
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Then, we collect the finite contributions, given in Eqs. (3.50) and (3.56), trans-
forming them to the form used in [72]:

V (2)
q (~q ) ≡

(
V (R)(CF ,finite)
q + V (R)(CA,finite)

q

)
(~q )

=

∫ 1

0

dx
∑

a=q,q̄

fa(x)

[
CF

∫ 1

0

dβ
1

(1− β)+

(1 + β2)

∫
d2l

π~l 2

[
~q 2

~l2 + (~q −~l)2

×
{
S

(3)
J (~q − (1− β)~l, (1− β)~l, x(1− β);x)

+S
(3)
J (~qβ + (1− β)~l, (1− β)(~q −~l), x(1− β);x)

}

−Θ(Λ2 −~l 2)
{
S

(2)
J (~q ;xβ) + S

(2)
J (~q ;x)

}]

+ CA

∫
d2k

π~k2

∫ 1

0

dβ

{
1 + (1− β)2

β
(3.60)

×
[
~q 2(1− β)(~q − ~k) · (~q(1− β)− ~k)

(~q − ~k)2(~q(1− β)− ~k)2
S

(3)
J (~k, ~q − ~k, xβ;x)

−Θ(Λ2 − ~k2)S
(2)
J (~q ;xβ)

]
− 2 ~q 2Θ[(1− β)|~q − ~k| − β|~k|]

β(~q − ~k)2
S

(2)
J (~k;x)

}]
+O(ε) .

Besides, we define

V (3)
q (~q ) ≡

(
V (R)(CA,soft)
q + V (C)

q

)
(~q ) ,

given in Eq. (3.58).

Another contribution originates from the collinear and charge renormalization
counterterms, see Eqs. (3.32) and (3.34),

V (4)
q (~q ) =

Γ[1− ε]
ε (4π)ε

∫ 1

0

dx
∑

a=q,q̄

fa(x)

[(
µ2
R

)ε
(

11CA
6
− NF

3

)
S

(2)
J (~q ;x)

−
(
µ2
F

)ε
∫ 1

0

dβ

[
Pqq(β) +

CA
CF

Pgq(β)

]
S

(2)
J (~q ;xβ)

]
. (3.61)

Finally, the quark part of the jet impact factor is given by the sum of the above
four contributions and can be presented as the sum of two terms:
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Figure 3. Schematic representation of the jet vertex for the case of gluon in the initial state. Here

p1 is the proton momentum, x is the fraction of proton momentum carried by the gluon, xJp1 is the

longitudinal jet momentum, !kJ is the transverse jet momentum and !q is the transverse momentum

of the incoming Reggeized gluon.

Another contribution originates from the collinear and charge renormalization coun-

terterms, see eqs. (2.30) and (2.32),

V (4)
q (!q ) =

Γ[1 − ε]

ε (4π)ε

∫ 1

0
dx

∑

a=q,q̄

fa(x)

[(
µ2

R

)ε
(

11CA

6
− NF

3

)
S

(2)
J (!q ; x)

−
(
µ2

F

)ε
∫ 1

0
dβ

[
Pqq(β) +

CA

CF
Pgq(β)

]
S

(2)
J (!q ; xβ)

]
. (3.22)

Finally, the quark part of the jet impact factor is given by the sum of the above four

contributions and can be presented as the sum of two terms:

V (I)
q (!q ) =

∫ 1

0
dx

∑

a=q,q̄

fa(x)

[
CA

(4π)ε

∫
dD−2!k

π1+ε

!q 2

!k 2(!k − !q )2
ln

s0

(|!k| + |!q − !k|)2
S

(2)
J (!k; x)

−CA ln

(
s0

!q 2

) (
!q 2

)ε Γ[1 − ε]

ε (4π)ε

Γ2(1 + ε)

Γ(1 + 2ε)
S

(2)
J (!q ; x)

]
. (3.23)

and

V (II)
q (!q ) = V (2)

q (!q ) +

∫ 1

0
dx

∑

a=q,q̄

fa(x) (3.24)

×
{[(

NF

3
− 11CA

6

)
ln

!q 2

µ2
R

+CA

(
85

18
+

π2

2

)
− 5

9
NF +CF

(
3 ln

!q 2

Λ2
−4

)]
S

(2)
J (!q ; x)

+

∫ 1

0
dβ

[
Pqq(β) +

CA

CF
Pgq(β)

]
ln

Λ2

µ2
F

S
(2)
J (!q ; xβ)

+

∫ 1

0
dβ

[
2

(
ln(1 − β)

1 − β

)

+

(1 + β2) CF + CF (1 − β) + CAβ

]
S

(2)
J (!q ; xβ)

}
.

4 NLA jet impact factor: the gluon contribution

We consider now the case of incoming gluon (see figure 3).
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Figure 3.3: Schematic representation of the jet vertex for the case of gluon in the
initial state. Here p1 is the proton momentum, x is the fraction of proton
momentum carried by the gluon, xJp1 is the longitudinal jet momentum,
~kJ is the transverse jet momentum and ~q is the transverse momentum of
the incoming Reggeized gluon.

V (I)
q (~q ) =

∫ 1

0

dx
∑

a=q,q̄

fa(x)

[
CA

(4π)ε

∫
dD−2k

π1+ε

~q 2

~k 2(~k − ~q )2
ln

s0

(|~k|+ |~q − ~k|)2

×S(2)
J (~k;x)− CA ln

(
s0

~q 2

)(
~q 2
)ε Γ[1− ε]

ε (4π)ε
Γ2(1 + ε)

Γ(1 + 2ε)
S

(2)
J (~q ;x)

]
(3.62)

and

V (II)
q (~q ) = V (2)

q (~q ) +

∫ 1

0

dx
∑

a=q,q̄

fa(x) (3.63)

×
{[(

NF

3
− 11CA

6

)
ln
~q 2

µ2
R

+ CA

(
85

18
+
π2

2

)
− 5

9
NF + CF

(
3 ln

~q 2

Λ2
− 4

)]

×S(2)
J (~q ;x) +

∫ 1

0

dβ

[
Pqq(β) +

CA
CF

Pgq(β)

]
ln

Λ2

µ2
F

S
(2)
J (~q ;xβ)

+

∫ 1

0

dβ

[
2

(
ln(1− β)

1− β

)

+

(1 + β2)CF + CF (1− β) + CAβ

]
S

(2)
J (~q ;xβ)

}
.

3.5 NLA jet impact factor: the gluon contribu-
tion

We consider now the case of incoming gluon (see Fig. 3.3).
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3.5.1 Virtual corrections

Virtual corrections are the same as in the case of the inclusive gluon impact
factor [59, 93]:

V (V )
g (~q) = −Γ[1− ε]

ε (4π)ε
Γ2(1 + ε)

Γ(1 + 2ε)

(
~q 2
)ε
∫ 1

0

dx
CA
CF

fg(x)S
(2)
J (~q ;x) (3.64)

×
[
CA ln

(
s0

~q 2

)
+ CA

(
2

ε
− 11 + 9ε

2(1 + 2ε)(3 + 2ε)

+
NF

CA

(1 + ε)(2 + ε)− 1

(1 + ε)(1 + 2ε)(3 + 2ε)
+ ψ(1) + ψ(1− ε)− 2ψ(1 + ε)

)

+ CA
ε

(1 + ε)(1 + 2ε)(3 + 2ε)

(
1 + ε− NF

CA

)
1

(1 + ε)

]
.

The ε-expansion has the form

V (V )
g (~q) = −Γ[1− ε]

ε (4π)ε
Γ2(1 + ε)

Γ(1 + 2ε)

(
~q 2
)ε
∫ 1

0

dx
CA
CF

fg(x)S
(2)
J (~q ;x)

×
[
CA

(
ln

(
s0

~q 2

)
+

2

ε
− 11

6

)
+
NF

3

+ ε

{
CA

(
67

18
− π2

2

)
− 5

9
NF

}]
+O(ε) . (3.65)

3.5.2 Real corrections: qq̄ intermediate state

In the NLO gluon impact factor real corrections come from intermediate
states of two particles, which can be quark-antiquark or gluon-gluon.
The real contribution from the quark-antiquark case is [59, 61, 93]:

V (Rqq̄)
g (~q ) =

NF

(4π)ε

∫ 1

0

dx
CA
CF

fg(x)

∫ 1

0

dβ

∫
dD−2k

π1+ε

~q 2

~k 2(~k − ~q )2
(3.66)

× TR Pqg(ε, β)

[
CF
CA

+
β(1− β)~k · (~q − ~k)

(~k − β~q )2

]
S

(3)
J (~q − ~k,~k, xβ;x) ,

with
Pqg(ε, β) = 1− 2β(1− β)

1 + ε
. (3.67)

Below we discuss separately the first and the second contributions in the r.h.s.
of Eq. (3.66), which we denote V (Rqq̄)(CF )

g and V (Rqq̄)(CA)
g .

The first contribution is
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V (Rqq̄)(CF )
g (~q ) =

NF

(4π)ε

∫ 1

0

dx
CA
CF

fg(x)

∫ 1

0

dβ

∫
dD−2k

π1+ε

~q 2

~k 2(~k − ~q )2

× TR Pqg(ε, β)
CF
CA

S
(3)
J (~q − ~k,~k, xβ;x) (3.68)

=
NF

(4π)ε

∫ 1

0

dx fg(x)

∫ 1

0

dβ TR Pqg(ε, β)

∫
dD−2k

π1+ε

× ~q 2

~k2 + (~q − ~k)2

[
1

~k2
+

1

(~q − ~k)2

]
S

(3)
J (~q − ~k,~k, xβ;x) .

Here we have collinear divergences for ~k = 0 and ~q − ~k = 0. The contribution
in these kinematical regions is the same, as can be easily seen after the changes
of variables ~k → ~q − ~k and β → 1 − β, since Pqg(ε, β) = Pqg(ε, 1 − β) and
taking into account the property (3.22) that the S(3)

J jet selection function has
to possess. Therefore we can write

V (Rqq̄)(CF )
g (~q ) =

2NF

(4π)ε

∫ 1

0

dx fg(x)

∫ 1

0

dβ TR Pqg(ε, β)

×
∫

dD−2k

π1+ε ~k2

~q 2

~k2 + (~q − ~k)2
S

(3)
J (~k, ~q − ~k, xβ;x) (3.69)

and isolate the collinearly divergent part given by

V (Rqq̄)(CF ,coll)
g (~q ) =

2NF

(4π)ε

∫ 1

0

dx fg(x)

∫ 1

0

dβ TR Pqg(ε, β) (3.70)

×
∫

dD−2k

π1+ε ~k2
Θ(Λ2 − ~k2) S

(2)
J (~q;xβ)

(3.71)

where we have introduced, as before, the cutoff parameter Λ and we made use
of Eq. (3.21). After a simple calculation we obtain (see Eq. (A.2))

V (Rqq̄)(CF ,coll)
g (~q ) = 2NF

Γ[1− ε]
ε (4π)ε

Γ2(1 + ε)

Γ(1 + 2ε)

(
Λ2
)ε
∫ 1

0

dx fg(x) (3.72)

×
∫ 1

0

dβ [Pqg(β) + εβ(1− β)] S
(2)
J (~q;xβ) +O(ε) ,

The finite part is therefore defined by

V (Rqq̄)(CF ,finite)
g = V (Rqq̄)(CF )

g − V (Rqq̄)(CF ,coll)
g , (3.73)
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where one can take ε→ 0 limit and get

V (Rqq̄)(CF ,finite)
g = 2NF

∫ 1

0

dx fg(x)

∫ 1

0

dβ Pqg(β) (3.74)

×
∫

d2~k

π~k2

[
~q 2

~k2 + (~q − ~k)2
S

(3)
J (~k, ~q − ~k, xβ;x)−Θ(Λ2 − ~k2) S

(2)
J (~q;xβ)

]
+O(ε) .

The second contribution in (3.66) is

V (Rqq̄)(CA)
g (~q ) =

NF

(4π)ε

∫ 1

0

dx
CA
CF

fg(x)

∫ 1

0

dβ

∫
dD−2k

π1+ε

~q 2

~k 2(~q − ~k)2

× TR Pqg(ε, β)
β(1− β)~k · (~q − ~k)

(~k − β~q )2
S

(3)
J (~q − ~k,~k, xβ;x) . (3.75)

Here the collinear divergence appears for ~k − β~q = 0 and the integral in this
region, using the Eq. (3.19), can be identified with (see Eq. (A.2))

V (Rqq̄)(CA,coll)
g (~q ) =

NF

(4π)ε

∫ 1

0

dx
CA
CF

fg(x)

∫ 1

0

dβ TR Pqg(ε, β) (3.76)

×
∫

dD−2k

π1+ε(~k − β~q )2
Θ(Λ2 − (~k − β~q )2)S

(2)
J (~q ;x)

= NF
Γ[1− ε]
ε (4π)ε

Γ2(1 + ε)

Γ(1 + 2ε)

(
Λ2
)ε
(

1

3
+
ε

6

)

×
∫ 1

0

dx
CA
CF

fg(x)S
(2)
J (~q ;x) +O(ε) .

Then, the finite part can be written as

V (Rqq̄)(CA,finite)
g = V (Rqq̄)(CA)

g − V (Rqq̄)(CA,coll)
g . (3.77)

After the change of variable ~k → ~q − ~k in (3.75) and (3.76) we have

V (Rqq̄)(CA,finite)
g (~q ) = NF

∫ 1

0

dx
CA
CF

fg(x)

∫ 1

0

dβ Pqg(β) (3.78)

×
∫

d2~k

π (~k − (1− β)~q )2

[
~q 2β(1− β)~k · (~q − ~k)

~k 2(~k − ~q )2
S

(3)
J (~k, ~q − ~k, xβ;x)

−Θ(Λ2 − (~k − (1− β)~q )2)S
(2)
J (~q ;x)

]
+O(ε) .
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3.5.3 Real corrections: gg intermediate state

The real contribution from the gluon-gluon case is [59, 61, 93]:

V (Rgg)
g (~q ) =

CA
(4π)ε

∫ 1

0

dx
CA
CF

fg(x)

∫
dD−2k

π1+ε

∫ 1−β0

β0

dβ
~q 2 Pgg(β)

(~k − β~q )2~k2(~k − ~q)2

×
{
β2(~k − ~q )2 + (1− β)2~k2 − β(1− β)~k · (~q − ~k)

}

× S
(3)
J (~q − ~k,~k, xβ;x) . (3.79)

where

Pgg(β) = P (β) + P (1− β) , with P (β) =

(
1

β
+
β

2

)
(1− β) .

We note that here the lower integration limit in β is β0 = ~k 2/sΛ, whereas the
upper limit is 1 − β0. This comes from the Θ function in the impact factor
definition (3.8), which restricts the radiation of either of the two gluons into
the central region of rapidity.
Using the symmetry of the integrand under the change of variables describing
the two gluons, β → 1 − β and ~k → ~q − ~k (thanks to the symmetry prop-
erty (3.22) of the jet function), we get

V (Rgg)
g (~q ) = 2

CA
(4π)ε

∫ 1

0

dx
CA
CF

fg(x)

∫
dD−2k

π1+ε

∫ 1−β0

β0

dβ P (β) (3.80)

× ~q 2

(~k − β~q )2~k2(~k − ~q )2

{
β2(~k − ~q )2 + (1− β)~k · (~k − β~q )

}

× S
(3)
J (~q − ~k,~k, xβ;x) ≡ V (Rgg)(A)

g (~q ) + V (Rgg)(B)
g (~q ) .

In this form the upper limit of β integration can be put to unity.

In V
(Rgg)(A)
g the lower integration limit β0 can be put equal to zero. Then,

after the change of variable ~k = β~l, we obtain

V (Rgg)(A)
g (~q ) = 2

CA
(4π)ε

∫ 1

0

dx
CA
CF

fg(x)

∫ 1

0

dβP (β)β2ε

∫
dD−2l

π1+ε

× ~q 2

~l 2(~l − ~q)2
S

(3)
J (~q − β~l, β~l, xβ;x) (3.81)
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= 2
CA

(4π)ε

∫ 1

0

dx
CA
CF

fg(x)

∫ 1

0

dβP (β)β2ε

∫
dD−2l

π1+ε

× ~q 2

~l 2 + (~l − ~q )2

[
1

~l 2
+

1

(~l − ~q )2

]
S

(3)
J (~q − β~l, β~l, xβ;x) .

In this expression one has both soft and collinear divergences. The soft diver-
gence can be isolated in the counterterm

V (Rgg)(A,soft)
g (~q ) = 2

CA
(4π)ε

∫ 1

0

dx
CA
CF

fg(x)

∫ 1

0

dβ

β1−2ε

∫
dD−2l

π1+ε

~q 2

~l 2 + (~l − ~q )2

×
[

1

(~l − ~q )2
+

1

~l 2

]
S

(2)
J (~q ;x) , (3.82)

which equals (see Eq. (A.1))

V (Rgg)(A,soft)
g (~q ) =

Γ[1− ε]
ε (4π)ε

Γ2(1 + ε)

Γ(1 + 2ε)

(
~q 2
)ε 2CA

ε

∫ 1

0

dx
CA
CF

fg(x)S
(2)
J (~q ;x) .

(3.83)

After the subtraction of the soft divergence, collinear divergences still appear
for ~l − ~q = 0 and ~l = 0 and can be isolated by the following two counterterms:

V (Rgg)(A,coll1)
g (~q ) = 2

CA
(4π)ε

∫ 1

0

dx
CA
CF

fg(x)

∫
dD−2l

π1+ε(~q −~l)2
Θ
(

Λ2 − (~q −~l)2
)

×
∫ 1

0

dββ2ε

(
P (β)− 1

β

)
S

(2)
J (~q ;x) (3.84)

and

V (Rgg)(A,coll2)
g (~q ) = 2

CA
(4π)ε

∫ 1

0

dx
CA
CF

fg(x)

∫
dD−2l

π1+ε~l 2
Θ
(

Λ2 −~l 2
)

(3.85)

×
∫ 1

0

dβ β2ε

(
P (β)S

(2)
J (~q ;x(1− β))− 1

β
S

(2)
J (~q ;x)

)
,

where we made use of Eq. (3.19) for the first case and Eq. (3.20) for the second
case. These counterterms equal (see Eq. (A.2))

V (Rgg)(A,coll1)
g (~q ) =

Γ[1− ε]
ε (4π)ε

Γ2(1 + ε)

Γ(1 + 2ε)

(
Λ2
)ε
∫ 1

0

dx
CA
CF

fg(x)S
(2)
J (~q ;x)

× CA

(
−11

6
+ ε

67

18

)
+O(ε) , (3.86)
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V (Rgg)(A,coll2)
g (~q ) =

Γ[1− ε]
ε (4π)ε

Γ2(1 + ε)

Γ(1 + 2ε)

(
Λ2
)ε
∫ 1

0

dx
CA
CF

fg(x)

×
∫ 1

0

dβ(1− β)P (1− β)2CA

[
1

(1− β)+

+ 2ε

(
ln(1− β)

1− β

)

+

]
S

(2)
J (~q ;xβ) +O(ε) , (3.87)

where to obtain the last equation we made the change of variable β → 1 − β
and expanded the term (1− β)2ε−1. The finite part is therefore defined by

V (Rgg)(A,finite)
g = V (Rgg)(A)

g − V (Rgg)(A,soft)
g − V (Rgg)(A,coll1)

g − V (Rgg)(A,coll2)
g . (3.88)

The V (Rgg)(B)
g term, defined in (3.80), has a collinear divergence for ~k − ~q = 0.

It can be isolated in the following integral:

V (Rgg)(B,coll)
g (~q ) = 2

CA
(4π)ε

∫ 1

0

dx
CA
CF

fg(x)

∫ 1

0

dβP (β) (3.89)

×
∫

dD−2k

π1+ε(~k − ~q )2
Θ
(

Λ2 − (~k − ~q )2
)
S

(2)
J (~q ;xβ) ,

=
Γ[1− ε]
ε (4π)ε

Γ2(1 + ε)

Γ(1 + 2ε)

(
Λ2
)ε
∫ 1

0

dx
CA
CF

fg(x)

×
∫ 1

0

dβ 2CA P (β)S
(2)
J (~q ;xβ) +O(ε) ,

where β0 has been put equal to zero thanks to the property of lowest order jet
function (3.12) and the Eq. (3.21) and (A.2) are used.

Another singularity appears when β → 0; in this region we can isolate the
term

V (Rgg)(B,soft)
g (~q ) (3.90)

= 2
CA

(4π)ε

∫ 1

0

dx
CA
CF

fg(x)

∫
dD−2k

π1+ε

∫ 1

β0

dβ

β

~q 2 (1− β)~k · (~k − β~q )

~k 2(~q − ~k)2(~k − β~q )2
S

(2)
J (~q − ~k;x)
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= 2
CA

(4π)ε

∫ 1

0

dx
CA
CF

fg(x)

∫
dD−2k

π1+ε

∫ 1

β0

dβ

β

~q 2Θ[(1− β)|~k| − β|~q − ~k|]
~k2(~k − ~q )2

× S
(2)
J (~q − ~k;x)

= 2
CA

(4π)ε

∫ 1

0

dx
CA
CF

fg(x)

∫
dD−2k

π1+ε

∫ 1

β0

dβ

β

~q 2Θ[(1− β)|~k| − β|~q − ~k|]
~k2(~k − ~q )2

× S
(2)
J (~q − ~k;x)

=
CA

(4π)ε

∫ 1

0

dx
CA
CF

fg(x)

∫
dD−2k

π1+ε

~q 2

~k2(~k − ~q )2
ln

s2
Λ

~k2(|~k|+ |~q − ~k|)2

× S
(2)
J (~q − ~k;x) ,

where we made use of (A.3).
The finite part of V (Rgg)(B)

g is therefore defined by

V (Rgg)(B,finite)
g = V (Rgg)(B)

g − V (Rgg)(B,coll)
g − V (Rgg)(B,soft)

g . (3.91)

When the gluon part of BFKL counterterm, given in (3.35), is combined with
V

(Rgg)(B,soft)
q , given in (3.90), we see that the dependence on sΛ disappears and

we obtain

V (Rgg)(B,soft)
g (~q ) + V (C)

g (~q ) =
CA

(4π)ε

∫ 1

0

dx
CA
CF

fg(x) (3.92)

×
∫
dD−2k

π1+ε

~q 2

~k2(~k − ~q )2
ln

s0

(|~k|+ |~q − ~k|)2
S

(2)
J (~q − ~k;x) .

3.5.4 Final result for the gluon in the initial state

We collect first the contributions which contain singularities given in (3.65),
(3.70), (3.76), (3.83), (3.86), (3.87) and (3.89) and get

V (1)
g (~q ) ≡

(
V (V )
g + V (Rqq̄)(CF ,coll)

g + V (Rqq̄)(CA,coll)
g + V (Rgg)(A,soft)

g

+ V (Rgg)(A,coll1)
g + V (Rgg)(A,coll2)

g + V (Rgg)(B,coll)
g

)
(~q ) (3.93)
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=
Γ[1− ε]
ε (4π)ε

Γ2(1 + ε)

Γ(1 + 2ε)

∫ 1

0

dx
CA
CF

fg(x)

{[(
~q 2
)ε
(

11CA
6
− NF

3

− CA ln

(
s0

~q 2

))
− 2

(
Λ2
)ε
(

11CA
6
− NF

3

)
+ ε

(
π2CA

2
+

13NF

18

)]

× S
(2)
J (~q ;x) +

(
Λ2
)ε
∫ 1

0

dβ

(
Pgg(β) + 2NF

CF
CA

Pqg(β)

)
S

(2)
J (~q ;xβ)

+ 2ε

∫ 1

0

dβ

[
NF

CF
CA

(1− β)β + 2CA

(
ln(1− β)

1− β

)

+

(1− β)P (1− β)

]

× S
(2)
J (~q ;xβ)

}
+O(ε) .

Then, we collect the contributions given in (3.74), (3.78), (3.88), (3.91), and get
(transforming to the form used in [73])

V (2)
g (~q ) ≡

(
V (Rqq̄)(CF ,finite)
g + V (Rqq̄)(CA,finite)

g + V (Rgg)(A,finite)
g (3.94)

+ V (Rgg)(B,finite)
g

)
(~q )

=

∫ 1

0

dxfg(x)

∫ 1

0

dβ

[
2NF Pqg(β)

∫
d2k

π~k2

{
~q 2

~k2 + (~q − ~k)2

×S(3)
J (~k, ~q − ~k, xβ;x)−Θ(Λ2 − ~k2)S

(2)
J (~q ;xβ)

}
+ NF

CA
CF

Pqg(β)

×
∫

d2k

π(~k − (1− β)~q )2

{
~q 2β(1− β)~k · (~q − ~k)

~k2(~k − ~q )2
S

(3)
J (~k, ~q − ~k, xβ;x)

−Θ(Λ2 − (~k − (1− β)~q )2)S
(2)
J (~q ;x)

}]
+

∫ 1

0

dx 2CA
CA
CF

fg(x)

×
[∫ 1

0

dβ

(1− β)+

[(1− β)P (1− β)]

∫
d2l

π~l2

×
{

~q 2

~l2 + (~l − ~q )2

(
S

(3)
J (~q − (1− β)~l, (1− β)~l, x(1− β);x)

+S
(3)
J (β~q + (1− β)~l, (1− β)(~q −~l ), x(1− β);x)

)

−Θ
(

Λ2 −~l 2
)(

S
(2)
J (~q ;xβ) + S

(2)
J (~q ;x)

)}
+

∫ 1

0

dβ

∫
d2k

π

×
{
P (β)

(
~q 2(1− β)~k · (~k − β~q )

(~k − β~q )2(~k − ~q )2~k 2
S

(3)
J (~q − ~k,~k, xβ;x)
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− 1

(~k − ~q)2
Θ
(

Λ2 − (~k − ~q )2
)
S

(2)
J (~q ;xβ)

)

− 1

β

~q 2Θ[(1− β)|~q − ~k| − β|~k|]
~k2(~q − ~k)2

S
(2)
J (~k;x)

}]
.

Besides, we define

V (3)
g (~q ) ≡

(
V (Rgg)(B,soft)
g + V (C)

g

)
(~q ) =

CA
(4π)ε

∫ 1

0

dx
CA
CF

fg(x)

∫
dD−2k

π1+ε

~q 2

~k2(~k − ~q )2
ln

s0

(|~k|+ |~q − ~k|)2
S

(2)
J (~q − ~k;x) , (3.95)

given in Eq. (3.92).

Another contribution originates from the collinear and charge renormalization
counterterms, see Eqs. (3.32) and (3.34),

V (4)
g (~q ) =

Γ[1− ε]
ε (4π)ε

∫ 1

0

dx fg(x)

[(
µ2
R

)ε
(

11CA
6
− NF

3

)
CA
CF

S
(2)
J (~q ;x)

−
(
µ2
F

)ε
∫ 1

0

dβ

[
2NFPqg(β) +

CA
CF

Pgg(β)

]
S

(2)
J (~q ;xβ)

]
. (3.96)

Finally, the gluon part of the jet impact factor is given by the sum of the
above four contributions and can be presented as a sum of two terms:

V (I)
g (~q ) =

∫ 1

0

dx
CA
CF

fg(x)

[
CA

(4π)ε

∫
dD−2k

π1+ε

~q 2

~k 2(~k − ~q )2
ln

s0

(|~k|+ |~q − ~k|)2

× S
(2)
J (~k;x) −CA ln

(
s0

~q 2

)(
~q 2
)ε Γ[1− ε]

ε (4π)ε
Γ2(1 + ε)

Γ(1 + 2ε)
S

(2)
J (~q ;x)

]

(3.97)

and

V (II)
g (~q ) = V (2)

g (~q ) +

∫ 1

0

dx
CA
CF

fg(x)

{[(
11CA

6
− NF

3

)
ln
~q 2µ2

R

Λ4
(3.98)

+ CA
π2

2
+

13

18
NF

]
S

(2)
J (~q ;x) +

∫ 1

0

dβ

[
Pgg(β) + 2NF

CF
CA

Pqg(β)

]
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× ln
Λ2

µ2
F

S
(2)
J (~q ;xβ) +

∫ 1

0

dβ

[
4

(
ln(1− β)

1− β

)

+

[(1− β)P (1− β)]CA

+ 2NF
CF
CA

β(1− β)

]}
S

(2)
J (~q ;xβ) .

3.6 Summary

We have recalculated the jet vertices for the cases of quark and gluon in the
initial state, first found in the papers by Bartels et al. [72, 73]. Our approach is
different since the starting point of our calculation is the known general expres-
sion for NLO BFKL impact factors, given in Ref. [43], applied to the special
case of partons in the initial state. Nevertheless, in many technical steps we
followed closely the derivation of Refs. [72, 73].
We checked our result by replacing everywhere the jet selection functions S(2)

J

and S(3)
J by 1 and performing all integrations: we got back to known results for

the NLO quark and gluon impact factors [59, 60].

Let us discuss now the infrared finiteness of the obtained result for the jet
impact factor. The NLO correction to the jet vertex (impact factor) has the
form

dΦ
(1)
J (~q )

dJ
=

αs
2π

Φ(0)
q V (~q ) , V (~q ) = V (I)(~q ) + V (II)(~q ) , (3.99)

where each part is the sum of the quark and gluon contributions,

V (I)(~q ) = V (I)
q (~q ) + V (I)

g (~q ) , V (II)(~q ) = V (II)
q (~q ) + V (II)

g (~q )

given in Eqs. (3.62), (3.63) and in Eqs. (3.97), (3.98), respectively. V (II)
q (~q ) and

V
(II)
g (~q ) are manifestly finite. For V (I)(~q ) we have

V (I)(~q ) =

∫ 1

0

dx

(∑

a=q,q̄

fa(x) +
CA
CF

fg(x)

)
(3.100)

×
[
CA

(4π)ε

∫
dD−2k

π1+ε

~q 2

~k 2(~k − ~q )2
ln

s0

(|~k|+ |~q − ~k|)2
S

(2)
J (~k;x)
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−CA ln

(
s0

~q 2

)(
~q 2
)ε Γ[1− ε]

ε (4π)ε
Γ2(1 + ε)

Γ(1 + 2ε)
S

(2)
J (~q ;x)

]
.

Having the explicit form of the lowest order jet function (3.12), it is easy to
see that the integration of V (I)(~q ) over ~q with any function, regular at ~q = ~kJ ,
will give some finite result. In particular, the finite result will be obtained after
the convolution of V (I)(~q ) with BFKL Green’s function, see Eq. (3.10), which
is required for the calculation of the jet cross section.
This may look somewhat surprising, but, in fact, it is not so since the impact
factor is not, strictly speaking, a physical observable. The divergence in (3.100)
arises from virtual corrections and, precisely, from the factor (s0/~q

2)ω(~q 2) enter-
ing the definition of the impact factor. In the computation of physical impact
factors this divergence is cancelled by the one arising from the integration in the
first term of Eq. (3.100), which is related with real emission. In the calculation
of the jet vertex the ~q integration is “opened” and, therefore, there is no way to
get the divergence needed to balance the one arising from virtual corrections.
However, in the construction of any physical cross section, the jet vertex is to
be convoluted with the BFKL Green’s function, which implies the integration
over the Reggeon transverse momentum ~q.

Another difference from Refs. [72, 73] is that in our approach the energy scale
s0 remains untouched and need not be fixed at any definite scale. The depen-
dence on s0 will disappear in the next-to-leading logarithmic approximation
in any physical cross section in which jet vertices are used. However, the de-
pendence on this energy scale will survive in terms beyond this approximation
and will provide a parameter to be optimized with the method adopted in
Refs. [94, 95, 96, 97].

In order to compare our results with the ones of Refs. [72, 73], we need to
perform the transition from the standard BFKL scheme with arbitrary energy
scale s0 to the one used in Refs. [72, 73], where the scale of energy depends
on the Reggeon momentum. The change to the scheme where the energy scale
s0 is replaced to any factorizable scale

√
f1(~q 2

1 )f2(~q 2
2 ) leads to the following

modification of each impact factor (i = 1, 2), see Ref. [98],
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Φi(~q ; fi(~q
2)) = Φi(~q ; s0) +

1

2

∫
dD−2k Φ

(0)
i (~k) ln

(
fi(~k

2)

s0

)
K(0)(~k, ~q )

~q 2

~k 2
,

(3.101)
where Φ

(0)
i andK(0) are the lowest order impact factor and BFKL kernel. There-

fore changing from s0 to s0 =
√
~q 2

1 ~q
2

2 we obtain the following replacement in
our result for the jet impact factor:

V (I)(~q )→ V̄ (I)(~q ) =

∫ 1

0

dx

(∑

a=q,q̄

fa(x) +
CA
CF

fg(x)

)
(3.102)

×
[
CA

(4π)ε

∫
dD−2k

π1+ε

~q 2

~k 2(~k − ~q )2
ln

~k2

(|~k|+ |~q − ~k|)2
S

(2)
J (~k;x)

]
.

Note that V̄ (I)(~q ) is not singular at ~q → ~k and, therefore, it can be calculated
at D = 4. Such contribution to the jet impact factors, V̄ (I)(~q ), in the consid-
ered scheme with s0 =

√
~q 2

1 ~q
2
2 produces a completely equivalent effect on the

physical jet cross section as the factors HL and HR which enter Eq. (76) of
Ref. [73] (see Eqs. (101), (102) in Ref. [72] for the definition of HL, HR).
Therefore, for the final comparison one needs to consider our results for V (II)

q (~q )

and V (II)
g (~q ) (modulo the appropriate normalization factor) with the ones given

in Eq. (105) of Ref. [72] and Eq. (67) of Ref. [73] for the quark and gluon con-
tributions, respectively. For this purpose we identify, following Refs. [72, 73],
the Λ parameter with the collinear factorization scale µF . We found a complete
agreement taking into account the misprints in the Eq. (105) of Ref. [72] and
subsequently pointed out in Ref. [89]. In that paper the results for the quark
and gluon contributions to the jet vertices are presented in a form different from
the one used in the original calculation of Refs. [72, 73]. However, one can see
after some analysis, that these two forms turn to be completely equivalent.
Recently another work devoted to the calculation of the jet impact factor ap-
peared [83]. It is an interesting application of the Lipatov’s effective action
method [9] to the problem in question. Within this method, a particular regu-
larization of the longitudinal divergences has been proposed. In the traditional
approach, these divergences are regularized by the account of the BFKL coun-
terterm, see Eq. (3.35).
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Chapter 4

Mueller-Navelet jets at LHC in
next-to-leading BFKL

The results of Chapter 3 could be used for a numerical estimation in the
NLA of the cross section for Mueller-Navelet jets at LHC and for the analysis of
the azimuthal correlation of the produced jets. They are given by a complicated
expression of the transverse momenta, which, for reasons that will be clarified
later on, must be transferred numerically to the (ν, n)-representation (see Sec-
tion 4.2). A complete NLA analysis of the process proton(p1) + proton(p2) →
jet(kJ1) + jet(kJ2) + X was reported in Ref. [89] (see also Ref. [99]) using the jet
vertices calculated in Refs. [72, 73] that are equivalent to the results of the Chap-
ter 3 (Ref. [74]). This numerical study followed previous ones [100, 101, 102]
based on the inclusion of NLA effects only in the Green’s functions.
We studied [103, 104] the production of two Mueller-Navelet jets in proton-
proton collision in the full NLA BFKL approach, taking the convolution of
the BFKL Green’s function with the jet vertices calculated in the “Small Cone
Approximation" (SCA) [75], i.e. for small jet cone aperture in the rapidity-
azimuthal angle plane [105, 106, 107]. The use of the SCA allows to get a
simple analytical result for the jet vertices, easily implementable in numerical
calculations and therefore particularly suitable for a semi-analytical cross-check
of the numerical approaches which treat the cone size exactly.
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Figure 4.1: Parton-Reggeon collision, the jet is formed by a single parton [75].

a

b

jet

+

a

b

jet

Figure 3: Parton-Reggeon collision, two partons are produced and the jet is formed either by
one of the partons or by both partons.

Let us introduce now the “small-cone” approximation (SCA). In view of the discussion
above, we should define it in the two cases of jet generated by one parton or by two partons.

The relative rapidity and azimuthal angle between the two partons are

∆y =
1

2
ln

ζ2("k − "q)2

ζ̄2"k 2
, ∆φ = arccos

"q · "k − "k 2

|"k||"q − "k|
, ζ̄ ≡ 1 − ζ .

Let the parton with momentum "k and longitudinal fraction ζ generate the jet, whereas the
other parton (with momentum "q−"k and longitudinal fraction ζ̄) is a spectator. We introduce

the vector "∆ such that

"q =
"k

ζ
+ "∆ .

Then, for "∆ → 0 we have

∆φ2 =
ζ2

ζ̄2

(
"∆2

"k 2
− ("k · "∆)2

"k 4

)
, ∆y =

ζ

ζ̄

("k · "∆)

"k 2
,

thus the condition of cone with aperture smaller than R in the rapidity-azimuthal angle plane
becomes

∆φ2 + ∆y2 =
ζ2

ζ̄2

"∆2

"k2
≤ R2

and therefore

|"∆| ≤ ζ̄

ζ
|"k|R .

The situation is different when both partons form a jet. In this case the jet momentum
is "k = "k1 + "k2 and the jet fraction is 1 = ζ + ζ̄. The relative rapidity and azimuthal angle
between the jet and the first (second) parton are

∆y1 =
1

2
ln

"k 2
1

ζ2"k 2
, ∆φ1 = arccos

"k · "k1

|"k1||"k|
,

7

Figure 4.2: Parton-Reggeon collision, two partons are produced and the jet is formed
either by one of the partons or by both partons [75].

4.1 Small Cone Approximation

At LO [75] only one parton is produced in the collision between the incom-
ing parton and the Reggeon. This parton, as shown in the Fig. 4.1, will form
the jet and its kinematics is totally fixed by the jet kinematics.

At NLO there are two contributions: the virtual corrections with the kine-
matical structure shown in Fig. 4.1 and the real corrections with two-particle
production in the parton-Reggeon collisions. In the latter case the jet can be
produced by one of the two partons or by both together.

Calling the produced partons a and b, there are three different possibilities,
as shown in Fig. 4.2 (see, for instance, Ref. [75] or [108]):

• the parton a generates the jet, while the parton b can have arbitrary
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a

b

jet

=

a

a=jet

b

−
a

b

jet

Figure 4: The production of the jet by one parton when the second one is outside the cone
can be seen as the “inclusive” production minus the contribution when the second parton is
inside the cone.

∆y2 =
1

2
ln

(!k1 − !k)2

ζ̄2!k 2
, ∆φ2 = arccos

!k · (!k − !k1)

|!k||!k − !k1|
.

Introducing now the vector !∆ as
!k1 = ζ!k + !∆ ,

we find

∆y2
1 + ∆φ2

1 =
!∆2

ζ2!k 2
, ∆y2

2 + ∆φ2
2 =

!∆2

ζ̄2!k 2
,

so that the requirement that both partons are inside the cone is now

|!∆| ≤ R |!k| min(ζ, ζ̄) .

4 Impact Factor in the LO

The inclusive LO impact factor of proton may be thought of as the convolution of quark and
gluon impact factors, given in Eqs. (12,16), with the corresponding proton PDFs,

dΦ = C dx

(
CA

CF
fg(x) +

∑

a=q,q̄

fa(x)

)
, C = g2

√
N2 − 1

2N
= 2παs

√
2 CF

CA
. (17)

In order to establish the proper normalization for the jet impact factor, we insert into the
inclusive impact factor (17) the delta functions which depend on the jet variables, transverse

momentum !k and longitudinal fraction α:

dΦJ

!q 2
= C

∫
dα

d2!k

!k 2
dx δ(2)

(
!k − !q

)
δ(α − x)

(
CA

CF
fg(x) +

∑

a=q,q̄

fa(x)

)
. (18)

8

Figure 4.3: The production of the jet by one parton when the second one is outside
the cone cam be seen as the “inclusive” production minus the contribution
when the second parton is inside the cone [75].

kinematics (provided that it lies outside the jet cone). It can be seen as
the “inclusive” production minus the contribution when the second parton
is inside the cone (see Fig. 4.3).

• similarly with a↔ b;

• the two partons a and b both generate the jet.

For two partons, one with transverse momentum ~k and longitudinal fraction
β and the other with transverse momenta ~q−~k and longitudinal fraction 1− β
, the relative rapidity and the azimuthal angle are

∆y = ln
β2
(
~k − ~q

)2

(1− β)2 ~k 2
, ∆φ = arccos

~q · ~k − ~k 2

|~k||~q − ~k|
. (4.1)

• If the parton with momentum ~k generates the jet, while the other parton
is a spectator, it is possible to introduce a vector ~∆ (see Ref. [75]) such
that

~q =
~k

β
+ ~∆ . (4.2)

For ~∆ → 0 the condition of cone with aperture smaller than R in the
rapidity-azimuthal angle plane becomes

∆φ2 + ∆y2 =
β2~∆2

(1− β)2 ~k 2
≤ R2 (4.3)
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and therefore

|~∆| ≤ 1− β
β
|~k|R . (4.4)

• If both partons form a jet, the jet momentum becomes ~k = ~k1 + ~k2 and
the jet fraction is 1 = β + (1− β).
The relative rapidity and the azimuthal angle between the jet and the
first (second) parton are

∆y1 =
1

2
ln

~k 2
1

β2~k 2
, ∆φ1 = arccos

~k · ~k1

|~k||~k1|
, (4.5)

and

∆y2 =
1

2
ln

(
~k1 − ~k

)2

(1− β)2 ~k 2
, ∆φ2 = arccos

~k ·
(
~k − ~k1

)

|~k||~k − ~k1|
. (4.6)

Here one can introduce the vector ~∆ (see Ref. [75]) as

~k1 = β~k + ~∆ , (4.7)

and find

∆y2
1 + ∆φ2

1 =
~∆ 2

β2~k 2
, ∆y2

2 + ∆φ2
2 =

~∆ 2

(1− β)2 ~k 2
. (4.8)

The condition that both partons form the jet is

|~∆| ≤ R |~k| min (β, (1− β)) . (4.9)

4.2 BFKL cross section

In QCD collinear factorization the cross section reads (see Eq. (3.3))

dσ

dxJ1dxJ2d
2kJ1d

2kJ2

=
∑

i,j=q,q̄,g

1∫

0

dx1

1∫

0

dx2 fi(x1, µF )fj(x2, µF )
dσ̂i,j(x1x2s, µF )

dxJ1dxJ2d
2kJ1d

2kJ2

.

(4.10)
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The partonic cross section dσ̂i,j (x1x2s, µ) for the production of jets in the BFKL
approach (Chapter 1) is

dσ̂i,j(x1x2s, µ)

dxJ1dxJ2d
2kJ1d

2kJ2

=
s

(2π)2

∫
d2q1

~q 2
1

Vi(~q1, s0, x1;~kJ1 , xJ1) (4.11)

×
∫
d2q2

~q 2
2

Vj(−~q2, s0, x2;~kJ2 , xJ2)

δ+i∞∫

δ−i∞

dω

2πi

(
x1x2s

s0

)ω
Gω(~q1, ~q2) ,

where Vi(~q1, s0, x1;~kJ1 , xJ1) and Vj(−~q2, s0, x2;~kJ2 , xJ2) are the jet vertices (im-
pact factors) describing the transitions parton i (x1p1) → jet (kJ1) and parton
j (x2p2) → jet (kJ2), in the scattering off a Reggeized gluon with transverse
momentum ~q1 and ~q2, respectively. The artificial scale s0 is introduced in the
BFKL approach to perform the Mellin transform from the s-space to the com-
plex angular momentum plane and cancels in the full expression for the cross
section with the NLA accuracy.
The Green’s function in (4.11) obeys the BFKL equation1

δ2(~q1 − ~q2) = ωGω(~q1, ~q2)−
∫
d2~q K(~q1, ~q)Gω(~q, ~q2) , (4.12)

where K(~q1, ~q2) is the BFKL kernel.
In what follows we proceed along the lines similar to ones used in Ref. [94,
95, 96]. It is convenient to work in the transverse momentum representation,
defined by

~̂q |~qi〉 = ~qi|~qi〉 , (4.13)

〈~q1|~q2〉 = δ(2)(~q1 − ~q2) , 〈A|B〉 = 〈A|~k〉〈~k|B〉 =

∫
d2kA(~k)B(~k) ;

(4.14)
the kernel of the operator K̂ is

K(~q2, ~q1) = 〈~q2|K̂|~q1〉 (4.15)

and the equation for the Green’s function reads

1̂ = (ω − K̂)Ĝω , (4.16)
1We notice that this form of the BFKL differs from the one gives in Eq. (1.15) because here

a different normalization of the kernel is used; moreover here we consider only the forward
case.
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its solution being
Ĝω = (ω − K̂)−1 . (4.17)

The kernel is given as an expansion in the strong coupling,

K̂ = ᾱsK̂
0 + ᾱ2

sK̂
1 , (4.18)

where
ᾱs =

αsNc

π
(4.19)

and Nc is the number of colors. In Eq. (4.18) K̂0 is the BFKL kernel in the
LLA, K̂1 represents the NLA correction.
To determine the partonic cross section with NLA accuracy we need an approx-
imate solution of Eq. (4.17). With the required accuracy this solution is

Ĝω = (ω − ᾱsK̂0)−1 + (ω − ᾱsK̂0)−1
(
ᾱ2
sK̂

1
)

(ω − ᾱsK̂0)−1 +O
[(
ᾱ2
sK̂

1
)2
]
.

(4.20)
The basis of eigenfunctions of the LLA kernel,

K̂0|n, ν〉 = χ(n, ν)|n, ν〉 ,

χ(n, ν) = 2ψ(1)− ψ
(
n

2
+

1

2
+ iν

)
− ψ

(
n

2
+

1

2
− iν

)
, (4.21)

is given by the following set of functions:

〈~q |n, ν〉 =
1

π
√

2

(
~q 2
)iν− 1

2 einφ , (4.22)

here φ is the azimuthal angle of the vector ~q counted from some fixed direction
in the transverse space, cosφ ≡ qx/|~q|. Then, the orthonormality condition
takes the form

〈n′, ν ′|n, ν〉 =

∫
d2q

2π2

(
~q 2
)iν−iν′−1

ei(n−n
′)φ = δ(ν − ν ′) δnn′ . (4.23)

The action of the full NLA BFKL kernel on these functions may be expressed
as follows:

K̂|n, ν〉 = ᾱs(µR)χ(n, ν)|n, ν〉+ ᾱ2
s(µR)

(
β0

4Nc

χ(n, ν) ln(µ2
R) (4.24)

+ χ(1) (n, ν)

)
|n, ν〉+ ᾱ2

s (µR)
β0

4Nc

χ (n, ν)

(
i
∂

∂ν

)
|n, ν〉 ,
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where µR is the renormalization scale of the QCD coupling, the first term rep-
resents the action of LLA kernel, while the second and the third ones stand for
the diagonal and the non-diagonal parts of the NLA kernel and we have used

β0 =
11Nc

3
− 2nf

3
, (4.25)

where nf is the number of active quark flavors.
The function χ(1)(n, ν), calculated in [109] (see also [110]), is conveniently rep-
resented in the form

χ(1)(n, ν) = − β0

8Nc

(
χ2(n, ν)− 10

3
χ(n, ν)− iχ′(n, ν)

)
+ χ̄(n, ν) , (4.26)

where

χ̄(n, ν) = −1

4

[
π2 − 4

3
χ(n, ν)− 6ζ(3)− χ′′(n, ν) + 2φ(n, ν) + 2φ(n,−ν)

+
π2 sinh(πν)

2 ν cosh2(πν)

((
3 +

(
1 +

nf
N3
c

)
11 + 12ν2

16(1 + ν2)

)
δn0

−
(

1 +
nf
N3
c

)
1 + 4ν2

32(1 + ν2)
δn2

)]
, (4.27)

φ(n, ν) = −
1∫

0

dx
x−1/2+iν+n/2

1 + x

[
1

2

(
ψ′
(
n+ 1

2

)
− ζ(2)

)
+ Li2(x) + Li2(−x)

+ lnx

(
ψ(n+ 1)− ψ(1) + ln(1 + x) +

∞∑

k=1

(−x)k

k + n

)
+
∞∑

k=1

xk

(k + n)2
(1− (−1)k)

]

=
∞∑

k=0

(−1)k+1

k + (n+ 1)/2 + iν

[
ψ′(k + n+ 1)− ψ′(k + 1) + (−1)k+1 (β′(k + n+ 1)

+β′(k + 1))− 1

k + (n+ 1)/2 + iν
(ψ(k + n+ 1)− ψ(k + 1))

]
, (4.28)

β′(z) =
1

4

[
ψ′
(
z + 1

2

)
− ψ′

(z
2

)]
, Li2(x) = −

x∫

0

dt
ln(1− t)

t
.
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Here and below χ′(n, ν) = dχ(n, ν)/dν and χ′′(n, ν) = d2χ(n, ν)/d2ν.
For the quark and the gluon jet vertices in (4.11) the projection onto the eigen-
functions of LO BFKL kernel, i.e. the transfer to the (ν, n)-representation, is
done as follows:

V (~q1)

~q 2
1

=
+∞∑

n=−∞

+∞∫

−∞

dν Φ1(ν, n)〈n, ν|~q1〉 ,

V (−~q2)

~q 2
2

=
+∞∑

n=−∞

+∞∫

−∞

dν Φ2(ν, n)〈~q2|n, ν〉 ,

Φ1(ν, n) =

∫
d2q1

V (~q1)

~q 2
1

1

π
√

2

(
~q 2

1

)iν− 1
2 einφ1 ,

Φ2(ν, n) =

∫
d2q2

V (−~q2)

~q 2
2

1

π
√

2

(
~q 2

2

)−iν− 1
2 e−inφ2 . (4.29)

The vertices can be represented as an expansion in αs,

Φ1,2(n, ν) = αs(µR)v1,2(n, ν) + α2
s(µR)v

(1)
1,2(n, ν) . (4.30)

In Eqs. (4.29) and (4.30) we suppressed for brevity the partonic indices i, j and
the other arguments in v1,2. The explicit forms of LLA and NLA jet vertices
in the (ν, n)-representation both for the quark and gluon cases can be found
in [75]. In particular for the LLA quark vertices one has

vq1(n, ν) = 2

√
CF
CA

(~k2
J1

)iν−3/2 einφJ1δ(xJ1 − x1) ,

vq2(n, ν) = 2

√
CF
CA

(~k2
J2

)−iν−3/2 e−in(φJ2
+π)δ(xJ2 − x2) , (4.31)

where CA = Nc, CF = (N2
c − 1)/2Nc, the angle φJ2 + π in the last equation

appears due to the fact that the Reggeon momentum which enters the second
vertex is −~q2. Note that in LLA vertices the partonic and the jet longitudinal
momentum fractions coincide.
The partonic cross section can be written with NLA accuracy as follows
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dσ̂(x1x2s)

dxJ1dxJ2d
2kJ1d

2kJ2

=
1

(2π)2

+∞∑

n=−∞

+∞∫

−∞

dν

(
x1x2s

s0

)ᾱs(µR)χ(n,ν)

×α2
s(µR)v1(n, ν)v2(n, ν)

[
1 + αs(µR)

(
v

(1)
1 (n, ν)

v1(n, ν)
+
v

(1)
2 (n, ν)

v2(n, ν)

)

+ᾱ2
s(µR) ln

(
x1x2s

s0

)(
χ̄(n, ν) +

β0

8Nc

χ(n, ν)

[
−χ(n, ν) +

10

3

+i
d ln

(
v1(n,ν)
v2(n,ν)

)

dν
+ 2 lnµ2

R






 . (4.32)

For the subsequent calculation it is convenient to make the substitution
(
x1x2s

s0

)ᾱs(µR)χ(n,ν)

=

(
xJ1xJ2s

s0

)ᾱs(µR)χ(n,ν)(
x1

xJ1

)ᾱs(µR)χ(n,ν)

(4.33)

×
(
x2

xJ2

)ᾱs(µR)χ(n,ν)

,

and to assign the last two factors in the r.h.s. to the corresponding jet vertices.
This procedure affects only the NLA parts of the jet vertices, since for the
LLA vertices xi = xJi . Also with NLA accuracy, one can make in (4.32) the
replacement

ln

(
x1x2s

s0

)
→ ln

(
xJ1xJ2s

s0

)
. (4.34)

This procedure allows to perform in the MN-jet cross section first the integra-
tion over partonic momentum fractions, before taking the sum over n and the
integration over ν; it allows also to consider together the contributions of quarks
and gluons to the jet vertices.
The differential cross section has the form

dσ

dyJ1dyJ2 d|~kJ1| d|~kJ2|dφJ1dφJ2

=
1

(2π)2

[
C0 +

∞∑

n=1

2 cos(nφ) Cn
]
, (4.35)

where φ = φJ1 − φJ2 − π, and

Cm =

∫ 2π

0

dφJ1

∫ 2π

0

dφJ2 cos[m(φJ1 − φJ2 − π)]
dσ

dyJ1dyJ2 d|~kJ1| d|~kJ2|dφJ1dφJ2

.

(4.36)
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In particular, taking into account the Jacobian of the transformation from the
variables ~kJi , xJi to the variables |~kJi |, yJi , and the ν-dependence of LLA jet
vertices, see (4.31), we get

Cn =
xJ1xJ2

|~kJ1||~kJ2|

∫ +∞

−∞
dν

(
xJ1xJ2s

s0

)ᾱs(µR)χ(n,ν)

(4.37)

×α2
s(µR)c1(n, ν, |~kJ1 |, xJ1)c2(n, ν, |~kJ2|, xJ2)

×
[

1 + αs(µR)

(
c

(1)
1 (n, ν, |~kJ1|, xJ1)

c1(n, ν, |~kJ1|, xJ1)
+
c

(1)
2 (n, ν, |~kJ2|, xJ2)

c2(n, ν, |~kJ2|, xJ2)

)

+ᾱ2
s(µR) ln

(
xJ1xJ2s

s0

)(
χ̄(n, ν) +

β0

8CA
χ(n, ν)

(
−χ(n, ν) +

10

3
+ ln

µ4
R

~k2
J1

~k2
J2

))]
,

where

c1(n, ν, |~k|, x) = 2

√
CF
CA

(~k 2)iν−1/2

(
CA
CF

fg(x, µF ) +
∑

a=q,q̄

fq(x, µF )

)
, (4.38)

c2(n, ν, |~k|, x) =

[
c1(n, ν, |~k|, x)

]∗
, (4.39)

c
(1)
1 (n, ν, |~k|, x) =

1

π

√
CF
CA

(
~k 2
)iν−1/2

1∫

x

dζ

ζ
ζ−ᾱs(µR)χ(n,ν)

{∑

a=q,q̄

fa

(
x

ζ

)
(4.40)

×
[(

Pqq(ζ) +
CA
CF

Pgq(ζ)

)
ln
~k 2

µ2
F

− 2ζ−2γ lnR {Pqq(ζ) + Pgq(ζ)}

−β0

2
ln
~k 2

µ2
R

δ(1− ζ) + CAδ(1− ζ)

(
χ(n, γ) ln

s0

~k 2
+

85

18
+
π2

2

+
1

2

(
ψ′
(

1 + γ +
n

2

)
− ψ′

(n
2
− γ
)
− χ2(n, γ)

))

+(1 + ζ2)

{
CA

(
(1 + ζ−2γ)χ(n, γ)

2(1− ζ)+

− ζ−2γ

(
ln(1− ζ)

1− ζ

)

+

)

+

(
CF −

CA
2

)[
ζ̄

ζ2
I2 −

2 ln ζ

1− ζ + 2

(
ln(1− ζ)

1− ζ

)

+

]}

+δ(1− ζ)

(
CF

(
3 ln 2− π2

3
− 9

2

)
− 5nf

9

)
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+CAζ + CF ζ̄ +
1 + ζ̄2

ζ

(
CA

ζ̄

ζ
I1 + 2CA ln

ζ̄

ζ
+ CF ζ

−2γ(χ(n, γ)− 2 ln ζ̄)

)]

+fg

(
x

ζ

)
CA
CF

×
[(

Pgg(ζ) + 2nf
CF
CA
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)
ln
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µ2
F

− 2ζ−2γ lnR (Pgg(ζ) + 2nfPqg(ζ))

−β0
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+

1
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+
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+
1

2

(
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)
− ψ′
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2
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)
− χ2(n, γ)
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((
1

ζ
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)
ln ζ̄ +
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)

+CA

[
1
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− 2 + ζζ̄
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ζ̄2
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)

+nf

[
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CF
CA

+ (ζ2 + ζ̄2)

(
CF
CA

χ(n, γ) +
ζ̄

ζ
I3

)
− 1

12
δ(1− ζ)

]]}
,

c
(1)
2 (n, ν, |~k|, x) =

[
c

(1)
1 (n, ν, |~k|, x)

]∗
. (4.41)

Here ζ̄ = 1− ζ, γ = iν − 1/2, Pij(ζ) are leading order DGLAP kernels. For the
I1,2,3 functions we have the results:

I2 =
ζ2

ζ̄2

[
ζ

(
2F1(1, 1 + γ − n

2
, 2 + γ − n

2
, ζ)

n
2
− γ − 1

− 2F1(1, 1 + γ + n
2
, 2 + γ + n

2
, ζ)

n
2

+ γ + 1

)

+ζ−2γ

(
2F1(1,−γ − n

2
, 1− γ − n

2
, ζ)

n
2

+ γ
− 2F1(1,−γ + n

2
, 1− γ + n

2
, ζ)

n
2
− γ

)

+
(
1 + ζ−2γ

) (
χ(n, γ)− 2 ln ζ̄

)
+ 2 ln ζ

]
, (4.42)

I1 =
ζ̄

2ζ
I2 +

ζ

ζ̄

[
ln ζ +

1− ζ−2γ

2

(
χ(n, γ)− 2 ln ζ̄

)]
, (4.43)

I3 =
ζ̄

2ζ
I2 −

ζ

ζ̄

[
ln ζ +

1− ζ−2γ

2

(
χ(n, γ)− 2 ln ζ̄

)]
. (4.44)
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The factor ζ−ᾱs(µR)χ(n,ν) appears in (4.40) due to extra-contributions attributed
to the jet vertices, as discussed after Eq. (4.33). Note that the Cn coefficients
do not depend on the azimuthal angles of the jets, φJ1 and φJ2 ,

Cn = Cn
(
yJ1 , yJ2 ,

~kJ1 ,
~kJ2 , µR, µF , s0

)
, (4.45)

they depend instead on the jet rapidities, the transverse momenta and on the
factorization, renormalization and energy scale parameters.

Exponentiated form An alternative way to present the differential cross
section of the hard process, equivalent to the formula (4.37) in the NLA, is the
so-called exponentiated form (see Refs. [94, 95, 96]),

Cexp
n =

xJ1xJ2

|~kJ1||~kJ2|

∫ +∞

−∞
dν exp

[
(Y − Y0)

(
ᾱs(µR)χ(n, ν) (4.46)

+ᾱ2
s(µR)

(
χ̄(n, ν) +

β0

8CA
χ(n, ν)

(
−χ(n, ν) +

10

3
+ ln

µ4
R

~k2
J1

~k2
J2

)))]

×α2
s(µR)c1(n, ν, |~kJ1|, xJ1 , µF )c2(n, ν, |~kJ2|, xJ2 , µF )

×
[

1 + αs(µR)

(
c

(1)
1 (n, ν, |~kJ1|, xJ1 , µF )

c1(n, ν, |~kJ1|, xJ1 , µF )
+
c

(1)
2 (n, ν, |~kJ2|, xJ2 , µF )

c2(n, ν, |~kJ2|, xJ2 , µF )

)]
.

Here we set ln
(
xJ1

xJ2
s

s0

)
= Y − Y0, where ∆y ≡ Y = ln

xJ1
xJ2

s

|~kJ1
||~kJ2

| is the rapidity
gap between the two jets and Y0 = ln s0

|~kJ1
||~kJ2

| .

Below we will discuss the differential cross section integrated over the jet az-
imuthal angles

C0 =

∫
dφJ1dφJ2dσ ,

the coefficients Cn and the moments of the azimuthal decorrelations, which are
defined as

〈cos(nφ)〉 =

∫
dφJ1dφJ2 cos[n(φJ1 − φJ2 − π)]dσ∫

dφJ1dφJ2dσ
=
Cn
C0

. (4.47)
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4.3 Results

In this section we present our results for the dependence on Y of the func-
tions Cn. In what follows we take the factorization and renormalization scales
equal to each other, µF = µR. We perform our calculation both in the LLA
and in the NLA. In the former case, the expression for Cn reads

CLLA
n =

dσLLA

dyJ1dyJ2d|~kJ1| d|~kJ2|
=

xJ1xJ2

|~kJ1||~kJ2|

∫ +∞

−∞
dν exp

[
(Y − Y0)ᾱs(µR)χ(n, ν)

]

(4.48)
×α2

s(µR)c1(n, ν, |~kJ1 |, xJ1)c2(n, ν, |~kJ2|, xJ2) .

For our NLA analysis we use the exponentiated representation given in Eq. (4.46).

For the center-of-mass energy
√
s we take the LHC design value 14 TeV. We

fix the jet cone size at the value R = 0.5, in order to compare our predictions
with the forthcoming LHC data. We study Mueller-Navelet jets with symmetric
and asymmetric values of the transverse momenta, in particular, consider the
choices: |~kJ1 | = |~kJ2| = 35 GeV, |~kJ1| = |~kJ2| = 20 GeV for the symmetric cases
and |~kJ1 | = 20 GeV, |~kJ2| = 35 GeV for asymmetric case.
Moreover, to make possible the comparison with the experiments at present
LHC energy, we perform calculations for

√
s = 7 TeV, where we consider the

|~kJ1| = |~kJ2| = 35 GeV case.

Following a quite recent CMS study [111], we restrict the rapidities of the
Mueller-Navelet jets to the region 3 ≤ |yJ | ≤ 5. We will present our results
for C0, i.e. the differential cross section integrated over the jet azimuthal an-
gles, the coefficients Cn for n 6= 0, and 〈cos(nφ)〉 versus the relative rapidity,
Y = yJ1 − yJ2 . For our choice of forward jets rapidities, Y takes values between
6 and 10. Our approach is similar to the one used in [89], we introduce rapidity
bins with step ∆yJ equal to 0.5, so the considered values for jet rapidities and
rapidity difference are

{(yJ1)i} = {3.0, 3.5, 4.0, 4.5, 5.0}
{(yJ2)i} = {−3.0,−3.5,−4.0,−4.5,−5.0}
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and {Yi} = {6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0}. Then we evaluate the fol-
lowing sum

Cn(Yi) =
∑

0.5 Cn ((yJ1)j, (yJ1)j − Yi)

where the sum runs over the possible values of (yJ1)j for a given Yi.

In our analysis we use the PDF set MSTW2008nnlo [112] and the two-loop
running coupling with αs(MZ) = 0.11707.

Our predictions depend on the values of energy and renormalization scales,
s0 and µR. For the analysis in the LLA we fixed the values of these scales, µR
and s0, as suggested by the kinematics of the process, i.e. µ2

R = s0 = |~kJ1||~kJ2|.
In general LLA results depend very strongly on s0 and µR, and one really needs
to come to the NLA analysis in order to reduce this scale dependence and
to have some reliable predictions for observables. One should stress that the
dependence of the correlations Cn on the scales µR and s0 cancels with NLA
accuracy; nevertheless in both representations (4.37) and (4.46) there unavoid-
ably exist contributions subleading to NLA, depending on µR and s0, whose
numerical impact is important for the considered kinematics, therefore we need
some prescription for the choice of these scales.

Following Ref. [94, 95, 96], we use here an adaptation of the principle of min-
imal sensitivity (PMS) [113, 114], which consists in taking as optimal choices
for µR and s0 those values for which the physical observable under examination
exhibits the minimal sensitivity to changes of both of these scales. The moti-
vation of this procedure is that the complete resummation of the perturbative
series would not depend on the scales µR and s0, so the optimization method is
supposed to mimic the effect of the most relevant unknown subleading terms.

In our search for optimal values, we took integer values for Y0 in the range

0 – 5 and values for µR given as integer multiples of
√
|~kJ1||~kJ2|,

µR = nR

√
|~kJ1||~kJ2| , (4.49)
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taking the integer nR in the range 1 – 15. The systematic uncertainty of the
optimization procedure in the determination of observables, which will be dis-
cussed below, originates from the resolution of the grid in the nR – Y0 plane.
This uncertainty has been estimated as the standard deviation of the optimal
value from the determinations in the nearest neighbors of the grid. The error
bars around the NLA data points presented in the figures below represent this
uncertainty. We did not evaluate the impact on our predictions of the PDF un-
certainties, since we expect it to be of the same size as determined in Ref. [89],
where the same PDF set adopted here is used.

Cross section integrated over the jet azimuthal angles, C0 Let us
start with the cross section integrated over the jet azimuthal angles, C0. We
found that for this observable a stationary point in the nR – Y0 plane could
always be singled out, typically a local maximum. For

√
s = 14 TeV our

results, in
[

nb
GeV2

]
units, are presented in Figs. 4.4–4.6 and in Tables 4.1–4.3;

results for
√
s = 7 TeV are given in Fig. 4.7 and Table 4.4. The optimal values

of Y0 and nR = µR/

√
|~kJ1||~kJ2| are also reported in the tables. As in previous

works [94, 95, 96], the optimal values of the energy scales turn to be far from the
kinematic scale. On the other hand, the uncertainty related of our optimization
procedure, described above, turns out to be small, therefore our NLA results for
the cross section integrated over jet azimuthal angles, presented in Figs. 4.4–4.7
have relatively small “error bars”.

Moments of the azimuthal decorrelations C1/C0 and C2/C0 The other
issue we addressed in a similar manner is the analysis of the observables C1/C0

and C2/C0, which encode the first two nontrivial angular decorrelations: 〈cosφ〉
and 〈cos(2φ)〉. For |~kJ1| = |~kJ2| = 35 GeV at

√
s = 14 TeV our results are pre-

sented in Figs. 4.8, 4.9 and Tables 4.5 and 4.6. For the smaller values of jet
transverse momenta, |~kJ1| = |~kJ2| = 20 GeV, they are given in Figs. 4.10, 4.11
and Tables 4.7 and 4.8. Finally, for the asymmetric case, |~kJ1| = 20 GeV and
|~kJ2| = 35 GeV, we present our results for 〈cosφ〉 and 〈cos(2φ)〉 in Figs. 4.12, 4.13
and Tables 4.9, 4.10.
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In our search for optimal scale values we found that these observables, an-
gular decorrelations, are less stable than C0, thus making our analysis more
complicated. Indeed, only for a few values of Yi we could find a stationary
point. In other cases we found a local maximum only in the direction of one of
the two parameters. When this happened, we took as “optimal” value the one
exhibiting the least standard deviation from neighboring points in the adopted
grid. As a result the uncertainties related with our optimization procedure are
larger for the angular decorrelations than for the integrated cross sections dis-
cussed above, therefore Figs. 4.8–4.13 show larger “error bars” in comparison
to the NLA results presented in Figs. 4.4–4.7. Note that for the asymmetric
case, |~kJ1 | = 20 GeV and |~kJ2| = 35 GeV, the search for optimal scale values
was more problematic for the observable 〈cos(2φ)〉, which is affected by uncer-
tainties larger than those of the correlation 〈cosφ〉.

Even if in general the energy dependence of the cross section and the azimuthal
decorrelations is driven mainly by the kernel, in considered kinematics the con-
tribution of the NLO corrections to impact factors happened to be important.
In order to show this, in the analysis at |~kJ1| = |~kJ2| = 35 GeV and

√
s = 14 TeV

we calculated the coefficient C0 and the correlations C1/C0 and C2/C0 using the
NLA BFKL kernel together with the LO impact factors (properly modified to
take into account the NLO dependence on the scales µR and s0). We find that
the NLO corrections to impact factors are relevant especially at large values of
Y, as shown in Figs. 4.4, 4.8 and 4.9 and in the corresponding Tables 4.1, 4.5
and 4.6.

In the following Section we discuss the results presented here, make some com-
parison with Refs. [89, 99].

4.4 Discussion

We considered in NLA BFKL approach the Mueller-Navelet jet produc-
tion in proton-proton collisions, using the results for NLA jet vertices obtained
recently in the “small-cone” approximation. Having a simple analytic result
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for the jet vertices, projected on the eigenfunction of LLA BFKL equation
((ν, n)-representation), one can implement them easily in the calculation of the
Mueller-Navelet jet cross section. All necessary formulae are presented in Sec-
tion 4.2.
We confirm the observation found earlier in the works devoted to forward elec-
troproduction of a pair of vector mesons [94, 95, 96], and to Mueller-Navelet
jets production [89], that NLA corrections to the impact factors (jet vertices)
are very important and can not be ignored in a consistent NLA BFKL analysis.

Our numerical results, presented in Section 4.3, depend on the energy and
renormalization scales, s0 and µR. The dependence of the coefficients Cn on
these scales cancels with NLA accuracy after the inclusion of NLA corrections
to jet vertices. Nevertheless, due to next-to-NLA contributions depending on µR
and s0, the observables we calculated are sensitive to the choice of these scales.
Here, following Ref. [94, 95, 96], we used an optimization procedure, based on
the principle of minimal sensitivity [113, 114], which consists in taking as opti-
mal choices for µR and s0 those values for which the physical observable exhibits
the minimal sensitivity to changes of both these scales.

The small-cone approximation, which we adopted here, is expected to be an
adequate tool. Indeed, it is known that in the general case the dependence
of the cross section on the jet cone parameter has, in the limit R → 0, the
form dσ ∼ A lnR+B+O(R2) (see, for instance, [105] and Appendix C there).
Indeed, in SCA the coefficients A and B are evaluated exactly. The neglected
pieces O(R2) for typical R values are presumably less important than the other
uncertainties of our NLA BFKL calculation, in particular those related with
the choice of the scales µR and s0, which mimic in our method the effect of the
most relevant unknown next-to-NLA BFKL terms.

To support this statement it seems natural to make a comparison between
our results obtained in SCA and the numerical results presented in [89, 99],
where the jet cone size was treated exactly. We can make such comparison for
|~kJ1| = |~kJ2| = 35 GeV and

√
s = 7 and 14 TeV.
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For this purpose we present in Tables 4.11, 4.12 and 4.13 our NLA results
obtained with the above-discussed optimal scales setting (presented in the
third column) and compare them with those for C0, 〈cosφ〉 and 〈cos 2φ〉 taken
from Table 1, 5 and 9 of [89] and reported in the second column of our Ta-
bles 4.11, 4.12 and 4.13. Moreover we show our NLA results in the case when
kinematic values of the scales were used, µ2

R = s0 = |~kJ1| = |~kJ2| (the fourth
column).

Let us discuss the numbers presented in Tables 4.11, 4.12 and 4.13. Firstly one
needs to say that NLA results obtained with our formulae at kinematic scale
setting, µ2

R = s0 = |~kJ1||~kJ2|, can not be regarded as acceptable predictions. In-
deed we got in this case results for 〈cosφ〉 (fourth column of Table 4.12) which
are away from the kinematic range of the cosine function and for the integrated
cross section C0 (fourth column of Table 4.11) we obtained negative value in the
case of the largest value of rapidity difference, Y = 10. This is related to the
fact that NLO corrections to the jet vertices are negative and very large in the
absolute value when the kinematic scale setting is used. A similar observation
was done in [94, 95, 96], where the electroproduction of pair of vector meson
was considered. In such situation we actually need PMS procedure in order to
make reliable predictions.

Returning to the comparison with the results of [89], we observe that our results
when the kinematic scales were used (forth column of Tables 4.11, 4.12 and 4.13)
are quite different from those of Ref. [89] (second column of Tables 4.11, 4.12
and 4.13), where the same scales were used. As discussed above, in our opinion
such big difference cannot be attributed only to the SCA. Most probably the
real source of discrepancy is in the actually different representations of the NLA
BFKL cross sections adopted in the two calculations, which are equivalent with
NLA accuracy. Though being nontrivial, this issue definitely deserves a further
study. At this stage we can only compare our results obtained with PMS pro-
cedure with those of [89].
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For the integrated cross section, C0,2 the results presented in the second and in
the third columns of Table 4.11 are rather close each other. Let us discuss now
the observable 〈cosφ〉. Our predictions for it in the case of |~kJ1| = |~kJ2| = 35

GeV and
√
s = 14 TeV are shown in Fig. 4.8. In Table 4.12 we compare them

(the second and the third columns) with those obtained in Ref. [89]. In this
case we see more difference between two approaches, in particular our results
show clear tendency for 〈cosφ〉 to decrease with Y , whereas [89] predicts flat
Y dependence of 〈cosφ〉. Instead, for the observable 〈cos(2φ)〉 the agreement
between two approaches turns to be rather good, see in Table 4.13 in the second
and in the third columns.

Similarly, we compared our predictions for C0 at present LHC energy
√
s = 7

TeV with those of Ref. [99]. The agreement is fair, except for the case Y = 10,
as shown in Table 4.14.

Traditionally the BFKL predictions are assumed to be compared with the fixed
order DGLAP ones, trying to find a kinematic range where possible experiment
can discriminate between these two approaches. For Mueller-Navelet process
the relevant parameter which can describe the separation of these two regimes is
η = ᾱs(|~kJ |)Y , which has the meaning of the mean number of hard undetected
partons inclusively produced in the process. For |~kJ | = 35 GeV and Y = 6÷ 10

this parameter takes the values η = 0.82 ÷ 1.37. In Section 4.3 we presented
also our predictions for smaller jets transverse momenta, |~kJ | = 20 GeV, where
η = 0.92÷1.53 for Y = 6÷10. In this case the BFKL description is expected to
give results more different with respect to the NLO DGLAP ones. We hope that
experiments with such Mueller-Navelet jet transverse momenta will be possible
in the future at LHC.

2Our LLA results coincide with those of [89] with high accuracy. We note, in passing,
that the results quoted in Tables 15, 19, 35, 38, 53 and 56 of Ref. [89], giving the coefficients
C1 and C2 for several values of the jet kinematics, should be multiplied by a factor two to
correctly reproduce the values of the ratios C1/C0 and C2/C0 quoted in other tables of that
paper. We stress that this normalization problem does not affect any of the comparisons
presented in this work between our results and those of Ref. [89].
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Our PMS optimization procedure for the kinematics considered gives us op-
timal energy and factorization scales values which are substantially larger than
the scale given by the kinematics, µ2

R = |~kJ1||~kJ2|. This fact indicates the pres-
ence of important contributions subleading to the NLA. Therefore the estimates
of the uncertainties in our predictions should be taken with care. Nevertheless
they reflect the reliability of PMS method in the considered kinematics. Note
that despite very large negative contribution to the MN- jets cross section com-
ing both from the NLA corrections to the BFKL kernel and NLA corrections to
the jet vertices with respect to LLA MN- jets cross section we got with our PMS
procedure rather precise results in all cases except for the 〈cos(2φ)〉 observable
at |~kJ1| = 20 GeV and |~kJ2| = 35 GeV and

√
s = 14 TeV. It would be very

interesting to confront our predictions with experiment.
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0.1
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C0

LLA
NLA
LLA Ref. [89]
NLA Ref. [89]
with LO IF

kJ1
= kJ2

= 35 GeV

Figure 4.4: Y dependence of C0 for |~kJ1 | = |~kJ2 | = 35 GeV at
√
s = 14 TeV.

Y C
(LLA)
0 C

(NLA)
0 Y0 nR C

(NLA/LO IF)
0 Y0 nR

6 1.468 0.613(37) 1 6 0.689(11) 1 12
7 1.990 0.675(16) 1 4 0.786(23) 1 6
8 1.142 0.299(13) 2 3 0.446(41) 1 2
9 0.2542 0.0496(28) 3 3 0.077(10) 1 2
10 0.01947 0.00257(18) 4 3 0.00479(79) 1 2

Table 4.1: Values of C0 in the LLA, in the NLA and in the NLA with LO impact fac-
tors for |~kJ1 | = |~kJ2 | = 35 GeV at

√
s = 14 TeV, corresponding to the data

points in Fig. 4.4. The optimal values of Y0 and nR = µR/

√
|~kJ1 ||~kJ2 |

for C(NLA)
0 are given in the fourth and fifth columns, while those for

C
(NLA/LO IF)
0 are given in the last two columns.
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Figure 4.5: Y dependence of C0 for |~kJ1 | = |~kJ2 | = 20 GeV at
√
s = 14 TeV.

Y C
(LLA)
0 C

(NLA)
0 Y0 nR

6 45.12 16.49(19) 1 6
7 80. 22.7(14) 1 3
8 67.65 14.48(77) 2 3
9 21.99 3.45(16) 2 3
10 3.187 0.360(14) 3 3

Table 4.2: Values of C0 in the LLA and in the NLA for |~kJ1 | = |~kJ2 | = 20 GeV at√
s = 14 TeV, corresponding to the data points in Fig. 4.5. The last two

columns give the optimal values of Y0 and nR = µR/

√
|~kJ1 ||~kJ2 |.
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Figure 4.6: Y dependence of C0 for |~kJ1 | = 20 GeV and |~kJ2 | = 35 GeV at
√
s = 14

TeV.

Y C
(LLA)
0 C

(NLA)
0 Y0 nR

6 6.515 1.800(24) 1 6
7 11.192 2.463(54) 1 5
8 8.361 1.395(30) 2 5
9 2.3214 0.2794(42) 1 8
10 0.2463 0.0212(10) 2 4

Table 4.3: Values of C0 in the LLA and in the NLA for |~kJ1 | = 20 GeV and |~kJ2 | = 35
GeV at

√
s = 14 TeV, corresponding to the data points in Fig. 4.6. The

last two columns give the optimal values of Y0 and nR = µR/

√
|~kJ1 ||~kJ2 |.
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Figure 4.7: Y dependence of C0 for |~kJ1 | = |~kJ2 | = 35 GeV at
√
s = 7 TeV.

Y C
(LLA)
0 C

(NLA)
0 Y0 nR

6 0.403 0.162(12) 1 3
7 0.405 0.130(13) 2 3
8 0.0984 0.0112(14) 3 3
9 0.005974 0.000834(79) 4 4
10 103.62 10−7 5.88(35) 10−7 5 6

Table 4.4: Values of C0 in the LLA and in the NLA for |~kJ1 | = |~kJ2 | = 35 GeV at√
s = 7 TeV, corresponding to the data points in Fig. 4.7. The last two

columns give the optimal values of Y0 and nR = µR/

√
|~kJ1 ||~kJ2 |.
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Figure 4.8: Y dependence of C1/C0 for |~kJ1 | = |~kJ2 | = 35 GeV at
√
s = 14 TeV.

Y (C1/C0)LLA (C1/C0)NLA Y0 nR (C1/C0)NLA/LO IF Y0 nR
6 0.3618 0.7124(97) 1 7 0.621(24) 2 10
8 0.171 0.608(10) 2 5 0.401(14) 2 5
10 0.080 0.525(21) 2 5 0.2854(98) 3 5

Table 4.5: Values of C1/C0 = 〈cosφ〉 in the LLA, in the NLA and in the NLA
with LO impact factors for |~kJ1 | = |~kJ2 | = 35 GeV at

√
s = 14 TeV,

corresponding to the data points in Fig. 4.8. The optimal values of Y0

and nR = µR/

√
|~kJ1 ||~kJ2 | for (C1/C0)

NLA are given in the fourth and
fifth columns, while those for (C1/C0)

NLA/LO IF are given in the last two
columns.
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Figure 4.9: Y dependence of C2/C0 for |~kJ1 | = |~kJ2 | = 35 GeV at
√
s = 14 TeV.

Y (C2/C0)LLA (C2/C0)NLA Y0 nR (C2/C0)NLA/LO IF Y0 nR
6 0.239 0.457(46) 1 4 0.350(30) 1 3
8 0.084 0.338(34) 2 3 0.216(14) 2 7
10 0.029 0.290(17) 4 6 0.1271(81) 3 12

Table 4.6: Values of C2/C0 = 〈cosφ〉 in the LLA, in the NLA and in the NLA
with LO impact factors for |~kJ1 | = |~kJ2 | = 35 GeV at

√
s = 14 TeV,

corresponding to the data points in Fig. 4.9. The optimal values of Y0

and nR = µR/

√
|~kJ1 ||~kJ2 | for (C2/C0)

NLA are given in the fourth and
fifth columns, while those for (C2/C0)

NLA/LO IF are given in the last two
columns.
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Figure 4.10: Y dependence of C1/C0 for |~kJ1 | = |~kJ2 | = 20 GeV at
√
s = 14 TeV.

Y (C1/C0)LLA (C1/C0)NLA Y0 nR
6 0.277 0.654(11) 1 10
7 0.181 0.589(59) 2 6
8 0.1183 0.5340(92) 2 5
9 0.077 0.460(17) 1 5
10 0.051 0.409(19) 1 5

Table 4.7: Values of C1/C0 = 〈cosφ〉 in the LLA and in the NLA for |~kJ1 | = |~kJ2 | = 20
GeV at

√
s = 14 TeV, corresponding to the data points in Fig. 4.10. The

last two columns give the optimal values of Y0 and nR = µR/

√
|~kJ1 ||~kJ2 |.
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Figure 4.11: Y dependence of C2/C0 for |~kJ1 | = |~kJ2 | = 20 GeV at
√
s = 14 TeV.

Y (C2/C0)LLA (C2/C0)NLA Y0 nR
6 0.165 0.401(22) 1 12
7 0.091 0.306(10) 1 3
8 0.0497 0.260(15) 2 6
9 0.027 0.229(15) 3 8
10 0.015 0.175(39) 3 4

Table 4.8: Values of C2/C0 = 〈cos(2φ)〉 in the LLA and in the NLA for |~kJ1 | = |~kJ2 | =
20 GeV at

√
s = 14 TeV, corresponding to the data points in Fig. 4.11. The

last two columns give the optimal values of Y0 and nR = µR/

√
|~kJ1 ||~kJ2 |.
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Figure 4.12: Y dependence of C1/C0 for |~kJ1 | = 20 GeV and |~kJ2 | = 35 GeV at√
s = 14 TeV.

Y C
(LLA)
1 /C

(LLA)
0 C

(NLA)
1 /C

(NLA)
0 Y0 nR

6 0.173 0.555(13) 1 8
7 0.129 0.530(25) 1 5
8 0.094 0.475(17) 2 5
9 0.068 0.387(11) 1 8
10 0.0481 0.3477(95) 1 9

Table 4.9: Values of C1/C0 = 〈cosφ〉 in the LLA and in the NLA for |~kJ1 | = 20
GeV and |~kJ2 | = 35 GeV at

√
s = 14 TeV, corresponding to the data

points in Fig. 4.12. The last two columns give the optimal values of Y0 and

nR = µR/

√
|~kJ1 ||~kJ2 |.
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Figure 4.13: Y dependence of C2/C0 for |~kJ1 | = 20 GeV and |~kJ2 | = 35 GeV at√
s = 14 TeV.

Y (C2/C0)LLA (C2/C0)NLA Y0 nR
6 0.060 0.284(30) 1 3
7 0.040 0.229(27) 1 3
8 0.026 0.190(19) 1 3
9 0.017 0.167(15) 3 3
10 0.010 0.127(16) 1 4

Table 4.10: Values of C2/C0 = 〈cos(2φ)〉 in the LLA and in the NLA for |~kJ1 | = 20
GeV and |~kJ2 | = 35 GeV at

√
s = 14 TeV, corresponding to the data

points in Fig. 4.13. The last two columns give the optimal values of Y0

and nR = µR/

√
|~kJ1 ||~kJ2 |.
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Y C
(NLA)
0 C

(NLA)
0 C

(NLA)
0

[Ref. [89]] [here] Y0 = 0, nR = 1
6 0.606 0.613 0.472
7 0.670 0.675 0.469
8 0.289 0.299 0.156
9 0.0474 0.0496 0.0144
10 0.00238 0.00257 −0.00064

Table 4.11: Comparison of our predictions for the observables C0 in the NLA for
|~kJ1 | = |~kJ2 | = 35 GeV at

√
s = 14 TeV with those of Ref. [89].

Y 〈cosφ〉NLA 〈cosφ〉NLA 〈cos(φ)〉NLA

[Ref. [89]] [here] Y0 = 0, nR = 1
6 0.851 0.7124 1.0866
8 0.777 0.608 1.409
10 0.753 0.525 −2.523

Table 4.12: Comparison of our predictions for the observables 〈cosφ〉 in the NLA for
|~kJ1 | = |~kJ2 | = 35 GeV at

√
s = 14 TeV with those of Ref. [89].

Y 〈cos(2φ)〉NLA 〈cos(2φ)〉NLA 〈cos(2φ)〉NLA

[Ref. [89]] [here] Y0 = 0, nR = 1
6 0.512 0.457 0.612
8 0.383 0.338 0.661
10 0.317 0.290 -1.037

Table 4.13: Comparison of our predictions for the observables 〈cos(2φ)〉 in the NLA
for |~kJ1 | = |~kJ2 | = 35 GeV at

√
s = 14 TeV with those of Ref. [89].

Y C
(NLA)
0 C

(NLA)
0

[Ref. [99]] [here]
6 0.172 0.162
7 0.135 0.130
8 0.0220 0.0112
9 0.0007502 0.000834
10 0.00001216 0.000000588

Table 4.14: Comparison of our predictions for the observable C0 for |~kJ1 | = |~kJ2 | = 35
GeV at

√
s = 7 TeV with those of Ref. [99].
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Appendix A

Table of Integrals

Fundamental integrals To obtain the results in the Chapter 3, we made
use of the following integrals:

•
∫

dD−2k
(
~k − ~q

)2

1

~k 2 +
(
~k − ~q

)2 =
1

2

∫
dD−2k

~k 2
(
~k − ~q

)2 (A.1)

= π1+εΓ (1− ε) [Γ (1 + ε)]2

εΓ (1 + 2ε)
;

•
∫
dD−2k

~k 2
θ
(

Λ2 − ~k 2
)

= π1+εΓ (1− ε) [Γ (1 + ε)]2

εΓ (1 + 2ε)
Λ2ε . (A.2)

Angular average Here we calculate the averaging over the relative angle
between the vectors ~k and ~q − ~k used in Eqs. (3.54) and (3.90):

∫
dD−2k

(1− β)~k ·
(
~k − β~q

)

~k 2
(
~k − β~q

) 2 =

∫
dD−2k

~k 2
θ

(
(1− β) |~k| − β|~q − ~k|

)
. (A.3)

If φ is the relative angle between the vectors ~k and ~q − ~k, we can write

~k = k (cosφ, sinφ) and
(
~q − ~k

)
= (q − k) (1, 0) . (A.4)

In this way

I =
〈(1− β)~k ·

(
~k − β~q

)

~k 2
(
~k − β~q

)2

〉
φ
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=
1

2π

∫ 2π

0

dφ
1− β
k2

(1− β) k2 − βk (q − k) cosφ[
(1− β)2 k2 + β2 (q − k)2 − 2β (1− β) k (q − k) cosφ

]

and using the complex variables ω = eıφ, we obtain

I =
1− β
2πk2

∮
dω

2ıω

2 (1− β) k2ω − βk (q − k) (1 + ω2)

(1− β)2 k2ω + β2 (q − k)2 ω − β (1− β) k (q − k) (1 + ω2)

= −1− β
2k2

1

2πı

1

β (1− β) k (q − k)

×
∮
dω

ω

2 (1− β) k2ω − βk (q − k)− βk (q − k)ω2

(
ω − (1−β)k

β(q−k)

)(
ω − β(q−k)

(1−β)k

) , (A.5)

with (1− β) |k| ≥ β|q − k|. Using the Residue Theorem we get

I =
1

k2
θ

(
(1− β) |k| − β|q − k|

)
. (A.6)
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