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Abstract

The main purpose of this study is the analysis of edge debonding in

beams strengthened with externally bonded �ber�reinforced polymers

(FRP ) composite plates. At �rst, the topic is introduced in general

terms by a literature review focused on composite materials main prop-

erties and modeling approaches. Then, an innovative multi�layer formu-

lation is considered and adapted to the present case study, and a coupled

failure criterion is extended to the case of delamination in mixed mode

loading condition.

The considered structural system is modeled as an assembly of three

physical components, namely the beam, the adhesive layer and the

bonded plate, each one being modeled by one or several �rst�order shear

deformable layers. Firstly, the problem is considered from an analytic

point of view by obtaining the governing equations when each physi-

cal layer is represented by a single mathematical layer. Secondly, the

proposed multi�layer formulation is implemented numerically by using

a multivariable 1D �nite element (FE) technique. In particular, strong

and weak interface constitutive relations are introduced to model the

physical and the mathematical interfaces between layers inside each phys-

ical components. As a result, interfacial stresses and fracture energies are

evaluated, obtaining reasonable agreement with results achieved by us-

ing a continuum FE model, and greatly reducing computational costs.

Then, debonding initiation is predicted by means of the novel mixed

mode coupled criterion, which takes into account both fracture energies



and interfacial stresses and enables to consider di�erent damage locations

across the adhesive thickness. Debonding propagation is then studied by

using a classic mixed mode fracture criterion. In addition, a parametric

numerical analysis is conducted by varying interface critical parameters,

such as fracture toughness and strength, in order to investigate the in�u-

ence of these properties on interfacial debonding. The studies here car-

ried out show that the present formulation is able to model strengthened

systems and to predict edge debonding. Indeed, the solution accuracy

can be improved by using more layers within each physical components

and by adopting the coupled strong/weak interface formulation, how-

ever it is proved that edge debonding initiation and propagation may

be also accurately predicted by using few layers to model each physical

components.

KEY WORDS: FRP , edge debonding, strong/weak interface, FE,

crack initiation, crack propagation.
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Sommario

L'oggetto principale della presente tesi di dottorato, è costituito dallo

studio dei fenomeni di scollamento d'interfaccia in sistemi di rinforzo

composti da elementi strutturali rinforzati da piastre in materiale com-

posito �brorinforzato (FRP ). L'argomento è inizialmente introdotto in

termini generali attraverso un'attenta ricerca bibliogra�ca, concentrata

sulla de�nizione delle principali proprietà dei materiali compositi e sulla

loro modellazione. Un'innovativa formulazione multistrato è poi pre-

sentata e adattata al caso oggetto di studio, e un criterio di frattura

accoppiato è esteso al caso di delaminazione in presenza di condizioni di

carico di modo misto.

Il sistema strutturale considerato è quindi costituito da tre compo-

nenti �sici, ossia la trave, lo strato di adesivo e la piastra incollata es-

ternamente, ciascuno dei quali è modellato attraverso uno o più strati

deformabili a taglio. Il problema è considerato in primo luogo da un

punto di vista analitico, attraverso la formulazione delle equazioni gov-

ernanti il problema nel caso in cui ad ogni componente �sico corrisponde

un solo strato matematico. La formulazione multistrato è poi implemen-

tata numericamente, utilizzando degli elementi �niti (FE) multivariabili

monodimensionali. In particolare, per modellare le interfacce tra gli

strati �sici e matematici sono considerate sia delle equazioni costitutive

di interfaccia forte che debole. Le tensioni interfacciali e le energie di

frattura sono quindi calcolate, ottenendo un'accettabile corrispondenza

con i risultati di un modello continuo FE e riducendo di molto gli



oneri computazionali. L'innesco dello scollamento è poi valutato gra-

zie all'innovativo criterio di frattura di modo misto, il quale permette di

prendere in considerazione sia le tensioni interfacciali che l'energia di frat-

tura, consentendo allo stesso tempo di studiare di�erenti posizioni dello

scollamento lungo lo spessore dell'adesivo. La propagazione del danno

è quindi studiata utilizzando un criterio classico di frattura in modo

misto. Uno studio parametrico, condotto al variare dei parametri crit-

ici dell'interfaccia quali la tenacità e la resistenza, ha in�ne permesso di

valutare l'in�uenza di tali proprietà sul fenomeno dello scollamento. Gli

studi condotti hanno evidenziato che la tecnica di modellazione proposta

permette sia di modellare tali sistemi di rinforzo, sia di predire lo scol-

lamento d'estremità. Inoltre, nonostante emerga che l'accuratezza della

soluzione può essere migliorata aumentando il numero di strati matem-

atici e adottando delle interfacce miste forti/deboli, è possibile concludere

che l'utilizzo di pochi strati nella modellazione di ogni componente �sico

permette di predire lo scollamento con ragionevole precisione.

PAROLE CHIAVE: FRP , scollamento, interfacce forti/deboli, FE,

multistrato, innesco della fessura.

x



Preface

Fiber�reinforced plastic (FRP ) strips, plates, and sheets are usually

adopted in many kinds of engineering applications such as structural

strengthening, seismic retro�tting, and repair of existing concrete or steel

structures. Usually, FRP plates are externally bonded to the tension

face of a concrete or steel beam by means of an adhesive layer, leading

to a �exural reinforcement for structural elements. When this innova-

tive technique is used to strengthen existing structures, a considerable

number of advantages in the structural performance may be obtained

in terms of strength and durability, despite the small changes in weight

and dimension of the structural system. The possibility to apply external

composite plates in the context of existing structures by using adhesive

joint, gives �exibility to the method, which can be adopted for a large

variety of structural elements such as beams, columns, frames, masonry

structures, and others.

In spite of the above mentioned advantages, the use of adhesively

bonded external FRP reinforcements exposes the strengthened structure

to additional catastrophic failure modes, mainly related to a decrease of

ductility. The obtained reinforced structural system, in fact, becomes

vulnerable to debonding failure modes involving the FRP layer, usually

associated with the initiation and growth of interfacial cracks at the

interface between the adhesive layer and the lower face of the beam.

Interfacial debonding, one of the critical failure modes for structural

elements reinforced by means of composite plates, is often caused by



high concentrations of normal and shear stresses at the end of the bonded

plate, or by bonding defects in the application of the FRP reinforcement.

Debonding of the reinforcement may thus start either from the edge of

the composite plate or from an intermediate �exural crack, and adhesive

substrate or adhesive/FRP interface debonding, can be experienced in

both steel and concrete strengthened systems.

The initiation and propagation of interfacial debonding mechanisms

critically a�ect the structural functionality of the structural element,

leading in many cases to the global failure of the layered element. As

a consequence, the capability of the adhesive layers and their interfaces

to join the components together and to transfer interfacial shear and

normal stresses is fundamental for an optimal structural performance of

such kinds of strengthened systems.

Within this framework, the present research work investigates the

onset and propagation of edge debonding for beams strengthened with

externally bonded FRP composite plates. The thesis may be divided

into two parts as follows. In Chapters 1 and 2, the topic is introduced in

general terms by presenting several aspects related to the problem. At

�rst, the composite material composition, the mechanics of composites

at micro� and macro� level, and the most common modeling theories

adopted are illustrated. Then, attention is focused on the application

of composite materials in the form of FRP plates in order to reinforce

structural elements. Typical failure modes encountered in these appli-

cations are presented and two main aspects necessary to analyze FRP

debonding are studied. The former is the prediction of the stress dis-

tribution at the interfaces between the di�erent structural components.

The latter is the evaluation of the fracture energies in mixed mode load-

ing condition related to the delamination growth. The complexity of the

subject arises from the fact that materials with di�erent properties are

bonded together. In fact, as a consequence, continuum elasticity pre-

dicts a stress �eld with oscillatory singularities near discontinuities, as

the plate ends and the crack tips, and classical decomposition of the En-
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Preface

ergy Release Rate (ERR) into its modal components is not allowed. In

order to overcome these problems, a multi�layer formulation combined

with interface elements is here presented and developed. In particular,

by using a variational approach, through the stationarity of the total

potential energy functional of the strengthened system, the equations

governing the problem are formulated. Therefore, by adopting a �rst�

order theory, which takes into account shear deformability, equilibrium

equations and boundary conditions are obtained in case of a three layer

assembly, composed by a base beam, an adhesive layer, and a bonded

plate. This analytical development is an original contribution of the

present study. The formulation is then generalized to the case of subdi-

vision of the physical elements into several mathematical layers, allowing

to directly decompose the ERR by virtue of concentrated forces, which

arise from the discontinuities in forces resultants at the crack tip.

In Chapters 3 and 4 a numerical investigation is carried out, by adopt-

ing the proposed multi�layer formulation in order to model reinforced

concrete beams strengthened by FRP plates. Two main aspects of nov-

elty with respect to the existing literature are introduced. The former

one is represented by the analysis of edge debonding onset, performed by

using an innovative mixed mode coupled criterion accounting for both

fracture energies (Mode I and Mode II) and interfacial stresses (normal

and shear). In particular, both pointwise and integral stress criteria are

accounted, and the compressive normal stresses are appropriately pe-

nalized. The proposed crack onset coupled criterion thus represents an

original extension of those introduced in the literature. As far as the lat-

ter aspect of novelty is concerned, the advanced multi�layer formulation

is adapted to the case of strengthened systems and implemented by using

one�dimensional elements. An assembly of �rst�order shear deformable

mathematical layers connected by appropriate interface layers (with zero

thickness) is considered, and one or several mathematical layers inside

each one of the three physical components (the beam, the adhesive layer

and the bonded plate) are used. Then, in order to model the two phys-
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ical interfaces (i.e. beam/adhesive and adhesive/plate) both strong and

weak interface constitutive relations are adopted, whereas for the math-

ematical interfaces between layers inside each physical components, a

strong interface formulation is employed. As a result, an e�ective de-

termination of both fracture and stress quantities, which are useful to

predict edge debonding onset and subsequent propagation at the relevant

location across the adhesive layer, is achieved. Meanwhile, compared to

two�dimensional models, shortcomings due to the presence of bi�material

interfaces are addressed, and computational cost are greatly reduced.
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Premessa

I materiali �bro rinforzati a matrice polimerica (FRP ) sono oggi-

giorno comunemente utilizzati sotto forma di strisce, piastre o pan-

nelli, in diverse applicazioni ingegneristiche, quali il rinforzo strutturale,

l'adeguamento sismico e la riabilitazione di strutture esistenti in calces-

truzzo armato o acciaio. Ad esempio, una piastra in FRP può essere

applicata, tramite uno strato di adesivo, sulla super�cie esterna di una

trave, in acciaio o in calcestruzzo, al �ne di rinforzarla strutturalmente.

Utilizzando quest'innovativo sistema di rinforzo, è possibile ottenere nu-

merosi vantaggi in termini di resistenza e durabilità, a fronte di lievi

modi�che di peso e dimensioni del sistema di partenza. La possibilità di

applicare gli FRP esternamente, rende inoltre questa tecnica estrama-

mente versatile, consentendone l'uso su una grande varietà di elementi

strutturali, quali ad esempio travi, colonne, telai e strutture in muratura.

A fronte di tali vantaggi, il rinforzo tramite FRP espone la struttura

a nuovi modi di collasso, legati principalmente alla diminuzione della dut-

tilità del sistema. Il sistema rinforzato infatti, risulta soggetto a fenomeni

di rottura dovuti al debonding tra la piastra in FRP e l'elemento strut-

turale stesso, il quale è generalmente associato con l'innesco e la crescita

di fessure all'interfaccia tra lo strato di adesivo e la super�cie della trave.

Lo frattura all'interfaccia, che rappresenta quindi uno dei modi crit-

ici di rottura degli elementi rinforzati da piastre in composito, è spesso

causato dalle alte concentrazioni di tensioni normali e tangenziali che

insorgono all'estremità della piastra incollata, o da problemi di incol-
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laggio derivanti dalla fase di messa in opera. Il debonding può quindi

innescarsi sia alle estremità della piastra in composito, sia in posizione

intermedia, traendo origine da fessure �essionali nel calcestruzzo, e sia a

livello dell'adesivo che delle interfacce tra l'adesivo e gli altri componenti,

in entrambi i casi di rinforzo di strutture in acciaio o in calcestruzzo.

L'innesco e la propagazione di questi meccanismi di frattura

all'interfaccia, in�uenzano in maniera altamente negativa la funzionalità

dell'elemento strutturale, portando in molti casi alla sua completa rot-

tura. Per questo motivo, la capacità dell'adesivo di connettere i diversi

componenti, e quella delle interfacce di trasferire le tensioni normali e

tangenziali, è di fondamentale importanza per ottenere delle elevate per-

formance strutturali.

All'interno di questo contesto, si inserisce il presente lavoro di ricerca,

il quale si occupa di analizzare l'innesco di estremità e la propagazione

del debonding di FRP applicati su elementi strutturali di tipo trave. Il

lavoro di tesi può quindi essere suddiviso in due parti, secondo quanto

segue. I Capitoli 1 e 2 si occupano di introdurre l'argomento da un

punto di vista generale, presentando diversi aspetti legati al problema.

In primo luogo, vengono quindi presentate la de�nizione e la compo-

sizione dei materiali compositi, la meccanica dei compositi alla micro

ed alla macro scala, e le più comuni teorie di modellazione utilizzate.

L'attenzione è poi posta sull'impiego dei compositi, sotto forma di pias-

tre in FRP , per il rinforzo strutturale. Sono quindi riportati i principali

modi di rottura generalmente riscontrati, e sono presentati due aspetti

di fondamentale importanza nello studio del debonding degli FRP . Il

primo, riguarda la valutazione della distribuzione delle tensioni alle inter-

facce tra i diversi elementi strutturali; il secondo, si riferisce invece alla

valutazione dell'energia di frattura di modo misto associata alla crescita

della delaminazione. In particolare, la complessità dell'argomento risiede

nel fatto che materiali con di�erenti proprietà meccaniche sono colle-

gati tra loro. Infatti, come conseguenza, la teoria dell'elasticità fornisce

un campo delle tensioni caratterizzato da una singolarità oscillatoria in
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Premessa

prossimità delle discontinuità, quali le estremità della piastra e l'apice

delle fessure, non consentendo inoltre di scomporre direttamente il tasso

di rilascio dell'energia (ERR) nelle sue componenti modali. Al �ne di

superare queste di�coltà, nella presente tesi sarà presentato e sviluppato

un modello multistrato, ad interfacce forti e deboli, capace di studiare il

fenomeno del debonding. In particolare, attraverso un approccio di tipo

variazionale, ossia grazie alla stazionarietà del funzionale energia poten-

ziale totale generalizzato del sistema rinforzato, è possibile ottenere le

equazioni che governano il problema. Quindi, tramite l'adozione di una

teoria del primo ordine, la quale tiene in conto della deformabilità a taglio

dei vari strati strati, le equazioni di equilibrio e le rispettive condizioni

al contorno sono ottenute nel caso di un assemblaggio composto da tre

layer matematici corrispondenti a quelli �sici, ossia la trave di base, lo

strato di adesivo e la piastra incollata. Questo sviluppo di tipo analitico

rappresenta uno dei contributi originali ivi introdotti. La formulazione

è poi generalizzata al caso di una suddivisione dei componenti in più

strati matematici, e verrà confermato che l'adozione dei modelli multi-

strato consente, sia analiticamente che numericamente, di decomporre

direttamente l'ERR grazie alla presenza di forze concentrate derivanti

dalle discontinuità nelle forze risultanti all'apice della fessura.

Nei Capitoli 3 e 4 è invece condotta un'analisi di tipo numerico, ap-

plicando la formulazione multistrato al caso di una trave in calcestruzzo

armato, modellata come un solido omogeneo, rinforzata da piastre in

FRP . In particolare, due sono gli aspetti di novità introdotti rispetto a

ciò che si ritrova nella letteratura esistente. Il primo aspetto è rappre-

sentato dallo studio dell'innesco dei fenomeni di frattura all'interfaccia,

attuata utilizzando un innovativo criterio accoppiato di modo misto, che

tiene in conto sia delle energia di frattura (Modo I e Modo II), sia delle

tensioni interfacciali (normali e tangenziali), in cui il criterio tensionale è

utilizzato in entrambe le forme, puntuale e integrale, e le tensioni normali

di compressione sono opportunamente penalizzate. Tale criterio accop-

piato, capace di predire l'innesco della fessura, rappresenta un'estensione
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originale dei criteri di frattura presenti nella letteratura. Il secondo as-

petto di novità, riguarda invece l'applicazione dei modelli multistrato al

caso di sistemi rinforzati e per mezzo di elementi monodimensionali. Un

assemblaggio di layer matematici, modellati con la teoria di deformabil-

ità a taglio del primo ordine, sono quindi connessi da strati di interfaccia,

a spessore nullo, e più layer matematici sono considerati all'interno dei

tre componenti di tipo �sico (la trave, l'adesivo e la piastra incollata).

Inoltre, al �ne di modellare le due interfacce �siche, ossia trave/adesivo

e adesivo/piastra, sono adottate delle equazioni costitutive di tipo forte

e debole, prendendo invece in considerazione delle sole interfacce forti

per strati matematici. Attraverso tale formulazione e modellazione, si

dimostrerà la possibilità di ottenere un'accurata previsione dei fenomeni

di innesco e successiva propagazione della delaminazione all'interno dello

spessore dello strato di adesivo. Allo stesso, l'utilizzo di tale strategia

consentirà di superare i limiti dei modelli bidimensionali, derivanti dalla

presenza di interfacce tra materiali di�erenti e riducendo considerevol-

mente i costi computazionali.
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Chapter 1

Structural application of

composite materials

This chapter essentially deals with the composite material properties

and behavior characterization. In Section 1.1, the principal composite

features are introduced in terms of classi�cations, materials and man-

ufacturing. In Section 1.2, the micro�mechanics of composites is ana-

lyzed, by passing from the microscopic to the the macroscopic models

through homogenization models and multiscale methods. Then, in Sec-

tion 1.3 the mechanics of composite material is presented. In particular,

the classical, the �rst�order shear deformation and the layerwise theo-

ries are explained in detail, together with some interface model and a

coupled interface/multi�layer model. Finally, in Section 1.4 some exam-

ple of composite materials applications in the civil engineering �eld is

illustrated.

1.1 Introduction

Composite materials are nowadays currently used in many engineering

�elds and adopted in several structural applications owing to their key

properties, as the high strength-to-weight and sti�ness-to-weight ratios.



Generally speaking, as composite material is identi�ed a material made

by combining two or more components of di�erent type. In particular,

the composites are constituted by a matrix and a �ller, where the matrix

holds the �llers together to form the bulk of the material. The matrix

consists in general of various epoxy type polymers, but also metal matrix

composites and thermoplastic matrix composites can be adopted. The

�ller is therefore embedded in the matrix, and it can be made by various

types of materials, such as carbon �bers, glass bead, sand, or ceramic.

This combination can be realized either in a macroscopic scale or in a

microscopic one. In the former case, the components can be easily identi-

�ed, in the latter the resulting material is macroscopically homogeneous.

Moreover, a composite types called hybrid can be realized when more

than one type of reinforcement component is used. A well designed com-

posite exhibits a better behavior with respect to that of the individual

constituents. For instance, it is possible to improve various properties

such as strength, sti�ness, corrosion and wear resistance, weight, fatigue

life, thermal and acoustical insulation, temperature-dependent behavior

and thermal conductivity.

1.1.1 Composite materials classi�cation

A composite material classi�cation adopted by Barbero [1] is below re-

ported. Depending on the main features of the composite itself, these

materials may be classi�ed depending on:

1. Reinforcement

� Continuous long �bers

(a) Unidirectional �ber orientation

(b) Bidirectional �ber orientation

(c) Random orientation

� Discontinuous �bers

(a) Random orientation

2
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(b) Preferential orientation

� Particles and whiskers

(a) Random orientation

(b) Preferential orientation

2. Laminate con�guration

� Unidirectional, including several layers with same material

and orientation

� Laminate, where some layers have di�erent orientation or are

made by di�erent material

3. Hybrid structure

� Di�erent materials in various layers

� Di�erent reinforcement in a layer

By just looking to the �ller component, [2], it is possible to distin-

guish therefore �ber, laminated and particulate composites. The Fibrous

composite materials are made by �bers embedded in a matrix. In partic-

ular, the �ller material has a length to diameter ratio, 1/d, greater than

one, and depending on the diameter ratio value they are subdivided in

short or long �ber composites. The Laminated composite materials are

realized by superposition of layer of di�erent materials, which means

that the �ller material is used in form of sheet. Formica countertop is an

example, where the matrix material is usually phenolic type thermoset

polymer, whereas the �ller may be any material such as craft paper

(Formica), canvas (canvas phenolic) and (glass �lled phenolic). Particu-

late composite materials are �nally those in which particles are inserted

and roughly rounded in a matrix. A classical example is the concrete,

where the cement is the matrix and the sand is the �ller.

The resulting properties are then represented by the combination of

the properties of each constituent, and highly depend on the type of

loading which acts on the composite itself.
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1.1.1.1 Fiber reinforced polymer composite materials, mate-

rials and manufacturing process

The major object of this thesis is the study of the reinforcement of struc-

tural elements by adopting the �ber reinforced polymer, or plastic, com-

posite materials, (FRP ). These composites are made by high strength

�bers, which cannot be used alone since they are not capable to sustain

compression or transverse load, embedded in or bonded to a matrix.

The matrix has the aim to keep the �bers in the required orientation, to

protect them from environmental damage and to transfer the load in the

medium, whereas the �bers are basically the load-carrying members. The

most common type of �ber-reinforced composite used in structural appli-

cations is a laminate, in which multiples thin layers of �bers and matrix

are superimposed to rich the desired thickness, and the �ber orientation

in each layer can be changed according to the design requirements, [3].

The main components of the �ber reinforced composite materials are

the �bers and the matrix, but also coupling agents, coating and �llers

can be adopted. Coupling agents and coating are used in order to fa-

vorite bonding across the �ber-matrix interface and to lead a better loads'

transfer, whereas �llers can be inserted in a polymeric matrix in order

to reduce costs and to improve dimensional stability. The manufacture

consists in the insertion of �bers in a thin layer of matrix to form a lam-

ina, or a ply, which thickness is generally in the range of 0.1 − 1 mm.

Since �bers occupy the largest volume fraction, the �ber type, length,

volume fraction and orientation in�uences several characteristics of the

laminate, such as density, tensile and compressive strength and modulus,

fatigue strength, fatigue failure mechanism, electrical and thermal con-

ductivity and cost. However, the �ber reinforced composite properties

depend on the direction of measurement, so that it is not an isotropic

material. For example, in case of unidirectional �ber reinforced polymer

many properties, such as the tensile strength and modulus, the impact

strength, the coe�cient of thermal expansion and the thermal conduc-

tivity, are maximum when measured in the longitudinal direction of the
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Chapter 1. Structural application of composite materials

�bers, whereas are minimums when measured in the transverse direction.

A way to obtain a more balanced set of properties is to use bi- or multi�

directional reinforcements. Moreover, by using short �bers set randomly,

it is possible to obtain equal mechanical and physical properties in all

direction in the plane of the lamina.

Materials

Glass, carbon and aramid are the principal �bers in commercial

use, but also boron, silicon carbide, and aluminum oxide �bers can be

adopted. The matrix may be a polymer, a metal, or a ceramic material,

[4]. All materials are produced at high temperatures and require a spe-

cialized industrialization process. In fact, after that the �ber �laments

are produced, they require a post process in order to realize strands,

sheets, fabrics and mats. Similarly, the polymer is generally blended

with other resins and mixed with some additives.

Glass Fibers: this �bers are used to made FRP reinforcing bars,

strengthening fabrics and structural pro�les. The diameter of a single

�ber goes from 3 to 24 µm, it has a white color and is generally considered

as an isotropic material. Glass �bers are very sensitive to moisture,

especially in presence of salt and elevated alkalinity, so that they must

be well protected by the resin. Anyway, glass �ber are very well thermal

and electrical insulating materials, and are the most inexpensive among

the others high performance �bers.

Carbon Fibers: they are used in FRP strengthening sheets, fabrics,

strips and in prestressing tendons. A single �ber has a diameter from 5

to 10 µm with a charcoal black color. They are considered to be trans-

versely isotropic, since they show di�erent properties in longitudinal and

transverse direction. Carbon �bers own high durability and perform

well at high temperature, in presence of moisture and when subjected to

fatigue. They have a low coe�cient of thermal expansion in the longitu-

dinal direction but they are thermal and electrical conductors.

Aramid Fibers: these �bers, used to produce the �rst prestressing

tendons, are sometimes also adopted to wrap columns or to be inserted
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as sparse �ller in unidirectional glass or carbon FRP . Aramid �bers

have very high tenacity and toughness, a negative coe�cient of thermal

expansion in the longitudinal direction, and they are lighter with respect

to the others �bers. However, due to the elevate production cost, the

di�cult manufacture, the high moisture absorption and the low strength

to compression, they are less used then the other �bers.

Unsaturated polyester resins: they are used to realize pultruded FRP

pro�les and rebars. Although these resins are recommended when high

corrosion resistance is required, epoxy resins are preferred owing to their

adhesive properties, low shrinkage and environmental durability.

Epoxy resins: they are used in many applications, especially in car-

bon FRP strips. Epoxy resins ares also used to bond precured FRP

strips to concrete and to dry �bers sheets in order to attach them to a

surface. They are very resistant to corrosion and experience less shrink-

age than the others resins. For this reason, they are less a�ected by

thermals loads and can be used at high temperatures.

Vinylester resins: they are characterized by good corrosion resistance

and easy manufacture, in particular they are use especially to make FRP

rebars and pro�les. A vinylester resin is a hybrid of an epoxy and an

unsaturated polyester resin, which leads to various advantages in terms

of properties and production process. On the other end, these resins are

more expensive then the others.

Phenolic resins: they are the oldest used thermosetting resins. How-

ever, the phenolic resins have only recently started to be used for FRP

products for structural engineering, owing to the di�culty of reinforcing

them and curing them by condensation polymerization.

Polyurethane resins: they have recently been produced in high-

density forms to be used in resin molding and pultrusion operations.

Polyurethane resins have high toughness and lead to composites with

high transverse tensile and impact strengths but, like the vynilester

resins, they are very expensive.
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Manufacturing process

The main manufacturing techniques used to produce the FRP com-

posite materials adopted in structural engineering are the pultrusion and

the hand layup or wet layup method, [4]. The pultrusion is an industrial-

ized process, in which the FRP composites are produced in a factory and

then installed in situ. Conversely, the hand layup is a manual method,

where the FRP are manufactured in situ at the same time of the instal-

lation. The pultrusion is used especially in case of FRP reinforcing bars,

strengthening strips and pro�les, whereas the hand-layup method is used

to manufacture and install dry �ber strengthening sheets and fabrics.

1.2 Micromechanics of composite materials

1.2.1 Microscopic models

With the aim to well characterize the composite materials behavior, it

is essential to analyze the composite itself at a microscopic level. By

means of a micromechanics approach it is possible to evaluate the inter-

action between the various composite components, and to represent an

heterogeneous material as an homogeneous when a macro�scale is con-

sidered, [5]. In particular, the micromechanics formulation that will be

here presented is valid under the following basic assumptions, [6]:

� the �bers and the matrix are perfectly bonded;

� the �bers are parallels and uniformly distributed across the com-

posite layer;

� the matrix does not contain voids or microcracks and is initially in

a stress�free state;

� �bers and matrix behave as isotropic elastic materials;

� the external loads are applied perpendicularly or in parallel to the

longitudinal �ber direction.
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1.2.1.1 Fiber and matrix fractions

By looking at the composite material constituents, it is possible to de�ne

the �ber volume fraction and the matrix volume fraction, which represent

the ratio of the �ber and the matrix volume, Vf and Vm, respectively, to

the total volume, VT :

V̄f =
Vf
VT
, V̄m =

Vm
VT

,

V̄f + V̄m = 1

(1.2.1)

In a similar manner, it is possible to de�ne the �ber weight fraction

and the matrix weight fraction as the ratio of the �ber and the matrix

weight, Wf and Wm, respectively, to the total weight, WT :

W̄f =
Wf

WT
, W̄m =

Wm

WT
,

W̄f + W̄m = 1

(1.2.2)

The density of the composite may be evaluated from the �bers and

mass density, ρf and ρm, respectively, and either the correspondent vol-

ume or weight, as follows:

ρc = ρf V̄f + ρmV̄m

1

ρc
=
W̄f

ρf
+
W̄m

ρm

(1.2.3)

From a practical point of view, the weight fraction is easier to com-

pute than the volume fraction during the manufacturing process. How-

ever, it is possible to pass from one to another by applying the following

simple relationship:

W̄i =
ρi
ρc
V̄i (1.2.4)

where i can be referred either to the �ber or the matrix constituent, or

whatever else component constituting the composite.

Owing to the presence of voids in the composite, the total density
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can be di�erent from the actual evaluated experimentally, ρc,exp. The

void volume fraction can be therefore expressed as [5]:

Vv =
ρc − ρc,exp

ρc
(1.2.5)

1.2.1.2 Representative volume element

The evaluation of the composite properties starts from the analysis of

the micro�constituents properties. In order to reduce the computational

e�orts, the concept of Representative volume element, RV E, was in-

troduced. The RV E is de�ned as a material volume that represents

statistically the in�nitesimal material neighborhood of a material point

of a continuum mass. The continuum material point is called a macro�

element, whereas the micro�constituents of the RV E are called micro�

elements.

A macro�element is characterized by a complex microstructure, with

grains, inclusions, voids, cracks and other defects. For this reason, to be

the RV E statistically representative of the local continuum properties,

it must be include a lot of micro�elements. As a consequence, it is nec-

essary to de�ne two length scales, one is the macro�length scale, which

measures the in�nitesimal material neighborhood, the other one is the

micro�length scale, which corresponds to the size of the smallest micro�

constituent who e�ects the global properties of the macro�element. The

dimensions of the macro�element, D, and of the micro�element, d, dif-

fer by orders of magnitude, with D/d >> 1. In general, as reference

dimensions can be chosen the layer thickness and the �ber spacing, [1].

In Fig. 1.1, the typical RV E which may be adopted for a composite

with a rectangular or a hexagonal packing array is shown. Others de-

tails in terms of RV E characteristics and scales were deeply examined

by Nemat�Nasser & Hori [7].

Since the RV E components are heterogeneous, stresses and strains

within the RV E are nonuniform. However, if a scale larger than those

of the RV E is considered, it is possible to replace the volume occupied
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Figure 1.1: RVE for a) rectangular and b) hexagonal packing arrays

by the RV E, or vice versa, with another one made by homogeneous

material without a�ect the stress state around the RV E, [1], as it is

shown in Fig. 1.2.

Figure 1.2: Homogeneous material replacing a) the RVE and b) all struc-
ture but the RVE

1.2.1.3 Components' sti�ness

A material is homogeneous when its properties are independent by po-

sition, on the contrary, if the properties are function of the position,

it is said to be heterogeneous. Moreover, a material is isotropic when

all properties in a point are independent of the directions, otherwise it

is said to be anisotropic. In particular, the analysis of the composites

materials is within the framework of anisotropic elasticity.

Generally speaking, depending on the material planes of elastic sym-
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metry, a material can be anistropic, orthotropic, transversely isotropic or

isotropic. An anisotropic material has no plane of elastic symmetry, an

orthotropic material three mutually orthogonal, a transversely isotropic

has one axes of symmetry and for an isotropic material all planes are

plane of symmetry. The way in which this subdivision in�uences the

elastic properties of the material will be presented in Section 1.2.4 .

In the analysis of composite materials properties, the microscopic

components, such as the �bers and the matrix, are assumed to be

isotropic. In particular, an isotropic material is characterized by equals

properties in all directions and, in order to fully describe its elastic prop-

erties, is necessary to consider only two elastic constants, i.e. the Young

modulus and the Poisson's ratio, E and ν, respectively. E and ν are also

related to the shear modulus by the following well�known relation:

G =
E

2(1 + ν)
(1.2.6)

The combination of these two isotropic materials leads to an equiv-

alent homogeneous anisotropic material, whose properties vary with the

direction considered. In particular, since the composite laminate is as-

sumed to be orthotropic, the sti�ness of the material is described by �ve

elastic constants, [1]:

� E1 Young modulus in the longitudinal �ber direction

� E2 Young modulus in the transverse �ber direction

� ν12 in�plane Poisson's ratio

� G12 in�plane shear modulus

� G23 out�of�plane shear modulus
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Young modulus in the longitudinal �ber direction

In general, �ber and matrix are assumed to be perfectly bonded, so

that they experience the same strains in the �ber longitudinal direction.

Under this assumption, the Young modulus in the �ber direction, E1, can

be evaluated by adopting the rule of mixtures formula, [1]. In particular,

the strain under axial load is de�ned as:

ε1 =
∆L

L
(1.2.7)

in which ∆L is the �ber and matrix elongation and L the length of the

considered RV E. By using the stress�strain relation in case of isotropic

elastic material, such are supposed to be the �ber and the matrix, the

stresses are given by:

σf = Ef ε1, σm = Emε1 (1.2.8)

The total load applied on the RV E is:

P = σ1A = σfAf + σmAm (1.2.9)

where σ1 is the average stress acting on the whole cross section of the

RV E, with A = Af + Am. By substituting Eq. (1.2.8) into Eq. (1.2.9)

and dividing by A, σ1 can be expressed as:

σ1 = ε1

(
Ef

Af
A

+ Em
Am
A

)
= ε1(EfVf + EmVm) (1.2.10)

where Vf and Vm are the �ber and the matrix volume fraction, re-

spectively. Since for an homogeneous material the Hook's law leads to

σ1 = E1ε1, it follows that the elasticity modulus can be expressed as:

E1 = EfVf + EmVm (1.2.11)
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which, by applying the second of Eq. (1.2.1), becomes:

E1 = EfVf + Em(1− Vf ) (1.2.12)

The elastic modulus E1 varies hence linearly with Vf and is domi-

nated by the �ber contribute.

Young modulus in the transverse �ber direction

The equilibrium in the transverse is guaranteed by the assumption of

uniform stress in the �ber and in the matrix. In addition, this condition

allows to determine the Young modulus in the transverse �ber direction.

The components' strains under the hypothesis of linear elastic material

are:

εf =
σf
Ef

, εm =
σm
Em

(1.2.13)

The average strain ε2 act on the width the W of the RV E, the

strains εf and εm on the portions VfW and VmW , respectively. The

total elongation in the transverse direction is therefore given by:

ε2W = εfVfW + εmVmW (1.2.14)

By substituting Eq. (1.2.13) into Eq. (1.2.14) and considering σ =

σ2 = σf = σm, the average strain can be expressed as:

ε2 =
σ2

Ef
Vf +

σ2

Em
Vm (1.2.15)

which, by virtue of the Hook's law, leads to:

1

E2
=
Vm
Em

+
Vf
Ef

(1.2.16)

From Eq. (1.2.16), it appears that E2 is dominated by the matrix

elastic modulus. However, Eq. (1.2.16) it is proved to underestimate the

Young modulus and Barbero [1] suggests to use it only for qualitative

estimations. He reports then a semi�empirical formula to be choose in a
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design process:

E2 = Em

[
1 + ζηVf
1− ηVf

]
, η =

(Ef/Em)− 1

(Ef/Em) + ζ
(1.2.17)

where ζ is an empirical parameter which, for circular �ber, can be taken

equal to 2.

In�plane Poisson's ratio The Poisson's ratio νij is de�ned as the ratio

of the strain in the j�th direction when stressed in the i�th direction,

namely

νij = −εj
εi

(1.2.18)

With reference to a composite material, the Poisson's ratio can be

therefore rewritten as:

ν12 = νfVf + νmVm (1.2.19)

In�plane shear modulus In a similar way, it is possible to express the

in�plane shear modulus as:

1

G12
=
Vm
Gm

+
Vf
Gf

(1.2.20)

According to Eq. (1.2.20), also G12 in presence of sti� �bers depends

mostly on the matrix. Eq. (1.2.20) can be also rearranged in:

G12 =
Gm

Vm + VfGm/Gf
(1.2.21)

where the shear modulus can be evaluated from Eq. (1.2.6). However,

Barbero, [1], reports another more accurate formula for the G12 estima-

tion, that is:

G12 = Gm

[
(1 + Vf ) + (1− Vf )Gm/Gf
(1− Vf ) + (1 + Vf )Gm/Gf

]
(1.2.22)
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Out�of�plane shear modulus The out�of�plane or interlaminar shear

modulus G23 can be evaluated in the following manner:

G23 = Gm
Vf + η23(1− Vf )

η23(1− Vf ) + VfGm/Gf

η23 =
3− νm +Gm/Gf

4(1− num)

(1.2.23)

Finally, it is assumed G13 = G1, which is an exact solution for trans-

verse isotropic material whose axis of symmetry coincide with the longi-

tudinal �ber direction.

A method able to correct not accurate formula by using experimental

evidences can be found in [1], as well as the evaluations of thermal and

strength properties.

1.2.2 Homogenized models

The heterogeneity of the composite materials leads to the challenging

need of establish a rigorous methodology able to predict the composite

e�ective properties. As a matter of fact, the composite properties di�er

by the properties of the individual constituents and, although the indi-

vidual constituents of the composite material may have a linear elastic

behavior, the response of the macro�element is in general inelastic and

history�dependent, [7]. This issue arises from the presence of defects such

as �aws, microcracks, damage at matrix�inclusion interfaces and cavities.

In fact, when the defects develop during deformation within the RV E,

the RV E microstructure changes, leading to the nonlinear behavior of

the macro�elements. A direct evaluation of the composite global proper-

ties can be carried out by experimental investigations, which however are

often expensive and impractical. A valid alternative to the experimen-

tal tests is constituted by the adoption of the so called homogenization

techniques, which are aimed to replace the heterogeneous constituents of

the composite with an equivalent material.

The homogenized models proposed in the literature can be basically
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classi�ed into analytic and numerical methods. In particular, most of the

analytic approximate solutions are based on the self�consistend methods,

where the material is treated as an initially homogeneous material with

inclusions of di�erent materials. However, these methods, which are

reviewed by Hollister and Kikuchi in [8], may be laborious to apply.

On the other hand, the numerical methods are based on the �nite ele-

ment method (FEM), and they may be classi�ed into two categories,

the average��eld theory and the homogenization theory, for a complete

treatise please see Hori and Nemat�Nasser [9] and Nevone Blasi [10].

The Average��eld theory represents a physics approach to the ho-

mogenization problem. According to this theory, the macro��elds are

de�ned as the volume averages of the micro��elds, so that the e�ec-

tive properties of the composite are evaluated from relations between

the averaged micro��elds. This approach arises from the experimental

evidence on the behavior of microscopically heterogeneous samples. In

fact, it appears that the e�ective mechanical properties of such a samples

derive from relations between the strain and the stress volume averages.

On the contrary, the homogenization theory is mathematical ap-

proach based on mathematical relations beetween the micro� and the

macro��elds by means of a multiscale perturbation method.

In the homogenization theory, the di�erential equations governing

the problem, which coe�cients vary rapidly, are replaced by di�erential

equations with constant or slowly varying coe�cients. This limit theory

is therefore based on asymptotic expansion and on the assumption of

periodicity, [11].

The homogenization method consists of two step. First, the problem

is solved at a local level within a unit cell, and the e�ective material

properties are obtained. Then, the homogenized material is considered

and the boundary value problem is solved.
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1.2.2.1 Problem setting

Let's de�ne a relative length scalar parameter ε as:

ε =
D

d
>> 1 (1.2.24)

where D and d are the dimensions of the macro� and micro�element,

respectively, as shown in Fig. 1.3.

Figure 1.3: Schematic representation of a heterogeneous material

Let X be a point within a volume B. The elasticity tensor Cε =

Cε(X) varies highly with the point location, and the superscript ε de-

notes a variability at the ε scale. Also the displacement, the strain and

the stress �elds vary with X:
uε = uε(X),

εε = εε(X),

σε = σε(X)

(1.2.25)

Owing to the di�erent scale of micro� and macro�elements, it is pos-

sible to neglect the body forces, and the equilibrium of the body B can
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be expressed as: 
∇(σε) = 0,

εε(X) = sym(∇⊗ uε(X)),

σε(X) = Cε(X) : εε(X)

(1.2.26)

where ⊗ is the tensor product, and sym(∇ ⊗ uε(X)) denotes the sym-

metric part of the displacement �eld gradient. If surface displacements

are assigned on the boundary, namely u = u0 on ∂B, the following

boundary�value problem is obtained:

∇(Cε(X) : (∇uε(X))) = 0 in B,

uε(X) = u0(X) on ∂B
(1.2.27)

However, the above presented boundary�value problem cannot be

easily solved since Cε(X) varies rapidly within the micro�scale d. A mi-

cromechanics theory, which introduces stress and strain �elds varying at

the macro�scale D, may be therefore adopted. In particular, the consid-

ered �elds will be denoted as macro�elds and micro�elds depending on

the scale of variation, namely D and d.

1.2.2.2 Average��eld theory

The average-�eld theory is based upon the representative volume ele-

ment concept, which was presented in Section 1.2.1.2. The material

e�ective properties are obtained as relations between the strains and

stresses �elds evaluated from the RV E surface displacements and trac-

tion, respectively. In particular, these strains and stresses correspond to

the volume average of those obtained within the RV E. Therefore, for a

compatible strain and a self�equilibrating stress, ε and σ, respectively,
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the averaging theorem leads to, [9]:

< ε >V =
1

V

∫
∂V
sym(n⊗ u) dS,

< σ >V =
1

V

∫
∂V

t⊗ x dS

(1.2.28)

where < >V is the volume average taken over the volume V of the RV E,

n is the unit outward normal on the boundary ∂B, u and t are the surface

displacement and traction.

Macro�elds of average��eld theory

The macro�elds variables are therefore de�ned as the weighted av-

erages of the correspondents micro�elds evaluated on the RV E. It is

now introduced a weight function, φV = φV (x), which has the following

properties: ∫
φV dV = 1,

φV =

 1
V in V,

0 on ∂V

(1.2.29)

The macrodisplacement, macrostrain, and macrostress �elds can be

thus expressed as:
Uε(X)

Eε(X)

Σε(X)

 =

∫
B
φV (X−Y)


uε(Y)

εε(Y)

σε(Y)

 dVY (1.2.30)

where the weight function φV prevents the oscillations of the �eld vari-

ables that may be appear at the micro�scale. Moreover, the macrostrain

and macrostress have to satisfy the compatibility and the equilibrium

equations within the volume B, so that:

Eε(X) = sym(∇⊗Uε(X))

∇ ·Σε(X) = 0
(1.2.31)
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Once that an e�ective elasticity tensor of the homogeneous material,

namely C̄, is found, a constitutive relation between macrostress and

macrostrain �elds may be stated as follows:

Σε(X) = C̄ : Eε(X) (1.2.32)

As a consequence, the following boundary�value problem is obtained: ∇ · (C̄ : (∆⊗Uε(X)) = 0 in B

Uε = u0 on ∂B
(1.2.33)

The e�ective elasticity tensor, which relates the volume average of the

microstrains and the microstresses, can be in turn expressed in terms of

a strain concentration tensor, A. The strain concentration tensor relates

the average strain of the inclusion and of the RV E, < ε >I and < ε >V ,

respectively, according to:

< ε >I= A < ε >V (1.2.34)

The e�ective elasticity tensor may be therefore expressed as:

C̄ = CM + f(CI −CM ) : A (1.2.35)

where f is the inclusion phase volume fracion, and CM and CI are the

elasticity tensor of the matrix and of the inclusion phase, respectively.

Statistical homogeneous material

Let's de�ne as a statistical homogeneous material, a material in which

the probability of �nding a phase at a point does not depend on the point

itself, [9]. If an heterogeneous material is statistical homogeneous, then

Eq. (1.2.32) holds, that is it exists an e�ective elasticity tensor which

relates the weighted average stress and strain within the body.

Therefore, also the average strain energy and the average strain are
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linked together by this elasticity tensor in the following manner:

1

2
Eε(X) : C̄ : Eε(X) =∫
B
φV (X−Y)(

1

2
εε(Y) : Cε : εε(Y) dVY

(1.2.36)

By de�ning the strain energy as:

< ε : σ >V =
1

V

∫
∂V

t · u dS (1.2.37)

the averaging theorem for the strain energy proves the validity of Eq.

(1.2.36), in fact:

< ε : σ >V − < ε >V :< ε >V

=
1

V

∫
∂V

(u− x· < ε >) · (t− n· < σ >) dS
(1.2.38)

where the right side of Eq. (1.2.38) vanishes as the size of the RV E

volume, V , increases within a statistically homogeneous material. For

this reason, when the RV E is su�ciently large in such a material, it is

possible to assume that Eq. (1.2.36) is valid since the average weighted

by ψV and the unweighted volume average are almost the same.

However, in case of homogeneous strain or stress boundary condi-

tions: u = x · ε0 homogeneous strain

t = n · σ0 homogeneous stress
on ∂V (1.2.39)

the right side of Eq. (1.2.38) vanishes also when the material is not statis-

tically homogeneous, but the obtained strain and the stress �elds within

the RV E are di�erent. This issue implies that the e�ective elasticity

tensor depends on the boundary conditions, and the so�called universal

21



inequalities, [7], hold:

< εΣ : C : εΣ >V≤< εG : C : εG >V≤< εE : C : εE >V (1.2.40)

where (εΣ, εG, εE) are the average strain �elds when the RV E bound-

ary is subjected to homogeneous strain, mixed and homogeneous stress

boundary conditions, respectively.

To explain this expression it may be considered that, since the strain

and stress �elds within the RV E depend on the boundary conditions

adopted to solve the boundary value problem, the assumed boundary

conditions may be not representative of all the possible boundary con-

ditions to which the RV E is subjected. In particular, the more the

boundary conditions represent the all possible boundary conditions, the

more the achieved results are accurate. Consider the case where the in�

situ boundary conditions are di�erent from the applied but lead to the

same average RV E strains (displacement prescribed on the boundary).

Due to the principle of minimum strain energy, the average sti�ness pre-

dicted by the average��eld analysis is greater than the actual sti�ness.

In fact, whereas the in�situ boundary conditions minimize the energy,

the assumed boundary conditions are admissible but give higher energy.

Since the strain is the same, a higher energy is produced by higher av-

erage stress within the RV E. In the same manner, it can be considered

the case in which the applied boundary conditions lead to the same av-

erage RV E stresses (traction prescribed on the boundary). According

to the principle of minimum complementary energy, in this situation the

homogeneous traction boundary conditions will produce a higher com-

plementary energy than an in�situ traction condition, which leads to a

lower sti�ness. Therefore, the analyses under given displacements and

traction on the boundary gives an upper bound and a lower bound, re-

spectively, of the actual sti�ness, [8].

As a consequence, in order to well de�ne the e�ective elasticity tensor,
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Chapter 1. Structural application of composite materials

the chosen RV E must leads to:

< εΣ : C : εΣ >V − < εE : C : εE >V → 0 (1.2.41)

1.2.2.3 Homogenization theory

A heterogeneous material has a regular periodicity when some physi-

cal characteristic is represented by a function that repeats its values in

regular intervals:

F (X + NY) = F (X) (1.2.42)

where X = (X1, X2, X3), is the position vector of a point, N =

sym(n1, n2, n3) is a 3 × 3 diagonal matrix which components are in-

teger numbers, Y = (Y1, Y2, Y3)T is a constant vector representing the

period, and F can be a scalar, a vectorial or a tensioral function of the

position vector X.

For a composite material with periodic structure, the constitutive

relation can be therefore expressed as:

σij = cijhk(X + NY)εhk (1.2.43)

Since in the homogenization theory the period Y is very small with

respect to the whole domain dimension, the characteristics of the body

vary rapidly in a neighborhood of the point X. The dependence of the

parameters on the two scales, the macro� and the micro�scale, leads

therefore to rapid oscillations. In particular, by denoting as g a generic

function, according to Eq. (1.2.24), we may say that g = g(D,D/ε) =

g(D, d).

Let's consider a function Φ(x) of a physical quantity of a heteroge-

neous material. It is possible to consider its oscillations at a double scale,

and the parameter ε gives us information about the proportion between

them, [11]. By adopting this double-scale technique, the coe�cients of

the partial governing equations governing the problem may be expressed

as a(D/ε) or a(d), and the obtained boundary problem may be solved
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by expanding asymptotically the solution in powers of the parameter ε.

The function Φ(x) can be therefore written as:

Φε(X) = Φ0(X,x) + εΦ1(X,x) + ε2Φ2(X,x) + ... (1.2.44)

where X = (X1, X2, X3) and x = (x1, x2, x3) are the macroscopic and the

microscopic coordinate system, respectively, of a composite with periodic

structure. The domain of such a body, it may be also seen as composed

by a sequence of periodic cell of dimension εY1, εY2, εY3, where Y1, Y2, Y3

are the base cell side in the local coordinate system. Moreover, the

functions (Φ0(X,x),Φ1(X,x), ...) are smooths with respect to X and

Y �periodic in x, so that they take the same value at the opposite sides

of the parallelepiped base cell.

Homogenization theory basic equations

Let's consider the problem presented in Section 1.2.2.1, the displace-

ment �eld may be therefore expanded asymptotically with respect to the

parameter ε in the following manner:

uε(X) ≈
∑
n=0

εnun(X,x) (1.2.45)

By applying the following chain rule to a �eld variable which depends

on the two scales,

∂Φ(X,x = X/ε)

∂Xi
=
∂Φ(X,x)

∂Xi
+
∂Φ(X,x)

∂xk

∂xk
Xi

=

=
∂Φ(X,x)

∂Xi
+

1

ε

∂Φ(X,x)

∂xi

(1.2.46)

the ∇ operator can be expressed as:

∇(◦) = ∇X(◦) + ε−1∇x(◦) (1.2.47)

By substituting then Eq. (1.2.47) into the governing equations Eq.
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Chapter 1. Structural application of composite materials

(1.2.27) and after some manipulation, [9], one obtains:

ε−2[∇x · (C(x) : (∇x ⊗ u0(X,x)))]+

+ ε−1[∇X · (C(x) : (∇x ⊗ u0(X,x)))+

+∇x ·C(x) : (∇x ⊗ u0(X,x) +∇x ⊗ u1(X,x))]+

+
∑
n=0

εn[∇X · (C(x) : (∇X ⊗ un(X,x) +∇x ⊗ un+1(X,x))+

+∇x · (C(x) : (∇X ⊗ un+1(X,x) +∇x ⊗ un+2(X,x))] = 0

(1.2.48)

To solve Eq. (1.2.48), it is assumed that u0 is function only of the

macro�scale length X, and for u1 is assumed a periodic behavior at the

micro�scale x, that is:u0 = u0(X)

u0(X,x) = χ1(x)(∇X ⊗ u0(X))
(1.2.49)

where χ1 is a third�order symmetric tensor periodic with respect to x.

The terms O(ε−2) vanish, and the O(ε−1) take the following form:

[∇x · (C(x) : (∇x ⊗ χ1(x) + 1(4s)))] : (∇X ⊗ u0(X)) (1.2.50)

where 1(4s) is the fourth�order symmetric identity tensor. Since the

terms in Eq. (1.2.50) must vanish in the same manner for X and x, the

tensor χ1 must satisfy the following condition with periodic boundary

conditions:

∇x · (C(x) : (∇x ⊗ χ1(x) + 1(4s))) = 0 (1.2.51)

χ1(x)(∇X ⊗ u0(X)) represents therefore a microscopic displacement

�eld correspondent to the not equilibrate stress �eld C : (∇X ⊗ u0(X)),

for further details please see Hori et al. [9]. Once that the tensor χ1

is evaluated, in Eq. (1.2.48) only the O(ε0) terms left. By rearranging

the equation, and by taking the volume average over the unit cell, the
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governing equations can be expressed in terms of u0:

∇X · (C̄0 : (∇X ⊗ u0(X) = 0 on B (1.2.52)

where

C̄0 =
1

U

∫
U

C(x) : (∇⊗ χ1(x) + 1(4s))) dV (1.2.53)

In this way, if it is assumed that u0 ≈ uε, a boundary�value problem

for u0 is obtained, where u0 is prescribed on ∂B.

Macro�elds of homogenization theory

The u0(X) term represents the macro�displacement in the average�

�eld theory, whereas the εu1 term gives a small contribute since it van-

ishes over the unit cell due to the χ1 periodicity.

The strain and the stress �eld can be also asymptotically expanded

and, by relating the leading terms of the expansion to u0 and χ1, they

can be expressed as:

ε0(X,x) = sym{∇X ⊗ u0(X)}+

+ sym{∇x ⊗ χ1(x)} : (∇X ⊗ u0(X)),

σ0(X,x) = C(x) : (∇x ⊗ χ1(x) + 1(4s)) : (∇X ⊗ u0(X))

(1.2.54)

Owing to the periodicity of χ1, the volume average of the strain and

the stress �eld taken over the unit cell U can be expressed as:

< ε0 >U (X) = sym{∇X ⊗ u0(X)}

< σ0 >U (X) = C̄0 :< ε0 >U (X)
(1.2.55)

It is possible to remark that the above �elds correspond to the

macro�elds of the the average��eld theory. The homogenization the-

ory de�nes therefore the macro�elds as the volume averages of the mi-

cro�elds, which are represented by the O(ε0) terms.

In conclusion, there are two signi�cant di�erences between he homog-

enization and the average��eld theory. First of all, the homogenization
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Chapter 1. Structural application of composite materials

theory deals with a unit cell within a periodic structure, whereas the

average��eld theory with a RV E of a statistically homogeneous mate-

rial. Moreover, the homogenization theory is able to account higher�

order terms in the asymptotic expansion, leading to more accurate so-

lutions. However, an hybrid theory was proposed by Hori et al. [9],

proving that the homogenization theory may be adopted also in case

of materials with a non-periodic microstructure, and that average��eld

theory allows to account higher order terms by considering appropriate

micro�structural models. Equivalent results obtained starting from the

virtual displacement equation are obtained by Wang et al. [12], togheter

with a new solution proposed to solve the homogenization problem.

In this framework, Brighenti [13] proposed an homogenization model

for a �ber reinforced composite material. The material is composed by

two phases, namely an elasto�plastic matrix and a �ber phase. The �bers

have same length and cross section, and their orientation is randomly dis-

tributed within the body. Imperfect bonds are also taken into account,

so that even thought the single components may be linear elastics, the

composite acts in a non�linear way. The problem is then solved by for-

mulating incremental equilibrium equations. In particular, by equating

the work rate made by the composite and the equivalent homogenized

material, the equivalent elastic tensor is found. For further details also

see Nevone Blasi [10] and Leonetti [14].

1.2.3 Multiscale methods

The composite materials may frequently show a high non linear behavior

due to the presence of damage and contact mechanisms. However, a

fully micro�mechanic analysis of the composite damaging process would

require a very high computational e�ort. The multiscale methods allow

therefore to analyze the composite behavior by using simpli�ed models.

In particular, the macroscopic and microscopic models are coupled taking

advantage of both peculiarity, which means the possibility to acquire the

required information without solve the full microscopic problem.
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Several engineering problems are multiscale in nature and, according

to Weinan et al. [15], these kind of problems may be classi�ed according

to their own features into:

� Type A: these problems are characterized by the presence of local

and isolated defects or singularities, namely cracks, dislocations,

contact surfaces and shocks. In these kind of problems, a micro-

scopic model is required only near such singularities, elsewhere the

macroscopic model is su�cient.

� Type B: in these problems a microscopic model is need in the

all domain as support to the macroscopic model. An example

is constituted by the homogenization problem where, due to the

material heterogeneity, the macroscopic model de�nes only the re-

quired macroscopic variables and, the microscopic model allows

their evaluation, as discussed in Section 1.2.2.3.

� Type C: these problems have characteristics of both Type A and

Type B problems.

� Type D: these problems have the special feature of be self�similar

in scales, this is the case of critical phenomena in fractal, turbulent

transport and statistical physics, which are of not interest in this

thesis work.

The approach generally adopted to solve Type A problems is the so�

called domain decomposition method (DDM), which consists in divide

the domain in two sub�domains to be solved at di�erent scales. The scale

coupling is then localized at the sub�domains interface, [14]. Conversely,

for the Type B problems, the most suitable approach is to couple every-

where within the considered domain the macro� and the micro� models.

The heterogeneous multiscale method (HMM) constitutes an example

of such an approach. In particular, the macro�model provides the envi-

ronment, that is the constraints, for the micro�model, which gives the

information needed by the macroscale solver, [15].
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The microscale methods able to resolve these multiscale problems

can be classi�ed, as summarized by Leonetti [14], in:

� Hierarchical methods: in these methods the problem with pre-

scribed boundary condition is solved within a RV E for a range

expected macro�strains and, from the achieved results, a constitu-

tive law is obtained. A periodic RV E is assumed, together with

uniformity of the macroscopic �eld variables, [16]. However, the

hierarchical methods, which are very e�cient for linear problems,

are no longer suitable in presence of non linear phenomena.

� Concurrent methods: in these methods the �ne�scale model is

embedded into the coarse�scale model and the continuity is assured

by imposing compatibility conditions and momentum balance at

the interface. The micro� and the macro� scale models are solved

simultaneously, so that the models are linked together on the �y,

[15]. However, such an approach is suitable for subdomains with a

re�ned scale small with respect to the whole domain.

� Semi�concurrent methods: these methods may be collocated

between the hierarchical and the concurrent methods. The re-

sponse of a �ne�scale model is �rst evaluated for an input needed

by the coarse�model, and then the obtained data are transferred to

the coarse�scale and used during the analysis of the coarse�model.

1.2.4 Macroscopic constitutive laws

1.2.4.1 Costitutive relations

In a three-dimensional Cartesian coordinate system it is possible to rep-

resent the state of deformation of a solid by six components of stresses

and strains, where three are the normal and three the shear components.

The generalized Hook's law, which is a linear relation between stresses
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and strains, can be expressed as:

σk = Ckjεj , k = 1, 2, ..., 6 (1.2.56)

where Ckj are the coe�cients, called elastic coe�cients, of a 6×6 matrix.

When the material is heterogeneous Ckj are functions of the position,

otherwise the Ckj coe�cients are constant through the material. σk and

εj are the components of the stress and the strain tensor, respectively,

written in contracted notation according to:

σα = σmn = σnm

εα = εmn = εnm
(1.2.57)

where the subscript m corresponds to the direction of the normal to the

plane of interest and n to the direction of the stress, while the contraction

rule is, [5]

α = m, if m = n

α = 9−m− n, if m 6= n
(1.2.58)

The 36 Cij coe�cients are not all independent of each other. First

of all they are symmetric, that is Ckj = Cjk, if the strain energy density

function U0 ful�lls the following condition:

∂U0

∂εk
= σk (1.2.59)

In fact, by expressing U0 as

U0 =

∫ εk

0
σkdεk (1.2.60)

by substituting Eq. (1.2.56) into Eq. (1.2.60) and by integrating, it is

obtained

U0 =
1

2
Cijεiεj (1.2.61)
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Chapter 1. Structural application of composite materials

and the substitution of Eq. (1.2.61) into Eq. (1.2.59) leads to

σk =
1

2
(Ckj + Cjk)εj (1.2.62)

By comparing Eq. (1.2.62) with Eq. (1.2.56), it is possible to verify

that Ckj = Cjk. Hence, for anisotropic materials, there are 21 indepen-

dent elastic constants and Eq. (1.2.56) can be expressed in a matrix form

as:

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

Sym. C55 C56

C66





ε1

ε2

ε3

ε4

ε5

ε6


(1.2.63)

However, when a plane of elastic symmetry exists, the coe�cients

at a point have the same value for every pair of mirror�symmetrical

points in this plane. The material is therefore called monoclinic and the

elastic coe�cients are 13. Moreover, if x3 = 0 is the plane of symmetry,

it is possible to show that the out�of�plane stresses, σ4 and σ5, are

independent of normal and in�plane shear strains.

If a material system has three perpendicular planes of elastic sym-

metry, the number of independent elastic coe�cients becomes 9, and the

material is said to be orthotropic. In this case, there is no interaction

between extensional and shear components when the material is loaded

along the material coordinates, and the stress�strain relations are:

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

Sym. C55 0

C66





ε1

ε2

ε3

ε4

ε5

ε6


(1.2.64)
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If the three material directions (x1, x2, x3) are perpendicular to the

planes of elastic symmetry, then the sti�ness coe�cients for an or-

thotropic material can be expressed as:

C11 =
1− ν23ν32

∆E2E3
, C12 =

ν21 + ν31ν23

∆E2E3
=
ν12 + ν32ν13

∆E1E2

C13 =
ν31 + ν21ν32

∆E2E3
=
ν13 + ν12ν23

∆E1E2
, C22 =

1− ν13ν31

∆E1E3

C23 =
ν32 + ν12ν31

∆E1E3
=
ν23 + ν21ν13

∆E1E2
, C33 =

1− ν12ν21

∆E1E2

C44 = G23, C44 = G23, C55 = G13, C66 = G12

∆ =
1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν21ν32ν13

E1E2E3

(1.2.65)

where Ei is the Young modulus in the i direction, νij is the Poisson

ratio for transverse strain in the j�th direction when stressed in the i�th

direction, namely

νij = −εj
εi

(1.2.66)

and G23, G31, G12 are the shear moduli in the 2 − 3, 3 − 1 and 1 − 2

planes, respectively.

If in one of the planes of elastic symmetry of an orthotropic material,

the material is isotropic, it is said to be transversely isotropic, and there

are only 5 independent elastic coe�cients. In particular, if x1 is the

coordinate normal to the isotropic plane, the strain�stress relationships

are:

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C23 0 0 0

C22 C23 0 0 0

C22 0 0 0

Ĉ 0 0

Sym. C66 0

C66





ε1

ε2

ε3

ε4

ε5

ε6


(1.2.67)
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where

Ĉ =
1

2
(C11 − C12) (1.2.68)

Finally, when a material owns in�nite planes of elastic symmetry, it

is called isotropic, and there are only 2 independent elastic constants:

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C12 0 0 0

C11 C12 0 0 0

C11 0 0 0

Ĉ 0 0

Sym. Ĉ 0

Ĉ





ε1

ε2

ε3

ε4

ε5

ε6


(1.2.69)

where the two coe�cients can be expressed in terms of Young Modulus

E and Poisson ration ν as

C11 =
E(1− ν)

(1 + ν)(1− 2ν)

C12 =
νE

(1 + ν)(1− 2ν)

(1.2.70)

A �ber�reinforced composite material, if it is assumed that all �bers

in a lamina are parallel, can be considered as an homogeneous orthotropic

material, where the x1 axis is parallel to the �ber directions.

1.2.4.2 Orthotropic lamina

For an orthotropic lamina which material coordinates are (x̄1, x̄2, x̄3),

the stress�strain relations are reduced to: σ̄1

σ̄2

σ̄6

 =

 Q̄11 Q̄12 0

Q̄12 Q̄22 0

0 0 Q̄66


 ε̄1

ε̄2

ε̄6

 (1.2.71)

and (
σ̄4

σ̄5

)
=

[
C̄44 0

0 C̄55

](
ε̄4

ε̄5

)
(1.2.72)
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In particular, the Q̄ij coe�cients are called plane stress-reduced sti�-

nesses since they are obtained from Cij in case of plane stress state,

σ33 = 0, and can be expressed as:

Q̄11 =
E1

1− ν12ν21
, Q̄22 =

E2

1− ν12ν21

Q̄12 =
ν12E2

1− ν12ν21
, Q̄66 = G12

(1.2.73)

moreover

C̄44 = G23

C̄55 = G13

(1.2.74)

However, if the material directions (x̄1, x̄2, x̄3) are not aligned with

the material coordinate system used to formulate the governing equations

of the structural problem, (x1, x2, x3), a coordinate transformation can

be employed to obtain the σ̄1, σ̄2, σ̄3 stresses in terms of the stresses

σ1, σ2, σ3 in the global coordinates, [17].

1.3 Mechanics of composite materials

Composite laminates are made by superposition of various composite

layers of di�erent materials and with di�erent �bers orientation. Since

the composite laminates are elements with on dimension smaller then

the others two, they are commonly treated as plate elements. In this

context, it is possible to adopt one among these approaches to analyze

composite plates, [6]:

1. Equivalent single�layer theories (2D)

(a) Classical laminated plate theory

(b) Shear deformation laminated plate theories

2. Three-dimensional elasticity theories (3D)
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(a) Traditional 3D elasticity formulation

(b) Layerwise theories

In the three-dimensional elasticity theory, each layer is modeled as a

three�dimensional solid. By making certain assumptions on the kinemat-

ics of deformation or on the stress state through the laminate thickness,

it is possible to reduce the problem from a three� to a two�dimensional

one.

In the equivalent single layer laminated plate theories, where the

composite laminate is modeled as an equivalent single layer, the dis-

placement and the stress �eld are assumed to be a linear combination of

unknown functions and thickness coordinates, φij and z, respectively, in

the following manner:

φi(x, y, z, t) =
N∑
j=0

(z)jφij(x, y, t) (1.3.1)

where (x, y) are the in�plane coordinates and t represents the time.

When φi are displacements, the principle of virtual displacement allows

to determine the unknown functions. By taking into account the tem-

poral variable the principle of virtual displacement can be stated as:∫ T

0
(δU + δV − δK)dt = 0 (1.3.2)

where δU , δV and δK are the virtual strain energy, the virtual work

done by externals loads and the virtual kinetic energy, respectively, eval-

uated in terms of actual stress and virtual strains. Conversely, when φi

represent the stress components, the governing equations are evaluated

by applying the principle of virtual forces.

The simplest among the equivalent single layer plate theories is the

Classical laminated plate theory (CLPT ), which is derived directly from

the Kirchho� plate theory and basically neglects transverse shear and

normal e�ects. In this way, the deformation is considered to be due only
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to bending and in�plane stretching. On the other hand, an extended

theory is the First order shear deformation theory (FSDT ). The trans-

verse shear deformation is accounted in the kinematics assumptions, and

the transverse shear strain is assumed to be constant along the plate

thickness. However, both theories, CLPT and FSDT , are developed in

a plane stress state.

When the hypothesis of inexstensibility and strainghtness of trans-

verse normals are removed, the second� and high�order plate theories

are obtained. However, the FSDT appears to be the best in terms of

accuracy of the solution and required computational costs.

1.3.1 The classical laminated plate theory

The CLPT is an extension of the Kirchho� classical plate theory to lam-

inated plates, which are composed by several composite laminae bonded

together to reach the required thickness. Basically, the in�plane dis-

placements are assumed to be linear across the thickness, whereas the

transverse to be constant. This theory leads to reliable results when the

thickness of the laminate is about two order of magnitude smaller than

the others two dimensions.

The Kirchho��Love assumptions adopted to develop the model hold

also in case of laminated plates. These hypothesis essentially concern

the straight lines perpendicular to the mid�plane before deformations,

i.e. the transverse normals. In particular, the assumptions can be stated,

according to [6, 17], as:

� the transverse normals remain straight after deformation;

� the transverse normals are inextensible;

� the transverse normals stay perpendicular to the mid�surface after

deformation.

As a consequence, the transverse shear εxz, εyz and normal strain εzz

are neglected. This implies also the omission of σzz, since the product of
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εzz and σzz vanishes in the total potential energy functional of the plate.

Moreover, also σxz and σyz are neglected. Therefore, in the CLPT the

transverse deformation and stress state are not accounted, and the plate

is considered to be in�nitely rigid in the transverse dimension. This issue

may not be truly representative of the real behavior of composites, for

this reason these assumptions are considered to be valid only for thin

plates.

1.3.1.1 Displacements and strains

The composite plate here considered is composed by N orthotropic layers

and its thickness is h. The principal material coordinates (xk1, x
k
2, x

k
3) of

each k�th lamina are rotated of an angle θk with respect to the laminate

coordinate x, and the (x, y) plane corresponds to the undeformed mid�

plane of the laminate, Ω0. The total domain Ω̄0 is obtained by doing

the following tensor product Ω0 ⊗ (−h/2, h/2), the boundaries are the

top surface St(z = −h/2) and the bottom surface Sb(z = h/2), and the

edge Γ̄ is the Γ⊗ (−h/2, h/2) tensor product. In general, Γ is a curved

surface with outward normal n̂ = nxêx + nyêy and is subjected to both

generalized forces and displacement. It is then assumed that:

� the layer are perfectly bonded;

� each layer is made by a linear elastic orthotropic material;

� each layer is of uniform thickness;

� the strain and displacement are small;

� the transverse shear stresses on the boundaries surfaces are zero.

A point P of coordinates (x, y, z) in the undeformed state, moves to

the position (x+ u1, y+ u2, z+ u3) after deformation, where (u1, u2, u3)

are the component of the total displacement vector u

u = u1êx + u2êy + u3êz (1.3.3)
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and (êx, êy, êz) are the unit vector along the (x, y, z) coordinates. Ac-

cording to the Kirchho� assumptions the displacements (u1, u2, u3) are:

u1(x, y, z, t) = u(x, y, t) + zψ1(x, y, t)

u2(x, y, z, t) = v(x, y, t) + zψ2(x, y, t)

u3(x, y, z, t) = w(x, y, t)

(1.3.4)

where (u, v, w) are the displacements of a material point on the laminate

mid�plane, ψ1 and ψ2 are the rotation of a transverse normal about the

y� and x�axis, respectively, and t represents the time. From the third of

the Kirchho� assumptions is also obtained that:

ψ1 = −∂w
∂x

ψ2 = −∂w
∂y

(1.3.5)

The displacement �eld of the classical plate theory then becomes, see

Fig. 1.4:

u1(x, y, z, t) = u(x, y, t)− z ∂w
∂x

u2(x, y, z, t) = v(x, y, t)− z ∂w
∂y

u3(x, y, z, t) = w(x, y, t)

(1.3.6)

By adopting the equivalent single�layer theory, it is worth noting that

strains are assumed to be continuous along the laminate thickness, also

through interfaces between layers of di�erent material, and this assump-

tion does not allow to represent adequately the interlaminar stresses. The

strains associated to the displacement �eld expressed by Eq. (1.3.6), can

be evaluated accounting also the nonlinear strains and with the aid of
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Figure 1.4: Assumed deformation according to the CLPT

the following strain�displacement relations:

εxx =
∂u1

∂x
+

1

2

[(
∂u1

∂x

)2

+

(
∂u2

∂x

)2

+

(
∂u3

∂x

)2
]

εyy =
∂u2

∂y
+

1

2

[(
∂u1

∂y

)2

+

(
∂u2

∂y

)2

+

(
∂u3

∂y

)2
]

εzz =
∂u3

∂z
+

1

2

[(
∂u1

∂z

)2

+

(
∂u2

∂z

)2

+

(
∂u3

∂z

)2
] (1.3.7)

εxy =
1

2

(
∂u1

∂y
+
∂u2

∂x
+
∂u1

∂x

∂u1

∂y
+
∂u2

∂x

∂u2

∂y
+
∂u3

∂x

∂u3

∂y

)
εxz =

1

2

(
∂u1

∂z
+
∂u3

∂x
+
∂u1

∂x

∂u1

∂z
+
∂u2

∂x

∂u2

∂z
+
∂u3

∂x

∂u3

∂z

)
εyz =

1

2

(
∂u2

∂z
+
∂u3

∂y
+
∂u1

∂y

∂u1

∂z
+
∂u2

∂y

∂u2

∂z
+
∂u3

∂y

∂u3

∂z

) (1.3.8)

In the hypothesis of small strains, the terms of second order can

be neglected, except those associated with the rotations of transverse
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normals, ∂u3/∂x and ∂u3/∂y, if they are around 10◦ − 15◦. Therefore,

Eqs. (1.3.7) and (1.3.8), reduce to:

εxx =
∂u1

∂x
+

1

2

(
∂u3

∂x

)2

, εxy =
1

2

(
∂u1

∂y
+
∂u2

∂x
+
∂u3

∂x

∂u3

∂y

)
,

εyy =
∂u2

∂y
+

1

2

(
∂u3

∂y

)2

, εxz =
1

2

(
∂u1

∂z
+
∂u3

∂x
+
∂u3

∂x

∂u3

∂z

)
,

εzz =
∂u3

∂z
, εyz =

1

2

(
∂u2

∂z
+
∂u3

∂y
+
∂u3

∂y

∂u3

∂z

) (1.3.9)

the latter are called the von Kármán strains. By substituting Eq. (1.3.6)

into Eq. (1.3.9), we get:

ε1 ≡ εxx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

− z ∂
2w

∂x2

ε2 ≡ εyy =
∂v

∂y
+

1

2

(
∂w

∂y

)2

− z ∂
2w

∂y2

ε6 ≡ 2εxy =

(
∂u

∂y
+
∂v

∂x
+
∂w

∂x

∂w

∂y

)
− 2z

∂2w

∂x∂y

ε4 ≡ 2εyz = −∂w
∂y

+
∂w

∂y
= 0

ε5 ≡ 2εxz = −∂w
∂x

+
∂w

∂x
= 0

ε3 ≡ εzz =
∂w

∂z
= 0

(1.3.10)

In addition, the achieved strains can be set in the following form:

εi = ε0i + zε1i , i = 1, 2, 6 (1.3.11)

In particular, ε0i are the membrane strains associated with the stretching

and in�plane shearing of the mid�plane, whereas ε1i are the curvatures

related to the �exural strains, [6, 17]. How it could be seen, strains vary

linearly along the laminate thickness, not depending by each lamina

material. Moreover, for a �xed z, the strain components are nonlinear

functions of x and y, together with the time t in the dynamical problems.
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1.3.1.2 Governing equations

The equations governing the problem may be evaluated either by using

variational principles or by applying the Newton's law. The former al-

lows to derive the equation of equilibrium, or the equation of motion in

dynamics analysis, with the proper boundary conditions by either min-

imizing the total potential energy or by maximizing the total comple-

mentary energy. The latter leads to the equilibrium equations through

equilibrium considerations on a representative volume element subjected

to external forces and couples.

In the framework of the energy principles, the principle of virtual

displacement states that for a body in equilibrium, the total virtual

work done by all externals and reacting forces through their compatibles

virtual displacement is equal to zero. The total virtual work is the sum

of the internal and the external virtual work. Therefore, by evaluating

the virtual strain energy δU and the virtual work done by externals loads

δV for no time�dependent problem, by applying the fundamental lemma

of variational calculus, and after some manipulations, [6], the following

equations are obtained:

∂N1

∂x
+
∂N6

∂y
= 0

∂N6

∂x
+
∂N2

∂y
= 0

∂2M1

∂x2
+ 2

∂2M6

∂y∂x
+
∂2M2

∂y2
+N(w) + q = 0

(1.3.12)

where

N(w) =
∂

∂x

(
N1

∂w

∂x
+N6

∂w

∂y

)
+

∂

∂y

(
N6

∂w

∂x
+N2

∂w

∂y

)
(1.3.13)

and q are the distributed transverse loads, Ni the force resultants and

Mi the moments resultants, Fig. 1.5
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
N1

N2

N6

 =

∫ h/2

−h/2


σ1

σ2

σ6

 dz


M1

M2

M6

 =

∫ h/2

−h/2
z


σ1

σ2

σ6

 dz

(1.3.14)

Below, essential and natural boundary conditions for the CLPT are

reported:

un, uns, w,
∂w

∂n
(essential)

Nn, Nns, Q̂n, Mn (natural)

(1.3.15)

where

un = unx + vny

uns = −uny + vnx

∂w

∂n
=
∂w

∂x
nx +

∂w

∂y
ny

(1.3.16)

and

Nn = N1n
2
x +N2n

2
y + 2N6nxny

Nns = (N2 −N1)nxny +N6(n2
x − n2

y)

Mn = M1n
2
x +M2n

2
y + 2M6nxny

Mns = (M2 −M1)nxny +M6(n2
x − n2

y)

Q̂n = Q1nx +Q2ny −
∂Mns

∂s

(1.3.17)

wherein nx and ny are the direction cosines of the unit normal to the

plate boundaries, and Q1 and Q2 are the transverse shear forces.
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Figure 1.5: Forces and moments resultants on a laminate edge

1.3.1.3 Laminate constitutive relations

The laminate constitutive relations aim to relate resultant forces and

moments with laminate's strains. Each layer is assumed to be orthotropic

with respect to its material symmetry axis, and obeys to Eq. (1.2.16).

Although one of the principal assumption of the CLPT concerns the

continuity of strains along the whole plate thickness, this issue is not true

for stresses. Therefore, by expressing stresses into Eq. (1.3.14) in terms

of strains and with respect to the laminate coordinates, after integration

along the z�axis, the forces and moments resultants can be expressed as:
N1

N2

N6

 =

A11 A12 A16

A12 A22 A26

A16 A26 A66



ε01
ε02
ε06

+

B11 B12 B16

B12 B22 B26

B16 B26 B66



ε11
ε12
ε16

 (1.3.18)


M1

M2

M6

 =

B11 B12 B16

B12 B22 B26

B16 B26 B66



ε01
ε02
ε06

+

D11 D12 D16

D12 D22 D26

D16 D26 D66



ε11
ε12
ε16

 (1.3.19)

where Aij are the extensional sti�nesses, Dij the bending sti�nesses and

Bij the bending�extensional coupling sti�nesses of the laminate, [6, 17].

The sti�ness coe�cients may be also de�ned in terms of the material

sti�ness of each k�th lamina in the following manner:

(Aij , Bij , Dij) =

N∑
k=1

∫ zk+1

zk

Qkij(1, z, z
2)dz (1.3.20)
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where Qkij are referred to the laminate coordinates, N is the layers' num-

ber and (zk, zk+1) are the bottom and the top k�th lamina coordinate,

respectively. Being the latter constant through each layer, Eq. (1.3.20)

can be easily integrated, which gives:

Aij =
N∑
k=1

Qkij(zk+1 − zk)

Bij =
1

2

N∑
k=1

Qkij(z
2
k+1 − z2

k)

Dij =
1

3

N∑
k=1

Qkij(z
3
k+1 − z3

k)

(1.3.21)

In order to express the equilibrium equations (1.3.12) in terms of dis-

placements, the �rst step is the substitution of Eqs. (1.3.10) and (1.3.11)

into Eqs. (1.3.18) and (1.3.19), the second one, the introduction of the

resulting force and moments resultants into the equilibrium equations

(1.3.12). The full set of equations is reported by Reddy, [6].

1.3.2 First�order shear deformation theory

The FSDT is a displacement based theory in which the displacement

components are expanded as a linear combination of the thickness coor-

dinate and unknowns functions of position in the reference surface, [17].

The equations of equilibrium can be then derived by employing either

the principle of virtual work or the free body diagram. In addition, being

the FSDT part of the equivalent single�layer plate theories group, the

displacements and the strains are still supposed to be continuous along

thickness, whereas the interlaminar stress �eld is discontinuous due to

the di�erence of the elastic coe�cients at the interface between layers.

The FSDT , known as Mindlin plate theory, is therefore one among

the theories who accounts the transverse shear deformation, and gives

a constant transverse shear strain along the plate thickness. This issue

contrasts with the actual distribution, which is of quadratic or higher�
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order and, for this reason, it is necessary to adopt a shear correction

factor, which depends on the laminate geometry and on the boundary

conditions, [6].

1.3.2.1 Displacements and strains

In the FSDT the third assumptions considered in the CLPT is removed,

that is the transverses lines normal to the mid�plane laminate does not

remain perpendicular after deformation, Fig. 1.6. This issue imply the

accounting of the shear strains and that the rotations ψ1 and ψ2 of a

transverse normal do not depend by ∂w/∂x and ∂w/∂y.

According to the same Kirchho� assumptions adopted in the CLPT ,

the displacements �eld can be expressed as:

u1(x, y, z, t) = u(x, y, t) + zψ1(x, y, t)

u2(x, y, z, t) = v(x, y, t) + zψ2(x, y, t)

u3(x, y, z, t) = w(x, y, t)

(1.3.22)

where the symbols notation is the same adopted in Eq. (1.3.4).

Taking into account the nonlinear strains, the strain�displacement

Figure 1.6: Assumed deformation according to the FSDT
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relations are given by:

εi = ε0i + zε1i , i = 1, 2, 6, 4, 5 (1.3.23)

where

ε1 =
∂u

∂x
+

1

2

(
∂w

∂x

)2

− z ∂ψ1

∂x

ε2 =
∂v

∂y
+

1

2

(
∂w

∂y

)2

− z ∂ψ2

∂y

ε6 =

(
∂u

∂y
+
∂v

∂x
+
∂w

∂x

∂w

∂y

)
− z

(
∂ψ1

∂y
+
∂ψ2

∂x

)
ε4 =

∂w

∂y
+ ψ2

ε5 =
∂w

∂x
+ ψ1

ε3 = 0

(1.3.24)

From Eq. (1.3.24) it is possible to see that the strains (ε1, ε2, ε6) are

linear along the thickness, whereas the strains (ε4, ε5) are constants.

1.3.2.2 Governing equations

The equilibrium equations of the FSDT , derived from the principle of

virtual displacements are, [17]:

∂N1

∂x
+
∂N6

∂y
= 0

∂N6

∂x
+
∂N2

∂y
= 0

∂Q1

∂x
+
∂Q2

∂y
+N(w) + q = 0

∂M1

∂x
+
∂M6

∂y
−Q1 = 0

∂M6

∂x
+
∂M2

∂y
−Q2 = 0

(1.3.25)
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where

Q1 =

∫ h/2

−h/2
σ5dz

Q2 =

∫ h/2

−h/2
σ4dz

(1.3.26)

and N(w),Ni and Mi are de�ned in Eqs. (1.3.13) and (1.3.14). The

boundary conditions are in the same form as Eqs. (1.3.16) and (1.3.17),

in which the primary and secondary variables are:

un, uns, w, ψn, ψns (essential)

Nn, Nns, Qn, Mn Mns (natural)
(1.3.27)

1.3.2.3 Laminate constitutive equations

The laminate constitutive relations in the FSDT are composed by

Eqs. (1.3.18) and by {
Q1

Q2

}
=

[
A55 A45

A45 A44

]{
ε05
ε04

}
(1.3.28)

where

Aij = Kij

∫ h/2

−h/2
Qkijdz = Kij

N∑
k=1

Qkij(zk+1 − zk), (i, j = 4, 5) (1.3.29)

and Kij are the shear correction coe�cients.

The equilibrium equations can be therefore expressed in terms of

displacements by substituting into Eq. (1.3.25) the forces and moments

resultants (1.3.18),(1.3.19) and (1.3.28). For the complete set of the

achieved equilibrium equations please see [6, 17].
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1.3.3 Layerwise theory

The layerwise theory, proposed by Reddy [17], owns to the category of

three�dimension elasticity theories. A 3D analysis may be necessary in

case of composite materials characterized by embedded delamination,

free edges or regions where the plane stress state assumption is no longer

valid.

In particular, the layerwise theory is based on the displacement ex-

pansion across the thickness of the laminate. Each layers can be either

mathematical or physicals, being therefore possible to couple more layers

into a sublaminate.

1.3.3.1 Displacements and strains

In the layerwise theory, displacements are expanded through the thick-

ness of the composite laminate in the following way:

ui(x, y, z) =
N∑
j=1

UJi (x, y)ΦJ(z) = UJi (x, y)ΦJ(z), i = 1, 2, 3 (1.3.30)

where J and N denote the interface and the �nite elements node number

considered along the laminate thickness, respectively. (UJ , V J , ZJ) are

the nodal values of (u, v, w). ΦJ(z) are known functions, namely the

global interpolation functions, de�ned in terms of the Lagrange interpo-

lation functions linked to the layers separated by the J�th interface. As

a consequence of the local de�nition of the ΨJ(z) functions, the displace-

ments are continuous across the thickness, as is not for their derivative

with respect to z, thus the transverse strains, which are discontinuous

at the interface. For this reason, the interlaminar transverse stresses ob-

tained by applying the layer constitutive relations can be continuous. On

the contrary, the in�plane strains (εx, εy, εxy) are continuous, whereas the

in�plane stresses (σx, σy, σxy) are discontinuous at the interface owing to

the di�erent properties of the layers in contact. The layerwise theory

is therefore characterized by 3N variables and 3N two�dimensional dif-
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ferential equations. However, the obtained model can be represented by

using just 2D �nite elements. The number of elements in which the lam-

inate is subdivided, N , in�uences the accuracy of the solution in terms

of stress distribution. If for each physical layer at least one element is

used, an accurate solution is achieved, [17]. In addition, it can be easily

demonstrate as the single layer plate theories are a special case of the

layerwise theory.

Considering a laminate of thickness h, the strain�displacement

relations accounting non�linearity can be obtained by substituting

Eq. (1.3.30) into Eq. (1.3.9), which leads to:

ε1 ≡ εxx =
∂UJ

∂x
ΦJ +

1

2

(
∂W J

∂x
ΦJ

)(
∂W J

∂x
ΦJ

)
ε2 ≡ εyy =

∂V J

∂y
ΦJ +

1

2

(
∂W J

∂y
ΦJ

)(
∂W J

∂y
ΦJ

)
ε3 ≡ εzz = W J dΦJ

dz

ε4 ≡ 2εyz = V J dΦJ

dz
+
∂W J

∂y
ΦJ

ε5 ≡ 2εxz = UJ
dΦJ

dz
+
∂W J

∂x
ΦJ

ε6 ≡ 2εxy =

(
∂UJ

∂y
+
∂V J

∂x

)
ΦJ +

(
∂W J

∂x
ΦJ

)(
∂W J

∂y
ΦJ

)

(1.3.31)

1.3.3.2 Governing equations

The principle of virtual displacement allows to obtain the equilibrium

equations, which can be expressed as follows, [17]:

∂M I
1

∂x
+
∂M I

6

∂y
−QI1 = 0, I = 1, 2, ..., N

∂M I
6

∂x
+
∂M I

2

∂y
−QI2 = 0,

∂KI
1

∂x
+
∂KI

2

∂y
−QI3 +N I(W J) = 0

(1.3.32)
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where

N I(W J) =
∂

∂x

(
SIJ1

∂W J

∂x
+ SIJ6

∂W J

∂y

)
+

+
∂

∂y

(
SIJ6

∂W J

∂x
+ SIJ2

∂W J

∂y

) (1.3.33)

and the forces and moments resultants are

M I
i =

∫ h/2

−h/2
σiΦ

J(z)dz,

SIJi =

∫ h/2

−h/2
σiΦ

I(z)ΦJ(z)dz, i = 1, 2, 6

QI1 =

∫ h/2

−h/2
σ5
dΦJ

dz
dz, QI2 =

∫ h/2

−h/2
σ4
dΦJ

dz
dz,

QI3 =

∫ h/2

−h/2
σ3
dΦJ

dz
dz,

KI
1 =

∫ h/2

−h/2
σ5ΦJdz, KI

2 =

∫ h/2

−h/2
σ4ΦJdz

(1.3.34)

By using the layer constitutive equations and the strain�

displacements relations (1.3.31), the resultants (M I
i , S

IJ
i , QIi ,K

I
i ) can

be expressed also in terms of interface displacements functions UJi .

1.3.4 Linear and nonlinear interface models

Several interface models aimed to describe the zone existing between two

adjacent layers were proposed in the literature. In particular, the inter-

face can be represented as a layer of zero thickness placed between two

adjacent plies, Fig. 1.7. By properly de�ning a constitutive law, it is pos-

sible to relate the interlaminar stresses σ = {σzx, σzy, σzz}T with the dis-

placements discontinuities between the two layers, ∆ = {∆u,∆v,∆z}T ,
in the x, y and z direction, respectively. This displacements' jump may

be expressed as ∆u = u+ − u−, ∆v = v+ − v−, ∆w = w+ − w−, where
+ and − denote the lower and the upper layer, respectively.
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Chapter 1. Structural application of composite materials

Figure 1.7: Interface layer between adjacent composite layers

Once that the critical strength of the interface is reached, an opening

displacement ∆o occurs. However, along a certain area, it may be still

possible to transfer the interlaminar stresses, which decrease with the

opening or the sliding relative displacement up to a critical value ∆c.

When ∆c is reached, delamination occurs and the layers are completely

separated, [18]. Such a damaging interface falls into the category of the

cohesive crack models, which are deeply examined by Baºant & Planas

[19]. This damage process is also called debonding and will be further

treated in Chapter 2.

According to Corigliano [20], through the de�nition of a linear or a

non linear interface constitutive law, it is therefore possible to model the

softening behavior of the interface strength until that complete debond-

ing occurs. The anisotropy of the response, the presence of irreversible

displacements, and the di�erence in tensile and compressive behavior in

the direction normal to the crack face, can be also taken into account. In

view of a �nite element analysis, others advantages were reported by Bui

et al. [21] when the interface is represented by a thin layer element with

vanishing thickness. By using the interface elements, it is in fact pos-

sible to estimate the interlaminar stresses at the interface itself, which

has zero thickness, avoiding to extract the stresses from extrapolation

or averaging procedure through internal integration points. In addition,

interlaminar stresses across the interface are always continuous and can
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be evaluated from equilibrium equations. The traction�free condition on

boundaries can also be recovered by applying appropriate constraints to

the involved nodal displacements. Moreover, the interlaminar stresses

can be evaluated at di�erent stages of the delamination process. In fact,

as stated also by Rabinovitch [22], the adoption of such a damage in-

terface allows to cover the interface behavior from the perfect bonded

state to the complete delamination. However, face the possibility to pre-

dict the crack initiation, these methods require very high computational

costs.

In the below Figures 1.8, 1.9 and 1.10, some interface models pro-

posed in the literature are illustrated. In particular, the dotted area

denotes the speci�c elastic energy stored at the beginning of the damag-

ing process, [23]

Figure 1.8: Linear elastic [24] and elastic plastic spring interface models
[25]

The linear elastic interface model presented in Fig. 1.8, can be char-

acterized, according to Bruno et al. [24], by the following simple consti-

tutive law valid in the undelaminated region:

σzx = kzx∆u, σzy = kzy∆v, σzz = kzz∆w (1.3.35)

where (kzx, kzy, kzz) represent the interface sti�ness treated as penalty

parameters. In addition, with the aim to avoid interpenetration be-

tween the two adjacent delaminated layers, Bruno et al. [24] adopted an

unilateral frictional contact interface model. In particular, by the intro-
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duction of a damage variable d, in case of opening relative displacement

∆w ≥ 0, a zero sti�ness is considered, whereas in case of closing relative

displacement ∆w < 0, a positive sti�ness is used. Therefore, the follow-

ing constitutive law, valid in both, the bonded and the debonded region,

is introduced, [24]:

σzx = (1− d)kzx∆u,

σzy = (1− d)kzy∆v,

σzz =

[
1− 1

2
d(1 + sign(∆w))

]
kzz∆w

(1.3.36)

where d = 0 denotes perfect adhesion between layer, whereas d = 1

the complete delamination. σzz is the contact stress, kzz the penalty

parameter imposing the contact constraint and sign is the signum func-

tion. When d = 1, σzz represents the contact stress of such a contact

interface, and the contact constraint is guaranteed by a large kzz.

On the right side of Fig. 1.8, the elastic plastic spring interface model

proposed by Weicheng Cui and Winsnom, [25], is shown. This interface

model is characterized by the adoption of non linear spring elements.

In the �nite element analysis, the interface layer has zero thickness and

duplicate nodes are used across the interface itself. Each pair of nodes are

then connected by two independent springs, one vertical and the other

horizontal. The vertical spring force is evaluated as the integration of

the normal stress acting through the thickness over the element length,

whereas the horizontal spring force as the integration of the shear stress

acting through the thickness over the element length. Once that a limit

spring force value is reached, interlaminar displacement takes place at

constant force until a critical displacement, which leads to the springs

breakage.

In Fig. 1.9 two non linear interface models proposed by Corigliano

in [20] are presented. In the Elastic damage interface model, there is

a degradation of the elastic sti�ness with the damaging growth, and

the displacement discontinuities consist only of an elastic and reversible
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Figure 1.9: Elastic and elastic plastic damage interface models [20]

component. On the contrary, the Elastic plastic damage interface model

is characterized by both reversible and irreversible plastic displacement

discontinuities. However, in both models the behavior in case of com-

pression at the interface is always elastic and with constant sti�ness.

Constitutive relations and damage evolution laws can be found in [20].

Figure 1.10: Cohesive interface model with stress singularity [19, 26] and
elastic plastic softening interface model [20]

In the left side of Fig. 1.10, a Cohesive interface model with stress sin-

gularity is shown. This model essentially takes into account the presence

of stress singularity at the crack tip, which is followed by a softening

branch. For example, Greco et al. [26] adopted such a model to ac-

count bridging stresses acting at the crack faces. In particular, the �ber

bridging consists in the exertion of a force across the width of a crack

caused by the �bers pulling from one side of the delamination plane to

the other, [27]. As a result, the achieved fracture toughness is higher

than those obtained when delamination occurs only along the matrix of
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the composite.

Therefore, in [26], the authors used a penalized linear interface model

where perfect adhesion holds, with the strain energy of the linear inter-

face acting as the penalty functional. Hence, as the penalty parameters

go to in�nity, the stresses become singulars. In the framework of a two�

dimensional analysis, the bridging mechanism was therefore modeled by

a non�linear interface in which the interlaminar stresses depend on the

jump displacements in the following manner:

σ = f(∆) (1.3.37)

where the relation between a potential, function of the interfacial dis-

placements, and the normal and the shear stresses is

σ =
∂U(∆)

∂∆
, U(0) = 0 (1.3.38)

In particular, the linear softening law adopted by Greco et al. can

be expressed as:σzx = σ0
zx

∆u
|∆u| −

σ0
zx

∆uc
∆u, if | ∆u |≤ ∆u0,

σzx = 0, if ∆u > ∆u0,σzz = σ0
zz −

σ0
zz

∆wc
∆w, if ∆w ≤ ∆w0,

σzz = 0, if ∆w > ∆w0

(1.3.39)

where σzx and σzz are the interfacial strengths in the x and z�direction,

respectively.

In the right side of Fig. 1.10, the Elastic plastic softening model is

presented.

As a matter of fact, the softening function depends on the material

properties, and it can be derived experimentally by conducting stable

tensile tests, [28]. However, these experimental tests shown some inher-

ent di�culties, such as the possible presence of multiple cracks and the
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not knowledge of the cohesive crack initial location. To overcome these

and others issues, indirect methods based on inverse analysis or data

reduction can be applied to determine the softening function, [28]. Any-

way, for small cracked and undamaged specimens, the initial slope of the

softening curve can be adopted, leading to the above mentioned elastic

plastic softening model. It is important to remark, how it was pointed by

Elices et al. [28], why it is not considered in this model the presence of a

hardening branch after the reaching of the critical stress level. In fact, if

the softening branch is preceded by a hardening part, at the point where

σ0 is reached, the stress must increases to allow the crack opening. As a

consequence, also the stresses at points in the neighborhood increase, so

that within a �nite zone around the original crack, an in�nite number of

others cohesive cracks with in�nitely small crack openings forms, leading

to a perfectly plastic model.

In the framework of a single Mode delamination analysis, an analytic

expression of such a model is reported by Alfano and Cris�eld, [23]:

σi =



ki∆i, if (si[∆i])max ≤ ∆oi

or (i = 1 and ∆i < 0),

ki∆i

[
1−

(
(si[∆i])max −∆oi

(si[∆i])max

)(
∆ci

∆ci −∆oi

)]
, if ∆oi < (si[∆i])max < ∆ci

or (i 6= 1 or ∆i ≥ 0),

0, if (si[∆i])max ≥ ∆ci

and (i 6= 1 or ∆i ≥ 0)

(1.3.40)

where (si[∆i])max is the maximum value assumed by si[∆i] in a particular

instant τε[0, T ]

(si[∆i])max = max
0≤τ ′≤τ

(si[∆i(τ
′)]) (1.3.41)

and ki are the penalty sti�ness parameters. Moreover, when Mode I of

fracture is considered, in order to take into account the di�erent behavior

in compression and in tension and to avoid layer interpenetration, the
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following notation is adopted:

(si[x]) =

< x > if i = 1,

|x| if i = 2
(1.3.42)

where < > are the Mc Cauley brackets:

< x >=

x if x ≥ 0,

0 if x ≤ 0
(1.3.43)

For a pure Mode II delamination, a cohesive bilinear law was pro-

posed by De Lorenzis et al. [29]. How it was pointed out by the authors,

this model allows to estimate the linear elastic properties and the cohe-

sive strength of the interface through the ascending and the softening

branch, respectively, together whit the fracture energy, which is rep-

resented by the area beneath the curve. However, when the complete

delamination occurs for one mode of fracture, complete damage is con-

sidered to take place also in the others two modes, [20].

In Fig. 1.11 a qualitative stress distribution in the process zone for

the aforementioned model is shown. How it could be seen, the stresses

drop linearly from the crack tip to the end of the process zone itself.

Interface models have been therefore widely used to simulate inter-

facial delamination, both for pure Mode [25, 20, 31] and Mixed Mode

[18, 32, 23] delamination.

1.3.5 Coupled interface/multilayer models

Interlaminar delamination is a damage mechanism which frequently af-

fects �ber reinforced composite laminates. This mechanism may be in-

duced by several factors, as the mismatch in the plies properties or be-

tween the FRP and a strengthened structure, and as the transverse

cracking. In particular, delamination is driven by interlaminar stresses,

which may assume high values near the free edges. It is therefore nec-

57



Figure 1.11: Stress distribution in the process zone, [30]

essary to implement a model able not only to describe the composite

behavior, but also to represent these interfacial stresses.

In a classic group of models, the laminate composites are modeled as

an assembly of two plates in the damaged region and of a single plate in

the undamaged one. However, these kind of models do not allow the esti-

mation of the stresses at the interface and consequently of the individual

components of the energy release rate. In fact, since at the crack tip and

in the undelaminated region there are interfacial forces and moments,

both are involved in the total energy release rate expression and may

contribute to all modes. For this reason, although the total energy re-

lease rate can be accurately estimated, the individual components may

be not properly predicted. This represents the main limitation in the

analysis of the mixed mode delamination problems, since the interface

toughness shows a mixed mode dependency. Moreover, the mismatch of

material properties at the interface generates a stress �eld with an oscil-

latory singularity at the tip, leading to inadmissible interpenetration of

crack surfaces.

To overcome these di�culties, Zou et al. [33] proposed to divide

also the undamaged region into sublaminates, which are governed by the
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transverse shear deformable laminate theory. The laminate theory allows

in fact to eliminate the oscillatory behavior and the stress singularity,

which is replaced by a jump in the stress resultants at the crack tip. In

addition, interfacial moments are proved to be zero, so that the total

energy release rate can be partitioned into individual components. The

modal convergence can be then obtained by re�ning the sublaminated

division.

Then, with the aim to study mixed mode delamination problems,

a coupled interface and multilayer approach was proposed and numeri-

cally applied by Bruno et al. [24], where a composite is modeled in the

thickness direction as an assembly of �rst�order shear deformable lami-

nated plates and coupled with interface elements. Therefore, across the

interface two regions can be identi�ed, one where perfect adhesion holds

between layers, and the other one where delamination takes place. Such

an approach is at an intermediate level between classic delamination and

continuum models, which are computationally expensive.

The authors demonstrated also in [34] that an accurate mode par-

tition can be performed in the context of a 3D analysis. According to

this modeling technique, in the delaminated interface, displacement con-

tinuity and contact are modeled by means of a penalty method, whereas

in the undelaminated interfaces continuity is enforced by adopting La-

grange's method. However, it is well known that the Lagrangian and

the penalty method applied to impose adhesion are equivalents. There-

fore, the delamination problem and the evaluation of the energy release

rate components may be solved in a local or in a global sense, that is

in terms of interlaminar stresses and relative displacements, or in terms

of plate stresses and strains, respectively. In particular, the penalty

method corresponds to the local approach, which consists in adopting a

thin adhesive layer of vanishing thickness, and consequently an in�nitely

high interface sti�ness. On the other hand, the Lagrange method rep-

resents a global approach, where the interface assures only the adhesion

constraint between layers, and computation of interfacial stresses and
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relative displacements is not allowed.

This multi�layer approach based on the FSDT , and coupled with

the linear elastic interface model, will be deeply studied from theoretical

and numerical points of view in the next Chapters. Results will be also

shortly published in [35].

However, other strategies may be adopted in order to model lami-

nate composites. For example, Kim et al. [36] joined the FSDT with

the Higher�order ZigZag displacement theory, accounting also multiples

delamination at the interfaces. In particular, the ZigZag theory, which

consider 5 kinematic variables, ensures the transverse shear stresses con-

tinuity and the traction�free conditions on the top and on the bottom

surface of the laminate. The authors considered therefore di�erent stages

of damage at the interface, which is modeled as a spring layer. Moreover,

trough their model, which is called Enhanced First Order Shear Defor-

mation Theroy with Imperfections (EFSDTWI), they are able to de-

termine also the e�ective Shear Correction Factor (SCF ). In particular,

according to them, for an unidirectional FRP , as the shear deformation

and the damage level rise, the SCF value drops.

In the framework of the laminate theories, Caron et al. proposed

in [37] the Multiparticle Model of Multilayered Materials, then renamed

Layerwise Stress Model (LS1) by Lerpiniere et al. [38]. This model is

based on the Hellinger�Reissner variational principle wherein the mem-

branal stresses in each ply are approximated by a �rst�order polynomial,

therefore as linear across the thickness. The approximate displacements

of each layer, which are consistent with the approximate stresses, are

then represented by a 5 variables kinematic �eld. Moreover, the model

allows not only to evaluate the displacement discontinuities at the in-

terface existing when the delamination occurs, but also to account an

inelastic strain �eld, due for example to the interface sliding. There-

fore, the LS1 is a pure layerwise stress approach, since no hypothesis are

made on the displacement �eld. In particular, when this formulation is

adopted, �nite values of the interfacial stresses are always obtained, also
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at the free edges, allowing the adoption of a tensional criterion for the

prediction of the delamination onset, (see Caron et al. [37, 39]). These

stresses, as pointed out by Lerpiniere et al. [38], arise from an integra-

tion over a characteristic length, which is the thickness of the ply, and

represent therefore a mean stress value concentrated at the edge. Then,

a �nite element suitable for this model was implemented by Nguyen and

Caron in [40].

A number of studies, aimed to evaluate stress state and fracture

energies in delaminated orthotropic composite plates have been also per-

formed by Szekrényes, where the composite plates were modeled by using

the CPLT , the FSDT , the second� and the three�order shear deforma-

tion theory [41, 42, 43]. The author found that when the third�order

theory is used, the displacement �eld is better approximated then when

second�order theory is adopted, which on the contrary gives better re-

sults in terms of stress �eld.

To sum up, Kant and Swaminathan reviewed in [44] several methods

adopted to estimate interlaminar stresses in laminate composites. Beside

the approximate analytic methods, which may be tedious to solve for

complex situations, studies based on numerical analysis, such as the

�nite elements (FE) methods, were also presented. Finally several FE

methods based on laminate plate theories have been examined by Zhang

and Yang in [45].

1.4 Fiber Reinforced Polymers application in the

Civil Engineering �eld

Fiber Reinforced Polymers (FRP ) are nowadays largely used in sev-

eral engineering �elds. In fact, thanks to their low density, they own

higher strength-weight and modulus-weight ratio than common metallic

materials, together with an elevated fatigue strength and damage tol-

erance. Moreover, they own an high inherent damping, which not only

improve the energy absorption capability of the material, but also leads
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to a reduction of the transmission of noise and vibration. Another use-

ful characteristic of �ber reinforced polymers is a noncorroding behavior.

However, since the FRP 's external surface can absorb moisture or chem-

icals from the environment, they must be properly protected. It is also

important to remark that, contrary to the structural metals, these com-

posites exhibit in general an elastic tensile stress - strain relationship to

failure, so that the �bers are characterized by a brittle failure mode.

Figure 1.12: FRP glass and carbon bars. Reprinted from [4]

Among the various �elds in which they are adopted, it is possible

to �nd several applications of FRP in the aircraft, space, automotive,

marine and medical industry. Anyway, the applications of major interest

in this thesis are those related to the civil engineering.

The FRP used in structural engineering are generally made by

glass, carbon or aramid �bers inserted in a matrix of epoxy, polyester,

vinylester, or phenolic thermosetting resins. Concerning the form in

which FRP are used, they can be realized in form of structural pro-

�les, reinforcing bars, strips and sheets, see Figs. 1.12,1.13 and 1.14. In

particular, in case of pro�les or bars, FRP are manufactured in such a

way as to be ready to be used, whereas in the other cases, the structural

component may be realized in situ starting from dries �bers and liquid

resins.

By focusing on the reinforcement of new concrete structural members,

FRP can be categorized in, [4]:
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� FRP bars or grid for reinforced concrete (RC) members. The

bars are typically made by glass and carbon �bers, which can be

connected to the steel bars in a common way. Several applications

can be found in underground tunnels and bridges decks.

� FRP tendons for prestressed concrete (PC) members. For this

application specially aramid and carbon �bers are used. However,

due to the necessity to develop particular anchorage systems, this

kind of application is not largely spread.

� stay-in place FRP formwork for RC members. They can be used as

bridge deck panels, serving as tensile reinforcement for the concrete

or in a tubular form to realize beam and column members.

Figure 1.13: FRP strip installation. Reprinted from [4]

On the contrary, the applications where FRP are used to strengthen

and repair existing structural members are called retro�tting applica-

tions. They can be classi�ed in two types:
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Figure 1.14: FRP sheets installation. Reprinted from [4]

Figure 1.15: Columns con�nement by means of FRP sheets. Reprinted
from [4]

� strengthening : the original strength or ductility of the structure is

increased with respect to the original in order to adequate it to the

currents building codes, for example in terms of seismic response,

or owing to a change in the use of the structure itself.
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� repair : FRP are used to retro�t a damaged structure in order to

reacquire the design characteristics.

The FRP are currently used to reinforce not only concrete members,

but also timber, masonry and metal structures. Thery are adopted both

for bridge and buildings, as well as for the �exural and shear strength-

ening of concrete beams, and for axial strengthening and con�nement

of concrete columns, Fig. 1.15. One of the adopted methods consists in

the adhesive bond of a rigid FRP strip of about 100 mm of width and

1.6 mm of thickness to the external surface of the structural member.

Alternatively, it is possible crate in situ the FRP by using �exible dry

�ber fabrics or sheet and liquid polymers.
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Chapter 2

FRP reinforced beams

In this Chapter the use of Fiber Reinforced Polymers (FRP ) in strength-

ened systems will be analyzed in detail.

In Section 2.1 the most common failure mechanisms related to the

application of FRP , and deriving from manufacturing process or loading

conditions, is presented.

Then, by focusing on damage phenomena arising from debonding (or

delamination) at interface of composite plies or between di�erent struc-

tural components, the challenging task related to the interfacial stresses

and fracture energies computation is faced. In particular, in Section

2.2 several works concerning the evaluation of interfacial stresses are

reviewed, and governing equations for a three layer assembly (concrete

beam, adhesive layer and FRP plate) are analytically obtained by means

of a variational approach.

On the other hand, Section 2.3 deals with the evaluation of fracture

energy characterizing strengthened systems, by introducing at �rst the

classic concepts of the Linear Elastic Fracture Mechanics, and then by

reporting di�erent strategies and formulations adopted in mixed mode

problems.

In Section 2.4 a general formulation based on multi�layers and inter-

face elements is presented. This formulation not only is able to provide



the governing equations of the problem, but also gives interfacial stresses

and individual components of the Energy Release Rate. In particular,

by adopting di�erent types of interface, the present model will be ap-

plied numerically in the next Chapters, where it will be con�rmed as a

powerful alternative to others existing models, in terms of computational

costs and accuracy, for the evaluation of interfacial stresses and fracture

energy.

Finally, Section 2.5 focuses on the available criteria able to evalu-

ate damage initiation and propagation. In particular, in Section 2.5.2

a relatively recent criterion for crack initiation, which couples tension

and energetic considerations, is extended at the present application of

reinforced concrete beams under mixed mode loading condition.

2.1 Introduction

2.1.1 FRP failure mechanisms

The complexity of the composite material damage process arises from

the mechanical composition of the composite itself. Indeed, the coexis-

tence of multiples micro�constituents with di�erent properties leads to

manifold defects interaction and coupling. As a consequence, the FRP

load carrying capacity and durability is a�ected by the presence of inter-

nal defects, which generally are originated by the manufacturing process

and grow during the composite work life.

The nature and speci�city of each defect depends on the adopted

manufacturing process, and their interaction lead to several damage

mechanisms. Both, principals defects and damage processes are listed in

Tab. 2.1. In particular, a class of defects concerns the �ber misalign-

ment, the not uniform distribution and the incorrect volume fraction.

Also the presence of voids, inclusions in the matrix and local bound fail-

ure may be present. Moreover, the layer adjoin may cause some internal

defects. In fact, for several structural applications, FRP are commer-

cialized in prepreg sheets composed by single �bers layers embedded in
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Chapter 2. FRP reinforced beams

a resin matrix and �attered by paper carrier sheets. The various sheets

are then joined together, leading sometimes to gaps and overlaps. Oth-

ers defects, such as blisters and wrinkles, may arise from the moisture

absorption into the voids which are located near the laminate surface,

and from the sheets draping, respectively [1].

Initial defects Failure mechanisms

voids matrix microcracking
inclusions �ber microbuckling

gaps �ber/matrix debonding
overlaps �ber breakage

�ber misalignment �ber pull-out
blisters splitting
wrinkles kinking

ply drop-o� delamination

Table 2.1: FRP initial defects and damage mechanisms

The FRP failure mechanisms can be roughly classi�ed into intralam-

inar and interlaminar. In particular, the intralaminar damage occurs

inside each lamina and represents the early stage of damage wherein

multiple micro�cracks and voids grow. On the contrary, the interlam-

inar damage refers to cracking of adjacent laminate plies. This failure

mode, which generally occurs near free edges and holes, usually leads

to the FRP collapse through a progressive loss of structural strength,

Leonetti [2].

In Fig. 2.1, the most common failure mechanisms are shown. In

particular, depending on the lamina stress state, di�erent type of fail-

ure may appear. Indeed, tensile stress causes generally debonding at the

�ber/matrix interface, �bers breakage and pull�out phenomena, whereas

failure associated with compressive loads is related with �bers microbuck-

ling, crushing and splitting, see for instance Fleck [3], Budianksy and

Fleck [4, 5].

Matrix microcracking: the cracking of the matrix represents gen-

erally the early stage of the FRP damage process. Starting from defects
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Figure 2.1: Schematic representation of principals FRP damage mech-
anisms: a) and b) �bers/matrix debonding, c) �bers breakage d) �bers
pull�out, e) plastic microbuckling, f) elastic microbuckling, g) �bers
crushing and h) �bers splitting.

such as voids, inclusions and debondend interfaces, the cracks may grow

into a ply across the thickness and parallel to the �bers direction. How-

ever, although the matrix cracking does not cause the FRP failure, it

a�ects largely the material sti�ness, and facilitates the progression of

the others damage mechanisms. These e�ects are produced in general

by the voids growth, which may be originated during the manufacturing

process or from others damage mechanisms.

Fiber microbuckling and kinking: in case of FRP subjected

to compressive load, the microbuckling and the plastical kinking cause
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Chapter 2. FRP reinforced beams

the �ber failure. In particular, the kinking arises from a possible �bers

misalignment and it is in�uenced by the shear stresses.

Fiber/matrix interfacial debonding: the debonding at the inter-

face between the �ber and the matrix is one of the most common failure

mechanisms for the FRP materials. In particular, since the �bers are

sti�er than the matrix, the properties of the interface highly in�uences

the failure behavior of the composite. In fact, in case of weak interface,

debonding occurs at low levels of load and di�use cracking in the trans-

verse direction takes place before failure. On the contrary, in case of

strong interface, the FRP failure occurs for higher load levels following

up �bers breakage.

Fiber breakage: the FRP failure under tensile stress state occurs

as a result of the �bers breakage. When a �ber breaks, the stresses redis-

tribute at the neighborhood �bers, which may in turn break. However,

this failure mechanism has a statistical character, since it is in�uenced

by the nonuniform �bers' strength along the �ber itself and by the redis-

tribution of the stresses. Moreover, the larger numbers of �bers breakage

appears to occur near to the interface where the ply cracks end, [2].

Delamination: the term delamination refers to an interlaminar

damage mechanism where the crack grows at the interface between two

laminae. The interfacial delamination process was investigated by many

researchers in the past decades, from analytic and numerical points of

view. In particular, two major approaches may be adopted. One is the

Cohesive zone model (CZM), which allows to simulate the FRP de-

lamination by adopting interfacial cohesive laws and interfacial cohesive

elements, as it was discussed in Section 1.3.4,. In this framework, the

debonding at the interface between a reinforced concrete beam and a

FRP laminate was studied by Achintha and Burgoyne [6], in case of

damage starting either near the cut�o� section of the FRP or at a high�

moment zone. In particular, the authors assumed that debonding occurs

within the concrete, between the FRP and the steel bars of the beam, so

that the parameter governing the damage analysis is the fracture energy
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of the concrete.

One of the main advantage of using the CZM is that it enables to

study the delamination also in case of mixed�mode crack initiation and

propagation, allowing the partition of the energy release rate and the

modeling of multiple cracks. However, the CZM has some disadvan-

tages, how it was also pointed out by Rabinovitch in [7]. Indeed, not

only an high computation e�ort is required, but also the determination

of the interface constitutive law needs a complicate calibration process,

which have to take into account a large amount of parameters.

On the other hand, when the non linearity of the damaging process

is negligible, the crack propagation may be predicted in the framework

of the Linear Elastic Fracture Mechanics (LEFM). Therefore, through

the de�nition of a linear analytic model, and with a small number of

needed material parameters, namely related to the interfacial toughness

and strength, the delamination problem may be simulated. However, it

is well know that the principles of the classical fracture mechanics are

suitable for the crack propagation only, that is when an initial defect

is already present. To overcome this intrinsic problem, how it will be

shown in Section 2.5, a coupled energetic and tensional criterion may

be adopted to evaluate the crack onset. In fact, the primary purpose

of Ph.D. study is the prediction of crack initiation within the frame-

work of the LEFM , together with the analysis of the crack propagation

through the Virtual Crack Closure Technique (V CCT ), and by modeling

the structural system, subjected to mixed mode loading condition, as a

multi�layer assembly of shear deformable 2 and 1�dimensional elements.

The study results will be also published in [8].

2.2 Interfacial stresses

A strengthened system composed by FRP composite plates bonded to

structural elements may fails because of debonding [9], which usually

occurs after initiation and growth of interfacial cracks at the interface
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between the adhesive layer and the lower face of the beam, [7]. Interfacial

debonding starts owing to high concentrations of stresses at the cut�o�

section of the plate or from intermediate �exural crack [10], and in many

cases it leads to the global failure of the layered element [11].

Since debonding failure modes are strictly related to high interfacial

shear or normal stresses, arising from the transfer of tensile stresses from

the bonded plate to the strengthened beam at the edge of the reinforce-

ment, an accurate prediction of these interfacial stresses is of fundamen-

tal importance [12]. Therefore, in the last decade several approximate

closed�form analytic solutions have been developed, based on simpli�ed

assumptions for the adhesive layer behavior [13]. Most of the existing an-

alytic solutions devoted to beams strengthened with externally bonded

FRP plates, are based on the assumption of linear elastic behavior of the

analyzed materials and on the use of classical beam theory to model the

mechanical behavior of the structural system components. Moreover, it

is often assumed that shear and normal stresses are constant across the

thickness of the adhesive layer, since this assumption enables to obtain

relatively simple closed�form solutions. This is the case of the elastic

foundation models. In particular, the one parameter elastic foundation

model accounts only the shear resistance of the adhesive, which is repre-

sented by a set of shear springs. Consequently, normal stress and bending

e�ects within the adhesive are neglected and shear stresses are constants

through the thickness. On the other hand, in the two parameter elastic

foundation model, both vertical and shear springs are considered, so that

normal and shear stresses within the adhesive are constants and vertical

and longitudinal displacement linear. However, the elastic foundation

models not only do not ful�ll the point equilibrium within the thick-

ness of the adhesive and do not provide interaction between normal and

shear stresses, but also they do not satisfy the requirement of null shear

stresses at the free edge of the FRP [14, 15].

In this context, another general and accurate closed�form solution in-

cluding the contributions of all deformations from the three components
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of the strengthened system, with only the e�ects of shear deformability,

has been proposed in [13].

To overcome the foundation models lacks, a re�ned closed�form solu-

tion, referred to as higher order analysis, considering the adhesive layer

as an orthotropic elastic continuum with a negligible longitudinal sti�-

ness, was proposed in [14]. In spite of the simpli�ed assumptions of a

constant shear stress distribution across the adhesive layer and of zero

shear stress at the adhesive layer free edges, the higher order solution

is able to capture the variations of normal stresses across the adhesive

layers and to show that near the plate end the normal stress at the adhe-

sive/concrete interface is tensile and compressive at the adhesive/plate

one. Consequently, Rabinovitch and Frostig [14] for the �rst time pointed

out that this aspect is the reason why the adhesive/concrete interface is

more vulnerable to debond than the other.

Beside the above mentioned closed�form solutions, also several nu-

merical stress analyses based on �nite element calculations have been

carried out to estimate interfacial stresses in strengthened beam sys-

tems. In [12] a �nite element investigation on the interfacial stresses

in reinforced concrete beams strengthened with a bonded FRP plate is

carried out, in order to evaluate the accuracy of the above mentioned

simpli�ed closed form solutions. In particular the authors point out the

existence of the stress singularity at the plate end and the necessity to

use a very �ne mesh in order to obtain an accurate determination of the

interfacial stresses. The work shows also that the closed�form solution

proposed in [13], as well as others similar closed�form solutions, can be

considered as a reasonable approximation of stresses along the middle�

thickness section of the adhesive layer, and that interfacial stresses vary

strongly across the adhesive, becoming uniform at a small distance from

the end of the plate. Also Zhang and Teng [16] have implemented var-

ious �nite element models based on di�erent combination of 2D plane

stress, classical beam and spring elements, in order to predict interfacial

stresses, comparing numerical results with various analytical solutions
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proposed in the literature. The authors evidenced the in�uence of the

adopted model to describe the behavior of the components in terms of

interfacial shear and normal stresses prediction, and the e�cacy of the

simple analytical beam�spring�beam model.

2.2.1 A variational approach to modeling FRP reinforced

beams

In order to analyze the debonding problem for beams strengthened with

externally bonded �ber�reinforced composite plates, a variational ap-

proach is here adopted. Indeed, as it will be shown, the principle of

stationary total potential energy allows to obtain the problem governing

equations.

The structural system considered in the present formulation is com-

posed by three physical components, namely a concrete beam, an adhe-

sive layer and a FRP plate, as shown in Fig. 2.2. Each physical layer

is modeled by a �rst�order shear deformable mathematical layer and,

in order to guarantee displacements continuity at the perfect interfaces

(i.e. the undelaminated regions), a strong formulation is employed. The

latter consists in the adoption of appropriate Lagrange multipliers rep-

resenting interfacial stresses. This method was also adopted by Wu and

Kuo in [17], who imposed the displacement continuity at the interface

by introducing into the potential energy functional the Lagrange multi-

pliers. Then, the variation of the potential energy with respect to the

primary variables, which are the generalized displacement and the inter-

laminar stresses (i.e. the Lagrange multipliers) leads to the equilibrium

equations.

The analysis of the composite system is carried out with reference

to a unit width, and a two�dimensional formulation is considered (plane

strain or plane stress conditions), assuming that all the generalized dis-

placements are independent on the y�coordinate.

In the present variational formulation the following energy functional
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Π is therefore introduced:

Π = U + Λ−W (2.2.1)

where U is the system strain energy, Λ is the Lagrange functional which

ensures the displacement continuity in the bonded region, and W is

the work performed by applied external load. The problem governing

equations may be therefore obtained through the stationarity of the Π

functional due to a variation of the generalized displacements in the

layers and of the Lagrange multipliers:

δU + δΛ− δW = 0 (2.2.2)

where δ is the variational operator.

In the following, the structural system is modeled by considering

three mathematical layer, which correspond to the di�erent physical lay-

ers. Moreover, although di�erent locations for the debonding across the

adhesive layer can be considered, and will be analyzed in the numerical

examples, for the sake of simplicity in the subsequent analytical develop-

ments it is assumed that delamination is located at the physical interface

between the adhesive layer and the concrete beam.

Let's consider an elastic beam of length L and thickness tb. The beam

is reinforced by means of an elastic FRP plate of thickness tp, which is

Figure 2.2: The analyzed strengthened structural system.
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bonded over a region Lu < x < Lu + Ls through an adhesive layer of

thickness ta. Assuming that the width of all the structural elements is

equal to B, two di�erent unstregthened regions are considered, that is

0 < x < Lu and Lu + Ls < x < L, whereas the delaminated region

corresponds to Lu +Ls− a < x < Lu +Ls, in which contact is excluded

by hypothesis.

Figure 2.3: Mathematical notations and conventions for loads, stress
resultants and displacements.

The mathematical notation and conventions for the local co�ordinate

systems of each layer, stress resultants, external and end loads, and dis-

placements, are shown in Fig. 2.3. In particular, in the present formu-

lation the distributed or concentrated loads are assumed to act only on

the beam. The upper mathematical layer is denoted with the subscript

3, and the lower one with the subscript 1, with each layer of thickness ti

and i = 1, 2, 3. The present formulation is an extension of that already

proposed by Greco et al. in [18], where only two mathematical layers

were considered, one representing the reinforced beam, and the other one

the adhesive and the bonded plate coupled together.

For the generic layer, the kinematics expressions may be introduced

for the membrane strain at the reference surface εi, the curvature κi and

the transverse shear strain γi:

εi = u′i, κi = ψ′i, γi = ψi + w′i (2.2.3)

where ui(x) and wi(x) are the mid�surface in�plane and transverse dis-
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placements, respectively, ψi(x) are the rotation of transverse normals,

and prime denotes the derivative with respect to x. The �rst variation

of the strain energy is:

δU =

∫ Lu+Ls

Lu

(N1δε1 +N2δε2 + T1δγ1 + T2δγ2 +M1δκ1+

+M2δκ2)dx+

∫ L

0
(N3δε3 + T3δγ3 +M3δκ3)dx

(2.2.4)

where Ni are the membrane force resultants, Mi the moment resultants

and Ti the transverse shear force resultants.

The variation of the Lagrange functional related to the interface dis-

placement continuity between adjacent layers can be expressed as:

δΛ =

∫ Lu+Ls

Lu

2∑
j=1

(λzxjδ∆uj + λzjδ∆wj + δλzxj∆uj+

+ δλzj∆wj)dx

(2.2.5)

where ∆uj and ∆wj denote displacement jump across the j�interface

between adjacent layers and are given by:∆uj = uj −
tj
2
ψj − uj+1 −

tj+1

2
ψj+1

∆wj = wj − wj+1, j = 1, 2
(2.2.6)

and λzxj and λzj are the Lagrange multipliers, which physically represent

interlaminar stresses at the interfaces, see Fig. 2.2.

The variation of the external load work is:

δW =

∫ L

0
(p3δu3 + q3δw3)dx+ δW̄ c + δW̄ (2.2.7)

where p3 and q3 are the distributed axial and transverse external loads

acting on the beam, respectively. δW̄ c is the variation of the work of

concentrated external loads, N̄3i and T̄3i, and bending moments, M̄3i,
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exerted at x = xi on the base beam and is de�ned as:

W̄ c =

n∑
i=1

∫ L

0
(N̄3iδu3 + T̄3iδw3 + M̄3iδψ3)D(x− xi)dx (2.2.8)

where D is the Dirac delta function and n is the number of concentrated

loads. On the other hand, the quantity δW̄ appearing in Eq. (2.2.7)

is the variation of the work of external concentrated loads and bending

moments at the two ends of the upper layer:

W̄ = [N̄3δu3 + T̄3δw3 + M̄3δψ3]L0 (2.2.9)

where [f(x)]ab denotes the di�erence between the values of the considered

function at x = a and x = b, namely f(a)− f(b).

For the i�th mathematical homogeneous layer, the constitutive rela-

tions associated to an orthotropic behavior are de�ned by the classical

extensional, bending�extensional coupling, bending and shear sti�nesses,

Ai, Di, Bi and Hi, respectively. Assuming plane stress or plane stress

conditions, the constitutive relations take the following form (see Sec-

tions 1.3.1.3 and 1.3.2.1 for additional details):
Ni

Mi

Ti

 =

Ai Bi 0

Bi Di 0

0 0 Hi



εi

κi

γi

 (2.2.10)

where

(Ai, Bi, Di) =

∫ ti/2

−ti/2
Ēi(zi)(1, zi, z

2
i )dzi,

Hi =

∫ ti/2

−ti/2
fGi(zi)dzi

(2.2.11)

wherein Ēi is an equivalent longitudinal modulus, Gi the transverse shear

modulus, and f the shear correction factor chosen as 5/6 in this work.

In particular, the longitudinal and transverse shear moduli may depend
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on the constitutive properties of the plies which constitute the layers. In

case of plane stress and plane strain assumptions in the y�direction, and

for a specially orthotropic homogeneous layer, Ēi is given by:

Ēi =


Ei plane stress

Ei
1− νxyiνyxi

plane strain
(2.2.12)

where νxyi and νyxi are the Poisson ratios and Ei the Young moduli.

For the sake of simplicity, a symmetric layup about the mid�plane is

assumed for the composite strengthening plate, and the base beam and

the adhesive layer are considered made of homogeneous and isotropic

materials. As a consequence, for the upper layer the sti�ness coe�cients

may be expressed as:

A3 = Ē3t3, D3 =
Ē3t

3
3

12
, B3 = 0, H3 = fG3t3 (2.2.13)

In the general form, that is when a mathematical layer does not

correspond to a physical layer, the sti�ness terms can be evaluated as:

Ai = Ēiti + Ēi+1ti+1,

Di =
Ēiti(3t

2
i+1 + t2i ) + Ēi+1ti+1(3t2i + t2i+1)

12
,

Bi =
(Ēi − Ēi+1)titi+1

2
,

Hi = f(Giti +Gi+1ti+1), for i = 1, 2

(2.2.14)

However, since the adhesive and the FRP layers are not coupled in

the case study, the sti�ness coe�cients are evaluated in the same manner

as for Eq. (2.2.13).
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2.2.2 Governing equations for a three mathematical layer

system

The variation of Π with respect to the Lagrange multipliers leads to the

constraint equations assuring displacement continuity at the interfaces:∆uj = 0

∆wj = 0
, j = 1, 2 (2.2.15)

which, by virtue of Eq. (2.2.6) leads touj+1 = uj −
tj
2
ψj −

tj+1

2
ψj+1

wj+1 = wj

, j = 1, 2 (2.2.16)

On the other hand, by substituting Eq.(2.2.3) into Eq. (2.2.4), the

�rst variation of the strain energy becomes:

δU =

∫ Lu+Ls

Lu

(N1u
′′
1 +N2u

′′
2 + T1ψ

′
1 + T1w

′′
1 + T2ψ

′
2 + T2w

′′
2+

+M1ψ
′′
1 +M2ψ

′′
2)dx+

∫ L

0
(N3u

′′
3 + T3ψ

′
3 + T3w

′′
3 +M3ψ

′′
3)dx

(2.2.17)

and the integration by part gives

δU =

∫ Lu+Ls

Lu

−(N ′1δu1 +N ′2δu2 − T1δψ1 + T ′1δw1 − T2δψ2+

+ T ′2δw2 +M ′1δψ1 +M ′2δψ2)dx+

∫ L

0
−(N ′3δu3 − T3δψ3+

+ T ′3δw3 +M ′3δψ3)dx+ [N1δu1 +N2δu2 + T1δw1 + T2δw2+

+M1δψ1 +M2δψ2]Lu+Ls
Lu

+ [N3δu3 + T3δw3 +M3δψ3]L0

(2.2.18)

The variation of the potential energy functional, δΠ, by substituting

Eqs. (2.2.5), (2.2.7), (2.2.18) into Eq. (2.2.2), and by virtue of the
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displacement continuity conditions (2.2.16), can be therefore expressed

as:

δΠ =

∫ Lu+Ls−a

Lu

[(N ′1 +N ′2 +N ′3)δu1 + (M ′1 −
t1
2
N ′2 −

t1
2
N ′3+

− T1)δψ1 + (M ′2 −
t2
2
N ′2 − t2N ′3 − T2)δψ2 + (M ′3 −

t3
2
N ′3 − T3)δψ3+

+ (T ′1 + T ′2 + T ′3 + q3)δw1]dx−
∫ Lu

0
[N ′3δu3 + (M ′3 − T3)δψ3+

+ (T3 + q3)δw3]dx−
∫ Lu+Ls

Lu+Ls−a
[(N ′1 +N ′2)δu1 + (M ′1 −

t1
2
N ′2+

− T1)δψ1 + (M ′2 −
t2
2
N ′2 − T2)δψ2 + (T ′1 + T ′2)δw1]dx+

−
∫ L

Lu+Ls−a
[N ′3δu3 + (M ′3 − T3)δψ3 + (T ′3 + q3)δw3]dx+

−
∑
k=d,c

J(N1 +N2 +N3)δu1 + (T1 + T2 + T3)δw1+

+ (M1 −
t1
2
N2 −

t1
2
N3)δψ1 + (M2 −

t2
2
N2 − t2N3)δψ2+

+ (M3 −
t3
2
N3)δψ3Kk − δW̄ i − δW̄ = 0

(2.2.19)

where only transverse distributed forces q3 are considered, δW̄ i is the

work of the internal forces at the ends of the layers,

δW̄ = −

∑
i=1,2

Niδui +Miδψi + Tiδwi

 |x=Lu+Ls+

− [N3δu3 +M3δψ3 + T3δψ3]L0

(2.2.20)

and the double brackets JfKk = f+ − f−, when k = d refer to the jump

across the delamination tip (x = Lu + Ls − a), whereas when k = c

refer to the jump across the cut�o� section of the strengthening plate

(x = Lu). In particular, for any function f , the subscript + denotes the

function evaluated at x+, whereas the subscript − denotes the function
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Chapter 2. FRP reinforced beams

evaluated at x−.

The stationarity of Eq. (2.2.19) leads therefore to a boundary value

problem for the system considered, since the equilibrium equations, the

matching and the boundary conditions, (MC) and (BC), respectively,

may be obtained. In particular, the equilibrium equations are: one trans-

lational in the x�direction and one in the z�direction for the layer assem-

blies, and one rotational for each mathematical layer. The variational

method allows also to determine the Lagrange multipliers, which repre-

sent the interfacial forces, both stresses and forces, mutually exerted by

two adjacent mathematical layers in the undelaminated region.

Therefore, the equilibrium equations in the strengthened region,

namely x ∈ [Lu, Lu + Ls − a], are:

N ′1(x) +N ′2(x) +N ′3(x) = 0

T ′1(x) + T ′2(x) + T ′3(x) + q3 = 0

M ′1(x) +M ′2(x) +M ′3(x)− T1(x)− T2(x)− T3(x)+

−N
′
2(x)(t1 + t2)

2
− N ′3(x)(t1 + 2t2 + t3)

2
= 0

M ′2(x)− T2(x)− N ′2(x)t2
2

−N ′3(x)t2 = 0

M ′3(x)− T3(x)− N ′3(x)t3
2

= 0

(2.2.21)

The equilibrium equations in the unstrengthened region, namely x ∈
[0, Lu] and x ∈ [Lu + Ls − a, L], are:

N ′3(x) = 0

T ′3(x) + q3 = 0

M ′3(x)− T3(x) = 0

(2.2.22)

and in the delaminated region, x ∈ [Lu + Ls − a, Lu + Ls], for the

composite laminate and the adhesive assemblies are
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

N ′1(x) +N ′2(x) = 0

T ′1(x) + T ′2(x) = 0

M ′1(x) +M ′2(x)− T1(x)− T2(x)− N ′2(x)(t1 + t2)

2
= 0

M ′2(x)− T2(x)− N ′2(x)t2
2

= 0

(2.2.23)

The correspondent matching force conditions at the crack tip, k = d,

and at the cut�o� section, k = c, are:

JN1(x) +N2(x) +N3(x)Kk = 0

JT1(x) + T2(x) + T3(x)Kk = 0

JM1(x) +M2(x) +M3(x)− N2(x)(t1 + t2)

2
+

− N3(x)(t1 + 2t2 + t3)

2
Kk = 0

s
M2(x)− N2(x)t2

2
−N3(x)t2

{

k

= 0

s
M3(x)− N3(x)t3

2

{

k

= 0

(2.2.24)

and the boundary conditions may be expressed as

Ni = αN̄i or ui = ūi,

Ti = αT̄i or wi = w̄i,

Mi = αM̄i or ψi = ψ̄i

(2.2.25)

where, for i = 3, α = 1 or α = −1 for x = L and x = 0, respectively,

whereas for i = 1, 2, α = 0 and Eq. (2.2.25) refers to the cut�o� section

(x = Lu) and to the end of the delaminated interface (x = Lu + Ls),

while (ūi, w̄i, ψ̄i) are prescribed displacements. Moreover, it must be

evidenced that the boundary conditions at x = Lu and at x = Lu+Ls for

the lower layer assembly are imposed in accordance with the requirement
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Chapter 2. FRP reinforced beams

of free edge conditions, which for example at x = Lu implies that:

N−i = 0, T−i = 0, M−i = 0, for i = 1, 2 (2.2.26)

Also the Lagrange multipliers, i.e. the interlaminar stresses, can be

obtained through this variational method. Indeed, by collecting like

terms in Eqs. (2.2.5) and (2.2.18), and owing to the �rst two equations

in (2.2.21), stresses at the interface are given by:

λzx1 = N ′1 = −(N ′2 +N ′3)

λzx2 = N ′1 +N ′2 = −N ′3
λz1 = T ′1 = −(T ′2 + T ′3)

λzx2 = T ′1 + T ′2 = −T ′3

(2.2.27)

Moreover, it is possible to evidence that the matching conditions in

Eq. (2.2.24) can be also evaluated by equilibrium considerations on an

assembly of in�nitesimal volume elements as shown in Fig. 2.4. These

matching conditions are also compatibles with horizontal and vertical

concentrated interfacial forces at the j�th strong interface at the delam-

ination tip and cut�o� sections, which may be expressed as:

Σzx1 = N+
1 −N

−
1 =

∑
i=2,3

N−i −
∑
i=2,3

N+
i

Σzx2 = N−3 −N
+
3 =

∑
i=1,2

N+
i −

∑
i=1,2

N−i

Σz1 = T+
1 − T

−
1 =

∑
i=2,3

T−i −
∑
i=2,3

T+
i

Σzx2 = T−3 − T
+
3 =

∑
i=1,2

T+
i −

∑
i=1,2

T−i

(2.2.28)

where membrane and transverse shear forces are evaluated at the positive

or negative sides of the delamination tip and of the cut�o� sections.

These concentrated forces arise from the discontinuities in membrane

and shear stress resultants across the delamination tip. In fact, according
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also to Zou et al. [19], in the laminate theory, since the dimension in the

thickness direction is eliminated, the stress singularity disappears and

it is converted into the jump in the stress resultants. The evaluation

of concentrate interfacial forces is therefore a key element to determine

energy release rate during delamination growth. In fact, the out�of�plane

and the in�plane interfacial forces are directly related to the Mode I and

Mode II of fracture, respectively, how it will be further investigated in

Section 2.4.2.

Figure 2.4: Interfacial concentrated forces

2.2.2.1 FRP reinforced cantilever beam subjected to an edge

moment and an edge transverse force

Let's consider a cantilever beam of length L reinforced by a FRP plate

over a length Ls, and delaminated at the concrete/adhesive interface

along a distance a from the cut�o� section. The beam is also subjected

to an edge moment and an edge trasverse force, as shown in Fig. 2.5.

Tab. 2.2 and Fig. 2.6 summarize the di�erent regions that may be

identi�ed for the present scheme.
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Chapter 2. FRP reinforced beams

region 1 unstrengthened region Lu + Ls − a < x ≤ L
region 2 delaminated region Lu + Ls − a < x ≤ Lu + Ls
region 3 strengthened region x ≤ Lu + Ls − a

Table 2.2: Structural system zoning

Therefore, the system of ordinary di�erential equations (ODEs)

(2.2.21) describes the system equilibrium in the region 3 and, from Eq.

(2.2.25), it is possible to de�ne the boundary conditions, which are given

by:

N̄i(x = Ls) = 0, T̄i(x = Ls) = 0, M̄i(x = Ls) = 0,

for i = 1, 2

N̄3(x = L) = 0, T̄3(x = L) = −F̄ , M̄3(x = L) = M̄,

ūi(0) = 0, w̄i(0) = 0, ψ̄i(0) = 0, for i = 1, 2, 3

(2.2.29)

The matching force condition at the delamination tip, which will be

denote hereafter as Ld = Ls−a, are obtained from Eq. (2.2.24), and are

N1(x) +N2(x) +N3(x)|x=Ld
= 0

T1(x) + T2(x) + T3(x)|x=Ld
= −F̄

M1(x) +M2(x) +M3(x)− N2(x)(t1 + t2)

2
+

−N3(x)(t1 + 2t2 + t3)

2
|x=Ld

= M̄ + F̄ (L− x)|x=Ld

M2(x)− N2(x)t2
2

−N3(x)t2|x=Ld
= 0

M3(x)− N3(x)t3
2

|x=Ld
= M̄ + F̄ (L− x)|x=Ld

(2.2.30)

The �rst step, in order to analytically solve the problem, consists in

de�ning the strain �eld through the displacement �eld, that is by using

Eq. (2.2.3). Then, forces and moments resultants may be expressed

through the displacement �eld, according to the constitutive relations,

(2.2.10), where the bending�extensional coupling sti�ness coe�cients,
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Figure 2.5: FRP reinforced cantilever beam subjected to an edge moment
and an edge transverse force

Bi, are null since the laminate is symmetric with respect to the mid�

plane.

By using the displacement continuity conditions in the bonded re-

gion, (2.2.16), the �rst two of Eq. (2.2.21) may be solved with the

correspondents two MC, which gives:

(A1 +A2 +A3)

(
d

dx
u1(x)

)
− 1

2
t1(A2 +A3)

(
d

dx
ψ1(x)

)
+

− 1

2
t2(A2 +A3)

(
d

dx
ψ2(x)

)
− 1

2
A3t3

(
d

dx
ψ3(x)

)
= 0

(2.2.31)

(H1 +H2 +H3)

(
d

dx
w1(x)

)
+H1ψ1(x) +H2ψ2(x) +H2ψ2(x) + F̄ = 0

(2.2.32)

The integration of Eqs. (2.2.31) and (2.2.32), with the correspondent

BC at the �xed end in terms of prescribed displacement, Eq. (2.2.29),

Figure 2.6: Double cantilever reinforced beam zoning

94



Chapter 2. FRP reinforced beams

leads to:

ψ3(x) =
2(A1 +A2 +A3)u1(x)

A3t3
− t1(A2 +A3)ψ1(x)

A3t3

− t2(A2 + 2A3)ψ2(x)

A3t3

(2.2.33)

d

dx
w1(x) = −H1ψ1(x) +H2ψ2(x) +H3ψ3(x) + F̄

H1 +H2 +H3
(2.2.34)

By integrating the third of Eq. (2.2.21), taking into account the

integration of (2.2.33), and integrating again, it is possible to express

the axial displacement of the lower layer as a function of the rotation of

the two lower layers:

u1(x) = −
bψ1(x) + cψ2(x) + gx+

hx2

2
a

(2.2.35)

where the coe�cients (b, c, g, h) are given in Appendix 4.2.

Proceeding in a similar manner with the others ODE an MC, and

after some manipulation, it is possible to express the system governing

equations in term on only two second order ODE:ψ′′1(x) + λ1ψ1(x) + λ2ψ
′′
2(x) + λ3ψ2(x) + c1x

2 + c2x+ c3 = 0

ψ′′1(x) + λ4ψ1(x) + λ5ψ
′′
2(x) + λ6ψ2(x) + c4x

2 + c5x+ c6 = 0

(2.2.36)

which coe�cient are reported in Appendix 4.2.

The associated boundary conditions are obtained from Eqs. (2.2.29)

and (2.2.30) and, after some manipulation, they can be expressed as:

ψ1(0) = 0

ψ2(0) = 0

ψ′1(Ld) = −c7M̄tot

ψ′2(Ld) = c8M̄tot

(2.2.37)
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where also the coe�cients (c7, c8) are given in Appendix 4.2 and

M̄tot = (Ld − L)F̄ + M̄ (2.2.38)

In a similar manner, starting from Eqs. (2.2.22) and (2.2.23), and

by using proper MC and BC, (2.2.24) and (2.2.25), respectively, it is

possible to express the governing equations of region 1 and region 2 in

term of displacement variables. In particular, although the delamination

tip is a singular point where the generalized displacement derivatives are

discontinuous, the displacement variables are continuous across the tip,

leading to:

(u−i , w
−
i , ψ

−
i ) = (u+

i , w
+
i , ψ

+
i ), i = 1, 2, 3 (2.2.39)

which can be taken into account when the BC at the tip for region 2 are

de�ned. Therefore, once that the elastic solution is found for all regions,

forces and moments resultants can be evaluated. Then, by virtue of Eq.

(2.2.27), the interfacial stresses in the bonded region, and in a similar

manner at the adhesive/FRP interface, may be obtained.

2.3 Fracture energies in mixed mode problems

The initiation and propagation of the delamination at the interface be-

tween the FRP composite material and a structural element, or through

the thickness of a reinforcement components, is generally a brittle phe-

nomenon. For this reason, a review of the basic concept of the Linear

Elastic Fracture Mechanics (LEFM) may be necessary to clearly un-

derstand the further developments. A vast literature exists in the �eld,

and some reference works are those of Ba�zant [20], Broek [21], Knott

[22] and Anderson [23]. Moreover, since in the delamination of strength-

ened system, the critical fracture energy for interface crack growth has a

mixed mode dependence, it is necessary to extract the individual energy

release rate components. Therefore, the following Section is organized

as follows: at �rst, the Fracture Mechanics basic principles are brie�y
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reviewed; then, with the aim to analytically obtain the ERR modal par-

tition, some analytic and numerical methods are presented; �nally, some

considerations about the experimental determination of the interfacial

toughness are reported.

2.3.1 LEFM aspects

Defects deriving from the manufacturing process are commonly found

into structural components but, up to a certain level, these inherent �ows

do not a�ect the element strength and performance. However, during

the structural elements work life, several external factors may cause the

�ows growth, which can lead to various failure mechanisms, as shown in

Section 2.1.1.

According to a classic de�nition, crack propagation arises from the

superposition of three Modes of fracture, which depend on the acting

load. These Modes are represented in Fig. 2.7 and are de�ned as follows:

� Opening mode (Mode I) - a tensile stress is applied orthogo-

nally to the crack plane.

� Sliding mode (Mode II) - a shear stress is applied on the crack

plane, in a perpendicular direction with respect to the crack front.

� Tearing mode (Mode III) - a shear stress acts in the direction

of the crack front and parallel with respect to the crack plane

Let's consider a Mode I crack problem, where a plate of in�nite

length is subjected to a bi�axial stress. A polar coordinate system may

be considered, with the origin �xed at the crack tip, Fig. 2.8. The

stresses at the crack tip are known, and are given by:

σij =
KI√
2πr

fij(θ) (2.3.1)

where fij(θ) is a real function which ful�lls the boundary conditions,

and KI is the Stress Intensity Factor (SIF ), which gives a measure
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Figure 2.7: Fracture Modes

Figure 2.8: (a) In�nite plate under bi�axial stress, (b) polar coordinate
system

of the stress singularity at the crack tip. Indeed, as r → 0, i.e. the

distance from the tip, stresses tend to be singulars, whereas as r → ∞
stresses tend to those externally applied on the plate. It is also possible

to demonstrate that:

KI = σ
√
πa (2.3.2)

Several SIF values for plates of �nite dimension, and in case of cir-

cular and elliptical cracks are listed in [21].

The singularity at the crack tip leads to the presence of a plastic zone

ahead the tip, Fig. 2.9. Firstly, the plastic zone shape is supposed to be
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circular, then the e�ective plastic zone size may be evaluated considering

a crack which length is greater then the actual and under the hypothesis

of edges subjected to a yield stress tending to close the crack.

Therefore, once that the plastic zone size is known, it is possible to

evaluate the exact SIF . In particular, by using a yield criterion, such

as Von Mises or Tresca, it is possible to obtain also the actual boundary

of the plastic zone, which is generally greater in a plane stress state.

In fact, by considering a plate which thickness is at least equal to the

plastic zone size, a plane stress state may be found on the plate surface,

whereas a plane strain state inside the plate. Therefore, since the yield

of the material within the thickness is contrasted by the neighboring

material, the e�ective yield stress in plane strain state may be three

times greater then the uni�axial yield stress.

Figure 2.9: Crack tip plastic zone

As a result, the stress state at the crack tip and the failure mecha-

nism depend on the plate thickness. Indeed, in case of thin plates, the

fracture plane is inclined of 45◦ with respect to the external surface, slant

fracture, whereas, above a certain thickness value, the fracture plane is

orthogonal to the plate surface, �at tensile fracture. Moreover, it is pos-

sible to identify a critic value of the SIF , KIC , which represents the

material toughness. KIC depends on the thickness and it can be evalu-

ated experimentally.
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The base equation of Fracture Mechanics was introduced by Grif-

�th in 1921. According to Gri�th, a crack propagates if the energy

released during propagation corresponds to the energy required for the

crack growth. For example, let's consider the force�displacement plot of

a specimen loaded at the two ends and cracked at one edge shown in Fig.

2.10, where v denotes the relative displacement between the application

points of the load P .

Figure 2.10: Load�displacement plot of a cracked specimen

The OAC triangle area represents the specimen elastic energy. When

the crack propagates of a length da, the specimen sti�ness is reduced.

In particular, when the specimen ends are �xed, the load drop from A

to B and the area OAB is the released elastic energy. On the contrary,

if the crack propagates at constant load, from point A to D, the relative

displacement increases of CE, and the elastic energy stored into the

plate corresponds to the ODE area, whereas the area ADEC denotes

the load work. By neglecting the ADB area, it is possible to a�rm that

the energy available for the crack propagation is the same in case of �xed

grip and constant load, i.e. the area OAB. In particular, in the �xed

grip case, the available energy arises from the elastic energy, whereas in

the constant load case from the load.
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Therefore, crack growth occurs if:

dU

da
=
dW

da
(2.3.3)

where U is the elastic energy and W the energy required for the crack

propagation. For a plate of unit thickness, the elastic energy may be

expressed as:
dU

da
=
πσ2a

E
(2.3.4)

The quantity dU/da and the energy consumed during propagation

may be also de�ned as:

G =
πσ2a

E

R =
dW

da

(2.3.5)

where G is called Energy Release Rate (ERR) or Crack Driving Force,

which dimensions are [J/m2] or [N/m], and R is the Crack Resistance.

In plane strain state, it is possible to assume that the energy necessary

to the crack propagation keeps constant for each da increment, thus

R = cost., therefore, condition for the crack growth is that ERR reaches

a critical value GIC :

GIC =
πσ2

ca

E
(2.3.6)

which, by using Eq. (2.3.2), becomes:

GIC =
K2
IC

E
(2.3.7)

Therefore, in Fig. 2.11 the criterion for crack propagation in an

homogeneous material is shown when R is assumed to be constant. The

ERR of a crack of length OF , subjected to a stress σ2 is equal to A,

which means that the crack does not propagates. However, the same

crack under σ1 > σ2 reaches the critical value GIC and the crack grows

along BC. On the contrary, a crack which length is OE subjected to σ2
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propagates along BD, which is parallel to FA.

Figure 2.11: Energetic criterion in plane strain state

On the other hand, in a plane stress state, the Crack Resistance varies

with da, Fig. 2.12. In particular, if G < R, the crack does not grow,

point A, or the propagation stops at constant load, line BF . On the

contrary, whereas if G > R the crack grows in a unstable manner until

fracture, point D.

Figure 2.12: Energetic criterion in plane stress state

The energetic criterion in plane stress may be therefore set as:

∂G

∂a
=
∂R

∂a
(2.3.8)
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If during crack propagation the plastic zone is not small, the ERR

can not be longer evaluated from the elastic stress �eld. However, it is

possible to use the so�called J integral, which is a contour path integral,

independent of the path. By virtue of the conservation energy principle,

in the 2D form, the J integral is given by:

J =

∫
Γ

(
Wdy −T

∂u

∂x
ds

)
(2.3.9)

where Γ is a closed boundary oriented counterclockwise de�ned within a

stressed solid, u is the displacement in the x�direction, ds is an element

of Γ, and W and T are the strain energy per unit volume and the tension

vector:

W = W(x, y) = W(ε) =

∫ ε

0
σijdεij

T = σn

(2.3.10)

where the tension vector T is perpendicular and outward to Γ. It is

possible to demonstrate that J = 0 along a closed boundary.

In Fig. 2.13 the closed contour ABCD around a crack tip is consid-

ered. The integral vanishes and it does not depend on the path. Indeed,

since T = 0 and dy = 0 along the AB and CD lines, the contribution of

AC is the same of that of BD but with opposite sign, [21, 23]. Moreover,

since the J integral corresponds to the variation of potential energy for

a virtual crack extension of da, it represents the elastic energy release

rate, and it is an universal fracture criterion, which is valid in the linear

elastic case, where J = G, as well as in the non�linear case.

2.3.2 Mixed mode Energy Release Rates

Crack propagation in orthotropic materials, or at the interface between

components with di�erent properties, may be a mixed mode dependent

problem, in both cases of kinking or straight propagation. For this

reason, it is extremely important to be able to extract the individual
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Figure 2.13: Closed contours around the crack tip

components of the total ERR, which can be expressed as their sum,

G = GI +GII +GIII . In particular, GI and GII are generally de�ned as

the work done by normal and shear traction at the interface through the

correspondent jumps displacements, opening and sliding, respectively.

However, this de�nition is somehow approximate in such cases where an

oscillatory singularity exists.

In the �rst studies related to the evaluation of the ERR in lami-

nates, the adjacent layers were considered as rigidly connected at the

interface, so that the damaged zone were modeled by two arms, whereas

the bonded region by a unique element. For example, Yin and Wang

[24] evaluated the total ERR by starting from equilibrium of a portion

of plate containing the crack tip, and then by using the J�integral con-

cept. Another method, called crack�tip force method, was proposed by

Park and Sankar in [25], where a delaminated plate is subdivided into 4

sublaminates, 2 behind and 2 ahead the crack tip, and the total ERR

was evaluated through the jump in force and moment resultants arising

across the crack tip.

Generally speaking, for the evaluation of the total ERR and its com-

ponents, two di�erent approaches may be adopted, the global methods

and the local methods. According to the global methods, ERRs are com-
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puted from the generalized resultants and deformations obtained when

the beam or plate theories are used. On the other hand, when the local

methods are employed, ERRs depend on stresses and strains near the

crack tip obtained from continuum models. Then, in the framework of

a numerical analysis, the virtual crack closure technique can be used to

evaluate the ERR modes.

Among the global and local methods, it is possible to adopt beam

(plate) multi�layer models coupled with interface variables. As a matter

of fact, how it will be shown theoretically in Section 2.4, and numerically

in the next Chapter, these models have a certain number of advantages,

such as a no vanishing ERRs for cracks tending to zero, and a well de�-

nition of the ERR modal components also in case of adjacent materials

with elastic mismatch.

2.3.2.1 Global methods

The �rst studies on the modal partition of the ERR in laminated beams

are those conducted by Williams in [26]. In the framework of a simpli�ed

global approach, namely by adopting the beam theory and by modeling

the undelaminated region as a single element, the author proposed a

partition rule based on the analysis of the forces acting on the cracked

laminate. However, the Williams's assumptions were shown to be not

generally ful�lled, for example in case of delaminated laminates with

asymmetric arms. In fact, by considering for example a Double Can-

tilever Beam loaded at the two ends by opposite moments, the Williams

approach predicts a pure Mode I loading also in case of asymmetric

specimens, that is when arms have di�erent thickness but, in this case,

a sliding relative displacement exists at the interface, and the ERR has

a modal dependence.

Bruno and Greco introduced then in [27] an interface model, which

allows to obtain the ERRs by taking the limit of the strain energy per

unit interface surface at the crack tip as the interfacial sti�ness tends to

in�nity. Therefore, by modeling layers as Kirchho� or Reissner�Mindlin
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plates, the authors presented analytic solutions for energy release rates,

also by taking into account the e�ect of shear deformability on the in-

terlaminar fracture energies. In particular, when the Reissner�Mindlin

plate theory is adopted, they shown that the undamaged region cannot

be longer modeled as a single element, since section rotations are di�er-

ent in the upper and in the lower arm. Moreover, the ERRs prediction,

conducted through the J�integral, shows the presence of a coupling term

between shear and normal stresses at the crack tip, which a�ects greatly

the ERRs. The authors also concluded that the mode partition de-

pends greatly on the hypothesis made for the stress distribution (see

also [28, 29]).

A di�erent approach was adopted by Diaz Diaz et al. [30], where

ERRs in delaminated plates are evaluated by using a layerwise stress

model, referred as LS1. Indeed, since the LS1 model gives �nite values

of the interfacial stresses everywhere, also at the free edges, an ana-

lytic evaluation of the individual ERRs is allowed. Also Qing et al.

presented in [31] a semi�analytic solution for sublaminates, with either

linear or curve delamination front, which interfaces are made by linear

spring layers. A state space approach is adopted, and the major achieved

advantage is that the obtained governing equations result independent

from thickness and layer number. Then, Wang and Guan presented in

[32] a numerical investigation for the evaluation of the individual compo-

nent of the ERR in presence of mode mixity. A Double Cantilever Beam

under tip bending moments is analyzed and an analytic modal partition

method based on both, classic beam and Thimoshenko theories, is val-

idated according to a FE analysis. The authors found that beam and

Thimoshenko theory provide an upper or a lower bound for the strain

energy rate partition. In particular, the analytic developments can be

found in [33], where an average partition rules is also proposed.

Two layer symmetric scheme

A delaminated composite plate clamped at one end is now considered.

In particular, the plate is subdivided into two homogeneous and isotropic
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linear elastic sublaminates with equal properties, namely equal bending

sti�nessD, axial sti�ness A, thickness h and width B. The two layers are

connected by a linear elastic interface, which constitutive law is expressed

by Eq. (1.3.36), (see Section 1.3.4 for further details).

The ERR components may be evaluated as the work done by the in-

terlaminar stresses σzz and σzx through the correspondent displacement

jump, ∆w and ∆u, respectively, as the interfacial sti�ness parameters

kzz and kzx tend to in�nity for a virtual crack extension δa, further de-

tails will be given in Section 2.3.2.3. Consequently, ERR's components

assume the following form:

GI =
1

2B
lim

kzz→∞
kzz∆w

2 (if ∆w > 0), GI = 0 (if ∆w < 0)

GII =
1

2B
lim

kzx→∞
kzx∆u2

(2.3.11)

The ERRs analytic expression for such a symmetric scheme will be

below presented when both Kirchho� or Reissner�Mindlin plate models

are adopted, reporting the formulation and results achieved by Bruno

and Greco in [27] and [28], respectively.

Kirchho� plate theory

The Kirchho� plate theory belongs to the category of CLPT , which

governing equations can be found in Section 1.3.1, wherein transverse

shear and normal e�ects are neglected. When the symmetric scheme

represented in Fig. 2.14 is considered, as shown in [27], the problem may

be solved through the stationarity of the system total potential energy.

In particular, when T1 = T2, the following expression for GI is ob-

tained:

GI =
(M1 −M2)2

4DB
(2.3.12)

where no shear e�ect appears. On the other hand, when T1 = −T2, GII
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Figure 2.14: Two layer symmetric scheme

may be evaluated as:

GII =
A

16B

[
N1 −N2

A
+
h(M1 −M2)

2D

]2

(2.3.13)

which depends on the mismatch between axial forces and moments of

the same sign, and also in this case it does not include any contribution

of the shear forces.

Figure 2.15: Decomposition of the stress resultants at the crack tip

In order to evaluate the in�uence of the loading conditions on the

ERRs, according to Yin and Wang [24] and Bruno and Greco [27], two

subsystems may be identi�ed, Fig. 2.15:

N1 = N1(a) −N1(b)

N2 = N2(a) +N2(b)

M1 = M1(a) +M1(b)

M2 = M2(a) +M2(b)

(2.3.14)

where N1(b) = N2(b) = N(b). The �rst subsystem does not contribute

to the ERRs, and it can be solved by equilibrium considerations and

by imposing equivalence of strain and curvature of the upper and lower
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layer (complete solution is reported in [27]), which are denoted with

the subscripts 1 and 2, respectively. On the other hand, the second

subsystem produces a singular stress �eld and it may decomposed in

turn, as shown in Fig. 2.16, as the sum of a Mode I and a Mode II

stress resultant component:

N(b) = NI +NII

M1(b) = M1,I +M1,II

M2(b) = M2,I +M2,II = η1M1,I + η2M1,II

(2.3.15)

Figure 2.16: E�ective loading system

The equilibrium of rotations at the crack tip gives:
M1,I +M2,I −NI

h1 + h2

2
= 0

M1,II +M2,II −NII
h1 + h2

2
= 0

(2.3.16)

where h1 and h2 are the layer thicknesses. By substituting the third

equation of (2.3.15) into Eq. (2.3.16), NI and NII can be expressed as:

NI =
2(1 + η1)M1,I

h1 + h2

NII =
2(1 + η2)M1,II

h1 + h2

(2.3.17)

Since the ERR in case of layers made by di�erent material may be
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expressed as follows:

G =
1

2B

[
N2

(b)

A1
+
N2

(b)

A2
+
M2

1(b)

D1
+
M2

2(b)

D2

]
(2.3.18)

by substituting Eqs. (2.2.15) and (2.2.17) into Eq. (2.2.18), the ERR

may be decomposed into the two components

GI =
1

2B

{
M2

1,I

D1
+
η2

1M
2
1,I

D2
+

[
2(1 + η1)M1,I

h1 + h2

]2( 1

A1
+

1

A2

)}

GII =
1

2B

{
M2

1,II

D1
+
η2

2M
2
1,II

D2
+

[
2(1 + η2)M1,II

h1 + h2

]2( 1

A1
+

1

A2

)}
(2.3.19)

if the following quantity containing the mixed products vanishes:

GI,II =
1

2B

[
2M1,IM1,II

D1
+

2η1η2M1,IM1,II

D2

]
+

+
1

2B

[
8(1 + η1)(1 + η2)M1,IM1,II

(h1 + h2)2

(
1

A1
+

1

A2

)] (2.3.20)

The parameter η1 can be evaluated by considering the condition of

pure Mode I, namely when N1 = N2 = N = 0 and the two momentsM1

and M2 produce the same strain at crack tip. In fact, in this case the

bending moments are related by the parameter η̄1:

M2 = η̄1M1 (2.3.21)

where η̄1 = −D2h1/(D1h2). Also the parameter η1 can be expressed as

the ratio of the moments resultants of the second subsystem, and Eq.

(2.3.15) gives

η1 =
M2(b)

M1(b)
=
M2 −M2(a)

M1 −M1(a)
=
η̄1M1 −M2(a)

M1 −M1(a)
(2.3.22)
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which, as demonstrated in [27], leads to:

η1 = −D1h
2
2 +D2h1(4h1 + 3h2)

D2h2
1 +D1h2(3h1 + 4h2)

(2.3.23)

On the other hand, η2 can be obtained by setting GI,II = 0, and it

is given by:

η2 =
h2

h1
(2.3.24)

Finally, the dual parameter of η̄1, η̄2 = M2/M1, which gives only the

Mode II ERR component, is

η̄2 =
D2[D2h

2
1 +D1h2(3h1 + 4h2)]

D1[D1h2
2 +D2h1(4h1 + 3h2)]

(2.3.25)

Reissner�Mindlin plate theory

The Reissner�Mindlin plate theory, see the FSDT in Section 1.3.2,

allows to take into account the transverse shear deformations, and it is

adopted in [28] in order to evaluate the in�uence of shear deformability on

the ERRs. In particular, the total ERR is greater than when the CLPT

is adopted owing to the shear e�ect, and also to a coupling e�ect arising

between normal and shear stresses and a�ecting the GI component.

Moreover, it is worth noting that, in the perfectly bonded region, the

condition of zero relative displacement at the interface, imposed through

a penalty formulation, does not lead to null relative section rotations

between adjacent layers owing to the shear deformation. For this reason,

the undamaged region can not be modeled as a single plate.

The loading schemes represented in Fig. 2.17 will be now considered.

In particular, the �rst scheme is referred as Double Cantilever Beam

(DCB), the second as End Loaded Split (ELS), and the third as Asym-

metrically Loaded Double Cantilever Beam if N1 = N2 = 0 (ALDCB),

or as Asymmetric End Loaded Split (AELS) if T1 = N1 = N2 = 0.

By considering the DCB con�guration, the ERR, which involves

only Mode I, can be obtained through the limit process of the sti�ness
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Figure 2.17: Two layer symmetric schemes loading condition

interfacial springs, or by employing the J�integral. However, the same

results is achieved, which is:

GI =
M2

DB
+

T 2

HB
+

2MT

B
√
HD

(2.3.26)

whereH is the shear sti�ness, Eq. (2.2.12), andM = Ta. In Eq. (2.3.26)

two new terms appear with respect to the solution within the Kirchho�

theory, i.e. M2/(DB), which arise from the shear jump at the crack tip

and from the coupling between bending and shear stresses, T 2/(HB)

and 2MT/(B
√
HD), respectively.

The pure Mode II can be analyzed with reference to the ELS scheme,

where the correspondent ERR, evaluated Bruno and Greco [28] by ap-

plying Eq. (2.3.11), is given by:

GII =
3M2

4DB
(2.3.27)

which is the same value obtained from the CLPT without any shear

correction or coupling term, so that the undamaged region behaves like

an unique plate.
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For the mixed mode delamination, the third scheme of Fig. 2.17 can

be considered and, depending on the loading condition, it reduces to the

AELS or ALDCB con�gurations.

The ERRs for the general con�guration are:

GI =
(M1 −M2)2

4DB
+

(T1 − T2)2

4HB
+

(M1 −M2)(T1 − T2)

2B
√
HD

GII =
3

16BD

[
(M1 +M2) + 2D

(
N1 −N2

Ah

)]2 (2.3.28)

where M1 = T1a and M2 = T2a, and the bending/shear interaction

appears only in the Mode I ERR. In particular, this e�ect is greater for

laminates with low shear to bending sti�ness ratio.

2.3.2.2 Local methods

The mixed mode propagation of an interfacial crack between dissimilar

materials may be treated also from a local point of view. However,

since the ERR modal decomposition is obtained after evaluation of the

stress �eld near the crack tip by means of a continuum analysis, some

inherent di�culties related to stress singularity, interpenetration of the

crack faces, and oscillatory behavior of the ERRs may be encountered.

In this framework, an important work is that of Suo [34], who ana-

lyzed the problem of interfacial cracks and their interaction with point-

wise stress singularities. Suo evaluated the SIF in case of crack within

an in�nite homogeneous medium in plane strain state and in bonded

regions of di�erent materials by using a complex potential, proposing

also an universal relation able to extend the solution to the case of bi�

material interfacial cracks. A comprehensive work treating the mixed

mode cracking problem is that of Hutchinson and Suo [35], where the

authors adopt the classical plate model to compute the total ERR, and

a local continuum analysis to determine individual components. The

continuum analysis refers to a simpli�ed scheme, namely a semi�in�nite

crack subjected to remote edge load, and deals with the singular stress
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�eld ahead a crack tip. However, although this method gives an accu-

rate solution in term of stresses at the tip, it may be computationally

expensive and it does not allow to taking into account shear deforma-

bility. Others important studies are those of He and Hutchinson, who

analyzed in [36] the competition between the crack penetration and de-

�ection into an interface, which was also treated by Buyukozturk [37],

and of Eischen et al. [38], who compared three methods able to predict

interfacial stresses in case of thermal loading. Then, by employing the

J�integral concept and within the Kirchho� plate theory, Sheinman and

Kardomateas proposed in [39] an analytic formulation for the evalua-

tion of the total ERR for a generic non�homogeneous material, and a

modal partition rule valid under the assumption of orthotropic behavior.

Recently, a mixed approach was adopted by Luo and Tong [40], who eval-

uated the ERRs by employing a global method on a damaged laminate

in case of pure bending moments, and then combined the obtained mode

partition equations with a local method based on a crack�tip force model,

proposing closed�form solutions in case of axial and bending moments.

The basic concepts related to the cracked bimaterial system repre-

sented in Fig. 2.18 in term of singular stress �eld and ERR partition

will be now reported following Hutchinson and Suo [35].

Figure 2.18: Bimaterial system with an interfacial crack

In the solution of the elasticity problem when two di�erent materials,

denoted hereafter with the subscripts 1 and 2, are bonded together, an
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important role is recovered by the so�called Dundurs elastic mismatch

parameters, which are de�ned as:

α =
G1(κ2 + 1)−G2(κ1 + 1)

G1(κ2 + 1) +G2(κ1 + 1)

β =
G1(κ2 − 1)−G2(κ1 − 1)

G1(κ2 + 1) +G2(κ1 + 1)

(2.3.29)

where κi = 3− 4νi plane strain

κi =
3− νi
1 + νi

plane stress
i = 1, 2 (2.3.30)

The parameter α may be also expressed as:

α =
Ē1 − Ē2

Ē1 + Ē2
(2.3.31)

where the Young modulus take a di�erent form in plane stress or plane

strain state, according to Eq. (2.2.12). The admissible values of α and β

are de�ned within a dominion of parallelogram shape, which is enclosed

by α = ±1 and α− 4β = ±1. In particular, α measures the mismatch in

the Young modulus across the interface (α→ 1 denotes that the material

1 is sti�er then material 2), and β measures the mismatch in the in�plane

bulk modulus (β = 0 for in�compressible materials with ν1 = ν2 = 0.5).

Another parameter, called oscillatory index, can be de�ned as:

ε̄ =
1

2π
ln

(
1− β
1 + β

)
(2.3.32)

which is a very small quantity directly related to the oscillatory behavior

of stresses and fracture energy (see Toya [41] for the in�uence of ε̄ on the

ERRs). In particular, when the elastic mismatch disappears or β = 0,

then ε̄ = 0.

By introducing the complex interface stress intensity factor, de�ned

as

K = K1 + iK2 (2.3.33)
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where i =
√
−1, the traction at the interface at a distance r from the

crack tip may be expressed as

σ22 + iσ12 =
(K1 + iK2)riε̄

2πr
(2.3.34)

or as

σ22 =
Re(Kriε̄)

2πr

σ12 =
Im(Kriε̄)

2πr

(2.3.35)

therefore the real and the imaginary part of K, K1 and K2, respectively,

have the same meaning of the Mode I and Mode II SIF .

The relative displacement between the crack faces at a distance r

along the negative x1�axis are given by:

δ2 + iδ1 =
8(K1 + iK2)riε̄

[1 + 2iε̄ cosh(πε̄)]E∗

( r

2π

)1/2
(2.3.36)

where
1

E∗
=

1

2

(
1

Ē1
+

1

Ē2

)
(2.3.37)

and the total ERR can be expressed as

G =
1− β2

E∗
(K2

1 +K2
2 ) (2.3.38)

The normal and shear components of stresses and relative displace-

ment are therefore not decoupled when β 6= 0. However, according to

Hutchinson and Suo [35] an index of the mode mixity may be introduced

and de�ned as:

ψ̄ = tan−1

[
Im(Kliε̄)

Re(Kliε̄)

]
= tan−1

[(
σ12

σ22

)
r=l

]
(2.3.39)

where l is a reference length which choice is somehow arbitrary. Indeed,

l may be related to either the specimen geometry size (i.e. the crack
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length) or to the material scale (i.e. process zone size), the in�uence of

the l value on ψ̄ is studied in [35].

2.3.2.3 Virtual crack closure technique

Starting from numerical results obtained by a FE analysis, the virtual

crack closure technique (V CCT ) allows to perform directly the ERR

mode separation. In particular, two methods may be identi�ed: the

�rst one, which is referred as �nite crack extension method, requires two

numerical analyses, the other one, which is commonly referred asmodi�ed

virtual crack closure technique or virtual crack closure technique requires

only one numerical analysis. A comprehensive bibliographic overview

regarding the virtual crack closure technique formulation and application

can be found in the work of Krueger [42], which basic considerations will

be below reported and summarized.

The �nite crack extension method is based on the Irwin's crack clo-

sure integral method and on the assumption that the energy released

during propagation of a crack from a length a to a length δa equals the

energy necessary to close the crack. For this reason, it is necessary to

carry out two FE analyses. At �rst, the crack is closed and forces are

computed by summing those acting at common nodes located at the tip

of the �nite elements on the upper and lower side of the crack plane.

Then, during a second analysis, the crack is extended of δa, and, at

the same nodes of above, the relative displacement are evaluated. This

method was employed for example by Toya in [41], where the Irwin crack

closure method was adopted in order to evaluate ERR's components at

a bimaterial interface. The author proved also the strong ERRs oscilla-

tory behavior as δa→ 0.

On the other hand, the virtual crack closure technique requires only

one analysis since it is assumed that a crack extension of δa does not alter

greatly the stress state at the tip. Therefore, nodal forces are evaluated

at the crack tip, and relative displacements ahead a distance δa.

In a 2D FE analysis, where crack is represented by a 1D discon-
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tinuity, i.e. a line, if a four�nodes �nite element is used, the ERRs

components may be evaluated as:

GI = − 1

2δa
Σi
v∆w

j

GII = − 1

2δa
Σi
h∆uj

(2.3.40)

where F iv and F ih are the vertical and horizontal forces, respectively, at

the crack tip (i.e. node i), and ∆wj and ∆uj are the opening and sliding

displacements, respectively, at a distance δa from the crack tip (i.e. node

j). Since the ERR is evaluated as the ratio of the energy to the crack

surface created, in this case the new crack surface is δa × 1, where an

unitary thickness is considered.

The V CCT , owing to its capability to directly furnish the modal

decomposition, has been widely used in the analysis of composite de-

lamination. Zou et al. [43] verify that, when sublaminates are used

to model a delaminated composite, the V CCT allows to decouple the

modal components of the ERR, and that convergence is achieved by

augmenting layer's number. Indeed, since in laminate theory each node

represents the layer cross�section, the thickness dimension is eliminated

and the oscillatory singularity is avoided. Therefore, stress singularity

is transformed into a stress jump across the tip, namely into concen-

trated forces [19]. Also Bruno et al. [29] modeled a composite laminate

by adopting multi�layer shear deformable plates and interface elements.

In particular, the authors, in order to ensure continuity employed the

Lagrange method in the undelaminated interfaces, whereas a penalty

procedure in the undamaged region of the delaminated interface, as it

will be show in Section 2.4. The total ERR is proved again to be not

dependent on the sub�laminates division, whereas the relation between

the individual ERRs convergence and layers number is studied. It is

found that the sublaminate subdivision must re�ect the plate con�gura-

tion, i.e. more layers for the thicker arm when the delamination is not

sited at the mid�plane of the whole laminate. Then, Bruno et al. [44]
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adopted this mathematical multi�layer representation of the debonding

problem in case of strengthened beams, and proposed closed form solu-

tions for speci�cs loading condition and geometric con�gurations in [18].

In case of a bimaterial system, also Yang et al. [45] evaluated the ERR

components at the interface between concrete and FRP by using the

V CCT , and analyzed in�uence of the parameters, such as Young modu-

lus and layer thickness, on the ERR. The authors found that the bigger

is the sti�ness mismatch between the FRF and the concrete, the easier

debonding takes place at the interface.

2.3.3 Interface toughness

The evaluation of interface toughness, or critical energy release rate, GC

is a crucial point in the composite material damage analysis since GC is

one of the parameters governing crack initiation and propagation. The

interfacial toughness can be evaluated experimentally at the interfaces

of unidirectional (UD) or multidirectional (MD) composite laminate,

and in case of pure or mixed mode depending on the adopted specimen

and loading condition. In particular, from the load�displacement curve

obtained experimentally, it is possible to identify the crack initiation as

the starting point of non�linearity. This critical point may be then used

in the compliance method to evaluate the interface toughness. More-

over, it was proved by many researcher that, by passing from a pure

Mode I condition to a pure Mode II, the load�displacement curve be-

havior changes. In fact, in Mode I load increases linearly up to crack

initiation, and then reaches an approximately constant value denoting a

stable propagation, whereas in pure Mode II load drops radically after

crack initiation denoting an unstable crack propagation. Consequently,

in mixed mode condition the load dropping, and instability, increases

with the GII percentage. These experimental evidences were obtained

in studies conducted on UD glass/epoxy composites by Benzeggagh and

Kenane [46], Kenane and Benzeggagh [47], Ducept et al. [48] and Math-

ews and Swanson [49]. In addition, analysis conducted by Prombut et.
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al [50] proved that for UD laminates an analytic local method based on

that of Hutchinson and Suo [35] matches well with numerical results,

whereas in case ofMD laminates analytic results appear to be no longer

reliable. Hwang et al. and Andersons and König [51, 52] showed also

that the critical ERR rises with the angle between plies at the interface,

which however a�ects more GIIC and, by considering cracked adhesive

bondend joints, Dillard et al. [53] found that in some cases fracture

toughness in presence of mixed mode is less than in pure Mode I. Inter-

facial fracture toughness, togheter with tensile and compressive strength,

were also proved to be badly a�ected by the moisture content in case of

concrete/epoxy bonded system by Lau and Büyüköztürk. [54].

Therefore, interface toughness in mixed mode condition is no longer

a material parameter, but is function also of the modes percentage. As

a consequence, crack initiation occurs when ERR reaches the interface

toughness Γ(ψ̄), which depends on the mode mixity ψ̄ de�ned in Eq.

(2.3.39). For example, a mixed mode toughness function reported by

Hutchinson and Suo [35] is:

Γ(ψ̄) = GIC{1 + tan2[(1− α)ψ̄]} (2.3.41)

wherein GIC is the Mode I interface toughness and α is a sensitivity

parameter accounting in�uence of Mode II. Indeed, for α = 1 the

material is ideally brittle and crack growth depends only on the fracture

Mode I toughness for all mode combinations, whereas for α = 0 crack

propagation is driven only by the ERR Mode I component.

When β 6= 0, where β is one of the Dundurs parameters de�ned in

Eq. (2.3.29), the interface toughness is also function of the reference

length l and Γ(ψ̄, l) (see Section 2.3.2.2).
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Chapter 2. FRP reinforced beams

2.4 Multi�layer and interface models: a varia-

tional formulation

In the following Section an innovative multi�layer formulation is pre-

sented with the aim to analyze the onset and propagation of edge debond-

ing for beams strengthened with externally bonded �ber�reinforced com-

posite plates.

The three physical components of the system, namely the beam, the

adhesive layer and the bonded plate, are modeled by means of one or sev-

eral �rst�order shear deformable layers, assuming both strong and weak

interface formulations for the two physical interfaces (i.e. beam/adhesive

and adhesive/plate) and a strong formulation for the mathematical in-

terfaces between layers. This multi�layer approach provides a re�ned

methodology able to accurately predict the local quantities governing

the debonding problem for reinforced beams, and thus overcomes the in-

accuracies of the beam based models already proposed in the literature.

Moreover, in Section 2.4.2 an analytic partition of the individual ERR

components compatible with these models will be reported.

2.4.1 Theoretical formulation for a general multi�layer

assembly

A damaged composite laminate composed by several unidirectional �ber

reinforced plies is now considered, and formulation presented in Section

2.2.1, where each physical component is modeled by a single mathe-

matical layer, will be here extended in case of multiple mathematical

subdivision of components, namely the base beam, the adhesive layer

and the FRP plate, Fig. 2.19.

Therefore, each physical layer is modeled by means of one or several

mathematical �rst�order shear deformable layers, assuming both strong

and weak interface formulations for the two physical interfaces (i.e. adhe-

sive/concrete (AC) and adhesive/plate (AP )), in order to guarantee dis-

placement continuity at the undelaminated interfaces, and a strong for-
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Figure 2.19: The analyzed strengthened structural system

mulation for the mathematical interfaces between layers, among which is

of particular interest the one placed at the mid�adhesive location (MA).

In particular, for the strong interface formulation appropriate La-

grange multipliers, representing interfacial stresses, are introduced,

whereas for the weak one a penalty-like method is adopted. It is worth

noting that, when the sti�ness parameters used within the weak interface

formulation approach in�nity, the penalty formulation becomes equiva-

lent to the Lagrange multipliers method. On the other hand, as shown in

the next Chapter, the weak interface formulation, assuming �nite values

for the sti�ness parameters, allows to take into account for transverse

deformability of the mathematical layers by means of an appropriate

calibration of the sti�ness parameters as a function of the geometrical

and mechanical parameters of the physical system. As a consequence

transverse deformability, neglected in the context of the adopted beam

theory, can be simulated.

In the present variational formulation the following energy functional

Π (for unit width) is introduced:

Π = U + Λ + I −W (2.4.1)

in which U is the strain energy of the structural system, Λ is the Lagrange

functional imposing displacement continuity for the strong interfaces, I

the strain energy of the weak interface representing the penalty func-
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Chapter 2. FRP reinforced beams

tional, and W is the work done by the applied loads. In order to obtain

the governing equations for the problem, the stationarity of Π, consider-

ing a variation of the generalized displacements in the layers and of the

Lagrange multipliers, is considered:

δU + δΛ + δI − δW = 0 (2.4.2)

where δ is the variational operator.

Although di�erent locations for the debonding across the adhesive

layer can be considered, and will be analyzed numerically in Chapter

3, for the sake of simplicity in the subsequent analytical developments

it is assumed that the delamination is located at the physical interface

between the adhesive layer and the concrete beam. Moreover, although

strong or weak formulations can be adopted in the present model for

each physical or mathematical interface, the weak interface formulation

is here adopted only to model the interface containing the delamination,

whereas all the remaining interfaces are modeled by means of a strong

formulation. An elastic beam of length L and thickness Hb is considered.

The beam is reinforced by means of an elastic FRP plate of thickness

Hp bonded over the region Lu ≤ x ≤ Lu +Ls through an adhesive layer

of thickness Ha. Assuming that for the beam, the adhesive layer and the

strengthening plate the width is equal to B, two di�erent unstregthened

regions are consided, the �rst one being de�ned for 0 ≤ x ≤ Lu and the

second one for Lu + Ls ≤ x ≤ L, whereas it is assumed that debonding

occurs in the region Lu+Ls−a ≤ x ≤ Lu+Ls. The horizontal axis x is

oriented from left to right and the vertical axis z is oriented downwards.

In the formulation distributed or concentrated loads are assumed acting

only on the beam, and on the upper and lower side of the delamination nb

and na + np mathematical layers are considered, respectively, assuming

that the �rst layer is the lowest one and that the thickness of the i-th

layer is ti, Fig. 2.20. In particular, nb, na and np are the number of

layers considered for the base beam, the adhesive layer and the FRP
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Figure 2.20: Mathematical notations and conventions for loads and stress
resultants

plate, respectively.

Considering the mid-surface in-plane and transverse displacements,

ui(x) and wi(x) respectively, and the rotations of transverse normals

ψi(x), for a generic layer the following kinematics expressions are respec-

tively introduced for membrane strain at the reference surface, curvature

and transverse shear strain:

εi = u′i, κi = ψ′i, γi = ψi + w′i (2.4.3)

where prime denotes derivative with respect to x.

The �rst variation of strain energy is

δU =

∫ Lu+Ls

Lu

np+na∑
i=1

[σi · δεi] dx+

∫ L

0

np+na+nb∑
i=np+na+1

[σi · δεi] dx (2.4.4)

where σi = {Ni,Mi, Ti} and εi = {ε, κi, γi} are the vectors containing

stress resultants and strains for the i�th layer, respectively, and dot

denotes the scalar product. In particular, Ni is the membrane force

resultant, Mi the moment resultant and Ti the transverse shear force

resultant. With by considering the strong interface formulation, the

variation of the Lagrange functional related to interface displacement

continuity between adjacent layers can be expressed as:

δΛ =

∫ Lu+Ls

Lu

np+na−1∑
j=1

[λj · δ∆uj ] dx+

∫ L

0

np+na+nb−1∑
j=np+na+1

[λj · δ∆uj ] dx

(2.4.5)
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Chapter 2. FRP reinforced beams

where ∆uj = {∆uj ,∆wj} is the vector of the relative displacements at

the j�th interface between the j�th and the j+1�th mathematical layer,

de�ned as: ∆uj = uj −
tj
2
ψj − uj+1 −

tj+1

2
ψj+1

∆wj = wj − wj+1

(2.4.6)

and λj = {λzxj , λzj} is the Lagrange multipliers vector, physically rep-

resenting interlaminar stresses at the j�th interface, as shown in Fig.

2.19.

Assuming that debonding occurs at the physical interface between

the adhesive layer and the concrete beam, a weak formulation is con-

sidered to assure displacements compatibility. In particular, for the

(np + na)�th interface containing the crack, the variation of the strain

energy assumes the form (see Section 1.3.4 and Eq. (1.3.36) for further

details):

δI =

∫ Lu+Ls

Lu

δΩ dx, Ω =
1

2
tz np+na ·∆unp+na (2.4.7)

where ∆unp+na = {∆unp+na ,∆wnp+na} contains the relative displace-

ments at the (np+na)�th interface and tz np+na = {σzx np+na , σz np+na}
contains the interlaminar normal (σzx np+na) and shear (σz np+na)

stresses (see Fig. 2.19) that, in the weak interface formulation, assume

the following expressions:

σz np+na = k̄z∆wnp+na , σzx np+na = k̄zx∆unp+na (2.4.8)

with

k̄z = (1− d)kz, k̄zx = (1− d)kzx (2.4.9)

in which d is a variable taking the value 1 in the damaged zone and

the value 0 in the bonded zone of the interface, and kz and kzx are the

interface sti�ness parameters (having dimensions FL−3). In particular,

when the sti�ness parameters approach in�nity, the penalty formulation
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becomes equivalent to the Lagrange method.

Further, the variation of external load work is:

δW =

∫ L

0

np+na+nb∑
i=np+na−1

[piδui + qiδwi] dx+ δW̄ c + δW̄ (2.4.10)

where pi and qi are respectively the distributed axial and transverse

external loads applied to the i�th layer, δW̄ c is the variation of the

work of concentrated external loads and bending moments, and δW̄ is

the variation of the work of external concentrated loads and bending

moments at the two ends of each layer.

For the i�th mathematical homogeneous layer, the constitutive rela-

tions associated to an orthotropic behavior are de�ned by means of the

classical extensional, bending-extensional coupling, bending sti�nesses

and shear sti�nesses, assuming plane stress or plane stress conditions

(see Section 1.3.2 for additional details):
Ni

Mi

Ti

 =

Ai Bi 0

Bi Di 0

0 0 Hi



εi

κi

γi

 (2.4.11)

Owing to the assumed strong formulation for the mathematical inter-

faces between layers, the constraint equations, expressing displacement

continuity requirements, are obtained by means of the variation of Π

with respect to Lagrange multipliers:∆uj = 0

∆wj = 0
, j = 1, ...np + na + nb − 1, j 6= np + na (2.4.12)

that, after considering Eqs. (2.4.6), become:wi = wnp+na , i = 1, ..., np + na − 1

wi = wnp+na+1, i = np + na + 2, ..., np + na + nb
(2.4.13)
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Chapter 2. FRP reinforced beams



ui = unp+na +
tnp+na

2
ψnp+na +

np+na−1∑
k=i+1

tkψk +
ti
2
ψi,

i = 1, ..., np + na − 1,

ui = unp+na+1 +
tnp+na+1

2
ψnp+na+1 +

i−1∑
k=np+na+2

tkψk −
ti
2
ψi,

j = np + na + 2, ..., np + na + nb
(2.4.14)

As a consequence, the independent displacement variables are re-

duced to only np + na + nb + 4, which are:

{wnp+na , wnp+na+1, unp+na , unp+na+1, ψi}

i = 1, ..., np + na + nb
(2.4.15)

Using the above introduced expressions, and considering the funda-

mental lemma of variational calculus in conjunction with appropriate

continuity conditions for the generalized displacement variables, is pos-

sible to obtain a boundary value problem characterized by two equations

for the translational equilibrium in the x�direction and in the z�direction

of the layer assemblies at the two sides of the interface crack, and by one

equation for rotational equilibrium of each mathematical layer. More-

over, the variational procedure (see [18, 44] for additional details) gives

the associated boundary (speci�ed at x = 0 and at x = L for the layers

located on the upper side of the debonding interface; whereas speci�ed

at x = Lu and x = Lu+Ls for the layers located at the lower side of the

debonding interface) and matching conditions (speci�ed at x = Lu and

at x = Lu +Ls for the layers located on the upper side of the debonding

interface, and at x = Lu + Ls − a for the two sets of layers at the two

sides of the debonding interface).

The variational method leads also to determine the Lagrange multi-
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pliers as follows:

σzx i =
i∑

j=1

N ′j , i = 1, ..., np + na − 1

σz i =

i∑
j=1

T ′j , i = 1, ..., np + na − 1

(2.4.16)

or, alternatively, as

σzx i = −
np+na+nb∑
j=i+1

N ′j , i = np + na + 1, ..., na + np + nb − 1

σz i = −
np+na+nb∑
j=i+1

T ′j , i = np + na + 1, ..., na + np + nb − 1

(2.4.17)

Moreover, it is possible to observe how the matching conditions

are compatible with concentrated interfacial forces (with dimension

force/length) arising as reactions to constraint equations only at the

strong interface locations (i.e. for j = 1, ..., np+na−1, np+na+1, ..., np+

na +nb− 1). For instance, at the crack front position (x = Lu +Ls−a),
and for the layer assembly on the lower side of the interface crack, the

matching force conditions are:

u

v
np+na∑
j=1

Nj

}

~

Lu+Ls−a

= 0,

u

v
np+na∑
j=1

Tj

}

~

Lu+Ls−a

= 0,

s
M1 +N1

t1
2

{

Lu+Ls−a
= 0,

u

vMi −

 i∑
j=1

Nj +
i−1∑
j=1

Nj

 ti
2

}

~

Lu+Ls−a

= 0, i = 2, ..., np + na − 1,

u

vMnp+na +

np+na−1∑
j=1

Nj
tj
2

}

~

Lu+Ls−a

= 0

(2.4.18)
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Chapter 2. FRP reinforced beams

The concentrated forces at the i�th strong interface, arising from the

discontinuities in membrane and shear stress resultants, similarly to Eq.

(2.2.28) are characterized by the following expressions:

Σzxi =

i∑
j=1

N+
j −

i∑
j=1

N−j

Σzi =

i∑
j=1

T+
j −

i∑
j=1

T−j

i = 1, ..., np + na − 1, np + na + 1,

..., np + na + nb − 1

(2.4.19)

On the other hand, it must be evidenced that the boundary condi-

tions at the cut o� section (x = Lu) and at the end of the delaminated

interface (x = Lu+Ls) for the lower layer assembly (i.e. i = 1, ..., np+na)

are imposed in accordance with the requirement of free edge conditions.

In particular, the free edge boundary conditions assume the same expres-

sions of Eq. (2.4.17) where Lu +Ls− a substituted by Lu, and where at

x = Lu it must be considered that

N−i = 0, T−i = 0, M−i = 0, i = 1, ..., np + na (2.4.20)

Assuming a weak formulation for the physical interface, and the cor-

responding interface sti�ness parameters as �nite, interface stress singu-

larities at the interface crack tip are excluded since interfacial concen-

trated forces are not compatible with such interface formulation. On the

contrary, when the sti�ness parameters for the weak interface approach

in�nity, due to equivalence between the penalty formulation and the La-

grange multipliers method, stress singularities at the delamination front

occur and turn out to be lumped into concentrated interfacial forces

appearing as a consequence of the limit process. The interfacial concen-

trated forces, playing the role of the singular interlaminar stresses at the

delamination tip caused by the interfacial crack in the context of the 2D
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elasticity, are fundamental in order to compute energy release rate dur-

ing delamination growth since the in�plane and out�of�plane interfacial

forces, directly correspond to the two mode of fracture, Mode II and

Mode I, respectively. Moreover the use of a consistent approach ratio-

nally based on global parameters (crack tip interfacial forces) to compute

ERR and its mode components, leads avoid the non�convergent behav-

ior of mode partition arising when continuum FE methodologies are

adopted, due to oscillatory stress singularities predicted by the 2D elas-

ticity theory for an interface crack between two dissimilar materials (see

[18, 44] for additional details).

Therefore, the major advantages of using the coupled multi�layer and

interface elements models are related to the ERRs evaluation. In fact,

when a strong interface is used, it was proved by Greco et al. [18] that

the total ERR does not decrease rapidly to zero for vanishing cracks,

but has a smooth continuous behavior. On the other hand, when a weak

interface is adopted, since interface sti�ness and relative displacements

have a �nite value the stresses singularities are excluded, and the ERRs

may be computed also for a zero crack from these stresses, see Cornetti

et al. [55].

In addition, also the individual model components of the ERR may

be well de�ned, in both cases of strong or weak interface, in the former

case from the vertical and horizontal interface concentrated forces, and

in the latter by carrying out the penalty procedure. In fact, as proved

by Bruno et al. [29], a good convergence of the individual ERRs can

be also obtained by re�ning the layer subdivision, which however may

re�ect the physical layer thicknesses.

However, although the numerical evaluation of ERRs could be in

theory easily obtained in terms of displacement variables calculated at

the interface crack tip in the context of a weak interface, since the ERRs

must be computed in the limit as the interface sti�ness parameters ap-

proach in�nity, a very �ne �nite element mesh is required in proximity of

the crack tip. Alternatively, it is possible to take advantage of the strong
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interface formulation and to compute the energy release rate components

as half the work of interfacial concentrated forces at the crack tip through

corresponding displacement jumps occurring after the delamination is ex-

tended by an small (in theory in�nitesimal) length da, according to the

V CCT . For a su�ciently small da, the displacement jumps can be also

evaluated at a distance da ahead the delamination tip, thus obtaining

ERR and mode components by means of one stress analysis, see Section

2.3.2.3.

Consequently, the Mode I and Mode II ERR components at the

interface crack tip can be expressed as:

GI = lim
kzx,kz→∞

kz∆w
2 =

1

2da
Σz∆w

+

GII = lim
kzx,kz→∞

kzx∆u2 =
1

2da
Σzx∆u+

(2.4.21)

where in the �rst expression, valid for the weak interface formulation, ∆w

and ∆u are the displacement jumps at the delamination tip, whereas in

the second expression, applicable in the context of the strong interface

formulation, ∆w+ and ∆u+ are the displacement jumps at a distance da

ahead the delamination tip.

2.4.2 Analytic evaluation of the Energy Release Rates

In the present Section will be presented a closed form solution of the

ERRs components obtained in terms of force and moment resultants and

generalized strains. In particular, the present formulation was proposed

by Greco et al. [18] when the considered structural system (reinforced

beam strengthened by FRP plate) is divided into two sub�laminates,

and then extended to the case of general multi�layer assembly by Bruno

et al. [29].

For a two layer assembly, where the FRP plate and the adhesive

layer are coupled together, the relative displacements at interface (see
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Eqs. (2.2.6) or (2.4.6)) reduce to:∆u = u1 −
t1
2
ψ1 − u2 −

t2
2
ψ2

∆w = w1 − w2

(2.4.22)

where the subscript 1 denotes the lower assembly, the vertical axis has

positive values downward, and the positive side of the horizontal axis

points to the right. The concentrated forces presented in Eq. (2.2.28)

(or Eq. (2.4.19)) are given byΣz = JT1Kd = −JT2Kd

Σzx = JN1Kd = −JN2Kd
(2.4.23)

where the subscript d denotes the delamination tip, whereas the match-

ing force conditions at the delamination tip can be obtained by adopting

the same procedure carried out in Section 2.2.2, where a three layer

assembly was studied, and are

JN1 +N2Kd = 0

JT1 + T2Kd = 0
s
M1 −N2

t1
2

{

d

=

s
M1 +N1

t1
2

{

ds
M2 −N2

t2
2

{

d

=

s
M2 +N1

t2
2

{

d

(2.4.24)

According to the V CCT , the Mode I component of the ERR is given

by:

GI = − 1

2da
Σzd∆w+ (2.4.25)

By virtue of Eqs. (2.4.3) and (2.4.22), the interface separation may

be expressed as

d∆w+ = −(w′+1 − w
′+
2 )da = (γ+

2 − ψ2 − γ+
1 + ψ1)da (2.4.26)
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and, by considering Eq. (2.4.11) as

d∆w+ =

(
T+

2

H2
− T+

1

H1
− ψ2 + ψ1

)
da (2.4.27)

which takes into account the continuity of displacement variables across

the crack tip (Eq. (2.2.39)). On the other hand, in the undelaminated

region, the relative displacement vanishes, d∆w− = −(w
′−
1 −w

′−
2 )da = 0,

and as a consequence:

T−2
H2
− T−1
H1

= ψ2 − ψ1 (2.4.28)

Therefore, substitution of Eq. (2.4.28) into Eq. (2.4.27), together

with Eq. (2.4.23), leads to express the Mode I ERR as:

GI = −1

2
JT1Kd

(
JT2Kd
H2

− JT1Kd
H1

)
(2.4.29)

which may rearranged as

GI = −1

2
JT1KdJγ2 − γ1Kd =

1

2
JT1KdJγ1 − γ2Kd (2.4.30)

Since the shear sti�nesses are a material constant, namelyH+
i = H−i ,

T+
i

γ+
i

=
T−i
γ−i

(2.4.31)

where i = 1, 2, and

T+
i γ
−
i = T−i γ

+
i (2.4.32)

Therefore, by developing the right hand side term of Eq. (2.4.30),

and by using (2.4.32), the Mode I ERR becomes:

GI =
1

2
{JT1γ1 + T2γ2Kd + 2JT1Kd(γ−2 − γ

−
1 )} (2.4.33)
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which, by considering Eq. (2.4.28) may be also expressed as

GI =
1

2
{JT1γ1 + T2γ2Kd + 2JT1Kd(ψ2 − ψ1)} (2.4.34)

Therefore, by considering also Eq. (2.4.23), GI can be set in the

following form

GI =

2∑
i=1

(
1

2
JTiγiKd − JTiKdψi

)
(2.4.35)

On the other hand, the Mode II ERR may be expressed, similarly

to Eq. (2.4.24), as:

GII = − 1

2da
Σzxd∆u+ (2.4.36)

where, owing to Eqs. (2.4.3) and (2.4.22),

d∆u+ = −
(
u′+1 −

t1
2
ψ′+1 − u

′+
2 −

t2
2
ψ′+2

)
(2.4.37)

and

d∆u− =

(
u′−1 −

t1
2
ψ′−1 − u

′−
2 −

t2
2
ψ′−2

)
= 0 (2.4.38)

Therefore, the Mode II ERR may be rewritten by using Eqs. (2.4.3)

and (2.4.23) in the following form:

GII =
1

2
JN1Kd

(
ε1 − ε2 −

t1
2
κ1 −

t2
2
κ2

)+

(2.4.39)

which is also equal to

GII =
1

2
JN1KdJε1 − ε2 −

t1
2
κ1 −

t2
2
κ2Kd (2.4.40)

by virtue of Eq. (2.4.38).

By considering the matching conditions at the delamination tip, Eq.

(2.4.24), one obtains:

GII =
1

2
JN1ε1 −N1ε2 +M1κ1 +M2κ2Kd (2.4.41)
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which is also equal to

GII =
1

2

(
2∑
i=1

JNiεi +MiκiKd −N−1 ε
+
1 −N

−
2 ε

+
2 −M

−
1 κ

+
1 −M

−
2 κ

+
2

)
(2.4.42)

since N+
i ε
−
i = N−i ε

+
i , similarly to Eq. (2.4.31).

In particular it is possible to demonstrate that:

1

2
(−N−1 ε

+
1 −N

−
2 ε

+
2 −M

−
1 κ

+
1 −M

−
2 κ

+
2 ) =

= −1

2
JN1Kd(ε−1 − ε

−
2 )− 1

2
JM1Kdκ−1 −

1

2
JM2Kdκ−2

(2.4.43)

However, these terms vanish since, due to Eqs. (2.4.24) and (2.4.38):

1

2
JN1Kd(ε−1 − ε

−
2 ) =

1

2
JN1Kd

(
κ−1

t1
2

+ κ−2
t2
2

)
=

= −1

2
JM1Kdκ−1 −

1

2
JM2Kdκ−2

(2.4.44)

Therefore, the Mode II ERR is given by:

GII =
1

2

2∑
i=1

JNiεi +MiκiKd (2.4.45)

and the total ERR by

G =
2∑
i=1

(
1

2
JNiεi +Miκi + TiγiKd − JTiKdψi

)
(2.4.46)

Then, Bruno et al. [29] proposed a generalized version of the ERRs

GI =

nl+nu∑
i=1

(
1

2
JTiγiKd − JTiKdψi

)

GII =
1

2

nl+nu∑
i=1

JNiεi +MiκiKd

(2.4.47)
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where nl and nu denote layers at the lower and upper side of the delam-

inated interface, respectively.

2.5 A coupled criterion for crack initiation

An important aspect which should be taken into account in order to ob-

tain a realistic prediction of the actual debonding behavior of strength-

ened systems, is the crack initiation problem. This issue cannot be stud-

ied in the context of a classical Fracture Mechanics, and some of the

several approaches developed in the literature will be reviewed in Sec-

tion 2.5.1. Then, in Section 2.5.2, an innovative mixed mode coupled

criterion able to predict debonding initiation accounting for both frac-

ture energies and interfacial stresses, and valid within the LEFM , will

be presented.

2.5.1 Literature review

The analysis of debonding phenomena at interfaces of strengthened sys-

tems requires the de�nition of a criterion able to predict, not only crack

propagation, but also the crack initiation.

Several studies show that near the FRP free edges, similarly as near

a notch, stresses are singular, and consequently a ful�llment of a stress

condition leads to a null applied load for the crack onset. Moreover,

the stress value obtained at the plate end in the FE analysis is high

mesh dependent, therefore a simple stress criterion may not be able to

represent properly the damage initiation. To overcome this issue, one

way is to consider an average strength evaluated along a small length.

However, the length choice is arbitrary, and it may depend on both

material properties and structural sizes. Several stress criteria used to

predicted crack initiation have been summarized by Borrelli [56] and

are presented in Tab. 2.3, where σ(c)t, σ(c)c and τ(c) are the normal

tensile and compressive strength and the shear strength in the di�erent

directions, which are denoted by subscripts 1, 2 and 3 (�ber direction,
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Chapter 2. FRP reinforced beams

its perpendicular within the ply plane, and outward direction), while σeq

is an equivalent stress.

σ3 ≥ σ(c)3t, τ31 ≥ τ(c)31, τ32 ≥ τ(c)32

Hashin

(
σ3

σ(c)3t

)2

+

(
τ23

τ(c)23

)2

+

(
τ31

τ(c)31

)2

≥ 1

Lee σ3 ≥ σ(c)3t or
√

(τ2
12 + τ2

13) ≥ τ(c)23

Ochoa

(
σ3

σ(c)3t

)2

+
τ2

23 + τ2
31

τ2
(c)23

≥ 1

Brewer

(
τ23

τ(c)23

)2

+

(
τ31

τ(c)31

)2

+

(
σ+

3

σ(c)3t

)2

+

(
σ−3
σ(c)3c

)2

≥ 1

Tsai, 1997
σ2

1 − σ1σ3

σ2
(c)1t

+

(
σ3

σ(c)3t

)2

+

(
τ23

τ(c)23

)2

≥ 1

Tong
σ2

1 − σ1σ3

σ2
(c)1t

+
σ3

σ(c)3t
+

(
τ23

τ(c)23

)2

≥ 1

Degen

(
σ1

σ(c)1t

)2

+

(
σ3

σ(c)3t

)2

+

(
τ23

τ(c)23

)2

≥ 1

Degen�Tong

(
σ1

σ(c)1t

)2

+
σ3

σ(c)3t
+

(
τ23

τ(c)23

)2

≥ 1

Norris
σ2

1 − σ1σ3

σ(c)1tσ(c)1c
+

(
σ3

σ(c)t

)2

+

(
τ23

τ(c)23

)2

≥ 1

Tong�Norris
σ2

1 − σ1σ3

σ(c)1tσ(c)1c
+

σ3

σ(c)t
+

(
τ23

τ(c)23

)2

≥ 1

Wisnom 2.6σ2
eq = (σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2+

0.6σeq(σ1 + σ2 + σ3)

Table 2.3: Stress criteria for the crack onset prediction, [56]

On the other hand, also the classic Fracture Mechanics fails in predict

debonding initiation since ERR vanishes when crack length approaches

zero, and consequently an in�nite load would be required for the crack

initiation. For this reason, the ful�llment of a pure energetic require-

ments may be considered only in the analysis of crack propagation, i.e.

when an initial defect is present and the ERR has a �nite value. There-

fore, total ERR or the individual components can be compared with
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critical toughness values directly or according with a proper law. The

propagation criteria summarized by Borrelli [56] are reported in Tab.

2.4.

GI ≥ GIC , GII ≥ GIIC , GIII ≥ GIIIC

Hahn GT ≥ GIIC − (GIIc −GIC)

(
GI
GIC

)1/2

Power Law

(
GI
GIC

)m
+

(
GII
GIIC

)n
+

(
GIII
GIIIC

)p
= 1

White GT ≥ (GIIC −GIC)e
η

(
1

GII/GI

)1/2

Yan GT ≥ GIC + ρ̄
GII
GI

+ τ̄

(
GII
GI

)2

Benzeggagh�Kenane GT ≥ GIC + (GIIC −GIC)

(
GII

GI +GII

)η
Table 2.4: Energetic criteria for the crack propagation, [56]

where parameters (m,n, p, η, ρ̄, τ̄) may be evaluated by correlation with

experimental curves.

An energetic approach was also adopted by Martin et al. [57, 58], who

focused on the competition between crack de�ection or penetration at

the �ber/matrix interface, by looking at the ERRs related to each crack

path and the respective critical toughness. Another simpli�ed method for

the evaluation of a failure criterion for externally strengthened beams,

and based on fracture mechanics, was developed by Rabinovitch [15].

The proposed criterion, adopting di�erent analytic and numerical mod-

els ranging from the higher�order beam models to FE ones, is considered

as an alternative to the classical allowable stress criteria, since the eval-

uated ERR is compared to the speci�c fracture of the bonded system.

Then, Rabinovitch compared in [7] the LEFM and the cohesive inter-

face approaches for the debonding problems of strengthened beams, by

pointing out both advantages and disadvantages.

However, a very innovative criterion for crack initiation were pro-

posed also by Leguillon [59], who remarked that both energy and stress
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criteria are necessary conditions for fracture, although neither one nor

the other are su�cient. For this reason, a coupled stress/energy cri-

terion was introduced, consisting in the simultaneous ful�llment of the

two failure condition. A number of application of the coupled criterion,

which has been adapted to speci�c loading conditions a damaged sys-

tems, may be found. For example, a variant of the coupled criterion was

introduced in the framework of Finite Fracture Mechanics by Cornetti et

al. [60] for quasi�brittle materials, by adopting an integral stress crite-

rion in place of a point�wise one. Then, a theoretical study, based on a

coupled point-wise stress criterion and an incremental energy criterion,

has been developed by Manti�c [61] for the prediction of the crack on-

set at the interface between a sti� circular cylindrical inclusion and a

compliant unbounded matrix subjected to a remote uniaxial transverse

tension. Recently, García and Leguillon [62] have extended the coupled

criterion for brittle elastic materials under mixed mode loading, in order

to consider the in�uence of the shear stresses and the mode�dependence

of the fracture toughness. In [63, 64], the e�ects of micro�crack initiation

and evolution under mixed mode loading conditions on the macroscopic

response of elastic periodic composite materials, are investigated, ana-

lyzing both crack initiation by using a coupled stress and energy fail-

ure criterion and the subsequent propagation. Moreover, the in�uence

of both material and geometrical nonlinearities on the homogenized re-

sponse of composite solids containing microscopic defects, such as matrix

cracking or interface debonding, has been investigated in [65, 66]. The

coupled criterion was applied by Martin et al. [67] in order to predict

edge debonding in composite laminates, pointing out as advantage, the

possibility to overcome the arbitrary choice of a characteristic length

necessary to employ an average stress criterion. Other applications are

those of Hebel et al. [68], and of Müller et al. and Hell et al. [69, 70],

who deal with the cracking initiation within adhesive joints.
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2.5.2 Mixed mode coupled criterion

The coupled stress and energy failure criterion that will be below pro-

posed is able to predict crack onset in case of mixed mode problems.

Basically, both a stress and an energy failure criterion must be sat-

is�ed simultaneously, leading to a system of two equations for two un-

knowns, which are the critical load level required for the crack onset

βc (intended as a multiplier of unit load) and the corresponding crack

length ac.

As far as the stress criterion is concerned, an integral or a point�

wise form can be adopted (see Cornetti et al. and Andersons et al.

[60, 71], for instance) and the non�linear equations system must be solved

iteratively. In the next Chapter, both integral (Eq. (2.5.1)) and point�

wise (Eq. (2.5.2)) form for the stress criterion will be adopted for the

numerical evaluation of the edge debonding of reinforced concrete beams.

In particular, the corresponding coupled failure criteria are respectively

represented by the following equations:
β2
∫ a

0 GT (1, l) dl∫ a
0 Gc dl

= 1(
β〈
∫ a

0 σy(1, l) dl〉
σc a

)2

+

(
β〈
∫ a

0 τx(1, l) dl〉
τc a

)2

= 1

(2.5.1)


β2
∫ a

0 GT (1, l) dl∫ a
0 Gc dl

= 1(
β〈σy(1, l)〉

σc a

)2

+

(
β〈τx(1, l)〉

τc a

)2

= 1

(2.5.2)

where σc and τc denote the tensile and shear strengths, respectively,

GT (1, l) is the total ERR for a unit load at the distance l from the

plate end, σy(1, l) and τx(1, l) are the normal and tangential interlaminar

stresses for a unit load at a distance l behind the plate end, <> are the

Macaulay brackets and Gc is the fracture toughness. In particular, the

proposed equations take into account that in linear elasticity stresses

are directly proportional to load ((σy, τx) ∼ β), whereas ERR has a
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Chapter 2. FRP reinforced beams

quadratic proportionality (GT ∼ β2) [70].

For a given a it is possible to calculate the load levels that guarantees

the satisfaction of the stress and energy criterion. When the obtained

load levels coincide, although within a small tolerance, the set of critical

load and critical length is obtained (see [63, 64] for additional details).

Once the debonding onset length ac is determined, the subsequent

propagation starting from ac may be modeled by using only the energetic

criterion introduced in Eqs. (2.5.1) and (2.5.2), with the debonding

length assumed to be a�priori known.

β2 GT
Gc(ρ, α)

= 1 (2.5.3)
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Chapter 3

Numerical computation of

interfacial stresses and

fracture energies

In this Chapter numerical calculations, carried out by means of the pro-

posed multi�layer model, and by using the commercial �nite element

software Comsol Multiphysics 4.4 [1], are presented in order to evaluate

interfacial stresses and fracture energy of a reinforced concrete beams

strengthened with externally bonded �ber�reinforced composite plates.

This multi�layer approach provides a re�ned methodology able to ac-

curately predict the local quantities governing the debonding problem

for reinforced beams and thus overcomes the inaccuracies of the beam

based models already proposed in the literature. Speci�cally the pro-

posed multi�layer model leads to an accurate evaluation of interface

stresses in bimaterial interface systems, despite its reduced computa-

tional cost with respect to a continuum FE model, and provides well

de�ned fracture energies for bimaterial interface systems, avoiding the

non�convergent behavior of mode partition arising when continuum elas-

ticity models are adopted.

Therefore, the accuracy of the multilayer formulation, implemented



by using a one�dimensional �nite element model, is analyzed showing

comparisons with results obtained by using the more computational de-

manding continuum FE model, which is presented in Sections 3.1.1 and

3.2.1.

In particular, in Section 3.1.2 a comparison between the 2D contin-

uum model and the proposed FE multi�layer formulation in terms of

interfacial stresses is carried out with reference to a simply supported

beam strengthened by a steel plate and subjected to an uniformly dis-

tributed load. Then, in Section 3.1.3 a Three Point Bending (TPB)

loading scheme is considered. Finally, in Section 3.2, fracture energies

for the TPB scheme evaluated by using the 2D continuum model and

the multi�layer models are compared.

3.1 Interfacial stress prediction

3.1.1 2D Finite Element model

The behavior of shear and normal interlaminar stresses in a simply sup-

ported beam reinforced with a bonded plate, at di�erent section locations

across the adhesive layer, are here investigated. Three section locations

are studied, namely the adhesive/concrete and the adhesive/plate inter-

faces and the mid-adhesive section, which will be denoted hereafter as

AC, AP and MA, respectively.

In order to accurately calibrate the 2D FE model solution (especially

in terms of mesh organization), a comparison of interfacial stresses with

the solution obtained by Teng et al. [2] is carried out with reference

to a simply supported beam strengthened by a steel plate, as shown in

Fig. 2.20, and subjected to a uniformly distributed load of 15 N/mm;

geometrical and material properties for the analyzed scheme are the same

of those used in [2] and are reported in the following Tab. 3.1. In

particular, the calibration of the 2D FE model is essential not only to

assess the accuracy of the proposed multi�layer formulation in terms of

interfacial stresses, but also in view of its use for the second application

152



Chapter 3. Numerical computation of interfacial stresses and fracture energies

Component
Width
[mm]

Thickness
[mm]

Length
[mm]

Young modulus
[MPa]

Poisson's
ratio

Concrete beam 100 150 2,400 20,000 0.17
Adhesive layer 100 4 1,800 2,000 0.25
Bonded plate 100 4 1,800 200,000 0.30

Table 3.1: Geometrical and material properties for the simply supported
strengthened beam

which will be developed in Section 3.1.3, for which, contrarily to the

present case, 2D FE solutions in terms of interfacial stresses are not

available in the literature.

The modeling of an accurate 2D FE model constitutes a di�cult task

since very di�erent thicknesses are involved by the physical components

of the system, and due to the fact that stress singularities arise at the

plate end. In fact, as a consequence of the stress singularities, the stresses

near the plate end are high mesh dependent, generally rising by re�ning

the mesh, and a very �ne mesh is needed in order to obtain accurate

results. Therefore, to properly calibrate the 2D FE model, a mapped

mesh with a local re�nement near the singularity points located at the

plate end, for the AC and AP interfaces, is accounted in numerical

simulations.

The analysis of the composite system is carried out with reference to

a unit width, and a two�dimensional formulation is considered, assum-

ing that the loads are constant in the width direction and, consequently,

all the generalized displacements are independent on the correspondent

coordinate. Since a strengthened beam geometry is here analyzed (with

the width dimension comparable with the height one) plane stress con-

ditions are adopted, whereas plane strain conditions can be assumed in

the case of strengthened plates in cylindrical bending (with the width di-

mension comparable to the length one). Therefore, 2D plane stress four�

noded quadrilateral elements are used, and results obtained by varying

the smallest element size and the number of elements across the adhesive

according to Tab. 3.2 are compared with those reported in [2].
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Minimum element Number of
size [mm] elements

0.4 8
0.2 12
0.1 16

Table 3.2: Minimum element size and number of elements across the
adhesive layer

As in [2], the smallest elements are placed near the AC and the AP

interfaces, the adhesive is divided vertically by the other elements, and

horizontally a graded mesh is used, by starting with an aspect ratio of 1

for the smallest element. A graded mesh is also used for the Reinforced

Concrete (RC) beam and the FRP plate.

In order to guarantee displacement continuity, a strong interface for-

mulation is accounted for the physical interfaces, by means of the "Form

Union" option implemented in the Comsol Multiphysics software and,

to best catch stresses at the MA, the adhesive is subdivided into two

elements. For example, when the minimum element height is of 0.1 mm,

the FE model involves 2, 510, 766 degrees of freedom and 417, 600 mesh

elements. The 2D FE model mesh near the plate end is shown in Fig.

3.1

Figure 3.1: Finite element mesh in the case of the perfectly bonded 2D
FE continuum model when the size of the smallest element is equal to
0.1 mm
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Minimum element AC interfacial stresses [MPa] Relative error %
size [mm] Model Normal Shear Normal Shear

0,4
Teng et al. 17,00 -5,32

13,05% 2,85 %
Present 2D FE 19,22 -5,47

0,2
Teng et al. 21,60 -6,47

13,40 % 3,07 %
Present 2D FE 24,49 -6,67

0,1
Teng et al. 27,10 -7,97

12,56 % 1,21 %
Present 2D FE 30,50 -8,07

Table 3.3: Normal and shear stresses near the plate end at the AC
interface: comparisons with results obtained in [2]

Minimum element MA section stresses [MPa] Relative error %
size [mm] Model Normal Shear Normal Shear

0,4
Teng et al. 2,63 -0,95

0,20 % -11,07 %
Present 2D FE 2,64 -0,84

0,2
Teng et al. 2,60 -0,47

0,38 % -9,33 %
Present 2D FE 2,61 -0,43

0,1
Teng et al. 2,59 -0,24

0,70 % -3,68 %
Present 2D FE 2,61 -0,23

Table 3.4: Normal and shear stresses near the plate end at the MA
section: comparisons with results obtained in [2]

Minimum element AP interfacial stresses [MPa] Relative error %
size [mm] Model Normal Shear Normal Shear

0,4
Teng et al. -12,00 -1,39

-1,80 % 23,23 %
Present 2D FE -11,78 -1,71

0,2
Teng et al. -14,30 -1,35

-1,55 % 28,74 %
Present 2D FE -14,08 -1,74

0,1
Teng et al. -16,70 -1,42

-1,67 % 45,55 %
Present 2D FE -16,42 -2,07

Table 3.5: Normal and shear stresses near the plate end at the AP in-
terface: comparisons with results obtained in [2]

Therefore, interfacial shear and normal stresses near the plate end,

obtained by means of the above described 2D FE models, are repre-

sented in the following Figures 3.2, 3.3 and 3.4, with reference to the AC

interface, the MA section and the AP interface, respectively, by varying

155



the height of the smallest element. Moreover, in Tabs. 3.3, 3.4 and 3.5

the values of stresses obtained at the plate end by the present 2D FE

model and by Teng et al. [2] are compared.

(a)

(b)

Figure 3.2: (a) Normal and (b) Shear stresses at the AC interface by
varying the mesh size

From the aforementioned Figures it is possible to remark that, as

expected, there is an high concentration of stresses near the plate end.

Moreover, normal stresses pass to be tensile in AC to compressive in

AP , which is one of the reason delamination generally occurs in AC,
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(a)

(b)

Figure 3.3: (a) Normal and (b) Shear stresses in the MA section by
varying the mesh size

and shear stresses in the MA tend to vanish, which satis�es the con-

dition of zero shear stress at a free surface. As far as the mesh size is

concerned, generally the stresses are a�ected only within a small region

near the plate end, and a re�ned mesh leads to higher maximum val-

ues. Consequently, by considering Tabs. 3.3 � 3.5, and according also

to [2], only in MA, where no singularity occurs, stresses converge with

the element size and, for this reason the most accurate mapped mesh is
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(a)

(b)

Figure 3.4: (a) Normal and (b) Shear stresses at the AP interface by
varying the mesh size

considered that one with the minimum element height of 0.1 mm.

Figure 3.5, 3.6 and 3.7 show how results carried out by means of the

proposed 2D model with the �nest mesh are in good agreement with the

solution developed by Teng et al. [2] for all the analyzed locations across

the adhesive layer. Moreover, also the analytic solution of Smith and

Teng [3], which is based on the assumption of constant normal and shear

stresses across the adhesive thickness and it does not take into account

158



Chapter 3. Numerical computation of interfacial stresses and fracture energies

shear deformation, is presented. It can be seen that such a formulation

gives reasonable approximation of stresses along the MA section.

(a)

(b)

Figure 3.5: (a) Normal and (b) Shear stresses at the AC interface: com-
parisons with results obtained in [2, 3]
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(a)

(b)

Figure 3.6: (a) Normal and (b) Shear stresses at the MA section: com-
parisons with results obtained in [2, 3]
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(a)

(b)

Figure 3.7: (a) Normal and (b) Shear stresses at the AP interface: com-
parisons with results obtained in [2, 3]
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(a)

(b)

Figure 3.8: Displacement �eld in the (a) longitudinal and (b) transverse
direction
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In Fig. 3.8 the longitudinal and transverse displacements of the struc-

tural system are shown, and in Fig. 3.9 the displacement �eld is evalu-

ated across the adhesive layer, at di�erent distances from the plate end.

It is possible to conclude that displacements are not linear at the cut�o�

section but, at a distance of about 10 mm from the plate end, the longi-

tudinal displacement becomes linear, and the transverse nearly constant.

Finally, in Fig. 3.10 the stress variation across the adhesive evaluated at

(a)

(b)

Figure 3.9: Displacement �eld in the (a) horizontal and (b) vertical
direction across the adhesive thickness
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di�erent distances from the plate end is compared with results obtained

in [2]. Stresses vary strongly within the adhesive, mostly at plate end.

Then, at a distance of about 4 mm they can be considered as uniforms.

Since stresses are high mesh dependent, the correspondence between the

present and the [2] results is considered to be acceptable.

(a)

(b)

Figure 3.10: (a) Normal and (b) Shear stresses across the adhesive thick-
ness: comparisons with results obtained in [2, 3]
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Figure 3.11: Multi�layer 3/2/1 model

3.1.2 Multi�layer models

In this Section the behavior of the interfacial stresses near the plate end

is analyzed by means of the proposed multi�layer formulation.

The three physical components of the system, namely the beam, the

adhesive layer and the bonded plate, are modeled by means of one or sev-

eral �rst�order shear deformable layers (see Section 1.3.2) and, in order

to model the two physical interfaces (i.e. AC and AP interfaces), both

strong and weak interface constitutive relations are introduced, whereas

a strong formulation is adopted to model the mathematical interfaces

between layers inside each components.

In the developed FE models, a maximum size of the �nite element

equal to 0.5 mm is adopted, assuming a mesh re�nement near the plate

end. Two�noded straight elements with an Hermitian formulation are

used for each layers, considering the Timoshenko beam formulation in

order to take into account the shear deformations. In particular, in

the FE formulation accurate cubic shape functions for bending, being

an appropriate extension of the classical cubic Hermitian shape functions

for the Euler�Bernoulli beam theory, are adopted depending on the ratio

between bending and shear sti�ness (see [1] for additional details).

Several multi�layer models, which essentially di�er for the number

of layers adopted to model the adhesive physical layer and the con-

crete beam, their thickness distribution, and for the type of interface

formulation assumed to simulate the adhesion between components, are

developed.

In particular 3, 4, 6 or 8 mathematical layers are accounted in the

formulation, see for example Fig. 3.11, leading respectively to the 1/1/1,
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the 1/2/1, the 3/2/1 and the 3/4/1 multi�layer models, for which the

�rst number indicates the layers accounted for the concrete beam (nb),

the second one those for the adhesive physical layer (na) and the last

one those for the bonded plate (np). The layers thickness (ti for the i�th

layer) varies depending on the chosen assembly and according to Tab.

3.6.

Model RC beam Adhesive Bonded plate

1/1/1 Hb Ha Hp

1/2/1 Hb
Ha

2

Ha

2
Hp

3/2/1 Hb
Ha

2

Ha

2
Hp

3/4/11
Hb

3

Hb

3

Hb

3
α
Ha

2

[
(1− α)

Ha

2

] [
(1− α)

Ha

2

]
α
Ha

2
Hp

3/4/12
Hb

3

Hb

3

Hb

3
0.65

Ha

2
0.35

Ha

2
0.35

Ha

2
0.65

Ha

2
Hp

3/4/13
2Hb

3

(
Hb

3
− αHa

2

)
α
Ha

2
α
Ha

2

[
(1− α)

Ha

2

] [
(1− α)

Ha

2

]
α
Ha

2
Hp

Table 3.6: Layers assembly and thickness distribution

where

α =

[0.05 0.20 0.35 0.50 0.65 0.80 0.95] for the 3/4/11 model

[0.45 0.65 0.75 0.85 0.95] for the 3/4/13 model

(3.1.1)

In order to guarantee displacements continuity at the perfect (i.e.

undelaminated) interfaces both strong and weak interface formulations

for the AC and AP interfaces are accounted. In particular three di�erent

kinds of formulations are considered to model the physical interfaces (see

Fig. 3.12):

� strong interface formulation (assuming appropriate Lagrange mul-

tipliers representing interfacial stresses) in both vertical and hor-

izontal direction, referred to as the (a) model in the multi�layer
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notation;

� weak interface formulation (assuming elastic springs whose sti�ness

represent the interface sti�ness parameters) in vertical direction,

and strong interface formulation in horizontal direction, referred

to as the (b) model in the multi�layer notation;

� weak interface formulation in both vertical and horizontal direc-

tion, referred to as the (c) model in the multilayer notation.

In order to implement the above interface formulations, considered

as constraint conditions in the FE models, in the case of a strong in-

terface a prescribed displacement is assigned in the required direction

on the lower of the two adjacent layers involved by the interface, after

that the displacement variables of the upper one are extruded on the

lower one. Speci�cally the constraint equations impose that the inter-

face relative displacement (see Eq. (2.4.6)) vanishes, thus simulating the

displacements continuity requirement.

On the other hand, the weak interface may be seen as a continuous

distribution of linear normal and tangent springs (see Cornetti et al. [4]),

and an edge load is assigned in the needed direction on both the adjacent

layers but with opposite sign, being linearly related to the interface rela-

tive displacements through the interface sti�ness parameters. Since the

Figure 3.12: Adopted interface formulations: (a) strong interface for-
mulation, (b) coupled strong/weak interface formulation and (c) weak
interface formulation
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edge load assigned in the x direction is applied on the central axis of the

layer, an edge distributed moment is also considered. This load system

is therefore equivalent to an edge load acting on the interface between

layers as required. The corresponding constraint equations implemented

in the �nite element models are reported in the following Table 3.7.

Strong
interface

Prescribed
displacement
x direction

Prescribed
displacement
z direction

i�th
mathematical

layer
ui = ui+1 +

ti
2
ψi +

ti+1

2
ψi+1 wi = wi+1

Weak
interface

Edge load
x direction

Edge load
z direction

(i+ 1)�th
mathematical

layer
−Kj,h

(
ui+1 − ui +

ti
2
ψi +

ti+1

2
ψi+1

)
−Kj,v(wi+1 − wi)

i�th
mathematical

layer
Kj,h

(
ui+1 − ui +

ti
2
ψi +

ti+1

2
ψi+1

)
Kj,v(wi+1 − wi)

Strong
interface

Prescribed
rotation

i�th
mathematical

layer
-

Weak
interface

Edge distributed
moment

(i+ 1)�th
mathematical

layer
−Kj,h

(
ui+1 − ui +

ti
2
ψi +

ti+1

2
ψi+1

)
ti+1

2

i�th
mathematical

layer
−Kj,h

(
ui+1 − ui +

ti
2
ψi +

ti+1

2
ψi+1

)
ti+1

2

Table 3.7: Constraint conditions implemented in the proposed multi-
layer formulation

Details should be given about the sti�nesses coe�cients of the vertical

and horizontal springs (Kj,v and Kj,v, respectively), introduced in Tab.
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3.7 in order to de�ne an equivalent distributed loading system able to

model the weak interface formulation for the j�th interface of the �nite

element procedure here implemented.

In the Section 2.4.1, it is stated that the theoretical formulation is

carried out with reference to a unit width for the structural system and,

for the weak interface formulation, the sti�ness parameters kz and kzx

(whose dimensions are [FL−3]), respectively, are introduced. It follows

that energy functional Π, introduced in Eq. (2.4.1), must be considered

for unit width, and that the actual energy functional of the structural

system can be obtained by multiplying Π by the system width B. On

the other hand, in the �nite element implementation of the proposed

multi�layer model, the interface sti�ness coe�cients Kj,l, with the �rst

index denoting the location of the physical interface (j = AC, AP ) and

the second one the direction (l = v, h for the vertical and horizontal

direction, respectively), may be obtained by multiplying the interface

sti�ness parameters kz and kzx by the width B. These sti�ness coe�-

cients, having dimensions [FL−2], are introduced to de�ne the equivalent

distributed loading system able to model the weak interface formulation

within the �nite element procedure here implemented. Speci�cally, edge

loads ([FL−1]) and edge moments ([F ]) for unit length are introduced

according to the de�nitions given in Tab. 3.7, in order to implement

the constraint conditions for the weak interface formulations; they are

de�ned multiplying the sti�ness coe�cients Kj,l by the relative displace-

ment, in the case of the edge load, and by the relative displacement

and half the layer thickness for the edge moment. It emerges that the

interface sti�ness parameters kz and kzx of the theoretical formulation

correspond to distributed sti�ness per unit of area, whereas the sti�ness

coe�cients Kj,k of the �nite element formulation represent distributed

sti�ness for unit horizontal length.

In the present weak formulation, the interface sti�ness parameter in

the vertical direction is directly related to the layer thickness and to the

elastic moduli Ea of the adhesive, since it is the most deformable layer.
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In this way the vertical compliance of the adhesive layer, neglected when

the strong interface is adopted, is recovered in the structural model.

In addition, the use of horizontal weak interfaces leads to a re�ned

representation of the structural system shear deformability. As a matter

of fact, the multi�layer FSDT formulation incorporates in an approxi-

mate way shear deformability of the system, by accounting for the shear

modulus G of each physical components (see Eq. (2.4.11)), and leading

to a Zig�Zag distribution of horizontal displacements across the system

vertical section. However, as con�rmed by the subsequent numerical re-

sults, an accurate evaluation of interface shear stress distribution at the

physical interfaces requires an enrichment of the above kinematic for-

mulation by introducing additional compliance to the system by means

of horizontal weak interfaces. Therefore, since shear deformability is al-

ready incorporated in the kinematic model of each mathematical layer,

the sti�ness parameter of the horizontal weak interface involves, in ad-

dition to the shear modulus of the adhesive layer Ga, only a fraction

of its thickness. Consequently, in order to calibrate the sti�ness for the

horizontal springs, a parametric study has been carried out by means of

a parameter β, which allows to vary the adhesive thickness taken into

account. The interface sti�ness parameters can be therefore expressed

in the following form:

Kj,v =
EaBa
Ha/2

Kj,h =
GaBa
βHai/2

(3.1.2)

where Hai denotes the thickness of the sub�layer representing the adhe-

sive and adjacent to the interface.
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(a)

(b)

(c)

Figure 3.13: Interfacial normal stresses near the plate end in the AC
interface: comparison between the 2D FE continuum model and the
proposed multi�layer formulation
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(a)

(b)

(c)

Figure 3.14: Interfacial shear stresses near the plate end in the AC inter-
face: comparison between the 2D FE continuum model and the proposed
multi�layer formulation
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(a)

(b)

Figure 3.15: Interfacial stresses near the plate end in the MA section:
comparison between the 2D FE continuum model and the proposed
multi�layer formulation
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(a)

(b)

(c)

Figure 3.16: Interfacial normal stresses near the plate end in the AP
interface: comparison between the 2D FE continuum model and the
proposed multi�layer formulation
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(a)

(b)

(c)

Figure 3.17: Interfacial shear stresses near the plate end in the AP inter-
face: comparison between the 2D FE continuum model and the proposed
multi�layer formulation
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Comparisons, in terms of normal and shear interfacial stresses, be-

tween the 2D FE continuum model and the proposed multi�layer

formulation are illustrated in Figs. 3.13�3.17, for all the developed

models, assuming a unit uniformly distributed loading condition and

adopting the same geometrical and material properties reported in

Tab. 3.1. In particular, the horizontal sti�nesses adopted for the (c)

models are Kj,h = GaBa/(0.1Ha/2), Kj,h = GaBa/(0.125Ha/2) and

Kj,h = GaBa/(0.125Ha/2) for the 1/1/1 (c), the 1/2/1 (c) and the

3/2/1 (c) assembly, respectively.

From the above Figures, it is possible to observe how the adopted

interface formulation plays a stronger role in the interfacial stresses be-

havior with respect to the number of layers considered in the multi�layer

model. For the multi�layer FE models in which a strong interface for-

mulation is considered for both the physical interfaces (i.e. AC and AP

interfaces), i.e. (a) models, the interfacial normal stress distribution,

contrary to the 2D continuum model, is always compressive in all the an-

alyzed locations, so that its contribution to crack initiation is ine�ective,

whereas the shear stress results overestimated. However, the inaccuracy

introduced by the multi�layer models adopting the strong interface for-

mulation, being con�ned in a relatively small zone near the plate end

(about 10−2 Ls and 2 × 10−2 Ls for the normal and shear stresses, re-

spectively), will have a scarce in�uence on debonding onset mechanisms,

as will be shown in the next Chapter. On the other hand, when the

weak formulation is considered by introducing the elastic springs in the

vertical direction, i.e. (b) models, the normal stress distributions turn

out to be in good agreement with the 2D FE continuum solution, and

notable improvement in the prediction of the interface traction �elds is

obtained. In particular, results show how near the edge of the bonded

plate the AC interface is subjected to tensile stresses, whereas the AP

interface is subjected to compressive stresses. As far as the shear stress

distribution is concerned, results have shown that in order to obtain a

reasonable accuracy, a weak interface model must be introduced also
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with respect to the horizontal direction, i.e. (c) models. In particular,

the weak interface formulation is able to provide an improved interface

stresses prediction since when a strong interface formulation is adopted

stress singularities at the delamination tip of the AC and AP interfaces

are substituted by concentrated forces, as shown in Section 2.4.1. Indeed,

when the sti�ness parameters for the weak interface approach in�nity,

thus reproducing the strong interface formulation, stress singularities at

the delamination front occur turn out to be lumped into concentrated

interfacial forces, appearing as a consequence of the limit process and

corresponding to concentrated Lagrangian multipliers.

In addition, it is possible also to remark that, when the weak inter-

face formulation is considered only in the vertical direction and a strong

interface model is accounted in the horizontal one, the shear stress re-

duces to zero at the plate end in all the analyzed locations. This is in

good agreement with results obtained by Rabinovitch and Frostig [5] by

means of a high�order model, which provides a null shear stress through

the adhesive thickness at the free edge. On the contrary, when the weak

interface formulation is accounted in both vertical and horizontal direc-

tion, the obtained shear stress is not equal to zero and approaches result

obtained by means of the used 2D FE model.

Rabinovitch and Frostig [5] have shown also that exists an high cor-

relaction between the normal and the shear stress. Indeed, where shear

stresses reach their maximum, so that the shear gradient is zero, the

normal stresses in the AC and in the AP interface coincide. This issue

was approximately veri�ed also in the proposed multi�layer formulation

by considering shear stresses at the MA location, which represent an

average stress.

In the following Figs. 3.18 and 3.19, the interface stresses obtained

from the 3/4/11 (c) model by varying the adhesive thickness distribution

are shown, while in Figs. 3.20 and 3.21 the interface stresses obtained

from the 3/2/1 (c) model by varying the horizontal sti�ness are pre-

sented.
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It has to be pointed out that when the multi�layer formulation is

used together with a weak interface, interface stresses may be evaluated

equivalently from derivative of the resultant forces (Eq. (2.4.16)), or by

dividing the edge loads assigned at interfaces (Tab. 3.7) by the width

B.

(a)

(b)

Figure 3.18: (a) Normal and (b) Shear stresses at the AC interface
by varying α, i.e. the layer thickness distribution within the adhesive
(3/4/11 (c) model)
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(a)

(b)

Figure 3.19: (a) Normal and (b) Shear stresses at the AP interface
by varying α, i.e. the layer thickness distribution within the adhesive
(3/4/11 (c) model)
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(a)

(b)

Figure 3.20: (a) Normal and (b) Shear stresses at the AC interface by
varying β, i.e. the horizontal interface sti�ness (3/2/1 (c) model)
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(a)

(b)

Figure 3.21: (a) Normal and (b) Shear stresses at the AP interface by
varying β, i.e. the horizontal interface sti�ness (3/2/1 (c) model)
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In the following Figs. 3.22, 3.23 and 3.24, the percentage errors

with respect to the 2D continuum solution for the di�erent models are

reported. In particular, the error is obtained by computing the integral

of stresses evaluated from the cut�o� section to a distance of 0.1 m to

the plate end.

It emerges that (b) models improve estimation of normal stresses and,

the above numerical calculations show that models adopting a weak in-

terface formulation in both directions, i.e. the (c) models, lead to a

reasonable prediction of interlaminar stresses distribution at all the an-

alyzed section locations across the adhesive layer, with small improve-

ments in accuracy as the number of layers increases, especially between

the 1/2/1 (c), 3/2/1 (c), 3/4/11 (c) and 3/4/13 (c) models.

(a)

(b)

Figure 3.22: Percentage error with respect to the 2D FE solution in
terms of integral of interface stresses evaluated near the plate end
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(a)

(b)

(c)

Figure 3.23: Average percentage error with respect to the 2D FE solution
in terms of integral of interface stresses evaluated near the plate end
(from the top: 1/1/1 (c), 1/2/1 (c) and 3/2/1 (c) models)
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(a)

(b)

(c)

Figure 3.24: Average percentage error with respect to the 2D FE solution
in terms of integral of interface stresses evaluated near the plate (from
the top: 3/4/11 (c), 3/4/12 (c) and 3/4/13 (c) models)
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3.1.3 Application to a Three Point Bending specimen

In this Section, a simply supported reinforced beam subjected to a point

load of 10 kN applied at the mid�span is considered. Geometrical and

material properties for the analyzed three point bending sample are those

used by Bruno et al. [6] and summarized in the following Tab. 3.8,

where a Carbon FRP (CFRP ) is considered as strengthening plate.

In particular, an isotropic linear elastic material is considered for the

concrete beam and the adhesive layer, whereas the composite plate is

modeled as an orthotropic linear elastic material. A maximum size of

the �nite element equal to 0.1 mm is adopted, and a mesh re�nement

near the plate end is assumed. Two�noded straight elements with an

Hermitian formulation are used for each layers and, in order to account

shear deformations, the Timoshenko beam formulation is used.

In Figs. 3.25 and 3.26, the percentage errors with respect to the 2D

continuum solution in terms of integral of stresses evaluated at 0.1 m

from the plate end are shown. Similarly to the case of a simply sup-

ported reinforced beam subjected to a uniformly distributed load, (b)

models lead to a better estimation of normal stresses and, in terms of

shear stresses, models with one layer representing the adhesive give lower

errors in AC. On the other hand, behavior of (c) models is slightly dif-

ferent from those obtained in Section 3.1.2. In fact, by increasing β,

i.e. by decreasing the horizontal interface sti�ness through Eq. (3.1.2),

stress average error at both interfaces grows, mostly in terms of normal

stresses. Moreover, by decreasing β, normal and shear stresses do not

converge when the 1/1/1 (c) and 1/2/1 (c) models are used. However,

by comparing results obtained for the TPB sample with those of the

uniform distribute loading, it is possible to remark that in case of TPB,

the multi�layer formulation leads to lower errors in terms of normal and

shear stresses, of stresses at AP , and although slightly, also in AC.

Comparisons, in terms of normal and shear interfacial stresses, be-

tween the 2D FE continuum model and the proposed multi�layer for-

mulation are illustrated in the following Figs. 3.27�3.29. In partic-
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Component
Width
[mm]

Thickness
[mm]

Length
[mm]

Young modulus
[MPa]

Shear modulus
[MPa]

Poisson's
ratio

Concrete beam 1,000 300 3,000 30,000 12,820.5 0.17
Adhesive layer 1,000 2 1,800 2,000 740.74 0.35

CFRP laminate 1,000 4 2,400
E1 = E2 =
E3 =160,000

G12 = G23 =
G13 =5,333.3

ν12 = ν13 =0.3
ν23 =0.4

Table 3.8: Geometrical and material properties for the TPB sample

ular, when a weak interface formulation is accounted, Eq. (3.1.2)

is assumed, and the horizontal sti�nesses adopted for the (c) models

are Kj,h = GaBa/(0.25Ha/2), Kj,h = GaBa/(0.05Ha/2) and Kj,h =

GaBa/(0.05Ha/2) for the 1/1/1 (c), the 1/2/1 (c) and the 3/2/1 (c)

assembly, respectively.

(a)

(b)

Figure 3.25: Percentage error with respect to the 2D FE solution in
terms of integral of interface stresses evaluated near the plate end (TPB
sample)
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(a)

(b)

(c)

Figure 3.26: Average percentage error with respect to the 2D FE solution
in terms of integral of interface stresses evaluated near the plate end
(TPB sample) � from the top: 1/1/1 (c), 1/2/1 (c) and 3/2/1 (c) models
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(a)

(b)

Figure 3.27: Interfacial stresses near the plate end at the AC inter-
face: comparison between the 2D FE continuum model and the proposed
multi�layer formulation (TPB sample)
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(a)

(b)

Figure 3.28: Interfacial stresses near the plate end in the MA section:
comparison between the 2D FE continuum model and the proposed
multi�layer formulation (TPB sample)

189



(a)

(b)

Figure 3.29: Interfacial stresses near the plate end at the AP inter-
face: comparison between the 2D FE continuum model and the proposed
multi�layer formulation (TPB sample)
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It is possible to conclude that the trend for the analyzed TPB sample,

in terms of interfacial stresses, is similar to those obtained in case of

uniform loading condition, with the models involving the weak interface

formulation giving the better predictions.

3.2 Fracture energies computation

In this Section, the energy release rate behavior for the di�erent analyzed

locations (i.e. AC, MA and AP ), as a function of the debonded length

a, is investigated. For both the 2D FE model and the proposed multi�

layer models the V CCT is adopted to obtain the total ERR and modal

partition, assuming a strong interface formulation in both vertical and

horizontal direction.

3.2.1 2D Finite Element model

Regarding the 2D FE model, two types of mesh are implemented. When

the behavior of the total ERR and its mode partitions is analyzed for the

AC and the AP interfaces, respectively, a mapped mesh, re�ned near the

crack tip, with the minimum element size equal to 1mm, is accounted. In

particular, the re�ned strip, which is symmetric with respect to the crack

tip, has a width of 20 mm and a height of 306 mm. Conversely, when

energy release rates are investigated in theMA position, a free triangular

mesh is adopted everywhere except around the crack tip, where a mapped

mesh of four quadrilateral elements with a size of 0.1 mm is used, (see

Tab. 3.9 and 3.30). Note that in Fig. 3.30 the debonded region extends

at the right of the crack tip up to the cut�o� section.

However, as pointed out by Greco et al. [7], for the 2D solution

at the AC and AP interface, only results in terms of the total energy

release rate can be considered as accurate, since the FE values of the

individual mode components are not well de�ned due to the in�uence

of the underlying oscillatory singularities predicted by the 2D elasticity

theory. For example, in Fig. 3.31 the variation of the ERRs obtained
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Figure 3.30: Mapped and free triangular mesh adopted in the case of
edge debonding

for a �xed crack length and by decreasing the minimum element size of

the mesh is shown. Note that ERRs will be hereafter expressed in a di-

mensionless form (using the factor EbHb/(F/B)2), and that ∆a denotes

the minimum element size when a mapped mesh is used in AC and AP ,

and the size of the quadrilateral elements placed around the crack tip

when delamination occurs in the MA section.

Location AC MA AP

Mesh types Mapped mesh Free triangular Mapped mesh
Minimum element size 1 mm 0.06 mm 1 mm
Maximum element size 5 mm 30 mm 5 mm

Table 3.9: Details on the 2D Finite Element models near the delamina-
tion tip
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(a)

(b)

(c)

Figure 3.31: Normalized ERRs at (a) AC interface, (b) MA section and
(c) AP interface by varying ∆a for a �xed crack length (a=300 mm)
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(a)

(b)

(c)

Figure 3.32: Normalized ERRs at (a) AC interface, (b) MA section and
(c) AP interface as a function of the delamination length

194



Chapter 3. Numerical computation of interfacial stresses and fracture energies

Figure 3.33: Mode mixity angle at the MA section

From Fig. 3.31b appears that, as expected, ERRs at theMA section

are nearly independent from the mesh size.

Therefore, in Figs. 3.32 the ERRs evolution at all considered loca-

tions is shown and, in Fig. 3.33, the modal partition in MA in terms

of mode mixity angle (see Eq. 2.3.39) is illustrated. Then, in Fig. 3.34

the variation of the total and of the individual ERRs with the CFRP

plate properties is evaluated. Note that the 1 axis is parallel to the

beam length, the 2 axis to the beam height and the 3 axis to the beam

width. Therefore, it is possible to conclude that the total ERR is not

a�ected by the CFRP shear modulus, by E2 and by ν12, whereas modal

components depend on these parameters except for Poisson's ratio.
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(b)

(c)

Figure 3.34: Normalized ERRs at the MA section by varying some prop-
erties of the CFRP plate
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Figure 3.35: Delaminated multi�layer 3/2/1 model

3.2.2 Multi�layer models

In this Section it will be shown that an e�ective evaluation of both

the total and individual ERRs can be obtained by using the proposed

multi�layer models. In addition, it will be demonstrated that the fracture

energy accuracy strongly depends on the adopted layer assembly, which

is in contrast to what occurs in the case of interface stresses, where

the interface formulation as a major role. Again, two�noded straight

elements with an Hermitian formulation are used for each layer in the

FE models, and the Timoshenko beam formulation is considered.

The ERRs evaluation is obtained by means of the modi�ed version

of the V CCT , which requires computation of nodal forces at the crack

tip, and relative displacements at a distance ∆a from the tip, see Sec-

tion 2.3.2.3 for further details. However, 2D FE models give unreliable

results in terms of ERR individual components, owing to the oscillatory

singularity at the bi�material interface and, adopting multi�layer models

is a way to overcome this issue. Indeed it's been proven by [6, 7, 8, 9, 10]

that multi�layers lead to a direct and correct estimation of modal par-

tition. In particular, when a strong interface is used, that is displace-

ment continuity at interfaces is obtained by prescribed displacements,

Figure 3.36: Debonding locations
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the ERR components can be easily computed from concentrated forces

at the crack tip, arising from the stress discontinuities and expressed in

term of Lagrangian multipliers (see Section 2.4.2).

Therefore, in Figs. 3.35 and 3.36 a delaminated multi�layer FE

model, and the considered delamination locations are shown, respec-

tively. Then, with reference to the 1/2/1 (a) and 3/2/1 (a) assemblies,

in Fig. 3.37 a convergence analysis of the ERR by re�ning the mesh

size is presented. In particular, the parameter ∆a represents the mesh

element size and, consequently, also distance between nodes where con-

centrated forces and relative displacements are computed. It appears

that the total ERR does not depend on the mesh size, whereas for the

individual component ∆a equal to 0.1 mm gives adequate results. More-

over, the 1/2/1 (a) and 3/2/1 (a) models lead to equal results in term

of Mode I ERR, whereas the 1/2/1 (a) model slightly underestimates

the Mode II ERR.

Results show a very good agreement between the 2D and the multi�

layer models in terms of the total ERR, with errors within 2.17%, 1.82%

and 2.08% for the 3/2/1 (a) model in the AC, MA and AP locations,

respectively. On the contrary, especially when debonding occurs at the

AC interface, due to the fact that 2D FE solution involves an intrinsic

oscillatory behavior in the evaluation of individual ERR components for

an interface crack between two dissimilar layers, it is possible to observe

the strongly di�erent behavior in terms of mode partitions between the

two proposed FE models (for the 2D FE model the �xed mesh assembly

shown in Fig. 3.30 is adopted). On the other hand, when the oscillatory

singularities do not occur as in the case of the MA section, a reasonable

agreement with the 2D FE results is obtained also in terms of indi-

vidual ERR mode components, in spite of the small number of layers

adopted in the multi�layer models (as shown in [6, 10] a better accuracy

can be gained by increasing the number of mathematical layers inside

each physical layer). For instance, in case of equal to 300 mm, the GI

component obtained from the 3/2/1 (a) multi�layers model show an un-
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derestimation with respect to the 2D FE model of the 19.5%, whereas

the GII is characterized by an overestimation of the 5.4%.

(b)

Figure 3.37: Normalized ERRs obtained with the multi�layer models by
varying ∆a for a �xed crack length at (a) AC (a = 400 mm) and (b)
MA (a = 300 mm)
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(a)

(b)

(c)

Figure 3.38: Normalized (a) GI , (b) GII and (c) GTot at the AC interface
as a function of the delamination length
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(a)

(b)

(c)

Figure 3.39: Normalized (a) GI , (b) GII and (c) GTot at the MA section
as a function of the delamination length
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(a)

(b)

(c)

Figure 3.40: Normalized (a) GI , (b) GII and (c) GTot at the AP interface
as a function of the delamination length
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Chapter 4

Crack initiation and

propagation

In this Chapter the edge debonding onset and propagation of a rein-

forced concrete beam strengthened with externally bonded FRP com-

posite plates is investigated numerically. A mixed mode coupled crite-

rion, representing an original extension of those existing in the literature,

is adopted. In particular, in Section 4.1 debonding onset for di�erent lo-

cations across the adhesive layer is predicted, accounting also the in�u-

ence of critical parameters, and by adopting the innovative multi�layer

formulation presented in Chapter 3. Then, in Section 4.2 the subsequent

damage propagation along the considered locations is analyzed.

4.1 Coupled failure criterion for crack onset in

mixed mode problems

In order to predict crack initiation at interfaces of strengthened systems,

the coupled criterion de�ned in Section 2.5.2, which accounts both inter-

facial stresses and fracture energies, is here adopted. In particular, such

a criterion was introduced in order to overcome di�culties in the onset

evaluation due to the singularity of the stress �eld at plate end, and to



the impossibility to apply the LEFM for vanishing cracks. Indeed, the

present criterion, which is here adapted to mixed mode cases, requires

a simultaneous ful�llment of an energetic and a tensional (integral or

pointwise) condition, and is given by (see Eqs. (2.5.1) and (2.5.2)):
β2
∫ a

0 GT (1, l) dl∫ a
0 Gc dl

= 1(
β〈
∫ a

0 σy(1, l) dl〉
σc a

)2

+

(
β〈
∫ a

0 τx(1, l) dl〉
τc a

)2

= 1

(4.1.1)


β2
∫ a

0 GT (1, l) dl∫ a
0 Gc dl

= 1(
β〈σy(1, l)〉

σc a

)2

+

(
β〈τx(1, l)〉

τc a

)2

= 1

(4.1.2)

where σc and τc are the tensile and shear strengths, respectively, GT (1, l)

is the total ERR for a unit load at the distance l from the plate end,

σy(1, l) and τx(1, l) are the normal and shear interlaminar stresses for

a unit load at a distance l behind the plate end, <> are the Macaulay

brackets and Gc is the fracture toughness. Therefore, the multiplier of

unit load β, and the crack length a which satisfy the above two conditions

represent the couple (βc, ac) of critical load and length at crack initiation.

In the present study, a TPB scheme (Tab. 3.8) is again considered.

Debonding is predicted from the interlaminar stresses distribution es-

timated by using both strong and weak interface formulations (Section

3.1.3) and from total and individual ERRs determined by using the

multi�layer models endowed with strong interfaces (Section 3.2.2). At

�rst, in Section 4.1.1 critical loads obtained from 2D FE and multi�

layer models is compared considering only Mode I fracture toughness

at the physical interfaces AC and AP , and accounting mode mixity in

MA. Then, in Section 4.1.2 a mixed mode critical ERR is accounted

in all locations. Finally, in Section 4.1.3 a parametric study aimed to

evaluate in�uence of interface critical parameters on debonding is carried

out. In particular, the critical parameters considered in the numerical
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simulations are summarized in the Tab. 4.1 and are taken from [1, 2]:

σc [MPa] τc [MPa] GIc [N/m] α

AC 7.2 7.2 100 0.2/1
MA 7.2 7.2 500 0.2
AP 7.2 7.2 500 0.2/1

Table 4.1: Critical parameters assumed for the coupled stress�energy
criterion

where σc and τc are the tensile and the shear strengths, respectively,

GIC is the Mode I interface toughness and α is a sensitivity parameter

which takes into account mode mixity. In particular, when α = 1 only

the fracture Mode I toughness is considered according to the following

mixed mode toughness function [3]:

Γ(ψ̄) = GIC{1 + tan2[(1− α)ψ̄]} (4.1.3)

In the present numerical analysis, the shear strength value, τc =

7.2 MPa, is the same as the one adopted in Carpinteri et al. [2], and the

tensile strength σc is assumed equal to τc. Moreover, the Mode I interface

toughness at the AC interface is about equal to that of the concrete, since

experimental evidences show that delamination often occurs within the

reinforced concrete beam, between the steel bars and the AC interface

[4, 5]. On the other hand, GIC at MA and AP is driven by the FRP

composite plate properties. However, in Section 4.1.3 in�uence of these

parameters on crack initiation will be checked.

4.1.1 2D FE and multi�layer models debonding onset

loads

The e�cacy of the proposed multi�layer modelling technique is now ver-

i�ed in terms of predictions of debonding onset load (denoted as Fc) for

both the coupled stress�energy criteria introduced in Eqs. (4.1.1) and

(4.1.2). To this end, results are obtained by using both the 2D FE and
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the multi�layer models, the former model being considered as a reference

solution. However, in the case of crack onset at the AC or AP interface,

in order to carry out comparisons with the 2D FE model, only the in-

�uence of the fracture Mode I toughness on the debonding initiation is

considered, due the in�uence of oscillatory singularities on the 2D FE

model. Conversely, in theMA section also the mode mixity is taken into

account. In fact, individuals ERRs obtained in the 2D case in MA are

well de�ned owing to the absence of the oscillatory singularities.

Stress criterion Fc,2D [kN] 1/1/1 (a) 1/1/1 (b) 1/1/1 (c) 1/2/1 (a) 1/2/1 (b) 1/2/1 (c) 3/2/1 (c)

AC interface

Integral 1,719.38 1.21% 2.21% 4.13% 0.57% 1.50% 1.83% 0.40%
Pointwise 1,875.35 -2.64% -1.98% 1.57% -3.23% -2.53% -1.83% -2.78%

AP interface

Integral 3,255.02 0.28% 0.77% 0.24% 0.34% 0.18% 0.32% -0.52%
Pointwise 3,523.22 0.67% 0.44% 0.11% 0.40% 0.38% 0.12% -0.97%

MA section

Integral 3,805.76 / / / 1.55% 1.57% 1.62% 0.89%
Pointwise 4,148.79 / / / 2.87% 2.70% 2.65% 1.57%

Table 4.2: Relative percentage errors for the debonding onset loads with
respect to the 2D results

Stress criterion ac,2D [mm] 1/1/1 (a) 1/1/1 (b) 1/1/1 (c) 1/2/1 (a) 1/2/1 (b) 1/2/1 (c) 3/2/1 (c)

AC interface

Integral 9.8 20.41% 10.20% -6.12% 19.39% 9.18% 6.12% 2.04%
Pointwise 5.6 42.86% 37.50% 10.71% 39.29% 32.14% 25.00% 17.86%

AP interface

Integral 81.8 11.98% 11.49% 7.95% 11.49% 11.00% 10.39% 3.91%
Pointwise 38.5 9.87% 13.25% 12.73% 9.35% 12.73% 12.73% 4.94%

MA section

Integral 113.2 / / / 9.36% 9.19% 8.92% 3.80%
Pointwise 49.2 / / / 8.54% 11.38% 11.59% 4.88%

Table 4.3: Relative percentage errors for the debonding onset length with
respect to the 2D results

Percentage errors between the critical loads obtained by using the

multi�layer model (Fc,ML) and the 2D FE one (Fc,2D), evaluated as

(Fc,ML − Fc,2D/Fc,2D)%, are reported in the above Tab. 4.2. Sim-

ilarly, in Tab. 4.3 are reported the percentage errors between criti-

cal lengths obtained by using the multi�layer (ac,ML) and the 2D FE

(ac,2D) models, evaluated as (ac,ML − ac,2D/ac,2D)%. Then, in Figs.

4.1 � 4.3 actual values of critical load and length are illustrated, where
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subscript ML denotes multi�layer models. The layer arrangements are

referred to the multi�layer models adopted for the interface stresses

predictions, since ERRs are always calculated by using a strong in-

terface formulation. In particular, when a weak interface formulation

is accounted in both directions, i.e. (c) models, the horizontal sti�-

nesses adopted are Kj,h = GaBa/(0.25Ha/2), Kj,h = GaBa/(0.05Ha/2)

and Kj,h = GaBa/(0.05Ha/2) for the 1/1/1 (c), the 1/2/1 (c) and the

3/2/1 (c) assembly, respectively. Results can be summarized as follows

(b)

Figure 4.1: Critical (a) load and (b) length at the AC interface: com-
parison between 2D FE and multi�layer results
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� Pointwise criterion: compared to the integral one, it leads to

higher values for the critical load and, consequently, to lower crit-

ical lengths.

� Onset load: percentage errors between the multi�layer and 2D

FE models are always of low magnitude and within 4.13%, with

the maximum error obtained by the 1/1/1 (c) model in AC.

� Onset length: larger errors are obtained, with a maximum abso-

lute percentage error equal to 42.86% obtained for the 1/1/1 (a)

(b)

Figure 4.2: Critical (a) load and (b) length at the MA section: compar-
ison between 2D FE and multi�layer results
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(b)

Figure 4.3: Critical (a) load and (b) length at the AP interface: com-
parison between 2D FE and multi�layer results

layer assembly. However, the onset length is small compared to the

CFRP plate size.

� AC interface: when an integral stress criterion is adopted,

the lower absolute percentage errors are obtained by using the

3/2/1 (c) arrangement in terms of both critical load and length;

conversely, in case of pointwise stress criterion the 1/1/1 (c) as-

sembly gives the lower absolute errors.

� AP interface: percentage errors are of low magnitude. In partic-
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ular, when an integral stress criterion is adopted, the lower abso-

lute percentage errors are obtained by using the 1/2/1 (b) and the

3/2/1 (c) arrangement for onset load and length, respectively; on

the other hand, in case of pointwise stress criterion, lower absolute

errors are given by the 1/1/1 (c) and 1/2/1 (a) assemblies.

� MA section: in this case, where the 1/1/1 assembly is not able

to study debonding, the 3/2/1 (c) assembly gives better approxi-

mations of delamination onset for both stress criteria types.

Although generally speaking, more enriched multi�layer models provide

better accuracy, it transpires that reasonably accurate results in terms

of debonding onset loads at AC and AP interfaces can be obtained by

considering only one mathematical layer within each physical layer. This

is true also when a strong interface formulation is adopted, and interfacial

normal stresses are inaccurately predicted near the plate end. Indeed, the

error in interfacial normal stresses is con�ned within a small zone near

the plate end, and interfacial shear stresses, which are overestimated by

the (a) models, play a more signi�cant role in the ful�llment of the crack

onset coupled criterion.

In addition, from results given in Tabs. 4.2 and 4.3, a general trend

can be observed, pointing out that for both the integral and pointwise

stress criteria, the 3/2/1 (c) assembly gives on average the lowest ab-

solute relative percentage error with respect to the 2D FE solution, as

reported in Tab. 4.4.

1/1/1 (a) 1/1/1 (b) 1/1/1 (c) 1/2/1 (a) 1/2/1 (b) 1/2/1 (c) 3/2/1 (c)

Onset load 1.20% 1.35% 1.51% 1.49% 1.48% 1.40% 1.19%
Onset length 21.28% 18.11% 9.38% 16.24% 14.27% 12.46% 6.24%

Table 4.4: Average absolute relative percentage error on crack initiation
prediction at all location between multi�layer and 2D FE models
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Chapter 4. Crack initiation and propagation

4.1.2 Critical load and critical length for multi�layer

models by considering mode mixity

With references to the 1/2/1 and 3/2/1 multi�layer assemblies, and as-

suming the critical parameters introduced in the previous Table 4.1 (with

α �xed to 0.2 everywhere), numerical simulations show how the most fa-

vorable location for crack initiation is the AC interface (see Fig. 4.4).

In fact, a lowest load is required, and this is true independently of the

interface formulation adopted to capture interfacial stresses. Therefore,

in Fig. 4.5 load�delamination length curves satisfying the energetic and

the stress (pointwise and integral) criteria are reported, respectively, for

all considered debonding locations. The critical pair of crack onset load

and length values can be obtained at the intersection between the two

curves associated to the energetic and stress criteria.

Fig. 4.5 show that the stress criterion satis�ed in the pointwise form,

leads to higher loads for crack onset. Moreover, at MA and AP , for

very small crack lengths the stress criterion is ful�lled for high values

of applied load. This result is presumably due to the fact that at these

locations shear stresses tend to vanish at the cut�o� section.

Figure 4.4: Critical onset load for the 3/2/1 layer assembly (the 3/2/1 (c)
model is adopted for interfacial stresses)
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(a)

(b)

(c)

Figure 4.5: Critical load and critical length according to the mixed mode
coupled criterion at (a) AC, (b) MA and (c) AP for the 3/2/1 layer
assembly (the 3/2/1 (c) model is adopted for interfacial stresses)
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Chapter 4. Crack initiation and propagation

Then, results given in Fig. 4.6 point out that the delamination pre-

diction obtained by the di�erent multi�layer models are in a reasonable

agreement in terms of load and delamination length at the crack on-

set, whatever interface formulation is adopted for the stress distribution

evaluation.

(a)

(b)

Figure 4.6: Debonding onset load (Fc) and critical length (ac) for vari-
ous multi�layer assemblies and di�erent debonding locations across the
adhesive layer
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4.1.3 In�uence of critical parameters

In this Section, the in�uence on debonding initiation of the Mode I

fracture toughness (GIc), the shear (τc) and tensile (σc) strengths is

evaluated.

(a)

(b)

Figure 4.7: In�uence of GIc on the critical load for crack onset for the
3/2/1 layer assembly (the 3/2/1 (c) model is adopted for interfacial
stresses)

Results are illustrated in Figs. 4.7 � 4.11, leading to the following

conclusions:

� Mode I fracture toughness: increasing GIc leads to increase

the critical crack onset load (Fig. 4.7) and length (Fig. 4.8).
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(a)

(b)

(c)

Figure 4.8: In�uence of GIc on the critical crack onset length at (a) AC,
(b) MA and (c) AP for the 3/2/1 layer assembly (the 3/2/1 (c) model
is adopted for interfacial stresses)
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� critical strengths: for GIc �xed, and by increasing the shear and

tensile strengths assumed equals, the applied load at debonding

onset rises (4.9). Conversely, for high values of interface strengths,

onset lengths become very small (4.10). Moreover, in Fig. 4.9 ap-

pears that the onset load at AP obtained by increasing shear and

tensile strengths has a non smooth behavior. This issue is prob-

ably due to the fact that debonding takes place at small lengths.

Indeed, it can be seen in Fig. 4.5 that near the plate end the en-

ergy criterion behaves in a singular manner and, consequently, the

intersection point between stress and energetic criterion strongly

depends on the discretization adopted in the numerical procedure

(0.1 mm in the present case).

� tensile strength: when the shear strength and the critical value

of the Mode I fracture toughness are �xed, the critical load and

length and scarcely a�ected by the tensile strength σc (Fig. 4.11).

However, in case of low tensile strength, and when the integral

stress criterion is used, the onset load slight decreases while the

onset length increases.

Figure 4.9: In�uence of the critical shear strength on the critical crack
onset load for the 3/2/1 layer assembly (the 3/2/1 (c) model is adopted
for interfacial stresses)
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(a)

(b)

(c)

Figure 4.10: In�uence of the critical shear strength on the critical crack
onset length at (a) AC, (b)MA and (c) AP for the 3/2/1 layer assembly
(the 3/2/1 (c) model is adopted for interfacial stresses)
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(a)

(b)

(c)

Figure 4.11: In�uence of the critical tensile strength on the critical
crack onset (a) load and (b)�(c) length for the 3/2/1 layer assembly
(the 3/2/1 (c) model is adopted for interfacial stresses)
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4.2 Crack propagation

.

Once that edge debonding initiation of FRP in strengthened systems

is predicted, the damage propagation can be studied with the aid of the

mixed�mode fracture energy criterion introduced in Section 2.5.2:

β2 GT
Gc(ρ, α)

= 1 (4.2.1)

Therefore, in Fig. 4.12 debonding propagation is illustrated for the

three analyzed locations across the adhesive layers, by evaluating for each

value of the debonding length a the associated load satisfying the mixed

mode crack propagation criterion. In particular, the point at a = 0

corresponds to the critical load at the crack onset, which is attributed

to a zero debonding length and evaluated with the proposed coupled

criterion, while the onset length corresponds to the �rst point of the

curves. Also during propagation, debonding at the AC interface takes

place at lower loads than those required at MA and AP .

In this context, Carpinteri et al. [2] computed the post�peak re-

Figure 4.12: Crack propagation for the 3/2/1 multi�layer assembly (the
3/2/1 (c) model is adopted for interfacial stresses)
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sponse in case of FRP debonding, by evaluating the load�displacement

curve (corresponding to the mid�span de�ection of a TPB scheme) for

an undamaged and a damaged con�guration. In particular, by assuming

a linear elastic interface, when no reinforcement is used, load and dis-

placement are related by a straight line. Then, by adding the FRP plate,

a slope increase is obtained until delamination and, at crack onset, the

load drops in an unstable manner through a softening curve. Finally,

load increases again by tending to the original line (when no FRP is

used). A typical post�peak response is shown in Fig. 4.13, where sym-

bols B and Ls denote the plate width and the bonded region length when

half structure is considered, respectively.

Such behavior is con�rmed in the present case, as shown in Fig. 4.14,

where the mid�span de�ection is measured at the lower beam sub�layer,

being the axis origin taken at the AC interface. Delamination lengths

associated to the points marked on the Figure are reported in Tab. 4.5.

Figure 4.13: Load�de�ection curve for a reinforced TPB beam
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Point a [m] F [kN]

1 0.000 1.00
2 0.000 100.00
3 0.000 1000.00
4 0.000 1800.00
5 0.019 1835.41
6 0.020 1829.95
7 0.050 1691.67
8 0.100 1502.44
9 0.200 1227.79
10 0.400 899.07
11 0.600 709.20
12 0.800 585.57
13 1.000 498.67
14 1.120 458.69
15 1.140 453.25
16 1.300 502.18
17 1.400 543.74
18 1.500 591.78
19 1.600 648.95
20 1.700 718.32
21 1.800 804.32
22 1.900 913.87
23 2.000 1058.85

Table 4.5: Crack propagation at the AC interface

In particular,

� From point 1 to point 4: the FRP is perfectly bonded to the

reinforced concrete beam, and the load�displacement relationship

is linear.

� Point 5: debonding starts at the AC interface.

� From point 6 to point 15: debonding propagates along the

interface until the mid�span, corresponding to a softening behavior

of the load�displacement curve.
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� From point 16 to point 23: debonding is beyond the mid�

span, and the whole system loses sti�ness returning to that of the

unstrengthened system.

Figure 4.14: Load � displacement curve for the 3/2/1 multi�layer as-
sembly (the 3/2/1 (c) model is adopted for interfacial stresses) when
debonding occurs at the AC interface
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Conclusions

In the present research work, edge debonding of FRP plates bonded

to reinforced concrete beams is studied. First, the mechanical behavior

at both micro and macro scales is described, then the use of FRP in

strengthened systems is discussed. Several studies concerning evaluation

of interfacial stresses and fracture energies are reviewed, and a multi�

layer formulation, with both strong or weak interfaces, able to overcome

shortcomings of the commonly used method is developed. In the strong

formulation the interface element imposes a perfect adhesion constraint

between adjacent layers and the interfacial stresses are recovered as La-

grange multipliers, whereas in the weak one a linear interface constitutive

law with �nite sti�ness parameters simulates the connection between the

adjacent layers and directly de�nes interfacial stresses. The accuracy of

the proposed multi�layer model can be improved by means of an ap-

propriate calibration of the sti�ness parameters of the weak interface

model as a function of the geometrical and mechanical parameters of

the adjacent physical components (the adhesive layer, particularly) and

by increasing the layer number within the mathematical assembly. The

calibration of the sti�ness parameters in the weak interface formulation

leads to recover the e�ects of deformability neglected in the context of

beam theory (especially the transverse one). It is worth noting that while

the transverse deformability is completely neglected by the kinematical

model adopted for each mathematical layer, the shear deformability of

the system is already incorporated, although in a simpli�ed way, within



the multi�layer �rst�order shear deformable formulation. As a conse-

quence, the horizontal sti�ness parameter involves, in addition to the

shear modulus of the adhesive layer, only a fraction of its thickness.

This is in contrast to the case of the vertical sti�ness parameter, which

are de�ned in terms of the adhesive layer Young modulus and of its whole

thickness.

The proposed multi�layer model, implemented by using a �nite el-

ement formulation of the multivariable one�dimensional equations, in-

volves a considerably reduced computational cost with respect to a con-

tinuum FE model, while providing a reasonably accurate evaluation of

both interlaminar stresses and fracture energies. On the other hand,

the proposed formulation overcomes the inaccuracies of the beam based

models proposed in the literature in the prediction of the quantities gov-

erning the debonding behavior of strengthened beams. At the same time

it leads to well de�ned fracture energies for bi�material interface system,

where the 2D elasticity solution causes a non�convergent behavior of

ERR mode components.

Within the proposed multi�layer model, ERR and its mode compo-

nents are determined by using the strong interface formulation, whereas

the interlaminar stresses distribution, useful to predict delamination ini-

tiation, are calculated by using both the strong and weak interface for-

mulation. As a matter of fact, interlaminar stresses predicted by means

of the strong interface formulation are not e�ective in that signi�cant in-

formation are lost as a consequence of crack tip interfacial concentrated

forces arising owing to crack tip stress singularities. On the contrary,

when the interface sti�ness parameters are appropriately calibrated in

order to take into account for transverse deformability of layers, an ef-

fective prediction of interlaminar stresses distribution can be obtained

by using the weak interface formulation. Moreover, the above interfa-

cial concentrated forces provides a consistent approach rationally based

on global parameters (crack tip interfacial forces) to compute ERR and

its mode components, since in�plane and out�of�plane interfacial con-
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centrated forces correspond to the two mode of fracture, Mode II and

Mode I, respectively.

Numerical examples are devoted to the case of a simply supported

beam scheme strengthened by a bonded plate subjected to both a uni-

formly distributed load and a point load in the mid�span. The accuracy

of a multi�layer formulation is thus analyzed showing comparisons with

results obtained by using a 2D continuum FE model of the strengthened

system. With reference to the uniform loading condition, a comparison

between results obtained by using the proposed multi�layer formulation

and the 2D continuum FE model is carried out in terms of interfacial

stresses. Three section locations are studied, namely the AC and AP

interfaces and the MA section, respectively. Several multi�layer models,

which essentially di�er for the number of layers adopted to model the ad-

hesive physical layer and the concrete beam, and for the type of interface

formulation assumed to simulate the adhesion between components, are

developed. Results show how the adopted interface formulation plays a

stronger role in the interfacial stresses behavior with respect to the num-

ber of layers considered in the multi-layer model. In the case of multi�

layer FE models in which a strong interface formulation is considered

for both the physical interfaces (i.e. AC and AP interfaces) the inter-

facial normal stress distribution, contrary to the 2D continuum model,

is always compressive in all the analyzed locations, whereas the shear

stress results overestimated. However, the inaccuracy introduced by the

multi�layer models adopting the strong interface formulation turns out

to have a scarce in�uence on the debonding onset mechanism, the inac-

curacy being con�ned in a relatively small zone near the plate end. On

the other hand, when the weak formulation is adopted to simulate con-

nections in the transverse direction to the layers, normal stress obtained

by means of the multi�layer model becomes in good agreement with the

2D FE continuum, the normal stresses being tensile or compressive near

the bonded plate edge at the AC and the AP interface, respectively.

Finally, numerical calculations show that enhanced prediction of
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interlaminar stresses distribution at all the analyzed section locations

across the adhesive layer can be obtained by means of the models adopt-

ing a weak interface formulation in both transverse and longitudinal

directions, with small improvements in accuracy as the number of layers

increases with respect to a 1/2/1 assembly.

In the case of the mid�span point load, debonding onset and prop-

agation are investigated by using the proposed innovative mixed mode

coupled failure criterion, by also analyzing the in�uence of the main

parameters governing debonding behavior, such as interfacial fracture

toughness and strength. The energy release rate behavior for the dif-

ferent analyzed locations (i.e. AC, MA and AP ), as a function of the

debonded length a, is investigated by using a strong interface formula-

tion.

The e�cacy of the proposed multilayer modelling technique is then

veri�ed in terms of predictions of debonding onset load. Results show

how the percentage errors in terms of onset loads between the multi�layer

and FE models are always of low magnitude. It emerges that the AC

interface is the most favorable location for the debonding onset, since it

requires a lower load to initiate, and that the pointwise stress criterion

leads to higher values of critical load. Moreover the analyzed multi�layer

models lead to results in terms of debonding onset load and length in

reasonable agreement with the FE solution and with error always low in

magnitude, especially in terms of the debonding onset load. As expected,

for both the integral and pointwise stress criteria, the more enriched layer

assembly 3/2/1 gives, on average, the lowest absolute relative percentage

error.

Therefore, for the study of debonding at an arbitrary location across

the adhesive thickness, the 3/2/1 assembly can be considered as an opti-

mal one, since it is expected that further increasing of the layers number

do not lead to appreciable improvements.

Finally, the in�uence of the critical stress and fracture parameters

is studied with reference to the case of 3/2/1 multi�layer assembly. It
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can be noted that both fracture toughness and shear strength plays a

signi�cant role on debonding onset, while the e�ect of tensile strength

can be considered negligible. The above results and considerations point

out that the proposed model appears to be su�ciently general to be

adopted for the analysis of more general debonding mechanisms, such

as that promoted by an intermediate �exural or shear crack in the base

beam.
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Appendix A

The coe�cients introduced in the expressions of the axial displacement

of the lower layer (Eq. (2.2.35)),

u1(x) = −
bψ1(x) + cψ2(x) + gx+

hx2

2
a

are

The coe�cients introduced in the system of second order ODE gov-

erning the problem (Eq. (2.2.36)),ψ′′1(x) + λ1ψ1(x) + λ2ψ
′′
2(x) + λ3ψ2(x) + c1x

2 + c2x+ c3 = 0

ψ′′1(x) + λ4ψ1(x) + λ5ψ
′′
2(x) + λ6ψ2(x) + c4x

2 + c5x+ c6 = 0

are
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Finally, the coe�cients appearing in the boundary conditions (Eq.

(2.2.37)),  ψ′1(Ld) = −c7M̄tot

ψ′2(Ld) = c8M̄tot

are
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