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Abstract - Introduzione

La fisica dei sistemi di molti corpi interagenti è un campo di ricerca molto
attivo a causa dei sorprendenti progressi nella realizzazione, controllo e
misurazione di tali sistemi, e dell’esistenza di problemi fondamentali ancora
aperti.

I gas ultrafreddi, che ora è possibile preparare in una varietà di configu-
razioni nei laboratori di tutto il mondo, sono emersi come candidati ideali
per realizzare simulazioni altamente controllabili della fisica della materia
condensata [1, 2]. In particolare, è possibile immergere e manipolare in
potenziali ottici sia atomi bosonici che fermionici [3]. L’assenza di fononi
termici, insieme alla controllabilità delle interazioni per mezzo delle risonanze
di Feschbach [4], ha permesso lo studio dettagliato di una moltitudine di
diagrammi di fase di sistemi critici, sia all’equilibrio, sia lontano da esso [5,6].

Tra tutti i sistemi che è possibile realizzare nel contesto dei gas ultrafreddi,
il gas Tonks-Giradeau (TG) merita una menzione speciale [7–12]. Introdotto
da Giraedeau in [13], corrisponde ad un un sistema di bosoni impenatrabili
(hardcore) e coincide con il limite di interazione infinita del modello Lieb-
Liniger [14,15]. Grazie alla possibilità di mappare la funzione d’onda di un
gas di TG con uno di fermioni non interagenti, è stato possibile studiarne
diverse sfaccettature: distribuzione dei momenti [16–20], matrice densità
ridotta [17,19–28] e proprietà dinamiche non di equilibrio [29–34].

Oltre alla capacità di ingegnerizzare e sintonizzare l’interazione, una
caratteristica particolarmente interessante degli atomi freddi è la possibilità
di manipolare la forma del potenziale esterno, caratteristica essenziale per le
simulazioni di fisica della materia condensata. In pratica, qualsiasi geometria
reticolare può essere realizzata con potenziali ottici, ingegnerizzando direzione,
lunghezza d’onda, intensità, polarizzazione e fase del raggio laser. Anche
la dimensionalità del sistema può essere modificata. Ad esempio, partendo
da un sistema 3D, un reticolo di sistemi 1D (2D) può essere generat da un
reticolo ottico 2D (1D). Le dinamiche sulle direzioni indesiderate vengono
congelate utilizzando un potenziale di confinamento sufficientemente forte.
Inoltre, l’aggiunta di un nuovo reticolo con frequenza diversa consente la
creazione di reticoli doppi periodici, quasi-periodici o random. Da un punto di
vista teorico, quando il reticolo principale è sufficientemente intenso rispetto
all’energia termica, il sistema può essere descritto mediante l’approssimazione
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del legame stretto (tight binding, TB). Essa consiste nel troncare la base
Bloch di singola particella alla prima banda, ed espandendere gli operatori di
campo nella base di Wannier, che è un insieme di funzioni d’onda di singola
particella esponenzialmente localizzate.

Molte parti di questa tesi sono focalizzate su sistemi unidimensionali con
una geometria quasi-periodica, realizzando quello che è noto come modello
di Aubry-André (AAM) [35–44]. Questo è un modello con approssimazione
TB che contiene hopping a primi vicini ed energie di sito ottenute da una
combinazione di due funzioni periodiche con frequenze incommensurate. Il
modello AAM mostra una transizione di fase da metallo ad isolante [35, 36].

L’interazione tra geometria e interazione in sistemi a molti corpi può
generare una gamma impressionante di fenomeni fisici. Ad esempio, lo stato
fondamentale di un gas di bosoni interagenti, soggetti ad un potenziale
quasiperiodico, mostra un ricco diagramma di fase [45–47], che attraversa
fasi di superfluido, Bose-glass e isolante di Mott, a seconda del filling, delle
interazioni e della forza del potenziale esterno. È interessante notare che una
soglia di mobilità (ME) appare quando un’estensione dell’AAM viene presa
in considerazione, includendo nell’hamiltoniana dei termini di hopping più a
lungo raggio, come i termini a secondi vicini [48,49], o “infiniti vicini” [50–52].
La transizione da fase estesa a localizzata dell’AAM, nell’ambito della fisica
di molti corpi, è stata ampiamente investigata sia da un punto di vista
teorico [53–56] che sperimentale [53,57–63].

Il primo capitolo di questa tesi si occupa principalmente del gas di TG,
mostrando come la geometria e l’interazione competano per determinare le
proprietà statiche e dinamiche del sistema, come la distribuzione dei momenti
e la funzione spettrale.

A questo scopo, esso esamina le proprietà dello stato fondamentale del
sistema di bosoni fortemente interagenti e dei fermioni non interagenti,
immersi in un reticolo bicromatico. Dopo aver descritto in sez. 1.1 il
mapping del gas bosonico in fermioni non interagenti, motivando cos̀ı la
scelta di guardare entrambe le specie, in sez. 1.2.1 è introdotto l’AAM e
sono richiamate le sue proprietà di singola particella. Quindi, in sez. 1.2.2
e sez. 1.2.3 sono descritti l’effetto della transizione da metallo ad isolante e
l’influenza della presenza della soglia di mobilità sullo stato fondamentale
del sistema a molti corpi, fermionico e TG.

La sez. 1.3 è focalizzata sulla funzione spettrale (SF) del gas di Tonks-
Girardeau, che è una quantità primaria nella fisica many-body: contiene
informazioni sulla probabilità di eccitare una particella o una lacuna a
seguito di una perturbazione esterna. Inoltre, la SF può essere misurata
negli esperimenti con gas ultrafreddi mediante spettroscopia di fotoemissione
risolta in angolo (ARPES) o spettroscopia Raman stimolata. [64–67]. Tramite
la teoria di Luttinger lineare e non lineare [68–74] è possibile studiarne solo
alcune proprietà, come il supporto, le non analiticità e il comportamento



3

asintotico. Al contrario, gli approcci numerici sono spesso troppo esigenti
dal punto di vista computazionale. La prima parte della sez. 1.3 mira a
sviluppare un algoritmo efficiente per calcolare le funzioni di Green del gas
di TG, e quindi la SF, in qualsiasi potenziale spaziale, scrivendole come
funzionali in termini delle funzioni d’onda di singola particella. Nella seconda
parte, tale metodo viene applicato a un gas di TG in un reticolo (periodico).
Si mostra come la presenza del reticolo dia luogo ad alcune nuove non
analiticità, che non hanno analoghi nel corrispondente sistema omogeneo.

La seconda parte di questa tesi (cap. 2 e 3) si interessa delle proprietà
dinamiche di gas di Fermi interagente e non, in reticoli periodici o quasi-
periodici, al fine di rispondere alla stessa domanda della prima parte: cioè di
come la competizione tra geometria e interazione si rifletta sulle dinamiche
del sistema a molti corpi. Per studiare le proprietà dinamiche di tali sistemi,
si fa spesso ricorso al concetto di quantum quench. È un protocollo che
prevede che un sistema quantistico, inizialmente preparato in uno stato di
equilibrio, venga posto fuori da esso da una perturbazione esterna. In questo
modo, alcune proprietà del sistema possono essere studiate osservando le
dinamiche generate dall’evoluzione quantistica.

Il rilassamento di un sistema quantistico verso l’equilibrio, in seguito
ad una perturbazione globale o locale, è stato ampiamente studiato nel
recente passato. Tale argomento ha beneficiato dei progressi e delle recenti
realizzazioni di sistemi fuori dall’equilibrio negli esperimenti con gas ultra-
freddi. Uno dei punti chiave verso la comprensione dinamiche globali è la
connessione tra le proprietà a singola particella e quelle a molti corpi. Un
esempio rappresentativo è dato dalle fasi many-body localizzate riportate di
recente in [75], dove il concetto di localizzazione spesso diventa ambiguo e
richiede che siano adottati criteri differenti per una definizione significativa.

Il cap. 2 indaga la dinamica post-quench di un gas di Fermi non intera-
gente, intrappolato da un potenziale ottico periodico in una dimensione. Le
recenti realizzazioni di sistemi analoghi a quelli usuali della materia conden-
sata hanno ispirato l’esame dello scenario in cui un’impurezza a due livelli
è immersa nel gas, con l’ulteriore condizione che l’interazione tra essa ed il
gas si verifichi solo quando la prima si trovi nel suo stato eccitato. Questo
set-up, oltre a fornire un modo per introdurre una perturbazione localizzata
nello spazio, consente anche la ricostruzione delle dinamiche many-body del
gas, tramite l’interferometria Ramsey [76–79].

Lo spettro di singola particella è costituito da bande di energia di larghezza
diversa, con gap diverse tra loro, generati dal potenziale di reticolo periodico.
Le larghezze di banda e le gap sono naturalmente funzione dell’ampiezza del
potenziale del reticolo. In particolare, quando questa ampiezza è sufficiente-
mente maggiore di una certa soglia di riferimento, cioè la codidetta recoil
energy, lo spazio che separa la prima e la seconda banda è cos̀ı ampio che
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il sistema può essere descritto, nel limite termodinamico, mediante gli stati
della prima banda solamente. Questa condizione, stabilendo il cosiddetto
regime di tight binding (TB), è stata ampiamente documentata in letter-
atura [2, 80,81]. Molto meno è noto in tutti gli altri casi, quando una o più
bande superiori vengono coinvolte nell’evoluzione e la dinamica del sistema
può essere trattata solo con una descrizione continua (CNT).

Quindi, la sez. 2.1 pone l’attenzione su un gas intrappolato da un
potenziale di tipo senquadro, e fa affidamento sull’equazione di Schrödinger di
una particella singola per passare da regimi TB a non TB (CNT), impostando
opportunamente la forza del potenziale di reticolo. Le sez. 2.2 - 2.4 esplorano
la fisica del non equilibrio oltre l’approssimazione discreta. Inoltre, lavorando
con una rappresentazione continua, si caratterizzano le transizioni interbanda
indotte dal quench, approfondendo la loro dipendenza dalla prima gap di
banda, dal potenziale chimico e dall’intensità sia del potenziale di reticolo
che dell’interazione con l’impurezza.

Dal punto di vista metodologico, la sez. 2.2 impiega due differenti
strategie: il formalmente esatto functional determinant approach (FD) (sez.
2.2.2), contenuto all’interno del formalismo Levitov [82,83], e un approccio
perturbativo (sez. 2.2.3), che va sotto il nome di linked cluster expansion
(LCE).

Come primo risultato (sez. 2.3) si mostra che, nel limite di temperatura
zero, il decadimento dell’eco nel tempo segue una legge a potenza (sez.
2.3.1) quando la banda ad energia più bassa è parzialmente occupata. Questa
costituisce la firma della catastrofe di ortogonalità di Anderson (AOC) [84–86],
che dà origine ad una Fermi edge singularity [87, 88] nel dominio delle
frequenze. Le caratteristiche essenziali del meccanismo della AOC sono
catturate dal secondo ordine della LCE. Questo ci permette inoltre di trovare
un’espressione analitica per l’esponente caratteristico del decadimento. In
secondo luogo, si esplorano gli effetti di taglia finita, che entrano in gioco
entrando per tempi superiori al decadimento della AOC (sez. 2.3.2). Anch’essi
sono descritti adeguatamente dalla LCE già al secondo ordine.

Infine, in sez. 2.4.2, si riporta la soppressione della AOC quando il sistema
si avvicina alla configurazione di isolante, cioè quando le particelle del gas
tendono ad occupare completamente i livelli della prima banda. In questo
affascinante caso, il gas risponde alla perturbazione con dei peculiari modi di
Fano, che sono chiaramente visibili nello spettro di assorbimento del sistema,
calcolato con l’approccio FD. Se ne fornisce un’interpretazione usando il
contributo dominante del terzo ordine della LCE.

Il cap. 3 riporta come l’evoluzione temporale di un sistema fermionico
in un quasicristallo, in presenza di interazione, sia correlata allo spettro di
una singola particella efficace. La scoperta dei quasicristalli nel 1982 [89] e
dei protocolli per produrre campioni ampi e stabili [90] ha innescato diversi
studi teorici volti a comprendere l’origine delle loro proprietà fisiche insolite.
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Le loro peculiari caratteristiche di trasporto, come l’aumento della resistività
al decrescere della temperatura e al crescere della purezza del campione [91],
hanno attirato grande attenzione [92]. Ben presto ci si rese conto che questo
comportamento fosse strettamente legato alla natura singular continuous
(SC) dello spettro di energia di singola particella (SPES), accompagnato da
autofunzioni critiche le cui proprietà di scaling possono spiegare l’anomalia
del trasporto e della diffusione [92]. Prima della scoperta dei materiali quasi-
cristallini, si pensava che l’idea dello spettro SC fosse una pura elucubrazione
matematica, senza controparte fisica [93]. Infatti la componente SC non è
facilmente accessibile e, spesso, la sua presenza è dedotta solamente dopo aver
escluso l’esistenza delle componenti assolutamente continue (AC) e discrete
(pure point, PP) dall’intero spettro.

Il ruolo degli spettri SC nelle dinamiche dei sistemi non interagenti è
stato studiato in [94], ed il suo collegamento alla propagazione anomala delle
correlazioni e della diffusione di un pacchetto di onde inizialmente localizzato
è stato studiato in [95,96]. Un modello fisico particolarmente interessante,
in cui la natura dello spettro gioca un ruolo cruciale, è il AAM, citato in
precedenza. È stato dimostrato che il suo spettro è AC e PP rispettivamente
nelle fasi di metallo e di isolante, mentre è puramente SC nel punto di
transizione [37, 97]. Tale modello è stato realizzato con atomi ultrafreddi
immersi in un reticolo ottico bicromatico [62, 63, 98]. A causa della presenza
di interazioni, esso possiede un diagramma di fase non banale [45–47], con la
presenza di una soglia di mobilità [20,99] e di fase many-body-localized che
separa quella ergodica da quella localizzata [63,98].

I recenti esperimenti [63,98], che riportano l’osservazione del rallentamento
della dinamica di un gas interagente immerso in un reticolo bicromatico
incommensurato, hanno suggerito di provare a fornire una spiegazione di
queste osservazioni basata sulla natura dello spettro di energia a singola
particella dell’AAM. Sono stati trovati diversi comportamenti: uno ergodico,
a piccoli λs con AC SPES, ed uno localizzato, a grandi λs e moderatamente
piccoli U con PP SPES. Questi due comportamenti estremi sono separati da
una regione intermedia, caratterizzata da uno SC SPES, in cui la dinamica è
ergodica, ma su scale temporali molto più grandi di quelle tipiche di singola
particella. Le nostre osservazioni implicano che una concorrenza non banale
tra l’ordine indotto dal potenziale e le interazioni many-body sono responsabili
di questo comportamento.

I risultati di questa tesi sono stati presentati in quattro documenti, il
primo dei quali è già stato pubblicato, il secondo è attualmente sottomesso
ed in stato di revisione, mentre gli altri due sono in preparazione:

• J. Settino, N. Lo Gullo, A. Sindona, J. Goold and F. Plastina
“Signatures of the single-particle mobility edge in the ground-state
properties of Tonks-Girardeau and noninteracting Fermi gases in a
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bichromatic potential.”
Physical Review A 95, 1–9, 2017

• J. Settino, N. W. Talarico, F. Cosco, F. Plastina, S. Maniscalco, and
N. Lo Gullo
“Disentangling the role of geometry and interaction in many-body
system dynamics: the emergence of anomalous dynamics from the
underlying singular continuous spectrum.”
ArXiv:1809.10524, 2018 (submitted to Physical Review Letter )

• W.Talarico, J. Settino, F. Plastina, A. Sindona, S. Maniscalco, and N.
Lo Gullo
“Sudden quench and long time dynamics in an ultracold fermionic gas”
(in preparation).

• J. Settino. N. Lo Gullo, P. Vignolo, F. Plastina, A. Minguzzi
“Spectral function of the Tonks-Girardeau gas in a optical lattice”
(in preparation)



Abstract - Introduction

Physics of interacting many-body systems is a very active research field,
due to astonishing advances in realizing, controlling and measuring such
systems, and to fundamental problems being still open, such as the behavior
of systems with broken integrability.

Ultra-cold quantum gases, now prepared in a variety of configurations
in laboratories worldwide, have emerged as ideal candidates for clean and
controllable simulation of condensed matter physics [1,2]. In particular, both
bosonic and fermionic atoms can be loaded and manipulated in optical lattice
potentials [3]. The lack of thermal phonons, togheter with the tunability
of the interactions by mean of Feschbach resonances [4], has allowed for
the detailed study of a multitude of phase diagrams of critical many-body
systems, both at equilibrium, and away from it [5, 6].

Among all the systems realized in the framework of ultra-cold gas, special
mention deserves the Tonks-Giradeau (TG) gas [7–12], a system of hardcore
(impenatrable) bosons introduced by Giraedeau in Ref. [13], that corresponds
to the infinite interaction limit of the Lieb-Liniger model [14, 15]. Thanks to
the possibility of mapping the TG system into one of non-interacting fermions,
several facets have been deeply investigated: momentum distribution [16–20],
density matrix [17,19–28] and also some non-equilibrium dynamical properties
[29–34].

Besides the ability to engineer and tune interactions, a particularly
appealing feature of cold atoms is the possibility to manipulate the shape
of the external potential, especially for the simulation of condensed matter
physics. Practically, any lattice geometry may be achieved with optical
potentials, by engineering the direction, wavelength, intensity, polarization,
and phase of the laser beam. Also the dimensionality of the system can
be modified. For instance, starting from a 3D system, an array of 1D (2D)
systems can be generated by a 2D (1D) counterpropagating laser beams. The
dynamics on the unwanted directions is frozen by using a sufficiently strong
confining potential. Moreover, adding a new lattice of different frequency on
top of the existing one allows to create a superlattice. It permits the creation
of double well or quasi-periodic and random lattices. From an theoretical
point of view, when the lattice is deep enough regarding to the thermal
energy, the tight binding approximation can be performed. It consist of

7
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describing the hamiltonian by truncating the single-particle Bloch basis to
the first band, and expanding the field operators in the Wannier basis, a set
of exponentially localized single-particle wavefunctions.

Many parts of this thesis are focused on 1D many-body systems in a
quasi-periodic geometry, implemented via an external potential that realizes
what is known as André-Aubry (AA) model [35–44]. This is a one dimensional
tight binding model on a lattice, with nearest-neighbor hopping terms and
on-site energies given by a combination of two periodic functions having
non-commensurate wave numbers, which has been shown to display a metal-
to-insulator transition [35,36].

The interplay between geometry and interaction in many-body systems
can generate an impressive range of physical phenomena. For example, the
ground state properties of interacting bosons, subject to a quasi-periodic
potential, show a rich phase diagram at zero temperature [45–47], displaying
superfluid, Bose-glass and Mott insulator phases depending upon the filling
of the lattice, the interactions and the strength of the potential. Interest-
ingly, a mobility edge (ME) appears when an extension of the AA model is
considered, allowing for longer-range hopping such as next-nearest-neighbor
terms [48,49] or a continuous model (infinite-range hopping) [50,51], or even
interactions [52]. The extended-to-localized phase transition of the AA model,
within the framework of many body physics, has been widely investigated
both from a theoretical point of view [53–56] and from an experimental
one [53,57–63].

The first chapter of this thesis mainly deals with the TG gas, showing
how geometry and interaction compete to determine static and dynamical
properties of the system, like the momentum distribution or the spectral
function. To this aim, it examines the ground state properties of both
non-interacting fermions and of strongly-interacting bosons in a bichromatic
lattice. After having described the fermion-based representation of the
strongly interacting bosonic gas in sec. 1.1, thus motivating the choice of
looking at both species, sec. 1.2.1 introduces the considered model and recall
its single particle properties, which are crucial to understand the results in
the many-body case. Then, sec. 1.2.2 and sec. 1.2.3 describe the effect of
the delocalization-to-localization transition and the influence of the mobility
edge on the many-body ground state for a system of non-interacting, spinless
fermions and a Tonks-Girardeau gas.

Sec. 1.3 is focused on the spectral function of the Tonks-Girardeau gas,
that is a primary quantity in many-body physics: it embodies information on
the probability of exciting a particle or a hole in the system by an external
perturbation. Moreover it can be measured in ultracold gas experiments by
angle-resolved photoemission spectroscopy (ARPES) or momentum-resolved
stimulated Raman spectroscopy. [64–67]. It has been theoretically investi-
gated by linear and non-linear Luttinger theory [68–74] for different systems,
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but analytical calculations allow to explore only some of its properties such as
support, nonanalyticities and asymptotic behaviour. Numerical approaches
are often computationally demanding because of the complexity of many-
body physics. The first part of sec. 1.3 aim at developing an efficient
algorithm for evaluating the Green’s functions of the TG gas, and therefore
the SF, in any spatial potential, by writing them as a functional of single
particle states. In the second part, it is applied to a TG gas in a lattice, and
show how the presence of the lattice gives rise to some new non-analyticities
that have no analogues in the homogeneous system.

The second part of this thesis (chap. 2 and 3) deals with dynamical
properties of interacting and non-interacting fermions, again in periodic or
quasi-periodic lattices, in order to answer to the same question of the first
part: how the competition between geometry and interaction is reflected
onto the many-body dynamics. In order to study the dynamical properties
of these systems, the concept of quantum quenchis resorted. It is a protocol
according to which a quantum system, prepared in some initial equilibrium
state, is brought out-of-equilibrium by an external perturbation. In this way,
some properties of the system can be studied by looking at the dynamics
generated by the quantum quench.

The relaxation of a quantum system towards equilibrium, following a
global or local perturbation, has been extensively and widely studied over
the recent past. This topic has certainly benefited from advances and recent
realizations of out-of equilibrium systems in ultracold gas experiments, besides
being interesting in its own from the theoretical point of view. One of the key
points, towards the understanding of the global dynamics of these systems,
is the connection between single-particle and many-body properties. A
representative example is given by the recently reported many-body localized
phases [75], where the concept of localization often gets blurry and requires
different criteria to be adopted for a meaningful definition.

Chap. 2 investigates the post-quench dynamics of a non-interacting Fermi
gas, trapped by a periodic optical potential in one dimension, and provide a
clear link between the global evolution of the system and the energy spectrum
of each single constituent of the gas, using the Loschmidt echo as a figure of
merit. Recent realizations of condensed matter analogues have inspired to
examine the scenario of a two-level impurity immersed in the gas, with the
further condition that the gas-impurity interaction occurs only when the atom
lies in its excited state. This set-up, besides providing a way of introducing
a localized perturbation in space, allows also for the reconstruction of the
many-body dynamics of the gas, via Ramsey interferometry [76–79].

The single particle spectrum is made up of energy bands of different
widths, with different gaps between them, opened by the periodic lattice
potential. The bandwidths and interband gaps are naturally function of the
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lattice potential amplitude. In particular, when this amplitude is sufficiently
larger than a certain reference energy, i.e., the recoil energy, the gap separating
the first and second bands is so wide that the system can be described, in
the thermodynamic limit, by means of the states of the first band only. This
condition, establishing what is known as tight binding (TB) regime, has
been widely documented in the literature, for gases of both fermions and
bosons [2,80,81]. Much less is known in all other cases, when one or more
bands higher than the lowest one get involved in the quench and the system
dynamics can be treated only with a continuum (CNT) description.

Then, Sec. 2.1 sets the focus on a trapped gas in a sin-squared potential,
and relies on the single-particle Schrödinger equation to switch between
the TB and non-TB (CNT) regimes by tuning the strength of the lattice
potential. Secs. 2.2 - 2.4 explore the non-equilibrium physics beyond the
discrete approximation that is well suited only in the TB limit. Furthermore,
working with a continuous representation, we characterize the quench-induced
interband transitions, elucidating their dependence on the first band gap,
the chemical potential and the strengths of both the lattice potential and
the sudden (impurity) potential.

From the methodological point of view, sec. 2.2 emploies two compar-
ative strategies based on a (formally exact) functional determinant (FD)
approach (Sec. 2.2.2), within the Levitov formalism [82,83], and a perturba-
tion approach (Sec. 2.2.3), within the linked cluster expansion (LCE).

As a first result (Sec. 2.3), it is shown that the decay of the echo follows a
power-law in time (Sec. 2.3.1), when lowest lying band is partly occupied in
the zero temperature limit. This is a signature of the Anderson orthogonality
catastrophe (AOC) [84–86], giving rise to a Fermi-edge singular spectrum [87,
88] in the frequency domain. The essential features of the AOC mechanism
are captured by the second order of the LCE. This allows us to find an
expression for the critical exponent of the decay. Secondly, the role of finite-
size effects is explored, coming into play beyond the AOC decay (Sec. 2.3.2),
which is found to be adequately described by the LCE already at the second
order.

Finally (Secs.2.4.2), it is reported the suppression of the AOC mechanism,
with the system approaching the band insulator configuration, i.e., with
the particles in the gas tending to completely fill the first band levels at
the absolute zero. In this fascinating case, the gas responds with peculiar
Fano modes, which are clearly visible in the absorption spectrum of the
system computed with the FD approach. They are interpreted using the
dominant contribution to the third-order correction of the LCE, accounting
for particle-hole or hole-particle excitations, dynamically screened by particle-
hole recombinations.

Chap. 3 reports how the dynamical evolution is related to the effective
single particle spectrum of a fermionic system in a quasicrystal in presence of
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interaction. The discovery of quasicrystals in 1982 [89] and of protocols to pro-
duce large and stable samples [90] has triggered the theoretical studies aiming
at understanding the origin of their unusual physical properties. Among
others, their peculiar transport features, such as the increasing of the resistiv-
ity with both decreasing temperature and increasing the sample purity [91],
have attracted great attention [92]. It was soon realized that this behavior is
strictly linked to the singular continuous (SC) nature of the single-particle
energy spectrum (SPES), with the accompanying critical eigenfunctions1,
whose scaling properties can account for anomalous transport and diffusion,
and can partially explain the unusual behavior of these materials [92]. Before
the discovery of quasicristalline materials, the mathematical concept of SC
spectrum2 was thought to be a purely mathematical lucubration with no
physical counterpart [93]. The SC part is not easily accessible, and, often,
its presence is inferred after removing the absolutely continuous (AC) and
pure-point (PP) parts from the whole spectrum, provided a set of non-zero
measure is left over.

The role of SC spectra in the dynamics of non-interacting systems has
been investigated in Ref. [94] and its link to anomalous propagation of
correlations and in the spreading of an initially localized wave-packet has
been investigated in Refs. [95, 96]. A particularly interesting exemplary
physical model where the nature of the spectrum plays a crucial role is the
AAM, previously cited. It has been proven that its spectrum is AC and PP
in the metal and insulating phases, respectively, whereas it is purely SC at
the transition point [37, 97]. The model has been realized with ultra-cold
atoms loaded in a bichromatic optical lattice [62,63,98]. Due to the presence
of interactions, such system displays a non-trivial phase diagram [45–47],
with the appearance of a mobility edge [20,99] and of a many-body-localized
phase separating an ergodic from a localized one [63,98].

Recent experiments [63,98] reporting the observation of the dynamical
slowing down of an interacting gas loaded in an incommensurate bichromatic
lattice have motivated to provide an explanation for these observations based
on the nature of the single-particle energy spectrum of the AAM model.
Different behaviors have been found : an ergodic one at small λs with an
AC SPES, and a localized one at large λs and moderately small U with a
PP SPES. These two extreme behaviors are separated by an intermediate
region, characterized by a SC SPES, where the dynamics is still ergodic but
on time scales much larger than the typical single-particle time scales. Our
findings imply that a non-trivial competition between the underlying order

1An eigenfunction is said to be critical if it is not delocalized nor exponentially localized;
althought there exist different types of such eigenfunctions most of them are characterized
by a power law envelope and/or non-trivial (multi-)fractal properties.

2According to the Lesbegue decomposition theorem a positive measure can be split into
three (mutually orthogonal) components: absolutely continuous (AC), singular continuous
(SC) and pure point (PP) according to the nature of their support.
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induced by the potential energy landscape and the many-body interactions
is responsible for this behavior.

The results of this thesis have been presented in four papers, the first
has been already published, the second is submitted and under review for
publication, and other two are in preparation:

• J. Settino, N. Lo Gullo, A. Sindona, J. Goold and F. Plastina
“Signatures of the single-particle mobility edge in the ground-state
properties of Tonks-Girardeau and noninteracting Fermi gases in a
bichromatic potential.”
Physical Review A 95, 1–9, 2017

• J. Settino, N. W. Talarico, F. Cosco, F. Plastina, S. Maniscalco, and
N. Lo Gullo
“Disentangling the role of geometry and interaction in many-body
system dynamics: the emergence of anomalous dynamics from the
underlying singular continuous spectrum.”
ArXiv:1809.10524, 2018 (submitted to Physical Review Letter )

• W.Talarico, J. Settino, F. Plastina, A. Sindona, S. Maniscalco, and N.
Lo Gullo
“Sudden quench and long time dynamics in an ultracold fermionic gas”
(in preparation).

• J. Settino. N. Lo Gullo, P. Vignolo, F. Plastina, A. Minguzzi
“Spectral function of the Tonks-Girardeau gas in a optical lattice”
(in preparation)
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Tonks-Girardeau gas

in periodic and quasi-periodic potentials

Per il segno che c’è rimasto
non ripeterci quanto ti spiace

non ci chiedere più come è andata
tanto lo sai che è una storia sbagliata

tanto tu lo sai che è una storia sbagliata.

– Fabrizio De André, Una storia sbagliata

In this chapter we explore the ground state static and dynamical proper-
ties of cold atomic bosonic gases that can be well approximated by using a
hard-core model for the two-body interaction (Tonks-Girardeau gas). The
key idea is that a hard-core interaction for bosons mimics the Pauli exclusion
principle and allows a simplified treatment of the system via the well know
mapping [13]. After having reviewed the recognized methods for the static
properties and developed original ones for the dynamics in sec. 1.1, we study
two different situations on which these methods have been applied.

In sec. 1.2 we focus on cold gases trapped by the combination of two
potentials (bichromatic lattice) with incommensurate periods. For such
systems, two limiting cases have been thoroughly established. In the tight-
binding limit, the single-particle states in the lowest occupied band show a
localization transition, as the strength of the second potential is increased
above a certain threshold. In the continuous limit, when the tight-binding
approximation does not hold, a mobility edge is found, instead, whose position
in energy depends upon the strength of the second potential. We study

13



1.1. THE TONKS-GIRARDEAU GAS 14

how the crossover from the discrete to the continuum behavior occurs, and
prove that signatures of the localization transition and mobility edge clearly
appear in the generic many-body properties of the systems. Specifically,
we evaluate the momentum distribution, which is a routinely measured
quantity in experiments with cold atoms, and demonstrate that, both for
non-interactiong fermions and TG bosons the single particle mobility edge
can be observed in the ground state properties.

In sec. 1.3 we apply our main results to calculate the spectral function
(SF), that is a measurable quantity in ultracold gases via ARPES technique,
of a TG gas in a periodic confinement. We compare the results with existing
literature regarding the homogeneous system and show how the presence of
the lattice modifies non-analyticities and singularities of the SF.

1.1 The Tonks-Girardeau gas

Optical lattices allow to create trapping potentials that are tight enough
in the transversal direction to freeze out all dynamics in these degrees
of freedom [100]. A gas of N bosons in such a potential can then be
approximately described by the one-dimensional Hamiltonian

H0=
N∑
n=1

[
− ~2

2m

∂2

∂x2
n

+ V (xn)

]
+g
∑
i<j

δ(|xi − xj |) (1.1)

where m is the mass of the particles contained in the kinetic energy term,
V is the external potential 1 and g1D is a 1D coupling constant which is
derived from the renormalisation of the three-dimensional scattering process,
g = 4~2a3D

mw⊥
(w⊥ − Ca3D)−1 [101]. Here w⊥ is the trap width in the transversal

direction (harmonic trapping), C = −ζ(1/2) ' 1.46035 is a constant, and
a3D is the scattering length in three-dimensions. This Hamiltonian describes
an inhomogeneous Lieb-Liniger gas, which in the strongly repulsive limit,
g →∞, can be solved by using a mapping to an ideal and spinless fermionic
system [13,25]. The essential idea of this mapping is that one can treat the
interaction term in Eq. (1.1) by replacing it with a boundary condition on
the allowed bosonic wave-function

ΨB(x1, x2, . . . , xn) = 0 if |xi − xj | = 0 , (1.2)

for i 6= j and 1 ≤ i ≤ j ≤ N . This is the hard-core constraint, which says
that probability for two particles to be at the same point in space is zero.

Such a constraint is automatically fulfilled by calculating the wave-
function using a Slater determinant

ΨF (x1, x2, . . . , xN ) =
1√
N !

(N−1,N)

det
(n,j)=(0,1)

ψn(xj) , (1.3)

1In the case of ultracold atoms, V comprises the trapping potential and eventually
other periodic, quasiperiodic or disordered potentials.



1.1. THE TONKS-GIRARDEAU GAS 15

where the ψn are the single particle eigenstates of the ideal system. This,
however, leads to a fermionic rather than bosonic symmetry, which can
be corrected by a multiplication with the appropriate unit antisymmetric
function [13]

S =
∏

1≤i<j≤N
sgn(xi − xj) , (1.4)

to give 2

ΨB(x1, x2, . . . , xN ) = S(x1, x2, . . . , xN )ΨF (x1, x2, . . . , xN ). (1.5)

One consequence of this mapping is that all local quantities, e.g. the
spatial density of particles, are exactly the same as those of a non-interacting
fermionic gas. The difference between these two systems emerges in the
non-local quantities such as momentum distribution or structure factor;
signatures of the bosonic nature of the TG are still clearly visible, e.g. in the
peak at zero momentum of the momentum distribution, whereas the features
related to the unitary limit are encoded in their asymptotic behavior (tails,
non-analiticities).

1.1.1 Reduced single particle density matrix and momentum
distribution

The reduced single particle density matrix (RSPDM) allows the calculation
of the properties of all single particle observables. Although eq. 1.5 enable to
write the exact many-body wavefunction describbing the TG gas in compact
form, the evaluation of the RSPDM is a difficult task [30, 102–112]. For a
generic eigenstate of the many-body hamiltonian Pezer and Buljan in ref. [18]
developed an efficient closed formula of the RSPDM of a generic many-body
state |η〉as a function of single particle eigenfunctions. The RSPDM is defined
as:

ρη(x, y) =
〈
ψ̂†(x)ψ̂(y)

〉
η

= 〈η|ψ̂†(x)
1

N − 1!

∫
dX |X〉〈X| ψ̂(y)|η〉

=
1

N − 1!

∫
dXΨ∗η(x,X)Ψ(

ηy,X)

(1.6)

where we have used used the completeness relation in the N − 1 particles
Hilbert space in the position representation 1/(N − 1)!

∫
dX |X〉〈X| = I,

with X = x2...xN , the action of the field operator to an eigenstate of a many
body position operator ψ̂†(x) |X〉 = |x,X〉 and the definition of wavefunction

2Because of the sign function, one can easily verify that, in order to have a bosonic
wavefunction with periodic boundary conditions, the fermionic one has to be periodic for
odd N and anti-periodic for even N . In this thesis we will always work with open boundary
conditions, which are fulfilled if the single particle wavefunctions satisfy open boundary
conditions. [34]
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〈X|η〉 = Ψη(X) for a generic eigenstate |η〉 of the many-body hamiltonian.
Each of the wave functions above can be written by using the mapping
into non-interacting fermions of eq. 1.5 and simplifying the squares of sign
functions:

ρη(x, y) =
1

N − 1!

∫
dX

N∏
k=2

sign(x− xk)
N∏

2≤i<j≤N
sign(xi − xj)ΨF∗

η (x,X)

×
N∏
k=2

sign(y − xk)
N∏

2≤i<j≤N
sign(xi − xj)ΨF

η (y,X)

=
1

N − 1!

∫
dX

N∏
k=2

sign(x− xk)ΨF∗
η (x,X)

N∏
k=2

sign(y − xk)ΨF
η (y,X).

(1.7)

The fermionic wavefunctions coincide with the Slater determinant of single
particle wavefunctions of occupied states. Labeling with ~η = η1, . . . , ηN the
collection of occupied states indexes, we use the Laplace expansion of the
determinant to take out SP eigenfuctions that are not integrated and then
apply the Andréief’s integration formula 3 to combine the minors left:

ρη(x, y) =
1

N − 1!

∫
dX

∑
i,j∈~η

(−1)i+jφi(x)φ∗j (y)

×
N∏
k=2

sign(x− xk) det[φl(xm)]l∈~ηr{i}
m=2,N

N∏
k=2

sign(y − xk) det[φ∗l (xm)]l∈~ηr{j}
m=2,N

=
1

N − 1!

∫
dX

∑
i,j∈~η

(−1)i+jφi(x)φ∗j (y)

× det[sign(x− xm)φl(xm)]l∈~ηr{i}
m=2,N

det[sign(y − xm)φ∗l (xm)]l∈~ηr{j}
m=2,N

=
∑
i,j∈~η

(−1)i+jφi(x)φ∗j (y) det

[∫
dx̄ sign(x− x̄)sign(y − x̄)φl(x̄)φ∗m(x̄)

]
l∈~ηr{i}
m∈~ηr{j}

=
∑
i,j∈~η

φi(x)φ∗j (y)Ai,j(x, y)

(1.9)

with

Ai,j(x, y) = (−1)i+j det[P]~ηr{i},~ηr{j} = [P−1]j,i det[P] (1.10)

3

[23]

∫
dx1· · ·

∫
dxM det[fj(xk]j,k=1,M det[gj(xk]j,k=1,M = M ! det

[∫
dxfj(x)gk(x)

]
j,k=1,M

(1.8)
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and

Pl,m =

∫
dx̄ φl(x̄)φ∗m(x̄)sign(x− x̄)sign(y − x̄)

= δl,m − 2

∫ max(x,y)

min(x,y)
φl(x̄)φ∗m(x̄)

(1.11)

The eigenfunctions (ϕi(x)) and eigenvalues (λi) of the RSPDM, defined
by
∫
dxρ(x, y)ϕi(x) = λiϕi(y) and normalized such that

∑
i λi = 1, are the

so called natural orbitals and their populations, respectively.
Moreover the diagonal part of the (double) Fourier transform of the

RSPDM gives the momentum distribution (MD),

n(k) =
1

2π

∫
dxdy expik(x−y) ρ(x, y), (1.12)

which is directly measurable in cold atom experiments by time-of-flight
measurements. The MD is conveniently expressed in terms of the natural
orbitals and their corresponding eigenvalues,

n(k) =

N∑
j=1

λj |ϕ̃j(k)|2. (1.13)

Here, ϕ̃j(k) is the Fourier transform of the j-th natural orbital.
For a non-interacting Fermi gas, as one could have expected, there

are only N non-vanishing eigenvalues, which are all equal to 1/N , and the
corresponding eigenvectors coincide with theN occupied single particle energy
states, or, because populations are degenerate, with a linear combinations
of them. So, the RSPDM and MD of a non-interacting fermion gas in a
many-body eigenstate of the hamiltonian can be expressed via the single
particle eigenstates:

ρF (x, y) =
∑
j∈~η

φ∗j (x)φj(y) (1.14)

and

n(k) =
∑
j∈~η

∣∣∣φ̃j(k)
∣∣∣2 (1.15)

where φ̃j(k) is the Fourier transform of φj(x) [18].
In sec. 1.2 we will show that a similar analysis for a Tonks-Girardeau

gas is much less trivial.

Finite temperature. The non-interacting fermionic RSPDM for finite
temperature is

ρF (xk, xl) =

∞∑
j=1

fjψ
∗
j (x)ψj(y) (1.16)
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which is the analogous of eq 1.14 with each term weighted by the Fermi-Dirac
occupation factors fj = [e(εj−µ)/kBT + 1]−1.

The finite temperature calculation of the RSPDM for the TG gas has
been developed since 1966 by Lenard [21] but more efficient formulas came
from Vignolo and Minguzzi in ref. [17] and Atas et al. in ref. [28]. In the
grand-canonical ensemble the starting point is to write the thermal average
of eq. 1.6:

ρT (x, y) =
∑
N,η

PN,ηρη(x, y) (1.17)

where PN,η = e−β(EN,η−µN)/Z is the thermal distribution function, Z =∑
N,η e

−β(EN,η−µN) is the partition function with EN,η =
∑

j∈~η εj , β =
1/kBT and µ the chemical potential. It’s possible to write the previous
equation as a series of j-dimensional integrals [21]:

ρT (x, y) =
∞∑
j=0

[sign(x− y)]j
∫ y

x
dx2· · ·

∫ y

x
dxj+1 det[ρF (xk, xl)]

j+1
k,l=1 (1.18)

written for x ≤ y, where one has to take xk=1 = x and xl=1 = y.
Each multidimensional integral is considerably simplified by recasting it

to a combination of single-variable integrals [17]. The most efficient closed
formula is obtained by Atas et al. in ref. [28] who recognized eq. 1.18 being
a product between a Fredholm determinant and the associated resolvent
operator, which lead to:

ρT (x, y) =
∞∑

i,j=1

√
fiφi(x)ATi,j(x, y)

√
fjφ
∗
j (y). (1.19)

The element ATi,j = [PT−1
]j,i det

[
PT
]

are slightly different with respect to
the zero temperature counterpart

P Tl,m(x, y) = δl,m − 2
√
flfm

∫ max(x,y)

min(x,y)
φl(x̄)φ∗m(x̄). (1.20)

The advantage of this formula is that it is recast into single particle wave-
functions, which can be numerically calculated in any spatial potential.

1.1.2 Single particle Green’s function

When it comes to quantities at different times, the situation is even more
complicated. They are essential to investigate the response properties of
the system or to study its dynamics. One extremely important quantity
is the spectral function, which gives information on the accessible energies
of the system and, therefore, to its transport properties (e.g. through the
Landauer-Büttiker formula).
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Another important quantity, strictly related to the spectral function, is
the Fourier transform of the single-particle Green’s function, which is the
outcome of a typical ARPES experiment as the latter explores only initially
occupied (particle) states and it is blind to the empty (hole) ones.

To compute these quantities, we resort to the non-equilibrium Green’s
function formalism [81], which naturally embodies the equilibrium one as a
limit case. The NEGFs are the most natural framework to study the out-of-
equilibrium dynamics of many-body quantum systems from a microscopic
picture and, at the same time, allows to include many-body correlations.
Due to the recent intense investigation of many-body quantum systems
out-of-equilibrium, our results would be readily available to study quantum
quenches or transport in a TG gas, as the NEGFs formalism allows for the
inclusion of external reservoirs within the same formalism. In what follows,
we will give an expression for the single-particle Green’s functions:

• the lesser GF (particle propagator)

G<(x, t; y, t′) = ∓ı
〈

Ψ̂†(y, t′)Ψ̂(x, t)
〉

; (1.21)

• the greater GF (hole propagator)

G>(x, t; y, t′) = −ı
〈

Ψ̂(x, t)Ψ̂†(y, t′)
〉

; (1.22)

• the retarded Green function, that is nonzero for t > t′ only, and contains
information about spectral properties, densities of states and scattering
rates.

GR(x, t; y, t′) = θ(t− t′)
[
G>(x, t; y, t′)−G<(x, t; y, t′)

]
. (1.23)

In the expression for the lesser Green’s function, the minus and plus signs
refer to bosonic and fermionic fields respectively. The knowledge of these
functions will allow for the calculation of the spectral function

A(k, ω) = − 1

π
ImGR(k, ω) (1.24)

with

GR(k, ω) =

∫ ∞
−∞

dt

2π

∫ ∞
−∞

dxdy

(2π)2
eıωte−ık(x−y)GR(x, t; y, 0) (1.25)

In the case of fermionic fields, the spectral function corresponds to the
probability to excite a particle (hole) with energy ω (−ω) and momentum k,
as the spectral function can be normalized being always non-negative. In the
bosonic case, the spectral function loses this nice property, as it can acquire
negative values [81], and it is customary to look separately at the Fourier
transforms of the lesser and greater Green’s functions, which, instead, can
be interpreted as the probability for a particle (hole) to be excited (filled).
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In this section we discuss one of the main results of this thesis, namely
the expression of the lesser and greater Green’s functions gas in a efficient
closed formula of the Tonks-Girardeau gas, outlining the procedure of them.

As in the previous section, let us assume that our system is made of
N particles placed in N single-particle eigenstates labeled by the indexes
~η = {η1, . . . , ηN}; the many-body state of a TG gas is then given by the
standard procedure of taking the Slater determinant, properly corrected
with the sign function to account for the bosonic statistics, of the states.
In the case of zero temperature ~η = {1, . . . , N} will label the lowest N
single-particle energy states.

Lesser Green’s function: G<(x, t, y, t′).

We want to write the “lesser“ Green’s function (G<(x, t, y, t′)) for a TG
gas as a function of single particle states directly. In order to easily apply
that mapping, we should write the Green’s function in the first quantization
formalism. The main difference with the calculation of the RSPDM is that,
because of dynamics, we have to perform two summations on the whole
many-body Hilbert space that is reflected in the finale result into a small
number of summations on the whole single-particle Hilbert space (eventually
truncated). From the definition we can make explicit the time evolution:

ıG<(x, t, y, t′)η =
〈
ψ̂†(y, t′)ψ̂(x, t)

〉
η

=
〈
eiHt

′
ψ̂†(y)e−iHt

′
eiHtψ̂(x)e−iHt

〉
η

(1.26)

In order to write it in the first quantization formalism and to apply the
time evolution operator, we introduce the completeness relation in the N − 1
particles Hilbert space

∑
n |n〉〈n| = IN−1, with |n〉 being an eigenstate of the

TG Hamiltonian and the sum being restricted on inequivalent states, and
the completeness relation in the N − 1 particles Hilbert space in the position
representation 1

N−1!

∫
dX |X〉〈X| = IN−1, with X = x2 . . . xN .

ıG<(x, t, y, t′)η =
1

(N − 1!)2

〈
eiHt

′
ψ̂†(y)

∫
dY |Y 〉〈Y | e−iHt′(

∑
n

|n〉〈n|)eiHt
∫

dX |X〉〈X| ψ̂(x)e−iHt

〉
η

=
1

(N − 1!)2

∑
n

∫
dY

∫
dXt′〈η|y, Y 〉 〈Y |n〉t′ t〈n|X〉 〈x,X|η〉t

=
1

(N − 1!)2

∑
n

∫
dYΨ∗η(y, Y ; t′)Ψn(Y ; t′)

∫
dXΨη(x,X; t)Ψ∗n(X; t)

(1.27)

We have used the definition of many-body wavefunction 〈X|η〉 = Ψη(X).
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We can apply the mapping of eq. 1.5 for each many body obtaining the
TG version of the precious equation:

ıG<(x, t, y, t′) =
1

(N − 1!)2

∑
n

∫
dX

N∏
k=2

sign(x− xk)ΨF
η (x,X; t)Ψ∗Fn (X; t)

×
∫
dY

N∏
k=2

sign(y − yk)Ψ∗Fη (y, Y ; t′)ΨF
n (Y ; t′)

(1.28)

Each one of the two many body integrals can be evaluated separately; we
will start writing the first one as a function of single particle states, by using
the Slater determinant definition. We identify the generic (N − 1) particles
eigenstate of the free fermions Hamiltonian, labeled by n, as the one with
SP orbitals ~α = {α2, ..., αN}. Expanding the determinant of ψFη (x,X; t) into
the first column, we have∫

dX

N∏
k=2

sign(x− xk)ΨF
η (x,X; t)Ψ∗Fn (X; t)

=
N∑
i=1

(−1)i+1φηi(x, t)

∫
dX

N∏
k=2

sign(x− xk)

×

∣∣∣∣∣∣∣∣∣∣∣

φη1 (x2,t) ... φη1 (xN ,t)

... ...
...

φηi−1 (x2,t) ... φηi−1 (xN ,t)

φηi+1 (x2,t) ... φηi+1 (xN ,t)

...
...

...
φηN (x2,t) ... φηN (xN ,t)

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣
φ∗α2(x2,t) ... φ∗α2(xN ,t)

...
. . .

...
φ∗αN (x2,t) ... φ∗αN (xN ,t)

∣∣∣∣∣
(1.29)

We can combine the two determinants using the Andréief’s integration
formula of eq. 1.8. Then noticing the fact that

∫∞
−∞ sign(x − x̄)f(x̄)dx̄ =∫∞

−∞ f(x̄)dx̄− 2
∫∞
x f(x̄)dx̄ we obtain∫

dX

N∏
k=2

sign(x−xk)ΨF
η (x,X; t)Ψ∗Fn (X; t) = (N−1)!

N∑
i=1

(−1)i+1φηi(x, t) det[P(x, t)]~ηr{ηi},~α.

(1.30)
The determinant det[P]~ηr{ηi},~α is the N − 1 order minor of the matrix P
having selected the rows ~η r {ηi} and the columns ~α, and

Pl,m(x, t) =

∫ ∞
−∞

φl(x̄, t)φ
∗
m(x̄, t)dx̄− 2

∫ ∞
x

φl(x̄, t)φ
∗
m(x̄, t)dx̄

= δl,m − 2 e−ıt(el−em)

∫ ∞
x

φl(x̄)φ∗m(x̄)dx̄ (1.31)
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In the same way we can write the second integral in the expression for G<,
obtaining:

ıG<(x, t, y, t′) =
∑̃

~α

N∑
i,j=1

(−1)i+jφηi(x, t)φ
∗
ηj (y, t

′) det[P(x, t)]~ηr{ηi},~α det
[
P(y, t′)

]
~α,~ηr{ηj}

(1.32)
The sum over n corresponds to the sum over ~α in the equation above,

that has to be restricted to collections of indexes that are not related by

permutations, and that will be indicated from now on by
∑̃

. This sum can
be simplified by using the generalized Cauchy-Binet formula for the product
of minors4, obtaining:

(−1)i+j
∑
~α

det[P(x, t)]~ηr{ηi},~α det[P(y, t′)]~α,~ηr{ηj} = (−1)i+j det[P(x, t)P(y, t′)]~ηr{ηi},~ηr{ηj}

= {[P(x, t)P(y, t′)]~η,~η}−1Tdet[P(x, t)P(y, t′)]~η,~η (1.34)

where in the last step we have used the definition of the inverse of a matrix
via minors. It is important to note that the the product between matrices in
the last equation is NOT constrained to the ~η elements of the single particle
Hilbert space, but to the whole single particle Hilbert space (eventually
truncated).

We can finally write:

ıG<(x, t, y, t′) =
N∑

i,j=1

φηi(x)e−ıeηi tφ∗ηj (y)eıeηj t
′
Aηi,ηj (x, t, y, t

′) (1.35)

with

A~η,~η(x, t, y, t
′) = {[P(x, t)P(y, t′)]~η,~η}−1T det

[
P(x, t)P(y, t′)

]
~η,~η

(1.36)

in clear analogy with the RSPDM expression of eq. 1.9 when |η〉 corresponds
to the ground state.

Greater Green’s Function

We want to write the “greater“ Green’s function (G>(x, t, y, t′)) for a TG
gas as a function of single particle states directly, using the mapping to free
fermions and developing the Slater determinants. As for the ”lesser“ one
calculation, we should write the Green’s function in the first quantization
formalism. From the definition we can make explicit the time evolution:

4 ∑̃
~α

det[A]~I,~α det[B]~α, ~J = det[A B]~I, ~J (1.33)
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For a generic eigenstate of the many-body hamiltonian (|η〉), we can
write:

ıG>(x, t, y, t′)η =
〈
ψ̂(x, t)ψ̂†(y, t′)

〉
η

=
〈
eiHtψ̂(x)e−iHteiHt

′
ψ̂†(y)e−iHt

′
〉
η

(1.37)

In order to write it in the first quantization formalism and to apply the
time evolution operator, we introduce the completeness relation in the N + 1
particles Hilbert space

∑
n |n〉〈n| = IN+1, with |n〉 being an eigenstate of the

TG Hamiltonian and the sum being restricted on inequivalent states only,
and the completeness relation in the N particles Hilbert space in the position
representation 1

N !

∫
dX |X〉〈X| = IN , with X = x1 . . . xN .

ıG>(x, t, y, t′)η =
1

(N !)2

〈
eiHt

∫
dX |X〉〈X| ψ̂(x)e−iHt(

∑
n

|n〉〈n|)eiHt′ψ̂†(y)

∫
dY |Y 〉〈Y | e−iHt′

〉
η

=
1

(N !)2

∑
n

∫
dX

∫
dY t〈η|X〉 〈x,X|n〉t t′〈n|y, Y 〉 〈Y |η〉t′ =

=
1

(N !)2

∑
n

∫
dXΨ∗η(X; t)Ψn(x,X; t)

∫
dYΨη(Y ; t′)Ψ∗n(y, Y ; t′)

(1.38)

We have used the definition of many-body wavefunction 〈X|η〉 = Ψη(X).
We can apply the mapping of eq. 1.5 for each many body obtaining the TG
version of the precious equation:

ıG>(x, t, y, t′) =
1

(N !)2

∑
n

∫
dX

N∏
k=1

sign(x− xk)ΨF∗
η (X; t)ΨF

n (x,X; t)

×
∫

dY
N∏
k=1

sign(y − yk)ΨF
η (Y ; t′)ΨF∗

n (y, Y ; t′)

(1.39)

Each one of the two many body integrals can be evaluated separately; we
will start writing the first one as a function of single particle states, by using
the Slater determinant definition. We identify the generic (N + 1) particles
eigenstate of the free fermions Hamiltonian labeled by n, as the one with SP
orbitals ~α = {α1, ..., αN+1}. Expanding the determinant of ψFn (x,X; t) into
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the first column, we have∫
dX

N∏
k=1

sign(x− xk)Ψ∗η(X; t)Ψn(x,X; t)

=
N+1∑
i=1

(−1)i+1φαi(x, t)

∫
dX

N∏
k=1

sign(x− xk)

×

∣∣∣∣∣∣
φ∗η1 (x1,t) ... φ∗η1 (xN ,t)

...
. . .

...
φ∗ηN (x1,t) ... φ∗ηN (xN ,t)

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

φα1 (x1,t) ... φαi (xN+1,t)

... ...
...

φαi−1 (x1,t) ... φαi−1 (xN+1,t)

φαi+1 (x1,t) ... φαi+1 (xN+1,t)

...
...

...
φαN+1

(x1,t) ... φαN+1
(xN+1,t)

∣∣∣∣∣∣∣∣∣∣∣
(1.40)

As for the lesser GF, we can combine the two determinants using the
Andréief’s integration formula of eq. 1.8. Then noticing the fact that∫∞
−∞ sign(x− x̄)f(x̄)dx̄ =

∫∞
−∞ f(x̄)dx̄− 2

∫∞
x f(x̄)dx̄ we obtain

∫
dX

N∏
k=1

sign(x−xk)ΨF∗
η (X; t)ΨF

n (x,X; t) = N !
N+1∑
i=1

(−1)i+1φαi(x, t) det[P(x, t)]~αr{αi},~η

(1.41)
The determinant det[P(x, t)]~αr{αi},~η is the N order minor of the matrix
P having selected the rows ~αr {αi}, ~η and the columns ~η, and Pl,m(x, t)
defined as in eq. 1.31. The main difference with the ”Lesser” calculation is
that in this form we cannot apply the Cauchy-Binet theorem. We have to
reinsert all the φαi(x, t) elements into an extended ”P” matrix, by adding a
”0” column, as it follows:

∫
dX

N∏
k=1

sign(x−xk)ΨF∗
η (X; t)ΨF∗

n (x,X; t) = N ! det
[
~φ(x, t),P(x, t)

]
~α,{0}∪~η

(1.42)
in which we have defined a column vector ~φ(x, t) =

[φ1(x, t), . . . , φM (x, t)]T on the whole Hilbert space (eventually trun-
cated at M states). Following the same line for the second integral, we
reach:

ıG>(x, t, y, t′) =
∑̃

~α
det

[
~φ(y, t′)†

P(y, t′)

]
{0}∪~η,~α

det
[
~φ(x, t) P(x, t)

]
~α,{0}∪~η

(1.43)

The sum
∑̃

~α has to be restricted to collections of indexes that are not related
by permutations. Now we can apply the generalized Cauchy-Binet formula,
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for products between determinats, obtaining:

ıG>(x, t, y, t′) = det

[
~φ(y, t′)†~φ(x, t) ~φ(y, t′)†P(x, t)

P(y, t′)~φ(x, t) P(y, t′)P(x, t)

]
{0}∪~η,{0}∪~η

= det
[
P(y, t′)P(x, t)

]
~η,~η

×
(
~φ(y, t′)†~φ(x, t)− [~φ(y, t′)†P(x, t)]1,~η [P(y, t′)P(x, t)]−1

~η,~η [P(y, t′)~φ(x, t)]~η,1

)
(1.44)

in which all the products, where not indicated, should be thought as in the
whole Hilbert space (eventually truncated).

Summary

The lesser and greater Green’s functions for an eingenstate η of the TG
hamiltonian of eq. 1.1 can be expressed as:

ıG<(x, t, y, t′) = det
[
P(x, t)P(y, t′)|~η~η

]
a<(x, t, y, t′) (1.45a)

ıG>(x, t, y, t′) = det
[
P(y, t′)P(x, t)|~η~η

]
a>(x, t, y, t′) (1.45b)

with

a<(x, t, y, t′) = ~φ(x, t)T~η [P(x, t)P(y, t′)]−1T |~η~η ~φ∗(y, t′)~η (1.46a)

a>(x, t, y, t′) = ~φ(y, t′)†~φ(x, t)− [~φ(y, t′)†P(x, t)]~η

[P(y, t′)P(x, t)]−1|~η~η [P(y, t′)~φ(x, t)]~η
(1.46b)

we have defined the single-particle eigenfunctions column-vector ~φ(x, t) =
[φ1(x, t), . . . , φM (x, t)]T , the signed overlap Plm(x, t) = δl,m −
2 e−ıt(el−em)

∫∞
x φl(x̄)φ∗m(x̄)dx̄ where εl is the eigenenergy corresponding

to the state φl(x). For fixed spatial and temporal coordinates all the prod-
ucts have to be intended in the whole single-particle Hilbert space and then
restricted to the states in ~η.

From the above expressions it is possible to recover the limit of non-
interacting fermions by setting sign(x − y) = 1, obtaining Pl,m(x, t) =
δl,m and so G<F (x, t, y, t′) = ı

∑
~η e

ıeit
′
φ∗i (y)φi(x)e−ıeit and G>F (x, t, y, t′) =

−ı
∑

~̄η e
ıeit
′
φ∗i (y)φi(x)e−ıeit that are the right single particle GFs for a gas

of N non interacting fermions in the states ~η [81].
Most importantly our expressions for the lesser Green’s function in

Eq. (1.45a) contains as a limiting case the result derived by Pezer and Buljan
in Ref. [18] and reviewed in sec. 1.1.1 for the single-particle density matrix
ρ(x, y) = −iG<(x, 0; y, 0). This is an important point, because the algorithm
to compute the density matrix in Ref. ( [18]) is still one of the most efficient,
and allowed to perform several studies on the properties of the TG. Therefore
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it is important to stress that, due to the formal analogy of our expression
for the lesser Green’s function with that in Ref. ( [18]), the computational
complexity for each given pair of times (t, t′) is nearly the same, except the
unavoidable sums on the whole single particle Hilbert space.

Another point to mention is that the requirement to truncate the whole
Hilbert space has to be done carefully, especially in the case of out-of-
equilibrium dynamics such as quantum quenches, where a change in the
Hamiltonian’s parameters might be in order. We also want to point out that,
although both the above expressions and their derivation refer to a many-
body state with N particles, they could be generalized to a grand-canonical
ensemble following for instance the derivation in Refs. [17, 28].

1.2 TG and fermionic gas in a quasiperiodic potential

1.2.1 Single particle problem

Let us consider the time independent Schrödinger equation for a particle in
an external potential:[

− ~2

2m

∂2

∂x2
+ Vext(x)

]
ψn(x) = enψn(x). (1.47)

In what follows, we will consider an external potential which describes a
bichromatic lattice,

Vext(x) = V1 sin2(k1x) + V2 sin2(k2x) . (1.48)

Although any irrational number would work as well, to be specific we will
take k1/k2 = (1 +

√
5)/2 = τ , the golden ratio, and assume V1 > V2. For

V2 = 0 and V1 ≥ 5ER it is possible to resort to the so called tight-binding
(TB) limit to approximately describe the system. Here ER = ~2k2

1/(2m) is
the recoil energy associated to the first potential, giving an estimation of
the energy at which the modulation V1 opens the first gap of width ∝ V1 in
the otherwise gapless free particle spectrum (for V1 = V2 = 0). The above
condition therefore ensures that all particles with energy E < ER do not have
enough energy to overcome the first gap and, therefore, that they are confined
in the lowest band of the potential. In this limit, the properties of the system
are dominated by the external potential and it is possible to rewrite the single
particle Hamiltonian in Eq. (1.47) in terms of states |i〉, localized around
the minima of the potential, whose wave functions wi(x) = 〈x|i〉 are the so
called Wannier functions. In the presence of the second potential V2 < V1,
and in the TB limit, the continuum model described by Eq. (1.47) can be
mapped into the so called Aubry-André model (AAM):

Ĥ = ∆
∑
j

cos(2πτj) |j〉〈j| − J

2

∑
j

(|j + 1〉〈j|+ |j〉〈j + 1|). (1.49)
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The first term on the r.h.s., proportional to ∆, accounts for the on-site
energy, whereas the second one, proportional to the hopping constant J , is
responsible for nearest-neighbor tunnelling between adjacent sites. Both ∆
and J depend upon the choice of the set of Wannier functions, which in turn
depend upon the first potential only if the condition V2 � V1 is satisfied.

The AAM has been widely studied from different points of view. For
what we are concerned here, it is worth recalling that the AAM shows a
delocalized-to-localized (or metal-to-insulator) transition at ∆/J = 1. This
point marks the change from a delocalized phase (∆/J < 1), in which all of
the eigenstates have an extended character with a corresponding absolutely
continuous spectrum, to a phase where all states are localized and the
spectrum is discrete [37]. As for the many-body properties of this system, it
has been predicted numerically and verified experimentally that bosons with
the addition of on-site interaction in the AAM enjoy a particularly rich phase
diagram, which includes a superfluid to Bose-glass transition at low filling,
and also a Mott insulator phase for higher filling and interaction strength.

In the continuum, outside the range of validity of the TB approximation,
it is known that the sharp delocalized-to-localized transition of the lowest
energy band transforms into a mobility edge, whose position in energy changes
with V2 [48, 49]. Our aim is to study in detail how this crossover from the
discrete to the continuum behavior occurs, and to show that signatures of this
transition are displayed in the many-body properties of both non-interacting
fermions and strongly-interacting bosons. We will therefore always work
with the continuous model of Eq. (1.47) and move from the discrete to the
continuous limits by changing the strength of the main potential V1. For
each set of parameters {V1, V2} we have numerically solved the eigenvalue
problem given by Eq. (1.47) via a fifth order Matrix Numerov Method [113],
considering systems with Ns = 100 lattice sites and total length k1L = 100π.

Mobility edge in the single particle problem In the discrete model,
all of the eigenfunctions of the Hamiltonian of Eq. (1.47) in the TB regime
are either extended or localized, depending on weather the value of V2 is
below or above a certain threshold value V t

2 . On the other hand, if V1 < 5ER
a Mobility Edge (ME) appears such that, for a fixed value of V2, states with
energy lower then the ME are localized whilst the others are delocalized [50].
The ME is found at higher energies for increasing V2. It is possible to obtain
an estimation of the localization threshold V t

2 by calculating explicitly ∆
and J of the AAM – as a function of V1 and V2 – and inverting the condition
∆/J = 1, by solving for V2.

From Eqs. (14) and (15) of ref. [38] and by fitting the free parameters in
those equations with our data, we obtain the following expression for V t

2 :

V t
2 = 2ER214.9752e

0.381966√
V1/ER1

−2.07
√
V1/ER1

(V1/ER1)0.98 (1.50)
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In the following we will use the rescaled quantity v2 = V2/V
t

2 in order to
compare systems with different V1 and V2. This guarantees that the transition
point in the TB limit always occurs at v2 = 1. However, it is important to
notice that the computation of V t

2 is meaningful only in the TB limit. As
we will also consider parameters for which the TB approximation does not
hold, then the value v2 = 1 will lose its importance and its role of transition
point. To quantitatively discuss the transition in the general case, we will

employ the Inverse Participation Ratio IPR(ψ) =
∫
|ψ(x)|4dx/

∫
|ψ(x)|22

dx
for the eigenfunctions of the first energy band of the Hamiltonian. This
quantity measures the inverse of the average spatial region occupied by the
eigenfunction. We will consider an eigenfunction to be localized if its IPR is
larger than 1/(5l) where l is the distance between two neighbor lattice sites.
Fig. 1.1 shows the number of localized states as a function of V2 for different
values of V1: in the TB regime (upper, red curve) the transition is sharp,
whereas in the continuum there is an ME, as witnessed by the plateau in Fig.
1.1, that correspond to the gaps opened by V2 inside the first energy band.
Moreover, as anticipated above, Fig. 1.1 shows that the estimation of the
transition point V t

2 given in Eq. (1.50) fails when the TB description does
not provide a good approximation (see, e.g. the lower curve, corresponding
to V1 = ER). We finally show in Fig. 1.2 the IPR of the ground state wave
function, normalized to one lattice length, together with the function itself
and its Fourier transform for various values of v2.

In the remainder of the chapter we will show how both the sharp transition,
occurring in the TB limit, and the appearance of the ME affect the many-
body properties of non-interacting spinless fermions and Tonks-Girardeau
bosons. It is known that the excitation spectrum of the Tonks-Girardeau
model is the same as that of non-interacting spinless fermions and that all
local quantities are the same for the two systems. On the other hand, non
local quantities, such as the momentum distribution, are different and reveal
the fermionic and bosonic nature of the two systems. More importantly, we
shall see that the different statistical nature of the two kind of particles also
shows up in the way the localization transition and the appearance of the
ME manifest themselves in the momentum distributions.

1.2.2 Fermions in a bichromatic lattice

In this section, we consider the effect of the ME of the single-particle spectrum
on the ground state properties of a system of N non-interacting fermions
loaded into the bichromatic lattice, and, more generally, discuss the signatures
of the transition from discrete to continuum, occurring as V1 is decreased.

The many-body wavefunction describing a system of N non-interacting
spinless fermions is given by a Slater determinant of single particle states
(see Eq. (1.3)). Below, we focus on the reduced single particle density matrix
(RSPDM), defined in eq. (1.6), whose knowledge is sufficient to evaluate the
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v

Figure 1.1: Number of localized states as a function of v2 for different values
of V1. An eigenfunction is considered to be localized if its IPR is greater
than 1/5l where l is the distance between two neighboring sites. For the
system considered here, 5l corresponds to the 5%of the whole lattice length
L.

expectation values of all single-particle operators, and its Fourier transform,
the momentum distribution (MD), defined in eq. (1.12), which is directly
measurable in cold atom experiments. For non interacting fermions, both
can be evaluated by using single particle wavefunctions only via eq. (1.14)
and eq. (1.15).

We analyze the TB limit first, where, interestingly enough, the MD offers
a signature of the localization transition inherited from the single particle
properties. On the delocalized side, the Fourier transform of each single
particle state displays peaks at the wave numbers k(m,n) = 2mk1 + 2nk2

with m,n ∈ Z, and the MD shows several Fermi-Dirac-like flat structures
due to the occupation of states with nearby momentum peaks. This is shown
in Fig. 1.3, where explicit reference to gases of N = 15 and N = 65 fermions
is made. In the delocalized region (v2 < 1), indeed, some nearly flat regions
appear in the MD. They are centered at different k(n,m)’s, and are due to
the fact that each single particle wavefuction contributes with at least two
momenta (but in general more, for higher energy states); these momenta
pile up in the total n(k) to give a sequence of nearby peaks forming these
Fermi-Dirac-like (almost) flat regions, whose width is proportional to the
number of particles.

On the other hand, again in the TB regime, but now in the localized
domain, the MD suddenly smoothens for v2 > 1, due to the fact that single
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Figure 1.2: (Top) Normalized IPR of the single particle ground state of the
system as a function of v2 for V1 = 8ER. (Bottom) Single particle ground
state and its Fourier Transform in the delocalized, critical and localized
regions corresponding to the values of v2 reported in red, green and cyan
colors, respectively, in the top figure.
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particle states are all localized, so that their Fourier transform flattens over
in momentum space. Before shifting our attention to the continuum case, it
is instructive to discuss the nature and origin of the structures that appear
at the edges of the flat regions. They are particularly well visible in the case
of N = 65. Conversely, for N = 15, they only show up as very small peaks,
whose height slightly increases with increasing v2 until the transition point
v2 = 1 is reached, where they disappear leaving structure-less bumps.

To understand why this happens, we recall that the addition of the second
potential leads to a fragmentation of the energy spectrum into sub-bands
separated by gaps whose width depends, at first order in a perturbation
analysis, on the amplitudes of the Fourier transform of the potential itself.
Furthermore, the sub-bands tend to flatten out as the potential is increased.
This implies that the density of states increases at the sub-band edges and
more particles can be accommodated there. As a result, the structures at
the edges of the flat regions become better and better defined as the number
of particles increases.

Figure 1.3: Momentum distribution n(k) as a function of v2 for a system of
non-interacting fermions with V1 = 8Er (TB limit). The two panels refer
to a different number of fermions: a) N=15 and b) N=65. Blue and red
curves are for v2 < 1 and v2 > 1 respectively.

In the continuum, namely V1 ≈ ER, the delocalized-to-localized transition
turns into the appearance of an ME. Indeed, Fig. 1.4 b) shows that it is
possible to observe structures in the MD of an N = 65 fermion gas at any
value of v2, and in particular well beyond the transition point v2 = 1, which
used to mark a sharp transition in the TB approximation. The persistence
of such structures is a signature of the existence of occupied single particle
states, which remain delocalized beyond v2 = 1.

However, this seems not to be the case if one looks at Fig. 1.4 a), where
n(k) is shown for N = 15 fermions, instead. Here, the structures of the MD
quickly disappear when increasing v2 beyond 1. In fact, as we considered a
smaller number of fermions in this case, less states are occupied, and all of
them become localized for v2 > 1 (giving rise to a quick smoothing of n(k)).
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The comparison between Fig. 1.4 a) and Fig. 1.4 b), therefore, shows that, in
the same band, there exist both localized single particle states (at low energy)
and delocalized ones (at higher energy), which is a clear manifestation of the
ME.

Figure 1.4: n(k) as a function of v2 for a system of non-interacting fermions
with V1 = Er. The same parameters and coloring as Fig. 1.3 is used. A
persistence of the edge-structures well beyond v2 = 1 is observed for N = 65,
but not for N = 15 as, for these parameters, the first 15 single particle
states remain below the ME.

In order to characterize quantitatively this phenomenon, we resort to
an approach already used in Ref. [114] to study the degree of delocalization
of phonon modes in quasi-crystalline structures. The idea behind it is to
evaluate the area under the MD peaks, in order to quantify the total power
spectrum coming from coherent sources, which in our case correspond to
delocalized single particle states. Because we would like to quantify the
presence of isolated peaks, as explained in Fig. 1.4, that manifests the
existence of the mobility edge, we have removed a continuous (”smooth”)
background from the MD and then we have evaluated the total area Id below
the edge-peaks. On the delocalized side (v2 < 1) Id increases as a function of
v2 due to the appearance of new peaks, induced in the single particle states
by the second potential, when the transition point is approached. Moreover,
for small numbers of fermions (N = 15) such an increase is approximately
linear, up until saturation is reached. This behavior stems from the fact
that only the lower energy eigenstates are occupied and, therefore, large
values of the second potential are needed to make them develop a spatial
structure, which involves more momenta. On the other hand, for N = 65,
saturation occurs well before, due to the fact that higher energy eigenstates
are occupied even at small values of v2, which contribute to n(k) with more
momenta and, therefore, more peaks.

When the localized eigenstates start to be occupied, Id decreases due to
the smoothing of the MD profile. In the TB-regime, Id suddenly goes to zero
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for v2 > 1, regardless of the number of fermions, as all of the eigenstates
suddenly localize. On the other hand, in the continuous limit with V1 ≈ Er,
we observe the appearance of an ME as Id decreases for v2 > 1 and reaches
a plateau (blue and yellow curves in Fig. 1.5 b). The plateau, in particular,
witness the ME moving through the band towards higher energies.

Figure 1.5: Area under the edge peaks, Id, for a) N = 15 and b) N = 65
fermions.

1.2.3 Tonks-Girardeau gas in a bichromatic lattice

In Sec.1.2.2 we have seen that signatures of the ME appear in the momentum
distribution of the the RSPDM of a many-body system of spinless fermions.
In this section we look at a strongly-interacting boson gas (i.e., the Tonks-
Girardeau gas), whose ground state properties can be related to the fermionic
ones via the prescription outlined in Sec.1.1.

The many body spectrum of a hard-core boson system is, in fact, the
same as that of the noninteracting fermion gas, loaded into the same optical
potential V (x). Moreover, it is possible to show that the mapping from hard-
core bosons to non-interacting fermions leaves all local quantities unchanged;
for instance, given the many-body wavefunction for N hard-core bosons,
the density of bosons is the same as that of N non interacting fermions.
Conversely, non-local properties, such as correlation functions, are different
in the two cases. For this reason we expect the MD, which is derived from
the off-diagonal entries of the RSPDM, to be markedly different from that
observed in Sec.1.2.2, because of the presence of spatial coherences, typical
of a boson gas.

In Ref. [18], it has been shown that the RSPDM and the momentum
distribution of N hard-core bosons can be obtained by the single particle
eigenstates of the equivalent non-interacting fermion problem (see Sec. 1.1.1
and eqs. (1.9) (1.12))

As expected, the bosonic MD is markedly different from that of the non-
interacting fermion case. Due to their bosonic nature, at zero temperature
the particles would tend to occupy the single particle modes with lowest
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energy. On the other hand, due to the very strong repulsion between two
bosons in states with a large spatial overlap, particles tend to occupy states in
such a way as to lower their overlap. The interplay between these two effects
is the key mechanism that explains the behavior of the MD for strongly
interacting bosons, which we will now analyze.

Figure 1.6: Momentum distribution n(k) as a function of v2 for a system
of strongly-interacting bosons with V1 = 8Er (TB limit). Different figures
refer to a different number of bosons: a) N=15 and b) N=65. Blue and red
curves are for v2 < 1 and v2 > 1 respectively.

Figure 1.7: Momentum distribution n(k) as a function of v2 for a system of
strongly-interacting bosons with V1 = Er. The two figures are drawn for:
a) N=15, and b) N=65 bosons in the lattice. Blue and red curves are for
v2 < 1 and v2 > 1 respectively.

On the delocalized side v2 < 1, the sharp peaks of the noninteracting
fermion case are replaced by broad peaks centered at specific momenta of
the form k(m,n) = 2mk1 + 2nk2, induced by the trapping potential.

Indeed, as stated above, bosons would want to occupy a low energy mode,
but not all of them can occupy the same one, as this would lead to a large
overlap between their wavefunctions and, therefore, to an increase of the
total energy. This effect is taken into account by the presence of the factors
Aij in the RSPD matrix, as built from single particle eigenfunctions in Eq.
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(1.9). Such a behavior gets more and more pronounced with increasing the
number of bosons, as witnessed by panel a) and b) in Fig. 1.6, where we
display the MD for V1 = 8Er in a system of N = 15 and N = 65 bosons as a
function of v2. In the first case (Fig. 1.6 a), N = 15), two new peaks appear
as the second potential is switched on, which are very well pronounced and
persist up until the transition point v2 = 1 is reached. For v2 > 1, instead,
the peaks broaden, n(k) smoothen out and any structure is lost.

In the second case (Fig. 1.6 b), N = 65), the two peaks emerge from an
already large background, which is due to the large number of bosons in the
system that tend to occupy more states. This implies that the tails of the
main peaks, due to the main potential V1, are quite high. Notwithstanding
the fact that they are immersed in these tails, they are still visible, therefore
witnessing the spatial coherence of delocalized modes.

When moving away from the TB regime, as for the fermionic gas, we
find that the presence of the single particle mobility edge is reflected into the
bosonic MD: in Fig. 1.7b, which shows the MD for 65 bosons, the two main
peaks described above persist at high value of v2, witnessing the coexistence
of localized and delocalized single particle states. In Fig. 1.7a for N = 15,
peaks due to the delocalized levels are shown to survive slightly beyond the
threshold, being rapidly washed out as the ME quickly moves above the
occupied states with increasing v2. For a larger number of bosons, instead,
the peaks are still clearly visible even for larger amplitudes of the second
potential.

To better highlight such structures, we performed a peak-area analysis,
similar to that discussed for fermions (Fig. 1.8).

The discrete part of the bosonic MD, as quantified by the parameter Id,
differently from the fermionic case, monotonically decreases with v2, as the
peak broadening due to the localization gives a more pronounced effect than
the tendency of the bosons to create new structures. A comparison with the
corresponding picture for the fermion case, Fig. 1.5, shows that, for fermions,
it was exactly the other way around.

Coming back to the interacting boson case, Fig. 1.8a shows that, for a
small number of particles, Id quickly decays to zero near v2 = 1 because of the
sudden transition of the whole range of occupied single particle states. On the
other hand, for a larger number of particle, N = 65 in Fig. 1.8b, the behavior
of the tight-binding versus the continuum regime is different. While the
transition in the former is always sudden (red line in Fig. 1.8b), independently
of the particles number, the presence of ME in the latter implies a smooth
decrease of Id (see, e.g. the blue line in Fig. 1.8b, which reaches zero only
for v2 > 3), meaning, once again, that high energy delocalized single particle
states are still populated when the low energy ones are localized.

Unlike the non-interacting fermion case, where the occupancy of each
natural orbital was either 0 or 1, here it is meaningful to look at their
distribution and at the entropy of the RSPDM given by S(ρB) = −

∑
i λi lnλi.
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Figure 1.8: Area under the discrete peaks, Id, as a function of v2 for various
values of V1, and for a) N = 15 and b) N = 65 bosons.

For N strongly interacting bosons at the absolute zero, we should not always
expect that the first N energy levels are occupied, and, correspondingly,
S(ρB) 6= lnN . However, we expect the entropy to reach such a value in

Figure 1.9: Entropy of the RSPDM for (top) N = 15 and (bottom) N = 65
bosons in the Tonks-Girardeau regime.

the localized phase, where i) the eigenstates are exponentially localized in
space and, therefore, the strong interaction forbids more than one boson to
occupy an energy level, and ii) there is a one-to-one correspondence between
energy eigenfuntions and natural orbitals. As a result, the occupancy of the
first N natural orbitals is 1, as for fermions, the non-zero eigenvalues are all
equal to 1/N and the entropy is lnN . On the other hand, in the delocalised
phase, the occupation of natural orbitals changes, with λi decreasing almost-
exponentially with i, and the entropy can take on an arbitrary value S(ρB) >
0; e. g. S(ρB) = lnNocc if Nocc natural orbitals are equally occupied. For
weakly interacting bosons at zero temperature, in the superfluid phase, we
have S(ρB)� lnN because they all tend to occupy the same energy level.
As the interaction is increased (but always remaining within the superfluid
phase), we expect bosons to spread in the Hilbert space, resulting in the
occupancy of other natural orbitals, allowing for a more dilute distribution.
This, in turn, leads to S(ρB) > lnN . In Fig. 1.9 we show the entropy
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S(ρB)/ lnN as a function of v2 and for different values of the main potential
strength V1 going from the TB to the continuum limits, for the cases of
N = 15 [Fig. 1.9 a)], and N = 65 bosons [Fig. 1.9 b)]. It can be seen
that, as expected, deep in the localized phase v2 > 1, the entropy tends
to lnN , showing that bosons tend to occupy one natural orbital each. It
is interesting to compare the behavior of the entropy for v2 < 1 for low
and large numbers of Bosons. In the first case (N = 15), the entropy is
smaller than lnN away from the transition point v2 ≈ 1, while it exceeds
this value around it. In the second case (N = 65), the entropy exceeds
lnN even in the delocalized phase for V1 � Er (TB limit). In this limit,
indeed, the eigenfunctions are delocalized across the whole system, but their
amplitudes show an increase around the minima of the main potential (i.e.
V1). Therefore two bosons residing in the same single particle eigenfuction
would both be localized around the minima; as the interaction increases they
naturally tend to occupy other excited states in order to reduce the average
overlap of their wavefunctions. This is why they would tend to occupy more
eigenstates, resulting in a number of occupied natural orbitals larger than N .
On the other hand, as the system is brought in the continuous limit (e.g.,
for V1 ≈ Er), bosons are allowed to also occupy regions between the minima
of the potential, and therefore the above effect is less important and the
entropy drops below lnN .

Furthermore we can see that the entropy signals the presence of the ME.
To see this we again compare the two cases N = 15 and N = 65 for V1 = Er
(blue circles in Fig. 1.9). In the first case, the entropy rapidly reaches the
asymptotic value lnN , showing the fermion-like behavior of bosons which
occupy one natural orbital each. Conversely, for N = 65 the asymptotic
value is attained for higher values of v2, showing that some delocalized states
are occupied.

Figure 1.10: Fraction of particles in the most largely occupied natural
orbital, given by NλMAX for a) N = 15 and b) N = 65 bosons in the
Tonks-Girardeau regime.

We can also consider the behavior of the largest eigenvalue λk of the
RSPDM (Fig. 1.10). As expected, in the localized phase it asymptotically
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goes to 1/N (as all the first N eigenvalues do), whereas, in the delocalized
region, it becomes larger. Once again, the presence of the ME in the
continuum is witnessed by the fact that λk decays less rapidly as a function
of v2 (blue circles in Fig. 1.8 b)).

1.3 Spectral Function in a lattice

In this section, we exploit to study of the properties of the spectral function for
the Tonks-Girardeau gas immersed in a periodic lattice, for different system
parameters, and compare it with analytical prediction of its asymptotic
behavior. In order to perform this analysis, we implement a numerical
calculation of the single particle Green’s function based on eqs. (1.45a) and
(1.45b).

In what follows we will focus on the case of TG bosons on a lattice of
L = 256 sites, with N particles at T = 0 and therefore only the first N
single-particle fermionic eigenstates are filled. The Hamiltonian of the system
is

Ĥ = −J
2

L∑
i=1

b̂ib̂i+1 + h.c. (1.51)

and the effect of the interaction is accounted via the mapping into non-
interacting fermions. We consider open boundary conditions.

1.3.1 Analysis of the spectral properties

We are now in a position to study the spectral function of a TG gas on a
lattice given by eq. (1.24), using the expressions for the Green’s functions
that we have determined in eqs. (1.45a) and (1.45b) . One example is shown
in Fig. 1.11 for a system with N = 64 particles and where εF is the Fermi
energy of the corresponding Fermi gas. While the spectral function for non-
interacting fermions is A(k, ω) = δ(ω − ξ(k)), the one for interacting bosons
is very different and displays a more complex structure. The ω − eF ≥ (≤)0
part of A(k, ω) comes from the greater (lesser) Green’s function.

Following the discussion of Lieb and Liniger in Ref. [15] for the homo-
geneous TG, we have identified the single-particle processes, shown in Fig.
1.12, contributing to the limiting curves in Fig. 1.11. The green solid lines in
Fig. 1.11 (e1(k)), called particle-like excitation, correspond to the process of
exciting a particle from the highest occupied state, with momentum kF , to a
generic non-occupied state with momentum kF + q (Fig. 1.12a); the pink
solid line in Fig. 1.11 (e2(k)), called hole-like excitation, correspond to the
process of exciting a particle from a generic occupied state with momentum
kF − q + 2π/L to the first non-occupied state with momentum kF + 2π/L
(Fig. 1.12b). This two curves are analogous to the ones predicted by Lieb
and Liniger [15] for a homogeneous TG gas. In addition to these two curves,
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Figure 1.11: Spectral function of TG gas with 256 sites and nF = 64 on
a lattice. Purple, green and yellow lines are respectively e1(k), e2(k) and
e3(k), that correspond to the elementary processes depicted in Fig. 1.12
and non-analyticities of the SF. It has support outside of the region between
±e2(k) and show power law behaviour in the vicinity of the elementary
curves. In order to clearly see the effect of the lattice, in the bottom-left
of the picture a different color scale has been chosen, as expressed by the
different legend.

Figure 1.12: Elementary processes corresponding to limiting lines in Fig.
1.11. From left to right e1(k), e2(k), e3(k)

we can appreciate a third one (e3(k)) generated by the symmetric excitation
of a particle from an occupied state at momentum k to a free one with
momentum π/a−k (Fig. 1.12c) and corresponding to the yellow curve in Fig.
1.11. This process is a clear signature of the presence of the lattice with the
consequent flattening of the single particle dispersion relation at k ∼ ±π/a
(ξ(k) = −2J cos(ka)) and which has no analogue in the homogeneous case.
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Figure 1.13: a) Cut of the SF of TG gas in a lattice (Fig. 1.11) for
k = 1.0. It shows power law behaviour in the vicinity of each depicted line
(±e1(k), ±e2(k)). b) and c) show the power law exponent behaviour as a
function of k for ω− eF → −e−2 (k) b) and ω− eF → e+

1 (k) c) . The red and
green band (solid lines) correspond to the power law exponents for the TG
on a lattice while the blue bands (dashed lines) corresponds in both figures
to the same coefficient for the SF of the TG in a homogeneous system.

Alike in the homogeneous system, it vanishes in the regions |ω − eF | <
e2(k). This condition can be derived from the non-linear Luttinger liquid
theory [72]. Moreover, it shows power-law divergent singularity at ω −
eF = −e2(k) and converging non-analyticity at ω − eF = e2(k). Other
singularities (or non analyticities) occur at ±e1(k) and are a manifestation of
the integrability of the delta-like interaction model [14,15,72]. This behavior
can be appreciated in the cut at fixed k of the spectral function shown in
Fig. 1.13a).

It is remarkable that these features, first predicted for a homogeneous
system in the absence of external potential, persist also in the case of a
lattice, and therefore can in principle be observed in current state of the art
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experiments.
A third set of curves where the spectral function seems to show a non-

analytic behavior is ±e3(k). Once again this is peculiar of the presence of
the lattice.
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Figure 1.14: Cut of the SF of TG gas in a lattice (Fig. 1.11) for k = 2.71 in
the vicinity of e3(k). Vertical lines correspond to e1(k) and e3(k). It shows
a peak at ω − eF = e3(k)

Because of the presence of the lattice, with the consequent boundedness of
the single-particle energy spectrum, the maximum allowed energy exchange
corresponds to moving a particle from the bottom to the top of the band.
This implies that in a non-interacting or weak-interacting system the SF
should vanish for |ω − eF | > 4J . Here, interestingly, it does not happen, as
you can see in fig. 1.14, because the strong interaction, embodied in the
mapping, changes this simple single-particle scenario giving rise to a finite
probability for excitations with ω − eF > 4J .

1.3.2 Power-law of the spectral function

The behaviour of the spectral function near the non-analyticities has been
extensively studied in Ref. [69–72] where a power-law behavior of the form
A(ω, k(ω)) ∝ ω−µ has been predicted for the Lieb-Liniger model with ex-
ponents depending upon the Luttinger parameter. Our results allow us to
observe the predicted power-law behaviour near the limiting curves of the
spectral function shown in Fig. 1.11.

We can therefore extract the exponents of the power-law in the presence
of the lattice, and compare them with those of a homogeneous system, by
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sending the lattice spacing to zero, with the prediction in Ref. [72]. In
practice, we considered a system with plane waves and with a dispersion
relation of the form ω ∝ k2, which is typical of free-particles.

The results are shown in Fig. 1.13 b) and c). We can see that there are
large fluctuations in the value of the exponent due to the closeness of different
non-analyticities, expecially at small momenta. Nevertheless the power-law
exponent both with and without the lattice are close for k ∼ kF , where the
single-particle dispersion relation for the lattice is well approximated by a
quadratic one (free-particle). This is true for both non-analiticities.

1.4 Conclusions

In this chapter we have studied the TG gas in periodic and quasiperiodic
potentials.

In sec. 1.1 we have reviewed the mapping of the many-body wavefunction
of the TG gas into that of a non-interacting Fermi gas, and extended it in
order to calculate the single particle Green’s function in the time domain.
They allow to recover the equal time quantities, such as density (RSPDM)
and momentum distribution (MD), but also to calculate the spectral function
(SF), which contains informations about the elementary excitations of the
system.

In sec. 1.2 we have studied the many-body ground state properties of
a system of non-interacting fermions and strongly interacting bosons in a
one-dimensional bichromatic potential. In the tight-binding regime, we have
seen that signatures of the transition are clearly manifested in the many-body
properties of both systems. Similarly, the presence of a mobility edge in the
continuum changes the many-body properties of the ground state, as shown
by comparing the momentum distribution for different numbers of particles
in the system. If the number of particles is such that only levels below the
mobility edge are filled, then the behavior of the system is similar to that in
the tight-binding regime, as all occupied states suddenly localize. On the
other hand, an increase in the number of particles results in the mobility
edge crossing the region of the occupied states as the second potential is
varied. This is clearly visible in the momentum distribution of the system
and in the entropy of the reduced single particle density matrix. Moreover
in the case of bosons, we have shown that the interaction plays a key role in
the localization properties of the system.

Because our expressions for the lesser and greater Green’s functions,
presented in sec. 1.1, allow a tractable numerical approach to study the
dynamics of the TG gas, we have studied in sec. 1.3 the spectral function
of a TG gas in a lattice and discussed some of its features. Specifically
we compared our results with previous predictions on the behavior of the
spectral function and its non-analiticities for a homogeneous TG, and we
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showed new features introduced by the presence of the lattice.



2
Orthogonality catastrophe and Fano

resonances of a Fermi gas in a periodic
potential

Chi va dicendo in giro che odio il mio lavoro
non sa con quanto amore mi dedico al tritolo,

è quasi indipendente ancora poche ore
poi gli darò la voce, il detonatore.

– Fabrizio De André, Il bombarolo

We explore the post-quench (time-resolved) dynamics of an ultra-cold
atomic gas of fermions, trapped in a finite-size periodic potential, due to the
suddenly switched-on interaction with an embedded two-level atom, excited
by a fast pulse. Specifically, we look at the Loschmidt echo as a figure of
merit for the response of the system and its long-time behavior, which we
characterize by two complementary strategies based on the calculation of
the probability amplitude that the gas retrieves its pre-quench state, namely
the vacuum persistence amplitude. Accordingly, we first use a functional
determinant approach, which gives an exact numerical solution for the vacuum
persistence amplitude, via the Levitov formula. Then, we comparatively
consider a diagrammatic perturbation approach, which employs a linked
cluster expansion of the vacuum persistence amplitude, truncated to the
lowest three orders. We begin by considering the gas in the metal phase,
with its Fermi energy well below the upper edge of its lowest lying, valence
band. In this context, we show that the second-order of the linked cluster

44
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expansion well captures the long-time tail of the echo and its power-law
behavior, being consistent with the Mahan-Noziéres-De Dominicis theory of
a sudden interaction quench, weakly probing a free electron gas. The power
law is a signature of the Anderson Orthogonality Catastrophe. Introduced
in order to explain X-ray spectra by Hopfield and Anderson in 1967 [84], it
accounts for the fact that the overlap of the ground state of a metal, after
the creation of a core hole, with the unperturbed one tends to zero in the
thermodynamic limit, as a negative power law of the system size (N−α), even
if the single particle wavefunctions are only slightly modified by the external
perturbation. Mahan, Nozieres and de Dominicis [87, 88, 115] developed
the dynamical theory that leads to the power law behavior in time of the
Loschmidt echo, as explained for our case in appendix 2.A.

Additionally we derive an expression for the critical exponent of the power-
law decay of the metal gas and we show that it is in excellent agreement
with a numerical fit obtained from the functional-determinant approach.
We further show that the second-order approximation may even reasonably
describe the blockade of echo decay for sufficiently weak quenches, due to the
confinement of the metal gas to a finite spatial region. As the perturbation
with impurity atoms gets stronger, the third-order contribution to the linked
cluster expansion comes into play, accounting for particle-hole recombination
processes that may have a long lifetime in the presence of a large energy
gap, between the valence and first excited, conduction bands, i.e., in the
tight-binding regime. Then, we move to the more fascinating scenario where
the Fermi energy lies at (or above) the upper edge of the valence band,
and the orthogonality catastrophe mechanism is suppressed with the gas
approaching the band insulator regime. In this case, the response of the
system is dominated by oscillations of increasing amplitude as the number
of particles in the gas tend to completely fill the valence band. These modes,
detected in the functional determinant approach, may be interpreted as Fano-
like resonances yielding a characteristic peak pattern in the frequency-domain
representation of the vacuum persistence amplitude, or, in the language of
quantum thermodynamics, in the distribution of work. We provide evidence
that this behavior is a clear manifestation of third-order effects in linked
cluster expansion, which do not simply act to correct or renormalize the
second-order approximation, but sheds new light on the physics of the
Anderson Ortogonality Catastrophe.

2.1 Sudden quench in a trapped Fermi Gas

We consider a (monoatomic) gas of noninteracting cold fermions trapped in
an optical lattice, having the form of an infinitely deep potential well of size
L, which contains an oscillating, sin-squared potential U(x) = U0 sin2(kx)
of depth U0 and characteristic wavelength 2π/k. The atoms in the trap are
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described by the second-quantized (unperturbed) Hamiltonian

Ĥ0 =

∫
dx Ψ̂†(x)h0(x)Ψ̂(x), h0(x) = −1

2

d2

dx2
+ U(x), (2.1)

here expressed in units of the atomic mass of the gas and the reduced
Planck’s constant (~ = 1, m = 1), where Ψ̂(x) denotes the fermion field in
real space. The properties of Ĥ0 depend on the population the spectrum of
its single-particle equivalent ĥ0, of coordinate representation h0(x), which we
diagonalized by a standard discretization technique on uniform space grids of
104 points 1 , to obtain the single-particle eigenstates |n〉 and corresponding
eigenvalues εn. In doing so, we considered a sufficiently large potential well
of length L = 500 and an optical wavenumber k = π, to have the minima
of the lattice potential at integer coordinates and a total number of lattice
sites Ns = L.

In the context of ultracold gases, an important role is played by the
so-called recoil energy Er = k2/2, which represents the smallest kinetic
energy transferred by the optical lattice to the trapped atoms. The interplay
between the kinetic and potential energies establishes the limits of validity
of the TB approximation. In particular, the ratio of the potential amplitude
U0 to the recoil energy is commonly used to define a lower threshold for this
approximation, safely set at U∗0 /Er = 4. Indeed, the origin of the distinction
between the TB and non-TB (or CNT) regimes has to be sought in the
spectrum of the single-particle Hamiltonian, which we will always assume,
without loss of generality, to be populated in its lowest lying band at zero
temperature. Then, the size of the first band gap, compared to the bandwidth
of the first band, gives a good control of the difference between the TB and
CNT cases, as shown in Fig. 2.1. In the TB regime, the first band gap is
typically several order of magnitude larger than the first bandwidth [U0 > U∗0 ,
Fig. 2.1(a)], therefore exponentially suppressing the population of the second
band at low temperatures. On the other hand, in the CNT regime, the first
band gap is of the same order as or smaller than the first bandwidth [U0 < U∗0 ,
Fig. 2.1(b)], thus allowing the second band at least to come into play in the
system’s dynamics.

In the following we will not resort to the TB limit, but we will rather
explore the range of parameters where the TB approximation is usually
applied. Henceforth, we will cutoff our analysis to the lowest four bands, and
we will reference to the TB limit when the condition U0 > U∗0 is satisfied.

1Altough the one-dimensional Schrödinger equation h0(x) 〈x|n|x|n〉 = εn 〈x|n|x|n〉,
admits an analytic solution in terms of the Mathieu functions, we solved it by numerical
diagonalization on a uniform space grid, using an MPI-parallelized Fortran 90 code,
implemented via the (GNU) ScaLAPACK libraries. We adopted a simple central-difference
scheme, which we carefully checked to produce well-converged results within the range of
parameters explored in our study. More specifically, we used the solution of the harmonic
oscillator as a benchmark to test our code, obtaining an excellent agreement with the
analytical solution, for the lowest lying ∼1000 eigenfunctions and eigenenergies.
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Figure 2.1: Band dispersions of a Fermi gas in the sin-squared lattice
potential introduced in the text, with characteristic wavenumber k = π,
confined to a size L = 500. The eiegnvalues εn of h0(x) [Eq.(2.1)] are
plotted vs the eigennumber n for (a) U0 = 12Er and (b) U0 = Er. In (a),
the ratio between the first band gap and the first bandwidth is ∼106 (TB
regime), whereas, in (b), the same quantity takes a value of ∼0.65 (CNT
regime).

We now consider that an impurity atom of different species is immersed
in our atomic gas. It has two active internal states, denoted |g〉, |e〉, and
free Hamiltonian ĥI =

∑
i=e,g εi |i〉 〈i|. The mass of the impurity is generally

selected to be much larger than the atomic mass of the gas, which can be
achieved using a species-selective dipole potential with a very large frequency
compared to the characteristic frequency of the trap that contains the gas.
Then, the impurity motion is essentially frozen, meaning that the impurity
is localized in space (infinite mass limit). We may further assume that the
impurity interacts with the gas only when it lies in the excited state |e〉,
with a coupling strength V0, which can be tuned by means of a Feshbach
resonance. The Hamiltonian of the composite (gas+impurity) system is given
by: Ĥ = Ĥ0 + ĥI + V̂ ⊗ |e〉 〈e|.

At t < 0 the impurity lies in its ground, non-interacting state |g〉, with
the fermions in their equilibrium configuration set by Ĥ0. Then it is abruptly
excited to its interacting state |e〉, say, by a fast pulse at the time t = 0. The
gas effectively feels a sudden localized perturbation, of the form v(x, t) =
v(x)Θ(t), with Θ being the Heaviside step-function. We work in a range of
temperatures where the gas is enough diluted to let us retain only the s-wave
scattering component of the space potential v(x), which may be taken to
have the delta-function, structureless form v(x) = V0k

−1δ(x− x0) due to the
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extreme localization of the impurity atom. Thus, the impurity perturbation
operator reads

V̂ = V0k
−1Ψ̂†(x0)Ψ̂(x0), t > 0, (2.2)

and the coupling matrix elements between two eigenstates of ĥ0 are given by

Vn′n = V0k
−1〈n′|x0〉〈x0|n〉. (2.3)

To simplify the computational burden, we let the position of the impurity
atom x0 to coincide with a minimum of the lattice potential, at the center of
the trap. In this case, only the single-particle wavefunctions 〈x|n〉 with even
parity symmetry, relative to x0, experience the interaction with the impurity,
whereas 〈x0|n〉 = 0 for odd integer eigennumbers. To further proceed, we
express the fermion field in terms of the annihilation operator ĉn for the state
|n〉, using Ψ̂(x) =

∑
n〈x|n〉ĉn. Then, the unperturbed Hamiltonian results in

Ĥ0 =
∑
n

εnĉ
†
nĉn, (2.4)

the particle number operator reads N̂ =
∑

n ĉ
†
nĉn, and the effect of the

perturbation on the gas has the form

V̂ =
∑
n,n′

Vnn′ ĉ
†
nĉn′ , t > 0. (2.5)

An interesting feature of the just introduced implementation of the sudden
quench, as opposed to a simply switch on of a blue detuned delta-like potential
at x = x0, is the possibility of reconstructing the many-body response of
the Fermi gas by measuring the Ramsey signal of the two-level atom. Such
a scheme, proposed in Refs. [76, 77], has also been realized experimentally
using a mixture of different atomic species such as, 40K/41K or 173Yb/174Yb,
immersed into 6Li [116].

2.2 Loschmidt Echo

The above addressed protocol allows for a direct probing of the many-body
dynamics of the Fermi gas, via its response to the sudden excitation of the
impurity. A comprehensive characterization of this phenomenon is provided
by the Loschmidt echo, which, in the present context, may be defined as

Lβ(t) = |νβ(t)|2, t > 0, (2.6)

where
νβ(t) =

〈
eiĤ0te−iĤt

〉
β

Ĥ = Ĥ0 + V̂ (2.7)

represents the probability amplitude for the gas to return to its initial
equilibrium state after the switching on of the perturbation, at a time t > 0
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and inverse temperature β. In other words, the echo is a measure of the
stiffness of the gas to the sudden perturbation [44,76,77].

Eq. (2.7) introduces a decoherence factor for the probing impurity that
controls the dynamical response of a many-particle system, and is usually
referred to as the vacuum persistence amplitude, with 〈· · ·〉β = Tr[· · ·ρ̂0]
denoting the grand canonical average on the unperturbed density operator

ρ̂0 = e−β(Ĥ0−µN̂)

Tr[e−β(Ĥ0−µN̂)]
, at inverse temperature β and chemical potential µ. 2

Its Fourier transform coincides with the absorption spectrum of the sys-
tem [77], while, conventionally, the Fourier transform of its complex conjugate
denotes the distribution of work in the context of quantum thermodynamics
[78]. These two relations are briefly recalled in sec. 2.2.1.

As mentioned in the introductory section, we used two techniques to
calculate Lβ(t), namely, the FD approach by Levitov [82, 83], providing
a formally exact (and computationally affordable) result for νβ(t), and a
many-body perturbation approach, introduced in Ref. [77], which relies on
the LCE of νβ(t) in connected Feynman diagrams. The comparative use of
the two approaches gives an extended insight into the different processes,
contributing to the global behavior of the system, and allows access to its
many-body spectrum.

2.2.1 Relationship with absorption spectrum and work dis-
tribution

The frequency-domain representation of the vacuum persistence amplitude
νβ(t), defined via eq. (2.7), is given by the Fourier transform

ν̃β(ω) =

∫ ∞
−∞

dt

2π
νβ(t)eiωt, (2.8)

which may be readily interpreted as the absorption spectrum of the Fermi
gas due to the suddenly switched-on impurity potential [77].

Its relation to the Loschmidt echo is established by eq. (2.6).
An important feature of the Loschmidt echo is its relation with the

so-called distribution of the work, defined as [78]:

Pβ(ω) =
∑
i,f

PiRf |iδ(ω + Ei − Ẽf ). (2.9)

Here, Pi is the initial population of the many-body eigenstate |Ψi〉 of the

unperturbed Hamiltonian Ĥ0, with energy Ei, and Rf |i = |
〈

Ψ̃f |Ψi

∣∣∣Ψ̃f |Ψi

〉
|2

2To calculate the chemical potential for a fixed number of particles 〈nF 〉 and for a
finite β, we choose a high energy cut-off for the chemical potential µ∞ and we evaluate
iteratively a temporary number of particles nt =

∑
i[1 + eβ(εn−µ∞)]−1 by increasing or

decreasing µ∞ of an arbitrary small amount δµ. When the difference between temporary
and fixed number of particle reaches an imposed small error |nt − 〈nF 〉| ' 10−14, we stop
the process and we end up with µ(nF , β)
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is the conditional probability for the system to be found in the eigenstate∣∣∣Ψ̃f

〉
of the perturbed Hamiltonian Ĥ [Eq. (2.7)], with energy Ẽf . Eq. (2.9)

explores the non-equilibrium thermodynamics of the system, being at the
same time closely related to the vacuum persistence amplitude, via [76–78,117]

ν∗β(t) =

∫
dωPβ(ω)eiωt, (2.10)

which makes the dynamic content of the work distribution equivalent to that
of the absorption spectrum

Lβ(t) =

∣∣∣∣∫ dωPβ(ω)eiωt
∣∣∣∣2 . (2.11)

2.2.2 Functional Determinant Approach

The Levitov FD approach gives an exact numerical solution for the vacuum
persistence amplitude, reducing the gand-canonical average in Eq. (2.7) to a
sum of single-particle determinants, in virtue of the general relation [82,83]:〈

eX̂it . . . eX̂N t
〉
β

= Det
[
n̂− + n̂+e

x̂it . . . ex̂N t
]
. (2.12)

Here, the X̂i’s are one-body operators, each of them being associated with

a single-particle representative x̂i, and n̂± =
[
1 + e±β(ĥ0−µ)

]−1
may be

interpreted as a first-quantized particle-hole operator, whose eigenvalues
coincide with the particle-hole occupations f±n = [1 + e±β(εn−µ)]−1.

By Eq. (2.12), the two exponential operators in Eq. (2.7) are, respec-

tively, mapped to e−iĥ0t and eiĥt, where ĥ is the perturbed single-particle
hamiltonian, of coordinate representation h(x) = h0(x) + v(x), associated
with Ĥ. Accordingly, we obtain

νβ(t) = Det
[
n̂− + n̂+e

−iĥ0teiĥt
]
. (2.13)

To implement Eq. (2.13), we computed the perturbed eigensystem (|ñ〉,εñ)
of ĥ with the same discretization scheme used for the unperturbed eigensystem
(|n〉,εn) of ĥ0. Then, we calculated the change-of-basis matrix elements
〈n|ñ〉 and obtained the vacuum persistence amplitude as the single-particle
determinant

νβ(t) = Det [Sβ(t)] , where (2.14)

[Sβ(t)]nn′ = f−n δnn′ +
∑
ñ

f+
n e

iεnt〈n|ñ〉e−iεñt〈ñ|n′〉.

Working with sufficiently small impurity perturbations, being such that
V0k

−1/U0 = 10−1-10−3, we used the one-to-one correspondence between the
unperturbed bands of ĥ0 and the perturbed bands and ĥ to truncate the
matrix elements in Eq. (2.14) to the lowest four bands, which we verified to
produce well converged results.
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2.2.3 Linked Cluster Expansion Approach

As it is customary in diagrammatic perturbation theory, we can introduce

the perturbation operator Ṽ (t) = eiĤ0tV̂ e−iĤ0t to transform Eq. (2.7) in the
interaction picture, obtaining

νβ(t) =
〈
T e−i

∫ t
0 dτṼ (τ)

〉
β
, (2.15)

where T is the Dyson time-ordered operator.
Then, we can invoke the LCE theorem [118,119] (see also Appendix 2.A

for a brief recall of its derivation), which amounts to reducing the grand-
canonical average of the time-ordered exponential operator in Eq. (2.15) to
an exponential sum of connected Feynman diagrams

νβ(t) = e

∞∑
l=1

Λβl (t)
. (2.16)

Here, Λβl (t) denotes the l-vertex loop

Λβl (t) =
(−1)l

l!

∑
n1,...,nl

∫ t

0
dt1. . .

∫ t

0
dtlG

0
n1

(t1 − t2) (2.17)

× Vn1n2G
0
n2

(t2 − t3)Vn2n3 . . . G
0
nl

(tl − t1)Vnln1 ,

connected by the unperturbed single-particle propagators

G0
n(t) = −i

〈
T ĉn(t)ĉ†n(0)

〉
β

= −i
[
Θ(t)f−n −Θ(−t)f+

n

]
e−iεntδnn′ . (2.18)

In the following, we extend the results from previous studies [77,78], where
a more simple form of the trapping potential was adopted, and provide an
analysis of the lowest three orders of the LCE, reported in Appendices 2.A.1
and 2.A.2. To implement this part, we separately computed the explicit
expressions for Λβ

1 (t) [Eq. (2.31)], Λβ
2 (t) [Eq. (2.33)] and Λβ

3 (t) [Eq. (2.47)]

with the unperturbed eigensystem (|n〉,εn) of ĥ0. In doing so, we truncated
the unperturbed spectrum to the lowest four bands, which we verified to be
a well-converged approximation.

2.3 Long-time dynamics and finite-size effects in the
metal phase

We consider the gas to be in a metal phase, with the chemical potential
(Fermi level at zero temperature) positioned well below the upper edge of its
lowest lying (valence) band. In the limiting case of an infinitely extended
trap, the decay of the vacuum persistence amplitude, and therefore of the
echo, is a power-law at long-time, governed by the AOC mechanism. This
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behavior is strictly followed on arbitrary large time scales, as it has been
proved for a Fermi gas in a harmonic-oscillator potential [77–79].

The more realistic scenario presented here allows for a true confinement
of the atomic particles to a finite-length range, hence, the decay of the echo
is asymptotically blocked in favor of a stationary, oscillating behavior, which
produces a sequence of very low-frequency peaks in the absorption spectrum
of the system. In general, the presence of these oscillations is unwanted, with
the main focus being on long-time phenomena (such as the AOC) for large
systems (in the thermodynamic sense).

As we document in the following, both the AOC decay and its blockade
are clearly distinguished in the long-time dynamics of echo at sufficiently
low temperature, being such that the chemical potential lies in the valence
band. Furthermore the FD approach [Eqs. (2.12) and (2.14)] appears in
good agrement with the second-order LCE approach [Eqs. (2.16) and (2.17)]
in a well defined range of weak impurity perturbations.

However, as the strength of the quench increases, the third-order contri-
bution to the LCE need to be included to adequately describe the behavior of
the echo beyond the AOC range. This, in turns, implies that, unlike previous
derivations, a third-order expansion of the vacuum persistence amplitude is
a necessary requirement to have full access to the whole response of the gas,
including the effect of its finite extension.

2.3.1 Power-law decay and AOC

We begin with an analysis of the long- (non-infinite-) time decay of the
echo, by comparing the FD response with the LCE approach truncated at
the second-order, yielding ln[νβ(t)] ≈ Λβ

1 (t) + Λβ
2 (t). The latter provides

three contributions, detailed in Appendix 2.A.1, namely, a shift Λβ
1 (t) +

Λβ2S(t) [Eqs. (2.31) and (2.35)], a Gaussian damping Λβ2G(t) [Eq. (2.34)] and

an oscillating term Λβ
2P (t) [Eq. (2.36)]. At zero temperature, the chemical

potential µ coincides with the Fermi energy εnF , equivalent to nF +1 particles
populating the gas. Accordingly, the stepwise nature of the occupation factors
f±n cancels the Gaussian damping: Λ∞2G(t) = 0. The long-time behavior of

the echo is therefore embodied in the oscillating contribution Λβ2P (t), scaling
as −α ln t and providing the power-law decay L∞(t) ∝ t−2α. This decay,
derived in Appendix 2.A.1 by two different cutoff methods [Eqs. (2.42) and
(2.44)], matches the long-time response of a free electron gas following a weak
interaction quench, due to the sudden creation of a deep core hole. It is, then,
a clear signature of the AOC [84,85], as predicted by the Mahan-Noziéres-De
Dominicis (MND) theory [87,88,115,120]. In our case the exponent of the
power-law reads

α =
|VnFnF |2

2
g(εnF )2, (2.19)
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Figure 2.2: Loschmidt echo at zero temperature for a quenched Fermi gas in
a sin-squared lattice potential confined to Ns = 500 sites, with characteristic
wavenumber k = π and filling number nF = 251. The lattice potential
amplitude spans from the TB [U0 = 12Er, a)] to the CNT [U0 = Er, b)]
regimes, with the suddenly switched-on impurity potential having a strength
V0 of a) 10−2 and b) 10−1 for the TB and CNT case respectively. The
results obtained from the FD approach of Eq. (2.14) (blue lines) exhibit a
long-time, power-law decay (green dots), being consistent the LCE approach
of Eq. (2.16), truncated to the second order (red circles).

where VnFnF is the impurity induced perturbation, defined in Eq. (2.3), and
g(εnF ) the density of states (DOS) at εnF . Here, we should point out that
the factor of 1/2 comes from the fact that only half of the single-particle
unperturbed spectrum may be excited by the impurity potential. An
example of power-law decay of L∞, reflecting the AOC [84,85], is reported
in Fig.2.2, where we plot the echo obtained by both the FD and second
order of the LCE approaches at half-filling, on a sufficiently large time-scale
( 20.εnF t.500), with a choice of parameters suitable for the TB and CNT
regimes.

Interestingly enough, it is commonly found in the literature that the
exponent α results from a sum over the phase-shifts of the impurity poten-
tial [88,121–123]. Eq. (2.19) provides a complementary expression suitable for
s-wave-like weak perturbations [119,124], which, perhaps, makes the physical
meaning of this quantity more transparent. This relation tells us that the
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a) b)

d)c)

Figure 2.3: Power-law exponent 2α of the echo at zero temperature vs the
Fermi number nF in the TB [U0 = 12Er, a) and c)] and CNT [U0 = Er, b)
and d)] cases for different amplitude V0k

−1: a) V0k
−1 = 4× 10−2Er and c)

V0k
−1 = 2×10−1Er, and b) V0k

−1 = 4×10−1Er and d) V0k
−1 = 2×10−1Er

. Comparison is made between the MND-like form of Eq. (2.19) (red lines),
derived from the two-vertex loop of the LCE, and the power index extracted
from a fit of the long-time decay given by the FD approach (blue circles).
All other parameters are as in Fig. 2.2.

decay of the echo depends upon two different and, apparently, unrelated
factors. On one hand, it relies on the external perturbation, through its
(typical) strength |VnFnF |2 at the Fermi energy. On the other hand, it is
controlled by the availability of occupied and empty states around the Fermi
energy, which goes to the squared DOS g(εnF )2 in the limit of zero energy
exchange. Then, α is to be considered as a figure of merit of the strength of
the many-body perturbation.

Figure 2.3 shows the MND critical exponent, computed by Eq. (2.19) (red
solid line) as function of the Fermi number nF in the CNT [Fig. 2.3(a)] and TB
[Fig. 2.3(b)] limits. Such a quantity is in good agreement with the exponent
of the power-law decay of L∞, as obtained from a fit of the Loschmidt Echo
of the FD approach (blue dots) with t−2α. As |VnFnF |2 does not change
appreciably with nF , the leading term in the exponent α is given by the
DOS of the system g(εnF ). The role of the DOS is particularly emphasized
in the TB regime when the filling gets close to the first-band edge, which
corresponds to a steep increase in the DOS due to the flattening of the
spectrum. This is a fingerprint of the presence of a lattice, which has no
counterpart in the free fermion unperturbed model of the original MND
theory. The same feature is also present, although less pronounced, in the
CNT regime.

We now discuss the effect of finite temperature, with the gas keeping its
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Figure 2.4: Loschmidt echo Lβ(t) for a quenched Fermi gas with N = 351
fermions confined to the size L = 500, at different inverse temperatures
β, given in units of first band gap ∆, a) in the TB [U0 = 12Er, ∆∼26.7,
V0k

−1 = 4× 10−2Er] and b) CNT [U0 = Er, ∆∼2.5, V0k
−1 = 4× 10−1Er]

regimes.

metallic behavior, i.e., with the chemical potential lying below the upper edge
of its first valence band. This can be achieved by keeping the ratio of the total
particle number N to the total lattice sites Ns well below unity. Accordingly,
an increase in temperature of the initial state results in a smearing of the
power-law singularity of the echo, with the occupation factors f±n becoming
smoother around εnF . In particular, when only a few states above εnF
are non-negligibly occupied, one recovers the usual broadening induced by
particle-hole excitations around Fermi, due to the Gaussian damping term
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Λβ
2G(t) [Eq. (2.34)]. This is reported in Fig. 2.4, where we show Lβ(t) for

a fermion density N/L∼3/5 and different initial inverse temperatures β,
defined in units of the first band gap ∆. We see that TB and CNT regimes
display similar trends within the chosen values of β∆, exhibiting a dominant
Gaussian decay behavior for β∆� 1. The power-law decay is recovered at
low temperatures, with crossing points at about β∆∼1000 and β∆∼100 for
the CNT and TB cases, respectively.

2.3.2 Finite size effects

We have just seen and discussed the power-law decay of the echo at sufficiently
long times, being such that 20.εnF t.500. On the other hand, for εnF t&1000,
we observe a pattern of non-decaying revivals of the initial normalization peak,
which are in striking disagreement with the AOC mechanism. This behavior
is shown in Fig. 2.5, where the echo, computed from the FD approach,
appears to be still in excellent agreement with the LCE approach, truncated
to the second order. The revival times, having a non-trivial dependence
upon the Fermi energy, correspond to low-frequency modes, of the order the
average energy difference between two contiguous eigenvalues of the valence
band. They are more clearly observed at zero temperature, where Gaussian
damping effects are absent. Further inspection reveals that the revivals occur
at increasing times t∗n = nπ/(εnF+1 − εnF ) with n a positive integer.

We may conclude that, either in the TB or in the CNT regimes, the
non-AOC features are an unavoidable consequence of the discretization of the
single-particle energy spectrum, induced by the finite extent of the system,
i.e., by the confining length-range L. As mentioned in the introduction of
this section, the post-quench decay behavior is therefore blocked by the finite
size of the trap. To support this observation, in Fig. 2.6 we see how the
behavior of L∞ changes with increasing L, i.e., the number of lattice sites Ns.
In particular, we observe that the time after which the non-AOC evolution
begins, or the first revival time, increases with increasing the system size,
becoming infinitely large (t∗1 →∞) in the thermodynamic (L→∞) limit.

2.4 Beyond the orthogonality catastrophe

2.4.1 Non-trivial third order contributions

We have shown that the second order contribution of the LCE describes
well the power-law decay and captures the main features of it. On the other
hand we observed the appearence of the large-amplitude and long-life time
oscillations as the chemical potential (filling) of the system is increased. We
show this effect in Fig. 2.7 where we plot the echo as obtained from the FD,
the LCE2 and LCE3 both in for Fig. 2.7 a) the TB and Fig. 2.7 b) CNT
case.
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a) b)

c) d)
FD

LCE-2

FD
LCE-2

Figure 2.5: Loschmidt echo for the quenched Fermi gas (L = 500, k = π)
at zero temperature vs the filling number nF and the time t. Figures show
the TB (U0 = 12Er, V0k

−1 = 4 × 10−2Er) [a), c)] and CNT (U0 = Er,
V0k

−1 = 4 × 10−1Er) [b), d)] regimes. The density plots of (a) and (b)
are obtained from the FD approach, with the red dashed lines designating
the revival times t∗n as function of nF . The simple plots of (c) and (d) are
computed by fixing nF = 351 with both the FD approach and the LCE,
truncated at the second order (LCE-2).

The LCE3 Λβ3 (t) has been calculated similarly to what we have done for

the two-vertex loop Λβ2 (t) [Eq. (2.33) in Appendix. 2.A.1]. The details of the

calculation are reported in Appendix 2.A.2. It is possible to reorganize Λβ3 (t)
into three main contributions [Eqs. (2.51)], namely a Gaussian damping

Λβ3G(t) [Eq. (2.52)], a shift Λβ3S(t) [Eq. (2.54)] and an oscillating term Λβ3P (t)

[Eq. (2.54)], plus a correlation term Λβ
3C(t) [Eq. (2.57)] that accounts for

a finite-temperature asymmetric broadening of the work distribution. We
see from Fig 2.7 that the second order contribution (LCE2) alone fails to
capture the oscillations which are clearly visible in the FD approach for both
the TB and the CNT case. On the other hand the third order one shows
the presence of similar oscilations althought with slightly different frequency
and amplitude.

In the next section we discuss the physical origin of these oscillations
identifying the terms in the third order contibution which are given, as we
shall see, to the finiteness of the band and represent an interesting case where
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a)

b)

N=100 N=500 N=1000

Figure 2.6: Loschmidt echo for the quenched Fermi gas at zero temperature,
obtained with the LCE approach, truncated to the second order. Differ-
ent values of the system-size, namely, L = 100 (purple), 500 (blue) and
1000 (red) have been simulated on a discretization grid with uniform spacing
L/N and constant filling number N/Ns. In both a) the TB [U0 = 12Er,
V0k

−1 = 4× 10−2Er] and b) CNT [U0 = Er, V0k
−1 = 4× 10−1Er] regimes,

the revival times tend to be infinitely large in the thermodynamic limit,
i.e., t∗n →∞ for L→∞.

the third order contibution are not merely a renormalization of the LCE2
but introduce new, and non-trivial, physical effects.

2.4.2 Fano Resonances at the band edge

The occurrence of the AOC has been so far related to two main features of the
system. On one hand the availability of a continuum of single particle states,
which couple when the system is perturbed and brought out-of-equilibrium.
On the other hand, the persistence of the metal phase during the out-of-
equilibrium dynamics, with the chemical potential µ lying well inside the
occupied band and plenty of hole states accessible above the Fermi energy.
The continuum nature of the spectrum has been used in the derivation of the
critical exponent α (see Appendix 2.A.1) to establish an MND-like power-law
decay [87, 88] suitable for metallic bands, under the assumption that, in the
thermodynamic limit, the amount of energy exchanges around the Fermi
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a)

b)

FD
LCE-2
LCE-3

Figure 2.7: Loschmidt echo Lβ(t) for a quenched Fermi gas with N = 451
fermions confined to the size L = 500, at inverse temperatures β, given in
units of first band gap ∆, a) in the TB [U0 = 12Er, β∆ = 106, V0k

−1 =
4× 10−2Er] and b) CNT [U0 = Er, β∆ = 106, V0k

−14× 10−1Er] regimes.

energy can go continuously to zero.
Much more intriguing is the scenario where we let the chemical potential

lie close to the upper band edge or fall inside the first band gap, i.e. when
the metal gas approaches the transition towards a semiconductor or an
insulator, that we will detail in the following. The consequences of this
change of phase are much more significant in the TB limit, where the first
band gap is substantially larger than any other energy scale into play and the
gas experiences a metal-to-insulator transition, characterized by vanishingly
small values of the particles’ mobility. On the other hand, in most CNT cases,
such as the one discussed here, the gas behaves as a small-gap semiconductor
and the chemical potential can be easily tuned to the second band by small
temperature changes.

In the context of the TB regime, we can markedly distinguish two
mechanisms, which are strongly sensitive to the temperature of the gas and
characterize its change of phase. The first is related to the appearance of
coherent oscillations in the echo, with the chemical potential approaching
the band-edge from the metal side. The second is a freezing of the echo at
values of the order of unity, as chemical potential crosses the upper band
edge and falls into the first band gap. The latter is a direct manifestation of
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the insulating nature of the system, with low-lying particle-hole excitations
being suppressed in the absence of accessible holes states.

Figure 2.8 a) shows the two mechanism following an increase in particle
number of the gas, that let the chemical potential cross the upper band edge.
Working in the TB limit (U0 = 12Er, L = 500 and V0k

−1 = 4× 10−2Er) at
a reasonably small temperature, equivalent to a thermal energy β∆ of 104 in
units of the first band gap, we see that the amplitude of the oscillations of the
echo increases [N < 481, Fig. 2.8 b)], as the chemical potential increases from
the metal phase. Once the insulator phase is reached, for a number N = 481
of atomic particles [Fig. 2.8 c) (green solid line)], the oscillations persist for
large times. Conversely, after the transition point [N > 481, Fig. 2.8 c)], the
dynamics of echo is frozen, i.e., the echo does not decay, as it is expected in
the insulating phase.

The appearance of long living oscillations in the echo are a fingerprint
of coherence in time, developed inside the system, which contrasts with the
monotonic decay expected by the AOC at large times. These oscillations
would be present also when the chemical potential is well inside the band,
but they are readily suppressed by the coupling of particle-hole excitations
to the background of a continuum of particle and holes. When the chemical
potential approaches the band edge, the particle-hole excitations acquire a
finite lifetime due to the reduction of the number of available states for these
excitations to decay into.

A deeper insight into the nature of these excitations is highlighted by
looking at the Fourier transform of the (complex conjugate) of the vacuum
persistence amplitude, i.e., the distribution of the work Pβ(W ) (sec. 2.2.1).
In Fig. 2.9 we show Pβ(W ) for the same system as in Fig. 2.8 at two
different temperatures, corresponding to β∆ = ×106 [Fig. 2.9 a) and c)] and
β∆ = 104 [Fig. 2.9 b) and d)], and increasing particle numbers towards the
transition point. Besides the primary peak, representing a global energy shift
due to the perturbation, we detect a secondary structure, magnified in the
insets, with a Fano resonance lineshape. As such, we expect it to arise from
the coupling of a bound state to the continuum (almost completely filled)
of states of the spectrum. In order to understand the physics behind this
process, and confirm that we are looking at a Fano resonance, we analyze
the three-vertex loop Λβ3 (t) of the LCE. We have already seen in Sec. 2.4.1
that the third order contribution can be recast into a sum of three different
contributions similarly to the second order one. The non-trivial content
of the dynamics of the gas is provided by Λβ

3P (t), which includes impurity

induced particle-hole excitations, via Λβ3PI (t) [Eq. (2.55)], and particle-hole
or hole-particle transitions assisted by particle-hole recombination processes,
via Λβ

3PII
(t) [Eq. (2.56)]. While Λβ

3PI
(t) mostly contributes to renormalize

the shake-up term Λβ
2P (t), Λβ

3PII
(t) has no counterpart in the LCE, and

indeed represents an interaction of a quasibound particle-hole state with a



2.4. BEYOND THE ORTHOGONALITY CATASTROPHE 61

M

b)

   Upper 
band edge

M I

a)

I

c)

Figure 2.8: Quenched Fermi gas (L = 500, k = π, V0k
−1 = 4× 10−2Er) in

the TB limit (U0 = 12Er) with N =453-497 atomic particles at an inverse
temperature β∆ = 104 in units of the first band gap ∆∼5, 41Er. a) The
chemical potential µ of the system increases with increasing N , crossing the
upper limit of the valence band edge at N = 481, where a metal-to-insulator
transition occurs. Correspondingly, the Loschmidt echo (calculated with
the FD approach) has an oscillating behavior in the metal (M) phase b),
with the amplitude of the oscillations increasing with increasing N below
the complete filling number N = 481 c). In the insulator (I) phase c) the
echo is approximately constant for very large times.

continuum.
We expect the position of the Fano resonance structures to be given by

the typical energy of this quasibound state which is made of a particle-hole
pair. The energy of such a state will be given, in first approximation, by the
difference between the energy of the hole and that of the particle of which
it is composed. Due to the divergency of the density of states at the band
edge a hole has on average a typical enegy of εL, where εL is the energy of
the highest particle state in the metal band. On the other hand to transfer
a particle to/from the gas to this quasibound state an energy equal to the
chemical potential is involved. Therefore we expect such a state to have an
energy of εL − µ. Figure 2.10 shows the position of these structures, relative
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a) b)

c) d)
N=455 N=471 N=455 N=471

Figure 2.9: Work distributions [a), b)] and corresponding particle occupa-
tions [c), d)] for a quenched Fermi gas (L = 500, k = π, V0 = 2 × 10−3)
in the TB limit (U0 = Er) with N =463 (solid blue) and 471 (dashed red)
atomic particles at the inverse temperatures β∆ = 106 [a),c)] β∆ = 104

[b),d)] in units of the first band gap ∆∼5, 41Er.

to the main peak of the work distribution, for different particle numbers, as
obtained from the FD approach (blue squares) and LCE, truncated to the
third-order (red disks). All the other parameters of the Fermi gas and the
quench are as in Fig. 2.9. The other set of data (purple triangles) are given
by εL − µ. We see that our interpretation for the energy of the quasibound
state at the single particle level, well matches the results obtained from the
LCE3 at both zero [Fig. 2.9 a) and c)] and finite temperature [Fig. 2.9 b)
and d)]. The result is also qualitatively in good agreement with the result
obtained from the FD approch up to a renormalization of the energy which
depends upon the chemical potential (number of particles). We have checked
(not shown) that the central peak in both the FD and the LCE3 is at the
same position up to a discrepancy of O(10−4). Therefore the discrepancy in
the evaluation of the position of the Fano resonance between the two cases
can be ascribed to a renormalization of the energy of the quasibound state
due to higher order processes which we are unavoidably neglecting.

Once again the work distribution offers a nice explanation in terms of
the energy transferred to the system by the quench protocol and how it is
distributed across the spectrum of the system. The total energy transferred
to the system is given by the first moment of the work distribution [78]. In
the insets of Fig. 2.11 we compare the first moment of the work distribution
given by the first order LCE [78] (black crosses), with the one obtained from
the FD (blue squares) and LCE3 (red disks) approach, and, as expected,
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a) b)

Figure 2.10: Position of the Fano resonances wR in the work distribution,
with respect to the primary peak as a function of the total number of
particles N for the same system as in Fig. 2.9. The blue squares refer to
the FD approach, whereas red disks are extracted from the LCE, truncated
at the third order (LCE-3). The purple triangles label the difference εL − µ
between the highest energy of the first band εL and the chemical potential.

a) b)

Figure 2.11: Area below the Fano Resonances as a function of the number
of particles. All other parameters are the same as in Fig. 2.9 and inverse
temperatures β∆ = 106 [a)] β∆ = 104 [b)] Insets: First moment of the
work distribution. The blue squares refer to the FD approach, whereas red
disks are extracted from the LCE, truncated at the third order (LCE-3).
The black crosses are the exact value of average work obtained from the
first order contribution only [78].

we observe an excellent agreement. The probability to excite the Fano
resonance is given by the area below its structure in Pβ(w), which is typically
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larger in the LCE3 than in the FD. This means that LCE3 overesimates the
broadening due to the coupling of the quasibound state with the continuum,
and, due to the conservation of the total area and to the fact that the average
work is the same in both approaches, it translates into a lower height and a
smaller frequency for the LCE3 than in the FD.

Two conclusions my be drawn from Figs. 2.9, 2.10, and 2.11. First,
the resonances are indeed given by the coupling of a particle-hole excitation
with the continuum of energy states, namely they are Fano resonances.
Second, this effect is not a zero temperature one, but is present also at finite
temperature if the thermal energy is not sufficient to overcome the band gap.

2.5 Conclusions

We studied the dynamics of a quantum Fermi gas in an optical lattice following
a sudden quench, specifically looking at the Loschmidt echo as a figure of
merit of the response of the system to the initial perturbation. We derived
the Loschmidt echo via two different strategies based on the calculation of the
vacuum persistence amplitude, namely, the functional determinant approach,
which is exact, and the linked cluster expansion, truncated at the third order,
which is a perturbative technique. We have shown that, when the chemical
potential of the system is well inside the valence band, the decay of the
echo follows the Mahan-Nozières-De Dominicis power-law decay, which is a
signature of the Anderson orthogonality catastrophe. From the second order
contribution to the linked cluster expansion we have derived the exponent
of the power-law decay and successfully compared it with a fit obtained
by the functional determinant approach. We have explored the scenario in
which the chemical potential approaches the upper band-edge and, therefore,
the system undergoes a transition from a metal to an insulator phase. We
have observed that the Loschmidt echo in this case shows oscillations whose
amplitude increases with the particle number approaching the transition
point. The physical nature of these oscillations has been recast to highlight
the role of long living particle-hole excitations interacting with the continuum
of particles and holes in the system.
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2.A Linked cluster expansion of the vacuum persis-
tence amplitude

The vacuum persistence amplitude of (2.7) may be expanded by the Dyson-
Wick series

νβ(t) = 1 +

∞∑
m=1

ν
(m)
β (t), (2.20)

whose coefficients account for processes where the gas retrieves its equilibrium
unperturbed configuration after m = 1, 2, · · · scattering events with the
impurity potential:

ν(m)(t) =
(−i)m

m!

∫ t

0
dt1 · · ·

∫ t

0
dtm

〈
T V̂ (t1) · · · V̂ (tm)

〉
β
. (2.21)

In the interaction picture, with

Ṽ (t) =
∑
n,n′

Vn′nc̃
†
n′(t)c̃n(t), (2.22)

the time-evolution of the creation and annihilation operators is the following

c̃†n′(t) = eiεn′ tĉ†n′ , c̃n(t) = e−iεntĉn. (2.23)

Accordingly, the grand-canonical average of the time-ordered product in
Eq. 2.21 may be written as〈

T Ṽ (t1) · · · Ṽ (tm)
〉
β

= im
∑
n1,n′1

Vn′1n1
· · ·

∑
nm,n′m

Vn′mnm (2.24)

×G0(m)
n1···nm|n′1···n′m

(t1 · · · tm; t′1 · · · t′m),

where

G
0(m)
n1···nm|n′1···n′m

(t1 · · · tm; t′1 · · · t′m)

= (−i)m
〈
T ĉn1(t1) . . . ĉnm(tm)ĉ†n′m

(t′m) · · · ĉ†n1
(t′1)
〉
β
. (2.25)

represents an m-body unperturbed Green’s function.
We can now use the Wick’s theorem to reduce the calculation of Eq. (2.25)

to a determinant of the single-particle Green’s functions G0
n(t) given in

Eq. (2.18):

G
0(m)
n1···nmn′1···n′m

(t1 · · · tm; t′1 · · · t′m) (2.26)

=

∣∣∣∣∣∣∣∣∣
G0
n1

(t1 − t′1)δn1n′1
· · · G0

n1
(t1 − t′m)δn1n′m

G0
n2

(t1 − t′1)δn2n′1
· · · G0

n2
(t1 − t′m)δn2n′m

...
. . .

...
G0
nm(tm − t′1)δnmn′1 · · · G0

nm(tm − t′m)δnmn′m

∣∣∣∣∣∣∣∣∣ .
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Combining Eqs. (2.20) and (2.21) with Eq. (2.24), plus the former deter-
minantal expression (2.26), the different contributions can be organized in
such a way that the natural logarithm of the vacuum persistence amplitude
ln[νβ(t)] equals the sum of the connected diagrams Λβl (t), given in Eq. (2.17).
The disconnected contribution in (2.20) is finally obtained by exponentiating
the sum [118], and the first three diagrams of the perturbation expansion
are, respectively, given by:

Λβ1 (t) =
∑
n1

Vn1n1G
0
n1

(0+)t, (2.27)

Λβ2 (t) =
1

2

∑
n1,n2

Vn1n2Vn2n1 (2.28)

×
∫ t

0
dt1

∫ t

0
dt2G

0
n1

(t1 − t2)G0
n2

(t2 − t1), and

Λβ3 (t) = −1

3

∑
n1,n2,n3

Vn3n1Vn1n2Vn2n3 (2.29)

×
∫ t

0
dt1

∫ t

0
dt2

∫ t

0
dt3G

0
n1

(t1 − t2)G0
n2

(t2 − t3)G0
n3

(t3 − t1).

2.A.1 Second order expansion of the vacuum persistence am-
plitude and critical exponent

The application of the LCE up to the second order gives two contributions
in the perturbation expansion of Eq. (2.15):

νβ(t) ≈ eΛβ1 (t)+Λβ2 (t) (2.30)

The one-vertex loop, given in Eq. (2.27), is just the adiabatic response of the
gas, having the form

Λβ1 (t) = −itEβ1 . (2.31)

It has been proved that Eβ1 =
∑

n1
Vn1n1f

+
n1

is the correction to the average

equilibrium energy Eβ0 = 〈Ĥ0〉β =
∑

n1
εn1f

+
n1

, i.e. that Eβ0 +Eβ1 is the exact
energy of the gas in equilibrium with the sudden impurity perturbation [77].

This, in turns, implies that the energy shifts Eβl contained in Λβ
l (t) must

obey to the sum-rule ∑
l≥2

Eβl = 0. (2.32)

The two-vertex loop (2.28) also has a simple structure, once the expres-
sion (2.18) for the single particle Green’s function is used:

Λβ2 (t) = −
∑
n1,n2

|Vn1n2 |
2
∫ t

0
dt1

∫ t1

0
dt2f

+
n1
f−n2

ei(εn1−εn2 )(t1−t2). (2.33)
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Here we can distinguish the following three different contributions:

Λβ2G(t) = − t
2

2

∑
n1

f+
n1
|Vn1n1 |2f−n1

, (2.34)

Λβ2S(t) = −itEβ2 , Eβ2 =
∑
n1 6=n2

f+
n1
|Vn1n2 |

2 f−n2

εn1 − εn2

, (2.35)

Λβ2P (t) = −
∑
n1,n2

1− ei(εn1−εn2 )t

(εn1 − εn2)2
|Vn1n2 |

2 f+
n1
f−n2

, (2.36)

which, respectively, represent a Gaussian damping, a second-order energy
shift, and an oscillating term, responsible for the Fermi edge singular response
of the system [77,78]. Accordingly, we may write

Λβ2 (t) = Λβ2G(t) + Λβ2S(t) + Λβ2P (t) (2.37)

where the damping factor Λβ2G(t) vanishes in the β →∞-limit.
One of the achievements presented in this chapter is the finding of a

correspondence between the long-time behavior of the Fermi edge term Λβ2P (t)
and the MND theory [87,88,115], via the determination of a critical exponent
α, which contains the essence of the shake-up of the gas to the sudden
switching of the impurity. Following the original approach by Mahan [87],
we use the one-to-one correspondence between the quantum numbers ni and
the one-particle energies εni ≡ εi ≥ 0 to express Eq. (2.34) in the continuous
limit. Specifically we replace∑

n1,n2

→
∫ εc

0
dε1g(ε1)

∫ εc

0
dε2g(ε2), (2.38)

with g(ε) = dn/dε denoting the density of single-particle states of the un-
perturbed system, and εc being a high-energy cut-off of the creder of the
first bandwidth. The matrix elements of the perturbation potential (2.3)
are easily computed as Vn1n2 → V0〈x0|ε1〉〈ε2|x0〉. Then, introducing the
weighted density of states g̃(ε) = g(ε)|〈x0|ε〉|2, we get:

Λβ2P (t) → −V
2

0

2

∫ ∞
0

dε1g̃(ε1)f+(ε1) (2.39)

×
∫ ∞

0
dε2g̃(ε2)f−(ε2)

1− ei(ε1−ε2)t

(ε1 − ε2)2
,

where the factor of 1/2 comes from the fact that only half of the single-particle
spectrum is involved in the process, say, only the states with even parity,
with respect the position x0 of the impurity, are coupled by the impurity
potential. At the absolute zero, the product of the particle-hole distributions
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f+(ε1)f−(ε2) is non-vanishing in the energy intervals 0 < ε1 < εF and
εF < ε2 < εc, where we have introduced a high-energy cutoff εc to compensate
the virtually infinite range assumed for the valence band. Then,

Λ∞2P (t)→ −V
2

0

2

∫ εF

0
dε1g̃(ε1)

∫ εc

εF

dε2g̃(ε2)
1− ei(ε1−ε2)t

(ε1 − ε2)2
. (2.40)

We now perform the change of variables ξ = ε1 − ε2 and η = (ε1 + ε2)/2,
which maps the former integral to

Λ(2O)
∞ (t)→ V 2

0

2

∫∫
R(εF |εc)

dξdηg̃

(
η +

ξ

2

)
g̃

(
η − ξ

2

)
eiξt − 1

ξ2
, (2.41)

where ∫∫
R(εF |εc)

dξdη[· · · ] =

∫ −εF
−εc

dξ

∫ ξ/2+εc

−ξ/2
dη[· · · ]

+

∫ −εc+εF
−εF

dξ

∫ ξ/2+εc

ξ/2+εF

dη[· · · ] +

∫ 0

−εc+εF
dξ

∫ −ξ/2+εF

ξ/2+εF

dη[· · · ]

The integrand in Eq. (2.41) diverges as ξ → 0 and rapidly goes to zero as
ξ → ∞. Assuming that the density of states is sufficiently smooth in the
region of integration, we can conclude that the dominant contribution to
the integral is given in an interval (−1/τ0, 0) where 1/τ0 is of the order of
o(t−1) [87]. In order to extract the leading term in (2.41), it is therefore
meaningful to evaluate the integral over η in the region where ξ → 0:∫∫

R(εF |εc)

dξdη[· · · ] ≈
∫ 0

−εc+εF
dξ

∫ −ξ/2+εF

ξ/2+εF

dη[· · · ]

≈
∫ 0

−1/τ0

dξ

∫ −ξ/2+εF

ξ/2+εF

dη[· · · ].

Now, assuming τ0εF � 1, we may replace the product of density of states
with its maximum at εF , and define α = V 2

0 g̃
2 (εF ) /2. Thus, we finally

obtain

Λ∞2P (t) → −α
∫ 0

−1/τ0

dξ
eiξt − 1

ξ
= −α ln

(
t

τ0

)
(2.42)

−γα− α
∫ ∞

1/τ0

cos(ξt)

ξ
dξ + iα

∫ 1/τ0

0

sin(ξt)

ξ
dξ,

with γ ≈ 0.577216 denoting the Euler γ constant. The leading contribution to
the former integral provides the long-time power-law behavior of the vacuum
persistence amplitude in the MND theory: eΛ∞2P (t) → (t/τ0)−α. Interestingly,
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the high-energy cutoff in Eq. (2.40) may be replaced the following exponential
cutoff

Λ∞2P (t)→ −α
∫ εF

0
dε1

∫ ∞
εF

dε2
1− ei(ε1−ε2)t

(ε1 − ε2)2
e(ε1−ε2)τ0 , (2.43)

which leads to

Λ∞2P (t)→ −α
∫ 0

−∞
dξ
eiξt − 1

ξ
eξτ0 = −α ln(1 + it/τ0). (2.44)

Exponentiating this last expression, we get the normalized MND distribution

in the time-domain eΛ∞2P (t) →
(

1
1+it/τ0

)−α
. Its Fourier transform coincides

with the MND excitation spectrum, displaying the Fermi edge singularity∫ ∞
−∞

dt

2π
eΛ∞2P (t)eiωt =

τ0e
−ωτ0Θ(ω)

(τ0ω)1−αΓ(α)
, (2.45)

in which Γ denotes the Euler gamma function.

2.A.2 Third order contribution to the vacuum persistence
amplitude and particle-hole recombination processes

We now discuss the third order of the LCE, which allows us to approximate
the vacuum persistence amplitude of Eq. (2.15) as

νβ(t) ≈ eΛβ1 (t)+Λβ2 (t)+Λβ3 (t). (2.46)

Specifically, we calculate the three-vertex loop Λβ3 (t), starting from Eq. (2.29),
and discuss its effect on the total response of the gas.

We begin by properly changing the dummy summation indexes and time
variables in the six terms, which are obtained by expanding the product of
unperturbed Green’s functions in Eq. (2.29). Using the fact that the matrix
elements of the impurity potential are real, we can reduce the three-vertex
loop to the following two contributions:

Λβ3 (t) = i
∑

n1,n2,n3

Vn1n2Vn2n3Vn3n1f
+
n1
f−n2

f−n3
An1n2n3(t) (2.47)

− i
∑

n1,n2,n3

Vn1n2Vn2n3Vn3n1f
+
n1
f−n2

f+
n3
Bn1n2n3(t),

where

An1n2n3(t) =

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3e

iεn1 (t1−t2)eiεn2 (t2−t3)eiεn3 (t3−t1),

(2.48)
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Bn1n2n3(t) =

∫ t

0
dt1

∫ t1

0
dt3

∫ t3

0
dt2e

iεn1 (t1−t2)eiεn2 (t2−t3)eiεn3 (t3−t1).

(2.49)

The first term in Eq. (2.47) is readily interpreted as the scattering of a
particle-hole excitation (f+

n1
f−n2

) with a hole (f−n3
), whereas the second term

in Eq. (2.47) represents the scattering of the same particle-hole excitation
with a particle (f+

n3
).

After performing the time-integrals in Eqs. (2.48) and (2.49), we can
rearrange the different contributions in Eq. (2.47) similarly to what we have
done for the two-vertex loop in Eq. (2.37), obtaining

Λβ3 (t) = Λβ3G(t) + Λβ3S(t) + Λβ3P (t) + Λβ3C(t). (2.50)

Here, the first term

Λβ3G(t) = − t
2

2

∑
n1,n2
n1 6=n2

V 2
n1n2

2f+
n1
f−n1

Vn1n1

εn1 − εn2

(2.51)

is the third-order counterpart of Λβ2G(t) [Eq. (2.34)], yielding an additional
Gaussian damping to the dynamics of the gas, which becomes vanishingly
small as the temperature tends to the absolute zero.

The second term in Eq. (2.50),

Λβ3S(t) = itEβ3 , (2.52)

provides the third-order perturbation shift

Eβ3 =
∑

n1,n2,n3
n1 6=n2 6=n3

Vn1n2Vn2n3Vn3n1

εn1 − εn3

[
f+
n1
f+
n2
f−n3

εn2 − εn3

−
f+
n1
f−n2

f−n3

εn1 − εn2

]

+
∑
n1,n2
n1 6=n2

V 2
n1n2

Vn1n1

(εn1 − εn2)2

[
f+
n1
f−n2
− f+

n2
f−n1
− f+

n1
f−n1

(
f+
n2
− f−n2

)]
(2.53)

to the equilibrium energy of the gas, which combines with the second-order
term Λβ

2S(t) of Eq. (2.34). Nonetheless, as pointed out above, that role of

both Eβ2 and Eβ3 is irrelevant, because they are cancelled by terms of the same
structure, which appear in the higher-order loops of the LCE [Eq. (2.17)].

The non-trivial content of Eq. (2.50) is, therefore, given by the following
oscillating term

Λβ3P (t) = Λβ3PI (t) + Λβ3PII (t), (2.54)
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where

Λβ3PI (t) =
∑
n1,n2
n1 6=n2

2V 2
n1n2

(Vn1n1 − Vn2n2)

εn1 − εn2

1− eit(εn1−εn2)

(εn1 − εn2)2
f+
n1
f−n2

(2.55)

effectively acts to renormalize the shake-up response of the gas Λβ2P (t), given
in Eq. (2.36), and in particular the critical exponent of its continuous limit
expression, established by Eq. (2.42) or Eq. (2.44), while

Λβ3PII (t) =
∑

n1,n2,n3
n1 6=n2 6=n3

Vn1n2

εn3 − εn2

f+
n1
f−n2

f−n3

×

[
1− eit(εn1−εn2)

(εn1 − εn2)2
− 1− eit(εn1−εn3)

(εn1 − εn3)2

]

+
∑

n1,n2,n3
n1 6=n2 6=n3

Vn1n2Vn1n3Vn2n3

εn3 − εn1

f+
n1
f−n2

f+
n3

×

[
1− eit(εn1−εn2)

(εn1 − εn2)2
− 1− eit(εn3−εn2)

(εn3 − εn2)2

]
(2.56)

has no counterpart in the LCE, truncated to the second order. It accounts
for particle (f+

n3
) or hole (f−n3

) propagation screened by particle-hole recom-
bination processes (f+

n1
f−n2

). As suggested in Sec. 2.4.2, we believe that this
last term plays a non-negligible role in the Fano resonance lineshape that
characterizes the absorption spectrum (or the work distribution) of the gas,
approaching the metal-to-insulator change of phase, from the metal side.

The last contribution to Eq. (2.50) is the following

Λβ3C(t) = − it
3

3!

∑
n1

V 3
n1n1

f+
n1
f−n1

(f+
n1
− f−n1

) (2.57)

+it
∑
n1,n2
n1 6=n2

V 2
n1n2

f+
n1
f−n2

eit(εn1−εn2 )

(εn1 − εn2)2

(
Vn1n1f

+
n1
− Vn2n2f

−
n2

)

which allows for non-zero skewness and more complex asymmetries in the
absorption spectrum (or work distribution), at finite temperatures.



3
Post quench dynamics of a Fermi gas with

singular continuous spectrum

In un vortice di polvere
gli altri vedevan siccità,

a me ricordava
la gonna di Jenny

in un ballo di tanti anni fa.

– Fabrizio De André, Il suonatore Jones

In this chapter we investigate the dynamical properties of an interacting
many-body system with a non-trivial energy potential landscape, which
can induce a singular continuous single-particle energy spectrum. After
describing the model in sec. 3.1, we show that the interplay between the
quasi-periodicity of the lattice, i.e. the geometry of the system, and the many-
body interactions gives rise to anomalous propagation properties, which have
been observed in recent experiments [63,98], secs. 3.2 and 3.3. We provide
an explanation of this phenomenon which is based on the nature of the single
particle energy spectrum (SPES), in sec. 3.4. We sketch a phase diagram of
the AAM in Fig. 3.1, in terms of the interaction strength U , and of the onsite
potential λ. We find different dynamical regimes for the system: an ergodic
one at small λ with an AC SPES, a localized one at large λ and moderately
small U with a PP SPES, and an intermediate anomalous one characterized
by a SC SPES. This rich picture arises from a non-trivial competition between
the underlying order induced by the potential energy landscape and the
many-body interactions. Our study shows that singular-continuous spectra
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can be found in interacting systems unlike previously conjectured by treating
the interactions in the mean-field approximation. This in turn also shows the
importance of the many-body correlations in giving rise to this anomalous
dynamics and that it is a signature of a non-trivial interplay between geometry
and interactions in many-body systems.

3.1 Model and physical quantities

Figure 3.1: Conjectured phase diagram for spin-1/2 AAM consistent with
the behaviour of the imbalance at long times and the nature of the SPES.

We consider a gas of spin-1/2 particles in one dimension, described by
the Fermi-Hubbard model:

Ĥ =
∑
n,σ

εnĉ
†
n,σ ĉn,σ −

J

2

(
ĉ†n,+1,σ ĉn,σ + h.c.

)
+ Un̂n,↑n̂n,↓, (3.1)

where εn is the onsite energy, U the on-site interaction between particles
with different spin in the s-wave approximation, ĉ†n,σ(ĉn,σ) are fermion cre-

ation (annihilation) operators at site n with spin σ and n̂n,σ = ĉ†n,σ ĉn,σ the
corresponding number operator. We work with open boundary conditions
not to enforce any artificial periodicity. The AAM is obtained by setting
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εn = ∆ cos(2πτn) 1 with τ =
(√

5 + 1
)
/2 and λ = ∆/J , see sec. 1.1.2.

In this chapter we will compare the results of the AAM with that of
another quasicrystal, the on-site Fibonacci model (OFM) obtained by setting
εn = ∆(bn+ 1c − bnc) in Eq. (3.1) and again λ = ∆/J , whose spectrum has
been proved to be SC [125], and that doesn’t have any SP phase transition.

If not otherwise stated, we consider an initial state similar to the one in
the experiment [98]: two particles with opposite spin on even sites instead of
a random distribution of up and down spin particles on even sites, in order
to avoid the effective interaction to depend on the particular realization.
The subsequent time evolution is then generated by the Hamiltonian in Eq.
(3.1)2. In the case of ultracold gases, this corresponds to a quench where at
the initial time t = 0 both nearest-neighbour tunneling and onsite interaction
are brought to finite values on a time scale much shorter than the tunneling
time J−1, but large enough not to excite transitions to higher bands, for
which the TB model does not work anymore [126].

At the single particle level, the dynamics of the system is encoded in
the lesser Green’s function defined as G<s,s′(t; t

′) = i〈ĉ†s′(t
′)ĉs(t)〉0, where the

average is on the initial state, and we use the notation s = n, σ.
To compute this quantity we resort to the non-equilibrium Green’s func-

tions technique, by solving numerically the Dyson equation for the single-
particle Green’s function. Our approach is detailed in [127] and is based
on the self-consistent solution of the Dyson equation once a choice for the
self-energy is made. It closely follows the one of Refs. [128, 129] and is an
extension of the approach presented in Ref. [130] for bosonic systems. The
self-energy entering the Dyson equation is calculated in the second-Born
approximation [81].

3.2 Geometry-induced anomalous diffusion

We start by looking at the role of the geometry of the potential energy
landscape, which affects the spreading of the correlations due to its influence
on the nature of the SPES. The spreading of correlations in a non-interacting
system with a continuous energy spectrum (corresponding to extended eigen-
states) is ballistic with a maximum velocity determined by both the energy
spectrum and the initial state but it is always finite and bounded from above

1We set the phase of the cos function to zero; its variation has two main effects on the
single-particle energy spectrum: a reshuffling of the bulk eigenstates with respect to the
eigenenergies and the change in the energy of the two (localized) boundary states. For
both these effects do not affect the single-particle energy spectrum and its nature, it has
no effects on the results discussed in our work.

2It is important to mention that the above beaviour is independent on the choice of
the initial state the latter being spread among most of the eigenstates of the system in
the delocalized region and therefore the dynamics explores most of its spectrum. This is
analogous to the cases analyzed in Ref. [96]
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by the Lieb-Robinson bound [131]. In the case of a discrete energy spectrum
(with exponentially localized eigenstates), the spreading is suppressed and
correlations develop only in a finite region whose size is proportional to the
localization length, thus going to zero in the thermodynamics limit.

In order to quantify the the spreading of the correlations we use the vari-
ance of the probability distribution defined as Pi(t) = |G<i0,i(0; t)|2, similarly
to what has been done in Ref. [130]. Due to the absence of interaction, the
spin degree of freedom is irrelevant; therefore, the results are identical to the
ones for spinless fermions when U = 0.

In Fig. 3.2, we show the probability distribution Pi(t) for the AAM with
L = 200 sites in the metallic (extended) phase (λ = 0.8) and at the transition
point (λ = 1). It can be clearly seen that below the transition point the
spreading is ballistic, whereas, at the transition point, it acquires a (possibly
anomalous) diffusive behaviour.

Figure 3.2: Panel a): Correlation function |G<i0i(0; t)|2 for a quench corre-
sponding to an initial system with N = 100 particles frozen in the even sites
of a lattice with L = 200 sites. At t = 0, the tunneling is suddenly switched
on (J 6= 0). Left and right plots refer to the cases λ = 0.8 and λ = 1,
respectively. Black (dashed) lines are drawn to guide the eye identifying
the light cone spreading of correlations.

By focusing on the variance σ(t) of Pi(t), and assuming a power law
behaviour, σ(t) ∝ tα for Jt� 1, we looked at the behaviour of the exponent
α for different system sizes and different values of λ. The results are shown
in Fig. 3.3 panel a), where we can see that for the AAM, the expansion tends
to be ballistic in the thermodynamic limit (α = 1) for λ < 1 and suppressed
for λ < 1. The residual expansion for λ > 1 can be attributed to the tails
of the exponentially localized eigenstates (due to the finite size). At λ = 1
curves for different size meet with the exponent dropping to α ≈ 1/2, thus
signaling deviation from both ballistic or localized behaviour.

It is interesting to compare these features with those of the on-site
Fibonacci model (OFM), showing a purely SC energy spectrum [125] induced
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Figure 3.3: Panels a) and b): Exponent of the power law σ(t) ∝ tα as
a function of the onsite potential strength λ. a) refers to the AAM with
L = 200 (dotted blue line), L = 400 (dashed orange line), L = 800 (solid
red line), while b) refers to the OFM with L = 400 (dotted blue line),
L = 800 (dashed orange line),L = 1000 (solid red line). Solid and dashed
horizontal lines highlight the values of the exponent αB = 1 , αD = 0.5
expected for ballistic and diffusive spreading, respectively. The solid green
vertical line at λ = 1 in panel a) is the critical value at which the AAM
shows the metal-to-insulator transition in the thermodynamic limit.

by its quasiperiodic geometry [134,135], and displaying no phase transition.
The results are shown in Fig. 3.3 panel b), where we can appreciate a
deviation from ballistic spreading at any finite λ. This behaviour can be
traced back to the critical nature of the eigenfunctions together with the
SC nature of the spectrum [92,96,125] and it is shared by other aperiodic
structures [132,133].

We can drawn some conclusions from the above observations. The AAM
for λ < 1(λ > 1) behaves as any non-interacting system with a continuous
(discrete) energy spectrum, inducing ballistic (suppression of) propagation of
correlations. At the transition point the spreading turns diffusive, a behaviour
usually arising in the presence of interactions and/or phase boundaries (as is
the case for the AAM at λ = 1). In the OFM, the system shows anomalous
diffusion despite the absence of any phase transition and/or crossover between
different phases. The AAM and the OFM share a common feature: the
nature of the single-particle spectrum at the transition point for the AAM
and that of the OFM for any finite value of λ is singular continuous with
critical eigenstates, which manifest as an anomalous diffusive behaviour.
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3.3 Interplay between interaction and geometry

The presence of interaction can alter the transport properties in a substantial
way; for example, when the non-interacting single particle eigenfunctions
are extended states, the spreading turns from ballistic to diffusive as the
interaction strength is increased [126,130]. On the other hand, we have just
shown that an anomalous diffusion can arise in a non-interacting system
solely due to the properties of the underlying geometry of the potential energy
landscape. A natural question to ask is then how the dynamical properties
due to a non-trivial underlying geometry are affected by the interactions. To
answer this question, we look at the dynamics of a many-body interacting
system described by the Hamiltonian in Eq.( 3.1) both for the AAM and the
OFM.

We introduce the particle imbalance, defined as ∆N(t) = (Ne(t) −
No(t))/Ntot, where Ne(o)(t) is the number of particles at the even(odd) sites
at time t and Ntot is the total number of particles in the system. This is an
experimentally accessible physical quantity [63, 98, 126] and therefore all our
results can be readily verified. Moreover it is a good figure-of-merit for the
diffusion properties of a system: in a delocalized (ergodic) phase ∆N(t)→ 0
on a single-particle time scale (∼ J−1) and all particles will be redistributed
among different sites. In a localized phase, ∆N(t)→ N̄(λ,U) 6= 0 at long
times (Jt � 1). In Refs. [63, 98] it has been shown that this is true away
from the zero-interaction transition point. Close to λ = 1, ∆N → 0 with
a power-law behaviour. The latter is a signature of a non-trivial interplay
between the effect of interaction and geometry, that we want to investigate
here in more detail.

Fig. 3.4 a) reports the imbalance ∆N(t) for the AAM and for U = 0.4J
and for different values of λ. We fitted3 the imbalance with a power-law of
the form ∆N(t) = at−β (inset). The exponent β is shown in Fig.3.5 a), b)
and c). For λ < 1 ∆N(t)→ 0 and a super-diffusive behaviour (1/2 < β . 1)
is observed with β decreasing with U as expected for 1D systems at small
interactions in the ergodic phase [126]. For λ > 1 there are two appreciably
different behaviours depending on the interactions. There exists a critical
value of the interaction Uc(λ) such that: for U < Uc(λ) ∆N(t) → N̄ 6= 0,
β ≈ 0, thus signaling localization at long times and the exponent grows
with U ; for U ≥ Uc(λ), ∆N(t) → 0 with a power-law whose exponent is
smaller than in the delocalized phase showing a sub-diffusive behaviour
(0 < β . 1/2). In this latter region of parameters the time scale of the
dynamics shows an anomalous dilation compared to the single particle one

3All fits have been done by excluding the first few tunneling times and specifically for
J−1t ≥ 5. The same procedure has been applied in ref. [98]. The reason is grounded in
the idea of excluding the initial transient in which the dynamics is ruled by single particle
tunneling and retain only the asymptotic behaviour.
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a)

c) d)

b)

Figure 3.4: a) Particle imbalance between even and odd sites, ∆N(t),
b) Time-average 〈∆N(t)〉T , c) autocorrelation function and d) its time-
averaged square 〈C2(τ)〉T for a system with L = 40 sites in the interacting
AAM for U = 0.4J for different values of λ. The inset in panel a) shows
the signal and the corresponding power-law fit for the cases (dashed green)
λ = 1.0 and (solid red) λ = 1.4

but it is still far from being strongly localized.
Fig. 3.5 c) shows also that the exponents of our fits are quantitatively

comparable with those extracted from the experiment in Ref. [98].

3.4 SC spectrum in interacting systems

We shall show that this time-scale-dilation is not a legacy of the transition
at U = 0 but it has a deeper origin. This statement is supported by the be-
haviour of the interacting OFM. In Fig. 3.6 a), we show the imbalance ∆N(t).
For small values of λ, ∆N(t)→ 0; for large λ, a power-law behaviour emerges
similarly to the AAM. We therefore conjecture that the slowing down arises
as a result of the non-trivial competition between the geometry of the under-
lying energy-landscape and the two-body interaction. To give to the above
conjecture a more solid ground we shall show that the geometry-interaction
interplay affects the nature of the SPES 4 and that there is a relation between
the slowing-down and its SC nature. Let us introduce the following quanti-

ties: the time-averaged imbalance 〈∆N(t)〉T = T−1
T∫
0

dt ∆N(t), the time-

4Here by single particle spectrum we mean the single particle excitation spectrum, see
appendix 3.A
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c)

a) b)

Figure 3.5: a) Exponent of the power-law behaviour ∆N(t) ∝ a t−β for
the imbalance for the AAM as a function of the potential strength λ and
interaction U . The black dashed curves identify β = const levels whereas
the vertical gray lines are the U = const cuts shown in panel b). b)
Exponent β for two different interactions (solid) U = 0.4 and (dashed) as a
function of λ. c) Exponent β as a function of U for different values of λ.

averaged autocorrelation function C(τ) = 〈∆N2(t)〉−1〈∆N(t)∆N(t+τ)〉 and

its time average 〈|C(τ)|2〉T = T−1
T∫
0

dτ |C(τ)|2. By following the discussions

in Refs. [94, 130, 136, 137], we can use them to investigate the nature of
the SPES. Specifically we make use of the Ruelle-Amrein-Georgescu-Enss
(RAGE) theorem and the Wiener’s lemma, and the Lebesgue-Riemann theo-
rem. They help us in establishing the conditions for the system to have a
SC component (appendix 3.B): limT→∞〈∆N(t)〉T = 0 ∧ limτ→∞C(τ) 6= 0.
The first condition excludes the presence of a PP part whereas the second
ensures that no AC part is present (appendix 3.B). The quantity 〈C2(τ)〉T
plays a similar role as 〈∆N(t)〉T , but due to numerical limitations it is more
difficult to extract information on the whole parameter region spanned. It is
nevertheless important to check that its behaviour is consistent with that
of 〈∆N(t)〉T (appendix 3.B). Theses quantities for the data in Fig.3.4 a)
are shown in Fig.3.4 b)-d). In each of them we can distinguish markedly
different behaviours: a fast decay to zero, a slow decay towards zero and a
decay towards a non-zero asymptotic value. In order to discuss their decay
properties on a more quantitative grounds we plot in Fig. 3.7 the exponents
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a)
OFM

c) d)

b)
U = 1.0

Figure 3.6: a) Particle imbalance between even and odd sites, ∆N(t),
b) Time-average 〈∆N(t)〉T , c) autocorrelation function and d) its time-
averaged square 〈C2(τ)〉T for a system with L = 40 sites in the interacting
OFM for U = 1.0J for different values of λ.

of the fit for a power-law functional dependency for 〈∆N(t)〉T ∝ T−γ (a))
and C(τ) ∝ τ−δ (b)). We see that there is a region for which γ < 0.1 which
we assume as a threshold for a non-decaying signal. According to the RAGE
theorem, for the set of points below this line (γ > 0.1) the SPES does not
have a PP component. We have also added a second threshold at γ = 0.4
which is the value around which the λ = 1 point develops by increasing the
interaction. Below this line (γ > 0.4) we expect the system to have only
purely AC spectrum, but the presence of a SC part cannot be excluded by
our analysis. If we now look at the values for δ, we see that there is a region
where δ < 0.2, for which C(τ) decays very slowly and we expect the system
not to have any AC component in its spectrum. Putting all together we
can say that in the region of parameters such that γ > 0.1 and δ < 0.2
the spectrum of the system is purely SC. It is important to note that the
region in which a SC component is present can be larger as we are looking
at regions where the spectrum is purely SC. We cannot exclude that there is
a SC component also in the region δ > 0.2 meaning that the overall region
in which the SC part is present could be larger than the one we identified
with our analysis.

With the help of Fig. 3.5 a) we observe that there is a good overlap
between the region in which the anomalous slowing-down of ∆N(t) is observed
and the region in which the system has a SC SPES.

In Figs. 3.6 b)-d), we can appreciate the same qualitative behaviour for
the OFM. Once again this rules out the role of the the transition at λ = 1
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Figure 3.7: Exponents of the power-laws: a) for the the time-averaged
imbalance and 〈∆N(t)〉T ∝ T−γ b) for the time-averaged autocorrelation
function C(τ) ∝ τ−δ in the AAM as a function of the potential strength
λ and interaction U . The black dashed curves identify γ = const and
δ = const.

and U = 0 for the AAM as the mechanism responsible for the slowing-down
in the presence of interactions and instead strengthens our conclusions on
the emergence of the properties of SC spectra in the dynamics of the system.

As a side result, we demonstrated that SC spectra are robust when many-
body interactions are added, thus leaving hope of observing the unusual
properties of quasicrystalline materials also in moderately interacting systems.
This is in constrast with previous predictions [117,138] based on effective non-
interacting models. We can also conclude that many-body correlations are a
key ingredient in the development of the discussed anomalous behaviour.

3.5 Conclusions

To summarize, we have investigated the redistribution of particles initially
held in an uncorrelated state with an inhomogeneous spatial distribution.
We have found an anomalous behaviour in the AAM in a finite region
of the plane (U, λ), which occurs only at the transition point in the non-
interacting case. Aiming at showing that this behaviour is not a legacy
of the non-interacting transition point, we looked for a comparison at the
interacting on-site Fibonacci model, which lacks transitions of any type in
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the non-interacting case. We have found that an anomalous redistribution of
particles occurs for this model as well. In order to explain this behaviour, we
resorted to the Lesbegue decomposition of positive measures to show that
the power-law behaviour is a consequence of the singular continuous nature
of the single particle spectrum of the interacting system .

We conjecture that the microscopic mechanism behind this phenomenon
has to be sough in the critical nature of the single-particle natural orbitals of
the reduced density matrix of the interacting system at stationarity, similarly
to the case of non-interacting systems with quasicrystalline geometries [92].

3.A Single particle energy spectrum

We want to clarify what the meaning of “single-particle energy spectrum”
used in the main text in the case of an interacting many-body system. We
will follow loosely the treatment given in Ref. [81] (Chap. 6). In the main
text we have chosen the local density as a figure of merit to analyze the
spectral properties, which in terms of the Green’s function is simply given
by ni(t) = −iG<ii (t; t). The latter can be written as:

G<ii (t; t) = i
〈
eiĤtn̂ie

−iĤt
〉
ρ̂0

(3.2)

We now introduce the identity operator:

Î =

∫
σ
dε |Ψ(ε)〉〈Ψ(ε)| (3.3)

where the integral is over the whole spectrum σ of the Hamiltonian Ĥ,
namely over the closure of the complement of the resolvent set define as
ρ = {λ|(H − λI)−1 is a bounded operator} with respect to R. According
to the Lebesgue decomposition theorem the spectrum is the union of three
components σ = σac ∪ σsc ∪ σpp where ac, sc and pp stand for absolutely
continuous, singular continuous and pure point respectively. When ε belongs
to the pp part of the spectrum the integral notation is assumed to be replaced
by a sum. Inserting two identities into the expression for the lesser Green’s
function we obtain:

G<ii (t; t) = i

∫
σ
dεdε′ ei(ε

′−ε)tfi(ε, ε
′) (3.4)

where fi(ε, ε
′) = 〈Ψ(ε)|ρ̂0|Ψ(ε′)〉 〈Ψ(ε′)|n̂i|Ψ(ε)〉. The above expression can

be recast into the form:

G<ii (t; t) = i

∫ ∞
−∞

eiωt dω µi(ω) (3.5)

where we defined: µi(ω) =
∫
σ dεdε

′ δ(ω − (ε′ − ε)) fi(ε, ε′)
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In this form the mean value of the the number of particle at site i and
time t can be interpreted as the Fourier transform of a measure µi which has
support on the spectrum of the total Hamiltonian Ĥ. Moreover from the
expression of µi we see that the measure is computed on the differences ε′− ε,
namely it runs over all particle-hole like excitations of the many-body system.
In this respect it can be seen as the single particle excitation spectrum. To
better understand this concept let us look at a specific example. Let us
consider the case of a Fermi gas of N particles at zero temperature and at
equilibrium, whose Hamiltonian is Ĥ0. If we now add a one-body perturbation
the total Hamiltonian reads Ĥ = Ĥ0 + δV̂ and δV̂ a small perturbation.
Let us assume that at time t = 0 we suddenly switch this perturbation on
(quantum quench). We then expect that the explored spectrum will be that
of all particle-hole excitations around the initial Fermi energy.

In the case of the initial state considered in the work presented in the
main text we expect to explore most of the single-particle excitation spectrum
as the initial state is a very highly excited one.

3.B Analysis of the spectral properties

The link between the dynamics of the system and the nature of the support
of the spectrum of the single-particle energy spectrum can be highlighted
by resorting to the theory of spectral analysis of operators. It will be useful
in the following to define the continuous component of a spectrum given by
σc = σac ∪ σsc.

Let us introduce the RAGE (Ruelle-Amrein-Georgescu-Enss) theo-
rem [136, 139] which relates the time average of the mean of a compact
operator to the presence of a continuous part. Given a compact operator Â
we define the time average of its expectation value at time t as:

〈〈Â〉〉T =
1

T

∫ T

0
dt 〈Â(t)〉ρ̂0 (3.6)

The RAGE theorem states that

lim
T→∞

〈〈A〉〉T = 0⇔ σ ⊆ σc (3.7)

The RAGE theorem gives a way to infer the presence of a pure-point
component in the single-particle energy spectrum which is guaranteed by the
condition limT→∞〈〈A〉〉T 6= 0.

The number operator is a compact operator as it is a linear combination
of projection operators; for the same reason also the imbalance operator is a
compact operator and therefore the RAGE theorem applies to the quantity
〈∆N(t)〉T considered in the main text.
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The RAGE theorem alone still does not rule out the presence of an
absolutely continuous part whenever the time average goes to zero at long
times. In order to assess the presence (or absence) of the absolutely continuous
part we look at the autocorrelation function:

C(τ) =

〈〈
Â(t)

〉
ρ̂0

〈
Â(t+ τ)

〉
ρ̂0

〉
t〈〈

Â(t)
〉2

ρ̂0

〉
t

(3.8)

In the spectral analysis of signals the autocorrelation functions are a
powerful method to asses the presence of correlations in time-series at different
time lags and can be therefore used to make statements on the nature of
the spectrum without having direct access to the harmonic analysis of the
signal itself. Loosely speaking if the spectrum has a pure point spectrum one
expects sustained oscillations in the autocorrelation function showing order
in the time. The autocorrelation function will instead decay to zero if the
signal is not correlated at long times, a feature to be expected in the presence
of a continuous spectrum. This physical intuition finds a more rigorous
mathematical formulation which will try to present briefly in the following.
It easy to see that in the case of the imbalance operator ∆N̂ ≡

∑
i(−1)in̂i

the autocorrelation function is given by :

C(τ) =

∫ ∞
−∞

eiωτdω |f(ω)|2 (3.9)

with µ(ω) =
∑

i(−1)iµi(ω)/N with N =
∫∞
−∞ dω |

∑
i(−1)iµi(ω)|2.

Therefore the autocorrelation functions are nothing but the Fourier transform
of a (positive) measure. Comparing it with Eq. 3.5 we see that this measure
is the squared modulus of the sum of measures giving the occupation number
at different sites.

Therefore it turns out that the averaged autocorrelation function is
nothing but the Fourier transform of the measure dω|f(ω)|2. We can use
its asymptotic behaviour to detect the presence of an absolutely continuous
component of the spectrum. Specifically the Riemann-Lebesgue theorem
tells us that limτ→∞C(τ) = 0 is a necessary condition for the spectrum to
be purely absolutely continuous. This means that limτ→∞C(τ) 6= 0 implies
that the spectrum is such that σ ⊆ σs where σs = σpp ∪ σsc is the singular
part of the spectrum.

Therefore the condition for the single particle excitation spectrum to be
purely singular continuous can be written as:

lim
T→∞

〈〈A〉〉T = 0 (no PP component is present) (3.10)

lim
τ→∞

C(τ) 6= 0 (no AC component is present) (3.11)
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Figure 3.8: a) Exponent of the power-law 〈|C(τ)|2〉T ∝ T−δ1t for the
interacting OFM as a function of the potential strength λ and interaction
U . b) Cuts of the density plot of fig. a) for different value of λ.

It is important to stress that even in the case limT→∞〈〈A〉〉T = 0 ∧
limτ→∞C(τ) = 0 a singular continuous component can still be present. This
is due to the fact that from the Riemann-Lebesgue theorem the condition
limτ→∞C(τ) is necessary but not sufficient to guarantee the presence of an
AC component. In this respect the conditions 3.10 to detect the presence of
a singular continuous component are more strict that what needed.

In the main text we also presented a third quantity, namely the average
of the square of the autocollaration function 〈|C(τ)|2〉T . This quantity can
be used as well to witness the absence of a pure point component through
Wiener’s lemma: [140]:

lim
T→∞

〈|C(τ)|2〉T =
∑
k

σ2(λk) (3.12)

where λk ∈ σpp. Basically Wiener’s lemma states that the time average
of the square of the autocorrelation function is equal to the measure of the
pure point part. Therefore limT→∞〈|C(τ)|2〉T = 0 implies that the spectrum
does not contain a pure point part. Assuming a power law decay for this
quantity 〈|C(τ)|2〉T ∝ T−δ1t we can extract the value of the exponent for
the different set of parameters considered in the main text. In Fig. 3.8 we
show the result of these fits, which have been done with the same criteria of
the other ones in the main text. We can see that the behaviour is similar
to that of 〈〈Â〉〉T . Nevertheless this quantity gives non-accurate results on
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the time scales accessible with our numerical approach. This can be seen
in the region λ ≤ 0.8 and U < 0.6 where we expect no PP component at
all and therefore δ1 ≈ 1. The reason for such a discrepancy can be easily
understood by looking at the original signal ∆N(t) in this parameter region.
It displays oscillations whose amplitude will eventually decay, but on a larger
time scale than the one accessible with our numerical simulations. 〈|C(τ)|2〉T
is very sensitive to these oscillations and captures an order in the time signal
which will eventually disappear at longer times. If we consider this and we
use again the λ = 1 curve as a reference, we see that the region in which
the presence of the PP part is absent is similar to that inferred from the
behaviour of δ for 〈∆N(t)〉T .



Conclusions

This thesis discusses a series of works aiming at investigating how the spatial
geometry and many-body interactions compete to determine the physical
properties of many-body systems, which can be experimentally analyzed in
the framework of ultracold gases in optical lattices. To this aim, various
observables and systems have been investigated.

The first chapter focuses mainly on the Tonks-Girardeau gas, addressing
its static and dynamical properties.In sec. 1.1, the mapping of the many-
body wavefunction of the TG gas into that of a non-interacting Fermi gas is
reviewed, and it is extended to calculate the single particle Green’s function
in the time domain.It is shown that with this approach it is possible to
recover the equal time quantities, such as density (RSPDM) and momentum
distribution (MD). This allows a fast numerical implementation in every
spatial potential of both static and dynamical properties of a TG gas. Two
different applications are presented in the same chapter. In sec. 1.2 it is
reported the study of a TG gas in a quasiperiodic potential. The single
particle system shows a metal to insulator transition, with the appearance of
the mobility edge if the main lattice lies under a certain threshold. Comparing
the static properties of the TG gas (MD and RSPDM) with the those of non-
interacting fermions, reveals that a signature of the mobility edge is reflected
into many-body measurable properties. Sec. 1.3 focuses on dynamical
properties of the TG gas. Numerically implementing the ingredients presented
in sec. 1.1 for Green’s functions at different times, we have studied the spectral
function of the system in a periodic potential. A study of the asymptotic
behavior of the SF near the nonanalyticities has been presented ,and the
results compared with the existing literature.

In chap. 2, it is examined how the interaction of a Fermi gas in a periodic
potential with an impurity influences the long time behavior. The Loschmidt
echo, which describes the response of the system to an initial perturbation,
is the figure of merit used. We have used two different but complementary
methods: a perturbative approach (linked cluster expansion) up to the third
order, which provides information about which processes are associated
to each observed behavior, and an exact calculation, i. e. the functional
determinant approach, which allows us to verify to which order we could
truncate the perturbation expansion. We have confirmed that second order
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contribution captures the Anderson Orthogonality Catastrophe even in the
presence of a lattice, and characterized completely the exponent of the power
law behavior. Conversely, we have shown that third order contributions are
essential to describe the Fano resonance oscillations, that emerge when the
initial chemical potential of the gas approaches the upper band-edge, and
the system undergoes an insulating phase.

Finally, in chap. 3, it is shown that the interplay between a quasiperiodic
geometry and the many-body interaction of a spinfull Fermi gas gives rise
to anomalous propagation properties, which have been recently observed in
ultracold gas experiments. We have looked at single-particle correlations
functions, distribution of particles and its correlations, after a quench of the
hamiltonian that drives the system out of equilibrium. We have sketched
a phase diagram for the interacting André-Aubry model. Comparing it
with the on-site Fibonacci model, it has been shown that the microscopic
mechanism behind the appearance of the critical region, which manifests for
intermediate strength of interaction and lattice potential, has to be sought
in the singular continuous nature of the single-particle energy spectrum of
the AAM.
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