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Abstract

The local emergency of Beltrami �ows is a fundamental characteristic of the
�uid turbulence dynamics (Navier-Stokes equations), where the formation
of singularities starting from smooth initial data, i.e. the breakdown of regu-
larity in the solutions, can individuate the onset of the turbulent behaviour.
This property of nonlinear interactions has been used as a basic ingredient
in the formal proof of Onsager conjecture, about the existence of weak so-
lutions of Euler equations which do not conserve kinetic energy of the �ow.
The breakdown from smooth to weak solutions and the energy dissipation
phenomenon can be possibly found also in magnetohydrodynamics (MHD)
when progressively increasing Reynolds and magnetic Reynolds numbers.
Thus a deep study of these phenomena of local formation of strong correla-
tions between the dynamical variables of the systems could give important
elements for understanding which mathematical conditions characterise the
singularity emergence in weak solutions of MHD ideal case. In order to deal
with these problems a multidisciplinary approach, embedding experimen-
tal data analysis and mathematical rigorous study, is needed. In this thesis
both approaches have been carried out. An ad hoc data analysis have been
identi�ed for investigating the dynamics described by particular nonlinear
partial di�erential equations that can generates wide modes cascades and
thus turbulence (MHD equations and Hasegawa-Mima equation). In addi-
tion the problem of investigating the second order regularity of solutions to
particular degenerate nonlinear elliptic equations has been discussed.
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Abstract

La locale formazione dei così detti �ussi di Beltrami rappresenta una delle
caratteristiche principali della dinamica dei �ussi turbolenti (equazioni di
Navier-Stokes). In particolare la formazione di singolarità a partire da dati
iniziali regolari (cioè la rottura della regolarità delle soluzioni) può dare
inizio al comportamento turbolento nei �uidi. Tale proprietà, basata sulle
interazioni non lineari, è tra i principi cardine della dimostrazione della
congettura di Onsager sull'esistenza di soluzioni deboli delle equazioni di
Eulero che non conservano l'energia cinetica totale del sistema.
Il passaggio da soluzioni regolari a deboli e il fenomeno di dissipazione
dell'energia possono manifestarsi anche in magneto�uidodinamica (MHD),
quando si ha un aumento progressivo sia dei numeri di Reynolds che dei
numeri di Reynolds magnetici. Perciò uno studio approfondito di questi
fenomeni, dove si ha l'insorgenza di forti correlazioni locali fra le variabili
dinamiche del sistema, può fornire elementi importanti per comprendere
quali condizioni matematiche caratterizzano la formazione di singolarità
nelle soluzioni deboli nel caso MHD ideale. Per a�rontare al meglio questi
problemi è necessario un approccio multidisciplinare dove le analisi di dati
sperimentali e la formulazione di una struttura matematica rigorosa co-
esistono.
In questo lavoro di tesi entrambi gli approcci sono stati a�rontati. In par-
ticolare un'analisi dati ad hoc è stata costruita al �ne di studiare la dinam-
ica descritta da speci�che equazioni di�erenziali alle derivate parziali non
lineari dove, sotto opportune ipotesi, si ha l'insorgenza di fenomeni turbo-
lenti. Inoltre si è discusso il problema della regolarità di secondo ordine di
soluzioni di particolari equazioni ellittiche degeneri non lineari.
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Introduction

In 1949 Onsager [114] formulated his famous conjecture according to which
in incompressible �uid �ows Hölder continuous weak solutions of Euler
equations conserve kinetic energy only when their Hölder exponent is α > 1

3 .
A �rst proof of Onsager conjecture for Hölder exponent α > 1

3 has been
given by Eyink [43], restricting however the study to a particular function
class. Later Constantin et al. [26] have provided a complete and simpli�ed
proof extending the Eyink's results.
The case α 6 1

3 has been an open problem since, recently, De Lellis et al.
have provided a rigorous mathematical proof [35, 11, 12]. The given demon-
stration is constructive and a key role for building up an Hölder continuous
(with α 6 1

3) weak solution of Euler equation which does not verify the
energy conservation relation has been played by the phenomenon of local
Beltramisation of the �ow, i.e. local formation of structures where velocity
and vorticity �eld are strongly correlated. In particular the given proof is
based on the construction of a sequence of Euler equations' approximated
solutions which, letting the error to zero, converges to an exact solutions
in the space C0. Meanwhile, these approximations are exact solutions of
Navier-Stokes systems of equations which describe the dynamical evolution
of a �uid in the presence of dissipative terms (Reynolds stress). The se-
quence is built up reducing progressively the dissipative terms, such that
the sequence terms follow the recursive formulation

vk+1(x, t) = vk(x, t) +W (vk(x, t),�Rk(x, t);ωkx, ωkt) + correction

where W is a vectorial �eld consisting of periodic Beltrami �ows in the
variables (x, t) at the frequency ωk, modulated in amplitude and phase de-
pending on vk and �Rk, and the correction term guarantees that vk+1 is
divergence-free.
The idea of introducing at each iterating step a term formed by a super-
position of Beltrami solutions weakly interacting is strictly related to the
phenomenology of �uid turbulence. In fact, the local emergency of Bel-
trami �ows is a fundamental characteristic of the �uid turbulence dynam-
ics (Navier-Stokes equations), where the formation of singularities starting
from smooth initial data, i.e. the breakdown of regularity in the solutions,
can individuate the onset of the turbulent behaviour. Therefore, a deep
study on the fundamental conditions that permit the formation of weak
solutions in dissipative �ows may give a key for better understanding the
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formation and the evolution of these solutions when the dissipative terms
tend to zero.

The breakdown from smooth to weak solutions and the energy dissi-
pation phenomenon can be possibly found also in magnetohydrodynam-
ics (MHD) when progressively increasing Reynolds and magnetic Reynolds
numbers [6]. Actually the ideal MHD equations can be seen as the limit
of the dissipative incompressible ones when dissipative terms tend to zero
(existence of a generalised Beale-Kato-Majda theorem). In addition, prop-
erties equivalent to the Beltramisation of �uid �ows could be locally ob-
served. Thus a deep study of these phenomena where local formation of
strong correlations between the dynamical variables of the systems could
give important elements for understanding which mathematical conditions
characterise the singularity emergence in weak solutions of MHD ideal case.

In order to deal with these problems a multidisciplinary approach is
needed. In fact, it is important to combine both an experimental approach,
where laboratory, numerical and even space data are analysed using re�ned
mathematical tools, and a rigorous mathematical approach, where a strong
framework is built up in order to establish the conditions that guarantee
the existence and the uniqueness of weak solutions in the case of nonlinear
partial di�erential equations.

In this thesis we have faced the two approaches. In particular, ad hoc
data analysis have been identi�ed for investigating the dynamics described
by particular nonlinear partial di�erential equations that can generate wide
modes cascades and thus turbulence (MHD equations and Hasegawa-Mima
equation). In addition, the problem of investigating the second order regu-
larity of solutions to particular degenerate nonlinear elliptic equations has
been discussed.
This work is divided in three sections.
In section I we present a systematic study focused on understanding if and
how phenomena similar to the local emergence of Beltrami �ows in �uids
occur on rapid ideal times in 2D MHD incompressible turbulent �ows. This
eventual occurrence is related to the development of intermittency. In par-
ticular, we want to assess in which manner the ideal quadratic invariants
play a role in determining the nature of the structures produced by nonlin-
ear interactions, by shaping these coherent structures in the very beginning
of a decaying turbulence when dissipative terms have not yet developed
their e�ects.
In section II a description of the data analysis performed on an ongoing
experimental project, the Von-Kármán plasma (VKP) experiment, based
in the Laboratoire de Physique at the Ecole Normale Supérieure de Lyon, is
presented. In particular we want to understand how the generated plasma
column behaves when plasma dynamics characterised by the presence of
drift wave modes occurs for magnetic �eld above a certain threshold. Pre-
liminary results are showed.
This work is the result of a collaboration between the Laboratoire de
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Physique of the Ecole Normale Supérieure de Lyon and the Laboratoire
de Mécanique des Fluides et d'Acoustique (LMFA) of the Ecole Centrale
de Lyon.
Finally in section III we deal with both the local and global regularity
theory for nonlinear degenerate elliptic equations in divergence form.





Part I

Coherent structures in MHD

turbulence
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Introduction

Fluid turbulence is characterised by the local emergence of Beltrami �ows,
i.e. structures where velocity and vorticity �eld are strongly correlated,
as long as nonlinear interactions take place, producing smaller and smaller
scales [106, 50, 45]. This property of nonlinear interactions has been used
as a basic ingredient in the formal proof of the Onsager conjecture [114, 25],
about the existence of weak solutions for Euler equations which do not con-
serve kinetic energy of the �ow [108, 35, 11]. It is then worth investigating
if a similar behaviour is found inside magnetohydrodynamic (MHD) in-
compressible turbulent �ows in order to derive which mathematical proper-
ties characterise ideal turbulent �ows, i.e. turbulent �ows where dissipative
terms tend to zero.

The formation of large scale correlated structures (self-organization), as
the result of the relaxation processes occurring on very long times in MHD
incompressible turbulent �ows, has been the object of a lot of theoreti-
cal and numerical studies, which have shown that the properties of these
structures could be predicted assuming that dissipative terms minimize the
total energy of the turbulent �ow, holding constant some ideal quadratic
(rugged) invariants. In 3D these invariants are cross helicity and magnetic
helicity [100, 61, 62, 93, 57, 18, 145, 137], while in 2D they are cross helicity
and magnetic potential [57, 60, 120, 17, 145, 141].
The properties of the coherent structures predicted by these studies have
also been observed in solar wind data [39, 61, 95, 120].
Matthaeus et al. [96] have shown that in both 2D and 3D incompressible
MHD simulations dynamical alignment of velocity and magnetic �eld that
occurs over rapid time scales (of the order of some eddy turnover time)
[132].

The occurrence of coherent structures inside turbulence [145] has also
been discussed in relation to the phenomenon of spatial intermittency [50].
Nonlinear interactions give rise to a cascade towards smaller scales which
is not self similar. In particular the Probability Distribution Functions of
�uctuations (of the dynamical variable) at a given length display larger
and larger tails with respect to a Gaussian Distribution as the lengths
become smaller and smaller. This behaviour, which has been described as
multifractal [115], is now interpreted in terms of the occurrence at small
scales of coherent structures, which are superposed on a background of
random �uctuations [151].

7
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In this section we present a systematic study focused on understand-
ing if and how phenomena similar to the local emergence of Beltrami �ows
in �uids occur on rapid ideal times in 2D MHD incompressible turbulent
�ows. This eventual occurrence is related to the development of intermit-
tency. In particular we want to assess in which manner the ideal quadratic
invariants play a role in determining the nature of the structures produced
by nonlinear interactions, by shaping these coherent structures in the very
beginning of a decaying turbulence when dissipative terms have not yet
developed their e�ects [34].

In order to give a brief introduction to the theoretical background in
which MHD theory can be formulated, in Chapter 1 we present the ba-
sic properties of MHD theory obtaining MHD system of equations via a
phenomenological approach, and in Chapter 2 we describe the basic phe-
nomena of MHD turbulence, with particular attention to the phenomenon
of self-organisation of turbulent �ows and the appearance of intermittency.

Chapter 3 is devoted to the exposition of the wavelet analysis technique,
which has been used as a fundamental tool for detecting and analysing the
coherent structures that characterise intermittent turbulent �ows.

Finally in Chapter 4, we present in detail the analysis performed in
the case of 2D incompressible MHD turbulent system and the results ob-
tained. To try to assess the general validity of our results, the analysis
has been performed for some di�erent simulations, varying resolution and
initial parameters.



Chapter 1

Basic properties of

magnetohydrodynamics

Magnetohydrodynamics (MHD) is the macroscopic theory aimed at de-
scribing the behaviour of electrically conducting �uids [7, 68]. The term
macroscopic indicates that the involved spatial scales are larger than the
intrinsic length scales of the plasma, which are the Debye length1 and the
Larmor radii2 of di�erent charged particles species [3].

In this chapter an introduction to general properties of MHD formu-
lation is given: a derivation of the MHD equations is presented, followed
by a discussion of the related conservation laws, with particular attention
to the ideal invariants, i.e. the integral quantities that are conserved in
the nondissipative (ideal) system; �nally, for a better understanding of the
MHD dynamic turbulence (chapter 2), the MHD system of equations is
rewritten using the Elsässer �elds.
All the equations presented here are in dimensional form using Gaussian
units. Only in the end of the dissertation non-dimensionalisation in term
of the Alfvén time is reported.

1.1 The MHD equations

The MHD equations are derived using a macroscopic formulation valid for
any electrically conducting �uid. Another possible approach is through the
kinematic equations for both ions and electrons [9].

1 The Debye length is de�ned by λD =
√
ε0kBTe

neq2e
, where ε0 is the permittivity of free space,

kB is the Boltzmann constant, Te, ne and qe are the temperature, the density and the charge
of electrons respectively.

2 The Larmor radius (or gyroradius) is the radius of the circular motion of a charged particle
in the presence of a uniform magnetic �eld, i.e. rg = mv⊥

|q|B with m the mass of the charged

particle, v⊥ the component of the velocity perpendicular to the uniform magnetic �eld im-
posed, q the charge of the considered particle and B the module of the imposed magnetic
�eld.

9
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Let δV be a �uid element with mass ρδV , where ρ is the mass density.
The forces acting on the �uid element are the following.

� The thermal pressure force. Considering conditions close to local ther-
modynamic equilibrium valid, the pressure tensor results isotropic,
i.e. pij = pδij and it exerts, on the surface of the �uid element, the
force

−
∮
p dS = −δV∇p (1.1.1)

where dS = n dS is the surface element.

� The gravitational force

δV ρg = −δV ρ∇φg (1.1.2)

where φg indicates the gravitational potential. In this dissertation
this force is usually omitted. As a matter of fact in a magnetised
plasma gravity is often negligible if compared with the Lorentz force.

� The magnetic force. In an electromagnetic �eld, the force acting
on a particle of charge qi is the Lorentz force. Thus the force on a
macroscopic �uid element is given by the sum of the forces acting on
every particle, δqE+δJ×B/c, where c is the speed of light in vacuum,
δq is the net charge and δJ = jδV is the electric current carried by
the �uid element with j the current density.
In dense �uids the property of quasi-neutrality is valid, i.e. δq '
0. In fact, electrostatic �eld guarantees the charge neutrality over
macroscopic distances. Hence the only contribution presents in the
magnetic force is the macroscopic Lorentz force

δV
1

c
j×B (1.1.3)

� The viscous force. The viscosity acting on the surface of the volume
element is de�ned by ∮

σ(µ) · dS = δV∇ · σ(µ) (1.1.4)

where σ(µ) = {σ(µ)
ij } is the viscous-stress tensor, such that

σ
(µ)
ij = µ

[
(δtvj + δtvi)−

2

3
δij∇ · v

]
= µ

(
∇2v +

1

3
∇∇ · v

)
(1.1.5)

and µ is the dynamic viscosity, which is assumed constant and can
be used for de�ning the kinematic viscosity, ν = µ/ρ3.

3 Usually in real plasmas the viscous-stress tensor is not isotropic.
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Thus the force balance becomes

ρ
dv

dt
= ρ (∂t + v · ∇)v = −∇p+

1

c
j ×B + µ

(
∇2v +

1

3
∇∇ · v

)
(1.1.6)

Equation (1.1.6) describes the equation of motion of the �uid element under
study.

Ampère's law gives the relation between the current density j and the
magnetic �eld, i.e. ∇ × B = 4π

c j. Here the displacement current is not

included because it is a term of order v2

c2
with respect to the term ∇ ×B

and it can be neglected in the nonrelativistic case (�uid velocity is much
smaller than the light velocity). Substituting Ampère's relation in (1.1.3)
we have

1

c
j ×B = − 1

8π
B2 +

1

4π
B · ∇B = −∇ · T M (1.1.7)

where T M = {TMij } is the magnetic stress tensor, with TMij = 1
8πB

2δij −
1

4πBiBj . Observing that the �rst term in the magnetic stress tensor acts
as the isotropic pressure, an expression for the total pressure can be given
by

P = p+
B2

8π
(1.1.8)

where the parameter β = 8πp
B2 identi�es the strength of the magnetic �eld

in a plasma.
Thus (1.1.6) can be rewrite as following

ρ
dv

dt
= −∇P +

1

4π
B · ∇B + µ

(
∇2v +

1

3
∇∇ · v

)
(1.1.9)

The dynamics of the magnetic �eld can be described combining Fara-
day's law and Ohm's law. In fact, from the �rst relation we have

∂tB = −c∇×E (1.1.10)

For a �uid at rest Ohm's law in the simplest case is E = jσ, where σ
is the electrical conductivity. If the reference frame considered is now the
laboratory one, the �uid element results moving with speed v and then
the new electric �eld is obtained by a Galilean transformation: E′ = E +
v ×B/c; consequently the generalised Ohm's law for a conducting �uid in
motion is

E +
1

c
v ×B =

1

σ
j (1.1.11)

Using (1.1.10) and (1.1.11) under the condition of uniform conductivity it
is possible to derive the following induction equation for the magnetic �eld

∂tB −∇× (v ×B) = η∇2B (1.1.12)

where η = c2

4πσ is the magnetic di�usivity. In addition, for the magnetic
�eld the relation ∇ ·B = 0 is valid.
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The mass density ρ of the �uid obeys the following continuity equation

∂tρ+∇ · ρv = 0 (1.1.13)

Hence in the case of incompressible �uids (∇ · v = 0) the mass density of
the �uid is constant.

In order to close the system of equations

ρ (∂t + v · ∇)v = −∇p+
1

c
j ×B + µ

(
∇2v +

1

3
∇∇ · v

)
∂tB −∇× (v ×B) = η∇2B

∂tρ+∇ · ρv = 0

∇ ·B = 0

(1.1.14)

an expression for the pressure is needed. In the MHD formulation we as-
sume that variations of the thermodynamic state are su�ciently fast and,
on large spatial scales, the dissipative e�ects can be neglected. Hence using
the continuity equation (1.1.13) and the condition of adiabatic changes of
state the relation for the pressure is

∂tp+ v · ∇p+ γp∇ · v = 0 (1.1.15)

with γ =
cp
cv

the speci�c heat ratio.

For �uid velocities slow compared with the propagation speed of com-
pressible waves propagating in the same directions, a possible limiting case
is incompressibility, i.e. dρdt = 0 or equivalently ∇ · v = 0. In this limit it
is possible to assume the density of the �uid element constant, ρ = ρ0 and,
by taking the curl of the equation of motion (1.1.9), we obtain the equation
for the vorticity ω = ∇× v

∂tω + v · ∇ω − ω · ∇v =
1

cρ0
(B · ∇j − j · ∇B) + ν∇2ω (1.1.16)

Calculating the vorticity with (1.1.16), the velocity is obtained solving
Poisson's equation

∇2v = −∇× ω (1.1.17)

The incompressibility condition does not imply that the pressure is only
advected, because it formally indicates γ → ∞ in (1.1.15). In fact the
pressure is now no longer an independent dynamic variable and its Poisson's
equation can be determined performing the divergence of the nonlinear term
in (1.1.9), i.e.

∇2P = −∇ ·
(
ρ0v · ∇v −

1

4π
B · ∇B

)
(1.1.18)

Thus solving the Poisson's equation for the pressure we have a closure for
the system of equations (1.1.14).
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1.2 Conservation laws

Equations

ρ (∂t + v · ∇)v = −∇P +
1

4π
B · ∇B

∂tB −∇× (v ×B) = 0

∇ · v = 0;∇ ·B = 0

(1.2.19)

represent a closed set of equations known as incompressible ideal (nondis-
sipative) MHD. Starting with them several conservation equations for the
MHD theory can be deduced. These equations place constraints on the
dynamics of the �uid and can be broken only when dissipative e�ects are
introduced.
Conservation laws permit to obtain two di�erent classes of invariants: those
involving the �uid and magnetic variables and those involving only the mag-
netic �led, as showed in the next paragraphs.

1.2.1 Ideal �uid invariants

Let's consider the full set of MHD equations (1.1.14).

Continuity equation (1.1.13) guarantees that the mass enclosed in a
constant volume V is constant if the normal velocity at the boundary S of
the volume vanishes. Thus the massM contained in a volume V (t) moving
with the �uid is conserved, i.e.

dM

dt
=

∫
V
∂tρ d

3x+

∫
∂tV

ρ d3x = 0 (1.2.20)

The equation of motion in the ideal case allows the formulation of the
following global momentum balance relation for a �xed volume V

d

dt

∫
V
ρv d3x =

∮
S

(
ρvv +

(
p+

B2

2

)
I −BB

)
· dS (1.2.21)

where I is the identity matrix. The momentum of the plasma volume V is
conserved if the normals vnBn = 0 and p+B2/2 = 0.

In the case of an isolated system and in the limit of incompressibility
(γ → ∞), the energy law can be obtained using only the momentum and
magnetic �eld equations, obtaining

dE

dt
= −

∮
S
dS ·ΦE −DE (1.2.22)

with the energy E expressed as the sum of kinetic and magnetic energies,
namely

E =

∫
V
dV

(
1

2
ρv2 +

1

8π
B2

)
(1.2.23)
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ΦE the �ux energy (that does not contain dissipative terms)

ΦE =

(
1

2
ρv2 + p

)
v +

1

4π
B × (v ×B) (1.2.24)

and the quantity DE that includes the energy dissipation contribute, i.e.

DE =

∫
V
dV

(
1

σ
j2 + µω2

)
(1.2.25)

Therefore in the ideal case (no dissipative e�ects present) the total energy
of the system is conserved.

Another conserved quantity, in the case of homogeneous density ρ =
ρ0 = 1 and incompressibility, is the cross-helicity Hc =

∫
V v ·B dV . In fact

for Hc we �nd

dHc

dt
= −

∮
S

(
v ·Bv − v2

2
B + pB

)
· dS (1.2.26)

which vanishes if vn = Bn = 0 at the boundary. It is worth noting that
cross-helicity conservation corresponds, in the case of the incompressible
�uids, to the conservation of the kinetic helicity Hv =

∫
v · ωd3x.

1.2.2 Ideal magnetic invariants

The magnetic �ux and the magnetic helicity are purely magnetic invariants.
The magnetic �ux is de�ned as

Φ =

∫
S
B · dS (1.2.27)

where the surface integral is performed across a surface S(t), bounded by
a closed curve s(t), co-moving with the plasma.
Integrating (1.1.12) over S and applying Stokes' theorem we get∫

S
∂tB · dS =

∮
s(t)

(v ×B) · ds− c

σ

∮
s(t)
j · ds (1.2.28)

where∮
S

(v ×B) · ds =

∮
(v ×B) · dsdt = −

∮
B (v × ds) dt =

∫
dS
B · dS

(1.2.29)
Thus the balance relation for the magnetic �ux is

dΦ

dt
=

∫
S
∂tB · dS +

∮
B (v × ds) dt = − c

σ

∮
s(t)
j · ds (1.2.30)

and if σ →∞ the magnetic �ux is conserved.
We observe that a �ux line can be de�ned bending the boundary curve

s along the �eld lines, consequently the �ux conservation (1.2.30) describes
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the phenomenon of �eld lines frozen into the plasma. Thus �eld lines are
nothing more then �ux tubes of in�nitesimal diameter that, in absence of
resistivity, cannot be broken but just twisted by the action of the �uid.
But it is worth to observe that in macroscopic plasma processes, even in
the case of small resistivity, the �eld topology is rarely conserved, whereas
the �eld lines tend to break and reconnect.

The magnetic helicity is de�ned as

Hm =

∫
V
A ·BdV (1.2.31)

where A is the magnetic vector potential such that B = ∇×A.
Quantity (1.2.31) is considered to be a well-suited measure of the complexity
characterising the magnetic �eld when it is moving around the plasma.

Using Faraday's law and choosing E = c−1∂tA, we have

dHm

dt
=

∫
V

(∂tA ·B +A · ∂tB) dV =

∫
V
A · ∇ × (v ×B) dV

=

∮
S

(A · vB −A ·Bv) · dS
(1.2.32)

If Bn = vn = 0 the previous quantity vanishes, i.e. the magnetic helicity
conservation is obtained.

Because the quadratic quantities E, Hc and Hm are conserved if dissi-
pative terms are neglected, as shown above, they are called ideal invariants
or rugged invariants, due to their capacity to survive to any Galerkin trun-
cation [131].
Ideal invariants have an important role also in the case of homogeneous
turbulent �ows, where dissipative coe�cients can't be totally neglected
and periodic boundary conditions are considered. In fact they can provide
important informations about the dynamical evolution of real dissipative
turbulence [141].

In the 2D incompressible MHD description the representative system of
equations is

∂tω + v · ∇ω =
1

cρ0
B · ∇j + ν∇2ω (1.2.33)

∂ta+ v · ∇a = η∇2a (1.2.34)

where v and B both have zero z component, a, j and ω are the z com-
ponents of respectively the vector potential, the electric current density
and the �uid vorticity and the stream function φ is such that ω = −∇2φ.
Like the 3D case, the total energy and the cross-helicity are conserved.
Although, because the magnetic helicity in 2D vanishes, the correspondent
ideal invariant obtained from (1.2.34) is the mean square magnetic potential

A2 =

∫
a2d2x (1.2.35)
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1.3 Linear waves

MHD systems show various types of waves, or linear modes, even in the case
of incompressible limit, in contrast with the incompressible hydrodynamics
case where all the perturbations can be recorded as nonpropagating vortex
or eddies.

Let's consider a homogeneous plasma embedded in a homogeneous mag-
netic �eld B0 characterised by constant pressure p0 and density ρ0. Equa-
tions (1.1.6), (1.1.12) and (1.1.15) are considered to be in the approxi-
mation of small perturbations, i.e. p̃ << p0 and b̃ << B0 and can be
linearised. Thus applying a Fourier transform in both space and time, such
that f(x, t) = f1e

i(k·x−ω0t) with ω0 the frequency and i the imaginary unit,
we have

−iω0ρ0v1 = −ik p1 +
1

4π
(ik × b1)×B0 − µk2v1 (1.3.36)

−iω0B1 = ik × (v1 ×B0)− ηk2B1 (1.3.37)

−iω0p1 = −iγp0k · v1 (1.3.38)

The former equations give a single equation for v1 where dissipation can
be neglected, i.e.

ω0ρ0v1 =

(
B0 × (k ×B0)

4π
+ γp0k

)
k·v1−

1

4π
k·B0 (k × v1)×B0 (1.3.39)

Choosing a coordinate system such that B0 = B0ez and k = k⊥ey +
k‖ez, equation (1.3.39) presents both longitudinal (compressible) waves,
identi�ed by the terms ∝ k · v1, and transverse (shear) waves, identi�ed
instead by the term ∝ k × v1. It can be written in the new coordinate
system, with the following matrix form

ω2
0 − k2

‖v
2
A 0 0

0 ω2
0 − k2

⊥c
2
s − k2v2

A −k⊥k‖c2
s

0 −k⊥k‖c2
s ω2

0 − k2
‖c

2
s


vxvy
vz

 = 0 (1.3.40)

where vA = B0/
√

4πρ0 is the Alfvén velocity, cs =
√
γp0/ρ0 is the speed of

sound and k2 = k2
‖ + k2

⊥. The dispersion relation of (1.3.40) is(
ω2

0 − k2
‖v

2
A

) [
ω4

0 − ω2
0k

2(c2
s + v2

A) + k2k2
‖c

2
sv

2
A

]
= 0 (1.3.41)

Hence studying the three types of eigenmodes of (1.3.40), by solving (1.3.41),
we have a characterisation of the linear modes, or waves, proper of the ho-
mogeneous MHD system.

Alfvén waves: The mode

ω2
0 = ω2

A = k2
‖v

2
A (1.3.42)
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de�nes the shear Alfvén wave, also known as Alfvén wave. The plasma
motion, v1 = {vx, 0, 0}, characterising this mode is either incompressible
or transverse (k · v1 = 0). The magnetic perturbation b1 = ±

√
4πρ0v1 is

originated by the term B · ∇B in the Lorentz force. It corresponds to an
elastic deformation of the �eld lines and it is perpendicular to B0 as well
as to the velocity.

Magnetosonic waves: The mode

ω2
0 = ω2

f =
1

2
k2

v2
A + c2

s +

√(
v2
A + c2

s

)2 − 4v2
Ac

2
sk

2
‖

k2

 (1.3.43)

identi�es the compressional Alfvén wave, usually known as fast magne-
tosonic wave. This is usually a compressible motion with high frequency
and phase velocity v2

A ≤
(
ω0
k

)2 ≤ v2
A + c2

s that reaches its highest value
in the case of propagation perpendicular to B0, where the mode becomes
longitudinal (v1 ‖ k). When, on the contrary, propagation is only parallel,
i.e.

ω2
f =

1

2
k2
(
v2
A + c2

s + |v2
A + c2

s|
)

(1.3.44)

two di�erent situations can be distinguished:

� the small-β case with vA > cs, where the mode becomes completely
transverse and tends to merge with the Alfvén wave;

� the high-β case with vA < cs, where the mode is completely lon-
gitudinal, such that it combines with the nonmagnetic sound wave
ω2

0 = k2c2
s.

Slow modes: The mode

ω2
0 = ω2

s =
1

2
k2

v2
A + c2

s −

√(
v2
A + c2

s

)2 − 4v2
Ac

2
sk

2
‖

k2

 (1.3.45)

indicates the slow magnetosonic wave or simply �slow mode�. It is a com-
pressible mode with phase velocity 0 ≤

(
ω0
k

)2 ≤ c2
s. In case of perpendicular

propagation a quasi-static equilibrium change is obtained, since changes of
B2 and p have opposite phase ( δB

2

8π = −δp). For parallel propagation,
instead, the upper limit of the phase velocity is reached,

ω2
s =

1

2
k2
(
v2
A + c2

s − |v2
A + c2

s|
)

(1.3.46)

such that for vA > cs the mode is the nonmagnetic sound wave and for
vA < cs the mode is the Alfvén wave.
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1.4 Elsässer �elds and Alfvén time normalisation

In the case of an incompressible plasma motion the most important contri-
bution among the linear modes is given by the Alfvén wave. In the presence
of Alfvén waves, velocity perturbations are parallel to the magnetic ones,
i.e. v1 = ± b1√

4πρ0
and it is convenient to rewrite the MHD system of equa-

tions in terms of the so called Elsässer variables

z± = v ± B√
4πρ0

(1.4.47)

We introduce for MHD equations the following normalisation with re-
spect to the Alfvén time τA = L/vA:

t

τA
= t,

x

L
= x,

B

B0
= B,

p

ρ0v2
A

= p (1.4.48)

where B0 is a typical magnetic �eld, L a typical scale length and vA =
B0√
4πρ0

is the corresponding typical Alfvén velocity. In accordance with

this normalisation the magnetic di�usivity is de�ned as the inverse of the
Lundquist number S = LvA

η .
Thus adding (1.1.12) and (1.1.9), subtracting (1.1.12) from (1.1.9) and

rewriting the resulting equations in terms of variables z± = v±B we have

∂tz
± + z∓ · ∇z± = −∇P+

1

2
(ν + η)∇2z± +

1

2
(ν − η)∇2z∓

∇ · z± = 0
(1.4.49)

with P the total pressure.
In case of uniform magnetic �eld B0 and in the absence of dissipation,

equations (1.4.49) can be linearised as follows

∂tz
± ∓B0 · ∇z± = 0 (1.4.50)

From equation (1.4.50) we notice that the �eld z− describes Alfvén waves
propagating along B0 direction, z− (x−B0t), although z

+ is related to
Alfvén waves propagating in direction opposite toB0 direction, z

+ (x+B0t).
The introduction of Elsässer variables avoids the self-coupling in the non-
linear term of (1.4.49) leaving only the cross coupling of z+ and z−.

Now the ideal �uid invariants of the MHD system are expressed as

E =
1

4

∫
V
dV
[(
z+
)2

+
(
z−
)2]

Hc =
1

4

∫
V
dV
[(
z+
)2 − (z−)2] . (1.4.51)



Chapter 2

Magnetohydrodynamics

turbulence

Generally for nonmagnetic �uids the transition to turbulence occurs at suf-
�cient high Reynolds numbers (Re > 3300), such that the critical value
which de�nes the transition from a laminar �ow to a turbulent one is ex-
ceeded [50]. Reynold number is usually de�ned as

Re =
Lv

ν
(2.0.1)

where L is a typical mean gradient scale depending on the geometry of the
system, v is an average �uid velocity and ν the kinematic viscosity.
A similar behaviour is also expected for electrically conducting magnetised
�uids. In this case, however, it is necessary to introduce a new quantity
called Reynolds magnetic number de�ned as

Rm =
Lv

η
(2.0.2)

where η is the magnetic di�usivity. In fact MHD turbulence can be gener-
ated only in case of strongly dynamic systems, namely when Rm becomes
large due to big �uid velocities generated by external stirring or by the
occurrence of instabilities in the �ow.

The dynamical state of turbulence can be characterised using the fol-
lowing set of quantities: the energy content per unit volume E ∼ v2

0 ∼ B2
0 ,

the energy dissipation rate ε = −dE
dt , corresponding to the energy injection

rate in case of stationary turbulence, and the dissipation coe�cients ν, η.
Hence we de�ne a characteristic integral scale, with typical velocity E1/2,
as L = E3/2/ε, such that the Reynolds numbers are

Re =
E2

νε
, Rm =

E2

ηε
(2.0.3)

This chapter is mainly focused on the study of regimes with high Reynold
numbers, where a fully developed turbulence can be observed. One of the

19
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most important feature of high Reynolds number turbulence is the simul-
taneous presence of di�erent spatial scales starting from the large scales,
of the order of the system size, down to the small scales, where dissipation
takes place.

In order to understand the occurrence of turbulent behaviours in the
�ow dynamic, i.e. how random motions are generated from smooth �ows,
the development of singular solutions for the ideal equations and instability
excitation are brie�y presented.
Moreover, the phenomenon of self-organisation in turbulent �ows is anal-
ysed, illustrating the connection with selective dissipation of the ideal in-
variants of the system that leads to the formation of large scale magnetic
structures where the phenomenon of dynamical alignment is present.
Spectral properties and an introduction to the theory of intermittency are
presented too.

2.1 Transition to turbulence

We are interested in showing how the passage to turbulence is related to the
development of singular solutions in the ideal �uid equations, in particular
how �nite-time singularities take place. The way in which the ideal solu-
tions become singular gives some informations about the spatial structures
present in the dissipative formulation.
In parallel, the process of small scale generation, and thus the formation
of cascade dynamics, is also related to the generation of instabilities which
arise while the system evolves starting from a smooth initial state.

2.1.1 Ideal equations and formation of singularities

As described by Kolmogorov [50], turbulence is characterised by a hierarchy
of spatial scales that goes down to very small eddies when high Reynolds
number is considered. Moreover in turbulent �ows with high Reynolds
number, the energy dissipation rate is observed to be approximately inde-
pendent of viscous coe�cients. Thus, for ideal �ows in the limit of in�nite
Reynolds number, it is expected that ideal �uid equations, i.e. Euler equa-
tions

∂tv + v · ∇v = −∇p, ∇ · v = 0 (2.1.4)

develop phenomena of energy dissipation and singularities in the solutions
[114, 2, 135]. The breakdown of regularity of solutions can indicate the
onset of turbulent behaviour.

In this context classical (regular) solutions are no longer considered
and weak solutions are introduced, i.e. non-smooth solutions de�ned in the
Sobolev space Hs(Rm), consisting of all the functions whose distributional
derivatives up to order s > 0 are in Ls(Rm), and that verify the local mass
and the momentum balance relations for all the test functions [42].
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Qualitative arguments and numerical experiments have shown that the
phenomenon of singularities in three spatial dimensions is related to the
concentration of vorticity on successively smaller sets [51, 21]. In fact the
Beale-Kato-Majda theorem [2] establishes that if a smooth solution loses
its regularity at some time t∗, then the maximum vorticity grows without
bound as the critical time t∗ approaches. Therefore, it is not possible that
the solution displays other types of singularities (as those in the deformation
tensor) before the vorticity becomes unbounded. This result shows that the
maximum norm of the vorticity is capable of controlling the breakdown of
smooth solutions in the 3D Euler equations, and it represents a necessary
condition for the formation of singularities starting from smooth initial
data.

In 1949 Onsager [114] formulated his famous conjecture according to
which, in incompressible �uid �ows, Hölder continuous weak solutions of
Euler equations conserve kinetic energy only when their Hölder exponent
is α > 1

3 .
In the perspective of this dissertation, the �rst nontrivial example of patho-
logical weak solutions has been constructed by Sche�er [127]: a vector �eld
v(x, t) ∈ L2(R2 × R;R2) such that v(x, t) ≡ 0 for |x|2 + |t|2 > 1, has been
considered. This solution breaks both uniqueness and energy conservation;
it is identically zero for t < −1, but after the critical time it becomes
nonzero and at t = 1 it vanishes again. In addition the kinetic energy is a
non-monotonous and unbounded function of time.
A �rst proof of Onsager conjecture for Hölder exponent α > 1

3 has been
given by Eyink [43], restricting however the study to a particular function
class. Later Constantin et al. [26] have provided a complete and simpli�ed
proof extended the Eyink's results.
The case α 6 1

3 has been an open problem since, recently, De Lellis et al.
have provided a rigorous mathematical proof [35, 11, 12].

The breakdown from smooth to weak solutions and the energy dissi-
pation phenomenon can be possibly found also in magnetohydrodynamics
when progressively increasing Reynolds and magnetic Reynolds numbers
[6].
As a matter of fact the Beale-Kato-Majda theorem and Onsager's energy
conservation theorem can be extended to the ideal MHD formulation rewrit-
ing them in term of the Elsasser variables z+ and z− [13]. Indeed criteria
for total energy conservation and helicity conservation for weak solution of
ideal equations can be obtained, and thus it can be proven that if a smooth
initial weak solution leads to a singularity in a �nite time t∗ then∫ t∗

0
||ω||∞ + ||j||∞ dt =∞ (2.1.5)

where ω is the vorticity �eld, j is density current and || · ||∞ is the norm
in the space L∞.
These results can establish a way of understanding the relation between the
smoothness of the velocity �eld and the magnetic �eld in the ideal case.
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2.1.2 Current sheets

In terms of the Elsasser variables (1.4.47) the ideal MHD equations have
the following form

∂tz
± + z∓ · ∇z± = −∇P, ∇ · z± = 0 (2.1.6)

Taking the curl of (2.1.6), and de�ning the �elds ω± = ω ± j we have

∂tω
± + z∓ · ∇ω± = ω± · ∇z∓ +

3∑
i=1

∇z±i ×∇z
∓
i (2.1.7)

Comparing Euler equations expressed in terms of the vorticity �eld, i.e.

∂tω + v · ∇ω = ω · ∇v, ∇ · v = 0 (2.1.8)

with (2.1.7) we observe the presence of a supplementary term. The presence
of this supplementary term in (2.1.7) characterises the formation or the
absence of current sheets in the �ow.

In the 2D case the vorticity �eld and the current density �eld only have
the z component while the velocity and magnetic �eld both have zero z
components, thus (2.1.7) becomes

∂tω
± + z∓ · ∇ω± =

2∑
i=1

∇z±i ×∇z
∓
i (2.1.9)

where z± = ez × ∇φ±, ∇2φ± = ω± and φ± = φ ± ψ, with φ the stream
function and ψ is the z-component of the vector potential.
Numerical simulations of (2.1.9) have revealed the presence of internal
structures such as �laments of current density and locally generated quadrupole-
like concentrations of vorticity at small spatial scales and in the neighbour-
hood of an active X-type neutral point for the magnetic �eld [94, 98, 118].
These structures are conventionally called current sheets, though they are
also the location of intense vorticity. It has been shown that in the vicinity
of the sheets (2.1.9) is essentially linear, thus an exponential growth of j
and ω is observed.

The 3D case presents more di�culties because the vortex stretching
term ω± · ∇z∓ in (2.1.7) generally cannot be neglected. Now, depending
on which of the two terms on the right side of (2.1.7) is dominant, it is
possible to have either a �nite-time singularity appearing as a �lamentary
structure, or the exponential temporal behaviour characterised by a sheet-
like structure (i.e. a similar phenomenon to the 2D MHD case) [119, 63].

2.1.3 Instabilities

It has been observed that even a slowly evolving �ow can be characterised
by rapid dynamics, which may be able to destroy the original �ow pattern.
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The occurrence of this phenomenon is usually associated with the e�ects of
instabilities in the �ow, which allow the exponential growth of a disturbance
imposed on a stationary state. Thereby, in nonstationary �ows, instabilities
play a basic role in understanding the evolution of �ow dynamics.

Plasmas are known to became unstable in the presence of strong ve-
locity, pressure or magnetic �eld gradients, namely when the convective
transport of momentum, heat or magnetic �ux exceed the correspond-
ing di�usive transport by viscosity, thermal conduction or resistivity. In
these scenarios di�erent types of instabilities can be identi�ed, such as:
the Kelvin-Helmholtz instability, guided by velocity shears; the Rayleigh-
Taylor instability, related to the buoyancy force in strati�ed �ows; the
current-driven MHD instabilities in a magnetised plasma, with particular
attention to the tearing instability.

2.2 Self-organisation

By self-organisation we mean the spontaneous formation of large-scale co-
herent structures, i.e. structures that persist in their form for long times
such that a time-average statistic can be applied (temporal coherence)
[145, 50].
It is important to point out the spontaneity of the phenomenon. Gener-
ally, systems characterised by fully developed turbulence exhibit large-scale
structures, which re�ect the properties of the turbulence in action as a sim-
ply response of the system geometry. On the contrary coherent structures
spontaneously arise out of homogeneous turbulence, as the result of the
relaxation processes occurring on very long times in MHD incompressible
turbulent �ows.

2.2.1 Selective decay

Numerous theoretical and numerical studies have shown that the properties
of coherent structures, typical of self-organisation phenomenon, can be pre-
dicted using the presence of several ideal invariants of the system, precisely
assuming that dissipative terms minimise the total energy of the turbulent
�ow, holding constant some ideal quadratic (rugged) invariants proper of
the system [123].

In 2D hydrodynamic turbulence, applying a classical variational princi-
ple where the kinematic energy E = 1

2

∫
S v

2d2x is minimised while holding
the enstrophy Ω = 1

2

∫
S ω

2d2x constant, it can be shown that the coherent
structures are large-scale vortices [97].
In the 3D case, the mean helicity H = 1

2

∫
V v · ω d3x is the ideal invariant

held constant and the resultant coherent structures are the so called Bel-
trami �ows, namely structures characterised by local dynamical alignment
between the velocity and the vorticity �eld [58].

In three-dimensional MHD incompressible �ows, three quadratic (rugged)
invariants can be identi�ed: the total energy E, the cross-helicity Hc and
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the magnetic helicity Hm (see section 1.2). The corresponding conservation
relations (expressed in Alfvén time units) in the case of incompressibility
and periodic boundary conditions are

dE

dt
=

d

dt

1

2

∫ (
v2 +B2

)
dV = −η

∫
j2dV − ν

∫
ω2dV (2.2.10)

dHc

dt
=

d

dt

∫
v ·B dV = −(ν + η)

∫
j · ω dV (2.2.11)

dHm

dt
=

d

dt

∫
A ·B = −η

∫
j ·B dV (2.2.12)

Observing that dissipation in turbulence occurs at small scales and that
dissipative terms contain di�erent order of spatial derivatives, it is possible
to have di�erent decay rates of the ideal invariants. In particular the decay
of MHD turbulence is principally governed by two selective decay processes
[100, 61, 62, 93, 57, 18, 145].

Under the constraint of constant helicity, considering an open, limited
and regular domain Ω ⊂ R3 and a Lagrangian multiplier λ, turbulence may
relax to a state of minimum energy described by the following variational
principle

δ

(
1

2

∫
Ω

(
v2 +B2

)
dV − 1

2
λ

∫
Ω
A ·B dV

)
= 0 (2.2.13)

Variation with respect to v gives v = 0, while variation with respect to A
gives relation

∇×B − λB = 0 (2.2.14)

Therefore the minimum-energy state is represented by a λ-constant force-
free �eld, known as the linear force-free �eld. The Lorentz force in this case
vanishes, j×B = 0, such that ∇×B = λB, where λ satis�es the condition
B · ∇λ = 0.

Another process of relaxation that can occur is related to the slow decay
of the cross-helicity. In fact the integral on the r.h.s. of (2.2.11) is not posi-
tive de�nite, thus the cross-helicity may present a slower decay with respect
to the decay of the total energy. If the total energy is minimised holding
the cross-helicity constant and using η as Lagrangian multiplier, the char-
acterisation of this process is achieved imposing the following variational
problem

δ

(
1

2

∫
Ω

(
v2 +B2

)
dV − η

∫
Ω
v ·B dV

)
= 0 (2.2.15)

Variation with respect to v or B gives

v − ηB = 0

B − ηv = 0
(2.2.16)
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Consequently the Lagrangian multiplier satis�es η2 = 1, such that an
alignment of v and B is veri�ed locally , i.e.

v = ±B (2.2.17)

This relaxed state is called pure Alfvénic state, because it corresponds to
a �nite-amplitude Alfvén wave. It also represents the �nal state which
turbulence decays if very slow collisional di�usion is neglected. In particular
it can be seen that, in both 3D and 2D case, the dynamical alignment
(between v and B) is a direct consequence of the MHD equations, that
occurs on rapid times of the order of some eddy turnover time [96, 132].

Which of these two relaxation process prevails over the other, depends
on the initial values of the cross-helicity and the magnetic helicity. In a
strong helical system the relaxed state is the linear force-free state, while
in case of high cross-helicity (su�ciently large initial alignment) the �nal
state is a purely Alfvénic state.

Let us analyse the 2D MHD case, here the quadratic (rugged) invariants
are the total energy E, the cross-helicity Hc and the mean square magnetic
potential A2 (see section 1.2) [57, 60, 120, 17, 145, 141]
Considering a variational principle where the total energy is minimised un-
der the constrain of both constant cross-helicity and mean square magnetic
potential, i.e.

δ

(
1

2

∫
Ω

(
v2 +B2

)
dV − η

∫
Ω
v ·B dV − φ

∫
Ω
a2dV

)
= 0 (2.2.18)

the minimum-energy state is represented by a pure Alfvénic state when the
variation with respect to v is considered, and by a state characterised by
the following relation, if variation with respect to a is considered, such as

v − ηB = 0

j − ηω − 2φa = 0
(2.2.19)

where j is the current density and ω is the vorticity, which have both z
non-zero component.
The latter relations lead to states where local alignment of v and B and of
j and a occurs.

2.3 Energy spectra

In this section a brief discussion concerning the spectral properties of dissi-
pative turbulence is presented, starting from one of the fundamental prop-
erties of fully developed turbulence: the presence of a wide spectrum of
scales [111].
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2.3.1 Inertial range

Fluid turbulence at high Reynolds numbers is characterised by an inertial
range energy spectrum, where the inertial range is de�ned as

ki � k � kd (2.3.20)

with ki the injection range, i.e. the large scales where turbulence takes
place and which carry most of the energy, and kd the dissipative range
made by the smallest scales. Thus a wide inertial range is obtained for
large Reynolds numbers such that the ratio kd/ki is high.

As described by Richardson cascade [124], the turbulent energy transfer
is characterised by a cascade process in the k-spectrum space (the spectral
transfer occurs from ki to larger wavenumbers), based on both the assump-
tions of scale-invariance within the inertial range and locality (in terms of
scales) of interactions [50].

In case of isotropic turbulence the spectra are the angle-integrated spec-
tra,

Ek =

∫
Ek dΩ̃k

E =

∫ ∞
0

Ek dk

with Ek = 1
2〈|v̂k|

2〉 the spectral energy and v̂k velocity �eld in the Fourier
space.

Let us de�ne εi the energy injection rate at k ∼ ki, εt the energy transfer
rate (energy �ux) in the inertial range and εd the energy dissipation rate
at k ∼ kd. For stationary turbulent �ow and in decaying turbulence it is
possible to consider εi = εt = εd = ε, and to refer to ε as the �ux energy
rate.

Using the locality of the transfer process and applying a scaling argu-
ment, the energy spectrum in the inertial range for the 3D Navier-Stokes
equations can be obtained.
Let us assume the inertial range formed by a discrete set of scales: k1 <
k2 < ... < kN , such that a generic �uid element (eddy) vn has size ln,
kn = l−1

n and the velocity vl is de�ned by the velocity di�erence between
two points separated by a distance l:

vl = ∆v(l) = v(x+ l)− v(x) (2.3.21)

The typical distortion or turnover time of an eddy vn is τn ' ln/vn, and
corresponds to the energy transfer time between two eddies vn, vn+1.

Using the previous relations and the constancy of the energy �ux,

ε =
En
τn

= cost, ε ' v3
n

ln
(2.3.22)
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we have that

vn ' ε
1
3 l

1
3
n (2.3.23)

And thus we obtain the famous Kolmogorov spectrum [80, 111]

Ek = CKε
2
3k−

5
3 (2.3.24)

CK is the Kolmogorov-Obukhov constant and it can be determined applying
by a dynamic theory [82].

The argument used up until now is valid only in the case of direct energy
cascade. However, in the 2D case, the cumulative enstrophy Ωk = 1

2〈|ω̂k|2〉
exhibits a direct cascade while the energy presents also an inverse cascade,
thus a modi�cation of the preceding is required.
Let ηΩ be the enstrophy �ux, such that

ηΩ =
Ωl

τl
'
(vl
l

)2
τ−1
l '

v3
l

l3
(2.3.25)

Consequently the energy spectrum for 2D Navier-Stokes equations is

Ek ' η
2
3
Ω k
−3 (2.3.26)

We observe that, if the injection wavelength is much smaller than the
system size (k−1

i � L), the inverse energy cascade may be e�ective and
in this case, for k < ki, the energy spectrum is the Kolmogorov one (the
cascade direction does not e�ect the argument used in the 3D case).

Now, let us discuss about the energy spectrum in the incompressible
MHD case.
Due to the Alfvén e�ect generated by the dynamic alignment of velocity and
magnetic �eld (see section 2.2.1), small scales �uctuations are not globally
independent, considering their strong dependence on the large scale mag-
netic �eld, and they behave approximately as Alfvén waves z±.

Let us focus on the weak velocity and magnetic �eld correlation case,
i.e. z+

l ' z−l ' vl ' Bl. The interaction time of two Alfvén wave packets
vl is much shorter than the nonmagnetic turnover time, τA � τl, and it
can be shown that the energy transfer time becomes tl ' τ2

l /τA under the
latter assumptions [37].
Using this new time in (2.3.22) we have

ε '
v4
l τA
l2

(2.3.27)

which gives

v2
l ' (εvA)

1
2 l

1
2 (2.3.28)

Ek = C̃K (εvA)
1
2 k−

3
2 (2.3.29)

Relation (2.3.29) represents the inertial range energy spectrum for incom-
pressible MHD turbulence and it is called Iroshnikov-Kraichnan spectrum
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[77, 81].
Compared with the Kolmogorov spectrum (2.3.24) Iroshnikov-Kraichnan
spectrum is less steep, due to the presence of the factor τl/τA, and it ex-
plicitly depends not only from the energy �ux ε but also on the large scale
quantity vA = B0 (with B0 the mean magnetic �eld).

Spectrum (2.3.29) is generally valid in the 2D and 3D case, because they
both present a direct cascade. The constant C̃k is although not universal,
due to its dependence on the precise de�nition of the average �eld B0 and
thus on the geometry of the large scale eddies. Under the assumption of ne-
glected weak �nite interactions between Alfvén modes of comparable scale,
the individual energy contributions EVk and EMk (related to the velocity
�eld and the magnetic �eld respectively) for the Alfven waves |v| = |B| is
EVk = EMk [8].

2.3.2 Dissipation range

With dissipation range we indicate the set of wavenumber k ≥ kd where
dissipation dominates.

In case of hydrodynamic turbulence the dissipation scale ld = k−1
d is

individuated by the condition for which the nonlinear transfer rate equals
the dissipation rate,

τ−1
l =

vl
l

=
ν

l2
(2.3.30)

Combining (2.3.30) with (2.3.23) we obtain the so called Kolomorov micro-
scale [79], i.e.

ld =

(
ν3

ε

) 1
4

= lK (2.3.31)

In the MHD turbulence formulation the Alfvén e�ects should be con-
sidered, because they tend to weaken then nonlinear energy transfer such
that (

τA
τl

)
τ−1
l =

ν

l2
(2.3.32)

Assuming vl ' Bl and ν ' η, which imply equal dissipation contributions
εη ' εν , with

ε = εν + εη, εν = ν

∫
ω2d3x, εη = η

∫
j2d3x

and using (2.3.28), the modi�ed Kolmogorov micro-scale is

ld =

(
ν2vA
ε

) 1
3

= l̃K (2.3.33)

Therefore, the energy spectrum for uncorrelated MHD turbulent de-
scription is

Ek = vAνÊ(k̂), k̂ = kl̃K (2.3.34)
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Notice that this formulation is valid in both the inertial and the dissipation
range. In the inertial range the normalised spectrum Ê(k̂) assumes the
Iroshnikov-Kraichnan spectrum as limiting form,

Ê(k̂) = C̃K k̂
− 3

2 , k̂ � 1 (2.3.35)

while, in the dissipation range k̂ > 1, the spectrum is expected to fall o�
rapidly (an exponential decay has been obtained from nuemrical simula-
tions).

For a deeper description of the energy spectrum in MHD turbulence see
[7, 144, 116].

2.4 Intermittency

As shown in section 2.2, in turbulent �ows self-organisation is a spontaneous
phenomenon responsible for the formation of large scale turbulent eddies
formation, such that, in the inertial range, their spatial distribution looks
the same on any scale level. This representation is not fully complete, it
doesn't take into account the presence in the �ow dynamics of small scales
structures that become increasingly sparse (intermittent) with the action
of turbulence.

Here the phenomenon of intermittency in turbulent �ows is introduced.

2.4.1 Intermittency vs self-similarity

Generally a system is called self-similar (or scale-invariant) if it is repro-
ducible starting from a magni�cation of some of its parts. Examples of
self-similarity are present both in nature, where this property is locally dis-
played (i.e. at certain scale range), and in mathematical systems, where we
talk of exact self-similarity (ex. Koch's snow �ake, Cantor-set, Julia sets
etc.).

Let's consider the Brownian motion as an example of dynamical system
connected to turbulence that exhibits a continuous self-similarity. In fact
the Brownian motion curve is a random function u(t), that preserves its
general aspects (statistical properties) independently on the curve-portion
considered, as shown in Figure 2.1.

When instead the Devil's staircase function (Figure 2.2) is considered,
we notice that the previous property is no longer valid. In this case the
smaller the window, the more carefully it must be positioned to produce
a nontrivial function: two di�erent magni�cation windows show two com-
pletely di�erent behaviours of the function.

This function exhibits an example of intermittent behaviour: the �uctu-
ations of a considered function do not show a statistical uniform distribution
on a certain scale, but become increasingly sparse in time (or space) with
decreasing scale size.
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Figure 2.1: Portion of the Brownian motion curve and two successive mag-
ni�cations, illustrating its self-similarity [50].

Figure 2.2: The Devil's staircase function [50].

In order to describe the �uctuations on scales l, and thus better char-
acterise the intermittent behaviour, we introduce the concept of �ltering.
Considered a function v(x), a cut-o� wavenemberK can be introduced such
that v(x) is split in two parts: the low-pass �lter one v<K =

∑
k<K vke

ikx

and the high-pass �lter one v>K =
∑

k>K vke
ikx, with v = v<K + v>K .

The high-pass �lter contains all scales l < K−1. Therefore, it is reasonable
to suppose that, for a spectrum steeper than k−1, the contribution of the
high wavenumbers k � K is negligible so that the high-pass �ltered part
represents the small range l . K−1.

A useful measure of intermittency is given by the following quantity
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called �atness (seldom kurtosis)

FK =
〈
(
v>K
)4〉

〈
(
v>K
)2〉2 (2.4.36)

In fact under the assumption that �uctuations are present only during
a particular fraction δK of space (or time), the averages in (2.4.36) are
proportional to δK and FK ∼ δ−1

K . Thus �atness grows with increasing
sparseness of the �uctuations of the signal.

We observe that, according to this de�nition of intermittency, neither
Gaussian nor self-similar signals can be intermittent, because they have
�atness independent of K. In particular in the Gaussian case we have
that the Gaussian property is conserved by any linear operation including
�ltering, guaranteeing a �atness of constant value 3.

It is now worth asking if turbulence can be considered self-similar or
intermittent. As shown by Kolmogorov theory (K41) [80, 79] a turbulent
signal exhibits a self-similar behaviour. However if we perform a high-pass
�ltering on the signal with high enough wavenumber K, the emergence of
intermittent features is observed (�gure 2.3).

Figure 2.3: (a) Velocity signal from a jet with Reynolds number at Taylor
scale of 700. (b) Velocity signal after the high-pass �ltering: intermittent
bursts are now visible [53].

The rate of intermittency becomes more important when the scale asso-
ciated with K−1 is comparable or smaller than the Kolmogorov dissipative
scale. Thus the appearance of intermittency is a property of the dissipa-
tion range and it does not represent a violation of the self-organisation
representation presented in the K41 theory of the inertial range.

In order to describe in a clearer way the di�erence between self-similarity
and intermittency, we have performed an MHD incompressible numerical
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Figure 2.4: Contour plots of the current density: (a) 2D MHD turbulent
state; (b) the corresponding random state with the same energy spectrum
and dissipation length (MHD incompressible numerical simulation on a 2D
spatial grid box of dimensions 20482 periodic on the boundary).

Figure 2.5: PDFs of the current density: (a) of the turbulent state in Figure
2.4(a); of the random state in Figure 2.4(b).

simulation on a 2D spatial grid box of dimensions 20482 periodic on the
boundary. Let's consider the contour plots of the current density in the
turbulence state (Figure 2.4(a)) and the corresponding random state with
the same energy spectrum and dissipation length (Figure 2.4(b)). We ob-
serve that whereas in the turbulent state the dissipative eddies form sepa-
rated and well de�ned current sheets structures, the dissipative small scales
structures in the random state are space �lling. In fact the behaviour of the
random state is statistically uniform: its probability distribution function
(PDF) exhibits a Gaussian distribution (Figure 2.5(b)). On the contrary
the turbulent state, characterised by the occurrence of well organised struc-
tures, displays PDF with tails far from the Gaussian due to the formation
of intermittent structures (Figure 2.5(a)). The sparseness of the distri-
bution of small scales, the occurrence of well organised structures and the
strongly non-Gaussian features of the PDFs of the dynamical variables are
characteristic features of intermittency on dissipative scales in turbulence.
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For a more detailed description of intermittency in both non-magnetised
and magnetised turbulent �ows we refer to [50, 7].





Chapter 3

Wavelet analysis

Wavelets are functions well localised in both physical and spectral space.
The additional possibility of controlling both their smoothness (which de-
termines the number of times they can be di�erentiated) and their number
of vanishing moments (which determines the number of times they can
be integrated) makes wavelet an e�cient way of representing data which
are neither completely particle-like nor wave-like (e.g. multi-scale localised
structures). Thus wavelets are suitable for our purpose of detecting and
analysing the coherent structures that characterise intermittent turbulent
�ows [49, 101, 44, 47, 46, 150, 151, 112].

Similar to Fourier transforms, wavelet transforms can be classi�ed as
either continuous or discrete. Here the continuous wavelet transform is
introduced, followed by a description of discrete wavelet transform. An
algorithm for the implementation of the orthogonal discrete wavelet trans-
form in both two- and three-dimensional cases is also given.

3.1 Continuous wavelet transform

Given a a real square integrable function f(x) (i.e.
∫ +∞
−∞ f2(x)dx <∞), its

continuous wavelet transform W (b, a) is de�ned as [64, 101]

W (b, a) = C
− 1

2
g

1√
a

∫ +∞

−∞
ψ

(
x− b
a

)
f(x)dx (3.1.1)

where a is a scale dilatation, b is a position translation and ψ(x) is the
wavelet function, which satis�es the admissible condition

Cg =

∫ +∞

−∞
|K|−1|ψ̂(K)|2dK <∞ (3.1.2)

with K the wavenumber and ψ̂ the Fourier transform of ψ(x), i.e. ψ̂(K) =∫ +∞
−∞ ψ(x)e−ikxdx. The admissible condition (3.1.2) guarantees the locality
of Cg in the Fourier space.

Thus the continuous wavelet transform W (b, a) can be seen as the rel-
ative contribution of scales a to the function f at position b involving one

35
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generating function ψ(x) and providing translation and dilatation simulta-
neously, in order to reduce the spatial support at the same rate at which
the scale is decreased (or the frequency is increased).

The admissible property for the wavelet function permits the inversion
of the wavelet transform [65, 101], i.e.

f(x) = C
− 1

2
g

∫ +∞

0

∫ +∞

−∞
a−

1
2ψ

(
x− b
a

)
W (b, a)

db da

a2
(3.1.3)

Also in the context of the wavelet transform, it is possible to generalise
Parseval's theorem, where the equality between the total energy in physical
space and wavelet space is considered as a particular case. In fact∫ +∞

−∞
f1(x)f∗2 (x)dx = C−1

g

∫ +∞

0

∫ +∞

−∞
W1(b, a)W ∗2 (b, a)

dx da

a2
(3.1.4)

where ∗ stands for the complex conjugate [65].

The previous de�nition of wavelet transform can be extended to vec-
tor functions f(x) = (fi(x))i=1,...n. In this case the transform is a vector
W(b, a) with the wavelet transform of its components given by fi(x).
In case of higher dimensions several possibilities in the extension of de�ni-
tion (3.1.1) can be considered. In addition to the dilations and translations,
the (group of) rotations of non-isotropic wavelets can be considered [22, 32].
Here we will always consider only spherical symmetric wavelets (isotropic
case).

3.2 Wavelet series

Similar to the continuous wavelet transform, a set of self-similar functions,
whose dilations and translations provide simultaneous resolution in scale
and position, can be considered. The bases used for the decomposition can
be made orthogonal and complete, by choosing a logarithmically uniform
spacing of scales with increasingly coarser spatial discretisation at larger
scales. The conditions lead to the de�nition of the following basic functions
[30, 92]

ψ
(m)
[i] (x) = a−

1
2
mψ

(
x− i b am

am

)
(3.2.5)

where a is the base of the dilatation, b in the translation length in units of
am, m and i are the variable scale and variable position index respectively.
We note that net translation depends on the dilatation rate and, in general,
this makes the choice of the parameters a and b non arbitrary [30]. Let
us choose a = 2 and b = 1, such that all the scales rm = 2m and all the
translations 2mi in multiple of the scale rm are considered. This implies that

all the wavelets considered obey, for every m, the relation ∆xm∆
(

1
rm

)
=

2m
(
2−(m−1) − 2−m

)
= 1.
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Using the previous formulation, a one-dimensional function can be de-
composed into a discrete set of function with scales and location modulation
such as

f(x) =
+∞∑

m=−∞

+∞∑
i=−∞

w(m)[i]ψ(m)(x− 2mi) (3.2.6)

where w(m)[i] are the discrete wavelet coe�cients associated to f(x), that
depend on the position index i and the scale index m, and

ψ(m)(x) = 2−
1
2
mψ

( x

2m

)
. (3.2.7)

Function ψ(x) obeys the following constraint∫ +∞

−∞
ψ(m)(x− 2mi)ψ(n)(x− 2nj)dx = δijδmn (3.2.8)

where δ∗∗ is the Kronecker delta. Thus function (3.2.7) is orthonormal to
its own translations and its own dilatations.
Property (3.2.8) permits the computation of the discrete wavelet coe�cients
for the function f(x) such as

w(m)[i] =

∫ +∞

−∞
ψ(m)(x− 2mi)f(x)dx (3.2.9)

Hence coe�cient (3.2.9) can be seen as a measure of the contribution to
the signal of scales 2m in the neighbourhood of the point 2mi.

Another important consequence of the orthonormal property (3.2.8) is
that the total energy of the function veri�es relation

∫ +∞

−∞
f2(x)dx =

+∞∑
m=−∞

+∞∑
i=−∞

(
w(m)[i]

)2
. (3.2.10)

In order to extend the theory of the one-dimensional wavelet series
to higher dimensions, it is necessary to consider in a space n-dimensional
separable basis functions of the form

Ψ(x) =
∏

l=1,...,n

ψl(xl). (3.2.11)

Like the one-dimensional formulation, scales of the form 2m are used but
now all the locations in the n-dimensional space have to be considered.
In fact, it turns out that for a complete representation additional internal
degrees of freedom must be considered, using for this purpose 2n−1 distinct
basis functions. They complement the function formed by the product of
the wavelets along the n Cartesian directions as in (3.2.11) [101].
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3.2.1 Higher-dimensional cases

In this paragraph we analyse the representation of the wavelet transform
in both the two- and three-dimensional cases. These representations are
obtained by introducing a separable basis function of the form (3.2.11),
with n = 2 in the 2D case and n = 3 in the 3D one.

Two-dimensional case

A two-dimensional decomposition with a complete and separable set of base
functions can be achieved using three distinct basis function (indexed by
q) [101]. In fact, let x = (x1, x2) ∈ R2, and set [i] = [i1, i2] as the position
index and m as the scale index, then we de�ne the base functions

Ψ(m,q)[x− 2mi] =


ψ(m)(x1 − 2mi1) ψ(m)(x2 − 2mi2), q = 1

ψ(m)(x1 − 2mi1) φ(m)(x2 − 2mi2), q = 2

φ(m)(x1 − 2mi1) ψ(m)(x2 − 2mi2), q = 3

(3.2.12)

The function φ(m)(·) is the so called "smoothing function", which is de�ned
as the translation and the dilatation of a single sampling function with fast
decay away from the origin, φ(x), i.e.

φ(m)(x) = 2−
m
2 φ
( x

2m

)
(3.2.13)

The smoothing function obeys the following speci�c conditions:

� orthonormality for each scale m, i.e.∫ +∞

−∞
φ(m)(x− 2mi)φ(m)(x− 2mj) dx = δij (3.2.14)

� �xed the scale m, all the wavelet basis functions are perpendicular to
the smoothing functions, i.e.∫ +∞

−∞
φ(m)(x− 2mi)ψ(m)(x− 2mj) dx = 0 (3.2.15)

Choosing the basis function as in (3.2.12) can be intuitively justi�ed ob-
serving that we are picking up variations of scale 2m that occur along all
the possible combinations of the two Cartesian directions. For example
for q = 1 we are considering all the variations that occur simultaneously
in all the two directions (x1, x2), instead for q = 2 the only �uctuations
considered are that ones along the x2-direction.

With the appropriate choice of both the wavelet basis function and
the smoothing function the following representation for a two-dimensional
function f(x) is obtained [1]

f(x) =
∑
m

3∑
q=1

∑
(i1,i2)

w(m,q)[i1, i2]Ψ(m,q)[x− 2mi] (3.2.16)
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Where the wavelet coe�cients are computed using the following relation

w(m,q)[i1, i2] =

∫ +∞

−∞

∫ +∞

−∞
f(x)Ψ(m,q)[x− 2mi] dx1 dx2 (3.2.17)

Three-dimensional case

In the three-dimensional case the wavelet decomposition with a complete
and separable set of base functions is reached using seven distinct basis
function (indexed by q).
Let [i] = [i1, i2, i3] be the position index, m the scale index and x =
(x1, x2, x3) ∈ R3, we de�ne the base functions as

Ψ(m,q)[x− 2mi] =



ψ(m)(x1 − 2mi1) ψ(m)(x2 − 2mi2) ψ(m)(x3 − 2mi3), q = 1

ψ(m)(x1 − 2mi1) ψ(m)(x2 − 2mi2) φ(m)(x3 − 2mi3), q = 2

ψ(m)(x1 − 2mi1) φ(m)(x2 − 2mi2) ψ(m)(x3 − 2mi3), q = 3

ψ(m)(x1 − 2mi1) φ(m)(x2 − 2mi2) φ(m)(x3 − 2mi3), q = 4

φ(m)(x1 − 2mi1) ψ(m)(x2 − 2mi2) ψ(m)(x3 − 2mi3), q = 5

φ(m)(x1 − 2mi1) ψ(m)(x2 − 2mi2) φ(m)(x3 − 2mi3), q = 6

φ(m)(x1 − 2mi1) φ(m)(x2 − 2mi2) ψ(m)(x3 − 2mi3), q = 7

(3.2.18)

with φ(m)(·) the smoothing function de�ned in (3.2.13).
A proper choice of both the wavelet basis function and the smooth-

ing function permits the following representation for a three-dimensional
function f(x) [30, 22]

f(x) =
∑
m

7∑
q=1

∑
(i1,i2,i3)

w(m,q)[i1, i2, i3]Ψ(m,q)[x− 2mi] (3.2.19)

Where the wavelet coe�cients are computed using the following relation

w(m,q)[i1, i2, i3] =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f(x)Ψ(m,q)[x− 2mi] dx1 dx2 dx3

(3.2.20)

3.3 Discrete wavelet transform

Consider a known function f(x) on a discrete mesh grid xi. In order to
extend the previous dissertation to the discrete formulation, it is neces-
sary to discretise both scale and spatial domains present in (3.1.1). One
possible approach is to consider N grid points and thus discretise the two
previous domain by N nodes (using a series of delta functions). Performing
the wavelet transform of f(xi) we obtain N2 wavelet coe�cients, i.e. we
have redundant information in the wavelet representation due to the over-
complete description of f(xi). In this work we are interested in carrying
out a statistical analysis of turbulent systems. Therefore, the redundant
information present in the wavelet domain can produce spurious correla-
tions (due to the transform applied to the data) which do not come from
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the phenomenon described.
A way for avoiding this problem is to impose that the discretisation of
both space and scale domains form a complete basis, in this manner the
wavelet representation will be operated using only N wavelet coe�cients.
For this purpose it is possible to use discrete orthonormal wavelet trans-
forms, which guarantee orthogonal basis functions and mutual indepen-
dence of the wavelet coe�cients. [103, 148].
It has been shown that a complete orthogonal basis can be constructed
using for the scale discretisation a logarithmic uniform spacing, which has
increasingly coarse spatial resolution at larger scales [30, 91, 103, 49].
In this work the wavelet basis chosen is the Haar basis

ψ(m)(x− 2mi) = 2−
m
2 ψ

(
x− 2mi

2m

)
(3.3.21)

where i is the position index,m the scale index and the mother Haar wavelet
is de�ned as following

ψ(x) =


1 for 0 < x ≤ 1

2

−1 for 1
2 < x < 1

0 otherwise

(3.3.22)

Haar basis has been chosen due to both its di�erencing characteristics and
its property of good localisation in the physical domain[90, 84].

3.3.1 One-dimensional case

Let f(x) be a function sampled on a discrete mesh grid, f(xi) = f [i] with
xi = ih, i = 1, ..., N = 2M and h the mesh spacing. Its discrete wavelet
transform at the discrete mesh points is given by

f [i] =

M∑
m=1

2M−m∑
j=1

w(m)[j]ψ(m)(i− 2mj) (3.3.23)

where ψm(·) is the wavelet base de�ned in (3.3.21) and wm(j) is the wavelet
coe�cient indexed by m for the scale and by j for the position, such that

w(m)[j] =

M∑
i=1

f [i]ψ(m)(i− 2mj) (3.3.24)

Wavelet transform (3.3.23) veri�es a generalisation of the Parseval the-
orem, i.e. the total energy of the function obeys

N∑
i=1

f [i]2 =

M∑
m=1

2M−m∑
j=1

(w(m)[j])2 (3.3.25)
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From equation (3.3.25), the total energy density contained at each scale
rm = 2mh is given by

N−1
2M−m∑
j=1

(w(m)[j])2) (3.3.26)

We can de�ne the wavenumber corresponding to the scale rm as

km =
2π

rm
= 2π2−mh−1 (3.3.27)

Thus the power-spectral density (per unit of wavenumber) is given by ex-
pression (3.3.26) divided by ∆km = 2π2−mh−1 ln 2, i.e.

E(km) = N−1
2M−m∑
j=1

(w(m)[j])2 2mh

2π ln 2

N=2M
=

= 2−M
[ 1

2M−m

2M−m∑
j=1

w(m)[j])2)
]
2M−m

2mh

2π ln 2
=

= 〈(w(m)[j])2〉 h

2π ln 2

(3.3.28)

where 〈·〉 is the spatial average on all the spatial indexes j at scale corre-
sponding to km.

3.3.2 Two-dimensional case

The formulation of two-dimensional continuous wavelet transform presented
in paragraph 3.2.1 can be extended to the discrete form. Let f(x) be a
function sampled on a discrete mesh, such that f(x) = f(x1, x2) = f [i1, i2],
with x = (x1, x2) = (h1i1, h2, i2), 1 ≤ i∗ ≤ 2M and h1, h2 the mesh
spacing. Considering the wavelet basis function (3.2.12) with ψ(m)(·) the
Haar wavelet (3.3.21) and the smoothing function (3.2.13), such that

φ(x) =

{
1 for 0 < x < 1

0 otherwise
(3.3.29)

the two-dimensional function f(x) can be represented, in each point of the
mesh, in the following way

f(i1, i2) =

M∑
m=1

3∑
q=1

2M−m∑
k1,k2=1

w(m,q)[k1, k2]Ψ(m,q)[i1−2mk1, i2−2mk2] (3.3.30)

Where the position is indexed with (k1, k2), the basis function with q, the
scale with m and the wavelet coe�cients are de�ned such that

w(m,q)[k1, k2] =
2M∑

i1,i2=1

f(i1, i2)Ψ(m,q)[i1 − 2mk1, i2 − 2mk2] (3.3.31)
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We observe that for every position (k1, k2) the total number of wavelet
coe�cients (without considering the total mean made on the grid) is

3∑
q=1

M∑
m=1

22(M−m) =

3∑
q=1

22M
M∑
m=1

1

22m
=

3∑
q=1

22M
M∑
m=1

(
1

4

)m
=

=

3∑
q=1

22M

(
1

3
− 4−M

3

)
=

3∑
q=1

22M − 1

3
= 22M − 1

(3.3.32)

Thus the wavelet transform preserves the total information of the discrete
two-dimensional function.

Equation (3.3.28) becomes

E(km) = N−2
2M−m∑
i1,i2=1

3∑
q=1

(w(m,q)[j1, j2])2 2m(h1h2)1/2

2π ln 2

N=2M
=

= 2−2M
[ 1

22M−2m

2M−m∑
i1,i2=1

3∑
q=1

(w(m,q)[j1, j2])2
]
22M−2m 2m(h1h2)1/2

2π ln 2
=

=< (w(m,q)[j1, j2])2 >
2−m(h1h2)1/2

2π ln 2
(3.3.33)

Calculus of the two-dimensional wavelet coe�cients: the algo-
rithm

Let's consider the two-dimensional known function f(x) on a mesh grid
(h1i1, h2i2) with 1 ≤ i1, i2 ≤ 2M .
We de�ne for the scale index m = 0

S(0)(i1, i2) = f(i1, i2)− f̄ , with f̄ = 2−2M
2M∑

i1,i2=1

f(i1, i2) (3.3.34)

and for m = 1, ...,M the recursive sum

S(m)(i1, i2) =
1

2

[
S(m−1)(2i1 − 1, 2i2 − 1) + S(m−1)(2i1 − 1, 2i2)

+ S(m−1)(2i1, 2i2 − 1) + S(m−1)(2i1, 2i2)
] (3.3.35)

Using relations (3.3.34) (3.3.35) (3.2.12), it is possible to compute the
wavelet coe�cient (3.3.31) for each scale index m, basis function index
1 ≤ q ≤ 3 and position index 1 ≤ k1, k2 ≤ 2M−m as followed

w(m,q)[k1, k2] = σq


S(m−1)(2k1 − 1, 2k2 − 1)

S(m−1)(2k1 − 1, 2k2)

S(m−1)(2k1, 2k2 − 1)

S(m−1)(2k1, 2k2)

 (3.3.36)
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where, varying q, σq is the row vector

σq =


[1 −1 −1 1], for q = 1

[1 1 −1 −1], for q = 2

[1 −1 1 −1], for q = 3

(3.3.37)

Introducing the row vector σ4 = [1 1 1 1], we de�ne a linear system
that permits to compute all the wavelet coe�cients at a �xed scale index
m (3.3.36), and to obtain the representation in the wavelet space of the
two-dimensional function under study (3.3.35). For each scale index m the
associated linear system is


w(m,1)[k1, k2]

w(m,2)[k1, k2]

w(m,3)[k1, k2]

S(m)(k1, k2)

 =
1

2


1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1



S(m−1)(2k1 − 1, 2k2 − 1)

S(m−1)(2k1 − 1, 2k2)

S(m−1)(2k1, 2k2 − 1)

S(m−1)(2k1, 2k2)


(3.3.38)

The matrix in system (3.3.38) is invertible, so that if the wavelet coef-
�cients w(m,q)[·] and the sum S(m)(·) are known at scale m and for all the
index q, it is possible to calculate S(m−1)(i1, i2) for all the mesh grid and
the scale index m (from M to 1). Therefore, the wavelet inverse transform
of the two-dimensional function f(x) can be obtained solving the following
liner system


S(m−1)(2k1 − 1, 2k2 − 1)

S(m−1)(2k1 − 1, 2k2)

S(m−1)(2k1, 2k2 − 1)

S(m−1)(2k1, 2k2)

 =
1

2


1 1 1 1
−1 1 −1 1
−1 −1 1 1

1 −1 −1 1



w(m,1)[k1, k2]

w(m,2)[k1, k2]

w(m,3)[k1, k2]

S(m)(k1, k2)


(3.3.39)

3.3.3 Three-dimensional case

Here the formulation of three-dimensional continuous wavelet transform
presented in paragraph 3.2.1 is extended to the discrete form.

Let f(x) be a function sampled on a discrete mesh, such that f(x) =
f(x1, x2) = f [i1, i2], with x = (x1, x2, x3) = (h1i1, h2i2, h3i3), 1 ≤ i∗ ≤ 2M

and h1, h2, h3 the mesh spacing.
Considering the wavelet basis function (3.2.18) with ψ(m)(·) the Haar wavelet
(3.3.21) and the smoothing function (3.2.13), the three- dimensional func-
tion f(x) can be represented, in each point of the mesh, as follows

f(i1, i2, i3) =
M∑
m=1

7∑
q=1

2M−m∑
k1,k2,k3=1

w(m,q)[k1, k2, k3]Ψ(m,q)[i1 − 2mk1, i2 − 2mk2, i3 − 2mk3]

(3.3.40)
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with [k1, k2, k3] the position indexes, m the scale index and w(m,q)[·] the
wavelet coe�cients such that

w(m,q)[k1, k2, k3] =
2M∑

i1,i2,i3=1

f(i1, i2)Ψ(m,q)[i1 − 2mk1, i2 − 2mk2, i3 − 2mk3]

(3.3.41)
In this case, the application of the wavelet transform guaranties the

conservation of the original signal information, in fact

7∑
q=1

M∑
m=1

23(M−m) =
7∑
q=1

23M
M∑
m=1

1

23m
=

7∑
q=1

23M
M∑
m=1

(1

8

)m
=

=

7∑
q=1

23M

1
8 −

(
1
8

)M+1

1− 1
8

=

7∑
q=1

23M − 1

7
= 23M − 1

(3.3.42)

Now, equation (3.3.28) becomes

E(km) = N−3
2M−m∑

j1,j2,j3=1

7∑
q=1

(w(m,q)[j1, j2, j3])2 2m(h1h2h3)1/3

2π ln 2

N=2M
= 2−3M

 1

23M−3m

2M−m∑
j1,j2,j3=1

7∑
q=1

(w(m,q)[j1, j2, j3])2

 23M−3m 2m(h1h2h3)1/3

2π ln 2

=< (w(m,q)[j1, j2, j3])2 >
2−m(h1h2h3)1/3

2π ln 2
(3.3.43)

Calculus of the three-dimensional wavelet coe�cients: the algo-
rithm

Using the previous notation, we de�ne for the scale index m = 0

S(0)(i1, i2, i3) = f(i1, i2, i3)− f̄ , with f̄ = 2−3M
2M∑

i1,i2,i3=1

f(i1, i2, i3)

(3.3.44)
and for m = 1, ...,M the recursive sum

S(m)(i1, i2, i3) =
1

2

[
S(m−1)(2i1 − 1, 2i2 − 1, 2i3 − 1) + S(m−1)(2i1 − 1, 2i2 − 1, 2i3)

+ S(m−1)(2i1 − 1, 2i2, 2i3 − 1) + S(m−1)(2i1 − 1, 2i2, 2i3)

+ S(m−1)(2i1, 2i2 − 1, 2i3 − 1) + S(m−1)(2i1, 2i2 − 1, 2i3)

+ S(m−1)(2i1, 2i2, 2i3 − 1) + S(m−1)(2i1, 2i2, 2i3)
]

(3.3.45)

Thanks to relations (3.3.44) (3.3.45) (3.2.18), it is possible to compute
the wavelet coe�cient (3.3.41) for each scale index m, basis function index
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1 ≤ q ≤ 7 and position index 1 ≤ k1, k2, k3 ≤ 2M−m as followed

w(m,q)[k1, k2, k3] = σq



S(m−1)(2k1 − 1, 2k2 − 1, 2k3 − 1)

S(m−1)(2k1 − 1, 2k2 − 1, 2k3)

S(m−1)(2k1 − 1, 2k2, 2k3 − 1)

S(m−1)(2k1 − 1, 2k2, 2k3)

S(m−1)(2k1, 2k2 − 1, 2k3 − 1)

S(m−1)(2k1, 2k2 − 1, 2k3)

S(m−1)(2k1, 2k2, 2k3 − 1)

S(m−1)(2k1, 2k2, 2k3)


(3.3.46)

where for each q, σq is the row vector

σq =



[1 −1 −1 1 −1 1 1 −1], for q = 1

[1 1 −1 −1 −1 −1 1 1], for q = 2

[1 −1 1 −1 −1 1 −1 1], for q = 3

[1 1 1 1 −1 −1 −1 −1], for q = 4

[1 −1 −1 1 1 −1 −1 1], for q = 5

[1 1 −1 −1 1 1 −1 −1], for q = 6

[1 −1 1 −1 1 −1 1 −1], for q = 7

(3.3.47)

Introducing the row vector σ8 = [1 1 1 1 1 1 1 1], all the wavelet coe�-
cients at a �xed scale index m (3.3.46) and the three-dimensional wavelet
representation (3.3.45) of the function f(x) can be computed solving the
following linear system



w(m,1)[k1, k2, k3]

w(m,2)[k1, k2, k3]

w(m,3)[k1, k2, k3]

w(m,4)[k1, k2, k3]

w(m,5)[k1, k2, k3]

w(m,6)[k1, k2, k3]

w(m,7)[k1, k2, k3]

S(m)[k1, k2, k3])


=

(
1

2

)3/2



1 −1 −1 1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 −1 1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1
1 1 1 1 1 1 1 1





S(m−1)(2k1 − 1, 2k2 − 1, 2k3 − 1)

S(m−1)(2k1 − 1, 2k2 − 1, 2k3)

S(m−1)(2k1 − 1, 2k2, 2k3 − 1)

S(m−1)(2k1 − 1, 2k2, 2k3)

S(m−1)(2k1, 2k2 − 1, 2k3 − 1)

S(m−1)(2k1, 2k2 − 1, 2k3)

S(m−1)(2k1, 2k2, 2k3 − 1)

S(m−1)(2k1, 2k2, 2k3)


(3.3.48)

If the wavelet coe�cients w(m,q)[·] and the sum S(m)(·) are known at the
scale m and for all the index q, it is possible to calculate S(m−1)(i1, i2) for
all the mesh grid and the scale index m from M to 1 inverting the previous
system, i.e.



S(m−1)(2k1 − 1, 2k2 − 1, 2k3 − 1)

S(m−1)(2k1 − 1, 2k2 − 1, 2k3)

S(m−1)(2k1 − 1, 2k2, 2k3 − 1)

S(m−1)(2k1 − 1, 2k2, 2k3)

S(m−1)(2k1, 2k2 − 1, 2k3 − 1)

S(m−1)(2k1, 2k2 − 1, 2k3)

S(m−1)(2k1, 2k2, 2k3 − 1)

S(m−1)(2k1, 2k2, 2k3)


= 23/2



1 1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1 1
−1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1
−1 −1 −1 −1 1 1 1 1

1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
−1 1 1 −1 1 −1 −1 1





w(m,1)[k1, k2, k3]

w(m,2)[k1, k2, k3]

w(m,3)[k1, k2, k3]

w(m,4)[k1, k2, k3]

w(m,5)[k1, k2, k3]

w(m,6)[k1, k2, k3]

w(m,7)[k1, k2, k3]

S(m)[k1, k2, k3])


(3.3.49)





Chapter 4

Coherent structure formation

through nonlinear interactions

in 2D magnetohydrodynamic

turbulence

As shown in Chapter 1 the dynamical evolution of 2D incompressible MHD
is described by the following set of equations

∂tω + v · ∇ω = B · ∇j + ν∇2ω

∂ta+ v · ∇a = η∇2a
(4.0.1)

where v and B are the �uid velocity and the magnetic �eld which both have
zero z components. The z component of the vector potential, the electric
current density and the �uid vorticity are given by a, j and ω respectively.
The stream function is given by φ such that ω = −∇2φ, ν is the kinematic
viscosity1 and η is the magnetic di�usivity [33, 6]. Equations (4.0.1) are
written in familiar Alfvén units [98] where lengths scale with l0, typical
large scale. Velocity and magnetic �eld scale with the root-mean-square of
the Alfvén speed CA and time scales with l0/CA .

In their ideal form. i.e. when ν = η = 0, these equations conserve
three global quadratic invariants (rugged invariants i.e. invariants which
survive to any Galerkin truncation): the energy E = 1

2

∫
(v2 +B2)d2r, the

cross-helicity Hc = 1
2

∫
v · B d2r and the mean square potential vector

A2 =
∫
a2 d2r.

In order to study the behaviour of turbulent �ows associated with these
equations, numerical simulations at very low values of ν and η and periodic
boundary conditions are usually performed. In such cases, the long time

1 An isotropic kinematic viscosity is a typical assumption in the MHD mathematical model,
even if in real plasmas ν can be strongly non-isotropic.
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evolution of these equations has been shown to give rise to the so-called self-
organization of turbulent �ows. In this scenario large scale very correlated
structures are �nally obtained, whose properties can be derived from the
idea that energy is minimised while holding constant cross-helicity and
mean square magnetic potential [141].

Let λ and φ be Lagrangian multipliers and Ω an open regular and limited
domain of R2, imposing that

δ

[
1

2

∫
Ω

(v2 +B2)d2r − λ

2

∫
Ω

v ·B d2r − φ
∫

Ω
a2d2r

]
= 0 (4.0.2)

and using the variational calculation analysis, we obtain relations

v − λB = 0

j − λω − 2φ a = 0
(4.0.3)

which can be recast to the following form

ω

j
= λ,

j

a
=

1− λ2

2φ
= ϕ (4.0.4)

where the presence of a correlation between ω, j and j, a is emphasised.
In the present chapter we explore the possibility that the above equilib-

ria, which are intended to be long time solutions of equations (4.0.1), have
an in�uence on the cascade processes, manifesting on time-scales compara-
ble to an eddy turnover time.
We present in detail the analysis built up in order to identify and charac-
terise the rapid time formation of coherent structures induced by nonlinear
interaction in MHD incompressible turbulent �ows. These structures are
characterised by the occurrence at small scales of regions where the corre-
lations predicted by the hypothesis of quadratic rugged invariant conser-
vations are locally present, a property which is the equivalent to the well
known "Beltramisation" of the �uid �ows.

Di�erent high resolution 2D MHD simulations have been tested in order
to asses the general validity of the obtained results. The implemented
algorithm is based on the discrete orthogonal wavelet transform (Chapter
3).

4.1 Simulations

System of equations (4.0.1) are solved in double periodic box, in a Cartesian
geometry where each side is set to 2πl0. We compute the nonlinear terms
using a pseudo-spectral technique, applying a 2/3 dealiasing rule [55, 133].
The code conserves energy with high precision, and it has been tested in
absence of viscous/resistive terms (the spectral Galerking representations
retain high accuracy and robustness, even in ideal MHD). A standard Lapla-
cian dissipation with constant dissipation coe�cients has been employed.
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The latter have been chosen high enough to guarantee the smoothness of
the solutions, but also to achieve high Reynolds numbers. The values of
the viscosity and the resistivity are reported in Table 4.1 together with a
description of the runs performed. Time integration is achieved through a
classical second-order Runge-Kutta method, which has been tested to be
stable and robust, for each simulation. The number of used mesh points N2

goes from 20482 to 40962, and results have been found to be independent
of this choice.

Runs N ν = η M

RUN1 2048 3× 10−4 M = 11
RUN2 2048 2× 10−3 M = 11
RUN3 4096 5× 10−4 M = 12

Table 4.1: Parameters for runs: N represents the number of grid points
in each direction, ν and η are the viscosity and the magnetic di�usivity
respectively, M is related to N through M = log2(N)

Considering the representation of magnetic and velocity �elds in Fourier
space, the energy is initially concentrated in the shell 1 ≤ k ≤ 2 (k is
the modulus of the wavenumber in units of 1/l0). The initial energy has
been normalised such that E = 1

2〈v
2 + b2〉 = 1, where the brackets denote

a spatial average. Random phases are employed for the initial Fourier
coe�cients and uncorrelated, equipartitioned velocity and magnetic �eld
�uctuations are imposed. This gives a negligible initial net cross helicity
in the system. This choice of initial conditions corresponds in the physical
space to a collection of energy containing magnetic islands and vortical
�ows. Therefore, the �elds are a superposition of large scale �uctuations,
which suddenly undergo a state of fully developed turbulence. As we have
just outlined, using the normalisation described above, kinetic and magnetic
Reynolds numbers of our simulations are nothing but the inverse of the
kinematic viscosity and magnetic di�usivity respectively. Finally we have
considered an homogeneous spatial grid (xi, yk), such that xi = i δx and
yk = k δy, with 1 ≤ i, j ≤ 2M and δx = δy = δ = l0 2−M the mesh spacing.

4.2 Analysis

In order to identify the intermittent pattern formed at small scale in tur-
bulent �ow, we used a wavelet decomposition analysis, through a Haar
wavelet base in two dimensions [49, 101, 44, 47, 46, 150, 151, 112] (use of
the algorithm presented in section 3.3.2). In accordance with the wavelet
decomposition, for 1 ≤ m ≤ M , we de�ne the scale lm = 2m−M l0 = 2mδ
(Chapter 3).

The wavelet decomposition has been performed on both the two com-
ponents of velocity and magnetic �eld, choosing the �elds at a simulation
time where the turbulence was fully developed, a time t∗ which we have
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Figure 4.1: Dissipative power as a function of time, for RUN3. P (t) = η <
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Figure 4.2: Energy spectrum in log scale for RUN3.

identi�ed with the ideal time corresponding to the maximum value of the
dissipated power (i.e. at this time the conditions of stationary state are
valid since at the smallest scale the nonlinear e�ects are comparable with
respect to the dissipative ones). For example, for RUN3 t∗ = 1.8 (Figure
4.1) and the corresponding fully developed power spectrum is presented in
Figure 4.2.

It is worth noting that at this time the �eld structure of the solution is
completely di�erent from that one found at the the starting time, showing
that the solution of the MHD equations at this time has no particular
relation with the imposed initial condition (Figure 4.5).

Figures 4.3 (a) and (b) report the invariants of the system (i.e. the global
cross-helicity and the mean square magnetic potential) as functions of time.
They both remain quasi-constant during all the rapid time evolution of the
simulation (RUN3). Meanwhile Figure 4.4 presents the time evolution of
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Figure 4.3: Invariants of the system in function of time for RUN3.

the total (magnetic and kinetic) energy, the magnetic energy and the kinetic
energy. It is clearly seen that the dissipation rates for magnetic and kinetic
energy are more or less the same up to the short time analysed.
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Figure 4.4: Total energy •, kinetic energy �, and magnetic energy ◦ func-
tions of time for RUN3.

As in an usual intermittent analysis [49], we have built up the PDFs of
the velocity and magnetic wavelet coe�cients at di�erent scales. In Figure
4.6 the PDFs of the smallest scale (l1) and of the largest statistically signif-
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icant scale (l8) are presented. Let us notice that, at the biggest considered
scale (l8), the PDF is almost Gaussian, while, descending to smaller scales,
important non-Gaussian tails are displayed. Now the standard deviation at
each scale can be used as a threshold for selecting the intermittent struc-
tures [49]. Actually, we have selected the wavelet coe�cients of both the
x and y components of the velocity and the magnetic �eld whose module
is greater than four times the corresponding �eld standard deviation. This
operation allows the identi�cation of the grid points, at �xed scale, where
coherent intermittent structures are localised (Figure 4.7).

Figure 4.5: Contour plots of the vorticity �eld and the current �eld at times
t = 0.0 and t = 1.8 for RUN3.

In order to study the properties of the correlation among the dynamical
variables in the neighbor of each intermittent grid point (xi, yk) and for
each scale lm, we have considered such grid point as the center of a spatial
window [xi−∆m, xi+∆m]× [yk−∆m, yk +∆m], with ∆m = 2lm. Then we
have restricted the vorticity �eld, the current density �eld and the magnetic
potential to each selected spatial window and we have calculated the cor-
relation coe�cient between the current density �eld and the vorticity �eld
cmω,j(xi, yk) and correlation coe�cient between the current density �eld and
the magnetic potential cmj,a(xi, yk) inside the above de�ned spatial windows.

In (Figure 4.8) the PDFs of cmω,j(xi, yk) and cmj,a(xi, yk) calculated at
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Figure 4.6: PDFs of vx wavelet coe�cients at scales l1 •, l7 • and l8 • at
simulation time t = 1.8 for RUN3, Gaussian Distribution −.

Figure 4.7: Grid points above-threshold at scales (a) l1 and (b) l5 at time
t = 1.8 for RUN3.

t = 1.8 in the neighbourhood of the intermittent structures are compared
with the distribution of their initial values calculated on the whole simula-
tion domain. Looking at these distributions, we �nd that, in the simulation
we are analysing, the correlations between the current density �eld and the
vorticity �eld and the current density �eld and the magnetic potential(
which were almost null everywhere in the simulation domain at the initial
time) are displaying well de�ned values in the neighbourhood of the small
scale intermittent structures after some ideal time. This shows that nonlin-
ear interactions are extremely e�cient in building up, rapidly in time and
locally in the neighbourhood of the intermittent grid points, the correlations
(4.0.4) predicted by the variational principle (4.0.2).

In addition, we have tested other correlations derived from the vari-
ation principle where quantities which do not represent quadratic rugged
invariants for the system were kept constant (for example the vorticity �eld
or f(a) = an with n > 2). The obtained results have shown that these
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correlations are not locally present in the �ow.

The latter result has led us to repeat the same windowing analysis all
over the simulation domain, i.e. for all grid points, and the previously used
window of dimensions (2∆1) × (2∆1). Figures 4.9 display the same pat-
tern observed in Figures 4.7, clearly identifying large scale and intermittent
structures, both characterised by strong correlations between ω and j (Fig-
ure 4.9(a)) and between j and a (Figure 4.9(b)). Remarkably, the sign of
the correlations in the large scale regions is the opposite of those in the more
intermittent structures. Intermediate values of correlations are present only
in the very tiny regions where correlations change in sign, i.e. there is a
passage from −1 to +1 or vice versa.
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Figure 4.8: PDFs at scale l1 of cmω,j(xi, yk) •, cmj,a(xi, yk) � at time t = 1.8
calculated for the intermittent points and of cmω,j(xi, yk) +, cmj,a(xi, yk) × at
time t = 0.0, calculated for the whole simulation domain, for RUN3.

It is worth noting that looking at the contour plots of the λ-values and
ϕ-values given by relations (4.0.4) (Figures 4.10) the pattern obtained may
be practically superposed on that obtained in Figures 4.9. Large regions of
space where the former values are almost constant can be identi�ed, while
in the intermittent regions the values of the ratios remain almost constant
on the pattern identi�ed by the previous intermittent analysis.

These results are particularly signi�cant since they allow us to under-
stand what kind of role the rugged invariants' conservation plays during
the nonlinear evolution of the 2D MHD equations. In the initial condition
the correlations between velocity and magnetic �eld and between current
density and magnetic potential were present nowhere. Due to the e�ects of
nonlinear interactions the correlations calculated over the whole simulation
domain remain null, but now in the �ow there are regions of maximum
positive correlations and regions of maximum negative correlations and
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Figure 4.9: Contour plots of the correlation coe�cients cmω,j(xi, yk) (a) and
cmj,a(xi, yk) (b) at scale l1 and time t = 1.8 for RUN3.

Figure 4.10: Contour plots of the ratios (4.0.4) at time t = 1.8 for RUN3.

the separation between these regions corresponds to a separation between
large scale coherent structures and small scale intermittent structures. This
means that the nonlinear interactions tend to segregate the structures with
opposite sign of the correlations, not only in the physical space but also in
the spectral space.

Starting from equations (4.0.1) for each grid point (xi, yk), we can de�ne
two typical evolution times for variables ω and a. The �rst type is the time
measured by an observer located in a �xed point of the space, it is de�ned
for the vorticity �eld and the magnetic potential as

t̃ω(xi, yk) =

∣∣∣∣∣ ω(xi, yk)
∂ω
∂t (xi, yk)

∣∣∣∣∣ , t̃a(xi, yk) =

∣∣∣∣∣ a(xi, yk)
∂a
∂t (xi, yk)

∣∣∣∣∣
The other one is the time measured by an observer moving on a �ux line,
hence following the motion. In this case the characteristic times associated
to the dynamical evolution of the vorticity �eld and the magnetic potential
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are

tω(xi, yk) =

∣∣∣∣∣ ω(xi, yk)
Dω
Dt (xi, yk)

∣∣∣∣∣ , ta(xi, yk) =

∣∣∣∣∣ a(xi, yk)
Da
Dt (xi, yk)

∣∣∣∣∣ (4.2.5)

where D∗
Dt = ∂∗

∂t + v · ∇∗ is the material derivative. It is worth noting that
in order to identify a typical life-time of the turbulent structures under our
investigation, the latter time is better suited than the former.

Figure 4.11: Contour plots of the characteristic times (4.2.5) at time t = 1.8
for RUN3.

In Figures 4.11 we have reported the contour plots of the life-times
(4.2.5). The same pattern observed also in Figures 4.9, is displayed in Fig-
ures 4.11: large scale structures are characterised by long evolution times
and may be sees as quasi-steady structures. On the contrary, the intermit-
tent structures have rapid evolution in time, associated to their dissipation.
This result together with the localization of opposite values of the correla-
tions in the intermittent and in the quasi-steady structures can furnish a key
for understanding why in decaying turbulence, on very long time, i.e. when
small scale intermittent structures are �nally dissipated, only one sign of
the correlation at last survives on large scale structures (self-organization).

4.3 Discussion

Through our high resolution 2D MHD simulations we have analysed and
identi�ed the rapid time formation of coherent structures induced by nonlin-
ear interaction in MHD incompressible turbulent �ows. These structures
are characterised by the occurrence at small scales of regions where the
correlations predicted by the hypothesis of quadratic rugged invariant con-
servations are locally present, a property which is the equivalent to the
well known "Beltramisation" of the �uid �ows. Moreover, large scale struc-
tures and intermittent structures present a clear separation from the the
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calculated correlations' point of view. In fact, the two di�erent types of
structures are characterised by opposite signs of the correlations.

Although, a limited number of simulations have been performed, we
think that the peculiar initial conditions we have chosen and the high res-
olution we have used, allow us to be su�ciently con�dent about the fact
that the behaviour observed and discussed represents a generic property of
the 2D MHD turbulence.

Analysing the characteristic Lagrangian evolution times, other interest-
ing properties of the coherent structures have emerged. Speci�cally, on very
fast dynamic nonlinear time scales, local organization is observed; this is
the case of intermittent structures which are formed when the small scales
are produced by the nonlinear interactions and are then dissipated. Con-
versely, on long evolution time, global self-organization is observed. In fact,
the large structures present very long evolution times, such that they can
be considered quasi-steady structures. Consequently, leaving the simula-
tion free to evolve, the rapid evolution �nally destroys the intermittent
structures, leaving only the large scale structures which are quasi-stable in
time.

In ideal hydrodynamics the formation of singularities, i.e. the break-
down from smooth solutions, has necessary conditions given by the maxi-
mum norm of the vorticity (Beale-Kato-Majda theorem) [114, 2]. A similar
behaviour is also observed for incompressible MHD equations: ideal MHD
equations can be seen as the limit of the incompressible ones taking in con-
sideration energy dissipation and magnetic helicity conservation (existence
of a generalized Beale-Kato-Majda theorem) [13, 6]. Therefore it is worth
speculating that the intermittent small scale structures, observed in our
simulations as consequence of the rapid time evolution produced by nonlin-
ear interactions, could give rise to singular weak solutions when letting the
dissipative coe�cients go to zero. In this case the properties of these struc-
tures, identi�ed by our analysis, could give a key element for understanding
which mathematical conditions characterise singularity emergence in weak
solutions of the MHD ideal case.
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Introduction

In this section a description of the data analysis performed on an ongoing
experimental project, the Von-Kármán plasma (VKP) experiment, based
in the Laboratoire de Physique at the Ecole Normale Supérieure de Lyon,
is presented. This project is aimed at developing a Von-Kármán type �ow
in a weakly magnetised plasma in order to investigate the basic magnetic
induction plasma-processes, with variable magnetic Prandtl number and
magnetic Reynolds number. In Chapter 7 a concise description of the ex-
perimental set-up is given.

In order to get a better understanding of the internal dynamics charac-
terising the plasma generated in the VKP experiment, the basic models for
the plasma description are presented in Chapter 5. Then the low-frequency
normal modes of magnetically con�ned plasma, the drift waves, are in-
troduced and the equation describing the dynamics of an inhomogeneous
plasma, the Hasegawa-Mima equation, is given (Chapter 6).

Finally, in Chapter 9, the data analysis built up in order to understand
how the generated plasma column behaves when plasma dynamics charac-
terised by the presence of drift wave modes occurs for magnetic �eld above a
certain threshold is described. The extraction of the plasma modes has been
obtained through the implementation of the two-dimensional variational
mode decomposition analysis (Chapter 8). The results presented are still
preliminary, but they show a good order of magnitude accordance between
the plasma dynamic description given by the Hasegawa-Mima equation and
the experimental data.

61





Chapter 5

Plasma description

A completely or partially ionised gas which is, however, electrically neutral
on average is called plasma, and represents the forth state of the matter.
Plasmas occur vastly in nature. Examples are the non-fusion terrestrial
plasmas (like neon signs, �uorescent lamps and willing arcs), the fusion-
grade plasmas obtained using magnetic con�nement devises (e.g. tokamaks,
stellarators, reversed �eld pinches) and space plasmas.

The self-consistent interaction between electromagnetic �elds and sta-
tistically large numbers of charged particles determines the plasma dynam-
ics. This because charge separation between ions and electrons generates
electric �elds, while charged particle �ow is responsible of currents and
magnetic �elds formation.

In principle knowing the trajectories and the velocities of all the charged
particles allows to determine the time evolution of the plasma. In fact the
previous informations can be used to evaluate both the electric and the
magnetic �elds through Maxwell's equations. Given now the instantaneous
electric and magnetic �elds, Lorentz equation allows to compute the forces
acting on each charged particle, and to update the old trajectories and
velocities.

However, it is impractical to follow this approach, due to complexity of
the system described and the large number of charged particles involved.
A more suited approach for describing the plasma dynamics is the intro-
duction of appropriate simplifying approximations.
A model where a certain set of approximations are valid providing a self-
consistent description is called regime. For plasmas usually two di�erent
categories of approximations can be considered involving either the electro-
magnetic �eld or the particle description.
In this part of the work we will focus on the latter, which can be either a
kinetic (Vlasov theory) or a �uid (two-�uids or MHD theory) model.

Vlasov theory: an average over all the particles of a given species σ (ions
or electrons) with the same velocity at a given location is performed;
the plasma is characterised using the distribution function fσ(x,v, t),
which is nothing but the phase-space density of particles of species σ
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having velocity v, position x at time t.

Two-�uids theory: an average over all particles of a given species at a
given position is computed, and the plasma is characterised using the
space density nσ(x, t), the mean velocity uσ(x, t) and the pressure
pσ(x, t). This model approximates plasma as a system of two mu-
tually interacting �uids, constituted by �nite-pressure electrons and
ions.

MHD theory: here the momentum is averaged over all particles of all
species and the characterisation of the plasma is reached using the
center-of mass density ρ(x, t), the center-of mass velocity U(x, t) and
the pressure P (x, t). It is the less detailed model and it approximates
plasma as a single, �nite-pressure, electrically conducting �uid. The
MHD theory can be obtained following a phenomenological approach
as showed in Chapter 1, or through a more rigorous mathematical
approach, starting from the two-�uids description.

For a more detailed description we refer to [3].

5.1 The kinetic description

In a three-dimensional space a particle, at a given time, can be identi�ed by
its position and velocity. Thus the instantaneous con�guration of a large
number of particles can be characterised by specifying the particles' den-
sity in each point of the phase space (x,v). The instantaneous density of
particles in the phase space is the so called distribution function fσ(x,v, t).
Therefore, fσ(x,v, t)dxdv is the number of particles at time t having posi-
tions in the volume element dx of the physical space and velocities in the
volume element dv of the velocity space. If we consider the �uid description,
the time evolution of fσ gives a more detailed system description, in fact it
permits the characterisation of particle classes with the same positions and
velocities in phase space.

We observe that the number density of particles in the physical space
is given by

nσ(x, t) =

∫
fσ(x,v, t)dv (5.1.1)

and fσ(x,v, t)/nσ(x, t) can be seen as the probability that a random se-
lected particle at position x has velocity v at time t. Consequently the
mean (�uid) velocity can be de�ned as

uσ(x, t) =
1

nσ(x, t)

∫
vfσ(x,v, t)dv (5.1.2)

In general multiplying fσ by di�erent powers of the velocity and then inte-
grating over the velocities gives us the moments of the distribution function.
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We observe that if we consider the same frame of a particle with a
phase-space trajectory x = x(t), v = v(t) and we measure the distribu-
tion function moving with the particle, the observed rate of change of fσ
is the quantity D

Dtfσ(x(t),v(t), t), where D
Dt is the total derivative, i.e.

the derivative measured in the moving frame. Because Dx
Dt = v and Dv

Dt
corresponds to the particle acceleration given by the Lorentz force, i.e.
Dv
Dt = a = qσ

mσ
(E + 1

cv ×B) we have that

D

Dt
fσ(x(t),v(t), t)

∣∣∣
orbit

=
∂fσ
∂t

+ v · ∂fσ
∂x

+ a · ∂fσ
∂v

=
∂fσ
∂t

+ v · ∂fσ
∂x

+
qσ
mσ

(
E +

1

c
v ×B

)
· ∂fσ
∂v

= 0

(5.1.3)

namely the distribution function measured when it is moving along a par-
ticle trajectory (orbit) is constant. This property is useful in the search of
solutions for (5.1.3), in fact fσ can be chosen to depend on any quantity
that is constant along the orbit [78, 146].

In case of strong collisions an extra term should be added in the left side

of (5.1.3),
(
∂fσ
∂t

)
coll

. This term is a collision operator and it describes how

the distribution function changes in time under the action of collisions (ac-
tion of short-range interparticle forces). When strong collisions are included
in (5.1.3), it is usually called Boltzmann equation.

Generally the rate of binary collisions in plasmas is relatively small,
therefore in the case of su�ciently hot plasmas collisions are negligible and
(5.1.3) is called Vlasov equation.

In order to have a closed set of equations that permits the self-consistent
determination of the fσ dynamics, equations for computing the electric and
the magnetic �elds present in the term a · ∂fσ∂v should be added. These
equations are the Maxwell's equations

∇ ·E = 4π
∑
σ

qσ

∫
fσdv (5.1.4)

∇ ·B = 0 (5.1.5)

∇×E = −1

c

∂B

∂t
(5.1.6)

∇×B =
4π

c

∑
σ

qσ

∫
vfσdv +

1

c

∂E

∂t
(5.1.7)

Valsov-Maxwell equations represent a nonlinear system able to describe
self-consistently the dynamics of a collisionless plasma analytically tractable.

5.2 The two-�uids description

The �uid approximation consists in considering the plasma composed by
two or more interpenetrating �uids, one for each species (σ) forming the
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plasma. The simplest case is when only one species of ions is considered and
only two equations of motion are taken into account: one for the positively
charged ion �uid and the second one for the negatively charged electron
�uid.

Electron and ion �uids generate magnetic and electric �elds (which can
be described through Maxwell's equations). Therefore they interact with
each other. In this plasma description the dynamic equation can be ob-
tained considering the moments of Vlasov equation (5.1.3). Indeed inte-
grate (5.1.3) over velocity for each species gives a set of partial di�erential
equations where nσ(x, t) and uσ(x, t) are also related.
The �rst step consists in computing the zero-th moment which corresponds
to the species continuity equation

∂nσ
∂t

+∇ · (nσuσ) = 0 (5.2.8)

Now multiplying (5.1.3) by v and integrating over velocity, we have the
�rst moment of Vlasov equation which represents the momentum equation

mσ

[
∂ (nσuσ)

∂t
+

∂

∂x
· (nσuσuσ)

]
= nσqσ (E + uσ ×B)− ∂

∂x
·Pσ−

∑
t6=σ

Rστ

(5.2.9)
where:

� the sum is made on all the species τ 6= σ, whose particles can collide
with particles of species σ;

� Rστ = −mσnσνστ (uσ − uτ ) is the momentum density transferred to
species σ from species τ , with νστ the collision frequency of species σ
on species τ ;

� Pσ is the pressure tensor de�ned as the second moment of Vlasov
equation, i.e.

Pσ = mσ

∫
(v − uσ)⊗ (v − uσ) fσ(x,v, t)dv. (5.2.10)

where ⊗ is the tensor product.
We observe that since the momentum density transferred from one

species to the other one must obey momentum conservation, we haveRτσ =
−Rστ .

If fσ is an isotropic function of v, then Pσ is a diagonal matrix with
diagonal terms all equal to

Pσ(x, t) =
mσ

3

∫
(v − uσ) · (v − uσ) fσ(x,v, t)dv (5.2.11)

In real system the distribution function is often anisotropic. In particular
collisions drive the distribution function towards isotropy, while at the same
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time competing processes tend to drive it to anisotropy. Therefore, for
each system analysed one must determine if collisions are strong enough to
guarantee the validity of the isotropic hypothesis.

Expanding the derivatives of the l.h.s. of (5.2.9) and using the continu-
ity equation (5.2.8), we have that (5.2.9) is reduced to

nσmσ

[
∂uσ
∂t

+ (uσ · ∇)uσ

]
= nσqσ (E + uσ ×B)−∇Pσ −

∑
t6=σ

Rστ

(5.2.12)
The term v · ∂fσ∂x in (5.1.3) is responsible of the appearance of a moment

of (n+1)-th order when a n-th moment of the Vlasov equation is considered.
Thus, in order to obtain a closure for the �uid approximation system, an
ad hoc procedure must be introduced. A typical hypothesis for the closure
is to suppose that distribution functions are slightly perturbed Maxwellian.





Chapter 6

Turbulence in a plasma

column

Let's consider dissipation e�ects in the strong-collisional plasma descrip-
tion. Dissipation can appear in both v space (collisional drag and velocity
di�usion) and x space (Navier-Stokes-like equations). These e�ects are
usually treated sequentially: �rst the e�ects of particle discreteness in the

dissipative plasma collision operator
(
∂fσ
∂t

)
coll

(section 5.1) are introduced,

then moments of the collisional kinetic equation lead to dissipative �uid
equations [67].
In this con�guration a generalised Boltzmann collision operator C[fσ] is in-
troduced [19], in order to deal with the large-ranged nature of the Coulomb
force. The form of C[fσ] depends mostly on whether the plasma is weakly-
or strongly-coupled.

A measure of the e�ects of particle discreteness is represented by the
plasma parameter

εp =
1

nλ3
D

∼ n
3
2T
− 3

2
e (6.0.1)

where n is the number density of electrons, λD is the Debye length and Te
is the electron temperature.
Using the plasma parameter the following distinction is possible.

� If εp � 1, we talk of weakly coupled plasma [75]. Here the Debye
sphere (sphere of radius λD) is populated by many particles, the ra-
tio of both e�ective potential and thermal kinetic energy is small, and
the plasma behaviour is similar to a continuous distribution of charge.
Magnetically con�ned fusion plasmas are an example of weakly cou-
pled plasmas [75].

� If εp & 1, we talk of strongly coupled plasma [76].

Before discussing plasma turbulence we present a discussion concerning the
linear behaviour of plasmas (section 6.1). Then the basic low-frequency nor-
mal modes of magnetically con�ned inhomogeneous plasma, the drift waves,

69
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are presented and the basic concepts of the nonlinear evolution equation for
the electrostatic potential of the drift wave (the Hasegawa-Mima equation)
are given (section 6.2). Finally a overview of weak turbulence description
is shown (section 6.3).

6.1 Basic concepts of linear theory

Linear theory of plasmas presents more complications with respect to the
neutral �uid one. In fact, in absence of background �ows, for the in-
compressible Navier-Stokes equations the linear behaviour consists of only
the viscous damping described by the linear momentum di�usion equa-
tion ∂tv = µ∇2u. Assuming that perturbations vary as eλt = e−iωt with
ω = Ω + iγ, the previous equation asses that to each Fourier wave number
k is associated the eigenvalue λk = −µk2.
In homogeneous plasmas such (�uid) eigenvalues are determined by the
3× 3 dielectric tensor D(k, ω) [136].

Let's linearise the collisional kinetic equation (Boltzmann equation)

∂tδf + v · ∇δf +
q

m

(
δE +

1

c
v × δB

)
∂vf = −Ĉδf (6.1.2)

where f is the distribution function, ∂• = ∂
∂• , Ĉ is the linearised collisional

operator, and mean �elds have been ignored for simplicity. Then homoge-
neous self-consistent equations for the �uctuations δE and δB are sought.
The corresponding dispersion relation becomes

det

[
D (k, ω)−

(
kc

ω

)2 (
I − k̂k̂

)]
= 0 (6.1.3)

where I is the 3× 3 identity matrix.
In absence of a background magnetic �eld equation (6.1.3) presents both
high-frequency solutions and a variety of low-frequency solutions. In the
�rst case we talk of transverse (E ⊥ k) waves with dispersion relation ω2 =
k2c2 + ω2

p, where ωp is the plasma frequency1. While in the second case
the more common solutions are the longitudinal ones (E ‖ k), which are
usually analysed in the electrostatic approximation E = −∇φ.

The presence of inhomogeneities (e.g. of density or temperature) con-
siderably complicates the scenario. In fact in this case homogeneous modes
can be strongly modi�ed and new normal modes can appear.
Linear plasma theory suggests that the occurrence of linear waves in a
plasma is a common phenomenon. Therefore, a weak turbulence descrip-
tion, i.e. a description in which normal modes are taken to be independent

1 For species σ, ωpσ =
(

4πnq2

m

) 1
2
, with n the species density, q the species charge and m the

species mass; thus ωp =
(∑

σ ω
2
pσ

) 1
2 .
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to the lowest order then coupled perturbatively, can be useful in better
characterising the general plasma turbulence theory.

6.2 Drift waves and the Hasegawa-Mima equation

Real plasmas present both �nite extent and gradients in di�erent param-
eters, such as pressure, density, magnetic �eld etc. A �nite-extent, mag-
netically con�ned2 warm plasma necessarily exhibits a pressure gradient
perpendicular to the magnetic �eld.
Let's consider an azimuthally symmetric cylindrical plasma (plasma col-
umn) immersed in a strong axial magnetic �eld B = B0ẑ (Figure 6.1). We
assume that the pressure pro�le is peaked on the z axis and falls o� radi-
ally. Particles are free to move along the longitudinal direction, while in
the perpendicular direction they are forced to make Larmor orbits (orbits
of radius equals to the Larmor radius) around the magnetic �eld lines.

Figure 6.1: Cylindrical magnetised plasma with radial density gradient [3].

Let us analyse the system in term of a two-�uids description. From the two-
�uids equation (5.2.12) the radial pressure gradient implies the following
equilibrium force balance

0 = qσuσ ×B −
1

nσ
∇ (nσkBTσ) (6.2.4)

where the pressure has been computed using the ideal gas law, i.e. Pσ =
nσkBTσ, with kB the Boltzmann constant.
If we solve (6.2.4) for uσ we have that each species has a steady-state
perpendicular motion at the diamagnetic drift velocity

udσ = −∇ (nσkBTσ)×B
qσnσB2

0

(6.2.5)

2 In the presence of a magnetic �led, charged particles (ions and electrons) are forced to move
into circular and helical orbits around the magnetic �eld lines. Thus the particles are tied to
the �eld lines. Nevertheless, they are still free to move in the longitudinal direction of the
lines. Therefore, a suitably shaped magnetic �eld cage can be able of con�ning a plasma and
keeping it away from material walls.
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in the azimuthal direction. In addition a corresponding diamagnetic drift
current can be de�ned as follows

Jd =
∑
σ

nσqσudσ = − 1

B2
0

∑
σ

∇ (nσkBTσ)×B = − 1

B2
0

∇P ×B (6.2.6)

with P = Pi + Pe, Pi and Pe the ion and electron pressures respectively.
This quantity is the azimuthal current associated with the MHD equation
j ×B = ∇P .

We notice that both electrons and ions exhibit a diamagnetic drift ve-
locity providing the current necessary to establish the magnetic force that
balances the MHD pressure gradient. Although, it has been observed that
magnetised plasma with density and temperature (and thus pressure) gra-
dients are unstable to a class of electrostatic modes called drift waves [143].
Even if these modes exist in the same frequency regime as MHD, they are
not present in the standard MHD model. This because in the MHD model
there is not a su�ciently detailed di�erentiation between electron and ion
dynamics.

The study of drift waves is quite important, because these modes in-
volve physical distinct electron and ion motions, magnetised warm plasma
e�ects, density and pressure gradients, collisionality and Landau damping
instabilities in a three-dimensional geometry [71]. In addition these waves
are unstable in a lot of di�erent con�gurations.

Hence the basic low-frequency normal mode of a magnetically con�ned
plasma is represented by the electrostatic drift wave (also called universal
mode), which is driven by the gradient of the backgorund density pro�le
characteristic of a con�ned plasma con�guration. Drift waves can also be
destabilised by the presence of temperature gradients.

The basic nonlinear evolution equation for the electrostatic potential of
the drift wave is the so-called Hasegawa-Mima equation [69, 72].

In order to derive the Hasegawa-Mima model, some assumptions are
needed. Let's impose an homogeneous axial background magnetic �eld
B = B0ẑ and suppose that

� the plasma is inhomogeneous, n0 = n0(x);

� the ion thermal balance equation is dropped, because the ions are
cold and it is valid the temperature relation Ti � Te;

� electrostatic approximation is valid, i.e. E = −∇φ;

� the background magnetic �eld is so strong that condition ε = 1
ωic

∂
∂t �

13 is valid;

� electrons follow a Boltzmann distribution, i.e. ni = ne = n0(x)exp
(
eφ
Te

)
where e is the elementary charge.

3 ωci = qiB0
mi

is the ion cyclotron frequency.
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Let's consider the continuity equation (5.2.8) and the moment equation
(5.2.12) for the ions

∂ni
∂t

+∇ · (niu) = 0 (6.2.7)

nimi

[
∂ni
∂t

+ (ui · ∇)ui

]
= niqi (E + ui ×B)−∇Pi − νiemini (ui − ue)

(6.2.8)
where anisotropy in the pressure tensor and friction have been neglected.
Because we are in the electrostatic approximation and cold ions (∇Pi → 0)
have considered, we have that the ion motion equation (6.2.8) becomes

dui
dt

=
∂ui
∂t

+ (ui · ∇)ui = − qi
mi
∇φ+

qi
mi
ui ×B (6.2.9)

Using the strong magnetic �eld hypothesis the term d/dt in (6.2.9) can
be dropped in the �rst approximation, i.e.

− qi
mi
∇φ+

qi
mi
ui ×B = 0 (6.2.10)

Assuming that ui ·B = 0 and taking the vector product of (6.2.10) with
B, we �nd out that the zero-order perpendicular ion motion in ε is just

u0
i = −∇φ× B

B2
0

(6.2.11)

which is nothing but the E ×B drift, uE .
In order to obtain a �rst-order correction in ε of (6.2.9), we replace the

E ×B drift in the left-hand side of (6.2.9) such that

∂u0
i

∂t
+
(
u0
i · ∇

)
u0
i =

qi
mi
ui ×B (6.2.12)

and we consider the vector product of (6.2.12) with B, so obtaining

u1
i =

1

ωciB0

[
− ∂

∂t
∇⊥φ−

(
u0
i · ∇⊥

)
∇⊥φ

]
(6.2.13)

Thus the computed �rst-order correction is just the polarisation drift in the
perpendicular direction, uP , where ∇|| has been neglected due to the fact
that we assume parallel gradients much smaller than perpendicular ones.

Considering both the E ×B drift and the polarisation drift, the total
ion velocity is

ui = −∇φ× B

B2
0

+
1

ωciB0

[
− ∂

∂t
∇⊥φ− (uE · ∇⊥)∇⊥φ

]
(6.2.14)

Even if the polarisation drift is of order ε with respect to the E × B
drift, it is still kept in the formulation because in the case of a uniform
background magnetic �eld we have

∇ · uE = ∇ ·
[
−∇φ× B

B2
0

]
= 0, while ∇ · uP 6= 0. (6.2.15)
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In fact, it is the polarisation drift that allows changes in the ion density such
that, in the electrostatic approximation, quasi-neutrality could be satis�ed.

Let's now consider the continuity equation

∂n

∂t
+ n (∇ · u) + (u · ∇)n = 0 ⇒ dn

dt
+ n (∇ · u) = 0 (6.2.16)

⇒ d ln(n)

dt
+∇ · u = 0 (6.2.17)

Using the adiabatic condition for the electrons we have ln(n) = ln(n0)+ eφ
Te
,

such that (6.2.16) can be written as

d

dt

[
ln(n0) +

eφ

Te

]
+∇ · u = 0 (6.2.18)

We observe that the polarisation velocity can be neglected in the total
derivative

(
i.e. ddt• '

∂
∂t •+(uE · ∇)•

)
, ∇·u = ∇·uP and n0 = n0(x), thus

(6.2.18) becomes

d

dt

[
eφ

Te

]
+ uE · ∇ ln(n0) +∇ · uP = 0 (6.2.19)

Substituting both the expressions of the polarisation drift (6.2.13) and the

E ×B drift (6.2.11), and assuming a small potential
(
eφ
Te
� 1

)
, we have

d

dt

[
1

ωciB0
∇2
⊥φ−

eφ

Te

]
− (uE · ∇) ln (n0) = 0 (6.2.20)

⇒ ∂

∂t

[
1

ωciB0
∇2
⊥φ−

eφ

Te

]
+

(
−∇φ× B

B2
0

· ∇
)[

1

ωciB0
∇2
⊥φ− ln (n0)

]
= 0

(6.2.21)

Let's now introduce into (6.2.21) the following normalisation for the time
scale, the distance scale and the potential respectively,

ωci t→ t,
x

ρs
→ x,

eφ

Te
→ φ (6.2.22)

where ρ2
s = Te

miω2
ci
is the sound radius, consequently (6.2.21) becomes4

∂

∂t

[
1

ωciB0

Te
eρ2
s

∇2φ− φ
]
− 1

ωci

[(
Te
eρ2
s

∇φ× ẑ

B0

)
· 1

ρs
∇
]

[
1

ωciB0

Te
eρ2
s

∇2φ− ln (n0)

]
= 0

(6.2.23)

Thus the Hasegawa-Mima equation is

∂

∂t

(
∇2φ− φ

)
− [(∇φ× ẑ) · ∇]

[
∇2φ− ln (n0)

]
= 0 (6.2.24)

The latter is a non isotropic5 second order nonlinear partial di�erential

4 From now on the subscript ⊥ will we omitted in the expression of the gradient due to the fact
that the space variations are assumed to be just in the plane perpendicular to the imposed
magnetic �eld.

5 Since all the space derivatives are in the direction perpendicular to the ẑ-direction.
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equation.
We look for plane waves solutions of the Hasegawa-Mima equations

which propagate perpendicularly to both the background magnetic �eld and
the inhomogeneous direction x̂, i.e. solutions of the form φ = φ(x)ei(ky y−ωt).

Thus, neglecting the advective nonlinearity and assuming k2 � 1, the
dispersion relation of the drift wave is

ω = ωk = −ky∂x ln (n0)

1 + k2
(6.2.25)

Therefore, introducing the density gradient scale length Ln
6, the wave

propagates with the diamagnetic drift speed

ud =

[
Te
eB0

(−∂x ln (n0))

]
ŷ =

(
1

Ln

Te
eB0

)
ŷ (6.2.26)

and electron diamagnetic frequency is

ωk = ky

(
1

Ln

Te
eB0

)
= kyud = ω∗ (6.2.27)

We point out that, in our case, the frequencies are real thus these waves
are not unstable. Actually, it can be shown that taking into account either
the collisional or the kinetic e�ects drift waves become unstable.

Figure 6.2: Cylindrical coordinates.

We want to rede�ne the obtained dispersion relation, representing the
linear drift wave in a Cartesian geometry (x̂, ŷ, ẑ), in the case of a cylindri-
cal geometry, in order to describe the dynamics of a plasma magnetically
con�ned in an in�nite cylinder of radius R > 0. The new system of coor-
dinates is individuated by (r̂, ϕ̂, ẑ), where r̂ is the radial coordinate and ϕ̂
the poloidal coordinate (Figure 6.2).

Without losing generality we can assume that on a circle of �xed radius
r < R in the plane (r̂, ϕ̂) (inhomogeneous direction) we have r̂ ∼ x̂ and
ϕ̂ ∼ ŷ and that the �uctuations propagate only in the poloidal direction.
Under these assumptions the relation between the wavenumber ky and the

6 L−1
n = −∂x ln (n0)
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wavelength λ is given by λ = 2π
ky
. Thus, because we are in a con�ned geom-

etry, we can suppose that the eigenmodes7 are described by the following
relation

2πr = nλ = n
2π

ky
⇒ ky =

n

r
(6.2.28)

where n is the eigennumber characterising the eigenmode (Figure 6.3).

Figure 6.3: In the (r̂, ϕ̂) plane of an in�nite cylinder with radius R, repre-
sentation of both a circle of �xed radius r and a mode n = 5.

When kyLn � 1 we can assume that the mode pro�le variations in the
r̂ direction are negligible and we can suppose valid the dispersion relation
(6.2.25). Therefore, using relation (6.2.28) in the dispersion relation (6.2.25)
we have

ωk = ωn =
nud

r
(

1 + ρ2s
r2
n2
) (6.2.29)

6.3 Weak plasma turbulence

The weak plasma turbulence consists of a perturbative development of the
�uctuating amplitude of the electrostatic potential φ in a small coupling
parameter, followed by statistical averaging based on the random-phase
approximation [83].

Here we don't show a straightforward derivation of the n-wave interac-
tion theory, but we just present a phenomenological description in the case
of wave-wave coupling.

Generally in linear systems the superposition principle a�rms that wave
modes are independent of each other, i.e. it is possible to excite or annihilate
one mode without in�uencing any of the others.

In the case of con�ned plasmas, as soon as the drift wave perturbations
reach �nite amplitude, they can interact nonlinearly with perturbations
of di�erent wavenumbers, due to the presence of convective derivatives in
the �uid conservation equations. As consequence disturbances develop at

7 An eigenmode of an oscillating system is a pattern of motion in which all parts of the system
move sinusoidally with the same frequency and with a �xed phase relation. The frequency for
a particular mode is called the eigenfrequency. A description of the amplitudes and phases
of the various parts is called the mode shape. A system will typically have discrete modal
frequencies and associated mode shapes. In case of linear systems the arbitrary motion can
be expressed as a linear combination of di�erent modes [48].
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other wavenumbers and, because some of them are linearly stable, they are
damped. In the limit of very weak parallel electron dissipation, this process
can be described through a set of coupled mode equations [143].
In fact, let's assume that the electrostatic potential in the Fourier domain
is

φ =
1

2

∑
k

[
φk (t) eik·x + c.c.

]
(6.3.30)

where c.c. stands for the complex conjugate of the previous term. Substi-
tuting the new expression of φ in the Hasegawa-Mima equation (6.2.24) we
have the following coupling evolution equation

dφk
dt

+ iωkφk =
∑

k+k1+k2=0

Λk
k1k2

φ∗k1
φ∗k1

(6.3.31)

where φ∗k? is the complex conjugate of φk? and the matrix Λk
k1k2

denotes
the coupling (Figure 6.4), such that

Λk
k1k2

=
1

2

1

1 + k2
(k1 × k2) · ẑ

[
k2

2 − k2
1

]
(6.3.32)

Condition k+k1 +k2 = 0 can be seen as a consequence of the conservation
of wave momentum during the considered interaction.

Figure 6.4: Wave-wave coupling.

The described mode coupling can exhibit a turbulent behaviour some-
how similar to the case of the MHD turbulence described in Chapter 2.





Chapter 7

The Von-Kármán Plasma

experiment

In this chapter we brie�y present an ongoing experimental project: the
Von-Kármán plasma (VKP) experiment. This project is aimed at devel-
oping a Von-Kármán type �ow1 in a weakly magnetised plasma in order
to investigate the basic magnetic induction plasma-processes, with variable
Prandtl number2 and magnetic Reynolds number of the order of 10. In
this case the �ow is forced in a linear device by a j ×B torque (with j the
current density and B the magnetic �eld) using emissive cathodes3.

This project represents a complementary work to the ongoing studies
carried on at UW Madison on stirring large-scale unmagnetised plasmas in
both the Plasma Couette experiment [24] and the Madison Plasma Dynamo
Experiment [27].

The principal scienti�c objectives of the VKP project are

� extend the studies on both turbulent MHD processes and dynamo
instabilities from very low Prandtl numbers (∼ 10−6) to larger values
(∼ 10);

� investigate the plasma dynamics and the plasma parameter �uctua-
tions that arise in the presence of large-scale driven �ows (ex. rota-
tion);

� a comprehensive investigation of transport plasma processes in weakly
magnetised, partially ionised plasmas.

1 Von Kármán swirling �ow is a �ow created by a uniformly rotating in�nitely long plane disk.
It is a steady �ow in which vorticity generated at a solid surface is prevented from di�using
far away by an opposing convection [152].

2 The Prandtl number PM is de�ned as the ratio of the kinematic viscosity over the magnetic
di�usivity.

3 A cathode electrode in a vacuum tube consists in a metal surface which emits electrons into
the tube. In a hot (emissive) cathode, the cathode surface is induced to emit electrons by
heating it with a �lament, a thin wire of refractory metal (ex. tungsten) with current �owing
through it.
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For a more detailed description of the project we refer to [117].

In the next paragraph a description of the experimental device (built
up to now) is given.

7.1 The experimental set-up

The VKP experimental set-up consists of a cylindrical vacuum vessel of 0.2
m in diameter and 1 m in length, with a plasma source at one end of the
cylinder. The plasma source used is a cylindrical pyrex tube with an internal
diameter of 110 cm around which a 3 turns radio-frequency coil is sustained
by a 13.56 MHz radio-frequency power generator. The supplied power may
vary from 1 kW to 3.3 kW (no magnetic �eld is observed below 1 kW). A
turbo-molecular pump maintains a base pressure of 10−5 Pa. The Argon
gas plasma used here usually requires pressure in the range of 10−2 − 30
Pa. A high density plasma column along the axial direction is generated
by the coupled action of both the radio-frequency source and Bitter three-
loops coils, which provide an axial magnetic �led up to 0.2 T. An induced
electric �eld can be observed along the three-loops and acceleration of the
electrons composing the plasma and ionizing collisions with neutrals are
obtained. The gas present in the vessel is partially (∼ 30%) singly ionised.
Schematic images of the current set-up are shown in Figure 7.1 Typical
plasma parameters of the current stage device are presented in Table 7.1.

Figure 7.1: Current stage of the VKP experimental set-up: (a) radio-
frequency source, (b) Bitter coils, (c) turbo pump, (d) port for the emissive
cathode.

Looking at the typical radial pro�les of the plasma density and the
electron temperature, gradients are mainly visible at the edge of the plasma
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Parameters Values Units

Plasma density (n) 1016 − 5.0 · 1018 m−3

Electron temperature (Te) 2− 6 eV
Ion temperature (Ti) 0.1− 1 eV

Electron density (ne)= Ion density (ni) 5 · 1017 − 15 · 1017 part/m3

Ionisation friction (f%) 0.1− 30 %
Magnetic �eld (B0) 5− 200 mT
Flow velocity (U) 0− 3 km/s

Table 7.1: Typical plasma parameters of the current experiment set-up.

column.

Preliminary work on the VKP experiment has been focused on both the
optimisation of the �ow driven by the injected current of the highly emissive
cathodes, and the understanding of the physical parameters in�uencing the
�ow velocity (transport coe�cients, drag from collisions between ions and
neutrals).

Figure 7.2: Sketch of the emissive cathode inserted in the center of the
vessel [41].

Figure 7.3: Plasma potential pro�le plot: (a) no emissive cathode inserted
in the vessel, (b) emissive cathode inserted in the center of the vessel [41].

It is well know that the magnetised plasma columns naturally rotate
due to drifts: either the E ×B drifts, which arise from the radial gradient
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of plasma potential (perpendicular to the axial magnetic �eld) or the dia-
magnetic drift, arising from the radial gradient of plasma pressure. This
natural rotation of the plasma column is capable of exciting di�erent insta-
bilities.
The strong modi�cation of the plasma rotation, which in the presented set-
up is mainly driven by the diamagnetic current, may suppress or enhance
such instabilities, usually identi�ed as drift waves. Therefore the aim of the
current experimental project is to study in details how controlled plasma
�ows in�uence such instabilities.
Some earlier tests have shown that inserting a hot emissive cathode in
the center of the vessel and biased it negatively at several tens of Volts,
such that is emits around 10 A in the vessel (Figure 7.2), an important
modi�cation of the plasma potential pro�le is displayed: from the typical
w-shape plasma potential pro�le passes to a v-shape pro�le (Figure 7.3) .
This causes an increase in the gradients in the center of the vessel and a
modi�cation of the natural rotation of the column into a rigid one rotation.

7.2 Plasma diagnostics

In this paragraph two di�erent diagnostic types are shortly presented: the
intrusive diagnostic and the fast imaging one.

7.2.1 Intrusive diagnostic

In order to measure the plasma parameters, intrusive probes has been used.
This type of diagnostics has been introduced because the relatively low
plasma density and temperatures allow a long-time exposure of the probes.
A Langmuir probe permits detection of the plasma density, the electron
temperature, the plasma potential and the �oating potential. Emissive
probes have also been used to measure the plasma potential.

A Langmuir probe is a device used to determine several fundamental
parameters of a plasma, such as the electron temperature, the electron den-
sity, and the electric potential. It consists of placing one or more electrodes
into a plasma with a constant time-varying electric potential between the
various electrodes or between them and the surrounding vessel [20].

Let the plasma potential (space potential) be Vs, and let Vp be the
potential applied to the probe. Comparing Vp and Vs di�erent behaviours
can be observed. When Vp >> Vs, an electron current Ie is collected and
a negative probe current can be observed. Otherwise, when Vp << Vs, an
ion current Ii is collected. It is customary to plot I�V characteristic curves
with Ie positive and Ii negative.

Looking at Figure 7.4 we notice that the space potential Vs is near the
knee of the curve. The ion saturation current Isat is reached when all the
electrons have been repelled and it can be found at the far left. When ion
and electron currents are equal and the net current is zero, we have the
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Figure 7.4: Ideal I-V curve [20].

�oating potential Vf . In the transition region, the ion current is negligible,
and the electrons are partially repelled by the negative potential Vp − V s.
In a Maxwellian plasma, this part of the curve is exponential. When Vp
reaches Vs, the totality of electron random thermal �ux is collected and the
electron saturation region begins. In such region Ie grows slowly because
of the expansion of the sheath.

Starting from the I-V curve, it is possible to determine the plasma den-
sity n, the electron temperature KTe, and the plasma potential Vs, but not
the ion temperature. The most common way to obtain the space poten-
tial is to draw straight lines through the I�V curve in the transition and
electron saturation regions and call the crossing point Vs, Ies. Although,
this technique can give raise to some problems, (ex. when Ies is curved this
method gives wrong results, collisional case). Therefore, the best way to
measure the plasma potential is to use a hot or an emissive probe.

An emissive probe is an electrostatic probe formed by an exposed elec-
trode heated either electrically or by the direct expose to the plasma [134].
Emissive probes measure directly neither temperature nor density of the
plasma but they represent the best choice for plasma potential measure-
ments. When an emitting probe is biased more negatively than the plasma
potential, the electrons can be emitted from the probe into the plasma.
Instead, when it is biased more positively than the plasma potential, the
majority of the electrons cannot be emitted. Taking into account the pa-
rameter ξ, which represents the probe bias normalised to the wire temper-
ature (Tw) for the emitter graph and the plasma electron temperature (Te)
for the collector graph, it is possible to compare emitting and collection
probe current vs. bias voltage. This shows why the emissive probes can
determine the plasma potential more precisely. In the case of the emis-
sive probe, if ξ > 0, the current decreases exponentially with the slope of
the logarithmic plot proportional to 1/Tw, and, if ξ < 0, all the electrons
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emitted from the probe will enter the plasma and be observed as emitted
current. Otherwise considering the collecting probe, if ξ < 0, the current
exponentially increases and the semilog slope is proportional to 1/Te and,
when ξ > 0, all electrons entering the probe sheath are collected. Therefore,
emissive probes have an exponential region depending on Tw, while, for col-
lecting probe, this region depends on Te. Since in most plasmas Tw << Te,
emissive probes can measure the plasma potential in a more appropriate
way.

7.2.2 Fast imaging diagnostic

The intrusive diagnostic described before presents a key problem: when an
electrostatic probe is inserted into the cylindrical vessel it interacts with the
plasma generating disturbances and modi�cations in the plasma dynamics.
Therefore, a less intrusive method for detecting the plasma density �uctua-
tions is necessary. To this purpose, a high speed camera4 has been installed
in the experimental set-up. It is located on the top of the experiment, and
two mirrors have been installed in order to parallelise as much as possible
the line view of the emitted light (Figure 7.5). The high speed camera
captures the visible light �uctuations emitted by the plasma at acquisition
frequencies of several dozen kHz.

Figure 7.5: Experimental set-up improved with the fast camera and two
mirrors.

4Model Phantom v2511. A single recorded frame is of 256× 256 pixels.



Chapter 8

The two-dimensional

variational mode

decomposition

The two-dimensional variational mode decomposition (2D-VMD) is a method
that allows to adaptively decompose an image into di�erent modes, char-
acterised by separate spectral bands. The 2D-VMD model permits the ex-
traction of modes occurring simultaneously. In fact, it searches for a �xed
number of 2D modes and their respective center frequencies, such that the
bandlimited modes reproduce the input image (exactly or in least-squares
sense) [153].

The main idea is to decompose images into ensembles of constituent
modes (or components), called intrinsic mode functions (IMF), that have
speci�c directional and oscillatory characteristics, i.e. limited bandwidth
around their characteristic center frequencies. In fact, they can be seen as
amplitude- and frequency-modulated (AM-FM) 2D signals. Even if several
modes overlap in space or have limited spatial support (local instantaneous
frequency and amplitude vary smoothly), an ensemble of modes should
permit the reconstruction of a given input image up to noise and singular
features.

The problem is inspired by the one-dimensional empirical mode decom-
position (EMD) algorithm [74] and its successive extensions [99, 125, 138,
73], which permits the decomposition of any complex data set into a �nite
and often small number of intrinsic mode functions that admit well-behaved
Hilbert transforms. This decomposition method can be extended to the
two-dimensional case through the 2D-EMD [110]. It involves recursive sift-
ing (extracting of oscillatory modes) of 2D spatial signals by interpolating
upper and lower envelops and averaging the result with median envelopes,
in order to extract image components in di�erent frequency bands. Simi-
larly to the EMD, the 2D-EMD has several weaknesses: the extremal point
�nding, the interpolation of envelops and the stopping criteria involved.

Classical decomposition methods include the discrete Fourier transform
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and the continuous wavelet transform (chapter 3), where a �xed basis is
imposed in order to �nd a sparse representation.

Other approaches more speci�c to directional image decomposition mainly
involve rigid frames, decomposing the Fourier spectrum into mostly or
strictly disjoint (quasi)-orthogonal �xed basis functions. (e.g. Gabor �lter
[86], wavelets [30, 38], curvelets [14]). These approaches have the problem of
non-adaptation and it can happen that several di�erent image components
are contained in the same band.

In this context, important improvements have been obtained using syn-
chrosqueezed wavelet transforms [23], where the exceeding wavelet infor-
mations are removed by energy content thresholds.

In order to obtain a model capable of providing a solution to the signal
decomposition problem which guarantees both a well founded mathemati-
cal background and a su�ciently easy implementation, the one-dimensional
variational mode decomposition (VMD) has been introduced [40]. The
VMD method is based on the well-established concepts of Wiener �ltering,
1D Hilbert transform and analytic signal, and heterodyne demodulation, in
order to obtain a decomposition of an input signal into a discrete number
of sub-signals (modes). Each mode has limited bandwidth in the spectral
domain, i.e. each mode uk : R → R is required to be compact as much as
possible around a center pulsation ωk determined along with the decompo-
sition.

A natural extension of the VMD approach in the context of image
segmentation and directional decomposition is the two-dimensional VMD
[153]. From a technical point of view, the 2D-VMD algorithm is a non-
recursive, fully adaptive, variational method which sparsely decomposes
images with minimal parameters and no explicit interpolation in a robust
mathematical manner.

Let's observe that the approach under study can be applied to any data
subset whose variables are either spatial or temporal.

8.1 Basic concepts

De�nition 8.1.1. Intrinsic mode functions (IMF) are amplitude- and frequency-
modulated signals (AM-FM) that can be written as

uk(t) = Ak(t) cos (φk(t)) (8.1.1)

where the phase φk(t) is a non-decreasing function, i.e. φ′k(t) ≥ 0, and the
envelope Ak(t) is non-negative.

It is important to observe that both the envelope and the instantaneous
frequency, ωk(t) := φ′k(t), vary much slower than the phase φk [31, 56].
This means that, considering an interval somewhat longer than [t− δ, t+ δ]
with δ ≈ 2π/φ′k(t), the mode uk(t) can be seen as a pure harmonic signal
with amplitude Ak(t) and instantaneous frequency φ′k(t). An immediate
consequence of this property is the limited bandwidth of the IMF.
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In order to present both one- and two-dimensional VMD models, a brief
review of few concepts and tools from signal processing are needed.

Consider the observed signal f0(t) to be a copy of the original signal
f(t), a�ected by additive zero-mean Gaussian noise n, i.e.

f0 = f + n (8.1.2)

The problem consists in recovering the original signal f(t) starting from the
known f0(t) (typical ill-posed inverse problem) [4]. If we assume that both
the signal and the additive noise are stationary linear stochastic process, the
noise-free signal can be estimated using the following Tikhonov regularised
minimisation problem [140, 107]

min
f
{||f − f0||22 + α||∂tf ||22} (8.1.3)

with || · ||2 the L2-norm.
This minimisation problem represents a Gaussian regularised minimum
mean squares problem. The associated Euler-Lagrange equations are f −
f0 = α∂2

t f , and they are typically solved in the Fourier domain

f̂(ω) =
f̂0

1 + αω2
(8.1.4)

where

f̂(ω) := F{f(·)}(ω) =
1√
2π

∫
R
f(t)e−iωt dt, i2 = −1

is the Fourier transform of the one-dimensional signal f(t).

We observe that the recovered signal f (8.1.4) is a low-pass narrow-band
selection of the input signal f0 around the frequency ω = 0. Indeed the
solution corresponds to a convolution with the Weiner �lter, where α is the
variance of f [147, 59].

De�nition 8.1.2. The Hilbert transform of a 1D signal f : R → R is the
linear operator

H{f}(t) :=

{
1

πs
∗ f(s)

}
(t) =

1

π
p.v.

∫
R

f(s)

t− s
ds

= − 1

π
lim
ε→0

∫ ∞
ε

f(t+ s)− f(t− s)
s

ds

(8.1.5)

with p.v. denoting the Cauchy principal value of the integral and ∗ the con-
volution [66].

One of the most important applications of the Hilbert transform is in
the construction of an analytic signal starting from a purely real signal [52].
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De�nition 8.1.3. The analytic signal of a purely real signal f : R→ R is
de�ned as

fAS : R→ C

fAS(t) 7→ f(t) + iH{f}(t) = A(t)eiφ(t)
(8.1.6)

where H represents the 1D Hilbert transform of f .

Therefore, the real signal is recovered taking the real part of the analytic
signal.
In (8.1.6) the complex exponential term eiφ(t) is a phasor individuating the
rotation of the complex signal in time with phase φ(t), while the envelope
A(t) governs the amplitude of the complex signal. This de�nition is useful in
the analysis of time-varying amplitude and instantaneous frequency ω(t) =
dφ(t)
dt .

It is possible to rewrite de�nition (8.1.6) in the spectral domain. In
fact, observing that the Hilbert transform is a multiplier operator, i.e.

F{H{f}}(ω) = (−i sign(ω))f̂(ω) (8.1.7)

the de�nition of the analytic signal in the spectral domain is given by the
unilateral spectrum

f̂AS(ω) =


2f̂(ω) if ω > 0

f̂(ω) if ω = 0

0 if ω < 0

(8.1.8)

Thus the analytic signal in the spectral domain has the property of sup-
pressing the negative frequencies. The single-sidedness of the analytic signal
spectrum allows easy frequency shifting to baseband by complex exponen-
tial mixing.
In order to reproduce this property in the n-dimensional case, a half-space
of the frequency domain needs to be suppressed. Restricting to the 2D
case, this means setting one half-plane of the frequency domain to zero.
This half-plane is chosen relative to a �xed vector, ~ωk. Hence the analytic
signal of a signal f : Rn → R in the frequency domain is

f̂AS(~ω) =


2f̂(~ω) if 〈~ω, ~ωk〉 > 0

f̂(~ω) if 〈~ω, ~ωk〉 = 0

0 if 〈~ω, ~ωk〉 < 0

(8.1.9)

where 〈·, ·〉 denotes the scalar product in Rn and the n-D Fourier transform
is de�ned as

F{f(·)}(~ω) := f̂(~ω) =
1

(2π)n/2

∫ n

R
f(~x)e−i〈~ω,~x〉 d~x
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Finally the generalised analytic signal of a signal f in the real domain is
given by

fAS(~x) = f(~x) ∗
(

1 +
i

π 〈~x, ~ωk〉

)
δ (〈~x, ~ωk〉) (8.1.10)

where δ(·) is the Dirac distribution.
Another important concept for the formulation of the VMD method

is the principle of frequency mixing. By mixing we mean the process of
combining two signals in a nonlinear way and introducing cross-frequency
terms in the output. The simplest mixing process is the multiplicative one:
by multiplying two real signals with frequencies f1 and f2 respectively, we
create an output with mixed frequencies f1 − f2 and f1 + f2.
Therefore, the result of mixing two analytic signals,

ei2πf1tei2πf2t = ei2π(f1+f2)t (8.1.11)

is a mono-tone signal, constituted of only a single frequency. In the Fourier
space this corresponds to the following transform pair

fAS(t)e−iω0t ←→F f̂AS(ω) ∗ δ(ω + ω0) = f̂AS(ω + ω0) (8.1.12)

i.e. multiplying an analytic signal with a pure exponential results in simple
frequency shifting.

8.2 The variational mode decomposition

The VMD is a fully intrinsic and adaptive variational method whose min-
imisation leads to a decomposition of a signal into its principal modes. It
determines the relevant bands adaptively and estimates the corresponding
modes concurrently [40]. Using the narrow-band properties of the IMF (def-
inition 8.1.1), the whole modes searched are capable of reconstructing the
given signal optimally (exactly or at least in a square-sense) maintaining,
although, the condition of being band-limited about a certain frequency
estimated on-line.
For guaranteeing a certain optimality in dealing with noise the Wiener �lter
is used in the model.

In order to asses the bandwidth of a mode the following scheme is
proposed:

1. an unilateral frequency spectrum for each mode uk is obtained com-
puting the associated analytic signal by means of the Hilbert trans-
form;

2. for each mode, the mode's frequency spectrum is shifted to "base-
band", by mixing with an exponential tuned to the respective esti-
mated center frequency;
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3. the bandwidth estimation is obtained through theH1 Gaussian smooth-
ness of the demodulated signal, i.e. the squared L2-norm of the gra-
dient.

The resulting constrained variational problem is

min
uk,ωk

{∑
k

∣∣∣∣∣
∣∣∣∣∣∂t
[(

δ(t) +
i

πt

)
∗ uk(t)e−iωkt

]∣∣∣∣∣
∣∣∣∣∣
2

2

}
s.t. ∀t ∈ R,

∑
k

uk(t) = f(t)

(8.2.13)

where δ is Dirac distribution, i2 = −1, ∗ denotes the convolution, e−iωkt is
the demodulation to baseband and || · ||2 represents the norm in L2.

8.3 n-D VMD minimising problem

The 2D VMD model has been designed in a similarly manner as the 1D
case, minimising the constituent sub-signals' bandwidth while maintaining
the original data �delity.
Thus using the previous de�nitions the constrained variational problem in
n-D can be formulated as followed

min
uk:Rn→R, ~ωk∈Rn

{∑
k

∣∣∣∣∣∣∇[uAS,k(~x)e−i〈~x,~ωk〉
]∣∣∣∣∣∣2

2

}
s.t. ∀ ~x ∈ Rn,

∑
k

uk(~x) = f(~x)

(8.3.14)

with uAS,k the generalised analytic signal, obtained from the mode uk using
its associated center frequency ~ωk (8.1.10). The idea behind the minimi-
sation problem (8.3.14) is to minimise the Dirichlet energy of the modes
after performing an half-space spectrum suppression, uk → uAS,k, and a
baseband demodulation, e−i〈~x,~ωk〉, under the constrain of collective signal
�delity.

For n = 2 the reconstruction constraint is reached through the intro-
duction of both a quadratic penalty method and a generalised Lagrangian
multiplier method (the augmented Lagrangian (AL) method). The optimi-
sation is addressed, instead, to an alternate direction minimisation method
(ADMM) [5, 40, 109, 153].

8.4 Augmented Lagrangian and ADMM Optimi-

sation

The passage from the constrained minimisation problem (8.3.14) to an un-
constrained one, where the �delity constraint is enforced, is obtained using
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both a quadratic penalty argument and a Lagrangian multiplier technique.
Considering the Lagrangian multiplier λ : Rn → R, the augmented La-
grangian associated to problem (8.3.14) is de�ned as

L ({uk}, {~ωk}, λ) =
∑
k

αk

∣∣∣∣∣∣∇[uAS,k(~x)e−i〈~x,~ωk〉
]∣∣∣∣∣∣2

2
+
∣∣∣∣∣∣f(~x)−

∑
uk(~x)

∣∣∣∣∣∣2
2

+
〈
λ(~x), f(~x)−

∑
uk(~x)

〉
(8.4.15)

Hence solving problem (8.3.14) is equivalent to solving the unconstrained
saddle point problem

min
uk:Rn→R, ~ωk∈Rn

max
λ:Rn→R

L ({uk}, {~ωk}, λ) (8.4.16)

In order to �nd the saddle point of the augmented Lagrangian L a
sequence of iterative sub-optimisations, called alternate direction method
of multipliers (ADMM), is performed [5, 70, 126]. The main idea is to
iteratively update the following sequence

ut+1
k ← arg min

uk:Rn→R
L
(
{ut+1

i<k}, uk, {u
t
i>k}, {~ωti}, λt

)
(8.4.17)

~ωt+1
k ← arg min

~ωk∈Rn
L
(
{ut+1

i }, {~ω
t+1
i<k}, ~ωk, {~ω

t
i>k}, λt

)
(8.4.18)

λt+1 ← λt + τ
(
f −

∑
ut+1
k

)
, for 1 > τ ≥ 0 (8.4.19)

Including the Lagrangian multiplier term λ in the quadratic penalty term,
(8.4.15) can be rewritten in the following way

L ({uk}, {~ωk}, λ) =
∑
k

αk

∣∣∣∣∣∣∇[uAS,k(~x)e−i〈~x,~ωk〉
]∣∣∣∣∣∣2

2
(8.4.20)

+
∣∣∣∣∣∣f(~x)−

∑
uk(~x) +

λ (~x)

2

∣∣∣∣∣∣2
2
−
∣∣∣∣∣∣λ (~x)2

4

∣∣∣∣∣∣2
2

The consequent update problem derived from (8.4.20) is

un+1
k = arg min

uk:Rn→R

{
αk

∣∣∣∣∣∣∇[uAS,k(~x)e−i〈~x,~ωk〉
]∣∣∣∣∣∣2

2
(8.4.21)

+
∣∣∣∣∣∣f(~x)−

∑
i

ui(~x) +
λ (~x)

2

∣∣∣∣∣∣2
2

}
Using the L2-Fourier isometry and the property of the Fourier transform of
frequency shifting when applied to the product of an analytic signal with a
pure exponential, (8.4.21) can be written in the spectral space as

ûn+1
k = arg min

ûk|uk:Rn→R

{
αk

∣∣∣∣∣∣j(~ω − ~ωk)[ûAS,k(~ω)
]∣∣∣∣∣∣2

2
(8.4.22)

+
∣∣∣∣∣∣f̂(~ω)−

∑
i

ûi(~ω) +
λ̂ (~ω)

2

∣∣∣∣∣∣2
2

}
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Using in the latter subminimisation problem the de�nition of the ana-
lytic signal in the spectral domain, ûAS,k(~ω) = (1 + sign(〈~ω, ~ωk〉))ûk(~ω),
and restricting the frequency domain to the half-space Ωk ⊂ Rn : Ωk =
{~ω| 〈~ω, ~ωk〉 ≥ 0} we have

ûn+1
k = arg min

ûk|uk:Rn→R

{
2αk

∫
Ωk

|~ω − ~ωk||ûk(~ω)|2d~ω (8.4.23)

+

∫
Ωk

∣∣∣f̂(~ω)−
∑
i

ûi(~ω) +
λ̂ (~ω)

2

∣∣∣2d~ω}

Sub-minimisation problem (8.4.23) is now solved by letting the �rst varia-
tion w.r.t ûk vanishes. Solving the optimality condition for ûk

2αk|~ω − ~ωk|ûk −

(
f̂(~ω)−

∑
i

ûi(~ω) +
λ̂ (~ω)

2

)
= 0, ∀~ω ∈ Ωk (8.4.24)

we obtain the following Weiner-�lter update for ûk

ûn+1
k (~ω) =

f̂(~ω)−
∑
i 6=k

ûi(~ω) +
λ̂ (~ω)

2

 1

1 + 2αk|~ω − ~ωk|
, ∀~ω ∈ Ωk

(8.4.25)
The term in parentheses is the signal's k-th residual, that includes the
explicit current residual, f̂(~ω)−

∑
i 6=k ûi(~ω), and the remaining term records

the reconstruction error during the iterations. The second term represents
a frequency �lter depending on the current estimate of the mode's center
pulsation, ~ωk whose bandwidth is controlled by the parameter αk.

Starting from (8.4.20) the problem of the optimisation for ~ωk is

~ωn+1
k = arg min

~ωk∈Rn

{
αk

∣∣∣∣∣∣∇[uAS,k(~x)e−i〈~x,~ωk〉
]∣∣∣∣∣∣2

2

}
(8.4.26)

Proceeding as before the problem can be formulated in the spectral domain
as

~ωn+1
k = arg min

~ωk∈Rn

{
4αk

∫
Ωk

|~ω − ~ωk|2|ûk(~ω)|2d~ω

}
(8.4.27)

Letting the �rst variation w.r.t. ~ωk vanishes∫
Ωk

(
~ω − ~ωn+1

k

)
|ûk(~ω)|2d~ω = 0

the solution is

~ωn+1
k =

∫
Ωk
~ω|ûk(~ω)|2d~ω∫

Ωk
|ûk(~ω)|2d~ω

=

∫
Rn ~ω|ûAS,k(~ω)|2d~ω∫
Rn |ûAS,k(~ω)|2d~ω

(8.4.28)
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The obtained solution is the center of gravity of the modes' power spectra
|ûk(~ω)|2 restricted to the half-space Ωk in the �rst case and extended to all
the frequency domain in the second one.

Let us now consider the maximizing w.r.t. the Lagrangian multiplier.
The �rst variation for λ is the data reconstruction error, f̂(~ω)−

∑
k û

n+1
k (~ω),

therefore, using a standard gradient ascent with �xed time step 1 > τ ≥ 0
the maximisation is achieved when

λn+1(~x) = λn(~x) + τ

(
f(~x)−

∑
k

un+1
k (~x)

)
(8.4.29)

Since the Lagrangian multiplier in (8.4.23) is represented in the spectral
domain, the previous dual ascent update is performed in the frequency
domain

λ̂n+1(~ω) = λ̂n(~ω) + τ

(
f̂(~ω)−

∑
k

ûn+1
k (~ω)

)
(8.4.30)

8.5 The 2D-VMD algorithm

The algorithm for the 2D-VMD functional optimisation problem (8.3.14) is
summarised in algorithm 1.

Algorithm 1 2D-VMD

Input: image f(~x), number of modes K, parameters αk, τ , ε
Output: extracted modes uk(~x), center frequencies ~ωk

1: Initialize {ω0
k}, {û0

k} ← 0, λ̂0 ← 0, n← 0
2: repeat
3: n← n+ 1
4: for k = 1 : K do
5: Hn+1

k (~ω)← 1 + sign(< ~ωnk , ~ω >)

6: ûn+1
AS,k(~ω)← Hn+1

k (~ω)

(
f̂(~ω)−

∑
i<k û

n+1
i (~ω)−

∑
i>k û

n
i (~ω)+

λ̂n(~ω)
2

1+2αk|~ω−~ωnk |

)
7: ~ωn+1

k =

∫
Rn ~ω|û

n+1
AS,k(~ω)|2d~ω∫

Rn |û
n+1
AS,k(~ω)|2d~ω

8: un+1
k (~x)← R

(
F−1

{
ûn+1
AS,k(ω)

})
9: λ̂n+1(~ω) = λ̂n(~ω) + τ

(
f̂(~ω)−

∑
k û

n+1
k (~ω)

)
10: end for
11: until

∑
k ||û

n+1
k − ûnk ||22/||ûnk ||22 < ε

An important degree of freedom in this algorithm is represented by the
initialisation of the variables. In fact, while the matrix of the extracted
modes uk(~x) has a natural initialisation to zero, the initialisation of the
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center frequencies is more sensitive. Initial ~ω0
k can be, e.g., spread ran-

domly, radially uniform, or initialised by user input.
The choice of a proper value for the parameter α permits to have a good
performance of the Weiner �lter. Qualitatively, a high α leads to a �ner
separation of constituent sub-signals, because the Wiener �lter is more
narrowly concentrated around its center frequency. However, if the �lter
is centred away from a non-principle frequency, it may fail to catch the
signi�cant principle frequencies. On the contrary, choosing a low α gener-
ates a wider �lter, allowing the algorithm to detect and reach the correct
frequencies, but on the other end yielding worse separation. Therefore, if
the values to which initialise the correct frequencies are known, it is better
to use a high α (more accurate results will be produced). Instead, if no a
priori information on the frequencies initialisation is known, a low α will
give more freedom of mobility to the ωk at the expense of a proper modes
separation.
The convergence is assessed using the normalised rate of change of the
modes (line 11 in algorithm 1). Typically the thresholds ε > 0 is chosen in
a range of magnitude from 10−4 (fast) down to 10−7 (very accurate).



Chapter 9

Data analysis

The VKP experimental set-up (Chapter 7) can be used for studying and
understanding how the interaction of drift waves in the plasma column can
pass from a phase of weak mode interaction to a regime in which weak
turbulence is generated (Chapter 6).

It has been seen that the insertion of a hot emissive cathode negatively
biased in the center of the cylindrical vessel (Chapter 7) can cause a strong
modi�cation of both the plasma potential and the plasma density, allow-
ing the formation of strong gradients that may drive large amplitude drift
waves which, in turn, may interact in a nonlinar way. Strong gradients can
also appear in the presence of large applied magnetic �eld. In fact, it has
been observed that, increasing the applied magnetic �eld, modes based on
drift waves are generated (Figure 9.1). In order to study the plasma den-
sity �uctuations, a non-intrusive plasma diagnostic using the fast camera
described in section 7.2.2 has been preferred.

Figure 9.1: Plot of the ion density as a function of the radial position in
the cylinder for di�erent magnetic �elds [41].
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It is interesting to analyse the emitted plasma light because it is re-
lated to the plasma density. In particular, when a photon has an amount
of energy su�cient for a change in the energy state of the system (ex. an
electron changing orbital) it is absorbed. Nevertheless, it is later sponta-
neously re-emitted.
The plasma column under study is not in a thermodynamic equilibrium
and the atomic state transition is not caused by photo-excitation but it is
guided by the interaction between the electrons present in the plasma and
the other plasma particles (ions and neutrals).
In particular, it can be shown that in a simpli�ed radiative phenomena
model of the plasma column, it exists a one-to-one relationship between
both the plasma density and the light intensity �uctuations [113]. In fact,
let's suppose that the excitation of the atoms from the state s to the state
k is done by electron collisions followed by a transition from the state k
to a lower state l and accompanied by the emission of a photon. Then
the density nk of excited atoms is proportional to the atom density at the
state s, the electron density ne and the interaction probability 〈σνe〉, where
σ is the e�ective electron-neutral collision section and νe is the collision
frequency, i.e.

nk ' nsne〈σne〉s→k (9.0.1)

In the simplest case we can consider the fundamental state s = 0 of the
neutrals as the only state s. Thus it is reasonable to suppose that the
emitted light in the plasma column is proportional to

I ' n0ne〈σνe〉0→k (9.0.2)

Therefore, in this simpli�ed description, the absorption of photons by the
plasma can be neglected so that the light intensity captured by the camera
corresponds to the light intensity produced by the emission which follows
the extraction by electron collisions of the atom.
Looking at (9.0.2), we can see that the light �uctuations recorded by the
camera can originate from �uctuations in neutral density, electron density
and electron temperature (this because the electron temperature in�uences
the interaction probability). In the plasma column under study, the dis-
tribution of neutral is uniform and temperature �uctuations are often con-
sidered negligible. Thus we can suppose that the modulation of the light
intensity depends solely on electronic density �uctuations.

In order to isolate the electron transitions responsible of the intensity
light �uctuations, two interference �lters centred on the wavelenghts 488
and 750 nm have been placed in front of the camera. These wavelengths
correspond to the main emission lines spectroscopy in the argon plasma
column. The lines at 750 nm correspond to electronic transitions of neutral
argon whereas the line at 488 nm corresponds to a transition of the argon
ion Ar+.
It has been seen that the ion line at 488 nm does not give a strong contri-
bution to the �uctuations observed in the absence of �lters. On the other
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hand, intensity distributions, obtained using �lters at 750 nm, correspond
to brightness �uctuations around a value of average intensity.

In this chapter we present some preliminary results obtained through
the application of the two-dimensional VMD analysis (Chapter 8) to the
images recoded by the fast camera in the case of a complete scan of the
plasma column with magnetic �eld varying in the range [30 mT− 89 mT],
plasma density of 0.9 mTor, and power given to the RF source of 1 kW.
Our goal is to extract the modes characterising the plasma dynamics, and to
analyse how they are modi�ed when the imposed magnetic �eld is increased.

9.1 Application of the two-dimensional VMD anal-

ysis

The fast camera provides a two-dimensional representation of brightness
�uctuations on a complete section of the plasma column. However, these
spatio-temporal variations are hardly visible on the raw �lms because of
both the lack of plasma brightness and the low exposure time (typically
10µs). Therefore, it is necessary to perform a �ltering process on the raw
images before carrying out any type of data exploitation. The treatment
generally applied consists of subtracting the image average calculated on
the entire �lm to each image of the same �lm (each �lm corresponds to
one snap-shot of the plasma). This procedure permits the elimination of
the constant light emission of discharge �laments and re�ections due to the
inner walls of the machine, resulting in the �uctuations of interest.
In addition, in order to remove the image noise, a Gaussian smoothing1

�ltering has been implemented on each image of the video. An example of
this �ltering method is presented in Figure 9.2. After subtracting the aver-
age image, the azimuthal structure of light �uctuations n = 2 is displayed
in a clearer way.

The instabilities in the VKP column plasma mainly propagate in the
azimuthal direction. Thus the study of dynamics in the azimuthal plane
allows to analyse the azimuthal modes that take places in the plasma.
Usually in linear machines probes placed in a circular con�guration are
used to achieve the previous purpose [128, 149, 10]. These probes, regu-
larly distributed in such con�guration, can simultaneously measure tem-
poral �uctuations of ion saturation current or �oating potential providing
direct access to wave numbers and phase velocities.

It is possible to simulate this circular con�guration of probes in the
images acquired with the high speed camera. In this case we refer to a
virtual corona. Before extracting the time series corresponding to a virtual

1 In image processing a Gaussian smoothing, or Gaussian blur, corresponds to the blurring of
an image by a Gaussian function. Technically it consists in performing a convolution of the
image with a Gaussian function. Therefore, the Gaussian blur is no more than a low pass
�lter.
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Figure 9.2: (a) Raw image. (b) Image treated with the �ltering method.

probe corona, the center of the plasma column must be determined. We
notice that this center doesn't necessarily correspond to the center of the
image or the center of the machine. A �rst method for locating it is to
average the �uctuations module of luminosity over all the images. This
permits a better localisation of the modes and estimation of the image
coordinates [xc, yc] corresponding to the center of the plasma column.
Once that the coordinates [xc, yc] are determined, the time series of the
light �uctuations are extracted on N pixels corresponding to N virtual
probes (Figure 9.3), distributed on the circle of center [xc, yc] and radius r0

pixels. The position on the image of the i-th virtual probe (with i = 1, .., N)
corresponds to the coordinates [xi, yi] de�ned by

xi = xc + r0 cos

(
2πi

N

)
yi = yc + r0 sin

(
2πi

N

) (9.1.3)

The virtual corona data, extracted from each image, permits the recon-
struction of the spatio-temporal �uctuations diagram at a given radius r0.

An example is shown in Figure 9.4. The spatio-temporal diagram has
been extracted from the same �lm from which the images presented in Fig-
ure 9.2 has been selected. 200 virtual probes have been extracted from 2000
images with a �xed radius of 3 cm and a plasma column center of [132, 128].
Minima and maxima luminous �uctuations form regular transverse bands
indicating the presence of coherent modes. For a given time, the number
of maxima or minima between ϑ = 0 and ϑ = 2π determines the spatial
number n of present modes. Here mode n = 2, 3 are observed.
The slope of the transverse bands indicates the azimuthal velocity of in-
stability. It can be signi�cantly modi�ed if the virtual corona is not well
centred.

The extraction of virtual corona from fast camera �lms presents a cer-
tain number of advantages over mechanical probe corona. It is a non-
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Figure 9.3: 200 virtual probes located on the circle (9.1.3) with r0 = 3 cm
and [x0, y0] = [132, 128].

Figure 9.4: Spatio-temporal diagram of the light intensity �uctuations.

intrusive and therefore a non-perturbative diagnostic method. It permits
a simple correction of centring errors and the diameter of the virtual col-
umn can be determined freely, allowing a simultaneous study of the spatio-
temporal dynamics at di�erent rays. However, it is important to point out
that the use of virtual probes can be, unlike real probes, limited by the
sampling frequency limit inherent in the type of camera used.

Our idea is to apply the two-dimensional VMD to the spatio-temporal
diagrams extracted from the recorded �lm of the plasma column. As
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pointed out in Chapter 8, the 2D-VMD algorithm is a non-recursive, fully
adaptive (a non a-priori basis is imposed), variational method which sparsely
decomposes images with minimal parameters and no explicit interpolation
in a robust mathematical manner. Therefore, it represents a good tool for
the mode extraction.

For the implementation of the 2D-VMD algorithm, the MATLABRO

code written by Dominique Zosso2 has been used. Although, a modi�cation
of the stopping criteria has been introduced3: two di�erent tolerances (εu,
εω) for the extracted mode uk and the center frequency ωk are now used,
such that

∑
k

||ûn+1
k − ûnk ||22
||ûnk ||22

< εu (9.1.4)

∑
k

||ω̂n+1
k − ω̂nk ||22
||ω̂nk ||22

< εω (9.1.5)

whereˆidenti�es quantities in the Fourier space.

In fact, our input images are characterised by a strong mixture of di�er-
ent mode during the time evolution. Therefore, using the same threshold
value for both the extracted modes and the center frequencies does not
permit su�ciently good mode separation and detection of the correct fre-
quencies. An example of 2D-VMD extraction analysis is given in Figure 9.6,
where the �lm at magnetic �eldB of 39 mT has been chosen. The extraction
has been performed three times in order to clearly extract non-overlapping
modes (obviously the �delity of the input data has been maintained). The
input parameters used in the code are reported in Table 9.1. The method
has permitted not only the extraction of the characteristic modes without
using a �xed basis for the extraction algorithm, but also detects their rota-
tion direction (clockwise or counter-clockwise).

Parameters Values

α 13000
τ 0.25

tolu 9 10−5

tolω 5 10−5

n 300
ω0
k uniformly spread on a circle

Table 9.1: Input parameters for the 2D-VMD code extraction for �lm with
imposed B = 39 mT.

2 https://it.mathworks.com/matlabcentral/�leexchange/45918-two-dimensional-variational-
mode-decomposition

3 For a detailed de�nition of the interested quantities see Chapter 8.
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In Figure 9.5 the plot of the two convergences for the mode extracted
and the center frequency detected in function of the number of iterative
steps operated by the code is reported. We observe that the code stops
before reaching the imposed maximum number of iterations n = 300 with
tolerance values for the mode extracted and the center frequency of 8.9 10−5

and 8.3 10−6 respectively.

Figure 9.5: Semi-log plot of the convergence values in function of the iter-
ation steps. + extracted mode; ∗ center frequency.

We point out that for each �lm analysed several preliminary tests on the
best choice parameters con�gurations has been performed in order to de-
termine the best set of input parameters. It is very important to choose the
appropriate value for the α-parameter because it in�uences the con�dence
of the algorithm (Chapter 8).

It is worth asking if the behaviour of the modes characterising the
plasma column dynamics can be somehow related to the dynamics de-
scribed by the Hasegawa-Mima equation (6.2.24). In section 6.2, under
the assumptions that the �uctuations only propagates in the ŷ-direction
and kyLn � 1, we have tried to rewrite the Hasegawa-Mima dispersion
relation (6.2.25) (which is formulated in a Cartesian geometry) in a cylin-
drical geometry. We point out that equation (6.2.25) is valid in the high
n-mode case, therefore it cannot be used in our analysis where we are tak-
ing into account just low modes 1 ≤ n ≤ 4.
Thus only order of magnitude estimates can be performed. In particular,
assuming frequencies of the order of

ud
2πr

=
kBTec

eB

1

Ln

1

2πr
= ω̃

∣∣∣
B=30 mT

= 4 · 103 Hz (9.1.6)

the density gradient scale length Ln, such that L−1
n = −∂x ln (n0), can

be calculated in the cgs system of units. In fact, we have Ln ' 22 cm.
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Considering that the diameter of the cylindrical vessel is of 20 cm, the den-
sity gradient scale length just obtained is comparable to the characteristic
length scale of the experiment. This result is compatible with the density
trend as a function of the radial position in the cylinder for increasing mag-
netic �eld presented in Figure 9.1, where at low values of B the density
pro�le is almost �at, while, increasing B, strong gradient start to appear
in the center.

The 2D-VMD analysis performed for a virtual corona with a �xed radius
can be repeated for di�erent radius values in order to cover all the plasma
column. In this way, starting from spatio-temporal diagrams at di�erent
radii, a complete mode extraction of the entire plasma column during all
the shots is obtained. It is interesting to observe that only a few number
of modes are needed in order to recover the entire image (they carry the
majority of the energy). Moreover, we point out that this extractive method
is able to catch the time evolution of the modes' shape. This because
the basis functions involved during the extraction are adaptively chosen
according to the corresponding input. An example of this column mode
extraction for a �xed image of a chosen �lm is showed in Figure 9.7. The
�lm analysed corresponds to a magnetic �eld of 84 mT.
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Figure 9.7: Snapshots of the reconstructed �lm for a magnetic �eld of 84
mT.



Part III

Regularity and weak solutions

in nonlinear elliptic equations

105





Introduction

Among the most important partial di�erential equations there are Laplace's
equation

∆u = 0 (9.1.7)

and Poisson's equation

−∆u = f (9.1.8)

where in both cases x = (x1, ..., xn) ∈ U , with U ⊆ Rn a given open set,
u : Ū → R with u = u(x), f : U → R is a given function and the Laplacian
orator is de�ned such as

∆u =

n∑
i=1

uxixi
4 (9.1.9)

If a function u ∈ C2(U) satis�es 9.1.7 it is called harmonic function [42].
These two equations are particularly important for their application to

di�erent physical contexts (for example Laplace's equation arises in cases
such as steadystate heat �ow, irrotational �uid �ow, current �ow in an
extended medium, and in the de�ection of an elastic membrane).
A typical physical interpretation in the case of Laplace's equation is to
consider the function u as the density of same quantity in equilibrium.
Then, if V is a smooth subset of U , we have that the net �ux of u through
the boundary of V , ∂V , is zero, i.e.∫

∂V
F · ν dS = 0

where F is the �ux density and ν is the outer normal vector to ∂V .
Applying Gauss-Green theorem we have∫

V
div (F ) dx =

∫
∂V
F · ν dS = 0

But V was arbitrary chosen, hence

div (F ) = 0, in U (9.1.10)

4 Here we use the notation uxi = ∂u
∂xi

and uxixi = ∂2u
∂x2i

.
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It is physically reasonable to suppose F proportional to the gradient ∇u
but with opposite direction, this because the �ow is supposed to move from
regions of higher to lower concentration. Thus

F = −α∇u, α > 0 (9.1.11)

Substituting the new expression of F in (9.1.10) we get the Laplace's equa-
tion

div (∇u) = ∆u = 0

We recall that if

� u denotes a chemical concentration, then (9.1.11) is the Fick's law of
di�usion;

� u denotes a temperature, then (9.1.11) is the Fourier's law of heat
conduction;

� u denotes an electrostatic potential, then (9.1.11) is the Ohm's law of
electrostatic conduction.

For a better description about the physical applications of Laplace's equa-
tion we refer to [48].

Laplace's equation can also be seen as the Euler-Lagrange equation of
the Dirichlet integral

D(u) =

∫
U
|∇u|2dx (9.1.12)

A generalisation of Laplace's equation and Poisson's equation is given
by second-order elliptic partial di�erential equations (PDE). In fact let us
consider the following boundary-value problem{

Lu = f in U

u = 0 on ∂U
(9.1.13)

where U is an open bounded subset of Rn, u : Ū → R with u = u(x),
f : U → R is a known function and the requirement that u = 0 on ∂U is
the so-called Dirichlet's boundary condition.
L denotes a second-order partial di�erential operator having either the di-
vergence form

Lu = −
n∑

i,j=1

(
aij (x)uxi

)
xj

+

n∑
i=1

bi (x)uxi + c (x)u (9.1.14)

or the non-divergence form

Lu = −
n∑

i,j=1

aij (x)uxixj +
n∑
i=1

bi (x)uxi + c (x)u (9.1.15)

for given coe�cient functions aij , bi and c with i, j = 1, ..., n. Generally it
is assumed valid the symmetry condition: aij = aji, ∀i, j = 1, ..., n.
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Remark 9.1.1. If the coe�cient aij are C2 functions, then the operator
L given in the divergence form can be expressed also in the non-divergence
form and vice versa.

De�nition 9.1.2. A partial di�erential operator L is uniformly elliptic if
there exists a constant ϑ > 0 such that∑

i,j

aij (x) ξiξj ≥ ϑ|ξ|2 (9.1.16)

for a.e. x ∈ U and for all vectors ξ ∈ Rn.

The ellipticity condition (9.1.16) implies that for each point x ∈ U the
symmetric matrix n× n, Ã (x) =

(
ai,j (x)

)
i,j
, is positive de�nite, with the

smallest eigenvalue greater than or equal to ϑ.
If in L aij = δij , b

i = 0 and c = 0 for all i, j = 1, ..., n, then the operator
L is exactly the Laplacian operator and we �nd either Poisson's equation
if f 6= 0, or the Laplace's equation if f = 0.
In general, the second-order term A =

∑n
i,j=1 a

ijuxixj represents the di�u-

sion of the density u within U , where the coe�cients
(
aij
)
i,j

describe the
anisotropic, heterogeneous nature of the medium. Moreover F = −A∇u
is the di�usive �ux density. In this case the ellipticity condition implies
F · ∇u ≤ 0, i.e. the �ow goes from regions of higher concentration to lower
one. The �rst-order term b · ∇u =

∑n
i,j=1 b

iuxi stands, instead, for the
transport within U , while the zeroth-term c u represents the local creation
or depletion of the density u.

Usually the study of the existence and the uniqueness of a weak solu-
tion to the boundary-value problem (9.1.13) is carried on using particular
techniques, such as the energy methods within Sobolev spaces and the max-
imum principle methods [42].

An other interesting generalisation of the Laplace's equation arises from
the fact that, under the appropriate hypothesis of regularity on u, it is
possible to generalise the Dirichlet integral (9.1.12) to the pth−integral

Ip(u) =

∫
U
|∇u|pdx (9.1.17)

an thus identify the corresponding Euler-Lagrange equation as the p-Laplace
equation

div
(
|∇u|p−2∇u

)
= 0 (9.1.18)

In the latter equation the p-Laplacian operator ∆pu = div
(
|∇u|p−2∇u

)
has been introduced.
Usually p ≥ 1 and the solutions are called p-harmonic functions. At critical
points, i.e. x such that ∇u = 0, equation (9.1.18) is degenerate for p > 2
and singular for p < 2. For a dissertation about the p-Laplacian equation
we refer to [29, 129, 130, 16, 102, 104, 105] and the references therein.

Of particular interest is the use of a generalisation of the p-Laplacian
operator in order to describe the dynamics of generalised Newtonian �uids.
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In fact a good model for generalised Newtonian �uids in a suitable smooth
bounded domain Ω of Rn is given by the following nonlinear boundary-value
system{

−∇ ·
[
(µ+ |Du|)p−2Du

]
+ (u · ∇)u+∇P = f

∇ · u = 0
(9.1.19)

where µ is a non-negative constant, p > 1, u is the velocity �eld, P is the
pressure �eld, f is a known force function and

Du =
1

2

(
∇u+∇uT

)
(9.1.20)

is the symmetric part of the gradient of u.
If p = 2 system (9.1.19) corresponds to the well-know Navier-Stokes system
of equation for Newtonian �uids. While, for p ∈ (1, 2), (9.1.19) describes
the dynamics of non-Newtonian �uids with shear dependent viscosity (shear
thinning �uids) [89, 122, 88, 54, 28].

In this section we deal with both the local and global regularity theory
for nonlinear degenerate elliptic equations in divergence form. In particular,
we consider weak solutions to

−div (A (|∇u|)∇u) + b(x)|∇u|q = f(x) (9.1.21)

in an open set Ω ⊆ Rn, where A : R+ → R+ is a real valued function of
class C1. We point out that when A(x) = xp−2 equation (9.1.21) reduces
to a standard p-Laplacian equation.



Chapter 10

Second order regularity for

degenerate nonlinear elliptic

equations

We investigate the second order regularity of solutions to degenerate non-
linear elliptic equations [15].

10.1 Introduction and results

We deal with the regularity theory for nonlinear degenerate elliptic equa-
tions in divergence form. In particular we consider weak solutions to

−div(A(|∇u|)∇u) + b(x)|∇u|q = f(x) in Ω, (10.1.1)

in a open set Ω ⊆ RN . The real valued function A : R+ → R+ is of class
C1, with

lim sup
t→0+

tA(t) <∞ (10.1.2)

and

−1 < inf
t>0

tA′(t)

A(t)
:= mA ≤ MA := sup

t>0

tA′(t)

A(t)
<∞ . (10.1.3)

We also assume that

A(s) ≥ Ksϑ̃ for some ϑ̃ ≥ 0 ∀ s > 0 . (10.1.4)

When b(x) is not identically zero, we assume that q > ϑ̃+1
2 .

We shall consider solutions of class C1,α. This natural in general according
to [36, 87, 85, 139, 142]. Therefore we give the following

111



112

De�nition 10.1.1. We say that u ∈ C1,α(Ω) is a weak distributional solu-
tion to (10.1.1), if∫

Ω
A(|∇u|)(∇u,∇φ) dx+

∫
Ω
b(x)|∇u|q φdx =

∫
Ω
f φ dx (10.1.5)

for every φ ∈ C∞c (Ω).

We will frequently exploit the fact that the equation is no longer degen-
erate outside the critical set Zu,

Zu := {∇u = 0} .

Consequently it is also natural to assume that the solution is of class C2

outside the critical set.

Remark 10.1.2. We will use the notation ui := uxi , i = 1 . . . , N , to
indicate the partial derivative of u with respect to xi. These are the classic
derivatives since u is of class C1. The second derivatives will be indicated
with uij, i, j = 1 . . . , N . In this case, since u is of class C2 only far from
the singular set Zu, we agree that uij coincides with the second derivatives
far from the singular set Zu, while uij = 0 on the singular set Zu. At
the beginning this is only a notation inspired by the Stampacchia's theorem
but, according to our Theorem 10.1.5 below, with this de�nition uij will
represent actually the second distributional derivatives.

Our aim is to study the summability of the second derivatives of the
solutions. When A(t) = tp−2 the operator reduces to standard p-Laplacian.
In this case, from [29, 129, 130] (see also [16, 102]), it follows that u ∈
W 2,2

loc (Ω) if 1 < p < 3, and that if p ≥ 3 and the source term f is strictly

positive then u ∈ W 2,q
loc (Ω) for q < p−1

p−2 . We may look at this type of
regularity as an issue in the context of the Calderón-Zygmund theory for
nonlinear degenerate problems. We refer the reader to [104, 105] and the
references therein.

Here we shall extend the results in [29, 129, 130]. The setting described
above is really more general than the case of the p-laplacian. Then the
proofs in [29, 129, 130] and the results as well needs appropriate modi�ca-
tions. We start with the following

Theorem 10.1.3. Let u ∈ C1,α(Ω) ∩ C2(Ω \ Zu) be a solution to (10.1.1)
with f, b ∈ W 1,∞(Ω). Assume that B2ρ(x0) ⊂ Ω and y ∈ Ω. Then, for
0 ≤ β < 1 and γ < N − 2 for N ≥ 3 while γ = 0 if N = 2, we have∫

Bρ(x0)

A(|∇u|)|∇ui|2

|x− y|γ |ui|β
≤ C ∀i = 1, ..., N (10.1.6)

with C = C(γ, β, q, f, b, ||∇u||∞, ρ, x0).
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The local regularity result of Theorem 10.1.3 holds without sign as-
sumption on the source term f . If else a sign assumption on f is imposed,
than we can prove a summability result regarding the inverse of the weight
A(|∇u|). We have

Theorem 10.1.4. Let u ∈ C1,α(Ω) ∩ C2(Ω \ Zu) be a solution to (10.1.1)
with f, b ∈ W 1,∞(Ω) and f(x) ≥ c(ρ, x0) > 0, in B2ρ(x0) ⊂ Ω for some
ρ = ρ(x0) > 0. Then we have∫

Bρ(x0)

1

(A(|∇u|))α
1

|x− y|γ
≤ C (10.1.7)

with 1 < α < 1 + 1
ϑ̃
, γ < N − 2, if N ≥ 3 and γ = 0 if N = 2 and

C = C(γ,mA,MA, q, f, b, ||∇u||∞, ρ, x0, α).
The same result follows if we assume that f(x) ≤ c(ρ, x0) < 0 in B2ρ(x0) ⊂
Ω.
In particular L({A(|∇u|) = 0}) = 0 .

Theorem 10.1.4 is actually an estimate on the way the operator degen-
erate near the critical set. It might have future applications in the study
of the qualitative properties of the solutions. Here, has a consequence, we
shall point out a further correlated regularity result, see Theorem 10.1.5
below. Before we start observing that the estimates in Theorem 10.1.4 and
in Theorem 10.1.3 (namely (10.1.6) and (10.1.7)), holds in a general com-
pact set of Ω.The same regularity holds all over the domain once we assume
that there are no critical points of the solutions up to the boundary, namely
Zu ∩ ∂Ω = ∅. This an abstract assumption always veri�ed each time we
may exploit the Hopf boundary lemma, see [121]. The global regularity
results follow via a covering argument and the proofs and the statements
are postponed in Section 10.4, see Theorem 10.4.1 and Theorem 10.4.2.

As mentioned here above, the estimates on the second derivatives and the
estimates of the summability of the weight can be exploited jointly in order
to obtain the following

Theorem 10.1.5. Let Ω ⊂ RN a bounded smooth domain and let u ∈
C1,α(Ω̄)∩C2(Ω\Zu) be a solution to (10.1.1) with f, b ∈W 1,∞(Ω). Assume
that f is positive in Ω (possibly vanishing on the boundary). Then

u ∈W 2,s(K) for any s < min{2 ; 1 + ϑ̃−1} (10.1.8)

for every compact set K ⊂ Ω, with uij = 0 on Zu for ij = 1, . . . , N . If we
further assume that Zu ∩ ∂Ω = ∅, then

u ∈W 2,s(Ω) for any s < min{2 ; 1 + ϑ̃−1} . (10.1.9)

This remaining part is organized as follows: We prove the local regularity of
the second derivatives in Section 10.2, while the summability of the weight
is studied in Section 10.3. The covering argument needed to obtain the
global results is developed in Section 10.4, where e also prove Theorem
10.1.5.
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10.2 Local regularity

We begin by remarking that, if u ∈ C1,α(Ω) ∩ C2(Ω \ Zu) is a solution of
(10.1.1), then the derivatives of the solution are solutions to the linearised
equation, i. e.

Lu(ui, φ) =

∫
Ω
A(|∇u|)(∇ui,∇φ)dx+

∫
Ω

A′(|∇u|)
|∇u|

(∇u,∇ui)(∇u,∇φ) dx

+

∫
Ω
bi(x)|∇u|qφ dx+ q

∫
Ω
b(x)|∇u|q−2(∇u,∇ui)φ dx

−
∫

Ω
fi, φ dx = 0

(10.2.10)

for every φ ∈ C∞c (Ω \ Zu). This follows just putting φi as test function in
(10.1.1) and integrating by parts.

To exploit such equation we will use a regularization argument. For ε > 0
we consider Gε(t) = (2t− 2ε)χ[ε,2ε](t) + tχ[2ε,∞)(t) for t > 0, while Gε(t) =
−Gε(−t) for t ≤ 0 (χ[a,b](·) denoting the characteristic function of a set).
We will assume that the ball B2ρ(x0) is contained in Ω and we will consider
a cut-o� function ϕρ = ϕ ∈ C∞c (B2ρ(x0)) such that

ϕ = 1, in Bρ(x0)

|∇ϕ| ≤ 2

ρ
.

(10.2.11)

Also, for β ∈ [0, 1) and γ < N − 2 if N ≥ 3 (γ = 0 for N = 2) �xed, we set

Tε(t) =
Gε(t)

|t|β
, Hδ(t) =

Gδ(t)

|t|γ+1
. (10.2.12)

Proof of Theorem 10.1.3. Let us consider the test function

φ = Tε(ui) Hδ(|x− y|) ϕ2 = Tε(ui) Hδ ϕ
2 . (10.2.13)

According to (10.2.12), it follows that such a test function can be plugged
in the linearised equation (10.2.10), since it vanishes in a neighbourhood of
the critical set Zu. Consequently by (10.2.10) we get∫

Ω
A(|∇u|)|∇ui|2 T ′ε(ui) Hδ ϕ

2 +

∫
Ω

A′(|∇u|)
|∇u|

(∇u,∇ui)2 T ′ε(ui) Hδ ϕ
2

+

∫
Ω
A(|∇u|)(∇ui,∇xHδ) Tε(ui) ϕ

2 +

∫
Ω

A′(|∇u|)
|∇u|

(∇u,∇ui)(∇u,∇xHδ) Tε(ui) ϕ
2

+ 2

∫
Ω
A(|∇u|)(∇ui,∇ϕ) Tε(ui) Hδ ϕ+ 2

∫
Ω

A′(|∇u|)
|∇u|

(∇u,∇ui)(∇u,∇ϕ) Tε(ui) Hδ ϕ

+ q

∫
Ω
b(x)|∇u|q−2(∇u,∇ui) · Tε(ui) ·Hδ · ϕ2 +

∫
Ω
bi(x)|∇u|q · Tε(ui) ·Hδ · ϕ2

=

∫
Ω
fi · Tε(ui) ·Hδ · ϕ2 .

(10.2.14)
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It is convenient to set:

I1(ε, δ) =

∫
Ω
A(|∇u|)|∇ui|2 T ′ε(ui) Hδ ϕ

2

I2(ε, δ) =

∫
Ω

A′(|∇u|)
|∇u|

(∇u,∇ui)2 T ′ε(ui) Hδ ϕ
2

(10.2.15)

and

I3(ε, δ) =

∫
Ω
A(|∇u|)(∇ui,∇xHδ) Tε(ui) ϕ

2

I4(ε, δ) =

∫
Ω

A′(|∇u|)
|∇u|

(∇u,∇ui)(∇u,∇xHδ) Tε(ui) ϕ
2

I5(ε, δ) = 2

∫
Ω
A(|∇u|)(∇ui,∇ϕ) Tε(ui) Hδ ϕ

I6(ε, δ) = 2

∫
Ω

A′(|∇u|)
|∇u|

(∇u,∇ui)(∇u,∇ϕ) Tε(ui) Hδ ϕ

I7(ε, δ) = q

∫
Ω
b(x)|∇u|q−2(∇u,∇ui) · Tε(ui) ·Hδ · ϕ2

I8(ε, δ) =

∫
Ω
bi(x)|∇u|q · Tε(ui) ·Hδ · ϕ2

I9(ε, δ) =

∫
Ω
fi · Tε(ui) ·Hδ · ϕ2 .

Regarding the terms I1 and I2, exploiting (10.1.3), we note that

I1 + I2 ≥
∫

Ω
A(|∇u|)|∇ui|2 T ′ε(ui) Hδ ϕ

2 (10.2.16)

when A′(|∇u|) is nonnegative, while

I1+I2 ≥
∫

Ω
A(|∇u|)|∇ui|2 T ′ε(ui)Hδ ϕ

2−
∫

Ω
|A′(|∇u|)||∇u||∇ui|2 T ′ε(ui)Hδ ϕ

2

when A′(|∇u|) is negative. Therefore

I1 + I2 ≥ (1 +mA) I1 . (10.2.17)

Thence, from (10.2.14), we get

(1 +mA)

∫
Ω
A(|∇u|)|∇ui|2 T ′ε(ui) Hδ ϕ

2 ≤ |I3|+ ...+ |I9| . (10.2.18)

Now we estimate the right hand side of (10.2.18) letting δ → 0. In fact,

using the fact that |Tε(t)| ≤ t1−β and the Young inequality ab ≤ ϑa2 + b2

4ϑ ,
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we deduce that

lim supδ→0(|I3|+ |I4|) ≤ γ
∫

Ω
[A(|∇u|) + |A′(|∇u|)||∇u|] |∇ui|

|Tε(ui)|
|x− y|γ+1

ϕ2

≤
by(10.1.3)

γ(1 + |MA|)
∫

Ω
A(|∇u|)|∇ui|

|Tε(ui)|
|x− y|γ+1

ϕ2

≤ γ(1 + |MA|)
∫

Ω

√
A(|∇u|) |∇ui|
|x− y|

γ
2 |ui|

β
2

χ{|ui|≥ε}ϕ

√
A(|∇u|) |ui|

2−β
2

|x− y|
γ+2
2

ϕ

≤ ϑ
∫

Ω

A(|∇u|)|∇ui|2

|x− y|γ |ui|β
χ{|ui|≥ε}ϕ

2 +
γ2(1 + |MA|)2

4ϑ

∫
Ω

A(|∇u|)|ui|2−β

|x− y|γ+2
ϕ2

≤ ϑ
∫

Ω

A(|∇u|)|∇ui|2

|x− y|γ |ui|β
χ{|ui|≥ε}ϕ

2 +
γ2(1 + |MA|)2

4ϑ

∫
Ω

A(|∇u|)|∇u|2−β

|x− y|γ+2
ϕ2

≤ ϑ
∫

Ω

A(|∇u|)|∇ui|2

|x− y|γ |ui|β
χ{|ui|≥ε}ϕ

2 +
γ2(1 + |MA|)2MĈ1(L)

4ϑ
,

(10.2.19)

where we also used the fact that A(t)t is locally bounded and we have set

M = M(ρ, x0, γ,Ω) =

= max
{

sup
y∈Ω

∫
B2ρ(x0)

1

|x− y|γ
dx; sup

y∈Ω

∫
B2ρ(x0)

1

|x− y|γ+1
dx; sup

y∈Ω

∫
B2ρ(x0)

1

|x− y|γ+2
dx
}

L = L(ρ, x0) = sup
x∈B2ρ(x0)

|∇u| .

(10.2.20)

Exploiting the fact that |∇ϕ| ≤ 2
ρ , |Tε(t)| ≤ t

1−β and the Young inequality,
we also get that

lim sup
δ→0

(|I5|+ |I6|) ≤ 2

∫
Ω

[A(|∇u|) + |A′(|∇u|)||∇u|] |∇ui||∇ϕ|
|Tε(ui)|
|x− y|γ

ϕ

≤
by(10.1.3)

4(1 + |MA|)
ρ

∫
Ω

√
A(|∇u|) |∇ui|
|x− y|

γ
2 |ui|

β
2

χ{|ui|≤ε}ϕ

√
A(|∇u|) |ui|

2−β
2

|x− y|
γ
2

≤ ϑ
∫

Ω

A(|∇u|)|∇ui|2

|x− y|γ |ui|β
χ{|ui|≥ε}ϕ

2 +
4(1 + |MA|)2

ϑρ2

∫
B2ρ(x0)

A(|∇u|)|∇u|2−β

|x− y|γ

≤ ϑ
∫

Ω

A(|∇u|)|∇ui|2

|x− y|γ |ui|β
χ{|ui|≥ε}ϕ

2 +
4(1 + |MA|)2MĈ2(L)

ϑρ2
.

(10.2.21)



Second order regularity for degenerate nonlinear elliptic equations 117

Now we set B = supx∈B2ρ(x0) |b(x)| and we get

lim sup
δ→0

|I7| ≤ qB
∫

Ω
|∇u|q−1|∇ui|

|Tε(ui)|
|x− y|γ

ϕ2

≤
∫

Ω

√
A(|∇u|) |∇ui|
|x− y|

γ
2 |ui|

β
2

χ{|ui|≤ε}ϕ |q|B
|∇u|q−1 |ui|

2−β
2√

A(|∇u|) |x− y|
γ
2

ϕ

≤ ϑ
∫

Ω

A(|∇u|)|∇ui|2

|x− y|γ |ui|β
χ{|ui|≥ε}ϕ

2 +
q2B2

4ϑ

∫
Ω

|∇u|2q−2|ui|2−β

A(|∇u|) |x− y|γ
ϕ2

≤
by(10.1.4)

ϑ

∫
Ω

A(|∇u|)|∇ui|2

|x− y|γ |ui|β
χ{|ui|≥ε}ϕ

2 +
q2B2

4Kϑ

∫
Ω

|∇u|1−β

|x− y|γ
ϕ2

≤ ϑ
∫

Ω

A(|∇u|)|∇ui|2

|x− y|γ |ui|β
χ{|ui|≥ε}ϕ

2 +
q2B2MĈ3(L)

4Kϑ
.

(10.2.22)

Setting BI = supx∈B2ρ(x0)

∑N
i=1 |bi(x)| we also deduce that

lim sup
δ→0

|I8| ≤ BI
∫

Ω
|∇u|q |ui|

1−β

|x− y|γ
ϕ2 ≤ BI

∫
B2ρ(x0)

|∇u|q+1−β

|x− y|γ
≤ BIMĈ4(L) .

(10.2.23)

Finally, setting F = supx∈B2ρ(x0)

∑N
i=1 |fi(x)|, we get that

lim sup
δ→0

|I9| ≤ F
∫

Ω

|ui|1−β

|x− y|γ
ϕ2 ≤ FMĈ5(L) . (10.2.24)

Taking into account (10.2.18), letting δ → 0, exploiting the above estimates
and evaluating T ′ε, we get

(1 +mA)

∫
Ω

A(|∇u|)|∇ui|2

|x− y|γ
(G′ε(ui)
|ui|β

− β Gε(ui)
|ui|1+β

)
ϕ2 − 3ϑ

∫
Ω

A(|∇u|)|∇ui|2

|x− y|γ |ui|β
χ{|ui|≥ε}ϕ

2

≤ γ2(1 + |MA|)2MĈ1(L)

4ϑ
+

4(1 + |MA|)2MĈ2(L)

ϑρ2
+
q2B2MĈ3(L)

4Kϑ

+BIMĈ4(L) + FMĈ5(L) .

(10.2.25)

Now we �x ϑ su�ciently small such that

(1 +mA)

(
G′ε(ui)− β

Gε(ui)

|ui|

)
− 3ϑχ{|ui|≥ε} > 0 (10.2.26)

so that∫
Bρ(x0)

A(|∇u|)|∇ui|2

|x− y|γ |ui|β
≤
∫
B2ρ(x0)

A(|∇u|)|∇ui|2

|x− y|γ |ui|β
ϕ2 ≤ C (10.2.27)

where C = C(γ, β, q, f, b, ||∇u||∞, ρ, x0).
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10.3 Local summability of the weight

We exploit here the summability properties of the second derivatives of the
solution proved in Theorem 10.1.3 to obtain information on the summability
of (A(|∇u|))−1.

Proof of Theorem 10.1.3. Consider

φ =
1

(ε+A(|∇u|))α
Hδ(|x− y|)ϕ2 =

1

(ε+A(|∇u|))α
Hδϕ

2 (10.3.28)

with ε > 0, ϕ and Hδ de�ned as in (10.2.11) and (10.2.12). Note that φ
can be used as test function in (10.1.5), so that∫

B2ρ(x0)
f(x)φ =

∫
B2ρ(x0)

f(x)
1

(ε+A(|∇u|))α
Hδ ϕ

2

= −α
∫
B2ρ(x0)

A(|∇u|)(∇u,∇|∇u|A′(|∇u|))
(ε+A(|∇u|))α+1

Hδ ϕ
2

+

∫
B2ρ(x0)

A(|∇u|)(∇u,∇xHδ)

(ε+A(|∇u|))α
ϕ2 + 2

∫
B2ρ(x0)

A(|∇u|)(∇u,∇ϕ)

(ε+A(|∇u|))α
Hδ ϕ

+

∫
B2ρ(x0)

b(x)|∇u|q

(ε+A(|∇u|))α
Hδ ϕ

2 .

(10.3.29)

It is convenient to set:

Io =

∫
B2ρ(x0)

1

(ε+A(|∇u|))α|x− y|γ
ϕ2

Ia = −α
∫
B2ρ(x0)

A(|∇u|)(∇u,∇|∇u|A′(|∇u|))
(ε+A(|∇u|))α+1

Hδ ϕ
2

Ib =

∫
B2ρ(x0)

A(|∇u|)(∇u,∇xHδ)

(ε+A(|∇u|))α
ϕ2

Ic = 2

∫
B2ρ(x0)

A(|∇u|)(∇u,∇ϕ)

(ε+A(|∇u|))α
Hδ ϕ

Id =

∫
B2ρ(x0)

b(x)|∇u|q

(ε+A(|∇u|))α
Hδ ϕ

2 .

(10.3.30)

Recalling that we are assuming that the source therm f is positive, we
deduce that

c(ρ, x0)

∫
B2ρ(x0)

1

(ε+A(|∇u|))α
Hδ ϕ

2 ≤ |Ia|+ |Ib|+ |Ic|+ |Id| . (10.3.31)

In the following we let δ → 0 and exploit the Young inequality ab ≤ ϑa2+ b2

4ϑ
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and Theorem 10.1.3, obtaining

lim sup
δ→0

|Ia| ≤ α
∫
B2ρ(x0)

A(|∇u|)|A′(|∇u|)||∇u|
(ε+A(|∇u|))α+1

N∑
i=1

|∇ui|
1

|x− y|γ
ϕ2

= α

∫
B2ρ(x0)

1

(ε+A(|∇u|))
α
2 |x− y|

γ
2

ϕ
A(|∇u|)|A′(|∇u|)||∇u|

(ε+A(|∇u|))
α
2

+1

∑N
i=1 |∇ui|
|x− y|

γ
2

ϕ

≤ αϑIo +
1

4ϑ

∫
B2ρ(x0)

(A(|∇u|))2|A′(|∇u|)|2|∇u|2

(ε+A(|∇u|))α+2

( N∑
i=1

|∇ui|
)2 1

|x− y|γ
ϕ2

≤ αϑIo +
M2
AN

4ϑ

∫
B2ρ(x0)

(A(|∇u|))2

(ε+A(|∇u|))α
N∑
i=1

|∇ui|2
1

|x− y|γ
ϕ2

≤ αϑIo +
M2
A N

4ϑ

∫
B2ρ(x0)

A(|∇u|)|
∑N

i=1 |∇ui|2

|∇u|β|x− y|γ
ϕ2

≤ αϑIo +
M2
A N2C

4ϑ
(10.3.32)

with β := (α− 1)ϑ̃ and observing that 0 ≤ β < 1 since 1 < α < 1 + 1
ϑ̃
. The

constant C is the one given by Theorem 10.1.3. Now we proceed further
observing that

lim sup
δ→0

|Ib| ≤ γ
∫
B2ρ(x0)

A(|∇u|)|∇u|
(ε+A(|∇u|))α|x− y|γ+1

ϕ2

≤ γ
∫
B2ρ(x0)

|∇u|
(A(|∇u|))α−1

1

|x− y|γ+1
ϕ2

≤ γ

Kα−1

∫
B2ρ(x0)

|∇u|
|∇u|ϑ̃(α−1)

1

|x− y|γ+1
ϕ2

≤ γMĈ6(L)

Kα−1

(10.3.33)

where M and L are de�ned as in (10.2.20) and we are also using the fact
that ϑ̃(α− 1) < 1. Similarly, recalling that |∇ϕ| ≤ 2

ρ , we get

lim sup
δ→0

|Ic| ≤ 2

∫
B2ρ(x0)

A(|∇u|)|∇u||∇ϕ|
(ε+A(|∇u|))α

1

|x− y|γ
ϕ

≤ 4

ρKα−1

∫
B2ρ(x0)

|∇u|
|∇u|ϑ̃(α−1)

1

|x− y|γ
ϕ

≤ 4MĈ7(L)

ρKα−1
.

(10.3.34)
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As above we use the notation B = supx∈B2ρ(x0) |b(x)|. We have

lim sup
δ→0

|Id| ≤
∫
B2ρ(x0)

|b(x)||∇u|q

(ε+A(|∇u|))α
1

|x− y|γ
ϕ2

≤
∫
B2ρ(x0)

1

(ε+A(|∇u|))
α
2 |x− y|

γ
2

ϕ B
|∇u|q

(ε+A(|∇u|))
α
2 |x− y|

γ
2

ϕ

≤ ϑIo +
B2

4ϑ

∫
B2ρ(x0)

|∇u|2q

(A(|∇u|))α
1

|x− y|γ
ϕ2

≤
Hp 6

ϑIo +
B2

4ϑKα

∫
B2ρ(x0)

|∇u|2q

|∇u|αϑ̃
1

|x− y|γ
ϕ2

≤ ϑIo +
B2MĈ8(L)

4ϑKα

(10.3.35)

observing that 2q > αϑ̃ since q > ϑ̃+1
2 and 1 < α < 1 + 1

ϑ̃
.

Collecting the previous estimates, by (10.3.31), and letting δ → 0 we
have

(c(ρ, x0)− (α+ 1)ϑ)

∫
B2ρ(x0)

1

(ε+A(|∇u|))α|x− y|γ
ϕ2

≤
M2
A N2C

4ϑ
+ γ

MĈ6(L)

Kα−1
+

4MĈ7(L)

ρKα−1
+
B2MĈ8(L)

4ϑKα
.

(10.3.36)

For ϑ su�cient small such that (c(ρ, x0)− (α+ 1)ϑ) > 0, letting ε→ 0, we
get the thesis∫

Bρ(x0)

1

(A(|∇u|))α
1

|x− y|γ
≤
∫
B2ρ(x0)

1

(A(|∇u|))α|x− y|γ
ϕ2 ≤ C

(10.3.37)
where C = C(γ, β, q, f, b, ||∇u||∞, ρ, x0, α).

10.4 Global results

In this section we deduce global regularity information, starting from the
local regularity results already proved. Let us de�ne the neighbourhood
Iδ(∂Ω) = {x ∈ Ω|d(x, ∂Ω) ≤ δ}. Without loss of generality, in all the
section, we will assume that

Ω\I3δ(∂Ω) ⊂
S⋃
i=1

Bρ(xi)

and xi ∈ Ω\I3δ(∂Ω) and ρ < δ. We will state our results under the general
assumption

Zu ∩ ∂Ω = ∅ .
This assumption is veri�ed in all the situations when the Hopf boundary
Lemma holds, we refer therefore to [121] .
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Theorem 10.4.1. Let Ω ⊂ RN a bounded smooth domain and let u ∈
C1,α(Ω̄) ∩ C2(Ω \ Zu) be a solution to (10.1.1) with f, b ∈W 1,∞(Ω). Then
for every i = 1, ..., N , 0 ≤ β < 1 and γ < N −2 (γ = 0 if N = 2), we have∫

K

A(|∇u|)|∇ui|2

|x− y|γ |ui|β
dx ≤ C

∗
(K) ∀y ∈ Ω, (10.4.38)

for any compact set K ⊂ Ω. If we also assume that Zu ∩ ∂Ω = ∅, then∫
Ω

A(|∇u|)|∇ui|2

|x− y|γ |ui|β
dx ≤ C

∗ ∀y ∈ Ω . (10.4.39)

Proof. The proof follows via a covering argument. We directly prove the
estimate in (10.4.39), since the estimate in (10.4.38) follows with the same
proof more easily. In all the proof the reader should take into account that
we are integrating with respect the x-variable, and the center of the kernel
y is varying all over the domain. Under our assumptions, we can take δ > 0
such that there are no critical points of the solution in the neighbourhood
I3δ(∂Ω). It follows therefore in this case that A(|∇u|) > 0 in I3δ(∂Ω) and
u ∈ C2(3δ(∂Ω)). We set

M = max
{

sup
y∈Ω

∫
Ω

1

|x− y|γ
dx; sup

y∈Ω

∫
Ω

1

|x− y|γ+1
dx; sup

y∈Ω

∫
Ω

1

|x− y|γ+2
dx
}

L = sup
x∈Ω
|∇u|

B = sup
x∈Ω
|b(x)|, B̄I = sup

x∈Ω

N∑
i=1

|bi(x)|

F = sup
x∈Ω

N∑
i=1

|fi(x)|

(10.4.40)

and, repeating verbatim the argument of the proof of Theorem 10.1.3 with
the new notations, we get that∫

Bρ(xi)

A(|∇u|)|∇ui|2

|x− y|γ |ui|β
≤ Ĉ(γ, β, q,mA,MA, M̄ , L̄, B̄, F̄ ) . (10.4.41)

Therefore∫
Ω\I3δ(∂Ω)

A(|∇u|)|∇ui|2

|x− y|γ |ui|β
≤

S∑
i=1

∫
Bρ(xi)

A(|∇u|)|∇ui|2

|x− y|γ |ui|β
≤ SĈ . (10.4.42)

Setting

Ā = sup
x∈I3δ

A(|∇u|)|∇u|β <∞

D = sup
x∈I3δ(∂Ω)

∑
i,j

|uij |2
(10.4.43)
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we also have that∫
I3δ(∂Ω)

A(|∇u|)|∇ui|2

|x− y|γ |ui|β
≤
∫
I3δ(∂Ω)

A(|∇u|)|∇u|−β|∇ui|2

|x− y|γ
≤ ADM .

(10.4.44)

Finally, by (10.4.42) and (10.4.44), we deduce that∫
Ω

A(|∇u|)|∇ui|2

|x− y|γ |ui|β
≤
∫

Ω\I3δ(∂Ω)

A(|∇u|)|∇ui|2

|x− y|γ |ui|β
+

∫
I3δ(∂Ω)

A(|∇u|)|∇ui|2

|x− y|γ |ui|β

≤ SĈ +ADM = C
∗
.

(10.4.45)

We prove here a global summability result for (A|∇u|)−1 using Theorem
10.4.1.

Let as above Iδ be the neighbourhood of ∂Ω of radius δ and consider
the same covering

Ω\I3δ(∂Ω) ⊂
S⋃
i=1

Bρ(xi)

with xi ∈ Ω\I3δ(∂Ω) and ρ < δ. We set

λ̄ = inf
x∈I3δ

A(|∇u|)

µ = inf
x∈Ω\Iδ

f(x) .
(10.4.46)

Theorem 10.4.2. Let Ω ⊂ RN a bounded smooth domain and let u ∈
C1,α(Ω̄)∩C2(Ω\Zu) be a solution to (10.1.1) with f, b ∈W 1,∞(Ω). Assume
that f is positive in Ω (possibly vanishing on the boundary). Then, for every
compact set K ⊂ Ω, we have∫

K

1

(A(|∇u|))α
1

|x− y|γ
≤ C∗(K) (10.4.47)

with 1 < α < 1 + 1
ϑ̃
, γ < N − 2, if N ≥ 3 and γ = 0 if N = 2 and

C∗ = C∗(K, γ, µ, λ̄,mA,MA, α, f, ||∇u||∞). If we further assume that Zu ∩
∂Ω = ∅, then ∫

Ω

1

(A(|∇u|))α
1

|x− y|γ
≤ C∗ . (10.4.48)

Proof. We deal directly with the more di�cult case, namely we prove
(10.4.48). In all the proof the reader should take into account that we
are integrating with respect the x-variable, and the center of the kernel y
is varying all over the domain. Under our assumptions, we can take δ > 0
such that there are no critical points of the solution in the neighbourhood
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I3δ(∂Ω). It follows therefore that λ̄ > 0 in I3δ and u ∈ C2(3δ(∂Ω)). Fur-
thermore, since f is positive in the interior of Ω, we can also assume that
µ > 0. By Theorem 10.4.2, since µ > 0, we get that∫

Bρ(xi)

1

(A(|∇u|))α
1

|x− y|γ
≤ Ĉ(γ, α, µ, q,mA,MA, M̄ , L̄, B̄, F̄ ) .

(10.4.49)
where M , L and B are as in (10.4.40). Since λ̄ > 0 we also have that∫

I3δ

1

(A(|∇u|))α
1

|x− y|γ
≤ 1

λ
α M . (10.4.50)

Consequently the thesis follows now via a standard covering argument, since
we have∫

Ω
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(A(|∇u|))α
1

|x− y|γ

≤
∫
I3δ

1

(A(|∇u|))α
1
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1
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λ
α M + SĈ = C∗ .

(10.4.51)

We are now ready to end the paper with the proof of Theorem 10.1.5.

Proof of Theorem 10.1.5. For any compact set K ⊂ Ω, we have∫
K
|∇ui|s dx =

∫
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A(|∇u|)
s
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β s
2

|ui|
β s
2

A(|∇u|)
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2
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2
2

∫
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β s

(2−s)ϑ̃
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 2−s
2

.

(10.4.52)

Here we exploit (10.1.4) and C
∗
(K) is the constant arising from Theorem

10.4.1. Under our assumption, namely for s < 1 + 1
ϑ̃
, we can �x β < 1 with

1− β small such that

s

2− s
− β s

(2− s)ϑ̃
< 1 +

1

ϑ̃
.
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This allows to use Theorem 10.4.2 to deduce that

∫
K
|∇ui|s dx ≤ (C

∗
(K))

s
2K−ϑ̃β

2
2 (C∗(K))

2−s
2 . (10.4.53)

It remains to demonstrate that uij , which are de�ned as in Remark 10.1.2,
are actually the distributional derivatives. To do this we note that, for
ϕ ∈ C∞c (K), we have:∫
K
uijϕ

Gε(|∇u|)
|∇u|

= −
∫
K
uiϕj

Gε(|∇u|)
|∇u|

−
∫
K∩{ε<|∇u|<2ε}

|∇u||∇uj |ϕ
1

ε
,

(10.4.54)

since u is smooth outside the critical set Zu and Gε(|∇u|)
|∇u| vanishes in a

neighbourhood of Zu. Taking into account (10.4.53) we can pass to the

limit via the dominated convergence theorem. Since Gε(|∇u|)
|∇u| → χ{K\Zu} in

K as ε tends to zero, we get the claim.
The same proof works to prove that u ∈ W 2,s(Ω) for any s < min{2 ; 1 +
ϑ̃−1} once that (10.4.39) and (10.4.48) are in force.



Conclusions

As we have discussed in the introduction, in order to �nd a key for better
understanding the problem of the emergence of weak solutions in some
particular type of nonlinear partial di�erential equations, a rigorous study
is necessary. Following this perspective in this thesis, we have carried out
in a systematic way both experimental data analysis and mathematical
rigorous study.

In particular, it has been systematically studied the rapid time forma-
tion of coherent structures induced by nonlinear interaction in 2D MHD
incompressible turbulent �ows. It has been shown that these structures
are characterised by the occurrence at small scales of regions where the
correlations predicted by the hypothesis of quadratic rugged invariant con-
servations are locally present, a property which is the equivalent to the well
known 'Beltramisation' of the �uid �ows (Section I). Thus we have iden-
ti�ed which are the equivalent of the �uid Beltrami �ows in the 2D MHD
incompressible turbulent case.
A further analysis is clearly necessary in order to understand if and how
this phenomenology can be found also in the 3D MHD turbulence and how
the emergence of coherent structures can in�uence the formation of weak
solutions.

Moreover, a preliminary data analysis study on the formation and the
excitation of the low-frequencies normal modes of magnetically con�ned
plasma, the drift waves, has been described (Section II). Namely a data
analysis has been built up in order to understand how the generated plasma
column behaves when plasma dynamics, characterised by the presence of
drift wave modes, occurs for magnetic �eld above a certain threshold. This
analysis has been performed on experimental data coming from the Von-
Kármán plasma experiment and even if the obtained results are still intro-
ductory, they show a good order of magnitude accordance with the plasma
dynamic description given by the Hasegawa-Mima equation.

Finally, local and global regularity results for a particular type of non-
linear degenerate elliptic equations in divergence form have been presented
in detail.

In conclusion in this thesis we have tried to built a multidisciplinary ap-
proach for facing the main problem of the study of weak solution emergency
in particular nonlinear systems that can generate wide modes cascades and
thus turbulence.
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The results obtained through the systematically study of the rapid time for-
mation of coherent structures in 2D MHD incompressible turbulent �ows
can be interesting in the perspective of understanding if and how these in-
termittent small scale structures could give rise to singular weak solutions,
when letting the dissipative coe�cients go to zero. In fact, the properties
of the analysed structures could give a key element to understand which
mathematical conditions characterise singularity emergence in weak solu-
tions of the MHD ideal case.
On the other hand the analysis performed on the VKP experimental data,
even if it is still in a preliminary stage, could be useful for building a model
able to determine when and how the breakdown from regularity can occur
in systems of equations describing plasma behaviour.
In parallel the �nal study on local and global regularity for a particular type
of nonlinear degenerate elliptic equations in divergence form belongs to the
wider problem of understanding which mathematical conditions guarantee
existence and uniqueness of weak solutions for more general systems of
partial di�erential equations that, under the appropriate conditions, can
generate turbulence (ex. MHD equations and Hasegawa-Mima equation).

We conclude observing that more work has to be carried out in order
to obtain an organic solution to the problem described in this work.
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