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Abstract

Questo lavoro di tesi ha riguardato tecniche di data mining per dati complessi
e di grandi dimensioni. Sono state considerate due famiglie di algoritmi di
data mining: la classificazione e l’analisi di anomalie.

La prima parte di questa tesi si concentrata sulla progettazione di strate-
gie per ridurre la dimensione del sottogruppo estratto tramite tecniche di
condensazione e sulla loro successiva sperimentazione.

Il risultato della ricerca stato lo sviluppo di varie strategie di selezione di
sottoinsiemi, progettate per determinare, durante la fase di training, il sot-
toinsieme pi promettente sulla base di diversi metodi di stima della precisione
in fase di test. Tra questi, la strategia PACOPT basata sul Pessimistic Er-
ror Estimate (PEE) per stimare il grado di generalizzazione come trade-off
tra laccuratezza del training set e la complessit del modello. La fase speri-
mentale ha avuto come riferimento la tecnica di condensazione FCNN. Tra i
metodi di condensazione basati sulla regola di decisione nearest neighbor (NN
rule), FCNN (acronimo di Fast Condensed NN ) una delle tecniche pi van-
taggiose, in particolare per quanto riguarda le prestazioni relative al tempo.
Si mostrato che le strategie di selezione progettate consentono di preservare
la precisione di ciascun sottogruppo consistente. Si dimostrato, inoltre, che
le strategie di selezione proposte garantiscono una riduzione significativa delle
dimensioni del modello. Infine, alcune tra le principali tecniche di riduzione
del training-set per la NN rule, che rappresentano lo stato dellarte in termini
di prestazioni, sono state confrontate con le strategie qui proposte.

La seconda parte della tesi diretta alla progettazione di strumenti di analisi
per i dati strutturati sotto forma di rete.

Lanomaly detection un’area che ha ricevuto molta attenzione negli ultimi
anni. Ha una vasta gamma di applicazioni, tra cui la rilevazione di frodi e
il rilevamento delle intrusioni in rete. Le tecniche focalizzate sul rilevamento
di anomalie nei grafi statici presuppongono che le reti non cambino e siano
in grado di rappresentare solo una singola istantanea dei dati. Poich le reti
del mondo reale sono in continua evoluzione, stata spostata lattenzione sui
grafi dinamici, che si evolvono nel tempo. E stata presentata una tecnica per
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lanomaly detection di nodi in reti in cui gli archi sono etichettati con listante
di tempo di creazione. La tecnica mira a individuare anomalie prendendo
contemporaneamente in considerazione le informazioni relative alla struttura
della rete e all’ordine in cui sono state stabilite le connessioni. Lobiettivo
primario quello di analizzare ogni singolo nodo, considerando contempo-
raneamente la sua dimensione temporale. Questultima informazione stata
ottenuta tramite i timestamps associati agli archi. E possibile indurre un in-
sieme di strutture temporali controllando determinate condizioni sull’ordine
di apparizione di ciascun arco, poich ci denota diversi tipi di comportamento
da parte dellutente. La distribuzione di queste strutture calcolata per ciascun
nodo e usata per individuare le anomalie.
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Introduction

Data mining extracts useful information from large amounts of data and it is
one of the fast growing fields in the information technology. There is a huge
amount of information locked up in databases which have not been discovered
or analyzed, to the date. This thesis aims to provide novel techniques for large
and complex data, focusing on issues relating to Classification and Anomaly
Detection.

One of the most important descriptive data mining tasks is classification,
which can be used to find the differentiating features among classes and to
exploit them to classify unknown instances. Given a training set, that is a set
of examples for which class labels are known and given a learning algorithm,
examples are used to build a classification model that is applied to the test
set, or the set of observations for which class labels are unknown. The nearest
neighbor rules are based on learning by analogy, that is by comparing a given
test tuple with the training tuples that are similar to it. Within this domain,
the main purpose of this thesis was to study algorithms able to improve the
classifier accuracy and to prevent the induction of overly complex models in
the context of nearest neighbor condensing classification techniques. Specif-
ically, it was investigated the application of the pessimistic error estimate
principle to minimize the expected error rate of the classifier.

The second part of the thesis is directed towards the design of analysis
tools for network structured data, such as the discovery of anomalies within
a network. Social networks are formally defined as a set of nodes that are
tied by one or more types of relations. Social networking sites are examples
of widely popular networks used to find and organize contacts. Identifying
anomalies has become a challenge and many studies have been conducted to
face this matter. This thesis intends to give a contribution in this setting by
describing techniques for node anomaly detection in networks that take into
account both structural and temporal information.

The rest of thesis is organized in two main parts, corresponding to the two
above main data mining tasks faced in the context of large and complex data.





Part I

Classification Techniques
for Large Datasets
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Pruning Nearest Neighbor Competence
Preservation Learners

The nearest neighbor decision rule [22] (NN rule for short) assigns to an un-
labelled sample point the classification of the nearest of a set of previously
classified points. A strong point of the nearest neighbor rule is that, for all
distributions, its probability of error is bounded above by twice the Bayes
probability of error [22, 86, 25]. That is, it may be said that half the classi-
fication information in an infinite size sample set is contained in the nearest
neighbor.

Naive implementation of the NN rule requires to store all the previously
classified data points, and then to compare each sample point to be classified
to each stored point.

In order to reduce both space and time requirements the concept of training
set consistent subset, that is a subset of the original training set that correctly
classifies all the training samples, was introduced by Hart [47] together with
an algorithm, called the CNN rule (for Condensed NN rule), to determine a
consistent subset of the original sample set. Since then different techniques
have been introduced [101, 56, 24, 8] with the same goal, referred to as training
set reduction, training set condensation, reference set thinning, or prototype
selection algorithms.

A training set consistent subset is a subset of the training set that classifies
the remaining data correctly through the NN rule.

Using a training set consistent subset, instead of the entire training set, to
implement the NN rule, has the additional advantage that it may guarantee
better classification accuracy. Indeed, [56] showed that the VC dimension of
an NN classifier is given by the number of reference points in the training set.

Thus, in order to achieve a classification rule with controlled generaliza-
tion, it is better to replace the training set with a small consistent subset.

Motivated by approaches used in the context of other classification algo-
rithms in order to improve generalization and to prevent induction of overly
complex models, such as in the case of decision trees, we investigate the appli-
cation of the Pessimistic Error Estimate (PEE) principle [91] in the context
of the nearest neighbor rule.
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The rest of this first part is organized as follows. Chapter 4 presents an
overview of the relevant background and gives a brief account of the prominent
works conducted in these areas in the last few years. Contributions are detailed
in subsequent Chapter 5.



4

Scenario and Related Work

Data Mining is a discipline used in various domains to give meaning to the
available data. In this chapter, we will review the necessary background as well
as previous work within the main areas of this thesis. Focusing first on the
classification. Next, we present an overview of techniques for Nearest Neighbor
classification focusing on k-NN classifiers and Nearest Neighbor Condensation
Techniques, in addition to methods for evaluating and comparing the perfor-
mance of the classification techniques, and to techniques for reducing storage
requirements and improving classifier accuracy.

4.1 Classification

Classification is a data mining technique, whose goal is to assign objects to
one of several predefined categories. Classification is a pervasive problem that
encompasses many diverse applications such as, Business, Games, Science and
engineering, Medical, Spatial to cite a few [103].

Classification is defined [46] as the process of finding a model (or function)
that describes and distinguishes data classes and concepts. This model can
also be used to predict the class label of objects whose class membership is
unknown. Classification techniques employ a learning algorithm to identify a
model that best fits the relationship between the attribute set and class label
of the input data.

Definition 4.1. Classification is the task of learning a target function f
that maps each attribute set x to one of the predefined class labels y. [91]

The target function is also called as a classification model. This model can
serve as an explanatory tool to distinguish between objects of different classes.
Classification techniques are most fitted for predicting or describing data sets
with binary or nominal categories. They are less effective for ordinal categories
because they do not consider the implicit order among the categories. Other
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forms of relationships, such as the subclass-superclass relationships among
categories are also ignored.

During the years a lot of different classification algorithms have been
proposed, including decision tree classifiers, K-nearest neighbor classifiers,
rule-based classifiers, Neural Networks, Support Vector Machines and Naive
Bayesian classifier [46]. Each technique employs a learning algorithm to iden-
tify a model that best fits the relationship between the attribute set and class
label of the input data. The model generated by a learning algorithm should
both fit the input data well and correctly predict the class labels of records it
has never seen before. Therefore, a key objective of the learning algorithm is to
build models with good generalization capability; i.e., models that accurately
predict the class labels of previously unknown records.

Classification methods have been proposed by researchers in machine
learning, pattern recognition, data mining and statistics.

The rest of the section introduces the problem of classification, some major
classification methods, including Decision Trees induction k-Nearest Neighbor
classifiers, the main measures of accuracy as well as techniques for obtaining
reliable accuracy estimates and for increasing classifier accuracy.

4.1.1 Decision Trees

Decision trees are one of the most common classification techniques used in
the practice. A decision tree is a hierarchical structure consisting of nodes and
directed edges.

Decision trees build classification or regression models in the form of a
tree structure. As a matter of fact, a decision tree is a flowchart-like tree
structure. The tree has three types of nodes: Root node that has no incoming
edges and one or more outgoing edges. Internal nodes, each of which has
exactly one incoming edge and two or more outgoing edges. Leaf or terminal
nodes, each of which has exactly one incoming edge and no outgoing edges
[91]. Each internal node (nonleaf node) denotes a test on an attribute, each
branch represents an outcome of the test, and each leaf (or terminal node)
holds a class label. A decision tree can be adapted so as to predict continuous
(ordered) values, rather than class labels [46].

Decision trees that are too large are susceptible to a phenomenon known
as overfitting the data. To overcome this problem, pruned trees are used which
trees tend to be smaller and less complex. One of the strong points of these
algorithms is that they are usually faster and better at correctly classifying
independent test data.

4.1.2 Nearest Neighbor Classification

The nearest neighbor (NN) technique is one of the oldest classification meth-
ods known and one of the most useful algorithms in data mining in spite of
being very simple and effective for performing recognition tasks.
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The nearest neighbor decision rule [22] assigns to an unclassified sam-
ple point the classification of the nearest of a set of previously classified
points. The nearest neighbor classification method belongs to the category
of instance-based learning methods, since the entire training set is stored and
each new instance is compared with existing ones using a distance metric,
and the closest existing instance is used to assign the class to the new one.
These classifiers therefore can suffer from poor accuracy when given noisy or
irrelevant attributes. Sometimes more than one nearest neighbor is used, and
the majority class of the closest k neighbors is assigned to the new instance.
This is termed the k-nearest neighbor method [103].

The classification error of the nearest neighbor rule is bounded above by
twice the optimal Bayes error under certain reasonable assumptions. Further-
more, the error of the general k-NN method asymptotically approaches that
of the Bayes error and can be used to approximate it [22].

4.1.3 Evaluation Methods

There are many evaluation methods that can be applied to improve the per-
formance of classifiers in data mining. We review the principal methods used
to evaluate the performance of a classifier.

Holdout method

In this method [91] the original data set is partitioned into two parts, the
training set and test set. The classification model is induced from the training
set and evaluated on the test set. The proportion of data reserved for training
and for testing is typically at the choice of the analysts. In this method, the
dataset is usually randomly divided, two-thirds for training and one-third of
the data for testing. The holdout method can be repeated various times to
improve the estimation of classifier’s accuracy.

Cross Validation

Cross Validation (CV) [87] is one of the most widely used methods to measure
model prediction performance. In this approach, each record is used the same
number of times for training and exactly once for testing. The basic idea of
this method [91] is to split the data on a fixed number of folds, or partitions.

In k-Fold Cross Validation [46] the data set is randomly split into k subsets
or folds of approximately equal size. At each run, one of the partitions is chosen
for testing, while the rest of them are used for training. This procedure is
repeated k times such that each fold is used for testing exactly once. Finally,
the total error is found by summing up the errors for all k runs in each fold.

In stratified cross-validation, the folds are stratified so that the class dis-
tribution of the tuples in each fold is approximately the same as that in the
initial data. Generally, stratified 10-fold cross validation is recommended for
estimating accuracy due to its relatively low bias and variance.
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Leave-One-Out Cross Validation

The leave-one-out cross validation is simply n-fold cross-validation [103],
where n is the number of instances in the data set. Each instance in turn
is left out, and the learning scheme is trained on all the remaining instances.
This technique can usually be applied only on small datasets due that it is
computationally costly to repeat the procedure n times. Nevertheless, leave-
one-out seems to offer the opportunity to squeeze the maximum out of a small
dataset and getting as accurate an estimate as possible.

4.2 Overfitting and Model Complexity

Errors committed by classification models [103] are generally divided into two
types: Training error and Generalization error. The training error also known
as resubstitution error, is the number of misclassification errors committed
on training records, whereas the generalization error is the expected error
of the model on previously unseen records. A good model must have low
training error as well as low generalization error. This is important because
a model that fits the training data too well can have a poorer generalization
error than a model with a higher training error, this phenomenon is known
as model overfitting. The model overfitting problem has been investigated by
several authors including [81, 26, 53].

The chance for model overfitting increases as the model becomes more
complex. For this reason, might be preferred simpler models, a strategy that
agrees with a well-known principle known as Occam’s razor:

Definition 4.2. Occam’s Razor: Given two models with the same gener-
alization errors, the simpler model is preferred over the more complex model
[91].

Thus, Overfitting happens when a model is more flexible than it needs to
be and incorporates noise in the training data to the extent that it negatively
impacts the performance on the model on new data [48]. There are several
possible causes why overfitting happens: the presence of noise, a model too
complex, a small training set, a very rich hypothesis space, a domain with
many features [91]. In order to prevent overfitting, it is necessary to use addi-
tional techniques as cross-validation [50, 52], regularization [10], early stopping
[78], pruning [55], and Bayesian approach [31].

A way to help learning algorithms to select the most appropriate model is
to be able to estimate the generalization error. The right complexity is that
of a model that produces the lowest generalization error. The problem is that
the learning algorithm has access only to the training set during model build-
ing. It has no knowledge of the test set, and thus, does not know how well
the tree will perform on records it has never seen. The best is to estimate
the generalization error of the induced tree. There are several methods for
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doing the estimation that are Resubstitution Estimate, Estimating Statistical
Bounds, and Validation Set. Resubstitution Estimate, assumes that the train-
ing set is a good representation of the overall data, so they use the training
error to provide an optimistic estimate that this value can be used to charac-
terize the generalization error. The training error is usually a poor estimate
of generalization error.

Estimating Statistical Bounds, the generalization error can also be esti-
mated as a statistical correction to the training error. This statistical correc-
tion is computed as an upper bound to the training error, taking into account
the number of training records that reach a particular leaf node.

Validation Set, this method divides the original training data into smaller
subsets. One of the subsets is used for training, while the other, is used for
estimating the generalization error [91].

4.3 Reducing Complexity of Decision Trees

A problem common when a decision tree is built is that many of the branches
will reflect anomalies in the training data due to noise or outliers. As the
number of nodes in the decision tree increases, the tree will have fewer training
errors. Up to a certain size also the test error will decrease. However, once the
tree becomes too large, its test error rate begins to increase even though its
training error rate continues to decrease. Such a situation is known as model
overfitting [91].

Various methods can be employed to combat this problem.
Two well-known techniques for incorporating model complexity into the

evaluation of classification models are PEE and MDL, which are described
next. In the context of decision trees.

4.3.1 Pessimistic Error Estimate.

The first approach explicitly computes generalization error as the sum of train-
ing error and a penalty term for model complexity. The resulting generaliza-
tion error can be considered its pessimistic error estimate. For instance, Let
n(t) be the number of training records classified by node t and e(t) be the
number of misclassified records. The pessimistic error estimate of a decision
tree T , eg(T ), can be computed as follows:

eg(T ) =

∑k
i=1[e(ti) +Ω(ti)]∑k

i=1 n(ti)
=
e(T ) +Ω(t)

N(t)
,

where k is the number of leaf nodes, e(T ) is the overall training error of the
decision tree, Nt is the number of training records, and Ω(ti) is the penalty
term associated with each node ti. For example, consider the binary decision
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trees. If the penalty term is equal to 0.5, e(T ) = 6, Ω(t) = 4, and N(t) = 24
then the pessimistic error estimate is

eg(T ) =
6+4∗0.5

24
= 8

24
= 0.3333

4.3.2 Minimum Description Length Principle.

MDL principle is a general method for inductive inference, based on the idea
that the more we are able to compress a set of data, the more regularities
we have found in it [43]. Is based on an information-theoretic approach, when
two models fit the data equally well, MDL will choose the one that is the
simplest in the sense that it allows for a shorter description of the data [91].
The MDL principle, provides a unified approach to statistical modeling, and it
allows the estimation of parameters along with their number without separate
hypothesis testing. It involves adding to the error function an extra term
which is designed to penalize mappings which are not smooth [79, 10]. MDL
principle use encoding techniques to define the best decision tree as the one
that requires the fewest number of bits to both 1) encode the tree and 2)
encode the exceptions to the tree. Its main idea is that the simplest of solutions
is preferred [46].

4.3.3 Pruning Decision Trees

The most common approach to construct decision tree classifiers is to grow
a full tree and prune it back. Pruning is desirable because the tree that is
grown may overfit the data by inferring more structure than is justified by
the training set [11]. There are two common approaches to tree pruning: Pre-
pruning and Post-pruning.

The first approach stops growing the tree earlier, before it perfectly classi-
fies the training set. Upon halting, the node becomes a leaf. The leaf may hold
the most frequent class among the subset tuples or the probability distribution
of those tuples.

The second approach, post-pruning, removes subtrees from a fully grown
tree. A subtree at a given node is pruned by removing its branches and re-
placing it with a leaf. The leaf is labeled with the most frequent class among
the subtree being replaced [46].

Several pruning methods have been introduced in the literature, includ-
ing reduced error pruning [75], pessimistic error pruning [73], minimum error
pruning [69], critical value pruning [65], cost-complexity pruning [12], penalty
pruning [60], Error-Based Pruning [74]. Esposito et al. [30] make a comparative
study of pruning methods cited above with the aim of understanding their the-
oretical foundations, their computational complexity, and the strengths and
weaknesses of their formulation.
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Alternatively, pre-pruning and post-pruning may be interleaved for a com-
bined approach. Post-pruning requires more computation than pre-pruning,
yet generally leads to a more reliable tree. The advantage of pre-pruning
is that it avoids generating overly complex subtrees that overfit the training
data. Post-pruning tends to give better results than pre-pruning since it makes
pruning decisions based on a fully grown tree, unlike pre-pruning, which can
suffer from premature termination of the tree-growing process [91].

4.4 Reducing Complexity of Nearest Neighbor Classifiers

In order to reducing complexity of Nearest Neighbor classifiers, three cate-
gories of techniques exist for the selective storage of instances, i.e. competence
enhancement, competence preservation, and hybrid approaches. Competence
enhancement methods remove noisy or corrupted instances such that classi-
fication accuracy is improved. Competence preservation remove superfluous
instances such that performance is improved while classification accuracy of
the training set is preserved. Finally hybrid approaches perform both compe-
tence enhancement and competence preservation [13].

One of the first competence enhancement techniques is Edited Nearest
Neighbor (ENN) algorithm [102], which removes instances considered to be
noise from the training set; an instance is considered as noise if it does not
agree with its k nearest neighbors. Tomek [93] introduced Repeated-ENN
(RENN) is extension of the ENN algorithm and All k-NN (ANN) algorithms.
Both make multiple passes over the training set, the former repeating the
ENN algorithm until no further eliminations can be made from the training
set and the latter using incrementing values of k.

The seminal work in competence preservation is the Condensed Nearest
Neighbor (CNN) [47]. Gates [40] devised the Reduced Nearest Neighbour
(RNN) rule, which extends the idea of the CNN. The Selective Nearest Neigh-
bor Rule (SNN) devised by Ritter et al. [80] improves on the CNN and RNN.

Aha et al. [2], introduced a series of instance-based learning algorithms to
reduce storage requirements and tolerate noisy instances. Other researchers
have provided variations on the IBn algorithms [105, 14]. Wilson and Martinez
[100] introduced three new instance reduction techniques which are intuitive
and provide good storage reduction called RT1, RT2 and RT3. RT3, have
shown higher generalization accuracy and lower storage requirements.

4.4.1 Nearest Neighbor Condensation Techniques

Condensed Nearest Neighbor Rule

The Condensed Nearest Neighbor rule (CNN rule) was proposed by Hart [47],
in order to determine a consistent subset of the original sample set, with the
goal of reducing the storage requirements involved in the NN rule. The aim
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of the CNN algorithm is to minimize the number of sample stored, keeping
only a subset of training data for classification. The basic idea is to remove the
data points which do not add additional information and show similarity with
other training data set. A minimal consistent subset is a subset of the training
set having the property of allowing correct classification of the training set
objects through the use of the NN rule.

The algorithm uses two bins, called S and T and proceed as follows. The
first sample pattern is copied from S to T . T is used as the training set to
classify each pattern of S, starting with the first. This is done until one of the
following two cases arises: If all samples are classified correctly, the process
finishes; if a point is incorrectly classified, it is added to T . The algorithm
terminates when no misclassified point is added during a complete pass of S.
In general the CNN rule adds prototypes until a stop condition is met.

The CNN rule may select points far from the decision boundary. Besides,
the CNN rule is order dependent, that is it has the undesirable property that
the consistent subset depends on the order in which the data is processed.

Reduced Nearest Neighbor Rule

Gates [40] introduced the Reduced Nearest Neighbor Rule (RNN) as an im-
provement over CNN. The RNN algorithm starts with S = T where T is the
whole training set and removes each pattern from S if whose elimination does
not affect the classification of the training data set T . This algorithm is able to
eliminate noisy instances and internal instances while retaining border points.
From the perspective of temporal cost, it is more expensive than the CNN
rule. It will always produce a subset of the results of CNN algorithm.

Selective Nearest Neighbor Decision Rule

Ritter et al. [80] propose Selective Nearest Neighbor Rule (SNN). This algo-
rithm produces a selective subset of the original data so that 1) the subset
is consistent, 2) the distance between any sample and its nearest selective
neighbor is less than the distance from the sample to any sample of the other
class, and 3) the subset is the smallest possible.

Modified Condensed Nearest-Neighbor Rule

The Modified Condensed Nearest-Neighbor Rule [24] (MCNN rule) algorithm
builds a training set in an incremental manner. MCNN rule starts with a basic
set comprising one pattern from each class. This algorithm is based on the
misclassified samples, a representative prototype of each class is determined
and added to the set of basic prototypes to classify these patterns correctly.
The process is repeated until there are no misclassified points in training set.
The algorithm is fast and order independent.
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The MCNN algorithm may work well in the case of patterns with a Gaus-
sian distribution with an equal and diagonal covariance matrix. In every iter-
ation of the MCNN rule, a set of representative samples is found for a group
of patterns. Thus, the algorithm might require a lot of iterations to converge,
due to the large number of features.

Decremental Reduction Optimization Procedure Algorithms

In [101] suggests a series of six algorithms for sets reduction based on the kNN
algorithm called DROP1, DROP2, DROP3, DROP4, DROP5 and DEL.

DROP1. This algorithm is identical to RNN rule, with the exception that
the accuracy is analyzed on S instead of T . It uses the following basic rule to
decide if it is safe to eliminate an instance from the instance set S (where S
= T originally): eliminate P only if at least some of its associates in S can be
classified correctly without P .

DROP2. This algorithm removes P if at least as many of its associates in T
would be classified correctly without P . Using this modification, each instance
P in the original training set T continues to maintain a list of its k+1 nearest
neighbors in S, even after P is removed from S. This means that instances
in S have associates that are both in and out of S, while instances that have
been removed from S have no associates; besides, sorts S in an attempt to
remove the central points before the border points. However, noisy instances
can also be border points, which can cause a change in the order of removal
of instances and some of these can remain in S even after the noisy instance
is removed.

DROP3. This algorithm uses a noise-filtering before sorting the instances
in S, That is done using a rule similar to ENN that eliminates any misclassified
instance by its k nearest neighbors. Also, it removes noisy instances, as well
as close border points. This helps to avoid overfitting the data.

DROP4. The noise-filtering of this algorithm pass removes each instance
only if, 1) It is misclassified by its k nearest neighbors, and 2) Its removal
does not affect the classification of other instances.

DROP5. This algorithm modifies DROP2 so, that instances are considered
for removal beginning with instances that are closest to their nearest enemy,
and proceeding to outside.

The Decremental Encoding Length algorithm (DEL) is similar to DROP3,
except that it uses the length encoding heuristic to decide in each case whether
the instance can be removed or not. In this DEL algorithm an instance is
removed only if a) It is misclassified by its k nearest neighbors, and b) The
removal of the instance does not increase the encoding length cost.

Class Conditional Instance Selection (CCIS)

Marchiori [61] developed a large margin-based algorithm for instance selection,
where the effect of eliminating one instance on the hypothesis margin of other
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instances is measured by the concept of class conditional nearest neighbor.
The hypothesis margin is defined as the distance between the hypothesis and
the closest hypothesis that assigns alternative label to the given instance.
The proposed instance selection method can be interpreted as a novel large-
margin-based procedure for training Voronoi networks.

Random Mutation Hill Climbing Algorithm (RMHC)

Skalak [85] used the wrapper approach for feature selection and for decreas-
ing the number of prototypes stored in instance-based methods. The general
approach is to use a bit string to represent a set of prototypes, and in some
experiments, a collection of features. The intuitive search mechanism is that
the mutation of the bit vector changes the selection of instances in the pro-
totype set or toggles the inclusion or exclusion of a feature from the nearest
neighbor computation.

Steady-State MA (SSMA)

Garcia et al. [37] proposed a model of memetic algorithm for instance selection,
that incorporates an ad-hoc local search specifically designed for optimizing
the properties of prototype selection problem with the aim of tackling the
scaling up problem. Memetic algorithms combine evolutionary algorithms and
local search within the evolutionary cycle.
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Contributions

In this chapter techniques to improve generalization and to prevent the induc-
tion of overly complex models in the context of nearest neighbor condensing
classification techniques are introduced.

With this aim, we relax the notion of consistency of a subset by intro-
ducing the notion of α-consistent subset (α ∈ [0, 1]), that is a subset that
correctly classifies at least the α fraction of the training set. Then we describe
a variant of the FCNN algorithm [8], called α-FCNN rule, that computes an
α-consistent subset (see Section 5.1)

We then introduce some subset selection strategies, namely PACOPT,
MAXOPT, and TRNOPT (see Section 5.2), intended to select the most
promising subset according to different ways of estimating expected accuracy.
Among them, the PACOPT strategy is based on PEE principle and estimates
generalization as a trade-off between training set accuracy and model com-
plexity.

Moreover, a variant of the PACOPT strategy, called aPACOPT for approx-
imate-PACOPT, is described (see Section 5.2.4). The technique attempts to
reduce time complexity by early terminating the learning phase on the basis
of the current trend of the pessimistic accuracy estimate curve.

Before going into the details, next we summarize the contributions of this
research:

– As the first major result (see Section 5.3), we show that the PACOPT
selection strategy guarantees to preserve the accuracy of the consistent
subset with a larger reduction factor, since on the average the subset
selected by PACOPT contains the 30% of the training set consistent subset
objects.

– As the second major result, we show that a sensible, on the average of
the 2%, generalization improvement can be obtained by using a reduced
subset of intermediate size, consisting on the average of the 63% of the
training set consistent subset objects.
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– Moreover, the aPACOPT strategy allows to compute approximatively
the same model determined by the PACOPT strategy, but with sensibly
smaller time requirements (the execution time of aPACOPT corresponds
to the 25%− 50% of the time required by PACOPT).

– Comparison with state-of-the-art prototype selection methods highlight
that FCNN-PAC strategies are able to obtain a model of size comparable
to that obtained by the best prototype selection methods in terms of
reduction ratio, with far smaller time requirements, corresponding to four
orders of magnitude on medium-sized datasets.

5.1 The α-FCNN algorithm

We start by giving some preliminary definitions.
In the following we denote by T a labeled training set from a metric space

with distance metrics d.
We denote by nn(p, T ) the nearest neighbor of p in T according to the

distance d. If p ∈ T , then p itself is its nearest neighbor. We denote by l(p)
the label associated with p.

Given a point q, the NN rule NN (q, T ) assigns to q the label of the nearest
neighbor of q in T , i.e. NN (q, T ) = l(nn(q, T )).

A subset S of T is said to be a training set consistent subset of T if, for
each p ∈ (T − S), l(p) = NN (p, S).

Now we relax the notion of training set consistent subset.

Definition 5.1. Let α be a real value in [0, 1], also called consistency fraction.
A subset S of T is said to be training set α-consistent subset of T if it correctly
classifies at least the α fraction of the objects in T , that is to say if

|{p ∈ T : l(p) = NN (p, S)}|
|T |

≥ α

2

Thus, a training set consistent subset corresponds to a training set 1-
consistent subset, and vice versa.

The α-FCNN algorithm (for α-consistent Fast Condensed Nearest Neigh-
bor rule) is a specialization of the FCNN algorithm [7, 8] for computing an
α-consistent subset.

Let S be a subset of T and let p be an element of S. We denote by
Vor(p, S, T ) the set {q ∈ T | p = nn(q, S)}, that is the set of the elements
of T that are closer to p than to any other element p′ of S. Furthermore, we
denote by Voren(p, S, T ) the set of the Voronoi enemies of p in T w.r.t. S,
defined as {q ∈ Vor(p, S, T ) | l(q) 6= l(p)}.
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We denote by Centroids(X) the set containing the centroids1 of the objects
in X.

The following Theorem states the property exploited by the FCNN rule in
order to compute a training set consistent subset.

Theorem 5.2. S is a training set α-consistent subset of T for the nearest
neighbor rule if and only if1− 1

|T |
∑
p∈S
|Voren(p, S, T )|

 ≥ α
Proof. The elements of Voren(p, S, T ) are precisely the misclassified objects
belonging to the Voronoi cell induced by the object p. Thus, the summation
above corresponds to the number of training examples that are misclassified by
using S as reference set for the nearest neighbor rule, while the left hand side
represents the accuracy of the subset S. The result then follows by noticing
that the accuracy is not smaller than α. 2

The algorithm α-FCNN is reported in Figure 1. It starts by selecting the
centroid of the most populated class.

Then it works in an incremental manner: during each iteration the set
S is augmented with ∆S until the stop condition, given by Theorem 5.2, is
reached.

The set ∆S is composed of one single object per iteration. Specifically, ∆S
is built by selecting rep(p∗,Voren(p∗, S, T )), that is the representative of the
Voronoi enemies of one of the elements of S. Such an element can be defined as
the object p∗ of S such that |Voren(p∗, S, T )| is maximum, that is, the object
inducing the Voronoi cell containing the maximum number of misclassified
points. Note that if at the end of a generic iteration p∗ is undefined then the
algorithm computed a 1-consistent subset.

The representative rep(p,X) of X w.r.t. p is defined as the class centroid in
X closest to p, that is rep(p,X) = nn(p, Centroids(X)) (in this case α-FCNN
selects nn(p∗,Centroids(Voren(p∗, S, T ))).

In the following the latter definition of representative is employed since this
variant exhibits the greatest area under the curve of the training set accuracy
versus the current subset size.

5.2 Selection strategies

In this section we describe the strategies we have designed in order to select
the FCNN condensed set associated with the best generalization power.

1 In the Euclidean space, the centroid of a class is the object of the class closest
to the geometric center of the class. In a metric space, it can be defined as the
object of the class minimizing the sum of distances to any other object of the
same class.
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Algorithm 1: The α-FCNN rule.

Input: A training set T , a consistency threshold α;
Output: A training set α-consistent subset S of T ;

1 Method:
2 i = 0;
3 S0 = ∅;
4 `∗ = arg max` |{p ∈ T : l(p) = `}|;
5 ∆S0 = Centroids({p ∈ T : l(p) = `∗});
6 α0 = |{p : l(p) = `∗}|/|T |;
7 while (αi < α) do
8 i = i+ 1;
9 Si = Si−1 ∪∆Si−1;

10 ∆Si = ∅;
11 ei = 0;
12 errmax = 0;
13 p∗ = undef ;
14 foreach (p ∈ S) do
15 err = |Voren(p, S, T )|;
16 if (err > errmax) then
17 p∗ = p;
18 errmax = err;

19 ei = ei + err;

20 if (p∗ 6= undef) then
21 ∆Si = {rep(p∗,Voren(p∗, S, T ))};
22 αi = 1− ei/|T |;
23 return(Si);

5.2.1 TRNOPT

According to the first technique, named TRNOPT (for Optimal Training Ac-
curacy estimate), the accuracy estimate corresponds to the training accuracy.
This means that the method selects as the optimal subset the (1−)consistent
subset S of the training set. With this aim we run the α-FCNN algorithm
with α = 1 and then use the computed subset as the classification model.

5.2.2 PACOPT

Prepruning is a standard technique for handling noise and preventing overfit-
ting in decision tree learning. Prepruning heuristics are used to reduce (not
entirely eliminate) the amount of overfitting, so that both learning and model
building will be more efficient. The idea of the second strategy is similar to
the approach of prepruning used during decision trees growth.

The Pessimistic Error Estimate approach [91] computes generalization
error of a classifier C as the sum of the associated training error and of a
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penalty term. The latter term intends to take into account model complexity.
The resulting error epess(C), which can be considered the pessimistic error
estimate of the generalization error of C, is hence computed as follows:

epess(C) =
e(C) +Ω(C)

Ntrain
,

where e(C) is the number of misclassified training examples (or absolute
training error) of the classifier C, Ntrain is the number of training examples,
and Ω(C) is the penalty term associated with C.

In the case of decision trees, Ω(C) can be computed as Nleafs(C) ·p, where
Nleafs(C) is the number of leafs of the tree C and p is a penalty factor, that is
to say a constant accounting for the complexity cost associated with a single
leaf node. Hence, p = 0.5 means that a node should always be expanded into
its two child nodes as long as it improves the classification of at least one
training record, because expanding a node, which is equivalent to adding 0.5
to the overall error, is less costly than committing one training error. For
example, if e(C) = 4, Ntrain = 24, Nleafs(C) = 7, and p = 0.5, we obtain

epess(C) =
4 + 7 · 0.5

24
= 0.3125

Suppose now that by expanding a leaf node of C we obtain the novel tree
Cnew such that e(Cnew) = 2, then

epess(Cnew) =
2 + 8 · 0.5

24
= 0.25

Since epess(Cnew) < epess(C) we can conclude that Cnew is preferable to
C.

The PACOPT (for Optimal Pessimistic Accuracy estimate) strategy incor-
porates model complexity into the evaluation of the training set α-consistent
subset by exploiting pessimistic error estimate. Specifically, let αi the training
accuracy of the training set consistent subset Si determined at the beginning
of the i-th iteration of the FCNN algorithm. According to the PACOPT cri-
terion, the selected subset S∗ is the one maximizing the pessimistic accuracy
estimate determined as follows:

1− pessimistic error estimate =

= 1− misclassified examples+ penalty

total examples
=

= 1− (1− αi)|T |+ p · |Si|
|T |

=

= αi − p ·
|Si|
|T |

,

where the penalty term associated with the subset Si is p · |Si|.
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Differently from decision trees, here we assume that the penalty term is
given by p · |S|, the product of the penalty factor by the number of elements
the α-consistent subset, since for the nearest neighbor decision rule all the
reference objects play the same role (loosely speaking, they can be regarded
as the leafs of a “flat” tree).

Thus,

S∗ = arg max
Si

{
αi − p ·

|Si|
|T |

}
The penalty factor p intends to model the cost of including another object

in the subset Si. This corresponds to say that the subset Sj (having training
accuracy αj) is preferable to Si (having training accuracy αi ≤ αj) provided
that:

αi − p ·
|Si|
|T |

< αj − p ·
|Sj |
|T |
⇐⇒

αi − p ·
|Si|
|T |

< αj − p ·
|Si|+ |Sj − Si|

|T |
⇐⇒

αi < αj − p ·
|Sj − Si|
|T |

⇐⇒

(αj − αi) · |T | > p · |Sj − Si|

Intuitively, this means that the methods prefers a larger subset provided
that the number of further correctly classified examples overcomes by a factor
p the number of additional examples to be included in the model.

Applying the PACOPT criterion does not require additional asymptotic
operations and, hence, its cost is the same of the TRNOPT criterion.

5.2.3 MAXOPT

The last strategy, named MAXOPT (for Optimal Cross Validation Accuracy
estimate) exploits cross validation in order to select the model showing the
best generalization performance.

With this aim, the parameter α is varied within a suitable interval [αmin, 1]
by considering values α1 = αmin, α2, . . . , αm = 1 (m > 1). For each αj (1 ≤
j ≤ m) a stratified ten-fold cross validation is performed in order to determine
the average accuracy associated with the training set αj-consistent subset. The
best consistency fraction α∗ is the one associated with the maximum average
cross validation accuracy. The optimal model S∗ for MAXOPT is eventually
obtained as the α∗-consistent subset extracted from the whole training set.
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5.2.4 The aPACOPT selection strategy

The PACOPT strategy aims at improving model size, while preserving or even
improving accuracy, over the TRNOPT strategy, but presents the same tem-
poral cost due the need of computing the whole pessimistic accuracy estimate
curve.

In this section, a variant of the PACOPT strategy, called aPACOPT for
approximate-PACOPT, is described. The technique attempts to reduce time
complexity by early terminating the learning phase on the basis of the current
trend of the pessimistic accuracy estimate curve.

The termination condition of aPACOPT assumes that the above curve
is monotone non-decreasing before the local maximum and monotone non-
increasing after the local maximum. However, the design of the termination
condition is made difficult by the fact that the learning curve is not regular
(i.e. monotone), but instead presents a lot of local fluctuations. In order to
make the termination condition robust to such a fluctuations, the termination
will be based on the behavior of the curve within a window of size w.

Specifically, let t = 1, 2, . . . , |S| denote the current iteration of the algo-
rithm, also referred to as time t in the following. The window W (t) at time
t ≥ w is the pair 〈X(t), Y (t)〉, where X(t) is a vector of w elements (or times-
tamps):

X(t) = (X
(t)
1 = t− w + 1, X

(t)
2 = t− w + 2, . . . , X(t)

w = t),

representing the time interval [t− w + 1, t] and Y (t) = (Y1, ..., Yw) is a vector
of w elements representing the pessimistic accuracy estimate:

Y
(t)
i = αt−w+i − p ·

|St−w+i|
|T |

,

within time interval [t−w+1, t]. The vector Ŷ (t) consists of the t−w accuracy
estimates

Ŷ (t) =

(
α1 − p ·

|S1|
|T |

, α2 − p ·
|S2|
|T |

, . . . , αt−w − p ·
|St−w|
|T |

)
pertaining to the windows that precede the current one.

The current window can be exploited to approximate the slope tangent
line to the pessimistic accuracy curve at time t by computing the intercept βt
of the regression line for the data points {(X(t)

i , Y t
i ), i = 1, . . . , w}, as follows

βt =

w∑
i=1

[
(X

(t)
i −X

(t)
)(Y

(t)
i − Y (t)

)
]

w∑
i=1

(X
(t)
i −X

(t)
)

,
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where X
(t)

(Y
(t)

, resp.) denotes the mean of the elements in X(t) (Y (t), resp.).
Let us define two boolean variables, that are

ϕt =

{
true , if βt < ε
false , otherwise

representing the fact that the slope of curve tangent is non-increasing (where
ε is a small positive value, e.g. ε = 10−3, intended to capture errors associated
with the estimation procedure), and

ψt =

{
true , if max(Y (t)) < max(Ŷ (t))
false , otherwise

representing the fact that the global maximum has not been observed in the
current window.

Now we are in the position of providing the termination condition of the
aPACOPT strategy. The method stops if the following condition holds:

STOPt ≡

(
w∧
i=1

ϕt−w+i

)
∧

(
w∧
i=1

ψt−w+i

)
,

which can be interpreted as the fact that the slope of curve has been non-
increasing and no new local maximum has been observed during an entire
window.

At the time t at which aPACOPT decides to stop, the best pessimistic
accuracy estimate α̃∗ so far encountered is determined and the associate subset
is returned as the solution. It can be concluded that the subset returned by
aPACOPT cannot be greater than those computed by PACOPT, since two
cases are possible: (1) α̃∗ < α∗, and this means that the algorithm stopped
before reaching the maximum α∗, which is associated with a larger subset; or
(2) α̃∗ = α∗, and this means that the algorithm stopped after reaching the
maximum and, hence, selected the subset associated with α∗.

5.3 Experimental Results

In this section we present experimental results involving the introduced tech-
niques.

A number of training sets are from the UCI Machine Learning Reposi-
tory2, whose characteristics are summarized in Table 5.1 where, for each data
set, the name, abbreviation, size, features, and number of classes are given.
Moreover, we employed also the MNIST dataset3 which consists of handwrit-
ten digits (60,000 objects, 784 features, and 10 classes) and the Forest Cover
Type dataset (Covtype, for short, 600,000 objects, 54 features, and 7 classes).

2 http://archive.ics.uci.edu/ml/
3 http://yann.lecun.com/exdb/mnist/
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Data set name Abbrev. Size Features Classes

Bupa BUP 345 6 2
Coil 2000 COI 4,992 85 2
Colon Tumor COL 62 2,000 2
Echocardiogram ECH 61 11 2
Ionosphere ION 351 34 2
Iris IRI 150 4 3
Image Segmentation IMA 2,310 19 7
Pen Digits PEN 7,494 16 10
Pima Indians Diabetes PIM 768 8 2
Satellite Image SAT 6,435 36 6
Spam Database SPA 4,207 57 2
SPECT Heart Data SPE 349 44 2
Vehicle VEH 846 18 4
Wisconsin Breast Cancer WBC 683 9 2
Wine WIN 178 13 3
Wisc. Progn. Breast Cancer WPB 198 33 2

Table 5.1: Data Sets Used in the Experiments.

The MNIST dataset, which contains binary images of handwritten digits,
is commonly used for training various image processing systems. All digit
images have been size-normalized and centered in a fixed size image of 28×28
pixels. In the original dataset each pixel of the image is represented by a value
between 0 and 255, where 0 is black, 255 is white and anything in between is
a different shade of grey.

The Forest Cover Type dataset contains tree observations from four wilder-
ness areas of the Roosevelt National Forest in Colorado. All observations are
cartographic variables (no remote sensing) from 30× 30 meter sections.

All the experiments were executed on a personal computer based on an
Intel Core i7-6700 3.40GHz processor, equipped with 16GB of RAM, and
under Linux Operating System.

5.3.1 Accuracy of the strategies

Here, we study the accuracy and model size of the PACOPT, TRNOPT, and
MAXOPT strategies by exploiting the dataset described in Table 5.1. As for
the aPACOPT strategy, since it is tailored on large datasets, we defer its
analysis to the following section devoted to the scalability analysis and to the
comparison with competitors methods.

In order to assess performances of the strategies and to measure gen-
eralization, for PACOPT and TRNOPT ten fold cross validation has been
accomplished and the average values over the ten folds are reported, while
MAXOPT has been executed on the whole training set by considering the
same folds. Thus, in these experiments accuracy associated with MAXOPT
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Fig. 5.1: TRNOPT, PACOPT, and MAXOPT accuracy curves.

represents the best generalization achievable by an α-consistent subset for the
nearest neighbor rule.

Accuracy curves. First of all, in order to make clear the behavior of the
subset selection strategies, we show in Figure 5.1 the accuracy estimated by
the three methods on the subsets Si associated with the various accuracy
levels αi.

As far as TRNOPT is concerned, the estimated accuracy is equal to the
training one and, hence, the associated curve is always increasing and reaches
its optimum at the αmax = 1 accuracy level, which corresponds to the largest
subset (the 1-consistent one).

As far as PACOPT is concerned, since its estimated accuracy depends on
the trade-off between the training accuracy and the penalty term taking into
account subset size, the associated curve is firstly increasing and then can
be decreasing if the peak is reached before 100% training accuracy. For this
strategy, the optimal subset is determined in correspondence of the estimated
accuracy peak. For example, on Spam the PACOPT estimate increases up to
|S| = 6% and then decreases, while TRNOPT has its maximum at |S| ≈ 21%.
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As far as MAXOPT is concerned, in general its curve depends on cross-
validation accuracy and no specific trend is guaranteed. Since in the experi-
ments presented we are using cross validation accuracy as a measure of gen-
eralization, in this case the optimal subset is that in correspondence of the
maximum of the MAXOPT accuracy estimate curve.



34 5 Contributions

P
A
C
O
P
T

M
A
X
O
P
T

T
R
N
O
P
T

A
cc

∆
A
cc

S
iz
e
∆
S
iz
e%

A
cc

∆
A
cc

S
iz
e

∆
S
iz
e%

A
cc

S
iz
e

B
U
P

6
3
.5

3
+
4.
71

6.
44
−
88
.2
3

6
3
.5

3
+
4.
71

6.
44

−
88
.2
3

58
.8
2

54
.7
5

C
O
I

9
4
.2

5
+
10
.1
6

0.
02
−
99
.9
0

9
4
.2

5
+
10
.1
6

0.
02

−
99
.9
0

84
.0
9

20
.4
7

C
O
L

8
0
.0

0
0.
00

3.
58
−
90
.0
1

8
1
.6

7
+
1.
67

17
.9
2
−
50
.0
0

80
.0
0

35
.8
4

E
C
H

9
3
.3

3
0.
00

5.
46
−
50
.0
4

93
.3
3

0.
00

10
.9
3

0.
00

93
.3
3

10
.9
3

IO
N

85
.1
4
−
0.
29

5.
70
−
69
.9
8

8
7
.7

1
+
2.
28

12
.0
3
−
36
.6
5

85
.4
3

18
.9
9

IR
I

92
.0
0
−
2.
00

2.
96
−
71
.4
6

94
.0
0

0.
00

10
.3
7

0.
00

94
.0
0

10
.3
7

IM
A

82
.0
3
−
6.
93

6.
20
−
46
.9
6

88
.9
6

0.
00

11
.6
9

0.
00

88
.9
6

11
.6
9

P
E
N

9
8
.4

2
0.
00

3.
71

0.
00

98
.4
2

0.
00

3.
71

0.
00

98
.4
2

3.
71

P
IM

6
8
.0

3
+
3.
69

4.
77
−
88
.4
5

6
8
.0

3
+
3.
69

4.
77

−
88
.4
5

64
.3
4

41
.3
1

S
A
T

83
.9
5
−
2.
36

3.
83
−
77
.4
8

86
.3
1

0.
00

17
.0
1

0.
00

86
.3
1

17
.0
1

S
P
A

7
8
.7

9
+
0.
46

6.
00
−
71
.8
8

7
8
.7

9
+
0.
46

6.
00

−
71
.8
8

78
.3
3

21
.3
4

S
P
E

70
.2
9
−
16
.1
8

10
.1
9
−
65
.9
5

86
.4
7

0.
00

29
.9
3

0.
00

86
.4
7

29
.9
3

V
E
H

59
.4
0
−
3.
76

12
.7
4
−
74
.8
0

63
.1
0

0.
00

50
.5
6

0.
00

63
.1
0

50
.5
6

W
B
C

9
5
.7

4
+
1.
92

0.
33
−
96
.1
7

9
5
.7

4
+
1.
92

0.
33

−
96
.1
7

93
.8
2

8.
62

W
IN

6
8
.2

4
0.
00

17
.4
8
−
55
.5
6

68
.2
4

0.
00

39
.3
3

0.
00

68
.2
4

39
.3
3

W
P
B

6
6
.3

2
+
2.
11

3.
37
−
92
.6
7

7
4
.3

2
+
10
.1
1

0.
56

−
98
.7
8

64
.2
1

46
.0
2

µ
80
.7
0
−
0
.6
1

5
.6
6
−
70
.7
6

83
.3
7

+
2
.0
6

13
.5
9
−
37
.0
6

81
.3
1

25
.3
1

σ
±
12
.6
6
±
5
.4
7
±
4
.3
4
±
24
.1
6
±
11
.9
2
±
3
.3
6
±
14
.1
0
±
43
.4
8
±
12
.8
9
±
16
.3
5

T
a
b

le
5
.2

:
A

cc
u

ra
cy

a
n

d
M

o
d

el
S

iz
e.



5.3 Experimental Results 35

Accuracy and model size. Table 5.2 summarizes the accuracy and model
size achieved by the strategies on the whole set of datasets.

The Size columns report the relative size of the subset computed by each
method (values are expressed in percentage of the size of the whole dataset;
thus, e.g., Size = 6.44 for PACOPT on dataset BUP means that the subset is
composed of the 6.44% of the dataset objects).

The ∆Size columns report the variation of the size of the subset computed
by PACOPT and MAXOPT methods with respect to the size computed by
TRNOPT method. Specifically, values are obtained as follows:

∆Size%METHOD = 100

(
1− SizeMETHOD

SizeTRNOPT

)
The Acc columns report the Optimal Pessimistic Accuracy Estimate (PA-

COPT), Optimal Cross Validation Accuracy (MAXOPT), Optimal Training
accuracy (TRNOPT).

As for PACOPT is concerned, accuracies are highlighted in bold when
their value is greater or equal than that obtained by TRNOPT.

As for MAXOPT is concerned, due to the experimental design this method
scores always the maximum accuracy. Hence, accuracy values are highlighted
in bold when they are strictly greater than that obtained by TRNOPT.

The ∆Acc columns report the variation of accuracy of PACOPT and
MAXOPT with respect to TRNOPT:

∆Acc = AccMETHOD −AccTRNOPT

Assessing performances. In order to assess performances of the strategies,
we performed the Wilcoxon signed rank test for zero mean. It is a test of
the hypothesis that the difference xi − yi between the pairs of samples in the
vectors x and y comes from a distribution whose mean is zero.

Recall that the p-value is the probability of obtaining a test statistic value
at least as extreme as the one that was actually observed, assuming that
the null hypothesis (in our case, that the observed distribution complies with
the theoretical one) holds. Before the test is performed, a threshold value is
chosen, called the significance level λ of the test, traditionally 5% (λ = 0.05)
or 1% (λ = 0.01).

In the specific case, the null hypothesis “mean is zero” can be rejected at
the λ level provided that the p-value is smaller than λ.

Table 5.3 reports the p-values of the Wilcoxon test for zero mean of the
difference of accuracy by considering accuracy values reported in Table 5.2.

As far as MAXOPT is concerned, p-values are reported in order to confirm
that the size of the sample and the number of wins are large enough to reach
a robust significance level. And, indeed, it can be seen that for MAXOPT the
null hypothesis can be always rejected at significance level 1%.
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PACOPT TRNOPT

MAXOPT 0.004 0.008

PACOPT — 0.787

Table 5.3: p-values of the Wilcoxon test for zero mean of the difference of
accuracy of the three strategies.

PACOPT MAXOPT

BUP 0.012 3.00

COI 0.480 76.64

COL 0.008 5.32

ECH 0.004 1.32

ION 0.016 2.24

IRI 0.004 1.28

IMA 0.036 11.52

PEN 0.088 31.48

PIM 0.020 4.76

SAT 0.332 88.88

SPA 0.444 98.88

SPE 0.016 3.8

VEH 0.024 9.08

WBC 0.012 1.64

WIN 0.008 1.76

WPB 0.008 2.40

Table 5.4: Execution Times (seconds).

As a valuable result, the p-value of the test for the PACOPT and TRNOPT
strategies is far larger than an acceptable rejecting level. Hence, from the point
of view of the guaranteed accuracy the two methods are comparable.

Putting all things together, it can be concluded that PACOPT guarantees
to preserve the accuracy of the training set consistent subset, but with a far
smaller subset. On the average, the reduction factor over the 1-consistent
subset is of the 70%. As for MAXOPT, the experiments highlights that by
selecting a reduced condensed subset, sensible accuracy improvements can be
obtained, on the average the 2%, with an appreciable reduction of the subset,
on the average the reduction factor associated with the optimal subset is of
the 37%, which corresponds about to half of the reduction factor of PACOPT
for the parameter setting here considered.

Execution time. For completeness, Table 5.4 presents the average time
elapsed (in seconds) to complete a run of the method on the datasets above
considered. Results highlight that MAXOPT is more demanding in terms of
CPU usage than PACOPT, due to the need to process all the different folds.
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Fig. 5.2: Pessimistic Accuracy Estimate curves.

5.3.2 Analysis of the aPACOPT strategy

The rationale of the aPACOPT strategy is to compute a model comparable to
that determined by PACOPT, but with sensibly smaller time requirements.
This section is devoted to experimentally substantiating the above claim in
the context of large datasets.

Figure 5.2 shows the trend of the Pessimistic Accuracy Estimate of the
aPACOPT strategy for the MNIST and Covtype datasets.

It can be noticed that the trend of the curves agrees with the assumption
the termination condition of the aPACOPT strategy is designed on, since it
resembles a concave function.

As for the subset selected by aPACOPT, it can be seen that in both case
it is of remarkable quality if compared to that selected by PACOPT. Indeed,
on MNIST the model size of PACOPT and aPACOPT coincide (model size
2,485, 4.1% of the dataset size, pessimistic accuracy estimate 91.97%), while
on Covtype the model of aPACOPT (model size 24,327 corresponding to the
4.2% of the dataset size and scoring a pessimistic accuracy estimate of 91.87%)
is slightly smaller than that of PACOPT (model size 28,651 corresponding to
the 4.9% of the dataset size and scoring a pessimistic accuracy estimate of
92.05%).

Differences are justified by the fact that aPACOPT could get stuck in a
local maximum since, although from a macroscopic point of view the learning
curve appears to be monotone non-decreasing before the global maximum and
monotone non-increasing after, from a microscopic point of view it presents
local fluctuations.

Notice that the size of the model selected by TRNOPT is 56, 802 (9.8% of
the dataset size) for Covtype and 5,503 (9.2% of the dataset size) for MNIST.
Hence, in both cases the size of the model selected by aPACOPT is more than
halved with respect to the basic strategy.

Figure 5.3 accounts for the growth of the model size as a function of the
dataset size. Specifically, the plots report the size of the model as a percentage
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datasets.
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Fig. 5.4: TRNOPT, PACOPT, and aPACOPT execution time on large
datasets.

of the dataset size which it is induced on. It can be seen that all the strategies
are particularly suitable for large data, since in both cases the percentage of
the selected objects is decreasing with the number of objects composing the
training set.

Finally, Figure 5.4 shows the execution time of the strategies versus the size
of the dataset. We recall that the execution time of TRNOPT and PACOPT
is the same. The plots highlight that, despite the fact that aPACOPT is able
to determine a model of quality comparable to that of PACOPT, by using
the aPACOPT strategy great time savings are obtained with respect to the
non-approximate PACOPT strategy.
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Fig. 5.5: Comparison with related methods.

5.3.3 Comparison with related methods

Garcia et al. [38] propose an extensive taxonomy based on the main charac-
teristics presented by prototype selection methods for the nearest neighbor
classification rule. The taxonomy exploits a number of criteria that can be
used to evaluate the relative strengths and weaknesses of each algorithm.
These include storage reduction, noise tolerance, generalization accuracy, and
time requirements.

According to the analysis there accomplished, DROP3, CCIS, SSMA, and
RMHC are remarkable methods belonging to the hybrid family. The best
methods, considering the tradeoff reduction/accuracy rate, are RMHC, and
SSMA, over medium data sets. However, these methods achieve a significant
improvement in the accuracy rate at the expense of a high computational
cost. The execution time of these techniques could be prohibitive when the
data scales up. The methods that harm the accuracy at the expense of a great
reduction of time complexity are DROP3 and CCIS.

Thus, we selected these remarkable prototype selection techniques in order
to accomplish a scalability comparison taking into account the novel PAC-
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based FCNN pruning strategy. As for the competitor methods we used the
implementation within the KEEL software platform. KEEL4 (Knowledge Ex-
traction based on Evolutionary Learning) tool is an open source (GPLv3)
software based on data flow to design experiments with different datasets and
computational intelligence algorithms.

Figure 5.5 illustrates the scalability analysis of CCIS, DROP3, RMHC,
SSMA, FCNN (TRNOPT strategy) and FCNN-PAC (aPACOPT strategy)
on the MNIST and Covtype datasets.

Datasets up to 10,000 objects for Covtype and up to 5,000 objects for
MNIST have been considered, due to the heavy time requirements of com-
petitor methods. As for the execution time of FCNN and FCNN-PAC on
larger dataset, the reader is referred to Figure 5.4.

Consider the model size. Although FCNN, together with CCIS, presents
the smaller reduction ratio, the FCNN-PAC strategy is able to obtain a model
of size comparable to that of competitors that are notable for their reduction
ratio, as RMHC and DROP3. As for SSMA, it appears to be able to reach
the best reduction ratio.

As for as the execution time is concerned, however, SSMA exhibits very
large time requirements. On Covtype it requires, together with RMHS, more
than 5,000 seconds on the dataset of size 10,000. Compare this time with the
0.55 seconds required by FCNN-PAC.

On MNIST, SSMA was not able to run on datasets of size larger than 2,000
due to memory requirements (the algorithm reported an “out of memory”
error of these instances). On the same dataset, FCNN-PAC required 6.55
seconds on the larger instance, while RMHC employed about 20,000 seconds
to process the same input.

4 http://keel.es/



Part II

Anomaly Detection Techniques
for Large Networks





6

Anomaly Detection in Networks with
Temporal Information

The large use of social networks supplies a huge amount of data which pro-
vides much information about individuals and individual behaviors reflecting
human relationship in the real world. Such behaviors can be model as rela-
tional structures among the actors of the social network.

Among the interesting hidden knowledge that can be mined by analyzing
node behaviors, a relevant role is played by the anomaly discovery, where
the aim is to find those individuals that can be considered as outliers, since
they assume exceptional behaviors. The problem of finding malicious nodes in
networks is of interest in many areas such as fake account detection, spammer
node detection, ddos attacks in computer networks, and many others. Much
work has been made to detect anomalous nodes mostly based on detecting
anomalous structures around the individual [5].

However, in many scenarios, the exceptional behavior of an individual has
not to be searched only in the structural composition of its neighborhood but
the exceptional behavior is characterized by the temporal sequence of con-
nection establishments. Thus, taking into account the time dimension sheds
interesting lights on individuals’ behaviors. As such, the approach pursued in
this thesis is orthogonal to the works aimed at mining structural properties
of large static networks.

Consider, for example, the individuals registered to the Facebook social
network and arcs between them defined as follows: if a marks b as a friend
there is an arc from a to b and, vice versa, there is an arc from b to a if b
marks a as a friend. Thus, the arc from a to b represents that either a sends
a Facebook request to b or a accepts a Facebook request coming from b.

Consider, now, an individual a with five hundreds friends then with five
hundreds other individuals there is a connection from a and a connection
towards a. Clearly, it is not anomalous since such a number of friends is not
so exceptional. But, if a is always the first to send Facebook friend requests
and all the five hundreds just accept this request (and, then, for any b friends
of a the arc from a to b always precedes the arc from b to a), a becomes a
clear outlier.
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The rest of this second part is organized as follows. Chapter 7 reports an
overview of the relevant background, providing specific definition of anoma-
lies in the context of static and dynamic graphs, and describing fundamental
anomaly detection techniques. Chapter 8 presents a novel technique for node
anomaly detection, demonstrating its effectiveness on large networks.
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Scenario and Related Work

Social Networking Sites are experiencing a rapid growth. Many of these sites
boast with millions of members using their networks on regular basis to com-
municate, share, create, and collaborate with others. Popular examples of
these Social Networking Sites are Facebook, LinkedIn and Twitter.

Anomaly detection refers to the problem of finding patterns in data that
do not conform to expected behavior that the other dataset objects possess.

A literature review is provided to set out the main research elements. A
picture is rendered of the research topic and its theoretical fundaments.

Next, we give an overview of social networks, describing their main char-
acteristics. Then, we describe anomaly detection in networks, with a view to
understand their structure and gain insights about what roles they might be
fulfilling. Finally, we provide background on anomaly detection in real world
applications.

7.1 Social Network Analysis

Social network analysis (SNA) [62] is a set of methods and applications for
analyzing network data. One of the main purposes of SNA is to detect and
interpret patterns of relationships between actors and to identify the impact
of the social structure on the functioning of actors and networks.

Social Network Analysis is particularly well suited for understanding and
determining the global structure of a social network, the distribution of actors
and activities, and the strategic positions and actors.

SNA [82] tries to understand and exploit the key features of social net-
works in order to manage their life cycle and predict their evolution. Much
research has been conducted on SNA using graph theory which provides a
formal language for describing networks and their features. SNA, sometimes
also referred to as structural analysis, is not a formal theory, but rather a
broad strategy for investigating social structures.
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Most broadly, social network analysis [99] (1) conceptualizes social struc-
ture as a network with ties connecting members and channelling resources,
(2) focuses on the characteristics of ties rather than on the characteristics of
the individual members, and (3) views communities as personal communities,
that is, as networks of individual relations that people foster, maintain, and
use in the course of their daily lives.

The defining feature of social network analysis is its focus on the structure
of relationships, ranging from casual acquaintance to close bonds. It maps
and measures formal and informal relationships to understand what facili-
tates or impedes the knowledge flows that bind interacting units (e.g., data
and information, voice, or video communications). Social network analysis
is a method with increasing application in the social sciences and has been
applied in areas as diverse as psychology, health, business organization, and
electronic communications. Recently, interest has grown in analysis of leader-
ship networks to sustain and strengthen their relationships within and across
groups, organizations, and related systems [84].

In [98] introduced social network analysis as a distinct research perspec-
tive within the social and behavioral sciences; distinct because social network
analysis is based on an assumption of the importance of relationships among
interacting units.

The growth of social network analysis has led many to see it as a new
theoretical paradigm rather than simply as a collection of techniques. Social
network analysis has also recently been linked with one particular theory: the
theory of social capital [83].

The quality of relationships among and between people is an important
factor to consider when working to promote strong and resilient neighbor-
hoods or communities. The quality of these relationships is known as social
capital. Social network analysis is a potential tool for participatory monitor-
ing and evaluation as it is able to show the relationships that develop between
individuals, groups and organizations over time [42].

The concepts of social network analysis developed out of a propitious meet-
ing of social theory and application, with formal mathematical, statistical, and
computing methodology.

Graphs have been widely used in social network analysis as a means of for-
mally representing social relations and quantifying important social structural
properties [98].

7.2 Tasks in Social Network Analysis

SNA consists of tasks that measure structural properties of networks. Social
network analysis involves a variety of tasks. Next we mention two that are
among the most relevant to the data mining field:
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7.2.1 Centrality

One of the first approaches of SNA is to measure power, influence, or other
individual characteristics of actors through the notion of centrality [95]. The
main question of centrality is to define what makes an actor more central than
another one.

The centrality is an important structural attribute of social networks. The
simplest and perhaps the most intuitively obvious conception is that point
centrality is some function of the degree of a point. The degree of a point, pi,
is simply the count of the number of other points, pi(i 6= j), that are adjacent
to it and with which it is, therefore, in direct contact [34].

The three main types of centrality are: degree centrality, betweenness cen-
trality and closeness centrality [71, 63].

• Degree Centrality: is defined as the number of direct ties that involve a
given node. For undirected ties this is simply a count of the number of ties
for every actor. For directed networks, nodes can have both in-degree and
out-degree centrality scores. The centrality measures how central or well
connected an node is in a network. This theoretically signals importance
or power and increased access to information or just general activity level
and high degree centrality is generally considered to be an asset to an
node.

• Closeness Centrality: measures how many ties are required for a particular
node to access every other node in the network. The closeness centrality
considers as most central the nodes that have the smallest average length
of the paths linking an node to others. The measure will reach its max-
imum for a given network size when an node is directly connected to all
others in the network and its minimum when an node is not connected to
any others. This captures the intuition that short path lengths between
nodes signal that they are closer to each other.

• Betweenness Centrality: may be defined as the number of shortest paths
between alters that go through a given node. The betweenness centrality
focuses on the ability of an node who frequently operate as the quickest
bridge connection by means of shortest paths between any two other nodes
in the network, have the ability to isolate, influence, manipulate or prevent
contact between other parties. This intuitively measures the degree to
which information or relationships have to flow through a particular node.

7.2.2 Community Detection.

Actors in a social network form groups. This task identify these communities
through the study of network structures and topology. Community detection
in large networks is potentially very useful [23]. Nodes belonging to a tight-
knit community are more than likely to have other properties in common.
Classic methods of finding communities in network borrow the idea of graph
partitioning and hierarchical clustering.
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Graph partitioning approaches needs to know information about the global
structure of network and determine the number and size of subgroup that they
want to get. The problem of graph partitioning consists in dividing the vertices
in groups of predefined size, such that the number of edges lying between the
groups is minimal. Hierarchical partitioning is a cluster analysis method in
which the network of interest is divided into several subgroups. Hierarchical
clustering is very common in social network analysis, engineering, marketing,
and so on. Hierarchical clustering has the advantage that it does not require
a preliminary knowledge on the number and size of the clusters [33].

The community detection problem aims at finding the optimal community
assignment, from which it has closest properties (such as vertex similarity and
edge betweeness) to real world-network and the best methods that can handle
scalability issue. The optimal assignment refers to closely connected groups of
nodes and a moderate number of different outliers. The community detection
based research can be roughly categorized into four approaches. 1. Node-
Centric 2. Group-Centric 3. Network-Centric 4. Hierarchical-Centric [92, 6].

• Node-Centric criteria requires each node in a group to satisfy certain prop-
erties such as complete mutuality, and reachability. Complete mutuality is
a good measure of tie strength inside the subgroup, but it is a NP-Hard
problem. An ideal cohesive subgroup is a clique. It is a maximum complete
subgraph in which all nodes are adjacent to each other. Steps in complete
mutuality include finding clique of size k, and then prune those nodes
with k-1 degree. Reachability among nodes happens if there exist paths
between those nodes. The most useful metrics for reachability are k-clique
and k-club. k-clique is a maximal subgraph in which the largest geodesic
distance between any two nodes is no greater than k. k-club restricts the
geodesic distance within the group to be no greater than k.

• Group-Centric consider the connections inside a group as whole. The
group is required to satisfy a density-based group requirement, while some
nodes inside the group may have low connectivity. Group-centric approach
does not guarantee reachability for each node in the group. It allows the
degree of a node to vary, hence it is more suitable for large-scale networks.
The objective of density-based group is to find the maximal quasi-clique
easily. The steps for discovering communities applied as follows: 1) Search
randomly a maximal quasi-clique in a sub-network. 2) Prune nodes and
edges. This process is repeated until network reduced to a reasonable size
so that a maximal quasi-clique can be found directly.

• Network-Centric consider the connections of the whole network. It aims
is to create numbers of disjoint sets from the network. Typically, network-
centric aim to optimize a criterion defined over a network partition rather
than over one group. There are 5 known methods for this approach,
namely: node similarity, latent space model, block model approximation,
spectral clustering and modularity maximization.
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Node similarity is defined by how similar their interactions are. Two nodes
are structurally equivalent if they connect to the same set of nodes. This
measure is too restrictive and rarely occurs in large-scale network. A key
related concept is structural equivalence. Latent space models maps nodes
in the network into a low-dimensional euclidean space such that similarity
and distance are kept in the new space. Once the transformation is done,
we begin clustering network in the low-dimensional space using meth-
ods like k-means. Block models approximate a given network by a block
structure. The key objective of this method is to minimize the difference
between an interaction matrix and a block structure. Spectral clustering
is derived from the problem in graph partition. Cut is the total number of
edges between two disjoint sets of nodes. Graph partition aims to find out
a partition such that the cut is minimized. Two common variant used are
ratio cut and normalized cut. Ratio cut represents the number of nodes in
a community. Normalized cut represents the number of interactions inside
group. Modularity maximization is proposed specifically to measure the
strength of a community partition for real-world networks by taking into
account the degree distribution of nodes.

• Hierarchical-Centric it aims is to build a hierarchical structure of com-
munities based on network topology. There are mainly two types of hi-
erarchical clustering: divisive, and agglomerative. The steps in divisive
hierarchical clustering are 1) Partition the nodes into several smaller sets.
2) Each set is further partitioned into smaller sets. Agglomerative hier-
archical clustering is the opposite of divisive methods. They initiate each
node as community, and then choose two communities satisfying certain
criteria such as modularity or node similarity. This process is iterated
until there are no more nodes to merge. Agglomerative can be very sensi-
tive to the node processing order and merging criteria adopted. Divisive
clustering are more stable but computationally expensive. One particular
metric to use is edge betweenness, which defined as the number of shortest
paths between pairs of nodes that pass along one edge. At each iteration,
it recursively removes the edges that have low edge betweenness or the
weakest tie.

7.3 Anomaly Detection

Anomaly detection is a broad field, that has been studied within diverse re-
search areas such statistic, pattern recognition, machine learning and data
mining and having a lot of applications such as security, finance, health care,
law enforcement, fraud, etc. Anomaly detection, also called outlier detection,
refers to detecting patterns which do not comply with normal behaviors. In
the past decade there has been a growing interest in anomaly detection in data
represented as networks, or graphs. Chandola, et al. [18] categorises it in re-
search areas and application domains. Numerous techniques have been devel-
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oped for spotting anomalies in unstructured collections of multi-dimensional
data points. As far as network anomaly detection is concerned, originally, tech-
niques focused on anomaly detection in static graphs, which do not change
and are capable of representing only a single snapshot of data. As real world
networks are constantly changing, there has been a shift in focus to dynamic
graphs, which evolve over time [77].

7.3.1 The Anomaly Detection Problem

Anomaly detection is an important problem with multiple applications, and
thus has been developed for decades in various research domains. Noise de-
tection is a topic related to anomaly detection, which consist in processing
the data in order to remove unwanted noise so that the patterns in the data
could be better analyzed. There are several factors that makes the anomaly
detection problem increasingly very challenging [18]:

• Defining a normal region with all possible normal behavior is very difficult,
because the boundary between normal and anomalous behavior is often
imprecise. Thus an anomalous observation which lies close to the boundary
can actually be normal, and vice-versa.

• When anomalies are the result of malicious actions, the malicious adver-
saries often adapt themselves to make the anomalous observations appear
like normal, thereby making the task of discriminating normal behavior
more difficult.

• Normal behavior keeps evolving in many domains and a current notion of
normal behavior might not be sufficiently representative in the future.

• The exact notion of an anomaly is different for different application do-
mains. For example, in the medical domain a small deviation from normal
in body temperature might be an anomaly, while similar deviation in
stock price in the stock market domain might be considered as normal.
Thus anomaly detection techniques developed for one domain could not
be applicable for another domain.

• Noisy data often behaves like the actual anomalies and hence it is difficult
to distinguish and remove.

7.3.2 Type of Anomaly

Anomalies can be classified into the following three categories:

1. Point Anomaly: refers to detecting an anomalous data instance with
regard to the remainder of the data. This is the simplest type of anomaly
and is the focus of the majority of research on anomaly detection.

2. Contextual Anomaly: refers to a data instance which is considered
anomalous in a specific context, but not in others.

3. Collective Anomaly: refers to detecting anomalies in the form of a
collection of data instances that behave abnormally with regard to the
whole data set.
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7.3.3 Anomaly Detection Techniques

Anomaly detection techniques can be divided according to the type of training
data, in one of the following three categories:

• Supervised anomaly detection: These techniques operate on two
phases. First the training phase and then the testing phase. The training
set contains labels for both normal and abnormal samples to construct the
predictive model. According to this set a model is learned in the train-
ing phase that is latter used to label the unclassified sample. There are
two major issues that arise in supervised anomaly detection. First, the
anomalous instances are far fewer compared to the normal instances in
the training data. Second, obtaining accurate and representative labels,
especially for the anomaly class is usually challenging.

• Semi-Supervised anomaly detection: Similar to the previous tech-
nique it also requires a training phase. The training set however contains
only the normal class. The classic method used by such techniques is to
build a model for the normal behavior, and then to use the model to
identify anomalies in the test data.

• Unsupervised anomaly detection: These techniques do not require
training set, and thus are most widely applicable. The basic assumption
is that normal instances are far more frequent than anomalies in the test
data. If this assumption is not true then such techniques suffer from high
false alarm rate.
Many semi-supervised techniques can be adapted to operate in an unsu-
pervised mode by using a sample of the unlabeled data set as training data.
Such adaptation assumes that the test data contains very few anomalies
and the model learnt during training is robust to these few anomalies.

7.3.4 Output of Anomaly Detection

There are two possible outputs for anomaly detection algorithms, scores and
labels. Scoring techniques assign a degree of outlierness to each instance in the
test data, while labeling technique assign a label to each test data specifying
whether the instance is anomalous or not. Scoring based anomaly detection
techniques allow the analyst to use a domain specific threshold to select the
most relevant anomalies. Techniques that provide binary labels to the test
instances do not directly allow the analysts to make such a choice.

7.4 Anomaly Detection in Static Graphs

This section deals with finding anomalous entities (nodes, edges, sub-graphs)
in static snapshots of graphs. There are mainly two types of anomaly detection
in graph data, that are plain graphs and attributed graphs, each of which carries
a different particularity.
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The general definition for the anomaly detection problem for static graphs
can be stated as follows:

Definition 7.1. (Static-graphs anomaly detection problem)
Given the snapshot of a (plain or attributed) graph database, find the nodes

and/or edges and/or substructures that are few and different or deviate sig-
nificantly from the patterns observed in the graph [5].

7.4.1 Anomalies in static plain graphs

Plain graphs consist of only nodes and edges. They do not hold more infor-
mation than the graph structure to find patterns and spot anomalies. These
structural patterns can be grouped further into two categories: structure-based
patterns and community-based patterns.

Structure based methods

Akoglu et al. [5] categorizes these techniques as feature-based and proximity-
based. The first group uses the graph structure to extract various graph centric
features, like node degree and subgraph centrality, while the second group uses
the graph structure to quantify the closeness of nodes in the graph to identify
associations.

Community based methods

The aim of these methods is to find the densely connected groups of nodes in
the graph and spot nodes that have connections across communities.

The community-based method for anomaly detection introduced in [89]
use bipartite graphs. This method addresses two main problems: 1) neighbor-
hood formation; 2) anomaly detection. The main idea of the authors is to use
random-walks with restarts and graph partitioning of a given node.

Another method that aims to spot anomalies based on graph communities
relies on matrix factorization. Matrix factorization has been used to address
several problems ranging from dimensionality reduction to clustering [94, 41].

7.4.2 Anomalies in static attributed graphs

In case of static attributed graphs, the main goal is to exploit structures as
well as the coherence of attributes of the graph to find patterns and spot
anomalies. These methods can also be grouped into two: structure-based and
community-based methods.
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Structure based methods

Structure based approaches identify frequent substructures in the graph that
are rare structurally, i.e. connectivity-wise, as well as attribute-wise. One of
the first works on attributed graph anomaly detection is introduced by [70],
developed two techniques known as Anomalous Substructure Detection and
Anomalous Subgraph Detection. The aim of anomalous substructure detection
is to examine an entire graph, and to report unusual substructures contained
within it. The main idea for finding the unusual subgraphs is to define a
measure that penalizes those subgraphs containing few common substructures,
making them more anomalous, it can be applied to any graph in which the
nodes can be grouped in a meaningful way.

Community based methods

These approaches aim to spot nodes in a graph, what is called community-
outliers that do not exhibit the same characteristics as the others in the same
community. The communities are analyzed based on both link and attribute
similarities of the nodes they consist of.

One method for network outlier detection has been discussed in [36]. The
algorithm, called Community Outlier Detection Algorithm (CODA), unifies
both community discovery and outlier detection in a probabilistic formulation
based on hidden Markov random fields.

Perozzi et al. [72] proposed a method called focused clustering and outlier
detection in large attributed graphs namely FocusCO. The algorithm con-
sists in three main steps. 1) inferring attribute weights, 2) extracting focused
clusters, and 3) outlier detection.

7.5 Anomaly Detection in Dynamic Graphs

Almost all real networks are dynamic in nature and large in size. Real world
graphs are constantly evolving and undergoing change to their structure. De-
tecting anomalies in this type of graphs is a very challenging task. As real
world networks are constantly changing, there has been a shift in focus to
dynamic graphs which evolve over time. This task is commonly defined as
follows [5]:

Definition 7.2. (Dynamic-Graph Anomaly Detection Problem)
Given a sequence of (plain or attributed) graphs, Find (i) the timestamps

that correspond to a change or event, as well as (ii) the top-k nodes, edges, or
parts of the graphs that contribute most to the change (attribution).
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7.5.1 Types of Anomalies

The detection and analysis of irregular patterns in dynamic networks are
defined by Ranshous et al. [77] which proposed four types of anomalies.

1. Anomalous Vertices: aims to find a subset of the vertices such that
every vertex in the subset has an irregular evolution compared to the other
vertices in the graph. In static graphs, the single snapshot allows only
intra-graph comparisons to be made. Dynamic graphs allow the temporal
dynamics of the vertex to be included. A high-level definition follows.

Definition 7.3. (Anomalous vertices). Given G, the total vertex set V =
UT
t=1Vt, and a specified scoring function f : V → R, the set of anomalous

vertices V ′ ⊆ V is a vertex set such that ∀v′εV ′,
∣∣∣f(v′)− f̂

∣∣∣ > C0, where

f̂ is a summary statistic of the scores f(v), ∀vεV .

2. Anomalous Edges: aims to find a subset of the edges such that every
edge in the subset has an irregular evolution. In a static graph, a distri-
bution of the edge weights can be found, and each edge can be assigned a
score. In dynamic graphs, two new main types of irregular edge evolution
can be found: (1) abnormal edge weight evolution, and (2) appearance of
unlikely edges between two vertices, formally defined as follows.

Definition 7.4. (Anomalous Edges). Given G, the total edge set E =
UT
t=1Et, and a specified scoring function f : E → R, the set of anomalous

edges E′ ⊆ E is a edge set such that ∀e′εE′,
∣∣∣f(e′)− f̂

∣∣∣ > C0, where f̂ is

a summary statistic of the scores f(e), ∀eεE.

3. Anomalous Subgraphs: requires enumerating every possible subgraph.
These anomalies are unique to dynamic networks, include communities
that split, merge, disappear, and reappear frequently, or exhibit a number
of other behaviors.

Definition 7.5. (Anomalous Subgraphs). Given G, a subgraph set H =
UT
t=1Ht where Ht ⊆ Gt, and a specified scoring function f : H → R, the

set of anomalous subgraphs H ′ ⊆ H is a subgraph set such that ∀h′εH ′,∣∣∣f(h′)− f̂
∣∣∣ > C0, where f̂ is a summary statistic of the scores f(h), ∀hεH.

4. Event and Change Detection: Event detection has a much broader
scope compared to the previous anomalies, aiming to identify time points
that are significantly different from the rest. However provides less specific
information than vertex, edge, or subgraph detection.

Definition 7.6. (Event Detection).
Given G, and a scoring function f : Gt → R, an event is defined as a time
point t, such that |f(Gt)− f(Gt−1)| > C0, and |f(Gt)− f(Gt+1)| > C0.
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It is important to note the difference between event and change detection.
While events represent isolated incidents, change points mark a point in
time where the entire behavior of the graph changes and the difference is
maintained until the next change point. One of the most popular appli-
cations of change detection is in networks modeling human interactions,
such as communication and coauthorship networks.

Definition 7.7. (Change Detection).
Given G, and a scoring function f : Gt → R, an change is defined as a
time point t, such that |f(Gt)− f(Gt−1)| > C0, and |f(Gt)− f(Gt+1)| ≤
C0.

7.5.2 Methods

In this section, some known methods for dynamic graph anomaly detection
have been considered.

Community Based Anomaly Detection

In case of community-based methods, instead of monitoring the changes in
entire network, a community is being monitored over time and an event is re-
ported when there is a structural change. Chen et al. [20] proposed six types of
community-based anomalies: shrink, grow, merge, split, born, and vanish. The
authors developed a method based on graph representatives and community
representatives to reduce the computational cost. Another type of community-
based anomaly was proposed in [9] where the algorithm COM2, tracks comet
communities over time. COM2, a novel and fast, incremental tensor analysis
approach, which can discover both transient and periodic communities. This
algorithm utilizes a novel Minimum Description Length (MDL) based formu-
lation of the problem, that allows for parameter-free community search. The
method is (a) scalable, being linear on the input size (b) general, (c) needs
no user-defined parameters and (d) effective, returning results that agree with
intuition.

Compression Based Anomaly Detection

In this methods a compact graph representation is achieved using MDL prin-
ciple and compression techniques by exploiting patterns and regularity in the
data with minimum encoding cost. Duan et al. [28] detect change-points in
dynamic weighted directed graphs. For change-point detection, a measure of
the similarity between partitions is presented to determine whether a change-
point appears along the time axis. Sun et al. [88] proposed an algorithm called
GraphScope, a parameter-free scheme to mine streams of graphs and monitor-
ing their evolution over the time in order to detect abnormal events. Graph-
Scope operates completely automatically, based on the Minimum Description
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Length (MDL) principle. Furthermore, it adapts to the dynamic environment
by automatically finding the communities and determining good change-points
in time.

Decomposition Based Anomaly Detection

These technique detects temporal anomalies by representing set of time evolv-
ing graphs as a matrix or tensor and performing factorization or dimensional-
ity reduction. Sun et al. [90] proposed a novel method called Compact Matrix
Decomposition (CMD) to compute sparse low rank approximation of a given
matrix. The reconstruction values of each sparse graph is tracked over time
and used for event detection [51].

Distance Based Anomaly Detection

Utilizing the distance as a metric can be exploited to measure change between
two input graphs. Two objects that have a small difference in measured metric
are said to be similar. The metric measured in graphs are typically structural
features, as the number of vertices [77]. There are various metrics for detect-
ing anomalies: Maximum Common Subgraph (MCS), Error correcting graph
matching distance, Graph Edit Distance (GED), Hamming distance for the
adjacency matrices of the graphs, and so on. The methods that show better
performances, are GED and MCS, however both distances are NP-hard. Gas-
ton et al. [39] proposed a method to detect abnormal changes in time-evolving
communication graphs using diameter distance, which is a measure of differ-
ence in graph diameter (specifically the greatest of the longest shortest paths
for all vertices).

Probabilistic Model Based Anomaly Detection

These methods, first construct a model which represents normality and, them
flags deviations from this model as anomalous. The Bayesian anomaly detec-
tion method is presented in Heard et al. [49]. The authors focus on detecting
anomalies in dynamic graphs using a two-stage method: the first stage uses
simple, conjugate Bayesian models for discrete time counting processes to
track the pairwise links of all nodes in the graph for assessing normal be-
havior; the second stage applies standard network inference on the greatly
reduced subset of potentially anomalous nodes. In probabilistic methods, the
anomaly detectors do not always perform a hard mapping from features to
anomalies, but instead provides a likelihood that the structure is anomalous
[77].
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Windows Based Anomaly Detection

Anomaly detection algorithms provide some methods that are bound to a
time window in order to spot anomalies. Mongiovi et al. [66] tackled the
problem of detecting contiguous regions in graphs that are anomalous over
time. Eberle et al. [29] proposed a novel approach called Pattern Learning
and Anomaly Detection on Streams (PLADS), which is a partitioning and
windowing approach that partitions the graph as it streams in over time and
maintains a set of normative patterns and anomalies.

7.6 Outlier detection techniques

In the following section, we discuss the basic outlier detection techniques in
static and dynamic graphs.

• Oddball. The aim of this technique, is to extract egonet-based features
and patterns in order to spot anomalous nodes in weighted graphs [4].
An egonet is defined as the one-step neighborhood around a central node.
OddBall, is a fast, unsupervised method to detect abnormal nodes in
weighted graphs. This method does not require any user-defined constants.
It also assigns an outlierness score to each node.

• Structural Clustering Algorithm for Networks. The purpose of this tech-
nique is to identify clusters, hubs and outliers in networks [104]. Two ver-
tices are assigned to a cluster according to how they share neighbors. As
such, vertices that are bridging many clusters are labeled as hubs, whereas
those that are marginally connected to any community are flagged as out-
liers.

• Autopart – Parameter-Free Graph Partitioning. The authors develops
parameter-free, iterative algorithms based on the Minimum Description
Length principle for finding node groups and anomalous edges [17]. This
technique specifically uses the adjacency matrix as graph representation,
as well as for finding the best number of node groups automatically. Au-
toPart, an algorithm that automatically partitions the graph into clusters
without user intervention, is capable of identifying anomalous edges.

• GOutRANK. The graph outlier ranking method (GOutRank) aims to
detect anomalous nodes in attributed graphs. It generalizes outlier rank-
ing method OutRank which has focused on high dimensional vector data
without considering graph structures. Both techniques share the idea of
computing a subspace clustering as pre-processing to the outlier ranking.
GOutRank, detects outliers that can not be detected by traditional tech-
niques. GOutRank is the first solution to outlier ranking in subspaces of
attributed graphs [67].

• Deltacon. Koutra et al. [57] propose a principled, intuitive, and scalable
algorithm that assesses the similarity between two graphs on the same
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nodes. The similarity scores are calculated for two consecutive time steps,
and as similarity between the two graphs is used the rooted Matusita
Distance (which is related to the Euclidean Distance) between the score
matrices. This technique uses belief propagation to measure network sim-
ilarity.

• GOutlier. Aggarwal et al. [1] designed a method for outlier detection in
graph streams with the use of a structural reservoir sampling approach for
structural summarization. The method proposed is designed in order to
create robust, dynamic and efficient models for outlier detection in graph
streams.

• ECOutliers. The authors developed an iterative algorithm of detecting
nodes which, over time, behave differently from the rest of community
members. Such nodes are called Evolutionary Community Outliers [45].
ECOutlier, matching the time-evolving communities, and detecting the
evolutionary community outliers.

7.7 Graph-based anomaly detection in real world
applications

Anomaly detection in graphs is an area that has received much attention
in recent years. Several techniques have been developed for anomaly detec-
tion in real-world. It has a wide variety of applications, including fraud and
spam detection [5]. The authors highlight two main advantages of graph-based
fraud detection techniques: 1) by word of mouth where the acquaintances of
a fraudster can be considered as more likely to also commit fraud and 2) by
collaboration where closely related parties come together to commit fraud. In
both cases, the relational closeness can be exploited with graph-based detec-
tion techniques.

Anomaly detection techniques have widely been used in telecommunica-
tion networks [21], auction networks [19], accounting networks [64], security
networks [68], opinion networks (e.g. deception and fake reviews) [32, 96, 3],
financial trading networks [58], the web network (e.g. spam and malware)
[16, 59, 15], social networks [35, 76], and computer networks (e.g. cyber-attacks
and intrusion) [27].

In a real-world scenario, this approach would be applied to data such as
cargo shipments, telecommunication traffic, financial transactions or terrorist
networks. In all scenarios, the data consists of a series of nodes and links that
share common nodes and links.

• Anomalies in telecommunication networks, one of the most prevalent is
known as the subscription fraud. In this type of fraud, the fraudster often
acquires an account using false identity with the intention of using the
service for free.
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• Anomalies in auction networks, the majority of online auction frauds oc-
curs as non-delivery fraud, where the seller fails to deliver/ship the pur-
chased goods to the buyer.

• Anomalies in accounting networks, SNARE (Social Network Analysis for
Risk Evaluation) involves the task of spotting high-risk accounts with sus-
picious transactions behavior. Many existing techniques for detection rely
on domain knowledge and rule-based signals e.g., based on large number
of returns, many late postings, round-dollar entries, etc.

• Anomalies in security networks, relational learning has also been used in
securities fraud detection where the task is to spot securities brokers that
are likely to commit fraud and other violations of securities regulations in
the future.

• Anomalies in the Web network, one of the main techniques in combat-
ing spam and malware on the Web has been to use trust and distrust
propagation over the graph structure.

• Anomalies in social networks, another group of malware detection meth-
ods focuses on social malware in social networks such as Facebook. Such
malware is also called socware. Socware consists of any posts appearing
in ones news feed in social media platforms such as Facebook and Twitter
that lead the user to malicious sites, make the user redistribute (e.g., by
sharing/re-posting), and so on.

• Anomalies in computer networks, most graph-based network intrusion de-
tection methods focus on the dynamically growing and changing nature
of the network graph. In this graph, the nodes represent the agents in the
networks, such as ad/file/directory servers and client nodes, and edges
represent their communications over the network.
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Contributions

The problem tackled with here can be defined as follows:

Anomaly detection in timed networks. Given a timed network, that is
a network where each arc is equipped with a timestamp denoting the time
of creation of the corresponding link, find the nodes in the network that are
considerably dissimilar with respect to the rest of the network nodes when both
the structure of their neighborhood and the order in which the structure has
been established are taken into account.

Different approaches have been proposed in the literature that search for
anomalies in dynamic networks, among them [97, 54, 44, 66, 20].

We point out that the approach here proposed is substantially different
from techniques dealing with dynamic networks. Indeed, our aim is not to
determine the points in time in which a certain portion of the networks (typ-
ically a community or a subgraph) exhibited a significant change, as usually
done by dynamic-graph anomaly detection techniques. Rather, our primary
aim is to analyze each single node by taking simultaneously into account its
temporal footprint.

In this sense our approach can be regarded as a static-graph anomaly
detection technique in which temporal information has a privileged role in
characterizing the behavior of network nodes.

This chapter is organized as follows. Section 8.1 reports preliminary no-
tions and describe how the individual behavior is modeled; subsequent Section
8.2 illustrates the specific behavior models we retrieve to detect outliers; Sec-
tion 8.3 is devoted to discuss the outlier score and its properties; Section 8.4
presents the several phases of the mining algorithm; Section 8.5 depicts the
experiments we conduct on real datasets; finally, Section 9 concludes the work.
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8.1 Behaviors on timed networks

In this section, we report the preliminary definitions and the notations em-
ployed throughout the paper. We aim at modeling the behavior of a node in
the network through the way the node has interacted with its neighborhood
during the time. Thus, first of all we introduce the model of network equipped
with time information tackled by the proposed technique.

Definition 8.1 (Timed Network). A timed network (or, simply, network)
is a triple N = (V,E, τ), where V = {v1, . . . , vn} is a set of nodes,
E = {e1, . . . , em} is a set of arcs, with each ei = 〈si, di〉 an ordered pair
of nodes in V , and τ a function associating each arc 〈s, d〉 in E with a times-
tamp representing the instant of time in which the connection from s to d is
established.

Moreover, given a node v, we refer to the set of nodes v′ such that there is
an arc from v to v′ as the set of outgoing neighbors of v (or, simply, neighbors)

and we denote it as
−→
N (v). Vice versa, the set of nodes v′ such that there is

an arc from v′ to v is referred to as the set of ingoing neighbors of v and we

denote it as
←−
N (v). Finally, the total number of outgoing and ingoing neighbors

is denoted as deg(v), then:

deg(v) = |
−→
N (v)|+ |

←−
N (v)|

Next, we provide formal definition of contact and awareness between nodes
that are exploited for modeling interactions.

Given a network N = (V,E, τ) and two nodes v and v′in V , we say that
v contacts v′ at time t if 〈v, v′〉 ∈ E and τ(〈v, v′〉) = t. Also, in this case, we
say that v′ is a contact of v starting from the instant of time t.

For example, in Figure 8.1a, v contacts v′ at time t = 10 and, hence, starting
from that time, v′ is a contact of v.

An interaction between two nodes v and v′ is fired (or established) at time
t if either v contacts v′ at time t or v′ contacts v at time t. In such a case, the
established contact is said to be the contact associated with the interaction.

Given an interaction i between two nodes v and v′, the inverse interaction
of i is the establishment of the contact inverse with respect to the contact
associated with i.

Thus, in Figure 8.1a and 8.1b, there is an interaction between v and v′ fired at
time t = 10 having as associated contact the arc from v to v′ and, then, the
inverse interaction between v′ and v is fired at time t = 20, having as associated
contact the arc from v′ to v.

Next we provide the definition of awareness which intends to model the
intuition that an individual knows another individual, which is not one of its
contacts, due to the presence of a common friend.
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Fig. 8.1: Example

Definition 8.2 (Awareness). Given a network N = (V,E, τ) and two nodes
v and v′ in V , we say that the node v is mediately aware (or, simply, aware)
of v′ at time ta if there exists a node v′′ in the network N , such that v contacts
v′′ at time t1, v′′ contacts v′ at time t2, max{t1, t2} ≤ ta and (i) either 〈v, v′〉
is not in E or (ii) ta ≤ τ(〈v, v′〉). Moreover, we call intermediary the node
v′′ responsible of the awareness.

Note that, according to our definition, v is no more aware of v′ once v′ be-
comes a contact of v, since with the awareness we want to model the mediated
knowledge between individuals.

In Figure 8.1a, v is aware of v′ at each instant of time in the range [3, 9]. Starting
from the instant of time t = 10, v′ becomes a contact of v and, then, v is no
more aware of v′. Conversely, in Figure 8.1b, v is never aware of v′ and, starting
from the instant of time t = 10, v′ becomes a contact of v.

The notions of contacts and awareness are next exploited to model the
behavior of a node within its neighborhood and, in particular, we distinguish
between two families of behaviors: action behavior and reaction behavior.

Definition 8.3 (Action behavior). Let N be a network, an action is an
interaction between two nodes v and v′ of the network fired before that the
inverse interaction is fired.

Let v be a node of a network N and let v′ be one of its neighbor. According
to the above definition, the action behaviors involving v can be both the
establishing of a connection from v to v′ preceding a possibly connection from
v′ to v and the establishing of a connection from v′ to v preceding a possibly
connection from v to v′.

Consider Figure 8.1a. There are two actions involving v: (i) the contact from v
to v′ which is accomplished before that v′ contacts v and (ii) the contact from
v to v′′. Consider, now, Figure 8.1b. There are again two actions involving v:
(i) the contact from v′ to v which is accomplished before that v contacts v′ and
(ii) the contact from v to v′′.
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Definition 8.4 (Reaction behavior). Let N be a network, a reaction is
an interaction between two nodes v and v′ of the network fired after that the
inverse interaction is fired.

The reaction behaviors involving v are both the establishing of a connec-
tion from v to v′ succeeding a connection from v′ to v and the establishing of
a connection from v′ to v succeeding a connection from v to v′.

Consider Figure 8.1a. There is one reaction involving v: the contact from v′ to v
which is accomplished after that v′ contacts v. Consider, now, Figure 8.1b. There
is again one reaction involving v: the contact from v′ to v which is accomplished
after that v contacts v′.

After having defined the concepts of actions and reactions, we can dis-
tinguish among different kinds of actions and reactions on the basis of the
properties holding at the instant of time in which they are performed.

For example, Figures 8.1a and 8.1b depict two different kinds of actions:

i. the node (v) is aware of the other node (v′) when performs the action of
contacting it (Figure 8.1a);

ii. the node (v′) is not aware of the other node (v) when performs the action
of contacting it (Figure 8.1b).

In the following Section 8.2 we will describe in details which kinds of
actions and reactions are addressed in this work.

The technique we propose aims at detecting outliers on the basis of their
behavior taking simultaneously into account and suitably combining actions
and reactions. Specifically, each action–reaction couple models a different sce-
nario and we will denote it with the expression A↔ R, where A is the action
and R the reaction.

For example, consider the Twitter social network and consider the scenario in
which an individual v starts to follow another individual v′ and v′ does not
follow back v. There, we can individuate an action performed by v and received
by v′ and a reaction performed by v′ (the decision of not following back v) and
received by v.

For each scenario there are several involved performers: there is the per-
former who makes the action, the performer who receives the action, the
performer who makes the reaction, the performer who receives the reaction
and, in some cases, the performer involved as intermediary. Thus, on each
scenario a node can play different roles. We call structure the coupling of role
and scenario. Each structure defines a precise role played on a precise scenario
and is referred to a single node called actor of the structure.
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The previous example induces, then, four structures:

s1: node making action (who decides on its own initiative to follow another
node);

s2: node receiving action (who is followed by another node on its own initiative);
s3: node making reaction (who decides to do not follow back a node by which

it was followed);
s4: node receiving reaction (who is not followed back by a followed node).

For structures s1 and s4 the actor is v while for the structures s2 and s3 the
actor is v′.

Hence, once actions and reactions have been defined, those draw several
scenarios and relative roles played. Scenarios and associated roles induce a
set S of structures which encodes the node behavior. In particular, evaluat-
ing how frequently a node v plays each possible role on each scenario (then,
how frequent v is the actor of each structure) leads to the building of the
vector φ(v) = (φs1(v), . . . , φsk(v)) which represents the distribution of the
roles played by the node on the different scenarios and φsi(v) represents how
frequently v is the actor of the structure si. This distribution semantically en-
codes the behavior of the node in the network and can be effectively exploited
to find anomalous individuals, as detailed in the Section 8.3.

8.2 Modeled behaviors

This section is devoted to present the behaviors considered. In particular, we
present the kinds of actions and reactions we capture to gather information for
modeling the overall node behavior. However, the approach is easily extensible
to cover other kinds of actions/reactions.

Given a node v and one of its neighbor v′, next we present the actions
taken into account to model the behavior of v and start by summarizing the
notation employed:

t the instant of time τ(〈v, v′〉) associated with 〈v, v′〉;
t′ the instant of time τ(〈v′, v〉) if 〈v′, v〉 ∈ E; if 〈v′, v〉 is not in E then t′ is

set to −1, meaning that it is not defined;
tM the greatest instant of time smaller than t such that v is aware of v′ at

time tM due to the intermediary v′′, and we refer as vM the node v′′; if
v was not aware of v′ when the connection from v and v′ was established
then tM is set to −1, meaning that it is not defined.

For the sake of readability, we employ def(t) for indicating that t 6= −1 and
undef(t) for indicating that t = −1.

For each considered action/reaction, we discuss the semantic behavior as-
sociated with it together with the conditions to be checked in order to verify
if the behavior under analysis is actually assumed.
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Fig. 8.2: Action behaviors

(Action 1) a node contacts another node on its own initiative.
This action represents that v contacts v′ before that v′ contacts v and
without v being aware of v′ (see Fig. 8.2a).

Condition: (undef(t′) ∨ t ≤ t′)
∧
undef(tM )

(Action 2) a node contacts another node due to an intermediary.
This structure means that v contacts v′ before that v′ contacts v but after
that v becomes aware of v′ (see Fig. 8.2b).

Condition: (undef(t′) ∨ t ≤ t′)
∧
def(tM )

∧
tM < t

v v′
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t′1 = 12t′2 = 25

t′ = 20

(a) Reaction 1

v v′

v′
M
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(b) Reaction 2

v v′

t = 10

t′1 = 12t′2 = 15

(c) Reaction 3

v v′

t = 10

t′1 = 12t′2 = 15

t′ = 10

(d) Reaction 4

Fig. 8.3: Reaction behaviors
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As for the reactions, we capture four kinds of reactions for v. Note that,
since these are reactions, we assume that either a connection from v to v′ or
a connection from v′ to v has already been fired.

(Reaction 1) a node directly replies to the node who contacts him:
This reaction models that v′ contacts v since v contacts v′ and not because
v′ becomes aware of v (see Fig. 8.3a).

Condition: def(t)
∧
def(t′)

∧
t < t′

∧
(undef(t′M ) ∨ t′M < t)

(Reaction 2) a node replies to the node who contacts him due to an interme-
diary:
This reaction represents that v′ contacts v after that v contacts v′ but
only after that v′ becomes aware of v (see Fig. 8.3b).

Condition: def(t)
∧
def(t′)

∧
def(t′M )

∧
t < t′M < t′

(Reaction 3) a node does not reply to the node who contacts him:
This is not an actual reaction since it represents that v′ does not react to
the action performed by v (see Fig. 8.3c).

Condition: def(t)
∧
undef(t′)

(Reaction 4) a node contacts the node who contacts him independently:
This is not an actual reaction since it represents that v′ contacts v on its
own initiative (see Fig. 8.3d).

Condition: def(t)
∧
def(t′)

∧
t′ = t

∧
undef(t′M )

Once actions and reactions are defined, we can analyze which scenarios
are modeled and which structures are induced. In particular, we have eight
different scenarios and for each scenario two roles are definable, the node who
acts and the node who reacts. Moreover, for scenarios involving action A2

and/or reaction R2, also the role of intermediary is definable.

Thus, focusing on a single node v, we can define seventeen structures for it:

structures s1 . . . s4: v plays the role of performing action A1 and receiving one of the possible
four reactions;

structures s5 . . . s8: v plays the role of performing action A2 and receiving one of the possible
four reactions;

structures s9 . . . s12: v plays the role of receiving action A1 and performing one of the possible
four reactions;

structures s13 . . . s16: v plays the role of receiving action A2 and performing one of the possible
four reactions;

structure s17: v plays the role of being the intermediary of a couple of interacting nodes.
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Fig. 8.4: Example of bandwidths associated with the score of a structure (left)
and example highlighting the top twenty anomalies on a real dataset (right).

For example, consider the scenario depicted in Figure 8.1a again: v contacts v′

after viewing that v′ is a contact of v′′ which is one of its contact. v′ reacts to
this contacting back v. The scenario is then A2 ↔ R1 and the roles are: (1) who
makes the action A2 and receives the action R1, (2) who receives the action A2

and makes the reaction R1, and (3) who plays the role of intermediary. Thus,
after analyzing this scenario, for the node v we have to update the structure
associated with (1), that is s5; for the node v′ the structure associated with (2),
that is s13; and for the node v′′ the structure associated with (3), that is s17.

8.3 Anomaly Score

The distribution φs(v) encodes the behavior of the node v in terms of how
much frequently it is involved in the different structures. We can then exploit
the distributions φs in order to determine how typical is the behavior of each
node with respect to the whole population. With this aim, an anomaly score
is assigned to each node.

Given the network N = (V,E, τ), for each structure s ∈ S the regression
line of the set of points Ps(N ) = {(deg(vi), φs(vi)) | vi ∈ V } is computed.

Let αs and βs denote be the parameters of the estimated line. The anomaly
score of the node vi with respect the structure s is defined as:

scs(vi) =

∣∣∣∣φs(vi)− [αs · deg(vi) + βs]

log2 (1 + deg(vi))

∣∣∣∣ (8.1)

The numerator of Equation (8.1) represents the deviation of the observed
number of structures φs(vi) from the expected one yi, according to the value
predicted by the regression curve yi = αs ·deg(vi)+βs. As for the denominator,
it serves the purpose of taking into account the cardinality of the neighborhood
of vi, while the absolute value is needed to capture both the upper tail and
the lower tail of resulting distribution.
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Figure 8.4 on the left reports a regression line (the solid curve for k0 = 0,
having parameters α = 0.1 and β = 50) and the bandwidths associated with
different values of anomaly score (specifically, for k1 = 10, k2 = 25, and k3 =
50; e.g., the score associated with points falling within the dashed bandwidth
will be not greater than k1).

Figure 8.4 on the right reports the structure distribution associated with
a real dataset and the top twenty anomalies according to Equation (8.1).

Scores associated with each single structure are then normalized in order
to make them homogeneous

ŝcs(vi) =
scs(vi)

std({scs(V)})
(8.2)

and, hence, expressed in terms of number of standard deviations.
The anomaly score of a node vi is

sc(xi) =
∑
s

ŝcs(xi), (8.3)

that is obtained by combining the scores computed with respect to the
single structures.

8.4 Algorithm

In this section the algorithm we designed to mine outliers is presented and
its properties are discussed. The algorithm consists in three main phases each
accounted next.

Phase 1. This phase has the intent of enriching the information associated
with the arcs (see Figure 8.5). In order to retrieve behaviors illustrated in
Section 8.2 we need to find, for each arc 〈v, v′〉 with associated timestamp t,
if v is aware of v′ at time t, namely we have to search for a node v̂ such that
both edge e1 = 〈v, v̂〉 and edge e2 = 〈v, v̂〉 exist and the timestamps t1 and
t2 associated with these edges are both strictly smaller than t. Among these
nodes, we are interested in the node vM which is the most recent responsible
of the fact that v is aware of v′. Finally, the edge e = 〈v, v′〉 is annotated with
the node veM and the time teM which is the instant of time starting by which
v is aware of v′ due to veM ; in formula teM is the maximum between the time
associated with the arc 〈v, veM 〉 and the time associated with the arc 〈veM , v′〉.
Concluding, given a network N = (V,E, τ), the phase returns the annotated
network N+ = (V,E, τ+) where τ+(e) returns the triple (τ(e), teM , v

e
M ).

Computational complexity of Phase 1. As for the cost of this phase,
let N = (V,E, τ) be the analyzed network, let n = |V | and let m = |E|.
We iterate over the set of edges and for each arc e = 〈v, v′〉 in E we iterate

over the set
−→
N (v) of neighbors of v in order to search vM and, then, for each

neighbor v̂ of v we have to check if there exists an arc from it to v′. This
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Fig. 8.5: Graph annotation (Phase 1)

latter operation can be performed through a binary search in the list of the
outgoing arcs of v̂. Thus, the overall cost is∑

〈v,v′〉

∑
v̂∈
−→
N (v)

log
−→
N (v̂) = O(m · n · log n) (8.4)

where n denotes the maximum number of neighbors of a node generic in the
networks.

Phase 2. This phase has the intent of mining the behavior of each individual
in the network, starting from the annotated network coming from the pre-
vious phase. Then, given an annotated network N+ = (V,E, τ+) we iterate
over the set of nodes V and for each node v in V we iterate over the set of
neighbors and for each neighbor v′ in

−→
N (v) the behaviors depicted in Section

8.2 are evaluated. In particular, through the information provided by N+ the
conditions associated with the behaviors are checked and, according to the re-
sult of the check, the behavior counters are updated. The result of this phase
is then the distribution of the behaviors for each node.

Computational complexity of Phase 2. As for the cost of this phase,
let N+ = (V,E, τ+) be the analyzed network, let n = |V | and let m = |E|.
Iterating over the set of nodes and for each node v iterating over the set of

neighbors
−→
N (v) corresponds to iterating over the set of edges. For each edge,

in constant time we can obtain the required information by N+ and we can
evaluate all the conditions. Since the number of conditions is fixed, also this
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Phase 1: Network information enrichment
Input: A network N = (V,E, τ)
Output: The annotated network N+

1 foreach edge e = 〈v, v′〉 in E do
2 let t = τ(e) be the timestamp associated with the edge from v to v′;
3 set tM to −1;
4 set vM to ∅;
5 foreach edge ê = 〈v, v̂〉 do
6 let t1 = τ(ê) be the timestamp associated with the edge from v to v̂;
7 if 〈v̂, v′〉 belongs to E then
8 let t2 = τ(〈v̂, v′〉) be the timestamp associated with the edge from

v̂ to v′;

9 let t̂ be max{t1, t2};
10 if tM < t̂ < t then
11 set tM to t̂;
12 set vM to v̂;

13 associate tM and vM with the e;
// then substitute τ(e) = t with τ+(e) = (t, tM , vM )– see Fig. 8.5

latter step can be accomplished in constant time. Thus, the overall cost of
this phase is O(m).

Phase 2: Structures computation

Input: An annotated network N+ = (V,E, τ+)
Output: The distribution of structures φv for each node v

1 foreach node v in V do
2 set φs(v) to 0 for each structure s;
3 foreach neighbor v′ of v do
4 extract tuple T =

(
τ+(〈v, v′〉), τ+(〈v′, v〉)

)
;

// T contains then (t, tM , vM , t
′, t′M , v

′
M )– see Fig. 8.5b

5 foreach action a do
6 foreach reaction r do
7 let s be the structure associated with the pair a↔ r;
8 if Ca(T ) and Cr(T ) then
9 update φs(v);

10 let ŝ be the structure in which a node plays the role of being
the intermediary of a couple of interaction nodes (s17);

11 if a↔ r involves node vM then
12 update φŝ(vM );
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Phase 3. This phase has the intent of detecting outlier individuals. Starting
from the distribution of behaviors computed by the previous phase, we have
to compute the outlier score as defined in Section 8.3. The first step consists
in computing, for each considered structure, the regression line. The second
step consists in computing for each structure s and for each node v the score
scs(v) achieved by node v on the structure s by means of Equation (8.1).
Next the standard deviation of the scores assumed by nodes on structure s
is computed and, then, this value is exploited to normalize the scores (lines
6–7).

After that all the structures have been analyzed, the outlier score of each
node v is computed by properly aggregating the score achieved by v on each
single structure by means of Equation (8.3).
Computational complexity of Phase 3. As for the cost of this phase,
let N+ = (V,E, τ+) be the analyzed network, let n = |V | and let m = |E|.
Computing the regression line has a cost linear with respect to the number n of
nodes. Next, for each node we had to compute the score. Since Equation (8.1)
is computable in constant time, also this step has a cost linearly dependent
from n. Normalizing the scores costs O(n) as well and, finally, also computing
the overall outlier score costs O(n) since Equation (8.3) iterates over a fixed
number of structures.

Phase 3: Outlier mining

Input: The distribution of structures φv for each node v
Output: The overall outlier score for each node v

1 foreach structure s do
2 compute the regression line of the observations (deg(v), φs(v));
3 foreach node v in N do
4 compute the score scs(V ) of v for structure s through Eq. (8.1);

5 compute the standard deviation of the score std({scs(V)});
6 foreach node v in N do
7 compute the normalized score of v for structure s through Eq. (8.2);

8 foreach node v in N do
9 compute the overall score of v through Eq. (8.3);

8.5 Experimental results

In this section experimental results concerning the introduced technique are
presented. All the datasets employed are from the Online Social Networks
Research. All the dataset underwent a preprocessing during which multiple



8.5 Experimental results 73

and self links have been removed. The Digg friends dataset1 contains data
about stories promoted to Digg’s front page2 over a period of a month in 2009.
The dataset contains Digg users who have voted for a story. We considered
the voters’ friendship links, where a link user id → friend id means that
user id is watching the activities of (is a fan of) friend id. User identifiers
are available already anonymized. The network analyzed consists of 279, 631
nodes and 2, 251, 166 arcs. The Facebook wall dataset3 contains a list of all of
the wall posts from the Facebook New Orleans network. Each line contains two
anonymized user identifiers, meaning the second user posted on the first user’s
wall. The third column is the times of the wall post. The network analyzed
consists of 45, 813 nodes and 264, 004 arcs. The Wikipedia growth4 dataset
contains links between Wikipedia pages and the time when these links were
first created. The dataset represents the complete history of the network over
a period of 826 days, between January 1st, 2005 and April 6th, 2007. The
datasets is anonymized to protect the privacy of page authors. The network
analyzed consists of 1, 870, 709 nodes and 39, 953, 145 arcs.

The following table reports the total number of the structures mined, for
each of the structures si in the set S. Notice that the total counts associated
with the pairs of structures (si, si+8) are identical, since these structures are
induced by symmetric roles in the same scenario.

Structure Digg friends Facebook wall Wikipedia growth

s1, s9 61, 122 57, 476 2, 030, 550

s2, s10 8, 307 4, 167 641, 677

s3, s11 683, 282 74, 268 22, 416, 947

s4, s12 6, 294 0 7, 596

s5, s13 65, 844 16, 319 451, 128

s6, s14 44, 301 2, 629 293, 043

s7, s15 681, 317 28, 552 10, 694, 970

s8, s16 152 0 56

s17 1, 009, 571 80, 042 14, 052, 936

Total 7, 574, 125 446, 864 87, 124, 870

Table 8.1: Total Number of the Structures Mined.

Clearly, this does not mean that they are redundant, since the respective
counts per node differ in general, being different the number of times in which

1 http://www.isi.edu/integration/people/lerman/downloads.html
2 Digg is a news aggregator (http://digg.com) aiming to select stories for the

Internet audience such as science, trending political issues, and viral Internet
issues. It allows people to vote web content up or down.

3 http://socialnetworks.mpi-sws.org/data-wosn2009.html
4 http://socialnetworks.mpi-sws.org/data-wosn2008.html
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(a) Digg dataset – s3 (b) Digg dataset – s11

(c) Facebook dataset – s9 (d) Facebook dataset – s11

(e) Wikipedia growth dataset – s5 (f) Wikipedia growth dataset – s17

Fig. 8.6: Structure count distribution.

the single node plays each role in the same scenario. In the Facebook wall
dataset the structures s4, s8, s12, and s16, capturing the simultaneity of the
response, are not present since timestamps are almost all different (only 846
timestamps appear more than once in the dataset) and it is never the case
that two users simultaneously make a post on the respective wall. In general,
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(a)

(b)

Fig. 8.7: Notable structure distributions for a top outlier node

these structures are among the less numerous in these datasets due to the fine
granularity of the temporal scale.

Figure 8.6 shows the scatter plots of the node degree versus the structure
count for some of the structures mined. Each plot reports also the regression
line of the points (represented by the red points) and highlights the top 20
anomalies (the red circled points) according to the anomaly score of Equation
(8.1).

Next, we discuss on the knowledge mined for one of the top outlier in a
dataset in order to highlight how the proposed technique is able to provide
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Fig. 8.8: Scalability analysis.

not only the outlier score but also an in intelligible interpretation of the score,
shedding light on semantic underlying the decision made by the technique of
signaling a node as anomalous.

Specifically, we focus on the Wikipedia growth dataset and on the node out
having id 256, 356. We consider the two structures that mostly contribute to
the large score achieved by out. Figure 8.7 reports how the number of times
in which out is actor of structure s1 and s11 places the node with respect
to the number of times in which the other nodes perform as actors of those
structures.

It is clear by the plots that out is located in both cases at the margin
of the distribution. In particular, out performs as actor of structure s1 much
more times than other nodes, while performs as actor of structure s11 much
less times than nodes having a similar neighborhood cardinality.

From a semantic point of view, these plots naturally lead to a description
of the outlierness that could explain the exceptionality of the node. Since out
very often plays as actor for structure s1, the associated Wikipedia page has
a high number of links and, exceptionally, almost always the linked page links
back the page associated with out. Moreover, since out rarely plays as actor
for structure s11, whenever out is linked by a page p, rarely a link to p does
not appear in out.

Finally, Figure 8.8 shows the scalability of the method. We varied the size
of the datasets, from the 1% to the 100% of the original data, by randomly
sampling nodes and retaining the arcs linking only pairs of nodes in the se-
lected sample. The solid lines in the plot show the total execution time versus
the number of arcs of the network. The dashed lines represents the cost of
the method as reported in Equation (8.4), by using as n the mean number
of neighbors of nodes in the network, with a constant prefactor computed in
a way such that the two curves start from the same point. The curves show
that the actual cost of the method is generally below that predicted by the
cost analysis, thus confirming the applicability of the method to large net-
works. To illustrate, the full Wikipedia growth dataset was processed in about
120 seconds on a Intel Core i7 2.40GHz equipped machine under the Linux
operating system.
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Conclusions

This thesis investigated data mining techniques for large and complex net-
works. Two families of data mining algorithms have been considered, namely
Classification and Anomaly Detection.

As for the classification task the focus was on large data. Motivated by
approaches designed to improve generalization and to prevent induction of
overly complex models, in this thesis we investigated the application of the
Pessimistic Error Estimate (PEE) principle in the context of nearest neighbor
rule competence preservation techniques. As major results, we showed that
PEE-like selection strategies guarantee to preserve the accuracy of a nearest
neighbor consistent subset with a far larger reduction factor and that sensible
generalization improvements can be obtained by using a reduced subset of
intermediate size. We have proposed four novel strategies based FCNN algo-
rithm which is efficient and has low quadratic complexity. Our work is focused
on reducing the runtime and preserve the accuracy. We have also compared
our strategies with the competence enhancement of preservation state-of-the-
art algorithms on real datasets.

As for the anomaly detection the focus was on complex network data. We
considered the anomaly detection in timed networks problem whose goal is to
single out anomalies by taking into account simultaneously information con-
cerning both the structure of the network and the order in which connections
have been established. Our primary aim is to analyzing each single node by
taking simultaneously into account its temporal footprint. We defined a set of
spatio-temporal structures is induced by checking certain conditions on the or-
der of arc appearance denoting different kinds of user behaviors and exploited
their distribution to detect anomalies. We presented a scalable algorithm and
experimental results showing the peculiarity of the knowledge mined by our
technique and its applicability to the analysis of large networks.
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