

UNIVERSITÀ DELLA CALABRIA

Dipartimento di Elettronica,
Informatica e Sistemistica

Dottorato di Ricerca in
Ingegneria dei Sistemi e Informatica

XXII ciclo

Tesi di Dottorato

A methodology for the
simulation-based prototyping
of distributed agent systems

Samuele Mascillaro

Contents

1 Introduction ... 1

1.1 Motivation... 1
1.2 Thesis proposal and contributions ... 2
1.3 Thesis organization.. 5

2 Background and related work... 7

2.1 Distributed Computing and
Agent Oriented Software Engineering .. 7
2.2 Agent models for distributed computing 11

2.2.1 JADE ... 11
2.2.2 The HSM/SmartAgent model .. 12
2.2.3 The Bond agent model.. 13
2.2.4 The Actor model .. 15
2.2.5 A comparison .. 16

2.3 Agent interaction design .. 16
2.3.1 Coordination and interaction patterns 17
2.3.2 Coordination models ... 19

2.4 Simulation-based agent-oriented methodologies 21
2.4.1 Electronic Institutions .. 22
2.4.2 DynDEVS .. 22
2.4.3 CaseLP.. 22
2.4.4 TuCSoN/ π-calculus.. 23
2.4.5 Joint Measure.. 23
2.4.6 INGENIAS/RePast .. 24
2.4.7 GAIA/MASSIMO.. 24
2.4.8 A comparison .. 24

3 ELDAMeth: A Methodology
for the Simulation-based Prototyping of DAS.. 27

3.1 Modeling phase.. 29
3.1.1 ELDA model .. 29
3.1.2 ELDA MAS Meta-Model .. 39

3.2 Coding phase... 43

3.2.1 ELDAFramework: a framework for the coding of ELDA-
based MAS ... 44

3.3 Simulation phase ... 50
3.3.1 ELDASim: a discrete-event simulation framework.............. 51

3.4 ELDATool: An integrated development environment for
prototyping ELDA-based MAS.. 55

3.4.1 Architecture ... 56
3.4.2 Implementation.. 57

4 Modeling and Validation of Distributed Architectures for Surrogate
Clustering in CDNs: a case study ... 61

4.1 CDN working principles.. 62
4.2 Distributed architectures for surrogate clustering 63

4.2.1 Master/Slave ... 64
4.2.2 Multicast-based ... 67
4.2.3 Peer-to-peer .. 68

4.3 ELDA-based modelling .. 70
4.4 Performance Evaluation... 77

4.4.1 Simulation parameters .. 77
4.4.2 Simulation results .. 78

5 A Process for Agent Specification, Simulation and Implementation 85

5.1 PASSIM.. 86
5.1.1 Requirements Specification .. 86
5.1.2 Design ... 87
5.1.3 Prototyping .. 90
5.1.4 Coding ... 91
5.1.5 Deployment ... 91

5.2 Adapting the design for the prototyping 91
5.3 A case study: from the analysis to the validation of an
Agent-based E-Marketplace ... 96

5.3.1 The Requirements Specification phase 98
5.3.2 The Design phase ... 101
5.3.3 The Prototyping phase .. 104

6 A Multi-Coordination based process for the design of mobile agent
interactions .. 115

6.1 The Multi-Coordination based Process (MCP) 116
6.2 The Modeling Phase.. 117

6.2.1 IP Selection and Setting.. 117
6.2.2 IP-CM Matching... 118
6.2.3 Selection and Design of Coordination Solutions............... 119

6.3 The Evaluation phase .. 122
6.3.1 Performance Evaluation of Coordination Solutions:
an example ... 123

7 Conclusion and Future Work .. 127
7.1 Summary.. 127
7.2 Future Work ... 128

References .. 131

1

1 Introduction

1.1 Motivation
The ubiquitous diffusion and usage of the Internet have promoted the
development of new kinds of distributed applications characterized by a huge
number of participants, high decentralization of software components and
code mobility, which are typical of application domains such as distributed
information retrieval, content management and distribution, and e-
Commerce. In these application domains, the agent-based computing
paradigm [72] has been demonstrated to be effective for the analysis, design
and implementation of distributed software systems. In particular, in the
context of the agent oriented software engineering (AOSE) [62], several
agent-oriented methodologies based on suitable agent models, frameworks
and tools, have been defined to support the development lifecycle of
distributed agent systems (DAS). Their in-depth analysis has allowed to
identify the key elements for the provision of an effective development of
distributed agent systems: the agent model, the development methodology
and the supporting CASE tool.

The agent models aim at providing abstractions for the modelling of the
agent behavior and interactions. Basically they can be classified in two large
groups: (i) models based on intelligent agent architectures [72, 81] ranging
from reactive agents (e.g. Brook’s subsumption architecture) to deliberative
agents (e.g. BDI agents); (ii) models based on the mobile active object
concept encompassing mobile agent architectures [11, 104]. Models of the
first group are mainly oriented to problem-solving, planning and reasoning
systems whereas models of the second group are more oriented to
distributed computation in open and dynamic environments like the Internet.
In the context of Internet computing, agent models and related frameworks
based on lightweight architectures, asynchronous messages/events and
state-based programming such as JADE [7], Bond [10], and Actors [2], have
demonstrated great effectiveness for modeling and programming agent-
based distributed applications. In particular, such models define suitable
abstractions for the modelling of reactiveness and proactiveness of agent
behavior and agent interactions. However, they mainly consider messages
(and related message-based protocols and infrastructures) as a means of
interaction among agents and mobility as an auxiliary feature of agents.

2

Considering the exploitation of coordination models and infrastructures
based not only on messages but also on events, tuples, blackboards and
other coordination abstractions [16] can provide more effectiveness in
designing complex agent interactions and more efficiency in their actual
implementation. Moreover, mobility, if considered a main feature of agents,
can provide a powerful means for dynamic organization of distributed
components modelled as mobile agents [11]. Thus mobility also enables and
demands for new non-message-based coordination models.

The agent-oriented development methodologies aim at supporting the
development lifecycle of agent-based systems from analysis to deployment
and maintenance. They can be classified into general-purpose and domain-
specific methodologies. The general-purpose methodologies such as Gaia
[113], PASSI [23], Tropos [12], Ingenias [89] are suitable for the development
of multi-agent systems in different application domains whereas the domain-
specific methodologies can be more effectively exploited in a given, very
specific application domain. Apart from their context of use, they are all
based on a meta-model of multi-agent system which loosely or tightly
depends on a reference agent model and a phase-based iterative
development process. Agent oriented methodologies for Internet-based
distributed agent systems should incorporate not only a MAS meta-model
and related agent model suitable for distributed computation but also
effective prototyping methods able to validate the design models before
deployment in a large-scale distributed testbed. In particular, dynamic
validation based on simulation is emerging as a powerful means for
functional and non functional validation of designed agent systems in a large-
scale controlled environment. To date a few agent-oriented development
methodologies have been proposed in the literature, such as Electronic
Institutions [103], DynDEVS/James [99], CaseLP [76], GAIA/MASSIMO [41],
TuCSon/pi [54], Joint Measure [101], Ingenias/Repast [90]. They incorporate
simulation to support the design phase of the MAS development lifecycle
with the main focus on the validation and performance evaluation of the
designed MAS model. Moreover, two important characteristics of agent-
oriented methodologies are high degree of integration with other
methodologies and availability of a CASE tool supporting the process
phases. The former would allow for an easy integration with other
methodologies for the purpose of enriching already existing methodologies or
creating new and more effective ones. The latter would allow for automating
the development process phases and their transitions so providing more
robust development and rapid prototyping.

1.2 Thesis proposal and contributions
The main objective of the proposed thesis is the definition of a methodology,
also supported by a CASE tool, for the simulation-based prototyping of
distributed agent systems. The proposed methodology, hereafter referred as
ELDAMeth, is based on the key features enabling the development of DAS

3

delineated in the previous section. In particular, ELDAMeth relies on the
ELDA (Event-driven Lightweight Distilled Statecharts Agents) agent model
and related frameworks and tools, and on an iterative development process
seamlessly covering the modeling, coding and simulation phases of DAS.
ELDAMeth can be used both stand-alone and in conjunction/integration with
other agent-oriented methodologies which provide support to the analysis,
(high-level) design, and implementation phases. A simplified process schema
of ELDAMeth is shown in Figure 1.1.

Mo deling Coding Simulation

[iterate]

[done]

DAS Model DAS Code Sim Results

ELDA Model
ELDA Meta-Model

ELDAFramework ELDASim

Schema:

Workproducts:

Models&Frameworks:

CASE Tool: ELDATool

High-level
System De sign

Figure 1.1: A basic ELDAMeth process schema.

The Modeling phase produces the DAS Model on the basis of the High-Level
System Design which is a high-level design of the distributed system to be
prototyped. In particular, the DAS Model is specified according to the ELDA
MAS meta-model which provides the structure and the behavior of agent
systems based on the ELDA model. Moreover, the High-Level System
Design can be defined either ad-hoc or by means of another methodology
supporting the analysis and high-level design phases.
The Coding phase receives the DAS Model and automatically produces the
DAS code according to the ELDAFramework, which provides all the
programming abstractions defined in the ELDA MAS meta-model.
Finally, the Simulation phase produces the Simulation Results in terms of
execution traces of the simulated DAS and calculation of the defined
performance indices which must be carefully evaluated with respect to the
functional and non-functional requirements. Such evaluation could lead to a
further iteration step which starts from a new (re)modeling activity. In
particular, the Simulation Results come from the execution of the DAS
Simulator carried out through ELDASim, a discrete-event simulation
framework for ELDA agents. The DAS Simulator is obtained by synthesizing
the DAS Code with the simulation parameters and performance indices,
defined on the basis of the requirements.
All the described phases are fully supported by the ELDATool, a CASE tool
completely developed in this thesis work to enable: (i) the visual modelling of
the DAS under-development, (ii) the automatic translation into code of the

4

DAS Model, (iii) the execution of the DAS Simulator in a large-scale
controlled environment.
The main contributions of the thesis to the AOSE research field are in the
following areas:
- Agent models. The proposed ELDA (Event-driven Lightweight Distilled

StateCharts-based Agents) model incorporates the three enabling
features for distributed agent systems: lightweight reactive/proactive
behavior, multi-coordination and mobility. In particular: (i) the agent
behavior is based on the Distilled StateCharts formalism [50] which
allows to effectively structure the behavior in hierarchies of states,
transitions among states, and (re)actions attached to transitions; (ii) the
agent interactions are based on high-level asynchronous events which
enable multi-coordination among agents and between agents and non-
agent components through the exploitation of multiple coordination
structures; (iii) the agent mobility relies on a coarse grain strong mobility
model which allows for agent transparent migration (both autonomous
and passive). Moreover, the structure of ELDA-based DAS is specified
according to the well-defined ELDA MAS meta-model which provides the
modelling abstractions related to agents and their infrastructures in which
agents execute and through which agents interact.

- Agent frameworks. The ELDAFramework is a Java-based
implementation of the ELDA MAS meta-model and makes it available a
rich set of programming abstractions enabling the implementation of
distributed agent systems based on the ELDA model. ELDA-based agent
systems developed through the ELDAFramework can be actually
executed through simulation by the ELDASim framework. In particular,
ELDASim is an ELDA-oriented discrete event simulation framework
which provides simulation abstractions and components allowing
functional validation and performance analysis of ELDA-based agent
systems.

- Agent methodologies. In this thesis work, ELDAMeth is also exploited to
define other two agent-oriented methodologies based on simulation:
PASSIM and MCP. PASSIM is a simulation-based process for the
development of multi-agent systems which is obtained by integrating the
well-known and established Process for Agent Societies Specification
and Implementation (PASSI) methodology with ELDAMeth. In particular,
PASSI-based design models of the multi-agent system under-
development are semi-automatically translated according to the ELDA
MAS meta-model and then validated through simulation. The validated
multi-agent system can be therefore implemented and deployed
according to the PASSI phases. The Multi-Coordination based Process
(MCP) is an iterative process for the design of mobile agent interactions
based on two subsequent phases of modeling and evaluation. In
particular, the modeling phase uses interaction patterns and coordination
models to semi-automatically provide alternative coordination solutions
whereas the evaluation phase relies on simulation to evaluate and

5

compare such solutions on the basis of ad-hoc defined performance
indices. The evaluation phase is carried out through ELDAMeth.

- Agent-oriented CASE tools. The ELDATool is an integrated development
environment implemented as a Java-based Eclipse plug-in, which aims
at supporting developers during the modelling, coding and simulation
phases of ELDAMeth. In particular, ELDATool provides in an integrated
fashion: (i) a visual editor for the modelling of agent behavior in terms of
Distilled StateCharts machines; (ii) an automatic translator which
implements the translation rules from the ELDA MAS meta-model to the
ELDAFramework so allowing to translate ELDA-based models into Java
code; (iii) a visual editor to configure the simulation parameters and to
control the execution of ELDA-based simulation programs.

- Distributed agent systems. The application of ELDAMeth for the
prototyping of DAS in key Internet-based application domains such as e-
Commerce, content delivery and distributed information retrieval has
resulted in the definition of novel distributed agent systems in such
domains. In the e-Commerce domain, the objective is the design and
validation of an agent-based e-Marketplace (AeM) modeled as a multi-
agent system. In particular, several new kinds of consumer agents
characterized by mobility and related policies have been defined and
their evaluation shows the effectiveness of the defined mobile consumer
agents and their efficiency for searching, contracting and buying goods.
In the context of Content Delivery Networks (CDN), the main goal is the
design and evaluation of several distributed architectures for clustering
surrogate. In particular, three novel architectures (master/slave,
multicast-based, peer-to-peer) have been proposed. The obtained
results show that the designed surrogate clustering architectures allow to
improve performance with respect currently available CDN architectures.
In the distributed information retrieval domain, the objective is the design
and evaluation of novel agent-based solutions for searching information
across a network of federated locations. In particular four solutions have
been proposed in which agent interactions are designed by using single
and multiple coordination models. The obtained results show that the use
of the multi-coordination approach can improve efficiency of the provided
agent solutions.

1.3 Thesis organization
After providing some background concepts and a discussion about related
work in chapter 2, the thesis is organized in three main parts. In the first part
involving chapter 3, ELDAMeth is described in detail; in particular, all the
process phases are explained along with related models (ELDA model and
ELDA MAS meta-model), frameworks (ELDAFramework and ELDASim) and
supporting tool (ELDATool). The second part of the thesis (chapter 4) details
a complete case study of the application of ELDAMeth in the Content
Delivery Networks domain from modelling to evaluation. The third part

6

presents the use of ELDAMeth and, in particular, PASSIM and its application
in the e-Commerce application domain (chapter 5), and the Multi-
Coordination-based Process and its application in the distributed information
retrieval domain (chapter 6). Finally, conclusions summarizing the main
contributions and results of this thesis are drawn and then the future work is
briefly delineated.

7

2 Background and related work

The objective of this chapter is to provide fundamental background concepts
and a presentation of the literature work strongly related to the thesis
proposal. In particular, the chapter is organized as follows: (i) the first section
introduces basic agent-based concepts in distributed systems engineering
and, particularly, in the context of AOSE (Agent Oriented Software
Engineering); (ii) the second section describes the main agent models for
distributed computing; (iii) the third section presents coordination models
among agents; (iv) the last section discusses simulation-based
methodologies related to the methodology proposed in this thesis.

2.1 Distributed Computing and Agent Oriented
Software Engineering

Today’s distributed software engineering approaches are increasingly
adopting abstractions deriving from the agent-based computing: the majority
of modern distributed systems are intrinsically proper to be developed in
terms of agent-based systems, and the modern distributed systems (e.g.
control systems, mobile and pervasive computing environments, internet-
based applications) are de facto agent-based systems as they are indeed
composed of autonomous, situated, and social components.
Very often computing systems integrate autonomous components: autonomy
implies that a component integrates an autonomous thread of execution, and
can execute in a proactive way (i.e. taking the initiative). This is the case of
most modern control systems for physical domains, in which control is not
simply reactive but also proactive, implemented through a set of cooperative
autonomous processes or, as is often the case, via embedded computer-
based systems interacting with each other or via distributed sensor networks.
The integration in complex distributed applications and systems of (software
running on) mobile devices can be tackled only by modeling them in terms of
autonomous software components. Another example is represented by
Internet-based distributed applications which are typically made up of
autonomous processes, possibly executing on different nodes, and
cooperating with each other.
Moreover, computing systems are also typically situated: they have an
explicit notion of the environment where components are associated to and
executed, and with which components explicitly interact. Control systems for

8

physical domains, as well as sensor networks, tend to be built by explicitly
managing data from the surrounding physical environment, and by explicitly
taking into account the unpredictable dynamics of the environment via
specific event-handling policies. Other examples are Internet applications
and web-based systems that to dive into the existing Internet environment,
are typically engineered by clearly defining the boundaries of the system in
terms of the “application”, including the new application components to be
developed, and ‘‘middleware’’ level, as environmental substrate in which
components are to be embedded. In addition, mobile and pervasive
computing applications recognize (under the general term of context-
awareness) the need for applications to model explicitly environmental
characteristics rather than to model them implicitly in terms of internal object
attributes.
Finally, in modern distributed systems we can recognize sociality aspects
which come in different flavors: (i) the capability of components of supporting
dynamic interactions; (ii) the somewhat higher interaction level, overcoming
the traditional client-server scheme; (iii) the enforcement of some sorts of
societal rules governing the interactions. Control systems for critical physical
domains typically run forever, cannot be stopped, and sometimes cannot
even be removed from the environment in which they are embedded.
Nevertheless, these systems need to be continuously updated, and the
environment in which they live is likely to change frequently, with the addition
of new physical components and, consequently, of new software
components and software systems. For all these systems, managing
openness and the capability to automatically re-organize interaction patterns
is crucial, as is the ability of a component to enter new execution contexts in
respect of the rules that are expected to drive the whole execution of the
system. With reference to pervasive computing systems, lack of resources,
power, or simply communication un-reachability can make nodes come and
go in unpredictable ways, calling for re-structuring of communication
patterns, as well as for high-level negotiations for resource provision. Such
issues are even exacerbated in mobile networking and P2P systems, where
interactions must be made fruitful and controllable despite the lack of any
intrinsic structure and dynamics of connectivity. Similar considerations apply
to Internet-based and open distributed computing. There, software services
must survive the dynamics and uncertainty of the Internet, must be able to
serve any client component, and must also be able to enact security and
resource control policy in their local context: E-marketplaces are the most
typical examples of this class of open Internet applications.
Thus, the explicit adoption of agent-based concepts in distributed systems
engineering would carry several advantages [84]:
– autonomy of application components, even if sometimes directly forced

by the distributed characteristic of the operational environment, enforces
a stronger notion of encapsulation (i.e., encapsulation of control rather
than of data and algorithms), which reduces the complexity of managing
systems with a high and dynamically varying number of components;

9

– taking into account situatedness explicitly, and modeling environmental
resources and active computational entities in a differentiated way, rather
than being the recognition of a matter of fact, provides for a better
separation of concerns which, in turn, helps reduce complexity;

– dealing with dynamic and high-level interactions (i.e., with societal rather
than with architectural concepts) enables to address in a more flexible
and structured way the intrinsic dynamics and uncertainties of modern
distributed scenarios.

The above considerations make more appealing the use of techniques based
on the agent-paradigm to deal with the design of distributed applications but
however there is a big concern on its applicability in an industrial context. In
fact, industrial applicability implies the definition of repeatable, reusable,
measurable and robust software process and techniques for the
development of multi-agent systems (MASs) [8].
To manage multi-agent systems complexity, the research community has
produced a number of methodologies that aim to structure agent
development. However, even if practitioners follow such methodologies
during the design phase, there are difficulties in the implementation phase,
partly due to the lack of maturity in both methodologies and programming
tools. There are also difficulties in understanding the nature of what is a new
and distinct approach to systems development and in implementation due to:
- a lack of specialized debugging tools;
- skills needed to move from analysis and design to code;
- the problems associated with awareness of the specifics of different

agent platforms;
For these reasons, the development multi-agent systems requires providing
reasoning at appropriate levels of abstraction, automating the design and
implementation process as much as possible, and allowing for the calibration
of deployed multi-agent systems by simulation and run-time verification and
control [73].

Despite a number of languages, frameworks, development environments,
and platforms that have appeared in the literature, implementing multi-agent
systems is still a complex task. For this reason, a lot of effort in the agent
field has been devoted to the definition of techniques, methods and tools for
supporting Agent Oriented Software Engineering (AOSE). The main goal of
AOSE is to determine how agent qualities affect software engineering, and
what additional tools and concepts are needed to apply software engineering
processes and structures to agent systems. Specific areas of interest here
include [9, 72, 84]:
- methodologies for agent based systems. Traditional methodologies of

software development, driving engineers from analysis to design and
development, must be tuned to match the abstractions of agent-oriented
computing;

- requirements engineering for agent based systems. The agent-
oriented community have introduced new concepts to cope with the
needs arisen from these complex problems then requirements elicitation

10

techniques should provide a way to reason and model them since the
early stages of agent-based software development process;

- agent-oriented analysis and design. Novel formal and practical
approaches to analysis and modeling agent-based systems are required
to deal with agent’s features such as autonomy, situatedness, and
sociality.

- techniques for specification of (conceptual) designs of agent
systems. The development of specific notation techniques to express
the outcome of the various phases of an agent-based system
development process are needed, because traditional object- and
component-oriented notation techniques cannot easily apply;

- verification, validation and testing techniques. Verification is normally
based on formal theories that allow the analysis of a system in order to
determine whether certain properties hold. When such properties consist
on whether the application fulfils the requirements, usually verification is
referred as validation. Testing is the activity of looking for errors in the
final implementation;

- agent design patterns. There is by now a growing literature on the use
of patterns to capture common design practices for agent systems which
aim at increasing re-use and quality of code and at the same time
reducing the effort of development of agent based systems;

- agent models. A variety of agent models are being investigated and
each of them is suitable to model different types of agents or specific
aspects of agents: purely reactive agents, logic agents, agents based on
belief, desire and intentions, etc;

- agent-based infrastructures. To support the development and
execution of agent-based systems, novel tools and novel software
infrastructures are needed. Various tools are being proposed to
transform specifications into actual agent code and a variety of
middleware infrastructures have been deployed to provide proper
services supporting the execution of distributed agent based systems;

- agent-based systems architecture. As it is necessary to develop new
ways of modelling the agents, in the same way it is necessary to develop
new ways of modelling an agent based systems as a whole. A variety of
approaches are being investigated to model agent based systems such
as, approaches inspired by societal, organisational, and biological
metaphors.

- tools to support the agent system development process. There is a
need to integrate existing tools into Integrated Development
Environments (IDEs) rather than starting from scratch. At present there
are many research tools, but few are integrated with generic
development environments, such as Eclipse; such advances would boost
agent development and reduce implementation costs.

11

2.2 Agent models for distributed computing
To date many agent models have been defined and proposed which share
the fundamental notion of agent but significantly differ in terms of agent
architectures and the problems they aim at solving. In particular, they can be
roughly distinguished in two main categories:
- Artificial Intelligence (AI)-oriented models which are based on intelligent

agent architectures [72, 81] ranging from reactive agents (e.g. Brook’s
subsumption architecture) to deliberative agents (e.g. BDI agents) and
are mainly oriented to problem-solving, planning and reasoning systems;

- Distributed Computing (DC)-oriented models which are based on the
mobile active object concept encompassing mobile agent architectures
[11, 104] and are more oriented to distributed computation in open and
dynamic environments like the Internet.

As features such as lightweight agent architectures, asynchronous agent
interaction and state-based programming, which characterize many agent
models belonging to the DC-oriented category, have demonstrated great
effectiveness for modeling and programming agent-based distributed
applications, only agent models of such category which share such basic
features will be shown in the following. In particular, Jade [7],
HSM/SmartAgent [66], Bond [10, 75] and Actors [2, 3] are briefly synthesized
paying attention to the provided abstractions aimed at specifying behavior,
interactions and mobility of agents.

2.2.1 JADE
JADE (Java Agent Development Environment) [7] is a software framework
aimed at programming agent applications in compliance with the FIPA
specifications for inter-operable intelligent multi-agent systems. In particular,
the purpose of JADE is to simplify development while ensuring standard
compliance through a comprehensive set of system services and agent
behaviors and protocols. To design agent behavior, JADE offers several
types of supplied programming abstractions which are defined as direct
subclasses of the Behaviour class; such class provides the skeleton of an
elementary task to be carry out by an agent. A CompositeBehaviour which
extends the Behaviour class, is one of the available agent behaviors and it
can have an arbitrary number of sub-behaviors: each CompositeBehaviour
implements a particular scheduling policy used to select which sub-behavior
to fire at each round. A particular CompositeBehaviour is the FSMBehaviour
one [6] that schedules its children according to a finite state machine whose
states, which are behaviors themselves, correspond to the FSMBehaviour
children: it provides methods to register sub-behaviors as FSM states and to
register transitions, marked by integer label, between states. Note that
transitions only serve to link states and do not encapsulate any action. A
FSMBehaviour keeps a pointer to the current sub-behavior: as soon as this
sub-behavior ends, the FSMBehaviour checks its internal transition table
and, according to the returned value of onEnd method of the current child

12

(returning the label of a transition), selects the next behavior that has to be
executed. As a consequence, the execution semantics of the FSMBehaviour
is not driven by events but by action completions. With respect to the
interaction among agents, the provided communication model is peer-to-peer
though a multi-message context which is provided by interaction protocols
and conversation identifiers. In particular, communication among agents is
performed through asynchronous message passing and the language used
to represent messages is FIPA ACL. Each agent has a mailbox (agent
message queue) where the system posts messages sent by others agents:
whenever a message is posted in the message queue, the receiving agent is
notified. However, when, or if, the agent picks up the message from the
queue for processing is a design choice of the agent programmer. Moreover,
to design agents’ interactions several interaction protocols are made
available providing a sequence of acceptable messages and a semantic for
those messages. With respect to agent mobility, JADE implements a weak
mobility model: after migration the agent will continue its execution from the
beginning of its behavioral code. It’s worthy noting that, in order to save
agent execution state, programmers have to explicitly capture the agent
execution state. More in detail, agent migration is triggered when an agent
calls the doMove method that causes the agent to cease its current activities
and suspend itself (i.e. the agent state goes from the ACTIVE to the
TRANSIT state) while the system relocates it. Moreover, agent modeling is
not directly supported by an official visual toolkit for developing MAS
according to the JADE model.

2.2.2 The HSM/SmartAgent model
To realize flexibility, partitioning, and control when programming JADE
agents, an architecture supporting hierarchical state machine based
programming of agent behaviors, augmented with several flexibility
enhancing mechanisms (such as events and dispatcher chains) has been
proposed. In particular, HSM (Hierarchical State Machine) extends JADE
framework with uniform message and system events, a multi-level
dispatching mechanism that matches and routes events, and a hierarchical
state machine that is based on the UML state machine model [56, 66].
Using JADE FSMBehaviour as their starting point, to design agent behavior
authors defined HSMBehaviour which inherits from JADE ComplexBehaviour
and can manage a set of nested HSMBehaviour (states) or any type of
behavior. In particular, HSMBehaviour inherits onStart, onEnd and action
method from JADE ComplexBehaviour to represent entry, exit and activity
actions of an UML State, respectively.
Like UML State Machine, transitions among states (HSMTransition), labeled
by an ECA rule, are driven by an event (HSMEvent) and may have source
and destination that are in any state within the entire hierarchy: when a
transition happens across boundary, onStart and onEnd methods code are
guaranteed to be executed in an appropriately hierarchical fashion. When an

13

HSMEvent is delivered to an agent (it is posted in the its message queue),
HSMBehaviour searches for a valid transition in an hierarchical fashion
through invoking trigger methods (passing the HSMEvent) and according to
the returned value of the trigger method, the transition is evaluated if it
should be fire: if the trigger returns true, then action associated to the
transition is executed and the transition to the target state is performed
whereas if any of transitions can fire, event is removed. It’s worthy noting that
events processing in HSM JADE was implemented according to a Run-to-
Completion semantics: if a event that trigger a transition arrives in the middle
of the execution of behavior, its execution is terminated and then the
transition is taken. With respect to the interaction among agents, although
HSM is explicitly event-driven (every action that an agent is subjected to is
translated into an event), interaction among agents is mainly based on
JADE’s interaction model that is asynchronous message passing. In
particular, ACL messages sent by other agents are wrapped in a
MessageEvent objects for uniform handling and processing and delivered to
agents through their message queue. Moreover, system events such as
ExceptionEvent and TimerEvent (external events) and events signaled by
other behaviors and activities of the same agent, such as SuccessEvent and
FailureEvent (internal events) are wrapped in a MessageEvent object. With
respect to agent mobility, features supplied by HSM are the same of those
offered by JADE’s mobility model. To develop agent based systems
according to the HSM model, is made available an visual tool, HSMEditor,
that allow for modeling an HSMBehaviour and generating Java code
associated to the state machine modeled. Authors have also developed a
tool that allows them to visualize the execution of an HSMBehaviour in order
to check agent behaviors.

2.2.3 The Bond agent model
The major components of a Bond agent [10, 75] are: the model of the world,
the agenda, strategies and the multi-plane state machine. The model of the
world represents the information that an agent has about its environment; the
agenda defines the goal of an agent; a strategy generate agent’s actions
(based upon model of the world and agenda); and the multi-plane state
machine is a data structure in which each state has associated a strategy.
Bond model defines the agent behavior as a multi-plane state machine in
which each plane is modeled as a flat finite state machine: multi-plane state
machine can be seen as a different way to expressing parallelism amongst
activity (Statecharts machines express parallelism as concurrent sub-states).
Authors to make multi-plane state machine independent on the model of the
world, adopt a simpler state machine in which transitions are unconditional
and only states can generate actions. In particular, each state is associated
to a strategy that performs actions which are considered atomic from the
agent point of view (events cannot interrupt them). Moreover, adopted state
machine cannot include embedded sub-states.

14

As the current state of each plane of a multi-plane state machine is defined
by the active state, the state of the agent is defined by a vector of states (the
active one for each plane). It is worthy noting that there is interdependency
amongst planes hence all of them share a common model of the world and
the transition triggered by one plane are applied to the whole structure of
planes.
Moreover, the behavior of an agent can be modified at run-time because it is
possible to change the structure of the multi-plane state machine associated
to an agent. Authors defined several operations on agent’s behavior such as
joining, splitting and trimming. Joining two agents produces a new agent
characterized by (i) a multi-plane state machine which contains all the planes
of the joined agents and (ii) a model which is created by merging the models
of the joined agents. In case of splitting of an agent, two agents are obtained
which inherit the full model of the original agent whereas the union of their
planes gives the planes of the original agent. Finally, the Trimming is an
operation which is performed when the multi-plane state machine of an agent
contains states and transitions unreachable and they can be eliminate in
order to make the agent smaller. With respect to the interaction among
agents, the Bond agent system uses asynchronous message passing and
KQML as communication language although authors assert that design
principles are largely independent on the communication language. In
addition to asynchronous message passing, Bond agent system offers [10]:

• support for synchronous communication;
• an implementation of the publish-subscribe model;
• an implementation of the tuples space model based on IBM

TSpace
Moreover, authors argue that agent interaction can be also described in
terms of knowledge sharing then they provide two ways to share the model
of the world which are dependent upon the agent initiating of the process:

• Push mode: an agent copies part of its model to the model of the
other agent

• Pull mode: an agent copies part of the model of the remote agent
into its own model.

With respect to mobility, as authors considered agent migration a rare event
in the life of agents, they deliberately choose to implement a weak migration
model also reflecting the difficulties of migrating running Java threads. In
particular, agents are only allowed to migrate when all their active strategies
(at the time of the request of migration) complete their execution. More in
detail, agent migration is performed when an agent requests migration
through a specific message. Then, the Bond agent system (i) pauses the
agent as soon as its current active strategies are completed; (ii) serializes the
agent; (iii) sends to the new host the agent serialization and the model of the
world held by the agent; (iv) creates a new agent and a new model at
destination; (v) starts the new agent after deletes both the old agent and the
old model in the initial location. To develop agent based systems according
to Bond model several ways have been made available: the multi-plane state

15

machine can be constructed as a program but a more flexible approach is a
declarative approach (Python-based) which is interpreted by an agent
factory; moreover, Bond objects can be visualized and edited through a
visual editor which allows for editing fields and dynamic properties of an
agent.

2.2.4 The Actor model
Authors use the Actor model [2, 3] as a basis for modeling distributed
software architectures since it provides a general and flexible model of
concurrency: Actors may be used to build typical architectural elements
including procedural, functional and object-oriented components.
Conceptually, an Actor encapsulates a state, a single-thread of control and a
set of procedure to manipulate its state. At design level, an Actor is an active
object which consists of a private local state, a set of methods and a globally
unique name; moreover, each Actor is associated to a mail buffer in which
messages sent to it are queued. Actor computation step is defined in terms
of processing messages and consists of removing a message from its mail
buffer, processing it, and, eventually, changing the computational
environment through three (abstract) basic actions:

- Send messages to other Actors;
- Create Actors with specified behaviors;
- become Ready to process the next message.

Such actions are factored into signal-notification pairs: an Actor generates
signal events (which request the system to perform some actions) and then it
blocks itself; as soon as the system sends back a notification event (which
alerts the actor that its request has been performed) the requester Actor
resumes its behavior. In particular, an actor blocked on a:

• ready may be resumed by receiving a deliver notification;
• transmit may be resumed by receiving a continue notification;
• create may be resumed by receiving a newActor notification.

Moreover, in order to enhance the Actor base model, the authors introduced:
(i) the Meta-Actor concept aimed at customize the content of generated
signal, which is an entity capable of processing signals generated by Actors;
(ii) the Actor group concept aimed at model parallel computation, which
represents a multi-thread component of the architecture. With respect to
interaction among agents, Actors interact by asynchronously exchanging
messages to one other: each Actor can generate messages and receive
messages which are queued into its mail buffer. There isn’t any information
about Actors mobility in their model but Actor Foundry, which is a Java-based
programming environment for developing Actor systems, should implement
the weak mobility notion. Currently, Actors modeling has to be performed by
coding because there isn’t any official visual toolkit for developing agent base
systems according to the Actor model.

16

2.2.5 A comparison
With reference to the agent behavior model, Jade offers, among different
agent behavior types, an agent behavior (called FSMBehaviour) based on
flat finite state machines (FSMs), SmartAgent provides an extension of the
Jade FSMBehaviour (named HSMBehaviour) based on hierarchical finite
state machines (HSMs), Bond defines the agent behavior as a multi-plane
state machine in which each plane is modeled as an FSM, and Actors are
based on agents modeled as active objects with state variables and action
methods. More in detail, the execution semantics of the HSMBehaviour,
Bond behavior and the Actor behavior is very similar: a message/event
triggers the execution of an action; when the action execution is terminated
the next available message/event is fetched and processed. Conversely, the
execution semantics of the Jade FSMBehaviour is not driven by
messages/events but by action completions triggering transitions.
With reference to the agent interaction model, all the models are mainly
based on asynchronous message passing, even though Bond agents can
also interact through synchronous message passing, a tuple space based on
the IBM TSpace and a publish/subscribe event model.
With reference to the agent mobility all the models, Jade, SmartAgent, Bond
and Actors (in particular the implementation of Actors carried out in the
ActorFoundry framework [3]) are based on a weak mobility model [52].
In table 2.1 the main features of the above introduced related models with
respect to the three main dimensions of agent modeling are synthesized.

Table 2.1: Comparison of related Agent models.

MODELS/DIMENSIONS BEHAVIOURAL INTERACTION MOBILITY

Jade flat finite state machines
(FSMBehaviour) Message passing Weak

SmartAgent hierarchical finite state machines
(HSMBehaviour) Message passing Weak

Bond multi-plane state machine:
each plane is an FSM

Message passing,
TSpace and P/S Weak

Actors active objects with state
variables and action methods Message passing Weak

2.3 Agent interaction design
Agent interaction design represents a very important stage during the design
process of an agent-based distributed system as it influences both the
efficacy and the efficiency of the developed agent system.
As it initially happened for the agents behavior design, the use of patterns to
drive the agent interaction design is notably increased and a lot of
contributes have been provided in literature [1, 29, 64, 65, 106, 111] which
will be shown in Section 2.4.1. On the other hand, several coordination
models [22] have been introduced in literature to allow the agents interaction

17

design according to the interaction scenarios features which will be shown in
Section 2.4.2.

Table 2.2: Interaction and coordination patterns.

AUTHORS PATTERN DESCRIPTION
Meeting Provides a way for two or more agents to initiate local interaction at

a given host.
Locker Defines a private storage space for data left by an agent before it is

temporarily dispatched (send) to another destination.
Messenger Defines a surrogate agent to carry a remote message from one agent

to another.
Facilitator Defines an agent that provides services for naming and locating

agents with specific capabilities.

Aridor and Lange
[1]

Organized Group Composes agents into groups in which all members of a group travel
together.

Conversation Concerns with a sequence of messages between two agents, taking
place over a period of time: agent messaging may occur within a
context established by previous messages.

Facilitator Allows for interaction among agents which do not have to have
direct knowledge of one another as it is based on a Mediator agent
which provides a gateway or clearinghouse for agent collaboration.

Agent Proxy Enables agents to collaborate directly with one another through a
proxy agent which provides distinct interfaces and allows agent to
be engaged in multiple conversations.

Protocol Establishes conversation policies that explicitly characterize
communication sequences.

Kendall et al.
[64, 65]

Emergent Society Enables reactive agents to collaborate without known protocols as
actions performed by agents can stimulate behaviour of neighbour
agents.

Blackboard Decouples interacting agents from each other as instead of
communicating directly, agents interact through an intermediary
which provides both time and location transparency to the
interacting agents.

Meeting Allows for interaction among agents without the need for explicitly
naming among them as they know a meeting point in which agent
can coordinate themselves through a statically located agent.

Market Maker Allows for interaction among agents through a third party agent
which takes an active role in the coordination process enforcing the
house rules of agent interaction.

Master/Slave Allows for vertical coordination which is used to coordinate the
activity of a delegating agent and two or more delegated agents in
which delegated agents carry out a subtask for delegating agent.

Deugo et al.
[29]

Negotiating Agents Deals with the situation where the interacting agents appear as peers
to each other, but need to align their actions for some reason.

2.3.1 Coordination and interaction patterns
Patterns are reusable solutions to recurring design problems, and provide a
vocabulary for communicating these solutions to others [53]. The purpose is
to increase re-use and quality of code and at the same time reduce the effort
of development of software systems. Selecting patterns as a methodology for
agent development is being justified by referring to the previous successes of
applying patterns in traditional software technology. There is by now a
growing literature on the use of patterns to capture common design practices
for agent systems [72, 107, 111]. In the following, some pattern-based agent
design approaches, which also cover issues related to the design of
interaction among agents, are summarized (see Table 2.2 for a brief
description of each proposed patterns).

18

Aridor and Lange [1] describe a set of domain-independent patterns for the
design of mobile agent systems. They classify mobile agent patterns into
travelling, task, and interaction patterns and propose some patterns
belonging to each the classes. Patterns in the travelling class specify
features for agents that move between various environments, patterns of the
task class specify how agents can perform tasks and patterns of the
interaction class specify how agents can communicate and cooperate. In
particular, with reference to the interaction patterns authors present the
following ones: Meeting, Locker, Messenger, Facilitator, and Organized
Group which concern with locating agents and facilitating their interactions.
Kendall et al. [64] capture common building blocks for the internal
architecture of agents in patterns. Authors suggest a seven-layer architecture
pattern for agents, and sets of patterns belonging to each of the layers. The
presented seven layers are: mobility, translation, collaboration, actions,
reasoning, beliefs and sensory but the exact number of layer may vary.
Compared to the previously mentioned pattern classification scheme in the
work by Aridor and Lange, the layered architecture has a similar logical
grouping of patterns. The mobility layer together with the translation layer
corresponds to the class of traveling, the collaboration layer corresponds to
the class of interaction, and the actions layer corresponds to the class of
task. In particular, with reference to the interaction patterns authors present
the following ones: Conversation, Facilitator, Agent Proxy, Protocol and
Emergent Society which concern with how agents cooperate and work with
other agents. The main difference between this and the previously mentioned
approaches for mobile agents, is that this one aims to cover all main types of
agent design patterns.
Deugo et al. [29] identify a set of patterns for agent coordination, which are,
again, domain-independent. Authors classify agent patterns into
architectural, communication, traveling, and coordination patterns. Moreover,
they identify an initial set of global forces (Mobility and Communication,
Standardization, Temporal and Spatial Coupling, Problem Partitioning and
Failures) which are different types of criteria that engineers use to justify their
designs and implementations. In particular, with reference to the coordination
patterns authors present the following ones: Blackboard, Meeting, Market
Maker, Master/Slave and Negotiating Agents which are well-documented
solutions to recurrent problems related to the coordination among agents.
Kolp et al. [67] propose a catalogue of architectural styles and agent patterns
for designing MAS architectures at a macro- and micro- level adopting
concepts from organization theory and strategic alliances literature. Although
interesting, these patterns define how goals assigned to actors participating
in an organizational architecture will be fulfilled by agents without focus on
coordination issues.

19

2.3.2 Coordination models
Coordination basically implies the definition of a coordination model and
related coordination architecture or related coordination language. In
particular, in the context of Agents, an agent coordination model [22] is a
conceptual framework which should cover the issues of creation and
destruction of agents, communications among agents, and spatial distribution
of agents, as well as synchronization and distribution of their actions over
time. In this framework, the coordinables are the coordinated entities (or
agents) whose mutual interaction is ruled by the model, the coordination
media are the abstractions enabling the interaction among the agents, and
the coordination laws are the rules governing the interaction among agents
through the coordination media as well as the behavior of the coordination
media itself.
To date, agent coordination has been classified by using several taxonomies
[16, 75, 88]. Agent coordination can be classified in control-driven and data-
driven according to the taxonomy proposed in [88]. In control-driven models,
entities receive command and react to them whereas in data-driven models
the entities receive data items, interpret and react to them. Another
interesting coordination models taxonomy is that proposed in [75] in which
coordination models have been classified in endogeneous and exogeneous.
In coordination models belonging to the first category, entities are
responsible for receiving and delivering coordination information whereas in
models belonging to the latter category, the actual coordination is outside of
their scope. However, in the context of Internet-based computing a reference
taxonomy for agent coordination is proposed in [16]; here, the focus is on
agents strongly characterized by mobility. It is worth noting that, although
mobility can be an enabling feature for improving efficiency and effectiveness
in distributed systems, mobility poses further issues on agent coordination as
mobile entities demand for more complex coordination frameworks. The
reference taxonomy for Internet-based mobile agent coordination takes these
issues into consideration and, in particular, classifies coordination models on
the basis of the degrees of spatial and temporal coupling induced by the
coordination models themselves. Spatial coupling requires that the entities to
be coordinated share a common name space or, at least, know the identity of
their interaction partners; conversely, spatial decoupling allows for
anonymous interaction, i.e. there is no need for an acquaintance relationship.
Temporal coupling implies synchronization of the interacting entities whereas
temporal decoupling allows for asynchronous interactions.
On the basis of the reference taxonomy (see Table 2.3), the following
coordination models have been classified: Direct, Meeting-oriented,
Blackboard-based and Linda-like.
In Direct coordination models, agents usually coordinate using RPC-like
primitives or asynchronous message passing. The former coordination
method implies temporal and spatial coupling whereas the latter implies only
spatial coupling as temporal decoupling can be obtained by adopting
message reception queues [115]. The majority of the Java-based mobile

20

agent systems [104], particularly the most famous ones, namely Aglets,
Voyager, Ajanta and Grasshoppers, rely on this model.
In Meeting-oriented models, agents coordinate using implicit or known
meeting points (places where meeting can occour) which allow them to
communicate and synchronize with other participating agents. In particular,
this model solves the problem of locating agents, found in direct coordination,
but requires agents to know the meeting point. Moreover, it requires
synchronization among the agents, e.g. they must be co-located at the
meeting point during at a certain period of time in order to be able to interact
with each other. Examples of systems based on this coordination model are
Ara [91] and MOLE [5].
In Blackboard-based models, agents interact through shared message
repositories at each place, called blackboards, in which agents can store and
retrieve information under the form of messages. The main advantage of this
model is the temporal decoupling: messages are left on the blackboard no
matter where the corresponding receivers are or when they will read the
message. The drawback of backboard systems is the spatial coupling: the
agents have to visit the correct place and agree on common messages types
and formats. Ambit [18] is an example of a system using the blackboard-
based coordination.
In Linda-like models, coordination is also based on a shared namespace, but
unlike blackboards, it uses an associative tuple space which allow for
insertion and retrieval of tuples; such models organize information as tuples
which can be accessed and retrieved through associative pattern-matching.
The main advantage of the Linda-like coordination is its temporal uncoupling
and partial spatial uncoupling. Although it does not require agent
synchronization, the patterns used to access the tuple space embody some
implicit knowledge of the peer agent’s interaction requirements.
Recently new coordination models which can be classified as spatially and
temporally decoupled have emerged in the context of Internet applications: (i)
the reactive tuple space models which enable programmable coordination
spaces [15, 85], (ii) transiently shared tuple space models which handle
interactions in the presence of active mobile entities [93], and (iii) the
publish/subscribe event-based models [19, 27, 87].
The reactive tuple space model extends the simple tuple space model by
introducing computational capability inside the coordination media under the
form of programmable reactions, triggered by operations on the tuple space
or by other reactions, which can influence the behavior of agents. This model
also allows for the separation of concerns between agent computation and
coordination issues.
The transiently shared tuple space [93] is another Linda-like coordination
model. As Linda offers a static, persistent and globally accessible tuple
space, which is scarcely usable in presence of (physical or logical) mobility,
the transiently shared tuple space model attempts to deal with these issues.
In particular, each mobile agent owns a personal tuple space, named ITS
(Interface Tuple Space). Whenever a mobile agent migrates, its ITS is

21

carried with it and merged to the other co-located agent’s ITS making a
transiently shared tuple space. Shared means that co-located agents can
interact through the merged tuple space and transient means that its content
changes according to agent migrations.
In the Publish/Subscribe event-based model, agents coordinate through
asynchronous publication and notification of events so enabling temporal and
spatial decoupling [87]. In particular, to be notified about a published event
an agent has to previously subscribe to the topic/type/context of the
published event.

Table 2.3: A spatial/temporal taxonomy for coordination models.

 Temporal
 Coupled Uncoupled

Coupled Direct Black-board

Spatial Uncoupled Meeting

Linda-like
Reactive tuple space
Transiently shared tuple
space
Publish/Subscribe

2.4 Simulation-based agent-oriented
methodologies

The validation phase of software systems can be founded on several
techniques such as formal methods, testing and simulation. In particular,
testing requires the real deployment of the software system under-
development whereas formal methods and simulation don’t require the real
deployment. Such considerations can drive the choice of the adopted
validation technique especially if the target execution environment is
distributed as it occurs in the case of agent-based systems executing in
Internet-like environments. In fact, agent-based systems are typically
constituted by a huge number of agents executing in a large scale system so
testing could be a very inefficient validation technique; conversely, simulation
and formal methods validation techniques can be effectively used to validate
functional and not functional requirements of agent-oriented designs before
their implementations and deployments. Although formal methods are
recognized as suitable validation techniques of agent-based systems [84],
simulation-based ones have recently emerged.
In fact, to date a few multi agent-based systems development processes
have been proposed in the literature that incorporate simulation to support
the agent-based system development lifecycle with the main focus on the
validation and performance evaluation of the designed solution. In the
following, we briefly describe some interesting approaches for the
development of agent-based systems which explicitly incorporate simulation

22

such as Electronic Institutions [103], DynDEVS/James [99], CaseLP [76],
GAIA/MASSIMO [41], TuCSon/pi [54], Joint Measure [101], and
Ingenias/RePast [90].

2.4.1 Electronic Institutions
In [103] an integrated development environment for the engineering of multi-
agent systems (MASs) as Electronic Institutions (EI) is presented. EIs
provide a computational analogue of human organizations in which intelligent
agents playing different organizational roles and interact to accomplish
individual and organizational goals; authors define an EI as a performative
structure of multi agent protocols along with a collection of normative rules
that can be triggered off by agents’ actions performed through speech acts.
The development environment, aimed at facilitating the iterated and
progressive refinement of the development cycle of EIs, is composed of a set
of tools supporting the design, validation through simulation, development,
deployment and the execution of EIs. In particular, the simulation tool
SIMDEI, allows for the animation and analysis of the rules and protocols
specification in an EI. Moreover, SIMDEI supports simulations of EIs with
varying populations of agents to conduct what-if analysis. The institution
designer is in charge of analyzing the results of the simulations and returning
to the design stage if they differ from the expected ones.

2.4.2 DynDEVS
In [99] a modeling and simulation framework (DynDEVS) for supporting the
development process of MAS from specification to implementation is
proposed. Authors advocate the use of controlled experimentation in order to
allow for the incremental refinement of agents while providing rigorous
observation facilities. The exploited framework is JAMES (Java Based Agent
Modeling Environment for DEVS-based Simulation) which is aimed at an
agent-oriented model design and execution supporting a modular and flexible
construction of experimental frames for MASs [108]. In particular, JAMES
aims at exploring the integration of the agents paradigm within a general
modeling and simulation formalism for discrete-event systems, DEVS
(Discrete Event Systems Specification). Such formalism lends itself to an
object-oriented model design and execution, facilitating the construction of
experimental frames.

2.4.3 CaseLP
In [76] a logic based prototyping environment for multi-agent systems,
CaseLP (Complex Application Specification Environment Based on Logic
Programming) is presented. Authors propose an architectural description
language which can be adopted to describe the prototype at the system
specification level, in terms of agent classes, instances, their provided and
requested services and communication links. Moreover, at the agent

23

specification level, authors propose a rule-based not executable language
which can easily define the behavior of reactive and proactive agents; with
respect to the implementation of prototype, authors propose a platform-
independent prolog-based language in which new primitives have been
defined such as communication capabilities and safe state updates.
It is worth pointing out that from a simulation point of view, CaseLP is a time-
driven centralized simulator with a global time known from all the agents in
the system. Moreover, CaseLP integrates simulation tools for visualizing the
prototype execution and for collecting the related statistics; more in detail, the
CaseLP visualizer tool provides documentation about events that happen at
the agent level during the MAS execution. Developers according to their
needs can instrument the code of some agents after it has been loaded by
adding probes to the code of agents. In this way, events related to state
changes and /or exchanged messages can be recorded and collected for on-
line and/or off-line visualization.

2.4.4 TuCSoN/ π-calculus
In [54] authors promote the use of formal tools, such as Stochastic π-
Calculus process algebra, for simulating the dynamics of self-organizing multi
agent systems through higher-level models defined at the early stages of
design. In particular, authors assert that this approach appears to be almost
unavoidable in order to foster evolving ideas and design choices, and to
effectively tune parameters of the final system. Moreover, authors promote
the use of SpiM (Stochastic PI-calculus Machine) which can be effectively
used to simulate the Stochastic π-Calculus specifications and to track the
dynamics of global system properties in stochastic simulations, validating
design directions, inspiring new solutions, and determining suitable system
parameters.

2.4.5 Joint Measure
In [101] a layered architectural framework to support agent-based system
development in a collaborative, multidisciplinary engineering setting is
proposed. In particular, such framework supports incremental specification,
design, implementation, and simulation of agent-based systems. As authors
distinguish between performing agents (executing in real-world settings) and
simulated agents (simulated in a virtual environment), the proposed
framework is intended to form the basis for environments that support
development of agents, in both performance and simulation modes, as well
as in hybrid combination (both performing and simulated agents interacting at
the same time). Authors assert that for complex systems (e.g., distributed
agent-oriented systems) adopting a single architectural framework, both for
simulation and system development, can offer key advantages such as
enable designers to study competing/alternative designs by employing a
mixture of “simulated” and “performing” agents and, therefore, support
migration from simulation design to operational design. The simulation is

24

enabled by Joint MEASURE (Mission Effectiveness Analysis Simulator for
Utility, Research and Evaluation) which is built upon DEVS/HLA, a generic
HLA-compliant distributed simulation environment. It’s worthy noting that
although Joint MEASURE affords a baseline to consider the requirements for
agent development simulation environments, it is not intended to focus on
agents per se.

2.4.6 INGENIAS/RePast
In [90] authors propose an agent-oriented methodology aimed to support
modeling and simulation of social systems based on MASs. In particular, with
respect to the modeling, they propose the use of an agent-oriented modeling
language to specify MAS models representing complex social systems.
Whereas, with respect to the simulation, authors propose the use of
simulation toolkits (RePast, MASON, etc) that execute code obtained through
MAS models transformation according with Model Driven Engineering (MDE)
practices. This methodology is supported by a set of tools belonging to the
IDK (INGENIAS Development Kit), which facilitates the edition of models and
the definition of transformations for automatic code generation. Currently, the
defined software component of IDK aimed at automatic code generation
implements the mapping from INGENIAS models to RePast simulation
toolkit.

2.4.7 GAIA/MASSIMO
In [41] an integrated approach for the development and validation through
simulation of MASs is proposed. Such approach centers on the instantiation
of a software development process which specifically includes a simulation
phase that makes it possible the validation of a MAS before its actual
deployment and execution. In particular, the requirements capture is
supported by a goal-oriented approach based on TROPOS methodology, the
analysis and design phases are supported by the Gaia methodology, the
detailed design phase is supported by the Agent-UML and the Distilled State-
Charts formalisms, the implementation phase is supported by the MAO
Framework, the simulation phase is enabled by a Java-based event-driven
simulation framework, and the deployment phase is supported by the MAAF
framework which allows for the adaptation of the MAO Framework to
programming abstraction provided by specific Java-based agent platforms.

2.4.8 A comparison
Although all the overviewed methodologies offer different approaches to the
modeling and simulation of MAS, they are centered on the use of simulation
to validate and evaluate the design of the MAS under-development. Actually,
few of them represent a full-fledged methodology (i.e. covering all the MAS
development lifecycle) for the simulation-driven development of general-
purpose MAS. Moreover, only INGENIAS and EI offer visual modeling tools

25

for supporting the development process. In table 2.4 the methodologies are
compared with respect to the key features for the provision of an effective
development of distributed agent systems: (i) Agent model (Mobility, Light-
weight Reactive/Proactive agent behavior, Multi-coordination); (ii)
Methodology (Dynamic validation methods before implementation,
Integrability with other methodologies); (iii) CASE Tool. In particular, the
methodology proposed in this thesis supports all the mentioned features as it
will be described in detail in the next section.

Table 2.4: Comparison among simulation-based methodologies for MAS development.

 Agent Model Methodology CASE Tool

 Multi-
Coord.

Light-Weight
R/P Behavior

Mobility Dynamic
validation
through
simulation

Integrability

TuCSon/Pi X

EI X X

DynDEVS X X X partial

GAIA/Massimo X X X X

JM-DEVS/HLA X

Ingenias/Repast X X

CaseLP partial

 X X

ELDAMeth X X X X X X

27

3 ELDAMeth: A Methodology for the
Simulation-based Prototyping of DAS

ELDAMeth is a methodology specifically designed for the simulation-based
prototyping of distributed agent systems (DAS). It is based on the ELDA
agent model and related frameworks and tools [44, 46], and on an iterative
development process covering the modeling, coding and simulation phases
of DAS. ELDAMeth can be used both stand-alone and in
conjunction/integration with other agent-oriented methodologies which fully
support the analysis and (high-level) design phases. In particular, the
development process of ELDAMeth (see Figure 3.1) consists of the following
three phases:
- The Modeling phase (see section 3.1) produces an ELDA-based MAS

design object which is a specification of a MAS fully compliant with the
ELDA MAS meta-model (MMM). This design object can be produced
either by (i) the ELDA-based modeler which uses the ELDA MMM and
the ELDATool [32], a CASE tool supporting visual modeling and coding
of ELDA-based MAS, or by (ii) translation and refinement of design
objects produced by other agent-oriented methodologies such as PASSI
[23], GAIA [113], MCP [42], and others [12, etc]. In particular, while the
translation process centers on (semi) automatic model transformations
based on the MMM of the employed methodology and the ELDA MMM,
the refinement process is usually carried out manually by the ELDA-
based Modeler by using the ELDATool.

- The Coding phase (see section 3.2) produces an ELDA-based MAS
code object which is a translation of the ELDA-based MAS design object
carried out manually or automatically (by means of the ELDATool)
according to the ELDAFramework, which is a set of Java classes
formalizing all the modeling abstractions of the ELDA MMM.

- The Simulation phase (see section 3.3) produces the Simulation Results
in terms of MAS execution traces and calculation of the defined
performance indices which must be carefully evaluated with respect to
the functional and non-functional requirements. Such evaluation can lead
to a further iteration step which starts from a new (re)modeling activity. In
particular, the Simulation Results come from the execution of the ELDA-
based MAS simulation object carried out through the ELDASim engine

28

(ELDASim is a Java-based event-driven simulation framework for ELDA
agents). The ELDA-based MAS simulation object is obtained by
synthesizing the ELDA-based MAS code object with the simulation
parameters and performance indices, defined on the basis of the
requirements, by means of the ELDASim framework.

In the following sections (3.1-3.3) each phase of the ELDAMeth process is
described in detail.

PASSI GAIA MCP Other
Methodologies

ELDA-based
MMM

PASSI-->ELDA
Translation

&Refinement

GAIA-->ELDA
Translation

& Refinement

MCP-->ELDA
Translation

& Refinement

OM-->ELDA
Translation

& Refinement

ELDA-based
Modeller

ELDA
Framework

M
O

D
ELLING

C
O

D
IN

G

ELDA-based
MAS CO

ANALYSIS & DESIGN

ELDASim
Framework

SIM
ULATIO

N

ELDA-based
MAS SO

Simulation
Parameters

&
Performance

Indices

ELDASim
Engine

Simulation
Results

*

Functional
&

Non-functional
Requirements

[iterate]

EVALUATION

MMM MMM MMM MMMs

ELDA Tool

SYNTHESIS

ELDA-based
MAS DO

ELDA-based
MAS DO

ELDA-based
MAS DO

ELDA-based
MAS DO

ELDA-based
MAS DO

MMM
DO
CO
SO

=
=
=
=

MAS Meta-Model
Design Object
Code Object
Simulation Object

Automatic Code
Generation

Simulator
Program
Synthesis

Simulator
Execution

Figure 3.1: Iterative process for prototyping ELDA-based MASs.

29

3.1 Modeling phase
The aim of the modelling phase is to fully specify the DAS with respect both
to micro-level and macro-level aspects [84]. In particular, to model micro-
level aspects of DAS, agent models based on lightweight architecture,
asynchronous messages/events and state-based programming such as Jade
[7], Bond [10], and Actors [2], have demonstrated great effectiveness. The
modeling phase relies on the ELDA model that is based on the
characteristics of the aforementioned models and, additionally, offers new
abstractions suitable for distributed applications. In particular, the ELDA
model is founded on the following basic concepts:
- Behavior: agent behavior can be specified both in terms of environment

reactions in which an agent executes (fluctuations of available resources,
network topology modifications, actions of others agents, etc.) and in
terms of pro-active actions aimed to pursuing a specific objective;

- Interaction: agents interactions can be specified through different
coordination models according to the required degree of temporal and
spatial coupling;

- Mobility: both autonomous agent migration and passive agent migration
are performed according to a strong mobility model in which code, data
and execution state are transparently restored;

Moreover, to easily model macro-level aspects of DAS, the ELDA MAS meta-
model is defined which, according to the distinctive ELDA modelling
concepts, provides a structured representation of the system under-
development.
In the following sections, both the ELDA model and the ELDA MAS meta-
model will be described in detail.

3.1.1 ELDA model
The Event-driven Lightweight Distilled Statecharts-based Agent (ELDA)
model is based on the concept of event-driven lightweight agent which is a
single-threaded autonomous entity interacting through asynchronous events,
executing upon reaction, and capable of migration. In particular, an event-
driven lightweight agent is represented by the following tuple:

<Id, Beh, DS, TC, EQ>,
where, Id is the unique identifier of the agent, Beh is the agent behavior, DS
is the data space or world knowledge of the agent, TC is the single thread of
control supporting agent execution, and EQ is the event queue containing the
incoming events targeting the agent.
The ELDA model relies on the Behavioral, Interaction and Mobility models.
The Behavioral model allows for the specification of the agent behavior (how
the agent reacts to a specific set of events) through the definition of agent
states, transitions among states, and agent reactions (i.e. atomic actions
attached to transitions); in particular, an agent reaction can produce
computations, and/or generation of one or more events, or a migration. The
Interaction model, which is based on asynchronous events, enables multi-

30

coordination among agents and between agents and non-agent components
through the exploitation of multiple coordination structures. The Mobility
model is based on a coarse grain strong mobility model which allows for
agent transparent migration (both autonomous and passive) and easy
programming of the migration points.
These models are founded on the Distilled StateCharts (DSCs) formalism
[50] which is derived from the Statecharts formalism [59], a visual formalism
that has gained notable success in the Software Engineering community
mainly due to its appealing graphical features and the means it offers for the
modeling of complex software systems. In the following sections, the DSC
formalism is briefly shown and then, the Behavioral, Interaction and Mobility
models are presented in detail.

3.1.1.1 Distilled StateCharts formalism
The Distilled StateCharts (DSCs) formalism [50] is derived from the
Statecharts formalism which, formerly introduced by Harel, was included in
UML [82] and currently is the most used formalism for modeling the behavior
of object-oriented reactive systems [58]. DSCs are obtained from Statecharts
as follows: (i) deriving some basic and advanced characteristics from
Statecharts (deriving process), (ii) imposing some constraints on Statecharts
(constraining process), and (iii) augmenting Statecharts with some features
(augmenting process). In particular such processes are described in the
following and exemplified with respect to the example DSC shown in Figure
3.2:
- Deriving process. DSCs derive the following characteristics from

StateCharts:
o Structure based on a higraph consisting of rounded rectilinear blobs

representing states, linked together with transitions.
o Transitions based on ECA rules defined as E[C]/A, when E(vent)

occurs and C(ondition) holds, the transition fires and A(ction) is
atomically executed.

o OR decomposition of states in hierarchies of states among which the
enclosing states are called composite state (see States S0, S2, S3,
S4), the nested states are called substates and states without nested
states are called simple states (see States S1, S5, S6, S7).

o Inter-level state transitions that can originate from or lead to nested
states on any level of the hierarchy (see Transition t7).

o History entrance pseudostates (shallow and deep) allow entering
substates which were most recently visited. With respect to the
composite state on which the pseudostate appears, shallow history
indicates that history is applied only at the level of the composite state
(see State S4) whereas deep history applies the same rule recursively
to all levels of the state hierarchy of the composite state (see State
S2).

31

o Default entrances indicate the substate of a composite state to be
entered when a transition targets its border (see Transitions t0, t2, t4,
t5).

o Default history entrances indicate the substate of a composite state to
be entered in the absence of any history (see Transition t3, t9).

- Constraining process. DSCs impose the following constrains:
o Each DSC has an enclosing top state (see State S0).
o States do not include activity, entry and exit actions. So activity is only

carried out under the form of atomic actions labeling transitions.
o Transitions (apart from default entrances and default history entrances)

are always labeled by an event.
o Each composite state has an initial pseudostate (see State S0, S2,

S3, S4) from which the default entrance originates, which can only be
labeled by an action (see Transitions t0, t2, t4, t5).

o Run-to-completion execution semantics: an event can be processed
only if the processing of the previous event has been fully completed.
The sequence of operations which starts from fetching an event from
the event queue to its complete processing is called run-to-completion
(RTC) step.

- Augmentation process. DSCs augment Statecharts with the following
features:

o Events are implicitly and asynchronously received through an event
queue.

o To explicitly and asynchronously emit events the action language
provides the primitive generate(<event>(<parameters>)), where event
is an event instance and parameters are its formal parameters
including the sender, the target, and (possibly) a list of specific event
parameters (see Section 3.1.1.3).

o Variables can be declared in each state and inside the actions so
forming a hierarchical data space.

3.1.1.2 Behavioral model
The Behavioral model allows for the specification of the agent behavior using
the DSC formalism that is through the definition of agent states, hierarchical
data-space, transitions among states, and agent reactions (i.e. atomic
actions attached to transitions). In this way, each ELDA behavior is forged
according to an extended version of the FIPA agent lifecycle template [35] in
which the ACTIVE state is always entered through a deep history
pseudostate (DHS) to restore the agent execution state after agent migration
and, in general, after agent suspension. In particular, such ACTIVE state
contains the active DSC (ADSC) composite state to which the default
entrance of the DHS points: agent modelers can only refine the ADSC state
to customize agent’s behavior leaving it compliant with the FIPA agent
lifecycle specifications. The resulting FIPA template of an ELDA agent is
shown in Figure 3.3 by using both the DSC formalism and a term-rewriting
formalism [70].

32

S0

S1

S2

H*

S3

S4

H

S5 S6

S7

S1

S2

H*

S3

S4

H

S5 S6

S7

H*

S3

S4

H

S5 S6

S7

S4

H

S5 S6

H

S5 S6

S7

t2

t3

t4

t5

t6

t7t8

t9

t0

t1

t10

t9

DSC ABSTRACTION EXAMPLE
Simple State S1, S5, S6, S7
Composite State S0, S2, S3, S4
Default entrances t0, t2, t4, t5
Default history entrances t3, t9
History entrance pseudostates H, H*
Final Transition t10
Inter-level state transition t7, t8

Figure 3.2: An example of Distilled StateCharts.

As previously mentioned, in addition to computations, and/or migration, agent
reactions can generate one or more events (see Section 3.1). Such feature
can be used to model pro-activity in agents behavior in terms of events
generated by agent itself driving new agent reactions. To exemplify such kind
of pro-activity, the ADSC of an agent is shown in Figure 3.4. In particular,
when the agent is in state A and the event E1 is handled, the action Ac1 is
atomically executed and, at the end of its execution, the agent goes into state
B and the RTC step is completed; as the action Ac1 generates the event E2,
the agent will change its current state into state B and will execute the action
Ac2. The state change from A to B is driven by the agent itself in a proactive
way.

33

STATES:
Composite States = {TopState, ACTIVE, ADSC},
Simple States = {INITIATED, TRANSIT, SUSPENDED, WAITING},
Final State=FS, Deep History Pseudostate=DHS,
Initial State=TopState(INITIATED)
TRANSITIONS:

S)TopState(F)TopState(x:t
S)TopState(F)TopState(x:t

)CTIVE(DHS)TopState(AAITING)TopState(W:t
AITING)TopState(WCTIVE(x))TopState(A:t

)CTIVE(DHS)TopState(AUSPENDED)TopState(S:t
USPENDED)TopState(SCTIVE(x))TopState(A:t

)CTIVE(DHS)TopState(ARANSIT)TopState(T:t
RANSIT)TopState(TCTIVE(x))TopState(A:t

)CTIVE(DHS)TopState(ANITIATED)TopState(I:t

Quit
9

Destroy
8

WakeUP
7

Wait
6

Resume
5

Suspend
4

Execute
3

Move
2

Invoke
1

⎯⎯→⎯
⎯⎯ →⎯

⎯⎯⎯ →⎯
⎯⎯ →⎯

⎯⎯ →⎯
⎯⎯⎯ →⎯

⎯⎯ →⎯
⎯⎯ →⎯
⎯⎯ →⎯

Default Entrance of DHS = ADSC;
notation: A(B) = A encloses B, A(x) = any state inside A

Figure 3.3: The FIPA-based template of the agent behavior.

STATES:
Simple States = {A, B, C}
TRANSITIONS:

(C)))CTIVE(ADSCTopState(A(B)))CTIVE(ADSCTopState(A:t

(B)))CTIVE(ADSCTopState(A(A)))CTIVE(ADSCTopState(A:t
Ac2 / E2

11

Ac11/ E
10

⎯⎯⎯ →⎯

⎯⎯ →⎯

Default Entrance of ADSC=A;
ACTIONS:

2)generate(E :Ac1
Figure 3.4: An example of agent proactiveness.

34

3.1.1.3 Interaction model
Interactions of ELDA agents are based on Events which formalize both self-
triggering events (Internal events) and requests to or notifications from the
local agent server (Management, Coordination and Exception events).
Events are further classified into OUT-events which are generated by the
agent and always target the local agent server and IN-events which are
generated by the local agent server and delivered to target agents. In
particular, an agent can generate through an OUT-event a service request
(management, coordination, resource access, timer request, etc) and, if both
the agent holds privileges and request is correct, the service will be supplied
by the execution infrastructure. Moreover, depending on the type of the
requested service, the requester agent will receive a notification through an
IN-event which contains information about the service accomplishment or
failure.

3.1.1.3.1 Internal Events
Internal events are generated by agents for proactively driving their behavior.
In particular, a generated internal event is placed into the event queue of the
generating agent so an internal event can be considered as both OUT and
IN.

3.1.1.3.2 Management Events
Management events (see Table 3.1) which include requests to and
notifications from the local agent server are further classified with reference
to the following functionalities/services: agent lifecycle management, timer
setting, and resource access.
The agent lifecycle management events allow for the management of agent
creation, cloning, migration, suspension and destruction. In particular:

- agent creation is supported by the OUT-event CREATE and the IN-
event CREATENOTIFY, which respectively formalize the request for
the creation of one or more agents and the creation notification (if
requested);

- agent cloning is enabled by the OUT-event CLONE and the IN-event
CLONENOTIFY, which respectively formalize the request for cloning
of an agent and the cloning notification (if requested);

- agent migration is requested by the OUT-event MOVEREQUEST,
which embodies the identifier of the agent to be migrated and the
destination agent server location, and is actually carried out after
delivering the IN-event MOVE to the agent; after migration the agent
execution is resumed through the IN-event EXECUTE (see Section
3.1.1.2);

- agent waiting, suspension, and quit are respectively requested
through the OUT-events WAITREQUEST, SUSPENDREQUEST, and
QUITREQUEST, and actualized through the IN-events WAIT,
SUSPEND and QUIT; a waiting agent is waken up through the IN-

35

event WAKEUP whereas a suspended agent is resumed through
the IN-event RESUME; finally, an agent is started and destroyed by
the agent server through the IN-events INITIATE and DESTROY,
respectively.

The timer setting events allow for timing agent activities. In particular, the
OUT-events CREATETIMER, STARTTIMER, STOPTIMER, RESETTIMER,
RELEASETIMER allow for the creation, start, stop, reset and release of timers.
A created timer is notified through the IN-event TIMERNOTIFY whereas a
timeout event (i.e. an event raised when the timeout expires) is derived from
the IN-event TIMEOUTNOTIFY.
The resource access events allow for access to the resources of the agent
server such as files, console, databases, and sensor/actuators. A resource is
requested through the OUT-event RESOURCEREQUEST and granted through
the IN-event RESOURCENOTIFY. An input operation on a resource is
requested through the OUT-event RESOURCEINPUTREQUEST and the provided
input is sent to the agent through the IN-event RESOURCEINPUT; an output
operation on a resource is requested through the OUT-event
RESOURCEOUTPUT; finally, a resource is released through the
RESOURCERELEASE event.

3.1.1.3.3 Coordination Events
Coordination events (see Table 3.1) enable coordination acts between
agents and between agents and non-agent components (e.g. remote objects,
web services) according to specific coordination models. The inter-agent
coordination models considered are the Direct (synchronous and
asynchronous), the Tuple-based, and the Publish/Subscribe event-based
models, whereas the considered interactions between agent/non-agent
components are a general RMI Object model and a Web Services model. In
particular:

- The Direct model is supported by the OUT-event MSGREQUEST
and the IN-event MSG for asynchronous message passing, and by
the OUT-event RPCREQUEST and the IN-event RPCRESULT for
synchronous message passing. MSGREQUEST formalizes a
request for sending an asynchronous message and contains the
actual message of the MSG type to be sent, whereas MSG
contains the message content to be delivered to the target agent.
RPCREQUEST formalizes a request for sending a synchronous
message and contains the message of the MSG type to be
delivered to the target agent along with the back event of the
RPCRESULT type. When the receiving agent accomplishes the
request, the return value is encapsulated in the RPCRESULT
previously specified which is passed to the requesting agent.

- The Linda-like Tuple-based model is enabled by the OUT-events
IN, OUT, and RD, and by the IN-event RETURNTUPLE. OUT, IN, and
RD formalize the corresponding Linda primitives for insertion,
extraction and reading of a tuple, respectively. IN and RD can be

36

either synchronous or asynchronous whereas OUT is only
asynchronous. RETURNTUPLE embodies the tuple/s associated to a
previously submitted IN or RD event.

- The Publish/Subscribe event-based model is supported by the
OUT-events SUBSCRIBE, UNSUBSCRIBE, and PUBLISH, and by the
IN-event EVTNOTIFICATION. SUBSCRIBE and UNSUBSCRIBE
respectively formalize subscription and unsubscription to given
events/topics, PUBLISH embodies a generated event, and
EVTNOTIFICATION, which is specified in a previously submitted
SUBSCRIBE event, contains an event notification.

- The RMI Object model is supported by the OUT-event RMIINVOKE
and the IN-event RMIRETURN for the invocation of methods on non-
agent components. RMIINVOKE contains the information needed to
invoke a remote method on a remote object along with the back
event of the RMIRETURN type which will embody the return value, if
any, of the invoked method.

- The Web Services model is supported by the OUT-event
SERVICEDISCOVERY, WSDLREQUEST, SERVICEINVOKE and by the IN-
event DISCOVERYRESULT, WSDLRESULT e SERVICERESULT.
SERVICEDISCOVERY formalizes the service discovery request and
the DISCOVERYRESULT, which is sent back to the agent, contains
the list of discovered services. WSDLREQUEST formalizes the
WSDL request of the chosen service and the corresponding reply
is provided through the WSDLRESULT event. SERVICEINVOKE
formalizes the service invocation request and a possible return
value is sent back through the SERVICERESULT event.

In addition, the direct model was purposely extended to enable agents to
communicate using ACL messages [34] by means of the IN-event ACLMSG
(extending the IN-event MSG) which formalizes a message according to the
ACL structure (performative, sender, receiver, reply-to, content, language,
encoding, ontology, protocol, conversation-id, reply-with, in-reply-to, reply-
by).

37

Table 3.1: Classification of Management and Coordination events.

MANAGEMENT
Class Event Type OUT Event Type IN

CREATE CREATENOTIFY
CLONE CLONENOTIFY

MOVEREQUEST MOVE, EXECUTE
WAITREQUEST WAIT, WAKEUP

SUSPENDREQUEST SUSPEND, RESUME
QUITREQUEST QUIT

INITIATE

LIFECYCLE

 DESTROY
CREATETIMER TIMERNOTIFY
STARTTIMER TIMEOUTNOTIFY
STOPTIMER

RESETTIMER
TIMER

RELEASETIMER

RESOURCEREQUEST RESOURCENOTIFY
RESOURCEOUTPUT

RESOURCEINPUTREQUEST RESOURCEINPUT RESOURCE

RESOURCERELEASE

COORDINATION
Model Event Type OUT Event Type IN

MSGREQUEST MSG
DIRECT RPCREQUEST RPCRESULT

RD, IN RETURNTUPLE
TUPLE-BASED OUT

SUBSCRIBE
UNSUBSCRIBE

P/S_EVENT-
BASED PUBLISH EVTNOTIFICATION

RMI OBJECT RMIINVOKE RMIRETURN
SERVICEDISCOVERY DISCOVERYRESULT

WSDLREQUEST WSDLRESULT WEBSERVICES
SERVICEINVOKE SERVICERESULT

3.1.1.3.4 Exception Events
Exception events are modeled as IN-events which are sent from the local
agent server to agents to notify the impossibility to execute services which
were requested through the generation of corresponding OUT-events. An
exception is defined per each OUT-event and includes the description of the
raised exception and its typology. An exception also contains the causing
Event, i.e. the instance of the event which has not been served by the local
agent server and caused the exception. The exceptions are organized into a
hierarchy which mirrors that of the Management and Coordination OUT-
events.

38

3.1.1.4 Mobility model
The mobility model of ELDA agents is based on a strong mobility model
which allows retaining the agent execution state. With respect to a fine-grain
mobility type in which the agent migration can occur on a per-instruction
basis the offered strong mobility model is of the coarse-grain type as ELDA
agents can migrate on a per-action basis (i.e. after the execution on an
action where an action is a set of instructions atomically executed). In
particular the migration points of an ELDA agent match with the end of the
RTC step (see Section 3.1.1.1) and represent the only agent execution
points in which MOVE events can be processed.
The migration of ELDA agents can be either autonomous (i.e. triggered by
the agent itself) or passive (i.e. enforced by the system or induced by other
agents) [114]. Specifically, in case of autonomous migration, migration points
are known by the agent as they are specified in the agent behavior through
an appropriate definition of states, events and transitions. In case of passive
migration, migration points are not known in advance as they are induced by
other agents or by the system; then, to obtain a behavior more reactive to
passive migration could be necessary to program an ELDA agent with finer
granularity of its actions.
The ELDA migration process is defined as follows. According to the FIPA
template (see Figure 3.3 for the referred transitions), an ELDA agent after
receiving the MOVE event passes into the Transit state (see t2) where it rests
until the migration is completed; at the destination location the ELDA agent
receives the EXECUTE event, generated by the system, which brings the
ELDA agent back into the state it was before the migration (see t3) by
retaining the same execution state. State retention is intrinsic due to (i) the
properties of the DSCs, particularly empty states and run-to-completion
semantics, and (ii) the structure of the FIPA-based template, specifically the
entrance with deep history in the ACTIVE state (see Section 3.1.1.2). In fact,
after processing an event the execution state of an ELDA agent is
automatically stored into its ACTIVE state so when the ELDA agent migrates
it goes into the TRANSIT state without modifying its execution state as no
exit action is allowed; after migration it is resumed and the ACTIVE state is
re-entered through the deep history pseudostate which allows to set the
current state to the state prior to migration without modifying the execution
state as no entry action is allowed.
To exemplify the migration mechanism defined above, the ADSC of an
example agent is shown in Figure 3.5. In particular, when the agent is in
state A and the event E is fetched and guard G holds, the action Ac is
atomically executed. At the end of its execution the agent goes into state B
and the RTC step is completed.

39

STATES:
Simple States = {A, B}
TRANSITIONS:

(B)))CTIVE(ADSCTopState(A(A)))CTIVE(ADSCTopState(A:t Ac / [G] E
10 ⎯⎯⎯ →⎯

Default Entrance of ADSC=A;

Figure 3.5: ADSC of an ELDA.

If a MOVE event arrives during the execution of Ac it is enqueued as it cannot
be processed until the end of RTC step; after the completion of the RTC
step, the agent is ready to process the MOVE event and then transition t2
(see Figure 3.3) is fired as follows:

RANSIT)TopState(T(B)))CTIVE(ADSCTopState(A:t Move
2 ⎯⎯ →⎯ ;

where the variable X is replaced by the current state (B) of the agent. This
firing causes the update of the DHS to the simple state ADSC(B) to keep
memory of the left state.
After migration the EXECUTE event is delivered and transition t3 is fired as
follows:

(B)))CTIVE(ADSCTopState(ARANSIT)TopState(T:t Execute
3 ⎯⎯ →⎯ ;

where DHS is replaced with its current value.
The agent is therefore reactivated in the same execution state it was before
migration as the agent execution state is represented by the current state
and the values of the history pseudostates of the agent behavior. The agent
data are automatically preserved due to the absence of entry and exit actions
which could be executed during agent migration which makes the agent
behavior pass from the Active to the Transit states and vice versa.

3.1.2 ELDA MAS Meta-Model
The modeling of agent-based systems based on the ELDA model is carried
out through the ELDA MAS meta-model (ELDA MMM) which was specifically
defined to provide design abstractions concerning with both agent modeling
and environment modeling. However, as agent-system domains could
require specific design abstractions which haven’t been originally included
within the ELDA MMM, the structure of the ELDA MMM was suitably
designed to be extensible; in fact, to increase the degree of environment
modeling, ELDA MMM makes it possible to introduce new design
abstractions (such as new services providers or new coordination spaces)
which characterize a specific execution environment. An example of such
extension mechanism will be shown in Section 3.1.2.1.
As the ELDA MMM contains abstractions which concern very different
aspects of agent-system modelling, its presentation is organized in six views
correlated as shown in Figure 3.6:
- Agent View, which represents the structure of an ELDA agent and its

relationships with the coordination and system spaces.

40

- Event View, which represents the structure of events.
- SystemSpace View, which represents the structure of the system space.
- CoordinationSpace View, which represents the hierarchy of the

coordination spaces.
- DSC View, which represents the structure of a DSC.
- FIPATemplate View, which represents the structure of the FIPA template

of the ELDA behavior.

DSC View Event View

CoordinationSpace View

FIPATemplate View

SystemSpace View

Agent View

<<import>>

<<import>> <<import>>

<<import>>

<<import>>

<<import>>

Figure 3.6: ELDA meta-model: Top-Level View.

As shown in the Agent View (see Figure 3.7) an ELDA agent is composed of
a single behavior which is specified through a refined version of the FIPA
template (see Figure 3.3) whose structure is shown in the FIPATemplate
View (see Figure 3.10): in particular, the FIPA template as well as the ADSC
of an ELDA agent is modeled according to the DSC structure shown in the
DSC View (see Figure 3.8).
The Agent View also shows that an ELDA agent can interact with the System
Space, which provides system services, through the ManagementOUT and
ManagementIN events, and with the Coordination Space, which provides
coordination services, through the CoordinationOUT and CoordinationIN
events. These events along with the Internal and Exception events, defined
in Section 3.1.1.3, are included in the Event View (see Figure 3.10).

ELDA

CoordinationSpace View::CoordinationSpace

Behavior

SystemSpace View::SystemSpace

Event View::Event

1 1

Event View::Coordination

Event View::Management

Event View::Internal

FIPATemplate View::FIPATemplate1 1
*

1..*

1 1..*

1 1..*

Event View::CoordinationIN

Event View::CoordinationOUT

+receiver

+sender

*

*

+sender

+receiver

*

*

Event View::ManagementIN

Event View::ManagementOUT

+receiver

+sender

*

*

+sender

+receiver

*

*

Figure 3.7: ELDA meta-model: Agent View.

41

Event View::Event

0..1

Variable

State Transition

Guard Action

0..1

*

0..1

*

Function
*

*

*

*

+target

+source

*

*

SimpleStateCompositeState

LocalDataSpace

1

0..1

+outer

+inner

0..1

*
+outer

+inner

0..1

*

+parent +child

0..1 0..*

1 *

InitialState

ShallowHistory

TopState

DeepHistory

FinalStateDSC

1

1

1

0..1

1
0..1

1 1 DefaultEntrance DefaultHistoryEntrance

+parent

+child

0..1

0..*

1 1

Figure 3.8: ELDA meta-model: DSC View.

Active

1

1

DSC View::Transition

DSC View::CompositeState

FIPATopState

Initiated
Suspended

Transit Waiting

1

1

1

1

1

1

1

1

ADSC

1

1

DSC View::InitialState

DSC View::TopState

DSC View::DeepHistory

1

1

ActiveDeepHistory

DSC View::FinalState

FIPAFinalState

1

1

FIPAInitialState

1

1

Invoke

DestroyQuit

Suspend

Resume

Wait

WakeUp

Move

Execute

DSC View::Transition DSC View::Transition

ActiveInitialState

1

1

DSC View::DefaultHistoryEntrance

FIPATemplate

1

1

DSC View::DSC

DSC View::DefaultEntrance

FIPADefaultEntrance

ActiveDefaultEntrance

1

1

DSC View::SimpleState

ActiveDefaultHistoryEntrance

Figure 3.9: ELDA meta-model: FIPA template View.

42

Coordination

CoordinationINCoordinationOUT

Event

Internal Management

ManagementINManagementOUT

Exception

Figure 3.10: ELDA meta-model: Event View (partial).

As shown in the SystemSpace View (see Figure 3.11a), the System Space
which provides system services is composed of three basic managers,
LifeCycleManager, TimerManager, and ResourceManager which handle the
Management events of the Lifecycle, Timer, and Resource classes,
respectively. It is worth noting that the ResourceManager provides access
services to consoles, databases, files, sensors and other available local
resources through associated sub-managers (ConsoleManager, DBManager,
FileManager, SensorManager, etc) which handle such specific resources.
Moreover, to extend the provided system services new special-purpose
managers can be defined by the designer along with the related OUT- and
IN-events (see Section 3.1.2.1).
A Coordination Space represents a local or global coordination structure
based on a given coordination model through which agents can interact. As
shown in the CoordinationSpace View (see Figure 3.11b), six coordination
spaces are currently defined: DirectSpace (AsynchronousMsgSpace and
SynchronousMsgSpace), TupleSpace, PublishSubscribeSpace,
RMIObjectSpace, and WebServicesSpace. The interaction with these spaces
is regulated by the Coordination events reported in Table 3.1 and described
in Section 3.1.1.3. Moreover, new coordination spaces can be easily
introduced by defining new coordination space structures along with their
related OUT/IN events (see Section 3.1.2.1).

3.1.2.1 ELDA MAS Meta-Model extensions
In this section, it is shown how the ELDA meta-model can be extended to
include new logical and physical interaction models by appropriately
introducing new components in the system space and/or in the coordination
space along with the associated events needed to the agents to interact with
them. The extension mechanism of the ELDA meta-model is exemplified
through the inclusion of the PACO model abstractions [63] into our model. In
particular, the PACO model focuses on purely reactive agents situated in an
environment. Each agent according to the PACO model is defined by three
fields which determine what the agent can perceive about its environment
(Perception field), which agents an agent can interact with (Communication
field), the space in which an agent can perform its actions (Action field).

43

SystemSpace

LifeCycleManager ResourceManager TimerManager

1

1 1

1

Manager

SpecialPurposeManager

1

0..*1

1

(a) System Space view

CoordinationSpace

DirectSpaceTupleSpace PublishSubscribeSpace

AsynchronousMsgSpace SynchronousMsgSpace

RMIObjectSpace WebServicesSpace

(b) Coordination Space view

Figure 3.11: ELDA meta-model: SystemSpace and CoordinationSpace Views.

From a system point of view the PACO model splits the multi-agent system
domain into some conceptual parts according to the VOWELS formalism [28]
and thus decomposing the problem into four components: Agent,
Environment, Interaction and Organization. To include the PACO model
abstractions the ELDA meta-model was extended as follows:
- to model the environment (in which PACO agents are situated) the ELDA

System Space was first generalized into a LogicalSystemSpace
(formerly SystemSpace, see Figure 3.11a) and a PhysicalSystemSpace
which was appositely extended into an EnvironmentSpace. The
EnvironmentSpace handles the position of the agents and applies them
(through apposite OUT-events named FORCEEVENTS) the repulsion
forces resulting from co-located agents.

- to model the social laws defined in the PACO’s Organization component,
a new coordination space (see Figure 3.11b), named
PACOCordinationSpace, was introduced. In particular, the
PACOCordinationSpace monitors the environment and the agents’
status (position, goals, etc.) and, if any of the pre-defined conditions are
triggered, it informs the correct agent(s) on the actions to be performed
through ad-hoc defined OUT-events named RULEEVENTS.

3.2 Coding phase
The aim of the coding phase is to translate DAS models which have been
obtained in the modelling phase according to the ELDA MAS meta-model

44

into executable code. To meet such objective, an object-oriented agent
implementation framework named ELDAFramework (see Section 3.2.1) was
designed which consists of a set of abstractions which enable the actual
implementation of the DAS. Moreover, to automate such phase a set of
translation rules (which map concepts belonging to the ELDA meta-models to
implementation abstractions belonging to ELDAFramework) were defined.
In the following section, the structure of the ELDAFramework will be
described (for technical details refer to the online documentation at the
ELDATool site [32]).

3.2.1 ELDAFramework: a framework for the coding of
ELDA-based MAS

The ELDAFramework is an object-oriented framework which allows
developers to implement an ELDA-based application as it offers the
implementation abstractions representing the modeling concepts offered by
the ELDA MAS meta-model (ELDA MMM). Such abstractions are organized
in classes inside the dsc, agent and eldaevent packages (see Figure 3.12).
In particular, as the eldaevent package contains classes which include
events (see Section 3.1.1.3) it is structured in internal, coordination,
management and exception subpackages. In order to mirror events
hierarchy, the coordination package has been further organized in direct,
tuples, publish_subscribe, services and rmi subpackages whereas the
management package has been further organized in lifecycle, timer and
resource subpackages.

3.2.1.1 DSC
Classes grouped in the dsc package allow translating a DSC-based state
machine (see Section 3.1.1.1) into executable code. In particular, such
package (see Figure 3.13) consists of a class hierarchy (AState,
SimpleState, CompositeState e TopState) which covers modelling
abstractions related to DSC states and a Context class which enables the
storing of the current state of a DSC-based state machine.

3.2.1.2 Agent
Classes grouped in the agent package (see Figure 3.14) allow translating
agent-related modelling abstractions into executable code. In particular, the
ELDABehaviour class uses: (i) the ELDAId class to uniquely identify an
agent; (ii) the ELDAFIPATemplate class to specify the FIPA compliant agent
behavior. Moreover, the ELDAFIPATemplate class is associated with the
ELDAActiveState to specify the behavior of an agent which entered the
Active state of the FIPA template.

45

agent dsc

eldaevent

internal exception

coordination managment

direct tuple

p_s rmi

services

timer

resource

lifecycle

<<import>> <<import>>

<<import>>

Figure 3.12: Packages of the ELDAFramework.

Context AState

SimpleState CompositeState

TopState

context

currentState

parent

activeState

Figure 3.13: The dsc package of the ELDAFramework.

ELDABehaviour

ELDAFIPATemplate

ELDAID

ELDAActiveState

Figure 3.14: The agent package of the ELDAFramework.

46

3.2.1.3 ELDA events
The eldavent package and its sub-packages (see Figure 3.15) contains
classes which translate into code all the events defined in the events
taxonomy shown in the Interaction model (see Section 3.1.1.3).

ELDAEvent

ELDAEventInternal ELDAEventManagment ELDAEventCoordination ELDAException

Figure 3.15: The eldaevent package of the ELDAFramework.

It is worth noting that classes representing functionalities requests sent by
agents to the agent server (e.g. ELDAEventCreateRequest,
ELDAEventCloneRequest, etc.) are implemented as final classes (to force
developers to directly use them); whereas classes representing responses
sent back by the agent server to the agents are implemented as abstract
classes (to force developers to extend them); in this way, two or more
transitions outgoing from the same state can be triggered by events which
extend the same event (see Figure 3.16).

ELDAEventMSG1 ELDAEventMSG2

ELDAEventMSG

Figure 3.16: An example of transitions labeling using the event hierarchy.

3.2.1.3.1 Internal ELDA events
This package offers an abstract class, which opportunely extended, allows
translating internal events into executable code.

3.2.1.3.2 Management ELDA events
Classes grouped into the management package (see Figure 3.17) and its
sub-packages allow translating management events into executable code; in
particular, according to the management events hierarchy, management
package is furthermore subdivided into lifecycle, resource and timer
packages which are detailed in the following.

47

ELDAEventManagment

ELDAEventLifecycle ELDAEventResource ELDAEventTimer

Figure 3.17: The management package of the ELDAFramework.

Lifecycle management ELDA events
Classes grouped in the lifecycle management package (see Figure 3.18)
allow translating lifecycle management events into executable code. In
particular, classes mirroring events belonging to FIPA template, are
implemented as final classes to force developers to directly use them;
remaining classes have to be extended before their use.

ELDAEventLifecycle

ELDAEventCreateRequest ELDAEventMoveRequest ELDAEventWaitRequest ELDAEventQuitRequest ELDAEventSuspendRequest

ELDAEventCloneRequest

ELDAEventDestroy

ELDAEventExecute

ELDAEventInvoke

ELDAEventWakeUp

ELDAEVentResume

ELDAEventCreateNotify ELDAEventMove ELDAEventWait ELDAEventQuit ELDAEventSuspend

ELDAEventCloneNotify

Figure 3.18: The lifecycle-managment package of the ELDAFramework.

Resource management ELDA events
Classes grouped in the resource management package (see Figure 3.19)
allow translating resource management events into executable code. In
particular, classes mirroring services requests
(ELDAEVENTRESOURCEREQUEST, ELDAEVENTRESOURCEINPUT,
ELDAEVENTRESOURCEOUTPUT, ELDAEVENTRESOURCERELEASE) are
implemented as final classes to force developers to directly use them;
moreover, classes mirroring responses sent back to the agents
(ELDAEVENTRESOURCENOTIFY, ELDAEVENTRESOURCEINPUT) have to be
extended before their use.

Timer management ELDA events
Classes grouped in the timer management package (see Figure 3.20) allow
translating timer management events into executable code. In particular,
ELDAEVENTCREATETIMER and ELDAEVENTRESETTIMER which mirror services
requests are implemented as final classes to force developers to directly use
them; ELDAEVENTCREATETIMERNOTIFY and ELDAEVENTTIMEOUTNOTIFY
classes mirroring responses sent back to the agents have to be extended
before their use.

48

ELDAEventResourceInput

ELDAEventResource

ELDAEventResourceRequest ELDAEventResourceOutput

ELDAEventResourceNotify

ELDAEventResourceInputRequest

ELDAEventResourceRelease

backEvent backEvent

Figure 3.19: The resource-managment package of the ELDAFramework.

ELDAEventTimer

ELDAEventCreateTimerNotify ELDAEventCreateTimer ELDAEventTimeoutNotify

ELDAEventResetTimer

+backEventCTN backEventTN

Figure 3.20: The timer-managment package of the ELDAFramework.

3.2.1.3.3 Coordination ELDA events
Classes grouped in the coordination package (see Figure 3.21) allow
translating coordination events into executable code; in particular, according
to coordination events hierarchy, coordination packages is furthermore
subdivided into direct, tuples, rmi, services and publish/subscribe packages
which are detailed in the following.

Direct coordination ELDA events
Classes grouped into direct coordination package (see Figure 3.22) allow
translating direct coordination events into executable code thus enable
implementation of asynchronous/synchronous message passing. In
particular, ELDAEVENTMSGREQUEST and ELDAEVENTRPCREQUEST classes
which implement asynchronous and synchronous communication requests
respectively, are implemented as final classes to force developers to directly
use them; moreover, classes mirroring messages exchanged among agents
(ELDAEVENTMSG, ELDAEVENTRPCRESULT) have to be extended before
their use.

ELDAEventCoordination

ELDAEventDirect ELDAEventTuples ELDAEventRMI ELDAEventServices ELDAEventP_S

Figure 3.21: The coordination package of the ELDAFramework.

49

ELDAEventDirect

ELDAEventMSGRequest ELDAEventRPCRequest ELDAEventRPCResultELDAEventMSG+msg msg +backEvent

Figure 3.22: The direct-coordination package of the ELDAFramework.

Tuple coordination ELDA events
Classes grouped into the tuple coordination package (see Figure 3.23) allow
translating tuples coordination events into executable code; in particular,
classes mirroring services requests (ELDAEVENTIN, ELDAEVENTOUT and
ELDAEVENTRD) are implemented as final classes to force developers to
directly use them; only the ELDAEVENTRETURNTUPLE class which contains
tuples sent back to the agents has to be extended before its use.

ELDAEventTuples

ELDAEventIN ELDAEventRD ELDAEventOUTELDAEventReturnTuple+backEvent backEvent

Figure 3.23: The tuple-coordination package of the ELDAFramework.

RMI coordination ELDA events
Classes grouped in the rmi coordination package (see Figure 3.24) allow
translating RMI coordination events into executable code; in particular,
ELDAEVENTRMIINVOKE class which implements the RMI request is
implemented as a final class to force developers to directly use it whereas
the ELDAEVENTRMIRETURN has to be extended before its use.

ELDAEventRMI

ELDAEventRMIInvoke ELDAEventRMIReturnbackEvent

Figure 3.24: The rmi-coordination package of the ELDAFramework.

Services coordination ELDA events
Classes grouped in the services coordination package (see Figure 3.25)
allow translating web services coordinations events into executable code; in
particular, classes mirroring requests (ELDAEVENTSERVICEDISCOVERY,
ELDAEVENTWSDLREQUEST, ELDAEVENTSERVICEINVOKE) are implemented
as final classes to force developers to directly use them; remaining classes
classes mirroring responses sent back to the agents
(ELDAEVENTDISCOVERYRESULT, ELDAEVENTWSDLRESULT e
ELDAEVENTSERVICERESULT) have to be extended before their use.

50

ELDAEventWSDLReturn

ELDAEventWSDLRequest ELDAEventServiceInvoke

ELDAEventServiceReturn

ELDAEventServiceDiscovery

ELDAEventDiscoveryResult

ELDAEventServices

backEvent backEvent backEvent

Figure 3.25: The service-coordination package of the ELDAFramework.

Publish/subscribe coordination ELDA events
Classes grouped in the publish/subscribe coordination package (see Figure
3.26) allow translating publish/subscribe coordination events into executable
code; in particular, classes mirroring requests (ELDAEVENTSUBSCRIBE,
ELDAEVENTUNSUBSCRIBE, ELDAEVENTPUBLISH) are implemented as final
classes to force developers to directly use them; only the
ELDAEVENTEVTNOTIFICATION class which contains notifications sent back to
the agents has to be extended before its use.

ELDAEventP_S

ELDAEventSubscribe ELDAEventPublish ELDAEventEVTNotification ELDAEventSubscribebackEvent

Figure 3.26: The publish/subscribe-coordination package of the ELDAFramework.

3.3 Simulation phase
The development process of ELDAMeth (see Figure 3.1) includes a
simulation phase (see Figure 3.27) which consists of the following three
subphases:
1. Performance Indices Definition. On the basis of functional and non

functional requirements, it produces the definition of the performance
indices which will be evaluated during the simulation;

2. Simulation Implementation. This subphase aims at the realization of a
simulation program which takes into account the previously identified
indices, the definition of the controlled environment and the
ELDAFramework-based DAS implementation. In particular, such
program uses abstractions provided by the ELDASim (see Section
3.3.1), a discrete-event simulation framework able to execute ELDA
models, to define:
- the controlled execution environment (both features characterizing

the computational nodes and the network) which mirrors the real
execution environment;

- the initial DAS configuration (agents and related locations);

51

3. Simulation Execution. It consists of the execution of the DAS within the
controlled execution environment and the collection of the defined
performance indices which allow the analysis and the validation of the
DAS under-development.

The simulation phase can be iteratively executed to modify, according to
obtained simulation results, the modelling choices taken in a former iteration.
In the following sub-section, the architecture of ELDASim will be explained in
detail.

Figure 3.27: Schema of the Simulation phase.

3.3.1 ELDASim: a discrete-event simulation framework
The ELDA simulation environment (ELDASim) is a Java-based execution
environment for ELDA agents that has been obtained as an extension of
MASSIMO simulation framework [38] and aims to validate and evaluate
through simulation an ELDA model based solution with respect to efficacy
and efficiency aspects.
To accomplish this, ELDASim is equipped with:
- The basics mechanisms of the distributed architectures supporting ELDA

agents. In particular, agent servers, the network interconnecting agent
servers, and several kinds of coordination infrastructures for fully
supporting the distinctive multi-coordination feature of the ELDA model.

- The simulation of accomplishment time of time-consuming operations
such as agent actions, agent management operations, coordination acts,
and agent migrations.

- The capture of the traces of interactions (among agents and between
agents and agent servers) in terms of exchanged events, filtered in an
application-specific fashion.

On the basis of the aforementioned features, the architecture of ELDASim
(Figure 3.28) has been structured as following:

a. Engine layer, which provides the basic mechanisms and classes to
simulate general purpose systems;

52

b. Platform layer, which provides a distributed infrastructure formed by
a network of interconnected agent servers;

c. Agent layer, which provides abstractions needed to execute ELDA
agents in the simulated environment;

d. Setup layer, which provides abstractions needed to setup the
simulation such as agent server available services, virtual network
configuration, initial agent locations.

Engine layer
To support the ELDA model features, ELDASim was developed atop an
general-purpose event-discrete simulation engine that allows simulating
discrete-event systems. In particular, this framework consists of
computational components, named ActiveEntity, interacting through
asynchronous message passing. ActiveEntity can queue Messages into a
global queue which is handled by the SimulationEngine as described in the
following: the SimulationEngine extracts the forthcoming Message into the
queue and delivered it to the correct ActiveEntity for the handling process.
Moreover, it is possible to program the deferring of the delivering process
through the Timer abstraction which encapsulates a Message with a timeout:
such message will be delivered as soon as the timeout is expired.

Figure 3.28: The layered architecture of ELDASim.

53

Platform layer
The platform layer provides functionalities related to both the agent lifecycle
(execution, suspensions, migration, etc.) [35] and agent interactions (several
coordination spaces are available to enable interactions among agents).
In particular, this layer supplies the agents execution environment though a
set of AgentServer (in which ELDAs run) linked by the VirtualNetwork: each
AgentServer can be differently customized in order to allow the simulation of
a heterogeneous execution environment and the VirtualNetwork represents a
network of AgentServer components.
Moreover, the following coordination spaces are implemented:
- The asynchronous Message-based coordination space which is based

on proxies [115]. In particular, a message is delivered at the agent home
location and, from here, forwarded to the actual agent location by
following the chain of proxies left during agent migration.

- The Publish/Subscribe coordination space which behaves like a state-full
ELVIN event notification system [71]. In particular, before agent
migration the system removes all existing subscription of the migrating
agent and re-subscribes the agent to the same notifications after the
agent arrives at the new location.

- The Tuple coordination space which is based on TuCSoN [83]. In
particular, each location has its own local tuple space, an instance of a
TuCSoN tuple space which relies on text-based tuples.

Agent Server. To take into account the extensible architecture feature of
the ELDA Meta-Model (see Section 3.2.1) an AgentServer was designed
through a component-based architecture (see Figure 3.29) in which a set
of independent components named handlers offer specific services to
the agents. In particular, using handlers in a cooperative fashion, an
AgentServer provides the following functionalities:

1. agent management lifecycle, which supports registration and
execution of ELDAs;

2. agent migration, which supports the migration of an ELDA from
one AgentServer to another;

3. agent interaction, which supports the event-based interaction
among ELDAs;

4. inter-AgentServer service signaling.
Handlers were organized in a hierarchical fashion mirroring the events
taxonomy (see Section 3.1.1.3):
At the top level of the handler hierarchy the TopLevelHandler (TLH) is
located which routes all the IN events targeting ELDA agents and the
OUT events generated by ELDA agents. In particular, the TLH
component (i) encapsulates the OUT events into MSG objects to route
them within the AgentServer architecture and (ii) unwraps MSG objects
including IN events to be delivered to ELDA agents. In addition to the
TLH, the hierarchy of handlers consists of PrimaryHandlers,
IntermediateHandlers and FinalHandlers. PrimaryHandlers and
IntermediateHandlers aim to effectively route events, according to their

54

type, to the correct target whereas the FinalHandlers aim to provide the
requested services to ELDA agents.
Interaction among handlers (belonging both to the same AgentServer
and to different AgentServers) takes place through exchange of MSG
objects.
Moreover, an AgentServer includes a WhitePage component which
stores the ELDA agents running in the AgentServer. An entry of the
WhitePage consists of pairs <ELDAId, ELDARef>, where ELDAId is the
ELDA agent identifier and ELDARef is either (i) the reference to the
ELDA agentidentified by ELDAId or (ii) the proxy of the ELDA agent
identified by ELDAId and migrated to another AgentServer.

AgentServer

Handler

PrimaryHandlerTLH IntermediateHandler

FinalHandler

+successor

*

+predessor

1

+successor

*

+predecessor

1

+successor
*

+predecessor
1

WhitePages1 1ActiveEntity

1

1

1

*

1

*

1

*

Figure 3.29: Agent Server Architecture.

Virtual Network. AgentServers are mapped on computational nodes
which are linked together by the VirtualNetwork component which relies
on a graph-based network structure in which a network link is completely
reliable and based on an end-to-end delay model (based on bandwidth,
latency time and weight of the MSG). In particular, the calculated delay
of a message transmission (which can contain both events and migrating
agents), is used as timeout value of a Timer containing the MSG.
Moreover, the VirtualNetwork aims to supply the hosts names resolving
mechanism which allows for determine the host in which the message’s
target is located.

Agent layer
The agent layer of the ELDASim architecture provides the SimELDA
abstraction which allows to execute an ELDA agent into the simulation
framework. In particular, a SimELDA (unambiguously identified by an
ELDAId), for each simulation step, has (i) a location depending on the
specific AgentServer in which it runs and (ii) has a specific state of the state
machine which represents its behavior.

55

Simulation setup layer
The simulation setup layer provides the MASSimulation abstraction which
allows to setup the simulation. In particular, it allows for setup agent ‘s initial
locations, the AgentServer’s features (available both system spaces and
coordination spaces) and the VirtualNetwork configuration (network topology,
nodes number, band and latency time of the links, transmission policy).

3.4 ELDATool: An integrated development
environment for prototyping ELDA-based MAS

To facilitate the use of ELDAMeth, an integrated development environment,
named ELDATool [32, 37], has been fully developed in this thesis work. It
aims to support developers during the modelling, coding and simulation
phases. In particular, ELDATool provides in an integrated fashion:

- a visual editor which allows to model behavior, interaction and
mobility aspects of an agent-system according to the ELDA model
(see Section 3.1.1);

- an automatic translator which implements the translation rules from
ELDA meta-model to ELDAFramework (see Section 3.2.2);

- a visual editor to configure simulation parameters used to generate a
simulation program based on ELDASim framework (see Section
3.3.1)

To support the Modelling phase (see Section 3.1), the tool offers the basic
functionality of visual modelling of the active state of the agent behavior
according to DSC formalism. The following modelling features are supported:

- definition of the internal states of the active state;
- definition of the events, generated (or OUT-events) and received (IN-

events) by/from the ELDA agent, by extending appositely the base
events provided by the ELDAFramework or events previously
defined by the user;

- definition of the transitions between states which involves:
- the use of the IN-events previously defined for labelling the

transitions;
- (possibly) the definition and the use of the guards associated to

the transitions;
- (possibly) the definition and the use of the actions associated to

the transitions.
The obtained graphical modelling is serialized into XML-like files.
To support the Coding phase (see Section 3.2), the tool offers the
functionality of automatic code generation by translating the XML-like files
produced after the Modelling phase into Java code based on the
ELDAFramework.
Finally, to support the Simulation phase offers a visual editor to configure
simulation parameters which are used to generate the simulation program
according to the ELDASim framework (see Section 3.3).
Currently, the ELDATool is implemented in Java as a collection of Eclipse
plug-in to exploit several frameworks which fully support the development of

56

visual editors; moreover, the high diffusion of Eclipse in the research
community makes the tool immediately available to the Eclipse users and the
learning process of the tool is therefore quicker.

3.4.1 Architecture
In order to keep ELDATool architecture as modular as possible, a
component-based design approach was adopted: each component is
responsible of the specific aspects of the Modelling, Coding and Simulation
phases. In fact, for each different agents behavior modelling aspect have
been identified several editors and each of them, is capable of visually
handling the related elements of the ELDA MAS meta-model and producing
an instance of such meta-model (or specific model) as output. In particular,
the following editors have been identified and designed:

- DSCEditor, for modelling the active state of an ELDA agent;
- EventEditor, for defining the events;
- GuardEditor, for defining the guards;
- ActionEditor, for defining the actions;
- FunctionEditor, for defining the supporting functions.

The CodeGenerator component uses the models produced by the
aforementioned editors as input to offer the functionalities needed for the
code generation according to the classes constituting the ELDAFramework.
The SimulatorEditor component allows to visually configure simulation
parameters which are used as input by the SimulationCodeGenerator to
produce a simulator program according to the ELDASim framework.
Figure 3.30 shows the components, the dependence relationships among
them, and their contextualization with respect to the development process
phases.

 Modelling Coding Simulation

DSCEditor

ActionEditorGuardEditor

EventEditor

FunctionEditor

CodeGenerator SimulatorEditor

SimulatorCodeGenerator

Figure 3.30: The ELDATool components.

57

3.4.2 Implementation
The ELDATool fully supports the three phases of the process: Modelling,
Coding and Simulation. The architectural components described in the
previous section are implemented in Java by exploiting:
- the Eclipse platform [30], which is a widely-used Integrated Development

Environment (IDE) with extensible architecture based on plug-ins, i.e.
independent components which can be easily installed and integrated in
the IDE;

- the Graphical Editing Framework (GEF) [55] which allows for the
development of visual editors in Eclipse by offering high support for the
management of the user interactions;

- the Eclipse Modelling Framework (EMF) [31] which supports the modelling
phase of a structural model and the automatic generation and
manipulation of its Java implementation.

The editor components (see Section 3.4.1) are implemented according to the
architectural pattern Model-View-Controller (MVC) to support the user-
interaction handling (View-Controller) and the manipulation of the model in
response to the generated events (Model). In particular, user-interaction
handling is implemented by extending the classes provided by GEF whereas
the model manipulation is carried out by the plug-ins automatically generated
by EMF. It is worth noting that EMF generates a plug-in exposing the
interfaces needed for the instantiation of the implemented meta-model.
Accordingly, each editor component is constituted by an EMF-generated
plug-in which manages the model and a plug-in which handles the user
interaction.
In order to ease the deployment of the ELDATool the number of its
constituting plug-ins was minimized. In particular, the plug-ins which manage
the models are separately implemented whereas the plug-ins handling the
user-interaction and supporting the code generation are integrated in a
unique plug-in, the ELDAEditor.
As a consequence, the following plug-ins are implemented:
- DSCModel, which contains the implementation of the DSC concepts of

the ELDA MAS meta-model;
- EventModel, which contains the implementation of the Event concepts

of the ELDA MAS meta-model;
- ActionGuardModel, which contains the implementation of the Action

and Guard concepts of the ELDA MAS meta-model;
- FunctionModel, which contains the implementation of the Supporting

Function concept of the ELDA MAS meta-model;
- ELDAEditor, which supplies the visual editor and the code generator

components;
- SimulatorEditor and SimulatorCodeGenerator, which allow us for the

visual setup of the simulation parameters and the code generation of
the simulator program;

58

Figure 3.31 highlights and clarifies the dependence relationships among the
implemented plug-ins: the ELDATool is released as a set of plug-ins and a
jar named ELDAFramework.jar which contains the Java implementation of
the ELDA framework. It is worth noting that to install the ELDATool it is only
necessary to copy the set of plug-ins and the ELDAFramework.jar into the
plugins folder of Eclipse and restart Eclipse. The software requirements of
the ELDATool are: Eclipse ver. 3.3, GEF ver. 3.3, EMF ver. 2.3.0 and JRE
ver. 1.5.
Figure 3.32 shows the ELDATool during the visual modeling of the ADSC of
an ELDA agent and Figure 3.33 shows the dialogs which allow for simulation
parameters setup and simulation execution control.

SimulationFacilitator
<<Eclipse Plug-In>>

ELDAEditor
<<Eclipse Plug-In>>

DSCModel
<<Eclipse Plug-In>>

EventModel
<<Eclipse Plug-In>>

ActionGuardModel
<<Eclipse Plug-In>>

FunctionModel
<<Eclipse Plug-In>>

GEF
<<Eclipse Plug-In>>

EMF
<<Eclipse Plug-In>>

DSCEditor ActionEditor GuardEditor

EventEditor CodeGeneratorFunctionEditor

SimulatorEditor SimulatorCodeGenerator

ELDASim
<<Eclipse Plu-In>>

Figure 3.31: The ELDATool plug-ins.

 Figure 3.32: Snapshot of the ELDATool during the modeling phase.

59

(a) (b)

Figure 3.33: Simulation dialogs: (a) simulation setup and (b) simulation execution control.

61

4 Modeling and Validation of Distributed
Architectures for Surrogate Clustering in
CDNs: a case study

Content Distribution Networks (CDNs) have been introduced and extensively
used in the Internet as effective solution for improving the performance of
content delivery by means of coordinated content replication [14]. In
particular, a CDN manages a geographically distributed set of surrogate
servers, located at the network edge, that archive copies of identical content,
so that users’ requests can be fulfilled by the optimal surrogate servers. In
conventional CDN architectures, when a user request is redirected to a
surrogate server which is not able to fulfill it by providing the requested
content, the surrogate server fetches the requested content from the origin
server, which stores all the offered content, and delivers it to the requesting
user. As the origin server is usually far way from each surrogate server, this
basic scheme to deal with missing content causes a high average user
perceived latency.
To overcome this issue, several cooperative caching mechanisms and
architectures for CDNs have been proposed [39, 79, 105]. In this chapter,
three kinds of distributed architectures (master/slave, multicast-based, and
peer-to-peer) for surrogate clustering in CDNs have been modelled and
analysed through ELDAMeth. In these architectures, which are an extension
of the cooperative architectures proposed in [39, 43], surrogates are grouped
into clusters of neighbour surrogates and cooperate to provide the requested
content. In particular, a surrogate which is not able to provide the requested
content checks for a surrogate of the same cluster having the content so as
to forward the unfulfilled user request to it; otherwise, if no other surrogate
has the content, the surrogate contacts the origin server as in the basic
schema. As surrogates in the same cluster are much closer to each other
than to the origin server, the average user perceived latency could be
reduced. Moreover, as the cache of a cluster is larger than the cache of a
single surrogate hit ratio of the cluster cache could be higher than hit ratio of
a single surrogate.

62

4.1 CDN working principles
The general architecture of a CDN, shown in Figure 4.1, consists of seven
components: client, replica server (or surrogate), origin server, request
routing system, distribution system, accounting system and billing
organization [92]. The interactions among these components, represented
with numbered lines in Figure 4.1, are described as follows:
1. The origin server delegates the URI name space of the content (web
objects, rich media, etc.) to be distributed and delivered by the CDN to the
request routing system (or request redirection system).
2. The origin server publishes the content, which is to be distributed and
delivered by the CDN through the distribution system.
3. The distribution system “intelligently” moves content to surrogates. This
system also interacts with the request routing system and supports it during
the surrogate selection phase triggered by client requests.
4. The client requests content from what it perceives to be the origin server.
However, due to URI name space delegation, requests are actually directed
to the request routing system.
5. The request routing system routes the client request to a suitable
surrogate of the CDN.
6. The selected surrogate delivers the requested content to the client. In
addition, the surrogate sends accounting information about delivered content
to the accounting system.
7. The accounting system aggregates and distills the accounting information
into statistics and the records of content detail and sends them to the origin
servers and the billing organization. The billing organization uses the records
of content detail to settle with each of the parties involved in the content
distribution and delivery process. Statistics are also used as feedback to the
request routing system and distribution system.

Figure 4.1: A basic CDN Architecture.

63

4.2 Distributed architectures for surrogate
clustering

When a client issues a content request, the redirection system selects the
most appropriate surrogate and routes the request to it. This surrogate
serves the request if it has the requested content, otherwise it asks the origin
server for the content and, once retrieved, sends it to the requesting client. A
missing content (or miss) in the selected surrogate causes a high response
time as the origin server is usually located far away from surrogates. Figure
4.2 summarizes the service dynamics of a client’s content request in a stand-
alone surrogate-based (SA) architecture. Moreover, surrogates usually adopt
a least recently used (LRU) strategy to evict content from their cache when
storage space is needed.

(a)

(b)

Figure 4.2: Content served by a stand-alone surrogate-based architecture. (a) the requested
content is in the surrogate cache; (b) the requested content is not in the surrogate cache and

must be therefore requested to the origin server.

Although the SA architecture is simple to develop and maintain, it suffers of
two main drawbacks: limited dimension of the cache and high response time

64

when content is not present in cache and must be fetched from the origin
server.
To deal with these drawbacks, surrogates can be grouped into clusters
according to their proximity (e.g. neighboring surrogates belong to the same
cluster). Surrogates in the same cluster (hereafter called peer surrogates or
simply peers) cooperate to provide a requested content. A surrogate
receiving a content request which cannot serve forwards such request to a
peer. Only if none of the peers can provide the requested content, the
request is forwarded to the origin server. Cooperation among peers can
therefore enable:
- higher hit rate as the available content is not only the content of a single

surrogate but the total content of all peers;
- shorter response time as distance between peers is much shorter than

the distance between a surrogate and its origin server.
However, cooperation among peers demands for the design and
implementation of additional mechanisms for surrogate clustering to support
cluster formation for grouping surrogates in clusters and cluster maintenance
for handling join/leave of peers.
Three different kinds of distributed architectures for surrogate clustering have
been designed: master/slave, multicast-based and peer-to-peer. In the
multicast-based architecture content duplication can occur whereas in the
master-slave and peer-to-peer architectures the content stored in a given
peer cannot be duplicated in the other peers of the same cluster. For all the
defined architectures, each peer has a content location hash table (CLHT) to
maintain the content location information for content lookup. Each content
has a content identifier (or CId) generated by a collision-free hash function-
based algorithm (e.g. SHA-1 [77]). In addition, each surrogate has a
surrogate identifier (SId) generated with the same algorithm. In the following
subsections the designed distributed architectures are described.

4.2.1 Master/Slave
In the master/slave (M/S) architecture, a master/slave approach is exploited
which is based on a master peer to manage the cluster CLHT whereas the
other peers only manage a CLHT of their own content. When a request
arrives, a peer first looks up its CLHT and then, if it does not find the content,
forwards the request to the master peer that, in turn, forwards it either to the
peer (which could also be the master itself) with that content or to the origin
server. It is worth noting that every time a peer chooses to evict a content, it
notifies the master that consequently updates the global CLHT. In this way
consistency of the cluster is guaranteed by the master even though it could
become a bottleneck.
Three variants of the MS architecture (M/S_1, M/S_2, and M/S_3) have been
defined. The dynamics of the scenarios related to content found/content not
found in the cluster for M/S_1, M/S_2, and M/S_3 are reported in Figures
4.3a/4.4a, 4.3a/4.4b and 4.3b/4.4a, respectively. The three variants consider

65

the architectures which averagely involve the lowest number of exchanged
messages (M/S_2), the highest number of exchanged messages (M/S_3),
and a number of exchanged messages between the highest and lowest ones
(M/S_1).
With reference to the two schemas for content found in the cluster (see
Figure 4.3), the main difference is that in M/S_1 and M/S_2 the master peer
forwards the request directly to the surrogate (S2) which has the content (see
Figure 4.3a), whereas in M/S_3 the master peer notifies the address of S2 to
the selected surrogate (S1) which, in turn, forwards the request to S2 (see
Figure 4.3b).

(a)

(b)

Figure 4.3: Master/slave architectures: content found in the cluster. (a) schema for M/S_1 and
M/S_2; (b) schema for M/S_3.

66

With reference to the two schemas for content not found in the cluster (see
Figure 4.4), the main difference is that in M/S_1 and M/S_3 the master peer
replies to the selected surrogate (S1) which, in turns, downloads the content
from the origin to serve the client (see Figure 4.4a); in M/S_2 the master peer
contacts the origin which sends the missing content to the selected surrogate
(see Figure 4.4b).

(a)

(b)

Figure 4.4: Master/slave architectures: content not found in the cluster. (a) schema for M/S_1
and M/S_3 and; (b) schema for M/S_2.

67

4.2.2 Multicast-based
In the multicast-based (MC) architecture, each peer surrogate manages a
CLHT in which stores the content location information of all peer surrogates.
In particular it is adopted a soft-state multicast-based communication
paradigm [95] with BASE (Basically Available, Soft State, Eventual
Consistency) semantics [51] for which the CLHT could be different in each
peer surrogate at any given time. As shown in Figure 4.5, a missing content
in the selected peer is handled as follows: if the CLHT has an entry for that
content, the request is forwarded to the peer that has the requested content
and will then serve the client request; otherwise, the request is forwarded to
the origin server. Every update of the CLHT is multicast from the peer that
updated its content to all the others without an ACID (Atomicity, Consistency,
Isolation, e Durability) coordination mechanism. Each peer uses update
messages to update its own CLHT; this implies that:
- according to its CLHT a peer could forward a request to another peer

that may not have the requested content;
- duplicated copies of the same content could be present in a cluster.

Thus in this architecture the consistency of the CLHT is not guaranteed.

(a)

(b)

Figure 4.5: Multicast-based architecture: (a) content not found in the selected surrogate but
found in the cluster; (b) content not found neither in the selected surrogate nor in the cluster.

68

4.2.3 Peer-to-peer
In the peer-to-peer architecture (P2P), each peer has an SLT (Surrogate

Location Table) which contains the location information of all the peers and
their respective contents. In particular, for each peer surrogate an SLT has
an entry formalized by the pair <SId, CZ>, where CZ (Content Zone) is the
space of the identifiers of the contents potentially stored in the peer identified
by SId. Such an organization implies that a given content can only be stored
in the peer responsible for such content, i.e. its CId is in the CZ of the peer.
According to the peer-to-peer model, a content request issued by a client is
served by the selected surrogate as follows:

1. If the CId of the requested content belongs to its CZ, the content is
looked up in the CLHT: if the content is present, it is sent to the client;
otherwise, the content is retrieved from the origin, sent to the client and
finally stored (see Figure 4.6a).

2. If the CId of the requested content does not belong to its CZ, the request
is forwarded to the peer responsible for CId which operates as follows: if
the requested content is present, it sent it to the requesting client (see
Figure 4.6b); otherwise, the content is fetched from the origin before
sending it to the requesting client (see Figure 4.6c).

As in the M/S architecture the P2P architecture provides consistency of
the content in the cluster. Moreover it overcomes the main drawback of the
M/S and MC architectures as a peer does not need to maintain content
information belonging to the other peer surrogates. However this model has
the following drawbacks: (i) since a given content can only be served by a
given peer, a highly requested content can only be provided by a given peer
leading to a service hotspot; (ii) since the mapping between content and
surrogate is fixed, when content is added new CIds must be generated and
mapped to given zones. This can lead to the problem of zone saturation
which demands for a rearrangement of the zones in the cluster. However, if
the rate of addition of new content is slow this does not introduce significant
overhead.

It is worth noting that the other two architectures can also suffer of the
first drawback whereas the second drawback for such architectures does not
subsist as content can be requested and stored by any peer.

69

(a)

(b)

(c)

Figure 4.6: Peer-to-peer architecture: (a) content not found belonging to the selected surrogate
CZ; (b) content not found not belonging to the selected surrogate CZ but present in the cluster;
(c) content not found not belonging to the selected surrogate CZ and not present in the cluster.

70

4.3 ELDA-based modelling
This section shows how the identified actors in a typical CDN scenario have
been agentified and then modelled according to the ELDA model. As shown
in Figure 4.7, Client and Origin servers have been agentified through a
ClientAgent and an OriginAgent, respectively; moreover, in order to enable
the concurrent processing of received content requests, each Surrogate
server has been agentified through two agents: a SurrogateManagerAgent,
which spawns a worker agent for each received request and a
SurrogateAgent which actually fulfils the request.

CDN
Level

Agent
Level

Client Surrogate server Origin server

ClientAgent SurrogateManagerAgent

SurrogateAgent

OriginAgent

+manages*

1

Figure 4.7: CDN actors and identified agent types.

As shows the class diagram of the defined agent types for the
aforementioned architectures (see Figure 4.8), the ClientAgent and
OriginAgent types are shared among them whereas SurrogateManagerAgent
and SurrogateAgent have been differently designed depending on the
specific architecture for surrogate clustering.

ClientAgent
<<ELDA>>

Surrogate
<<ELDA>>

OriginAgent
<<ELDA>>

MS_Surrogate
<<ELDA>>

MC_Surrogate
<<ELDA>>

P2P_Surrogate
<<ELDA>>

SurrogateManager
<<ELDA>>

MS_SurrogateManager
<<ELDA>>

MC_SurrogateManager
<<ELDA>>

P2P_SurrogateManager
<<ELDA>>

MS_MPSurrogate
<<ELDA>>

0..1 *
* *

Master/Slave Multicast-based Peer to Peer

Figure 4.8: Class diagram of the defined agent types.

71

However, for sake of brevity, only the ELDA-based modelling of the agents of
the M/S_1 variant of the master/slave architecture (see Section 4.2.1) will be
explained in details. Events referred in the DSC diagrams are summarized in
table 4.1.

Table 4.1: Events exchanged among agents of the M/S_1 variant of the master/slave
architecture.

EVENT DESCRIPTION SOURCE TARGET
CLIENTREQUEST

It contains a content request. Client Surrogate

SURROGATERESPONSE It contains the requested content.

Surrogate Client

SURROGATEREQUEST It contains a content request.

Surrogate Origin

ORIGINRESPONSE It contains the requested content.

Origin Surrogate

SURROGATEMASTERPEERREQUEST It contains the request of
availability of a content within
the cluster.

Surrogate MasterPeer

SURROGATEMASTERPEERRESPONSE It informs the Surrogate that a
content is available within the
cluster.

MasterPeer Surrogate

SURROGATEINFORMCONTENT It informs the MasterPeer that
new contents have been
downloaded from the
OriginServer

Surrogate MasterPeer

SENDTOCLIENT,
WORKCOMPLETED,
CONTENTNOTFOUND, UPDATECLHT,
FORWARDINGNOTFOUND

Internal events.

Surrogate Surrogate

ClientAgent
A ClientAgent (see its behavior in Figure 4.9) requests contents to the CDN
according to an exponential probability density function which is used to set-
up the timeout value of the timer driving the agent activity: as soon as a timer
expires, a TIMEOUT event is delivered to the ClientAgent which sends the
content request and creates a next timer (see action ac1); instead, as soon
as a previously requested content is delivered to the ClientAgent through the
SURROGATERESPONSE event, performance indices are updated (see action
ac0). It is worthy noting that target surrogates are chosen by ClientAgents
according to a uniform distribution whereas the requested content is chosen
according to a contents popularity distribution (CPD) which can be either
uniform or Zipf [102].

72

(a)

acInit:
 tableRichieste = new Hashtable<Integer,Long>();
 tableRichiesteContent = new Hashtable<Integer,String>();
 genTimout4Request();
ac0:
 SurrogateResponse surrogateResponse = (SurrogateResponse)e;
 String contentResponse = (String)surrogateResponse.getData();
 processContent(contentResponse);
ac1:
 int idRichiesta = pkgStatic.Variables.clientIdRequest++;
 int indiceContenuto = -1;
 if(distribution == 0){
 indiceContenuto = (int)(rnd.uniform(0, contents.length));
 }else if(distribution == 1){
 indiceContenuto = zipfDistribution.getElement();
 }
 int indiceSurrogato = (int)(rnd.uniform(0, surrogati.length));
 String request = contents[indiceContenuto];
 ClientRequest clientRequest = new ClientRequest(self(),

surrogati[indiceSurrogato],request,idRichiesta);
 generate(new ELDAEventMSGRequest(self(),clientRequest));
 genTimout4Request() ;
genTimout4Request:
 long timeout = getRandomTimeout();
 generate(new ELDAEventCreateTimer(self(),timeout,new Timeout(self())));

(b)
Figure 4.9: ClientAgent behavior: (a) DSC and (b) related actions.

OriginAgent
OriginAgent (see its behavior in Figure 4.10) has to respond to content
requests performed by agents representing Surrogate servers: as soon as a
SURROGATEREQUEST event is delivered to the OriginAgent, it checks if the
requested content is available and in this case sends back such content (see
action ac0); otherwise, the SurrogateAgent is notified about the request
failure (see action ac1).

73

(a)

acinit:
 contentsInitiating();
ac0:
 SurrogateRequest surrogateRequest = (SurrogateRequest)e;
 String contentRequest = (String)surrogateRequest.getData();
 String contentValue = (String)tableContent.get(contentRequest);
 OriginResponse originResponse = new OriginResponse(self(),

surrogateRequest.getSource(),
contentValue,
contentRequest,
true,
surrogateRequest.getIdRequest());

 generate(new ELDAEventMSGRequest(self(),originResponse));
ac1:
 SurrogateRequest surrogateRequest = (SurrogateRequest)e;
 String contentRequest = (String)surrogateRequest.getData();
 OriginResponse originResponse = new OriginResponse(self(),

surrogateRequest.getSource(),
"Content not found!",
contentRequest,
false,
surrogateRequest.getIdRequest());

generate(new ELDAEventMSGRequest(self(),originResponse));
(b)

Figure 4.10: The OriginAgent behavor: (a) DSC and (b) the related actions.

SurrogateManager
A SurrogateManager agent (see its behavior in Figure 4.11) aims to manage
the surrogate server in which it runs. Among the SurrogateManagers that
belong to a cluster, only one of them has to create the MasterPeer agent
which holds and maintains the cluster CLHT (see action acInit). Once
initialized, a SurrogateManager waits for content requests sent by client or
surrogate agents: as soon as a CLIENTREQUEST event is delivered, a
SurrogateManager (see action ac0) creates a Surrogate agent which handles
the received request.

74

(a)

acInit:
 if(detainsMasterPeer){
 ELDAEventCreate createEvent = new ELDAEventCreate(self(),"SurrogateMPActiveState"
 params,masterPeer);
 generate(createEvent);
 }
ac0:
 ClientRequest clientRequest = (ClientRequest)e;
 Object[] params = {originServer,self(),masterPeer,clientRequest.getSource(),
 clhtContenuti, String)clientRequest.getData(),clientRequest.getIdRequest()
 };
 ELDAEventCreate createEvent = new ELDAEventCreate(self(),"MS1_SurrogateActiveState",

 params,new ELDAId("Surrogate"+(agentID++)));
 generate(createEvent);

(b)
Figure 4.11: SurrogateManager: DSC (a) and actions (b).

Master Peer
The MasterPeer agent (see its behavior in Figure 4.12) has to reply to
content requests sent by other Surrogates through the
SURROGATEMASTERPEERREQUEST event: if the requested content is available
within the cluster (that is the contentFound guard holds), the MasterPeer
agent forwards the client request to the target SurrogateManager (see action
ac0); otherwise (that is the contentNotFound guard holds) the MasterPeer
agent replies to the asking Surrogate (see action ac1) which directly
downloads the requested content from the OriginServer. Moreover, a
MasterPeer agent has to maintain the cluster CLHT: as soon as a
SURROGATEINFORMCONTENT event is delivered to it (because new contents
have been downloaded from the OriginServer into the cluster) it performs the
cluster CLHT updating (see action ac2) in which new content entries are
added and, eventually, obsolete content entries are removed from the cluster
CLHT.

75

(a)

ac0:
 SurrogateMasterPeerRequest request = (SurrogateMasterPeerRequest)e;
 String contentRequest = (String)request.getData();
 ELDAId entry = clht.getEntry(contentRequest);
 SurrogateMasterPeerResponse response = new SurrogateMasterPeerResponse(self(),

request.getSource(),
entry,
entry!=null);

 generate(new ELDAEventMSGRequest(self(),response));
 ClientRequest clRequest = new ForwardedRequest(request.getClient(),entry,

contentRequest,request.getIdRequest());
 generate(new ELDAEventMSGRequest(self(),clRequest));
ac1:
 SurrogateMasterPeerRequest request = (SurrogateMasterPeerRequest)e;
 SurrogateMasterPeerResponse response = new SurrogateMasterPeerResponse(self(),

request.getSource(),
null, false);

 generate(new ELDAEventMSGRequest(self(),response));
ac2:
 SurrogateInformContent inform = (SurrogateInformContent)e;
 String content = (String)inform.getData();
 if(inform.getContentEvicted()!=null)
 clht.removeEntry(inform.getContentEvicted());
 clht.putEntry(content, inform.getSource());

(b)
Figure 4.12: MasterPeer: DSC (a) and actions (b).

Surrogate
A Surrogate agent (see its behavior in Figure 4.13) which receives a client
request checks if the content is locally available (see action acInit): in this
case, the content is sent to the ClientAgent (see action ac0) and then the
Surrogate agent quits itself (see action acQuitting); otherwise, the content
request is forwarded to the MasterPeer agent of the cluster (see action ac1).
As soon as the MasterPeer agent sends back its response though the
SURROGATEMASTERPEERRESPONSE event, the Surrogate agent verifies if the
requested content is on another surrogate (that is the
contentOnAnotherSurrogate guard holds) and then quits itself (see action
acQuitting); otherwise (that is the contentNotOnAnotherSurrogate guard
holds) the Surrogate agent: (i) downloads the requested content from the
OriginServer (see action ac2); (ii) stores locally the content sent back by the

76

OriginServer through the ORIGINRESPONSE event (see action ac3); (iii)
notifies the MasterPeer agent about CLHT updating (see action
acNotifyMasterPeer); (iv) sends the stored content to the ClientAgent (see
action ac0); and finally quits itself (see action acQuitting).

(a)

acInit:
 if(clht.containsContent(content)){
 generate(new SendToClient(self()));
 }else if(e instanceof ForwardedRequest){
 generate(new ForwardedNotFound(self()));
 }else generate(new ContentNotFound(self()));
ac0:
 String value = (String)clht.getContentValue(content);
 SurrogateResponse surrogateResponse = new SurrogateResponse(self(),

client,value,idRequest);
 generate(new ELDAEventMSGRequest(self(), surrogateResponse));
 generate(new WorkCompleted(self()));
ac1:
 SurrogateMasterPeerRequest smpRequest = new SurrogateMasterPeerRequest(self(),

masterPeer,content,
client, idRequest);

 generate(new ELDAEventMSGRequest(self(),smpRequest));
ac2:
 SurrogateRequest surrogateRequest = new SurrogateRequest(self(),originServer,

content,idRequest);
 generate(new ELDAEventMSGRequest(self(), surrogateRequest));
ac3:
 OriginResponse originResponse = (OriginResponse)e;
 if(originResponse.getFound()){
 String contentValue = (String)originResponse.getData();
 clht.putContent(content,contentValue);
 }
 generate(new UpdateCLHT(self()));
acNotifyMasterPeer:
 String contentEvicted = (String)clht.getLastContentEvicted();
 SurrogateInformContent inform = new SurrogateInformContent(manager,

masterPeer,content,
contentEvicted);

 generate(new ELDAEventMSGRequest(self(), inform));
 generate(new SendToClient(self()));
acquitting:
 generate(new ELDAEventQuitRequest(self()));

(b)
Figure 4.13: Surrogate: DSC (a) and actions (b).

77

4.4 Performance Evaluation

4.4.1 Simulation parameters
The simulation parameters are presented in Table 4.2. C% is varied from 1%
to 1/NS with a step of 1%. NS is set to {2, 3, 5, 10} to consider small and large
surrogate clusters. The average latency times among architecture
components (TCS, TSS, and TSO) are set according to the following model [49]:

)δK,δN(KδKδ mvmvmfi += (Eq. 4.1)

0K,K1KK vfvf ≥=+ (Eq. 4.2)

where δm is the mean delay and δi is the instantaneous delay for a given
message. δi is the sum of a fixed part and a variable part. Eq. 4.2 guarantees
that the mean of δi is equal to δm. The variable part of δi is generated by a
normal random variable whose mean and variance are set to Kvδm. The
distribution of the normal variable is truncated to -Kfδm in order to assure that
δi cannot assume negative values. To limit the delay variability Kf is set to
0.7. As clients are very close to surrogates, surrogates of the same cluster
are close to each other, and the origin is usually far away from surrogates
and clients, the following relationship among the average latency times are
established: TSO=3* TSS=9* TCS. In the simulation runs average latency times
are set as follows: TSO=90, TSS=30, TCS=10.
The eviction policy (EP) can be of the following types:
- Random. The object to be evicted is randomly chosen.
- Last access. The evicted object is the one that has not been requested

for longest time.
- Rank. The evicted object is the one less requested.
Client requests are issued according to an exponential probability density
function with λC average rate (ranging from 0.1 to 0.01 requests per time
unit). Objects are requested by clients according to a content popularity
distribution (CPD) which can be uniform (i.e. all the NO objects have the
same popularity) or Zipf (i.e. the NO objects are requested considering the
object popularity distributed according to a Zipf). In particular, popularity of
most popular and less popular objects is defined according to a variant of the
algorithm proposed in [102] which has been developed for static Web
objects.

78

Table 4.2: Simulation parameters.

PARAMETER DESCRIPTION
NO The number of objects which are contained in the origin server
C% The percentage of objects that are stored in a surrogate with respect

to the objects stored in the origin server
NS The number of surrogates in the cluster
TCS The average latency time between clients and surrogates of the same

cluster
TSS The average latency time among surrogates of the same cluster
TSO The average latency time between surrogates and origin server
EP The type of policy for the eviction of content in surrogates
λC Average rate of client requests

CPD The type of distribution of the content popularity

4.4.2 Simulation results
Simulation results are obtained with reference to the simulated CDN
architecture shown in Figure 4.14. When a client request is generated it is
forwarded to a surrogate randomly selected to simulate the request
redirection system (RS).

Client

Surrogate1

SurrogateNs

Cluster

λC
Content Request Origin

Reply

RS

TC S

TSS

TSO
C%

C%

NO

Figure 4.14: Reference simulated CDN architecture.

The simulation results analyzed in the following are obtained with reference
to the following architectures (see Section 4.1): SA, M/S_2, MC, MC_PS, and
P2P. In particular, as the M/S architectures have almost equal performances,
M/S_2 has been selected as representative M/S architecture. Moreover,
MC_PS refers to an implementation of the multicasting based on the
Publish/Subscribe model whereas MC is based on message passing. Figure
4.15 shows the AUPL and CHR performance indices obtained by setting
NS=2, CPD=uniform, and EP=Rank. The distributed architectures outperform
the SA architecture for both performance indices. In particular, with reference
to the AUPL, an actual performance improvement can be obtained with
C%>=30. The CHR of the distributed architectures is almost the same
whereas the AUPL for C%<30 is better for the multicast-based architectures.
By increasing NS the AUPL and CHR of the SA architecture does not change
(see Figure 4.16) whereas the AUPL and CHR really improve for all the
distributed architectures (as an example, see Figure 4.17 for the M/S_2

79

architecture). Moreover performance differences cannot be observed by
changing EP.

AUPL

0

100

200

300

400

500

600

700
0,
01

0,
02

0,
03

0,
04

0,
05

0,
06

0,
07

0,
08

0,
09 0,
1

0,
11

0,
12

0,
13

0,
14

0,
15

0,
16

0,
17

0,
18

0,
19 0,
2

0,
21

0,
22

0,
23

0,
24

0,
25

0,
26

0,
27

0,
28

0,
29 0,
3

0,
31

0,
32

0,
33

0,
34

0,
35

0,
36

0,
37

0,
38

0,
39 0,
4

0,
41

0,
42

0,
43

0,
44

0,
45

0,
46

0,
47

0,
48

0,
49 0,
5

[cache]

[m
s]

SA

M/S_2

MC

MC_PS

P2P

CHR

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
01

0,
02

0,
03

0,
04

0,
05

0,
06

0,
07

0,
08

0,
09 0,
1

0,
11

0,
12

0,
13

0,
14

0,
15

0,
16

0,
17

0,
18

0,
19 0,
2

0,
21

0,
22

0,
23

0,
24

0,
25

0,
26

0,
27

0,
28

0,
29 0,
3

0,
31

0,
32

0,
33

0,
34

0,
35

0,
36

0,
37

0,
38

0,
39 0,
4

0,
41

0,
42

0,
43

0,
44

0,
45

0,
46

0,
47

0,
48

0,
49 0,
5

[cache]

SA

M/S_2

MC

MC_PS

P2P

Figure 4.15: Performance indices for two surrogates, uniform content request distribution, and

rank eviction policy.

80

AUPL

0

100

200

300

400

500

600

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

[cache]

[m
s]

2

3

5

10

CHR

0

0,1

0,2

0,3

0,4

0,5

0,6

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

[cache]

2

3

5

10

Figure 4.16: Performance indices for the SA architecture by varying the number of surrogates
and with uniform content request distribution and Rank eviction policy.

Figure 4.18 shows the AUPL and CHR obtained by setting NS=2, CPD=Zipf,
and EP=Rank. The distributed architectures outperform the SA architecture
for both performance indices. In particular, with reference to the AUPL, an
actual performance improvement can be obtained with C%>=25. The CHR of
the distributed architectures is almost the same whereas the AUPL for
C%<30 is better for the multicast-based architectures as happed for
CPD=uniform. In this case performance differences can be observed by
changing EP for all the architectures (see Figure 4.19 for the M/S_2
architecture). The best EP is the Rank whereas the worst one is the Last

81

access. By increasing NS both AUPL and CHR improve (as an example, see
Figure 4.20 for the M/S_2 architecture) for the distributed architectures
whereas they do not change for the SA architecture as observed in case of
CPD=uniform.

AUPL

0

100

200

300

400

500

600

700

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

[cache]

[m
s]

2

3

5

10

CHR

0

0,2

0,4

0,6

0,8

1

1,2

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

[cache]

2

3

5

10

Figure 4.17: Performance indices for the M/S_2 architecture by varying the number of
surrogates and with uniform content request distribution and Rank eviction policy.

82

AUPL

0

100

200

300

400

500

600

0,
01

0,
02

0,
03

0,
04

0,
05

0,
06

0,
07

0,
08

0,
09 0,
1

0,
11

0,
12

0,
13

0,
14

0,
15

0,
16

0,
17

0,
18

0,
19 0,
2

0,
21

0,
22

0,
23

0,
24

0,
25

0,
26

0,
27

0,
28

0,
29 0,
3

0,
31

0,
32

0,
33

0,
34

0,
35

0,
36

0,
37

0,
38

0,
39 0,
4

0,
41

0,
42

0,
43

0,
44

0,
45

0,
46

0,
47

0,
48

0,
49 0,
5

[cache]

[m
s]

SA

M/S_2

MC

MC_PS

P2P

CHR

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
01

0,
02

0,
03

0,
04

0,
05

0,
06

0,
07

0,
08

0,
09 0,
1

0,
11

0,
12

0,
13

0,
14

0,
15

0,
16

0,
17

0,
18

0,
19 0,
2

0,
21

0,
22

0,
23

0,
24

0,
25

0,
26

0,
27

0,
28

0,
29 0,
3

0,
31

0,
32

0,
33

0,
34

0,
35

0,
36

0,
37

0,
38

0,
39 0,
4

0,
41

0,
42

0,
43

0,
44

0,
45

0,
46

0,
47

0,
48

0,
49 0,
5

[cache]

SA

M/S_2

MC

MC_PS

P2P

Figure 4.18: Performance indices for two surrogates, Zipf content request distribution, and
Rank eviction policy.

83

AUPL

0

100

200

300

400

500

600

0,01 0,03 0,05 0,07 0,09 0,11 0,13 0,15 0,17 0,19 0,21 0,23 0,25 0,27 0,29 0,31 0,33 0,35 0,37 0,39 0,41 0,43 0,45 0,47 0,49

[cache]

[m
s] Last Access

Random

Rank

CHR

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,01 0,03 0,05 0,07 0,09 0,11 0,13 0,15 0,17 0,19 0,21 0,23 0,25 0,27 0,29 0,31 0,33 0,35 0,37 0,39 0,41 0,43 0,45 0,47 0,49

[cache]

Last Access

Random

Rank

Figure 4.19: Performance indices for the M/S_2 architecture by varying the eviction policies

and with Zipf content request distribution.

84

AUPL

0

100

200

300

400

500

600

700

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

[cache]

[m
s]

2

3

5

10

CHR

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

[cache]

2

3

5

10

Figure 4.20: Performance indices for the M/S_2 architecture by varying the number of
surrogates and with Zipf content request distribution and Rank eviction policy.

85

5 A Process for Agent Specification,
Simulation and Implementation

PASSIM (Process for Agent Specification, Simulation and IMplementation) is
an agent-oriented software development process that uses simulation for
validating the requirements of the agent system under-development [24]. The
creation of the PASSIM process was carried out through the composition of
parts coming from two existing methodologies: PASSI (Process for Agent
Societies Specification and Implementation) [23] and ELDAMeth. The
composition of this new process can be regarded as an experiment of
Situational Method Engineering (SME) [60] which is currently supported by
several approaches in the literature [13, 25, 41, 61, 94]. In particular,
PASSIM was created according to a process-driven approach [25, 41] which
involves:
(i) The choice or the definition of a software development life-cycle

suitable for the specific problem and for the specific application
domain. An iterative-incremental life-cycle was chosen which is partly
also derived from the Royce's final waterfall model [100] and
specifically introduces the simulation phase to validate the system
design before coding. In particular, the chosen life-cycle is articulated
into five phases (see Figure 5.1): (1) Requirements Specification, (2)
Design, (3) Prototyping, (4) Coding, and (5) Deployment. After the
Prototyping phase, the designers can either proceed with the
remaining part of the process, if they want to implement the software
final release, or use the results of the Prototyping to feedback the
Design phase and/or the Requirements Specification phase.

(ii) The selection of suitable method fragments for carrying out each
phase of the chosen software development life-cycle. Method
fragments can be both derived from already existing
methodologies or ad-hoc defined ones. Table 5.1 reports the
method fragments which were selected from both the PASSI
methodology and the proposed methodology for carrying out each
phase of the chosen software development life-cycle of Figure 1. For

86

each method fragment the Table shows the related activities and
delivered work products. The selection of these fragments was easily
performed since all the method fragments of the two exploited
methodologies were available and ready-to-use. The so obtained
software development process (PASSIM) consists of five phases
carried out by six different method fragments.

(iii) The adaptation of method fragments in order to allow their
integration in the new methodology. The Prototyping method
fragment has been modified to take as input the work products
produced by the Agent Implementation method fragment, selected
from PASSI. In particular, the modified version of the method fragment
translates the structural and dynamic diagrams produced by the Agent
Implementation fragment into an agent system model based on ELDA
MAS meta-model (see Section 3.1.2).

The phases of PASSIM carried out by the method fragments selected from
PASSI are fully supported by the PASSI Toolkit (PTK), developed as a
Rational Rose plug-in, whereas the Prototyping phase is supported by the
ELDATool (see Section 3.4).

In the following subsections each phase of PASSIM is described with
reference to the method fragments selected for carrying it out.

5.1 PASSIM

5.1.1 Requirements Specification
The Requirements Specification phase is carried out by the System
Requirements method fragment selected from PASSI that produces a model
of system requirements in terms of agency and purpose. This method
fragment is composed by four atomic fragments: Domain (Requirements)
Description, Agents Identification, Roles Identification and Tasks
Specification.
The Domain Description produces a use-case diagram that represents actors
and use-cases (a functional description of the system) identified for the
system using a hierarchical decomposition if its is required by the problem
complexity. In the Agents Identification, agents are identified by assigning
responsibility to each agent for a part of the functionalities of the whole
system; this fragment produces a use-case diagram, called Agents
Identification diagram (AId). In particular, the designer clusters some of the
use cases within a package and gives it the name of the agent that will be
responsible for accomplishing the specific functionalities of the clustered use
cases. Once all the use cases have been assigned to the identified agents,
the designer can define scenarios in which the agents will be involved (Roles
Identification). Such scenarios are modeled through a set of UML sequence
diagrams which show that each agent may be involved in several different
activities and may appear more than once in each scenario playing different

87

roles. Finally, in the Tasks Specification, the tasks of each agent are
specified through UML activity diagrams.

5.1.2 Design
The Design phase is carried out by two (composed) method fragments
extracted from PASSI: the Agent Society and the Agent Implementation.

5.1.2.1 The Agent Society Fragment
The Agent Society composed method fragment includes four atomic method
fragments: Domain Ontology Description, Communication Ontology
Description, Roles Description, and Protocols Description.
In the Domain Ontology Description the design of the domain ontology is
performed by means of a class diagram (DOD diagram) that describes the
ontology in terms of concepts (categories, entities of the domain), predicates
(assertions on properties of concepts) and actions (performed in the domain).
This diagram can also be regarded as an XML schema that can be used to
obtain a Resource Description Framework (RDF) [36, 96] which encodes the
ontological structure.
The Communication Ontology Description produces a class diagram (COD
diagram) that shows all the agents and all their communications
(relationships among agents). This diagram is drawn on the basis of the AId
(see Section 5.1.1). A class is introduced for each agent, and an association
is introduced for each communication between two agents. Being
communications a way to exchange knowledge, it is also important to
introduce the proper data structure (coming from the entities described in the
DOD diagram) in each agent. The association line that represents each
communication is drawn from the initiator of the conversation to the other
agent (participant) as can be deduced from the description of their interaction
performed in the Roles Identification. Each communication is characterized
by three attributes, Ontology, Agent Interaction Protocol and Content
Language, which are grouped into an association class. The roles, initially
identified in the Agents Identification, are completely defined in the Roles
Description that produces a UML class diagram in which classes are used to
represent roles. In particular, each role uses several elementary tasks to
implement its complex behavior and, finally, roles are grouped in packages
representing agents.
The Protocols Description is required only when the FIPA standard protocols
are not sufficient to solve some communication problems and new protocols
must be introduced.

88

Table 5.1: The method fragments of PASSIM.

PHASE
COMPOSED

METHOD

FRAGMENT

 ATOMIC METHOD

FRAGMENTS
WORK PRODUCT (KIND)

SOURCE

METHODOLOGY

Requirements
Specification

System
Requirements

- Domain Description

- Agents
Identification

- Roles Identification

- Tasks Specification

- Domain Description diagram
(use-case diagram)

- Agents Identification diagram
(use-case diagram)

- Roles Identification diagrams
(sequence diagram)

- Tasks Specification diagrams
(activity diagram)

PASSI

Agent Society

- Domain Ontology
Description

- Communication
Ontology
Description

- Roles Description

- Protocols
Description

- Domain Ontology Description
diagram (class diagram)

- Communication Ontology
Description diagram (class
diagram)

- Roles Description diagram
(class diagram)

- Protocols Description
(sequence diagram)

PASSI

Design

Agent
Implementation

- Agent Structure
Definition

Agent Behavior
Description

- Single-Agent Structure
Definition diagrams (class
diagram)

- Multi-Agent Structure
Definition diagram (class
diagram)

- Single.Agent Behavior
Description diagrams
(activity/state diagram)

- Multi-Agent Behavior
Description diagram
(activity/state diagram)

PASSI

Prototyping
Simulation-

based
Prototyping

- ELDA-based Multi-
Agent-System
Model Definition

- Multi-Agent System
Code Generation

- Simulation

Implementation

- Simulation

Execution

- Multi-Agent System Distilled
StateChart Simulation Model
(MASDSC diagram)

- MAS Code (C(MASDSC)

diagram)

- Simulator Program

- Simulation Results

Proposed
Simulation-based

process

Coding Code - Code Reuse
- Code Refinement

- Code for the target agent
platform

PASSI

Deployment Deployment - Deployment
Configuration

- Deployment Diagrams PASSI

89

Requirements
Specification Design

Prototyping

Coding

Prototyping
Work Products

Coding
Work Products

Design
Work Products

Deployment

Deployment
Work Products

Phase

Work Products

[Next Iteration]

Requirements
Specification

Work Products

Figure 5.1: The software development life-cycle of PASSIM.

5.1.2.2 The Agent Implementation Fragment
The Agent Implementation method fragment is composed by two different
atomic fragments, each of them carried out at both the multi- and single-
agent level of abstraction. The multi-agent level models the overall structure
of the system (MAS structure and behavior, inter-agent communications,
etc.). The single-agent level of abstraction focuses on the implementation
details of each agent.
In particular, the following two atomic method fragments are carried out at
the multi- and single-agent levels:
- Agent Structure Definition (ASD), which uses conventional class

diagrams to describe the structure of agents (represented by classes)
and produces both the Single-Agent Structure Definition (SASD)
diagrams and the Multi-Agent Structure Definition (MASD) diagram;

- Agent Behavior Description (ABD), which uses activity diagrams or
statecharts to describe the behavior of agents and produces the Single-
Agent Behavior Description (SABD) diagrams and the Multi-Agent
Behavior Description (MABD) diagram.

The MASD diagram represents the multi-agent system from the structural
point of view. Agents are represented as classes with their behaviors in the
operation compartment and attributes specifying the agent knowledge.
The agent behavior at the multi-agent level is described by the MABD
diagram. This is a UML activity diagram used to illustrate the dynamics of the
system during the agents’ lifecycle. In this diagram, the involved agents and
their tasks are represented with swim-lanes, operations are displayed as
activities, and transitions among activities represent events like method
invocations (when relating activities in the same swim-lane), new behavior
instantiations/invocations (when relating activities of the same agent but in
different swim-lanes) or messages (when activities from two different agents
are involved).
In the SASD diagram one class diagram is used for depicting the internal
structure of each agent. This is a very detailed diagram, reporting attributes

90

and methods of both the agent class and the classes of the tasks. The details
of the behavior of each agent are specified in the SABD diagram.

5.1.3 Prototyping
The Prototyping phase is carried out by a (composed) method fragment, Simulation-
based prototyping, which is composed by four atomic method fragments: ELDA-
based Multi-Agent-System Model Definition, Multi-Agent-System Code Generation,
Simulation Implementation, and Simulation Execution.

Figure 5.2: The ELDA-based Simulation method fragment.

The ELDA-based Multi-Agent-System Model Definition is enabled by ELDA MAS
Meta-Model which supports the specification of the agents types and the interaction
protocols among them. The ELDA-based specification of a MAS, denoted as
MASDSC, is expressed as:

MASDSC = {Beh(AT1), Beh(AT2), …, Beh(ATn)},

where Beh(ATi) is the specification of the dynamic behavior of the i-th agent type
modeled according to the ELDA model (see section 3.1.1). The ELDA-based Multi-
Agent-System Model Definition is an adapted fragment which takes as input the
structural and dynamic diagrams (SASD, SABD, MASD, and MABD diagrams)
produced by the Agent Implementation which are semi-automatically translated into
a MASDSC as described in section 5.2.

91

The Multi-Agent-System Code Generation is made according to the
ELDAFramework (see Section 3.2) and fully supported by ELDATool (see Section
3.4): given a MASDSC, it produces C(MASDSC) representing the code of MASDSC.
The Simulation Implementation and Simulation Execution are supported by
ELDASim (see Section 3.3.1): on the basis of functional and non-functional
requirements and the MAS code, a simulator program can be implemented by using
ELDASim in the Simulation Implementation; in the Simulation Execution the
simulator program is executed to obtain the simulation results containing validation
traces and performance parameter values. Moreover, the simulation results can be
used to feed back the ELDA-based Multi-Agent-System Model Definition.

5.1.4 Coding
The Coding phase is carried out by the Code (composed) method fragment
selected from PASSI which produces the code of the MAS under-
development. The Code is composed by two atomic method fragments:

1. Code Reuse, in which code generation is directly supported by
the PTK. In particular, it is possible to generate not only the
skeletons but also largely reusable parts of the methods
implementation based on a repository of reused patterns and
associated design descriptions. Currently, the pattern repository
includes a set of reusable portions of JADE and FIPA-OS agents
and corresponding behaviors; a more detailed description of the
pattern repository can be found in [20, 26];

2. Code Refinement, where code is manually completed by the
programmer.

5.1.5 Deployment
The Deployment phase is carried out by the Deployment (composed) method
fragment selected from PASSI which specifies the distribution of the parts of
the system (agents) across the available agent platforms. The Deployment is
composed by only the Deployment Configuration atomic method fragment
which produces the deployment diagrams describing the allocation of agents
to the available agent platforms and any constraints on agent migration. In
particular, these diagrams also specify the libraries or hardware devices
(sensors or actuators) that should be available on the agent platforms in
order to ensure the proper system functionalities.

5.2 Adapting the design for the prototyping
As previously introduced, in order to prototype the MAS under-development,
the work products of the Agent Implementation, carried out in the Design
phase, must be translated into a Multi-Agent System Distilled StateChart
Model (MASDSC) which represents the work product of the Multiagent-System
ELDA-based Model Definition (see Table 5.1). The input to the translation

92

process consists the SASD, SABD, MASD, and MABD diagrams whereas
the output of the translation process is represented by a MASDSC.
The translation process is semi-automatic which means that these diagrams
are automatically translated into a MASDSC skeleton and, then, the MASDSC
skeleton is manually refined through programming. In particular, the following
steps are carried out:

1. The agent types of the MASDSC are directly derived from the agent
types of the MASD diagram through a one-to-one mapping.

2. The interactions in terms of events exchanged between the agent
types of the MASDSC are directly derived from the MABD diagram.

3. The ADSC of an agent type is based on the SASD and the SABD
diagrams of the agent type. As a SASD is a platform-dependent
diagram (e.g. FIPA-OS-based or JADE-based) the SASDs are
designed to be ELDA-model oriented. In particular, attributes and
methods of the agent type are inserted into the ADSC as state
variables and supporting functions, respectively. These state variables
and supporting functions need to be manually finalized, i.e. the specific
type of all the state variables is defined and the methods are
implemented. The activities reported in the SABD diagram become
states of the ADSC and the transitions among activities become
transitions among the states corresponding to these activities. Finally,
the ADSC has to be refined through manual programming which is
needed for model consistency and optimization purposes. This
refinement step involves the introduction/deletion of states, transitions,
transition labels (event[guard]/action), state variables and supporting
functions.

In the following we use a simple example to show how the semi-automatic
translation from the work products of the Agent Implementation to a MASDSC
can be obtained.
The example MAS we considered is composed of two agent types: (i) an
information retrieval agent (IRA) whose task is to visit a given number of
locations to retrieve information through a query; (ii) an information provider
agent (IPA) whose task is to process the query received from the IRA and to
provide it with the query result.
The work products produced by the Agent Implementation activities are
shown in Figure 5.3, 5.4, 5.5, 5.6.

User

InformationRetrievalAgent
itinerary : Itinerary
query : Query
data : Vector

archiveQueryResult()
moveNextLocation()
submitQuery()

InformationProviderAgent
dataSource

searchForInformation()
provideQueryResult()

Figure 5.3: the MASD of the example MAS.

93

SubmitQuery

StoreInfoRetrieved

MigrateNext
Location

[itineraryNotCompleted]

InformationRetrievalAgent.
Searching

ProvideInfo

InformatonProviderAgent.
Providing

ReportData[itineraryCompleted]

InformationRetrievalAgent.
Reporting

Figure 5.4: the MABD of the example MAS.

ELDAAgent
(from ELDAFramework)

ADSC
(from ELDAFramework)

ELDABehaviour
(from ELDAFramework)

IRA_ADSC
itinerary : Itinerary
query : Query
data : Vector

archiveQueryResult()
submitQuery()
moveNextLocation()

IRA_Behavior

ELDAQueue
(from ELDAFramework)

ELDAID
(from ELDAFramework)

InformationRetrievalAgent

(a)

InformationRetrievalAgent.
Searching

SubmitQuery

StoreInfoRetrieved

MigrateNext
Location

InformationRetrievalAgent.
Reporting

ReportData
[ItineraryNotCompleted]

[ItineraryCompleted]

(b)

Figure 5.5: the (a) SASD and (b) SABD of the IRA.

94

ADSC
(from ELDAFramework)

ELDAAgent
(from ELDAFramework)

IPA_ADSC
dataSource

searchForInformation()
provideQueryResult()

IPA_Behaviour

ELDAID
(from ELDAFramework)

ELDABehaviour
(from ELDAFramework)

InformationProviderAgentInformationProviderAgent
ELDAQueue

(from ELDAFramework)

(a)

ProvideInfo

InformatonProviderAgent.
Providing

WaitForQuery

[stop]

[continue]

(b)

Figure 5.6: the (a) SASD and (b) SABD of the IPA.

Given the MASD of the example MAS (Figure 5.3), the agent types of the
MASDSC are: InformationRetrievalAgent and InformationProviderAgent.

InformationRetrievalAgent
Given the MABD of the example MAS (Figure 5.4), the events exchanged
between the two agent types are: QUERYREQUEST (QUERY) and
QUERYINFORM (QUERYRESULT), which correspond to the two main
messages of the FIPA Query Protocol which was selected for the
communication between the two agents.
Given the SASD and SABD diagrams of the InformationRetrievalAgent (see
Figure 5.5), the ADSC skeleton of the InformationRetrievalAgent of the
MASDSC reported in Figure 5.7 was obtained. The names of the states of the
ADSC have as suffix the names of the activities of the SABD diagram and as
postfix “Done” which means that the activity corresponding to the state has
been carried out. The event labeling the transition from SubmitQueryDone to
StoreInfoRetrieveDone corresponds to the message QUERYINFORM sent from
the IPA agent. The events labeling the transitions from
StoreInfoRetrieveDone are derived from the guards of the selection block of
the IRA SABD diagram (see Figure 5.5b). The event labeling the transition

95

from MigrateNextLocationDone to SubmitQueryDone assumes the name of
the activity corresponding to the target state as each transition of a DSC
must be labeled by an event.

Figure 5.7: the ADSC skeleton of the IRA.

The ADSC of the InformationRetrievalAgent which was obtained after
refinement is shown in Figure 5.8. The actions have been purposely defined
“by programming” on the basis of the state variables and supporting
functions derived from the SASD diagram (see Figure 5.5a).

ac0: generate(new QueryRequest(self(), IPA, query));
ac1: QueryInform qi = (QueryInform)evt;
archiveQueryResult(qi.getInfo());
if (itinerary.hasNextLocation())
 generate(new ItineraryNotCompleted(self()));
else
 generate(new ItineraryCompleted(self()));
ac2: Location nextLoc = itinerary.getNextLocation();
generate(new Move(self(), nextLoc, new SubmitQuery(self()));
ac3: reportData();
ac4: ac0;

Figure 5.8: the refined ADSC of the IRA.

96

InformationProviderAgent
Given the SASD and SABD diagrams of the InformationProviderAgent (see
Figure 5.6), the ADSC skeleton of the InformationProviderAgent of the
MASDSC was obtained (see Figure 5.9). Two states are derived:
WaitForQueryDone, referring to the end of the WaitForQuery activity, and
ProvideInfoDone, referring to the end of the ProvideInfo activity. The event
labeling the transition from WaitForQueryDone to ProvideInfoDone
corresponds to the message QueryRequest sent from the IRA agent. The
Continue event labeling the transition from ProvideInfoDone to
WaitForQueryDone is derived from the guard of the selection block of the
IPA SABD diagram (see Figure 5.6b).

Figure 5.9: the ADSC skeleton of the IPA.

The ADSC of the InformationProviderAgent which was obtained after
refinement is shown in Figure 5.10. The actions have been purposely defined
“by programming” on the basis of the state variables and supporting
functions derived from the SASD diagram (see Figure 5.6a).

ac1: QueryRequest qr=(QueryRequest)evt;
Result r = searchForInformation(qr.getQuery());
generate(new QueryInform(self(), qr.getSource(), r);
generate(new Continue(self(), self()));

Figure 5.10: the refined ADSC of the IPA.

5.3 A case study: from the analysis to the
validation of an Agent-based E-Marketplace

An electronic marketplace (e-Marketplace) is a platform for buyers and
sellers exchanging products and services [33, 98]: (i) buyers specify the
items they want to buy, along with their desired price ranges; (ii) the e-
Marketplace then matches trading partners for the buyers and provide the
Request for Quotation (RFQ); (iii) on the basis of the specification and price

97

range, sellers return the quotation to the buyers and wait for the confirmation;
(iv) after receiving all quotations, buyers can select the best offer and issue a
purchase order to the selected sellers. Nowadays, many e-Marketplaces are
based on software agents which are capable of fully supporting and
automating the stages of the consumer-buying behavior (CBB) model [57,
74]. The CBB model defines the decision process which consumers undergo
when purchasing a product. Such a process is articulated in six stages:

1. Need Identification: This stage characterizes the buyer that
becomes aware of some unmet/desired need. Within this stage,
the buyer can be stimulated through product information.

2. Product Brokering: This stage comprises the retrieval of
information to help determine what to buy. This encompasses
the evaluation of product alternatives based on buyer-provided
criteria. The result of this stage is the "consideration set" of
products.

3. Merchant Brokering: This stage combines the "consideration
set" from the previous stage with merchant-specific information
to help determine who to buy from. This includes the evaluation
of merchant alternatives based on buyer-provided criteria (e.g.,
price, warranty, availability, delivery time, reputation, etc.).

4. Negotiation: This stage is about how to settle on the terms of
the transaction. The negotiation varies in duration and complexity
depending on the market.

5. Purchase and Delivery: The purchase and delivery of a product
can either signal the termination of the negotiation stage or occur
sometime afterwards.

6. Product Service and Evaluation: This post-purchase stage
involves product service, customer service, and an evaluation of
the satisfaction of the overall buying experience and decision.

The objective of our case study is to apply PASSIM to the design and
validation of an agent-based e-Marketplace (AeM) which supports stages 3,
4, and 5 through the following specific consumer-buying process [41]:

i. Request Input. When users wish to buy a product, they identify a set of
product parameters (product description, maximum price PMAX), log
into the e-Marketplace and submit a request containing the product
parameters. The e-Marketplace checks if users are trustworthy (i.e.
from a commercial and security viewpoint) and decides if requests can
be accepted. If so, the Consumer Assistant System (CAS) of the e-
Marketplace starts satisfying the user request.

ii. Searching. The CAS obtains a list of locations of vendors by using the
Yellow Pages Service (YPS) of the e-Marketplace. The YPS is a
federation of autonomous components at which vendors register to
advertise their products. In particular the following YPS organizations
were established:

- Centralized: each YPS component stores a complete list of
vendors;

98

- One Neighbor Federated: each YPS component stores a list of
vendors and keeps a reference to only one other YPS
component;

- M-Neighbors Federated: each YPS component stores a list of
vendors and keeps a list of at most M YPS components.

iii. Contracting & Evaluation. The CAS interacts with the found vendors to
request an offer (POFFER) for the desired product, evaluates those
received, and selects an offer, if any, for which the price is acceptable
(i.e., POFFER ≤PMAX).

iv. Payment. The CAS purchases the desired product from the selected
vendor using a given amount of e-cash (or bills). The following steps
are performed to execute the money transaction between the CAS and
the vendor:

- the CAS gives the bills to the vendor;
- the vendor sends the bills to its bank;
- the bank validates the authenticity of the bills, exempts them

from reuse, and, finally, issues an amount of bills equal to that
previously received to the vendor;

- the vendor notifies the CAS.
v. Reporting. The CAS reports the buying result to the User.

This description can be considered as an initial requirements document on
the basis of which the Requirements Specification phase is carried out. In the
following subsections selected work products of the first four phases of
PASSIM (see Section 5.1) are shown and described. In particular, Section
5.3.1 presents the Requirements Specification work products, Section 5.3.2
shows the Design work products, and, finally, Section 5.3.3 shows the
establishment and the results of the Prototyping phase which allows for both
functional validation and performance evaluation of the MAS under-
development.

5.3.1 The Requirements Specification phase
From the previously reported description of the system to be designed, the
AId (see Section 5.1.1) was drawn which reports three actors (User, Vendor
and Bank) and the use cases, coming from the Domain Description, which
were packaged into the following six agents:

- User Assistant Agent (UAA) is associated with a user and assists
her/him in looking for a specific product that meets her/his needs
and buying the product according to a specific buying policy.

- Yellow Pages Agent (YPA) represents an entry point of the
federated yellow pages service (or “Yellow Pages”) which provides
the location of agents selling a given product.

- Vendor Agent (VA) represents the vendor of specific goods.
- Mobile Consumer Agent (MCA) is an autonomous mobile agent

dealing with searching, contracting, evaluation, and payment of
goods.

99

- Access Point Agent (APA) represents the entry point for the e-
marketplace, accepts requests for buying a product from a
registered UAA and fulfils them by generating a specific MCA.

- Bank Agent (BA) represents a reference bank of MCA and VA.
It is worth noting that the <<communicate>> relationship shown in Figure
5.11 represents agents interaction.

UserAssistantAgent
<<Agent>>

AccessPointAgent
<<Agent>>

MobileConsumerAgent
<<Agent>>

YellowPagesAgent
<<Agent>>

BankAgent
<<Agent>>

VendorAgent
<<Agent>>

Evaluate_Offer

Request_an_Offer

Search_for_Vendors

Autenticate_User

Negotiate_Offer

<<include>>

<<include>>

Pay_for_Goods

Search_for_Vendors

<<communicate>>.

Login

<<communicate>>.

Manage_Transaction

<<include>>

<<include>>

<<include>>

User

Validate_User_Request

<<communicate>>.

Search_for_goods

<<communicate>>.

Register_Vendor_and_
Goods

Propose_an_Offer

Vendor

Register_Vendor_Data

Bank

Manage_Vendors

<<include>>

<<include>>

Supervise_Money_Trans
action

Do_Bank_Transaction

<<include>>

<<communicate>>. <<communicate>>.

Figure 5.11: The AId for the proposed case study.

On the basis of the AId, the Roles Identification diagram (RId) was designed.
A portion of the obtained RId is shown in Figure 5.12 where the APA
(UserRequestValidatorAndForwarder role) after validating the order, forwards
it to the MCA (Searcher role); afterwards the MCA asks for the vendors list to
the YPA (VendorListProvider role). After getting the list, the MCA
(Contr&Eval role) contacts all the VAs (OfferProposer role) and asks them for
their offers. Finally, the MCA selects the best offer and pay for the product
(Payer role).

100

Searcher :
MobileConsumerAgent

UserRequestValidator
AndForwarder : AccessPointAgent

VendorListProvider :
YellowPagesAgent

Contr&Eval :
MobileConsumerAgent

OfferProposer :
VendorAgent

Payer :
MobileConsumerAgent

12: SelectBestOffer

1: ValidateOrder

2: ForwardProductRequest

3: RequestVendorList

4: CreateList

5: ReturnVendorsList

6: * [for each vendor] MoveToVendorLocation
7: SendMeYourOffer

8: GenerateOffer

9: ReturnOffer

10: EvaluationOffer

11: ContactNextVendor

Figure 5.12: A portion of the RId regarding a specific-product vendors search scenario.

An initial definition of the dynamic behavior of each agent is the work product
produced by the last atomic method fragment of this phase (Tasks
Specification). The Tasks Specification produces a set of Tasks Specification
diagrams (one for each identified agent) which are UML activity diagram
representing the agent tasks. Each diagram is composed of two swim-lanes
(see Figure 5.13): the right-hand highlights the roles of the agent which the
diagram refers to and the activities the agent performs in playing these roles,
whereas the left-hand reports the roles played by other agents interacting
with the agent of right-hand.

YellowPagesAgent.
VendorListProvider

VendorAgent.
OfferProposer

VendorAgent.Biller

UserAssistantAgent.
ProductBuyer

AccessPointAgent.
UserRequestValidatorandForwarder

Interacting Agents

Searcher

Contr&Eval

Payer

Reporter

Mobile Consumer Agent

Figure 5.13: The Tasks Specification diagram for the MCA.

101

In figure 5.13, the Tasks Specification diagram of the MCA is shown. In
particular, the MCA is involved in: (i) searching the list of vendors through a
query to the YPA (Searcher role), (ii) contracting with VAs and evaluating
their offers (Contr&Eval role), (iii) buying the product from the VA proposing
the best offer (Payer role), (iv) reporting the transaction results to the UAA
(Reporter role). Afterwards the MCA can either play again the Searcher role
or be terminated.

5.3.2 The Design phase
The Agent Society method fragment (see Section 5.1.2) produces diagrams
which represent social interactions and dependencies among the identified
agents (see Section 5.3.1). A portion of the DOD diagram is reported in
Figure 5.14 in which some concepts, predicates and actions used to define
the problem domain are shown. For instance the Vendor concept
(representing the vendor of the real-world scenario) is related with the
Product(s) it sells. A vendor registers its products in the agent-based yellow
pages service by executing the RegisterProduct action which is performed by
the VA (action Actor) and its outcome received by the YPA (action Receiver).
A portion of the COD diagram is reported in Figure 5.15. It shows three
identified agents (APA, VA, MCA) and two communications among them
(Forward_Product_Request, Offer_Request). In particular, the Offer_Request
communication happens when the MCA asks the VA for the best offer (see
the scenario reported in Figure 5.12). This communication refers to the
OfferPrice predicate from the ontology of Figure 5.14 and adopts the
FIPAQuery agent interaction protocol and the RDF content language. Roles
played by agents during the interaction (as described in the RIds) are
reported at the beginning and the end of the association line.
The Agent Implementation method fragment (see Section 5.1.2.2) produces
work products representing the MAS architecture. In particular, a portion of
the Multi-Agent Structure Description (MASD) diagram, which describes the
structure of the VA, MCA and APA agents, is shown in Figure 5.16. It is
worth noting that the VA is in relationship with an (human) actor; this is an
extension of UML that is useful to represent all the possible agent
relationships (communications and GUI-based interactions with the user) in a
unique diagram.
A portion of the obtained Multi-Agent Behavior Description (MABD) diagram
is reported in Figure 5.17, which illustrates the activities occurring during the
Vendor_Request communication between MCA and YPA and the
Offer_Request communication between MCA and VA. In particular, this
portion of the MABD diagram describes the request for the VA list from the
MCA to the YPA, the migration of the MCA to the retrieved VA location and
the contracting phase carried out by the MCA with the VA.

102

OfferPrice
Theproduct : Product

<<predicate>>

RegisterProduct
Actor = VendorAgent
Receiver = YellowPagesAgent

<<act>> Register()

<<action>>

BuyProduct
Actor = MobileConsumerAgent
Receiver = AccessPointAgent

<<act>> Negotiate_and_buy()

<<action>>

Offer
Quantity : int
Price : int
DeliveryDate : Date

<<concept>>VendorsList
Theproduct : Product

<<predicate>>

Product
Name : String
Type : String
Quantity : int

<<concept>>

TheProduct

TheProduct

11..n 11..n

Vendor
Social_Name : String
Personal_Name : String
Personal_Surname : String
Country : String
Address : String
CAP : String

<<concept>>

1..n

1

1..n

1

Figure 5.14: A portion of the DOD diagram.

Forward_Product_Request
Ontology : BuyProduct
Language : RDF
Protocol : FIPARequest

<<Communication>>

Offer_Request
Ontology : OfferPrice
Language : RDF
Protocol : FIPAQuery

<<Communication>>

AccessPointAgent
UserData
ProductParameters
LoginUser
FindProduct

<<Agent>>

MobileConsumerAgent
ProductParameters
UserData
VendorList
Offer
Bill
FindProduct
CreateVendorList
NegotiateOffer
SendBill

<<Agent>>

UserRequestValidatorAndForwarder

Searcher
VendorAgent

Vendor
Product
Offer
Bill
RegisterProduct
DoTransaction
NegotiateOffer
SendBill
User
UserData
Transaction

<<Agent>>

Contr&Eval OfferProposer

Figure 5.15: A portion of the COD diagram.

AccessPointAgent
UserData
ProductParameters
LoginUser
FindProduct

ValidateAndForwardUserRequest()
ValidateAutentication()

<<Agent>>

MobileConsumerAgent
ProductParameters
UserData
VendorList
Of f er
Bill
FindProduct
CreateVendorList
NegotiateOf f er
SendBill

Searching()
Contr&Ev al()
Pay For()
Reporting()

<<Agent>>VendorAgent
Vendor
Product
Of f er
Bill
RegisterProduct
DoTransaction
NegotiateOf f er
SendBill
User
UserData
Transaction

ProposeOf f er()
Billing()
RegisterData()

<<Agent>>

Vendor

Figure 5.16: A portion of the MASD diagram.

103

Request_VAList

MoveToVendor
Location

Process_YPA_
Reply

[Contracting]

MobileConsumerAgent. Searching

Create_and_
Return_List

(Request; VendorsList; RDF)

(Inform; VendorsList; RDF)

YellowPagesAgent.
ProvideVendorsList

Request_An_Offer_
From_VATarget

Evaluate_
VAOffer

MobileConsumerAgent.Contr&Eval

GenerateOffer

(Query; OfferPrice; RDF)

(Inform; OfferPrice; RDF)

VendorAgent.ProposeOffer

...

Figure 5.17: A portion of the MABD diagram with some interactions among MCA, YPA and

VA.

Figure 5.18 shows the Single-Agent Behavior Description (SABD) diagram
for the MCA, which provides a high-level specification of the behavior of the
MCA. In particular, the MCA plays 4 different roles in the following sequence:
Searching, Contr&Eval, PayFor and Reporting. They also correspond to the
phases of the MCA lifecycle. In particular, in the Searching phase, the MCA
moves to the location of the next YPA (YPATarget), requests the list of
vendors (VAList), and processes the reply (YPA_Reply). If the Searching
phase is not completed ([Searching] is evaluated to true), the MCA continues
searching. If the guard [Contracting] holds (i.e. the VAList is not empty) the
MCA passes into the Contr&Eval phase. If the guard [Reporting] holds (i.e.
the VAList is empty) the MCA directly goes into the Reporting phase. In the
Contr&Eval phase, the MCA moves to the location of a vendor in the VAList
(VATarget), requests an offer (VAOffer) and evaluates it. If the MCA decides
to accept the received VAOffer (i.e. the guard [BuyingSoon] holds) or another
received VAOffer (i.e. the guard [MovingAndBuying] holds), it passes into the
PayFor phase. If the MCA desires a new offer, it keeps contracting (i.e. guard
[Contracting] holds true). If no offer is selected the MCA goes into the
Reporting phase (i.e. guard [Reporting] holds true). Finally, in the Reporting
phase, the MCA moves to the APA location and reports to its UAA.
Figure 5.19 shows the SASD diagram for the MCA and its derived agents. In
particular, two specific MCAs are derived:
- the ItineraryConsumerAgents (or ICA), which performs the Searching

and Contr&Eval phases (see Figure 5.18) by sequentially moving from
one location to another within the e-Marketplace;

- the ParallelConsumerAgent (or PCA), which performs the Searching and
Contr&Eval phases (see Figure 5.18) by means of the support of a set of
mobile agents:
o the ItinerarySearcherMobileAgent or the

SpawningSearcherMobileAgent for carrying out sequential or parallel
searching of vendors during the Searching phase;

104

o the ContractorMobileAgent for carrying out parallel negotiation during
the Contr&Eval phase.

MoveTo_Next_
YPATarget

Request_VAList

Process_YPA_
Reply

MobileConsumerAgent.
Searching

Request_An_Offer
_from_VATarget

Evaluate_
VAOffer

MobileConsumerAgent.
Contr&Eval

MoveTo_Next_
VATarget

Pay_VATarget_
ForProduct

MobileConsumerAgent.
PayFor

MoveTo_VATarget_
Location

MoveTo_APA_
Location

ReportTo_UAA

MobileConsumerAgent.
Reporting

[Searching] [Contracting]

[Reporting]

[Contracting]

[BuyingSoon]

[MovingAndBuying]
[Reporting]

Figure 5.18: The SABD diagram for the MCA.

5.3.3 The Prototyping phase
The aim of the Prototyping phase is the functional validation of the designed
AeM and the performance evaluation of different types of MCAs for
optimization purposes. In particular, the functional validation is carried out on
the basis of simple simulation scenarios aiming at validating the behavior of
the agent types, the agent interaction protocols, and the global behavior of
the AeM. The performance evaluation is carried out to evaluate the
completion time of the buying task of different types of MCAs.
In the following subsections, first the refined ELDA-based MCAs derived from
the Multiagent-System ELDA-based Model Definition are described (Section
5.3.3.1) and, then, the functional validation (Section 5.3.3.2) and the
performance evaluation (Section 5.3.3.3) are presented.

105

ELDAAgent
(from ELDAFramework)

ADSC
(from ELDAFramework)

ELDABehaviour
(from ELDAFramework)

PCA_ADSC

ItineraryConsumerAgent

ISMA_ADSC

SSMA_ADSC

PCA_Behavior

CMA_ADSC

ISMA_Behavior

SSMA_Behavior

MobileConsumerAgent

ItinerarySearcherMobileAgent

SpawningSearcherMobileAgent

ParallelConsumerAgent

0..10..1

0..n0..n

CMA_Behavior

ELDAQueue
(from ELDAFramework)

ELDAID
(from ELDAFramework)

ContractorMobileAgent

1..n1..n

Figure 5.19: The SASD diagram for the MCA and derived agents.

5.3.3.1 ELDA-based MCAs
Two types of ELDA-based MCAs were obtained according to the adapting
Multiagent-System ELDA-based Model Definition (see Section 5.2): ICA and
PCA. Both ICA and PCA are equipped with policies for searching and buying
(see Table 5.2) during the Searching and the Contr&Eval phases,
respectively.

106

Table 5.2: Searching and Buying Policies of MCA.

SEARCHING POLICY (SP) DESCRIPTION
ALL All YPA agents are contacted
PA-PARTIAL A subset of YPA agents are contacted
OS-ONE-SHOT Only one YPA agent is contacted

BUYING POLICY (BP) DESCRIPTION

MP-Minimum Price
The MCA first interacts with all the VA agents; then,
it buys the product from the VA offering the best
acceptable price

FS-First Shot
The MCA interacts with the VA agents until it obtains
an offer for the product at an acceptable price, then it
buys the product

FT-Fixed Trias
The MCA interacts with a given number of VA agents
and buys the product from the VA which offers the
best acceptable price

RT-Random Trias
The MCA interacts with a random number of VA
agents and buys the product from the VA which offers
the best acceptable price

In the following, we focus on the PCA as the ICA possesses a more simple
behavior, which is encompassed by the PCA. Figure 5.20 shows the refined
ADSC (see Section 3.1.1.2) of the PCA which was derived from the MASD,
MABD, SASD and SABD diagrams (see Figures 5.16-5.19) of the MCA and
from the SABD diagram specific to the PCA, not reported here for the sake of
brevity, which is a specialization of the SABD diagram of the MCA.

Figure 5.20: The ADSC of the PCA.

107

Table 5.3: Association between the activities of the SABD diagram of the MCA and the

ADSC action of the PCA.

SABD ACTIVITY ADSC ACTION
MoveTo_Next_YPATarget ac1, ac2
Request_VAList ac3
Process_YPA_Reply ac4
MoveTo_Next_VATarget sa1
Request_An_Offer_From_VA_Target ac5
Evacuate_VAOffer ac6
MoveTo_VATarget_Location ac11
Pay_VATarget_ForProduct ac7, ac8
MoveTo_APA_Location ac9
ReportTo_UAA ac10

The messages that the MCA exchanges with the YPA, VA, and UAA agents
during its lifecycle, reported in the MABD diagram, are implemented through
events in the ADSC; the association between messages and events is
reported in Table 5.4 for the interactions with YPA and VA.

Table 5.4: Association between the messages of the MABD diagram of the MCA and the

ADSC events of the PCA.

MABD MESSAGE SENDER RECEIVER ADSC EVENT
(Request, VendorsList, RDF) MCA YPA VAListRequest
(Inform, VendorsList, RDF) VA YPA VAListInform

(Query, OfferPrice, RDF) MCA VA OfferPriceQuery
(Inform, OfferPrice, RDF) VA MCA OfferPriceInform
(Request, Payment, RDF) MCA VA PayForRequest

(Inform, Payment, RDF) VA MCA PayForInform

The names of the composite states of the ADSC corresponds to the names
of the phases of the MCA shown in the related SABD diagram (see Figure
5.18). For the sake of modularity the Searching and Contr&Eval states are
embodied into the Search&Buy state.
The activities reported in the SABD diagram are implemented by the actions
of the ADSC; the association between activities of the SABD diagram and
actions is reported in Table 5.3.
The PCA agent fulfils the searching phase in the Searching state. In
particular, as soon as the PCA agent is created, it moves (ac1) to the first
Yellow Page Agent (YPA) location and locally interacts (ac2) with the
YPATarget by sending it the VAListRequest event. The YPATarget replies to
the PCA agent with the VAListInform event which can contain a list of VA

108

agents with the linked YPA agents. After processing the reply (ac3), the PCA
agent can do one of the following:
- create an Itinerary Searcher Mobile Agent (ISMA), which sequentially

moves from one YPA location to another, if the YPS organization is of
the One-Neighbor Federated type, and pass (ac4) into the contracting
phase as soon as a PList event sent by the ISMA agent is received;

- create M Spawning Searcher Mobile Agents (SSMAs), if the YPS
organization is of the M-Neighbors Federated type, and pass (ac4) into
the contracting phase when all the PList events sent by the directly
created SSMA agents are processed. In particular, an SSMA agent
moves to the assigned YPA agent and, in turn, creates a child SSMA
agent for each reachable YPA agent. This parallel searching technique
generates a spawning tree, with SSMA agents as nodes, which is
rooted at the PCA agent. If an SSMA agent interacts with a YPA agent
which has already been visited by an SSMA agent belonging to the
same spawning tree, the YPA agent notifies the SSMA agent which
then returns to its parent;

- directly pass into the contracting phase if the YPS organization is of
the Centralized type;

- report an unsuccessful search to the UAA agent.
The contracting phase accomplished in the Contr&Eval state involves the
creation (ac5) of Contractor Mobile Agent (CMA) according to the modes
reported below. Each CMA agent is able to move to the assigned VA
location, contract with the VA agent, and report the obtained offer. The VA
offers (PPrice events) reported by the CMA agents are evaluated and a
decision about when and from which VA agent to purchase is therefore taken
(ac6). In the PayFor state the PCA agent pays (ac7) the VA agent using the
PayForRequest event which contains the bills. After receiving the
PayForInform event, the PCA agent passes (ac8) to the Reporting state from
where it moves back (ac9) to the original APA location and finally reports
(ac10) to its UAA agent.
When using agent techniques in e-Marketplaces, a large number of agents
are generated in the e-Marketplace network which could lead to many
problems such as server loading, network congestion and, more generally,
scalability of the whole system [69]. So to optimize the performance of the
PCA during the Contr&Eval phase with respect to time and resources, two
types of CMAs (see Figure 5.21) have been defined:
- Full Parallel CMA (CMA_FP): the PCA spawns an instance of the

CMA_FP for each VA location so that the CMA_FP contracts with the
assigned VA and returns the obtained offer to the PCA. The advantage
of this solution is that CMAs, once created by the PCA, can soon move
to the assigned VA location and contract with the VA so minimizing
waiting times. However, the creation of a large number of CMAs on a
single agent server can increase the agent server load as well as the
network congestion in the proximity of the agent server. Moreover, if

109

the buying policy is of the MP type, such solution is effective;
otherwise, such solution would create more CMAs than those needed.

- Binary CMA (CMA_BIN): after organizing the list of the VAs retrieved in
the Search phase as a binary tree, the PCA spawns a CMA_BIN to the
VA location, root of the tree. A CMA_BIN, in turn, spawns at most two
other CMA_BIN agents if the left and/or right branches/leaves exist. In
this operational mode, at most two agents are created on a single
agent server so reducing the server load due to agent creation and the
network congestion due to agent migration [110]. According to the way
the CMA_BIN returns the results of the negotiation with the VA to the
PCA, the following types of CMA_BIN have been modeled:
o CMA_BIN_FW_R2PCA: the agent directly reports to the PCA

through an external event. The advantage of this solution rests
on its simplicity whereas, if the number of CMA created is high,
there would be a high number of external events targeting the
PCA which would become a bottleneck.

o CMA_BIN_FW_R2O: the agent reports to its owner (i.e. the CMA
agent that has spawn it) through an external event. In this way,
only the root CMA agent reports to the PCA. In this mode, the
disadvantage of the previous solution is avoided.

o CMA_BIN_BW_R2O: the agent reports to its owner (i.e. the
agent that has spawn it) by moving to its site. Also in this case,
only the root CMA agent reports to the PCA. This operational
mode preserves the same advantage as the previous one and, in
addition, can be effectively exploited in the case the agents can
only communicate through local interactions (e.g. based on
tuple-based systems).

Figure 5.22 shows the ADSC of the CMA_BIN_FW_R2PCA; the ADSCs of
the other CMA_BINs are variants of the ADSC of the CMA_BIN_FW_
R2PCA. Migration and child spawning are carried out in the
Migrate_And_Create state, whereas negotiation is carried out in the Contract
state. In particular, after its creation the CMA moves to the location of the
assigned VA (ac0), where it tries to spawn two other CMAs, and goes into
the Contract state (ac1). In this state, the CMA sends the OfferPriceRequest
event to the VA (ac2), process (ac3) the offer contained in the
OfferPriceInform event and, finally, reports to the PCA (ac4).

110

ADSC
(f rom ELDAFramework)

ELDAAgent
(f rom ELDAFramework)

ELDABehaviour
(f rom ELDAFramework)

ELDAQueue
(f rom ELDAFramework)

ContractorMobileAgent

ELDAID
(f rom ELDAFramework)

BinaryContractorMobileAgentFullParallelContractorMobileAgent

CMA_FP_ADSC

CMA_FP_Behavior

CMA_BIN_FW_R2PCA

CMA_BIN_FW_R2PCA_ADSC

CMA_BIN_FW_R2PCA_Behavior

CMA_BIN_FW_R2O

CMA_BIN_FW_R2O_ADSC

CMA_BIN_FW_R2O_Behavior

CMA_BIN_BW_R2O

CMA_BIN_BW_R2O_ADSC

CMA_BIN_BW_R2O_Behaviour

Figure 5.21: the SASD of the CMA.

Figure 5.22: The ADSC of the CMA_BIN_FW_R2PCA.

111

5.3.3.2 Functional Validation
Functional validation is supported by ELDASim (see Section 3.3.1) through
the generation of event traces which can be analyzed off-line to validate
agent behaviors, agent interaction protocols and the behavior of the whole
MAS.
Validation of a single agent type behavior relies on a simple simulation
scenario which allows for the generation of the response of the agent
behavior to all its admissible events. Validation of an agent interaction
protocols is based on simple simulation scenario which allows for the
generation of the flow of events exchanged between the involved agents.
Validation of the whole system is carried out by setting more complex
simulation scenarios. In particular, the simulation scenario for the validation
of the global behavior of the AeM, also used during the performance
evaluation phase, was set up as follows:

- Each stationary agent (UAA, APA, YPA, VA, BA) executes in a
different agent server.

- Agent servers are mapped onto different network nodes which are
completely connected through links having the same
characteristics and modeling the communication delay (δ) as a
lognormally distributed random variable.

- Each VA is reachable from any YPA and sells the same set of
products.

- Each product is always offered by a VA at a fixed price, which is an
integer number uniformly distributed between a minimum (PPMIN)
and a maximum (PPMAX).

- The user is willing to pay, for a desired product, a maximum price
PMAX, which is an integer value between PPMIN and PPMAX.

An indirect functional validation of the AeM was carried out by defining the
following index, calculating such index both through analytical methods and
simulation, and comparing the outcoming results:

- the Probability of Successful Buy (PSB), which is defined as the
probability of successfully buying a desired product within the e-
Marketplace.

On the basis of the assumptions made for the simulated e-marketplace, PSB
can be easily calculated as follows:

PSB =1-[(PPMAX-PMAX)/(PPMAX -PPMIN+1)]V,

where: V is the number of VA agents contacted by the MCA for buying the
product, PPMAX-PMAX represents the number of prices that exceed PMAX (i.e.
that are not acceptable for the user), whereas PPMAX-PPMIN+1 represents the
number of all the possible prices for the product. V depends on the BP
adopted by the MCA; in particular: if BP is of the MP type or of the FS type
V=NVA; if BP is of the FT type V is VFT=NVA/2+1 as in the simulations the

112

MCA always performs NVA/2+1 trials; if BP is of the RT type V belongs to
the range [1..NVA].
The values of PSB calculated both analytically and through simulation for
each defined BP and with PPMAX=200, PPMIN=100, PMAX=PPMIN, and
NVA=100, are reported in Figure 5.23. It is worth noting that the analytical
value for BP=RT is calculated by using the mean value of the uniform
distribution defined in the range [1..NVA].

0,00
0,05
0,10
0,15
0,20
0,25
0,30
0,35
0,40
0,45
0,50
0,55
0,60
0,65
0,70
0,75
0,80
0,85
0,90
0,95
1,00

MP FS FT RT

BP

PS
B Analytical

Simulation

Figure 5.23: Evaluation of PSB for the defined BPs with PPMAX=200, PPMIN=100,

PMAX=PPMIN, and NVA=100.

Such results confirm that the global behavior of the AeM is correct and this
confirmation also provides an indirect functional validation of the AeM.

5.3.3.3 Performance Evaluation
The aim of the performance evaluation phase is to evaluate and compare the
efficiency of the 5 types of MCA (ICA, PCA/CMA_FP,
PCA/CMA_BIN_FW_R2PCA, PCA/CMA_BIN_FW_R2O,
PCA/CMA_BIN_BW_R2O) in terms of the following performance index:

Buy Task Completion Time (TBTC)=TCREATION-TREPORT

where, TCREATION is the creation time of the MCA and TREPORT is the reception
time of the MCA report.
Given the scenario described in section 5.3.3.2, the evaluation of the TBTC
performance index is focused on an MCA adopting a searching policy (SP) of
the ALL type and a buying policy (BP) of the MP type (see Table 5.3),
moreover it is supposed that PMAX=PPMAX so always guaranteeing a
successful purchase at the best price.

113

10000

100000

1000000

10 100 1000

n° VA

T

ICA
PCA/CMA_FP
PCA/CMA_BIN_FW_R2PCA
PCA/CMA_BIN_FW_R2O
PCA/CMA_BIN_FW_BW_R2O

(a)

13500

14500

15500

16500

17500

18500

19500

20500

21500

10 100 1000

n° VA

T

(b)

Figure 5.24: (a) Evaluation of TBTC for the five types of MCA with SP=ALL, BP=MP,
NYPA=10 and variable NVA; (b) Zoom in of the TBTC curves of the PCA/CMA_BIN

agents.

The results, obtained adopting a YPA organization in which the YPAs are
logically connected as a binary tree, are reported in Figure 5.24(a-b) with
NYPA=10 and varying NVA, where NYPA is the number of the YPA agents
and NVA is the number of the VA agents.
The results show that the PCA outperforms the ICA and that the
PCA/CMA_FP is the better solution from the point of view of time efficiency
even though it suffers the resource consumption issues highlighted in
Section 5.3.3.1. It is worth saying that the simulated PCA/CMA_FP is only an
ideal implementation and that the obtained curve is a lower bound for a real
implementation of the PCA/CMA_FP. Among the PCA/CMA_BINs, the
PCA/CMA_BIN_FW_R2PCA exhibits better performance even though it
could cause bottlenecking issues at the PCA site.

115

6 A Multi-Coordination based process for
the design of mobile agent interactions

Code mobility paradigms have been introduced to support the design and the
implementation of flexible, dynamic and reconfigurable distributed
applications in terms of software components which are not confined in a
single run-time context for their entire lifecycle but can migrate autonomously
or on-demand across different contexts [52]. Among them, the most
fascinating paradigm is represented by the mobile agents, executing
software components capable of autonomous migration by retaining code,
data and execution state. Although it is advocated that the exploitation of
mobile agents can provide many benefits [68], they have introduced specific
and not yet fully addressed issues that actually limit their advertised wide-
spread use [109]. Among them, an interesting issue concerns with the design
of mobile agent interactions. To deal with this issue several approaches have
been to date defined which are mainly based on mobile agent
interaction/coordination design patterns [1, 29] and coordination models [4,
15, 16, 17, 21, 78, 85, 86, 93] (refer to chapter 2 for a description of models
and patterns). Recent interesting proposals on how to obtain and integrate
agent-oriented coordination models are the programmable coordination
spaces [97] and the multi-coordination approach [40]. The former proposal is
based on the concept of Linda-like reactive tuple space in which the
reactions can be programmed through a logic-based language (ReSpecT) so
that already existing coordination models as well as new ones can be easily
programmed. Conversely, the multi-coordination approach enables an
integrated and simultaneous exploitation of multiple coordination models
(both existing and to-be-defined) so that agents can choose among a variety
of different coordination models which best fit their interaction needs. This
can actually enhance design effectiveness, improve efficiency, and enable
adaptability in dynamic and heterogeneous computing environments. All the
aforementioned coordination models can be effectively used for supporting
mobile agent interactions.
Although interaction patterns and coordination models can be jointly
exploited for the design of mobile agent interactions, an automated design
process which includes these techniques and produces effective and efficient
design solutions (or coordination solutions) is still not available. To address
this lack, this chapter proposes the Multi-Coordination based Process (MCP)

116

for the design of mobile agent interactions which, starting from a set of
application-specific agent coordination requirements, produces an effective
coordination solution by using two subsequent phases (Modeling and
Evaluation).
To show a concrete application of the proposed process, a significant case
study related to mobile agent-based distributed information retrieval is
presented. In particular, alternative coordination solutions, which use
different coordination models (asynchronous message passing, Linda-like
tuple space, publish/subscribe), are produced on the basis of specific agent
coordination requirements and evaluated against significant time- and
resource-related performance indices.

6.1 The Multi-Coordination based Process (MCP)
The proposed Multi-Coordination based Process (MCP) [42] is iterative and
consists of the two phases (Modeling and Evaluation) shown in Figure 6.1.
The Modeling phase, on the basis of a coordination statement (CS) which
derives from a preliminary analysis and includes a description of the agents
along with their interactions (coordination requirements - CRs), and a set of
coordination properties (CPs), provides alternative coordination solutions
which fulfill the CS. In the Evaluation phase, a specific solution is chosen
among such alternative coordination solutions which are evaluated through
simulation and then compared on the basis of ad-hoc defined performance
indices (e.g. time and resource consumption).

Figure 6.1: The MCP design process.

Each phase of the process is described in details and exemplified in the
following two sections with reference to a simple yet effective case study
concerning with a distributed information retrieval task in a distributed
computing system. A possible solution consists in carrying out this task
through a coordinated set (or task force) of mobile agents. In particular, a
user can search for specific information over a network of federated
information locations by creating and launching a task force of mobile agents
(called searcher agents) onto different locations. As soon as the task force
finds the desired information, the user (represented by the owner agent) is
notified with the found information.

117

6.2 The Modeling Phase
The Modeling phase is detailed in Figure 6.2 and is composed by three
subsequent activities (IP Selection and Setting, IP-CM Matching, Selection
and Design of Coordination Solutions) described and exemplified with
reference to the case study in the following correlated sub-sections.

Figure 6.2: The Modeling phase.

6.2.1 IP Selection and Setting
Starting from the CS this activity identifies the rules governing the agent
interactions by exploiting interaction design patterns (IPs). In particular, for
each coordination requirement (CR), this activity (i) selects the IPs, from a
given IP repository, which best fit the requirement, and (ii) sets the
characteristics of each selected IP on the basis of the CPs so obtaining the
set of selected and set IPs (SSIP) related to the requirement. In particular,
CPs characterize the interactions among the agents as identified in the CRs
on the basis of the following characteristics:
- Number of participants (PN), which can assume values in the range

[2..N].
- Participant identity (PI), which concerns with the mutual knowledge

among interacting agents. PI can therefore assume the values known or
unknown.

- Locus (L), which indicates remote or local interactions among agents. L
can assume the values local or remote.

- Temporality (T), which refers to the type of temporal coupling among
interacting agents. T can assume two values: async for time decoupling
and sync for time coupling.

The set of SSIPs, one SSIP for each coordination requirement, constitutes
the result of this activity.
With reference to the case study, the proposed solution for the coordination
of the task force during its information retrieval task is based on the following
CRs:
- CR1: every time a searcher agent visits a location not yet searched by

other agents of the same task force, it notifies the other agents that such

118

location has already been searched so avoiding unnecessary and
resource-consuming duplicate searches;

- CR2: as soon as a searcher agent finds the desired information on a
given location, it reports the found information to the owner agent;

- CR3: when a searcher agent finds the desired information on a given
location, it signals such event to all the other searcher agents to stop
them;

and on the following CPs:
- CPa: the task force is constituted by at least two searcher agents;
- CPb: the agents of the task force may or may not know each other

whereas they know the identity of the owner agent and vice-versa;
- CPc: the interactions among all the agents (searcher and owner) are

always asynchronous.
- CPd: the interactions required by CR1 may be local or remote, that

required by CR2 and CR3 are remote.
Figure 6.3 shows, with reference to each CR, the selected IPs and the
setting of their characteristics carried out by also taking into account the
aforementioned CPs. In particular, the IPs selected from the repository for
modeling the interactions as derived from the CRs are the following:
- Location-based notification (LBN), which involves agents passing

through a given location to be notified about events occurring/occurred in
such location.

- Report to owner (R2O), which involves a child agent reporting to its
owner agent when its task is completed.

- Group-based notification (GBN), which involves an agent notifying all its
peer agents when a given event occurs.

The star indicates that the value of the PI characteristic of the LBN and GBN
IPs was not fixed according to the CPb.

IP CHARACTERISTICS IP PN PI L T
LBN 2..N * LOCAL ASYNC
GBN 2..N * REMOTE ASYNC

(a) The SSIP for CR1
IP CHARACTERISTICS/PROPERTIES IP PN PI L T

R2O 2 KNOWN REMOTE ASYNC
(b) The SSIP for CR2
IP CHARACTERISTICS/PROPERTIES IP PN PI L T

GBN 2..N * REMOTE ASYNC
(c) The SSIP for CR3

Figure 6.3: The result of the IP Selection and Setting activity.

6.2.2 IP-CM Matching
Starting from both a set of coordination models (CMs) and the set of the
SSIPs, as it results from the previous activity (see Figure 6.2), this activity,

119

for each CR and characterized IP in the associated SSIP, and for each CM
constructs a checklist (CKL) which specifies the characteristics of the IP
supported by the considered CM. In presence of a not completely
characterized IP (i.e. an IP with one or more not fixed characteristics),
different complete characterizations of the IP are to be considered (one for
each possible combination of the values of the not fixed characteristics).
The set of the so obtained CKLs constitutes the result of this activity.
With reference to the case study and to the result of the previously described
activity (see Figure 6.3), the obtained CKLs, one for each CR, are reported in
Figure 6.4. In particular, the considered CMs are the following:

- Local Linda-like tuple space (LTS), which supports a high number
of participants, allows temporal decoupling but only local
interaction is supported [40].

- Topic-based publish/subscribe (TPS), which supports a high
number of participants, allows for distributed interactions and does
not require temporal coupling between participants [71].

- Queue–based unicast asynchronous message passing (QAMP),
which supports a variable number of participants, allows for both
local and remote interactions, does not require temporal coupling,
but requires spatial coupling among participants [115].

With reference to the PI characteristic, which was not fixed for the LBN and
GBN IPs, in Figure 6.4.a-c all the different complete characterizations of the
IPs are considered.

6.2.3 Selection and Design of Coordination Solutions
This activity partitions the set of the obtained CKLs in subsets (candidate
solutions) which are obtained by selecting for each CR one and only one
related CKL, and selects the subsets which satisfy specific admissibility and
optimality criteria. In particular, the admissibility criteria are based on the CPs
whereas the optimality criteria are based on the support of the IP
characteristics by the considered CM.
Finally, from each selected subset a coordination solution is provided by
implementing the related coordination models.
The so obtained coordination solutions constitute the result of this activity
and of the whole modeling phase (see Figure 6.5).
With reference to the case study, the selected criteria are:
- Admissibility. Only the solutions which have the same value of the PI

characteristics for the IPs associated to CR1 and CR3 are admissible.
- Optimality. The selected solutions are those in which the considered CM

fully supports the IP (the related CKL is completely set with ‘x’).

120

SUPPORTED IP CHARACTERISTICS CHARACTERIZED IP CM PN PI L T
LTS X X X
TPS X X LBN [2..N, known, local, async]

QAMP X X X X
LTS X X X X
TPS X X X LBN [2..N, unknown, local, async]

QAMP X X X

LTS X X
TPS X X X GBN [2..N, known, remote, async]

QAMP X X X X
LTS X X X
TPS X X X X GBN [2..N, unknown, remote, async]

QAMP X X X
(a) The CKLs for CR1

SUPPORTED IP CHARACTERISTICS CHARACTERIZED IP CM PN PI L T
LTS X X
TPS X X X R2O [2, known, remote, async]

QAMP X X X X
(b) The CKLs for CR2

SUPPORTED IP CHARACTERISTICS CHARACTERIZED IP CM PN PI L T
LTS X X
TPS X X X GBN [2..N, known, remote, async]

QAMP X X X X
LTS X X X
TPS X X X X GBN [2..N, unknown, remote, async]

QAMP X X X
(c) The CKLs for CR3

Figure 6.4: The result of the IP-CM Matching activity.
On the basis of the obtained results, it is possible to refine and/or modify the
choices made in the activities of the modeling phase; in particular: (i) other
IPs and CMs can be chosen and/or defined to be subsequently used for the
IP Selection and Setting and IP-CM Matching activities; (ii) new criteria of
admissibility and optimality can be defined in the Selection and Design of
Coordination Solutions activity for generating a new set of alternative
coordination solutions; (iii) different implementation descriptions for the
indentified coordination solutions can be given.

121

CR CHARACTERIZED

IP CM IMPLEMENTATION DESCRIPTION

CR1
LBN

[2..N, known, local, async] QAMP

When a searcher agent searches in a location which has not
been already searched by another agent of its task force, it
clones itself so that its clone, stationing in this location, can
prevent the other agents of its task force from searching. As
soon as an agent visits a location looks for a clone of an
agent of its task force to avoid searching.

CR2
R2O

[2, known, remote, async] QAMP
When a searcher agent finds the desired information, it sends
a message containing the found information to its owner.

CR3
GBN

[2..N, known, remote, async] QAMP
A searcher agent which has found the desired information
sends a notification message to all the other searcher agents
of the task force to stop them.

(a)

CR CHARACTERIZED
IP CM IMPLEMENTATION DESCRIPTION

CR1
GBN

[2..N, known, remore, async] QAMP
A searcher agent to notify that it has searched a given
location sends a message containing the location identifier
to all the other searcher agents of the task force.

CR2
R2O

[2, known, remote, async] QAMP
When a searcher agent finds the desired information, it
sends a message containing the found information to its
owner.

CR3
GBN

[2..N, known, remote, async] QAMP

A searcher agent which has found the desired information
sends a notification message to all the other searcher agents
of the task force to stop them.

(b)

CR CHARACTERIZED
IP CM IMPLEMENTATION DESCRIPTION

CR1
LBN

[2..N, unknown, local, async] LTS

When a searcher agent searches in a location which has not
been already searched by another agent of its task force, it
inserts a signaling tuple into the LTS to signal that this
location has been searched. As soon as an agent visits a
location and reads the signaling tuple, it avoids searching.

CR2
R2O

[2, known, remote, async] QAMP
When a searcher agent finds the desired information, it
sends a message containing the found information to its
owner.

CR3
GBN

[2..N, unknown, remote, async] TPS

When a searcher agent finds the desired information, it
publishes an event of a specific topic related to its task force
which signals the stop of the retrieval task. All the other
agents of the task force will be thus asynchronously notified
since they subscribed to the specific topic at creation time.

(c)

CR CHARACTERIZED
IP CM IMPLEMENTATION DESCRIPTION

CR1
GBN

[2..N, unknown, remote, async] TPS

A searcher agent to notify that it has searched a given
location publishes an event of a specific topic related to its
task force and containing the location identifier. All the
other agents of the task force will be thus asynchronously
notified since they subscribed to the specific topic at
creation time.

CR2
R2O

[2, known, remote, async] QAMP
When a searcher agent finds the desired information, it
sends a message containing the found information to its
owner.

CR3
GBN

[2..N, unknown, remote, async] TPS

When a searcher agent finds the desired information, it
publishes an event of a specific topic related to its task
force which signals the stop of the retrieval task. All the
other agents of the task force will be thus asynchronously
notified since they subscribed to the specific topic at
creation time.

(d)

Figure 6.5: The result of the Selection and Design of Coordination Solutions activity

122

6.3 The Evaluation phase
In this phase (see Figure 6.6) the alternative coordination solutions identified
in the modeling phase are evaluated through simulation and then compared
on the basis of ad-hoc defined performance indices.
The phase is currently supported by the proposed methodology and related
tools which provide rapid prototyping of the coordination solutions and their
simulation. In particular, the ELDA model directly supports the concept of
multi-coordination by providing multiple coordination models through which
the interactions among the agents can be easily modeled. Moreover, its
related tools support the visual programming of the modeled coordination
solution and the automatic generation of code which can be directly executed
by a ELDASim (see Section 3.2, Section 3.3 and Section 3.4).
The Evaluation phase starts with two parallel activities:
- Simulation Model Definition, which provides an ELDA-based simulation

model for each considered alternative coordination solution.
- Performance Indices Definition, which defines specific performance

indices for evaluation and comparison purposes also taking into account
the CRs and CPs.

In particular, the defined ELDA-based simulation models are subsequently
implemented (Code Generation and Simulation Implementation activities)
and simulated (Simulation Execution activity) for being evaluated and
compared with reference to the identified performance indices. The
simulation results therefore allow to identify the best coordination solution.
On the basis of the obtained results, it is possible to refine and/or modify the
choices made in the activities of the modeling phase; in particular: (i)
performance indices can be modified and/or new performance indices can be
defined in the Performance indices Definition activity; (ii) agent-based
simulation models can be refined in the Simulation Model definition activity;
(iii) new simulator programs can be defined and executed.
In the following subsection an example of evaluation with reference to the
case study is presented.

123

Figure 6.6: The Evaluation phase.

6.3.1 Performance Evaluation of Coordination
Solutions: an example

With reference to the case study, in the Performance Indices Definition
activity the following performance indices have been defined:
- Task completion time (TTC): the temporal gap between the spawning of

the first created searcher agent and the first report message received
from the owner agent.

- Number of coordination messages (NM): the number of coordination
messages transmitted through the network.

- Notification time (TN): the temporal gap between the information finding
and the notification to the last searcher agent.

- Number of visits (NV): after finding the information: the total number of
locations visited by the searcher agents after the information finding.

- Number of searches (NS): after finding the information: the total number
of the locations searched by the searcher agents after the information
finding.

To exemplify the Evaluation phase, all the alternative coordination solutions
reported in Figure 6.5 have been implemented and integrated into a
simulator program along with the calculation of the defined performance
indices; in the following, solutions reported in Figure 6.5a, 6.5b, 6.5c and
6.5d will be named A, B, C, D solutions, respectively.
The Simulation Execution activity relies on two simulation parameters (the
number of locations and the number of searcher agents) and on the following
settings of the simulation topology at network and information level:
- Locations are connected through a fully connected logical network

composed of FIFO channels. In particular, channels are characterized by

124

the same delay and bandwidth parameters modeled as uniform random
variables.

- The information to be found is contained exactly at one location and the
locations keep references (randomly generated) to other locations at
information level to be all reachable.

In particular, simulation runs are carried out with the number of locations
equals to 100 and the number of searcher agents in the range [2-20].
Moreover, for each simulation run, all the alternative solutions are executed
on the same network and information topologies. In Figures 6.7-6.11 the
simulation results are reported; the obtained values of the performance
indices are averaged over 50 simulation runs.
The TTC performance index, which measures the speed with which the
information search task is carried out, decreases as the number of searcher
agents increases (see Figure 6.7).

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

2 3 5 10 15 20

n° S earche r Ag ents

T
T
C
 [m

s]

A

B

C

D

Figure 6.7: The Task Completion Time.

In fact, the use of more searcher agents augments the degree of parallelism
which, consequently, increases the probability to find the searched
information with a smaller number of migrations which are time-consuming.
The performances of the all the solutions are almost the same.
The NM parameter (see Figure 6.8), which measures the network load, is
significantly better in the A and C solutions thus saving network resources
with respect to the other solutions.
The TN performance index measures how fast all the searcher agents are
notified after finding the information: the shorter TN, the fewer are the
resources consumed throughout the networked agent platform.
The A and C solutions outperform the other solutions (see Figure 6.9) as the
network load is less heavy than the ones of the B and D solutions.

125

0,00

50.000,00

100.000,00

150.000,00

200.000,00

250.000,00

300.000,00

2 3 5 10 15 20

n° S earche r Agents

N
M

A

B

C

D

Figure 6.8: The Number of coordination messages.

0

50000

100000

150000

200000

250000

300000

2 3 5 10 15 20

n° S earche r Agents

T
N
 [m

s]
A

B

C

D

Figure 6.9: The Notification Time.

The NV and NS parameters are measures of the consumption of resources
after the information is found. The values of such parameters should be kept
as low as possible. As shown in Figures 6.10 and 6.11, the A and C solutions
outperform the other solutions.
On the basis of the obtained simulation results (see Figures 6.7-6.11), the

126

solutions A and C are more effective than the other solutions. In fact,
although the TTC value is similar to the solutions B and D, the other
performance indices values are significantly better. Moreover, it's worth
noting that solution A requires the cloning of a signalling agent for each
visited location but such operation may not be allowed according to security
policies of the locations.

0

50

100

150

200

250

300

350

400

450

2 3 5 10 15 20

n° S earche r Ag ents

N
V

A

B

C

D

Figure 6.10: The Number of visits after finding information.

0

50

100

150

200

250

300

350

400

450

2 3 5 10 15 20

n° S earcher Ag ents

N
S

A

B

C

D

Figure 6.11: The Number of searches after finding information.

127

7 Conclusion and Future Work

7.1 Summary
Internet-based distributed applications need development methodologies
able to capture their key characteristics through powerful abstractions at
modelling, validation and implementation levels. The agent oriented software
engineering (AOSE) has promoted effective agent-oriented models,
frameworks and methodologies to fulfil the requirements posed by new kinds
of distributed applications emerging in a variety of challenging application
domains, e.g. e-Commerce, content delivery, information retrieval, pervasive
computing.
This thesis has proposed ELDAMeth, a novel methodology supported by a
CASE tool for the simulation-based prototyping of Internet-oriented
distributed agents systems (DAS). Although a significant number of general-
purpose and domain-specific agent-oriented methodologies have been
already proposed, ELDAMeth incorporates important and distinctive key
features for an effective prototyping of Internet-oriented DAS. Such features
refer to the reference agent model, the defined methodology and the
supporting CASE tool.
The defined ELDA agent model incorporates the three main enabling
features for distributed agent systems: lightweight reactive/proactive
behavior, multi-coordination and mobility. In particular: (i) reactive/proactive
agent behavior based on lightweight architectures has been demonstrated to
be particularly suitable to model reactive and/or proactive components in
large-scale, dynamic and distributed environments; (ii) multi-coordination has
been experimentally recognized as a new key feature enabling effective
design and efficient execution of complex interactions among distributed
agents; (iii) mobility has emerged as an enabling feature for defining new
distributed algorithms for code and computation dissemination.
The proposed ELDAMeth is characterized by two important features:
effective dynamic validation based on simulation and high-degree of
integrability. The first feature, which is indeed the main distinctive feature of
ELDAMeth, supports the validation of designed distributed agent systems in
a simulated controlled environment to analyze both functional and
performance-oriented requirements. The second feature, which partly relates
to the first feature, allows using ELDAMeth to empower already existing

128

agent-oriented methodologies or to create new ad-hoc ones with a very
effective validation phase before implementation and deployment.
Finally, the developed ELDATool fully supports ELDAMeth during all the
prototyping process, from modelling to simulation. In particular, ELDATool
provides highly effective visual support to the modelling of agent behaviors
and subsequently automatic translation into code so minimizing programming
errors and speeding up the prototyping process. Moreover, it supports the
simulation configuration phase through general-purpose and case-specific
graphical windows, the simulation execution which can be controlled (started,
paused, and stopped) by a control panel, and the storing of the execution
traces in an RDBMS.
ELDAMeth has been applied according to different perspectives:
methodology-oriented and application-oriented.
In the former case ELDAMeth has been integrated with PASSI to obtain a
full-fledged agent-oriented methodology, namely PASSIM, and has been
used to create a new methodology for designing mobile agent interactions,
namely MCP.
In the latter case ELDAMeth has been directly used to prototype distributed
agent systems such as e-Marketplaces, architectures of surrogates for
content delivery, and information retrieval systems. These different
applications have demonstrated the suitability and great effectiveness of
ELDAMeth for the rapid prototyping of Internet-based DAS.

7.2 Future Work
A number of future research directions in relation to this thesis can be
devised. In particular, the following three research directions will be
investigated:
- Enhancement of the ELDAMeth with an ad-hoc implementation/deployment
phase after simulation. Two approaches can be envisaged: (i)
ELDAPlatform-oriented and (ii) Model-driven development. According to the
former approach, the ELDAPlatform should be developed as a new agent
platform able to execute ELDA agents programmed through the
ELDAFramework. According to the second approach, the ELDA-based
models, or PIMs (Platform-Independent Models) in the MDD (Model-Driven
Development) language,should be converted into agent models specific to a
target platform or PDMs (Platform Dependent Models). In particular, JADE
will be considered as executing target platform due to its wide diffusion in
academic and industrial contexts.
- Extension of the ELDA agent model with the new agent-oriented concepts
of Organization and Environment. The ELDA model currently does not exploit
interesting agent oriented concepts such as Organization and Environment.
Nevertheless, these concepts could be seamlessly introduced as new types
of spaces or meta-spaces apart from the already existing system and
coordination spaces.

129

- Formalization of the ELDA agent model to validate agent-based systems
through formal methods. The objective is to provide a formalization of the
ELDA model through term rewriting and use rewriting logic and related tools
(e.g. Maude) to validate ELDA-based models of agent systems.

131

References

[1] Aridor, Y., and Lange, D., Agent Design Patterns: Elements of Agent Application Design,

Second Intl. Conference on Autonomous Agents, IEEE, 1998.
[2] Astley, M., and Agha, G. A., Customization and Composition of Distributed Objects:

Middleware Abstractions for Policy Management, ACM SIGSOFT 6th International
Symposium on Foundations of Software Engineering (FSE), 1998.

[3] Astley, M., Customization and Composition of Distributed Objects: Policy Management in
Distributed Software Architectures, PhD Thesis, University of Illinois at Urbana-
Champaign, 1999.

[4] Baumann, J., Hohl, F., Radouniklis, N., Rothermel, K. and Strasser, M., Communication
concepts for Mobile Agent Systems, 1st International Workshop on Mobile Agents
(MA’97), Berlin, Germany, LNCS 1219, pp. 123-135, April 1997.

[5] Baumann, J., Hohl, F., Rothermel, K., Straßer, M., Mole - Concepts of a Mobile Agent
System”, The World Wide Web Journal, Vol. 1, No. 3, pp. 123-137, 1998

[6] Bellifemine, F. L., Claire, G., and Greenwood, D., Developing Multi-Agent Systems with
JADE, Wesley, 2005.

[7] Bellifemine, F., Poggi, A., and Rimassa, G., Developing multi agent systems with a
FIPAcompliant agent framework. Software Practice And Experience, 31, pp 103–128,
2001.

[8] Bernon, C., Cossentino, M., and Pavon, J. An Overview of Current Trends in European
AOSE Research. Informatica 29, pp 379—390, 2005.

[9] Bernon, C., Cossentino, M., and Pavón, J., Agent Oriented Software Engineering,
Knowledge Engineering Review, Vol.20, Issue 02, pp. 99-116, 2005.

[10] Boloni, L., and Marinescu, D. C., A multi-plane state machine agent model, Fourth
International Conference on Autonomous Agents, Barcelona, Spain, pp. 80-81, ACM
Press, 2000.

[11] Braun, P. and Rossak, W., Mobile Agents: basic concepts, mobility models, & the tracy
toolkit, Heildelberg, Germany, Morgan Kaufmann Publisher, 2005.

[12] Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J. and Perini, A., TROPOS: An
Agent-Oriented Software Development Methodology, Journal of Autonomous Agents and
Multi-Agent Systems, 8, 3, pp 203–236, 2004.

[13] Brinkkemper, S., Lyytinen, K. and Welke, R., Method engineering: Principles of method
construction and tool support, International Federation for Information Processing, 1996.

[14] Buyya, R., Pathan, M., and Vakali, A., Content Delivery Networks: Principles and
Paradigms, Lecture Notes Electrical Engineering, Vol. 9, Ch. 12, Springer, Aug, 2008.

[15] Cabri, G., Leonardi, L., and Zambonelli, F., Engineering Mobile Agent Applications via
Context-dependent Coordination, IEEE Transactions on Software Engineering, 28, 11,
pp 1040-1056, Nov. 2002.

[16] Cabri, G., Leonardi, L.., and Zambonelli, F., Mobile-agent coordination models for
internet applications, IEEE Computer, 33, 2, pp 82-89, 2000.

[17] Cao, J., Feng, X. and Das, S.K., Mailbox-Based Scheme for Mobile Agent
Communications, Computer 35, 9, pp. 54–60, 2002.

132

[18] Cardelli, L., and Gordon, D., Mobile Ambients, Foundations of Software Science and
Computational Structures, Lecture Notes in Computer Science, No. 1378, Springer-
Verlag (D), pp. 140-155, 1998.

[19] Carzaniga, A., Rosenblum, D.S., and Wolf, A., Design and evaluation of a wide-area
event notification service, ACM Transactions on Computer Systems, 19, 3, pp 332-383,
2001.

[20] Chella, A., Cossentino, M. and Sabatucci, L., Designing Jade systems with the support
of case tools and patterns, Exp Journal, 3, 3, pp 86-95, 2003.

[21] Choi S., Kim, H., Byun, E., Hwang, C., and Baik, M., Reliable Asynchronous Message
Delivery for Mobile Agents, IEEE Internet Computing, vol. 10, no. 6, pp. 16-25, 2006.

[22] Ciancarini, P., Coordination models and languages as software integrators, ACM
Computing Surveys, 28, 2, pp 300-302, Jun 1996.

[23] Cossentino, M., From Requirements to Code with the PASSI Methodology, Agent-
Oriented Methodologies, B. Henderson-Sellers and P. Giorgini (eds). Idea Group Inc.,
Hershey, PA, USA, 2005.

[24] Cossentino, M., Fortino, G., Garro, A., Mascillaro, S., and Russo W., PASSIM: A
Simulation-based Process for the Development of Multi-Agent Systems, International
Journal of Agent Oriented Software Engineering, Vol. 2, n. 2, pp. 132-170, 2008.

[25] Cossentino, M., Garro, A., Gaglio, S. and Seidita, V., Method fragments for agent design
methodologies: from standardization to research, International Journal of Agent Oriented
Software Engineering, 1, 1, pp 91-121, 2007.

[26] Cossentino, M., Sabatucci, L. and Chella, A., A Possible Approach to the Development
of Robotic Multi-Agent Systems, IEEE/WIC Conf. on Intelligent Agent Technology
(IAT'03), Halifax (Canada), 2003.

[27] Cugola G., Di Nitto, E., and Fuggetta, A., The Jedi event-based infrastructure and its
application to the development of the OPSS WFMS, IEEE Transactions on Software
Engineering, 27, 9, pp 827-850, 2001.

[28] da Silva, J. L. T. and Demazeau, Y., Vowels co-ordination model, First international joint
conference on Autonomous Agents and Multi-Agent systems (AAMAS '02), pages 1129-
1136, New York, USA, ACM Press, 2002.

[29] Deugo, D., Weiss, M., and Kendall, E., Reusable Patterns for Agent Coordination,
Coordination of Internet Agents: Models, Technologies, and Applications, A. Omicini, F.
Zambonelli, M. Klusch and R. Tolksdorf, Eds. Springer, Ch. 14, 2001.

[30] Eclipse - an open development platform, documentation and software, available at the
World Wide Web: http://www.eclipse.org.

[31] Eclipse Modeling Framework Project (EMF), documentation and software, available at
the World Wide Web: http://www.eclipse.org/modeling/emf/.

[32] ELDATool, documentation and software, http://lisdip.deis.unical.it/software/eldatool.
[33] Feldman, S., Electronic marketplaces, IEEE Computing, 4, Jul-Aug, pp 93-95, 2000.
[34] FIPA ACL Message Structure Specification, A description of the structure of FIPA ACL,

http://www.fipa.org/specs/fipa00061/SC00061G.html.
[35] FIPA Agent Management Specification, Management for agents on FIPA agent

platforms, http://www.fipa.org/specs/fipa00023/SC00023K.html.
[36] FIPA RDF Content Language Specification, A description of a FIPA content

language based on the Resource Description FrameworkDocument FIPA XC00011B
(2001/08/10). http://www.fipa.org/specs/ fipa00011/XC00011B.html.

[37] Fortino G., Garro, A., Mascillaro, S., and Russo, W., ELDATool: A Statecharts-based
Tool for Prototyping Multi-Agent Systems, Workshop on Objects and Agents (WOA'07),
Genoa, 24-25 September, 2007.

[38] Fortino, G, Garro, A. and Russo, W., A Discrete-Event Simulation Framework for the
Validation of Agent-based and Multi-Agent Systems, Workshop on Objects and Agents
(WOA’05), Camerino, Italy, Nov 14-16, 2005.

[39] Fortino, G. and Russo, W., Using P2P, GRID and Agent Technologies for the
Development of Content Distribution Networks, Future Generation Computer Systems,
doi:10.1016/j.future.2007.06.007, 2008.

[40] Fortino, G., and Russo, W., Multi-coordination of Mobile Agents: a Model and a
Component-based Architecture, 20th Annual ACM Symposium on Applied Computing

133

(SAC’05), Special Track on Coordination Models, Languages and Applications, Santa
Fe, NM, USA, Mar. 13-17, 2005.

[41] Fortino, G., Garro, A. and Russo, W., An Integrated Approach for the Development and
Validation of Multi Agent Systems, Computer Systems Science & Engineering, 20, 4, pp.
94-107, CRL Publishing Ltd., Leicester (UK), Jul, 2005.

[42] Fortino, G., Garro, A., Mascillaro, S., and Russo, W., A Multi-Coordination based
Process for the Design of Mobile Agent Interactions, IEEE Symposium on Intelligent
Agents, Nashville (TN), USA, March 30-April 2, 2009.

[43] Fortino, G., Garro, A., Mascillaro, S., and Russo, W., Agent-based Modeling and
Simulation of Cooperative Content Distribution Networks, 2nd Int’l Workshop on Multi-
Agent Systems and Simulation (MAS&S’07), St. Julian, Malta, 22-24 October, 2007, as
part of the EUROSIS European Simulation and Modeling Conference.

[44] Fortino, G., Garro, A., Mascillaro, S., and Russo, W., Modeling Multi-Agent Systems
through Event-driven Lightweight DSC-based Agents, 6th Int'l Workshop “From Agent
Theory to Agent Implementation" (AT2AI’06), Estoril, Portugal, 13 May, 2008, held at the
7th Autonomous Agents and Multi-agent Systems (AAMAS).

[45] Fortino, G., Garro, A., Mascillaro, S., and Russo, W., Specifying WSN Applications
through Agents Based on Events and States, IARIA/IEEE Int’l Conference
SensorComm’07, Valencia, Spain, 14-20 October, 2007.

[46] Fortino, G., Garro, A., Mascillaro, S., and Russo, W., Using Event-driven Lightweight
DSC-based Agents for MAS Modeling, International Journal of Agent Oriented Software
Engineering, Vol. 4, n. 1, pp. 1-30, 2010.

[47] Fortino, G., Garro, A., Mascillaro, S., and Russo, W., Using multi-coordination for the
design of mobile agent interactions, Workshop on Objects and Agents (WOA’08),
Palermo, Italy, 17-18 November, 2008.

[48] Fortino, G., Garro, A., Mascillaro, S., Russo, W., and Vaccaro, M., Distributed
architectures for surrogate clustering in CDNs: a simulation-based analysis, 4th
ACM/HPDC Int’l Workshop on the Use of P2P, GRID and Agents for the Development of
Content Networks (UPGRADE-CN’09), , ACM Press, Munich (Germany), 9 June, 2009.

[49] Fortino, G., Mastroianni, C., and Russo, W., A Hierarchical Control Protocol for Group-
Oriented Playbacks Supported by Content Distribution Networks, Journal of Network and
Computer Applications, Elsevier, 32, 1, pp. 135-157, 2009.

[50] Fortino, G., Russo, W. and Zimeo, E., A Statecharts-based Software Development
Process for Mobile Agents, Information and Software Technology, 46, 13, pp.907-921,
Elsevier, Amsterdam, The Netherlands, 2004.

[51] Fox A., Gribble, S.D. Chawathe, Y., Brewer, E.A., and Gauthier, P., Cluster-Based
Scalable Network Services, 16th ACM Symposium on Operating Systems Principles,
Saint-Malo, France, Oct. 5-8, 1997.

[52] Fuggetta, A., Picco, G.P., and Vigna, G., Understanding Code Mobility, IEEE
Transaction. on Software Engineering, 24, 5, pp 342–361, 1998.

[53] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[54] Gardelli, L., Viroli, M. and Omicini, A., On the Role of Simulation in the Engineering of
Self-Organising Systems: Detecting Abnormal Behaviour in MAS, Workshop on Objects
and Agents (WOA’05), Camerino (Italy), pp. 85-90, 2005.

[55] Graphical Editing Framework (GEF), documentation and software, available at the World
Wide Web: http://www.eclipse.org/gef/.

[56] Griss, M. L, Fonseca, S., Cowan, D., and Kessler, R., SmartAgent: Extending the JADE
Agent Behavior Model, ACM Press, 2003.

[57] Guttman, R. H., Moukas, A. G. and Maes, P., Agent-mediated electronic commerce: a
survey, The Knowledge Engineering Review, 13, pp 147-159, 1998.

[58] Harel, D., and Gery, E., Executable Object Modelling with Statecharts, IEEE Computer,
30, 7, pp. 31-42, 1997.

[59] Harel, D., Statecharts: a visual formalism for complex systems, Science of Computer
Programming, 8, pp 231-274, 1987.

[60] Harmsen, F. and Brinkkemper, S., Design and Implementation of a Method Base
Management System for a Situational CASE Environment, 2nd Asia-Pacific Software
Engineering Conference (APSEC’95), IEEE CS Press, Brisbane, pp. 430-438, 1995.

134

[61] Henderson-Sellers, B., Method Engineering for OO Systems Development,
Communications of the ACM, 46, 10, pp.73-78, 2003.

[62] Jennings, N. R., On Agent-Based Software Engineering, Artificial Intelligence Journal,
117, 2, pp 277-296, 2000.

[63] Jensen, A. J., Kasper, H., and Demazeau, Y., Reactive agent mechanisms for
scheduling manufacturing processes, 6th Int. Workshop From Agent Theory to Agent
Implementation (AT2AI-6), eds. Jung, Michel, Ricci & Petta, Estoril, Portugal. May 13,
2008.

[64] Kendall, E., Murali Krishna, P., Pathak, C. and Suresh, C.B., Patterns of Intelligent and
Mobile Agents, Second Intl. Conference on Autonomous Agents, IEEE, 1998

[65] Kendall, E., Role Models: Patterns of Agent System Analysis and Design, Agent
Systems and Applications/Mobile Agents (ASA/MA-99), ACM, 1999

[66] Kessler, R., Griss, M., Remick, B., and Delucchi, R., A hierarchical State machine using
JADE behaviours with animation visualization, Int. Conf. on Autonomus Agents and Multi
Agents Systems, New York City, 19-23 July, 2004.

[67] Kolp, M., Giorgini, P., and Mylopoulos, J., A Goal-Based Organizational Perspective on
Multi-Agent Architectures, Eighth Intl. Workshop on Agent Theories, Architectures, and
Languages (ATAL-2001), 2001.

[68] Lange, D.B., and Oshima, M., Seven good reasons for Mobile Agents, Communications
of the ACM, 42, 3, pp 88-89, 1999.

[69] Leung, C.S., Sum, J., Shen, H., Wu, J. and Young, G., Analysis and Design of an Agent
Searching Algorithm for e-Marketplaces, Cluster Computing, 7, pp 85-90, 2004.

[70] Lilius, J. and Paltor, I. P., The semantics of UML State Machines. Technical Report N.
273. Turku Centre of Computer Science (TUCS), 1999.

[71] Loke, S. W., Padovitz, A., Zaslavsky, A., and Tosic, M., Agent Communication Using
Publish-Subscribe Genre: Architecture, Mobility, Scalability and Applications, Annals of
Mathematics, Computing & Teleinformatics, 1, 2, pp 35-50, 2004.

[72] Luck, M., McBurney, P., and Preist, C., A Manifesto for Agent Technology: Towards Next
Generation Computing. Autonomous Agents and Multi-Agent Systems, 9, 3, pp 203-252,
2004.

[73] Luck, M., McBurney, P., Shehory, O., Willmott, S., Agent technology roadmap (A
Roadmap for agent based computing). AgentLink, 2005.

[74] Maes, P., Guttman, R. and Moukas, A., Agents that Buy and Sell: Transforming
Commerce as we Know It, ACM Communications of ACM, 42, 3, pp 81-91, 1999.

[75] Marinescu, D.C., Internet-based Workflow Management, New York: John Wiley & Sons,
Inc, 2002.

[76] Martelli M., Mascardi, V. and Zini, F., Specification and Simulation of Multi-Agent
Systems in CaseLP, Appia-Gulp-Prode Joint Conf. on Declarative Programming,
L'Aquila, Italy. M.C. Meo and M. Vilares-Ferro (eds), pp. 13-28, 1999.

[77] Menezes, A. J., van Oorschot, P. C., and Vanstone, S. A., Handbook of Applied
Criptography, CRC Press, 1997.

[78] Murphy, A., Picco, G. P., and Roman, G., LIME: A Middleware for Logical and Physical
Mobility, International Conference on Distributed Computing Systems, IEEE CS, 2001.

[79] Ni, J., and Tsang, D.H.K., Large-Scale Cooperative Caching and Application-Level
Multicast in Multimedia Content Delivery Networks, IEEE Communications, 43, 5, pp.98-
105, May, 2005.

[80] North, M. J., Collier, N.T., and Vos, J.R., Experiences Creating Three Implementations of
the Repast Agent Modeling Toolkit, ACM Transactions on Modeling and Computer
Simulation, 16, 1, January, pp 1–25, 2006.

[81] Nwana, H.S., Software Agents: an overview, Knowledge Engineering Review, 11, 3, pp
205–244, 1996.

[82] Object Management Group, Unified Modelling Language Specification v. 2.0, 2005 (N.
formal/2005-07-05).

[83] Omicini, A. and Zambonelli, F., A Coordination of Mobile Agents for Information
Systems: the TuCSoN Model, AI*IA'98 Workshop on Knowledge Integration, Padova,
Italy, 1998.

135

[84] Omicini, A., and Zambonelli, F., Challenges and Research Directions in Agent Oriented
Software Engineering, Autonomous Agents and Multi-Agent Systems, 9(3), pp. 253-284,
2004.

[85] Omicini, A., and Zambonelli, F., Coordination for Internet application development,
Autonomous Agents and Multi-Agent Systems, 2, 3, pp 251–269, Sept. 1999.

[86] Omicini, A., Ossowsky, S., and Ricci, A., Coordination infrastructures in the engineering
of multi-agent systems, Methodologies and Software Engineering for Agent Systems,
New York, 2004, Kluwer.

[87] Padovitz, A., Agent communication using Publish-Subscribe genre: Architecture,
Mobility, Scalability and Applications, Annals of Mathematics, Computing and
Teleinformatics, 1, 3, pp 35-50, 2004.

[88] Papadoupolos, G.A., and Arbab, F., Coordination models and languages, Advances in
Computers 46, Academic Press, 1998.

[89] Pavon, J., and Gómez-Sanz, J., Agent Oriented Software Engineering with INGENIAS,
Multi-Agent Systems and Applications III, 3rd International Central and Eastern
European Conference on Multi-Agent Systems (CEEMAS'03) (Lecture Notes in
Computer Science, 2691). Berlin: Springer, pp. 394-403, 2003

[90] Pavon, J., Sansores, C., and Gomez-Sanz, J., Modeling of Social Systems with
Ingenias, 1st Workshop on Multi-Agent Systems and Simulation (MAS&S'06), Palermo,
Italy, 2006.

[91] Peine, H., Application and Programming Experience with the Ara Mobile Agent System,
Software Practice and Experience, 32, 6, pp 515-541, 2002.

[92] Peng, G., CDN: Content Distribution Network, Technical Report TR-125, Experimental
Computer Systems Lab, Stony Brook University, 2003.

[93] Picco, G. P., Murphy, A. L., and Roman, G. C., LIME: Linda meets mobility, ACM Press,
1999.

[94] Ralyté, J. and Rolland, C., An assembly process model for method engineering, 13th
Conference on Advanced Information Systems Engineering (CAISE01), Interlaken,
(Switzerland), pp.267-283, 2001.

[95] Raman, S., and McCanne, S., A model, analysis, and protocol framework for soft state-
based communication, ACM SIGCOMM Computer Communication Review, 29(4), pp.
15-25, 1999.

[96] RDF (Resource Description Framework), Model and Syntax Specification, W3C
Recommendation, 22-02-1999. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

[97] Ricci, A., Viroli, M., and Omicini, A., Programming MAS with artifacts, Workshop on
Programming Languages for Multi-Agent Systems (PROMAS), 4th International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS’05), Utrecht, The
Netherlands, 2005.

[98] Ripper, P.S., Fontoura, M.F., Maia Neto, A. and de Lucena, C.J.P., V-Market: A
framework for agent e-commerce systems, World Wide Web, 3, pp 43-52, 2000.

[99] Rohl, M. and Uhrmacher, A.M., Controlled Experimentation with Agents - Models and
Implementations, 5th Int’l Workshop Engineering Societies in the Agents World,
Toulouse (France), Oct 20-22, 2004.

[100] Royce, W., Managing the Development of Large Software Systems, IEEE WESCON,
Aug 26, pp. 1-9, 1970.

[101] Sarjoughian, H.S., Zeigler, B.P. and Hall. S.B., A Layered Modeling and Simulation
Architecture for Agent-based System Development, IEEE, 89, 2, pp. 201-213, 2001.

[102] Shi, L., Gu, Z-M, Tao, Y-C, Wei, L., and Shi, Y., Modeling Web objects' popularity,
International Conference on Machine Learning and Cybernetics, 18-21 Aug., 4, pp.2320-
2324, 2005.

[103] Sierra, C., Rodríguez-Aguilar, J. A., Noriega, P., Esteva, M. and Arcos, J.L., Engineering
Multi-agent Systems as Electronic Institutions, Novática, 170, 2004.

[104] Silva, A.R., Romao, A., Deugo, D., and Mira da Silva, M., Towards a reference model for
surveying mobile agent systems, Autonomous Agent and Multi-Agent Systems, 4, 3, pp
187-231, 2001.

[105] Sivasubramanian, S., van Halderen, B., and Pierre, G., Globule: a User-Centric Content
Delivery Network., 4th International System Administration and Network Engineering
Conference, Sept. 2004.

136

[106] Tolksdorf, R., Coordination patterns of mobile information agents, Cooperative
Information Agents II, Springer-Verlag, vol.1435 of LNAI, pp 246-261, 1998.

[107] Tveit, A., A survey of Agent-Oriented Software Engineering, First NTNU CSGS
Conference, May, 2001.

[108] Uhrmacher, A.M. and Scattenberg, B., Agents in Discrete Event Simulation, 10th
European Simulation Symposium ``Simulation in Industry -- Simulation Technology:
Science and Art'' (ESS'98), SCS Publications, pp 129-136, 1998.

[109] Vigna, G., Mobile Agents: Ten Reasons For Failure, IEEE International Conference on
Mobile Data Management (MDM’04), Berkeley, CA, USA, 19-22 January 2004.

[110] Wang, Y., Tan, K-L., and Ren, J., A Study of Building Internet Marketplaces on the Basis
of Mobile Agents for Parallel Processing, World Wide Web: Internet and Web Information
Systems, 5, 1, pp. 41-66, 2002.

[111] Weiss, M., Pattern-Driven Design of Agent Systems: Approach and Case, Conference
on Advanced Information Systems Engineering (CAiSE), Springer, LNCS 2681 ,2003.

[112] Wooldridge, M., An Introduction to MultiAgent Systems, John Wiley & Sons Ltd, 2002.
[113] Wooldridge, M., Jennings, N. R., and Kinny, D., The Gaia methodology for agent-

oriented analysis and design. Journal of Autonomous Agents and Multi-Agent Systems,
3, 3, pp 285–312, 2000.

[114] Xu, D., Yin, J., Deng, Y., and Ding, J., A Formal Architectural Model for Logical Agent
Mobility, IEEE Trans. Software Eng. 29, 1, pp 31-45, 2003.

[115] Zhou, X.Y., Arnason, N., and Ehikioya, S.A., A proxy-based communication protocol for
mobile agents: protocols and performance, IEEE Conference on Cybernetics and
Intelligent Systems, vol. 1, pp 53-58, 1-3, Dec. 2004.

