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Introduction

This thesis focuses on the problem of dealing with Semantic Web data in a
new way. In particular, it is taken in consideration the opportunity of ex-
ploiting the Answer Set Programming (ASP) methodology to meet many
of the requirements the community is still investigating on. Besides sug-
gesting a possible way of solving known issues, we also provide higher
capabilities to the overall picture of the Semantic Web .
The goal of this thesis is tackled from a twofold perspective: on the one
hand, we consider the practical feasibility of adopting ASP technologies
for actual Semantic Web applications. In particular, we look at ASP as an
appropriate technology for building the necessary infrastructure for man-
aging, storing, querying and reasoning over Semantic Web data, with a
special focus on RDF information sources. On the other hand, we formally
show how ASP can deal with some open knowledge representation issues:
in this respect we will illustrate the feasibility of ASP as a modeling lan-
guage for representing an integrating knowledge sources, and define their
semantics.

Motivation of the work and objectives

Motivation. Thanks to the exciting promises of the Semantic Web vision,
a lot of research has been carried out about that topic [56], allowing for
several infrastructure components of this vision to be fixed and suggest-
ing successfully approaches towards making the Semantic Web a reality.
The core idea of the Semantic Web vision [15], is to attach annotated infor-
mation to the Web resources for describing instance data. This additional
information should enable machines to process “the meaning of things”
in a completely innovative way, to a be solution to those problems and situ-
ations that we are yet to define 1. Such a novel infrastructure would enable

1http://www.lassila.org/publications/2006/SCAI-2006-keynote.
pdf.

1
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a new generation of Web applications far beyond the current technolog-
ical constraints: for instance, machines will be able to automatically ar-
range travels collecting and coordinating schedule information for flights,
trains, and booking hotels and excursions at the cost of a few clicks for
the user. The enthusiasm around this research area is fully justified by
the enormous potential power of this vision, which should increase the
participation of machines to web activities: innovative web browsing au-
tomation/aid to complex searches [10], solving semantical optimization
problems, improving information discover [53].

Although the first goal of the vision –wrapping semantic metadata
around the content on the Web– is to a fair extent achieved, still, for the
Semantic Web to show off its capabilities, some problems need to be better
addressed. In particular, challenges come from the so called “Ontology
Layer” which constitutes one of the main pillars of the Semantic Web sce-
nario. Indeed, since this layer should allow to define shared and common
domain theories, ontologies have gained special attention in that context,
aiming at structuring underlying data for the purpose of semantic inter-
operability and comprehensive understanding between disparate sources
and applications. More and more people and organizations have started
to develop ontologies (see e.g. [3]); also, reasoners, applications and tools
for ontologies (see e.g. [51, 95, 76]) are nowadays widespread.

To date, most research efforts have been spent on the analysis and de-
velopment of sufficiently expressive languages and standards for the rep-
resentation and querying of ontologies. However, querying efficiency has
received attention only recently, especially for ontologies referring to large
amounts of data. In this context, the reasoning mechanisms provided by
the current RDF stores and SPARQL engines 2 come up with several ma-
jor problems. This is especially true when querying the same data with
respect to different ontologies and/or different entailment regimes are re-
quired. Indeed, the current implementations are not tailored for that kind
of dynamic querying: most of them assume fixed datasets and usually
reasoning is done once and for all, applying a materialization strategy at
loading-time, that means that inference rules cannot be changed on-the-
spot. As a consequence, current implementations do not properly behave
in such a dynamically changing scenario, where inconsistency, ambigui-
ties and wrong inferences on Web data inevitably pop up and thus must
be taken into account. To date, these are open issues, still waiting for an
efficient and effective resolution.

2i.e [1, 2, 5].
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On the other hand, Answer Set Programming (ASP) [47] is a mature
declarative modeling paradigm. It is based on sound theoretical founda-
tions, versatile features and it provides interoperable and efficient solvers.
In the Semantic Web view, both systems and languages based on ASP can
be very interesting as suggested by recent initiatives aiming at placing
ASP languages in the “Semantic Web Layer Cake” for addressing issues
concerning ontological reasoning tasks delegated to the “Rule/Logic Lay-
ers” [38, 37]. Indeed, ASP has been proposed as the semantics of choice
for defining a formalism for the “Rule Layer”, with proper capabilities of
interacting and reasoning on top of ontologies. Likewise, ASP can be ex-
ploited as a middleware formalism to which ontologies can be translated
to, for solving reasoning tasks on translated ontologies (see e.g. [98]). It is
then possible to take advantage of existing, advanced, computing method-
ologies for ASP: ASP systems allow to mix monotonic with non-monotonic
reasoning, permit to combine rules with ontologies, and can interface ex-
ternal reasoners [39]. Notably, ASP is suitable for solving configuration
and matchmaking problems involving reasoning with preferences by fea-
turing easy to use, fully declarative soft and hard constraint specification
languages [87]. Finally, ASP systems are scalable, and efficient implemen-
tation exist over DBMS that can act as a Semantic Web data repository for
supporting semantic data storage, inferencing and querying, and thus be-
coming a viable platform for building semantic applications. Indeed, ASP
extensions exist that are specifically tailored at Semantic Web applications,
making the ASP paradigm ready for tackling many of the challenges the
Semantic Web offers.

Objectives. The main purpose of this dissertation is to show how ASP
can be fruitful used for implementing some of the building blocks of the
Semantic Web , suggesting a way to answer to many of the pending ques-
tions the Semantic Web comprises.
In this perspective, we will focus on two different aspects, both neces-
sary for dealing with Semantic Web applications, that are: (i) exploiting
the ASP technology for building the necessary infrastructure for the Se-
mantic Web applications as well as (ii) illustrate an ASP formalism which
allows to model knowledge, and its semantics. As for the first point (i), we
will present a prototype triplestore system capable of persistently storing,
querying and inferencing (with parametric inference semantics) over RDF
datasets; as for the second point (ii), we will show how ASP languages can
be used to faithfully model and integrate knowledge expressed in RDFS
and beyond, taking in consideration a formalization and implementation
of Frame Logic [62] in a novel answer set semantics scenario.

3
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Thesis overview and contributions

The work is split into three distinct pieces. The first part sets the pre-
liminaries for subsequent discussions. In particular, we present the ASP
approach [45] to logic programming, which differs from traditional logic
programming. Indeed, it has a pure declarative semantics, (i.e. in contrast
to Prolog programs [26]) and it is based on the notion of models as solu-
tions for problems encoded in ASP languages. One more distinguished
feature is that ASP allows for both strong and weak negation (also known
as negation as failure). Due to negation as failure, the semantics for Answer
Set programs are non-monotonic, that means that the set of logical con-
sequences might decrease with increasing information in the program. In
particular, we present an extension of the core language [99] which allows
for external and higher-order atoms. Higher-order features are widely ac-
knowledged as useful for performing meta-reasoning, among other tasks.
Furthermore, the possibility to exchange knowledge with external sources
in a fully declarative framework such as ASP is particularly important in
view of applications in the Semantic Web area.

Afterwards, we introduce the most important aspects of the Semantic
Web [15] platform that is oriented at adding a machine-readable meaning
to Web pages and resources. This is achieved by using ontologies for a
precise definition of shared terms and applying Knowledge Representa-
tion technology for automated reasoning tasks. We focus in particular on
the middle layers (embracing the RDFS, Ontology/Rule Layers) dealing
with expressing meta-data about Web resources, as well as defining termi-
nological knowledge and assign semantics to concepts.

The main contribution of this thesis is presented in the second part
of the dissertation where we address the problem of coupling the ASP
methodology with Semantic Web technologies. Indeed, with respect to
the Semantic Web, ASP can play the role of powerful rule language for
facilitating sophisticated reasoning task as well as complementing the on-
tology formalisms. The contribution of our work in this setting consists
in a thorough formalization of an ASP framework for dealing with Se-
mantic Web data. In this sense, we formally introduce a translation of
the RDFS semantic to ASP, that allows us for extending our approach to
model the RDF query languages in terms of ASP. Once having defined
such a suitable machinery for querying/reasoning on Semantic Web data,
we focus on weaknesses and leaks that the current state-of-the-art systems
reveal when dealing with a dynamically changing scenario. To this end,
we study possible extensions of the query model for Semantic Web data.
These latter are aimed at enabling a dynamical activation of inference rules

4
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and ontological schemas “on demand”. Such formal results are practically
experimented in a prototypical system (called GiaBATA) which is able to
compete with the current systems, despite the overhead introduced by our
proposed extensions.

The last part of the work focuses on ASP as a general methodology for
modeling semantics of ontology languages. As a special case, we focus
on Frame Logic [62, 107] introducing a novel framework for coping with
frame-like syntax and higher-order reasoning within an Answer Set Pro-
gramming environment. Our approach aims at closing the gap between
Frame Logic based languages and Answer Set Programming , in both di-
rections: on one hand, Answer Set Programming misses the useful Frame
Logic syntax, its higher-order reasoning capabilities and the possibility to
focus knowledge representation on objects, more than on predicates. On
the other hand, manipulating Frame Logic ontologies under stable model
semantics opens a variety of modeling possibilities, given the higher ex-
pressiveness of the latter with respect to well-founded semantics. Also,
we show how it is possible to integrate multiple knowledge sources, with
multiple semantics in the FAS framework.
The main contributions, briefly summarized, are as follows:

• successfully mixing the Answer Set Programming (ASP) formalism with
semantic web technologies as basis for Semantic Web applications;

• efficiently dealing with mass-storage RDF data supporting dynamic in-
ference and query answering;

• accomplishing challenging reasoning tasks in the Semantic Web , seman-
tically modeling and integrating knowledge defined by expressive ontol-
ogy languages.

We expect to provide relevant answers to the research community con-
cerning the definition of new reasoning and query answering techniques
(based on expressive query and rules languages), and the investigation of
the interplay between ontology and rules languages.

Plan of the work

The three parts of the work are organized as follows. The first part pro-
vides some background notions which will be useful throughout the rest
of the thesis: chapter 1 presents the Answer Set Programming formalism;
chapter 2 introduces the main ideas behind the vision of the Semantic Web
and its architecture. The central theme of the thesis is discussed in the third

5
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part. In particular, chapter 3 concentrates on possible usage of Answer Set
Programming for Semantic Web applications: it formally presents a map-
ping of the problem of RDFS graph entailment to a corresponding problem
of entailment under Answer Set Semantics, and extends that approach at
translating the semantics of RDF query languages. Chapter 4 introduces
a formal framework based on Answer Set Programming that allows for
dynamically choosing the entailment regimes as well as ontology schema
to be taken into account on a per query basis. Chapter 5 presents a fully
ASP-based prototype system for managing RDFS and possibly higher se-
mantics and practically deal with persistently stored data. The third part
of the dissertation (chapter 6) investigates Answer Set Programming as a
suitable basis for semantics modeling of expressive ontology languages,
focussing on Frame Logic . Finally, we discuss related work and interest-
ing directions for further developments, and draw the conclusions.

6



Preliminaries

This first part provides preliminary concepts which will be useful through-
out this dissertation. The reader is introduced to background knowledge
about two different topics in the field of Knowledge Representation and
Reasoning, that we aim at integrating.
First, in chapter 1, we present the Answer Set Programming paradigm
(ASP) that is a very successful descendant of a long tradition of logic pro-
gramming formalisms. Thus, in the perspective of its fruitful usage for
Semantic Web applications, we will focus on some Answer Set Program-
ming advanced extensions. In particular, we will present extensions by
external and higher-order atoms, conceived for dealing with external knowl-
edge and meta reasoning, respectively.
Second, in chapter 2 we introduce the main ideas and fundamental pillars
of the Semantic Web, which, at the moment of writing, is gaining momen-
tum as the potential revolutionary technology.
In particular, this preliminary notions will be useful in the following of the
dissertation aiming at showing how these two lines of research can benefit
from each other.

7



Chapter 1

Answer Set Programming

This chapter recall basic notions on the ASP (ASP) paradigm and its se-
mantics based on the notion of stable model, which is also the preferred
semantics for Disjunctive Logic Programming (DLP). Indeed, DLP under
the stable model semantics is a form of ASP widely appreciated as declara-
tive modeling paradigm: it is based on sound theoretical foundations, fea-
tures versatile, interoperable and efficient solvers, and has been applied
successfully in a variety of contexts.
The basic idea is that a given problem is solved by devising a logic pro-
gram such that the stable models of the program correspond to the solu-
tions of the problem, which are then found by computing stable models
for the program.
The success of ASP is much due to efficient solvers, such as DLV and SMOD-
ELS, which have been developed in recent years, coupling a formal treat-
ment with an effective implementation for reasoning problems arising in
a number of interesting application fields (i.e Knowledge Representation
and Reasoning, Data Mining, Planning, Model Checking, and recently, Se-
mantic Web).

1.1 Declarative Logic Programming

Logic programming in the narrowest sense can be traced back to debates
in the late 1960s and early 1970s about declarative versus procedural rep-
resentations of knowledge in Artificial Intelligence. Roughly speaking,
programming languages belonging to the first paradigm, focus on how
an algorithm solves a given problem, while in the purely declarative case,
the programmer is only responsible for ensuring the truth of programs ex-
pressed in logical form, focussing on the problem, rather then on encoding

8



CHAPTER 1. ANSWER SET PROGRAMMING.

the sequence of operations. Prolog [26], among others (Haskell, Lisp), is
one of the most widespread tool for programming in logic. It is imple-
mented as a sequential programming language, processing goals from left
to right and selecting rules in textual order. Furthermore, Prolog provides
extra-logical features to control the execution of the program. This means
that the rule order as well as the predicate order within a rule can influence
the program’s result.

The paradigm that will be presented next, ASP [45], is somewhat dif-
ferent: it allows to state purely declarative logic programs, being based
on view of program statements as constraints on the solution of a given
problem. Subsequently, each model of the program encodes a solution to
the program itself. More specifically, problems are represented in terms of
(finite) theories, such that, the models of the latter determine the solutions
of the original problem.

1.2 Logic Programs under Answer Set Semantics

ASP is a form of declarative programming paradigm. It stems from the sta-
ble model semantics of normal logic programs ([45]) line of research deal-
ing with negation as failure. The latter is an extension to classical negation,
denoting a fact as false if all attempts to prove it fail. Back in the 1990s,
Gelfond and Lifschitz ([46]) proposed a logic programming approach that
allows for both negation as failure as well as strong (or classical negation),
subsequently extending ([47]) their semantics to disjunction in rule heads.
As such, the answer set semantics extends the stable model semantics be-
ing defined on a syntactically richer class of programs. Indeed, the answer
set semantics is defined for programs in which not only negation as fail-
ure may occur in program rules, but also strong negation and disjunctions.
For an overview on other semantics for such programs see also [34].

According to the answer set semantics, a disjunctive logic program
may have several alternative models (but possibly none), called answer
sets, each corresponding to a possible view of the world. Indeed, one dis-
tinguished feature of the answer set semantics is its ability to generate
multiple minimal models for a single problem specification.

ASP shows very interesting features which make it an attractive candi-
date for reasoning with knowledge. As mentioned, the paradigm is fully
declarative and it allows for monotonic and non-monotonic reasoning,
thus enabling default reasoning and non-monotonic inheritance. More-
over, the inherent nondeterminism make possible to define concepts rang-
ing over a space of choices without any particular restriction. Therefore,

9



1.2. LOGIC PROGRAMS UNDER ANSWER SET SEMANTICS.

it is a suitable formalism for handling incomplete and inconsistent infor-
mation. Moreover, extension of the basic semantics with preferences, soft
and hard constraint, enable the compact specification of search and opti-
mization problems. Last but not least, ASP programs are decidable, that
is, in their basic flavor, are naturally decidable: no special restrictions are
needed in order to keep this important property. Disjunctive logic pro-
grams under answer sets semantics are very expressive. It was shown in
([36, 48]] that, under this semantics, disjunctive logic programs capture
the complexity class ΣP

2 (NPNP ) (i.e., they allow us to express, in a precise
mathematical sense, every property of finite structures over a function-
free first-order structure that is decidable in nondeterministic polynomial
time with an oracle in NP ).

Interestingly, despite the computational expressiveness of ASP, state-
of-the-art solvers currently reached the maturity for dealing with large
datasets. Indeed, one of the main reasons for the increasing popularity
of both the answer set semantics as well as the stable model semantics
is in large part due to the availability of sophisticated solvers for these
languages. Two prominent systems for computing answer sets are DLV
([40, 35, 64]) and SMODELS ([75, 93]), which allow for an efficient declara-
tive problem solving. The DLV system, which is indirectly used in this the-
sis through the DLVHEX ([100, 99, 101]) and the DLVDB framework ([103]),
has been developed for over a decade as joint work of the University of
Calabria and Vienna University of Technology and is still actively main-
tained.

1.2.1 Syntax of Answer Set Programs

Let P , C andX be disjoint sets of predicate, constant, and variable symbols
from a first-order vocabulary Φ, where X is infinite and P and C are count-
able. In accordance with Prolog’s convention and common ASP solvers,
we assume that elements from C andP are string constants that begin with
a lowercase letter or are double-quoted, where elements from C can also
be integer numbers. Elements from X begin with an uppercase letter and
denote variables.

A term is either a variable or a constant. Given a predicate p ∈ P , an
atom is defined as p(t1, . . . , tk), where k is called the arity of p and each
t1, . . . , tk are terms. Atoms of arity k = 0 are called propositional atoms. A
classical literal (or simply literal) l is an atom p or a negated atom ¬p, where
¬ is the symbol for true (or classical) negation. Its complementary literal is
¬p (resp., p) (strongly negated literal or, simply, negated literal). A negation

10



CHAPTER 1. ANSWER SET PROGRAMMING.

as failure literal (or not -literal) is a literal l or a default-negated literal not l.
Negation as failure is a non-monotonic inference rule, used to derive notL
(i.e. that L is assumed not to hold) from failure to derive L. Thus, notL
evaluates to true if it cannot be demonstrated that L is true, i.e., if either L
is false or we do not know whether L is true or false.

A disjunctive rule (rule, for short) r is a formula

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm. (1.1)

where a1 ∨ · · · ∨ an, b1, . . . , bk are classical literals. We say that a1 ∨ · · · ∨ an

is the head of r, while the conjunction b1, . . . , bk, not bk+1, . . . , not bm is the
body of r, where b1, . . . , bk (resp., not bk+1, . . . , not bm) is the positive (resp.,
negative) body of r. We use H(r) to denote its head literals, and B(r)
to denote the set of all its body literals B(r)+ ∪ B(r)− , where B(r)+ =
{b1, . . . , bk} and B(r)− = {bk+1, . . . , bm}. A rule with empty body is called
fact and we often omit “←”, while a rule with empty head is an integrity
constraint. A rule with exactly one head literal is a normal rule.

A disjunctive logic program (or simply program) P is a finite set of rules r
of the form 1.1. A not-free program P (i.e., such that ∀r ∈ P : B−(r) = ∅ )
is called positive, and a ∨-free program P (i.e., such that ∀r ∈ P : | H(r) |≤
1) is called Datalog program (or normal logic program).

1.2.2 Semantics of Answer Set Programs

The semantics of disjunctive logic programs is defined for variable-free
programs. Thus, we first define the ground instantiation of a program that
eliminates its variables.

The Herbrand universe of a program P , denoted HUP , is the set of all
constant symbols C ⊂ C appearing in P . If there is no such constant
symbol, then HUP = {c}, where c is an arbitrary constant symbol from Φ.
As usual, terms, atoms, literals, rules, programs, etc. are ground iff they
do not contain any variables. The Herbrand base of a program P , denoted
HBP , is the set of all ground (classical) literals that can be constructed from
the predicate symbols appearing in P and the constant symbols in HUP .
A ground instance of a rule r ∈ P is obtained from r by replacing every
variable that occurs in r by a constant symbol from HUP . We use grnd(P )
to denote the set of all ground instances of rules in P .

The semantics for disjunctive logic programs is defined first for posi-
tive ground programs. A set of literals X ⊆ HBP is consistent iff {p,¬p} 6⊆
X for every atom p ∈ HBP . An interpretation I relative to a program P is
a consistent subset of HBP . We say that a set of literals S satisfies a rule

11



1.3. ASPHEX : AN EXTENSION OF ASP.

r if H(r) ∩ S 6= ∅ whenever B+(r) ⊆ S and B−(r) ∩ S = ∅. A model of a
positive program P is an interpretation I ⊆ HBP such that I satisfies all
rules in P . An answer set of a positive program P is the least model of P
w.r.t. set inclusion.
To extend this definition to programs with negation as failure, we define
the Gelfond-Lifschitz transform (also called the Gelfond-Lifschitz reduct) of
a program P relative to an interpretation I ⊆ HBP , denoted P I , as the
ground positive program that is obtained from grnd(P ) by

• deleting every rule r such that B−(r) ∩ I = ∅, and

• deleting the negative body from every remaining rule.

An answer set of a program P is an interpretation I ⊆ HBP such that I is
an answer set of P I .

Example 1.2.1 Consider the following program P :

p← not q.

q ← not p.

Let I1 = {p}; then P I1 = {p}with the unique model {p} and thus I1 is an answer
set of P . Likewise, P has an answer set {q}. However, the empty set ∅ is not an
answer set of P , since the respective reduct would be {p; q} with the model {p; q}.

2

1.3 ASPHEX : an extension of ASP

In this section we focus on ASPHEX programs, which are non-monotonic
logic programs under the answer set semantics admitting external and
higher-order atoms.
Intuitively, an higher-order atom allows to quantify values over predicate
names, and to freely exchange predicate symbols with constant symbols,
like in the rule:

C(X)← subClassOf(D, C), D(X). (1.2)

An external atom facilitates to determine the truth value of an atom through
an external source of computation. Informally, an external atom models
knowledge that is external to a given logic program, and whose extension

12



CHAPTER 1. ANSWER SET PROGRAMMING.

might be infinite. This feature is realized by the introduction of “para-
metric” external predicates, whose extension is not specified by means of
a logic program but implicitly computed through external code. For in-
stance, the rule:

reached(X)← &reach[edge, a](X). (1.3)

computes the predicate reached taking values from the predicate &reach,
which computes all the reachable nodes in the graph edge from node a,
delegating this task to an external computation source (e.g., an external
deduction system, etc.).
In our setting, the usage of external atoms is crucial for modeling some
aspects of the normative language for querying semantic web data (see
chapter 3) that require to deal with infinite sets and/or that are difficult to
be encoded using plain ASP. The higher-order capabilities are necessary
to enabling meta reasoning for Semantic Web applications or for meta-
interpretation in ASP itself, etc.

1.3.1 Syntax of ASPHEX Programs

Let C, X and G mutually disjoint sets whose elements are called constant,
variable and external predicate names, respectively. C may be infinite. Un-
less explicitly specified, elements from X (resp. C) are denoted with first
letter in upper case (resp., lower case), while elements from G are prefixed
with “&”. We note that constant names serve both as individual and pred-
icate names. Elements from C ∪X are called terms. An higher-order atom (or
atom) is a tuple (Y0, Y1, · · · , Yn), where (Y0, Y1, · · · , Yn) are terms; n ≥ 0
is the arity of the atom. Intuitively, Y0 is the predicate name, and we thus
also use the more familiar notation Y0(Y1, · · · , Yn). The atom is ordinary, if
Y0 is a constant. For example, (x, rdf : type, c), node(X), and D(a, b), are
atoms; the first two are ordinary atoms.

An external atom is of the form

&g[Y1, · · · , Yn](X1, · · · , Xm), (1.4)

where (Y1, · · · , Yn) and (X1, · · · , Xm) are two lists of terms (called input
and output lists, respectively) , and &g ∈ G is an external predicate name.
We assume that &g has fixed lengths in(&g) = n and out(&g) = m for
input and output lists, respectively. An external atom provides a way for
deciding the truth value of an output tuple depending on the extension of
a set of input predicates.
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A rule r is of the form:

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm. (1.5)

where m, k ≥ 0, a1 ∨ · · · ∨ an are atoms, and b1, . . . , bk are either atoms or
external atoms. We define H(r) = {a1∨· · ·∨an} and B(r) = B+(r)∪B−(r),
where B(r)+ = {b1, . . . , bk} and B−(r) = {bk+1, . . . , bm}. If H(r) = ∅ and
B(r) 6= ∅, then r is a constraint; while if B(r) = ∅ and H(r) 6= ∅, then r is a
fact; r is ordinary if it contains only ordinary atoms.

An ASPHEX program is a finite set P of rules. It is ordinary, if all rules
are ordinary.

1.3.2 Semantics of ASPHEX Programs

The semantics of ASPHEX programs generalizes the answer set seman-
tics ([47]) by extending it to external atoms. In particular, here we use
the notion of a reduct as defined by Faber et al. (referred to as FLP-reduct
henceforth [41]) instead of to the traditional reduct by Gelfond and Lifs-
chitz ([47]).
Let P be an ASPHEX program. The Herbrand base of P , denoted HBP , is
the set of all possible ground versions of atoms and external atoms occur-
ring in P obtained by replacing variables with constants in C. The ground-
ing of a rule r, grnd(r), is defined accordingly, and the groundingly of a
programP is given by grnd(P ) =

⋃
r∈P grnd(r). Unless specified other-

wise, C, X and G are implicitly given by P .

Example 1.3.1 [39] Given C = {edge, arc, a, b}, ground instances of E(X, b)
are for instance edge(a, b), arc(a, b), a(edge, b), arc(arc, b); ground instances of
&reach[edge, N ](X) are all possible combinations where N and X ∈ C, for in-
stance &reach[edge, edge](a), &reach[edge, arc](b), &reach[edge, edge](edge),
etc.

An interpretation relative to P is any subset I ⊆ HBP containing only atoms.
We say that I is a model of atom a ∈ HBP , denoted I |= a, if a ∈ I . With ev-
ery external predicate name &g ∈ G, we associate an (n+m+1)-ary boolean
function f&g assigning each tuple (I, y1, . . . , yn, x1, . . . , xm) either 0 or 1,
where n = in(&g), m = out(&g), I ⊆ HBP , and xi , yj ∈ C. We say that I ⊆
HBP is a model of a ground external atom a = &g[y1, . . . , yn](x1, . . . , xm),
denoted I |= a, iff f&g(I, y1, . . . , yn, x1, . . . , xm) = 1.

14
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Example 1.3.2 [39] Let us associate with the external atom &reach a function
f&reach(I, E,A, B) = 1 iff B is reachable in the graph E from A. Let I =
{e(b, c), e(c, d)}. Then, I is a model of &reach[e, b](d) since f&reach(I, e, b, d) =
1.

Let r be a ground rule. We define (i) I |= H(r) iff there is some a ∈ H(r)
such that I |= a, (ii) I |= B(r) iff I |= a for all a ∈ B+(r) and I 6|= a for all
a ∈ B−(r), and (iii) I |= r if I |= H(r) whenever I |= B(r). We say that
I is a model of an ASPHEX program P , denoted I |= P , iff I |= r for all
r ∈ grnd(P ). We call P satisfiable, if it has some model.

Given a ASPHEX program P , the FLP-reduct of P with respect to I ⊆
HBP , denoted fP I , is the set of all r ∈ grnd(P ) such that I |= B(r).
I ⊆ HBP is an answer set of P iff I is a minimal model of fP I . For
more details, cf. [39]. It is worth noting that, external predicates may be
associated with functions having an unknown (and possibly infinite) co-
domain. These are computed by means of an associated evaluation func-
tion (oracle). Unfortunately, in a context where value invention is explic-
itly allowed, grounding a program against an infinite set of symbols leads
to an infinite ground program, which obviously cannot be built in prac-
tice. Thus grnd(P ) is in principle an infinite program. However a large
class of ASPHEX programs is proven to have finite answer sets, namely vi-
restricted (value invention-restricted) programs, whose definition is given in
[24].
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Chapter 2

The Semantic Web

In this chapter we introduce the basic notions about the Semantic Web by
providing motivation, description, and application examples. Among all,
we focus on the standard, languages and technologies conceived for the
RDF(S)/Ontology Layers of its architecture.
In the perspective of envisaging further evolvement of the vision behind
the Semantic Web, we discuss possible usage of rule-based formalisms as
a complementary tool to be used in ontology languages, either in conjunc-
tion with or as an alternative to expressive logics, other than for drawing
inferences, expressing constraints, etc. This will provides justifications to
our setting (presented in chapter 3) which relies on the Answer Set Pro-
gramming as the rule-based formalism to cope with several open issues in
the context of the Semantic Web .

2.1 Historical background

The European Organization for Nuclear Research in Switzerland, CERN,
is where it all began in March 1989. A physicist, Tim Berners-Lee, wrote
a proposal about a large hypertext database with typed links, showing how
information could be easily transferred over the Internet by using hyper-
text, the very well known “point and click” system for navigation through
information. In 1990 Tim Berners-Lee and Robert Cailliau presented that
idea to the European Conference on Hypertext Technology. By Christmas
of the same year, all the tools necessary for a working Web were ready. But
the real debut-day of the Web as a publicly accessible service on the Inter-
net, has been market at August 6 1991, when Berners-Lee posted a short
summary of the World Wide Web (WWW) project on the alt.hypertext

newsgroup .
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“ The World Wide Web (WWW) project aims to allow all links to be
made to any information anywhere. [...] The WWW project was started
to allow high energy physicists to share data, news, and documentation.
We are very interested in spreading the web to other areas, and having
gateway servers for other data. Collaborators welcome! ”
Therefore, the idea behind the project was to connect hypertext with the
Internet and personal computers, realizing a single information network
to help CERN physicists in sharing all the information, with the possibility
to browse between web pages using links. Early adopters of the World
Wide Web have been primarily university-based scientific departments or
physics laboratories.
Afterward, in 1994, the World Wide Web Consortium (W3C) 1 started its
standardization work to improve the quality of the Web. Fundamental
standards for the Web have been settled, such as Hypertext Transfer Pro-
tocol (HTTP) for transferring arbitrary data over networks, Uniform Re-
source Identifier (URI) to link Web resources, and Hypertext Markup Lan-
guage (HTML) for representing hypertext with URIs. Suddenly, new re-
quirements come into the light, posing questions especially about the data
formats to be used for exchanging data on the web for the purpose on
syntactic and semantics interoperability.

The first turning point, in order to deal with the amount of mostly un-
structured information available on the web, goes back to 1998, when the
W3C presented the first standard for marking up data, the so called Ex-
tensible Markup Language (XML) 2. Opposed to HTML, which is a markup-
language for a specific kind of hypertext documents, XML has been in-
tended as a markup-language for arbitrary document structure, aiming at
separation of content from presentation and being flexible enough to sup-
port platform and architecture independent data interchange. Indeed, the
semi-structured data-model [7] provided via XML allows to create a vo-
cabulary, and use this vocabulary to describe data itself. However, when
it comes to semantic interoperability, XML reveals several disadvantages,
since it aims at the structure of documents and does not impose any com-
mon interpretation of the data contained in the document.

A year later, a new specification, the Resource Description Framework
(RDF) 3 ([42]), was designed at W3C with the intend to provide a general
formalism for conceptual description and for automatic data processing
of meta-information. In the 2001, the book [14] and the article [15] make

1http://www.w3.org/.
2http://www.w3.org/XML/.
3http://www.w3.org/RDF/.
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one more step towards semantic interoperability introducing the idea the
Semantic Web .

“ Adding semantics to the web involves two things: allowing docu-
ments which have information in machine-readable forms, and allowing
links to be created with relationship values. Only when we have this ex-
tra level of semantics will we be able to use computer power to help us
exploit the information to a greater extent than our own reading. ” Ac-
cording to Tim Berners-Lee the Web with all its content was mature and
well-established among Internet users, but what was missing was a Web of
Data, allowing for machine-readable information and automatic data pro-
cessing. Since 2001 the W3C Semantic Web Activity 4 is actively working on
this “web of data”.
Summarizing, the vision of the Semantic Web is to extend principles of the
Web from documents to data, aiming at creating a common framework
that allows machines for supporting automatic processing of data, as well
as sharing and reusing them across applications. In this sense, whereas
the original Web is interested in (interchange of) documents, the attention
is now moved to the data, making of utter importance the capability to
define and describe the relations among resources on the Web.

2.2 The Semantic Web in practise

Like other technologies, the interest in creating and developing the Se-
mantic Web is motivated by the opportunities it might bring: either it can
solve new problems, or it can solve old problem in a better way. One
very promising application area of Semantic Web technology is the field of
Knowledge Management. Indeed, the Knowledge Management tradition-
ally identified as key in maintaining the competitiveness of organizations,
is now facing new problems triggered by the web: information overload,
inefficient keyword searching, heterogeneous information integration and
so on. These problems are being tackled by the Semantic Web technol-
ogy, which focuses on acquiring, maintaining and accessing structured in-
formation source. The possibility to properly use ontologies to describe
web resources, and to represent knowledge on the Web in a structured,
logical, and semantic way, can change the way that agents can navigate,
harvest and utilize information on the Web ([78]). In this new perspec-
tive, agents could be allowed to migrate from one site to another, carrying
their codes, data, running states, and intelligence to fulfill their missions

4http://www.w3.org/2001/sw/.
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autonomously and intelligently. These new technologies can be applied
for automatic web-service discovery, invocation, composition and inter-
operation as well, thus enhancing the landscape of electronic commerce
[55]. Other examples belong to the area of Social networking ([22, 16, 97],
Personal information management 5, Information syndication ([88, 52]),
Library/museum data [3], Network security and configuration 6.

Moving from theory to practice there are already a number of active
projects, usually aimed at some specific domain of interest. Indeed, af-
ter being picked up by the Open Source community the Semantic Web has
been used by small and specialized startups and finally by business in gen-
eral. There are a number of projects in the running, among them editors,
content management systems, reasoners, etc 7.
For the sake of this work we are interested in the systems commonly called
RDF “triplestore” ([2, 5, 1]) 8, offering capabilities of RDF(S) storage and
querying thus playing the role of database. However, an important dif-
ference with respect to traditional relational databases, is that a triplestore
might represent information not explicitly stored, and which can be ob-
tained by logical inference. Allowed logical inference is usually specified
in terms of entailment rules, that might be normative (coming from the
RDF(S) semantics specifications), but also a subset of normative ones (such
as the so-called ρDF [74] fragment of RDF(S) ) or user defined ones.

2.3 Basic Building Blocks

The development of the Semantic Web proceeds in layers of Web tech-
nologies and standards, where every layer is built on top of lower layers,
namely: URI +Unicode, XML, RDF + RDF Schema, OWL, Logic, Proof, Trust,
and Digital Signature (see fig. 2.1). The key element of this design is the
use of Web addresses (URIs) to identify Web resources and for represent-
ing text in a uniform way over different computer platforms and natural
languages (Unicode). This allows for establishing relationships between
any two resources. On the next level, the XML framework is used for an-
notating information to assist data sharing. In order to provide a precise
definition of shared terms in Web resources, it is needed to define stan-

5i.e OSAF:Chandler, at www.osafoundation.org/.
6i.e SWAD-Europe, at http://www.w3.org/2001/sw/Europe/.
7cf. http://esw.w3.org/topic/SemanticWebTools#preview for a comprehensive and

up-to-date list.
8cf. http://esw.w3.org/topic/SemanticWebTools#preview for RDF TripleStores and

http://esw.w3.org/topic/SparqlImplementations for SPARQL Implementations.
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Figure 2.1: The Semantic Web Architecture.

dards and languages describing the structure of the knowledge published.
Therefore, the next step after making the data on the Web machine pro-
cessable, is facilitating the direct interaction of applications over the Web,
using Knowledge Representation technology for automated reasoning on
Web resources and applying cooperative agent technology for processing
information and facilitating knowledge sharing and exchanging. There
is currently a lot of research work on these aspects, mainly involving the
three consecutive RDF(S)-Ontology-Rule layers (listed from bottom to top)
that we focus on.

2.3.1 The RDF(S) Layer

The Resource Description Framework (RDF) [42], is the basic language for
expressing data models, which refers to resources and their relationships.
As such, it represents the standard for data interchange on the Web. RDF is
designed to represent information in a minimally constraining and flexible
way. RDF uses URIs to name the resources and the relationship between
them, allowing anyone to make statements about any resource. Such a
kind of statement of a relationship between resources encodes a so called
“triple”, consisting of a subject, a predicate (also called a property) and an
object. Intuitively, an assertion of an RDF triple says that some relationship,
indicated by the predicate, holds between the things denoted by subject
and object of the triple. This linking structure reflects a simple “graph-
based data model”, that forms a directed, labeled graph, where the edges
represent the named link between two resources, represented by the graph
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nodes.
RDF has a formal semantics which provides a basis for reasoning about
the meaning of an RDF expression. In particular, it supports rigorously
defined notions of entailment which provides a basis for defining reliable
rules of inference in RDF data. Informally, the assertion of an RDF graph
amounts to asserting all the triples in it, so the meaning of an RDF graph
is the conjunction (logical AND) of the statements corresponding to all the
triples it contains. A formal account of the meaning of RDF graphs is given
in [80].

RDF Schemas (shortly RDFS) [27] is used to declare vocabularies, that
means, the sets of semantics property-types defined by a particular com-
munity. Therefore, RDFS it alloes for defining the valid properties in a
given RDF description, as well as any characteristics or restrictions of the
property-type values themselves. Indeed, as semantic extension of RDF,
RDFS defines classes and properties that may be used to describe classes,
properties and other resources, with semantics for generalized hierarchies
of such properties and classes. Thus, RDFS figures as an extensible knowl-
edge representation language, providing basic elements for the descrip-
tion of RDF ontologies. The semantics of RDFS is defined through a set of
axiomatic triples and entailment rules that determine the full set of valid
inferences from an RDF graph.
Summarizing, what RDF (and on top) languages achieve is placing mean-
ing directly within the data, rather than within the code of the program
which processes the data. Moreover, relying on web-based URI references
and adopting the mentioned graph-based model, the resulting data is con-
nected into a vast network of ’meaning’ data across the internet. That
allows data to be structured in networks of nodes which can be easily
merged, giving the Semantic Web the potential to evolve into a global on-
line web of data.

2.3.2 The Ontology Layer

On top of the RDF(S) layer is built the Ontology Layer which embraces on-
tology vocabularies aiming at expressing terminological knowledge and
providing semantics to concepts. In particular, the W3C has chosen a lan-
guage, the Ontology Web Language (OWL) [77, 69], which is close to a syn-
tactic variant of an expressive but still decidable Description Logic (DL)
[11], namely SHOIN (D). OWL is divided in three increasingly expres-
sive languages called OWL Lite, OWL DL, and OWL Full, where OWL DL
and OWL Lite are based upon the DLs SHOIN (D) and SHIF(D), resp.
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The syntactic form of an OWL knowledge base is compliant with the RDF
format, where some of the keywords of the language are enriched with
additional meaning. In particular, OWL allows to specify transitive, sym-
metric, functional, inverse, and inverse functional properties. Moreover,
OWL admits specifications of complex class descriptions that provided in
terms of union or intersection of other classes, as well as restrictions on
properties. Finally, OWL supports the explicit definition of equality or
inequality relations between individuals.
A new revision of the OWL DL Ontology Language, called OWL 1.1 has
been proposed in [12]. In October 2009, an extended version (namely OWL
2 [70]) with several new features as been announced at W3C. Motivated
by application requirements, OWL 2 extends the OWL language with a
small but useful set of features, including extra syntactic sugar, additional
property and qualified cardinality constructors, extended datatype sup-
port, simple meta-modeling, and extended annotations.

Remark. The payload of the expressiveness of OWL is, unfortunately,
the high computational cost associated to many of the reasoning tasks
commonly performed over an ontology. Nonetheless, a variety of Web
applications require highly scalable processing of data, more than expres-
siveness. This puts the focus back to the lower RDF(S) data layer. In this
context, RDF(S) should play the role of a lightweight ontology language.
In fact, RDF(S) has few and simple descriptive capabilities (mainly, the
possibility to describe and reason over monotonic taxonomies of objects
and properties). One can thus expect from RDF(S) query systems the abil-
ity of querying very large datasets with excellent performance, yet allow-
ing limited reasoning capabilities on the same data. In fact, as soon as the
RDF(S) format for data has been settled, research focussed on how RDF(S)
can be fruitfully stored, exchanged and queried.

2.3.3 The SPARQL Protocol Query Language

The W3C Data Access Working Group (DAWG) has developed the SPARQL
query language 9. The name is a recursive acronym that stands for SPARQL
Protocol and RDF Query Language. As the name implies, SPARQL is a
general term for both a protocol and a query language. Indeed, SPARQL
can be used as part of a general programming environment, but queries
can also be sent as messages to a remote SPARQL endpoints using the

9 http://www.w3.org/TR/rdf-sparql-query/, W3C Recommendation.
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companion technologies SPARQL Protocol (a method for remote invoca-
tion of SPARQL queries) and SPARQL Query Result in XML. Here we fo-
cus on the SPARQL query language, whose syntax and semantics is de-
fined in cf. [85, 79, 9].

SPARQL is a syntactically-SQL-like language for querying RDF graphs.
Similar in spirit to SQL, which allows to extract, combine and filter data
from relational database tables, SPARQL allows to extract, combine and
filter data from RDF graphs. In particular, SPARQL defines queries in
terms of graph patterns that are matched against the directed graph repre-
senting the RDF data. The semantics and implementation of SPARQL in-
volves, compared to SQL, several peculiarities, which we do not focus on,
cf. [85, 79, 81, 84] for details. SPARQL has the same expressive power as
non-recursive Datalog ([81, 9]) and includes a set of built-in predicates in
so called filter expressions. SPARQL allows for querying required and
optional graph patterns along with their conjunctions and disjunctions.
The result of the match can also be used to construct new RDF graphs
using separate graph patterns. Variables may occur in the predicate posi-
tion to query unknown relationships, and the optional keyword provides
support for querying relationships that may or may not occur in the data.
Interestingly, the SPARQL graph keyword allows data to be queried along
with its provenance information; that means that it can be used to discover
the URI of the graph that contains the data that matches the query. This
allows a single query to join information from multiple data sources ac-
cessible across different Web sites.
The SPARQL specification defines the results of queries based on RDF
simple entailment. However, the overall SPARQL design can be used for
queries which assume a more elaborate form of entailment, but this is still
an open research problem (regimes other than simple entailment are left
open in the SPARQL specification).
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Answer Set Programming for the
Semantic Web

Thanks to initiatives such as DBPedia or the Linked Open Data project,10

a huge amount of machine-readable RDF [42] data is available, accompa-
nying pervasive ontologies describing this data such as FOAF [22], [16],
or YAGO [97]. A vast amount of Semantic Web data uses rather small and
lightweight ontologies that can be dealt with rule-based RDFS and OWL
reasoning [102, 74, 57], in contrast to the full power of expressive descrip-
tion logic reasoning. However, even if many practical use cases do not
require complete reasoning on the terminological level provided by DL-
reasoners, the following tasks become of utter importance.
First, RDFS as a lightweight ontology language is gaining popularity and,
consequently, tools for scalable RDFS inference and querying are needed,
capable to handle and evaluate queries on large amounts of RDF instance
data.
Second, a Semantic Web system should be able to take into account im-
plicit knowledge found by ontological inferences as well as by additional
custom rules involving built-ins or even non-monotonicity. The latter fea-
tures are necessary, e.g., for modeling complex mappings [83] between
different RDF vocabularies.
As a third point, joining the first and the second task, if we want the Se-
mantic Web to be true we need triplestores that allow dynamic querying
of different data graphs, ontologies, and (mapping) rules harvested from
the Web. Use cases for such dynamic querying involve, e.g., querying
data with different versions of ontologies or queries over data expressed
in related ontologies adding custom mappings (using rules or “bridging”
ontologies).
In the following we will address the above mentioned questions, follow-
ing the line of reasoning described next. First, in chapter 3, we show how
RDF graphs, and the corresponding RDFS entailment rules can be faith-

10http://dbpedia.org/ and http://linkeddata.org/.
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ful translated to corresponding logic programs. We thus show how the
problem of RDFS graph entailment can be mapped to a corresponding
problem of entailment under answer set semantics. Note that RDF query
languages, and notably, SPARQL [85], are defined in terms of graph entail-
ment. Thus, this first results constitutes the important basis for translating
the semantics of RDF query languages to corresponding ASP programs.
In chapter 4 we first introduce SPARQL along with RDF(S) and partial
OWL inference by means of some motivating example queries which ex-
isting systems partially cannot deal in a reasonably manner. Then, we
show how the SPARQL language can be enhanced with custom ruleset
specifications and arbitrary graph merging specifications. Finally, chapter
5 proposes a fully ASP-based framework, showing how it is possible man-
aging the RDFS and possibly higher semantics and practically deal with
persistently stored data.



Chapter 3

ASP for Semantic Web
applications

3.1 Using ASP to deal with RDF(S)

Here we present the first attempt to a faithful translation of the whole
normative RDF(S) into ASP. The problems arise from some important se-
mantic differences between the two languages that briefly summarize.

First, particular attention must be devoted to the usage of blank nodes,
that acting as anonymous variables might, apparently, require the adop-
tion of a language with existential constructs. A blank node, indeed, can
be seen as a limited form of existential quantification. ASP semantics is
usually derived from function-free Datalog, and has no direct possibility
to deal with unnamed individuals (objects whose existence is known but
whose identity cannot be reconduced to a known constant symbol) in a
context where unique name assumption is not assumed. Nevertheless, we
show that blank nodes can be transformed into either anonymous constant
symbols or universally quantified variables.

The second important issue concerns the problem of inconsistency. Most
deductive databases, founded on stratified Datalog, do not allow model-
ing of contradiction as first order logic does. A stratified Datalog program
has always a model (possibly empty), whereas RDF graphs might be in-
consistent in a first order sense (i.e. following the ex-falso quodlibet prin-
ciple). Conversely, this is not a problem under stable models semantics
(rather than stratified Datalog), applied to non-stratified programs under
brave or cautious reasoning. Indeed, constraints (which are, under sta-
ble model semantics, particular, non-stratified, programs) allow modeling
inconsistency in a similar way as first order logic does.
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Finally, treatment of normative axiomatic triples reveals several prob-
lems. Although modeling the set A of infinite triples might raise practical
concerns, we show how these problems can be circumvented by restricting
“relevant” axiomatic triples to a finite subset.
In the following, we provide the full translation of RDF(S) (especially of its
entailment rules) into a suitable extension of ASPHEX (ASP extended with
external and higher-order predicates) that has been recently proposed.

3.1.1 The RDFS Semantics

The semantics of RDF(S) is outlined below, following the normative spec-
ification given in [80].

GB
Axel

Person

rdf:type rdf:type

knows

(GB, knows, Axel)

(GB, rdf:type, Person)

(Axel, rdf:type, Person)

Figure 3.1: The example graph G′1 and its corresponding set of triples.

Preliminaries. Let I , B, and L denote pairwise disjoint infinite sets of IRIs
(Internationalized Resource Identifiers), blank nodes, and RDF literals, re-
spectively. An RDF tripleset or RDF graph G (or simply graph) is defined as
a set of triples (s, p, o) from I∪B×I∪B×I∪B∪L (cf. [79, 9]) 1; s is called the
subject, p the predicate and o the object of the triple, respectively. By blank(G)
we denote the set of blank nodes of G.2 As commonly done in the literature
(see, e.g. [74], we enlarge our focus to graphs where literals are allowed to
appear also in the subject position within a triple. We occasionally denote
a blank node b ∈ B as starting with prefix “ ”, such as b. The meaning of
RDF(S) graphs is given in terms of first order interpretations without the
unique name assumption. As an example, the triple ( b,hasName,GB),
can be seen as the first order sentence ∃B hasName(B, GB), that is, “there
exists an object in the domain of discourse having name GB”. The first
order semantics of RDF(S) is difficult to be implemented in practice with-
out a concrete proof theory. Thus, the official specification of RDF(S) states
equivalence theorems between the first order semantics and the notion of
graph entailment. In the following we directly define RDF(S) semantics in

1In practice, I , B and L are strings of a given vocabulary and are subject to syntactic
rules.

2Note that we allow generalized RDF graphs that may have blank nodes in property
position.
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terms of graph entailment, referring to the two notions of simple entail-
ment and RDFS entailment3.

Intuitively, graph entailment is built on the notion of subgraph iso-
morphism, that is, it amounts to finding a function mapping a graph to
another. This mapping function must have the following characteristics.
A mapping µ is a function mapping elements from I ∪ B ∪ L to elements
in the same set, subject to the restriction that an element i ∈ I ∪ L must be
such that µ(i) = i. We indicate as µ(G) the set of triples {(µ(s), µ(p), µ(o)) |
(s, p, o) ∈ G}. Note that elements of B (blank nodes), are used to model ex-
istential quantification and can be mapped to any element, while elements
of I and L preserve their identity through the mappings.

Simple and RDFS entailment. Given two graphs G1 and G2, we say that
G1 |= G2 (G1 simply entails G2) if there is a mapping µ such that µ(G2)
is a subgraph of G1. In general, deciding this kind of entailment is NP-
complete [80] with respect to the combined sizes of G1 and G2, while it has
been observed that entailment is polynomial in the size of G1 [30].
For instance, the graph G′2 = {(GB,knows, b)}, where b is a blank node,
is entailed by the graph in Figure 3.1 (a matching mapping is obtained by
associating b to Axel). Notably, blank nodes in G′2 are seen as variables to
be matched, not differently from variables in an SQL-like query language
as actually SPARQL is.

Simple entailment is not directly used as a notion for defining seman-
tics for RDF graphs. In fact, the two notions of RDF-entailment and RDFS-
entailment, are originally defined by means of first order logic. How-
ever, the RDFS-entailment Lemma (sec. 7.3 of [80]) brings back RDFS-
entailment of two graphs G1 and G2 to simple entailment between a graph
R(G1) and G2. The graph R(G1) is the closure of G1, which is built (i) by ap-
plying, until saturation, so called RDF and RDFS entailment rules, and (ii)
by adding normative axiomatic triples to G1. RDF and RDFS entailment
rules are reported in Figure 3.3 (the reader is referred to [80], sec. 7.3, for
all details). Axiomatic triples are composed of a small finite set (which is
tabulated in [80]) and an infinite portion, as we explicitly show in Figure
3.2.
We can classify normative RDFS semantics as follows:

• Taxonomy rules. Such rules mainly regard the keywords rdfs:subClassOf
and rdfs:subPropertyOf. Two separate taxonomies can be defined in an
RDFS graph: a taxonomy of classes (a class c is a set of individuals C

3[80] includes also the notion of RDF-entailment and D-entailment.
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such that (i, rdf:type, c) holds for each i ∈ C), and a taxonomy of prop-
erties (a property p is a binary relation P , where each couple (s, o) ∈ P is
encoded by the triple (s,p,o)). rdfs:subClassOf and rdfs:subPropertyOf are
the special keywords to be used for defining such taxonomies. The seman-
tic properties of these keywords are enforced by entailment rules such as
RDFS5,7,9 and 11 (see Figure 3.3), which implement a simple (and mono-
tonic) inheritance inference mechanism. For instance, if a graph G contains
the triple (person,rdfs:subClassOf,animal) and the triple (g,rdf:type,person)
then the closure R(G) must contain (g,rdf:type,animal) as prescribed by
entailment rule RDFS9.

• Typing rules. The second category of entailment rules strictly regard
properties: the rdfs:range and rdfs:domain keywords allow the declara-
tion of the class type of s and o for a given couple (s, o) when (s,p,o) holds
(rules RDFS2 and 3 as well as IRDFS2 and 3), while rules RDF2A,2B, RDFS1A
and 1B assess literal values4.
For instance, from (g,hasFather,c) and (hasFather,rdfs:domain,person) one
can infer (c,rdf:type,person), by means of rule RDFS2. Note that the appli-
cation of typing rules (and of the RDFS entailment rules in general) cannot
lead to contradiction. This has two important consequences: first, range
and domain specifications are not seen as integrity constraints, as it is usu-
ally assumed in the database field. Second, a triple graph cannot, usually,
contain contradictory information. In fact, inconsistency is triggered only
if a graph contains some ill-formed literal (or XMLLiteral) (e.g. a constant
symbol l ∈ L of type rdfs:Literal or rdf:XMLLiteral, which does not com-
ply with syntactic prescriptions for this type of objects). In such a case, a
graph G is assumed to be inconsistent (rules RDF2B and RDFS1B), and it
is normatively prescribed that R(G) must coincide with the set of all the
possible triples.

• Axiomatic triples. These triples hold “a priori” in the closure of any
graph, and give special behavior to some other keywords of the language.
For instance, the triple (rdfs:subClassOf, rdfs:domain, rdfs:Class) enforces
the domain of the property rdfs:subClassOf to be rdfs:Class. In particular,
axiomatic triples contain an infinite subset (shown in Figure 3.2) which
we call A. This set of triples regards special keywords used for denoting
collections of objects (Containers) such as Bags (the rdf:Bag keyword) and
Lists (the rdf:Seq keyword). For denoting the i-th element of a container,
the property rdf: i is used. These keywords have no special meaning as-

4IRDFS2 and 3 do not appear in the normative RDFS document, but were noted to
be necessary for preserving the RDFS entailment Lemma validity in [68]. “I” stands for
“integrative”.
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sociated besides the axiomatic group of triples (rdf: i, rdf:type, rdfs:cmp),
(rdf: i, rdfs:domain, rdfs:Resource), (rdf: i, rdfs:range, rdfs:Resource)and
rdfs:cmp is a shortcut for rdfs:ContainerMembershipProperty. The set A
enforces that the i-th element of a container is of type resource and that
each rdf: i is a Container Membership Property. A is of infinite size, and
thus requires some care when introduced in an actual implementation of
an RDF(S) query system.

∀i ∈ N,
(rdf: i, rdf:type, rdfs:ContainerMembershipProperty),
(rdf: i, rdfs:domain, rdfs:Resource),
(rdf: i, rdfs:range, rdfs:Resource)

Figure 3.2: The infinite portion of RDFS axiomatic triples A.

Finally, we say that a graph G1 rdfs-entails a graph G2 (G1 |=s G2) if the
RDFS closure R(G1) of G1 entails G2. For instance, if we add the triple
(Person,rdf:subClassOf,Animal) to G′1, we have that, under RDFS seman-
tics, the triple (GB,rdf:type,Animal), belongs to R(G′1), by rule RDFS9 of
Figure 3.3. This means that, if entailment is interpreted under RDFS se-
mantics, other mappings, such as µ′′′ such that µ′′′( b1) = rdf:type and
µ′′′( b2) = Animal, are a proof for entailment of G′′2 by G′1.
In the following, we assume that I ∪ L ∪ B ⊆ C. That is IRI, literals and
blank nodes appearing in an RDF graph can be freely used as constant
symbols in logic programs.

3.1.2 From RDF(S) to ASPHEX

In order to encode in ASP the problem of deciding RDFS entailment be-
tween two graphs G1 and G2, we adopt two translations T1 and T2, and
an ASPHEX program D, which simulates RDFS entailment rules. T1 trans-
forms G1 into a corresponding ASPHEX program; intuitively, it transforms
each triple t ∈ G1 into a corresponding fact. T1 maps blanks nodes to
themselves, as it is conceptually done in the Skolemization Lemma of [80].
This transformation is intended to be applied on graphs which encode a
dataset subject to querying, that is, the current reference ontology. We will
see that, when a graph is seen as the description of a query pattern, we can
adopt the second transformation T2. T2 transforms G2 in a conjunction of
atoms, whose truth values depend on whether G2 is entailed by G1 or not.
T2 maps blank nodes to variables.
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Name If G contains: then add to R(G):
RDF1 (u, a, y) (a, rdf:type, rdf:Property)
RDF2A (u, a, l) (l, rdf:type, rdf:XMLLiteral)

where l is a well-typed XML-literal
RDF2B (u, a, l) (I ∪B ∪ L)× I × (I ∪B ∪ L)

where l is a ill-typed XML-literal
RDFS1A (u, a, l) (l, rdf:type, rdfs:Literal)

where l is a plain literal
RDFS1B (u, a, l) (I ∪B ∪ L)× I × (I ∪B ∪ L)

where l is a ill-typed literal
RDFS2 (a, rdfs:domain, x), (u, rdf:type, x)

(u, a, y)
RDFS3 (a, rdfs:range, x), (v, rdf:type, x)

(u, a, v)
IRDFS2 (a, rdfs:domain, b), (x, rdf:type, b)

(c,rdfs:subproperty,b), (x, c, y)
IRDFS3 (a, rdfs:range, b), (y, rdf:type, b)

(c,rdfs:subproperty,b), (x, c, y)
RDFS4A (u, a, x) (u, rdf:type, rdfs:Resource)
RDFS4B (u, a, v) (v, rdf:type, rdfs:Resource)
RDFS5 (u, rdfs:subPropertyOf, v), (u, rdfs:subPropertyOf, x)

(v, rdfs:subPropertyOf, x)
RDFS6 (u, rdf:type, rdf:Property) (u, rdfs:subPropertyOf, u)
RDFS7 (a, rdfs:subPropertyOf, b), (u, b, y)

(u, a, y)
RDFS8 (u, rdf:type, rdfs:Class) (u, rdfs:subClassOf, rdfs:Resource)
RDFS9 (u, rdfs:subClassOf, x), (v, rdf:type, x)

(v, rdf:type, u)
RDFS10 (u, rdf:type, rdfs:Class) (u, rdfs:subClassOf, u)
RDFS11 (u, rdfs:subClassOf, v), (u, rdfs:subClassOf, x)

(v, rdfs:subClassOf, x)
RDFS12 (u, rdf:type, (u, rdfs:subPropertyOf, rdfs:member)

rdfs:ContainerMembershipProperty)
RDFS13 (u, rdf:type, rdfs:Datatype) (u, rdfs:subClassOf, rdfs:Literal)

Figure 3.3: The RDF and RDFS Entailment rules for extending a graph G.
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RDF1’ t(A,rdf:type,rdf:Property) :– t(U,A,Y).
RDF2A’ t(L,rdf:type,rdfs:XMLLiteral) :– t(U,A,L), &XMLLiteral[L](true).
RDF2B’ :– t(L,rdf:type,rdfs:XMLLiteral),

not &XMLLiteral[L](true).

RDFS1A’ t(L, rdf:type, rdfs:Literal) :– t(U,A,L), &Literal[L](true).
RDFS1B’ :– t(L, rdf:type, rdfs:Literal),

not &Literal[L](true).
RDFS2’ t(U,rdf:type,X) :– t(A,rdfs:domain,X), t(U,A,V).
RDFS3’ t(V,rdf:type,X) :– t(A,rdfs:range,X), t(U,A,V).
IRDFS2’ t(X,rdf:typeB) :– t(A,rdfs:domain,B), t(X,C,Y),

t(C,rdfs:subproperty,B).
IRDFS3’ t(Y,rdf:typeB) :– t(A,rdfs:range,B), t(X,C,Y),

t(C,rdfs:subproperty,B).
RDFS4A’ t(U,rdf:type,rdfs:Resource) :– t(U,A,X).
RDFS4B’ t(V,rdf:type,rdfs:Resource) :– t(U,A,V).
RDFS5’ t(U,rdfs:subPropertyOf,X) :– t(U,rdfs:subPropertyOf,V),

t(V,rdfs:subPropertyOf,X).
RDFS6’ t(U,rdfs:subPropertyOf,U) :– t(U,rdf:type,rdf:Property).
RDFS7’ t(U,B,Y) :– t(A,rdfs:subPropertyOf,B),

t(U,A,Y).
RDFS8’ t(U,rdfs:subClassOf, rdfs:Resource ) :– t(U,rdf:type, rdfs:Class).
RDFS9’ t(V,rdf:type,X) :– t(U,rdfs:subClassOf,X),

t(V,rdf:type,U).
RDFS10’ t(U,rdfs:subClassof,U) :– t(U,rdf:type,rdfs:Class).
RDFS11’ t(U,rdfs:subClassof,X) :– t(U,rdfs:subClassOf,V),

t(V,rdfs:subClassOf,X).
RDFS12’ t(U,rdfs:subPropertyOf,rdfs:member) :– t(U,rdf:type,rdfs:cmp).
RDFS13’ t(U,rdfs:subClassof,rdfs:Literal ) :– t(U,rdf:type,rdfs:Datatype).

symb(X) :– t(X,Y,Z).
symb(Y) :– t(X,Y,Z).
symb(Z) :– t(X,Y,Z).

A’ CMProperty(P) :– symb(P), &concat[“rdf: ”,N](P).
t(X, rdf:type, rdfs:cmp) :– CMProperty(X).

t(X, rdfs:domain, rdfs:Resource) :– CMProperty(X).
t(X, rdfs:range,rdfs:Resource) :– CMProperty(X).

Figure 3.4: Translation D of entailment rules shown in Figure 3.3 in ASPHEX .
&concat is defined as: F&concat[“rdf: ”, N ](P ) = 1 whenever P is the concate-
nation of the strings “rdf: ” and N . &Literal and &XMLLiteral are defined as
follows: F&Literal[X](true) = 1 (resp. F&XMLLiteral[X](true) = 1) iff X is compli-
ant with the syntax allowed for literals (resp. XML Literal syntax) [80]. rdfs:cmp
is a shortcut for rdfs:ContainerMembershipProperty.
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Definition 1 The translation T1(G) of an RDF graph G is the set of facts {t(s, p, o)|
(s, p, o) ∈ G}. The translation T2(G) of an RDF graph G is a program contain-
ing:

• the rule q = entail ← H . Here, entail is a fresh literal whereas H is
the conjunction of all the atoms in the set {t(h(s), h(p), h(o)) | (s, p, o) ∈ G},
where h is a transformation function such that h(a) = a if a ∈ I ∪ L, h(a) = Aa

otherwise; Aa is a fresh variable associated with a if a ∈ H .

• the set of facts {symb(u) | u is an element of I ∪ L appearing in G}.

The program D, simulating RDFS entailment rules shown in Figure 3.3, is
given in Figure 3.4. In particular, for each rule R in Figure 3.3 there is a
counterpart R′ in D (notably, RDF2B’ and RDFS1B’ are constraints rather
than rules). The bottommost group of six rules in D (which we call A’)
models a finite portion of the infinite set of triples A shown in Figure 3.2.
The set of facts of the form symb(u) denotes all the elements explicitly
appearing in G1 or in G2.
Note that A′ derives only a finite portion of the axiomatic triples: the ax-
iomatic triples regarding a given identifier rdf: i are derived if symb(rdf: i)
is true. In such a case CMProperty(rdf: i) holds by means of the 4th rule
of A′, and this makes the head of the last but three rules of A′ true.

In the following, let P be the ASPHEX program P = D∪T1(G1)∪T2(G2)∪K,
for two given RDF graphs G1 and G2, where K is the set of facts

{symb(rdf: iu) | u is a blank node appearing in G2 and iu is a distinguished
natural number such that neither G1 nor G2 talk about rdf: iu}.
The meaning of P in terms of its answer sets is given by the following
Lemma. Roughly speaking the Lemma states that the unique answer set of
P encodes in the extension of the predicate t a finite portion of the closure
R(G1) of G1. Namely, t contains only those triples of R(G1) that can be
constructed using values belonging to S, where S is the set of constant
symbols explicitly appearing in P . Note that S will contain all the symbols
explicitly appearing in G1 or G2.

Lemma 3.1.1 Let S be the set of constant symbols appearing in P . If P is
consistent then its unique model M contains an atom t(s, p, o) iff (s, p, o) ∈
(S × S × S) ∩R(G1).

Proof. (⇒) If P is consistent, then its model M is clearly unique (P is a
positive program except for the two constraints RDF2B’ and RDFS1B’). We
focus now on atoms of the form t(s, p, o) contained in M . Let a be one
of such atoms. Observe that, by construction of P , s, p and o belong to
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S. By observing the structure of P , we note that (s, p, o) corresponds to a
triple of R(G1) for three possible reasons: either, (i) a corresponds to a fact
in T1(G1) (and thus (s, p, o) ∈ G1 ⊆ R(G1)), or (ii) a is the byproduct of
the application of some of the rules from RDF1’ to RDFS13’ in D, except
RDF2B’ and RDFS1B’ (and thus (s, p, o) ∈ R(G1)), or (iii) a corresponds to
an axiomatic triple modelled by the subprogram A′ of D.

(⇐). Consider a triple a = (s, p, o) ∈ (S × S × S) ∩ R(G1). Clearly, a
is either (i) a triple belonging to G1 (and thus it has a corresponding atom
t(s, p, o) ∈ T1(G1)), or, (ii) it is the byproduct of the application of some
RDFS entailment rules, which are in one-to-one correspondence with rules
RDF1’ to RDFS13’ in D, or (iii) it is an axiomatic triple. In the latter case, the
subprogram A′ guarantees that a ∈ (S × S × S) ∩ R(G1) ⇒ t(s, p, o) ∈ M .
2

The following trivial Lemma, used in the subsequent Theorem 3.1.3, shows
that if graphs do not refer explicitly to IRIs of the form rdf: i (which are
symbols appearing in the infinite set of axiomatic triples), then such IRIs
are “interchangeable” in the sense explained by the Lemma, yet preserv-
ing RDFS entailment.

Lemma 3.1.2 (Interchangeability Lemma) Given an RDF graph G, we say
that G talks about an element e ∈ I∪L if there exists a triple t ∈ G containing e.
Let G1 and G2 be two RDF graphs for which there is µ such that µ(G2) ⊆ R(G1)
(i.e. G1 |=s G2).
For each element e ∈ I ∪ B such that µ(e) = rdf: i ( i ∈ N ), and such that G1

and G2 do not talk about e, then µ′(G2) ⊆ R(G1), for any µ′ coinciding with µ
except that µ′(e) = rdf: i′ where i′ 6= i and G1 and G2 do not talk about rdf: i′.

Theorem 3.1.3 Let G1 and G2 be two RDF graphs. Then G1 |=s G2 iff P |=
entail.

Proof. (⇐). Assume that P |= entail. Observe that P is a stratified pro-
gram not containing disjunctive rules, thus it may entail entail in two
cases: (a) P is inconsistent. P can have no model only if G1 is inconsistent,
i.e. G1 contains some literal which is not syntactically valid. This makes
the body of either constraint RDFS1B’ or RDFS2B’ true (see Figure 3.4). Note
that an inconsistent graph normatively entails any other graph by defini-
tion. (b) P contains entail in its unique answer set M. This means that
the body H of the rule q = entail ← H has some ground instantiation
which is modelled by M . By Lemma 3.1.1, it follows that R(G1) |= G2.

(⇒). Given that G1 |=s G2, then, if G1 is inconsistent, P has no answer
sets, thus trivially entailing the literal entail. If G1 is consistent, there
is a mapping µ from G2 to R(G1). It is possible to show that the single
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answer set M of P contains entail. For proving this, we need to show
that t(µ(s), µ(p), µ(o)) ∈M for each (s, p, o) ∈ G2, thus showing that H has
some ground instantiation which is true in M .
Consider a = (s, p, o) ∈ G2. Clearly, given that G1 |=s G2, a is such that
(µ(s), µ(p), µ(o)) ∈ R(G1). Let S be the set of symbols appearing in P as in
Lemma 3.1.1. Note that, if (µ(s), µ(p), µ(o)) ∈ S × S × S, then by Lemma
3.1.1 t(µ(s), µ(p), µ(o)) belongs to M .
However, consider the set V = {v appears in G2 | µ(v) 6∈ S}. Note that V
might be nonempty and its cardinality not larger than |K|. In such a case,
we cannot directly show that t(µ(s), µ(p), µ(o)) ∈ M , since µ might map
some element of G2 to a value outside S. Also note that all the elements
v ∈ V are such that µ(v) = rdf: i for some i ∈ N, and that G1 and G2 do
not talk about µ(v) (otherwise, it would be that µ(v) ∈ S).
By Lemma 3.1.2, we can replace µ with a mapping µ′ such that: (i) µ′(v) =
v′ and v′ = rdf: i′v, for all v ∈ V , where i′ (and thus v′) can be arbitrarily
chosen; (ii) µ ≡ µ′ elsewhere. We also define µ′ such that its restriction
over V is a bijection to the elements of K ′ = {k | symb(k) ∈ K}. Note
that µ′ is a mapping to elements of S and is such that µ′(G2) ⊆ R(G1). By
Lemma 3.1.1, t(µ′(s), µ′(p), µ′(o)) belongs to M for any (s, p, o) ∈ G2. 2

Theorem 3.1.4 Determining whether P |= entail is decidable.

Proof. Theorem 5 of [24], states that answer sets of a vi-restricted program
P ′ can be computed by computing the answer set of a finite, ground pro-
gram G′P , and that G′P is computable. P is vi-restricted. Then, entailment
of entail can be decided in finite time5. 2

3.2 Using ASP to query Semantic Web data

The notion of entailment and query answering are strictly related. Indeed,
the notion of simple entailment (see 3.1.1) can be seen as a tool for for-
malizing query languages for RDF, by interpreting G1 as the data to be
queried, and G2 as a query pattern that should be matched to G1. Rules
establishing matching criteria can be those of simple entailment (which
basically consist in checking subgraph isomorphism between G1 and G2)
or more complex ones. In this sense, entailment is decided by the existence

5 P is an ordinary program, except for the fourth rule of A′, containing possible value
invention. Intuitively, P is a “safe” rule, in the sense that all the variables in its head
appear also in a positive predicate in its body. This prevents actual value invention.
For space reasons, we cannot include here details about vi-restrictedness. The interested
reader is referred to [24].
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of at least one mapping, while the set of matching mappings constitutes
the possible answers to the the query pattern. Roughly speaking, when an
entailment and/or a query answer has to be computed, a graph can have
two different roles: it can play the role of the dataset to be queried, or that
of the pattern representing the query at hand. For instance, the possible
answers to the pattern graph G′′2 = ( b1, rdf:type, b2) with respect to the
graph G′1 in Figure 3.1, are the two mappings µ′ and µ′′ where µ′( b1) =
GB, µ′( b2) = Person, and µ′′( b1) = Axel, µ′′( b2) = Person. Both µ′ and µ′′

testify that G′1 entails G′′2.
In practice, this means that if one wants to use G2 for querying information
about G1 (which is expected to correspond to a large set of triples) under
RDFS entailment, G2 is actually matched to R(G1), which contains also
inferred knowledge.
Therefore, based on a previous result showing that the SPARQL query lan-
guage can be mapped to a rule-based language ([81]), with stable model
semantics, we show that query answering can be accomplished using the
ASP paradigm. In practise, we show that efficient querying of ontologies
can be accomplished with proper extensions of the well known ASP sys-
tem DLV.

3.2.1 Querying RDFS ontologies using ASP

By adapting the encoding obtained in the section 3.1.2 the way is paved
to an actual implementation of an RDF query system based on ASP. In
particular, given the graph G1 (the dataset to be queried) and a graph G2

(a query pattern), and considering the program P = T1(G1) ∪ T2(G2) ∪D:

• query answering amounts to finding all the possibilities to match G2

to G1. In our case, it is enough to modify the rule entail ← H in
T2(G2), by changing entail to an atom answer(X1, . . . , Xn) where vari-
ables X1, . . . , Xn correspond to a subset of choice of blank nodes in G2

6.

• the core of the SPARQL language is a syntactic method for expressing
G2 and the variables exposed in the predicate answer. A basic graph pat-
tern written in SPARQL represents indeed a query pattern like G2, which
is converted to T2(G2). Further, more involved features of SPARQL can be
accommodated in our encoding by changing the transformation T2, as ex-
plained in [81]. The same holds also for query patterns expressed in other
non-standard query languages.

6As a simple Corollary of Theorem 3.1.3, we note that under RDFS entailment, the
predicate answer encodes a finite subset F of all the possible answersAns. IfAns is finite,
then F = Ans.
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• D can be easily customized to the entailment regime of interest. For
instance, if one is interested in ρDF entailment only, it is sufficient to
remove from D all the rules except RDF1’, RDFS2 and 3’, IRDF2’ and 3’,
RDFS5’,6’,7’,8’,9’,10’ and 11’.
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Chapter 4

Enhancing SPARQL: Dynamic
Querying and Rule-Based
Entailment Regimes

Generic extensions for SPARQL to entailment regimes other than simple
RDF entailment are still an open research problem,1 due to various prob-
lems: (i) for (non-simple) RDF entailment regimes, such as full RDFS en-
tailment, the deductive closure of the original graph is infinite, and thus
SPARQL queries over an empty graph might already have infinite an-
swers, and (ii) it is not yet clear which should be the intuitive answers
to queries over inconsistent graphs, e.g. in OWL entailment, etc. In fact,
SPARQL restricts extensions of basic graph pattern matching to retain fi-
nite answers.
Moreover, we show that SPARQL faces certain unwanted ramifications
when querying ontologies under RDFS entailment regimes in conjunction
with RDF datasets that comprise multiple named graphs, and we provide
an extension for SPARQL that remedies these effects.
Finally, dynamically assigning different ontologies or rulesets to data for
querying is neither supported by the SPARQL specification nor by exist-
ing systems. Most available RDF databases only offer limited support for
dynamic inference, custom reasoning via rules, or querying upon datasets
of choice.
Therefore, we propose an ASP based solution that allows for dynamically
choosing the set of entailment rules to be adopted for the inference at
query time, enabling SPARQL querying on varying datasets and varying
schemes as well as supporting rule-based RDFS and higher inference.

1For details, cf. http://www.polleres.net/sparqltutorial/, Unit 5b.
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CHAPTER 4. ENHANCING SPARQL: DYNAMIC QUERYING AND
RULE-BASED ENTAILMENT REGIMES.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix rel: <http://purl.org/vocab/relationship/>.
...
rel:friendOf rdfs:subPropertyOf foaf:knows.
foaf:knows rdfs:domain foaf:Person.
foaf:knows rdfs:range foaf:Person.
foaf:homepage rdf:type owl:inverseFunctionalProperty.
...
(a) Graph GM (<http://example.org/myOnt.rdfs>), a combination of the FOAF&Relationship on-
tologies.

<http://bob.org#me> foaf:name "Bob";
a foaf:Person;

foaf:homepage
<http://bob.org/home.html>;

rel:friendOf [ foaf:name "Alice";
rdfs:seeAlso

<http://alice.org> ].
(b) Graph GB (<http://bob.org>)

<http://alice.org#me> foaf:name
"Alice"; a foaf:Person;
rel:friendOf [ foaf:name "Charles" ],

[ foaf:name "Bob";
foaf:homepage

<http://bob.org/home.html> ].
(c) Graph GA (<http://alice.org>)

Figure 4.1: An ontology and two data graphs

4.1 Motivation and Examples

Let us just start right away with some illustrating example motivating our
proposed extensions of SPARQL; we assume two data graphs describing
data about our well-known friends Bob and Alice shown in Fig. 4.1(b)+(c).
Both graphs refer to terms in a combined ontology defining the FOAF and
Relationship2 vocabularies, see Fig. 4.1(a) for an excerpt.
On this data the SPARQL query (4.1) intends to extract names of persons
mentioned in those graphs that belong to friends of Bob. We assume that,
by means of rdfs:seeAlso statements, Bob provides links to the graphs
associated to the persons he is friend with. Here, the from and from
named clauses specify an RDF dataset.

select ?N from <http://example.org/myOnt.rdfs>
from <http://bob.org>
from named <http://alice.org>

where { <http://bob.org#me> foaf:knows ?X . ?X rdfs:seeAlso ?G .
graph ?G { ?P rdf:type foaf:Person; foaf:name ?N } }

(4.1)

In particular, the dataset of query (4.1) would be defined as DS 1 = ( GM ]
GB, {(<http://alice.org>, GA)}), where ] denotes merging of graphs
according to the normative specifications.
Now, let us have a look at the answers to query (4.1). Answers to SPARQL
select queries are defined in terms of multisets of partial variable substi-
tutions. In fact the answer to query (4.1) is empty when – as typical for cur-
rent SPARQL engines – only simple RDF entailment is taken into account,

2http://vocab.org/relationship/.
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and query answering then boils down to simple graph matching. Since
neither of the graphs in the default graph contain any triple matching the
pattern <http://bob.org#me> foaf:knows ?X in the where clause, the
result of (4.1) is empty. When taking subproperty inference by the state-
ments of the ontology in GM into account, however, one would expect
to obtain three substitutions for the variable ?N: {?N/"Alice", ?N/"Bob",
?N/"Charles"}. We will explain in the following why this is not the case
in standard SPARQL.
In order to obtain the expected answer, firstly SPARQL’s basic graph pat-
tern matching needs to be extended, see [85, Section 12.6]. In theory, this
means that the graph patterns in the where clause needs to be matched
against an enlarged version of the original graphs in the dataset (the de-
ductive closure) of a given entailment regime. Not surprisingly, many ex-
isting implementations implement finite approximations of higher entail-
ment regimes such as RDFS and OWL ([74, 102, 59]). E.g., the RDF Seman-
tics document [80] contains an informative set of entailment rules, a subset
of which (such as the one presented in Section 4.4 below) is implemented
by most available RDF stores. These rule-based approximations, are typi-
cally expressible by means of Datalog-style rules. These latter model how
to infer a finite closure of a given RDF graph that covers sound but not
necessarily complete RDF(S) and OWL inferences. It is worth noting that
rule-based entailment can be implemented in different ways: rules could
be either dynamically evaluated upon query time, or the closure of a graph
wrt. ruleset could be materialized when the graph is loaded into a store.

Materialization of inferred triples at loading time allows faster query
responses, yet it has drawbacks: it is time and space expensive and it has
to be performed once and statically. In this setting, it must be decided up-
front (i)which ontology should be taken into account for which data graph,
and (ii) to which graph(s) the inferred triples “belong”, which particularly
complicates the querying of named graphs.
As for exemplifying (i), assume that a user agent wants to issue another
query on graph GB with only the FOAF ontology in mind, since she does
not trust the Relationship ontology. In the realm of FOAF, rel:friendOf
has nothing to deal with foaf:knows. However, when materializing all
inferences upon loading GM and GB into the store, bob:me foaf:knows

: a would be inferred from GM ] GB and would contribute to such a
different query. Current RDF stores prevent to dynamically parameterize
inference with an ontology of choice at query time, since indeed typically
all inferences are computed upon loading time once and for all.
As for (ii), queries upon datasets including named graphs are even more
problematic. Query (4.1) uses GB in order to find the IRI identifiers for
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persons that Bob knows by following rdfs:seeAlso links and looks for
persons and their names in the named RDF graphs found at these links.
Even if rule-based inference was supported, the answer to query (4.1)
over dataset DS 1 is just {?N/"Alice"}, as “Alice” is the only (explicitly)
asserted foaf:Person in GA. Subproperty, domain and range inferences
over the GM ontology do not propagate to GA, since GM is normatively
prescribed to be merged into the default graph, but not into the named
graph. Thus, there is no way to infer that "Bob" and "Charles" are actu-
ally names of foaf:Persons within the named graph GA. Indeed, SPARQL
does not allow to merge, on demand, graphs into the named graphs, thus
there is no way of combining GM with the named graph GA.

4.2 SPARQL Graph pattern matching

Preliminaries. In the following, we assume I , B, and L denoting pairwise
disjoint infinite sets of IRIs, blank nodes, and RDF literals, respectively. A
term is an element from I ∪ B ∪ L. An RDF graph G (or simply graph) is
defined as a set of triples from I ∪ B × I ∪ B × I ∪ B ∪ L (cf. [79, 9]); by
blank(G) we denote the set of blank nodes of G.3

A blank node renaming θ is a mapping I ∪ B ∪ L → I ∪ B ∪ L. We denote
by tθ the application of θ to a term t. If t ∈ I ∪ L then tθ = t, and if t ∈ B
then tθ ∈ B. If (s, p, o) is a triple then (s, p, o)θ is the triple (sθ, pθ, oθ).
Given a graph G, we denote by Gθ the set of all triples {tθ | t ∈ G}. Let
G and H be graphs. Let θG

H be an arbitrary blank node renaming such that
blank(G)∩blank(HθG

H) = ∅. The merge of G by H , denoted G]H , is defined
as G ∪HθG

H .

SPARQL introduces the notion of RDF dataset, which is the pairing of
a default graph and zero or more named graphs. Formally, an RDF dataset
D = (G0, N) is a pair consisting of exactly one unnamed graph, the so-
called default graph G0, and a set N = {〈u1, G1〉, . . . , 〈un, Gn〉} of named
graphs, coupled with their identifying URIs. The following conditions
hold: (i) each Gi (0 ≤ i ≤ n) is a graph, (ii) each uj (1 ≤ j ≤ n) is from the
set of IRIs I , and (iii) for all i 6= j, 〈ui, Gi〉, 〈uj, Gj〉 ∈ N implies ui 6= uj and
blank(Gi)∩blank(Gj) = ∅.In the following, we restrict ourselves to select
queries as shown in the example queries (4.1)–(4.4) and just provide an
overview of the necessary concepts.

3Note that we allow generalized RDF graphs that may have blank nodes in property
position.
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A query in SPARQL can be viewed as a tuple Q = (V, D, P ), where V is
the set of variables mentioned in the select clause, D is an RDF dataset,
defined by means of from and from named clauses, and P is a graph pat-
tern, defined in the where clause. Graph patterns are in the simplest case
sets of RDF triples (s, p, o), where terms and variables from an infinite set
of variables Var are allowed, also called basic graph patterns (BGP). More
complex graph patterns can be defined recursively, i.e., if P1 and P2 are
graph patterns, g ∈ I ∪Var and R is a filter expression, then P1 optional
P2, P1 union P2, P1 filter R, and graph g P1 are graph patterns.
Queries are evaluated by matching graph patterns against graphs in the
dataset. In order to determine a query’s solution, in the simplest case BGPs
are matched against the active graph of the query, which is one particular
graph in the dataset, identified as shown next. Solutions of BGP matching
consist of multisets of bindings for the variables mentioned in the pattern
to terms in the active graph.

Partial solutions of each subpattern are joined according to an algebra
defining the optional, union and filter operators, cf. [85, 79, 9]. For
what we are concerned with here, the most interesting operator though is
the graph operator, since it changes the active graph. That is, the active
graph is the default graph G0 for any basic graph pattern not occurring
within a graph sub pattern. However, in a subpattern graph g {P1}, the
pattern P1 is matched against the named graph identified by g, if g ∈ I , and
against any named graph ui, if g ∈ Var , where the binding ui is returned
for variable g. According to [9], for a RDF dataset D and active graph
G, we define [[P ]]DG as the multiset of tuples constituting the answer to the
graph pattern P .
The solutions of a query Q = (V, D, P ) is the projection of [[P ]]DG to the
variables in V only.

4.3 SPARQL with Extended Datasets

To remedy the deficiencies outlined in section 4.1, we suggest an extension
of the SPARQL syntax, in order to allow the specification of datasets more
flexibly: it is possible to group graphs to be merged in parentheses in from
and from named clauses. The modified query, obtaining a dataset DS 2 = (
GM ] GB, {(http://alice.org, GM ] GA)}) looks as follows:

select ?N
from (<http://example.org/myOnt.rdfs> <http://bob.org/>)
from named <http://alice.org>

(<http://example.org/myOnt.rdfs> <http://alice.org/>)
where { bob:me foaf:knows ?X . ?X rdfs:seeAlso ?G .

graph ?G { ?X foaf:name ?N . ?X a foaf:Person . } }

(4.2)
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For ontologies which should apply to the whole query, i.e., graphs to
be merged into the default graph as well as any specified named graph,
we suggest a more convenient shortcut notation by adding the keyword
using ontology in the SPARQL syntax:

select ?N
using ontology <http://example.org/myOnt.rdfs>
from <http://bob.org/>
from named <http://alice.org/>

where { bob:me foaf:knows ?X . ?X foaf:seeAlso ?G .
graph ?G { ?X foaf:name ?N . ?X a foaf:Person. } }

(4.3)

Hence, the using ontology construct allows for coupling the entire given
dataset with the terminological knowledge in the myOnt data schema. As
our investigation of currently available RDF stores shows, none of these
systems easily allow to merge ontologies into named graphs or to dynam-
ically specify the dataset of choice.

4.3.1 Parameterizing queries with ontologies

In the following we precisely define the SPARQL extensions outlined above,
formalizing the notion of dynamic querying in terms of the dependence of
BGP pattern answers [[P ]]O,R from a variable ontology O. For our expo-
sition, we rely on well-known definitions of RDF datasets and SPARQL.
What is important to note now is that, by the way how datasets are syn-
tactically defined in SPARQL, the default graph G0 can be obtained from
merging a group of different source graphs, specified via several from
clauses – as shown, e.g., in query (4.1) – whereas in each from named
clause a single, separated, named graph is added to the dataset. That is,
graph patterns will always be matched against a separate graph only.
To generalize this approach towards dynamic construction of groups of
merged named graphs, we introduce the notion of an extended dataset,
which can be specified by enlarging the syntax of SPARQL with two addi-
tional dataset clauses:

• For i, i1, . . . , im distinct IRIs (m ≥ 1), the statement“from named i(i1 . . . im)”
is called extended dataset clause. Intuitively, i1 . . . im constitute a group of
graphs to be merged: the merged graph is given i as identifying IRI.

• For o ∈ I we call the statement “using ontology o” an ontological dataset
clause. Intuitively, o stands for a graph that will merged with all graphs in
a given query.

Extended RDF datasets are thus defined as follows. A graph collection G is a
set of RDF graphs.
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An extended RDF dataset D is a pair (G0, {〈u1,G1〉, . . . , 〈un,Gn〉}) satisfying
the following conditions: (i) each Gi is a nonempty graph collection (note
that {∅} is a valid nonempty graph collection), (ii) each uj is from I , and
(iii) for all i 6= j, 〈ui,Gi〉, 〈uj,Gj〉 ∈ D implies ui 6= uj and for G ∈ Gi and
H ∈ Gj , blank(G) ∩ blank(H) = ∅. We denote G0 as dg(D), the default graph
collection of D.
Let D and O be an extended dataset and a graph collection, resp. The
ordinary RDF dataset obtained fromD andO, denoted D(D,O), is defined
as ( ⊎

g∈dg(D)

g ]
⊎
o∈O

o,
{
〈u,
⊎
g∈G

g ]
⊎
o∈O

o〉 | 〈u,G〉 ∈ D
})

.

We can now define the semantics of extended and ontological dataset
clauses as follows. Let F be a set of ordinary and extended dataset clauses,
and O be a set of ontological dataset clauses. Let graph(g) be the graph as-
sociated to the IRI g: the extended RDF dataset obtained from F , denoted
edataset(F ), is composed of:

(1) G0 = {graph(g) | “from g” ∈ F}. If there is no from clause, then G0 = ∅.

(2) A named graph collection 〈u, {graph(u)}〉 for each “from named u” in
F .

(3) A named graph collection 〈i, {graph(i1), . . . , graph(im)}〉 for each “from
named i(i1 . . . im)” in F .

The graph collection obtained from O, denoted ocollection(O), is the set
{graph(o) | “using ontology o” ∈ O}. The ordinary dataset of O and F ,
denoted dataset(F, O), is the set D(edataset(F ), ocollection(O)).
Let D and O be as above. The evaluation of a graph pattern P over D and
O having active graph collection G, denoted [[P ]]D,O

G , is the evaluation of P

over D(D,O) having active graph G =
⊎

g∈G g, that is, [[P ]]D,O
G = [[P ]]

D(D,O)
G .

Note that the semantics of extended datasets is defined in terms of or-
dinary RDF datasets. This allows to define the semantics of SPARQL
with extended and ontological dataset clauses by means of the standard
SPARQL semantics. Also note that our extension is conservative, i.e., the
semantics coincides with the standard SPARQL semantics whenever no
ontological clauses and extended dataset clauses are specified.
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4.4 SPARQL with Arbitrary Rulesets

Since RDFS inference has a close relationship with logic rules, we gener-
alize our approach to select a custom ruleset for specifying inferences to
be taken into account in a SPARQL query. In addition to parameterizing
queries with ontologies in the dataset clauses, we allow to parameterize
the ruleset which models the entailment regime at hand.

Per default, our framework supports a standard ruleset that emulates
(a finite subset of) the RDFS semantics. Alternatively, different rule-based
entailment regimes, e.g., rulesets covering parts of the OWL semantics á la
ter Horst [102], de Bruijn [28, Section 9.3], OWL2 RL [71] or other custom
rulesets can be referenced with the using ruleset keyword. As an exam-
ple, the following query returns the solution{?X/<http://alice.org#me>},
?Y/<http://bob.org#me>}, by doing equality reasoning over inverse func-
tional properties such as foaf:homepage when the FOAF ontology is be-
ing considered:

select ?X ?Y
using ontology <http://example.org/myOnt.rdfs>
using ruleset rdfs
using ruleset <http://www.example.com/owl-horst>
from <http://bob.org/>
from <http://alice.org/>
where { ?X foaf:knows ?Y }

(4.4)

Query (4.4) uses the built-in RDFS rules for the usual subproperty infer-
ence, plus a ruleset implementing ter Horst’s inference rules, which might
be available at URL http://www.example.com/owl-horst. This ruleset
contains the following additional rules, that will “equate” the blank node
used in GA for “Bob” with <http://bob.org#me>:4

?P rdf:type owl:iFP . ?S1 ?P ?O . ?S2 ?P ?O . → ?S1 owl:sameAs ?S2.
?X owl:sameAs ?Y → ?Y owl:sameAs ?X.
?X ?P ?O . ?X owl:sameAs ?Y → ?Y ?P ?O.
?S ?X ?O . ?X owl:sameAs ?Y → ?S ?Y ?O.
?S ?P ?X . ?X owl:sameAs ?Y → ?S ?P ?Y.

(4.5)

4.4.1 Parameterizing queries with ruleset

In the following we define the notion of dynamic querying formalized in
terms of the dependence of BGP pattern answers [[P ]]O,R from a variable
ruleset R. For our exposition, we rely on well-known definitions of RDF
datasets and SPARQL.

4We use owl:iFP as shortcut for owl:inverseFunctionalProperty.
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Extended dataset clauses give the possibility of merging arbitrary ontolo-
gies into any graph in the dataset. The second extension herein presented
enables the possibility of dynamically deploying and specifying rule-based
entailments regimes on a per query basis. To this end, we define a generic
R-entailment, that is RDF entailment associated to a parametric ruleset
R which is taken into account when evaluating queries. For each such
R-entailment regime we straightforwardly extend BGP matching, in ac-
cordance with the conditions for such extensions as defined in [85, Section
12.6].

We define an RDF inference rule r as the pair (Ante, Con), where the
antecedent Ante and the consequent Con are basic graph patterns such that
V(Con) and V(Ante) are non-empty, V(Con) ⊆ V(Ante) and Con does not
contain blank nodes.5 As in Example (4.5) above, we typically write RDF
inference rules as

Ante→ Con . (4.6)

We call sets of inference rules RDF inference rulesets, or rulesets for short.

Rule Application and Closure. We define RDF rule application in terms
of the immediate consequences of a rule r or a ruleset R on a graph G.
Given a BGP P , we denote as µ(P ) a pattern obtained by substituting vari-
ables in P with elements of I ∪ B ∪ L. Let r be a rule of the form (4.6) and
G be a set of RDF triples, then:

Tr(G) = {µ(Con) | ∃µ such that µ(Ante) ⊆ G}.
Accordingly, let TR(G) =

⋃
r∈R Tr(G). Also, let G0 = G and Gi+1 = Gi ∪

TR(Gi) for i ≥ 0. It can be easily shown that there exists the smallest n such
that Gn+1 = Gn; we call then ClR(G) = Gn the closure of G with respect to
rulesetR.
We can now further define R-entailment between two graphs G1 and G2,
written G1 |=R G2, as ClR(G1) |= G2. Obviously for any finite graph G,
ClR(G) is finite. In order to define the semantics of a SPARQL query wrt.
R-entailment we now extend graph pattern matching in [[P ]]DG towards re-
spectingR.

Definition 2 (extended basic graph pattern matching forR-entailment)
Let D be a dataset and G be an active graph. The solution of a BGP P wrt. R-
entailment, denoted [[P ]]D,R

G , is [[P ]]DClR(G).

5Unlike some other rule languages for RDF, the most prominent of which being CON-
STRUCT statements in SPARQL itself, we forbid blank nodes; i.e., existential variables
in rule consequents which require the “invention” of new blank nodes, typically causing
termination issues.
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The solution [[P ]]D,R
G naturally extends to more complex patterns accord-

ing to the SPARQL algebra. In the following we will assume that [[P ]]D,R
G

is used for graph pattern matching. Our extension of basic graph pattern
matching is in accordance with the conditions for extending BGP match-
ing in [85, Section 12.6]. Basically, these conditions say that any extension
needs to guarantee finiteness of the answers, and defines some conditions
about a “scoping graph.” Intuitively, for our extension, the scoping graph
is just equivalent to ClR(G). We refer to [85, Section 12.6] for the details.
To account for this generic SPARQL BGP matching extension parameter-
ized by an RDF inference ruleset RQ per SPARQL query Q, we introduce
another novel language construct for SPARQL:

• For r ∈ I we call “using ruleset r” a ruleset clause.

Analogously to IRIs denoting graphs, we now assume that an IRI r ∈ I
may not only refer to graphs but also to rulesets, and denote the corre-
sponding ruleset by ruleset(r). Each query Q may contain zero or more
ruleset clauses, and we define the query ruleset RQ =

⋃
r∈R ruleset(r),

where R is the set of all ruleset clauses in Q.
The definitions of solutions of a query and the evaluation of a pattern in
this query on active graph G is now defined just as above, with the only
difference that answer to a pattern P are given by [[P ]]

D,RQ

G . We observe
that wheneverR = ∅, thenR-entailment boils down to simple RDF entail-
ment. Thus, a query without ruleset clauses will just be evaluated using
standard BGP matching. In general, our extension preserve full backward
compatibility.

Proposition 1 ForR = ∅ and RDF graph G, [[P ]]D,R
G = [[P ]]DG .

Analogously, one might useR-entailment as the basis for RDFS entailment
as follows. We consider here the ρDF fragment of RDFS entailment [74].
Let RRDFS denote the ruleset corresponding to the minimal set of entail-
ment rules (2)–(4) from [?]:
?P rdfs:subPropertyOf ?Q .?Q rdfs:subPropertyOf ?R . → ?P rdfs:subPropertyOf ?R.
?P rdfs:subPropertyOf ?Q . ?S ?P ?O . → ?S ?Q ?O.
?C rdfs:subClassOf ?D . ?D rdfs:subClassOf ?E . → ?C rdfs:subClassOf ?E.
?C rdfs:subClassOf ?D . ?S rdf:type ?C . → ?S rdf:type ?D.
?P rdfs:domain ?C . ?S ?P ?O . → ?S rdf:type ?C.
?P rdfs:range ?C . ?S ?P ?O . → ?O rdf:type ?C.

Since obviously G |=RDFS ClRRDFS
(G) and hence ClRRDFS

(G) may be viewed
as a finite approximation of RDFS-entailment, we can obtain a reason-
able definition for defining a BGP matching extension for RDFS by sim-
ply defining [[P ]]D,RDFS

G = [[P ]]D,RRDFS

G . We allow the special ruleset clause
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using ruleset rdfs to conveniently refer to this particular ruleset. Other
rulesets may be published under a Web dereferenceable URI, e.g., using an
appropriate RIF [18] syntax. Note, eventually, that our rulesets consist of
positive rules, and as such enjoy a natural monotonicity property.

Proposition 2 For rulesetsR andR′, such thatR ⊆ R′, and graph G1 and G2,
if G1 |=R G2 then G1 |=R′ G2.

Entailment regimes modeled using rulesets can thus be enlarged without
retracting former inferences. This for instance would allow to introduce
tighter RDFS-entailment approximations by extendingRRDFS with further
axioms, yet preserving inferred triples.
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Chapter 5

GiaBATA: a novel Framework for
the Semantic Web

This chapter intents to provide the technical feasibility of our approach
presenting a system, called GiaBATA for storing, aggregating, and query-
ing Semantic Web data. It is based on Answer Set Programming technol-
ogy, namely on the DLVHEX system, which allows us to implement a fully
SPARQL compliant semantics, and on DLVDB, which extends the DLV sys-
tem with persistent storage capabilities. Our proposed architecture pro-
vides a fully declarative implementation of SPARQL and brings support
for further (deductive) database and logic programming optimization and
extensibility.
Moreover, the system allows for extensions of SPARQL by non-standard
features such as aggregates, custom built-ins, or arbitrary rulesets, provid-
ing a flexible toolbox that embeds Semantic Web data and ontologies in a
fully declarative logic programming environment.

5.1 Architectural Overview

Traditional RDF processors are designed for handling large RDF graphs
in memory, thus reaching their limits very early when dealing with large
graphs retrieved from the Web. Current RDF Stores, such as YARS [54],
Sesame, Jena TDB, ThreeStore, AllegroGraph, or OpenLink Virtuoso1 pro-
vide roughly the same functionality as traditional relational database sys-
tems do for relational data. They offer query facilities and allow to im-

1See http://openrdf.org/, http://jena.hpl.hp.com/wiki/TDB/, http:
//threestore.sf.net/, http://agraph.franz.com/allegrograph/, http:
//openlinksw.com/virtuoso/, respectively.
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Figure 5.1: (a) Traditional architectures for querying RDF(S) triplestores.
(b) Our proposal.

port large amounts of RDF data into their persistent storage, and typi-
cally support SPARQL [85]. Figure 5.1(a) shows the generic architecture
of most current triplestore querying systems. In particular, the triplestore
acts as a database and the query engine (possibly a SPARQL-enabled one)
manipulates this data. Most of the current query engines adopt a pre-
materialization approach, where entailment rules are pre-computed and the
initial triplestore is enriched with their consequences before carrying out
any querying activity.
Unfortunately, triplestores based on the pre-materialization approach out-
lined above have some drawbacks:

• Inferred information is available only after the often long lasting pre-
materialization step. Pre-materialization is unpractical if massive amounts
of data are involved in the inferencing process; in fact, inferred informa-
tion is usually much bigger in size than the original one. As an example,
if only the ρDF fragment of RDFS is considered, this growth has been em-
pirically estimated (in, e.g., [96]) as more than twice the original size of the
dataset. Actually, a materialized dataset can be cubically larger in theory.

• Entailment rules are “statically” programmed by coupling a parametric
reasoner (designed “ad-hoc”) with the original triplestore code. This pre-
vents the possibility to dynamically prototype new inference rules, and
to activate/de-activate inference rules depending on the given applica-
tion. For instance, one might want to restrict RDF(S) inference only to
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the known ρDF fragment, or to enlarge inference with other (normative or
not) entailment rules such as the D-entailment rules introduced in [80].

• The basic reasoning machinery of RDF(S) prescribes a heavy usage of
transitive closure (recursive) constructs. Roughly speaking, given a class
taxonomy, an individual belonging to a leaf class must be inferred to be
member of all the ancestor classes, up to the root class. This prevents a
straightforward implementation of RDF(S) over RDFBMs, since RDFBMs
usually feature very primitive, and inefficient, implementations of recur-
sion in their native query languages.

In our approach the user can choose on the fly, at query time, which set
of entailment rules must be applied on the triplestore, and/or design his
own. Note that, rather than materializing the whole output of the applica-
tion of entailment rules, the rules are used as an inference mechanism for
properly answering the specific input query at hand.

The framework has been implemented by reducing queries, datasets
and rulesets to a common ground which allows arbitrary interoperability
between the three realms. This common ground is ASP, wherein rulesets
naturally fit and SPARQL queries can be reduced to. Subsequently, the
resulting combined ASP programs can be evaluated over an efficient SQL
interface to an underlying relational DBMS that works as triple store.
A key issue in is whether it could be possible to achieve an efficient inter-
action of the ASP engine with the database. In fact, it is well known that
current (extended) Datalog-based systems present important limitations
when the amount of data to reason about is large: (i) reasoning is generally
carried out in main-memory and, hence, the quantity of data that can be
handled simultaneously is limited; (ii) the interaction with external (and
independent) DBMSs is not trivial and, in several cases, not allowed at all,
but in order to effectively share and elaborate large ontologies these must
be handled with some database technology; (iii) the efficiency of present
Datalog evaluators is still not sufficient for their utilization in complex
reasoning tasks involving large amounts of data. We solved this issue im-
plementing the query engine by means of a database oriented version of
the DLV solver for Answer Set Programming programs, which can both
access and modify data in the underlying database.
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5.1.1 Components of the System

Fig. 5.2 shows a high-level view of our system architecture. It consists of
four main components:

• a SPARQL to Datalog rewriter as part of a plugin for DLVHEX (see [81,
84]),

• a schema rewriter which manipulates the rewritten datalog rules, adds
auxiliary definitions in order to match the underlying database schema,
and implements the chosen semantics by adding rules to the input of the
module in,

• the DLVDB Answer Set Programming engine, which rewrites the input
program to native SQL queries, and thereby accesses triples persistently
stored in

• a DBMS of choice storing the RDF data according to a particular storage
schema.

DB

full RDFS

custom rules

SPARQL Query

SPARQL Plugin

SPARQL Result

Query

dlvhex

Rewriter
Schema
Rewriter

Output
Builderρdf DLVDB

Figure 5.2: The GiaBATAsystem.

The translation from SPARQL to ASP is carried out by the DLVHEX,a solver
for the so called ASPHEX programs [99], which features an extensible plu-
gin system allowing for implementing a fully SPARQL compliant seman-
tics, (following the approach proposed in [81]). The ASP Query Engine
is implemented by an improved version of the DLVDB system [103] which
extends the DLV system with built-in database support and caters for per-
sistent storage of both data and ontology graphs. DLVDB combines the
expressive power of DLV with the efficient data management features of
DBMSs. Thus, it presents the features of a Deductive Database System
(DDS) and can do all the reasoning tasks directly in mass-memory.
The GiaBATAprototype supports the standard SPARQL specifications ex-
tended with the syntax outlined above, arbitrary entailment regimes (cur-
rently, we support RDFS), and the addition of custom rules. Entailment
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rules are expected to be expressed in ASP, and different sets of entailment
rules can be attached to the triplestore.

5.1.2 Implementation Issues

From SPARQL to ASP. A SPARQL query Q is transformed into a cor-
responding Datalog program DQ using the DLVHEX plugin module, fol-
lowing the approach of [81]. The principle is to break Q down to a series
of Datalog rules, whose body is a conjunction of atoms encoding a graph
pattern. DQ is mostly a plain Datalog program in DLVHEX [99] input for-
mat, i.e. Datalog with external predicates in the DLVHEX language. Without
go into details of this transformation (explained along with a full account
of the translation in [81, 84]) let us illustrate this step by an example. The
following query A asking for persons who are not named “Alice” and op-
tionally their email addresses:

select * from <http://alice.org/>
where { ?X a foaf:Person. ?X foaf:name ?N.

filter ( ?N != "Alice") optional { ?X foaf:mbox ?M } }
(5.1)

is translated to the program DA as follows:

(r1) "triple"(S,P,0,default) :- &rdf[ "alice.org" ](S,P,0).
(r2) answer1(X_N,X_X,default) :- "triple"(X_X,"rdf:type","foaf:Person",default),

"triple"(X_X,"foaf:name",X_N,default),
&eval[" ?N != ’Alice’ ","N", X_N ](true).

(r3) answer2(X_M,X_X,default) :- "triple"(X_X,"foaf:mbox",X_M,default).
(r4) answer_b_join_1(X_M,X_N,X_X,default) :- answer1(X_N,X_X,default),

answer2(X_M,X_X,default).
(r5) answer_b_join_1(null,X_N,X_X,default) :- answer1(X_N,X_X,default),

not answer2_prime(X_X,default).
(r6) answer2_prime(X_X,default) :- answer1(X_N,X_X,default),

answer2(X_M,X_X,default).
(r7) answer(X_M,X_N,X_X) :- answer_b_join1(X_M,X_N,X_X,default).

where the first rule (r1) computes the predicate "triple" taking values
from the built-in predicate &rdf . This latter is generally used to import
RDF statements from the specified URI.
The following rules (r2) and (r3) compute the solutions for the filtered
basic graph patterns {?X a foaf:Person. ?X foaf:name ?N. filter (?N

!= "Alice") } and {?X foaf:mbox ?M }. In particular, note here that the
evaluation of filter expressions is “outsourced” to the built-in predi-
cate &eval, which takes a filter expression and an encoding of variable
bindings as arguments, and returns the evaluation value (true, false or
error, following the SPARQL semantics). In order to emulate SPARQL’s
optional patterns a combination of join and set difference operation is
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used, which is established by rules (r4)–(r6). Set difference is simulated
by using both null values and negation as failure. According to the seman-
tics of SPARQL, one has to particularly take care of variables which are
joined and possibly unbound (i.e., set to the null value) in the course of
this translation for the general case. Finally, the dedicated predicate answer
in rule (r7) collects the answer substitutions for Q.

From ASP to SQL. For this step we rely on the system DLVDB [103]
that implements Answer Set Programming under stable model seman-
tics on top of a DBMS of choice. DLVDB is able to translate ASP pro-
grams in a corresponding SQL query plan to be issued to the underly-
ing DBMS. DLVDB does not have, in principle, any practical limitation in
the dimension of input data, is capable of exploiting optimization tech-
niques both from the DBMS field (e.g. join ordering techniques [43]) and
from the DDS theory (e.g. magic sets [73]), and can easily interact (via
ODBC) with external DBMSs. The interested reader can find a complete
description of DLVDB and its functionalities in [103]; moreover, the sys-
tem, along with documentation and examples, are available for download
at http://www.mat.unical.it/terracina/dlvdb.
RDF Datasets are simply stored in a database D, but the native DLVHEX
&rdf and &eval predicates in DQ cannot be processed by DLVDB directly
over D. So, DQ needs to be post-processed before it can be converted
into suitable SQL statements. In particular, rule (r1) corresponds to load-
ing persistent data into D, instead of loading triples via the &rdf built-in
predicate. In practice, the predicate "triple" occurring in program DA

is directly associated to a database table TRIPLE in D. This operation is
done off-line by a loader module which populates the TRIPLE table accord-
ingly, while (r1) is removed from the program. The &eval predicate calls
are recursively broken down into WHERE conditions in SQL statements,
as sketched below when we discuss the implementation of filter state-
ments.
After post-processing, we obtain a program D′Q, which DLVDB allows to be
executed on a DBMS by translating it to corresponding SQL statements.
D′Q is coupled with a mapping file which defines the correspondences
between predicate names appearing in D′Q and corresponding table and
view names stored in the DBMS D. For instance, the rule (r4) of DA,
results in the following SQL statement issued to the RDBMS by DLVDB:

INSERT INTO answer_b_join_1
SELECT DISTINCT answer2_p2.a1, answer1_p1.a1, answer1_p1.a2, ’default’
FROM answer1 answer1_p1, answer2 answer2_p2
WHERE (answer1_p1.a2=answer2_p2.a2)
AND (answer1_p1.a3=’default’)
AND (answer2_p2.a3=’default’)
EXCEPT (SELECT * FROM answer_b_join_1)
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Whenever possible, the predicates for computing intermediate results such
as answer1, answer2, answer b join 1, . . . , are mapped to SQL views
rather than materialized tables, enabling dynamic evaluation of predicate
contents on the DBMS side.2

Schema rewriting. Our system allows for customizing schemes which
triples are stored in. It is known and debated [104] that in choosing the
data scheme of D several aspects have to be considered, which affect per-
formance and scalability when handling large-scale RDF data. A widely
adopted solution is to exploit a single table storing quadruples of form
(s, p, o, c) where s, p, o and c are, respectively, the triple subject, predicate,
object and context the triple belongs to. This straightforward represen-
tation is easily improved [6] by avoiding to store explicitly string values
referring to URIs and literals. Instead, such values are replaced with a
corresponding hash value.
Other approaches suggest alternative data structures, e.g., property ta-
bles [6, 104]. These aim at denormalizing RDF graphs by storing them
in a flattened representation, trying to encode triples according to the hid-
den “schema” of RDF data. Similarly to a traditional relational schema,
in this approach D contains a table per each known property name (and
often also per class, splitting up the rdf:type table).

Our system gives sufficient flexibility in order to program different
storage schemes: while on higher levels of abstraction data are accessi-
ble via the 4-ary triple predicate, a schema rewriter module is introduced
in order to match D′Q to the current database scheme. This module cur-
rently adapts D′Q by replacing constant IRIs and literals with their corre-
sponding hash value, and introducing further rules which translate an-
swers, converting hash values back to their original string representation.
By and large, the chosen database schema for the triples exploits a main
table storing quadruples composed of subject, predicate, object, and the
source graph of each triple. This representation has been improved [6] by
additional relations mapping URIs/literal string to integer values, which
avoids string matching in favour of integer comparison.

Magic sets. Notably, DLVDB can post-process D′Q using the magic sets
technique, an optimization method well-known in the database field [13].
The optimized program mD′Q tailors the data to be queried to an extent
significantly smaller than the original D′Q. The application of magic sets

2For instance, recursive predicates require to be associated with permanent tables,
while remaining predicates are normally associated to views.
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allows, e.g., to apply entailment rules RRDFS only on triples which might
affect the answer to Q, preventing thus the full computation and/or ma-
terialization of inferred data.

Implementation of filter statements. Evaluation of SPARQL filter
statements is pushed down to the underlying database D by translating
filter expressions to appropriate SQL views. This allows to dynamically
evaluate filter expressions on the DBMS side.

For instance, given a rule r ∈ DQ of the form

h(X,Y )← b(X,Y ),&eval[fY ](bool).

where the &eval atom encodes the filter statement fY (representing the
filter expression), then r is translated to

h(X, Y )← b′(X, Y ).

where b′ is a fresh predicate associated via the mapping file to a database
view. Such a view defines the SQL code to be used for the computation of
fY , like
CREATE VIEW B’ AS ( SELECT X,Y FROM B WHERE F_Y )

where F Y is an appropriate translation of the SPARQL filter expression
fY at hand to an SQL Boolean condition,3 while B is the DBMS counterpart
table of the predicate b.

5.2 Experiments

Here we present some results of experiments of using our prototype Gi-
aBATA for querying and reasoning over RDFS data. The main goals of
our experiments are (i) to qualitatively analyse the capabilities of several
state-of-the-art triplesore systems, in particular with respect to the prob-
lems arising within the scenario depicted in section 4, as well as (ii) quan-
titatively evaluate performances. To this end, we first investigate the per-
sistent storage facilities as well as SPARQL features of some of the state-of-
the-art RDF stores, namely, Sesame RDF database 2.3, ARQ 2.6, Allegro-
Graph 3.2 4. Second, in order to illustrate that our approach is practically

3A version of this translation can be found in [66].
4http://www.openrdf.org/, http://jena.hpl.hp.com/, and http:

//agraph.franz.com/.
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feasible, we present a quantitative performance comparison between our
prototype system, GiaBATA, which implements the approach outlined be-
fore, and some state-of-the-art triple stores.

5.2.1 Compared Systems

AllegroGraph works as a database and application framework for build-
ing Semantic Web applications. The system assures persistent storage and
RDFS++ reasoning, a semantic extension including the RDF and RDFS
constructs and some OWL constructs. We tested the free Java edition of
AllegroGraph 3.2 with its native persistence mechanism.5

ARQ is a query engine implementing SPARQL under the Jena frame-
work.6 It can be deployed on several persistent storage layers, like filesys-
tem or RDBMS, and it includes a rule-based inference engine. Being based
on the Jena library, it provides inferencing models and enables (incom-
plete) OWL reasoning. Also, the system comes with support for custom
rules. We used the version 2.6 with RDBMS backend connected to Post-
greSQL 8.3.
GiaBATA [58] is our prototype system implementing the SPARQL ex-
tensions described above. GiaBATA is based on a combination of the
DLVDB [103] and DLVHEX [99] systems, and caters for persistent storage of
both data and ontology graphs. The tests were done using development
versions of the above systems connected to PostgreSQL 8.3.
Sesame is an open source RDF database with support for querying and
reasoning.7 In addition to its in-memory database engine it can be coupled
with relational databases or deployed on top of file systems. Sesame sup-
ports RDFS inference and other entailment regimes such as OWL-Horst
[102] by coupling with external reasoners. Sesame provides an infrastruc-
ture for defining custom inference rules. Our tests have been done using
Sesame 2.3 with persistence support given by the native store.

5System available at http://agraph.franz.com/allegrograph/.
6System available at https://jena.svn.sourceforge.net/svnroot/jena/

ARQ/.
7System available at http://www.openrdf.org/.
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5.2.2 Benchmark Data Set and Queries

For comparison we rely on the Lehigh University Benchmark (LUBM)
benchmark suite [49]. The LUBM has been specifically developed to fa-
cilitate the evaluation of Semantic Web triplestores in a standard and sys-
tematic way. In fact, the benchmark is intended to evaluate the perfor-
mance of those triplestores with respect to extensional queries over large
data sets that commit to a single realistic ontology. It consists of a uni-
versity domain ontology with customizable and repeatable synthetic data.
The Univ-Bench LUBM ontology schema describes (among others) univer-
sities, departments, students, professors and relationships among them.
Data generation is carried out by the Univ-Bench data generator tool (UBA)
whose main generation parameter is the number of universities to con-
sider. This way, we generated several data sets, each containing an increas-
ing number of statements and constructed in such a way that the greater
sets strictly contain the smaller ones. Our tests involve the test datasets
LUBMn for n ∈ {1, 5, 10, 30}, with LUBM30 having roughly four million
triples (exact numbers are reported in [49]). The LUBM benchmark pro-
vides 14 test queries. Most of these queries basically select subsets of the
input data and require, in some cases, inference processes Few of them are
intended to verify the presence of certain reasoning capabilities (peculiar
of OWL ontologies rather than RDFS) in the tested systems; in fact, they
require the management of transitive properties. Queries taken from the
LUBM benchmark are Q1–Q7.

5.2.3 Qualitative Analysis Outcome

First of all, it is worth noting that all systems support persistent storage,
either based on RDBMS or on other dedicated backends. As for reasoning
expressiveness, all cover RDFS (actually, disregarding axiomatic triples)
and partial or non-standard OWL fragments.
Interestingly, although all the systems feature some form of persistence,
both reasoning and query evaluation are usually performed in main mem-
ory, adopting a materialization strategy. All the systems, except Allegro-
Graph and ours, adopt a persistent materialization approach for inferring
data.
In our tests we focused on querying under ρDF inference regime [74], re-
quiring the capability to match patterns against named graphs. In partic-
ular, for qualitative comparison we submit the aforementioned systems to
the scenario outlined in section 4.1
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Although all systems – along with basic inference – support named graph
querying, the investigation revealed that, with the exception of GiaBATA,
combining RDFS and named graph queries lead to unexpected (incom-
plete) behavior as described in section 4.1. In particular, inference is prop-
erly handled as long as the query ranges over the whole dataset, whereas
RDFS reasoning fails in case of queries using explicit default or named
graphs. That makes querying of named graphs involving inference im-
possible with standard systems.

5.2.4 Quantitative Analysis Outcome

In order to test the additional performance cost of our extensions, we
opted for showing how the performance figures change when queries which
require RDFS entailment rules (LUBM Q4-Q7) are considered, w.r.t. queries
in which rules do not have an impact (LUBM Q1-Q3, see Appendix of [49]
for the SPARQL encodings of Q1–Q7).

First of all, it is worth noting that evaluation times include the data
loading times. Indeed, while former performance benchmarks do not take
this aspect in account, from the semantic point of view, pre-materialization-
at-loading computes inferences needed for complete query answering un-
der the entailment of choice. Moreover, dynamic querying of RDFS moves
inference from this materialization to the query step, which would result
in an apparent advantage for systems that rely on pre-materialization for
RDFS data. Also, the setting of this chapter assumes materialization can-
not be performed una tantum, since inferred information depends on the
entailment regime of choice, and on the dataset at hand, on a per query
basis. We set a 120min query timeout limit to all test runs.
Our test runs include the following system setup: (i) “Allegro (native)”
and “Allegro (ordered)”; (ii) “ARQ”; (iii) “GiaBATA (native)” and “Gia-
BATA (ordered)”; (iv) “Sesame”. For (i) and (iii), which apply dynamic in-
ference mechanisms, we use “(native)” and “(ordered)” to distinguish be-
tween executions of queries in LUBM’s native ordering and in a optimized
reordered version, respectively. To appreciate the cost of RDFS reasoning
for queries Q4–Q7, the test runs for (i)–(iv) also include the loading time of
the datasets, i.e., the time needed in order to perform RDFS data material-
ization or to simply store the raw RDF data. The test were done on an Intel
P4 3GHz machine with 1.5GB RAM under Linux 2.6.24. Experiments are
enough for comparing performance trends, so we didn’t consider at this
stage larger instances of LUBM. The detailed outcome of the test results
are summarized in Fig. 5.3. For the RDF test queries Q1–Q3, GiaBATA is
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able to compete for Q1 and Q3. The systems ARQ and Sesame turned out
to be competitive for Q2 by having the best query response times, while
Allegro (native) scored worst. For queries involving inference (Q4–Q7)
Allegro shows better results. Interestingly, systems applying dynamic in-
ference, namely Allegro and GiaBATA, query pattern reordering plays a
crucial role in preserving performance and in assuring scalability; without
reordering the queries simply timeout. In particular, Allegro is well-suited
for queries ranging over several properties of a single class, whereas if the
number of classes and properties increases (Q7), GiaBATA exhibits better
scalability. Finally, a further distinction between systems relying on DBMS
support and systems using native structures is disregarded, and since fig-
ures (in logarithmic scale) depict overall loading and querying time, this
penalizes in specific cases those systems that use a DBMS.
Our initial experiments have shown that although dynamic querying does
more computation at query-time, it is still competitive for use cases that
need on-the-fly construction of datasets and entailment regimes. Espe-
cially here, query optimization techniques play a crucial role, and our re-
sults suggest to focus further research in this direction.

Remark. In this section we reported some up-to-date experimental re-
sults being related to our recent investigations. Previous tests including
a more richer and comprehensive analysis can be found in [59]. These
results were carried out adopting the same LUBM benchmark suite (but
with respect to bigger datasets and over a wider range of queries). More-
over these previous experiments have been successfully applied on a real-
world dataset, namely, the DBLP database containing a large number of
bibliographic descriptions on major computer science journals and pro-
ceedings. In particular, for comparing both scalability and expressiveness,
we exploited queries of increasing complexity, ranging from simple se-
lections to queries requiring different forms of inferences over the data.
Notably, we tried additional queries, aiming at testing higher features like
the capability to aggregate data and to perform a transitive closure over
the underlying data and, consequently requiring the capability to express
recursion. The interested reader can find them in the Appendix to [59]
8. Results clearly show how the approach successfully works for all the
query in terms of performance and expressivity, being capable to cover
the whole set of queries and being competitive with respect to others sys-
tems.

8 http://www.mat.unical.it/terracina/dlvdb/JLC/Appendix.pdf.
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Figure 5.3: Evaluation
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Versatile semantic Modeling of
Knowledge using ASP

Beside the perspective to exploit ASP as an implementation platform for
the Semantic Web, a question arise whether it can be also explored as a
suitable basis for ontology languages which form the backbone of the Se-
mantic Web. Indeed, the Semantic Web offers many languages for on-
tologies (RDFS, OWL, DL-Lite, Frame Logic ), each having his own model
theoretical semantics. That encourages and motivates investigations about
relationships between these languages with other KR&R formalisms, de-
vising alternative solutions for modeling semantics of Knowledge Rep-
resentation Language of interest. In most cases, how to model these se-
mantics to ASP has been shown, in other cases, reductions are not clearly
known.

Among them, we focus on Frame Logic which has been proposed as
representation language for the SW ([61]) and whose relevancy is wit-
nessed by recent projects such as WSMO [29, 91]. Moreover, its features
play a crucial role in the ongoing activity of the RIF Working group [19, 17]
9. Frame Logic was originally defined as extension of first-order logic [62],
allowing for an object-oriented (frame-based) style of modeling, specify-
ing methods, as well as generalization/specialization and instantiation
relationships. Later on, a well-founded semantics, satisfactorily dealing
with non-monotonic inheritance has been introduced [107]. Beside this
setting, the original paper ([62]) already defined a Logic Programming-
style semantics for the subset of Frame Logic based on Horn logic and
there exist several implementations of Frame Logic programming.
Its object-oriented features and its non-monotonic variant, capable to deal
with typical non-monotonic features such as object oriented inheritance
make the Frame Logic language both an important methodology and a
tool for modeling ontologies in the context of Semantic Web. Especially,
the non-monotonic semantics is often requested by Semantic-Web design-

9http://www.w3.org/2005/rules/wiki/RIF Working Group..
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ers in cases where the reasoning capabilities of the Ontology layer turn out
to be too limiting, since they are based on monotonic logics.

In this respect, the Answer Set Programming paradigm has some at-
tractive feature which make interesting to consider the possibility of defin-
ing a frame-based language under this setting.
Indeed, ASP allows to model declaratively nondeterminism and, in par-
ticular, it shares with Frame Logic under well-founded semantics the pos-
sibility to reason about ontologies using non-monotonic constructs, in-
cluded non-monotonic inheritance, as it is done in some ASP extensions
conceived for modeling ontologies [90]. Nonetheless, ASP misses the use-
ful Frame Logic syntax and higher order reasoning capabilities, that are
widely acknowledged as useful for various tasks and are essential in the
context of meta-reasoning. Motivated by this fact and considering that
to date most attention around Frame Logic is around Frame Logic Pro-
gramming, we investigated about possible usage of the logic program-
ming paradigm of ASP in this respect. Therefore, in the following we will
restrict ourselves to the Logic Programming semantics for Frame Logic
and propose an extension of ASP which aims at effectively integrating the
flexible and intuitive way of representing knowledge in ASP with some of
the Frame Logic features.
Based on an elemental model theoretic semantics (ASP) on which to plugin
axiomatic modules for modelling/customizing specific semantical behav-
iors, our approach tours out to be flexible enough to be easily extended for
other languages. As such it provides a “testbed” for modeling a variety of
semantics, with possibility to play and practice with multiple ones.



Chapter 6

Frame Logic under ASP semantics

Here we introduce a novel framework for coping with frame-like syntax
and higher-order reasoning within an Answer Set Programming environ-
ment, introducing the family of Frame Answer Set Programs (FAS pro-
grams) (FAS). First, we present the syntax of the language includes the
possibility to manipulate nested molecules, class hierarchies, basic method
signatures and contexts (called framespaces). We illustrate in which terms
contexts can be exploited for manipulating hybrid knowledge bases hav-
ing many data sources working under different entailment regime. We
provide the model-theoretic semantics of FAS programs in terms of their
answer sets. Then, by means of a translation to an ordinary answer set
program, we show the corresponding operational semantics of FAS pro-
grams. Notably, the proposed language is purposely designed so that in-
heritance behavior and other features of the language can be easily cus-
tomized by the introduction of specialized axiomatic modules (section
6.2), which can be modeled on purpose by advanced developers of on-
tology languages. We describe how to use the language for modeling
and axiomatizing knowledge, and proves some properties of the axiomatic
modules presented (section 6.3). Structural, behavioral, and arbitrary se-
mantic for inheritance can be easily designed and coupled with user on-
tologies. In some cases, we show how these axiomatizations relate with
Frame Logic under first order semantics. Finally, we present the system
(DLT), able to deal with programs in Frame Logic like syntax, and featur-
ing higher-order reasoning.
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6.1 The Framework of the FAS Programs

Frame Logic [62, 107] is a knowledge representation and ontology lan-
guage which combines the declarative semantics and expressiveness of
deductive database languages with the rich data modeling capabilities
supported by the object oriented data model.
The basic idea behind Frame Logic is to consider complex data types as
in object-oriented databases, combine them with logic and use the result
as a programming language. Frame Logic eases the burden of declaring
properties of instance data. With respect to the flat relational model (and to
its logic counterpart, where tables are modeled as predicates), it is possible
to “talk” about all the facts related to a single individual within a single
structure, i.e. the molecule. Moreover, it eases the burden of reasoning
about classes: higher order reasoning is native, so that the border between
the notion of class and individual is smooth. It is then possible to reason
about classes with the same ease of use as classic logic programming offers
when it is necessary to reason on individuals.

6.1.1 Syntax of FAS Programs

We present here the syntax of FAS programs. Informally, the language al-
lows disjunctive rules with negation as failure in the body; with respect
to ordinary Answer Set Programming programs, there are three crucial
differences. First, besides traditional atoms and predicates, the language
supports frame molecules in both the body and the head of rules, follow-
ing the style of Frame Logic [62]. When representing knowledge, frame
molecules allow to focus on objects, more than on predicates. An object
can belong to classes, and have a number of property (attribute) values. As
an example, the following is a frame molecule:

brown : employee [ surname→ “Mr.Brown”,
skill→→ {java, asp},
salary → 800,
gender → male,

married→ pink ]

The above molecule defines membership of the subject of the molecule
(brown) to the employee class and asserts some values corresponding to
the properties (which we will call also attributes) bound to this object. This
frame molecule states that brown is male (as expressed by the value of the
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attribute gender), and is married to another employee identified by the sub-
ject pink. brown knows Java and asp languages, as the values of the skill
property suggest, while he has a salary equal to 800. Intuitively, one can
see a class membership statement in form x : c as similar to a unary predi-
cate c(x). Accordingly, x[m→ v] can be seen has a binary predicate m(x, v).
As a second important difference, higher order reasoning is a first class
citizen in the language: in other words, it is allowed quantification over
predicate, class and property names. For instance, C(brown) is meant
to have the variable C ranging over the Herbrand universe, thus having
employee(brown) as possible ground instance.
Finally, our language allows the use of framespaces to place atoms and
molecules in different contexts. For example, suppose there are two Mr.
Brown, one working for Sun and the other for IBM. We can use two dif-
ferent assertions, related to two different framespaces to distinguish them,
e.g. brown : employee@sun and brown : employee@IBM . A Frame Space
directive tells how frames are mapped to regular atoms, and can be used
for defining modules where each predicate has local scope within a given
frame space. We formally define the syntax of the language next.

Let C be an infinite and countable set of distinguished constant and pred-
icate symbols. Let X be a set of variables. We conventionally denote vari-
ables with uppercase first letter (e.g. X , Project), while constants will be
denoted with lowercase first letter (e.g. x, brown, nonWantedSkill). A term
is either a constant or a variable.

Atoms can be either standard atoms or frame atoms. A standard atom is
in the form t0(t1, . . . , tn)@f , where t0, . . . , tn, f are terms, t0 represents the
predicate name of the atom and f the context (or framespace) in which the
atom is defined. A frame atom, or molecule, can be in one of the following
three forms:

• s[v1, . . . , vn]@f

• s � c@f

• s � c[v1, . . . , vn]@f

where s, c and f are terms, and v1, . . . , vn is a list of attribute expressions.
Here and in the following, the allowed values for the meta-symbol � are
“ :” (instance operator), or “ : :” (subclass operator). Moreover, s is called the
subject of the frame, while f represents the context (or framespace). Infor-
mally, a frame molecule asserts that the object has some properties as speci-
fied by the attribute expressions listed inside the brackets. To simplify the

66



CHAPTER 6. FRAME LOGIC UNDER ASP SEMANTICS.

notation, whenever the context term f is omitted, we will assume f = d,
for d ∈ C a special symbol denoting the default context.

An attribute expression is in the form p, p ⇀ v1 or p ⇀⇀ {v1, . . . , vn},
where p (the property/attribute name) is a term, and v1, . . . , vn (the attribute
values) are either terms or frame molecules. An attribute expression de-
fines an association between an attribute name and one or multiple values
than it can take. A negative attribute expression is a negated positive at-
tribute expression. An attribute expression is either a positive attribute ex-
pression or a negative attribute expression. Here and in the following, the
meta-symbols ⇀ and ⇀⇀ are intended to range respectively over {→, •→}
and {⇒,→→,⇒⇒, •→→}. Note that, according to this definition, when used
within attribute expressions, the symbols in the set {⇒,→→,⇒⇒, •→→} allow
sets of attribute values on their right hand side, while→ and •→ allow sin-
gle values.

A literal is either an atom p (positive literal), or an expression of the
form ¬p (strongly negated literal or, simply, negated literal), where p is
an atom. A naf-literal (negation as failure literal) is either of the form b
(positive naf-literal), or of the form not b (negative naf-literal), where b is
a literal. A formula is either a naf-literal, a conjunction of formulas or a
disjunction of formulas. A simple atom is either a standard atom, or a frame
atom in the forms s � c@f , s[p ⇀ v]@f or s[p ⇀⇀ {v}]@f , for s, c, p, v and f
terms of the language. The notion of simple literal and of simple naf-literal
are defined accordingly on top of the notion of simple atom.

A Frame Answer Set program (FAS program) is a set of rules, of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm.

where a1, . . . , an and b1, . . . , bk are literals, not bk+1, . . . , not bm are naf-literals,
and n ≥ 0, m ≥ k ≥ 0. The disjunction a1∨· · ·∨an is the head of r, denoted
by H(r), while the conjunction b1 ∧ · · · ∧ bk ∧ not bk+1 ∧ . . . ,∧ not bm is the
body of r, denoted by B(r). A rule with empty body will be called fact,
while a rule with empty head is a constraint.

A plain higher order FAS program contains only standard atoms, while
a plain FAS program contains only standard atoms with a constant predi-
cate name. A positive FAS program do not contain negation as failure and
strongly negated atoms. In the following, we will assume to deal with safe
FAS programs, that is, programs in which each variable appearing in a rule
r appears in at least one positive naf-literal in B(r).
Remark. Every object name refers to exactly one object, although molecules
starting with the same subject may be combined. Since the value referred
to an object attribute can be frames, molecules can be nested.
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Example 6.1.1 The following is a frame molecule:

brown : employee[ surname→ “Mr.Brown”,
skill � {java, asp},
salary → 800,
gender → male,

married→ pink ]

This defines membership of the subject brown to the employee class and
asserts some values corresponding to the properties bind to this object.
This frame molecule says brown is male (as expressed by the value of the
attribute gender), is married to another employee identified by the subject
pink. brown knows java and asp languages, as suggests the values of the skill
property, while he has a salary equal to 800. We may define a new frame
molecule, like this, collecting information about the employee encoded by
the subject pink, but we can also combine this information nesting frame
molecules, as follows:

brown : employee[ surname→ “Mr.Brown”,
skill � {java, asp},
salary → 800,
gender → male,
married→ pink : employee[ surname→ “Mrs. P ink”,

skill � {html, asp},
salary → 900,
gender → female,
married→ brown ]

].

Example 6.1.2 The following is an example of logic rule defining the profile a
particular employee must have in order to be selected for project p3. We encoded
this rule using strong and naf nested negation.

E[inProject � p3] ∨ E[¬inProject � p3]← X : employee,
E : employee[skill � {c, perl},
not married→ X : employee[
not skill � {c, perl} ]].

This means that candidates to the project team p3 are employees knowing
c and perl programming languages, but not married to another employee
not knowing the same programming languages.
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Example 6.1.3 The following one rule program is a valid FAS program. Intu-
itively, it represents the fact that each person is male or female.

P [gender → “male”] ∨ P [gender → “female”] :– P : person.

6.1.2 Semantics of FAS Programs

Our approach is set in between a pure model theoretic semantics (proper
of Frame Logic and many of its extensions [62, 107]), and a pure “rewrit-
ing” semantics, in which inheritance is specified by means of an ad-hoc
translation to logic programming [60]. In the former case, semantics is
given in a clean and sound manner: however, the way inheritance (and in
general, the semantics of the language) is modeled is hardwired within the
logic language at hand, and cannot be easy subject of modifications. In the
latter case, semantics is enforced by describing a rewriting algorithm from
theories to appropriate logic programs. In such a setting the semantics of
the overall language can be better tuned by changing the rewriting strat-
egy. It is however necessary to have knowledge of internal details about
how the language is mapped to logic programming, making the process
of designing semantics cumbersome and virtually reserved to the authors
of the language only.
In the following, we provide the model-theoretic semantics of FAS pro-
grams in terms of their answer sets. Then, we provide, by means of a trans-
lation to an ordinary answer set program, the corresponding operational
semantics of FAS programs.
Notably, the basic stable model semantics for FAS programs does not pur-
posely fix a special meaning for the traditional operators of Frame Logic
, such as class membership “ : ” and subclass containment “ : :”. Indeed,
FAS programs are conceived as a test-bed on which an advanced ontology
designer is allowed to choose the behavior of available operators from a
predefined library, or to design her own semantics from scratch. The abil-
ity to customize the semantics of the language is crucial especially in pres-
ence of inheritance constructs. In fact, when one has to model a particular
problem, a specific semantics for inheritance may be more suitable than
another, and it is often necessary to manipulate and/or combine the pre-
defined behaviors of the language.

Semantics of FAS programs is defined by adapting the traditional Gelfond-
Lifschitz reduct, originally given for a ground disjunctive logic program
with strong and default negation [47], to the case of FAS programs. Given
a FAS program P , its ground version grnd(P ) is given by grounding rules
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of P by all the possible substitutions of variables that can be obtained us-
ing consistently elements of C1. A ground rule thus contains only ground
atoms; the set of all possible simple ground literals that can be constructed
combining predicates and terms occurring in the program is usually re-
ferred to as Herbrand base (BP ). We remark that the grounding process
substitutes also nonground predicates names with symbols from C (e.g.,
a valid ground instance of the atom H(brown, X) is married(brown, pink),
while a valid ground instance of brown[H → yellow] is brown[color →
yellow]).

An interpretation for P is a set of simple ground literals, that is, an in-
terpretation is a subset I ⊆ BP . I is said to be consistent if ∀a ∈ I we have
that ¬a 6∈ I . We define the following entailment notion with respect to an
interpretation I .
For a a ground atom:

• (E1) If a is simple, then I |= a iff a ∈ I ;

• (E2) I |= not a iff I 6|= a.

For l1, . . . , ln ground literals:

• (E3) I |= l1 ∧ · · · ∧ ln iff I |= li, for each 1 ≤ i ≤ n;

• (E4) I |= l1 ∨ · · · ∨ ln iff I |= li for some 1 ≤ i ≤ n.

For s, p, f ground terms, and m1, . . . ,mn ground frame molecules:

• (E5) I |= s[ p ⇀⇀ {m1, . . . mn} ]@f iff I |= s[ p ⇀⇀ {mi} ]@f , for each
1≤i≤ n.

For s, s′, c, p, f, f ′ ground terms, and v = {v1, . . . , vn} a set of ground at-
tribute value expressions:

• (E6) I |= s[ v1, . . . , vn ]@f iff I |= s[ v1 ]@f ∧ · · · ∧ s[vn]@f ;

• (E7) I |= s � c[ v ]@f iff I |= s � c @f ∧ s[ v ]@f ;

• (E8) I |= s[ p ⇀ s′[ v ] ]@f iff I |= s[ p ⇀ s′]@f ∧ s′[ v ]@f ;

• (E9) I |= s[ p ⇀⇀ {s′[ v ]} ]@f iff I |= s[ p ⇀⇀ {s′}]@f ∧ s′[ v ]@f ;

• (E10) I |= s[ p ⇀ s′[ v ]@f ′ ]@f iff I |= s[ p ⇀ s′]@f ∧ s′[ v ]@f ′;

• (E11) I |= s[ p ⇀⇀ {s′[ v ]@f ′} ]@f iff I |= s[ p ⇀⇀ {s′}]@f ∧ s′[ v ]@f ′.

1As shown next, our semantics implicitly assumes that elements of C are mapped to
themselves in any interpretation, thus embracing the unique name assumption.
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Note that rules (E8) and (E9) force s′[ v ], which does not have an explicit
framespace, to belong to the context f of the molecule containing it. On the
contrary, s′[ v ]@f ′ in (E10) and (E11) has a proper framespace f ′, and the
entailment rules take care of this fact. Then, rules (E6) to (E11) define the
context of a frame molecule as the nearest framespace explicitly specified.
For a rule r :

• (E12) I |= r iff I |= H(r) or I 6|= B(r);

A model for P is an interpretation M for P such that M |= r for every rule
r ∈ grnd(P ). A model M for P is minimal if no model N for P exists such
that N is a proper subset of M . The set of all minimal models for P is
denoted by MM(P ).

Given a program P and an interpretation I , the Gelfond-Lifschitz (GL) trans-
formation of P w.r.t. I , denoted P I is the set of positive rules of the form
{a1∨· · ·∨an ← b1, · · · ,bk } such that {a1∨· · ·∨an ← b1, · · · ,bk, not bk+1, · · · , not bm}
is in grnd(P ) and I |= not bk+1 ∧ . . .∧ not bm. An interpretation I for a program
P is an answer set for P if I ∈ MM(P I) (i.e., I is a minimal model for the positive
program P I ) [86, 47]. The set of all answer sets for P is denoted by ans(P ). We
say that P |= a for an atom a, if M |= a for all M ∈ ans(P ). P is consistent if
ans(P ) is non-empty.
For a positive program P allowing only the term d in context position, we define
the Frame Logic first-order semantics in terms of its F-models. A F-model Mf is a
model of P subject to the conditions

• (F1) “ : :” encodes a partial order in Mf ;

• (F2) if a : b ∈Mf and b : :c ∈Mf then a : c ∈Mf ;

• (F3) if a[m⇀ v] ∈Mf and a[m⇀ w] ∈Mf then v = w, for ⇀∈ {→, •→};
• (F4) if a[m ≈> v] ∈Mf and b : :a then b[m ≈> v] ∈Mf , for ≈>∈ {⇒,⇒⇒};
• (F5) if c[m⇒ v], a : c and a[m→ w] ∈Mf then w : v ∈Mf ;

• (F6) if c[m⇒⇒ v], a : c and a[m→→ w] ∈Mf then w : v ∈Mf ;

We say that P |=f a for an atom a if Mf |= a for all F-models of P .

Example 6.1.4 The program in Example 6.1.3 together with the fact brown : person.
has two answer sets, M1 = { brown : person, brown[ gender → “male” ] }
and M2 = { brown : person, brown[gender → “female”] }. Both M1 and M2 are
F-models. Note that M3 = { brown : person, brown[ gender → “female” ],
brown[ gender → “male” ] } is neither an F-model nor an answer set for different

reasons: it is not an F-model because of condition (F3) given above, while it is not an
answer set because it is not minimal. Note also that disjunctive rules trigger in general
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the existence of multiple answer sets, while the presence of constraints may eliminate
some or all constraints: for instance, the same program enriched with the constraints
← brown[gender → “male”] and← brown[gender → “female”] has no answer set
2.

6.1.2.1 From FAS programs to higher order programs

We provide here the semantics of FAS programs in terms of a translation to a
(plain) higher-order ASP program. We show how to reduce the Frame Logic like
formalism embedded in our hybrid framework to ASP, thus allowing to manip-
ulate frames with logic programming techniques. This operational semantics is
defined through a suitable algorithm which is able, given a FAS programs con-
taining frame structures, to produce an equivalent plain higher order ASP pro-
gram.
Roughly speaking, the idea is to introduce new predicate names wrapping prop-
erties and classes. Classes are mapped to unary predicates, while properties are
mapped to unary or binary predicates. Then, a FAS program is unfolded in order
to replace frame atoms with their equivalent predicates.
The algorithm providing the semantics is called Standardize Algorithm (S): it takes
as input a FAS program P containing frame atoms; the output is a plain higher
order program R. The Answer Sets of P are defined as to be the answer sets of R.
The algorithm is sketched in Figure 6.1. In order to better explain how S works,
we show how a frame structure is examined and processed. For instance, if we
consider the following frame:

E[inProject � p3] ∨ E[−inProject � p3]← X : employee,
E : employee[
skill � {c+ +, perl},
not married→ X ].

The application of S generates this output:

inProject(E, p3) ∨ −inProject(E, p3) ← employee(X), skill(E, c+ +),
skill(E, perl), employee(E),
not aux e(E, X).

aux e(E, X) ← married(E, X).

2A constraint ← c can be seen as a rule f ← c, not f , for which there is no model
containing c.
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6.2 Modeling semantics and inheritance
Given the basic semantics for a FAS program P , it is then possible to enforce a
specific behavior for operators of the language by adding to P specific “axiomatic
modules”. An axiomatic module A is in general a FAS program. Given a union of
axiomatic modules S = A1 ∪ · · · ∪ An, we will say that P entails a formula φ
under the axiomatization S ( P |=S φ ) if P ∪ S |= φ. The answer sets of P under
axiomatization S are defined as ansS(P ) = ans(P ∪ S). We illustrate next some
basic axiomatic modules.

Basic class taxonomies. The axiomatic module C, shown next, associates to
“ : ” and “ : :” the usual meaning of monotonic class membership and subclass
operator.

c1 : A : :B ← A : :C, C : :B.
c2 : A : :A← X :A.
c3 : ← A : :C, C : :A, A 6= C.
c4 : X :C ← X :D, D : :C.

Rules c1 and c2 enforce transitivity and reflexivity of the subclass operator, re-
spectively. Rule c3 prohibits cycles in the class taxonomy, while c4 implements
the class inheritance for individuals by connecting the “ : :” operator to the “ : ”
operator. The acyclicity constraint can be relaxed if desired: we define in this case
C′ as C \ c33.

Single valued attributes. Under standard Frame Logic , the operators→ and
•→ are associated to families of single valued functions: indeed, in a F-model M
it can not hold both a[m ⇀ v] and a[m ⇀ w], unless v = w. Under unique names
assumption, we can state the above condition by the set F of constraints:

f5 : ← A[M → V ], A[M →W ], V 6= W
f6 : ← A[M •→ V ], A[M •→W ], V 6= W

Structural and behavioral inheritance. We show here how to model some
peculiar types of inheritance, such as structural and behavioral inheritance. Struc-
tural inheritance is usually associated to the operator⇒. Let P1 be the following
example program:

webDesigner : :javaProgrammer. javaProgrammer : :programmer.
webDesigner : :htmlProgrammer. javaProgrammer[salary ⇒ medium].
htmlProgrammer[salary ⇒ low].

For short, we denote in the following webDesigner as wd, javaProgrammer as jp
and htmlProgrammer as hp. Under structural inheritance, as defined in [62], prop-

3Note that the atom A 6= C amounts to syntactic inequality between A and C.
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erty values of superclasses are “monotonically” added to subclasses. Thus, since
c1 is subclass of c2 and c4, one expects that P1 |=C∪S webDesigner[salary ⇒
{low,medium}] for some axiomatic module S.
The axiomatic module S shown next, associates this behavior to the operators⇒
and⇒⇒.

s7 : D[A⇒ T ]← D : :C, C[A⇒ T ].
s8 : D[A⇒⇒ T ]← D : :C, C[A⇒⇒ T ].

Note that s5 (resp. s6) do not enforce any relationship between “⇒” and “→”
(resp. “⇒⇒” and “→→”) as in [62]. We will discuss this issue later in the section.

Behavioral inheritance [107], allows instead non-monotonic overriding of prop-
erty values. Overriding is a common feature in object-oriented programming lan-
guages like Java and C++: when a more specific definition (value, in our case) is
introduced for a method (a property, in our case), the more general one is over-
ridden. In case different information about an attribute value can be derived
from several inheritance paths, inheritance is blocked. Let us assume to add to
P1 the assertions jp[income •→ 1000] and hp[income •→ 1200] . Under behavioral
inheritance regime [107]4, the assertions jp[income •→ 1000] and hp[income •→
1200] would be considered in conflict when inherited from wd. Indeed, both
wd[income •→ 1000] and wd[income •→ 1200] under the three-valued semantics of
[107] are left undefined. Under FAS semantics it is then expected to have some ax-
iomatic module B where neither P1 |=B∪F∪C wd[income •→ 1000] nor P1 |=∩B∪F∪C
wd[income •→ 1200] hold. The above behavior can be enforced by defining B as
follows

b9 : overridden(D,M,C) ← E[M •→ V ], C : :E, E : :D, C 6= E, E 6= D.
b10 : inheritable(C,M,D) ← C : :D, D[M •→ V ], not overridden(D,M,C).
b11 : C[M •→ V ] ∨ C[M •→ V ]@false ← inheritable(C,M,D), D[M •→ V ].
b12 : exists(C,M) ← C[M •→ V ].
b13 : ← inheritable(C,M,D), not exists(C,M).
b14 : existsSubclass(A,C) ← A :C,A :D,D : :C,C 6= D.
b15 : A[M → V ]@candidate ← A :C,C[M •→ V ], not existsSubclass(A,C).
b16 : A[M → V ] ∨A[M → V ]@false ← A[M → V ]@candidate.
b17 : exists′(A,M) ← A[M → V ].
b18 : ← inheritable(C,M,C), A :C, not exists′(A,M).

The above module makes usage of stable model semantics for modeling multiple
inheritance conflicts. By means of rule b11 and b16 it is triggered the existence of
multiple answer set in the presence of inheritance conflicts, one for each possible
way to solve the conflict itself. Note that ansB∪F∪C(P1) contains two different
answer sets M1 and M2 which respectively are such that M1 |= wd[income •→
1200] and M2 |= wd[income •→ 1000]. However, both assertions do not hold in all

4Note that in [107] the above semantics is conventionally associated to the→ operator,
while we will use •→.

74



CHAPTER 6. FRAME LOGIC UNDER ASP SEMANTICS.

the possible answer sets. Thus, similarly to “well-founded optimism” semantics,
we obtain that P1 6|=C∪B wp[income •→ X] for any X .

Constructive vs well-typed semantics. The operator ⇒ is traditionally as-
sociated to →. For instance if both jp[keyboard ⇒ americanLayout] and jim :
jp[keyboard→ ibm1050] hold, one might expect that ibm1050 : americanLayout.
However, one might wonder whether to implement the above required behavior
under a constructive or a well-typed semantics.
The two type of semantics differ in the way incomplete information is dealt with.
In a “well-typed” flavored semantics, most axioms are seen as hard constraints,
which, if not fulfilled, make the theory at hand inconsistent. In the first case, it
may be desirable to use the “⇒” operator for defining strong desiderata about
range and domain of properties, while the “→” could be used to denote actual
instance values such as in the following program P2:

programmer[salary ⇒ integer].
g : programmer[salary → aSalary].
← X : programmer[salary → Y ], notY : integer5

Note that ans(P2) is empty, unless it is not explicitly asserted (well-typed) the
fact aSalary : integer. On the other hand one may want to interpret construc-
tively desiderata about domain and range of properties, as it is typical, e.g. of
RDFS[105]. Consider the program P3:

programmer[salary ⇒ integer].
g : programmer[salary → aSalary]
Y : integer ← X : programmer[salary → Y ]

Here P3 has a single answer set containing the fact aSalary : integer. The two
types of semantics stem from profound philosophical differences: well-typedness
is commonly (but not necessarily) associated to modeling languages inspired
from database systems, living under a single model semantics and Closed World
Assumption. To a large extent one can instead claim that first order logics (and de-
scendant formalisms, such as descriptions logics and RDFS), is much more prone
to deal constructively with incomplete information. It is however worth noting
that despite their conceptual difference, constructive and well-typed semantics
are often needed together. As a matter of example, modeling in Java (as well
as C++ and Frame Logic ) needs both flavors. Constructiveness comes into play
in inheritance within class taxonomies (e.g., if A : :B and B : :C hold, the infor-
mation A : :C does not need to be well-typed and is inferred automatically), but
well-typedness is required in several other contexts, (e.g. strong type-checking
prescribes that a function having a given signature can not be invoked using ac-
tual parameters which are not explicitly known to fulfil the function signature).

5With some liberality we use here “integer” as class name more than a concrete
datatype, without losing the sense of our example.
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Whenever required, FAS programs can be coupled with axiomatic modules en-
coding both well-typed and constructive axioms. The following axiomatic mod-
ule CO encodes constructively how the operators ⇒ and → can be related each
other:

co15 : V :T ← C[A⇒ T ], I :C, I[A→ V ].

whileW , shown next, encodes the same relation under a well-typed semantics.

w16 : ← C[A⇒ T ], I :C, I[A→ V ], notV : T.

6.3 Properties of FAS programs

FAS programs have some property of interest. First, Frame Logic entailment can
me modeled on top of FAS programs by means of the axiomatic modules C,S,F ,
and CO. Let A = C ∪ S ∪ F ∪ CO.

Theorem 6.3.1 Given a positive, non-disjunctive, FAS program P with default contexts
only, and a formula φ, then P |=A φ iff P |=f φ.

Proof. (Sketch). (⇒) Assume P ∪A is inconsistent. Given that P is a positive pro-
gram, then inconsistency amounts to the violation of some instance of constraints
c3, f5 or f6. We can show that, accordingly, there is no F-model for P . On the
other hand, if P ∪ A is consistent, one can show that the unique answer set of P
is the least F-model of P .

(⇐) It can be shown that if P has no F-model, then P∪A is inconsistent. Vicev-
ersa, if P has some F-model its least model corresponds to the unique answer set
of P ∪ A. 2

One might wonder at the significance of |=A-entailment for disjunctive programs
with negation. This entailment regime diverges quickly from the behavior of
monotonic logic as soon as negation as failure and disjunction is considered, and
is thus incomparable with first order Frame Logic . It is matter of future research
to investigate on the relationship between FAS programs and Frame Logic under
well-founded semantics. As a second important property, we show that contexts
can be exploited for modeling hybrid environments in which more than one se-
mantics has to be taken in account. For instance one might desire a context s in
which only C ∪ S hold as axiomatic modules (this is typical e.g. of RDFS reason-
ing restricted to ρ-DF [74]), while in a context b we would like to have a different
entailment regime, taking in account e.g. B and F .

We will say that an axiomatic module (resp. a program, a formula) A is de-
fined at context c if for each rule r ∈ A, each atom c ∈ r has context c. If an
axiomatic module (resp. a program, or a formula) A is defined at the default
context d, then the axiomatic module A@c, defined at context c, is obtained by
replacing each atom a appearing in A with a@c.
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We clarify next how contexts interact each other. First, we consider programs in
which contexts are strictly separated: that is, each rule in a program contains only
atoms either with context a or only atoms with context b. This way, a program
can be seen as composed by two separate modules, one defining a and the other
defining b. The following proposition shows that programs defined in separated
context behave separately under their axiomatic regime.

Proposition 3 It is given a program P = P ′@a ∪ P ′′@b, and axiomatic modules A@a
and B@b. Then, for formulas φ@a and ψ@b, we have that, if P ∪A@a ∪B@b is consis-
tent,

P |=A@a∪B@b φ@a ∧ ψ@b⇔ P ′ |=A φ ∧ P ′′ |=B ψ

Contexts can be seen in some sense as separate knowledge sources, each of which
having its own semantics for its data. In such a setting, it is however impor-
tant to consider cases in which knowledge flows bidirectionally from a context to
another and viceversa. This situation is typical of languages implementing hy-
brid semantics schemes. For instance, DL+log [92] is a rule language where each
knowledge base combines a description logic base D (living under first order se-
mantics), with a rule program P (living under answer set semantics). D and P
can mutually exchange knowledge: in the case ofDL+log , predicates ofD can ap-
pear in P , allowing flow of information from D to P . Similarly, we are assuming
to have a program P , two contexts a and b, each of which coupled with axiomatic
modules A@a and B@b. The program P freely combines atoms with context a
with atoms with context b, possibly in the same rule.

For simplicity, the following theorem is given for programs containing simple
naf-literals only. Given an interpretation I we define Ia as the subset of I contain-
ing only atoms with context a. The extended reduct P ∗Ia of a ground program P is
given by modifying each rule r ∈ P in the following way:

• if l@a ∈ H(r) and l@a 6∈ Ia then delete l@a from r;

• if l@a ∈ H(r) and l@a ∈ Ia then delete r;

• if l@a ∈ B(r) and l@a ∈ Ia then delete l@a from r;

• if l@a ∈ B(r) and l@a 6∈ Ia then delete r;

• if not l@a ∈ B(r) and l@a 6∈ Ia then delete not l@a from r;

• if not l@a ∈ B(r) and l@a ∈ Ia then delete r;

Theorem 6.3.2 Let P be a program containing only atoms with context a and b, and
A@a and B@b be two axiomatic modules. Then,

M ∈ ansA@a∪B@b(P )⇔Ma ∈ ansA@a(P ∗Mb) ∧Mb ∈ ansB@b(P ∗Ma)
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Roughly speaking, the above theorem states that from the point of view of context
a one can see atoms from context b as external facts, and viceversa. An answer
set M of the overall program is found when, assuming Ma as the set of true facts
for a, we obtain that Mb is the answer set of P ∗Ma ∪ B@b, i.e. an answer set of
the program obtained by assuming facts in Ma true. Viceversa, if one assumes
Mb as the set of true facts for context b, one should obtain Ma as the answer set of
P ∗Mb ∪A@a.

Proof.(Sketch). ( ⇒ ) Assume M ∈ ans(P ∪ A@a ∪ B@b), it is easy, yet te-
dious, to construct Ma and Mb and verify that Ma ∈ ans(P ∗Mb ∪ A@a) and
Mb ∈ ans(P ∗Ma ∪ B@b). Given Pa = P ∗Mb ∪ A@a and Pb = P ∗Ma ∪ B@b, the
proof is conducted by showing that Ma (resp. Mb) is a minimal model of PMa

a

(resp. PMb
b ).

(⇐ ) GivenMa andMb such thatMa ∈ ans(P ∗Mb∪A@a) andMb ∈ ans(P ∗Ma∪
B@b), the proof is carried out by showing that M = Ma ∪Mb is a minimal model
of P ∪A@a ∪A@bM . 2

6.4 The DLT System

FAS programs have been implemented within the DLT environment [25] which
extends the DLV system with template predicates, frame logic constructs and higher
order predicate names. Anyway, the proposed paradigm does not rely on DLV

special features, and it is easily generalizable.

6.4.1 The System Architecture and Work-flow

DLT works as a front-end for an answer set solver of choice S. Programs are
rewritten in the syntax of S and then processed. Resulting answer sets in the
format of S are then processed back and output in DLT format. DLT is com-
patible with most of the languages of the DLV family such as DLV [64], DLVHEX

[99] and the recent DLV-complex6. The native features of the solver of choice are
made available to the DLT programmer: this way features such as soft constraints,
aggregates (DLV), external predicates (DLVHEX), and function, list and set terms
(DLV-complex) are accessible. Limited support is given also for other ASP solvers.

DLT Program

PRE-PARSER INFLATER ASP SOLVER
P

POST-PARSER

DLT Internal

Format

ASP

Program

SOLVER

Output

P’ Ans(P)

Figure 6.2: Architecture of DLT System.

6http://www.mat.unical.it/dlv-complex.
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The overall architecture of the system is shown in Figure 6.2. Roughly, the
DLT system works as follows. A FAS program P is sent to a DLTpre-parser, which
performs syntactic checks, converts frame syntax to plain syntax (by applying the
algorithm S defined in Section 6.1.2.1), and builds an internal representation of
P . The DLT Inflater produces an equivalent program P ′ by processing and elim-
inating other special constructs of the language, such as templates; P ′ is piped
towards an answer set solver. The answer sets ans(P ′) of P ′, computed by the
solver are then converted in a readable format through the Post-parser module,
which filters out from ans(P ′) information about predicates and rules that were
internally generated.
DLT allows the syntax presented in this thesis and implements the presented se-
mantics. Atoms without context specification are assumed to have the default
context d. In order to avoid typing, the default implicit context can be switched
by using a directive in the form @name., which sets the implicit context to name
for the rules following the directive.
When the directive “@.” is used, the systems switch’s to the default frame space,
thus triggering the traditional behavior of the system.

6.4.2 Extending the ASP language using DLT

Complex nested expression. DLT allows the usage of negated attribute ex-
pressions. From the operational point of view, if a frame literal in the body of a
rule r has subject o and a negative attribute not m, our prototype removes not m
from the attributes of o, adds not a to the body of r, where a is a fresh auxiliary
atom, and adds a new rule a :– o[m]. to the program. This procedure can be iter-
ated until no negated attribute appears in the program. Then, the answer sets of
the original program are the answer sets of the rewritten program without aux-
iliary atoms. Since negated attributes can appear in negative literals and can be
nested, they behave like the nested expressions of [65], allowing in many case to
represent information in a more succinct way.

Example 6.4.1 The following rule states that a programmer P is suitable for project p3

if P know c++ and perl, but is not married to another programmer knowing c++ and
perl.

P [suitable→→ p3] ← X : programmer,
P : programmer[skills→→ {“c+ +”, “perl”},

not married→ X[skills→→ {“c+ +”, “perl”} ].

Template definitions. A DLT program may contain template atoms, that allow
to define intensional predicates by means of a subprogram, where the subpro-
gram is generic and reusable. This feature provides a succinct and elegant way
for quickly introducing new constructs using the dlt language, such as predefined
search spaces, custom aggregates, etc. Differently from higher order constructs,
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which can be used for the same purpose, templates are based on the notion of
generalized quantifier, and allow more versatile usage. Syntax and semantics of
template atoms are described in [25].

Solvers support. DLT can virtually support any solver that accepts inputs in
the format generated by DLT. Models produced by the external solver are then
parsed back to the DLT syntax. The -solver=[pathname] option allows to
specify the path of the solver. Compatibility with the systems DLV [64], DLV-
EX [24], DLVHEX [39] is provided; compatibility with S-models is guaranteed
within a subset of the language. A detailed compatibility table is available on
the DLT web site.

Function Symbols. Besides constant and variable terms, the DLT parser al-
lows also functional terms. Solvers allowing function symbols are thus ready to
be coupled with DLT.
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Standardize (INPUT: P containing frames OUTPUT: R without frames)
Let R = P ;
while R contains frame literals do

let r ∈ R be a rule containing frame atoms;
while r contains frame literals do

remove frame f from r;
let o be the subject, L the set of attributes, and X the set of variables of f ;
case f appeared in the body of r:

if f is positive then
if f has class c then

add c(o) to the body of r;
for each attribute expression e ∈ L do

let a be the name, and V the set of values of e;
if e is positive then

if V is empty then
add a(o) to the body of r;

else
for each term t ∈ V do

add a(o, t) to the body of r;
for each molecule m ∈ V with subject s do

add a(o, s) and m to the body of r;
else

let e be in the form not e′;
add the frame not o[e′] to the body of r;

else (Let f in form not f ′)
add to r a new fresh literal not auxf (X);
add to R a new rule auxf (X)← f ′;

case f appeared in the head of r:
if f is in the form o : c (resp. in the form o[a→ v]) then

add to the head of r the literal c(o) (resp. a(o, v));
else

add to the head of r a new atom auxf (X);
if f has class c then

add c(o)← auxf (X) to R;
for each attribute expression e ∈ L do

let a be the name, and V the set of values of e;
if V is empty then

add a(o)← auxf (X) to R;
else

for each term t ∈ V do
add a(o, v)← auxf (X) to R;

for each molecule m ∈ V with subject s) do
add a(o, s)← auxf (X) and m← auxf (X) to R;

Figure 6.1: The Standardize Algorithm.
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Related work, future
developments and Conclusions

In this work we presented a formal approach aimed at exploiting the Answer
Set Programming formalism for tackling several issues coming from traditional
and upcoming scenarios of the the Semantic Web. We also focused on applicative
possibilities of our approach proposing an implementation addressing several
problems, thus suggesting possible improvement to the state-of-the-art systems.

ASP for Semantic Web Application We have first formally shown how RDF(S)
can be mapped without loss of semantics to an Answer Set Programming lan-
guage, providing a complete translation of all the normative RDF(S) semantics
into declarative logic programming. Afterward, we presented a framework for
dynamic querying of RDFS data, which extends SPARQL by two language con-
structs: using ontology and using ruleset. The former construct is geared
towards dynamically creating the dataset, whereas the latter adapts the entail-
ment regime of the query. We have shown that our extension conservatively
extends the standard SPARQL language and that by selecting appropriate rules
in using ruleset, we may choose varying rule-based entailment regimes at
query-time.
We completed our investigation by presenting an efficient and reliable ASP-based
architecture for querying RDF ontologies and we have experimentally proven
that our solution is competitive with respect to several state-of-the-art systems.
Our initial experiments have shown that although dynamic querying does more
computation at query-time, it is still competitive for use cases that need on-the-fly
construction of datasets and entailment regimes.
Compared with off-the-shelf RDF stores and SPARQL engines, the system aims
at showing how it is possible to offer more flexible support for rule-based RDFS
and (fragments of) OWL entailment regimes by enabling custom reasoning via
rules, as well as at giving the possibility to choose the reference ontology on a per
query basis; this allows for dynamically changing scenarios in the Semantic Web
to be safely taken into account.
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The work is similar in spirit to [32], where it is shown how RDF, RDFS and
ERDFS can be ported to Frame Logic (and, to a large extent, to Datalog), and thus
implemented in a standard reasoner. The above work does not address explicitly
the problem of treating the infinite set of axiomatic triples of RDFS in a finite con-
text. Also, in [74] a deductive calculus is presented which is sound and complete
for the ρDF fragment of the language, and paves the way to its implementation
in a deductive system.
It is worth pointing out also that important efforts in the Semantic Web commu-
nity aim at integrating Ontologies with Rules under the stable model semantics
(e.g. [38, 39, 72]). In this context, the abovementioned works highlight that the
possibility of exploiting a Datalog-like language to express (or integrate) ontolo-
gies with a query/rule language provides important benefits. A work explicitly
addressing RDF and proposing the idea of extending RDF graphs with negation
and stable models is [8].
There are earlier approaches to integrate ontological inference in a logic pro-
gramming environment. As opposed to SWI Prolog’s Semantic Web library [106]
which also offers SPARQL support, we support Answer Set Programming as un-
derlying LP paradigm, instead of Prolog. In contrast to OntoDLV [89], which
supports proprietary ontology and query languages, the focus of GiaBATA is on
compliance with Web standards such as SPARQL, RDF(S), OWL, and RIF.

As a matter of future work, we want to point out that the fully Answer Set
Programming based architecture, as relying on logic programming techniques
and SQL, provides entry points for several well-known logic-level optimization
and deductive database optimization techniques. Applying optimization tech-
niques from both the database and logic programming area should boost eval-
uation performance. For instance, one could pursue an integrated approach to
query optimization based on both statistical and declarative/logical optimiza-
tions. This includes developing novel techniques for optimization tasks, such as
magic sets and join reordering techniques ([10-11]). We currently work on the effi-
ciency of filter expressions by rewriting them to SQL queries over the underly-
ing database, see [6, 66, 104]. Moreover, one of the next steps includes the support
of arbitrary database schemes. Extensions of SPARQL by aggregates and custom
built-ins presented in earlier works [84] carry over to our persistent storage ver-
sion with minor modifications. In particular, we plan to integrate the system with
extensions of SPARQL enhancing expressiveness and practical capabilities, intro-
ducing novel features natively available within ASP systems (aggregates, custom
built-ins, recursive constructs, soft and weak constraints, interfacing with exter-
nal reasoners). We are going to add support for extended graphs, that is SPARQL
views as defined also in [84].
Furthermore, we aim at conducting a proper computational analysis as it has
been done for Hypothetical Datalog [20], in which truth of atoms is conditioned
by hypothetical additions to the dataset at hand. Likewise, our framework allows
to add ontological knowledge and rules to datasets before querying: note how-



ever that, in the spirit of [50], our framework allows for hypotheses (also called
“premises”) on a per query basis rather than a per atom basis.

ASP for modeling semantics We presented a framework that allows to en-
rich an Answer Set Programming language with frame-like syntax and higher
order reasoning.
FAS programs have some peculiar differences with respect to the original Frame
Logic . Importantly, while well-founded semantics [44] is at the basis of the non-
monotonic semantics of Frame Logic, FAS programs live under stable model se-
mantics. The two semantics are complementary in several respects. The well-
founded semantics is preferable in terms of computational costs: at the same time,
this limits expressiveness with respect to the stable model semantics, which for
disjunctive programs can express any query in the computational class Σp

2. On
the other hand, the well-founded semantics is three-valued. Having a third truth
value as first class citizen of the language is an advantage in several scenarios,
such as just in the case of object inheritance. Indeed, the undefined value is ex-
ploited in Frame Logic when inheritance conflicts can not be solved with a clear
truth value. Note, however, that the stable model semantics gives finer grained
details in situations in which the well-founded semantics leaves truth values un-
defined. The reader can find a thorough comparison of the two semantics in [44].
FAS answer sets should not be confused with the notion of stable object model given
in [107].
Since Frame Logic features a natural way for manipulating ontologies and web
data, it has been investigated for a long as suitable basis for representing and
reasoning on data on the web. The two main Frame Logic systems Flora and
Florid ([108, 67]) share with FAS programs the ability to work both on the level of
concepts and attributes and on instances.
Several Semantic Web initiatives point to Frame Logic as rule-based language
core, like SWSL ([4]) and WSML ([33]) which in its more powerful variants is
based on Frame Logic layered on top of Description Logic [31].
Frame Logic has been investigated as a logical way to provide reasoning capabil-
ity on top of RDF in the system TRIPLE ([94]) that has native support for contexts
(called models), URIs and namespaces. It is possible also to personalize semantics
either via rule axiomatization (e.g. one can simulate RDFS reasoning by means of
TRIPLE rules) or by means of interfacing external reasoners. The semantics of the
full TRIPLE language has not been clearly formalized: its positive, non-higher
order fragment coincides with Horn logic.
The possibility to define custom rule set for specifying the semantics which best
fits the concrete application context is also allowed in OWLIM ([63]).
Several works share some point in common with this thesis in the field of An-
swer Set Programming. An inspiring first definition of Frame Logic under sta-
ble model semantics can be found in [31]. The fragment considered focuses on
first order Frame Logic with class hierarchies, and do not explicitly axiomatize



structural inheritance with constructive semantics and single valued attributes.
Higher order reasoning is present in DLVHEX [39]. Contexts were investigated
under stable model semantics also in [82]. In this setting, context atoms are ex-
ploited to give meaning to a form of scoped negation, useful in Semantic Web
applications where data sources with complete knowledge need to be integrated
with sources expected to work under Open World Assumption. Similarly to our
work, multi-context systems of [21] are used in order to define hybrid system
with a logic of choice. Contexts can transfer knowledge each other by means of
bridge rules, while in our setting it is not necessary a clear distinction between
knowledge bases and bridge rules.
Nested attribute expressions behave like nested expressions as in [65], although
we do not allow the use of negation in the head of rules. A different approach
to non-monotonic inheritance in the context of stable model semantics was pro-
posed in [23], in which modules (which can be overridden each other) are associ-
ated with each object, and objects are partially sorted by an isa relation. The idea
of defining an object-oriented modeling language under stable model semantics
has been also subject of research in [90] and [89].

As a matter of future research, we plan to investigate thoroughly about the re-
lationship between Frame Logic under well-founded semantics and similar for-
malizations of non-monotonic inheritance under stable model semantics. Also,
the usage of arbitrarily nested molecules, including negation as failure, deserve
further investigation.
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