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Abstract

Neutron tomography is a well established technique to non-destructively investigate the
inner structure of a wide range of objects. The main disadvantages of this technique are
the time-consuming data acquisition, which generally requires several hours, and the
low signal to noise ratio of the acquired images. One way for decreasing the total scan
time is to reduce the number of radiographs. However, the Filtered Back-Projection,
which is the most widely used reconstruction method in neutron tomography, generates
low quality images affected by artifacts when the number of projections is limited
or the signal to noise ratio of the radiographs is low.

This doctoral thesis is focused on the comparative analysis of different reconstruction
techniques, aimed at finding the data processing procedures suitable for neutron tomog-
raphy that shorten the scan time without reduction of the reconstructed image quality.

At first the performance of the algebraic reconstruction methods were tested using
experimental neutron data and studied as a function of the number of projections and for
different setups of the imaging system. The reconstructed images were quantitatively
compared in terms of image quality indexes.

Subsequently, the recently introduced Neural Network Filtered Back-Projection
method was proposed in order to reduce the acquisition time during a neutron tomog-
raphy experiment. This is the first study which proposes and tests a machine learning
based reconstruction method for neutron tomography. The Neural Network Filtered
Back-Projection method was quantitatively compared to conventional reconstruction
algorithms used in neutron tomography.

Finally, we present NeuTomPy, a new Python package for tomographic data pro-
cessing and reconstruction. NeuTomPy is a cross-platform toolbox ready to work with
neutron data. The first release of NeuTomPy includes pre-processing algorithms, a
wide range of classical and state-of-the-art reconstruction methods and several image
quality indexes, in order to evaluate the reconstruction quality. This software is free
and open-source, hence researchers can freely use it and contribute to the project.



Sommario

La tomografia a neutroni è una tecnica ben consolidata per analizzare in maniera
non distruttiva la struttura interna di una vasta gamma di oggetti. Gli svantaggi
maggiori di questa tecnica sono la lenta acquisizione dati, che generalmente richiede
diverse ore, e il basso rapporto segnale-rumore delle immagini acquisite. Un modo
per ridurre il tempo totale di una scansione tomografica è quello di limitare il numero
di radiografie da acquisire. Tuttavia l’algoritmo Filtered Back-Projection, ossia il
metodo di ricostruzione maggiormente utilizzato in tomografia a neutroni, produce
delle immagini di bassa qualità e affette da artefatti se il numero di proiezioni è limitato
oppure se le radiografie sono caratterizzate da un basso rapporto segnale-rumore.

Questa tesi di dottorato è incentrata sull’analisi comparativa di diversi algoritmi di
ricostruzione tomografica ed è finalizzata a determinare le procedure di elaborazione
dati per la tomografia a neutroni che consentono di ridurre i tempi di acquisizione,
ma senza compromettere la qualità delle immagini ricostruite.

In primo luogo, le performance dei metodi di ricostruzione algebrici sono state
testate utilizzando dati sperimentali e studiate in funzione del numero di radiografie e
per diversi setup del sistema di imaging. Le immagini ricostruite sono state comparate
in maniera quantitativa utilizzando delle metriche di qualità delle immagini.

Successivamente, il recente metodo di ricostruzione Neural Network Filtered Back-
Projection è stato proposto per accelerare i tempi di acquisizione degli esperimenti
di tomografia a neutroni. Per la prima volta viene proposto e testato un metodo
basato sul machine learning per la ricostruzione di dati acquisiti con tomografia a
neutroni. Il metodo Neural Network Filtered Back-Projection è stato comparato in
maniera quantitativa con algoritmi di ricostruzione comunemente utilizzati.

Infine presentiamo NeuTomPy, un nuovo pacchetto Python per l’elaborazione e
ricostruzione di dati tomografici. NeuTomPy è un toolbox multi-piattaforma ed è
predisposto per elaborare dati acquisiti mediante tomografia a neutroni. Il primo
rilascio di NeuTomPy include algoritmi di pre-processing, una vasta gamma di metodi di
ricostruzione classici e allo stato dell’arte, e alcune metriche di qualità delle immagini
per valutare la qualità delle ricostruzioni. Questo software è open-source ed è rilasciato
gratuitamente, pertanto i ricercatori possono liberamente utilizzarlo e sono invitati
a contribuire al progetto.
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Introduction

Neutron tomography is a well established imaging technique which provides the
three-dimensional map of the neutron attenuation coefficients within an object. It
consists in acquiring radiographs of a sample, irradiated using a neutron beam,
for several view angles. The three-dimensional map of the neutron attenuation
coefficients is computed from the acquired radiographs by means of a mathematical
reconstruction algorithm. Generally, neutron imaging is particularly well suited to
study thick metals, hydrogenous materials and porous media, hence found application
in biology, agriculture, archaeology, materials science and engineering. Neutron imaging
provides complementary information to X-ray techniques and, in some cases, gives
incomparable results.

However, the major drawback of neutron tomography is the limited particle flux of
the existing neutron sources, several orders of magnitude lower compared to synchrotron
X-ray sources. It follows that long scan times - generally several hours, depending on the
sample and the desired spatial resolution - are required to perform neutron tomographic
scans and the acquired radiographs are typically characterised by low signal-to-noise
ratio. One way for decreasing the total scan time is to reduce the number of radiographs.
However, the Filtered Back-Projection, which is the most widely used reconstruction
method in neutron tomography, generates low quality images affected by artifacts when
the number of projections is limited or the signal-to-noise ratio of the radiographs is low.

This doctoral thesis is focused on the comparative analysis of different reconstruction
techniques, aimed at finding the data processing procedures suitable for neutron
tomography that shorten the scan time without reduction of the reconstructed image
quality. The aim of this work is also deploy a software for tomographic data processing,
suitable for neutron datasets, including a wide range of reconstruction methods and
image quality metrics for the quantitative evaluation of the reconstruction quality.

Tomographic reconstruction methods can be divided into two categories: analytical
and iterative. Analytical methods are based on a continuous model with the assumption
that noise-free projections are available for all view angles. However, this is clearly
not feasible in practice, hence analytical formulas are approximated by discretized
expressions. Consequently, the analytical methods, of which Filtered Back-Projection
is the most widely used example, provide accurate reconstructions if the number
of projections is sufficiently large and the signal-to-noise ratio of the radiographs is
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sufficiently high. If these conditions are not satisfied, analytical methods generate low
quality images affected by noise and artifacts. Nevertheless, such methods are widely
used, since they are computationally inexpensive and easy to handle.

Iterative reconstruction methods, unlike analytical ones, are based on a discrete
model of the reconstruction problem which can include prior knowledge concerning
the sample or the imaging system. Consequently, iterative methods outperform
analytical ones in terms of reconstructed image quality when under-sampled or noisy
datasets are available. Iterative reconstruction methods can be divided into two
classes: algebraic methods and statistical methods. Concerning the first category, the
reconstruction problem is described by a linear system which is solved by means of an
iterative algorithm. Statistical reconstruction algorithms are based on statistical models
describing the data acquisition process, hence the image reconstruction is fulfilled by
minimizing a loss function using an iterative algorithm. However, the computational
cost of such methods is several orders of magnitude higher than analytical methods.
With the advancement of computer technology, the computational capacities of current
workstations can efficiently support iterative methods, which have become a viable
and reliable tool for tomographic reconstruction, allowing a reduction of the radiation
dose without any loss of the reconstructed image quality. Iterative methods play
an important role in the clinical use of the X-ray tomography, the positron-emission
tomography (PET) and the single-photon emission computed tomography (SPECT).
Conversely, the adaptability of iterative methods to neutron tomography has not been
fully studied, hence their application in this field is still limited. In this work, we
quantitatively compare the main algebraic reconstruction methods and the Filtered
Back-Projection method in terms of several image quality indexes. The performance
of the algorithms were tested using experimental data and studied as a function of
the number of radiographs and for different setups of the imaging system.

In the last few years, new methods based on machine learning were proposed for
tomography in order to improve the quality of the reconstruction of under-sampled or
noisy datasets. In fact, nowadays machine learning based techniques have reached state-
of-the-art performance for several applications of the image processing, for example
classification, segmentation, deconvolution and image denoising. Such techniques
are promising alternatives to iterative reconstruction algorithms. In fact, machine
learning based methods ‘learn’ from data relevant information, called features, unlike
iterative reconstruction methods, which generally exploit prior knowledge moulded ad
hoc for the specific task. In this work we propose the Neural Network Filtered Back-
Projection method in order to shorten the acquisition time during a neutron tomography
experiment. This is the first study which proposes and tests a machine learning based
reconstruction method for neutron tomography. The Neural Network Filtered Back-
Projection method was quantitatively compared to classical reconstruction algorithms
in terms of reconstructed image quality and computation times.
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Finally, we present NeuTomPy, a new Python package for tomographic data pro-
cessing and reconstruction. This tool was developed in order to support the demand
of users to have freeware software suitable for neutron datasets, allowing to perform
and compare different reconstruction methods. The first release of NeuTomPy includes
pre-processing algorithms, a wide range of classical and state-of-the-art reconstruction
methods and several image quality indexes, in order to evaluate the reconstruction
quality. This software is free and open-source, hence researchers can freely use it
and contribute to the project.

This thesis is divided into six chapters.

In Chapter 1, after an historical overview of tomography, we give a detailed
description of the underlying physical model and the mathematical formulation of the
reconstruction problem. In particular, we focus our attention on the main analytical
and algebraic reconstruction methods.

The Chapter 2 is an overview on the neutron imaging. Initially we remind the history
of the technique, then we recall the fundamental physical properties of the neutron and
the production and moderation mechanisms involved in neutron sources for imaging
applications. Afterwards, we describe in detail the neutron tomography, focusing our
attention on the instrumentation, the data acquisition, the image processing and the
main issues of the technique. Finally, we present the IMAT beamline located at the
ISIS pulsed neutron spallation source (UK), where the tomographic data analysed
and discussed in this thesis were acquired.

In Chapter 3 we present a comparative study involving the main algebraic recon-
struction methods, described in Chapter 1, and the Filtered Back-Projection. For this
purpose, a phantom sample was analysed by means of neutron tomography at the
IMAT beamline and the acquired experimental data were used to test the performances
of the reconstruction methods as a function of the number of radiographs and for
different setups of the imaging system. The reconstructed images were quantitatively
compared in terms of image quality indexes and the benefits of algebraic methods
for the limited datasets are discussed.

In Chapter 4 we describe the mathematical formulation of the Neural Network
Filtered Back-Projection method and we present a comparative study involving such
method and classical reconstruction algorithms. We compared the reconstruction
techniques in terms of the image quality indexes and computation times, then we
demonstrated that Neural Network Filtered Back-Projection method allows to reduce
scan time, reconstruction time and data storage providing high image quality for sparse-
view neutron tomography. Finally, we give an overview of the potential applications
of such method in neutron tomography.
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In Chapter 5 we present the new toolbox for tomographic data reconstruction
called NeuTomPy, describing in detail the software architecture, the main functionalities
and some usage examples.

In Chapter 6 we summarize general conclusions about the research work presented
in this doctoral thesis.
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Introduzione

La tomografia a neutroni è una tecnica di imaging ben consolidata in grado di fornire
la mappa tridimensionale dei coefficienti di attenuazione dei neutroni all’interno di un
oggetto. Tale tecnica consiste nell’irraggiare un campione con un fascio di neutroni
acquisendo delle radiografie ad angolazioni diverse. La mappa tridimensionale dei
coefficienti di attenuazione dei neutroni per i materiali all’interno del campione viene
calcolata a partire dalle radiografie acquisite mediante un algoritmo matematico di
ricostruzione. In generale, le tecniche di imaging a neutroni sono particolarmente
adatte per analizzare metalli, materiali contenenti idrogeno e materiali porosi, pertanto
sono numerose le applicazione in scienze dei materiali, ingegneria, biologia, agricoltura
e archeologia. L’imaging a neutroni fornisce informazioni complementari alle tecniche
a raggi X e, in alcuni casi, offre risultati incomparabili.

La problematica maggiore della tomografia a neutroni è il modesto flusso di particelle
generato dalle moderne sorgenti di neutroni, il quale risulta essere diversi ordini di
grandezza inferiore al flusso delle sorgenti di raggi X. Di conseguenza, l’acquisizione
dati richiede molto tempo - generalmente diverse ore, a seconda del campione e
della risoluzione spaziale desiderata - e le radiografie prodotte sono caratterizzate da
un modesto rapporto segnale-rumore. Un modo per ridurre il tempo totale di una
scansione tomografica è quello di limitare il numero di radiografie da acquisire. Tuttavia
l’algoritmo Filtered Back-Projection, ossia il metodo di ricostruzione maggiormente
utilizzato in tomografia a neutroni, produce delle immagini di bassa qualità e affette da
artefatti se il numero di proiezioni è insufficiente oppure se il rapporto segnale-rumore
delle radiografie risulta modesto.

Questa tesi di dottorato è incentrata sull’analisi comparativa di diverse tecniche di
ricostruzione tomografica ed è finalizzata a determinare le procedure di elaborazione
dati per la tomografia a neutroni che consentono di ridurre i tempi di acquisizione, ma
senza compromettere la qualità delle immagini ricostruite. Questo lavoro comprende
inoltre lo sviluppo di un software per l’elaborazione e ricostruzione dati, particolarmente
adatto per dati di tomografia a neutroni, che include una vasta gamma di metodi di
ricostruzione e le principali metriche di qualità delle immagini usate in tomografia
per valutare quantitativamente la qualità delle ricostruzioni.

I metodi di ricostruzione tomografica vengono generalmente suddivisi in due
categorie: metodi analitici e metodi iterativi. I primi sono basati su un modello
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continuo in cui si assume che radiografie non affette da rumore siano ottenibili per
ogni angolazione. Poiché in pratica ciò non è realizzabile, le formule analitiche vengono
approssimate da espressioni discretizzate. Per questo motivo, l’algoritmo Filtered
Back-Projection e in generale gli altri metodi analitici producono ricostruzioni accurate
solo se il numero di radiografie e il rapporto segnale-rumore sono sufficientemente
elevati. Se queste condizioni non sono soddisfatte, i metodi analitici producono
delle immagini affette da rumore e artefatti. Nonostante ciò, i metodi analitici sono
largamente utilizzati, poiché sono molto efficienti dal punto di vista computazionale
e semplici da utilizzare.

I metodi iterativi sono basati invece su un modello discreto, che può includere
informazioni a priori del campione o del setup sperimentale, e pertanto sono più
accurati dei metodi analitici nel ricostruire datasets incompleti o affetti da rumore. I
metodi iterativi possono essere distinti in due classi: metodi algebrici e metodi statistici.
Nel caso dei metodi algebrici, il problema tomografico si traduce nella risoluzione di un
sistema lineare tramite un algoritmo iterativo. Invece, i metodi statistici sono basati su
modelli statistici che descrivono il processo di acquisizione dati e la ricostruzione delle
immagini avviene minimizzando una funzione di perdita mediante un algoritmo iterativo.
Il costo computazionale di tali metodi è in generale diversi ordini di grandezza più
alto dei metodi analitici. Grazie al progresso della tecnologia informatica, la capacità
computazionale delle attuali workstations è abbastanza elevata da supportare gli
algoritmi iterativi e li rende una valida alternativa ai metodi analitici, in grado di
ridurre la dose di radiazione senza deteriorare la qualità delle immagini ricostruite. I
metodi iterativi hanno assunto un ruolo importante nell’uso clinico della tomografia a
raggi X, della tomografia a emissione di positroni (PET) e della tomografia a emissione
di fotone singolo (SPECT). Invece l’adattabilità di tali metodi alla tomografia a
neutroni non è stata studiata completamente e le applicazioni in questo campo sono
rare. Pertanto in questo lavoro i principali algoritmi algebrici sono stati comparati
quantitativamente utilizzando delle metriche di qualità delle immagini. Le performance
degli algoritmi sono state testate utilizzando dati sperimentali e studiate in funzione
del numero di radiografie e per diversi setup del sistema di imaging.

Negli ultimi anni, nuovi metodi per tomografia basati sul machine learning sono
stati proposti per migliorare la qualità delle ricostruzioni di datasets incompleti o carat-
terizzati da basso rapporto segnale-rumore. Infatti, oggi le tecniche di machine learning
hanno raggiunto performance allo stato dell’arte in molte applicazioni dell’elaborazione
digitale delle immagini, per esempio nei problemi di classificazione, segmentazione,
deconvoluzione e riduzione del rumore. Tali tecniche risultano molto promettenti anche
per la tomografia e rappresentano una valida alternativa ai metodi di ricostruzione
iterativi. Infatti, i metodi basati sul machine learning ‘apprendono’ automaticamente
dai dati informazioni caratteristiche (features, in inglese), a differenza degli algoritmi
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di ricostruzione iterativi, in cui informazioni a priori vengono modellate appositamente
per la specifica applicazione. In questo lavoro proponiamo il metodo di ricostruzione
Neural Network Filtered Back-Projection per ridurre i tempi di acquisizione degli
esperimenti di tomografia a neutroni. Per la prima volta viene proposto e testato
un metodo basato sul machine learning per la ricostruzione di dati acquisiti con
tomografia a neutroni. Il metodo Neural Network Filtered Back-Projection è stato
comparato in maniera quantitativa con classici algoritmi di ricostruzione in termini
di qualità delle immagini e di tempo computazionale.

Infine, presentiamo NeuTomPy, un nuovo pacchetto Python per l’elaborazione e
ricostruzione di dati tomografici. Questo software è stato sviluppato per soddisfare la
richiesta di programmi gratuiti e multi-piattaforma, adatti per tomografia a neutroni
e in grado di eseguire e comparare diversi metodi di ricostruzione. Il primo rilascio
di NeuTomPy include algoritmi di pre-processing, una vasta gamma di metodi di
ricostruzione classici e allo stato dell’arte, e alcune metriche di qualità delle immagini,
per valutare la qualità delle ricostruzioni. Questo software è open-source ed è rilasciato
gratuitamente, pertanto i ricercatori possono liberamente utilizzarlo e sono invitati
a contribuire al progetto.

Questa tesi si articola in sei capitoli.

Nel Capitolo 1, dopo aver ripercorso i principali momenti storici della tomografia,
descriviamo in dettaglio le basi fisiche e matematiche della tecnica. In particolare,
concentreremo l’attenzione sui principali algoritmi di ricostruzione analitici e algebrici.

Il Capitolo 2 è dedicato all’imaging a neutroni. Dopo aver ricordato la storia
della tecnica, richiamiamo brevemente le proprietà fisiche fondamentali dei neutroni
e i meccanismi di produzione e moderazione utilizzati nelle sorgenti di neutroni
per applicazioni di imaging. Successivamente presentiamo la tomografia a neutroni,
descrivendo in dettaglio la strumentazione, l’acquisizione dati, l’elaborazione delle
immagini e le principali problematiche della tecnica. Infine descriviamo la beamline
IMAT situata presso la sorgente di neutroni ISIS (Regno Unito), una nuovo labora-
torio dedicato all’imaging a neutroni dove sono stati acquisiti i dati sperimentali
presentati in questa tesi.

Nel Capitolo 3 presentiamo uno studio comparativo degli algoritmi di ricostruzione
algebrici, descritti nel Capitolo 1, e del metodo Filtered Back-Projection. A tale scopo
un fantoccio è stato scansionato tramite tomografia a neutroni presso la beamline
IMAT e i dati sperimentali sono stati utilizzati per testare gli algoritmi di ricostruzione
in funzione del numero di radiografie e per diversi setup del sistema di acquisizione.
Le immagini ricostruite sono state comparate quantitativamente utilizzando delle
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metriche di qualità delle immagini e i vantaggi dei metodi algebrici per la tomografia
a neutroni sono stati discussi.

Nel Capitolo 4 descriviamo le basi matematiche del metodo di ricostruzione Neural
Network Filtered Back-Projection e presentiamo uno studio comparativo che coinvolge
tale metodo e gli algoritmi di ricostruzione classici. Dopo aver confrontato le tecniche
in termini di qualità delle immagini e tempo computazionale, noi dimostriamo che
il metodo Neural Network Filtered Back-Projection consente di ridurre i tempi di
scansione e produce, in tempi più brevi rispetto agli algoritmi iterativi, ricostruzioni
di buona qualità per datasets incompleti. Infine, mostriamo una panoramica sulle
possibili applicazioni della tecnica in tomografia a neutroni.

Nel Capitolo 5 presentiamo il nuovo software per ricostruzione tomografica NeuTomPy,
mostrandone l’architettura, le principali funzionalità e alcuni esempi di utilizzo.

Nel Capitolo 6 riassumiamo le conclusioni del lavoro di ricerca presentato in
questa tesi di dottorato.
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Young man, in mathematics you don’t understand things.
You just get used to them.

— John von Neumann
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In this chapter, we give an introduction to tomography. We cover the main historical

developments of the technique, the underlying physical model and the mathematical

formulation of the reconstruction problem. We describe the two main categories of

CT reconstruction techniques: analytical and algebraic methods. Finally, we present

a theoretical description of several standard reconstruction methods.
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1. Computed Tomography

1.1 Introduction and historical overview

Computed Tomography (CT) is a powerful non-destructive imaging technique to

visualize the inner structure of an objects. CT consists in collecting transmission

or reflection data by irradiating an object from different directions with a kind of

penetrating radiation probe. Fundamentally, the tomographic imaging problem relies

on reconstructing an image from its projections, i.e. line integrals of the image evaluated

for certain directions. The CT reconstruction task is performed through a computer

implementation of a mathematical reconstruction algorithm. The X-ray CT has

revolutionized the diagnostic medicine, since it has allowed doctors to visualize the

internal organs. However, CT is widely used in several fields, such as astrophysics,

archaeology, geophysics, material science and biology.

This thesis focuses on transmission Neutron Tomography (NT), where neutrons are

used as penetrating waves and the transmitted neutrons are measured by a detector.

The reconstructed images in NT represent the three-dimensional map of the linear

neutron attenuation coefficients within an object. NT relies on the same algorithms,

some of the scanning geometries and procedures involved in X-ray CT. However, NT

has its peculiarities which are discussed in Chapter 2.

The history of tomography is closely linked to the development of X-ray techniques.

X-radiation was discovered by the German physicist Wilhelm Röntgen (Figure 1.1a) in

1895, which received for this achievement the first Nobel Prize in Physics in 1901. At

the time, it was not possible visualize a particular structure without considering the

attenuation caused by the surrounding materials along the same path. The overlap

of the structures is clearly visible in the famous radiograph representing the hand

of Röntgen’s wife (Figure 1.1b): the shadow of the ring overlaps the bony structure

of the hand. The necessity to remove the impact of the overlapping structures led

to the development of tomography.

The solution to the mathematical problem of how to reconstruct a function of two

variables from its projections was found by the Austrian mathematician Johann Radon

(1887-1956) in 1917 [1]. The importance of such result as a mathematical support
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1. Computed Tomography

(a) (b)

Figure 1.1: (a) Wilhelm Röntgen (1845 -1923). (b) Radiograph of the hand of Anna Bertha
Ludwig, Röntgen’s wife.

for tomography was realized only much later. In fact, the problem was presented as

a purely mathematical subject and no practical applications were proposed at the

time. Furthermore, the paper was written in German language, which hindered a

wide diffusion of the achievement. Only since the 1980s, two English translations

have been made available [2, 3]. In 1956, Ronal Bracewell reconstructs a map of solar

radiation from a set of radiation measurements across the solar surface [4]. It was

the first practical application of tomography. The development of medical X-ray CT

is generally credited to two physicists: Godfrey Hounsfield (1919-2004, Figure 1.2a)

and Allan Cormack (1924-1998, Figure 1.2b) . The first CT scanner was built by the

company EMI (Electric and Musical Industries Ltd.) in 1972. It is often claimed that

revenues from the sales of The Beatles records helped funding the development of

the first CT scanner at EMI, however this has recently been disputed [5]. For their

pioneer work, Cormack and Hounsfield shared the Nobel Prize in Physiology and

Medicine in 1979. A more detailed overview of the tomography history is reported

in the books by Deans [3], Buzug [6] and Shaw [7].
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1. Computed Tomography

(a) (b)

Figure 1.2: Inventors of X-ray CT: (a) Godfrey Hounsfield and (b) Allan Cormack.

1.2 Underlying physics

As already mentioned, the tomographic imaging is based on the image reconstruction

from projections. In attenuation-based tomography the projections are obtained by

radiating penetrating waves on a sample and measuring the transmitted intensity

of the beam behind the sample. The goal of attenuation-based tomography is to

determine the three-dimensional map of the linear attenuation coefficient within a

sample. The linear attenuation coefficient (µT ) is a characteristic of the material within

the sample and it depends on the energy of the incoming beam (E). Furthermore,

it can be expressed as sum of the absorption coefficient (µa) and the scattering

coefficient (µs) for the coordinate r, i.e.:

µT (r, E) = µa(r, E) + µs(r, E) (1.1)

The attenuation coefficient has physical dimension [µT ] = [L−1] and generally is

expressed in cm−1. Assuming that the sample contains several attenuating species

(elements or even different isotopes, in the case of NT) the equation Eq. 1.1 can
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1. Computed Tomography

be expressed as follows:

µT (r, E) =
N∑
i=1

σa,i(E)Ni(r) +
N∑
i=1

σs,i(E)Ni(r) =

=
N∑
i=1

[σa,i(E) + σs,i(E)]Ni(r) =
N∑
i=1

σT,i(E)Ni(r)
(1.2)

where Ni(r) is the number density of the i-th specie at the coordinate r and σa,i, σs,i,

σT,i are the associated microscopic absorption, scattering and total cross section, respec-

tively.

Figure 1.3: Illustration of the attenuation of an ideal beam by a slab.

Let’s consider a collimated and mono-energetic beam which crosses a sample

and a reference system where the propagation direction of the beam matches with

the z-axis direction (Figure 1.3). The intensity of the beam component affected by

absorption or scattering interaction is proportional to the intensity of the incoming

beam and the extent of the attenuation domain. This statement can be expressed

as the following differential expression:

dI(z) = −I(z)µT (z) dz (1.3)

hence the linear attenuation coefficient µT is a proportionality constant (note that the x,

y dependence is not expressed but is implicit in Eq. 1.3 and in the following equations).

The minus sign in Eq. 1.3 implies a decrease in the beam intensity per unit positive

increment dz. By rearranging the Eq. 1.3 we obtain a first-order differential equation:

dI
I(z) = −µT (z) dz (1.4)

5
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that we want to solve with the condition I(z = 0) = I0. The integration of Eq. 1.4

from s = 0 (position of the source) to s = z leads to the following formula:

I(z) = I0e
−
∫ z

0 µT (s)ds (1.5)

which is known as the Beer-Lambert law. The beam intensity I(z) consists of the

uncollided component which have not experienced either scattering or absorption

interaction. We rename this component as Iunc(z). However the intensity recorded

by a detector placed behind the sample measures also an additional contribution due

to the scattering, hence it can be expressed by the following sum:

IT (z) = Iunc(z) + Iscat(z) (1.6)

Now we define the build-up function by

B(µs, z) = IT (z)
Iunc(z)

(1.7)

then the scattered component can be incorporated into the total intensity, by combining

Eq. 1.7 with Eq. 1.5, as

IT (x, y, z) = I0(x, y)B(µs, x, y, z)e−
∫ z

0 µT (x,y,s)ds. (1.8)

Note that the build-up factor is a value B ≥ 1. It depends on the material composition

and the specific geometry of the experiment, hence it is difficult to predict under

typical experimental conditions. In the case of NT, the build-up is relevant for species

with high scattering cross section, e.g. hydrogen compounds and elements such as

silicon, nickel, copper and other highly scattering metals, and should be considered

in these cases as a source of errors in quantitative analysis.

Up until now we assumed that the incoming beam is mono-energetic and the

attenuation coefficient is specific for this wavelength. This assumption is acceptable

for X-ray radiation produced by a synchrotron. In NT and in conventional medical CT

scanner the source generates a beam characterized by a broader energy spectrum. In

these cases the Beer-Lambert law (Eq. 1.5) is not valid, but we can modify it as follows:

ĨT (E, x, y, z) = Ĩ0(E, x, y)B(E,µs, x, y, z)e−
∫ z

0 µT (E,x,y,s)ds (1.9)

6



1. Computed Tomography

where ĨT and Ĩ0 are the spectral intensity of the incoming and outgoing beam

respectively. Hence the total intensity measured behind the sample is:

ĨT (x, y, z) =
∫ Emax

0
Ĩ0(E′, x, y)B(E′, µs, x, y, z)e−

∫ z
0 µT (E′,x,y,s)ds dE′ (1.10)

This is a more accurate model for a poli-energetic beam, but in practice Beer-Lambert’

s law is often used despite is conceptually wrong. In the following discussion we assume

that the absorption is the dominant process and Is = 0, hence B ' 1. In practice, the

intensity of the generated beam and the signal recorded by the detector is affected by

statistical fluctuation. It can be shown that ideally the detector counts follow Poisson

distribution. However, related phenomena, such as scattering, beam-hardening and

electronic noise, leads to non-Poissonian distribution.

1.3 The mathematics of Computed Tomography

In this section we present the mathematical foundations underlying the data acquisition

and reconstruction in tomography. These arguments have been described in detail

in the main textbooks about CT [6, 8, 9]. The scanned object is considered to

comprise nz slices with thickness ∆z, which lie in planes parallel to the xy-plane and

perpendicular to the z-axis. Our aim is to reconstruct the 2D map of the attenuation

coefficient µ(x, y) for each slice from projection data. Each cross-section of the sample

is moulded mathematically as a bounded and finite function defined in a given region

and zero outside. In our dissertation we consider the parallel beam geometry, i.e.

the projections are acquired for different angle views using a beam characterized

by parallel rays. This geometry is shown in Figure 1.4. We define two Cartesian

coordinate systems (x, y) and (η, ξ), which differ by a rotation of angle θ and share

the same origin O as shown in Figure 1.5.

In our description we regard (x, y) as the fixed sample system and (η, ξ) as the

rotated detector system. The choice of reference system follows the geometry of

medical CT scanner, however it can be used also when the sample is rotated and

the beam and the detector are fixed with respect to the laboratory reference system.

7



1. Computed Tomography

Figure 1.4: Schematic overview of the parallel beam geometry. The projections are acquired
by the detector D along parallel lines for different view angles.

Figure 1.5: The coordinate systems (x, y) and (η, ξ). A projection line Lθ,ξ̄ is drawn for a
particular value detector coordinate ξ̄ and view angle θ.

8



1. Computed Tomography

The unit vectors nξ and nη span the rotating (η, ξ) frame and they are defined

respect the (x, y) coordinate system as:

nξ =
[
cos θ
sin θ

]
(1.12a) nη =

[
− sin θ
cos θ

]
(1.12b) (1.12)

hence the coordinates of a point r can be transformed from (x, y) to (η, ξ) frames,

and vice versa, by the following expressions:{
ξ = r · nξ = x cos θ + y sin θ
η = r · nη = −x sin θ + y cos θ

(1.13)

{
x = r · nx = ξ cos θ − η sin θ
y = r · ny = ξ sin θ + η cos θ .

(1.14)

The line parallel to the η-axis at rotation angle θ and crossing the position of

a detector element ξ is described by:

Lθ,ξ =
{

r ∈ R2|r · nξ = x cos θ + y sin θ = ξ
}

(1.15)

The line integral pθ(ξ) of the function µ(x, y) over the line Lθ,ξ is given by:

pθ(ξ) =
∫

r∈Lθ,ξ
µ(r) dr (1.16)

and it can be related to the transmitted intensity Iθ(ξ) and the intensity of the incident

beam I0 by using the Beer-Lambert’s law (Eq. 1.5):∫
r∈Lθ,ξ

µ(r) dr = − log
(
Iθ(ξ)
I0

)
. (1.17)

The projection integral can be written also in the following forms using the Dirac

Delta function δ(·):

pθ(ξ) =
∫
R2
µ(r)δ(nξ · r − ξ) dr =

=
∫ ∞
−∞

∫ ∞
−∞

µ(x, y)δ(x cos θ + y sin θ − ξ) dx dy =

=
∫ ∞
−∞

µ(ξ cos θ − η sin θ, ξ sin θ + η cos θ) dη

(1.18)

note that the last identity is obtained by substitution of Eq. 1.14. From the math-

ematical point of view, the projection pθ(ξ) represents the Radon Transform of the

function µ(x, y), which is denotes by:

pθ(ξ) = (R2µ)(θ, ξ) (1.19)

9



1. Computed Tomography

object image sinogram

Figure 1.6: (left) A simple phantom image and (right) the corresponding sinogram.

and the Eq. 1.16 and Eq. 1.18 are equivalent expression to compute it. Typically,

the projections values pθ(ξ) are arranged in a Cartesian (ξ, θ) diagram. In this

representation the projection values of points that lie outside the rotation centre produce

a sinusoidal trace. For this reason, this graphical representation is often called sinogram.

Conversely the rotation centre tracks a straight line. We provide an illustration of this

behaviour in Figure 1.6, where a phantom image and the related sinogram are shown.

An important relation between the Radon transform (i.e. projections data) and

the function µ(x, y) is provided by the Fourier Slice theorem, which is the underlying

principle of the analytical reconstruction methods. We describe and demonstrate

it in the following section.

1.3.1 Fourier slice theorem

The Fourier Slice Theorem states that the one-dimensional Fourier Transform (FT)

Pθ(q) of a parallel projection pθ(ξ) of a function µ(x, y) taken at angle θ gives a slice

of the two-dimensional FT F (u, v) subtending an angle θ with the u-axis.

To demonstrate this statement, we start from the 2D FT of the function µ(x, y):

M(u, v) =
∫ ∞
−∞

∫ ∞
−∞

µ(x, y)e−2πi(xu+yv) dx dy (1.20)

which using the polar coordinates (q, θ){
u = q cos θ
v = q sin θ

(1.21)

10
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can be written in this form:

M(u, v)
∣∣∣∣u=q cos θ
v=q sin θ

=
∫ ∞
−∞

∫ ∞
−∞

µ(x, y)e−2πi(xq cos θ+yq sin θ) dx dy . (1.22)

We can change the variable x and y by performing an arbitrary rotation using the

Eq. 1.14 (note that the Jacobian determinant is 1 for each rotation angle). Hence

we can choose the particular angle θ to obtain the new variables ξ and η, then the

FT of µ(x, y) can be written as follows:

M(u, v)
∣∣∣∣u=q cos θ
v=q sin θ

=
∫ ∞
−∞

∫ ∞
−∞

µ(ξ cos θ − η sin θ, ξ sin θ + η cos θ)×

× e−2πi((ξ cos θ−η sin θ)q cos θ+(ξ sin θ+η cos θ)q sin θ) dη dξ =

=
∫ ∞
−∞

∫ ∞
−∞

µ(ξ cos θ − η sin θ, ξ sin θ + η cos θ)e−2πiqξ dη dξ .

(1.23)

The function e−2πiqξ does not depends on the variable η, hence we can separate

the integration in this way:

M(u, v)
∣∣∣∣u=q cos θ
v=q sin θ

=
∫ ∞
−∞

[∫ ∞
−∞

µ(ξ cos θ − η sin θ, ξ sin θ + η cos θ) dη
]
e−2πiqξ dξ .

(1.24)

Now it is clear from Eq. 1.18 that the inner integral is the projection pθ(ξ):

M(u, v)
∣∣∣∣u=q cos θ
v=q sin θ

=
∫ ∞
−∞

pθ(ξ)e−2πiqξ dξ (1.25)

and finally the 1D FT of pθ(ξ) is recognized at the right-hand side, hence we conclude

that:

M(q cos θ, q sin θ) = Pθ(q) (1.26)

which is the theorem statement. Consequently, the FT of a parallel projection of

an object obtained at angle θ equals a line of the two-dimensional FT of the object

taken at the same angle, as shown schematically in Figure 1.7. The Fourier Slice

theorem is the most important result for the analytical reconstruction methods, in

particular it is the core of the Fourier-based methods.
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Figure 1.7: A schematic representation of the Fourier Slice Theorem. It relates the 1D FT of
a projection at the angle θ to the 2D FT of the object along a radial line with direction θ.

1.3.2 Analytical reconstruction methods

The analytical methods, also known as direct methods, are the most popular recon-

struction techniques for large scale tomography data. Analytical methods are based

on a continuous representation of the problem with the assumption that noise-free

projections are available for all view angles, which is clearly not possible in practice.

Hence analytical formulas are approximated by discretized expressions. Analytical

methods are generally computationally efficient and produce accurate reconstruction

only if the number of projections and the signal-to-noise ratio are sufficiently high.

When these conditions are not satisfied, direct methods produce image affected by

artifacts, which make the analysis a challenging or impracticable task.

The most popular reconstruction algorithms which belongs to this category are the

Filtered Back-Projection (FBP) method [6, 8, 9] and the gridrec method [10, 11].

12
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(a) (b)

Figure 1.8: (a) The sampling of the function Pθ(q) on a polar grid and (b) the sampling of
the function M(u, v) on a Cartesian grid, required for direct Fourier reconstruction.

1.3.2.1 Fourier-based methods

Fourier-based reconstruction methods arise straightforwardly from the Fourier Slice

theorem. The algorithms belong to the class reflect the following procedure to

reconstruct µ(x, y):

1. Compute the 1D FT Pθ(q) of the projections obtained for a finite set of angles.

2. Arrange all the values of Pθ(q) on a polar grid as shown in Figure 1.8a. In order

to recover the function µ(x, y) using an FFT algorithm, the 2D FT F (u, v) is

computed on a Cartesian grid (Figure 1.8b) from the polar configuration by

means of an appropriate interpolation.

3. Compute the inverse FT of M(u, v) to recover µ(x, y).

Since the density of spectral data on a polar grid decrease as one gets further

away from the centre, the interpolation error also becomes larger. This implies that

there is a greater error in the computation of high frequency components of an image

than in low frequency ones. Such effect leads to a degradation of image quality, since

high frequencies represent the image details.

13
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A common Fourier-based reconstruction method is gridrec [10, 11]. It is more

computationally efficient than the FBP method and provides similar reconstructed

image quality when enough projections are available.

1.3.2.2 Filtered Back-Projection (FBP)

The FBP algorithm is the most used reconstruction method in CT. It can be derived

as a clever result of a particular coordinate transformation. As a first step we derive a

polar version of the 2D inverse FT via the Eq. 1.21 and the Fourier Slice Theorem:

µ(x, y) =
∫ ∞
−∞

∫ ∞
−∞

M(u, v)e2πi(ux+yv) dudv =
∫ π

0

∫ ∞
−∞

Pθ(q)|q|e2πiqξ dq dθ (1.27)

then we define:

p̃θ(ξ) =
∫ ∞
−∞

Pθ(q)|q|e2πiqξ dq (1.28)

therefore Eq. 1.27 becomes:

µ(x, y) =
∫ π

0
p̃θ(ξ) dθ . (1.29)

where ξ = x cos θ + y sin θ, which represents detector coordinate. We conclude that

the function µ(x, y) can be reconstructed by summing together the functions p̃θ(ξ)

along their direction. This task is called back-projection. Furthermore p̃θ(ξ) is actually

the high-pass filtered signal obtained from pθ(ξ) with the filter |q| in the frequency

domain. This explains the name filtered back-projection.

Now we describe the technical implementation of the FBP method exploitable in

computer programs for CT reconstruction. Since a real projection signal is discrete

and also spatially limited, due to the limited number of detectors, the spectrum of

the signal is repeated periodically as a result of the sampling process. The Nyquist-

Shannon theorem states that a band-limited signal can be reconstructed without loss

of information if the sampling interval satisfies the condition ∆ξ ≤ 1/2qmax, where

qmax is the highest frequency in the signal spectrum. In practice the energy contained

in the Fourier transform components above a certain frequency is negligible, so for

14
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all practical purposes the projections may be considered to be band-limited. Hence

the projections can be sampled at intervals ∆ξ = 1/2qmax :

pθ(j∆ξ) with j = −nd2 , . . . , 0, . . . ,
nd
2 − 1 (1.30)

where nd is the number of sampling points, i.e. the number of detector elements.

Furthermore, we assume that the projections are equal zero outside the detector,

then the FT Pθ(q) can be discretized by

Pθ(k∆q) = ∆ξ
nd/2−1∑
j=−nd/2

pθ(j∆ξ)e−2πi(kj/nd) (1.31)

where

∆q = 2qmax
nd

. (1.32)

Since we assumed that the projections are band-limited the integral in Eq. 1.28

can be written as:

p̃θ(ξ) '
∫ qmax

−qmax
Pθ(q)|q|e2πiqξ dq (1.33)

hence the filtered projection p̃θ(ξ) can be discretized and approximated by the Riemann

sum:

p̃θ(j∆ξ) ' ∆q
k=nd/2∑
k=−nd/2

Pθ(k∆q)|k∆q|e2πi(kj/nd) . (1.34)

Finally, the image to reconstruct is given from the discrete approximation of the integral

µ(x, y) =
∫ π

0
p̃θ(ξ) dθ '

= π

Nproj

Nproj∑
i=1

p̃θi(x cos θi + y sin θi)
(1.35)

where θi for i = 1, 2, . . . , N are the angles of the measured projections. Note that

the value of x cos θi + y sin θi in Eq. 1.35 may not correspond to the values j∆ξ

for which p̃θi is determined via Eq. 1.34. Hence p̃θi is approximated by a suitable

interpolation; often linear interpolation is adequate.

In practice, it is not always useful to multiply frequency component of the projection

with a linearly increasing function (|q|), since the linear weighting in the frequency

domain increases the noise. Therefore the reconstructed images may finally be affected
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Figure 1.9: The main window functions used in FBP implementation, represented in the
frequency domain. The sampling interval is set ∆ξ = 1.

by strong noise. Superior results are usually obtained if one multiplies the filtered

projection by a suitable window function. The purpose of the window function is

to de-emphasize high frequencies which in many cases represent mostly observation

noise. Consequently, the Eq. 1.34 can be modified taking into account the window

function W in the frequency domain:

p̃θ(j∆ξ) ' ∆q
k=nd/2∑
k=−nd/2

Pθ(k∆q)|k∆q|W (k∆q)e2πi(kj/nd) . (1.36)

There are several proposals concerning the analytic form of the window function. Here

we mention some of them: Ramachandran-Lakshminarayanan (ram-lak), Shepp-Logan,

cosine, Hamming, Hanning, Blackman and Parzen window functions. In Figure 1.9

we show these window function in the frequency domain. For brevity, we omit the

related expressions in the spatial and frequency domain; a detailed description of

such functions is provided by Buzug [6].

Minimum number of projections

How many projections are necessary to obtain accurate reconstruction with the FBP

method? To answer this question, we consider the arrangement of spectral data points,
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Figure 1.10: Geometrical arrangement of the sampling points in the frequency domain for
projections uniformly distributed over 180◦.

obtained via the Fourier Slice Theorem, represented in Figure 1.10. We note that

distance between two consecutive sampling points moving in the azimuthal direction

increases towards higher frequencies. The largest distance between samples in the

azimuthal direction ∆l is found at the radius qmax :

∆l = qmax∆θ (1.37)

where ∆θ is the angular interval between two radial lines, therefore, if Nproj projections

are uniformly distributed over 180◦, it is given by:

∆θ = π

Nproj
(1.38)

hence

∆l = πqmax
Nproj

. (1.39)

Conversely, the distance between two consecutive point in the radial direction (∆q)

is constant and it is given by:

∆q = 2qmax
nd

. (1.40)

An adequate sampling is obtained if the distance between points in azimuthal and

radial direction are almost the same, which means

∆q ' ∆l . (1.41)
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By substituting Eq. 1.40 and Eq. 1.39 in the last expression we obtain:

2qmax
nd

' πqmax
Nproj

(1.42)

which reduces to

Nproj '
π

2nd (1.43)

which implies that the number of projections should be roughly the same as the number

of sampling points. When an insufficient number of projection is available the FBP

produce streak artifacts due to the aliasing, known as Moiré patterns.

1.3.3 Algebraic reconstruction methods

Algebraic reconstruction methods, unlike analytical ones, are based on a fully discrete

formulation of the tomographic reconstruction problem. In this approach the unknown

continuous function is approximated by a linear combination of a finite number of

basis functions. In our case, the map of the attenuation coefficients is approximated by

µ(r) '
N∑
i=1

xibi(r − ri) (1.44)

where N is the number of basis functions bi(r) and xi with i = {1, . . . , N} are real

coefficients. Note that each basis function bi(r) is centred at position ri. Once the

basis function is fixed, µ(r) is completely described by the vector:

x = (x1, . . . , xN ) ∈ RN . (1.45)

The most common basis functions in imaging application are pixels, i.e. two-dimensional

rectangular functions. In this case, each basis function is defined to have value 1

within a square domain and value 0 elsewhere. Clearly, in this representation xj

represents the average attenuation coefficient value inside the j-th pixel. Generally

the function is approximated considering a square grid of n × n pixels, hence the

dimension of the vector x is N = n2.

Furthermore, the acquired projections represents a finite set of measurements

that can be described by the vector:

p = (p1, . . . , pM ) ∈ RM with M = Nprojnd (1.46)
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where Nproj is the number of projection angles and nd the number of detector elements.

Using these definitions, the tomographic acquisition process can be described as

a system of linear equations:

N∑
j=1

aijxj = pi for i = 1, . . . ,M (1.47)

where aij is the integral along the i-th line of the j-th basis function. The last

equations can be written in the matrix form:

Ax = p (1.48)

where A is aM×N matrix, generally called projection matrix. The multiplication Ax is

called forward projection of x, while the multiplication ATp is called backprojection of p.

The goal of CT is to solve Ax = p for x. However, the inverse of A does not exist

generally. However, the problem can be solved in the least-square sense:

xLS = arg min
x

||Ax− p||22 = (ATA)−1ATp (1.49)

where we used the Euclidean norm ||x||2 = (x · x)1/2. Unfortunately, the matrix A is

so large that the solution in Eq. 1.49 is not feasible to compute on existing computers,

even for reconstruction problem of modest size. For example, for an image of size

1000×1000 pixels and 1000 projections with 1000 detector elements we obtain N = 106

and M = 106, hence the size of the matrix A is 106 × 106. Such matrix can not be

stored in computer memory. Hence iterative methods were used to solve approximate

solution of Eq. 1.48. The projection operations can be computed on-the-fly using

graphic processor units (GPUs), which reduce reconstruction times efficiently.

Since algebraic methods are based on a model of the tomographic reconstruction

problem which includes a finite number of projection, unlike analytical methods

assuming infinite number of projections, they tend to handle reconstruction from a

limited number of projections better than direct methods. Furthermore, the effect of

noise in projection data can be limited in most algebraic methods by stopping the

iterative process early, which is a form of regularization.
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One disadvantage of algebraic reconstruction methods is their high computational

cost. Generally, the reconstruction of a full 3D volume computed on GPU using

iterative methods requires some hours, depending on the number of iterations and the

size of dataset. Conversely, the FBP method is able to reconstruct the same dataset

with similar hardware in few minutes. For this reason, the application of algebraic

methods to large-scale tomographic data is still limited.

In the following sections we describe the main algebraic reconstruction algorithms:

the Algebraic Reconstruction Technique (ART) [12], Simultaneous Algebraic Recon-

struction Technique (SART) [13], Simultaneous Iterative Reconstruction Technique

(SIRT) [14, 15], and Conjugate Gradient Least Squares (CGLS) [16].

1.3.3.1 Algebraic Reconstruction Technique (ART)

ART was proposed to solve the image reconstruction problem by Gordon et al. [12]

in 1970 but the same algorithm was known as Kaczmarz method [17] in numerical

linear algebra since 1937. The ART was the method used by Hounsfield in 1972

for the first CT reconstruction.

The iterative procedure of the ART is based on the following update equation:

x(k+1) = x(k) + λk
pi − (ai · x(k))
||ai||22

ai with i = (k mod M) + 1, k ≥ 0 (1.50)

where λk is is a real number, called relaxation parameter, ai is the i-th row of

the projection matrix A and ||x||2 = (x · x)1/2 is the Euclidean norm. The term

(ai · x(k)) is the forward projection of the image for the i-th ray, the difference in

the numerator is the projection error, that is back-projected by multiplying the i-th

row of the projection matrix A.

The method can be explained through a simple geometrical description. The

image to reconstruct can be represented by (x1, x2, . . . , xN ) which is a point in the N-

dimensional space. Conversely each equation of the linear system in Eq. 1.47 represents

an hyperplane. If a unique solution of the system exists, the intersection of all the

hyperplanes is a single point representing the solution. To illustrate this concept

we consider the case M = 2 and N = 2, which corresponds to solve a system of
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Figure 1.11: Illustration of the Kaczmarz method for a system of two linear equation with
two unknowns.

two linear equation with 2 unknown variables. A geometrical representation of the

problem is given in Figure 1.11. The computational procedure of Eq. 1.59 consists of

choose an initial point, project it on the first line, projecting the resulting point on

the second line and so forth. If a solution exists then sequence of point will converge

to the line intersection which is the solution.

It is shown by Herman [18] that if the Eq. 1.48 has a solution at all and x(0) is

selected to be the vector zero, using λk = 1 then the sequence x(0), x(1), . . . converges

to the least-norm solution, i.e.:

x̃ = arg min
x

||x||2, s.t. Ax = p (1.51)

The optimal value of the relaxation parameter depends on the iteration step, the

sinogram values and the sampling parameters. However, a small shift away from

the value 1 can increase the convergence speed.

1.3.3.2 Simultaneous Iterative Reconstruction Technique (SIRT)

The procedure of SIRT is similar to ART but with one fundamental difference. In SIRT

the image vector x(k) is updated using simultaneously all equations, i.e. by performing

a full forward projection, whereas in ART only a single row of the projection matrix
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is used for each step to update the image. Several variants of SIRT exist but all of

them are described by the following iterative formula:

x(k+1) = x(k) + λCATR(p−Ax(k)) (1.52)

where λ is a relaxation parameter, R and C are symmetric positive definite matrix.

The SIRT variants available in literature differs in the choice of these matrices.

In our discussion we consider the SIRT version where R and C are the diag-

onal matrix given by:

rkk =
(

N∑
l=1

akl

)−1

(1.53)

cll =
(

M∑
k=1

akl

)−1

(1.54)

hence the diagonal elements of R are the inverse row sums of the matrix A and the

the diagonal elements of C are the inverse column sums of the matrix A. It has

been shown [19, 20] that such algorithm converges to a solution of the weighted

least-squares problem:

x̃ = arg min
x

||Ax− p||2R (1.55)

where it is used the norm ||x||R =
(
xTRx

)1/2
.

The SIRT method can be interpreted as a maximum likelihood algorithm. If we

assume that projections can be described as Gaussian random variables, the likelihood

function can be expressed as follows:

P (x) = C ·
∏
i

exp


−
(∑

j aijxj − pi
)2

2σ2
i

 (1.56)

where C is a normalization constant and σi the standard deviation of the i-th projection.

Taking the logarithm of the joint probability density function in Eq. 1.56, the original

problem reduce to resolve the maximum log-likelihood problem:

arg max
x

∑
i

−

(∑
j aijxj − pi

)2

2σ2
i

(1.57)
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that can be written in matrix form:

arg min
x

(Ax− p)T U (Ax− p) (1.58)

where U is a M ×M diagonal matrix where Uii = σ−2
i . Note that the last equation

and the optimization problem solved by SIRT (given in Eq. 1.55) are equivalent

if one assume σ2
i =

∑
l ail.

1.3.3.3 Simultaneous Algebraic Reconstruction Technique (SART)

SART can be considered a trade-off between ART and SIRT. In fact, ART suffers

from salt and pepper noise, while SIRT produces more smooth images but at the

expense of slower convergence. SART is a method designed to combine the best

features of ART and SIRT. The iterative procedure is similar to SIRT but in SART

the image vector x(n) is updated using only the rows ai of the projection matrix

A related to a particular projection view. We can describe the iterative procedure

of SART with the following update equation:

x(k+1) = x(k) + λCθA
T
θ Rθ(pθ −Aθx

(k)) (1.59)

where Aθ ∈ Rnd×N contains the nd rows corresponding to the view angle θ, pθ

contains the related nd projection measurements, Rθ ∈ Rnd×nd is diagonal and

contains the inverse row sums:

rθkk =
(

N∑
l=1

akl

)−1

for k ∈ Sθ (1.60)

while Cθ ∈ RN×N contains the inverse column sums restricted to the rows in Sθ

cθll =

 N∑
k∈Sθ

akl

−1

for l = 1, ..., N (1.61)

where Sθ is the set of the nd indexes of the vector p associated to the view angle θ.
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1.3.3.4 Conjugate Gradient Least Squares (CGLS)

Conjugate Gradient (CG) method is a popular iterative method for solving large

system of linear equations of the type:

Ax = b (1.62)

where x is an unknown vector, b is a known vector and A is a known, square, symmetric

(i.e. AT = A) and positive-definite (i.e. xTAx > 0 ∀x ∈ RN s.t. x 6= 0 ) matrix.

However the CG methods can be exploited to solve the least square problem:

arg min
x

||Ax− b||22 (1.63)

where in this case A is a general M × N matrix. In fact by setting the gradient

of the squared norm to zero we obtain:

ATAx = ATb (1.64)

then letting Ã = ATA and b̃ = ATb, we obtain a linear system of the form shown

in Eq. 1.62. Furthermore, it is trivial to prove that the new matrix Ã is square,

symmetric and positive-definite. Therefore the system in Eq. 1.64 can be solved via

the CG method, and the least square solution can be computed at the same time. For

this reason the method is called Conjugate Gradient Least Squares.

The computational procedure of CG is given in Algorithm 1. A detailed description

of the CG method, along with meaningful illustrations is given by Shewchuk [21].
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Algorithm 1 CG algorithm for solving Ax = b

x0 arbitrary
r0 := b−Ax0
p0 := r0
k := 0
loop

αk := rT
krk

pT
k

Apk
xk+1 := xk + αkpk
rk+1 := rk − αkApk

if rk+1 is sufficiently small then
break

end if
βk := rT

k+1rk+1

rT
k

rk
pk+1 := rk+1 + βkpk
k := k + 1

end loop
return xk+1
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Only a fool makes no experiments.

— Charles Darwin
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In this chapter we provide an overview on neutron imaging. Initially, we cover the

main historical developments of the technique, the fundamental physical properties of

the neutron and its interaction with matter. Afterwards we provide a brief description

of the neutrons production and moderation mechanisms involved in neutron sources

for imaging applications. Subsequently, we describe in detail the Neutron Tomography
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2. Neutron Imaging

focusing our attention on the instrumentation, the acquisition geometry and the data-

processing, underlying the issues and trade-offs of the technique. Finally, we present

the IMAT beamline of the ISIS pulsed neutron spallation source (UK), where the

tomographic data analysed and discussed in this thesis were acquired. Hence, we

provide a detailed description of the instruments and the potential imaging applications

of such neutron beamline.

2.1 History of Neutron Imaging

The neutron was discovered in 1932 by the British physicist James Chadwick [1],

which received the Nobel Prize in Physics for this achievement in 1935. The earliest

experimental demonstration that neutrons were of relevance for imaging techniques

was provided in a series of experiments by Kallman and Kuhn in the 1930’s [2].

However, they obtained low quality images due the weak beam produced by a small

accelerator neutron source, but these early experiments gave insight into some of the

application of neutron radiography and the detection methods to produce neutron

radiographs. During the Second World War there were important advances in nuclear

reactor technology that increased the intensity of neutron fluxes by many orders of

magnitude. The first radiograph using a beam of thermal neutrons produced by a

reactor was obtained by Thewlis and Derbyshire [3] in 1956. They used the 6-MW

graphite reactor BEPO at Harwell in England, producing neutron radiographs of

better quality than those made previously by Kallmann. In the 1960s, the technique

developed via several independent studies at different laboratories [4–6]. During

this period the neutron radiography established itself as a feasible non-destructive

inspection method. In the 1970s, several research reactors in Europe and America

had facilities able to acquire neutron radiographs. By the mid-1980s, images were

being digitized and stored on computers [7], allowing quantitative analysis of neutron

images via imaging processing techniques [8].

In the last decades, the research in neutron imaging is focused on the increasing of

the imaging system resolution via the enhancement of existing detectors, for example
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2. Neutron Imaging

with thinner scintillation screens, and the development of new detectors, like the

microchannel plate [9].

2.2 The neutron

The neutron (symbol n) is a subatomic particle with no net electric charge and mass

slightly larger than that of the proton (mn = 1.675 · 10−27 kg) . The neutron is a

composite particle in the Standard Model because it is made of quarks. In fact, the

neutron is composed of three valence quarks: two down quarks and one up quark. As

a consequence, the neutron interacts primarily with nuclei via the strong interaction,

which have effect only at short range (10−15 m).

Other physical properties of the neutron is its spin sn = 1/2 and the associated

magnetic moment µn = −0.9662 × 10−26 J T−1. Hence, neutrons can interact with

external magnetic fields and with the magnetic moments of unpaired electrons in

matter. Both strong and magnetic interaction probabilities are small, so neutrons

generally are able to penetrate into the bulk of the sample under investigation.

The free neutron, i.e. a particle outside the nucleus and not influenced by external

forces, is unstable because it decays into a proton, an electron and an anti-neutrino.

The half-life of the neutron, i.e. the time required for the decaying quantity to fall

to one half of its initial value, is τ 1
2

= 611 s (about ten minutes). Fortunately, this

limitation is barely of significance for most neutron applications.

One important consequence of quantum mechanics is that the matter can be

described as both wave and particle. In fact, a particle moving with linear momentum

p can be described as a wave with the corresponding de Broglie-wavelength λ = h
p ,

where h = 6.626 × 10−34 Js is the Planck’s constant. This also applies to neutrons,

so the well known energy-wavelength relation for a free neutron is given by:

E = p2

2mn
= h2

2mnλ2 . (2.1)

Neutrons are generally produced by fission in nuclear reactors or by spallation nuclear

reactions, in which a high-energy proton beam collides on heavy metal target and

neutrons are produced from the resulting interaction with nuclei. In both cases the
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Quantity Ultracold Cold Thermal Epithermal
Energy (meV) 2.5 · 10−4 1 25 1000
Temperature (K) 2.9 · 10−3 12 290 12000
Wavelength (Å) 570 9.0 1.8 0.29
Wave vector (Å−1) 0.011 0.7 3.5 22
Velocity (m/s) 6.9 440 2200 14000

Table 2.1: Neutron classification in terms of energy, temperature, wavelength, wave vector
and velocity.

energy of emitted neutrons is of the order of magnitude of several MeV, which is too

high to study condensed matter. In fact, for measurements of the static and dynamic

distribution of atoms in solids, the wavelength must be in the range of the atomic

distances, i.e. few Ångströms, equivalent to neutron energies of several tens of meV.

Therefore, the neutron energy must be reduced from several MeV to several tens or

hundred of meV. The produced neutrons are slowed down by passing the neutron beam

through appropriate materials, often hydrogenous materials. The neutrons loose energy

due the collision with atoms and molecules, until they reach the thermal equilibrium

with the moderator medium. This process is called moderation, we discuss it in

Section 2.6. Neutrons are generally classified in terms of the moderator temperatures,

but there are different conventions in literature. We refer to the classification given

in [10] which we report in Table 2.1. In particular, the thermal and cold neutron

classes represent the energy ranges of interest in this thesis.

2.3 Neutron interaction with matter

Neutrons are not influenced by electric fields since they have no electric charge. However,

they can only interact via the strong force or by means of magnetic interactions.

In neutron imaging applications, the neutron-matter interactions of interest are

those that are able to attenuate a neutron beam. Particles are removed from the

incoming beam by absorption or by scattering. The probability of physical process is

described by quantum mechanics and it is represented in terms of a quantity called

cross section, which has the dimension of an area and generally expressed in barns
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(1 barn = 10−24 cm2 ). The total cross section σT is given by the sum:

σT = σa + σs (2.2)

where σa and σs are the absorption and scattering cross section, respectively.

The absorption occurs when a neutron is destroyed after a neutron-nucleus interac-

tion. This process often leads to a unstable nucleus which decays with a particular

lifetime. Hence, several secondary particles can be emitted, for example: an α-

particle (two protons and two neutrons bound together), a β-particle (an energetic

electron or positron) or γ-rays (high-energy photons). For the thermal and cold

neutrons the absorption cross section decreases with the neutron energy and more

precisely is inversely proportional to the incoming neutron velocity v. This energy

range is often called the 1/v region.

The scattering occurs when a neutron is deviated from its original direction due to

the interaction with the matter. The neutron scattering cross section varies irregularly

across the periodic table and for different isotopes of the same element. In Figure 2.1

we show the scattering cross sections and the absorption cross sections for each bound

atom of the periodic table as a function of the atomic number, derived from the data

tabulation given by Sears [11]. In practice, the scattering cross sections are considered

constant in the epithermal, thermal and cold neutron energy ranges. However there

is a strong energy dependence for gadolinium and bound hydrogen.

Furthermore, we distinguish coherent scattering and incoherent scattering. In the

first process neutron waves are scattered by different nuclei resulting in an interference

pattern that depends on the relative location of the nuclei in the material. Incoherent

scattering occurs when the sample includes more than one isotope or when are present

isotopes with non-zero nuclear spin. In this cases no interference pattern is observed.

For each scattering process, the neutron may scatter elastically, i.e. maintaining its

initial energy and exchanging no energy with atoms, or inelastically, i.e. losing

or increasing its energy.

Elastic coherent scattering is exploited to obtain structural information on the

arrangement of atoms in the materials. Inelastic coherent scattering gives information
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Figure 2.1: Scattering and absorption cross sections for thermal neutrons (v = 2200 m/s)
for bound atoms as a function of the atomic number. Filled circles represent the scattering
cross sections plotted on the linear scale placed on the left y-axis. Empty circles represents
absorption cross sections on the logarithmic scale placed on the right y-axis.

on the collective excitations within the sample, such as phonons and spin waves.

Inelastic incoherent scattering conveys information on single-particle excitations.

Finally, we remind that neutron carries magnetic moment which interacts with the

magnetic field produced by unpaired electrons. Also in this case the neutrons were

scattered. The interaction may be elastic, giving information on the magnetic order

in a material, or inelastic, giving information on magnetic fluctuations.

2.4 Neutron vs X-ray for imaging application

The fundamental interactions of X-rays with matter are completely different from

those of neutrons. In fact, X-rays interact primarily with the electron shell of the

atoms via the electromagnetic force, while in contrast neutrons interact with the

nuclei via the strong force. The main processes which lead to X-rays attenuation

within matter are the photoelectric effect, the Compton scattering, and, at high energy,

the pair production. The total cross sections of the X-rays increase with the atomic

number and generally decrease with the energy. Conversely, as we already discussed in

Section 2.3, the total cross sections for neutrons as a function of the atomic number

exhibit an irregular and complex trend. In order to compare these different behaviours

we report in Figure 2.2 the linear attenuation coefficients for thermal neutrons and
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Figure 2.2: The linear attenuation coefficients, expressed in cm−1, for thermal neutrons (top)
and X-rays at 150 keV (bottom) reported for each element in the periodic table [12]. The
colour of each cell indicates the attenuation strength of the corresponding element. Darker
grey levels indicate stronger attenuation levels.

X-rays at 150 keV of each element in the periodic table [12]. The energy of interest for

imaging applications is typically of the order of meV for neutrons (i.e. thermal and

cold neutrons), while of the order of tens to several hundreds of keV for X-rays.

Hence, considering the interactions of both particles and the comparison shown

in Figure 2.2 we deduce the following statement:

• neutrons are very sensitive to light elements such as H, Li and B, therefore

neutron imaging provides good image contrast for them. Conversely, X-rays

interacts weakly with light elements, resulting in low image contrast in X-ray

imaging.

• neutrons are able to penetrate metals such as Fe, Pb and Cu. On the other hand,

X-rays are strongly attenuated by metals also at high energies.
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• neutrons allow to distinguish isotopes of the same element and neighbour elements

in the periodic table. X-rays can not provide good image contrast in this cases,

since the total cross sections depend on the atomic number.

• neutrons interact strongly with magnetic moments. Conversely, this interaction

is weak for X-rays. Therefore neutrons can be used to study the magnetic domain

distribution and magnetic fields within materials.

In order to underline the differences between neutron and X-ray imaging, we

show a neutron radiograph and an X-ray radiograph of a camera [12] in Figure 2.3.

We observe in the neutron radiograph that the metallic parts appear as nearly

transparent and the plastic parts (containing hydrogen) such as the film cassette

are clearly visible. On the other hand, in the X-ray radiograph the metallic parts

appear dark, due the high attenuation strength of metals, while the plastic parts

are nearly transparent. This example demonstrate why X-ray and neutron imaging

are regarded as complementary techniques.

(a) Neutron (b) X-ray

Figure 2.3: Comparison between radiographs [12] obtained with neutrons (a) and X-rays (b).

The main drawbacks of neutron imaging are related to limited flux of the existing

neutron sources, several order of magnitude lower compared to X-ray sources. For

this reason, long acquisition time are required to perform neutron measurements and

spatial resolutions are still lower than achieved by X-ray imaging. In fact, a neutron

tomographic scan takes several hours, conversely X-ray CT scan is generally of the

order of tens of seconds. Furthermore, X-ray sources are able to image materials
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with micro- and nanometre size spatial resolution while neutron imaging provides

spatial resolution of the order of tens of microns.

Neutron imaging is an established technology but it is still less applied than X-ray

imaging, since the neutron production costs are higher. Hence, nowadays a smaller

number of facilities are dedicated to neutron imaging.

2.5 Neutron Production

There are two main kinds of neutron sources for imaging applications: nuclear reactors

and proton accelerator-based sources, which are respectively based on nuclear fission and

nuclear spallation reactions. We discuss them separately in the following paragraphs.

2.5.1 Reactor sources

The fission of the uranium isotope 235
92 U by slow neutron capture is the most frequently

used reaction in nuclear reactors. At first, a thermal neutron interacts with an

isotope 235
92 U causing the formation of unstable nucleus 236

92 U∗, which disintegrates

into two unequal mass fragments. Very often a neutron is emitted directly during

such process, but mostly the neutrons are emitted by the fragments. The fission

reaction described can be expressed as follows:

n + 235
92 U −→ 236

92 U∗ −→ n + 96
39Y∗ + 139

53 I∗

where the asterisk denotes an unstable atom, Y and I are fission fragments. The reaction

can be made self-sustaining because it is exothermal and releases more neutrons per

fission than are needed to initiate the process.

The total energy released during the reaction is about 193 MeV, which is distributed

between fission fragments (83.1 %), neutrinos (5.6 %), γ-rays (5.6 %), neutrons (3.1 %)

and β-particles (2.6 %) [13]. The energy spectrum of the emitted neutrons is asymmetric.

In fact, the energy distribution has a mean value of 2 MeV, but it extends up to 17 MeV.

The average number of neutrons produced by nuclear fission is about 2.5 neutrons

per absorbed thermal neutron. In particular, one of these neutrons is needed to sustain

the chain reaction, ∼ 0.5 is lost and one is available for external use.
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Nuclear reactors produce a stable and continuous neutron flux, which enable

tomographic acquisition with long exposure times.

Finally, we mention some important neutron facilities based on nuclear reactors: the

High-Flux Reactor (HFR) at the Institute Laue-Langevin (ILL) in Grenoble, FRM-II

in Munich and OPAL at the Australian Nuclear Science and Technology Organisation.

2.5.2 Accelerator-based sources

The accelerator-based sources rely on the so-called spallation reaction. This phe-

nomenon is a sequence of nuclear events that take place if heavy nuclei are bombarded

using particles with a Broglie wavelength which is shorter than the dimension of the

nucleus (1-10 fm). The emitted high-energy neutrons, pions and spalled nuclei cause

inter-nuclear cascades followed by the emission of low energy neutrons from the excited

nuclei. Generally the particles used as projectiles are protons. Spallation reactions

occurs for proton energies above 100 MeV. As figure of merit, protons with energy of 1

GeV impinging on a lead target produce about 25 neutrons, with an heat deposition

lower than the heat to dissipate in a fission reaction producing a similar neutron flux.

The energy distributions of the neutrons emitted by spallation and by fission

are quite similar in the low-energy range. In fact, both energy spectra show a

distinctive peak around 2 MeV. Since the neutrons produced in spallation reaction

can reach the energy of the incoming proton, a discrepancy is observed between the

distributions in the high energy range.

In order to produce neutrons efficiently, as many protons as possible should produce

high-energy collisions with nuclei. The neutron production efficiency become close

to 100% if the proton energy is 1 GeV or higher.

Most accelerator based neutron sources deliver a pulsed beam that is suitable for

time-of-flight (TOF) and energy-dispersive measurements. In pulsed source the heat

is dissipated slowly in the period between pulses, hence the instantaneous power

and neutron flux is very high.

37



2. Neutron Imaging

Finally, we mention some important neutron facilities based on spallation reactions:

SINQ at the Paul Scherrer Institute (Switzerland), ISIS at the Rutherford Appleton Lab-

oratory (United Kingdom), Spallation Neutron Source (SNS) at the Oak Ridge National

Laboratory (USA) and the Japan Proton Accelerator Research Complex (J-PARC).

The interest in spallation reaction is increasing, in fact new spallation sources

are under construction worldwide.

2.6 Moderation Mechanism

The energy spectrum of the neutrons produced in both sources described above is in

the MeV range. However, an energy shift of several orders of magnitude is necessary

to accomplish imaging and scattering experiment. Hence, some substances with low

neutron absorption cross section (to maximize the flux) and high scattering cross section

(to maximize the energy loss) are used to ‘slow down’ the neutrons to lower energies.

These materials are called moderators and the often used ones are water, heavy water,

hydrogen, methane, graphite, beryllium and polyethylene. The energy distribution of

neutrons can be tailored by controlling the temperature of the moderator.

In the following paragraphs we describe briefly the moderation mechanisms in

reactor sources and in pulsed spallation sources.

2.6.1 Reactor sources

The cross section of the neutron-induced fission is much higher for thermal neutrons

than for fast neutrons. In order to maintain a self-sustaining reaction using a small

quantity of fissile material and obtain a suitable neutron flux for imaging applications,

the fast neutrons in the core must be moderated. Furthermore, the moderating medium

may be surrounded by ‘reflector’ materials, which scatter or reflect fast neutrons back

into the moderator to gain the flux of thermalized neutron in output.

The neutron energy distribution can be altered by placing special moderators,

shifting the spectrum to slightly higher or lower energies. Hence, special moderators

expand the research applications of the reactor facilities.
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2.6.2 Pulsed spallation sources

The moderator in a spallation source should be located as close as possible to the fast

neutron source. Furthermore, for pulsed sources the temporal width of the neutron

pulses coming out from the moderator must be as short as achievable. The pulse

width can be reduced by surrounding the moderator with an absorbing material,

called decoupler, such as cadmium, on all sides excepts on the output side where the

neutron beam emerges. Further reduction of the pulse width can be obtained by

placing an absorbing material, such as cadmium or gadolinium, in the moderator. This

technique is called poisoning of the moderator. However, decoupling and poisoning

lead to a reduced intensity of the neutron pulse. If no absorbing materials are used,

the moderator is said coupled. In this case, the highest intensity is achieved but

at the expense of broader pulse width.

2.7 Neutron Tomography

Similarly to other tomographic techniques, Neutron Tomography (NT) provides the

three-dimensional map of the neutron attenuation coefficient within a sample. Data

acquisition in NT consists in collecting a set of transmission radiographs at different

angular views of the sample by rotating it over 180 or 360 degrees. Although NT

involves the same reconstruction algorithms, procedures and scanning geometries

of X-ray CT, several peculiarities should be addressed. Hence, in the following

paragraphs we discuss such details of NT. In particular we focus our attention on

the instrumentation, the acquisition geometry and data-processing, underling the

issues and trade-offs of the technique.

2.7.1 Acquisition geometry

Instruments for NT are located at large-scale neutron facilities where the requirements

for high intensity and good beam definition can be fulfilled.

A schematic diagram of a typical setup for NT is shown in Figure 2.4. The produced

neutrons are generally collimated by slits, apertures or collimator systems to restrict
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D

Source SampleCollimator Detector

d

L l

Figure 2.4: Simplified geometry of a neutron absorption tomography experiment.

the range of the radiation propagation directions. In fact, each point in a sample

appears enlarged at the detector position as a result of the beam divergence and

the finite size of the source. More precisely, the maximum blur d observed in the

image (Figure 2.4) for a point of the sample placed at distance L from the source

and at distance l from the detector is given by:

d = D

L
l = l

(L/D) . (2.3)

Hence, in order to obtain quasi point-to-point and sharp images the source size D

should be small in comparison to the source-sample distance L. In this way the quality

of the neutron radiographs highly depends on the ratio L/D, being the main parameter

to characterize the performance of the imaging facility. A larger L/D ratio leads to

better spatial resolution. Most of the neutron imaging facilities worldwide are equipped

with an aperture changer, which allows to set different aperture diameters and hence

different L/D ratios. However, every reduction of the aperture diameter D improves

the image resolution but, on the other hand, leads to a reduction of the neutron flux

(which means lower image signal-to-noise ratio), and vice versa. Hence the L/D ratio

should be chosen depending on the application requirements.

2.7.2 Imaging system

In NT the data are acquired by means a digital detection system which is fixed during

the inspection. The neutrons have no electric charge, so the only way to reveal them
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is to detect charged particles produced by the neutron-matter interaction. The most

important detection reactions for thermal and cold neutrons are the following:

3He + n → 3H + 1p + 0.77 MeV
6Li + n → 3H + 4He + 4.79 MeV
10B + n → 7Li + 4He + 2.78 MeV

10B + n → 7Li* + 4He + 2.30 MeV + γ (0.48 MeV)
155Gd + n → 156Gd + γ + conversion e− (7.9 MeV)
157Gd + n → 158Gd + γ + conversion e− (8.5 MeV)

113Cd + n → 114Cd + γ + conversion e− .

In a neutron imaging detector, the amount of electric charge produced by nuclear

reactions is often not measured directly but converted into light by means of scintillator

screens. The standard scintillators used for converting the neutrons to a visible light

are 6LiF/ZnS:Ag and 6LiF/ZnS:Cu screens. The thickness of the scintillator material

is another fundamental parameter for imaging. In fact, a thicker scintillator material

provides higher light-output efficiency (which leads to higher SNR of radiographs)

but at the expense of lower image resolution.

To produce and record the radiographs, the scintillator is coupled to a camera.

In the following discussion, the two most common neutron imaging systems used

for tomography are presented.

CCD cameras Specific CCD (Charge-Coupled Device) camera are often used for NT

[14]. Since the CCD chip is extremely light sensitive, all components of the detection

system (i.e. scintillator, mirror, shielding and camera) are mounted inside a light-tight

box. An example of such equipment is shown in Figure 2.11 (a), which illustrates one

of the detection systems in use at the IMAT beamline, described in detail in Section 2.8.

The CCD camera is placed at the top of the box and outside the beam direction to

prevent radiation damage. A glass mirror is mounted within the box, placed at 45◦

from the scintillator, and reflects the light towards the CCD camera. Due to the limited

neutron flux, the exposure time per radiograph should be maximized in order to obtain
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better image quality. Long exposure is feasible with CCD cameras cooled either by

Peltier elements or liquid nitrogen, able to minimize thermal noise. The majority of

NT instruments worldwide use CCD cameras from the Andor Technology [15].

Flat panels Another detection system consists of an amorphous silicon (a-Si) flat

panel coupled to a scintillator. The flat panel is an array of photodiodes coupled

with active thin-film transistors (TFTs) readout matrix per pixel. The scintillator is

placed in contact with the semiconductor, in fact the amorphous Si bear the neutrons

and γ-ray exposure better than CCD chip. Furthermore the scintillator-diode array

coupling in this geometry is more efficient compared to a CCD coupled to lens and

scintillator. The exposure-readout-erase process is continuously running, so the frames

are produced in a continuous mode with a settable frame rate. Flat panel devices are

faster in data acquisition than CCD systems. The main drawbacks of a-Si panels are

the lower dynamic range and the lower SNR compared to CCD cameras.

2.7.3 Data acquisition and processing

Data acquisition and processing of a NT experiment can be summarized by the following

steps:

• the sample is placed on the rotation stage as close as possible to the detector in

order to reduce the geometrical blurring;

• several radiographs were acquired by rotating the sample generally with equal

angular steps over 360 ◦;

• some open-beam (beam on, sample removed) and dark-current (beam off) images

are acquired before or after the tomographic scan of the sample;

• image filters are used to suppress outlier pixels caused by damaged detector

elements or by hits of γ-rays on the detector.
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• the projections are normalized with respect to dark-field images, open-beam

images and radiation dose, using the following formula:

p = − log
(
Dflat
D
· I − Idark
Iflat − Idark

)
(2.4)

where I is the raw projection image, Idark and Iflat are the mean of the dark and

flat images, respectively, while D and Dflat are the median computed within a

ROI free of sample in the projections and flat images, respectively.

• outlier pixels not yet removed appearing in most of all projections are suppressed

by de-striping filters [16, 17] applied in the sinogram domain.

• a reconstruction algorithm, generally the FBP method, for parallel beam geometry

is used to compute the 2D map of the attenuation coefficient for each slice of

the volume. Hence, it is assumed a parallel beam geometry which is a fair

approximation for neutron beams characterized by an high L/D ratio.

However, the CT reconstructed images often differs from the true images of the

sample because of the non-ideal acquisition process. The unwanted features generated

in the reconstructed images are called artifacts. In the following dissertation we

describe briefly the most common image artifacts arising in NT.

Zinger artifact Zingers are the bright pixels occurring at random position in a

projection and caused by γ-rays hitting the detector. A spot of bright pixels in a

sinogram leads to a line artifact in the corresponding reconstructed image, as a result

of the back-projection. An example is shown in Figure 2.5. Several image filters have

been proposed in literature in order to suppress such artifact [17–20].

Ring artifact Outlier pixels occurring at the same coordinates in almost all pro-

jections lead to a ring artifact in the reconstructed image. This results in a vertical

stripe in the sinogram domain. An example is shown in Figure 2.6. Generally, bad

pixels in the camera or non-linearities in the detector response cause such artifact.

Rings are partially suppressed by means of data normalization and outlier removal,
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(a) Sinogram (b) Reconstructed slice

Figure 2.5: A sinogram containing a single outlier pixel (a) and the corresponding
reconstructed slice (b), clearly affected by a line artifact.

but often an additional filtering is needed. Hence, several specific filters were proposed

in literature for the suppression of the ring artifacts [16, 17, 21–24].

Scattering artifact In the tomographic reconstruction problem it is assumed that

the detector measures the neutrons which have experienced neither absorption nor

scattering. However, in practice there is a certain probability that scattered neutrons

reach the detector and contribute to the estimate of the transmission. This causes a

strong deformation in the reconstructed images for samples containing materials with

high neutron scattering cross section. An example is shown in Figure 2.7. A correction

algorithm named QNI was proposed by Hassanein [25]. The core of this method is the

estimation, via Monte Carlo simulations, of the so-called point scattered function (PScF)

which describes the scattering contribution for each point of the sample. However, the

correction of scattering artifacts is non-trivial and even nowadays remains a challenge.
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(a) Sinogram (b) Reconstructed image

Figure 2.6: A sinogram contaminated by a vertical stripe (a) and the corresponding
reconstructed slice (b), clearly affected by a ring artifact.

(a) (b)

Figure 2.7: Reconstructed image of a slab affected by scattering artifact (a) and the
corresponding corrected image (b).
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2.8 The IMAT beamline

All the tomographic data analysed and discussed in thesis were acquired at the

IMAT (Imaging and MATerials science) beamline of the ISIS pulsed neutron spal-

lation source (UK) [26].

IMAT enables white-beam neutron radiography and tomography as well as energy-

dependent neutron imaging. The latter takes advantage of TOF analysis techniques

available at an accelerator-based pulsed neutron source like ISIS. In fact, narrow energy

bands can be selected and analysed since time-resolving cameras are able to discriminate

quasi-monochromatic neutron channels. In other words, every pixel of the imaging

camera provides the transmission as a function of the neutron energy (transmission

spectrum) for particular directions. In Figure 2.8 we illustrate schematically the basic

imaging process in a pulsed-source instrument like IMAT. Pulses of polychromatic

neutrons go through the beamline in an evacuated neutron guide and flight tube

system. Obviously, faster neutrons travel ahead and the slower neutrons lag behind.

Figure 2.8: Schematic drawing representing the imaging setup of a pulsed neutron source
and the measured signal by a detector in energy-selective imaging.

The neutrons that are not absorbed or scattered by the sample are recorded by the
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imaging detector. In white-beam acquisition mode each pixel records a grey value

which is proportional to the neutron beam intensity, without energy discrimination.

Conversely, in energy-dispersive acquisition mode each pixel of the imaging detector

measures a neutron TOF spectrum, represented schematically in Figure 2.8. If Bragg

diffraction occurs at particular neutron wavelengths then neutrons are removed from the

incident beam, producing edges (Bragg edges) in the transmitted intensity. The Bragg

edge transmission analysis provide phase, strain and texture parameters of materials

[27–30]. Hence, neutron radiography and tomography can provide, respectively, the

2D and 3D maps of these parameters.

IMAT will be available for a wide range of materials science applications with a

main emphasis on engineering studies. The facility offers a spatial resolution down

to 50 µm for a field of view of up to 400 cm2.

In the next paragraphs we present the structure and the instrumentations of the

beamline following the latest reports about IMAT [31–33]. Finally, we present briefly

the potential scientific and technological applications of this imaging facility.

2.8.1 Outline design and instrument parameters

IMAT is installed on a ‘broad pulse’ liquid hydrogen moderator on the ‘West 5’ (W5)

beam port on the ISIS second target station (TS2), a low-power pulsed source of

about 50 kW. The moderator receives neutron pulses from a tungsten target and a Be

reflector assembly, slows the neutrons down, and then delivers polychromatic pulses

of neutrons to the beamline with a repetition rate of 10 Hz.

This means, in the time of 0.1 s between two pulses (constituting a ‘frame’) neutrons

of one pulse travel down the instrument and some of them are registered in the imaging

camera. A long flight path of 56 m to the sample position ensures good time-of-flight

resolution while retaining a wide neutron energy bandwidth.

In Figure 2.9 we shows the outline of the IMAT instrument on ISIS TS-2. In

Table 2.2 we report the instrument parameters which are based on a number of design

considerations [34] and on McStas simulations [35].
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Figure 2.9: Outline design of the IMAT instrument.

General Single frame bandwidth 1-7 Å max. flux at 3 Å
Flight path to sample 56 m

Imaging L: distance pinhole-sample 10 m
D: aperture diameter 5, 10, 20, 40, 80 mm
L/D 2000, 1000, 500, 250, 125
Best spatial resolution 50 µm
Max Field of View 200 × 200 mm2

Wavelength resolution ∆λ/λ = 0.7% (at 3 Å)
Time-integrated neutron flux 4×107 n cm−2s−1(L/D: 250)

Diffraction at 90◦ Secondary flight path 2.0 m
Detector coverage (each) 30 × 45 degrees
Diffraction resolution ∆d/d = 0.7 % (at 3 Å )
Minimum gauge volume 1× 1× 1 mm3

Table 2.2: The main IMAT instrument parameters.

A two meter long shutter in the target station monolith is lowered into and blocks

the neutron beam when entrance to the experimental area is required. A square,

straight, evacuated 44 m long neutron guide starting at the upstream end of the shutter

transports the neutrons to a pinhole selector at 46 m from where they are guided in

evacuated ‘flight tubes’ to the sample position. There is a continuous vacuum system

from the shutter to the sample area thus minimizing undesired air scattering. A 20 Hz
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T0 chopper with inconnel as main absorbing material serves as fast neutron and gamma

filter. Two 10 Hz double-disk choppers are used to define wide (e.g. 6 Å) or narrow

(e.g. 0.5 Å) wavelength bands but also to prevent frame-overlap of neutrons between

successive time frames. The choppers can be run at half-frequency to access the second

frame, thereby doubling the neutron wavelength bandwidth to 12 Å. Three TOF

monitors for beam diagnostics are installed in the guide section up and downstream

of the choppers. The pinhole selector allows to choose five circular apertures for the

imaging mode, each defining a different L/D ratio (see Table 2.2), and one large square

aperture of the size of the neutron guide (95 × 95 mm2) for the beam to pass through

for diffraction experiments. The neutron beam travels in evacuated flight tubes from

the pinhole selector to the sample area thus reducing air scattering. Downstream

from the sample and camera position the beam enters a large-diameter evacuated

flight tube and a ‘beamstop” where the neutron beam is absorbed by a combination

of B4C materials, steel and borated wax. A large experimental area of more than

50 m2 provides space for instrument equipment, samples and sample environment

equipment. Crane access through the blockhouse roof shielding is available to lift

samples and equipment into the experimental area.

The beamline components in the experimental area, represented in Figure 2.10, in-

cludes:

• sample positioning system (maximum weight: 1.5 tonnes) with a tomography

rotation stage;

• fast acting attenuator to minimize activation of the sample when no data are

collected (not shown);

• retractable TOF neutron beam monitor on a remote-controlled translator. Such

monitor provides an incident beam spectrum for normalisation of diffraction data

(not shown);

• sets of five beam delimiters, each set with four 10 mm thick sintered B4C blades;
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Figure 2.10: Outline design of the IMAT sample area. The imaging camera box at the sample
position at about 10 m from the pinhole selector is carried by a robotic camera positioning
system.

• remote-controlled retractable sample slits made of four 3 mm thick, sintered B-10

blades, for the beam size in front of the sample to be adjusted from 50 × 50

mm2 to 1 × 1 mm2;

• imaging camera, supported and aligned using a robotic arm able to translate the

camera along the beam direction;

• evacuated flight tubes with B4C baffles.

2.8.2 Imaging cameras

The imaging systems of IMAT will exploit TOF information for energy-resolved

imaging where possible. The three detector systems developed for IMAT will be

interchangeable. In Figure 2.11 we show photos of the cameras systems and their

parameters are summarized in Table 2.3.

The main imaging system of IMAT consists of a light-tight box, made of black

anodized aluminium, coupled with a CCD camera [36]. An interchangeable scintillator

screen is placed in the front side of the box. At present 6LiF/ZnS based scintillators

are envisaged, with thicknesses varying from 50 µm to 400 µm. Such scintillators,

when interacting with neutrons, emit visible light with wavelengths in the 450-520 nm

range. A glass mirror mounted within the box, placed at 45◦ from the scintillator,
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Figure 2.11: (a) the CCD/CMOS camera box; maximum sensitive detector (yellow square)
of side length 200 mm; (b) the MCP system; 28 mm; (c) the GP2 system; 22 mm.

Feature CCD/CMOS MCP GP2
Sensitive area [mm2] 200×200 28×28 22×22
Number of pixel (row) 1024/2048 512 324
Spatial resolution [µm] 50 55 70
Timing resolution [ns] − ∼ 10 ∼ 12.5
Time slices per pulse 1/0 3000 212

Dimensions W×D×H [cm] 45×50×85 25×40×20 20×10×20
R&D CNR Messina, University of California Oxford University,

Italy [36] at Berkeley, U.S.A. [37] STFC, U.K. [38]

Table 2.3: The IMAT imaging detectors.

and reflects the light towards the CCD camera. This imaging system is shown in

Figure 2.11 (a). A series of optical lenses allows to set different magnification ratios

and hence several FOVs. The focal lengths of such lenses range from 50 mm to 135

mm while the f-numbers vary from 1.2 to 2.0. The spatial resolution depends on both

the chosen focal length and the spatial density of pixels of the used CCD camera. We

chose for this imaging system a FOV of 200×200 mm2, for white beam imaging with

an integrating CCD/CMOS, or for energy scans with a CCD coupled to an image

intensifier which enables fast gating. It is worth mentioning that the camera has a

built-in optical autofocus system [36]. This system allows to perform white-beam and

energy-selective radiography and tomography measurements.

The second option is the microchannel plate system (MCP) [37]. It utilizes neutron

absorption by 10B atoms impregnated into the MCP glass followed by the generation of

secondary electrons and signal amplification within the pores of the MCP (Figure 2.11

(b)) localized to a ∼ 10 µm area. The FOV is 28×28 mm2 and the detector with

512×512 pixels is capable of providing a TOF spectrum for each pixel (of size 55×55
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µm2). The camera is placed directly in the neutron beam. The spatial resolution

limit of 55 µm is given by the Timepix readout chip, but it has been shown that the

resolution can be improved by event centroiding [39].

The third option for IMAT is an active pixel sensor (GP2) [38], shown in Figure 2.11

(c), which uses the PImMS-2 CMOS. A gadolinium sheet is used for converting neutrons

to electrons which are then counted by a CMOS sensor with a pixel size of 70 µm.

Up to 4096 times slices can be used and the timing resolution is better than 12 ns.

Additionally, PImMS has four 12-bit registers per pixel.

2.8.3 IMAT imaging applications

The applications of neutron imaging techniques at the IMAT beamline range from

non-destructive testing of industrial components to scientific investigations in various

fields such as materials science, biology, geology and archaeology.

Here we provide some potential applications:

• fuel and fluid cell technology: e.g. functioning and in-situ testing of gas pressure

flow cells / fluid cells; water / lithium distributions in fuel cells/batteries;

blockages, sediments;

• earth sciences: e.g. deformation mechanisms in polymineralic rocks; water flow in

porous media, mantle rheology, rock mechanics, spatial distribution of minerals;

• biomaterials and soft matter, e.g. agriculture: water uptake in plants and soil;

water and hydrogen distributions in polymers and porous media;

• archaeology and cultural heritage: e.g. inorganic materials characterisation;

non-destructive characterisation and multi-component analysis of archaeological

objects and objects of art; ancient fabrication techniques;

• aerospace and transportation: e.g. structural integrity; lifetime and failure

analysis; novel welding technology, fatigue properties; novel joining methods;

composite reinforcements;
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• civil engineering: e.g. integrity of load-bearing structures, reinforced concrete;

water repellent agents / rising of liquids in concrete; void and density distributions

in concrete.
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Alles Gescheite ist schon gedacht worden.
Man muss nur versuchen, es noch einmal zu denken.

All intelligent thoughts have already been thought;
what is necessary is only to try to think them again.

— Johann Wolfgang von Goethe
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3.1 Introduction

NT has been used in several areas such as material science, engineering, geology,

cultural heritage, archaeology and industrial applications. As we already discussed in

Chapter 2, NT provides complementary information to X-ray CT and in some cases

offers incomparable results. However, the major drawback of NT is the limited particle

flux of the existing neutron sources, several orders of magnitude lower compared

to synchrotron X-ray sources. It follows that long scan times - generally several

hours, depending on the sample and the desired spatial resolution - are required

to perform NT scans. In the NT field there is great interest in the reduction of

scan time, dictated by the high neutron production cost, aimed at optimizing the

beamtime usage at neutron imaging beamlines.

The total scan time can be reduced by limiting the number of projections. As we

already discussed in Chapter 1, analytical reconstruction methods, such as the widely

used Filtered Back-Projection (FBP), lead to aliasing artefacts in the reconstructed

images when only a small number of projections is available [1]. In fact, they are

based on the assumption that projections are available for all angles in the interval

[0, π), or [0, 2π), that is not possible in practice. In the finite case, an analytical

formula is approximated by a discretized expression. This approximation becomes

poor when the number of projections does not satisfy the Nyquist-Shannon condition.

The resulting artefacts in the CT images make the analysis and the segmentation

a challenging or impracticable task.

On the other hand, iterative reconstruction methods have advantages over the

analytical ones when data are noisy and limited [2]. However, the computational cost

is several orders of magnitude higher than analytical methods, so they were not feasible

in the past. Nowadays, the availability of large computational power in standard

workstation and the highly optimized implementations on Graphics Processor Units

(GPUs) [3] make iterative methods a feasible tool for CT reconstruction.

For different tomographic techniques, some experimental and practical constraints

may impose a reduction of the number of projections. For example, in medical imaging
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the radiation dose for patients can be minimized by limiting the numbers of angles

[4]. In electron tomography, the same strategy is necessary to prevent the damage of

the sample [5]. The reduction of the total scan time in industrial tomography and

in the luggage inspection at airports can be only achieved by limiting the number

of projections [6, 7]. Therefore, similar problems were treated and the mathematical

tools were developed, but the adaptability of such methods in NT has not been fully

studied, therefore their application to NT is still limited.

In this chapter, we present a comparative study of all the algebraic methods

described in Subsection 1.3.3 and the FBP algorithm applied to NT reconstruction

of under-sampled datasets. For this purpose, a phantom sample was analysed by

means of white beam NT performed at the IMAT beamline, ISIS Neutron Source,

UK. Experimental data were used to test the performances of FBP algorithm and

the algebraic reconstruction methods as a function of the number of projections and

for different setups of the imaging system. After a brief overview of the relevant

image quality indexes for tomography, we quantitatively compare the reconstructed

images in terms of such indexes and the benefits of algebraic methods for the limited

datasets are discussed.

3.2 The experiment

3.2.1 Sample description

A phantom sample characterized by a simple geometric shape was built and scanned by

means of NT in order to test the performances of different reconstruction techniques.

The phantom is an aluminium cylinder, with diameter of 24 mm and height of 20

mm, containing 4 holes of different diameters (1 mm, 2 mm, 3 mm and 4 mm) and

filled with iron powder. A schematic drawing and the 3D design of the phantom

are shown in Figure 3.1.

3.2.2 Data acquisition at the IMAT beamline

Neutron images of the phantom were acquired at the IMAT beamline [8, 9], ISIS

neutron spallation source, Rutherford Appleton Laboratory, UK.
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Fig. 1. Layout and 3D rendering of the phantom analyzed. 

Inner rods: filled with iron powder, external material: aluminum. 

• We analysed a phantom sample (Fig. 1) by means of white beam neutron tomography performed at IMAT beamline, 

ISIS Neutron Source, UK.  

• We collected a set of tomograms characterized by different angular scan modes and different projection SNRs.  

• The acquisitions were performed according to the golden-ratio based sequence [4] and the traditional uniform angular 

scan. In addition, several SNRs were obtained by using scintillators with different thicknesses for each tomographic 

acquisition. 

• Experimental data are used to test the performance of several reconstruction techniques as a function of the projection 

SNR and the number of projections. 

• The tomographic reconstructions were carried out by means of ASTRA Toolbox [5].  

This research is focused on the comparative analysis of different state-of-the-art reconstruction techniques aimed at finding the data processing 

procedure suitable for Neutron Tomography, that reduces the scan time without reduction of reconstructed image quality. 
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Fig. 2. A comparison of the reconstructed images, representing a section of the rod B (Fig. 1), 

obtained by using FBP, SIRT, SART, CGLS reconstruction algorithms as a function of the 

projections number (N) and for different scintillator thickness. 

Fig. 3. Comparison of the CNR values, obtained 

using FBP and SIRT algorithms, as a function of 

the projections number and for different scintillator 

thickness. 

Contrast-to-Noise-Ratio (CNR) 
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• The performances of the algebraic reconstruction methods (SIRT, SART, CGLS) have been tested for neutron data and studied as a function of  the projections 

number and for different projection SNRs. We observed that algebraic algorithms  provide better image quality, compered to FBP algorithm, in the case of limited-

view datasets. In particular, the SIRT algorithm shows always a contrast detectability higher than that obtained with the FBP technique. 

 

• For the near future, we plan to test statistical reconstruction algorithms with neutron data. 

 

• The main drawback of iterative algorithms is the high computation time; recently, new  

    reconstruction techniques were developed that approximate the algebraic algorithms with  

    lower computation time [6]. Their application to neutron data could be interesting, in particular 

    in the case of the Energy Selective Neutron Tomography. 
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(b)

Figure 3.1: Cross section layout (a) and 3D representation (b) of the phantom analysed

The sample was fixed on the rotating platform using double-sided tape and placed

at the distance L = 10 m from the beam aperture and at the distance d = 17 mm

from the scintillator screen. The selected diameter of the beam aperture was D = 40

mm that defines an L/D ratio of 250 and ensures a neutron flux of 6 · 106 n cm−2 s−1

[10]. The detection system consisted of a 16-bit sCMOS camera (ZYLA 4.2 Plus) with

2048× 2048 pixels coupled with optical lenses and two 6LiF/ZnS based scintillators

with thickness 50 µm and 150 µm, respectively. The focal length was 135 mm and

the aperture f = 2. The field-of-view was set to 59.5× 59.5 mm2 in order to image

the whole phantom. The resulting pixel size was 29 µm. A set of tomograms were

collected by performing uniformly spaced angular scan of 1125, 563, 375, 225, 125 and

75 projections in the range [0◦, 360◦) by alternating the two scintillators. The use

of different scintillator thicknesses allows to acquire projection data characterized by

different spatial resolutions and Signal-to-Noise Ratios (SNRs). The datasets with

number of projections N = 1125 satisfy the Nyquist-Shannon condition, since the

widest horizontal dimension of the sample is 708 pixels long. A stack of 100 open beam

and 100 dark field images were taken as well before and after each tomographic scan

for normalization purposes. The exposure time for each projection was 30 s.

3.3 Data processing and CT reconstruction

The normalization of the data was performed by using the log-transformation, the flat

fielding and the dark subtraction procedure with the correction of the neutron dose
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[11]. In fact, the flux of the beam on a neutron spallation source is rarely constant,

therefore the projections are exposed at variable neutron dose. The normalization

was performed by using the formula:

p = − log
(
Dflat
D
· I − Idark
Iflat − Idark

)
(3.1)

where I is the raw projection image, Idark and Iflat are the mean of the dark and flat

images, respectively, while D and Dflat are the median computed within a region of

interest (ROI) free of sample in the projections and flat images, respectively. Afterwards,

the normalized data were pre-processed by removing dead-pixels and gamma-spots,

while ring artifacts were suppressed by means of a filter based on combined wavelet

and Fourier analysis [12]. Finally, several reconstruction algorithms were performed

on such pre-processed data. The CT reconstruction methods considered in this study

are: Filtered Back Projection (FBP) [1], Simultaneous Algebraic Reconstruction

Technique (SART) [13], Simultaneous Iterative Reconstruction Technique (SIRT) [14]

and Conjugate Gradient Least Squares (CGLS) [15]. Pre-processing, reconstruction

and analysis steps were performed by means of the NeuTomPy toolbox, a new Python

package for tomographic data processing described in detail in Chapter 5.

3.4 Image quality assessment

The quality of a CT image is determined by several factors such as spatial resolution,

image contrast, noise and artefacts. In order to assess these factors and compare the

reconstructed images quantitatively we used full-reference and no-reference image

quality indexes [16]. In the first class of quality metrics, the original image, free of

any noise or distortions, is assumed to be known and used as reference image to make

a comparison with an input image. Conversely, no-reference quality metrics can be

computed also when the reference image is not available.

In this work, we regarded as reference image the reconstructed slice obtained by

applying a 3D median filter to the FBP reconstruction of the dataset with N = 1125

projections acquired with the scintillator 50 µm thick. In this case, the median
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filter reduces the noise present in the FBP reconstructed slice and at the same time

preserves the edges, as shown in Figure 3.2.

In the following paragraphs we provide a description of the relevant image quality

indexes for tomography. Subsequently, the performances of the FBP, SIRT, SART and

CGLS reconstruction algorithm were tested as a function of the scintillator thickness

and the number of projections, by means of the image quality indexes described.

(a) Original (b) Filtered (c) Original - Filtered

Figure 3.2: A reconstructed slice obtained by applying the FBP reconstruction algorithm
to the dataset characterized by 1125 projections and scintillator thickness = 50 µm (a), and
the corresponding image obtained by applying a 3D median filter (b). The difference image
(c) shows that the filter removes the noise and CT artifacts while it preserves the edges. The
filtered image (b) was used as reference image for the computation of the full-reference quality
metrics.

3.4.1 Full Width at Half Maximum (FWHM)

The edge quality in an image can be estimated by taking into account the steepness of

a strong edge profile [17]. The latter can be fitted by a generic sigmoid function:

f(x) = p0
2 {Erf [p1(x− p2)] + 1}+ p3 (3.2)

where p0, p1, p2 and p3 are fitting parameters and Erf(x) is the Gauss error function de-

fined as:

Erf(x) := 2√
π

∫ x

0
e−t

2 dt . (3.3)

The derivative of Eq. 3.2 returns a Gaussian function with standard deviation:

σ = 1√
2p1

. (3.4)
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The Full Width at Half Maximum (FWHM) of the resulting Gaussian function can

be used to quantitatively assess the edge quality. Recalling the relation FWHM =

2
√

2 ln 2σ, the FWHM and its uncertainty (σFWHM) can be evaluated from the parame-

ter p1:

FWHM = 2
√

ln 2
p1

, σFWHM = 2
√

ln 2
p2

1
σp1 . (3.5)

We remind that lower FWHM values indicate sharper edges.

In our study, 60 line profiles in the radial direction with respect to the centre of

the hole B (Figure 3.3) were tracked and evaluated. These data were averaged and the

resulting profile was fitted with the function given in Eq. 3.2, as shown in Figure 3.4.

Figure 3.3: Line profiles tracked for the evaluation of the FWHM.
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Figure 3.4: Edge quality measurement. The figure shows 60 individual line profiles (black
dots), the resulting average profile (blue dots) and the fitted sigmoid function of Eq. 3.2 (red
line) obtained from a FBP reconstruction (N = 1125, scintillator thickness = 150 µm). The
FWHM of the Gaussian function obtained by computing the derivative of the fitting function
was used as edge quality metric.
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3.4.2 Contrast-to-Noise Ratio (CNR)

The Contrast-to-Noise Ratio measures the detectability of a feature in an image. One

way to define the CNR [18, 19] is the following:

CNR = µsign − µbg
σbg

(3.6)

where µsign and µbg are the average pixel value of the feature and background area,

respectively, and σbg is the standard deviation of the background area. The CNR

is a no-reference image quality index.

In our analysis, we consider the area containing the iron as the feature area (red

circle in Figure 3.5), whereas the area outside the sample as background (yellow

rectangle in Figure 3.5).

Figure 3.5: The signal area (red circle) and the background area (yellow rectangle) used for
the computation of the CNR.

3.4.3 Normalized Root Mean Square Error (NRMSE)

The Normalized Root Mean Square Error (NRMSE) quantifies the reconstruction error

with respect to a reference image. The NRMSE index is defined as:

NRMSE = ‖Itest − Iref‖2
‖Iref‖2

(3.7)

where Itest and Iref are the test and reference images and ‖·‖2 is the Euclidean norm.

Generally, the smaller NRMSE values indicate better image quality.

In our analysis, the NRMSE was computed by using the whole reconstructed images.
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3.4.4 Structural Similarity Index (SSIM)

The Structural Similarity Index (SSIM) [16] is a metric based on the human visual

system. The underlying model of the method assumes that the image degradation is

perceived as change in structural information. The latter is given by inter-dependencies

between pixels close together. The SSIM is a full-reference image quality index

and evaluates the similarity between two images comparing luminance, contrast and

structure information. The SSIM index for a pair of windows x and y, with same

size taken from a reference image and a test image, is defined as:

SSIM(x, y) =
[
l(x, y)α · c(x, y)β · s(x, y)γ

]
(3.8)

where l(x, y), c(x, y) and s(x, y) are the luminance, contrast and structure term,

respectively, and α > 0, β > 0 and γ > 0 are parameters used to adjust the relative

importance of the three components. The luminance, contrast and structure terms

are defined as follows:

l(x, y) = 2µxµy + C1
µ2
x + µ2

y + C1
(3.9)

c(x, y) = 2σxσy + C2
σ2
x + σ2

y + C2
(3.10)

s(x, y) = σxy + C3
σxσy + C3

(3.11)

where µx, µy, σx, σy, and σxy are the local means, standard deviations and cross-

covariance for windows x, y, while C1 and C2 are constants to stabilize the divisions.

A common choice of the parameters is the following:

C3 = C2
2 , α = β = γ = 1 (3.12)

hence the SSIM reduce to the following form:

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2) . (3.13)
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A global SSIM is given by the average of the SSIM values computed for each

pair of windows. The SSIM value ranges from −1 to 1, a higher value indicates

superior image quality.

In our analysis, the SSIM was computed by using the whole reconstructed images

and we set C1 = 10−4 and C2 = 9 · 10−4.

3.5 Results and Discussion

In our analysis, all FBP reconstructions were performed with the Ram-Lak filter. We

have chosen for algebraic reconstruction algorithms the optimal number of iterations

which gives the lowest NRMSE and the lowest FWHM jointly, in order to maximize

the image sharpness and contrast. It was observed that this condition is achieved

with about 100 iterations for SART and SIRT algorithms, whereas about 10 iterations

are required in the case of the CGLS algorithm.

In Figure 3.6 we show a comparison of the reconstructed images, representing

the hole B (Figure 3.1a), obtained by means of the FBP, SIRT, SART and CGLS

reconstruction algorithms for different number of projections and scintillator thicknesses.

The pixel values histogram is represented below each image. We note from a visual

inspection that the image quality of the FBP reconstructions becomes very poor by

reducing the number of projections. The pixel values histogram tends to be unimodal

and the resulting image noise makes the segmentation not feasible. On the other hand,

in the case of limited data reconstruction, SIRT, SART and CGLS algorithms provide

clearer images and higher contrast than the FBP method. When all projections are

available (N = 1125) the FBP reconstructions outperforms SART ones. The SIRT

and CGLS algorithms, in the case N = 1125, gives reconstructed images characterized

by higher image contrast than FBP algorithm. However, some unwanted blurring is

visible in such SIRT and CGLS images if compared with FBP ones.

The image contrast and the edge quality were quantitatively evaluated by means

of the CNR and FWHM. Such indexes are represented as a function of the number of

projections and for different scintillator thicknesses in Figure 3.7 and Figure 3.8.
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Figure 3.6: A comparison of reconstructed images, representing a slice of the hole B
(with diameter ΦB = 2 mm, see Figure 3.1a), obtained using FBP, SIRT, SART and CGLS
reconstruction algorithms, as a function of the number of projections N and for different
scintillator thicknesses. Below each image, the grey value histogram is represented in the range
[0, 0.54] cm−1.

As expected we observe that higher CNR and FWHM values were obtained with

the thicker scintillator, regardless of the reconstruction algorithm performed. Hence,

by increasing the scintillator thickness the CNR becomes higher, due to increased

conversion efficiency, but there is a loss of spatial resolution. We note that the standard

deviation of FWHM of the FBP images increases when the number of projections is

reduced. This occurs because the noise and the aliasing artefacts cause an increase of

the fitting parameters variance. The CNR of FBP reconstructions drops down and

becomes inadequate for analysis when the number of projections is low. Conversely,

SART, SIRT and CGLS show better image contrast than the FBP algorithm for

lower number of projections. In particular, the SIRT and CGLS reconstructions have
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Figure 3.7: Comparison of the CNR values computed from the ROIs (Figure 3.5) of the
reconstructed images obtained using FBP, SIRT, SART and CGLS algorithms, as a function
of the number of projections N and for different scintillator thicknesses.

Figure 3.8: Comparison of the FWHM values computed from the reconstructed images
obtained with FBP, SIRT, SART and CGLS algorithms, as a function of the number of
projections N and for different scintillator thicknesses.

always higher CNR values than FBP, also in the case where the Nyquist condition

is satisfied (Figure 3.7). However, FWHM plots in Figure 3.8 show that the edge

quality for the SIRT algorithm is lower than FBP, but the standard deviation of

FWHM is quite constant when the number of projections is reduced. On the other

hand, the FWHM values of CGLS images is slightly higher than the values of FBP

images (Figure 3.8). Consequently, we observe that the CGLS algorithm provides the

better compromise between contrast and resolution, since it produces images with
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high CNR and edge quality comparable to FBP.

Figure 3.9: Comparison of the SSIM values computed from the reconstructed images obtained
using FBP, SIRT, SART and CGLS algorithms with respect to the reference image (Figure 3.2b),
as a function of the number of projections N and for different scintillator thicknesses.

Figure 3.10: Comparison of the NRMSE values computed from the reconstructed images
obtained using FBP, SIRT, SART and CGLS algorithms with respect to the reference image
(Figure 3.2b), as a function of the number of projections N and for different scintillator
thicknesses.

In Figure 3.9 and Figure 3.10 the SSIM and the NRMSE indexes are represented,

respectively, as a function of the number of projections and for different scintillator

thicknesses. We remind that lower NRMSE and higher SSIM indicate superior image

quality. It is clear that iterative reconstruction algorithms outperform the FBP method
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also in terms of the SSIM and NRMSE indexes when the number of projection is reduced.

To better understand the quality of the reconstructed images in terms of the edge

quality and image contrast, we provide in Figure 3.11 and Figure 3.12 the CNR as a

function of the FWHM for different number of projections and scintillator thicknesses.

Figure 3.11: CNR as a function of the FWHM for different number of projections and for
the scintillator thicknesses of 50 µm and 150 µm.

For few projections (N = 75 and N = 125) the CGLS and SART with the

scintillator 50 µm thick (yellow and green triangle, respectively, in Figure 3.11) gives

the better results in terms of spatial resolution and image contrast.

Furthermore, we observe from Figure 3.12 that the CGLS reconstruction with N =
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FBP,    50 μm, N = 1125 

SIRT,  50 μm, N = 375 
SIRT,  50 μm, N = 563
CGLS, 50 μm, N = 375 
CGLS, 50 μm, N = 563
FBP,  150 μm, N = 1125 

Figure 3.12: CNR as a function of the FWHM for particular FBP, SIRT and CGLS
reconstructions.

563 and scintillator 50 µm thick (yellow triangle) outperforms the FBP reconstruction

with N = 1125 and scintillator 150 µm thick (red circle) in terms of CNR and FWHM

indexes. In addition, the SIRT reconstruction with N = 563 and scintillator 50 µm

thick (blue triangle) has comparable edge quality and better contrast with respect

to the FBP reconstruction with N = 1125 and scintillator 150 µm thick (red circle).

Consequently, we can state that better image quality with respect to standard FBP

reconstruction of a complete dataset (N = 1125) with scintillator 150 µm thick can

be achieved by using the thinner scintillator (50 µm) and exploiting CGLS and SIRT

algorithms with half of the projections. With 1/3 of projections and scintillator 50 µm

thick, the CGLS reconstruction (yellow circle in Figure 3.12) shows comparable image

contrast to FBP reconstruction of 1125 projections with scintillator 50 µm thick (red

triangle) but slightly lower edge quality.

Finally, we performed two experiments with simulated data in order to compare

the FBP, SIRT, SART and CGLS algorithms in terms of the reconstruction time. In

the first experiment, we generated projections of a simulated phantom image and we

evaluated the reconstruction time per slice as a function of the number of projections

and for each reconstruction algorithm. The size of reconstructed slices was set to

1500×1500, hence we fixed side length to nd = 1500 in order to study the reconstruction

time as a function of the number of projections N . We performed 100 iterations for each
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N Reconstruction time [s]
FBP CGLS SART SIRT

100 0.014 0.459 0.114 0.355
300 0.024 0.975 0.119 0.883
500 0.038 1.497 0.124 1.424
700 0.055 2.016 0.128 1.963
900 0.069 2.555 0.133 2.524
1100 0.088 3.099 0.140 3.068
1300 0.106 3.645 0.142 3.645
1500 0.121 4.207 0.151 4.235

Table 3.1: Reconstruction time as a function of the number of projections and for different
reconstruction algorithms. The size of the reconstructed images is set to 1500× 1500 pixels.
These results are obtained by performing 100 iterations of each algebraic reconstruction
algorithm.

nd Reconstruction time [s]
FBP CGLS SART SIRT

100 0.043 0.165 0.042 0.118
300 0.053 0.311 0.046 0.263
500 0.056 0.586 0.052 0.537
700 0.070 0.982 0.0604 0.931
900 0.075 1.641 0.0831 1.581
1100 0.101 2.359 0.0995 2.539
1300 0.116 3.261 0.127 3.512
1500 0.114 4.258 0.149 4.492

Table 3.2: Reconstruction time as a function of image size nd and for different reconstruction
algorithms. The number of projections is set to 1500. These results are obtained by performing
100 iterations of each algebraic reconstruction algorithm.

algebraic reconstruction algorithm. The results are given in Table 3.1 and illustrated

in Figure 3.13 (left). We observe that the reconstruction time increases linearly

with the number of projections for each algorithm considered. As expected, the FBP

outperforms the algebraic methods in the reconstruction time comparison. However,

SART is the best algebraic algorithm in terms of computational efficiency, ensuring

reconstruction time per slice of the order of tenths of a second. Conversely, CGLS and

SIRT are more time-consuming, since reconstruction times are of the order of seconds.

In the second experiment, we evaluated the reconstruction time per slice as a function

of the image side length nd and for each reconstruction algorithm. The number of

projections (N) was set to 1500. Also in this case, 100 iterations were performed
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Figure 3.13: (left) Reconstruction time as a function of the number of projections for FBP,
CGLS, SART and SIRT reconstruction methods. The size of the reconstructed images is set to
1500× 1500 pixels (nd = 1500). (right) Reconstruction time as a function of the image size for
FBP, CGLS, SART and SIRT reconstruction methods. The number of projections N is set to
1500. These results are obtained by performing 100 iterations of each algebraic reconstruction
algorithm.

for each algebraic reconstruction algorithm. The results are given in Table 3.2 and

illustrated in Figure 3.13 (right). We observe that the reconstruction time increases

with nd faster than with N . However, the remarks inferred by these results are similar

to the observations made for the first experiment.

The CGLS algorithm has lower computational efficiency than FBP and SART,

but we underline that it provides faster convergence than SART and SIRT. In fact,

we observed in our analysis that the CGLS algorithm converges with a tenth of

iterations, i.e. one order of magnitude less than the iterations required by SART

and SIRT. Hence, the CGLS algorithm provides sharp images with reconstruction

time of the order of tenths of a second.

3.6 Conclusions

In this work the performances of different algebraic reconstruction methods (SIRT,

SART and CGLS) have been tested for neutron data, and studied as a function

of the number of projections and for different setups of the imaging system. The

reconstructed images were quantitatively compared in terms of the image quality
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indexes CNR, FWHM, NRMSE and SSIM. In addition, the reconstruction times

were evaluated for each algorithm.

We observe that algebraic methods provide better contrast detectability than the

FBP algorithm in the case of sparse-view datasets.

The CGLS algorithm is the best compromise between spatial resolution, image

contrast and reconstruction time. We demonstrated that for moderate under-sampling

the CGLS and SIRT algorithms, combined with the use of thinner scintillators, provide

high reconstructed image quality so much that the time of a neutron CT scan could

be halved. For higher under-sampling (i.e. for datasets with less than 1/9 of the

projections required by the Nyquist-Shannon condition), CGLS and SART show the

best performances in terms of reconstructed image quality.

The SIRT algorithm provides reconstructions with highest image contrast in general,

but at the expense of lower spatial resolution. In addition, SIRT is the slowest

reconstruction algorithm, due to slow convergence and low computational efficiency.

Conversely, the SART algorithm is the fastest algebraic reconstruction method and

the CGLS reconstructs data with timing of the same order of magnitude, due the

high convergence of such iterative algorithm.
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Dolcemente viaggiare, rallentando per poi accelerare...

— Lucio Battisti, from the song “Sì, viaggiare”
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4.1 Introduction

NT is a useful tool for evaluating the structural integrity of objects but it is very

time-consuming, so scanning a set of similar objects during a beamtime leads to

data redundancy and long acquisition times. Nowadays NT is unfeasible for quality

checking study of large quantities of similar objects. Hence, in the NI field there

is great interest in the optimization of time usage at neutron beamlines, motivated

also by the high neutrons production cost.

One way to reduce the CT scan time is to limit the number of projections. In

Chapter 3 we demonstrated that conventional algebraic methods better handle sparse-

view neutron datasets with respect to the widely used FBP algorithm. In addition,

a wide variety of regularized iterative methods have been proposed in literature [1–5].

This class of reconstruction algorithms involve additional regularizing terms in the

objective function. The prior knowledge about the scanned sample is embedded in a

regularizing term, providing accurate reconstruction from high under-sampled datasets.

Although regularized iterative methods generally outperform analytical ones to handle

limited-data problems, they present two major drawbacks. The first is the high

computational cost, several order of magnitude greater than analytical methods and

even higher than algebraic methods. For example, a Total Variation (TV) minimization

based reconstruction of a 10243 volume performed on GPU it would take more than a

day of computation. The second disadvantage is the limited variety of samples that

can be reconstructed, due the constrain imposed by the specific prior knowledge. For

example, TV minimization based methods can be used only to accurately reconstruct

objects with sparse gradient. For this reasons, the application of regularized iterative

methods to large-scale tomographic data is still limited.

Nowadays, Deep Learning [6] (DL) has reached state-of-the-art performance for

image classification [7–9], segmentation [10–12], image denoising [13–15], deconvolution

[16] and artifact reduction [17, 18]. Recently, new Machine Learning (ML) based

methods were introduced to improve low-dose and Sparse-View X-ray tomography
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[19–26]. These methods are data-driven, i.e. they learn the image features from

training data providing more accurate reconstructions than analytical methods.

In this work we propose the recently introduced Neural Network Filtered Back-

Projection (NN-FBP) method [27] to reduce the acquisition time in NT experiments.

At the best of our knowledge, this is the first study which proposes and tests a ML

based reconstruction method for NT. The NN-FBP method avoids to a degree the

aforementioned problems of analytical and iterative reconstruction algorithms. In fact,

NN-FBP is faster than iterative methods, since it has similar computation complexity

to FBP, and learns how to use problem specific knowledge, providing high image quality

even for limited datasets. We demonstrate that this method is suitable for neutron

data and outperforms conventional reconstruction methods used in NT. Furthermore,

the NN-FBP method can reliably reduce the scan time, reconstruction time and the

amount of data storage. As case study, we chose to inspect part of a monoblock

(Figure 4.1) from the divertor region of a fusion energy device by means of sparse-view

NT and the NN-FBP reconstruction algorithm. The main motivation of employing

the fusion divertor monoblock as a specimen is because of the large number of armour

that will be required for the divertor assembly within the ITER project [28] and

consequently matches the need of a quality check technique. The structural integrity of

these samples subjected to high thermal loads is fundamental within a tokamak fusion

energy device. A comparative study between X-ray CT and NT has been recently

carried out [29] to inspect the quality of manufactured monoblocks.

In our work, simulated and real neutron data were used to assess the perfor-

mances of the NN-FBP, FBP and SIRT [30] methods as a function of the number

of projections. The reconstructed images were quantitatively compared in terms

of several image quality indexes.
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Figure 4.1: The sample inspected using NT. The Cu-CuCrZr pipe is the central section of
the Culham Centre for Fusion Energy thermal break concept monoblock.

4.2 Methods

4.2.1 Overview of the approach

The NN-FBP method is based on a nonlinear weighted sum of different FBP recon-

structions, each of these with a specific filter. An Artificial Neural Network (ANN)

model is exploited to train these custom filters. The type of network used for the

NN-FBP is the multilayer perceptron [31]. This network has three layers: the input

layer, the hidden layer and the output layer, each of them composed of n, Nh and

m nodes, respectively. In a multilayer perceptron, each input node is connected to

all hidden nodes with a weight wij , and each hidden node to all output nodes with

a weight qij . Hence, the connections between the input layer and the hidden layer is

described by the n×Nh matrix W , containing the wij weights. The m×Nh matrix Q

containing the weights qij represents the connections between the hidden nodes and the

output nodes. Scalar values are subtracted from the output of each hidden and output

node. Moreover, a logistic function σ(t) = 1
1+e−t is applied as activation function to

the output of each hidden and output node, making the neural network a nonlinear

model. The number of hidden nodes Nh is a free parameter, to be determined for each

specific problem. The output vector O of a multilayer perceptron, with Nh number

of hidden nodes, for the input vector z can be expressed as:

OQ,W ,b,b0(z) = σ

Nh∑
i=1

qiσ(wi · z − bi)− b0

 (4.1)
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where wi and qi are single columns of the matrices W and Q respectively, while bi

and b0 are the bias weights. According to supervised learning approach, an unknown

function can be approximated by an ANN if the output values fi are known for a

particular set of T input vectors zi. Hence, the network weights are found in a training

task that consists in minimize the cost function:

e(Q,W , b, b0) =
T∑
i=1

(O(zi)− f i)2. (4.2)

In the case of the NN-FBP, the input vector has the same size of the detector array,

composed of Nd elements each with coordinate τd. The input vector components

can be expressed as follows:

z(τd) =
Nproj∑
k=1

Pθk(xi cos θk + yi sin θk − τd) (4.3)

while output layer is composed of a single node and described by the formula:

OQ,W ,b,b0(z) = σ

Nh∑
j=1

qjσ(FBPwj (xi, yi)− bj)− b0

 . (4.4)

The output of this neural network can be viewed as weighted sum of Nh FBP

reconstructions with custom filters and specific biases. Hence, the computational

complexity of the NN-FBP method depends on the number of hidden nodes Nh,

but is comparable to the FBP method.

4.2.2 Sample

Fabrication of the Cu-CuCrZr pipe, shown in Figure 4.1, was carried out in the

following way. Firstly, the inner CuCrZr pipe with a thickness of 1 mm was wrapped

in three turns of a 25 µm thick braze foil to a total thickness of 75 µm. The braze foil

is a 50:50 copper-gold mix known commercially as Orobraze™. Next, two half copper

pipe ‘sleeves’ were placed around the inner pipe. The sleeves were held in place by

tying them with a molybdenum wire in several locations along the length of the pipe.

This assembly was heated in a vacuum furnace to perform the brazing cycle and join

the inner and outer pipes. Finally, the molybdenum wire was removed, and 1 mm

wide grooves were machined along the length of the copper pipe; one groove along
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one side and seven equidistant grooves on the opposing side. For the purpose of this

investigation, a length of 20 mm pipe was cut from a longer part.

4.2.3 Data acquisition at the IMAT beamline

The data acquisition was carried out at the IMAT beamline [32–34], ISIS neutron

spallation source, Rutherford Appleton Laboratory, U.K. The sample was placed on

the rotating platform at the distance L = 10 m from the beam aperture and at the

distance d = 25 mm from the scintillator screen. The diameter of the beam aperture

was D = 40 mm, resulting in a L/D ratio of 250. The neutron flux for this setup is

5.9 · 106 n/cm2/s [33]. The imaging system consisted of a CMOS camera with 2048

× 2048 pixels coupled with optical lenses and a scintillator 6LiF/ZnS with thickness

50 µm. The FOV was set to 59.5 × 59.5 mm2 and the resulting pixel size was 29 µm.

Each tomographic scan was performed by collecting a set of 1335 radiographs in the

angular range [0◦, 360◦), with an exposure time of 30 s per projection (the maximum

allowed by the used camera) and an overall scan time of approximately 11 hours.

Open beam and dark field images were taken as well in order to perform the data

normalization. Our setup provides a number of neutrons per pixel equals to 1.5 · 103.

4.2.4 Data processing and reconstruction

The acquired raw projections were normalized respect to the dark images, open

beam images and to the neutron dose. Afterwards, the normalized projections were

pre-processed by removing dead-pixels and gamma-spots, while ring artifacts were

suppressed by means of a filter based on combined wavelet and Fourier analysis [35].

In the simulation experiment, we generated images of 3480×3480 pixels representing

a slice of the sample (Figure 4.2). We evaluated equispaced projections in the angular

range [0, 2π) for a detector with 3480 pixels. We assumed a parallel beam geometry

which is a fair approximation for neutron beams characterized by an L/D ratio of

250. Afterwards, we rebinned the projected data to 870 pixels and we added Poisson

noise assuming 5000 counts as background intensity. The reconstruction was done

on a 870× 870 pixels grid. Pre-processing, reconstruction and analysis of simulated
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ring

Figure 4.2: Diagram showing a slice of the simulated phantom and the ring-shaped ROI (red
area) used for the computation of the NRMSE.

and real data were carried out by means of the NeuTomPy toolbox, a new Python

package for tomography, which is presented in Chapter 5.

All reconstructions and simulations were performed on a Linux workstation equipped

with an Intel Core i7-6700HQ CPU @ 3.40GHz CPU, 64 GB of system RAM and

a NVIDIA GTX TITAN X GPU.

4.3 Results

The NN-FBP method combines different FBP reconstructions, each with a custom filter,

to produce a single image. The filters are determined by training an ANN. The network

input is a vector that contains the projection data and the network output is a single

reconstructed pixel. The intermediate hidden layer of the network consists of Nh hidden

nodes. This parameter can be chosen freely and, in the NN-FBP implementation,

represents the number of different FBP reconstructions to compute and combine in a

single image. We used simulated data to find the optimal value of Nh which ensures

the best balance between reconstructed image quality and reconstruction time. We

underline that the network must be re-trained to change the number of hidden nodes.

Afterwards, we quantitatively compared the NN-FBP, FBP and SIRT methods

as a function of the number of projections using both simulated and real data. The

evaluation of the image quality was carried out by computing the Normalized Root
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Mean Square Error (NRMSE), the Structural Similarity Index (SSIM) [36], the Feature

Similarity Index (FSIM) [37] and the Gradient Magnitude Similarity Deviation (GMSD)

[38]. The NRMSE is a measure of the reconstruction error and it was computed

by using the following definition:

NRMSE = ||Irec − Igt||2
||Igt||2

(4.5)

where Irec and Igt are vectors containing pixel values of the reconstructed and ground

truth image, respectively, || · ||2 is the Euclidean norm. In our analysis, the NRMSE

was computed both on the sample (NRMSE sample) and on a ring-shaped region of

interest (NRMSE ring) shown in Figure 4.2 in order to evaluate the reconstruction

accuracy of a particular thin feature of the sample. The sample mask was computed

using the Otsu’s thresholding method [39]. The SSIM index quantifies the structural

similarity between two images by comparing the luminance, the contrast and the

structure information. The SSIM value ranges from -1 to 1, a higher value indicates

superior image quality. The FSIM is an image quality index that better reflects the

perception of the human visual system evaluating salient low-level image features. In

fact, FSIM index exploits the phase congruency and the image gradient magnitude,

which are complementary features in characterizing the image quality. The FSIM value

ranges from 0 to 1, a higher value indicates superior image quality. The GMSD index

measures the variation in the similarity of gradient maps between two images. We

used this metric to assess the quality of the edges. GMSD values lie between 0 and

1, a value closer to 0 indicates better similarity in the gradient maps.

4.3.1 Simulation study

A numerical phantom, which mimics the Cu-CuCrZr pipe (Figure 4.1), was generated

to find optimal parameters for the reconstruction and to test the NN-FBP method.

A slice of the numerical phantom is shown in Figure 4.2. Simulated projections were

obtained by computing the Radon Transform of the phantom image, assuming a

parallel beam geometry. First, we reconstruct images from an over-sampled dataset

of 1335 projections using the SIRT method with 400 iterations. The over-sampled
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dataset contains twice the number of projections required by the Nyquist-Shannon

condition. In fact, the sampling theorem is exactly satisfied for 668 projections (the

widest horizontal dimension of the sample is ∼ 430 pixels long). We then train the

ANN to mimic the reconstructed images obtained from the oversampled dataset, using

a subset of the available projections. The network was trained on 105 pixels/slice

from 10 training images and 105 pixels/slice from 10 validation images. The image

quality indexes were evaluated on 30 reconstructed images of a numerical phantom

that differs from spatial orientation from the one used for training. We used the

original phantom images as ground truth image.

Firstly, we evaluated the quality of the NN-FBP reconstruction for different number

of hidden nodes (Nh). Figure 4.3 shows the NRMSE computed over the whole image

and the reconstruction time as a function of the number of projections (Nproj). Each

line represents reconstructions with 1, 2, 4 and 8 hidden nodes. It is clear that in

general higher reconstructed image quality is achieved by increasing the number of

hidden nodes, but at the expense of a longer reconstruction time. Hence, we chose

to use 4 hidden nodes in both simulated and experimental study, since it ensures

a good balance between image quality and short reconstruction time (less than 300

ms for under-sampled datasets).
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Figure 4.3: (left) The NRMSE values and (right) the reconstruction time for the number of
hidden nodes 1,2,4 and 8, as a function of the number of projections.

Afterwards, we compared the reconstruction quality of the NN-FBP with respect to

the quality of conventional algorithms SIRT and FBP, in terms of the aforementioned
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Figure 4.4: Comparison of different image quality indexes computed from FBP, SIRT and
NN-FBP reconstructions of simulated data, as a function of the number of projections Nproj .
(top-left) The NRMSE evaluated over the sample mask, (top-right) the NRMSE evaluated
within the ring-shaped ROI, (bottom-left) the SSIM index and (bottom-right) the FSIM index.
The error bars indicate three standard deviations.

indexes. In our analysis, all FBP reconstructions were performed with the Ram-Lak

filter. Figure 4.4 shows the NRMSE sample (top-left), the NRMSE ring (top-right),

the SSIM (bottom-left) and the FSIM (bottom-right) evaluated from FBP, SIRT and

NN-FBP reconstructions of simulated data as a function of the number of projections.

It is clear that NN-FBP method outperforms significantly the FBP and SIRT. In

fact, the indexes related to NN-FBP reconstructions indicate better image quality

than conventional algorithms for all number of projections considered. The FSIM

turns out to be the most significant image quality index. It is evident from the

FSIM plot in Figure 4.4 that the number of projections can be reduced using the

NN-FBP method to 134, i.e. 1/8 of the over-sampled dataset and 1/4 of the

projections required by the sampling theorem, ensuring image quality comparable
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to FBP reconstruction for Nproj = 668.

4.3.2 Experimental study

We performed tomographic scans of two similar samples by collecting over-sampled

datasets of 1335 projections in the angular range [0◦, 360◦). Also in this case,

oversampled datasets contains twice the number of projections required by the sampling

theorem. The first sample was used to train the ANNs, the latter to evaluate the

image quality of the NN-FBP reconstructions. The network was trained to mimic

images obtained from 1335 projections of the first sample using the SIRT method

with 400 iteration. In particular, 105 pixels/slice from 10 training images and 105

pixels/slice from 10 validation images of the first sample were used to train the ANNs.

We evaluated the image quality indexes on 30 reconstructed images of the second

sample for each reconstruction method. At this stage, we regard as ground truth images

the SIRT reconstruction of the oversampled dataset (Nproj = 1335) with 400 iterations.

Figure 4.5 shows the NRMSE sample (top-left), the NRMSE ring (top-right), the

SSIM (bottom-left) and the FSIM (bottom-right) evaluated from FBP, SIRT and

NN-FBP reconstructions of real data as a function of the number of projections. In

general, the trend of each index obtained in the experimental study is quite similar

to the results of the simulation study. In fact, the NN-FBP shows higher image

quality than FBP and SIRT in terms of the NRMSE sample, SSIM and FSIM for

all numbers of projections. From the NRMSE ring plot, we deduce that NN-FBP

method provides at worst reconstruction comparable for accuracy to the SIRT. From

the FSIM plot in Figure 4.5 we conclude that the number of projections can be reduced

using the NN-FBP method to 223, i.e. 1/6 of the over-sampled dataset and 1/3 of

the projections required by the sampling theorem, ensuring image quality comparable

to standard FBP reconstruction for Nproj = 668.

In Figure 4.6 we show a comparison of different reconstructed slices: the ground

truth image, the FBP and SIRT reconstruction of 668 projection, matching exactly

the Nyquist condition, and the FBP, SIRT and NN-FBP reconstruction for 223 and 67

projections. Below each image is shown the intensity profile along a line segment marked
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Figure 4.5: Comparison of different image quality indexes computed from FBP, SIRT and
NN-FBP reconstructions of real data, as a function of the number of projections Nproj . (top-
left) The NRMSE evaluated over the sample mask, (top-right) the NRMSE evaluated within
the ring-shaped ROI, (bottom-left) the SSIM index and (bottom-right) the FSIM index. The
error bars indicate three standard deviations.

in each CT slice with a red dashed line. Furthermore the histogram of attenuation

coefficients within the sample mask is represented below each intensity profile plot.

We note from a visual inspection that for 223 projections the FBP reconstruction is

affected by high noise dose which makes the segmentation not feasible. On the other

hand, the NN-FBP method with 223 projection provides high contrast images and

less noise than conventional algorithms. Furthermore, we note that the NN-FBP for

Nproj = 223 is the only one method able to reconstruct images with a multimodal

distribution of the pixel values. The edges and the sample features are accurately

reconstructed. This result indicates that segmentation and analysis can be actually

performed on a NN-FBP reconstruction of a limited dataset with 223 projections.

When the number of projection is reduced to 67 (1/10 of the required one by the
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Figure 4.6: A comparison of CT reconstructed images of real data obtained using FBP,
SIRT and NN-FBP methods for different number of projections. In the reading order: the
ground truth image obtained with SIRT algorithm (Nproj = 1335 and 400 iterations), the
FBP reconstruction for Nproj = 668 (matching exactly the Nyquist condition), the SIRT
reconstruction for Nproj = 668 and 400 iterations, the FBP reconstruction for Nproj = 223,
the SIRT reconstruction for Nproj = 223 and 400 iterations, the NN-FBP reconstruction for
Nproj = 223, the FBP reconstruction for Nproj = 67, the SIRT reconstruction for Nproj = 67
and 400 iterations, the NN-FBP reconstruction for Nproj = 67. Below each image is shown the
intensity profile along a line segment marked in each CT slice with a red dashed line. The
intensity values are represented in the range [-0.3, 1.8] cm−1 and the segment length is 160
pixels. Below each intensity profile the histogram of the attenuation coefficient values within
the sample is represented in the range [0, 1.7] cm−1.
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sampling theorem) the NN-FBP reconstructs well the strong edges but with an over-

smoothing which suppresses low contrast structure. Hence the severe under-sampling

in NN-FBP method leads to low-noise images but with a loose of image features.

To assess the local structural similarity of the reconstructed images with respect to

the ground truth image we computed the local SSIM map. In Figure 4.7 we show the

SSIM maps related to the FBP and SIRT reconstruction of 668 projections, the FBP,

SIRT and NN-FBP reconstruction of 223 projections. The histogram of local SSIM

values is represented below each image and the global SSIM is also reported.
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Figure 4.7: The SSIM maps computed from FBP, SIRT and NN-FBP reconstructions of real
data for Nproj = 668 and Nproj = 223 with respect to the ground truth image. Below each
image the histogram of local SSIM values is represented, while above the global SSIM value is
reported.

We observe that in the case of the NN-FBP method with 223 projection the

majority of local SSIM values range from 0.7 to 1 and globally around 0.67. This

result is significantly better than the results obtained from FBP and SIRT for the

same number of projections (i.e. global SSIM 0.30 and 0.47 for FBP and SIRT and

majority of local SSIM values < 0.7). Furthermore, the NN-FBP reconstruction of

223 projections outperforms the standard FBP reconstruction of 668 projections in

terms of local and global SSIM values. However, the SIRT reconstruction of 668

projections shows slightly better structural similarity with respect to the ground image

than the NN-FBP reconstruction for 223 projections. In fact, the global SSIM for

the SIRT image is 0.72 while for NN-FBP image is 0.67.

In Figure 4.8 we show a comparison of the GMSD values computed with respect to

the ground truth image for each reconstruction algorithm as a function of the number of
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Figure 4.8: Comparison of the GMSD values computed with respect to the ground truth
image from FBP, SIRT and NN-FBP reconstructions of real data as a function of the number
of projections. The error bars indicate three standard deviations.

projections. We observe that for each reconstruction method the edge quality decreases

when the number of projections is reduced. However, the NN-FBP outperforms SIRT

and FBP in terms of the GMSD values for each number of projections considered.

Furthermore, the edge quality of the NN-FBP reconstruction of 223 projections is

comparable to the standard FBP reconstruction of 668 projections.

Finally, we evaluated the average reconstruction time per slice of the FBP, SIRT and

NN-FBP methods as a function of the number of projections. The results are shown in

Figure 4.9. The FBP method is the fastest reconstruction algorithm. However, NN-FBP

is in general one order of magnitude faster than SIRT and one order of magnitude slower

than FBP, ensuring reconstruction time per slice of the order of tenths of a second.

In Table 4.1 we report the training time of the NN-FBP method as a function of

the number of projections and for different number of hidden nodes. Obviously the

training time increases with the amount of training and validation data and in our

analysis we fixed them. For each training stage we used 105 pixels/slice from 10 training

images and 105 pixels/slice from 10 validation images. We observe from Table 4.1

that the training time increases with the Nh value but does not strictly depend on the
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Figure 4.9: The average reconstruction time per slice of the FBP, SIRT and NN-FBP method
as a function of the number of projections. All reconstructions were performed on GPU.

Nproj Nh = 1 Nh = 4 Nh = 16
668 155 s 358 s 898 s
445 150 s 260 s 555 s
334 71 s 187 s 594 s
267 136 s 451 s 656 s
223 97 s 307 s 551 s
167 95 s 384 s 420 s
134 90 s 321 s 1209 s
84 100 s 317 s 915 s
67 94 s 402 s 857 s

Table 4.1: Training time of the NN-FBP method as a function of the number of projections
and for different number of hidden nodes.

number of projections. In general, the training task requires tens of minutes which is a

reasonable time with respect to the acquisition time of a tomographic scan.

4.4 Discussion

We have studied for the first time the performance of the NN-FBP method with

neutron data and compared to conventional reconstruction algorithms used in NT

in terms of different image quality metrics. We demonstrate that NN-FBP method

outperforms the FBP and SIRT with respect to image quality. Furthermore, the

computation complexity of NN-FBP method is lower than SIRT. Hence, NN-FBP
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method provides reconstructions in shorter times with respect to iterative methods.

We conclude that the NN-FBP can reliably reduce scan time, reconstruction time and

data storage providing high image quality for sparse-view NT. Specific prior knowledge

is not explicitly moulded in the NN-FBP method, as opposed to advanced iterative

reconstruction algorithms. In fact the method learns the features of the training images

by tuning the neural network’s weights appropriately. Hence the NN-FBP method can

be implemented with high computational efficiency at neutron imaging facilities for

the broader applicability than regularized iterative reconstruction algorithms.

The main requirement of the NN-FBP method is that the scanned objects should

consist only of the same materials present in the training samples. When this

prerequisite is satisfied the NN-FBP method is able to reconstruct accurately objects

with different shape and size of the training samples [40].

Our experimental study demonstrates that using the NN-FBP method, the number

of projections can be reduced to 1/3 of the projections required by the sampling

theorem, ensuring image quality comparable to standard FBP reconstruction. Hence,

the acquisition time can be reduced to 1/3 of the time requested by a standard CT

scan. However, the reconstruction quality of the NN-FBP is highly dependent on the

quality of the projections and reconstructed images used in the training stage. In

principle, better results can be obtained by optimizing the imaging setup to increase

the signal-to-noise ratio of neutron projections.

4.5 Outlooks

In this study, we focused on the application of the NN-FBP method to sparse-view

CT reconstruction of objects similar to a training sample, which was scanned over a

large number of view angles. The NN-FBP was trained on the SIRT reconstruction

of the over-sampled training dataset. However, several experimental situations limit

the angles for which projection data can be acquired. The NN-FBP method can be

used in these cases to emulate an advanced but slow regularized iterative method to

produce reconstructions from limited projection data. In particular, this can be of
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great interest for spatio-temporal reconstruction of dynamic systems. For example, the

NN-FBP method could be used to study the dynamics of slow periodic phenomena

with stroboscopic and acquiring projections according to a Golden ratio based sequence

[41]. The training should be performed on high-quality reconstruction of the system at

particular time instant. The temporal evolution can be reconstructed with NN-FBP

if the aforementioned prerequisite is satisfied during the experiment. However the

feasibility of these applications in NT remains subject of further research.

The NN-FBP can be used to reconstruct also truncated data, occurring when the

scanned object is larger than the field-of-view (FOV) of the imaging system. Truncated

sinograms can lead to strong artifacts in the reconstructed images. When using the

FBP method with truncated data, the artifacts can be reduced by replicating the

projection boundary values to form a larger virtual detector [42]. This method cannot

be applied to iterative algorithms, which require projections of the entire sample.

Conversely, the padding approach can be used with the NN-FBP method since it is

based on FBP reconstructions with custom filters.

We think that the NN-FBP could be improved by using deeper networks with the

aim of learning more features of the sample. Deep learning and machine learning in

general are promising and innovative approaches for image reconstruction. This field

of research nowadays is of interest in medical and X-ray imaging [43], but we think

that also NI community should take into account new ML based reconstruction

theories and techniques.
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Computer science is not as old as physics; it lags by a
couple of hundred years. However, this does not mean
that there is significantly less on the computer scientist’s
plate than on the physicist’s: younger it may be, but it
has had a far more intense upbringing!

— Richard P. Feynman

Computers themselves, and software yet to be developed,
will revolutionize the way we learn.

— Steve Jobs 5
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5. NeuTomPy, a new Python package for CT reconstruction

5.1 Introduction and motivation

Neutron Tomography (NT) has become a routine method for users at many neutron

sources to non-destructively investigate the inner structure of a wide range of objects.

The commercial software Octopus [1] by Inside Matters is a well established tool

for reconstruction of tomographic data at neutron imaging beamlines. However, this

software requires a significant investment and generally users can perform a preliminary

data processing with Octopus only at the imaging facility. Data analysis is a crucial

step for the output of an experiment, so users usually spend time to optimize the data

processing mainly at home. This poses a strong demand of freeware and powerful

tools to perform data processing of neutron data.

Image acquisition in NT is very time-consuming with respect to X-ray Computed

Tomography (CT) and, in several cases, under-sampled datasets are acquired to reduce

the scan time and optimize beamtime usage during an experiment. The Filtered

Back Projection (FBP) algorithm is regarded as a standard reconstruction method

for neutron data. However, as we have already discussed in the previous chapters,

FBP generates reconstructed images affected by aliasing artifacts when the number

of projections does not satisfy the Nyquist-Shannon condition (Eq. 1.43) [2]. In

addition, the image quality of FBP reconstructions highly depends on the amount of

noise in projection data. Iterative reconstruction methods outperform FBP, and more

generally analytical methods, to handle under-sampled or noisy datasets [3]. Octopus

software provides only two reconstruction methods: the FBP and the Simultaneous

Algebraic Reconstruction Technique (SART). Modern reconstruction methods are

not implemented. On the other hand, several open source tools for tomographic

reconstruction are available nowadays but they are mainly developed for X-ray CT and

they are not ready to handle neutron data. Some image pre-processing algorithms are

mandatory in NT to obtain accurate reconstruction, i.e. the estimation of the rotation

axis tilt and the related registration of the projections, the suppression of gamma-spots

and the data normalization with respect to the radiation dose. Reconstruction tools

for X-ray CT generally include some, but not all of such correction algorithms. For
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Figure 5.1: The NeuTomPy logo.

example, the ASTRA toolbox [4] is a Matlab and Python package that provides

highly efficient implementation of iterative methods for CPUs and GPUs. ASTRA

toolbox is only focused on the reconstruction step and it does not include any pre-

processing, post-processing algorithms or functions to read and write data. On the

other hand, the Python package TomoPy [5] includes several pre-processing and post-

processing algorithms and provides implementation for CPUs of a wide range of iterative

reconstruction methods. Moreover TomoPy is not ready to handle neutron data, since

it does not include functions to estimate the rotation axis tilt and to compute the

related correction on projection data. Furthermore, TomoPy is available only for Linux

and Mac OS operating systems. MuhRec [6] is the only free software that was conceived

for NT. It includes several filters and pre-processing algorithms and it is currently the

main free alternative to Octopus for data processing of neutron data. However, at time

of writing, MuhRec does not provide any iterative reconstruction method support.

In this chapter we present the NeuTomPy Toolbox, a new Python package

for tomographic data processing, that is specifically designed to compensate the

shortcomings of the aforementioned software tools. The NeuTomPy toolbox was

conceived primarily for NT and developed to support the need of users and researchers

to compare state-of-the-art reconstruction methods and choose the optimal data

processing workflow for their data. The toolbox has a modular design, multi-threading

capabilities and it supports Windows, Linux and Mac OS operating systems. The

NeuTomPy toolbox (logo shown in Figure 5.1) is open source and it is released under

the GNU General Public License v3, allowing users to freely use it and encouraging

researchers and developers to contribute. Previously, this package has been developed

and used for data analysis of the comparative study described in Chapter 3 and

Chapter 4 and now is freely distributed to the neutron imaging community.
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5.2 Software description

Here we describe the architecture of NeuTomPy Toolbox and present its main functional-

ities.

5.2.1 Software Architecture

The NeuTomPy toolbox is written in Python. We chose this programming language

because it is open-source, cross-platform, human-readable and allows researchers to

use and contribute to it easily. The toolbox is divided into several sub-modules,

each of these represents a particular phase of a typical CT reconstruction pipeline.

The entire chain is represented in Figure 5.2. The NeuTomPy toolbox exploits

several Python libraries for scientific computing and image processing, i.e. NumPy

[7], NumExpr [8], SciPy [9], scikit-image [10], OpenCV [11] and SimpleITK [12]. In

particular, the CT reconstruction step is powered by the ASTRA Toolbox. NeuTomPy

combined with ITK-SNAP [13], tomviz [14] or 3D Slicer [15] turns out to be a complete

open-source software suite for CT.

stack of images

(*.tiff, *.fits)

ndarray

Pre-processing

- Normalization

- Correction of 
  rotation axis tilt 

- Ring filter

- Outliers removal

Reconstruction

Image quality 
assessment

Post-processing

- denoising

- conversion to
   8 -16 bit
- rebinning

Writing data

10    ...     21

91    ...     82

...
...

Reading data

(*.tiff, *.fits)

FBP, SIRT, 
SART, CGLS ...

Figure 5.2: Diagram representing the typical CT data processing steps that can be performed
by NeuTomPy toolbox. The package has a modular structure that follows the data processing
chain.
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Specifications Octopus MuhRec NeuTomPy
Operating systems Windows Windows, Mac OS Windows, Mac OS,

Linux Linux
Reconstruction algorithms FBP, SART FBP FBP, ART, SART,

SIRT, CGLS,
NN-FBP, MR-FBP

GPU-based reconstruction Yes No Yes
Image Quality Assessment No No Yes
GUI Yes Yes No
Batch Processing No Yes Yes
License Proprietary GPLv3 GPLv3

Table 5.1: Comparative table between Octopus, MuhRec (the leading reconstruction software
for NT) and NeuTomPy toolbox.

In Table 5.1 we show a comparison between the leading reconstruction software

for NT, i.e. Octopus and MuhRec, and NeuTomPy Toolbox. It is worth noting

that at time of writing our software has no a global GUI, but some functions enable

user interactions via graphic interface.

The documentation of each NeuTomPy’s function and several example scripts are

available on ReadtheDocs website1. The source code is available on a GitHub reposi-

tory2.

5.2.2 Installation

NeuTomPy toolbox supports Windows, Linux and Mac OS operating systems. It

is recommended to use a Conda3 environment with Python 3.5 or 3.6 and install

the following dependencies:

$ conda install -c simpleitk simpleitk
$ conda install -c astra - toolbox astra - toolbox
$ conda install -c conda -forge numexpr matplotlib astropy tifffile

opencv scikit -image read -roi tqdm pywavelets

then NeuTomPy toolbox can be installed via pip:

$ pip install neutompy

1https://neutompy-toolbox.readthedocs.io
2https://github.com/dmici/NeuTomPy-toolbox
3https://www.anaconda.com/download
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5.2.3 Main functionalities and code snippets

The NeuTomPy toolbox allows to perform the steps of a typical CT reconstruction

workflow (Figure 5.2). The first task is represented by the reading of a raw dataset.

The implemented reader handles TIFF and FITS files and converts a stack of images

into a numpy array. A dataset containing raw projections, dark-field, flat-field images

and the projection at 180◦ can be read by:
import neutompy as ntp
proj ,dark ,flat , proj_180 = ntp. read_dataset ( proj_180 =True)

hence the user can select the data to read from a dialog box. Subsequently, the

projection data must be normalized with respect to dark-field and flat-field images

to compute the transmission images. If the source intensity is not stable the images

can be normalized with respect to the radiation dose [3]. In this case, the user must

specify a region of interest (ROI) which corresponds to a background area not covered

by the specimen in all the projections (we called it the dose ROI). It can be specified

in three different ways: drawing interactively a rectangular selection, specifying the

ROI’ s coordinates or reading an ImageJ .roi file. For example, to normalize data

and select interactively the dose ROI, the Python instruction is:
norm , norm_180 = ntp. normalize_proj (proj ,dark ,flat , proj_180 =proj_180 ,

dose_draw =True)

where the function normalize_proj returns a 3D array containing the stack of

normalized projections (norm) and a 2D array representing the normalized radiograph

at 180◦ (norm_180).

A common experimental issue in NT is the misalignment of the rotation axis with

respect to the vertical axis of the detector. The function correction_COR evaluates

the horizontal offset and the tilt angle by minimizing the squared error between two

opposite radiographs computed at different vertical positions, as described in [6], and

finally it registers all the projections. The Python instruction for this task is:
norm = ntp. correction_COR (norm , proj_0 , proj_180 )

where proj_0 and proj_180 are the projections (raw or normalized) at 0◦ and 180◦,

respectively. The user selects interactively different ROIs where the sample is visible.
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Subsequently the results and some information about the evaluation of the rotation

axis are shown. We report in Figure 5.3 an example for the rotation axis correction: the

difference of the projections at 0◦ (P0) and the mirrored projection at 180◦ (P flippedπ )

before and after the correction are shown in the left and right side, respectively.

before correction after correction

Figure 5.3: Results of the rotation axis correction: the difference P0 − P flippedπ before (left)
and after (right) the correction. The rotation axis is determined correctly if the difference
image P0 − P flippedπ after correction does not contain sample features.

The NeuTomPy toolbox includes an outlier removal which replaces a pixel value by

the median of the neighbourhood pixels if it deviates from the median by more than a

certain value. This threshold value can be specified by the user as a global value or

proportional to the local standard deviation. It is provided also a de-striping filter,

based on combined wavelet and Fourier analysis, to suppress the ring artifacts [16].

The reconstruction module includes all CPU- and GPU-based algorithms for 2D

parallel beam geometry implemented in the ASTRA toolbox and some additional

reconstruction methods distributed as ASTRA plugins. The available algorithms are

summarized in Table 5.2.

method CPU GPU
BP [2] x x
FBP [2] x x
ART [2] x
SART [2] x x
CGLS [17] x x
SIRT [18] x x
NN-FBP [19] x x
MR-FBP [20] x x

Table 5.2: List of the CT reconstruction methods included in NeuTomPy Toolbox for
two-dimensional parallel-beam geometries.
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The instruction to perform a CT reconstruction is the following:

rec = ntp. reconstruct (norm ,angles ,method , parameters )

where rec is the reconstructed volume, angles is one-dimensional array containing

the view angles in radians, method is a string which indicates the algorithm to

use and parameters is a Python dictionary that contains specific settings of the

reconstruction algorithm. The allowed values for method and parameters follow

the convention of the ASTRA toolbox, reported in the documentation [21]. For

example, the following instruction is used to compute with GPU support a FBP

reconstruction with the Hamming filter:

rec = ntp. reconstruct (norm ,angles , method =" FBP_CUDA ",
parameters ={" FilterType ":" hamming "})

while a SIRT reconstruction with 100 iterations and pixel values limited in the range

[0, 2] can be performed by:

rec = ntp. reconstruct (norm ,angles , method =" SIRT_CUDA ",
parameters ={" iterations ":100 ," MinConstraint ":0.0 ,

" MaxConstraint " =2.0})

In addition, the NeuTomPy toolbox allows to compare and evaluate the performance

of different reconstruction algorithms in terms of several image quality indexes. The

metrics implemented are the Contrast-to-Noise-Ratio (CNR) [3], the Normalized Root

Mean Square Error (NRMSE) [3], an edge quality metric [3], the Structural Similarity

Index (SSIM) [22] and the Gradient Magnitude Similarity Deviation (GMSD) [23].

5.3 Illustrative Examples

In this section we show some examples of data processing and reconstruction using

NeuTomPy toolbox. Firstly, we give in Code 5.1 an example of a full CT processing

workflow which includes data reading, normalization, COR registration, outliers

and ring removals, SIRT reconstruction with GPU support and finally the data

writing. It is worth noting that with about ten lines of code a full CT processing

workflow is performed.
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Code 5.1: A complete SIRT reconstruction workflow.
# -------------------------------------------------------------------
# This script performs a complete reconstruction workflow .
# The reconstruction algorithm used is the SIRT performed on a GPU.
# -------------------------------------------------------------------
import numpy as np
import neutompy as ntp
# set pixel size in cm
pixel_size = 0.0029
# set the last angle value of the CT scan: np.pi or 2*np.pi
last_angle = 2*np.pi
# read dataset containing projection , dark -field , flat -field images and
# the projection at 180 degree
proj , dark , flat , proj_180 = ntp. read_dataset ()
# normalize the projections to dark -field , flat -field images and
# neutron dose
norm , norm_180 = ntp. normalize_proj (proj , dark , flat , proj_180 =proj_180 ,

dose_draw =True , crop_draw =True)
# rotation axis tilt correction
norm = ntp. correction_COR (norm , norm [0], norm_180 )
# clean up memory
del dark; del flat; del proj; del proj_180
# remove outliers , set the optimal radius and threshold
norm = ntp. remove_outliers_stack (norm , radius =1, threshold =0.018 ,

outliers =’dark ’, out=norm)
norm = ntp. remove_outliers_stack (norm , radius =3, threshold =0.018 ,

outliers =’bright ’, out=norm)
# perform minus -log transform
norm = ntp. log_transform (norm , out=norm)
# remove stripes in sinograms
norm = ntp. remove_stripe_stack (norm , level =4, wname=’db30 ’, sigma =1.5 ,

out=norm)
# define the array of the angle views in radians
angles = np. linspace (0, last_angle , norm.shape [0], endpoint =False)
# SIRT reconstruction with 100 iterations using GPU
print(’> Reconstruction ... ’)
rec = ntp. reconstruct (norm , angles , ’SIRT_CUDA ’,

parameters ={" iterations ":100} , pixel_size = pixel_size )
# select the directory and the prefix file name of the reconstructed
# images to save.
recon_dir = ntp. save_filename_gui (’’, message = ’Select the folder and

the prefix name for the reconstructed images ... ’)
# write the reconstructed images to disk
ntp. write_tiff_stack (recon_dir , rec)

The NeuTomPy toolbox includes some reconstruction methods distributed as ASTRA

plugins. Hence, we illustrate an usage example of the NN-FBP method [19], which

was discussed in Chapter 4 for the application to NT. The Code 5.2 performs a FBP

reconstruction of a complete dataset and then trains the NN-FBP to reconstruct some

slices using less projections. Finally, the trained NN-FBP reconstructs other slices

of the same sample using under-sampled data.
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Code 5.2: An usage example of the NN-FBP training and reconstruction.
# -------------------------------------------------------------------
# This script shows an usage example of the NN -FBP method .
# A complete dataset is reconstructed via FBP and the NN -FBP is
# trained to reconstruct some reconstructed slices using a sparse -view
# dataset . Then different slices are reconstructed via NN -FBP.
# -------------------------------------------------------------------
import numpy as np
import neutompy as ntp
import os

pixel_size = 0.0029 # set pixel size in cm
hqrec_folder = ’hqrecs /’ # folder to save high quality reconstuction
nnfbp_rec_folder = ’recon -nnfbp/’ # output folder of nnfbp recon
conf = {}
# number of hidden nodes
conf[’hidden_nodes ’] = 3
#high - quality reconstruction
conf[’hqrecfiles ’]= hqrec_folder +’sample *. tiff ’
# folder where training files are stored
conf[’traindir ’] = ’trainfiles /’
# number of random pixels to pick per slice
conf[’npick ’] = 10000
# file to store trained filters
conf[’filter_file ’] =’filters .mat ’
last_angle = 2*np.pi # last angle of the CT scan: np.pi or 2*np.pi

# read dataset containing projection , dark -field , flat -field images and
# the projection at 180 degree
proj , dark , flat , proj_180 = ntp. read_dataset ()
# define the array of the angle views in radians
angles = np. linspace (0, last_angle , proj.shape [0], endpoint =False)

# normalize the projections to dark -field , flat -field images and
# neutron dose
norm , norm_180 = ntp. normalize_proj (proj ,dark ,flat , proj_180 =proj_180 ,

dose_draw =True , crop_draw =True , log=True)

# rotation axis tilt correction
norm = ntp. correction_COR (norm , norm [0], norm_180 )

# high - quality reconstruction
train_slice_start = 100
train_slice_end = 120
rechq = ntp. reconstruct (norm [:, train_slice_start : train_slice_end +1, :],

angles , ’FBP_CUDA ’, parameters ={" FilterType ":" hamming "},
pixel_size = pixel_size )

# write the high - quality reconstructed images to disk
ntp. write_tiff_stack ( hqrec_folder + ’sample ’, rechq)

# NN -FBP training
# reduction factor of the full dataset to obtain the
# sparse -view dataset
skip = 3
norm_train = norm [:: skip , train_slice_start : train_slice_end +1, :]
ntp. reconstruct (norm_train , angles [:: skip],’NN -FBP -train ’,

parameters =conf)

107



5. NeuTomPy, a new Python package for CT reconstruction

# NN -FBP reconstruction of noisy projections
test_slice_start = 180
test_slice_end = 200
norm_test = norm [:: skip , test_slice_start : test_slice_end +1, :]
rec_nnfbp = ntp. reconstruct (norm_test , angles [:: skip], ’NN -FBP ’,

parameters =conf)

# write NN -FBP reconstructed images
ntp. write_tiff_stack ( nnfbp_rec_folder + ’sample ’, rec_nnfbp )

Finally, we demonstrate the possibility to perform several reconstruction algorithms

and compare them quantitatively using the NeuTomPy toolbox. We used neutron

images of the phantom sample already described in Chapter 3. We remind that such

phantom is an aluminium cylinder containing four holes of different diameters and

filled with iron powder. Neutron images were acquired at the IMAT beamline [24].

We used for CT reconstruction an under-sampled dataset with 1/3 of the number of

projections required by the Nyquist-Shannon condition. We performed FBP, SIRT and

CGLS reconstructions and we compare them in terms of the image quality indexes

NRMSE, SSIM and CNR. We consider the SIRT reconstruction (200 iterations) of a

full-view dataset, which is sampled to fulfill the Nyquist-Shannon condition, as the

reference image for the computation of the NRMSE and SSIM. The CNR was computed

considering a ROI that includes one iron rod and with the second ROI outside the

sample. The results are shown in Figure 5.4. It is clear that the two iterative algorithms

outperform the FBP method. In fact, the CGLS and the SIRT reconstructions have

higher CNR and SSIM, and lower NRMSE than the FBP, which indicate better image

quality. In general, the under-sampling and the noise in the projection data cause

in the reconstructed images a broadening of the attenuation coefficients distribution.

However, unlike FBP reconstruction, the CGLS and the SIRT images are characterized

by a bimodal distribution of the grey values, which reflects the composition of the

sample. The source code of this analysis is omitted here for brevity. However, the

source code for this and other examples can be found in the GitHub repository.
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Figure 5.4: A comparison of reconstructed images of a phantom sample, obtained using
FBP, SIRT (200 iterations) and CGLS (10 iterations). Below each image the histogram of the
attenuation coefficient values within the sample is represented in the range [0, 0.7] cm−1

5.4 Impact

Data processing is the last step of a NT experiment but it is crucial for the interpretation

of the results. Advanced image processing algorithms can extract hidden information

from data and reduce the tomographic scan time. Hence new software tools, specifically

designed for neutron data, are required to compare state-of-the-art image processing

algorithms. Working on robust methods and tools to improve image quality means get

better output from NT experiments. However, state-of-the-art iterative reconstruction

methods are not implemented in Octopus and MuhRec, which are the leading software

for NT reconstruction. The NeuTomPy toolbox solves this shortcoming because it is

ready to work with neutron data and allows to perform and compare several iterative

reconstruction methods. Researchers can define the optimal data processing workflow

for their specific problem using the NeuTomPy toolbox. The code is open-source,

hence developers and researchers are invited to contribute.
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5.5 Conclusions

In this chapter we presented the NeuTomPy Toolbox, a new Python package for

tomographic data processing. We demonstrated that the toolbox is ready to work with

neutron data and allows researchers to state the optimal data processing workflow for

their specific investigation. The first release includes pre-processing algorithms, artifacts

removal and a wide range of classical and state-of-the-art reconstruction methods. The

NeuTomPy toolbox supports Windows, Linux and Mac OS operating systems and it is

released as open source. Researchers can freely use it and contribute to the project.

The future development will involve improvement of pre-processing algorithms

(e.g. scattering correction), addition of new reconstruction methods and finally the

implementation of a Graphical User Interface (GUI).
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6
Conclusions

In this thesis, we addressed the problem of scan time reduction in neutron tomography

experiments by using sparse-view datasets. We have studied the data processing

procedures which allow to reduce the number of radiographs without any loss of

the reconstructed image quality. For this purpose, we have developed a free and

open source software called NeuTomPy, which allows to perform and compare several

classical and state-of-the-art reconstruction methods. In what follows, the main

conclusions for each chapter are drawn.

In Chapter 1 and Chapter 2 we introduced the tomography and the neutron imaging

technique by recalling background arguments supporting this thesis. In particular, we

focused our attention on the mathematical formulation of the main reconstruction

algorithms and on the features and the main issues related to neutron tomography.

In Chapter 3 the performances of FBP and different algebraic reconstruction

methods (SIRT, SART and CGLS) have been tested for neutron data and studied

as a function of the number of projections and for different setups of the imaging

system. The reconstruction algorithms were quantitatively compared in terms of the

reconstructed image quality and computation time. We have observed that algebraic

methods provide better contrast detectability than the FBP algorithm in the case of
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sparse-view datasets. We proved that the CGLS algorithm is the best compromise

between spatial resolution, image contrast and reconstruction time. For moderate

under-sampled datasets, the CGLS and SIRT algorithms combined with the use of

thinner scintillators provided high reconstructed image quality so much that the time

of a neutron CT scan could be halved. For higher under-sampled datasets (i.e. with

less than 1/9 of the projections required by the Nyquist-Shannon condition), CGLS

and SART showed the best performances in terms of reconstructed image quality. The

SIRT algorithm provides reconstructions with highest image contrast in general, but at

the expense of lower spatial resolution and lower computational efficiency. Conversely,

the SART algorithm is the fastest among the algebraic reconstruction methods tested

in this work; however, the CGLS method, thanks to its high convergence, provides

reconstructions with timing of the same order of magnitude.

In Chapter 4 we proposed the recently introduced NN-FBP method to reduce

the acquisition time in NT experiments. At the best of our knowledge, this is the

first study which proposes and tests a machine learning based reconstruction method

for NT. As a case study, we chose to inspect part of a monoblock from the divertor

region of a fusion energy device by means of sparse-view NT. In our work, simulated

and real neutron data were used to assess the performance of the NN-FBP, FBP

and SIRT methods as a function of the number of projections. The reconstruction

algorithms were quantitatively compared in terms of several image quality indexes

and computation time. Our experimental study demonstrates that with the use of the

NN-FBP method the number of projections can be reduced to 1/3 of the projections

required by the sampling theorem, ensuring image quality comparable to standard

FBP reconstruction. Hence, the acquisition time can be reduced to 1/3 of the time

requested by a standard CT scan. However, the reconstruction quality of the NN-FBP

is highly dependent on the quality of the projections and reconstructed images used in

the training stage. Hence better results can be obtained by optimizing the imaging

setup to increase the signal-to-noise ratio of neutron projections. The NN-FBP method

avoids a number of disadvantages of analytical and iterative reconstruction algorithms.
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In fact, NN-FBP is faster than iterative methods, since it has similar computation

complexity to FBP. In addition, specific prior knowledge is not explicitly moulded in

the NN-FBP method, unlike regularized iterative algorithms which need a proper model

describing the prior knowledge. Hence the NN-FBP method can be implemented with

high computational efficiency at neutron imaging facilities for the broader applicability

than regularized iterative reconstruction algorithms.

We think that the NN-FBP could be improved by using deeper neural networks with

the aim of learning more features of the sample. Deep learning and machine learning in

general are promising and innovative approaches for image reconstruction. We believe

that the neutron imaging community should take into account such new techniques.

In Chapter 5 we have presented NeuTomPy, a new Python package for tomographic

data processing and reconstruction. We showed in detail the architecture, the main

functionalities and some usage examples of NeuTomPy.

Such toolbox was developed in order to support the demand of users to have free

software suitable for neutron datasets, allowing to perform and compare different

reconstruction methods. In fact, state-of-the-art iterative reconstruction methods

are not implemented in Octopus and MuhRec, which are the leading data processing

software for NT. On the other hand, software for X-ray CT generally include several

iterative reconstruction methods, but not all correction algorithms required by NT.

The NeuTomPy toolbox solves this shortcoming because it is ready to work with neutron

data and allows to perform and compare several reconstruction methods. Researchers

can define the optimal data processing workflow for their specific problem using

the NeuTomPy toolbox.

The first release includes pre-processing algorithms, a wide range of classical and

state-of-the-art reconstruction methods and several image quality indexes, in order to

evaluate the reconstruction quality. The toolbox has a modular design, multi-threading

capabilities and it supports Windows, Linux and Mac OS operating systems. The

code is open-source, hence users can freely use it while developers and researchers

are invited to contribute to the project.
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6. Conclusions

The package has been used for data analysis of the comparative studies presented

in this thesis and now is freely distributed to the neutron imaging community.

The future development will include improvement of pre-processing algorithms

(e.g. scattering correction), addition of new reconstruction methods and finally the

implementation of a Graphical User Interface (GUI).
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