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Abstract

Nella presente tesi di dottorato sono studiati due problemi (e relative generalizzazioni e varianti)
di particolare interesse nel campo della Logistica e della Ricerca Operativa.

Il primo problema trattato è il Multi Trip Vehicle Routing Problem with Time Windows (MTVRP).
Si tratta di una generalizzazione del classico Vehicle Routing Problem (VRP) in cui ogni veicolo può
essere utilizzato più volte durante l’orizzonte di pianificazione. Questa caratteristica, che complica
notevolmente il problema, trova applicazione in diversi contesti di last mile deliveries o urban
logistics nei quali è preferibile utilizzare vettori elettrici, con limitata capacità di trasporto. Queste
caratteristiche si traducono in un numero limitato di visite o in una ridotta lunghezza (temporale o
spaziale) delle rotte che questi veicoli possono percorrere, rendendo necessario il riutilizzo degli stessi
veicoli nella pianificazione.

Nel Capitolo 2 viene proposto un metodo esatto, capace di risolvere cinque diverse varianti del
problema che incorporano diverse caratteristiche motivate da applicazioni reali. Per ogni variante, il
metodo proposto risulta esse migliore degli algoritmi esatti presenti in letteratura, in termini di tempo
computazionale e numero di istanze risolte. Inoltre, per le prima volta vengono risolte istanze fino a
50 clienti.

Nel Capitolo 3, viene studiato e definito un problema affine al MTVRP, denominato Installation
Planning of Offshore Wind Farm Problem (IPOWF). Il problema nasce nel contesto della costruzione
di parchi eolici off-shore: dopo la fase di progettazione in cui vengono definite tutte le specifiche
(numero, tipo e posizione delle turbine), il parco deve essere costruito avendo a disposizione una
flotta di vascelli che vengono utilizzati per eseguire le operazioni necessarie alla costruzione di ogni
turbina. L’obbiettivo è schedulare le operazioni e definire le rotte dei vascelli in modo da completare
il parco, minimizzando il costo dovuto all’utilizzo dei vascelli stessi (costo di noleggio) e il costo di
mancata produzione energetica derivante dalle turbine non completate. Inoltre, le condizioni meteo
devono essere tenute in considerazione, dal momento che alcune operazioni possono essere eseguite
solo in presenza di condizioni controllate di agitazione ondosa. La fase di definizione delle rotte dei
vascelli risulta, di fatto, un MTVRP dal momento che i vascelli hanno bisogno di tornare nel porto di
provenienza per caricare risorse, prima di procedere verso la turbina successiva. Il problema è stato
studiato in collaborazione con Vattenfall, una delle maggiore aziende a livello mondiale operanti nel
settore. Grazie a questa collaborazione è stato possibile e testare l’approccio su dati reali.

Per risolvere il problema sono stati definiti dei modelli di programmazione lineare intera (Mixed
Integer Linear Programming models, MILPs). Alcuni di questi sono utilizzati per trovare soluzioni
ammissibili in tempi ragionevoli. Le ipotesi alla base di tali modelli non incidono sull’ammissibilità
delle soluzioni del problema originario. Tuttavia, per valutare la qualità delle soluzioni sono definiti
dei modelli di lower bound basati su rilassamenti del problema. L’approccio è in grado di fornire
soluzioni con gap di ottimalità inferiori del 2%.

I Capitoli 4 e 5 sono dedicati al secondo problema trattato in questa tesi, ovvero a una variante del
classico Inventory Routing Problem (IRP). IRP è il problema di ottimizzazione sotteso al paradigma
gestionale Vendor Management System, una politica di gestione di parte della catena logistica in cui il
vendor ha il controllo dei livelli di inventario dei propri clienti e del relativo rifornimento, assicurando
il soddisfacimento della domanda. Si tratta quindi di un problema in cui decisioni relative al livello di
inventario e al trasporto vengono prese in modo integrato al fine di minimizzare i costi del sistema.

L’IRP è un problema definito su un orizzonte temporale finito e su una rete logistica caratterizzata
da un nodo vendor (deposito o impianto di produzione) e da un insieme di nodi clienti che "consumano"
un prodotto ad un tasso noto, e che devono essere riforniti per non andare in stock out. Anche il tasso
di produzione dei prodotti presso il vendor è noto. La domanda presso i clienti deve essere soddisfatta
utilizzando le quantità rese disponibili dal vendor che sono distribuite mediante una flotta di veicoli
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capacitati, posizionati presso il vendor stesso. Inoltre, sia clienti che il vendor possono accumulare
scorte di inventario senza eccedere una capacità massima. L’obbiettivo è quello di stabilire le rotte dei
veicoli e le quantità da trasportare presso i clienti durante il periodo di pianificazione, garantendo il
soddisfacimento della domanda per ogni periodo e minimizzando il costo di trasporto e il costo di
inventario totale (presso i clienti e presso il vendor).

In questa tesi, viene studiata una versione di IRP in cui la pianificazione periodica è fatta su
un intervallo di tempo "illimitato". Questo tipo di problema viene generalmente identificato come
il Cyclic Inventory Routing Problem (CIRP). La pianificazione periodica è tipica nei sistemi nei
produzione in cui si cerca di standardizzare le operazioni. Sistemi logistici che sposano politiche
manageriali di lean production ne sono un esempio.

Nel Capitolo 4 viene studiata una variante del CIRP. Per questo problema viene proposto un
algoritmo esatto di branch-and-cut capace di risolvere istanze fino a 50 clienti.

Nel Capitolo 5 vengono proposte delle classi di math-euristiche (matheuristic) per risolvere il
CIRP mediante la risoluzione di una formulazione basata su variabili di rotta. Le rotte sono definite a
priori risolvendo dei VRPs. Per le rotte generate sono definiti dei rapporti di prestazione. L’approccio
proposto viene comparato con le soluzioni e i lower bounds forniti da un algoritmo esatto di branch-
and-cut che risolve una formulazione basata su variabili di flusso. I risultati mostrano che l’approccio
basato sulle classi di math-eurisitche è in grado di fornire soluzioni di alta qualità, molto spesso
migliori di quelle fornite dall’algoritmo di branch-and-cut, con tempi computazoinali contenuti.
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Chapter 1

Introduction

1.1 On Logistic and Supply Chain decision-making problems

Logistics can be considered as the backbone of processes and activities in companies and organizations op-

erating in different fields. According to Christopher (2016), a proper definition of the term is the following:

Logistics is the process of strategically managing the procurement, movement and storage

of materials, parts and finished inventory (and the related information flows) through the or-

ganisation and its marketing channels in such a way that current and future profitability are

maximised through the cost-effective fulfilment of orders.

From this definitions it follows that the mission of logistics is to serve customers (in a broad sense),

ensuring a certain service level, in the most cost-effective way. The spectrum of activities is large and

involves different actors, facilities and transportation services.

Facilities are all the sites in which materials are processed (stored, manufactured, sorted, combined,

sold, consumed), like warehouses, manufacturing and assembly centres, distribution centres, transshipment

points, transportation terminals (Ghiani et al. (2013)).

Transportation services are related to flows of materials among different facilities.

Goods can be moved by using different transportation modes (ship, rail, truck, air and pipeline) that

can also be combined in several ways. All these components are part of a logistics network, defined by a

set of interconnected facilities.

The concept of Supply Chain, arises in the context of complex logistics networks and it is defined in

Christopher (2016) as:

A network of connected and interdependent organisations mutually and co-operatively working

together to control, manage and improve the flow of materials and information from suppliers

to end users.

The discipline that deals with decision-making activities related to the supply chain, is named supply

chain management. The concept is relatively new and the definition provided by Christopher (2016) is the

following:
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The management of upstream and downstream relationships with suppliers and customers in

order to deliver superior customer value at less cost to the supply chain as a whole.

In this field, different types of activities like purchasing, inventory control, production, sales and distribu-

tion must be coordinated (see Andersson et al. (2010), Stadtler (2015), Christopher (2016), Simchi-Levi

et al. (2008)).

The following of this dissertation, is focused on optimization problems related to distribution and

inventory activities occurring in the supply chain management.

One of the most studied and well known problem in the field of Operations Research that is related to

the transportation and distribution of goods is the Vehicle Routing Problem (VRP). The problem states

as follows: several customer locations request a service that can be performed by a fleet of capacitated

vehicles starting from a single depot. A routing cost is defined for traveling from a customer location to

another one. The problem consists in designing vehicle routes such that each customer is served by a single

vehicle, the vehicles capacity is not violated in any routes and the total routing cost is minimized. Since

the VRP has been introduced, many challenging variants of the problem have been defined, considering

new features and side constraints to increase the degree of realism. These problems are generally know as

rich vehicle routing problems. A feature that has gained more attention because of its relevance in real

life applications, is the possibility of using each vehicle of the fleet more than once within the planning

horizon. Vehicle routing problems in which each vehicle can perform more than one trip are known

as Multi Trip Vehicle Routing Problems (MTVRPs). The problem was introduced for the first time by

Fleischmann (1990) and since then, different solution approaches and richer variants of the problem have

been proposed.

The VRP belongs to the class of operational problems, in which, a decision-maker plans the distribution

considering the customers demand and the set of customers to serve as given input data. This is the

case when decisions related to different facilities are taken independently. However logistics cost can be

reduced by taking decisions related to different processes of the supply chain in an integrated manner

(Andersson et al. (2010)).

An example of integrated decision-making policy is the vendor-managed inventory (VMI) (Chopra

& Meindl (2007)). This business practice aims at reducing logistics cost by integrating inventory and

transportation decisions. The vendor is responsible for all the decisions regarding customers inventory

level. In this way, the vendor is free to plan the distribution, ensuring that customers are never out of

stock. This policy is beneficial for vendors and for customers: vendors can save on transportation costs

because shipments to different customers can be coordinated with inventory decisions and customers can

outsource inventory control activities.

Inspired by the VMI policy, the Inventory Routing Problem (IRP) has been formalized and studied

for the first time by Bell et al. (1983). However, the the first paper that used the term "Inventory Routing

Problem" is the one of Golden (1984). Since then, the IRP has attracted a lot of attention and many

versions of the problem have been intensively studied. The general version of the problem can be defined

as follows. A single facility must supply a set of customers with a single commodity over a given planning

horizon. Each customer consumes the product at a known rate and local inventory, that does not exceed a

storage capacity, can be maintained at each customer by paying a unit inventory cost per period. A fleet of

capacitated homogeneous vehicles is available for the distribution. The problem consists in minimizing
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the distribution cost and total inventory cost during the planning period avoiding stock-out at any customer.

We remind to Coelho et al. (2013b) for a complete overview on the problem. A version of the IRP that has

not been extensively studied is the Cyclic Inventory Routing Problem (CIRP). The CIRP is a variant of the

IRP in which the plan must be cyclically applied over an infinite planning horizon. This type of policy

finds applications in industrial systems characterized by lean production principles as standardization of

the workload and level production planning.

The purpose of the present dissertation is to study variants and extensions of two of the aforementioned

classes of problems: the Multi Trip Vehicle Routing Problem and the Cyclic Inventory Routing Problem.

1.2 Research Motivations

The MTVRP and the CIRP are challenging classes of problems (bothNP-hard, for reduction to the VRP)

with a wide range of real life applications. The MTVRP finds applications in last mile delivery and city

logistics contexts. As pointed out in Cattaruzza et al. (2017), carriers and cities have strong incentives for

generalizing the use of small environmentally friendly vehicles in urban areas. These vehicles are usually

characterized by a limited capacity or a limited autonomy. Moreover, factors as the development of the

e-commerce, higher service levels required by customers, entail the tendency to introduce intermediate

facilities. The effect is a greater interest in vehicle routing problems in which multiple trips are allowed:

in fact, carriers are interested in reducing the size of their fleet while increasing the service level offered to

customers. Considering that the in 2007, 85 % of the European GDP was generated in urban areas and

that the 25 % of the CO2 emission of the whole transport sector comes from urban transport, it is easy to

understand the importance of last mile and urban logistics (Cattaruzza et al. (2017)), making this class of

problem worthy of further studies.

For what concerns the CIRP, real life applications can be founded in several industrial sectors. The

cyclic aspect is related to the lean philosophy introduced by the Toyota Production System, in particular to

the notion of heijunka (workload leveling). Ideally, a lean production system consists in a one-piece flow

with minimal transportation and inventory costs (Ohlmann et al. (2008)). However, this cannot be the case

when facilities are geographically dispersed. Applying a cyclic plan over an infinite planning horizon

aims at facilitating heijunka, by fixing the frequency of visits and by keeping a levelled inventory level at

each facility. Generally, frequent visits lead to smooth flow of materials with low inventory levels but

with increasing transportation costs. On the other hands, infrequent deliveries with higher loads increase

transportation costs but reducing inventory costs. Solving the CIRP aims at defining a cyclic plan to

achieve the optimal trade-off.

1.3 Contents of the Thesis

In this thesis we deal with the following variants and extensions of the MTVRP and of the CIRP.

• The Capacitated Multi Trip Vehicle Routing Problem with Time Windows.

• The Installation Planning of Offshore Wind Farms Problem.

• The Cyclic Inbound Inventory Routing Problem.

• The Cyclic Inventory Routing Problem with Split Deliveries.
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1.3.1 The Capacitated Multi Trip Vehicle Routing Problem with Time Windows

Despite different versions of MTVRPs have been introduced, it is possible to identify a common underlying

problem, the Capacitated Multi Trip Vehicle Routing Problem with Time Windows, which consists in a

MTVRP in which (a) each vehicle has a limited capacity and (b) each customer must be served within a

given time window.

However, in the literature, also additional side constrains are considered, as loading times to reload

vehicles at the depot (Hernandez et al. (2014, 2016)), limited trip duration (Hernandez et al. (2014)),

release dates on the availability of goods to deliver (Cattaruzza et al. (2016a)) and drone battery capacity

with load-dependent consumption (Cheng et al. (2018)). These four side constraints give rise to four

different problems, namely, the CMTVRPTW with Loading Times (CMTVRPTW-LT), the CMTVRPTW

with Limited Trip Duration (CMTVRPTW-LD), the CMTVRPTW with Release Dates (CMTVRPTW-R)

and the Drone Routing Problem (DRP), respectively.

In Chapter 2 we present a new, standalone, exact framework to solve all the four variants of the

problem proposed in the literature. The exact algorithm is based on a novel formulation characterized by

exponential number of variables and constraints and relies on column generation, column enumeration and

cutting plane. A computational study shows how the method outperforms the state-of-the-art algorithms

present in the literature, solving instances up to 50 customers.

1.3.2 The Installation Planning of Offshore Wind Farms Problem

The growing of energy demand and challenges posed by pollution and global warming motivate an

increasing interest in the field of the green sources energy. In this context, the utilization of offshore wind

farms is going to increase in the coming years.

Increasing the efficiency of offshore wind farms does not only call for technical improvements in

terms of turbines components, but also for improvements regarding the logistic activities supporting all

the life-cycle activities of an offshore wind park, since the complexity of these processes represents the

main drawback of this technology. Typically, these activities can be grouped in three main processes:

design, installation and maintenance.

In Chapter 3 an optimization problem related to the installation phase of offshore wind parks is studied

and introduced. The problem, defined as the Installation Planning of Offshore Wind Farms Problem

(IPOWF), consists of scheduling the activities to build the farm, according to the specifications defined

during the design phase, while minimizing the construction costs. The activities are carried out by using

a fleet of different type of vessels. Each type of vessel is able to perform only a certain type of activity.

Moreover, the routes of the vessels can be characterized by multiple visits to the port (where vessels are

located at the beginning and where they need to return at the end of the operations) to load resources to

construct the assigned turbines. Therefore, the underling routing problem is an extension of the MTVRP.

Another degree of complexity is added by weather requirements. Each activity can be completed only

under specific weather conditions. This results in a different amount of available working time for carrying

out operations during the planning horizon, according to the weather forecast for that period.

This problem is currently faced by Vattenfall, one of the major companies operating in the field, that

has contributed to this study.

In Chapter 3 we formulate the problem as a Mixed Integer Linear Programming (MILP) and then we

derive other MILPs that can provide lower and upper bounds for the problem on real life instances.

16



1.3.3 The Cyclic Inbound Inventory Routing Problem

The Cyclic Inbound Inventory Routing Problem is a problem motivated by lean production policies applied

to component collection rather than more common perspective of end product distribution. The problem

considers a single manufacturing plant and a set of geographically dispersed suppliers. The aim is to

find the minimal-cost inbound logistic plan that collects inventory components from a set of suppliers to

supply manufacturing at the plant.

To incorporate level production planning (heijunka), beside the cyclic planning, an inventory clearing

policy is enforced, such that, if a supplier is visited in a period, the collected quantity must correspond to

the entire inventory amount, so that the inventory at the supplier is zero after the pick-up.

In Chapter 4 the problem is formally introduced and an exact branch-and-cut algorithm is designed to

solve the problem.

1.3.4 The Cyclic Inventory Routing Problem with Split Deliveries

The Cyclic Inventory Routing Problem with Split Deliveries is a problem in which a supplier needs to

supply a set of geographical dispersed customers over an infinite planning horizon cyclically applying the

distribution plan.

In Chapter 5, we propose a worst-case analysis for the problem with respect to the solutions that can

be obtained by using set of routes generated by solving VRPs.

Inspired by the worst-case analysis, a class of matheuristics is designed. The solutions provided

by the proposed approach are benchmarked with upper and lower bounds obtained by solving a flow

based formulation with a branch-and-cut algorithm. The proposed approach is able to obtain high quality

solutions by considering a relatively small set of routes embedded in a route based formulation.
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Chapter 2

An Exact Solution Framework for
Multi-Trip Vehicle Routing Problems

with Time Windows∗

Abstract

Multi-Trip Vehicle Routing Problems (MTVRP) generalize the well-known VRP by allowing
vehicles to perform multiple trips per day. MTVRPs have received a lot of attention lately because of
their relevance in real-life applications, e.g., in city logistics and last-mile delivery. Several variants
of the MTVRP have been investigated in the literature, and a number of exact methods have been
proposed. Nevertheless, the computational results currently available suggest that MTVRPs with
different side-constraints require ad-hoc formulations and solution methods to be solved. Moreover,
solving instances with just 25 customers can be out of reach for such solution methods. In this paper,
we proposed an exact solution framework to address four different MTVRPs proposed in the literature.
The exact solution framework is based on a novel formulation that has an exponential number of
variables and constraints. It relies on column generation, column enumeration, and cutting plane.
We show that this solution framework can solve instances with up to 50 customers of four MTVRP
variants and outperforms the state-of-the-art methods from the literature.

Key words: multi-trip vehicle routing, time windows, column generation, exact methods, dynamic
programming

2.1 Introduction

Most of the literature on the Vehicle Routing Problem (VRP) addresses problems where each vehicle is

limited to perform at most one trip per day. The first attempt to investigate VRPs where vehicles are

allowed to perform multiple trips dates back to Fleischmann (1990). Since then, many contributions on

Multi-Trip Vehicle Routing Problems (MTVRP) have been published, especially in the last decade, as

observed in the recent survey of Cattaruzza et al. (2016b). Such an increasing interest in MTVRPs is due,

for example, to the need of new practices in city logistics and last-mile delivery. The demand of limiting

noise and pollution in city centers requires the usage of small vans, electric vehicles, and/or unmanned

∗This chapter is based on Paradiso et al. (2019).
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aerial vehicles (UAVs, commonly known as drones) and forbids heavy large trucks from entering city

centers. The limited capacity and autonomy of these small vehicles force them to perform multiple trips

and to return to the depot to reload multiple times over the day.

In the literature, MTVRPs with different features are addressed in different papers, and a wide range of

solution methods (both exact and heuristic) have been proposed. Nevertheless, we can identify a common

underlying problem, the Capacitated MTVRP with Time Windows (CMTVRPTW), that is a special case of

the problems investigated in many papers, such as Hernandez et al. (2014, 2016), Cattaruzza et al. (2016a),

Cheng et al. (2018). The features of this CMTVRPTW are the following: (a) the goal is to minimize

the routing costs, (b) all customers must be served, (c) multiple homogeneous vehicles are available, (d)

vehicles are capacitated, and (e) time window constraints are imposed on the customer visits. Yet different

papers consider additional side constraints on top of the CMTVRPTW, such as loading times to reload

the vehicles at the depot (Hernandez et al. (2014, 2016)), limited trip duration (Hernandez et al. (2014)),

release date on the availability of the goods to deliver (Cattaruzza et al. (2016a)), drone battery capacity

and load-dependent battery consumption (Cheng et al. (2018)). These four side constraints give rise to four

different problems, namely, the CMTVRPTW with Loading Times (CMTVRPTW-LT), the CMTVRPTW

with Limited Trip Duration (CMTVRPTW-LD), the CMTVRPTW with Release Dates (CMTVRPTW-R),

and the Drone Routing Problem (DRP), respectively. For the sake of brevity, in the following, we will

refer to these four problems as “the four variants of the CMTVRPTW”.

The exact methods currently available for these four variants of the CMTVRPTW are based on

several different mathematical formulations, which makes it unclear which formulation is most suitable

to solve a CMTVRPTW. Moreover, in spite of the effort devoted to develop exact solution methods for

CMTVRPTWs, the literature indicates that small instances with 25 customers cannot be consistently

solved, and it could take a few hours of computing time to solve them.

With this paper, we aim at closing part of this research gap. We propose an Exact Solution Framework

(hereafter referred to as ESF) based on a novel mathematical model that can solve medium-size instances

with up to 50 customers of the four variants of the CMTVRPTW, significantly outperforming the state-

of-the-art exact methods tailored for the single variants. We describe the ESF by focusing on the

CMTVRPTW, and we show later how it can be tailored to solve the four variants by simply adapting one

of its steps. The main contributions of this paper are the following: (a) we propose a novel mathematical

model with an exponential number of variables and constraints that is valid for the CMTVRPTW and

its four variants; (b) we describe two relaxations of this mathematical model that provide good lower

bounds and can be efficiently computed; (c) we describe a seven-step ESF for the CMTVRPTW based

on these two lower bounds and on a branch-and-cut algorithm, with an embedded branch-and-price to

separate violated inequalities, to close the gap; (d) we illustrate how the ESF can be applied to solve each

of the four variants of the CMTVRPTW by simply specializing one of the seven steps; (e) we provide

a computational proof that the ESF can solve instances with up to 50 customers and outperforms the

state-of-the-art exact methods for the four individual variants of the CMTVRPTW.

The paper is organized as follows. Section 2.2 reviews the main contributions from the literature on

exact methods for MTVRP with Time Windows. Section 2.3 formally introduces the CMTVRPTW and

presents two column-generation-based formulations from the literature. Section 2.4 describes the novel

formulation for the CMTVRPTW and its variants. Section 2.5 presents two lower bounds derived from

the novel formulation. Section 2.6 provides an outline of the ESF and describes how to apply it to solve
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the CMTVRPTW. Section 2.7 describes the steps of the ESF in detail. Section 2.8 illustrates how the ESF

can be tailored to solve each of the four variants of the CMTVRPTW. A computational analysis to show

the effectiveness of the ESF and a comparison of its performance with the literature is provided in Section

2.9. Finally, conclusions are drawn in Section 2.10.

2.2 Literature Review

This section reviews the main exact methods proposed for MTVRPs with time windows. For the sake

of brevity, we omit contributions on exact methods for MTVRP without time windows and on heuristic

methods. For a recent overview of the literature on these two topics, the reader is referred to Cattaruzza

et al. (2016b).

In the remainder of the paper, we refer to a structure as a sequence of customers that can be visited

consecutively by a vehicle between two visits at the depot, such that capacity constraints (and possibly

other side constraints) are fulfilled and a departure time from the depot can be scheduled in such a way

that all time windows are satisfied. Moreover, following the convention of Cattaruzza et al. (2016b), we

refer to a trip as a structure with a fixed departure time from the depot, and we refer to a journey as a

sequence of non-overlapping trips assigned to the same vehicle. It is worth mentioning that, as stated in

Cattaruzza et al. (2016b), different authors use different terms to refer to trips and journeys.

Azi et al. (2007) study a single-vehicle variant of the CMTVRPTW where it is not mandatory to serve

all customers and the objective function is first to maximize the number of customers served and second

to minimize the routing cost. Moreover, a limited trip duration constraint (called deadline constraint) on

the maximum time that the goods can stay on board before they are delivered at customers and a setup

time to load the vehicle are considered. They propose a two-phase exact algorithm. In the first phase,

all feasible non-dominated trips are generated by complete enumeration, which is possible when time

windows and limited trip duration constraints are tight. In the second phase, feasible routes are generated

by combining the trips generated in the first phase. The algorithm is tested on a set of instances adapted

from the well-known Solomon instances for the VRPTW (Solomon (1987)) with up to 100 customers.

The results show that the algorithm is very sensitive to the limited trip duration constraint. Indeed, if this

constraint is not tight, it is impossible to enumerate all feasible trips in the first phase.

Azi et al. (2010) investigate the multi-vehicle version of the problem considered in Azi et al. (2007).

The authors propose a branch-and-price algorithm based on a set packing formulation where each column

represents a feasible journey. The pricing problem corresponds to an Elementary Shortest Path Problem

with Resource Constraints (ESPPRC). The algorithm is tested on instances with 25 and 40 customers

derived from the Solomon VRPTW instances. The results show that instances with 25 customers can

be routinely solved, but the complexity of the problem strongly depends on the tightness of limited trip

duration constraints.

Macedo et al. (2011) study the same problem of Azi et al. (2010). They propose an iterative two-phase

algorithm. In the first phase, all feasible trips are generated. The second phase corresponds to a pseudo-

polynomial network flow model where nodes represent time instants and arcs represent feasible vehicle

trips and is solved using a commercial solver. To create the network, a time discretization is needed. The

model is iteratively solved until the current discretization provides a feasible solution. Computational

results show that the proposed algorithm outperforms the two-phase method of Azi et al. (2010).
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Hernandez et al. (2014) address the CMTVRPTW-LD, which differs from the problem considered

in Azi et al. (2010) and Macedo et al. (2011) in that all customers must be served and the objective

function aims at minimizing the total routing cost. They propose a two-phase exact algorithm. In the first

phase, all feasible structures are enumerated by considering resource constraints. The second phase is a

branch-and-price algorithm based on a set covering formulation with side constraints, where columns

represent trips and side constraints guarantee that each vehicle is assigned non-overlapping trips. The

pricing problem can be solved in pseudo-polynomial time. The algorithm is tested on instances with 25

and 40 customers as in Azi et al. (2010) and Macedo et al. (2011). The computational results show that

the algorithm of Hernandez et al. (2014) performs, on average, better than the method of Azi et al. (2010)

and, on some instances, better than the method of Macedo et al. (2011).

The problem studied in Hernandez et al. (2016) differs from the problem of Hernandez et al. (2014) in

that limited trip duration is not considered. Two branch-and-price exact algorithms are proposed both

based on a set covering formulation. In the first formulation, each column represents a journey, and the

pricing problem is an ESPPRC, which can be solved by dynamic programming. In the second formulation,

each column represents a trip, and additional side constraints guarantee the feasibility of the solutions; the

pricing problem can again be solved by dynamic programming, where the concepts of group of labels and

representative labels are exploited. Computational results on 25-customer instances show that the second

branch-and-price, based on the trip-formulation, performs better than the first.

Recent contributions in the literature investigate the usage of truck-drone tandem systems and drone-

only systems to deliver parcels. In particular, drones can perform multiple trips to deliver parcels by flying

from/to trucks and depots where they can recharge their battery and pick up packages to deliver. The

first significant contribution devoted to exact methods for drone routing problems is owed to Cheng et al.

(2018). They propose two mathematical formulations to solve the (multi-trip) drone routing problem. The

objective function also takes energy consumption into account into the routing cost. The first formulation

is based on drone-index variables, whereas the second formulation does not use such drone index. Both

formulations are strengthened by valid inequalities. The authors develop two branch-and-cut algorithms

that are able to solve new benchmark instances with up to 50 customers. Their computational study shows

that the formulation without drone index outperforms the one with drone index in terms of number of

instances solved to optimality and computing time.

2.3 Description of the CMTVRPTW and Formulations from the
Literature

In this section, we formally introduce the CMTVRPTW, which is used in the following sections to describe

the ESF, and describe the two column-generation-based formulations from the literature.

The CMTVRPTW can be represented on a directed graph G = (V,A). The vertex set V = {0} ∪N
consists of n + 1 vertexes, where 0 represents the depot and N = {1, 2, . . . , n} represents a set of n

customers to serve. For each customer i ∈ N , the demand qi, the service time sti, and a (hard) time

window [ai, bi] are given. A time window [a0, b0] is associated with the depot. For the depot, we assume

that q0 = 0 and st0 = 0. The arc setA is defined asA = {(i, j) | i, j ∈ V : ai+tij+sti ≤ bj}, where tij
is the travel time from vertex i to vertex j - without loss of generality, we assume that tij ≤ tik +stk + tkj ,

for all i, j, k ∈ V such that i 6= j 6= k. A travel cost cij is also associated with each arc (i, j) ∈ A.
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Customers can be served by using a fleet of m vehicles, each one of capacity q, that are located at the

depot.

A trip h is represented as h = (0, i1, i2, . . . , iµh , 0), where µh is the number of visited customers. A

journey r is represented as a sequence of non-overlapping trips r = (0, i1, i2, . . . , iµr1 , 0, i1, i2, . . . , iµr2 , 0, . . . , 0).

The goal of the CMTVRPTW is to find a set of at most m journeys of minimum total cost such that

each customer is visited exactly once.

In the literature, two formulations with an exponential number of variables have been proposed: a

trip-based formulation (see Hernandez et al. (2016)) and a journey-based formulation (see Hernandez

et al. (2014, 2016)).

Let H be the set of all feasible trips, and let ch be the cost of trip h ∈ H given by the sum of

the traversed arcs. A trip h ∈ H is described by coefficients αih indicating the number of times trip

h visits customer i ∈ N and by binary coefficients τth that are equal to 1 if trip h is active at time

t ∈ [a0, b0], where active means that the vehicle performing trip h is either traveling between two vertices

or serving/waiting at a customer. Let xh ∈ {0, 1} be a binary variable equal to 1 if trip h ∈ H is selected

(0 otherwise). The trip-based formulation, FH, is the following

z(FH) = min
∑
h∈H

chxh (2.1a)

s.t.
∑
h∈H

αihxh = 1 i ∈ N (2.1b)∑
h∈H

τthxh ≤ m t ∈ [a0, b0] (2.1c)

xh ∈ {0, 1} h ∈ H (2.1d)

The objective function (2.1a) aims at minimizing the cost of the selected trips. Constraints (2.1b) ensure

that each customer is visited exactly once. Constraints (2.1c) guarantee that at most m trips are active at

any point in time. Constraints (2.1d) are integrality constraints.

LetR be the set of all feasible journeys. Moreover, let cr be the cost of journey r ∈ R given by the

sum of the costs of its individual trips, and let αir be a coefficient indicating the number of times journey

r ∈ R visits customer i ∈ N . Let xr ∈ {0, 1} be a binary variable equal to 1 if journey r ∈ R is selected

(0 otherwise). The journey-based formulation, FR, is the following

z(FR) = min
∑
r∈R

crxr (2.2a)

s.t.
∑
r∈R

αirxr = 1 i ∈ N (2.2b)∑
r∈R

xr ≤ m (2.2c)

xr ∈ {0, 1} r ∈ R (2.2d)

The objective function (2.2a) aims at minimizing the cost of the selected journeys. Constraints (2.2b)

ensure that each customer is visited exactly once. Constraint (2.2c) guarantees that at most m journeys

are selected. Constraints (2.2d) are integrality constraints.
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Both formulations FH and FR have an exponential number of variables that cannot be enumerated

a-priori even for small instances. Therefore, both formulations can be used to solve the CMTVRPTW

only if a column generation framework is applied. Earlier contributions from the literature (see, e.g., Azi

et al. (2010), Hernandez et al. (2014, 2016)) show that the lower bound provided by the linear relaxation

of both formulations is of high-quality. Nevertheless, solving the pricing problem of both formulations is

particularly challenging, so it could take hours of computing time to find an optimal solution even for

instances with only 25 customers.

2.4 The Novel Structure-Based Formulation

Due to the computational complexity of using formulations FH and FR, we introduce a novel structure-

based formulation that has an exponential number of variables and constraints, but involves much fewer

variables than both FH and FR.

Let a structure s = (0, i1, i2, . . . , iµs , 0) be an ordered set of µs customers that can be visited by

a vehicle in between two visits at the depot and can start from the depot within a time interval [es, `s],

such that: (i) capacity constraints are satisfied, (ii) the duration ds and the cost cs are constant for each

departure time from the depot within [es, `s], and (iii) the duration ds is the minimum duration to serve

the set of customers in the given order. In comparison with a trip that is defined on the basis of a given

departure time from the depot in the interval [es, `s], a structure represents the family of all the trips

visiting the same sequence of customers between two visits at the depot, satisfying all the constraints, and

having the same minimum time duration ds. Each trip of this family has a different departure time from

the depot within [es, `s]. Let S be the set of all feasible structures, and let αis be a coefficient equal to the

number of times customer i ∈ N is served by structure s ∈ S . Let xs ∈ {0, 1} be a binary variable equal

to 1 if structure s ∈ S is selected (0 otherwise). The structure-based formulation, FS , is the following

z(FS) = min
∑
s∈S

csxs (2.3a)

s.t.
∑
s∈S

αisxs = 1 i ∈ N (2.3b)∑
s∈Ŝ

xs ≤ ηm(Ŝ) Ŝ ⊆ S (2.3c)

xs ∈ {0, 1} s ∈ S (2.3d)

where ηm(Ŝ) is the maximum number of structures of the set Ŝ that can be simultaneously in a solution

given the number of vehicles m.

The objective function (2.3a) aims at minimizing the cost of the selected structures. Constraints

(2.3b) ensure that each customer is visited exactly once. Constraints (2.3c) (hereafter called Structure

Feasibility Constraints, SFC) guarantee that the set of selected structures can be performed by the m

vehicles. Constraints (2.3d) are integrality constraints.

Notice that the number of variables of FS can be significantly lower than the number of variables of

FH and, in turn, of FR. Indeed, formulation FH has a binary variable for each structure s ∈ S and each

instant of time t ∈ [es, `s]. Moreover, each feasible solution of FS can correspond to multiple (possibly an

infinite number of) solutions of formulation FH. Indeed, given the set of structures of a feasible solution
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of FS , it is possible to obtain a feasible solution of FH by fixing the departure time from the depot of each

of these structures within the corresponding time interval [es, `s].

2.5 Lower Bounds Based on the Structure-Based Formulation

In this section, we describe two lower bounds derived from formulation FS that are used by the ESF and

are described in the following sections. The first lower bound is based on a continuous relaxation of FS
that ignores SFC and therefore provides a lower bound for the CVRPTW without the multi-trip feature.

The second lower bound is based on a relaxed version of SFC that can be enumerated by inspection.

2.5.1 First Lower Bound: CVRPTW Lower Bound

The first lower bound, which we call CVRPTW-LB in the following, corresponds to the optimal solution

of the linear relaxation of formulation FS without SFC, i.e., it corresponds to the optimal value z(P1S) of

the following problem P1S

z(P1S) = min
∑
s∈S

csxs (2.4a)

s.t.
∑
s∈S

αisxs = 1 i ∈ N (2.4b)

xs ∈ R+ s ∈ S (2.4c)

As P1S is the continuous relaxation of a set partitioning problem that does not consider SFC, it provides a

lower bound to a VRP with capacity and time window constraints.

2.5.2 Second Lower Bound: Relaxed SFC Lower Bound

The second lower bound, which we call RSFC-LB in the following, is obtained from FS by replacing SFC

with a relaxed version and by adding a set of valid inequalities as follows.

Let τhs ∈ {0, 1} be a binary coefficient defined for each structure s ∈ S and each instant of time

h ∈ [a0, b0] as follows

τhs =

1 if `s < h < es + ds

0 otherwise

that is, τhs is equal to 1 if structure s ∈ S is active at time h for any possible departure time from the

depot. A relaxed version of SFC (hereafter referred to as Relaxed SFC, or in short RSFC) is therefore

given by

(RSFC)
∑
s∈S

τhsxs ≤ m h ∈ [a0, b0] (2.5)

which indicate that, at any point in time, at most m structures (and thus vehicles) can be active.

To better explain constraints (2.5), let us consider two structures s1, s2 ∈ S with the following

features: [es1 , `s1 ] = [10, 20], ds1 = 15, [es2 , `s2 ] = [18, 22], ds2 = 10. The only coefficients τhs equal

to 1, for structure s1 are τ21,s1 , τ22,s1 , τ23,s1 , τ24,s1 , and, for structure s2 τ23,s2 , τ24,s2 , τ25,s2 , τ26,s2 , τ27,s2 .
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Therefore, of all constraints (2.5) with h ∈ [21, 27], the tightest constraints are those with h = 23, 24 that

are xs1 + xs2 ≤ m.

RSFC-LB also uses a subset of the well-known Subset-Row (SR) inequalities, introduced by Jepsen

et al. (2008) for the VRPTW. In particular, for each triplet of customers {i, j, k} ∈ N and for each

structure s ∈ S, let βijks be a binary coefficient defined as

βijks =

1 if αis + αjs + αks ≥ 2

0 otherwise

which is, βijks is equal to 1 if at least two of the customers of the set {i, j, k} are visited by structure s (0

otherwise). SR inequalities are defined as

∑
s∈S

βijksxs ≤ 1 {i, j, k} ∈ N (2.6)

RSFC-LB corresponds to the optimal value z(P2S) of the following problem P2S

z(P2S) = min
∑
s∈S

csxs (2.7a)

s.t.
∑
s∈S

αisxs = 1 i ∈ N (2.7b)∑
s∈S

τhsxs ≤ m h ∈ [a0, b0] (2.7c)∑
s∈S

βijksxs ≤ 1 {i, j, k} ∈ N (2.7d)

xs ∈ R+ s ∈ S (2.7e)

2.6 Outline of the ESF

This section provides an outline of the ESF described for the CMTVRPTW. We assume that a feasible

solution of the CMTVRPTW exists. The algorithm uses the following notation:

• ub∗ is the best upper bound (if any) found;

• ubguess is a guess upper bound on the value of the optimal solution cost;

• gapguess is a guess on the gap in percentage between the optimal CMTVRPTW solution cost and

CVRPTW-LB;

• gap0guess is the initial value of gapguess;

• gapstep is the increase, at each iteration, of gapguess;

• status is the status of the solution process, which can take one of the following three values:

optimal (i.e., an optimal solution of cost ub∗ was found), feasible (i.e., a feasible solution of cost

ub∗ was found, but it may not be optimal), nil (i.e., no solution has been found yet).

The algorithm consists of the following seven steps:
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1. Initialization: Set status = nil and gapguess = gap0guess;

2. CVRPTW-LB Computation (see Section 2.5.1 for an overview and Section 2.7.1 for the details):

solve problem P1S by column generation, and compute its optimal solution cost z(P1S); set

ubguess = z(P1S) ∗ (1 + gapguess);

3. Structure Enumeration (see Section 2.7.2 for the details): enumerate the set S1 of all the struc-

tures having reduced costs not greater than ubguess − z(P1S) with respect to the dual solution

corresponding to lower bound z(P1S);

4. RSFC-LB Computation (see Section 2.5.2 for an overview and Section 2.7.3 for the details): Solve

problem P2S1 obtained from P2S by replacing the set of structures S with its subset S1. Let z(P2S1)

be the optimal cost of P2S .

5. Structure Reduction (see Section 2.7.4): Compute the set of structures S2 ⊆ S1 obtained from S1
by removing all the structures having reduced cost greater than ubguess − z(P2S1) with respect to

the dual solution of cost z(P2S1) of problem P2S1 .

6. Branch-and-Cut to Close the Gap (see Section 2.7.5): By using a branch-and-cut method, solve

problem FS2 obtained from FS by replacing the set of structures S with its subset S2. If FS2 contains

feasible solutions, let z(FS2) be the cost of an optimal solution.

7. Iterative Step: there are three possible cases

(a) A feasible solution of FS2 exists

(a1) If z(FS2) ≤ ubguess: such a solution is an optimal CMTVRPTW solution; set status =

optimal, ub∗ = z(FS2), and terminate;

(a2) If z(FS2) > ubguess: such a solution is a valid upper bound to the CMTVRPTW; set

status = feasible, ub∗ = z(FS2), ubguess = z(FS2), and go to Step 3;

(b) FS2 does not have any feasible solution: set gapguess = gapguess + gapstep, ubguess =

z(P1S) ∗ (1 + gapguess), and go to Step 3.

2.7 Detailed Description of Steps 2-6 of the ESF

2.7.1 Step2: CVRPTW-LB Computation

Step 2 of the ESF requires solving problem P1S to compute its optimal value z(P1S). As the set of

structures S increases exponentially with the number of customers, problem P1S must be solved via

column generation. The column generation procedure we propose initializes the master problem with the

single-customer structures and solves it via a general purpose solver. At each iteration, at most col_iter

(where col_iter is a parameter) negative reduced cost structures are added to the master problem. Such

negative reduced cost structures are priced out by using dynamic programming as follows.

Let ui ∈ R be the dual variable associated with constraint (2.4b) of customer i ∈ N . Let c̃ij be the

reduced cost of arc (i, j) ∈ A with respect to u ∈ Rn defined as
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c̃ij =


cij − 1

2(ui + uj) if i 6= 0 and j 6= 0

cij − 1
2uj if i = 0

cij − 1
2ui otherwise (i.e., if j = 0)

(2.8)

Let f = (0, i1, . . . , iµf = if ) be an elementary forward path that starts from the depot at time a0,

visits the set of customers Nf = {i1, . . . , if} each within its time window, ends at customer if at time tf ,

such that the total demand qf of the visited customers does not exceed the vehicle capacity. Let c̃f be the

reduced cost of path f defined as the sum of the reduced costs of the traversed arcs.

We associate a label Lf = (Nf , qf , tf , if , c̃f ) with each path f = (0, i1, . . . , i
f ). Due to capacity

and time window constraints, a label Lf = (Nf , qf , tf , if , c̃f ) is feasible only if Nf ⊆ N , qf ≤ q,

tf ∈ [aif , bif ], and if ∈ Nf . Clearly, each path f = (0, i1, . . . , i
f ) such that if = 0 and c̃f < 0

corresponds to a negative reduced cost structure.

To generate such structures, the following initialization and extension are needed:

Initialization: A single label Lf = (Nf , qf , tf , if , c̃f ) is generated, where Nf = ∅, qf = 0, tf = a0,

if = 0, c̃f = 0.

Extension: Extend each label Lf = (Nf , qf , tf , if , c̃f ) such that either (a) if ∈ N or (b) if = 0 and

Nf = ∅ toward any vertex j ∈ V \Nf and generate label Lf
′

= (Nf ′ , qf
′
, tf
′
, if
′
, c̃f
′
), where



Nf ′ = Nf ∪ {j} (if j ∈ N ) or Nf ′ = Nf (if j = 0)

qf
′

= qf + qj

tf
′

= max{aj , tf + stif + tif j}
if
′

= j

c̃f
′

= c̃f + c̃if j

To speed up the solution process and limit the number of labels to generate, the following dominance

rule can be applied: given two labels Lf1 = (Nf1 , qf1 , tf1 , if1 , c̃f1) and Lf2 = (Nf2 , qf2 , tf2 , if2 , c̃f2),

Lf2 is dominated if Nf1 ⊆ Nf2 , qf1 ≤ qf2 , tf1 ≤ tf2 , if1 = if2 , and c̃f1 ≤ c̃f2 . Moreover, we also apply

two other well-known techniques, i.e., ng-path relaxation (see Baldacci et al. (2011)) and completion

bounds (see Baldacci et al. (2012)), to further limit the number of labels to generate. For the sake of

brevity, we omit the details on this matter.

Let u1 = (u11, u
1
2, . . . , u

1
n) be the optimal dual solution of cost z(P1S) achieved by Step 2.

2.7.2 Step 3: Structure Enumeration

Step 3 requires enumerating the set S1 all the structures having reduced costs not greater than ubguess −
z(P1S) with respect to the dual solution u1 of cost z(P1S). The set S1 can be generated with the following

dynamic programming recursion, which is similar to the recursions proposed by Hernandez et al. (2014,

2016), and Tilk & Irnich (2016).

Let b = (0, i1, . . . , iµb = ib) be an elementary backward path that can start from the depot not earlier

than gb, visits the set of customers N b each within its time window, ends at customer ib not later than `b,

has a duration equal to db, and such that the total demand of the visited customers is equal to qb. Let c̃b be

28



the reduced cost of path b with respect of the dual solution u1, given by the sum of the reduced costs of

the traversed arcs computed as in (2.8).

With each path b = (0, i1, . . . , i
b), we associate a label Lb = (N b, qb, `b, gb, db, ib, c̃b). A label

Lb = (N b, qb, `b, gb, db, ib, c̃b) is feasible if the following conditions hold

N b ⊆ N
qb ≤ q
aib ≤ `b ≤ bib
a0 ≤ gb ≤ b0
ib ∈ N b

(2.9)

A structure s ∈ S corresponds to an elementary backward path b = (0, i1, . . . , i
b) (and the correspond-

ing label Lb = (N b, qb, `b, gb, db, ib, c̃b)), such that ib = 0, and where `s = `b, es = gb − db, ds = db,

cs = c̃b +
∑

i∈Nb u1i , and αis = 1, ∀i ∈ N b (0 if i ∈ N \N b).

To generate the set of structures S1, the following initialization and extension are needed:

Initialization: A single label Lb = (N b, qb, `b, gb, db, ib, c̃b) is generated, where N b = ∅, qb = 0,

`b = b0, gb = a0, db = 0, ib = 0, and c̃b = 0.

Extension: Extend each label Lb = (N b, qb, `b, gb, db, ib, c̃b) such that either (a) ib ∈ N or (b) ib = 0

and N b = ∅ toward any vertex j ∈ V \N b to generate label Lb
′

= (N b′ , qb
′
, `b
′
, gb
′
, db
′
, ib
′
, c̃b
′
)

where 

N b′ = N b ∪ {j} (if j ∈ N ) or N b′ = N b (if j = 0)

qb
′

= qb + qj

`b
′

= min{bj , `b − tjib − stj}
gb
′

= max{aj + db + tjib + stj , gb}
db
′

= max{db + tjib + stj , gb − bj}
ib
′

= j

c̃b
′

= c̃b + c̃jib

(2.10)

To speed up the enumeration phase and limit the number of generated labels, the following dominance

rule can be applied: given two labelsLb1 = (N b1 , qb1 , `b1 , gb1 , db1 , ib1 , c̃b1) andLb2 = (N b2 , qb2 , `b2 , gb2 , db2 , ib2 , c̃b2),

Lb2 is dominated if N b1 = N b2 (and thus qb1 = qb2), `b1 ≥ `b2 , gb1 ≤ gb2 , db1 ≤ db2 , ib1 = ib2 , and

c̃b1 ≤ c̃b2 .

The number of labels can further be limited by using completion bounds based on the ng-path

relaxation, as described in Baldacci et al. (2011, 2012).

2.7.3 Step 4: RSFC-LB Computation

In Step 4, problem P2S1 is solved to compute its optimal solution value z(P2S1). Problem P2S1 is obtained

from P2S by replacing the set of structures S with its subset S1 generated in Step 3. As the set of columns

is known, no column generation is needed. At the beginning of Step 4, problem P2S1 is solved with an

LP-solver without imposing constraints (2.7c) and (2.7d). These constraints are subsequently iteratively

added in a cutting plane fashion.

The separation of both (2.7c) and (2.7d) can easily be done by inspection given the current optimal

solution x̃. Let S̃ = {s ∈ S | x̃s > 0} be the set of structures in the solution x̃. The violation of (2.7c) is
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checked only for instants of times h ∈ [a0, b0] for which it exists s ∈ S̃ such that h = `s, whereas the

violation of constraints (2.7d) is checked simply for all triplets of customers {i, j, k} ∈ N .

At the end of Step 4, an optimal dual solution (u2,v2,w2) of P2S1 of cost z(P2S1) is available, where

u2, v2, and w2 are the vectors of dual variables associated with constraints (2.7b), (2.7c), and (2.7d),

respectively.

2.7.4 Step 5: Structure Reduction

Step 5 aims at deriving the set of structures S2 ⊆ S1 that is obtained from S1 by removing all structures

with a reduced cost greater than ubguess − z(P2S1) with respect to the dual solution (u2,v2,w2) of cost

z(P2S1) of problem P2S1 achieved at Step 4. The set S2 is easily derived by inspection of the set S1.

2.7.5 Step 6: Branch-and-Cut to Close the Gap

Step 6 attempts to find an optimal CMTVRPTW solution by applying a branch-and-cut method. In Steps 4

and 5, a limited set of structures S2 has been generated. This set contains optimal CMTVRPTW solutions

under the assumption that ubguess is a valid upper bound to the CMTVRPTW. Step 6 solves problem

FS2 obtained from FS by replacing the set of structures S with its subset S2. It applies a branch-and-cut

algorithm because all columns of FS2 are known, so only SFC constraints (2.3c) may be missing. The

SFC constraints are added in a cutting plane fashion as follows. Notice that as the separation problem is

NP-hard, it is performed on integer solutions only.

Let us assume that we have an integer solution x̃ of FS2 , and we want to check its feasibility

by separating violated SFC constraints. Let S̃ ⊆ S2 be the subset of structures in a solution (i.e.,

S̃ = {s ∈ S2 | x̃s = 1}). The right-hand side of constraint (2.7c) corresponding to the set S̃ is equal to

the maximum number of structures of the set S̃ that can be simultaneously in solution. The separation

problem of determining if the structures of the set S̃ represent a feasible CMTVRPTW solution can be

then formulated as a Team Orienteering Problem with Time Windows, TOPTW (see, e.g., Vansteenwegen

et al. (2009), Archetti et al. (2014)), where (a) each node is a structure to assign to a vehicle, (b) m

vehicles are available, (c) each structure has a unit profit and a time window [es, `s], and (d) the goal

is to maximize the number of structures that can be assigned to the m vehicles, which is achieved by

maximizing the profit of the TOPTW.

Therefore, the separation problem of SFC on the set S̃ can be formulated on a support graph G̃ =

(Ṽ , Ã) defined as follows. The vertex set Ṽ contains a node for each structure of S̃ plus a dummy

node o (i.e., Ṽ = {o} ∪ S̃). The arc set Ã is defined as Ã = {(o, s) | s ∈ S̃} ∪ {(s1, s2) | s1, s2 ∈
S̃, s1 6= s2, es1 + ds1 ≤ `s2} ∪ {(s, o) | s ∈ S̃}. With each arc (s1, s2) ∈ Ã, we associate a travel

time t̃s1s2 defined as t̃s1s2 = ds1 if s1 6= o, and t̃s1,s2 = 0 if s1 = o. For example, let us assume that

S̃ = {s1, s2, s3, s4, s5, s5, s6} and es1 = `s1 = 119.7, ds1 = 145.6; es2 = 264, `s2 = 276, ds2 = 136.3;

es3 = `s3 = 415.5, ds3 = 166.5; es4 = `s4 = 607.4, ds4 = 240.8; es5 = `s5 = 142.1, ds5 = 257.1;

es6 = `s6 = 437.9, ds6 = 298.1. The corresponding support graph G̃ is represented in Figure 2.1.

Let R̃ be the set of all elementary journeys of graph G̃ that start and end at node o and such

that the sequence of visited nodes/structures can be assigned to the same vehicle. For each journey

r = (s1, s2, . . . , sµr) ∈ R̃, let αsr be a binary coefficient equal to 1 if structure s ∈ S̃ is assigned to
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Figure 2.1: Example of a support graph G̃ = (Ṽ , Ã) with six structures

journey r. Moreover, let yr ∈ {0, 1} be a binary variable equal to 1 if journey r ∈ R̃ is selected (0

otherwise). The separation problem of SFC can be formulated as

ηm(S̃) = max
∑
r∈R̃

(∑
s∈S̃

αsr

)
yr (2.11a)

s.t.
∑
r∈R̃

αsryr ≤ 1 s ∈ S̃ (2.11b)

∑
r∈R̃

yr ≤ m (2.11c)

yr ∈ {0, 1} r ∈ R̃ (2.11d)

The objective function (2.11a) aims at maximizing the number of structures used in the selected jour-

neys. Constraints (2.11b) ensure that each structure is not assigned more than once. Constraint (2.11c)

guarantees that at most m journeys are selected. Constraints (2.11d) are integrality constraints.

The cardinality of the set R̃ clearly increases exponentially with the number of structures of the set S̃ ,

so problem (2.11a)-(2.11d) can be solved by using column generation. The master problem corresponds

to the linear relaxation of (2.11a)-(2.11d). The pricing problem corresponds to finding journeys of the

set R̃ having negative reduced cost with respect to the dual solution (u, v) of the master problem, where

u ∈ R|S̃|+ and v ∈ R+ are the dual variables associated with constraints (2.11b) and (2.11c), respectively.

Solving the Pricing Problem.

The pricing problem can be solved by using dynamic programming as follows. Let f = (o, s1, . . . , sµf =

sf ) be an elementary forward path of graph G̃ that starts from node o, visits the set of nodes S̃f =

{s1, . . . , sf}, and ends at node sf at time ẽf . Let c̃f be the reduced cost of path f with respect to the

dual solution (u, v). We associate a label Lf = (S̃f , sf , ẽf , c̃f ) with each path f = (o, s1, . . . , s
f ).

A label Lf = (S̃f , sf , ẽf , c̃f ) is feasible if S̃f ⊆ Ṽ , sf ∈ S̃f , and ẽf ∈ [esf , `sf ]. Each label Lf =

(S̃f , sf , ẽf , c̃f ) with sf = o and c̃f < 0 corresponds to a negative reduced cost journey.

To generate such negative reduced cost journeys, the following initialization and extension are needed:

Initialization: A label Lf = (S̃f , sf , ẽf , c̃f ) is generated, where S̃f = ∅, sf = o, ẽf = a0, c̃f = −v.
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Extension: Each label Lf = (S̃f , sf , ẽf , c̃f ) for which either (a) sf ∈ S̃ or (b) sf = o and S̃f = ∅ is

extended toward any node s ∈ Ṽ \ S̃f and generates label Lf
′

= (S̃f
′
, sf

′
, ẽf

′
, c̃f
′
) where

• S̃f ′ = S̃f ∪ {s},

• sf ′ = s,

• ẽf ′ = max{ẽf + t̃sf s, es},

• c̃f ′ = c̃f + 1− us (if s ∈ S̃) or c̃f
′

= c̃f (if s = o).

To speed up the solution process and limit the number of labels to generate, the following the

dominance rule can be applied: given two labels Lf1 = (S̃f1 , sf1 , ẽf1 , c̃f1) and Lf2 = (S̃f2 , sf2 , ẽf2 , c̃f2),

Lf2 is dominated if S̃f1 = S̃f2 , sf1 = sf2 , ẽf1 ≤ ẽf1 and c̃f1 ≤ c̃f1 .

Branching Scheme.

Given a fractional solution ỹ of problem (2.11a)-(2.11d) three types of branching are performed in a

hierarchical way to find an integer solution.

Branching on Structures: a binary branching is performed on the structure s′ that is closest to be

used 0.5 times, i.e., s′ = arg mins∈S̃(ỹ){|
∑

r∈R̃ αsrỹr − 0.5|}, where S̃(ỹ) = {s ∈ S̃ | 0 <∑
r∈R̃ αsrỹr < 1}. In the first branch, structure s′ must be used, i.e.,

∑
r∈R̃ αs′rỹr = 1. In the

second branch, structure s′ cannot used, i.e.,
∑

r∈R̃ αs′rỹr = 0;

Branching on Arcs: a binary branching is performed on the arc (s, s′) ∈ Ã that is closest to be traversed

0.5 times by the journeys in solution ỹ, i.e., (s, s′) = arg min(s1,s2)∈Ã(ỹ){|
∑

r∈R̃ γs1s2rỹr− 0.5|},
where Ã(ỹ) = {(s1, s2) ∈ Ã | 0 <

∑
r∈R̃ γs1s2rỹr < 1} and γs1s2r is the number of times arc

(s1, s2) ∈ Ã is traversed by journey r ∈ R̃. In the first branch, arc (s, s′) is removed from the arc

set Ã. In the second branch, arc (s, s′) is forced to be in solution if structures s and s′ are visited,

which is achieved by removing (a) all arcs {(s1, s′) ∈ Ã | s1 6= s} and {(s, s2) ∈ Ã | s2 6= s′} if

s, s′ ∈ S̃, (b) all arcs {(s1, s′) ∈ Ã | s1 6= o} if s = o, and (c) all arcs {(s, s2) ∈ Ã | s2 6= o} if

s′ = o.

Branching on the Number of Vehicles: a binary branching is performed on the number of selected

journeys, i.e., on
∑

r∈R̃ ỹr. In the first branch, constraint
∑

r∈R̃ yr ≤
⌊∑

r∈R̃ ỹr
⌋

is added. In the

second branch, constraint
∑

r∈R̃ yr ≥
⌈∑

r∈R̃ ỹr
⌉

is added.

In the search tree, the best-bound-first policy is applied to identify the next node to branch on.

Acceleration Techniques.

To speed up the solution process, we embed three more features in the branch-and-price to solve problem

(2.11a)-(2.11d):

• Relaxed SFC inequalities (2.7c) are added in a cutting plane fashion and separated both on integer

and fractional solutions as described in Section 2.7.3.

• The pricing problem is relaxed by dropping resource S̃f , so non-elementary journeys are allowed.

32



• The computation of ηm(S̃) is stopped as soon as the highest upper bound (let us call this upper

bound ηm(S̃)) of all unexplored nodes in the search tree is strictly less than |S̃|. Indeed, this

condition is sufficient to add constraint
∑

s∈S̃ xs ≤ bηm(S̃)c, which cuts off the integer solution x̃.

2.8 Tailoring the ESF to Solve the Four Variants of the
CMTVRPTW

As mentioned in Section 2.1, the CMTVRPTW can be specialized by adding side constraints that determine

the feasibility of the structures and therefore define the set S. Notice that CVRPTW-LB remains a valid

lower bound even if these side constraints are added. Notice also that, once the set of structures S1 is

enumerated in Step 3, the remaining steps are not affected by the constraints that define the feasibility of a

structure but just rely on having the set of feasible structures S1. Therefore, the ESF can be tailored to

solve the four variants of the CMTVRPTW by simply modifying the dynamic programming recursion of

Step 3 to enumerate the structures in the gap ubguess − z(P1S). In the following sections, we describe

how Step 3 (described in Section 2.7.2 for the CMTVRPTW) can be modified to tackle each of the four

variants.

2.8.1 Structure Enumeration for the CMTVRPTW-LT

The CMTVRPTW-LT proposed by Hernandez et al. (2016) considers the time to load the vehicle before it

can depart from the depot. In particular, given the loading time lti for the goods requested by customer

i ∈ N , the total loading time of a vehicle performing a given structure is equal to the sum of the individual

loading times of the customers in the structure. For each label Lb = (N b, qb, `b, gb, db, ib, c̃b), let us define

its total loading time ltb as ltb =
∑

i∈Nb lti.

The structure enumeration for the CMTVRPTW-LT requires just two changes with respect to the

one for the CMTVRPTW. The first change is in the feasibility of a label, and the second change is in the

extension of a label to the depot.

A label Lb = (N b, qb, `b, gb, db, ib, c̃b) with ib 6= 0 is feasible if conditions (2.9) are satisfied and the

following condition holds

`b − t0ib − ltb ≥ a0 (2.12)

Indeed, condition (2.12) ensures that there is enough time to close the path by returning to the depot and

to reload the vehicle.

When a label Lb = (N b, qb, `b, gb, db, ib, c̃b) is extended to a customer, extension functions (2.10) are

still valid. Whereas when a label Lb = (N b, qb, `b, gb, db, ib, c̃b) is extended to the depot to generate label

Lb
′

= (N b′ , qb
′
, `b
′
, gb
′
, db
′
, ib
′
, c̃b
′
), functions (2.10) are replaced with the following functions
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

N b′ = N b

qb
′

= qb

`b
′

= `b − t0ib − ltb

gb
′

= max{a0 + db + t0ib + ltb, gb}
db
′

= max{db + t0ib + ltb, gb − b0}
ib
′

= 0

c̃b
′

= c̃b + c̃0ib

that take into account the total loading time of a structure in computing the time to leave from the depot,

return to the depot, and in the total duration.

2.8.2 Structure enumeration for the CMTVRPTW-LD

In the CMTVRPTW-LD studied by Hernandez et al. (2014), a limited trip duration d is considered, which

represents a maximum limit on the time that goods can be on board of the vehicle before being delivered.

This does not include loading times, nor the service time of the last customer of a structure, nor the travel

time to return to the depot. We accept the definition of limited trip duration given by Hernandez et al.

(2014) even though we believe it misleading and it should be called differently, for example, maximum

goods travel time; indeed, we think it is more intuitive to call limited trip duration the maximum amount

of time that the vehicle can be traveling in each trip from the departure from the depot to the return to it.

The structure enumeration of the CMTVRPTW-LD differs from the one for the CMTVRPTW because

an additional resource is necessary, and feasibility conditions and dominance rules must take the limited

trip duration into account.

With each backward path b = (0, i1, . . . , i
b), we associate a label Lb = (N b, qb, `b, gb, db, ib, ib1, c̃

b),

where ib1 represents the first customer visited by the backward path. Let dgb be the goods travel time

computed as dgb = db − t0i1 − sti1 − ltb. A label is feasible if it satisfies conditions (2.9), (2.12), and the

additional condition dgb ≤ d.

Moreover, dominance rules need to be adjusted as follows. Given two labelsLb1 = (N b1 , qb1 , `b1 , gb1 , db1 , ib1 , ib11 , c̃
b1)

and Lb2 = (N b2 , qb2 , `b2 , gb2 , db2 , ib2 , ib21 , c̃
b2), Lb2 is dominated if N b1 = N b2 (and thus qb1 = qb2),

`b1 ≥ `b2 , gb1 ≤ gb2 , db1 ≤ db2 , ib1 = ib2 , ib11 = ib21 , and c̃b1 ≤ c̃b2 .

2.8.3 Structure Enumeration for the CMTVRPTW-R

Cattaruzza et al. (2016a) introduce the concept of release dates in the CMTVRPTW and study the

CMTVRPTW-R. Each customer i ∈ N has an associated release date rdi that indicates the instant of time

when the goods to deliver to customer i become available at the depot; therefore, the vehicle that serves

customer i cannot depart from the depot before rdi.

Similar to the case of the CMTVRPTW-LT, the structure enumeration for the CMTVRPTW-R requires

two changes with respect to the one for the CMTVRPTW: the first in the feasibility conditions of a label,

and the second change in the extension of a label to the depot.

Let us indicate with rdb the maximum release date of the customers serve by a backward path

b = (0, i1, . . . , i
b), i.e., rdb = maxi∈Nb{rdi}. The label Lb = (N b, qb, `b, gb, db, ib, c̃b) associated with

path b = (0, i1, . . . , i
b) is feasible if it satisfies the following conditions
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

N b ⊆ N
qb ≤ q
aib ≤ `b ≤ bib
rdb ≤ gb ≤ b0
ib ∈ N b

When a label Lb = (N b, qb, `b, gb, db, ib, c̃b) is extended to the depot to generate label Lb
′

=

(N b′ , qb
′
, `b
′
, gb
′
, db
′
, ib
′
, c̃b
′
), functions (2.10) are replaced with the following extension functions

N b′ = N b

qb
′

= qb

`b
′

= `b − t0ib
gb
′

= max{max{rdb′ , a0}+ db + t0ib , gb}
db
′

= max{db + t0ib , gb − b0}
ib
′

= 0

c̃b
′

= c̃b + c̃0ib

2.8.4 Structure enumeration for the DRP

The Drone Routing Problem studied by Cheng et al. (2018) can be seen as a generalization of the

CMTVRPTW, where vehicles are drones and specific features of the drones must be taken into account. In

particular, unlike standard vehicles, drones have a limited battery capacity whose consumption depends on

the load carried. Therefore, energy consumption and energy cost should be considered when optimizing

drone-based distribution systems.

The energy consumed by a drone to traverse arc (i, j) ∈ A depends both on the distance traveled and

the weight transported while traversing the arc. Let enijq and ceijq be the energy consumption and the

energy costs, respectively, associated with (i, j) ∈ A when the drone is carrying weight q. Each drone has

to return to the depot before running out of battery. Let us call en the drone battery capacity. Moreover,

following Cheng et al. (2018), let us also assume the each drone starts each trip equipped with a fully

charged battery.

Let us associate with each backward path b = (0, i1, . . . , i
b) a labelLb = (N b, qb, `b, gb, db, ib, enb, c̃b),

where enb is the energy consumption of path b. A label Lb = (N b, qb, `b, gb, db, ib, enb, c̃b) is feasible if

the following conditions hold 

N b ⊆ N
qb ≤ q
aib ≤ `b ≤ bib
a0 ≤ gb ≤ b0
enb ≤ en
ib ∈ N b

The enumeration is initialized with a single label Lb = (N b, qb, `b, gb, db, ib, enb, c̃b) where N b = ∅,

qb = 0, `b = b0, gb = a0, db = 0, enb = 0, c̃b = 0. Each label Lb = (N b, qb, `b, gb, db, ib, c̃b) for which

either (a) ib ∈ N or (b) ib = 0 and N b = ∅ is extended toward any vertex j ∈ V \N b to generate label

Lb
′

= (N b′ , qb
′
, `b
′
, gb
′
, db
′
, ib
′
, c̃b
′
) where
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

N b′ = N b ∪ {j} (if j ∈ N ) or N b′ = N b (if j = 0)

qb
′

= qb + qj

`b
′

= min{bj , `b − tjib − stj}
gb
′

= max{aj + db + tjib + stj , gb}
db
′

= max{db + tjib + stj , gb − bj}
enb

′
= enb + enjibqb

ib
′

= j

c̃b
′

= c̃b + cjib + cejibqb − u1j (if j ∈ N ) or c̃b
′

= c̃b + cjib + cejibqb (if j = 0)

Finally, dominance rules should be adjusted as follows. Given two labelsLb1 = (N b1 , qb1 , `b1 , gb1 , db1 , ib1 , enb1 , c̃b1)

and Lb2 = (N b2 , qb2 , `b2 , gb2 , db2 , ib2 , enb2 , c̃b2), Lb2 is dominated if N b1 = N b2 , ib1 = ib2 , `b1 ≥ `b2 ,

gb1 ≤ gb2 , db1 ≤ db2 , enb1 ≤ enb2 , c̃b1 ≤ c̃b2 .

2.9 Computational Results

In this section, we report a summary of the computational results achieved by the ESF on the CMTVRPTW

and its four variants, and, when available, we compare its performance with the state-of-the-art exact

methods. Detailed computational results are reported in the e-companion of this paper. The ESF is coded

in C and compiled with Microsoft Visual C++ compiler. Cplex 12.8 is used to solve the master problem

in Step 2, in Step 4 and for the branch-and-cut in Step 6. For Step 2 and Step 4, we set Cplex to use

the primal and the dual simplex method, respectively; for all the other parameters, we use the default

setting. For Step 6, we disable the presolve phase and the cutting planes generation is embedded in the

callback of the solver; all the others parameter are set to the default setting of Cplex. The tests were

performed, in single thread mode, on a Windows server equipped with six Virtual CPU running at 2.59

GHz and with 16 GBs of RAM. A time limit of three hours per instance was set. All computing times are

in seconds. The same parameter setting was used in all tests, namely, col_iter = 100, gap0guess = 0.05,

and gapstep = 0.05.

The first five subsections are devoted to the CMTVRPTW, CMTVRPTW-LD, CMTVRPTW-LT,

CMTVRPTW-R, and DRP, respectively. In each subsection, we describe the instances first, and then

provide the results achieved by our solution method. The following subsections are devoted to the

comparison with the literature. Finally, the impact of time windows’ width on the performance of ESF is

investigated in Section 2.9.7.

Tables 2.1-2.6 summarize the results by group of instances, and the following information is indicated:

group of instances (Group), number of customers (n), number of instances (Inst), number of instances

solved (Solved), average gap between z(P1S) and the optimal solution cost (P1S%), average time to

compute z(P1S) (TP1), average cardinality of the set S1 (|S1|), average gap between z(P2S1) and the

optimal solution cost (P2S1%), average cardinality of the set S2 (|S2|), average gap between the root

node relaxation of z(FS2) and the optimal solution cost (LFS%), average number of SFC added (nSFC),

average number of nodes explored (Nds), average time spent to execute Step 6 (TB&C), and average total

computing time (Ttot). Notice that, as Steps 3-7 may be iterated because of the conditions in Step 7, all

information about Steps 3-7 refer to the last iteration. Table 2.3 has an additional column (d) reporting the

maximum trip duration, and Table 2.4 has an additional column (κ) indicating the type of release date (κ).
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The last row of each table indicates the total number of instances, the total number of instances solved,

and average values of each column computed over the instances solved only.

In the literature, different authors use different ways to compute travel times and costs even when

solving the same set of instances. Indeed, travel times and costs are either truncated or rounded to the first,

second, or to another decimal digit. The computational results in the literature show that this does not

affect the complexity of the problem. Therefore, in the experiments reported in Tables 2.1-2.6, travel time

and costs are truncated to one decimal digit as done in Solomon (1987), who introduced the test instances

used (or extended) by most papers on vehicle routing.

All test instances used in this section are available as supplementary material to this paper.

2.9.1 Computational Results on the CMTVRPTW

The benchmark set consists of 81 instances, derived from the Type 2 Solomon instances by using a

procedure similar to Hernandez et al. (2014, 2016). We consider Type 2 instances only because the short

planning horizon and the tight time windows of instances of Type 1 prevent the vehicles from performing

multiple trips. There are three groups of instances (C, R, RC) differing in the customer distribution

(i.e., clustered, random, and randomly-clustered, respectively). We consider instances with 25, 40, and

50 customers by selecting the first customers from the original Solomon instances. Instances with 25

customers feature two vehicles, whereas instances with 40 and 50 customers feature four vehicles. The

vehicle capacity is set equal to 100.

Table 2.1: Summary of the computational results for the CMTVRPTW

Group n Inst Solved P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

C 25 8 8 2.37 11.1 75,662 0.94 6,075 0.69 0 88 1.0 16.1
C 40 8 6 2.71 22.0 1,054,466 1.73 207,049 1.71 0 22,257 1,589.5 2,589.9
C 50 8 2 3.50 21.0 1,820,115 0.95 75,645 0.99 0 1,190 90.3 1,601.1

R 25 11 11 7.76 9.4 1,338,633 1.24 5,018 0.77 1 35 1.3 83.1
R 40 11 10 2.53 21.1 2,777,514 0.36 31,561 0.42 0 17 2.7 377.7
R 50 11 0

RC 25 8 8 12.88 4.0 124,067 2.14 4,143 1.75 5,695 4,036 70.9 175.7
RC 40 8 8 11.95 9.4 3,935,229 0.45 97,816 0.66 304 4,241 479.7 1,223.7
RC 50 8 7 5.95 23.3 1,966,892 0.61 14,038 0.61 1,011 9,886 279.8 647.6

All 81 60 6.55 14.1 1,655,251 1.03 45,449 0.90 918 4,543 268.8 654.9

Table 2.1 summarizes computational results on the CMTVRPTW. It shows that the ESF can solve all

25-customer instances and all but three 40-customer instances. Instances with 50 customers represent the

limit of the ESF as only nine out of 27 instances are solved. Overall, 60 of the 81 instances are solved in

an average computing time of 11 minutes.

2.9.2 Computational Results on the CMTVRPTW-LT

Hernandez et al. (2016) introduce 27 instances of the CMTVRPTW-LT, generated by considering the first

25 customers of the Solomon instances of Type 2. The fleet size is equal to two, and vehicle capacity

equals to 100. The loading time of each customer i ∈ N is computed as lti = 0.2sti. Following the
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procedure of Hernandez et al. (2016), we introduce 54 additional instances with 40 and 50 customers. We

set capacity and loading times as in Hernandez et al. (2016), but we set the fleet size equal to four.

Table 2.2: Summary of the computational results for the CMTVRPTW-LT

Group n Inst Solved P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

C 25 8 8 3.08 13.3 73,298 1.35 5,575 0.73 1 71 1.0 19.0
C 40 8 7 2.71 29.4 1,323,350 1.55 190,787 1.51 0 10,877 933.9 2,170.0
C 50 8 3 3.99 35.0 2,429,725 1.35 78,585 1.41 3 5,980 494.7 3,576.6

R 25 11 11 8.00 11.2 1,483,675 0.91 2,992 0.78 2 27 0.8 114.8
R 40 11 10 2.74 22.5 2,821,178 0.31 27,430 0.41 0 7 2.6 417.9
R 50 11 0

RC 25 8 8 13.39 4.7 117,308 2.30 4,658 1.91 7,614 10,379 733.9 879.7
RC 40 8 8 12.04 9.5 3,677,170 0.46 73,755 0.83 299 2,745 186.3 871.9
RC 50 8 7 6.37 17.6 1,965,379 0.60 7,269 0.59 843 2,936 26.5 311.7

All 81 62 6.76 16.2 1,706,204 1.05 41,956 0.96 1,117 3,557 251.8 769.5

Table 2.2 summarizes the results on the 81 CMTVRPTW-LT instances. The ESF can solve all original

25-customer instances and all but two 40-customer instances. Ten of the 27 50-customer instances can be

solved. All in all, the computational behaviour of the ESF is similar to that observed on the CMTVRPTW

in Table 2.1.

2.9.3 Computational Results on the CMTVRPTW-LD

For the CMTVRPTW-LD, we use a set of instances based on the Solomon instances, with 25, 40, and

50 customers of groups C2, R2 and RC2, considering a shorter limited trip duration (d = dshort) and

a longer limited trip duration (d = dlong), for a total of 162 instances. As done in Azi et al. (2010),

we set dshort = 75 and dlong = 100 for instances of type R2 and RC2, and we set dshort = 220 and

dlong = 250 for instances type C2. Travel time, distances, fleet size and loading times are set as in the

CMTVRPTW-LT instances of Table 2.2.

Table 2.3 shows that the ESF can solve all 162 instances of the dataset with an average computing

time of 16.8 seconds.

2.9.4 Computational Results on the CMTVRPTW-R

The only CMTVRPTW-R instances available in the literature are provided by Cattaruzza et al. (2016a),

who generated a test bed based on the Solomon instances. In particular, for each instance, they consider

four types of release date (for details see Cattaruzza et al. (2016a)) and set the capacity equal to half of the

original value. Nonetheless, all instances of this test bed feature 100 customers, which is out of reach for

our method. Therefore, we generate a set of 210 instances starting from the instances of Cattaruzza et al.

(2016a) by considering the first 25, 40 and 50 customers only and by considering three types of tighter

and tighter release dates (0.25, 0.5, 0.75). As for the CMTVRPTW, instances with 25 customers feature

two vehicles, and instances with 40 and 50 customers four vehicles.

Table 2.4 summarizes the results by instance group, number of customers, and type of release date.

The ESF can solve 154 of the 210 instances. The complexity of the problem clearly increases with the

number of customers. Instances of Type R are more challenging than instances of Type C and RC. The
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Table 2.3: Summary of the computational results for the CMTVRPTW-LD

Group n d Inst Solved P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

C 25 220 8 8 5.43 11.2 454 1.47 179 0.11 0 0 0.1 11.4
C 25 250 8 8 2.06 16.3 1,842 0.42 528 0.65 1 45 0.2 16.6
C 40 220 8 8 4.16 25.6 1,161 0.15 397 0.02 0 1 2.1 27.9
C 40 250 8 8 1.24 41.0 5,325 0.50 3,042 0.36 0 1,422 2.8 44.1
C 50 220 8 8 4.38 40.0 1,859 0.51 1,120 0.07 0 0 9.8 50.0
C 50 250 8 8 1.27 65.7 8,977 0.50 5,632 0.37 0 1,224 6.9 73.1

R 25 75 11 11 3.15 1.7 609 0.10 91 0.32 0 0 0.0 1.8
R 25 100 11 11 6.11 2.7 2,886 0.23 273 0.18 0 0 0.0 2.9
R 40 75 11 11 4.70 4.0 3,412 0.50 794 0.16 0 1 0.2 4.3
R 40 100 11 11 5.94 8.1 26,682 0.36 2,972 0.35 0 36 0.1 8.8
R 50 75 11 11 5.06 6.0 5,393 0.44 1,900 0.20 4 42 1.8 8.1
R 50 100 11 11 6.22 12.7 52,811 0.24 7,940 0.24 335 1,507 16.0 31.8

RC 25 75 8 8 15.70 1.4 507 4.52 222 0.22 16 31 0.1 1.8
RC 25 100 8 8 18.93 2.5 2,733 0.69 553 0.75 15 16 0.1 3.0
RC 40 75 8 8 11.86 2.6 631 3.28 356 0.42 0 1 0.7 3.6
RC 40 100 8 8 18.02 6.5 3,614 0.65 1,263 0.18 1 8 0.1 7.1
RC 50 75 8 8 11.04 4.2 1,295 2.64 774 0.47 163 406 5.7 10.1
RC 50 100 8 8 18.20 10.4 10,795 1.74 5,074 0.08 0 1 0.4 12.3

All 162 162 7.66 13.6 8,168 0.97 1,894 0.28 33 263 2.67 16.8

bottleneck of the ESF is clearly Step 3, i.e., the structure enumeration. Indeed, instances cannot be solved

when it is impossible to enumerate all structures, whereas instances can be solved, on average, in less than

two minutes when all structures can be enumerated.

2.9.5 Computational Results on the DRP

We tested the ESF on the two sets (i.e., A and B) of DRP instances proposed by Cheng et al. (2018). Set

A is created according to the framework presented in Solomon (1987) and Dorling et al. (2017); set B

extend the Solomon instances to take into account the features of the drones. Type A instances consists of

85 instances divided in two groups (A1 and A2), which differ in the depot location; each group contains

five instances with 10, 15, etc up to 50 customers. Type B instances are generated by considering the first

25 and 40 customers of the Type 2 (C2, R2, RC2) Solomon instances, for a total of 54 instances. For

further details about the instances, we refer the reader to Cheng et al. (2018).

Table 2.5 summarizes the results on DRP instances of Type A. Results are grouped by instance group

and number of customers. Table 2.5 shows that all 85 instances can be solved with an average computing

time of 8.4 seconds.

Table 2.6 summarizes the results on the DRP instances of Type B. Results are group by customer

distribution (C, R, RC) and number of customers (25, 40). Table 2.6 shows that all 54 can be solved with

an average computing time of 2.1 seconds.

2.9.6 Comparison with the Literature

In this section, we compare the performance of the ESF with the state-of-the-art exact methods from

the literature. In particular, we compare the ESF with the methods of Hernandez et al. (2016) (hereafter

Hern16) on the CMTVRPTW-LT, of Hernandez et al. (2014) (hereafter Hern14) on the CMTVRPTW-
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Table 2.4: Summary of the computational results for CMTVRPTW-R

Group n κ Inst Solved P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

C 25 0.25 8 8 9.24 8.6 740,684 2.69 6,722 0.64 16 216 3.6 30.4
C 25 0.5 8 8 9.25 9.0 752,587 2.70 6,515 0.64 25 463 7.3 35.1
C 25 0.75 8 8 9.35 8.9 677,542 2.74 6,666 0.67 20 629 9.6 39.3
C 40 0.25 8 6 4.33 20.3 586,585 1.00 23,165 0.89 0 921 13.9 75.3
C 40 0.5 8 6 5.39 20.3 541,465 1.12 21,346 0.96 0 1,417 13.3 72.3
C 40 0.75 8 6 7.05 18.4 595,428 0.92 27,052 0.64 0 593 11.3 73.9
C 50 0.25 8 5 4.49 34.8 459,779 0.72 3,024 0.56 0 975 1.8 59.7
C 50 0.5 8 5 4.86 35.9 534,103 0.61 13,925 0.44 0 361 1.8 104.3
C 50 0.75 8 5 7.13 35.1 729,090 0.26 2,129 0.22 0 4 0.2 86.2

R 25 0.25 11 9 10.77 7.0 1,379,650 0.15 96 0.19 0 0 0.0 18.4
R 25 0.5 11 9 11.42 6.7 1,602,670 0.13 518 0.33 0 0 0.0 20.8
R 25 0.75 11 8 13.82 5.6 1,042,126 0.14 443 0.06 0 0 0.0 25.5
R 40 0.25 11 4 7.64 12.8 5,238,404 0.02 2,761 0.14 0 0 0.1 105.1
R 40 0.5 11 4 7.87 13.4 3,924,628 0.04 1,049 0.21 0 0 0.0 78.1
R 40 0.75 11 2 11.37 10.3 2,280,014 0.00 1,400 0.04 0 0 0.0 48.0
R 50 0.25 11 0
R 50 0.5 11 0
R 50 0.75 11 0

RC 25 0.25 8 8 16.12 3.3 120,983 1.28 3,915 0.98 496 192 1.0 12.1
RC 25 0.5 8 8 16.19 3.1 118,613 1.18 4,287 0.91 443 258 0.9 10.8
RC 25 0.75 8 8 19.92 2.7 112,202 0.41 1,148 0.25 4 4 0.1 5.7
RC 40 0.25 8 7 16.34 8.2 1,750,114 0.44 19,208 0.65 13 9,115 108.1 217.5
RC 40 0.5 8 7 16.41 7.3 1,547,847 0.21 13,625 0.43 336 2,118 42.4 141.6
RC 40 0.75 8 7 21.24 6.9 1,096,531 0.46 2,898 0.47 0 935 1.4 59.7
RC 50 0.25 8 6 10.65 18.3 1,720,962 0.95 9,708 0.64 6,983 16,660 1,038.5 1,221.4
RC 50 0.5 8 5 13.25 17.0 1,768,256 0.43 9,591 0.20 1 5 0.6 173.4
RC 50 0.75 8 5 16.53 16.0 1,875,569 0.59 15,468 0.32 34 155 6.1 271.4

All 210 154 11.21 13.4 1,409,377 0.74 7,581 0.45 319 1334 48.1 118.0

LD, and of Cheng et al. (2018) (hereafter Cheng18) on the DRP. Notice that these three methods have

been designed and tailored on the problem at hand and have not been generalized to several CMTVRPTW

as our proposed ESF.

Comparison with Hernandez et al. (2016) on the CMTVRPTW-LT

Table 2.7 compares the performance of EFS and Hern16 on the 27 25-customer CMTVRPTW-LT

instances proposed by Hernandez et al. (2016). In particular, as Hernandez et al. (2016) propose two

exact branch-and-price algorithms, the comparison is done with the better of the two, which relies on a

trip-based formulation. The branch-and-price of Hernandez et al. (2016) is run on a Intel Core i7 2670QM

with 8 GBs of RAM. A dash indicates that the instance was not solved.

Instances are grouped by customer distribution (C2, R2, RC2). For each instance, we report the

instance number (Inst); the best-known upper bound (UB); for ESF, the gap (Gap) between LFS and

the optimal solution cost, and the total computing time (Time), for Hern16, the gap (Gap) between the

linear relaxation of the corresponding trip-based formulation and the optimal solution cost, and the total

computing time (Time).

Table 2.7 shows the ESF can solve all 27 instances, whereas Hern16 cannot solve instances RC204

and RC208. Moreover, the ESF is on average several times faster than Hern16, mainly because of the
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Table 2.5: Summary of the computational results for the DRP (Type A instances)

Group n Inst Solved P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

A1 10 5 5 11.07 0.2 105 3.43 52 0.59 6 4 0.1 0.5
A1 15 5 5 13.06 0.5 887 2.17 175 1.26 3 110 0.1 0.9
A1 20 5 5 8.69 0.5 930 1.05 229 0.60 58 163 1.2 1.9
A1 25 5 5 9.32 1.2 3,355 1.53 413 1.02 92 333 1.7 3.8
A1 30 5 5 8.25 1.3 9,884 0.83 1,091 0.77 140 323 1.5 4.4
A1 35 5 5 8.53 2.5 19,224 0.59 6,725 0.57 7 1,231 15.4 18.7
A1 40 5 5 8.07 2.8 16,630 0.35 1,525 0.26 71 174 4.3 7.5
A1 45 5 5 8.29 5.6 58,018 0.52 4,139 0.43 90 421 10.1 18.9

A2 10 5 5 11.15 0.1 54 1.92 22 0.21 3 0 0.0 0.4
A2 15 5 5 13.22 0.2 120 2.02 50 1.30 42 25 0.5 1.6
A2 20 5 5 11.28 0.4 432 1.72 125 1.12 73 120 1.2 2.0
A2 25 5 5 9.74 0.7 498 0.91 110 1.06 63 123 1.6 2.5
A2 30 5 5 10.48 1.6 1,798 0.73 578 0.26 25 45 1.0 2.9
A2 35 5 5 10.18 2.3 2,759 0.65 1,089 0.32 5 5 1.4 4.1
A2 40 5 5 9.17 3.3 3,648 0.51 1,279 0.25 89 163 5.8 9.4
A2 45 5 5 9.23 3.3 6,654 0.45 787 0.29 40 85 4.2 7.8
A2 50 5 5 8.82 5.8 6,706 0.53 1,905 0.34 239 573 48.8 54.9

All 85 85 9.91 1.9 7,747 1.17 1,194 0.63 62 229 5.8 8.4

Table 2.6: Summary of the computational results for DRP (Type B instances)

Group n Inst Solved P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

C 25 8 8 8.97 0.5 10,377 1.98 577 1.32 0 568 0.4 1.2
C 40 8 8 7.54 1.4 63,146 0.77 6,989 0.44 3 203 1.7 4.9

R 25 11 11 7.11 0.3 5,305 0.02 200 0.13 0 0 0.0 0.5
R 40 11 11 7.04 0.8 43,020 0.03 2,889 0.03 0 0 0.5 1.9

RC 25 8 8 12.46 0.1 1,232 2.20 356 0.07 7 17 0.1 0.5
RC 40 8 8 10.51 0.5 2,105 1.39 1,503 0.14 200 538 3.4 4.2

All 54 54 8.73 0.6 21,231 0.95 2,026 0.32 31 196 0.9 2.1

smaller gaps provided by the lower bounding procedure.

Comparison with Hernandez et al. (2014) on the CMTVRPTW-LD

Tables 2.8 and 2.9 compare the results achieved by the ESF and by the branch-and-price of Hernandez

et al. (2014) on the instances having a feasible solution used by Hernandez et al. (2014) and introduced

in Azi et al. (2010). The branch-and-price of Hernandez et al. (2014) was run on an Intel Core 2 Duo

2.10 GHz with 2 GBs of RAM. Table 2.8 reports the results on 27 instances with 25 customers, each one

solved with a shorter and a long limited trip duration. Table 2.9 reports the results on 18 instances with 40

customers, each one solved with a shorter and a long limited trip duration. Columns of these two tables

have the same meaning of the columns of Table 2.7.

Table 2.8 shows that the ESF can solve all 25-customer instances, whereas Hern14 cannot solve five

of them. Moreover, the ESF is, on average, much faster than Hern14 on both instances with short and

long limited duration, in particular on the latter ones.

Table 2.9 indicates that the ESF can solve all 35 instances, which is ten more than Hern14. The ESF
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Table 2.7: Comparison with Hernandez et al. (2016) on the CMTVRPTW-LT

C2 R2 RC2

ESF Hern16 ESF Hern16 ESF Hern16

Inst UB Gap Time Gap Time Inst UB Gap Time Gap Time Inst UB Gap Time Gap Time

1 380.8 0.45 8.7 3.46 7.2 1 554.6 0.71 154.0 3.19 13.8 1 660.0 0.19 11.0 3.52 5.9
2 368.6 0.11 19.2 1.71 245.7 2 485.0 0.81 482.1 2.49 53.2 2 596.8 9.91 6,891.4 8.98 19,737.7
3 361.7 0.48 23.7 0.55 37.6 3 444.2 0.10 108.9 2.00 198.2 3 530.1 1.82 66.0 7.16 11,904.5
4 358.8 0.11 45.0 0.76 180.7 4 407.5 2.02 158.9 4.70 2,242.8 4 518.0 1.34 12.0 - -
5 377.2 2.84 11.2 4.60 65.4 5 448.4 0.00 37.1 1.19 13.3 5 605.3 0.02 22.7 3.84 86.3
6 367.2 1.53 13.1 2.87 56.7 6 413.9 0.00 43.3 0.44 69.7 6 575.1 0.78 13.7 5.41 526.4
7 359.1 0.04 17.6 1.76 154.4 7 400.1 2.62 18.4 2.53 842.4 7 528.2 1.13 12.3 3.54 7,764.0
8 360.9 0.27 13.7 2.20 112.6 8 394.3 0.09 21.5 3.47 1,049.0 8 506.4 0.07 8.2 - -

9 418.3 1.26 48.6 1.54 62.0
10 448.3 0.07 124.2 1.83 79.2
11 400.1 0.94 65.6 3.14 2,481.7

Avg 0.73 19.0 2.24 107.5 0.78 114.8 2.41 645.9 1.91 1,169.5 5.41 6,670.8

8 inst. Solved: 8 Solved: 8 11 inst. Solved: 11 Solved: 11 8 inst. Solved: 8 Solved: 6

is more efficient in particular on instances with longer limited duration. Also in terms of computing time,

the ESF is clearly superior.

Comparison with Cheng et al. (2018) on the DRP

Table 2.10 compares the results achieved by the ESF and by the branch–and–cut of Cheng et al. (2018)

based on the mathematical formulation without a drone index, referred to as (R+ E)e |nk in the paper of

Cheng et al. (2018). The branch–and–cut of Cheng et al. (2018) is run on a cluster of Intel Xeon X5650

CPUs with 2.67 GHz and 24 GB of RAM under Linux 6.3.

For each instance type (Type), we report the instance group (Group), the number of customers (n)

and the number of instances (Inst). Columns under heading ESF report the number of instances solved

(Solved), the average gap (Gap) between LFS% and the optimal solution cost, and the average computing

time (Time) of the ESF. Columns under heading Cheng18 report the number of instances solved (Solved),

the gap (Gap) between the root node relaxation of (R+ E)e |nk and the optimal solution cost, and the

average computing time (Time) of Cheng18. The average values reported in columns Gap and Time are

computed over the instances solved only.

Table 2.10 shows that the ESF can solve all 139 instances, whereas Cheng18 can solve 45 instances

only. Moreover, the ESF is on average much faster than Cheng18, thanks to the smaller gaps provided by

the lower bounding procedure.

2.9.7 Impact of the Width of the Time Windows

In this section, we investigate the impact of time windows width on the performance of ESF. We test ESF

on the CMTVRPTW instances studied in Section 2.9.1 by enlarging the original time windows. For each

of the 81 instances, we consider three additional instances: the first featuring time windows that are 50%
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Table 2.8: Comparison with Hernandez et al. (2014) on the CMTVRPTW-LD (instances with 25 cus-
tomers)

Short Limited Duration Long Limited Duration

ESF Hern14 ESF Hern14

Inst UB Gap Time Gap Time UB Gap Time Gap Time

C201 659.02 0.00 5.3 1.90 1.3 540.90 0.00 3.6 0.00 0.1
C202 653.37 0.00 14.2 2.85 49.3 533.43 0.00 18.6 1.54 51.4
C203 646.40 0.22 20.1 3.15 265 532.77 0.21 25.6 1.70 335.7
C204 602.46 0.01 28.7 1.73 248 525.46 0.86 35.6 2.29 4734.4
C205 636.39 0.00 7.5 4.48 38.1 529.94 1.49 9.4 1.49 0.9
C206 636.39 0.00 8.3 5.19 692.4 527.84 0.04 12.7 2.21 123.9
C207 603.22 0.00 10.2 2.39 104.7 525.46 1.86 18.4 1.86 31.1
C208 613.20 0.00 9.6 2.59 41.4 525.46 1.86 14.6 1.86 4.7

R201 762.43 0.61 1.2 0.61 0.1 698.18 0.00 1.3 0.99 0.8
R202 645.78 0.00 1.6 0.00 0.6 617.53 0.00 2.9 0.14 4.1
R203 621.97 0.29 2.4 0.16 2.0 577.74 0.00 4.6 0.11 11.6
R204 579.68 0.32 2.9 0.70 4.9 483.3 0.00 4.0 0.54 33.6
R205 634.09 1.12 1.2 1.20 1.0 559.14 0.03 2.2 0.64 3.7
R206 596.74 0.00 1.9 0.00 0.8 523.64 0.00 3.3 0.00 5.7
R207 585.74 0.00 2.7 0.34 3.5 512 0.73 4.1 2.85 418.9
R208 579.68 0.32 3.0 0.70 7.2 483.3 0.49 4.2 1.30 97.8
R209 602.39 0.62 1.7 0.71 1.7 517.69 0.00 2.9 1.11 14.1
R210 636.15 0.00 1.6 2.49 8.5 547.23 0.00 2.8 0.00 2.6
R211 575.91 0.23 2.0 1.28 27.6 474.49 0.00 4.1 0.93 80.4

RC201 988.05 0.15 1.2 0.37 0.9 849.33 2.79 14.3 4.15 3.6
RC202 881.49 0.00 2.2 4.98 24.5 679.86 0.00 3.0 0.00 3.6
RC203 749.15 0.00 2.3 5.87 62.3 593.56 0.07 4.5 0.10 13.1
RC204 744.72 0.00 3.2 - - 587.22 0.01 5.0 - -
RC205 840.35 0.45 2.0 3.78 3.7 702.49 0.54 2.5 0.54 2.6
RC206 761.03 0.08 1.5 4.59 35.7 604.12 0.00 1.9 0.65 2.9
RC207 738.87 0.35 2.1 - - 514.81 0.00 3.2 0.84 45.5
RC208 727.99 5.85 2.8 - - 502.18 0.00 4.6 - -

Avg 0.39 5.3 2.17 67.7 0.41 7.9 1.11 241.1

27 inst. Solved: 27 Solved: 24 27 inst. Solved: 27 Solved: 25

larger, the second featuring time windows twice as large as the initial one, and the third without time

windows. In particular, time windows [a′i, b
′
i], i ∈ N , of these new instances are defined as

a′i = dmax{a0 + t0i, ai − (bi − ai)δ}e i ∈ N

b′i = bmin{b0 − ti0 − sti, bi + (bi − ai)δ}c i ∈ N

and parameter δ is set equal to 0.25, 0.5, and∞ to obtain the three instances. Notice that the time window

of the depot remains unchanged.

Table 2.11 compares the results of ESF on the original instances (i.e., with δ = 0) with the results

on the instances obtained by setting δ = 0.25, 0.50, and∞. We report the instances group (Group), the

number of customers (n), and the number of instances (Inst). For each value of δ, we indicate the number

of instances solved (Solved), the average gaps between the lower bounds and the optimal solution costs

(P1S%, P2S1%, LFS%), and the average total computing time (Ttot).
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Table 2.9: Comparison with Hernandez et al. (2014) on the CMTVRPTW-LD (instances with 40 cus-
tomers)

Short Limited Duration Long Limited Duration

ESF Hern14 ESF Hern14

Inst UB Gap Time Gap Time UB Gap Time Gap Time

C201 1,168.83 1.95 1,068.5 3.79 31.3 966.70 2.38 194.9 3.32 90.4
C202 1,111.15 0.10 218.1 1.19 67.4 919.85 0.00 50.3 0.63 84.2
C203 1,088.55 0.00 43.0 1.04 186.5 915.04 1.27 81.1 - -
C204 1,039.16 0.00 59.9 0.45 145.3 908.24 1.13 115.9 - -
C205 1,083.81 0.00 14.0 0.64 34.1 921.19 0.00 19.6 1.02 66.3
C206 1,081.37 0.00 16.2 0.67 184 919.05 0.25 131.3 0.87 1,539.1
C207 1,055.04 0.12 307.3 1.16 1,491.5 910.43 0.54 46.3 - -
C208 1,071.99 0.00 22.3 0.75 52.6 915.41 0.00 31.0 0.73 2,673.7

R202 infeasible 961.33 0.38 17.0 - -
R203 962.22 0.49 7.0 - - 816.51 0.34 67.9 1.07 15.5
R204 858.22 0.00 6.7 2.14 4,049.2 708.98 0.76 13.9 - -
R205 1,017.84 2.98 684.3 2.48 1,193.4 873.22 3.68 2313 2.25 2,429.0
R206 927.22 1.05 12.3 0.28 171.5 812.31 0.46 14.5 1.11 926.4
R207 886.22 0.00 5.6 0.39 68.9 764.39 0.27 11.5 - -
R208 858.22 0.66 6.7 2.14 4,954.8 708.01 0.95 14.5 - -
R209 935.81 0.02 4.0 1.00 198.2 768.84 0.44 15.3 1.12 1,511.4
R210 952.92 0.83 272.3 0.98 246.5 822.78 1.50 115.5 - -
R211 869.75 2.32 54.5 2.18 5,093.9 728.94 3.06 549.0 - -

RC204 1,362.34 0.00 8.2 - - 985.98 1.34 13.0 - -

Avg 0.58 156.2 1.33 1,135.6 0.99 200.8 1.35 1,037.3

17 inst. Solved: 17 Solved: 16 18 inst. Solved: 18 Solved: 9
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Table 2.10: Comparison with Cheng et al. (2018) on the DRP

ESF Cheng18

Type Group n Inst Solved Gap Time Solved Gap Time

A 1 10 5 5 0.59 0.5 5 4.07 0.6
A 1 15 5 5 1.26 0.9 1 7.92 22.5
A 1 20 5 5 0.60 1.9 2 1.28 13.6
A 1 25 5 5 1.02 3.8 0 - -
A 1 30 5 5 0.77 4.4 0 - -
A 1 35 5 5 0.57 18.7 0 - -
A 1 40 5 5 0.26 7.5 0 - -
A 1 45 5 5 0.43 18.9 0 - -

A 2 10 5 5 0.21 0.4 5 4.92 0.3
A 2 15 5 5 1.30 1.6 3 4.65 4.2
A 2 20 5 5 1.12 2.0 3 5.29 21.5
A 2 25 5 5 1.06 2.5 0 - -
A 2 30 5 5 0.26 2.9 0 - -
A 2 35 5 5 0.32 4.1 0 - -
A 2 40 5 5 0.25 9.4 0 - -
A 2 45 5 5 0.29 7.8 0 - -
A 2 50 5 5 0.34 54.9 0 - -

B C 25 8 8 1.32 1.2 8 1.85 35.5
B C 40 8 8 0.44 4.9 1 1.64 43.8
B R 25 11 11 0.13 0.5 11 2.82 66.6
B R 40 11 11 0.03 1.9 3 4.56 5,543.3
B RC 25 8 8 0.07 0.5 3 4.42 95.2
B RC 40 8 8 0.14 4.2 0 - -

Avg 0.51 5.9 3.55 402.4
Solved 139 139 45
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Table 2.11: Summary of the computational results with time windows of increasing width

δ = 0 δ = 0.25 δ = 0.50 δ =∞

Group n Inst Solved P1S% P2S1% LFS% Ttot Solved P1S% P2S1% LFS% Ttot Solved P1S% P2S1% LFS% Ttot Solved P1S% P2S1% LFS% Ttot

C 25 8 8 2.37 0.94 0.69 16.1 8 2.36 1.16 0.38 13.8 8 1.93 1.00 0.28 14.1 8 1.81 1.15 0.89 13.9
C 40 8 6 2.71 1.73 1.71 2589.9 8 2.59 1.65 1.28 428.7 8 2.49 1.65 1.41 289.0 8 2.39 1.48 1.44 174.0
C 50 8 2 3.50 0.95 0.99 1601.1 7 2.76 0.97 0.93 1362.5 8 2.70 1.02 0.97 1242.8 8 2.67 0.88 0.84 1507.6

R 25 11 11 7.76 1.24 0.77 83.1 11 5.38 1.27 0.35 28.5 11 5.49 1.53 0.90 78.0 11 5.16 1.88 0.00 16.8
R 40 11 10 2.53 0.36 0.42 377.7 11 2.07 0.09 0.06 69.9 11 2.28 0.23 0.16 83.0 11 1.65 0.00 0.00 39.4
R 50 11 0 4 3.11 0.94 0.92 480.0 2 2.86 0.86 0.86 279.3 0

RC 25 8 8 12.88 2.14 1.75 175.7 8 9.79 1.11 0.93 57.0 8 8.37 0.63 0.52 11.5 8 6.87 0.00 0.00 4.1
RC 40 8 8 11.95 0.45 0.66 1223.7 8 10.79 0.13 0.06 164.2 8 10.24 0.07 0.00 165.9 8 9.98 0.00 0.00 44.4
RC 50 8 7 5.95 0.61 0.61 647.6 8 4.76 0.43 0.24 256.3 7 3.07 0.09 0.05 29.9 8 2.64 0.00 0.00 24.7

Avg 6.55 1.03 0.90 654.9 4.88 0.84 0.52 272.6 4.48 0.80 0.55 229.9 4.08 0.70 0.36 211.0

Solved 81 60 73 71 70
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Table 2.11 shows that the performance of ESF does not deteriorate when time windows are enlarged.

Indeed, ESF can solve 73 instances with δ = 0.25, 71 with δ = 0.5, and 70 instances with δ = ∞,

whereas 60 instances were solved with δ = 0. Therefore, we cannot conclude that the width of the time

windows has a consistent impact on the performance of ESF.

Nevertheless, we can observe a general trend in the quality of the three lower bounds: by increasing

the width of the time windows, the three lower bounds are often on average better. This is probably why

instances with larger time windows are not always more difficult to solve in spite of the larger the number

of feasible structures involved, and the higher complexity of the pricing problems and enumeration phase.

2.10 Conclusions

We have presented an Exact Solution Framework (ESF) for Multi-Trip Vehicle Routing Problems with

Time Windows (MTVRPTW). The ESF relies on a novel mathematical model with an exponential number

of variables and constraints. Unlike the other mathematical models from the literature, the proposed

model is based on the concept of structure. The novel formulation is used to derive two lower bounds that

can be efficiently computed. These lower bounds are exploited in the ESF to generate a reduced set of

columns containing any optimal MTVRP solution, which is then found by using a branch-and-cut. The

computational results show that the ESF can efficiently solve instances with up to 50 customers of the

CMTVRPTW significantly outperforming the state-of-the-art exact methods. We have also showed that

the ESF can easily be adapted to solve four generalizations of the CMTVRPTW, and the corresponding

computational results are significantly better than those achieved by the best exact methods from the

literature.

As the bottleneck of the ESF is represented by the enumeration of all structures in the gap given the

CVRPTW lower bound, future research can be directed toward studying valid inequalities to tighten such

lower bound without affecting the complexity of the pricing problem.

Moreover, given the performance of the ESF on a well-studied class of vehicle routing problems, we

consider it promising to explore the usage of similar mathematical models with an exponential number of

variables and constraints for other combinatorial optimization problems.
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Appendix

2.A Detailed Computational Results

Tables 2.A.1-2.A.15 report detailed computational results summarized in Tables 2.1-2.6 in Section 2.9.

The following information is indicated:

• group of instances (Group);

• number of customers (n);

• the optimal solution cost (ub∗) if the instance is solved to optimality; otherwise, we report TL if the

instance is not solved because the time limit is reached and ML if the instance is not solved because

of memory limit during the structure enumeration at Step 3;

• gap between z(P1S) and the optimal solution cost (P1S%);

• time to compute z(P1S) (TP1);

• cardinality of the set S1 (|S1|);

• gap between z(P2S1) and the optimal solution cost (P2S1%);

• cardinality of the set S2 (|S2|);

• gap between the root node relaxation of z(FS2) and the optimal solution cost (LFS%);

• number of SFC added (nSFC);

• number of nodes explored (Nds);

• time spent to execute Step 6 (TB&C);

• total computing time (Ttot).

Notice that, as Steps 3-7 may be iterated because of the conditions in Step 7, all information about

Steps 3-7 refer to the last iteration.

Tables 2.A.5-2.A.7 have an additional column (d) reporting the maximum trip duration. Tables

2.A.8-2.A.12 have an additional column (κ) indicating the type of release date (κ). Tables 2.A.13-2.A.14

have and additional column (Num) to indicate the instance number.
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Detailed computational results on the CMTVRPTW-R instances of type R with 50 customers are not

reported because none of the instances was solved due to memory limit.
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Table 2.A.1: Computational results on the CMTVRPTW: instances with 25 and 40 customers

Group n ub∗ P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

C201 25 378.6 4.53 4.11 22,571 2.12 1,299 2.29 2 328 0.6 5.6
C202 25 363.0 1.67 12.88 74,759 0.00 2,782 0.00 1 0 0.2 14.5
C203 25 358.8 0.74 17.05 127,667 0.00 9,731 0.00 0 0 0.6 24.7
C204 25 358.8 1.15 21.77 234,785 0.32 11,460 0.00 0 0 0.5 38.2
C205 25 368.3 3.57 5.92 32,250 1.00 1,428 0.54 0 0 0.3 7.2
C206 25 367.2 3.70 7.58 30,270 2.13 4,184 1.46 0 212 2.0 10.8
C207 25 358.8 1.81 11.51 49,322 1.15 9,218 1.20 0 165 2.0 15.8
C208 25 359.1 1.76 8.29 33,671 0.81 8,497 0.00 0 0 1.5 12.0

R201 25 546.8 15.27 2.48 2,106,695 0.80 2,718 0.77 1 14 0.3 82.3
R202 25 482.8 14.04 7.29 5,137,202 2.35 814 1.64 0 90 0.2 212.2
R203 25 442.6 8.20 10.19 1,009,098 1.25 1,415 1.09 3 34 0.3 77.2
R204 25 404.9 6.49 12.68 1,264,793 2.08 29,615 2.09 0 187 11.1 257.3
R205 25 448.4 7.93 5.33 419,946 0.35 225 0.00 0 0 0.0 24.7
R206 25 413.9 5.76 8.07 882,241 0.00 2,774 0.00 0 0 0.1 32.9
R207 25 399.8 4.32 12.24 114,559 1.38 275 0.33 3 4 0.1 14.5
R208 25 394.3 4.21 15.63 142,971 1.88 458 0.00 3 0 0.1 18.8
R209 25 418.3 5.32 9.23 813,099 1.51 7,240 0.65 2 2 0.4 58.4
R210 25 448.3 7.43 8.70 1,474,542 0.62 1,744 0.50 0 21 0.3 67.4
R211 25 399.9 6.40 11.62 1,359,822 1.45 7,921 1.38 0 28 1.6 68.7

RC201 25 660.0 22.41 1.70 91,312 2.45 1,619 1.21 22 16 0.5 10.1
RC202 25 576.1 13.66 3.52 126,410 6.79 5,660 6.67 40,954 27,210 541.7 1,299.9
RC203 25 528.8 9.29 5.43 64,325 2.21 751 1.82 4,019 4,093 19.8 26.6
RC204 25 516.5 8.11 4.95 90,740 1.18 1,783 0.77 130 403 0.7 7.4
RC205 25 603.0 17.99 3.15 310,630 1.01 16,287 0.19 2 0 2.0 33.6
RC206 25 575.1 14.87 3.43 130,332 2.14 5,326 1.92 34 59 1.3 12.5
RC207 25 526.4 9.69 4.11 69,675 1.18 552 1.34 297 315 0.5 7.8
RC208 25 506.4 7.00 5.81 109,108 0.14 1,165 0.09 103 191 0.4 7.8

C201 40 625.6 3.13 9.07 550,331 1.92 99,651 1.92 0 20,302 990.3 1,281.3
C202 40 616.1 2.62 39.65 1,365,158 1.73 279,149 1.67 1 18,385 1,939.1 3,359.4
C203 40 TL
C204 40 TL
C205 40 621.0 3.63 11.27 724,811 2.22 75,327 2.22 0 43,178 1,354.7 1,597.5
C206 40 612.4 2.46 20.23 965,910 1.66 247,584 1.64 0 6,224 538.1 1,653.8
C207 40 609.9 2.30 26.17 1,523,940 1.48 277,402 1.46 0 36,824 3,910.4 6,281.7
C208 40 609.9 2.13 25.90 1,196,646 1.38 263,180 1.33 1 8,631 804.4 1,365.7

R201 40 ML
R202 40 638.7 4.17 16.66 1,200,193 0.00 207 0.00 0 0 0.0 59.1
R203 40 604.7 4.25 22.78 1,709,463 0.89 3,126 0.89 0 72 1.2 122.4
R204 40 572.6 2.01 28.61 5,175,888 0.15 59,005 0.17 0 0 4.6 623.1
R205 40 632.9 3.59 11.61 1,097,579 0.65 3,654 0.65 0 39 0.7 55.8
R206 40 598.8 3.43 18.15 1,719,461 0.71 5,349 0.71 2 13 0.9 82.6
R207 40 577.9 2.18 27.30 3,169,326 0.44 70,633 0.45 0 7 7.5 1,021.0
R208 40 569.4 1.65 25.34 6,504,543 0.00 66,790 0.04 0 0 3.4 944.8
R209 40 587.0 0.75 19.31 1,618,310 0.00 34,716 0.53 0 0 0.3 255.9
R210 40 591.5 0.50 17.98 1,560,500 0.00 36,715 0.00 0 0 0.3 138.9
R211 40 576.1 2.74 23.01 4,019,873 0.78 35,410 0.73 0 40 8.0 473.9

RC201 40 1,014.7 17.42 5.27 1,089,795 1.32 787 0.53 1 11 0.2 82.1
RC202 40 907.3 10.25 8.63 1,846,497 0.18 17,323 0.16 10 8 2.1 195.9
RC203 40 887.7 10.39 10.28 5,052,645 0.70 128,836 0.70 2,325 3,805 265.0 1,152.3
RC204 40 865.4 9.66 11.73 6,462,921 0.00 136,611 0.26 0 0 13.7 973.2
RC205 40 940.6 13.26 8.03 1,326,179 0.34 381 0.23 57 80 0.2 82.6
RC206 40 937.9 13.92 7.04 6,051,753 1.10 309,904 2.02 40 26,299 3,242.4 5,001.3
RC207 40 881.8 10.71 11.64 2,451,305 0.00 30,206 0.08 1 0 2.4 405.9
RC208 40 864.4 9.98 12.96 7,200,736 0.00 158,483 1.30 0 3,726 311.8 1,896.7
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Table 2.A.2: Computational results on the CMTVRPTW: instances with 50 customers

Group n ub∗ P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

C201 50 704.4 3.22 15.66 1,431,060 0.88 88,755 0.89 0 226 45.7 1,254.9
C202 50 TL
C203 50 ML
C204 50 ML
C205 50 698.5 3.77 26.28 2,209,169 1.01 62,534 1.09 0 2,153 134.9 1,947.3
C206 50 TL
C207 50 TL
C208 50 TL

R201 50 ML
R202 50 ML
R203 50 ML
R204 50 ML
R205 50 ML
R206 50 ML
R207 50 ML
R208 50 ML
R209 50 ML
R210 50 ML
R211 50 ML

RC201 50 1,086.2 11.78 11.14 3,792,194 0.00 1,693 0.00 0 0 0.1 484.7
RC202 50 981.2 5.83 20.20 2,390,290 0.08 9,971 0.49 0 0 0.1 384.5
RC203 50 941.2 3.98 25.43 589,850 0.58 5,497 0.51 8 17 0.3 54.4
RC204 50 915.9 2.55 32.66 893,681 0.00 9,802 0.00 0 0 0.5 66.0
RC205 50 ML
RC206 50 1,027.4 10.39 17.17 4,485,983 2.66 57,015 2.33 0 56,537 1,823.0 3,273.4
RC207 50 941.7 4.18 25.45 504,678 0.59 2,090 0.58 2,315 2,707 15.5 61.1
RC208 50 915.0 2.97 31.30 1,111,570 0.34 12,195 0.34 4,753 9,942 119.4 209.3
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Table 2.A.3: Computational results on the CMTVRPTW-LT: instances with 25 and 40 customers

Group n ub∗ P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

C201 25 380.8 5.08 5.4 27,752 2.65 1,148 0.45 0 0 0.1 8.7
C202 25 368.6 3.16 16.1 49,950 0.75 3,498 0.11 2 0 0.8 19.2
C203 25 361.7 1.53 20.0 124,419 0.00 7,172 0.48 0 0 0.2 23.7
C204 25 358.8 1.15 25.7 234,785 0.23 11,471 0.11 0 0 1.2 45.0
C205 25 377.2 5.84 6.0 35,354 3.14 1,620 2.84 1 272 0.8 11.2
C206 25 367.2 3.70 8.8 31,191 1.86 3,102 1.53 0 294 2.7 13.1
C207 25 359.1 1.90 14.1 49,258 1.12 9,619 0.04 0 0 1.0 17.6
C208 25 360.9 2.25 10.3 33,671 1.03 6,970 0.27 2 0 0.9 13.7

R201 25 554.6 16.46 3.2 2,106,695 0.74 728 0.71 9 17 0.3 154.0
R202 25 485.0 14.43 8.8 6,429,418 1.25 689 0.81 2 95 0.4 482.1
R203 25 444.2 8.53 13.5 1,202,841 0.41 432 0.10 0 0 0.1 108.9
R204 25 407.5 7.08 15.1 1,352,523 2.18 12,475 2.02 0 149 5.6 158.9
R205 25 448.4 7.93 5.9 419,946 0.07 158 0.00 0 0 0.0 37.1
R206 25 413.9 5.76 9.8 882,262 0.00 2,949 0.00 0 0 0.2 43.3
R207 25 400.1 4.39 15.1 140,796 1.45 158 2.62 4 3 0.0 18.4
R208 25 394.3 4.21 18.0 138,476 1.88 666 0.09 2 2 0.1 21.5
R209 25 418.3 5.32 10.9 813,099 0.53 6,336 1.26 0 0 0.1 48.6
R210 25 448.3 7.43 9.3 1,474,542 0.22 1,464 0.07 0 0 0.2 124.2
R211 25 400.1 6.44 13.2 1,359,822 1.30 6,855 0.94 0 26 1.3 65.6

RC201 25 660.0 22.41 2.2 73,332 1.98 193 0.19 0 0 0.0 11.0
RC202 25 596.8 16.66 4.5 182,791 10.02 23,871 9.91 51,847 76,042 5,836.5 6,891.4
RC203 25 530.1 9.51 6.6 68,726 2.09 914 1.82 8,339 5,027 28.7 66.0
RC204 25 518.0 8.37 6.4 91,796 1.34 1,628 1.34 589 1,770 3.5 12.0
RC205 25 605.3 18.30 3.7 171,107 0.73 247 0.02 1 0 0.1 22.7
RC206 25 575.1 14.87 3.5 126,074 0.94 4,674 0.78 13 20 1.1 13.7
RC207 25 528.2 9.99 4.7 121,058 1.17 4,648 1.13 119 170 1.2 12.3
RC208 25 506.4 7.00 6.2 103,578 0.14 1,088 0.07 4 0 0.1 8.2

C201 40 626.6 3.29 13.2 511,637 1.60 68,945 1.51 0 7,846 427.7 668.7
C202 40 617.9 2.91 48.9 1,334,402 1.37 90,391 1.30 0 6,036 428.3 1,005.9
C203 40 611.9 2.16 58.9 3,190,776 1.10 340,263 1.06 0 5,493 1,333.1 3,769.3
C204 40 TL
C205 40 621.0 3.63 14.5 715,459 2.16 90,659 2.16 1 25,382 1,064.1 1,356.6
C206 40 613.0 2.55 21.8 953,651 1.71 209,249 1.70 0 6,803 635.7 1,969.1
C207 40 609.9 2.30 25.7 1,336,260 1.48 276,916 1.44 0 17,076 1,758.7 4,238.9
C208 40 610.1 2.16 22.5 1,221,262 1.41 259,089 1.40 2 7,502 889.8 2,181.8

R201 40 ML
R202 40 639.8 4.34 16.5 1,251,623 0.00 80 0.36 0 0 0.0 65.3
R203 40 604.7 4.25 24.1 1,805,535 0.64 788 0.59 0 5 0.1 120.4
R204 40 572.6 2.01 32.2 5,091,722 0.15 58,506 0.13 0 0 3.6 965.4
R205 40 632.9 3.59 13.8 1,097,579 0.24 2,038 0.22 0 6 0.3 60.0
R206 40 598.8 3.43 19.1 1,719,645 0.71 5,769 0.71 0 38 0.9 86.8
R207 40 577.9 2.18 26.0 3,379,735 0.39 56,248 0.37 0 3 7.8 983.3
R208 40 569.4 1.65 30.9 6,667,257 0.00 65,712 0.19 0 0 2.8 985.5
R209 40 587.0 0.75 20.6 1,618,310 0.00 37,754 0.52 0 0 0.3 234.7
R210 40 603.4 2.46 18.9 1,560,500 0.21 16,530 0.28 0 0 2.5 119.5
R211 40 576.1 2.74 23.1 4,019,873 0.75 30,871 0.69 1 17 8.1 558.1

RC201 40 1,018.7 17.74 5.8 1,173,328 1.58 388 0.67 1 1 0.1 137.1
RC202 40 908.1 10.33 8.9 1,832,297 0.26 18,348 0.18 25 27 2.8 209.8
RC203 40 887.7 10.39 12.1 5,022,013 0.70 123,664 0.70 2,328 3,765 413.5 1,410.1
RC204 40 865.4 9.66 12.8 6,536,683 0.00 158,010 0.09 0 0 9.4 1,184.9
RC205 40 942.1 13.40 7.9 1,324,762 0.00 37 2.07 0 0 0.0 105.9
RC206 40 939.6 14.07 7.3 3,876,234 1.11 112,583 1.19 16 708 54.7 1,127.3
RC207 40 881.8 10.71 10.1 2,451,305 0.00 32,267 0.00 0 0 2.1 312.7
RC208 40 864.4 9.98 11.5 7,200,736 0.00 144,739 1.71 18 17,456 1,007.8 2,487.7
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Table 2.A.4: Computational results on the CMTVRPTW-LT: instances with 50 customers

Group n ub∗ P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

C201 50 714.2 4.55 16.1 1,313,798 1.65 13,088 1.56 2 5,421 70.6 559.6
C202 50 700.1 3.57 58.9 3,810,994 1.59 189,322 1.82 0 11,398 1,334.7 8,147.6
C203 50 ML
C204 50 ML
C205 50 699.1 3.86 30.0 2,164,384 0.82 33,346 0.85 6 1,121 78.7 2,022.6
C206 50 TL
C207 50 TL
C208 50 TL

R201 50 ML
R202 50 ML
R203 50 ML
R204 50 ML
R205 50 ML
R206 50 ML
R207 50 ML
R208 50 ML
R209 50 ML
R210 50 ML
R211 50 ML

RC201 50 1,096.6 12.62 8.5 3,770,301 0.47 1,279 0.45 0 0 0.1 435.4
RC202 50 1,001.6 7.75 13.9 2,548,537 0.00 2,954 0.01 0 0 0.2 301.4
RC203 50 941.2 3.98 21.1 564,827 0.46 4,477 0.38 8 5 0.3 42.0
RC204 50 915.9 2.55 25.6 893,679 0.00 9,795 0.63 0 0 0.4 53.3
RC205 50 ML
RC206 50 1,027.4 10.39 13.2 4,485,967 2.51 21,307 1.98 0 4,789 66.1 1,131.8
RC207 50 941.7 4.18 18.0 421,819 0.44 1,089 0.35 24 67 0.2 32.2
RC208 50 916.8 3.16 23.1 1,072,523 0.33 9,980 0.33 5,870 15,689 118.4 186.1
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Table 2.A.5: Computational results on the CMTVRPTW-LD: instances with 25 customers

Group n d ub∗ P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

C201 25 220 657.8 1.89 3.5 99 1.54 69 0.36 0 0 0.1 3.7
C201 25 250 539.8 0.87 3.7 147 0.00 70 0.00 0 0 0.0 3.8
C202 25 220 652.1 2.87 12.5 457 1.56 197 0.01 0 0 0.2 12.8
C202 25 250 532.5 1.57 18.9 1,466 0.75 563 0.00 0 0 0.2 19.2
C203 25 220 645.2 8.93 17.9 747 1.85 192 0.04 0 0 0.1 18.1
C203 25 250 531.8 3.63 25.5 3,404 0.75 446 0.22 0 0 0.1 25.7
C204 25 220 601.3 5.88 24.1 1,005 1.08 479 0.45 0 3 0.3 24.6
C204 25 250 524.6 2.30 35.5 4,978 1.39 1,833 1.02 0 357 0.5 36.2
C205 25 220 635.2 6.43 5.6 215 2.85 132 0.00 0 0 0.2 6.0
C205 25 250 528.9 2.12 7.9 478 0.00 159 1.49 0 0 0.2 8.2
C206 25 220 635.2 6.84 8.1 288 2.85 152 0.00 0 0 0.0 8.3
C206 25 250 526.9 2.29 10.3 843 0.44 272 0.02 8 2 0.2 10.6
C207 25 220 602.1 7.30 9.6 460 0.00 148 0.00 0 0 0.1 9.8
C207 25 250 524.6 1.86 16.5 2,154 0.00 526 0.55 0 0 0.2 16.8
C208 25 220 610.3 3.33 7.9 358 0.00 66 0.00 0 0 0.0 8.1
C208 25 250 524.6 1.86 12.2 1,269 0.00 357 1.86 0 0 0.1 12.4

R201 25 75 761.4 2.92 0.6 145 0.00 56 0.61 0 0 0.0 0.8
R201 25 100 697.2 8.40 0.8 428 0.58 67 0.00 0 0 0.0 1.0
R202 25 75 644.7 0.94 1.3 320 0.00 25 0.00 0 0 0.0 1.4
R202 25 100 616.6 10.34 2.1 2,611 0.00 279 0.14 0 0 0.0 2.3
R203 25 75 620.9 3.19 1.9 699 0.00 25 0.00 0 0 0.0 2.0
R203 25 100 576.6 11.86 3.3 4,387 0.00 131 0.00 0 0 0.0 3.5
R204 25 75 576.6 2.94 2.5 826 0.00 133 0.00 0 0 0.0 2.7
R204 25 100 482.1 2.85 3.5 2,710 0.00 104 0.73 0 0 0.0 3.6
R205 25 75 632.9 3.77 1.0 333 0.00 40 1.12 0 0 0.0 1.1
R205 25 100 557.9 5.05 1.7 1,442 0.13 272 0.02 1 0 0.0 1.9
R206 25 75 595.7 2.53 1.6 599 0.00 32 0.00 0 0 0.0 1.7
R206 25 100 522.5 4.15 2.6 2,269 0.00 15 0.00 0 0 0.0 2.7
R207 25 75 584.7 2.26 2.3 732 0.00 72 0.00 0 0 0.0 2.4
R207 25 100 510.9 5.26 3.8 4,889 1.37 1,483 0.17 0 0 0.1 4.2
R208 25 75 576.6 2.94 2.4 842 0.00 116 0.93 0 0 0.0 2.5
R208 25 100 482.1 2.97 3.7 2,919 0.00 114 0.00 0 0 0.0 3.9
R209 25 75 601.2 3.78 1.5 563 0.00 62 0.61 0 0 0.0 1.5
R209 25 100 516.5 7.66 2.3 2,868 0.48 174 0.00 0 0 0.0 2.5
R210 25 75 634.9 6.71 1.3 664 0.58 160 0.00 0 0 0.0 1.4
R210 25 100 546.2 6.93 2.4 3,496 0.00 131 0.00 0 0 0.0 2.5
R211 25 75 574.8 2.64 1.8 979 0.55 276 0.27 0 0 0.1 2.0
R211 25 100 473.4 1.74 3.3 3,731 0.00 236 0.94 0 0 0.0 3.5

RC201 25 75 986.5 11.96 0.6 109 0.68 33 0.17 12 12 0.1 0.9
RC201 25 100 824.9 24.84 1.0 276 4.30 80 3.53 110 122 0.5 2.0
RC202 25 75 880.4 20.74 1.3 360 3.70 157 0.00 0 0 0.0 1.7
RC202 25 100 678.8 23.93 2.2 1,476 0.00 170 0.00 0 0 0.0 2.6
RC203 25 75 748.1 14.44 2.1 585 4.36 198 0.00 0 0 0.0 2.4
RC203 25 100 592.7 21.21 3.7 2,717 0.00 98 1.72 0 0 0.0 4.0
RC204 25 75 743.7 17.58 2.1 771 9.08 377 0.00 2 0 0.4 2.9
RC204 25 100 586.2 23.77 4.0 4,638 0.80 1,200 0.00 0 0 0.0 4.5
RC205 25 75 839.2 16.57 1.0 336 0.56 91 0.32 19 30 0.1 1.4
RC205 25 100 701.3 20.34 1.7 1,232 0.02 50 0.53 0 0 0.0 2.0
RC206 25 75 759.7 9.39 1.0 278 0.08 121 0.08 0 0 0.0 1.3
RC206 25 100 602.9 12.44 1.5 882 0.00 42 0.00 0 0 0.0 1.7
RC207 25 75 737.8 14.78 1.3 637 4.84 318 0.35 25 26 0.1 1.8
RC207 25 100 513.9 10.25 2.8 3,284 0.39 719 0.18 5 3 0.0 3.0
RC208 25 75 727.2 20.16 1.6 977 12.84 478 0.83 66 178 0.3 2.3
RC208 25 100 501.4 14.64 3.4 7,357 0.00 2,063 0.00 1 0 0.1 4.0
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Table 2.A.6: Computational results on the CMTVRPTW-LD: instances with 40 customers

Group n d ub∗ P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

C201 40 220 1,121.8 1.19 6.9 229 0.00 183 0.00 0 0 0.1 7.0
C201 40 250 922.2 0.09 9.4 376 0.00 307 0.00 0 0 0.0 9.5
C202 40 220 1,108.2 4.95 27.6 1,100 0.00 705 0.00 0 0 7.3 35.0
C202 40 250 918.3 2.07 41.8 3,738 0.00 1,795 0.00 0 0 0.1 42.1
C203 40 220 1,086.8 7.24 42.0 1,836 0.27 801 0.17 0 5 0.3 42.5
C203 40 250 913.5 2.22 71.6 9,330 1.36 5,720 1.33 0 3,699 5.4 77.3
C204 40 220 1,037.5 4.52 61.4 2,553 0.00 85 0.00 0 0 0.4 61.9
C204 40 250 906.7 1.62 84.5 16,259 1.17 9,254 1.12 0 7,584 15.7 101.1
C205 40 220 1,082.1 1.83 11.4 539 0.44 332 0.00 0 0 0.2 11.7
C205 40 250 919.5 1.01 18.3 1,242 0.45 732 0.00 0 0 0.1 18.5
C206 40 220 1,079.6 4.40 16.5 785 0.32 124 0.00 0 0 0.0 16.6
C206 40 250 915.2 0.73 27.2 2,401 0.17 1,417 0.00 0 0 0.2 27.5
C207 40 220 1,052.0 5.54 19.4 1,264 0.15 765 0.00 0 0 8.3 27.9
C207 40 250 908.7 1.47 41.3 5,641 0.62 3,159 0.45 0 93 0.8 42.3
C208 40 220 1,068.5 3.57 20.1 978 0.00 184 0.00 0 0 0.1 20.3
C208 40 250 913.9 0.71 34.2 3,613 0.27 1,953 0.00 0 0 0.3 34.6

R201 40 75 1,159.3 3.26 1.4 532 0.00 174 0.10 0 0 0.0 1.5
R201 40 100 1,013.8 6.93 2.4 2,069 0.13 754 0.32 0 0 0.1 2.7
R202 40 75 991.5 3.65 3.4 2,428 0.00 137 0.00 0 0 0.0 3.5
R202 40 100 898.7 9.66 7.7 17,740 0.00 3,424 0.00 0 0 0.1 8.2
R203 40 75 953.6 7.80 5.3 3,808 1.00 1,086 0.34 0 3 0.2 5.6
R203 40 100 803.8 8.31 9.6 31,425 0.00 336 0.05 0 0 0.0 10.0
R204 40 75 856.3 3.63 5.5 5,169 0.97 999 0.22 0 0 0.3 5.9
R204 40 100 706.0 4.64 11.8 38,841 1.25 794 1.13 0 153 0.2 12.7
R205 40 75 971.8 4.80 2.4 1,458 0.12 1,054 0.10 0 0 0.8 3.3
R205 40 100 836.7 4.95 5.4 8,473 0.00 3,642 0.02 0 0 0.2 5.9
R206 40 75 911.3 4.87 4.0 3,463 0.37 2,153 0.31 0 0 0.1 4.3
R206 40 100 806.0 7.56 7.1 28,582 0.70 3,031 0.70 0 20 0.2 7.7
R207 40 75 884.2 4.12 4.7 4,080 0.11 128 0.00 0 0 0.0 4.8
R207 40 100 759.7 6.24 9.4 38,549 0.47 7,499 0.07 0 0 0.3 10.5
R208 40 75 856.3 3.63 5.3 5,190 0.97 1,027 0.04 0 0 0.1 5.5
R208 40 100 706.0 4.75 12.6 40,263 1.29 931 1.20 0 218 0.3 13.5
R209 40 75 933.7 4.33 3.6 2,443 0.28 160 0.05 0 0 0.0 3.7
R209 40 100 762.5 4.92 7.3 18,610 0.00 5,783 0.00 0 0 0.1 8.0
R210 40 75 942.7 8.85 3.9 3,455 1.03 353 0.00 0 0 0.0 4.1
R210 40 100 799.1 6.72 8.1 29,170 0.14 2,886 0.34 0 0 0.1 8.7
R211 40 75 840.6 2.80 4.6 5,502 0.69 1,458 0.64 2 12 0.2 4.9
R211 40 100 671.2 0.63 7.8 39,785 0.00 3,610 0.00 0 0 0.0 8.8

RC201 40 75 1,786.4 8.65 0.9 157 2.42 75 2.42 0 0 0.0 1.0
RC201 40 100 1,369.8 14.44 2.0 464 0.00 265 0.00 0 0 0.0 2.3
RC202 40 75 1,593.0 15.41 2.6 451 2.05 274 0.00 0 0 0.3 3.2
RC202 40 100 1,237.1 22.90 5.5 2,152 0.00 899 0.00 0 0 0.0 6.0
RC203 40 75 1,449.8 11.56 3.8 688 2.25 360 0.00 0 0 0.5 4.5
RC203 40 100 1,084.6 19.26 9.1 3,860 0.00 1,122 0.00 0 0 0.1 9.6
RC204 40 75 1,360.9 11.40 4.6 988 4.96 593 0.18 0 0 0.7 6.0
RC204 40 100 984.6 19.53 9.9 6,122 1.58 2,606 1.41 0 63 0.3 10.8
RC205 40 75 1,549.4 12.13 2.0 406 0.00 125 0.00 0 0 0.0 2.3
RC205 40 100 1,298.3 22.41 5.2 1,670 0.06 807 0.00 0 0 0.1 5.7
RC206 40 75 1,551.6 11.74 2.0 352 2.53 227 0.00 0 0 1.2 3.4
RC206 40 100 1,125.8 17.26 4.4 1,233 0.20 289 0.00 0 0 0.0 4.8
RC207 40 75 1,444.4 11.37 2.3 815 5.21 504 0.00 0 0 1.9 4.5
RC207 40 100 976.1 14.31 7.7 4,172 1.68 2,420 0.00 2 0 0.0 8.2
RC208 40 75 1,342.5 12.59 2.9 1,192 6.81 693 0.74 0 7 0.8 4.0
RC208 40 100 899.8 14.08 8.2 9,241 1.65 1,693 0.00 2 0 0.1 9.3
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Table 2.A.7: Computational results on the CMTVRPTW-LD: instances with 50 customers

Group n d ub∗ P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

C201 50 220 1,322.1 1.58 10.2 352 0.00 255 0.00 0 0 0.6 10.9
C201 50 250 1,098.6 0.90 12.6 590 0.00 465 0.00 0 0 0.1 12.8
C202 50 220 1,308.4 5.63 36.1 1,691 0.00 1,130 0.00 0 0 6.4 42.7
C202 50 250 1,076.3 1.28 57.8 6,418 0.00 4,169 0.00 0 0 0.2 58.3
C203 50 220 1,245.5 6.74 62.8 3,109 0.23 1,586 0.00 0 0 0.5 63.5
C203 50 250 1,071.3 1.82 107.1 17,111 0.93 11,535 0.92 0 764 4.1 111.9
C204 50 220 1,193.3 4.78 87.2 4,268 0.66 2,810 0.00 0 0 58.4 145.9
C204 50 250 1,060.4 1.84 134.6 29,395 1.08 17,782 0.98 0 8,583 45.4 182.2
C205 50 220 1,263.4 2.62 17.6 787 1.13 494 0.00 0 0 1.2 18.9
C205 50 250 1,095.9 1.67 27.4 1,816 0.86 1,181 0.45 0 169 0.5 28.0
C206 50 220 1,260.2 4.84 29.0 1,231 1.26 873 0.56 0 0 3.0 32.3
C206 50 250 1,089.3 1.26 53.2 3,502 0.69 2,178 0.60 0 273 4.3 57.7
C207 50 220 1,214.0 5.04 43.5 1,910 0.13 1,271 0.00 0 0 8.0 51.6
C207 50 250 1,074.3 0.74 72.9 7,761 0.23 4,714 0.00 0 0 0.4 73.6
C208 50 220 1,244.9 3.82 33.6 1,525 0.67 541 0.00 0 0 0.6 34.3
C208 50 250 1,074.3 0.67 60.2 5,225 0.23 3,033 0.00 0 0 0.2 60.6

R201 50 75 1,399.0 2.42 1.8 751 0.00 475 0.00 0 0 0.0 1.9
R201 50 100 1,223.2 6.93 5.0 3,160 0.00 1,101 0.16 0 0 0.1 5.3
R202 50 75 1,227.6 4.66 5.2 3,986 0.61 188 0.05 0 0 0.1 5.4
R202 50 100 1,102.8 10.25 10.7 32,397 0.02 6,184 0.00 0 0 0.2 12.0
R203 50 75 1,101.9 5.52 7.6 5,911 0.20 3,639 0.26 0 0 0.1 7.9
R203 50 100 974.1 10.98 15.3 58,152 0.62 11,433 0.54 0 101 1.3 20.0
R204 50 75 1,029.3 4.74 8.7 8,190 0.84 308 0.30 0 2 0.3 9.1
R204 50 100 821.6 2.28 16.8 82,059 0.00 7,180 0.00 0 0 0.2 18.6
R205 50 75 1,228.0 4.83 3.5 2,192 0.00 1,662 0.00 0 0 16.7 20.4
R205 50 100 1,041.5 7.10 8.5 14,366 0.00 2,670 0.00 0 0 0.1 9.0
R206 50 75 1,152.1 5.26 6.2 5,396 0.00 3,653 0.00 0 0 0.1 6.5
R206 50 100 966.3 5.38 13.1 52,846 0.00 14,560 0.00 0 0 0.1 15.1
R207 50 75 1,092.2 5.31 7.9 6,589 0.45 4,419 0.26 0 0 0.4 8.6
R207 50 100 904.0 5.77 14.3 71,509 0.00 12,548 0.00 0 0 0.2 23.6
R208 50 75 1,029.3 4.74 9.1 8,217 0.84 316 0.27 0 12 1.0 10.3
R208 50 100 821.6 2.28 17.2 82,789 0.00 6,306 0.00 0 0 0.2 19.3
R209 50 75 1,133.3 5.67 5.1 4,008 0.07 2,770 0.00 0 0 0.2 5.5
R209 50 100 922.3 5.49 12.7 35,452 0.04 12,465 0.00 0 0 0.9 16.0
R210 50 75 1,159.4 7.21 5.8 5,432 0.34 2,028 0.00 0 0 0.1 6.1
R210 50 100 976.3 8.50 13.6 54,327 0.00 378 0.00 0 0 0.0 14.6
R211 50 75 1,031.1 5.32 5.5 8,654 1.45 1,445 1.08 46 448 0.8 7.2
R211 50 100 831.3 3.52 12.6 93,865 1.91 12,513 1.90 3,687 16,479 173.1 196.3

RC201 50 75 1,873.9 10.15 1.4 263 0.00 198 0.00 0 0 0.0 1.7
RC201 50 100 1,461.5 17.27 3.6 758 0.00 155 0.00 0 0 0.0 3.9
RC202 50 75 1,761.7 15.16 3.5 825 1.55 512 0.00 0 0 2.3 6.2
RC202 50 100 1,360.2 23.66 9.3 4,479 0.00 1,207 0.00 0 0 0.1 10.0
RC203 50 75 1,593.5 11.18 5.6 1,446 2.17 748 0.00 0 0 2.4 8.2
RC203 50 100 1,242.6 23.76 13.4 10,195 3.06 3,565 0.62 0 6 1.6 15.8
RC204 50 75 1,455.9 7.39 7.2 2,263 2.15 1,368 0.14 0 0 2.6 10.0
RC204 50 100 1,069.2 16.83 15.0 22,182 3.79 11,310 0.00 0 0 0.6 18.4
RC205 50 75 1,777.9 13.23 3.3 749 2.89 274 0.00 0 0 0.0 3.5
RC205 50 100 1,470.0 26.55 7.2 3,713 0.33 1,632 0.00 0 0 0.1 7.9
RC206 50 75 1,712.1 10.02 3.0 700 2.95 382 1.07 0 0 0.1 3.4
RC206 50 100 1,258.4 16.56 8.5 2,976 0.22 915 0.00 0 0 0.0 8.9
RC207 50 75 1,620.7 13.16 3.7 1,595 5.89 1,106 0.00 1 0 8.2 12.2
RC207 50 100 1,049.4 8.41 14.1 12,055 2.48 5,679 0.00 0 0 0.6 15.2
RC208 50 75 1,438.5 8.01 5.9 2,522 3.52 1,601 2.54 1,303 3,246 29.6 35.6
RC208 50 100 991.0 12.56 12.3 30,001 4.01 16,129 0.00 0 0 0.5 18.7
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Table 2.A.8: Computational results on the CMTVRPTW-R: type C and RC instances with 25 customers

Group n κ ub∗ P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

C201 25 0.25 380.8 5.08 4.6 9,637 2.68 3,537 0.52 0 3 0.3 6.0
C201 25 0.5 380.8 5.08 4.2 7,104 2.68 1,048 0.19 0 0 0.1 4.8
C201 25 0.75 380.8 5.08 4.1 6,052 2.68 1,045 0.00 0 0 0.1 4.7
C202 25 0.25 412.6 13.49 8.1 251,175 1.05 393 0.64 0 26 0.2 14.6
C202 25 0.5 412.6 13.49 7.9 289,678 1.05 411 0.54 0 3 0.1 15.3
C202 25 0.75 412.6 13.49 8.4 262,940 1.02 328 0.48 2 35 0.2 15.8
C203 25 0.25 431.3 16.72 9.6 2,812,513 2.08 11,940 1.97 9 1,128 24.4 118.6
C203 25 0.5 431.3 16.72 11.9 2,741,875 2.08 11,372 1.94 32 2,974 51.2 153.6
C203 25 0.75 435.5 17.53 10.1 2,741,701 2.81 12,872 2.66 44 4,433 72.1 178.2
C204 25 0.25 407.8 12.97 14.0 2,753,906 1.89 2,294 1.78 117 567 2.0 53.7
C204 25 0.5 407.8 12.97 14.3 2,890,702 1.89 2,505 1.72 162 723 3.2 56.8
C204 25 0.75 407.8 12.97 14.9 2,321,763 1.48 3,449 1.28 115 562 3.0 68.5
C205 25 0.25 378.2 6.09 5.5 15,490 2.61 4,842 0.00 0 0 0.2 6.7
C205 25 0.5 378.2 6.09 5.5 12,429 2.61 4,826 0.19 2 0 0.4 6.8
C205 25 0.75 378.2 6.09 5.5 12,636 2.61 4,826 0.77 0 0 0.2 6.7
C206 25 0.25 378.2 6.50 7.3 17,543 3.80 6,775 0.17 0 0 0.6 10.3
C206 25 0.5 378.2 6.50 7.4 15,811 3.80 7,910 0.17 0 0 0.5 10.1
C206 25 0.75 378.2 6.50 7.8 14,126 3.80 6,869 0.17 0 0 0.6 10.4
C207 25 0.25 377.4 6.65 11.5 41,235 3.76 14,658 0.00 0 0 0.7 18.6
C207 25 0.5 377.4 6.65 11.8 39,771 3.76 14,673 0.00 0 0 0.6 16.0
C207 25 0.75 377.4 6.65 11.6 39,510 3.76 14,720 0.00 0 0 0.6 18.0
C208 25 0.25 377.1 6.45 8.3 23,969 3.68 9,333 0.00 0 0 0.5 14.2
C208 25 0.5 377.4 6.52 8.7 23,323 3.75 9,372 0.39 0 0 2.5 17.7
C208 25 0.75 377.4 6.52 8.4 21,604 3.75 9,222 0.00 0 0 0.4 12.3

RC201 25 0.25 660.0 22.41 1.9 23,277 1.84 752 1.51 10 13 0.1 3.4
RC201 25 0.5 660.0 22.41 1.7 17,057 0.93 558 0.07 3 0 0.1 3.0
RC201 25 0.75 660.0 22.41 1.9 8,064 0.78 231 0.00 1 0 0.0 2.7
RC202 25 0.25 611.4 17.75 2.8 46,246 4.87 711 4.58 3,688 1,295 5.0 21.1
RC202 25 0.5 611.4 17.75 2.7 46,297 4.87 616 4.66 3,176 1,567 4.6 16.4
RC202 25 0.75 643.9 21.25 2.5 44,556 1.34 66 0.00 0 0 0.0 3.6
RC203 25 0.25 594.0 18.19 3.2 302,472 0.93 19,554 0.00 1 0 1.0 36.2
RC203 25 0.5 594.0 18.19 3.3 302,455 0.93 20,570 0.41 1 0 0.7 32.4
RC203 25 0.75 639.6 22.89 3.2 282,140 0.00 117 0.00 1 0 0.0 7.9
RC204 25 0.25 595.7 18.76 3.3 362,367 0.34 3,688 0.32 14 17 0.4 12.4
RC204 25 0.5 595.7 18.76 3.3 362,367 0.34 3,688 0.32 14 17 0.4 12.1
RC204 25 0.75 672.0 27.45 2.9 376,442 0.24 3,084 0.59 0 0 0.3 14.1
RC205 25 0.25 603.0 17.99 3.2 85,563 0.95 3,859 0.38 1 0 0.2 8.0
RC205 25 0.5 603.0 17.99 3.0 83,747 0.95 7,667 0.29 5 0 0.5 8.0
RC205 25 0.75 642.4 22.10 2.4 44,583 0.00 963 0.00 0 0 0.0 4.4
RC206 25 0.25 575.2 14.89 3.3 41,712 0.56 2,011 0.43 130 51 0.6 5.1
RC206 25 0.5 575.2 14.89 3.4 33,810 0.10 550 0.38 117 39 0.4 4.8
RC206 25 0.75 588.7 16.49 2.5 13,820 0.00 77 0.85 0 0 0.0 3.0
RC207 25 0.25 538.8 11.16 3.5 38,757 0.00 385 0.00 0 0 0.0 4.0
RC207 25 0.5 538.8 11.16 3.3 36,718 0.00 305 0.00 0 0 0.0 3.8
RC207 25 0.75 575.5 16.60 2.9 29,613 0.35 227 0.00 0 0 0.0 3.6
RC208 25 0.25 510.8 7.80 5.2 67,468 0.74 358 0.65 125 161 0.4 6.5
RC208 25 0.5 513.8 8.34 4.3 66,456 1.32 338 1.12 224 439 0.6 6.0
RC208 25 0.75 525.2 10.14 3.2 98,395 0.57 4,417 0.57 30 34 0.4 6.4
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Table 2.A.9: Computational results on the CMTVRPTW-R: type R instances with 25 customers

Group n κ ub∗ P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

R201 25 0.25 549.4 15.67 2.9 222,339 0.00 506 0.14 0 0 0.0 8.0
R201 25 0.5 555.8 16.64 2.9 151,037 0.44 164 0.74 0 0 0.0 6.8
R201 25 0.75 570.0 18.72 2.7 51,597 0.18 585 0.18 2 3 0.0 4.4
R202 25 0.25 524.2 12.86 4.6 356,859 0.00 5 0.00 0 0 0.0 8.6
R202 25 0.5 524.2 12.86 4.4 356,222 0.00 5 0.00 0 0 0.0 8.5
R202 25 0.75 533.3 14.34 4.5 567,175 0.00 1,975 0.00 0 0 0.1 13.4
R203 25 0.25 518.4 13.17 6.6 1,890,266 0.00 32 0.51 0 0 0.0 25.9
R203 25 0.5 518.4 13.17 6.4 1,890,211 0.00 40 0.51 0 0 0.0 26.0
R203 25 0.75 518.5 13.19 5.7 1,877,607 0.00 10 0.00 0 0 0.0 19.7
R204 25 0.25 ML
R204 25 0.5 ML
R204 25 0.75 ML
R205 25 0.25 453.9 9.05 5.4 108,401 0.00 6 0.00 0 0 0.0 6.4
R205 25 0.5 461.7 10.58 5.5 265,527 0.00 165 0.00 0 0 0.0 8.0
R205 25 0.75 471.6 11.78 5.5 60,173 0.00 13 0.00 0 0 0.0 6.2
R206 25 0.25 442.3 7.09 8.7 443,102 0.00 140 0.19 0 0 0.0 16.2
R206 25 0.5 459.0 10.47 8.3 1,462,204 0.33 1,482 0.04 0 0 0.0 29.2
R206 25 0.75 475.0 12.54 7.2 1,193,351 0.68 131 0.29 0 0 0.0 25.7
R207 25 0.25 ML
R207 25 0.5 ML
R207 25 0.75 ML
R208 25 0.25 474.3 12.94 9.2 8,122,796 0.00 15 0.00 0 0 0.0 55.2
R208 25 0.5 474.3 12.94 9.0 8,122,796 0.00 15 0.00 0 0 0.0 54.5
R208 25 0.75 ML
R209 25 0.25 452.6 11.95 6.8 587,355 0.00 111 0.59 0 0 0.0 17.6
R209 25 0.5 452.6 11.95 7.6 583,164 0.00 122 1.19 1 0 0.0 18.4
R209 25 0.75 467.6 14.18 6.7 234,462 0.00 219 0.00 0 0 0.0 9.1
R210 25 0.25 469.8 9.83 7.3 643,750 1.31 44 0.32 0 1 0.0 15.9
R210 25 0.5 472.3 9.80 6.4 1,551,508 0.42 2,668 0.46 0 0 0.1 25.5
R210 25 0.75 542.0 20.05 6.1 4,068,450 0.29 359 0.00 1 0 0.1 116.6
R211 25 0.25 400.1 4.40 12.0 41,986 0.00 5 0.00 0 0 0.0 12.3
R211 25 0.5 400.1 4.40 10.1 41,364 0.00 4 0.00 0 0 0.0 10.5
R211 25 0.75 406.0 5.79 6.8 284,195 0.00 255 0.00 0 0 0.0 8.7
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Table 2.A.10: Computational results on the CMTVRPTW-R: type C and RC instances with 40 customers

Group n κ ub∗ P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

C201 40 0.25 628.6 3.59 9.6 72,827 1.50 11,657 1.50 0 1,821 11.8 37.6
C201 40 0.5 636.2 4.74 9.3 52,878 0.91 1,753 0.86 0 374 0.9 11.8
C201 40 0.75 651.5 6.98 8.9 68,996 0.40 15,658 0.39 0 19 1.2 20.8
C202 40 0.25 682.6 11.00 27.6 2,438,024 0.60 19,231 0.34 0 25 5.4 107.1
C202 40 0.5 684.3 11.22 23.9 2,424,262 0.44 19,558 0.02 0 2 4.3 143.4
C202 40 0.75 689.2 11.86 22.5 2,431,698 1.05 16,183 0.63 0 225 4.7 102.4
C203 40 0.25 ML
C203 40 0.5 ML
C203 40 0.75 ML
C204 40 0.25 ML
C204 40 0.5 ML
C204 40 0.75 ML
C205 40 0.25 621.0 3.63 12.5 136,055 0.98 9,392 0.97 0 521 2.6 18.6
C205 40 0.5 634.0 5.61 11.7 206,785 0.98 58,106 0.89 0 438 19.6 125.9
C205 40 0.75 643.1 6.95 11.1 183,688 0.38 26,410 0.33 0 19 2.9 31.7
C206 40 0.25 613.0 2.55 20.4 184,347 0.93 25,625 0.76 0 505 12.3 51.2
C206 40 0.5 622.0 3.96 20.6 130,366 1.48 8,298 1.07 0 406 3.1 26.6
C206 40 0.75 641.7 6.91 20.9 276,606 1.44 39,012 1.32 0 2,796 39.3 86.7
C207 40 0.25 611.7 2.59 25.6 371,387 0.88 36,358 0.75 0 709 21.5 116.4
C207 40 0.5 615.8 3.24 30.9 260,147 1.33 26,267 1.32 0 4,016 32.9 74.9
C207 40 0.75 621.6 4.01 26.2 241,410 1.07 4,348 0.11 0 1 0.9 30.7
C208 40 0.25 613.0 2.62 26.3 316,869 1.12 36,725 1.02 0 1,945 30.1 121.2
C208 40 0.5 619.0 3.57 25.8 174,354 1.61 14,094 1.60 0 3,263 18.8 51.5
C208 40 0.75 632.4 5.61 21.0 370,169 1.18 60,702 1.07 0 497 18.4 171.2

RC201 40 0.25 1,038.1 19.28 5.4 301,763 1.32 7,119 1.22 1 73 0.9 17.9
RC201 40 0.5 1,038.1 19.28 5.3 169,441 0.00 1,955 0.26 1 0 0.1 10.4
RC201 40 0.75 1,048.6 20.09 5.3 95,225 0.00 175 0.00 0 0 0.0 7.1
RC202 40 0.25 972.2 15.00 6.4 402,424 0.00 1,117 0.00 0 0 0.0 11.1
RC202 40 0.5 972.2 15.00 7.0 391,901 0.00 1,098 0.00 2 0 0.0 11.6
RC202 40 0.75 1,092.9 24.01 5.9 426,700 0.29 1,547 0.02 0 0 0.1 16.4
RC203 40 0.25 1,041.9 22.60 6.4 6,222,602 0.70 31,438 2.20 0 63,362 727.6 1,011.4
RC203 40 0.5 1,041.9 22.60 6.3 6,220,996 0.70 30,198 2.10 1 10,418 163.6 463.2
RC203 40 0.75 1,145.7 28.98 6.4 4,240,524 1.41 2,932 2.27 0 6,545 8.3 233.7
RC204 40 0.25 ML
RC204 40 0.5 ML
RC204 40 0.75 ML
RC205 40 0.25 972.2 16.08 7.7 642,077 0.32 1,875 0.24 18 27 0.2 19.5
RC205 40 0.5 973.6 16.20 6.4 366,037 0.25 1,188 0.14 0 0 0.0 11.5
RC205 40 0.75 1,071.7 22.90 6.3 204,157 0.86 5,160 0.61 0 3 0.3 13.3
RC206 40 0.25 984.7 18.01 7.2 1,198,757 0.64 46,282 0.84 2 275 17.5 103.6
RC206 40 0.5 984.7 18.01 7.0 626,830 0.00 9,444 0.00 0 0 1.4 27.2
RC206 40 0.75 1,007.9 19.69 8.1 317,735 0.00 1,748 0.00 0 0 0.1 14.3
RC207 40 0.25 908.6 12.98 10.4 680,191 0.04 275 0.00 0 0 0.0 28.0
RC207 40 0.5 908.6 12.98 8.8 579,656 0.04 189 0.00 0 0 0.0 22.6
RC207 40 0.75 1,006.4 20.98 8.8 1,008,959 0.44 1,194 0.19 0 0 0.1 55.5
RC208 40 0.25 868.5 10.41 14.2 2,802,983 0.06 46,353 0.06 67 67 10.4 330.7
RC208 40 0.5 872.1 10.78 10.3 2,480,067 0.47 51,303 0.47 2,346 4,410 131.9 444.9
RC208 40 0.75 885.5 12.01 7.5 1,382,420 0.24 7,527 0.19 0 0 0.7 77.7
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Table 2.A.11: Computational results on the CMTVRPTW-R: type R instances with 40 customers

Group n κ ub∗ P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

R201 40 0.25 766.4 10.24 6.0 6,422,777 0.00 9,801 0.03 0 0 0.3 143.1
R201 40 0.5 767.4 10.36 6.1 3,434,211 0.00 3,727 0.00 0 0 0.0 54.9
R201 40 0.75 779.6 11.76 5.9 1,533,262 0.00 1,064 0.00 0 0 0.0 25.2
R202 40 0.25 ML
R202 40 0.5 ML
R202 40 0.75 ML
R203 40 0.25 ML
R203 40 0.5 ML
R203 40 0.75 ML
R204 40 0.25 ML
R204 40 0.5 ML
R204 40 0.75 ML
R205 40 0.25 658.2 7.29 11.6 5,014,279 0.00 1,099 0.00 0 0 0.0 96.1
R205 40 0.5 668.0 8.65 11.8 2,475,194 0.00 26 0.00 0 0 0.0 47.1
R205 40 0.75 686.3 10.97 14.7 3,026,765 0.00 1,736 0.07 0 0 0.0 70.8
R206 40 0.25 664.0 8.88 15.6 8,149,868 0.09 44 0.00 0 0 0.0 139.3
R206 40 0.5 ML
R206 40 0.75 ML
R207 40 0.25 ML
R207 40 0.5 ML
R207 40 0.75 ML
R208 40 0.25 ML
R208 40 0.5 ML
R208 40 0.75 ML
R209 40 0.25 ML
R209 40 0.5 636.1 8.29 17.6 8,506,644 0.17 332 0.00 0 0 0.0 169.8
R209 40 0.75 ML
R210 40 0.25 ML
R210 40 0.5 ML
R210 40 0.75 ML
R211 40 0.25 588.7 4.15 18.1 1,366,692 0.00 100 0.52 0 0 0.0 42.0
R211 40 0.5 588.7 4.15 18.0 1,282,463 0.00 110 0.83 0 0 0.0 40.4
R211 40 0.75 ML
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Table 2.A.12: Computational results on CMTVRPTW-R: type C and RC instances with 50 customers

Group n κ ub∗ P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

C201 50 0.25 711.9 4.24 16.4 147,637 0.56 3,881 0.39 0 148 1.6 24.2
C201 50 0.5 716.2 4.81 15.6 134,290 0.55 3,824 0.34 0 99 0.8 25.5
C201 50 0.75 747.3 8.77 15.3 316,965 0.21 930 0.16 0 0 0.1 27.5
C202 50 0.25 ML
C202 50 0.5 ML
C202 50 0.75 ML
C203 50 0.25 ML
C203 50 0.5 ML
C203 50 0.75 ML
C204 50 0.25 ML
C204 50 0.5 ML
C204 50 0.75 ML
C205 50 0.25 705.6 4.74 25.2 270,920 0.16 121 0.00 0 0 0.0 34.7
C205 50 0.5 709.5 5.27 25.0 1,103,524 0.11 59,730 0.05 1 0 5.6 256.1
C205 50 0.75 738.1 8.94 26.9 825,799 0.07 484 0.00 0 0 0.0 69.2
C206 50 0.25 703.3 4.47 42.9 411,186 1.05 3,604 0.86 0 1,653 2.7 61.7
C206 50 0.5 705.1 4.71 43.3 326,616 0.82 2,458 0.62 0 461 1.4 57.7
C206 50 0.75 734.0 8.46 39.3 1,457,240 0.51 8,810 0.48 0 22 0.9 171.4
C207 50 0.25 700.8 4.39 48.1 880,401 0.77 4,182 0.61 0 792 1.9 105.2
C207 50 0.5 703.6 4.77 54.5 688,963 0.82 2,037 0.48 0 304 0.5 126.3
C207 50 0.75 703.7 4.77 52.5 669,477 0.24 213 0.38 0 0 0.0 111.5
C208 50 0.25 702.8 4.61 41.5 588,751 1.05 3,333 0.94 0 2,281 2.6 72.5
C208 50 0.5 703.7 4.73 41.3 417,124 0.73 1,574 0.71 0 942 1.0 55.9
C208 50 0.75 703.7 4.73 41.6 375,971 0.27 206 0.10 0 0 0.0 51.4

RC201 50 0.25 1,096.6 12.62 10.9 604,229 0.00 213 0.00 0 0 0.0 31.2
RC201 50 0.5 1,111.3 13.77 11.3 706,072 0.00 8,469 0.00 1 0 0.5 45.1
RC201 50 0.75 1,151.1 16.76 11.1 383,562 0.33 1,112 0.00 0 0 0.1 25.5
RC202 50 0.25 1,140.9 17.83 16.2 2,341,129 1.57 1,903 1.48 2 60 0.3 187.4
RC202 50 0.5 1,142.7 17.96 16.4 2,275,325 1.27 1,055 0.54 2 3 0.1 187.7
RC202 50 0.75 1,201.7 21.78 15.5 1,911,310 0.87 312 0.00 2 0 0.0 129.4
RC203 50 0.25 ML
RC203 50 0.5 ML
RC203 50 0.75 ML
RC204 50 0.25 ML
RC204 50 0.5 ML
RC204 50 0.75 ML
RC205 50 0.25 1,059.4 12.56 17.7 1,515,179 2.44 5,908 0.90 314 371 4.3 64.6
RC205 50 0.5 1,126.3 17.66 18.6 2,027,428 0.00 19 0.00 0 0 0.0 96.4
RC205 50 0.75 1,212.2 22.88 17.6 1,139,310 0.00 7,221 0.00 0 0 0.2 89.3
RC206 50 0.25 1,036.3 11.16 18.3 2,845,972 0.92 21,466 0.71 0 148 4.0 370.2
RC206 50 0.5 1,036.3 11.16 17.3 1,811,941 0.86 15,970 0.44 0 22 1.5 159.4
RC206 50 0.75 1,096.2 16.02 19.0 1,886,079 1.73 8,151 1.55 0 631 3.2 206.7
RC207 50 0.25 965.1 5.71 20.0 2,274,605 0.04 22,985 0.02 0 0 1.2 399.4
RC207 50 0.5 965.1 5.71 21.5 2,020,514 0.04 22,443 0.00 0 0 0.8 378.6
RC207 50 0.75 ML
RC208 50 0.25 925.1 4.03 26.9 744,659 0.71 5,772 0.71 41,580 99,383 6,221.2 6,275.8
RC208 50 0.5 TL
RC208 50 0.75 941.8 5.22 16.7 4,057,582 0.03 60,545 0.03 169 145 27.3 906.1
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Table 2.A.13: Computational results on the DRP: type A1 instances

Group n Num ub∗ P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

A1 10 1 3,132.0 12.08 0.3 82 5.93 40 2.42 21 18 0.1 0.8
A1 10 2 4,738.9 6.62 0.3 45 0.00 16 0.00 0 0 0.0 0.4
A1 10 3 4,556.3 13.22 0.1 115 2.85 43 0.00 0 0 0.0 0.4
A1 10 4 4,391.5 15.98 0.1 203 8.19 136 0.51 7 0 0.1 0.6
A1 10 5 4,524.2 7.44 0.1 78 0.19 24 0.00 1 0 0.0 0.3

A1 15 1 7,072.0 11.25 0.4 389 0.70 142 0.26 14 8 0.1 0.8
A1 15 2 4,397.8 13.33 0.8 2,123 0.29 26 1.26 0 0 0.0 1.1
A1 15 3 5,968.2 16.71 0.7 1,034 5.99 457 4.65 1 542 0.3 1.4
A1 15 4 5,491.0 8.77 0.3 440 0.81 54 0.00 0 0 0.0 0.4
A1 15 5 7,383.4 15.22 0.6 451 3.09 198 0.13 0 0 0.0 1.0

A1 20 1 8,284.9 6.91 0.3 691 0.00 80 0.00 0 0 0.0 0.5
A1 20 2 9,548.0 8.49 0.4 636 0.81 129 0.02 1 0 0.1 0.6
A1 20 3 8,816.1 8.92 0.3 1,030 1.71 231 0.40 9 44 0.2 0.7
A1 20 4 6,693.8 7.80 0.7 1,230 0.00 92 0.00 0 0 0.1 1.0
A1 20 5 7,782.1 11.35 0.6 1,064 2.73 615 2.61 280 771 5.6 6.8

A1 25 1 10,680.0 9.80 1.0 2,040 2.31 566 1.96 2 760 0.3 2.3
A1 25 2 8,636.2 10.16 2.2 7,680 1.10 163 1.00 0 0 0.1 2.6
A1 25 3 10,094.5 10.42 0.9 2,627 2.21 705 1.84 459 898 7.9 11.5
A1 25 4 10,146.6 7.45 1.1 1,542 0.65 259 0.00 0 0 0.1 1.3
A1 25 5 11,166.0 8.76 0.9 2,886 1.40 374 0.29 0 7 0.1 1.2

A1 30 1 9,831.6 8.46 1.3 12,705 0.00 215 0.82 0 0 0.0 1.7
A1 30 2 12,665.0 7.18 1.4 8,417 0.19 1,966 0.19 0 0 0.1 1.7
A1 30 3 12,359.4 9.39 1.2 5,094 2.08 798 1.74 594 1,291 4.7 12.5
A1 30 4 12,512.8 8.22 1.1 10,145 0.97 1,101 0.41 108 101 2.4 3.8
A1 30 5 12,086.1 7.97 1.6 13,061 0.89 1,373 0.71 0 224 0.2 2.1

A1 35 1 12,434.0 10.53 2.6 36,006 1.61 28,939 1.56 34 5,747 75.4 80.6
A1 35 2 13,020.8 8.80 3.0 20,915 0.84 1,207 0.86 0 359 0.7 4.1
A1 35 3 13,230.4 7.66 3.1 17,011 0.00 893 0.00 0 0 0.1 3.5
A1 35 4 13,863.5 7.86 2.5 10,215 0.00 1,143 0.00 0 0 0.1 2.9
A1 35 5 13,281.6 7.81 1.6 11,974 0.51 1,442 0.43 0 50 0.7 2.6

A1 40 1 15,540.1 9.25 3.3 13,985 0.49 327 0.38 0 213 0.6 4.4
A1 40 2 16,881.3 7.56 2.3 14,346 0.35 2,256 0.19 106 176 6.9 9.5
A1 40 3 14,178.4 7.99 3.6 29,633 0.22 1,622 0.20 8 16 1.0 5.3
A1 40 4 16,286.8 7.50 2.3 17,214 0.21 2,170 0.17 11 22 1.1 3.7
A1 40 5 15,620.2 8.07 2.4 7,970 0.48 1,251 0.37 231 442 11.8 14.4

A1 45 1 14,569.0 8.00 7.7 167,407 0.38 8,185 0.33 35 219 10.1 31.3
A1 45 2 19,727.5 8.68 4.4 33,975 0.91 2,537 0.67 224 717 24.9 30.1
A1 45 3 18,825.4 7.83 5.0 28,606 0.21 4,593 0.19 39 191 4.3 9.9
A1 45 4 16,298.5 9.08 5.1 33,504 0.68 1,161 0.60 153 887 9.9 15.6
A1 45 5 18,727.9 7.88 5.8 26,600 0.44 4,221 0.35 0 89 1.4 7.7
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Table 2.A.14: Computational results on the DRP: type A2 instances

Group n Num ub∗ P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

A2 10 1 4,999.0 10.49 0.1 84 3.98 33 0.02 7 0 0.0 0.4
A2 10 2 5,825.5 6.51 0.1 31 0.00 12 0.00 0 0 0.0 0.3
A2 10 3 5,269.9 10.05 0.2 65 0.00 14 0.00 0 0 0.0 0.5
A2 10 4 6,157.2 16.25 0.1 51 4.85 35 0.26 7 0 0.0 0.5
A2 10 5 5,534.0 12.46 0.1 38 0.78 14 0.78 1 0 0.0 0.3

A2 15 1 6,869.6 10.37 0.1 166 0.97 45 0.00 2 0 0.0 0.4
A2 15 2 8,535.0 15.81 0.2 119 1.43 59 0.83 40 41 0.4 0.9
A2 15 3 6,612.0 9.53 0.2 87 0.00 32 0.78 0 0 0.0 0.5
A2 15 4 8,777.9 18.26 0.4 127 7.69 66 4.88 169 82 1.9 5.8
A2 15 5 8,672.1 12.15 0.2 101 0.00 47 0.00 0 0 0.0 0.4

A2 20 1 11,422.7 14.77 0.2 153 3.35 96 2.23 181 275 1.8 2.9
A2 20 2 9,730.0 12.30 0.4 486 3.50 237 3.35 181 323 3.9 4.8
A2 20 3 10,093.7 7.73 0.7 220 0.00 58 0.00 0 0 0.0 1.0
A2 20 4 9,492.4 8.98 0.2 214 0.00 19 0.00 0 0 0.0 0.4
A2 20 5 8,299.5 12.62 0.5 1,088 1.73 216 0.03 3 0 0.1 0.9

A2 25 1 11,436.3 8.91 0.7 570 0.01 35 0.00 1 0 0.1 0.9
A2 25 2 12,426.4 7.07 0.8 612 0.00 126 0.13 0 0 0.0 1.0
A2 25 3 10,973.4 13.20 0.8 480 3.71 128 2.53 314 615 7.3 8.4
A2 25 4 12,275.4 9.09 0.7 394 0.69 50 2.65 0 0 0.1 1.0
A2 25 5 11,788.0 10.44 0.6 436 0.15 211 0.00 0 0 0.2 1.2

A2 30 1 14,997.4 9.44 1.0 839 0.45 79 0.00 0 0 0.1 1.5
A2 30 2 12,794.3 11.94 1.4 1,578 0.96 494 0.28 1 11 0.3 2.0
A2 30 3 12,234.4 11.17 1.3 2,365 0.81 1,223 0.22 88 136 2.3 3.9
A2 30 4 11,587.3 8.09 2.1 1,715 0.19 128 0.00 0 0 0.4 2.7
A2 30 5 13,261.5 11.75 2.3 2,494 1.23 964 0.81 35 77 1.8 4.4

A2 35 1 14,282.9 9.98 2.8 4,539 0.42 2,730 0.13 11 1 0.7 3.8
A2 35 2 17,443.4 9.69 1.5 691 0.27 547 0.46 8 6 5.5 7.4
A2 35 3 14,691.3 10.05 3.0 3,419 0.92 226 0.33 4 8 0.3 3.8
A2 35 4 17,689.3 9.99 2.3 1,554 1.20 354 0.22 0 0 0.1 2.8
A2 35 5 16,812.4 11.19 2.1 3,592 0.45 1,590 0.45 2 8 0.4 2.8

A2 40 1 17,002.9 9.44 3.5 3,623 0.23 3,015 0.00 5 0 1.1 4.9
A2 40 2 17,949.0 9.22 3.6 3,086 1.07 371 0.54 0 65 0.4 4.3
A2 40 3 18,078.8 7.85 1.8 2,402 0.16 466 0.00 3 0 0.5 2.5
A2 40 4 18,559.6 8.57 3.9 2,642 0.59 452 0.37 262 349 21.4 25.5
A2 40 5 13,798.5 10.77 3.9 6,485 0.51 2,092 0.32 175 400 5.4 9.7

A2 45 1 18,654.7 7.41 2.6 4,965 0.07 936 0.01 0 0 0.1 2.9
A2 45 2 19,590.6 12.09 3.6 11,937 0.21 1,313 0.83 72 86 5.3 9.4
A2 45 3 20,207.2 8.35 2.2 3,331 0.73 1,078 0.47 22 199 3.6 6.0
A2 45 4 17,306.9 9.14 5.8 11,519 0.52 351 0.13 107 140 11.3 17.4
A2 45 5 24,311.7 9.14 2.2 1,518 0.72 255 0.00 1 0 0.8 3.3

A2 50 1 24,698.5 8.78 4.1 11,373 0.79 2,155 0.67 1,012 2,553 185.7 190.3
A2 50 2 21,939.4 11.06 6.2 4,760 0.94 3,829 0.39 61 136 30.6 37.2
A2 50 3 19,700.0 7.82 6.5 7,130 0.19 1,917 0.18 0 3 0.6 7.4
A2 50 4 19,841.8 8.39 7.5 6,613 0.12 352 0.09 119 151 25.4 33.2
A2 50 5 23,721.5 8.06 4.5 3,655 0.59 1,271 0.38 5 24 1.8 6.5
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Table 2.A.15: Computational results on the DRP: type B instances

Group n ub∗ P1S% TP1 |S1| P2S1% |S2| LFS% nSFC Nds TB&C Ttot

C201 25 644.7 8.77 0.38 3,226 0.90 177 0.33 0 0 0.1 0.7
C202 25 644.1 9.03 0.47 10,536 2.14 590 1.80 0 457 0.4 1.1
C203 25 643.9 9.00 0.74 20,786 2.16 795 1.78 0 708 0.6 1.9
C204 25 643.9 9.00 0.87 25,543 2.17 974 1.81 0 1,880 1.1 2.5
C205 25 644.4 9.04 0.29 4,841 2.12 406 0.86 1 56 0.1 0.6
C206 25 643.8 8.96 0.33 5,494 2.10 509 1.24 0 263 0.2 0.8
C207 25 643.6 8.96 0.45 6,733 2.14 612 1.79 0 1,059 0.5 1.2
C208 25 643.6 8.96 0.34 5,856 2.09 556 0.93 0 122 0.1 0.7

R201 25 752.8 8.16 0.10 2,228 0.22 74 0.00 0 0 0.0 0.3
R202 25 730.4 7.11 0.20 4,651 0.00 193 0.00 1 0 0.0 0.4
R203 25 721.6 6.99 0.28 5,274 0.00 240 0.00 0 0 0.0 0.5
R204 25 721.4 6.97 0.41 8,170 0.00 240 0.69 0 0 0.0 0.6
R205 25 731.8 6.96 0.18 4,086 0.00 210 0.00 0 0 0.0 0.4
R206 25 725.5 7.05 0.23 5,272 0.00 179 0.07 0 0 0.0 0.4
R207 25 721.6 6.99 0.45 5,780 0.00 225 0.67 0 0 0.1 0.7
R208 25 721.4 6.97 0.53 7,205 0.00 248 0.00 0 0 0.1 0.8
R209 25 721.7 7.00 0.27 4,167 0.00 196 0.00 0 0 0.0 0.5
R210 25 725.5 7.05 0.27 4,732 0.00 161 0.05 0 0 0.0 0.5
R211 25 721.4 6.97 0.39 6,790 0.00 232 0.00 0 0 0.0 0.6

RC201 25 1,022.3 13.11 0.09 597 2.05 158 0.00 0 0 0.0 0.4
RC202 25 1,007.1 12.50 0.11 1,031 2.16 300 0.00 0 0 0.0 0.4
RC203 25 1,000.0 11.87 0.15 1,584 1.96 479 0.00 0 0 0.0 0.4
RC204 25 1,000.0 11.87 0.16 1,644 1.96 488 0.00 0 0 0.1 0.5
RC205 25 1,013.4 13.04 0.10 954 2.74 303 0.44 47 136 0.3 0.7
RC206 25 1,013.8 13.07 0.10 907 2.43 249 0.12 6 1 0.1 0.4
RC207 25 1,005.5 12.36 0.11 1,337 2.37 395 0.00 0 0 0.0 0.4
RC208 25 999.8 11.86 0.16 1,802 1.96 479 0.00 0 0 0.1 0.5

C201 40 1,103.5 7.57 0.51 19,307 0.52 3,430 0.26 0 12 0.3 1.4
C202 40 1,102.3 7.48 1.47 52,210 0.80 6,287 0.39 0 296 1.3 4.2
C203 40 1,101.7 7.55 2.58 108,538 0.87 10,008 0.45 0 134 1.9 8.9
C204 40 1,101.2 7.59 2.20 168,749 0.89 12,447 0.44 0 522 5.4 11.4
C205 40 1,101.5 7.61 0.59 29,387 0.70 4,248 0.61 14 176 0.8 1.9
C206 40 1,101.2 7.50 0.98 38,434 0.77 5,536 0.35 6 66 1.0 3.2
C207 40 1,101.1 7.50 1.32 46,887 0.89 7,876 0.67 0 188 1.4 3.9
C208 40 1,101.1 7.50 1.23 41,657 0.77 6,080 0.36 7 231 1.9 4.0

R201 40 1,200.1 10.14 0.25 10,516 0.31 4,309 0.25 0 1 0.3 1.1
R202 40 1,145.3 7.23 0.51 31,782 0.00 901 0.00 0 0 0.1 1.2
R203 40 1,142.4 6.63 0.81 46,580 0.00 3,010 0.00 0 0 0.3 1.8
R204 40 1,140.6 6.48 1.06 61,886 0.00 4,428 0.00 0 0 0.6 2.5
R205 40 1,159.7 7.29 0.44 20,690 0.00 913 0.00 0 0 0.0 0.8
R206 40 1,141.8 6.54 0.73 40,075 0.00 2,615 0.04 0 0 0.2 1.5
R207 40 1,141.8 6.58 0.89 51,739 0.00 2,902 0.00 0 0 0.4 2.0
R208 40 1,140.6 6.48 1.35 62,423 0.00 4,135 0.00 0 0 2.0 4.2
R209 40 1,149.1 6.97 0.93 36,510 0.00 2,220 0.00 0 0 0.4 1.9
R210 40 1,142.4 6.59 0.79 41,025 0.00 2,678 0.00 0 0 0.2 1.6
R211 40 1,140.6 6.48 1.06 69,996 0.00 3,667 0.00 0 0 0.5 2.5

RC201 40 1,692.1 12.45 0.25 1,097 1.72 570 0.67 1,520 3,998 17.2 17.8
RC202 40 1,642.4 10.24 0.44 1,772 1.32 1,366 0.00 0 0 0.6 1.3
RC203 40 1,635.3 9.85 0.62 2,670 1.20 2,028 0.00 0 0 0.9 1.9
RC204 40 1,635.3 9.86 0.59 2,684 1.20 1,918 0.00 0 0 3.2 4.1
RC205 40 1,650.6 10.67 0.28 1,653 1.57 1,245 0.31 77 301 2.6 3.1
RC206 40 1,658.9 11.12 0.36 1,623 1.57 1,126 0.15 1 1 0.3 1.0
RC207 40 1,639.0 10.06 0.45 2,252 1.37 1,724 0.00 1 0 1.4 2.1
RC208 40 1,635.1 9.85 0.67 3,085 1.20 2,046 0.00 0 0 1.0 2.0
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Chapter 3

Optimization Models for the
Installation Planning of Offshore Wind

Farms∗

Abstract

Challenges posed by global warming motivate the increasing interest in green sources of energy,
such as wind energy. To make wind energy attractive from an economical viewpoint, the decision-
making problems faced in designing, installing, and maintaining wind farms have to be optimized. In
this paper, we focus on the problem of optimally planning the installation process of offshore wind
farms, as faced by Vattenfall, a leading European energy company. We formulate this Installation
Planning of Offshore Wind Farms (IPOWF) problem as a Mixed Integer Linear Programming (MILP)
model. From this model, we then derive other MILPs that can provide lower and upper bounds to
the problem. Such bounds are tested on real-life instances corresponding to two wind farms recently
built in Denmark and Germany by Vattenfall. Computational results show that primal solutions of the
IPOWF that are within 2% from optimality can be computed with the proposed models.
Keywords: wind farms, wind energy, installation, mixed integer linear programming

3.1 Introduction

Worldwide energy demand is constantly growing, due to, for example, population grow and technological

development. As global warming and pollution are main challenges of our century (Saidur et al. (2011)),

finding alternative sources of energy is more and more important. In this context, the wind energy field

has attracted a lot of attention and investments over the past decades. In particular, construction and

utilization of offshore wind farms is going to increase in the coming years.

Not only do technical challenges related to turbine components require major improvements, but

also the logistics process supporting the construction and utilization of offshore wind farms needs major

improvements. As a matter of fact, even if offshore turbines are relatively efficient from an energetic

point of view, the life-cycle operations related to offshore wind farms are complex and represent the main

drawback of this technology. For example, offshore turbines generally produce more electricity than the

∗This chapter is based on Fischetti et al. (2019).
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onshore counterparts (Irawan, Ouelhadj, Jones, Stålhane & Sperstad (2017)), but onshore wind farms can

be installed and maintained using less resources (Snyder & Kaiser (2009)).

The life-cycle activities of offshore wind farms can be grouped in three main processes or phases,

namely, design, installation, and maintenance.

The design process aims at defining the specifications of the wind farm. Decision makers involved in

this phase are to decide, for example, the number and types of turbines to install and the layout of the

farm. A crucial decision is about turbines locations, which has a major impact on the power production of

the wind farm. Indeed, the production of a turbine depends on its location and on the interaction with

other turbines caused by the wind flow generated by upstream turbines that can affect the productivity of

downstream turbines (this phenomenon is known as wake effect). Once the turbine positioning is defined,

it must be decided how to connect them, i.e., a cable routing problem is faced. This task consists of

finding an optimal connection among offshore turbines and some collection points at sea, i.e. the so-called

substations. Different cables, with different capacities and costs, can be used. The goal is to minimize

the overall costs while avoiding crossing between cables. The decisions made in the design process

affect the productivity of the farm until the end of its life-cycle, so massive savings can be achieved by

applying optimization techniques to support the decision maker (see, e.g., Fischetti & Pisinger (2019) for

a complete overview on the design process).

The installation process is about constructing the wind farm and receives the layout of the farm as input

from the design phase. In this phase, the main logistic activities are related to the supply of the required

material and resources, and to the scheduling of the activities to built the farm. The installation phase is

affected by many disturbance variables, such as delayed in supply and weather conditions (Scholz-Reiter,

Heger, Lütjen & Schweizer (2011)).

The maintenance process is continuously repeated over the life-cycle of the farm. According to Irawan,

Ouelhadj, Jones, Stålhane & Sperstad (2017), this phase contributes to a quarter of the life-cycle costs.

Maintenance activities are categorized into three different types: corrective, preventive, and condition-

based. Corrective maintenance is performed to restore the normal status of the system when a failure is

detected. Preventive maintenance aims at reducing the risk of failures and is conducted based on criteria

such the age of the equipment. Condition-based maintenance is based on the condition monitoring of the

equipment. When a specific indicator suggests that the system is deteriorating over a given threshold,

maintenance is performed (see, e.g., Irawan, Ouelhadj, Jones, Stålhane & Sperstad (2017) for more details

on this process).

In this paper, we focus on the installation process. An offshore wind farm must be installed, following

the specifications defined in the design process, and construction costs have to be minimized. The

installation process mainly deals with turbines, cables, and substations, as shown in Figure 3.1. Turbines

are connected by inter-array cables. These cables connect the turbines to an offshore substation, where

the voltage is increased to improve transmission over long distances. From the substation, energy is

transmitted to an onshore control centre through export cables (high voltage cables). From the control

centre, energy is finally transmitted to the onshore grid.

In the construction phase, substations are usually already present on site, so they are involved in

the cabling activity only, but there is no need to construct them. On the other hand, turbines need to be

constructed in the locations defined in the design phase. The tasks to construct any type of turbine can be

grouped in the following macro activities: (1) installation of foundations, (2) installation of transition
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Figure 3.1.1: Graphical representation of the key components of an offshore wind farm (provided by
Vattenfall)

pieces, (3) installation of cables, and (4) installation of turbine itself (i.e., turbine tower, nacelle, and

blades).

The installation of foundations is the first activity to be carried out when constructing a turbine.

Foundations are needed to attach the entire turbine structure to the ground. Figure 3.1 shows the

foundations at the bottom of each turbines. There can be different types of foundations, depending mainly

on the sea-bottom conditions and water depth of the specific site, but the most common foundations are

monopile foundations. For this reason, following the naming used by our industrial partner, we refer to

the installation of foundations as MP (for monopile).

Once foundation is ready, it is possible to install the transition pieces (TP), which connect the

foundation to the turbine tower.

The next activity is the installation of cables that deals with the connection of turbines to the substation.

In order for the energy to be transferred from the turbines to the substation, turbines are often connected

in strings. In this context, a string is a set of turbines directly connected by inter-array cables. Due to

technical reasons, the cabling operation must be carried out string-by-string, meaning that the energy

generated by each turbine can be transmitted only when all the turbines of that string are completed. In

Figure 3.1, all the turbines belong to the same string. By definition of string, only one turbine of the string

is connected to the substation, we will refer to it as the first turbine of a string. On the other hand, the last

turbine of a string is the turbine that is directly connected to a single turbine only. Our industrial partner

specified that the cabling operation must be carried out from the first turbine to the last turbine of a string;

therefore, in the following, we assume that the cabling operations is carried out string-by-string meaning

that cables are installed by string, starting from the first turbine all the way until the last turbine.

Once the cabling operation is completed, it is possible to finalize the turbine by installing the turbine

itself (i.e., tower, nacelle, and blades). For this activity, it is not required to proceed string-by-string.
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However, as energy transmission is associated to whole strings rather than single turbines, the turbines of

a string can start producing energy only once all the turbines of the string have been completed.

An example of the string-by-string approach can be given looking at Figure 3.1.2. Figure 3.1.2

represents a real-word wind farm, namely, Horns Rev 3, a wind farm recently installed by Vattenfall off

the Danish Jutland coast. The black numbered dots represent the turbines positioned in the area, and

the black lines represent inter-array cables connecting turbines of the same string and strings to the only

substation (the red square). The turbines are arranged in twelve strings. If we consider, for example, the

string composed by turbines 15, 16, 24 and 35, when the vessel is performing the cabling operations it

must proceed following the order 35, 24, 16, 15. Once the cabling operation is completed for turbine 15,

the vessel can move to the first turbine of another string.

The aforementioned four activities involved in the installation process are carried out by using a fleet

of vessels located in a port. Each activity requires different materials, crews, and tools (all located at

the port), and a specific type of vessel. Therefore, each type of vessel can be used to complete a single

activity, so we can refer to a specific vessel type referring to the corresponding activity. To perform each

activity, a single vessel is usually available. The capacity of a vessel to transport materials, crews, and

tools is limited by the weights of these elements. Therefore, vessels usually go back and forth from/to the

port multiple times to transport materials, crews, and tools from the port to the turbine locations.

Figure 3.1.2: Graphical representation of Horns Rev 3 wind farm. Turbines (blue dots) are connected to
the substation (red square) through cables (black lines). The connection has a string structure, with 12
strings connecting to the substation. The port is located South-East of the farm, at about 50 km from it.

In this paper, we address the problem of optimally scheduling the activities of the vessels to install a

given offshore wind farm as the Installation Planning of Offshore Wind Farms problem (IPOWF). The

main contributions of this paper are: (a) we formally define and formulate, via Mixed Integer Linear

Programming (MILP), the IPOWF by including several real-life features validated by our industrial patner
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Vattenfall, the second largest offshore wind power developer in the world with major offshore wind farms

in operation and under development; (b) we derive, from the MILP, a tight lower bound to the optimal

solution cost of the IPOWF; (c) we present several models, again derived from the MILP, that can be

used to find high-quality solutions to the problem; and (d) we provide managerial insights based on

computational experiments on real-life IPOWF instances provided by Vattenfall.

The paper is organized as follows. Section 3.2 reviews the main contributions from the literature

on decision-making problems related to the IPOWF. In Section 3.3, we formally define the IPOWF and

present a MILP to formulate it. In Section 3.4, we introduce a MILP that provides tight lower bounds

to the IPOWF. Section 3.5 presents several mathematical models to compute upper bounds. Section 3.6

documents the computational experiments conducted on real-life instances provided by Vattenfall. Finally,

conclusions are drawn in Section 3.7.

3.2 Literature Review

Section 3.2.1 reviews only contributions related to the installation process of offshore wind farms. Section

3.2.2 is devoted to routing problems related to the IPOWF.

3.2.1 Literature on Installation of Offshore Wind Farms

The literature on installation of Offshore Wind Farms is not so rich. To the best of our knowledge it is

limited to Scholz-Reiter, Heger, Lütjen & Schweizer (2011), Scholz-Reiter, Karimi, Lütjen, Heger &

Schweizer (2011), Ait-Alla et al. (2013), and Irawan, Jones & Ouelhadj (2017).

Scholz-Reiter, Heger, Lütjen & Schweizer (2011) present a MILP to deal with the problem of

minimizing the completion time to install offshore wind farms by using a single vessel. The activities

that the vessel can complete are grouped in building sub-structures and building top-structures. Weather

variability is handled by defining and embedding in the formulation three possible weather conditions:

good, medium, and bad weather conditions. Under good weather conditions, all activities can be carried

out, so both sub-structures and top-structures can be built. Under medium weather conditions, sub-

structures only can be build. Under bad weather conditions, no activities can be carried out.

The same authors of Scholz-Reiter, Heger, Lütjen & Schweizer (2011) propose a heuristic algorithm

to solve the same problem but considering larger instances (longer planning horizon, multiple vessel, and

more involved weather conditions) in Scholz-Reiter, Karimi, Lütjen, Heger & Schweizer (2011).

Ait-Alla et al. (2013) study the aggregated installation planning of offshore wind farms. They propose

an optimization model where the objective is to minimizes the vessels chartering cost. Constraints related

to weather conditions, operations type, and vessels availability are taken into account.

Irawan, Jones & Ouelhadj (2017) formulate an installation scheduling problem as a bi-objective

optimization problem. The two conflicting objectives are the installation cost and the completion period.

Weather conditions are modelled as in Scholz-Reiter, Heger, Lütjen & Schweizer (2011). A MILP is

proposed to model the problem, and two different approaches are used to solve it: an exact method based

on compromise programming, and a metaheuristic approach mainly based on Variable Neighbourhood

Search and Simulated Annealing. The approaches are tested on two datasets generated by the authors.
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3.2.2 Literature on Vehicle Routing Problems related to the IPOWF

The IPOWF has many features of some well-known Vehicle Routing Problems (VRP) encountered in

road transportation, namely, Multi-Trip VRP with Time Windows (MT-VRPTW). This section reviews

first exact methods for MT-VRPTWs and then heuristic methods for MT-VRPTWs.

Exact Methods for MT-VRPTWs

Azi et al. (2007) investigate a single-vehicle MT-VRPTW with a hierarchical objective function that, first,

maximizes the number of customers visited and, second, minimizes the travel costs. They consider a

deadline constraint that limits the time goods can stay on board. They propose a two-phase exact algorithm

and test it on instances adapted from the well-known Solomon instances for the VRPTW (Solomon (1987))

with up to 100 customers. The results show that the algorithm is sensitive to deadline constraints, and,

when this is not tight, instances cannot be solved.

The multi-vehicle version of the problem studied in Azi et al. (2007) is addressed in Azi et al.

(2010). They present a branch-and-price algorithm able to routinely solve instances with 25 customers to

optimality. The performance of the algorithm strongly depends on the tightness of the deadline constraint.

Macedo et al. (2011) propose an iterative two-phase algorithm for the problem of Azi et al. (2010).

The method relies on an iterative discretization of the planning horizon. Computational results show that

this method outperforms the solution method of Azi et al. (2010).

Hernandez et al. (2014) address an MT-VRPTW where all customers must be served and the goal is

to minimize the routing cost. A two-phase exact method based on column generation is proposed. The

method can solve instances with 25 and 40 customers.

Hernandez et al. (2016) study the problem of Hernandez et al. (2014) but removing the deadline

constraint. Two exact branch-and-price methods are described and tested on instances with 25 customers.

An MT-VRPTW applied to drone distribution is investigated in Cheng et al. (2018). Constraints

related to drone battery capacity are considered. They develop two branch-and-cut algorithms that can

solve instances with up to 50 customers.

Paradiso et al. (2019) propose an exact solution framework to address four different MT-VRPTWs.

The framework is based on a formulation featuring an exponential number of variables and constraints. A

solution method based on column generation, column enumeration, and cutting plane is presented. The

proposed framework can solve instances with up to 50 customers.

Heuristic Methods for MT-VRPTWs

Battarra et al. (2009) study an MT-VRPTW where the goal is to first minimize the number of trips and

then routing costs. They propose an iterative solution approach based on decomposing the problem into

simpler ones. Computational experiments are carried out on real-life instances faced in a multi-regional

scale distribution problem.

Azi et al. (2014) describe an adaptive large neighborhood serach to solve the problem studied by

Azi et al. (2010). The algorithm is tested on instances with up to 100 customers based on the VRPTW

instances proposed in Solomon (1987) and instances with up to 1000 customers based on the VRPTW

instances introduced by Gehring & Homberger (1999).
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Wang et al. (2014) address the same problem addressed by Azi et al. (2014). A metaheuristic based

on Adaptive Memory Procedure (AMP) is proposed and tested on the same instances used by Azi et al.

(2014). The results show that the metaheuristic based on AMP provides better solutions than the algorithm

of Azi et al. (2014) on all instances where all customers are served.

Cattaruzza et al. (2014) present an iterated local search for the Multi-Commodity MT-VRPTW, where

different commodities are transported and some of them cannot be transported together. The goal is to

minimize the number of vehicles. Benefits of optimally designing the vehicle fleet are showed.

Cattaruzza et al. (2016a) introduce the MT-VRPTW and Release Dates and propose an hybrid genetic

algorithm to solve it. Instances with up to 100 customers are generated and tested.

Heuristic methods for other MT-VRPTWs encountered in real-life applications are proposed, among

others, by Martínez & Amaya (2013), Nguyen et al. (2013), Qin et al. (2015), Anaya-Arenas et al. (2016),

Lim et al. (2017), and Nguyen et al. (2017).

3.3 Problem Description and Mathematical Model

In this section, we formally describe the IPOWF, and we provide a compact MILP model to formulate the

IPOWF.

3.3.1 Problem Description

An offshore wind farm is to be constructed over a given planning horizon by using a fleet of vessels located

at a port. The wind farm consists of a set of nT turbines T = {1, . . . , nT } that have to be constructed at

pre-specified locations.

To build each turbine, a set of nO operations O = {1, . . . , nO} must be carried out at the turbine’s

location. In particular, four operations must be carried out: (1) installation of foundations (MP), (2)

installation of transition pieces (TP), (3) installation of cables (cabling), and (4) installation of turbine

(TT). For each turbine, the operations must be carried out in the sequence MP-TP-cabling-TT, so each

operation can be conducted only if the previous ones have already been completed. To simplify the

notation, in the following, we will also refer to MP as operation 1, to TP as operation 2, to cabling as

operation 3, and to TT as operation 4.

Operation o ∈ O at turbine t ∈ T takes dot hours to be completed and requires some material whose

total weight is qot. Vessels located at the port can transport the required material from the port to the

turbine’s location. There is a single vessel available for each operation, and each vessel can be used to

carry out an operation only, so the set O can refer both to the operations and to the vessels. Each vessel

o ∈ O has a maximum load capacity Qo. Vessels are rented. The weekly rental cost (expressed in euros)

of vessel o ∈ O is indicated as co.

We call voyage a sequence of turbines that can be visited by a vessel in between two stops at the port.

For each voyage of each vessel, the total weight of the material required to complete the corresponding

operation at the turbines of the voyage cannot exceed the vessel’s maximum load capacity. Each vessel

can perform multiple voyages in the planning horizon. We call route the set of voyages performed by a

vessel; such voyages cannot overlap in time. Because of this feature, the routing sub-problem related to

each vessel is a Multi-Trip VRP with Time Windows (MT-VRPTW). The activity of loading, onto vessel

o ∈ O, the material required in a voyage takes a loading time lo, which is spent at the port.
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The cabling operation has additional requirements compared to the other operations. Due to technical

reasons (see Section 3.1), the cabling operations must indeed be carried out string-by-string by the

corresponding vessel; this means that, once the vessel completes the cabling operation of the first turbine

of a string, it must carry out the cabling operations of the other turbines of the same string (in the

order defined by the string itself) before moving to another string. We refer to the set of string as

S = {1, . . . , nS} and to the turbines of string s ∈ S as Ts ⊆ T . The string of turbine t ∈ T is indicated

as st. The location of turbine t ∈ T in the corresponding string is post. The weekly revenue (expressed

in euros) derived from selling the energy produced by the turbines of string s ∈ S is indicated as rs.

Moreover, for each string s ∈ S, we denote the first and the last turbine of the string with fs ∈ Ts and

`s ∈ Ts, respectively.

The operations needed to construct the wind farm must be scheduled over a planning horizon consisting

of a set of nW weeksW = {1, . . . , nW}. The number of available working hours per week depend on the

weather forecast and on the operation considered. In particular, operations 1, 2, and 4 can be performed

under the same weather conditions, so the number of working hours available in week w ∈ W for each of

these three operations is indicated as hw. On the other hand, operation 3 (i.e., cabling) can be performed

under different weather conditions, so the working hours available in week w ∈ W for cabling is indicated

as h′w, which could differ from hw. In the following, we use hw (h′w, resp.) to refer to the total working

hours available for operations 1/2/4 (3, resp.) up to week w, week w excluded (i.e., hw =
∑w−1

w′=1 hw′

and h′w =
∑w−1

w′=1 h
′
w′). Similarly, we use hw (h

′
w, resp.) to refer to the total working hours available for

operations 1/2/4 (3, resp.) up to week w, but including week w (i.e., hw =
∑w

w′=1 hw′ = hw + hw and

h
′
w =

∑w
w′=1 h

′
w′ = h′w + h′w).

The time it takes to vessel o ∈ O to sail from location i to location j (where i and j can be a turbine

location or the port) is indicated as toij , which is computed by taking into account the distance between i

and j and the average sailing speed of the vessel.

The goal of the IPOWF is to optimally schedule the operations to complete the wind farm by defining

the feasible route of each vessel that minimizes the total rental cost and the missed revenue due to missed

production of energy of the turbines before they are completed in such a way that: (1) all operations of all

turbines are carried out within the planning horizon; (2) each operation at each turbine is conducted only

if the previous operations at the same turbine are completed; (3) the load on the vessels upon leaving the

port does not exceed the vessel load capacity; (4) the weekly working hours for each operation are not

exceeded; and (5) the cabling operation is scheduled string-by-string.
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3.3.2 Mathematical Model

The IPOWF can be represented on a complete directed graph G = (V,A). The vertex set V is defined as

V = T ∪{0}∪{0′}, where both 0 and 0′ represent the port, which we duplicate for notational convenience;

in particular, 0 (0′, resp.) represents the starting (ending, resp.) point of the vessels’ routes. The arc set A
is defined as A = {(0, j) | j ∈ T } ∪ {(i, 0′) | i ∈ T } ∪AT , where AT = {(i, j) | i, j ∈ T : i 6= j} is the

set of arcs linking pairs of turbines.

Let AS ⊂ AT be the set of arcs (i, j) ∈ AT such that turbines i and j belong to the same string

and i immediately precedes j in the sequence defined by the corresponding string, i.e., AS = {(i, j) ∈
AT | si = sj , posi + 1 = posj}. Moreover, let A′ = {(`s1 , fs2) | s1, s2 ∈ S, s1 6= s2 } be the set of arcs

connecting the last turbine of a string to the first turbine of another string.

To formulate the IPOWF, we introduce the following sets of decision variables:

xoij ∈ {0, 1} binary variable equal to 1 arc (i, j) ∈ A is traversed by vessel o ∈ O (0 otherwise);

yoij ∈ {0, 1} binary variable equal to 1 if vessel o ∈ O visits turbine i ∈ T at the end of a voyage before

returning to the port to reload and then leaves the port to visit turbine j ∈ T at the beginning of

the next voyage (0 otherwise) - in other words, yoij is equal to 1 if vessel o traverses arcs (i, 0′) and

(0, j) one after the other;

τot ∈ R+ non-negative real variable indicating the starting time of operation o ∈ O at turbine t ∈ T ,

expressed in terms of working hours from the start of the planning horizon;

λot ∈ R+ non-negative real variable indicating the total weight of the materials needed by vessel o ∈ O
up until visiting turbine i ∈ T in the corresponding voyage;

αow ∈ {0, 1} binary variable equal to 1 if the rent of vessel o ∈ O starts in week w ∈ W (0 otherwise);

βow ∈ {0, 1} binary variable equal to 1 if the rent of vessel o ∈ O ends in week w ∈ W (0 otherwise);

ϕsw ∈ {0, 1} binary variable equal to 1 if string s ∈ S starts producing energy in week w ∈ W (0

otherwise);

ztw ∈ {0, 1} binary variable equal to 1 if the cabling operation at turbine t ∈ T starts in week w ∈ W (0

otherwise);

z′tw ∈ {0, 1} binary variable equal to 1 if the cabling operation at turbine t ∈ T ends in week w ∈ W (0

otherwise).

The IPOWF can then be formulated as follows:

min
∑
o∈O

co

(
1 +

∑
w∈W

w(βow − αow)
)

+
∑
s∈S

rs
∑
w∈W

wϕsw (3.1a)

The objective function (3.1a) aims at minimizing the total rental cost of the vessels (determined by the

first term) and the missed revenue due to strings that are not producing energy until they are completed
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(determined by the second term).

s.t.
∑

(0,j)∈A

xo0j = 1 o ∈ O (3.1b)

∑
(j,0′)∈A

xoj0′ = 1 o ∈ O (3.1c)

∑
(i,j)∈A

xoij +
∑

(i,j)∈AT

yoij = 1o ∈ O, i ∈ T (3.1d)

∑
(j,i)∈A

xoji +
∑

(j,i)∈AT

yoji = 1o ∈ O, i ∈ T (3.1e)

Constraints (3.1b) and (3.1c) force each vessel to start and end its route at the port. Constraints (3.1d) and

(3.1e) ensure that each operation at each turbine is carried out.

τoi + doi + (toij +M)xoij+

+ (lo + toi0′ + to0j +M)yoij ≤ τoj +M (i, j) ∈ AT , o ∈ O (3.1f)

τo0 + (lo + to0j +M)xo0j ≤ τoj +M j ∈ T , o ∈ O (3.1g)

τoi + doi + (toi0′ +M)xoi0′ ≤ τo0′ +M i ∈ T , o ∈ O (3.1h)

τoi + doi + (toij −M)xoij ≥ τoj −M (i, j) ∈ AT , o ∈ O (3.1i)

τo0 + (lo + to0j −M)xo0j ≥ τoj −M j ∈ T , o ∈ O (3.1j)

qot ≤ λot ≤ Qo t ∈ T , o ∈ O (3.1k)

λoi + (Qo + qoj)x
o
ij + (Qo − qoi)xoji ≤ λoj +Qo (i, j) ∈ AT , o ∈ O (3.1l)

λoj ≤ qoj +Qo(1− xo0j −
∑

(i,j)∈AT

yoij) j ∈ T , o ∈ O (3.1m)

Constraints (3.1f)-(3.1j) set the τ-variables to take into account sailing times, jobs duration, and loading

times. Constraints (3.1k)-(3.1m) set the λ-variables and act as capacity constraints.

∑
w∈W

hwαow ≤ τo0 o ∈ O \ {3} (3.1n)∑
w∈W

hwβow ≥ τo0′ o ∈ O \ {3} (3.1o)∑
w∈W

h′wα3w ≤ τ30 (3.1p)∑
w∈W

h
′
wβ3w ≥ τ30′ (3.1q)∑

w∈W
αow =

∑
w∈W

βow = 1 o ∈ O (3.1r)

Constraints (3.1n)-(3.1q) link the starting and the ending time of the routes of the vessels with the variables

indicating when the rentals start and end. Constraints (3.1r) ensure that each vessel is rented and dismissed
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exactly once. ∑
w∈W

h′wztw ≤ τ3t ≤
∑
w∈W

h
′
wztw t ∈ T (3.1s)∑

w∈W
h′wz

′
tw ≤ τ3t + dt3 ≤

∑
w∈W

h
′
wz
′
tw t ∈ T (3.1t)∑

w∈W
ztw =

∑
w∈W

z′tw = 1 t ∈ T (3.1u)

τ1t + d1t ≤ τ2t t ∈ T (3.1v)

τ2t + d2t ≤
∑
w∈W

hwzwt t ∈ T (3.1w)∑
w∈W

hwz
′
tw ≤ τ4t t ∈ T (3.1x)

τnO`s + dnO`s ≤
∑
w∈W

hwϕsw s ∈ S (3.1y)∑
w∈W

ϕws = 1 s ∈ S (3.1z)

x3ij + y3ij = 1 (i, j) ∈ AS (3.1aa)

Constraints (3.1s)-(3.1u) allow to compute the initial and ending week where the cabling operation is

carried out at each turbine. Constraints (3.1v)-(3.1x) are precedence constraints that ensure that, at each

turbine, the four operations are performed in the right order and do not overlap. Constraints (3.1y)-(3.1z)

compute the week in which each string can start producing energy. Constraints (3.1aa) guarantee that

cabling operations are performed string by string.

xoij ∈ {0, 1} (i, j) ∈ A, o ∈ O (3.1ab)

yoij ∈ {0, 1} (i, j) ∈ AT , o ∈ O (3.1ac)

τot ∈ R+ t ∈ V, o ∈ O (3.1ad)

λot ∈ R+ t ∈ T , o ∈ O (3.1ae)

αow ∈ {0, 1} βow ∈ {0, 1} o ∈ O, w ∈ W (3.1af)

ϕsw ∈ {0, 1} s ∈ S, w ∈ W (3.1ag)

ztw ∈ {0, 1} z′tw ∈ {0, 1} t ∈ T , w ∈ W (3.1ah)

Constraints (3.1ab)-(3.1ah) define the domain of the decision variables. In the following, we shortly refer

to model (3.1) as MG.

In principle, model MG could be solved with a general-purpose MILP solver to achieve an optimal

solution to the IPOWF. Unfortunately, it is too complex to solve even for the most advanced MILP solvers

currently available, especially when it comes to solving real-life instances. Therefore, in order to achieve

high-quality upper bounds by using MG, some simplifications are needed. In Section 3.5, we will show

how MG can be simplified to obtain easier MILPs that can be efficiently handled by MILP solvers and

provide high-quality upper bounds. We would also like to assess the quality of such upper bounds by

computing lower bounds to the IPOWF. In the next section, we propose a MILP derived from MG that

provides high-quality lower bounds in short amounts of computing time. We present the model to achieve

lower bounds first because some modeling decisions made to derive such a model are instrumental to

derive the upper bounds described in the following section.
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3.4 A Lower Bound to the IPOWF

The idea behind the model to compute lower bounds to the optimal solution of a generic IPOWF instance

I is to solve a IPOWF instance I ′, derived from I, with a simplified MILP model derived from MG. In

the following, we first describe how instance I ′ is derived from I, and we then describe the simplified

model to solve I ′.
The simplified IPOWF instance I ′ is obtained from I by applying the following changes (all input

parameters that are not mentioned remain the same):

• Turbines Overlap: all turbines in I ′ are located at the same point, namely, at the position of the

turbines of I that is closest to the port; under this condition, travel times of I ′, t̃oij , representing the

time it takes for vessel o ∈ O to traverse arc (i, j) ∈ A are defined as follows:

t̃oij = 0 o ∈ O, (i, j) ∈ AT (3.2a)

t̃o0j = min
i∈T
{to0i} o ∈ O, j ∈ T (3.2b)

t̃oj0′ = min
i∈T
{toi0′} o ∈ O, j ∈ T (3.2c)

Notice that because of (3.2b), for a given operation o ∈ O, t̃o0j is equal for any turbine j ∈ T , so

we can redefine t̃o0j as t′o0 = t̃o0j . Similarly, we can define t′o0′ = t̃o0′j

• Homogeneous Turbines: all turbines of I ′ are of the same type, which implies that, for each

operation, all turbines require the same material and the same amount of time to be completed;

under this condition, the weight, q′o, of the materials required by any turbine for operation o ∈ O
and the duration, d′o, of operation o ∈ O for any turbine of I ′ are defined as follows:

q′o = min
i∈T
{qoi} o ∈ O (3.3)

d′o = min
i∈T
{doi} o ∈ O (3.4)

• Homogeneous Strings for Missed Revenue: the last change affects the strings of I ′, S ′, and the

corresponding turbines T ′s′ , for each s′ ∈ S ′; the idea is that all strings that contribute to the missed

revenue in the objective function have the same number of turbines (equal to the lowest number of

turbines of any string in the set S) and any additional turbine is removed from the strings of the set

S and represents a new single-turbine string with no revenue; given the string with the minimum

number of turbines in the original set S, st = mins∈S |Ts|, the set of strings S ′ of I ′, where each

s′ ∈ S ′ consists of a set of turbines T ′s′ , is defined as follows:

1. For each s ∈ S of I , define a string s′ in the set S ′ such that |Ts′ | = st and the corresponding

set of turbines T ′s′ contains the first st strings of Ts; moreover, set the weekly revenue of string

s′ as rs′ = rs;

2. Let T̃ be the set of the turbines t ∈ T not associated to any string s ∈ S ′; for each turbine

t̃ ∈ T̃ , add a new string s̃ consisting of a single turbine t̃ and characterized by no revenue, i.e.,

rs̃ = 0.
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For example, suppose that there are nine turbines in I, i.e., T = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and

the set S contains three strings s1, s2, and s3 such that Ts1 = {1, 2}, Ts2 = {3, 4, 5}, and

Ts3 = {6, 7, 8, 9}. Then, the minimum number of turbines in a string is two, i.e., st = |Ts1 | = 2.

In the first step of the procedure to define the set S ′ of I ′, three strings s′1, s′2, and s′3 are generated,

where T ′s′1 = {1, 2}, T ′s′2 = {3, 4}, T ′s′3 = {6, 7}, and rs′1 = rs1 , rs′2 = rs2 , rs′3 = rs3 . In the second

step, the set T̃ contains the three turbines 5, 8, and 9; therefore, three strings T ′s′4 = 5, T ′s′5 = 8,

T ′s′6 = 9 are additionally defined and rs′4 = rs′5 = rs′6 = 0. In the end, the set S ′ contains six strings

S ′ = s′1, s
′
2, s
′
3, s
′
4, s
′
5, s
′
6.

It is quite easy to observe that, because of the way instance I ′ is constructed, the cost of any optimal

solution of I ′ is a valid lower bound to the cost of any optimal solution of I.

In order to solve I ′, model MG can be adapted as follows:

min
∑
o∈O

co

(
1 +

∑
w∈W

w(βow − αow)
)

+
∑
s∈S′

rs
∑
w∈W

wϕsw (3.5a)

s.t. τoi + d′o +Mxoij + (lo + t′o0′ + t′o0 +M)yoij ≤ τoj +M (i, j) ∈ AT , o ∈ O (3.5b)

τo0 + (lo + t′o0 +M)xo0j ≤ τoj +M j ∈ T , o ∈ O (3.5c)

τoi + d′o + (t′o0′ +M)xoi0′ ≤ τo0′ +M i ∈ T , o ∈ O (3.5d)

τoi + d′o −Mxoij ≥ τoj −M (i, j) ∈ AT , o ∈ O (3.5e)

τo0 + (lo + t′o0 −M)xo0j ≥ τoj −M j ∈ T , o ∈ O (3.5f)

q′o ≤ λot ≤ Qo t ∈ T , o ∈ O (3.5g)

λoi + (Qo + q′o)x
o
ij + (Qo − q′o)xoji ≤ λoj +Qo (i, j) ∈ AT , o ∈ O (3.5h)

λoj ≤ q′o +Qo(1− xo0j −
∑

(i,j)∈AT

yoij) j ∈ T , o ∈ O (3.5i)

∑
w∈W

h′wz
′
tw ≤ τ3t + d′3 ≤

∑
w∈W

h
′
wz
′
tw t ∈ T (3.5j)

τ1t + d′1 ≤ τ2t t ∈ T (3.5k)

τ2t + d′2 ≤
∑
w∈W

hwzwt t ∈ T (3.5l)

τnO`s + d′nO ≤
∑
w∈W

hwϕsw s ∈ S (3.5m)

+ (3.1b)− (3.1e), (3.1n)− (3.1s), (3.1u), (3.1x), (3.1z)− (3.1ah)

where constraints (3.5b)-(3.5f), (3.5g)-(3.5i), (3.5j), (3.5k)-(3.5l), (3.5m) replace constraints (3.1f)-(3.1j),

(3.1k)-(3.1m), (3.1t), (3.1v)-(3.1w), (3.1y), respectively. Hereafter, we refer to model (3.5) as Mlb
G .

Mlb
G can still be too difficult to solve with general-purpose MILP solvers. However, it is possible to

derive some features of some of the optimal solutions of I ′ that can be used to add additional constraints

to restrict the solution space of Mlb
G without cutting off all the optimal solutions of I ′. Adding such

constraints allows to help the solution of Mlb
G .
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Theorem 3.1. There always exists an optimal solution of model Mlb
G such that

all vessels carry out the corresponding operation in the same sequence

of turbines, (3.6a)

the sequence of turbines visited by each vessel follows a string-by-string policy, (3.6b)

and the sequence of strings followed by each vessel is by non-increasing value

of productivity of the corresponding strings. (3.6c)

Proof. Let X = (x,y, τ ,λ,α,β,ϕ, z, z′) be a feasible solution of model Mlb
G . Let us assume that X

does not have all the three properties (3.6). Let now X ′ be the solution of Mlb
G obtained by reordering, in

the route of each vessel, the turbines of X in such a way that properties (3.6) are satisfied. We can prove

that solution X ′ is feasible, has the same rental cost of X , and has the same or a lower missed revenue

than X .

First, we prove that X ′ is feasible. Then, we prove that X ′ has the same rental cost of X . Finally, we

prove that X ′ has the same or a lower missed revenue of X .

Feasibility. To prove that X ′ is feasible, we prove that (i) it satisfies capacity constraints, (ii) operation

3 is conducted string-by-string, (iii) for each vessel, the start time of the corresponding operation of the

pth turbine in the corresponding route of X and X ′ is the same, and (iv) it satisfies precedence constraints.

With regard to capacity constraints (i.e., constraints (3.5g)-(3.5i)), we can observe that, given the

feasible route of a given vessel o ∈ O of X , any permutation of the turbines in the route maintains the

feasibility of the route (in terms of capacity) because q′o does not depend on the turbine.

As to the constraint that operation 3 must be conducted string-by-string, X ′ satisfies such a condition

by definition (as all operations are conducted string-by-string, see condition (3.6b)).

The condition that, for each vessel, the start time of the corresponding operation of the pth turbine

in the corresponding route of X and X ′ is the same holds because for any operation o ∈ O and for any

pair of arcs (i, j), (k, `) ∈ AT , (i, j) 6= (k, `), we have t̃oij = t̃ok`, so, in constraints (3.5b) and (3.5e),

variables xoij and xok` have the same coefficients. Similarly, for any operation o ∈ O and for any pair

of turbines i, j ∈ T , i 6= j, we have t̃o0j = t̃o0j and t̃oi0′ = t̃oj0′ , so, in constraints (3.5b)-(3.5f), variable

xo0i has the same coefficients of variable xo0j , and variable xoi0′ has the same coefficients of variable xoj0′ .

Consequently, in any permutation of the turbines in the routes of the vessels, the value of the τoip variable

of the pth turbine of the route of vessel o ∈ O is the same, which implies that as X is feasible, so is X ′.
As to precedence constraints, because X is feasible, we can observe that, when operation o ∈ O \ {1}

at the pth turbine of the route of vessel o ∈ O starts, operation o− 1 must be completed for at least the

first p turbines of the route of vessel o ∈ O. As solution X ′ has property (3.6a), for any p = 1, . . . , nT ,

the pth turbine of any of the routes is the same. Therefore, precedence constraints are satisfied for X ′.
Rental cost. As we have shown that, for each vessel, the start time of the corresponding operation of

the pth turbine in the corresponding route of X and X ′ is the same, we can also conclude that, for each

operation o ∈ O, the values of variables τo0 and τo0′ is the same in both solutions X and X ′. Therefore,

the rental cost of both solutions is the same.

Missed revenue. Because of condition (3.6c), all single-turbine strings with zero revenue are scheduled

last in all routes of X ′, in particular in route of vessel 4. This is clearly an optimal decision in terms

of missed revenue. As to the turbines belonging to the other strings (i.e., those with a strictly positive

revenue), they are scheduled by string and in non-increasing order of missed revenue in X ′ because of
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(3.6b)-(3.6c). It is easy to see that, as the start time of operation 4 of the pth turbine is the same in both

X and X ′ and all strings with a strictly positive revenue have the same number of turbines, it is always

cheaper (in terms of missed revenue) to complete one string at a time in non-increasing order of missed

revenue.

As X ′ is feasible, has the same rental cost of X , and has a missed revenue which is not higher than X ,

then there will always exists an optimal solution of I ′ that satisfies properties (3.6).

Lemma 3.1. The optimal solution cost of Mlb
G does not increase if all feasible solutions of I ′ that do not

satisfy (3.6) are cut off.

Proof. Lemma 3.1 immediately follows from Theorem 3.1.

Let us assume w.l.o.g. that the strings of the set S ′ are indexed by non-increasing value of productivity,

and let us define a set of arcs B as follows B = {(i, j) | i, j ∈ S ′, si = sj , posi + 1 = posj} ∪
{(0, f1), (`|S′|, 0′)} ∪ {(`s−1, fs) | s = 2, . . . , |S ′|}. Because of Theorem 3.1 and Lemma 3.1, it is

possible to find an optimal solution of I ′, without increasing its optimal cost, by adding, to Mlb
G , the

following set of constraints

xoij + yoij = 1 o ∈ O, (i, j) ∈ B (3.7)

which impose on the routes of any solution of Mlb
G to satisfy conditions (3.6). Hereafter, we refer to model

Mlb
G with constraints (3.7) as Mlb

FS.

3.5 Upper Bounds to the IPOWF

Model MG cannot be used to solve to optimality IPOWF instances of size comparable to problems faced

in real-life applications. Therefore, in this section, we present four MILPs derived from MG that provide

upper bounds to the IPOWF.

3.5.1 Model 1: Same-Sequence Model

The first model we present is the Same-Sequence Model. The idea is to add, to MG, the constraint that

all vessels have to visit the turbines in the same sequence. This can be imposed by adding the following

constraints:

xo−1ij + yo−1ij = xoij + yoij (i, j) ∈ AT , o ∈ O \ {1} (3.8)

As the vessel of the cabling operation must visit the turbines in a string-by-string fashion, then all other

vessels are forced to follow this policy as a result of adding constraints (3.8). Therefore, the following

constraints can also be added:

xoij = 0 (i, j) ∈ AT \ {AS ∪ A′}, o ∈ O (3.9a)

yoij = 0 (i, j) ∈ AT \ {AS ∪ A′}, o ∈ O (3.9b)

Constraints (3.9) set equal to 0 all variables that do not adhere to the string-by-string policy.
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In the following, we shortly refer to the model obtained by adding to MG constraints (3.8) and (3.9)

as Mub
SS.

3.5.2 Model 3: Fixed Sequence Model

The second model, we call Fixed Sequence Model, is inspired by Theorem 3.1. Indeed, the second model

is derived from Mub
SS by adding the constraint that the sequence of turbines of each vessel is fixed a-priori.

In particular, this sequence follows a string-by-string policy and orders strings by non-increasing value of

weekly string productivity.

Let us assume w.l.o.g. that the strings of the set S are indexed by non-increasing value of productivity,

and let us define a set of arcs B as follows B = {(i, j) | i, j ∈ S, si = sj , posi + 1 = posj} ∪
{(0, f1), (`|S|, 0′)} ∪ {(`s−1, fs) | s = 2, . . . , |S|}. Then, the Fixed Sequence Model is obtained by

adding, to Mub
SS, the following set of constraints:

xoij + yoij = 1 o ∈ O, (i, j) ∈ B

In the following, we shortly refer to the Fixed Sequence Model as Mub
FS.

3.5.3 Models 4 and 5: Missed Revenue Model and Rental Cost Model

The last two models we consider are based on the idea of solving the IPOWF by considering one of the

two cost components at a time. The two derived models represent upper bounds of MG, but give also

interesting insights to practitioners.

When the missed revenue is the only cost component considered in the objective function, model

MG can be simplified by removing variables αow and βow (o ∈ O, w ∈ W) and constraints (3.1n)-(3.1r).

Moreover, the objective function (3.1a) is simplified to

min
∑
s∈S

rs
∑
w∈W

wϕsw (3.10)

We call the resulting formulation Missed Revenue Model, and we shortly refer to it as Mub
MR.

On the other hand, when only rental costs are taken into account and missed revenues are ignored,

variables ϕsw (s ∈ S, w ∈ W) and constraints (3.1y)-(3.1z) can be removed, and the objective function

(3.1a) changes to

min
∑
o∈O

co

(
1 +

∑
w∈W

w(βow − αow)
)

We call the resulting formulation Rental Cost Model, and we shortly refer to it as Mub
RC.

Note that, in order to provide comparable upper bounds for MG, once a (sub)optimal solution of the

resulting models is achieved, the cost of the cost component ignored can be computed a-posteriori to

assess the overall cost of the solution.

3.6 Computational Experiments

In this section, we report the computational results achieved by the mathematical models described in

Sections 3.5 (i.e., models Mub
SS, Mub

FS, Mub
MR, and Mub

RC) on real-life instances provided by Vattenfall. We
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also compare the upper bounds achieved by these four models with the lower bounds provided by solving

Mlb
FS.

All models are implemented in OPL and solved with the commercial solver IBM ILOG CPLEX

Optimization Studio 12.8. Tests are conducted in single-thread mode on a machine equipped with a Intel

Core i7-6700k 4.00 GHz and 24 GB of RAM with a time limit of 3600 seconds.

3.6.1 Description of the Test Instances

The test instances of this study are based on two offshore wind farms owned by Vattenfall, namely, Horn

Rev 3 and Sanbank. Horns Rev 3 is located in the North Sea, 25-40 km off the Danish cost and is, as

of today, Denmark’s largest offshore wind farm. Its installation has been completed this year (2019).

The farm will provide enough power to satisfy the annual electricity consumption of 425,000 Danish

households. The farm consists of 12 strings, each one made up of four or five turbines, for a total of 49

turbines. Sandnbank instead has 72 smaller (4MW) wind turbines, organized in 8 strings. With an overall

capacity of 288 megawatts, the wind farm provides green power to supply up to 400,000 households.

The wind farm extends over an area of 60 square kilometres and is located 90 kilometres off the coast

of Germany. The offshore wind farm has been finalized in 2017. We used the real data as provided by

our industrial partner Vattenfall, and we also generated an additional dataset of 18 instances of different

sizes from them: 12 of these instances are derived from Horn Rev 3, and the remaining 6 instances are

derived from Sanbank. Each instance contains a subset of strings of the corresponding original instance.

For every instance, the planning horizon is a calendar year (January-December).

Table 3.6.1: Features of Horn Rev 3 instances

Inst nS |Ts| nT

HR3.s4.t4 4 1 4
HR3.s4.t8 4 2 8
HR3.s4.t12 4 3 12
HR3.s4.t17 4 4 or 5 17

HR3.s8.t8 8 1 8
HR3.s8.t16 8 2 16
HR3.s8.t24 8 3 24
HR3.s8.t33 8 4 or 5 33

HR3.s12.t12 12 1 12
HR3.s12.t24 12 2 24
HR3.s12.t36 12 3 36
HR3.s12.t49 12 4 or 5 49

Table 3.6.2: Features of Sanbank instances

Inst nS |Ts| nT

SB.s4.t12 4 3 12
SB.s4.t24 4 6 24
SB.s4.t36 4 9 36

SB.s8.t24 8 3 24
SB.s8.t48 8 6 48
SB.s8.t72 8 9 72

The features of the 18 instances are summarized in Tables 3.6.1 and 3.6.2, reporting the 12 instances

derived from Horn Rev 3 and the 6 instances derived from Sanbank, respectively. For each instance, we

report the instance name (Inst), the number of strings (nS), the number of turbines per string (|Ts|), and

the total number of turbines (nT ). To identify the instances, we use the following naming convention

TT.sXX.tYY, where TT indicates the wind farm (i.e., HR3: Horn Rev 3; SB: Sanbank), XX the number of

strings, and YY the total number of turbines. Notice that the last instance of each table (i.e., HR3.s12.t49
and SB.s8.t72) corresponds to the whole wind farms built by Vattenfall.
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3.6.2 Computational Results

Tables 3.6.3 and 3.6.4 show the upper bounds achieved by models MG, Mub
SS, Mub

FS, Mub
MR and Mub

RC, and

the lower bounds achieved by Mlb
FS on the Horn Rev 3 and the Sanbank instances, respectively.

In both tables, the first column reports the instance name (Instance). Then, for each of the five models

MG, Mub
SS, Mub

FS, Mub
MR, and Mub

RC, three values are reported: the total cost (TC, expressed in thousands of

euros) of the best solution found (a dash indicates that no feasible solution was found), the total computing

time (CPU, where tl stands for time limit), and the gap (gap), expressed in percentage, between the best

solution found and the best available lower bound. The last column shows the value of the best lower

bound found by solving model Mlb
FS (lbFS). Note that when model Mlb

FS is not solved to optimality within

the time limit, the reported value is the current lower bound indicated by the solver. The best upper bounds

achieved on each instance are highlighted in bold. The last three rows of each table report the number of

instances for which each model finds a feasible solution, the number of instances for which each model

finds an optimal solution, and the average gap over all instances. In order to make a proper comparison,

the cost for solutions of models Mub
MR and Mub

RC has been post-processed by adding the missing cost (i.e.,

rental costs and missed revenue, respectively).

Tables 3.6.3 and 3.6.4 show that models Mub
SS and Mub

FS clearly outperform the other three models

in terms of number of instances where a feasible solution is provided; indeed, they are the only two

models that can find a feasible solution for all instances. Model Mub
FS can find the best solution on all but

one instance (i.e., instance HR3.s4.t17), and six of these solutions are also optimal. In terms of average

gap, model Mub
FS is clearly the best as the average gap on the Horn Rev 3 instances is 1.6% and on the

Sanbank instances is 0.4%, whereas the second best model (i.e., Mub
SS) has an average gap of 3.8% and

3.3%, respectively. We can also observe that the upper bounds provided by Mub
FS and the lower bounds

provided by Mlb
FS are of high-quality as the maximum gap is 3.4% on the Horn Rev 3 instances and 1.4%

on the Sanbank instances.

We can notice that even though Mub
FS is more constrained than MG and Mub

SS, it is able to provide

better upper bounds on all but one instance (i.e., HR3.s4.t17) - this is probably due to the computational

complexity of solving models MG and Mub
SS. From a managerial viewpoint, this result suggests that it is

often a good decision to design solutions to the IPOWF that satisfy properties (3.6). Nevertheless, such a

decision may not be optimal as shown by the fact that Mub
SS finds an upper bound to instance HR3.s4.t17

that is strictly better than the upper bound provided by Mub
FS.

By looking at the low quality of the upper bounds provided by Mub
MR and Mub

RC, even on small instances,

we can draw the conclusion that both cost components (rental costs and missed revenue) should be taken

into account when solving the IPOWF.

3.6.3 Analysis on the Starting Period of Operations

The tests summarized in Section 3.6.2 are conducted by assuming that the planning horizon is a calendar

year, which corresponds to the decision-making problem faced by Vattenfall. This means that we assume

that all materials, vessels, and crew members are available from the 1st of January onward, and it

is Vattenfall’s choice to decide when to use them (i.e., start renting vessels and installing turbines).

Scheduling the installation operations at the beginning of the year has the advantage of producing and

selling energy from the wind farm as soon as possible, but winter months have also the worst weather

conditions, so the operations may last longer, resulting in higher rental costs. For this reason, it may be
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Table 3.6.3: Computational results on the Horn Rev 3 instances

MG Mub
SS Mub

FS Mub
MR Mub

RC Mlb
FS

Instance TC CPU gap TC CPU gap TC CPU gap TC CPU gap TC CPU gap lbFS

HR3.s4.t4 11,032 tl 0.0 11,032 tl 0.0 11,032 4 0.0 14,958 tl 26.2 14,901 tl 26.0 11,032
HR3.s4.t8 21,033 tl 5.8 20,006 tl 1.0 20,006 48 1.0 26,060 tl 24.0 25,381 tl 21.9 19,811
HR3.s4.t12 30,487 tl 10.7 28,206 tl 3.4 28,206 17 3.4 33,575 tl 18.9 38,362 tl 29.0 27,239
HR3.s4.t17 43,891 tl 12.2 39,545 tl 2.5 39,784 13 3.1 45,277 tl 14.9 57,749 tl 33.3 38,541

HR3.s8.t8 20,375 tl 3.2 20,061 tl 1.6 19,926 22 1.0 28,510 tl 30.8 25,864 tl 23.7 19,731
HR3.s8.t16 60,778 tl 41.2 37,170 tl 3.9 35,732 13 0.0 42,253 tl 15.4 52,053 tl 31.4 35,732
HR3.s8.t24 - tl 54,996 tl 3.1 54,099 35 1.5 79,300 tl 32.8 85,369 tl 37.6 53,297
HR3.s8.t33 - tl 75,417 tl 2.9 74,514 85 1.8 - tl 115,274 tl 36.5 73,204

HR3.s12.t12 34,856 tl 22.3 30,130 tl 10.1 28,045 49 3.4 37,873 tl 28.5 43,011 tl 37.0 27,078
HR3.s12.t24 - tl 55,993 tl 6.0 53,425 60 1.4 74,050 tl 28.9 79,441 tl 33.7 52,652
HR3.s12.t36 - tl 82,426 tl 1.7 80,988 128 0.0 - tl - tl 80,988
HR3.s12.t49 - tl 119,683 tl 8.7 111,398 19 1.9 - tl - tl 109,267

Feas. sol. found 7 12 12 9 10
Opt. sol. found 1 1 3 0 0
Avg gap 13.6 3.8 1.6 24.5 31.0

Table 3.6.4: Computational results on the Sanbank instances

MG Mub
SS Mub

FS Mub
MR Mub

RC Mlb
FS

Instance TC CPU gap TC CPU gap TC CPU gap TC CPU gap TC CPU gap lbFS

SB.s4.t12 24,734 tl 17.7 20,641 tl 1.4 20,641 17 1.4 37,207 tl 45.3 31,630 tl 35.7 20,348
SB.s4.t24 53,579 tl 23.7 41,550 tl 1.6 40,874 71 0.0 - tl 69,998 tl 41.6 40,874
SB.s4.t36 - tl 64,380 tl 4.4 62,074 183 0.9 - tl 102,665 tl 40.1 61,540

SB.s8.t24 - tl 44,427 tl 8.5 40,632 70 0.0 - tl 57,248 tl 29.0 40,632
SB.s8.t48 - tl 82,795 tl 1.8 81,283 259 0.0 - tl - tl 81,283
SB.s8.t72 - tl 131,150 tl 2.3 128,405 329 0.3 - tl - tl 128,081

Feas. sol. found 2 6 6 1 4
Opt. sol. found 0 0 3 0 0
Avg gap 20.5 3.3 0.4 45.3 36.6

intuitive to plan the installation of wind farms in the summer, when weather conditions are expected to be

better than in the other seasons. In this section, we want to assess the impact of different starting periods

on the overall costs. We consider the two test instances corresponding to the complete wind farms (i.e.,

instances HR3.s12.t49 and SB.s8.t72), and we compute the upper bounds returned by Mub
FS and the lower

bounds provided by Mlb
FS by considering a different month as the earliest possible starting time of the

installation operations.

Tables 3.6.5 and 3.6.6 report the computational results achieved on HR3.s12.t49 and SB.s8.t72,

respectively, by setting the earliest starting time of the operations at the beginning of January, then

February, March, and so on, until the last month where a feasible solution exists. The tables report, for

each month, details about the cost of the best upper bound found by Mub
FS (i.e., total costs (TC), rental cost

(RC), and missed revenue from January 1st (MR)), the gap between the upper bound returned by Mub
FS and

the lower bound returned by Mlb
FS (gap), and the best lower bound found by Mlb

FS (lbFS).

In Tables 3.6.5 and 3.6.6, we can observe that the upper bounds returned by Mub
FS are within 3.4%

from optimality for HR3.s12.t49 and 2.1% from optimality for SB.s8.t72, so reliable conclusions can

be drawn by comparing the cost of the solutions found for the different months. Results show that our
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Table 3.6.5: Results on Horn Rev 3 when changing the earliest starting time

Starting Month TC RC MR gap lbFS

January 111,398 55,209 56,189 1.9 109,267
February 114,118 49,658 64,460 3.4 110,184
March 119,046 46,718 72,328 2.2 116,435
April 127,076 43,267 83,809 2.8 123,463
May 141,849 43,267 98,582 1.9 139,199
June 158,869 43,267 115,602 2.5 154,935
July 177,767 45,787 131,980 2.2 173,857
Augustus 201,864 50,617 151,247 2.8 196,262

Table 3.6.6: Results on Sanbank when changing the earliest starting time

Starting Month TC RC MR gap lbFS

January 128,405 72,912 55,493 0.3 128,081
February 129,054 71,022 58,032 0.0 129,054
March 130,032 65,471 64,561 0.0 130,032
April 135,247 63,070 72,177 0.0 135,247
May 147,388 64,330 83,058 0.0 147,388
June 163,328 66,850 96,478 0.0 163,328

model is a valuable support also in deciding when is the best moment to start operation, depending on the

wind-farm specific input: according to our tests, postponing the beginning of the installation operations

has a negative impact on the total costs, which is due to the higher and higher missed revenues. However,

we can also observe a different trend in the rental cost, which gradually decreases (up to April) and then

starts increasing in July for HR3.s12.t49 and in May for SB.s8.t72.

3.7 Conclusions and Future Research

We have dealt with the decision-making problem of planning the installation of offshore wind farms

as faced by our industrial partner, Vattenfall, a leading European energy company. We have defined

the problem of Installation Planning of Offshore Wind Farms (IPOWF) and formulated it as a Mixed

Integer Linear Problem (MILP). Given the complexity of the IPOWF, we have then derived some simpler

MILPs that can provide lower and upper bounds to the problem. The quality of these bounds has been

documented by testing the MILPs on real-life instances corresponding to two offshore wind farms recently

built by Vattenfall.

This study offers Vattenfall and other energy companies facing the same decision-making problem

some important managerial insights. First, the paper offers mathematical models that can provide, in

less than an hour of computing time, high-quality installation plans that are provably close to an optimal

min-cost plan. Second, the computational results show that the policy of building the turbines string-by-

string by starting from the string with the highest revenue is efficient, at least for the real-world dataset we

received. Third, the computational results also show that there are two main important cost components

to take into account when designing installation plans, namely the vessel’s rental cost and the missed

revenue for delaying the completion of the installation, and both components must be taken into account
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in the planning.

Even though we have investigated an IPOWF that is as close as possible to the problem encountered by

our industrial partner, we had to make some assumptions. In particular, we have assumed that the IPOWF

is a deterministic problem, where input data is not affected by uncertainty. For example, the number of

working days per month was assumed to be known upfront, which is clearly not the case in practice. As

we consider this assumption the main limitation of our study, we are planning to study stochastic versions

of the IPOWF in our future research. Moreover, additional cost components, such as harbour costs, crew

costs, and management costs, could have an impact on optimally planning the installation of an offshore

wind farm, so it might be worth taking them into account in the planning.
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Chapter 4

An Exact Approach for Cyclic Inbound
Inventory Routing in a Level

Production System∗

Abstract

We study an inbound inventory routing problem concerned with the minimal-cost collection of
distinct components from a network of suppliers and subsequent delivery to a manufacturing plant.
We assume known and constant production of end products at the plant that generates a synchronized
production of components at each supplier. The lean production philosophy motivates two distinctive
features of our formulation. To facilitate standardized work, we consider inventory collection plans
that are cyclic and repeatable into the near future. To support the notion of level production planning,
we consider inventory collection plans such that the pickup amount at each supplier is a multiple
of the daily demand and in exact proportion to the number of days since the last pickup. We study
the polyhedron of the convex hull of our mathematical formulation and define new valid inequalities
that we implement within our branch-and-cut algorithm for the problem. As our computational
experiments confirm, our cyclic formulation is significantly more difficult to solve to optimality than
the standard non-cyclic formulation. Regardless, our three-phase approach obtains competitive results
for one-, two-, and three-vehicle instances over three- and six-period planning horizons.

Keywords: routing, branch-and-cut, inventory clearing policy, lean production, cyclic planning
horizon

4.1 Introduction

Popularized by the success of the Toyota Production System (TPS), many companies strive to incorporate

the principles of lean manufacturing into the management of their supply chains (Liker 2005). Explicitly

incorporating lean principles further complicates the underlying optimization problems involving the

routing and inventory decisions of the supply chain. To examine the implications of the lean philosophy

on supply chain optimization, we consider a lean production system consisting of a single manufacturing

plant and a set of geographically-dispersed suppliers. We seek to identify a minimal-cost inbound logistics
∗This chapter is based on Bertazzi, Laganà, Ohlmann & Paradiso (2019).
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plan that collects component inventory from a network of suppliers to supply the manufacturing plant

at minimal cost and in a manner that supports the lean principles of standard work and level production

planning. In the context of inbound inventory routing, standardization refers to the establishment of

consistent, repeatable patterns in the pickup quantities and pickup times at the suppliers, and in the

corresponding delivery quantities and delivery times at the plant. This standardization is facilitated by

a level production plan resulting from the smoothing of demand (in both volume and variety) over a

specified period.

The problem we consider is a formulation variant within the broad class of inventory routing problems

(IRPs). The standard IRP formulation is motivated by the outbound logistics problem of determining

routes to distribute one or more products from a manufacturing plant to a set of customers in a manner

that minimizes the transportation costs and inventory holding costs at the plant over a planning horizon.

While our formulation’s identifying characteristics are motivated by lean production philosophies applied

to component collection rather than the more common perspective of end product distribution, we show

how to translate our model into an equivalent outbound logistics in 4.A.

To explain the distinctive features of our problem, we formally introduce some notation. Let I =

{1, 2, . . . , I} be the set of suppliers and denote the plant with the node 0. We denote the set of edges as

E = {(i, j) : i, j ∈ I ∪ {0} , i < j}. Then, the complete undirected graph G = (I ∪ {0} , E) represents

the transportation network in which a transportation cost, cij , is associated with each edge (i, j) ∈ E .

Each supplier i provides a distinct component to the plant, so we may reference the terms supplier i

and component i interchangeably. The plant adheres to a level production plan that generates a known

and constant daily demand, di, for each component i ∈ I. Furthermore, we assume that each supplier

i ∈ I produces its component at a matching daily rate di. The unit inventory holding cost for supplier

i’s product at the plant is hi0, and the unit inventory holding cost at supplier i is hi. Our objective is to

minimize the sum of transportation cost and system-wide inventory holding cost. Unlike the traditional

outbound IRP formulation, we consider inventory holding costs at both the plant and the suppliers to

reflect the philosophy that a lean production system should reduce system-wide inventory rather than just

shift the cost burden from the plant to the suppliers.

To facilitate the notion of standard work, we design routes over a T -day planning horizon and

assume that this routing plan is repeated every T days. We denote this horizon with the cyclic set,

T = {1, 2, . . . , T} such that next(T ) = 1 and prev(1) = T . In practice, such a T -day routing plan

is executed repeatedly over a production period (which may be as long as one or two months) during

which the plant’s manufacturing schedule is effectively fixed. As such, the component inventory level at

a supplier at the beginning of the T -day horizon must be the same as the component inventory level at

the end of the T -day horizon. In contrast, standard IRP formulations typically consider a non-cyclical

planning horizon in which the projected demand in future periods is used to determine optimal or near-

optimal inventory and routing decisions for the immediate period; the immediate period’s actions are then

executed and the problem is re-solved using updated demand data in a rolling horizon manner.

To incorporate level production planning (heijunka), we enforce an inventory clearing policy requiring

that, if supplier i is visited on day t, the quantity collected must correspond to the entire on-hand inventory

amount so that the inventory level of supplier i on day t is equal to zero after the pickup. For a cyclic

planning horizon, this results in pickup amounts at each supplier i that are a multiple of the daily demand

di and in exact proportion to the number of days since the last pickup.
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This paper makes the following contributions. First, we introduce a new problem motivated by industry

practice and present its corresponding mathematical formulation. Second, we study the polyhedron of the

convex hull of the problem and define valid inequalities that we leverage in our exact method to solve

the problem. Owing to the particular structure of the problem, we provide an extended mathematical

formulation of a relaxation of the problem. We solve the relaxation to generate a lower bound for the

original problem whenever the solution is optimal, or use the best feasible solution of this relaxation

to construct a heuristic solution for the original problem. As a final step, whenever the solution of

the extended lower bound formulation is not optimal, we use a branch-and-cut algorithm to solve the

problem. This solution approach represents the first exact method for an IRP considering a cyclic planning

period and an inventory clearing policy. Third, although our computational experiments establish that

our cyclic IRP formulation is significantly more difficult than the standard non-cyclic IRP formulation,

our three-phase exact approach obtains competitive results. Specifically, our exact method consistently

obtains optimal solutions to one-vehicle instances with up to 50 suppliers over a three-period planning

horizon, and up to 30 suppliers over a six-period planning horizon. Although scalability is a challenge

even for the much simpler non-cyclic IRP, we obtain optimal or near-optimal solutions to the cyclic IRP

for two-vehicle instances with up to 20 suppliers over a three-period planning horizon, and with up to 10

suppliers over a six-period planning horizon. Furthermore, our exact method obtains optimal solutions

for three-vehicle instances over a three-period planning horizon for instances with up to 10 suppliers.

Finally, we demonstrate that our solution approach is also capable of solving more a general cyclic IRP

formulation by removing the inventory clearing policy and allowing more than one vehicle to visit a

supplier per day (thereby splitting the collection of supplier demand).

We begin our study with a review of related research in §4.2. We present the formulation of our

problem in §4.3. In §4.4, we describe our exact and heuristic solution algorithms. In §4.5, we present our

computational experiments on a set of cyclic instances derived from benchmark non-cyclic instances. We

provide concluding remarks in §4.6.

4.2 Related Literature

The research literature contains a wide range of IRP formulations varying by objective function, inventory

replenishment strategy, and treatment of demand. In this section, we discuss the most relevant studies to

our work. Coelho et al. (2013b) provide a comprehensive survey of the IRP literature.

4.2.1 Exact Methods for the Inventory Routing Problem

To our knowledge, there is no exact algorithm in the literature that addresses our inbound IRP formulation

with a cyclic planning horizon and inventory clearing policy. Exact algorithms for the IRP include branch-

and-cut, branch-and-price, and branch-price-and-cut. Generally speaking, branch-and-cut algorithms have

proved to be the most successful to date, but implementations of branch-price-and-cut have shown promise

for large instances. In the remainder of this section, we document literature on these three algorithmic

approaches for the IRP.

Coelho & Laporte (2013b) and Adulyasak et al. (2013) propose branch-and-cut algorithms to solve

the multi-vehicle extensions of the Archetti et al. (2007) one-vehicle IRP formulation with the order-up-

to-level and maximum-level inventory policies. Using the CPLEX mixed-integer programming solver,
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instances with up to 45 customers, three vehicles, and three periods have been solved. Coelho & Laporte

(2013a) further extend the branch-and-cut approach to accommodate a multi-product IRP and solve

instances with up to five products, five vehicles, three periods, and 30 customers. Avella et al. (2015)

present a branch-and-cut algorithm for the one-vehicle, single-product IRP based on new classes of valid

inequalities strictly related to the nature of the instances of Archetti et al. (2007); their polyhedral analysis

is based on a unit-stock reformulation of the single-item lot-sizing problem to derive more effective

inequalities valid for the inventory problem. For the order-up-to level inventory policy, the branch-and-cut

of Avella et al. (2015) significantly improves the upper bounds of Archetti et al. (2007) for the instances

with 50 customers and 6 periods. For the maximum-level policy, the branch-and-cut of Avella et al. (2015)

and the branch-and-cut of Coelho & Laporte (2014) are able to solve all the instances of Archetti et al.

(2007) to optimality. Avella et al. (2018) propose a new generic family of valid inequalities combining

both inventory and routing elements of the IRP with the maximum-level policy. Some of these new

inequalities are effective in a branch-and-cut algorithm, allowing Avella et al. (2018) to consistently obtain

optimal solutions to two-vehicle instances, 50 customers, and three periods. While unable to completely

close the optimality gap, Avella et al. (2018) do achieve near-optimal solutions for instances with up to

five vehicles, 20 customers and six periods.

There is little evidence in the literature supporting the effectiveness of branch-and-price for the IRP.

Bard & Nananukul (2010) use branch-and-price to solve the production routing problem (PRP), which

reduces to the IRP when the production schedule is fixed (rather than a decision variable). Bard &

Nananukul (2010) solve instances with up to 10 customers and two periods. In comparison, Adulyasak

et al. (2013) solve PRP instances with 45 customers, three vehicles, and three periods.

Desaulniers et al. (2016) introduce a branch-price-and-cut algorithm for an extended IRP formulation

based on route delivery patterns and the maximum-level inventory policy. Desaulniers et al. (2016)

tighten this formulation with known and new valid inequalities, and develop a labeling algorithm to

solve the subproblems in the column generation routine. For problems with four and five vehicles, the

branch-price-and-cut algorithm of Desaulniers et al. (2016) outperforms the branch-and-cut algorithm

of Coelho & Laporte (2014). For instances with fewer than four vehicles, however, the branch-and-cut

algorithm is superior.

4.2.2 Cyclic Inventory Routing Problems

Past work considering cyclic schedules for the IRP have been based on continuous-time models or

discrete-time models. We review both of these research streams in this section.

There is a body of research which considers a continuous-time IRP with an infinite planning horizon

and constant demand rate in which the delivery cycle time for each customer must be identified. Aghezzaf

et al. (2006) address this long-term planning problem with a column generation based heuristic to

construct policies akin to economic order quantities. Raa & Aghezzaf (2009) explicitly add the practical

considerations of cargo handling times, customer inventory capacities, and maximum driving limits for

vehicles. Chitsaz et al. (2016) develop a two-phase iterative heuristic and benchmark their performance

against Raa & Aghezzaf (2009), demonstrating they can improve the best-known solution for 60 of 80

instances.

Zhao et al. (2007) consider a fixed partition policy in which the replenishment interval is based on a

power-of-two (as often used in the economic order quantity literature). Ekici et al. (2015) also utilize a

92



fixed partition policy, and develop a two-stage heuristic that achieves solutions with an average optimality

gap of 3.76 percent for real-life instances with 26 to 80 customers and a planning horizon of 14 days.

Motivated by applications in liner shipping and facility logistics, Zenker et al. (2016) consider a cyclic

IRP in which all customers are located along a line.

Aghezzaf et al. (2012) study a one-vehicle cyclic IRP in which not all customers need to be visited

and for each customer selected for replenishments, the supplier collects a corresponding fixed reward.

Zhong & Aghezzaf (2011) and Zhong & Aghezzaf (2012) examine various heuristic approaches to solve

this one-vehicle cyclic IRP. Similarly, Vansteenwegen & Mateo (2014) cast a one-vehicle cyclic inventory

routing problem as a variant of an orienteering problem and design an iterated local search heuristic.

Our work shares more similarities with the discrete-time models of cyclic IRPs than the aforementioned

continuous-time models. Similar to our formulation, Aksen et al. (2012) consider a cyclic planning horizon

and employ an inventory clearing policy for the collection of a single item (used vegetable oil) from

suppliers. Aksen et al. (2012) present two different mixed-integer programming formulations, which

include some additional features such as supplier selection, and obtain solutions with an average optimality

gap of 3.28 percent for instances with 25 suppliers and a planning horizon of seven days.

Francis & Smilowitz (2006) present a variant of the period vehicle routing problem in which the

choice of visit schedule over the planning horizon is a decision variable. The choice of visit schedule

controls service benefit, which corresponds to inventory holding cost in the context of an IRP. To facilitate

the solution of their model, Francis & Smilowitz (2006) implement a pair of restrictions to reduce the

solution space: (i) they consider a restricted set of schedules, and (ii) while their model supports unequal

service amounts, they always consider the largest possible service amount corresponding to the selected

schedule. Our model does not restrict the choice of schedules for better cost management and explicitly

considers unequal service amounts in routing to make full utilization of vehicle capacity. Francis &

Smilowitz (2006) present an exact Lagrangian-based branch-and-bound procedure and a related heuristic

approach. Similar to Francis & Smilowitz (2006), Rusdiansyah & Tsao (2005) present a two-phase

heuristic (initialization and tabu-search based improvement) for the period vehicle routing problem with

time windows as the basis for a new model in which customer visit frequencies are a decision variable.

4.2.3 Rich Vehicle Routing Problems

Rich vehicle routing problems consider complications that arise in real-world routing that typically are

ignored in stylized vehicle routing models (Schmid et al. 2013). Of particular relevance to this paper is

the related body of rich vehicle routing problems focused specifically on lean production systems; these

studies are devoted to model development and heuristic solution methods.

Chuah & Yingling (2005) incorporate aspects of a just-in-time system into a single-day vehicle routing

problem with time windows in which the number of times that a supplier is visited is a decision variable,

but require that the pickup amounts at a supplier are equally-sized. Chuah & Yingling (2005) restrict the

problem by requiring all suppliers on the same route to have the same visit frequency; this restriction

is called common frequency routing. Chuah & Yingling (2005) solve small instances of their integer

programming model with a set partitioning column generation approach and develop a tabu search heuristic

for larger instances. Ohlmann et al. (2008) extend the work of Chuah & Yingling (2005) by relaxing

the restriction of common frequency routing and allowing each supplier to have its own distinct visit

frequency (although still requiring that the pickup amounts at a supplier are equally-sized). Ohlmann et al.
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(2008) design a nested tabu search algorithm that iterates between setting the suppliers’ visit frequencies

and routing the resulting visits; they apply their algorithm to data sets with up to 109 customers. Stacey

et al. (2007) present an inbound inventory routing problem similar to Chuah & Yingling (2005) with the

exception that time window constraints are not considered. Stacey et al. (2007) present two heuristics

based on common frequency routing, one which attempts to explicitly account for crossdock capacity in

the route selection process, and perform computational testing on 14-customer data sets. Natarajarathinam

et al. (2012) consider the same problem and present two new heuristics that provide lower cost solutions

on the 14-customer data sets. Dong & Turnquist (2015) use a “cluster first, route second” approach

for a single-period inbound inventory routing problem. Integrating the choice of visit frequency with

supplier location, Dong & Turnquist (2015) identify sets of customers to be routed together by solving

a single-source capacitated facility location problem (SSCFLP). A traveling salesman algorithm then

executes the common frequency routing for each set of customers. Dong & Turnquist (2015) solve small

instances of the SSCFLP with the commercial solver CPLEX and large instances with the very large

scale neighborhood search heuristic from Ahuja et al. (2004). Vaidyanathan et al. (1999) introduce a

nonlinear capacity constraint to a vehicle routing problem with the goal of constructing routes that deliver

loads to customers that exactly meet the accumulated demand between visits. Vaidyanathan et al. (1999)

generate a lower bound from a relaxation of their integer programming formulation and outline a heuristic

procedure which performs well when vehicle capacities are relatively large. Satoglu & Sahin (2013)

formulate the supply of various stations along a television assembly line as a vehicle routing problem with

simultaneous pickup and delivery to capture the dynamics of picking up empty kanban kits and delivering

full kanban kits. Satoglu & Sahin (2013) devise a heuristic based on common frequency routing to solve

their nonlinear integer programming model that results from modeling a station’s delivery quantity as a

function of the delivery route to account for the amount of demand accumulating between visits. More

recently, the problem of integrating inbound supply routing with production and inventory decisions has

been gaining attention. For both a supply chain in which component inventory is allowed to be stored at

the production plant and a supply chain in which component inventory must be supplied in a JIT manner,

Hein & Almeder (2016) conduct computational experiments on small instances (4 to 6 suppliers, 8 to

12 distinct components, 3 to 4 end products, and 5 to 10 periods) to estimate the savings achievable

from solving the integrated routing and production problem versus decomposing the problem by first

establishing a production plan and then developing the supply routes. Chitsaz et al. (2019) introduce a

matheuristic for an assembly routing problem which integrates the optimization of production, inventory,

and inbound transportation decisions. While Hein & Almeder (2016) and Chitsaz et al. (2019) allow

production planning to be decision variables and we assume that production at the plant to be known and

constant, our model offers the unique features of a cyclic planning horizon incorporating an inventory

clearing policy.

4.3 Formulation of the Cyclic Inbound Inventory Routing Problem

We adapt the integer programming formulation without vehicle indexing from Adulyasak et al. (2013) to

formally describe our cyclic inventory routing problem. With a goal of minimizing the sum of routing cost

and inventory cost over a T -day horizon, our formulation seeks to determine the quantity to send from

each supplier i ∈ I to the plant at each time t ∈ T , to sequence routes that visit specified suppliers at each

time t ∈ T , and to set the initial inventory levels at the suppliers and at the plant. Because the problem
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is cyclic, the inventory levels at the end of the period T must be equal to the initial inventory levels of

all the suppliers and the plant. As the initial inventory levels at all locations are decision variables, the

model assumes that there is negligible cost of establishing the initial inventory levels to facilitate the

cyclic inventory collection plan. If this is not the case, a cost term that reflects the cost of establishing the

requisite initial inventory at each location can be added.

A homogeneous fleet of vehicles, K = {1, . . . ,K}, with integer capacity Q, collects the components

from the set of suppliers. We assume that at most one vehicle can visit each supplier per day, i.e., split

collections are not allowed. Without loss of generality, we assume di ≤ Q; if di > Q, one can dedicate

bdiQ c vehicles to supplier i and then consider d′i = di − bdiQ cQ in the routing problem.

We introduce the following decision variables:

• qti: quantity to pick up from supplier i ∈ I on day t ∈ T

• Iti: inventory level at supplier i ∈ I at end of day t ∈ T

• Iit0: inventory level of component i at the plant at end of day t ∈ T

• zt0: integer variable indicating the number of vehicles that leave the plant on day t ∈ T

• zti: binary variable equal to 1 if node i ∈ I is visited on day t ∈ T and 0 otherwise

• xtij : binary variable equal to 1 if edge (i, j) ∈ E is part of a route on day t ∈ T and 0 otherwise.

To facilitate the formulation, we define δ(S) as the set of edges (i, i′) ∈ E incident to the nodes

i ∈ S ⊆ I ∪{0}; for notational convenience, if S = {i}, we denote the corresponding edge cutset as δ(i).

We let E(U) be the set of edges (i, j) ∈ E such that i, j ∈ U , where U ⊆ I is a given subset of suppliers.

We describe our optimization problem, (P), via (4.1)–(4.14):

min
∑
t∈T

∑
(i,j)∈E

cijxtij +
∑
t∈T

∑
i∈I

hiIti +
∑
t∈T

∑
i∈I

hi0I
i
t0 (4.1)

s.t. Iti = Iprev(t),i + di − qti ∀t ∈ T ,∀i ∈ I (4.2)

Iit0 = Iiprev(t),0 + qti − di ∀t ∈ T ,∀i ∈ I (4.3)

Iti ≤ (T − 1)di (1− zti) ∀t ∈ T ,∀i ∈ I (4.4)

zt0 ≤ K ∀t ∈ T (4.5)

qti ≤ min {Q,Tdi} zti ∀t ∈ T ,∀i ∈ I (4.6)∑
(j,j′)∈δ(i)

xtjj′ = 2zti ∀t ∈ T ,∀i ∈ I ∪ {0} (4.7)

Q
∑

(i,j)∈E(U)

xtij ≤
∑
i∈U

(Qzti − qti) ∀t ∈ T ,∀U ⊆ I, |U| ≥ 2,∀u ∈ U (4.8)

qti ≥ 0 ∀t ∈ T ,∀i ∈ I (4.9)

Iti, I
i
t0 ≥ 0 ∀t ∈ T ,∀i ∈ I (4.10)

zt0 ∈ Z+ ∀t ∈ T (4.11)

zti ∈ {0, 1} ∀t ∈ T ,∀i ∈ I (4.12)

xtij ∈ {0, 1} ∀t ∈ T ,∀(i, j) ∈ E : i /∈ {0} (4.13)

xt0j , xtj0 ∈ {0, 1} ∀t ∈ T ,∀j ∈ I. (4.14)
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The objective function (4.1) minimizes the sum of routing and inventory costs at the suppliers and at the

plant. Constraints (4.2) and (4.3) balance the inventory flow at the suppliers and at the plant, respectively,

over the T -day horizon. We assume, similar to Adulyasak et al. (2013), that the day t production at a

supplier can be delivered to the plant to satisfy its demand on the same day. Constraints (4.2) and (4.3)

imply that the inventory level at the end of the horizon is equal the inventory level at the beginning of the

horizon, the total service amount transported over the cyclic horizon is equal to Tdi and the total inventory

level of supplier i’s product is constant over time and equal to Iit0 + Iti. Constraints (4.4) enforce the

inventory clearing policy at the suppliers. Constraints (4.5) enforce the fleet size. Constraints (4.6) limit

the amount of the pickup from supplier i on day t. In the underlying graph G, constraints (4.7) control the

degree of the nodes, while constraints (4.8) prohibit subtours and ensure that the vehicle capacity is not

violated. These constraints are identical to those used by Adulyasak et al. (2013), and they will be referred

to in the following as capacitated subtour elimination (CSE) constraints. Finally, constraints (4.9) imply

non-negative pick-up quantities, while (4.10) disallow the possibility of a stockout at either the suppliers

or plant. Constraints (4.11)–(4.14) define the integer and binary decision variables. We denote the optimal

cost of this model as z∗.
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4.4 Exact Solution Approach

As Figure 4.4.1 illustrates, we develop a three-phase exact solution approach to solve (P), described by

(4.1)–(4.14). Our approach leverages a vehicle-indexed reformulation of (P) which we refer to as (P
′
),

and an extended relaxation of (P
′
) which we refer to as (R). We formally describe these formulations in

the following sections. In the first phase, we employ a branch-and-cut algorithm with a two-hour time

limit to solve (R) in order to obtain an extended lower bound on the optimal cost z∗ of (P). We add valid

inequalities to the linear programming relaxation at the root of the branch-and-bound tree; we provide

details about these inequalities in the following sections. In this phase, if the branch-and-cut algorithm

is able to solve the extended lower bound formulation to optimality, we can provide a lower bound on

the optimal cost and we can identify a cut pool of violated valid inequalities to use in the third phase.

If we obtain an optimal integer solution within the time limit, this solution is optimal for (P) (and our

solution approach terminates). If we do not obtain an optimal integer solution of the extended lower

bound formulation within the time limit, we execute the second phase by applying a heuristic, based on

the solution obtained in the first phase, to find an upper bound on the optimal cost z∗. Then, in the third

phase, we apply a branch-and-cut algorithm to (P), using the heuristic solution from the second phase

as the initial upper bound. We first add the cut pool of violated valid inequalities identified in the first

phase and any new valid inequalities to the initial linear program at the root of the branch-and-bound tree.

Further, we dynamically add some of these inequalities. The following sections describe each phase in

detail.
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Figure 4.4.1: Three-Phase Solution Procedure
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4.4.1 First Phase: Extended Lower Bound

We obtain the extended lower bound on the optimal cost z∗ of (P) on the basis of a vehicle-indexed

integer programming formulation that is an adaptation from Adulyasak et al. (2013). This vehicle-indexed

formulation, (P
′
), which is equivalent to (P), relies on the following decision variables that use an explicit

indexing of the vehicles in the fleet:

• qtki: quantity to pick up from supplier i ∈ I by vehicle k ∈ K on day t ∈ T

• Iti: inventory level at supplier i ∈ I at end of day t ∈ T

• Iit0: inventory level of component i at the plant at end of day t ∈ T

• ztki: binary variable equal to 1 if node i ∈ I ∪ {0} is visited by vehicle k ∈ K on day t ∈ T and 0

otherwise

• xtkij : binary variable equal to 1 if vehicle k ∈ K travels directly from node i ∈ I ∪ {0} to node

j ∈ I ∪ {0} on day t ∈ T and 0 otherwise.

We formally describe the vehicle-indexed formulation, (P
′
), via (4.15)–(4.27):
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min
∑
t∈T

∑
k∈K

∑
(i,j)∈E

cijxtkij +
∑
t∈T

∑
i∈I

hiIti +
∑
t∈T

∑
i∈I

hi0I
i
t0 (4.15)

s.t. Iti = Iprev(t),i + di −
∑
k∈K

qtki ∀t ∈ T , ∀i ∈ I (4.16)

Iit0 = Iiprev(t),0 +
∑
k∈K

qtki − di ∀t ∈ T ,∀i ∈ I (4.17)

Iti ≤ (T − 1)di

(
1−

∑
k∈K

ztki

)
∀t ∈ T ,∀i ∈ I (4.18)∑

i∈I
qtki ≤ Qztk0 ∀t ∈ T ,∀k ∈ K (4.19)

qtki ≤ min {Q,Tdi} ztki ∀t ∈ T ,∀k ∈ K, ∀i ∈ I (4.20)∑
(j,j′)∈δ(i)

xtkjj′ = 2ztki ∀t ∈ T ,∀k ∈ K, ∀i ∈ I ∪ {0} (4.21)

∑
(i,j)∈E(U)

xtkij ≤
∑
i∈U

ztki − ztku ∀t ∈ T ,∀k ∈ K,

∀U ⊆ I, |U| ≥ 2,∀u ∈ U (4.22)

qtki ≥ 0 ∀t ∈ T ,∀k ∈ K, ∀i ∈ I (4.23)

Iti, I
i
t0 ≥ 0 ∀t ∈ T ,∀i ∈ I (4.24)

ztki ∈ {0, 1} ∀t ∈ T ,∀k ∈ K, ∀i ∈ I ∪ {0} (4.25)

xtkij ∈ {0, 1} ∀t ∈ T ,∀k ∈ K, ∀(i, j) ∈ E : i /∈ {0} (4.26)

xtk0j , xtkj0 ∈ {0, 1} ∀t ∈ T ,∀k ∈ K,∀j ∈ I. (4.27)

The objective function (4.15) and constraints (4.16), (4.17), (4.18), (4.20) and (4.21) are analogous to

(4.1), (4.2), (4.3), (4.4), (4.6) and (4.7), respectively. Constraints (4.19) enforce the total amount serviced

by a vehicle to be within the effective vehicle capacity. Constraints (4.22) prohibit subtours. Constraints

(4.23)–(4.27) mirror the variable definitions in (4.9)–(4.14). We observe that constraints (4.18) and (4.24)

prohibit split collections, i.e., multiple visits to a supplier in a single day. We introduce (R), the extended

relaxation of (P
′
), as the formulation that relaxes both the subtour elimination constraints (4.22) and

the binary nature of the ztki and xtkij variables. An observation regarding the qtki variables motivates

a change of variables in our relaxation of (P
′
). Because Q is integer, the variables qtki are integer in

the extreme points of the convex hull of (P
′
). Therefore, due to constraints (4.18), if the quantity qtki

is greater than zero, it is a multiple of di, i.e., qtki = αdi, where α = 1, . . . , T . We introduce the binary

variable wtkαi equal to 1 if the quantity αdi is picked-up at the supplier i by vehicle k on day t. We

replace the variable qtki with
∑T

α=1 αdiwtkαi everywhere in the formulation. Then, we can formulate (R)

with (4.28)–(4.41):
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min
∑
t∈T

∑
k∈K

∑
(i,j)∈E

cijxtkij +
∑
t∈T

∑
i∈I

hiIti +
∑
t∈T

∑
i∈I

hi0I
i
t0 (4.28)

s.t. Iti = Iprev(t),i + di −
∑
k∈K

T∑
α=1

αdiwtkαi ∀t ∈ T , ∀i ∈ I (4.29)

Iit0 = Iiprev(t),0 +
∑
k∈K

T∑
α=1

αdiwtkαi − di ∀t ∈ T , ∀i ∈ I (4.30)

Iti ≤ (T − 1)di

(
1−

∑
k∈K

ztki

)
∀t ∈ T , ∀i ∈ I (4.31)

∑
i∈I

T∑
α=1

αdiwtkαi ≤ Qztk0 ∀t ∈ T , ∀k ∈ K (4.32)

ztki =
T∑
α=1

wtkαi ∀t ∈ T , ∀k ∈ K,∀i ∈ I (4.33)

T∑
α=1

αdiwtkαi ≤ min {Q,Tdi} ztki ∀t ∈ T , ∀k ∈ K,∀i ∈ I (4.34)∑
(j,j′)∈δ(i)

xtkjj′ = 2ztki ∀t ∈ T , ∀k ∈ K,∀i ∈ I ∪ {0} (4.35)

Iit, I
i
0t ≥ 0 ∀t ∈ T , ∀i ∈ I (4.36)

wtkαi ∈ {0, 1} ∀t ∈ T , ∀k ∈ K,

∀α = 1, . . . , T,∀i ∈ I (4.37)

ztk0 ∈ {0, 1} ∀t ∈ T , ∀k ∈ K (4.38)

0 ≤ ztki ≤ 1 ∀t ∈ T , ∀k ∈ K,∀i ∈ I (4.39)

0 ≤ xtkij ≤ 1 ∀t ∈ T , ∀k ∈ K,

∀(i, j) ∈ E : i /∈ {0} (4.40)

0 ≤ xtk0j , xtkj0 ≤ 1 ∀t ∈ T , ∀k ∈ K,∀j ∈ I. (4.41)

We solve (R) by applying a branch-and-cut algorithm with a time limit of two hours. We add the

classical symmetry breaking inequalities described in 4.C to the initial linear program at the root of the

branch-and-bound tree for each i ∈ I. Then, we dynamically add the subtour elimination constraints

(4.22) to the current linear program at each node of the branch-and-bound tree for the vehicle k, day t

combination for which the violation is checked, as in Adulyasak et al. (2013). If we obtain an optimal

solution of (R) within the time limit which has integer values for all xtikj and ztki variables, this solution

is also optimal for (P) and we terminate, otherwise we continue on to the second phase.

4.4.2 Second Phase: Heuristic Solution

If the first phase terminates with an optimal solution of (R) with fractional values of xtikj and ztki
variables or before a provably optimal solution of (R) is achieved, we generate a heuristic solution to

(P
′
) from the solution of (R) in hand. In any feasible solution of (R), the quantity picked-up from each

supplier by each vehicle on each day is also feasible for the original formulation (P
′
). Therefore, the
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values of the variables Iti and Iit0 in any feasible solution of (R) are also feasible for (P
′
). Moreover, the

value of variables ztki are either equal to 0 or 1 in any feasible solution of (R) due to constraints (4.33);

thus, these variables are feasible for (P
′
). So, in a feasible solution to (R), the xtkij variables are the only

ones that may not be feasible in (P
′
) as they may be fractional. As Algorithm 1 displays, we generate the

heuristic solution by solving a traveling salesman problem (TSP) defined by the set of visited suppliers for

each vehicle-day combination. We solve these TSP instances with the Concorde TSP Solver.

Algorithm 1: Heuristic
1: for each day t ∈ T do
2: for each vehicle k ∈ K do
3: Compute the subset of visited suppliers Ztk = {i ∈ I : ztki = 1} ⊆ I.
4: Find an optimal TSP tour on the complete undirected subgraph induced by Ztk ∪ {0}.
5: end for
6: end for

We remark that basing an extended lower bound formulation directly on (P) (instead of (P
′
)) is not

efficient because solutions obtained from such an extended lower bound formulation would be expressed

in terms of decision variables without an explicit vehicle index. Therefore, a solution of an extended lower

bound formulation that is fractional in terms of variables xtij would require solving a capacitated vehicle

routing problem instead of a TSP in each period of the planning horizon. Hence, a heuristic based on an

extended lower bound formulation with no vehicle index generally does not produce high quality feasible

solutions.

4.4.3 Third Phase: Branch-and-Cut on Original Formulation

In the third phase, we apply a branch-and-cut algorithm (with a time limit of four hours) to (P). We

set the initial upper bound equal to the objective value of the heuristic solution from the second phase.

To the initial linear program at the root of the branch-and-bound tree, we add the cut pool of violated

constraints (4.8). More specifically, for each subset U such that a violation of constraints (4.22) is detected,

we define and add constraints (4.8) to the initial linear program, along with the classical valid inequalities

described in 4.C and the single-item lot-sizing valid inequalities in §4.4.3. Then, we dynamically add the

parity inequalities described in 4.C. We also dynamically add the CSE constraints to the current linear

program at each node of the branch-and-bound tree. We separate these constraints using the procedure of

Picard & Ratliff (1973) that polynomially solves a min-cut problem.

subsectionValid Inequalities

As previously described, our solution approach leverages valid inequalities in its branch-and-cut

algorithm. In this section, we describe the single-item lot-sizing valid inequalities that we employ. In 4.C,

we describe the additional valid inequalities from the literature that we incorporate.

We introduce new valid inequalities based on a polyhedral analysis of the subproblem concerning a

single supplier (item) i. Let PCIRP be the convex hull of all the vectors
(
q, I, I0, z0, z, xE\E0

, xE0

)
∈

R|T ||I|+ ×R|T ||I|+ ×R|T ||I|+ ×Z |T |+ ×{0, 1}
|T ||I|×{0, 1}|T ||E\E0|×{0, 1}2(|T ||E0|) satisfying the constraints

of (P), where E0 is the set of all the edges that are incident to the plant, node 0. Because Q is integer, the

values of q, I, I0 are integer in the extreme points of PCIRP . Any feasible solution of (4.1)–(4.14) belongs

to the space {0, . . . , Tdi}|T ||I| × {0, . . . , (T − 1) di}2(|T ||I|) × Z |T |+ × {0, 1}|T ||I| × {0, 1}|T ||E\E0| ×
{0, 1}2(|T ||E0|) because the variables qti to pick-up from supplier i on day t is an integer multiple of the

plant demand di, which in turn implies that the inventory levels Iti and Iit0 are also all integer multiples of

the plant demand di.
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In this section, we study the polyhedron of the single-item lot-sizing problem (with an inventory

clearing policy and no split collection) defined by (4.42)–(4.49) to derive inequalities that are also valid

for the PCIRP . As we deal with a single supplier in this section, we drop the index i for notational brevity

and, without loss of generality, assume di = 1. Because each supplier provides a unique component

to the plant, the polyhedron PCIRP is equal to ∪i∈IP iSILSP ∩ PPCV RP , where P iSILSP is the convex

hull of all the vectors satisfying (4.43)-(4.49), and where PPCV RP is the polyhedron of the periodic

capacitated vehicle routing problem defined by all the vectors satisfying constraints (4.5), (4.7), (4.8) and

(4.11)–(4.14).

(SILS) min
∑
t∈T

hIt +
∑
t∈T

h0It0 (4.42)

s.t. It = Iprev(t) + 1− qt ∀t ∈ T (4.43)

It0 = Iprev(t),0 + qt − 1 ∀t ∈ T (4.44)

It ≤ (T − 1) (1− zt) ∀t ∈ T (4.45)

qt ≤ min {Q,T} zt ∀t ∈ T (4.46)

qt ≥ 0 ∀t ∈ T (4.47)

It, It0 ≥ 0 ∀t ∈ T (4.48)

zt ∈ {0, 1} ∀t ∈ T (4.49)

Constraints (4.43) and (4.44) imply that the total inventory level of item i is constant over time,

It+It0 = Iprev(t) +Iprev(t)0. Moreover, the maximum total inventory level occurs when the total quantity

T needed by the plant is picked-up at the supplier on a single day over the time horizon. In this case, the

total inventory level is equal to T − 1 and because it is constant over time, we know It + It0 ≤ T − 1

for all t ∈ T . We leverage the fact that It + It0 ≤ T − 1 for all t ∈ T in an extended reformulation of

(SILS) which we define by (4.50)–(4.61) and refer to as the extended unit stock formulation.

Constraints (4.51) and (4.52) link the inventory variables It with the stock variables uαt. The binary

variable uαt is equal to 1 if It = α (for α ∈ {0, 1, . . . , T − 1}), and 0 otherwise. Constraints (4.53) and

(4.54) link the inventory variables It0 with the stock variables yβt. The binary variable yβt is equal to 1

if It0 = β (for β ∈ {0, 1, . . . , T − 1}), and 0 otherwise. Constraints (4.55) imply that if the supplier is

visited on day t, then its inventory level is equal to 0 (otherwise it is at least equal to one). Constraints

(4.56) relate the value of the inventory level at the supplier to the inventory level at the production plant:

when It0 = β, It must be a value in set {0, 1, . . . , T − 1− β}. Constraints (4.57) and (4.58) state that

the decision variables uαt and yβt are non-negative. Constraints (4.59)–(4.61) define uαt, yβt and zt as

binary variables. Although constraints (4.57) and (4.58) are redundant, we include them to facilitate the

definition of properties of the continuous polyhedron associated with (EUS).
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(EUS) min
∑
t∈T

hIt +
∑
t∈T

h0It0 (4.50)

s.t. It =
T−1∑
α=0

αuαt ∀t ∈ T (4.51)

T−1∑
α=0

uαt = 1 ∀t ∈ T (4.52)

It0 =
T−1∑
β=0

βyβt ∀t ∈ T (4.53)

T−1∑
β=0

yβt = 1 ∀t ∈ T (4.54)

zt = u0t ∀t ∈ T (4.55)

yβt ≤
T−1−β∑
α=0

uαt ∀β ∈ {0, . . . , T − 1} ,∀t ∈ T (4.56)

uαt ≥ 0 ∀α ∈ {0, . . . , T − 1} ,∀t ∈ T (4.57)

yβt ≥ 0 ∀β ∈ {0, . . . , T − 1} ,∀t ∈ T (4.58)

uαt ∈ {0, 1} ∀α ∈ {0, . . . , T − 1} ,∀t ∈ T (4.59)

yβt ∈ {0, 1} ∀β ∈ {0, . . . , T − 1} ,∀t ∈ T (4.60)

zt ∈ {0, 1} ∀t ∈ T . (4.61)

To show that the polyhedron corresponding to the continuous extended unit stock formulation defined

by (4.51)–(4.58) is an integral polyhedron, we first introduce a new extended formulation of (SILS),

which we refer to as the extended unit flow formulation, (EUF). Defining the binary variables fα,βt to be

equal to 1 if It = α and It0 = β (for α, β ∈ {0, 1, . . . , T − 1}), and 0 otherwise, the extended unit flow
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formulation (EUF) is:

min
∑
t∈T

T−1∑
α=0

hαuαt +
∑
t∈T

T−1∑
β=0

h0βyβt (4.62)

s.t. uαt =

T−1∑
β=0

fα,βt ∀α ∈ {0, . . . , T − 1} ,∀t ∈ T (4.63)

yβt =
T−1∑
α=0

fα,βt ∀β ∈ {0, . . . , T − 1} , ∀t ∈ T (4.64)

fα,βt = fα+1,β−1
t+1 + f0,α+βt+1 ∀α, β ∈ {0, . . . , T − 1} , α+ 1 ≤ T − 1,

β − 1 ≥ 0, α+ β ≤ T − 1, ∀t ∈ T (4.65)

fα,βt = 0 ∀α, β ∈ {0, . . . , T − 1} , α+ β > T − 1,

∀t ∈ T (4.66)
T−1∑
α=0

T−1∑
β=0

fα,βt = 1 ∀t ∈ T (4.67)

uαt ≥ 0 ∀α ∈ {0, . . . , T − 1} ,∀t ∈ T (4.68)

yβt ≥ 0 ∀β ∈ {0, . . . , T − 1} , ∀t ∈ T (4.69)

fα,βt ≥ 0 ∀α, β ∈ {0, . . . , T − 1} ,∀t ∈ T (4.70)

fα,βt ∈ {0, 1} ∀α, β ∈ {0, . . . , T − 1} ,∀t ∈ T . (4.71)

Constraints (4.63) and (4.64) link the unit flow variables with the unit stock variables. Constraints (4.65)

represent flow conservation equations: when It = α and It0 = β, if no pick-up is performed at time

t, then It+1 = α + 1 and It+1,0 = β − 1, and therefore fα+1,β−1
t+1 = 1; if a pick-up is performed at

time t, It+1 = 0 and It+1,0 = α+ β, and therefore f0,α+βt+1 = 1. Constraints (4.66) impose that the unit

flow is equal to zero for each (α, β) combination that results in more than T − 1 units of total inventory.

Constraints (4.67) ensure a flow of one unit on each day. Constraints (4.68)–(4.71) define the unit stock

variables and the unit flow variables. Constraints (4.70) are redundant, but their inclusion allows us to

easily indicate that the matrix associated with (4.63)–(4.70) is totally unimodular. Because all the entries

of the matrix corresponding to (4.63)–(4.70) are -1, 0, or 1, it is totally unimodular and therefore the

polyhedron of (EUF) is integral. Theorem 4.1 states that the polyhedron of the extended unit stock

formulation is also integral. We prove Theorem 4.1 in 4.B by obtaining the polyhedron of the extended

unit stock formulation by projecting the extended unit flow polyhedron in the space of the variables of

(EUS).

Theorem 4.1. The linear programming formulation (4.50)-(4.58) has solutions with integer-valued It
and It0, ∀t ∈ T , and zt, ∀t ∈ T .

We now show how to obtain a description of the convex hull of the solutions of (SILS) through the

Fourier-Motkzin elimination of variables w and y in the (EUS). We consider the case of T = 3. From

(4.51), u2t = It−u1t
2 . From (4.52) and (4.55), we have u1t = 1 − u0t − u2t = 1 − zt − It−u1t

2 . From

(4.57), this implies:

2− 2zt − It ≥ 0. (4.72)
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Moreover, substituting u1t = 2− 2zt − It into u2t = It−u1t
2 and noting (4.57) yields:

It + zt − 1 ≥ 0. (4.73)

From (4.53), y2t = It0−y1t
2 . Combined with (4.54), we obtain y0t = 2−It0−y1t

2 . Substituting u1t =

2 − 2zt − It and (4.55) into (4.56) for β = 1, we have y1t ≤ zt + 2 − 2zt − It = 2 − zt − It. From

(4.55) and (4.56) for β = 2, we obtain y2t ≤ zt. Substituting y1t ≤ 2− ztk − It and y2t ≤ zt into (4.53),

we have It0 ≤ 2− zt − It + 2zt = 2 + zt − It. However, the resulting inequality, It + It0 ≤ 2 + zt is

dominated by It + It0 ≤ T − 1 for T = 3. Therefore the projection of the y variables onto the original

space does not produce tight inequalities, and we omit them from the linear programming reformulation

of (SILS). Therefore, for T = 3, we replace the (SILS) formulation with the linear program defined

by (4.42)–(4.44), (4.46)–(4.48), (4.72) and (4.73), and the constraints 0 ≤ zt ≤ 1 for all t ∈ T . Our

polyhedral analysis provides a description of the convex hull of the solutions of the (SILS) in which

continuous variables zt, qt, It and It0 assume integer values in the extreme points. We now introduce a set

of valid inequalities inspired by our polyhedral analysis. We prove Proposition 4.1 in 4.B.

Proposition 4.1. The following inequalities are valid for PCIRP :

Iti ≥ di(1− zti) ∀i ∈ I, ∀ t ∈ T (4.74)

Iti ≤
(
T − 2 + znext(t)i

)
di ∀i ∈ I, ∀ t ∈ T (4.75)

Iti ≥ Iprev(t)i + (1− Tzti) di ∀i ∈ I, ∀ t ∈ T (4.76)

Iiprev(t)0 ≥ (1− zti) di ∀i ∈ I, ∀ t ∈ T (4.77)

Iit0 ≤ (T − 2 + zti) di ∀i ∈ I, ∀ t ∈ T (4.78)

Iit0 ≤ Iiprev(t)0 + Tdizti − di ∀i ∈ I, ∀ t ∈ T (4.79)

Iit0 ≤
(
zprev(t)i + 2zti

)
di ∀i ∈ I, ∀ t ∈ T = {1, 2, 3}. (4.80)

In the following, an extension of the polyhedral analysis for any T > 1 is provided. The aim is to

project variables w and y onto the original (I, I0, z) space of the (SILS) using the Fourier-Motzkin

elimination procedure. We re-write in a more explicit form all the constraints defining the feasible region

of the continuous relaxation of the (SILS):

It = u1t + 2u2t + . . .+ (T − 1)u(T−1)t ∀t ∈ T (4.81)

u0t + u1t + u2t + . . .+ u(T−1)t = 1 ∀t ∈ T (4.82)

It0 = y1t + 2y2t + . . .+ (T − 1) y(T−1)t ∀t ∈ T (4.83)

y0t + y1t + y2t + . . .+ y(T−1)t = 1 ∀t ∈ T (4.84)

zt = u0t ∀t ∈ T (4.85)

y0t ≤ u0t + u1t + u2t + . . .+ u(T−1)t ∀t ∈ T (4.86)

y1t ≤ u0t + u1t + u2t + . . .+ u(T−2)t ∀t ∈ T (4.87)

y2t ≤ u0t + u1t + u2t + . . .+ u(T−3)t ∀t ∈ T (4.88)

. . . . . . (4.89)

y(T−1)t ≤ u0t ∀t ∈ T (4.90)

u0t, u1t, u2t, . . . , u(T−1)t ≥ 0 ∀t ∈ T (4.91)

y0t, y1t, y2t, . . . , y(T−1)t ≥ 0 ∀t ∈ T (4.92)
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From (4.82) and (4.85), u1t = 1 − zt −
(
u2t + . . .+ u(T−1)t

)
. From (4.81) and (4.91), It−u1t(T−1) =

2
(T−1)u2t + . . . + u(T−1)t ≤ u2t + . . . + u(T−1)t. Hence, u1t ≤ 1− zt −

(
2

(T−1)u2t + . . .+ u(T−1)t

)
,

from which u1t ≤ 1− zt − It−u1t
(T−1) . From (4.91), 0 ≤ u1t ≤ 1− zt − It−u1t

(T−1) , that is:

(T − 1) zt + It ≤ (T − 1) . (4.93)

From (4.82) and (4.91), u0t+u1t+2u2t+ . . .+ . . .+(T − 1)u(T−1)t ≥ 1. From (4.81), the previous

inequality becomes u0t + It ≥ 1. Hence, from (4.85), we obtain:

zt + It ≥ 1. (4.94)

In a similar way, we project all the remaining variables u2t, . . . , u(T−1)t. More precisely, to project

u2t we use (4.81) to obtain u2t =
It−u1t−(3u3t+...+(T−1)u(T−1)t)

2 . From (4.82) and (4.91), 3u3t + . . . +

(T − 1)u(T−1)t ≥ 1 − u0t − u1t − u2t. Hence, u2t ≤ (It − u1t − (1− u0t − u1t − u2t)) /2. From

(4.91), 0 ≤ 2u2t ≤ It − 1 + u0t + u2t, and we obtain again inequality (4.94). We obtain again the

same valid inequality (4.94), by projecting all the remaining w variables. The same logic allows to

project variables y0t, y1t, y2t, . . . , y(T−1)t. More specifically, from (4.86), (4.92) and (4.82), we obtain

0 ≤ y0t ≤ u0t + u1t + u2t + . . .+ u(T−1)t = 1. From (4.83), y1t = It0 − 2y2t − . . .− (T − 1) y(T−1)t.

From (4.84) and (4.92), 2y2t + . . . + (T − 1) y(T−1)t ≥ 1 − y0t − y1t. Hence, from (4.92), 0 ≤ y1t ≤
It0 − 1 + y0t + y1t, that is 1− It0 ≤ y0t. Since y0t ≤ 1, we obtain 1− It0 ≤ y0t ≤ 1, that produces the

following inequality:

It0 ≥ 0. (4.95)

In a similar way, all the remaining variables y2t, . . . , y(T−1)t can be projected out. In fact, to project out

variable y2t we use (4.83) to obtain y2t = (It0 − yt1 − (3y3t + . . . + (T − 1) y(T−1)t
))
/2. From (4.84)

and (4.92), 3y3t + . . .+ (T − 1) y(T−1)t ≥ 1− y0t − y1t − y2t. Hence, y2t ≤ It0−y1t−(1−y0t−y1t−y2t)
2 =

It0−1+y0t+y2t
2 . From (4.92), 0 ≤ y2t ≤ It0 − 1 + y0t. Since y0t ≤ 1, then 0 ≤ y2t ≤ It0 − 1 + y0t ≤ It0,

that is inequality (4.95). We obtain again the same valid inequality (4.94), by projecting out all the

remaining y variables.

Therefore, for any T > 1, we can replace the (SILS) formulation with the linear program defined by

(4.42)–(4.44), (4.46)–(4.48), (4.93)–(4.95), and the constraints 0 ≤ zt ≤ 1 for all t ∈ T . Our polyhedral

analysis provides a description of the convex hull of the solutions of the (SILS) in which continuous

variables zt, qt, It and It0 assume integer values in the extreme points.

4.5 Computational results

We code our solution approach in C++ and compile with g++ -O3. We execute our computational

experiments on a PC equipped with 2 Intel Xeon E5335 CPUs running at 2.00 GHz on single thread, with

6 GB of RAM.

We derive a set of instances for our inbound cyclic IRP problem from the set of outbound non-cyclic

IRP instances of Archetti et al. (2007) to evaluate the performance of our solution approach. We use the

locations and the demands of the customers provided in Archetti et al. (2007) as the locations and the
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production rates of our suppliers, the production rate of the factory in Archetti et al. (2007) as the demand

of our assembly plant, and the inventory holding cost generated by Archetti et al. (2007) in the interval

[0.1, 0.5] as the inventory cost at the suppliers and at the plant. We do not use the initial inventory levels

as input data, as they are decision variables in our problem, and we do not use the maximum inventory

level at the customers, as we do not have the maximum inventory level at the suppliers.

Mirroring the instances in Archetti et al. (2007), we consider a total of 50 single-vehicle instances (five

instances for each class with 5, 10, . . ., 50 suppliers). For these one-vehicle instances, we consider both a

three-day and a six-day planning horizon. To computationally demonstrate that our solution approach is

scalable to multi-vehicle instances, we consider 35 instances with two vehicles (five instances for each

class with 5, 10, . . ., 35 suppliers). For these two-vehicle instances, we consider both a three-day and a

six-day planning horizon. We also consider 25 instances with 3 vehicles (five instances for each class with

5, 10, . . ., 25 suppliers), for which we consider a three-day planning horizon. In the instances with two

and three vehicles, we use the same vehicle capacity as in the corresponding instance of Archetti et al.

(2007), while in our one-vehicle instances, we double this vehicle capacity.

To provide a frame of reference for the computational difficulty of our cyclic IRP formulation, we

compare it to the classical non-cyclic IRP. As the goal of our IRP formulation is to identify an optimal

stationary inventory collection policy independent of any initial conditions, the initial inventory levels

at the suppliers and at the plant are decision variables in our cyclic inbound IRP rather than input data.

Furthermore, the inventory levels at the end of the cyclic planning horizon must be equal to initial inventory

levels, and the maximum inventory level at each supplier is a function of the length of the planning horizon.

However, for the classical (non-cyclic outbound) IRP, the initial inventory levels at the factory and the

customers are traditionally input data, the inventory levels at the end of the planning horizon are not

required to be equal to the corresponding initial inventory levels, and the maximum inventory level at

each customer is exogenously set. Thus, the feasible region of our model is larger than the one of the

classical IRP. In §4.5.1, our experiments show that the cyclic IRP is significantly more difficult to solve to

optimality than the classical non-cyclic IRP. The results in §4.5.1 also suggest that, although tailored to

our cyclic IRP formulation, our exact approach is effective at solving a non-cyclic IRP formulation.

In §4.5.2, we conduct computational experiments to investigate the impact of the inventory clearing

policy and no split collections by removing these constraints from our formulation. The results in §4.5.2

demonstrate that enforcing an inventory clearing policy has a greater impact on the optimal cost than

disallowing split collections for the inbound IRP. These results also provide evidence that our exact

approach is capable of solving more general versions of the cyclic IRP. To the best of our knowledge,

these are the first results in the literature demonstrating the performance of an exact method for an IRP

with split collection (or analogously, split deliveries for the outbound IRP).

In §4.5.3, we show that our three-phase approach consistently solves to optimality single-vehicle

instances with up to 50 suppliers for a three-day planning horizon, and with up to 30 suppliers for a

six-day planning horizon. For the single-vehicle instances, we examine the computational behavior of the

third phase’s brand-and-cut algorithm in 4.D.

In §4.5.4, we show that, although scalability is a challenge even for the much simpler non-cyclic IRP,

our three-phase approach scales relatively well to instances of the cyclic IRP with two vehicles over a

three-day and a six-day planning horizon, and to instances with three vehicles over a three-day planning

horizon. For a three-day planning horizon, our three-phase approach solves to optimality all two-vehicle
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instances with up to 15 suppliers and seven out of ten three-vehicle instances with up to 10 suppliers.

For two vehicles over six periods, the proposed solution approach is able to optimally solve 5 of the 25

instances. We examine the computational behavior of the third phase’s brand-and-cut algorithm for the

multi-vehicle instances in 4.E.

In 4.F and 4.G, we present results from additional experiments examining the behavior of the first

phase’s extended lower bound formulation and of the second phase’s heuristic procedure, respectively.

4.5.1 Cyclic Versus Non-Cyclic IRP

In this section, we execute computational experiments that demonstrate that our cyclic IRP formulation is

more difficult to solve than the non-cyclic IRP. We modify formulation (P) to allow a non-cyclic planning

horizon with fixed initial inventory levels. To fix the initial inventory level at supplier i to I0i, we replace

constraints (4.2) with

I1i = I0i + di − q1i ∀i ∈ I (4.96)

and

Iti = Iprev(t),i + di − qti ∀t ∈ {2, . . . , T} ,∀i ∈ I. (4.97)

Similarly, to fix the initial inventory level of component i at the plant to Ii00, we replace (4.3) with

Ii10 = I
i
00 + q1i − di ∀i ∈ I (4.98)

and

Iit0 = Iiprev(t),0 + qti − di ∀t ∈ {2, . . . , T} ,∀i ∈ I. (4.99)

We assume that I0i and Ii00 are integer multiples of di for each i ∈ I . Because I1i = I0i + di− q1i ≤
(T − 1)di (1− z1i), if z1i = 0, then I1i = I0i + di ≤ (T − 1)di and consequently I0i ≤ (T − 2) di.

On the other hand, because Iti + Iit0 = I0i + I
i
00 ≤ (T − 1)di, if I0i = (T − 2) di then Ii00 ≤ di,

while Ii00 = (T − 1) di implies I0i = 0. Therefore, I0i can be selected in {0, di, . . . , (T − 2) di}, and

I
i
00 can be chosen in {0, di, . . . , (T − 1) di}, but in such a way that satisfies I0i + I

i
00 ≤ (T − 1)di.

Recalling that the pickup quantities qti are integer multiples of di for each t ∈ T , and i ∈ I , the lot-sizing

inequalities (4.74), (4.76), (4.77), and (4.78) are still valid. Furthermore, the parity inequalities and

classical inequalities remain valid for each t ∈ T . We modify the extended relaxation (R) accordingly.

The first column of Table 4.5.1 (and subsequent tables) provides the instance name in the form

CIRLwtxkyiz, where w denotes the instance index (1, 2, . . . , 5), x is the length of the cyclic planning

horizon, y denotes the number of vehicles, and z denotes the number of the suppliers. For the case when

initial inventory levels at the suppliers are free decision variables, the second, third, and fourth columns

list the gap between the extended lower bound and the best known upper bound, whether the extended

lower bound corresponded to an optimal integer solution, and the computation time. The fifth, sixth, and

seventh columns correspond to the analogous information for the case when the initial inventory level for

component i is fixed to di at the supplier and plant for all i ∈ I. For the case when the initial inventory

levels at the suppliers are free decision variables, the eighth column shows the gap between the best upper

bound found by the branch-and-cut algorithm in our third phase and the best known lower bound; the ninth

column lists the corresponding computation time. The tenth and eleventh columns show the analogous

information regarding the branch-and-cut for the case when initial inventory level for component i is fixed

to di at the supplier and plant for all i ∈ I.
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Table 4.5.1: Cyclic IRP Versus Non-Cyclic IRP

Instance

Extended Lower Bound Branch-and-Cut

Cyclic Non-Cyclic Cyclic Non-Cyclic

% Integer Time % Integer Time % Time % Time
Gap solution (sec) Gap Solution (sec) Gap (sec) Gap (sec)

CIRL1t6k1i05 0.00 * 4.6 0.00 * 0.16 0.00 - 0.00 -
CIRL1t6k1i10 0.00 * 269.51 0.00 * 5.99 0.00 - 0.00 -
CIRL1t6k1i15 0.00 * 592.73 0.00 * 18.48 0.00 - 0.00 -
CIRL1t6k1i20 1.00 TL 0.00 * 138.09 0.00 5879.62 0.00 -
CIRL1t6k1i25 0.00 * 7170.73 0.00 * 182.23 0.00 - 0.00 -
CIRL1t6k1i30 3.00 TL 0.00 * 570.54 3.02 TL 0.00 -
CIRL1t6k1i35 3.00 TL 0.00 * 1236.57 2.24 TL 0.00 -
CIRL1t6k1i40 3.62 TL 0.00 * 2674.70 2.78 TL 0.00 -
CIRL1t6k1i45 10.36 TL 0.00 * 2641.81 8.61 TL 0.00 -
CIRL1t6k1i50 15.65 TL 0.00 * 4181.34 15.07 TL 0.00 -

Average 3.66 5123.76 0.00 1164.99 3.17 12979.94 0.00

The computational results in Table 4.5.1 clearly show that the cyclic IRP is significantly more difficult

to solve to optimality than non-cyclic IRP with fixed initial inventory levels. In these tests, our three-phase

approach obtains optimal solutions for the one-vehicle instances with up to 25 customers. However, for the

equivalent non-cyclic instances, just the first phase of our approach is able to find an extended lower bound

that is an optimal integer solution for instances with up to 50 customers. Furthermore, our modifications

to (P) to make it non-cyclic with fixed initial inventory levels, but we do not enforce a maximum inventory

level as typically done in the standard non-cyclic IRP. Thus, our computational comparison in Table 4.5.1

is an under-estimate of the difference in computational difficulty between our cyclic IRP formulation and

the non-cylic IRP formulation considered in the literature as the feasible region as defined by Archetti et

al. (2007) will be even smaller than what we consider.

4.5.2 Allowing Split Collection

In this section, we demonstrate that our solution approach is capable of handling more general versions

of the cyclic IRP, in particular the case without the inventory clearing policy and with split collection.

Because (P) is defined on the basis of decision variables that do not use an explicit indexing of the vehicles

in the fleet, we refer to (P ′) in order to analyze the effect of allowing split collection in our problem.

Constraints (4.18) implicitly prohibit split collection in any feasible solution of (P
′
). We can allow split

collection in a feasible solution of (P
′
) by relaxing constraints (4.18). By relaxing constraints (4.18),

the pickup quantities qtki may no longer be integer multiples of di for each t ∈ T , k ∈ K, and i ∈ I.

Thus, the extended formulation is not a valid lower bound anymore, but it can still provide a feasible

solution. However, we can still run the second-phase heuristic and third-phase branch-and-cut with a

feasible solution to prune nodes in the tree.

This demonstrates that our approach is capable of handling more general versions of the cyclic

IRP, although we have tailored our analysis to a cyclic inbound IRP with an inventory clearing policy.

Table 4.5.2 shows the results of a computational experiment to gauge the impact of enforcing an inventory

clearing policy and no split collection. The first column of Table 4.5.2 lists the names of 15 instances (with

two vehicles and a three-day planning horizon) that were solved to optimality in Table 4.E.1. The second

column provides the optimal values obtained by the branch-and-cut algorithm for solving (P
′
). The

third column lists the optimal values obtained by the branch-and-cut algorithm for solving (P
′
) without
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Table 4.5.2: Effect of Inventory Clearing Policy and Split Collection on Optimal Cost

Optimal Cost % Gap Resulting From

Instance ICP, No Split No ICP, Split No ICP, No Split ICP, No Split ICP No Split

CIRL1t3k2i05 1801.05 1796.22 1796.22 0.27 0.27 0.00
CIRL2t3k2i05 2665.44 2163.72 2163.72 23.19 23.19 0.00
CIRL3t3k2i05 4007.30 3858.16 3866.46 3.87 3.64 0.21
CIRL4t3k2i05 2438.84 2438.84 2438.84 0.00 0.00 0.00
CIRL5t3k2i05 2129.34 2032.20 2045.39 4.78 4.10 0.64

CIRL1t3k2i10 3972.29 3963.33 3963.33 0.23 0.23 0.00
CIRL2t3k2i10 4398.27 4261.35 4267.75 3.21 3.06 0.15
CIRL3t3k2i10 3610.82 3552.78 3552.78 1.63 1.63 0.00
CIRL4t3k2i10 3781.87 3737.13 3737.13 1.20 1.20 0.00
CIRL5t3k2i10 3580.32 3484.96 3484.96 2.74 2.74 0.00

CIRL1t3k2i15 3807.30 3747.91 3747.91 1.58 1.58 0.00
CIRL2t3k2i15 4077.82 4002.76 4002.76 1.88 1.88 0.00
CIRL3t3k2i15 4820.46 4747.54 4747.54 1.54 1.54 0.00
CIRL4t3k2i15 3865.76 3714.92 3714.92 4.06 4.06 0.00
CIRL5t3k2i15 4349.72 4257.67 4257.67 2.16 2.16 0.00

Average 3.49 3.42 0.07

constraints (4.18), thus relaxing the inventory clearing policy and therefore allowing split collection. The

fourth column lists the optimal values obtained by the branch-and-cut algorithm for solving (P
′
) without

constraints (4.18), and thus relaxing the inventory clearing policy, but prohibiting split collection. The fifth

column reports the percent gap between the second column and third column values, thereby measuring

the impact of enforcing an inventory clearing policy and no split collection. The sixth column reports

the percent gap between the second column and fourth column values, thereby measuring the impact of

enforcing an inventory clearing policy when no split collection is allowed. The seventh column reports

the percent gap between the third column and fourth column values, thereby measuring the impact of

prohibiting split collection when no particular inventory policy is enforced.

An average gap of 3.49 percent results from enforcing an inventory clearing policy and prohibiting

split collection, but this is skewed by the gap of 23.19 percent on instance CIRL2t3k2i5. The large gap

on instance CIRL2t3k2i5 results from the existence of a supplier with a daily demand that is larger than

Q/2. Because the optimal solution of (P
′
) admits only pickup quantities that are integer multiples of the

demands, the routing solution significantly changes when the inventory clearing policy constraints (4.18)

are relaxed. However, this increase in cost is primarily due to the inventory clearing policy. If we prohibit

split collection, but consider the impact of the inventory clearing policy, an average cost increase of 3.42

percent results. As Table 4.5.2 testifies, allowing or disallowing split collection does not seem to have

much of an impact due to the overwhelming impact of the inventory clearing policy.

4.5.3 Performance of Solution Approach: Single-Vehicle Case

Tables 4.5.3 and 4.5.4 show the performance of the phases of our solution approach for the instances

with one vehicle and three periods, and one vehicle and six periods, respectively. The second column

expresses the gap between the extended lower bound and the best known upper bound: whenever the

extended lower bound formulation is solved to optimality within its two-hour time limit and the solution

is integer, the optimality gap is zero. The third column contains an asterisk whenever the extended

lower bound corresponds to an optimal integer solution (which is also an optimal solution of (P)). The

fourth column lists the optimality gap of the second-phase heuristic with respect to the best known
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lower bound. Similarly, the fifth column displays the gap between the best upper bound achieved by the

third-phase branch-and-cut and the best known lower bound. Whenever the first-phase extended lower

bound formulation is solved to optimality and the solution is integer, we have already obtained an optimal

solution to (P) and do not execute the second-phase and third-phase. Table 4.5.3 shows that the extended

lower bound determined in the first phase of our algorithm coincided with the optimal solution in 39

of the 50 one-vehicle, three-period instances. The heuristic based on the extended lower bound is also

very effective, providing an average optimality gap of 0.33 percent on the 11 instances for which the

extended lower bound does not achieve the optimal integer solution. In our third phase, the branch-and-cut

algorithm solves the remaining 11 one-vehicle instances to optimality. Table 4.5.4 shows that the extended

lower bound determined in the first phase of our algorithm coincided with the optimal solution in 26 of the

50 one-vehicle, six-period instances. The heuristic based on the extended lower bound remains effective,

providing an average optimality gap of 5.41 percent on the 24 instances for which the extended lower

bound does not achieve the optimal integer solution. The third-phase branch-and-cut algorithm is unable

to solve any of the remaining 24 instances to optimality, but it does close the average gap to 4.14 percent.

4.5.4 Performance of the Solution Approach: Multi-vehicle Case

Tables 4.5.5, 4.5.6 and 4.5.7 show the performance of the phases of our solution approach for the instances

with two vehicles and three periods, three vehicles and three periods, and two vehicles and six periods

respectively.

Table 4.5.5 demonstrates that the two-vehicle, three-period instances are more difficult. We obtain an

optimal solution in 16 of the 35 instances (each instance with 5, 10, and 15 suppliers and one instance

with 20 suppliers), all via the extended lower bound in our first phase. The heuristic based on the extended

lower bound obtains solutions with an average optimality gap of 6.93 percent on the 19 instances for which

the extended lower bound does not achieve an optimal integer solution. The third-phase branch-and-cut

algorithm achieves an average optimality gap of 4.56 percent on the 19 two-vehicle instances not solved

to optimality by the extended lower bound. Table 4.5.6 shows that our algorithm is able to find an optimal

solution in 7 of the 35 three-vehicle, three-period instances, all via the extended lower bound in our first

phase. The heuristic based on the extended lower bound obtains solutions with an average optimality gap

of 17.10 percent on the 28 instances for which the extended lower bound does not achieve an optimal

integer solution. The third-phase branch-and-cut algorithm achieves an average optimality gap of 11.59

percent on the 28 two-vehicle instances not solved to optimality by the extended lower bound. Finally

Table 4.5.7 shows that the extended lower bound determined in the first phase of our algorithm coincided

with the optimal solution in 5 of the 25 two-vehicle, six-period instances. The heuristic based on the

extended lower bound produces an average optimality gap of 20.48 percent on the 20 instances for which

the extended lower bound does not achieve the optimal integer solution. The third-phase branch-and-cut

algorithm is unable to solve any of the remaining 20 instances to optimality, but it does close the average

gap to 11.48 percent.

4.6 Conclusion

Motivated by the lean production concepts of heijunka and standard work, we develop the first exact

method for the inbound inventory routing problem with a cyclic planning horizon and inventory-clearing
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Table 4.5.3: 3-Phase Performance on One-Vehicle, Three-Period Instances

Instance
Extended Lower Bound Heuristic Best Upper Bound

% Gap Integer solution % Gap % Gap

CIRL1t3k1i05 0.00 *
CIRL2t3k1i05 0.00 *
CIRL3t3k1i05 0.00 *
CIRL4t3k1i05 0.00 *
CIRL5t3k1i05 0.00 *

CIRL1t3k1i10 0.00 *
CIRL2t3k1i10 0.00 *
CIRL3t3k1i10 0.00 *
CIRL4t3k1i10 0.00 *
CIRL5t3k1i10 0.00 *

CIRL1t3k1i15 0.00 *
CIRL2t3k1i15 0.00 *
CIRL3t3k1i15 0.00 *
CIRL4t3k1i15 0.00 *
CIRL5t3k1i15 0.00 *

CIRL1t3k1i20 0.00 *
CIRL2t3k1i20 0.00 *
CIRL3t3k1i20 0.00 *
CIRL4t3k1i20 0.00 *
CIRL5t3k1i20 0.00 *

CIRL1t3k1i25 0.00 *
CIRL2t3k1i25 0.00 *
CIRL3t3k1i25 0.00 *
CIRL4t3k1i25 0.00 *
CIRL5t3k1i25 0.00 *

CIRL1t3k1i30 0.00 *
CIRL2t3k1i30 0.00 *
CIRL3t3k1i30 0.00 *
CIRL4t3k1i30 0.00 *
CIRL5t3k1i30 0.00 *

CIRL1t3k1i35 0.00 *
CIRL2t3k1i35 0.00 *
CIRL3t3k1i35 0.00 0.00 0.00
CIRL4t3k1i35 0.00 *
CIRL5t3k1i35 0.00 0.29 0.00

CIRL1t3k1i40 0.00 *
CIRL2t3k1i40 1.19 0.44 0.00
CIRL3t3k1i40 0.00 *
CIRL4t3k1i40 0.00 *
CIRL5t3k1i40 0.00 *

CIRL1t3k1i45 0.00 *
CIRL2t3k1i45 0.00 0.00 0.00
CIRL3t3k1i45 0.00 0.00 0.00
CIRL4t3k1i45 0.00 *
CIRL5t3k1i45 0.00 0.49 0.00

CIRL1t3k1i50 1.65 0.59 0.00
CIRL2t3k1i50 4.40 1.65 0.00
CIRL3t3k1i50 0.14 0.14 0.00
CIRL4t3k1i50 0.82 0.07 0.00
CIRL5t3k1i50 0.00 0.00 0.00

Average 0.16 0.07 0.00
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Table 4.5.4: 3-Phase Performance on One-Vehicle, Six-Period Instances

Instance
Extended Lower Bound Heuristic Best Upper Bound

% Gap Integer solution % Gap % Gap

CIRL1t6k1i05 0.00 *
CIRL2t6k1i05 0.00 *
CIRL3t6k1i05 0.00 *
CIRL4t6k1i05 0.00 *
CIRL5t6k1i05 0.00 *

CIRL1t6k1i10 0.00 *
CIRL2t6k1i10 0.00 *
CIRL3t6k1i10 0.00 *
CIRL4t6k1i10 0.00 *
CIRL5t6k1i10 0.00 *

CIRL1t6k1i15 0.00 *
CIRL2t6k1i15 0.00 *
CIRL3t6k1i15 0.00 *
CIRL4t6k1i15 0.00 *
CIRL5t6k1i15 0.00 *

CIRL1t6k1i20 1.15 0.01 0.01
CIRL2t6k1i20 0.00 *
CIRL3t6k1i20 0.00 *
CIRL4t6k1i20 2.13 1.39 0.30
CIRL5t6k1i20 0.00 *

CIRL1t6k1i25 0.00 *
CIRL2t6k1i25 5.74 3.08 0.92
CIRL3t6k1i25 0.37 0.01 0.01
CIRL4t6k1i25 0.66 0.01 0.01
CIRL5t6k1i25 3.55 1.22 0.01

CIRL1t6k1i30 3.00 3.37 3.02
CIRL2t6k1i30 0.00 *
CIRL3t6k1i30 0.00 *
CIRL4t6k1i30 0.00 *
CIRL5t6k1i30 0.00 *

CIRL1t6k1i35 2.64 2.24 2.24
CIRL2t6k1i35 0.00 *
CIRL3t6k1i35 6.34 4.57 0.01
CIRL4t6k1i35 10.66 8.38 1.35
CIRL5t6k1i35 2.53 1.60 1.08

CIRL1t6k1i40 3.62 2.78 2.78
CIRL2t6k1i40 12.36 10.31 1.07
CIRL3t6k1i40 2.96 0.82 0.82
CIRL4t6k1i40 10.05 6.05 1.97
CIRL5t6k1i40 0.00 *

CIRL1t6k1i45 10.36 8.61 8.61
CIRL2t6k1i45 17.49 14.96 14.96
CIRL3t6k1i45 0.44 0.25 0.01
CIRL4t6k1i45 21.53 19.01 19.01
CIRL5t6k1i45 0.00 *

CIRL1t6k1i50 15.65 15.07 15.07
CIRL2t6k1i50 10.82 9.34 9.34
CIRL3t6k1i50 3.25 3.02 3.02
CIRL4t6k1i50 11.21 11.65 11.65
CIRL5t6k1i50 2.40 2.01 2.02

Average 3.21 2.60 1.99
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Table 4.5.5: 3-Phase Performance on Two-Vehicle, Three-Period Instances

Extended Lower Bound Heuristic Best Upper Bound
Instance % Gap Integer Solution % Gap % Gap

CIRL1t3k2i5 0.00 *
CIRL2t3k2i5 0.00 *
CIRL3t3k2i5 0.00 *
CIRL4t3k2i5 0.00 *
CIRL5t3k2i5 0.00 *

CIRL1t3k2i10 0.00 *
CIRL2t3k2i10 0.00 *
CIRL3t3k2i10 0.00 *
CIRL4t3k2i10 0.00 *
CIRL5t3k2i10 0.00 *

CIRL1t3k2i15 0.00 *
CIRL2t3k2i15 0.00 *
CIRL3t3k2i15 0.00 *
CIRL4t3k2i15 0.00 *
CIRL5t3k2i15 0.00 *

CIRL1t3k2i20 9.03 8.30 7.55
CIRL2t3k2i20 0.00 *
CIRL3t3k2i20 5.07 4.00 2.56
CIRL4t3k2i20 7.20 7.30 6.63
CIRL5t3k2i20 3.89 3.10 3.01

CIRL1t3k2i25 2.54 2.40 2.30
CIRL2t3k2i25 9.27 4.80 2.53
CIRL3t3k2i25 5.02 5.30 1.40
CIRL4t3k2i25 2.35 2.40 2.39
CIRL5t3k2i25 13.62 8.50 4.84

CIRL1t3k2i30 6.10 3.90 1.91
CIRL2t3k2i30 11.66 7.80 2.46
CIRL3t3k2i30 2.50 2.50 2.43
CIRL4t3k2i30 13.34 8.40 7.66
CIRL5t3k2i30 12.59 11.20 10.04

CIRL1t3k2i35 9.78 7.60 7.10
CIRL2t3k2i35 14.58 10.00 2.58
CIRL3t3k2i35 20.39 17.00 8.19
CIRL4t3k2i35 20.61 18.00 14.17
CIRL5t3k2i35 7.68 6.00 1.42

Average 5.06 3.96 2.60

policy governing the pickup amounts. We demonstrate that this strategic problem is computationally more

difficult than the traditional operational-level outbound IRP in which the initial and maximum inventory

levels are predetermined values (not decision variables as they are in our formulation). Nevertheless,

our exact method achieves provably optimal solutions on many instances and optimality gaps on other

instances typifying an effective heuristic as a byproduct of our analysis. We also demonstrate that our

approach is capable of solving more general IRP formulations (with non-cyclic planning horizons, split

collection and a non-specified inventory policy). For a three-period planning horizon, our solution

approach is able to optimally solve all one-vehicle instances with up to 50 suppliers, all two-vehicle

instances with up to 15 suppliers, and seven out of ten three-vehicle instances with up to 10 suppliers (and

an average optimality gap of 1.57 percent on the three instances for which a provably-optimal solution

is not obtained). For two-vehicle, three-period instances with 20 to 35 suppliers, the average optimality

gap is 4.56 percent. The average optimality gap for three-vehicle, three-period instances with 15 to 35

suppliers is 11.59 percent. For a six-period planning horizon, the proposed solution approach is able

to optimally solve 26 of the 50 one-vehicle instances and achieves an average optimality gap of 4.14

percent on the 24 instances for which it does not optimally solve. For two-vehicle instances over six
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Table 4.5.6: 3-Phase Performance on Three-Vehicle, Three-Period Instances

Extended Lower Bound Heuristic Best Upper Bound
Instance % Gap Integer Solution % Gap % Gap

CIRL1t3k3i05 0.00 *
CIRL2t3k3i05 0.00 *
CIRL3t3k3i05 0.00 *
CIRL4t3k3i05 0.00 *
CIRL5t3k3i05 0.00 *

CIRL1t3k3i10 1.56 2.16 1.59
CIRL2t3k3i10 16.07 4.21 3.12
CIRL3t3k3i10 0.01 *
CIRL4t3k3i10 0.01 *
CIRL5t3k3i10 2.08 0.01 0.01

CIRL1t3k3i15 18.35 11.37 4.81
CIRL2t3k3i15 6.09 4.70 3.43
CIRL3t3k3i15 12.80 7.88 5.35
CIRL4t3k3i15 9.57 5.22 3.07
CIRL5t3k3i15 20.23 8.19 2.46

CIRL1t3k3i20 25.71 18.08 12.82
CIRL2t3k3i20 18.13 10.78 4.28
CIRL3t3k3i20 21.94 10.45 5.82
CIRL4t3k3i20 27.98 15.88 12.44
CIRL5t3k3i20 32.42 22.43 18.19

CIRL1t3k3i25 30.68 24.10 14.98
CIRL2t3k3i25 28.41 14.72 12.05
CIRL3t3k3i25 25.50 15.27 13.12
CIRL4t3k3i25 19.01 11.90 4.18
CIRL5t3k3i25 32.46 20.29 15.98

CIRL1t3k3i30 33.24 29.25 22.44
CIRL2t3k3i30 27.39 22.99 15.60
CIRL3t3k3i30 22.36 18.53 11.83
CIRL4t3k3i30 36.25 32.13 23.82
CIRL5t3k3i30 27.13 19.06 16.01

CIRL1t3k3i35 38.39 43.65 29.46
CIRL2t3k3i35 30.90 24.86 5.34
CIRL3t3k3i35 33.79 26.41 20.52
CIRL4t3k3i35 36.70 34.27 25.52
CIRL5t3k3i35 25.72 20.11 16.15

Average 18.88 13.68 9.72

periods, the proposed solution approach is able to optimally solve 5 of the 25 instances and achieves an

average optimality gap of 11.48 percent on the 20 instances for which it does not optimally solve. The

average optimality gaps on the instances in which our approach fails to obtain provably optimal solutions

reveals that our analysis on an exact approach also yields an effective heuristic for our problem. We also

demonstrate that our approach is capable of solving more general IRP formulations (with non-cyclic

planning horizons, split collection and a non-specified inventory policy).
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Table 4.5.7: 3-Phase Performance on Two-Vehicle, Six-Period Instances

Extended Lower Bound Heuristic Best Upper Bound
Instance % Gap Integer solution % Gap % Gap

CIRL1t6k2i05 0.00 *
CIRL2t6k2i05 0.00 *
CIRL3t6k2i05 0.00 *
CIRL4t6k2i05 0.00 *
CIRL5t6k2i05 0.00 *
CIRL1t6k2i10 25.75 14.68 3.63
CIRL2t6k2i10 31.75 15.06 4.78
CIRL3t6k2i10 16.97 8.51 3.58
CIRL4t6k2i10 30.61 16.00 6.37
CIRL5t6k2i10 12.38 4.73 0.95
CIRL1t6k2i15 23.97 17.47 11.95
CIRL2t6k2i15 23.25 17.43 2.49
CIRL3t6k2i15 29.17 20.13 20.13
CIRL4t6k2i15 33.39 23.33 20.41
CIRL5t6k2i15 34.10 20.69 7.96
CIRL1t6k2i20 43.33 32.24 12.33
CIRL2t6k2i20 34.05 25.21 3.64
CIRL3t6k2i20 26.74 19.54 4.92
CIRL4t6k2i20 42.35 27.71 26.75
CIRL5t6k2i20 38.42 24.87 24.14
CIRL1t6k2i25 37.26 30.16 3.71
CIRL2t6k2i25 36.55 26.29 22.72
CIRL3t6k2i25 32.36 24.18 8.35
CIRL4t6k2i25 31.00 22.62 22.50
CIRL5t6k2i25 30.99 18.68 18.23

Average 24.58 16.38 9.18
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Appendix

4.A Translation of Formulation for Outbound Logistics

It is possible to translate (P), the formulation for an inbound IRP with a cyclic planning horizon and

inventory clearing policy, into an equivalent outbound IRP through a few modifications of constraints and

coefficients. Specifically, we define the feasible region for the outbound IRP formulation (O) with (4.5) -

(4.14) as well as:

Iti = Iprev(t),i − di + qti ∀t ∈ T ,∀i ∈ I, (4.100)

Iit0 = Iiprev(t),0 − qti + di ∀t ∈ T ,∀i ∈ I, (4.101)

and

Iit0 ≤ (T − 1)di (1− zti) ∀t ∈ T , ∀i ∈ I. (4.102)

Then, if we define the objective of (O) as

min
∑
t∈T

∑
(i,j)∈E

cijxtij +
∑
t∈T

∑
i∈I

hi0Iti +
∑
t∈T

∑
i∈I

hiI
i
t0, (4.103)

the outbound IRP formulation (O) will have the same optimal solution as the inbound IRP formulation

(O). The formulation (O) corresponds to an outbound IRP with known and constant demand di at each

customer i and synchronized production of product i at the plant. The plant follows an inventory clearing

policy for each product i such that when it distributes product i, it ships all on-hand inventory of product i.

We note that in the outbound IRP with only one product type, the plant can pool the customers’

demands and distribute production accordingly. However, the translation of our inbound IRP formulation

results in a multi-product outbound IRP in which such inventory pooling is not possible.

4.B Proofs Related to Valid Inequalities

Theorem 4.1. The linear programming formulation (4.50)-(4.58) has solutions with integer-valued It
and It0, ∀t ∈ T , and zt, ∀t ∈ T .

Proof. We proceed by proving that the extended unit stock polyhedron (4.51)–(4.58) is an integral

polyhedron. Using Fourier-Motzkin variable elimination, constraints (4.51)–(4.58) can be obtained by

projecting the extended unit flow polyhedron (4.63)–(4.70) onto the (w, y) space using the Fourier-Motzkin
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elimination. Specifically, constraints (4.52) come from (4.63) and (4.67). Similarly, constraints (4.54)

come from (4.64) and (4.67). To obtain constraints (4.56), observe

yβt =

T−1−β∑
α=0

fα,βt +
T−1∑

α=T−β
fα,βt

≤
T−1∑
β=0

T−1−β∑
α=0

fα,βt +
T−1∑
β=1

T−1∑
α=T−β

fα,βt

=
T−1∑
β=0

T−1−β∑
α=0

fα,βt

=

T−1−β∑
α=0

uαt,

where the first line follows from (4.64), the second line holds because we are adding non-negative

quantities, the third line follows from (4.66), and the fourth line follows from (4.63).

To obtain constraints (4.51), first observe from (4.63) that

T−1∑
α=0

αuαt =

T−1∑
α=0

α

T−1∑
β=0

fα,βt ,

but from constraints (4.67) and the total unimodularity of the extended unit flow polyhedron, it follows

that only one of the fα,βt terms on the right-hand side of this equation will be 1 and the others 0. This

implies that
∑T−1

α=0 α
∑T−1

β=0 f
α,β
t corresponds to the inventory level of supplier i on day t, so we have∑T−1

α=0 αuαt = It. Similarly, constraints (4.53) derives (4.64) and (4.67).

Constraints (4.55) are specific constraints of the extended unit stock formulation and do not impact

on the total unimodularity of the matrix. Now, because the matrix corresponding to (4.63)–(4.70) is

totally unimodular, the matrix corresponding to (4.81)–(4.92) is totally unimodular. The result directly

follows.

Proposition 4.1. The following inequalities are valid for PCIRP :

Iti ≥ di(1− zti) ∀i ∈ I, ∀ t ∈ T

Iti ≤
(
T − 2 + znext(t)i

)
di ∀i ∈ I, ∀ t ∈ T

Iti ≥ Iprev(t)i + (1− Tzti) di ∀i ∈ I, ∀ t ∈ T

Iiprev(t)0 ≥ (1− zti) di ∀i ∈ I, ∀ t ∈ T

Iit0 ≤ (T − 2 + zti) di ∀i ∈ I, ∀ t ∈ T

Iit0 ≤ Iiprev(t)0 + Tdizti − di ∀i ∈ I, ∀ t ∈ T

Iit0 ≤
(
zprev(t)i + 2zti

)
di ∀i ∈ I, ∀ t ∈ T = {1, 2, 3}.

Proof. To see that (4.74) is valid, if zti = 0, then Iti = Iprev(t)i + di ≥ di by (4.10); otherwise, the

inequality reduces to (4.10). To see that (4.75) is valid, if znext(t)i = 0, then Inext(t)i ≤ (T −1)di by (4.4)

and Inext(t)i = Iti + di by (4.2) and (4.6), resulting in Iti = Inext(t)i− di ≤ (T − 1)di− di = (T − 2)di;

otherwise, the inequality holds due to (4.4). To see that (4.76) is valid, if zti = 1, then Iti = 0 by (4.4)

and we have Iprev(t)i ≤ (T − 1)di which holds also due to (4.4); otherwise, the inequality holds due to
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(4.2) and (4.6). To see (4.77) is valid, if zti = 0, then Iiprev(t)0 ≥ di by (4.3), (4.6), and (4.10); otherwise

the inequality reduces to (4.10).

Inequalities (4.78)–(4.80) rely upon Iti+Iit0 = Iprev(t)i+Iiprev(t)0 which follows from (4.2) and (4.3),

as well as Iti + Iit0 ≤ (T − 1)di which subsequently follows from (4.2), (4.3), (4.4), and (4.6). To see

(4.78) is valid, if zti = 0, then Iti ≥ di from (4.2), (4.6), and (4.10) and therefore Iit0 ≤ (T −1)di− Iti ≤
(T − 2)di; otherwise, if zti = 1, then Iti = 0 by (4.4) and It0 ≤ (T − 1)di. To see (4.79) is valid, if

zti = 1, then Iti = 0 by (4.4) and therefore Iit0 = Iprev(t)i + Iiprev(t)0 − Iti ≤ Iiprev(t)0 + (T − 1)di;

otherwise, the inequality holds from (4.3).

To see (4.80) is valid for T = 3, first observe that when zprev(t)i = 0 and zti = 0, Iiprev(t)0 =

Iiprev(prev(t))0−di and Iit0 = Iiprev(t)0−di by (4.3). Thus, Iit0 = Iiprev(prev(t))0−2di ≤ (T−1)di−2di = 0.

If zti = 1, regardless the value of zprev(t)i, we have Iit0 ≤ 2di = (T − 1)di. If zprev(t)i = 1 and zti = 0,

then Iit0 = Iiprev(t)0 − di ≤ (T − 1)di − di = 2di − di = di by (4.3).

4.C Additional Valid Inequalities

In addition to the single-item lot-sizing valid inequalities described in §4.4.3, we consider two other sets

of valid inequalities.

We dynamically add valid inequalities based on the cocircuit inequalities (Barahona & Grötschel

1986) to the branch-and-cut in the third phase of our approach. The parity inequalities are:∑
(i,j)∈δ(S)\H

xtij ≥
∑

(u,v)∈H

xtuv − |H|+ 1, ∀S ⊂ I ∪ {0}, H ⊆ δ(S), |H| odd,∀t ∈ T . (4.104)

Proposition 4.2. The parity inequalities are valid for PCIRP .

Proof. Consider the parity inequalities. In the case which all the edges in H are traversed, then∑
(u,v)∈H xtuv = |H| and the right-hand side of the inequality is 1. Because |H| is odd, the cutset

δ(S) \H must be traversed at least once. Therefore,
∑

(i,j)∈δ(S)\H xtij ≥ 1 holds. In the case which not

all the edges of H are travelled, then
∑

(u,v)∈H xtuv ≤ |H| − 1 and the right-hand side of the inequality

is nonpositive. Therefore, the inequality is trivially satisfied.

In the branch-and-cut algorithm of the first and third phase, we add some known valid inequalities from

Adulyasak et al. (2013) to the initial linear program at the root of the branch-and-bound tree. Specifically,

we add to (R) priority inequalities:

ztki ≤ ztk0 ∀i ∈ I,∀k ∈ K,∀t ∈ T , (4.105)

xtkij ≤ ztki ∀(i, j) ∈ E : i 6= 0,∀k ∈ K,∀t ∈ T , (4.106)

symmetry breaking inequalities:

ztk0 ≥ z0,next(k),t ∀k ∈ K − last(K),∀t ∈ T , (4.107)
j∑
i=1

2(j−i)ztki ≥
j∑
i=1

2(j−i)zi,next(k),t ∀j ∈ I, ∀k ∈ K − last(K), ∀t ∈ T . (4.108)
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Table 4.D.1: Branch-and-Cut Performance on One-Vehicle, Three-Period Instances

Instance Best Total Time Nodes
Capacitated Subtour

LB Cost (sec)
Elimination Constraints Parity Cuts

Import Root Tree Root Tree

CIRL3t3k1i35 6854.44 6855.12 3498.13 934 15964 467 2399 102 76
CIRL5t3k1i35 5645.12 5645.12 474.08 246 5456 469 682 83 39

CIRL2t3k1i40 6150.48 6151.00 5431.44 953 16284 792 2201 116 91

CIRL2t3k1i45 6495.91 6496.55 3572.86 625 9079 354 2973 71 91
CIRL3t3k1i45 6654.00 6654.31 462.64 63 13583 278 195 91 41
CIRL5t3k1i45 6150.75 6151.30 968.97 190 8076 771 1260 86 31

CIRL1t3k1i50 7061.57 7062.21 2351.91 241 16231 511 1282 113 38
CIRL2t3k1i50 7421.89 7422.57 11177.42 1189 16190 514 3910 111 133
CIRL3t3k1i50 6907.50 6907.94 1255.54 142 16182 303 1086 68 43
CIRL4t3k1i50 7312.26 7312.28 1353.11 120 17325 1218 1672 130 50
CIRL5t3k1i50 7284.15 7284.85 2748.12 630 7100 1054 3289 126 44

Average 3026.75 485 12861 612 1904 100 62

and logical inequalities: ∑
i∈I

xtki0 ≤ 1 ∀k ∈ K, ∀t ∈ T , (4.109)∑
j∈I

xtk0j ≤ 1 ∀k ∈ K, ∀t ∈ T . (4.110)

We add to (P) priority inequalities:

xtij ≤ zti ∀(i, j) ∈ E : i 6= 0,∀t ∈ T , (4.111)

and logical inequalities: ∑
i∈I

xti0 =
∑
j∈I

xt0j ∀t ∈ T . (4.112)

4.D Computational Analysis of Third Phase: Single-Vehicle Case

In this section, we examine the computational behavior of the third phase’s branch-and-cut procedure on

the single-vehicle instances. As listed in the first column of Table 4.D.1, we only consider the instances

that are not solved to optimality by solving the extended lower bound formulation. The second column

provides the value of the best lower bound. The third column and fourth column list the total cost of

the solution obtained by the branch-and-cut algorithm and the computation time required to obtain it,

respectively. The fifth column shows the number of nodes in the branch-and-cut. The sixth, seventh

and eighth columns display the number of CSE constraints imported from the extended lower bound

formulation, added to the linear program at the root node, and dynamically added to other nodes of the

branch-and-cut tree, respectively. The ninth and tenth columns report the number of parity cuts added to

the root node and to other nodes of the branch-and-cut tree.

From Table 4.D.1, we see that the branch-and-cut algorithm is able to find an optimal solution (within

a 0.01% tolerance) in all one-vehicle, three-period instances. We import a large number of CSE constraints

from the extended lower bound formulation that we add to the initial linear program at the root node and

to other nodes of the branch-and-cut tree dynamically. We add fewer parity cuts.
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Table 4.D.2: Branch-and-Cut Performance on One-Vehicle, Six-Period Instances

Instance Best Total Time Nodes
Capacitated Subtour

LB Cost (sec)
Elimination Constraints Parity Cuts

Import Root Tree Root Tree

CIRL1t6k1i20 7730.89 7731.66 5879.62 15038 3632 45 638 23 142
CIRL4t6k1i20 8247.29 8271.78 TL 21276 3161 242 1661 81 249

CIRL2t6k1i25 9587.72 9675.64 TL 9112 3597 357 721 39 291
CIRL3t6k1i25 10310.93 10311.86 2477.67 2038 2806 152 133 54 199
CIRL4t6k1i25 8841.46 8842.34 1677.43 986 3233 122 228 107 145
CIRL5t6k1i25 10531.99 10533.04 2866.73 2120 3584 93 212 65 201

CIRL1t6k1i30 11022.25 11354.68 TL 4100 3721 390 828 129 295

CIRL1t6k1i35 10561.68 10798.68 TL 2502 5135 362 664 119 231
CIRL3t6k1i35 12950.98 12952.28 6876.80 939 4271 308 490 107 282
CIRL4t6k1i35 10295.01 10433.68 TL 2099 6805 195 204 84 275
CIRL5t6k1i35 10928.85 11046.44 TL 2614 6029 311 988 65 364

CIRL1t6k1i40 12171.11 12509.10 TL 900 7614 329 591 100 246
CIRL2t6k1i40 11496.81 11619.48 TL 1098 5307 431 405 144 219
CIRL3t6k1i40 12287.45 12387.84 TL 1626 6074 308 167 101 159
CIRL4t6k1i40 10660.19 10869.66 TL 990 4430 270 388 91 213

CIRL1t6k1i45 12447.95 13519.72 TL 502 5593 261 549 127 174
CIRL2t6k1i45 12228.34 14057.46 TL 357 5574 444 429 102 197
CIRL3t6k1i45 12482.83 12484.08 12996.85 1265 3069 325 605 155 118
CIRL4t6k1i45 13089.30 15576.92 TL 407 6404 451 244 71 257

CIRL1t6k1i50 13158.51 15140.84 TL 32 8315 329 8 142 62
CIRL2t6k1i50 13790.01 15078.00 TL 316 6702 679 461 150 182
CIRL3t6k1i50 13534.98 13944.14 TL 330 4086 262 195 150 66
CIRL4t6k1i50 13628.89 15216.52 TL 20 5997 404 13 155 98
CIRL5t6k1i50 13596.80 13870.78 TL 87 5109 390 85 119 108

Average 12165.63 2948 5010 311 454 103 199

Table 4.D.2 shows that the four-hour time limit is reached in 18 of the 24 one-vehicle, six-period

instances. Comparing the one-vehicle instances, we add fewer CSE constraints and more parity cuts with

a planning horizon of six periods versus a planning period of three periods.

Table 4.D.3 shows the impact of the valid inequalities on the lower bound at the root of the branch-

and-cut in the instances with one vehicle. The second column displays the value of the lower bound at the

root node when we apply all the valid inequalities (lot-sizing, classical, as well as the parity cuts and the

CSE constraints imported from the extended lower bound formulation). The third column shows the value

of the lower bound with only the lot-sizing and classical valid inequalities. The fourth column shows the

value of the lower bound with only the lot-sizing valid inequalities. The fifth column shows the value of

the lower bound with none of the valid inequalities. The sixth column computes the percent increase of

the value of the lower bound at the root node due to the lot-sizing valid inequalities. The seventh column

computes the percent increase of the value of the lower bound at the root node due to the lot-sizing and

classical valid inequalities. The eighth column computes the percent increase of the value of the lower

bound at the root node due to the entire set of valid inequalities.

Table 4.D.3 shows the effectiveness of the valid inequalities in improving the value of the lower bound

at the root node. As a collection, all the valid inequalities provide a minimum lower bound increase of

18.56 percent in the one-vehicle instances. Moreover, the corresponding average increase of the lower

bound resulting from applying all the valid inequalities is about 111 percent in the one-vehicle instances.

By themselves, the lot-sizing valid inequalities contribute to an average increase of the lower bound of

about 88 percent in the one-vehicle instances.
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Table 4.D.3: Lower Bound at Root Node for One-Vehicle, Three-Period Instances

Lot Sizing L.S. L.S. V.I. L.S. & Class. All V.I.
Instance All & Class. V.I. V.I. None % Increase % Increase % Increase

CIRL1t3k1i05 1341.60 1341.60 1138.59 995.93 14.32 34.71 34.71
CIRL2t3k1i05 1111.78 1111.78 1111.78 844.50 31.65 31.65 31.65
CIRL3t3k1i05 2003.36 2003.36 1815.36 1300.67 39.57 54.03 54.03
CIRL4t3k1i05 1167.23 1167.23 1134.03 984.51 15.19 18.56 18.56
CIRL5t3k1i05 1357.65 1349.36 1349.36 966.24 39.65 39.65 40.51

CIRL1t3k1i10 2153.06 2153.06 2013.23 1202.43 67.43 79.06 79.06
CIRL2t3k1i10 2604.22 2558.22 2432.10 1796.99 35.34 42.36 44.92
CIRL3t3k1i10 2307.11 2306.93 2209.30 1517.35 45.60 52.04 52.05
CIRL4t3k1i10 2060.00 2060.00 1987.04 1226.00 62.08 68.03 68.03
CIRL5t3k1i10 2459.96 2459.96 2298.96 1226.00 87.52 100.65 100.65

CIRL1t3k1i15 2632.64 2629.64 2448.97 1544.60 58.55 70.25 70.44
CIRL2t3k1i15 2696.76 2696.75 2219.93 1238.07 79.31 117.82 117.82
CIRL3t3k1i15 3172.83 3135.27 2872.14 1831.58 56.81 71.18 73.23
CIRL4t3k1i15 2483.08 2361.00 2180.91 1425.67 52.97 65.61 74.17
CIRL5t3k1i15 2696.87 2696.87 2603.32 1377.83 88.94 95.73 95.73

CIRL1t3k1i20 3079.42 3035.42 2820.90 1571.84 79.46 93.11 95.91
CIRL2t3k1i20 3272.22 3082.22 2614.90 1181.04 121.41 160.98 177.06
CIRL3t3k1i20 3398.52 3255.16 3057.65 1648.00 85.54 97.52 106.22
CIRL4t3k1i20 3248.31 3116.55 2896.68 1691.08 71.29 84.29 92.08
CIRL5t3k1i20 3831.75 3801.25 3272.98 1614.81 102.69 135.40 137.29

CIRL1t3k1i25 3814.83 3421.41 3237.34 1832.95 76.62 86.66 108.13
CIRL2t3k1i25 3963.21 3791.21 3461.74 1821.02 90.10 108.19 117.64
CIRL3t3k1i25 4148.75 3979.25 3526.24 1871.16 88.45 112.66 121.72
CIRL4t3k1i25 3722.48 3658.19 3362.73 1843.94 82.37 98.39 101.88
CIRL5t3k1i25 4493.77 4417.63 4115.00 2163.75 90.18 104.17 107.68

CIRL1t3k1i30 4567.58 4326.55 4149.48 1971.00 110.53 119.51 131.74
CIRL2t3k1i30 4471.10 4421.18 3985.87 2188.06 82.16 102.06 104.34
CIRL3t3k1i30 4869.10 4731.56 4403.66 2119.31 107.79 123.26 129.75
CIRL4t3k1i30 4043.42 3959.94 3684.62 1972.00 86.85 100.81 105.04
CIRL5t3k1i30 4094.72 3931.78 3795.05 1729.01 119.49 127.40 136.82

CIRL1t3k1i35 4469.64 4225.21 4041.48 2021.33 99.94 109.03 121.12
CIRL2t3k1i35 4782.18 4588.85 4330.09 2220.00 95.05 106.70 115.41
CIRL3t3k1i35 5561.42 5497.41 5186.48 2480.33 109.10 121.64 124.22
CIRL4t3k1i35 4209.17 4198.33 3782.75 2009.97 88.20 108.88 109.41
CIRL5t3k1i35 4636.55 4574.82 3718.83 1841.98 101.89 148.36 151.72

CIRL1t3k1i40 5135.05 5016.13 4253.46 2048.97 107.59 144.81 150.62
CIRL2t3k1i40 5071.97 4749.94 4230.73 2251.97 87.87 110.92 125.22
CIRL3t3k1i40 5600.52 5115.98 4726.06 2465.98 91.65 107.46 127.11
CIRL4t3k1i40 4613.51 4505.76 4073.97 1843.97 120.93 144.35 150.19
CIRL5t3k1i40 5174.66 4855.65 4555.51 1943.03 134.45 149.9 166.32

CIRL1t3k1i45 5532.65 5213.19 4817.78 2305.00 109.01 126.17 140.03
CIRL2t3k1i45 5089.98 5020.22 4659.76 2061.98 125.98 143.47 146.85
CIRL3t3k1i45 5608.29 5402.46 5055.87 2359.00 114.32 129.01 137.74
CIRL4t3k1i45 5391.97 5289.44 4773.59 2345.03 103.56 125.56 129.93
CIRL5t3k1i45 5299.00 5093.63 4691.12 1919.65 144.37 165.34 176.04

CIRL1t3k1i50 5852.14 5653.25 5061.70 2338.95 116.41 141.70 150.20
CIRL2t3k1i50 6074.88 5754.37 5515.83 2845.95 93.81 102.2 113.46
CIRL3t3k1i50 6122.38 5941.91 5238.53 2616.00 100.25 127.14 134.04
CIRL4t3k1i50 6277.03 6160.59 5670.89 2641.02 114.72 133.27 137.67
CIRL5t3k1i50 6122.20 5935.91 5435.35 2101.00 158.70 182.53 191.39

Average 87.75 104.48 110.55
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Table 4.E.1: Branch-and-Cut Performance on Two-Vehicle, Three-Period Instances

Capacitated Subtour
Instance Best Total Time Nodes Elimination Constraints Parity Cuts

LB Cost (sec) Import Root Tree Root Tree

CIRL1t3k2i20 4801.73 5193.76 TL 13395 15 6 328 36 89
CIRL3t3k2i20 4834.01 4961.00 TL 14100 45 9 196 34 103
CIRL4t3k2i20 5130.10 5494.42 TL 11043 38 2 481 28 123
CIRL5t3k2i20 5736.48 5914.20 TL 15000 41 8 494 29 94

CIRL1t3k2i25 5062.32 5181.58 TL 10900 94 9 323 47 94
CIRL2t3k2i25 5573.18 5717.85 TL 7600 11 7 503 41 83
CIRL3t3k2i25 5996.97 6081.88 TL 7646 31 6 267 52 116
CIRL4t3k2i25 4892.93 5007.69 TL 9932 76 6 341 47 133
CIRL5t3k2i25 6120.23 6431.16 TL 9025 58 3 408 49 85

CIRL1t3k2i30 6267.15 6388.85 TL 5004 47 5 412 45 94
CIRL2t3k2i30 5898.94 6047.80 TL 4768 30 8 375 41 97
CIRL3t3k2i30 6092.44 6244.14 TL 5810 29 5 666 42 72
CIRL4t3k2i30 5444.46 5895.92 TL 4596 40 5 472 42 101
CIRL5t3k2i30 5156.41 5731.92 TL 4834 36 8 552 40 113

CIRL1t3k2i35 5839.22 6285.79 TL 3123 39 9 911 65 95
CIRL2t3k2i35 6224.25 6389.07 TL 3078 24 8 584 66 100
CIRL3t3k2i35 7356.81 8012.77 TL 3721 13 7 744 75 82
CIRL4t3k2i35 5811.34 6770.96 TL 2800 21 2 695 55 124
CIRL5t3k2i35 5937.54 6023.08 TL 3809 18 7 288 55 84

Average 14400 7378 37 6 476 47 100

4.E Computational Analysis of Third Phase: Multi-vehicle Case

In this section, we examine the computational behavior of the third phase’s branch-and-cut procedure

on the multi-vehicle instances. As listed in the first columns of Tables 4.E.1, 4.E.2, and 4.E.3, we only

consider the instances that are not solved to optimality by solving the extended lower bound formulation.

Tables 4.E.1 and 4.E.2 show that the four-hour time limit is reached in all three-period instances with

two and three vehicles. Compared to the one-vehicle instances in Table 4.D.1, we import fewer CSE

constraints to be added to the root node or dynamically to other nodes in the branch-and-cut tree. However,

we add more parity cuts in the two and three-vehicle instances than in the one-vehicle instances.

Table 4.E.3 shows that the four-hour time limit is reached in 20 of the 25 two-vehicle, six-period

instances. The number of imported of CSE constraints to be added to the root node or dynamically to

other nodes in the branch-and-cut tree increases significantly with respect to the single vehicle case. This

is also due to the fact that the planning horizon is twice the case with three periods.

Table 4.E.4 shows the impact of the valid inequalities on the lower bound at the root of the branch-

and-cut in the instances with two vehicle. All the valid inequalities provide a minimum lower bound

increase of 21 percent. Moreover, the corresponding average increase of the lower bound resulting from

applying all the valid inequalities is about 195.43 percent. By themselves, the lot-sizing valid inequalities

contribute to an average increase of the lower bound of about 61.36 percent.

4.F Additional Computational Experiments on the Extended
Lower Bound

Tables 4.F.1 and 4.F.2 examine the extended lower bound formulation’s behavior on the one-vehicle

and two-vehicle instances, respectively. The first column of these tables provides the instance name.
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Table 4.E.2: Branch-and-Cut Performance on Three-Vehicle, Three-Period Instances

Capacitated Subtour
Instance Best Total Time Nodes Elimination Constraints Parity Cuts

LB Cost (sec) Import Root Tree Root Tree

CIRL1t3k3i10 5053.81 5135.46 TL 141286 53 2 469 16 88
CIRL2t3k3i10 5602.58 5782.96 TL 152585 56 2 383 19 105
CIRL5t3k3i10 4171.13 4171.54 TL 39121 25 5 143 18 49

CIRL1t3k3i15 4331.14 4550.06 TL 30400 12 2 453 28 93
CIRL2t3k3i15 4697.66 4864.45 TL 39378 18 7 216 32 110
CIRL3t3k3i15 5532.42 5845.28 TL 26200 17 1 385 24 116
CIRL4t3k3i15 4547.92 4692.06 TL 40292 52 8 250 18 114
CIRL5t3k3i15 4978.30 5103.67 TL 36650 29 2 279 25 105

CIRL1t3k3i20 5563.72 6381.87 TL 11512 11 7 221 28 85
CIRL2t3k3i20 4750.79 4963.20 TL 10982 18 5 287 25 114
CIRL3t3k3i20 5393.85 5727.06 TL 12257 18 8 155 36 113
CIRL4t3k3i20 6025.82 6882.05 TL 10047 18 9 523 33 95
CIRL5t3k3i20 6802.26 8315.03 TL 13100 23 6 473 30 80

CIRL1t3k3i25 5965.52 7016.52 TL 9389 46 8 215 49 93
CIRL2t3k3i25 6268.91 7127.99 TL 6693 11 8 429 48 73
CIRL3t3k3i25 6835.50 7867.64 TL 7480 20 6 322 45 81
CIRL4t3k3i25 5324.98 5557.04 TL 7891 32 6 231 34 90
CIRL5t3k3i25 7020.89 8356.63 TL 8550 12 9 356 41 71

CIRL1t3k3i30 6862.49 8847.87 TL 4330 12 28 401 48 72
CIRL2t3k3i30 6307.17 7472.91 TL 4687 19 10 560 56 70
CIRL3t3k3i30 6412.47 7272.84 TL 4672 17 7 541 46 51
CIRL4t3k3i30 5925.84 7778.54 TL 3927 16 7 330 52 79
CIRL5t3k3i30 5606.42 6674.87 TL 3875 20 6 765 47 94

CIRL1t3k3i35 6334.59 8980.46 TL 2930 20 12 735 60 88
CIRL2t3k3i35 6649.49 7024.35 TL 2790 23 45 400 60 100
CIRL3t3k3i35 8103.08 10194.95 TL 3272 10 9 674 70 81
CIRL4t3k3i35 6301.67 8460.50 TL 2517 7 8 658 62 119
CIRL5t3k3i35 6435.98 7675.54 TL 3640 17 10 238 59 66

Average 14400 22837 23 9 396 40 89

Table 4.E.3: Branch-and-Cut Performance on Two-Vehicle, Six-Period Instances

Capacitated Subtour
Instance Best Total Time Nodes Elimination Constraints Parity Cuts

LB Cost (sec) Import Root Tree Root Tree

CIRL1t6k2i10 7541.72 7825.70 TL 37716 26 4 208 45 109
CIRL2t6k2i10 8358.71 8778.44 TL 30576 15 2 101 37 120
CIRL3t6k2i10 6640.86 6887.18 TL 34576 43 5 178 43 120
CIRL4t6k2i10 6884.89 7353.06 TL 31970 16 1 97 17 100
CIRL5t6k2i10 6847.38 6913.00 TL 47741 52 6 147 54 110

CIRL1t6k2i15 6927.06 7867.48 TL 13500 39 6 368 32 146
CIRL2t6k2i15 7705.00 7901.80 TL 15239 52 5 180 63 155
CIRL3t6k2i15 9050.76 11331.28 TL 10868 19 4 319 48 171
CIRL4t6k2i15 7041.01 8847.10 TL 11240 78 31 274 53 125
CIRL5t6k2i15 8064.09 8761.10 TL 12943 43 9 380 69 133

CIRL1t6k2i20 8950.53 10209.22 TL 5765 44 7 459 68 207
CIRL2t6k2i20 8044.09 8347.74 TL 5956 71 5 477 66 206
CIRL3t6k2i20 8713.02 9163.76 TL 6642 51 6 345 82 155
CIRL4t6k2i20 9551.27 13039.90 TL 4653 34 6 498 81 171
CIRL5t6k2i20 11050.19 14566.66 TL 5352 47 59 530 56 146

CIRL1t6k2i25 9674.71 10046.92 TL 3165 150 36 486 118 148
CIRL2t6k2i25 10402.21 13459.94 TL 2644 31 9 878 96 178
CIRL3t6k2i25 11238.31 12261.94 TL 2700 68 59 573 78 186
CIRL4t6k2i25 9313.34 12017.60 TL 2905 107 18 555 112 167
CIRL5t6k2i25 11771.38 14396.32 TL 2930 32 11 541 93 191

Average 14400 14454 51 14 380 66 152
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Table 4.E.4: Lower Bound at Root Node for Two-Vehicle, Three-Period Instances

Lot Sizing L.S. L.S. V.I. L.S. & Class. All V.I.
Instance All & Class. V.I. V.I. None % Increase % Increase % Increase

CIRL1t3k2i05 1758.67 1494.65 1352.65 1310.85 3.19 3.32 21.58
CIRL2t3k2i05 2582.08 2349.69 2149.32 2039.66 5.38 62.43 78.50
CIRL3t3k2i05 3444.35 3040.78 2683.78 2415.58 11.10 110.21 138.10
CIRL4t3k2i05 2294.91 2008.15 1857.99 1789.71 3.82 38.82 58.64
CIRL5t3k2i05 1916.85 1654.59 1634.59 1435.52 13.87 14.38 32.51

CIRL1t3k2i10 3114.51 2272.45 2223.50 1446.57 53.71 57.09 115.30
CIRL2t3k2i10 3927.71 3073.31 2906.70 2257.31 28.77 112.45 171.52
CIRL3t3k2i10 3128.39 2750.07 2558.40 2012.56 27.12 90.11 116.26
CIRL4t3k2i10 2954.05 2152.52 1879.35 1370.00 37.18 48.80 104.21
CIRL5t3k2i10 3294.28 2698.76 2447.76 1514.00 61.68 86.56 127.73

CIRL1t3k2i15 3070.02 2648.58 2478.41 1657.81 49.50 83.09 112.23
CIRL2t3k2i15 3619.97 2871.68 2397.52 1377.58 74.04 98.52 150.25
CIRL3t3k2i15 3975.63 3257.61 3006.34 2032.78 47.89 125.20 174.83
CIRL4t3k2i15 3165.43 2669.67 2461.62 1785.32 37.88 84.55 118.82
CIRL5t3k2i15 3586.50 3014.68 2899.26 1779.55 62.92 108.40 147.93

CIRL1t3k2i20 3713.94 3213.27 2941.49 1851.65 58.86 122.13 156.74
CIRL2t3k2i20 3900.31 3138.01 2670.73 1297.12 105.90 116.93 169.62
CIRL3t3k2i20 4336.45 3397.80 3121.24 1837.00 69.91 134.89 199.77
CIRL4t3k2i20 4560.90 3339.22 2982.76 1922.54 55.15 130.84 215.29
CIRL5t3k2i20 5469.69 4112.47 3798.46 2159.95 75.86 184.29 278.11

CIRL1t3k2i25 4815.88 3763.66 3523.81 2138.80 64.76 160.18 232.92
CIRL2t3k2i25 4837.71 3851.87 3524.14 1927.07 82.88 166.28 234.43
CIRL3t3k2i25 5561.11 4121.45 3621.14 1997.87 81.25 184.91 284.43
CIRL4t3k2i25 4609.21 3864.02 3562.92 2077.88 71.47 167.12 218.63
CIRL5t3k2i25 5681.89 4867.91 4629.35 2763.49 67.52 236.51 292.78

CIRL1t3k2i30 5974.73 4429.88 4245.54 2155.00 97.01 206.23 313.03
CIRL2t3k2i30 5541.10 4658.44 4241.53 2688.00 57.80 222.03 283.05
CIRL3t3k2i30 5691.32 4706.81 4254.84 2120.93 100.61 225.38 293.44
CIRL4t3k2i30 5050.86 4107.30 3785.07 2144.00 76.54 183.93 249.16
CIRL5t3k2i30 4786.07 3950.80 3743.46 1824.06 105.23 173.12 230.86

CIRL1t3k2i35 5378.06 4315.90 4101.08 2004.00 104.64 198.35 271.78
CIRL2t3k2i35 5745.17 4722.29 4494.71 2474.00 81.68 226.45 297.16
CIRL3t3k2i35 6991.93 5868.83 5569.26 2804.00 98.62 305.71 383.35
CIRL4t3k2i35 5325.99 4248.79 3875.21 2135.85 81.44 193.71 268.18
CIRL5t3k2i35 5770.44 4638.66 3893.78 2022.91 92.48 220.67 298.90

Average 61.63 139.53 195.43

The second column lists the total cost of the extended lower bound while the third column displays the

computation time (in seconds) to achieve it. The fourth and the fifth columns provide the number of SECs

added in the branching and at the root node, respectively. Finally, sixth column shows the number of

nodes explored in the branch-and-cut algorithm.

As Table 4.F.1 and 4.F.2 show, the computation time substantially increases as the number of suppliers

increases for both the one-vehicle and two-vehicle instances, but more dramatically for the two-vehicle

instances. For one-vehicle instances, the computation time goes from less than 1 second for 5-supplier

instances to the two-hour time limit for as few as 35 suppliers. For the two-vehicle instances, the two-hour

time limit is reached consistently in the 20-supplier instances.

For the one-vehicle instances, the first phase dynamically adds a relatively large number of SECs, and

the number dynamically added increases as the number of suppliers increases. Comparing the two-vehicle

instances to the one-vehicle instances, the number of dynamically added SECs increases less sharply with

the number of suppliers, but the number of SECs added to the root node increases more sharply with the

number of suppliers.
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Table 4.F.1: Extended Lower Bound Performance on One-Vehicle, Three-Period Instances

Instance Total Cost Time (sec)
Capacitated Subtour Elimination Constraints

NodesBranching Root Node

CIRL1t3k1i05 1555.90 0.11 0 12 9
CIRL2t3k1i05 1493.92 0.54 30 10 26
CIRL3t3k1i05 2684.58 0.29 17 27 24
CIRL4t3k1i05 1567.86 0.32 11 27 27
CIRL5t3k1i05 1574.44 0.38 17 30 16

CIRL1t3k1i10 2933.56 1.12 95 41 29
CIRL2t3k1i10 3322.78 5.00 135 72 181
CIRL3t3k1i10 2888.04 3.02 108 73 108
CIRL4t3k1i10 2771.13 1.27 111 27 31
CIRL5t3k1i10 3161.71 4.75 179 37 165

CIRL1t3k1i15 3185.96 3.92 180 132 59
CIRL2t3k1i15 3413.42 4.41 275 139 63
CIRL3t3k1i15 4086.81 8.95 243 123 134
CIRL4t3k1i15 3142.98 26.67 206 145 362
CIRL5t3k1i15 3528.57 15.96 516 76 169

CIRL1t3k1i20 4051.09 75.57 892 94 433
CIRL2t3k1i20 3911.01 10.91 276 151 85
CIRL3t3k1i20 4282.28 34.05 596 71 186
CIRL4t3k1i20 4243.97 30.84 522 227 158
CIRL5t3k1i20 4795.15 11.83 283 235 74

CIRL1t3k1i25 4677.38 658.80 2512 226 1902
CIRL2t3k1i25 4943.56 86.68 1117 369 301
CIRL3t3k1i25 5301.89 186.82 545 481 605
CIRL4t3k1i25 4568.79 175.63 1261 128 577
CIRL5t3k1i25 5436.36 132.71 795 184 376

CIRL1t3k1i30 5793.88 134.62 667 660 293
CIRL2t3k1i30 5455.03 262.12 1643 123 463
CIRL3t3k1i30 5874.99 66.97 827 142 145
CIRL4t3k1i30 5030.12 351.15 1617 114 686
CIRL5t3k1i30 4843.31 69.92 929 190 150

CIRL1t3k1i35 5431.29 176.49 874 156 267
CIRL2t3k1i35 5874.49 694.38 4106 215 910
CIRL3t3k1i35 6855.12 7161.74 10417 589 4290
CIRL4t3k1i35 5265.81 261.44 1834 321 298
CIRL5t3k1i35 5639.50 346.43 2115 489 497

CIRL1t3k1i40 6485.55 715.32 2114 516 626
CIRL2t3k1i40 6177.87 7182.15 10771 338 2470
CIRL3t3k1i40 6427.60 115.70 750 106 136
CIRL4t3k1i40 5653.95 434.73 1747 271 352
CIRL5t3k1i40 6109.86 117.09 843 247 127

CIRL1t3k1i45 6657.52 3940.33 10601 406 2346
CIRL2t3k1i45 6480.05 1805.91 5642 277 769
CIRL3t3k1i45 6654.31 2784.64 8169 125 1514
CIRL4t3k1i45 6758.66 2823.22 7058 862 1264
CIRL5t3k1i45 6148.15 1607.54 3682 242 1128

CIRL1t3k1i50 7103.64 7092.04 9748 409 1654
CIRL2t3k1i50 7544.85 7106.26 8467 578 1776
CIRL3t3k1i50 6917.94 7069.56 12115 172 1646
CIRL4t3k1i50 7317.37 7009.15 10497 587 1691
CIRL5t3k1i50 7280.35 864.06 2403 738 388

Average 1233.47 2611 240 640
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Table 4.F.2: Extended Lower Bound Performance on Two-Vehicle, Three-Period Instances

Instance Total Cost Time (sec)
Capacitated Subtour Elimination Constraints

NodesBranching Root Node

CIRL1t3k2i05 1801.05 0.49 6 23 7
CIRL2t3k2i05 2665.44 0.42 18 29 31
CIRL3t3k2i05 4007.30 0.88 36 29 37
CIRL4t3k2i05 2438.84 0.93 16 13 27
CIRL5t3k2i05 2200.63 3.13 57 18 156

CIRL1t3k2i10 3972.29 111.24 404 166 1384
CIRL2t3k2i10 4442.25 1665.26 1577 75 12457
CIRL3t3k2i10 3610.82 276.88 735 88 2879
CIRL4t3k2i10 3781.87 369.24 1419 116 4839
CIRL5t3k2i10 3580.32 144.49 451 77 1620

CIRL1t3k2i15 3807.30 974.13 1773 221 4158
CIRL2t3k2i15 4077.82 1259.30 2674 199 4912
CIRL3t3k2i15 4823.47 786.04 1817 133 2755
CIRL4t3k2i15 3865.76 1861.93 2257 227 6947
CIRL5t3k2i15 4349.72 6758.02 4386 148 20788

CIRL1t3k2i20 5148.09 7163.36 4047 309 10451
CIRL2t3k2i20 4214.90 1744.49 1474 317 4217
CIRL3t3k2i20 5039.24 6574.19 2991 199 9676
CIRL4t3k2i20 5545.53 7084.16 6863 274 6902
CIRL5t3k2i20 5868.17 7024.86 5359 446 8027

CIRL1t3k2i25 5311.47 7148.45 3165 436 6674
CIRL2t3k2i25 5876.82 7169.49 5190 871 5745
CIRL3t3k2i25 6180.67 6943.03 4287 833 4924
CIRL4t3k2i25 5093.02 7135.04 3707 329 6510
CIRL5t3k2i25 6663.25 7168.34 9561 576 4405

CIRL1t3k2i30 6636.56 6980.26 10081 658 2073
CIRL2t3k2i30 6097.81 7193.62 4934 308 3774
CIRL3t3k2i30 6392.50 7155.34 5000 287 3306
CIRL4t3k2i30 5680.75 7102.63 4434 236 4323
CIRL5t3k2i30 5498.71 7139.37 6786 423 2846

CIRL1t3k2i35 6291.93 7070.59 7454 651 2211
CIRL2t3k2i35 6668.95 7134.92 5104 430 2963
CIRL3t3k2i35 8316.27 7039.60 7245 898 2154
CIRL4t3k2i35 6368.49 7138.09 6450 721 2218
CIRL5t3k2i35 6126.24 7069.42 5774 1009 2419

Average 4296.90 3644 336 4538

4.G Additional Computational Experiments on the Heuristic
Algorithm

In this section, we examine the behavior of the heuristic procedure that derives a solution to (P) from the

extended lower bound by solving the vehicle routing problem for each day in the planning horizon as

a set of TSPs. We compare the performance of the heuristic when the time limit to solve the extended

lower bound formulation is set to 900 seconds and to 7,200 seconds, respectively. Tables 4.G.1 and 4.G.2

show the performance of the heuristic algorithm in the one-vehicle and two-vehicle instances, respectively.

The second column lists the total cost of the heuristic solution, the third column shows the corresponding

optimality gap, and the fourth column contains the additional time to solve the set of daily TSPs derived

from the extended lower bound obtained within 900 seconds. The fifth through seventh columns provide

the analogous results starting from the extended lower bound obtained within 7200 seconds.

Tables 4.G.1 and 4.G.2 show that the heuristic is very effective when based on the extended lower

bound obtained within 7200 seconds, achieving an average optimality gap of just 0.07 percent and 4
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percent in the one-vehicle and two-vehicle instances, respectively. Moreover, Tables 4.G.1 and 4.G.2

demonstrate that the heuristic is still effective when operating from the extended lower bound obtained

within just 900 seconds, achieving an average optimality gap of 0.55 percent and 7.02 percent for the

one-vehicle and two-vehicle instances, respectively. We also observe that the computation time required

to solve the set of daily TSPs is negligible as the one-vehicle instances require the solution of a total of

three TSPs, and the two-vehicle instances require the solution of a total of six TSPs.
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Table 4.G.1: Heuristic Performance on One-Vehicle, Three-Period Instances

Instance
Time Limit = 900 sec Time Limit = 7200 sec

Total Cost % Gap Time (sec) Total Cost % Gap Time (sec)

CIRL1t3k1i05 1555.90 0.00 0.00 1555.90 0.00 0.00
CIRL2t3k1i05 1493.92 0.00 0.00 1493.92 0.00 0.00
CIRL3t3k1i05 2684.58 0.00 0.00 2684.58 0.00 0.00
CIRL4t3k1i05 1567.86 0.00 0.00 1567.86 0.00 0.00
CIRL5t3k1i05 1574.44 0.00 0.00 1574.44 0.00 0.00

CIRL1t3k1i10 2933.56 0.00 0.00 2933.56 0.00 0.00
CIRL2t3k1i10 3322.78 0.00 0.00 3322.78 0.00 0.00
CIRL3t3k1i10 2888.04 0.00 0.00 2888.04 0.00 0.00
CIRL4t3k1i10 2771.13 0.00 0.00 2771.13 0.00 0.00
CIRL5t3k1i10 3161.71 0.00 0.00 3161.71 0.00 0.00

CIRL1t3k1i15 3185.96 0.00 0.00 3185.96 0.00 0.00
CIRL2t3k1i15 3413.42 0.00 0.00 3413.42 0.00 0.00
CIRL3t3k1i15 4086.81 0.00 0.00 4086.81 0.00 0.00
CIRL4t3k1i15 3142.98 0.00 0.00 3142.98 0.00 0.00
CIRL5t3k1i15 3528.57 0.00 0.00 3528.57 0.00 0.00

CIRL1t3k1i20 4051.09 0.00 0.00 4051.09 0.00 0.00
CIRL2t3k1i20 3911.01 0.00 0.00 3911.01 0.00 0.00
CIRL3t3k1i20 4282.28 0.00 0.00 4282.28 0.00 0.00
CIRL4t3k1i20 4243.97 0.00 0.00 4243.97 0.00 0.00
CIRL5t3k1i20 4795.15 0.00 0.00 4795.15 0.00 0.00

CIRL1t3k1i25 4677.38 0.00 0.00 4677.38 0.00 0.00
CIRL2t3k1i25 4943.56 0.00 0.00 4943.56 0.00 0.00
CIRL3t3k1i25 5301.89 0.00 0.00 5301.89 0.00 0.00
CIRL4t3k1i25 4568.79 0.00 0.00 4568.79 0.00 0.00
CIRL5t3k1i25 5436.36 0.00 0.00 5436.36 0.00 0.00

CIRL1t3k1i30 5793.88 0.00 0.00 5793.88 0.00 0.00
CIRL2t3k1i30 5455.03 0.00 0.00 5455.03 0.00 0.00
CIRL3t3k1i30 5874.99 0.00 0.00 5874.99 0.00 0.00
CIRL4t3k1i30 5030.12 0.00 0.00 5030.12 0.00 0.00
CIRL5t3k1i30 4843.31 0.00 0.00 4843.31 0.00 0.00

CIRL1t3k1i35 5431.29 0.00 0.00 5431.29 0.00 0.00
CIRL2t3k1i35 5874.49 0.00 0.00 5874.49 0.00 0.00
CIRL3t3k1i35 6914.46 0.87 0.05 6855.12 0.00 0.04
CIRL4t3k1i35 5265.81 0.00 0.00 5265.81 0.00 0.00
CIRL5t3k1i35 5661.50 0.29 0.02 5661.50 0.29 0.06

CIRL1t3k1i40 6485.55 0.00 0.00 6485.55 0.00 0.00
CIRL2t3k1i40 6251.86 1.64 0.03 6177.87 0.44 0.04
CIRL3t3k1i40 6427.60 0.00 0.00 6427.60 0.00 0.00
CIRL4t3k1i40 5653.95 0.00 0.00 5653.95 0.00 0.00
CIRL5t3k1i40 6109.86 0.00 0.00 6109.86 0.00 0.00

CIRL1t3k1i45 6663.36 0.09 0.02 6657.52 0.00 0.00
CIRL2t3k1i45 6689.82 2.97 0.01 6496.55 0.00 0.02
CIRL3t3k1i45 6766.37 1.68 0.00 6654.31 0.00 0.09
CIRL4t3k1i45 6826.38 1.00 0.06 6758.66 0.00 0.00
CIRL5t3k1i45 6343.99 3.13 0.06 6181.65 0.49 0.08

CIRL1t3k1i50 7320.87 3.66 0.08 7103.64 0.59 0.04
CIRL2t3k1i50 8158.13 9.91 0.04 7544.85 1.65 0.05
CIRL3t3k1i50 6986.28 1.13 0.02 6917.94 0.14 0.07
CIRL4t3k1i50 7375.87 0.87 0.03 7317.37 0.07 0.06
CIRL5t3k1i50 7284.85 0.00 0.06 7284.85 0.00 0.07

Average 0.54 0.01 0.07 0.01

129



Table 4.G.2: Heuristic Performance on Two-Vehicle Instances

Instance
Time Limit = 900 sec Time Limit = 7200 sec

Total Cost % Gap Time (sec) Total Cost % Gap Time (sec)

CIRL1t3k2n05 1801.05 0.00 0.00 1801.05 0.00 0.00
CIRL2t3k2n05 2665.44 0.00 0.00 2665.44 0.00 0.00
CIRL3t3k2n05 4007.30 0.00 0.00 4007.30 0.00 0.00
CIRL4t3k2n05 2438.84 0.00 0.00 2438.84 0.00 0.00
CIRL5t3k2n05 2200.63 0.00 0.00 2200.63 0.00 0.00

CIRL1t3k2n10 3972.29 0.00 0.00 3972.29 0.00 0.00
CIRL2t3k2n10 4521.00 1.77 0.00 4442.25 0.00 0.00
CIRL3t3k2n10 3610.82 0.00 0.00 3610.82 0.00 0.00
CIRL4t3k2n10 3781.87 0.00 0.00 3781.87 0.00 0.00
CIRL5t3k2n10 3580.32 0.00 0.00 3580.32 0.00 0.00

CIRL1t3k2n15 3807.30 0.00 0.02 3807.30 0.00 0.00
CIRL2t3k2n15 4077.82 0.00 0.01 4077.82 0.00 0.00
CIRL3t3k2n15 4823.47 0.00 0.00 4823.47 0.00 0.00
CIRL4t3k2n15 3928.06 1.61 0.01 3865.76 0.00 0.00
CIRL5t3k2n15 4519.59 3.91 0.02 4349.72 0.00 0.00

CIRL1t3k2n20 5340.38 8.05 0.01 5148.09 4.16 0.04
CIRL2t3k2n20 4301.68 2.06 0.01 4214.90 0.00 0.00
CIRL3t3k2n20 5132.00 5.57 0.01 5039.24 3.66 0.06
CIRL4t3k2n20 5823.19 14.26 0.01 5545.53 8.81 0.03
CIRL5t3k2n20 6015.72 5.55 0.03 5868.17 2.96 0.04

CIRL1t3k2n25 5419.21 5.93 0.02 5311.47 3.82 0.06
CIRL2t3k2n25 5991.49 10.91 0.03 5876.82 8.79 0.02
CIRL3t3k2n25 6508.96 9.25 0.01 6180.67 3.74 0.05
CIRL4t3k2n25 5315.20 8.02 0.01 5093.02 3.50 0.02
CIRL5t3k2n25 6750.32 11.48 0.02 6663.25 10.04 0.07

CIRL1t3k2n30 7231.42 20.40 0.02 6636.56 10.49 0.04
CIRL2t3k2n30 6569.09 10.85 0.03 6097.81 2.90 0.02
CIRL3t3k2n30 6502.61 6.66 0.04 6392.50 4.85 0.05
CIRL4t3k2n30 5909.22 10.87 0.01 5680.75 6.59 0.03
CIRL5t3k2n30 5838.03 15.67 0.03 5498.71 8.95 0.04

CIRL1t3k2n35 6942.11 20.68 0.02 6291.93 9.38 0.03
CIRL2t3k2n35 7205.49 17.01 0.03 6668.95 8.30 0.06
CIRL3t3k2n35 8316.27 16.88 0.04 8316.271 16.88 0.07
CIRL4t3k2n35 6912.35 25.55 0.01 6368.49 15.67 0.01
CIRL5t3k2n35 6492.51 12.95 0.02 6126.24 6.58 0.05

Average 7.03 0.01 4.00 0.02
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Chapter 5

Sparse Routing for the Inventory
Routing Problem∗

Abstract

We introduce the notion of sparse routing to solve the finite-horizon Inventory Routing Problem
with split deliveries. We define sparse routing as a broad class of matheuristics which solves a route-
based formulation of the problem. To address the complexity of a formulation with all possible routes,
we show how to design effective and efficient sparse routing, hence achieving the best tight worst-case
performance bound known for this problem, i.e. d

√
He where H is the planning horizon. The sets

of routes we obtained, together with sets of routes generated by other methods we propose, allow us
to have solutions with very good average performance in a large set of instances. These solutions
significantly dominate, both in terms of cost and computational time, the best solutions obtained by
applying a branch-and-cut algorithm we design to a flow–based formulation of the problem.
Keywords: inventory routing, split delivery, route-based formulation, matheuristics, worst-case
analysis, branch-and-cut.

5.1 Introduction

Logistics is a trillion-dollar industry. In the United States alone, total business logistics costs in 2018

amounted to $1.635 trillion, up 11.4% from the previous year. The biggest portion comes from transporta-

tion costs of just over $1 trillion. These figures suggest the importance of solving routing optimization

problems as even a mere 0.1% savings is equivalent to $1 billion (see Ward et al. (2019)).

One of the classic routing problems is the Vehicle Routing Problem (VRP), where a depot must

deliver goods in given quantities to a given set of customers using a fleet of vehicles, each with a certain

limited capacity. The objective is to determine the allocation of customers among routes and the sequence

by which customers in each route are visited, in order to minimize the total transportation costs. The

VRP, which adds a capacity dimension to the Traveling Salesman Problem (TSP), is well known to be

computationally challenging (i.e. NP-hard). In order to generate savings, one can allow split deliveries

in the VRP such that the quantities required by customers need not be delivered by the same vehicle or

in the same route. This adds computational complexity to the VRP and is known as the VRP with Split

Deliveries (SVRP) (see Dror et al. (1994)).
∗This chapter is based on Bertazzi, Chua, Laganá & Paradiso (2019).
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In integrated logistics and in supply chain management, a means to generate savings comes from the

second largest driver of logistics costs, which is inventory carrying costs. In 2018, the total inventory

carrying costs in the United States was almost half a trillion dollars, up almost 15% from the previous

year (see Ward et al. (2019)). In this setting, solving a VRP (or a SVRP) problem just provides suboptimal

solutions, as quantities required by customers can be delivered ahead of time, say one or even many

periods earlier, potentially trading off high transportation costs for lower inventory holding costs. This

problem is known as the Inventory Routing Problem (IRP), which has seen several industrial applications,

ranging from chemical components to oil and gas, automobile components, groceries, cement, blood,

livestock, and organic waste (see Coelho et al. (2013a)).

As the IRP adds a time dimension to the VRP, there is clearly greater computational complexity in the

former. It is no wonder that the IRP has attracted and continues to attract many researchers, working on

exact and heuristic solutions as well as variants of the IRP. To address this computational challenge, we

introduce the notion of sparse routing for inventory routing problems. To properly define sparse routing,

we must model the IRP as a route-based mixed-integer program where decision variables are declared

for each route and each period. This route-based formulation (as opposed to traditional flow-based

formulation) allows us to see that if all possible routes are considered, then we will have O(2n · H)

decision variables related to the routing part of the problem and the same number of TSP problems to

solve to optimality, where n is the number of customers and H is the number of periods in the planning

horizon. This makes the problem computational intractable.

We can now define sparse routing as a class of matheuristics for general IRP problems which only

considers a subset of all possible routes, hence arriving at good solutions in reasonable computational

times. A matheuristic is a heuristic method or algorithm that involves the solution of mathematical

programming models, typically corresponding to subproblems of the original problem (see Archetti &

Speranza (2014)). It should not be mistaken for a metaheuristic. In this paper, we demonstrate how sparse

routing can be applied to the finite-horizon IRP with split deliveries (SDIRP). The main contributions in

the literature for the SDIRP are based on different mathematical formulations and methods, which make it

unclear which approach is most suitable, especially when split deliveries are allowed.

With sparse routing, we are able to solve the SDIRP both effectively and efficiently. However, because

sparse routing considers only a subset of routes, there are numerous methods to carry out sparse routing.

The objective of this paper is to find methods that generate a set of routes that is sparse and, at the same

time, guarantees good solution quality. On one hand, the set of all routes has the best solution quality

but is not sparse at all (thus cannot be solved to optimality in reasonable time). On the other hand, direct

shipping (i.e. routes with only one customer) is very sparse but can be shown (in this paper) to have

arbitrarily poor solution quality. In general, one can consider the set of all routes with at most r customers,

where r is relatively low compared to n. We refer to this as short routing, which must be distinguished

from the more general notion of sparse routing. The key difference lies in route length cardinality versus

route set cardinality. It can be shown that the solution quality from short routing can be arbitrarily bad,

such that one can construct instances whereby such sets can be as bad as direct shipping. The main reason

for such poor performance is because we do not use instance information in generating the set of routes.

Using this insight, we propose a method that solves a (relatively) easier problem, such as the VRP or

the SVRP, to generate the subset of routes for our matheuristics. Instance information is used to define the

demand of each customer in the VRP or the SVRP we solve, e.g. demand equal to the quantity needed to
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serve the customers daily, or to serve them just once over the planning horizon. Then, given this subset of

routes, we solve the route-based model we formulate for this problem.

Theoretically, we provide a new lower bound for SDIRP based on the optimal SVRP cost. Moreover,

we prove an upper bound on the performance (i.e. cost) of the SDIRP when the subset of routes is

generated by solving the SVRP with demand of each customer equal to the quantity delivered in the

SDIRP when an intershipment time of τ periods is used. These upper and lower bounds allow us to prove

a worst-case bound on such subclass of matheuristics, which corresponds to a type of sparse routing.

Then, we solve the SVRP with demand of each customer equal to the quantity delivered in the SDIRP

when the intershipment time that minimizes the worst-case bound is used. By using this subset of routes in

the SDIRP, we find that the best worst-case bound is d
√
He. Moreover, we prove that this bound is tight.

To our best knowledge, this is the best tight worst-case bound known for the SDIRP. We also provide

worst-case bounds for instances with non-identical inventory holding costs, capacitated customers, and

time-varying demand.

Numerically, the class of matheuristics we consider allows us to test various methods of sparse routing,

preferably using instance information. We tinkered with SVRP, VRP, VRP with optimized capacity and

combinations of the above. We report excellent average performance over a broad set of test instances.

Specifically, our solutions significantly dominate, in terms of both cost and computational time, the

best solutions obtained by applying a branch-and-cut algorithm we design for the traditional flow-based

formulation of the SDIRP. The methods we proposed also demonstrate various trade-off points between

computational time and solution quality.

Our main methodological contribution is to show that worst-case analysis can be useful to design

efficient and effective matheuristics, with worst-case performance guarantee, whenever a route–based

formulation for the IRP is used. Efficiency comes from the fact that the subsets of routes generated by

the matheuristic is very sparse. Effectiveness is obtained by just adding, to the subset of routes used

to prove the worst-case performance bound, a very small number of additional routes designed to be

high performing on average. Worst-case performance guarantee comes from the fact that enlarging

the subset of routes used to prove the worst-case performance bound can never worsen the worst-case

performance bound. These matheuristics are also practical, as the subset of routes used to prove the

worst-case performance bound can be added to the set of routes already used by the company, resulting in

both better solutions on average and a guarantee in the worst case. We believe this approach is general, i.e.

it can be applied to any problem for which a column–based model can be formulated. In this paper, we

demonstrate that it performs well on a very challenging problem.

The remainder of the paper is organized as follows. Section 5.2 provides a brief discussion of the

related literature. Section 5.3 presents the problem description and the route-based model formulation. We

then discuss the analysis of the worst-case performance and the average performance of the matheuristics

we propose in Section 5.4 and Section 5.5, respectively. Finally, Section 5.6 concludes and provides

managerial insights.

5.2 Literature Review

The literature contains a wide range of work on the IRP formulations and algorithms (see tutorials by

Bertazzi & Speranza (2012a) and Bertazzi & Speranza (2013), and survey by Coelho et al. (2013a)). A

classical distinction is between uncertain (stochastic and robust) and deterministic IRPs. A few papers
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have been published on uncertain IRPs (see for example Adelman (2004), Bertazzi et al. (2013), Bertazzi

et al. (2016), Coelho et al. (2014), Kleywegt et al. (2002), Kleywegt et al. (2004), Solyalı et al. (2012)).

Meanwhile, the primary stream in this literature has been on deterministic IRPs, where the models

considered can be broadly classified according to the number of products and number of vehicles involved.

In this section, we discuss the ones which are most relevant to our work. The single-product, single-vehicle

IRP was introduced in Archetti et al. (2007). Exact algorithms were designed by Solyalı & Süral (2008),

Coelho & Laporte (2014), Avella et al. (2015), and Avella et al. (2018), while effective matheuristics were

also designed and successfully applied to a large variety of routing problems in more recent years (see

for example, Archetti et al. (2012)). These algorithms were then extended to solve integrated logistics

problems in which routing plays an important role. We refer the readers to to Archetti & Speranza (2014)

for a survey on matheuristics for routing problems, and to Bertazzi & Speranza (2012b) for an introduction

to matheuristics for solving IRPs. Various other works also examine the IRP where the final inventory

levels must be equal to the initial inventory levels (see Aksen et al. (2012), Ekici et al. (2015), Raa

& Aghezzaf (2008), Aghezzaf et al. (2012), Vansteenwegen & Mateo (2014), and Raa (2015)). More

recently, several papers investigate the single-product, multi-vehicle IRP including Coelho et al. (2012)

and Adulyasak et al. (2013) and effective matheuristics were designed by Archetti et al. (2017). The

multi-product, multi-vehicle IRP was studied in Coelho & Laporte (2013a) and Cordeau et al. (2015).

Exact algorithms include branch–and–cut, branch–and–price, and more recently, branch–and–price–and–

cut (Desaulniers et al. (2016)). The above body of work considers the operational problem where initial

inventory levels are fixed, while our work solves a tactical planning problem where the initial inventory

levels are decision variables.

To address computational complexity, one stream of work looks into decomposition approaches for

large scale instances of the IRP such as Campbell & Salvesbergh (2004) and in Cordeau et al. (2015).

Another stream develops computationally efficient algorithms or heuristics that achieve nearly optimal

solutions or provide performance guarantees. For instance, Anily & Federgruen (1993) and Anily &

Federgruen (1990) develop heuristics for solving the IRP with and without inventories at the depot,

respectively, that are asymptotically within a few percentage points of optimality when the number of

customers grows to infinity. They also provide methods for computing lower bounds (i.e. performance

guarantees) in an efficient manner. Meanwhile, Gallego & Simchi-Levi (1990) show that direct shipping

can perform well for the IRP, provided the demand from every customer is sufficiently high. On the

flip side, this also implies that the direct shipping can be arbitrarily bad for general customer demand

profiles. Nevertheless, the above stream of work on performance analysis considers only infinite horizon

problems with continuous review, and does not provide any constant or finite worse-case performance

bound. Bertazzi (2008) studies the discrete case with direct shipping, providing constant worst-case

performance bounds in several classes of instances, but not a constant or finite worst-case performance

bound on all instances. In contrast, our work examines finite horizon problems with periodic review, and

to our best knowledge, provides the first known finite worst-case bound for this problem.

The IRP is also related to other well known problems such as the VRP and the Joint Replenishment

Problem (JRP). We discuss how these two problems are less challenging than the IRP, hence why some of

the recent results for these problems are not comparable to ours. For instance, Bramel & Simchi-Levi

(1995) and Bramel et al. (1992) provide polynomial-time heuristics for the VRP which are asymptotically

optimal under a broad range of demand scenarios. While some of their formulations and heuristics can be
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extended to the IRP, no performance guarantees can be obtained. Meanwhile, Nagarajan & Shi (2016)

present a unified approach for the submodular JRP and the uncapacitated IRP without split deliveries.

While the approach yields very efficient algorithms for both problems, it does not apply to the more general

IRP with vehicle capacity and split deliveries (SDIRP). Similarly, Federgruen & Zheng (1992) derive

efficient algorithms for the JRP assuming submodular costs. However, the vehicle capacity constraint

in the SDIRP destroys both properties of submodularity and approximate subadditivity required for the

results in the above papers. Hence, it is clear that the SDIRP is substantially more challenging than both

VRP and JRP, and the performance bounds are not comparable (e.g. some JRP bounds can be less than 2).

5.3 Model

In this section, we first describe the finite-horizon IRP with split deliveries (SDIRP) as well as the

notations necessary for its model formulation and analysis. We then model the problem as a route-based

mixed-integer linear program, which constitutes sparse routing or the class of matheuristics we consider

in this paper.

5.3.1 Problem Description

We study the SDIRP in which a product has to be shipped from a supplier 0 to a set I of n customers

over a finite planning horizon of H periods. The logistic network is represented by the undirected graph

G(V,E), where V = I ∪ {0} is the set of nodes and E is the set of edges. The transportation cost matrix

{cij} is symmetric, i.e. cij = cji for all i, j ∈ V , and satisfies the triangle inequality, i.e. cij ≤ cil + clj ,

for all i, l, j ∈ V such that i 6= l 6= j. Shipments from the supplier to the customers can be performed on

each day t in the set T = {0, 1, . . . ,H − 1} by vehicles having each transportation capacity Q. Let K be

the set of all possible routes, ck be the cost of the route k ∈ K (i.e. the cost of the corresponding optimal

TSP), Rk be the set of customers served by route k ∈ K and Ki be the set of routes serving customer

i. Split delivery is allowed, i.e. a customer can be served by more than one vehicle on each day, even if

the quantity sent to the customer on this day is not greater than the transportation capacity. The product

is made available at the supplier at a given constant production rate q and absorbed by each customer

i ∈ I at a given constant demand rate qi, where
∑

i∈I qi = q. A unit inventory cost h is charged at the

supplier and at the customers for positive inventory levels at the end of each day t ∈ T . Our aim is to

determine a shipping policy that minimizes the sum of the routing cost and of the inventory cost, both

at the supplier and at the customers, in the time unit. This policy is defined by the following decision

variables: the quantity sitk to deliver to customer i ∈ I on day t ∈ T by using route k ∈ K; ytk equal to 1

if route k ∈ K is used on day t ∈ T and 0 otherwise; the starting inventory level Ī0 at the supplier 0 and

the starting inventory level Īi at each customer i ∈ I . Let us introduce the variables I0t and Iit denoting

the inventory level at the end of day t ∈ T at the supplier 0 and at each customer i ∈ I , respectively. Note

that, since our problem is not defined at an operational level but at a tactical planning level, the starting

inventory levels at the supplier and at the customers are decision variables of the problem, and not given

data. This allows us to compute an optimal starting inventory level to make available at the supplier and

at the customers every H periods. Moreover, note that no maximum inventory level is defined at the

customers. The combination of these two features makes our problem more difficult than the one studied

in Archetti et al. (2007) and the subsequent papers.
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5.3.2 Route-Based Formulation for Sparse Routing: A Matheuristic Class

The problem described in the previous section can be formulated as the following route–based mixed

integer linear programming model.

ProblemR

Min h

(
Ī0 +

∑
i∈I

Īi

)
+

1

H

∑
t∈T

∑
k∈K

ckytk (5.1)

s.t.
∑
t∈T

∑
k∈Ki

sitk = qiH i ∈ I (5.2)

∑
i∈Rk

sitk ≤ Qytk t ∈ T (5.3)

I0t = Ī0 +
∑
i∈I

qit−
t∑

ρ=0

∑
k∈K

∑
i∈Rk

siρk t ∈ T (5.4)

Iit = Īi +
t∑

ρ=0

∑
k∈Ki

siρk − qi(t+ 1) i ∈ I t ∈ T (5.5)

Ī0 ≥ 0 (5.6)

I0t ≥ 0 t ∈ T (5.7)

Īi ≥ 0 i ∈ I (5.8)

Iit ≥ 0 i ∈ I t ∈ T (5.9)

sitk ≥ 0 t ∈ T k ∈ K i ∈ Rk (5.10)

ytk ≥ 0 integer t ∈ T k ∈ K. (5.11)

The objective function (5.1) minimizes the sum of the inventory cost at the supplier and at the

customers, and of the routing cost, per day. Note that the total inventory cost per day can be defined in this

way, as the total inventory level on each day t, i.e. I0t +
∑

i∈I Iit, is constant over time thanks to (5.4)

and (5.5). Constraints (5.2) guarantee that the total quantity sent to each customer i over the time horizon

H is equal to the total demand qiH . Constraints (5.3) guarantee that quantity delivered by route k on

day t is not greater than the transportation capacity if route k is used on day t. Constraints (5.4) compute

the inventory level at the supplier at the end of each day t, given by the starting inventory level, plus the

cumulative quantity made available at the supplier up to day t− 1, minus the cumulative quantity sent to

the customers up to day t. Constraints (5.5) compute the inventory level at each customer i at the end of

each day t, given by the starting inventory level, plus the cumulative quantity delivered to the customer

up to day t, minus the cumulative demand at the customer up to day t. Finally, (5.6)–(5.11) define the

decision variables. Note that (5.11) implies that each route k can be used several times on each day.

Observe that apart from the problem instance parameters, a critical input to this model is the subset K

of routes, based upon which decision variables are defined for the model. The choice of K corresponds to

the type of sparse routing selected to solve the SDIRP. Because there are be numerous ways to choose K,

the above formulation represents the entire class of sparse routing heuristics (e.g. it includes short routing).

Given the model inputs, the above problem can be solved using standard Branch-and-Cut methods. In the

next sections, we discuss methods to generate the subset K of routes, and analyze their performance.
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5.4 Analysis of Worst-Case Performance

In this section, we first characterize the worst-case performance of direct shipping and show that it can be

arbitrarily bad. This brings us to a subclass of matheuristics using an SVRP-based method to generate

route sets, which turns out to be efficient and effective sparse routing. We show that the optimal routing

cost of SVRP with total planning horizon demand, divided by the planning horizon duration, provides a

lower bound on the optimal routing cost in the SDIRP. We then use this result to prove the worst-case

performance of the SVRP-based subclass. Finally, we extend the results to non-identical inventory holding

costs, capacitated customers and time-varying demand.

5.4.1 Direct Shipping

Similar to Gallego & Simchi-Levi (1990) and Bertazzi (2008) but for finite-horizon IRP with periodic

review, we show that direct shipping can be arbitrarily bad. To this end, we let D be the set of direct

shipping routes, zD be optimal cost of Problem R with K = D and q = mini∈I qi. We present the

following lemma that provides a lower bound on z∗.

Lemma 5.1. z∗ ≥
∑

i∈I hqi +
∑

i∈I 2c0i
qi
Q

Proof. This lower bound is given by the sum of a lower bound on the inventory cost and a lower bound

on the routing cost. Consider first the inventory cost. Since a quantity qi is absorbed on day 0 by each

customer i ∈ I and the quantity
∑

i qi produced at the supplier on day 0 can be shipped to customers only

on day 1, then Ī0 +
∑

i∈I Īi ≥
∑

i∈I qi. Since the total inventory level is constant over time, then the

total inventory cost per day is not lower than
∑

i∈I hqi. The lower bound on the routing cost is the lower

bound by Gallego & Simchi-Levi (1990) over an infinite time horizon.

With this lower bound, we can now present our main result on the worst-case performance of direct

shipping.

Theorem 5.1. zD

z∗ ≤ max
{

2,
⌈√

Q
q

⌉
, QqH

}
and the bound is tight.

Proof. We first compute an upper bound on zD. Consider the feasible solution where direct shipments are

performed to each customer i every τ days. An upper bound on the inventory cost is
∑

i∈I hqiτ , i.e. the

maximum possible inventory cost to serve each customer i ∈ I every τ days, obtained when all customers

are served on the same days, for example on days 0, τ, 2τ, ... The routing cost is
∑

i∈I
2c0i
τ

⌈
qiτ
Q

⌉
. Let

us define Î ⊆ I be the subset of customers such that qiτQ ≤ 1. Then, the routing cost can be written as∑
i∈Î

2c0i
τ +

∑
i∈I\Î

2c0i
τ

⌈
qiτ
Q

⌉
. Therefore, zD ≤

∑
i∈I hqiτ +

∑
i∈Î

2c0i
τ +

∑
i∈I\Î

2c0i
τ

⌈
qiτ
Q

⌉
.

Since the lower bound on the optimal cost proved in Lemma 5.1 can be written as follows:

z∗ ≥
∑

i∈I hqi +
∑

i∈Î
2c0i
τ

qiτ
Q +

∑
i∈I\Î

2c0i
τ

qiτ
Q , then

zD

z∗
≤

∑
i∈I hqiτ +

∑
i∈Î

2c0i
τ +

∑
i∈I\Î

2c0i
τ

⌈
qiτ
Q

⌉
∑

i∈I hqi +
∑

i∈Î
2c0i
τ

qiτ
Q +

∑
i∈I\Î

2c0i
τ

qiτ
Q

≤ max

τ,
∑

i∈Î
2c0i
τ +

∑
i∈I\Î

2c0i
τ

⌈
qiτ
Q

⌉
∑

i∈Î
2c0i
τ

qiτ
Q +

∑
i∈I\Î

2c0i
τ

qiτ
Q

 .

Since q ≤ qi for all customers i ∈ I and
⌈
qiτ
Q

⌉
≤ 2 qiτQ for each customer i ∈ I \ Î ,∑

i∈Î
2c0i
τ +

∑
i∈I\Î

2c0i
τ

⌈
qiτ
Q

⌉
∑

i∈Î
2c0i
τ

qiτ
Q +

∑
i∈I\Î

2c0i
τ

qiτ
Q

≤ max

{
Q

qτ
, 2

}
.
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Therefore, z
D

z∗ ≤ max
{
τ,max

{
Q
qτ , 2

}}
.

Let us now select an optimal value of τ . Note first that
√

Q
q is the non–negative solution of the

equation τ = Q
qτ . If

√
Q
q < 2, max

{
τ,max

{
Q
qτ , 2

}}
is minimized for τ = 2 and the corresponding

value is 2. If
√

Q
q > H , then the previous function is minimized for τ = H and the corresponding value

is Q
qH . Otherwise, the optimal value is the best between

⌊√
Q
q

⌋
and

⌈√
Q
q

⌉
. Since max{τ, Qqτ } =

⌈
Q
qτ

⌉
when τ =

⌈
Q
qτ

⌉
, then zD

z∗ ≤ max
{

2,
⌈√

Q
q

⌉
, QqH

}
.

Consider the following instance to prove that the bound max
{

2,
⌈√

Q
q

⌉
, QqH

}
is tight when it is

equal to 2: period H = 2, n ≥ 2 customers (even number), production/consumption rate q = qi = Q
2 + Q

n

for all customers i ∈ I (0 < ε ≤ Q
n ), inventory cost h = 0, transportation cost c0i = 1 ∀i ∈ I and cij = 1

n

∀i, j such that i ∈ I, j ∈ I, i 6= j. Note that the triangle inequality is satisfied and that
⌈√

Q
q

⌉
= 2 and

Q
qH < 1. An optimal solution of ProblemR withK = D is to serve each customer with direct shipping on

each day. Therefore, zD = 2n. Consider now a feasible solution of ProblemR with all routes, where two

customers at a time are served in the same route on each day, delivering Q
2 each. Moreover, an additional

route serving Q
n to all customers is used on each day. This solution provides the following upper bound on

the optimal cost: z∗ ≤ n+ 2 + (n− 1) 1
n = n+ 3− 1

n . Therefore, in this instance: zD

z∗ ≥
2n

n+3− 1
n

→ 2

for n→∞.
Consider now the following instance to prove that the bound max

{
2,
⌈√

Q
q

⌉
, QqH

}
is tight when it

is equal to
⌈√

Q
q

⌉
: period H =

√
Q
q ≥ 2 (integer number), n = Q

q customers, production/consumption

rate qi = q for all customers i ∈ I , inventory cost h = 0, transportation cost c0i = 1 ∀i ∈ I and cij = ε

∀i, j such that i ∈ I, j ∈ I, i 6= j, where 0 < ε << 1. Note that the triangle inequality is satisfied and

that Q
qH =

⌈√
Q
q

⌉
. Since h = 0 and qH < Q, an optimal solution of ProblemR with K = D is to serve

each customer with direct shipping just once over H . Therefore, zD = 2n
H = 2

√
Q
q .

Consider now a feasible solution of ProblemR with all routes, where all customers i ∈ I are served

every day in the same route. This solution provides the following upper bound on the optimal cost:

z∗ ≤ 2 + (n− 1)ε = 2 + (Qq − 1)ε. Therefore, in this instance: zD

z∗ ≥
2
√
Q
q

2+(Q
q
−1)ε

→
⌈√

Q
q

⌉
for ε→ 0,

as
⌈√

Q
q

⌉
=
√

Q
q .

Finally, consider the following instance to prove that the bound max
{

2,
⌈√

Q
q

⌉
, QqH

}
is tight when

it is equal to Q
qH : period 2 ≤ H <

√
Q
q (integer number) such that Q

qH >
⌈√

Q
q

⌉
, n = Q

q customers,

production/consumption rate qi = q for all customers i ∈ I , inventory cost h = 0, transportation cost

c0i = 1 ∀i ∈ I and cij = ε ∀i, j such that i ∈ I, j ∈ I, i 6= j, where 0 < ε << 1. Note that the

triangle inequality is satisfied. Since h = 0 and qH < Q, an optimal solution of Problem R with

K = D is to serve each customer with direct shipping just once over H . Therefore, zD = 2n
H = 2 Q

qH .

Consider now a feasible solution of Problem R with all routes, where all customers i ∈ I are served

every day in the same route. This solution provides the following upper bound on the optimal cost:

z∗ ≤ 2 + (n− 1)ε = 2 + (Qq − 1)ε. Therefore, in this instance: zD

z∗ ≥
2 Q
qH

2+(Q
q
−1)ε
→ Q

qH for ε→ 0.

This theorem shows that when customers have arbitrarily low demand rates, direct shipping may result

in an arbitrarily poor solution quality. In the next section, we present sparse routing that does not have this
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limitation.

5.4.2 The SVRP Subclass

We consider sparse routing that takes into account instance information. That is, we use demand

information (albeit, in various methods) to solve the SVRP (a substantially less challenging single-period

problem) to determine which routes will be included in the route set K. We collectively call these methods

the SVRP subclass. In this section, we provide a worst-case performance guarantee for this subclass. To

this end, we first present the following new lower bound.

Let z∗ be the optimal cost of ProblemR with all possible routes, SV RP (φi, Q) be the set of routes

obtained by optimally solving the SVRP that delivers the quantity φi to each customer i ∈ I when the

transportation capacity is equal to Q, and ẑSV RP (φi,Q) be the corresponding routing cost. For example,

SV RP (qiH,Q) is the set of routes obtained by optimally solving the SVRP when the total demand qiH

required by each customer i ∈ I over the period H is delivered in one day. The following lemma states a

lower bound on z∗.

Lemma 5.2. z∗ ≥
∑

i∈I hqi + ẑSV RP (qiH,Q)

H

Proof. This lower bound is given by the sum of a lower bound on the inventory cost and a lower bound

on the routing cost. Consider first the inventory cost. Since a quantity qi is absorbed on day 0 by each

customer i ∈ I and the quantity
∑

i qi produced at the supplier on day 0 can be shipped to customers only

on day 1, then Ī0 +
∑

i∈I Īi ≥
∑

i∈I qi. Since the total inventory level is constant over time, then the

total inventory cost per day is not lower than
∑

i∈I hqi. Consider now the routing cost. The set of routes

in any feasible solution of ProblemR provides a feasible solution for the SVRP to deliver the quantity

qiH to each customer i ∈ I , when the transportation capacity is equal to Q. Note that if the routes in the

feasible solution of Problem R are assigned to several days, a solution with the same cost is obtained

by assigning all these routes to the same day. If we set h = 0 and remove constraints (5.4)–(5.9) in

ProblemR, an optimal solution of this model provides an optimal set of routes SV RP (qiH,Q), having

cost ẑSV RP (qiH,Q). Therefore, ẑ
SV RP (qiH,Q)

H is a lower bound on the routing cost per day.

We now provide a worst-case analysis of an optimal shipping policy computed by solving ProblemR
with K = S, where S is a given subset of routes, with respect to an optimal shipping policy computed by

solving ProblemR with all possible routes. Let zS be the cost of an optimal solution of ProblemR when

the set of routes is S.

To generate the sparse set of routes to consider in the solution of Problem R, we focus on Single

Frequency policies, i.e. delivery policies in which the intershipment time, i.e. the number of days between

any two consecutive shipments, is constant over time. Let τ ∈ {1, 2, . . . ,H} be the intershipment time

and SV RP (qiτ,Q) be the set of routes obtained by optimally solving the SVRP to deliver a quantity qiτ

to each customer i ∈ I every τ days, when the transportation capacity is Q.

Once the set of routes SV RP (qiτ,Q) is computed for a given τ , ProblemRwithK = SV RP (qiτ,Q)

is optimally solved. Note that the obtained optimal solution uses only the routes in the set SV RP (qiτ,Q),

but the intershipment times assigned to each customer can be different than τ . Moreover, each customer

can have different intershipment times, even not based on a single frequency or multiple frequencies. For

example, a customer can be served by using intershipment times in sequence that are all different.
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The following lemma provides a worst-case performance ratio of the corresponding optimal cost

zSV RP (qiτ,Q) with respect to the optimal cost of ProblemR with all possible routes.

Lemma 5.3. zSV RP (qiτ,Q)

z∗ ≤ max{τ, Hτ }.

Proof. We first compute an upper bound on zSV RP (qiτ,Q), by summing up an upper bound on the inventory

cost and an upper bound on the routing cost. The upper bound on the inventory cost is
∑

i∈I hqiτ , i.e. the

maximum possible inventory cost to serve each customer i ∈ I every τ days, obtained when all customers

are served on the same days, for example on days 0, τ, 2τ, ... The upper bound on the routing cost is
ẑSV RP (qiH,Q)

τ , computed by taking into account that the set of routes SV RP (qiH,Q) is feasible to serve

all customers every τ days, as the quantity qiτ sent every τ days to each customer i ∈ I is not greater

than the quantity qiH sent every H days, i.e. the quantity used to compute the routes in SV RP (qiH,Q).

Therefore, zSV RP (qiτ,Q) ≤
∑

i∈I hqiτ + ẑSV RP (qiH,Q)

τ .

Since a lower bound on the optimal cost is z∗ ≥
∑

i∈I hqi + ẑSV RP (qiH,Q)

H thanks to Lemma 5.2, then

zSV RP (qiτ,Q)

z∗
≤
∑

i∈I hqiτ + ẑSV RP (qiH,Q)

τ∑
i∈I hqi + ẑSV RP (qiH,Q)

H

=
τ
∑

i∈I hqi + H
τ
ẑSV RP (qiH,Q)

H∑
i∈I hqi + ẑSV RP (qiH,Q)

H

≤

≤
max{τ, Hτ }

(∑
i∈I hqi + ẑSV RP (qiH,Q)

H

)
∑

i∈I hqi + ẑSV RP (qiH,Q)

H

= max

{
τ,
H

τ

}
.

Let us now consider the following values of τ to compute the set of routes SV RP (qiτ,Q): 1 (Every

Day SVRP), H (Total Demand SVRP) and the value τ∗ that minimizes the worst-case performance bound

max{τ, Hτ } (Optimal Single Frequency SVRP). The following theorems hold.

Theorem 5.2. zSV RP (qi,Q)

z∗ ≤ H .

Theorem 5.3. zSV RP (qiH,Q)

z∗ ≤ H .

Theorem 5.4. zSV RP (qiτ
∗,Q)

z∗ ≤ d
√
He and the bound is tight.

Proof. Consider the worst-case performance bound max{τ, Hτ } provided in Lemma 5.3. Since the

first term is an increasing function in τ , while the second is a decreasing function in τ , then solving

the following equation τ = H
τ , we have that the optimal non–negative value of τ is

√
H . Since

τ∗ is an integer number and the function max{τ, Hτ } is convex, τ∗ is eitherd
√
He or b

√
Hc. Since

max{τ, Hτ } = d
√
Hewhen τ = d

√
He, while it is equal to H

b
√
Hc when τ = b

√
Hc, then zSV RP (qiτ

∗,Q)

z∗ ≤

min
{
d
√
He, H

b
√
Hc

}
≤ d
√
He.

Consider the following instance to prove that this bound is tight: Period H such that
√
H is an integer

number (i.e., b
√
Hc = d

√
He =

√
H), number of customers n =

√
H , production/demand rate qi = 1

H ,

∀i ∈ I , inventory cost h = 0, transportation capacity Q = 1, transportation cost c0i = 1 ∀i ∈ I and

cij = 2 − ε ∀i, j such that i ∈ I, j ∈ I, i 6= j, where ε << 1. Note that the triangle inequality is

satisfied. Let us first compute the set of routes SV RP (qi
√
H,Q). Since the triangle inequality holds

and the total quantity nqi
√
H sent every

√
H days is equal to the transportation capacity Q = 1, the

optimal set of routes SV RP (qi
√
H,Q) is composed of just one route, that is the TSP route serving all

customers. The corresponding cost is 2 + (2− ε)(n− 1). Consider now an optimal solution of ProblemR
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with K = SV RP (qi
√
H,Q) and the corresponding optimal cost zSV RP (qi

√
H,Q). Since the TSP route

serving all customers is the only available route, the vehicle is fully loaded if this route is used every√
H days and the unit inventory cost h = 0, an optimal solution is to serve all customers every

√
H

days. Therefore, zSV RP (qi
√
H,Q) = 2+(2−ε)(n−1)√

H
. Consider now a feasible solution of ProblemR with

all routes, where each customer i ∈ I is directly served with a fully loaded vehicle every H days. This

solution provides the following upper bound on the optimal cost: z∗ ≤ 2n
H . Therefore, in this instance:

zSV RP (
√
H,Q)

z∗ ≥
2+(2−ε)(n−1)√

H
2n
H

→ H√
H

= d
√
He for ε→ 0, as d

√
He =

√
H .

Note that d
√
He is feasible even if it is not a factor of H . For example, delivering every 2 days

when H = 3 is feasible in our tactical planning approach, because even if only qi units are delivered to

customer i on day 0, the customer already has qi units left from the previous time horizon. Therefore, if

all customers are served every 2 days, the total inventory level in the time unit is still constant over time

and the inventory cost equal to
∑

i hqi2.

We note that the value of d
√
He grows much more slowly compared to H , which bodes well for the

performance of the SVRP method to generate the set of routes for ProblemR. For example, when H = 3

and 6, the worst-case bound are reasonably low at 2 and 3, respectively. To our best knowledge, this is

the best tight worst-case bound known for this problem. Moreover, the SVRP subclass brings with it the

additional benefit that routes generated already comes with their optimal TSP costs.

5.4.3 Extensions

In this section, we extend the above results to three features; namely, non-identical inventory holding

costs, capacitated customers, and time-varying demand. We show how these features affect the worst-case

performance guarantees.

Non-identical Holding Costs

To model non-identical inventory holding costs, we replace h in the above models with h0 at the

supplier and hi at customer i,∀i ∈ I . The objective function in Problem R shall be replaced with
1
H

(∑
t∈T h0I0t +

∑
t∈T
∑

i∈I hiIit +
∑

t∈T
∑

k∈K ckytk
)
. Lemma 5.1 and Lemma 5.2 will be replaced

with the following.

Lemma 5.4. z∗ ≥
∑

i∈I(h0 + hi)
qi
2 +

∑
i∈I 2c0i

qi
Q

Lemma 5.5. z∗ ≥
∑

i∈I(h0 + hi)
qi
2 + ẑSV RP (qiH,Q)

H

Proof. For both lemmas, the routing costs remain the same. For the inventory cost, since the minimum

intershipment time is 1 day, a lower bound on the inventory cost at the supplier is h0
∑

i∈I qi/2, while

it is hiqi/2 for each customer i. Therefore, a lower bound on the total inventory cost in the time unit is∑
i∈I(h0 + hi)

qi
2 .

We can then show that Theorem 5.1, Lemma 5.3, Theorem 5.2 and Theorem 5.3 still hold, while

Theorem 5.4 will depend on the value of H . This is because the optimal τ must be a factor of H in order

for it to be feasible. For example, if d
√
He is a factor of H , then the result remains. On the other hand, if

H is a prime number, then the worst-case bound increases to H . In any other case, the worst-case bound

will be lower than H and determined by the factor of H that minimizes the bound.
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Capacitated Customers

While our model assumes uncapacitated customers, our results also holds when all customers have

sufficiently large capacities. Intuitively, low capacity at even just one customer restricts the feasible values

of the intershipment time τ . To examine the effect of customer capacity on our performance guarantee,

we suppose that ri is the capacity at customer i,∀i ∈ I . For direct shipping, Theorem 5.1 may not longer

hold, which implies that direct shipping can be even worse.

Theorem 5.5. zD

z∗ ≤ max
{
τ∗,max

{
Q
qτ∗ , 2

}}
, where τ∗ = arg min

τ∈Z,τ≤ ri
qi
,∀i∈I

(
max

{
Q
qτ∗ , 2

})
.

Proof. The proof is similar to Theorem 5.1 with the exception that the intershipment time τ must be low

enough to ensure that every customer will have enough capacity to hold the shipments that arrive.

For the SVRP subclass, we present the following result.

Theorem 5.6. zSV RP (qiτ,Q)

z∗ ≤ max{τ∗, H/τ∗} where τ∗ = min
{
d
√
He, bmini∈I

ri
qi
c
}

Proof. Recall that the best performance bound is obtained by choosing τ that minimizes the performance

bound on the right-hand side of Lemma 5.3. However, this time around, τ must also honor the capacity

constraint at each customer. That is, τ∗ ≤ ri
qi
,∀i ∈ I . Since the performance bound max{τ,H/τ} is

convex in τ and using similar argument from Theorem 5.4, we obtain the desired result.

This theorem generalizes Theorem 5.4 in the sense that if all ri values are sufficiently high, the former

recovers the latter. On the other hand, in the worst case when capacity for a given customer is only good

for one day, then the performance guarantee goes up to H . It is still a finite bound and therefore not

arbitrarily bad.

Time-Varying Demand

Suppose that a time-varying demand qit is given for each customer i and day t. Let qi be the corresponding

average demand, i.e., qi =
∑

t qit/H . Suppose that the production rate at the supplier is equal to
∑

i qi.

Constraints (5) in ProblemR are now formulated as follows: Iit = Īi +
∑t

ρ=0

∑
k∈Ki siρk −

∑t
ρ=0 qiρ,

i ∈ I, t ∈ T. Since the total inventory level in the system I0 +
∑

i Iit on each day t is Ī0 +
∑

i Īi +∑
i qit−

∑
i

∑t
ρ=0 qiρ, the inventory cost in the objective function is h

(
Ī0 +

∑
i Īi
)

as in the constant

demand case, given that
∑

t(
∑

i qit−
∑

i

∑t
ρ=0 qiρ) is just a constant.

For this setting, we present a lower bound on the optimal cost that is dependent on the average

customer demand, and subsequently the main result on the worst-case performance bound.

Lemma 5.6. z∗ ≥
∑

i hqi + ẑSV RP (qiH,Q)

H .

Proof. The lower bound on the inventory cost is obtained by setting Ī0 equal to
∑

i qi, i.e. its minimum

value, obtained when the daily production
∑

i qi is sent to the customers on each day, and Īi = 0 for all

customers i. The lower bound on the routing cost is obtained as in the constant demand case.

Theorem 5.7. zSV RP (qiτ,Q)

z∗ ≤ H .
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Proof. For any intershipment τ , the maximum inventory cost is obtained when, for all customers i,

qi0 = qiH and qit = 0 for t > 0. In this case, Ī0 +
∑

i Īi =
∑

i qiH to guarantee feasibility. Note that

any other case can have a lower value of Ī0 +
∑

i Īi, as one can benefit from the production of
∑

i qi units

on each day. Since an upper bound on the routing cost is given by ẑSV RP (qiH,Q)

τ as in the constant demand

case, zSV RP (qiτ,Q) ≤
∑

i hqiH + ẑSV RP (qiH,Q)

τ . Given the lower bound on z∗ provided in Theorem 1,

zSV RP (qiτ,Q)

z∗ ≤
∑
i hqiH+ ẑSV RP (qiH,Q)

τ∑
i hqi+

ẑSV RP (qiH,Q)

H

≤ max
{
H, Hτ

}
= H.

We observe that with time-varying demand, the performance guarantee worsens to H . Nevertheless, it

remains a finite bound and therefore not arbitrarily bad.

5.5 Analysis of Average Performance

In this section, we study the average performance of various methods to generate the route set, equivalently

various subclasses of our matheuristics (or various types of sparse routing). To this end, we first present

the flow-based formulation as a benchmark and develop a three-phase exact solution algorithm to solve

this formulation. Next, we allow the vehicle capacity Q to be optimized. We can then use this optimized

capacity on the VRP to generate a route set for ProblemR. Finally, we perform a computational study

on various methods to generate the route set, such as SVRP, VRP, VRP with optimized capacity and

combinations of the above.

5.5.1 Flow-Based Formulation: The Benchmark

We provide a flow–based model formulation for the SDIRP and design an exact algorithm, based on a

branch–and–cut method, to solve it. Within a pre-specified computational time limit, the said algorithm

will return either the optimal solution to the SDIRP or, at worst, the best upper and the best lower bounds.

The best upper bound will be used as benchmark value and the the best lower bound to compute the

optimality gap, when the optimal solution is not available.

Let P be the set of available vehicles. The flow-based formulation is based on the following additional

decision variables: σtpi: quantity delivered to customer i ∈ I by vehicle p ∈ P on day t ∈ T ; xtpij : 1 if

the edge (i, j) ∈ E is traveled by vehicle p ∈ P on day t ∈ T , and 0 otherwise; ztpi: 1 if node i ∈ V is

visited by vehicle p ∈ P on day t ∈ T , and 0 otherwise.
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The mixed integer linear programming model can be formulated as follows:

Problem F

Min h(I0 +
∑
i∈I

Ii) +
1

H

∑
t∈T

∑
p∈P

∑
(i,j)∈E

cijxtpij (5.12)

s.t.
∑
t∈T

∑
p∈P

σtpi = qiH i ∈ I (5.13)

∑
i∈I

σtpi ≤ Qztp0 t ∈ T p ∈ P (5.14)

I0t = I0 +
∑
i∈I

qit−
t∑

τ=0

∑
p∈P

∑
i∈I

στpi t ∈ T (5.15)

Iit = Ii +

t∑
τ=0

∑
p∈P

στpi − qi(t+ 1) t ∈ T i ∈ I (5.16)

σtpi ≤ min {Q, qiH} ztpi i ∈ I p ∈ P t ∈ T (5.17)∑
(j,j′)∈δ(i)

xtpjj′ = 2ztpi i ∈ V p ∈ P t ∈ T (5.18)

∑
(i,j)∈E(U)

xtpij ≤
∑
i∈U

ztpi − ztpu U ⊆ I, |U| ≥ 2 u ∈ U p ∈ P t ∈ T(5.19)

I0t ≥ 0 t ∈ T (5.20)

I0 ≥ 0 t ∈ T (5.21)

Iit ≥ 0 i ∈ I t ∈ T (5.22)

Ii ≥ 0 i ∈ I t ∈ T (5.23)

σtpi ≥ 0 t ∈ T p ∈ P i ∈ I (5.24)

xtpij ∈ {0, 1} (i, j) ∈ E : i /∈ {0} p ∈ P t ∈ T (5.25)

xtp0j ∈ {0, 1} j ∈ I p ∈ P t ∈ T (5.26)

xtpj0 ∈ {0, 1} j ∈ I p ∈ P t ∈ T (5.27)

ztpi ∈ {0, 1} i ∈ V p ∈ P t ∈ T. (5.28)

We propose the following three-phase exact solution algorithm to solve this model.

First phase: Lower bound

The lower bound is computed by optimally solving, within a time limit of 7,200 seconds, the model

(5.12)–(5.28), where (5.25) is replaced by

xtpij ∈ [0, 1] (i, j) ∈ E : i /∈ {0} p ∈ P t ∈ T (5.29)

and the subtours elimination constraints (5.19) are removed, as they are dynamically added. To strengthen

the quality of the root node lower bound, the following valid inequalities are added to the initial LP

relaxation: ∑
i∈I

xtpi0 ≤ 1 p ∈ P t ∈ T, (5.30)∑
j∈I

xtp0j ≤ 1 p ∈ P t ∈ T. (5.31)
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Observe that the first inequalities cut off infeasible solutions in which more than one edge outgoing

the depot is traversed by a given vehicle. For example, consider the following fractional solution of the

LP, in which customers i, j and l are visited in this order in period t by vehicle k, such that the routing

variables take the following values: ztpi = ztpj = 1, ztp0 = 1.25, ztpl = 0.75, xtp0i = xtpij = xtpl0 =

1, xtp0j = xtpjl = 0.5. This solution violates inequalities (5.30). The second inequalities work similarly

to the first ones.

Second phase: Heuristic algorithm

The heuristic solution is computed by finding, for each day t and vehicle p, an optimal TSP tour on the

complete undirected subgraph induced by the subset Ztp ∪ {0}, where Ztp = {i ∈ I : zLBtpi = 1} and zLBtpi
is the optimal value of the variable ztpi obtained in the First phase (see Algorithm 2 in Appendix 5.A).

Third phase: Branch-and-Cut algorithm

In the third phase, we optimally solve model (5.12)-(5.28), without the Subtours elimination constraints

(5.19), through a branch-and-cut algorithm. The Subtours elimination constraints are dynamically added.

They are separated along the lines of the heuristic and exact procedures designed by Ahr (2004). More

precisely, at the root node the heuristic finds all the connected components in the auxiliary graph induced

by all the edges such that xtpij >= ε + τ , where xtpij is the value of variable xtpij on edge (i, j) in

the current LP, while ε ∈ {0, 0.25, 0.50} and τ is a tolerance. In all the other nodes of the branch–

and–cut tree, the connected components are only those induced by the edges such that xtpij >= τ ,

since ε = 0. Whenever a subset of customers Sp not connected to depot 0 is found, the corresponding

subtour elimination constraint is added for any vertex u ∈ Sp. If no violation is found by the heuristic

procedure, then a max-flow problem based exact procedure is executed to find violations. The initial upper

bound is set equal to the cost of the heuristic solution found in the Second phase. The branch-and-cut is

implemented in CPLEX 12.6 and solved within a time limit of 14,400 seconds.

In order to improve the value of the lower bound, we add the following classical valid inequalities

(see Adulyasak et al. (2013)) at the root of the branch-and-bound tree:

Priority inequalities: ztpi ≤ ztp0 i ∈ I p ∈ P t ∈ T, (5.32)

xtpij ≤ ztpi (i, j) ∈ E : i 6= 0 p ∈ P t ∈ T. (5.33)

Symmetry breaking inequalities:
ztp0 ≥ zt,next(p),0 p ∈ P − last(P ) t ∈ T, (5.34)

j∑
i=1

2(j−i)ztpi ≥
j∑
i=1

2(j−i)zt,next(p),i j ∈ I p ∈ P − last(P ) t ∈ T. (5.35)

Moreover, we add the following logical inequalities:∑
i∈I

xtpi0 =
∑
j∈I

xtp0j p ∈ P t ∈ T, (5.36)

∑
i∈I

xtpi0 = ztp0 p ∈ P t ∈ T. (5.37)

Finally, we introduce the following valid Disaggregate parity inequalities based on the cocircuit inequali-

ties (see Barahona & Grötschel (1986)), which we dynamically add to the branch-and-cut:
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∑
(i,j)∈δ(S)\H

xtpij ≥
∑

(u,v)∈H

xthuv − |H|+ 1,∀p ∈ P, ∀S ⊂ V, H ⊆ δ(S), |H| odd,∀t ∈ T. (5.38)

Inequalities (5.38) are separated by using heuristic and exact procedures similar to the ones provided by

Aráoz et al. (2009). More precisely, the heuristic algorithm is called at the root node of the branch–and–cut

tree and, if it fails, the exact method is executed. In all the other nodes of the branch–and–cut tree, only

the heuristic procedure is applied.

5.5.2 Routes with Optimized Capacity

We now introduce another subclass; namely, the set of routes generated by solving the VRP with total

planning horizon demand and optimized vehicle capacity. We call this method, and the corresponding set

of routes, V RP (qiH,α), where 0 < α ≤ Q is the optimized capacity. If f(V RP (qiH,α)) is an estimate

of the cost of ProblemR when this set of routes is used, this subclass can be modeled as follows:

min f(V RP (qiH,α)) (5.39a)

0 < α ≤ Q (5.39b)

The rationale for this method is that, by reducing the capacity, the routes generated solving the VRP could

be worse in terms of routing costs, but better in terms of inventory costs for the corresponding IRP. In fact,

delivering a lower quantity on each routes implies more visits to the customers and therefore an increase

in the routing costs, but a decrease in the inventory costs.

Algorithm 3 described in Appendix 5.A aims at heuristically solving problem (5.39a) - (5.39b).

Because the quality of an a priori approximation of the objective function could be low, the idea is to

estimate the objective function after explicitly knowing the set of routes. We refer to an estimating

function as f(S), where S is a generic set of routes. The algorithm explores solutions by considering

different values of α and, for each of them, solves the corresponding V RP (qiH,α) to obtain the route set

and estimate the total cost. Note that, we let the algorithm also search for values of α greater than the

capacity Q (therefore relaxing constraints (5.39b)). This is because, when routes are given as input to

formulation (5.1)-(5.11), the delivered quantity is decided by the model and feasibility is guaranteed by

constraints (5.3). However, the best accepted value of capacity, that is not greater than Q, is stored and the

corresponding routes are returned at the end of the algorithm. Therefore, the algorithm is ensuring two,

potentially different, sets of routes: one considering the global best accepted value of capacity, and another

one considering the best accepted values of capacity that satisfies constraint (5.39b). In conclusion, the set

of routes with optimized capacity V RP (qiH,α) is the union of the sets of routes V RP (qiH, α̃) obtained

by applying Algorithm 3 with the two definitions of f(S) provided in Appendix 5.A.

5.5.3 Computational Results

In this section, our aim is to compare the optimal solution of various subclasses of our matheuristics (i.e.

ProblemR with various route sets) and the optimal solution (or best lower bound) for our benchmark

(i.e. the flow-based formulation (5.12)–(4.12) obtained by applying the branch-and-cut algorithm we

designed), for a given computational time limit.
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Our data set is composed of a large set of instances derived from the benchmark instances by Archetti

et al. (2007). We use the same locations of the supplier and the customers, the same demand rate of

each customer and the same capacity, while we set the unit inventory cost of each customer equal to the

inventory cost of the supplier. The time horizon H is 3 and 6. Note that the initial inventory levels at the

supplier and at the customers are data in Archetti et al. (2007), while they are decision variables in our

problem. Moreover, there is a maximum inventory level at the customers in Archetti et al. (2007), while

we do not have a maximum inventory level. Therefore, the feasible region of our instances is larger than

the one of the instances in Archetti et al. (2007).

The solution approaches were coded in C++ and compiled with g++ -O3. The computational

experiments were carried out on a PC equipped with 2 Intel Xeon E5335 CPUs running at 2.00 GHz, with

6 GB of RAM. To limit the number of routes to be used in a day, we added the constraint
∑

k∈K ytk ≤⌈∑
i∈I qiH
Q

⌉
for each day t to the Route-based formulation (5.1)-(5.11) and, equivalently, we defined

the cardinality of the set P of available vehicles as |P | =
⌈∑

i∈I qiH
Q

⌉
in the flow-based formulation

(5.12)–(4.12).

The VRP and SVRP are solved using the local search metaheuristic (Record-to-Record Travel)

implemented in the VRPH library (see Groër et al. (2010), https://projects.coin-or.org/

VRPH), by setting its parameters as follows: size of the main loop in the diversification phase D: 30;

deterioration of the objective function in the diversification phase δ: 0.1; number of local minima before

perturbing the solution K: 5; size of the neighbor list when running the local search operators N : 25;

number of times the solution is perturbed once the search is stuck in a local minimum P : 2; local search

operators U : one point move, two point move, two opt, three opt.

The SVRP is heuristically solved using the same algorithm used to solve the VRP, but on a different

network. In particular, the SVRP is solved solving a VRP on a complete auxiliary graph G′(V ′, E′)

where V ′ is the set of vertices corresponding to the supplier 0 and η nodes for each customer i ∈ I .

Each i′ ∈ V ′ generated from i ∈ I , has a) the same location of node i in graph G(V,E) (therefore,

all the η nodes generated by a node i have the same location), b) a demand equal to di/η. From a

feasible solution of a VRP on graph G′(V ′, E′), it is possible to obtain a feasible solution for the SVRP

problem on G(V,E). The parameter η influences both solution quality and computational time of the

procedure. In particular, higher values of η allow us to split more the demand and therefore to potentially

have better solutions, but increase the number of nodes in the network G′(V ′, E′) and therefore the

computational time. In the experiments, we set η = 3, as we realized that this value provides a good

balance between solution quality and computational time. The Record-to-Record Travel algorithm, both

for VRP and SVRP, is applied 10 times and the best solution is selected. In each of the 10 iterations,

this algorithm starts from a different feasible solution computed by using the parametrized Clarke and

Wright algorithm provided by the library, starting with a parameter equal to 0.25 and increasing it by

0.25 in each iteration. Then, each route is optimized separately by using Concorde TSP Solver (see

http://www.math.uwaterloo.ca/tsp/concorde.html).

In the computational experiment, we consider the following methods to generate route sets:

• Method 1: SV RP (qiτ
∗, Q)

• Method 2: V RP (qiτ
∗, Q)

• Method 3: Method 1 ∪Method 2
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• Method 4: Method 3 ∪ V RP (qi, Q) ∪ V RP (qiH,Q)

• Method 5: Method 4 ∪ V RP (qiH,α)

• Method 6: Method 4 ∪ SV RP (qi, Q) ∪ SV RP (qiH,Q)

The rationale for these methods is as follows. Method 1 corresponds to the SVRP subclass, for which

we obtained our best worst-case performance bound d
√
He. Method 2 is the VRP variant of Method 1

and it allows us to evaluate if using VRP instead of SVRP provides a good compromise between increase

in total cost and reduction in computational time. Method 3 allows us to evaluate the benefit of using

both VRP and SVRP subclasses together. Method 4 expands the route set in Method 3 to include routes

generated from other VRP subclasses; namely, using single period demand and using total planning

horizon demand. We choose VRP to add more routes as it is computationally faster than SVRP. Method 5

further adds to the route set in Method 4 routes generated from the VRP method using optimized capacity,

introduced in Section 5.2. Finally, Method 6 provides an alternative to Method 5 by adding to the route set

in Method 4 routes generated from other SVRP subclasses; namely, using single period demand and using

total planning horizon demand. Examining both Method 5 and Method 6 allows us to evaluate whether

the VRP method with optimized capacity or other SVRP subclasses, bring about more benefits in terms of

solution quality and computational time.

Table 5.5.1: Average Performance for Methods 1 to 3 when H = 3

n
Flow-Based Method 1 Method 2 Method 3

OG CT OG CT RG OG CT RG OG CT RG
5 0.00 56.24 37.21 0.24 2.00 40.36 0.13 2.00 36.11 0.31 2.40

10 0.00 40.58 24.76 0.49 2.00 24.75 0.17 2.00 24.75 0.56 2.20
15 0.00 127.39 25.08 1.25 2.00 25.08 0.23 2.00 25.08 1.24 2.00
20 0.00 1199.71 18.95 2.19 2.00 18.95 0.32 2.00 18.95 2.12 2.00
25 0.11 8581.79 16.80 3.59 2.00 16.74 0.48 2.00 16.73 3.32 2.40
30 1.26 13163.53 16.92 5.73 2.00 16.92 0.61 2.00 16.92 5.15 2.20
35 5.22 21600.00 14.07 7.99 2.00 14.15 0.77 2.00 14.01 7.10 2.40
40 8.85 21600.00 15.15 9.43 2.00 16.14 1.03 2.00 13.19 8.74 3.00
45 11.26 21600.00 17.52 13.88 2.00 17.60 1.21 2.00 17.52 12.21 2.60
50 22.13 21600.00 18.07 17.52 2.00 18.26 1.49 2.00 17.67 14.80 3.40

Average 4.88 10956.92 20.45 6.23 2.00 20.89 0.65 2.00 20.09 5.55 2.46

Table 5.5.2: Average Performance for Methods 4 to 6 when H = 3

n
Flow-Based Method 4 Method 5 Method 6

OG CT OG CT RG OG CT RG OG CT RG
5 0.00 56.24 1.69 1.72 5.40 1.69 4.53 6.00 1.69 2.71 5.40

10 0.00 40.58 1.49 2.78 6.20 0.80 6.86 7.40 1.49 5.58 6.60
15 0.00 127.39 2.74 4.51 6.00 1.98 9.93 8.20 2.50 9.98 6.60
20 0.00 1199.71 3.56 7.05 5.80 1.25 15.09 8.80 3.56 16.04 7.00
25 0.11 8581.79 3.17 11.49 6.40 2.30 23.79 9.60 3.12 27.17 7.80
30 1.26 13163.53 6.27 17.09 6.20 2.90 32.84 9.40 6.13 36.77 6.80
35 5.22 21600.00 5.46 22.14 6.40 3.95 45.79 10.20 5.46 49.01 7.60
40 8.85 21600.00 6.86 27.09 7.00 3.11 63.56 12.20 5.75 65.15 8.80
45 11.26 21600.00 10.77 36.43 6.40 4.89 77.79 11.40 10.29 81.82 7.80
50 22.13 21600.00 12.17 45.34 7.40 9.74 110.31 11.60 10.65 105.78 9.40

Average 4.88 10956.92 5.42 17.56 6.32 3.26 39.05 9.48 5.06 40.00 7.38

We summarize our computational results in Tables 5.5.1 to 5.5.4. Table 5.5.1 shows the average

performance for Methods 1 to 3, compared to the Flow-Based benchmark, when planning horizon H = 3.

Table 5.5.2 shows the performance for Methods 4 to 6, also when H = 3. Meanwhile, Tables 5.5.3

and 5.5.4 do the same as Tables 5.5.1 and 5.5.2, respectively, for the longer planning horizon of H = 6.

For each table, we report average values for the optimality gap (OG), the computational time (CT) and

number of routes generated (RG) for each method. We also tabulate average OG and CT values for

the flow-based benchmark. OG measures solution quality with a lower value corresponding to better
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Table 5.5.3: Average Performance for Methods 1 to 3 when H = 6

n
Flow-Based Method 1 Method 2 Method 3

OG CT OG CT RG OG CT RG OG CT RG
5 0.00 743.10 4.41 0.90 2.80 7.93 0.70 3.00 4.41 1.23 4.60

10 6.78 19839.16 10.57 1.05 3.00 10.57 0.92 3.00 10.57 1.40 3.00
15 11.05 21600.00 7.51 1.70 3.00 7.51 0.90 3.00 7.51 1.67 3.00
20 42.07 21600.00 10.06 2.84 3.00 9.84 1.04 3.00 9.84 3.68 3.60
25 52.39 21600.00 13.87 4.61 3.00 13.55 1.59 2.80 13.29 5.69 3.80
30 49.54 21600.00 16.23 5.77 3.00 14.28 1.70 3.00 14.28 11.60 4.60
35 - 21600.00 17.93 8.20 3.00 18.16 1.82 3.00 17.89 14.01 4.00
40 - 21600.00 17.85 10.22 2.80 17.77 2.26 3.00 17.41 22.15 5.00
45 - 21600.00 16.30 12.26 2.80 16.37 2.02 2.80 15.96 19.20 4.40
50 14.56 21600.00 17.01 16.67 3.00 16.67 2.36 3.00 16.51 29.91 4.40

Average >24.11 19338.23 13.17 6.42 2.94 13.26 1.53 2.96 12.77 11.05 4.04

Table 5.5.4: Average Performance for Methods 4 to 6 when H = 6

n
Flow-Based Method 4 Method 5 Method 6

OG CT OG CT RG OG CT RG OG CT RG
5 0.00 743.10 1.62 11.53 8.20 1.52 27.96 9.60 1.30 15.48 9.40
10 6.78 19839.16 8.99 8.53 8.20 8.99 51.82 11.80 8.61 27.71 10.80
15 11.05 21600.00 7.15 19.42 8.20 6.71 106.30 13.00 7.15 28.36 9.80
20 42.07 21600.00 9.77 53.93 9.00 9.35 417.61 15.40 9.35 166.72 11.60
25 52.39 21600.00 12.42 131.01 9.40 12.19 1163.06 16.60 12.42 155.00 10.20
30 49.54 21600.00 13.82 342.50 9.60 13.57 14835.21 19.20 13.56 1200.76 13.00
35 - 21600.00 16.72 297.26 9.20 16.26 14852.53 19.60 16.69 1586.10 11.20
40 - 21600.00 17.19 970.90 10.40 15.95 19050.15 19.00 16.91 8840.80 13.60
45 - 21600.00 15.67 769.81 9.60 16.03 27844.70 19.60 15.67 5936.47 12.00
50 14.56 21600.00 16.51 768.05 9.80 16.52 20836.34 19.80 16.51 5873.31 13.80

Average >24.11 19338.23 11.99 337.29 9.16 11.71 9918.57 16.36 11.82 2383.07 11.54

quality. For the Flow-Based benchmark it is defined as (optimal objective value or best upper bound of

benchmark)/(optimal objective or best lower bound of benchmark) – 1, while for the other methods it is

defined as (optimal objective value of method)/(optimal objective or best lower bound of benchmark) – 1,

and it is reported in percentage points. CT indicates the required computational resource whereas RG

measures the sparsity of the route set generated by the method.

Of the 50 problem instances we considered, there are 5 instances for each problem size, where problem

size is defined by number of customers n, which ranges from 5 to 10, 15, 20, . . . , 50. The values of OG,

CT, and RG reported in the tables are averages across all instances considered for each problem size.

For shorter planning horizon H = 3, we make the following observations based on Tables 5.5.1 and

5.5.2. First, Method 2 is substantially faster than Method 1 with only a slight deterioration in solution

quality. Second, Methods 1 to 4 can all be completed under a minute with acceptable solution quality. In

fact, Method 4’s solution quality already comes very close to the benchmark (5.42% versus 4.88% on

average). However, the latter requires an average of 3.04 hours of computational time and reaches the

6-hour time limit once problem size becomes 35 customers or more. Finally, it appears that Method 5 is a

more efficient way to use computational resources compared to Method 6. While both methods increase

the average CT to about 40 seconds, Method 5 substantially improves solution quality to 3.26% on average

whereas Method 6 barely makes a smaller dent at 5.06%. Overall, our results seem to recommend Method

5 as the best trade-off between solution quality and computational time.

When it comes to longer planning horizons such as H = 6, we draw the following observations from

Tables 5.5.3 and 5.5.4. First, we observe that the flow-based formulation produces very poor solutions.

Moreover, for instances with 35 customers or more, only one feasible solution was obtained within the

6-hour time limit. Second, Method 2 is once again substantially faster than Method 1 with only a slight

increase in cost. Third, as before, Methods 1 to 4 can all be completed relatively quickly with average

computational time of 5.6 minutes (for Method 4) with good solution quality (11.99% on average for

Method 4). Unlike the shorter planning horizon, these four methods start to outperform the benchmark as
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soon as problem size grows to 20 customers. Finally, our observations on Methods 5 and 6 vary from

those from H = 3. Between them, Method 5 generates a slightly better solution quality than Method

6, but it requires substantially more computational time. Furthermore, Methods 5 and 6 do not provide

meaningful improvements in solution quality to justify the increase in computational time from an average

of 5.6 minutes to 2.7 hours and 40 minutes, respectively. Overall, the results appear to recommend

Method 4 as the best balance between solution quality and computational time, for problem instances

with longer planning horizons. We think that this behavior on the instances with longer time horizon is

correlated to the amplitude of the horizon. In fact, over a time horizon that is twice than the horizon with

only three periods, the policy to ship the daily demand to some customers and the total planning horizon

demand to other customers can be more effective than other policies in which the total demand is split in

subdeliveries. In fact, the first policy aims at reducing the delivery frequency to the customers that have

high consumption rate with respect to the ones with a smallest one. The latter leads to an increase in the

delivery frequency. As a result, the modularity of this frequency has much impact on the overall routing

cost over a longer time horizon than on a shorter planning.

Focusing on the contribution of the subsets of routes we used to prove our best worst-case bound

d
√
He in finding good solutions of the SDIRP in short computational time, we can conclude that this

subset is very good when H = 6. In fact, Method 1 has an average optimality gap of 20.45% when

H = 3, while our best average optimality gap is 3.26% (Method 4). However, when H = 6, Method 1 has

an optimality gap of 13.17%, while our best average optimality gap is 11.71% (Method 5). The average

computational time is very low (less than 6.5 seconds). Moreover, by just adding to this subset of routes

the corresponding subset obtained by solving the VRP, instead of the SVRP, and the subsets of routes

we used to prove our second best worst-case bound H , we have a very good performance, both when

H = 3 and H = 6. In fact, Method 4 has an average optimality gap of 5.42% when H = 3 (while our

best average optimality gap is 3.26%) and 11.99% when H = 6 (while our best average optimality gap is

11.71%). Moreover, the average computational time is still practical: 17.56 seconds when H = 3 and

337.29 seconds when H = 6. So, we can conclude that the subsets of routes used to prove the worst-case

bounds are effective in finding good solutions of the SDIRP in short computational time, in particular

when H = 6. Therefore, these subsets of routes are good to handle scalability in the SDIRP with respect

to planning horizon.

Finally, we tabulate all test instances considered and report the performance of the best performing

methods; namely, Method 5 for H = 3 and Method 4 for H = 6 in Table 5.B.1 in Appendix 5.B. We also

provide the performance of the flow-based benchmark for comparison.

5.6 Conclusion

In this paper, we introduce the notion of sparse routing for the finite-horizon IRP with split deliveries.

Essentially a class of matheuristics, sparse routing solves a route-based mixed-integer program where

decision variables are declared for each route and each period. Route-based formulations are very

appealing for real applications, as the set of routes used in the model can be composed at the beginning by

the routes already used by the company and then enlarged over time to find better and better solutions.

To avoid the complexity of a formulation with all possible routes, we show how to design effective and

efficient sparse routing, i.e. choose sparse yet effective sets of routes. We make a number of contributions

to the IRP literature. First, we show that direct shipping can be arbitrarily bad for finite-horizon IRP
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with split deliveries. Second, we show that the optimal routing cost of the SVRP with total planning

horizon demand forms part of a lower bound on the optimal SDIRP cost. Third, we prove an upper

bound on the performance of the set of routes generated by SVRP with demand from any number of

periods. Fourth, we optimize the number of periods to obtain the best tight worst-case performance bound

known for this problem, which is d
√
He, where H is the planning horizon. Fifth, we extend our results

to non-identical inventory holding costs, capacitated customers and time-varying demand. Finally, we

perform a computational study on an extensive set of test instances to show the average performance

of various methods to generate the set of routes for our class of matheuristics. As managerial insights,

we show that the subsets of routes used to prove the worst-case bounds can be effective in finding good

solutions of the SDIRP in short computational time. Moreover, we recommend ways to to select sets of

routes able to strike a balance between solution quality and computational time and show how the choice

differs depending on factors such as planning horizon. These subsets of routes can be added to the routes

already used by the company to compute, in short computational time, an effective solution having at the

same time a worst-case performance guarantee.
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Appendix

5.A Algorithms

In this section we provide a formal description of the heuristic algorithm we use in the first step of our

exact approach (Algorithm 2), and of the algorithm we apply to compute the routes with optimized

capacity (Algorithm 3). Moreover, we show how we compute the estimate f(S) of the objective function

when the set S of routes is known.
Algorithm 2: Heuristic algorithm

1: for each day t ∈ T do
2: for each vehicle p ∈ P do
3: Compute the subset of visited customers Ztp = {i ∈ I : zLBtpi = 1}.
4: Find an optimal TSP tour on the complete undirected subgraph induced by Ztp ∪ {0}.
5: end for
6: end for

Algorithm 3: Algorithm to compute V RP (qiH, α̃)

1 Require: 0 < λ < 1, 0 < ε < 1, f(S).
2 Ensure: The set of routes V RP (qiH, α̃).

1: α̃, α̃f := Q, c̃ := f(V RPqiH,Q), stop = false
2: while stop = false do
3: α := α̃(1 + λ)

4: α := α̃(1− λ)
5: αmin := argmin{f(V RP (qiH,α)), f(V RP (qiH,α))}
6: cmin := min{f(V RP (qiH,α)), f(V RP (qiH,α))}
7: if cmin < c̃ then
8: α̃ := αmin

9: c := cmin

10: if αmin ≤ Q then
11: α̃f = αmin

12: end if
13: V RP (qiH, α̃) := V RP (qiH,αmin) ∪ V RP (qiH, α̃f )

14: λ := λε

15: else
16: stop = true
17: end if
18: end while
19: return V RP (qiH, α̃).

Algorithm 3 starts with a given value of capacity (Q) and searches around this point for a better

solution. At a generic iteration where the current value of capacity is α̃, two different values of capacity

are explored: α := α̃(1 + λ) and α := α̃(1− λ). For these two values, V RP (qiH,α) and V RP (qiH,α)

are computed to estimate the costs of each sets. If the least cost set has a cost lower than the current
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solution, the values of α̃ is updated. This schema is repeated until no improvements are found.

We consider two different definitions of f(S). In both definitions, the routing cost is the sum of the

cost of the routes in the set S divided by the planning horizon duration. In the first definition of f(S), the

inventory cost per day is set equal to hq̃, where q̃ = max{qp, qmax} is the sum of the quantity delivered in

the least
⌈
|S|
H

⌉
loaded vehicles in the set S, and qmax is equal to the quantity delivered by the most loaded

vehicle. The rationale behind this approximation is that, if each route is used exactly once in ProblemR
(like in the routing cost approximation), there will be one day in which at least q̃ units will delivered and,

therefore, on hand at the supplier. In the second definition, the inventory cost is computed by optimally

solving the following mixed integer linear programming model, in which each route in the set S can be

used only once over the period H .

Problem I

Min h

(
I0 +

∑
i∈I

Ii

)
(5.40)

s.t. I0t = I0 +
∑
i∈I

qit−
t∑

τ=0

∑
k∈S

∑
i∈Rk

qiHyτk t ∈ T (5.41)

Iit = Ii +
t∑

τ=0

∑
k∈Ki

qiHyτk − qi(t+ 1) i ∈ I t ∈ T (5.42)

H−1∑
t=0

ytk = 1 k ∈ S (5.43)

I0 ≥ 0 (5.44)

I0t ≥ 0 t ∈ T (5.45)

Ii ≥ 0 i ∈ I (5.46)

Iit ≥ 0 i ∈ I t ∈ T (5.47)

ytk ∈ {0, 1} i ∈ I t ∈ T k ∈ S. (5.48)
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5.B Detailed computational results

In this section we tabulate all test instances and report the performance of the flow–based benchmark and

of the best performing methods, namely, Method 5 for H = 3 and Method 4 for H = 6.

Table 5.B.1: Flow-Based Benchmark vs. Best Route-Based Method

Instance

H = 3 H = 6
Flow-Based Route-Based Flow-based Route-Based
Benchmark Method 5 Benchmark Method 4

OG CT OG CT RG OG CT OG CT RG
abs1n05 0.00 273.54 0.00 5.76 5 0.00 255.64 1.86 7.96 7
abs2n05 0.00 0.75 0.00 4.80 6 0.00 325.17 0.00 9.44 8
abs3n05 0.00 2.05 2.14 4.04 7 0.00 294.65 1.06 9.23 8
abs4n05 0.00 3.98 0.00 4.75 7 0.00 600.17 2.80 16.37 9
abs5n05 0.00 0.89 6.33 3.30 5 0.00 2239.89 2.37 14.63 9
abs1n10 0.00 26.16 1.56 6.32 8 12.06 21600.00 11.12 9.9 8
abs2n10 0.00 135.92 0.00 6.27 7 8.58 21600.00 13.65 9.39 8
abs3n10 0.00 13.09 0.00 7.28 6 0.00 12795.82 6.04 7.04 8
abs4n10 0.00 14.59 0.00 7.05 9 10.09 21600.00 10.20 7.16 8
abs5n10 0.00 13.16 2.46 7.36 7 3.16 21600.00 3.97 9.15 9
abs1n15 0.00 26.70 3.05 10.83 7 13.11 21600.00 6.15 23.4 8
abs2n15 0.00 27.94 0.00 10.74 9 9.36 21600.00 9.29 19.24 8
abs3n15 0.00 275.08 3.63 8.71 8 17.36 21600.00 5.02 22.18 9
abs4n15 0.00 40.83 0.37 9.88 8 2.04 21600.00 7.34 15.94 8
abs5n15 0.00 266.39 2.87 9.51 9 13.37 21600.00 7.96 16.33 8
abs1n20 0.00 261.93 1.72 15.30 7 25.98 21600.00 6.75 32.89 8
abs2n20 0.00 788.82 0.06 15.54 10 20.89 21600.00 9.59 42.18 9
abs3n20 0.00 294.79 0.00 15.17 9 97.80 21600.00 6.35 30.82 8
abs4n20 0.00 2134.24 2.33 14.34 8 39.12 21600.00 9.34 45.89 10
abs5n20 0.00 2518.79 2.15 15.10 10 26.57 21600.00 16.79 117.88 10
abs1n25 0.00 586.32 0.21 21.09 6 38.81 21600.00 6.38 306.68 11
abs2n25 0.00 4827.96 2.75 23.59 11 56.63 21600.00 15.90 56.87 9
abs3n25 0.56 21600.00 3.21 24.50 8 64.86 21600.00 14.35 189.34 10
abs4n25 0.00 840.26 3.90 25.17 12 46.86 21600.00 3.79 39.48 9
abs5n25 0.01 15054.39 1.39 24.61 11 54.77 21600.00 21.68 62.67 8
abs1n30 0.00 3219.95 5.28 32.53 8 - 21600.00 15.99 80.66 8
abs2n30 0.75 21600.00 2.98 28.07 9 50.78 21600.00 15.23 65.04 8
abs3n30 0.00 1752.33 1.06 31.94 9 - 21600.00 11.03 584.33 10
abs4n30 0.00 17645.38 1.95 39.81 13 - 21600.00 10.95 495.53 12
abs5n30 5.55 21600.00 3.23 31.87 8 48.29 21600.00 15.92 486.96 10
abs1n35 2.86 21600.00 2.72 61.29 13 - 21600.00 14.06 696.78 11
abs2n35 0.66 21600.00 2.59 31.35 8 - 21600.00 12.74 93.20 8
abs3n35 9.55 21600.00 5.65 42.35 10 - 21600.00 17.01 83.61 8
abs4n35 5.89 21600.00 4.40 47.73 8 - 21600.00 17.62 489.84 11
abs5n35 7.14 21600.00 4.40 46.24 12 - 21600.00 22.19 122.85 8
abs1n40 12.08 21600.00 4.74 54.95 9 - 21600.00 16.15 655.90 10
abs2n40 7.96 21600.00 1.26 65.07 13 - 21600.00 20.70 120.44 8
abs3n40 9.93 21600.00 4.31 64.05 12 - 21600.00 14.59 1945.82 12
abs4n40 4.66 21600.00 2.03 64.18 14 - 21600.00 19.48 971.77
abs5n40 9.66 21600.00 3.20 69.55 13 - 21600.00 15.01 1160.59 11
abs1n45 10.10 21600.00 2.76 80.31 12 - 21600.00 16.05 771.01 10
abs2n45 13.02 21600.00 7.46 89.46 13 - 21600.00 19.92 894.76 10
abs3n45 0.25 21600.00 3.34 75.60 9 - 21600.00 12.63 180.05 8
abs4n45 29.58 21600.00 8.49 77.15 12 - 21600.00 18.70 1024.94 10
abs5n45 3.35 21600.00 2.41 66.44 11 - 21600.00 11.05 978.30 10
abs1n50 19.16 21600.00 12.67 113.59 11 - 21600.00 19.31 1427.41 12
abs2n50 23.37 21600.00 9.84 95.83 9 - 21600.00 17.12 160.22 9
abs3n50 6.24 21600.00 10.24 129.75 12 - 21600.00 15.82 1131.21 10
abs4n50 45.51 21600.00 9.13 115.73 13 14.56 21600.00 16.16 150.48 8
abs5n50 16.38 21600.00 6.85 96.66 13 - 21600.00 14.16 970.91 10
Average 4.88 10956.92 3.26 39.05 9.48 >24.11 19338.23 11.99 337.29 9.16
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