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Abstract

Artificial Intelligence (AI) techniques and in particular Machine and Deep

Learning (ML and DL), have been widely adopted to enhance various as-

pects of human life. ML algorithms can be categorized into four main types:

Supervised Learning, Unsupervised Learning, Semi-supervised Learning, and

Reinforcement Learning. A significant challenge in these techniques is the re-

quirement for sufficient labeled data for training. Active Learning (AL) is a

machine learning framework that addresses this issue by selecting instances

to be labeled in a smart way to optimize model training, i.e., AL reduces la-

beling time and leads to better-performing models by dynamically selecting

the most representative samples to be labeled during the training phase. AL

was proven to be effective in different scenarios and its choice of querying a

label depends on the cost and gain of obtaining the information. In this the-

sis, are presented two novel approaches for active learning in meta-learning

models. The proposed methods, called LAL-IGradV and LAL-IGradV-VAE ,

select instances to be labeled using an estimate of their impact on the current

classifier. This is achieved by evaluating the importance of previously labeled

instances in training the classification model and training another model that

estimates the importance of unlabeled instances. The approaches can be in-

stantiated with any classifier that is trainable through gradient descent op-

timization, and in this study, is provided a formulation using a deep neural

network. These approaches have not been thoroughly investigated in previ-

ous learning-to-active-learn methods and experimental results demonstrate its

promising performance in scenarios where there are only a limited number of

initially labeled instances.
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Chapter 1

Introduction

Nowadays, Artificial Intelligence (AI), and particularly Machine and Deep

Learning (ML and DL) techniques, have been exploited to perform a plethora

of tasks that help in improving the quality of human life. For instance, AI

techniques have been exploited to enhance the photographic quality of cell

phone cameras, to devise language translation facilities, to implement systems

for supporting people with limited abilities, to implement decision support

systems in the medical domain (for example cancer diagnosis systems), and so

on.

Yet there are some differences in the way various types of machine learn-

ing algorithms are defined, in general they can be categorized according to

their purpose, and the main categories are the following:

• Supervised learning : algorithms attempt to model the relationships and

dependencies between target prediction output and input features in or-

der to predict output values for new data based on relationships learned

from previous data sets;

• Unsupervised Learning : a type of machine learning algorithm commonly

used in pattern recognition and descriptive modeling. However, there are

no output categories or labels on which the algorithm attempts to model

relationships. These algorithms attempt to use techniques on input data

to search for rules, identify patterns, summarize and group data points,

6



CHAPTER 1. INTRODUCTION 7

and derive meaningful insights and better describe the data to users;

• Semi-supervised Learning : in the previous two types, either there are

no labels for all observations in the dataset or there are labels for all

observations. Semi-supervised learning falls somewhere in between. La-

beling is expensive in many practical situations because it requires skilled

human experts. Consequently, semi-supervised algorithms are the best

candidates for model building when labels are absent in most observa-

tions but present in a few. These methods exploit the fact that while

the group membership of unlabeled data is unknown, these data contain

critical information about the group parameters.

• Reinforcement Learning : it allows machines and software agents to au-

tomatically determine the optimal behavior in a uncertain context in

order to maximize their performance. The agents incrementally learn

the optimal behavior by observing a simple reward feedback, known as

a reinforcement signal.

Figure 1.1: The types of Machine Learning Algorithms divided into categories

according to their purpose and the main categories

Each ML/DL model must be trained to learn its application domain, and

to do this, sufficient data must be available for training. We currently live in

an data-driven era, where we are inundated of data, but there is the problem

that much of it is not labeled, and not all ML activities are just Clustering or

Association that do not require labels. Thus, labeling this data requires re-

sources that can be very expensive in some cases (both in terms of money and
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time). To overcome these problems, Active Learning (AL) paradigm was pro-

posed. AL is a machine learning framework, very close to the semi-supervised

learning, where models are trained using both labeled and unlabeled data and

learning algorithms can interactively query an oracle to label new data points.

AL is all about labeling data dynamically and incrementally during the train-

ing phase so that the algorithm can identify what label would be the most

beneficial for it to learn from. With AL, remarkable results can be achieved,

such as reducing labeling time and obtaining better performing models, be-

cause the most representative samples are labeled with AL, which is the best

solution for training ML/DL models.

A major challenge in active learning is to select the most informative

instances to be labeled by an annotation oracle at each step. In this respect,

one effective paradigm is to learn the active learning strategy that best suits

the performance of a meta-learning model. This strategy first measures the

quality of the instances selected in the previous steps and then trains a machine

learning model that is used to predict the quality of instances to be labeled in

the current step.

For example given a model M , and a dataset containing only 1000 labeled

samples (LS) and 10000 unlabeled samples (US), M difficultly can reach a

remarkable accuracy by training it only on the 1000 labeled samples. In order

to increase its accuracy there are two possibilities:

• give a label to all samples in US and train the model;

• select iteratively n samples form US and train the model at each itera-

tion.

The second approach is the smartest because, most likely, we will only give a

label to a portion of US because with AL we select the most representative

samples that are most relevant during training and thus we will get the infor-

mation from the “correct” data and the model will learn with less data in less

time.
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AL is effective in a variety of situations. Essentially, the choice of whether

or not to query each specific label is determined by whether the gain from

querying the label outweighs the cost of obtaining the information. In practice,

depending on the budget available to the data scientist and other factors, this

decision-making process can take several forms.

1.1 Main Contributions

The research underlying this thesis concerns the systematic investigation,

analysis, and development of models and techniques in the field of AL. The

primary objective is to identify the most challenging problems in AL and to

propose appropriate solutions.

More specifically, this thesis introduces two new approaches of learning-

to-active-learn that selects the instances to be labeled as the ones producing

the maximum change to the current classifier. The key idea is to select such

instances according to their importance reflecting variations in the learning

gradient of the classification model. The proposed approach can be instanti-

ated with any classifier trainable via gradient descent optimization, and here

we provide a formulation based on a deep neural network model, which has

not deeply been investigated in existing learning-to-active-learn approaches.

The experimental validation of our approach has shown promising results in

scenarios characterized by relatively few initially labeled instances.

1.2 Organization

This thesis is conceptually organized into two parts. The first one con-

tains an introduction on AL describing its principles and main existing tech-

niques. The second part presents the algorithmic contribution of this thesis,

i.e. the techniques to improve the AL data selection approach ad hoc for ar-

tificial neural networks. The two parts are articulated around the following

chapters.



CHAPTER 1. INTRODUCTION 10

Chapter 2 is focused on AL, initially describing three different frame-

works (Pool based, Stream based and Membership Query Synthesis), and then

describing a fundamental topic which is Stopping Criteria, followed by differ-

ent frameworks of query strategies. Next, an extensive excursus is made on the

applications of AL and how it can be combined with other ML/DL techniques

to greatly increase its performance.

Chapter 3 presents an AL framework that is able to select the best sam-

ples to train a neural network (NN) by exploiting the variation of gradients

within it; using these gradients, a relevance score can be estimated for each

unlabeled sample, then the calculated score is used to train a simple ML model

(Selector) that is able to estimate this score for unlabeled samples. This score

is subsequently calculated on each US sample using the Selector and then the

most representative ones are selected to be labeled by the human expert.

Chapter 4 describes an extension of the previous approach (presented

in Chapter 3) that, with the support of a Variational AutoEncoder (VAE),

the training of the ML selector model is simplified, resulting in a significant

improvement in the performance (both in terms of time and accuracy) of the

original framework.



Chapter 2

Active Learning

Nowadays, a continuously increasing amount of data is becoming avail-

able to data scientists to be analyzed. However, in most cases this data are

raw, unlabeled data which cannot be used for training machine learning models

and, in particular, deep learning models. In several context, providing the ac-

tual labels for this large amount of data requires a significant effort by human

experts, which are asked to provide class labels for the available data. Active

learning (AL) [75] aims at significantly reducing this effort. It is a machine

learning framework where the learning algorithm can interactively query a user

(referred to as teacher or oracle) to label new data points with actual labels.

The active learning process is also referred to as optimal experimental design.

Recently, a lot of effort has been devoted by the research community for the

design of effective AL strategies, and in particular AL strategies suitable to

be used in training deep learning (DL) models, such as convolutional neural

networks (CNN) and long-short term memory networks (LSTMs). In [88],

Yanyao Shen et al. proved experimentally that the amount of labeled data

used for training DL models is drastically reduced when DL is combined with

AL.

More in detail, assume that we want to train a binary image classification

model. There can be billions of (unlabeled) images that could be used for train-

ing the model. However, before using these images, they must be annotated

with their actual class label. As not all of these images are necessary (or even

11
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Figure 2.1: Passive learning framework is the standard in which a large amount

of labeled data is passed to the algorithm, requires significant effort in labeling

the entire dataset

Figure 2.2: Active learning framework where the learning algorithm can inter-

actively query a user to label new data points with real labels

useful) to train a good model, a lot of effort can be spared by labeling useful

images only. Indeed, some images may be more profitably exploited for learn-

ing a classification model than others. Using active learning, we can select a

subset of the set of unlabeled images and exploit crowd-sourcing platforms, to

ask human experts to provide labels for this (smaller) set of unlabeled images.

In different terms, an active learning algorithm iteratively selects the most in-

formative (unlabeled) images and submits them to an oracle for labeling. This

process is iterated until a predetermined number of AL iterations is performed

or an halting condition is satisfied. The promise of the Active learning is that,

if we are smart enough, we can label only a fraction of the available (unlabeled)

examples and use them to train a ML model whose performances are similar

or even better [38] than the performances of the model trained by labeling

the entire set of unlabeled examples. Usually the quality of an AL approach is

measured by comparing the ”smart“ selection of examples to be labeled with a

”random“ selection. In Figure 2.3 an example of the improvement obtained by

an active learning approach over random selection is shown. The entire set of

data points, red triangles and green circles, is not linearly separable. Summa-
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rizing, active learning arises exploits the intuition that labeled examples may

have different importance in order to train a model. In fact, in many cases

the most informative points are those on which the model is most uncertain.

With uniform random sampling across all examples, the model may not fully

represent the boundaries between classes, but with active learning you select

examples near the class boundary to be labeled, thus achieving a more effective

classifier. It has been shown that has also shown that active learning allow

to obtain better classifier over standard random selection for contexts such as

multi-class image classification [40, 70, 13, 43].

2.1 Frameworks of active learning

Active learning can be considered a semi-supervised learning method,

thus a hybrid between unsupervised learning that uses 0% of the examples

and fully supervised learning that uses 100%. By iteratively increasing the

size of our labeled training set, we can achieve better performance with a

fraction of the cost or time of training models using all the data [25].

2.1.1 Active Learning Pool Based

Pool-based active learning assumes that one has a large pool of unlabeled

data samples and selects the most informative points iteratively until the model

reaches a certain level of performance, such as accuracy [16]. There are many

interesting works in this area, one of which was introduced by Contardo et

al. [17] who explored the learning challenge when collecting training labels

is prohibitively expensive, which is typically addressed in the literature by

employing AL strategies. These offer methods for selecting instances to label

before or during training. These tactics are typically based on heuristics or

even theoretical metrics. The researchers created a model that attempts to

teach AL skills in a meta-learning environment. Specifically, they analyzed a

pool-based scenario in which the system looks at all the samples in a problem

dataset and has to select a portion of them to be ranked in one shot.
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2.1.2 Active Learning Stream Based

In Stream Based Active Learning, it is assumed that obtaining an un-

labeled instance is free; on this basis, unlabeled instances are selected one at

a time and allow the learner to determine whether he or she wants to query

(explained in 2.3.6) the label of the instance or reject it based on its informa-

tiveness. To determine the informativeness of the instance, a query strategy

is used. Thus, by taking a sample from the set of unlabeled, it is determined

whether it should be labeled or discarded, then repeated with the next sample.

(a) (b) (c)

Figure 2.3: An example of pool-based active learning [81]. A data set of 400

instances, sampled into two class Gaussians (a). A logistic regression model

trained with thirty labeled instances randomly drawn from the problem do-

main. The line represents the decision boundary of the classifier (70% accu-

racy) (b). (third graph) A logistic regression model trained with thirty actively

queried instances using uncertainty sampling (90%) (c).

2.1.3 Membership Query Synthesis

In Membership Query Synthesis [2], we assume that the active learner

produces an example that he or she would like to be labeled. This scenario

requires that the model be able to capture the distribution of data well enough

to create reasonable, clearly labeled examples. There is not much interest in

this scenario because, for example, if we are classifying images and the learner

produces an image that is pure noise, we will not be able to label it. How-

ever, some innovative and promising real-world applications of the member-

ship query scenario have been described in recent years Query synthesis may
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be a promising direction for automated scientific discovery. However, King et

al. [47] described an innovative and promising application of the membership

query scenario, an instance is a mixture of chemical solutions that constitute a

culture medium as well as a particular yeast mutant. All experiments are syn-

thesized independently using an active learning approach based on inductive

logic programming and performed physically with a laboratory robot. This

active method results in a three-fold reduction in the cost of experimental

materials compared to running the least expensive experiment and a 100-fold

reduction in cost compared to randomly generated experiments.

2.2 Stopping Criteria

In active learning, a learning process can be stopped at a predetermined

iteration or the time at which learning should be stopped must be determined,

which is a critical issue. Zhu et al. [101] introduced four simple stopping

criteria based on a measure of confidence estimation on the unlabeled data

pool, including:

1. Maximum Uncertainty (MU): the learner selects the most uncertain

unlabeled example as the most informative one. The uncertainty value of

this example is an excellent proxy for the current classifier’s confidence

on all the unlabeled samples. If the uncertainty value of the selected

example is small enough, it can be assumed that the current classifier

has enough confidence in its classification of the remaining unlabeled

data. As a result, the active learning process is stopped. The first

strategy, known as the Maximum Uncertainty (MU) method, is based

on this assumption:

SCMU =

1 ∀x ∈ U,UM (x) ≤ θMU

0 otherwise
(2.1)

where UM(.) denotes the uncertainty measurement, θMU is a user prede-

fined uncertainty threshold, and U denotes the set of unlabeled examples;
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2. Overall Uncertainty (OU): at each learning cycle, the maximum un-

certainty criteria only evaluates the most uncertain example. The overall

uncertainty technique takes into account the total uncertainty across all

unlabeled cases. It can be assumed that the present classifier has suffi-

cient confidence in its classification of the remaining unlabeled data if the

aggregate uncertainty of all unlabeled cases becomes very tiny. The OU

method’s strategy is to consider if the average uncertainty value of all

remaining unlabeled instances is less than a very tiny preset threshold.

The stopping criterion SCOU is defined as follows:

SCOU =

1
∑

∀x∈U UM(x))

|U | ≤ θOU

0 otherwise
(2.2)

where θOU is a user-predefined uncertainty threshold, and |U | denotes

the size of the unlabeled data pool U ;

3. Selected Accuracy (SA): the classification accuracy on the top-m se-

lected examples at each learning cycle in batch mode active learning

settings would be a helpful signal to indicate the current classifier’s con-

fidence on remaining unlabeled examples. It is thus simple to estimate

this accuracy based on the oracle’s feedback when an active learner re-

quests true labels for these selected unlabeled samples. At the end of

each learning cycle, the current classifier should have the least confi-

dence in its classifications of these selected unlabeled samples. If the

current classifier properly classifies these selected unlabeled instances, it

can be assumed that the classifier has sufficient confidence in classifying

the remaining unlabeled data. This technique considers if the present

classifier is capable of correctly predicting the labels of the top-m unla-

beled samples. As a result, the stopping criterion SCSA can be defined

as follows:

SCSA =

1 ACCm(C) ≥ θSA

0 otherwise
(2.3)
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where θSA is a user-predefined accuracy threshold and functionACCm(C)

evaluates the accuracy performance on the top-m selected unlabeled ex-

amples through feedback of the Oracle;

4. Minimum Expected Error Methods (MEE): this stopping criterion

is based on an estimate of the current classifier’s expected error on all fu-

ture unlabeled samples. The justification for MEE is that in the learning

process, a classifier C with maximum effectiveness results in the lowest

predicted error on the entire test set. The SCMEE stopping criterion can

be defined as:

SCSA =

1 Error(C) ≤ θE

0 otherwise
(2.4)

where Error(C) evaluates the expected error of classifier C that closely

reflects the classifier effectiveness. θE is a user-predefined error threshold.

2.3 Query Strategy Framework

The difference between an active and a passive learner is the ability to

query instances and their labels. All AL scenarios require some sort of measure

of informativeness of unlabeled instances. This section will explain different

approaches to querying instances.

2.3.1 Uncertainty Sampling

An active learner differs from a passive learner in that the former has

the ability to query instances based on past queries and the answers (labels) of

those queries. All active learning scenarios assume that each unlabeled sample

is assigned a relevance score. In this section, various approaches to instances

will be explored under the common theme called uncertainty sampling because

of the use of probabilities.
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2.3.1.1 Smallest Margin Uncertainty

Smallest Margin Uncertainty (SMU) is a comparison of the uncertainty

between the best and second best. It is the probability of ranking the most

likely class minus the probability of ranking the second most likely class (equa-

tion 2.5).

ΦSM(x) = Pθ(y
∗
1|x)− Pθ(y∗2|x) (2.5)

The intuition behind this metric is that if the probability of the most

probable class is significantly greater than the probability of the second most

probable class, the classifier is more confident of belonging to the example

class. Similarly, if the probability of the most likely class is not significantly

greater than the probability of the second most likely class, the classifier is less

confident of belonging to the example class. The active learning algorithm will

select the example with the lowest SMU value.

2.3.1.2 Least Confidence Uncertainty

Least Confidence Uncertainty (LCU) measure selects the example for

which the classifier is least confident of the selected class. LCU selection ex-

amines only the most likely class and selects the example with the lowest

probability assigned to that class (equation 2.6).

ΦLC(x) = 1− Pθ(y∗1|x) (2.6)

2.3.1.3 Entropy Reduction

Entropy reduction is a measure of the uncertainty of a random variable.

We can consider Shannon’s Entropy, which has several basic properties, in-

cluding:

1. uniform distributions have the greatest uncertainty;

2. uncertainty is additive for independent events;
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3. adding a zero-probability result does not has no effect;

4. events with a certain outcome have zero effect [93].

By considering class predictions as outcomes, we can measure the Shan-

non entropy of the probabilities of the predicted classes. Higher values of

entropy indicate greater uncertainty in the probability distribution [40]. In

each active learning step, for each unlabeled example in the training set, the

active learning algorithm calculates the entropy on the predicted class proba-

bilities and selects the example with the highest entropy. The example with

the highest entropy is the one for which the classifier is least confident about

its class membership (equation 2.7).

ΦENT (x) =
∑
y

Pθ(y|x)logPθ(y|x) (2.7)

2.3.1.4 Largest Margin Uncertainty

Largest Margin Uncertainty (LMU) is a comparison of the best and worst

uncertainty. This measure is given by the probability of classification of the

most likely class minus the probability of classification of the least likely class.

The intuition behind this metric is that if the likelihood of the most likely class

is significantly greater than the likelihood of the least likely class, the classifier

is more certain to belong to the example class. Similarly, if the probability

of the most likely class is not significantly greater than the probability of the

least likely class, the classifier is less confident of belonging to the example

class. The active learning algorithm will select the example with the minimum

value of LMU (equation 2.8).

ΦLM(x) = Pθ(y
∗
1|x)− Pθ(ymin|x) (2.8)

2.3.2 Query By Committee

The idea is similar to that of uncertainty sampling, but extended to

ensembles: instead of examining the uncertainty of a single model on the unla-
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beled ensemble, we train several models on the labeled ensemble and observe

their disagreement on examples from the unlabeled ensemble. If we consider

our ensemble as a set of models from different vital parts of the hypothesis

class, then choosing the example with the largest disagreement corresponds

to making the current version space as small as possible. Just as we can de-

fine different measures of “uncertainty,” we can also define different measures

of “disagreement.” An example of such a measure, which corresponds to the

maximum entropy measure of uncertainty sampling, is the “entropy of votes.”

In this case, we count the votes for each possible label, normalize so that it is

a distribution, and observe the entropy. If M is the size of our set, the decision

rule we obtain is:

x
argmax

−
∑
y∈Y

V otes(y)

M
log(

V otes(y)

M
) (2.9)

2.3.3 Expected Model Change

Expected Model Change is an active learning framework that uses a

decision-theoretic approach, selecting the instance x that makes the model

change more than the others if its label is known, in other words if labeled and

added to ζ (the training set), it would result in the new training gradient of the

largest magnitude. Probabilistic discriminative models are typically trained

using gradient-based optimization, which considers the ”change” made to the

model by measuring the length of the training gradient (this can be applied to

any learning problem where gradient-based training is used).

The target of this framework is to select the instances that are likely to

most influence for the model, regardless of the label of the resulting query.

This approach has been shown to work well, but it is necessary that both

the feature space and the set of labels are not very large, because it can be

computationally expensive under these conditions.

These approaches may suffer from a problem, that is, the informativeness

of a given instance may be overestimated simply because one of its feature

values is unusually large, or the corresponding parameter estimate is larger,
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both resulting in a high gradient. To solve this problem it is desirable to resize

the features, one approach may be to regularize the parameters [15] which may

help to control this effect somewhat, actually in practice it does not seem to

be a significant problem.

A query strategy in this framework is the “Expected Gradient Length”

(EGL) approach for discriminative probabilistic model classes [84]. Given

5lθ(ζ) the gradient of the objective function l with respect to the model

parameters θ and given 5lθ(ζ ∪ 〈x, y〉) the new gradient that would be ob-

tained by adding the training tuple 〈x, y〉 to ζ. Since the query algorithm does

not know the true label y in advance, should be calculated the length as an

expectation over the possible labelings:

x∗EGL = argmax
x

∑
i

Pθ(yi|x)|| 5 lθ(ζ ∪ 〈x, yi〉)|| (2.10)

Where ||·|| is the Euclidean norm of each resulting gradient vector. At

query time, || 5 lθ(ζ)|| should be nearly zero since converged at the previous

round of training. Thus, we can approximate 5lθ(ζ ∪ 〈x, yi〉) ≈ 5lθ(〈x, yi〉)

for computational efficiency, because training instances are usually assumed to

be independent.

This strategy was introduced for active learning in the multiple-instance

setting (or “multi-instance learning”, these terms are used interchangeably in

the literature and they both convey the crucial point of difference with tra-

ditional single-instance learning). In the single-instance learning where each

observation or learning object is described by a number of feature values and,

possibly, an associated outcome, differently in the multiple-instance setting

(MIL) [32] is different, in fact the data structure is more complex: a learn-

ing sample or object is called a bag, associated with multiple instances or

descriptions. Each instance is described by a feature vector, at the same

way of single-instance learning, but an associated outcome is never reported.

The only information available for each instance, aside from its feature val-

ues, is its membership relationship to a bag. Formally, an instance x (in the

single-instance setting) corresponds to a point in the instance space X (in the
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multiple-instance setting). It is commonly assumed that X ⊆ Rd , that is,

each instance is described by a vector of d real-valued numbers, its feature

values. Typically the datasets often contain mixed types of features, in order

to model these situations, X can be generalized to X ⊆ Ad = A1 × · · · × Ad,

such that each instance is described by a d-dimensional vector, where each

attribute Ai(i = 1, · · · , d) takes on values from a finite or infinite set Vi. In

this way, we can deal with mixed feature sets in which some of the features

are categorical and others are numeric. A bag X is a collection of n instances,

where each instance xi is drawn from the instance space X. Many authors

define a bag as X ∈ NX, that is, a multi-set containing elements from X such

that duplicates can occur, because each bag can have a different size, (so the

value n vary among the bags in the dataset), because multiple copies of the

same instance can be included in a bag and/or the bags are allowed to overlap

and contain copies of the same instance. This forms an indication of the higher

level of complexity of MIL compared to single-instance learning.

Coming back to the EGL query strategy, it aims to identify the instance

that would impart the greatest change to the current model if is known its label.

Since we train MILR (Multiple Instance Logistic Regression in which is trained

a probabilistic model for multiple-instance tasks using a generalization of the

Diverse Density (DD) framework [60, 21] that provides a way to learn those

ambiguous features by maxmising the DD estimator, and the maximum of DD

estimator is called a concept) with gradient descent, this involves querying

the instance which, if 〈Bij, Y ij〉 is added to the training set, would create the

greatest change in the gradient of the objective function. Let E(θ) be the

gradient of E with respect to θ, which is a vector whose components are the

partial derivatives of E with respect to each model parameter:

E(θ) =
[
∂E
∂θ1
, ∂E
∂θ2
, · · · ∂E

∂θm

]
(2.11)

Now let E+
ij (θ) be the new gradient obtained by adding the positive tuple

〈{Bij} , 1〉 to the training set, and likewise let E−ij (θ) be the new gradient if a

query results in the negative tuple 〈{Bij} , 0〉 being added. Since we do not
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know in advance what label the oracle will provide, we instead calculate the

expected length of the gradient based on the learner’s current belief oij about

each outcome. More precisely, we define the Expected Gradient Length (EGL)

to be:

EGL(Bij) = oij
∣∣∣∣E+

ij (θ)
∣∣∣∣+ (1− oij)

∣∣∣∣E−ij (θ)∣∣∣∣ (2.12)

This selection strategy does not explicitly encode MI bias, but employs

class probabilities to determine the expected label for candidate queries, with

the goal of maximizing parameter changes in what is an MI learning algorithm.

This strategy can be generalized to query other properties in non- MI active

learning as well. For example, Zhu et al. [103] use a related approach to

determine the expected label of candidate query instances when combining

active learning with graph-based semi-supervised learning. However, instead

of trying to maximize the expected change in the learning model, they select

the expected reduction in the estimated error on unlabeled instances.

2.3.4 Expected Error Reduction

Expected Error Reduction is an active learning framework that aims to

estimate future expected error of a model trained using ζ ∪〈x, y〉 on unlabeled

versions left in U and query that version with expected error minimum in the

future. One approach is to minimize the expected 0/1− loss:

x∗0/1 = argmin
x

∑
i

Pθ(yi|x)

(
u=1∑
U

1− P
θ+〈x,yi〉

(
ŷ|x(u)

))
(2.13)

where θ+〈x,yi〉 refers to the the new model after it has been re-trained

with the training tuple 〈x, yi〉 added to ζ. With this approach the true label

for each query instance isn’t known, so is approximated using expectation over

all possible labels under the current model θ. The target here is to reduce the

expected total number of incorrect predictions. Another, less stringent goal is

to minimize the expected log-loss:
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x∗log = argmin
x

∑
i

Pθ(yi|x)

(
−

U∑
u=1

∑
j

P
θ+〈x,yi〉(yi|x

(u))logP
θ+〈x,yi〉(yi)|x

(u)

)
(2.14)

which is equivalent to reducing the expected entropy over U . Another in-

terpretation of this strategy is maximizing the expected information gain of

the query x, or the mutual information of the output variables over x and

U . Typically this technique is also the most computationally expensive query

framework, indeed not only does this require an estimate of the expected fu-

ture error over U for each query, but a new model must be gradually retrained

for each possible query designation, which in turn iterates over the entire pool.

A classification task with three or more labels using the MaxEnt [7] model

would require a time complexity of O(M2)ULG, where M is the number of

class labels, U is the size of the unlabeled pool υ, L is the size of the cur-

rent training set ζ, and G is the number of gradient computations required

by the by optimization procedure until convergence. In a CRF sequencing

task, the complexity explodes to O(TMT+2)ULG, where T is the length of the

input sequence. For this reason, the application of the expected error reduc-

tion framework usually considered only simple binary classification tasks. Roy

and McCallum [77] first proposed the expected error reduction framework for

text classification using naive Bayes. Guo and Greiner [30] employ an ”opti-

mistic” variant that redirects the expectation to the most probable label for

computational convenience, using uncertainty sampling as a fallback strategy

when the oracle provides an unexpected labeling. All that is required is a suit-

able objective function and a way of estimating subsequent label probabilities.

For example, strategies in this framework have been used successfully with a

variety of models, including pure Bayesian, Gaussian random fields, logistic

regression, and SVMs.
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2.3.5 Variance Reduction

We can reduce the generalization error indirectly by minimizing the vari-

ance of the output, which sometimes has a solution in closed form. Minimizing

the expectation of a loss function directly is expensive and in general cannot

be done in closed form. We can take advantage of Geman et al. [27], showing

that the expected future error of a learner can be decomposed as follows.

ET [(ŷ− y)|x] = E[(y−E[y|x])2] + (Eζ [ŷ]−E[y|x])2 +Eζ [(ŷ−Eζ [ŷ])2] (2.15)

where:

• Eζ [·]: is an expectation over the labeled set ζ;

• E[·]: is an expectation over the conditional density P (y|x);

• ET : is an expectation over both;

• x: indicates an instance;

• y: indicates the label for an instance;

• ŷ: indicates the label for an instance given by the model.

More informely we can individuate in this equation three terms, where

each one has its meaning, in details:

• E[(y−E[y|x])2]: this is the noise, which is the variance of the true label

y given only x and is independent of the model or training data. Such

noise may be caused by stochastic effects of the method used to acquire

the labels, or because the feature representation is inadequate, where

minimizing this is guaranteed to minimize the future generalization error

of the model;

• (Eζ [ŷ] − E[y|x])2: this is the bias, is the component of the overall error

caused by a given model class being used to learn a particular type of

algorithm. The bias term represents the inaccuracy caused by the model

class itself, rather than the shape of the computer’s underlying data set;
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• Eζ [(ŷ−Eζ [ŷ])2]: this is the variance of the model, which is the remainder

of the learner’s squared-loss with respect to the target function.

Variance reduction strategies have some practical disadvantages in terms

of processing costs. For each new instance, estimating the variance of the

output requires inversion of a K matrix, where K is the number of model

parameters, with a time complexity of O(UK3), where U is the size of the U

query pool. This quickly becomes intractable for large K, which is common

in work such as natural language processing. Some approaches exist to reduce

this complexity, e.g., Hoi et al. [34] use principal component analysis to re-

duce the dimensionality of the parameter space, but generally these methods

remain significantly slower than simpler query algorithms such as uncertainty

sampling.

2.3.6 Density-Weighted Methods

The central idea of error estimation and variance reduction systems is

that they focus on the entire input space rather than individual cases. The

example is certainly on a taxonomic boundary, but it is not “representative”

of other individuals in the distribution, so knowing its label is unlikely to

improve accuracy over the data set. The main idea is that instances provide

information not only as instances of uncertainty, but as instances that are

“representative” of the underlying distribution. Therefore, we want to query

instances, as proposed by Settles and Craven [82] (but not only those), as

follows:

x∗ID = argmax
x

φA(x)×

(
1

U

U∑
u=1

sim(x, xU)

)β

(2.16)

where φA(x) represents the informativeness of x according to some query strat-

egy A, while the second part of the equation weights the informativeness of

x according to its average similarity to all other instances in the input distri-

bution, subject to a parameter β that controls the relative importance of the

density term. Clustering and representativeness measures are critical to the
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way the data are queried for interactive active learning with real-time oracles.

McCallum and Nigam [62] developed a density-weighted Query-By-Committee

approach for text classification with naive Bayes, which is a special case of in-

formation density, whereas Xu et al. [98] use clustering to construct query

sets for active learning in batch mode with SVM. Settles and Craven [82] have

shown that if densities can be efficiently precomputed and cached for later use,

the time required to select the next query is essentially no different from the

basic information measure (e.g., uncertainty sampling).

2.3.7 Balance Exploration and Exploitation

The selection of instances to label is viewed as a conflict between ex-

ploration and exploitation of the data space representation. This tradeoff is

managed by modeling the active learning issue as a contextual bandit prob-

lem. For example, Bouneffouf et al. [11] present a sequential algorithm called

Active Thompson Sampling (ATS), which, in each round, assigns a sampling

distribution on the pool, samples a point from this distribution, and queries

the oracle to obtain the label of the sampling point.

2.3.8 Exponentiated Gradient Exploration for Active

Learning

Many traditional active learning algorithms focus on refining the deci-

sion border rather than exploring new, more informative regions. In this con-

text, Bouneffouf [10] introduces EG-Active, a sequential algorithm that can

improve any Active learning algorithm through optimal random exploration.

The method performs a sampling procedure in each iteration to select a new

ε from a ε finite set of possibilities. The Exponentiated Gradient (EG) [49]

(this algorithm uses the components of the gradient in the exponents of factors

that are used in updating the weight vector multiplicatively) is used to uni-

formly establish and update the probabilities associated with the candidates.

This updating rule raises the likelihood of a candidate ε if it results in a user
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click. First, is assumed that is available a finite number of ε candidate values,

indicated as (ε1, ..., εT ), and it aims to find the best ε from this collection. To

that aim, the EG-Active introduces p = (p1, ..., pT ), where pi represents the

likelihood of utilizing εi in the ε − Active algorithm. These probabilities are

initially set to 1
T

and then iteratively adjusted over iterations. The algorithm

uses a set of weights w = (w1, ..., wT ) to keep track of each εi’s performance

and updates them using the EG algorithm. If the algorithm obtains a click

from utilizing εi, the idea is to increase wi. Finally, the procedure computes

p by smoothing w and normalizing it. The indicator function is I[z], k is a

regularization factor used to deal with singular wi, and the smoothing factors

in weights updating are tau and beta.

Algorithm 1 EG-Active

Input: (ε1, ..., εT ): candidate values for ε

β, τ, k: parameters for EG

N : number of iterations

pk ⇐ 1
T

and wk ⇐ 1, K = 1, ..., T

for i = 0 to N do

Sample d from discrete (p1, ..., pT )

Run the ε− Active with εd

Receive the feedback rt

wk ⇐ wkexp(
τ [riI(k=d)+β]

pk
), K = 1, ..., T

pk ⇐ (1− k)( wk∑T
j=1 wj

+ k
T

), K = 1, ..., T

end for

2.3.9 Conformal Predictors

Conformal prediction (CP) [86] is a set of algorithms designed to mea-

sure the uncertainty of machine learning model predictions, which are made

for an online section in its purest form. After predicting a label, its actual

label is known before the next prediction; consequently, the underlying model

can be retrained with this additional data point and the next prediction will
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be based on a calibration set that includes n + 1 data points, whereas the

previous model contained n data points. CP methods achieve this by cal-

culating and comparing the nonconformity measures, typically called alpha

values, of the training set instances with the measures calculated for the test

set instances. Conforming predictors are classified in two ways (these differ

primarily in terms of computational complexity and suitability for regression

or classification applications):

• Inductive algorithms: that train one or more machine learning models

that are re-used for future test items and can be used for both classifi-

cation and regression tasks;

• Transductive techniques: that re-train the model for each test object

and are only suitable for classification tasks.

CP provides high levels of accuracy and confidence, but is computation-

ally inefficient; for example, when CP is combined with a technology that

requires long training durations, such as neural networks, the problem of com-

putational inefficiency becomes huge. Papadopoulos et al. [67] proposed a

conformal inductive prediction (ICP) technique, which allows a confidence pre-

dictor to be built on neural network without the high computational costs of

CP. This technique includes practice-relevant confidence metrics alongside its

predictions while maintaining the computational efficiency of the underlying

neural network. The algorithm is given below:
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Algorithm 2 Conformal Prediction with Neural Networks

Input: zm+t = (xm+t, ym+t), t = 1, ..., q: samples in calibration set

xl+g, g = 1, ..., r: test pattern

Split the training set into the proper training set with m < l examples

Split the calibration set with q := l −m examples

Use the proper training set to train the Neural Network

for z in calibration set do

om+t
1 , ..., om+t

c = output obtained by xm+t to the neural network

αm+t = non-conformity score of (xm+t, ym+t) obtained by (2.17) (2.18)

end for

for x in test pattern do

ol+g1 , ..., ol+gc = output obtained by xl+g to the neural network

for Yu, u = 1, ..., c in possible classification do

compute αl+g = α
(Yu)
l+g of the pair (xl+g, Yu) by applying to the neural

network (2.17) (2.18)

calculate the p-value p(Yu) of the pair (xl+g, Yu) by applying (2.19)

to the nonconformity scores of the calibration examples and α
(Yu)
l+g

end for

Predict the classification with the smallest non-conformity score

Output as confidence to this prediction one minus the second largest

p-value

Output as credibility the p-value of the output prediction i.e. the largest

p-value

end for

Where:

• z: an example;

• l: is the number of training examples;

• m: a limit split size of l;

• x: input pattern;
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• r: is the number of test patterns;

• c: is the number of possible classifications;

• α: non conformity score;

• y: a possible label;

• o: output.

With the non-conformity measures (the second with an hyperparameter

γ useful to gain control over which category of outputs will be more important

in determining the resulting non-conformity scores):

αi = max
j=1,...,c:j 6=u

oij − oiu (2.17)

αi =
max

j=1,...,c:j 6=u
oij

oiu + γ
(2.18)

And p− value function:

p(Yj) =
{i = m+ 1, ...,m+ q, l + g : αi ≥ α

(Yj)
l+g }

q + 1
(2.19)

2.3.10 User Centered Labeling Strategies

The central idea of this family of techniques is driven by the fact that

learning occurs by reducing the dimensionality of graphs and figures such as

scatter plots, in which the user is asked to classify the data collected as cate-

gorical, numerical, relevance ratings, and relations between two occurrences.

In this context, Jürgen et al. [8] proposed a technique called visual-

interactive labeling (VIAL) that provides users with an active role in the label-

ing process, with the goal of combining the potential of humans and machines

to make labeling more efficient. This technique contributes to a systematic

quantitative analysis of the strategies of users, who employ different tactics

when marking occurrences with interactive visual interfaces. In this work,
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they discovered the building blocks of users’ tactics, coded them, and exam-

ined their potential for various machine learning tasks. These experiments led

to the following key results:

• Guessed that specific user tactics can significantly reduce the bootstrap

(cold start) problem during the early labeling phases;

• Guessed that in later stages, they have the potential to surpass conven-

tional active learning systems;

• Examined the discovered fundamental building elements, which may be

used to develop new selection techniques.

2.3.11 Meta Learning Strategies

AL strategies are usually based on heuristics or even theoretical measures,

but they are not learned because they are used directly during training. De-

scribed below are some models that aim to use a meta-learning approach (this

is a subfield of ML in which machine learning algorithms are applied to meta-

data about machine learning experiments; the main goal is to use metadata

to understand how machine learning can become flexible in solving learning

problems, thus improving the performance of existing learning algorithms or

learning - inducing - the learning algorithm itself, thus learning to learn).

2.3.11.1 RALF

Ebert et al. [22] analyzed several sampling criteria, including a new

density-based criterion, and demonstrated the importance of combining explo-

ration and exploitation sampling criteria. They also showed that combining

time-varying sampling criteria often improves performance. They proposed

a new feedback-driven framework based on reinforcement learning (this is a

method with reward values assigned to the different stages addressed by the

algorithm; the goal of the model is then to accumulate as many reward points

as possible and, eventually, achieve a final goal) by modeling criterion selection
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as a Markov decision process (this is a random process in which the transition

probability that determines the transition to a system state depends only on

the immediately preceding system state “Markov property” and not on the

way that state was arrived at). Their method does not require prior knowl-

edge of the data set or sampling criteria, but can adapt the sampling strategy

through experience during the learning process. They addressed this problem

by formulating active learning as a Markov decision process (MDP). Their

model has two parameters for Q-Learning, the number of states and actions

that must be kept as small as possible to speed up initialization. All parame-

ters are the same for all datasets. There is no tuning for a specific dataset. The

challenge they faced is the initialization of the method, since they start from

an empty Q table. Ideally, they visit each state-action-pair once or twice but

this is intractable for a large state and action space. The number of iterations

are limited and they would try out many transitions that are harmful for our

learning process. Therefore, they proposed a guided initialization phase. They

computed the expected entropy reduction r̂
(t)
i for all actions ai. Each action ai

requests a label for sample xi. As they do not know the label for this sample,

they applied their classifier for each class and calculate the overall entropy.

These entropies are weighted by their current prediction probability p(yij|xi):

r̂
(t)
i =

c∑
j=1

p(yij|xi)
n∑
k=1

Entj(xk) (2.20)

Entj is the entropy after running our classifier with label j for sample xi.

Finally, they selected the next action with a = argmaxir̂
(t)
i . This is a time-

consuming step but they used this only for the first few iterations. Also, they

can reduce the number of classes for estimation with threshold p(yij|xi) > 0.01.

Usually, there are only 2 to 4 classes left.

2.3.11.2 COMB

Baram et al. [5] proposed a framework for combining an ensemble of ac-

tive learners online to accelerate learning progress in pool-based active learn-

ing. Based on a well-known competitive algorithm for the multi-armed bandit



CHAPTER 2. ACTIVE LEARNING 34

(MAB) problem, they created an active learning algorithm. The MAB is a

problem in which a finite set of resources must be allocated among alternative

choices in a way that maximizes expected gain, when the properties of each

choice are only partially known at the time of allocation and can be better

understood with the passage of time or by allocating resources to the choice.

One of the most difficult aspects of selecting the best performing active learners

online is accurately estimating their progress during the learning session. For

this purpose, they proposed a simple maximum entropy criterion that provides

effective estimates in realistic contexts. The proposed combination algorithm,

called COMB, is based on the EXP4 MAB algorithm. The EXP4 proposed by

Auer et al. [3] stands for Exponential weighting for Exploration and Explota-

tion with Experts.The concept of the algorithm is simple: since exponential

weighting worked so well in the standard bandit problem, we should apply it

to the problem at hand. However, since the goal is now to compete with the

best expert a posteriori, we should score the experts rather than the shares.

Consequently, the algorithm will maintain a probability distribution, denoted

Qt, on the experts and use it to determine the next action. Once the action is

selected, we can use our preferred reward estimation procedure to estimate the

rewards for all actions, which can be used to estimate the total reward that

individual experts would have earned up to that point, which can be used to

update Qt.

COMB algorithm utilizes an ensemble of active-learning algorithms and

tracks online the best algorithm in the ensemble. Steps 1 and 2 compute the

active learners’ advice probability vectors, as required by the original EXP4

algorithm. In Step 1, each algorithm in the ensemble provides a scoring vector

that “rates” each point in the pool U . In practice, the three algorithms under

consideration provide such ratings naturally:

• SIMPLE [94] makes use of the kernel distance from the decision hyper-

plane;

• SELF-CONF [78] makes use of the expected loss;
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• KFF makes use of the kernel distance from the current training set.

In Step 2, they scale these scoring vectors using a scaling parameter β and the

Gibbs probability function exp{−βx}. After creating the advice probability

vectors for the active learners (in Step 2), they project the pool U over high

probability candidate instances in Step 3. Ue represents the projected pool.

The parameter α controls this projection, and an instance x in U remains in

Ue if at least one active learner assigns x a probability mass greater than α.

In Step 6, the learner chooses one (unlabeled) point xq from Ue as the next

query. According to EXP4, this choice should be random according to the

distribution computed in Step 5. In Step 10 is calculated the “utility” of the

last query, that is defined using the (convex) function ex on the entropic reward

calculated in Step 9.
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Algorithm 3 COMB

Input: A Pool U = x1, ..., xn; (ii); An ensemble ALGj
k
j = 1 of k active

learners; An initial training set L0

Parameters: A probability threshold α; A probability scaling factor β; A

bound gmax on the maximal reward

Initialize expert weights: wj = 1, j = 1, ..., k

for t = 1 to N do

Receive advice scoring vectors from ALGj, j = 1, ..., k : ej(t) =

(ej1(t), ..., ejn(t)). eji (t) is the score of the i-th point in the pool. The scores

are normalized to lie within [0,1].

For each ALGj, j = 1, ..., k, compute an advice probability vector

bj(t) = (bj1(t), ..., bjn(t)) by scaling the advice scoring vectors. For each

bj(t), j = 1, ..., k, for each bji (t), i = 1, ..., n: bji (t) = (expβ(1eji (t)))/Z, where

Z normalizes bj(t) to be a probability vector.

Extract from U an “effective pool” Ue by thresholding low probability

points: For each point xi ∈ U leave xi in Ue, iff maxjb
j
i ≥ α. If |Ue| = 0,

reconstruct with α/2, etc. Set ne = |Ue|.

set γ =
√

neln k
(e−1)gmax

Set W =
∑k

j=1 wj and for i = 1, ..., ne, set pi = (1γ)
∑k

j=1wjb
j
i (t)/W +

γ/ne.

Randomly draw a point xq from Ue according to p1, ..., pne .

Receive the label yq of xq from the teacher and update the training set

and the pool: Lt = Lt1 ∪ (xq, yq);Ut+1 = Utxq.

Train a classifier Ct using Lt.

Use C to classify all points in U and calculate Ht = Ht(
|C+1(U)|
|U | ), the

entropy of the resulting partition C+1(U), C1(U).

Calculate the “reward utility” of xq : r(xq) = ((eHteHt1)(1e))/(2e2).

For i = 1, ..., n, set r̂i(t) = r(xq)/pq if i = q and r̂i(t) = 0 otherwise.

Reward/punish experts: wj(t+ 1) = wj(t)exp(b
j(t)̇̂r(t)γ/ne).

end for
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The algorithm successfully combines elements of statistical and online

(adversarial) learning. Extensive empirical results show that this algorithm

can keep up with the best algorithm in the ensemble on real-world problems.

2.3.11.3 LAL

Ksenia et al. [51] proposed a data-driven approach to AL. The main idea

is to train a regressor that predicts expected error reduction for a candidate

sample in a specific learning state. They are not limited to working with

existing AL heuristics because they formulate the query selection procedure as

a regression problem; instead, they learn strategies based on experience from

previous AL outcomes.

Assume the representative dataset is made up of a training set D and

a testing set D′. Let f be a classifier with a predefined training procedure.

They begin gathering data for the regressor by dividing D into a labeled set

Lt of size τ and an unlabeled set Uτ of the remaining points (Algorithm 4).

They then train a classifier f on Lτ , yielding a function fτ that they can

use to predict class labels for elements x′ in the test set D′ and estimate the

test classification loss lτ . We define the classifier state using K parameters

φτ = {φ1
τ , ..., φ

K
τ }, which are specific to the classifier type and are sensitive to

changes in the training set while remaining relatively invariant to stochasticity

of the optimization procedure. They then choose a new datapoint x at random

from Uτ , which is defined by R parameters φx = φ1
x, ..., φ

R
x . They create a new

labeled set Lx = Lτ ∪ {x} and train f . The test set loss lx is produced by

the new classifier fx. Finally, they keep track of the difference between the

previous and new loss δx = lτ − lx, which is associated with the learning

state in which it was received. The learning state is characterized by a vector

ξxτ ← [φ1
τ · · ·φKτ ψ1

x, ..., ψ
R
x ] ∈ RK+R whose elements depend both on the state of

the current classifier fτ and on the datapoint x. To build an AL strategy “LAL-

Independent” they repeat the “Data Monte Carlo” procedure for Q different

initializations L1
τ , L

2
τ , ..., L

Q
τ , and T various labeled subset sizes τ = 2, ..., T +

1 (Algorithm 5). For each initialization q and iteration τ , they sample M
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different datapoints x each of which yields classifier/datapoint state pairs with

an associated reduction in error. This results in a matrix Ξ ∈ R(QMT )×(K+R)

of observations ξ and a vector ∆ ∈ RQMT of labels δ.

Algorithm 4 Data Monte Carlo

Input: training set D and test set D′, classification procedure f , partition-

ing function Split, size τ

Lτ , Uτ ← Split(D, τ)

train a classifier fτ

estimate the test set loss lτ

compute the classification state parameter φ← {φ1
τ , ..., φ

K
τ }

for m = 1 to M do

select x ∈ Uτ at random

form a new labeled dataset Lx ← Lτ ∪ {x}

compute the datapoint parameters ψ ← {ψ1
x, ..., ψ

R
x }

train a classifier fx

estimate the new test loss lx

compute the loss reduction σx ← lτ − lx
ξ ← [φ1

τ · · ·φKτ ψ1
x, ..., ψ

R
x ], σm ← σx

end for

Ξ← {ξm},∆← {σm}1 ≤ m ≤M

Return: matrix of learning states Ξ ∈ RM×(K+R), vector of reductions in

error ∆ ∈ RM

Their insight is that observations ξ should lie on a smooth manifold and that

similar states of the classifier result in similar behaviors when annotating sim-

ilar samples. From this, a regression function can predict the potential error

reduction of annotating a specific sample in a given classifier state. In algo-

rithm 5 looks for a mapping g : ξ 7→ δ. This mapping is not specific to the

dataset D, and thus can be used to detect samples that promise the greatest

increase in classifier performance in other target domains Z. The resulting

“LAL Independendent” strategy greedily selects a datapoint with the highest



CHAPTER 2. ACTIVE LEARNING 39

Algorithm 5 Build LAL Independent

Input: iteration range {τmin, ..., τmax}, classification procedure f

Split← random partitioning function

generate train set D and test D′

for τ in {τmin, ..., τmax} do

for q = 1 to Q do

Ξrq,∆rq ← DataMonteCarlo(D,D′, f, Split, τ)

end for

end for

Ξ,∆← {Ξrq}, {∆rq}

train a regressor g : ξ 7→ δ on data Ξ,∆

construct “LAL Independendent” A(g) : x∗ = argmaxx∈Utg[ξt,x]

Return: “LAL Independendent”

potential error reduction at iteration t by taking the maximum of the value

predicted by the regressor g.

For any AL strategy at iteration t > 0, the labeled set Lt consists of

samples selected at previous iterations, which is clearly not random. However,

the dataset D is split into Lτ and Utau randomly no matter how many labeled

samples τ are available. To account for this, they modified the original ap-

proach “Build LAL Iterative”. Instead of partitioning the dataset D into Lτ

and Uτ randomly, they suggested simulating the AL procedure which selects

datapoints according to the strategy learnt on the previously collected data

(Algorithm 6). It first learns a strategy A(g2) based on a regression function

g2 which selects the most promising 3rd datapoint when 2 random points are

available. In the next iteration, it learns a strategy A(g3) that selects 4th dat-

apoint given 2 random points and 1 selected by A(g2) etc. In this way, samples

at each iteration depend on the samples at the previous iteration and the sam-

pling bias of AL is represented in the data Ξ,∆ from which the final strategy

“LAL Iterative” is learnt. The resulting strategies “LAL Independendent”

and “LAL Iterative” are both reasonably fast during the online steps of AL:
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Algorithm 6 Build LAL Iterative

Input: iteration range {τmin, ..., τmax}, classification procedure f

Split← random partitioning function

generate train set D and test D′

for τ in {τmin, ..., τmax} do

for q = 1 to Q do

Ξrq,∆rq ← DataMonteCarlo(D,D′, f, Split, τ)

end for

Ξτ ,∆τ ← {Ξrq}, {∆rq}

train a regressor gτ : ξ 7→ δ on data Ξτ ,∆τ

Split← A(gτ )

end for

Ξ,∆← {Ξτ ,∆τ}

train a regressor g : ξ 7→ δ on Ξ,∆

construct “LAL Iterative” A(g)

Return: “LAL Iterative”
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they just require evaluating the RF regressor. The offline part, generating a

datasets to learn a regression function, can induce a significant computational

cost depending on the parameters of the algorithm. For this reason, “LAL

Independendent” is preferred to “LAL Iterative” when an application-specific

strategy is needed.

2.4 Applications

Research on Active Learning is mainly concerned with image processing.

Active learning is gradually making its way into NLP as well. Active learning

deals with how to efficiently handle high-dimensional data query samples and

reduce labeling costs when it comes to computer vision work. Active learning

allows pseudo-labels to be assigned to samples with high confidence and added

to the set of highly uncertain samples queried with the uncertainty-based active

learning approach before training the active learning model image classifier us-

ing the larger training set. The following are some areas where active learning

is helpful.

2.4.1 Gene Expression

Gene expression is the process by which information from a gene is used

for the synthesis of a functional gene product, enabling it to produce end

products such as proteins or non-coding RNAs and, consequently, to affect a

phenotype. These products are often proteins, but the product of non-protein-

coding genes, such as transfer RNA (tRNA) and small nuclear RNA (snRNA),

is functional non-coding RNA. The fundamental principle of molecular biology,

first established by Francis Crick [92], and expanded by subsequent discoveries

and RNA replication. Gene expression is the most fundamental level of genetics

in which the genotype gives rise to the phenotype, or observable trait. The

genotype is the genetic information encoded in DNA, while the phenotype

is the consequence of the ”interpretation” of that information. Phenotypes

often manifest themselves through the creation of proteins that regulate the
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structure and development of the organism or act as enzymes catalyzing certain

metabolic processes.

Liu et al. [58] developed an approach for active learning with SVM

and applied it to gene expression patterns of colon, lung, and prostate can-

cer tissues. After the training set was constructed, either actively (the most

informative m instances were labeled) or passively (examples were labeled ran-

domly), a classifier created a model from the training set, and the model was

used to classify the cancer examples (lung cancer, prostate cancer, or colon

cancer). SVM proved to be an excellent solution for the active learning sys-

tem. In addition, SVM has been successfully used to classify cancer using gene

expression data. An SVM chooses a small number of crucial boundary samples

for each category, known as support vectors, and creates a linear discrimina-

tion function that separates them as much as possible. If linear separation

is impractical, a ”kernel” technique is used to automatically inject the train-

ing samples into a higher-dimensional space and develop a separator in that

space. SVM produces a hyperplane that divides two different categories of

feature vectors with a maximum margin, the distance between the separating

hyperplane and the nearest training vector, into linearly separable instances.

The support vectors are the training instances closest to the hyperplane. The

hyperplane was created by identifying another vector w and a parameter b that

minimizes ||w||2 and satisfies the conditions listed below:

w · x− i+ b ≥ +1, for yi = +1 Category 1 (pos.) (2.21)

w · x− i+ b ≤ −1, for yi = −1 Category 2 (neg.) (2.22)

where:

• yi is the category index (i.e., active, inactive);

• w is a vector normal to the hyperplane;

• |b|/||w|| is the perpendicular distance from the hyperplane to the origin;
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• ||w||2 is the Euclidean norm of w.

After determining w and b, a given vector x can be categorized by the sign

[(w ·x)+b]. The researchers compared the categorization performance of active

learning with that of passive learning. The results showed that using the active

learning method can achieve good accuracy while reducing the demand for

labeled training examples. To achieve 96% overall positives for lung cancer

categorization. Active learning resulted in a reduction of more than 82%.

The areas under receiver operating characteristic (ROC) curves were above

0.81 in active learning and below 0.50 in passive learning. The researchers

demonstrated that active learning with support vector machines can accurately

classify tumors based on expression data from DNA microarray hybridization

assays and provided some theoretical foundations for the effectiveness of active

learning.

Singh et al. [90] addressed the sampling problem for such experiments

by calculating which time points should be chosen to reduce data collection

costs. They focused on a nascent type of studies that evaluate different sig-

nals at each time point and in which raw materials/observations are initially

archived and then selectively evaluated later, with analysis being the most

expensive stage. They introduced an active learning approach to iteratively

select the time points to be sampled, with the objective function being the

uncertainty in the quality of the currently estimated time-dependent curve.

They demonstrated that their algorithm works effectively and can greatly re-

duce experimental costs without sacrificing information, using both simulated

data and gene expression data. The core of this work is the Choose-Next-Point

algorithm, which, given data from j previously sampled time points, uses them

to choose the (j + 1)− th sampling point:

• Generate a smoothing function for the j time-points:

Evaluate all possible smoothing parameters for the spline model using

cross-validation;
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• Use the smooth hing function to choose the next time-point that should

be sampled:

Compute locally-sensitive confidence intervals over the continuous

function at all of the sampled time-points;

Use active learning to suggest the next time-point to sample, based

on the confidence intervals.

With each iteration, at step 1, the above algorithm computes an error estimate

in order to solve errThresh, they choose time-points until this error falls below

the error threshold Ce; to solve costThresh, they continue until K time-points

have been chosen. In details:

• costThresh: their method performs better (in terms of eTf ) than both

random and uniform sampling, especially when using more difficult cost

targets and harder datasets. they performed the comparison for different

cost thresholds and they accepted the estimate to be a good fit with the

original if eTf < 1.15;

• errThresh: defining a measure of error ef over the estimated func-

tions. In an ideal world, such an error measure would react identically

to the true error, ef . For simulated datasets, the true error can be cal-

culated and used to assess performance in errThresh issue situations.

They demonstrated that their online method outperforms the random

sampling approach, requiring less samples to obtain the same inaccuracy.

The distinction is especially noticeable in ”hard” problem scenarios.

They measured the true error eTf , of f̂ as the average difference between the

two curves over the time-range of interest:

eTf =
1

(tnN − tn1 )

∫ tnN

tn1

|f ∗(t)− f̂(t)|dt (2.23)

where:

• f is the true function;
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• f̂ is the estimated function;

• t is a time-point;

• N quantity of time points.

They introduced an online system using active learning to establish an optimal

sampling strategy for time series experiments with high data collection costs.

They proposed an efficiently calculated objective function to estimate the un-

certainty of estimated smooth splines and demonstrated how this function can

be used together with active learning to suggest the next sampling point. This

algorithm can be used to sample and estimate any continuous function with

a single independent variable with no variance. In a large sensor network,

for example, obtaining continuous readings from all sensors incurs prohibitive

communication/energy costs. Many of these readings may be redundant at the

same time. Given some k, this technique can help identify the ideal selection

of k sensors whose combined readings produce the least overall uncertainty in

the overall observation.

Begum et al. [6] developed an active learning (AL) model for cancer

prediction using SVM together with a feature selection (FS) technique called

Symmetrical Uncertainty (SU). The efficiency of the proposed AL and SU

combination was demonstrated, and biomarkers or cancer genes discovered

by the proposed approach were reported on four gene expression datasets.

In addition, studies were carried out on the biological significance of cancer

biomarkers obtained from the datasets. With a small labeled dataset and a

large number of unlabeled multidimensional data, the whole dataset is divided

into training-test partitions of 50-50%. Feature selection is performed only on

the 50% training set. Three feature selection methods were used to extract

features from the training data:

• CBAE: Correlation Based Attribute Evaluation [89] is a method for

selecting optimal attribute subset based on correlation using Genetic

algorithm (GA), where GA is used as optimal search tool for selecting

subset of attributes;
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• SU: Symmetric Uncertainty [1] is a pure filter based feature subset selec-

tion technique which incurs less computational cost and highly efficient

in terms of classification accuracy;

• GRAE: Gain ratio attribute evaluation [44] is a method to illustrate

the significance of feature subset selection for classifying Pima Indian

diabetic database.

The retrieved features are employed in the experiment, which is carried out

using the proposed method. Following that, the data sets are divided into:

• training dataset;

• pooled dataset;

• test dataset.

On the training data, the classifier is trained. The classifier selects the most

informative samples from the set of clustered data in each iteration. Human

experts classify the informative samples and add them to the original training

data. This updated training set is used to predict the test data. Ten samples

are considered training data among the 50% training data, while the remain-

ing samples are considered pooled data for each dataset. The goal is to reduce

the error and improve the accuracy of the ASVM framework (their proposed

Active SVM) by choosing the most uncertain samples from the pooled data

collection. It should be noted that unlabeled clustered data are formed by re-

moving the label vector of the original dataset. The following steps summarize

the algorithm:

• 1. the data set is preprocessed to reduce the dimension of the data by

using three feature selection methods introduced previously;

• 2. the traditional ISVM is trained with the training data. The function,

Φ(Xp, Y ) estimates the class label, Y for the training samples, Xp;
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• 3. the classifier queries for the samples from the pooled data. Let Xpbe

the set of training data. Let assume that xpi ∈ Rs is the ith vector in Xp.

If U is a set of test data, then →
u j
∈ RS is the jth vector in U . In ASVM

the selection of the uncertain samples from the set of pooled data P are

based on the following criteria:

train the ISVM using XP and predict the test set U ;

compute the decision values of the positive and negative uncertain

samples within the margin band;

select uncertain samples pΦ from P that are closest to the decision

boundaries within the margin b;

the new training set XP = XP ∪ pΦ and the pooled data set P 1 =

P −PΦ where PΦ is the set of samples closest to the decision boundaries

at each iteration;

the chosen new samples are provided to the human annotator to

annotate the samples by predicting the true classes;

• 4. retrain the classifier using the updated training set;

• 5. algorithm terminates after a finite number of Iterations.

The algorithm works in a simple way. The classifier is initially trained with

a small number of training samples and then classifies test sets. The ASVM

proposed in the AL framework starts by choosing the uncertain samples closest

to the decision boundaries from the collected data set. Next, the samples are

given to a human expert who assigns the right label to those samples. As the

original datasets are available, they provide the correct label to the searched

samples in the same way a human annotator would. The original training set

is then updated by including the uncertain samples, and the pooled data set is

updated by removing the uncertain samples. This process is repeated until the

nth iteration, at which point the best results of the n iterations are considered.

The results of the proposed model would provide the physician with an unbi-

ased alternative model for predicting cancer subtypes, unlike existing methods
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that rely on clinical or histopathological data, which do not always reveal the

true outcome. Consequently, for its potential in the clinical management of

cancer, it is critical to focus on class prediction. In addition, observation of

incorrect genes results in poor performance in typical supervised approaches.

Consequently, selected features are critical in classifying data.

2.4.2 Robotics

In order to navigate autonomously in outdoor contexts, complex clas-

sification challenges must be solved, as the following (these are examples of

classification tasks that have been effectively tackled utilizing supervised ma-

chine learning approaches):

• Obstacle detection;

• Road following;

• Terrain categorization;

• etc.

In order to obtain adequate generalization, large volumes of training data are

frequently required. In such instances, manually classifying data becomes a

costly and time-consuming operation, and AL comes useful.

Dima et al. [19] proposed a strategy to reduce the amount of data to be

presented to a human trainer. To identify ”interesting” scenes in a dataset, the

approach employs kernel density estimation. Their system requires no interac-

tion with a human expert for image selection, and only minor adjustments are

needed. They used data acquired with two different vehicles to illustrate its

utility in multiple studies (using distance data from laser rangefinders, color,

infrared, and texture information acquired):

• CMU autonomous tractor: [91] this is a tractor automation system.

A task is programmed by a human by driving the relevant routes. The as-

signment is broken down into subtasks and allocated to a fleet of tractors,
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which drive portions of the routes. Each tractor has on-board sensors

that identify people, animals, and other vehicles in its route, causing it

to stop until it receives instructions from a supervisor via a wireless link;

• GDRS XUV: this is being done to investigate the effects of introducing

semi-autonomous systems to the Army After Next Scout Platoon. This

program is intended to progress and demonstrate the technology needed

to construct future unmanned ground combat vehicles through three key

thrusts:

coordinated technology development;

modeling, simulation, and experimentation;

technology integration and user evaluation.

Demo III focuses on the demonstration of technologies that will allow for

the construction of small, extremely nimble unmanned vehicles capable of

off-road, semi-autonomous operation at speeds of up to 32 km/hr during

daylight and 16 km/hr at night by the fourth quarter of fiscal year 2001.

The sensors of the two autonomous vehicles (color cameras, infrared cameras,

and laser rangefinders) are calibrated against each other, which means that

they can obtain color and infrared information for each three-dimensional (3D)

point returned by the laser rangefinder that is in the field of view of our cam-

eras, with very mild assumptions about the geometry of the scene. Similarly,

3D laser dots can be projected into any photograph. The assumption is that

the image and distance sensors are not too far apart relative to the distance

of the scene being imaged. Even if this assumption is violated, problems arise

only in the case of occlusions. Both vehicles are capable of collecting huge

amounts of laser and image data. The most recently recorded laser data is

projected into each acquired image. The image is divided into a grid of rectan-

gular patches, and numerous features are retrieved from each data mode. Each

data register contains multiple images, and each image contains many patches,

from which several features are retrieved. Once the features are retrieved, the
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image patches can be classified as obstacles/non-obstacles or roads/non-roads

using any conventional learning method, such as neural networks, support vec-

tor machines, decision trees and so on. The standard data labeling technique

involves manually scanning the entire data log, selecting photographs that a

human expert considers interesting, and categorizing portions of images as

belonging to various classes. Their method is a non-interactive strategy that

evaluates the attributes associated with each image in the dataset to identify

photographs that are “surprising” given the probability distribution of the rest

of the data. Importantly, this is done before the data are labeled by a human

expert. Consequently, the author refers to his technique as “unlabeled data

filtering”. This differs from better known active learning strategies, such as

trust-based query selection or vote-based query selection, which start with a

small amount of labeled data and then interactively offer other data to a hu-

man expert for classification. However, using their method does not preclude

the use of another interactive active learning strategy. On the contrary, their

method can be used to produce a good small data set to initiate the other inter-

active methods. This method reduces the amount of data labeling needed for

outdoor categorization problems. The results obtained on datasets from very

different environments show that the method can be used to automatically

”filter” huge datasets and retrieve salient photos, achieving strong coverage

of the feature space. The preliminary classification test revealed that, under

some circumstances, the error rates obtained using 5 informative images can

be as excellent as those obtained by labeling a complete dataset of hundreds

of images. These results represent an important step toward using machine

learning to solve large-scale classification challenges in outdoor robotics. This

active learning approach can be useful in two ways:

• it minimizes the requirement for expensive labeled data;

• it reduces the amount of data that needs to be processed by field than

previously possible.

They are interested in applying ways to increase the speed and resilience with
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which probability density functions may be computed.

Pillai et al. [69] investigated active learning methodologies applied to

three language problems of varying difficulty to determine which methods are

appropriate for improving data efficiency in learning. Their method was de-

signed to analyze the complexity of the data in this combined problem space

and to report how the characteristics of the underlying task and design factors

affect the results, such as:

• feature selection;

• classification model.

They found that representativeness, along with diversity, is critical in the se-

lection of data samples. They learned the relationships between the RGB-D

(color+depth) images of elements in a dataset and the language that defines

them using various active learning approaches. The goal then becomes the

identification of concepts with grounded meaning, the creation of lexical terms

in a formal representation of the underlying meaning, and the learning of vi-

sual classifiers that correctly identify the elements referred to in subsequent

language interpretation tasks. At a high level, language is grounded in the

learning of concept-specific classifiers such as color, shape, and object; the

many types of concepts are acquired through human-provided descriptions of

selected things. Each concept is linked to a learned classifier, and all selected

objects described by that concept are used as training data for that classifier.

For the actual grounding, they relied on existing datasets and categorization

algorithms. They stated that the evaluations performed in this work are in-

tended to compare the success of different active learning methodologies for

the same topic. To mimic the limited training available from human encoun-

ters, they limited the training data to a single description of each object. They

employed active learning methodologies to perform reproducible experiments

in which the objects (and accompanying training and evaluation information,

such as identified descriptions and concepts) are extracted from a pre-existing

data pool rather than produced de novo through human interaction. They
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changed the active learning strategy used to select new object descriptions to

add to the training pool in their key experiments. In addition, they exper-

imented with different features and categorization algorithms. Because the

challenge focuses on selecting objects for which to collect labels, it is sim-

ilar to asking a human for a description of a specific object, but it allows

them to conduct large-scale and more repeatable tests. Their purpose is to

study data selections in limited situations to improve performance in the early

stages. They are not about improving absolute learning performance; using

a new or complex strategy risks introducing unknown confounding factors.

Their system prioritizes the categorization of the most informative and dif-

ferent objects from a pool of unlabeled objects. As active learning strategies,

they used probabilistic clustering (especially point process modeling). Because

their data are inherently noisy, they found that variations of Gaussian mixture

models (GMMs) and deterministic point processes (DPPs) were robust selec-

tion methods in their tests. GMMs can handle mixed memberships, and soft

cluster assignment allows for uncertainty. They used parametric methods in

their learning strategies because they are statistically more stable than non-

parametric models. Consequently, they focus on GMM-based and DPP-based

techniques applied to visually grounded object attributes to choose the most

informative points from a pool of unlabeled instances. They do not explore

deep learning algorithms, which often perform well on huge datasets, because

they focus on learning from limited data. Five different active learning mod-

els, one uncertainty-based method (GMM Log Density) and four pool-based

techniques are analyzed in all experiments:

• GMM Max Log Density Based;

• VL-GMM;

• DPP.

This is a novel method to solve the grounded language problem: a structured

DPP-based active learning technique (GMM-DPP). They evaluated these vari-

ants of active learning strategy against a basic random sample on our three
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variables (color, shape and object). By querying all N objects at once, their

algorithms identify instances that are informative and different. This method

is also known as ”batch mode.” To allow for more extensive and reproducible

testing, they drew from an existing pool of human-provided descriptors rather

than explicitly seeking additional labels through interaction. In their work,

they thoroughly examined various active learning techniques to support un-

restricted natural language with real sensor data. They showed that active

learning has the potential to reduce the amount of data needed to base lan-

guage on objects, a hot topic in NLP, robotics and machine learning from

sparse data in general. They also suggested approaches that would be appro-

priate given the perceptual and verbal complexity of a situation.

Chao et al. [14] instead used nonverbal gestures to ask a human teacher

questions about a presentation in the context of a social interaction to perform

active learning on the Simon robot (Figure 2.4). The goal was to build a learner

robot that can exploit transparency to help a human teacher provide better in-

struction. Preliminary data analysis reveals that transparency through active

learning has the potential to increase the accuracy and efficiency of the teach-

ing process. However, their research seems to show potential negative impacts

from the human teacher’s perspective in terms of interaction balance. These

preliminary results argue for control strategies that strike a balance between

leading and following during a social learning engagement.
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Figure 2.4: Simon is a socially aware robot designed to explore ways of inter-

acting with humans naturally, through sounds, movements, and gestures.

A good teacher maintains a mental model of the learner’s understanding in

a contextual learning encounter and organizes the learning task appropriately

with timely feedback and directions. The learner contributes to the process

by communicating his or her own internal condition (e.g., expressing under-

standing, confusion, attentiveness, etc.) This reciprocal and closely connected

relationship enables the learner to use the teacher’s instructions to construct

the necessary representations and associations. This type of human tutoring

is a social and cooperative activity. The human input scenario has received

some attention in the machine learning and robotics communities. Much past

research has focused on the scenario in which a machine learns by observing

human behavior. Many of these learning systems benefit from this work on

transparency and active learning. Their specific goal is to create more inter-

active systems that can learn in real time from ordinary people. Research

has been conducted on the computational benefits of teacher/learner pairs,

particularly in relation to active learning. AL is a field concerned with the

effective use of an external oracle. One system demonstrates trust-based ac-

tive learning with human (non-social) labelers. Queries can be seen as a type

of transparency in the learning process, which is why we are interested in

applying active learning in the context of human-robot interaction. The diffi-

culty lies in devising methods that allow the robot to use natural social cues



CHAPTER 2. ACTIVE LEARNING 55

to solicit acceptable examples from a human partner in the learning activity.

Research on active learning focuses on how to select questions that maximize

information gain or otherwise make optimal use of the oracle. This work, on

the other hand, focuses on the problem of allowing the oracle to be a machine-

learning non-expert and the use of active learning for learning robotic tasks.

They presented a learning system, an experiment with human teachers and

data-based observations. They used query-by-committee for sample selection

in Simon’s active learning method. This method employs a committee of com-

peting hypotheses to choose the example with the greatest difference between

the hypotheses in terms of expected labels. In their implementation, the com-

mittee is the version space of the symbol, that is, the set of all hypotheses with

the highest score monitored during symbol learning. The committee assigns a

value of +1 for a positive label and a value of −1 for a negative label, implying

that the example with the smallest mean value of the expected label in abso-

lute value in the entire symbol version space will yield the largest information

gain. Iterative labeling of the instances chosen by the committee has the ef-

fect of eliminating as much of the committee as possible until only one correct

hypothesis remains, minimizing committee entropy. When there are multiple

instances with the same best value, the active learner can impose additional

ordering or select them randomly. The next section on transparency methods

describes additional restrictions used by the active learner. Label prediction is

done with a hypothesis committee using the committee’s majority label, which

is also the sign of the average label. The measure of label confidence is the gap

between the majority label and the mean label. Therefore, confidence is 0 in

the degenerate case of no majority label. They used active learning to teach

the Simon robot to query an external entity about areas of uncertainty in its

hypothesis space, and then created a series of nonverbal gestures to provide

feedback on uncertainty, as well as nonverbal gestures for the robot to ask a

human teacher about the feature space in a tangram symbol learning task. In

a preliminary study, they found that transparency through active learning has

the potential to improve both the accuracy and efficiency of a teaching process;



CHAPTER 2. ACTIVE LEARNING 56

moreover, they found that people who understood the robot’s questions could

train a model with perfect accuracy relatively quickly. These people were also

confident that the trained model was complete. However, they felt that an

encounter driven entirely by active learning might be undesirable from the hu-

man teacher’s point of view, because both subjects observed in this scenario

showed that they wanted to exert more influence on the process. Subjects in

the non-transparent condition who did not see the version of the robot with

active learning, on the other hand, expressed a desire for the robot to take the

initiative or communicate what it knew or did not know.

2.4.3 Wearable Devices

Human activity monitoring has grown in popularity in recent years and

is currently employed in a wide range of industries and applications. Most

proposed activity tracking algorithms have focused on the use of inertial sen-

sors in smartphone devices or other worn sensors, but wearable inertial sensors

are not interactive and cell phones are cumbersome to wear. As wristwatch

technology advances, new options emerge for user engagement and highly ac-

curate and personalized identification of activities. Specific behaviors can be

learned by interrogating unknown actions with Active Learning, an interactive

machine learning approach.

There are several publications in this context, one of which was intro-

duced by F. Shahmohammadi et al. [87], who propose a smartwatch-based

active learning system for task identification, which identifies five typical daily

tasks. According to the results of this study, this approach has an accuracy of

93.3% on 12 people. The results show that an interactive learning technique

based on active learning in smartwatches outperforms smartphones and other

devices in task detection tests. This work used twelve people who used an ap-

plication designed for wristwatch to collect activity data. In the first phase of

the experiment, they trained a supervised model on the data set, which served

as the basic model for activity recognition, and then evaluated models that

used various combinations of inputs from different sensors. In this work, they
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employed two active learning algorithms, namely Uncertainty Sampling and

Query by Committee, to perform online active learning and query subjects as

sensor data were received. They compared the performance of these two meth-

ods for activity recognition to determine which method is more appropriate for

the application, retrained the classifier for each dataset, and made predictions

for the opposite dataset that had not been queried. With this method, the

annotation of a sample did not cause the model to have deceptively high ac-

curacy because of prior knowledge of its future classifications. The researchers

achieved high accuracy with a small number of training samples, demonstrat-

ing that this strategy is very valid; moreover, they showed that the use of

software-based wrist sensors can increase the accuracy of activity detection

models.

In this context, Jie Xu et al. [97] proposed a new online contextual

learning method for activity classification based on data acquired from low-cost

inertial sensors and smartphones. The proposed technique is able to address

the special problems associated with online, personalized and adaptive activity

classification without the need for an individual training period. Another

significant problem with activity categorization is that labels can change over

time as the data and activity being tracked change, and the actual label is

often expensive and difficult to obtain. The proposed algorithm can actively

learn when to request the actual label, weighing the benefits and costs of doing

so.

Another interesting work, presented by Abhijith Ragav et al. [73], fo-

cuses on health, specifically that psychological stress is increasingly present in

people and early detection is critical to avoid health problems. In this context,

they provided a method to represent model uncertainty in Bayesian neural net-

works through approximations using Monte-Carlo (MC) Dropout. Researchers

process unlabeled data in real time through appropriate ground-truthing (ac-

tive learning) approaches, which help construct affective states (labels) while

simultaneously selecting only the most useful data points to query from an or-

acle. For active learning, this is coupled with appropriate acquisition features.
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Empirical results on a common stress and affective detection dataset (SWELL

[50]), explored on a Raspberry Pi 2, show that the proposed framework pro-

vides significant performance improvement during inference, with significantly

low number of aggregation points acquired across multiple acquisition features.

Variation Ratios achieves an accuracy of 90.38%, equivalent to the maximum

accuracy obtained during training on about 40% less data.

2.4.4 Data Analysis

Another field in which active learning is receiving much attention is com-

puter vision, since preparing a good set of labeled images for vision data anal-

ysis is time-consuming and costly. As an instance selection criterion, most of

the known active learning techniques in computer vision use the uncertainty

metric. Although most uncertainty instance selection algorithms are successful

in many situations, they do not take into account the information present in

a significant number of unlabeled instances and are prone to query outliers.

In this field, Suju Rajan et al. [74] have proposed an active learning

methodology that uses fewer labeled data points than semisupervised algo-

rithms to update current classifiers. In addition, unlike semi-supervised ap-

proaches, this strategy is particularly suitable for learning or adapting classi-

fiers when the spectral signatures of labeled and unlabeled data differ signifi-

cantly. Consequently, this active learning approach is also useful for identify-

ing a set of spatially/temporally related images with different spectral signa-

tures. The semi-supervised active learning strategy was tested on single, spa-

tially/temporally linked hyperspectral datasets. This active learning technique

can be combined with any classifier that establishes the decision boundary by

estimating a posteriori class probabilities. They make use of:

• The a posteriori probability distribution function P (Y |X) to guide our

active learning process;

• Loss function in that they attempt to increase the information gain be-

tween PD
+
L(Y |X) and PDL(Y |X), i.e respectively the a posteriori pdfs
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estimated from DL that is set of random instances and D+
L that is a

subset for which the true target value.

Maximizing the expected information gain between PD
+
L(Y |X) and PDL(Y |X)

is equivalent to selecting the data point x̂ (the instance to select) from DUL

such that the expected KL (Kullback–Leibler) divergence between PD
+
L(Y |X)

and PDL(Y |X) is maximized, by first selecting x̂ ∈ DUL and assuming ŷ to

be its label. Let D+
L = DUL\x̂, DL+ = DL ∪ (x̂, ŷ) and |Dx

UL| be the number

of data points in the set Dx
UL. Estimating via sampling, the proposed KLmax

function can be written as:

KLmax
D+
L

(x̂, ŷ) =
1

D+
UL

∑
x∈D+

UL

KL(P+
DL

(Y |x)||PDL(Y |x)) (2.24)

The KL divergence between the two probability distributions is defined as:

KL(P+
DL

(Y |x)||PDL(Y |x)) =
∑

x∈D+
UL

P+
DL

(Y |x)log(
P+
DL

(Y |x)

PDL(Y |x)
) (2.25)

Interesting is that assigning a wrong class label to ŷ for x̂ can result in a large

value of the corresponding KLmax
D+
L

. Then is used expected KL distance from

P+
DL

(Y |x) and PDL(Y |x) with the expectation estimated over PDL(Y |x), and

then select the x̂ that maximizes tance as:

x̂ = argmax
x̂∈DUL

∑
ŷ∈Y

KLmax
D+
L

(x̂, ŷ)PDL(ŷ|x̂) (2.26)

The effectiveness of this strategy is highly dependent on the accuracy of poste-

rior probability estimates. The high dimensionality of more than 100 features

in hyperspectral data, together with the lack of labeled data, can lead to bi-

ased estimates of the probability distribution parameters. The dimensionality

of the data is reduced by using feature selection/extraction techniques, and

the Expectation Maximization algorithm is used along with the active learn-

ing process to improve the estimates.

Goo Jun et al. [41] proposed an approach for more effective knowledge

transfer using active learning based on Rajan’s previous work, which allows for
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faster learning curves by adjusting the distributions of labeled data differently

for old and new data, so that the classifier can effectively transfer its learned

knowledge from one region to a spatially or temporally separated region whose

spectral signature is different. Since it is not practical to obtain the ground

truth of all areas at multiple times and training a classifier for land cover

characterization based on hyperspectral images usually requires large amounts

of labeled data. Obtaining ground truth class labels of a remote sensing image

is expensive. Assuming that there are two distinct datasets from temporally

or spatially distant regions, which we will denote as areas 1 and 2, respectively.

The KL−max technique treats all samples from area 1 and new samples from

area 2 the same way for ML estimation, although their distributions may be

very different. As a result, since we have only a small percentage of area 2

samples compared to the number of area 1 samples, the expected distribution

is significantly closer to the area 1 distribution. Instead of using cumulative

updates, they create a new distribution of weights for each classifier. The

default technique is to provide lower weights to the misclassified samples in

DL and higher weights to the misclassified samples in DN , the set of newly

obtained labeled samples. This is because more samples in DN resulted in

a more reliable classifier, which reinforces the hypothesis that misclassified

samples in DL are less useful. Consequently, misclassified samples in DL should

be assigned lower weights to obtain more samples in DN . Another observation

is that while highlighting misclassified points in DN initially speeds up the

learning-by-transfer process, it may eventually make the classifier vulnerable

to outliers or overfit. Consequently, once there are enough samples in DN ,

the algorithm should gradually reduce the weights of the misclassified samples

in DN . Weights for sample points in D∗L, having as the current assumption

(xi, yi) ∈ D∗L and h∗ : X → Y , are calculated as (the rules for updating the

weights were determined heuristically):

• if (xi, yi) ∈ DL and h∗(xi) 6= yi, wi = (1 + log|DN |)−1;

• (xi, yi) ∈ DN and h∗(xi) 6= yi, wi = 1 + εN
1−εN

× log[|DN | × (|DL| − |DN |)]
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with (|DN | < |DL|);

• if h∗(xi) = yi, wi = 1.

Where:

• (|DN | < |DL|) is an indicator function,;

• D∗L, that is D∗L = DL ∪DN , is an augmented set of labeled data;

• xi is a data point;

• wi is the weight associated with data point xi;

• εN is the error rate measured on the set DN .

The mean and the covariance of the class-conditional distribution, PDL(x|y)

are estimated using weighted ML.

Xin Li et al.[56] proposed a new adaptive active learning strategy that

combines an information density measure and a maximum uncertainty metric

to identify crucial instances to label for image classification. This work demon-

strated the effectiveness of the proposed approach by applying it to two key

computer vision tasks:

• Object Recognition;

• Scene Recognition.

This combination procedure allows the proposed method to better integrate the

strengths of the two measures in different stages and active learning scenarios.

This method can effectively use the information contained in the unlabeled

data to improve the performance of uncertainty sampling. Tests conducted

on image classification problems have shown that the proposed approach can

significantly reduce the training set required to learn a successful classifier.

The overall active learning algorithm is reported in Algorithm 7:
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Algorithm 7 Adaptive Active Learning Algorithm

Input: Labeled set L, Unlabeled set U , B = [0.1, 0.2, ..., 1]

while not enough instances are queried do

Training a probabilistic classifier θL on L

for i ∈ U do

Compute f(xi) using 2.27

Compute d(xi) using 2.28

hβ(xi) with different β ∈ B via 2.29

end for

Let S = Ø

for β ∈ B do

Select an instance x = argmaxi∈Uhβ(xi)

Put x into set S, S = S ∪ x

end for

Select instance x∗ from S using 2.30

Remove x∗ from the unlabeled set U

Query the true label y∗ of x∗, and update L by adding < x∗, y∗ > into it

end while

For probabilistic classification models, the uncertainty measure is defined as

the conditional entropy of the label variable Y given the candidate instance

xi:

f(xi) = H(Y |xi, θL) = −
∑
y∈Y

P (y|xi, θL)logP (y|xi, θL) (2.27)

The information density definition can be written into the following form:

d(xi) =
1

2
ln

(
σ2
i

σ2
i|Ui

)
(2.28)

where Ui denotes the index set of unlabeled instances after removing i from

U and θ is the conditional covariance. They indeed proposed to combine the

two measures in a general product form of combination framework as below

in order to pick the most informative instance for reducing the generalization
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error of the classification model without the computationally expensive steps

of retraining classification model for each candidate instance):

hβ = (xi)
βd(xi)

1−β (2.29)

where:

• 0 ≤ β ≤ 1 is a tradeoff controlling parameter over the two terms;

• f(xi)
β is an uncertainty term and it is a discriminative measure;

• d(xi)
1−β is the information density term and is computed in the input

space, it has no direct connection with the target discriminative classifi-

cation model.

The expected loss of the candidate instance x can be computed as a weighted

sum of the prediction loss obtained using all possible labels y under the distri-

bution P (y|x, θL). This is the equation used to do the instance selection from

the set S:

x∗ = argmin
x∈S

∑
y∈Y

P (y|x, θL)

(∑
i∈U

(1− P (ŷi|xi, θL+〈x,y〉))

)
(2.30)

where:

• θL+〈x,y〉 denotes the new model parameter after retraining on the aug-

mented set L+ 〈x, y〉;

• ŷi is the predicted label for instance xi.

This work proposed an adaptive active learning strategy for instance selection

that combines a measure of information density with a measure of higher uncer-

tainty adaptively. The proposed method can better incorporate the strengths

of the two measures at different stages and circumstances of active learning

through the adaptive combination procedure. This method can effectively ex-

ploit the information in the unlabeled data to improve the performance of

uncertainty sampling. Researchers have shown that the proposed approach

can reduce the training set required to learn a good classifier.
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2.4.5 Social Networking

The last few decades have seen a huge increase in the popularity and

consequently the use of social networks, which has led to the possibility of

collecting a large amount of data. This information is used for many pur-

poses, from commercial to research. Most studies on social networks make use

of whole-network (sociocentric) or egocentric study designs. Whole-network

studies examine relationships between people or agents that are perceived to

be limited or closed for analytical purposes, even if in reality the network

boundaries are porous and/or ambiguous. When doing whole network re-

search, the goal is to analyze the structural patterns of interaction between

individuals within the network and how these patterns explain specific health

outcomes. When conducting a whole network analysis, the basic assumption

is that individuals who make up a group or social network interact more than

a randomly selected group of comparable size. Given the enormous amount

of data, most often unlabeled, active learning in this area takes on enormous

importance, as it can help retrieve information from social media data.

Mustafa Bilgic et al. [9] proposed an active learning algorithm for net-

work data classification. Training instances are linked together to form a net-

work, labels of connected nodes are associated, and the goal is to exploit these

dependencies and label nodes appropriately. This challenge arises in several

disciplines, including social and biological network research, document catego-

rization and collective classification of network nodes. They have shown how

an active learning system can take advantage of the network structure. To

increase the accuracy of learning from fewer labeled instances, their approach

efficiently exploits the links between instances and the interaction between the

local and collective components of a classifier. Given a graph G = (ν, ε) where

ρ ⊂ ν is the pool of unlabeled examples, a classification model, which will be

used to train CC and C0, a batch size k and a budget B (the maximum num-

ber of iterations). The task is, within the constraints of B, to make a series of

selections of k elements from ρ to be labeled by an oracle, so as to maximize

the accuracy of CC on unseen data, after training it on the labeled exam-
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ples acquired L. Their active learning algorithm for collective classification is

presented below:

Algorithm 8 ALFNET: Active Learning for Networked Data

Input: G = (ν, ε): the network, C0: content-only learner, CC: collective

learner, k: the batch size, B: the budget

Output: ζ: the training set

ζ ← Ø

C ← Cluster the nodes ν of the network F into at least k clusters

Ck ← Pick k clusters from C

for Ci ∈ Ck do

Vj ← Pick an items from Ci

add Vj to ζ

end for

while |ζ| < B do

Retrain C0 and CC

for Ci ∈ C do

score(Ci)← Disagreement(CC,C0, Ci, ζ)

end for

Ck ← Pick k clusters based on the scores

for Ci ∈ Ck do

Vj ← Pick an item from Ci ∩ ρ

Add Vj to ζ

Remove Vj form ρ

end for

end while

where:

• ε: edge set;

• ν: node set.
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They conducted experiments on two real-world collective reference classifica-

tion domains (Cora [63] and CiteSeer [28]) and showed that their system can

produce accurate results even when only a small percentage of labeled data

is available. Their ALFNET agorithm uses the structure of the network in

various ways to choose samples for labeling in an informed way. They demon-

strated how to adapt standard active learning concepts, such as disagreement

and clustering, to a context in which network structure and attribute informa-

tion is available. In addition, they demonstrated how to greatly improve the

basic performance of their active learner by combining dimensionality reduc-

tion with semi-supervised learning. They conducted experimental tests and

were able to show that the use of structure principle using ALFNET offers

significant advantages over other previously implemented approaches.

Yuxiang Ren et al. [76] have studied the network alignment problem in

order to merge online social networks. The goal of network alignment is to

infer a set of anchor links that correspond to the shared entities in different

information networks, which has become a critical step for the effective fusion

of heterogeneous information networks. The researchers present a unique net-

work alignment paradigm, ActiveIter (Active Iterative Alignment), to address

three social network alignment problems that are extremely difficult to manage

for a variety of reasons:

• Lack of training data;

• Network heterogeneity;

• One-to-one constraint.

Existing network alignment efforts often require a large number of training ex-

amples, but such a demand is difficult to meet in applications due to the high

cost of human anchor link labeling. In contrast to prior homogenous network

alignment research, information in online social networks is typically of hetero-

geneous categories, which is difficult to incorporate into model development.

Furthermore, the one-to-one cardinality requirement on anchor connections
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makes their inference process inextricably linked. ActiveIter is a model that

specifies a set of inter-network meta diagrams for anchor link feature extrac-

tion, uses active learning for effective label querying, and employs greedy link

selection for anchor link cardinality filtering. For all the potential anchor links

in set H (H = U (1)×U (2), where U (1) and U (2) denote the user sets in G(1) and

G(2) respectively, Gn is a social network), a set of features is extracted based

on the meta diagrams Ψ. Formally, the feature vector extracted for anchor

link l ∈ H can be represented as vector xl ∈ Rd (parameter d is the feature

size). The label of link l ∈ ζ can be denoted as yl ∈ Y (Y = 0,+1), which

denotes the existence of anchor link l between the networks. For the existing

anchor links in set ζ+, they will be assigned with +1 label; while the labels

of anchor links in U are unknown. All the labeled anchor links in set ζ+ can

be represented as a tuple set (xl, yl)l∈ζ+ . Depending on whether the anchor

link instances are linearly separable or not, the extracted anchor link feature

vectors can be projected to different feature spaces with various kernel func-

tions g : Rd → Rk. For instance, given the feature vector xl ∈ Rd of anchor

link l, can be represented its projected feature vector as g(xl) ∈ Rk. Here

the linear kernel function will be used for simplicity, and therefore they have

g(xl) = xl for all the links l. In the active network alignment model, the dis-

criminative component can effectively differentiate the positive instances from

the non-existing ones, which can be denoted as mapping f(·; θf ) : R → +1, 0

parameterized by θf . They use a linear model to fit the link instances, and the

discriminative model to be learned can be represented as f(xl;w) = wTxl + b

where θf = [w, b]. By adding a dummy feature 1 for all the anchor link feature

vectors, they incorporate bias term b into the weight vector w and the parame-

ter vector can be denoted as θf = w for simplicity. Based on this descriptions,

they introduced the following discriminative loss function on the labeled set

ζ+:

L(f, ζ+;w) =
∑
l∈ζ+

(f(xl;w)− yl)2 =
∑
l∈ζ+

(wTxl − yl)2 (2.31)

They proposed a study of the alignment problem of heterogeneous networks
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based on the active learning setting, technically known as the active alignment

problem of heterogeneous networks (ANNA). ANNA allows models to request

additional labels for unlabeled anchor links in the learning process, subject to

a predefined request budget. To address this challenge, they propose an Ac-

tiveIter active learning model based on meta-diagrams. To represent hetero-

geneous features, meta-diagrams can be retrieved from the network. Initially,

their experiments confirmed the usefulness of feature vectors based on meta-

diagrams. They presented a query approach in the ActiveIter active learning

model selection process to search for optimal unlabeled links. Extensive exper-

iments were conducted on a dataset of real-world aligned networks (Foursquare

and Twitter), and the experimental results demonstrated the usefulness of Ac-

tiveIter; in fact, it requires only a small training set to be built initially and can

outperform other non-active models with a much smaller number of training

instances.

Michael Hopwood et al. [35] proposed a study examining different tactics

for selecting nodes to use as training data, demonstrating which strategy is

better or worse and on what percentages of nodes in the network. Fundamental

network characteristics provide an unsupervised method for determining the

appropriate active learning sampling direction process. Although new methods

for convolutional graph neural networks have introduced new tools for inferring

community labels of nodes, they still require the provision of a labeled dataset,

the obtaining of which can be costly, and measures to reduce the number of

labels needed can both accelerate and reduce costs. Community membership

labels are used for nodes in many online networking platforms, whether online

social networks or academic citation networks, to generalize overlaps based on

shared attributes or affiliations. Two example methods are considered in this

work:

• Descending: training instances are chosen using descending sampling

by gradually acquiring from the most important nodes to the least sig-

nificant ones;
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• Ascending: selects training samples gradually from the least significant

nodes to the most important.

Three different criteria are used to evaluate a node’s importance (centrality)

for sampling orders:

• Degree sampling: a node is acquired for training based on their corre-

sponding number of directly connected neighbours;

• PageRank algorithm [66]: derives a web page (node)’s rank by accu-

mulate its incoming neighbors’ ranks proportionally to their total number

of outgoing connections;

• Resulting ranking: represents the relative importance of pages in the

network.

In this work, they applied PageRank to rank all nodes in their graphs and

then sampled them according to their rankings. Finally, the VoteRank [99]

algorithm iteratively selects a set of important nodes called spreaders using

the voting scores given by neighboring nodes. When a node is chosen as a

spreader, it is excluded from the next voting round and the voting capabilities

of its direct neighbors decrease in the same way. They applied VoteRank to

all nodes in the graph and then sampled them according to their rank. Par-

ticipants in networking platforms, such as social networks, continue to send

more material to these platforms. It is a matter of efficiency whether a subset

of nodes can be sampled to offer information about other nodes with unknown

membership labels. The coefficient of variation of the degree of nodes is the

best indicator of whether nodes should be sampled in terms of ascending or

descending centrality, according to this study conducted on a set of networks

comprising different sources of information. This finding can be intuitively in-

terpreted as related to the sparseness of the network topology. Understanding

the overall degree distribution of communities may indicate whether sampling

should be done in an ascending or descending direction when trying to infer

the labels of network users in an active learning paradigm.
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2.4.6 ECG Signal Analysis

The electrocardiogram (ECG) is a graphic representation of the electrical

activity of the heart; these signals are a great source of information about the

rhythm and function of the heart. As a result, there has been a great deal

of interest in recent years in creating approaches for automatic processing of

ECG signals. Because of its practical advantages for detecting and monitoring

cardiac disorders, automatic categorization of ECG signals has gained much

attention in the biomedical engineering community. This is due to the fact

that cardiovascular disease (CVD) continues to be a leading cause of death

worldwide. Arrhythmia is one of the consequences of CVD. Arrhythmia is

a general term for aberrant electrical activity of the heart, manifested by a

slow, rapid, or irregular heartbeat. Some arrhythmias are not life-threatening,

but others, such as ventricular fibrillation and tachycardia, can lead to stroke,

heart failure, rapid death, and hemodynamic collapse during cardiac arrest.

Edoardo Pasolli et al. [68] introduced three active learning algorithms for

categorizing ECG signals. These learning algorithms choose a few beat samples

(which are manually labeled before being added to the training set) from a

huge amount of unlabeled data after starting with a short and unsatisfactory

training set. The entire approach is repeated until a final training set is created

that is representative of the classification problem under consideration. The

proposed methods are based on support vector machine classification and the

following principles:

• Margin Sampling: based on SVM, this is an active learning algorithm

for classification problems. In the case of a simple binary case with lin-

early separable classes, the SVs are the samples of the training set L that

are closest to the hyperplane that specifies the decision boundary of the

SVM classifier. Given the unlabeled learning set U , it is reasonable to

assume that the samples closest to the decision boundary are the most

interesting, as they have a higher probability of becoming SVs in the new

learning set. Consequently, according to MS, the samples to be chosen
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are those with the lowest absolute values of the discriminant function.

In the case of nonlinearly separable classes, the same logic is used. The

assumptions used in the binary instance can also be applied to a mul-

ticlass classification problem. The largest value among the discriminant

functions provided by the binary T classifiers is used as the indicator for

each sample. Samples with the lowest values of the indicator are then

chosen, labeled by hand, and added to the training set:

Algorithm 9 MS method

Input: Consider the initial training set L, composed of n labeled samples

of T different classes, the learning set U , composed of m(m� n) unlabeled

samples, Ns the number of samples to add at every iteration of the active

learning process

while the predefined convergence condition is not satisfied do

Train a SVM classifier with the training set L, while estimating its free

parameters by crossvalidation (CV)

for uj ∈ U with j = 1, 2, ...,m do

Calculate the discriminant function values fj for each binary SVM

classifier

Count the number of votes of each class vj

Identify the class ωMAX,j with the maximum number of votes vMAX,j

Let fMIN,j be the minimum absolute value of the discriminative func-

tion associated with ωMAX,j

end for

Select and label the Ns samples exhibiting the minimum values of vMAX,j

Add the Ns selected samples to the training set L and remove them from

U

end while

• Posterior Probability: another active learning technique is to esti-

mate the posterior probability distribution of the classes pk = P (y =

ck|u)(k = 1, 2, ..., T ). The posterior probability of each class is deter-
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mined for each sample of the learning set U after the classifier has been

trained using the training samples. In the case of binary classification,

the optimal samples to choose are those with posterior probabilities close

to 0.5, because they have the least uncertainty of choice. In multiclass

problems, a more complex selection rule must be used. [77] provides a

solution in which the samples with the greatest Kullback-Leibler diver-

gence are chosen and added to the training set. This type of selection

method can be applied to any classifier that produces a posterior prob-

ability estimate. SVM is not a probabilistic classification approach, so

it does not directly produce probabilistic quantities as output. However,

some strategies for extracting posterior probability estimates from the

discriminant function values provided by SVM have been presented in

the literature; the algorithm is discussed in detail below:

Algorithm 10 Posterior Probability method

Input: Consider the initial training set L, composed of n labeled samples

of T different classes, the learning set U , composed of m(m� n) unlabeled

samples, Ns the number of samples to add at every iteration of the active

learning process

while the predefined convergence condition is not satisfied do

Train a SVM classifier with the training set L, while estimating its free

parameters by CV

Classify the learning set U and calculate for each sample uj(j =

1, 2, ...,m) the posterior probability of each class pk, j(k = 1, 2, ..., T )

For each sample uj, calculate the entropy H(uj) associated with the

estimated posterior probabilities

Select and label the Ns samples characterized by the maximum values of

entropy H(uj)

Add the Ns selected samples to the training set L and remove them from

U

end while
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Here below there is the value of entropy H(uj):

H(Uj) =
T∑
k=1

−pk,jlog(pk,j) (2.32)

where pk,j is the posterior probability of ωk given sample uj;

• Query by Committee: this method, which uses the Query by Com-

mittee approach, selects learning samples to be added to the training set.

Specifically, the samples with the greatest disagreement among different

classifiers are chosen. This approach is proposed to solve the difficul-

ties of multiclass active learning. Let s be a positive integer greater

than one, which determines the feature sampling factor. We created

s training subsets L1, L2, ..., Ls from the initial training set L, where

Lg(g = 1, 2, ..., s) contains only the features f(f = 1, 2, ..., d) that satisfy

the constraint (f1)module(s) = g − 1. The number of samples in each

subset is the same as the original number of samples, but with a factor

s fewer features. Similarly, from the original learning set U , s learning

subsets U1, U2, ..., Us are formed. At this point, each learning subset is

considered individually and used to train an ensemble of c parallel SVM

classifiers, with each classifier using a different kernel function to inject

some diversity into the ensemble. As a result, a total of c parallel classi-

fiers are applied. The learning samples are categorized after the training

phase to estimate their labels. Specifically, estimates of cs are obtained

for each sample. The algorithm is explained in detail below:



CHAPTER 2. ACTIVE LEARNING 74

Algorithm 11 Query by Committee method

Input: Consider the initial training set L, composed of n labeled samples

of T different classes, the learning set U , composed of m unlabeled samples,

s the feature sampling factor

Construct the training subsets Lg(g = 1, 2, ..., s)

Construct the learning subsets Ug(g = 1, 2, ..., s)

Set the number of classifiers c to use in the ensemble for each training subset

Set Ns the number of samples to add at every iteration of the active learning

process

while the predefined convergence condition is not satisfied do

Train c · s SVM classifier with the training subsets Lg(g = 1, 2, ..., s),

while estimating their free parameters by CV

Classify the learning subsets Ug(g = 1, 2, ..., s) and calculate for each

sample uj(j = 1, 2, ...,m) the number of occurrences of each class

For each sample uj, calculate the entropy H(uj) associated with the

occurrences of the estimated class labels

Select and label the Ns samples characterized by the maximum values of

entropy H(uj)

Add the Ns selected samples to the training set L and remove them from

U

end while

Here below there is the value of entropy H(uj):

H(Uj) =
T∑
k=1

−rfk,jlog(rfk,j) (2.33)

where rfk,j is the relative frequency of class ωk for sample uj.

To demonstrate their performance, they conducted experimental research us-

ing both simulated data and real ECG signals from the MIT-BIH arrhyth-

mia database. Overall, the results suggest that the presented strategies have
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promising potential for selecting meaningful samples for the classification pro-

cess to improve classification accuracy by reducing the number of labeled sam-

ples involved. Starting from a short, suboptimal training set, the techniques

aim to select the most meaningful samples for the classification process from

a large set of unlabeled data. Experimental results acquired on simulated and

real ECG data suggest that the proposed approaches are capable of selecting

relevant samples. In general, all proposed strategies outperform a purely ran-

dom selection strategy in terms of accuracy and stability. In the comparison,

the technique based on the MS principle seems to be the best because it quickly

selects the most informative samples. Another interesting result is that active

learning approaches can achieve slightly higher accuracies than the ”full” clas-

sifier, demonstrating their usefulness in reducing the risks of mislabeling.

To classify ECG signals, Yufa Xia et al. [96] proposed an autonomous

method based on convolutional neural network and active learning. In active

learning, breaking-ties (BT) and modified BT algorithms are used to increase

the performance of the model. Using the Association for the Advancement of

Medical Instrumentation standard, they classified ECG signals into five types

of heartbeats, as recommended by AAMI standards:

• normal (N): a normal beat or a bundle branch block beat;

• ventricular (V): a ventricular ectopic beat;

• supraventricular (S): a supraventricular ectopic beat;

• fusion of normal and ventricular (F): a fusion of a ventricular ectopic

beat and a normal beat;

• unknown heartbeats (Q): a paced beat, a fusion of a paced and a 140

normal beat or a beat cannot be classified.

They acquire ECG signals by the wearable ECG device, they preprocessed

them before the use; this preprocessing includes:

• de-noising;
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• filtering;

• R-peak detection.

After that, ECG morphology and RR intervals are used as the ECG vectors,

then these are divided into training set and test set. Then ECG training set

and test set are sent to the classifier model. The training set consists of two

parts:

• the initial training set;

• the active learning training set.

The classifier model contains two phases:

• learns appropriate feature representation of ECG signals using 1 − D

CNN and classifies the ECG signals by a softmax regression in which the

active learning training set is empty;

• fine-tunes the classifier model by active learning.

Firstly, they train 1 − D CNN using initial training set, this is utilized to

extract the ECG feature values in an end-to-end way, and softmax regression

is added in the end layer of CNN to identify ECG heartbeat types. The entire

CNN is fine-tuned by minimizing the following cost function:

J(θDNN) = − 1

n

n∑
i=1

K∑
k=1

1(Yi = k)log

(
exp(hθCNN (xi))∑K
k=1 ext(hθCNN (xi))

)
+
γ

2

(
||Wsoftmax||2f +

H∑
l=1

||Wl||2f

)
(2.34)

where:

• the first term represents the cross entropy loss of the softmax layer;

• the second term denotes the weight decay penalty;

• hθCNN (xi) is the output of last fully connected layer in the CNN for an

input xi.
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After training the classifier model, it is tested by the initial test set. The active

learning phase is used to improve the performance of the classifier. During the

active learning phase, the test set samples are divided into informative set

and new test set. An expert labels the information set samples. The labeled

information set is also included in the active learning training set. The new

training set consists of the active learning training set and the initial training

set. The classifier model is then retrained using the new training data. The

new test set is used to test the classifier model. The active learning phase is a

continuous process. To select the most informative ECG beats from the test

set, the following algorithms are used:

• BT algorithm [59]: the target of this algorithm is to improve the value

of P (a)−P (b) amounts to breaking the tie between P (a) and P (b), here

below in detail the algorithm:
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Algorithm 12 BT algorithm

Input: LS initial training set, US an unclassified set of images

while stop rule do

build SVM using LS

PA← []

PB ← []

for uj ∈ US do

Compute the PO (probabilistic outputs) of the classification results

Compute the a the class with highest probability

Compute the b the second class with highest probability

PA← P (a) + PA

PB ← P (b) + PB

end for

for imagej ∈ US do

if imagej has the smallest difference in probabilities (P (a) − P (b))

(for the two highest probability classes) then

Remove the image(s) from the US

Obtain the correct label from human experts and add the labeled

image(s) to the current training set

end if

end for

end while

• MBT algorithm [55]: this is a variation the the previous algorithm, in

detail:

Algorithm 13 MBT algorithm

while stop rule do

s = next class

select SUs

x̂MBT
i = argmax

xi,i∈SUs ,k∈ζ\s
p(yi) = k|xi, ω̂)

end while
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where:

ζ: is a set of K labels;

S: is the set of index for the n pixels of a hyperspectral images;

ζn: is a set of images;

y = (y1, ..., yn) ∈ ζn: be an image of labels;

K: is a set of labels;

k: is a label;

x = (x1, ..., xn) ∈ Rd×n: is an image of d-dimensional feature vectors;

ω: is the logistic regressors.

Then the most informative samples are selected and form the information set.

The performance of this method performed well in the MIT-BIH arrhythmia

database and also in the WDDB database. This implies that the presented

ECG classification method can effectively classify ECG signals.

The main obstacles to automatic detection of arrhythmias by electrocar-

diogram (ECG) are the large variations among individuals and the high cost

of labeling clinical ECG recordings. GuijinWang et al. [95] proposed Global

Recurrent Neural Network (GRNN) as a comprehensive and updatable classi-

fication scheme to build a system with an autonomous feature learning scheme

and an effective optimization mechanism. This study illustrates the feasibility

of a global and updatable ECG beat classification system in practical applica-

tions. Based on morphological and temporal information, a recurrent neural

network (RNN) is used to study the underlying properties of ECG beats. Ac-

tive learning is used to identify the most informative beats and include them

in the training set to improve system performance when new samples are col-

lected. As the training set develops, the system is updated. This technique

has three innovations:

• GRNN has an high capacity and fitting ability, it can categorize samples

from several patients with a single model;
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• when training and test samples are from different databases, the GRNN

increases generalization performance, this can be characterized as the

optimization mechanism finding the most informative samples to use as

training data;

• RNN learns the fundamental differences between samples from different

classes automatically.

This technique is known as GRNN since a single RNN is created for all pa-

tients. RNN is supplied a morphological vector and a Premature-or-Escape-

Flag (PEF) to automatically learn underlying features. The PEF is offered as

an innovative representation of temporal information to provide a likelihood

of whether the sample is a premature-or-escape beat. A sample is defined as

the morphological and PEF vectors from a single beat. The training dataset

is divided into two parts:

• initial training set: this is applied a density-based clustering algorithm

to group the samples in an unsupervised way, to generate it, samples are

drawn at random from each group;

• active training set: this is initially empty.

The initial training set and the empty active training set are used to train a

model. When a new record is introduced into the system, all samples are added

to the test set in the first iteration. Active learning is used in each iteration to

select the most informative samples in the current test set. In the current iter-

ation, the selected samples are added to the active training set and the model

is optimized on the expanded training set. The other samples in the current

test set will be used to build the test set in the next iteration. The iteration

for each record ends when the stop condition is met. All beats were classified

into five categories, as recommended by the AAMI standards as in previous

work. However, class Q was discarded because it is only minimally represented

in the available databases. GRNN achieves excellent performance by using a

single model for all patients, which increases the usability of the system. The
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proposed optimization mechanism increases the performance and stability of

the system as a whole. The visualization of features trained by GRNN shows

that the model has learned the main underlying features from various classes.

Further testing on LTSTDB-I [39] (This is a database containing 86 extended

ECG recordings of 80 human participants chosen to show a variety of occur-

rences of ST-segment alterations, such as ST episodes of ischemia, non-ischemic

axis-related ST episodes, episodes of delayed ST-level drift, and episodes com-

prising a combination of these phenomena. The database was designed to

contribute to the creation and testing of algorithms that can distinguish be-

tween ischemic and nonischemic ST events, as well as to basic research on the

mechanics and dynamics of myocardial ischemia, confirming the high perfor-

mance of the proposed system. This research shows how a globally upgradable

ECG beat classification system can be used in practical applications. Label-

ing efforts on clinical data could be widely used to iteratively improve the

performance of the system.

2.5 New frontiers

This section explains a very interesting field of active learning, how it can

be combined with other fields of AI (artificial intelligence) or with computer

science more generally. Remarkably, it can give a huge improvement to the

field in which it is applied. The following are some areas, with related work,

in which it is applied.

2.5.1 NLP

One of the areas where active learning is most widely used is natural

language processing (NLP), because many applications in this area require a

lot of labeled data and the cost of this data is very high. In fact, there are

few NLP datasets available for free, so the use of active learning can greatly

reduce both the amount of labeled data needed and the experts required to

label it accurately.
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Ein-Dor et al. [23] proposed a large-scale empirical study on active learn-

ing techniques for BERT-based classification [18], covering a wide range of AL

strategies and datasets. They focused on practical circumstances of binary text

classification where annotation budget is limited and data are often partial.

Their results show that AL can improve the performance of BERT, particularly

in the more realistic scenario where the initial collection of labeled examples

is generated through keyword-based queries, resulting in a biased sample of

the minority class. First, BERT (Bidirectional Encoder Representations from

Transformers) is a linguistic representation model. Unlike current linguistic

representation models, BERT intends to pre-train deep bidirectional represen-

tations from unlabeled text, conditioning on both left and right context in all

layers. As a result, the pre-trained BERT model can be refined with only one

more output layer to produce models for a wide range of tasks, such as question

answering and linguistic inference, without requiring significant changes to the

task-specific architecture. BERT is conceptually and empirically simple. It

has achieved tremendous results in eleven natural language processing tasks,

including:

• GLUE score to 80.5% (7.7% point absolute improvement);

• MultiNLI accuracy to 86.7% (4.6% absolute improvement);

• SQuAD v1.1 question answering Test F1 to 93.2% (1.5 point absolute

improvement);

• SQuAD v2.0 Test F1 to 83.1% (5.1 point absolute improvement).

This effort yielded 2,520 fine-tuning experiments (14 dataset-scenario combi-

nations 5 initial seeds (1 basic model + (7 selection techniques 5 repetitions)).

BERTBASE (110M parameters) was trained for 5 epochs in each fine-tuning

run, with a learning rate of 5 × 10−5, and the best model kept based on its

performance on the dev set. In reality, dev sets may not be available, espe-

cially if the annotation budget is low. They found that ignoring dev data and

establishing a constant number of epochs yields qualitatively identical, though
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noisier, results. The experiments revealed that increasing the batch size has a

significant effect on the stability of BERT results. However, due to the mem-

ory limitations of the GPU, increasing the batch size reduces the maximum

sequence length. They found that limiting the batch size to 50 and the max-

imum sequence length to 100 tokens (after WordPiece tokenization) gives the

best results. Their results show the potential of AL in addition to BERT,

particularly in the latter case. In particular, a seed of training data gener-

ated by a simple query should capture only a few, perhaps obvious, features of

the class to be evaluated. Research shows that the baseline BERT model has

poor prediction performance, mainly due to low recall values. Although the

random AL baseline is limited in its ability to help BERT emerge from this in-

adequate initial model, AL techniques prove to be extremely beneficial. Using

the AL pipeline, BERT significantly improves its recall, generalizing beyond

the limited data set to which it was initially exposed.

In this work, Liu et al. [57] proposed an Active Learning with DivErse

Interpretations (ALDEN) approach, motivated by the piece-wise linear inter-

pretability of DNNs. ALDEN detects regions of linearly separable samples

using local interpretations of DNNs. It then selects samples based on the va-

riety of local interpretations and queries their labels. To solve the challenge of

text categorization, they chose the term with the most interpretations to sym-

bolize the whole sentence. As for active learning for text categorization, for a

word in a specific sample used in a deep text classifier, its local interpretation

can be calculated using the word ei,j embedding of the word xi,j as follows:

Ii,j =
∂ŷi
∂ei,j

eTi,j + b (2.35)

where ŷi is the prediction of sample xi. Consider that because to the com-

plicated nonlinear feature interactions predicted by deep models, local inter-

pretations (i.e. the contribution to model predictions) of the same word may

differ across samples. It is now important to select samples with distinct lo-

cal interpretations to maximize linear classifiers in different linearly separable

regions. Meanwhile, since the different interpretations correspond to distinct
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choice regions in the deep model, the samples with the most diverse interpreta-

tions can provide the most in-depth information for learning different decision

logics in the deep model. Since the different samples contain varying numbers

of words, it is necessary to begin the work of text classification by analyzing

the local interpretations of the words in each sample. To this end, one looks

for the most similar embedding of the word present in the samples labeled as

close, which is expressed as:

N(ζ, xi,j) = argmin
xm∈ζ1≤w≤|xm|

||ei,j − em,w|| (2.36)

The interpretation diversity of a word xi,j compared to the same word appeared

in labeled samples can be calculated as follows:

D(ζ, xi,j) = min
xm∈ζ1≤w≤|xm|

||Ii,j − Im,w|| (2.37)

Given that sentences contain varying quantities of words, it is impossible to

use the local interpretations of all words in a sample directly. As a result,

they implemented a pooling technique for active learning. Considering that in

EGL-Word [100], the word with the highest EGL represents the entire phrase.

In accordance with EGL-Word, the term is employed with the most diversified

interpretation to reflect the entire sample for active learning. Formally, for a

sample xi ∈ U :

D(ζ, xi,j) = max
1≤j≤|xi|

D(ζ, xi,j) (2.38)

Now can be chosen the unlabeled sample with the most diversified interpreta-

tion for labeling based on the metric derived using Equation 2.38:

x = argmax
xi∈U

D(ζ, xi) (2.39)

While there is a budget of K in each iteration, the above process is repeated for

K times to select and label K samples. The below algorithm 14 summarizes

the training procedure of the ALDEN approach:
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Algorithm 14 The ALDEN approach

Input: Labeled set ζ, Unlabeled set U , budget K in each iteration and the

number od iterations N

for n = 1, 2, ..., N do

for xi ∈ ζ ∪ U do

Calculate prediction ŷ = f(xi|θn−1)

for 1 ≤ j ≤ |xi| do

Calculate the local interpretation Ii,j using 2.35

end for

end for

for k = 1, 2, ..., K do

for xi ∈ U do

for 1 ≤ j ≤ |xi| do

Find the neighbor N(ζ, xi,j) of word xi,j using 2.36

Compute the diversity D(ζ, xi,j) of local interpretations of xi,j

using 2.37

end for

Compute the diversity D(ζ, xi) of local interpretations of xi using

2.37

end for

Select and label the sample x having the most diverse local interpre-

tations

ζ = ζ ∪ {x}

U = U \ x

end for

Train a new model f(x|θn) in ζ

end for

return The final model f(x|θn)

They applied linearly separable sample sections to the challenge of deep active

learning, inspired by the local interpretability of DNNs. They proposed the
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ALDEN approach for text classification, which selects and labels samples based

on multiple interpretations of an unlabeled sample. They measured sample

variety by using multiple interpretations of words in a sample. The ALDEN

technique, according to experimental results, achieves excellent results on two

datasets for text classification, using CNN and BiLSTM as classifiers.

Another interesting work in this field was proposed by Qian et al. [71]

who proposed a bilingual active learning paradigm for relation classification,

in which unlabeled instances are first jointly selected based on their prediction

uncertainty scores in two languages and then manually labeled by an oracle.

Instead of using a parallel corpus, instances in one language are translated into

instances in the other language, and all instances in both languages are then

entered into a bilingual active learning engine as mock parallel corpora. The

results of the experiments conducted using the Chinese and English ACE DRC

2005 corpora reveal that bilingual active learning beats monolingual active

learning in relation classification. The idea behind the BAL paradigm is that

while unlabeled uncertain instances in one language are informative for the

learner of that language, unlabeled uncertain instances in both languages are

informative for learners of both languages, potentially improving classification

performance for both languages more than their individual active learners.

This concept is expressed in the BAL algorithm 15, where n represents the

batch size, i.e., the number of instances selected, labeled, and incremented at

each iteration.
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Algorithm 15 Bilingual Active Learning

Input:

- Lc and Uc labeled and unlabeled instances in Chinese, Let and Uet their

respective translation counterparts in English

- Le and Ue labeled and unlabeled instances in English, Lct and Uct their

respective translation counterparts in Chinese

- n, batch size

Initialize:

Add instances Lct to Lc

Add instances Let to Le

while certain number of instances are labeled or performance is reached do

Learn the Chinese classifier SVMc form Lc

Use SVMc to classify instances in Uc and Uct

Learn the Chinese classifier SVMe form Le

Use SVMe to classify instances in Ue and Uet

Choose the n least confidently jointly predicted instances pairs {Ec|Eet}

from {Uc|Uet}, and have them labeled by an oracle

Choose the n least confidently jointly predicted instances pairs {Ee|Ect}

from {Ue|Uct}, and have them labeled by an oracle

Remove Ec from Uc and Ee from Ue

Add instances Ec ∪ Ect to Lc with their manual labels

Add instances Ee ∪ Eet to Le with their manual labels

end while

return SVMc and SVMe

The important element of this approach is the selection and labeling of unla-

beled instances from Uc and Ue. When estimating the prediction uncertainty

for an unlabeled instance in Uc, is examined not only its Hc uncertainty mea-

sure predicted by SVMc, but also the Het uncertainty measure predicted by

SVMe for its translation counterpart in Uet. In general, there are three ways to

compute the averages of these two measures when they are considered together:
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• arithmetic mean;

• geometric mean;

• harmonic mean.

Preliminary experiments suggest that there is no clear winner among these

three averages, so only the geometric mean defined as follows is used:

Hg =
√
Hc ×Het (2.40)

Since they used the LC measure as the uncertainty score, when an instance in

Uc cannot identify its translation equivalent in Uet due to a translation error

or entity alignment failure, Het is set to 1, the maximum. Since the larger H,

the safer the prediction, the less likely the instance choice, unlabeled examples

without translation counterparts are avoided. Accordingly, this study proposes

a bilingual active learning paradigm for classifying Chinese-English relations.

Given a small number of labeled connection instances and a large number of

unlabeled relation instances in both languages, parallel pseudo-corpora were

created that translated both labeled and unlabeled examples in one language

to the other. After entity alignment, these labeled and unlabeled instances

were loaded into a bilingual active learning engine. Experiments conducted on

the ACE DRC 2005 corpora in Chinese and English with the goal of catego-

rizing relations reveal that bilingual active learning outperforms monolingual

active learning in both Chinese and English. Furthermore, it is shown that

BAL spanning two languages can compete with monolingual AL when the an-

notation scale is limited, even if the total number of labeled instances remains

constant.

2.5.2 GAN

Work is also being done on implementing generative adversarial networks

(GANs) [29] in the context of active learning. A GAN is a class of machine

learning methods in which two neural networks are trained competitively in the
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context of a zero-sum game. This type of structure allows the neural network

to learn to generate new data with the same distribution as those used in the

training phase. For example, it is possible to obtain a neural network that

can generate hyperrealistic human faces, as demonstrated in 2018 by NVIDIA

[46]. GANs consist of two components:

• G: the generator, that is a generative model, its purpose of the generative

model is to produce new data;

• D: the discriminator, that is a discriminative model, its purpose is to

learn how to distinguish real data from artificially generated ones.

Specifically, given a latent space z, having an a priori distribution Pz(z), the

generator represents a differentiable function G(z; θg) that produces the new

data according to some distribution pg, where θg are the parameters of the gen-

erative model. The discriminator represents a differentiable function D(x; θd),

where θd are the parameters of the discriminative model, which gives the prob-

ability that x comes from the training data distribution pdata. The goal is to

obtain a generator that is a good estimator of pdata. When this happens, the

discriminator is “fooled” and can no longer distinguish pdata samples from pg

samples. The way to achieve this is through competitive training. The discrim-

inative network is trained to maximize the probability of correctly classifying

the training data samples and the generated samples. At the same time, the

generative network is trained by minimizing:

log(1−D(G(z)) (2.41)

and maximizing the probability of the discriminator to consider the samples

produced by the generative network, that is x ∼ pg, as coming from pdata.

Learning therefore consists in optimizing a two-player minimax game (G and

D):

min
G

max
D

Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1−D(G(z)))]] (2.42)
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which has a global optimum for pg = pdata. The two networks are alternately

trained by error back-propagation, keeping the parameters of the generative

model unchanged during discriminator training and, vice versa, keeping the

parameters of the discriminative network unchanged during generator training.

Jia-Jie Zhu et al. [102] proposed a new active learning approach by

query synthesis using GAN; unlike normal active learning, the resulting algo-

rithm adaptively synthesizes training instances for querying in order to increase

learning speed. They generate queries according to the uncertainty principle,

but their idea can work with other active learning principles; in some set-

tings, this work outperforms traditional pool-based approaches. Their active

learning approach, called Generative Adversarial Active Learning (GAAL),

combines query synthesis with the uncertainty sampling principle. Using the

uncertainty sampling principle, the intuition of the approach is to generate

instances about which the current learner is uncertain. One option for the loss

function is based on the uncertainty sampling principle. The distance (proxy)

to the decision boundary in the case of a classifier with the decision function

f(x) = Wφ(x) + b is |Wφ(x) + b|. Formulate the synthesis of active learning

as the following optimization problem, given a trained generating function G:

min
z
||W Tφ(G(z)) + b|| (2.43)

where:

• z is the latent variable;

• G is obtained by the GAN algorithm.

By minimizing the loss, the generated samples will move closer to the decision

boundary. With respect to pool-based active learning, the intuition is that it

can generate more informative instances than those in the existing pool. After

being labeled, the (s) solution of this optimization problem, G(z), is used as

the new training data for the next iteration. Its algorithm 16 is presented

below:
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Algorithm 16 GAAL

Train generator G on all unlabeled data by solving 2.42

Initialize labeled training dataset S by randomly picking a small fraction of

the data to label

while labeling budget is reached do

Solve optimization problem 2.43 according to the current learner by de-

scending the gradient 2.44

Use the solution z1, z2, ... and G to generate instances for querying

Label G(z1), G(z2), ... by human oracles

Add labeled data to the training dataset S and re-train the learner,

update W , b

end while

with the following descending the gradient:

5z||W Tφ(G(z)) + b|| (2.44)

A state-of-the-art classifier, such as convolutional neural networks, can be used.

For this purpose, the feature map in the equation 2.43 can be replaced with a

feed-forward function of a convolutional neural network. In this case, the linear

SVM will be the output layer of the network. In step 4 of the algorithm 16,

a different active learning criterion can be used. The authors emphasize that

their contribution is a general framework rather than a specific criterion. The

optimization problem is nonconvex, with many potential local minima. The

goal is usually to find good local minima rather than the global minimum. To

solve this problem, they used a gradient descent algorithm with momentum.

They also restart the gradient descent to find other solutions regularly. Back-

propagation is used to compute the gradient of D and G. This technique has

shown promising results; in fact, it always succeeds in synthesizing points close

to the boundary. This can lead to the generation of similar samples, reducing

efficiency.

Nielsen et al. [65] proposed a GAN data augmentation method for image
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classification that uses the prediction uncertainty of the classification network

to determine the best GAN samples to add to the training set. To evaluate

the uncertainty of the samples, the acquisition function framework, originally

developed for active learning, was used. When training deep neural networks

for supervised learning tasks, data augmentation is often used to increase the

effective size of the training set. This technique is particularly useful when

the size of the training set is small. For the experimental work, three different

GAN models with increasing capacity were used:

• Small-DCGAN and Large-DCGAN: [72] that stands for Deep Con-

volutional GANs is set of constraints on the architectural topology of

Convolutional GANs that make them stable to train in most settings;

• PGGAN: [45] this is a brand-new training method for generative ad-

versarial networks. The key idea is to gradually increase the resolution

of both the generator and the discriminator. Starting with a low resolu-

tion, they add new layers that model increasingly fine details as training

progresses. This both accelerates and stabilizes the training, allowing for

high-quality images to be produced.

The convolutional neural network (CNN) architecture of the classifier model

was a simple five-layer network. They started the N iteration step with the

currently trained classifier network and the training set. To complete the

iteration step of a training cycle, samples from the data source are used to

compute posterior estimates of the classifier network using the dropout MC

[26] this is a theoretical framework that projects dropout training in deep

neural networks (NNs) as an approximate Bayesian inference in deep Gaussian

processes; as a direct result, a tool for modeling uncertainty with dropout NNs

is provided by extracting information from previously discarded models; the

problem of uncertainty representation in deep learning is mitigated without

sacrificing computational complexity or test accuracy. Next, an acquisition

function is used to process the posterior estimates and assign a score to each

image sample. The samples with the highest scores are added to the training
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set for the N + 1 iteration step and used to train the resulting classifier. This

process is repeated until the desired convergence or number of iterations is

reached. The network of classifiers is initialized with random parameter values

in the base case where N = 0. Two acquisition functions were used:

• Random sampling simply involves selecting random images from the data

source to become part of the training set for the next iteration;

• BALD acquisition involves computing the score described in the following

equation:

U(x) = H

[
1

N

N∑
n=1

P [(y|x, ωn)

]
− 1

N

N∑
n=1

H[(y|x, ωn)] (2.45)

where:

N is the number of MC samples;

ωn are the parameters of the network sampled for the nth MC dropout

sample;

x is an input data;

y is an output data;

P is the discriminative distribution.

Random sampling consists of simply selecting random images from the data

source to be included in the training set for the next iteration. After the scores

are calculated, the images with the highest scores are sampled and added to

the training set for the next iteration. The algorithm is shown below:
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Algorithm 17 GAN data augmentation using Bayesian acquisition

Input: Labelled dataset Draw, Number of samples to append each iteration

Niter

Train GAN using Draw

Generate sample set Dgenerated from GAN

From augmented dataset Daugmented ← {Draw, Dgenerated}

Set Dtraining ← {}

Initialize CNN patameters

for number of CNN training iterations do

for xn ∈ Daugmented do

Compute predicted CNN probabilities φ using MC-Dropout

Evaluate acquisition function U(φ)

end for

Append the samples xn with the Niter largest acquisition scores to

Dtraining

Retrain CNN using Dtraining

Evaluate CNN balanced accuracy using test set

end for

Training a classification network with an integrated dataset from synthetic

samples of GANs can improve the overall performance of the classifier. In addi-

tion, the acquisition function sampling mechanism has been shown to improve

classifier performance, particularly for GANs with lower capacity. The results

presented in this paper demonstrate that enhancing GANs with Bayesian un-

certainty analysis is beneficial for image classification.

Mayer et al. [61] have proposed ASAL, a GAN-based AL method ap-

plicable to multiclass problems, as a new GAN-based active learning method

that generates high-entropy samples. Instead of annotating synthetic samples

directly, ASAL searches the pool for similar samples and includes them in

training. As a result, the quality of new samples is high and annotations are

reliable. The advantage of ASAL over traditional uncertainty sampling is its

low execution complexity, which is sub-linear compared to linear. Using GANs
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for fast pool-based active learning, this technique generates samples and re-

trieves similar real-world samples from the pool, which are labeled and added

to the training set. Such a GAN can approximate the distribution of the pool

data. The discriminator D ensures that the samples generated by the gener-

ator G are identical to the real-world samples. When the generator reaches

convergence, it generates the function G : Rn → X, which maps the latent

space variable z ∼ N(0n, In) to the domain of the image X. The optimization

problem describing the sample generation is as follows:

maximize (H ◦ hθk)(x)

subject to x = G(z)
(2.46)

where:

• H(q) := −
∑m

i=1 P (c = i|q)log[P (c = i|q)] with m the number of the

categories;

• h is the classifier;

• θk are the weights at active learning cycle k;

• x is a sample.

Removing the constraint x ∈ P by including the generator simplifies the prob-

lem, but the solution is altered. New samples are no longer selected from the

pool but are created artificially. They solved the optimization problem in two

steps:

• minimizing the objective with respect to z using the chain rule and gra-

dient descent;

• recovering a synthetic sample x from z using G.

Since it is independent of the pool size, the solution of the problem 2.46 has a

constant execution complexity of O(1). Since it requires scanning each sample

in the pool P , traditional uncertainty sampling has a linear complexity of O(n)

(where n = |P— is the pool size). The algorithm is explained in detail below:
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Algorithm 18 ASAL

Input: Initialize the set X, Y by adding random pool samples to X0 and

their labels to Y 0. Train the generator G and the feature extractor F .

Precompute the PCA, π and the set S = FPCA(x)|x ∈ X.

while Labelling budget is exhausted do

Train classifier hθk to minimize empirical risk R(hθk) =

1
|xk|
∑

(x,y)∈(Xk,Y k) l(hθk(x), y)

Generate synthetic samples x̂ with high entropy by solving 2.46

Compute the feature representations x̂ of the generated samples: f̂ =

FPCA(x̂)

Retrieve real samples x that match x̂ x = pi ∈ P |i = argmin
f∈S

d(f, f̂)

Annotate the samples x with labels y

Update the sets Xk+1 = Xk ∪ x, Y k+1 = Y k ∪ y

end while

Return: Trained Classifier hθk

Failure case analysis revealed that the success of ASAL depends on the struc-

ture and size of the dataset, as well as the quality of the images and matches

generated. ASAL is most effective when applied to large datasets. In this

case, the sub-linear execution time quickly compensates for any preprocessing.

ASAL is appropriate for interactive AL, where preprocessing is acceptable but

sampling times are short.

2.5.3 Reinforcement Learning

Reinforcement learning (RL) is a machine learning technique that aims

to create autonomous agents capable of choosing actions to achieve certain

goals through interaction with their environment. It is one of the three main

paradigms of machine learning, along with supervised and unsupervised learn-

ing. Unlike the other two, this paradigm deals with sequential decision prob-

lems, in which the action to be taken depends on the current state of the system

and determines its future. The quality of an action is given by a numerical ”re-
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ward” value, inspired by the concept of reinforcement, which aims to encourage

the agent’s correct behavior. This type of learning is usually modeled through

Markov decision processes (this is a random process in which the transition

probability that determines the transition to a state of the system depends

only on the immediately preceding state of the system “Markov property” and

not on how this state was reached) and can be achieved with different types of

algorithms, which can be classified according to the use of a model describing

the environment, the methods of collecting experience, the type of represen-

tation. of the states of the system and the actions to be performed (discrete

or continuous). Inputs to the system can come from a wide variety of sensors.

For example, in the case of a robot that needs to learn how to move within

a path, inputs can come from proximity sensors that must then be remapped

into appropriate states. The state value function is one that associates a value

relative to the degree of goodness of the situation with each state identified by

the system and determined from the inputs. It is generally expressed in the

following form:

V : S → R (2.47)

The action value function is one that associates a value relative to the degree

of goodness of combination with each pair consisting of state and action. It is

generally expressed in the form:

Q : S × A→ R (2.48)

Different reinforcement functions can be used to change the state value function

and different policies to determine rewards and penalties, and all reinforcement

functions can be reduced to the following basic formula:

vt+1 = (1− α)vt(s) + α4t+1 where 0 < α ≤ 1 (2.49)

4t+1 is the reward or penalty assigned by the function to the action. This

function changes the state value function from the next time it is invoked and
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based on the evaluation of the current action made by the reward or penalty

policy. The output represents one of the actions that the system can take.

The decision is made to maximize the value of the action value function and

depends entirely on the reinforcement distributed in the previous instants.

With the growing interest in deep reinforcement learning [42], researchers

are trying to reformulate active learning as a reinforcement learning problem

Fang et al. [24] have realized that the performance of heuristics (used to select

a small subset of data for annotation) varies across datasets; to address these

shortcomings, they introduce a new formulation, reformulating active learning

as a reinforcement learning problem and explicitly learning a data selection

policy, where the policy takes the role of the active learning heuristic; this

method allows the selection policy learned through simulation on one language

to be transferred to other languages. Below is the algorithm:
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Algorithm 19 Learn an active learning policy

Input: data D, budget B

for episode = 1, 2, ..., N do

Dl ← {} and shuffle D

φ← Random

for i ∈ {0, 1, 2, ..., |D|} do

Construct si using xi

The agent makes a decision according to ai = argmaxQπ(si, a)

if ai = 1 then

Obtain the annotation yi

Dl ← Dl + (xi, yi)

Update model φ based on Dl

end if

Receive ri using held-out set

if |Dl| = B then

Store (si, ai, ri, T erminate) in M

Break

end if

Construct the new state si+1

Store transition (si, ai, ri, si+1) in M

Sample random minibatch of transitions (sj, aj, rj, sj+1) from M

Perform gradient descent step on L(θ) with 2.50

Update policy π with θ

end for

end for

Return: the latest policy π

where:

• N : is the quantity of episodes;

• φ: is the learned model;
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• s: is a state;

• x: is a sentence;

• y: is an output;

• a: is an action;

• π: is a policy;

• r is a reward;

• M : is the replay memory;

• L: is the loss;

• θ: are some parameters.

To update the parameters, they used a deep neural network to calculate the

expected Q value (quality values). The Q-function (a function to compute

quality) is implemented with a single hidden layer neural network, which takes

the state representation as input and produces two scalar values that corre-

spond to the Q(s, a) values for a ∈ {0, 1}. The parameters of the DQN (Deep

Q-Network) are learned using stochastic gradient descent, based on a regres-

sion objective to match the Q values predicted by the DQN and the Q values

expected from the Bellman equation, ri + γ maxaQ(si+1, a; θ). They used a

replay memory of experience M to store each transition (s, a, r, s0) used in an

episode, after which they sampled a mini-batch of transitions from memory

and then minimized the following loss function:

L(θ) = Es,a,r,s′ [(yi(r, s′)−Q(s, a; θ))2] (2.50)

They formalized active learning using a Markov decision framework, in which

active learning is defined as a series of binary annotation decisions applied to

a data stream. On this basis, they created an active learning algorithm as

a deep reinforcement learning policy. They demonstrated how these learned
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active learning policies can be transferred between languages, providing con-

sistent and significant improvements over basic methods, including traditional

uncertainty sampling.

Human behavior and experience are inherently multi-modal, with signif-

icant individual and contextual heterogeneity. To achieve meaningful human-

computer and human-robot interactions, multi-modal models of user states

are needed. In this context, Rudovic et al. [79] proposed a new multi-modal

AL approach that employs the concept of deep RL to find an optimal policy

for active selection of user data, which is necessary to train target (modality-

specific) models. They analyzed several multi-modal data fusion strategies and

showed that the proposed model-level fusion combined with RL outperforms

feature-level and modality-specific models as well as naive AL strategies such

as random sampling and standard heuristics such as uncertainty sampling.

Their multi-modal AL approach provides an optimal policy for selecting ac-

tive data. Consequently, these data are used to retrain classification models

to estimate the target output from video segments of fixed size. The proposed

method consists of two sequential processes:

• training the classifiers for the target output;

• learning the RL model’s Q-function for active data selection;

These two steps are executed in a loop in which the target classifiers are trained

using data from each mode (m = 1, ...,M), resulting in M classifiers being

trained in parallel. Model-level fusion is then performed based on their outputs

to obtain the target label for the input. Following is the algorithm:
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Algorithm 20 Multi-modal Q-learning (MMQL)

Input: Dataset D = {D1, D2, ..., DM}, models {ϕ0 =

{ϕ1
0, ϕ

2
0, ..., ϕ

M
0 }, Qπ

0} ← rand,B

for e := 1 to |D| do

Dl
0 ← {} and shuffle D

ϕe ← ϕe−1, Qπ
e ← Qπ

e−1

for i := 1 to |D| do

ŷi ← majorityV ote(ϕe(xi))

construct a new state si ← xi

the agent makes a decision according to ai = argmax
a

Qπ
e (si, a)

if ai = 1 then

ask for label Dl
e ← Dl

e ∪ (xi, yi)

end if

compute the reward ri ← R(ai, ŷi, yi)

if |Dl
e| = B then

Store (si, ai, ri, end) in M

Break

end if

construct the new state si+1 ← xi+1

store transition (si, ai, ri, si+1) in M

update Qπ
e using a batch form M

end for

update models ϕe using Dl
e

end for

Return: ϕ← ϕe, Q
π
∗ ← Qπ

e

where:

• B: the number of possible samples;

• π: is an optimal policy;

• x: is a sentence;
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• y: is an output;

• ϕ: is the learned model;

• s: is a state;

• a: is an action;

• r is a reward;

• M : is the replay memory.

Given the input multi-modal feature vectors xi, the active learner decides

whether or not to request the true label yi. If the label is requested, the model

receives a negative reward to reflect the high cost of obtaining the labels. If

the label is not requested, the model receives a positive reward if the estimate

is correct, otherwise it receives a negative reward. The following RL reward

function encodes this aspect:

ri(ai, ŷi, yi) =


rreq = −0.05, if ai = 1

rcor = 1, if ai = 0 ∧ ŷi = yi

rinc = −1, if ai = 0 ∧ ŷi 6= yi

(2.51)

where yi is the target label obtained from the majority vote of mode-specific

engagement classifiers. The parameters of the Q function are optimized, given

the action-space pairs and rewards, minimizing Bellman’s loss on the training

data, which encourages the model to improve the expected reward estimate at

each training iteration:

L
(i)
B (Θ) = [QΘ(si, ai)− (ri + γ max

ai+1

QΘ(si+1, ai+1))]2 (2.52)

where γ is a parameter set to 0.9. Instead of using heuristic strategies for active

data selection, they used deep RL to actively select the most informative data

samples for model fit to the target user. They showed that:

• the effectiveness of this method on a difficult multi-modal dataset of

child-robot interactions during autism therapy;
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• that the learned data-selection policy can generalize well to new children

by allowing the pre-trained engagement classifiers to adapt quickly to

the target child;

• how the proposed multi-modal AL approach can be used to efficiently

personalize engagement classifiers to the target user using a small amount

of data from actively selected users.

2.5.4 Quantum Computing

Quantum computing is a type of computation that uses quantum physics

phenomena such as superposition, interference and entanglement [33]. Quan-

tum computers are devices that perform quantum computations. Although

current quantum computers are too small to outperform conventional (clas-

sical) computers in practical applications, larger realizations are expected to

solve some computational problems, such as integer factorization (which is the

basis of RSA cryptography), significantly faster than classical computers. One

area of quantum information science is the study of quantum computing. There

are various models for performing quantum computations, the most common

of which are quantum circuits. The quantum Turing machine, quantum an-

nealing and adiabatic quantum computation are other models. A qubit can be

in a 1 or 0 quantum state, or in a superposition of the two. When measured,

however, it is always 0 or 1; the probability of either outcome is determined

by the quantum state of the qubit just before measurement. Efforts to build

a physical quantum computer focus on technologies such as transmons, ion

traps, and topological quantum computers, which aim to produce high-quality

qubits. These qubits can be constructed differently depending on whether

quantum logic gates, quantum annealing, or adiabatic quantum computation

are used in the quantum computer computing paradigm. Currently there are

several substantial obstacles to the construction of usable quantum computers.

It is particularly difficult to maintain the quantum states of qubits because of

quantum decoherence and state integrity. As a result, quantum computers
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require error correction. A quantum computer can solve any computational

problem that a classical computer can solve [64]. Conversely, any problem

that a quantum computer can solve can also be solved by a classical computer,

at least in theory, with sufficient time. Quantum computers are believed to

be able to solve problems quickly that no classical computer could solve in a

reasonable amount of time-a feat known as ”quantum supremacy.” Quantum

complexity theory is the study of the computational difficulty of problems in

relation to quantum computers.

Yongcheng Ding et al. [20] have proposed the use of active learning for

efficient quantum information retrieval, a critical task in the design of quan-

tum experiments. When dealing with large amounts of data, active learning

is used for classification, with minimal loss of fidelity. As we know, active

learning considers the cost of labeling, examines the most informative models

(quantum states) to propose the least number of labels (measures) that provide

the maximum knowledge gain. In this context, they provided a methodology

to decide on the best experimental design for binary classification using AL

algorithms. To achieve this goal, the estimation models are updated after

identifying the qubit with the largest uncertainty using weak measurements

in each cycle. This allows partial information to be extracted while slightly

perturbing the qubits, resulting in reduced cost in terms of loss of fidelity.

They presented AL techniques for extracting quantum information with an

experimental design, also demonstrated a complete binary classification prob-

lem by extracting information from the qubits [31] using weak measurements,

then compared Uncertain Sampling, Query-by-Committee and random sam-

pling procedures, as well as labeling techniques using weak and strong mea-

surements, and obtained the following result: with only 5 percent of labeled

samples, they achieved about 90 percent rate estimation. They found that

a weak measurement strategy outperformed a strong measurement method.

Their approach incorporates the concept of trade-off and dynamic prediction,

with the efficiency of a generative model.
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Active Learn by Gradient

Variation

As discussed in the previous chapter a major challenge in active learning

is to select the most informative instances to be labeled by an annotation

oracle at each step. In this respect, one effective paradigm is to learn the

active learning strategy that best suits the performance of a meta-learning

model. Several strategies based on this approach, such as [5, 37, 22] have been

discussed in Section 2.3.11. This chapter contains a strategy that first measures

the quality of the instances selected in the previous steps and then trains a

machine learning model that is used to predict the quality of instances to be

labeled in the current step. The proposed approach selects the instances to be

labeled as the ones producing the “maximum change” to the current classifier

by using a proxy measure to estimate this change. That is, the key idea is to

select instances to be submitted to the oracle to be labeled according to their

“importance” in the training phase, which in turn is measured taking into

account the “differences” between the learning gradient of the classification

model when trained with or without the instance at hand. This approach can

be instantiated with any classifier trainable via gradient descent optimization,

and here we provide a formulation based on a deep neural network model,

which has not been investigated in existing learning-to-active-learn approaches.

The proposed instance selection approach is modeled as a regression problem,

106
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that exploits the training gradient of a deep neural network model, and in

general of any machine learning model whose training phase is based on the

gradient descent algorithm. The experimental validation of this approach has

shown promising results in scenarios characterized by relatively few initially

labeled instances.

3.1 Main contributions

The learning-to-active-learn approach originally incorporates a regression-

based meta-learning approach within a maximum model change framework. It

can be summarized as follows:

• Starting from a classification model trained on a small set of instances,

is defined an iterative active learning scheme that, in order to decide

the bunch of instances to be labeled by an annotation oracle, it predicts

which instances will yield the maximum change to the current classifier;

• Is defined a meta-learning process upon two key ingredients: a notion of

the importance of unlabeled instances (from the pool of active learning

choices) that expresses the contribution that each instance provides to

the learning of the classifier; and a regression model to be trained on

pairs of labeled instances with associated importance scores;

• Is designed our approach to profitably exploit the learning capabilities of

(Deep) Neural Network models trained on a classification task. Nonethe-

less, the proposed learning-to-active-learn approach is actually versatile

w.r.t. the supervised learning model, as long as the gradient descent is

used as the training optimization method;

• While taking advantage of a deep neural network model, is also faced a

challenge related to how to score the importance of instances to drive

the active learning process. Indeed, one cannot rely on the differences

between the parameters of a classifier trained on a set of instances and the
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parameters of a classifier trained conditionally to the presence/absence of

a given instance, since such differences are expected to be negligible in the

case of neural network classifiers. Therefore, was investigated different

strategies of instance importance scoring by considering variations in

the learning gradient of the neural network model. In this regard, the

key idea was to account for the similarity of direction of two gradients,

the one unbiased and the other one biased w.r.t. a candidate instance

for labeling at each step of the active learning process. Measuring the

importance score of an instance is not a simple task in the case that

neural network classifiers are considered, as the differences between the

classifier trained using the whole training set and the classifier trained

without considering the instance are typically very small in the case of

neural network classifiers;

• The experimental evaluation conducted on CIFAR-10 image data, and in-

cluding a comparison with random and LCS baselines, has shown promis-

ing results by the proposed approach in terms of percentage increase

in accuracy, due to the active learning process driven by the proposed

instance importance scoring strategies, which tends to improve as the

number of initially available labeled instances gets smaller.

3.2 Proposed Approach

In this section first is introduced the general characteristics of the pro-

posed active learning framework, which is inspired by the one proposed in

[52]. This approach is designed to be versatile w.r.t. the supervised learning

model, as long as the gradient descent is used as the training optimization

method. Therefore, this approach is particularly well suited to be equipped

with a (Deep) Neural Network model. A classification problem consists in as-

sociating every instance taken from a predefined domain D with a label taken

from a fixed universe of labels L. Assuming the presence of a set of instance-

label pairs LI ⊆ D × L and a set of unlabeled instances UI ⊆ D, where for
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each pair 〈x, y〉 ∈ LI, x is an instance in D and y is the label associated with

x. The proposed approach is comprised of two phases:

• In the initialization phase, a neural network is trained with the labeled

instances in LI. An initial set of unlabeled instances is randomly selected

from UI and these instances are submitted to the oracle to be labeled,

thus obtaining a new set of labeled instances, denoted as NLI;

• In the iterative phase, several pool-based active learning steps are per-

formed. In each step, the set NLI of newly labeled instances is used to

train the classifier together with the set LI.

When retraining the classifier, the importance of every instance x in NLI

during the training is measured so as to assign an importance score to x.

Next, a regressor is trained using the instances in NLI that aim to predict the

importance scores. Finally, the top-k instances having the greatest importance

score are selected for oracle labeling and, once labeled, they replace the set

NLI so to start the next active learning step. The concept of importance

score is at the core of this approach. Following the model change framework

[85], the importance score of an instance x measures the impact of having x

in the training set for the obtained classifier. That is, the importance score

of a (labeled) instance x w.r.t. a set of labeled instances is a measure of the

difference between the parameters of the classifier θ trained over LI and the

parameters of the classifier θ̂ trained over LI ∪{〈x, y〉}, where y is the label of x.

Unfortunately, in the case of neural network classifiers, for the most commonly

used training algorithm, such as the stochastic gradient, there is (almost) no

difference between the parameters of the classifier trained using LI and the

parameters of the classifier trained conditionally to the presence/absence of a

given instance, i.e., trained using LI ∪{〈x, y〉}. Indeed, cannot relied on the

differences between the parameters of a classifier trained on a set of instances

and the parameters of a classifier trained conditionally to the presence/absence

of a given instance, since such differences are expected to be negligible in the

case of neural network classifiers. To overcome this issue, was defined different
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notions of importance score (cf. Section 3.2.2). In the next section is provided

a detailed description of the proposed approach.

3.2.1 The LAL-IGradV algorithm

Algorithm 21 shows the general schema of the proposed approach, named

Learning to Active Learn by Instance Importance based Gradient Variation

(LAL-IGradV ). LAL-IGradV receives in input a (small) set of labeled in-

stances LI, a set of unlabeled instances UI, a deep neural network model

DNN , a regressor model R, the number epochs of active learning epochs, and

the number k of unlabeled instances to select for oracle labeling at each active

learning epoch. The algorithm first trains DNN using LI (line 2), randomly

selects k unlabeled instances from UI and asks the oracle to label them, thus

obtaining the initial set NLI of oracle-labeled instances (lines 3-4). Then, at

each epoch (lines 5-14), LAL-IGradV performs the following steps:

• The neural network model is trained using the labeled instances in LI

and NLI (line 7). During the training process, every instance x ∈ NLI

is associated with its importance score rx. The computation of the im-

portance scores of the instance in NLI is performed using one of the

techniques described in Section 3.2.2;

• A regressor R is trained on the set {(x, rx)|x ∈NLI}. Note that the

choice of the regressor model actually used in this and the subsequent

steps is orthogonal w.r.t. the proposed approach; however, it is essential

that the chosen regression model must be trainable using a small set of

labeled instances;

• NLI instances are added to LI (line 10);

• The regressor R is applied to the instances in UI so that, given an

instance x, it predicts its importance score r̂x (line 11);

• The algorithm selects the top-k instances from UI (topK) having the

highest predicted importance scores, and these instances in topK are
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submitted to the oracle for labeling (lines 12-13). Finally, NLI is re-

placed with topK (line 14).

Algorithm 21 LAL-IGradV

1: Input: LI: set of labeled instances, UI: set of unlabeled instances, DNN :

deep neural network model, R: importance score regressor, epch: maxi-

mum number of epochs, k: number of relevant instances to select

2: Train DNN on LI

3: NLI ← Select k instances from UI uniformly at random

4: The oracle annotates the instances in NLI

5: for i = 1 . . . epch do

6: for x ∈ NLI do

7: Train DNN on LI ∪ NLI and compute importance score rx

8: end for

9: Train R on the set of pairs {〈x, rx〉 |x ∈NLI}

10: LI ← LI ∪ NLI

11: Apply R to UI instances to predict importance scores (r̂x)

12: topK ← Select top-k instances from UI by importance score r̂x

13: The oracle annotates the instances in topK

14: NLI ← topK

15: end for

3.2.2 Importance scoring strategies

Let f(xi, θ) be the output of a DNN model f characterized by a vector

of parameters θ for an input xi and let X = {x1, . . . , xn} be a set of instances

used for training f , where each sample xi ∈ X is associated to a label yi. The

training of the DNN f over X requires solving the following:

arg min
θ

(∑
xi∈X

(L(yi, f(xi, θ)) + reg(θ)

)
(3.1)

where:
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• L(yi, f(xi, θ)) is the loss of the model for instance xi;

• reg(θ) is the regularization of the parameters.

The training of f is accomplished by iteratively updating the parameters θ,

through two steps:

• computing the change in all weights w.r.t. the change in error, i.e., the

gradient, defined as:

δ(X) =
∂

∂θ

∑
xi∈X

(L(yi, f(xi, θ)) + reg(θ)) (3.2)

• updating θ using δ(X), i.e., θk+1 = θk − η× δ(X), where η is the update

step size.

Four strategies are proposed to associate each instance in NLI with its impor-

tance score during the training of the DNN classifier. The goal shared by the

various techniques is to modify the training of the neural network model by ac-

counting for the importance of the instances in NLI involved in each training

step. Each of the proposed techniques makes use of the gradient corresponding

to the instances currently in LI and NLI, i.e., δ(LI∪NLI), hereinafter simply

denoted as δ. The four proposed techniques differ in the way the importance

of an instance x in NLI is calculated with respect to the single epoch. We will

use symbol δx to denote the value of the gradient δ({x}), and δ¬x to denote

the value of the gradient δ(LI ∪NLI \ {x}). In the following, we describe our

proposed techniques for computing the importance scores:

• Direct similarity (DS): given an instance x in NLI, this strategy com-

pares the learning gradient of the neural network at the current epoch, δ,

with the gradient calculated with respect to x only, i.e., δx. The impor-

tance score of x at the current epoch is defined as the cosine similarity

between δ and δx, i.e., rx = cos(δ, δx). The rationale of this strategy is

that an instance x ∈ NLI is likely to be more important for the train-

ing of DNN at the current epoch if there is a small difference between



CHAPTER 3. AL BY GRADIENT VARIATION 113

the directions of the gradients δ and δx, as reflected by a high value of

the cosine similarity between the two gradients. That is, the more the

learning behavior of the neural network considering the whole training

set is similar to the one of the same neural network trained on x only,

the higher the importance of x is;

• Ranked direct similarity (RDS): this strategy first applies the DS

technique, then the importance scores of the instances in NLI computed

by DS are ordered and divided into three bins, which correspond to the

top quartile of the importance scores, the bottom quartile, and the union

of the second and third quartiles. The instances falling into the top

quartile will be associated with score 1, the ones falling into the bottom

quartile with score 0, and the other instances with score 0.5;

• Leave-one-out distance (LD): given an instance x in NLI, this strat-

egy compares δ with the gradient calculated when leaving out x, i.e., δ¬x.

The importance score of x at the current epoch is defined as the com-

plement of the cosine similarity (i.e., cosine distance) between δ and δ¬x,

i.e., rx = 1−cos(δ, δ¬x). The rationale of this strategy is that an instance

x ∈ NLI is likely to be more important for the training of DNN at the

current epoch if leaving it out will lead to large differences between the

learning behavior of the neural network considering the whole training

set and the learning behavior of the same neural network trained without

x, i.e., a large change in the direction of the gradient δ¬x w.r.t. the gradi-

ent δ, as reflected by a high value of the cosine distance between the two

gradients. The learning gradient for the neural network at the current

epoch is calculated with respect to all instances except one instance x ∈

NLI, denoted by gradx. Therefore, the importance of x at the current

epoch is measured as one minus the cosine similarity between δ and δx.

The idea behind this calculation is to consider example x the more rel-

evant the more the update that the network weights receive in the real

training phase (associated with the direction of the gradient grad) and
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Figure 3.1: Histograms of the k = 500 measurements of DS (left) and LD

(right) strategies at the first epoch of active learning

different from what it would have been not considering the example x

during this training period (associable with the direction of the gradx

gradient);

• Ranked leave-one-out distance (RLD): analogously to RDS w.r.t.

DS, the RLD strategy adds the same discretization step over the impor-

tance scores computed by LD.

All the techniques just described are performed on each data as many times

as there are active learning epochs, the score value that is actually used is the

average of all values calculated during these epochs.

Figure 3.1 shows the distributions of the importance scores yielded by

DS and LD at the first epoch of active learning. As it can be observed, both

distributions span over the full regime of admissible values, despite the high

dimensionality of the gradient vectors being compared.

3.3 Experimental Evaluation

3.3.1 Data

For the evaluation of this proposal was used the well-known CIFAR-

10 dataset 1 [53], which consists of 60000 instances representing 32x32 colour

images, labeled using 10 mutually exclusive classes, with 6000 images per class.

1https://www.cs.toronto.edu/∼kriz/cifar.html
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The dataset is organized into 50000 instances as the training set and 10000

instances as the test set. The latter contains exactly 1000 randomly-selected

images from each class, while the training set is comprised of five training

batches, which contain 5000 images from each class. The training set was

divided into two parts, the one corresponding to the set of labeled instances

(LS), and the other corresponding to the set of unlabeled instances (US), and

at the time of labeling by the specialist of the relevant examples identified by

the proposed technique, the dataset label is used to simulate the expert.

3.3.2 Baseline methods

The performance of this methods was compared with a Random baseline

and the LCS method [83]. The Random baseline, hereinafter denoted as Rnd,

simply selects k instances to be annotated at each epoch uniformly at random

from the set of unlabeled instances. The LCS method follows an uncertainty

sampling approach, therefore it estimates the uncertainty of a specific instance

and exploits it as criterion for the unlabeled instance selection. More precisely,

given an instance x and a classification model θ, the uncertainty of x w.r.t. θ

(φ(x)) is measured as:

φ(x) = (1− Pθ(y∗|x))× m

m− 1
(3.3)

where:

• Pθ(y
∗|x) denotes the probability that the model θ assigns to the label y∗

for the instance x;

• y∗ is the label for which θ yields the maximum probability on x (i.e.,

y∗ = arg maxy Pθ(y|x));

• m is the cardinality of the set of labels.

Note that the uncertainty function ranges between [0, 1], where 1 is the most

uncertain score.
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3.3.3 Settings and assessment criteria

In the experimental evaluation, it was used 6 Convolutional Neural Net-

work (CNN) 2D layers, with 3 input channels, kernel size 3, stride size 3,

padding size 1, ReLU activation function and max pool layers. The CNN

module has on top a fully-connected network with an input layer of size 4096,

one hidden layer with input size 4096 and output size 1024, another hidden

layer with input size 1024 and output size 512, an output layer of size 10 (i.e.,

number of classes), and a dropout layers with probability 0.1. In our LAL-

IGradV algorithm, the DNN model was trained using cross entropy as loss

function and Adam optimizer (with learning rate 1e-4 and weight decay 5e-

4), a number of epochs equal to 10 for both the initialization step of training

(Line 2) and the training steps in the main loop (Line 8). Also, the maximum

number of iterations of the algorithm, i.e., number of epochs in the active

learning process (epch) was set to 10. Unless otherwise specified, the number

k of instances to select from UI was set to 500; the size of LI, respect UI, was

experimentally varied. As the regressor (R), it was used two models: the Gra-

dient Boosting Regressor, with least absolute deviations (LAD) loss function

and 200 estimators, for the DS and LD strategies, and the Random Forest

Classifier, with maximum depth 5, for the RDS and RLD strategies. To simu-

late the oracle for annotating the instances, it was resorted to the availability

of class label information for the CIFAR-10 data: whenever an instance was

used in the UI set, it was masked its actual label during the learning process,

and it was unveiled the label only if the instance was selected within the topK

set of instances to annotate. A batch of tests was carried out for each technique

as follows:

• 10 epochs of neural network training were employed for each selection

policy (Line 2 and 7/8);

• 10 training epochs (epch) of the iterative active learning process in ques-

tion were used for each technique, at each step 500 (|topK|) units of

elements are taken and chosen for each epoch of active training;
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• During the tests, the size of the “pre-annotated” training set was varied

in order to observe the gain that would be obtained with this technique

as the labeled data decreased;

• In order to simulate the human annotator, the annotated dataset was

taken and they were ”annotated” after the selection of the examples

using the label already provided in the dataset.

To assess the performance of the methods, it was considered the accuracy of

the classifier during the various training batches, in absolute terms as well as

in terms of percentage increase w.r.t. the early accuracy of the classifier itself

or the accuracy of a reference method. More precisely, was computed:

• the accuracy at the initial step of training of LAL-IGradV (line 2), de-

noted as A(0), and the accuracy at the end of the active learning process,

denoted as A;

• the percentage increase in the accuracy of LAL-IGradV , which is defined

as 100× (A− A(0))/A(0);

• the percentage increase in the accuracy of LAL-IGradV w.r.t. Rnd, resp.

LCS, which is defined as %Rnd = 100(A − ARnd)/ARnd, respect %LCS =

100(A−ALCS)/ALCS, where ARnd and ALCS denote the accuracy at the

end of the active learning process for Rnd and LCS.

The starting neural network is the same for all the tests, only the second

part varies, the one in which a greater amount of unlabeled data comes into

play, moreover all the random seeds are set in such a way as to obtain the

reproducibility of the tests.

3.3.4 Results

Table 3.1 reports on the performance of our LAL-IGradV variants cor-

responding to the four importance scoring techniques, for varying percentages

of the set of unlabeled instances (UI); for example, row ‘10%’ indicates that
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Table 3.1: Performance of the proposed methods: initial and final accuracy,

percentage increase w.r.t. Rnd and w.r.t. LCS, and active learning time (sec)

averaged over the epochs, for various percentage values of unlabeled instances.

A(0)
DS RDS LD RLD

A %Rnd %LCS time A %Rnd %LCS time A %Rnd %LCS time A %Rnd %LCS time

10% 0.793 0.831 2.32 0.43 186 0.832 2.44 0.54 191 0.831 2.28 0.39 625 0.828 1.90 0.01 769

20% 0.783 0.826 1.90 0.75 178 0.825 1.79 0.65 217 0.824 1.72 0.57 623 0.822 1.46 0.32 796

30% 0.784 0.827 1.95 0.50 170 0.828 2.06 0.61 250 0.826 1.75 0.30 620 0.822 1.46 0.32 827

40% 0.763 0.819 4.01 1.08 170 0.811 3.04 0.13 295 0.811 3.02 0.11 620 0.811 2.96 0.05 872

50% 0.733 0.801 5.97 2.84 162 0.800 5.82 2.70 352 0.799 5.80 2.67 619 0.779 3.07 0.03 1002

60% 0.728 0.801 6.32 3.21 162 0.798 5.96 2.86 423 0.795 5.57 2.48 614 0.777 3.20 0.18 1089

70% 0.708 0.778 6.49 2.50 154 0.778 6.38 2.40 513 0.773 5.82 1.86 607 0.760 4.01 0.12 1190

80% 0.640 0.705 5.39 1.82 139 0.704 5.27 1.71 613 0.700 4.62 1.08 604 0.694 3.78 0.27 1310

90% 0.570 0.644 5.89 2.22 129 0.636 4.60 0.98 732 0.632 3.95 0.35 602 0.636 4.59 0.97 1395

10% of the instances of the CIFAR-10 training set was used as UI and the

remaining 90% of the training set as LI.

Looking at the table, several remarks stand out. First of all, it is not

surprising to notice that the accuracy values (i.e., columns corresponding to A

and A(0)) tend to decrease as the percentage of unlabeled instances gets higher,

since the LAL-IGradV method is forced to handle progressively reduced sets

of labeled instances on its initial training. More interestingly, the percentage

increase of each of the LAL-IGradV variants w.r.t. both Rnd and LCS is

always positive (up to 6.5% against Rnd and up to 3.2% against LCS ) and it

tends to improve with higher percentages of unlabeled instances, with peaks

around 70% against Rnd and around 50-60% against LCS. As concerns the

impact of the importance scoring technique, is observed that all the LAL-

IGradV variants are able to improve upon the accuracy at the initial training

step. Moreover, the direct similarity based techniques, i.e., DS and RDS,

reveal to be more efficient 2 as well as more accurate than the leave-one-out

distance based techniques, for each percentage of unlabeled set. This would

indicate that the direct similarity based techniques are more effective than the

leave-one-out distance based techniques. This fact was intuited because to a

2Experiments were carried out on an Intel Core i7 CPU @2.90GHz, 32GB RAM, with

NVIDIA GeForce RTX 2070 Super GPU
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higher sensitivity of the approach in capturing the gradient direction change

due to the individual contribution of an instance rather than to the masking

of a single instance in the training gradient, which would result in a more

diluted signal of variation of the training gradient. Figure 3.2 focuses on the

percentage increase in accuracy that each active learning method achieves by

varying the fraction of unlabeled instances. As expected due to the advantage

of performing an active learning task, the percentage increase values tend to

improve for higher fractions of unlabeled instances. The trends are steeper for

that LAL-IGradV methods, particularly for DS and RDS, followed by LCS.

Indeed, it is worth emphasizing that LAL-IGradV methods achieve the best

performance gain against the two baselines as the fraction of labeled instances

becomes smaller.
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Figure 3.2: Percentage increase of accuracy for the various active learning

methods, with varying percentage of unlabeled instances, and number of se-

lected instances (k) equal to 500.

In Figs. 3.3 and 3.4, is delved into the trends of accuracy percentage-increase

obtained by a particular active learning method, for varying k, i.e., number of

unlabeled instances to be selected at each epoch of the active learning process.

At a first glance, in each of the plots, was noticed that the curve of the per-

centage increase values over k is more likely to change for larger fractions of

the set of unlabeled instances, with the most evident changes corresponding

to 90%.
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Figure 3.3: Percentage increase due to active learning based on our LAL-

IGradV variants, by varying the number of selected instances (k) and the

percentage of labeled instances.

A few interesting remarks can be drawn from Fig. 3.3. When portions

of UI below 90% are selected, can be observed a relatively small range of

variation of the percentage increase values (approximately from 5% to 10%),

with peaks around k = 500 for the DS and LD variants, and around k = 900

for the RDS and RLD variants. This would hint at higher requirements (i.e.,

higher k) needed for the importance scoring strategies that compute discretized

importance scores. Another remark is on the curves corresponding to the use

of 90% of the set of unlabeled instances: compared to the curves corresponding

to lower fractions of UI, the percentage increase values are higher on average,
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Figure 3.4: Percentage increase due to active learning based on Rnd (left)

and on LCS (right), by varying the number of selected instances (k) and the

percentage of labeled instances.

and the trends are quite different, especially for the DS variant where can be

observed a minimum (rather than a maximum) for k = 500. Apart from this

exception, it is worth noticing that better percentage increase of accuracy do

not necessarily correspond to a higher number k of selected instances. This

might be explained since the more unlabeled instances are selected for labeling,

the more the method is less likely to make a correct choice for changing the

most the current model, as the latter is being trained only on few instances,

thus lacking full knowledge on the class distribution of all the instances for

available training. Concerning the baseline methods (Fig. 3.4), two different

situations occur between the Rnd plot (on the left) and the LCS plot (on the

right). The former shows a decreasing trend until mid values of k (i.e., around

500 instances) followed by a rising trend, which sheds light on the divergent

behavior of a random selection of the unlabeled instances w.r.t. all the other

instance selection methods. Also, the LCS plot shows curves that tend to

monotonically decrease, respect remain substantially unchanged, for larger,

respect smaller, fractions of UI, which again puts in evidence how our LAL-

IGradV variants behave differently from an uncertainty sampling approach

like LCS.

The proposed LAL-IGradV has shown that a learning-to-active-learn by
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instance importance based gradient variation improves significantly upon not

only a random baseline but also an uncertainty sampling approach like LCS.

LAL-IGradV methods are all able to increase the accuracy at the initial train-

ing step, and tend to improve with higher percentages of unlabeled instances.

Yet, higher percentages of unlabeled instances lead to an increased gain against

LCS and random baseline. LAL-IGradV methods are also not particularly de-

manding in terms of number (k) of selected instances to label at each active

learning epoch.



Chapter 4

Active Learn by Gradient

Variation with Variational

AutoEncoders

The LAL-IGradV algorithm, discussed in the previous chapter, is able

to outperform both a random baseline as well as an uncertainty sampling

approach like LCS. This chapter will introduce the Learning to Active

Learn by Instance Importance based Gradient Variation with Variational

AutoEncoders (LAL-IGradV-VAE ) algorithm, an enhancement of LAL-

IGradV which improves its performance by exploiting a variational autoen-

coder as a pre-processing step. The adopted variational autoencoder aims to

learn low-dimensional latent representations for the input data samples which

are ultimately provided as input to the model selector presented in the previ-

ous chapter. The rationale behind the new algorithm is that using the original

data samples to train the selector model is too expensive for two reasons: (i)

due the lack of samples, the selector is unable to optimally learn the rules for

estimating the relevance score; and (ii) high-dimensional data highly impact

the efficiency of the method in terms of both training and prediction time.

123
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4.1 Background

This section provides preliminaries about the technical aspects of the

proposed algorithm LAL-IGradV-VAE . In particular, an introduction to au-

toencoder and variational autoencoder is provided next.

4.1.1 AutoEncoders

An AutoEncoder (AE) [80] consists of a neural network that is trained

to reconstruct its input. It is a type of artificial neural network used to learn

efficient coding of unlabeled data, thus falling within the realm of unsupervised

learning. The encoding is validated and refined by attempting to reconstruct

the input from the encoding. The AE learns a representation (encoding) of a

data set, typically for dimensionality reduction, training the network to ignore

insignificant data also well known as noise. An AutoEncoder is characterized

by the following main features:

• specificity of the data: it means that if, for example, an autoencoder is

trained to reproduce images of people it cannot be used to reproduce

images of animals;

• loss in the reconstruction process: an output is not exactly the same

as the input, so if the target is to obtain a faithful reproduction, the

AutoEncoder is not the optimal solution;

• unsupervised learning paradigm: only unlabelled data are required to

train an autoencoder.

4.1.1.1 The architecture

Let X ⊆ Rd and F ⊆ Rp be the space of input data instances and the

space of compressed data instances, respectively. An autoencoder consists of

two main functions, namely an encoder φ and a decoder ψ, with the following

objectives:
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• the encoder φ : X → F takes an input data instance and it provides a

compressed representation for it;

• the decoder ψ : F → X receives the compressed version of a data

instance and outputs the original instance with the least possible error.

The goal, as formally defined in [4], is to learn the encoder and decoder func-

tions such that:

φ, ψ = argmin
φ,ψ

||X − (ψ ◦ φ)X||2 (4.1)

In the simplest scenario where the autoencoder consists of a single hidden

layer, the encoding stage takes a vector x ∈ X and maps it to a new vector

h ∈ F : h = σ(Wx + b). The computed vector h is usually referred to as

latent representation, while σ is an activation function (e.g. a sigmoid func-

tion). Furthermore, W is a weight matrix and b is a bias vector. Weights

and biases are typically initialized randomly and then iteratively updated via

back-propagation. Subsequently, the decoding phase takes as input an en-

coded vector h and it reconstructs the original data x by computing x̂ as

x̂ = σ′(W ′h + b′) where σ′, W ′, and b′ are not necessarily related to their

counterparts in the encoder stage. In general, an autoencoder can have an

arbitrary number of hidden layers, such as the one shown in Figure 4.1. Also,

the encoded vector φ(x) can be considered as a compressed representation of

the input x since the feature space F has typically a lower dimensionality than

the input space X , i.e. p < d.

4.1.1.2 Reconstruction Loss

The autoencoder is trained by minimizing a loss function which measures

the reconstruction error of the compressed data instances with respect to their

original counterparts. More formally, given a dataset with m data samples,

the following average loss is minimized:

L =
1

m

m∑
j=1

L(x(j), x̂(j)) (4.2)
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Figure 4.1: An example architecture of AutoEncoder.

where L(x(j), x̂(j)) quantifies the per-instance difference between the original

data instance x and its compressed representation x̂(j). The choice of L(·, ·)

function depends on the nature of data. If the input is categorical, the following

cross-entropy loss function can be adopted:

L(x, x̂) = −
d∑
i=1

[xi log(x̂i) + (1− xi)log(1− x̂i)] (4.3)

On the other hand, when the input is real-valued, one possibility is to consider

the squared error which computes the difference between x̂ and x as follows:

L(x, x̂) = ||x− x̂||2 = ||x− σ′(W ′(σ(Wx+ b)) + b′||2 (4.4)

4.1.1.3 Applications

Autoencoders have a number of applications, including anomaly detec-

tion, denoising of images, and dimensionality reduction. The goal of an au-

toencoder is to reconstruct the data that lies within a subspace of the input

domain. This means that the autoencoder should be able to recreate only

the input data that exists within this subspace. However, the limitations of

the model mean that it can only reconstruct what it was trained on, so any

variations or anomalies in the input data will not be detected by the model.
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Another use of autoencoders is in image compression. As the encoded inputs

have a smaller dimension than the original inputs, the encoder can be used for

compression, with the hidden (encoded) representations retaining all or most

of the information from the original input, but taking up less space.

4.1.2 Variational AutoEncoders

Starting from the basic autoencoder model, several variants have been

proposed in the literature. In particular, here we focus on the Variational Au-

toEncoders (VAE ) variant that allows to boost the representation capabilities

of autoencoders [48]. The main differences between VAE and the basic model

are the following:

• in the encoding stage the input x is passed to the encoder module. In-

stead of directly generating a hidden representation h as done in AE

models, the generation process in VAE involves two components: E(z)

and V(z) where z is the latent random variable with a Gaussian distri-

bution with mean E(z) and variance V(z). In practice, Gaussian distri-

butions are used as the encoded distribution, but other distributions can

be used as well. The encoder will be a function that maps from X to

R2d : x 7→ h (here h is used to represent the concatenation of E(z) and

V(z));

• z is sampled from the above encoded distribution; specifically, E(z) and

V(z) are passed into a sampler to generate the latent variable z;

• z is passed into the decoder to generate x̂. The decoder will be a function

from Z to Rn : z 7→ x̂, where Z is the latent space.

In the VAE formulation, h is simply the vector E(z) for classic autoencoders.

In short, the main distinction between VAE and AE is that VAE have a

larger latent space than AE since they are generative models that use a prob-

abilistic distribution to describe data generation. Given an observed dataset

X = {xi}Ni=1 of N independent and identically distributed random variables
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samples, it is assumed that a generative model for each data xi is condi-

tioned on an unobserved random latent variable zi that represent the gener-

ative distribution parameters. This generative model is also a probabilistic

decoder. An approximate posterior distribution over the latent variable zi is

assumed symmetrically given a data xi denoted by recognition, which is equiv-

alent to a probabilistic encoder and governed by the parameters. Finally, a

prior distribution for the latent variables zi is assumed, denoted by pθ(zi).

The parameters are unknown and must be learned from data. The observed

latent variables zi can be interpreted as a recognition model qφ(z|x). The

marginal log-likelihood is expressed as a sum of the individual data points

log pθ(x1, x2, ..., xN) =
∑N

i=1 log pθ(xi), and each point can be rewritten as

follows:

log pθ(xi) = DKL(qφ(z|xi)||pθ(z|xi)) + ζ(θ, φ;xi) (4.5)

The first term is the Kullback-Leibler divergence of the approximate recog-

nition model from the true posterior, and the second term is the variational

lower bound on the marginal likelihood, which is defined as:

ζ(θ, φ;xi)
∆
= Eqφ(z|xi) [−log qφ(z|x) + log pθ(x− z)] (4.6)

Because the Kullback-Leibler divergence is non-negative, ζ(θ, φ;xi) is a lower

bound on the marginal log-likelihood, and because the marginal log-likelihood

is independent of the parameters and, maximizing the lower bound improves

our posterior approximation with respect to the Kullback-Leibler divergence.

The variational lower bound can be expanded further as follows:

ζ(θ, φ;xi) = −DKL(qφ(z|xi)||pθ(z)) + Eqφ(z|xi)[log pθ(xi|z)] (4.7)

Variational inference follows by maximizing ζ(θ, φ;xi) all data points with

respect to θ and φ. Given a dataset X = {xi}Ni=1 with N data points, we

can estimate the marginal likelihood lower-bound of the full dataset ζ(θ, φ;X)

using a mini-batch XM = {xi}Mi=1 of size M as follows:
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ζ(θ, φ;X) ≈ ζ̃M(θ, φ;XM) =
N

M

M∑
i=1

ζ(θ, φ;xi) (4.8)

Mean-field theory Variational Bayes starts with a factorized approximate pos-

terior and then performs closed form optimization updates (which usually re-

quire conjugate priors). VAE , on the other hand, takes a different route where

the gradients of ζ̃M(θ, φ;XM) are approximated using the reparameterization

trick and stochastic gradient optimization.

4.1.2.1 Loss function

Data from the input space are encoded to the latent space using an

encoder and noise, and then the data from the latent space is ”decoded” to

the output space. To move from the latent to the input space (the generative

process), we can either learn the distribution (of the latent code) or enforce

some structure. In particular, the VAE imposes structure on the latent space.

The training of VAE models is done by minimizing a loss function. As a result,

the loss function includes a reconstruction term as well as a regularization term.

• The reconstruction term is on the final layer;

• The regularization term is applied to the latent layer in order to impose

a specific Gaussian structure on the latent space. This is accomplished

by employing a penalty term lKL(z,N(0, Id)). Without this term, VAE

will behave like a traditional autoencoder, which may result in overfitting

and losing all the desired generative properties of a VAE .

4.1.2.2 Sampling z (reparameterization trick)

The purpose of the reparameterization trick is to make the VAE’s stochas-

ticity amenable to gradient-based optimization. By introducing random noise

through a differentiable function, the gradients of the VAE’s parameters can

be backpropagated through the stochastic layers of the model, allowing it to be

trained with standard gradient-based optimization algorithms. The reparam-

eterization trick so is a simple method for estimating ζ(θ, φ;xi) from a small
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sample of size L. Considering Equation 4.6, where can be reparameterized the

random variable z̃ ∼ qφ(z|x) with a differentiable transformation gφ(ε|x) and

an auxiliary noise variable ε drawn from some distribution p(ε). ζ(θ, φ;xi) is

approximated using this technique as follows:

ζ(θ, φ;xi) ≈ ζ̃(θ, φ;xi) =
1

L

L∑
l=1

log pθ(xi, z(i,l))− log qφ(z(i,l)|xi) (4.9)

where z(i,l) = gφ(εi,l, xi) and εi,l is a random noise drawn from εl ∼ p(ε).

Because we want to optimize the mini-batch estimates from Equation 4.8, by

plugging Equation 4.9 we get the following differentiable expression:

ζ̂M(θ, φ,X) =
N

M

M∑
i=1

ζ̃(θ, φ, xi) (4.10)

which can be derived according to θ and φ and plugged into an optimizer frame-

work. Here below there is the algorithm for the full optimization procedure

for VAE :

Algorithm 22 Optimization procedure for VAE

(θ, φ)← Initialize Parameter

while not Convergence of (θ, φ) do

XM ← Random minibatch of M datapoints

ε← L random samples of p(ε) (Gradients of Equation 4.10)

(θ, φ)← update parameters based on g

end while

return (θ, φ)

where g refers to a differentiable function that maps random noise to the

parameters of a probability distribution. L is frequently set to 1 as long as M

is large enough. M = 100 and L = 1 are typical values. The lower bound on

the log-likelihood log pθ(xi) is given by Equation 4.9. The equation is changed

in [12] to:

ζ(θ, φ;xi) =
1

L

L∑
l=1

log
1

k

k∑
j=1

pθ(xi, z(j,l))

qφ(z(j,l)|xi)
(4.11)
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Rather than taking the gradient of a single randomized latent representation,

the generative network’s gradients are learned by a weighted average of the

sample over different samples from its (approximated) posterior distribution.

Weights are simply the likelihood functions qφ(z(j,l)|xi).

4.2 Proposed Approach

This section introduces a variant of the active learning framework LAL-

IGradV , which adopts the VAE as a preprocessing step in order to reduce

the dimensionality of the input data instances. Let LI ⊆ D × L be a set of

instance-label pairs and UI ⊆ D be a set of unlabeled instances, where for

each pair 〈x, y〉 ∈ LI, x is an instance in D and y is the label associated with

x. The proposed approach consists of two main phases:

• An initialization phase where (i) a VAE is trained with all the samples

in UI yielding a new set of (compressed) unlabeled samples; (ii) a neural

network is trained with the labeled instances in LI; and (iii) an initial set

of unlabeled instances is randomly selected from UI and these instances

are submitted to the oracle to be labeled, thus obtaining a new set of

labeled instances, denoted as NLI;

• An iterative phase, where several pool-based active learning steps are

performed. In each step, the set NLI of newly labeled instances is used

to train the classifier together with the set LI with the support of the

VAE previously trained.

When retraining the classifier, the importance of every instance x in NLI

during the training is measured so as to assign an importance score to the

latent representation of x. Next, a regressor is trained using the instances in

NLI that aim to predict the importance scores. Finally, the top-k instances

having the greatest importance score are selected for oracle labeling and, once

labeled, they replace the set NLI so to start the next active learning step. In

the next section, a detailed description of the proposed approach is provided.
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4.2.1 The LAL-IGradV-VAE algorithm

Algorithm 23 shows the general schema of the proposed approach, named

Learning to Active Learn by Instance Importance based Gradient Variation

with VAE (LAL-IGradV-VAE ). LAL-IGradV-VAE receives in input a (small)

set of labeled instances LI, a set of unlabeled instances UI, a deep neural

network model DNN , a regressor model R, a VAE , the number epch of active

learning epochs, and the number k of unlabeled instances to select for oracle

labeling at each active learning epoch. The algorithm first trains DNN using

the samples in LI (line 2), then a VAE model is trained with data instances

in UI such as to obtain a summarized representation of the instances in the

dataset (line 3); it randomly selects k unlabeled instances from UI and asks

the oracle to label them, thus obtaining the initial set NLI of oracle-labeled

instances (lines 4-5). Then, at each epoch (lines 6-15), LAL-IGradV performs

the following steps:

• The neural network model is trained using the labeled instances in LI

and NLI (line 8). During the training process, every instance x ∈ NLI

is associated with its importance score rx. The computation of the im-

portance scores of the instance in NLI is performed using one of the

techniques described in Section 3.2.2;

• A regressor R is trained on the set {〈xl, rx〉 |xl is the representation in

the latent space of x} where x is an instance in UI. Note that the choice

of the regressor model actually used in this and the subsequent steps is

orthogonal w.r.t. the proposed approach; however, it is essential that the

chosen regression model must be trainable using a small set of labeled

instances;

• NLI instances are added to LI (line 11);

• The regressor R is applied to the latent representation of the instances

in UI so that, given an instance x, it predicts its importance score r̂x

(line 12);
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• The algorithm selects the top-k instances from UI (topK) having the

highest predicted importance scores, and these instances in topK are

submitted to the oracle for labeling (lines 13-14). Finally, NLI is re-

placed with topK (line 15).

Algorithm 23 LAL-IGradV-VAE

1: Input: LI: set of labeled instances, UI: set of unlabeled instances, DNN :

deep neural network model, VAE : variational autoencoder model, R: im-

portance score regressor, epch: maximum number of epochs, k: number of

relevant instances to select

2: Train DNN on LI

3: Train VAE on all instances in UI ∪ LI

4: NLI ← Select k instances from UI uniformly at random

5: The oracle annotates the instances in NLI

6: for i = 1 . . . epch do

7: for x ∈ NLI do

8: Train DNN on LI ∪ NLI and compute importance score rx

9: end for

10: Train R on the set of pairs {〈xl, rx〉 |xl is the representation in the

latent space of x}

11: LI ← LI ∪ NLI

12: Apply R to UI instances to predict importance scores (r̂xt)

13: topK ← Select top-k instances from UI by importance score r̂xt

14: The oracle annotates the instances in topK

15: NLI ← topK

16: end for

As it can be noticed, with the exception of an additional preprocessing step

through VAE , the LAL-IGradV-VAE technique is almost identical to LAL-

IGradV . However, this small difference improves the performances both in

terms of quality of results as well as in computational terms because the se-

lector in LAL-IGradV-VAE works on data with a smaller size.
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4.3 Experimental Evaluation

4.3.1 Data and baseline methods

For the evaluation of this proposal was used the well-known CIFAR-10

dataset which consists of 60000 instances, divided is two parts: 50000 in-

stances corresponding to the training set, and the remaining 10000 instances

corresponding to the test set, consequently, the training set has been divided

into other two parts corresponding to the set of labeled instances (LI), and the

set of unlabeled instances (UI). Also, at the time of labeling by the specialist

of the relevant instances identified by the proposed technique, the dataset label

is used to simulate the expert. Likewise, the CIFAR-100 [54] dataset was used

and divided in the same manner as CIFAR-10, it differ in the number of target

classes in the instances, with CIFAR-100 having 100 classes instead of 10.

The performance of LAL-IGradV-VAE was compared with LAL-IGradV

and consequentially with Random, LCS and LAL methods, which were pre-

sented in Section 3.3.2.

4.3.2 Settings and assesment criteria

In the experimental evaluation, two neural network were used:

• one for the testing of the proposed technique: a Convolutional Neural

Network (CNN) 2D layers, with 3 input channels, kernel size 3, stride

size 3, padding size 1, ReLU activation function and max pool layers.

The CNN module has on top a fully-connected network with an input

layer of size 4096, one hidden layer with input size 4096 and output size

1024, another hidden layer with input size 1024 and output size 512, an

output layer of size 10 (i.e., number of classes), and a dropout layers

with probability 0.1. It was trained using cross entropy as loss function

and Adam optimizer (with learning rate 1e-4 and weight decay 5e-4) on

the experimental evaluation made on CIFAR-10, for the tests conducted

with the CIFAR-100 dataset, a MobileNet [36] with the following archi-
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tecture was used: it starts with a stem that consists of two convolutional

layers. The first layer, BasicConv2d, takes input images with 3 chan-

nels and applies a 3x3 convolution with (32 * α) output channels (α

was set to 1). The second layer, DepthSeperabelConv2d, uses depthwise

separable convolution, which involves applying a 3x3 depthwise convo-

lution followed by a 1x1 pointwise convolution. This layer transforms

the (32 * α) input channels into (64 * α) output channels. Following

the stem, there are four Conv layers. Each Conv layer performs down-

sampling and includes multiple depthwise separable convolutional layers.

In Conv1, the first depthwise separable convolutional layer takes (64 *

α) input channels and applies a 3x3 convolution with (128 * α) output

channels, using a stride of 2 for downsampling. The second depthwise

separable convolutional layer maintains the same number of input and

output channels (128 * α) and applies a 3x3 convolution. Conv2 follows

a similar pattern as Conv1. The first depthwise separable convolutional

layer takes (128 * α) input channels and applies a 3x3 convolution with

(256 * α) output channels, using a stride of 2 for downsampling. The sec-

ond depthwise separable convolutional layer maintains the same number

of input and output channels (256 * α) and applies a 3x3 convolution.

Conv3 continues the downsampling process. The first depthwise sepa-

rable convolutional layer takes (256 * α) input channels and applies a

3x3 convolution with (512 * α) output channels, using a stride of 2 for

downsampling. Following this, there are several subsequent depthwise

separable convolutional layers, each with (512 * α) input and output

channels. Finally, Conv4 performs the last downsampling step. The first

depthwise separable convolutional layer takes (512 * α) input channels

and applies a 3x3 convolution with (1024 * α) output channels, using

a stride of 2 for downsampling. The second depthwise separable convo-

lutional layer maintains the same number of input and output channels

(1024 * α) and applies a 3x3 convolution. After the Conv layers, there

is a fully connected layer (FC) that takes the features from the previous
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layers and maps them to the desired number of classes. The number

of input features to this linear layer is (1024 * α), and the output size

is determined by the classnum parameter. Lastly, the adaptive average

pooling layer (Avg) computes the average value for each channel across

the spatial dimensions of the feature maps, resulting in a 1x1 output.

Overall, the architecture follows a pattern of downsampling and increas-

ing the number of channels in each layer, utilizing depthwise separable

convolutions for efficient computation. For both the networks was used

a number of epochs equal to 10 for both the initialization step of training

and the training steps in the main loop;

• one for the dimensionality reduction step: this is a VAE where the en-

coder is equipped with a convolutional layer 2D with 3 input channels,

kernel size 4, stride size 2, padding size 1, followed by a batch normal-

ization layer 2D and other two layers one convolutional and one batch

normalization, all with ReLU activation function. Instead the decoder

has a Convolutional Transpose 2D layer on top with 3 input channels,

kernel size 4, stride size 2, padding size 1, followed by a batch normal-

ization layer 2D and other two layers one Convolutional Transpose 2D

layer and one sigmoid layer. It was trained using MSE as loss function

and Adam optimizer (with learning rate 3e-04 and weight decay 1e-5),

a number of epochs equal to 10 for the training, that was used all the

CIFAR-10/CIFAR-100 dataset.

Unless otherwise specified, the number k of instances to select from UI was set

to 500 when was used the dataset CIFAR-10 and was set to 1000 for CIFAR-

100; the size of LI was set to the 10% of the CIFAR-10 test set and the

remaining samples become UI. As the regressor (R), it was used the Gradient

Boosting Regressor model, with least absolute deviations (LAD) loss function

and 200 estimators. To simulate the oracle for annotating the instances, it was

resorted to the availability of class label information for the CIFAR-10/CIFAR-

100 data: whenever an instance was used in the UI set, it was masked its
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actual label during the learning process, and it was unveiled the label only

if the instance was selected within the topK set of instances to annotate. A

batch of tests was carried out for each technique as follows:

• 10 epochs of neural network training;

• 10 epochs of VAE training;

• 10 training epochs (epch) of the iterative active learning process in ques-

tion were used for each technique, at each step 500/1000 (|topK|) units

of elements are taken and chosen for each epoch of active training;

• During the tests, the size of the latent space representation obtained by

the VAE was varied in order to observe and establish the opportune size

of it;

• In order to simulate the human annotator, the annotated dataset was

taken and they were ”annotated” after the selection of the instances

using the label already provided in the dataset.

To assess the performance of the methods, it was considered the accuracy of

the classifier during the various training batches, in absolute terms as well as

in terms of percentage increase w.r.t. the early accuracy of the classifier itself

or the accuracy of a reference method. More precisely, was computed:

• the accuracy at the initial step of training of LAL-IGradV-VAE , denoted

as A(0), and the accuracy at the end of the active learning process, de-

noted as A;

• the percentage increase in the accuracy of LAL-IGradV-VAE , which is

defined as 100× (A− A(0))/A(0);

• the percentage increase in the accuracy of LAL-IGradV-VAE w.r.t.:

Rnd which is defined as %Rnd = 100(A− ARnd)/ARnd;

LCS, which is defined as %LCS = 100(A− ALCS)/ALCS;
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LAL-IGradV which is defined as %lal = 100(A− Alal)/Alal;

where ARnd, ALCS and Alal denote the accuracy at the end of the active

learning process for Rnd, LCS and LAL-IGradV .

4.3.3 Results

In the following section are described the tests performed to assess the

effectiveness of the techniques on the CIFAR-10 and CIFAR-100 datasets.

4.3.3.1 Experiments on CIFAR-10

Table 4.1 reports on the performance of our LAL-IGradV-VAE DS vari-

ant only, because is the best performed with the previous technique therefore

was used the new variant of the algorithm with DS importance scoring strat-

egy and 500 samples to select at each AL iteration, varying percentages of the

set of unlabeled instances (UI); as was done for LAL-IGradV .

Table 4.1: Performance of the proposed methods: initial and final accuracy,

percentage increase w.r.t. Rnd, LAL-IGradV (DS) and LCS, and active learn-

ing time (sec) averaged over the epochs, for various percentage values of unla-

beled instances.

A(0)
LAL-IGradV-VAE (DS)

A %Rnd %LCS %LAL-IGradV (DS) time

10% 0.793 0.822 1.17 -0.69 -1,24 177

20% 0.783 0.813 1.13 0.01 -0.63 167

30% 0.784 0.832 0.33 -1.11 -1.72 165

40% 0.763 0.811 2.69 -0.13 -0.26 167

50% 0.733 0.803 8.18 1.27 -1.40 159

60% 0.728 0.777 2.54 -0.39 -3.27 158

70% 0.708 0.789 3.31 -0.44 -2.84 150

80% 0.640 0.722 8.75 5.55 3.94 135

90% 0.570 0.665 9.30 6.05 5.13 125

Looking at the table, several remarks stand out. First of all, it is not surprising

to notice that the accuracy values (i.e., columns corresponding to A and A(0))
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tend to decrease as the percentage of unlabeled instances gets higher, since

the LAL-IGradV-VAE method is forced to handle progressively reduced sets

of labeled instances on its initial training. More interestingly, the percentage

increase of LAL-IGradV-VAE w.r.t. Rnd is always positive, instead this is

not true w.r.t. LCS and LAL-IGradV when there are more labeled samples

(up to 9.30% against Rnd, up to 6.05% against LCS and up to 5.13% against

LAL-IGradV (DS)) anyway it tends to improve with higher percentages of

unlabeled instances. Remarkable is the fact that LAL-IGradV-VAE obtains

better time performances1 as well as an higher accuracy when the amount of

the unlabeled instances increase. The proposed LAL-IGradV-VAE has shown

that a learning-to-active-learn by instance importance based gradient variation

improves significantly upon not only a random baseline but also an uncertainty

sampling approach like LCS and more in particular w.r.t. the original version

of the algorithm LAL-IGradV . LAL-IGradV-VAE increases the accuracy at

the initial training step, and tend to improve with higher percentages of unla-

beled instances when there are a less quantity of unlabeled instances.

Concerning the training of the VAE model, the impact of the latent

space representation size was analyzed by running different experiments with

values in {2048, 1024, 512, 256, 128, 64}. The results of these experiments are

presented in Figure 4.3. It is worth noticing that reducing the latent space

representation size allows to yield better results.

More precisely, the best results were obtained with the latent space represen-

tation size set to 64, where an about 5% improvement of the performances was

reached. This means that the reduction of the size of the instances, presented

to the instance selector, helps it to learn in a better way the association with

its score despite the presence of a little amount of data.

1Experiments were carried out on an Intel Core i7 CPU @2.90GHz, 32GB RAM, with

NVIDIA GeForce RTX 2070 Super GPU
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Figure 4.2: Percentage increase of accuracy for the various active learning
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4.3.3.2 Experiments on CIFAR-100

As in the previous section here there is a table 4.2 that explains the

performance obtained with the dataset CIFAR-100 of LAL-IGradV DS w.r.t.
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LCS, Random and LAL (sec. 2.3.11.3) and 1000 samples to select at each AL

iteration, varying percentages of the set of unlabeled instances (UI); as was

done in the previous experiments.

Table 4.2: Performance of the proposed methods: initial and final accuracy,

percentage increase w.r.t. Random, LAL-IGradV (DS), LCS and LAL, and

active learning time (sec) averaged over the epochs, for various percentage

values of unlabeled instances.

A(0)
LAL-IGradV-VAE (DS)

A %Rnd %LCS %LAL %LAL-IGradV (DS) time

10% 0.621 0.645 2.11 -0.11 2.01 0,27 455

20% 0.607 0.631 2.37 0.31 2.14 0.37 501

30% 0.577 0.607 1.23 -0.17 1.91 -0.72 487

40% 0.503 0.549 3.77 1.17 0.13 -0.78 499

50% 0.470 0.517 5.28 1.35 3.27 1.11 481

60% 0.411 0.488 5.97 2.28 4.19 2.27 470

70% 0.391 0.457 6.19 3.71 4.11 1.91 461

80% 0.327 0.398 7.73 6.57 6.77 2.04 407

90% 0.301 0.453 9.97 7.01 7.51 3.17 375

Looking at the table, it is evident that the accuracy trends, as observed in the

experiments conducted on the CIFAR-10 dataset, have remained largely un-

changed. However, notable attention should be given to the fact that, in this

case, the technique LAL-IGradV-VAE (DS) incorporating the VAE demon-

strates superior performance and higher gains compared to other techniques.

This can be attributed to the fact that as the model size increases due to the

complexity of the CIFAR-100 dataset, the technique LAL-IGradV-VAE (DS)

is better able to generalize and effectively identify the most suitable instances

for labeling. It is worth noting, however, that the LAL technique achieves

unexceptional performance. This is due to the fact that when using the model

parameters along with features of the instances (in the experiments, those pro-

vided by the VAE), the ML model, which should learn how to estimate the

quality score of the instances, fails to do so adequately due to the explosion

in the quantity of input data provided, therefore, the proposed techniques are
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effective for AL tasks and perform exceptionally well with neural networks.

They leverage the network’s state to understand how a given data point can

be influential to it. Moreover, unlike other techniques such as LAL, they do

not suffer from parameter explosion, which hampers their performance with

complex models feel like neural networks.
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Figure 4.4: Percentage increase of accuracy for the various active learning

methods, with varying percentage of unlabeled instances, and number of se-

lected instances (k) equal to 1000.

In the figure 4.4, it is possible to observe how the improvement of the model

in terms of accuracy varies with the amount of labeled data. As seen in the

previous experiments, the proposed techniques perform better as the initially

labeled data decreases, especially the variant with the VAE. The dimension

of the latent space used is set to 64, which performed well in the experiments

with CIFAR-10 dataset.

4.4 Limitations and possible enhancements

LAL-IGradV-VAE has shown satisfactory results in terms of a signifi-

cantly positive change in the accuracy of the classifier (also better than LAL-

IGradV ), and this performance improvement is emphasized for increasingly
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large sets of unlabeled instances, which makes LAL-IGradV-VAE useful in

these practical and more challenging scenarios. Nonetheless, several aspects of

this approach need to be further investigated and enhanced. This importance

scoring strategies might be improved in different ways. The importance of an

instance could be measured not only in terms of its own contribution to the

model change but also w.r.t. other instances, including both labeled and un-

labeled ones, according to some instance locality principle. In this regard, it

would be worthy to consider the data instance features, so as to identify an in-

stance’s neighborhood to evaluate in each step of importance scoring. Features

of the regressor (meta-features) could also be incorporated into the instance

selection steps, although this would require to identify those features that are

suited to a specific type of regressor. From an efficiency viewpoint, it would

also be important to define theoretical properties on the gradient direction

change in function of the number of top-k instances to be annotated and/or

the size of the batch of unlabeled instances available for the active learning

process, in order to prune the candidates thus speeding up the active learning

of the model. Besides enhancements on the importance scoring and top-k se-

lection policies, different choices might be investigated about the architecture

and setting of the deep neural network classifier. Our experimental evalua-

tion focused on image data, for which CNN models are known to be effective;

clearly, the choice of the neural network architecture might be dependent on

the type of the input data and on the target learning task. LAL-IGradV-VAE

exhibited quite different behavior w.r.t. not only random instance selection,

but also compared to an uncertainty sampling method like LCS, LAL, and

LAL-IGradV .

This learning-to-active-learn approach proposed has key novelty is twofold:

the integration of a regression-based meta-learning approach within a maxi-

mum model-change framework, and the definition of policies for scoring the

instance importance based on the amount of change in the learning gradient

of a deep neural network model.



Chapter 5

Conclusions

The main contribution of this thesis is an active learning method, dubbed

LAL-IGradV-VAE , that was developed to improve neural network training by

exploiting a central point of neural network training, i.e. the gradients. In

fact, a careful study was done to determine the right way to extrapolate a

learning score for a sample using the learning gradients. In this technique

the gradients, within the NN, were linearized and used as a multidimensional

vector. These vectors were used to calculate the change in the gradient of a

sample used during training through the cosine distance, after which all the

distances of the samples, used in an AL training phase, were calculated and

then the average of them corresponding to the relevance score. These scores

are used to train a Gradient Boosting regressor or a Random Forest classifier,

depending on the policy adopted, and then this model is used to estimate

the score of unlabeled samples. The experimental evaluation presented in this

thesis showed that the proposed technique is very fast and also, at the end

of training phase, it is able to provide a model with 5% higher accuracy than

other techniques such as Random, LCS and LAL. Also, it was identified that

using the original sample to train the selector model is too costly for two

reasons: (i) due to the lack of samples, the selector is not able to best learn

the rules for estimating the relevance score, and (ii) the data is too large which

results in a long training and prediction time. For these reasons, a VAE was

introduced as a preprocessing step to learn a compressed representation of

144
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the input data samples before applying the LAL-IGradV-VAE method. More

precisely, the latent space representations provided by the VAE was used to

reduce the sample size and obtain a region in which it is located, thus the

computation time was reduced and the accuracy of the model was increased

up to 9.97% compared with other techniques such as Random, LCS and LAL.

5.1 Future works

The proposed technique actually obtains very good results and can be

extended and used in a real-world environment, in fact, one only needs to

develop a new VAE for the specific case and start the process. For example, it

can be applied in the medical field, where it can significantly reduce the cost

of data labeling which, because only a few specialized people who know the

application domain can do it, can be very expensive, not to mention the fact

that it would also save a lot of training time. In addition, the proposed work

can be further improved, for example, by using a set of spatial features to help

the selector model choose the best samples or by identifying the slowest steps

and trying to speed them up further.
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